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Abstract 

 

Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of 

Structures 

 

By Savvas P. Triantafyllou 

 

National Technical University of Athens 

School of Civil Engineering 

Institute of Structural Analysis and Aseismic Research 

 

 

A problem of significant importance in structural engineering deals with the response of 

elastoplastic structures subjected to either static or dynamic loading. This dissertation focuses 

on the derivation of computational tools that facilitate both the development and the 

application of nonlinear solution methods. Attention is drawn on the definition of a 

generalized hysteretic model that accounts for any type of yield function and kinematic 

hardening rule. This is accomplished on the basis of the classical plasticity theory and the 

mathematical theory of hysteresis. 

Based on the phenomenological approach of classical plasticity the relations derived in 

stress space are projected onto the stress-resultant space. Within this framework, a novel three 

dimensional truss element that also accounts for geometrical nonlinear effects is presented. 

Additionally, a novel three-dimensional hysteretic Timoshenko beam element with torsional 



 

ii 

warping is derived. These elements are macro-elements in the sense that the corresponding 

constitutive relations are defined in terms of stress resultants and generalized deformation 

measures. Moreover, a generic procedure for the derivation of finite elements is presented. 

The stiffness matrix of the generic element is established as a smooth function of the current 

stress state through the proposed Bouc-Wen formulation. 

The classical second order solution schemes, namely the central difference method and the 

Newmark family of solvers are reformulated to account for the hysteretic equations in rate 

form. Moreover, the state-space approach is implemented for the solution of the equations of 

motion. A predictor corrector differential solver is used which demonstrates certain 

advantages when stiff problems are accounted for. Finally, a formulation of the equations of 

motion is proposed, that renders computational advantages compared to standard solution 

schemes, since the state matrices of the structure are evaluated only once in the beginning of 

the analysis and remain constant throughout the analysis procedure. 

A general purpose finite element code is developed that accounts for the hysteretic finite 

elements and macro-elements as well as the solution procedures introduced in this work. The 

proposed formulations are verified through illustrative examples that demonstrate the validity 

and accuracy of the proposed formulations. Furthermore, the advantages of the proposed set 

of elements are examined in terms of accuracy and computational cost as compared to 

standard nonlinear FEM derivations adopted both in academic and commercial source codes. 
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1.1 Background and motivation 

A problem of significant importance in structural engineering deals with the response of 

elastoplastic structures subjected to either static or dynamic loading. For load factored linear 

elastic analysis, predominantly suggested by the codes, the results are acceptable, but do not 

reveal the characteristics of the true behaviour of the structure. If inelastic response is taken 

into account, more refined models are needed to achieve a realistic behaviour. In recent years, 

significant research has been carried out in order to overcome the difficulties arising in such 

an analysis. Difficulties emanate not only from the inherent complexity of structures, but also 

from the uncertainties related to terms such as dynamical loading, material nonlinearity and 

hysteresis. 

Modern design codes such as the Greek pre-norm for the Seismic Retrofit of existing 

buildings (ΟΑΣΠ, 2010 in Greek), the European norm for the design of structures for 

earthquake resistance (EN, 1998) and the ASCE standard for the Seismic Rehabilitation of 

Existing Buildings (ASCE, 2007) offer specific guidelines for the evaluation of the nonlinear 

properties of structural components and the estimation of the nonlinear structural response. 

Concepts such as the displacement based design and the performance based design are 

therefore essential in the estimation of structural integrity (Priestley et al., 2007, Fardis, 

2010). 

On practice, nonlinear static analysis is favoured as opposed to the nonlinear dynamic 

analysis procedure due to the inherent complexity of the dynamic behaviour of structures and 

the severe computational cost of the dynamic analysis numerical schemes. Nevertheless, the 

advantages of a nonlinear dynamic analysis as opposed to a nonlinear static analysis are well 

documented (Bozorgnia and Bertero, 2004). 
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Another significant drawback of the nonlinear dynamic analysis is the vast amount of 

output data needed to be processed in order to evaluate the necessary design quantities. 

Eurocode 8 explicitly states that “The number of the accelerograms to be used shall be such 

as to give a stable statistical measure (mean and variance) of the response quantities of 

interest. The amplitude and the frequency content of the accelerograms shall be chosen such 

that their use results in an overall level of reliability commensurate with that implied by the 

use of the elastic response spectrum of 4.2.2”. Recent advantages in this area have also been 

documented such as the IDA method (Vamvatsikos D. and Cornell C.A., 2004). 

Nonlinearities in a structural system can have a profound effect on its transient structural 

response. Trusses usually have higher natural frequencies compared to relevant solid 

structures, because of their high stiffness-to-mass ratio. The nonlinearity of trusses under 

dynamic loading can stem from various origins: (i) geometrical-due to the variations in the 

geometrical properties of the structure as the load progresses; (ii) material-due to the inherent 

nonlinear behaviour of the materials under load; (iii) inertia-depending on the dynamic 

motion and the structural deformations; and (iv) damping depending on the structural joints 

and material. 

In structures with non-symmetric plan configuration, structural members such as columns 

and walls may undergo severe torsional deformation. Existing beam element formulations 

tend to underestimate the importance of such deformations in the nonlinear regime.  

Thus, sophisticated models are needed such as fibre beam element models or surface finite 

element models in order to accurately account for such behaviour. In this context, various 

beam elements have been proposed either displacement based (Bathe, 2007) or force based, 

(Sivaselvan and Reinhorn, 2003). Material nonlinearity is introduced at the section level, 

either macroscopically through a plastic-hinge approach (Gerolymos and Gazetas, 2005, 

Mazza and Mazza, 2010) or through a fibre-based formulation at the element level (Saritas 
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and Filippou, 2009, Papachristidis et al., 2010). In the latter, the Timoshenko beam theory is 

implemented within the framework of a force based distributed plasticity formulation. 

Although more accurate, the fibre based formulation comes at the cost of requiring 

numerical integrations at the section level. At least three points of integration are needed to 

achieve a linear distribution of the curvature along the element’s length with the most 

efficient Lobatto rule (Sivaselvan and Reinhorn, 2003). Thus, in a time marching-process as a 

nonlinear dynamic analysis, the computational advantage of concentrated plasticity, 

displacement based schemes remains significant.  

The Timoshenko beam theory has not been addressed in such problems, mainly due to the 

shear locking problem (Rakowski, 1990, Stolarski & Belytschko, 1983) of the displacement 

based isoparametric formulation that can lead to inaccurate results both in the linear and 

nonlinear case. The Timoshenko beam theory leads to increased structural displacements. 

This increase can be even greater under dynamical excitation since the dynamic 

characteristics of the structure are altered. Such deviations from the standard Euler based 

approach can have significant influence on the displacement based design of structures 

(Eurocode 8, Part 3). In structural members that are subjected to high shear forces, as in shear 

links of eccentrically braced frames (Kasai and Popov,1986), shear effects are very important 

both in the elastic and inelastic regime. 

Dissipation phenomena are of the utmost importance when studying the dynamic behavior 

of nonlinear systems. As such, hysteretic damping needs to be addressed directly by 

incorporating a hysteretic rule to model the cyclic response of the structure. A great number 

of hysteretic models have been proposed for different kind of materials and/ or structural 

components. Hysteretic models are either multilinear or smooth. Multilinear hysteretic models 

are defined as a set of linear segments together with a set of hysteretic rules to account for the 

various cyclic induced hysteretic phenomena, such as stiffness degradation, strength 
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deterioration and pinching (Reinhorn and Sivaselvan, 2000, Naeim et al, 2000). Different 

models exist depending on the material and the structural component such as the Takeda 

model (Takeda et al., 1970), the Q-hyst model (Saidi and Sozen, 1979) and the Roufaiel and 

Meyer model (Roufaiel and Meyer, 1987). A thorough presentation of multilinear models can 

be found on Fardis et al. (1996). It is important to mention that the set of rules accompanying 

each multilinear hysteretic model is based on observations made upon specific materials and 

concern force-displacement relations. Thus, a generalization of such models either on the 

stress-strain regime or in different materials is neither easy nor suggested. 

Smooth models are defined as a set of nonlinear equations often expressed in rate form. 

Stiffness degradation and strength deterioration are also implemented in the form of 

additional rate equations. This allows for the simulation of all the available hysteretic 

behaviours with a single smooth model, the parameters of which are varying, to match the 

desired behaviour. Such smooth models are the Dahl model of hysteresis (Dahl, 1978), the 

Preishach family of hysteretic models (Visintin, 2003) the Kuhn model of hysteresis 

|(Papoulia et al., 2007) and the Bouc-Wen family of hysteretic models. The Bouc model of 

hysteresis was first introduced in Bouc, 1967 followed by several modifications introduced, 

such as the Bouc-Wen model, (Wen et al. 1976), the Baber-Noori model, (Baber et. al., 1985) 

and the Reinhorn model (Sivaselvan & Reinhorn, 2000). The advantages of the Bouc-Wen 

model as compared to other smooth rate independent hysteretic models, either smooth such as 

the Ozdemir model (Ozdemir, 1976) and the Ramberg–Osgood model (Ramberg and Osgood 

1943) have been extensively commented in the literature (Ismail et al., 2010). 

A trend, not only in the seismic retrofit of existing buildings but also on the design of new 

ones, is the implementation of either active, semi-active or passive seismic isolation 

components. Devices such as, magneto-rheological dampers (Bitaraf et al., 2010), friction 

devices (Mokha et al., 1991), buckling-restrained braces (Black et al., 2004) demonstrate a 
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well-defined and distinct hysteretic behaviour. The Bouc-Wen model has been frequently to 

simulation the hysteretic response of such devices as in Tsopelaset al., 2009. Shape memory 

alloys have been examined as a means of retrofitting damaged steel connections (DesRoches 

et al., 2001, Panoskaltsis et al., 2004, Auricchio et al. 2008). Such materials also demonstrate 

an interesting hysteretic behaviour. 

So far, considerable effort has been made in introducing the Bouc-Wen model into the 

inelastic analysis of skeletal structures and joint behaviour, (Foliente, 1995). In Guggenberger 

and Grundmann, 2005, a force based concentrated plasticity beam element is derived, within 

the framework of Euler assumption, that accounts only for plastic bending deformations. 

Symeonov et al. (2000), introduce an Euler, force based, element formulation were interaction 

between the axial force and the bending moment is considered. This formulation leads to a 

non-constant flexibility matrix which depends on both the moment and the curvature of a 

given cross section. Although exact, especially in the case of members of variable cross 

sections, this approach leads to an increased computational cost due to the fact that state 

matrices do not remain constant and need updating, as the solution evolves. Though 

considerable effort has been made into introducing the Bouc-Wen model into the inelastic 

analysis of skeletal structures and joint behavior little has been done towards the development 

of surface and three-dimensional elements. This is also the case for soil-structure interaction 

problems, where efforts by Gerolymos and Gazetas, (2006, 2007), concentrated towards the 

proper use of the one dimensional Bouc-Wen model. 

1.2 Research objectives 

The prime objective of this research work is the description of the hysteretic response of 

materials and structural components within a unified and theoretically sound framework. The 

specific research objectives are: 
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 To accurately describe the hysteresis phenomenon based on both, the mathematical theory 

of hysteresis and a sound phenomenological background as the classical theory of 

plasticity 

 To enhance the existing hysteretic models so as to simulate the majority of the observed 

hysteretic behaviors 

 To introduce this hysteretic formulation into the finite element scheme, thus enhancing its 

applicability 

 To derive simple but accurate macro-elements that account for the nonlinear hysteretic 

behavior of skeletal structures. The effect of geometrical nonlinearities on the hysteretic 

response of skeletal structures is also considered 

 To examine whether the existing numerical procedures of nonlinear dynamic analysis are 

enhanced, in terms of computational cost, through the application of numerical solvers 

appropriate for the solution of stiff mathematical problems 

1.3 Organization of the dissertation 

This dissertation is organized as follows. In Chapter 2, the basic concepts of the theory of 

classical plasticity are presented. Attention is drawn to the phenomenological nature of 

classical plasticity. This chapter serves as a point of reference for subsequent chapters. 

Chapter 3 describes the theory of smooth hysteretic operators. Commencing from the 

mathematical theory of hysteresis, the initial uniaxial formulation of the Bouc-Wen model is 

presented. Based on the governing equations of classical plasticity, a novel derivation of the 

Bouc-Wen model in tensorial form is presented that accounts for any combination of yield 

function and hardening law. By introducing appropriate operators, stiffness degradation and 

strength deterioration are also implemented in the proposed hysteretic model. 
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Chapter 4 deals with the concept of macro-modeling. Based on the phenomenological 

approach of classical plasticity the relations derived in stress space are projected onto the 

stress-resultant space. Within this framework, a novel 3 dimensional truss element that also 

accounts for geometrical nonlinear effects is presented. Additionally, a novel three-

dimensional hysteretic Timoshenko beam element with torsional warping is derived. 

Simplified examples are presented to demonstrate the validity of the proposed formulations. 

To facilitate and clarify the presentation certain aspects of the solution approach implemented 

in this work are also presented. 

In Chapter 5 a generic procedure for the derivation of finite elements is presented. The 

stiffness matrix of the generic element is established as a smooth and continuous function of 

the current stress state through the proposed Bouc-Wen formulation. As an example, the 

triangular constant strain triangle formulation is presented and the validity of the method is 

established through benchmark tests. 

In Chapter 6 the solutions methods implemented in the present work are presented. The 

classical second order solution schemes, namely the central difference method and the 

Newmark family of solvers are reformulated to account for the hysteretic equations in rate 

form. Additionally, the state-space approach in the solution of the equations of motion is 

presented, that is adopted for the solution of the governing equations, since it is prone to 

certain advantages when stiff problems are accounted for. Furthermore, a formulation of the 

equations of motion is proposed, that renders computational advantages compared to standard 

solution schemes, since the state matrices of the structure are evaluated only once in the 

beginning of the analysis and remain constant throughout the analysis procedure. 

In Chapter 7, examples are presented that demonstrate the validity and accuracy of the 

proposed formulations. Furthermore, the advantages of the proposed set of elements are 
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examined in terms of accuracy and computational cost as compared to standard nonlinear 

FEM derivations. 

In Chapter 8 the conclusions drawn in this work are summarized. Some important results 

obtained are highlighted while at the same time the necessary areas requiring some further 

investigation are identified. 
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2.1 Introduction 

In this chapter, the fundamental concepts of continuum mechanics and classical plasticity 

are briefly presented, to form the basis of the subsequent analysis. At first, the notion of a 

material body is strictly defined and the associated compatibility conditions are stated. Next, 

the strain and stress measures used throughout this work are defined. 

Finally, the theory of classical plasticity is briefly discussed, by stating its main principles, 

namely the additive decomposition of the strain rates, the flow rule, the normality assumption 

and the hardening law. In addition, specific yield functions and hardening laws are presented, 

that are going to be used in the examples of the subsequent chapters. 

2.1.1 Basic concepts of continuum mechanics 

In this work, presentation is limited to the three-dimensional Euclidean space. Within this 

framework, a simple body Ì 3B R  is formally described as an open set of continuously 

distributed material points P  that span a region within the Euclidean space (Marsden and 

Hughes, 1994). Each point is uniquely defined by a set of Cartesian coordinates denoted 

herein as { } { }= 1 2 3

T
X X X X . Under the influence of an arbitrary force, B  translates, 

rotates and deforms. If 0t  is the time instant at which B  is considered undeformed, then for 

each > =0, 1,..it t i n
 

a series of deformed states or configurations of B  are defined, 

denoted herein as iC . A motion of the body is a one to one mapping f  3: B R  that maps 

B  from the initial configuration 0C  to the current configuration iC . Thus, for every time 

instance > 0it t : 

 { } { }( )f= ,
i i

ix X t  (2.1) 
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where { } { }= 1 2 3

Ti
x x x x  is the position vector of the point { }X  at the configuration 

iC . 

Accordingly, the displacement vector is defined as the difference of the position vectors at 

each configuration thus: 

 { } { }( ) { } { } { }f= - = -,
i iiu X t X x X  (2.2) 

The deformation gradient of the current configuration iC  is defined by differentiating 

equation (2.1) at a specific > 0it t : 

 { } { }( ){ } { }( )( ) { }
{ }

f fé ù=  = =ê úë û, ,

i
i i i i

i i

dx
dx d X t dX F Grad X t

dX
 (2.3) 

Replacing equation (2.1) into (2.3) the deformation gradient assumes the following form: 

 

é ù
ê ú
ê úé ù = ê úê úë û ê ú
ê úë û

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

i

x x x

F x x x

x x x

 (2.4) 

with = >det 0J F  (Lubliner, 2008). The deformation gradient is defined with respect to 

the displacement vector by substituting relation (2.2) into relation (2.3) yielding: 

 { } { }( )é ù é ù é ù= + = + Wê ú ë û ë ûë û
iiF Grad X u I  (2.5) 

where { }( )é ùW =ë û
i

Grad u  is the displacement gradient. 

2.1.2 Strain measures and accompanying stress measures 

In this work, the Green-Lagrange strain measure is introduced that is commonly 

implemented in engineering applications (Zienkiewicz and Taylor, 2005). The Green-

Lagrange strain tensor is defined by the following relation: 
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 ( )é ù é ù é ù é ù= -ë û ë û ë û ë û
1

2

T
E F F I  (2.6) 

where the product é ù é ùë û ë û
T
F F  is referred to as the right Cauchy-Green tensor. Replacing 

equation (2.5) into relation (2.6) the strain tensor is evaluated with respect to the displacement 

gradient: 

 ( )é ù é ù é ù é ù é ù= W + W + W Wë û ë û ë û ë û ë û
1

2

T T
E  (2.7) 

or, expressed in component form: 

 
æ ö¶ ¶ ¶ ¶ ÷ç ÷= + + =ç ÷ç ÷ç¶ ¶ ¶ ¶è ø

1
, , 1..3

2
i I J M M
IJ

J I I J

u u u u
E I J

X X X X
 (2.8) 

where the Einstein convention of summation is implemented. The Green-Lagrange strain 

tensor thus consists of two parts. The linear part coincides with the small strain approximation 

strain tensor: 

 
æ ö¶ ¶ ÷ç ÷= + =ç ÷ç ÷ç¶ ¶è ø

1
, , 1..3

2
I J

IJ
J I

u u
e I J

X X
 (2.9) 

while the nonlinear part is given by the following relation: 

 h
æ ö¶ ¶ ÷ç ÷= =ç ÷ç ÷ç ¶ ¶è ø

1
, , 1,..3

2
M M

IJ
I J

u u
I J

X X
 (2.10) 

It is proved through proper manipulation of the energy conservation laws (Belytschko et 

al., 2000) that the energy conjugate stress measure of the Green-Lagrange strain tensor is the 

second Piola-Kirchhoff stress tensor defined as: 

 s
- -é ù é ù é ù é ù=ë û ë û ë û ë û

1i i T
S J F F  (2.11) 
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which refers to the area of the initial configuration, while sé ùë û  is the Cauchy stress or true 

stress that refers to the area of the current configuration.  

To this point, the tensorial notation has been implemented for the derivation of the stress 

and strains relations. In the derivation of finite elements, the matrix notation of the stress and 

strain tensors is preferred since it leads to compact relations (Zienkiewicz and Taylor, 2005). 

In this work, the matrix notation is adopted, thus the stress and strain tensors are arranged in 

the following vectorial form: 

 { } { }= 11 22 33 12 23 31

T
S S S S S S S  (2.12) 

and 

 { } { }= 11 22 33 12 23 312 2 2
T

E E E E E E E  (2.13) 

If the small displacement assumption is adopted, then the nonlinear term of relation (2.10)

becomes significantly smaller than unity and is therefore omitted from the definition of the 

strain. Furthermore, to comply with standard FEM nomenclature, when reference is made to 

the special case of small displacements the stress and strain tensors will be denoted as { }s  

and { }e  respectively, (Cook et al., 2002). 

2.2 Sources of nonlinearities in structures 

2.2.1 Geometric nonlinearities 

The concept of geometric-nonlinearity is directly related but not limited to the definition of 

the strain measure described in section 2.1.1. By considering the nonlinear strain-

displacement equations (2.7) the equilibrium and constitutive equations of the continuum are 

formulated taking into account the change in shape (or volume) of the material body. Such 
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changes affect the distribution of stresses through the material volume (Marsden and Hughes, 

1994). Phenomena that are also treated as geometric nonlinearities are: 

 Large displacement and large strain behaviors, met in foam and rubber like 

materials 

 Time or load varying boundary conditions 

 Non-conservative loading, i.e. direction varying loading 

 Contact problems 

For an exhaustive description on the subject the reader is referred to Wriggers, 2008. The 

analysis presented in this work is mainly referred to the case of small displacements and 

strains. However some formulations, namely the derivation of the hysteretic truss element and 

the hysteretic Euler beam element, are extended to the large displacement regime proving that 

the extension to the large displacement regime is straightforward, though not trivial. 

2.2.2 Material nonlinearities  

The theory of linear elasticity is a simplified approximation, valid within a certain level of 

load intensity. Beyond that level, materials demonstrate a non-linear behavior that is 

mathematically expressed through a nonlinear stress-strain constitutive equation. Material 

nonlinearity is a generic term that embodies various phenomena i.e. 

 Non-linear elasticity 

 Rate-Independent plasticity 

 Thermo-plasticity 

 Rate-dependent plasticity or visco-plasticity 

 Nonliner creep 

In this work, the nonlinear behavior of materials under dynamic excitation is examined 

within the frame-work of rate-independent plasticity. Numerous experiments on structural 
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members such as wood joints (Foliente, 1995), steel members (Popov and Stephen, 1970) or 

R/C piers have demonstrated that the hysteretic energy accumulated due to irreversible plastic 

deformations is rate-independent.  

2.3 Concepts of plasticity theory 

2.3.1 A phenomenological approach to material behavior 

The mathematical theory of plasticity (Hill 1998, Kachanov 2004) is based on the mere 

observation that materials tend to demonstrate some common behavioral properties in spite of 

their different actual responses. This statement has been verified with numerous experimental 

results on materials as diverge as metals and soils (Hill, 1998). 

These common material properties can be summarized as follows: 

I. There exists an elastic domain within which any deformation imposed onto the 

material is purely reversible. 

II. If this domain of behavior is surpassed then the material undergoes permanent 

deformations. These deformations are called plastic and the material behavior is 

considered as that of a flow. 

III. Under consecutive cycles of loading unloading and reloading past the elastic 

domain the material exhibit a hardening or softening behavior. That is, the rate of 

accumulation of plastic deformations tends to decrease or increase cycle after 

cycle. 

The observations described above give rise to the three main principles of the small strain 

theory of plasticity that is the additive decomposition of the strain rate, the existence of a 

yield surface and the establishment of a hardening rule. Within this framework, and on the 

basis of the theory of continuum mechanics (Irgens, 2008, Reddy, 2008) a series of 

mathematical tools have been developed that adequately describe the inelastic material 
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behavior that is macroscopically observed without having to describe the microscopic 

mechanisms (crystal structure etc.) that give rise to such macroscopic behavior. A brief 

introduction on the concepts of micro-plasticity can be found in Dunne and Petrinic, 2005. 

2.3.2 The classical theory of plasticity 

 The small strain classical plasticity theory is based on the following set of governing 

equations, stemming from three principles described in the previous paragraph. 

 
Fig.2.1 Additive decomposition of the strain, uniaxial tension test 

Based on observations I and II the resulting total strain is decomposed into an elastic and a 

plastic part, where unloading from a stressed configuration beyond the elastic limit of the 

material is implied. Thus, the total strain { }e  is decomposed into an elastic deformation 

{ }ee  and a plastic deformation component { }ep . 

 { } { } { }e e e= +e p  (2.14) 

Relation (2.14) is more conveniently expressed in rate form as: 

 { } { } { }e e e= +  e p  (2.15) 

The additive decomposition of the strain tensor is schematically represented in Fig.2.1 for the 

case of a uniaxial tension test. The elastic deformation component accounts for the fully 
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reversible deformation while the plastic component accounts for the permanent deformations 

asserted onto the body. 

Plasticity is best described with respect to the components of the stress tensor at a given 

material point. Taking advantage of the symmetry of the stress tensor, its components define a 

6-dimensional Euclidean space. Since such a space is difficult to visualize, the problem is 

further simplified by referring to the 3-dimensional space defined by the principal stresses of 

the stress tensor. A point on the three-dimensional stress tensor defines a load point LP . 

Observation II leads to the definition of an evolution equation for the rate of the plastic 

deformation 

 { } { }
e l

s
¶F

=
¶

p  (2.16) 

wherel  called the plastic multiplier and F  is a yield function dependent on the components 

of the stress tensor, thus defining a hyper-surface in 6 . Since plastic deformations are not 

reversible, the plastic multiplier is a non-negative quantity. As long as the stress remains 

within the elastic domain, the plastic multiplier is by definition equal to zero, thus: 

 l
ìïï= íï>ïî

0, elastic domain

0,  plastic domain
 (2.17) 

The elastic domain is defined by the yield function, that is, any given stress tensor lying 

within the surface defined by the yield function stands for an elastic state, while any stress 

tensor lying on the boundary of the yield surface defines the plastic state. Since a direct 

relations exists between the stress tensor and the principal stress tensor (Marsden and Hughes, 

1994), the yield function is usually reformulated in terms of the principal stresses s1 , s2 , s3  

(Lubliner, 2008). Thus, its representation on the principal stress space yields a three 

dimensional surface. 
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By defining equation (2.16) another assumption of the theory is implied, that is the 

normality rule, stating that the direction of the evolution of the plastic strain is normal to the 

tangent of the yield surface at the load point. 

Finally, observation III leads to the definition of the hardening rule. Two main types of 

hardening are observed namely the isotropic and the kinematic hardening concept. Isotropic 

hardening is defined as the uniform expansion of the yield surface on the stress-space as 

presented in Fig.2.2(a).  

 
(a) (b) 

Fig.2.2(a) Isotropic hardening - uniform expansion of the yield surface (b) Kinematic 
hardening-relative displacement of the yield surface, parallel to the direction of the plastic 

deformation 

Kinematic hardening is defined by the displacement of the yield surface towards the 

direction of the plastic strain as presented in Fig.2.2(b). Both are expressed with the help of 

two model parameters, namely the isotropic hardening parameter { }( )k k s=  and the 

kinematic hardening parameter, or back-stress h . Thus, the yield surface in its most general 

form is a function of the load point, the isotropic hardening parameter and the back-stress 

 { } { }( )s h kF = F - ,  (2.18) 

The kinematic hardening rule is defined as an evolution equation of the back-stress, which 

assumes the following form: 

3s

2s

1s

{ } { }( )1,F=F -s h k

{ } { }( )2,F=F -s h k

3s

2s

1s

{ }( )F=F s

{ } { }( )F=F -s h
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 { } { } { } { }( )h l h h e=  , , ,...pG  (2.19) 

Equations (2.14) - (2.19) do not suffice to evaluate the plastic multiplier. To do so, another 

assumption needs to be made concerning the incremental behavior of the load point that is 

bound to remain on the yield surface for any further increment of the plastic multiplier. This 

is the consistency condition of classical plasticity that is expressed as: 

 
{ } { } { } { }s k h
s k h

æ ö æ öæ ö¶F ¶F ¶F÷ ÷ç ç÷ç÷ ÷F =  + + =ç ç÷ç÷ ÷÷ç ç÷ç÷ ÷÷ ÷ç ç¶ ¶ ¶è øè ø è ø
0 0

T TT

d d d d  (2.20) 

The introduction of the consistency condition finally leads to the evaluation of plastic 

multiplier at a given load point. This procedure will be described in detail in Chapter III as it 

will be the basis for the development of a generalized hysteretic model. The normality rule 

and the derived consistency condition are key concepts of the associative plasticity framework 

that states that the yield surface coincides with the plastic potential from which the plastic 

deformations are derived (Lubliner, 2008). The theoretical foundations of associative 

plasticity stem from the mere observation that in many materials (mainly polycrystalline 

metals) the direction of the principal strains coincides with the direction of principal stresses 

(Dunne & Petrinic, 2005). 

2.3.3 Yield surfaces 

In this section, the expressions of typical yield surfaces are presented, that will be used in 

subsequent Chapters. Historically, the concept of plasticity was first applied to metals in 

which the influence of the hydrostatic stress on yielding has been macroscopically observed 

to be negligible (Lubliner, 2008). The Tresca and von Mises yield criteria have been defined 

with respect to such observations. Furthermore, the Tresca and von-Mises yield criteria 

satisfy, by definition, symmetry properties based on the isotropy assumption (Lubliner, 2008). 
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This allows for the evaluation of the necessary model parameters through simple uniaxial 

tests. 

Tresca yield surface 

Tresca yield is based on the assumption that plastic deformation initiates when the 

maximum shear stress, over all planes, asserts a critical value. The Tresca yield criterion is 

defined by the following non-smooth equation: 

 
s s s s s s

k

- + - + -
F = -11 22 22 33 33 11 1

4TR  (2.21) 

wherek  is a critical value where yielding initiates. The value of k  can be derived from a 

uniaxial tension test, where the stress tensor is { } { }s s= 0 0 0 0 0
T

y  where sy  is 

the yield stress in uniaxial tension. Substituting into the definition of the Tresca yield the 

following expression is derived: 

 
s s

k
k

- =  =
2

1 0
4 2
y y  (2.22) 

Expressing the yield surface FTR  in terms of the principal stresses s1 , s2 , s3  the following 

relation is derived 

 
s s s s s s

s

- + - + -
F = -1 2 2 3 3 1 1TR

y

 (2.23) 

Equation (2.23) represents a hexagonal prism on the principal stress space as presented in 

Fig.2.3(a). The prism is inclined so that its directrices are parallel to the hydrostatic pressure 

line defined as s s s= =1 2 3 . 
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(a) (b) 

Fig.2.3(a) Tresca yield surface (b) von Mises yield surface 

von Mises yield surface 

Von Mises yield is derived through the hypothesis that plastic deformation initiates when 

the distortional part of the complementary energy of a material assumes a critical value. The 

von-Mises yield surface is defined as the locus of points in the stress space expressed by the 

following relation, (Lubliner, 2008): 

 0VMF =  (2.24) 

where: 

( ) ( ) ( ) ( ) ( ) ( )s s s s s s s s s

k

é ù- + - + - + + +ê ú
ë ûF = -

2 2 2 2 2 2

11 22 22 33 11 33 12 23 13

2

6
1VM (2.25) 

The critical value k  is again defined through a uniaxial test and the following value is 

derived: 

 
s

k s k s
k

- =  =  =
2

2 2
2

2
1 0 2 2y

y y  (2.26) 

Writing equation (2.25) in terms of the second invariant of the deviatoric stress tensor ( 2J ), 

the following relation is derived: 

1

2

3

s
s

s

=
=3s

2s

1s

1

2

3

s
s

s

=
=3s

2s

1s
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( )s

F = -2
2

1
2

VM

y

J
 (2.27) 

Thus, von Mises yielding initiates when 2J  assumes a critical value. For this reason, 

plasticity models incorporating the von Mises yield criterion are often referred to as 2J -

plasticity models (Simo & Hughes, 1998). If plotted on the principal stress space, equation 

(2.27) represents an inclined cylinder as presented in Fig.2.3(b). Comparing expressions 

(2.21) and (2.25) it is proved that if the two models are calibrated to predict the same yield 

stress in uniaxial tension, then the Tresca yield surface is circumscribed by the von Mises 

surface. Equivalently, if the two models are calibrated to predict the same yield stress in 

shear, the von Mises yield surface is inscribed in the Tresca one (Neto et al., 2008). 

Bresler-Pister yied surface 

When it comes to describing the plastic behavior of materials like soil, rock or concrete a 

yield criterion depending on the mean stress is needed. In this work, the Bresler-Pister yield 

criterion is used (Deder & Ayvaz, 2010). The Bresler-Pister yield criterion is a three 

parameter model that is used to simulate concrete plasticity. It is perceived as an extension of 

the Drucker - Prager yield criterion (Lubliner, 2008). The corresponding yield surface is 

defined by equation: 

 0BPF =  (2.28) 

where 

 
( ) ( )s s s s s s- + + - + +

F = -

2

2 1 11 22 33 2 11 22 33

0

1

6 1BP

J c c

c
 (2.29) 
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where 0 1 2, ,c c c  are material dependent coefficients and 2J  is the second invariant of the stress 

tensor. The choice of the parameter values needs to be made with care to derive a reasonably 

shaped yield surface. For the case of concrete, the following set of parameters is derived 

 

( )
( )
( )

( )
( )

( )

s s s s s ss s

s s s s s ss s

s s s s s

s s s s s ss s
s

s s

æ öæ ö- + +- ÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷ç ç÷ ÷çç + - -+ è øè ø
æ öæ ö- -÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷ç ç÷ ÷çç + - -+ è øè ø

= + -

2

1 2

2 2

2
0 1 2

4

4 23

3 21

4 23

3

b b c t c tt c

b b t c c tt c

b t c c t

b b t c c tt c

c
c c

c

c

c c c

 (2.30) 

In relations (2.30),st , sc  are the yield stresses in uniaxial tension and compression 

respectively while sb  is the yield stress in biaxial compression. The Bresler-Pister yield 

criterion is part of a general family of three-parameter models for concrete constitutive 

behavior. Further details can be found on Zhang (1993). In Fig.2.4, the Bresler-Pister yield 

surface is presented for the case of biaxial loading, considerings = 20c MPa , s = 23b MPa  

and s = 2t MPa  

 
Fig.2.4 Bresler-Pister Yield Surface 
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2.3.4 Kinematic hardening rules 

The Melan-Prager model 

The Melan - Prager hardening model (Lubliner, 2008) is defined by the following relation: 

 { } { }( ){ }h h e=  pc  (2.31) 

where { }( )hc  is an arbitrary function of the back-stress. When { }( )hc  is constant, equation 

(2.31) stands for the linear kinematic hardening model that is schematically presented in 

Fig.2.5(a) and (b) for the case of a uniaxial tensile test. To demonstrate the notion of back-

stress a von Mises material with linear kinematic hardening is considered. In Fig.2.5(a)the 

stress-strain path OAB is plotted where E  is the elastic modulus anda a é ùÎ ê úë û, 0 1E  is the 

post-yield modulus of the material. 

 

Fig.2.5 Material with linear kinematic hardening 

Upon unloading from point B to C, well beyond the yield stress of the material, the elastic 

part e11
e  of the total strain e11  is reversed while the residual part of the deformation is denoted 

as e11
p .  The elastic part of the strain rate is derived as: 

 s e= 11 11E  (2.32) 

11
pe 11

ee

E

Ea

E

c

11
pe

11 11= pch e

( )11 11F= - - ys h s
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If reloading occurs, the stress increases following the path CB. The material does not yield 

until point B is reached while at point B the stress assumes the following value: 

 
s

s a e
æ ö÷ç ÷ç= - ÷ç ÷÷çè ø

yE
E

 (2.33) 

Differentiating equation (2.33) with respect to time, the following relation is derived: 

 s a e=  E  (2.34) 

Since yield occurs at point B, the yield criterion is fulfilled and the following relation 

holds: 

 ( )s h s h s sF =  - - =  = -11 11 11 110 0y y  (2.35) 

Therefore, the back-stress expresses the additional stress that needs to be attained beyond the 

initial yield stress sy  in order for the material to yield again. Differentiating (2.35) with 

respect to time the following relation is derived: 

 h s= 11 11  (2.36) 

Thus the rate of evolution of the back-stress and the actual stress is the same. Substituting 

relation (2.36) into (2.31), considering equation (2.32) and implementing the additive 

decomposition of the strain rates (equation (2.15)), the following relation is established: 

 
( )

s s s a
a a a

= +  = +  =
1-

   1 1 1 E
c

E E c E E c
 (2.37) 

Thus a direct relation exist between the kinematic hardening coefficient, the elastic 

modulus and the post-elastic to elastic ratio a . 
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The Armstrong-Frederick kinematic hardening model 

The Armstrong-Frederick (AF) kinematic hardening model, which will be denoted as AF 

model for brevity, (Armstrong and Frederick, 1966) is expressed as: 

 { } { } { }h e e h= -  2

3
p p

eqh c  (2.38) 

where ,h c  are model parameters and ( ){ } { }e e e=  2 3
Tp p p

eq  is the equivalent plastic 

strain. Substituting equation (2.16) into (2.38) the following expression is derived: 

 { } { } { } { } { }h l l h l h
s s

æ ö¶F ¶F ÷ç ÷= - = -ç ÷ç ÷÷ç¶ ¶è ø
 2 2 2 2

3 3 3 3

h
h c c

c
 (2.39) 

Thus, the kinematic hardening function is defined as: 

 
{ } { }h
s

æ ö¶F ÷ç ÷= -ç ÷ç ÷÷ç ¶è ø

2 2

3 3
G h c  (2.40) 

The second part of equation (2.40) reveals an interesting feature of the AF model. When 

the back-stress assumes a constant value, that is { }h = 0 , equation (2.39) yields: 

 
{ } { } { } { }

h h
s s

æ ö¶F ¶F÷ç ÷- =  =ç ÷ç ÷÷ç ¶ ¶è ø

2 2 2
0

3 3 3

h
h c

c
 (2.41) 

Thus, the ratio h c  determines the maximum value of the back-stress, while from relation 

(2.39) it is derived that parameter c  controls the speed by which this maximum value is 

reached. The AF model is known to overestimate the ratcheting effect observed in cyclic tests 

of metals under non-zero mean stress (Kyriakides, 1994). For this reason, various 

modifications have been proposed (Chaboche, 1991, Dafalias, 2008). 
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2.4 Plasticity in terms of stress resultants 

The general framework of three-dimensional plasticity, though mathematically rigorous, is 

difficult to implement in real life applications due to the great number of the implicated 

unknowns, i.e. stresses, strains and displacements, and their corresponding equations. To cope 

with such problems various engineering theories have been proposed and used such as the 

Euler/Bernoulli theory of bending, the Timoshenko theory of bending or the St-Venant theory 

of torsion for prismatic beams. Relevant theories have been implemented for the solution of 

plane problems such as the Kirchhoff-Love and the Reissner-Mindlin theory of bending. 

Such theories are macroscopic, in the sense that their assumptions are based on 

observations over macroscopic properties e.g. plane sections remain plane and perpendicular 

to the neutral axis for the case of Euler/Bernoulli theory of bending. Moreover, the 

mathematical derivations are based on stress-resultants, i.e. forces and moments rather than 

stresses. The stress-resultants are integral quantities of stresses over a finite space quantity 

and as such they also constitute macroscopical quantities. Thus, contrary to stress-strain 

formulations where behavior is monitored at discrete points, macro-formulations describe the 

behavior over a finite space, e.g. a cross-section. Based on the same reasoning and 

considering predetermined patterns of plastic deformation the basic constituents of the 

phenomenological theory of plasticity can be also established in terms of stress resultants and 

corresponding generalized deformation measures. In this work, the theory of stress-resultant 

plasticity is implemented in the derivation of new hysteretic truss and beam-column elements. 

In general, stress-resultant plasticity models for skeletal structures involve adaptations of 

classical stress-space plasticity rules to model inelastic cross-section deformations under the 

combined application of axial and shear forces and moments. 
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Formal stress-resultant plasticity formulations for skeletal structures have been under 

development for about three decades. Such derivations can be found in Nigam (1970), Song 

Argyris et al. (1982), and Powell (1982), Orbison et al. (1982), Zhao (1993) and recently 

Skordeli and Bisbos (2010).These formulations are based on the assumption of plastic hinge 

formation where member ends are assumed to yield abruptly from elastic to perfectly plastic 

when a prescribed yield criterion is met. Stress-resultant plasticity models have been applied 

to reinforced concrete members (e.g., Takizawa and Aoyama 1976) and more recently to steel 

tubes (Mohareb, 2002). 

Yield criteria functions usually take the form of continuous or piecewise linear surfaces 

representing the fully yielded strength of members under the combined action of stress 

resultants. Flow rules, corresponding to these yield surfaces are also established as in the 

stress-strain representation. The main disadvantage of the stress-resultant scheme is that no 

analytical relation exists for members of arbitrary cross-section. However, a yield boundary 

can be numerically derived using appropriate software for the case of axial-bending 

interaction as in Charalampakis and Koumousis (2008b). 

2.4.1 Definition of stress resultants 

Denoting stress resultants by F  the corresponding generalized strains e  are defined as 

conjugate energy measures, such that: 

 d d= ò
V

W dVF e  (2.42) 

where dW  is the variation in the internal work produced by a variation in the generalized 

strain measure e  over a reference volume V . Considering a prismatic beam element and 

neglecting the work produced from shear stresses over shear strains, the vector of stress 

resultants is defined as: 
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 ( )=
T

y zP M MF  (2.43) 

where P  is the axial force, while yM  and zM  are bending moments with respect to the 

strong and weak axis of the cross-section respectively. The generalized strain vector 

corresponding to equation (2.43) is defined as: 

 ( )e f f=
T

y ze  (2.44) 

where e  is the centerline axial deformation, fy  is the curvature with respect to the strong axis 

and fz  is the curvature with respect to the weak axis of the cross-section.  

2.4.2 Yield surfaces in stress-resultant space 

Exponential yield surface for steel sections 

The exponential yield criterion concerning axial-biaxial bending interaction assumes the 

following form: 

 ( ) ( )a a
F = + +x x

y zn m m  (2.45) 

where = un P P , =y y yum M M , =z z zum M M , while a a,x y  are shape factors. 

Relation (2.45) is also implemented for the simulation of composite sections as described in 

Iu et al. (2009). In the trivial case where a a= = 1x y , equation (2.45) reduces to the linear 

interaction scheme implemented in EC3. The linear scheme constitutes a lower bound 

solution of the plasticity problem (Lubliner, 2008) thus yielding a conservative predictor for 

the true cross-sectional behavior. 

The Orbison yield surface 

The Orbison criterion (Orbison et al., 1982) is defined by the following relation: 
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 F = + + + + +2 2 4 2 2 6 2 4 21.15 3.67 3.0 4.65y z y z y zn m m n m n m m m  (2.46) 

where = un P P , =y y yum M M , =z z zum M M . In equation (2.46)y refers to the 

strong axis of the cross section while z refers to the weak axis of the cross-section. Equation 

(2.46) has been developed by curve-fitting over actual experimental data and is suited for 

interaction patterns observed in steel I-beams. 

The Heyman-Dutton yield surface 

In Heyman and Dutton (1954) the following yield criterion has been proposed for the 

moment-shear interaction of I-beams 

 ( )æ ö÷ç+ - - =÷ç ÷çè ø
2

1 1 1webm m q  (2.47) 

where = pm M M  is the bending ratio pM  being the fully plastic moment of the cross-

section, =web web pm M M  is the ratio of moment retrieved by the web over pM  and 

= pq Q Q  is the shear ration, pQ  being the fully plastic shear force. In Fig. 2.6, the Heyman-

Dutton yield criterion is presented for three distinct cases of webm  namely 0.1, 0.2 and 0.4. 

The case = 0.4webm  is an extreme scenario not accounted for in standard steel section 

profiles. 

The bending moment is not severely reduced for values of the shear ratio smaller than 

0.25. The reduction increases significantly for values of the shear ratio greater than 0.25. The 

reduction rate increases for increasing values of webm . For standard cross-sectional profiles 

the overall reduction in the bending strength is not greater than 20% of the initial value. 
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Fig. 2.6 The Heyman-Dutton yield criterion 

The Simo et al. yield surface 

Simo et al. (1983) analytically evaluated the following relation for the plastic interaction 

between axial, shear forces and bending moment for a rectangular cross-section 

 
æ öæ ö æ ö æ ö÷ç÷ ÷ ÷ ÷ç ç çç÷ ÷ ÷ ÷F = + + +ç ç çç÷ ÷ ÷ ÷ç ç çç÷ ÷ ÷ç ç ç÷è ø è ø è øç ÷è ø

2 2 4

1
u u u u

M P Q Q

M P Q Q
 (2.48) 

Relation (2.48) is analytical, depending only on the shape of the cross-section and thus can be 

implemented both on steel and reinforced concrete sections, provided that the uniaxial 

strength components uP , uM , uQ have been accurately evaluated. Fig. 2.7(a), the 3d 

interaction surface is presented while in Fig. 2.7(b) the corresponding iso-axial interaction 

curves are plotted. The bending strength of the cross-section reduces significantly for values 

of the axial ratio larger than 0.25. 
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3.1 Introduction 

An issue of major importance, for a nonlinear analysis, is the hysteretic rule needed to 

model the cyclic response of structures. Over the last twenty years, significant development 

has occurred in the so-called phenomenological approach of hysteresis. Following Massing 

(1925), Preisac (1935) and Valanis (1971), Bouc presented his formulation (1967) of the 

single degree degrading hysteresis model with pinching. Subsequently, many modifications 

have been introduced, such as the Bouc-Wen model (Wen, 1976, 1980), the Baber-Noori 

model (Baber and Wen 1980, Baber et al. 1986) and the Reinhorn model (Sivaselvan and 

Reinhorn, 2000). These hysteresis models –also known as smooth hysteretic models- are 

capable of simulating different types of hysteretic behavior using a single smooth hysteretic 

function affected by a set of user-defined parameters. 

The last decades Bouc-Wen hysteretic model is proven very versatile in expressing a wide 

range of hysteretic response including stiffness degradation, strength deterioration as well as 

pinching phenomena in reinforced concrete, steel members and connections, wood etc., 

(Foliente G. C, 1995). In addition, considerable effort has been devoted to alleviate Bouc-

Wen model from inconsistencies regarding thermodynamic admissibility, (Erlicher and Point 

2004, Erlicher and Bursi, 2009) and violation of plasticity postulates, (Charalampakis and 

Koumousis, 2009). The rate form of evolution equations, derived also on the basis of 

endochronic theories of plasticity (Valanis, 1971), is capable of expressing in an integrated 

way the phenomenological hysteretic behavior at the component level. This facilitates direct 

incorporation of identified model parameters for various members and/or connections leading 

to a more effective and controllable analysis, as compared to the pointwise stress-strain 

relations required in standard Finite Element Analysis. These features are revealed at the cost 
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of extending the elastic finite elements by introducing additional stiffness matrices that 

account for inelastic behavior and the inherent interaction of different components of stress. 

During the last decade, Bouc-Wen model has been adopted by many researchers, (Pires, 

1993, Choi and Lee, 2001) as a robust and accurate tool, to simulate the hysteretic behavior of 

various materials. At the same time, techniques were developed for the identification of the 

Bouc-Wen model parameters utilizing among others, advanced analytical techniques, as in 

Chatzi and Smyth (2008), evolutionary identification approaches, (Charalampakis and 

Koumousis, 2008a) and more recently in Chang et al. (2010) using wavelet analysis. 

 

3.1.1 The concept of hysteresis 

Consider the single degree of freedom (s.d.o.f.) oscillator presented in Fig.3.1. The 

oscillator exhibits an elastic-perfectly plastic material behavior with a yield stress σy. 

 
Fig.3.1 Single degree of freedom oscillator under cyclic excitation 

The response of the nonlinear oscillator is depicted in more detail in Fig.3.2. For stresses 

smaller than the yield stress, material behavior is defined by Hooke’s law, so that the elastic 

range of the response is evaluated as: 

( )resP t

( )p t( )mu t
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 ( )s e e s s= £, yE  (3.1) 

 
Fig.3.2 Hysteretic loop 

and there is 1:1 correspondence between the input and the output. 

However, there are at least two possible stress states s s sé ùÎ -ë û,y y  that correspond to an 

arbitrary strain level )e eé= Î +¥ë, ,yc c , larger than the yield strain ey .Thus, there does not 

exist a function ( )s e that can uniquely map the current level of strain to the current level of 

stress even for the trivial case of an elastic-perfectly plastic material. The mathematical theory 

of hysteresis tries to define a proper output function ( )s s é ù= ë û : 0,t T given an input 

function ( )e e é ù= ë û : 0,t T
 

such that the derived vector phase space ( ) ( )( )s e,t t  

coincides with the curve presented in Fig.3.2.  

Thus, the mechanical problem of hysteresis is translated into the mathematical problem of 

defining an operator, denoted herein as the hysteresis operator ( )é ùë ûB In t
 

where 

é ù ë û : 0,In T , is an arbitrary input time history such as displacement, strain e.t.c. From 

physical point of view, the functional has to be rate independent since the hysteretic energy 

accumulated over consequent loading and unloading cycles does not depend on the rate of the 
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input or output functions. Moreover, the hysteretic operator must be piecewise monotone, as 

the shape of the hysteretic loops implies (e.g. with respect to Fig.3.2, monotonically 

increasing in path OAB and monotonically decreasing in path BCD). Finally, the operator 

must have some property of memory which in mathematical terms is covered by the notion of 

causality (Logemann and Mawby, 2003). 

It is evident from the approach presented in this paragraph that the notion of hysteresis is 

coped with mathematical tools that are indifferent to the input and output functions describing 

the hysteretic loop. For this reason, the theory presented herein constitutes a 

phenomenological approach. Nevertheless, there are aspects that are directly connected to the 

mechanical properties of hysteresis such as energy dissipation mechanisms and hardening 

effects that will be addressed through this theory in a consistent way. 

3.2 The initial derivation of the Bouc-Wen model 

Bouc (1967) studied the response of a single degree of freedom oscillator with mass m  

and a hysteretic restoring force ( )resP t . According to the notions described in paragraph 2.1, 

the hysteretic restoring force is considered to be the result of a hysteretic operator B  over the 

displacement ( )u t : 

 =( ) [ ]( )resP t B u t  (3.2) 

The equation of motion of the s.d.o.f oscillator is then expressed as: 

 ( ) ( )é ù+ =ë û
2

2

d u
m B u t p t
dt

 (3.3) 

where ( )p t is the external force. Based on the initial work of Volterra (1928) for an internal 

restoring force with hysteretic properties, Bouc defined operator B as an integral scheme: 
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 ( ) ( ) ( )΄ ΄mé ù =ë û ò
0

,
t

t

B u t t t du t  (3.4) 

wherem is an intrinsic kernel and t́ >t . Furthermore, the following assumption is adopted for 

the kernel: 

 ( ) ( )m m= -, ' 't t t t  (3.5) 

that is, the evolution of m is irrelevant to the velocity of the oscillator. The property of 

piecewise monotony is met by requiring that the kernel is a bounded, continuous and 

decreasing function of the time increment D = - 't t t . Thus the following relations hold: 

 ( ) ( )m
m

D
£ D £ ¥ £

D
0 , 0

d t
t

d t
 (3.6) 

The condition of causality is met since the upper limit of the integral in equation (3.4) is the 

current time t  and the current value of the operator is the cumulative sum of the kernel over 

the displacement. Since the kernel depends on the time-step Dt , the derived hysteretic 

restoring force depends on the rate of the imposed load, yielding a formulation not eligible for 

a rate-independent plasticity formulation. To overcome this deficiency, Bouc introduced the 

following transformation: 

 ( ) ( ) ( )( )m m¢ ¢D  D  D  D, ,t u t t t u t t  (3.7) 

mapping the time increment Dt to the corresponding displacement incrementDu . Thus, the 

hysteretic force is expressed as: 

 ( ) ( )( ) ( )΄ ΄mé ù º = Dë û ò
0

( ) ,
t

res

t

B u t P t u t t du t  (3.8) 

where the kernel m  is now a bounded, positive and non-decreasing function of Du : 
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 ( ) ( )m
m

D
£ D £ ¥ £

D
0 , 0

d u
u

d u
 (3.9) 

Similarly, the intrinsic time step Du  is a positive, increasing function, since time 't is larger 

than t . Different definitions of the intrinsic time step lead to different hysteresis formulations, 

given that they all comply to equations (3.9). A typical example that is consistent with the 

above remarks is the following: 

 q jD = = = = = 
 : , (t)

du du
d u du dt dt d t

dt dt
 (3.10) 

The mathematical expression of the restoring force introduced in equation (3.8)though 

rigorous, fails to clarify the key parts of the restoring force in terms of mechanics. Trying to 

clarify the physical properties of the hysteretic operator B , Bouc introduced two arbitrary 

continuous scalar functions f , F  with the following properties: 

 

Φ

1 2 1 1 2

1 2 2 1 2

: ;  f(0)=0; ( ) - ( ) ( )

: ; (0)=0; ( ) - ( ) ( )

f R R f u f u K A u u

R R u u K A u u

 £ -

F  F F £ -

 (3.11) 

where 1 2,K K constants, for every 1 2, ,A u u . A generalization of the Volterra expression 

(equation (3.8)) is then established, such that: 

 
( )( ) ( )( )΄ ΄m

= +

= F Dò
0

( ) ( ( )) ( )

( ) ,

res
t

u

t

P t f u t z t

z t u t t t du
 (3.12) 

Since relations (3.12) hold for every function f , F , they also hold for: 

 ( )( ) ( ) ( )( )= + f u t ku t f u t  (3.13) 

where ( ) .f  is also a continuous scalar function. 
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Thus, substituting relation (3.13) into (3.12) a clear distinction is made between the linear 

elastic component of the restoring force ( )ku t , the nonlinear elastic term ( )( )f u t  and the 

nonlinear, history dependent, component ( )z t . Operator F  depends on the displacement 

time history u, so that the expression of the nonlinear component is irrelevant to the 

displacement rate. The integral of the second of relations (3.12) is a Lebesgue – Stieltjes 

integral (Halmos, 1974) that can be cast in the following Riemannian form: 

 ( ) ( )( ) ( )( )
( )

΄ ΄
΄

q

q m q q q
q

F
= = -ò

0

t
d du

z t z t t d
du d

 (3.14) 

where ( )q t is an intrinsic time complying to (3.10).The integral of equation (3.14) is the 

“memory” of the dynamical system, since ( )z t  is an integral over the time period - 0t t . As 

such, it adheres, by definition, to the Volterra property. Furthermore, since the kernel of the 

integral does not explicitly depend on t , the hysteretic parameter ( )z t  is by definition rate-

independent. Thus, the formulation proposed by Bouc is a formal, continuous and stable 

hysteretic operator (Brokate et al., 1993). 

Thus, the single degree of freedom equation of motion is evaluated as: 

 

( )

( ) ( )( )
( )

΄ ΄
΄

q

m q q q
q

ìïïïï + =ïïïïï = + +íïïïï Fï = -ïïïïî
ò



2

2

0

( )

( ) ( ) ( ( )) ( )

res

res
t

d w
m P t p t
dt

P t ku t f u t z t

d du
z t t d

du d

 (3.15) 

Bouc imposed the following relation on the variation of u : 

 ( ) ( ) ( )
΄ ΄

΄΄ ΄ ΄q q q q q t t
t

D = - = - = = =ò ò, ( ) :
t t

t
u t

t t

du
t t t t d d V u

d
 (3.16) 
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where '
t
tV u is defined as the total variation of u  on é ù

ê úë û΄,t t . It is easily proven that the following 

relation holds: 

 q t t=( ) ( )d du  (3.17) 

Any type of function can serve as a kernel. However, it can be proven that the differential 

equation of the nonlinear component can be derived always for an exponential kernel. 

3.2.1 The exponential kernel case 

Consider the following case where: 

 ( ) ( )= F =0,f t u u  (3.18) 

Equations (3.18) fulfill the properties set on relation (3.11). 

Substituting into the second of relations (3.15), the following expression for the restoring 

force is derived: 

 ( )΄ ΄
΄

q

m q q q
q

= + = + -ò
( )

0

( ) ( ) ( ) ( ) ( )
t

res
du

P t ku t z t ku t t d
d

 (3.19) 

The kernel in the integral of relation (3.19) is considered to be an exponent of the following 

form: 

 Α βbqm q -= A( ) ,                 , >0e  (3.20) 

that complies with relations (3.9). Differentiating relation (3.19): 

 q= + ( )resdP kdu dz  (3.21) 

Substituting the integral form of ( )z t into (3.21), the following relation is derived: 
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( )΄
΄

΄

΄΄ ΄
΄

΄ ΄
΄

q b q q
b q q

q q
q

q
b q q

q

q
q q q

q q

q
q b q q

q

- -
- -

=

- -

é ù¶ Aê úé ù= + A -ê úê úë û ¶ê ú
ë û

é ù
ê ú= + A - Aê ú
ê ú
ë û

ò

ò

0

0

( )
( )

'

( )

( )
( )

( )
( )

res

e du
dP kdu e du d d

d

du
kdu du e d d

d

 (3.22) 

Finally, taking into account the definition of the kernel introduced into (3.20) the following 

equation is derived: 

 b q= + = + -resdP kdu dz Kdu Adu zd  (3.23) 

Or equivalently in rate form: 

 
q

b= + = + -resdP du dz du du d
k k A z

dt dt dt dt dt dt
 (3.24) 

Combining the first and second of equations (3.24) , the following rate form is derived for the 

hysteretic parameter ( )z t : 

 
q

b= -
dz du d

A z
dt dt dt

 (3.25) 

Finally, substituting equation (3.17) into (3.25), the following, trivial equation of the Bouc-

Wen model is derived: 

 βbé ù= -ë ûsgn( )          A, >0
dz du

A z du
dt dt

 (3.26) 

and relation (3.15) is rewritten as: 

 
( )

b

ìïï + =ïïïíïï é ùï = = -ï ë ûïî

2

2
( )

sgn( )

B
res

B
res

d u
P t p t

dt
dP dz du

A z du
dt dt dt

 (3.27) 
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Equations (3.27) correspond to the simple case of a perfectly nonlinear s.d.o.f oscillator. The 

second of equations (3.27) can be solved by quadratures and the restoring force is established 

as a function of the displacement u : 

 ( ) ( ) ( )
( )( ) ( ) ( )( )b b

b b
- -= = - = -1 1sign du u sign du u

res
A A

P u z u e sign du e
sign du

(3.28) 

Referring to equation (3.20) one can assume without loss of generality that b=A C . Thus, 

equation (3.28) is rewritten as: 

 ( ) ( ) ( )( )b-= -1 sign du u
resP u Csign du e  (3.29) 

Different values of C  and b  give rise to different hysteretic loops with the rigid plastic body 

being an upper limit. In the limit case where b  ¥ the restoring force coincides with the 

expression of the perfect slider with unit threshold.  

 
( )
( )

b

m
¥

=

=

lim res

s

P Csign du

F Nsign du
 (3.30) 

where sF is the friction force, m the coefficient of friction and N the normal force. Thus, the 

trivial case of Bouc-Wen hysteresis smooths the standard expression of the friction force by 

merely relying on the mathematical expression of hysteresis as established by the pioneering 

work of Volterra (1928). 
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(a) (b) 

(c) (d) 
Fig.3.3(a) External Force (b) Friction Force (c) Displacement on slider (d) Friction Force-

Displacement hysteretic loop 

As an example, the response of the dynamic system presented in equations (3.27) is 

examined with constants = 2 KNC  and b = 10000  under cyclic loading. The excitation is 

presented in Fig.3.3(a). In Fig.3.3(b) and (c) the time-history of the friction force and the 

displacement are presented respectively. As predicted by equations (3.30), the system evolves 

as a perfect slider, with zero displacement until the external force reaches the sliding threshold 

defined by the constant C . The corresponding hysteresis loop is presented in Fig.3.3(d). As 

expected, a permanent displacement is observed after full unloading due to the dissipative 

nature of the friction force. 

3.3 From classical plasticity to Bouc-Wen hysteresis 

3.3.1 Decomposing the Bouc-Wen hysteretic model 

Modifications of the initial Bouc formulation (relation (3.27)) have been subsequently 

introduced such as the Bouc-Wen model (Wen, 1976, 1980), the Baber-Noori model (Baber 
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and Wen 1980, Baber et al. 1986) and the Reinhorn model (Sivaselvan and Reinhorn, 2000). 

In this work, the Bouc-Wen model as introduced in Wen, (1980) and later modified by  is 

used as the basis for every subsequent step of analysis: 

 

( )

( )

a

a b g

ìï + + =ïïïïï = +íïïï é ùï = - K - +ê úïïî ë û

 

  1 sgn( )

BW
res

BW
res

n

u cu P p t

P Ku z

z A z zu u

 (3.31) 

where c  is the viscous damping coefficient, BW
resP is the Bouc-Wen restoring force, a  is the 

post-elastic to elastic stiffness ratio, K  is the elastic stiffness of the oscillator while A , b , g  

are model parameters. Parameter A  has been proven to be redundant in subsequent works 

(Ma et al, 2004) and will be considered to be equal to unity throughout this work. As implied 

by the first of equations (3.31), the restoring force is split into two parts. The first part is 

linear with an effective stiffness equal to the plastic stiffness of the material and a hysteretic 

one with z  being the restoring force that bares the memory of the nonlinear system. In this 

work, a variant of this formulation is considered where z  is considered to be the hysteretic 

displacement of the system and thus: 

 

( )

( )a a

b g

ìïïï + + =ïïïïïïïïï = + - Kíïïïïï é ùï ê úïï = - +ê úïï ê úï ê úïî ë û

 

  

1

1 sgn( )

BW
res

BW
res

n

y

u cu P p t

P Ku z

z
z zu u

z

 (3.32) 

where yz is the maximum value of the hysteretic parameter. 
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The formulations presented in equations (3.31) and (3.32) are based on mechanical insight 

rather than the mathematical theory of hysteresis. Thus, the derivation of relation (3.31) from 

the mathematical background established in section 3.2 is not straightforward. However, a 

mechanical representation of the model can be established that allows for the decomposition 

of relation (3.31). 

This decomposition is schematically represented in Fig.3.4. Considering = 0c  for the 

sake of presentation, the model can be visualized as a parallel combination of a linear spring 

(Spring #1) and a nonlinear element, as shown inFig.3.4(a). The nonlinear element consists of 

a linear spring (Spring #2) and a slider connected in series. Thus, a two degree of freedom 

system is introduced, u, being the total displacement and z , being the relative displacement of 

Spring 2. From compatibility considerations, the sliding displacement, if any, is determined 

by the difference( )= -x u z . 

 
Fig.3.4 (a) Bouc-Wen model components (b) Force-displacement relation 

As long as the force acting on the slider is smaller than a threshold ( )yx , sliding does not 

occur, thus = 0x  and the relative displacement on Spring #2 is equal to the total imposed 

displacement. In such a case, the system behaves elastically with combined stiffness k, since 

( )
y

y

u t
αP

u

( ) y
1-α P

2

yP
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springs #1 and #2 are given an elastic stiffness of ak  and ( )a-1 k  respectively, a  being 

the inelastic to elastic stiffness ratio. 

When the slider threshold is overcome, sliding occurs and the relative displacement in 

spring #2 remains constant, denoted herein as yz . All these phases are summarized in the 

following force-displacement relationship: 

 ( )a a= + = + -1 2 1BW
resP P P ku kz  (3.33) 

where z  is: 

 
ì £ïï= íï >ïî

,

,
y

y y

u x x
z

z x x
 (3.34) 

As in engineering applications, the internal variable x  is neither easy to measure, nor 

derive theoretically, the total displacement at which sliding occurs is used instead. This can be 

easily derived (from a uniaxial tension experiment or implementing a specific yield criterion) 

and thus relation (3.34) is treated equivalently as: 

 
ì £ïï= íï >ïî

,

,
y

y y

u u u
z

u u u
 (3.35) 

Wen (1980) proposed the following relation in order to smooth the transition from the 

elastic (no sliding) to the inelastic response (sliding) of the system: 

 é ù= = A-ë û   1 2( ) ( ( ), ( ))z t f u t z t u h h  (3.36) 

where: 

 ( )( )b g= = + 1 2, sgn

n

y

z
h h zu

z
 (3.37) 
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h1 can be regarded as a uniaxial flow rule and h2 as the corresponding cyclic loading rate, 

while in the above relation, dot ⋅( )  denotes differentiation with respect to time. Parameter n  

controls the smoothness of the transition from the elastic to the inelastic regime, while the 

terms b  and g  introduced in relation (3.37) are shape factors that affect the shape of the 

hysteresis loop (Sivaselvan & Reinhorn, 2000). In Fig.3.5 the results from a strain controlled 

numerical experiment on a D18 rebar are presented for different values of the model 

parameters n , b  and g . Material parameters are S500 and E=200 GPa, while the length of 

the bar is considered to be 2m. 

(a) (b) 
 

(c)  
Fig.3.5 Strain controlled numerical experiment (a) Variation in hysteretic loop with respect 

to n (b) Variation in hysteretic loop with respect to parameterb ( g = 0.2 , n =5) (c) 
Variation in hysteretic loop with respect to parameter g  (b = 0.2 , n =5) 
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3.3.2 Remarks on Bouc-Wen modelling 

An immediate consequence of equations (3.33)and (3.36), is the fact that a small value of 

the smoothness parameter n , results on sliding even before the yield displacement yz  is 

reached. This is evident by considering, without loss of generality, that =( ) 1sign zu  (state of 

loading on the positive half plane), and thus relation (3.36) becomes: 

 ( )b g
é ù
ê ú

= - +ê ú
ê ú
ê úë û

 ( ) 1

n

y

z
z t u

z
 (3.38) 

Due to the physical considerations as described above, in the elastic case, it must hold that, 

with respect toFig.3.4, the relative displacement in spring 2 equals the displacement in spring 

1 and thus: 

 ( )
( )b g

b g
+ =é ù

ê ú
=  =  - + =  =ê ú

ê ú
ê úë û

 
1

( ) 1 1 0

n

y

z
z u z t u z

z
 (3.39) 

It is evident that relation (3.39) cannot hold since this would mean that the imposed 

displacement is also zero. What the normalized smoothing function does, is that it holds the 

term ( )b g+
n

yz z  sufficiently low, as long as yz z< , so that the following relation 

holds.  

 ( )
( )b g

b g
+ =

- + 
1

1 1

n

y

z

z
 (3.40) 

The effectiveness of the smoothing function with respect to parameter n is presented 

inFig.3.6.The arithmetic performance of this function increases as parameter n retains a large 

value, but is somewhat reduced as the n value reduces. As a result, equation (3.39) slightly 

deviates from equality and micro sliding occurs even before the yield displacement is reached. 
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Fig.3.6Variation of the smoothing function with respect to n 

Nevertheless, it is evident that such a formulation is able to model any uniaxial behavior 

introduced in the context of classical plasticity, by incorporating in a single equation the yield 

criterion, the flow rule and the loading rate. It is noted that the term defined herein as yield 

displacement, is a phenomenological quantity which stands for the displacement by which 

plastic deformation commences. This quantity together with the terms β, γ and n can be 

evaluated by various identification techniques. However, as Erlicher and Bursi (2004) proved, 

the identified parameters should comply to the following restriction, to yield a 

thermodynamic admissible model: 

 b g b- £ £  (3.41) 

Up to this point, the presentation of the Bouc-Wen model is based on the grounds of force-

displacement relations. Though versatile, this formulation limits the applicability of these 

relations where the Finite Element Method is concerned. In the next paragraphs, a general 

formulation is presented, within the framework of classical plasticity, that allows for the 

implementation of these smooth-hysteretic operators, thus avoiding the need for piece-wise 

linear hysteretic models. 

3.4 The generalized triaxial Bouc-Wen model 

Though the derivation of the Bouc-Wen model presented in section 3.2 was based on 

mathematical grounds, it can be proven that the same relations can be deducted considering 
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the physics of classical plasticity. The advantage of this approach is the fact that smoothed 

plasticity relations are deducted in terms of tensorial stress-strain relations. This leads to a 

versatile material model both from computational and experimental perspective. 

Classical plasticity is based on a set of governing equations, namely the flow rule, the yield 

condition, the consistency condition and the hardening rule. In the work presented herein, the 

case of associative plasticity is addressed where the plastic potential coincides with the flow 

rule. Denoting the flow rule as F , the rate of plastic deformation is defined as: 

 { } { }( )
{ }
s

e l
s

¶F
=

¶
p  (3.42) 

where{ }ep is the plastic strain tensor, l  the plastic multiplier, { }s  the stress tensor and (.) 

denotes differentiation with respect to time. The plastic multiplier and the yield function are 

found to comply with the Kuhn-Tucker optimality conditions: 

 l l³ F £ F = 0, 0, 0  (3.43) 

The consistency condition is an immediate consequence of relation (3.43) stating that when at 

yield: 

 lF =  0  (3.44) 

A typical isotropic yield criterion (or plasticity model for brevity) is the von-Mises yield 

criterion defined as: 

 { } { }s h sF = - - £ 0M  (3.45) 

where { }s  
is the deviatoric stress tensor and { }h  the deviatoric back-stress tensor. The 

evolution of the back-stress, determines the type of hardening introduced in the material 

model during subsequent cycles of loading and unloading. A commonly used type of 
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hardening is the linear kinematic hardening assumption which dictates a constant plastic 

modulus during plastic loading. This is accomplished by demanding: 

 { } { }h e=  pC  (3.46) 

where C  is defined as the hardening material constant. 

A key concept of classical plasticity is the additive decomposition of the strain into 

reversible elastic and irreversible plastic components. Consequently, the additive 

decomposition of the strain rate is established as: 

 { } { } { } { } { } { }e e e e e e= +  = -     p pel el  (3.47) 

where{ }e is the rate of the total deformation tensor, while { }e el is the rate of the elastic part 

of the total deformation vector. Based on observations, the unloading stiffness of a plastified 

material is considered equal to the elastic and thus the following relation holds between the 

total stress tensor and the elastic part of the strain rate: 

 { } { }s eé ù= ë û  elD  (3.48) 

where é ùë ûD  is the elastic constitutive matrix. Substituting equation (3.42) into relation (3.47) 

and using relation (3.48) the following equation is derived: 

 { } { } { }( )
{ }
s

s e l
s

æ ö¶F ÷çé ù ÷ç= - ÷çë û ÷÷ç ¶è ø
 D  (3.49) 

By means of the consistency condition (equation (3.44)) and relation (3.49) the value of the 

plastic multiplier l  is evaluated as: 

 
{ } { } { } { }l l s h
s h

æ öæ ö æ ö ÷ç ¶F ¶F÷ ÷ ÷ç çç ÷ ÷ ÷F =  + =ç çç ÷ ÷ ÷ç çç ÷ ÷ ÷÷ ÷ç ç¶ ¶çè ø è ø ÷÷çè ø

    0 0

T T

 (3.50) 
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When at yield, Φ=0 and l>0 and thus relation (3.50) can be written as: 

 
{ } { } { } { } { } { } { } { }s h s h
s h s h

æ ö æ ö æ ö æ ö¶F ¶F ¶F ¶F÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷+ =  = -ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç ç¶ ¶ ¶ ¶è ø è ø è ø è ø
   0

T T T T

 (3.51) 

Premultiplying relation (3.49) with { }s¶F ¶  the following equation is derived: 

 
{ } { } { } { } { }( )

{ }
s

s e l
s s s

æ öæ ö æ ö ¶F¶F ¶F ÷÷ ÷ çç ç é ù ÷÷ ÷ ç= -ç ç ÷÷ ÷ çç ç ë û ÷÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶è ø è ø è ø


T T

D  (3.52) 

Substituting equation (3.51) into equation (3.52) the following relation is established: 

 
{ } { } { } { } { }( )

{ }
s

h e l
h s s

æ öæ ö æ ö ¶F¶F ¶F ÷÷ ÷ çç ç é ù ÷÷ ÷ ç- = -ç ç ÷÷ ÷ çç ç ë û ÷÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶è ø è ø è ø


T T

D  (3.53) 

In classical plasticity the hardening law is defined as a relation between the back-stress tensor 

and the plastic strain tensor. This relation can be either rate dependent or rate independent. In 

any case, the back-stress is finally derived as a function of the plastic multiplier l  and one 

can write: 

 { } { }( )h l h= F ,G  (3.54) 

Substituting relation (3.54) into equation (3.53) the following relation is derived: 

 
{ } { }( ) { } { } { }( )

{ }
s

l h e l
h s s

æ öæ ö æ ö ¶F¶F ¶F ÷÷ ÷ çç ç é ù ÷÷ ÷ ç- F = -ç ç ÷÷ ÷ çç ç ë û ÷÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶è ø è ø è ø
 ,

T T

G D  (3.55) 

Rearranging and solving for the plastic multiplier the following expression is derived: 
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{ }( )
{ } { } { }
s

l h e
h s s s

-æ öæ ö æ ö æ ö÷¶Fç ¶F ¶F ¶F÷ ÷ ÷ ÷ç ç çç é ù é ù÷ ÷ ÷ ÷= - F +ç ç çç ÷ ÷ ÷ ÷ç ç ë û ç ë ûç ÷ ÷ ÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶ ¶ç è ø è ø è ø÷÷çè ø

 

1

,

T T T

G D D  (3.56) 
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In the case of the elastic perfectly plastic material G =0, and relation (3.56) coincides with the 

one proposed by Casciati, 2006. Equations (3.51) to (3.56) hold when yielding has occurred, 

either in the positive or in the negative semi-plane and thus by introducing the following 

Heaviside functions: 

 ( ) ( )
ìì F = F >ïïï ïF = F =í íï ïF < F <ï ïî î




1 2

1, 0 1, 0

0, 0 0, 0
H H  (3.57) 

a single relation is established for the plastic multiplier, in the whole domain of the strain 

tensor: 

 
{ } { }( ) { }

{ }( )
{ } { } { }
s

l h e
h s s s

-æ öæ ö æ ö æ ö÷¶Fç ¶F ¶F ¶F÷ ÷ ÷ ÷ç ç çç é ù é ù÷ ÷ ÷ ÷= - F +ç ç çç ÷ ÷ ÷ ÷ç ç ë û ç ë ûç ÷ ÷ ÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶ ¶ç è ø è ø è ø÷÷çè ø

 

1

1 2 ,

T T T

H H G D D (3.58) 

Instead of describing the cyclic behavior of a material in a step-wise approach considering 

the domains of the Kuhn-Tucker conditions (Fig.3.7(a)) or of the correspondent Heaviside 

functions (Fig.3.7(b)), Casciati, proposed the smoothening of the latter, introducing additional 

material parameters. 

 

 
Fig.3.7 (a) Inelastic Cyclic Response (b) Heaviside Functions 
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According to this approach, the two Heaviside functions are smoothened using the following 

expressions: 

 
F

= ³
F1

0

, 2
N

H N  (3.59) 

and: 

 { }
{ }

{ } { }( )
s

s
s b g e s

s

æ öæ ö ÷¶Fç ÷ ÷çç+ ÷ ÷çç ÷ ÷÷çæ ö ç ¶ ÷è ø ÷çæ ö ÷¶F è øç ÷ ÷çç= = » +÷ ÷çç ÷ ÷÷çç ÷¶è ø ÷çè ø



 2

1 sgn

sgn
2

T

T
T

H H  (3.60) 

where N , b and g  are model parameters and F0  is the maximum value of the yield function 

or yield point. In the special case where b g= = 0.5 , the unloading stiffness is equal to the 

elastic one. The model proposed by Baber-Noori is thermodynamically admissible as long as 

relation (3.41) is satisfied. An immediate consequence of equation (3.59) is that the material 

is allowed to yield even before the theoretical yield point is reached ( )0F . Rearranging 

equation (3.49) and substituting the definition of the plastic multiplier, the following Bouc-

Wen model is derived: 

 { } { } { }( )( ) { }s b g e s e
æ ö÷ç F ÷çé ù é ù é ù ÷= - +ç ÷ë û ë û ë ûç ÷Fç ÷è ø

 
0

sgn
N

T
D I R  (3.61) 

where the matrix [R] is evaluated as: 

 
{ } { }( ) { }
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,

T T T
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and defines the interaction relation between the components of the stress tensor at yield. Thus, 

the step-wise plasticity equations of relation (3.43) are replaced by a continuous stress-strain 

relation. In the uniaxial case, the von Mises yield criterion is reduced to the following form: 

 
( )

( )
s h

s

-
F = -

2

11 11

2
1VM

y

  

and accordingly, relation (3.61) becomes: 

 ( )( )s h
s b g e s e

s

æ ö÷ç - ÷ç ÷= - +ç ÷ç ÷+ç ÷÷çè ø
 

2

11 11
11 11 11 111 sgn

N

y

E
E

c E
 (3.63) 

The similarities between equation (3.63) and Bouc’s derivation of the hysteretic parameter z  

in equation (3.32) are evident. 

3.4.1 A subcase – the parallel generalized model of hysteresis 

The generalized parallel model of Bouc-Wen introduced by Karray and Bouc (Wen, 1980, 

Casciati, 2006) is a subcase of the formulation presented in the previous Section. Generalizing 

the parallel spring concept introduced in Fig.3.4(a), the stress tensor is decomposed into an 

elastic and hysteretic part as follows: 

 { } { } ( ){ }s a s a sé ù é ù é ù= + -ë û ë û ë û
e hI  (3.64) 

where aé ùë û  denotes a square diagonal matrix with post yield to elastic stiffness ratios, which 

for an isotropic material is considered constant in every direction, é ùë ûI is the identity matrix, 

while the elastic part { } { }s s s s= 11 22 12

Te e e e is expressed by the following relation: 

 { } { }s eé ù= ë û
e D  (3.65) 
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where é ùë ûD  is the elastic constitutive matrix. The hysteretic part { } { }s s s s= 11 22 12

Th h h h  

evolves according to the following Bouc-Wen hysteretic rule (Sivaselvan and Reinhorn, 

2003): 

 ( )
11 11

22 1 2 22

1212

[ ]

h

h

h

D I H H R

s e
s e

es

ì ü ì üï ï ï ïï ï ï ïï ï ï ïï ï ï ïé ù é ù= -í ý í ýë û ë ûï ï ï ïï ï ï ïï ï ï ïï ï ï ïî þî þ

 
 


 (3.66) 

where 1 2,H H  and are smoothed Heaviside functions defined in equations (3.59) and (3.60) 

respectively while Ré ùë û
  is the interaction matrix defined in equation (3.62) setting 0G º . 

However, equations (3.64) to (3.66) are capable of simulating hysteretic systems with linear 

kinematic hardening. Clearly this limits the applicability of the model. 

Writing equation (3.64) in rate form and substituting relation (3.66) the following equation 

is derived: 

 { } { } ( ) ( ){ }1 2[ ]D I D I H H Rs a e a eé ù é ù é ù é ù é ù é ù= + - -ë û ë û ë û ë û ë û ë û
   (3.67) 

Matrix aé ùë û  is diagonal, thus relation (3.67) can be cast on the following form: 

 { } ( )( ){ }1 2[ ]D I I H H Rs a a eé ù é ù é ù é ù é ù= + - -ë û ë û ë û ë û ë û
   (3.68) 

Comparing equations (3.61) and (3.68) the following generalized relation can be derived: 

 { } ( )( ){ }1 2 1 2[ ]D I H H Rs eé ù é ù é ù é ù= Z + Z -ë û ë û ë û ë û   (3.69) 

where in the case of the generalized model: 

 
1

2

I

I

é ù é ùZ =ë û ë û

é ù é ùZ = -ë û ë û

 (3.70) 

while in the case of the parallel model: 
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1

2

0G

I

R R

a

a

=

é ù é ùZ =ë û ë û

é ù é ù é ùZ = -ë û ë û ë û

é ù é ù=ë û ë û

 (3.71) 

3.4.2 Numerical experiments 

Α steel von Mises type specimen dxdydz under uniaxial cyclic tension is examined. Two 

loading-unloading cycles are considered with a peak value of tensile stress equal to

s= 1.20 yp  (Fig. 3.8). The material parameters are s = 235y MPa, = 210E GPa, n = 0.3 . 

Linear kinematic hardening of the Melan-Prager type (Section 1.4.4) is considered with a 

constant hardening parameter = 4117647c KPa. 

 
Fig. 3.8 Cyclic uniaxial tensile test 

In Fig.3.9, the normal stress component σ11 is plotted with respect to the corresponding strain 

ε11 for different values of the model parameters b g, ,n .The discrepancies are not as striking 

as in the uniaxial formulation presented in Fig.3.5 due to the effects of kinematic hardening. 

However, the same qualitative conclusions are drawn. In Fig.3.9(a) the stress-strain plot is 

presented for different values of parameter n considering linear unloading branches with 

b g= = 0.5 . Again, as the value of parameter n  increases, the stress-strain plot tends 
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3.5 Cyclic loading induced phenomena 

The hysteretic loops presented in Fig.3.10(b) fail to correctly simulate the real behavior of 

concrete under cyclic loading. Two main mechanisms are observed in concrete cyclic 

behavior, namely the stiffness degradation and strength deterioration mechanism. Both are 

related to the damage sustained by the solid due to propagating micro-cracks and are mainly 

treated within the framework of Damage Mechanics (Krajcinovic, 1996, Voyiadjis and 

Kattan, 2005). The main aspect of Damage Mechanics is the definition of the fourth-rank  

damage tensor whose evolution is determined through phenomenological damage flow rules. 

This derivation, though accurate and robust, leads to cumbersome formulations when 

implemented into the finite element scheme. An exhaustive presentation on the subject can be 

found on Kattan and Voyiadjis, 2001. In this work, attention is drawn towards the derivation 

of appropriate smooth operators that account for stiffness degradation and strength 

deterioration when applied onto the Bouc-Wen evolution equations, expressed in stress-strain 

form. This idea has been successfully implemented in uniaxial piece-wise linear stress-strain 

relations (Cope et al., 2005) but not in the general, three-dimensional, case. 

In the uniaxial case, Baber and Wen (1981) introduced two additional model parameters to 

account for stiffness degradation and strength deterioration phenomena. Relation (3.36) was 

modified as follows: 

 ( )( )n b g
é ù
ê ú

= - +ê ú
ê ú
ê úë û

 ( ) 1 sgn

n

s
s y

u z
z t zu

n z
 (3.72) 

where sn is related to stiffness degradation and sv to strength deterioration. Both parameters 

depend on the hysteretic energy density he (i.e. energy per unit volume) dissipated by the 

model and are defined as: 
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 = + = + ³ ³, , , ,1 , 1 , 0, 0h h
s n s s v s n s v sn c e v c e c c  (3.73) 

The energy density accumulated into the hysteretic spring(Fig.3.4) due to plastic 

dissipation is evaluated, using relation as: 

 ( ) ( )a e= -ò 1he Ez t d  (3.74) 

Analytical expressions for the amount of hysteretic energy accumulated under T – periodic 

excitations, were derived by Charalampakis & Koumousis (2008b) using hyper-geometric 

functions. The introduced material constants ,n sc  and ,v sc can be identified by various 

identification techniques. 

Erlicher and Bursi (2009) proved the thermodynamic admissibility of Bouc-Wen models 

with stiffness degradation and strength deterioration based on a similarity approach to 

endochronic plasticity models of Valanis (1971). According to their results a degradation rule 

is thermodynamically admissible, provided that the following condition is satisfied: 

 h hnx£   (3.75) 

where h  is a given degradation function, n  is a given deterioration function and x the model’s 

intrinsic time in the context of endochronic theory. In the present work, the following 

functions are considered for stiffness degradation and strength deterioration modelling 

respectively: 

 bh bn x
æ ö÷ç ÷= = +ç ÷ç ÷çè ø

 ,
1

, 1
um

h
s s s v s

s

c v c e
n

 (3.76) 

where > 0m and b > 0c . The rate x  is the intrinsic time of the Bouc-Wen model as defined 

in Erlicher and Bursi (2009), given by the following relation: 
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-æ öæ ö ÷ç÷ç ÷ç= + ÷ç ÷ç÷÷ç ÷÷çè ø è ø
  

1

1 sgn

n

y

z
zu u

z
 (3.77) 

Relations (3.76) and (3.77) constitute a thermodynamically admissible set of degradation 

functions that can be used to model a specific material given the proper set of model 

parameters. Both the stiffness degradation parameter sn  and the strength deterioration 

parameter sv  are analogous to the hysteretic energy accumulated, and thus increasing 

functions of time. 

3.5.1 A pure-shear test 

To reveal the interesting and compact features of the Bouc-Wen hysteretic model, a 

generic case is presented that corresponds to a pure- shear test under sinusoidal excitation 

( ) ( )p= sin 6p t t . In Fig.3.11, the shear stress is plotted against shear strain. A bilinear 

material law is considered with a yield stress equal to 117.5 MPa and an elastic shear modulus 

equal to 81 GPa. The following set of Bouc-Wen parameters is selected: a = 0.002 , = 2n , 

b g= = 0.5 , = 2um , b = 25c  and = 0.0001vc  while the yield shear strain is 

g = 0.00145y . 

The resulting shear stress-shear strain plot is presented in Fig.3.11(a). The unloading 

stiffness is repeatedly decreasing as the accumulated hysteretic energy increases. At the same 

time the yield strength of the specimen is decreasing. 

In Fig.3.11(b) the evolution of the stiffness degradation parameter is presented with respect 

to time. As expected hs  is a constantly increasing function of time. The value of the stiffness 

degradation parameter remains constant during elastic loading and unloading where no 

hysteretic energy is being accumulated. This corresponds to the hysteretic energy time history 

presented in Fig.3.11(c). 



Fig
strength

 

Fig

The v

hysteretic

Hyster

g.3.11(a) She
h deteriorati

g. 3.12 Depe

variation of 

c loop, as p

retic Finite Eleme

(a) 

(c) 
ear Stress – 
on (b) Evolu

endence of th

the stiffness

presented in

nts and Macro-Ele

Shear Strain
ution of the s

hyster

he hysteresis

s degradatio

n Fig. 3.12. 

ements for Nonline

n hysteretic l
stiffness deg
etic energy

s shape on th

on paramete

Parameter 

ear Dynamic Anal

oop with sti
gradation par

he stiffness d

r bc  greatly

bc  controls

lysis of Structures 

(b) 
 

ffness degra
rameter (c) E

 
degradation 

y alters the 

s the actual 

adation and 
Evolution of

parameter 

shape of th

value of th

f 

he 

he 



Chapter I

stiffness r

values of

the streng

The e

controls 

phenome

loops. In 

3.5.2 G

In the 

relations 

system in

model is 

for stiffn

relationsh

involve t

III 

reduction be

f stiffness de

gth deteriora

ffect of um

the rate of

enon evolves

Fig. 3.13, fo

Generalizatio

work of Er

are provide

n translation

presented fo

ness degrad

hips propose

the trace of 

etween subse

egradation. I

ation parame

Fig. 3.13 

u  on the stif

f stiffness d

s. Smaller v

our values of

on in the th

rlicher and B

d for a sing

nal motion. 

or incompres

dation and 

ed cannot be

the strain ve

equent hyste

In Fig. 3.12, 

eter is set to 

The stiffnes

ffness degra

degradation,

values of m

f um  are con

hree dimens

Bursi (2009)

le degree an

Additionall

ssible plastic

strength d

e directly in

ector and th

eretic loops. 

four differe

= 0.0001vc

ss degradatio

adation is pr

, that is th

um  give rise

nsidered wh

sional stres

) stiffness d

nd a two deg

ly, a stress-

city. This for

deterioration 

ntroduced int

he deviatoric

Large value

ent values of

1  and =um

on parameter

resented in F

he speed by

e to quickly

hile = 0.0vc

ss space 

degradation a

gree of freed

strain formu

rmulation is

phenomen

to the finite 

c stress and 

Bouc-Wen H

es of bc  lead

f bc  are con

= 2 . 

 
r um  

Fig. 3.13. P

y which the

y deteriorati

0001  and bc

and strength

dom uncoup

ulation of th

 then extend

na. Though 

element sch

strain tenso

Hysteresis 

d to increasin

nsidered whi

Parameter m

e degradatio

ing hysteret

= 25 . 

h deterioratio

pled hysteret

he Bouc-We

ded to accou

precise, th

heme, as the

ors. Moreove

ng 

ile 

um  

on 

tic 

on 

tic 

en 

unt 

he 

ey 

er, 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

71 

their derivation is explicitly based on the plastic incompressibility assumption and specifically 

on a von-Mises type of material. 

In this work, equations (3.76) and (3.77) are extended to account for stiffness degradation 

and strength deterioration effects in a general elastoplastic solid, based on the derivation 

presented on section 3.4. The intrinsic time is extended herein for the 3d stress space as: 

 { } { }( ) { } { }g
x b s s

b
e e= +  

1(1
T T

H sign  (3.78) 

where 1H  is defined in equation (3.79). 

Introducing the same set of model parameters as in the uniaxial case, namely the stiffness 

degradation parameter bc  and the strength deterioration parameter vs , the following 

equations are established: 
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 (3.79) 

where, he  is the energy density accumulated in the hysteretic component, and h, sv  are the 

stiffness degradation and strength deterioration parameters respectively. The hysteretic energy 

density is computed by means of numerical integration using the following relation: 

 { } { }s e= ò h
he d  (3.80) 

A computational advantage of this formulation is the fact that both the stiffness 

degradation and strength deterioration schemes are coupled through a single evolution 
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equation thus reducing the modeling to a single additional evolution equation rather than two 

as proposed in (Sivaselvan & Reinhorn, 2000). 

3.5.3 The case of asymmetric hysteresis 

In the general case of asymmetric hysteresis, one can use the extended Bouc-Wen model as 

defined by Dobson et al. (1997): 

 

e e b b b bé ù= = - - - -ë û  " " " "1 1 2 2 3 3 4 4( ) ( ( ), ( )) ( ) 1z t f t z t t  (3.81) 

where 1B , 2B , 3B  and 4B control the shape of the hysteretic loop for each direction of loading 

as illustrated in Fig.3.14, and their corresponding expressions are: 
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The exponents Bn , Cn , Dn and En  in equations (3.82) to (3.85) control the smoothness of 

the transition from the elastic to the plastic regime. Parameters b1 , b2 , b3 , b4  are switch 

type of parameters. If b = =0, 1..4i i  then the corresponding branch of the hysteretic loop is 

a straight line with an unloading stiffness equal to the elastic one. When b > =0, 1..4i i  then 

the corresponding branch is curved. Greater values of bi  
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Fig.3.14Shape controlling coefficients of the extended Bouc-Wen model 

The parameters b3 , b4  control the stiffness of the hysteretic loop after unloading occurs. 

Assigning null values for both, results to unloading stiffness equal to that of the elastic 

branch. Also, the model is capable of simulating non symmetrical yielding, so if the positive 

yield strain +
yz  is regarded as a reference point, the resulting values for b  and g  result as 

follows: 

 b b
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e
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 (3.86) 

Replacing equations (3.86) into relation (3.81) and considering the expressions of the 

individual branches defined in equations (3.82) to (3.85), the following expression is derived 

for the reloading branch (( )e < < 0, 0z : 
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The formulation introduced in relation (3.61) generalizes equation (3.81) in the sense that 

the hysteretic parameter is introduced in the three-dimensional space. Furthermore, the case of 

asymmetric hysteresis is treated in a consistent manner through the introduction of a proper 

yield function, as in the case of the Bresler-Pister yield surface in Section 3.4.2. 

 1 0, 0   z

 3 0, 0   z

 2 0, 0   z 4  0, 0   z
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3.6 Conclusions 

In this chapter, the properties of hysteretic systems are presented and the expression of the 

Bouc-Wen model is derived accordingly, based on concepts of the mathematical theory of 

hysteresis. As an example, the equation of the perfect slider is derived as the limit case of the 

initial model proposed by Bouc. Next, a general form of the Bouc-Wen model is derived in 

stress-strain form, based on the phenomenological concepts of the classical theory of 

plasticity. A rate form of the stress tensor is derived that accounts for the full cyclic behavior 

of the continuum. This rate form is general in the sense that it accounts for every combination 

of yield criteria and hardening laws whereas existing formulations only describe hysteretic 

behavior with linear kinematic hardening. 

Based on concepts borrowed from the endochronic theory of plasticity, additional smooth 

operators are derived that account for the cyclic induced stiffness degradation and strength 

deterioration phenomena observed in brittle materials. The formulation derived depends on 

total stress components rather than their deviatoric parts, thus yielding a formulation that is 

easily incorporated in the Finite Element scheme, as will be presented in subsequent chapters. 
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3.7 APPENDIX I 

The analytical relations of the interaction matrix [R] are presented below for the case of 

two widely used yield surfaces, namely the von-Mises yield surface and the Bresler – Pister 

yield surface. Similarly, other smooth surface models can be utilized, (Hinchberger S.D., 

2009). 

3.7.1 von-Mises yield surface 

For the case of two-dimensional plasticity, the von-Mises yield surface is defined as the 

locus of points in the stress space defined by the following relation, (Lubliner 2008): 
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where ( )s a s= -1h
y y . 

The yield gradient with respect to the von-Mises yield surface is: 
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Utilizing relation (3.62), the interaction matrix é ùë ûR  is derived as: 

 lé ù =ë û [ ]
VM
R IR  (A3) 

where é ùë ûIR  is a 3x3 matrix defined as: 
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and λ is a constant: 
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The interaction matrix é ùë ûR  does not depend on the yield stress of the material σy, but is 

only a function of the current stress tensor. 

3.7.2 Bresler - Pister yield surface 

The Bresler - Pister yield criterion is a three parameter model that is used to simulate 

concrete plasticity. The yield surface is defined by equation: 
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 (A6) 

where c0, c1, c2 are material dependent coefficients (Deder & Ayvaz, 2010). 

The yield gradient is defined by the following relations: 
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where 
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The interaction matrix Ré ùë û  is determined accordingly. 
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4.1 Introduction 

In this chapter a set of linear hysteretic macro-elements is derived within the formal and 

consistent framework of phenomenological hysteresis. The classical elastic formulations of 

the rod element, the Euler/Bernoulli beam element formulation and the Timoshenko beam 

element formulation are extended by introducing additional, hysteretic, degrees of freedom. A 

constructive approach is implemented in the derivations presented in this chapter. 

Firstly, a rod element formulation is presented where the additional degrees of freedom are 

considered to be hysteretic displacements, to highlight some important aspects of the 

procedure implemented in this work. Next, an advanced rod element formulation is 

constructed on the grounds of an updated Lagrangian formulation where plasticity is 

introduced through the concept of the hysteretic axial deformation that evolves according to a 

Bouc-Wen hysteretic law.  

The hysteretic two-dimensional Euler/Bernoulli beam element is presented based on the 

hysteretic curvature and hysteretic centreline axial deformation measures. To demonstrate the 

implications that arise from the interaction of the stress resultants, a two-dimensional 

Timoshenko beam element formulation is next presented. Finally, the general case of a three-

dimensional Timoshenko beam element formulation that takes into account torsional warping 

is presented. 
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4.2 The displacement based hysteretic truss element 

Consider the two node truss element presented in Fig.4.1 with a cross section A, and 

material constants E  for the Young modulus and a = pE E for the inelastic to elastic 

stiffness ratio. 

 

Fig.4.1 Rod Element degrees of freedom and internal forces 

4.2.1 Material modeling 

The element is formulated under the assumption that the axial force-axial displacement 

relation assumes the following form: 

 ( ) ( ) ( ), 1 - ,p ku x t kz x ta a= +  (4.1) 

wherep is the axial force, =k AE L  is the axial stiffness of the truss element, u is the actual 

displacement and z is the hysteretic part of the actual displacement defined by the following 

evolution equation: 
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z
 (4.2) 

Thus, the total axial force imposed into the element is split into two components, a potentially 

elastic one and a hysteretic, defined below as: 

u2, 

Χ 

u1, 

E, A, α, uy, n, β, γ 

x 

Υ 

θ 

+ 
 

 

 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

83 

 
( ) ( )

( , )

1 ,
el

h

p ku x t

p kz x t

a
a

=
= -

 (4.3) 

Within this framework, equation (4.1) denotes a potentially bilinear behavior, whereas the 

smoothness of the transition from the elastic to the inelastic regime is controlled by the model 

parameter n  as implemented in equation (4.2). Concentrating on the deformed configuration 

of the element, relation (4.1) implies that the axial force is proportional to a generalized 

displacement measure: 

 ( , )p ku x t=   (4.4) 

that is defined as:  

 ( ) ( ) ( )( , ) , 1 - ,u x t u x t z x ta a= +  (4.5) 

Thus, yielding merely defines a smooth transition from an elastic state of response to another 

one, non-elastic. The two displacement components, the actual and the hysteretic, are 

additively composed into a single quasi-elastic shape, u(x,t)  which is a linear function of the 

applied load, and vice versa. This important property of the Bouc-Wen hysteretic model is 

also met in any other rate-independent smooth material model. This approach is in perfect 

agreement with the concepts of endochronic theory (Valanis, 1971) and the generalized 

plasticity theory (Panoskaltsis et al., 2008). 

From relation (4.4) the following stress-strain relation is derived: 

 ( , ) ( , )x t E x ts e=   (4.6) 

where the deformation measure eis the axial deformation that is compatible to the 

generalized displacement measure u. Using the definition of the small strain measure 

(equation (2.9)) the following relation holds: 
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or expressed in matrix form: 
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The definition of the generalized displacement facilitates the derivation of the necessary 

energy forms as will be presented in the next paragraph. 

Following the reasoning introduced in Chapter 2, in the elastic case, relation (4.1) is valid 

if and only if the generalized displacement is equal to the actual displacement. Thus, the 

hysteretic displacement should comply with the following relation: 

 = <, Yz u u u  (4.9) 

Furthermore, the maximum value attained by the hysteretic parameter must be equal to: 

 =max Yz u  (4.10) 

Combining equations (4.2) and (4.10) the following relation is derived: 
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Or equivalently: 
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4.2.2 Discrete modeling 

For the case of the two-node truss element, the total displacement is considered to vary 

linearly along the element’s length (Bathe, 2007). Due to the additive decomposition of the 

displacement as presented in relation (4.5) the same kinematic assumption is valid for the 

hysteretic part of the total displacement. In equation (4.13) the interpolation functions 

implemented for the displacement vector are presented: 

 { }
é ù
ê ú-ì üï ï ê úï ï =í ý ê úï ï ê úï ïî þ -ê úë û

1 0 0

0 1 0

x x
u L L d
z x x

L L

 (4.13) 

where{ }d  is the vector of unknown nodal displacements: 

 { } { }= 1 1 2 2

T
d u z u z  (4.14) 

By substituting equation (4.13) into (4.8) the following relation is derived: 

 { }ε é ùë û(x,t)= B d  (4.15) 

where é ùë ûB  is the strain-displacement matrix of the element defined as: 
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The principle of virtual work is formulated as: 

 de s⋅ = ⋅ò
V

dV P u  (4.17) 

where de  is the potential centerline deformation of the element, s is the normal stress, P  is 

the axial force and u the corresponding axial displacement. Only concentrated loads are 
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considered in the external work for the sake of simplicity. Relation (4.17) is more 

conveniently written down in matrix form as: 

 

{ } { } { } { } { } { } { } { }
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where{ }d  is the nodal displacement vector defined in relation (4.14) and 

{ } { }= 1 1 2 2

T

z zp p p p p  is the nodal load vector. Loads 1zp  and 2zp  are fictitious load 

measures, work-conjugate to the hysteretic displacements 1z , 2z . Substituting equation (4.16) 

into equation (4.18) the stiffness matrix of the displacement based hysteretic truss element is 

derived: 
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Setting a = 1  the corresponding elastic stiffness matrix is evaluated: 
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and since the hysteretic components 1z , 2z in this case are by default equal to zero relation 

(4.20) can be condensed to the classic 2x2 elastic stiffness matrix of the two-node truss 

element. 
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To this point, the stiffness matrix of the hysteretic truss element is derived with respect to 

the actual deformation and load measures but also to the hysteretic quantities 1z , 2z , 1zP , 

2zP . The latter are internally defined displacement and force measures respectively. As is, the 

stiffness matrix evaluated in equation (4.19) since it is derived from an energy principle 

where a fictitious quantity, namely the work produced from the hysteretic forces on the 

hysteretic displacements is added onto the energy of external forces. 

Enforcing equilibrium, as presented in Fig.4.1(b), the following relation can be derived 

between the internally defined force components and the externally imposed nodal forces: 
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Thus, the stiffness matrix of the hysteretic, displacement based, truss element is derived as: 
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The locally defined displacement and force components are transformed into the 

corresponding global components using the following transformation relations: 
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where the transformation matrix é ùë û1T  is defined as: 
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and the transformation matrix é ùë û2T respectively: 

 
f f
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cos sin 0 0

0 0 cos sin
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The global displacement and force vectors are of the following form: 
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where 1xz , 1yz , 2xz , 2yz  are the global hysteretic displacement components. Consequently, 

the global stiffness matrix is defined by the following relation: 

 é ù é ù é ù é ù=ë û ë û ë û ë û2 1

T
K T k T  (4.27) 

The global stiffness matrix of the hysteretic truss element is of size 4x8. The stiffness matrix 

defined in equation (4.27) is supplemented by four Bouc-Wen hysteretic equations, one for 

each global hysteretic displacement component. Thus, the following elemental set of 

constitutive equations is derived: 

 { } { }é ù= ë ûP K D  (4.28) 

and: 
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The evaluation of the hysteretic displacements in terms of global components is necessary so 

that the derived element can be fitted into the standard direct stiffness scheme. 
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4.2.3 A simple solution approach 

Consider a truss structure comprising of eln  number of elements and nodn number of 

nodes. The total number of unknown degrees of freedom is = 4dof nodn n . This corresponds 

to two global displacements and two global hysteretic displacements per node. However, the 

total number of external forces is = 2ld nodn n  as implied by the elemental constitutive 

relation (equation (4.28). Thus, only 2 nodn  equations can be derived from equilibrium. The 

remaining equations are supplemented by the 2 nodn Bouc-Wen hysteretic equations, defined 

in equation (4.29). 

The decomposition of the displacement field introduced in equation (4.5) together with the 

variational formulation introduced in equation (4.18) allow for the hysteretic components of 

the displacement to be treated as independent degrees of freedom. Enforcing compatibility, 

the stiffness matrix of the structure can be derived as usual, by means of the direct stiffness 

method. Thus, the equations of motion for the whole structure are derived: 

 { } { } { }é ù é ù+ =ë û ë û
M D K D P  (4.30) 

where é ùë ûM is the dof dofn xn
 
mass matrix of the structure, é ùë ûK  

is the2 4nod nodn x n stiffness 

matrix of the structure, { }D is the 4 nodn vector of unknown internal forces, and{ }P is the 

2 nodn vector of nodal forces. Boundary conditions are enforced numerically by adding a big 

number to the corresponding elements of the stiffness matrix. Since the hysteretic components 

are displacement measures they are submitted to the same inertia forces as the total 

displacement measures. 

The evolution equations of the hysteretic displacements z expressed in the global 

coordinate system are given by the following relations: 
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where = =1... , 1,2eli n k  and J  is either the x  or y  global axis. Equations (4.31) are 

derived from equations (4.2) utilizing the transformation (4.23). However, since the hysteretic 

displacements  Jikz  are defined in the global coordinate system, the definition if the associated 

yield parameters ( ),x y
Yz  is not straightforward. Letting z  to be the nodal hysteretic 

displacement defined in the local coordinate system, the global components are evaluated as: 
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Substituting relations (4.32) into equation (4.2) the following evolution equation is derived, 

concerning the hysteretic displacement component along the global x  direction: 
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 (4.33) 

where '
Yz is the «yield displacement» along the global direction. When at yield, the following 

relation holds: 

 f
f f

= =  =' '
2

cos
cos cos

y yJ J J
Y Y

z z
z z z  (4.34) 

and thus equation (4.34) is written as: 

 ( )( )f
b g

é ù
ê ú

= - +ê ú
ê ú
ê úë û

  cos
1 sgn

n
J

J J J J

y

z
z u u z

z
 (4.35) 
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The set of equations (4.30) together with the evolution equations (4.31) fully define the 

nonlinear dynamical problem under consideration. The system of nonlinear equations can be 

solved either by standard implicit or explicit integration methods (Chopra, 2006) or by 

implementing the state-space approach (Sivaselvan and Reinhorn, 2003). In this work, the 

state-space approach is implemented. The system of second-order equations of motion is 

written as a system of first-order equations. This is accomplished by analytically evaluating 

the second derivative of z  with respect to time: 

 

( )( )

( )( ) ( ) ( )( )

( )( )

β γ

β γ

γ

-

é ù
ê ú

= - +ê ú
ê ú
ê úë û
é ù
ê ú

- +ê ú
ê ú
ê úë û

-

  

  



1 1 1

1

1 1

1

1 s gn

sgn s gn

s gn 1,

n

y

n

y

n

y

z
z u u z

z

z
u z t z t u z
z

z
u z

z

 (4.36) 

where ( )( )γ 1s gn 1, u z  is the derivative of the sgn(.) function with respect to time. 

Equation (4.36) is then inserted into equation (4.30) and the derived equations can be 

written in the following form: 

 { } { }( ) ( ){ }= +x G x P t  (37) 

where the vector { }x  is defined as: 

 { } { } { }é ù= ê ú
ë û

 TT T
x D D  (38) 

and { }( )G x  is defined as follows: 

 { }( )
{ } { }( ){ }

- -

é ù
ê ú= ê úé ù é ù é ù é ùê úë û ë û ë û ë ûë û


1 1

,I Y U Z
G x

M K M K

0
 (39) 
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The operator G is a state dependent operator since Y holds the evolution equations for each 

element i, that is: 

 { } { }( ) { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  
( )

, 1 sgn ( )

n
i i iji

j j j j
y

z t
Y u z z t B u B u

z
 (40)\ 

This solution procedure is presented in the next section through an illustrative example 

4.2.4 Example – 3-bar truss under monotonically increasing loading 

In this example, a typical 3-bar truss is examined and the results are validated using the 

Nastran commercial code (Noran Engineering, 2007). The geometry of the truss is presented 

in Fig.4.2, while the parameters of the problem are defined in Table 4.1. 

 
Fig.4.2 Three-bar truss 

A monotonically increasing concentrated load is applied at node #1 (Fig.4.2) to a 

maximum value of 700 KN. This example serves for validation purposes only, thus no failure 

structural failure criteria are considered. The load is applied using a slow varying ramp 

function. The Runge-Kutta 45 solver is implemented for the proposed formulation, with an 

initial time-step equal to 0.01 sec and a relative tolerance error control equal to 0.001. 

Analysis in Nastran is performed utilizing a Modified Newton-Raphson scheme with 100 
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incremental steps. The 2-node truss element is implanted in Nastran with a bilinear elastic-

plastic stress-strain relation with kinematic hardening. 

Area 0.001 m2 
Length 1 m 
φ 450 
Eyoung 210 GPa 
a 0.002 
σy 235 MPa 
n 25 
b  0.5 
g 0.5 

Table 4.1 Parameter definition 

In Fig.4.3 the force-deflection curve from the two different formulations is presented. The 

two solutions coincide.  

 
Fig.4.3 Validation of the proposed element with Nastran commercial code – Applied Load 

– Displacement curve at node #1 

Even-though the proposed formulation utilizes twice the number of degrees of freedom as 

to Nastran both analyses conclude in 6.5 sec. This is because the proposed formulation allows 

for the simultaneous solution of the governing equations of the problem, that is, the 

equilibrium equations and the nonlinear plasticity equations. 

In Fig.4.4(a) the member axial force is presented with respect to the vertical displacement 

at node #1. Due to symmetry, elements #1 and #3 coincide as expected. The evolution of the 

hysteretic parameter with respect to time is presented in Fig.4.4(b). Element #2 is the first one 
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to reach its yield displacement. The velocity of plastic deformation is then increased for 

elements #1 and #3, that reach their yield displacement at the same time, due to symmetry. 

(a) (b) 
Fig.4.4(a) Element Axial Force –Vertical Displacement at node #1 (b) Evolution of the 

hysteretic parameter 

In Fig.4.5(a), the evolution of the hysteretic parameter is compared to the evolution of the 

total displacement in element #2. 

(a) (b) 
Fig.4.5(a) Evolution of the hysteretic parameter and the total elongation at element #2 until 
yield (b) Evolution of the quasi-elastic generalized displacement measure at element #2 

As predicted by equations (4.5), (4.9) and (4.10) the hysteretic displacement is equal to the 

total displacement until yield. At that point the hysteretic displacement assumes a constant 

value. The transition from the elastic to the plastic state is smooth, with the smoothness being 

controlled by parameter n as defined in equation (4.2). The evolution of the equivalent 

displacement measure as defined in equations (4.4) and (4.5) is presented in Fig.4.5(b). 
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4.3 Truss element formulation considering hysteretic axial deformations 

4.3.1 Introduction 

Though instructive, two main disadvantages can be argued for the hysteretic displacement 

formulation presented in the previous section. The dependence of the nonlinear law 

implemented on global displacement properties (equation (4.35)), yields an element with 

problem dependent material parameters, since the yield displacement cannot be unequivocally 

deducted in multidimensional displacement fields. Furthermore, a formulation is needed that 

can be easily extended to large displacement fields, thus being suitable for geometrically 

nonlinear problems. To circumvent this drawback the truss-element is re-examined based on 

the decomposition of the strain, rather than the displacement field, into quasi-elastic and 

hysteretic terms. 

4.3.2 Material modeling 

The Bouc-Wen hysteretic law is herein written in stress-strain terms as opposed to relation 

(4.1) where the constitutive relation was defined in terms of a force displacement relationship. 

Thus, the hysteretic stress-strain law is defined as: 

 ( ) ( ) ( )( , ) , 1 - ,x xx t E x t Ez x ts a e a= +  (4.41) 

wheresx  is the axial stress, ex  the axial strain, E is the Young Modulus and a  is the post-

elastic to elastic moduli ratio. As implied by relation (4.41)z is now considered to be the 

hysteretic part of the total deformation, evolving through the following relation: 

 ( )( )e b g e
é ù
ê ú= - +ê ú
ê úë û

  1 sgn
n

x x
Y

z
z z

z
 (4.42) 

where Yz  is the yield axial deformation. 
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4.3.3 Small displacement formulation 

Introducing the interpolation field defined in relation (4.13) for the axial displacement, the 

following relation holds: 

 ( ) { }
é ù
ê ú= -
ê úë û
1
x x

u x d
L L

 (4.43) 

where{ } { }= 1 2 T

x xd u u  is the nodal displacement vector. Considering the compatibility 

equation: 

 e
¶

=
¶x
u

x
 (4.44) 

the strain displacement matrix é ùë ûB  is evaluated: 

 { } { } { }e
é ù é ù¶é ù ê ú ê ú= = - = -ë û ê ú ê ú¶ ë û ë û

1 1
1x
x x

B d d d
x L L L L

 (4.45) 

A similar interpolation field must be considered for the hysteretic displacement. The 

interpolation field has to comply with the actual constant deformation distribution, since the 

two-node truss is a constant axial force element. An equilibrium based interpolation field is 

defined as: 

 { }
ì üï ïï ïé ù é ù= - =í ýê ú ë ûë û ï ïï ïî þ

1

2

1 0 z

z
z B z

z
 (4.46) 

where { } { }= 1 2

T
z z z  is the vector of the hysteretic nodal strains that evolve according to 

the Bouc-Wen relation defined in equation (4.42). Though such a definition reduces the 

number of additional degrees of freedom, since one nodal hysteretic strain suffices for the 

description of the problem, the following interpolation field is preferred: 
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 1 1

2 2

1 2 1 2 z

z z
z B

z z

ì ü ì üï ï ï ïï ï ï ïé ù é ù= =í ý í ýê ú ë ûë û ï ï ï ïï ï ï ïî þ î þ
 (4.47) 

Equation (4.47) allows for the simulation of elements with different hysteretic properties, e.g. 

different connection properties in each end. Having established the vectors of unknown 

quantities and the corresponding interpolation fields, the principle of virtual work is 

implemented to evaluate the stiffness matrix of the truss element: 

 { } { }T
x x

V

dV d Pde s =ò  (4.48) 

where dex  is the potential strain and { } { }= 1 2 T

x xp p p  is the work conjugate nodal load 

vector, both expressed in the local coordinate system. Substituting relation (4.41) into relation 

(4.48) the following expression is derived: 

 ( )( ) { } { }1
T

V

E Ez dV d pde a e a+ - =ò  (4.49) 

The lhs of equation (4.49) is written as: 

 

( )( ) ( )

{ } { } ( ){ }

1 1

1
V V V

T T T T
z

V V

E Ez dV E dV EzdV

u B E B dV u u B E B dV

de a e a a de e a de

a d d a d

+ - = + - =

é ù é ù é ù é ù= + -ë û ë û ë û ë û

ò ò ò

ò ò
 (4.50) 

where the interpolation scheme of equations (4.45) and (4.47) is implemented. Substituting 

the expressions of the strain-displacement matrices é ùë ûB , é ùë ûzB  from equations (4.45) and 

(4.47) respectively, the integrals of the r.h.s. of equation (4.50) are reduced to the following 

expressions: 
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1 1

1 1

0.5 0.5

0.5 0.5

T
e

V

T
h z

V

EA
I B E B dV

L

I B E B dV EA

é ù-ê úé ù é ù= =ë û ë û ê ú-ê úë û
é ù- -ê úé ù é ù= =ë û ë û ê úê úë û

ò

ò
 (4.51) 

The integral eI  is equal to the elastic stiffness matrix of the two-node truss element. 

Thus, the equilibrium equation of the truss element is written as: 

 { } { } ( ) { }
1 1 0.5 0.5

1
1 1 0.5 0.5

EA
p d EA z

L
a a

é ù é ù- - -ê ú ê ú= + -ê ú ê ú-ê ú ê úë û ë û
 (4.52) 

The additive decomposition of the total stress into a quasi-elastic and a hysteretic part as 

described in equation (4.41) is retained in constitutive relation of the element. The stiffness 

relation presented in equation (4.52), together with the evolution equations of the nodal 

hysteretic deformations 1z , 2z  fully describe the nonlinear behavior of the two-node truss 

element. 

The stiffness matrix, initially evaluated in local coordinates is transformed to the global 

coordinate system, using the following transformation relations: 

 
{ } { }
{ } { }

é ù= Lë û
é ù= Lë û

p P

d D
 (4.53) 

where { } { }= 1 1 1 2 2 2 T

x y z x y zP P P P P P P , = 1 1 1 2 2 2{ } { }Tx y z x y zd d d d d dd  are 

the nodal force and nodal displacement vectors respectively, expressed in the global 

coordinate system.  

Substituting equations (4.53) into relation (4.52) the following equation is derived: 

 { } { } ( ) 1

2

1 1 0.5 0.5
1

1 1 0.5 0.5
T T zEA

P D EA
zL

a a
é ù é ù ì ü- - - ï ïï ïê ú ê úé ù é ù é ù= L L + - L í ýë û ë û ë ûê ú ê ú ï ï-ê ú ê ú ï ïë û ë û î þ

 (4.54) 

where the elastic global stiffness matrix is defined as: 
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 a
é ù-ê úé ù é ù é ù= L Lë û ë û ë ûê ú-ê úë û

1 1

1 1
TEA

K
L

 (4.55) 

As expected the elastic part of the stiffness matrix expressed in the global coordinate system 

is again identical to the classical small displacement elastic formulation of the truss element 

(Bathe, 2007). 

4.3.4 Large displacement formulation 

To account for large displacement fields, the compatibility equation presented in equation 

(4.44) is herein extended by introducing the contribution of the rotational field into the 

extension of the truss element. Thus, the axial strain of the rod element is expressed as: 

 e h= +x x xe  (4.56) 

where xe  is the linear part of the strain: 

 
¶

=
¶
x

x

u
e

x
 (4.57) 

and hx  is the nonlinear part of the axial strain containing the contribution of the rotational 

displacement field in the axial deformation: 

 h
é ùæ öæ ö æ ö¶¶ ¶ê ú÷ç÷ ÷ç ç÷ç÷ ÷= + +ê úç ç÷÷ ÷çç ç÷÷ ÷ç ç÷ê úç¶ ¶ ¶è ø è øè øê úë û

22 2
1

2
yx z

x

uu u

x y z
 (4.58) 

Material nonlinearity is introduced through relation (4.41). Since the hysteretic 

deformation measure z  is a part of the total deformation measure xe , the geometrically 

nonlinear evolution of z  is implicitly imposed by (4.56). Thus, the following nonlinear law 

applies for the stress-strain relation: 
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( ) ( )

( ) ( )( )( )

α αs h

e h b g e h

+
é ù
ê ú= + - + +ê ú
ê úë û

   

x= E + 1- Ez

1 sgn

x x
n

x x x x
Y

e

z
z z

z

 (4.59) 

Implementing the linear interpolation functions for the displacement field one gets: 

 
{ }

{ } { }

é ù
ê ú-
ê úì üï ïï ï ê úï ïï ï ê ú= -í ý ê úï ï ê úï ïï ï ê úï ïî þ -ê ú
ê úë û

= 1 1 1 2 2 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

x

y

z

T

x y z x y z

s s

L Lu
s s

u d
L L

u s s

L L

d u u u u u u

 (4.60) 

The strain field is derived from the displacement field, by substituting (4.60) in (4.58) thus 

leading to the following matrix expression: 

 ( ){ }e é ù é ù= +ë û ë ûL NL
B B d  (4.61) 

where the nodal displacement matrix { }d  consists of 6 elements, namely: 

 { } { }= 1 1 1 2 2 2 T

x y z x x xd u u u u u u  (4.62) 

and the strain-displacement matrix consists of two parts, a linear é ùë ûLB  and nonlinear é ùë ûNLB

which are evaluated as follows: 

 
2 2 2 2 2 2

1 2 1 2 1 2

1 1
0 0 0 0

2 2 2 2 2 2

, ,

L

y yx z x z
NL

x x x y y y z z z

B
L L

u uu u u u
B

L L L L L L

u u u u u u u u u

é ù
é ù ê ú= -ë û ê úë û

é ùD DD D D Dê úé ù = - - -ë û ê ú
ê úë û

D = - + D = - + D = - +

 (4.63) 
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The interpolation scheme introduced in relation (4.47) for the hysteretic degrees of 

freedom is also utilized herein, letting: 

 { }
ì ü ì üï ï ï ïï ï ï ïé ùé ù= = -í ý í ýê úë û ë ûï ï ï ïï ï ï ïî þ î þ

1 1

2 2

1 1
z

z z
z B

z z
 (4.64) 

where 1z , 2z  are nodal hysteretic strains subject to the evolution law of relation(4.59). The 

principle of virtual work is therefore defined by the following relation: 

 { } { }de s⋅ =ò
T

V

dV d P  (4.65) 

and by substituting (4.59) and (4.56) in (4.65) the following expression is derived: 

 ( ) ( ) ( ) { } { }d dh a h aé ù+ + + - =ë ûò 1
T

x x x x

V

e E e Ez dV d P  (4.66) 

Taking into consideration equations (4.60) to (4.64) and after the necessary algebraic 

manipulations the following constitutive relation is derived: 
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1 2 3
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x xxx x x

e g z

xx
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T

x y z x y z

k k s s s k d z P

P P P P P P P

 (4.67) 

Matrices gk , sk , 1s , 2s , 3s  are the same as in the updated Lagrangian formulation of the two 

node truss element (Bathe, 2007) multiplied by a  and zKé ùë û  is defined as: 

 ( )
1 1

2 2 2 2 2 21

1 1
2 2 2 2 2 2

T
y yx z x z

z
y yx z x z

u uu u u u

L L L L L LK EA
u uu u u u

L L L L L L

a

é ùD DD D D Dê ú+ - - - -ê úé ù ê ú= -ë û ê úD DD D D Dê ú- - - - +ê úë û

 (4.68) 

The transformation matrix é ùLë û  of the 3d truss element, is given by the following relation: 
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l k
km lm

k l m
l k
km lm

é ù
ê ú
ê ú- Æê ú
ê ú- -ê úé ùL = ê úë û ê ú
ê úÆ -ê ú
ê ú- -ê úë û

0

0

D D

D D D

D D

D D D

 (4.69) 

where k f= cos x , l f= cos y , m f= cos z , k l= +2 2D , f f f, ,x y z being the 

direction angles of the truss element. 

4.4 The Euler – Bernoulli beam element 

4.4.1 Introduction 

In this section, the derivation of a plane beam element is presented, based on the concept 

of the hysteretic strain measure presented in the previous section. In section 4.4.2 the element 

matrices are derived under the assumption of small displacements. To demonstrate the 

generality of the proposed formulation, a large displacement formulation is also presented in 

section 4.4.7. 

4.4.2 Small displacement formulation 

The end forces of a prismatic beam element directed from node 1 to node 2, being a part of 

a plane frame structure that carries nodal static or dynamic loads, are presented in Fig. 4.6.  
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which expresses the rate of hysteretic curvature in terms of the rate of curvature times a 

nonlinear coefficient. In equation (4.71) y
bz  denotes the maximum value attained by the 

hysteretic curvature bz . 

By means of the Euler-Bernoulli assumptions the curvature is given by the following 

relation: 

 f
¶

=
¶

2

2

w

x
 (4.72) 

where w  is the transverse deflection of the beam. Substituting relation (4.72) into (4.70), the 

following expression is obtained: 

 
( ) ( )

( ) ( ) ( ) ( )
2

2

, ,

,
, 1 ,b b b

M x t EI x t

w x t
x t z x t

x

f

f a a

=

¶
= + -

¶




 (4.73) 

where ( )f ,x t  can be regarded as a measure of an “equivalent generalized curvature”, though 

not directly related to the elastic line, which induces the elastoplastic moment. Additionally, 

plasticity with respect to axial deformations can be introduced in a similar way, as follows: 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

0

0 0

, ,

,
, 1 1 ,u u u u u u

N x t EA x t

u x t
x t z z x t

x

e

e a e a a a

=
¶

= + - = + -
¶




 (4.74) 

where N  is the axial force, A  is the cross-sectional area, e0 is the generalized axial 

centerline strain similar to the generalized curvature defined in equation (4.72), au  is the 

post-yield to elastic axial stiffness ratio and uz  is the axial hysteretic deformation analogous 

to the hysteretic curvature concept introduced in relation (4.73). The evolution equation of the 

hysteretic axial centerline deformation is given by the following relation: 
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 ( ) ( )( )e b g e
é ù
ê ú

= - + ⋅ê ú
ê ú
ê úë û

  0 0, 1 sgn

n

u
u uy

u

z
z x t z

z
 (4.75) 

where y
uz  is the maximum value attained by the hysteretic part of the axial centerline 

deformation uz . In this work, the interaction between the axial force and the bending moment 

is only implicitly accounted for through the evaluation of a bending yield parameter ybz  for an 

anticipated level of axial force. However, refined interaction schemes can be implemented 

through the proper manipulation of the evolution equations (4.71) and (4.75) as described in 

Symeonov et al., 2000. Parameters ab  and au  are considered to be material dependent and 

can be determined after appropriate testing. 

This constitutive modeling constitutes a phenomenological approach for the inelastic 

behavior of skeletal structures in the sense that the inelastic behavior is established on the 

basis of a stress-resultant – generalized displacement relation, resulting into certain 

advantages. The cyclic behavior is accurately and efficiently monitored without reverting into 

the evaluation of stresses at the cross-sectional level reducing significantly the computational 

cost of the proposed scheme. Moreover, cyclic induced phenomena such as stiffness 

degradation, strength deterioration and pinching can be easily simulated by properly 

modifying the evolution equation (Sivaselvan and Reinhorn, 2000). The combined nonlinear 

behavior of a structural assemblage (e.g. steel members and their connections) can be 

simulated using only one element, provided that the corresponding hysteretic parameters are 

calibrated. 

However, this comes at the cost of lacking information on the exact stress distribution 

along the section’s height. This though is readily available separately by imposing the 

curvature evaluated by the analysis procedure over the cross section when needed and 

computing the corresponding stress distribution based on a specific stress-strain law, 
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Charalampakis & Koumousis (2008b). Furthermore, the identification process of the model 

parameters that needs to be performed, implies the existence of experimental data, extracted 

either from numerical or real experiments (Khandelwal et. al, 2008, Chatzi et al., 2010). 

4.4.3 FEM discretization 

Using cubic polynomial interpolation functions for the displacement field, the following 

expression is derived: 

 { }
é ù é ù
ê ú ê ú=ê ú ê úê ú ê úë û ë û

1 2

3 4 5 6

0 0 0 0

0 0

u N N
d

w N N N N
 (4.76) 

where the nodal displacement vector { }d  is defined as { } { }q q= 1 1 1 2 2 2

T
d u w u w  

and ,  =1..8iN i  are the shape functions as introduced in Bathe (2007). Equations (4.76) 

denote a polynomial interpolation scheme, accurate for an elastic beam. This is employed also 

in this work as a good approximation for an elastoplastic beam. According to equation (4.72) 

and using equation (4.76), the total curvature can be expressed as: 

 { } { }f é ù é ù= =ê ú ë ûë û3, 4, 5, 6,0 0 ( )xx xx xx xx bN N N N d B x d  (4.77) 

where subscript ,xx  denotes double differentiation with respect to the space variable x . Since 

the total moments at the ends of the element are in equilibrium and there is no lateral 

intermediate loading, the following relationship is valid: 

 ( )
æ ö÷ç= - +÷ç ÷÷çè ø 1 2, 1

x x
M x t M M

L L
 (4.78) 

where 1M  and 2M  are the nodal moments and ( ),M x t  is the internal bending moment. 

From equation (4.73) it follows that: 
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 ( )f f f
æ ö÷ç= - +÷ç ÷÷çè ø

  
1 2, 1

x x
x t

L L
 (4.79) 

where f1  and f2  are the corresponding nodal quantities of the generalized curvature. 

Replacing the second of equations (4.73) into (4.79), it results: 

 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

a a a f a a f a

a a a f f a

æ ö¶ ÷ç+ - = - + - + + - ÷ç ÷÷çè ø¶
ææ ö ö ææ ö ö¶ ÷ ÷ ÷ ÷çç çç+ - = - + + - - +÷ ÷ ÷ ÷çç çç÷ ÷ ÷ ÷÷ ÷ ÷ ÷çç ççèè ø ø èè ø ø¶

2

1 1 2 22

2

1 2 1 22

,
1 , 1 1 1

,
1 , 1 1 1

b b b b b b b b b

b b b b b b b

w x t x x
z x t z z

L Lx
w x t x x x x

z x t z z
L L L Lx

 (4.80) 

which means that in order for equation (4.80) to hold for every (a ùÎ úû0 1b  the same 

interpolation field has to be adopted for both the total curvature φ and the hysteretic curvature 

bz . In equation (4.80), 1bz  and 2bz  are the corresponding nodal quantities of the hysteretic 

curvature bz . Consequently, the hysteretic curvature is defined via the following linear shape 

functions: 

 ( ) { }
ì ü é ùï ïï ïé ù é ùê ú= = - =í ýê ú ë ûë û ê úï ï ë ûï ïî þ

1
7 8

2

, 1
bb

b bz
b

z x x
z x t N N N z

z L L
 (4.81) 

It turns out that equation (4.81) is an “exact” representation for the distribution of the 

hysteretic curvature with respect to equations (4.73) and (4.79), as long as the nonlinear 

behavior under examination is of a smooth type with kinematic hardening, as described in 

equation (4.70) and there is no lateral loading between the end nodes of the beam. 

Substituting relations (4.77) and (4.81) into (4.73) results into the following expression: 

 { } ( )f a a
ì üï ïï ïé ù é ù= + - í ýê ú ê úë û ë û ï ïï ïî þ

 1
2, 3, 5, 6, 7 8

2

0 0 1 b
b xx xx xx xx b

b

z
N N N N d N N

z
 (4.82) 

Similarly, the centerline axial deformation is expressed as: 
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 { } { }e é ù é ù= =ê ú ë ûë û0 1, 2,0 0 0 0 ( )x x uN N d B x d  (4.83) 

and the corresponding hysteretic component is derived as: 

 ( ) { }
ì üé ù ï ïï ï é ùê ú= =í ý ê úë ûê ú ï ïë û ï ïî þ

1

2

1 1
,

2 2
u u

u z u
u

z
z x t N z

z
 (4.84) 

Substituting relations (4.83) and (4.84) in (4.74) the following interpolation scheme is 

derived in matrix form as: 

 { } ( )e a a
ì üï ïï ïé ù é ù= + - í ýê ú ê úë û ë û ï ïï ïî þ

 1
0 1, 2, 9 10

2

0 0 0 0 1 u
u x x u

u

z
N N d N N

z
 (4.85) 

which as in relation (4.82) separates the elastic and hysteretic component. 

4.4.4 Variational formulation 

By means of the principle of virtual work and using equation (4.70), the following relation 

is obtained: 

 { } { } { } { }( ) { } { }de df d+ =ò 0

0

L
T T T
N M dx d P  (4.86) 

Taking into consideration equations (4.83) and (4.84), the first part of the left hand side 

integral that expresses the virtual work of the axial forces, can be written as: 

 ( )
{ }

a a

é ù ì üï ïê ú ï ïê ú ï ïï ïé ù é ù é ù é ùê ú= - í ýë û ë û ë û ë û ï ïê ú ï ïê ú ï ïï ïî þê úë û

ò ò
 

1 1

0 0
2

6 6 6 2

1
L L

T T u
u u u u u uz

u
x x

d

I EA B B dx B N dx z

z

 (4.87) 

Similarly, substituting relations (4.77) and (4.81) in relation (4.86) and performing the 

necessary algebraic operations, the second part of the integral in the left hand side that 

expresses the virtual work due to bending is derived: 
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 ( )
{ }

a a

é ù ì üï ïê ú ï ïê ú ï ïï ïé ù é ù é ù é ùê ú= - í ýë û ë û ë û ë û ï ïê ú ï ïê ú ï ïï ïî þê úë û

ò ò
 

2 1

0 0
2

6 6 6 2

1
L L

T T b

b b b b b bz

b
x x

d

I EI B B dx B N dx z

z

 (4.88) 

Performing the indicated integrations and augmenting the displacement vector with the 

hysteretic parameters of the elements, the following relation is obtained: 

 

{ }
{ }
{ }

{ }

ì üï ïï ïï ïï ïï ïì ü ï ïï ï ï ïï ï ï ïï ïï ï ï ïé ùé ù é ù = =í ý í ýê úë û ë ûë û ï ï ï ïï ï ï ïï ï ï ïï ï ï ïî þ ï ïï ïï ïï ïï ïî þ

1

1

1

2

2

2

ue h

b

N

Q
d

M
K K z f

N
z

Q

M

 (4.89) 

where  

 

a a

a a a a

aa a a

a a

a a a a

a a a a

é ù
ê ú-ê ú
ê ú
ê ú-ê ú
ê ú
ê ú
ê ú-ê ú

é ù ê ú=ë û ê ú
ê ú-ê ú
ê
ê - - -ê
ê
ê
ê -êë û

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 6
0 0

46 6 2
0 0

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

u u

b b b b

bb b b

e
u u

b b b b

b b b b

EA EA

L L
EI EI EI EI

L L L L
EIEI EI EI

L LL LK
EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L LL L

ú
ú
ú
ú
ú
ú
ú

 (4.90) 

and 
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( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

a a

a a

a
a a

a a

a

é ù- -ê ú- -ê ú
ê ú
ê ú- - -ê ú
ê ú
ê ú- -ê úé ù =ë û ê ú- -ê ú
ê ú
ê ú
ê ú

- - -ê ú
ê ú
ê ú-ê úë û

1 1
0 0

2 2

0 0 1 1

0 0 1 0

1 1
0 0

2 2

0 0 1 1

0 0 0 1

u u

b b

b

h
u u

b b

b

EA EA

EI EI

L L
EI

K

EA EA

EI EI

L L
EI

 (4.91) 

Equation (4.89) corresponds to the constitutive matrix relation of the element that includes 

the elastic (equation (4.90)) and the hysteretic (equation (4.91)) behavior, where the axial 

forces are uncoupled with bending moments and shear forces in both the elastic and hysteretic 

part.  

4.4.5 Physical interpretation 

The additive decomposition of the constitutive relations (4.73) and (4.74) into an elastic 

and a hysteretic part persists in the definition of the stiffness relation (4.89). To illuminate this 

fact, the case where a a a= =u b  is examined. However, since axial forces and bending 

moments are uncoupled the same conclusions can be drawn for any value of the ratios au  and 

ab . When a = =u ba a , the matrix equilibrium relation (4.89), can be cast in the following 

form: 

 { } { } { }a aé ù é ù= + -ë û ë û
 (1 )
e h

f K d K z  (4.92) 

where é ùë û

e

K  and é ùë û

h

K  are derived from relations (4.90) and (4.91) respectively by collecting 

terms. In equation (4.92), the first term represents an elastic behavior based on the reduced 

(plastic) stiffness and the second term adds the hysteretic part. This is interpreted as a 

supplement force vector to establish the elastic behavior before yielding and a constant force 

vector when yielding is exceeded. 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

111 

It is evident that in the elastic case, where a = 1 , relation (4.92) reduces to the classical 

stiffness matrix of the elastic beam and the hysteretic degrees of freedom are wiped out as 

their coefficient matrix vanishes. Relation (4.92), together with the evolution equations of the 

hysteretic variables, suffice to define the constitutive behavior of the element. This 

constitutive matrix is fully determined at the elemental level and is computed once at the 

beginning of the analysis procedure thus, significantly reducing the computational cost of the 

proposed method. 

Relation (4.89) can be expressed in terms of global end displacements { }u of the element 

by using the following transformation relation { } ( ) { }qé ù= Lë ûd u , where ( )qé ùLë û is the 2D 

transformation matrix and q is the right hand angle between the global X axis and the local x 

axis of the element, (Fig. 4.6). Taking into account that the global end forces { }F  relate to 

the end forces expressed in the local coordinate system through the transformation relation, 

equation (4.89) can be written as: 

 { } { } { }é ù é ù é ù é ù é ù= L L + Lë û ë û ë û ë û ë û
T T

e h
F K u K z  (4.93) 

for both axial and bending components. 

4.4.6 Evolution equations 

The nonlinear behavior of the element is governed by the Bouc-Wen evolution equations 

(4.71) and (4.75). These are nonlinear differential equations in time, depending on the 

hysteretic curvature ( , )bz x t  and the rate of curvature f , as determined in relation (4.72) and 

in discretized form in relation (4.77) for the bending components. Similarly, the axial 

components are governed by hysteretic equations of the same form, depending on the 

hysteretic centerline axial deformation and the rate of total axial deformation. Therefore the 

evolution equation can be expressed in terms of nodal velocities as follows: 
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 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  ( , )
( , ) 1 sgn ( , ) ( ) ( )

n

b
b b b by

b

z x t
z x t z x t B x u B x u

z
 (4.94) 

from which the discretized components at the nodal points are deduced as: 

 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  1
1 1

( )
( ) 1 sgn ( ) (0) (0)

n

b
b b b by

b

z t
z t z t B u B u

z
 (4.95) 

and 

 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  2
2 2

( )
( ) 1 sgn ( ) ( ) ( )

n

b
b b b by

b

z t
z t z t B L u B L u

z
 (4.96) 

where é ùë û(0)bB  and é ùë û( )bB L are derived from equation (4.77). Similar relations hold for the 

axial inelastic component, where in this case the strain displacement matrices are derived 

from equation (4.83). The corresponding discretized components at the nodal points are: 

 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  1
1 1

( )
( ) 1 sgn ( ) (0) (0)

n

u
u u u uy

u

z t
z t z t B u B u

z
 (4.97) 

and 

 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  2
2 2

( )
( ) 1 sgn ( ) ( ) ( )

n

u
u u u uy

u

z t
z t z t B L u B L u

z
 (4.98) 

The evolution equations introduced in relations (4.95), (4.96), and (4.97), (4.98) 

adequately describe the nonlinear behavior of the beam element. One can notice that both 

evolution equations depend on the nodal velocities of the particular element and thus, can be 

treated separately at elemental level, processed in parallel for a given vector of nodal 

velocities. This constitutes the fundamental step in incorporating hysteretic modeling 

formulation into the finite element method and is of broader value. 
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It can be noticed also that the formulation of the governing equations of motion is 

independent of the type of the hysteretic model utilized in the analysis, since the evolution 

equations are introduced at the element level. However, the hysteretic model needs to be 

expressed in stress-resultant - generalized-displacement form and the hysteretic parameter in 

rate form in order to be implemented in the proposed scheme. Therefore if the appropriate 

hysteretic parameter is introduced in rate form any smooth hysteretic model can be treated by 

the proposed method (Thyagarajan, 1989), such as the Masing models of hysteresis (Chiang, 

1999, Visintin, 2003), the Ramberg – Osgood model (Skelton et al.1997) or the bilinear 

Suzuki-Minai hysteretic model, (Guggenberger and Grundmann, 2005).  

4.4.7 Large displacement formulation 

The proposed element formulation can be extended into the field of large displacements, 

by introducing the appropriate non-linear strain measure, without modifying the governing 

constitutive equations. 

Since the rotations, usually observed in structural members under seismic excitation, are 

small until failure, a large displacement but small rotation displacement field is implemented 

adhering to a Total Lagrangian Formulation approach. Such an approximation leads to an 

elegant, yet exact FEM formulation, Zienkiewicz and Taylor (2007). The following 

displacement field is introduced: 

 ( ) ( ) ( )q= + + = +,x X u X Y X y w X Y  (4.99) 

where x  denotes the position vector in the deformed configuration C0, X  is the position 

vector with respect to the reference configuration C1, ( )u X , ( )w X  are the axial and 

transversal displacements of the cross section and ( )q X  is the cross-sectional rotation as 

presented in Fig. 4.7. 
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( ) ( )

( ) ( ) ( )a a

= ⋅
æ æ ööæ ö æ ö ÷÷¶ ¶ ¶ç ç ÷ ÷ ÷÷ç çç ç= + + + -÷ ÷ ÷÷ç çç ç ÷ ÷ ÷÷÷ ÷ç çç ç ÷÷¶ ¶ ¶è ø è ø ÷÷ç çè è øø





0
2 2

0

, ,

1
, 1 ,

2u u u

N x t EA E x t

u u w
E x t z x t

x x x

 (4.103) 

and 

 ( ) ( ) ( ) ( ) ( )f f a a
¶

= = + -
¶

 
2

2
, , , , 1 ,b b b

w
M x t EI x t x t z x t

x
 (4.104) 

In addition, the axial deformation of the centerline 0E  is rewritten in the following form: 

 e h= +0
x xE  (4.105) 

where ex  is the geometrically linear part of the axial deformation and hx  is the geometrically 

nonlinear part of the deformation. Implementing the interpolation field introduced in 

equations (4.76) the following nonlinear strain displacement equation is derived: 

 { } { }e h é ù é ù= + = +ë û ë û
0

x x L NLE B d B d  (4.106) 

where: 

 ( ) { } ( ) { } ( )( )é ù é ù é ù é ù é ù é ù é ù= = +ë û ë û ë û ë û ë û ë û ë û1 2
1

, 
2L u u u b bNL

B B x B B d B x B d B x  (4.107) 

and { } { }= 1 2

T

ud u u , { } { }q q= 1 1 2 2

T

bd w w  while ( )é ùë ûbB x  and ( )é ùë ûuB x  are 

defined in equations (4.77) and (4.83) respectively. The auxiliary matrices introduced in 

equation (4.107) assume the following form: 

 é ù é ùé ù é ù= =ê ú ê úë û ë ûë û ë û1 1, 4, 2 3, 4, 5, 6,,x x xx xx xx xxB N N B N N N N  (4.108) 

Substituting equations (4.105) - (4.108) in the variational principle (4.101) and performing 

the necessary algebraic manipulations the expressions derived for the small displacement case 

(relations (4.87) and (4.88)) are reformulated as follows: 
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L L

T T u
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u
x x

d
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z

 (4.109) 

and 
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a a
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L L
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b
x x

d

I EI B B dx B N dx z
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 (4.110) 

where the 6 6x  sub matrices correspond to the standard large displacement stiffness matrix, 

Zienkiewicz and Taylor (2007) and the remaining parts can be deduced symbolically using 

one of the available symbolic languages such as Maple, MapleSoft (2007) or Mathematica, 

(Wolfram Mathematica, 2009). The matrix derived from equation (4.110) coincides with the 

bending contribution in the small displacement case presented in equation (4.89). The 6x2 

submatrix of equation (4.109) is: 

 
( ) ( )

( ) ( )

1 2 1 2
1 2 2 1

1 2 1 2
1 2 2 1

12 121 1 1 1 1 1

2 2 20 15 4 20 2 2 20 15 4 20
12 121 1 1 1 1

2 2 20 15 4 20 2 2 20 15 4

u

L w L wu L u L
w w

L L L LH
L w L wu L u L

w
L L L L

q q q q
q q q q

q q q q
q q q q
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T

w

é ù
ê ú
ê ú
ê ú
ê ú
ê ú- Dê ú÷ë û

(4.111) 

where: D = -2 1w w w  and D = -2 1u u u . 

The above relations are adequate for the geometrically nonlinear analysis where also 

separation of the elastic and hysteretic part is retained. As in the small displacement approach, 

this formulation is independent of the particular hysteretic model. 
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4.4.8 Standard second order representation 

For a specific plane frame structure with fn  degrees of freedom and given connectivity of 

eln  elements, mass distribution and boundary conditions, dynamic equilibrium can be 

established in terms of nodal displacements, velocities and accelerations as follows: 

 { } { } { } { } { }é ù é ù é ù é ù+ + + =ë û ë û ë û ë û
  ( )

S S S S
M U C U K U H Z P t   (4.112) 

where é ù é ù é ùë û ë û ë û, ,
S S S

M C K  are the mass, viscous damping and stiffness square symmetric 

( )f fn x n  matrices respectively and é ùë ûSH  is the orthogonal ( )4f eln x n  hysteretic matrix of 

the structure, while { }( )P t  is the ( )1fn x vector of external forces. These matrices are 

assembled following the direct stiffness method, Bathe (2007), where the stiffness matrix 

contains only the elastic part of the element stiffness of relation (4.89). The mass matrix may 

correspond to a lumped mass diagonal matrix, or a consistent mass matrix, Bathe (2007). 

The viscous damping matrix in general may be of the form of a Rayleigh damping matrix, 

Chopra (2006). Furthermore, { }U  
is the ( )1fn x  vector of unknown global nodal 

displacements and { }Z  is the ( )4 1eln x  vector of unknown hysteretic degrees of freedom. 

These vectors dictate the dimensions of the hysteretic matrix é ùë ûSH . The hysteretic behavior is 

defined at the element level in terms of hysteretic curvatures and centerline axial deformations 

from relation (4.91). The contribution of the hysteretic matrix of each element expressed in 

global terms is appended to form the corresponding hysteretic matrix é ùë ûSH , which expresses 

the hysteretic contribution that corresponds to the total degrees of freedom of the structure. 

This assembly scheme is demonstrated in detail in Example 2. Equations (4.112), together 

with the evolution equations for the entire set of the introduced hysteretic parameters (4.95), 
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(4.96), and (4.97), (4.98), fully describe the response of the system to a given external force 

and initial conditions. 

To comply with the formulation presented herein, modifications in the structure of a 

standard FEM code are required. These concern the evaluation of the hysteretic matrix é ùë ûSH , 

the incorporation of the evolution equations and a first order ode algorithm to provide the 

solution in conjunction with a standard Newmark method for the integration of the equations 

of motion. Moreover, the element proposed herein can be easily incorporated in a joined 

analysis – identification software, as proposed in Piyawat K., Pei J. S 2009. In this work, the 

governing equations are written in state-space form and a predictor-corrector differential 

solver is implemented, Radhakrishnan and Hindmarsh (1993), as described in the next 

section. 

4.4.9 State-space formulation 

By introducing as auxiliary unknown the vector of global nodal velocities { }U , the 

dynamic equilibrium equations (4.112) can stated in state-space the form of 2 fn linear 

differential equations of first order as follows: 

 
{ }
{ }

{ }
{ }
{ }

{ }- - -

ì üï ïé ù ï ïì ü ì üï ï ï ïï ïê úï ï ï ï ï ï= +í ý í ý í ýê úï ï ï ï ï ïé ù é ù é ù é ù é ù é ù- - -ê úï ï ï ï ï ïî þî þ ë û ë û ë û ë û ë û ë ûë û ï ïï ïî þ




 1 1 1

0 0 0

( )

UIU
U

P tU M K M C M H
Z

 (4.113) 

These are coupled with the nonlinear set of 2 eln  evolution equations of the form: 

 { } { } { }= ( , )Z f U Z  (4.114) 

which are decomposed further in eln sets of pairs of coupled equations as described in 

equations (4.95) and (4.96). 
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For small displacement analysis, equation (4.113) that expresses the dynamic equilibrium 

of the structure depends on global system matrices defined once at the beginning of the 

analysis, remaining constant in all subsequent steps. Moreover, the evolution of the 

elastoplastic behavior is treated at the element level in a decoupled and thus implicitly parallel 

form implementing relations (4.95), (4.96) and (4.97), (4.98) for the bending and the axial 

components respectively. 

As the coupled system of equations (4.113) and (4.114) does not lend itself to an analytical 

solution, the system is cast in the form of a general nonlinear set of first order differential 

equations. Equations (4.113) can be written into a non-autonomous state–space formulation of 

the following form: 

 { } { }( ) ( ){ }= +x G x P t  (4.115) 

where the vector { }x  is defined as: 

 { } { } { } { }
é ù
ê ú= ê ú
ë û


TTT T

x U U Z  (4.116) 

and { }( )G x  is defined as follows: 

 { }( )
{ } { }( )

- - -

é ù
ê ú
ê úé ù é ù é ù é ù é ù é ù= ê úë û ë û ë û ë û ë û ë ûê ú
ê úê úë û



1 1 1

,

I

G x M K M K M H

V U Z

0 0

0 0

 (4.117) 

The operator G  is a state dependent operator since V  holds the evolution equations for 

each element i , that is: 

 

{ } { }( ) { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L L =ç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø

  
( )

, 1 sgn ( ) 1,2

n
i i iji

j j j jy

z t
V u z z t B u B u j

z
(4.118) 
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It is evident from Fig. 4.13 that the three solution procedures yield practically the same 

nonlinear path. The proposed method converges much faster than the Abacus code, since only 

3 elements are needed. This is attributed to the solution method which avoids linearization as 

discussed in the preceding paragraphs, but also to the element formulation that assumes an 

exact interpolation field for the hysteretic curvatures of the two node beam element. The 

results obtained from the OPENSEES code also agree with the results obtained from the 

proposed formulation. All the analyses were conducted on a personal computer equipped with 

a Core Duo processor and 4 GB of RAM. The computational time required was 55 sec for the 

Abaqus model, 5 sec for the OPENSEES model and 3 sec for the proposed formulation. 

4.5 The Timoshenko beam element 

4.5.1 The multi-axial formulation of Bouc-Wen hysteresis 

The Bouc-Wen model was introduced by Bouc (1967) and modified subsequently by Wen 

(1976), Baber &Noori (1985) and Sivaselvan & Reinhorn (2000). To account for yield criteria 

involving more than one components of the stress tensor, a general formulation is needed to 

address the inherent interaction. Following Sivaselvan and Reinhorn (2003), the stress tensor 

can be decomposed into an elastic and hysteretic part as follows: 

 { } { } { } { } ( ) { }s s s a e aé ù é ù é ù é ù é ù= + = + -ë û ë û ë û ë û ë û
e h E I E z  (4.122) 

where { }s  is the 6x1 stress vector,{ }se  is considered the elastic part of the stress tensor, 

{ }sh  the hysteretic part of the stress tensor, aé ùë û  denotes a square diagonal matrix with post 

yield to elastic stiffness ratios, which for an isotropic material is considered constant, é ùë ûE , is 

the elastic constitutive matrix (Den Hartog, 1999), é ùë ûI is the identity matrix, { }e is the 6x1 
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strain vector and { }z  is a 6x1 hysteretic strain vector. A hysteretic 6x1 stress vector is thus 

defined as: 

 { } { }s é ù= ë û
h E z  (4.123) 

Casciati (2006) proved that if the hysteretic vector evolves according to the following Bouc-

Wen hysteretic rule: 

 { } { } ( ){ }s eé ù é ù é ù= = -ë û ë û ë û   1 2[ ]h E z E I H H R  (4.124) 

then equation (4.122) accurately describes the nonlinear hysteretic behaviour of a material in 

the 3D stress space. In relation (4.124) 1H  and 2H  are smoothed Heaviside functions 

expressed in the following form: 

 
{ }( )

{ } { }

s

g s e b

= F + ³
æ ö÷ç= +÷ç ÷çè ø



1

2

1 , 2

sgn

nh

Th

H n

H
 (4.125) 

where { }( )sF h  is a yield criterion such that: 

 { }( )sF - £1 0h  (4.126) 

with the equality holding when yield has occurred. In equation (4.125)n is the smoothing 

parameter and b g, are shape factors that define the shape of the loading and unloading 

branches of the hysteretic loop. The first of equations (4.125) smooths the transition from the 

elastic to the inelastic region. The second controls the unloading phases under cyclic 

excitation. Equations (4.122) to (4.126) can be alternatively formulated in the stress-resultant 

space considering the proper, elastic, constitutive matrix and the proper vector of strains, 

conjugate to the stress-resultants (Symeonov et al., 2000). 
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Since rates of the corresponding parameter appear in both sides of equation (4.124) the 

hysteretic vector z is rate independent. The typical elastic-perfectly plastic hysteretic 

behaviour can be derived for b g= = 0.5 , > 6n and = 0a while a variety of other 

responses can be also obtained (Sivaselvan and Reinhorn, 2000). 

Matrix [R] in relation (4.124) is an interaction matrix that depends on the yield function, 

given as: 

 
{ } { } { } { }s s s s

-é ù é ùæ ö æ ö æ öæ öê ú ê ú÷ ÷ ÷ ÷ç ç ç ç¶F ¶F ¶F ¶F÷ ÷ ÷ ÷ç ç ç çé ù é ù é ùê ú ê ú÷ ÷ ÷ ÷= ç ç ç ç÷ ÷ ÷ ÷ë û ë û ë ûê ú ê úç ç ç ç÷ ÷ ÷ ÷¶ ¶ ¶ ¶÷ ÷ ÷ ÷ç ç ç çè ø è ø è øè øê ú ê úë û ë û

1T T

h h h h
R E E  (4.127) 

The interaction matrix é ùë ûR  is formally derived by taking into account the consistency 

condition of associative plasticity (Casciati, 2006). Equations (4.122)and (4.124), yield a 

versatile formulation within the classical plasticity framework, where most of the associative 

flow rules are expressed in the stress space, (Lubliner, 2008).  

4.5.2 Kinematic relations 

A typical element of length L  is considered (Fig.4.14 (a)) in which the nodal degrees of 

freedom in the local coordinate system are: 

 { } { }q q= 1 1 1 2 2 2

T
d u w u w  (4.128) 
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Fig.4.14 (a) Nodal displacements and loads (b) Timoshenko kinematic assumption 

The following kinematic assumptions are considered according to the Timoshenko theory 

of bending (Fig.4.14 (b)): 

 f g
q

e e e q
¶ ¶ ¶

= = = -
¶ ¶ ¶

, ,u
u w

x x x
 (4.129) 

4.5.3 Exact shape functions 

In the work presented herein, the shape functions implemented are explicitly derived from 

the exact solution of the homogeneous Timoshenko beam differential equations: 

 

q
q

q

ì æ öï ¶ ¶ ÷ï ç+ - =÷ï ç ÷ï ÷ç ¶è ø¶ïí æ öï ¶ ¶ ÷çï ÷- =çï ÷çï ÷ç ¶¶è øïî

2

2

2

2

0

0

w
EI kGA

xx
w

kGA
xx

 (4.130) 

wherek  is the shear correction coefficient of the cross section (Dong et al., 2010). An exact 

solution can be evaluated for a variable cross-section along the element’s length. For the sake 

w

x

¶
¶
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of presentation the case of a constant cross-section is considered in this work. The solution of 

the system of differential equations (4.130) is: 

 

( )

( )

q
æ ö÷ç= + + +÷ç ÷÷ç

= +

è ø

++

2
1 2 3

3
1 3

2
2 4

1

2

1

6

1

2

z
EI

x C x C x C
kGA

w x C x C xx CC

 (4.131) 

where =, 1..4iC i are integration constants. Imposing the set of boundary conditions 

( ) ( ) ( ) ( )q q q q= = = =1 1 2 20 , 0 , ,w w w w L L  and solving for the integration constants 

the following interpolation field is derived, including also the axial displacements: 

 

( )
( )
( )

q q
q q q

= +
= + + +

= + + +

1 1 4 2

2 1 3 1 5 2 6 2

7 1 8 1 9 2 10 2

u x N u N u

w x N w N N w N

x N w N N w N

 (4.132) 

where the interpolation functions iN  introduced in equation (4.132) assume the following 

form: 

 

( ) ( )
( )

( ) ( )
( )

l mm m lm m
l m

l mm m lm m
lm

l mm m m
m l

m lm m m

= - =

+
= - - + = - + +

- +
= - + + = - -

+
= - = - + +

-
= - + = -

1 4

3 2 3 2
2 33 2 2

3 2 3 2
5 63 2 2

2 2
7 83 2 2

2 2
9 103 2 2

1

2 1 32 3 12
1 6 1

6 12 3 12
6

4 1 36 6 3
12 1

2 1 66 6 3

x x
N N

L L

N x x x N x x x
L LL L L

N x x x N x x x
L LL L L

N x x N x x
LL L L

N x x N x x
LL L L

(4.133) 

with: 

 m l
l

= =
+ 2

1
,

1 12

EI

kGAL
 (4.134) 
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The stiffness matrix of the element is then derived following the standard procedure of the 

Finite Element Method (Bathe, 2007) as: 

 
( ) ( )

( ) ( )

m m m m

m m l m m l
m m m m

m m l m m l

é ù-ê ú
ê ú+ - -ê ú= ê ú- - -ê ú
ê ú

- - +ê úë û

2 2

3

2 2

12 6 12 6

6 4 1 3 6 2 1 6

12 6 12 6

6 2 1 6 6 4 1 3

L L

L L L LEI
K

L LL

L L L L

 (4.135) 

Contrary to the isoparametric finite element method, the element material properties are 

naturally considered in the interpolation functions through the constants l and m . As l tends 

to zero,m  approaches unity, and the stiffness matrix of equation (4.135) degenerates into the 

Euler-Bernoulli stiffness matrix. The stiffness matrix is identical to the stiffness matrix of the 

Timoshenko beam element proposed by Macneal (1978) through the residual bending 

flexibility method or RBF. The proposed approach offers an interesting alternative with a 

better insight on the mechanics of the locking phenomenon. Moreover, the derived stiffness 

matrix is identical to the one derived by the exact, force based Timoshenko beam element 

formulation as described in Taylor et al. (2003). 

Taking into account the axial degrees of freedom the following, augmented, strain-

displacement matrix is derived: 

 
( ) ( ) ( )

lm lm
lm lm

m mm m
l l

é ù
ê ú-ê ú
ê ú
ê úé ù = - - -ê úë û ê ú
ê úæ ö æ ö- + - +ê ú÷ ÷ç ç÷ ÷- - - + + - +ç çê ú÷ ÷ç ç÷ ÷ç çè ø è øê úë û3 3

1 1
0 0 0 0

12 12
0 6 0 6

6 2 6 22 2
0 3 2 1 3 0 3 1 6

L L

B
L L
x L x Lx x

L L L LL L

 (4.136) 

that corresponds to the 6x1 nodal displacement vector of relation (4.128). 

Throughout the work presented herein, axial and bending deformations are considered to 

be uncoupled as implied by the kinematic assumptions assumed in equation (4.129). 
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4.5.4 The hysteretic degrees of freedom 

Based on the previous results, the elastic deformation field is extended herein by 

introducing an additional vector of corresponding hysteretic degrees of freedom: 

 { } { } { }{ } { }g f g f g fe e e e e e e e e e=  = =
TT Th

u u uz z z  (4.137) 

In equation (4.137), the elastic strain vector e , which consist of the centreline axial 

deformation eu , the shear deformation ge  and the curvature fe , is extended to its generalized 

counterpart e comprising of the total strain vector { }e  and the hysteretic strain vector { }eh . 

In the latter, uz  stands for the hysteretic part of the total centreline axial deformation, gz  is 

the hysteretic part of the total shear strain and fz  is the hysteretic part of the total curvature.  

The following nonlinear hysteretic laws are considered for the stress resultants: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

g g g g

f f f f

a e a

a e a

a e a

= + -

= + - =

= + -

1

1 ,

1

u u u u

s s s

N x EA x EAz x

Q x GA x GA z x A kA

M x EI x EIz x

 (4.138) 

where g fa a a, ,u  
are the axial, shear and bending inelastic to elastic stiffness ratios 

respectively. If a g f= =0, , ,i i u
 

then the corresponding nonlinear relation assumes an 

elastic perfectly plastic behaviour. If a = 1i  then the corresponding behaviour is elastic. 

According to the generalized hysteretic formulation presented in section 2.1, relation (4.138) 

can be cast in matrix form as: 
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 ( ) ( ) ( )
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üïïïïýïïï ïï ïþ x

(4.139) 

where ( )x  denotes dependence on the space variable. The evolution equations of the 

hysteretic components are equivalently defined as: 

 ( )
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( )
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( )
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



(4.140) 

where according to equation (4.125) 1 2,H H may assume the following form: 
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 (4.141) 

where the yield surface F  is expressed as a function of the hysteretic parts of the stress 

resultants that, referring to equation (4.139), are defined as: 

 { }( )
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g g
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 (4.142) 

Furthermore, the interaction matrix é ùë ûR  is now expressed with respect to a stress-resultant 

based interaction surface F  as: 
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{ } { } { } { }
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R D D

P P P P
 (4.143) 

The definition of the yield surface F  depends on the geometric properties of the cross-section 

under consideration. Different formulations exist for rectangular, hollow and I-shaped, 

concrete or steel sections such as the Hodge’s scheme (Lubliner, 2008) and the general yield 

function proposed by Neal, (1961). The yield surface can also be derived numerically on the 

grounds of a fibre analysis (Charalampakis and Koumousis, 2008). In this case, relation 

(4.143) is also evaluated numerically. In the example section of this work several yield 

surface formulations are exhibited. 

Usually the nonlinear interaction between moment and shear is considered to be negligible, 

contrary to the axial-moment interaction. In this case, relation (4.140) is reformulated, to 

account for coupled axial-moment and uncoupled shear plasticity patterns as follows: 
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or 
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 (4.145) 

where in the first of equations (4.144) 1 2,H H  and é ùë ûR , are functions of the hysteretic axial 

force and the hysteretic moment. In the second of equations (4.144): 
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 (4.146) 

and ( )a= -1h
y s yQ Q is the hysteretic yield shear force. 

4.5.5 Additional shape functions 

Based on the deformation vector defined in equation (4.137), the vector of nodal degrees 

of freedom introduced in section 4.5.2is herein extended to the 12x1 vector { }d : 

 { } { } { }{ } { }g g f fq q= = 1 2 1 2 1 2
1 1 1 2 2 2

T

u ud d z u w u w z z z z z z (4.147) 

which consists of the total displacement vector { }d  and the hysteretic part of the total 

deformation { }z . 

 

Equations (4.138) are rewritten in the following equivalent form: 
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 (4.148) 

The total part of the deformation component{ }e  depends solely on the total part of the 

displacement field through the compatibility relations introduced in equation (4.129). Thus, 

the shape functions introduced in equations (4.133) are also used in the nonlinear case for the 

interpolation of the total displacement component { }d .  

The hysteretic deformation components are considered a perturbation of the total 

deformation components and as such, they are inserted into the problem with their 
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correspondent interpolation functions. Since equation (4.148) must hold for every possible 

value of ai  it must hold for a = 0i . Thus the following relations are derived: 
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=

=
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N x EAz x

Q x GA z x

M x EIz x

 (4.149) 

Considering nodal equilibrium of the stress-resultants and relations (4.149), the following, 

exact, interpolation functions are derived for the corresponding hysteretic degrees of freedom: 

 

( ) { }
( ) { }
( ) { }

g g g

f f f

é ù= ê úë û
é ù= ê úë û
é ù
ê ú= -
ê úë û

1 2

1 2

1 2

1 2 1 2

1 2 1 2

1

T

u u u
T

T

z x z z

z x z z

x x
z x z z

L L

 (4.150) 

where g f= =, 1,2, , ,j
iz j i u are the nodal hysteretic deformations. Thus, a hysteretic 

interpolation field is established denoted herein as é ùë ûzN . 

 

é ù
ê ú
ê ú
ê úé ù = ê úë û ê ú
ê ú-ê ú
ë û

1 2 1 2 0 0 0 0

0 0 1 2 1 2 0 0

0 0 0 0 1

zN

x x

L L

 (4.151) 

The interpolation field é ùë ûzN  maps the continuous hysteretic deformation components into 

their corresponding nodal quantities.  

Since no distributed axial and transverse loads are considered, a constant axial force and 

shear force is generated along the element’s length. Consequently, the hysteretic components 

of the deformation are a function of the corresponding nodal components at the first end of 

the beam element. Thus, a total of 4 hysteretic degrees of freedom are necessary for the 
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derivation of the finite element. For the sake of completeness however, the presentation 

adopts the generalized nodal displacement vector of relation (4.147). 

4.5.6 Derivation of stiffness matrix 

Taking into account bending, shear and axial deformations, the principle of virtual work is 

formulated as: 

 { } { } ( )f gd de de deP = = = + +ò
0

L
T

e ud P V M Q N dx  (4.152) 

where only nodal external loads are considered for the sake of simplicity. Substituting 

equations (4.138) into (4.152) the following relation is derived: 
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Collecting the hysteretic parts of the above integrals, equation (4.153) is reformulated as: 
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 (4.154) 

Writing the above integrals in matrix notation and substituting for the expressions of the 

interpolated fields introduced in equations (4.133) and (4.151) the following relations are 

derived: 

 { } { } { } { } { } { }d d d d e= +
T T T

e h hd P d I d d I  (4.155) 
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where 

 é ù é ù é ù= ë û ë û ë ûò
0

L
T

eI B D B dx  (4.156) 

and 

 é ù é ù é ù= ë û ë û ë ûò
0

L
T

h zI B D N dx  (4.157) 

where eI is the internal energy corresponding to the total deformation components, hI is the 

internal energy corresponding to the hysteretic deformation components , é ùë ûB  is defined in 

equation (4.136), é ùë ûzN  in equation (4.151), { }eh is the vector of hysteretic nodal degrees of 

freedom and é ùë ûD  is the constitutive matrix: 
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Equation (4.156) yields the elastic stiffness matrix of the beam element: 
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 (4.159) 

where: 
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whilel, m  are defined in relation (4.134). When u f ga a a= = = 1 the stiffness matrix 

reduces to the Timoshenko formulation presented in relation (4.135). 

Similarly, the integral of equation (4.157) yields the nonlinear hysteretic stiffness matrix of 

the element: 
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where: 
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Similar to the elastic case, as l tends to zero, m  tends to unity and the hysteretic matrix 

coincides with the one derived for the Euler-Bernoulli case (Triantafyllou & Koumousis, 

2008). Substituting the derived expressions back to the principle of virtual work (equation 

(4.155)), the following constitutive equation is obtained at the element level: 

 { } { } { }
{ }
{ } { }

ì üï ïï ïé ùé ù é ù é ù é ù é ù= + = =í ýê úë û ë û ë û ë û ë ûë û ï ïï ïî þ

 
e h e h

d
P k d k z k k k d

z
 (4.162) 
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Equation (4.162) together with the set of Bouc-Wen evolution equations defined in relation 

(4.140) or relation (4.145) at 0x =  and x L=  smoothly describe the nonlinear cyclic 

response of a Timoshenko beam element. Considering for example relation(4.145), the 

corresponding nodal hysteretic quantities are expressed as: 
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where é ùë ûB  is the strain displacement matrix introduced in equation (4.136), properly 

reordered to account for the strain vector in relation (4.145). 

4.5.7 State-space formulation 

As in the Euler/Bernoulli formulation, the equations of motion are written into a non-

autonomous state – space formulation of the following form: 

 { } { }( ){ } ( ){ }= +x G x x P t  (4.164) 

where the vector { }x  is defined as: 

 { } { } { } { }
é ù
ê ú= ê ú
ë û


TTT T

x U U Z  (4.165) 

and { }( )G x  is defined as follows: 

 { }( )
{ } { }( )

- - -

é ù
ê ú
ê úé ù é ù é ù é ù é ù é ù= ê úë û ë û ë û ë û ë û ë ûê ú
ê úê úë û



1 1 1

,

I

G x M K M K M H

Y U Z

0 0

0 0

 (4.166) 

The operator G is a state dependent operator since Y holds the evolution equations for each 

element i. Moreover, the evolution of the elastoplastic behaviour is treated at the element 
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level in a decoupled and thus implicitly parallel form considering an interaction scheme for 

the bending shear and axial components through relation (4.140) or the interaction of bending 

and axial components through relation (4.145). Considering the interaction scheme of relation 

(4.145), vector Y is defined as: 

 { } { }( )
( )

{ }
é ù
ê úé ù- ë ûê ú é ù é ù= L =ê ú ë û ë û
ê ú-ê úë û

 1 2

1 2

0
[ ]

0, , 1,2

0 0 1

i i ii
j j

s s

j

I H H R
Y u z B u j

H H

 (4.167) 

where é ùLë û  in equation (4.167) is the transformation matrix of the 2D beam element from the 

global to the local coordinate system defined in equation . 

 

a a
a a

é ù
ê ú
ê úé ùL = -ê úë û
ê ú
ê úë û

cos sin 0

sin cos 0

0 0 1

 (4.168) 

wherea  is the angle between the local x axis and the global X axis, as presented in 

Fig.4.14(a). 

4.5.8 Example 1 – Cantilever Beam 

In this example, an aluminum cantilever beam presented in Fig.4.15 is examined. At first, a 

horizontal load is applied at the tip and the elastic response of the cantilever is compared to 

the analytical solution to validate the behaviour of the element in terms of shear-locking. 

Next, a nonlinear static analysis is conducted and the load – tip deflection curve is plotted for 

different values of the vertical load Py. 
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Fig.4.15 Cantilever beam 

For the nonlinear analysis, full interaction between axial, shear and bending is considered 

through relations (4.140) to (4.143). The yield criterion proposed by Simo et al. (1983) is 

implemented: 
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 (4.169) 

where for the rectangular cross-section ( )a s= -1h
u u yN bh , ( )ga s= -1 3h

u yV bh

( )fa s= - 21 4h
u yM bh , sy  being the yield stress under uniaxial tension. The material 

properties considered are E=69 GPa, G=26 GPa, g fa a a= = = 0.0u , 

b g= = =25, 0.5n , s = 275y ΜPa. The shear coefficient for the rectangular cross-

section is = 5 6k . The tip horizontal displacement and the tip rotation are evaluated 

analytically as: 

 b

q

= +

= -

3

,

2
3

2

x x
x exact

x
exact

P L P L
u

EI GA
P L

EI

 (4.170) 

Considering the stiffness matrix of the proposed beam element presented in relations (4.159) 

to (4.161) and under the assumption of elasticity, the tip displacement of the cantilever beam 

discretized into 1 element is evaluated as: 



 

The prop

to the Re

Element t

 

in which,

Next, 

displacem

In Fig.4.1

of the c

compared

Fig.4.

 

Hyster

k

k

osed formul

educed Integ

that both yie

, the rotation

a monotonic

ment diagram

16(a), the eff

antilever is 

d with result

16 (a) Effect

retic Finite Eleme

q

q

+

+

55 56

65 66

el el
x

el el
x

k u k

k u k

lation yields 

gration Timo

eld the follow

q

RIE
x

RIE

u

n evaluated i

cally increas

m is plotted,

fect of the no

presented. 

ts obtained fr

(a) 

t of the axial
of proposed

nts and Macro-Ele

üï= ïïï ýïïï= ïþ0

xP u

an exact sol

oshenko beam

wing results 

=

= -

,

,

4

2

E CIE x

E CIE

P L

E
P

s exact but t

sing load is i

, considering

ormalized ax

The result

from Abaqus

l force on th
d formulatio

ements for Nonline

q

= +

= -

3

3

2

x
x

P L
u

EI
P

lution and no

m element a

(Reddy, 199

b

q

+ ¹

=

3

2

2

x

x
exact

L P L

EI GA
P L

EI

the translatio

imposed at th

g the yield c

xial load pn

ts obtained 

s code (Karls

he bearing ca
on with plane

ear Dynamic Anal

b

q

+ =

=
2

2

x

x
exac

P L
u

GA
P L

EI

o shear locki

nd the Cons

97): 

¹ ,x exact

t

u

on is smaller

he tip of the

criterion pre

= h h
uN N

with the p

sson & Soren

apacity of the
e stress solut

lysis of Structures 

,x exact

ct

u
 

ing is develo

sistent Interp

r. 

e cantilever, 

esented in re

on the nonli

proposed for

nsenn, 2000

(b) 

e element (b
tion 

(4.17

oped, contrar

polation Bea

(4.17

and the forc

elation(4.169

inear respon

rmulation a

).  

b) Compariso

1) 

ry 

am 

2) 

ce-

9). 

se 

are 

on 



Chapter IV  Hysteretic Macro-Elements  

144 

In the latter, the cantilever is discretized with 160 quadrilateral plane stress elements 

considering a J2 plasticity model, namely an elastic-perfectly plastic von-Mises material. Two 

cases are presented in Fig.4.16(b) for = 0pn  
and = 0.9pn . 

The ultimate load predicted from plasticity theory for zero axial load is (Lubliner, 2008) 

s= =2 4 440U yP bh L KN . The value predicted by the proposed formulation is UP =440.8 

KN, while Abaqus predicts a value of UP =439.2 KN. In both cases the error is less than 1.0%. 

The differences observed are due to the approximate nature of relation (4.169) as compared to 

the exact FEM solution. Nevertheless, the deviation of the proposed formulation from the 

exact solution for np=0.9 is 2.6%. 

4.6 The 3d Hysteretic Timoshenko beam element formulation 

In this section, the general case of a 3d Timoshenko hysteretic beam element formulation 

is presented. Shear-locking is also treated by extending the methodology proposed in section 

4.5.3 at the three dimensional space. Furthermore, torsional warping is incorporated in the 

proposed formulation by introducing an additional degree of freedom, corresponding to the 

variation of the twisting angle along the element’s length. The prismatic beam element and its 

corresponding degrees of freedom and nodal forces are presented in Fig. 4.17. 

Inelasticity is introduced in all degrees of freedom through the interaction Bouc-Wen 

scheme presented in section 4.5.1. The most general case of yield criterion is considered 

where all the stress-resultants, namely the axial force, the shear forces, the bending and 

torsional moments, and the warping bi-moment interact. 
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Fig. 4.17 Nodal displacement and forces 

4.6.1 Bending in two directions 

In the three dimensional case, the nodal displacement vector introduced in relation (4.128) 

is extended to a 12x1 vector defined as: 

 { } { }q q q q q q= 1 1 1 1 1 1 2 2 2 2 2 2

T

x y z x y zd u v w u v w  (4.173) 

where u , v , w  are translations with respect to x , y , z  axes and qx , qy , qz  are the 

corresponding rotations as presented in Fig. 4.17. Having evaluated the expressions for the 

two dimensional case, the 3-dimensional case can be readily derived since bending in the two 

directions is considered to be uncoupled. Thus, the stiffness and hysteretic coefficients 

corresponding to displacements 1v , q 1y , 2v , q 2y and hysteretic deformations 1szz , 1byz , 2szz , 

2byz  are derived from their plane counterparts, minding the sign convention as presented in 

Fig. 4.18. Within this framework, the differential equation of bending in the xz  plane is 

defined as: 
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 (4.174) 

whereas in the xy  plane has been defined in relation (4.130). The derivation of equation 

(4.174) is presented in the Appendix. By applying the procedure introduced in section 4.5.3, 

the following set of exact shape functions is derived: 

 

( )
( )
( )
( )

{ }
q
q

ì üï ïï ïï ïï ïï ïï ï é ù=í ý ë ûï ïï ïï ïï ïï ïï ïî þ

bb
y

z

v x

w x
N d

x

x

 (4.175) 

In relation (4.175), { } { }q q q q= 1 1 1 1 2 2 2 2

T

y z y zb
d v w v w  while the matrix é ùë ûbN  

is defined as: 

 

é ù
ê ú
ê ú
ê úé ù = ê úë û
ê ú
ê ú
ê úë û

2 3 5 6

9 10 12 13

15 16 17 18

19 20 21 22

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b

N N N N

N N N N
N

N N N N

N N N N

 (4.176) 

where: 

 

( ) ( )
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l ml mm m m
l m
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l m
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m l
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+
= - - + = - + +
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2 2
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1 6122 3
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xz xzxy xzxz xz xz
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L

( )m lm m -
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222 2

2 1 66 3 xzxz xzx N x x
LL L

 (4.177) 

with the constants mxz  and lxz defined as: 

 m l
l k

= =
+ 2

1
,

1 12
z

xz xz
xz y

EI

GAL
 (4.178) 
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Accordingly, the shape functions corresponding to bending in the xy  plane are defined as: 
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 (4.179) 

with the constants mxy  and lxy defined as: 

 m l
l k

= =
+ 2

1
,

1 12
y

xy xy
xy z

EI

GAL
 (4.180) 

Considering the kinematic relations of the Timoshenko theory of bending as presented in 

the Appendix, the exact strain-displacement matrix of the 3d Timoshenko beam element is 

defined as: 

 { } { }e é ù= ë û


b bb
B d  (4.181) 

where { } { }e f g f g=
T

b y xz z xy  and: 
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15, , 16, , 17, , 18, ,

9, 15 10, 16 12, 17 13, 18
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2, 19 3, 20 5, 21 6, 22

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x x x x x x x

x x x x

b
x x x x x x x x

x x x x

N N N N

N N N N N N N N
B

N N N N

N N N N N N N N

(4.182) 

In relation (4.182) (,x ) denotes differentiation with respect to x . 

4.6.2 Torsion and torsional warping 

In the standard 3D beam element formulations, (Cook et al., 2002), torsion is introduced 

through the linear interpolation of the twisting angle qx . Although adequate for warping free 

sections, this approach does not account for the additional normal and shear stresses induced 

when warping is considered (Schulz and Filippou, 1998, Sapountzakis and Mokos, 2003 & 
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2004). These additional stresses are a result of the non-uniform variation of the twisting angle 

along the element’s length. Thus, enhanced beam element formulations have been proposed 

that include warping effects by introducing additional degrees of freedom corresponding to 

this variation (Park et al., 2005). 

According to the theory of non-uniform torsion, the torsional moment is additively 

decomposed into two components: 

 = +SV WT T T  (4.183) 

where: 

 ( )q¢=SV t xT GK x  (4.184) 

is the pure torsional or St Venant while tK  is the pure torsional constant of the cross-section. 

Accordingly the warping torsional component is expressed as: 

 ( )q¢ ¢¢¢= = -W W W xT M EI x  (4.185) 

where WM  is the warping bi-moment and WI  is the warping torsional component. In 

equations (4.184) and (4.185), prime denotes differentiation with respect to the space variable 

x .  

Considering that the distribution of the torsional moment across the element’s length is 

constant, and differentiating (4.183) with respect to x , the following homogeneous 

differential equation is derived: 

 
q q¶ ¶

- =
¶ ¶

4 2

4 2
0x x

W tEI GK
x x

 (4.186) 

Equation (4.186) can be solved analytically with respect to the twisting angle, bearing the 

following solution, expressed in exponential form: 
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 ( ) r rq -= + + +1 2 3 4
W Wx x

x x C C x C e C e  (4.187) 

where r =W t WGK EI and 1C , 2C , 3C , 4C  are arbitrary integration constants. As rW  

increases, the influence of warping torsional effects reduce and vice-versa. The expression of 

the warping angle ( )b x  is then readily derived as: 

 ( ) ( ) r rq
b r a -= = + -2 3 4

W Wx x
W

d x
x C C e C e

dx
 (4.188) 

Considering an arbitrary set of boundary conditions, namely ( )q q= 10x x , ( )b b= 10 , 

( )q q= 2x xL , ( )b b= 2L  and substituting in equations (4.187) and (4.188), the following 

system of linear equations, in terms of the integration constants, is derived: 
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r r

r r

a r
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0 1

1

0 1
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L L x
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C

C
d

L e e C

Ce e

 (4.189) 

Where { } { }q q b q b= 1 1 2 2

T

x x xd . 

Solving equation (4.189) for the unknown constants of integration =, 1..4iC i , 

substituting into equations (4.187) and (4.188), and collecting terms, the following 

interpolation scheme is derived: 

 ( ) { }q qq é ù= ë ûx x xx N d  (4.190) 

where 
q

é ùé ù = ê úë û ë û4 7 11 14x
N N N N N  is the interpolation matrix. The corresponding 

interpolation functions are defined as: 

 
( ) ( )( )r r
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 (4.191) 
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r r

r r

- -D - G- -B
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- + A14

1 1

2 2
W W

W W

A L x
N

B L
 (4.194) 

where ( )r= sinh WA L , ( )r= cosh WB L , ( )rG = sinh Wx , ( )rD = cosh Wx . 

Equations (4.184) and (4.185) can be expressed in matrix form as: 

 
( )
( )

q
q

ì ü é ù ì ü¢ï ï ï ïï ï ï ïê ú=í ý í ýê ú ¢¢ï ï ï ï-ê úï ï ï ïî þ ë û î þ

0

0
SV t

W W

T GK x

M EI x
 (4.195) 

Substituting the interpolation field presented in equation (4.190), the following relation is 

derived: 

 { }q

ì ü é ùï ïï ï ê ú é ù=í ý ë ûê úï ï ê úï ïî þ ë û
0

0 x

SV t
tw

W W

T GK
B d

T EI
 (4.196) 

where the torsional strain-displacement matrix é ùë û

twB  is defined as: 

 
é ù¢ ¢ ¢ ¢
ê úé ù =ë û ê ú¢¢ ¢¢ ¢¢ ¢¢ê úë û

 4 7 11 14

4 7 11 14
tw

N N N N
B

N N N N
 (4.197) 

Taking into account the additional degrees of freedom corresponding to warping, the nodal 

displacement vector introduced in relation (4.173) is further augmented into the following 

14 1x  vector: 

 { } { }q q q b q q q b¢ ¢= 1 1 1 1 1 1 1 2 2 2 2 2 2 2

T

x y z x y zd u v w u v w  (4.198) 

The accompanying, augmented, torsional strain-displacement matrix is defined as: 
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é ù¢ ¢ ¢ ¢
ê úé ù = ê úë û ¢¢ ¢¢ ¢¢ ¢¢ê úë û

4 7 11 14

4 7 11 14
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0 0 0 0 0 0 0 0 0 0tw

N N N N
B

N N N N
 (4.199) 

Similarly, relation (4.182) is augmented to account for the new displacement vector as: 
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B
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 (4.200) 

The centerline axial deformation displacement matrix is derived accordingly as: 

 
é ù
ê úé ù =ë û ê úê úë û

1 8

1 8

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0u

N N
B

N N
 (4.201) 

where = -1 1N x L  and =8N x L . 

Relations (4.199) to (4.201) and (4.197) establish the “generalized strain”-“generalized 

displacement” matrices that are necessary for subsequent analysis. 

4.6.3 Hysteretic field 

A 7-dimensional hysteretic field is defined, corresponding to the following set of 

“generalized stress”-“generalized displacement” relations. The axial components are defined 

as: 

 ( ) ( )a e a= + -1u x u uN x EA EAz  (4.202) 

where uz  is the hysteretic part of the axial centerline deformation and au  is the post-elastic to 

elastic axial stiffness ratio. The shear and bending components are defined through the 

following relations:  
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 (4.203) 

where syz  and szz  are the hysteretic parts of the shear deformation components gxy  and gxz   

respectively, while byz , bzz  are the hysteretic parts of the curvatures.  

Similarly, the torsional and warping components are defined as: 

 
( ) ( )
( ) ( )

a q a
a b a

= +

=
= + -

¢= + -
1

1

x SV W

W W

SV t t x t t t
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M T T

T dM dx

T x GK GK z

M x EI EI z

 (4.204) 

where tz  is the hysteretic part of the twist and Wz  is the hysteretic part of the variation of the 

warping angle while at  and aW  are the nonlinear to elastic torsional rigidity and warping 

rigidity ratios respectively. 

The decomposition introduced in relations (4.202) to (4.204) is established in matrix form 

as: 

 { } { } { }= +e hP P P  (4.205) 

where { } ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }=
T

y z x y z WP N x Q x Q x M x M x M x M x while the 

elastic part of the force vector is defined as: 

 { } { }eé ù= ë û
e

e
P D  (4.206) 

where { } { }e e g g q f f b ¢=
T

x xy xz x y z  and é ùë ûeD  is defined as: 
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Accordingly, the hysteretic force vector is defined as: 

 { } { }é ù= ë û
h

h
P D z  (4.208) 

where { } { }=
T

u sy sz t by bz Wz z z z z z z z  and 

 

( )
( )

( )
( )

( )
( )

( )

a
a

a
a

a
a

a

é ù-ê ú
ê ú-ê ú
ê ú-ê ú
ê úé ù -= ê úë û ê ú

-ê ú
ê ú
ê ú-ê ú
ê ú-ê úë û

1

1

1

1

1

1

1

u

s y

s z

t th

b y

b z

W W

EA

EA

EA

GKD

EI

EI

EI

(4.209) 

The evolution of the hysteretic field is defined through the Bouc-Wen interaction scheme 

in a form similar to equation (4.140) defined in the two dimensional case, thus: 

 
{ } { } ( ){ }
{ } ( ){ }

e
e

é ù é ù é ù é ù= = - ë û ë û ë û ë û
é ù é ù é ù= -ë û ë û ë û

 


1 2

1 2

h
h h

h

P D z D I H H R

z D I H H R
 (4.210) 

where é ùë ûI  is the 6x6 identity matrix and 1H , 2H  are smoothed Heaviside functions defined 

as: 

 
{ }( )

{ } { }g e b

= F + ³
æ ö÷ç= +÷ç ÷çè ø



1

2

1 , 2

sgn

nh

Th

H P n

H P
 (4.211) 

where { }( )F hP  is a general yield function that depends on the stress-resultants.  
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4.6.4 Hysteretic interpolation functions 

The derivation of the 2-node beam element is based on the interpolation of the continuous 

hysteretic field defined in section 4.6.3. Similar to section 4.5.5, these shape functions are 

evaluated through the equilibrium consideration of the corresponding stress resultants. Thus, 

the following interpolation scheme is established: 

 { } { }é ù= ë û 
z

z N z  (4.212) 

where { }z  is the 14x1 vector of hysteretic nodal quantities and é ùë ûzN  is the 14x14 matrix of 

the corresponding shape functions. The individual nonzero components of é ùë ûzN  are presented 

in Table 4.2. 

Hysteretic Variable Shape Functions Nodal Hysteretic Component

uz  = =11 181 2, 1 2z zN N   1 8,z z  

syz  = =22 291 2, 1 2z zN N   2 9,z z  

szz  = =33 3101 2, 1 2z zN N   3 10,z z  

tz  = =44 4111 2, 1 2z zN N   4 11,z z  

Wz  = =44 4121 2, 1 2z zN N   5 12,z z  

byz  = = -55 513, 1z zN x L N x L  6 13,z z  

bzz  = = -66 614, 1z zN x L N x L  7 14,z z  

Table 4.2 Hysteretic Shape Functions of 3d beam element 

4.6.5 Derivation of stiffness matrix 

The first variation of the potential energy is formulated in terms of stress-strains as: 

 ( )d s de t de t de= + +ò òx x xz xz xy xy

V V

V dV dV  (4.213) 

Consequently, relation (4.213) can be established in terms of stress resultants and their 

conjugate generalized strain measures as: 
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 ( ) ( )d de df df db db dg dg¢= + + + + + +ò ò
0 0

L L

u y y z z sv W y xy z xzV N M M dx T M Q Q dx  (4.214) 

where the total torsional moment xM  has been decomposed into its pure torsion and warping 

torsion components. Substituting the constitutive equations (4.202) to (4.204) into  equation 

(4.214), the following relation is derived: 
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¢ ¢ ¢ ¢+ + - + + -

+ + -

ò

ò

ò

ò

0

0

0

0

1 1

1 1

1 1

1

L

b y by y sz z s sz sz z

L

z b bz z sy z s sy sy y

L

t t t t t W W W W W

L

u u u u

V EI EIz GA GA z dx

EI EIz GA GA z dx

GK GK z EI EI z dx

EA EA dx

 (4.215) 

Relation (4.215) can be reformulated in matrix notation as: 

 { } { } { }( )d de eé ù é ù= +ë û ë ûò
0

L
T

e h
V D D z dx  (4.216) 

where é ùë ûeD  and é ùë ûhD  are defined in equations (4.207) and (4.209) respectively while { }e  

and { }z  are defined in relations (4.206) and (4.208) respectively. 

Using the strain-displacement matrices established in equation (4.201) for the axial 

components, (4.200) for the bending components and (4.199) for the torsional components 

and following the procedure introduced in section 4.5.6 the 14x14 stiffness matrix of the 3d 

Timoshenko element with warping torsion is derived. The equilibrium equation at the element 

level is defined as: 

 { } { } { }é ù é ù= +ë û ë ûhe
P k d k z  (4.217) 

The procedure of deriving equation (4.217) is presented in detail in Appendix II. The elastic 

stiffness matrix é ùë ûhk  assumes the following form  
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 é ù =ë û

1,1 1,8

2,2 2,6 2,9 2,13

3,3 3,5 3,10 3,12

4,4 4,7 4,11 4,14

5,3 5,5 5,10 5,12

6,2 6,6 6,9 6,13

7,4 7,7 7,11 7,14

8,1 8,8

9,2 9,6 9,9 9,13

10,3 10,5 10,10 10,12

11,4 11,7 11,11 11,14

12,3 12,5

e

k k

k k k k

k k k k

k k k k

k k k k

k k k k

k k k k
k

k k

k k k k

k k k k

k k k k

k k

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

12,10 12,12

13,2 13,6 13,9 13,13

14,4 14,7 14,11 14,14

k k

k k k k

k k k k

 (4.218) 

where the bending stiffness coefficients coincide with those derived for the plane element, 

considering the proper sign convention for bending with respect to the y axis: 

The torsional degrees of freedom are evaluated as: 

 ¢¢ ¢¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢= + = +ò ò ò ò4,4 4 4 4 4 4,7 4 7 4 7

0 0 0 0

,
L L L L

w t w tk EI N N dz GK N N dz k EI N N dz GK N N dz  (4.219) 

 ¢¢ ¢¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢= + = +ò ò ò ò4,11 4 13 4 13 4,14 4 16 4 16

0 0 0 0

,
L L L L

w t w tk EI N N dz GK N N dz k EI N N dz GK N N dz  (4.220) 

 ¢¢ ¢¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢= + = +ò ò ò ò7,7 7 7 7 7 7,11 7 13 7 13

0 0 0 0

,
L L L L

w t w tk EI N N dz GK N N dz k EI N N dz GK N N dz  (4.221) 

 ¢¢ ¢¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢= + = +ò ò ò ò7,14 7 16 7 16 11,11 13 13 13 13

0 0 0 0

,
L L L L

w t w tk EI N N dz GK N N dz k EI N N dz GK N N dz  (4.222) 

 ¢¢ ¢¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢= + = +ò ò ò ò11,14 11 14 11 14 14,14 14 14 14 14

0 0 0 0

,
L L L L

w t w tk EI N N dz GK N N dz k EI N N dz GK N N dz (4.223) 

 = = =74 47 11,4 4,11 11,7 7,11, ,k k k k k k  (4.224) 

 = = =14,4 4,14 14,7 7,14 14,11 11,14, ,k k k k k k  (4.225) 
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Analytical expressions for the torsional stiffness coefficients are presented in Appendix II. 

The hysteretic matrix é ùë ûhk  of equation (4.217) is defined accordingly as: 

 é ù =ë û

1,1 1,8

2,2 2,6 2,9 2,13

3,3 3,5 3,10 3,12

4,4 4,11

5,3 5,5 5,10 5,12

6,2 6,6 6,9 6,13

7,7 7,14

8,1 8,8

9,2 9,6 9,9 9,13

10,3 10,5 10,10 10,12

11,4 11,11

12,3 12,5 12,10 12,12

13,2 13,6 13,9 1

h

h h

h h h h

h h h h

h h

h h h h

h h h h

h h
k

h h

h h h h

h h h h

h h

h h h h

h h h h
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ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
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ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

3,13

14,7 14,14h h

(4.226) 

where the axial and bending coefficients are readily derived from the two-dimensional case of 

equation (4.160) while the torsional coefficients are defined by the following relations: 

 

( )a= = - -
= -
= -

44 411

114 44

1111 44

0.5 1 T Th h GK

h h

h h

 (4.227) 

and the warping hysteretic coefficients are defined as: 

 

( )77 714

1414 77

147 714

0.5 1 EIW wh h

h h

h h

a= = - -
= -
= -

 (4.228) 

4.7 Conclusions 

A new three-dimensional hysteretic rod element formulation is presented based on the 

concept of hysteretic axial deformation. Geometrical nonlinearities are considered through a 

Total Lagrangian formulation. 
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A new nonlinear beam element is presented, together with efficient methods for the 

solution of the equations of motion, avoiding linearization and treating nonlinearities at the 

element level. The beam element is formulated within the framework of the Timoshenko 

beam theory by adding six new degrees of freedom accounting for the hysteretic part of the 

curvature, axial centerline deformation and shear strain. The field consistence method is used 

to avoid shear locking.  

The Bouc-Wen hysteretic model is implemented to simulate the nonlinear constitutive 

behavior of the material. A wide range of hysteretic behavior can be modeled by properly 

controlling the parameters of the hysteresis law, namely the “yield” parameter, the 

smoothness parameter, and the shape factors. As a whole, the proposed method constitutes a 

successful confluence of the hysteretic modeling into the realm of the Finite Element Method. 

By writing down the governing equations in state space form and implementing a 

predictor-corrector integration scheme the linearization of the constitutive equations is 

avoided. The Bouc-Wen hysteretic model is implemented in order to simulate the nonlinear 

constitutive behavior of the material, in terms of stress - strain relation. Various loops can be 

modeled by properly controlling the parameters of the hysteresis law. The problem is 

partitioned into two sets of equations, which are solved simultaneously. The numerical 

examples presented demonstrate the validity of the proposed approach as well as its versatility 

as compared to displacement formulation. 
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Appendix I- Derivation of the Timoshenko beam differential equations 

 
Fig. 4.18 Timoshenko beam kinematic assumptions in space 

If bending in the xy  plane is considered, the Timoshenko kinematic assumptions are given 

by the following relations, where the centerline axial deformation component is omitted for 

the sake of simplicity: 

 ( ) ( ) ( ) ( ) ( )q= - = =, , , , , , , , 0zu x y z y x v x y z v x w x y z  (4.229) 

Thus, the non-zero components of the strain tensor are derived as: 

 
q

e e q
æ ö æ ö¶¶ ¶ ¶ ¶÷ ÷ç ç= = - = + = - +÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶ ¶ ¶è ø è ø

1 1
,

2 2
z

xx xy z
u u v v

y
x x y x x

 (4.230) 

Since the actual shear strain varies along the section’s height, the shear correction factor is 

introduced, such that: 

 
k

e ke q
æ ö¶ ÷ç= = - + ÷ç ÷÷ç ¶è ø, 2xy xy real z

v

x
 (4.231) 

The equilibrium conditions for an infitensimal beam with length dx  are defined as: 
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¶¶

- = + =
¶ ¶

0, 0yz
y y

QM
Q q

x x
 (4.232) 

Taking advantage of the linear elastic stress-strain relations, the following equations hold: 

 
q q

s e
¶ ¶

= = = - = -
¶ ¶ò ò ò 2 z z

z xx xx

A A A

M y dA yE dA y E dA EI
x x

 (4.233) 

and 

 s e k q k q
æ ö æ ö¶ ¶÷ ÷ç ç= = = - + = - +÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶è ø è øò ò ò2y xy xy z z

A A A

v v
Q dA G dA G dA GA

x x
 (4.234) 

Thus, replacing equations (4.233) and (4.234) to the equilibrium equations (4.232) the 

following system of differential equations is derived: 
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qk q k

æ ö æ öæ ö ü ¶æ ö ¶¶ ï¶ ¶ ÷ç ÷÷ ç÷ç ÷ç ï ç + - + =÷÷- - - + =÷ çç ÷ç ï ç ÷÷ ÷ ÷ç÷ç ÷ç ï÷ ÷ç ç ¶è ø¶ ¶ ¶ ¶è øè ø è øï ýæ ö æ öï¶ ¶ ¶ ¶÷ ÷ïç ç- + + =÷ ÷- + + =ïç ç÷ ÷÷ ïç ç ÷¶ ¶è ø ç ¶ï ¶è øþ

2

2

2

2

00

0 0

zz
zz

z
z y y

vv EI GAEI GA
xx x x x

v vGA q GA q
x x x x

(4.235) 

If bending in the xy  plane is considered then the kinematic relations are expressed as: 

 ( ) ( ) ( ) ( ) ( )q= = =, , , , , 0, , ,yu x y z z x v x y z w x y z w x  (4.236) 

and the non-zero strain components are: 
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z
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 (4.237) 

Thus, the differential equations of bending in the xy  plane assume the following form: 

 

q
k q

q
k

æ ö¶ æ ö÷ ¶ç ÷÷ çç - + =÷÷ çç ÷÷ ÷çç ¶è ø÷ç ¶è ø
æ ö¶ ¶ ÷ç ÷ç + + =÷ç ÷÷ç ¶ ¶è ø

2

2

2

2

0

0

y
y

y
z

w
EI GA

xx

w
GA q

x x

 (4.238) 
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which are bound to the general solution: 

 

( )

( )

q
æ ö÷ç= - - + ÷ç ÷÷çè ø

= +

-

+ +

2
1 2 3 1

2
2

3
1 3 4

1

2

1

6

1

2

y
EI

x C x C x C C
kGA

w C x Cx C x x C

 (4.239) 

As expected, the rotation for a beam element bearing the same properties, namely kA and I  

in both directions of bending is exactly the opposite, due to the orientation of the coordinate 

system, as presented in Fig. 4.18.The expression for the displacement ( )w x  coincides with 

the expression derived for the xy  plane (equation (4.131)). 

Appendix II – Torsional and warping stiffness coefficients 

The torsional and warping stiffness coefficients of the 3-dimensional hysteretic beam 

element, defined in relations (4.218) to (4.225) are evaluated using a symbolic mathematical 

programming toolbox such as Maple (MapleSoft, 2007) or Mathematica (Wolfram 

Mathematica, 2009). Though cumbersome, the derived expressions are analytical and thus 

exact, for the case of the 2-node three-dimensional beam element that is developed in this 

work. 

The torsional and torsional warping stiffness coefficients can be implemented in the 

following Fortran code: 

 

C TORSIONAL AND DISTORTIONAL STIFFNESS COEFFICIENTS 
C L  ---- MEMBER LENGTH 
C aw  ---- ρw 
C awar ---- αw 
C GKt ---- Tortional Rigidity 
C EIw ---- Warping Rigidity 
 
 
C     k44 Stiffness Element 
 
      t2 = aw**2 
      t4 = log(e) 
      t5 = t4**2 
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      t8 = aw*L 
      t10 = e**(2*t8) 
      t12 = L**2 
      t13 = t12*t5 
      t16 = L*t4 
      t19 = e**t8 
      t25 = t4*t8 
      t30 = 1/(t13*t2*t10-4*t16*aw*t10+2*t13*t2*t19+4*t10- 
     #8*t19+4+4*t25+t5*t12*t2) 
      t31 = t10*t30 
      t33 = t25*t19*t30 
      t49 = -(-t31+t30+2*t33)*t5*t4*t2*aw*awar*EIw+(- 
     #3*t31+3*t30+t25*t31 
     #+t16*aw*t30+4*t33)*t4*aw*at*GKt 
 
C     k47 Stiffness Element 
 
      t2 = aw**2 
      t5 = log(e) 
      t6 = t5**2 
      t9 = aw*L 
      t11 = e**(2*t9) 
      t13 = L**2 
      t14 = t13*t6 
      t17 = L*t5 
      t20 = e**t9 
      t26 = t5*t9 
      t29 = t6*t13*t2 
      t31 = 1/(t14*t2*t11-4*t17*aw*t11+2*t14*t2*t20+4*t11- 
     #8*t20+4+4*t26+t29) 
      t32 = t11*t31 
      t33 = t20*t31 
      Vk47 = (-t32+t31+2*t26*t33)*L*t6*t5*t2*aw*EIw*awar/2+(- 
     #t26*t32/2+2*t32-t29*t33-4*t33+2*t31+t17*aw*t31/2)*GKt*at 
 
 
C     k411 Stiffness Element 
 
      t2 = aw**2 
      t4 = log(e) 
      t5 = t4**2 
      t8 = aw*L 
      t10 = e**(2*t8) 
      t12 = L**2 
      t13 = t12*t5 
      t16 = L*t4 
      t19 = e**t8 
      t25 = t4*t8 
      t30 = 1/(t13*t2*t10-4*t16*aw*t10+2*t13*t2*t19+4*t10- 
     #8*t19+4+4*t25+t5*t12*t2) 
      t31 = t10*t30 
      t33 = t25*t19*t30 
      Vk411 = (-t31+t30+2*t33)*t5*t4*t2*aw*awar*EIw-(- 
     #3*t31+3*t30+t25*t31+t16*aw*t30+4*t33)*t4*aw*at*GKt 
 
 
C     k414 Stiffness Element 
 
      t2 = aw**2 
      t5 = log(e) 
      t6 = t5**2 
      t9 = aw*L 
      t11 = e**(2*t9) 
      t13 = L**2 
      t14 = t13*t6 
      t17 = L*t5 
      t20 = e**t9 
      t26 = t5*t9 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

163 

      t29 = t6*t13*t2 
      t31 = 1/(t14*t2*t11-4*t17*aw*t11+2*t14*t2*t20+4*t11- 
     #8*t20+4+4*t26+t29) 
      t32 = t11*t31 
      t33 = t20*t31 
      Vk414 = (-t32+t31+2*t26*t33)*L*t6*t5*t2*aw*EIw*awar/2+(- 
     #t26*t32/2+2*t32-t29*t33-4*t33+2*t31+t17*aw*t31/2)*GKt*at 
 
C     k77 Stiffness Element 
 
      t2 = log(e) 
      t3 = t2*aw 
      t4 = aw*L 
      t5 = e**t4 
      t8 = e**(3*t4) 
      t11 = e**(2*t4) 
      t12 = aw**2 
      t14 = t2**2 
      t15 = L**2 
      t16 = t15*t14 
      t20 = e**(4*t4) 
      t23 = L*t2 
      t36 = t14*t15*t12 
      t37 = t2*t4 
      t40 = -4+16*t5+16*t8+2*t16*t12*t11- 
     #4*t20+8*t23*aw*t5+4*L*t20*t3-t1 
     #5*t20*t14*t12-8*L*t8*t3-t36-4*t37-24*t11 
      t41 = 1/t40 
      t49 = 4*t15*L*t11*t14*t2*t12*aw*t41 
      t50 = t12*t41 
      t53 = t15*t20*t14*t50 
      t54 = t8*t41 
      t56 = 4*t36*t54 
      t57 = t5*t41 
      t59 = 4*t36*t57 
      t60 = t16*t50 
      t61 = aw*t41 
      t64 = L*t20*t2*t61 
      t69 = 4*L*t8*t2*t61 
      t74 = 4*t37*t57 
      t75 = t23*t61 
      t78 = 2*t20*t41 
      t79 = 4*t54 
      t80 = 4*t57 
      t81 = 2*t41 
      t82 = t49+t53-t56+t59-t60-2*t64+t69-4*t37*t11*t41+t74- 
     #2*t75+t78-t79+t80-t81 
      t91 = t49-t53-t56+t59+t60+4*t64-t69-t74+4*t75-t78+t79- 
     #t80+t81 
      Vk77 = -t82*t3*awar*EIw/2+t91/t2/aw*at*GKt/2 
 
 
C     k7111 Stiffness Element 
 
      t2 = aw**2 
      t5 = log(e) 
      t6 = t5**2 
      t9 = aw*L 
      t11 = e**(2*t9) 
      t13 = L**2 
      t14 = t13*t6 
      t17 = L*t5 
      t20 = e**t9 
      t26 = t5*t9 
      t29 = t6*t13*t2 
      t31 = 1/(t14*t2*t11-4*t17*aw*t11+2*t14*t2*t20+4*t11- 
     #8*t20+4+4*t26+t29) 
      t32 = t11*t31 



Chapter IV  Hysteretic Macro-Elements  

164 

      t33 = t20*t31 
      Vk711 = -(-t32+t31+2*t26*t33)*L*t6*t5*t2*aw*EIw*awar/2 
     #+(t26*t32/2-2* 
     #t32+t29*t33+4*t33-2*t31-t17*aw*t31/2)*GKt*at 
 
 
C     k714 Stiffness Element 
 
      t2 = log(e) 
      t3 = t2*aw 
      t4 = aw*L 
      t5 = e**t4 
      t8 = e**(3*t4) 
      t11 = e**(2*t4) 
      t12 = aw**2 
      t14 = t2**2 
      t15 = L**2 
      t20 = e**(4*t4) 
      t23 = L*t2 
      t36 = t14*t15*t12 
      t37 = t2*t4 
      t40 = -4+16*t5+16*t8+2*t15*t14*t12*t11- 
     #4*t20+8*t23*aw*t5+4*L*t20*t 
     #3-t15*t20*t14*t12-8*L*t8*t3-t36-4*t37-24*t11 
      t41 = 1/t40 
      t43 = t12*aw*t41 
      t44 = t14*t2 
      t46 = t15*L 
      t48 = t46*t8*t44*t43 
      t51 = t46*t5*t44*t43 
      t52 = t5*t41 
      t53 = t36*t52 
      t54 = t8*t41 
      t55 = t36*t54 
      t56 = aw*t41 
      t62 = t37*t11*t41 
      t66 = L*t8*t2*t56 
      t68 = t37*t52 
      t70 = t20*t41 
      t71 = 2*t54 
      t72 = 2*t52 
      t73 = t48+t51+t53-t55-t23*t56-L*t20*t2*t56- 
     #2*t62+2*t66+2*t68+t70-t41-t71+t72 
      t85 = t48+t51-3*t55+3*t53+6*t66-12*t62+6*t68+t41-t70-  
     #t72+t71 
      Vk714 = t73*t3*awar*EIw-t85/t2/aw*at*GKt 
 
 
C     k1111 Stiffness Element 
 
      t2 = aw**2 
      t4 = log(e) 
      t5 = t4**2 
      t8 = aw*L 
      t10 = e**(2*t8) 
      t12 = L**2 
      t13 = t12*t5 
      t16 = L*t4 
      t19 = e**t8 
      t25 = t4*t8 
      t30 = 1/(t13*t2*t10-4*t16*aw*t10+2*t13*t2*t19+4*t10- 
     #8*t19+4+4*t25+ 
     #t5*t12*t2) 
      t31 = t10*t30 
      t33 = t25*t19*t30 
      Vk1111 = -(-t31+t30+2*t33)*t5*t4*t2*aw*awar*EIw+(- 
     #3*t31+3*t30+t25*t31+t16*aw*t30+4*t33)*t4*aw*at*GKt 
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C     k1114 Stiffness Element 
 
      t2 = aw**2 
      t5 = log(e) 
      t6 = t5**2 
      t9 = aw*L 
      t11 = e**(2*t9) 
      t13 = L**2 
      t14 = t13*t6 
      t17 = L*t5 
      t20 = e**t9 
      t26 = t5*t9 
      t29 = t6*t13*t2 
      t31 = 1/(t14*t2*t11-4*t17*aw*t11+2*t14*t2*t20+4*t11- 
     #8*t20+4+4*t26+t29) 
      t32 = t11*t31 
      t33 = t20*t31 
      Vk1114 = -(-t32+t31+2*t26*t33)*L*t6*t5*t2*aw*EIw*awar/2 
     #+(t26*t32/2-2* 
     #t32+t29*t33+4*t33-2*t31-t17*aw*t31/2)*GKt*at 
 
C     k1414 Stiffness Element 
 
      t2 = log(e) 
      t3 = t2*aw 
      t4 = aw*L 
      t5 = e**t4 
      t8 = e**(3*t4) 
      t11 = e**(2*t4) 
      t12 = aw**2 
      t14 = t2**2 
      t15 = L**2 
      t16 = t15*t14 
      t20 = e**(4*t4) 
      t23 = L*t2 
      t36 = t14*t15*t12 
      t37 = t2*t4 
      t40 = -4+16*t5+16*t8+2*t16*t12*t11- 
     #4*t20+8*t23*aw*t5+4*L*t20*t3-t1 
     #5*t20*t14*t12-8*L*t8*t3-t36-4*t37-24*t11 
      t41 = 1/t40 
      t49 = 4*t15*L*t11*t14*t2*t12*aw*t41 
      t50 = t12*t41 
      t53 = t15*t20*t14*t50 
      t54 = t8*t41 
      t56 = 4*t36*t54 
      t57 = t5*t41 
      t59 = 4*t36*t57 
      t60 = t16*t50 
      t61 = aw*t41 
      t64 = L*t20*t2*t61 
      t69 = 4*L*t8*t2*t61 
      t74 = 4*t37*t57 
      t75 = t23*t61 
      t78 = 2*t20*t41 
      t79 = 4*t54 
      t80 = 4*t57 
      t81 = 2*t41 
      t82 = t49+t53-t56+t59-t60-2*t64+t69-4*t37*t11*t41+t74- 
     #2*t75+t78-t7 
     #9+t80-t81 
      t91 = t49-t53-t56+t59+t60+4*t64-t69-t74+4*t75-t78+t79- 
     #t80+t81 
      Vk1414 = -t82*t3*awar*EIw/2+t91/t2/aw*at*GKt/2 
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5.1 Introduction 

The inelastic behavior of shear walls in buildings and in general plane members in 

structures is of major importance in earthquake engineering, as due to their stiffness, they 

carry a significant part of the external lateral load. Their mode of failure is mainly in shear 

and modeling of their response, especially under cyclic loading exhibiting hysteretic behavior, 

is decisive for a realistic prediction of the structural response under earthquake excitations. 

Plane stress plasticity problems have been addressed for decades, (Hill, 1998, Kachanov, 

2004). Analytical solutions have been derived following slip line theory offering robust 

solutions especially for metal forming problems, (Lubliner, 2008). Slip line theory, though 

precise, was dominated by the finite element method, due to the applicability of the latter in 

the majority of structural analysis problems, leading to a remarkable ongoing development, 

creating efficient and accurate algorithms (Souza et al, 2008). Recently, Valoroso and Rosati 

(2009) developed a consistent solution scheme for plane stress problems under the framework 

of the return mapping algorithm of Simo and Taylor (1985). Nevertheless, phenomenological 

models are also implemented in several cases of metal forming simulation as described in 

Taherizadeh et al. (2010). 

In this work, Bouc-Wen hysteretic modeling is implemented into the framework of finite 

elements yielding a consistent methodology for the analysis of static, quasi-static and 

dynamic 2-D problems. The constant stress/constant strain element, though simple in its 

formulation, constitutes the basis for escalating the development to higher order elements, 

such as the shell element Bathe (2007), or advanced membrane elements, Zhang H .& Kuang, 

J. S (2009). Nevertheless, its advantages are well established in the analysis of 2-D structures, 

like masonry shear walls (Brasile, 2009) and concrete shear walls (Kwan et al., 2001). 

Moreover, their reduced order of complexity, as opposed to shell elements and solid elements, 
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significantly enhances the computational performance retaining the desired accuracy of the 

analysis. Furthermore, recent advances in mesh refinement, (Munoz, 2009) can be utilized to 

yield a robust and cost effective computational scheme. 

In the present work, the Bouc-Wen model is incorporated in the finite element formulation 

to determine the inelastic-hysteretic behavior of triangular elements. A plane stress element is 

developed that accounts for different yielding criteria under the framework of Bouc-Wen 

hysteresis modeling. 

Contrary to the incremental approach of classical plasticity, where the tangent stiffness 

matrix is evaluated considering small increments on the point-wise monotonic, or cyclic 

material envelope, the stiffness matrix presented herein constitutes a continuous function of 

the stress state. From a computational perspective, following the proposed approach, the 

problem is treated in modular form, thus yielding a potentially parallel scheme. Numerical 

examples are presented that demonstrate the applicability of the proposed formulation in 

terms of computational efficiency and accuracy. To extend the versatility of the univariate 

Bouc-Wen model to 2D problems, the triangular constant strain element is used in this work 

due to its simplicity. The method can be applied to other elements, considering the proper 

displacement field and the corresponding strain matrices, addressing in addition numerical 

integration issues in developing the element stiffness matrices. 

 

5.2 The finite element formulation 

In this section, a brief presentation of the finite element method is conducted so as to 

facilitate subsequent analysis. Attention is drawn towards the kinematics of the deformable 

continuum and the necessary definitions of the deformation gradient, the strain measure and 

the stress measure are presented. 
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5.2.1 Incorporating the generalized hysteretic constitutive law 

In Chapter 2 a general nonlinear hysteretic stress-strain relation has been introduced, that is 

rewritten herein for the sake of reference: 

 { } { } { }( )( ) { }b g
æ ö÷ç F ÷çé ù é ù é ù ÷= - +ç ÷ë û ë û ë ûç ÷Fç ÷è ø

  
0

sgn
N

T
S D I E S R E  (5.1) 

where é ùë ûD  is the elastic constitutive matrix, é ùë ûI  is the identity matrix, F  is a yield function, 

F0  is the critical value of the yield function, N , b , g  are model parameters and é ùë ûR  is an 

interaction matrix defined by the following relation: 

 
{ } { }( ) { } { } { } { }

h
h

-æ öæ ö æ ö æ öæ ö÷ç ¶F ¶F ¶F ¶F ¶F÷ ÷ ÷ ÷ ÷ç ç ç ççé ù é ù é ù÷ ÷ ÷ ÷ ÷= - F +ç ç ç çç ÷ ÷ ÷ ÷ ÷ë û ç ç ë û ç ç ë ûç ÷ ÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç ç¶ ¶ ¶ ¶ ¶ç è ø è ø è øè ø÷÷çè ø

1

,

T T T

R G D D
S S S S

 (5.2) 

where { }( )h F,G  is a function of the back-stress and the yield function defining the 

evolution of the kinematic hardening law that is derived from the following relation: 

{ } { } { }( ) { } { } { } { }( ) { }h h h e
h

-æ öæ ö æ ö æ ö÷ç ¶F ¶F ¶F ¶F÷ ÷ ÷ ÷ç ç çç é ù é ù÷ ÷ ÷ ÷= - F + Fç ç çç ÷ ÷ ÷ ÷ç ç ë û ç ë ûç ÷ ÷ ÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶ ¶ç è ø è ø è ø÷÷çè ø


1

, ,

T T T

G D G D
S S S

(5.3) 

Since no consideration has been made on the kinematics of the problem during the 

derivation of equation (5.1), the stress and strain tensors can be substituted accordingly. 

Relation (5.1) is more conveniently written in the following form: 

 { } { } { }e h
S S S= +    (5.4) 

where: 

 { } { }eS D eé ù= ë û
   (5.5) 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

171 

is the elastic part of the stress tensor and: 

 { } ( ) { }, ,h
HS D G e eé ù= Fë û

   (5.6) 

is the hysteretic part of the stress tensor, where the hysteretic constitutive matrix é ùë ûH  is 

defined as: 

 ( ) { } { }( )( )
0

, , sgn
N

T

HD G D S Re b g e
Fé ù é ù é ùF = - +ë û ë û ë ûF

  (5.7) 

Thus, the elastic constitutive matrix é ùë ûD  is substituted by its hysteretic counterpart: 

 ( ) ( )e eé ù é ù é ùF = + Fë û ë û ë û, , , ,HH
D G D D G  (5.8) 

and the nonlinear stress-strain hysteretic law is written as: 

 { } ( ) { }, ,
H

S D G e eé ù= Fë û
   (5.9) 

Equations (5.7) to (5.9) define a smooth and rate-independent model of classical plasticity. 

5.2.2 The rate form of the principle of virtual work 

The principle of virtual work can be stated in the following form (Cook et al., 2002) 

 { } { } { } { } { } { }d d d= + Fò ò ò
T T T

AE S dV u F dV u dS  (5.10) 

where { }dE  is the vector of potential strains, { }S  is the vector of stresses, { }du is the 

vector of potential displacements , { }F  are the body forces acting over the volume V  and 

{ }F is the vector of surface tractions acting on the surface AS . Differentiating relation (5.10) 

with respect to time and choosing the potential displacements such that { }d = 0u , the 

following variational form is derived (Washizu, 1980) 
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 { } { } { } { } { } { }d d d= + Fò ò ò  T T T
AE S dV u F dV u dS  (5.11) 

Substituting the rate form of the stress-strain relation (5.9) into relation (5.11) the 

following equation is derived: 

 { } ( ) { } { } { } { } { }d d dé ùF = + Fë ûò ò ò  , ,
T T T

AH
E D G E E dV u F dV u dS  (5.12) 

According to the standard procedure of nonlinear finite elements (Bathe, 2008), an 

interpolation scheme for the displacement field is introduced, bearing the following form: 

 { } { }é ù= ë ûu N d  (5.13) 

where é ùë ûN  is a matrix baring the shape functions and{ }d  is the vector of nodal 

displacements. By considering the kinematics of the problem a relation of the following form 

is finally derived: 

 { } { }( )( ){ } { }é ù é ù é ù= + =ë û ë û ë ûl NL
E B B d d B d  (5.14) 

where é ùë ûlB  is the linear strain-displacement matrix and { }( )é ùë ûNLB d  is the nonlinear strain-

displacement matrix which is a function of the current displacements. In case of the small 

displacement formulation relation (5.14)  becomes: 

 { } { }e é ù= ë ûlB d  (5.15) 

Substituting relations (5.13) and (5.14) into (5.12), the following equation is derived: 

 

{ } ( ) { } { } { } { } { }d e d dé ù é ù é ù é ù é ùF = + Fë û ë û ë û ë û ë ûò ò ò , ,
T T T T T T

AH
d B D G B d dV d B F dV d B dS

 (5.16) 

Finally, the classical finite element equilibrium equation is derived: 

 { } { }
H

K d ré ù =ë û
   (5.17) 
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where ( )é ù é ù= Fë û ë û, ,
H H

K K G E  is a smooth, history dependent but rate independent stiffness 

matrix evaluated as: 

 ( )eé ù é ù é ù é ù= Fë û ë û ë û ë ûò , ,
T

H H
K B D G B dV  (5.18) 

while 

 { } { } { } { } { }T T T T
Ar d B F dV d B dSd dé ù é ù= + Fë û ë ûò ò   (5.19) 

is the equivalent nodal load vector. Since rates of the corresponding force and displacement 

measures appear on both sides of equation (5.17) the hysteretic stiffness matrix is rate-

independent and assumes the following form: 

 
{ }
{ }

d

dH

r
K

d
é ù =ë û  (5.20) 

Thus, the uniaxial formulation of the Bouc-Wen model introduced in Chapter 2 is herein 

extended into the stiffness formulation of a finite element, while its hysteretic properties, 

namely rate-independency causality and are retained. 

5.3 The constant strain triangle 

5.3.1 Kinematics of the constant stress triangle 

The following triangular plane stress/ strain element with two translational degrees of 

freedom per node in the global coordinate system is considered (Fig. 5.1). The global axes 1X  

and 2X  are identical to the Cartesian axes X  and Y  respectively. The first notation is 

adopted throughout this work, to be consistent with tensorial mechanics, while the latter is 

only used when spatial quantities are addressed. 
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Fig. 5.1. Triangular plane stress/ strain FEM 

By means of the classical formulation procedure of the plane stress/strain finite element the 

following interpolation functions are introduced: 

 
( )
( )

a a a
a a a

= + +
= + +

1 2 3

4 5 6

,

,

u x y x y

v x y x y
 (5.21) 

or in matrix form: 

 

a
a
a
a
a
a

ì üï ïï ïï ïï ïï ïï ïï ïé ù é ù ï ïï ïê ú ê ú= í ýê ú ê ú ï ïê ú ê ú ï ïë û ë û ï ïï ïï ïï ïï ïï ïï ïî þ

1

2

3

4

5

6

1 0 0 0

0 0 0 1

u x y

v x y
 (5.22) 

Substituting the nodal displacements =, , 1..3i iu v i  (Fig. 5.1) in equation (5.22), the 

following matrix relation is derived: 

2
X Yº v1

u2

u3

v2

v3
u1

σ11

σ22
σ12

1
X Xº

1

3

2
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 { }

a
a
a
a
a
a

é ù é ù ì üï ïï ïê ú ê ú ï ïê ú ê ú ï ïï ïê ú ê ú ï ïï ïê ú ê ú ï ïê ú ê ú ï ï= = í ýê ú ê ú ï ïê ú ê ú ï ïï ïê ú ê ú ï ïï ïê ú ê ú ï ïê ú ê ú ï ïï ïê ú ê ú ï ïë û ë û î þ

1 1 1 1

1 1 1 2

2 2 2 3

2 2 2 4

3 3 3 5

3 3 3 6

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

u x y

v x y

u x y
d

v x y

u x y

v x y

 (5.23) 

Once equation (5.23) is inverted and the derived expression is substituted in equation 

(5.22) the shape functions of the triangular FEM are expressed as: 

 

-é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úé ù é ù ê ú ê úê ú ê ú= ê ú ê úê ú ê ú ê ú ê úê ú ê úë û ë û ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

1

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

1 0 0 0

0 0 0 1

1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1

1 0 0 0

0 0 0 1

x y u

x y v

u x y x y u

v x y x y v

x y u

x y v

 (5.24) 

After the necessary algebraic manipulation, the following linear shape functions are 

evaluated: 

 
é ù
ê úé ù =ë û ê úê úë û

1 2 3

1 2 3

0 0 0

0 0 0

N N N
N

N N N
 (5.25) 

where: 

 ( )b g d= + + =
1

,  1,2,3
2i i i i
e

N x y i
A

 (5.26) 

and: 

 

b g d

b b b

= = - =

= = + +

2 2 2 2
1 1 1

3 3 3 3

1 1

2 2 1 2 3

3 3

1 1
,  ,  

1 1

1

2 1

1
e

x y y x

x y y x

x y

A x y

x y

 (5.27) 
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The remaining coefficients δi, γi are defined by cyclic permutation of the indices. 

Compatibility equations for the case of a plane deformable body undergoing small 

displacements are expressed as: 

 e e g
¶ ¶ ¶ ¶

= = = +
¶ ¶ ¶ ¶

, ,x y xy
u v u v

x y y x
 (5.28) 

and in matrix form: 

 

e
e
g

é ù¶ê ú
ê úì ü ¶ï ï ê úï ï ì üï ïï ï ¶ê úï ï ï ï=í ý í ýê úï ï ï ï¶ê úï ï ï ïî þï ï ê úï ï ¶ ¶î þ ê ú
ê ú¶ ¶ë û

0

0
x

y

xy

x
u

vy

y x

 (5.29) 

Substituting equation (5.24) in (5.29) the strain displacement equation is derived: 

 { } { }e é ù= ë ûB d  (5.30) 

Thus, based on the shape functions defined in equation (5.25), the strain displacement 

equation is derived: 

 { } { }e é ù= ë ûB d  (5.31) 

where the strain matrix Β is given by the following relation: 

 

é ù
ê ú
ê úé ù = ê úë û
ê ú
ê úë û

1, 2, 3,

1, 2, 3,

1, 1, 2, 2, 3, 3,

0 0 0

0 0 0
x x x

y y y

y x y x y x

N N N

B N N N

N N N N N N

 (5.32) 

while ,x  or ,y  denotes differentiation with respect to X or Y respectively (Fig. 5.1). Thus, 

according to equation (5.27) the strain matrix é ùë ûB  is determined as: 
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g g g
d d d

d g d g d g

é ù
ê ú
ê úé ù = ê úë û
ê ú
ê úë û

1 2 3

1 2 3

1 1 2 2 3 3

0 0 0
1

0 0 0
2 e

B
A

 (5.33) 

which for the plane stress element is constant, thus facilitating integration in the subsequent 

analysis. 

5.3.2 Derivation of stiffness matrices – variational formulation 

To derive the appropriate stiffness relations, the principle of virtual work is implemented: 

 { } { } { } { }de s d=ò
T T

V

dV u P  (5.34) 

Since the vector of virtual nodal displacements is constant, the following rate form of 

equation (5.34) is derived: 

 { } { } { } { }de s d=ò T T

V

dV u P  (5.35) 

In addition, equation (5.9) can be written in a condensed form as: 

 { } ( ){ } ( ) ( )s a e e a e é ù é ù= F F = -ë û ë û 1 2, , , where , , [ ]h G G D I H H R  (5.36) 

Substituting equation (5.4) into the rate form of the principle of virtual work, the following 

relation is derived: 

 

{ } { } ( ){ }( ) { } { }

{ } { } { } ( ){ } { } { }

de a s a s d

de a s de a s d

é ù é ù é ù+ - = ë û ë û ë û

é ù é ù é ù + - =ë û ë û ë û

ò

ò ò

 

 

T Te h

V
T T Te h

V V

I dV u P

dV I dV u P
 (5.37) 

Further, introducing the kinematic relations (5.15) and the constitutive relations of equations 

(5.36), the first and second integral of the l.h.s. of equation (5.37) are expressed as: 
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{ } { } { } { }

{ } { }

{ } ( ){ } { } ( ) { }

{ } ( ) { }( ) { }

de a s d a

d a

de a s d a

d a s

é ù é ù é ù é ù é ù=ë û ë û ë û ë û ë û

é ù é ù= ë û ë û

é ù é ù é ù é ù é ù é ù é ù- = -ë û ë û ë û ë û ë û ë û ë û

é ùé ù é ù= - ê úë û ë û ë û

ò ò

ò ò

 



 



T T Te

V V
T

e

T T Th

V V
T h

h

dV u B D B dV u

u k u

I dV u B I G B dV u

u I k u

 (5.38) 

The first integral of equations (5.38) constitutes the elastic stiffness matrix of the plane stress/ 

element that corresponds to matrix [D], while the second is the introduced herein hysteretic 

stiffness matrix.  

 { }( )sé ù é ù é ù é ù=ê ú ë û ë û ë ûë û ò
Th

h

V

k B G B dV  (5.39) 

The hysteretic stiffness matrix can be defined as the nonlinear supplement of the elastic 

component introduced by the hysteretic model implemented. The actual form of the hysteretic 

matrix is dependent on the yield criteria used since the hysteretic matrix is a function of the 

interaction matrix Ré ùë û . 

After the necessary algebraic manipulation, the following relation is obtained: 

 { } { }( ) { }sé ù= ê úë û
 h

tP k u  (5.40) 

where the matrix: 

 { }( ) ( ) { }( )s a a sé ù é ùé ù é ù é ù é ù= + -ê ú ê úë û ë û ë û ë ûë û ë û
h h

t e hk k I k  (5.41) 

is the nonlinear tangent stiffness matrix of the plane stress element. In relation (5.41) é ùë ûek  is 

the stiffness matrix of the elastic constant strain triangular element (Bathe 2007), that is only 

computed once throughout the solution procedure and é ùë ûhk  is the hysteretic stiffness matrix. 
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In general, the matrix é ùë ûG  is a function of the stress vector, but in our case is constant along 

the element, allowing for the analytical integration of relation (5.39). 

It is also evident that the hysteretic stiffness matrix is directly derived from the elastic one 

by mere substitution of the constitutive matrix, as the strain matrix é ùë ûB  remains the same. 

Since the hysteretic matrix implicitly depends on the yield criterion considered, it remains 

symmetric as long as the yield criterion is symmetric on the stress space. Since the shape 

functions used are the same as in the elastic case, the equivalent nodal loads of surface 

tractions remain also the same. 

The notation implemented underlines the dependence of the hysteretic part of the stiffness 

to the current stress state of the element. This stiffness matrix depends only on material 

properties, namely the Poisson ratio, the Young modulus of elasticity, the post yield to elastic 

stiffness ratio and the yield criterion incorporated in the evolution equation of Bouc-Wen. The 

formulation described in the preceding paragraphs does not depend on the particular 

hysteretic model used in the analysis. As long as a model is smooth and rate independent, it 

can be incorporated into the standard displacement based FEM scheme. 

At this point one can notice that a direct relation is established between the element 

stiffness matrix and the current state of stress. This relation is well defined in the stress-strain 

space and smoothly follows the loading-unloading response of the element under cyclic 

excitation. It is also important to notice that the element proposed herein can be easily used in 

conjunction with classical elastic elements, within the framework of the direct stiffness 

method. The proposed element can be implemented in damage identification and nonlinear 

structural identification methods for plane structures where strain localization is observed, see 

for example in Carpinteri et al. (2009). Such aspects though, are beyond the scope of this 

work. 
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From the computational perspective in standard dynamic analysis procedure a predictor-

corrector scheme is used in conjunction with a Newton-Raphson procedure for the solution of 

nonlinear problems. The algorithm iterates through an elastic prediction and inelastic 

correction scheme, into a specific computational step, in order to determine the elemental 

tangent stiffness matrix (Neto et al., 2008). During these iterations the current stress state is 

continuously evaluated through various integration schemes, and the stress state computed at 

the end of a computational step is considered to be the same with the stress state at the 

beginning of the next computational step. Consequently, the entire procedure is accurate for 

sufficient small incremental steps (Barham et al., 2005).  

5.4 Numerical examples 

A computer software was developed to implement and test the efficiency of the proposed 

formulation. The code performs incremental static and dynamic analysis of plane structures. 

The triangulation of the surface structure is performed using Matlab code, while the analysis 

is performed using Fortran Code. A Delaunay unstructured mesh scheme is implemented for 

this purpose, (Hjelle & Daehlen, 2006). 

5.4.1 Low yield shear panel 

The hysteretic response of low yield strength, steel shear panel is examined. Shear panels 

of this type are effectively implemented as energy dissipation mechanisms in steel braced 

buildings (Chen et al., 2006). Shear panels are also used in retrofitting concrete buildings 

(Formisano et al., 2010). 

The computational model of the shear panel is presented in Fig. 5.2. The panel thickness is 

set at 6mm. The panel is considered simply supported at the base, while at the two side 

perpendicular edges the vertical displacement is considered fixed. The proposed formulation 

is used for the analysis of the problem and the results are compared to those obtained using 
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the NASTRAN Code and the CTRIA3 plane stress element. A crude mesh is implemented 

consisting of 18 triangular elements with a maximum edge size of 0.30 cm. 

 

 
Fig. 5.2 Computational Model - Node Numbering and Boundary Conditions 

At first, a nonlinear static analysis is performed with the proposed formulation, by 

assigning monotonically increasing horizontal loads to nodes #4, #5 and #6. The maximum 

value of each load is Px=300 KN. Three values of the smoothing parameter n  are considered, 

namely 2n = , 4n =  and 25n = . 

The resulting applied force lateral displacement diagrams are presented in Fig. 5.3. The 

lateral displacement is measured at node #5. As predicted by the hysteretic model introduced 

in equation (5.1), larger values of the smoothing parameter lead to a sharper transition from 

the elastic to the inelastic regime. 

A sinusoidal excitation is next imposed on nodes #4, 5, 6 with an amplitude of 400 KN and 

a cyclic frequency of π rad/sec. The analysis is performed over a time period of 10 sec. The 

results obtained with the proposed formulation are compared with results obtained from 

Nastran Code. A modified Newton-Raphson scheme is implemented in Nastran. The time 

integration is performed with the average acceleration Newmark method. A time increment of 

0.01 sec is selected. The parameters of the Newton Raphson scheme are presented in Table 

0.
50
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5.1. A bilinear stress-strain relation is considered, setting 25n =  in the proposed 

formulation. 

 
Fig. 5.3 Force-Displacement curve of the shear panel 

 

Newton Raphson Analysis Parameters 
Material Nonlinearity Bilinear Model 
Kinematic Hardening a=0.002 
Total Number of Steps 1000 

Time Increment 0.01 sec 
Work error tolerance 10-6

Displacement error tolerance 10-4

Table 5.1 Nonlinear Analysis Parameters (Nastran Code) 

The time history of the horizontal displacement at node #5 is presented in Fig. 5.4 where 

results from both the proposed formulation and the Nastran code are plotted. The 

discrepancies between the two formulations are negligible. 

The analysis performed with the proposed formulation was performed in half the time of 

the Nastran analysis, i.e. 1.9 sec instead of 3.8 sec. This is attributed to the decoupling of the 

local nonlinear equations from the global linear equations of equilibrium as described in the 

next Chapter. Both analyses were in a PC fitted with a Core Duo Quad CPU and 2 GBs of 

RAM. 
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Fig. 5.4 Comparison of the proposed formulation to Nastran code 

 

Next, an analysis is performed with the proposed formulation, considering the following 

values of the Bouc-Wen model parameters, namely 2n = , 0.8b =  and 0.2g = . The time 

history of the tip displacement, measured at node 5 is presented in and the two solutions result 

in good agreement. The two elements exhibit almost the same elastic stiffness with some 

differences in the maximum negative displacements.  

 
Fig. 5.5 Displacement Time History 
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In Fig. 5.6(a)-(c) the stress-strain hysteretic loops, evaluated at element #16 are presented. 

As expected, the shear stresses dominate the panel response, yet plastic deformations 

accumulate on all directions, due to the interaction scheme introduced through relation (5.2). 

In Fig. 5.6(d) the shear stress- shear strain hysteretic loop is presented, evaluated on element 

#10. Due to the antisymmetrical loading, this is the only non-zero stress component at that 

element. Yielding occurs exactly at 117.5 MPa, as predicted by the Von-Mises flow rule 

considered. Yet, the transition from the elastic to the inelastic regime commences at a lower 

stress level, due to the value of the smoothing parameter n . Moreover, the umloading 

branches are slightly curved due to the the values of the shape paremeters b  and g . 

(a) (b) 

(c) (d) 
Fig. 5.6 Stress-Strain hysteretic loops (a) σxx-εxx (Element 16) (b) σyy-εyy (Elemement 16) 

(c) τxy-γ (Elemement 16) (d) τxy-γ (Elemement 10) 
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5.4.2 Cantilever Beam with Tip Load 

In this example, a cantilever beam, consisting of plane-stress elements, carrying a 

concentrated tip load is examined. An elastic perfectly plastic material is considered with E = 

210 GPa, v = 0.3, σy = 240 MPa, β = γ = 0.5. The geometric properties of the beam are 

presented in Fig. 5.7. 

 
Fig. 5.7 Example 1-Cantilever beam 

Two different analyses cases are performed. At first, the cantilever is subjected to a 

monotonically increasing concentrated tip load and the theoretical limit load is compared to 

the calculated one. The initial yield load and the ultimate load can be analytically evaluated 

as: 

 
s s

= = = =
2 2

20 , 30
6 4
y y
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In Fig. 5.8 the applied load is plotted against the vertical deflection at the tip of the 

cantilever beam. Two different discretization schemes are considered and the results are 

compared to those obtained using the CPS3 element of the Abaqus v6.5 code (Abaqus, 2005). 

A Full Newton Raphson solution scheme is implemented in Abaqus, with 1000 incremental 

steps and a fixed increment step equal to 0.001 KN. 

The proposed formulation predicts accurately both the initial yield load and the ultimate 

load with a fine mesh of 328 elements, with the difference between the predicted and the 

computed value being less than 1%. The smoothed plasticity concept adopted in the present 

work captures accurately the elastic-perfectly plastic behavior of the material. In Fig. 5.8, the 

results from Abaqus and the present formulation are compared for different discretization 
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the end fiber of the beam, normal stresses σxx dominate, while the other components fluctuate 

near zero. When the element undergoes inelastic deformation, the stress components increase 

to a maximum value and then remain constant. According to Lubliner (2008), all the stress 

components are expected to remain constant inside the plastic boundary of an elastic perfectly 

plastic beam following von-Mises, or Tresca yield criteria.  

 
Fig. 5.10 (a) Evolution of stress–strain at element 75  

The evolution of the von-Mises Yield Stress is presented in Fig. 5.11(a). Since the von 

Mises yield function is used in the example, the maximum value of the equivalent von-Mises 

Stress is: 

 s s= =max 2 339.5y MPa  

Finally, in Fig. 5.11(b), the evolution of the principal stresses is plotted. At the end fiber of 

the beam, the principal axes are almost parallel to the global axes X and Y due to pure 

bending conditions. As such, the principal stress σΙ, which is closer to the X axis, increases 

much faster than stress σΙΙ. When yielding occurs, the principal stress σΙΙ remains practically 

constant, whereas stress σΙ increases so as to maintain equilibrium. 
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(a) (b) 
Fig. 5.11 (a) Evolution of principal stresses (b) Evolution of the equivalent von-Mises 

Stress 

Next, the beam is subjected to a sinusoidal excitation of increasing amplitude using the 328 

element mesh presented in Fig. 5.9. For this case, a hardening ratio of α=0.002 is used, while 

no stiffness degradation and strength deterioration is considered ( cβ=0.0, cv=0.0). The 

analytical expression of the applied time history (Fig. 5.12(a)) is: 

 ( ) pæ ö÷ç= ÷ç ÷÷çè ø
3

40 sin
4tot

t
P t t

T
  

(a) (b) 
Fig. 5.12(a) Applied Load Time History (b) Load Deflection Response of Cantilever beam 

In Fig. 5.12(b) the response of the cantilever is plotted in terms of applied load versus 

vertical displacement at the tip of the cantilever. There is a smooth transition from the elastic 

to the inelastic regime of the response, while at the unloading phases the stiffness of the 

cantilever remains constant. 
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Next, the same problem is analyzed considering stiffness degradation and strength 

deterioration, with the following set of model parameters (cv = 0.00001, cb=0.002, m=0). The 

evolution of the normal stress at element 75 (Fig. 5.9) is presented in Fig. 5.13 as a function 

of the correspondent normal strain. For the sake of demonstration and clarity, the plots are 

presented for the first five successive loading-unloading phases of the imposed load. The 

unloading stiffness is decreasing between cycles as predicted by the hysteretic model. At the 

same time the yield strength is also decreasing from Point A, to Point B as presented in Fig. 

5.13(b). The decrease in the yield strength in the opposite direction is larger than the one 

dictated by the linear kinematic hardening model with no deterioration. The element stress 

initially increases to approximately 270 MPa, thus the aniticipated yield stress in the opposite 

direction should be equal to 240-30=210 MPa. However, yielding in the opposite direction 

occurs at 188 MPa. 

  
(a) (b) 

Fig. 5.13 Stiffness degradation and Strength deterioration analysis 

The change in the dynamic response of the cantilever is better depicted in the load-

deflection diagram presented in Fig. 5.14, where it is evident that the period of oscillation is 

increasing, not only due to the plastic deformations accumulating, but also due to the decrease 

in the unloading stiffness of the cantilever. 
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The plastic boundary is propagating from the tips of the perforation towards the adjacent 

free surfaces of the specimen as predicted by theory, (Lubliner, 2008). In Fig. 5.17, the 

derived load deflection curve is compared against the one derived using HYPLAS. 

 
Fig. 5.17. Comparison of the proposed method to HYPLAS Code 

The solution obtained based on the proposed formulation agrees well with the solution 

obtained using the HYPLAS code, though the latter does not converge at displacements close 

to 1.5mm. This is attributed to the different solution schemes, as the Livermore solver allows 

for a more robust error control when the stiffness matrix rapidly degrades. 

5.5 Conclusions 

Although, the univariate Bouc-Wen formulation that expresses yielding and the associative 

flow rule in rate form has found extensive application in skeletal structures, implementation 

into the finite element computational scheme for 2-D and 3-D problems has not yet been 

investigated. To implement such concepts, a new plane stress / strain element is formulated, 

based on the elastic constant strain triangle element and the Bouc-Wen hysteretic model. The 

governing equations are determined within the framework of the direct stiffness method, in 

state-space form, thus allowing for the use of advanced ode solvers.  
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This approach, together with the implementation of the smooth Bouc-Wen model in 

constitutive relations, is proved computationally efficient, as it avoids the errors accumulated 

due to the linearization of the governing equations in the usual Newton-based solution 

schemes. The main features and advantages of the proposed formulation were demonstrated 

with numerical examples. It is shown that the Bouc-Wen model introduced in the analysis can 

accurately simulate both the well-established bilinear von-Mises model with kinematic 

hardening as well as complex dynamical behavior with stiffness degradation and strength 

deterioration. Moreover, the accuracy of the proposed formulation is demonstrated through 

comparison with the Abaqus commercial code and the HYPLAS code. 

The entire scheme can be easily extended to different elastic finite elements introducing 

appropriate constitutive relations and the corresponding interaction matrices that depend on 

specific yield criteria. Since the derivation of the element matrices is consistent with the direct 

stiffness method, the formulation allows for the implementation of inelastic finite elements, 

either in standalone structural meshes, as in the examples presented herein, or in conjunction 

with other types of finite elements. The implementation of the hysteretic Bouc-Wen model 

proposed herein, with stiffness degradation and strength deterioration offers a versatile tool 

for the nonlinear identification of plane structures, as it can simulate a variety of cyclic 

responses. From the engineering and design perspective, relying on the direct identification of 

model parameters resulting from component testing of members and connections, the method 

offers the ability for realistic simulations of the inelastic behavior of degrading structures 

under cyclic loading. 
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6.1 Introduction 

The numerical solution of structural analysis problems relies on the proper definition of a 

mathematical model that is bound to be both conceptually simple and computationally 

accurate. The mathematical model is a discrete representation of the continuous and real 

structure. In Chapters 3 and 4, the necessary elements for the space discretization of a 

nonlinear hysteretic structure have been presented. The elements presented are based on either 

macroscopically or microscopically defined hysteretic properties. 

In this chapter time discretization schemes are presented that allow for the solution of the 

dynamic problem. The sets of global governing equations are presented that are assembled 

according to the direct stiffness method. The hysteretic properties of the macro-elements are 

incorporated into the equations of motion through the global hysteretic matrix of the structure. 

In Hughes, 1994 the following list is defined as the necessary list of properties, methods in 

linear structural dynamics should possess: 

1. Unconditional stability 

2. No more than one set of implicit equations to be solved at each step 

3. Second order accuracy 

4. Controllable algorithmic dissipation in the higher modes 

5. Self-starting 

The property of unconditional stability is related to the behaviour of the method when 

applied to the scalar test equation w= - 2u u . The connection between conditions 1 and 3 is 

commented in Hughes, 1994. Apart from (2) the rest of the properties ensure the stability and 

accuracy of the time integration scheme. Property (2) sets un upper bound on the 

computational time needed to solve the numerical problem. In nonlinear problems this cannot 

be the case, since an iterative procedure is necessary within its integration step (Chopra, 
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2008). Property (5) comments on the necessary initial conditions for the algorithmic process 

to commence, since multistep methods need initial values in time instances prior to 0t . 

Nevertheless, a solver that is well-suited for linear problems does not automatically qualify 

for non-linear problems. The Newmark method, one of the most popular implicit schemes that 

is unconditionally stable for linear problems but this stability condition is lost when applied to 

nonlinear problems. The Houbolt and Wilson-θ methods (Bathe, 2008) introduce strong 

numerical damping, which casts them unsuitable for any practical application to nonlinear 

dynamic systems if the duration over which the integration is required is long. 

 

6.2 Expanding the capabilities of the Direct-Stiffness Method 

In this section, the governing equations of the problem are formulated, following the direct 

stiffness approach. The elemental stiffness matrices derived using the methods presented in 

Chapters 3 and 4 are assembled to form the structural stiffness matrix é ùë ûSK which, in the 

general case, consists of a constant elastic part due to the macro-elements and a smoothly 

varying part (equation 3.18) due to the hysteretic finite elements of the model. The equation 

of motion is then expressed as: 

 { } { } { } { } { }( )
S S S S

M U C U K U H z P té ù é ù é ù é ù+ + + =ë û ë û ë û ë û
    (6.1) 

where , ,S S SM C Ké ù é ù é ùë û ë û ë û  are the mass, viscous damping, stiffness square symmetric 

( )f fn x n  matrices of the structure respectively while é ùë ûSH  is the ( )f hysn x n  orthogonal 

global hysteretic matrix of the structure and ( )1hysn x
 
{ }z  is the vector of hysteretic degrees 

of freedom, hysn  being the number of hysteretic degrees of freedom. Additionally, { }( )P t  is 

the ( fn  x 1) vector of external forces, fn  being the number of degrees of freedom of the 
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structure. The mass matrix may correspond to a lumped mass diagonal matrix, or a consistent 

mass matrix, Bathe (2007). The viscous damping matrix in general, may be of the form of a 

Rayleigh damping matrix.  

As described in previous chapters, the hysteretic matrix é ùë ûSH  needs to be evaluated only 

once in the beginning of the analysis procedure. However, the stiffness matrix varies as a 

function of the vector { }s  consisting of the ( eln ) stress vectors. The variation of the stress 

tensor is defined in equation 3.9 at the element level and is assembled at the structural level 

as: 

 { } { }
33 3 3 elel el el

HS S

nn n n

Ds e

´

é ù= ë û 


 (6.2) 

where é ùë ûH SD  is a diagonal matrix containing the individual elemental contributions of 

matrices é ùë ûHD  of equation 3.7. Considering the stress –strain matrix and assembling for the 

whole structure, equation (6.2) can be written as: 

 { } 
{ }

3 3 3 3 fel el el el f

HS S S

nn n n n n

D B ds

´ ´

é ù é ù= ë û ë û



 (6.3) 

where é ùë ûSB  is a block diagonal matrix consisting of the elemental strain-displacement 

matrices. Furthermore, equations (4.112) are supplemented by the set of evolution equations 

of the hysteretic quantities { }z  that assume the following form: 

 { } { } { }=  ( , )z f U z  (6.4) 

Expressions of this form are given in Chapter 2 for the case of Bouc-Wen modeling. If 

stiffness degradation and strength deterioration phenomena are accounted for, equations (6.4) 
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are accompanied with a corresponding set of evolution equations as presented in Chapter 2. 

For the case of the simple Bouc-Wen model equations (6.4) assume the following form: 

 { }( )( ) { }b g
æ ö÷ç ÷ç é ù é ù é ù é ù÷= - + L Lç ÷ë û ë û ë û ë ûç ÷ç ÷÷çè ø


( )

1 sgn ( )

n
iji

j j j j
y

z t
z z t B u B D

z
 (6.5) 

where i
jz  is the thi  hysteretic parameter of the thj  macro-element é ùë û jB  is the corresponding 

strain-displacement matrix, é ùLë û  is the transformation matrix and { } iD  is the vector of global 

nodal displacements of the element. 

The necessary modifications in a standard FEM code, so as to comply with the formulation 

presented herein mainly concern the evaluation of the hysteretic matrix é ùë ûSH  and the 

establishment of the evolution equations. Moreover, the element proposed herein can be 

easily incorporated in a joined analysis – identification software, as proposed in Piyawat K., 

Pei J. S 2009 

The system of equations of motion (4.112) can be transformed into state space form 

introducing the nodal velocities as additional unknowns: 

 

{ } { }

{ } { } { }( ) { } { } ( ){ }( )

{ } { }

{ } { } { }

21

1

2 3 1 42

23

2 44
( , )

S S SS

S S

X X

X M C X K X X H X P t

X G B X

X f X X

-

=

é ù é ù é ù= - + + +ë û ë û ë û

é ù é ù= ë û ë û

=









 (6.6) 

where { }
1

X  is the ( )1fn x  vector of unknown displacements, { }
2

X  the corresponding 

vector of unknown velocities,{ }
3

X  the vector of the hysteretic stress components as defined 
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in equation (6.2) and { }
4

X  the vector of hysteretic deformation components as defined in 

equation (6.4). The set of equations (6.6) together with the evolution equations of relation 

(6.2) and (6.4) suffice to determine the nonlinear dynamic behavior of the structure.  

The nonlinear system of equations (4.112) can be solved using any particular numerical 

integrator such as the classical Newmark scheme. In this case, a Newton-like numerical 

scheme is needed in order to solve the nonlinear constitutive equations, in each time 

integration step (Bathe 2007). However, in the formulation introduced herein, the hysteretic 

stress tensor is considered as an additional unknown evolving through the rate form of the 

constitutive equation. This allows for the simultaneous solution of the governing equations of 

the system. In this way the computational error accumulated in the analysis procedure is 

reduced. The system of first order nonlinear differential equations (6.6) can be solved using 

optimal Runge – Kutta operators (Sivaselvan & Reinhorn 2003). In this work, the Livermore 

family of solvers (Radhakrishnan and Hindmarsh 1993) is implemented, allowing for a robust 

and unconditionally stable approach. 

6.3 Second order representation solution methods 

The case of the nonlinear system of equations of motion (4.112) is considered, where the 

applied force is defined as a set of discrete values { } ( ){ }= =, 1..nn
P P t n N  subject to the 

following set of initial conditions: 

 ( ){ } { } ( ){ } { } ( ){ } { } ( ){ } { }s s= = = = 
0 0 0 0

0 , 0 , 0 , 0h hu u u u z z  (6.7) 

The solution is evaluated as a sequence of discrete values of displacement { }
i

u , velocity 

{ }
i

u  and acceleration { }
i

u  at time instances it . The time increment of the marching process 
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+D = -1i it t t  may or may not be considered constant. Thus, the continuous problem 

defined in (4.112) is transformed to its discrete counterpart at it  

 

{ } { } { }( ) { } { } { }

{ } { }

{ } { } { }

,

( , )

h i i i ii iS S sS

h
iS i si

ii i

M U C U K U H Z P

G B U

Z f U Z

s

s

é ùé ù é ù é ù+ + + =ê úë û ë û ë ûë û

é ù é ù= ë û ë û

=

 



 

 (6.8) 

Similar to any established time-marching process, the solution at the time increment +1i  

is sought, where 

 

{ } { } { }( ) { } { } { }

{ } { }

{ } { } { }

1 1 1 11 1

1, 11

11 1
( , )

h i i i ii iS S sS

h
iS i si

ii i

M U C U K U H Z P

G B U

Z f U Z

s

s

+ + + ++ +

+++

++ +

é ùé ù é ù é ù+ + + =ê úë û ë û ë ûë û

é ù é ù= ë û ë û

=

 



 

 (6.9) 

where attention should be drawn to the fact that the hysteretic constitutive matrix 
+

é ùë û , 1S i
G  

also depends on the current stress distribution. 

6.3.1 The method of central differences 

According to the method of central differences, the displacement rates are approximated 

through the following finite difference scheme (Chopra, 2006) 

 { }
{ } { }

{ }
{ } { } { }+ - + -

- - +
= =

D D
 1 1 1 1

2

2
,

2
i i i i i

i i

U U U U U
U U

t t
 (6.10) 

The same scheme is also implemented for the rate of the hysteretic stress vector, thus 

 { }
{ } { }s s

s + -
-

=
D

 , 1 , 1

, 2
h i h i

h i t
 (6.11) 



Chapter VI  Structural Analysis Implementing Bouc-Wen Hysteresis 

202 

 

and the hysteretic deformation vector: 

 { }
{ } { }+ -

-
=

D
 1 1

2
i i

i

Z Z
Z

t
 (6.12) 

Replacing equations (6.10) and (6.11) into (6.8), the following set of discretized algebraic 

equations is derived 

 

{ } { } { } { } { }
{ }( ) { } { } { }

{ } { } { } { }

{ } { } { } { }
{ }

1 1 1 1
2

, 1 , 1 1 1
,

1 1 1 1
1

2

2

2 2

( , )
2 2

i i i i i
h i i i iS S sS

h i h i i i
S i s

i i i i
i

U U U U U
M C K U H Z P

tt

U U
G B

t t

Z Z U U
f Z

t t

s

s s

+ - + -

+ - + -

+ - + -
+

- + -
é ùé ù é ù é ù+ + + =ê úë û ë û ë ûë ûDD

- -
é ù é ù= ë û ë ûD D

- -
=

D D

 (6.13) 

Rearranging and solving for the unknown quantities the following relations are derived 

 

{ }

{ } { } { } { }

{ } { } { } { }
{ }

1

, 1 1 , 1 1, ,

1 1 1 1
1

ˆ ˆ

( , )
2 2

i

h i i h i iS i s S i s

i i i i
i

K U p

G B U G B U

Z Z U U
f Z

t t

s s

+

+ + - -

+ - + -
+

é ù é ù= ë ûë û

é ù é ù é ù é ù- = -ë û ë û ë û ë û

- -
=

D D

 (6.14) 

where the equivalent stiffness matrix K̂é ù
ë û  is defined as: 

 
2

1 1ˆ
2S S

K M C
tt

é ù é ù é ù= +ë û ë ûë û DD
 (6.15) 

and the equivalent load vector p̂é ùë û  is defined accordingly as: 

 { } { }( ) { } { } { } { }( ) { }
1 12

1 1
ˆ 2

2hi i i i i i is S SS
p P K U H Z M U U C U

tt
s

- -
é ùé ù é ù é ù é ù= - - + - + +ê úë û ë û ë û ë ûë û DD

 (6.16) 

In general, the system of equations (6.14) is highly nonlinear, due to the hysteretic function 

( ).f . Still, it is an algebraic system that can be solved with standard solution algorithms. In 
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case where the macro-hysteretic matrix é ùë ûsH  vanishes, the displacements at time step +1i  

can be derived from the first of equations (6.14) as: 

 { } -

+
é ù é ù= ë ûë û

1

1
ˆ ˆ

i
U K p  (6.17) 

Substituting to the second, the corresponding hysteretic stress vector is derived as: 

 { } { } { }s s
-

+ - -
é ùé ù é ù é ù é ù é ù= - +ë û ë û ë û ë û ë ûë û

1

, 1 , 1 1, ,
ˆ ˆ

h i h i iS i s S i s
G B U G B K p  (6.18) 

This is an explicit integration scheme, since the values of the unknown quantities at the 

current integration step are derived using values of the quantities at the previous integration 

step. However, these quantities do not necessarily satisfy the governing equations (6.9) at 

time step +1i , since the structural stiffness may have changed due to nonlinearities. Thus, 

an iterative procedure needs to be implemented in order to satisfy equilibrium. Upon this 

point, the analysis performed demonstrates that usual analysis procedures can be implemented 

in order to solve the governing equations of the nonlinear hysteretic problem. The iterative 

formulation proposed will be discussed on the next chapter. 

6.3.2 The Newmark family of solvers 

Newmark (1959) developed a set of time integration schemes based on the following 

equations: 

 { } { } ( ) { } ( ){ }g g
+ +

é ù= + - D + Dë û
   

1 1
1

i i i i
U U t U t U  (6.19) 

and 

 { } { } { } ( ) { } { }b b
+ +

é ù é ù= + D + - D + Dê ú ê úë û ë û
  2 2

1 1
0.5

i i i i i
U U t U t U t U  (6.20) 

Parameters b  and g  determine the acceleration increment within the time step and are 

essential in the evaluation of the stability and accuracy measures of the method. Usually the 
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values g = 1 2  and b£ £1 6 1 4  are considered. Solving equation (6.20) for the velocity 

vector and substituting into equation (6.19) respectively, the following relations are derived: 

 
{ } { } { } { } ( ) { }( )

{ } { } { } { } { }( )

b
b

g g g
b b b

++

++

= - -D - - D
D
æ ö æ ö÷ ÷ç ç= D - + - + -÷ ÷ç ç÷ ÷÷ ÷ç ç Dè ø è ø

  

  

2
11 2

11

1
0.5

1 1
2

i ii i i

i ii i i

U U U t U t U
t

U t U U U U
t

 (6.21) 

Replacing equations (6.21) in the first of equations (6.9) the following algebraic relations 

are derived: 

 { } { }+ ++
é ù =ë û 1 , 1, 1 i eff ieff i
K U p  (6.22) 

where: 

 

{ }( )

{ } { } { } { } { }( )

1 1, 1

1 2 3, 1 1

h ieff i

eff i i i i i

K K

p P U U U

a s

a a a

++

+ +

é ùé ù é ù= + ê úë û ë û ë û

é ù é ù é ù= + + +ë û ë û ë û
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 (6.23) 

and: 

 

1 2

2

3

1

1
1

1
1

2

S s

S

S S

M C
tt

M
t

M t C

g
a

bb

g
a

b b

g
a

b b

æ ö÷çé ù é ù é ù ÷= +ç ÷ë û ë û ë ûç ÷ç Dè øD

æ æ öö÷÷ç çé ù é ù= - - ÷÷ç ç ÷÷ë û ë û ÷÷ç çDè è øø

æ æ ö ö÷ ÷ç çé ù é ù é ù= -D - ÷ ÷ç ç ÷ ÷ë û ë û ë û÷ ÷ç çè è ø ø

 (6.24) 

Similarly, replacing the displacement rate relation from equation (6.21) and implementing 

a central difference approximation for the stress rate, the second of equations (6.9) is written 

in discrete form as: 

 { } { } { }s s
+ +

é ù é ù= D + ë û ë û, 1 , , 1
2

h i h i S i s
t G B L  (6.25) 
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where { } { } { } { } { }( )g g g
b b b +

æ ö æ ö÷ ÷ç ç= D - + D - + -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
 2

1

2
2 2 1

i ii i
L t U t U U U . 

The effective stiffness matrix of equation (6.23) is a function of the current hysteretic 

stress tensor, which in turn is a function of the current displacement vector (equation (6.25)). 

Thus, an iterative procedure has to be implemented.  

This is achieved by casting equations (6.21) to (6.25) into incremental form, letting 

{ } { } { }+ +
= -

1 1i i i
d U U U . Consequently, equations (6.21) and (6.25) can be iterated 

within a specific time step i  following the standard procedure for the solution of nonlinear 

dynamic equations (Bathe, 2008, Chopra, 2008).  

The advantage over the existing solutions lies in the fact that the system of equations 

(6.21) and (6.25) embodies all the information concerning classical plasticity theory. The 

elastic, or plastic state of the material is not derived through a radial-return mapping scheme 

(Simo and Hughes, 1998) at the end of the iteration step but is rather evaluated as a smooth 

function of the current displacement.  

The relations for the Newmark methods of average acceleration and linear acceleration are 

presented in Table 6.1 for the sake of reference. 

Average Acceleration Linear Acceleration 

( ){ } { } { }( )1
 

i 1 i2
U U Ut = ++
    ( ){ } { } { } { }( )τ

Δ
 

i i 1 it
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i 1 i4
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i 1 i6 3

U U U
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
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Table 6.1: Methods of average and linear acceleration 
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6.4 First order representation 

6.4.1 General remarks 

In this section, the general properties of the mathematical structure at hand are described. 

As shown in the previous paragraph we are interested in the solution of an m.d.o.f. system of 

nonlinear first order ordinary differential equations. Such a problem can be written as 

 { } { } ( ){ }( )
( ){ } { }
= =

=



0 0

,
d t

y f y t t
dx

y t y
 (6.26) 

where { }y , { }
0

y , { }y  and f  are column vectors.  

The computational time needed for an accurate solution of the system of equations (6.26) 

is directly related to a property called the “stiffness” of the system. In general, a stiff ode is 

one that includes both rapidly and slowly varying terms. Shampine and Gordon (1975) 

discuss some fundamental issues related to the property of stiffness. The most important of 

those is the fact that the Jacobian of (6.26) 

 
( ){ }( )
( ){ }

¶
é ù =ë û ¶

,f y t t
J

y t
 (6.27) 

has eigenvalues with both negative and positive real parts that also vary widely in magnitude. 

Thus, some of the solution components will be decaying whereas others will be non-decaying 

over time. Since the eigenvalues are, in general, not constant over time, as in the case of 

material and geometric nonlinearities, some equations might be stiff in some time interval but 

not in another. Thus, the property of stiffness is local. 

A quantitative measure of stiffness is usually given by the stiffness ratio

( ) ( )l lé ù é ù- -ë û ë ûmax Re min Rei i  which is a local quantity also. Another standard measure 
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for stiffness is the quantity ( )lé ù-ë ûmax Re i dt . Since dt  is a direct indicator of the time-

marching process while in many cases ( )lé ù- ë ûmin Re 0i , the second measure is preferred 

during the qualitative description of a system of odes. 

The difficulty with stiff problems is the prohibitive amounts of computer time required for 

their solution by classical ODE solution methods, such as the popular explicit Runge-Kutta 

and Adams methods. The reason is the excessively small step sizes that these methods must 

use to satisfy stability requirements. Because of the approximate nature of the solutions 

generated by numerical integration methods, errors are inevitably introduced at every step. 

For a numerical method to be stable, errors introduced at any one step should not grow 

unbounded as the calculation proceeds.  

To maintain numerical stability, classical ODE solution methods must use small step sizes 

of order ( )lé ù-ë û1 max Re i  even after the rapidly decaying components have decreased to 

negligible levels. Examples of the step size pattern used by an explicit Runge-Kutta method in 

solving stiff ODE problems arising in combustion chemistry are given in Radhakrishnan and, 

Hindmarsh (1993). Now, the size of the integration interval for the evolution of the slowly 

varying components is of order ( )lé ù-ë û1 min Re i . Consequently, the number of steps 

required by classical methods to solve the problem is of order 

( ) ( )l lé ù é ù- -ë û ë ûmax Re min Rei i  which is very large for stiff ODE’S. 

6.4.2 Description of linear multistep predictor corrector methods 

In general, linear multistep methods evaluate the solution of (6.26) at the nth step, 

implementing the following formula: 

 { } { } { }a b
- -

= =

= +å å
1 2

1 0

K K

j n jn n j n j
j j

Y Y h f  (6.28) 



Chapter VI  Structural Analysis Implementing Bouc-Wen Hysteresis 

208 

 

where the coefficient vectors aj ,bj  depend on the specific method while -= - 1n n nh t t  is 

the time increment which can vary as the time-marching process evolves. Parameters 1K  and 

2K  also depend on the method implemented and are equal to the number of previous solution 

points used to evaluate the current solution. The coefficient vectors are determined assuming 

that the solution of equation (6.26) is polynomial of order +1 2K K  and demanding that the 

anzaz (6.28) is exact in this case. The second term in the r.h.s of equation (6.28) may or may 

not involve the value of the derivative at the current time step (setting b =0 0 ) which is 

unknown giving rise to either implicit or explicit differentiation formulas.  

In case = =1 2 1K K  and a b= =1 1 1  equation (6.28) degenerates into the Euler 

forward differentiation scheme (Bathe, 2007). Accordingly the values =1 1K , = -2 1K q  

produce the Adams-Moulton method of order q: 

 { } { } { }b
-

- -
=

= + å
1

1
0

q

n jn n n j
j

Y Y h f  (6.29) 

while the choice =1K q , =2 0K  gives rise to the Backward Differentiation Formula of 

BDF for brevity. Equation (6.28) can be rewritten in the following equivalent form: 

 { } { } { }b= Y + 0nn n n
Y h f  (6.30) 

where the quantity 

 { } { } { }a b
- -

= =

Y = +å å
1 2

1 1

K K

j n jn n j n j
j j

Y h f  (6.31) 

involves the function evaluations at previous time steps. 

Implicit methods are in general expensive to solve in terms of functions evaluations. 

Nevertheless they have been proven to be more stable and more accurate for the same order 
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and step size compared to the explicit ones (Lambert, 1973). Thus, implicit methods can be 

implemented with larger time steps. 

In a predictor-corrector scheme, an explicit method is used as a predictor, generating an 

initial guess for { }
n

Y . Next, an implicit scheme is implemented in order to correct the initial 

guess. Thus, a predictor-corrector scheme first evaluates in a single function evaluation the 

predicted value, denoted { }( )0

n
Y  and then corrects this value by iterating equation (6.30) until 

convergence. Referring to equation (6.30), at each iteration m  the quantity { }n n
h Y  is 

evaluated through the following relation: 

 { }( ) { }( ) { }( )b
= - Y

0

1m m

n n n
n

f Y
h

 (6.32) 

Different iterative techniques can be implemented at this point . In this work, the classical 

Newton-Raphson scheme is implemented that converges quadratically, thus allowing for 

fewer iterations and larger time steps. For this reason the following residual quantity is 

defined: 

 { }( )( ) { }( ) { } { }( )b
+

= - Y -
1

0Re
m m m

nn n n n
s Y Y h f  (6.33) 

and the iteration process evolves until the corresponding Taylor expansion assumes a small 

value (Radhakrishnan and Hindmarsh, 1993). 

6.5 The continuum and consistent formulations of the constitutive tensor 

The Newton-Raphson method that is implemented within the corrector step reduces the 

nonlinear problem to a sequence of linearized problems (through Taylor expansion) referred 

to as iterations in the previous section. The linearized incremental problem requires the 

evaluation of the tangent stiffness matrix of the structure. In general, this tangent stiffness 
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matrix can be computed from the material tangent moduli (operators) at the material (or 

integration point) level. In rate-independent plasticity, the material constitutive behavior is 

described by rate constitutive equations as presented in Chapter 2 and implemented in 

Chapter 3. According to the incremental-iterative process discussed in the previous section, 

these rate constitutive equations are numerically integrated over a sequence of discrete time or 

load steps.  

The hysteretic nonlinear rate equations defined in relations (6.3) and (6.5) can be written in 

the following generic form, for brevity: 

 { } { }é ù= ë û
 Q G q  (6.34) 

where { }Q  is a generalized action measure and { }q  is a generalized deformation measure. In 

relation (6.34) é ùë ûG  is the smooth constitutive matrix of the material under consideration 

directly defined from the ratio of the rates of the generalized measures. The global stiffness 

matrix that is derived from é ùë ûG  is called the continuum tangent moduli of the structure. 

Nevertheless, Nagtegaal and de Jong, 1981where amongst the first to notice that when using 

an iterative procedure like the Newton-Raphson algorithm, the use of the continuum stiffness 

matrix leads to problems as it is not consistent to the incremental strains being evaluated at 

each step. Additionally, the use of this stiffness matrix would not guaranty the quadratic 

convergence rate of the algorithm unless it is evaluated with respect to the incremental 

deformation component Dq . 

Thus, referring to equation (3.49) the incremental stress-strain relation at the thi  iteration is 

evaluated as: 
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 ( ){ } ( ){ } ( )
( ){ }( )

( ){ }
s

s e l
s

æ ö¶F ÷ç ÷ç ÷é ù çD = D -D ÷çë û ÷ç ÷¶ç ÷è ø

i

i i i

i
D  (6.35) 

where the increment of the hysteretic plastic multiplier is 

 ( ){ }( )( ) ( ){ }l h e
-

é ù é ù é ù é ùé ù é ùD = - F + Dë û ë ûë û ë û ë û ë û
1

1 2 ,
T T Ti i

p p p pH H A G B D B B D  (6.36) 

where ( ){ }hé ù = ¶F ¶ë û
i

pA  and ( ){ }sé ù = ¶F ¶ë û
i

pB The differential of the stress increment 

is defined as: 

 ( ){ } ( ){ } ( ) ( )
( ){ }

( ){ } ( )s e l s l
s

æ öé ù ÷ç ¶ ÷ç ë û ÷é ùé ù çD = D -D D - D ÷çë û ë û ÷ç ÷¶D ÷çè ø

2

i i i i ip
pi

B
d D d d d B  (6.37) 

and solving for ( ){ }sD id  the following incremental relation is derived: 

 ( ){ } ( ){ } ( )( )s e lé ù é ùD = D - Dê ú ë ûë û
*i i i

pd G d d B  (6.38) 

from which it is concluded that the quantity relating the increment of stress to the increment 

of strain is: 

 ( )
( ){ }

l
s

-æ öé ù ÷ç ¶ ÷ç ë ûé ù ÷é ù é ùç= + D ÷çê ú ë û ë û÷ë û ç ÷¶D ÷çè ø

1

* i p

i

B
G I D D  (6.39) 

Simo and Taylor, 1985 prove that this derivation ensures the quadratic convergence of the 

Newton scheme, since it accounts for the change on the gradient é ù
ë ûpB  as the iterations 

evolve. Substituting equations (3.59) and (3.60) into (6.36) and finally into (6.38) and (6.39), 

the following expression for the hysteretic consistent constitutive matrix is derived: 

 ( ){ } ( ){ }b g e s
æ öæ æ öö ÷ç F ÷÷÷é ù é ùç ç çé ù é ù ÷= - + D D ÷÷ç ç ç ÷ê ú ê úë û ÷÷ë û ÷÷ë û ë ûç ç ç ÷è è øøFç ÷è ø

* *

0

ˆ sgn
N

Ti iG G I R  (6.40) 
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where the incremental interaction matrix is defined as: 

 

( ){ }
( ){ }( ) ( ){ }

( ){ }( )
( ){ } ( ){ } ( ){ }
s

h
h s s s s
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1

,

T T Ti

i

i i i i i
G D D

 (6.41) 

The derivation of the consistent constitutive matrix is crucial for the implementation of the 

return-mapping algorithm scheme that is mainly used in plasticity (Simo and Hughes, 1998). 

6.6 An equilibrium based approach of the first order representation 

method 

In the general case of a structure consisting of both hysteretic finite elements and macro-

elements, the nonlinear part of the stiffness matrix 
S

Ké ùë û (equation (6.1), varies with respect to 

the vector of hysteretic stress components. Moreover, the hysteretic stress components are 

introduced as additional unknowns into the solution scheme, through the rate equations (6.3).  

On the other hand, the structural hysteretic matrix 
S

Ké ùë û , comprising of the individual 

hysteretic components of the macro-elements, remains constant throughout the analysis 

procedure. The inelastic behavior at the ends of the macro-elements is controlled by the 

additional hysteretic degrees of freedom and the corresponding evolution equations. 

In a time marching algorithm, such as the nonlinear dynamic analysis of structures, the 

evaluation, at each time step, of the structural stiffness matrix is a time and memory 

consuming process. In this Section, a method is examined that is based on the evaluation of 

constant system matrices for the hysteretic finite elements. 
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6.6.1 The Incidence Matrix of a Constant Stress / Strain finite element 

 
Fig. 6.1 Plane Stress Element and corresponding edge loads 

Since the triangular element is a constant stress / constant strain element, equilibrium 

requirements are fulfilled within the element. Assuming that on each side , 1,2,3i i =  of the 

triangle a distributed load ip  is applied with components i
xp , i

yp  that gives rise to the 

corresponding edge tractions, namely i

x
q  and i

y
q , the equilibrium condition on the edge i  is: 

 
i i i

x x x xy y
i i i
y xy x y y

q n n

q n n

s t

t s

= +

= +
 (6.42) 

where ,i i
x y
n n  are the direction cosines of the thi  boundary of the element while xs , ys ,  are 

the normal stresses and xyt  is the shear stress of the element (Fig. 6.1). The direction cosines 

of the first side are defined as: 
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while the rest are derived by cyclic permutation of subscripts where , 1,2, 3
i
L i =  is the length 

of the thi  boundary of the element. Equation (6.42) is conveniently written in matrix form as: 

 { } { }iT sé ù= ê úë û
iq  (6.44) 

where { } { }
T

i i
x y
q q=iq , { } { }

T

x y xy
s s s t= and iTé ù

ê úë û  is a transformation matrix defined 

as: 

 
0

0
x

y

i i

yi
i i

x

n n
T

n n

é ù
ê ú= ê ú
ê úë û

 (6.45) 

Appending for the three sides of the elements, equation (6.44) is re-written as: 
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 (6.46) 

or in a more compact form: 

 { } { }Q J sé ù= ê úë û  (6.47) 

By means of the principle of complementary virtual work (Washizu, 1980) and using the 

shape functions of the plane stress element presented in equation (5.25), the equivalent nodal 

forces of the tractions can be computed and assigned on each node as: 
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 (6.48) 
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or: 

 { } { }P L Qé ù= ê úë û  (6.49) 

where t is the thickness of the element and , 1,2, 3
i
L i =  is the length of the corresponding 

boundary while the superscript ( )j  denotes the index of the element. Combining equations 

(6.46) and (6.49), the equilibrium expression between the internal stress field of the element 

and the external applied nodal forces is obtained: 

 { }
( )


( )
 { }

( )

3 16 6 6 3

2
xx x

t
P L J sé ù é ù= ê ú ê úë û ë û  (6.50) 

After some matrix manipulation the following compact form of equation (6.50) is derived: 

 { }
( )
 { }

( )
 { }
3 16 3

e

xx

P V A Cs sé ùé ù= =ê ú ê úë û ë û  (6.51) 

where V  is the elemental volume, and A  is the equilibrium matrix of the triangular plane 

stress element defined as: 
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 (6.52) 

and 1 2 3b y y= - , 1 3 2c x x= - , 2 3 1b y y= - , 1 1 3c x x= - , 2 1 2b y y= -  and 

3 2 1c x x= - . 

It can be easily noticed that the equilibrium matrix is the transpose of the strain matrix 

introduced in equation (5.33) multiplied by twice the area of the triangular element. 
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6.6.2 The node method for the case of plane problems 

 
Fig. 6.2 Equilibrium matrix derivation of a plane mesh 

In Fig. 6.2 an arbitrary mesh of constant stress triangular elements is presented that 

consists of a plane stress element mesh with nodn  nodes and eln elements. The equilibrium 

conditions of the mesh are established by additively appending the elemental contributions on 

the nodal equilibrium through equations (6.51). Thus, global equation of equilibrium can be 

cast onto the following form: 
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where e

S
Aé ù
ê úë û is defined as the equilibrium matrix of the structure, { }

S
s  is the stress vector of 

the whole structure and { }P  is the nodal force vector. Equation (6.53) is a static equilibrium 

equation which can be extended for the dynamic case by taking into account inertia forces. 

Thus, the dynamic equilibrium equations assume the following hybrid form: 

 { } { } ( ){ }e

SS
M U A P tsé ùé ù + =ê ú ê úë û ë û

  (6.54) 

Considering the principle of complementary virtual work, the following relation can be 

established in terms of compatibility: 
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A d eé ù =ê úë û  (6.55) 

The main advantage of the proposed method is that it separates the problem into two sets 

of equations. The first consists of the global linear equilibrium and compatibility equations, 

while the second one of local nonlinear constitutive equations, together with the hysteretic 

evolutionary equations. 

In the general case where a structure consists of both plane stress elements and macro-

elements, equation (6.54) can be cast in the following form: 

 { } { } { } { } { } { }( )
Aug Aug Auge

S S S SS
M U C U A K U H z P tsé ùé ù é ù é ù é ù+ + + + =ê úë û ë û ë û ë ûë û

   (6.56) 

where the equilibrium matrix 
Auge

S
Aé ù
ê úë û  and the stiffness and hysteretic matrices 

Aug

S
Ké ùë û  and 

Aug

S
Hé ùë û  are augmented for the whole structure. Equation (6.56) is linear with respect to the 

vector of stresses { }s  , the global displacement vector { }U  and the hysteretic deformation 

vector { }z . These set of equations is accompanied with a set of hysteretic equations for the 

stress field and the hysteretic deformation field, namely: 

 { } { }HS S S
D B ds é ù é ù= ë û ë û

  (6.57) 

and: 

 { } { } { }( , )z f U z=   (6.58) 

6.7 Conclusions 

In this Chapter, the computational aspects of the proposed hysteretic finite elements and 

macro-elements are presented. The standard second order solution schemes, namely the 

central difference method and the Newmark method are modified, to account for the 
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additional equations introduced by the rate form of the hysteretic parameters. Moreover, the 

numerical aspect of stiffness is introduced and the family of linear multistep predictor-

corrector methods is presented that successfully deals with stiff numerical problems.  

Finally, a method is proposed for the dynamic nonlinear analysis of structures based on the 

node method (Spillers, 1962), initially developed for the case of skeletal structures. By 

considering the stress field of the hysteretic finite elements as additional unknown the 

nonlinear equations of motion are formulated in terms of the constant equilibrium matrix of 

the finite elements and the constant elastic stiffness and hysteretic matrices of the macro-

elements. In this way, inelasticity is introduced only at the element level, through the 

evolution equations of the additional unknowns, namely the hysteretic stress field and the 

hysteretic deformation field. This method bares the advantage of not requiring the evaluation 

of global system matrices at each time step of a nonlinear marching process, at the cost of 

introducing additional unknowns. Yet, if properly programmed, the resulting problem of 

solving a linear system is more efficiently handled computationally than the iterative 

evaluation of stiffness components. 

In the present thesis, the method is developed and presented only for the case of plane 

stress triangular elements. Further development is required to derive the necessary incidence 

matrices for other types of surface and three-dimensional elements. 

 

 

 

 

 

 

 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

219 

 

 



Chapter 7  Examples 

220 
 

 

 

 

 

 

 

 

 

 

Chapter 7  
 
 
 
EXAMPLES 

 

 



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

221 

 

 

  



Chapter VII  Examples 

222 
 

7.1 Introduction 

In this chapter, examples are presented that demonstrate both the validity of the proposed 

formulation and its applicability on different types of structures. Validity is established 

through comparison with well documented computer codes such as Idarc (Valles et al., 1996) 

Abaqus (Abaqus, 2005) and OpenSees (McKenna et al., 2000). 

In the first example, a shallow arch is subjected to a sinusoidal excitation and its response 

its examined considering material and geometric nonlinearities. In the second example, the 

response of a shear link is examined under cyclic loading. Shear links are frequently 

implemented as an effective mechanism of energy dissipation. Roeder and Popov (1978) 

conducted a series of experiments using shear links in eccentrically braced frames (EBFs). 

These and subsequent studies by Hjelmstad and Popov (1983), and Kasai and Popov (1986) 

proved that localized ductile yielding in shear, bares significant advantages over bending 

failure. Recently, EBFs bearing shear links have been proposed as rehabilitation mechanisms 

of reinforced concrete frames (Ghobarah and Elfath, 2001, Mazzolani, 2008). 

Next, the proposed beam formulation is used to verify the dynamic response of a typical 

steel moment frame of a hospital building located at Woodland Hills, California. The solution 

is compared to results obtained from the Force analogy Method, described in Wong & Yang 

(1999), the Idarc computer code and OpenSees. 

Finally, a three-dimensional steel building is examined, imposed to seismic excitation in 

two horizontal excitations. Two cases of lateral load resisting mechanics are used. In the first, 

typical (inverted V) concentric braced frames are implemented while in the second suspended 

zipper braced frame are implemented. The zipper braced frame configuration (Fig.7.1b) was 

first proposed by Khatib (Khatib et al.1988). The frame has geometry similar to that of the 

conventional inverted-V braced frame (Fig.7.1a), except that a vertical structural element, the 
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zipper column, is added at the beam mid-span points from the second to the top story of the 

frame.  

The advantages of the zipper frame as an energy dissipation mechanism have been well 

documented in Khatib et al. (1988). The mechanism relies on the successive buckling of the 

compression braces, from the first story and moving upwards. Referring to the three story 

brace in Fig.7.1(b), after the brace of the first story buckles, the vertical force of the 

corresponding beam is transmitted to the second story through the zipper column.  Further 

increased lateral deformations, will inevitably lead to a mechanism in which all compression 

braces have buckled and also beam plastic hinges have been activated. However, as this 

mechanism evolves, the structural stiffness is significantly reduced leading to a softening 

behavior that is difficult to assess, thus limiting the applicability of the zipper frame, 

especially in high rise buildings where lateral stability and second order effects are of the 

utmost importance. 

Leon and Yang (2009) introduced the suspended zipper frame Fig.7.1c, by modifying the 

conventional zipper braced frame. In their proposal, overdesigned members are used as braces 

at selected stories along the frame height such that they remain elastic, thus preventing the 

formation of the complete zipper mechanism. The primary function of the zipper column is to 

transfer the unbalanced vertical force to the upper story braces and to support the beams at 

mid-span. Leon and Yang (2003) have shown that by providing the support at mid-span of the 

beams, a reduction of the beam sizes can be achieved, which may save material and makes the 

suspended zipper braced frame more economical. This configuration also provides a clear 

force path and makes the capacity design for the frame structural members relatively 

straightforward. 
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Fig.7.1Typical concentric braced frames (a) inverted V (b) zipper type (c) suspended 

zipper type 

The building presented in this example is also examined by Yang et al. (2009) and 

conclusions have been drawn on the advantages of the second type of framing.  

7.2 Shallow arch  

A shallow arch is examined with a rise to span ratio of about 2%. The arch is considered 

restrained against out of plane motions while care has been taken to prevent member 

buckling. Pinned boundary conditions are imposed at both ends of the structure. Apart from 

self-weight, an additional mass of 3.5 KN is considered to be lumped at each node of the 

lower chord. The geometry of the arch is presented in Fig. 7.2 while the material and cross-

sectional properties are presented in Table 7.1. A minor value of kinematic hardening is 

considered for the S235 steel. The rupture strain is considered at 6%. 
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Fig. 7.2 Shallow Arch Geometry (shape out of scale) 

Area 0.0006 m2 
Eyoung 210 GPa 
a 0.00015 
σy 235 MPa 
n 25 
b  0.5 
g 0.5 

Table 7.1 Cross-Sectional and material properties 

The truss structure is modeled using one truss element per member, implementing the 

hysteretic strain truss element formulation presented in Chapter 4. Two loading scenarios are 

considered in this example. In the first, the truss is imposed into monotonically increasing 

vertical loads until collapse. In the second scenario, a combined horizontal and vertical 

sinusoidal excitation is imposed, distributed at the upper chord of the truss. 

7.2.1 Nonlinear static analysis 

The proportional loading applied in the truss is presented in Fig. 7.3. The load is 

monotonically increased until collapse. In Fig. 7.4, the capacity curve of the truss is 

presented, in terms of applied load with respect to the vertical displacement at node #10. 

 
Fig. 7.3 Proportional static loading 
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Fig. 7.4 Applied Force – Vertical Displacement Capacity Curve 

The solution provided by the proposed formulation is compared to results obtained also 

from SAP2000 commercial code. The displacement based beam element is used in SAP2000, 

with moment releases at both ends, while plasticity is simulated through properly calibrated 

axial force-axial displacement springs at both ends of each element. Both the bending 

stiffness and shear area of the beam element in SAP2000 are reduced by a factor of 10-4 to 

fully avoid any bending deformations. 

A force control pushover analysis is performed in SAP2000, using the modified Newton-

Raphson solution procedure. The load is subdivided in 100 incremental steps. The results 

obtained are compared in Fig. 7.5 in terms of applied force with respect to the vertical 

displacement at node #10. 

 
Fig. 7.5 Comparison of the proposed formulation to SAP2000 
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The solutions are practically the same both in the elastic and in the inelastic regime. In Fig. 

7.6, axial force – axial deformation diagrams are presented for elements #2 at the lower chord 

and #16 at the upper chord of the truss (Fig. 7.3). The behavior of the truss elements is 

bilinear with a sharp transition from the elastic to the inelastic regime. 

 
Fig. 7.6 Axial Force – Axial Deformation plots of elements #2 and #16 

7.2.2 Nonlinear dynamic analysis 

In this analysis scenario a time varying horizontal and vertical loading, distributed at the 

left side of the upper chord, is imposed. The distribution is presented in Fig. 7.7 while the 

amplitude of the loading varies according to the following sinusoidal relation: 

 ( )p= 2.5 sin tP   

 
Fig. 7.7 Dynamic load distribution 

Ten seconds of analysis are considered while the time integration step is = 0.2dt  sec. In 

Fig.7.8(a) time history of the horizontal displacement of node #6 is presented. The time 

history of the vertical displacement at mid-span is presented in Fig.7.8(b). The time-histories 
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presented demonstrate a time varying period of oscillation, thus, the truss undergoes inelastic 

deformation. 

(a) (b) 
Fig.7.8 (a) Horizontal Displacement at node #6 (b) Vertical Displacement at node #10 

In Fig. 7.9(a) and (b), axial force – axial deformation hysteretic loops are presented for 

elements #7 and #12 respectively. Due to kinematic hardening, only two inelastic branches 

are observed, upon the first loading-unloading-reloading cycle of the structure. After that, the 

members respond elastically due to the linear increase in the back-stress. 

In Fig. 7.10 the effect of the smoothness parameter n  of the Bouc-Wen model is examined 

both on the global response of the structure and on an element basis. Two extreme values of 

parameter n  are considered namely = 25n , that results in a sharp transition from the elastic 

to the inelastic regime and = 2n , that results on a smooth transition from the elastic to the 

inelastic regime. In Fig. 7.10(a), the time history of the vertical displacement at node #10 is 

presented for the two cases. Though the extreme values of the displacement are not affected, 

the overall behavior of the truss changes, since extreme values occur at the opposite direction 

of loading. This distinction is clearly depicted in Fig. 7.10(b), where the axial force - axial 

deformation hysteretic loop of element #7 is presented. 
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(a) (b) 
Fig. 7.9 Axial force – axial deformation hysteretic loops (a) element #7 (b) element #12 

(a) (b) 
Fig. 7.10 Response comparison for extreme smoothing parameters (a) Vertical 

Displacement at node #10 (b) Axial force – axial deformation hysteretic loop at element #7 
for the case where (n =2) 

7.2.3 Large displacement analysis 

The shallow arch undergoes large displacements, as presented in the corresponding 

capacity curve (Fig. 7.4). Thus, a geometrically nonlinear analysis needs to be performed to 

accurately predict the actual response of the structure. 

A dynamic analysis is performed, imposing the load distribution presented in Fig. 7.7 

where ( )p= 2.5 sin tP . The following set of Bouc-Wen parameters is considered, namely 

= 2n , 0.8b = , 0.6g = . The corresponding time-history of the vertical displacement at 

node #10 is presented in  
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Fig. 7.11 Vertical Displacement at node #10 (Large Displacement Analysis) 

7.3 Cyclically loaded shear beam 

A 70 cm shear link of an IPE400 cross-section is examined in this paragraph. Material 

properties are S275 with an Elastic modulus of 210 GPa and a yield stress equal to 275 MPa. 

The solution obtained with the proposed formulation is compared against a solution obtained 

using Abaqus. The structural model implemented in Abaqus consists of 3712 quadrilateral 

shell elements and is presented in Fig.7.12(b). An elastic perfectly plastic material behaviour 

is considered in the Abaqus model. The computational model implemented in the proposed 

formulation is presented in Fig.7.12(c). The parameters chosen for the Bouc-Wen model are 

b g a= = = =6, 0.5, 0.025in . The Orbison criterion is considered (Orbison et al., 

1982), defined by the following relation: 

 F = + + + + +2 2 4 2 2 6 2 4 21.15 3.67 3.0 4.65y z y z y zn m m n m n m m m   

where = un P P , =y y yum M M , =z z zum M M  while y refers to the strong axis and z

refers to the weak axis of the cross-section. Yielding in shear is defined by the following 

relation: 
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Fig.7.13 Force Displacement curve - IPE 400 shear link  

The force-displacement plot is presented in Fig.7.13. Since the link yields in shear, the 

Bernoulli formulation fails to predict the nonlinear behaviour of the specimen. On the 

opposite, the Timoshenko formulation agrees well with the Abaqus results. The minor 

deviation both in the reloading phase and in the residual displacements is due to the inability 

of the proposed formulation to accurately predict the exact distribution of residual stresses on 

the cross-section that would give rise to a smoother transition from the elastic to the inelastic 

regime. However, allowing for a different set of parameters in the Bouc-Wen model, namely 

b g a= = = =3, 0.5, 0.025in  , the following plot of Fig.7.14 is produced. 

The versatility of the implemented Bouc-Wen hysteretic rule on macro-modelling 

overcomes the inherent inability of the concentrated plasticity formulation to predict the 

smooth transition from the elastic to the inelastic regime due to the gradual yielding of the 

web. 
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Fig.7.14 Force Displacement curve – n=3 

 
Fig.7.15(a) Shear force – Shear strain diagram (b) Moment-Curvature diagram 

In Fig.7.15(a) and (b) the shear force – shear strain and moment – curvature hysteresis 

loops are presented respectively. This verifies the result from the comparison of the Bernoulli 

and Timoshenko solutions that the shear link yields in shear since the ultimate moment 

developed in the element is less than the plastic moment of the IPE400 section (359 KNm). 

7.4 Woodland Hills Hospital– moment frame 

In this example a typical 6 story frame of a hospital building located at Woodland Hills, 

California is subjected to the El Centro accelerogram, scaled up with a factor of 1.8. The 
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geometry of the frame is presented inFig.7.16. The mechanical properties of the members are 

also presented in Fig.7.16, while the scaled accelerogram is presented in Fig.7.17. The yield 

curvature, the yield axial strain and the yield shear strain are computed based on the cross 

sectional data. Two subcases are considered. 

In the first one, the Euler Bernoulli theory of bending is considered (setting l = 0 ) and 

the obtained solution is compared to results obtained from the Force analogy Method, 

described in Wong & Yang (1999). For the purpose of this analysis no interaction between 

axial, shear and bending moment is considered. An analysis is also performed considering 

interaction between axial and bending through the Orbison criterion and the validity of the 

proposed scheme is proved through comparison to the OpenSees code (McKenna et al., 

2000). 

In the second subcase, the Timoshenko formulation is used where yielding in shear is again 

defined by relation (7.1) 

The force-based element is implemented in OpenSees while plasticity is introduced into 

the element through a fibre approach, at integration points defined along the element’s length. 

In this way, the interaction between axial and bending plastic deformations is accurately 

attributed, while plasticity in shear is considered uncoupled. The modified Newton scheme is 

utilized with an average acceleration Newmark integrator. A uniaxial elastic-plastic material 

model with kinematic hardening is used in the OpenSees code with the hardening constant 

being equal to =_ 45 GPaH kin . This corresponds to a post-elastic to elastic stiffness ratio 

= 0.0015a .Viscous damping is not considered in both cases. The value of the shear 

correction factor is equal to 0.255 for all sections. 

The parameters of the Bouc-Wen model and the floor masses are presented in Fig.7.16. 

The derived moment – curvature diagrams are bilinear with a sharp transition from the elastic 

to the inelastic regime. The mass of the structure is considered lumped at the floor levels. The 
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7.4.1 Comparison to the Force Analogy method 

In this example, the proposed element formulation and solution procedure is tested against 

the Force analogy Method Wong & Yang (1999). As in the reference solution of Wong & 

Yang (1999), columns are modeled by elastic members and only beams are allowed to 

undergo inelastic deformations. The columns are kept elastic throughout the analysis by 

letting the post elastic to elastic bending stiffness ratio ab  equal to unity. The yield curvature 

and the axial strain at yield are computed based on the cross sectional data. Since, no axial 

plastic deformation is accounted for in the Force Analogy approach, axial deformations are 

also kept elastic by letting au equal to unity in this analysis. 

The time history of the tip displacement is plotted in Fig.7.18(a) and compared to the plot 

presented in Wong & Yang (1999) for the case of strain hardening. There is a good agreement 

between the results taken from the two methods especially in the first 10 seconds of the 

excitation where inelastic deformation occurs. The different analysis schemes show the same 

maximum displacement. Differences are observed towards the end of the response where 

Force Analogy results appear more damped. These differences can also be attributed to the 

different inelastic models utilized, and thus, to the different amount of hysteretic energy 

dissipated during the inelastic response. 

The same model is solved with the IDARC code, Valles et al. (1996), utilizing a Bouc-

Wen hysteretic model, with the same parameter set used in this analysis. The corresponding 

plots are compared in Fig.7.18(b). 

The results obtained using the Idarc code are in even better agreement to the results 

obtained from the proposed formulation. Differences are still observed during the last 

response cycles. These differences can be attributed to different truncation errors introduced 

by the different solution schemes. Idarc code utilizes a Newton scheme with an average 
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when plastic deformations accumulate, while the max and min response differ by 20% to 

25%. 

 
Fig.7.22Top story horizontal displacement time history (Euler Theory) 

 

 
Fig.7.23Top story horizontal displacement time history (Timoshenko Theory) 

In 7.24 the maximum interstorey drift ratios are presented for the two analysis cases. It is 

concluded that the dynamics of the structure are not significantly altered considering either 

the Euler or Timoshenko formulation, since the distribution of the maximum shear drifts 
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remains the same. Plastic deformations in both cases are concentrated in the first storey 

columns. Thus, the differences observed between Fig.7.22 and Fig.7.23 are due to the shear 

plastic deformations being developed in the first storey columns leading to a more flexible 

structure in the Timoshenko formulation. 

 
7.24 Maximum interstorey drift ratio 

In Fig. 7.25 the time history of the upper storey horizontal displacement is presented as 

evaluated from the Timoshenko and Euler formulation. The Timoshenko formulation yields 

larger displacements, especially in the last 10 seconds of the excitation where the differences 

are larger than 50%. 

This is attributed to the accumulations of plastic shear deformations that are not accounted for 

in the Euler formulation. Increasing shear deformations in the columns lead to increasing 

lateral displacements. 

In the next figures, the efficiency of the proposed hysteretic interaction scheme is 

presented. The axial force – axial deformation and moment - curvature diagrams of element 

#1 (Fig.7.16) are presented in Fig.7.26(a) and (c) respectively. In Fig.7.26(b), the normalized 

axial force and the normalized bending moment are plotted when yielding has occurred. 

These points foliate the corresponding space and do not lay on a single curve due to kinematic 
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hardening. For the same reason normalized values exceed unity in the figure. As expected, 

yielding in bending is predominant in the nonlinear behaviour of the frame member. 

However, the interaction scheme significantly alters its plastic deformation potential. 

 

Fig. 7.25 Comparison of Euler and Timoshenko formulations - Top story horizontal 
displacement time history 

 

-30

-20

-10

0

10

20

30

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

D
is

p
la

ce
m

en
t 

(c
m

) 

Time (sec) 

Proposed Formulation - Euler

Proposed Formulation - Timoshenko



Hysteretic Finite Elements and Macro-Elements for Nonlinear Dynamic Analysis of Structures 

243 

 

 
Fig.7.26 (a) Axial force – axial deformation (b) Axial – Moment Dynamic Interaction (c) 

Moment – Curvature (d) Shear force – shear deformation 

In Fig.7.26(d) the shear force-shear deformation hysteretic loop is plotted. Contrary to the 

Euler-Bernoulli case where energy is dissipated only through the hysteretic moment-curvature 

mechanism, in this case the shear hysteretic energy is also considered. 

A Fortran code has been developed for the analysis of skeletal structures with the proposed 

formulation. All the analyses were performed in a PC fitted with a Core Duo Quad CPU and 4 

GBs of RAM. The analysis time with the proposed formulation was 67 sec. The analysis time 

of OpenSees was 118 sec for three integration points. 
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Apart from the suspension column the suspended zipper brace has stronger brace members 

on the upper floor. However, weaker girders are used that yield a lighter design than that of 

the inverted brace. 

7.5.3 Analysis procedure and modeling 

The analysis procedure consists of the following steps. A series of unidirectional nonlinear 

dynamic analyses is performed, and the results obtained from Leon and Yang (2009) are 

qualitatively verified. Masses are considered lumped at structural nodes. The total floor 

masses considered for the nonlinear dynamic analyses conducted are presented in Table 7.2. 

Floor Total Mass (tn) 
1 1140.9
2 1388.7 
3 1289.5 
Table 7.2 Floor Masses 

The beams and columns of the structure are modeled using the three-dimensional 

hysteretic beam element presented in Chapter 4. The beams are considered rigid with respect 

to in-plane bending. Pinned support conditions are considered for the base nodes of the 

columns. A smooth elastic plastic relation with kinematic hardening is considered in the axial, 

shear, bending and torsional degrees of freedom, setting = 8n  and 

a a a a a= = = = = 0.001u s b T W . 

The diagonal members of the braced frames are modeled using the hysteretic truss element 

presented in Chapter 4. Since the compressive strength of the struts is limited by buckling, the 

modified Baber-Noori Bouc-Wen model presented in Section 2.5.3 is implemented that 

simulates asymmetric hysteretic loops. The elements are allowed to undergo inelastic 

deformations only in tension while in compression the member fails when the buckling 

strength is reached. 
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7.5.4 Ground motion records 

A set of 7 ground acceleration records is used. The records are scaled to match the ASCE-

05 response spectrum according to the building’s design requirements (Leon and Yang, 

2009). The records are presented in Fig. 7.32 while the corresponding seismological data is 

summarized in Table 7.3. 
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Fig. 7.32 Ground motion records parallel to the fault 

Event Year Station Mag Mechanis
m 

Duzce 1999 Duzce 7.40 Strike-Slip 
Imperial Valley 1979 Brawley Airport 6.53 Strike-Slip 
Imperial Valley 1979 El Centro Array #4 6.53 Strike-Slip 
Imperial Valley 1979 El Centro Array #5 6.53 Strike-Slip 
Imperial Valley 1979 El Centro Array #7 6.53 Strike-Slip 
Imperial Valley 1979 Holtville Post 

Office 
6.53 Strike-Slip 

Victoria Mexico 1980 Chihuahua 6.33 Strike-Slip 
     

Table 7.3 Ground motion records – Seismological Data 

All records were retrieved from the PEER Ground Motion Database Center. The scaling of 

the records was also performed through the Database Center. The scale factors of the 

individual records are presented in Table 7.4. 

Event Station Scale Factor 
Duzce Duzce 1.0615 
Imperial Valley Brawley Airport 2.7432 
Imperial Valley El Centro Array #4 1.4607 
Imperial Valley El Centro Array #5 1.1635 
Imperial Valley El Centro Array #7 1.3279 
Imperial Valley Holtville Post Office 1.8931 
Victoria Mexico Chihuahua 3.6495 
   

Table 7.4 Scale factors of ground motion records 

In Fig. 7.33, the average spectrum of the scaled records is compared to the ASCE-05 

demand spectrum. 
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Fig. 7.33 Scaled average spectral acceleration of ground motion records 

Both the geometric mean and the arithmetic mean of the scaled spectra converge to the 

demand, especially in the range of periods from 0.6 sec to 1 sec where the primary eigen-

periods of the structure reside. The individual scaled spectra are presented in Fig. 7.34. 

 
Fig. 7.34 Response spectra of scaled ground motion records 
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7.5.5 Analysis results 

In Fig. 7.35 to Fig. 7.37 the time-histories of the longitudinal displacement of the simple 

zipper frame are presented for the case of the Duzce motion record. The peak story 

displacements coincide with the peak accelerations of the record. 

 
Fig. 7.35 Duzce record - Longitudinal Displacement – 1st floor 

 
Fig. 7.36 Duzce record - Longitudinal Displacement – 2nd floor 
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Fig. 7.37 Duzce record - Longitudinal Displacement – 3rd floor 

The time histories of the interstorey drift ratios (IDR) are presented in Fig. 7.38. The larger 

relative displacements are observed in 0-1 and 2-3 storey columns. 

 
Fig. 7.38 Duzce record - Interstorey drift ratios 

In Fig. 7.39 to Fig. 7.42, the results obtained from the Victoria Mexico earthquake 

excitation for the simple zipper frame are presented. The structure displays the same behavior 

as in the Duzce record, with the columns between stories 1-2 baring the largest relative 

displacements. 
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Fig. 7.39 Victoria Mexico record - Longitudinal Displacement – 1st floor 

 
Fig. 7.40 Victoria Mexico record - Longitudinal Displacement – 2nd floor 
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Fig. 7.41 Victoria Mexico record - Longitudinal Displacement – 3rd floor 

 
Fig. 7.42 Victoria Mexico record - Interstorey drift ratios 

Finally in Fig. 7.43 to Fig. 7.48 the results obtained from the Imperial Valley E05 record 

are presented. 
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Fig. 7.43 IMPV E05 record - Longitudinal Displacement – 1st floor 

 
Fig. 7.44 IMPV E05 record - Longitudinal Displacement – 2nd floor 
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Fig. 7.45 IMPV E05 record - Longitudinal Displacement – 3rd floor 

 
Fig. 7.46 IMPV E05 record - Interstorey drift ratios 

The dissipation mechanism predicted by the design is confirmed in both cases. The 

compression braces successively buckle. Yielding of columns is also observed, in later stages 

of the loading history. However, the corresponding hysteretic loops are narrow and yielded 

columns are concentrated on the third floor where the largest values of IDRs are observed. 

Typical hysteretic loops from a column element at the second and third strorey are presented 

in Fig. 7.47 and Fig. 7.48 respectively. 
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Fig. 7.47 Typical Moment-curvature hysteretic loop 2nd story 

 
Fig. 7.48 Typical Moment-curvature hysteretic loop 3rd story 

A similar behavior is obtained from the analysis of the suspended zipper frame system. 

Although the displacements are smaller than the simple zipper frame, differences are not 

significant. In the case of the IMPV E05 record, presented in Fig. 7.49, the differences in the 

3rd strory horizontal displacement are less than 1%. 
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Fig. 7.49 Comparison of third floor horizontal displacements (IMPV E05 record) 

The largest deviations were met in the case of the IMPV Brawley motion record. The 

corresponding time histories are presented in Fig. 7.50. 

 
Fig. 7.50 Comparison of third floor horizontal displacements (IMPV Brawley record) 

The maximum displacements for the two bracing systems are summarized in Table 7.5. It 

is evident that the suspended zipper brace system is more efficient since both the absolute 

values of maximum displacement, as well as the corresponding mean values are smaller 

compared to the simple zipper brace. However, differences are not striking and further 

investigation should be made on the applicability of the suspended zipper frame. 
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Event 
Max Floor Displacement 

(cm) 

[-] Zipper Brace 
Suspended Zipper 

Brace 
Duzce 8.2 7.8 
Brawley Airport 4.7 3.8 
El Centro Array #4 7.2 5.7 
El Centro Array #5 5.7 6.2 
El Centro Array #7 6.2 5.4 
Holtville Post Office 7.2 6.3 
Chihuahua 2.1 1.8 
Mean Values 5.9 5.3 

Table 7.5 Maximum and Mean Floor Displacement Values 
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8.1 Summary and concluding remarks 

In this dissertation, a general form of the Bouc-Wen model is derived in stress-strain form, 

based on the phenomenological concepts of the classical theory of plasticity. A rate form of 

the stress tensor is derived that accounts for the full cyclic behavior of the continuum. This 

rate form is quite general in the sense that it accounts for every combination of yield criteria 

and hardening laws whereas existing formulations only describe hysteretic behavior with 

linear kinematic hardening. Based on concepts that stem from the endochronic theory of 

plasticity, additional smooth operators are derived that account for the cyclic induced stiffness 

degradation and strength deterioration phenomena observed in materials. The formulation 

derived depends on total stress components rather than their deviatoric parts, thus yielding a 

formulation that is easily incorporated in the Finite Element scheme as demonstrated in this 

work. 

The generalized hysteretic stress-strain law developed is implemented on the Finite 

Element Scheme, yielding a versatile and compact formulation for the nonlinear dynamic 

analysis of structures. As an example, the triangular plane stress element is reformulated, to 

incorporate Bouc-Wen hysteretic plasticity. Examples are presented that demonstrate the 

ability of the proposed formulation to simulate common and complex elastoplastic responses. 

Moreover, a family of hysteretic macro-elements is derived for the modeling of skeletal 

structures under static or dynamic loading. Firstly, a Total Lagrangian three-dimensional 

hysteretic truss element is presented. Next, a beam element is formulated, starting from a two-

dimensional Euler/Bernoulli formulation and concluding to a generalized locking free three-

dimensional Timoshenko beam element with torsional warping. The hysteretic law 

incorporated is based on stress resultant-generalized displacement relations and allows for the 

simulation of interaction schemes in the stress resultant space. 
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Finally, a solution approach is proposed for the nonlinear static and dynamic analysis of 

structures modeled by hysteretic finite elements and macro-elements. The equation of motion 

for a multi-degree freedom system consisting of both finite elements and macro-elements is 

defined in terms of total stress components, nodal displacements and element hysteretic 

deformations. In doing so, all the state matrices, namely the stiffness matrix and the hysteretic 

matrix of the skeletal substructure and the equilibrium matrix of the finite element 

substructure remain constant throughout the analysis procedure and need only be evaluated 

once. Inelasticity is treated at the element level through the incorporation of the evolution 

equations of the hysteretic parameters. 

The formulations presented in this work are verified in terms of computational cost and 

accuracy through comparison with various commercial and academic FEM codes such as 

SAP2000, Abaqus, Nastran X, Idarc2D, Hyplas and OpenSees. 

8.2 Future research 

The following are research directions that further improve the work presented in this 

dissertation: 

1. The hysteretic FEM formulation presented in this work can be extended to shell and 

three-dimensional finite element formulations, yielding a unified approach in the 

nonlinear dynamic analysis of structures. 

2. Incorporation of numerically derived stress-resultant interaction surfaces in the 

proposed macro-element formulation. 

3. Though cost-ineffective, the fiber based beam element formulation bares advantages in 

certain cases of combined loading such as bending with torsional and distortional 

warping in the large displacement regime. The macro-element formulation presented 
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can be extended to incorporate fiber based beam element schemes by incorporating the 

stress-strain generalized hysteretic model presented in this work. 

4. Further improvement of the generalized stress-strain hysteretic law presented to 

incorporate damage induced phenomena. 
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