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Abstract

Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of

Structures

By Savvas P. Triantafyllou

National Technical University of Athens
School of Civil Engineering

Institute of Structural Analysis and Aseismic Research

A problem of significant importance in structural engineering deals with the response of
elastoplastic structures subjected to either static or dynamic loading. This dissertation focuses
on the derivation of computational tools that facilitate both the development and the
application of nonlinear solution methods. Attention is drawn on the definition of a
generalized hysteretic model that accounts for any type of yield function and kinematic
hardening rule. This is accomplished on the basis of the classical plasticity theory and the
mathematical theory of hysteresis.

Based on the phenomenological approach of classical plasticity the relations derived in
stress space are projected onto the stress-resultant space. Within this framework, a novel three
dimensional truss element that also accounts for geometrical nonlinear effects is presented.

Additionally, a novel three-dimensional hysteretic Timoshenko beam element with torsional



warping is derived. These elements are macro-elements in the sense that the corresponding
constitutive relations are defined in terms of stress resultants and generalized deformation
measures. Moreover, a generic procedure for the derivation of finite elements is presented.
The stiffness matrix of the generic element is established as a smooth function of the current
stress state through the proposed Bouc-Wen formulation.

The classical second order solution schemes, namely the central difference method and the
Newmark family of solvers are reformulated to account for the hysteretic equations in rate
form. Moreover, the state-space approach is implemented for the solution of the equations of
motion. A predictor corrector differential solver is used which demonstrates certain
advantages when stiff problems are accounted for. Finally, a formulation of the equations of
motion is proposed, that renders computational advantages compared to standard solution
schemes, since the state matrices of the structure are evaluated only once in the beginning of
the analysis and remain constant throughout the analysis procedure.

A general purpose finite element code is developed that accounts for the hysteretic finite
elements and macro-elements as well as the solution procedures introduced in this work. The
proposed formulations are verified through illustrative examples that demonstrate the validity
and accuracy of the proposed formulations. Furthermore, the advantages of the proposed set
of elements are examined in terms of accuracy and computational cost as compared to

standard nonlinear FEM derivations adopted both in academic and commercial source codes.
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Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

1.1 Background and motivation

A problem of significant importance in structural engineering deals with the response of
elastoplastic structures subjected to either static or dynamic loading. For load factored linear
elastic analysis, predominantly suggested by the codes, the results are acceptable, but do not
reveal the characteristics of the true behaviour of the structure. If inelastic response is taken
into account, more refined models are needed to achieve a realistic behaviour. In recent years,
significant research has been carried out in order to overcome the difficulties arising in such
an analysis. Difficulties emanate not only from the inherent complexity of structures, but also
from the uncertainties related to terms such as dynamical loading, material nonlinearity and
hysteresis.

Modern design codes such as the Greek pre-norm for the Seismic Retrofit of existing
buildings (OAXII, 2010 in Greek), the European norm for the design of structures for
earthquake resistance (EN, 1998) and the ASCE standard for the Seismic Rehabilitation of
Existing Buildings (ASCE, 2007) offer specific guidelines for the evaluation of the nonlinear
properties of structural components and the estimation of the nonlinear structural response.
Concepts such as the displacement based design and the performance based design are
therefore essential in the estimation of structural integrity (Priestley et al., 2007, Fardis,
2010).

On practice, nonlinear static analysis is favoured as opposed to the nonlinear dynamic
analysis procedure due to the inherent complexity of the dynamic behaviour of structures and
the severe computational cost of the dynamic analysis numerical schemes. Nevertheless, the
advantages of a nonlinear dynamic analysis as opposed to a nonlinear static analysis are well

documented (Bozorgnia and Bertero, 2004).
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Another significant drawback of the nonlinear dynamic analysis is the vast amount of
output data needed to be processed in order to evaluate the necessary design quantities.
Eurocode 8 explicitly states that “The number of the accelerograms to be used shall be such
as to give a stable statistical measure (mean and variance) of the response quantities of
interest. The amplitude and the frequency content of the accelerograms shall be chosen such
that their use results in an overall level of reliability commensurate with that implied by the
use of the elastic response spectrum of 4.2.2”. Recent advantages in this area have also been
documented such as the IDA method (Vamvatsikos D. and Cornell C.A., 2004).

Nonlinearities in a structural system can have a profound effect on its transient structural
response. Trusses usually have higher natural frequencies compared to relevant solid
structures, because of their high stiffness-to-mass ratio. The nonlinearity of trusses under
dynamic loading can stem from various origins: (i) geometrical-due to the variations in the
geometrical properties of the structure as the load progresses; (ii) material-due to the inherent
nonlinear behaviour of the materials under load; (iii) inertia-depending on the dynamic
motion and the structural deformations; and (iv) damping depending on the structural joints
and material.

In structures with non-symmetric plan configuration, structural members such as columns
and walls may undergo severe torsional deformation. Existing beam element formulations
tend to underestimate the importance of such deformations in the nonlinear regime.

Thus, sophisticated models are needed such as fibre beam element models or surface finite
element models in order to accurately account for such behaviour. In this context, various
beam elements have been proposed either displacement based (Bathe, 2007) or force based,
(Sivaselvan and Reinhorn, 2003). Material nonlinearity is introduced at the section level,
either macroscopically through a plastic-hinge approach (Gerolymos and Gazetas, 2005,

Mazza and Mazza, 2010) or through a fibre-based formulation at the element level (Saritas
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and Filippou, 2009, Papachristidis et al., 2010). In the latter, the Timoshenko beam theory is
implemented within the framework of a force based distributed plasticity formulation.

Although more accurate, the fibre based formulation comes at the cost of requiring
numerical integrations at the section level. At least three points of integration are needed to
achieve a linear distribution of the curvature along the element’s length with the most
efficient Lobatto rule (Sivaselvan and Reinhorn, 2003). Thus, in a time marching-process as a
nonlinear dynamic analysis, the computational advantage of concentrated plasticity,
displacement based schemes remains significant.

The Timoshenko beam theory has not been addressed in such problems, mainly due to the
shear locking problem (Rakowski, 1990, Stolarski & Belytschko, 1983) of the displacement
based isoparametric formulation that can lead to inaccurate results both in the linear and
nonlinear case. The Timoshenko beam theory leads to increased structural displacements.
This increase can be even greater under dynamical excitation since the dynamic
characteristics of the structure are altered. Such deviations from the standard Euler based
approach can have significant influence on the displacement based design of structures
(Eurocode 8, Part 3). In structural members that are subjected to high shear forces, as in shear
links of eccentrically braced frames (Kasai and Popov,1986), shear effects are very important
both in the elastic and inelastic regime.

Dissipation phenomena are of the utmost importance when studying the dynamic behavior
of nonlinear systems. As such, hysteretic damping needs to be addressed directly by
incorporating a hysteretic rule to model the cyclic response of the structure. A great number
of hysteretic models have been proposed for different kind of materials and/ or structural
components. Hysteretic models are either multilinear or smooth. Multilinear hysteretic models
are defined as a set of linear segments together with a set of hysteretic rules to account for the

various cyclic induced hysteretic phenomena, such as stiffness degradation, strength
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deterioration and pinching (Reinhorn and Sivaselvan, 2000, Naeim et al, 2000). Different
models exist depending on the material and the structural component such as the Takeda
model (Takeda et al., 1970), the Q-hyst model (Saidi and Sozen, 1979) and the Roufaiel and
Meyer model (Roufaiel and Meyer, 1987). A thorough presentation of multilinear models can
be found on Fardis et al. (1996). It is important to mention that the set of rules accompanying
each multilinear hysteretic model is based on observations made upon specific materials and
concern force-displacement relations. Thus, a generalization of such models either on the
stress-strain regime or in different materials is neither easy nor suggested.

Smooth models are defined as a set of nonlinear equations often expressed in rate form.
Stiffness degradation and strength deterioration are also implemented in the form of
additional rate equations. This allows for the simulation of all the available hysteretic
behaviours with a single smooth model, the parameters of which are varying, to match the
desired behaviour. Such smooth models are the Dahl model of hysteresis (Dahl, 1978), the
Preishach family of hysteretic models (Visintin, 2003) the Kuhn model of hysteresis
|(Papoulia et al., 2007) and the Bouc-Wen family of hysteretic models. The Bouc model of
hysteresis was first introduced in Bouc, 1967 followed by several modifications introduced,
such as the Bouc-Wen model, (Wen et al. 1976), the Baber-Noori model, (Baber et. al., 1985)
and the Reinhorn model (Sivaselvan & Reinhorn, 2000). The advantages of the Bouc-Wen
model as compared to other smooth rate independent hysteretic models, either smooth such as
the Ozdemir model (Ozdemir, 1976) and the Ramberg—Osgood model (Ramberg and Osgood
1943) have been extensively commented in the literature (Ismail et al., 2010).

A trend, not only in the seismic retrofit of existing buildings but also on the design of new
ones, is the implementation of either active, semi-active or passive seismic isolation
components. Devices such as, magneto-rheological dampers (Bitaraf et al., 2010), friction

devices (Mokha et al., 1991), buckling-restrained braces (Black et al., 2004) demonstrate a
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well-defined and distinct hysteretic behaviour. The Bouc-Wen model has been frequently to
simulation the hysteretic response of such devices as in Tsopelaset al., 2009. Shape memory
alloys have been examined as a means of retrofitting damaged steel connections (DesRoches
et al., 2001, Panoskaltsis et al., 2004, Auricchio et al. 2008). Such materials also demonstrate
an interesting hysteretic behaviour.

So far, considerable effort has been made in introducing the Bouc-Wen model into the
inelastic analysis of skeletal structures and joint behaviour, (Foliente, 1995). In Guggenberger
and Grundmann, 2005, a force based concentrated plasticity beam element is derived, within
the framework of Euler assumption, that accounts only for plastic bending deformations.
Symeonov et al. (2000), introduce an Euler, force based, element formulation were interaction
between the axial force and the bending moment is considered. This formulation leads to a
non-constant flexibility matrix which depends on both the moment and the curvature of a
given cross section. Although exact, especially in the case of members of variable cross
sections, this approach leads to an increased computational cost due to the fact that state
matrices do not remain constant and need updating, as the solution evolves. Though
considerable effort has been made into introducing the Bouc-Wen model into the inelastic
analysis of skeletal structures and joint behavior little has been done towards the development
of surface and three-dimensional elements. This is also the case for soil-structure interaction
problems, where efforts by Gerolymos and Gazetas, (2006, 2007), concentrated towards the

proper use of the one dimensional Bouc-Wen model.
1.2 Research objectives

The prime objective of this research work is the description of the hysteretic response of
materials and structural components within a unified and theoretically sound framework. The

specific research objectives are:
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e To accurately describe the hysteresis phenomenon based on both, the mathematical theory
of hysteresis and a sound phenomenological background as the classical theory of
plasticity

e To enhance the existing hysteretic models so as to simulate the majority of the observed
hysteretic behaviors

e To introduce this hysteretic formulation into the finite element scheme, thus enhancing its
applicability

e To derive simple but accurate macro-elements that account for the nonlinear hysteretic
behavior of skeletal structures. The effect of geometrical nonlinearities on the hysteretic
response of skeletal structures is also considered

e To examine whether the existing numerical procedures of nonlinear dynamic analysis are
enhanced, in terms of computational cost, through the application of numerical solvers

appropriate for the solution of stiff mathematical problems
1.3 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2, the basic concepts of the theory of
classical plasticity are presented. Attention is drawn to the phenomenological nature of
classical plasticity. This chapter serves as a point of reference for subsequent chapters.

Chapter 3 describes the theory of smooth hysteretic operators. Commencing from the
mathematical theory of hysteresis, the initial uniaxial formulation of the Bouc-Wen model is
presented. Based on the governing equations of classical plasticity, a novel derivation of the
Bouc-Wen model in tensorial form is presented that accounts for any combination of yield
function and hardening law. By introducing appropriate operators, stiffness degradation and

strength deterioration are also implemented in the proposed hysteretic model.
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Chapter 4 deals with the concept of macro-modeling. Based on the phenomenological
approach of classical plasticity the relations derived in stress space are projected onto the
stress-resultant space. Within this framework, a novel 3 dimensional truss element that also
accounts for geometrical nonlinear effects is presented. Additionally, a novel three-
dimensional hysteretic Timoshenko beam element with torsional warping is derived.
Simplified examples are presented to demonstrate the validity of the proposed formulations.
To facilitate and clarify the presentation certain aspects of the solution approach implemented
in this work are also presented.

In Chapter 5 a generic procedure for the derivation of finite elements is presented. The
stiffness matrix of the generic element is established as a smooth and continuous function of
the current stress state through the proposed Bouc-Wen formulation. As an example, the
triangular constant strain triangle formulation is presented and the validity of the method is
established through benchmark tests.

In Chapter 6 the solutions methods implemented in the present work are presented. The
classical second order solution schemes, namely the central difference method and the
Newmark family of solvers are reformulated to account for the hysteretic equations in rate
form. Additionally, the state-space approach in the solution of the equations of motion is
presented, that is adopted for the solution of the governing equations, since it is prone to
certain advantages when stiff problems are accounted for. Furthermore, a formulation of the
equations of motion is proposed, that renders computational advantages compared to standard
solution schemes, since the state matrices of the structure are evaluated only once in the
beginning of the analysis and remain constant throughout the analysis procedure.

In Chapter 7, examples are presented that demonstrate the validity and accuracy of the

proposed formulations. Furthermore, the advantages of the proposed set of elements are
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examined in terms of accuracy and computational cost as compared to standard nonlinear
FEM derivations.

In Chapter 8 the conclusions drawn in this work are summarized. Some important results
obtained are highlighted while at the same time the necessary areas requiring some further

investigation are identified.

10



Chapter 2

CONTINUUM MECHANICS AND CLASSICAL
PLASTICITY

11



Chapter IT Continuum Mechanics and Classical Plasticity

12



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

2.1 Introduction

In this chapter, the fundamental concepts of continuum mechanics and classical plasticity
are briefly presented, to form the basis of the subsequent analysis. At first, the notion of a
material body is strictly defined and the associated compatibility conditions are stated. Next,
the strain and stress measures used throughout this work are defined.

Finally, the theory of classical plasticity is briefly discussed, by stating its main principles,
namely the additive decomposition of the strain rates, the flow rule, the normality assumption
and the hardening law. In addition, specific yield functions and hardening laws are presented,

that are going to be used in the examples of the subsequent chapters.
2.1.1 Basic concepts of continuum mechanics

In this work, presentation is limited to the three-dimensional Euclidean space. Within this

framework, a simple body B C R® is formally described as an open set of continuously
distributed material points P that span a region within the Euclidean space (Marsden and

Hughes, 1994). Each point is uniquely defined by a set of Cartesian coordinates denoted
herein as {X } = {X1 X, X, }T. Under the influence of an arbitrary force, B translates,
rotates and deforms. If #; is the time instant at which B is considered undeformed, then for

each t, > ¢, i =1,..n a series of deformed states or configurations of B are defined,

denoted herein as C’. A motion of the body is a one to one mapping ¢ : B — R* that maps

B from the initial configuration C° to the current configuration C’. Thus, for every time

instance t, >t

{=} =o' ({x}.1,) @.1)

13
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i T . .. . .
where {x}l = {xl 7, xs} is the position vector of the point {X } at the configuration

Ci
Accordingly, the displacement vector is defined as the difference of the position vectors at

each configuration thus:

{uy =o' ({x}e) - {x}={a} - {x} 22)
The deformation gradient of the current configuration C’ is defined by differentiating

equation (2.1) at a specific ¢, > ¢,:

{do} = do' ({x}.1,){dX} = [F'] = Grad(¢' ({X }.,)) = % 2.3)

Replacing equation (2.1) into (2.3) the deformation gradient assumes the following form:

Typ Ty Ty
il
[F ] =Ty Tyy oy (2.4)

T31 P32 T33
with J = det ' > 0 (Lubliner, 2008). The deformation gradient is defined with respect to

the displacement vector by substituting relation (2.2) into relation (2.3) yielding:

[F'] = Grad({x} + {u} | = [1] +[9)] (2.5)
where[Q] = Grad ({u}l) is the displacement gradient.

2.1.2 Strain measures and accompanying stress measures

In this work, the Green-Lagrange strain measure is introduced that is commonly
implemented in engineering applications (Zienkiewicz and Taylor, 2005). The Green-

Lagrange strain tensor is defined by the following relation:

14



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

(7] = 3((#T'[F]-(1)) 20

where the product [F ]T[F ] is referred to as the right Cauchy-Green tensor. Replacing

equation (2.5) into relation (2.6) the strain tensor is evaluated with respect to the displacement

gradient:

[5]=5{[]+ (2] +[2]"[«]) @)

or, expressed in component form:

; 1{ Ou, Ou;  Ouy Ouy,
B, =

= JI,J =1..3 (2.8)
210X, 0X, 0X,0X,
where the Einstein convention of summation is implemented. The Green-Lagrange strain

tensor thus consists of two parts. The linear part coincides with the small strain approximation

strain tensor:

1[ Ouy Ou,

e, == I, J=1.3 2.9
79l 0x, 8XI] 29

while the nonlinear part is given by the following relation:

1[3“1” O | 1713 (2.10)

=5\ ox, ox,

It is proved through proper manipulation of the energy conservation laws (Belytschko et
al., 2000) that the energy conjugate stress measure of the Green-Lagrange strain tensor is the

second Piola-Kirchhoff stress tensor defined as:

(8] = J[F] '[o] [F] @11
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which refers to the area of the initial configuration, while [U] is the Cauchy stress or true

stress that refers to the area of the current configuration.

To this point, the tensorial notation has been implemented for the derivation of the stress
and strains relations. In the derivation of finite elements, the matrix notation of the stress and
strain tensors is preferred since it leads to compact relations (Zienkiewicz and Taylor, 2005).
In this work, the matrix notation is adopted, thus the stress and strain tensors are arranged in

the following vectorial form:

{S}:{Sll Soy S35 S1g Oag SSl}T (2.12)

and

T
{E} = {EH By Esy 2E), 2B, 2B } (2.13)
If the small displacement assumption is adopted, then the nonlinear term of relation (2.10)

becomes significantly smaller than unity and is therefore omitted from the definition of the

strain. Furthermore, to comply with standard FEM nomenclature, when reference is made to

the special case of small displacements the stress and strain tensors will be denoted as {a}

and {5} respectively, (Cook et al., 2002).

2.2 Sources of nonlinearities in structures

2.2.1 Geometric nonlinearities

The concept of geometric-nonlinearity is directly related but not limited to the definition of
the strain measure described in section 2.1.1. By considering the nonlinear strain-
displacement equations (2.7) the equilibrium and constitutive equations of the continuum are

formulated taking into account the change in shape (or volume) of the material body. Such

16
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changes affect the distribution of stresses through the material volume (Marsden and Hughes,
1994). Phenomena that are also treated as geometric nonlinearities are:

e Large displacement and large strain behaviors, met in foam and rubber like

materials

e Time or load varying boundary conditions

e Non-conservative loading, i.e. direction varying loading

e Contact problems

For an exhaustive description on the subject the reader is referred to Wriggers, 2008. The

analysis presented in this work is mainly referred to the case of small displacements and
strains. However some formulations, namely the derivation of the hysteretic truss element and
the hysteretic Euler beam element, are extended to the large displacement regime proving that

the extension to the large displacement regime is straightforward, though not trivial.
2.2.2 Material nonlinearities

The theory of linear elasticity is a simplified approximation, valid within a certain level of
load intensity. Beyond that level, materials demonstrate a non-linear behavior that is
mathematically expressed through a nonlinear stress-strain constitutive equation. Material
nonlinearity is a generic term that embodies various phenomena i.e.

e Non-linear elasticity
e Rate-Independent plasticity
e Thermo-plasticity
e Rate-dependent plasticity or visco-plasticity
e Nonliner creep
In this work, the nonlinear behavior of materials under dynamic excitation is examined

within the frame-work of rate-independent plasticity. Numerous experiments on structural

17
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members such as wood joints (Foliente, 1995), steel members (Popov and Stephen, 1970) or
R/C piers have demonstrated that the hysteretic energy accumulated due to irreversible plastic

deformations is rate-independent.
2.3  Concepts of plasticity theory

2.3.1 A phenomenological approach to material behavior

The mathematical theory of plasticity (Hill 1998, Kachanov 2004) is based on the mere
observation that materials tend to demonstrate some common behavioral properties in spite of
their different actual responses. This statement has been verified with numerous experimental
results on materials as diverge as metals and soils (Hill, 1998).

These common material properties can be summarized as follows:

I. There exists an elastic domain within which any deformation imposed onto the
material is purely reversible.

II. If this domain of behavior is surpassed then the material undergoes permanent
deformations. These deformations are called plastic and the material behavior is
considered as that of a flow.

III. Under consecutive cycles of loading unloading and reloading past the elastic
domain the material exhibit a hardening or softening behavior. That is, the rate of
accumulation of plastic deformations tends to decrease or increase cycle after
cycle.

The observations described above give rise to the three main principles of the small strain
theory of plasticity that is the additive decomposition of the strain rate, the existence of a
yield surface and the establishment of a hardening rule. Within this framework, and on the
basis of the theory of continuum mechanics (Irgens, 2008, Reddy, 2008) a series of

mathematical tools have been developed that adequately describe the inelastic material

18
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behavior that is macroscopically observed without having to describe the microscopic
mechanisms (crystal structure etc.) that give rise to such macroscopic behavior. A brief

introduction on the concepts of micro-plasticity can be found in Dunne and Petrinic, 2005.
2.3.2 The classical theory of plasticity

The small strain classical plasticity theory is based on the following set of governing

equations, stemming from three principles described in the previous paragraph.

G11 A

_________________ (0',€> o,

e

7 +
sll 611

Fig.2.1 Additive decomposition of the strain, uniaxial tension test

Based on observations I and II the resulting total strain is decomposed into an elastic and a

plastic part, where unloading from a stressed configuration beyond the elastic limit of the

material is implied. Thus, the total strain {e} is decomposed into an elastic deformation

{c°} anda plastic deformation component {er}.

{e}={e}+{e} (2.14)

Relation (2.14) is more conveniently expressed in rate form as:

{e} ={e}+{er} (2.15)
The additive decomposition of the strain tensor is schematically represented in Fig.2.1 for the

case of a uniaxial tension test. The elastic deformation component accounts for the fully
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reversible deformation while the plastic component accounts for the permanent deformations
asserted onto the body.

Plasticity is best described with respect to the components of the stress tensor at a given
material point. Taking advantage of the symmetry of the stress tensor, its components define a
6-dimensional Euclidean space. Since such a space is difficult to visualize, the problem is

further simplified by referring to the 3-dimensional space defined by the principal stresses of

the stress tensor. A point on the three-dimensional stress tensor defines a load point P, .

Observation II leads to the definition of an evolution equation for the rate of the plastic

deformation

{er} =2 9

)
(2.16)
o{c}

where A called the plastic multiplier and @ is a yield function dependent on the components

of the stress tensor, thus defining a hyper-surface in R°. Since plastic deformations are not
reversible, the plastic multiplier is a non-negative quantity. As long as the stress remains

within the elastic domain, the plastic multiplier is by definition equal to zero, thus:

) 0, elastic domain .
> 0, plastic domain (2.17)

The elastic domain is defined by the yield function, that is, any given stress tensor lying
within the surface defined by the yield function stands for an elastic state, while any stress
tensor lying on the boundary of the yield surface defines the plastic state. Since a direct
relations exists between the stress tensor and the principal stress tensor (Marsden and Hughes,
1994), the yield function is usually reformulated in terms of the principal stresses o, , 0,, 04
(Lubliner, 2008). Thus, its representation on the principal stress space yields a three

dimensional surface.
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By defining equation (2.16) another assumption of the theory is implied, that is the
normality rule, stating that the direction of the evolution of the plastic strain is normal to the
tangent of the yield surface at the load point.

Finally, observation III leads to the definition of the hardening rule. Two main types of
hardening are observed namely the isotropic and the kinematic hardening concept. Isotropic
hardening is defined as the uniform expansion of the yield surface on the stress-space as

presented in Fig.2.2(a).

o=a({o}—fnpr,)

»2

@ =0({o}—{n}n)

Ul a-l
(a) (b)
Fig.2.2(a) Isotropic hardening - uniform expansion of the yield surface (b) Kinematic
hardening-relative displacement of the yield surface, parallel to the direction of the plastic
deformation

Kinematic hardening is defined by the displacement of the yield surface towards the

direction of the plastic strain as presented in Fig.2.2(b). Both are expressed with the help of

two model parameters, namely the isotropic hardening parameter « = n({a}) and the

kinematic hardening parameter, or back-stress 7). Thus, the yield surface in its most general

form is a function of the load point, the isotropic hardening parameter and the back-stress

®=o({o}—{n}.x) (2.18)
The kinematic hardening rule is defined as an evolution equation of the back-stress, which

assumes the following form:
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{n}=xc¢({n}.{n}.{e" }... (2.19)

Equations (2.14) - (2.19) do not suffice to evaluate the plastic multiplier. To do so, another
assumption needs to be made concerning the incremental behavior of the load point that is
bound to remain on the yield surface for any further increment of the plastic multiplier. This

is the consistency condition of classical plasticity that is expressed as:

{}T{“[] o

The introduction of the consistency condition finally leads to the evaluation of plastic

dd =0 = d{n}=0 (2.20)

multiplier at a given load point. This procedure will be described in detail in Chapter III as it
will be the basis for the development of a generalized hysteretic model. The normality rule
and the derived consistency condition are key concepts of the associative plasticity framework
that states that the yield surface coincides with the plastic potential from which the plastic
deformations are derived (Lubliner, 2008). The theoretical foundations of associative
plasticity stem from the mere observation that in many materials (mainly polycrystalline
metals) the direction of the principal strains coincides with the direction of principal stresses

(Dunne & Petrinic, 2005).

2.3.3 Yield surfaces

In this section, the expressions of typical yield surfaces are presented, that will be used in
subsequent Chapters. Historically, the concept of plasticity was first applied to metals in
which the influence of the hydrostatic stress on yielding has been macroscopically observed
to be negligible (Lubliner, 2008). The Tresca and von Mises yield criteria have been defined
with respect to such observations. Furthermore, the Tresca and von-Mises yield criteria

satisfy, by definition, symmetry properties based on the isotropy assumption (Lubliner, 2008).
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This allows for the evaluation of the necessary model parameters through simple uniaxial

tests.

Tresca yield surface

Tresca yield is based on the assumption that plastic deformation initiates when the
maximum shear stress, over all planes, asserts a critical value. The Tresca yield criterion is
defined by the following non-smooth equation:

011 — ‘722| + |U22 - ‘733| + |033 — 0y
@ = —
K

1 (2.21)
where x is a critical value where yielding initiates. The value of x can be derived from a

.. . . T .
uniaxial tension test, where the stress tensor is {a} = {cr 0 00O 0} where g, is

y
the yield stress in uniaxial tension. Substituting into the definition of the Tresca yield the

following expression is derived:

20 o
P R ST (222)
4k 2

Expressing the yield surface @, in terms of the principal stresses o, , o0,, o, the following

relation 1s derived

B |‘71_02|+|‘72_‘73|+|‘73 —01|

—1 (2.23)

g
Y

Equation (2.23) represents a hexagonal prism on the principal stress space as presented in

Fig.2.3(a). The prism is inclined so that its directrices are parallel to the hydrostatic pressure

line defined as 0, = 0, = 05.
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Fig.2.3(a) Tresca yield surface (b) von Mises yield surface
von Mises yield surface
Von Mises yield is derived through the hypothesis that plastic deformation initiates when
the distortional part of the complementary energy of a material assumes a critical value. The
von-Mises yield surface is defined as the locus of points in the stress space expressed by the

following relation, (Lubliner, 2008):

®,,, =0 (2.24)
where:
(011 — 09 )2 + (‘722 — 033 )2 + (‘711 — 033 )2 + 6{("12 )2 + (‘723 )2 + <U13 i
O, = : —1(2.25)

R

The critical value x is again defined through a uniaxial test and the following value is

derived:

20

2
“Lo1=0= k=202 = 5 =20, (2.26)
K

Writing equation (2.25) in terms of the second invariant of the deviatoric stress tensor (.J,),

the following relation is derived:
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—1 (2.27)

Thus, von Mises yielding initiates when J, assumes a critical value. For this reason,

plasticity models incorporating the von Mises yield criterion are often referred to as J, -

plasticity models (Simo & Hughes, 1998). If plotted on the principal stress space, equation
(2.27) represents an inclined cylinder as presented in Fig.2.3(b). Comparing expressions
(2.21) and (2.25) it is proved that if the two models are calibrated to predict the same yield
stress in uniaxial tension, then the Tresca yield surface is circumscribed by the von Mises
surface. Equivalently, if the two models are calibrated to predict the same yield stress in

shear, the von Mises yield surface is inscribed in the Tresca one (Neto et al., 2008).

Bresler-Pister yied surface

When it comes to describing the plastic behavior of materials like soil, rock or concrete a
yield criterion depending on the mean stress is needed. In this work, the Bresler-Pister yield
criterion is used (Deder & Ayvaz, 2010). The Bresler-Pister yield criterion is a three
parameter model that is used to simulate concrete plasticity. It is perceived as an extension of
the Drucker - Prager yield criterion (Lubliner, 2008). The corresponding yield surface is

defined by equation:

Ppp =0 (2.28)

where
\/J_2 -G (‘711 + 09 + 033) ) (‘711 1 0y + 033 )2

O, = 1 (229)
=)

-
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where ¢, c,,c, are material dependent coefficients and J,, is the second invariant of the stress

tensor. The choice of the parameter values needs to be made with care to derive a reasonably

shaped yield surface. For the case of concrete, the following set of parameters is derived

_ 0y — 0, 40-5 _Ub(ac + Ut) +Ucat
= \/g(at%—ac) 4Uf+20b<at—00)—acat
1 O'b(30't —UC)—Qacat
= 2.30
E \/g(at—l—ac) 4Uf+20h<at—ac)—acat ( )
Co = % +co, — 02062

In relations (2.30),0,, o, are the yield stresses in uniaxial tension and compression

respectively while o, is the yield stress in biaxial compression. The Bresler-Pister yield

criterion is part of a general family of three-parameter models for concrete constitutive

behavior. Further details can be found on Zhang (1993). In Fig.2.4, the Bresler-Pister yield

surface is presented for the case of biaxial loading, consideringo, = 20MPa, o, = 23MPa

and o, = 2MPa

oy (Kpa)

- 25000 0~ 20000 - 15000 - 10000 - 5000 0

02, (Kpa)

Fig.2.4 Bresler-Pister Yield Surface
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2.3.4 Kinematic hardening rules

The Melan-Prager model

The Melan - Prager hardening model (Lubliner, 2008) is defined by the following relation:

{n}=e({nh){=} (231)
where c({n}) is an arbitrary function of the back-stress. When c({n}) is constant, equation

(2.31) stands for the linear kinematic hardening model that is schematically presented in
Fig.2.5(a) and (b) for the case of a uniaxial tensile test. To demonstrate the notion of back-

stress a von Mises material with linear kinematic hardening is considered. In Fig.2.5(a)the

stress-strain path OAB is plotted where F is the elastic modulus andaE, o € [0 1} is the

post-yield modulus of the material.

Oi1 A N A

11 11

(I):<011 _nll)_ay

Fig.2.5 Material with linear kinematic hardening

Upon unloading from point B to C, well beyond the yield stress of the material, the elastic

part ef; of the total strain ¢, is reversed while the residual part of the deformation is denoted

as €f|. The elastic part of the strain rate is derived as:
o,, = Eey (2.32)
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If reloading occurs, the stress increases following the path CB. The material does not yield

until point B is reached while at point B the stress assumes the following value:

c=auokF

- X 2.33
9 .
Differentiating equation (233) with respect to time, the fOHOWil’lg relation is derived:

o =ake (2.34)
Since yield occurs at point B, the yield criterion is fulfilled and the following relation

holds:

Q):O:>(an—7)n)—ay:O:>7711:UH—0 (2.35)

Y

Therefore, the back-stress expresses the additional stress that needs to be attained beyond the

initial yield stress o, in order for the material to yield again. Differentiating (2.35) with

respect to time the following relation is derived:

N, = 0 (2.36)
Thus the rate of evolution of the back-stress and the actual stress is the same. Substituting
relation (2.36) into (2.31), considering equation (2.32) and implementing the additive

decomposition of the strain rates (equation (2.15)), the following relation is established:

o o 0 1 1 1 ok
— =t —=—t-=c=
aE E ¢ aE E ¢ (1—a)

(2.37)

Thus a direct relation exist between the kinematic hardening coefficient, the elastic

modulus and the post-elastic to elastic ratio «.
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The Armstrong-Frederick kinematic hardening model
The Armstrong-Frederick (AF) kinematic hardening model, which will be denoted as AF

model for brevity, (Armstrong and Frederick, 1966) is expressed as:

{7'7}‘:%’1{ v} —cer {n} (2.38)

whereh,c are model parameters and &/ = \/ (2/ 3){ép }T {ép } is the equivalent plastic

strain. Substituting equation (2.16) into (2.38) the following expression is derived:

(1) = 200057 o200} = 2| B ()] e

Thus, the kinematic hardening function is defined as:

G = \F[\E a{} {n}] (2.40)

The second part of equation (2.40) reveals an interesting feature of the AF model. When

the back-stress assumes a constant value, that is {77} = 0, equation (2.39) yields:

Thus, the ratio h/ ¢ determines the maximum value of the back-stress, while from relation

(2.39) it is derived that parameter c controls the speed by which this maximum value is
reached. The AF model is known to overestimate the ratcheting effect observed in cyclic tests
of metals under non-zero mean stress (Kyriakides, 1994). For this reason, various

modifications have been proposed (Chaboche, 1991, Dafalias, 2008).
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2.4  Plasticity in terms of stress resultants

The general framework of three-dimensional plasticity, though mathematically rigorous, is
difficult to implement in real life applications due to the great number of the implicated
unknowns, i.e. stresses, strains and displacements, and their corresponding equations. To cope
with such problems various engineering theories have been proposed and used such as the
Euler/Bernoulli theory of bending, the Timoshenko theory of bending or the St-Venant theory
of torsion for prismatic beams. Relevant theories have been implemented for the solution of
plane problems such as the Kirchhoff-Love and the Reissner-Mindlin theory of bending.

Such theories are macroscopic, in the sense that their assumptions are based on
observations over macroscopic properties e.g. plane sections remain plane and perpendicular
to the neutral axis for the case of Euler/Bernoulli theory of bending. Moreover, the
mathematical derivations are based on stress-resultants, i.e. forces and moments rather than
stresses. The stress-resultants are integral quantities of stresses over a finite space quantity
and as such they also constitute macroscopical quantities. Thus, contrary to stress-strain
formulations where behavior is monitored at discrete points, macro-formulations describe the
behavior over a finite space, e.g. a cross-section. Based on the same reasoning and
considering predetermined patterns of plastic deformation the basic constituents of the
phenomenological theory of plasticity can be also established in terms of stress resultants and
corresponding generalized deformation measures. In this work, the theory of stress-resultant
plasticity is implemented in the derivation of new hysteretic truss and beam-column elements.

In general, stress-resultant plasticity models for skeletal structures involve adaptations of
classical stress-space plasticity rules to model inelastic cross-section deformations under the

combined application of axial and shear forces and moments.
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Formal stress-resultant plasticity formulations for skeletal structures have been under
development for about three decades. Such derivations can be found in Nigam (1970), Song
Argyris et al. (1982), and Powell (1982), Orbison et al. (1982), Zhao (1993) and recently
Skordeli and Bisbos (2010).These formulations are based on the assumption of plastic hinge
formation where member ends are assumed to yield abruptly from elastic to perfectly plastic
when a prescribed yield criterion is met. Stress-resultant plasticity models have been applied
to reinforced concrete members (e.g., Takizawa and Aoyama 1976) and more recently to steel
tubes (Mohareb, 2002).

Yield criteria functions usually take the form of continuous or piecewise linear surfaces
representing the fully yielded strength of members under the combined action of stress
resultants. Flow rules, corresponding to these yield surfaces are also established as in the
stress-strain representation. The main disadvantage of the stress-resultant scheme is that no
analytical relation exists for members of arbitrary cross-section. However, a yield boundary
can be numerically derived using appropriate software for the case of axial-bending

interaction as in Charalampakis and Koumousis (2008b).
2.4.1 Definition of stress resultants

Denoting stress resultants by _#  the corresponding generalized strains e are defined as

conjugate energy measures, such that:
SW = f FsedV (2.42)
v

where OW is the variation in the internal work produced by a variation in the generalized
strain measure e over a reference volume V. Considering a prismatic beam element and
neglecting the work produced from shear stresses over shear strains, the vector of stress

resultants is defined as:

31



Chapter IT Continuum Mechanics and Classical Plasticity

T
F=(P M, M) (243)
where P is the axial force, while My and M, are bending moments with respect to the

strong and weak axis of the cross-section respectively. The generalized strain vector

corresponding to equation (2.43) is defined as:

T
c=(c o, o) (2.44)
where e is the centerline axial deformation, q§y is the curvature with respect to the strong axis

and ¢, is the curvature with respect to the weak axis of the cross-section.
2.4.2 Yield surfaces in stress-resultant space

Exponential yield surface for steel sections
The exponential yield criterion concerning axial-biaxial bending interaction assumes the

following form:

b =n+ (my )a +(m, )a (2.45)

where n = P/ P m, = My / M m, = M, / M while o, are shape factors.

L2 yu 2u

Relation (2.45) is also implemented for the simulation of composite sections as described in

Iu et al. (2009). In the trivial case where o, = «, = 1, equation (2.45) reduces to the linear

Y
interaction scheme implemented in EC3. The linear scheme constitutes a lower bound
solution of the plasticity problem (Lubliner, 2008) thus yielding a conservative predictor for

the true cross-sectional behavior.

The Orbison yield surface

The Orbison criterion (Orbison et al., 1982) is defined by the following relation:
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® = 1.150% + m? + m; + 3.67n’*m? + 3.0n°m? + 4.65m,m? (2.46)

where n = P/Pu , m, = My/M m, = MZ/MZU In equation (2.46)yrefers to the

yu >
strong axis of the cross section while zrefers to the weak axis of the cross-section. Equation
(2.46) has been developed by curve-fitting over actual experimental data and is suited for

interaction patterns observed in steel [-beams.

The Heyman-Dutton yield surface
In Heyman and Dutton (1954) the following yield criterion has been proposed for the

moment-shear interaction of I-beams

m—l—mweb[l—\/1—<q)2] =1 (2.47)

where m = M / M, is the bending ratio M , being the fully plastic moment of the cross-
section, m,., = M, / M, is the ratio of moment retrieved by the web over M , and
qg=0Q / Qp is the shear ration, Qp being the fully plastic shear force. In Fig. 2.6, the Heyman-

Dutton yield criterion is presented for three distinct cases of m, , namely 0.1, 0.2 and 0.4.

we

The case m, , = 0.4 is an extreme scenario not accounted for in standard steel section

web
profiles.
The bending moment is not severely reduced for values of the shear ratio smaller than

0.25. The reduction increases significantly for values of the shear ratio greater than 0.25. The

reduction rate increases for increasing values of m, . For standard cross-sectional profiles

the overall reduction in the bending strength is not greater than 20% of the initial value.
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Fig. 2.6 The Heyman-Dutton yield criterion

The Simo et al. yield surface

Simo et al. (1983) analytically evaluated the following relation for the plastic interaction
between axial, shear forces and bending moment for a rectangular cross-section

2 2 4
P
A2 (2]) e o
P QU QU

u

@:‘ﬁ
M

u

Relation (2.48) is analytical, depending only on the shape of the cross-section and thus can be
implemented both on steel and reinforced concrete sections, provided that the uniaxial
strength components P, M , @ have been accurately evaluated. Fig. 2.7(a), the 3d
interaction surface is presented while in Fig. 2.7(b) the corresponding iso-axial interaction
curves are plotted. The bending strength of the cross-section reduces significantly for values

of the axial ratio larger than 0.25.
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Q/Q,

(a) (b)

Fig. 2.7(a) Simo et al. yield criterion (b) Iso-axial moment shear interaction curves

Generalized Gendy-Saleeb yield surface
Gendy and Saleeb (1992) propose the following generalized yield surface for the

rectangular and wide flange sections

1 1
@:n2+q§+qf+)\—m§+)\—mf+mi+t2 (2.49)

SU
Y z

where n = P/P,, ¢, =@Q,/Q,, ¢. =Q./Q,, m, =M, /M, , m =M /M, while
m, = M, / M,, is the ratio of the warping bimoment over the fully plastic warping

bimomentand ¢, = M / M s is the ratio of the pure torsional moment over the fully plastic

torsional moment. Parameters A and A, are shape dependent. For rectangular cross-sections

they assume the following form

A=A =1—17 (2.50)

while for I-beams the corresponding expressions are:

)\y =1l-n AN =1-11n (2.51)

The advantage of the expressions described above, rest in the fact that they are analytical and

thus facilitate the evaluation of corresponding flow rates.



Chapter IT Introduction

36



Chapter 3

BOUC-WEN HYSTERESIS
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3.1 Introduction

An issue of major importance, for a nonlinear analysis, is the hysteretic rule needed to
model the cyclic response of structures. Over the last twenty years, significant development
has occurred in the so-called phenomenological approach of hysteresis. Following Massing
(1925), Preisac (1935) and Valanis (1971), Bouc presented his formulation (1967) of the
single degree degrading hysteresis model with pinching. Subsequently, many modifications
have been introduced, such as the Bouc-Wen model (Wen, 1976, 1980), the Baber-Noori
model (Baber and Wen 1980, Baber et al. 1986) and the Reinhorn model (Sivaselvan and
Reinhorn, 2000). These hysteresis models —also known as smooth hysteretic models- are
capable of simulating different types of hysteretic behavior using a single smooth hysteretic
function affected by a set of user-defined parameters.

The last decades Bouc-Wen hysteretic model is proven very versatile in expressing a wide
range of hysteretic response including stiffness degradation, strength deterioration as well as
pinching phenomena in reinforced concrete, steel members and connections, wood etc.,
(Foliente G. C, 1995). In addition, considerable effort has been devoted to alleviate Bouc-
Wen model from inconsistencies regarding thermodynamic admissibility, (Erlicher and Point
2004, Erlicher and Bursi, 2009) and violation of plasticity postulates, (Charalampakis and
Koumousis, 2009). The rate form of evolution equations, derived also on the basis of
endochronic theories of plasticity (Valanis, 1971), is capable of expressing in an integrated
way the phenomenological hysteretic behavior at the component level. This facilitates direct
incorporation of identified model parameters for various members and/or connections leading
to a more effective and controllable analysis, as compared to the pointwise stress-strain

relations required in standard Finite Element Analysis. These features are revealed at the cost
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of extending the elastic finite elements by introducing additional stiffness matrices that
account for inelastic behavior and the inherent interaction of different components of stress.
During the last decade, Bouc-Wen model has been adopted by many researchers, (Pires,
1993, Choi and Lee, 2001) as a robust and accurate tool, to simulate the hysteretic behavior of
various materials. At the same time, techniques were developed for the identification of the
Bouc-Wen model parameters utilizing among others, advanced analytical techniques, as in
Chatzi and Smyth (2008), evolutionary identification approaches, (Charalampakis and

Koumousis, 2008a) and more recently in Chang et al. (2010) using wavelet analysis.

3.1.1 The concept of hysteresis

Consider the single degree of freedom (s.d.o.f.) oscillator presented in Fig.3.1. The

oscillator exhibits an elastic-perfectly plastic material behavior with a yield stress o.

u(t)

—
{//“\ mii(?) p()
\\ —

|

: (¢}

| t P..(0)

|

|

: Gy m

l

|

Fig.3.1 Single degree of freedom oscillator under cyclic excitation

The response of the nonlinear oscillator is depicted in more detail in Fig.3.2. For stresses
smaller than the yield stress, material behavior is defined by Hooke’s law, so that the elastic

range of the response is evaluated as:
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Fig.3.2 Hysteretic loop

and there is 1:1 correspondence between the input and the output.

However, there are at least two possible stress states o € [—ay, ay] that correspond to an

arbitrary strain level € = ¢,c € [sy, 400 ) , larger than the yield strain €y .Thus, there does not
exist a function o (5) that can uniquely map the current level of strain to the current level of
stress even for the trivial case of an elastic-perfectly plastic material. The mathematical theory
of hysteresis tries to define a proper output function o = a(t) : [O,T ] — R given an input

function € = €<t) : [O,T ] — R such that the derived vector phase space (0(t>,s<t))

coincides with the curve presented in Fig.3.2.

Thus, the mechanical problem of hysteresis is translated into the mathematical problem of

defining an operator, denoted herein as the hysteresis operator B[In](t) where

In : [O,T] — R, is an arbitrary input time history such as displacement, strain e.t.c. From

physical point of view, the functional has to be rate independent since the hysteretic energy

accumulated over consequent loading and unloading cycles does not depend on the rate of the
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input or output functions. Moreover, the hysteretic operator must be piecewise monotone, as
the shape of the hysteretic loops implies (e.g. with respect to Fig.3.2, monotonically
increasing in path OAB and monotonically decreasing in path BCD). Finally, the operator
must have some property of memory which in mathematical terms is covered by the notion of
causality (Logemann and Mawby, 2003).

It is evident from the approach presented in this paragraph that the notion of hysteresis is
coped with mathematical tools that are indifferent to the input and output functions describing
the hysteretic loop. For this reason, the theory presented herein constitutes a
phenomenological approach. Nevertheless, there are aspects that are directly connected to the
mechanical properties of hysteresis such as energy dissipation mechanisms and hardening

effects that will be addressed through this theory in a consistent way.
3.2 The initial derivation of the Bouc-Wen model

Bouc (1967) studied the response of a single degree of freedom oscillator with mass m

and a hysteretic restoring force P

res

(t). According to the notions described in paragraph 2.1,

the hysteretic restoring force is considered to be the result of a hysteretic operator B over the

displacement wu(t):

P, (t) = Blu](?) (3.2)

d*u
m—+B[u]<t>=p(t> (3.3)
where p(t) is the external force. Based on the initial work of Volterra (1928) for an internal

restoring force with hysteretic properties, Bouc defined operator B as an integral scheme:
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Blu](t) = [ p(tt)du(t) (3.4)

where f¢1s an intrinsic kernel and ¢ >t . Furthermore, the following assumption is adopted for

the kernel:

p(tt') = p(t—1t") (3.5)
that is, the evolution of fis irrelevant to the velocity of the oscillator. The property of
piecewise monotony is met by requiring that the kernel is a bounded, continuous and
decreasing function of the time increment At = ¢ —t'. Thus the following relations hold:

du(At)

0< p(At) <00, — =

<0 (3.6)

The condition of causality is met since the upper limit of the integral in equation (3.4) is the
current time ¢ and the current value of the operator is the cumulative sum of the kernel over
the displacement. Since the kernel depends on the time-step Af, the derived hysteretic
restoring force depends on the rate of the imposed load, yielding a formulation not eligible for
a rate-independent plasticity formulation. To overcome this deficiency, Bouc introduced the

following transformation:

At — Au(t,t') = p(At) — p(Au(tt')) 3.7)
mapping the time increment Atto the corresponding displacement increment A . Thus, the

hysteretic force is expressed as:

t

B[u](t) =P (t)= fu(Au(t,t'))du(t’) (3.8)

t

where the kernel (4 is now a bounded, positive and non-decreasing function of Aw :

43



Chapter I11 Bouc-Wen Hysteresis

d,u(Au) <0

0§,u(Au)§oo, N

(3.9)

Similarly, the intrinsic time step Aw is a positive, increasing function, since time t¢'is larger
than ¢ . Different definitions of the intrinsic time step lead to different hysteresis formulations,
given that they all comply to equations (3.9). A typical example that is consistent with the

above remarks is the following:

dAu = |du| = di = do, T = (t) (3.10)

o
dt dt

The mathematical expression of the restoring force introduced in equation (3.8)though
rigorous, fails to clarify the key parts of the restoring force in terms of mechanics. Trying to
clarify the physical properties of the hysteretic operator B, Bouc introduced two arbitrary

continuous scalar functions f, ® with the following properties:

f[: R — R; £(0)=0; |f(u1) - f(u2)| < Kl(A)|u1 — u2|
(3.11)
O : R — R®(0)=0; |®(u)) - P(uy)| < K ,(A)|uy — u,|

where K|, K, constants, for every A,u;,u,. A generalization of the Volterra expression

(equation (3.8)) is then established, such that:

Ps(t) = flul?)) + (1)

t 3.12
a4 = 0(u(t) [ (A, (1¢))iu 12
t()
Since relations (3.12) hold for every function f, & they also hold for:
flu(t)) = ku(t)+ F(u(t)) (3.13)

where f () is also a continuous scalar function.
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Thus, substituting relation (3.13) into (3.12) a clear distinction is made between the linear

elastic component of the restoring force ku(t) , the nonlinear elastic term f <u(t)) and the

nonlinear, history dependent, component z(t) Operator ® depends on the displacement

time history u, so that the expression of the nonlinear component is irrelevant to the
displacement rate. The integral of the second of relations (3.12) is a Lebesgue — Stieltjes

integral (Halmos, 1974) that can be cast in the following Riemannian form:

()

z@pmwu»:[uw@_a%%%wv (3.14)

Wher69<t)is an intrinsic time complying to (3.10).The integral of equation (3.14) is the

“memory” of the dynamical system, since z (t) is an integral over the time period ¢ — f,. As
such, it adheres, by definition, to the Volterra property. Furthermore, since the kernel of the
integral does not explicitly depend on ¢, the hysteretic parameter z(t) is by definition rate-

independent. Thus, the formulation proposed by Bouc is a formal, continuous and stable
hysteretic operator (Brokate et al., 1993).

Thus, the single degree of freedom equation of motion is evaluated as:

% + P, (t) = p(t)
P, () = ku(t) + f(u(t)) + 2(1) (3.15)
0(t)

zwz[wwpm%%w

Bouc imposed the following relation on the variation of u :

dr = V/u (3.16)

A (tt)=0(t)-0(t)=0-0 = }d@(ﬂ :}

%
dr
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where th.u is defined as the total variation of u on [t', t] . It is easily proven that the following

relation holds:

do(7) = |du(7)| (3.17)
Any type of function can serve as a kernel. However, it can be proven that the differential
equation of the nonlinear component can be derived always for an exponential kernel.

3.2.1 The exponential kernel case

Consider the following case where:

f(t)=0,®(u)=u (3.18)
Equations (3.18) fulfill the properties set on relation (3.11).
Substituting into the second of relations (3.15), the following expression for the restoring

force is derived:

0
B (t) = ku(t) + 2(t) = ku(t) + f p(0(t) - 9’)%%' (3.19)
0

The kernel in the integral of relation (3.19) is considered to be an exponent of the following

form:

w®) = Ae ™, A, B>0 (3.20)

that complies with relations (3.9). Differentiating relation (3.19):

AP, = kdu + dz(0) (3.21)

res

Substituting the integral form of z(¢) into (3.21), the following relation is derived:
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P o)

dP,,, = kdu+ | Ae " du(0)| ,_)— — 40 |do
) b (3.22)
du()
= kdu + Adu(9) — B fA -86-0) Z87) 10 | g
) o

Finally, taking into account the definition of the kernel introduced into (3.20) the following

equation is derived:

dP_. = kdu + dz = Kdu + Adu — (3zd0 (3.23)

res

Or equivalently in rate form:

dP du dz du
IS =—k—t —=k— 4+ A— — B2— 3.24
dt dt dt dt dt ﬁ ( )

Combining the first and second of equations (3.24) , the following rate form is derived for the

hysteretic parameter z(¢):

dz
— — — [Bz— 3.25
dt dt 6 (3.25)

Finally, substituting equation (3.17) into (3.25), the following, trivial equation of the Bouc-

Wen model is derived:

dz

o [A Bz sgn(du)]— A B>0 (3.26)

and relation (3.15) is rewritten as:

o () = p(t) .
dbJ, _ dz G20
—res : [A Bz sgn(du)]—
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Equations (3.27) correspond to the simple case of a perfectly nonlinear s.d.o.f oscillator. The
second of equations (3.27) can be solved by quadratures and the restoring force is established

as a function of the displacement u :

A —[fsi n(du)u A —Bsi n(du)u
P (u)=z2(u)=——[1—-¢"" = —sign(du)(1—e 7" 3.28
Referring to equation (3.20) one can assume without loss of generality that A = C'3. Thus,

equation (3.28) is rewritten as:

P, (u)= Csz’gn(du)(l - eiﬁ”g"(d“)”) (3.29)
Different values of C' and 3 give rise to different hysteretic loops with the rigid plastic body

being an upper limit. In the limit case where 3 — oothe restoring force coincides with the

expression of the perfect slider with unit threshold.

lim P == Csign(du)
fooo - (3.30)
F = uNsign(du)

where F, is the friction force, fithe coefficient of friction and NV the normal force. Thus, the

trivial case of Bouc-Wen hysteresis smooths the standard expression of the friction force by
merely relying on the mathematical expression of hysteresis as established by the pioneering

work of Volterra (1928).
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Displacement hysteretic loop

As an example, the response of the dynamic system presented in equations (3.27) is
examined with constants C' =2 KN and 8 = 10000 under cyclic loading. The excitation is
presented in Fig.3.3(a). In Fig.3.3(b) and (c) the time-history of the friction force and the
displacement are presented respectively. As predicted by equations (3.30), the system evolves
as a perfect slider, with zero displacement until the external force reaches the sliding threshold
defined by the constant C'. The corresponding hysteresis loop is presented in Fig.3.3(d). As

expected, a permanent displacement is observed after full unloading due to the dissipative

nature of the friction force.
3.3 From classical plasticity to Bouc-Wen hysteresis

3.3.1 Decomposing the Bouc-Wen hysteretic model

Modifications of the initial Bouc formulation (relation (3.27)) have been subsequently

introduced such as the Bouc-Wen model (Wen, 1976, 1980), the Baber-Noori model (Baber
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and Wen 1980, Baber et al. 1986) and the Reinhorn model (Sivaselvan and Reinhorn, 2000).
In this work, the Bouc-Wen model as introduced in Wen, (1980) and later modified by is

used as the basis for every subsequent step of analysis:

i + cu + PBV :p(t)

res

PBW — aKu + 2 (3.31)

res

i=(1- a)K[A —|2[" B+ v sgn (i) |

where ¢ is the viscous damping coefficient, RfSWis the Bouc-Wen restoring force, o is the
post-elastic to elastic stiffness ratio, K is the elastic stiffness of the oscillator while A, 3, 7y

are model parameters. Parameter A has been proven to be redundant in subsequent works
(Ma et al, 2004) and will be considered to be equal to unity throughout this work. As implied
by the first of equations (3.31), the restoring force is split into two parts. The first part is
linear with an effective stiffness equal to the plastic stiffness of the material and a hysteretic
one with 2z being the restoring force that bares the memory of the nonlinear system. In this
work, a variant of this formulation is considered where z is considered to be the hysteretic

displacement of the system and thus:

i + i+ PV = p(t)

res

res

{PEV = aKu + (1-a)Kz (3.32)

n
i=[1-|% B + ysgn(zi) |

Y

where 2 y is the maximum value of the hysteretic parameter.

50



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

The formulations presented in equations (3.31) and (3.32) are based on mechanical insight
rather than the mathematical theory of hysteresis. Thus, the derivation of relation (3.31) from
the mathematical background established in section 3.2 is not straightforward. However, a
mechanical representation of the model can be established that allows for the decomposition
of relation (3.31).

This decomposition is schematically represented in Fig.3.4. Considering ¢ = 0 for the
sake of presentation, the model can be visualized as a parallel combination of a linear spring
(Spring #1) and a nonlinear element, as shown inFig.3.4(a). The nonlinear element consists of
a linear spring (Spring #2) and a slider connected in series. Thus, a two degree of freedom
system is introduced, u, being the total displacement and z, being the relative displacement of

Spring 2. From compatibility considerations, the sliding displacement, if any, is determined

by the difference(m =u— z)

P,=oku @ T‘L{

> y
Displacement

) (b)

Fig.3.4 (a) Bouc-Wen model components (b) Force-displacement relation

As long as the force acting on the slider is smaller than a threshold (my ) , sliding does not

occur, thus z = 0 and the relative displacement on Spring #2 is equal to the total imposed

displacement. In such a case, the system behaves elastically with combined stiftness k, since

51



Chapter I11 Bouc-Wen Hysteresis

springs #1 and #2 are given an elastic stiffness of ak and (1 — a)k respectively, o being

the inelastic to elastic stiffness ratio.

When the slider threshold is overcome, sliding occurs and the relative displacement in

spring #2 remains constant, denoted herein as z . All these phases are summarized in the

following force-displacement relationship:

PEV = P+ P, = aku+(1—a)k (3.33)

res

where 7z is:

u, T< T
z = v (3.34)
z, T>I,

As in engineering applications, the internal variable x is neither easy to measure, nor
derive theoretically, the total displacement at which sliding occurs is used instead. This can be
easily derived (from a uniaxial tension experiment or implementing a specific yield criterion)

and thus relation (3.34) is treated equivalently as:

2= y (3.35)
Uu,

Wen (1980) proposed the following relation in order to smooth the transition from the

elastic (no sliding) to the inelastic response (sliding) of the system:

Aty = f(u(t),2(1)) = u[A — hyhy (3.36)

where:

, hy=(B+ysgn(zi)) (3.37)
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h; can be regarded as a uniaxial flow rule and h; as the corresponding cyclic loading rate,
while in the above relation, dot(-) denotes differentiation with respect to time. Parameter n
controls the smoothness of the transition from the elastic to the inelastic regime, while the
terms G and 7y introduced in relation (3.37) are shape factors that affect the shape of the
hysteresis loop (Sivaselvan & Reinhorn, 2000). In Fig.3.5 the results from a strain controlled
numerical experiment on a DI8 rebar are presented for different values of the model
parameters n, G and -y. Material parameters are S500 and E=200 GPa, while the length of

the bar is considered to be 2m.
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Fig.3.5 Strain controlled numerical experiment (a) Variation in hysteretic loop with respect
to n (b) Variation in hysteretic loop with respect to parameter 5 (v = 0.2, n =5) (¢)

Variation in hysteretic loop with respect to parameter v (8 = 0.2, n =5)
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3.3.2 Remarks on Bouc-Wen modelling

An immediate consequence of equations (3.33)and (3.36), is the fact that a small value of

the smoothness parameter n , results on sliding even before the yield displacement z, is

reached. This is evident by considering, without loss of generality, that sign(zi) = 1 (state of

loading on the positive half plane), and thus relation (3.36) becomes:

s(t) = a|1— |2 (B+7) (3.38)

%y

Due to the physical considerations as described above, in the elastic case, it must hold that,
with respect toFig.3.4, the relative displacement in spring 2 equals the displacement in spring

1 and thus:

z” (B+7)=1
z=u=Ht)=ui=|1—-|=| (B+7)|=1 = 2z=0 (3.39)

z
Y

It is evident that relation (3.39) cannot hold since this would mean that the imposed

displacement is also zero. What the normalized smoothing function does, is that it holds the

term ‘z/ z, ‘n ( 8+ fy) sufficiently low, as long as 2z < Z,, SO that the following relation

holds.

g (8+7)=1

2N (B+r) - 1 (3.40)

1—

zZ
Y

The effectiveness of the smoothing function with respect to parameter n is presented
inFig.3.6.The arithmetic performance of this function increases as parameter n retains a large
value, but is somewhat reduced as the n value reduces. As a result, equation (3.39) slightly

deviates from equality and micro sliding occurs even before the yield displacement is reached.
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Fig.3.6Variation of the smoothing function with respect to n

Nevertheless, it is evident that such a formulation is able to model any uniaxial behavior
introduced in the context of classical plasticity, by incorporating in a single equation the yield
criterion, the flow rule and the loading rate. It is noted that the term defined herein as yield
displacement, is a phenomenological quantity which stands for the displacement by which
plastic deformation commences. This quantity together with the terms B, y and n can be
evaluated by various identification techniques. However, as Erlicher and Bursi (2004) proved,
the identified parameters should comply to the following restriction, to yield a

thermodynamic admissible model:

B<y<p (3.41)

Up to this point, the presentation of the Bouc-Wen model is based on the grounds of force-
displacement relations. Though versatile, this formulation limits the applicability of these
relations where the Finite Element Method is concerned. In the next paragraphs, a general
formulation is presented, within the framework of classical plasticity, that allows for the
implementation of these smooth-hysteretic operators, thus avoiding the need for piece-wise

linear hysteretic models.
3.4 The generalized triaxial Bouc-Wen model

Though the derivation of the Bouc-Wen model presented in section 3.2 was based on

mathematical grounds, it can be proven that the same relations can be deducted considering
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the physics of classical plasticity. The advantage of this approach is the fact that smoothed
plasticity relations are deducted in terms of tensorial stress-strain relations. This leads to a
versatile material model both from computational and experimental perspective.

Classical plasticity is based on a set of governing equations, namely the flow rule, the yield
condition, the consistency condition and the hardening rule. In the work presented herein, the
case of associative plasticity is addressed where the plastic potential coincides with the flow

rule. Denoting the flow rule as @, the rate of plastic deformation is defined as:

[er) = 32207}) (3.42)

8{0}
Where{s‘p }is the plastic strain tensor, A the plastic multiplier, {a} the stress tensor and (.)
denotes differentiation with respect to time. The plastic multiplier and the yield function are
found to comply with the Kuhn-Tucker optimality conditions:
A>0, <0, \P=0 (3.43)
The consistency condition is an immediate consequence of relation (3.43) stating that when at
yield:
A =0 (3.44)

A typical isotropic yield criterion (or plasticity model for brevity) is the von-Mises yield

criterion defined as:

& = [{o} ~{n)] - <0 645
where {a} is the deviatoric stress tensor and {77} the deviatoric back-stress tensor. The

evolution of the back-stress, determines the type of hardening introduced in the material

model during subsequent cycles of loading and unloading. A commonly used type of
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hardening is the linear kinematic hardening assumption which dictates a constant plastic

modulus during plastic loading. This is accomplished by demanding:

{n}=c{e} (3.46)

where C' is defined as the hardening material constant.
A key concept of classical plasticity is the additive decomposition of the strain into
reversible elastic and irreversible plastic components. Consequently, the additive

decomposition of the strain rate is established as:

{ef={er}+ {8} {ea}={e}- { } (3.47)

Where{é}is the rate of the total deformation tensor, while {éel }is the rate of the elastic part

of the total deformation vector. Based on observations, the unloading stiffness of a plastified
material is considered equal to the elastic and thus the following relation holds between the

total stress tensor and the elastic part of the strain rate:

{6} =[p]{e} (3.48)
Where[D] is the elastic constitutive matrix. Substituting equation (3.42) into relation (3.47)

and using relation (3.48) the following equation is derived:

(92({o })]
— (3.49)
(o} = Lol e} -1 5505
By means of the consistency condition (equation (3.44)) and relation (3.49) the value of the

plastic multiplier X is evaluated as:

A =0= A { }+ {n} (3.50)

H_a
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When at yield, ®=0 and A>0 and thus relation (3.50) can be written as:

T

{o}=

T
0d 0P

o{o} {} 8{} o{n}

Premultiplying relation (3.49) with 8<I>/ 0 { a} the following equation is derived:

o[22 =0

{n} @351

T{ j = T[ ][{ oe({c })] (3.52)

8{} 6{} 9o}

Substituting equation (3.51) into equation (3.52) the following relation is established:

09({c})
1ot 7] o{o} ] 9

In classical plasticity the hardening law is defined as a relation between the back-stress tensor

© )y =22 ] 1o e

and the plastic strain tensor. This relation can be either rate dependent or rate independent. In

any case, the back-stress is finally derived as a function of the plastic multiplier A and one

can write:

{n} =G ({n}.2) (3.54)

Substituting relation (3.54) into equation (3.53) the following relation is derived:

’ ’ ) .0 o
{01 stog) s e

Rearranging and solving for the plastic multiplier the following expression is derived:

AG({n}.@) =

T[D]{é} (3.56)

0P
9{o}

58



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

In the case of the elastic perfectly plastic material G =0, and relation (3.56) coincides with the
one proposed by Casciati, 2006. Equations (3.51) to (3.56) hold when yielding has occurred,
either in the positive or in the negative semi-plane and thus by introducing the following

Heaviside functions:

, ®=0 . , >0
Hl(@:{o, <0 HQ((I)):{O, <0 (3:57)

a single relation is established for the plastic multiplier, in the whole domain of the strain

tensor:

T

A= HH 0P T[ ]aq)({ DINE

i 3{ ) atd ofo} | (0{o}

Instead of describing the cyclic behavior of a material in a step-wise approach considering

G{{ne)+ DIGEES

the domains of the Kuhn-Tucker conditions (Fig.3.7(a)) or of the correspondent Heaviside
functions (Fig.3.7(b)), Casciati, proposed the smoothening of the latter, introducing additional

material parameters.
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According to this approach, the two Heaviside functions are smoothened using the following

expressions:
N
)
H = | N>2 (3.59)
and:
T
- 1+ sgn [8@] {c'r}]
oD do T
H,=H [%] {d}]: 5 ~ B+ ysgn|{e} {o'—}) (3.60)

where N, Fand 7y are model parameters and ®, is the maximum value of the yield function
or yield point. In the special case where 3 = v = 0.5, the unloading stiffness is equal to the

elastic one. The model proposed by Baber-Noori is thermodynamically admissible as long as

relation (3.41) is satisfied. An immediate consequence of equation (3.59) is that the material

is allowed to yield even before the theoretical yield point is reached ((I)O>. Rearranging

equation (3.49) and substituting the definition of the plastic multiplier, the following Bouc-

Wen model is derived:

) =lolllr-|2] (vl Az} o
where the matrix [R] is evaluated as:
_ _8_<I>T oo | ,00({s}) T oe ) 00 |
=) A o) P ateplatey) 1O
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and defines the interaction relation between the components of the stress tensor at yield. Thus,
the step-wise plasticity equations of relation (3.43) are replaced by a continuous stress-strain

relation. In the uniaxial case, the von Mises yield criterion is reduced to the following form:

o <‘711_7711)2 1
VM — 9
(2,)
and accordingly, relation (3.61) becomes:
5 2N
. 01— 7 . .
o, =E|1- b + vsgn(e;0,,)) (€ 3.63
11 c+B| o (ﬁ 'Vg(n 11)) 11 (3.63)

The similarities between equation (3.63) and Bouc’s derivation of the hysteretic parameter 2z

in equation (3.32) are evident.
3.4.1 A subcase — the parallel generalized model of hysteresis

The generalized parallel model of Bouc-Wen introduced by Karray and Bouc (Wen, 1980,
Casciati, 20006) is a subcase of the formulation presented in the previous Section. Generalizing
the parallel spring concept introduced in Fig.3.4(a), the stress tensor is decomposed into an

elastic and hysteretic part as follows:

{o} =[al{o*}+([1]=[a]){c"} (3.64)
where [a] denotes a square diagonal matrix with post yield to elastic stiffness ratios, which

for an isotropic material is considered constant in every direction, [I ] is the identity matrix,

T
while the elastic part {ae } = {‘7161 05 01y } is expressed by the following relation:

{o°} =[D]{e} (3.65)
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. . . . . T
where | D | is the elastic constitutive matrix. The hysteretic part { 0" | = { ot o o
y p 11 22 12

evolves according to the following Bouc-Wen hysteretic rule (Sivaselvan and Reinhorn,

2003):

-h

on RE
o5, t = D]([I]— H H,[R]){ 4, (3.66)
7y €12

where H,,H, and are smoothed Heaviside functions defined in equations (3.59) and (3.60)

respectively while [fi] is the interaction matrix defined in equation (3.62) setting G = 0.

However, equations (3.64) to (3.66) are capable of simulating hysteretic systems with linear
kinematic hardening. Clearly this limits the applicability of the model.
Writing equation (3.64) in rate form and substituting relation (3.66) the following equation

is derived:

{0} =lal[D{e}+ (L] - [a)[D](11) - .1, | R]){<} (3.67)

Matrix [a] is diagonal, thus relation (3.67) can be cast on the following form:

{0} =[D](la]+[1]=[a](l - £,H,[R])){¢} (3.68)

Comparing equations (3.61) and (3.68) the following generalized relation can be derived:

(o) = [Dl((] + ()11~ H1, [R))<) 669)

where in the case of the generalized model:

(3.70)

while in the case of the parallel model:
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%] = o]
2,] = [1]-[o] g
[R] - [R”G:O

3.4.2 Numerical experiments

A steel von Mises type specimen dxdydz under uniaxial cyclic tension is examined. Two
loading-unloading cycles are considered with a peak value of tensile stress equal to
p = 1200, (Fig. 3.8). The material parameters are o, = 235MPa, I = 210GPa, v = 0.3.

Linear kinematic hardening of the Melan-Prager type (Section 1.4.4) is considered with a

constant hardening parameter ¢ = 4117647 KPa.

1

7777;

Fig. 3.8 Cyclic uniaxial tensile test

In Fig.3.9, the normal stress component oy is plotted with respect to the corresponding strain
€11 for different values of the model parameters n, 3, .The discrepancies are not as striking
as in the uniaxial formulation presented in Fig.3.5 due to the effects of kinematic hardening.
However, the same qualitative conclusions are drawn. In Fig.3.9(a) the stress-strain plot is
presented for different values of parameter n considering linear unloading branches with

B8 =~ = 0.5. Again, as the value of parameter n increases, the stress-strain plot tends
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towards the sharp bilinear curve. In Fig.3.9(b), the evolution of the Von Mises equivalent

stress (o, = |011 — M | ) for different values of the smoothening parameter n is presented.

In Fig.3.9(c) the influence of parameter 3 is examined, fixing the values of n =2 and
v = 0.5. As the value of 3 decreases the hysteretic loop bulges while an increasing value of
G results in a narrower hysteretic loop. However, when (§ < —~, the hysteretic loop

degenerates into an S type of curve with increasing stiffness at the nonlinear regime. In

Fig.3.9(d) the effect of parameter 7y is examined, setting n = 2,3 = 0.5. As -y decreases
the unloading branches tend to bend inwards. A negative value of parameter <y results in

instabilities (Ikhouane & Rodellar, 2007) and thus is not considered in this work.
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Fig.3.9 Cyclic Tension experiment stress- strain plots (a) Variation of parameter n for
8 = v = 0.5 (b) Evolution of the Von Misses Stress for different values of parameter n (c)
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Next, a concrete specimen is considered with the following set of properties, namely
o, = 25MPa, o, = 1.8MPa while the concrete strength under biaxial compression is
estimated at o, = 1.150, = 28.75MPa (Newman and Choo, 2003). The Bresler-Pister yield
criterion is implemented (equation 1.27). The elastic modulus and Poisson’s ratio are
E = 30.5GPa and v = 0.2 respectively. The set of Bouc-Wen parameters utilized in this
simulation is 8 =y = 0.5 and n = 2. Since plain concrete does not demonstrate a
significant hardening behavior, a small kinematic hardening constant is considered
¢ = 9000 KPa.

A cyclic imposed strain experiment is simulated with a maximum imposed strain
g€,; = 0.003. The strain envelop is presented in Fig.3.10(a).
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Fig.3.10(a) Imposed Strain envelop (b) Stress-Strain plot

J
o)

Normal Stress o,, (MPa)

Applied Strain g,

[
il

tJ

Normal Strain g,

The derived stress-strain plot is presented in Fig.3.10(b). As dictated by the yield criterion
implemented, the hysteretic loops are non-symmetric since the tensile strength of the
specimen is significantly smaller than the compressive one. Thus, the proposed formulation is
able of simulating both symmetric and non-symmetric hysteresis by choosing appropriate
yield criteria without reverting to mathematical formulations without a clear physical

interpretation.
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3.5 Cyclic loading induced phenomena

The hysteretic loops presented in Fig.3.10(b) fail to correctly simulate the real behavior of
concrete under cyclic loading. Two main mechanisms are observed in concrete cyclic
behavior, namely the stiffness degradation and strength deterioration mechanism. Both are
related to the damage sustained by the solid due to propagating micro-cracks and are mainly
treated within the framework of Damage Mechanics (Krajcinovic, 1996, Voyiadjis and
Kattan, 2005). The main aspect of Damage Mechanics is the definition of the fourth-rank
damage tensor whose evolution is determined through phenomenological damage flow rules.
This derivation, though accurate and robust, leads to cumbersome formulations when
implemented into the finite element scheme. An exhaustive presentation on the subject can be
found on Kattan and Voyiadjis, 2001. In this work, attention is drawn towards the derivation
of appropriate smooth operators that account for stiffness degradation and strength
deterioration when applied onto the Bouc-Wen evolution equations, expressed in stress-strain
form. This idea has been successfully implemented in uniaxial piece-wise linear stress-strain
relations (Cope et al., 2005) but not in the general, three-dimensional, case.

In the uniaxial case, Baber and Wen (1981) introduced two additional model parameters to
account for stiffness degradation and strength deterioration phenomena. Relation (3.36) was

modified as follows:

n

z (ﬂ%—’ysgn(zﬂ)) (3.72)

Ht) = —|1—w,

ns

2y
wheren is related to stiffness degradation and v, to strength deterioration. Both parameters

depend on the hysteretic energy density e’ (i.e. energy per unit volume) dissipated by the

model and are defined as:
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n, =1+ cnseh, v, =1+ cv.seh', ¢, . >0, c, >0 (3.73)

The energy density accumulated into the hysteretic spring(Fig.3.4) due to plastic

dissipation is evaluated, using relation as:

et = (1-a)Bz(t)de (3.74)
Analytical expressions for the amount of hysteretic energy accumulated under T — periodic
excitations, were derived by Charalampakis & Koumousis (2008b) using hyper-geometric

functions. The introduced material constants ¢, . and ¢, can be identified by various

identification techniques.

Erlicher and Bursi (2009) proved the thermodynamic admissibility of Bouc-Wen models
with stiffness degradation and strength deterioration based on a similarity approach to
endochronic plasticity models of Valanis (1971). According to their results a degradation rule

is thermodynamically admissible, provided that the following condition is satisfied:

i< € (3.75)
where 1) is a given degradation function, v is a given deterioration function and £ the model’s

intrinsic time in the context of endochronic theory. In the present work, the following
functions are considered for stiffness degradation and strength deterioration modelling

respectively:

U=

R
775 B Cﬁ[ ] ﬁysg’ Yy = 1+ Cv,seh (376)

where m > 0 and cg > 0. The rate ¢ is the intrinsic time of the Bouc-Wen model as defined

in Erlicher and Bursi (2009), given by the following relation:
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n—1
= [1+%sgn(zu)]|u|[ziJ (3.77)

4

Relations (3.76) and (3.77) constitute a thermodynamically admissible set of degradation

functions that can be used to model a specific material given the proper set of model

parameters. Both the stiffness degradation parameter n, and the strength deterioration

parameter v, are analogous to the hysteretic energy accumulated, and thus increasing

functions of time.
3.5.1 A pure-shear test

To reveal the interesting and compact features of the Bouc-Wen hysteretic model, a

generic case is presented that corresponds to a pure- shear test under sinusoidal excitation

p(t) = sin(w/ 6t). In Fig.3.11, the shear stress is plotted against shear strain. A bilinear

material law is considered with a yield stress equal to 117.5 MPa and an elastic shear modulus
equal to 81 GPa. The following set of Bouc-Wen parameters is selected: o = 0.002, n = 2,

B=v=05, m, =2, ¢; =25 andc, = 0.0001 while the yield shear strain is

v, = 0.00145.

The resulting shear stress-shear strain plot is presented in Fig.3.11(a). The unloading
stiffness is repeatedly decreasing as the accumulated hysteretic energy increases. At the same
time the yield strength of the specimen is decreasing.

In Fig.3.11(b) the evolution of the stiffness degradation parameter is presented with respect

to time. As expected 7, is a constantly increasing function of time. The value of the stiffness

degradation parameter remains constant during elastic loading and unloading where no
hysteretic energy is being accumulated. This corresponds to the hysteretic energy time history

presented in Fig.3.11(c).
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Fig. 3.12 Dependence of the hysteresis shape on the stiffness degradation parameter

The variation of the stiffness degradation parameter c; greatly alters the shape of the

hysteretic loop, as presented in Fig. 3.12. Parameter c; controls the actual value of the

4(
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stiffness reduction between subsequent hysteretic loops. Large values of ¢, lead to increasing
values of stiffness degradation. In Fig. 3.12, four different values of c; are considered while

the strength deterioration parameter is set to ¢, = 0.0001 and m, = 2.
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Fig. 3.13 The stiffness degradation parameter m,,

The effect of m, on the stiffness degradation is presented in Fig. 3.13. Parameter m,,
controls the rate of stiffness degradation, that is the speed by which the degradation

phenomenon evolves. Smaller values of m, give rise to quickly deteriorating hysteretic

loops. In Fig. 3.13, four values of m,, are considered while ¢, = 0.0001 and ¢; = 25.

3.5.2 Generalization in the three dimensional stress space

In the work of Erlicher and Bursi (2009) stiffness degradation and strength deterioration
relations are provided for a single degree and a two degree of freedom uncoupled hysteretic
system in translational motion. Additionally, a stress-strain formulation of the Bouc-Wen
model is presented for incompressible plasticity. This formulation is then extended to account
for stiffness degradation and strength deterioration phenomena. Though precise, the
relationships proposed cannot be directly introduced into the finite element scheme, as they

involve the trace of the strain vector and the deviatoric stress and strain tensors. Moreover,
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their derivation is explicitly based on the plastic incompressibility assumption and specifically
on a von-Mises type of material.

In this work, equations (3.76) and (3.77) are extended to account for stiffness degradation
and strength deterioration effects in a general elastoplastic solid, based on the derivation

presented on section 3.4. The intrinsic time is extended herein for the 3d stress space as:

(3.78)

é= i1+ Jsion| {0} {2} |{o

where H, is defined in equation (3.79).

Introducing the same set of model parameters as in the uniaxial case, namely the stiffness

degradation parameter ¢, and the strength deterioration parameter v_, the following

equations are established:

{6} = =[D]([1] - 1,1, [ R]){¢)
0= cb[%]mu 8H,(1 +%sign({a}T{é})

v, = 1—|—cbeh

2({o})

where, ¢, is the energy density accumulated in the hysteretic component, and 7, v, are the

(3.79)

stiffness degradation and strength deterioration parameters respectively. The hysteretic energy

density is computed by means of numerical integration using the following relation:

e, = p{o" Ji{e} (3.80)

A computational advantage of this formulation is the fact that both the stiffness

degradation and strength deterioration schemes are coupled through a single evolution
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equation thus reducing the modeling to a single additional evolution equation rather than two

as proposed in (Sivaselvan & Reinhorn, 2000).
3.5.3 The case of asymmetric hysteresis

In the general case of asymmetric hysteresis, one can use the extended Bouc-Wen model as

defined by Dobson et al. (1997):

Z<t) = f(é<t)7z(t)) = é(t)[l - 61 1~ ﬂz "y — 63 "y — 64 "4] (3.81)
where B,, B,, B; and B, control the shape of the hysteretic loop for each direction of loading

as illustrated in Fig.3.14, and their corresponding expressions are:

L _ L sign(Ez ()] 2(t) | +2(1) ’ (3.82)
1 2 22; |
L 1+ sign(e()z () (| 20) | —=(0)] (3.83)
2 2 QZ;r |
o 1—sign(E®)z(t)[] 2(t) | +2(t) v

- 2 = (3.84)
1 sigE(02(1)) | 0 =00

- 2 L (3.85)

y
The exponents ny, n,, npand ny, in equations (3.82) to (3.85) control the smoothness of
the transition from the elastic to the plastic regime. Parameters 3,, 3,, 3;, (3, are switch
type of parameters. If 3, = 0,7 = 1..4 then the corresponding branch of the hysteretic loop is
a straight line with an unloading stiffness equal to the elastic one. When 3, > 0,7 = 1..4 then

the corresponding branch is curved. Greater values of 3,
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Fig.3.14Shape controlling coefficients of the extended Bouc-Wen model

The parameters 3,, (3, control the stiffness of the hysteretic loop after unloading occurs.

Assigning null values for both, results to unloading stiffness equal to that of the elastic

branch. Also, the model is capable of simulating non symmetrical yielding, so if the positive

yield strain zy+ is regarded as a reference point, the resulting values for 3 and <y result as

follows:

_Z_
8,= 1 where d=1, (3, = 1 where, e = —% (3.86)
1 n 2 n, +
d's e'c z,

Replacing equations (3.86) into relation (3.81) and considering the expressions of the

individual branches defined in equations (3.82) to (3.85), the following expression is derived

for the reloading branch ((é <0,z < O) :

+
22y

1+ sign(£(t)z(t)) {\ 2(t) | —2(t) ]% (3.87)

The formulation introduced in relation (3.61) generalizes equation (3.81) in the sense that
the hysteretic parameter is introduced in the three-dimensional space. Furthermore, the case of
asymmetric hysteresis is treated in a consistent manner through the introduction of a proper

yield function, as in the case of the Bresler-Pister yield surface in Section 3.4.2.
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3.6 Conclusions

In this chapter, the properties of hysteretic systems are presented and the expression of the
Bouc-Wen model is derived accordingly, based on concepts of the mathematical theory of
hysteresis. As an example, the equation of the perfect slider is derived as the limit case of the
initial model proposed by Bouc. Next, a general form of the Bouc-Wen model is derived in
stress-strain form, based on the phenomenological concepts of the classical theory of
plasticity. A rate form of the stress tensor is derived that accounts for the full cyclic behavior
of the continuum. This rate form is general in the sense that it accounts for every combination
of yield criteria and hardening laws whereas existing formulations only describe hysteretic
behavior with linear kinematic hardening.

Based on concepts borrowed from the endochronic theory of plasticity, additional smooth
operators are derived that account for the cyclic induced stiffness degradation and strength
deterioration phenomena observed in brittle materials. The formulation derived depends on
total stress components rather than their deviatoric parts, thus yielding a formulation that is

easily incorporated in the Finite Element scheme, as will be presented in subsequent chapters.
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3.7 APPENDIX I

The analytical relations of the interaction matrix [R] are presented below for the case of
two widely used yield surfaces, namely the von-Mises yield surface and the Bresler — Pister
yield surface. Similarly, other smooth surface models can be utilized, (Hinchberger S.D.,

2009).
3.7.1 von-Mises yield surface

For the case of two-dimensional plasticity, the von-Mises yield surface is defined as the

locus of points in the stress space defined by the following relation, (Lubliner 2008):

(011 — oy )2 +( oy, )2 + (0 )2 +6( 0, )2

{®},, = 5 —1=0 (A1)
Q(O'y )
where O'Z = (1 — oz)ay.
The yield gradient with respect to the von-Mises yield surface is:
T
0P |20y _2022 209, _2011 6 ‘7122 (A2)
Al ) @) ()
y y Y
Utilizing relation (3.62), the interaction matrix [R] is derived as:
|R],, = NIR] (A3)

where [IR] 1s a 3x3 matrix defined as:
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30,
_A121 A122 127
1—v
30,,A
[IR] = | A%, BpXy Tl
1—v
2
18 (012 )
60,2, 60,2, ————
1—v
(A4)

and A 1s a constant:

1

A= 2
5A+20B —18(0y, | —T

A= (‘711)2 + (‘722 )2 - 2”‘7{11‘752
B = 2(011>2 —|—2<022 )2 —1—9(012)2

I = 80,1099

(A5)

The interaction matrix [R] does not depend on the yield stress of the material oy, but is

only a function of the current stress tensor.

3.7.2 Bresler - Pister yield surface

The Bresler - Pister yield criterion is a three parameter model that is used to simulate

concrete plasticity. The yield surface is defined by equation:

1
TVJZ -y - C2J12
— N6 —1=0
BP

)
%
(A6)

Jy = 0yy + 0y

2 2 2 2
Sy = (011 - 022) + (‘711) + (‘722) + 6(‘712)
where ¢y, ¢, ¢, are material dependent coefficients (Deder & Ayvaz, 2010).

The yield gradient is defined by the following relations:
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e }: (o, do, do,) (A7)
where
1 \26(2011 _022>
ad), = — - - - —— ¢, — 26, (0y, + 0y, ) | (AB)
‘ \/<011_022) +(011> +(‘722) +6(U12)
1 \?(2011 _022)
a®y, = —| - 2 _ _ — ¢ —2¢, 0y, + 0y | |(A9)
’ \/<U11_‘722) +<011) +(U22) +6(‘712) }
P, :Ci 2 \/66212 2 2 (A10)
’ \/(011_022) +(011) +(U22) +6(U12) }

The interaction matrix [R} is determined accordingly.
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HYSTERETIC MACRO-ELEMENTS
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4.1 Introduction

In this chapter a set of linear hysteretic macro-elements is derived within the formal and
consistent framework of phenomenological hysteresis. The classical elastic formulations of
the rod element, the Euler/Bernoulli beam clement formulation and the Timoshenko beam
element formulation are extended by introducing additional, hysteretic, degrees of freedom. A
constructive approach is implemented in the derivations presented in this chapter.

Firstly, a rod element formulation is presented where the additional degrees of freedom are
considered to be hysteretic displacements, to highlight some important aspects of the
procedure implemented in this work. Next, an advanced rod element formulation is
constructed on the grounds of an updated Lagrangian formulation where plasticity is
introduced through the concept of the hysteretic axial deformation that evolves according to a
Bouc-Wen hysteretic law.

The hysteretic two-dimensional Euler/Bernoulli beam element is presented based on the
hysteretic curvature and hysteretic centreline axial deformation measures. To demonstrate the
implications that arise from the interaction of the stress resultants, a two-dimensional
Timoshenko beam element formulation is next presented. Finally, the general case of a three-
dimensional Timoshenko beam element formulation that takes into account torsional warping

is presented.
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4.2  The displacement based hysteretic truss element

Consider the two node truss element presented in Fig.4.1 with a cross section A, and

material constants £ for the Young modulus and o = E, / E for the inelastic to elastic

stiffness ratio.

O Uz,

Fig.4.1 Rod Element degrees of freedom and internal forces

4.2.1 Material modeling

The element is formulated under the assumption that the axial force-axial displacement

relation assumes the following form:

p:aku(x,t)+(l—a)kz(x,t) 4.1
where D is the axial force, & = AE/ L is the axial stiffness of the truss element, uis the actual

displacement and : is the hysteretic part of the actual displacement defined by the following

evolution equation:

5=, |1— || (B+ vsgn(i,z)) (4.2)

2y
Thus, the total axial force imposed into the element is split into two components, a potentially

elastic one and a hysteretic, defined below as:
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P, = oku(z,t) 43)
P, = (1 — a)kz(x,t)

Within this framework, equation (4.1) denotes a potentially bilinear behavior, whereas the
smoothness of the transition from the elastic to the inelastic regime is controlled by the model
parameter n as implemented in equation (4.2). Concentrating on the deformed configuration

of the element, relation (4.1) implies that the axial force is proportional to a generalized

displacement measure:

p = ku(z,t) (4.4)

that is defined as:

ﬁ(z,t):ozu(z,t)—l—(l—oz)z(z,t) 4.5)
Thus, yielding merely defines a smooth transition from an elastic state of response to another
one, non-elastic. The two displacement components, the actual and the hysteretic, are
additively composed into a single quasi-elastic shape, G(x,t) which is a linear function of the
applied load, and vice versa. This important property of the Bouc-Wen hysteretic model is
also met in any other rate-independent smooth material model. This approach is in perfect
agreement with the concepts of endochronic theory (Valanis, 1971) and the generalized
plasticity theory (Panoskaltsis et al., 2008).

From relation (4.4) the following stress-strain relation is derived:

o(z,t) = E&(z,t) (4.6)
where the deformation measure €£is the axial deformation that is compatible to the
generalized displacement measure 1. Using the definition of the small strain measure

(equation (2.9)) the following relation holds:

83



Chapter IV Hysteretic Macro-Elements

u(x u(x 0z x,
E(x,t) = 0 ;z’t) = 048 a(x’t) + (1— a) éz t)

(4.7)

or expressed in matrix form:

E(x,t) = 0 (1—04)2

a —_—
oz oz

{u}
(4.8)
z

The definition of the generalized displacement facilitates the derivation of the necessary
energy forms as will be presented in the next paragraph.

Following the reasoning introduced in Chapter 2, in the elastic case, relation (4.1) is valid
if and only if the generalized displacement is equal to the actual displacement. Thus, the

hysteretic displacement should comply with the following relation:

z2=u, u< Uy (4.9)

Furthermore, the maximum value attained by the hysteretic parameter must be equal to:

. (4.10)

Combining equations (4.2) and (4.10) the following relation is derived:

= 0= g1 — |max (B—I—’ysgn(az)) =0=
2y
1—%? (8 +vsgn(z)) = 0= @.11)
:> ZIH&X ! — 1
Zy (ﬁ+7sgn(ﬂz))

Or equivalently:

“max — || Z—Y) =Uy = 2y = 7\L/(ﬂ + 7)“}/ (4.12)
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4.2.2 Discrete modeling

For the case of the two-node truss element, the total displacement is considered to vary
linearly along the element’s length (Bathe, 2007). Due to the additive decomposition of the
displacement as presented in relation (4.5) the same kinematic assumption is valid for the
hysteretic part of the total displacement. In equation (4.13) the interpolation functions

implemented for the displacement vector are presented:

q i =
- L L {d} (4.13)
z x x
0 1-— 0 —
L L
where { d } is the vector of unknown nodal displacements:
T
{a}={w = w =} (4.14)
By substituting equation (4.13) into (4.8) the following relation is derived:
e(xt)=|B]{d} (4.15)

where [ B] is the strain-displacement matrix of the element defined as:

x T
l—— 1=—="0 0 l1-« l1-«
[B] = 0 (1-m)i L L e o () )(4.16)
ox oz 0 g Tz L L L L
L L

The principle of virtual work is formulated as:

f66~adV —P-u (4.17)

v

where O¢ is the potential centerline deformation of the element, ¢ is the normal stress, P is

the axial force and wuthe corresponding axial displacement. Only concentrated loads are
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considered in the external work for the sake of simplicity. Relation (4.17) is more

conveniently written down in matrix form as:

J{se} {o)av ={a} {p} = [{a} [B] B[B{d}v = {a} {p}=
v v (4.18)

= {a}"| [[B] B[BRV{d}-{p}|=0= _VﬂB]TE[B]dV{d} = {r}

%4

where{d } is the mnodal displacement vector defined in relation (4.14) and

T, .
{ p} = { P D,y Dy ng} is the nodal load vector. Loads p,, and p,, are fictitious load

measures, work-conjugate to the hysteretic displacements z,, z, . Substituting equation (4.16)

into equation (4.18) the stiffness matrix of the displacement based hysteretic truss element is

derived:
a? a(l—a) —a? —a(l—a)
S T _A_E a(l—a) (1—04)2 —a(l—a) —<1—a>2
[K]_![B] E[B]dV = Dl e a(1-a) y o{1-a) (4.19)
—a(l—oz) —(1—&)2 a(l—a) (1—(1)2

Setting v = 1 the corresponding elastic stiffness matrix is evaluated:

1 0 -1 0
) 0 0 0 0
UE AE (4.20)
Il-1 0 1 o0
0 0 0 0

and since the hysteretic components z,, z,in this case are by default equal to zero relation

(4.20) can be condensed to the classic 2x2 elastic stiffness matrix of the two-node truss

element.
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To this point, the stiffness matrix of the hysteretic truss element is derived with respect to

the actual deformation and load measures but also to the hysteretic quantities z,, z,, P,

P, . The latter are internally defined displacement and force measures respectively. As is, the

stiffness matrix evaluated in equation (4.19) since it is derived from an energy principle
where a fictitious quantity, namely the work produced from the hysteretic forces on the
hysteretic displacements is added onto the energy of external forces.

Enforcing equilibrium, as presented in Fig.4.1(b), the following relation can be derived

between the internally defined force components and the externally imposed nodal forces:

b
Pt =+, P 1 1.0 0]fp,
ix ' ' = 1e:r = 00 1 1 ' :[R]{p} (4'21)
Py =Pyt Py Dy Dy

pz2

Thus, the stiffness matrix of the hysteretic, displacement based, truss element is derived as:

« l—«o —Q —(l—a)

H-lEE=T L iy e s

L

} (4.22)

The locally defined displacement and force components are transformed into the

corresponding global components using the following transformation relations:

7]
7]

1 {{l;% (4.23)

2

{d}
{r}

p

where the transformation matrix [T ]1 is defined as:

cosp 0 sin ¢ 0 0 0 0 0
0 cos 0 sin 0 0 0 0

(7] = ¢ g . (4.24)
1 0 0 0 0 cos¢p 0 sing O

0 0 0 0 0 cos ¢ 0 sin ¢
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and the transformation matrix [T]Q respectively:

cos¢ sing 0 0

T| = 4.25
[ ]2 0 0 cos¢ sing (4.25)
The global displacement and force vectors are of the following form:
{D} = {ul L T T R Vs }T
S ;f S (4.26)

{P}:{P/l Pyl Px? PyQ}

x

where 2z, , Zyys 29y 2y, are the global hysteretic displacement components. Consequently,

the global stiffness matrix is defined by the following relation:

(4.27)

The global stiffness matrix of the hysteretic truss element is of size 4x8. The stiffness matrix
defined in equation (4.27) is supplemented by four Bouc-Wen hysteretic equations, one for
each global hysteretic displacement component. Thus, the following elemental set of

constitutive equations is derived:

{r}=[K]{D} (4.28)
and:
‘ (Ly) . (:v,y) n ‘
27 = |1— z (B—i—fysgn(ukzk)) , k=12 (4.29)
Y

The evaluation of the hysteretic displacements in terms of global components is necessary so

that the derived element can be fitted into the standard direct stiffness scheme.
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4.2.3 A simple solution approach

Consider a truss structure comprising of n, number of elements and n, ,number of
nodes. The total number of unknown degrees of freedom is n,,, = 4n, .. This corresponds

to two global displacements and two global hysteretic displacements per node. However, the

total number of external forces is n, = 2n, , as implied by the elemental constitutive

relation (equation (4.28). Thus, only 2n, , equations can be derived from equilibrium. The

no
remaining equations are supplemented by the 2n,  , Bouc-Wen hysteretic equations, defined
in equation (4.29).

The decomposition of the displacement field introduced in equation (4.5) together with the
variational formulation introduced in equation (4.18) allow for the hysteretic components of
the displacement to be treated as independent degrees of freedom. Enforcing compatibility,
the stiffness matrix of the structure can be derived as usual, by means of the direct stiffness

method. Thus, the equations of motion for the whole structure are derived:

(M5} +[K){0} = (P} 30
where [M ]is thendqfxndqf mass matrix of the structure, [K ] is the2n, ,x4dn . stiffness
matrix of the structure, {D}is the 4n, ,vector of unknown internal forces, and{P} is the

2n, , vector of nodal forces. Boundary conditions are enforced numerically by adding a big

number to the corresponding elements of the stiffness matrix. Since the hysteretic components
are displacement measures they are submitted to the same inertia forces as the total
displacement measures.

The evolution equations of the hysteretic displacements z expressed in the global

coordinate system are given by the following relations:
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Gy = | 1- Z—E (8 + vsen( iz ) 4.31)
Y

where i =1..n,, k =12 and J is either the = or y global axis. Equations (4.31) are

derived from equations (4.2) utilizing the transformation (4.23). However, since the hysteretic

J

displacements z,* are defined in the global coordinate system, the definition if the associated

yield parameters zgf’y) is not straightforward. Letting > to be the nodal hysteretic

displacement defined in the local coordinate system, the global components are evaluated as:

z, = 2C08¢Q 4.32)

z, = zsin ¢

Substituting relations (4.32) into equation (4.2) the following evolution equation is derived,

concerning the hysteretic displacement component along the global x direction:

n

(8 +ysen(i’z")) (4.33)

1

where z;, is the «yield displacement» along the global direction. When at yield, the following

relation holds:

! z, , Z
2/ = cospz,) = —L— =z = L (4.34)
COS g25 COS2 (b
and thus equation (4.34) is written as:
.J .J 7 COS(b ! T T
2 =u’|1— (ﬁ+’ysgn(u z )) (4.35)
z
y
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The set of equations (4.30) together with the evolution equations (4.31) fully define the
nonlinear dynamical problem under consideration. The system of nonlinear equations can be
solved either by standard implicit or explicit integration methods (Chopra, 2006) or by
implementing the state-space approach (Sivaselvan and Reinhorn, 2003). In this work, the
state-space approach is implemented. The system of second-order equations of motion is
written as a system of first-order equations. This is accomplished by analytically evaluating

the second derivative of z with respect to time:

Z = |1— zi <B+ysgn(u1z))
TL—:i
iy || — sgn(z(t))2(t)(B+ ysen(iz2)) (4.36)
y
S ysgn(l,(ulz))
2y

where ys gn ( 1, (dlz )) is the derivative of the sgn(.) function with respect to time.

Equation (4.36) is then inserted into equation (4.30) and the derived equations can be

written in the following form:

{2} = a({a}) +{P(t)} (37)

where the vector {w} is defined as:

(s} =|{p}" (B}

and G ({x }) is defined as follows:

(38)

(39)

G({x}):l 0 Y U}j{Z})}‘

(] x] o [ ]
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The operator G is a state dependent operator since Y holds the evolution equations for each
element i, that is:
z (0 , i
SO (54 yvsam (=0 8] A1) [ 8] [A ) oo

Y

Y;

(i) =} )= |1

This solution procedure is presented in the next section through an illustrative example
4.2.4 Example — 3-bar truss under monotonically increasing loading

In this example, a typical 3-bar truss is examined and the results are validated using the
Nastran commercial code (Noran Engineering, 2007). The geometry of the truss is presented

in Fig.4.2, while the parameters of the problem are defined in Table 4.1.

L

1 Ol

Py
Fig.4.2 Three-bar truss

A monotonically increasing concentrated load is applied at node #1 (Fig.4.2) to a
maximum value of 700 KN. This example serves for validation purposes only, thus no failure
structural failure criteria are considered. The load is applied using a slow varying ramp
function. The Runge-Kutta 45 solver is implemented for the proposed formulation, with an
initial time-step equal to 0.01 sec and a relative tolerance error control equal to 0.001.

Analysis in Nastran is performed utilizing a Modified Newton-Raphson scheme with 100
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incremental steps. The 2-node truss element is implanted in Nastran with a bilinear elastic-

plastic stress-strain relation with kinematic hardening.

Area 0.001 m’
Length I m

0 45"
Eyoung 210 GPa
a 0.002

oy 235 MPa
n 25

Jé; 0.5

Y 0.5

Table 4.1 Parameter definition
In Fig.4.3 the force-deflection curve from the two different formulations is presented. The

two solutions coincide.

600
500
400
300 F — — — - Nastran
200
100 |
0 1 1 1 )
0 0.05 0.1 0.15 0.2

BoucTruss

Applied Force (KN)

Displacement (m)

Fig.4.3 Validation of the proposed element with Nastran commercial code — Applied Load
— Displacement curve at node #1

Even-though the proposed formulation utilizes twice the number of degrees of freedom as
to Nastran both analyses conclude in 6.5 sec. This is because the proposed formulation allows
for the simultancous solution of the governing equations of the problem, that is, the
equilibrium equations and the nonlinear plasticity equations.

In Fig.4.4(a) the member axial force is presented with respect to the vertical displacement
at node #1. Due to symmetry, elements #1 and #3 coincide as expected. The evolution of the

hysteretic parameter with respect to time is presented in Fig.4.4(b). Element #2 is the first one
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to reach its yield displacement. The velocity of plastic deformation is then increased for

elements #1 and #3, that reach their yield displacement at the same time, due to symmetry.

350
300
250
200
150
100

Axial Force (KN)

50 |

£

e

=]

v

=

8

<

Element #1 é‘

Element #2 A

— = — Element #3 =

&=

o

2

1

>~

o]

L L L )
0.05 0.1 0.15 0.2

Displacement (m)

(a)

0.0025

0.002

0.0015

0.001

0.0005

Element #1 /
/
Element #2 /
/
Element #3 /

Time (sec)

(b)

Fig.4.4(a) Element Axial Force —Vertical Displacement at node #1 (b) Evolution of the
hysteretic parameter

In Fig.4.5(a), the evolution of the hysteretic parameter is compared to the evolution of the

total displacement in element #2.

Displacement (m)

0.002

0.0015

0.001

0.0005

= Hysteretic Displacement

Total Displacement

Axial Force (KN)

1 2 3
Time (sec)
(a)

350

300 F
250 F p= ki
200

150

100

50 F

0 1 1 )
0 0.0005 0.001 0.0015

Generalized Displacement (m)

(b)

Fig.4.5(a) Evolution of the hysteretic parameter and the total elongation at element #2 until
yield (b) Evolution of the quasi-elastic generalized displacement measure at element #2

As predicted by equations (4.5), (4.9) and (4.10) the hysteretic displacement is equal to the

total displacement until yield. At that point the hysteretic displacement assumes a constant

value. The transition from the elastic to the plastic state is smooth, with the smoothness being

controlled by parameter n as defined in equation (4.2). The evolution of the equivalent

displacement measure as defined in equations (4.4) and (4.5) is presented in Fig.4.5(b).
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4.3  Truss element formulation considering hysteretic axial deformations

4.3.1 Introduction

Though instructive, two main disadvantages can be argued for the hysteretic displacement
formulation presented in the previous section. The dependence of the nonlinear law
implemented on global displacement properties (equation (4.35)), yields an element with
problem dependent material parameters, since the yield displacement cannot be unequivocally
deducted in multidimensional displacement fields. Furthermore, a formulation is needed that
can be easily extended to large displacement fields, thus being suitable for geometrically
nonlinear problems. To circumvent this drawback the truss-element is re-examined based on
the decomposition of the strain, rather than the displacement field, into quasi-elastic and

hysteretic terms.
4.3.2 Material modeling

The Bouc-Wen hysteretic law is herein written in stress-strain terms as opposed to relation
(4.1) where the constitutive relation was defined in terms of a force displacement relationship.

Thus, the hysteretic stress-strain law is defined as:

Ux(z,t):aEex(m,t)—i—(l—a)Ez(m,t) (4.41)
whereo_ is the axial stress, ¢_ the axial strain, £ is the Young Modulus and « is the post-

elastic to elastic moduli ratio. As implied by relation (4.41)zis now considered to be the

hysteretic part of the total deformation, evolving through the following relation:

n
z

p=¢ |1— (8 +vsgn(e,z)) (4.42)

Zy

where 2, is the yield axial deformation.
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4.3.3 Small displacement formulation

Introducing the interpolation field defined in relation (4.13) for the axial displacement, the

following relation holds:

{d} (4.43)

T

ulz)=1—— —

()=p-5 2
where{d } = {u; u? }T is the nodal displacement vector. Considering the compatibility

equation:

€, = % (4.44)
the strain displacement matrix [B] is evaluated:
0 T oz 1 1
e =[B{d} =——1-7 Z{d}= l_i ﬂ{d} (4.45)

A similar interpolation field must be considered for the hysteretic displacement. The
interpolation field has to comply with the actual constant deformation distribution, since the
two-node truss is a constant axial force element. An equilibrium based interpolation field is

defined as:

z=|-1 O][Zl}:[Bsz} (4.46)

T, . . .
where {z} = {zl 2y } is the vector of the hysteretic nodal strains that evolve according to

the Bouc-Wen relation defined in equation (4.42). Though such a definition reduces the
number of additional degrees of freedom, since one nodal hysteretic strain suffices for the

description of the problem, the following interpolation field is preferred:
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_ il “1
2 =1/2 1/2]{4 = [BZ][ZQ} (4.47)
Equation (4.47) allows for the simulation of elements with different hysteretic properties, e.g.
different connection properties in each end. Having established the vectors of unknown

quantities and the corresponding interpolation fields, the principle of virtual work is

implemented to evaluate the stiffness matrix of the truss element:

[ée,0,av ={a} {P} (4.48)
v

where dc is the potential strain and { p} = { L P2 }T is the work conjugate nodal load

vector, both expressed in the local coordinate system. Substituting relation (4.41) into relation

(4.48) the following expression is derived:

[se(aBe+(1-a)B2)av = {a} {p} (4.49)

The lhs of equation (4.49) is written as:

[ée(aBe +(1-a)B2)AV = a [6cBedV + (1 - o) [6eBdV =

ia{‘su}Tf[B]TE[B]dV{éu}I—/k(l—a){éu}Tf[l;/]TE[BZ]dV (40)

where the interpolation scheme of equations (4.45) and (4.47) is implemented. Substituting

the expressions of the strain-displacement matrices [B], [BZ] from equations (4.45) and

(4.47) respectively, the integrals of the r.h.s. of equation (4.50) are reduced to the following

expressions:

97



Chapter IV Hysteretic Macro-Elements

T EAI 1T -1
I = ![B] BBV ===
4.51
1, = [[B] B[B.]av = BA 05 05 0
e T 0.5 0.5
4
The integral I, is equal to the elastic stiffness matrix of the two-node truss element.
Thus, the equilibrium equation of the truss element is written as:
EA -1 —-0.5 —0.5
{p}:oéT I L R () 1) I £ (4.52)

The additive decomposition of the total stress into a quasi-elastic and a hysteretic part as
described in equation (4.41) is retained in constitutive relation of the element. The stiffness
relation presented in equation (4.52), together with the evolution equations of the nodal

hysteretic deformations z,, z, fully describe the nonlinear behavior of the two-node truss

element.
The stiffness matrix, initially evaluated in local coordinates is transformed to the global

coordinate system, using the following transformation relations:

(4.53)

T
where {P}={pP! P! P! P2 P} P}, {d}={d, d} d! & d d?}" are

the nodal force and nodal displacement vectors respectively, expressed in the global
coordinate system.

Substituting equations (4.53) into relation (4.52) the following equation is derived:

{ZI]
29

-0.5 —-0.5

(Py=oZAaT| L AND) + (- a)maaT |

where the elastic global stiffness matrix is defined as:
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[A] (4.55)

As expected the elastic part of the stiffness matrix expressed in the global coordinate system
is again identical to the classical small displacement elastic formulation of the truss element

(Bathe, 2007).
4.3.4 Large displacement formulation

To account for large displacement fields, the compatibility equation presented in equation
(4.44) is herein extended by introducing the contribution of the rotational field into the

extension of the truss element. Thus, the axial strain of the rod element is expressed as:

g, =€, +1, (4.56)
where e is the linear part of the strain:
ou
e = —2 4.57
Y ox (457)

and 7, is the nonlinear part of the axial strain containing the contribution of the rotational

displacement field in the axial deformation:

—1 au?ﬁ 2_|_ %
77”"_2 Ox Oy

2

2
+ [%] (4.58)

Material nonlinearity is introduced through relation (4.41). Since the hysteretic

deformation measure z is a part of the total deformation measure ¢, , the geometrically

nonlinear evolution of z is implicitly imposed by (4.56). Thus, the following nonlinear law

applies for the stress-strain relation:
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UX:(IE(EI + nx)—k(l—a)Ez

: . 2| . (4.59)
z:(sx—l—nz) 1-— - (ﬁ—l—vsgn((sgﬁ—nz)z))
Y
Implementing the linear interpolation functions for the displacement field one gets:
1-2 0 0 2 0 0
. L L
‘ s s
u =] 0 1—— 0 0 — 0}id
! L L i (4.60)
? 0 0 1-2 0 0 2
L L

T
_ (1,1 1 2 2 2
{d}—{ux u, u, u; u; u }
The strain field is derived from the displacement field, by substituting (4.60) in (4.58) thus

leading to the following matrix expression:

e =([B], +[B],, ){d} (61)

where the nodal displacement matrix {d } consists of 6 elements, namely:

{ay={ul ul o w2 w2 @2} (4.62)

and the strain-displacement matrix consists of two parts, a linear [B] . and nonlinear [B]NL

which are evaluated as follows:

_— e ¥ _ (4.63)
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The interpolation scheme introduced in relation (4.47) for the hysteretic degrees of
freedom is also utilized herein, letting:

(=) =tal, |2 | =[-1 1)2] o0

where z, z, are nodal hysteretic strains subject to the evolution law of relation(4.59). The

principle of virtual work is therefore defined by the following relation:

lég-advz{d}T{P}

(4.65)
and by substituting (4.59) and (4.56) in (4.65) the following expression is derived:

[((561 + (577Z)[aE(eI + %) —|—<1 —oz)Ez]dV = {d}T{P}

(4.606)
Taking into consideration equations (4.60) to (4.64) and after the necessary algebraic

manipulations the following constitutive relation is derived:

(626)  (626)

(626)

(626)  (626) | (622)
-~ -~ -~ -~
ke + k, + s+ s + s |k |{d]z}={P}

—_—

Pl

x

] | (8.@1) (le)
(628)
{P} ={

(4.67)
1 1 2 2 2
Pl Pl P2 PP

Matrices kq, k., s, s,, s, are the same as in the updated Lagrangian formulation of the two

node truss element (Bathe, 2007) multiplied by « and [K ] is defined as:

Au, Auy Ay Au Auy Au ‘
1+—= : -t
—(1— 2L 2L 2L
[K,]=(1-a)EA A ’

2L 4.68
: Au, Au, Au, ( )
-4 _ 1+ z Y =%
2L 2L 2L 2L 2L
The transformation matrix [A] of the 3d truss element, is given by the following relation:
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K A I
—)\/D Ii/D 0 %)
[A] = /D MDD ; v (4.69)
@ —)\/D ,@/D 0
—W/D —AM/D D

where Kk = cos¢,, A= cosqby, p=cosp, D= VK2 + 22, qﬁz,qﬁy,qﬁzbeing the
direction angles of the truss element.

4.4  The Euler — Bernoulli beam element

4.4.1 Introduction

In this section, the derivation of a plane beam element is presented, based on the concept
of the hysteretic strain measure presented in the previous section. In section 4.4.2 the element
matrices are derived under the assumption of small displacements. To demonstrate the
generality of the proposed formulation, a large displacement formulation is also presented in

section 4.4.7.
4.4.2 Small displacement formulation

The end forces of a prismatic beam element directed from node 1 to node 2, being a part of

a plane frame structure that carries nodal static or dynamic loads, are presented in Fig. 4.6.
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Fig. 4.6. Beam element

The inelastic moment-curvature relation at a particular cross section at distance =, is

expressed in the following form:

M(:z:,t):abEIaS(:L",t)—i—(l—ab)Elzb(:v,t) (4.70)
where M is the internal moment, ¢ the total curvature, while £/ and [ are the Young’s
modulus and sectional moment of inertia respectively and a, is the ratio of the post-yield to
elastic bending stiffness ratio. In this formulation the hysteretic parameter z, is defined as the

hysteretic part of the curvature. Introducing the Bouc-Wen evolution equation defined in

relations (3.36) and (3.37) the following relation is obtained:

n
p

Zp

4 (t) = o|1— (B +vsen(z,-¢)) 4.71)
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which expresses the rate of hysteretic curvature in terms of the rate of curvature times a
nonlinear coefficient. In equation (4.71) z/ denotes the maximum value attained by the

hysteretic curvature z, .

By means of the Euler-Bernoulli assumptions the curvature is given by the following

relation:

¢ == (4.72)

where w is the transverse deflection of the beam. Substituting relation (4.72) into (4.70), the

following expression is obtained:

M(z,t) = EI$(a,t)
) 2 4.73
¢(x,t>:ab%_}_(l—a,))zb(x,t) ( )

where qg(z, t) can be regarded as a measure of an “equivalent generalized curvature”, though

not directly related to the elastic line, which induces the elastoplastic moment. Additionally,

plasticity with respect to axial deformations can be introduced in a similar way, as follows:

N(z,t) = BAZ)(z,t)

4.74
€0<x,t>:au50+(l—au)zu:a M—k(l—au)zu(:ﬂ,t ( )
where N is the axial force, A is the cross-sectional area, £,is the generalized axial

centerline strain similar to the generalized curvature defined in equation (4.72), «, is the

post-yield to elastic axial stiffness ratio and z, is the axial hysteretic deformation analogous

to the hysteretic curvature concept introduced in relation (4.73). The evolution equation of the

hysteretic axial centerline deformation is given by the following relation:
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n

. ) z
zu(:p,t) =g |1—|—

y
ZU

(ﬁ+’ysgn(zu-éo)) (4.75)

where 2! is the maximum value attained by the hysteretic part of the axial centerline

deformation z, . In this work, the interaction between the axial force and the bending moment

is only implicitly accounted for through the evaluation of a bending yield parameter z; for an

anticipated level of axial force. However, refined interaction schemes can be implemented

through the proper manipulation of the evolution equations (4.71) and (4.75) as described in

Symeonov et al., 2000. Parameters o, and c, are considered to be material dependent and

can be determined after appropriate testing.

This constitutive modeling constitutes a phenomenological approach for the inelastic
behavior of skeletal structures in the sense that the inelastic behavior is established on the
basis of a stress-resultant — generalized displacement relation, resulting into certain
advantages. The cyclic behavior is accurately and efficiently monitored without reverting into
the evaluation of stresses at the cross-sectional level reducing significantly the computational
cost of the proposed scheme. Moreover, cyclic induced phenomena such as stiffness
degradation, strength deterioration and pinching can be easily simulated by properly
modifying the evolution equation (Sivaselvan and Reinhorn, 2000). The combined nonlinear
behavior of a structural assemblage (e.g. steel members and their connections) can be
simulated using only one element, provided that the corresponding hysteretic parameters are
calibrated.

However, this comes at the cost of lacking information on the exact stress distribution
along the section’s height. This though is readily available separately by imposing the
curvature evaluated by the analysis procedure over the cross section when needed and

computing the corresponding stress distribution based on a specific stress-strain law,
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Charalampakis & Koumousis (2008b). Furthermore, the identification process of the model
parameters that needs to be performed, implies the existence of experimental data, extracted

either from numerical or real experiments (Khandelwal et. al, 2008, Chatzi et al., 2010).
4.4.3 FEM discretization

Using cubic polynomial interpolation functions for the displacement field, the following

expression is derived:

ul [N, O 0 N, 0

0 N, N, 0 N,

0
" N, {d} (4.76)

where the nodal displacement vector {d} is defined as {d} = {“1 w, 0 u, w, 0, }T

and N,, i=1..8 are the shape functions as introduced in Bathe (2007). Equations (4.76)

denote a polynomial interpolation scheme, accurate for an elastic beam. This is employed also
in this work as a good approximation for an elastoplastic beam. According to equation (4.72)

and using equation (4.76), the total curvature can be expressed as:

3,xx N4,z1‘

¢=[0 N

where subscript ,2z denotes double differentiation with respect to the space variable z. Since

the total moments at the ends of the element are in equilibrium and there is no lateral

intermediate loading, the following relationship is valid:

M(x,t) = [1—%]M1 + oM, (4.78)

where M, and M, are the nodal moments and M (x,t) is the internal bending moment.

From equation (4.73) it follows that:

106



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

~ m ~ x ~
t)=|1——=|¢ +— 4.79
6(.t) [ L]¢1 7 by (4.79)
where (51 and ¢~>2 are the corresponding nodal quantities of the generalized curvature.

Replacing the second of equations (4.73) into (4.79), it results:

0w (x,t

oA U;(;_) + (1 — ab)zb($7t> = [1 —%](%@ + <1— ozb>zb1) +%(ab¢2 + <1— ab>zb2> -
0*w( z,t

h gij >+(1_ab>zb<x’t>:O‘b[[l_%]¢1 +%¢2J+<1—ab>[[1—%sz1+%%2J

(4.80)

which means that in order for equation (4.80) to hold for every «, € (0 1] the same

interpolation field has to be adopted for both the total curvature ¢ and the hysteretic curvature
z, . In equation (4.80), z,, and z, are the corresponding nodal quantities of the hysteretic
curvature z, . Consequently, the hysteretic curvature is defined via the following linear shape

functions:

{7} (4.81)

zb(:v,t) = [N7 NS}[Z;} = \1 —% %
It turns out that equation (4.81) is an “exact” representation for the distribution of the
hysteretic curvature with respect to equations (4.73) and (4.79), as long as the nonlinear
behavior under examination is of a smooth type with kinematic hardening, as described in
equation (4.70) and there is no lateral loading between the end nodes of the beam.
Substituting relations (4.77) and (4.81) into (4.73) results into the following expression:

0 N,

5,zz

NG, T

{d}+(1-a,)[N, NS]‘Z:

} (4.82)

Similarly, the centerline axial deformation is expressed as:
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g =|N, 00 Ny, 0 0]{4}:

B,(z)|{d} (4.83)

and the corresponding hysteretic component is derived as:

ljl ] = [N ]{z} (4.84)

u2
Substituting relations (4.83) and (4.84) in (4.74) the following interpolation scheme is
derived in matrix form as:

N

EO =« Lz

u

00 Ny, 0 0f{d}+(1-0,)[N, Nm”j“l} (4.85)

u2

which as in relation (4.82) separates the elastic and hysteretic component.
4.4.4 Variational formulation
By means of the principle of virtual work and using equation (4.70), the following relation

is obtained:

L

Jl{e} () + {e0} (a1}

0

dr = {6d)" {P} (4.86)

Taking into consideration equations (4.83) and (4.84), the first part of the left hand side

integral that expresses the virtual work of the axial forces, can be written as:

L | L {d}
1, = BAla, [[B,]'[B,]d | (1=a,) [[B,] [N] da|{ 2, (4.87)
0 I 0 ,
626 i 622 “u2

Similarly, substituting relations (4.77) and (4.81) in relation (4.86) and performing the
necessary algebraic operations, the second part of the integral in the left hand side that

expresses the virtual work due to bending is derived:
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Lo | Lo |
I, = Bl|a, [[B,] [B]de | (1-a,) [[B,] [N] de|] 2, (4.88)
0 : 0 sz
626 | 622

Performing the indicated integrations and augmenting the displacement vector with the

hysteretic parameters of the elements, the following relation is obtained:

N,
(@] |
[ {lL = = () 459
Z)
{ b } Q2
M,
where
EA EA
% 0 0 ~ 0 0
L L
0 12abEI GabEI 0 _ 12abEI 6abEI
L3 L2 L3 L2
0 6oy, Bl 4o, BI 0 6, Bl 20,El
K], = oA r L o I L {490
~ 0 0 i 0 0
L L
0 _ 12abEI _ GabE[ 0 12abEI _ GabEI
L3 L2 LS L2
0 6abEI ZabEI 0 _ 6abEI 4abE[
12 L I2 L

and
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ey, (ma)p, 0 0
EI EI
0 0 —(1—061))? (1-0%)7
K] - 0 0 —(1— oy ) EI 0 491)
h (1-a,) (1-a,) '
A EA 0 0
2 2
EI EI
0 0 (1—%)7 —(1—%)7
0 0 0 (1—a,)EI

Equation (4.89) corresponds to the constitutive matrix relation of the element that includes
the elastic (equation (4.90)) and the hysteretic (equation (4.91)) behavior, where the axial
forces are uncoupled with bending moments and shear forces in both the elastic and hysteretic

part.
4.4.5 Physical interpretation

The additive decomposition of the constitutive relations (4.73) and (4.74) into an elastic
and a hysteretic part persists in the definition of the stiffness relation (4.89). To illuminate this

fact, the case where o, = a; = a is examined. However, since axial forces and bending
moments are uncoupled the same conclusions can be drawn for any value of the ratios «, and

a, . When o, = a, = a, the matrix equilibrium relation (4.89), can be cast in the following

form:

{f} =a[K] {d} + - a)[K] {z} (4.92)
where [f( L and [f( ]h are derived from relations (4.90) and (4.91) respectively by collecting

terms. In equation (4.92), the first term represents an elastic behavior based on the reduced
(plastic) stiffness and the second term adds the hysteretic part. This is interpreted as a
supplement force vector to establish the elastic behavior before yielding and a constant force

vector when yielding is exceeded.
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It is evident that in the elastic case, where v = 1, relation (4.92) reduces to the classical
stiffness matrix of the elastic beam and the hysteretic degrees of freedom are wiped out as
their coefficient matrix vanishes. Relation (4.92), together with the evolution equations of the
hysteretic variables, suffice to define the constitutive behavior of the element. This
constitutive matrix is fully determined at the elemental level and is computed once at the
beginning of the analysis procedure thus, significantly reducing the computational cost of the

proposed method.

Relation (4.89) can be expressed in terms of global end displacements {u}of the element
by using the following transformation relation {d} = [A(Q)Hu}, where [A(G)]is the 2D
transformation matrix and 6is the right hand angle between the global X axis and the local x
axis of the element, (Fig. 4.6). Taking into account that the global end forces {F} relate to

the end forces expressed in the local coordinate system through the transformation relation,

equation (4.89) can be written as:

{F}=[a] (5] [AJ{u} + AT [K], {2} (4.93)
for both axial and bending components.
4.4.6 Evolution equations
The nonlinear behavior of the element is governed by the Bouc-Wen evolution equations
(4.71) and (4.75). These are nonlinear differential equations in time, depending on the
hysteretic curvature z,(z,t) and the rate of curvature & , as determined in relation (4.72) and

in discretized form in relation (4.77) for the bending components. Similarly, the axial
components are governed by hysteretic equations of the same form, depending on the
hysteretic centerline axial deformation and the rate of total axial deformation. Therefore the

evolution equation can be expressed in terms of nodal velocities as follows:
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n

(8 +ysen (2@ 0] B@][A[{a})) [ B@)][A{i} @94

2, (w,1)

Z(x,t) =|1— >
b

from which the discretized components at the nodal points are deduced as:

400 = 129 (5 om0 O] AP [ B0 A1) @99
and
5t = |1 208 (5 s (0 BN ) B A7) 90

where [Bb(())] and [Bb(L)] are derived from equation (4.77). Similar relations hold for the

axial inelastic component, where in this case the strain displacement matrices are derived

from equation (4.83). The corresponding discretized components at the nodal points are:

400 = 1= 20 (5 (0] 0)[3)(4}) [m O[3} w9
and
0= 1[5 (5 (ol m A o)) [ B} o

The evolution equations introduced in relations (4.95), (4.96), and (4.97), (4.98)
adequately describe the nonlinear behavior of the beam element. One can notice that both
evolution equations depend on the nodal velocities of the particular element and thus, can be
treated separately at elemental level, processed in parallel for a given vector of nodal
velocities. This constitutes the fundamental step in incorporating hysteretic modeling

formulation into the finite element method and is of broader value.
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It can be noticed also that the formulation of the governing equations of motion is
independent of the type of the hysteretic model utilized in the analysis, since the evolution
equations are introduced at the element level. However, the hysteretic model needs to be
expressed in stress-resultant - generalized-displacement form and the hysteretic parameter in
rate form in order to be implemented in the proposed scheme. Therefore if the appropriate
hysteretic parameter is introduced in rate form any smooth hysteretic model can be treated by
the proposed method (Thyagarajan, 1989), such as the Masing models of hysteresis (Chiang,
1999, Visintin, 2003), the Ramberg — Osgood model (Skelton et al.1997) or the bilinear

Suzuki-Minai hysteretic model, (Guggenberger and Grundmann, 2005).
4.4.7 Large displacement formulation

The proposed element formulation can be extended into the field of large displacements,
by introducing the appropriate non-linear strain measure, without modifying the governing
constitutive equations.

Since the rotations, usually observed in structural members under seismic excitation, are
small until failure, a large displacement but small rotation displacement field is implemented
adhering to a Total Lagrangian Formulation approach. Such an approximation leads to an
elegant, yet exact FEM formulation, Zienkiewicz and Taylor (2007). The following

displacement field is introduced:

r=X+u(X)+Y0(X), y=w(X)+Y (4.99)
where = denotes the position vector in the deformed configuration Cy, X is the position

vector with respect to the reference configuration Ci, u(X ), w(X ) are the axial and

transversal displacements of the cross section and G(X > is the cross-sectional rotation as

presented in Fig. 4.7.
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}*’r v 0{/")

)1

Fig. 4.7. Kinematics of large displacement beam element

The Green-Lagrange strain measure is defined as follows:

] (5]

where E_, is the Green-Lagrange strain, @is the rotation of the cross section and ¢ is the

+ y 90 _ po +Yo (4.100)
ox

_ou 1

E =—+
w0 2

curvature defined in equation (4.72).
Using the second Piola stress tensor as the conjugate measure, the variational principle of

virtual work is considered in terms of stresses and equivalently in terms of stress resultants as:

6l = [68,,8,,d02 — oI, « oIl = [(SE°N + 86M )dw — éI1,,,  (4.101)
Q L
where the axial force NV and the bending moment M are defined respectively as:
N = [$,d4 M= [$,vdA (4.102)
A A

Substituting the Green-Lagrange strain measures into relations (4.73) and (4.74), the

following constitutive relations are obtained:
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N(z,t) = EA- Ey(z,t)

- ou 1f(ou) (0w (4.103)
Eo(z,t):au G_Z_I_E [a—z] +[8—:] —I—(l—au)zu(x,t)
and
- - 0w
M(x,t):EIqS(x,t), ¢(x,t):abﬁ+<1—ab)zb<x,t) (4.104)
x

In addition, the axial deformation of the centerline E° is rewritten in the following form:

E'=¢,+n, (4.105)
where ¢ is the geometrically linear part of the axial deformation and 7, is the geometrically

nonlinear part of the deformation. Implementing the interpolation field introduced in

equations (4.76) the following nonlinear strain displacement equation is derived:

E'=¢ +mn, =B, |{d}+[By]{d} (4.106)

where:

B]=[B.(a)l. (8], =3[ BIaB.(2)]+[B){4}[B,(x)]) @107

and {alu}:{u1 uQ}T, {db}:{wl 0, w, HQ}T while [Bb(a:)] and [Bu<1:)] are

defined in equations (4.77) and (4.83) respectively. The auxiliary matrices introduced in

equation (4.107) assume the following form:

[B]=[N, N Ns,. N

’ [32]:[N

(4.108)

1Lz 4,x 3,xx N4,wz 5,xx 6,22
Substituting equations (4.105) - (4.108) in the variational principle (4.101) and performing
the necessary algebraic manipulations the expressions derived for the small displacement case

(relations (4.87) and (4.88)) are reformulated as follows:
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(4.109)

and

{d}

N dz |z (4.110)

O%h
Sy
=

Zp2

|
B,Jdr | (1)
626 i 622
where the 626 sub matrices correspond to the standard large displacement stiffness matrix,
Zienkiewicz and Taylor (2007) and the remaining parts can be deduced symbolically using
one of the available symbolic languages such as Maple, MapleSoft (2007) or Mathematica,
(Wolfram Mathematica, 2009). The matrix derived from equation (4.110) coincides with the

bending contribution in the small displacement case presented in equation (4.89). The 6x2

submatrix of equation (4.109) is:

_ 2 2L 20L 15 20 v 2 2L 20L 15
u 1 Au L(6,+0,)—12Aw [ 1 1 Au  L(6,+0,)—12Aw [
S i T 1) 0, -

_1_Au w £[91 _592]_ Law L Au _w A[QQ _2p
1 L
2 2L 20L 15 4 20 2 2L 20L 15

e N

—_
|
[S]

S
~
:b.
—_
—_
—_
p—

where: Aw = w, —w, and Au = u, —u,.
The above relations are adequate for the geometrically nonlinear analysis where also

separation of the elastic and hysteretic part is retained. As in the small displacement approach,

this formulation is independent of the particular hysteretic model.
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4.4.8 Standard second order representation

For a specific plane frame structure with n, degrees of freedom and given connectivity of

n, elements, mass distribution and boundary conditions, dynamic equilibrium can be

established in terms of nodal displacements, velocities and accelerations as follows:

[M]S{U} + [C]b{U} + [K]b{U} + [H]S{Z} - {P(t)} (4.112)

where [M ] [C’ ] [K ] are the mass, viscous damping and stiffness square symmetric

S’ S’ S

(n FT 1N f) matrices respectively and [H ] is the orthogonal (n ;T 4nel> hysteretic matrix of

S

the structure, while {P(t)} is the (nfxl)vector of external forces. These matrices are

assembled following the direct stiffness method, Bathe (2007), where the stiffness matrix
contains only the elastic part of the element stiffness of relation (4.89). The mass matrix may
correspond to a lumped mass diagonal matrix, or a consistent mass matrix, Bathe (2007).

The viscous damping matrix in general may be of the form of a Rayleigh damping matrix,

Chopra (2006). Furthermore, {U } is the <n fxl) vector of unknown global nodal
displacements and {Z } is the (4n81x1) vector of unknown hysteretic degrees of freedom.

These vectors dictate the dimensions of the hysteretic matrix [H ] s The hysteretic behavior is

defined at the element level in terms of hysteretic curvatures and centerline axial deformations

from relation (4.91). The contribution of the hysteretic matrix of each element expressed in

global terms is appended to form the corresponding hysteretic matrix [H } which expresses

S b
the hysteretic contribution that corresponds to the total degrees of freedom of the structure.

This assembly scheme is demonstrated in detail in Example 2. Equations (4.112), together

with the evolution equations for the entire set of the introduced hysteretic parameters (4.95),
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(4.96), and (4.97), (4.98), fully describe the response of the system to a given external force
and initial conditions.

To comply with the formulation presented herein, modifications in the structure of a

standard FEM code are required. These concern the evaluation of the hysteretic matrix [H ] .
the incorporation of the evolution equations and a first order ode algorithm to provide the
solution in conjunction with a standard Newmark method for the integration of the equations
of motion. Moreover, the element proposed herein can be easily incorporated in a joined
analysis — identification software, as proposed in Piyawat K., Pei J. S 2009. In this work, the
governing equations are written in state-space form and a predictor-corrector differential

solver is implemented, Radhakrishnan and Hindmarsh (1993), as described in the next

section.

4.4.9 State-space formulation

By introducing as auxiliary unknown the vector of global nodal velocities {U }, the
dynamic equilibrium equations (4.112) can stated in state-space the form of 2nf linear
differential equations of first order as follows:

U

%Ui +{ 0 ] (4.113)
P(t '

() {P()}

These are coupled with the nonlinear set of 27, evolution equations of the form:

l{g}}_l 0 I 0
{O |- (][] ~[m]7 o] ~[m] " [x]

{2} =r{U} {2} (4.114)
which are decomposed further in nsets of pairs of coupled equations as described in

equations (4.95) and (4.96).
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For small displacement analysis, equation (4.113) that expresses the dynamic equilibrium
of the structure depends on global system matrices defined once at the beginning of the
analysis, remaining constant in all subsequent steps. Moreover, the evolution of the
elastoplastic behavior is treated at the element level in a decoupled and thus implicitly parallel
form implementing relations (4.95), (4.96) and (4.97), (4.98) for the bending and the axial
components respectively.

As the coupled system of equations (4.113) and (4.114) does not lend itself to an analytical
solution, the system is cast in the form of a general nonlinear set of first order differential
equations. Equations (4.113) can be written into a non-autonomous state—space formulation of

the following form:

{¢} =a({z})+{P(t)} (4.115)

where the vector {:1:} 1s defined as:

{2} =|{v}" {Uv} (7} (4.116)

and G ( { x}) is defined as follows:

0 1 0
O((e)) = |[m) " [x) [na) (] wa] ] @i

o v{upiz)) o
The operator G is a state dependent operator since V' holds the evolution equations for

each element 7, that is:

Zj(t) '

’ ‘ (5 sem (=0 B] [AJ{a)) [B] [A]{a) 5 =1260018)

() () ) =)

2Y
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where parameter z” in (4.118) assumes the corresponding, axial (2) or bending ( z), yield
value. The above system, for specific dynamic loading and given initial conditions on {x} , 18

integrated using one of the robust numerical integrators such are those of Runge-Kutta type,
or Livermore algorithms, Radhakrishnan and Hindmarsh (1993), which though are not usually

included in standard FEM codes.
4.4.10 Cantilever beam under monotonically increasing load

A cantilever beam is analyzed based on the proposed formulation, and the results are
compared with the ones obtained using Nastran FEM code, Noran Engineering (2007). The

geometrical parameters and the mechanical properties of the problem are summarized in Fig.

4.8.
p
Z E.1 l | 2m

. Eyoune | 210 GPa

" L=2m | [ | 2770 cm®

Wa | 252cm’

IPE220, S235 Wy | 285cm’
m |262Kgm

Problem parameters

Fig. 4.8 Beam Geometry
A bilinear moment-curvature relationship with kinematic hardening is considered,
assigning appropriate Bouc-Wen parameters (n =25, 3 = v = 0.5, a, = a;,= 0.002). The
Belytschko — Schwer beam element formulation, Belytschko (1977), is used in Nastran code.
The Belytschko — Schwer beam element recovers stress in fibers along the element’s length,
yielding a robust and accurate solution for elastoplastic problems exhibiting large

displacements.
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A monotonically increasing concentrated load is applied at the free end up to the failure
load. The load is subdivided in 10 steps. The tip displacement against the imposed load is
depicted in Fig. 4.9(a). The one element based on proposed development succeeds in
determining the yield displacement and the ultimate load capacity of the cantilever beam,
while at the same time reaches the ultimate displacement quite accurately as compared to a
ten element model using Nastran code. In Fig. 4.9(b), a comparison of the load path for
different discretization schemes of the proposed formulation is presented. It is noticeable that

the proposed element has the same behavior as the Belytschko — Schwer element.

40.0 40,0
3.0 — 3.0
—-—--—'—“"_'d_._ﬂ_._._______.___—-———-'-_-'-_-___—_-

300 |— — 300 |
z g
£ 250 ¥ 550
] E]
H L]
Sa200 - — S 200 |
? —1 element (NASTRAN) 3
a 150 E 15.0 | —1 element —2 elements
z —2 elements [NASTRAN) <

10.0 — 10.0

—10 elements (NASTRAN)
5.0 5.0 —4 elements —10 elements
—10 elements (Proposed Element)
0.0 0.0
0.00 0.05 0.10 0.15 0.20 025 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement (m) Displacement (m)
(a) (b)

Fig. 4.9 Tip Displacement — Imposed Load Diagram (a) Proposed Formulation vs. Nastran
code (b) Results obtained for different discretization schemes (proposed formulation)

Next, a large displacement analysis is performed and the results are compared to the small
displacement nonlinear formulation. The 10 element discretization is considered for this
comparison since it yields accurate results. Plasticity is considered both in the flexural and the
axial degrees of freedom. The nonlinear large displacement analysis lasted 10 seconds in a

personal computer equipped with a Core Duo Processor and 4 GB of RAM.
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Fig. 4.10 Comparison of Large Displacement vs. Small Displacement approach

In Fig. 4.10 the results obtained from both analyses are presented. Since material nonlinearity
dominates the response of the cantilever beam the two solutions almost coincide for the
elastic branch. Differences are observed at the nonlinear branch. This is attributed to the fact
that the beam undergoes nonlinear axial deformations. These axial deformations are the result
of the large displacement theory and do not arize in a small displacement analysis as

equilibrium is established at the initial configuration.
4.4.11 The staircase frame

This problem is analyzed by Barham et al. (2005). A staircase frame is considered as
illustrated in Fig. 4.11. Each member is modeled using one element. The material is
considered to be elastic perfectly plastic with a yield stress of 250 MPa and an elastic
modulus of 200 GPa. The corresponding Bouc-Wen parameters are evaluated as presented in
Fig. 4.11. Since this example is solely for the demonstration of the validity of the proposed
formulation, the element is considered to be elastic with respect to axial centerline

deformations. This is accomplished by setting o, =1 in relations (4.90) and (4.91).
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Fig. 4.11. Geometry of the staircase frame

The frame is considered fixed at its two ends, and the total number of nodal degrees of

freedom is six, namely the horizontal and vertical displacement and the rotation of nodes 2

and 3. This vector of global nodal displacements {U } and the hysteretic vector {Z } that

appears in the equation of motion (4.112) are presented in Fig. 4.12. As noted, the vector of
the unknown displacements is augmented with the set of unknown hysteretic components that
are defined at the end nodes of each element to depict the inelastic behavior, also at fixed
ends.

The hysteretic matrices of the three elements in the local coordinate system are:

0 0 0 0
0 0 —4603.1 4603.1
[H]l B 0 0 —13019.53 0
N 0 0 0 0
0 0 4603.1 —4603.1
0 0 0 —13019.53
° (4.119)
0 0 0 0 0 0 0 0
0 0 —4339.84  4339.84 0 0 —3068.73  3068.73
) 0 0 —13019.53 0 3 0 0 —13019.53 0
] - (a] =
0 0 0 0 0 0 0 0
0 0 4339.84  —4339.84 0 0 3068.73  —3068.73
0 0 0 —13019.53 0 0 0 —13019.53

The matrices corresponding to the global coordinate system evaluated as indicated in

relation (4.93) as:
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o ©O © © © O

oS O O o o o

[}

o O ©O o o o

0
—4339.84
—13019.53
0
4339.84
0

0 3254.88
0 —3254.88
0 ~13019.53
0 —3254.88
0 3254.88
0 0
0 0
4339.84 0
0 _ 0
0 i = 0
~4339.84 0
~13019.53 0

—3254.88
3254.88
0

3254.88

—3254.88

13019.53 (4120)
0 2169.92 —2169.92
0 —2169.92 2169.92
0 —13019.53 0
0 —2169.92 2169.92
0 2169.92 —2169.92
0 0 13019.53

Consequently, the hysteretic matrix of the structure is derived

hysteretic element matrices, yielding:

0 0 ~3254.88  3254.88 0
0 0 3254.88  —3254.88 0
"l - 0 0 0 13019.53 0
[ ].s - 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

oo oo oo

0 0
—4339.84 4339.84
—13019.53 0
0 0
4339.84 —4339.84
0 —13019.53

This matrix, when inserted into the equation

by

appending the global

0 0 0 0

0 0 0 0

0 o 0 ° 1 (4.121)
0 0 2169.92 —2169.92

0 0 —2169.92 2169.92

0 0 —13019.53 0

of motion (4.112), yields the nonlinear

correction nodal loads to the elastic ones, F},i = 1...6, which are illustrated in Fig. 4.12.
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Fig. 4.12 Global and hysteretic degrees of freedom
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To compare the results, a conventional finite element analysis is performed using the
Abaqus code (Karlsson & Sorensenn, 2000). In total, 202 elements were needed to achieve a
satisfactory agreement. Exact integration along the element’s height was implemented in
Abaqus to determine the collapse load. A force control pushover analysis is also conducted,
implementing the fiber force based element of the OPENSEES code (McKenna et al., 2000).
The full Newton-Raphson solution scheme is implemented with a force increment of 0.05 kN.

To facilitate numerical convergence, a slight kinematical hardening was allowed in the

OPENSEES analysis, letting the kinematic hardening modulus equal to H,, = 0.34MPa.

Three force based elements are used to discretize the structure while 4 integration points
along each element’s length are considered. Ten fibers are considered along the section’s
height. The load displacement path of the problem is presented in Fig. 4.13, where the results

of the OPENSEES analysis model considering an elastic perfect plastic material are also

plotted.
350
300 i+
= -’-““
_ 250 f
z
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g 200 |
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T 150 }
;:‘ 100 Abaqus (202 Elements)
s0 | — + = OPENSEES (3 Elements)
(} 1 1 1 1 1 1 1 J

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Horizontal Displacement (m)

Fig. 4.13. Load Displacement Curves
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It is evident from Fig. 4.13 that the three solution procedures yield practically the same
nonlinear path. The proposed method converges much faster than the Abacus code, since only
3 elements are needed. This is attributed to the solution method which avoids linearization as
discussed in the preceding paragraphs, but also to the element formulation that assumes an
exact interpolation field for the hysteretic curvatures of the two node beam element. The
results obtained from the OPENSEES code also agree with the results obtained from the
proposed formulation. All the analyses were conducted on a personal computer equipped with
a Core Duo processor and 4 GB of RAM. The computational time required was 55 sec for the

Abaqus model, 5 sec for the OPENSEES model and 3 sec for the proposed formulation.
4.5 The Timoshenko beam element

4.5.1 The multi-axial formulation of Bouc-Wen hysteresis

The Bouc-Wen model was introduced by Bouc (1967) and modified subsequently by Wen
(1976), Baber &Noori (1985) and Sivaselvan & Reinhorn (2000). To account for yield criteria
involving more than one components of the stress tensor, a general formulation is needed to
address the inherent interaction. Following Sivaselvan and Reinhorn (2003), the stress tensor

can be decomposed into an elastic and hysteretic part as follows:
{o} ={o t+{o"} =lallE]{e} + (1] - [o])[E]{-} (4.122)
where {cr} is the 6x1 stress VCC'[OI‘,{O’C} is considered the elastic part of the stress tensor,

{ah } the hysteretic part of the stress tensor, [a] denotes a square diagonal matrix with post

yield to elastic stiffness ratios, which for an isotropic material is considered constant,[E] , 18

the elastic constitutive matrix (Den Hartog, 1999), [[ ] is the identity matrix, {s}is the 6x1

126



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

strain vector and {z} is a 6x1 hysteretic strain vector. A hysteretic 6x1 stress vector is thus

defined as:

{o"} =[E]{z} (4.123)

Casciati (2006) proved that if the hysteretic vector evolves according to the following Bouc-

Wen hysteretic rule:

{o"} = [E]{z} = [B)(1) - B8, [R]){¢} (4.124)
then equation (4.122) accurately describes the nonlinear hysteretic behaviour of a material in

the 3D stress space. In relation (4.124)H, and H, are smoothed Heaviside functions

expressed in the following form:

n

H, :H(I><{ah})+1  n>2
T (4.125)
H, = fysgn[{ah} {6}] + 0
where ® ( { ol }) is a yield criterion such that:
@({ah})—1go (4.126)

with the equality holding when yield has occurred. In equation (4.125)n is the smoothing

parameter and (3,7 are shape factors that define the shape of the loading and unloading

branches of the hysteretic loop. The first of equations (4.125) smooths the transition from the
elastic to the inelastic region. The second controls the unloading phases under cyclic
excitation. Equations (4.122) to (4.126) can be alternatively formulated in the stress-resultant
space considering the proper, elastic, constitutive matrix and the proper vector of strains,

conjugate to the stress-resultants (Symeonov et al., 2000).
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Since rates of the corresponding parameter appear in both sides of equation (4.124) the
hysteretic vector zis rate independent. The typical elastic-perfectly plastic hysteretic
behaviour can be derived for 3 =~y = 0.5, n > 6anda = Owhile a variety of other
responses can be also obtained (Sivaselvan and Reinhorn, 2000).

Matrix [R] in relation (4.124) is an interaction matrix that depends on the yield function,

given as:

T

E]

T

0P 0P 0P 0P [E] (4.127)

of'}) “of{o'})] |lofo"Ho{o)

The interaction matrix [R] is formally derived by taking into account the consistency

7]~

condition of associative plasticity (Casciati, 2006). Equations (4.122)and (4.124), yield a
versatile formulation within the classical plasticity framework, where most of the associative

flow rules are expressed in the stress space, (Lubliner, 2008).
4.5.2 Kinematic relations

A typical element of length L is considered (Fig.4.14 (a)) in which the nodal degrees of

freedom in the local coordinate system are:

(dy={u, w, 6 w w, 6) (4.128)
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Q2, W2 X
'\//"'
T

M, 6,

Beam Axis

(b)
Fig.4.14 (a) Nodal displacements and loads (b) Timoshenko kinematic assumption

The following kinematic assumptions are considered according to the Timoshenko theory
of bending (Fig.4.14 (b)):
_ Ou e _Ow

= _ (4.129)

£ =—, £, =—, £, =
Y9 ° 9x 7 Oz

4.5.3 Exact shape functions

In the work presented herein, the shape functions implemented are explicitly derived from

the exact solution of the homogeneous Timoshenko beam differential equations:

2
E13—§+kGA[g—w—0]:O
‘99”82 o0 T (4.130)
KGA|ZE - =

dz? Oz

where k is the shear correction coefficient of the cross section (Dong et al., 2010). An exact

solution can be evaluated for a variable cross-section along the element’s length. For the sake
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of presentation the case of a constant cross-section is considered in this work. The solution of

the system of differential equations (4.130) is:

EI 1

(4.131)
w(z) = lclx?’ +%025E2 +Cyz + O

where (), i = 1..4are integration constants. Imposing the set of boundary conditions

w, = w((]), 0, = 9(0), w, = w(L), 0, = G(L) and solving for the integration constants

the following interpolation field is derived, including also the axial displacements:

u(x) = N,u; + N,u,
w(x) = Nyw, + N0, + Now, + N0,
9(9:) = N.w, + N0, + Nyw, + N, 0,

(4.132)

where the interpolation functions N, introduced in equation (4.132) assume the following

form:
i xr
N =1-% N, =2
1 4 L
2(14 3\
N2:2_/”$3_3_”x2_%x+1 Ng:ﬂf?_ ( )’ux2+(6)\+1)u$
» I? L I? L
2 3 12\ —6A +1)p
N5 = —L—gl’g +—/;.'172 +—M.'E N6 = %1‘3 _%:Lj - 6)‘/1’:17 (4133)
4(1+ 3
I3 12 12 L
21 (1 —6A
N, ——6—#x2+6—um Ny, :3—'&x2——'u( >w
L3 L2 L2 L
with:
1 ET (4.134)

ILL = —, )\ f—
1+ 12X\ kGAI?
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The stiftness matrix of the element is then derived following the standard procedure of the

Finite Element Method (Bathe, 2007) as:

12p 6uL —12u 6uL
EI| 6uL  4p(1+3X)IF —6pL 2u(1—6\)1 13
B —12u —6ulL 121 —6uL (4.135)

6uL  2pu(1—6X)LF —6uL 4p(1+3N)I

Contrary to the isoparametric finite element method, the element material properties are

naturally considered in the interpolation functions through the constants A and f. As A tends
to zero, (4 approaches unity, and the stiffness matrix of equation (4.135) degenerates into the

Euler-Bernoulli stiffness matrix. The stiffness matrix is identical to the stiffness matrix of the
Timoshenko beam element proposed by Macneal (1978) through the residual bending
flexibility method or RBF. The proposed approach offers an interesting alternative with a
better insight on the mechanics of the locking phenomenon. Moreover, the derived stiffness
matrix is identical to the one derived by the exact, force based Timoshenko beam element
formulation as described in Taylor et al. (2003).

Taking into account the axial degrees of freedom the following, augmented, strain-

displacement matrix is derived:

1 0 0 L 0 0
L L
[(B]=| 0 leLﬁ —6Au 0 % —6M\1 (4.136)
7Gu(—2z+L) 2 6p(—2z + L)

3T 42(1430)] 0
L

: 235 1 46
I3 L L\ L

L3
that corresponds to the 6x1 nodal displacement vector of relation (4.128).
Throughout the work presented herein, axial and bending deformations are considered to

be uncoupled as implied by the kinematic assumptions assumed in equation (4.129).
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4.5.4 The hysteretic degrees of freedom

Based on the previous results, the elastic deformation field is extended herein by

introducing an additional vector of corresponding hysteretic degrees of freedom:

sz{eu €, 5¢}T—>§:{{5}i{5h}}T:{eu €, £¢izu z, z¢}T(4.137)

In equation (4.137), the elastic strain vector ¢ which consist of the centreline axial

deformation ¢, the shear deformation €, and the curvature € o> is extended to its generalized
counterpart € comprising of the total strain vector {5} and the hysteretic strain vector {sh’ }
In the latter, z, stands for the hysteretic part of the total centreline axial deformation, Z, is

the hysteretic part of the total shear strain and z; is the hysteretic part of the total curvature.

The following nonlinear hysteretic laws are considered for the stress resultants:

N(m):auEA5u<1:)+(l—a )EAZ (
Q(x):awGASew(x)—k(l—a )GAgz <

5 (4.138)
M(:E) = %EI%(:L‘) + <1 —a, )Elzo(

)
z), 4
)

where «, s, are the axial, shear and bending inelastic to elastic stiffness ratios

respectively. If o, = 0,2 = u,y,¢ then the corresponding nonlinear relation assumes an

elastic perfectly plastic behaviour. If «; = 1 then the corresponding behaviour is elastic.

According to the generalized hysteretic formulation presented in section 2.1, relation (4.138)

can be cast in matrix form as:
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N Nc Nh
Qf ={@t +{¢
M ' Me Mh
(1) (1) («) (4.139)
auEA €, (1 - aq, ) FA z,
= a,GA, et o+ (1-a, )G, 2,
a,El||e, 0 (1-a,)EI||z,

where (x) denotes dependence on the space variable. The evolution equations of the

hysteretic components are equivalently defined as:

N* (1-a,)EA 2
Qh = (1— oz,y)GAS z',y
M l—a,)EBI||?
() (10, )E1][% () (4.140)
(1 - a, )EA €,
= (1-a, )GA, (I]— HH,|R]){e,
(1-a,)EI %] (n)
where according to equation (4.125) H,, H, may assume the following form:
H = HCD[{Nh Q" M”’}T]+1 n, n>?2
’ €y (4.141)
H, = vysgn {Nh Q" Mh} 5'7, + 0

%o
where the yield surface ® is expressed as a function of the hysteretic parts of the stress

resultants that, referring to equation (4.139), are defined as:

N (1—au)EA z,
{Ph}m: Qtl = (1-a, )64, ot (4.142)
M" (1-ay,)EI||2,

) )

Furthermore, the interaction matrix [R] is now expressed with respect to a stress-resultant

based interaction surface ® as:

133



Chapter IV Hysteretic Macro-Elements

T

2]

T

0P 0P 0P

oty e{et )] lafet)loPt)

The definition of the yield surface ® depends on the geometric properties of the cross-section

0P

7] -

D] (4.143)

under consideration. Different formulations exist for rectangular, hollow and I-shaped,
concrete or steel sections such as the Hodge’s scheme (Lubliner, 2008) and the general yield
function proposed by Neal, (1961). The yield surface can also be derived numerically on the
grounds of a fibre analysis (Charalampakis and Koumousis, 2008). In this case, relation
(4.143) is also evaluated numerically. In the example section of this work several yield
surface formulations are exhibited.

Usually the nonlinear interaction between moment and shear is considered to be negligible,
contrary to the axial-moment interaction. In this case, relation (4.140) is reformulated, to

account for coupled axial-moment and uncoupled shear plasticity patterns as follows:

(Nh} EA {z} EA (11— [R]){e}
o EI||z,] pr|\t T :
M) ") ")
(4.144)
Q" = GAz, = GA(1- HiH; )¢,
or
Z, 0 €,
i1 = - 11, | B] 0 e, (4.145)
2 0 0 (1-mH )| |2, n

where in the first of equations (4.144) H,, H, and [R], are functions of the hysteretic axial

force and the hysteretic moment. In the second of equations (4.144):
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a
Q
Hy = B, + 7,s8n(Q"¢, |

Hy = (4.146)

and Quh’ = (1 —a, )Qy is the hysteretic yield shear force.

4.5.5 Additional shape functions

Based on the deformation vector defined in equation (4.137), the vector of nodal degrees

of freedom introduced in section 4.5.2is herein extended to the 12x1 vector {& } :

~ | | T
{d} = {{d} ! {z}} = {ul w, 0 u, w, 0, ! zi ZZ z; zf/ z}j zg} (4.147)
which consists of the total displacement vector {d } and the hysteretic part of the total

deformation { z } .

Equations (4.138) are rewritten in the following equivalent form:

N(z) = EA(oz 5 ($> + (1 — au)zu(z))

Q(z) = GA (az, (2) 1 (1—a, )2, (2)) (4.148)
M(z) = Bl (o, (2)+(1- 0o, )z (=)

The total part of the deformation component{s} depends solely on the total part of the

displacement field through the compatibility relations introduced in equation (4.129). Thus,

the shape functions introduced in equations (4.133) are also used in the nonlinear case for the

interpolation of the total displacement component {d } .

The hysteretic deformation components are considered a perturbation of the total

deformation components and as such, they are inserted into the problem with their
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correspondent interpolation functions. Since equation (4.148) must hold for every possible

value of «; it must hold for a; = 0. Thus the following relations are derived:

N(az) = EAzu(x)
Q(z) = GAz () (4.149)

Considering nodal equilibrium of the stress-resultants and relations (4.149), the following,

exact, interpolation functions are derived for the corresponding hysteretic degrees of freedom:

2 () = [1/2 1/2]{4 zz}T (4.150)

where zf ,j = 1,2, 1= u,y,¢are the nodal hysteretic deformations. Thus, a hysteretic
interpolation field is established denoted herein as [N ; ] .

1/2 1/2 0

0 0
[N:o 0121/2 0

4.151)

z

o 0o o0 o0 1-Z%
L

N8 © ©

The interpolation field [NZ] maps the continuous hysteretic deformation components into

their corresponding nodal quantities.

Since no distributed axial and transverse loads are considered, a constant axial force and
shear force is generated along the element’s length. Consequently, the hysteretic components
of the deformation are a function of the corresponding nodal components at the first end of

the beam element. Thus, a total of 4 hysteretic degrees of freedom are necessary for the
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derivation of the finite element. For the sake of completeness however, the presentation

adopts the generalized nodal displacement vector of relation (4.147).
4.5.6 Derivation of stiffness matrix

Taking into account bending, shear and axial deformations, the principle of virtual work is

formulated as:

L
M, ={a} {P} =6V = [(Mée, +Qbe, + Née, Jiu (4.152)
0

where only nodal external loads are considered for the sake of simplicity. Substituting

equations (4.138) into (4.152) the following relation is derived:

{d} {P} f Eled) 1—a¢>EIz¢)66¢+(a7GA557+(1—aw,>GAszv)657)dx+

L0 (4.153)
f(auEAeu + (1 -, )EA)ésudm
0
Collecting the hysteretic parts of the above integrals, equation (4.153) is reformulated as:
L
{d}T{P} = f<a¢Efa¢)55¢dx +fa7GA55W657dx +fozuEA5u(55udx +
L .
+ f((l—a¢>EIz¢>65¢dx+f(1— )GAZ oe dx+f 1— EAz ,0¢, dx
0
(4.154)

Writing the above integrals in matrix notation and substituting for the expressions of the
interpolated fields introduced in equations (4.133) and (4.151) the following relations are

derived:

{6a} {P) ={sd) 1 {sd}+{6d} I,{e,} (4.155)
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where

I = j[B]T[D][B]dx (4.156)

and

N, |dx (4.157)

where [ is the internal energy corresponding to the total deformation components, I, is the
internal energy corresponding to the hysteretic deformation components , [B] is defined in
equation (4.136), [NZ] in equation (4.151), {5h } is the vector of hysteretic nodal degrees of

freedom and [D] is the constitutive matrix:

[D] = a,GA, (4.158)

Equation (4.156) yields the elastic stiffness matrix of the beam element:

EA EA
Yy 0 0 —Zu 0 0
aQEI %EI
0 120, 60, 0 _120, 60,
. EIl 0 60 4D 0 — 6 20
hl=="— g1 : A ; > | (4.159)
Lo 0 0 a 0 0
04¢EI a¢EI
0 ~120,  —60, 0 126,  —6,
0 60, 20, 0 —60, 4D,

where:
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«
= |1+46X+9—X+ 36\ |p°
%X
(67
®, =112\ + 18—\ — 72\% |
%
a’? 2
®, = BGAL|1+12— )\ |u
L

while )\) (v are defined in relation (4.134). When o, = a, =0, = 1 the stiffness matrix

reduces to the Timoshenko formulation presented in relation (4.135).
Similarly, the integral of equation (4.157) yields the nonlinear hysteretic stiffness matrix of

the element:

—(1-0,)BA —(1—-0a,)EA 0 0 0 0
0 0 —6u, 6, —M¢EI/L %EI/L
L1 0 0 =3, 3p,  —p,BI(14+6\)  —6u\EI
] = (1-a,)EA  (1—-a,)BA 0 0 0 0
0 0 6u, —6p, %EI/L —%EI/L
0 0 —3u,  3p, 6 AEI 1o B (14 6))
(4.160)
where:
o = (1= 0 ) 4.161)

Hy = (1= )
Similar to the elastic case, as A tends to zero, ( tends to unity and the hysteretic matrix

coincides with the one derived for the Euler-Bernoulli case (Triantafyllou & Koumousis,
2008). Substituting the derived expressions back to the principle of virtual work (equation

(4.155)), the following constitutive equation is obtained at the element level:

(7} =t + [ o) = [ I <000 e
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Equation (4.162) together with the set of Bouc-Wen evolution equations defined in relation
(4.140) or relation (4.145) at = 0 and z = L smoothly describe the nonlinear cyclic
response of a Timoshenko beam element. Considering for example relation(4.145), the

corresponding nodal hysteretic quantities are expressed as:

“u 4 [I]— HH,|R| )
i, =il = 1 0 |B o {d} (4.163)
zry x=0,L Z.#Q 00 <1 B HfH; ) x=0,L

where[E ] is the strain displacement matrix introduced in equation (4.136), properly

reordered to account for the strain vector in relation (4.145).
4.5.7 State-space formulation

As in the Euler/Bernoulli formulation, the equations of motion are written into a non-

autonomous state — space formulation of the following form:

{i} =G ({z}){=} +{P(t)} (4.164)
where the vector {:1:} is defined as:

(=) () {2} (4.163)

and G ({x }) is defined as follows:

0 I 0
G({e})=|[M]"[k]  [M]"[K] [M]"[H] (4.166)

o Y({{Up{z})) o

The operator G is a state dependent operator since Y holds the evolution equations for each

element i. Moreover, the evolution of the elastoplastic behaviour is treated at the element
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level in a decoupled and thus implicitly parallel form considering an interaction scheme for
the bending shear and axial components through relation (4.140) or the interaction of bending
and axial components through relation (4.145). Considering the interaction scheme of relation

(4.145), vector Y is defined as:

0
Y {u}i,{z}i): =i, R 0 [B] [A]{a)}', j=12 @167)
00 (1—HfH5’)_ !

J

where[A] in equation (4.167) is the transformation matrix of the 2D beam element from the

global to the local coordinate system defined in equation .

Ccos & sin o 0
[A]=|-sina cosa 0 (4.168)
0 0 1

wherea is the angle between the local x axis and the global X axis, as presented in
Fig.4.14(a).
4.5.8 Example 1 — Cantilever Beam

In this example, an aluminum cantilever beam presented in Fig.4.15 is examined. At first, a
horizontal load is applied at the tip and the elastic response of the cantilever is compared to
the analytical solution to validate the behaviour of the element in terms of shear-locking.

Next, a nonlinear static analysis is conducted and the load — tip deflection curve is plotted for

different values of the vertical load Py.
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Fig.4.15 Cantilever beam

For the nonlinear analysis, full interaction between axial, shear and bending is considered

through relations (4.140) to (4.143). The yield criterion proposed by Simo et al. (1983) is

implemented:

2 4

Vh
vh

h
% (4.169)

1+ +

where for the rectangular cross-section N 1’} = (1 — au)aybh, Vuh = (1 — Oé'y>0y / J3bh
Mq’j = (1 -« ¢)aybh2 /4, o, being the yield stress under uniaxial tension. The material
properties  considered are E=69 GPa, G=26 GPa, «, = Q, = oy = 0.0,
n =25 0=v=0.5, o, = 275 MPa. The shear coefficient for the rectangular cross-

section is k = 5/ 6. The tip horizontal displacement and the tip rotation are evaluated

analytically as:

PE  PL
u:L’7€£L’aCt = p
SEI G (4.170)
) P.I?
exact — 2]

Considering the stiffness matrix of the proposed beam element presented in relations (4.159)
to (4.161) and under the assumption of elasticity, the tip displacement of the cantilever beam

discretized into 1 element is evaluated as:
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3
kgtl')ur + kgée = Paf u, = PTL PTL =u t

- 3EI PG (4.171)
klu + kL =0 0 il 0
e U = = —— =
65w 66 2ET exact

The proposed formulation yields an exact solution and no shear locking is developed, contrary
to the Reduced Integration Timoshenko beam element and the Consistent Interpolation Beam

Element that both yield the following results (Reddy, 1997):

RIE,CIE P1L3 bL

u:r = + - = ux exact
4EI - pGA 7 4.172)
RIE,CIE P L2
0 o === = geza(‘t
2ET o

in which, the rotation evaluated is exact but the translation is smaller.
Next, a monotonically increasing load is imposed at the tip of the cantilever, and the force-

displacement diagram is plotted, considering the yield criterion presented in relation(4.169).

In Fig.4.16(a), the effect of the normalized axial load n, =N h / N 5 on the nonlinear response

of the cantilever is presented. The results obtained with the proposed formulation are

compared with results obtained from Abaqus code (Karlsson & Sorensenn, 2000).

500
ar __  —————— PV T T TR TR L T e e e =
—400 | |7
z
X350 n =
b3
o L = p— .
= 300 n =0 n =0.2 ~
8 s M Zagg H e n =09
2200
§ PR — | 1 Ye— np=ng — .. — Abaqus l"lp=ﬂ
.-_E;_150 1
— 100 - ==~ Abaqus n =09
50
0 L L . 0 . L )
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Tip Displacement (m) Tip Displacement (m)
(a) (b)

Fig.4.16 (a) Effect of the axial force on the bearing capacity of the element (b) Comparison
of proposed formulation with plane stress solution
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In the latter, the cantilever is discretized with 160 quadrilateral plane stress elements

considering a J, plasticity model, namely an elastic-perfectly plastic von-Mises material. Two

cases are presented in Fig.4.16(b) for 7, = 0 and n, = 0.9.

The ultimate load predicted from plasticity theory for zero axial load is (Lubliner, 2008)

B, = aybh2 / 4L = 440KN . The value predicted by the proposed formulation is F,,=440.8

KN, while Abaqus predicts a value of F};=439.2 KN. In both cases the error is less than 1.0%.

The differences observed are due to the approximate nature of relation (4.169) as compared to
the exact FEM solution. Nevertheless, the deviation of the proposed formulation from the

exact solution for n,=0.9 is 2.6%.
4.6  The 3d Hysteretic Timoshenko beam element formulation

In this section, the general case of a 3d Timoshenko hysteretic beam element formulation
is presented. Shear-locking is also treated by extending the methodology proposed in section
4.5.3 at the three dimensional space. Furthermore, torsional warping is incorporated in the
proposed formulation by introducing an additional degree of freedom, corresponding to the
variation of the twisting angle along the element’s length. The prismatic beam element and its
corresponding degrees of freedom and nodal forces are presented in Fig. 4.17.

Inelasticity is introduced in all degrees of freedom through the interaction Bouc-Wen
scheme presented in section 4.5.1. The most general case of yield criterion is considered
where all the stress-resultants, namely the axial force, the shear forces, the bending and

torsional moments, and the warping bi-moment interact.
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Y

Fig. 4.17 Nodal displacement and forces

4.6.1 Bending in two directions

In the three dimensional case, the nodal displacement vector introduced in relation (4.128)

is extended to a 12x1 vector defined as:

{ay={u, v w 0, 0, 0, w v, w, 0, 6, 0,}  (4173)

where u, v, w are translations with respect to z, ¥, » axes and 0_, 9’1/’ 0, are the

corresponding rotations as presented in Fig. 4.17. Having evaluated the expressions for the
two dimensional case, the 3-dimensional case can be readily derived since bending in the two

directions is considered to be uncoupled. Thus, the stiffness and hysteretic coefficients

corresponding to displacements v, , 0

s Vg c9y2 and hysteretic deformations z_,,, Zpy1> 22

2,0 are derived from their plane counterparts, minding the sign convention as presented in

Fig. 4.18. Within this framework, the differential equation of bending in the zz plane is

defined as:
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2
Elaez—kGA @4—@ =0
0z? oz

(4.174)
2

kaa| 20 4 2

oz® Oz

=0

whereas in the 2y plane has been defined in relation (4.130). The derivation of equation

(4.174) is presented in the Appendix. By applying the procedure introduced in section 4.5.3,

the following set of exact shape functions is derived:

o(z)
;”(Ez)g — [N {d}, (4.175)

0

<

X

3

In relation (4.175), {d}, = {v, w, 0, 6, w w, 6, 6,} whilethematrix |N]

b
is defined as:
N, 0 0 N; N, 0 0 N
0O N, N 0 0 N, N 0
[N]b _ 9 10 12 13 (4.176)
0 N, Ny O 0 N, Ng ©0
Ny O 0 Ny N, O 0 N

where:

2(1 +3/\M>u

_ Faz _ xz ‘2 .
R B i A 3= z - x +(6 A +1),uzzx
2u,, 5 3 12 A, s (=670 ) m,.
N, = ——Hé” =+ 7’2’” 2% + =Ty N, = #"”22 3 — 7( “) Za? - 6N, pt,. 7
v L AN (4.177)
6 5, 6u 3 . +3 A, K,
Ny = —Zg" 2’ — —zz“ x Ny = —;"' z? - Ll AL Iy, (12 A, + l)
_ 6w, 5 Bp, s, 2m(1-6))
Noy= =g o e

with the constants y,, and A, defined as:

1 EI

— zZ

S S 4.178
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Accordingly, the shape functions corresponding to bending in the 2y plane are defined as:

2“}1 3 3”’1& 2 12/\a:r Mmz M,n 3 2 (1 + 3/\.u )H.u 2
) = —LSJ - 7[12’ ——2 e +1 Ny=- LZJ e A A (GAW + 1)uwz
20, . 3 12\, 1 1 1-6A, |p
Nwzfgw‘er@wasz ngzfl—fngwmezwLG/\”p”w
J5 2 L ' I : L ) v (4.179)
6“@ ) 6“@ 3“:L-y ) 4(1+ 3)\Iy oy
Nm:—?m 7’(‘ NIG:—Zm —fl’ﬂ—/%‘v(l?)\m-‘rl)
61, 5 Oy, 3wy, 2w, (160,
m= T3 T > 8= 5 T z
L L L L
with the constants j,, and A, defined as:
1 \ EI, ( )
b= A = v 4.180
Yoo1412), Y g GAL

Considering the kinematic relations of the Timoshenko theory of bending as presented in
the Appendix, the exact strain-displacement matrix of the 3d Timoshenko beam element is

defined as:
{a}=18B],{d}, (4.181)

where {sb} = {qby Voo O, Vay }T and:

0 N15,;(,-,z,- Nig o 0 0 Nizoa Nig oo 0
[B]b _ ?V ON”‘I - Nm évm,.q: - Nus (J)V ON (])vu,x - N17 (])vlzs,x - N18 (J)V (4182)
19,2,z 20,2,z 21,a,x 22,2,z
N?.x _ng 0 0 Ns,z_Nzo N-S,I_N21 0 0 N6L_N22

In relation (4.182) (, 2 ) denotes differentiation with respect to z .

4.6.2 Torsion and torsional warping

In the standard 3D beam element formulations, (Cook et al., 2002), torsion is introduced
through the linear interpolation of the twisting angle ¢ . Although adequate for warping free

sections, this approach does not account for the additional normal and shear stresses induced

when warping is considered (Schulz and Filippou, 1998, Sapountzakis and Mokos, 2003 &

147



Chapter IV Hysteretic Macro-Elements

2004). These additional stresses are a result of the non-uniform variation of the twisting angle
along the element’s length. Thus, enhanced beam element formulations have been proposed
that include warping effects by introducing additional degrees of freedom corresponding to
this variation (Park et al., 2005).

According to the theory of non-uniform torsion, the torsional moment is additively

decomposed into two components:

T =T, +T, (4.183)

where:

Ty, = GK,0! () (4.184)
is the pure torsional or St Venant while K, is the pure torsional constant of the cross-section.

Accordingly the warping torsional component is expressed as:

Ty = My, = —EIL,0"(x) (4.185)
where M, is the warping bi-moment and I, is the warping torsional component. In

equations (4.184) and (4.185), prime denotes differentiation with respect to the space variable

Considering that the distribution of the torsional moment across the element’s length is
constant, and differentiating (4.183) with respect to z, the following homogeneous

differential equation is derived:

o' 00
EI L _GK L =0 (4.186)
v ox? " 92

Equation (4.186) can be solved analytically with respect to the twisting angle, bearing the

following solution, expressed in exponential form:
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0,(x)=C, + Cyx + Cye™" + Cpe " (4.187)
where p,, = ,/GK, / El, and C,, C,, C;, C, are arbitrary integration constants. As py,

increases, the influence of warping torsional effects reduce and vice-versa. The expression of
the warping angle 3 ( a:) is then readily derived as:
d@(z)

3(e) = ) _ g, 4 g0 — ace e (4159

Considering an arbitrary set of boundary conditions, namely 6, <0) =40, 6(0) = B,

0,(L) =0

r2°

ﬁ(L) = (3, and substituting in equations (4.187) and (4.188), the following

system of linear equations, in terms of the integration constants, is derived:

1 0 1 1 C,
0 1 Pw —Pw C,
1 L ek e Pwl C, - {dt%} (4.189)
0 1 onepWL —pWeprL C,

T
Where {dez} - {ezl By 0, 52} :
Solving equation (4.189) for the unknown constants of integration C,,i = 1.4,

substituting into equations (4.187) and (4.188), and collecting terms, the following

interpolation scheme is derived:

0,(z) =[Ny, |{dy, } (4.190)

where [N ]0 [N . N N, NM] is the interpolation matrix. The corresponding

interpolation functions are defined as:
(pwL —pyz+T)A+(1+A)(1- B)

N, = (4.191)
2—2B + py LA
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~ T+pyz+ A(A+pyLA —1)+B(pyL —T = pyz — Apy, L)

N, o (2 5B+ prA> (4.192)
AT — —(1-B)(1-A
S I
W
N, — (A—pWL)(l—A)—(F—pW:L")<1—B) (4.194)

pw (2= 2B + py LA)
where A = sinh(pWL), B = cosh(pWL), I' = sinh(pwx), A= cosh(pWa:).

Equations (4.184) and (4.185) can be expressed in matrix form as:

{ﬁ;] = { () } (4.195)

_9// fIf)
Substituting the interpolation field presented in equation (4.190), the following relation is

-

where the torsional strain-displacement matrix [Btw ] is defined as:

GK, 0
0 EI,

derived:

GK, 0

o' |[Bulid} (4.196)

Ny Nz Ny N

4.197
NIONIONLON, D

[ ~tw ] =

Taking into account the additional degrees of freedom corresponding to warping, the nodal
displacement vector introduced in relation (4.173) is further augmented into the following

1421 vector:

T
{d}:{u1 vowy Oy 6, 0, Bl uy vy wy, O, O 0.5 52/} (4.198)

The accompanying, augmented, torsional strain-displacement matrix is defined as:
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0O 0 0 N, 0O 0O N 0 O 0 N, 0O 0 N,
o] = y y W W (4.199)
O 0 o0 N/ O O N 0 0O 0 N/ 0 0 N

Similarly, relation (4.182) is augmented to account for the new displacement vector as:

00 NlS,z,z 0 NIG,I T 0 000 Nl?,z,l 0 NIS'L'L 0 0
B 00 Ng.z N15 0 NlO,I - NIG 0 000 NIZ..’L N17 0 le,z - N18 0 0
[ ]b o NlQ.JL‘.J 0 00 N‘zo‘;z:,z: 00 Nzl.;“ 0 00 N22,.’c..’c 0
0 sz*Nm 0 00 N:i‘riNQU 00 Ns‘x N21 0 00 N[S.r7N22 0
(4.200)
The centerline axial deformation displacement matrix is derived accordingly as:
N O 0 0 0 0 0 Ng O 0 0 0 O

[B,| = (4.201)

N 0O 0 0 0 0 O Ng O O O 0 0 O

where N, =1-2/L and Ny = /L.

Relations (4.199) to (4.201) and (4.197) establish the “generalized strain”-“generalized

displacement” matrices that are necessary for subsequent analysis.
4.6.3 Hysteretic field

A 7-dimensional hysteretic field is defined, corresponding to the following set of

99 <¢

“generalized stress”-“generalized displacement” relations. The axial components are defined

as:

N(z)= a,BAe, +(1— 0o, ) EAz, (4.202)
where z, is the hysteretic part of the axial centerline deformation and «,, is the post-elastic to

elastic axial stiffness ratio. The shear and bending components are defined through the

following relations:
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Qy (x) a, GA o Vay <1 —« )GAsyzw

Q, (x) a,GA v, + <1 — . )GASZZSZ (4.203)
M, (x) = Bl ¢, +( ab>EI 2y

M,(z) = oyELe, + (1— o) Elz,

where Zg, and z_, are the hysteretic parts of the shear deformation components Vay and v,

respectively, while Zyy > %, are the hysteretic parts of the curvatures.

Similarly, the torsional and warping components are defined as:

M, =Tg + 1Ty

Ty = dMy, [da
Tsv<x) = o,GK,0, + (1 — ozt>GKtzt
My, (z) = o BLy 8" + (1 — oy ) ELy 2y,

(4.204)

where z, is the hysteretic part of the twist and z;, is the hysteretic part of the variation of the

t
warping angle while «, and q, are the nonlinear to elastic torsional rigidity and warping
rigidity ratios respectively.

The decomposition introduced in relations (4.202) to (4.204) is established in matrix form

as:

{P}={pP}+{P"} (4.205)
where {P}:{N(x) Qy(m) Qz(x) Mz(a:) My(x) Mz(a:) MW<x)}Twhile the

elastic part of the force vector is defined as:

{Pe} = D] {e} (4.206)

where {5} = {51« Yoy Var O B, O, ﬁ’}T and [DL is defined as:
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a,EA
ozw,EAy
a VEAZ
D] = o,GK, (4.207)
abEIy
o, BT,
oy By,
Accordingly, the hysteretic force vector is defined as:
{P"}=[D] {-} (4.208)
where {z} = {zu Zoy o Zu % By %, Ay }T and
(1—0a,)EA
(1—a,)E4,
(1 - a5 ) EAZ
(D], = (1-a,)GK, (4.209)
(1-a,)EI,
(1—0y)EL
(1— oy ) EI,,

The evolution of the hysteretic field is defined through the Bouc-Wen interaction scheme

in a form similar to equation (4.140) defined in the two dimensional case, thus:
{z} =[p], (7] - 11, R]){¢}
where [I ] is the 6x6 identity matrix and H,, H, are smoothed Heaviside functions defined

as:

n

= Jo((P )+ 22

H, = fysgn[{Ph }T{é} + 3

4.211)

where ¢ ( { P }) is a general yield function that depends on the stress-resultants.
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4.6.4 Hysteretic interpolation functions

The derivation of the 2-node beam element is based on the interpolation of the continuous
hysteretic field defined in section 4.6.3. Similar to section 4.5.5, these shape functions are
evaluated through the equilibrium consideration of the corresponding stress resultants. Thus,

the following interpolation scheme is established:

{z} =[N] {7} (4.212)

where {Z} is the 14x1 vector of hysteretic nodal quantities and [N ]Z is the 14x14 matrix of

the corresponding shape functions. The individual nonzero components of [N ]Z are presented

in Table 4.2.
Hysteretic Variable Shape Functions Nodal Hysteretic Component
2, Ny =1/2,N, = 1/2 %, %,
2, N, = 1/2,]\7229 = 1/2 EAEA
Zsz Ny = 1/27Nz310 = 1/2 23,210
4 Ny = 1/27Nz411 = 1/2 Zp 20
AW Ny = ]‘/2’Nz412 = 1/2 25,219
by N5 = m/L,NZ513 =1- rz:/L %6213
2 N = x/L’Nz614 =1- x/L 20,21

Table 4.2 Hysteretic Shape Functions of 3d beam element

4.6.5 Derivation of stiffness matrix

The first variation of the potential energy is formulated in terms of stress-strains as:

oV = [o,65,dV + [(7,.66,. +7,0e, 4V (4.213)
v Vv

Consequently, relation (4.213) can be established in terms of stress resultants and their

conjugate generalized strain measures as:
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L L
8V = [(Nse, + Moo, + M.66, Yz + [ (1,88 + My 88’ + Q,6v,, + Q.87,. (4.214)

Y- oy
0 0

where the total torsional moment A/ has been decomposed into its pure torsion and warping

torsion components. Substituting the constitutive equations (4.202) to (4.204) into equation

(4.214), the following relation is derived:

L
f ubEIe + 1 -« )EIzby )550y + ((Y¢,GASZE¢Z + (1 — (zs)GAszzsz)ﬁem )(LL
0
L

+f((aoELOZ +(1—ab)EIzb7)(5v +(a GA_ e +(1—a )GA z ) )dr

Y~z sy~sy

(4.215)

0
L
+[((GEY +(1- 0,)GK,z,) 80" + (ay BLy8' + (1 - ayy ) Bl 2, )68 o
0
L
f(auEAeu + (1 - a, )EA)éeudz
0

Relation (4.215) can be reformulated in matrix notation as:

8V = f{és} | {e}+[D], {z})d= (4.216)

where [DL and [D]h are defined in equations (4.207) and (4.209) respectively while {5}

and {z} are defined in relations (4.206) and (4.208) respectively.

Using the strain-displacement matrices established in equation (4.201) for the axial
components, (4.200) for the bending components and (4.199) for the torsional components
and following the procedure introduced in section 4.5.6 the 14x14 stiffness matrix of the 3d
Timoshenko element with warping torsion is derived. The equilibrium equation at the element

level is defined as:

{P}=[k] {d} + [k }{-} 4.217)
The procedure of deriving equation (4.217) is presented in detail in Appendix II. The elastic

stiffness matrix [kh ] assumes the following form
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kyy kl,S
Ky s ky g ky g Ky 15
k3,3 ks ks 10 ks 1o
Ky, k7 ko Ky
ks 3 ks 5 ks 10 Fs 19
ke Ko ks Ks 13
k- k. - k k-
[k] 7,4 7,7 7,11 7,14 (42 1 8)
< ks kg s
Ky Ky g Ky Ky 15
Koy ko5 Kyg10 Eig 1
ky1 4 Ky 7 Ky 1y Ky 1
Ky g ko5 ky510 Kig10
ks o ks LY ks
L kg Fian Kygpa

where the bending stiffness coefficients coincide with those derived for the plane element,
considering the proper sign convention for bending with respect to the y axis:

The torsional degrees of freedom are evaluated as:

L L L L
kyy = BI, [ N|N{dz + GK, [ NiNjdz, k,, = EI, [ N/N/dz + GK, [ N{N/d=  (4.219)
0 0 0 0

L L L L
ki = BI, [ NINl\dz + GK, [ N[Nlydz, ky,, = EI, [ N{Njidz + GK, [ N{N/d=  (4.220)
0 0 0 0

L L L L
bz = BI, [ NIN!dz + GK, [ NINidz, k= EI, [ NINjdz + GK, [ NINjydz  (4.221)
0 0 0 0

L L L L
by = BI, [ NIN{dz + G, [ NIN{idz, kyyy, = I, [ NYNlidz + GK, [ N[Njyd= (4.222)
0 0 0 0

L L L L
by = BI, [ NYIN(\dz + GK, [ N|\N,dz, k= BI, [ NNjdz + GK, [ N],N/,dz=(4.223)
0 0 0 0

kry = Ky, k1174 = k4711’ k1177 = k7,11 (4.224)

k14,4 = k4,14a k14,7 = k7,147 k14,11 = k11,14 (4.225)
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Analytical expressions for the torsional stiffness coefficients are presented in Appendix II.

The hysteretic matrix [kh ] of equation (4.217) is defined accordingly as:

h h
1,1 8
h2 2 hZ,G h’2 9 h2,13
h3,3 h3,5 hSA,lO h&l?
h4 4 h4 11
h5,3 h5,5 h5,10 h5,12
h6 2 h() 6 h6,9 h6413
h b 4,4
k] = 2 " 1(4.226)
' h8 1 hS 8
h9,2 h9,6 h9,9 h{),lS
h1073 th,S thAIO h’lOA,lQ
hllA h’lLll
h12.3 h’12,5 h12.1[) h’12,12
hl3,2 h13,6 h’13.9 hl3,13
h14.,7 h‘1414

where the axial and bending coefficients are readily derived from the two-dimensional case of

equation (4.160) while the torsional coefficients are defined by the following relations:

hy = hy, = —05(1—ay )GK,,
My = =y (4.227)
Py = —hy

and the warping hysteretic coefficients are defined as:

hey = hyy = —0.5(1—qay, )EIL,
Pygyg = —loy (4.228)
hyy = —hpyy

4.7 Conclusions

A new three-dimensional hysteretic rod element formulation is presented based on the
concept of hysteretic axial deformation. Geometrical nonlinearities are considered through a

Total Lagrangian formulation.
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A new nonlinear beam element is presented, together with efficient methods for the
solution of the equations of motion, avoiding linearization and treating nonlinearities at the
element level. The beam element is formulated within the framework of the Timoshenko
beam theory by adding six new degrees of freedom accounting for the hysteretic part of the
curvature, axial centerline deformation and shear strain. The field consistence method is used
to avoid shear locking.

The Bouc-Wen hysteretic model is implemented to simulate the nonlinear constitutive
behavior of the material. A wide range of hysteretic behavior can be modeled by properly
controlling the parameters of the hysteresis law, namely the “yield” parameter, the
smoothness parameter, and the shape factors. As a whole, the proposed method constitutes a
successful confluence of the hysteretic modeling into the realm of the Finite Element Method.

By writing down the governing equations in state space form and implementing a
predictor-corrector integration scheme the linearization of the constitutive equations is
avoided. The Bouc-Wen hysteretic model is implemented in order to simulate the nonlinear
constitutive behavior of the material, in terms of stress - strain relation. Various loops can be
modeled by properly controlling the parameters of the hysteresis law. The problem is
partitioned into two sets of equations, which are solved simultaneously. The numerical
examples presented demonstrate the validity of the proposed approach as well as its versatility

as compared to displacement formulation.
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Appendix I- Derivation of the Timoshenko beam differential equations

y,vh

Fig. 4.18 Timoshenko beam kinematic assumptions in space

If bending in the xy plane is considered, the Timoshenko kinematic assumptions are given

by the following relations, where the centerline axial deformation component is omitted for

the sake of simplicity:

u(m,y,z) = —y@z(x), v(x,y,z) = v(x), w(x,y,z) =0 (4.229)

Thus, the non-zero components of the strain tensor are derived as:

—+
oy Oz

0
o %% _ 1[8“ ‘%] ;[—ez +@] (4.230)

e =—==Y e =
o Ox oz ™ 2 oz
Since the actual shear strain varies along the section’s height, the shear correction factor is

introduced, such that:

K ov
ga:y = ’{gwy.,real = E[_Qz + %] (4.231)

The equilibrium conditions for an infitensimal beam with length dx are defined as:
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oM 0Q
i_Q =0,—2L+q =0 4232
2 Q, 5 T ( )

Taking advantage of the linear elastic stress-strain relations, the following equations hold:

0 0
M, = [yo,dA= [yBe, da = %% g4 — _pr%: (4.233)
’ oz ox
A A A
and
ov ov
Q, = { 0,,dA = { 2Ge, dA = & [ G[—OZ + %]dA - /iGA[—GZ + %] (4.234)

Thus, replacing equations (4.233) and (4.234) to the equilibrium equations (4.232) the

following system of differential equations is derived:

2

0 0
i[_E]aez]_HGA[_QZ +@]:0 EI 22 +KGA[—92+—U]:0
o\ Oz ; ) O SO o2 Y @235
v v
GA—|—-0, +—|+¢q, =0 Al ——2 + — =

K 83}[ p 83:] q, kG [ 8$+8x2 +q,=0

If bending in the xy plane is considered then the kinematic relations are expressed as:
u(x,y,z) = z@y(x), v(x,y,z) =0, w(x,y,z) = w(x) (4.236)

and the non-zero strain components are:
ou 08, 1{0u Ow 1 ow

= — =2z—2, =—|l—4+—|==|0 +— 4.237
Soa oz ‘ oz Ty 0z Oz 21 Y Ox ( )

Thus, the differential equations of bending in the 2y plane assume the following form:

%0
| 20| weale £ 2% =0
ox? Y T
(4.238)
kGA ‘) +82—w +q =0
895 ch qz
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which are bound to the general solution:

1 EI
0,(x)= —501:[;2 —Cy1 — [03 +kG_ACl]

(4.239)

1 1
w(m) = gCl:E3 —|—§C'2$2 +Cyx +C,

As expected, the rotation for a beam element bearing the same properties, namely kA and [

in both directions of bending is exactly the opposite, due to the orientation of the coordinate

system, as presented in Fig. 4.18.The expression for the displacement w(a:) coincides with

the expression derived for the 2y plane (equation (4.131)).
Appendix Il — Torsional and warping stiffness coefficients

The torsional and warping stiffness coefficients of the 3-dimensional hysteretic beam
element, defined in relations (4.218) to (4.225) are evaluated using a symbolic mathematical
programming toolbox such as Maple (MapleSoft, 2007) or Mathematica (Wolfram
Mathematica, 2009). Though cumbersome, the derived expressions are analytical and thus
exact, for the case of the 2-node three-dimensional beam element that is developed in this
work.

The torsional and torsional warping stiffness coefficients can be implemented in the

following Fortran code:

C TORSIONAL AND DISTORTIONAL STIFFNESS COEFFICIENTS
CL -----> MEMBER LENGTH
C aw -——-2> pw
C awar ———-2 aw
C GKt -----> Tortional Rigidity
C EIw ----= Warping Rigidity
C k44 Stiffness Element
t2 = aw**2
td = log(e)

t5 td**2
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t8 = aw*L

t1l0 = e** (2*t8)

tl2 = L**2

tl3 = tl2*th

tl6e = L*t4

tl9 = e**t8

t25 = t4d*t8

t30 = 1/ (t13*t2*t10-4*tl6*aw*tl0+2*t13*t2*t19+4*t10-
#8*t19+4+4*t25+t5*t12*t2)

t31 = £10*t30

t33 = t£25*t19*t30

td9 = - (-t31+t30+2*t33)*th5*td*t2*aw*awar*EIw+ (-
#3*t31+3*t30+t25*t31

#+tl6*aw*t30+4*t33) *td*aw*at *GKt

k47 Stiffness Element

t2 = aw**2

t5 = log(e)

t6 = th**2

t9 = aw*L

tll = e**(2*t9)

tl3 = L**2

tld = tl13*t6

tl7 = L*t5

t20 = e**t9

t26 = t5*t9

t29 = t6*tl3*t2

t31 = 1/(tl4*t2*tll-4*tl7*aw*t11+2*tl14*t2*t20+4*tll-
#8*t20+4+4*t26+t29)

t32 = tll1l*t31

£33 = t20*t31

Vk47 = (-t32+t31+2*t26*t33) *L*t6*t5*t2*aw*EIw*awar/2+ (-

#L26*£32/242*£32-£29*t33-4*£33+2*t31+t17*aw*t31/2) *GKt*at

k41

t2
t4
t5
t8
t10
tl2
t13
tl6
t£19
t£25
£30

1

Stiffness Element

aw* *2
log(e)
td**2
aw*L

ex* (2*t8)
L**2
tl2*th
L*t4d
e**t8
td*t8
1/(£13*t2*t10-4*tl6*aw*tl10+2*t13*t2*t19+4*t10-

#8*t19+4+4*t25+t5*t12*t2)

€31
£33

Vvk41l1l
#3*£31+3*t30+t25*t31+tl6*aw*t30+4*t33) *td*awr*at*GKt

k41

t2
t5
té
t9
tll
t£13
tl4
tl7
t£20
t26

4

£t10*t30
£25*£19*t30
= (-t31+t30+2*t33) *t5*td*t2*aw*awar*EIw- (-

Stiffness Element

aw* *2
log(e)
£5**2
aw*L

ex* (2*t9)
L**2
tl3*t6
L*th
e**t9
£5*t9

162



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

£29 = t6*tl3*t2

£31 = 1/(tl4*e2*tll-4*tl7*aw*tll+2*t14*t2*t20+4*tll-
#8*t20+4+4*t26+t29)

£32 = tll1*t31

£33 = t20*t31

Vk41l4d = (-t32+t£31+2*£26*t33)*L*t6*t5*t2*aw*EIw*awar/2+ (-
#£26*£32/2+2*£32-£29*t33-4*£33+2*t31+tl7*aw*t31/2) *GKt*at

k77 Stiffness Element

t2
£3
td
t5
t8
tll
tl2

log(e)

t2*aw

aw*L

ex**t4

e** (3*t4)
ex* (2*t4)
aw**2

t2**2

L**2
tl15*tl4

ex* (4*t4d)
L*t2
t14*tl15*tl12
t2*t4
-4+16*t5+16*t8+2*t16*tl12*t1l-

#4*£20+8*£23*awrt5+4*L*£20*t3-tl
#5*t20*tl4*tl2 8*L*t8*t3-t36-4*t37-24*tll

t4l
t49
£50
£53
t54
t56
t57
t£59
t£60
t6l
t64
t69
t74
t75
t78
t£79
t£80
£81
£82

1/t40
A4*t15*L*tll*tld*t2*tl2%*aw*tdl
tl2*t4l

£15*t20*t14*t50

t8*t4dl

4*£36*t54

t5*t4dl

4*£36*t57

tl6*t50

aw*tdl

L*t20*t2*t6l

A*XTL*E8*t2*t61

4*£37*t5h7

t23*t6l

2*t20*t41

4*t54

4*t57

2*t41l
£td9+t53-t56+t59-t60-2*t64+t69-4*t37*t11*tdl+t74-

#2*t75+t78 £79+t80-t81

t91 = t49-t53-t56+t59+t60+4*t64-t69-t74+4*t75-t78+t79-
#t80+t81
Vk77 = -t82*t3*awar*EIw/2+t91/t2/aw*at*GKt/2

k7111 Stiffness Element

t2 = aw**2

t5 = log(e)

t6 = th**2

t9 = aw*L

tll = e**(2*t9)
tl3 = L**2

tld = tl13*t6

tl7 = L*t5

t20 = e**t9

t26 = thH*t9

t29 = t6e*tl3*t2
£31 = 1/(tl4*t2*tll-4*tl7*aw*t11+2*t14*t2*t20+4*tll-
#8*t20+4+4*t26+t29)

£32 = tl1ll1*t31
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£33 = t20*t31

Vk711 = - (-t32+t31+2*t26*t33) *L*t6*t5*t2*aw*EIw*awar/2
#+(t26*t32/2-2%
#E32+t29*%t33+4*£33-2*t31-tl7*aw*t31/2) *GKt*at

k714

t2
£3
t4
t5
t8
tll
tl2
tl4
t15
t£20
£23
£36
£37
t40

Stiffness Element

log(e)
t2*aw
aw*L
e**t4
e** (3*t4)
e** (2*t4)
aw**2
t2**2
L**2
e** (4*t4)
L*t2
t14*tl15*tl2
t2*t4
-4+16*t5+16*t8+2*t15*tl14*tl12*tll-

#4*t20+8*t23* aw*t5+4*L*t20*t
#3- t15*t20*t14*t12 8*L*t8*t3-t36-4*t37-24*tll

t41l
t43
td44
t46
t48
t£51
t£52
£53
t54
t£55
t56
£62
t66
t68
t£70
t71
t£72
t73

1/t40
tl2*aw*t4dl
tl4*t2

t15*L
td6*t8*tdd*t4d3
td6*t5*tdd*t43
t5*t4l

t36*th2

£t8*tdl

t36*t54

aw*t4l
t37*tll1*t4l
L*t8*t2*th6
t37*t52
t20*t41l

2*t54

2*t52
td8+t51+t53-t55-t23*t56-L*t20*t2*t56-

#2*t62+2*t66+2*t68+t70 tdl1-t71+t72

£85 = t48+th1-3*t55+3*t53+6*t66-12*t62+6*t68+t41-t70-
#t72+t71

Vk714 = t73*t3*awar*EIw-t85/t2/aw*at*GKt

k1111 Stiffness Element

o
ol

ot of ot of of of f f F ot
NP PR RP RPN
VoWl o

£30

aw* *2
log(e)
td**2
aw*L
e** (2*t8)
L**2
tl12*th
L*t4
ex**tg
td*t8
1/(£13*t2*t10-4*tl6*aw*tl10+2*t13*t2*t19+4*t10-

#8*tl9+4+4*t25+
#L5*tl12*t2)

€31

£10*t30

£33 = t£25*t19*t30
Vk111l = - (-t31+t30+2*t33) *t5*td*t2*awr*awar*EIw+ (-
#3*£31+3*t£30+t25*t31+tl6*aw*t30+4*t33) *td*aw*at*GKt
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k1114 Stiffness Element

t2 = aw**2

t5 = log(e)

t6 = th**2

t9 = aw*L

tll = e**(2*t9)
tl3 = L**2

tld = tl13*t6

tl7 = L*t5

t20 = e**t9

t26 = t5*t9

t29 = t6*tl3*t2
31 = 1/(tld*t2*tll-4*tl7*aw*tll+2*t14*t2*t20+4*t11l-
#8*t20+4+4*t26+t29)

t32 = tll*t31

£33 = t20*t31

Vk1114 = - (-t32+t31+42*t26*t33) *L*t6*t5*t2*aw*EIw*awar/2
#+(t26*t32/2-2*%
HE32+£29*£33+4*t33-2*t31-tl7*aw*t31/2) *GKt*at

k1414 Stiffness Element

t2 = log(e)

t3 = t2*aw

td = aw*L

th = e**t4

t8 = e**(3*t4)
tll = e**(2*t4)
tl2 = aw**2

tld = t2**2

tl5 = L**2

tle = tl5*tl4

t20 = e** (4*t4)
t23 = L*t2

t36 = tld*tl5*tl2
t37 = t2*t4

td0 = -4+16*th+16*t8+2*tl6*tl2*tll-

#4*t20+8*t23*aw*t5+4*L*t20*t3 tl
#5*£20*t14*t12-8*L*t8*t3-t36-4*t37-24*t1l1l

t4l1 = 1/t40

t49 = 4*tl15*L*tll*tld*t2*tl2*aw*tdl
£50 = tl2*t4l

£53 = tl15*t20*t14*t50
t54 = t8*t4l

t56 = 4*t36*t54

t57 = t5*t4l

t59 = 4*t36*th7

£t60 = tl6*t50

t6l = aw*t4dl

t64 = L*t20*t2*t6l
£69 = 4*L*t8*t2*t6l
t74 = 4*t37*t57

£75 = t23*t6l

£78 = 2*t20*t4l

£79 = 4*t54

£t80 = 4*t57

£t81 = 2*t41l

t82 t49+t53-t56+t59-t60-2*t64+t69-4*t37*tl11*tdl1+t74-
#2*t75+t78 t7

#9+t80-t81

t91 = t49-t53-t56+t59+t60+4*t64-t69-t74+4*t75-t78+t79-
#t80+t81

Vk1l414 = -t82*t3*awar*EIw/2+t91/t2/aw*at*GKt/2
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5.1 Introduction

The inelastic behavior of shear walls in buildings and in general plane members in
structures is of major importance in earthquake engineering, as due to their stiffness, they
carry a significant part of the external lateral load. Their mode of failure is mainly in shear
and modeling of their response, especially under cyclic loading exhibiting hysteretic behavior,
is decisive for a realistic prediction of the structural response under earthquake excitations.

Plane stress plasticity problems have been addressed for decades, (Hill, 1998, Kachanov,
2004). Analytical solutions have been derived following slip line theory offering robust
solutions especially for metal forming problems, (Lubliner, 2008). Slip line theory, though
precise, was dominated by the finite element method, due to the applicability of the latter in
the majority of structural analysis problems, leading to a remarkable ongoing development,
creating efficient and accurate algorithms (Souza et al, 2008). Recently, Valoroso and Rosati
(2009) developed a consistent solution scheme for plane stress problems under the framework
of the return mapping algorithm of Simo and Taylor (1985). Nevertheless, phenomenological
models are also implemented in several cases of metal forming simulation as described in
Taherizadeh et al. (2010).

In this work, Bouc-Wen hysteretic modeling is implemented into the framework of finite
elements yielding a consistent methodology for the analysis of static, quasi-static and
dynamic 2-D problems. The constant stress/constant strain element, though simple in its
formulation, constitutes the basis for escalating the development to higher order elements,
such as the shell element Bathe (2007), or advanced membrane elements, Zhang H .& Kuang,
J. S (2009). Nevertheless, its advantages are well established in the analysis of 2-D structures,
like masonry shear walls (Brasile, 2009) and concrete shear walls (Kwan et al., 2001).

Moreover, their reduced order of complexity, as opposed to shell elements and solid elements,
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significantly enhances the computational performance retaining the desired accuracy of the
analysis. Furthermore, recent advances in mesh refinement, (Munoz, 2009) can be utilized to
yield a robust and cost effective computational scheme.

In the present work, the Bouc-Wen model is incorporated in the finite element formulation
to determine the inelastic-hysteretic behavior of triangular elements. A plane stress element is
developed that accounts for different yielding criteria under the framework of Bouc-Wen
hysteresis modeling.

Contrary to the incremental approach of classical plasticity, where the tangent stiffness
matrix is evaluated considering small increments on the point-wise monotonic, or cyclic
material envelope, the stiffness matrix presented herein constitutes a continuous function of
the stress state. From a computational perspective, following the proposed approach, the
problem is treated in modular form, thus yielding a potentially parallel scheme. Numerical
examples are presented that demonstrate the applicability of the proposed formulation in
terms of computational efficiency and accuracy. To extend the versatility of the univariate
Bouc-Wen model to 2D problems, the triangular constant strain element is used in this work
due to its simplicity. The method can be applied to other elements, considering the proper
displacement field and the corresponding strain matrices, addressing in addition numerical

integration issues in developing the element stiffness matrices.

5.2  The finite element formulation

In this section, a brief presentation of the finite element method is conducted so as to
facilitate subsequent analysis. Attention is drawn towards the kinematics of the deformable
continuum and the necessary definitions of the deformation gradient, the strain measure and

the stress measure are presented.
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5.2.1 Incorporating the generalized hysteretic constitutive law

In Chapter 2 a general nonlinear hysteretic stress-strain relation has been introduced, that is

rewritten herein for the sake of reference:

where [D] 1s the elastic constitutive matrix, [I ] is the identity matrix, ® is a yield function,

(8} = gﬂsgn({g} {3}))[R)|{£} (5.1)

@, is the critical value of the yield function, N, 3, 7 are model parameters and [R] is an

interaction matrix defined by the following relation:

T -1

T
[ ] 0P 0P 0P

3{77} 3{5} ofs}) lo{s})lo{s}

where G({n},@) is a function of the back-stress and the yield function defining the

[R] = T[D] (5.2)

G({n}.2)+

evolution of the kinematic hardening law that is derived from the following relation:

T

{n}=1- G({n}.@)+

({n} ®)[D]{¢}(53)

[D];{’?;}

3{77} 8{5} 3{5}

Since no consideration has been made on the kinematics of the problem during the
derivation of equation (5.1), the stress and strain tensors can be substituted accordingly.

Relation (5.1) is more conveniently written in the following form:

{8} ={8} +{s¥ (5.4)

where:

{$<}=[p}{e} (5.5)
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is the elastic part of the stress tensor and:

{s"} =Dy (®.6.2) {2} (5.6)
is the hysteretic part of the stress tensor, where the hysteretic constitutive matrix [H ] is

defined as:

N

Dy (2.G.e)] = ~[D]|S-| (84 vsen({e} {8}])[R) (5.7)

P

0

Thus, the elastic constitutive matrix [D] is substituted by its hysteretic counterpart:

|D(®,G,e)],, = D] +[Dy (®,G.e)] (5.8)

and the nonlinear stress-strain hysteretic law is written as:

(8 =[p(2.c.e)], {2) 59

Equations (5.7) to (5.9) define a smooth and rate-independent model of classical plasticity.
5.2.2 The rate form of the principle of virtual work

The principle of virtual work can be stated in the following form (Cook et al., 2002)

[{oB} {s}av = [{eu} {F}av + [{su} {@}as, (5.10)
where {(5E } is the vector of potential strains, {S } is the vector of stresses, {6u}is the
vector of potential displacements , {F} are the body forces acting over the volume V' and

{CD} is the vector of surface tractions acting on the surface S ,. Differentiating relation (5.10)

with respect to time and choosing the potential displacements such that {(5u} =0, the

following variational form is derived (Washizu, 1980)
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[{oE} {$}av = [{eu} {F}av + [{ou} {d}as, (5.11)
Substituting the rate form of the stress-strain relation (5.9) into relation (5.11) the

following equation is derived:

[{s} [D(2.6.B)), {E}av = [{su} {F}av + [{ou} {®}ds, (512)
According to the standard procedure of nonlinear finite elements (Bathe, 2008), an

interpolation scheme for the displacement field is introduced, bearing the following form:

{u} =[N|{d} (5.13)
where [N ] is a matrix baring the shape functions and{d } is the vector of nodal

displacements. By considering the kinematics of the problem a relation of the following form

is finally derived:

{B} =8l +[B({d})]y, {2} = [B]{} (5.14)
where [B ]l is the linear strain-displacement matrix and [B ({d})] NL is the nonlinear strain-

displacement matrix which is a function of the current displacements. In case of the small

displacement formulation relation (5.14) becomes:

{e}=[B],{d} (5.15)

Substituting relations (5.13) and (5.14) into (5.12), the following equation is derived:

J{eaY [B] [D(2.Ge)], [B{a}av = [{oa} [B] {#}av + [{sd} [B] {#}ds,

(5.16)

Finally, the classical finite element equilibrium equation is derived:

(K], {d} ={*} (5.17)
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where [K ]H = [K (QJ, G, FE )] I is a smooth, history dependent but rate independent stiffness

matrix evaluated as:

k], = [[B]' [D(2.G.¢)],[B]av (5.18)

while

{i}= [{oa} [B] {F}av + [{oa}'[B] {#}ds, (5.19)
is the equivalent nodal load vector. Since rates of the corresponding force and displacement

measures appear on both sides of equation (5.17) the hysteretic stiffness matrix is rate-

independent and assumes the following form:

-5

-
afd) (5.20)

Thus, the uniaxial formulation of the Bouc-Wen model introduced in Chapter 2 is herein
extended into the stiffness formulation of a finite element, while its hysteretic properties,

namely rate-independency causality and are retained.
5.3 The constant strain triangle

5.3.1 Kinematics of the constant stress triangle

The following triangular plane stress/ strain element with two translational degrees of
freedom per node in the global coordinate system is considered (Fig. 5.1). The global axes X,
and X, are identical to the Cartesian axes X and Y respectively. The first notation is

adopted throughout this work, to be consistent with tensorial mechanics, while the latter is

only used when spatial quantities are addressed.
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X =X
Fig. 5.1. Triangular plane stress/ strain FEM

By means of the classical formulation procedure of the plane stress/strain finite element the

following interpolation functions are introduced:

u(x,y) =) + 0T + gy (521)
v(a:,y):a4+a5:r+a6y ’
or in matrix form:
a
@y
ul _ y 0 0] ay (5.22)
v 0 0 1 z y||oy ’
Qg
R

Substituting the nodal displacements w,,v,, i = 1..3 (Fig. 5.1) in equation (5.22), the

following matrix relation is derived:
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(A I z y 0 0 O [ oy
v 0 0 0 1 =z y||lo
{d} _ Uy _ I % y 0 0 0]|ay » (523)
Uy 0 0 0 1 z, yl|loy
Ug I 2z, y; 0 0 Offay
Vg 0 0 0 1 = ys||og

Once equation (5.23) is inverted and the derived expression is substituted in equation

(5.22) the shape functions of the triangular FEM are expressed as:

1z y 0 0 0 (A
00 0 1 z y v
ul _ T Yy 0O o1 =z y 0 0 O U (5.24)
0 0 r y|l0 0 0 1 =z uy, Uy
I z y; 0 0 0 Usg
0 0 0 1 z5 y Vg

After the necessary algebraic manipulation, the following linear shape functions are

evaluated:
N O N, 0O N; O
[N] = (5.25)
0O N O N, 0 N
where:
N, = L(g. e+ by), i =123 (5.26)
I3 2A€ (3 (3 3
and:
5 Ty Yy N _1 Yo LR
R L O D
(5.27)
Iz oy
24 = |1 Ty y2:ﬁl+62+63
1 =z

3 Y3
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The remaining coefficients o;, y; are defined by cyclic permutation of the indices.
Compatibility equations for the case of a plane deformable body undergoing small

displacements are expressed as:

ou ov ou  Ov
g =—, g = —, =4 — 5.28
© Ox Y 0y Tay oy Oz (5-28)
and in matrix form:
9
€ oz
xT a U
e, (=10 — { J (5.29)
L 8y v
Tl oo
dy Ox
Substituting equation (5.24) in (5.29) the strain displacement equation is derived:
{e} =[B}{d} (5.30)

Thus, based on the shape functions defined in equation (5.25), the strain displacement

equation is derived:

{e} =|B]{d} (5.31)

where the strain matrix B is given by the following relation:

N, 0O N,, 0 Ny, 0
[B]: 0 N 0 N 0 N

Ly 2y
N N. N N

Ly Nl,:r 2,y N271: 3,y 3,z

3 (5.32)

while , or ,y denotes differentiation with respect to X or Y respectively (Fig. 5.1). Thus,

according to equation (5.27) the strain matrix [B] is determined as:
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1 "N 0 Yo 0 V3 0
[B]=—|0 & 0 & 0 & (5.33)

B T I S R P P
which for the plane stress element is constant, thus facilitating integration in the subsequent

analysis.
5.3.2 Derivation of stiffness matrices — variational formulation

To derive the appropriate stiffness relations, the principle of virtual work is implemented:

[{6} {o}av ={ou} {P} (5.34)

Since the vector of virtual nodal displacements is constant, the following rate form of

equation (5.34) is derived:

[{s=} {o}av = {ou}" {P} (5.35)
v
In addition, equation (5.9) can be written in a condensed form as:

{o"} = G(a,@,c){e}, where G(a,@,¢)=[D]([I]- HH,[R])  (536)

Substituting equation (5.4) into the rate form of the principle of virtual work, the following

relation is derived:

l{ée}T([aHde} +([1]- [a]){dh})dv = {su} {P} =

- [{&F[O‘Hde}dv+[{55}T([I]_[a]){dh}dv _ s (5) (5.37)

Further, introducing the kinematic relations (5.15) and the constitutive relations of equations

(5.36), the first and second integral of the L.h.s. of equation (5.37) are expressed as:
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{{6€}T[a]{d"‘}dV = {5U}TLVHB]T[QHDHB]W{&}
= {ou}’ [a][k J{u}

J ek (1] =[al){s" fav = {eu}" [[B] (1]~ [a])G][B]av {a}

Vv 14

= {ou} (1] =[]}k ({<" }) {2}

The first integral of equations (5.38) constitutes the elastic stiffness matrix of the plane stress/

(5.38)

element that corresponds to matrix [D], while the second is the introduced herein hysteretic

stiffness matrix.

[kh({ah})]={[B]T[G][BJdV (5.39)

The hysteretic stiffness matrix can be defined as the nonlinear supplement of the elastic
component introduced by the hysteretic model implemented. The actual form of the hysteretic

matrix is dependent on the yield criteria used since the hysteretic matrix is a function of the

interaction matrix [R]

After the necessary algebraic manipulation, the following relation is obtained:

(P} =k ({c"})[{i} (5.40)

where the matrix:

(Lo 1)) = allk ]+ (7] = [a])[} ({o" })] (5.41)
is the nonlinear tangent stiffness matrix of the plane stress element. In relation (5.41) [kﬁ,] is

the stiffness matrix of the elastic constant strain triangular element (Bathe 2007), that is only

computed once throughout the solution procedure and [k’h] is the hysteretic stiffness matrix.
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In general, the matrix [G ] is a function of the stress vector, but in our case is constant along

the element, allowing for the analytical integration of relation (5.39).

It is also evident that the hysteretic stiffness matrix is directly derived from the elastic one

by mere substitution of the constitutive matrix, as the strain matrix [B ] remains the same.

Since the hysteretic matrix implicitly depends on the yield criterion considered, it remains
symmetric as long as the yield criterion is symmetric on the stress space. Since the shape
functions used are the same as in the elastic case, the equivalent nodal loads of surface
tractions remain also the same.

The notation implemented underlines the dependence of the hysteretic part of the stiffness
to the current stress state of the element. This stiffness matrix depends only on material
properties, namely the Poisson ratio, the Young modulus of elasticity, the post yield to elastic
stiffness ratio and the yield criterion incorporated in the evolution equation of Bouc-Wen. The
formulation described in the preceding paragraphs does not depend on the particular
hysteretic model used in the analysis. As long as a model is smooth and rate independent, it
can be incorporated into the standard displacement based FEM scheme.

At this point one can notice that a direct relation is established between the element
stiffness matrix and the current state of stress. This relation is well defined in the stress-strain
space and smoothly follows the loading-unloading response of the element under cyclic
excitation. It is also important to notice that the element proposed herein can be easily used in
conjunction with classical elastic elements, within the framework of the direct stiffness
method. The proposed element can be implemented in damage identification and nonlinear
structural identification methods for plane structures where strain localization is observed, see
for example in Carpinteri et al. (2009). Such aspects though, are beyond the scope of this

work.
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From the computational perspective in standard dynamic analysis procedure a predictor-
corrector scheme is used in conjunction with a Newton-Raphson procedure for the solution of
nonlinear problems. The algorithm iterates through an elastic prediction and inelastic
correction scheme, into a specific computational step, in order to determine the elemental
tangent stiffness matrix (Neto et al., 2008). During these iterations the current stress state is
continuously evaluated through various integration schemes, and the stress state computed at
the end of a computational step is considered to be the same with the stress state at the
beginning of the next computational step. Consequently, the entire procedure is accurate for

sufficient small incremental steps (Barham et al., 2005).
5.4  Numerical examples

A computer software was developed to implement and test the efficiency of the proposed
formulation. The code performs incremental static and dynamic analysis of plane structures.
The triangulation of the surface structure is performed using Matlab code, while the analysis
is performed using Fortran Code. A Delaunay unstructured mesh scheme is implemented for

this purpose, (Hjelle & Daehlen, 2006).
5.4.1 Low yield shear panel

The hysteretic response of low yield strength, steel shear panel is examined. Shear panels
of this type are effectively implemented as energy dissipation mechanisms in steel braced
buildings (Chen et al., 2006). Shear panels are also used in retrofitting concrete buildings
(Formisano et al., 2010).

The computational model of the shear panel is presented in Fig. 5.2. The panel thickness is
set at 6mm. The panel is considered simply supported at the base, while at the two side
perpendicular edges the vertical displacement is considered fixed. The proposed formulation

is used for the analysis of the problem and the results are compared to those obtained using
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the NASTRAN Code and the CTRIA3 plane stress element. A crude mesh is implemented

consisting of 18 triangular elements with a maximum edge size of 0.30 cm.

1.20

Fig. 5.2 Computational Model - Node Numbering and Boundary Conditions

At first, a nonlinear static analysis is performed with the proposed formulation, by
assigning monotonically increasing horizontal loads to nodes #4, #5 and #6. The maximum
value of each load is Px=300 KN. Three values of the smoothing parameter n are considered,
namely n =2, n =4 and n = 25.

The resulting applied force lateral displacement diagrams are presented in Fig. 5.3. The
lateral displacement is measured at node #5. As predicted by the hysteretic model introduced
in equation (5.1), larger values of the smoothing parameter lead to a sharper transition from
the elastic to the inelastic regime.

A sinusoidal excitation is next imposed on nodes #4, 5, 6 with an amplitude of 400 KN and
a cyclic frequency of © rad/sec. The analysis is performed over a time period of 10 sec. The
results obtained with the proposed formulation are compared with results obtained from
Nastran Code. A modified Newton-Raphson scheme is implemented in Nastran. The time
integration is performed with the average acceleration Newmark method. A time increment of

0.01 sec is selected. The parameters of the Newton Raphson scheme are presented in Table
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5.1. A bilinear stress-strain relation is considered, setting n = 25

formulation.

...... n=2 - _--n—=4 n=25

1000
800 | e
600 | P
400 |

Applied Force (KN)

o

in the proposed

0.00 0.20 0.40 0.60 0.80

Displacement (mm)

Fig. 5.3 Force-Displacement curve of the shear panel

1.00

Newton Raphson Analysis Parameters

Material Nonlinearity Bilinear Model
Kinematic Hardening a=0.002
Total Number of Steps 1000
Time Increment 0.01 sec
Work error tolerance 10°
Displacement error tolerance 10

Table 5.1 Nonlinear Analysis Parameters (Nastran Code)

The time history of the horizontal displacement at node #5 is presented in Fig. 5.4 where

results from both the proposed formulation and the Nastran code
discrepancies between the two formulations are negligible.

The analysis performed with the proposed formulation was performed

are plotted. The

in half the time of

the Nastran analysis, i.e. 1.9 sec instead of 3.8 sec. This is attributed to the decoupling of the

local nonlinear equations from the global linear equations of equilibrium as described in the

next Chapter. Both analyses were in a PC fitted with a Core Duo Quad CPU and 2 GBs of

RAM.
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—— Proposed Formulation =~ ——Nastran (CTRIA3)
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Fig. 5.4 Comparison of the proposed formulation to Nastran code

Next, an analysis is performed with the proposed formulation, considering the following
values of the Bouc-Wen model parameters, namely n = 2, 3 = 0.8 and v = 0.2. The time
history of the tip displacement, measured at node 5 is presented in and the two solutions result
in good agreement. The two elements exhibit almost the same elastic stiffness with some
differences in the maximum negative displacements.
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Fig. 5.5 Displacement Time History
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Hysteretic Finite Elements

In Fig. 5.6(a)-(c) the stress-strain hysteretic loops, evaluated at element #16 are presented.

As expected, the shear stresses dominate the panel response, yet plastic deformations

accumulate on all directions, due to the interaction scheme introduced through relation (5.2).

In Fig. 5.6(d) the shear stress- shear strain hysteretic loop is presented, evaluated on element

#10. Due to the antisymmetrical loading, this is the only non-zero stress component at that

element. Yielding occurs exactly at 117.5 MPa, as predicted by the Von-Mises flow rule

considered. Yet, the transition from the elastic to the inelastic regime commences at a lower

stress level, due to the value of the smoothing parameter 7. Moreover, the umloading

branches are slightly curved due to the the values of the shape paremeters § and ~ .

Normal Stress o,, (MPa)

Shear Stress o, (MPa)
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Fig. 5.6 Stress-Strain hysteretic loops (a) ox-€x (Element 16) (b) 6yy-£,y (Elemement 16)
(¢) Txy-Y (Elemement 16) (d) 14~y (Elemement 10)
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5.4.2 Cantilever Beam with Tip Load

In this example, a cantilever beam, consisting of plane-stress elements, carrying a
concentrated tip load is examined. An elastic perfectly plastic material is considered with E =
210 GPa, v = 0.3, 6, = 240 MPa, § = y = 0.5. The geometric properties of the beam are

presented in Fig. 5.7.

| 1.00

‘ } 0.054»{ *
| TN [0S

u,=0 PY
u,=0

Fig. 5.7 Example 1-Cantilever beam

Two different analyses cases are performed. At first, the cantilever is subjected to a
monotonically increasing concentrated tip load and the theoretical limit load is compared to
the calculated one. The initial yield load and the ultimate load can be analytically evaluated
as:

beh2 o bh?

P = = 20KN, P =-Y— =30KN
6L AL

Y u

In Fig. 5.8 the applied load is plotted against the vertical deflection at the tip of the
cantilever beam. Two different discretization schemes are considered and the results are
compared to those obtained using the CPS3 element of the Abaqus v6.5 code (Abaqus, 2005).
A Full Newton Raphson solution scheme is implemented in Abaqus, with 1000 incremental
steps and a fixed increment step equal to 0.001 KN.

The proposed formulation predicts accurately both the initial yield load and the ultimate
load with a fine mesh of 328 elements, with the difference between the predicted and the
computed value being less than 1%. The smoothed plasticity concept adopted in the present
work captures accurately the elastic-perfectly plastic behavior of the material. In Fig. 5.8, the

results from Abaqus and the present formulation are compared for different discretization
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schemes. Compared to the CPS3 element, the proposed formulation yields results that
converge to the analytical solution faster in terms of the discretization needed to reach an
acceptable solution. The CPS3 element fails to predict accurately both the initial yield and the
ultimate load. Since the element formulation is similar in both cases, the difference in the

convergence rate is attributed to the different solution scheme implemented.
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35'0 .............
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S 300 [iff—— - -
Sudl o
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Tip Displacement (mm)

Fig. 5.8 Load Deflection Curve for the cantilever beam

In Fig. 5.9, the distribution of the normalized von-Mises Yield Criterion is plotted, when
the imposed load reaches the value of the theoretically derived collapse load. At this time, the
plastic hinge mechanism predicted by theory is fully formed. Notice that although the mesh
implemented in the Matlab simulations is unstructured the solution reached the critical load

predicted by theory.

Elements: 328, Nodes: 203

&

P=30KN

Fig. 5.9 Normalized von-Mises Yield Criterion

The evolution of the stress tensor at element 75 is presented in Fig. 5.10 with respect to the
corresponding normal strain &y. As long as the element remains elastic, the stresses evolve

linearly following closely the assumptions of beam theory. Since the element is adjacent to
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the end fiber of the beam, normal stresses oxx dominate, while the other components fluctuate
near zero. When the element undergoes inelastic deformation, the stress components increase
to a maximum value and then remain constant. According to Lubliner (2008), all the stress
components are expected to remain constant inside the plastic boundary of an elastic perfectly

plastic beam following von-Mises, or Tresca yield criteria.
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Fig. 5.10 (a) Evolution of stress—strain at element 75

The evolution of the von-Mises Yield Stress is presented in Fig. 5.11(a). Since the von
Mises yield function is used in the example, the maximum value of the equivalent von-Mises

Stress is:

o = ay\@ — 339.5 MPa

max

Finally, in Fig. 5.11(b), the evolution of the principal stresses is plotted. At the end fiber of
the beam, the principal axes are almost parallel to the global axes X and Y due to pure
bending conditions. As such, the principal stress o;, which is closer to the X axis, increases
much faster than stress o;. When yielding occurs, the principal stress oy remains practically

constant, whereas stress oy increases so as to maintain equilibrium.

187



Chapter V Hysteretic Finite Elements

400 40
30-
300
= = 20r
o
o
€ 200 g 10
[} -_—
g ® o
9 100;
10r
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 50 100 150 200 250 300
Normal Strain oxx ol (MPa)
(a) (b)

Fig. 5.11 (a) Evolution of principal stresses (b) Evolution of the equivalent von-Mises
Stress

Next, the beam is subjected to a sinusoidal excitation of increasing amplitude using the 328
element mesh presented in Fig. 5.9. For this case, a hardening ratio of a=0.002 is used, while
no stiffness degradation and strength deterioration is considered ( c=0.0, ¢,=0.0). The

analytical expression of the applied time history (Fig. 5.12(a)) is:

P(t) = 40Lsin[3—”t]

tot

20-

Imposed Load (KN)
o

-‘!8.4 03 02 0.3 0.4 0.£

-0.1 0 0.1 0.2
Tip Vertical Displacement (m)
(a) (b)
Fig. 5.12(a) Applied Load Time History (b) Load Deflection Response of Cantilever beam
In Fig. 5.12(b) the response of the cantilever is plotted in terms of applied load versus
vertical displacement at the tip of the cantilever. There is a smooth transition from the elastic

to the inelastic regime of the response, while at the unloading phases the stiffness of the

cantilever remains constant.
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Next, the same problem is analyzed considering stiffness degradation and strength
deterioration, with the following set of model parameters (¢, = 0.00001, ¢,=0.002, m=0). The
evolution of the normal stress at element 75 (Fig. 5.9) is presented in Fig. 5.13 as a function
of the correspondent normal strain. For the sake of demonstration and clarity, the plots are
presented for the first five successive loading-unloading phases of the imposed load. The
unloading stiffness is decreasing between cycles as predicted by the hysteretic model. At the
same time the yield strength is also decreasing from Point A, to Point B as presented in Fig.
5.13(b). The decrease in the yield strength in the opposite direction is larger than the one
dictated by the linear kinematic hardening model with no deterioration. The element stress
initially increases to approximately 270 MPa, thus the aniticipated yield stress in the opposite
direction should be equal to 240-30=210 MPa. However, yielding in the opposite direction

occurs at 188 MPa.
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Fig. 5.13 Stiffness degradation and Strength deterioration analysis
The change in the dynamic response of the cantilever is better depicted in the load-
deflection diagram presented in Fig. 5.14, where it is evident that the period of oscillation is
increasing, not only due to the plastic deformations accumulating, but also due to the decrease

in the unloading stiffness of the cantilever.
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Fig. 5.14 Load Deflection Response of Cantilever beam with stiffness degradation and
strength deterioration

5.4.3 Perforated Metal Sheet

An aluminum sheet with a circular notch (Fig. 5.15(a)) is examined next. The sheet is

subjected to a monotonically increasing uniform tensile pressure along the y-axis. The elastic

parameters of the material are; E=72 GPa, G=29.5 GPa, v=0.22, a, =262 MPa, while a

hardening modulus of 0.002E is considered. Due to symmetry, only one fourth of the sheet is
examined. The solutions are compared with those obtained from the HYPLAS code (Neto et.
al, 2008). Analysis in HYPLAS is performed implementing a Newton scheme with 100
incremental steps. In Fig. 5.15(b), the computational model is presented for the case of a
Delaunay triangulation scheme with a maximum element size of 0.05m (284 elements),
together with the imposed boundary conditions.

The load-deflection response of the specimen is presented in 5.16(a). Deflection is
measured at node 4, as depicted in Fig. 5.15(b). Three discretization schemes are considered.
The exact solution is considered to be the one derived from the fine discretization of 414
elements. The ultimate load capacity of the specimen is approximately p, = 110 KN. Further
increment in the load, results in large displacement increments since the boundaries of the

computational model are fully yielded.
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Fig. 5.15. (a) Perforated Aluminum Sheet Specimen (b) Computational Model (284
elements)

In 5.16(b) the advance of the plastic boundary is presented for specific values of the
applied load as a proportion of the ultimate load. Each element that reaches the von-Mises

yield criterion is colored, while different colors correspond to different load levels as

specified in the legend.
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5.16 (a) Load Deflection curves for different discretization schemes (b) Plastic boundary
evolution
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The plastic boundary is propagating from the tips of the perforation towards the adjacent
free surfaces of the specimen as predicted by theory, (Lubliner, 2008). In Fig. 5.17, the

derived load deflection curve is compared against the one derived using HYPLAS.
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Fig. 5.17. Comparison of the proposed method to HYPLAS Code

The solution obtained based on the proposed formulation agrees well with the solution
obtained using the HYPLAS code, though the latter does not converge at displacements close
to 1.5mm. This is attributed to the different solution schemes, as the Livermore solver allows

for a more robust error control when the stiffness matrix rapidly degrades.

5.5 Conclusions

Although, the univariate Bouc-Wen formulation that expresses yielding and the associative
flow rule in rate form has found extensive application in skeletal structures, implementation
into the finite element computational scheme for 2-D and 3-D problems has not yet been
investigated. To implement such concepts, a new plane stress / strain element is formulated,
based on the elastic constant strain triangle element and the Bouc-Wen hysteretic model. The
governing equations are determined within the framework of the direct stiffness method, in

state-space form, thus allowing for the use of advanced ode solvers.
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This approach, together with the implementation of the smooth Bouc-Wen model in
constitutive relations, is proved computationally efficient, as it avoids the errors accumulated
due to the linearization of the governing equations in the usual Newton-based solution
schemes. The main features and advantages of the proposed formulation were demonstrated
with numerical examples. It is shown that the Bouc-Wen model introduced in the analysis can
accurately simulate both the well-established bilinear von-Mises model with kinematic
hardening as well as complex dynamical behavior with stiffness degradation and strength
deterioration. Moreover, the accuracy of the proposed formulation is demonstrated through
comparison with the Abaqus commercial code and the HYPLAS code.

The entire scheme can be easily extended to different elastic finite elements introducing
appropriate constitutive relations and the corresponding interaction matrices that depend on
specific yield criteria. Since the derivation of the element matrices is consistent with the direct
stiffness method, the formulation allows for the implementation of inelastic finite elements,
either in standalone structural meshes, as in the examples presented herein, or in conjunction
with other types of finite elements. The implementation of the hysteretic Bouc-Wen model
proposed herein, with stiffness degradation and strength deterioration offers a versatile tool
for the nonlinear identification of plane structures, as it can simulate a variety of cyclic
responses. From the engineering and design perspective, relying on the direct identification of
model parameters resulting from component testing of members and connections, the method
offers the ability for realistic simulations of the inelastic behavior of degrading structures

under cyclic loading.
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Chapter 6

STRUCTURAL ANALYSIS
IMPLEMENTING BOUC-WEN HYSTERESIS

194



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

195



Chapter VI Structural Analysis Implementing Bouc-Wen Hysteresis

6.1 Introduction

The numerical solution of structural analysis problems relies on the proper definition of a
mathematical model that is bound to be both conceptually simple and computationally
accurate. The mathematical model is a discrete representation of the continuous and real
structure. In Chapters 3 and 4, the necessary clements for the space discretization of a
nonlinear hysteretic structure have been presented. The elements presented are based on either
macroscopically or microscopically defined hysteretic properties.

In this chapter time discretization schemes are presented that allow for the solution of the
dynamic problem. The sets of global governing equations are presented that are assembled
according to the direct stiffness method. The hysteretic properties of the macro-elements are
incorporated into the equations of motion through the global hysteretic matrix of the structure.

In Hughes, 1994 the following list is defined as the necessary list of properties, methods in
linear structural dynamics should possess:

1. Unconditional stability

2. No more than one set of implicit equations to be solved at each step
3. Second order accuracy

4. Controllable algorithmic dissipation in the higher modes

5. Self-starting

The property of unconditional stability is related to the behaviour of the method when

applied to the scalar test equation i = —w?u . The connection between conditions 1 and 3 is
commented in Hughes, 1994. Apart from (2) the rest of the properties ensure the stability and
accuracy of the time integration scheme. Property (2) sets un upper bound on the
computational time needed to solve the numerical problem. In nonlinear problems this cannot

be the case, since an iterative procedure is necessary within its integration step (Chopra,
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2008). Property (5) comments on the necessary initial conditions for the algorithmic process
to commence, since multistep methods need initial values in time instances prior to .
Nevertheless, a solver that is well-suited for linear problems does not automatically qualify
for non-linear problems. The Newmark method, one of the most popular implicit schemes that
is unconditionally stable for linear problems but this stability condition is lost when applied to
nonlinear problems. The Houbolt and Wilson-0 methods (Bathe, 2008) introduce strong
numerical damping, which casts them unsuitable for any practical application to nonlinear

dynamic systems if the duration over which the integration is required is long.

6.2 Expanding the capabilities of the Direct-Stiffness Method

In this section, the governing equations of the problem are formulated, following the direct

stiffness approach. The elemental stiffness matrices derived using the methods presented in

Chapters 3 and 4 are assembled to form the structural stiffness matrix [K S]which, in the

general case, consists of a constant elastic part due to the macro-elements and a smoothly
varying part (equation 3.18) due to the hysteretic finite elements of the model. The equation

of motion is then expressed as:
(MO} +[C]{U}+ K] {U}+[H] {2} = {PO} (6.1)
where [M S], [C’S], [K 5] are the mass, viscous damping, stiffness square symmetric

(n;z n;) matrices of the structure respectively while [H ] is the (n;z ) orthogonal

s
global hysteretic matrix of the structure and (nhwaﬂ) {z} is the vector of hysteretic degrees
of freedom, 7, being the number of hysteretic degrees of freedom. Additionally, {P(t)} is

the (nf x 1) vector of external forces, ny being the number of degrees of freedom of the
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structure. The mass matrix may correspond to a lumped mass diagonal matrix, or a consistent
mass matrix, Bathe (2007). The viscous damping matrix in general, may be of the form of a
Rayleigh damping matrix.

As described in previous chapters, the hysteretic matrix [H ] s needs to be evaluated only
once in the beginning of the analysis procedure. However, the stiffness matrix varies as a

function of the vector {a} consisting of the (n,,) stress vectors. The variation of the stress

tensor is defined in equation 3.9 at the element level and is assembled at the structural level

as:
{6}, =Dyl {¢} (6.2)

— ——

gnsfl 3”61X3nel 3”51
where [DH] is a diagonal matrix containing the individual elemental contributions of

S

matrices [D I ] of equation 3.7. Considering the stress —strain matrix and assembling for the

whole structure, equation (6.2) can be written as:

{d}s - [DH]S [B]S {d} (6.3)
—— —_— —— ——
3n,, 3n,,x3n, 3”cz><”/ ny

where [B] is a block diagonal matrix consisting of the elemental strain-displacement

S

matrices. Furthermore, equations (4.112) are supplemented by the set of evolution equations

of the hysteretic quantities {z} that assume the following form:

{¢} = r{U}{=) (6.4)

Expressions of this form are given in Chapter 2 for the case of Bouc-Wen modeling. If

stiffness degradation and strength deterioration phenomena are accounted for, equations (6.4)
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are accompanied with a corresponding set of evolution equations as presented in Chapter 2.

For the case of the simple Bouc-Wen model equations (6.4) assume the following form:

zj(t) !

2y

’i: 1_
%

(8+ysn(z,0[B] [Al{a})) [BL[A}{D})  ©5)

where z; is the 4, hysteretic parameter of the j,, macro-element [B]j is the corresponding

strain-displacement matrix, [A] is the transformation matrix and {D }[ is the vector of global

nodal displacements of the element.

The necessary modifications in a standard FEM code, so as to comply with the formulation

presented herein mainly concern the evaluation of the hysteretic matrix [H ] s and the

establishment of the evolution equations. Moreover, the element proposed herein can be
easily incorporated in a joined analysis — identification software, as proposed in Piyawat K.,
PeiJ. S 2009

The system of equations of motion (4.112) can be transformed into state space form

introducing the nodal velocities as additional unknowns:
{1} ={x},
(X}, == ([l (), + x ({xh ) (), + [ {x ), + (P (0)))
(6.6)
{1}, =lels[Bl {1},

{x}, =rqx},{x3)

where {X }1 is the (nfx1> vector of unknown displacements, {X }2 the corresponding

vector of unknown Velocities,{X } 5 the vector of the hysteretic stress components as defined
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in equation (6.2) and {X } A the vector of hysteretic deformation components as defined in

equation (6.4). The set of equations (6.6) together with the evolution equations of relation
(6.2) and (6.4) suffice to determine the nonlinear dynamic behavior of the structure.

The nonlinear system of equations (4.112) can be solved using any particular numerical
integrator such as the classical Newmark scheme. In this case, a Newton-like numerical
scheme is needed in order to solve the nonlinear constitutive equations, in each time
integration step (Bathe 2007). However, in the formulation introduced herein, the hysteretic
stress tensor is considered as an additional unknown evolving through the rate form of the
constitutive equation. This allows for the simultaneous solution of the governing equations of
the system. In this way the computational error accumulated in the analysis procedure is
reduced. The system of first order nonlinear differential equations (6.6) can be solved using
optimal Runge — Kutta operators (Sivaselvan & Reinhorn 2003). In this work, the Livermore
family of solvers (Radhakrishnan and Hindmarsh 1993) is implemented, allowing for a robust

and unconditionally stable approach.
6.3 Second order representation solution methods

The case of the nonlinear system of equations of motion (4.112) is considered, where the

applied force is defined as a set of discrete values {P }n = {P ( t, )},n = 1..N subject to the

following set of initial conditions:

{u(0)} ={u}y {a(0)} = {a}, {2(0)} = {z};{on ()} ={on}, 6D

The solution is evaluated as a sequence of discrete values of displacement {u}l, velocity

{u}i and acceleration {u}7 at time instances t,. The time increment of the marching process
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At =1, , —t may or may not be considered constant. Thus, the continuous problem

defined in (4.112) is transformed to its discrete counterpart at ¢,

(M) {0}, +[C] {0}, +[K({on}, )| {U}, +[H] {2}, = {P},
{"} =lal,, 18] {U}, (6:8)

{2}, = Uy {2})

Similar to any established time-marching process, the solution at the time increment ¢ 4 1

is sought, where

(M) {0Y + o0+ E (o)) 400, ] 2], = {7,
{o"}. =l [Bl{U},,, (6.9)

{Z}i+1 - f({U}i+1’{Z}i+1)

where attention should be drawn to the fact that the hysteretic constitutive matrix [G ]S -
52

also depends on the current stress distribution.

6.3.1 The method of central differences

According to the method of central differences, the displacement rates are approximated

through the following finite difference scheme (Chopra, 2006)

{U}Hl _{U}i_l {U}H—l _2{U}i +{U}i—1

Ul = , Ul = 6.10
{ }z 2A¢t { }z At2 ( )
The same scheme is also implemented for the rate of the hysteretic stress vector, thus
{19}
. h,i+1 h,i—1
ot . = ’ ’ 6.11
{ }h,z 2AL ( )
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and the hysteretic deformation vector:

{2 }Z+1 { S

{2}, =

Replacing equations (6.10) and (6.11) into (6.8), the following set of discretized algebraic

(6.12)

equations is derived

{v},., —2{v} +{v}

a1y o) W er | (40,1 )] {0}, + 1] (2), = (P},

[M]s A2 2A ¢t
{U}h.vﬂrl?gt{g}h.i—] _ [G]s_l [BL {U}legt{U}zA (613)
{Z}Hl B {Z}Fl { }7+1 { }; 1

2AL =/t 2AL {210

Rearranging and solving for the unknown quantities the following relations are derived

KU}, =17]
{o}on 6] (B}, ={o},. 0], [B] U}, (6.14)
{z},, {2}, {u}, - { 3

_ i—1
2A¢ =/ 2A ’{Z}Hl)

where the equivalent stiffness matrix [[3 ] is defined as:

; 1 1
K] :A_t?[M]S +E[O]S (6.15)

and the equivalent load vector [f)] is defined accordingly as:

[i)] = {P}/‘, - [K({U/f }/‘,HS{U}/‘, - [HL

l(—2{v), +{v} )+ glel vl (6.16)
In general, the system of equations (6.14) is highly nonlinear, due to the hysteretic function

f () Still, it is an algebraic system that can be solved with standard solution algorithms. In
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case where the macro-hysteretic matrix [H L vanishes, the displacements at time step ¢ + 1

can be derived from the first of equations (6.14) as:

(v}, =1&]"[5] (6.17)

Substituting to the second, the corresponding hysteretic stress vector is derived as:

{ohn ={ohu [0l [BLAUY el [BLIET ] 619)

This is an explicit integration scheme, since the values of the unknown quantities at the
current integration step are derived using values of the quantities at the previous integration
step. However, these quantities do not necessarily satisfy the governing equations (6.9) at
time step ¢ + 1, since the structural stiffness may have changed due to nonlinearities. Thus,
an iterative procedure needs to be implemented in order to satisfy equilibrium. Upon this
point, the analysis performed demonstrates that usual analysis procedures can be implemented
in order to solve the governing equations of the nonlinear hysteretic problem. The iterative

formulation proposed will be discussed on the next chapter.
6.3.2 The Newmark family of solvers

Newmark (1959) developed a set of time integration schemes based on the following

equations:

(0),,, = {0}, + (1) a{0), + (0) (0, (619

and

(U}, ={v}, +at{U} +[(05-8)ar|{T} +[sae[{U} (6:20)
Parameters (3 and <y determine the acceleration increment within the time step and are

essential in the evaluation of the stability and accuracy measures of the method. Usually the
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values v = 1/ 2 and 1/ 6 <3< 1/ 4 are considered. Solving equation (6.20) for the velocity

vector and substituting into equation (6.19) respectively, the following relations are derived:

[0} = ﬁ({U}m —{v} - a{U}, (05— 8)ar{i})

(0., = s 1= o) + -2, + L (0),., - o)

Replacing equations (6.21) in the first of equations (6.9) the following algebraic relations

(6.21)

are derived:

[K]ejf,i+1{U}i+1 - {p}eff,z'ﬂ (6.22)
where:
[K]eff,Hl - [al] +[K({0h}i+l)]
(6.23)
{p}gi = {Pho ([ {U}, + [ [{U}, +[es]{0},)
and:
] = a0, + gl
[a,] = i[M]S—[I—%]] (6.24)
)= [ 3101), - aef1- (e,

Similarly, replacing the displacement rate relation from equation (6.21) and implementing
a central difference approximation for the stress rate, the second of equations (6.9) is written

in discrete form as:

{0}, =28t{a}, +[G] . [B]{L} (6.25)
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where {L} = At2[2 —%]{U}i +zm[1_%]{v}i +2({),., - (0},)

The effective stiffness matrix of equation (6.23) is a function of the current hysteretic
stress tensor, which in turn is a function of the current displacement vector (equation (6.25)).
Thus, an iterative procedure has to be implemented.

This is achieved by casting equations (6.21) to (6.25) into incremental form, letting

d {U }H L= {U }Hl — {U }L Consequently, equations (6.21) and (6.25) can be iterated

within a specific time step i following the standard procedure for the solution of nonlinear
dynamic equations (Bathe, 2008, Chopra, 2008).

The advantage over the existing solutions lies in the fact that the system of equations
(6.21) and (6.25) embodies all the information concerning classical plasticity theory. The
elastic, or plastic state of the material is not derived through a radial-return mapping scheme
(Simo and Hughes, 1998) at the end of the iteration step but is rather evaluated as a smooth
function of the current displacement.

The relations for the Newmark methods of average acceleration and linear acceleration are

presented in Table 6.1 for the sake of reference.

Average Acceleration Linear Acceleration

{T(r)} =3 ({(Uh 1 +{0)) () ={0%+ 4 ({0}, - {0))

W) =10} =2 (0,1 + () (U} = 0+ (0} e+ s (0 -

{1 ={t} *% ({U}i+1 +{U}i) {1 ={t} *% ({U}i+1 + {U}i)
{U(r)}={U}; +{U};= {U(T)}={U}i+{U}ir+{U}i§+
2 o .
+7 [{0h 1 +{0)) *% ({0}, +{0},)
(U, ={v} +{v};a {U} 1 ={u} +{U}a
+¥ ({0} 1 +{0%) H [é{ﬁ}i+1+%{ﬁ}i]

Table 6.1: Methods of average and linear acceleration
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6.4  First order representation

6.4.1 General remarks

In this section, the general properties of the mathematical structure at hand are described.
As shown in the previous paragraph we are interested in the solution of an m.d.o.f. system of

nonlinear first order ordinary differential equations. Such a problem can be written as

-4 o) 626

X

{y(to)} - {y}o
where {y}, {y}o, {y} and f are column vectors.

The computational time needed for an accurate solution of the system of equations (6.26)
is directly related to a property called the “stiffness” of the system. In general, a stiff ode is
one that includes both rapidly and slowly varying terms. Shampine and Gordon (1975)
discuss some fundamental issues related to the property of stiffness. The most important of

those is the fact that the Jacobian of (6.26)

has eigenvalues with both negative and positive real parts that also vary widely in magnitude.
Thus, some of the solution components will be decaying whereas others will be non-decaying
over time. Since the eigenvalues are, in general, not constant over time, as in the case of
material and geometric nonlinearities, some equations might be stiff in some time interval but
not in another. Thus, the property of stiffness is local.

A quantitative measure of stiffness is usually given by the stiffness ratio

max[—Re()\Z. )] / min[—Re(Ai )] which is a local quantity also. Another standard measure
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for stiffness is the quantity max[—Re(/\i )”dt| . Since |dt| is a direct indicator of the time-

marching process while in many cases min [ — Re()\i )] — 0, the second measure is preferred

during the qualitative description of a system of odes.

The difficulty with stiff problems is the prohibitive amounts of computer time required for
their solution by classical ODE solution methods, such as the popular explicit Runge-Kutta
and Adams methods. The reason is the excessively small step sizes that these methods must
use to satisfy stability requirements. Because of the approximate nature of the solutions
generated by numerical integration methods, errors are inevitably introduced at every step.
For a numerical method to be stable, errors introduced at any one step should not grow
unbounded as the calculation proceeds.

To maintain numerical stability, classical ODE solution methods must use small step sizes

of order 1/ max[—Re()\i )] even after the rapidly decaying components have decreased to

negligible levels. Examples of the step size pattern used by an explicit Runge-Kutta method in
solving stiff ODE problems arising in combustion chemistry are given in Radhakrishnan and,
Hindmarsh (1993). Now, the size of the integration interval for the evolution of the slowly

varying components is of order 1/min[—Re<>\i>]. Consequently, the number of steps
required by classical methods to solve the problem is of order

max[— Re()\i )]/min[— Re()\i )] which is very large for stiff ODE’S.

6.4.2 Description of linear multistep predictor corrector methods

In general, linear multistep methods evaluate the solution of (6.26) at the ng step,

implementing the following formula:

K, K,
(Y}, =2 a{v} +n> 8,{f},_, (6.28)
J=1 j=0
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where the coefficient vectors « jo I6] j depend on the specific method while h, =1t —1t | is

the time increment which can vary as the time-marching process evolves. Parameters K, and
K, also depend on the method implemented and are equal to the number of previous solution
points used to evaluate the current solution. The coefficient vectors are determined assuming
that the solution of equation (6.26) is polynomial of order K, + K, and demanding that the
anzaz (6.28) is exact in this case. The second term in the r.h.s of equation (6.28) may or may

not involve the value of the derivative at the current time step (setting 3, = 0) which is

unknown giving rise to either implicit or explicit differentiation formulas.

In case K, = K, =1 and o, = 3, =1 equation (6.28) degenerates into the Euler

forward differentiation scheme (Bathe, 2007). Accordingly the values K, =1, K, = ¢ —1

produce the Adams-Moulton method of order q:

q—1
{r}, ={r}  +n2s{r}, (629)
=0

while the choice K, = ¢, K, = 0 gives rise to the Backward Differentiation Formula of

BDF for brevity. Equation (6.28) can be rewritten in the following equivalent form:

{}, ={w}, +na{r}, (6:30)
where the quantity
K, K,
{w}, =2 a{v}, , +n226{f}, (6.31)
Jj=1 j=1

involves the function evaluations at previous time steps.

Implicit methods are in general expensive to solve in terms of functions evaluations.

Nevertheless they have been proven to be more stable and more accurate for the same order
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and step size compared to the explicit ones (Lambert, 1973). Thus, implicit methods can be
implemented with larger time steps.

In a predictor-corrector scheme, an explicit method is used as a predictor, generating an

initial guess for {Y}n . Next, an implicit scheme is implemented in order to correct the initial

guess. Thus, a predictor-corrector scheme first evaluates in a single function evaluation the
. 0 : . . . .
predicted value, denoted {Y }<n ) and then corrects this value by iterating equation (6.30) until

convergence. Referring to equation (6.30), at each iteration m the quantity h, {Y}n is

evaluated through the following relation:

m ]_ m
{ry :h—ﬁo({y}i ' {u},] (632)

Different iterative techniques can be implemented at this point . In this work, the classical
Newton-Raphson scheme is implemented that converges quadratically, thus allowing for
fewer iterations and larger time steps. For this reason the following residual quantity is

defined:

m-+1 m m
Res( V)] = () (), — g ()17 63
and the iteration process evolves until the corresponding Taylor expansion assumes a small

value (Radhakrishnan and Hindmarsh, 1993).
6.5 The continuum and consistent formulations of the constitutive tensor

The Newton-Raphson method that is implemented within the corrector step reduces the
nonlinear problem to a sequence of linearized problems (through Taylor expansion) referred
to as iterations in the previous section. The linearized incremental problem requires the

evaluation of the tangent stiffness matrix of the structure. In general, this tangent stiffness
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matrix can be computed from the material tangent moduli (operators) at the material (or
integration point) level. In rate-independent plasticity, the material constitutive behavior is
described by rate constitutive equations as presented in Chapter 2 and implemented in
Chapter 3. According to the incremental-iterative process discussed in the previous section,
these rate constitutive equations are numerically integrated over a sequence of discrete time or
load steps.

The hysteretic nonlinear rate equations defined in relations (6.3) and (6.5) can be written in

the following generic form, for brevity:

{0} =[c}{4} (6.34)

where {Q} is a generalized action measure and {q} is a generalized deformation measure. In

relation (6.34) [G] is the smooth constitutive matrix of the material under consideration

directly defined from the ratio of the rates of the generalized measures. The global stiffness
matrix that is derived from [G ] is called the continuum tangent moduli of the structure.
Nevertheless, Nagtegaal and de Jong, 1981where amongst the first to notice that when using
an iterative procedure like the Newton-Raphson algorithm, the use of the continuum stiffness
matrix leads to problems as it is not consistent to the incremental strains being evaluated at
each step. Additionally, the use of this stiffness matrix would not guaranty the quadratic
convergence rate of the algorithm unless it is evaluated with respect to the incremental
deformation component Ag.

Thus, referring to equation (3.49) the incremental stress-strain relation at the 4, iteration is

evaluated as:
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A{o) = ]| afe) - a2 ) (639

where the increment of the hysteretic plastic multiplier is

-1

AN = H1H2(—[Ap ["a({n"}.@)+(B,]' [D][Bp]) 8,1 [p]aflM} ©36)
where [Ap] = 8@/ G{nm} and [Bp] = 8<I>/ 8{o<i) }The differential of the stress increment

1s defined as:

an{ol} = [p)laa{d"} - A)\(l)%dﬁ{a(i)} da\[B ]| (6.37)

and solving for dA {a(” } the following incremental relation is derived:
an{ol} = [6"|(aafM} —anr[B,]) (6.38)
from which it is concluded that the quantity relating the increment of stress to the increment

of strain is:

(G| =|1+ AAW[D]M] D] (6.39)

onfol}

Simo and Taylor, 1985 prove that this derivation ensures the quadratic convergence of the

Newton scheme, since it accounts for the change on the gradient [Bp] as the iterations

evolve. Substituting equations (3.59) and (3.60) into (6.36) and finally into (6.38) and (6.39),

the following expression for the hysteretic consistent constitutive matrix is derived:

(6.40)

N [5 + vsgn[{Ae(i) }T {Ag(i)}]][R*]
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where the incremental interaction matrix is defined as:

(6.41)

The derivation of the consistent constitutive matrix is crucial for the implementation of the

return-mapping algorithm scheme that is mainly used in plasticity (Simo and Hughes, 1998).

6.6 An equilibrium based approach of the first order representation

method

In the general case of a structure consisting of both hysteretic finite elements and macro-

elements, the nonlinear part of the stiffness matrix [K ] s (equation (6.1), varies with respect to

the vector of hysteretic stress components. Moreover, the hysteretic stress components are

introduced as additional unknowns into the solution scheme, through the rate equations (6.3).

On the other hand, the structural hysteretic matrix [K ] PE comprising of the individual

hysteretic components of the macro-elements, remains constant throughout the analysis
procedure. The inelastic behavior at the ends of the macro-elements is controlled by the
additional hysteretic degrees of freedom and the corresponding evolution equations.

In a time marching algorithm, such as the nonlinear dynamic analysis of structures, the
evaluation, at each time step, of the structural stiffness matrix is a time and memory
consuming process. In this Section, a method is examined that is based on the evaluation of

constant system matrices for the hysteretic finite elements.
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6.6.1 The Incidence Matrix of a Constant Stress / Strain finite element

1
Y‘ | A W W
p3

X

Fig. 6.1 Plane Stress Element and corresponding edge loads

Since the triangular element is a constant stress / constant strain element, equilibrium

requirements are fulfilled within the element. Assuming that on each side 4,4 = 1,2, 3 of the

triangle a distributed load p’ is applied with components p;, p; that gives rise to the

corresponding edge tractions, namely qj’; and qi, the equilibrium condition on the edge i is:

v (6.42)

Y

_ i
qx - anar + Txyn

¢ =T n 4+on

where n;,n; are the direction cosines of the " boundary of the element while o, o,, are

the normal stresses and Ty is the shear stress of the element (Fig. 6.1). The direction cosines

of the first side are defined as:

ni — y:sL yz
1 (6.43)
N
v L
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while the rest are derived by cyclic permutation of subscripts where L ,i = 1,2,3 is the length

of the i boundary of the element. Equation (6.42) is conveniently written in matrix form as:

'} =) (6:44)

oo qn" 0 Z
T o (6.45)
0 n n
Appending for the three sides of the elements, equation (6.44) is re-written as:
ql Tl U.’L’
q, (= T° o, (6.46)
q3 Td sz
—— ——
(621) (623) (31)
or in a more compact form:
{e}=7{-} (647)

By means of the principle of complementary virtual work (Washizu, 1980) and using the
shape functions of the plane stress element presented in equation (5.25), the equivalent nodal

forces of the tractions can be computed and assigned on each node as:

B 0 0 L 0 L 0}fg,

Pu(li) 0 0 0 Lz 0 Lz qyl

Py(;) 20 L 0 0 0 Lj|qg, '
(7 L 0 L 0 0 0}|q,

?{;) 0 L 0 L, 0 0 Z;

y3
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or:

) =[L{e) (649)

where ¢ is the thickness of the element and L i =1,2,3 is the length of the corresponding
boundary while the superscript ( j) denotes the index of the element. Combining equations

(6.46) and (6.49), the equilibrium expression between the internal stress field of the element

and the external applied nodal forces is obtained:

r}=3lHV]
(676) 6+3)

—

o} (6.50)

321)

{

—_

After some matrix manipulation the following compact form of equation (6.50) is derived:

Pr=v

—

Ao} =|c|{e} (©51

(673) ()

where V' is the elemental volume, and A is the equilibrium matrix of the triangular plane

stress element defined as:

b 0 ¢
0 ¢ b1
b, 0 ¢
Al=|? 2 6.52
[ ] 0 c, b2 ( )
b3 0 ¢
0 ¢, b3

and b =y, —Ys, ¢ =T3—Ty, by=ys,—vy, ¢ =z —25, b=y —y, and
Cy = Ty — ;.
It can be easily noticed that the equilibrium matrix is the transpose of the strain matrix

introduced in equation (5.33) multiplied by twice the area of the triangular element.
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6.6.2 The node method for the case of plane problems

2Pt Py =Pl +Ey
II_. P? =P} + P

y Pyl _ P;i) + ny) + Py(f‘)

g 21 . P?=PY 4 P21 PO

(2)
Py

Fig. 6.2 Equilibrium matrix derivation of a plane mesh

In Fig. 6.2 an arbitrary mesh of constant stress triangular elements is presented that
consists of a plane stress element mesh with n_, nodes and 7 elements. The equilibrium
conditions of the mesh are established by additively appending the elemental contributions on
the nodal equilibrium through equations (6.51). Thus, global equation of equilibrium can be

cast onto the following form:

A, {o}, = {P} (6.53)

where [Ae] is defined as the equilibrium matrix of the structure, {0’} s is the stress vector of

S
the whole structure and {P} is the nodal force vector. Equation (6.53) is a static equilibrium

equation which can be extended for the dynamic case by taking into account inertia forces.

Thus, the dynamic equilibrium equations assume the following hybrid form:

g+ 1] e}, = {e(0) (059
Considering the principle of complementary virtual work, the following relation can be

established in terms of compatibility:
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4] {d} ={e} (6.55)
(o, Nom) () ()

The main advantage of the proposed method is that it separates the problem into two sets
of equations. The first consists of the global linear equilibrium and compatibility equations,
while the second one of local nonlinear constitutive equations, together with the hysteretic
evolutionary equations.

In the general case where a structure consists of both plane stress elements and macro-
elements, equation (6.54) can be cast in the following form:

() 0} + Ol 0} + [ (o} (K]0 o)+ (1127 (2} = (P} 639

. . Aug . . . Au
where the equilibrium matrix [Ae }S and the stiffness and hysteretic matrices [K ] S“g and

Aug

g are augmented for the whole structure. Equation (6.56) is linear with respect to the

]

vector of stresses {a} , the global displacement vector {U } and the hysteretic deformation

vector {z} These set of equations is accompanied with a set of hysteretic equations for the

stress field and the hysteretic deformation field, namely:

(6}, =281, {0} 657

and:

{7} =rdu}{=h (6.58)

6.7 Conclusions

In this Chapter, the computational aspects of the proposed hysteretic finite elements and
macro-elements are presented. The standard second order solution schemes, namely the
central difference method and the Newmark method are modified, to account for the

217



Chapter VI Structural Analysis Implementing Bouc-Wen Hysteresis

additional equations introduced by the rate form of the hysteretic parameters. Moreover, the
numerical aspect of stiffness is introduced and the family of linear multistep predictor-
corrector methods is presented that successfully deals with stiff numerical problems.

Finally, a method is proposed for the dynamic nonlinear analysis of structures based on the
node method (Spillers, 1962), initially developed for the case of skeletal structures. By
considering the stress field of the hysteretic finite elements as additional unknown the
nonlinear equations of motion are formulated in terms of the constant equilibrium matrix of
the finite elements and the constant elastic stiffness and hysteretic matrices of the macro-
elements. In this way, inelasticity is introduced only at the element level, through the
evolution equations of the additional unknowns, namely the hysteretic stress field and the
hysteretic deformation field. This method bares the advantage of not requiring the evaluation
of global system matrices at each time step of a nonlinear marching process, at the cost of
introducing additional unknowns. Yet, if properly programmed, the resulting problem of
solving a linear system is more efficiently handled computationally than the iterative
evaluation of stiffness components.

In the present thesis, the method is developed and presented only for the case of plane
stress triangular elements. Further development is required to derive the necessary incidence

matrices for other types of surface and three-dimensional elements.
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Chapter VII Examples

7.1 Introduction

In this chapter, examples are presented that demonstrate both the validity of the proposed
formulation and its applicability on different types of structures. Validity is established
through comparison with well documented computer codes such as Idarc (Valles et al., 1996)
Abaqus (Abaqus, 2005) and OpenSees (McKenna et al., 2000).

In the first example, a shallow arch is subjected to a sinusoidal excitation and its response
its examined considering material and geometric nonlinearities. In the second example, the
response of a shear link is examined under cyclic loading. Shear links are frequently
implemented as an effective mechanism of energy dissipation. Roeder and Popov (1978)
conducted a series of experiments using shear links in eccentrically braced frames (EBFs).
These and subsequent studies by Hjelmstad and Popov (1983), and Kasai and Popov (1986)
proved that localized ductile yielding in shear, bares significant advantages over bending
failure. Recently, EBFs bearing shear links have been proposed as rehabilitation mechanisms
of reinforced concrete frames (Ghobarah and Elfath, 2001, Mazzolani, 2008).

Next, the proposed beam formulation is used to verify the dynamic response of a typical
steel moment frame of a hospital building located at Woodland Hills, California. The solution
is compared to results obtained from the Force analogy Method, described in Wong & Yang
(1999), the Idarc computer code and OpenSees.

Finally, a three-dimensional steel building is examined, imposed to seismic excitation in
two horizontal excitations. Two cases of lateral load resisting mechanics are used. In the first,
typical (inverted V) concentric braced frames are implemented while in the second suspended
zipper braced frame are implemented. The zipper braced frame configuration (Fig.7.1b) was
first proposed by Khatib (Khatib et al.1988). The frame has geometry similar to that of the

conventional inverted-V braced frame (Fig.7.1a), except that a vertical structural element, the
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zipper column, is added at the beam mid-span points from the second to the top story of the
frame.

The advantages of the zipper frame as an energy dissipation mechanism have been well
documented in Khatib et al. (1988). The mechanism relies on the successive buckling of the
compression braces, from the first story and moving upwards. Referring to the three story
brace in Fig.7.1(b), after the brace of the first story buckles, the vertical force of the
corresponding beam is transmitted to the second story through the zipper column. Further
increased lateral deformations, will inevitably lead to a mechanism in which all compression
braces have buckled and also beam plastic hinges have been activated. However, as this
mechanism evolves, the structural stiffness is significantly reduced leading to a softening
behavior that is difficult to assess, thus limiting the applicability of the zipper frame,
especially in high rise buildings where lateral stability and second order effects are of the
utmost importance.

Leon and Yang (2009) introduced the suspended zipper frame Fig.7.1c, by modifying the
conventional zipper braced frame. In their proposal, overdesigned members are used as braces
at selected stories along the frame height such that they remain elastic, thus preventing the
formation of the complete zipper mechanism. The primary function of the zipper column is to
transfer the unbalanced vertical force to the upper story braces and to support the beams at
mid-span. Leon and Yang (2003) have shown that by providing the support at mid-span of the
beams, a reduction of the beam sizes can be achieved, which may save material and makes the
suspended zipper braced frame more economical. This configuration also provides a clear
force path and makes the capacity design for the frame structural members relatively

straightforward.
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(a) (b) (c)
Fig.7.1Typical concentric braced frames (a) inverted V (b) zipper type (c) suspended
zipper type

The building presented in this example is also examined by Yang et al. (2009) and

conclusions have been drawn on the advantages of the second type of framing.

7.2 Shallow arch

A shallow arch is examined with a rise to span ratio of about 2%. The arch is considered
restrained against out of plane motions while care has been taken to prevent member
buckling. Pinned boundary conditions are imposed at both ends of the structure. Apart from
self-weight, an additional mass of 3.5 KN is considered to be lumped at each node of the
lower chord. The geometry of the arch is presented in Fig. 7.2 while the material and cross-
sectional properties are presented in Table 7.1. A minor value of kinematic hardening is

considered for the S235 steel. The rupture strain is considered at 6%.
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34.29 m
26.67 m

19.05 M

1.1085 m
1.2850 m
13460 m

0.8382 m
A

7.62m

15.24 M
) 22.86 m )
t |

30.48 m

Fig. 7.2 Shallow Arch Geometry (shape out of scale)

Area 0.0006 m*
Eyouns 210 GPa
a 0.00015
Oy 235 MPa
n 25

Jé; 0.5

Y 0.5

Table 7.1 Cross-Sectional and material properties

The truss structure is modeled using one truss element per member, implementing the
hysteretic strain truss element formulation presented in Chapter 4. Two loading scenarios are
considered in this example. In the first, the truss is imposed into monotonically increasing
vertical loads until collapse. In the second scenario, a combined horizontal and vertical

sinusoidal excitation is imposed, distributed at the upper chord of the truss.
7.2.1 Nonlinear static analysis

The proportional loading applied in the truss is presented in Fig. 7.3. The load is
monotonically increased until collapse. In Fig. 7.4, the capacity curve of the truss is

presented, in terms of applied load with respect to the vertical displacement at node #10.

Fig. 7.3 Proportional static loading
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Fig. 7.4 Applied Force — Vertical Displacement Capacity Curve

The solution provided by the proposed formulation is compared to results obtained also
from SAP2000 commercial code. The displacement based beam element is used in SAP2000,
with moment releases at both ends, while plasticity is simulated through properly calibrated
axial force-axial displacement springs at both ends of each element. Both the bending
stiffness and shear area of the beam element in SAP2000 are reduced by a factor of 10™ to
fully avoid any bending deformations.

A force control pushover analysis is performed in SAP2000, using the modified Newton-
Raphson solution procedure. The load is subdivided in 100 incremental steps. The results
obtained are compared in Fig. 7.5 in terms of applied force with respect to the vertical
displacement at node #10.

25

20 e Proposed Formulation SAP2000

15 F

10

Applied Force (KN)

0 L ]
0.00 0.50 1.00

Vertical Displacement (m)

Fig. 7.5 Comparison of the proposed formulation to SAP2000
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The solutions are practically the same both in the elastic and in the inelastic regime. In Fig.
7.6, axial force — axial deformation diagrams are presented for elements #2 at the lower chord
and #16 at the upper chord of the truss (Fig. 7.3). The behavior of the truss elements is
bilinear with a sharp transition from the elastic to the inelastic regime.
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Fig. 7.6 Axial Force — Axial Deformation plots of elements #2 and #16

7.2.2 Nonlinear dynamic analysis

In this analysis scenario a time varying horizontal and vertical loading, distributed at the
left side of the upper chord, is imposed. The distribution is presented in Fig. 7.7 while the

amplitude of the loading varies according to the following sinusoidal relation:

= 2.55in(7rt)

Fig. 7.7 Dynamic load distribution

Ten seconds of analysis are considered while the time integration step is dt = 0.2 sec. In
Fig.7.8(a) time history of the horizontal displacement of node #6 is presented. The time

history of the vertical displacement at mid-span is presented in Fig.7.8(b). The time-histories
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presented demonstrate a time varying period of oscillation, thus, the truss undergoes inelastic

deformation.
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Fig.7.8 (a) Horizontal Displacement at node #6 (b) Vertical Displacement at node #10

In Fig. 7.9(a) and (b), axial force — axial deformation hysteretic loops are presented for
elements #7 and #12 respectively. Due to kinematic hardening, only two inelastic branches
are observed, upon the first loading-unloading-reloading cycle of the structure. After that, the
members respond elastically due to the linear increase in the back-stress.

In Fig. 7.10 the effect of the smoothness parameter n of the Bouc-Wen model is examined
both on the global response of the structure and on an element basis. Two extreme values of
parameter n are considered namely n = 25, that results in a sharp transition from the elastic
to the inelastic regime and n = 2, that results on a smooth transition from the elastic to the
inelastic regime. In Fig. 7.10(a), the time history of the vertical displacement at node #10 is
presented for the two cases. Though the extreme values of the displacement are not affected,
the overall behavior of the truss changes, since extreme values occur at the opposite direction
of loading. This distinction is clearly depicted in Fig. 7.10(b), where the axial force - axial

deformation hysteretic loop of element #7 is presented.
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Fig. 7.10 Response comparison for extreme smoothing parameters (a) Vertical
Displacement at node #10 (b) Axial force — axial deformation hysteretic loop at element #7
for the case where (n =2)

7.2.3 Large displacement analysis

The shallow arch undergoes large displacements, as presented in the corresponding
capacity curve (Fig. 7.4). Thus, a geometrically nonlinear analysis needs to be performed to
accurately predict the actual response of the structure.

A dynamic analysis is performed, imposing the load distribution presented in Fig. 7.7

where P = 2.5 sin(mﬁ). The following set of Bouc-Wen parameters is considered, namely

n=2 03=08 7=0.6. The corresponding time-history of the vertical displacement at

node #10 is presented in
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Fig. 7.11 Vertical Displacement at node #10 (Large Displacement Analysis)

7.3  Cyclically loaded shear beam

A 70 cm shear link of an IPE400 cross-section is examined in this paragraph. Material
properties are S275 with an Elastic modulus of 210 GPa and a yield stress equal to 275 MPa.
The solution obtained with the proposed formulation is compared against a solution obtained
using Abaqus. The structural model implemented in Abaqus consists of 3712 quadrilateral
shell elements and is presented in Fig.7.12(b). An elastic perfectly plastic material behaviour
is considered in the Abaqus model. The computational model implemented in the proposed

formulation is presented in Fig.7.12(c). The parameters chosen for the Bouc-Wen model are

n=26 B=+v=0.5 «a =0.025. The Orbison criterion is considered (Orbison et al.,

1982), defined by the following relation:

® = 1.150% + m? + m + 3.67n’*m? + 3.0n°m? + 4.65m,m?

where n = P/ P

u

m, =M, / M, ,m, =M, / M,, while yrefers to the strong axis and 2

Y

refers to the weak axis of the cross-section. Yielding in shear is defined by the following

relation:
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Q,=—r (7.1)
NG
where A_ is the shear area of the cross-section and a, is the yield stress of the material under

uniaxial tension. The plastic moment implemented into the Orbison criterion is considered a

function of the shear force as defined by the following relation (Heyman and Dutton, 1954):

where M is the portion of bending retrieved from the web. A quasi-static analysis is

performed under a periodic excitation, presented in Fig.7.12(a).
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Fig.7.12 (a) Applied Load, (b) Abaqus FEM mesh, (c) Idealised beam model
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The force-displacement plot is presented in Fig.7.13. Since the link yields in shear, the
Bernoulli formulation fails to predict the nonlinear behaviour of the specimen. On the
opposite, the Timoshenko formulation agrees well with the Abaqus results. The minor
deviation both in the reloading phase and in the residual displacements is due to the inability
of the proposed formulation to accurately predict the exact distribution of residual stresses on
the cross-section that would give rise to a smoother transition from the elastic to the inelastic

regime. However, allowing for a different set of parameters in the Bouc-Wen model, namely

n=3 B=v=05 «a =0.025, the following plot of Fig.7.14 is produced.

The versatility of the implemented Bouc-Wen hysteretic rule on macro-modelling
overcomes the inherent inability of the concentrated plasticity formulation to predict the
smooth transition from the elastic to the inelastic regime due to the gradual yielding of the

web.
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Fig.7.15(a) Shear force — Shear strain diagram (b) Moment-Curvature diagram

In Fig.7.15(a) and (b) the shear force — shear strain and moment — curvature hysteresis
loops are presented respectively. This verifies the result from the comparison of the Bernoulli
and Timoshenko solutions that the shear link yields in shear since the ultimate moment

developed in the element is less than the plastic moment of the IPE400 section (359 KNm).

7.4  Woodland Hills Hospital- moment frame

In this example a typical 6 story frame of a hospital building located at Woodland Hills,

California is subjected to the El Centro accelerogram, scaled up with a factor of 1.8. The
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geometry of the frame is presented inFig.7.16. The mechanical properties of the members are
also presented in Fig.7.16, while the scaled accelerogram is presented in Fig.7.17. The yield
curvature, the yield axial strain and the yield shear strain are computed based on the cross
sectional data. Two subcases are considered.

In the first one, the Euler Bernoulli theory of bending is considered (setting A = 0) and
the obtained solution is compared to results obtained from the Force analogy Method,
described in Wong & Yang (1999). For the purpose of this analysis no interaction between
axial, shear and bending moment is considered. An analysis is also performed considering
interaction between axial and bending through the Orbison criterion and the validity of the
proposed scheme is proved through comparison to the OpenSees code (McKenna et al.,
2000).

In the second subcase, the Timoshenko formulation is used where yielding in shear is again
defined by relation (7.1)

The force-based element is implemented in OpenSees while plasticity is introduced into
the element through a fibre approach, at integration points defined along the element’s length.
In this way, the interaction between axial and bending plastic deformations is accurately
attributed, while plasticity in shear is considered uncoupled. The modified Newton scheme is
utilized with an average acceleration Newmark integrator. A uniaxial elastic-plastic material
model with kinematic hardening is used in the OpenSees code with the hardening constant

being equalto H kin = 45 GPa. This corresponds to a post-elastic to elastic stiffness ratio

a = 0.0015 .Viscous damping is not considered in both cases. The value of the shear
correction factor is equal to 0.255 for all sections.

The parameters of the Bouc-Wen model and the floor masses are presented in Fig.7.16.
The derived moment — curvature diagrams are bilinear with a sharp transition from the elastic

to the inelastic regime. The mass of the structure is considered lumped at the floor levels. The
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dynamic analysis is carried out for a time period of 20 seconds with a time integration step of

0.02 sec.
+26.21m
25 26 27 8 ___.° l
W27x94
+21.95m Parameter Value
v n 25
21 22 23 24 ___ " acol 1
W36x135 abeam 0.0015
2 3 3 g E =
-;I x P4 % Y 0.5
s = = o F’-‘lﬁa’” o, (kPa) | 248200
3117 3]s = It s 20 ... Material Parameters
W36x150
Cross " ¥
+13.41m Section -" -
v Beams
13 14 15 6 W36x210 | 0.00388 | 0.00118
W36x210 W36x150 0.00293 0.00118
~ n n s W36x135 0.00290 0.00118
n o = ~ W27x94 0.00284 0.00118
x i 3 - +9.14m
1 it 1 bt Columns
zls = BT H B £l BV ¢ W14x283 | 000578 | 0.00118
“““ W14x257 | 0.00594 | 0.00118
28 Watz10 W14x193 | 0.00530 | 0.00118
W14x500 0.00673 0.00118
W14x455 0.00636 | 0.00118
+ W14x342 0.00623 0.00118
5 3 7 g ; Section Yield Parameters
W36x210
#25 Floor Mass (tn)
- 1 402.8
2 § g 2 2 231.2
o E 3 = 3 180.4
= E ; §‘ +0.00m 4 180.4
2 3 . v 5 180.4
r 1 2 [==-= 6 182.1
Floor Masses
7.62m 7.62m 7.62m
& S < S
< < P =

Fig.7.16Typical Frame of Woodland Hills Hospital, California

Acceleration m/s?
[=] 5]

ta

10

20

30

Time (sec)

40 50

al)

Fig.7.17. Scaled accelerogram of El Centro Earthquake

235




Chapter VII Examples

7.4.1 Comparison to the Force Analogy method

In this example, the proposed element formulation and solution procedure is tested against
the Force analogy Method Wong & Yang (1999). As in the reference solution of Wong &
Yang (1999), columns are modeled by elastic members and only beams are allowed to

undergo inelastic deformations. The columns are kept elastic throughout the analysis by

letting the post elastic to elastic bending stiffness ratio «;, equal to unity. The yield curvature

and the axial strain at yield are computed based on the cross sectional data. Since, no axial
plastic deformation is accounted for in the Force Analogy approach, axial deformations are
also kept elastic by letting a, equal to unity in this analysis.

The time history of the tip displacement is plotted in Fig.7.18(a) and compared to the plot
presented in Wong & Yang (1999) for the case of strain hardening. There is a good agreement
between the results taken from the two methods especially in the first 10 seconds of the
excitation where inelastic deformation occurs. The different analysis schemes show the same
maximum displacement. Differences are observed towards the end of the response where
Force Analogy results appear more damped. These differences can also be attributed to the
different inelastic models utilized, and thus, to the different amount of hysteretic energy
dissipated during the inelastic response.

The same model is solved with the IDARC code, Valles et al. (1996), utilizing a Bouc-
Wen hysteretic model, with the same parameter set used in this analysis. The corresponding
plots are compared in Fig.7.18(b).

The results obtained using the Idarc code are in even better agreement to the results
obtained from the proposed formulation. Differences are still observed during the last
response cycles. These differences can be attributed to different truncation errors introduced

by the different solution schemes. Idarc code utilizes a Newton scheme with an average
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acceleration Newmark integrator. Such an approach, though unconditionally stable, yields

integration errors not introduced in the proposed analysis procedure, Bonnet et al. 2008. In

Fig.7.19(a) and (b) moment-curvature hysteresis loops are presented for the left node of

beams 25 and 28 respectively. It is evident that the selected set of parameters gives rise to

bilinear hysteretic loops with kinematic hardening.

placement (cm)

Dis

=30

30 ¢

20

20

- - -~ Force Analogy Method
——— Proposed Method

s e

1 1 L ]

0 5

10 15 20
Time (sec)

(@)

Displacement (cm)

30 -~

20 F

10 F

=10

20 |

=30

- === |darc

Proposed Method

]

5 10 15
Time (sec)

(b)

20

Fig.7.18. Top story horizontal displacement time history (a) Force Analogy Method vs.
Proposed Formulation (b) Idarc vs. Proposed Formulation

4000 ~ 4000
3.000 F 3.000 |
T 2000 T 2000 ¢
€ 100 g 1000
% 0 § 0t
£ -1.000 £ -1.000 F
= -2.000 S 2000 }
-3.000 4 -3.000
-4.000 L ' -4.000 L .
-0.010 0.000 0.010 -0.010 0.000 0.010
Curvature (1/m) Curvature (1/m)
(@) (b)
Fig.7.19. Moment-Curvature plots at (a) the left node of beam 25 (b) at the left node of

beam 28

In Fig.7.20, the results obtained from the proposed formulation are compared to the results

obtained using OpenSees. A fiber force based element is utilized in OpenSees with 4

integration points along each element’s length and considering 18 fibers along the section’s
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height; 2 for the flanges and 16 for the web. Only bending inelastic deformations are

considered, while both columns and beams are allowed to undergo plastic deformation.
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Fig.7.20. Top floor lateral displacement- Comparison of proposed formulation with respect
to OpenSees

The results obtained by the two analysis procedures are in very good agreement. The
computational time was 67 sec for the proposed formulation as opposed to 118 sec for the
OpenSees.

In Fig.7.21(a), the results obtained with the large displacement approach are compared to
those of the small displacement approach. As expected, the lateral displacements of the
structure are increased, mainly due to P-D effects at the vertical elements.

Finally, an analysis is performed by modeling the nonlinear behavior of columns and
beams following the proposed formulation, allowing for both flexural and axial deformations.
The time history of the top story lateral displacement is presented in Fig.7.21(b). The actual
response of the moment frame is slightly different than the one considering plastic
deformations in beams only. Comparing Fig.7.21(a) and Fig.7.21(b), it is evident that the
behavior of the frame in terms of maximum displacements and residual deformations is

similar. This is attributed to the high strength columns implemented in the design. It is
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important to mention though, that the same amount of computational time is needed to
perform the two analyses cases, since the method proposed herein handles hysteresis in a
unified way both in the elastic and in the inelastic regime. The time needed for the large
displacement analysis to conclude was two minutes in a personal computer equipped with a

Core Duo processor and 4 GB of RAM.
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Fig.7.21. Top floor lateral displacement: (a) small-large displacements, (b) large
displacements allowing for plastic deformations at beams and columns

7.4.2 Timoshenko beam modeling

For the first analysis case, the time history of the top story horizontal displacement (node
28) is plotted in Fig.7.22. The results obtained from the the proposed method and OpenSees
are in perfect agreement. Differences are observed towards the end of the response, due to the
different solution procedures implemented.

In the second analysis case, where the Timoshenko beam theory is considered, the dynamic
response of the structure is considerably different. In Fig.7.23, the time-history of the top-
story horizontal displacement is again compared to the results obtained from OpenSees. The
Timoshenko formulation yields a more flexible structure than the Euler one. The flexibility of
the structure is further increased due to shear apart from bending plastic deformations. Thus,

larger displacements are observed, especially towards the last 10 seconds of the response
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when plastic deformations accumulate, while the max and min response differ by 20% to

25%.

Proposed Formulation - Euler
— — — OPENSEES (Force Based 3 Int. points)
-------------- OPENSEES (Force Based 10 int. points)

30 r

20 | N

10

Displacement (cm)
: (=)

A u

_30 1 1 1 1 1 1 1 J
0.0 2.5 5.0 7.5 10.0 125 150 17,5 20.0
Time (sec)
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In 7.24 the maximum interstorey drift ratios are presented for the two analysis cases. It is
concluded that the dynamics of the structure are not significantly altered considering either

the Euler or Timoshenko formulation, since the distribution of the maximum shear drifts
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remains the same. Plastic deformations in both cases are concentrated in the first storey
columns. Thus, the differences observed between Fig.7.22 and Fig.7.23 are due to the shear
plastic deformations being developed in the first storey columns leading to a more flexible

structure in the Timoshenko formulation.

5
T —— Timoshenko --# - Euler

0.00 0.25 0.50 0.75 1.00
Maximum drift ratio (%)

7.24 Maximum interstorey drift ratio

In Fig. 7.25 the time history of the upper storey horizontal displacement is presented as
evaluated from the Timoshenko and Euler formulation. The Timoshenko formulation yields
larger displacements, especially in the last 10 seconds of the excitation where the differences
are larger than 50%.

This is attributed to the accumulations of plastic shear deformations that are not accounted for
in the Euler formulation. Increasing shear deformations in the columns lead to increasing
lateral displacements.

In the next figures, the efficiency of the proposed hysteretic interaction scheme is
presented. The axial force — axial deformation and moment - curvature diagrams of element
#1 (Fig.7.16) are presented in Fig.7.26(a) and (c) respectively. In Fig.7.26(b), the normalized
axial force and the normalized bending moment are plotted when yielding has occurred.

These points foliate the corresponding space and do not lay on a single curve due to kinematic
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hardening. For the same reason normalized values exceed unity in the figure. As expected,
yielding in bending is predominant in the nonlinear behaviour of the frame member.

However, the interaction scheme significantly alters its plastic deformation potential.
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Fig. 7.25 Comparison of Euler and Timoshenko formulations - Top story horizontal
displacement time history
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In Fig.7.26(d) the shear force-shear deformation hysteretic loop is plotted. Contrary to the
Euler-Bernoulli case where energy is dissipated only through the hysteretic moment-curvature
mechanism, in this case the shear hysteretic energy is also considered.

A Fortran code has been developed for the analysis of skeletal structures with the proposed
formulation. All the analyses were performed in a PC fitted with a Core Duo Quad CPU and 4
GBs of RAM. The analysis time with the proposed formulation was 67 sec. The analysis time

of OpenSees was 118 sec for three integration points.
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7.5  Steel building with concentric braced frames
7.5.1 Structure geometry

In this example, the dynamic response of an idealized steel structure is examined. The
lateral load resisting mechanism of the building consists of concentric braced frames. Two
cases are considered. In the first, the braced frames are of the inverted V type, while in the
second zipper suspended frames are implemented. In Fig.7.27, a general view of the steel
structure is presented. The building is doubly symmetrical, while braces exist in both its

transversal and longitudinal direction.

Fig.7.27 Three-dimensional model with inverted V braced frames

The beam member sizes are presented in Fig.7.28 to Fig. 7.30. Column sections are
W10x49 for all members, except from the corner columns which are W10x39. The sizing of
the bracing systems is presented in Section 7.5.2. The structural design of the building has
been conducted following the IBC 2000 standard. A detailed analysis of the sizing is

conducted in Leon and Yang (2009).
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Fig. 7.30 Plan View — 3™ floor

7.5.2 Bracing geometry

Two types of bracing mechanisms are considered and the corresponding structural
responses are compared. The member sizes of the bracing systems are presented in Fig.

7.31(a) and (b) for the inverted V brace and the suspended zipper brace respectively.
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Fig. 7.31 Sizing of bracing systems (a) Inverted V (b) Suspended zipper brace
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Apart from the suspension column the suspended zipper brace has stronger brace members
on the upper floor. However, weaker girders are used that yield a lighter design than that of

the inverted brace.
7.5.3 Analysis procedure and modeling

The analysis procedure consists of the following steps. A series of unidirectional nonlinear
dynamic analyses is performed, and the results obtained from Leon and Yang (2009) are
qualitatively verified. Masses are considered lumped at structural nodes. The total floor

masses considered for the nonlinear dynamic analyses conducted are presented in Table 7.2.

Floor Total Mass (tn)
1 1140.9
2 1388.7
3 1289.5
Table 7.2 Floor Masses

The beams and columns of the structure are modeled using the three-dimensional
hysteretic beam element presented in Chapter 4. The beams are considered rigid with respect
to in-plane bending. Pinned support conditions are considered for the base nodes of the
columns. A smooth elastic plastic relation with kinematic hardening is considered in the axial,
shear, Dbending and torsional degrees of freedom, setting n =8 and

a, =a, =q = ap = ap = 0.001.

The diagonal members of the braced frames are modeled using the hysteretic truss element
presented in Chapter 4. Since the compressive strength of the struts is limited by buckling, the
modified Baber-Noori Bouc-Wen model presented in Section 2.5.3 is implemented that
simulates asymmetric hysteretic loops. The elements are allowed to undergo inelastic

deformations only in tension while in compression the member fails when the buckling

strength is reached.
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7.5.4 Ground motion records

A set of 7 ground acceleration records is used. The records are scaled to match the ASCE-

05 response spectrum according to the building’s design requirements (Leon and Yang,

2009). The records are presented in Fig. 7.32 while the corresponding seismological data is

summarized in Table 7.3.
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Fig. 7.32 Ground motion records parallel to the fault
Event Year Station Mag Mechanis
m
Duzce 1999 Duzce 7.40 Strike-Slip
Imperial Valley 1979 Brawley Airport 6.53 Strike-Slip
Imperial Valley 1979 El Centro Array #4 6.53 Strike-Slip
Imperial Valley 1979 El Centro Array #5 6.53 Strike-Slip
Imperial Valley 1979 El Centro Array #7 6.53 Strike-Slip
Imperial Valley 1979 Holtville Post 6.53 Strike-Slip
Office

Victoria Mexico 1980 Chihuahua 6.33 Strike-Slip

Table 7.3 Ground motion records — Seismological Data

All records were retrieved from the PEER Ground Motion Database Center. The scaling of
the records was also performed through the Database Center. The scale factors of the

individual records are presented in Table 7.4.

Event Station Scale Factor
Duzce Duzce 1.0615
Imperial Valley Brawley Airport 2.7432
Imperial Valley El Centro Array #4 1.4607
Imperial Valley El Centro Array #5 1.1635
Imperial Valley El Centro Array #7 1.3279
Imperial Valley Holtville Post Office 1.8931
Victoria Mexico Chihuahua 3.6495

Table 7.4 Scale factors of ground motion records

In Fig. 7.33, the average spectrum of the scaled records is compared to the ASCE-05

demand spectrum.
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Fig. 7.33 Scaled average spectral acceleration of ground motion records

Both the geometric mean and the arithmetic mean of the scaled spectra converge to the

demand, especially in the range of periods from 0.6 sec to 1 sec where the primary eigen-

periods of the structure reside. The individual scaled spectra are presented in Fig. 7.34.
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Fig. 7.34 Response spectra of scaled ground motion records

250



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures

7.5.5 Analysis results

In Fig. 7.35 to Fig. 7.37 the time-histories of the longitudinal displacement of the simple
zipper frame are presented for the case of the Duzce motion record. The peak story

displacements coincide with the peak accelerations of the record.
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Fig. 7.35 Duzce record - Longitudinal Displacement — 1* floor
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Fig. 7.36 Duzce record - Longitudinal Displacement — 2" floor
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Fig. 7.37 Duzce record - Longitudinal Displacement — 3™ floor

The time histories of the interstorey drift ratios (IDR) are presented in Fig. 7.38. The larger

relative displacements are observed in 0-1 and 2-3 storey columns.
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Fig. 7.38 Duzce record - Interstorey drift ratios

In Fig. 7.39 to Fig. 7.42, the results obtained from the Victoria Mexico earthquake

excitation for the simple zipper frame are presented. The structure displays the same behavior

as in the Duzce record, with the columns between stories 1-2 baring the largest relative

displacements.
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Fig. 7.40 Victoria Mexico record - Longitudinal Displacement — 2™ floor
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Finally in Fig. 7.43 to Fig. 7.48 the results obtained from the Imperial Valley EO5 record

are presented.
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Fig. 7.46 IMPV EO05 record - Interstorey drift ratios

The dissipation mechanism predicted by the design is confirmed in both cases. The
compression braces successively buckle. Yielding of columns is also observed, in later stages
of the loading history. However, the corresponding hysteretic loops are narrow and yielded
columns are concentrated on the third floor where the largest values of IDRs are observed.
Typical hysteretic loops from a column element at the second and third strorey are presented

in Fig. 7.47 and Fig. 7.48 respectively.
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Fig. 7.47 Typical Moment-curvature hysteretic loop 2nd story

2000.00 f
1500.00 F
1000.00 F
500.00 F
0.00 F
-500.00 F
-1000.00 F
-1500.00 F
-2000.00 L L L !

Moment (KNm)

-0.04 -0.02 0.00 0.02 0.04

Curvature (1/cm)
Fig. 7.48 Typical Moment-curvature hysteretic loop 3rd story

A similar behavior is obtained from the analysis of the suspended zipper frame system.
Although the displacements are smaller than the simple zipper frame, differences are not
significant. In the case of the IMPV EOQ5 record, presented in Fig. 7.49, the differences in the

3" strory horizontal displacement are less than 1%.
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Fig. 7.49 Comparison of third floor horizontal displacements (IMPV EO5 record)

The largest deviations were met in the case of the IMPV Brawley motion record. The

corresponding time histories are presented in Fig. 7.50.
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Fig. 7.50 Comparison of third floor horizontal displacements (IMPV Brawley record)

The maximum displacements for the two bracing systems are summarized in Table 7.5. It
is evident that the suspended zipper brace system is more efficient since both the absolute
values of maximum displacement, as well as the corresponding mean values are smaller
compared to the simple zipper brace. However, differences are not striking and further

investigation should be made on the applicability of the suspended zipper frame.
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Max Floor Displacement

Event
(cm)
. Suspended Zipper
[-] Zipper Brace Brace
Duzce 8.2 7.8
Brawley Airport 4.7 3.8
El Centro Array #4 7.2 5.7
El Centro Array #5 5.7 6.2
El Centro Array #7 6.2 5.4
Holtville Post Office 7.2 6.3
Chihuahua 2.1 1.8
Mean Values 5.9 5.3

Table 7.5 Maximum and Mean Floor Displacement Values
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8.1 Summary and concluding remarks

In this dissertation, a general form of the Bouc-Wen model is derived in stress-strain form,
based on the phenomenological concepts of the classical theory of plasticity. A rate form of
the stress tensor is derived that accounts for the full cyclic behavior of the continuum. This
rate form is quite general in the sense that it accounts for every combination of yield criteria
and hardening laws whereas existing formulations only describe hysteretic behavior with
linear kinematic hardening. Based on concepts that stem from the endochronic theory of
plasticity, additional smooth operators are derived that account for the cyclic induced stiffness
degradation and strength deterioration phenomena observed in materials. The formulation
derived depends on total stress components rather than their deviatoric parts, thus yielding a
formulation that is easily incorporated in the Finite Element scheme as demonstrated in this
work.

The generalized hysteretic stress-strain law developed is implemented on the Finite
Element Scheme, yielding a versatile and compact formulation for the nonlinear dynamic
analysis of structures. As an example, the triangular plane stress element is reformulated, to
incorporate Bouc-Wen hysteretic plasticity. Examples are presented that demonstrate the
ability of the proposed formulation to simulate common and complex elastoplastic responses.

Moreover, a family of hysteretic macro-elements is derived for the modeling of skeletal
structures under static or dynamic loading. Firstly, a Total Lagrangian three-dimensional
hysteretic truss element is presented. Next, a beam element is formulated, starting from a two-
dimensional Euler/Bernoulli formulation and concluding to a generalized locking free three-
dimensional Timoshenko beam element with torsional warping. The hysteretic law
incorporated is based on stress resultant-generalized displacement relations and allows for the

simulation of interaction schemes in the stress resultant space.
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Finally, a solution approach is proposed for the nonlinear static and dynamic analysis of
structures modeled by hysteretic finite elements and macro-elements. The equation of motion
for a multi-degree freedom system consisting of both finite elements and macro-elements is
defined in terms of total stress components, nodal displacements and element hysteretic
deformations. In doing so, all the state matrices, namely the stiffness matrix and the hysteretic
matrix of the skeletal substructure and the equilibrium matrix of the finite element
substructure remain constant throughout the analysis procedure and need only be evaluated
once. Inelasticity is treated at the element level through the incorporation of the evolution
equations of the hysteretic parameters.

The formulations presented in this work are verified in terms of computational cost and
accuracy through comparison with various commercial and academic FEM codes such as

SAP2000, Abaqus, Nastran X, Idarc2D, Hyplas and OpenSees.

8.2 Future research

The following are research directions that further improve the work presented in this

dissertation:

1. The hysteretic FEM formulation presented in this work can be extended to shell and
three-dimensional finite element formulations, yielding a unified approach in the
nonlinear dynamic analysis of structures.

2. Incorporation of numerically derived stress-resultant interaction surfaces in the
proposed macro-element formulation.

3. Though cost-ineffective, the fiber based beam element formulation bares advantages in
certain cases of combined loading such as bending with torsional and distortional

warping in the large displacement regime. The macro-element formulation presented
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can be extended to incorporate fiber based beam element schemes by incorporating the
stress-strain generalized hysteretic model presented in this work.
4. Further improvement of the generalized stress-strain hysteretic law presented to

incorporate damage induced phenomena.
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