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1 Introduction 

 

1.1 Scope 

 
The purpose of this thesis is to investigate the behaviour of pile foundations under 

combined axial, horizontal and moment loading. Assuming undrained conditions, 

primary goal is the proposition of a new method, which utilizes the results of the 

Finite Element Analysis so as to calculate the structural forces of the pile. This is 

attempted in a way so as to overcome the drawbacks of the existing methods and 

take fully into consideration the 3-D geometry of the pile, the interaction between 

the piles and the interaction between the internal forces. To capture the accurate 

pile behaviour, it is used a new macroscopic approach that was developed in 

Papakyriakopoulos’ thesis. The validity of this approach is examined in an alternative 

scope, so as to both corroborate its results and also extract the pile forces. The 

method of the internal forces calculation is implemented in various types of loading, 

soil profiles and border conditions. The pile forces of a single pile are examined in 

the first stage and, in addition, the interaction of piles in Pile-group is studied. 

Emphasis is given to the interaction between the pile axial force and its moment 

capacity and moment distribution. Although this method is implemented to piles, its 

use can be further extended to any other structural element and provide a tool that 

could be proven effective for various applications of civil engineer. 
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1.2 Use of Pile Foundations 

 
Fig 1.1 presents a rough categorization of the types of foundations that are generally 

used in order to support structural systems. Surface or shallow embedded 

foundations are distinguished by small slenderness ratios, while pile foundations are 

generally more slender elements. Caisson foundations lie somewhere in between in 

terms of slenderness or embedment; yet their limits are vague. The compressibility 

of the soil and the structural element should also be taken into consideration for a 

more realistic distinction of different foundation types. 

 

Pile foundations are typically made from steel or reinforced concrete and possibly 

timber. They are principally used to transfer the loads from a superstructure, 

through weak, compressible strata or water onto stronger, more compact, less 

compressible and stiffer soil or rock at depth, increasing the effective size of a 

foundation and resisting horizontal loads (Tomlinson & Woodward, 2007). They are 

used in very large buildings, off-shore structures, bridge piers and in situations 

where the soil under the superstructure is not suitable to prevent excessive 

settlement. Piles can be classified by their function: 

 

 End bearing piles are those where most of the friction is developed at the 

toe. 

 

 Friction piles are those where most of the pile bearing capacity is developed 

by shear stresses along the sides of the pile (Atkinson, 2007). 

 

 

There are two types of pile foundation installations: driven piles and bored piles: 

 

 Driven piles are normally made from pre-cast concrete which is then 

hammered into the ground once on site. 

 

 Bored piles are cast in situ; the soil is bored out of the ground, under reaming 

is performed and then the concrete is poured into the hole. Alternatively, 

boring of the soil and pouring of the concrete can take place simultaneously, 

in which case the piles are called continuous fight augured (CFA) piles. 

 

The choice of pile used depends on the location and type of structure, the ground 

conditions, durability of the materials in the environment and cost. Most piles use 

some end bearing and some friction, in order to resist the action of loads. Driven 

piles are useful in offshore applications, are stable in soft squeezing soils and can 

densify loose soil. However, bored piles are more popular in urban areas as there is 
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minimal vibration, they can be used where headroom is limited, there is no risk of 

heave and it is easy to vary their length. Deeply embedded foundations have been 

consistently used in major offshore structures, where the study of their response 

under combined vertical, shear and moment loading is of great importance. 

 

 

1.3 Piles under lateral loading 

 
In Pile foundations the lateral loads are applied principally in two ways: 

 Horizontal static and dynamic loads in the head of the piles, e.g. due to wind, 

earthquake, forces from the superstructure, sea waves etc. 

 Horizontal loads along the length of the pile-side, e.g. in piled walls, bridge 

pier foundations, piles for soil improvement. These piles are usually vertical 

and in special circumstances inclined. 

 

The vertical piles undertake horizontal loads with simultaneous bending and lateral 

displacement, activating in this way not only their resistance but that of the 

surrounding soil too. 

 

The control of the ultimate capacity in horizontal loading must contain: 

 

 The ultimate capacity of the surrounding soil 

 

 The pile resistance as carrying member in bending due to lateral stresses 

 

 The maximum displacement of the pile head, i.e. acceptable from the 

superstructure. 

 

The behavior of the piles in horizontal loads depends on many factors as the relative 

stiffness of the pile soil system, the stress-strain relation (pile and soil), the soil 

resistance and the fixity conditions of the pile head. 

The head of the pile, depending on whether the pile is single, belongs to a pile group, 

or in other special fixity conditions, might be considered free, pined, or fully fixed. 

With respect to the forms of the horizontal loads- displacement diagrams of the total 

pile, the piles might be considered as 

 Rigid in the case that they rotate around a specific pivot point, without their 

significant deformation. 

 

 Flexible in case that their response can be simulated by an elastic beam in 

elastic soil. 

 



 

9 
 

The piles can be categorized also in respect to the ratio L/D (L=length, D=diameter). 
A short pile behaves and rotates as a rigid body under lateral loads and has a ratio 
L/D<10. When vertical loads are applied, the loads transferred to the tip of the pile 
are a percentage of the total. In the case of the long pile (L/D>10), after a certain 
length (active length lc) the rest of the pile remains inactive under lateral loading. 
Under vertical loading the forces are received by the friction of the pile walls at full 
length. 
 
The active Length lc is the minimum length after which the displacement at the pile 
head under a certain lateral load remains unaffected. 
 

                 
 

 
  

 ⁄               

 

    
  

 ⁄         

 
According to Gazetas (1991) the equations that determine the active length in an 
elastic half-space, are dependent of the soil elastic modulus distribution (Fig 1.2.a – 
1.2.c). 
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1.4 Beam on Winkler foundation 

 
The Winkler model uses the beam elements to simulate the pile and adopts an 

infinite number of closely spaced unconnected springs to model the soil reactions. 

Thus the displacement at any point is directly related to the contact pressure at that 

point. The stiffness of these springs is uniquely defined by the foundation modulus k. 

Later, improved theories have been introduced on refinement of Winkler’s model, by 

visualizing various types of interconnections such as shear layers among the Winkler 

springs. These theories have been attempted to find an applicable and simple 

representation of foundation materials at the contact area. All these models are 

mathematically equivalent, but they differ only in definition of the foundation 

parameters. The foundation modeling methods, including the usage of formal 

expansions, show that the first order approximation corresponds to the 

compressibility term of an improved approximation, including the effect of the shear 

interactions. Bernoulli-Euler beam theory, Timoshenko beam theory and refined 

beam theory (Reddy’s simplified third-order beam theory) are the mainly used beam 

theories for bending analysis. 

 

The Winkler model is frequently adopted to describe and simulate the soil behavior. 

Its simplicity allows closed-form solutions to be found for various problems. 

However, regardless the validity of the soil response, the Winkler model is generally 

founded on the method of calibration of the spring coefficients, the dashpot 

coefficients and their set-up. Physics of the soil, its constitutive model that describes 

the properties of the soil, its plastic flow rule and its interaction with the pile, are not 

examined thoroughly. Instead, the proposed approach offers a more technical 

solution that is case sensitive and do not apply at all ranges of pile loading. 

Furthermore, the beam elements are one dimensional, so they are not able to 

reproduce the pile interaction with other elements, owed to its dimensions. Finally, 

the beam elements of the pile, may respond well to moment – shear force 

combination, but this is not the case with moment - axial force combination. Elastic 

theories are not taking into account the interaction between axial force and the pile 

bearing capacity, thus neither the beneficial contribution of the compression force 

nor the disadvantageous influence of the tension force are considered. 
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1.5 Beam – Plate hybrid in 3-D soil elements 

 
This method proposes a linear viscoelastic pile. It is represented with a series of 3D 

Euler-Bernoulli beam elements. The connection of the beam nodes with the 

corresponding peripheral soil nodes is established through appropriate kinematic 

constraints in order to properly model the pile geometry. In this way, each pile 

section behaves as a rigid disk: rotation is allowed on the condition that the disk 

remains always perpendicular to the beam axis, but stretching cannot occur. Finally, 

full-bonding conditions are assumed at pile-soil interface, which is a simplification of 

reality. 

 

However, a number of drawbacks stem when extracting pile capacity and pile 

internal forces from this approach. First, the aforementioned method is widely used 

in commercially available codes, as the moment-curvature or axial force – strain 

constitutive laws work only with beam elements. Furthermore, the interplay 

between axial and bending responses is either not taken into account or is captured 

in an oversimplified manner, as mentioned above, on beam on Winkler foundation. 

 

In addition, modeling piles with beam elements is a crude approximation of reality 

which may lead erroneous results. This is attributed to the one-dimensional nature 

of beams (their thickness, or diameter in case of circular piles, is geometrically zero) 

that fails to reproduce the lateral capacity of the pile (which is directly proportional 

to pile diameter). Moreover, the pile-to-pile interaction in the case of a pile group 

depends on the pile spacing ratio s/d. Since diameter (d) is zero, this ratio cannot be 

defined and its influence is not taken into account. 

 

Moreover, the effect of soil confining pressure on the increase of the bending 

moment capacity of the pile is totally neglected when the latter is modeled with 

beam elements. This effect is amplified in lateral loading due to the development of 

large passive pressures on the pile opposed to the direction of its movement. 

 

Finally, any benefits that stem from the -up to a point- 3-D functionality of the pile 

due to the rigid disks, perpendicular to the beam along the pile length, they have 

limited value to the enhanced validity of the results. This is because the Beam - Plate 

hybrid response resembles to the Euler - Bernoulli beam, as the cross sections are 

perpendicular to the bending line. This assumption is not true and may produce 

results that deviate from the accurate solution, especially in dynamic problems. 
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1.6 Embedded pile 

 
An embedded pile consists of beam elements with embedded interface elements to 

describe the interaction with the soil at the pile skin and at the pile foot (bearing 

capacity). The material parameters of the embedded pile distinguish between the 

parameters of the beam and the parameters of the skin resistance and foot 

resistance. The beam elements are considered to be linear elastic and are defined by 

the same material parameters as a regular beam element. The interaction of the pile 

with the soil at the skin of the pile is described by linear elastic behaviour with a 

finite strength and is defined by the parameter     , the maximum traction allowed 

at the skin of the embedded pile and can vary along the pile. An embedded pile is a 

pile composed of beam elements that can be placed in arbitrary direction in the sub-

soil and interacts with the sub-soil by means of special interface elements. The 

interaction may involve a skin resistance as well as a foot resistance. Although an 

embedded pile does not occupy volume, a particular volume around the pile (elastic 

zone) is assumed, in which plastic soil behaviour is excluded. The size of this zone is 

based on the (equivalent) pile diameter according to the corresponding embedded 

pile material data set. This makes the pile almost behave like a volume pile. 

However, installation effects of piles are not taken into account and the pile-soil 

interaction is modelled at the center rather than at the circumference. The 

installation effects of the embedded pile cannot be considered, so this option should 

be primarily used for pile types that cause a limited disturbance of the surrounding 

soil during installation, such as some types of bored piles, but obviously not driven 

piles or soil displacement piles. 

 

An embedded pile consists of beam elements with special interface elements 

providing the interaction between the beam and the surrounding soil. The beam 

elements are 3-node line elements with six degrees of freedom (ux, uy and uz) and 

three rotational degrees of freedom (φx, φy and φz). Element stiffness matrices are 

integrated from the four Gaussian points. The element allows for beam deflections 

sue to shearing as well as bending. In addition, the element can change length when 

an axial force is applied. 

 

The special interface elements are different from the regular interface elements as 

used along walls or volume piles. Therefore, at the position of the beam element 

nodes, virtual nodes are created in the soil volume element from the element shape 

functions. The special interface forms a connection between the beam element 

nodes and these virtual nodes, and thus with all nodes of the soil volume element. 

Pile forces are evaluated at the beam element integration points and extrapolated to 

the beam element nodes. 
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As described about the aforementioned beam, the case with the embedded pile is 

that, regardless the satisfying interaction with the adjacent soil due to the unique 

interface elements, its geometry and its constitutive model cannot describe well the 

physics and the actual response of the three-dimensional pile. Specifically, the one-

dimensional beam is not able to take into consideration the real interaction between 

the soil and the pile, because the pile dimension is neglected 

 

  



 

14 
 

 

 

  



 

15 
 

  

 

Figures 

 



 

16 
 

 

 

 

Figure 1.1. A rough categorization of different foundation types based on their 

slenderness or embedment ratio D/B. From the left to the right we can distinguish (a) 

piles, (b) deeply embedded foundations and (c) shallow foundations. (after 

Gerolymos & Gazetas, 2006) 

 

 

 

 

Figure 1.2. Different distributions of the Elastic Modulus with the depth. 
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Figure 1.3. Beam on Winkler foundation 
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Figure 1.4. Beam – Plate hybrid in 3-D soil elements. 

 

 

Figure 1.5. Embedded pile. 
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2 Macroscopic Mohr-Coulomb based approach of the behaviour 

of circular piles 

 

2.1 Introduction 

  
The macroelement can be thought of as an advanced finite element, and more 

precisely a generalized "spring", in which the response of the foundation is described 

in terms of generalized force versus generalized displacement. This element is placed 

at the base of the superstructure and aims at reproducing nonlinear interaction 

phenomena arising at soil – foundation interface. Evidently, the translational and 

rotational degrees of freedom of a macro-element are all fully coupled. The concept 

of macroelement is not new in geotechnical engineering. It was originally introduced 

by Roscoe and Schofield (1956) for shallow foundations. To the best of authors' 

knowledge, only recently the idea has been extended to pile foundations (Correia et 

al., 2012). In this paper a mathematical framework for macroelement modeling of 

single piles is briefly presented, emphasizing the nonlinear behaviour of both the soil 

and the pile. The calibration of the model parameters is achieved through 

comparisons with 3D finite element analyses with the use of code PLAXIS. Given that 

the ultimate lateral capacity of a pile is directly related to its diameter and bending 

moment resistance, which in turn is a function of the axial force imposed (or 

developed) on the pile, a simple uniaxial stress-strain model based on the Mohr - 

Coulomb yield criterion is also developed capable of reproducing the cross-sectional 

behaviour of circular reinforced concrete piles in terms of bending moment ─ 

curvature relationship and bending moment ─ axial force failure envelopes. 

 

 

2.2 Elements of Macroelement Modeling 

 
Recent research has shown that the use of laws and equations provided by the 

theory of elastoplasticity can be directly applicable to the analysis of foundations in 

cohesive soil under undrained loading conditions (Martin and Houlsby, 2000). It has 

been demonstrated that this approach provides better results in comparison to 

Winkler based model, as it is capable of realistically representing the coupling 

between the various degrees of freedom. Within the framework of elastoplasticity, 

the "global" response of the pile-soil system is treated in a manner similar to that for 

the "local" response of an infinitesimally small soil element. The stresses and strains 

for the soil element are substituted by the generalized forces (in 3-dimensional M-Q-

N space) and the corresponding displacements (θ–u–v) respectively. As with the 

theory of elasto-plasticity, there are 5 main components in a macroelement 

"assembly", associated with: (a) the foundation response at very small deformations 
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(elastic response). The elastic stiffness matrix has thus to be determined. (b) The 

response of the foundation at very large deformations and at failure conditions. The 

determination of the failure envelope in the generalized 3- dimensional M-Q-N space 

is thus required. (c) The plastic flow rule that relates the incremental plastic 

displacements of the foundation to its loading state at near failure conditions, (d) the 

hardening rule that defines the transition from the elastic to the ultimate limit state, 

and (e) the unloading-reloading rule in the case of cyclic loading. 

 

 

2.3 Simplified Constitutive Model for RC Pile Section Behaviour 

 
A Mohr-Coulomb based uniaxial stress-strain constitutive law is developed for 

modeling the macroscopic behaviour of a RC circular pile section subjected to a 

combined bending moment and axial force loading. Considering force equilibrium at 

failure in the axial direction, one obtains: 

 

(     
   

    
)    (    

   

    
)   

 

in which    and    are the compressive and tensile strength of the composite 

(reinforced concrete) section, respectively: 

 

 

    
        

       
 

(2) 

 

    
        

       
 

 

where c, φ are the strength parameters of the Mohr-Coulomb model, namely the 

cohesion and the internal friction angle. In Eq (1),    and    are the pile section 

areas under compression and tension, respectively, defined as: 

 

    ∫   √  (   )
  

 

    

 

(1) 

(3) 

(3) 
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    ∫   √  (   )
 

  

    

 

in which   is the pile diameter, and    is the abscissa (in a Cartesian coordinate 

system) that defines the boundary between the zones of the section under 

compression and tension, respectively. By applying moment limit equilibrium with 

respect to the center of the pile section, the following equation is derived: 

 

      ∫   √  (   ) (    )   
  

 

     ∫   √  (   ) (    )   
 

  

  (
 

 
    )    

 

Eqs (1) and (4) form a nonlinear algebraic system. For a given pile diameter and a 

known combination of bending moment–axial force at structural failure conditions, 

there are three unknown variables: c, φ and    . The aforementioned system is 

solved with the use of a genetic algorithm–based optimization procedure, 

implemented in MATLAB. The performed 

optimization targets to a best fit on a predefined M–N failure envelope by 

minimizing the relative root mean squared error (rRMSE) of the bending moment at 

failure (the fitness function): 

 

      ( )   √
 

 
 ∑(

         

    
)

  

   

 

 

in which    is the bending moment computed by Eq (4),      is the target bending 

moment, and  , the number of      –    pairs that define the failure envelope. It is 

interesting to observe that the proposed simplified Mohr-Coulomb−based 

constitutive model can be easily reduced to a Tresca with tension cutoff− based one, 

by equating the compressive strength in Eq (2) with       and setting the tensile 

strength equal to the tension cut-off. 

Fig 2.1 shows the M-N failure envelopes for a pile cross-section with a longitudinal 

reinforcement ratio of As = 1.5% and for three different diameters (D = 0.8 m, 1 m 

and 1.5 m). Comparison is given between the predictions of: (a) the proposed 

optimization procedure, (b) the 3D FE analysis with PLAXIS, and (c) the fiber analysis 

with the computer code USCRC (Esmaeily 2001). Fig 2.2 shows a 3D visualization of 

the FE pile model. Observe the formation of a plastic hinge at the bottom of the pile 

in terms of the incremental plastic shear strain. 

(4) 

(5) 
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2.4 Failure Envelope and Plastic Flow Rule for Piles  

 

Problem Definition 
The problem under consideration is that of a pile or a group of piles embedded in a 

homogeneous cohesive soil of undrained shear strength Su. The pile / pilegroup is 

subjected to a combined load of overturning moment, horizontal force and axial 

force at the head / cap until complete failure. 

 

Single Piles 

 

2.4.1 Limit Equilibrium Analysis 

 
Invoking Brom’s limit equilibrium theory (1964) for the ultimate lateral capacity of a 

horizontally loaded free head pile (Fig 2.3), and assuming that the ultimate lateral 

soil reaction per unit depth is approximated by the expression suggested by 

Randolph and Houlsby (1984) and Broms (1964): 

 

    {
(   

   
  

   
 

 
)         

   

    
  

  

                                                         

 

 

the following analytical expression for the failure envelope is derived: 

 

 

  
  (

 

√            
)

 

   

 

In Eq (6),     is the vertical effective stress and    the effective specific unit weight of 

the soil. Matlock (1970) stated that the value of   was determined experimentally to 

be 0.5 for a soft clay and about 0.25 for a medium clay. In Eq (7),    is the bending 

moment capacity of the pile which is a function of the axial load. The bending 

moment capacity is fully mobilized at a certain depth through the formation of a 

“plastic” hinge.  , is a constant accounting for the distribution of the ultimate lateral 

soil reaction along the pile. By taking into consideration all possible N-Q-M 

combinations at the pile head and setting        and     √            , Eq 

(7) is rewritten in the following general form: 

 

(6) 

(7) 
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in which    is the axial bearing capacity of the pile subjected to tension or 

compression: 

 

        (
  

 
  

  

 
) (    ( )   ) 

 

where    is the capacity in tension (without the contribution of the pile tip) and    

the compressive capacity (with due consideration to the pile tip). 

 

 

2.4.2 Plastic Flow Rule 

 
According to Brom’s theory the post-failure response of the pile is characterized by 

the formation of a plastic hinge at a certain depth that acts as a rotation pole for the 

above hinge rigidly deformed portion. With reference to Fig 2.3, the displacement to 

rotation ratio can be approximated by: 

 

 

 
   

  

  
  

   

   
     

 

in which    ,    and     ,      are the absolute and incremental plastic horizontal 

displacements and rotations, respectively. Finally,    is the depth to the plastic 

hinge. 

 

By differentiating Eq (7) with respect to the shear force Q and bending moment M, 

respectively, and assuming an associative plastic flow rule, one obtains after some 

algebra: 

 

   

   
  

  

      
      

(8) 

(9) 

(10) 

(11) 
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in which    is the value of   at failure conditions. Thus, in the framework of a limit 

equilibrium analysis of the lateral capacity of a single pile, the plastic flow rule is by 

definition of the associative type! 

 

The undoubtedly very interesting findings about the plastic flow rule and failure 

criterion are about to be verified in the following section by 3D finite element 

analysis. 

 

 

2.4.3 Finite Element Analysis with PLAXIS 

 
A 16 m long pile with a diameter of 1 m embedded in a homogeneous cohesive soil, 

is analysed. Both the pile and the soil are modeled with 10-node tetrahedral 

elements. The size of the finite element model is 1.3L x 1.3L in plan view with a 

depth of 1.5 L (where L is the length of the pile), carefully weighting the effect of the 

boundaries on the response of the pile and the computational time. Zero-

displacement boundary conditions prevent the out of plane deformation at the 

vertical sides of the model, while the base is fixed in all three directions. Special 

interface elements are placed between the pile and the soil, thus allowing slippage 

and gapping to occur. For the total stress analysis under undrained conditions, soil 

behaviour is described by the Mohr- Coulomb model with c = Su = 50 kPa, φ = ψ (the 

dilation angle) = 0°, specific weight of γ = 18 kΝ/m3, elasticity modulus of Es = 25000 

kPa and Poisson’s ratio of v = 0.45. Based on the macroscopic constitutive law for 

reinforced concrete circular pile sections (in section 3), the behaviour of the pile was 

modeled via a Mohr-Coulomb failure criterion with c = 15262 kPa, φ = 0ο, tension 

cut-off σt = 7534 kPa and Elasticity modulus E = 30 GPa, corresponding to a 

longitudinal reinforcement ratio of As = 1.5 %. Fig 2.4 compares the failure envelopes 

in M-Q-N space as predicted by the analytical expression of Eq (8) and calculated by 

the FE models. The hypothesis of plastic flow rule implied by the limit equilibrium 

analysis is verified in Fig 2.5 through comparison with finite element analysis results. 

The discontinuity in plastic hinge position observed at a load angle of |ω| ≈ 50°, 

where the failure envelope reduces to a straight line of constant bending moment, is 

consistent with associative plastic flow rule. Indeed, for |ω| ≥ 50°, perpendicularity 

of the incremental plastic pile deflection at this point implies failure under pure 

rotation and zero lateral displacement. The only possible failure mechanism that 

satisfies this geometrical constraint is the formation of a plastic hinge at the head of 

the pile. 
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2.5 Macroelement Modeling 

 
The model is formulated in the framework of classical elastoplasticity, and combines 

features of: (a) the bounding surface plasticity, (b) the critical state concept, and (c) a 

hardening evolution law and unloading-reloading rule of the modified Bouc-Wen 

type. According to this formulation the tangent elastoplastic stiffness matrix that 

relates the incremental force vector to the incremental displacement vector, is given 

by: 

 

        [      (  
       )

  
   

          ] 

 

in which    is the elastic stiffness matrix of the pile,      and     account for the 

failure surface and plastic flow rule, respectively, and    and    describe the 

hardening law and unloading-reloading rule. The terms in matrices    and    are 

functions of the dimensionless hardening parameter ζ, which is of the Bouc-Wen 

type (Gerolymos and Gazetas, 2005). Figs 2.6 and 2.7 presents numerical examples 

of the macroelement model for a pile subjected to combined loading of axial force, 

horizontal force and overturning moment at its head. Comparison is given with 

results from finite element analysis with code PLAXIS. The properties of the pile and 

its supporting soil are provided in section 2.4.3. 

  

(12) 
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Figure 2.1. Comparison of M-N failure envelopes for RC pile sections, computed from 

the Fiber analysis and from PLAXIS and predicted by the proposed optimization 

procedure for three pile diameters: (a) D = 0.8 m, (b) D = 1 m, (c) D = 1.5 m. (d) 

Comparison of the bending moment-curvature curve calculated from the fiber 

analysis and the FE models (PLAXIS) for D = 1 m. 
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Figure 2.2. (a) The FE model (PLAXIS) for 

RC pile section analysis, (b) the deformed 

FE mesh at failure, (c) contours of the 

incremental plastic shear strains at 

failure  denoting the formation of a 

plastic hinge at the bottom of the pile. 

Figure 2.3. Failure mode of a laterally 

loaded free-head pile embedded in 

cohesive soil according to Brom’s theory. 

 
 

 
Figure 2.4. Comparison of the failure envelopes for a pile in cohesive soil, calculated 

by PLAXIS and predicted by the analytical expression [Eq (8)] for 5 different factors of 

safety to vertical loading Fsv. The pile has a diameter of D = 1 m and a longitudinal 

reinforcement ratio of As = 1.5 %. Tension (extraction of the pile) is denoted with 

negative values. 
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Figure 2.5. Finite element verification of the associative plastic flow rule for a wide 

range of load combinations. Observe that the depth to the plastic hinge hp increases 

for increasing negative load angles *M / Q = ω, ω* = (Qy / My) ω+ reaching a 

maximum value at the vertex of the failure envelope (at approximately ω = -50°). For 

load angles greater than |ω| > 50° , the plastic hinge moves violently from its 

deepest location to the head of the pile. 
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Figure 2.6. Comparison of horizontal force 

versus horizontal displacement curves at the 

head of the pile, predicted by the 

macroelement and calculated from the finite 

element analysis (PLAXIS) for the following 

load combinations: (a) Pure shear loading and 

Fsv = inf, (b) combined shear force-overturning 

moment for a load angle of ω = - 70° and Fsv = 

inf 

Figure 2.7. Comparison of overturning 

moment versus rotation curves at the head 

of the pile, predicted by the macroelement 

and calculated from the finite element 

analysis (PLAXIS) for the following load 

combinations: (a) Pure moment loading 

and Fsv = 5, (b) combined shear force-

overturning moment for a load angle of  ω= 

-36° and Fsv = -2 (tension) 
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Internal Force Diagrams Computation 

  

 
 

Chapter 3 
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3 Internal Force Diagrams Computation 

 
3.1 PLAXIS approach 
Although PLAXIS can calculate internal force diagrams of elastic piles, this is not 
the case with non-linear piles. In elasticity, the internal forces can be calculated 
by putting a slender beam along the shaft of the pile with a Young modulus (E) 
approximately 10.000 times smaller of the stiffness of the pile, so as not to 
affect the pile response in loading. By completing the calculations, the beam 
returns the force components in relation with the strain / curvature 
components. This relation is defined according to Bernoulli beam theory: 
 

               

                    

            

 
where A: Beam cross section area 
E: Young’s Modulus in axial direction 
I2: Moment of inertia against bending around the second axis 
I3: Moment of inertia against bending around the third axis 
and k is the shear correction factor. The shear modulus G is taken as G   . 
 

The above-mentioned force components are multiplied by the factor m 
     

     
 

so as to get the real diagrams of axial force, shear force and bending moment. 
However, the linearity does not apply for loads near the failure of pile, because 
in this case emerges severe plasticity which leads to a reduction of the elastic 
modulus and the above-mentioned equations cannot explain the actual pile 
response. As a result, emerges the need of a tool to compute these forces, 
analyze them and propose ways of better pile design. 
In this thesis a model of numerical integration through MATLAB programming 
language is proposed. The procedure that is followed takes as input data the 
stresses which are derived from the experiment simulation results and through a 
series of commands, the structural force diagrams are extracted. 
The concept is to use the stresses of the Gauss points and by interpolating them 
in a circular area of same depth, define an area of influence of each interpolated 
point, in addition integrate them numerically and extract the results at each p ile 
depth. 

 
 
3.2 Voronoi decomposition 
 
The region of influence of each interpolated Gauss point is defined by the 
Voronoi tessellation method. The finite set of points are given in the cyclic plane 
and each site pk is simply a unique point and its corresponding Voronoi cell 

http://en.wikipedia.org/wiki/Elastic_modulus
http://en.wikipedia.org/wiki/Elastic_modulus
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Pk consisting of every point whose distance to pk is less than or equal to its 
distance to any other site. Each such cell is obtained from the intersection of 
half-spaces, and hence it is a convex polygon. The segments of the Voronoi 
diagram are all the points in the plane that are equidistant to the two nearest 
sites. The Voronoi vertices (nodes) are the points equidistant to three (or more) 
sites. However, a problem arises due to the fact that the region of influence of 
the points across the circumference extends to infinity. The proposed solution to 
this problem is to regard pseudo-points adjacent to the points of the 
circumference, along the radius of circle and on the outer side. These points are 
neglected afterwards in the calculations. 
 

X=CO(:,1); 
Y=CO(:,2); 
[v,c]=voronoin([X(:) Y(:)]); 

 
 

3.3 Numerical Integration 
 
In addition to Voronoi decomposition, the area of the unique regions is acquired 
so as to proceed to the numerical integration. For the case where only 
symmetric loading x-wise is applied to the head of the pile, internal forces are 
calculated according to the expressions: 

  ∑    ( )  ( )

 

   

 

   ∑    ( )  ( )(    ( ))

 

   

 

   ∑    ( )  ( )

 

   

 

 
Where: N is the axial force, M is the bending moment, Q is the shear force and n 
is the number of total Voronoi regions.     and     are the stresses of the 
elements of the pile, the sign of which is conventionally defined as in figure 3.3. 
Xc is the x-component of the center of a pile intersection. The reference point 
according to which moments are determined is the Xc, so as to avoid measuring 
any additional moment that may be caused due to the eccentricity of the normal 
stresses distribution. Two approaches were made to estimate the force values of 
the pile. One in 2-Dimensional area and one in 3-Dimensional space. 

  

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Convex_polygon
http://en.wikipedia.org/wiki/Node_(graph_theory)
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3.4 Slice Method 
 
This approach attempted to take advantage of the automatic interpolation 
PLAXIS made in every required depth section. The interpolation to the specific 
depth is obtained in the finite element formulation from the interpolation of the 
nodal normals with the shape functions. The command script reads a five-
column matrix, every row of which is representing the X position, Y position, Z 
position, the σzz stress and σzx stress. This can be easily modified in order to take 
into account moment and shear forces in the perpendicular direction. However, 
this procedure produces different stress values to same points due to the fact 
that two or more adjacent Gaussian points are interpolated to the same 
intersection point. These interpolated values are averaged in order to have 
unique points and their values, and then sorted to abbreviate the calculation 
time. 
 
P=xlsread('Plaxis_Mat.xlsx','Plaxis_Mat','A3:E362'); 
P(:,3)=[]; 
CO_plaxis=unique(P(:,1:2),'rows','sorted'); 
last_plaxis = length(CO_plaxis); 
X_plaxis=CO_plaxis(:,1); 
Y_plaxis=CO_plaxis(:,2); 
sigma_plaxis=zeros(size(X_plaxis)); 
shear_plaxis=zeros(size(X_plaxis)); 
for i=1:last_plaxis 
    k=0; 
    sum1=0; 
    sum2=0; 
    for j=1:length(P) 
        if and(P(j,1)==CO_plaxis(i,1),P(j,2)==CO_plaxis(i,2)) 
            k=k+1; 
            sum1=sum1+P(j,3); 
            sum2=sum2+P(j,4); 
        end 
    end 
    sigma_plaxis(i,1)=sum1/k; 
    shear_plaxis(i,1)=sum2/k; 
end 

 

 
 
3.5 Interpolation 
 
The automatically produced section-points of PLAXIS, may not be well-handled, 
because, for instance, of the bad combination of the circumferential points with 
the respective outer Voronoi pseudo-points, or because of probable inadequate 
distribution of stresses throughout the pile intersection. What is proposed is to 
perform interpolation on the 2-D scattered data set, in order to pass the values 
of stresses from the sample values (sigma_plaxis) at the given point locations 
(X_plaxis,Y_plaxis) to any query point (x,y) and produce a l inearly interpolated 
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value of stress (sigma). To achieve the interpolation, it must be defined a grid 
corresponding to the polar coordinates of the query points. This grid is 
afterwards converted to a Cartesian-coordinate set of points, for better 
handling. Regarding the points very close to the circumference or on it, which 
are not enclosed to the area defined by the Gauss points and cannot be 
interpolated, it is chosen an extrapolation method according to which, these 
points acquire the stress value of their nearest Gauss point. Although this 
procedure may sound approximative or inaccurate, extrapolation is applied only 
to a minor set of points with only slightly different stress value of their adjacent 
integration points, that no significant change of the structural forces is detected.  
 
r=linspace(0,(Xmax-Xmin)/2,20); 
theta=linspace(0,2*pi,40); 
[r,theta]=meshgrid(r,theta); 
x=(Xmax+Xmin)/2+r.*cos(theta); 
y=(Ymax+Ymin)/2+r.*sin(theta); 
F_sigma=scatteredInterpolant(X_plaxis,Y_plaxis,sigma_plaxis, ... 
'linear','nearest'); 
sigma=F_sigma(x,y); 
F_shear=scatteredInterpolant(X_plaxis,Y_plaxis,shear_plaxis, ... 
'linear','nearest'); 
shear=F_shear(x,y); 

 
However, the grid of the interpolated points is not well-handled; hence the 
coordinates and their respective values are reshaped into the more convenient 
form of vectors. In addition, the double coordinate values are deleted and the 
remaining are sorted in increasing order, in respect to the X coordinate.  
Subsequently, the external boundary coordinates are added to the Nх2 
coordinate matrix and then, the area of the polygon specified by the vertices in 
the vectors X and Y of each Voronoi polygon is created. The forces can be 
calculated according to the (1) - (3) equations. 
 

http://www.merriam-webster.com/dictionary/approximative
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x=reshape(x,[],1); 
y=reshape(y,[],1); 
sigma=reshape(sigma,[],1); 
shear=reshape(shear,[],1); 
Ptemp=[x,y]; 
[COtemp,ia,ic]=unique(Ptemp,'rows','sorted'); 
sigmatemp=zeros(size(ia)); 
for i=1:length(ia) 
    sigmatemp(i)=sigma(ia(i)); 
end 
sigma=[zeros(extsize,1); sigmatemp]; 
sheartemp=zeros(size(ia)); 
for i=1:length(ia) 
    sheartemp(i)=shear(ia(i)); 
end 
shear=[zeros(extsize,1); sheartemp]; 
CO=[bounds;COtemp]; 
last = length(CO); 
X=CO(:,1); 
Y=CO(:,2); 
[v,c]=voronoin([X(:) Y(:)]); 
figure; 
voronoi(X,Y) 
 plabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:last)'); 
 Hpl = text(X, Y, plabels, 'FontWeight', ... 
       'bold', 'HorizontalAlignment','center', ... 
       'BackgroundColor', 'none'); 
 dA=zeros(last-extsize,1); 
for i=(extsize+1):last 
    dA(i)=polyarea(v(c{i},1),v(c{i},2)); 
end 
A=sum(dA); 
title(['Area = ' num2str(A)]); 
dN=zeros(last-extsize,1); 
for i=(extsize+1):last 
    dN(i)=dA(i)*sigma(i); 
end 
N=sum(dN); 
coeff=polyfit(X((extsize+1):last),sigma((extsize+1):last),1);  
x0=coeff(1,2)/(-coeff(1,1)); 
dM=zeros(last-extsize,1); 
for i=(extsize+1):last 
    dM(i)=dA(i)*sigma(i)*((Xmax+Xmin)/2-X(i)); 
end 
M=sum(dM);    
     
dQ=zeros(size(X_plaxis)); 
dQ((extsize+1):last)=dA((extsize+1):last).*shear((extsize+1):last); 
Q=sum(dQ); 
NMQ=[N;M;Q] 
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3.6 Volume method  
 
There are two main disadvantages of using separate intersections in two 
dimensional space. First, the multiple interpolations that have to be done both 
manually by the commands and automatically with PLAXIS, return results with 
low accuracy and considerable divergence. In addition, the internal force values 
have to be calculated in each depth separately and then the diagrams be 
formed. 
Regarding this issue, there is proposed a different approach which takes into 
account the stresses of the whole pile, directly from the Gauss points. These 
stresses are interpolated at each depth that is queried and subsequently, the 
former procedure of the separate intersection approach is followed. In this case, 
the Voronoi decomposition is also made after the interpolation in the plain. 
The Coordinate matrix is now Nx3 and the third column is related with the depth 
 . The procedure is similar to the one in 2-D approach, but in this case the grid is 
a three dimensional matrix and the interpolation is done in space. 
r=linspace(0,(Xmax-Xmin)/2,25); 
theta=linspace(0,2*pi,80); 
zeta=linspace(Zmax,Zmin,abs(Zmin-Zmax)+1)'; 
zeta1=zeta; 
[r,theta,zeta]=meshgrid(r,theta,zeta); 
xgrid=(Xmax+Xmin)/2+r.*cos(theta); 
ygrid=(Ymax+Ymin)/2+r.*sin(theta); 
  
F_sigma = scatteredInterpolant(CO_plaxis,sigma_plaxis, ... 
'linear','nearest'); 
sigmagrid = F_sigma(xgrid,ygrid,zeta); 
F_shear = scatteredInterpolant(CO_plaxis,shear_plaxis, ... 
'linear','nearest'); 
sheargrid = F_shear(xgrid,ygrid,zeta); 

 
Regarding the internal forces generation, it is done at each predefined depth of 
pile, inside a for-loop. In each loop, the forces are calculated according to the 
procedure defined in 2-D approach. 
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NMQ=zeros(3,size(zeta,3)); 
for I=1:size(zeta,3) 
    xloop=reshape(xgrid(:,:,I),[],1); 
    yloop=reshape(ygrid(:,:,I),[],1); 
    sigmaloop=reshape(sigmagrid(:,:,I),[],1); 
    shearloop=reshape(sheargrid(:,:,I),[],1); 
    Ploop=[xloop,yloop]; 
    [COloop,ia,ic]=unique(Ploop,'rows','sorted'); 
    sigmalooptemp=zeros(size(ia)); 
    shearlooptemp=zeros(size(ia)); 
    for i=1:length(ia) 
        sigmalooptemp(i)=sigmaloop(ia(i)); 
        shearlooptemp(i)=shearloop(ia(i)); 
    end 
    sigma=[zeros(extsize,1); sigmalooptemp]; 
    shear=[zeros(extsize,1); shearlooptemp]; 
    CO=[bounds;COloop]; 
    last = length(CO);  
    X=CO(:,1); 
    Y=CO(:,2); 
    [v,c]=voronoin([X(:) Y(:)]); 
    plabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:last)'); 
    Hpl = text(X, Y, plabels, 'FontWeight', ... 
        'bold', 'HorizontalAlignment','center', ... 
        'BackgroundColor', 'none'); 
    dA=zeros(last-extsize,1); 
    for i=(extsize+1):last 
        dA(i)=polyarea(v(c{i},1),v(c{i},2)); 
    end 
    A=sum(dA); 
    title(['Area = ' num2str(A)]); 
    dN=zeros(last-extsize,1); 
    for i=(extsize+1):last 
        dN(i)=dA(i)*sigma(i); 
    end 
    N=sum(dN); 
    coeff=polyfit(X(extsize+1:last),sigma(extsize+1:last),1); 
    x0=coeff(1,2)/(-coeff(1,1)); 
    dM=zeros(last-extsize,1); 
    for i=(extsize+1):last 
        dM(i)=dA(i)*sigma(i)*((Xmax+Xmin)/2-X(i)); 
    end 
    M=sum(dM); 

    dQ=zeros(last-extsize,1); 

    dQ((extsize+1):last)=dA((extsize+1):last).*shear ... 
    ((extsize+1): last); 

    Q=sum(dQ); 

    NMQ(:,I)=[N;M;Q]; 
end 
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3.7 Validation 
 
The validity of the results of the above-mentioned calculations is examined by 
comparing the internal force diagrams of beam element in elasticity with linear 
behavior of soil and pile and the respective diagrams that are extracted from the 
matlab code. The results are also validated by semi-analytical expressions that 
give the moment of a pile on a given depth according to the distribution of the 
normal stresses. For the simulation, is used a monopile which is subjected 
exclusively to lateral loading in x direction. 

 
 
Semi - analytical expression 
 
We assume a circular pile intersection in depth   with polar coordinates (r,θ), as 
in figure 3.2. 

𝛭 ( )  ∫         
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Because of the elastic behavior and the absence of axial loading, it is fair to 
assume linear stress distribution with zero value at the pile center. 
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Where             
The results of the validation are shown in figures 3.25 – 3.27. 
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3.8 Result visualization 

 
N-M-Q diagrams 
 
The aforementioned results are eventually visualized to get also a qualitative 

indication of their validity and a general perspective of the pile response under 

static loading. Thus, it is possible a practical comparison of the structural forces 

that are extracted from the proposed method with the respective ones from 

alternative methods. These diagrams are handled for constructional purposes 

regarding the design of the pile and the pile enforcement. The presentat ion of 

the diagrams is chosen to form an area of three diagrams in a row. 

 
%Visualizations 
subplot(1,3,1); 
plot(NMQ(1,:),zeta1,'-b*','LineWidth',2,'MarkerSize',8); 
hold on 
plot([0 0],[Zmax Zmin], 'k:'); 
title('Axial Force (N)', 'FontSize', 20); 
xlabel('(kN)'); 
ylabel('Depth (m)'); 
set(gca,'XAxisLocation','top'); 
set(gca,'YAxisLocation','right'); 
hold off 
subplot(1,3,2); 
plot(NMQ(2,:),zeta1,'-r*','LineWidth',2,'MarkerSize',8); 
hold on 
plot([0 0],[Zmax Zmin], 'k:'); 
title('Bending Moment (M)', 'FontSize', 20); 
xlabel('(kNm)'); 
ylabel('Depth (m)'); 
set(gca,'XAxisLocation','top'); 
set(gca,'YAxisLocation','right'); 
hold off 
subplot(1,3,3); 
plot(NMQ(3,:),zeta1,'-g*','LineWidth',2,'MarkerSize',8); 
hold on 
plot([0 0],[Zmax Zmin], 'k:'); 
title('Shear Force (Q)', 'FontSize', 20); 
xlabel('(kN)'); 
ylabel('Depth (m)'); 
set(gca,'XAxisLocation','top'); 
set(gca,'YAxisLocation','right'); 
set(gcf,'Color',[0.4,0.4,0.4],'Toolbar','none') 
set(gcf, 'Position', get(0,'Screensize')); 
hold off 

 

  

http://thesaurus.com/browse/aforementioned
http://www.eea.europa.eu/data-and-maps/figures/qualitative-indication-of-trends-in-aot40-values-may-july-at-rural-stations-eea-member-countries-1996-2002
http://www.eea.europa.eu/data-and-maps/figures/qualitative-indication-of-trends-in-aot40-values-may-july-at-rural-stations-eea-member-countries-1996-2002
http://thesaurus.com/browse/feasible
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3.9 Stress distribution 
 
In conjunction with the internal force diagrams, the normal and shear stress 
distribution in each depth are visualized. Matlab has not the option to plot stress 
distribution in a cyclic area. Thus, the proposed solution is to create a squared 
intersection with edge length equal to the pile diameter and grid density 
unvarying to the Voronoi grid density. The stress value of each grid on the 
square is acquired by bilinear, 2-D interpolation of the pk sites of the Voronoi 
grid. For presenting reasons, the intersections shown on the 3-D figures 3.22 and 
3.23 are at two meter distance. 
 
[x_rec, y_rec, z_rec] = 

meshgrid(linspace(Xmin,Xmax,100),linspace(Ymin,Ymax,100)… 

   ,linspace(Zmax,Zmin,abs(Zmin-Zmax)/2+1)); 
sigma_rec = griddata(xgrid,ygrid,zeta,sigmagrid,x_rec,y_rec,z_rec); 
shear_rec = griddata(xgrid,ygrid,zeta,sheargrid,x_rec,y_rec,z_rec); 
  
figure; 
slice(x_rec,y_rec,z_rec,sigma_rec,[],[],[Zmax:-2:Zmin]); 
axis ([10 11 10 11 -6 0]); 
title('Normal Stress (kPa)'); 
set(gcf,'Color',[0.4,0.4,0.4]) 
colorbar 
zoom (3) 
pan on 
set(gcf, 'Position', get(0,'Screensize')); 
figure; 
slice(x_rec,y_rec,z_rec,shear_rec,[],[],[Zmax:-2:Zmin]); 
axis equal; 
title('Shear Stress (kPa)'); 
set(gcf,'Color',[0.4,0.4,0.4]) 
colorbar 
zoom (18) 
pan on 
set(gcf, 'Position', get(0,'Screensize')); 

 

  

http://click.thesaurus.com/click/nn1ov4?clkpage=the&clksite=thes&clkld=0&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Funvarying
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Figure 3.1. Intersection of a pile at specific depth. Pk are the Voronoi regions to which 

the pile is intersected. 

 

 

 

 

 
 

Figure 3.2. Polar coordinates of pile 

intersection stress points 

Figure 3.3. General three dimensional 

coordinate system and sign convention for 

stresses 
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Figure 3.4. Instance of lateral loading of the monopile. This type of loading is examined 

below  

 

 

 
Figure 3.5. Pile intersection along the depth in 

Slice Method. The element nodes must 

coincide with the pile depth at the specific 

intersection 

Figure 3.6. PLAXIS table, from 

which, the normal and shear 

stresses at each specific point are 

extracted 
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Figure 3.7. Node distribution at the pile 

intersection of the non-elaborated 

data. Many nodes have varied values 

of stresses due to the interpolation of 

different Gauss points 

Figure 3.8. Node distribution at the pile 

intersection after the implementation of 

specific grid pattern to the stress points 

 

 

 

 

 

 

  
Figure 3.9. Normal stress distribution, in 

elasticity, of the non-elaborated data 

Figure 3.10. Normal stress distribution, in 

elasticity, of the interpolated data 
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Figure 3.11. Shear stress distribution, in 

elasticity, of the non-elaborated data 

Figure 3.12. Shear stress distribution, in 

elasticity, of the interpolated data 

 

 

 

 

 

 

 

  

Figure 3.13. Non-linear stress distribution 

of normal stresses, of the non-elaborated 

data 

Figure 3.14. Non-linear stress 

distribution of normal stresses, of the 

interpolated data 
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Figure 3.15. Non-linear stress distribution 

of shear stresses, of the non-elaborated 

data 

Figure 3.16. Non-linear stress 

distribution of normal stresses, of the 

interpolated data 

 

 

 

 

 

  
Figure 3.17. Contour of normal stress 

distribution of the interpolated data, in 

elasticity 

Figure 3.18. Contour of shear stress 

distribution of the interpolated data, in 

elasticity 
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Figure 3.19. Contour of non-linear normal 

stress distribution of the interpolated data 

Figure 3.20. Contour of non-linear shear stress 

distribution of the interpolated data 

  

Figure 3.21. Distribution of the non-

elaborated stress points (Gauss points) in 

the pile volume (only the first 2 meters of 

the pile are shown) 

Figure 3.22. Distribution of the stress points 

(Gauss points) in the pile volume after the 

spatial interpolation to specific depths (only 

the first 2 meters of the pile are shown) 
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Figure 3.23. Normal stress distribution at 

each pile depth(only the first 2 meters of 

the pile are shown) 

Figure 3.24. Shear stress distribution at each 

pile depth(only the first 2 meters of the pile are 

shown) 

 

  
Figure 3.25. Total Gauss points along the 

pile as extracted from PLAXIS 

Figure 3.26. Stress points after elaboration. 

Internal Forces are computed at each depth 

according to the interpolated data 
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Figure 3.27. Shear Force. Comparison of the 

two methods with the results derived from 

PLAXIS, in elasticity 

Figure 3.28. Bending moment. Comparison 

of the two methods with the results derived 

from PLAXIS, in elasticity and the semi-

analytical expression 

 

 

Figure 3.29. Axial Force. Comparison of the two methods with the PLAXIS results, in 

elasticity. The difference between the proposed methods and the PLAXIS results may 

be attributed to the assumption PLAXIS makes which regards the pile as beam. Thus, 

in order to define border conditions for the pile, considers the pile footing as free 

edge with zero axial force. In reality, the pile footing commits axial force due to the 

difference between the specific weight of the reinforced concrete of the pile and that 

of the soil. 
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Figure 3.30. Internal Force diagrams (N,M,Q) as extracted at each pile depth 

according to the Volume Method 
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Application to Single Pile  

 

 

Chapter 4 
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4 Application to Single Pile 

 

4.1 Limit Equilibrium Approach 
 
The case of a free‐head flexible pile embedded in clay with constant undrained 

shear strength Su is studied. In this case the soil resistance is 

          ,  

 

where, as mentioned before: 
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From static equilibrium: 

 

       

 

     
 

 
            

 

From 3.3: 
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By setting: 

        

    √         

equation (3.6) becomes 

 

 

  
  (

 

  
)

 

   

 

By taking into consideration all possible N-Q‐M combinations at the pile head 

the failure envelope for a flexible pile embedded in clay with constant undrained 

shear strength (4.8-4.10): 
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Nc , Nt the ultimate compressive and tensile capacity respectively. 

 

Assuming an associated flow rule (in which the plastic potential function g 

coincides with the yield function f) the plastic displacement upl and the plastic 

rotation φpl give: 
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confirming that the incremental plastic displacement vectors at the point of failure 

are normal to the yield locus. 

 

 

4.2 Finite Element Verification 

 
The proposed failure envelopes and the new method for the calculation of the 

structural forces are checked against three‐dimensional numerical analysis for 

flexible pile and pile-groups embedded by using the finite element code Plaxis 3D. 

 

 

4.2.1 Static pushover tests 

 
Considering that the foundation supports a 1-DoF oscillator, one expects that radial 

loading paths on the M-Q plane are applied in the system. Through a series of force-

controlled analyses the failure envelope is ultimately determined. Prior to that, the 

foundation has undergone vertical loading N to a fraction χ = N/Nu of its ultimate 

capacity. [Cremer, Pecker, Davenne 2001; Gouvernec 2004; Gajan, Kutter, Phalen, 

Hutchinson, Martin 2005]. 

 

 

4.2.2 Static pushover tests 

 
The steps followed in our numerical experiments represent the actual conditions in 

the field. The soil undergoes geostatic loading and then a part of the soil is replaced 

by the foundation, on which a vertical load N is applied increasingly till a specified 

value of χ = Ν/Νu is reached. Afterwards, the vertical load is kept constant and a 

combination of horizontal force and moment is applied at the head of the pile till the 

complete failure of the system. Apparently, this implies the state in which no further 

lateral loading can be undertaken. The above procedure is repeated for various 

factors of safety against vertical loading and for various radial loading paths. Our aim 

is to extract the ultimate capacities under pure moment Mu and pure horizontal 

force Qu, and then sweep the M-Q plane so that a cross-section of the failure 

envelope is revealed. Repeating this procedure from the Ultimate Axial Compression 

Capacity to the ultimate Axial Tension Capacity the total 3D Failure Envelope in M-

QN space is designed. 
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4.3 Finite Element Modelling 

 
A 16 m long pile with 1 m diameter is embedded in the soil. The distance from the 

pile tip to the bottom of the model is 6 m. Figure (4.5) depicts the finite element 

discretization of the problem. Approximately 48000 elements were used for each 

analysis. The soil is modeled with 10‐node tetrahedral elements while the pile is 

modeled as a soil volume calibrated with the previously macroscopic hardening Soil 

model approach to simulate the behavior of a circular concrete pile with As=1.5% . A 

sensitivity analysis for the lateral boundaries is carried out to ensure the accuracy of 

the model, placing them finally at the distance of 0.6L. The selected Soil is Clay with 

constant with the depth Undrained Shear Strength Su=50 kPa, specific weight γ=20 

kN/m3 and Es=25000 kN/m and its behavior is described by the Mohr-Coulomb 

Model. The poisson’s ratio is v=0.45 while the angle of friction is φ=0° to simulate 

undrained water conditions. The pile has an elasticity Modulus of Ec=30*10^6 KN/m, 

a poisson’s ratio v=0.2 and a specific weight practically zero (γ=0.01 KN/m2) to 

ensure that the derived ultimate loads are the total ones, while cohesion is chosen 

to be c=15262 kPa, the angle of friction φ=0° and tension cut-off strength equal to 

7534 kPa in order to capture the correct pile behavior. An Interface is used between 

the pile and the soil enabling gapping and slippage with a friction coefficient R=1. 

 

 

4.4 Results 

 
Figure 4.1 displays the failure envelope of concrete pile, as defined from the 

equation 4.7. Figure 4.2 shows the combinations of moment and shear force at 

failure, which were chosen for the study of the pile forces. The influence of the 

vertical load can clearly be captivated in Fig. 4.3 where the maximum capacities 

magnify by the increase of the axial load. Figures 4.8 – 4.25 show the structural 

forces as extracted from MATLAB code, for combinations at failure and for 

characteristic failure mechanisms. The effect of axial force to the moment capacity 

and the moment distribution along the pile is examined afterwards, in figures 4.26 – 

4.32. Firstly, the case of single pile embedded in soft clay is studied, subjected to 

different axial loading, which results to different factors of safety.  
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Figures 
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Figure 4.1. Failure envelope for specific axial force, for a circular concrete pile with 

As=1.5% 

 

 
Figure 4.2. From the y’y symmetric failure envelope, 5 combinations of Moment and 

Shear force were chosen, that represent characteristic areas of the failure zones 
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Figure 4.3. Moment – Axial force interaction diagram, for cylindrical concrete pile 

with As=1.5%. The dependence of the moment capacity with respect to the pile axial 

force is represented 
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Figure 4.4. Failure mechanisms of single piles with respect to the different Moment – 

Shear force combinations 

 

 
Figure 4.5. The finite element model of single, flexible pile in clay 
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Figure 4.6. Vertical intersection of pile under horizontal loading. This figure depicts 

clearly the three types of non-linearity and their interaction as a system: The soil non-

linearity, the pile plastification and the geometric non linearities 

 

 

   
Figure 4.7. Pile under horizontal loading. The three figures show respectively the 

deformed mesh of pile in failure, the pile deviatoric strains (Δγs) which show the 

plastic hinge region, and the pile plastic points i.e. the plasticized Mohr – Coulomb 

points (red) and the tension cut-off points (white) 
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Figure 4.8. Structural forces of single pile with SFv=2 at failure combination: (√ 
 

⁄            ) 

 

 

 

 

Figure 4.9. Structural forces of single pile with SFv=2 at failure combination: (                ) 
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Figure 4.10. Structural forces of single pile with SFv=2 at failure combination: (     ) 

 

 

 

 

 

 
Figure 4.11. Structural forces of single pile with SFv=2 at failure combination: (      ) 
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Figure 4.12. Structural forces of single pile with SFv=1.25 at failure combination: (√ 
 

⁄            ) 

 

 

 

 

 

Figure 4.13. Structural forces of single pile with SFv=1.25 at failure combination: (                ) 
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Figure 4.14. Structural forces of single pile with SFv=1.25 at failure combination: (     ) 

 

 

 

 

 

 
Figure 4.15. Structural forces of single pile with SFv=1.25 at failure combination: (     ) 
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Figure 4.16. Structural forces of single pile with SFv=∞ at failure combination: (√ 
 

⁄            ) 

 

 

 

 

 

Figure 4.17. Structural forces of single pile with SFv=∞ at failure combination: (                ) 
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Figure 4.18. Structural forces of single pile with SFv=∞ at failure combination: (            ) 

 

 

 

 

 

 
Figure 4.19. Structural forces of single pile with SFv=∞ at failure combination: (     ) 
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Figure 4.20. Structural forces of single pile with SFv=∞ at failure combination: (     ) 

 

 

 

 

 

Figure 4.21. Structural forces of single pile with SFv= -2 at failure combination: (√ 
 

⁄            ) 
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Figure 4.22. Structural forces of single pile with SFv= -2 at failure combination: (                ) 

 

 

 

 

 

 

Figure 4.23. Structural forces of single pile with SFv= -2 at failure combination: (            ) 
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Figure 4.24. Structural forces of single pile with SFv= -2 at failure combination: (     ) 

 

 

 

 

 

 
Figure 4.25. Structural forces of single pile with SFv= -2 at failure combination: (     ) 
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Figure 4.26. Axial loading, for different safety 

factors. Pile embedded in clay with Su=50kPa 

Figure 4.27. Moment capacity under horizontal 

loading, for different safety factors 

 

  
Figure 4.28. Axial loading, for different safety 

factors. Pile embedded in clay with Su=50kPa 

Figure 4.29. Moment capacity under 

combination of horizontal loading and bending 

moment (√ 
 

⁄            ), for different safety 

factors  
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Figure 4.30. Axial loading, for pile embedded in 

clay with a)Su=50kPa b)Su=150kPa. The factor 

of safety is SFv=1.25 

Figure 4.31. Moment capacity under horizontal 

loading, for varying undrained shear strength 

 

 

 

 

 
Figure 4.32. The yellow area illustrates the range of influence of the axial force to the pile 

moment capacity, for different factors of safety, as shown in figures 4.26 & 4.28. It is shown 

that for a pile embedded in soft clay (Su=50kPa), no major change in pile bearing capacity is 

noticed 
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Application to Pile Group 

  

 

 

 

Chapter 5 
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5 Application to Pile Group 
 

5.1 Limit Equilibrium Approach 
 

The case of a fixed‐head 3x3 Pile-Group embedded in clay with constant 

undrained shear strength Su is studied. According to the 2x2 mechanisms of 

failure, the equations for the 3x3 Pile-group are applied to find the failure load. 

 

           
 

 
 (     

 

 
)    

 

where      is the moment capacity of pile with zero axial loading,     is the axial 

pile capacity to: {
            (  )

        (  )         
  and   is the length of the pile 

 

5.2 Finite Element Verification 

 
The problem studied is a 3x3 Pile-group subjected to combined vertical load N, 

horizontal load Q and overturning moment. The problem is analyzed as 

previously with the use of the advanced Finite Element code Plaxis 3D. Figure 5.1 

shows the Finite Element Model. The size of the finite element mesh is 29x29x22 

taking into consideration the effect of boundaries on the pile-group’s ultimate 

response and the computational time. The piles have a diameter D=1 m and the 

distance between all the pile centers is 3 meters. A 9x9m plate is chosen as pile-

cap, while a sensitivity analysis is performed to ensure the fixed pile/pile-cap 

connection, setting its elastic modulus equal to E=300*10^6 kPa and its 

thickness of 10 meter. The piles have the aforementioned properties, i.e. an 

elastic modulus of E=30*10^6, a specific weight γ=0.1kN/m3, Poisson’s ratio 

v=0.2 and its behavior is governed by the Mohr-Coulomb model with c = 15262 

kPa, φ=0 and tension cut-off strength equal with 7534 kPa. Interfaces are placed 

between the piles and the soil enabling gapping and slippage with a friction 

coefficient R=1. The soil is Clay with γ=20kN/m3 constant with the depth Su=50 

kPa and Es=25000 kPa, obeying the Mohr-Coulomb model too and the Poisson’s 

ratio is v=0.45 to simulate undrained conditions. The final model consists of 175000 

elements with a finer discretization around the pile-group. The steps followed in the 

numerical experiments are similar to the previous investigation. The total failure 

Envelopes of the soil-foundation system are extracted by applying various horizontal 

load – moment combinations in the normal (θ=0°) and diagonal direction (θ=45°) for 

seven different safety factors from ultimate axial tensile to ultimate compressive 

capacity 
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5.3 Results 

 
The application to the 3x3 Pile-group shows major differences depending to the 

undrained shear strength of the soil. Specifically, for the Pile-group embedded in soft 

clay with Su=50kPa, no major differences in moment capacity of the piles are 

observed (Fig. 5.10 and 5.12). However, in stiffer clay with Su=150kPa, where the 

piles reach close to the failure of their axial force capacity, wide divergence to the 

moment capacity of the piles in same row are noticed. (Fig. 5.19 and 5.21). 

Regarding the right pile, it reaches its maximum moment capacity as Fig. 5.22 shows, 

whereas the left pile, due to its tensile strength, develops almost zero moment.   
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Figures 
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Figure 5.1. The finite element model of 3x3 Pile-group, in clay 

 

 
Figure 5.2. Pile cap dimensions 
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Figure 5.3. Failure envelope of 2x2 Pile-group. The different regions define different 

failure mechanisms. 

 

  
 

I Two plastic hinges 

below cap and bearing 

capacity failure 

II Four Plastic Hinges at 

cap and below 

I Two Cap plastic hinges 

and bearing capacity 

failure 

Figure 5.4. Illustration of the failure mechanisms for combinations of Q-M 

magnitudes in separate regions of the failure envelope. 
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Figure 5.5. The Pile-group mesh under horizontal loading and SFv=2 

 

  
Figure 5.6. Pile-group deformed mesh Figure 5.7. Pile-group deviatoric strains 

(Δγs), which indicate the regions of the 

plastic hinges (2 in every pile) 
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Figure 5.8. Pile-group plastic points i.e. 

the plasticized Mohr – Coulomb points 

(red) and the tension cut-off points 

(white) 

Figure 5.9. Pile-group vertical 

deformations (uz) 

 

 

 
Figure 5.10. Moment diagram of piles in Pile-group, embedded in clay with Su=50kPa 

and SFv=2, under horizontal loading 
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Figure 5.11. Axial force of every pile. Pile-group embedded in clay with Su=50kPa 

 

 
Figure 5.12. Moment diagram of the three piles in middle row under different vertical 

loads (vertical factors of safety) of pile group embedded in clay with Su=50kPa 
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Figure 5.13. Pile-group cluster with SFv=5, embedded in stiff clay (Su=150kPa) 

subjected to bending moment 

 

 

  
 

Figure 5.14. Pile-group deformed mesh Figure 5.15. Pile-group vertical 

deformations (uz) 
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Figure 5.16. Pile-group deviatoric strains 

(Δγs), which indicate the regions of the 

plastic hinges (1 at every top of pile) 

Figure 5.17. Pile-group plastic points i.e. 

the plasticized Mohr – Coulomb points 

(red) and the tension cut-off points 

(white) 

 

  
Figure 5.18. Axial force of the middle row of Pile-

group at half of failure loading and at failure 

Figure 5.19. Bending moment of the middle row of 

Pile-group at half of failure loading and at failure 
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Figure 5.20. Axial force of Pile-group middle row, embedded in clay with Su=150kPa 

and with SFv=5 

 

 

 
Figure 5.21. Bending moment of Pile-group middle row embedded in clay with 

Su=150kPa and with SFv=5. It is shown clearly the effect the different axial force to 

every pile has, to the moment distribution of the pile. Regarding the compressed right 

pile, the axial force reacts beneficial on the moment capacity, whereas, the axial 

force of the tensioned left pile has detrimental influence to the pile moment capacity 
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Figure 5.22. The above-mentioned results of figure 3.21 are validated by this figure, 

where can be seen clearly the effect of the axial force to the moment capacity. The 

yellow area illustrates the range of the axial force of the Pile-group middle row, 

embedded in clay with Su=150kPa. Major changes are observed to the pile moment 

capacity according to the axial force of the pile. 

 

 
Figure 5.23. As proposed to N. Gerolymos Ph.D. thesis, the two plastic hinges of 

fixed-head pile tend to approach one another near failure. This explains why the piles 

of the Pile-group of Fig. 5.16 have only one plastic hinge. The plastic hinges below 

cap tend to the pile head and at failure both plastic hinges coincide at pile head 
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Conclusions 

  

 

 

Chapter 6 
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5 Conclusions 

 
This thesis dealt with the development of a new algorithm which calculates the pile 

response in terms of internal forces, under arbitrary loading. The implementation of 

the method was made to single pile as well as to pile-group loading, of nine piles in 

rectangular shape joined together with a pile cap. Both of which were subjected to 

static monotonic loading. The constitutive model of piles that is used is the 

Macroscopic Mohr-Coulomb based approach and the surrounding soil is undrained 

clay. 

 

Our first aim was to develop a new approach able to simulate in finite element 

modeling the pile behavior accurately. Taking into consideration the drawbacks and 

weaknesses of the existing methods a new tool is designed capable of capturing the 

pile material properties and response in elasticity, in plasticity and incorporating the 

effects of random loading. 

 

Our second aim was to develop a new method of extracting the structural forces of 

the pile that overcomes the drawbacks of the existing approaches and implement it 

to various load cases. 

 

Our third aim was to provide insight to the failure envelopes of a single flexible pile 

and a 3x3 pile-group under combined M-Q-N loading, including the effects of soil-

pile nonlinearities. The above-mentioned method was examined and compared with 

the existing approaches. 

  

The important conclusions that were drawn from this thesis are presented below: 

 

 A new macroscopic approach is developed under the Mohr-Coulomb i.e. 

Tresca failure criterion for simulating circular piles behavior. Its verification was 

focused in various concrete pile diameters (0.8m, 1m, 1.5m) with different 

reinforcements (1%, 1.5%, 2%), analytically and in finite element modelling. The 

results where more than satisfactory, as the approach is able to simulate the pile 

behavior in elastoplasticity, in terms of moment-curvature and to include the 

interaction between the external loads and the pile material properties, as well as 

the soil-pile interaction. The calibration of the approach can be easily be conducted 

through the following steps: 

 

1. Extraction of the failure envelope of the studied circular pile. 

 

2. Using the derived mathematical expressions and an optimization tool 

the calibration of the parameters of the model can be performed. 
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3. The variables are inserted in the finite element model in the 

appropriate soil model together with the other elastic pile parameters 

 

4. Verification of the approach can be done by extracting the failure 

envelopes in the finite element program and comparing the moment-

curvature diagrams. 

 

 The new method of extracting pile forces is developed.The presentation of 

the pile response in terms of structural forces is an achievement of the beam 

theory and expresses the pile behaviour in a macroscopic level. However, this 

approach is subjected to the assumptions and simplifications of the beam 

theory (e.g. Bernoulli – Euler beam theory or Timoshenko beam theory). In 

view of this, the need of a tool is aroused, which incorporates the soil and 

pile behaviour and their interaction at an almost microscopic level and 

represents them in the same macroscopic terms of the beam theory: Axial 

and Shear force and Bending moment. On the contrary to any other existing 

method, this one takes into account the full pile geometry and every type of 

non-linearity of the soil – structure interaction i.e. the pile plastification, the 

soil non-linearity and non-linearities regarding the geometry of the model 

due to sliding and gapping. The pile is not treated as one-dimensional beam 

element and its response is not governed by the principals of beam theory. 

Instead, it stems from the continuous medium mechanics theory, because it 

manipulates the stresses that are extracted from the finite element 

simulation. This means that it is possible to take into account the interaction 

between the pile internal forces and the extent to which it influences the 

whole pile behaviour. Additionally, since the model takes into account the 

whole 3-D geometry of the soil – pile system, the pile-to-pile interaction is 

considered to its full extend. Hence, the actual pile behaviour is presented in 

a well-handled form and can be used for the design of the pile and its 

reinforcement. 

 

 The failure envelopes of a single flexible pile in cohesive soil are derived. The 

pile is modeled by the previously derived approach. Various moment- lateral 

load combinations are applied under different safety factors against axial 

failure and the interaction diagrams are created. The correlation between the 

axial force and the bending capacity is examined among piles with same 

factor of safety and varying axial loading capacity.  

 

 The interaction diagrams in 1x2 and 2x2 pile groups in cohesive soil are 

derived. From these two we make justifiable assumptions for the 3x3 pile-
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group and examine its behaviour under different points of the failure 

envelope. First, the pile-group is examined in soft clay, where it cannot 

develop its axial capacity and minor differences between the stretched and 

the compressed pile response are noticed. On the contrary, the embedded 

pile-group in stiff clay, under the moment of failure, reveals a major 

difference to the stretched and compressed pile bearing capacity. 

 

 

 The implementation of the new method gives an opportunity to examine the 

validity of the proposed Mohr-Coulomb failure criterion among varying types 

of loading and the extent to which, both of them correspond to each other 

and to reality as well.  
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APPENDIX 

 

Slice method 
 

clear 

format long 

P=xlsread('Plaxis_Mat.xlsx',3,'A3:E200'); 

P(:,3)=[]; 

CO_plaxis=unique(P(:,1:2),'rows','sorted'); 

last_plaxis = length(CO_plaxis); 

X_plaxis=CO_plaxis(:,1); 

Y_plaxis=CO_plaxis(:,2); 

sigma_plaxis=zeros(size(X_plaxis)); 

shear_plaxis=zeros(size(X_plaxis)); 

for i=1:last_plaxis 

    k=0; 

    sum1=0; 

    sum2=0; 

    for j=1:length(P) 

        if and(P(j,1)==CO_plaxis(i,1),P(j,2)==CO_plaxis(i,2)) 

            k=k+1; 

            sum1=sum1+P(j,3); 

            sum2=sum2+P(j,4); 

        end 

    end 

    sigma_plaxis(i,1)=sum1/k; 

    shear_plaxis(i,1)=sum2/k; 

end 

% 

Xmax=round(max(P(:,1))*10)/10; 

Xmin=round(min(P(:,1))*10)/10; 

Ymax=round(max(P(:,2))*10)/10; 

Ymin=round(min(P(:,2))*10)/10; 

rad=linspace(0,1.999*pi,80)'; 

extsize=length(rad); 

bounds=[((Xmax+Xmin)/2)+((Xmax-Xmin)/2+0.005)*cos(rad), 

((Ymax+Ymin)/2)+((Ymax-Ymin)/2+0.005)*sin(rad)]; 

% 

r=linspace(0,(Xmax-Xmin)/2,25); 

theta=linspace(0,2*pi,80); 

[r,theta]=meshgrid(r,theta); 

x=(Xmax+Xmin)/2+r.*cos(theta); 

y=(Ymax+Ymin)/2+r.*sin(theta); 

F_sigma=scatteredInterpolant(X_plaxis,Y_plaxis,sigma_plaxis,'linear',

'nearest'); 

sigma=F_sigma(x,y); 

% 

F_shear=scatteredInterpolant(X_plaxis,Y_plaxis,shear_plaxis,'linear',

'nearest'); 

shear=F_shear(x,y); 

% 

x=reshape(x,[],1); 

y=reshape(y,[],1); 

sigma=reshape(sigma,[],1); 

shear=reshape(shear,[],1); 

Ptemp=[x,y]; 

[COtemp,ia,ic]=unique(Ptemp,'rows','sorted'); 

sigmatemp=zeros(size(ia)); 

for i=1:length(ia) 
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    sigmatemp(i)=sigma(ia(i)); 

end 

sigma=[zeros(extsize,1); sigmatemp]; 

sheartemp=zeros(size(ia)); 

for i=1:length(ia) 

    sheartemp(i)=shear(ia(i)); 

end 

shear=[zeros(extsize,1); sheartemp]; 

CO=[bounds;COtemp]; 

last = length(CO); 

X=CO(:,1); 

Y=CO(:,2); 

[v,c]=voronoin([X(:) Y(:)]); 

figure; 

voronoi(X,Y) 

 plabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:last)'); 

 Hpl = text(X, Y, plabels, 'FontWeight', ... 

       'bold', 'HorizontalAlignment','center', ... 

       'BackgroundColor', 'none'); 

 dA=zeros(last-extsize,1); 

for i=(extsize+1):last 

    dA(i)=polyarea(v(c{i},1),v(c{i},2)); 

end 

A=sum(dA); 

title(['Area = ' num2str(A)],'fontsize',14); 

set(gca,'fontsize',14); 

set(gcf, 'Position', get(0,'Screensize')); 

dN=zeros(last-extsize,1); 

for i=(extsize+1):last 

    dN(i)=dA(i)*sigma(i); 

end 

N=sum(dN); 

% 

coeff=polyfit(X((extsize+1):last),sigma((extsize+1):last),1);             

%To X_plaxis den exei extsize 

x0=coeff(1,2)/(-coeff(1,1)); 

dM=zeros(last-extsize,1); 

% 

 for i=(extsize+1):last 

     dM(i)=dA(i)*sigma(i)*((Xmax+Xmin)/2-X(i)); 

 end 

 M=sum(dM);    

     

dQ=zeros(size(X_plaxis)); 

dQ((extsize+1):last)=dA((extsize+1):last).*shear((extsize+1):last); 

Q=sum(dQ); 

NMQ=[N;M;Q] 
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Volume Method 
 

clear all 

format long 

P=xlsread('Plaxis_Mat.xlsx',5,'D2:H6437'); 

COtemp=P(:,1:3); 

sigmatemp=P(:,4); 

sheartemp=P(:,5); 

[CO_plaxis,ia,ic]=unique(COtemp,'rows','sorted'); 

%last_plaxis = length(CO_plaxis); 

sigma_plaxis=zeros(size(ia)); 

shear_plaxis=zeros(size(ia)); 

for i=1:length(ia) 

    sigma_plaxis(i)=sigmatemp(ia(i)); 

    shear_plaxis(i)=sheartemp(ia(i)); 

end 

X_plaxis=CO_plaxis(:,1); 

Y_plaxis=CO_plaxis(:,2); 

Z_plaxis=CO_plaxis(:,3); 

  

Xmax=round(max(X_plaxis)*10)/10; 

Xmin=round(min(X_plaxis)*10)/10; 

Ymax=round(max(Y_plaxis)*10)/10; 

Ymin=round(min(Y_plaxis)*10)/10; 

Zmax=round(max(Z_plaxis)); 

Zmin=round(min(Z_plaxis)); 

rad=linspace(0,1.999*pi,80)'; 

extsize=length(rad); 

bounds=[((Xmax+Xmin)/2)+((Xmax-Xmin)/2+0.005)*cos(rad), 

((Ymax+Ymin)/2)+((Ymax-Ymin)/2+0.005)*sin(rad)]; 

  

r=linspace(0,(Xmax-Xmin)/2,25); 

theta=linspace(0,2*pi,80); 

zeta=linspace(Zmax,Zmin,abs(Zmin-Zmax)+1)'; 

zeta1=zeta; 

[r,theta,zeta]=meshgrid(r,theta,zeta); 

xgrid=(Xmax+Xmin)/2+r.*cos(theta); 

ygrid=(Ymax+Ymin)/2+r.*sin(theta); 

  

F_sigma = 

scatteredInterpolant(CO_plaxis,sigma_plaxis,'linear','nearest'); 

sigmagrid = F_sigma(xgrid,ygrid,zeta); 

F_shear = 

scatteredInterpolant(CO_plaxis,shear_plaxis,'linear','nearest'); 

sheargrid = F_shear(xgrid,ygrid,zeta); 

NMQ=zeros(3,size(zeta,3)); 

for I=1:size(zeta,3) 

    xloop=reshape(xgrid(:,:,I),[],1); 

    yloop=reshape(ygrid(:,:,I),[],1); 

    sigmaloop=reshape(sigmagrid(:,:,I),[],1); 

    shearloop=reshape(sheargrid(:,:,I),[],1); 

    Ploop=[xloop,yloop]; 

    [COloop,ia,ic]=unique(Ploop,'rows','sorted'); 
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    sigmalooptemp=zeros(size(ia)); 

    shearlooptemp=zeros(size(ia)); 

    for i=1:length(ia) 

        sigmalooptemp(i)=sigmaloop(ia(i)); 

        shearlooptemp(i)=shearloop(ia(i)); 

    end 

    sigma=[zeros(extsize,1); sigmalooptemp]; 

    shear=[zeros(extsize,1); shearlooptemp]; 

    CO=[bounds;COloop]; 

    last = length(CO); 

    X=CO(:,1); 

    Y=CO(:,2); 

    [v,c]=voronoin([X(:) Y(:)]); 

    %figure; 

    %voronoi(X,Y) 

    plabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:last)'); 

    Hpl = text(X, Y, plabels, 'FontWeight', ... 

        'bold', 'HorizontalAlignment','center', ... 

        'BackgroundColor', 'none'); 

    dA=zeros(last-extsize,1); 

    for i=(extsize+1):last 

        dA(i)=polyarea(v(c{i},1),v(c{i},2)); 

    end 

    A=sum(dA); 

    title(['Area = ' num2str(A)]); 

    dN=zeros(last-extsize,1); 

    for i=(extsize+1):last 

        dN(i)=dA(i)*sigma(i); 

    end 

    N=sum(dN); 

    coeff=polyfit(X(extsize+1:last),sigma(extsize+1:last),1); 

    x0=coeff(1,2)/(-coeff(1,1)); 

    dM=zeros(last-extsize,1); 

  

    for i=(extsize+1):last 

        dM(i)=dA(i)*sigma(i)*((Xmax+Xmin)/2-X(i)); 

    end 

    M=sum(dM); 

    dQ=zeros(last-extsize,1); 

    

dQ((extsize+1):last)=dA((extsize+1):last).*shear((extsize+1):last); 

    Q=sum(dQ);     

    NMQ(:,I)=[N;M;Q]; 

end 

%Visualizations 

subplot(1,3,1); 

plot(NMQ(1,:),zeta1,'-b*','LineWidth',2,'MarkerSize',8); 

hold on 

plot([0 0],[Zmax Zmin], 'k:'); 

title('Axial Force (N)', 'FontSize', 20); 

xlabel('(kN)','FontSize',16); 

ylabel('Depth (m)','FontSize',16); 

set(gca,'XAxisLocation','top','YAxisLocation','left','fontsize',14); 

hold off 

subplot(1,3,2); 

plot(NMQ(2,:),zeta1,'-r*','LineWidth',2,'MarkerSize',8); 

hold on 

plot([0 0],[Zmax Zmin], 'k:'); 

title('Bending Moment (M)', 'FontSize', 20); 

xlabel('(kNm)','FontSize',16); 

ylabel('Depth (m)','FontSize',16); 
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set(gca,'XAxisLocation','top','YAxisLocation','left','fontsize',14); 

hold off 

subplot(1,3,3); 

plot(NMQ(3,:),zeta1,'-g*','LineWidth',2,'MarkerSize',8); 

hold on 

plot([0 0],[Zmax Zmin], 'k:'); 

title('Shear Force (Q)', 'FontSize', 20); 

xlabel('(kN)','FontSize',16); 

ylabel('Depth (m)','FontSize',16); 

set(gca,'XAxisLocation','top','YAxisLocation','left','fontsize',14); 

set(gcf,'Color',[0.8,0.8,0.8],'Toolbar','none') 

set(gcf, 'Position', get(0,'Screensize')); 

hold off 

  

%Stress distribution 

[x_rec, y_rec, z_rec] = 

meshgrid(linspace(Xmin,Xmax,100),linspace(Ymin,Ymax,100),linspace(Zma

x,Zmin,abs(Zmin-Zmax)/2+1)); 

sigma_rec = griddata(xgrid,ygrid,zeta,sigmagrid,x_rec,y_rec,z_rec); 

shear_rec = griddata(xgrid,ygrid,zeta,sheargrid,x_rec,y_rec,z_rec); 

  

figure; 

slice(x_rec,y_rec,z_rec,sigma_rec,[],[],[Zmax:-1:Zmin]); 

axis ([Xmin Xmax Ymin Ymax Zmin Zmax]); 

axis equal 

title('Normal Stress (kPa)'); 

set(gcf,'Color',[0.4,0.4,0.4]) 

colorbar 

zoom (3) 

pan on 

set(gcf, 'Position', get(0,'Screensize')); 

figure; 

slice(x_rec,y_rec,z_rec,shear_rec,[],[],[Zmax:-1:Zmin]); 

axis ([Xmin Xmax Ymin Ymax Zmin Zmax]); 

axis equal 

title('Shear Stress (kPa)'); 

set(gcf,'Color',[0.4,0.4,0.4]) 

colorbar 

zoom (3) 

pan on 

set(gcf, 'Position', get(0,'Screensize')); 

 


