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Abstract

The subject of the current thesis is the multiscale analysis of nanocom-

posites reinforced by carbon nanotubes (CNTs) and graphene nanopl-

atelets (GnPs), using the conventional and extended finite element

method (FEM/XFEM). Specifically, various modeling techniques are

hierarchically applied, through different length scales from atomistic

to nano, then to micro and finally to macro-scale, in order to study the

mechanical and damping properties of the nano-reinforced polymer

composites. Simulations of representative volume elements (RVEs) of

nanocomposites are performed, where various stochastic parameters

have been considered in order to account for the real microstructure

geometry of the heterogeneous media.

In the context of carbon nanotube-reinforced composites (CNT-RCs),

the effect of interfacial shear strength (ISS) on the mechanical and

damping properties of the material is investigated. The atomic lattice

of CNTs is modeled using the molecular structural mechanics (MSM)

approach and is reduced to an equivalent beam element (EBE). This

beam is used as the basic building block for the construction of full

length CNTs, which are then embedded in the polymer matrix. Elas-

tic, as well as plastic, material properties are assigned to the EBEs

for modeling their linear or nonlinear behavior, while the Maxwell-

Wiechert material model is used for modeling viscoelasticity of the

polymer. The interfacial load transfer mechanism between the lat-

eral surface of the CNT and the surrounding matrix is taken into ac-

count with a nonlinear bond-slip friction-type model. Finite element

(FE) models of RVEs are constructed comprised of two independent

meshes: a structured with solid elements for the matrix and a series

ix



of embedded EBEs for the full length CNTs. Straight, as well as wavy

CNTs, are considered. In the case of wavy CNTs, random CNT ge-

ometries are generated using the spectral representation method with

evolutionary power spectra (EPS), which are derived from process-

ing scanning electron microscope (SEM) images. Stochastic average

properties are derived through Monte Carlo (MC) simulation. The

mechanical and damping properties of CNT-RCs are assessed on the

basis of sensitivity analyses with respect to various weight fractions

(wf) and ISS values. Numerical results are presented, showing the

significant effect of the ISS, as well as the influence of CNT wavi-

ness, on the damping behavior of CNT-RCs. Then, the multiscale

modeling proceeds to macro-scale through the implementation of a

nonlinear homogenization method. In the context of sequential ho-

mogenization, a novel viscoplastic constitutive model is introduced,

which accounts for anisotropic stiffness and energy dissipation of the

composite due to CNT reinforcement and slip. Sensitivity analysis is

again performed with respect to various wf and ISS values where the

mechanical and damping properties of the homogeneous models are

assessed and compared with direct calculations on detailed fine scale

heterogeneous models.

The other class of materials studied in the current thesis is the graphene

nanoplatelet-reinforced composites (GnP-RCs). Effective elastic prop-

erties are calculated from GnP-RC RVEs through a computational ho-

mogenization method, which accounts for arbitrarily shaped platelet

inclusions. The homogenization combines the extended finite element

method (XFEM) for the microstructural analysis with Monte Carlo

simulation (MCS). The implementation of XFEM is particularly suit-

able for this type of problems since there is no need to generate a

new finite element mesh at each MCS. The inclusions are randomly

distributed and oriented within the medium while their shape is im-

plicitly modeled by the iso-zero of an analytically defined random

level set function, which also serves as the enrichment function in

the framework of XFEM. Hill’s energy condition is satisfied by the
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proposed homogenization method, which involves the generation of a

large number of random RVE realizations. The microstructure geome-

tries of these RVEs include specific volume fraction (vf) of inclusions

with various stochastic parameters (e.g. number, shape, spatial dis-

tribution and orientation). The influence of the inclusion shape on the

effective properties of the random media is highlighted. It is shown

that the statistical characteristics of the effective properties can be

significantly affected by the shape of the inclusions, especially in the

case of large volume fraction and stiffness ratio.
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CONTENTS

Abstract in Greek

PerÐlhyh

To jèma thc paroÔsac didaktorik c diatrib c eÐnai h prosomoÐwsh u-

pì pollaplèc klÐmakec nanosÔnjetwn ulik¸n kai h an�lush aut¸n, me

qr sh tìso thc sumbatik c mejìdou an�lushc me ta peperasmèna stoi-

qeÐa ìso kai thc exeligmènhc mejìdou an�lushc me ta emploutismèna

peperasmèna stoiqeÐa. Sugkekrimèna, oi kathgorÐec twn nanosÔnjetwn

ulik¸n pou melet¸ntai aforoÔn m trec apì jermoplastik� polumer 

enisqumènec eÐte me nanoswl nec �njraka (CNTs), eÐte me nanosw-

matÐdia grafenÐou (GnPs). Gia thn prosomoÐwsh twn eterogen¸n au-

t¸n ulik¸n efarmìzontai ierarqik�, apì thn atomik  sth n�no, èpeita

sth mÐkro, mèqri telik� sth m�kro klÐmaka, diaforetikèc teqnikèc pro-

somoÐwshc. Skopìc eÐnai na anaptuqjeÐ èna kat�llhlo upologistikì

ergaleÐo ikanì gia thn akrib  kai gr gorh prìbleyh twn mhqanik¸n

idiot twn twn sugkekrimènwn nanosÔnjetwn ulik¸n. Sto plaÐsio au-

tì, h mhqanik  sumperifor� antiproswpeutik¸n stoiqeÐwn ìgkou tou

ulikoÔ, pou ephre�zetai apì fainìmena mikrodom c, prosomoi¸netai a-

pì kat�llhla katastatik� montèla, oi energèc par�metroi twn opoÐ-

wn prokÔptoun mèsw miac upologistik c diadikasÐac omogenopoÐhshc.

Sugkekrimèna, to antiproswpeutikì stoiqeÐo ìgkou tou enisqumènou

me nanoswl nec sÔnjetou ulikoÔ prosomoi¸netai stic di�forec klÐ-

makec me qr sh twn ex c mejodologi¸n: a) sthn atomik  klÐmaka me

th mèjodo thc domik c moriak c mhqanik c prosomoi¸netai to atomikì

plègma twn qhmik¸n desm¸n �njraka-�njraka twn nanoswl nwn me è-

na qwrikì plaÐsio apoteloÔmeno apì energeiak� isodÔnamec dokoÔc, b)
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sth n�no klÐmaka me qr sh thc mejìdou twn peperasmènwn stoiqeÐwn

to qwrikì plaÐsio antikajÐstatai apì èna isodÔnamo stoiqeÐo dokoÔ, g)

me qr sh thc teqnik c tou egkibwtismènou stoiqeÐou, en seir� sundede-

mèna isodÔnama stoiqeÐa dokoÔ pou prosomoi¸noun thn gewmetrÐa twn

nanoswl nwn sthn mÐkro klÐmaka egkibwtÐzontai entìc twn trisdi�sta-

twn stere¸n stoiqeÐwn pou prosomoi¸noun thn m tra tou sÔnjetou

ulikoÔ kai d) sth m�kro klÐmaka h sumperifor� thc mikrodom c pro-

somoi¸netai apì èna prwtìtupo ixwdoplastikì katastatikì montèlo.

To montèlo autì lamb�nei upìyin tou thn olÐsjhsh twn nanoswl nwn

�njraka sthn diepif�neia touc me to polumerèc, ìtan mia krÐsimh ti-

m  thc diepifaneiak c diatmhtik c antoq c tou ulikoÔ xeperasteÐ. Ta

arijmhtik� apotelèsmata pou parousi�zontai, katadeiknÔoun thn epÐ-

drash thc kat� b�rouc periektikìthtac se nanoswl nec �njraka, thc

tuqaÐac gewmetrÐac aut¸n, kaj¸c kai thc diepifaneiak c diatmhtik c

antoq c stic telikèc mhqanikèc idiìthtec kai sthn ikanìthta apìsbeshc

enèrgeiac tou sÔnjetou ulikoÔ. Apì thn �llh, to antiproswpeutikì

stoiqeÐo ìgkou tou nanosÔnjetou ulikoÔ pou perièqei nanoswmatÐdia

grafenÐou, prosomoi¸netai me qr sh thc mejìdou twn exeligmènwn pe-

perasmènwn stoiqeÐwn. Oi stoqastikèc par�metroi pou diereun¸ntai

sto plaÐsio twn ulik¸n aut¸n sqetÐzontai me thn tuqaÐa gewmetrÐa

twn nanoswmatidÐwn, thn jèsh touc kai ton prosanatolismì touc mè-

sa sthn m tra. Oi energèc elastikèc par�metroi pou qarakthrÐzoun

thn mhqanik  sumperifor� twn sugkekrimènwn sÔnjetwn ulik¸n prokÔ-

ptoun mèsw omogenopoÐhshc, me qr sh Monte Carlo prosomoi¸sewn.

Ta arijmhtik� apotelèsmata pou parousi�zontai aforoÔn antiprosw-

peutik� stoiqeÐa ìgkou tou sÔnjetou ulikoÔ me diaforetik  kat' ìgko

periektikìtht� se nanoswmatÐdia, kaj¸c kai diaforetikoÔc lìgouc twn

mètrwn elastikìthtac twn ulik¸n thc mikrodom c.
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Extended abstract in Greek

Ekten c PerÐlhyh

{An�lush pollapl¸n klim�kwn

nanosÔnjetwn ulik¸n me qr sh sumbatik¸n

kai exeligmènwn peperasmènwn stoiqeÐwn}

1. Eisagwg 

1.1 Skopìc thc ergasÐac

To jèma thc paroÔsac didaktorik c diatrib c eÐnai h prosomoÐwsh upì pollaplèc

klÐmakec nanosÔnjetwn ulik¸n kai h an�lush aut¸n, me qr sh tìso thc sumbati-

k c mejìdou an�lushc me ta peperasmèna stoiqeÐa ìso kai thc exeligmènhc mejìdou

an�lushc me ta emploutismèna peperasmèna stoiqeÐa. Sugkekrimèna, oi kathgorÐec

twn nanosÔnjetwn ulik¸n pou melet¸ntai aforoÔn m trec apì jermoplastik� po-

lumer  enisqumènec eÐte me nanoswl nec �njraka (CNTs), eÐte me nanoswmatÐdia

grafenÐou (GnPs). Gia thn prosomoÐwsh twn eterogen¸n aut¸n ulik¸n efarmì-

zontai di�forec teqnikèc prosomoÐwshc. Xekin¸ntac apì thn atomik  klÐmaka ìpou

prosomoi¸nontai oi qhmikoÐ desmoÐ tou �njraka kai proqwr¸ntac ierarqik� mèqri

kai thn m�kro klÐmaka, eÐnai dunatìn na prosomoiwjeÐ mèsw kat�llhlhc diadikasÐac

omogenopoÐhshc h mhqanik  sumperifor� olìklhrwn kataskeu¸n apì nanosÔnjeta

ulik�. Gia ton skopì autì, sthn paroÔsa ergasÐa anaptÔssontai kat�llhla ka-

tastatik� montèla pou lamb�noun upìyin touc fainìmena mikrodom c. Oi energèc
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par�metroi twn makroskopik¸n aut¸n montèlwn prokÔptoun apì thn an�lush an-

tiproswpeutik¸n stoiqeÐwn ìgkou (RVEs) twn nanosÔnjetwn ulik¸n. Di�forec

stoqastikèc par�metroi lamb�nontai upìyin kat� thn kataskeu  twn RVEs ìpwc h

tuqaÐa gewmetrÐa twn CNTs kai GnPs, o arijmìc touc, h jèsh kai o prosanatoli-

smìc touc. Met� thn statistik  epexergasÐa twn apotelesm�twn pou prokÔptoun

apì thn an�lush Monte Carlo se èna meg�lo arijmì RVEs tuqaÐac mikrodom c,

ex�gontai ta stoqastik� qarakthristik� twn energ¸n paramètrwn tou ulikoÔ pou

anatÐjentai sto makroskopikì montèlo tou sÔnjetou Ôlikou.

H prosomoÐwsh upì pollaplèc klÐmakec sunjètwn ulik¸n enisqumènwn me na-

noswl nec �njraka (CNT-RCs) xekin� apì thn atomik  klÐmaka kai proqwr� proc

thn n�no klÐmaka mèsw thc antikat�stashc thc moriak c dom c tou nanoswl na

�njraka apì èna qwrikì plaÐsio apoteloÔmeno apì kat�llhla sundedemèna stoi-

qeÐa dokoÔ. Oi idiìthtec twn stoiqeÐwn dokoÔ antistoiqoÔn stic idiìthtec kai thn

sumperifor� tou omoiopolikoÔ desmoÔ metaxÔ twn atìmwn �njraka (C-C). Gia

thn exagwg  twn idiot twn thc dokoÔ efarmìzontai oi arqèc thc domik c moria-

k c mhqanik c (MSM). H mèjodoc aut  proôpojètei thn isodunamÐa twn energei¸n

paramìrfwshc enìc moriakoÔ sust matoc, dhladh thn exÐswsh thc energeak c

èkfrashc pou prokÔptei efarmìzontac tic arqèc thc moriak c mhqanik c me thn

energeiak  èkfrash pou prokÔptei efarmìzontac tic arqèc thc domik c mhqanik c.

H met�bash apì thn atomik  klÐmaka sthn n�no klÐmaka kai apì ekeÐ sthn mÐkro

klÐmaka gÐnetai me b�sh tic arqèc thc mhqanik c tou suneqoÔc mèsou. Sugkekri-

mèna, to qwrikì plaÐsio pou antiproswpeÔei to moriakì plègma tou nanoswl na

upob�lletai se axonikì efelkusmì, k�myh kai strèyh me stìqo h apìkrish thc na-

nodom c tou CNT na antikatastajeÐ me èna isodÔnamo, wc proc thn mhqanik  sum-

perifor�, stoiqeÐo dokoÔ (EBE). Gia thn kataskeu  meg�lou m kouc nanoswl nwn

sthn mÐkro klÐmaka qrhsimopoioÔntai en seir� sundedemèna isodÔnama stoiqeÐa do-

k¸n, EBEs. Me ton trìpo autì mporoÔn na kataskeuastoÔn eujÔgrammoi all�

kai tuqaÐac kumatoeidoÔc morf c nanoswl nec, h gewmetrÐa twn ìpoiwn prokÔptei

me thn efarmog  miac kainotìmac stoqastik c diadikasÐac. Sugkekrimèna, ta tu-

qaÐa sq mata twn CNTs prosomoi¸nontai san èna mh omogenèc stoqastikì pedÐo,

qrhsimopoi¸ntac thn mèjodo thc fasmatik c apeikìnishc se sunduasmì me èna exe-

liktikì f�sma enèrgeiac (EPS). Mèsw thc epexergasÐac enìc antiproswpeutikoÔ

arijmoÔ eikìnwn hlektronikoÔ mikroskopÐou s�rwshc twn CNTs prokÔptoun oi

xx



statistikèc idiìthtec tou exeliktikoÔ f�smatoc enèrgeiac.

'Ena axioshmeÐwto qarakthristikì thc proteinìmenhc diadikasÐac prosomoÐw-

shc eÐnai ìti h allhlepÐdrash pou parathreÐtai sthn diepif�neia twn CNTs kai

thc perib�llousac m trac lamb�netai upìyin tìso apì to mikromontèlo ìso kai

apì to telikì omogenèc katastatikì montèlo tou sÔnjetou ulikoÔ. 'Oson afo-

r� sto mikromontèlo h diepifaneiak  aut  allhlepÐdrash ulopoieÐtai mèsw enìc

montèlou trib c, pou basÐzetai se èna nìmo olÐsjhshc-proskìllhshc. O nìmoc

autìc enswmat¸netai ston k¸dika twn peperasmènwn stoiqeÐwn kai sunep¸c odh-

geÐ sthn diamìrfwsh enìc sust matoc mh grammik¸n exis¸sewn, oi opoÐec lÔnontai

me qr sh tou mh grammikoÔ algorÐjmou twn Newton-Raphson. 'Oson afor� sto

omogenèc m�kromontèlo h eswterik  olÐsjhsh twn nanoswl nwn mèsa sthn m tra

lamb�netai upìyin mèsw thc ulopoÐhshc enìc kat�llhlou plastikoÔ montèlou me

kinhmatikì nìmo kr�tunshc kai anisotropik  epif�neia diarro c.

'Ena �llo shmantikì z thma pou antimetwpÐzetai sthn paroÔsa diatrib  eÐnai

h akrib c prìbleyh thc ixwdoelastik c sumperifor�c tou jermoplastikoÔ ulikoÔ

thc m trac tou nanosÔnjetou ulikoÔ. Sugkekrimèna to polumerèc ulikì pou qrh-

simopoieÐtai sthn ergasÐa eÐnai h poluaijerik  ketình poly-ether-ether-ketone  

PEEK, èna krustallikì jermoplastikì ulikì me axioshmeÐwtec mhqanikèc idiìth-

tec. Gia thn akrib  prìbleyh thc ixwdoelastik c sumperifor�c polumer¸n, ìpwc

to PEEK, pou parousi�zoun pollaploÔc qrìnouc qal�rwshc apaitoÔntai exeligmè-

na katastatik� ixwdoelastik� montèla. Gia ton lìgo autì sthn paroÔsa ergasÐa

qrhsimopoieÐtai to montèlo twn Maxwell-Wiechert, pou apoteleÐtai apì mia sei-

r� par�llhla sundedemènwn aposbest rwn kai elathrÐwn. Gia thn bajmonìmhsh

tou sugkekrimènou montèlou diex�gontai peir�mata dunamik c mhqanik c an�lushc

(DMA) apì ta opoÐa prokÔptoun oi stajerèc twn elathrÐwn kai oi qrìnoi qal�rw-

shc pou antistoiqoÔn stouc aposbest rec. Sthn sunèqeia diex�gontai arijmhtikèc

prosomoi¸seic dokimÐwn apì PEEK se kìpwsh, ta apotelèsmata twn opoÐwn sug-

krÐnontai me antÐstoiqa peiramatik� gia thn epibebaÐwsh thc orj c bajmonìmhshc

tou ixwdoelastikoÔ montèlou.

Gia thn an�lush twn CNT-RC RVEs qrhsimopoieÐtai h mèjodoc twn pepera-

smènwn stoiqeÐwn (FEM). Sugkekrimèna, h m tra diakritopoieÐtai me trisdi�stata

stoiqeÐa suneqoÔc mèsou en¸ ta CNTs me stoiqeÐa dokoÔ. Epiplèon, me qr sh thc

teqnik c tou egkibwtismènou stoiqeÐou apofeÔgontai polÔploka dÐktua peperasmè-
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nwn stoiqeÐwn. Me thn mèjodo aut  to mhtr¸o stibarìthtac tou egkibwtismènou

stoiqeÐou dokoÔ enswmat¸netai sto mhtr¸o stibarìthtac tou stereoÔ stoiqeÐou

pou to perièqei. Sunep¸c, h diadikasÐa aut  epitrèpei thn diakritopoÐhsh tou sÔn-

jetou ulikoÔ apì dÔo anex�rthta plègmata, èna gia thn m tra kai èna �llo gia

touc nanoswl nec. To pleonèkthma thc diadikasÐa aut c eÐnai h meÐwsh tou upo-

logistikoÔ kìstouc kaj¸c epitaqÔnetai h proepexergasÐa (post-processing) tou

montèlou, h mìrfwsh tou sunolikoÔ mhtr¸ou stibarìthtac kai h epÐlush tou su-

st matoc twn exis¸sewn pou prokÔptoun. Sthn paroÔsa diatrib  diereun�tai h

epÐdrash thc diepifaneiak c t�shc antoq c (ISS) stic mhqanikèc idiìthtec kai sthn

ikanìthta apìsbeshc talant¸sewn tou CNT-RC ulikoÔ, mèsw prosomoi¸sewn se

RVEs me diaforetikì perieqìmeno kat� b�roc (wf) se CNTs. Ta arijmhtik� a-

potelèsmata pou parousi�zontai sthn ergasÐa epibebai¸noun ton shmantikì rìlo

thc diadikasÐac tou {functionalization} kai tou {straightening} twn CNTs prin

thn an�meix  touc me to polumerèc, ¸ste telik� to paragìmeno nanosÔnjeto ulikì

na parousi�zei bèltistec mhqanikèc idiìthtec.

H makroskopik  sumperifor� twn CNT-RCs mporeÐ na problefjeÐ me arket�

kal  akrÐbeia mèsw enìc prwtìtupou katastatikoÔ montèlou pou proteÐnetai sthn

paroÔsa diatrib . Sta plaÐsia thc an�lushc pollapl¸n klim�kwn, to montèlo

autì qrhsimopoieÐtai gia thn met�bash apì thn mikroklÐmaka sthn m�kroklÐmaka

kai eÐnai ikanì gia thn prìbleyh thc ixwdoplastik c sumperifor�c tou sÔnjetou

ulikoÔ, h opoÐa proèrqetai apì thn ixwdoelastik  sumperifor� thc m trac, thn

elastik  enÐsqush pou prosfèroun ta CNTs kaj¸c kai thn apìsbesh thc enèr-

geiac paramìrfwshc lìgw tou mhqanismoÔ thc olÐsjhshc twn CNTs mèsa sthn

m tra. To katastatikì autì montèlo, pou sundu�zei to ixwdoelastikì montèlo

twn Maxwell-Wiechert me to anisotropikì montèlo plastikìthtac tou Hill, mpo-

reÐ na problèyei thn anisotropik  enÐsqush kai olÐsjhsh pou prokaleÐ h tuqaÐa

katanom  twn CNTs entìc thc ixwdoelastik c m trac tou sÔnjetou ulikoÔ. Oi

energèc par�metroi tou katastatikoÔ montèlou pou aforoÔn sta ixwdoelastik�

qarakthristik�, thn arqik  epif�neia diarro c kai ton kinhmatikì nìmo kr�tunshc

prokÔptoun mèsw miac arijmhtik c diadikasÐac bajmonìmhshc pou perilamb�nei a-

nalÔseic montèlwn RVEs sthn mikroklÐmaka. Ta arijmhtik� apotelèsmata pou pa-

rousi�zontai katadeiknÔoun thn apotelesmatikìthta thc proteinìmenhc ierarqik c

prosomoÐwshc pollapl¸n klim�kwn gia thn prìbleyh thc domik c sumperifor�c
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kataskeu¸n apì polumer  ulik� enisqumèna me nanoswl nec �njraka. H proteinì-

menh aut  mèjodoc apoteleÐ èna isqurì upologistikì ergaleÐo me to opoÐo meg�lhc

klÐmakac kataskeuèc apì CNT-RC mporoÔn na analujoÔn me akrÐbeia kai taqÔth-

ta. To pleonèkthma thc eÐnai to gegonìc ìti, fainìmena mikroklÐmakac lamb�nontai

upìyin apì to omogenèc montèlo mèsw kat�llhlwn katastatik¸n nìmwn ulikoÔ.

H �llh kathgorÐa nanosÔnjetou ulikoÔ pou melet�tai sthn paroÔsa ergasÐa

eÐnai polumer  enisqumèna me nanoswmatÐdia grafenÐou (GnPs). Sta sÔnjeta aut�

ulik� pou eÐnai gnwst� wc GnP-RCs ta nanoswmatÐdia apoteloÔntai apì stoibag-

mèna fÔlla grafenÐou pou sundèontai metaxÔ touc me asjeneÐc dun�meic van der

Waals. Gia thn prosomoÐwsh thc mikrodom c twn GnP-RCs qrhsimopoioÔntai ta

exeligmèna peperasmèna stoiqeÐa (XFEM), en¸ gia ton prosdiorismì twn energ¸n

paramètrwn tou makromontèlou ekteleÐtai ènac meg�loc arijmìc apì Monte Carlo

(MC) prosomoi¸seic. Epomènwc, h diadikasÐa thc omogenopoÐhshc sta GnP-RCs

basÐzetai ston sunduasmì thc mejìdou XFEM me MC prosomoi¸seic. H prwto-

tupÐa thc paroÔsac ergasÐac eÐnai ìti melet�ei thn epÐdrash tou tuqaÐou sq matoc

twn GnPs stic energèc paramètrouc tou omogenoÔc sÔnjetou ulikoÔ. Analuti-

kìtera, to tuqaÐo sq ma twn nanoswmatidÐwn prosomoi¸netai mèsw mia analutik�

orismènhc tuqaÐac sun�rthshc (level set function), h opoÐa sto plaÐsio thc mejì-

dou XFEM qrhsimopoieÐtai kai wc sun�rthsh emploutismoÔ tou tasikoÔ pedÐou twn

stoiqeÐwn. Apì ta arijmhtik� apotelèsmata pou parousi�zontai katadeiknÔetai h

shmantik  epÐdrash tou sq matoc twn egkleism�twn sto telikì sÔnjeto ulikì,

gegonìc pou den lamb�nontan upìyin mèqri t¸ra kat� thn diadikasÐa paragwg c

tou ulikoÔ. To sÔnhjec  tan na aplopoieÐtai h morf  twn egkleism�twn kai na

antikajÐstatai apì idanik� sq mata ìpwc sfaÐrec kai elleÐyeic. H aplopoihmènh

aut  prosèggish ìpwc apodeiknÔetai sthn paroÔsa ergasÐa odhgeÐ se shmanti-

kì sf�lma kat� ton prosdiorismì twn mhqanik¸n idiot twn tou telikoÔ sÔnjetou

ulikoÔ.

1.2 Stìqoi thc ergasÐac

O kÔrioc stìqoc thc paroÔsac didaktorik c diatrib c eÐnai na sundu�sei diaforeti-

kèc teqnikèc prosomoÐwshc upì pollaplèc klÐmakec kai na anaptÔxei nèa katasta-

tik� montèla ikan� na prosomoi¸soun thn mhqanik  sumperifor� nanosÔnjetwn
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ulik¸n me akrÐbeia kai taqÔthta. Sugkekrimèna, to apotèlesma thc ergasÐac eÐnai

h an�ptuxh enìc isquroÔ upologistikoÔ ergaleÐou pou mporeÐ na efarmosteÐ gia

thn prosomoÐwsh thc sumperifor�c twn dÔo kuriìterwn kathgori¸n nanosÔnjetwn

ulik¸n: polumer  enisqumèna me nanoswl nec �njraka (CNT-RCs) kai polumer 

enisqumèna me nanoswmatÐdia grafenÐou (GnP-RCs). Eidikìtera oi epimèrouc stì-

qoi thc ergasÐac sunoyÐzontai sta ex c:

1. Efarmog  thc mejìdou domik c moriak c mhqanik c (MSM) gia thn proso-

moÐwsh thc atomik c dom c nanoswl nwn �njraka wc qwrikì plaÐsio.

2. Upologismìc thc grammik c/mh grammik c sumperifor�c isodÔnamou stoiqeÐ-

ou dokoÔ (EBE) gia thn antikat�stash tou qwrikoÔ plaisÐou tou nanosw-

l na.

3. Efarmog  miac nèac stoqastik c diadikasÐac pou basÐzetai sthn epexergasÐa

eikìnwn hlektronikoÔ mikroskopÐou s�rwshc (SEM) gia thn prosomoÐwsh

nanoswl nwn tuqaÐac kumatoeidoÔc morf c.

4. An�ptuxh kai enswm�twsh montèlou olÐsjhshc (bond-slip model) se k¸dika

peperasmènwn stoiqeÐwn gia thn prosomoÐwsh thc olÐsjhshc twn nanosw-

l nwn entìc thc m trac tou CNT-RC ulikoÔ.

5. Efarmog  thc teqnik c tou enswmatwmènou stoiqeÐou (embedded element te-

chnique) gia thn diakritopoÐhsh antiproswpeutik¸n stoiqeÐwn ìgkou (RVEs)

tou CNT-RC ulikoÔ kai thn paragwg  plegm�twn peperasmènwn stoiqeÐwn

apl c gewmetrÐac.

6. UlopoÐhsh tou ixwdoelastikoÔ katastatikoÔ montèlou twn Maxwell-Wiechert

gia thn prosomoÐwsh thc ixwdoelastik c sumperifor�c tou jermoplastikoÔ

ulikoÔ thc m trac.

7. DiereÔnhsh thc epÐdrashc stic mhqanikèc idiìthtec kai sthn ikanìthta apì-

sbeshc enèrgeiac tou CNT-RC ulikoÔ twn ex c paramètrwn: a) kat� b�roc

periektikìthta se nanoswl nec �njraka (wf%), b) diatmhtik  antoq  sthn

diepif�neia metaxÔ nanoswl na kai polumeroÔc (ISS) kai g) tuqaÐa kumatoei-

d  gewmetrÐa twn nanoswl nwn �njraka (CNT waviness).
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8. An�ptuxh kai ulopoÐhsh ixwdoplastikoÔ katastatikoÔ montèlou gia thn pro-

somoÐwsh thc omogenoÔc mhqanik c sumperifor�c tou CNT-RC ulikoÔ lam-

b�nontac upìyin fainìmena mikrodom c: a) anisotropik  enÐsqush, b) ixwdo-

elastik  sumperifor� thc m trac kai g) anisotropik  apìsbesh enèrgeiac

lìgw olÐsjhshc twn nanoswl nwn.

9. Efarmog  thc mejìdou twn exeligmènwn peperasmènwn stoiqeÐwn (XFEM)

gia thn prosomoÐwsh thc mikrodom c antiproswpeutik¸n stoiqeÐwn ìgkou

tou GnP-RC ulikoÔ.

10. An�ptuxh arijmhtik c diadikasÐac omogenopoÐhshc thc mhqanik c sumperifo-

r�c tou GnP-RC ulikoÔ, me efarmog  meg�lou arijmoÔ Monte Carlo proso-

moi¸sewn se antiproswpeutik� stoiqeÐa ìgkou pou perièqoun nanoswmatÐdia

tuqaÐac gewmetrÐac.

11. DiereÔnhsh thc epÐdrashc stic omogeneÐc elastikèc idiìthtec tou GnP-RC

ulikoÔ twn ex c paramètrwn: a) tuqaÐo sq ma twn nanoswmatidÐwn b) pe-

riektikìthta kat� ìgko se nanoswmatÐdia (vf%) kai g) diaforetikìc lìgoc

mètrou elastikìthtac twn sustatik¸n ulik¸n tou sÔnjetou (stiff and com-

pliant inclusions).

2. Nanoswl nec �njraka

2.1 Dom  nanoswl nwn �njraka

'Enac monìtoiqoc nanoswl nac �njraka (SWCNT) prosomoi�zetai me mia swlh-

noeid  kataskeu  pou prokÔptei apì thn perièlash enìc fÔllou grafenÐou. Oi

polÔtoiqoi nanoswl nec �njraka (MWCNTs) apoteloÔntai apì omìkentrouc SW-

CNTs diaforetik c aktÐnac. H atomik  dom  tou nanoswl na prosdiorÐzetai apì

èna qarakthristikì di�nusma ~Ch (chiral vector), to opoÐo mazÐ me thn gwnÐa θ

(chiral angle) kajorÐzei thn dieÔjunsh dÐplwshc tou fÔllou grafenÐou. 'Opwc

faÐnetai sto sq ma 1, ènac nanoswl nac me chirality (n, m) prokÔptei kìbontac

to fÔllo grafenÐou kata m koc twn diakekommènwn gramm¸n kai dipl¸nont�c to

kata thn dieÔjunsh tou qarakthristikoÔ dianÔsmatoc. To di�nusma autì orÐzetai
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wc ex c:

~Ch = n ~α1 +m ~α2 (1)

kai h gwnÐa θ tou qarakthristikoÔ dianÔsmatoc dÐnetai apì thn exÐswsh

θ = atan

( √
3 m

2n+m

)
(2)

ìpou ~α1 kai ~α2 eÐnai ta dianÔsmata b�shc pou faÐnontai sto sq ma 1 en¸ (n, m)

eÐnai oi par�metroi pou qarakthrÐzoun to chirality tou nanoswl na.

Sq ma 1: Atomikì plègma fÔllou grafenÐou: Prosdiorismìc tou chiral vector ~Ch
apì ta dianÔsmata b�shc ~α1 kai ~α2

An�loga me tic timèc tou zeÔgouc (n,m) oi nanoswl nec eÐnai kai diaforetikoÔ

tÔpou. Sunep¸c, gia n = m o nanoswl nac qarakthrÐzetai wc {armchair} kai h

gwnÐa θ eÐnai 30◦ en¸ gia n 6= 0, m = 0 o nanoswl nac qarakthrÐzetai wc {zig-zag}

kai h gwnÐa θ eÐnai 0◦. Gia opoiod pote �llo sunduasmì tim¸n twn paramètrwn n

kai m h gwnÐa θ ∈ (0◦, 30◦) kai o nanoswl nac qarakthrÐzetai wc {chiral}. Sto

sq ma 2 parousi�zontai oi treÐc diaforetikoÐ tÔpoi nanoswl nwn.
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Sq ma 2: Atomik  dom  nanoswl na tÔpou: a) armchair, b) zig-zag kai c) chiral

2.2 ProsomoÐwsh nanoswl nwn �njraka

Gia thn prosomoÐwsh twn nanoswl nwn �njraka treÐc eÐnai oi kÔriec teqnikèc pou

qrhsimopoioÔntai: a) h moriak  prosomoÐwsh b) h prosomoÐwsh suneqoÔc mèsou

kai g) h ubridik  mèjodoc pou basÐzetai ston sunduasmì aut¸n. Sthn paroÔsa

ergasÐa efarmìzetai h mèjodoc thc domik c moriak c mhqanik c h opoÐa empÐptei

sthn trÐth kathgorÐa kai qrhsimopoieÐtai eurÔtera lìgw thc ikanìtht�c thc na

prosomoi¸nei meg�lhc klÐmakac montèla me akrÐbeia kai taqÔthta.

2.2.1 Domik  moriak  mhqanik 

H mèjodoc thc domik c moriak c mhqanik c basÐzetai sthn antikat�stash twn al-

lhlepidr�sewn tou qhmikoÔ omoiopolikoÔ desmoÔ �njraka-�njraka (C-C) me èna

isodÔnamo domikì stoiqeÐo, sugkekrimèna me mia energeiak� isodÔnamh dokì. Sto

sq ma 3 eikonÐzontai oi endoatomikèc allhlepidr�seic twn desm¸n oi opoÐec sunei-

sfèroun sthn sunolik  dunamik  enèrgeia tou moriakoÔ sust matoc:

U =
∑

Ur +
∑

Uθ +
∑

Uφ +
∑

Uω +
∑

UvdW (3)

Ur, Uθ, Uφ, Uω kai UvdW eÐnai h enèrgeia ex' aitÐac tou efelkusmoÔ tou desmoÔ,
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thc metabol c thc gwnÐac k�myhc, thc metabol c thc dÐedrhc gwnÐac strèyhc, thc

ektìc epipèdou strèyhc kai twn dun�mewn van der Waals antÐstoiqa. Gia thn èk-

frash twn energei¸n aut¸n èqoun protajeÐ di�fora dunamik� ìpwc gia par�deigma

to dunamikì tou Morse, twn Tersoff-Brenner, Lenard-Jones k.a. Sthn paroÔsa me-

lèth gÐnetai h upìjesh twn mikr¸n paramorf¸sewn tou nanoswl na kai sunep¸c

oi allhlepidr�seic twn atìmwn �njraka jewroÔntai grammikèc, epitrèpontac thn

èkfrash twn energeiak¸n ìrwn mèsw armonik¸n sunart sewn thc morf c:

Ur =
1

2
kr (r − r0)2 =

1

2
kr (∆r)2 , (4)

Uθ =
1

2
kθ (θ − θ0)2 =

1

2
kθ (∆θ)2 , (5)

Uτ = Uφ + Uω =
1

2
kτ (∆φ)2 (6)

ìpou kr , kθ kai kτ eÐnai oi stajerèc twn dun�mewn antÐstashc pou antistoiqoÔn

stic paramorf¸seic twn desm¸n lìgw metabol c thc axonik c apìstashc ∆r, thc

gwnÐac k�myhc ∆θ kai thc gwnÐac strèyhc ∆φ.

Sq ma 3: Endoatomikèc allhlepidr�seic: a) efelkusmìc, b) k�myh, c) dÐedrh strè-
yh, d) ektìc epipèdou strèyh kai e) van der Waals

Me b�sh tic arqèc thc domik c mhqanik c oi paramorf¸seic twn desm¸n anti-

stoiqoÔn sthn paramìrfwsh miac suneq c dokoÔ arqikoÔ m kouc L pou upob�lle-

tai se axonik  fìrtish N , kajar  k�myh M kai kajar  strèyh T , metab�lontac

antÐstoiqa to axonikì m koc thc kat� ∆L, thn gwnÐa k�myhc twn �krwn thc kat�

α kai thn streptik  gwnÐa thc kat� ∆β (sq ma 4). H enèrgeia paramìrfwshc thc
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dokoÔ pou antistoiqeÐ se k�je fìrtish dÐnetai apì tic exis¸seic:

UA =
1

2

∫ L

0

N2

EA
dL =

1

2

N2L

EA
=

1

2

EA

L
(∆L)2, (7)

UM =
1

2

∫ L

0

M2

EI
dL =

1

2

M2L

EI
=

1

2

EI

L
(2α)2, (8)

UT =
1

2

∫ L

0

T 2

GJ
dL =

1

2

T 2L

GJ
=

1

2

GJ

L
(∆β)2 (9)

Sundu�zontac tic energeiakèc ekfr�seic pou prokÔptoun apì thn domik  mhqanik 

(Ex.4-6) me autèc pou prokÔptoun apì thn moriak  mhqanik  (Ex.7-9), mporoÔn

na upologistoÔn h axonik , kamptik  kai streptik  akamyÐa thc dokoÔ me b�sh

gnwstèc dun�meic antÐstashc wc ex c:

EA = krL, EI = kθL, GJ = kτL (10)

Sq ma 4: Paramorf¸seic dokoÔ se: a) efelkusmì, b) k�myh kai c) strèyh

2.2.2 IsodÔnamo stoiqeÐo dokoÔ

Gia thn meÐwsh tou upologistikoÔ fìrtou kat� thn epÐlush tou nanoswl na pou

prosomoi¸jhke me thn mèjodo MSM, to qwrikì plaÐsio pou sqhmatÐzoun oi dokoÐ

pou anaparistoÔn touc qhmikoÔc desmoÔc, antikajÐstatai ek nèou apì èna isodÔ-

namo stoiqeÐo dokoÔ (EBE). Gia ton kajorismì twn stajer¸n akamyÐac tou EBE

to qwrikì plaÐsio upob�lletai se mia seir� fortÐsewn pou perilamb�nei axonikì

efelkusmì, kajar  k�myh kai strèyh. Sto sq ma 5 diakrÐnontai ta fortÐa kai

oi sunoriakèc sunj kec pou efarmìzontai sto qwrikì plaÐsio tou CNT se k�-

je mÐa apì tic peript¸seic fìrtishc. Gia thn exagwg  twn akamyi¸n tou EBE

xxix



EKTENHS PERILHYH

qrhsimopoioÔntai oi exis¸seic:

(EA)eq =
FxL0

ux
, (EI)eq =

Fy
3uy

L3
0, (GJ)eq =

T

φ
L0 (11)

Sq ma 5: FortÐa kai sunoriakèc sunj kec sto qwrikì plaÐsio tou CNT se: a)
efelkusmì, b) k�myh kai c) strèyh

Epilègontac èna sugkekrimèno sq ma gia thn diatom  thc isodÔnamhc dokoÔ u-

pologÐzontai oi qarakthristikèc par�metroÐ thc ìpwc to embadìn diatom c Aeq,

h kamptik  rop  Ieq kai h polik  rop  adr�neiac Jeq. Sthn sunèqeia apì tic

Ex. (11) upologÐzontai to mètro elastikìthtac E kai to mètro di�tmhshc G tou

EBE. Sta sq mata 6a kai 6b anaparist�nontai oi timèc tou mètrou elastikìthtac

kai tou mètrou di�tmhshc antÐstoiqa se sqèsh me thn di�metro nanoswl nwn tÔ-

pou {armchair} kai {zig-zag} swlhnwt c diatom c. O lìgoc m koc/di�metroc twn

nanoswl nwn eÐnai se ìlec tic peript¸seic perÐpou dèka.
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Sq ma 6: Metabol  mètrou a) elastikìthtac kai b) di�tmhshc nanoswl nwn tÔpou
{armchair} kai {zig-zag} swlhnwt c diatom c wc proc thn di�metro touc

3. Jermoplastik  m tra

Ta jermoplastik� ulik� qrhsimopoioÔntai eurèwc sthn kataskeu  sÔnjetwn uli-

k¸n wc m trec lìgw twn exairetik¸n mhqanik¸n idiot twn touc kai thc eÔkolhc

katergasÐa touc. 'Ena �llo shmantikì pleonèkthm� thc qr shc touc eÐnai h gr -

gorh apìsbesh enèrgeiac se talant¸seic. Sthn paroÔsa ergasÐa qrhsimopoieÐtai

h poluaijerik  ketình {poly-ether-ether-ketone}   {PEEK}. To sugkekrimèno u-

likì ìpwc kai ta perissìtera polumer  parousi�zoun ixwdoelastik  sumperifor�,

dhlad  h apìkris  touc exart�tai apì thn qronik  di�rkeia thc fìrtishc, ton ruj-

mì thc paramìrfwshc kai thn èntash tou megèjouc thc paramìrfwshc. Gia thn

prosomoÐwsh thc ixwdoelastik c sumperifor�c efarmìzontai ta basik� montèla

elathrÐwn kai aposbest rwn se kat�llhlouc sunduasmoÔc.

Sugkekrimèna, gia thn prosomoÐwsh tou PEEK qrhsimopoi jhke to ixwdoela-

stikì montèlo twn Maxwell-Wiechert to opoÐo mporeÐ na problèyei pollaploÔc

qrìnouc qal�rwshc gia to ulikì. Sto sq ma 7 parousi�zetai h monodi�stath ana-

par�stash tou sugkekrimènou montèlou. Prìkeitai gia N par�llhla sundedemèna

epimèrouc stoiqeÐa Maxwell (elat rio Ei se en seir� sÔndesh me aposbest ra ni)

kai se par�llhlh sÔndesh me elat rio E∞. To sugkekrimèno montèlo se peÐrama

qal�rwshc, ìpou mia stajer  paramìrfwsh ε̂(0) epib�lletai gia makrì qronikì
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di�sthma sto dokÐmio ulikoÔ, problèpei thn ex c qronik  sun�rthsh thc t�shc:

σ̂(t) = E∞ε̂(0) +
N∑
j=1

Eje
− t
τj ε̂(0) (12)

ìpou τj eÐnai o qrìnoc qal�rwshc pou antistoiqeÐ sto jth Maxwell stoiqeÐo tou

montèlou. H qarakthristik  exÐswsh pou dÐnei to mètro qal�rwshc tou ulikoÔ

ekfr�zetai apì thn parak�tw qronik  sun�rthsh:

Γ̂(t) = E∞ +
N∑
j=1

Eje
− t
τj (13)

apì thn Ex. (13) prokÔptoun to braqÔqrono kai to makrìqrono mètro qal�rwshc

antÐstoiqa wc ex c:

Γ̂0 = lim
t→0

Γ̂(t) = E∞ +
N∑
j=1

Ej, (14)

Γ̂∞ = lim
t→∞

Γ̂(t) = E∞ (15)

Sq ma 7: Ixwdoelastikì montèlo Maxwell-Wiechert
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3.1 Bajmonìmhsh montèlou Maxwell-Wiechert

Gia thn bajmonìmhsh enìc ixwdoelastikoÔ ulikoÔ pou prosomoi¸netai apì to ka-

tastatikì montèlo twn Maxwell-Wiechert qrhsimopoioÔntai peiramatik� apotelè-

smata pou prokÔptoun apì dunamikèc mhqanikèc metr seic (DMA). Sta peir�mata

aut� to ulikì upob�lletai se enallassìmenh armonik  paramìrfwsh entìc enìc

eurÔ f�smatoc suqnot twn ω. Me kat�llhlec metr seic ex�gontai se k�je suqnì-

thta ta dunamik� mètra apoj keushc Γ̄′ kai apwlei¸n Γ̄′′. AntÐstoiqa, ta dunamik�

mètra pou upologÐzontai arijmhtik� apì to katastatikì montèlo dÐnontai apì tic

exis¸seic:

Γ′ = E
ω2τ 2

1 + ω2τ 2
, (16)

Γ′′ = E
ωτ

1 + ω2τ 2
(17)

Mèsw thc elaqistopoÐhshc thc parak�tw sun�rthshc sf�lmatoc prokÔptoun oi

par�metroi tou ixwdoelastikoÔ montèlou Ej, nj

R2 =
M∑
i=1

1

Γ̂2
∞

[(
Γ′ − Γ̄′

)2

i
+
(
Γ′′ − Γ̄′′

)2

i

]
(18)

M eÐnai o arijmìc twn peiramatik¸n metr sewn upì diaforetikèc suqnìthtec ω.

Sta sq mata 8 kai 9 parousi�zontai oi peiramatikèc kai oi arijmhtikèc kampÔ-

lec twn dunamik¸n mètrwn apoj keushc kai apwlei¸n antÐstoiqa pou aforoÔn to

PEEK. Oi timèc touc dÐnontai gia èna eurÔ f�sma suqnot twn ω. Apì thn sÔg-

krish twn peiramatik¸n kai arijmhtik¸n kampul¸n diapist¸netai ìti to montèlo

twn Maxwell-Wiechert problèpei me akrÐbeia thn ixwdoelastik  sumperifor� tou

PEEK se k�je perÐptwsh suqnìthtac fìrtishc.

xxxiii



EKTENHS PERILHYH

Sq ma 8: Dunamikì mètro apoj keushc: peiramatik  vs arijmhtik  kampÔlh

Sq ma 9: Dunamikì mètro apwlei¸n: peiramatik  vs arijmhtik  kampÔlh

4. SÔnjeta ulik� enisqumèna me nanoswl nec

�njraka

Oi nanoswl nec �njraka, lìgw twn exairetik¸n mhqanik¸n idiot twn touc, tou

meg�lou lìgou m kouc proc di�metro kai thn qamhl  puknìtht� touc, apoteloÔn
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idanik� stoiqeÐa gia thn enÐsqush polumer¸n, sumb�llontac ètsi sthn kataskeu 

prohgmènwn nanosÔnjetwn ulik¸n. Sthn atomik  klÐmaka h allhlepÐdrash tou

moriakoÔ plègmatoc twn CNTs me tic moriakèc alusÐdec tou polumeroÔc gÐnetai

mèsw asjen¸n dun�mewn van der Waals. Kat� thn fìrtish tou sÔnjetou ulikoÔ

oi desmoÐ autoÐ lÔontai sqedìn akariaÐa me apotèlesma na parathreÐtai sqetik 

olÐsjhsh sthn diepif�neia metaxÔ twn CNTs kai thc jermoplastik c m trac. Lì-

gw tou gegonìtoc autoÔ, h poiìthta thc enÐsqushc pou prosfèroun ta CNTs kai

h anamenìmenh beltÐwsh twn mhqanik¸n idiot twn tou sÔnjetou ulikoÔ den eÐnai

ikanopoihtik . To prìblhma diorj¸netai efarmìzontac eidikèc teqnikèc energopoÐ-

hshc (functionalization) twn atìmwn �njraka sthn pleurik  epif�neia twn CNTs,

¸ste na sqhmatÐsoun isquroÔc qhmikoÔc desmoÔc me tic moriakèc alusÐdec tou po-

lumeroÔc. Wc apotèlesma, h diepifaneiak  diatmhtik  antoq  (ISS) aux�netai, me

sunèpeia ta CNTs na paramènoun sundedemèna me thn m tra akìmh kai se meg�lec

dun�meic fìrtishc tou sÔnjetou ulikoÔ, prosfèrontac ètsi bèltisth akamyÐa.

Sthn paroÔsa ergasÐa melet�tai h epÐdrash tou ISS stic mhqanikèc idiìthtec

kai sthn aposbenìmenh enèrgeia tal�ntwshc tou sÔnjetou ulikoÔ me qr sh proso-

moi¸sewn upì pollaplèc klÐmakec. Sugkekrimèna, h upologistik  diadikasÐa pe-

rilamb�nei prosomoi¸seic sthn atomik  klÐmaka ìpou o desmìc �njraka-�njraka

prosomoi¸netai wc stoiqeÐo dokoÔ, sthn n�no klÐmaka ìpou to moriakì plègma

tou nanoswl na �njraka prosomoi¸netai wc qwrikì plaÐsio kai sthn mÐkro klÐ-

maka ìpou gia thn prosomoÐwsh tou RVE tou sÔnjetou ulikoÔ qrhsimopoioÔntai

trisdi�stata stere� stoiqeÐa gia thn m tra kai en seir� sundedemèna isodÔnama

stoiqeÐa dok¸n gia touc nanoswl nec. H an�lush upì pollaplèc klÐmakec su-

neqÐzetai èwc kai thn makro klÐmaka, ìpou mèsw thc efarmog c miac prwtìtuphc

upologistik c diadikasÐac omogenopoÐhshc kai thn bajmonìmhsh enìc nèou ixwdo-

plastikoÔ katastatikoÔ montèlou eÐnai dunat  h prìbleyh thc sumperifor�c tou

mikromontèlou. Sto sq ma 10 parousi�zetai grafik� h prosomoÐwsh tou sÔnjetou

ulikoÔ stic di�forec klÐmakec.

4.1 ProsomoÐwsh tou CNT-RC RVE

H mikrodom  tou antiproswpeutikoÔ stoiqeÐou ìgkou tou nanosÔnjetou ulikoÔ

prosomoi¸netai me qr sh thc klasik c mejìdou twn peperasmènwn stoiqeÐwn.
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Sq ma 10: ProsomoÐwsh upì pollaplèc klÐmakec twn CNT-RCs

Sugkekrimèna, gia thn diakritopoÐhsh thc jermoplastik c m trac qrhsimopoioÔn-

tai trisdi�stata stere� stoiqeÐa sta opoÐa anatÐjetai to ixwdoelastikì katasta-

tikì montèlo twn Maxwell-Wiechert pou analÔjhke sthn enìthta 3. H gewmetrÐa

twn CNTs anaparÐstatai me en seir� sundedemèna stoiqeÐa dokoÔ EBEs (enìthta

2.2.2), ta opoÐa egkibwtÐzontai entìc twn stere¸n stoiqeÐwn thc m trac. To ple-

onèkthma thc teqnik c aut c eÐnai ìti odhgeÐ se domhmèna plègmata peperasmènwn

stoiqeÐwn, mei¸nontac ètsi ton upologistikì fìrto kat� thn epÐlush twn mikro-

montèlwn. H olÐsjhsh twn CNTs entìc thc m trac lamb�netai upìyin apì thn

upologistik  diadikasÐa mèsw thc enswm�twshc kat�llhlou montèlou trib c ston

k¸dika peperasmènwn stoiqeÐwn. Sugkekrimèna, oi exis¸seic tou montèlou mpo-

roÔn na anaptuqjoÔn gia èna antiproswpeutikì stoiqeÐo ìgkou pou perièqei ènan

eujÔgrammo nanoswl na diakritopoihmèno apì treic isodÔnamec dokoÔc ìpwc faÐ-
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netai sto sq ma 11. H exÐswsh isorropÐac gia to kentrikì stoiqeÐo dokoÔ gr�fetai

wc ex c:

|σRi − σLi|Ai = τiπ (Di + ti) li (19)

ìpou Ai eÐnai h epif�neia thc diatom c thc koÐlhc dokoÔ h exwterik  di�metroc thc

opoi�c eÐnai Di + ti kai to m koc thc li. Oi kombikèc axonikèc t�seic σRi kai σLi

antÐstoiqa prokÔptoun Ôstera apì mia diadikasÐa exom�lunshc. EpilÔontac thn

Ex. (19) wc proc thn diepifaneiak  diatmhtik  t�sh τi kai sugkrÐnontac thn tim 

aut  me thn krÐsimh diepifaneiak  diatmhtik  antoq  ISS, to montèlo olÐsjhshc

anaptÔssetai wc ex c:

τi =
Ai

π(Di + ti)li
|σRi − σLi|

< ISS, stere� sÔndesh

≥ ISS, olÐsjhsh
(20)

E�n mÐa isodÔnamh dokì pou antiproswpeÔei èna tm ma apì to sunolikì m koc tou

nanoswl na eÐnai se kat�stash olÐsjhshc, tìte o diepifaneiakìc thc desmìc me

thn perib�llousa m tra èqei sp�sei kai sunep¸c h sugkekrimènh dokìc den sunei-

sfèrei sthn met�dosh fortÐwn apì thn m tra. H kat�stash olÐsjhshc miac dokoÔ

prosomoi¸netai mei¸nontac thn axonik  thc stibarìtht� se mia el�qisth tim . Sh-

mei¸netai ìti, h kamptik  kai streptik  stibarìthta thc dokoÔ den ephre�zontai,

me apotèlesma h dokìc na paralamb�nei kamptik� kai streptik� fortÐa mèsw thc

m trac.

4.2 Mh grammik  diadikasÐa omogenopoÐhshc

Gia thn prìbleyh thc sumperifor�c tou CN-RC RVE proteÐnetai èna ixwdopla-

stikì katastatikì montèlo pou mporeÐ na qrhsimopoihjeÐ sthn m�kro klÐmaka,

lamb�nontac sugqrìnwc upìyin tou fainìmena mikrìterhc klÐmakac. H monodi�-

stath anapar�stash tou ixwdoplastikoÔ autoÔ montèlou dÐnetai sto sq ma 12.

Sugkekrimèna, to montèlo apoteleÐ sunduasmì tou ixwdoelastikoÔ montèlou twn

Maxwell-Wiechert, pou qrhsimopoieÐtai gia thn prosomoÐwsh thc ixwdoelastik c

sumperifor�c thc m trac tou sÔnjetou ulikoÔ kai tou anisotropikoÔ plastikoÔ mo-

ntèlou tou Hill, pou qrhsimopoieÐtai gia thn prosomoÐwsh tìso thc anisotropik c
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Sqhma 11: Efelkusmìc RVE me eujÔgrammo CNT, t�seic sto kentrikì EBE

enÐsqushc pou prosfèroun ta CNTs ìso kai thc aposbenìmenhc enèrgeiac lìgw

ìlÐsjhshc aut¸n mèsa sthn m tra. Gia thn bajmonìmhsh tou proteinìmenou mo-

ntèlou apaiteÐtai o prosdiorismìc twn ixwdoelastik¸n kai plastik¸n paramètrwn

tou. 'Oson afor� ta ixwdoelastik� qarakthristik� tou montèlou o prosdiorismìc

touc gÐnetai mèsw thc diadikasÐac pou perigr�fhke sthn enìthta 3.1 gia thn m tra,

en¸ gia ton prosdiorismì twn energ¸n plastik¸n paramètrwn akoloujeÐtai mia mh

grammik  diadikasÐa omogenopoÐhshc. Oi plastikèc par�metroi pou zhtoÔntai na

kajoristoÔn eÐnai h arqik  t�sh diarro c kai ta kinhmatik� qarakthristik� kr�tun-

shc tou ulikoÔ. Ta qarakthristik� aut� sqetÐzontai me thn krÐsimh diepifaneiak 

diatmhtik  t�sh kai thn aposbenìmenh enèrgeia lìgw olÐsjhshc twn nanoswl nwn.

H omogenopoÐhsh pou akoloujeÐtai ja prèpei na ikanopoieÐ thn energeiak  sun-

j kh tou Hill h opoÐa orÐzetai apì thn exÐswsh:

Σ : E =
1

|V |

∫
Ω

σ : ε dY (21)

ìpou Σ, E eÐnai oi makroskopikoÐ tanustèc t�shc kai paramìrfwshc antÐstoiqa
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Sq ma 12: Ixwdoplastikì katastatikì montèlo gia to CNT-RC

en¸ σ, ε eÐnai oi antÐstoiqoi tanustèc sthn mÐkro klÐmaka. Opoiod pote makrosko-

pikì mègejoc Ψ mporeÐ na ekfrasteÐ wc èna ogkikì olokl rwma tou antÐstoiqou

megèjouc sthn mÐkro klÐmaka p�nw ston ìgko R tou montèlou RVE wc ex c:

Ψ = 〈ψ〉(X) =
1

V

∫
R

ψ(X,Y ) dY ìpou V =

∫
R

dY (22)

X eÐnai to makroskopikì di�nusma jèshc en¸ Y eÐnai to di�nusma jèshc pou

antistoiqeÐ sto antiproswpeutikì stoiqeÐo ìgkou sthn mÐkro klÐmaka. Gia thn

perÐptwsh pou to CNT-RC RVE perièqei eujÔgrammouc nanoswl nec prosana-

tolismènouc proc mÐa kateÔjunsh o makroskopikìc tanust c t�sewn sundèetai me

ton tanust  paramorf¸sewn mèsw enìc orjotropikoÔ elastikìu mhtr¸ou wc ex c:

Σ11

Σ22

Σ33

Σ12

Σ13

Σ23


=



C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C1212 0 0

sym. C1313 0

C2323





E11

E22

E33

E12

E13

E23


(23)
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Oi kÔrioi �xonec kateÔjunshc pou orÐzontai p�nw sto CNT-RC RVE parist�nontai

sto sq ma 13. Gia ton prosdiorismì twn paramètrwn tou omogenoÔc mhtr¸ou C
epib�llontai sto mikromontèlo tèsseric anex�rthtec fortÐseic upì morf  oriak¸n

sunjhk¸n Dirichlet. Sugkekrimèna prodiagegrammènoi tanustèc paramìrfwshc

epib�llontai sto RVE me thn morf  metatopÐsewn wc ex c:

uq = DqE gia E =





E11

0

0

0

0

0


,



0

E22

0

0

0

0


,



0

0

E33

0

0

0


,



0

0

0

E12

E13

E23




(24)

ìpou Dq eÐnai èna gewmetrikì mhtr¸o pou perièqei tic suntetagmènec twn sunoria-

k¸n kìmbwn q tou mikromontèlou. Apì thn epÐlush thc mikrodom c o makrosko-

pikìc tanust c t�shc upologizetai gia k�je perÐptwsh fìrtishc wc ex c:

Σ =
1

|V |

nq∑
q=1

Dqfq (25)

ìpou fq eÐnai oi dun�meic antÐdraseic pou upologÐzontai stouc sunoriakoÔc kìm-

bouc q tou montèlou tou RVE, nq o sunolikìc arijmìc twn sunoriak¸n kìmbwn

kai V o ìgkoc tou RVE. Epib�llontac gia par�deigma ton pr¸to makroskopi-

kì tanust  paramìrfwshc sto mikromontèlo mporoÔn na upologistoÔn oi ìroi

C1111 = Σ11/E11, C2211 = Σ22/E11 kai C3311 = Σ33/E11. Epomènwc, me thn

epibol  kai twn upoloÐpwn anex�rthtwn fortÐsewn kajorÐzetai pl rwc to elasti-

kì katastatikì mhtr¸o C tou makromontèlou. 'Otan h diepifaneiak  diatmhtik 

t�sh pou anaptÔssetai sthn diepif�neia nanoswl nwn/m trac xeper�sei thn krÐ-

simh diepifaneiak  diatmhtik  antoq  tìte xekin� h olÐsjhsh twn nanoswl nwn.

To fainìmeno autì lamb�netai upìyin apì to makromontèlo mèsw twn plastik¸n

paramètrwn oi opoÐec ja prèpei na prosdioristoÔn. Gia thn perÐptwsh axonikoÔ

efelkusmoÔ sto RVE tou sq matoc 13, h arqik  isodÔnamh t�sh diarro c upo-

logÐzetai apì thn epÐlush tou mikromontèlou thn stigm  akrib¸c pou sumbaÐnei h
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arqik  olÐsjhsh tou nanoswl na:

Σy =

√
3

2
Σd
ijΣ

d
ij (26)

ìpou Σd
ij eÐnai oi apoklÐnousec t�seic tou makroskopikoÔ tanust  t�sewn Σ. Gia

ton prosdiorismì thc kampÔlhc kinhmatik c kr�tunshc tou ulikoÔ se k�je prosau-

xhtikì b ma epÐlushc tou mikromontèlou upologÐzetai to zeÔgoc isodÔnamhc t�shc

diarro c kai isodÔnamhc plastik c paramìrfwshc,
(
Σ, E

p)
.

Sq ma 13: SÔsthma kÔriwn kateujÔnsewn sto RVE tou CNT-RC

4.3 Arijmhtik� apotelèsmata

H apotelesmatikìthta tou proteinìmenou ixwdoplastikoÔ katastatikoÔ montèlou

epibebai¸netai mèsw thc sÔgkrishc twn kampul¸n t�shc-paramìrfwshc pou pro-

kÔptoun apì thn prosomoÐwsh anakuklizìmenhc fìrtishc sto makroskopikì kai

sto mikroskopikì montèlo tou sÔnjetou ulikoÔ antÐstoiqa. Sugkekrimèna, ana-

lÔontai me thn mèjodo twn peperasmènwn stoiqeÐwn RVEs apì CNT-RC me pe-

riektikìthta kat� b�roc se CNTs (wf) 0.5, 1 kai 2% kai me diepifaneiak  dia-

tmhtik  antoq  (ISS) 40, 80 kai 160 MPa. Sta mikroskopik� aut� montèla efar-

mìzetai o makroskopikìc tanust c paramìrfwshc E = [E11 0 0 0 0 0]T ìpou

E11 = E0 sin(2πνt). Sto sq ma 14 faÐnetai h gewmetrÐa kai h diakritopoÐhsh me

ta peperasmèna stoiqeÐa tou mikromontèlou twn RVEs. Apì thn an�lush kai me

b�sh thn diadikasÐa omogenopoÐhshc pou perigr�fhke sthn enìthta 4.2 prosdiorÐ-

zontai oi energèc par�metroi tou ixwdoplastikoÔ makroskopikoÔ montèlou. Sthn

sunèqeia to makroskopikì montèlo upob�lletai sthn Ðdia morf  fìrtishc ìpwc kai
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to mikromontèlo. Met� thn an�lush tou ex�gontai ta arijmhtik� apotelèsmata,

pou sugkrÐnontai me ekeÐna pou proèkuyan prohgoumènwc apì thn an�lush tou

mikroskopikoÔ montèlou. Sta sq mata 15-17 parousi�zontai oi kampÔlec t�shc-

paramìrfwshc gia k�je perÐptwsh wf kai ISS. Shmei¸netai ìti, ta apotelèsmata

aut� aforoÔn anakuklizìmenh fìrtish se polÔ uyhl  suqnìthta (ν →∞), ìpou

h jermoplastik  m tra (PEEK) sumperifèretai elastik� me b�sh to stigmiaÐo mè-

tro elastikìthtac. Sto sq ma 18 parousi�zontai ta Ðdia apotelèsmata ìpwc sto

sq ma 17 mìno pou t¸ra h suqnìthta fìrtishc eÐnai ν=1 Hz kai sunep¸c h m tra

sumperifèretai ixwdoelastik�.

Sq ma 14: GewmetrÐa kai diakritopoÐhsh me peperasmèna stoiqeÐa tou CNT-RC
RVE
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(a) (b)

(c)

Sq ma 15: SÔgkrish kampul¸n t�shc-paramìrfwshc se anakÔklish me suqnìthta
ν → ∞ metaxÔ mikroskopikoÔ kai makroskopikoÔ montèlou gia wf=0.5% kai (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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(a) (b)

(c)

Sq ma 16: SÔgkrish kampul¸n t�shc-paramìrfwshc se anakÔklish me suqnìthta
ν → ∞ metaxÔ mikroskopikoÔ kai makroskopikoÔ montèlou gia wf=1% kai (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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(a) (b)

(c)

Sq ma 17: SÔgkrish kampul¸n t�shc-paramìrfwshc se anakÔklish me suqnìthta
ν → ∞ metaxÔ mikroskopikoÔ kai makroskopikoÔ montèlou gia wf=2% kai (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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(a) (b)

(c)

Sq ma 18: SÔgkrish kampul¸n t�shc -paramìrfwshc se anakÔklish me suqnìthta
ν=1 Hz metaxÔ mikroskopikoÔ kai makroskopikoÔ montèlou gia wf=2% kai (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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5. SÔnjeta ulik� enisqumèna me nanoswmatÐ-

dia grafenÐou

Ta nanoswmatÐdia grafenÐou (GnPs) apoteloÔntai apì fÔlla grafenÐou diatetag-

mèna tì èna p�nw apì to �llo, sundedemèna metaxÔ touc me desmoÔc van der Waals.

To p�qoc twn swmatidÐwn aut¸n kumaÐnetai metaxÔ 1-15 nm en¸ to pl�toc touc

kumaÐnetai metaxÔ 1-100 mm. Sunep¸c, mporoÔn na jewrhjoÔn wc disdi�stata sw-

matÐdia h gewmetrÐa twn opoÐwn faÐnetai stic eikìnec hlektronikoÔ mikroskopÐou

s�rwshc tou sq matoc 19.

Sq ma 19: Eikìnec GnPs apì hlektronikì mikroskìpio s�rwshc.

'Opwc oi nanoswl nec �njraka ètsi kai ta nanoswmatÐdia grafenÐou epideiknÔoun

exairetikèc mhqanikèc kai fusikèc idiìthtec. Sugkekrimèna, ta GnPs èqoun axoni-

kì mètro elastikìthtac perÐpou 1 TPa, en¸ h efelkustik  antoq  touc eÐnai thc

t�xhc twn 10-20 GPa. H gewmetrÐa twn GnPs lìgw thc Ôparxhc eleÔjerwn atì-

mwn �njraka sta �kra tou moriakoÔ plègmatoc twn fÔllwn grafenÐou, eunoeÐ thn

dhmiourgÐa qhmik¸n desm¸n me tic moriakèc alusÐdec tou polumeroÔc. Sunep¸c,

h teqnik  energopoÐhshc (functionalization) twn atìmwn �njraka, pou efarmìze-
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tai sthn epif�neia tou moriakoÔ plègmatoc twn CNTs, den eÐnai aparaÐthth sthn

perÐptwsh twn GnPs. To pleonèkthma autì se sunduasmì me to meg�lo lìgo epi-

f�neiac proc ìgko, kajistoÔn ta GnPs isquroÔc antagwnistèc ènanti twn CNTs

gia thn enÐsqush polumer¸n kai thn dhmiourgÐa prohgmènwn nanosÔnjetwn ulik¸n.

Sthn paroÔsa ergasÐa anaptÔssetai mia prwtìtuph upologistik  diadikasÐa

omogenopoÐhshc thc mhqanik c sumperifor�c RVEs apì GnP-RC pou lamb�nei u-

pìyin thc thn tuqaÐa gewmetrÐa twn nanoswmatidÐwn. H diadikasÐa basÐzetai sthn

epÐlush twn mikromontèlwn me qr sh thc mejìdou twn exeligmènwn peperasmènwn

stoiqeÐwn (XFEM), se sunduasmì me thn stoqastik  touc an�lush me qr sh pro-

somoi¸sewn Monte Carlo. H ergasÐa tonÐzei idiaÐtera thn epÐdrash tou sq matoc

twn GnPs stic energèc elastikèc paramètrouc tou sÔnjetou ulikoÔ. To tuqaÐo

sq ma twn GnPs prosomoi¸netai sta plaÐsia thc XFEM me qr sh miac analu-

tik� orismènhc sun�rthshc level-set, h opoÐa perigr�fei to sq ma enìc {traqÔ}

kÔklou (rough circle). Sto plaÐsio thc mejìdou Monte Carlo prosomoi¸netai e-

nac meg�loc arijmìc apì RVEs me sugkekrimènh kat' ìgko periektikìthta tuqaÐa

katanemhmèn¸n GnPs. H diadikasÐa omogenopoÐhshc pou akoloujeÐtai ikanopoieÐ

thn energeiak  sunj kh tou Hill.

5.1 Mèjodoc exeligmènwn peperasmènwn stoiqeÐwn

H mèjodoc twn exeligmènwn peperasmènwn stoiqeÐwn qrhsimopoieÐtai gia thn an�-

lush forèwn pou perièqoun isqurèc   asjeneÐc asunèqeiec. Gia par�deÐgma foreÐc

me rwgmèc parousi�zoun asunèqeia sto pedÐo twn metatopÐsewn en¸ foreÐc apì

eterogen  ulik� parousi�zoun asunèqeia sto pedÐo t�sewn-paramorf¸sewn. Ta

GnP-RC ulik� pou exet�zoume sthn paroÔsa ergasÐa an koun sthn kathgorÐa

twn eterogen¸n ulik¸n me asuneq  pr¸th par�gwgo twn metatopÐsewn. To pedÐ-

o sunep¸c twn metatopÐsewn pou problèpoun ta exeligmèna peperasmèna stoiqeÐa

perilamb�nei k�poiouc epiplèon ìrouc ikanoÔc na perigr�youn thn asunèqeia aut n

ex' aitÐac thc parousÐac twn GnPs entìc thc polumerik c m trac. Sugkekrimèna,

to pedÐo twn metatopÐsewn dÐnetai apì thn exÐswsh:

uh (x) =
∑
i∈I

Ni (x)ui +
∑
j∈J

Nj (x)

(
n0∑
k=1

ψk (x)αjk

)
(27)
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ìpou I eÐnai to sÔnolo twn kìmbwn tou montèlou peperasmènwn stoiqeÐwn pou ka-

tèqoun touc klasikoÔc bajmoÔc eleujerÐac u, en¸ J eÐnai to sÔnolo twn kìmbwn

pou emploutÐzontai me touc epiplèon plasmatikoÔc bajmoÔc eleujerÐac α, mèsw

twn opoÐwn perigr�fetai h asunèqeia ulikoÔ. Oi plasmatikoÐ autoÐ bajmoÐ eleuje-

rÐac prostÐjentai sthn exÐswsh twn metatopÐsewn wc ìroi ginomènwn metaxÔ twn

sunart sewn sq matoc k�je kìmbou N kai thc sun�rthshc ψk pou perigr�fei

to sq ma tou kth nanoswmatidÐou. To sq ma k�je nanoswmatidÐou perigr�fetai

mèsw twn tim¸n thc sun�rthshc level-set φ p�nw stouc kìmbouc tou plègmatoc

twn peperasmènwn stoiqeÐwn kai thc parembol c aut c se k�je shmeÐo x mèsw thc

exÐswshc:

ψk (x) =
∑
i∈I

Ni (x)
∣∣φki ∣∣−

∣∣∣∣∣∑
i∈I

Ni (x)φki

∣∣∣∣∣ (28)

ìpou φ h sun�rthsh tou {rough circle}:

φ (x, θ) = ‖x− c‖ −R (α (x) , θ) (29)

kai R h tuqaÐa aktÐna tou kÔklou pou antistoiqeÐ se k�je jèsh x p�nw sthn

sunoriak  kampÔlh Γincl (sq ma 20)

R (α, θ) = 0.2 + 0.03Y1(θ) + 0.015{Y2(θ)cos(k1α)+

Y3(θ)sin(k1α) + Y4(θ)cos(k2α) + Y5(θ)sin(k2α)}
(30)

oi anex�rthtec tuqaÐec metablhtèc Yi(θ) akoloujoÔn thn Ðdia omoiìmorfh katano-

m  sto U
(
−
√

3,
√

3
)
. Sto sq ma 21 eikonÐzontai oi isoôyeÐc kampÔlec pou pro-

kÔptoun apì thn exÐswsh (29) gia timèc k1 = 0 kai k2 = 3 sthn exÐswsh (30). H

sunoriak  kampÔlh Γincl pou dÐnei to tuqaÐo sq ma tou nanoswmatidÐou prokÔptei

apì thn isoôy c me tim  mhdèn.

5.2 Kataskeu  RVEs tuqaÐac mikrodom c

Gia thn gènnhsh thc tuqaÐac mikrodom c twn GnP-RC RVEs qrhsimopoieÐtai o al-

gìrijmoc pou perigr�fetai stìn pÐnaka 1. K�je RVE èqei diast�seic X1×X2 kai
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Sq ma 20: Sqhmatik  anapar�stash thc sun�rthshc tou {rough circle}

Sq ma 21: a) Proshmasmènh sun�rthsh level set kai b) isoôyeÐc kampÔlec gia
k1 = 0, k2 = 3

perièqei nincl arijmì nanoswmatidÐwn se sugkekrimènh kat' ìgko analogÐa (%vf).

To tuqaÐo sq ma twn nanoswmatidÐwn prokÔptei apì thn efarmog  twn exis¸-

sewn (29)-(30) ìpou oi par�metroi k1 kai k2 eÐnai stajerèc, en¸ oi stoqastikèc

metablhtèc Yi(θ) epilègontai me qr sh thc omoiìmorfhc sun�rthshc puknìthtac

pijanìthtac fYi . Sto sq ma 22 eikonÐzontai ta diaforetik� sq mata twn GnP nano-

swmatidÐwn pou meletìntai sthn paroÔsa ergasÐa. H sunoriak  kampÔlh Γincl pou

perigr�fei to tuqaÐo sq ma twn nanoswmatidÐwn diakritopoieÐtai apì np shmeÐa, h

l



jèsh twn opoÐwn kajorÐzetai apì to parak�tw di�nusma suntetagmènwn:

Γincl(θ) : {x = c +R (α, θ) (cosα · e1 + sinα · e2)} (31)

e1, e2 eÐnai ta monadiaÐa kartesian� dianÔsmata. H jèsh tou kèntrou k�je sw-

matidÐou kaj¸c kai o prosanatolismìc touc prokÔptoun apì tic sunart seic pu-

knìthtac pijanìthtac fc kai fβ antÐstoiqa. Met� thn dhmiourgÐa nincl pl jouc

nanoswmatidÐwn kai prin aut� katanemhjoÔn mèsa sthn m tra, ja prèpei na gÐnei

kat�llhlh prosarmog  tou megèjouc touc (scalling), ¸ste na prokÔptei p�nta h

epijumht  tim  thc kat' ìgko analogÐac touc sto RVE. Gia thn meÐwsh thc pijanì-

thtac kat� thn katanom  touc ta nanoswmatÐdia na pèsoun to èna p�nw sto �llo,

gÐnetai pr¸ta h taxinìmhs  touc kat� fjÐnousa seir� megèjouc kai sthn sunèqeia

epiqeireÐtai h topojèths  touc mèsa sthn m tra. O èlegqoc gia epik�luyh diex�-

getai me qr sh enìc algorÐjmou dokim c-l�jouc, ètsi ¸ste k�je swmatÐdio pou

brejeÐ na epikalÔptei ta  dh up�rqonta na epanatopojeteÐtai suneq¸c mèqri na

brejeÐ h kat�llhlh jèsh tou sthn m tra. Sto sq ma 23 faÐnetai h topojèthsh

nincl = 1, 5, 10, 20 nanoswmatidÐwn mèsa se RVEs me 30% vf.

Sq ma 22: Sq ma GnP nanoswmatidÐwn gia a) (k1 = 0, k2 = 0), b) (k1 = 0,
k2 = 3), c) (k1 = 0, k2 = 6) kai d) (k1 = 3, k2 = 6)

Sq ma 23: Topojèthsh nanoswmatidÐwn (k1 = 0, k2 = 3) se RVEs me vf=30%
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PÐnakac 1: Algìrijmoc gènnhshc thc tuqaÐac mikrodom c twn GnP-RC RVEs

• DEDOMENA

– X1, X2: Mègejoc tou RVE

– vf: Periektikìthta kat' ìgko se nanoswmatÐdia

– nincl: Sunolikìc arijmìc nanoswmatidÐwn sto RVE

– fYi : Sun�rthsh puknìthtac pijanìthtac pou akoloujoÔn oi tuqaÐec
metablhtèc Yi(θ)

– fc, fβ: Sunart seic puknìthtac pijanìthtac pou akoloujeÐ h jèsh tou
kèntrou kai h gwnÐa prosanatolismoÔ tou nanoswmatidÐou

– k1, k2: Stajerèc par�metroi pou kajorÐzoun thn diakÔmansh thc suno-
riak c kampÔlhc tou {rough circle}

• DHMIOURGIA / PROSARMOGH MEGEJOUS / TAXINOMHSH NA-
NOSWMATIDIWN

– DhmiourgÐa nincl pl jouc tuqaÐwn swmatidÐwn

– Arijmhtikìc upologismìc me ton kanìna tou trapezÐou thc sunolik c
epif�neiac twn paragìmenwn swmatidÐwn

Âincl =

nincl∑
k=1

{
np∑
n=1

[(
xk1,n+1 − xk1,n

)
·

(
xk2,n + xk2,n+1

2

)]}
n = 1, ..., np: arijmìc shmeÐwn diakritopoÐhshc thc sunoriak c kampÔ-
lhc tou {rough circle},

(
xk1,n, x

k
2,n

)
∈ Γkincl(θ)

– Prosarmog  tou megèjouc thc aktÐnac tou {rough circle}: Rn =

R̂n

√
vf
X1X2

Âincl

– Taxinìmhsh twn nanoswmatidÐwn se fjÐnousa seir� an�loga me to mè-
gejoc thc epif�nei�c touc

• QWRIKH KATANOMH NANOSWMATIDIWN STO RVE

– Brìgqoc epan�lhyhc apì k = 1 mèqri nincl

∗ Exagwg  tuqaÐwn metablht¸n jèshc
(
xk1, x

k
2

)
kai gwnÐac prosana-

tolismoÔ βk pou akoloujoÔn omoiìmorfh katanom  sto di�sthma
[0, X1] , [0, X2] kai [0, 2π] antÐstoiqa

∗ 'Elegqoc epik�luyhc tou kth swmatidÐou me ta  dh topojethmèna
k − 1 swmatÐdia

· E�n ALHJHS, epanatopojèthsh tou kth swmatÐdio epilègon-
tac nèec metablhtèc jèshc kai gwnÐac prosanatolismoÔ

· E�n YEUDHS, epituq c topojèthsh
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5.3 OmogenopoÐhsh

H diadikasÐa thc omogenopoÐhshc basÐzetai sto energeiakì je¸rhma tou Hill. To

je¸rhma autì axi¸nei ìti h enèrgeia paramìrfwshc tou omogenoÔc makroskopikoÔ

montèlou eÐnai Ðsh kat� mèso ìro me thn antÐstoiqh enèrgeia pou prokÔptei apì

thn paramìrfwsh thc mikrodom c. H energeiak  aut  sqèsh ekfr�zetai wc ex c:

Σ : E =
1

|V |

∫
Ω

σ : ε dY (32)

ìpou Σ, E oi makroskopikoÐ tanustèc t�shc kai paramìrfwshc en¸ σ, ε oi an-

tÐstoiqoi tanustèc sthn jèsh Y thc mikrodom c. Oi makroskopikèc posìthtec

upologÐzontai wc to olokl rwma thc antÐstoiqhc mikroskopik c posìthtac p�nw

ston ìgko Ω thc mikrodom c. H diadikasÐa thc omogenopoÐhshc pou efarmìsth-

ke sthn enìthta 4.2 gia ta CNT-RC RVEs efarmìzetai me parìmoio trìpo kai

gia ta GnP-RC RVEs. Sugkekrimèna, ènac gnwstìc makroskopikìc tanust c pa-

ramìrfwshc epib�lletai wc sunoriakèc sunj kec Dirichlet sto mikromontèlo tou

RVE to opoÐo diakritopoieÐtai me ta exeligmèna peperasmèna stoiqeÐa. Apì thn

epÐlus  tou XFEM probl matoc prokÔptoun oi dun�meic antÐdraseic stouc suno-

riakoÔc kìmbouc tou montèlou, mèsw twn opoÐwn upologÐzetai upì morf  mèsou

ìrou o makroskopikìc tanust c t�shc pou antistoiqeÐ sthn dedomènh paramìrfw-

sh. Jewr¸ntac ìti to telikì sÔnjeto ulikì èqei isotropik  elastik  sumperifor�

h sqèsh t�sewn-paramorf¸sewn mporeÐ na ekfrasteÐ wc ex c:

Σ11

Σ22

Σ12

 =

Ceff Deff 0

Deff Ceff 0

0 0 Geff


E11

E22

E12

 (33)

ìpou Ceff =


Eeff

1− ν2
eff

epÐpedh èntash

(1− νeff )Eeff
(1 + νeff ) (1− 2νeff )

epÐpedh paramìrfwsh

, (34)

Deff =


νeffEeff
1− ν2

eff

epÐpedh èntash

νeffEeff
(1 + νeff ) (1− 2νeff )

epÐpedh paramìrfwsh
, (35)

liii



EKTENHS PERILHYH

kai Geff =
Eeff

2 (1 + νeff )
(36)

Gia ton upologismì tou energoÔ mètrou elastikìthtac kai tou energoÔ lìgou Pois-

son apì tic exis¸seic (34) kai (35) antÐstoiqa, arkeÐ h epÐlush tou mikromontèlou

sto opoÐo efarmìzetai o makroskopikìc tanust c paramìrfwshc E = [1 0 0]T .

Mèsw thc diadikasÐac thc omogenopoÐhshc upologÐzetai o makroskopikìc tanu-

st c t�shc Σ. Epomènwc, eÐnai dunatìc o prosdiorismìc twn tim¸n twn energ¸n

ìrwn tou omogenoÔc mhtr¸ou Ceff = Σ11/E11 kai Deff = Σ22/E11. Apì tic timèc

autèc mporoÔn t¸ra na upologistoÔn ta Eeff kai νeff se k�je pragmatopoÐhsh

thc Monte Carlo prosomoÐwshc.

5.4 Arijmhtik� apotelèsmata

Sthn enìthta aut  prosdiorÐzetai h sun�rthsh katanom c pijanìthtac tou energoÔ

mètrou elastikìthtac kai lìgou Poisson pou proèkuyan apì thn an�lush 1000 pro-

somoi¸sewn Monte Carlo. Ta XFEM montèla twn RVEs pou analÔjhkan periè-

qoun tuqaÐa sq mata nanoswmatidÐwn se orismènh kat' ìgko periektikìthta. Sug-

kekrimèna, melet jhkan tèssera diaforetik� sq mata nanoswmatidÐwn, ta opoÐa

proèkuyan metab�llontac tic timèc twn stajer¸n paramètrwn k1 kai k2 sthn exÐ-

swsh (30), (k1 = 0, k2 = 0), (k1 = 0, k2 = 3), (k1 = 0, k2 = 6) kai (k1 = 3, k2 = 6)

kai treic diaforetikèc kat' ìgko analogÐec vf=20, 30 kai 40%. To ulikì tìso

thc m trac ìso kai twn nanoswmatidÐwn jewreÐtai grammikì elastikì. Sugke-

krimèna, o lìgoc twn mètrwn elastikìthtac twn nanoswmatidÐwn proc thn m tra

(Eincl/Em) eÐnai 1000 en¸ oi lìgoi Poisson eÐnai νincl = νm = 0.3. Shmei¸netai

ìti h proteinìmenh mèjodoc dokim�sthke se diaforetikoÔc lìgouc Eincl/Em kaj¸c

kai se diaforetikèc timèc twn lìgwn Poisson. To mègejoc twn RVEs eÐnai 10× 10

mm. Sto sq ma 24 eikonÐzontai ta istogr�mmata tou Eeff pou proèkuyan apì tic

prosomoi¸seic Monte Carlo gia k�je perÐptwsh sq matoc twn nanoswmatidÐwn kai

periektikìthtac kat' ìgko. AntÐstoiqa, ta istogr�mmata tou νeff eikonÐzontai sto

sq ma 25. Ta sq mata 26 kai 27 eikonÐzoun tic kampÔlec thc mèshc tim c kai tou

suntelest  diakÔmanshc se sqèsh me ton arijmì twn analÔsewn gia tic peript¸seic

twn nanoswmatidÐwn me (k1 = 0, k2 = 0) kai (k1 = 0, k2 = 6). O pÐnakac 2 perièqei

sugkentrwtik� tic mèsec timèc tou Eeff gia ìlec tic peript¸seic sqhm�twn kai kat'
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ìgko periektikìthtac. Apì thn sÔgkrish twn tim¸n prokÔptei ìti h megalÔterh

aÔxhsh (16.13%) tou energoÔ mètrou elastikìthtac tou sÔnjetou ulikoÔ prokÔ-

ptei gia ta sq mata (k1 = 0, k2 = 6) se sqèsh me ta (k1 = 0, k2 = 0) gia vf=40%.

To apotèlesma autì epibebai¸nei thn shmantik  epÐdrash pou èqei to sq ma twn

nanoswmatidÐwn stic telikèc energèc paramètrouc tou sÔnjetou ulikoÔ. 'Opwc a-

podeiknÔetai h efarmog  aplopoi sewn sthn gewmetrÐa twn nanoswmatidÐwn kai h

antikat�stas  touc me ideat� sq mata kÔklwn   elleÐyewn odhgoÔn se sf�lmata

thc t�xhc tou 20% ston upologismì twn mhqanik¸n idiot twn tou nanosÔnjetou

ulikoÔ.

Sq ma 24: Istogr�mmata tou Eeff : a) (k1 = 0, k2 = 0), b) (k1 = 0, k2 = 3), c)
(k1 = 0, k2 = 6) kai d) (k1 = 3, k2 = 6) gia vf=[0.2, 0.3, 0.4]
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EKTENHS PERILHYH

Sq ma 25: Istogr�mmata tou νeff : a) (k1 = 0, k2 = 0), b) (k1 = 0, k2 = 3), c)
(k1 = 0, k2 = 6) kai d) (k1 = 3, k2 = 6) gia vf=[0.2, 0.3, 0.4]

Sq ma 26: Mèsec timèc: a-b) mean(Eeff ), mean(νeff ) gia (k1 = 0, k2 = 0) kai
c-d) mean(Eeff ), mean(νeff ) gia (k1 = 0, k2 = 6), se vf=[0.2, 0.3, 0.4]
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Sq ma 27: Suntelest c diakÔmanshc: a-b) COV(Eeff ), COV(νeff ) gia (k1 =
0, k2 = 0) kai c-d) COV(Eeff ), COV(νeff ) gia (k1 = 0, k2 = 6), se vf=[0.2, 0.3,
0.4]

vf (0, 0)− (0, 3) (0, 0)− (0, 6) (0, 3)− (0, 6) (0, 0)− (3, 6)
0.2 2.55 5.31 2.69 2.89
0.3 3.22 9.77 6.34 4.22
0.4 4.11 16.13 11.55 6.15

PÐnakac 2: SÔgkrish (% aÔxhsh) twn mèswn tim¸n tou Eeff metaxÔ GnP-RC RVEs
me diaforetik� sq mata nanoswmatidÐwn (k1, k2)
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Chapter 1

Introduction

”Nanotechnology is the understanding and control of matter at dimensions be-

tween approximately 1 and 100 nanometers, where unique phenomena enable

novel applications. Encompassing nanoscale science, engineering, and technology,

nanotechnology involves imaging, measuring, modeling, and manipulating matter

at this length scale. A nanometer is one-billionth of a meter. A sheet of paper

is about 105 nanometers thick; a single gold atom is about a third of a nanome-

ter in diameter. Dimensions between approximately 1 and 100 nanometers are

known as the nanoscale. Unusual physical, chemical, and biological properties can

emerge in materials at the nanoscale. These properties may differ in important

ways from the properties of bulk materials and single atoms or molecules”, (De-

scription of Nanotechnology as established by National Nanotechnology Initiative,

http://nano.gov).

1.1 Nanocomposites

In the large field of nanotechnology, polymer matrix based nanocomposites have

become a prominent area of current research and development. The expansion

of length scales from meters, micrometers to nanometers introduced tremendous

opportunities for innovative approaches in the processing, characterization, and

analysis/modeling of this new generation of composite materials. As scientists

and engineers seek to make practical materials and devices from nanostructures,

1
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1. INTRODUCTION

understanding material behavior across length scales from the atomistic to macro-

scopic levels is required. Unlike the conventional top-down material development

approaches, nanocomposite fabrication techniques utilize a bottom-up approach

starting from atoms and molecules. The most common fabrication strategies for

nanocomposites include: solution processing, melt spinning, melt processing and

in situ polymerization. Details about these methods along with other strate-

gies and new trends in nanocomposites are reviewed in many literature papers

[94, 15, 10, 46].

A polymer nanocomposite is a multiphase solid material, which consists of

a polymer matrix and a weight fraction (wf) of dispersed nanofillers acting as

reinforcements to the bulk material. These nanofillers may be of different shape

(e.g. spheroids, fibers, platelets), but at least one of their dimensions is less than

100 nm. The most studied nanofillers are the carbon nanotubes (CNTs) and the

graphene nanoplatelets (GnPs). The unique combination of their mechanical and

physical properties, make them ideal candidates for reinforcement in composite

materials, shifting scientific interest from microscale composites to nanocompos-

ites. There are a number of advantages associated with dispersing nanofillers in

polymeric materials. While some credit can be attributed to the intrinsic prop-

erties of the fillers, most of these advantages stem from the extreme reduction in

filler size combined with the large enhancement in the specific surface area and

interfacial area they present to the matrix phase. In addition, whereas traditional

composites use over 40 wf% of the reinforcing phase, a small weight fraction of

nanofillers into polymeric matrices could lead to dramatic changes in their me-

chanical [40, 111], thermal [26, 72, 108], electrical [26], and damping [87, 75]

properties with added functionalities.

Polymers and polymer matrix based composites are being utilized in an in-

creasing number of industrial applications including transportation, automotive,

aerospace, defence, sporting goods, energy and infrastructure sectors. This is

due to their high durability, high strength, light weight, design and process

flexibility. The advantages obtained from nanoscale polymer reinforcement and

the subsequent supreme mechanical and physical properties of nanocomposites

can lead to myriad of new application possibilities. Particularly, both CNT-

reinforced composites (CNT-RCs) and GnP-reinforced composites (GnP-RCs) of-
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fer substantial opportunities in advanced emerging technologies related to electri-

cal/electronics/optoelectronics, photovoltaic cells, biomedical applications, flame

resistance structures, UV screens, sensors, LEDs and to many others future com-

modities [92, 33, 18, 1].

Undoubtedly, nano-reinforced composites offer new and exciting possibilities

in the already exhausted field of microscale composite science. Their utilization

in a wide range of applications exhibits a promising future for various industries.

However, there are still major challenges that scientists have to overcome in or-

der to fully exploit the multifunctional capabilities of these multiphase materials.

The full potential of employing nanofillers as reinforcement is severely limited

due to the existing processing techniques of nanocomposites. There are two crit-

ical interrelated issues that must be addressed during the fabrication process of

nanocomposites, namely: filler dispersion and functionalization. In addition, dis-

tinct size dependence of the material properties is observed at such a small scale.

This is attributed to an intrinsic morphological characteristic of the nanofillers;

that is their large surface area to volume ratio. Especially in CNT-reinforced

composites, despite the desired increase in their stress transfer capability, the

large surface/volume ratio of CNTs leads to strong attractive intermolecular van

der Waals (vdW) forces causing an excessive agglomeration of the nanofillers.

This tendency of the nanofillers to agglomerate degrade the properties of the

nanocomposites as it leads to nonuniform dispersion and weak bonding of in-

terfaces. Many studies on new fabrication technologies in nanocomposites have

been recently published, which aim to cope with such unresolved processing issues

caused by the nanoscale size of fillers [69, 49, 59].

1.2 Modeling techniques for nanocomposites

Nanocomposite technology development requires optimization of processes and

fabrication techniques for producing enhanced materials with outstanding me-

chanical and physical properties. Some critical issues that have to be regarded

during the production process of the nanocomposites are related to alignment,

dispersion, aspect ratio, orientation, and load transfer of the nanofillers. Since

experimentation at nanoscale is still an evolving field, the best way to quantify
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1. INTRODUCTION

the effects of such parameters is through computational modeling techniques. To

date, a vast number of numerical models for the characterization of nanocompos-

ites have been developed, primarily because of the different modeling techniques

that can be adopted. Due to the multiscale nature of nanocomposite materials

various computational modeling methods can be implemented, from atomistic

based methods such as quantum mechanics, (QM) and molecular dynamics (MD),

to micromechanics (MM) and to continuum mechanics (CM).

Atomistic methods are used to simulate the physical movements of atoms and

molecules at nanoscale. In this context, MD has been extensively used to model

nanostructured materials. This method uses realistic many-body inter-atomic

potential functions (force fields) to calculate the total energy of a system of par-

ticles. When the total potential energy and the force fields of a molecular system

are obtained, then the realistic behavior of atoms and their properties can be cal-

culated. Although the atomistic methods can provide with accurate predictions

of the properties of the nanocomposites, however their usage is limited to small

system sizes. This drawback originates from the fact that the classical equations

of motion for each atom have to be integrated stepwise in time. These time steps

can range from 1 to 10 femtoseconds, and the corresponding simulation times can

range from several picoseconds to nanoseconds, depending on the system being

investigated. Due to the huge number of degrees of freedom involved in atom-

istic simulations, these approaches are generally too computationally intensive

that can not even be handled by the state-of-the-art parallel supercomputers.

Atomistic based models have been mainly applied in investigations related to the

interfacial bonding mechanisms between CNTs and a variety of polymer systems.

Many molecular studies have been devoted to interfacial shear strength (ISS) cal-

culations on CNT/polymer interfaces and to investigations of functionalization

effect on nanocomposite material properties [51, 22, 27, 113].

Continuum mechanics approaches have also been applied in order to study

nanoscale materials. In the framework of continuum modeling of nanocompos-

ites, the underlying atomic structure of matter is neglected and replaced with

a continuous and homogeneous material representation. Therefore, continuum

approaches tend to be a more efficient modeling technique for simulating larger-

scale systems or longer time spans than the atomistic based approaches. However,
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traditional continuum based models cannot accurately describe the influence of

the nanofillers upon the mechanical properties, bond formation/breakage, and

their interactions in composite systems, because they lack the appropriate con-

stitutive relations that govern material behavior at the finer scales. Particularly,

traditional continuum mechanical concepts applied at nanoscale do not main-

tain their validity and thus gross oversimplifications can arise when a purely

continuum model is used. For instance, the continuum shell model adopted by

many researchers for studying the material properties of CNTs neglects the chi-

rality and curvature effects and thus leads to inaccurate numerical predictions

[100, 67]. Such scale-up issues can be addressed by coupling atomistic models

with established micromechanical techniques, where the mechanical behavior of

nanocomposite materials can still be described on a macroscopic level. In this

case, the problem is often formulated at the atomistic scale using the concept of

a representative volume element (RVE), where an homogenization method based

on micromechanics is applied to in order to define effective material properties

for the homogenized medium [64, 13, 62, 74, 76].

The observed macroscale behavior of the nanostructured materials is governed

by processes that occur on many different length and time scales. Since these

processes are often dependent on each other, it is therefore necessary to model

this class of materials using a variety of length scales. Thus, implementation of

multiscale modeling techniques is prerequisite in order to capture the underlying

governing physics of nanomaterials. Multiscale models can be also used to sim-

ulate multiscale phenomena in nanocomposites such as mechanical deformation

and failure. Most multiscale modeling techniques adopt either atomistic based or

coupled continuum approaches to treat this class of problems. In atomistic based

multiscale models the different scales are integrated into a unified approach where

continuum mechanics is employed to describe position of atoms, their interactions,

and the governing interatomic potentials. These interatomic potentials, which are

introduced in these hybrid models through deformation measures, used to capture

the underlying atomistic structure of the different phases considered. Thus, the

influence of the nanophase is taken into account via appropriate atomistic con-

stitutive formulations. Consequently, these measures are fundamentally different

from those in the classical continuum theory. The advantage of using atomistic
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based continuum techniques over discrete modeling ones lies in their ability to

avoid large number of degrees of freedom, while at the same time allowing for the

description of the nonlinear constitutive behavior of the constituents. One par-

ticular approach of this class of methods is the Quasi-Continuum (QC) method

which has been widely used to simulate the mechanical response of polycrystalline

materials [58].

In the coupled continuum approach the multiscale modeling employs quantum

or molecular mechanics (eg. tight binding or MD method) for atomic scale and

finite element method (FEM) for continuum scale. This class of multiscale meth-

ods can be further subdivided into sequential and concurrent coupling methods.

Sequential methods, sometimes referred to as hierarchical methods, pass informa-

tion (displacements or forces) from the finer scale as boundary conditions to the

coarser one. This approach assumes that the problem considered can be easily

separated into processes that are governed by different length and time scales.

Thus a complete separation of scales exists, allowing to the coarse-scale physics to

be completely determined in the fine scale. In this multiscale procedure the micro

to macro relations need to be established. The macroscopic behavior of the con-

tinuum model provides the fine-scale model with appropriate boundary conditions

which in turn through an homogenization procedure provides the macroscopic ef-

fective properties of the continuum. Appropriate constitutive models assigned to

the continuum model are often derived from the knowledge of the corresponding

local properties and the phase arrangement in the finer scale [82, 106, 76].

Concurrent methods, on the other hand, are better suited in representing

scales with a heavy dependence on each other because of the continuous transfer

of information between the different scales. This method performs the entire

multiscale analysis simultaneously and thus data are continually fed from one

length scale to the other in a dynamic process. In that way, all the complexity of

the local microstructure is present during the analysis of the structural component

without summarizing it in some overall constitutive framework. This method can

handle nonlinearities arising from localization phenomena taking place at finer

scales (e.g. cracks, shear bands). During the analysis of such localized problems,

in each time increment, the macroscopic material point ”asks” for the mechanical

response of the microstructured model. This multiscale analysis is accomplished
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through the implementation of a localization-homogenization process [57, 43].

Despite the capabilities of concurrent methods in modeling multiscale phenomena

there are serious unresolved issues that can lead to erroneous nonphysical effects.

These issues are mainly related to modeling problems especially in the transition

zones between the different scales [19, 101].

1.3 Scope-novelty of the Thesis

The scope of the thesis is to study the mechanical and damping properties of

the nano-reinforced polymer based composites through multiscale modeling tech-

niques. Specifically, two types of nanoscale reinforcement elements are examined:

carbon nanotubes (CNTs) and graphene nanoplatelets (GnPs). These carbon

based nanostructured materials are used to reinforce bulk matrices made by poly-

ether-ether-ketone (PEEK), a thermoplastic polymer with supreme mechanical

and physical properties. The novelty of the thesis lies in the efficient utilization

and excellent synergy of the different modeling techniques, which are applied hi-

erarchically through various spatial scales, from atomistic to micro and finally to

macro scale.

In the context of multiscale modeling of CNT-reinforced composites (CNT-

RCs), an atomistic based multiscale approach, which couple molecular mechanics

to structural mechanics known as molecular structural mechanics (MSM) ap-

proach, is adopted for modeling CNTs. In this approach the carbon-carbon (C-C)

atomic interactions in the lattice structure of CNTs are simulated by equivalent

continuum elements. The transition from atomic to nano scale is performed

in the context of continuum mechanics, where the response of the space frame

structure of a CNT is projected onto an equivalent beam element (EBE). This

continuum element is able to capture phenomena taking place at the finer scale.

Then, the multiscale modeling proceeds to the micro scale, where long CNTs

built by connected EBEs are embedded into the polymer matrix to form RVEs.

For the generation of random wavy CNT structures a novel stochastic procedure

is introduced. Specifically the randomness of the CNT geometry is derived from

a nonhomogeneous stochastic field using the spectral representation method in

conjunction with evolutionary power spectra (EPS). The statistical properties of
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the EPS are derived from processing a number of CNTs with random geometries

obtained from scanning electron microscope (SEM) images. Monte Carlo (MC)

simulation is used in order to evaluate the effect of stochastic wavy geometry of

CNTs into the mechanical and damping properties of CNT-RC RVEs.

A remarkable characteristic of the proposed multiscale modeling procedure is

that the CNT/polymer interfacial adhesion behavior is incorporated in the CNT-

RC model through the implementation of a bond-slip law for EBEs. This law,

which is related to the developed interfacial shear stresses on the CNT/polymer

interface, affects the constitutive behavior of EBEs. Another important issue han-

dled by the proposed modeling procedure is the prediction of multiple relaxation

times for PEEK viscoelastic material. For this purpose, the Maxwell-Wiechert

constitutive model is assigned to the composite matrix. Effective material pa-

rameters for PEEK are derived after the conduction of suitable calibration tests

on the Maxwell-Wiechert model. The finite element method is used to analyze

the RVE models of the microstructured nanocomposites. To avoid complicated

mesh discretization of the CNT-RC RVEs the embedded element technique is ap-

plied. By this procedure the stiffness contributions of the EBEs which represent

the CNT reinforcements are comprised to the stiffness matrix of the parent solid

elements used to simulate the composite matrix. The effect of ISS on the mechan-

ical and damping properties of CNT-RCs is investigated through simulations on

RVE models with various weight fraction of CNTs. The numerical results of this

study confirm the major role of functionalization and straightening of nanotubes

in producing enhanced CNT-reinforced composite materials, and set the ISS limit

for which optimum properties can be obtained.

In the framework of sequential multiscale modeling, a novel constitutive model

which can capture the macroscopic behavior of the CNT-reinforced composites

is proposed. This model can efficiently simulate the resulting viscoplastic behav-

ior of the nanocomposite, which attributed to the material characteristics of its

constituent phases and the stick-slip mechanism on the interphase region. The

anisotropic stiffness reinforcement of the bulk polymer, and the anisotropic ad-

hesive behavior at the CNT/polymer interface caused by the randomly dispersed

CNTs inside the matrix can be also predicted. This is accomplished by the pro-

posed homogenization method through a novel constitutive model which combines
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Hill’s anisotropic plasticity with Maxwell-Wiechert viscoelasticity models. The

calibration procedure followed for the definition of the effective material parame-

ters of the proposed viscoplastic model is also introduced. This procedure is based

on numerical analyses of microstructured RVE models. The presented numerical

results show the efficiency of the proposed sequential multiscale modeling tech-

nique in simulating the structural response of CNT-reinforced composites. The

proposed multiscale method constitutes a novel numerical tool for the simulation

of large scale structures made by CNT-reinforced polymers. The advantage of its

usage lies in the fact that finer scale phenomena are considered in a continuum

manner so that analyses can be performed within reasonable computational time

and accuracy.

The other class of nanocomposite materials studied in the thesis is GnP-

reinforced composites (GnP-RCs). In the context of modeling GnP-RC materials,

different techniques are adopted which aim to homogenize the behavior of such

multiphase materials. In this study simulations are based on the extended finite

element method (XFEM) which is combined with Monte Carlo simulation so as

effective material parameters of GnP-RC material can be derived from random

RVE models. The originality of this study is that it investigates the effect of

random shape graphene inclusions on the effective mechanical properties of the

nanocomposite material. Modeling of random shaped inclusions is performed via

an analytically defined random level set function, which also serves as the enrich-

ment function in the framework of XFEM. Stochastic dispersion and orientation

of GnPs are also considered. The numerical results show an obvious influence

of these stochastic parameters on the derived material properties of the com-

posite. Particularly, the study highlights the surface effects in nanocomposites,

such as the change in surface to volume ratio of the arbitrarily shaped inclusions,

which have a significant impact on the overall effective properties of the compos-

ite material. These effects are often neglected during the fabrication process of

nanocomposites. Therefore, for the numerical characterization of the nanocom-

posite materials, geometry idealizations of the nanofillers, often used by many

researchers, may lead to inaccurate stiffness calculations.
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1.4 Objectives

The main objective of this research is to utilize different multiscale modeling

techniques and develop new models in order to simulate nanocomposite materials

within reasonable computational time and accuracy. A novel numerical tool which

can predict the mechanical properties of CNT and GnP-reinforced composites is

the outcome of this PhD thesis. Specific research objectives are summarized in

the following statements:

1. To apply the MSM approach in order to model the atomic lattice of CNTs

as a space frame structure.

2. To project the response of the space frame model onto a linear or nonlinear

EBE in order to construct full length CNTs in micro scale.

3. To implement a stochastic procedure for the construction of random wavy

CNT geometries exploiting SEM images.

4. To develop a bond-slip model and incorporate it into the FEM code in order

to simulate CNT slippage at the CNT/polymer interface.

5. To apply the embedded element technique in order to construct simple finite

element (FE) meshes for the CNT-RC RVE models.

6. To implement the Maxwell-Wiechert constitutive model in order to simulate

viscoelasticity of PEEK matrix.

7. To study the effect of: a) wf content of CNTs in the composite, b) ISS

developed at CNT/polymer interface, and c) random CNT waviness in the

mechanical and damping properties of CNT-RC materials.

8. To develop and implement a novel viscoplastic model in order to simulate

the homogeneous mechanical behavior of CNT-RC material which can cap-

ture microstructural phenomena: a) anisotropic stiffness, b) viscoelasticity

of polymer matrix and c) anisotropic energy dissipation due to slip of CNTs.

9. To apply the extended finite element method (XFEM) in order to model

the microstructure of the GnP-RC material.
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10. To develop a computational homogenization method for GnP-RC material

exploiting the excellent synergy of XFEM with Monte Carlo simulation.

11. To study the effect of: a) random inclusion shape, b) vf content of inclu-

sions in the composite and c) stiffness ratio of material constituents in the

effective elastic properties of GnP-RC material.

1.5 Thesis Structure

The thesis is organized into six chapters. Chapter 1 is an introduction to nan-

otechnology and specifically to polymer matrix based nanocomposite science. An

overview of the exceptional mechanical and physical properties of nanocompos-

ites, along with their promising applications and the major fabrication challenges

are presented. Different modeling techniques, appropriate for each scale from

atomistic to continuum level, are illustrated, while the significance of adopting

multiscale models in simulating such multiphase materials is highlighted. The

scope of the thesis and the introduced novelties are outlined along with the main

research objectives.

The structure of CNTs relative to their different chirality types are explained

in Chapter 2 where also the exceptional mechanical properties of CNTs are re-

ported. In addition different modeling techniques for CNTs are discussed with

emphasis to the atomistic based continuum multiscale method of MSM which

is the computational approach followed in this research. Numerical results from

parametric studies conducted on MSM CNT models are presented, where the ax-

ial, bending and torsional stiffness of CNTs are plotted against various nanotube

diameters and different CNT chiralities.

In Chapter 3 the thermoplastic polymers which can be used during the nanocom-

posite fabrication process as matrices are discussed. Their distinct mechanical

properties along with their vast area of applications are listed. Special reference

to the viscoelastic behavior of this class of polymers is accomplished along with

suitable constitutive models which can capture such a time dependent behavior.

Specifically the Maxwell-Wiechert viscoelasticity model is explained and its cal-

ibration from both relaxation and dynamic mechanical analysis (DMA) tests is
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performed for the case of PEEK polymer.

Chapter 4 is devoted to CNT-reinforced composites. It demonstrates all the

multiscale modeling steps required for the construction of RVE FE models of

CNT-RCs. Initially the computational procedure to pass from the nanoscale

space frame model of CNT to its microscale model, which is build by connected

EBEs, is presented. The stochastic modeling technique which is used to simulate

random wavy CNT geometries by exploiting real SEM images of specimens made

by CNT-RCs is also exhibited. Next the embedded element technique is formu-

lated which serves to keep simple structured FE meshes of the RVE models which

are analyzed using FEM. Also the implementation of a bond-slip model for cap-

turing the stick-slip interfacial mechanisms at the CNT/polymer interface and its

incorporation to the FE analysis code is described. Simulation of cycling loading

on microstructured RVE models provide with numerical results showing the ef-

fect of ISS on stiffness and damping behavior of CNT-RCs. Further, a nonlinear

homogenization method is developed capable to predict the macrocontinuum con-

stitutive response of CNT-RCs. The homogenization is performed through uti-

lization of a constitutive model which combines Hill’s anisotropic plasticity model

and the Maxwell-Wiechert viscoelasticity model. In that way anisotropic stiffness

and slippage of the randomly dispersed CNT reinforcements along with the vis-

coelastic nature of the polymer matrix can be efficiently captured. Calibration of

the proposed model is performed through numerical analyses of microstructured

RVE models for different ISS values. Numerical results are provided confirming

the efficiency of the homogenized model in predicting the microscale behavior of

the composite.

Chapter 5 is referred to GnP-reinforced composites. First the morphology of

GnPs is discussed and their supreme mechanical properties are reported. The

work done in this chapter aims to study the influence of random shaped GnP

inclusions on the effective properties of this class of nanocomposites. In order

to achieve this target the proposed homogenization method utilizes the excellent

synergy of XFEM and MC simulations. The theoretical formulation of XFEM

problem for multiphase media is initially explained. Then an analytically defined

random level set function is introduced in order to describe the random shaped

nanoplatelets. This function also serves as the enrichment function used in the
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displacement approximation scheme of the extended finite elements. Different en-

richment strategies are applied and their accuracy is tested by conducting various

convergence tests in which the extended finite element size is plotted against the

energy and displacement norms. An algorithm to generate random RVE models of

GnP-RCs with specific weight fraction is illustrated. This code accounts for ran-

dom dispersion, orientation and geometry of inclusions. In addition the proposed

computational homogenization approach by which effective material parameters

are calculated, is displayed along with the chosen solution strategy. Numerical

results are presented showing an obvious inclusion shape influence on the me-

chanical properties of GnP-RCs. Finally, Chapter 6 contains the conclusions of

the thesis and some recommendations for future work.
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Chapter 2

Carbon nanotubes

Since their discovery in 1991 by Iijima [34], CNTs have received significant inter-

est among nanocomposite scientists due to their extraordinary mechanical and

physical properties. The density of the CNTs is about 1.3− 1.8 g/cm3, which is

just one-half of the density of aluminum. Their elastic modulus is in the range

of 1 TPa which is comparable to that of diamond, while their reported tensile

strength is in the range of 150 GPa which is much higher than that of high-

strength steel (2 GPa). In addition, CNTs exhibit elastic strains up to 5% and

fracture strains up to 20% and thus they can sustain larger tensile and bend-

ing deformations, when used as reinforcements in polymers, compared to that of

carbon fibers. These exceptional mechanical properties along with their supreme

electrical and thermal capabilities have established CNTs as ideal reinforcement

elements for nanocomposite materials.

In this chapter a detailed description of the CNT geometry is presented.

Specifically, the formation of the CNT lattice structure from a hexagonal network

of covalently bonded carbon atoms is explained. Indeed, it is the properties of the

C-C covalent bonds which are responsible for the supreme mechanical properties

of the CNTs. Different modeling techniques applied to CNTs are discussed, from

atomistic, to continuum and to hybrid multiscale models. Especially, the basic

principles of molecular structural mechanics (MSM) approach are presented, as

this method is preferred over others in modeling nanotubes because of its simplic-

ity and effectiveness. The MSM method is implemented into parametric studies

of CNTs, where the provided numerical results confirm the dependence of elas-
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tic moduli on the chirality type and diameter of CNTs. Finally a finite element

model based on the modified Morse interatomic potential is developed, which

accounts for the nonlinear interactions of the atoms in the C-C bonds. Valida-

tion of this nonlinear space frame model of the CNT is performed by comparing

the obtained stress-strain curves with corresponding others, obtained from both

theoretical and experimental literature studies.

2.1 Structure of CNTs

CNTs are regarded as a new allotrope of carbon. They are long, slender fullerene

structures with aspect ratio greater than 1000. They can be produced by an

array of techniques, such as arc discharge, laser ablation and chemical vapor

deposition [93]. Their lattice structure resembles a thin, hollow cylinder con-

structed by hexagonal networks of covalently bonded carbon atoms. The ends

of the nanotubes might be cupped by fullerene hemispherical structures. They

can be formed either as single-walled (SWCNTs) or as multi-walled (MWCNTs)

depending on the number of graphene layers. Specifically, a SWCNT can be

imaginary generated by rolling up a graphene sheet into a seamless tube with

a constant radius. MWCNTs are essentially nested SWCNTs. The concentric

CNT shells have an interlayer spacing of approximately 0.34 nm, that is close to

the typical atomic spacing of graphite, and they are stacked together with weak

van der Waals forces acting between their carbon atoms.

The diameter of a SWCNT is uniquely defined by the roll-up vector ~Ch, which

is named chiral vector, because it characterizes the helicity of the nanotube. This

property is specified in terms of a pair of integers (n,m), which constitute the

multiples of the magnitude of the basis vectors ~α1, ~α2, which are defined on the

haxagonal network of the graphene lattice (see Fig. 2.1). The chiral vector is

defined as a linear combination of these basis vectors:

~Ch = n ~α1 +m ~α2 (2.1)

The relation between chiral indices n and m results in different CNT configura-

tions which can be classified into three categories. For n = m the (n, n) CNT is
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Figure 2.1: Graphene lattice structure and definition of chiral vector ~Ch

constructed, which is usually labeled as ”armchair”, while for m = 0 the (n, 0)

CNT is constructed, which is usually labeled as ”zig-zag”. These two CNT types

are generaly named ”achiral nanotubes”. On the other hand, the nanotubes de-

rived from the (n,m) pair of indices, where n 6= 0 and n 6= m, are labelled as

”chiral nanotubes”. Figure 2.2 illustrates the lattice structure of each chiral type

CNT. The chirality of the tube has significant impact on the transport properties

of the CNT, particularly on its electronic properties. For a given (n,m) CNT,

if (2n + m) is a multiple of 3, then the nanotube is metallic, otherwise the nan-

otube is a semiconductor. A (n,m) SWCNT can be constructed by cutting the

graphene sheet along the dotted lines (see Fig. 2.1) and rolling it across the chiral

vector direction so as the perimeter of the tube to be equal to the length of chiral

vector. The angle between the vectors ~Ch and ~α1 which defines the twist of the

tube is the helicity angle and can be calculated by:

θ ~Ch = atan

( √
3 m

2n+m

)
(2.2)

From Eq. (2.2) it is simple to evaluate that θ ~Ch = 30◦ for armchair configuration
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and θ ~Ch = 0◦ for zig-zag configuration. For any other chiral nanotube the angle

θ ~Ch ∈ (0◦, 30◦). The nanotube diameter is defined as:

dn = | ~α1|
√
n2 + n.m+m2

π
(2.3)

where | ~α1| = | ~α2| is the length of the basis vectors, which equals to
√

3αCC . The

length of C-C bonds is αCC = 0.1421 nm, which is shorter than that in diamond,

indicating the superior strength of CNTs. To roll up a graphene sheet into a

SWCNT the following simple rule is followed:

[xn, yn, zn] =

[
rn cos

(
xg
rn

)
, rn sin

(
xg
rn

)
, yg

]
(2.4)

where xg and yg are initially the spatial coordinates on the graphene sheet and

xn, yn and zn are the spatial coordinates after the rolling up of the graphene sheet,

which results in a nanotube with radious rn. Fundamental relations governing

the geometry of CNTs are reviewed in Dresselhaus et al [20] along with explicit

examples.

Figure 2.2: Lattice of: a) Armchair, b) Zig-zag and c) Chiral CNTs
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2.2 Modeling techniques for CNTs

Experimental characterization of CNT materials is still remaining a great chal-

lenge. This is due to the technological difficulties in handling matter at nano

scale and the excessive cost of the required experimental setups. On the other

hand, many computational techniques have been introduced as an alternative for

the characterization of CNT materials. These can be classified into three main

categories: a) atomistic, b) continuum and c) continuum based nanoscale mod-

eling techniques. Different CNT models constructed by employing each of the

aforementioned approaches are illustrated in Fig. 2.3.

Figure 2.3: CNT models derived from a) atomistic, b) continuum and c) contin-
uum based nanoscale modeling techniques

In atomistic techniques, the Schrodinger’s wave equation, which is the ana-

logue of Newton’s second law of motion for quantum mechanics, is solved. From

the analysis the time evolution of bond interactions in a system of carbon atoms

and thus the physical properties of CNTs can be computed. Specific interac-

tive forces (force field potentials), which are related to the chemical bonding of

atoms and the system’s energy, have to be prescribed before the analysis. These

force fields act as the boundary conditions in the nonlinear differential equation

of the atomistic boundary value problem. Three basic categories in the context

of atomistic modeling techniques exist, namely the molecular dynamics (MD),

Monte Carlo (MC) and ab initio method. In both MD and MC methods, the

atomic forces are obtained by differentiating the interatomic force field potentials.

These can be pair-wise or many-body potentials, such as harmonic, Brenner, Ter-

sof, Tersof-Brener, Morse potential or even non bonded pair potentials, such as
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Lennard-Jones potential, which is used for calculating van der Waals forces [48].

Molecular dynamics is a deterministic method while Monte Carlo is a stochastic

one. On the other hand ab initio is totally different from the other two as it is

a potential-free method. Here the forces on atoms are found progressively from

electronic structure calculations. Many atomistic numerical studies are reported

in literature, such as tight binding molecular dynamics (TBMD), local density

(LD), and density functional theory (DFT) approaches [35, 17, 107, 29, 73], all

employed in order to predict the elastic moduli and strength of CNTs. Despite

their accuracy, atomistic modeling techniques have a limited range of applica-

bility into short time and small size simulations. So, large molecular systems,

spanning over the range of a few picoseconds in time and a few nanometers in

size, can not be simulated with atomistic techniques, even by the state-of-the-art

supercomputers due to excessive computational time and insufficient computer

memory resources.

Continuum modeling techniques employ the continuum mechanics theories of

rod, trusses, beams, shells, or curved plates in order to study the mechanical

properties of CNTs. The basic assumption in these theories is that the lattice

structure of CNTs is replaced by a continuum medium which has continuous

distribution of mass and stiffness. The validity of the continuum models need

to be carefully tested, as they ignore the real discrete structure of CNT lattice.

In the context of continuum approaches, both analytical and numerical models

have been introduced. Many researchers have employed continuum shell mod-

els to study CNTs. Similarities between the MD model and the macroscopic

shell model of the CNT was presented by Yakobson et al [105]. They have also

shown that mechanical properties of CNTs were strongly dependent on helicity

and atomic structure of the tubes. Thus, the effect of curvature and chirality

on the mechanical properties of CNTs cannot be captured by an isotropic shell

model. Chang [12] used an anisotropic shell model. Unlike common shell mod-

els, which assume isotropic elastic properties, this model can predict the chirality

induced anisotropic effects on some mechanical behaviors of CNTs by incorporat-

ing molecular and continuum mechanics. In general, more complex shell theories,

such as Sanders theory, are capable of reproducing the results of MD simulation.

However, some parameters, such as wall thickness of CNTs, are not well defined
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by the continuum models. The applicability and limitations of shell models in

predicting the mechanical properties of CNTs have been extensively discussed

in many literature papers [100, 67]. Recently, nonlocal continuum theories have

been also employed for the CNT material characterization. Specifically, Arash

and Wang [2] have pointed out the superiority of nonlocal elasticity models of

beams, shells and plates in simulating CNTs, compared to the classical continuum

models.

Contrary to continuum modeling of CNTs, where the whole nanostructure is

replaced by a continuum medium, continuum based nanoscale modeling provides

a rationally acceptable compromise by replacing C-C bonds with continuum ele-

ments. In other words, in continuum based nanoscale modeling the C-C atomic

interactions are captured using structural members, whose properties are obtained

through atomistic modeling. In this context, the quasi-continuum (QC) and the

equivalent-continuum (EC) methods have been utilized in modeling CNTs, where

continuum mechanics theories are applied at nanoscale. In the quasi-continuum

method, introduced by Tadmor et al [90], a relationship is established between

the strain energy of a material point on the continuum and the deformation of its

crystal lattice. This relation follows the Cauchy-Born rule. On the other hand,

in the equivalent-continuum method , introduced by Odegard et al [64], a cor-

relation between computational chemistry and continuum structural mechanics

is provided. Here the modeling procedure is performed into two stages. In the

first stage, the discrete molecular structure of the material is replaced with an

intermediate continuum model consisting of two types of truss elements, one of

which captures changes in bond length and the other describes angle variations.

It has been shown that this replacement may be accomplished by equating the

potential energy of the whole molecular system to the strain energy of the truss

elements of the continuum model. In the second stage, the truss-based contin-

uum model is replaced with an equivalent continuous cylinder based once again

on energy equivalence. The main shortcomings of this method are the complexity

of the model and the excessive computations required for its analysis.
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2. CARBON NANOTUBES

2.2.1 Molecular structural mechanics

Among the EC approaches the molecular structural mechanics (MSM) developed

by Li and Chou [50] has attracted great attention because of its simplicity and

effectiveness. The energy equivalence in this approach is established in a different

way than that in the classical EC method. The potential energy produced by

the C-C atomic interactions is equating to the sum of energies produced by the

deformations of a beam element, which substitute the C-C chemical bond. Thus,

the method results in a space frame model built by connected beam elements,

which is equivalent to the atomistic model of the lattice of the CNT material.

In principle, this approach provides a linkage between molecular mechanics and

continuum structural mechanics by which geometry and material properties of

the beam elements are obtained. Figure 2.4 illustrates the lattice structure of

a CNT which is modeled by the MSM method, where a pattern of a hexagonal

network of beams can be recognized.

Figure 2.4: Lattice structure of a CNT modeled by MSM method
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2.2.1.1 Structural mechanics

In structural mechanics analysis the displacements, strains and stresses of a struc-

ture subjected to specific loading conditions are determined. In this context, the

stiffness matrix method is widely used to analyze structures of any geometry. It

can be applied in linear elastic static problems as well as in problems involving

buckling, plasticity and dynamics. Specifically, for linear elastic problems the for-

mulation of the method starts with the elemental equilibrium equation written

for an element in the space frame model (see Fig. 2.5) as follows:

Ku = f (2.5)

where

u = [uxi, uyi, uzi, θxi, θyi, θzi, uxj, uyj, uzj, θxj, θyj, θzj]
T (2.6)

f = [fxi, fyi, fzi,mxi,myi,mzi, fxj, fyj, fzj,mxj,myj,mzj]
T (2.7)

are the nodal displacement vector and nodal force vector of the element, respec-

tively. K is the elemental stiffness matrix, which is formed by the following

submatrices:

K =

[
Kii Kij

KT
ij Kjj

]
(2.8)

where

Kii =



EA/L 0 0 0 0 0

0 12EIx/L
3 0 0 0 6EIx/L

2

0 0 12EIy/L
3 0 −6EIy/L

2 0

0 0 0 GJ/L 0 0

0 0 −6EIy/L
2 0 4EIy/L 0

0 6EIx/L
2 0 0 0 4EIx/L


, (2.9)
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2. CARBON NANOTUBES

Kij =



−EA/L 0 0 0 0 0

0 −12EIx/L
3 0 0 0 6EIx/L

2

0 0 −12EIy/L
3 0 −6EIy/L

2 0

0 0 0 −GJ/L 0 0

0 0 6EIy/L
2 0 2EIy/L 0

0 −6EIx/L
2 0 0 0 2EIx/L


, (2.10)

Kjj =



EA/L 0 0 0 0 0

0 12EIx/L
3 0 0 0 −6EIx/L

2

0 0 12EIy/L
3 0 6EIy/L

2 0

0 0 0 GJ/L 0 0

0 0 6EIy/L
2 0 4EIy/L 0

0 −6EIx/L
2 0 0 0 4EIx/L


(2.11)

Given the length L of a frame element, only the four stiffness parameters need

to be determined in order to define the elemental stiffness matrix K. These are

the tensile resistance EA, the flexural rigidities EIx and EIy and the torsional

stiffness GJ . In order to obtain the deformation of a space frame model, the

above elemental stiffness equations should be established for every element in the

model and then all these equations should be transformed from local coordinates

to a global reference system. Finally, a system of linear equations is assembled

according to the requirements of nodal equilibrium. By solving this system and

taking into account the boundary restraints, the nodal displacements can be

obtained.

2.2.1.2 Molecular mechanics for CNTs

In the framework of molecular mechanics, a CNT can be regarded as a molecular

system consisting of carbon atoms. The deformation of the CNT under a specific

load is governed by the atomic motions which are regulated by a force field. This

force field, which is generated by electron-nucleus and nucleus-nucleus interac-

tions, is usually expressed in the form of a steric potential energy. The general

expression of this total steric potential energy is a sum of energies due to valence
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Figure 2.5: Illustration of a beam element of the space frame model.

or bonded and nonbonded interactions as follows:

U =
∑

Ur +
∑

Uθ +
∑

Uφ +
∑

Uω +
∑

UvdW , (2.12)

where Ur, Uθ, Uφ, Uω and UvdW are the bond-stretching energy, the bond-angle

variation energy, the dihedral-angle torsion energy, the inversion (out of plane

torsion) energy and the van der Waals interaction energy, respectively. Note

that the energy terms due to the electrostatic interactions of the bonds are omit-

ted. The corresponding interatomic interactions are schematically represented in

Fig. 2.6.

Figure 2.6: Interatomic interactions in molecular mechanics: a) stretching, b)
bending, c) dihedral angle torsion, d) out of plane torsion and e) van der Waals.

There are a lot of studies in the field of molecular mechanics proposing dif-

ferent functional forms for the potential energy terms in Eq. (2.12), [8, 71, 16].
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2. CARBON NANOTUBES

These functional forms depend on the particular material and the loading condi-

tions considered, for describing the bond interactions. Both linear and nonlinear

potential expressions have been applied. The most widely used are the harmonic,

Morse, Tersoff-Brenner and Lenard-Jones potentials. In general, for covalent sys-

tems, the main contributions to the total steric energy come from the first four

terms. Under the assumption of small deformation, the harmonic approximation

is adequate for describing the energy [25]. For sake of simplicity and convenience,

we adopt the simplest harmonic forms and merge the energy terms from dihedral

angle torsion and the improper torsion into a single equivalent term, i.e.,

Ur =
1

2
kr (r − r0)2 =

1

2
kr (∆r)2 , (2.13)

Uθ =
1

2
kθ (θ − θ0)2 =

1

2
kθ (∆θ)2 , (2.14)

Uτ = Uφ + Uω =
1

2
kτ (∆φ)2 , (2.15)

where kr , kθ and kτ are the bond stretching, bond angle bending and torsional-

resistance force constants respectively, and ∆r, ∆θ and ∆φ represent the bond-

stretching, bond-angle and bond-twisting-angle variations, respectively. In prin-

ciple, the bond-angle variation force constant is the sectional bending rigidity

about the major principal axis of the covalent bond for a graphite sheet.

2.2.1.3 Linking molecular mechanics to structural mechanics

As discussed in Section 2.1 the carbon atoms on the CNT lattice are covalently

bonded to each other forming hexagon networks on the wall of the tube. These

covalent bonds are formed in three-dimensional space exhibiting characteristic

bond lengths and bond angles. The total deformation of a CNT subjected to

specific external forces is the result of the bond interactions which constrain the

displacements of the carbon atoms. A CNT could be simulated as a space frame

structure where the covalent bonds are represented by connected beam elements

while the carbon atoms act as joints of the connected elements. The stiffness

and geometric parameters of an equivalent beam can be determined from the
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relationship between the potential energy of the covalent bond due to atomic

interactions and the strain energy of the equivalent beam as a result of structural

deformation. According to structural mechanics, the strain energy of a uniform

beam with length L, Young”s modulus E, and circular cross-section A subjected

to a pure axial force N (Fig. 2.7a) can be expressed as:

UA =
1

2

∫ L

0

N2

EA
dL =

1

2

N2L

EA
=

1

2

EA

L
(∆L)2 (2.16)

where ∆L is the axial stretching deformation. The strain energy of a uniform

beam subjected to a pure bending moment M (see, Fig. 2.7b) is written as:

UM =
1

2

∫ L

0

M2

EI
dL =

1

2

M2L

EI
=

1

2

EI

L
(2α)2 (2.17)

where α denotes the rotational angle at the ends of the beam. Notice that for

circular cross section Ix = Iy = I. The strain energy of a uniform beam subjected

to a pure torsion T (Fig. 2.7c) is denoted as:

UT =
1

2

∫ L

0

T 2

GJ
dL =

1

2

T 2L

GJ
=

1

2

GJ

L
(∆β)2 (2.18)

where ∆β is the relative rotation between the ends of the beam.

Comparing the molecular Eqs. (2.13)-(2.15) with the corresponding Eqs. (2.16)-

(2.18) of structural mechanics it can be deduced that both Ur and UA represent

the stretching energy, both Uθ and UM indicate the bending energy, and both Uτ

and UT stand for the torsional energy. Accordingly, ∆r is reasonably assumed to

equal ∆L, ∆θ equals 2α, and ∆φ equals ∆β. Therefore, equating the aforemen-

tioned energy expressions the stiffness parameters of the structural beam element

are related with known molecular mechanics force field constants as follows:

EA = krL, EI = kθL, GJ = kτL (2.19)

Equation (2.19) establishes the foundation of applying the theory of structural

mechanics to the modeling of carbon nanotubes or other similar fullerene struc-

tures. As long as the force constants kr, kθ and kτ are known, the sectional

stiffness parameters EA, EI and GJ can be readily obtained. Then by following
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2. CARBON NANOTUBES

the solution procedure of stiffness matrix method for frame structures, the de-

formation and related elastic behavior of graphene sheets and nanotubes at the

atomistic scale can be simulated.

Figure 2.7: Structural deformations of a beam element: a) tension, b) bending
and c) torsion.

2.2.1.4 Parametric studies

In this section parametric studies are conducted in order to compute the me-

chanical properties of both armchair and zig-zag SWCNTs with respect to their

diameters. The MSM approach, described previously, is applied where the space

frame model is constructed by assuming round beam finite elements. The diam-

eter d, Young’s modulus E and shear modulus G of the beams are obtained from

Eqs. (2.19) as follows:

d = 4

√
EI

EA
= 4

√
kθ
kτ
, E =

k2
rL

4πkθ
, G =

k2
rkτL

8πk2
θ

(2.20)

The force field constant values kr = 938 kcal·mole-1·Å−2= 6.52×10−7 N·nm-1,
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kθ = 126 kcal·mole-1·rad-2= 8.76×10−10 N·nm·rad-2 and kτ = 40 kcal·mole-1·rad-2=

2.78× 10−10 N·nm·rad-2, defined by Cornell et al [16], are used in the subsequent

analyses. Substituting these force field constant values and the characteristic

bond length L = αC−C = 0.1421 nm into Eqs. (2.20) the values of d = 0.147 nm,

E = 5.49 TPa and G = 0.871 TPa of the beam elements are obtained. Then, the

space frame model of a CNT is analyzed using FEM and its stiffness properties

can be calculated. Specifically, the axial, bending and torsional rigidities of a

SWCNT are derived by simulating a space frame model subjected to three inde-

pendent loading conditions, namely tension, bending and torsion. The boundary

and loading conditions for each test case are depicted in Fig. 2.8.

Figure 2.8: FE mesh and boundary conditions of a space frame model in a)
tension, b) bending and c) torsion

Specifically, the axial stiffness of a CNT with initial lengh L0 is calculated by

imposing an axial displacement ux at one end of the space frame model, while its

opposite end is kept fixed. The finite element analysis provides with the resulting

reaction forces Fx (see Fig. 2.8(a)). Therefore, the equivalent value for the axial

stiffness of the CNT can be derived by the equation:

(EA)eq =
FxL0

ux
(2.21)

In bending loading case, a transverse displacement uy is applied at the center

point of the one end of the space frame model, where all nodes are kinematically
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2. CARBON NANOTUBES

constrained (see Fig. 2.8(b)). The other end, where the resulting reaction forces

Fy are calculated, is considered fixed. The equivalent bending stiffness of the

CNT is thus computed by:

(EI)eq =
Fy
3uy

L3
0 (2.22)

Similarly, in torsion case, a torque T is applied at the center point of one end

of the model, which is kinematically constrained to the peripheral nodes of this

section, as shown in Fig. 2.8(c). The nodes at the other end section of the model

are fully constrained. The angle of rotation φ of the center point is calculated

by means of a FE analysis and the equivalent torsional stiffness of the CNT is

calculated as follows:

(GJ)eq =
T

φ
L0 (2.23)

A number of space frame models for both armchair (n, n) and zigzag (n, 0)

chirality type nanotubes with aspect ratio approximately ten have been analyzed.

Figure 2.9 illustrates the stiffness values of the CNTs computed from Eqs. (2.21)-

(2.23) with regard to their real diameters (Eq. (2.3)). As it can be observed from

the figure, the chirality type of the CNT slightly affects its stiffness, which seems

to be strongly dependent on the diameter of the CNT. It can be deduced that the

stiffness parameters of a nanotube with theoretically infinity diameter correspond

to these of a graphene sheet.

2.2.2 Modeling the nonlinear C-C bond behavior

The quadratic potential, which results in harmonic approximations of the molec-

ular energies (Eqs. (2.13)- (2.15)), is adequate for describing small deformations

of the CNT lattice in the context of MSM approach. However, when the behavior

of CNTs under large strains is to be simulated, the nonlinear behavior of the C-C

bonds has to be modeled. For this reason, the empirical interatomic potentials are

adopted, which can adequately describe the interatomic interactions even when

large deviations from equilibrium occur. There are two types of such potentials,

pairwise and many-body. The major difference between them lies in the consid-
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Figure 2.9: Stiffness values in a) axial, b) bending and c) torsion case for armchair
and zig-zag nanotubes vs diameter

eration of non-bonded interactions by many-body potentials. In order to restrict

the pair potential to nearest neighbors, many-body potentials introduce a cut-off

function, which has found to cause strange features in the resulted force-strain

curve [5]. On the other hand, the pairwise modified Morse potential has been em-

ployed in many studies because of its simplicity over many-body potentials and

its adaptability with FEM [103, 89]. According to the modified Morse potential,

the total potential energy of the nanotube system is expressed as:

U =
∑

Ur +
∑

Uθ (2.24)
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2. CARBON NANOTUBES

Ur = De

[(
1− e−β(r−r0)

)2 − 1
]

(2.25)

Uθ =
1

2
kθ (θ − θ0)2 [1 + ksextic (θ − θ0)4] (2.26)

where Ur , Uθ are the bond energy due to bond stretching and bond angle-bending

and r, θ are the current bond length and the current bond angle, respectively.

According to Belytschko et al [5] the parameters of the Morse potential are:

r0 = 1.421×10−10 m, De = 6.03105×10−19 N·m, β = 2.625×1010 m-1, θ0 = 2.094

rad, kθ = 0.9× 10−18 N·m/rad2, ksextic = 0.754 rad-4. Belytschko et al [5] have

defined these specific parameters so as to enforce equivalence between Morse’s

potential and Brenner’s potential for strains below 10%.

Differentiation of Eq. (2.25) results to the definition of the nonlinear stretching

force between the carbon atoms in the C-C bond. This relation is given by the

following molecular force-field:

F = 2βDe

(
1− e−β(r−r0)

)
e−β(r−r0) (2.27)

Figure 2.10 plots the relationship between the axial force F and the axial strain

ε for the C-C bonds. The strain of the bond is defined by ε = (r − r0)/r0. As

may be seen, the force-strain relation is highly nonlinear at the attraction region

especially at large strains. The inflection point (peak force) occurs at 19% strain.

The repulsive force (ε < 0) increases rapidly as the bond length shortens from

the equilibrium length r0 with less nonlinearity than the attractive force.

Also differentiation of Eq. (2.26) results to the definition of the bond moment

M with respect to the bond angle change ∆θ = θ − θ0. This relation can be

expressed in the form:

M = kθ∆θ
(
1 + 3ksextic∆θ4

)
(2.28)

In Fig. 2.11 the bond moment M is plotted against the bond angle change ∆θ.

It can be seen that for small angles (< 0.5 rad) the moments are kept low and

linear behavior is observed. The nonlinear bending behavior is obvious for larger

angles where significant increase in moment values occurs.
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Figure 2.10: Force-strain curve of the modified Morse potential

Figure 2.11: Moment-angle change curve of the modified Morse potential

For modeling the C-C nonlinear bond behavior in nanotubes, Bernoulli beam

elements, which have been assigned material nonlinearity, are used. Specifically,

the von Mises plasticity model is applied, where yielding parameters of beams

are defined from the nonlinear force-strain curve of the modified Morse potential

(Fig. 2.10). Initially, the stiffness of the beam elements is evaluated from the
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initial slope of that curve using the element’s cross-sectional area A. Then for each

load increment the total engineering stresses σ = F/A are calculated. Therefore,

assuming a very small elastic strain limit (' 0.2%), the yield stress-plastic strain

data for the von Mises model are defined. Figure 2.12 presents the yield stress-

plastic strain curve derived for beam elements with diameters d = 0.34 nm, which

are equal to the interlayer spacing of graphite.

Figure 2.12: Yield stress-plastic strain curve for von Mises model obtained for
beams with diameter d = 0.34 nm

The validity of the proposed model is tested on a zig-zag (20, 0) CNT space

frame model subjected to an incremental tensile loading. In addition a damage

model is incorporated in the FE analysis to account for nanotube fracture. This

damage model is based on the element deletion technique which is triggered when

the total axial strain on a beam reaches the inflection strain of the bonds (19%).

Notice that as bond stretching dominates nanotube fracture and the effect of

angle-bending potential is very small, only the bond stretching potential is con-

sidered in the simulation. Figure 2.13 shows the comparison of the stress-strain

curves predicted by the proposed modeling technique with those obtained by the

MD simulation of Belytschko et al [5], the progressive fracture model (PFM) of

Tserpes et al [96] and the experiments of Yu et al [109]. As it can be observed,

the experimental curves show very large dispersion, probably due to insufficient

experimental setups at nanoscale. The strain of the nanotube is calculated by
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εn = (Ln−Ln0)/Ln0 , where Ln is the current nanotube length and Ln0 is the ini-

tial length prior to loading (Ln0 = 41.9 nm). The stress is given by σn = Fn/An,

where Fn is the total reaction force computing on the fixed end of the nanotube

by summing over all the nodal reaction forces lying there. An = πdnt is the

cross-sectional area of the uniform nanotube, which has a diameter dn = 1.57 nm

and a wall thickness t = 0.34 nm. The stress-strain curve, obtained by the pro-

posed modeling technique, show a very good correlation with the corresponding

curve obtained by the MD simulation of Belytschko et al [5]. This fact implies

the efficiency of the proposed continuum base nanoscale model in predicting the

nonlinear mechanical behavior of CNTs.

Figure 2.13: Nonlinear stress-strain curve of zig-zag (20,0) CNT predicted in
present study, comparison with other theoretical and experimental studies: MD
simulation of Belytschko et al [5], PFM of Tserpes et al [96], experiments of Yu
et al [109]
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Chapter 3

Thermoplastic polymers

Depending on the type of polymer matrix used to fabricate composites, these

are classified as being thermosets or thermoplastics. Unlike thermosets which

require a crosslinking chemical reaction in order to solidify, thermoplastics do

not have crosslinks; hence, they are essentially stronger than thermosets and can

be easily reprocessed. In this chapter the main properties and applications of

thermoplastic polymers are discussed. Suitable constitutive models, which can

simulate the viscoelastic behavior of thermoplastics, are introduced along with

the calibration procedure for specific materials.

3.1 Properties and applications

When considering materials for load-bearing applications, designers are increas-

ingly examining the advantages of using thermoplastics materials, instead of tra-

ditionally accepted materials and, in particular, metals. Thermoplastics have

three main advantages, their low specific gravity, their low energy requirements

for manufacture and their low cost of fabrication, particularly by the injection

moulding route. In Table 3.1 the main properties of the most common used

thermoplastic polymers are recorded. Because of their interesting properties and

their relatively ease of production, thermoplastic polymers are widely used in

various industrial sectors such as in automotive, aerospace, sporting goods, con-

sumer electronics, and many other fields. Although thermoplastics have higher
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3. THERMOPLASTIC POLYMERS

strength-to-weight ratios than aluminium and steel, their main drawback is their

low stiffness-to-weight ratios especially at elevated temperatures. For this rea-

son, reinforcement of thermoplastics is crucial for achieving improved mechanical

properties, so that they can be used in a variety of applications.

Polymer Density Young’s Tensile Fracture Glass Softening Thermal
(g cm-3) modulus strength toughness temperature expansion conductivity

(20oC 100s) (MPa) (20oC) TG (K) temperature (Wm−1 K−1)
(GPa) (MPa m1/2) Ts (K)

Polyethylene, PE 0.91-0.94 0.15-0.24 7-17 1-2 270 355 0.35
Polypropylene, PP 0.91 1.2-1.7 50-70 3.5 253 31 0.2
Polystyrene, PS 1.1 3.0-3.3 35-68 2 370 370 0.1-0.15
Polyvinyl, PVC 1.4 2.4-3.0 40-60 2.4 350 370 0.15
Poly-ether-ether-ketone, PEEK 1.3-1.4 2.7-3.5 80-100 - 416 426 -

Table 3.1: Properties of common thermoplastic polymers

3.2 Modeling viscoelasticity

The behavior of a thermoplastic polymer is rather complex due to time, strain rate

and temperature dependence. This complex multivariate behavior is described

as viscoelastic behavior. Viscoelastic materials are distinguished from materials

which are idealized as being purely elastic. They exhibit properties such as relax-

ation, creep, frequency dependent stiffness and dissipative characteristics as well

as strain rate dependent hysteretic behavior. The mathematical models used to

simulate viscoelastic materials are formulated as differential equations or convo-

lution integrals. The latter approach is followed by the models presented in this

section.

3.2.1 Basic assumptions

Formulation of constitutive models for viscoelastic polymers is based on some

fundamental assumptions. Thermorheologically simple materials for which the

time-temperature superposition principle is valid, are initially considered (see

Schwarzl and Staverman [80]). The thermomechanically coupled process is sim-

plified and the generation of heat is not taken into account, i.e., an isothermal

situation is assumed. Furthermore, fatigue damage phenomena usually observed
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during the first loading cycles of polymers are not taken into account. Linear vis-

coelastic material models are considered in this theses, for which the Boltzmann

superposition principle is applicable.

3.2.2 Elementary mechanical models

Elementary mechanical models that can describe some aspects of viscoelastic be-

havior of polymers are described in this section. Although these simple models

are based on some fundamental assumptions and cannot represent the behavior

of real polymers over the complete time history of their use, they are very help-

ful in gaining physical understanding of the phenomena of creep, relaxation and

frequency dependent stiffness. The basic constitutive rheological elements of lin-

ear viscoelasticity are the elastic spring called Hooke-element, which represents

elastic behavior, and the viscous Newton-element, which represents viscous be-

havior (Fig. 3.1). The spring constant E stands for the elastic modulus of a bar

subjected to uniaxial tension, where the linear relation between the elastic strain

εe and the elastic stress σe is derived as:

σe = Eεe (3.1)

On the other hand, the Newton-element simulates the behavior of a linear viscous

damper, where a linear relation between the viscous strain rate ε̇v and the viscous

stress σv is established through the coefficient of viscosity n:

σv = nε̇v (3.2)

The Hooke and the Newton-element can be combined in a variety of arrange-

ments in order to produce any viscoelastic response of a polymer. The simplest

viscoelastic model is the Maxwell-element depicted in Fig. 3.1. This consists of

a Hooke-element connected in series with a Newton-element. A relation between

stress and strain can be obtained for any mechanical model by using equilib-

rium and kinematic equations for the system and constitutive equations for the
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Figure 3.1: Elementary mechanical models: a) Hooke-element, b) Newton-
element and c) Maxwell-element

elements. The equilibrium equation for the Maxwell model is as follows:

σ = σe = σv (3.3)

where σ is the applied stress, σe is the stress in the spring and σv is the stress in

the damper. The kinematic condition is expressed as:

ε = εe + εv (3.4)

where ε is the total strain in the Maxwell-element, εe is the strain in the spring and

εv is the strain in the damper. The constitutive equations are given by Eq. (3.1)

and Eq. (3.2) for Hooke and Newton-element respectively. By differentiating the

equilibrium and kinematic equations we get:

σ̇ = σ̇e = σ̇v (3.5)

and

ε̇ = ε̇e + ε̇v (3.6)

Combining Eqs. (3.1), (3.2), (3.5) and (3.6) the fundamental differential equation

40



for Maxwell model is derived in the form:

ε̇ =
1

E
σ̇ +

1

n
σ (3.7)

Equation (3.7) can be written after rearrangement as:

σ̇ +
1

τ
σ = Eε̇ (3.8)

where the relaxation time τ is expressed in terms of the viscosity parameter n

and the elastic constant E in the form:

τ =
n

E
(3.9)

Thus, the stress-strain relation of a material which exhibits Maxwellian be-

havior is given by the solution of the differential equation (3.7) or (3.8) under

prescribed loading conditions. For instance, a relaxation test is simulated by

applying a constant strain to the Maxwell-element during the total deformation

history of the solid:

ε̂(0) = ε̂(t) = const (3.10)

For this test case the solution of the differential equation (3.8) yields:

σh = ce−
t
τ and σp = 0 (3.11)

where σh and σp are the homogeneous and the particular solution respectively.

By applying the following initial conditions,

for t = 0, σ̂(0) = Eε̂(0) (3.12)

the constant c in Eq. (3.11) is defined as c = Eε̂(0). Substituting this to the

solution results to the following stress history equation:

σ̂(t) = Eε̂(0)e−
t
τ (3.13)

where the relaxation function Γ̂, which characterize the viscoelastic response of
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the material in time domain, is defined by:

Γ̂(t) = Ee−
t
τ (3.14)

Figure 3.2 plots the relaxation behavior of a Maxwell-element in terms of stresses

and strains. As shown the relaxation time τ is given by the initial slope of the

stress-strain curve. From Eq. (3.13) the stress at a time equal to the relaxation

time τ is derived as σ̂(0)/e. This quantity can be used as a measure of the

relaxation time of a polymer subjected to relaxation. Notice that as the time

tends to infinity the relaxation stress of the material is fully reduced, σ̂(t →
∞) = 0.

Figure 3.2: Relaxation behavior of a Maxwell-element

3.2.3 The Maxwell-Wiechert model

A real polymer does not relax with a single relaxation time as predicted by the

Maxwell model of Section 3.2.2. Usually a distribution of relaxation times exists.

Thus, an extension of the Maxwell model is required, so that more accurate

predictions of the viscoelastic behavior of polymers can be achieved. Such an

advanced viscoelastic model is the Maxwell-Wiechert model, which is formed

by a finite number of separated Maxwell-elements connected in parallel with an

elastic Hooke-element ( see Fig. 3.3). The stress history equation for this model
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is given by:

σ̂(t) = E∞ε̂(0) +
N∑
j=1

Eje
− t
τj ε̂(0) (3.15)

where τj = nj/Ej is the relaxation time for the jth Maxwell-element, where

j = 1, ..., N . The response of the N Maxwell-elements and that of the Hooke-

element are contributed to the characteristic relaxation function of the model,

which is expressed as:

Γ̂(t) = E∞ +
N∑
j=1

Eje
− t
τj (3.16)

The instantaneous and the long term relaxation modulus of the model are defined

respectively in the form:

Γ̂0 = lim
t→0

Γ̂(t) = E∞ +
N∑
j=1

Ej (3.17)

Γ̂∞ = lim
t→∞

Γ̂(t) = E∞ (3.18)

3.2.4 Boltzman superposition principle

The Boltzman superposition principle is one of the simplest but most powerful

principles in polymer physics. Considering a creep test where a Maxwellian ma-

terial is loaded by a constant stress σ0 for a time period t ≥ t0, the strain history

is given as:

ε̂(t) = Ŷ (t− t0)Ĥ(t− t0)σ0 (3.19)

where Ŷ , Ĥ are the creep compliance and the Heaviside unit step function, re-

spectively. If an additional stress σ1 is applied on the material at time t ≥ t1,

then the equivalent strain response is defined by:

ε̂(t) = Ŷ (t− t0)Ĥ(t− t0)σ0 + Ŷ (t− t1)Ĥ(t− t1)(σ1 − σ0) (3.20)
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Figure 3.3: Schematic of the Maxwell-Wiechert viscoelastic model.

According to the superposition principle, the strain response of a system at t ≥ t1

is a superposition of the response due to the loading σ0 applied at t0 ≤ t < t1 and

the response due to the loading ∆σ = (σ1 − σ0) applied at t ≥ t1 (see Fig. 3.4).

Figure 3.4: Boltzman superposition principle

The Boltzman superposition principle asserts that for a linear viscoelastic ma-
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terial stresses act independently and the resulting strains add linearly. So for a

combined load history of the form:

σ̂(t) =
M∑
i=1

Ĥ(t− ti)∆σi (3.21)

the resulting strain is computed directly by superposition of the responses due to

the separated loadings ∆σi as follows:

ε̂(t) =
M∑
i=1

ε̂(t− ti) =
M∑
i=1

Ŷ (t− ti)Ĥ(t− ti)∆σi (3.22)

Assuming infinitesimal loading steps, the total strain is determined by the integral

equation:

ε̂(t) =

∫ t

0

Ŷ (t− s)Ĥ(t− s) dσ̂(s) (3.23)

If the stress history is differentiable with respect to time then the above hereditary

integral is reduced to:

ε̂(t) =

∫ t

0

Ŷ (t− s)∂σ
∂s

ds (3.24)

An equivalent integral representation for the stress history is defined in case of a

relaxation test as:

σ̂(t) =

∫ t

0

Γ̂(t− s)∂ε
∂s

ds (3.25)

where Γ̂(t−s) is the relaxation function. Creep and relaxation are merely two dif-

ferent aspects of viscoelasticity. The transition from one property to the other can

be done through an integral relationship which is known as convolution integral

and is expressed in the form:

t =

∫ t

0

Γ̂(s) Ŷ (t− s) ds (3.26)

This convolution integral, which is used to transform creep data to relaxation

data and vice versa, can be derived using inverse Laplace or Fourier transforms.

45



3. THERMOPLASTIC POLYMERS

3.2.5 Dynamic Mechanical Analysis

In previous sections, the viscoelastic behavior of polymers subjected to creep or

relaxation tests was described in time domain. However, viscoelasticity is better

understood when is formulated at frequency domain. Thus, viscoelastic prop-

erties of polymers are studied by dynamic mechanical analysis (DMA), where a

sinusoidal force (or stress σ) is applied to a material and the resulting displace-

ment (or strain ε) is measured. For a perfectly elastic solid, the resulting strain

and the applied stress will be perfectly in phase. For a purely viscous fluid, there

will be a 90◦ phase lag of strain with respect to stress. Viscoelastic polymers have

the characteristics in between, where some phase lag will occur during DMA tests.

Specifically, in the case of an oscillating load, which is expressed by the periodic

stress:

σ = σ0cosωt (3.27)

where σ0 is the amplitude and ω is the load frequency of the oscillation, the

resulting strain oscillates at the same frequency ω but lags behind the stress by

the phase shift δ:

ε = ε0cos(ωt− δ) (3.28)

To describe an harmonic vibration, it is useful to represent the oscillation by a

rotating vector in the complex plane. This complex vector can be expressed in

polar form and can be written in terms of trigonometric functions using the Euler

relationship:

eiωt = cosωt+ i sinωt (3.29)

where i is the imaginary unit which satisfies the equation i2 = −1. Equa-

tions (3.27) and (3.28) can be expressed in polar form as:

σ = σ0e
iωt (3.30)

ε = ε0e
i(ωt−δ) (3.31)
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The phase shift δ, which is often called loss angle, is an important quantity in the

viscoelastic material characterization. It is responsible for the observed hysteresis

loop in the stress-strain curve of a material under an harmonic vibration. The

area filled up by this hysteresis loop is a measure of the dissipated energy of the

material per loading cycle.

The frequency based formulation of viscoelasticity is then applied to the

Maxwell-element described in Section 3.2.2. Thus, rearranging Eq. (3.8) the

differential equation of the Maxwell model is written as:

τEε̇ = τ σ̇ + σ (3.32)

Substituting the polar expression of stress and strain to the above equation results

to:

i ωtEε0 = σ0(1 + i ωτ)eiδ (3.33)

From Eq. (3.33) the complex relaxation modulus for the Maxwell model can be

obtained in the form:

Γ∗ =
σ0

ε0

eiδ = E
iωτ

1 + i ωτ
(3.34)

The complex modulus Γ∗ can be split into a real and an imaginary part as:

Γ∗ = Γ′ + iΓ′′ = E
ω2τ 2

1 + ω2τ 2
+ i E

ωτ

1 + ω2τ 2
(3.35)

where the components Γ′ and Γ′′ are called storage and loss modulus, respectively.

These moduli, along with the mechanical loss factor

tanδ =
Γ′′

Γ′
=

1

ωτ
(3.36)

which is defined as the ratio of imaginary Γ′′ and real part Γ′, are all functions of

frequency ω.

In the case of Maxwell-Wiechert model, where N Maxwell-elements are con-

nected in parallel with an elastic spring E∞ (see Fig. 3.3), the complex relaxation
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modulus is defined as:

Γ∗ = Γ′ + iΓ′′

= E∞ +
N∑
j=1

Ej
i ωτj

1 + i ωτj

= E∞ +
N∑
j=1

Ej
ω2τ 2

j

1 + ω2τ 2
j

+ i
N∑
j=1

Ej
ωτj

1 + ω2τ 2
j

(3.37)

Notice that the complex relaxation function (3.37) can be directly derived at fre-

quency domain by applying a Fourier transform of the time-dependent relaxation

function (3.16).

3.2.5.1 Master curves of viscoelastic materials

Viscoelastic material characterization requires measurements of elastic moduli

over a large range of time or frequency. Notice that time and frequency are

equivalent reciprocal quantities. For technical reasons, elastic moduli are deter-

mined only within a limited range of time or frequency but within a wide range

of temperature. Thus, at a reference temperature T1, a master curve of a vis-

coelastic material can be experimentally determined, by shifting the measured

values by a factor αT according to the time-temperature correspondence prin-

ciple. In this way, the master curve of the material is derived as a continuous

graph of its elastic moduli over a wide range of time or frequency. Different

master curves are obtained, depending on the reference temperature T1 for which

they are constructed. Figure 3.5 illustrates how the time-temperature correspon-

dence principle for modulus M̂ of a material is employed in order to construct its

master curve. This principle is described by the following equation:

M̂(T1, t) = M̂

(
T2,

t

αT

)
(3.38)

The values of M̂ measured at temperature T2 are shifted in time or frequency

space by a factor αT , so as from Eq. (3.38) the equivalent values of M̂ at tem-

perature T1 can be calculated. This shifting procedure is repeated for all the
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experimental values measured at temperatures T3 and T4 in Fig. 3.5, so that the

master curve of the material at reference temperature T1 can be constructed.

Many expressions of the factor αT , which shifts the modulus M̂ along the time

or frequency scale according to the temperature increment, have been introduced

in literature. Williams, Landel and Ferry (1955) [102] introduced a quantitative

relation for the correspondence principle named after them as WLF equation.

The shifting factor αT in the WLF equation is given explicitly by

logαT = − 17.4 (T − TG)

51.6 + (T − TG)
(3.39)

which is a function of temperature T . The constants 17.4, 51.6 vary slightly from

polymer to polymer and thus the only material parameter required is the glass

transition temperature TG. This parameter serves as the reference temperature

for which the master curve of the polymer is constructed and is equivalent to the

temperature T1 in Fig. 3.5.

Figure 3.5: Time-temperature correspondence principle

3.2.6 Calibration of Maxwell-Wiechert model for PEEK

The master curves of a material, which are constructed following the experimen-

tal procedure of Section 3.2.5.1, are used in viscoelastic material characterization.

In the case of a viscoelastic material, which is simulated by the Maxwell-Wiechert
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model, a nonlinear least-squares algorithm is used in order to define the unknown

relaxation times τj and the elastic spring constants Ej of Eq. (3.15). The numer-

ical master curves, which are constructed by using the aforementioned defined

parameters, are the most accurate ones, which best fit to the experimental mas-

ter curves. In this section the experimental master curves of PEEK will be used

to demonstrate the calibration procedure. The error function which has to be

minimized is:

R2 =
M∑
i=1

1

Γ̂2
∞

[(
Γ′ − Γ̄′

)2

i
+
(
Γ′′ − Γ̄′′

)2

i

]
(3.40)

where Γ′ and Γ′′ are the numerical predicted storage and loss modulus values of

PEEK, while Γ̄′ and Γ̄′′ are the corresponding experimental data measured at M

values of frequency. The master curves of PEEK have been derived from DMA

tests which have been conducted by Prof. Evangelia Kontou in the laboratory

of mechanics at the School of Applied Mathematics and Physical Sciences of Na-

tional Technical University of Athens. The results are illustrated in Fig. 3.6 and

3.7, where the values of storage and loss tensile modulus are depicted with respect

to frequency ω in logarithmic axes. The numerical master curves, which are also

plotted in these figures, seems to be very close to the experimental ones verifying

the efficiency of the calibration procedure of PEEK. The instantaneous Young’s

modulus of the material corresponds to the value of the storage tensile modulus

at the highest frequency. From the corresponding master curve this is found to

be E0 '2.8 GPa. The parameters of the Maxwell-Wiechert model for PEEK

derived after minimization of the error function (3.40) are recorded in Table 3.2.

The nonlinear least-squares fitting algorithm for PEEK results in twelve Maxwell-

elements. Each of these elements contribute to the total viscoelastic response of

PEEK as shown in Fig. 3.6 and 3.7. Notice that the parameter identification

is conducted on the basis of the storage modulus Γ̄′. This fact leads to some

unavoidable discrepancies between the numerical predicted and the experimental

values of the loss modulus Γ̄′′.

Using the parameters recorded in Table 3.2 the long term tensile modulus of
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Figure 3.6: Storage modulus: experimental master curve vs mathematical model

Figure 3.7: Loss Modulus: experimental master curve vs mathematical model

PEEK can be calculated as:

E∞ = E0

(
1−

N∑
j=1

Ej

)
(3.41)
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j Ej [GPa] τj j Ej [GPa] τj
1 8.31E-02 1.42E-06 7 3.35E-01 3.77E-01
2 1.28E-01 1.96E-05 8 2.84E-01 2.65E+00
3 2.29E-01 1.74E-04 9 2.19E-01 2.12E+01
4 2.92E-01 1.30E-03 10 1.54E-01 2.09E+02
5 3.47E-01 8.85E-03 11 9.91E-02 2.88E+03
6 3.60E-01 5.78E-02 12 5.97E-02 7.16E+04

Table 3.2: Parameters of Maxwell-Wiechert model for PEEK

Then, from Eq. (3.16) the time dependent relaxation modulus of PEEK can be

determined. Creep tests on PEEK specimens are simulated by applying the con-

volution integral of Eq. (3.26) in order to compute the compliance modulus of

the material. Experimental results obtained from creep tests on laminated PEEK

specimens have been provided by Victrex (http://www.victrex.com). The ge-

ometry of the specimens used in these experiments along with the mesh of the

FE model used in the numerical analysis are illustrated in Fig. 3.8. Plane stress

quadrilateral elements with a global size of 3 mm are used for the discretization of

the specimen. Figure 3.9(a) plots the strain history obtained from various creep

tests. Each curve corresponds to different constant applied stress magnitudes

ranging from 20 to 60 MPa. The numerical curves predicted by the Maxwell-

Wiechert model are presented in Fig. 3.9(b) . As it can be observed from these

figures, the Maxwell-Wiechert model is also capable of accurate simulation of the

creep behavior of PEEK for each stress magnitude. Figure 3.10 plots the tensile

isochronous stress-strain curves of PEEK derived after creep tests. Both the ex-

perimental and numerical curves have been obtained by applying a constant stress

of 50 MPa on the specimen of Fig. 3.8 for a time period ranging from 0.01 to 1000

hours at room temperature. Once again, for these test cases comparison between

the measured and predicted results confirm the validity of the Maxwell-Wiechert

model in simulating viscoelastic response of PEEK. In Appendix A the viscoelas-

ticity theory is explained in detail where the appropriate viscous equations for

both triaxial and reduced states of stress are presented.
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Figure 3.8: Geometry and FE mesh of specimen used in creep tests

Figure 3.9: Strain history of PEEK obtained from creep tests: a) Experiments
and b) Simulations

Figure 3.10: Tensile isochronous stress-strain curves of PEEK: a) Experiments
and b) Simulations
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Chapter 4

Carbon nanotube-reinforced

composites

The significant mechanical and physical properties of CNTs described in Chap-

ter 2, as well as their high aspect ratio and low density, make CNTs ideal rein-

forcements for nanocomposites. Unlike conventional fiber-reinforced composites,

CNTs due to their small size, interact with polymer chains through weak van

der Waals forces, leading to marginal enhancement of the mechanical properties

of the polymer matrices. However, experimental evidence [70, 98, 114] demon-

strated that if functionalization techniques are applied on the surface of carbon

nanotubes, higher interfacial shear strength (ISS) can be achieved, leading to

improved stiffness and damping properties of the CNT-RC materials.

In this chapter, the effect of the ISS on the mechanical and damping proper-

ties of CNT-RCs is investigated using a multiscale modeling approach. Further-

more, for the CNT-RC material characterization a nonlinear hierarchical multi-

scale approach is proposed, considering slippage at CNT/polymer interface. The

presented multiscale modeling strategy encompasses various length scales, from

nano to micro to macro. A schematic representation of all the multiscale mod-

eling steps followed for the simulation of the CNT-RC material is illustrated in

Fig. 4.1.
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Figure 4.1: Multiscale modeling steps for simulation of CNT-RCs

4.1 Modeling RVEs of CNT-RC

As shown in Section 2.2.1, the atomic lattice of a CNT is modeled by the molec-

ular structural mechanics (MSM) approach as a space frame structure, which is

then reduced to an equivalent beam element (EBE). This EBE is used as the basic

building block for the construction of full length CNTs embedded in the polymer

matrix (Fig. 4.1). Linear material properties are assigned to the EBEs, while the

Maxwell-Wiechert model of Section 3.2.3 is assigned to the polymer matrix in

order to model its viscoelastic behavior. The interfacial load transfer mechanism

between the lateral surface of the carbon nanotube and the surrounding matrix

is taken into account with a nonlinear bond-slip interfacial model. Finite element

models of representative volume elements (RVEs) are constructed comprised of
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two independent meshes: a structured with solid elements for the matrix and

a series of embedded EBEs for the full length CNTs (see Fig. 4.1). Straight as

well as wavy CNTs are considered. In the case of wavy CNTs, random CNT

geometries are generated using the spectral representation method with evolu-

tionary power spectra (EPS) which are derived from processing scanning electron

microscope (SEM) images. Average mechanical properties of CNT-RC materi-

als are obtained after a stochastic analysis based on the Monte Carlo simulation

(MCS). The mechanical and damping properties of the CNT-RCs are assessed on

the basis of sensitivity analyses with respect to various weight fractions (wt) and

interfacial shear strength (ISS) values. Numerical results are presented, showing

the significant effect of the ISS as well as the influence of CNT waviness on the

damping behavior of CNT-RCs.

4.1.1 Equivalent beam element for space frame CNT model

Although the MSM approach overcomes the restrictions of the MD method in

time and size-scales, the analysis of the space frame model of a full length CNT

demands a huge computational effort. For example a CNT of 14 nm in diameter

and 1 µm in length corresponds to a numerical problem in the order of 107

degrees of freedom. Thus, the analysis of a CNT-RC with only 1 wt% of CNTs

is computationally an extremely demanding task. For this reason, the detailed

MSM model of the CNT is further reduced to an EBE with equivalent material

properties. In order to derive the stiffness properties of the linear EBE, the space

frame model of the CNT is subjected to three independent loading conditions,

namely tension, bending and torsion (see Section 2.2.1.4).

In order to derive the elastic moduli from the rigidities (EA)eq, (EI)eq and

(GJ)eq defined from Eqs. (2.21), (2.22) and (2.23) respectively in Section 2.2.1.4,

a profile-shaped cross-section of the EBE must be assumed. For instance, if a

EBE with a pipe-shaped profile is selected, then its cross-sectional properties are

given by

Aeq =
π

4

[
(deq + t)2 − (deq − t)2] (4.1)
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Ieq =
π

64
2
[
(deq + t)4 − (deq − t)4] and Jeq = 2Ieq (4.2)

where the equivalent mean diameter deq of the beam pipe is calculated from the

axial and bending rigidities, for arbitrarily selected wall thickness t:

deq =

√
8

(EI)eq
(EA)eq

− t2 (4.3)

The Young’s moduli of pipe EBEs, which correspond to armchair (8, 8) CNTs with

various wall thickness values, have been computed using Eqs. (4.1)-(4.3). These

values are compared with various results obtained from different methodologies in

literature, including MD simulation, tight-binding models, ab initio computations

and others [38, 29, 45, 50, 52, 64, 65, 97, 105, 104]. In Table 4.1 calculated Young’s

moduli corresponding to different wall thickness values are recorded, allowing for

a direct comparison between the results obtained applying the method in the

present study and the other methods in literature. In addition, the results of the

aforementioned comparison are graphically depicted in Fig. 4.2.

Wall thickness Young’s modulus (TPa)
Investigators Method (nm) Literature Present study
Yakobson et al [105] Molecular dynamics 0.066 5.5 5.698
Xin et al [104] Tight-binding model 0.074 5.1 5.082
Tu and Ou-Yang [97] Local density approximation model 0.075 4.7 5.015
Kudin et al [45] Ab initio computations 0.089 3.859 4.226
Pantano et al [65] Continuum shell modeling 0.075 4.84 5.015

Li and Chou [50]
Structural mechanics: 0.34 1.01 1.106
stiffness matrix method

Lu [52] Molecular dynamics 0.34 0.974 1.106
Hernandez et al [29] Tight binding molecular dynamics 0.34 1.24 1.106
Jin and Yuan [38] Molecular dynamics 0.34 1.238 1.106
Odegard et al [64] Equivalent-continuum modeling 0.69 - 0.545
Present study MSM 0.147 - 2.558

Table 4.1: Young’s moduli of armchair (8, 8) CNTs with various wall thickness
values computed by different methodologies

The effect of diameter and chirality of the CNTs on the elastic moduli of the

resulting EBEs are investigated in this study. Specifically, two types of SWCNTs,

namely armchair (n, n) and zigzag (n, 0), with diameters ranging from 0.3 to 14

nm are included in the investigation. In all cases, the wall thickness is 0.34
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Figure 4.2: Young’s modulus vs wall thickness t of a pipe EBE representing
armchair (8, 8) CNT

nm, which corresponds to the interlayer spacing of graphite. Figure 4.3 plots

the Young’s moduli of both the armchair and zigzag CNTs with respect to their

diameters. A strong effect of diameter can be observed, especially for small

values, on the Young’s moduli of both chirality types CNTs. By increasing their

diameters, their Young’s moduli are also increasing, reaching a plateau. This

tendency is due to the effect of curvature as Li and Chou [50] have pointed it

out in their study. The smaller the diameter of the nanotube is, the higher

is its curvature leading to large distortions of the carbon-carbon (C-C) bonds

and thus in large elongation of the MSM lattice model. As the diameter of

the CNT increases, the effect of curvature diminishes and its Young’s modulus

approaches that of the graphene sheet (1.1 TPa), where no effect of curvature

is present. Figure 4.4 displays the shear moduli of both armchair and zigzag

CNTs with respect to their diameters. As it can be observed from this figure,

the shear moduli of the CNTs depend strongly on their diameters and weakly on

their chirality. This is also verified by Li and Chou [50]. This sensitivity of shear

moduli of CNTs on their diameters is due to the effect of curvature. By increasing
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their diameters, their shear moduli are also increasing for both chirality types,

reaching to a plateau value which corresponds to the shear modulus of graphite

(0.5 TPa).

Figure 4.3: Young’s modulus vs diameter of armchair and zigzag CNTs

Figure 4.4: Shear modulus vs diameter of armchair and zigzag CNTs
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4.1.2 Stochastic modeling of CNT waviness

Random waviness of CNTs is modeled as a non-homogeneous stochastic field

using the spectral representation method in conjunction with evolutionary power

spectra (EPS). The statistical properties of the EPS are derived from scanning

electron microscope (SEM) images of CNT-RCs, by processing the geometry of

a number of wavy CNTs (see Fig. 4.5).

Figure 4.5: SEM image of CNT-RC, processing the geometry of wavy CNTs

4.1.2.1 Method of separation

The EPS depend not only on frequency ω but also on spatial state variables. In

case of separable or approximately separable EPS, which is definitely the case

of geometric imperfections [78], the corresponding EPS can be expressed as the

product of a homogeneous power spectrum Sh(x) and a spatial envelope function

gh(x) as follows:

S(ω, x) = Sh(ω) · gh(x) (4.4)

Notice that CNT waviness can be regarded as a geometric imperfection of a

identical straight tube. Various methodologies have been proposed in the past
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for estimating EPS from available experimental measurements, i.e., from real

samples of stochastic signals. Among them the most widely used are the short-

time Fourier transform and the wavelet-based EPS estimation [14, 53, 63, 85]. The

basic disadvantage of these approaches is that they cannot achieve simultaneous

resolution in space and frequency domains. A novel methodology was proposed

in Schillinger and Papadopoulos [78] to obtain estimates of EPS of separable

processes. This method is based on simple principles of stochastic process theory

and for this reason it is easy to implement as well as computationally efficient,

while at the same time proved to be accurate enough with optimum simultaneous

resolution in space and frequency [9, 78, 79]. According to this approach an

estimate of the first term in Eq. (4.4) can be readily obtained by averaging the

periodograms over the ensemble:

S̄h(ω) = E

[
1

2πL

∣∣∣∣∫ L

0

f (i)(x) · e−iωxdx
∣∣∣∣] (4.5)

where f (i)(x) is a sample of the stochastic field (in particular the wavy geometry

of the ith CNT) and E[·] denotes the mathematical expectation. An estimate of

the spatial envelope function can be obtained from the distribution of the mean

square over the samples as follows:

ḡh(x) =
E
[∣∣f (i)(x)

∣∣2]
2
∫∞

0
S̄h(ω)dω

(4.6)

It can be easily shown that an unbiased estimate of the evolutionary power spectra

can be obtained as follows:

S̄(ω, x) = E
[∣∣f (i)(x)

∣∣2] S̄h(ω)

2
∫∞

0
S̄h(ω)dω

(4.7)

After the estimation of the EPS by processing the geometry of the wavy CNTs

in Fig. 4.5, samples of wavy CNTs can be generated as follows:

f̂ (j)(x) =
√

2
N−1∑
n=0

Ancos
(
ωnx+ φ(j)

n

)
(4.8)
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where

An =
√

2S̄(ωn, x)∆ω n = 0, 1, ..., N − 1

ωn = n∆ω n = 0, 1, ..., N − 1

∆ω =
ωup
N

A0 = 0, S̄(ω0, x) = 0

(4.9)

The parameter ωup refers to an upper limit of the frequency beyond which the

autocorrelation function is supposed to be zero. Parameter φ
(j)
n stands for random

phase angles with φn ∈ U [0, 2π], for each jth realization.

Figure 4.6 presents the EPS estimated from Eq. (4.7), while some realizations

of wavy CNTs which have been generated using Eq. (4.8), are plotted in Fig. 4.7.

As it can be seen in this figure, a 3D spatial waviness is considered by assuming

that the coordinates z = z(x) and y = y(x) of the CNT are independent stochas-

tic fields generated from Eq. (4.8). Discretization of full length wavy CNTs is

performed through short straight EBEs.

Figure 4.6: EPS for wavy CNTs derived after the method of separation
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Figure 4.7: Sample of wavy CNT realizations.

4.1.3 Embedded element technique

The embedded element technique is used to specify that an element or group of

elements is embedded in ”host” elements. This technique has been used in many

studies to model rebar reinforcement in concrete [36, 54]. In the context of FE

analysis of RVEs of CNT-reinforced composites, the embedded element technique

is also applied so as complicated mesh discretizations of the RVE models to be

avoided. Initially, this method searches for geometric relationships between nodes

of the embedded elements and the host elements. If a node of an embedded

element lies within a host element, the translational degrees of freedom (dofs)

at the node are eliminated and the node becomes an ”embedded node”. The

translational dofs of the embedded node are constrained to the interpolated values

of the corresponding dofs of the host element. Embedded elements are allowed to

have rotational dofs, but these rotations are not constrained by the embedding.

Figure 4.8 illustrates an EBE element which has both its nodes i and j embedded

in a 8-noded solid elemen, which is used to model the polymer matrix. The

stiffness matrix of the EBE is calculated in the global coordinate system (XYZ)

as follows:

KB = T TkbT = T T
[∫

Ve

BTDBdVe

]
T (4.10)

where kb is the local stiffness matrix of the beam and T is the transformation

matrix which performs the transformation from local to global coordinate system.

The matrix D corresponds to the elasticity matrix of the beam while the matrix B
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contains the derivatives of the shape functions of the beam element, which relate

the strains of the element to its displacements or rotations. The translation dofs

of the beam element are constrained to the nodal displacements of the host solid

element according to the following restrain:



ui

uj

vi

vj

wi

wj


=

N
M ∅ ∅
∅ NM ∅
∅ ∅ NM


U

M

V M

WM

 (4.11)

where

NM =

[
N i

1 ... N
i
8

N j
1 ... N

j
8

]
(4.12)

with N i
n and N j

n, n = 1, ..., 8 the values of the nth nodal shape function of the

solid element, evaluated at its interior points i and j, which are the points where

the nodes of the embedded beam element are lying (see Fig. 4.8). The nodal

displacements of the host solid element are contained in the vectors:

UM =
[
U1 ... U8

]T
, V M =

[
V1 ... V8

]T
, WM =

[
W1 ... W8

]T
(4.13)

The deformation matrix B of Eq. (4.10), which contains the derivatives of

the interpolated local dofs of the beam element, can be expressed in terms of the

global dofs of the host element using Eq. (4.11). After some manipulations, an

extended stiffness matrix K̄B of size (30 × 30) for the beam element is derived.

This matrix contains terms that relate the 24 translations
[
UM , V M , WM

]
of the

host element and the 6 rotations [θXi, θY i, θZi, θXj, θY j, θZj] of the beam element

with the external applied unit nodal forces and moments, respectively. Finally,

the stiffness matrix of the ”super” element, which is assembled by the stiffness
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matrices of both the embedded and host elements is formulated as:

K(30×30) =

[
KM + K̄B

TT K̄B
TR

K̄B
RT K̄B

RR

]
(4.14)

where KM is the stiffness matrix of the solid element and is of size (24×24); K̄B
TT

is the (24 × 6) submatrix of the extended (30 × 30) stiffness matrix K̄B of the

beam element related only to its translation dofs; Accordingly, K̄B
RR is the (6×6)

submatrix related only to the rotation dofs of the beam element; and K̄B
TR and

K̄B
RT are the (24 × 6) and (6 × 24) submatrices respectively, which contain the

interactions between the translation and rotation dofs of the beam element.

Figure 4.8: Illustration of the embedded beam element into host solid element

4.1.4 Interfacial bond-slip model

The mechanical and damping properties of the CNT-RC material are sensitive to

the interfacial characteristics between the CNT and the polymer matrix. Loads

are transferred from polymer to CNTs through their interface. Experimental

evidence [70, 98, 114] verify that if functionalization techniques are applied on
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the surface of carbon nanotubes, then higher interfacial shear strength can be

achieved. The advanced adhesion characteristics attained by functionalization,

combined with the high aspect ratio of CNTs, can lead to composites with en-

hanced stiffness and damping properties.

Pullout tests [24, 3, 68, 77] on CNT-RCs have revealed a stick-slip behavior

of the CNTs inside the polymer matrix. To capture this cohesive behavior, a

nonlinear friction-type bond-slip model is incorporated in the mulitscale anal-

ysis of the CNT-RCs. The model has been initially incorporated in the finite

element analysis software program ”ATENA”, and has been applied in order to

describe cohesion between steel reinforcing bars and concrete (www.cervenka.

cz/products/atena). Phenomenologically, the nanoscale problem of CNT-RCs

is similar to that of any fiber-reinforced composite material, such as reinforced

concrete, at the mesoscale. The adopted solution is fairly simple and can provide

results with high accuracy at low computation cost. Figure 4.9 depicts a model of

a RVE consisted of one straight CNT discretized by three connected EBEs. The

EBEs, which have pipe cross-sections, are embedded in the polymer matrix. Solid

elements are used for the discretization of the matrix. The equilibrium equation

for the central EBE can be written as:

|σRi − σLi|Ai = τiπ (Di + ti) li (4.15)

where Ai is the cross-sectional area of the beam element, Di + ti is the outer

diameter of its pipe-section profile and li is its reference length. A smoothing

operation on the nodal axial stresses σRi and σLi, which act on the right and the

left end-sections of the beam element, respectively, is performed in the form:

σRi =
σili + σi+1li+1

li + li+1

(4.16)

σLi =
σili + σi−1li−1

li + li−1

(4.17)

Solving Eq. (4.15) for τi, the shear stresses acting at the interface between the

CNT and the matrix can be calculated. Comparing the computed values to the

interfacial shear strength (ISS) obtained by pullout tests, the bond slip friction-
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type model is expressed by:

τi =
Ai

π(Di + ti)li
|σRi − σLi|

< ISS, fully bonded

≥ ISS, slip
(4.18)

If one EBE, which simulates some portion of the full length CNT, is in slip

state, this means that its corresponding interface bond has failed, leading to

its inability for further load-transferring. The condition of slip for this beam

element is simulated by reducing its axial stiffness to a very small value. Notice

that bending and torsion rigidities are not affected at all, allowing the element

which is in slip state to resist against bending and torsion.

Figure 4.9: Stress states on EBEs in a CNT-RC RVE model in tension

The above procedure is implemented within a full Newton-Raphson incremental-

iterative scheme, used for the solution of the nonlinear equations of the problem,

as follows:

Step 1: Compute the incremental displacements t∆u(i) at increment t and iter-

ation i due to the increment t∆P of the external load vector
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t∆u(i) =
[
tK

(i)
T

]−1
t∆P (4.19)

Step 2: Loop over all beam elements and check each element e for slippage

Slippage


no → tK

(i)
Te = tK

(i−1)
Te

yes→ tK
(i)
Te = tK

(i−1)
Te ,with (EA)e → 0

(4.20)

when slippage occurs, the axial stiffness is reduced to zero resulting in a

local modified tangent stiffness matrix tK
(i)
Te

Step 3: Correction of internal forces t∆F
(i)
e of element e and update global force

vector tF (i)

t∆F (i)
e = tK

(i)
Te∆u

(i)
e (4.21a)

tF (i) = tF (i−1) +
N∑
e=1

t∆F (i)
e (4.21b)

Step 4: Compute the residuals tr(i)

tr(i) = tP − tF (i)


≤ tol then t = t+ 1 go to next increment

> tol then i = i+ 1 go to Step 1

(4.22)

4.1.5 Numerical results on CNT-RC RVEs

4.1.5.1 RVEs with straight CNTs

In this section, numerical results obtained from the FE analysis of the microstruc-

tured RVE models of CNT-RC material are presented. The RVE models contain

single straight CNTs, placed at the center of the rectangular composite matrix,

as shown in Fig. 4.10. The chirality type of the CNTs is armchair (100, 100)

with diameter 14 nm, calculated by Eq. (2.3). Following the multiscale modeling

procedure of Section 4.1.1, the MSM space frame model of this type of CNTs
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is first reduced to a linear EBE. A pipe cross-section profile with wall thickness

t = 0.34 nm is assumed for the EBE. Using the results obtained from the anal-

ysis of the MSM model, the equivalent geometrical and material properties of

the EBE can be calculated. So, from Eq. (4.3) a mean equivalent diameter of

deq ' 13.453 nm for the pipe EBE is obtained. From Eqs. (2.21) and (2.23)

the values E ' 1.051 TPa and G ' 0.503 TPa, for the equivalent Young’s and

shear modulus respectively, are also obtained. Then, RVEs with different weight

fractions of CNTs are constructed by changing only the dimension α of the RVE

geometry (see Fig. 4.10). Thus, RVEs with wf=0.1, 0.5, 1 and 2% are constructed

for α=130, 59, 42 and 31 nm, respectively, while the length of the rectangular

RVE remains constant at L=260 nm. Note that the density of CNTs has been

taken equal to 1.8 g·cm-3, while this of PEEK material has been taken equal to

1.4 g·cm-3. The matrix of the RVE in each wf case is discretized with 18081, 3321,

2009 and 1025 solid elements, respectively, while in all wf cases the straight CNT

has constant length Lcnt=234 nm and is discretized with 37 EBEs. Bernoulli

beam elements are used to represent EBEs, which are embedded into the solid

elements of the matrix.

Simulations of cyclic axial loading of RVE models are performed for both

high and low excitation frequencies. In particular, excitation of composite at

very high frequency, practically infinity (ν → ∞), invokes the instantaneous

elastic response of the polymer matrix. Specifically, in this loading case, PEEK

viscoelastic material, which is assigned to the composite matrix, exhibits an in-

stantaneous Young’s modulus of Em ' 2.8 GPa and a Poisson ratio νm = 0.4.

On the other hand, excitation of composite at the finite frequency of ν = 1 Hz,

invokes the viscoelastic response of PEEK, which is based on the viscoelastic

parameters recorded in Table 3.2 of Section 3.2.6. The cyclic loads, which are

applied on the models through Dirichlet boundary conditions in sinusoidal form,

result in strain amplitudes of ±5%. The effect of interfacial shear strength on

both stiffness and damping properties of the CNT-RC material is investigated

through parametric studies, where the ISS values are ranging from 5 to 80 MPa.

Notice that, the tensile elongation of PEEK at yield point is 5% and its shear

strength is 53 MPa (www.victrex.com).

Figures 4.11-4.14 plot the stress-strain curves derived from simulations of
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Figure 4.10: Geometry and FE mesh of RVE model with straight and oriented
CNT.

cyclic tests on RVE models with ISS=0, 5, 10, 20, 40, 80 and ∞ MPa. Note

that ISS=0 corresponds to the neat PEEK model, while ISS=∞ corresponds

to the fully bonded model. Each of these figures corresponds to RVE models

with specific weight fraction, wf'2, 1, 0.5 and 0.1%, respectively. In all these

simulations PEEK exhibits instantaneous elastic response as the cyclic loading

is performed at excitation frequency ν → ∞. Thus, the energy dissipation per

load cycle is attributed only to CNT slippage and not to the viscoelastic behavior

of PEEK. From the figures it can be observed that the stiffness and the energy

dissipation of the CNT-RC material are increasing with the increase of the ISS.

Also, the total stiffness of the composite approaches that of the fully bonded

case and can reach three times the stiffness of the neat PEEK for wf'2%. On

the other hand, with the addition of only 0.1% of CNTs in the bulk matrix, its

mechanical behavior is marginally influenced.

The effective loss factor of the CNT-RC material is computed as the ratio

of its dissipated energy per unit volume to its maximum stored energy per unit

71



4. CARBON NANOTUBE-REINFORCED COMPOSITES

volume. This parameter, which is used to evaluate damping characteristics of the

material, is expressed as:

tanδ =
D

πσ0ε0

(4.23)

where σ0 and ε0 are the mean stress and strain amplitudes developed on the RVE

models due to their cyclic excitation. D is the area of the hysteresis loop, which

is observed in the stress-strain curves of the models, and it corresponds to the

dissipated energy per load cycle. In Table 4.2 the loss factor values obtained from

the stress-strain curves of Figs. 4.11-4.14 are recorded. These values express the

amount of energy dissipation of the CNT-RC material, which for these simulations

is only due to the mechanism of slip at the CNT/polymer interface. As previously

mentioned, at very high excitation frequencies the mechanical response of PEEK

is elastic. Thus, for the case of neat PEEK model (ISS=0) and the fully bonded

model (ISS=∞) no dissipating mechanisms exist and therefore no loss factor

values are calculated. Figure 4.15 plots the values of Table 4.2, where an increase

of the loss factor is observed with respect to the ISS. It can also be observed that,

higher wf content of CNTs in the CNT-RC results in larger loss factor values,

when ISS is kept constant.

ISS (MPa) 5 10 20 40 80
wf=2% 0.0235 0.0666 0.1184 0.2493 0.2569
wf=1% 0.0153 0.0242 0.0644 0.1277 0.2128
wf=0.5% 0.0090 0.0141 0.0289 0.0742 0.1116
wf=0.1% 0.0020 0.0021 0.0062 0.0158 0.0163

Table 4.2: Loss factor of CNT-RC material in various wf and ISS values when
energy dissipation is only due to slip

Figures 4.16-4.19, like Figs. 4.11-4.14, plot the stress-strain curves of the RVE

models, but this time simulations of the cyclic tests have been conducted at fre-

quency ν = 1 Hz. In these test cases PEEK exhibits viscoelastic response. Thus,

the energy dissipation per load cycle is now attributed to both CNT slippage and

viscoelasticity of PEEK. Once again, the energy dissipation of the CNT-RC ma-

terial is increasing with the increase of the ISS, while its stiffness is approaching
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Figure 4.11: Stress-strain curves from cyclic tests at ν → ∞ of CNT-RC RVEs
with wf'2% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

that of the fully bonded case. In case of large wf (≥0.5%), the energy dissipation

characteristics of the CNT-RC material are more pronounced than that in case

of small wf (≤0.1%), where the damping behavior of composite is very similar to

that of neat PEEK.

Table 4.3 records the values of the effective loss factor of the CNT-RC material

for all the wf and ISS of the RVE models considered. The same results are also

plotted in Fig. 4.20 with respect to the ISS, where each curve corresponds to

different wf. Note that the presented loss factor values refer to cyclic tests on RVE

models at frequency ν = 1 Hz. Thus, in this excitation frequency the loss factor

represents the dissipation characteristics of the composite material due to both

the CNT slippage and the viscoelastic response of PEEK. The loss factor of the

neat PEEK material (ISS = 0) and of the the fully bonded CNT-RC material (ISS

= ∞) are also included in the curves. The increase of the energy dissipation of

the CNT-RC material due to the increase of its ISS is also visualized in Fig. 4.20.

Specifically, the loss factor, which is reaching a peak value for ISS=80 MPa, is

more than 200, 250 and 300% of the loss factor of the neat PEEK material for
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Figure 4.12: Stress-strain curves from cyclic tests at ν → ∞ of CNT-RC RVEs
with wf'1% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

wf'0.5, 1 and 2%, respectively. This increase, however, is marginal in the case of

small wf, lower than 0.1%. In all wf cases, the loss factor is decreasing for ISS>80

MPa, as for such large values of the ISS the fully bonded case is approached. Note

also that, shear fracture in matrix could be initiated for ISS>53 MPa, as for this

value the shear strength of PEEK is exceeded. The above numerical findings

imply that successful functionalization of CNTs could be crucial for producing

CNT-RC materials with optimum damping characteristics, especially in the case

where ISS values close or slightly higher than the shear strength of the polymer

could be achieved from the applied functionalization technique.

From Fig. 4.20 it is concluded that the loss factor of the CNT-RC material

depends on its stiffness. Specifically, the stiffness of the material is increasing

due to the increase in the wf of CNTs. This increase in stiffness subsequently

leads to a decrease in loss factor of the material. The aforementioned observation

is more obvious in the case of fully bonded RVE models. However, as wf is

increasing the total area of the lateral surface of the CNTs is increasing too.

A reduction in the developed interfacial shear stresses under the same external
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Figure 4.13: Stress-strain curves from cyclic tests at ν → ∞ of CNT-RC RVEs
with wf'0.5% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

loads on the RVE models is thus succeeded. This means that higher external

loads can be sustained by the material before its critical ISS value is exceeded

and subsequently slip occurs. The delay of CNT slippage in the composite is the

reason for the enlargement of the hysteresis loop in the stress-strain curves in

Figs. 4.16-4.19. However, for ISS>80 MPa, CNT slippage for strain loading up to

±5% is not initiated, thus the high stiffness of the CNT-RC material is preserved

during the whole strain history. In this case, the loss factor of the CNT-RC

material is only due to the viscoelastic nature of PEEK and is approximately

equal to that of neat PEEK.
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Figure 4.14: Stress-strain curves from cyclic tests at ν → ∞ of CNT-RC RVEs
with wf'0.1% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

ISS (MPa) 0 5 10 20 40 80 ∞
wf=2% 0.1434 0.1757 0.2211 0.2770 0.3744 0.4056 0.1350
wf=1% 0.1434 0.1604 0.2182 0.2266 0.2951 0.3364 0.1340
wf=0.5% 0.1434 0.1534 0.1625 0.1951 0.2262 0.2892 0.1328
wf=0.1% 0.1434 0.1472 0.1473 0.1575 0.1617 0.1780 0.1383

Table 4.3: Loss factor of CNT-RC material in various wf and ISS values when
energy dissipation is due to slip and viscocity
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Figure 4.15: Loss factor vs ISS of CNT-RC material derived from cyclic tests of
RVE models with wf'2, 1, 0.5, 0.1% at ν →∞

Figure 4.16: Stress-strain curves from cyclic tests at ν = 1 Hz of CNT-RC RVEs
with wf'2% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa
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Figure 4.17: Stress-strain curves from cyclic tests at ν = 1 Hz of CNT-RC RVEs
with wf'1% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

Figure 4.18: Stress-strain curves from cyclic tests at ν = 1 Hz of CNT-RC RVEs
with wf'0.5% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa
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Figure 4.19: Stress-strain curves from cycli tests at ν = 1 Hz of CNT-RC RVEs
with wf'0.1% and ISS = 0, 5, 10, 20, 40, 80 and ∞ MPa

Figure 4.20: Loss factor vs ISS of CNT-RC material derived from cyclic tests of
RVE models with wf'2, 1, 0.5, 0.1% at ν = 1 Hz
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4.1.5.2 RVEs with wavy CNTs

In order to evaluate the effect of random CNT waviness on the mechanical and

damping properties of CNT-RC material, stochastic analysis is performed based

on Monte Carlo simulation. For this purpose, CNTs with random geometry are

generated using Eq. (4.8). The CNTs are then embedded in the polymer matrix

in order to construct the random RVE models. Only RVE models with wf'2%

and ISS = 40 MPa are studied in this section. These RVE models are subjected

on cyclic loads at frequency ν = 1 Hz. Dirichlet boundary conditions are applied

on the FE models, which result in strain amplitudes of ±5%.

In Fig. 4.21 a cloud of stress-strain curves is plotted. These curves have been

derived from the Monte Carlo simulation of 50 RVE models with random wavy

CNTs. The average of these curves is also plotted in the figure, together with the

corresponding curve of the RVE model with a straight CNT. It is pointed that,

all the RVE models contain CNTs with the same length, so that the observed dif-

ferences in the stress-strain curves are attributed solely to the stochastic waviness

of the CNTs. The loss factor of the CNT-RC material is calculated from both

the average curve which corresponds to wavy CNTs and the stress-strain curve

which corresponds to straight CNTs. These values are recorded in Table 4.4. A

15% reduction in the loss factor of the material is observed for the case of ran-

dom wavy CNTs with respect to straight CNTs. From these results, the role of

straightening of CNTs in producing CNT-RC materials with enhanced damping

properties is highlighted.

Straight CNT Wavy CNTs
Loss factor 0.3744 0.3182

Table 4.4: Loss factor values for straight and wavy CNTs.
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Figure 4.21: Stress-strain curves of: 50 RVEs with random wavy CNTs, average
curve, RVE with a straight CNT (wf = 2% and ISS = 40 MPa)

4.2 Homogenization of CNT-RC material

In this section, a nonlinear multiscale homogenization method is proposed for

CNT-RC material characterization. Specifically, the homogenized mechanical

and damping properties of the CNT-RC material are obtained from the finite el-

ement analysis of RVE models. The novelty of the proposed multiscale approach

is that it combines different modeling strategies in order to accurately pass infor-

mation between scales. This hierarchical approach is demonstrated in Fig. 4.1,

where the modeling steps from nano to micro to macro scale are illustrated. Short

length CNTs are modeled at the nano scale as space frame structures using the

MSM approach of Section 2.2.1. In this method the C-C covalent bonds of the

CNT lattice are substituted by circular beam elements. Since CNTs form ”ropes”

in the order of micrometers, the aforementioned MSM model is projected into a

linear EBE, which is then used as the basic building element for the discretization

of long straight CNTs at microscale. Next, the RVE models are constructed by

embedding these EBEs into a polymer matrix (see Section 4.1.3). The load trans-

fer mechanism at the interface between the lateral surface of the CNT and the

surrounding polymer is modeled with the nonlinear bond-slip friction-type model
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of Section 4.1.4. This bond-slip model is particularly suitable for modeling the

stick-slip behavior of functionalized CNTs, where a chemical treatment is applied

onto their lateral surface in order to form covalent bonds with the hyperbranched

molecules of the surrounding polymer. In this way, functionalization results in

a significant increase of the CNT/polymer interfacial shear strength verified by

Frankland et al [22] and Barber et al [3].

The nonlinear homogenization method is applied to the microstructured RVEs,

so as the effective properties of the homogeneous CNT-RC material to be de-

fined. Microstructural analysis is performed by applying Dirichlet boundary con-

ditions on the FE models of the RVEs. These displacement-type boundary con-

ditions result in prescribed macrostrain tensors on the homogeneous FE models.

Macrostress tensors are calculated as volume averages, using the results obtained

from the FE analysis of the microstructured RVE models. In the context of hier-

archical homogenization method, a phenomenological constitutive law, based on

Hill’s anisotropic plasticity and Maxwell-Wiechert viscoelasticity, is proposed for

the homogeneous CNT-RC material. These combined constitutive models con-

stitute a novel viscoplastic model, which is able to capture both the anisotropic

stiffness and the anisotropic energy dissipation of the CNT-RC material. This

anisotropy of the material is specifically due to the directionality of the CNTs

inside the polymer matrix. The proposed viscoplastic model is capable to predict

stress-strain curves under cyclic loads. Validation of the homogenization method

is performed through sensitivity analysis on RVEs with various wf and ISS values.

The effective mechanical and damping properties of the homogeneous CNT-RC

material are assessed and compared with direct calculations on detailed fine scale

models.

4.2.1 Homogenization method

A hierarchical computational homogenization method is adopted in the thesis in

order to homogenize the nonlinear behavior of the CNT-RC material. In this

class of methods, the microscopic behavior of the heterogeneous medium is pro-

jected to an equivalent homogeneous model at an upper scale. Thus, a specific

constitutive behavior of the material has to be identified from the microstructure
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through FE analysis of the heterogeneous models. As stated by Hashin [28], the

fundamental assumption in all homogenization problems is the statistical homo-

geneity of the heterogeneous medium. This means that all statistical properties

of the state variables are the same at any material point and thus a representa-

tive volume element (RVE) can be recognized. The concept of the RVE requires

complete separation of scales to be valid. Figure 4.22 graphically illustrates the

homogenization method applied to the CNT-RC material.

Figure 4.22: Homogenization method applied to the CNT-RC material

According to Miehe and Koch [57], the first step in the homogenization pro-

cedure is to define the relations between the microscopic and macroscopic state

variables, which are known as ”micro-macro relations”. By imposing appropriate

boundary conditions on the FE model of RVE, these relations are extracted and

then are used in order to determine the effective material properties of the ho-

mogeneous constitutive model. Macroscopic quantities are formulated as volume

averages of the corresponding microscopic state variables. According to the de-

terministic theories of Hill [31] and Maugin [55] the total macroscopic stress and

strain tensors at some point X of the macroscopic body are computed by

Σij(X) = 〈σij〉(X), Eij(X) = 〈εij〉(X) (4.24)

where the average of a microstructure quantity ψ is defined as its integral over
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the volume V of the RVE as

〈ψ〉(X) =
1

V

∫
R

ψ(X,Y ) dY with V =

∫
R

dY (4.25)

where Y denotes the spatial coordinates of a point in the microstructure (see

Fig. 4.22). The averaging theorem requires the strain energy of the the mi-

crostructured RVE to be equal to that of the homogeneous medium. This equiv-

alence, which is known as the Hill’s energy condition, is formulated as follows:

Σ : E =
1

|V |

∫
R

σ : ε dY (4.26)

4.2.2 Viscoplastic model

The viscoplastic model is intended for modeling materials in which significant

time-dependent behavior as well as plasticity is observed, which for metals typi-

cally occurs at elevated temperatures. Here, the microstructural behavior of the

CNT-RC material is captured at macroscale by a continuum viscoplastic model.

This model is able to simulate the viscosity induced to the CNT-RC material by

the polymer matrix and the anisotropic plasticity induced to the CNT-RC mate-

rial by the anisotropic CNT reinforcement and slip. The nonlinear behavior of the

CNT-RC material is broken down into three parts: elastic, plastic, and viscous.

Figure 4.23 shows a one-dimensional idealization of the proposed viscoplastic

model, with the elastic-plastic and the elastic-viscous networks in parallel. For

the elastic-plastic network, an anisotropic plasticity model proposed by Hill [30]

is implemented in order to define anisotropic yield due to CNT slippage. Note

that, the elastic-plastic network does not take into account rate-dependent yield;

hence, any specification of strain rate dependence for the plasticity model is not

allowed. On the other hand, strain rate dependent behavior of CNT-RC mate-

rial is taken into account by the elastic-viscous network. For this network, the

Maxwell-Wiechert viscoelasticity model of Section 3.2.3 is implemented.

The elastic response of the viscoplastic model depends on the rate of the

applied loads. For the one-dimensional representation of the model shown in
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Fig. 4.23, its time dependent relaxation modulus can be expressed as:

Ec(t) = Ecnt + Em∞ +
N∑
j=1

Emje
− t
τj (4.27)

If the loads are applied on the model instantly thus t → 0, then the elastic

response of the composite is obtained from its instantaneous elastic modulus

Ec0 = lim
t→0

Ec(t) = Ecnt + Em∞ +
N∑
j=1

Emj (4.28)

If the loads are applied on the model very slowly thus t → ∞, then the elastic

response of the composite is obtained from its long term elastic modulus

Ec∞ = lim
t→∞

E(t) = Ecnt + Em∞ (4.29)

The plasticity parameters τcr and Hslip correspond to the initial yield stress and

to the kinematic hardening of the CNT-RC material, respectively. The shear

stress developed at the CNT/polymer interface at the moment of slip initiation is

regarded as the initial yield stress. Hill’s plasticity can account for an anisotropic

yield surface, which can efficiently predict slip of CNTs in various directions.

After the initiation of slip, the kinematic hardening of the model defines the

nonlinear behavior of the composite, which is due to the evolution of slip. On the

other hand, the nonlinear behavior of the composite, which is due to the viscosity

of the PEEK matrix, is captured by the elastic-viscous network of the viscoplastic

model.

4.2.2.1 Hill’s orthotropic plasticity model

In this section, the basic equations of Hill’s orthotropic plasticity model, which is

assigned to the elastic-plastic network of the viscoplastic model of Section 4.2.2,

are presented. The proposed model can capture the orthotropic elasto-plastic

behavior of the CNT-RC material, which is due to reinforcement of its polymer

matrix by straight and one-direction oriented CNTs. All the equations are ex-

pressed in the reference coordinate system of Fig. 4.24, which remains constant

during the plastic deformation of the material. The stress tensor components σij
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Figure 4.23: One-dimensional viscoplastic model for CNT-RC material

can then be expressed on the orthonormal basis {e1, e2, e3}, where the normal

vectors coincide with the principal axes of plastic orthotropy.

Figure 4.24: Reference coordinate system for CNT-RC orthotropic material
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The yield function associated with Hill’s model can be written in the form:

Φ(σ, σ̄) = F (σ22−σ33)2+G(σ33−σ11)2+H(σ11−σ22)2+2Lσ2
23+2Mσ2

13+2Nσ2
12−σ̄2

(4.30)

where F , G, H, L, M and N are constants. These are obtained by testing the

material in all principal directions and can be expressed as:

F =
σ2
0

2

(
1
σ̄2
22

+ 1
σ̄2
33
− 1

σ̄2
11

)
= 1

2

(
1
R2

22
+ 1

R2
33
− 1

R2
11

)
,

G =
σ2
0

2

(
1
σ̄2
33

+ 1
σ̄2
11
− 1

σ̄2
22

)
= 1

2

(
1
R2

33
+ 1

R2
11
− 1

R2
22

)
,

H =
σ2
0

2

(
1
σ̄2
11

+ 1
σ̄2
22
− 1

σ̄2
33

)
= 1

2

(
1
R2

11
+ 1

R2
22
− 1

R2
33

)
,

L = 3
2

(
τ0
σ̄23

)2

= 3
2R2

23
,

M = 3
2

(
τ0
σ̄13

)2

= 3
2R2

13
,

N = 3
2

(
τ0
σ̄12

)2

= 3
2R2

12
,

(4.31)

where each σ̄ij is the measured yield stress value when σij is applied as the

only nonzero stress component; σ0 is the reference yield stress which defines the

initial size of the yield surface and τ0 is the reference shear yield stress defined

as τ0 = σ0/
√

3. The six yield stress ratios R11 = σ̄11/σ0, R22 = σ̄22/σ0, R33 =

σ̄33/σ0, R12 = σ̄12/τ0, R13 = σ̄13/τ0 and R23 = σ̄23/τ0 determine the shape of the

anisotropic yield surface, which is a truly 6-dimensional hypersurface in the space

of stress components. Using matrix notation, the yield condition in Eq. (4.30)

can be rewritten in the form:

Φ(σ, σ̄,α) =
1

2
(σ −α)TP (σ −α)− σ̄2 =

1

2
nTPn− σ̄2 = 0 (4.32)
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where matrix P is defined as:

P =



H +G −H −G 0 0 0

−F F +H −H 0 0 0

−G −F G+ F 0 0 0

0 0 0 2N 0 0

0 0 0 0 2M 0

0 0 0 0 0 2L


(4.33)

and n = σ−α is the relative stress tensor written in vector notation and defined

as the difference between the stress tensor σ and the back stress tensor α. Hill’s

rate-independent plasticity model postulates an associative plastic flow rule which

is expressed as:

ε̇p = γ̇
∂Φ

∂σ
= γ̇N = γ̇Pn (4.34)

where N = Pn is the flow vector and γ is the plastic multiplier. The rate of the

accumulated plastic strain can be expressed as:

˙̄εp =

√
2

3
(ε̇p)T Z (ε̇p) = γ̇

√
2

3
(Pn)T Z (Pn) (4.35)

where matrix Z is a compatibility matrix used to equate the tensorial contraction

to matrix-vectors multiplications. The rate of change of the back stress tensor is

supposed to follow Prager’s nonlinear kinematic hardening rule:

α̇ =
2

3
C (ε̄p) ε̇p = γ̇C (ε̄p)Pn (4.36)

where C (ε̄p) = dᾱ/dε̄p is the kinematic hardening modulus defined by the scalar

function ᾱ (ε̄p) of the accumulated plastic strain. Notice in Eqs. (4.30) and (5.10)

that, σ̄ is the relative yield stress, which in case of isotropic hardening is a function

of ε̄p and defines the size of the yield surface according to the isotropic hardening

curve H (ε̄p) = dσ̄/dε̄p. For materials with only kinematic hardening behavior,

H = 0 and σ̄ ≡ σ0 is constant. This means that, the yield surface preserves its

shape and size but translates in the stress space as a rigid body according to

the kinematic hardening law. Kinematic hardening data can be obtained from
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simple uniaxial tests. A detailed description of Hill’s plasticity model, along with

the state update procedure and computation of the associated consistent tangent

modulus of the elastoplastic material can be found in Kojić et al [42] and Souza

[84]. These numerical procedures are necessary for the implicit finite element

solution of small strain plasticity problems. Also, a review for the finite element

implementation of Hill’s plasticity equations can be found in Appendix B.

4.2.2.2 Calibration of viscoplastic model

Calibration of the proposed viscoplastic model for the CNT-RC material involves

the definition of all its elastic, plastic and viscous parameters. This is performed

numerically through FE analysis of the microstructured RVEs. Assuming that,

the viscous behavior of the CNT-RC material is only due to the viscoelastic

nature of PEEK matrix, its viscosity parameters are derived from the calibra-

tion procedure of the Maxwell-Wiechert model presented in Section 3.2.6. The

effective elastic properties of the homogeneous CNT-RC material need also to

be computed. The elastic stress-strain relation for the homogeneous model of

an RVE with straight and oriented nanotubes can be expressed in the reference

coordinate system of Fig. 4.24 in the form:



Σ11

Σ22

Σ33

Σ12

Σ13

Σ23


=



C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C1212 0 0

sym. C1313 0

C2323





E11

E22

E33

E12

E13

E23


(4.37)

where C is a transversely orthotropic elasticity matrix, which involves nine un-

known components. These unknowns are related with Young’s moduli E1, E2,

E3, which are associated with the orthotropic directions 1, 2, and 3 respectively,

the shear moduli G12, G13, G23, which are associated with orthotropic planes 12,

13 and 23 respectively (Gij = Gji), and finally the three Poisson’s ratios ν12, ν13

and ν23. Four independent Dirichlet boundary conditions have to be applied on
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the FE model of the RVE in order to determine all the unknowns in matrix C.

These are derived from the following set of predefined macrostrains:

E =





E11

0

0

0

0

0


,



0

E22

0

0

0

0


,



0

0

E33

0

0

0


,



0

0

0

E12

E13

E23




(4.38)

which correspond to point X of the homogeneous material where the RVE model

is assigned (see Fig. 4.22). Thus, the displacement type boundary conditions are

derived from:

uq = DT
q E (4.39)

uq contains the displacements of each boundary node q on the FE mesh of the

RVE model. Dq is a geometric matrix defined for node q in the form:

DT
q =


x1 0 0 1

2
x2 0 1

2
x3

0 x2 0 1
2
x1

1
2
x3 0

0 0 x3 0 1
2
x2

1
2
x1

 (4.40)

where (x1, x2, x3) are the spatial coordinates of the specific node in the microstruc-

ture. For example, substituting the first macrostrain E = [E11 0 0 0 0 0]T in

Eq. (4.37), the components C1111 = Σ11/E11, C2211 = Σ22/E11 and C3311 =

Σ33/E11 can be directly obtained. After the FE analysis of the RVE model the

macrostress Σ is derived from the reaction forces fq calculated on the boundary

nodes q of the FE model in an average form as:

Σ =
1

|V |

nq∑
q=1

Dqfq (4.41)

where nq is the number of the boundary nodes q and V is the volume of the

RVE. The other unknown components of the elasticity matrix C are computed in
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a similar way by applying the remaining predefined macrostrains of Eq. (4.38).

Note that, the response of the RVE is considered linear elastic as far as the shear

stresses developed at the CNT/polymer interface do not exceed the ISS of the

composite material. Thus, in order to calibrate the elastic parameters of the

macro constitutive model, the amplitude of the imposed macrostrain have to be

lower than the limit point at which CNT slippage is initiated. This means that

the total strains in the viscoplasticity model are regarded elastic, E = Ee, and

thus no permanent deformation occurs. Note also that, these calibration tests

have been performed in high strain rates, thus the computed effective elastic

properties corresponds to the instantaneous elastic response of the material.

On the other hand, calibration of the plasticity parameters is performed at

the long term response of the material where the steady-state behavior of PEEK

matrix is attained. Specifically, calibration of Hill’s plasticity parameters involves

the determination of the constants F , G, H, L, M and N of Eq. (4.31), which

define the yield surface of the model, and the extraction of its kinematic hard-

ening data. For the elastic-plastic network of the viscoplastic model, material

nonlinearity is attributed solely to CNT slippage at the CNT/polymer interface.

Due to the fact that CNTs are oriented and aligned along the longitudinal di-

rection of the RVE (Fig. 4.24), the boundary conditions imposed by the uniaxial

strain E = [E11 0 0 0 0 0]T are sufficient for the determination of the yield

parameters of Eq. (4.31). Since the aforementioned imposed strains result in

multiaxial stress conditions, the yield stress value σ̄11 of Eq. (4.31) is obtained as

the equivalent von Mises stress in the form:

Σ̄y =

√
3

2
Σd
ijΣ

d
ij (4.42)

where Σd
ij are the deviatoric components of the effective stress tensor defined by:

Σd
ij = Σij −

1

3
(trΣ) δij (4.43)

The equivalent stress value Σ̄y is calculated by the multiaxial stress states de-

veloped in the microstructure at the exact time of slip initiation. This value

corresponds to the initial effective yield stress in the direction of CNT reinforce-

ment. The nonlinear kinematic hardening data are derived by calculating the
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equivalent yield stresses Σ̄ as a function of the accumulated plastic strains Ēp

obtained by:

Ēp =

√
2

3
Ep
ijE

p
ij (4.44)

where Ep is the plastic strain. This is defined from the decomposition of the total

strain E, into the sum of an elastic (or reversible) component, Ee, and a plastic

(or permanent) component, Ep. So it can be expressed in vector notation as:

Ep = E −Ee = E − C−1Σ (4.45)

Large values are assigned to the other plasticity parameters of Eq. (4.31), which

correspond to the initial yield stresses in the transverse material directions. Thus,

the stresses of the material developed at these directions remain inside the elas-

tic domain delimited by the Hill’s yield surface. This is due to the fact that

at the microsccale, interfacial slippage occurs only in the direction of the CNT

reinforcement and thus plastic flow does not occur in other directions.

4.2.3 Numerical results on homogenization

The validity of the proposed nonlinear hierarchical multiscale homogenization

method is tested in this section. This is performed by comparing the results

obtained from FE simulations of the heterogeneous medium with these of the

homogeneous medium. The results for the heterogeneous medium are obtained

through detailed FE discretization of the corresponding microstructure and thus

serve as a reference solution. Two test cases are considered. The first corresponds

to cyclic tests on microstructured RVEs which contain a single straight and ori-

ented CNT and the second corresponds to tensile tests on a CNT-RC specimen

reinforced by four CNTs. In both cases, validation of the proposed homogeniza-

tion method is performed through sensitivity analysis on RVEs with respect to

various weight fractions of CNTs and ISS values.
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4.2.3.1 Test case 1: Cyclic tests on CNT-RC RVEs

In this example, the proposed homogenization method is tested through cyclic

tests on CNT-RC material. Initially, calibration of the viscoplastic model of

Section 4.2.2 is performed through FE analysis of microstructured RVE models.

The computed effective properties are then used to simulate the behavior of the

homogenized material. Geometry, materials and mesh characteristics of the RVE

models used in this test case have been described in Section 4.1.5.1. A cyclic

uniaxial macrostrain E = [E11 0 0 0 0 0]T is applied on the RVE models with

E11 = E0 sin(2πνt) (4.46)

where E0 is the strain amplitude, t is the current analysis time and ν is the im-

posed circular frequency. According to the homogenization method, the macros-

trainE is applied on the RVE models through Dirichlet boundary conditions with

the nodal displacements derived from Eq. (4.39). After the FE analysis of the

RVE models the macrostress Σ is calculated from Eq. (4.41) using the obtained

microstructural results.

Figures 4.25, 4.26 and 4.27 present the stress-strain curves obtained from the

FE analysis of both the heterogeneous and the homogeneous models of the CNT-

RC material with wf=0.5, 1 and 2% of CNTs, respectively. The plots (a), (b)

and (c) in each figure correspond to ISS=40, 80 and 160 MPa, respectively. The

results of the heterogeneous models are obtained from the multiscale analysis of

the microstructured RVE models and thus can be considered as the reference

solutions. Note that, instantaneous elastic response of PEEK is assumed in all

simulations. This means that, a high, practically infinity, strain rate is imposed

to the models, with ν → ∞ in Eq. (4.46). The strain amplitude in all cyclic

simulations is ±5%. Identical stress-strain curves for the heterogeneous and the

homogeneous models are obtained. The Bauschinger effect, which is attributed to

the stick-slip mechanism at the CNT/polymer interface, is accurately captured by

the homogeneous model through appropriate kinematic hardening data of Hill’s

orthotropic plasticity model. Small discrepancy of the results may be attributed

to calibration errors. These errors are mainly due to the inaccurate prediction

of the initial yield stress of the plasticity model, which has to be defined at the
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exact time when CNT slippage in the RVE initiates.

(a) (b)

(c)

Figure 4.25: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at ν →∞; wf=0.5% and ISS=40, 80 and 160 MPa

The loss factor of the CNT-RC material is calculated by Eq. (4.23) from the

stress-strain curves of both the heterogeneous and the homogeneous models. The

results are plotted in Fig. 4.28(a) with respect to the wf values and in Fig. 4.28(b)

with respect to ISS values. The loss factor values of the homogeneous material
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(a) (b)

(c)

Figure 4.26: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at ν →∞; wf=1% and ISS=40, 80 and 160 MPa

seem to be close enough to these of the heterogeneous, with the best correlation

occurring for ISS=80 MPa in all wf cases. Notice that, since strain rate effects

are not considered in these simulations, the behavior of the CNT-RC material

during the cyclic loading remains linear elastic and thus the energy dissipation

of the RVE is attributed solely to CNT slippage. Also, some qualitative remarks
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(a) (b)

(c)

Figure 4.27: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at ν →∞; wf=2% and ISS=40, 80 and 160 MPa

for the damping behavior of the composite can be deduced from these figures.

Specifically, an increase of the loss factor with the increase of the wf value and

a peak point of the loss factor for ISS values between 80 and 160 MPa for all

wf cases, are observed. If the ISS limit point is exceeded, then the loss factor

is decreased. This means that as the full-bond condition is reached, slippage
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of CNTs is hardly initiated and thus no energy dissipation mechanism in the

material exists.

(a)

(b)

Figure 4.28: Loss factor of the heterogeneous and homogeneous CNT-RC material
vs (a) wf and (b) ISS

Figure 4.29 plots the stress-strain curves of both the heterogeneous and ho-

mogeneous CNT-RC material obtained from cyclic tests at frequency ν = 1 Hz.

The results correspond to CNT-RC models with wf=2% and ISS=40, 80 and 160
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MPa. In these simulations, PEEK matrix exhibits viscoelastic response, thus the

energy dissipation mechanism of the composite material is due to viscosity and

slip. For this case, the observed differences in the results may be attributed to

insufficient homogenization of the strain rate effects in the material. As men-

tioned in Section 4.2.2.2, effective plasticity parameters are calibrated in the long

term response of the viscoelastic matrix. A more realistic approach would occur,

if these effective properties were obtained in various strain rates. However, the

results are still very close to each other and thus the validity of the proposed

homogenization method is also verified in this case.
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(a) (b)

(c)

Figure 4.29: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at ν = 1 Hz; wf=2% and ISS=40, 80 and 160 MPa

4.2.3.2 Test case 2: Tensile tests on CNT-RC specimens

In this example, tensile tests on CNT-RC specimens are simulated. These spec-

imens are consisted of a rectangular PEEK matrix reinforced by four straight
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CNTs. Distribution of CNTs inside the matrix follows a square pattern. The

efficiency of the proposed homogenization method is evaluated by comparing the

stress-strain curves of the heterogeneous and the homogeneous models. Finite el-

ement meshes of both models are illustrated in Fig. 4.30. Particularly, the matrix

of the composite in both models is discretized by 4100 solid elements, while each

CNT in the heterogeneous model is discretized by 37 Bernoulli beam elements.

The wf of the CNT-RC material of the specimen is 2%, while ISS=40, 80 and

160 MPa. As shown in Fig. 4.31, the microstructure of the heterogeneous model

can be constructed by merging four RVE models with wf=2%. The specific RVEs

were previously analyzed in test case 1 of Section 4.2.3.1. Calibrated parameters

for the viscoplastic model of Section 4.2.2 have been calculated from these RVE

models. In this test case, these calculated effective parameters are assigned to

the homogeneous CNT-RC material of the specimens.

A monotonic axial tensile load is applied on these specimens through Eq. (4.39)

with E = [E11 0 0 0 0 0]T and E11 = 5%. Figures 4.32(a), 4.32(b) and 4.32(c)

plot the stress-strain curves of both the heterogeneous and the homogeneous

models for wf=2% and ISS=40, 80 and 160 MPa, respectively. These results

have been obtained without considering strain rate effects of the material. Thus

in these simulations PEEK matrix exhibits instantaneous elastic response. The

stress-strain curves of the homogeneous models are well fitted to these of the

heterogeneous models. The efficiency of the proposed homogenization method

is therefore asserted. Figures 4.33(a), 4.33(b) and 4.33(c) plot the stress-strain

curves of the aforementioned models, but this time viscoelastic response of PEEK

matrix is considered. The imposed strain rates correspond to a loading frequency

of 1 Hz. Small discrepancy of the results may be again attributed to calibration

errors. However, the results are expected to fit each other if larger RVEs with

random distribution of CNTs are considered. In this case, the effect of the local

strain rates in the microstructure can be smoothed away and thus microstructural

behavior can be better captured by the homogeneous models.
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(a) (b)

Figure 4.30: FE mesh of (a) heterogeneous, (b) homogeneous CNT-RC specimen

Figure 4.31: Construction of heterogeneous model of CNT-RC specimen by merg-
ing four RVEs with wf=2%

101



4. CARBON NANOTUBE-REINFORCED COMPOSITES

(a) (b)

(c)

Figure 4.32: Stress-strain curves of heterogeneous and homogeneous models of
CNT-RC specimen without considering strain rates; wf=2% and ISS=40, 80 and
160 MPa
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(a) (b)

(c)

Figure 4.33: Stress-strain curves of heterogeneous and homogeneous models of
CNT-RC specimen considering strain rates (ν = 1 Hz); wf=2% and ISS=40, 80
and 160 MPa
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Chapter 5

Graphene nanoplatelet-reinforced

composites

Graphene nanoplatelets (GnPs) are unique carbon materials with multifunctional

properties. They are considered as two-dimensional nanoparticles consisting of

small stacks of graphene sheets that are 1-15 nm thick and 1-100 mm wide. These

stacked layers are bonded to each other by van der Waals forces with an inter-

layer distance of 0.34 nm and exhibit a specific surface area of 2630-2965 m2/g

[66, 11]. The geometrical characteristics of GnPs can be tuned by a variety of

techniques, such as intercalation, oxidation, heat treatment, microwave irradia-

tion and ultrasonic treatment [99]. Scanning electron microscope (SEM) images

provided in Fig. 5.1 illustrate the bulk morphology of exfoliated GnPs. Since

GnPs are composed of the same material as carbon nanotubes, they share many

of their electrochemical characteristics, which lead to their supreme mechani-

cal and physical properties. Specifically, GnPs exhibit tensile modulus ∼1 TPa,

tensile strength 10-20 GPa, thermal conductivity ∼3000 W/(m·K), electrical re-

sistivity ∼ 5×10−5Ω·cm, with only a bulk density of 0.03-0.15 g/cm3 [39, 41, 37].

Incorporation of GNPs into a polymer matrix has significant advantages over

CNTs. For example, GNPs do not require disentanglement that is one of the most

difficult parts in processing CNTs. The platelet shape offers GnP boundary edges

that are easier to be modified through functionalization, leading to enhanced

interfacial adhesion between GnP and polymer. Also, GNPs are produced from
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the very affordable and abundant natural graphite, and thus can be used as a cost-

effective alternative, replacing the expensive CNTs. These advantages along with

the high aspect ratio and the large surface area make GnP a promising candidate

for enhancing the mechanical and physical properties of polymer composites.

This chapter deals with the homogenization of random GnP-RCs contain-

ing arbitrarily shaped platelets. Homogenization is performed numerically in

the framework of extended finite element method (XFEM) coupled with Monte

Carlo simulation (MCS). In particular, the influence of the platelet shape on the

effective properties of the GnP-reinforced composites is highlighted. The platelet

inclusions are randomly distributed and oriented within the polymer and their

shape is implicitly modeled by the iso-zero of an analytically defined random level

set function, which also serves as the enrichment function in the framework of

XFEM. The analytical function used is a random ”rough” circle defined by a set

of independent identically distributed (i.i.d.) random variables and deterministic

constants governing the roughness of the shape [86]. Homogenization is performed

based on Hill’s energy condition and MCS [57]. The homogenization involves the

generation of a large number of random realizations of the microstructure ge-

ometry based on a given volume fraction of the inclusions and other parameters

(shape, spatial distribution and orientation). Although the proposed homoge-

nization method aims to derive effective properties for GnP-RCs, its usage can

be generalized in every heterogeneous medium containing arbitrarily shaped in-

clusions. For this reason, the applicability of the method is tested for various

stiffness ratio values, which correspond to both stiff and compliant inclusions

(see the numerical results of Section 5.3).
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Figure 5.1: Scanning electron microscope images of exfoliated GnPs showing bulk
morphology and average platelet diameter (Source: Duguay [21])

5.1 Modeling RVEs of GnP-reinforced compos-

ites with XFEM

Classical finite element (FE) methods are commonly used to analyze complex

microstructures. In this case, the mesh conforms to the internal material inter-

face boundaries that cause the strong or weak discontinuities in the displacement

solution field. While fast meshing algorithms are available to discretize a domain

with such internal features, this step still involves a significant computational ef-

fort. This is especially true when large number of simulations are to be performed

to quantify the probability distributions involved, with reasonable confidence. In

Zohdi and Wriggers [115], the homogenization of random heterogeneous media is

performed using the standard FE method with material discontinuities within the

elements, following a microstructure-nonconforming approach. Micro-geometrical

idealizations for the irregular shapes of the inclusions are used, where a general-

ized diameter is defined for the smallest sphere that can enclose a single particle,
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which can be considered of arbitrary shape. The development of the extended

finite element method (XFEM) by Moës et al [60] offers the possibility to use a

regular mesh which does not have to be adapted to the internal details (cracks or

material interfaces) of each random realization of the microstructure. Extended

finite element method is therefore particularly suitable to model the local het-

erogeneous material structure in a representative volume element (RVE) for the

application of homogenization techniques.

The extended finite element method uses nodal enrichment functions within

the framework of the partition of unity method to augment the FE approxi-

mations over a structured mesh [56]. These enrichment functions act as addi-

tional bases to model strong or weak discontinuities that occur along the interface

boundaries. The method was initially developed to model strong discontinuities

in the primary field variables as they occur at a crack [60]. It has also been ap-

plied to the modeling of material interfaces which represent weak discontinuities

in the mechanical boundary value problem [4, 88, 61, 23]. In Yvonnet et al [110],

an XFEM/level set approach is implemented in order to model interface effects

and to compute the size-dependent effective properties of composites containing

nanopores. Nowadays XFEM is used in many other applications. Zhao et al

[112] used a smoothed extended finite element method (SmXFEM) to study the

morphological transformation of precipitates in phase-separated alloys. In Lang

et al [47], an extended stochastic FEM (X-SFEM) is applied in order to predict

heat transfer in composite materials with uncertain inclusion geometry. An open

source XFEM library which can handle a wide variety of problems with discon-

tinuities, has been developed by Bordas et al [7]. Talebi et al [91] developed

an open-source software framework called PERMIX for multiscale modeling and

simulation of fracture in solids. A comprehensive review of the method and its

application to material modeling can be found in [6].

5.1.1 Problem formulation

Consider a medium which occupies a domain Ω ⊂ R2 whose boundary is rep-

resented by Γ. Let prescribed traction t̄ applied on surface Γt ⊂ Γ (natural

boundary conditions) and prescribed displacements ū applied on Γu ⊂ Γ (es-
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sential boundary conditions). The medium contains an inclusion which occupies

the domain Ω+ and is surrounded by the internal surface Γincl ⊂ Γ such that

Ω = Ω+ ∪ Ω− and Γ = Γt ∪ Γu ∪ Γincl (Fig. 5.2). The governing equilibrium

and kinematic equations for the elastostatic problem of the medium ignoring the

body forces is:

divσ = 0 in Ω (5.1a)

u = ū in Γu (5.1b)

σ · n = t̄ in Γt (5.1c)

Jσ · ninclK = 0 in Γincl (5.1d)

where n and nincl are the unit normals to Γt and Γincl, respectively. Note that

Eq. (5.1d) implies traction continuity along the material interface Γincl.

Figure 5.2: Schematic of a medium which occupies a domain Ω = Ω+ ∪ Ω−,
contains an inclusion (Ω+) and is subjected to essential and natural boundary
conditions on surfaces Γu and Γt respectively
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5.1.2 XFEM weak form

The differential Eq. (5.1a) represents the strong form of the elastostatic bound-

ary value problem. In order to find a numerical solution u of the problem, the

differential equation is transformed into a suitable variational form by first mul-

tiplying it with a test function v and then integrating over the domain Ω. So, a

trial solution u is seeked, which satisfies the weak form and the essential boundary

conditions of the problem in a functional space U defined as:

U := {u ∈ H1 (Ω) : u = ū on Γu} (5.2)

The test function v belongs to the functional space V , which contains any set of

kinematically admissible test functions (virtual displacements) and is defined as:

V := {v ∈ H1 (Ω) : u = 0 on Γu} (5.3)

where H1 (Ω) is the Sobolev space of functions with square-integrable first deriva-

tives in Ω. The weak formulation of the static problem can now be stated as:

find u ∈ U such that ∀v ∈ V, a (u, v) = l (v) (5.4)

where the bilinear form a (·, ·) and the linear form l (·) are defined as:

a (u, v) :=

∫
Ω

σ (u) : Ov dΩ

l (v) :=

∫
Γt

v · t̄ dΓ

(5.5)

5.1.3 XFEM discrete system

Considering the Bubnov-Galerkin method for the extended finite element (XFE)

elastostatic problem, the trial function u as well as the test function v are rep-

resented as a linear combination of the same interpolation functions. The weak
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form of the discrete problem can be stated as:

find uh ∈ Uh ⊂ U such that ∀vh ∈ V h ⊂ V,

a
(
uh, vh

)
= l
(
vh
) (5.6)

where h stands for the characteristic size of the elements in the mesh. Note that

to accurately capture a non-smooth solution resulting from material interfaces,

the traditional FE method requires a mesh that conforms to the inclusion geom-

etry. On the contrary, the XFEM eliminates the requirement of a conforming

mesh by enriching the traditional FE approximation with a suitably constructed

enrichment function. The XFEM displacement approximation for the trial and

test functions can be decomposed into the standard FE part and the enriched

part as follows:

uh (x) = uhfem (x) + uhenr (x) =∑
i∈I

Ni (x)ui +
∑
j∈J

Nj (x)ψ (x)αj

vh (x) = vhfem (x) + vhenr (x) =∑
i∈I

Ni (x) vi +
∑
j∈J

Nj (x)ψ (x) βj

(5.7)

where I is the set of all nodes in the mesh and J is the set of nodes that are en-

riched with the enrichment function ψ that satisfies the local character of the dis-

placement field. A detailed description of the stochastic enrichment function that

has been developed for arbitrarily shaped inclusions is provided in Section 5.1.4.

To satisfy partition of unity, the enrichment function is enveloped by the origi-

nal shape functions Nj and additional to the standard nodal variables ui or vi,

enriched nodal variables αj or βj are introduced in the approximation equations

for uh or vh, respectively.

In case of microstructures containing high volume fraction of inclusions or very

nearby inclusions, the use of XFEM/level set method induces numerical artefacts

that degrade the accuracy and convergence of the solution. To avoid these prob-
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lems, the approach proposed by Tran et al [95] and Hiriyur et al [32] has been

adopted in this study. In this approach, a node whose support is cut by multi-

ple inclusions n0 is enriched by different enrichment functions ψk corresponding

to each inclusion k. The enriched nodal variables αjk or βjk of Eq. (5.8) corre-

spond to node j whose support is cut by the k-th inclusion. The approximation

displacement field can then be written as:

uh (x) =
∑
i∈I

Ni (x)ui +
∑
j∈J

Nj (x)

(
n0∑
k=1

ψk (x)αjk

)

vh (x) =
∑
i∈I

Ni (x) vi +
∑
j∈J

Nj (x)

(
n0∑
k=1

ψk (x) βjk

) (5.8)

Substituting Eq. (5.8) into the weak form of Eq. (5.6), a discrete system of alge-

braic equations is obtained:[
Kuu Kuα

Kαu Kαα

][
u

α

]
=

[
Fu

Fα

]
(5.9)

where [Kuu]ij = a (Ni, Nj), [Kαα]ij = a (Ni

∑n0

k=1 ψk, Nj

∑n0

k=1 ψk) and [Kuα]ij =

[Kαu]ji = a (Ni, Nj

∑n0

k=1 ψk) are the stiffness matrices associated with the stan-

dard FE approximation, the enriched approximation and the coupling between

them, respectively. The forces are expressed as [Fu]i = l (Ni) and [Fα]j =

l (Nj

∑n0

k=1 ψk). From the solution of the system, the nodal displacements u and

enriched variables α are finally obtained. It is worth noting that, although the

algebraic system of Eq. (5.9) is of larger dimension than that before the enrich-

ment, XFEM has the benefits of using a coarser mesh compared with FEM and

thus solving a smaller global system of equations.

5.1.4 Enrichment function

Inclusions into a medium introduce a weak discontinuity in the displacement

field (due to change in material properties), which shows a kink at the interface

and a discontinuous first derivative. For modeling such fields in the framework
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of XFEM, usually a ramp function in the form of absolute distance function is

used to enrich the approximation field [44]. XFEM is typically combined with

the level set approach where a level set function φ is used to implicitly describe

random inclusion geometry [83, 47]. While the level set method is often used

to track moving interfaces on a fixed mesh [81], it is used herein to define the

location of the inclusion interface and its stochastic variation. The location of

the interface Γincl (θ) is implicitly defined by the iso-zero of the following random

level set function representing a ”rough” circle, which is taken as the signed radial

distance function to the curve:

φ (x, θ) = ‖x− c‖ −R (α (x) , θ) (5.10)

where x is the spatial location of a point in the meshed domain, c is the center

of the rough circle, R (α (x) , θ) is a random field representing the radius of the

rough circle, α (x) ∈ [0, 2π] is the polar angle at position x and θ denotes the

randomness of a quantity (Fig. 5.3).

Figure 5.3: Schematic representation of a rough circle
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In this study, the following equation is used for the random radius [86]:

R (α, θ) = 0.2 + 0.03Y1(θ) + 0.015{Y2(θ)cos(k1α)+

Y3(θ)sin(k1α) + Y4(θ)cos(k2α) + Y5(θ)sin(k2α)}
(5.11)

where the i.i.d. uniform random variables Yi(θ) ∈ U
(
−
√

3,
√

3
)
, i = 1, ..., 5.

Note that the first random variable controls the ”mean” reference radius while

the other four control its amplitude. k1, k2 are deterministic constants which

define the period of oscillations of the random rough circle around the shape of

the reference (perfect) circle. An example of the level set function φ for a random

rough circle inclusion with k1 = 0 and k2 = 3 is shown in Fig. 5.4. The iso-zero

contour level of φ displayed in Fig. 5.4(b) defines the boundary Γincl(θ) which

describes the shape of the inclusion.

Figure 5.4: a) Signed level set function and b) contour levels of φ for a random
rough circle inclusion with k1 = 0 and k2 = 3

An appropriate enrichment function which captures discontinuous first deriva-

tives in the approximation fields was proposed by Sukumar et al [88]. This is a

ramp function defined as the absolute value of the random level set function
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discretized according to the FE mesh of the spatial domain as follows:

ψk (x) =

∣∣∣∣∣∑
i∈I

Ni (x)φki

∣∣∣∣∣ (5.12)

where φki is the value of the level set function of Eq. (5.10) at node i for the

k-th inclusion and Ni (x) are the FE nodal basis functions. In order for the

XFE approximations to retain the Kronecker-δ property of the standard FE ap-

proximations so that at node j, uh (xj) = uj, a shifted enrichment function

Sk (x) = ψk (x)−ψk (xj) was first suggested by Belytschko et al [4]. By this shift-

ing operator, the enrichment terms vanish at all nodes j ∈ J and thus smoothing

of the discontinuous solution is achieved on the problematic blending elements

leading to improved convergence.

Another choice for the enrichment function was introduced by Moës et al

[61]. This is a ridge function centered on the interface, having zero value on the

elements which are not crossed by the interface and defined as follows:

ψk (x) =
∑
i∈I

Ni (x)
∣∣φki ∣∣−

∣∣∣∣∣∑
i∈I

Ni (x)φki

∣∣∣∣∣ (5.13)

This enrichment function avoids spurious numerical results on blending elements

and thus improves the accuracy and convergence of the XFEM solution, as shown

in the next section.

5.1.5 Convergence study of XFEM solution for single in-

clusion

In this section, three RVE models containing a single centered inclusion with

different geometry are simulated with both XFEM and standard FEM. Equa-

tions (5.10) and (5.11) are used for the construction of the inclusions, where

parameters (k1, k2) are chosen as (0, 0), (0, 3) and (0, 6). All RVEs have a unit

cell geometry with dimensions 10 × 10 mm and a volume fraction (vf) of inclu-

sions 30%. This is achieved by scaling the inclusion geometry as explained in

Section 5.2.1. In the case of XFEM, a structured mesh of bilinear quadrilateral

elements is used. The same type of elements is used for FEM but in this case, the
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mesh must conform to the boundaries of the inclusions (see Figs. 5.7-5.9). The

RVEs with the boundary conditions and loads shown in Fig. 5.5 are subjected to

pure tension. The magnitude of the traction q along the right edge is 1 GPa. The

matrix and the GnP inclusions are modeled using linear elastic isotropic materials

with Young’s moduli Em = 1 and Eincl = 1000 GPa, respectively. The Poisson

ratio for both materials is set equal to 0.3.

Figure 5.5: Schematic of boundary conditions and loading of the RVE models
used in Section 5.1.5

A convergence study with regard to XFE size is carried out for the afore-

mentioned RVE models using equispaced rectangular Lh × Lh meshes, where

Lh = 10, 20, 40, 80. Since no analytical solution exists for an RVE containing a

single inclusion of arbitrary shape, the results obtained with a fine mesh FEM

model are considered as the reference solution. The convergence study is based

both on the L2 norm and the energy norm, which are defined as:

eL2 =
‖ ufem − uxfem ‖2

‖ ufem ‖2

(5.14)

eE =
‖ ufem − uxfem ‖E
‖ ufem ‖E

=
| Πfem − Πxfem |
| Πfem |

(5.15)
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where Π = 1
2
uTKu is the strain energy of the model.

The results of the convergence study are presented in Fig. 5.6. It is verified

that the enrichment function of Eq. (5.13) leads to improved accuracy and con-

vergence compared to the enrichment function of Eq. (5.12). As shown in Fig. 5.6,

the relative error in both L2 and energy norms when the enrichment function of

Eq. (5.13) is used, is at most 0.48% for an XFEM mesh of 40×40. This mesh size

can be considered sufficiently fine for an accurate representation of the interface

geometry details. Therefore, all the subsequent simulations in this chapter are

conducted using this specific mesh size and the enrichment function of Eq. (5.13).

Figs. 5.7-5.9 display the selected XFE mesh and the fine FE mesh for each RVE

along with the corresponding displacement fields (Ux1), which agree very well to

each other. Details about the XFE and FE meshes for the RVE model depicted

in Fig. 5.9 are provided in Table 5.1.

Figure 5.6: Convergence of XFEM to FEM results with regard to four element
sizes corresponding to XFEM mesh density Lh × Lh (Lh = 10, 20, 40, 80) using
the enrichment functions of Sukumar et al [88] and Moës et al [61]

A convergence study with respect to the matrix-inclusion stiffness ratio is

also conducted for the RVE models described previously. Both stiff (Eincl > Em)

and compliant (Em > Eincl) inclusions are considered for stiffness ratio values

(Eincl/Em or Em/Eincl) ranging from 5 to 104. In Fig. 5.10, the relative error in

L2 and energy norm is plotted against the corresponding ratio of elastic moduli.
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Figure 5.7: Comparison of displacement fields Ux1 obtained from XFEM and
FEM for RVE with inclusion (k1 = 0, k2 = 0) : a) XFEM mesh, b) XFEM
displacements, c) FEM mesh and d) FEM displacements

XFEM
FEM 10× 10 20× 20 40× 40 80× 80

nodes 8281 121 441 1681 6561
elements 8120 100 400 1600 6400
dofs 16562 318 1074 3746 13890

Table 5.1: Mesh details of RVE with a single inclusion of arbitrary shape (k1 =
0, k2 = 6)

In the case of stiff inclusions, the relative error seems to increase as the stiffness

ratio increases whereas for compliant inclusions the relative error seems to reach

a plateau for stiffness ratio greater than 102. For the elastic moduli ratio 103
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Figure 5.8: Comparison of displacement fields Ux1 obtained from XFEM and
FEM for RVE with inclusion (k1 = 0, k2 = 3) : a) XFEM mesh, b) XFEM
displacements, c) FEM mesh and d) FEM displacements

used in the numerical examples (Section 5.3), the differences between XFEM and

reference FEM solutions are at most 0.48%.
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Figure 5.9: Comparison of displacement fields Ux1 obtained from XFEM and
FEM for RVE with inclusion (k1 = 0, k2 = 6) : a) XFEM mesh, b) XFEM
displacements, c) FEM mesh and d) FEM displacements
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Figure 5.10: Effect of elastic moduli ratio on the accuracy of the XFEM solution
in terms of L2 and energy norm
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5.2 Homogenization

5.2.1 Generation of random microstructures

In order to proceed to the stochastic homogenization procedure in the framework

of MCS (Section 5.2.2), the first step is to generate a large number of random

realizations of the microstructure geometry of the GnP-RC RVEs. For this pur-

pose an efficient algorithm was used in Hiriyur et al [32], the basic steps of which

are described in Table 5.2. This algorithm has been appropriately modified here

to account for arbitrarily shaped inclusions. A specific volume fraction (vf) and

number of inclusions nincl is assigned to each RVE with dimensions X1 × X2.

For the generation of arbitrarily shaped inclusions, Equations (5.10) and (5.11)

are used with specific deterministic constants k1, k2 and random variables Yi(θ)

produced according to a prescribed uniform probability density function (PDF)

fYi . The random boundary curve Γincl(θ) of an inclusion is constructed using N

discrete points as follows:

Γincl(θ) : {x = c +R (α, θ) (cosα · e1 + sinα · e2)} (5.16)

where e1, e2 are the unit vectors of the Cartesian coordinate system (Fig. 5.3).

Figure 5.11 presents the different inclusion shapes considered in this study. For

each inclusion, a set of random coordinates representing the center of the rough

circle and its random orientation angle are also generated according to prescribed

uniform distributions fc and fβ.

Figure 5.11: Shapes of GnP inclusions constructed by: a)k1 = 0, k2 = 0, b)
k1 = 0, k2 = 3, c) k1 = 0, k2 = 6 and d) k1 = 3, k2 = 6

After the generation of nincl inclusions, their size needs to be scaled in order to

achieve the desired vf for the RVE. For this purpose, the cumulative area of all the
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randomly generated inclusions is calculated first and an appropriate scaling factor

is determined which is then applied to the random radius of the rough circle for

all N discrete points. To eliminate the chance of overlap of a particular inclusion

with the others that are spatially distributed in the RVE, the inclusions are sorted

in decreasing order of area size. Starting with the inclusion with the largest area,

the algorithm proceeds to the spatial distribution of the remaining inclusions in

decreasing order of size, checking simultaneously for overlapping. The level set

function corresponding to a specific inclusion is evaluated on the N discretization

points belonging to all previously positioned inclusions. If all the values of the

level set function of the specific inclusion are positive, then no overlapping occurs

and the algorithm proceeds to position the next smaller inclusion according to

its area. If any inclusion placed and oriented according to the generated random

position variables is found to overlap with any previously located inclusion, then

new center coordinates and orientation angle are generated until no overlap is

observed. In Fig. 5.12, a set of RVE realizations generated using the algorithm

of Table 5.2 are shown. These RVEs have a volume fraction vf=30% and contain

different number of inclusions with parameters k1 = 0 and k2 = 3.

Figure 5.12: Sample realizations of generated random microstructures with
vf=30% and parameters k1 = 0 and k2 = 3
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Table 5.2: Algorithm for the generation of random microstructure geometry of
RVEs

• INPUT

– X1, X2: Size of RVE

– vf: Inclusion volume fraction in RVE

– nincl: Total number of inclusions in RVE

– fYi : Independent probability distributions for the random variables
Yi(θ) ∈ U

(
−
√

3,
√

3
)
, i = 1, ..., 5 in Eq. (5.11)

– fc, fβ: Independent probability distributions for the center coordinates
and orientation angle

– k1, k2: Deterministic constants which define the period of oscillations
of the random rough circle boundary curve

• GENERATE / SCALE / SORT INCLUSIONS

– Generate nincl random inclusions

– Calculate numerically by trapezoidal rule the cumulative area of all
inclusions as

Âincl =

nincl∑
k=1

{
N∑
n=1

[(
xk1,n+1 − xk1,n

)
·

(
xk2,n + xk2,n+1

2

)]}
n = 1, ..., N : number of discretization points on the boundary curve
of the random rough circle,

(
xk1,n, x

k
2,n

)
∈ Γkincl(θ)

– Scale rough circle radii: Rn = R̂n

√
vf
X1X2

Âincl

– Sort inclusions in decreasing order of area

• SPATIALLY DISTRIBUTE INCLUSIONS IN RVE

– Loop over inclusions k = 1 to nincl

∗ Generate random numbers
(
xk1, x

k
2

)
uniform in [0, X1] and [0, X2],

respectively and βk uniform in [0, 2π] to represent rough circle
center and orientation

∗ Check overlap with previously positioned inclusions 1 to k − 1

· If TRUE, repeat step for inclusion k with new random values
for coordinates

(
xk1, x

k
2

)
and orientation βk

· If FALSE, proceed to next smaller inclusion
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5.2.2 Homogenization in the framework of MCS

The homogenization scheme adopted in this study is based on the fundamental

assumption of statistical homogeneity of the heterogeneous medium [28], which

means that all statistical properties of the state variables are the same at any

material point and thus a representative volume element (RVE) can be identi-

fied. Effective homogeneous material properties, corresponding to the random

microstructures generated by the algorithm in Section 5.2.1, are obtained by

MCS. For this purpose, a sufficiently large number of elastic analyses are con-

ducted where the RVEs are subjected to displacement boundary conditions [57].

Although there is a constant homogenized material property within the RVE,

this property changes from realization to realization making it a random vari-

able. Assuming that the resulting homogeneous material will remain linear and

isotropic, the effective Young’s modulus Eeff and Poisson ratio νeff are the only

parameters to be defined through the stochastic homogenization procedure. It

should be mentioned that a more general orthotropic material model could more

accurately simulate the behavior of the homogenized medium. However, such

model would increase significantly the computational cost and therefore it is not

used in this study. Note also that the isotropy assumption can be considered

valid in an average sense.

Homogenization is based on Hill’s energy averaging theorem, which postulates

that the strain energy of the homogenized macro-continuum has to be equal to

that of the microstructured RVE in an average sense:

σ̄ : ε̄ =
1

|V |

∫
Ω

σ : ε dY (5.17)

where Y denotes the coordinate system in the microstructured RVE. The macro-

scopic quantities are related to the corresponding state variables at microscale

through established micro to macro relations. According to the deterministic

theories of Hill [31], the total macroscopic stress and strain tensors at some point

X of the continuum are computed by

σ̄(X) = 〈σ〉(X) and ε̄(X) = 〈ε〉(X) (5.18)
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where the average of a quantity ζ at the microstructure is defined as its integral

over the corresponding RVE volume V as

ζ̄(X) = 〈ζ〉(X) =
1

V

∫
Ω

ζ(X,Y ) dY

with V =

∫
Ω

dY

(5.19)

Miehe and Koch [57] proposed a computational procedure to exclusively de-

fine the overall macroscopic stresses and tangent moduli of a typical microstruc-

ture from the discrete forces and stiffness properties on the boundary nodes of

the meshed RVE model. Following this procedure, a prescribed strain tensor ε̄

is applied on the boundary of the microstructure models through displacement

boundary conditions in the form:

uq = DT
q ε̄ (5.20)

where Dq is a geometric matrix that depends on the coordinates of the nodal

point q which lies on the boundary of the model, defined by

Dq =
1

2

2x1 0

0 2x2

x2 x1

 (5.21)

where (x1, x2) ∈ Y . The overall macroscopic stress σ̄ is then calculated in an

average manner from the nodal reaction forces f q obtained by XFEM analysis as

σ̄ =
1

|V |

M∑
q=1

Dqf q (5.22)

whereM is the number of boundary nodes q. As mentioned previously, the macro-

scopic stress is related to the imposed macroscopic strain by a linear isotropic
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elastic constitutive matrix in the formσ̄11

σ̄22

σ̄12

 =

Ceff Deff 0

Deff Ceff 0

0 0 Geff


ε̄11

ε̄22

ε̄12

 (5.23)

where

Ceff =


Eeff

1− ν2
eff

plane stress

(1− νeff )Eeff
(1 + νeff ) (1− 2νeff )

plane strain

(5.24)

Deff =


νeffEeff
1− ν2

eff

plane stress

νeffEeff
(1 + νeff ) (1− 2νeff )

plane strain

(5.25)

and Geff =
Eeff

2 (1 + νeff )
(5.26)

The computation of the effective Young’s modulus and Poisson ratio is accom-

plished by imposing the macrostrain vector ε̄ = [ε̄11 0 0]T in form of displace-

ments (see Eq. (5.20)). Thus Ceff = σ̄11/ε̄11 and Deff = σ̄22/ε̄11 can be calculated

from which Eeff and νeff are derived for each Monte Carlo sample.

5.2.3 Solution strategy

The XFE elastostatic problem of RVEs with random inclusions requires the solu-

tion of the linear system of Eq. (5.9). The local stiffness matrices of the regular

and enriched elements are calculated numerically by the trapezoidal integration

method with 4 quadrature points in an equispaced 2×2 grid and with 64 quadra-

ture points in an equispaced 8× 8 grid, respectively. The global stiffness matrix

comprises Kuu which corresponds to the regular dofs u, Kαα which corresponds

to the enriched dofs α and Kuα=Kαu which derive from the coupling between u

and α. As the bandwith of this matrix is quite large, the Reverse Cuthill-McKee

algorithm for symmetric sparse matrix reordering is used to reduce the band-

width and accelerate the solution of the linear system. Figure 5.13 illustrates
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the stiffness matrix K of a discretized RVE model with inclusions of shape type

(k1 = 0, k2 = 6), before and after implementation of the reordering algorithm.

The solution is finally obtained by factorizing the reordered narrower bandwidth

stiffness matrix, using the Cholesky decomposition.

Figure 5.13: RVE model with inclusions (k1, k2) = (0, 6): a) Mesh, b) Stiffness
matrix K without reordering and c) Stiffness matrix K reordered by Reverse
Cuthill-McKee algorithm

5.3 Numerical examples

The probability distribution of the effective elastic modulus and Poisson ratio

for a plane-stress medium containing inclusions of arbitrary shape is obtained

using the approach described in sections 5.1 and 5.2. As already stated, a linear

isotropic material model is considered for both matrix and inclusions with the

128



same Poisson ratio νm = νincl = 0.3. Moreover, examples with different Poisson

ratios νm = 0.49 (nearly incompressible matrix) and νincl = 0.3 are presented.

Eeff , νeff are computed through the coupled XFEM-MCS homogenization ap-

proach of Section 5.2.

A unit cell of size 10×10 mm subjected to displacement boundary conditions,

is used in the analyses. A total of 1000 Monte Carlo simulations are performed

for each volume fraction of inclusions considered ranging from 0.2 to 0.4. The

number of inclusions in each MC sample is fixed to 15. Parametric investigations

with respect to the stiffness ratio Eincl/Em are conducted to highlight its effect

on the results. It is noted that the computed Eeff is in all cases within the upper

and lower bounds defined by the Voigt and Reuss models, respectively.

Figure 5.14 shows the histograms of Eeff , νeff along with the statistical

convergence of their mean and coefficient of variation (COV) for stiffness ra-

tio Eincl/Em = 10, vf =0.4 and four different cases of inclusion shape roughness

(k1 = 0, k2 = 0), (k1 = 0, k2 = 3), (k1 = 0, k2 = 6) and (k1 = 3, k2 = 6), (see

Fig. 5.11). The same results are displayed in Fig. 5.15 for the case of compliant

inclusions (Em/Eincl = 10). It can be seen that the effect of the inclusion shape is

negligible in both cases as the difference in the mean value of the effective elastic

modulus between (k1 = 0, k2 = 0) (perfect circle) and (k1 = 0, k2 = 6) (arbitrary

shape) is less than 3.5%.

The effect of the inclusion shape on Eeff , νeff becomes more pronounced in

the case of large stiffness ratios. Figures 5.16-5.19 display the histograms of Eeff ,

νeff and the statistical convergence of their mean and COV for stiffness ratio

Eincl/Em = 1000, which is typical in case of GnP-RC RVEs, three values of vf

and four cases of inclusion shape roughness. The differences in the mean value of

the effective elastic coefficient Eeff for the various inclusion shapes and volume

fractions are given in Table 5.3. An increase of about 16% in Eeff can be observed

in the case of vf =0.4 between (k1 = 0, k2 = 0) and (k1 = 0, k2 = 6). The shape

of the histograms is significantly affected by the volume fraction and shape of the

inclusions, in contrast to the case of a small stiffness ratio (see Fig. 5.14). The

computed COV is also much larger in this case for both Eeff and νeff .

As shown in Fig. 5.20, a reduction of the effective elastic modulus occurs with

the increase of shape roughness in the case of compliant inclusions (Em/Eincl =

129



5. GRAPHENE NANOPLATELET-REINFORCED COMPOSITES

1000). The effect of volume fraction and inclusion shape on the histograms of

Eeff , νeff is less pronounced than in the case of stiff inclusions. The differences

in the mean value of Eeff are still significant (Table 5.4). A decrease of about

12% in Eeff can be noticed in the case of vf =0.4 between (k1 = 0, k2 = 0) and

(k1 = 0, k2 = 6) . Statistical convergence of mean and COV is achieved within

the same number of MC simulations (Figs. 5.22-5.23).

Figures 5.24 and 5.25 present the results obtained with different Poisson ratios

for the matrix and inclusions, respectively. The stiffness ratio is Eincl/Em = 1000

in case of stiff inclusions and Em/Eincl = 1000 in case of compliant inclusions.

The results corresponding to the cases with the largest differences in Eeff are

shown (RVEs with vf=0.4 and inclusions of shape type (k1 = 0, k2 = 0) and

(k1 = 0, k2 = 6)). The differences in Eeff are 18% for stiff and 11.6% for com-

pliant inclusions. Note that, for the case of GnP-reinforced composites where

Eincl/Em ' 1000, increase of the platelet shape roughness results in higher com-

posite stiffness. Although in this study, full bond condition is assumed at the

GnP/polymer interface, theoretically the increased roughness of the platelets can

also achieve better adhesion to matrix. From the above mentioned issues the

significance of platelet shape in studying GnP-reinforced polymers is highlighted.

vf (0, 0)− (0, 3) (0, 0)− (0, 6) (0, 3)− (0, 6) (0, 0)− (3, 6)
0.2 2.55 5.31 2.69 2.89
0.3 3.22 9.77 6.34 4.22
0.4 4.11 16.13 11.55 6.15

Table 5.3: Effect (% increase) of shape roughness (k1, k2) on mean(Eeff ) for stiff
inclusions (Eincl/Em = 1000)

vf (0, 0)− (0, 3) (0, 0)− (0, 6) (0, 3)− (0, 6) (0, 0)− (3, 6)
0.2 2.29 2.81 0.50 -0.28
0.3 4.14 6.28 2.06 1.49
0.4 5.24 11.85 6.28 4.22

Table 5.4: Effect (% decrease) of shape roughness (k1, k2) on mean(Eeff ) for
compliant inclusions (Em/Eincl = 1000)

130



Figure 5.14: Stiff inclusions (Eincl/Em = 10): a-b) Histograms, c-d) mean values
and e-f) COVs of Eeff and νeff respectively for RVEs with vf=0.4 and inclusions
with (k1, k2) = [(0, 0), (0, 3), (0, 6), (3, 6)]
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Figure 5.15: Compliant inclusions (Em/Eincl = 10): a-b) Histograms, c-d) mean
values and e-f) COVs of Eeff and νeff respectively for RVEs with vf=0.4 and
inclusions with (k1, k2) = [(0, 0), (0, 3), (0, 6), (3, 6)]
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Figure 5.16: Stiff inclusions (Eincl/Em = 1000) Histograms of Eeff : a) (k1 =
0, k2 = 0), b) (k1 = 0, k2 = 3), c) (k1 = 0, k2 = 6) and d) (k1 = 3, k2 = 6) for
vf=[0.2, 0.3, 0.4]
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Figure 5.17: Stiff inclusions (Eincl/Em = 1000) Histograms of νeff : a) (k1 =
0, k2 = 0), b) (k1 = 0, k2 = 3), c) (k1 = 0, k2 = 6) and d) (k1 = 3, k2 = 6) for
vf=[0.2, 0.3, 0.4]
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Figure 5.18: Stiff inclusions (Eincl/Em = 1000): a-b) mean(Eeff ), mean(νeff ) for
inclusions with (k1 = 0, k2 = 0) and c-d) mean(Eeff ), mean(νeff ) for inclusions
with (k1 = 0, k2 = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.19: Stiff inclusions (Eincl/Em = 1000): a-b) COV(Eeff ), COV(νeff ) for
inclusions with (k1 = 0, k2 = 0) and c-d) COV(Eeff ), COV(νeff ) for inclusions
with (k1 = 0, k2 = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.20: Compliant inclusions (Em/Eincl = 1000) Histograms of Eeff : a)
(k1 = 0, k2 = 0), b) (k1 = 0, k2 = 3), c) (k1 = 0, k2 = 6) and d) (k1 = 3, k2 = 6)
for vf=[0.2, 0.3, 0.4]
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Figure 5.21: Compliant inclusions (Em/Eincl = 1000) Histograms of νeff : a)
(k1 = 0, k2 = 0), b) (k1 = 0, k2 = 3), c) (k1 = 0, k2 = 6) and d) (k1 = 3, k2 = 6)
for vf=[0.2, 0.3, 0.4]
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Figure 5.22: Compliant inclusions (Em/Eincl = 1000): a-b) mean(Eeff ),
mean(νeff ) for inclusions with (k1 = 0, k2 = 0) and c-d) mean(Eeff ), mean(νeff )
for inclusions with (k1 = 0, k2 = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.23: Compliant inclusions (Em/Eincl = 1000): a-b) COV(Eeff ),
COV(νeff ) for inclusions with (k1 = 0, k2 = 0) and c-d) COV(Eeff ), COV(νeff )
for inclusions with (k1 = 0, k2 = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.24: Case of different Poisson ratios (νm = 0.49, νincl = 0.3) for stiff
inclusions (Eincl/Em = 1000): a-b) Histograms, c-d) mean values and e-f) COVs
of Eeff and νeff respectively for RVEs with vf=0.4 and shape types (k1 = 0, k2 =
0), (k1 = 0, k2 = 6)
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Figure 5.25: Case of different Poisson ratios (νm = 0.49, νincl = 0.3) for compliant
inclusions (Em/Eincl = 1000): a-b) Histograms, c-d) mean values and e-f) COVs
of Eeff and νeff respectively for RVEs with vf=0.4 and shape types (k1 = 0, k2 =
0), (k1 = 0, k2 = 6)
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Chapter 6

Conclusions

6.1 Conclusions

In this PhD thesis, different multiscale modeling techniques were utilized and new

constitutive models were developed for the simulation of CNT and GnP reinforced

composite materials within reasonable computational time and accuracy. Various

stochastic parameters have been considered by the proposed multiscale analysis

of the nanocomposite RVEs, so that the real microstructural geometry and in-

terfacial phenomena of such heterogeneous materials were properly simulated. In

the context of CNT-RCs, the coupled atomistic-continuum MSM approach was

adopted for modeling the lattice structure of CNTs where the atomic C-C cova-

lent bond was substituted by a structural beam element. Then, at the nanoscale

the resulting space frame FE model of the nanotube was replaced by an equiva-

lent beam, which was used as the basic element for the construction of full length

CNTs at the microscale. Random waviness of CNTs geometry was considered in

the multiscale analysis through a novel stochastic approach, where the spectral

representation method was used with evolutionary power spectra derived from

real SEM images of CNT-RCs. The viscoelastic constitutive model of Maxwell-

Wiechert was implemented for accurate predictions of the nonlinear strain rate

dependent response of polymers, which exhibit multiple relaxation times. Cali-

bration procedure of that model was performed for the case of PEEK material,

which was then assigned to the polymer matrix. The embedded element technique

was also adopted so as the RVE FE models were disretized by two independent

143



6. CONCLUSIONS

meshes: a structured one with solid elements for the matrix and a series of em-

bedded beams for the full length CNTs inside the matrix. The interfacial load

transfer mechanism between the lateral surface of the CNT and the surrounding

matrix was taken into account with the incorporation of a nonlinear bond-slip

friction-type model in the FE code.

The mechanical and damping properties of the CNT-RCs were assessed on

the basis of sensitivity analyses with respect to various weight fraction content in

CNTs and different interfacial shear stress values at the CNT/polymer interface.

In case of random CNT waviness stochastic average properties were derived with

Monte Carlo simulation. The presented numerical results have demonstrated

the significant effect of the ISS as well as the influence of CNT waviness on

the mechanical and damping behavior of CNT-RCs. Specifically, it was shown

that the loss factor increases with increasing ISS and reaches a peak value for

ISS values equal or greater than the shear strength of the polymer. This fact

implies that, a successful functionalization process on CNTs which results in

increased interfacial shear strength is crucial for achieving optimum damping

characteristics of CNT-RCs. In addition, it was shown that CNT waviness results

in a reduction of the loss factor. Thus, the significance of straightening the CNTs

before the nanocomposite fabrication is highlighted in order to produce materials

with enhanced mechanical and damping properties.

Analysis of CNT-RCs was then upscaled from micro to macro scale through

a nonlinear multiscale homogenization approach. The novelty of the proposed

sequential homogenization method is that it has been efficiently applied for the

characterization of the mechanical and damping properties of CNT-RCs consid-

ering slippage at CNT/polymer interface. This was performed through the devel-

opment of a novel viscoplastic constitutive model which was then assigned to the

homogeneous composite material. Based on Hill’s anisotropic plasticity model

combined with the viscoelastic Maxwell-Wiechert model, both the anisotropic

stiffness reinforcement of the bulk polymer and the anisotropic adhesive behavior

at the CNT/polymer interface caused by the randomly dispersed CNTs inside

the viscoelastic matrix are adequately described. The presented numerical re-

sults verify the efficiency of the proposed homogenization method in solving large

mechanical problems where finer scale phenomena are considered in a continuum
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manner.

In the context of multiscale analysis of GnP-RCs, a homogenization strategy

was proposed where effective material parameters for polymer matrices reinforced

with arbitrarily shaped graphene platelet inclusions were calculated using XFEM,

coupled with Monte Carlo simulation. In particular, the influence of the inclu-

sion shape on the effective properties of such random media was studied. The

inclusions were randomly distributed and oriented within the medium and their

shape was implicitly modeled by the iso-zero of an analytically defined random

level set function (”rough” circle), which also served as the enrichment function.

The formulation which exploits the characteristic features of XFEM avoiding the

regeneration of a new finite element mesh at each Monte Carlo simulation have

led to accelerated computations. Parametric investigations with respect to the

inclusion/matrix stiffness ratio and the inclusion volume fraction were conducted.

The numerical results have shown that the statistical characteristics of the effec-

tive properties can be significantly affected by the shape of the inclusions. This is

more obvious for RVEs with large volume fraction and high stiffness ratio which

are typical in GnP-reinforced composites.

6.2 Recommendations for future work

The multiscale analysis of CNT and GnP-reinforced composites, as this proposed

in this thesis, constitutes a powerful numerical tool for predicting the mechanical

and damping properties of these types of materials. However, further research is

needed in the following topics:

1. Derivation of the nonlinear EBE which can capture nonlinear phenomena

in CNTs such as buckling or defected C-C bonds.

2. Calibration of the proposed viscoplastic constitutive model in various strain

rates for more accurate predictions of the homogeneous material behavior

when viscoelasticity of the polymer matrix is considered.

3. Investigation of the effect of random CNT orientation and waviness on the

nonlinear effective properties of the CNT-RCs in larger RVEs which contain
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many numbers of CNTs.

4. Computational homogenization of CNT and GnP-RCs RVEs with evolving

micro-cracks.

5. Robust optimum design of CNT-RCs and GnP-RCs for stiffness and strength

with regard to topology and geometry of the nanofillers.

6. Study hybrid nanocomposites containing both CNTs and GnPs.
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Appendix A

Viscoelasticity

Source: Abaqus Theory Manual, Version 6.8.

The basic hereditary integral formulation for linear isotropic viscoelasticity is

σ(t) =

∫ t

0

2G (τ − τ ′) ė dt′ + I

∫ t

0

K (τ − τ ′) φ̇ dt′ (A.1)

Here e and φ are the mechanical deviatoric and volumetric strains; K is the bulk

modulus and G is the shear modulus, which are functions of the reduced time τ ;

and ˙ denotes differentiation with respect to t′.

The reduced time is related to the actual time through the integral differential

equation

τ =

∫ t

0

dt′

Aθ (θ (t′))
,
dτ

dt
=

1

Aθ (θ (t))
(A.2)

where θ is the temperature and Aθ is the shift function. (Hence, if Aθ = 1, τ = t.)

A commonly used shift function is the Williams-Landell-Ferry (WLF) equation,

which has the following form:

−logAθ = h (θ) =
Cg

1 (θ − θg)
Cg

2 + (θ − θg)
(A.3)

where Cg
1 and Cg

2 are constants and θg is the ”glass” transition temperature. This
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is the temperature at which, in principle, the behavior of the material changes

from glassy to rubbery. If θ ≤ θg−Cg
2 , deformation changes will be elastic. Cg

1 and

Cg
2 were once thought to be ”universal” constants whose values were obtained at

θg, but these constants have been shown to vary slightly from polymer to polymer.

The WLF equation can be used with any convenient temperature, other than

the glass transition temperature, as the reference temperature. The form of the

equation remains the same, but the constants are different. Namely,

−logAθ = h (θ) =
C1 (θ − θ0)

C2 + (θ − θ0)
(A.4)

where θ0 is the reference temperature at which the relaxation data are given,

and C1 and C2 are the calibration constants at the reference temperature. The

”universal” constants Cg
1 and Cg

2 are related to C1 and C2 as follows:

C1 =
Cg

1

1 + (θ0 − θg) /Cg
2

,

C2 = Cg
2 + θ0 − θg

(A.5)

Other forms of h (θ) are also used, such as a power series in θ − θ0.

The relaxation functions K(t) and G(t) can be defined individually in terms

of a series of exponentials known as the Prony series:

K(t) = K∞ +

nK∑
i=1

Kie
−τ/τKi , G(t) = G∞ +

nG∑
i=1

Gie
−τ/τGi (A.6)

where K∞ and G∞ represent the long-term bulk and shear moduli. In general, the

relaxation times τKi and τGi need not equal each other; however, we can assume

that τi = τKi = τGi . On the other hand, the number of terms in bulk and shear,

nK and nG, need not equal each other. In fact, in many practical cases it can

be assumed that nK = 0. Hence, we now concentrate on the deviatoric behavior.

The equations for the volumetric terms can be derived in an analogous way.
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The deviatoric integral equation is

S =

∫ t

0

2

(
G∞ +

nG∑
i=1

Gie
(τ ′−τ)/τi

)
ė dt′

=

∫ τ

0

2

(
G∞ +

nG∑
i=1

Gie
(τ ′−τ)/τi

)
de

dτ ′
dτ ′.

(A.7)

We rewrite this equation in the form

S = 2G0

(
e−

n∑
i=1

αiei

)
, (A.8)

where G0 = G∞ +
∑n

i=1 Gi is the instantaneous shear modulus, αi = Gi/G0 is

the relative modulus of term i, and

ei =

∫ τ

0

(
1− e(τ ′−τ)/τi

) de

dτ ′
dτ ′ (A.9)

is the viscous (creep) strain in each term of the series. For finite element analysis

this equation must be integrated over a finite increment of time. To perform this

integration, we will assume that during the increment e varies linearly with τ ;

hence, de/dτ ′ = ∆e/∆τ . To use this relation, we break up Eq. (A.9) into two

parts:

en+1
i =

∫ τn

0

(
1− e(τ ′−τn+1)/τi

) de

dτ ′
dτ ′

+

∫ τn+1

τn

(
1− e(τ ′−τn+1)/τi

) de

dτ ′
dτ ′.

(A.10)

Now observe that

1− e(τ ′−τn+1)/τi = 1− e−∆τ/τi + e−∆τ/τi
(

1− e(τ ′−τn)/τi
)
. (A.11)
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Use of this expression and the approximation for de/dτ ′ during the increment

yields

en+1
i =

(
1− e−∆τ/τi

) ∫ τn

0

de

dτ ′
dτ ′

+ e−∆τ/τi

∫ τn

0

(
1− e(τ ′−τn)/τi

) de

dτ ′
dτ ′

+
∆e

∆τ

∫ τn+1

τn

(
1− e(τ ′−τn+1)/τi

)
dτ ′.

(A.12)

The first and last integrals in this expression are readily evaluated, whereas

from Eq. (A.9) follows that the second integral represents the viscous strain in the

ith term at the beginning of the increment. Hence, the change in the ith viscous

strain is

∆ei =
(
1− e−∆τ/τi

)
en +

(
e−∆τ/τi − 1

)
eni +

(
∆τ − τi

(
1− e−∆τ/τi

)) ∆e

∆τ

=
τi

∆τ

(
∆τ

τi
+ e−∆τ/τi − 1

)
∆e +

(
1− e−∆τ/τi

)
(en − eni ) .

(A.13)

If ∆τ/τi approaches zero, this expression can be approximated by

∆ei =
∆τ

τi

(
1

2
∆e + en − eni

)
. (A.14)

The last form is used in the computations if ∆τ/τi < 10−7.

Hence, in an increment, Eq. (A.13) or Eq. (A.14) is used to calculate the new

value of the viscous strains. Eq. (A.8) is then used subsequently to obtain the

new value of the stresses.

The tangent modulus is readily derived from these equations by differentiating

the deviatoric stress increment, which is

∆S = 2G0

(
∆e−

nG∑
i=1

αi
(
en+1
i − eni

))
(A.15)
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with respect to the deviatoric strain increment ∆e. Since the equations are linear,

the modulus depends only on the reduced time step:

GT =

G0

[
1−

∑n
i=1 αi

τi
∆τ

(
∆τ
τi

+ e−∆τ/τi − 1
)]

if ∆τ/τi > 10−7

G0

[
1−

∑n
i=1

1
2
αi

∆τ
τi

]
if ∆τ/τi < 10−7

(A.16)

The energy dissipation follows from

PD =
1

2

(
Sn+1 + Sn

)
:

nG∑
i=1

αi∆ei

=
1

2

(
Sn+1 + Sn

)
:

(
∆e− 1

2G0

(
Sn+1 + Sn

))
= P − PE

(A.17)

with the total work

P =
1

2

(
Sn+1 + Sn

)
: ∆e (A.18)

and the elastic energy increase

PE =
1

4G0

(
Sn+1 : Sn+1 − Sn : Sn

)
. (A.19)

Finally, one needs a relation between the reduced time increment, ∆τ , and the

actual time increment, ∆t. To do this, we observe that Aθ varies very nonlinearly

with temperature; hence, any direct approximation of Aθ is likely to lead to large

errors. On the other hand, h (θ) will generally be a smoothly varying function of

temperature that is well approximated by a linear function of temperature over

an increment. If we further assume that incrementally the temperature θ is a

linear function of time t, one finds the relation

h (θ) = −logAθ (θ (t)) = α + bt (A.20)
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or

A−1
θ (θ (t)) = eα+bt (A.21)

with

α =
1

∆t

[
tn+1h(θn)− tnh(θn+1)

]
b =

1

∆t

[
h(θn+1)− h(θn)

]
.

(A.22)

This yields the relation

∆τ =

∫ tn+1

tn
eα+bt dt =

1

b

(
eα+btn+1 − eα+btn

)
. (A.23)

This expression can also be written as

∆τ =
A−1
θ (θn+1)− A−1

θ (θn)

h (θn+1)− h (θn)
∆t. (A.24)

Reduced states of stress

So far, we have discussed full triaxial stress states. If the stress state is reduced

(i.e., plane stress or uniaxial stress), the equations derived here cannot be used

directly because only the total stress state is reduced, not the individual terms

in the series. Therefore, we use the following procedure.

For plane stress let the third component be the zero stress component. At the

beginning of the increment we presumably know the volumetric elastic strain φne ,

the volumetric viscous strain φnc , and the volumetric viscous strains φni associated

with the Prony series. The total volumetric strain can be obtained by adding

together the elastic volumetric strain and the volumetric viscous strain

φn = φne + φnc . (A.25)
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The deviatoric strain in the 3-direction follows from the relation φ = ε1 +ε2 +

ε3, which yields:

en3 = εn3 −
1

3
φn =

2

3
φn − εn1 − εn2 . (A.26)

The out-of-plane deviatoric stress at the end of the increment is

sn+1
3 = 2G0

(
en+1

3 −
nG∑
i=1

αGi e
n+1
3i

)
. (A.27)

Substituting Eq. (A.13) for en+1
3i , letting en+1

3 = en3 + ∆e3, and collecting terms

gives

sn+1
3 = 2GT∆e3 + 2G0e

n
3

[
1−

nG∑
i=1

αGi
(
1− e−∆τ/τi

)]

− 2G0

nG∑
i=1

αGi e
−∆τ/τien3i.

(A.28)

The hydrostatic stress is derived similarly as

−pn+1 = KT∆φ+K0φ
n

[
1−

nK∑
i=1

αKi
(
1− e−∆τ/τi

)]

−K0

nK∑
i=1

αKi e
−∆τ/τiφni .

(A.29)

We can write these equations in the form

sn+1
3 = 2GT∆e3 + s̄3

− pn+1 = KT∆φ− p̄.
(A.30)

In the third direction the deviatoric stress minus the hydrostatic pressure is zero;

hence,

2GT∆e3 +KT∆φ+ s̄3 − p̄ = 0. (A.31)
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Since ∆e3 = 2
3
∆φ−∆ε1 −∆ε2, it follows that

(
KT +

4

3
GT

)
∆φ = 2GT (∆ε1 + ∆ε2)− s̄3 + p̄, (A.32)

from which ∆φ can be solved. One can then also calculate ∆e1 and ∆e2, and

with Eq. (A.13) or Eq. (A.14) one can update the deviatoric viscous strains en+1
i .

The volumetric strains φn+1
i are obtained with a relation similar to Eq. (A.13).

For uniaxial stress states a similar procedure is used. As before, φn follows

from Eq. (A.25) and en3 and en2 follow from ε1 + 2ε3 = φ:

en3 = en2 = εn3 −
1

3
φn =

1

6
φn − 1

2
εn1 . (A.33)

Equations (A.28) and (A.29) can be used to calculate s̄3 and p̄, which again leads

to Eq. (A.31). Applying Eq. (A.33) for ∆e3,(
KT +

1

3
GT

)
∆φ = GT∆ε1 − s̄3 + p̄. (A.34)

After this, one can follow the same procedure as for plane stress.

154



Appendix B

Hill’s plasticity

Yield function:

Φ (σ, σ̄,α) =
1

2
(σ −α)T P (σ −α)− σ̄2 =

1

2
nTPn− σ̄2 = 0 (B.1)

where n = σ −α is the relative stress tensor.

Flow rule:

ε̇p = γ̇
∂Φ

∂σ
= γ̇N = γ̇Pn (B.2)

Accumulated plastic strain:

˙̄εp =

√
2

3
ε̇p : ε̇p = γ̇

√
2

3
(Pn)T Z (Pn) (B.3)

Prager’s nonlinear kinematic hardening rule:

α̇ =
2

3
C (ε̄p) ε̇p = γ̇C (ε̄p)Pn (B.4)

The incremental elastoplastic constitutive problem. Given the values εen

and αn, of the elastic strain and internal variables set at the beginning of the

pseudo-time interval [tn, tn+1], and given the prescribed incremental strain ∆ε for
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this interval, solve the following system of algebraic equations

εen+1 = εen + ∆ε−∆γPnn+1

αn+1 = αn + ∆γ 2
3
C
(
ε̄pn+1

)
Pnn+1

ε̄pn+1 = ε̄pn + ∆γ
√

2
3

(Pnn+1)T Z (Pnn+1)

(B.5)

for the unknowns εen+1,αn+1 and ∆γ, subjected to the constraints

∆γ ≥ 0, Φ (σn+1, σ̄,αn+1) ≤ 0, ∆γ Φ (σn+1, σ̄,αn+1) = 0 (B.6)

where

σn+1 = Deεen+1, C (ε̄p) =
∆ᾱ

∆ε̄p
(B.7)

withDe the orthotropic elasticity matrix and ᾱ the equivalent back stresses which

depend on equivalent plastic strains ε̄p and are known from the kinematic hard-

ening law. The incremental equations in the system (B.5) have been derived from

the differential equations (B.2) and (B.4) using the backward Euler approxima-

tion scheme. In the above, the notation ∆ (·) ≡ (·)n+1 − (·)n has been adopted,

with (·)n and (·)n+1 denoting the value of (·) at tn and tn+1, respectively. The

increment ∆γ is called the incremental plastic multiplier. Note that once the

solution εen+1 has been obtained, the plastic strain at tn+1 can be calculated as

εpn+1 = εpn + ∆ε−∆εe (B.8)

so that all variables of the model are known at the end of the interval [tn, tn+1].

The fully implicit elastic predictor/return-mapping algorithm for numerical inte-

gration of Hill’s elastoplastic constitutive equations can be formulated as:

i. Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elas-

tic trial state
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εe trial
n+1 = εen + ∆ε,

ε̄p trial
n+1 = ε̄pn, α

trial
n+1 = αn, σ

trial
n+1 = De εe trial

n+1

ii. Check plastic admissibility

IF Φ
(
σtrial
n+1 , σ̄,αtrial

n+1

)
≤ 0

THEN set (·)n+1 = (·)trial
n+1 and EXIT

iii. Return mapping. Solve the system

εen+1 − εe trial
n+1 + ∆γPnn+1

αn+1 −αtrial
n+1 −∆γ 2

3
C
(
ε̄pn+1

)
Pnn+1

ε̄pn+1 − ε̄
p trial
n+1 −∆γ

√
2
3

(Pnn+1)T Z (Pnn+1)

Φ (σn+1, σ̄,αn+1)


=



0

0

0

0


for εen+1, αn+1 and ∆γ, with σn+1 = Deεen+1

iv. EXIT

Single-equation return mapping

For the return mapping algorithm the system of the incremental plasticity equa-

tions is solved, based on the governing parameter method [42]. In this context, the

stress integration is practically achieved by solving one nonlinear equation with

respect to the governing scalar parameter. For the return mapping algorithm,

the above system can be reduced to the solution of a single scalar equation for

the plastic multiplier ∆γ

Newton-Raphson iterative scheme:

∆γ(k) = ∆γ(k−1) + δ∆γ(k)

with δ∆γ(k) = − Φ̃ (∆γ)

dΦ̃ (∆γ) /d∆γ

∣∣∣∣(k−1)
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The yield function is written in terms of ∆γ as

Φ̃ (∆γ) =
1

2
[n (∆γ)]T P [n (∆γ)]− [σ̄ (ε̄p (∆γ))]2 = 0

and its derivative with respect to ∆γ is

dΦ̃ (∆γ)

d∆γ
= [Pn (∆γ)]T

dn (∆γ)

d∆γ
− 2σ̄H idε̄

p (∆γ)

d∆γ

where H i = dσ̄/dε̄p is the isotropic hardening. After some manipulations the

following variables are expressed in terms of the governing parameter

n (∆γ) ≡ nn+1 =

[
I +

(
∆γDe +

2

3qn
(ᾱn+1 − ᾱn) I

)
P

]−1

ntrial

dn (∆γ)

d∆γ
= −

[
I +

(
∆γDe +

2

3qn
(ᾱn+1 − ᾱn) I

)
P

]−1 [
De +

2

3qn
Hk dε̄

p

d∆γ
I

]
Pnn+1

whereHk = C (ε̄p) = dᾱ/dε̄p is the kinematic hardening and qn =
√

2
3

(Pnn)T Z (Pnn)

is an equivalent stress measure. The equivalent plastic strain is expressed as:

ε̄p (∆γ) ≡ ε̄pn+1 = ε̄pn + ∆γ qn+1

and its derivative is:

dε̄p (∆γ)

d∆γ
= qn+1 + ∆γ

2

3qn+1

(Pnn+1)T ZP
dn (∆γ)

d∆γ
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The elastoplastic consistent tangent

By differentiating the system of the incremental nonlinear equations, the following

linearized system is obtained:


De + ∆γP 0 N −∆γP

−∆γ
2

3qn+1

NTZP 1 −qn+1 ∆γ
2

3qn+1

NTZP

NT −2σ̄H i 0 −NT

− 2

3qn
(ᾱn+1 − ᾱn)P − 2

3qn
HkN 0 I +

2

3qn
(ᾱn+1 − ᾱn)P




dσn+1

dε̄pn+1

d∆γ

dαn+1

 =


dεe trial

0

0

0



After some manipulations the elastoplastic consistent tangent is obtained as:

Dep =
dσn+1

dεe trial
=
[
De −1 + ∆γP +NB

(
I −D−1C−1E

)
−∆γPD−1C−1E

]−1

where

B =

[
−∆γ

2

3q2
n+1

NTZP +
1

2qn+1σ̄H i
NT

]
C = I +

2

3qn
(ᾱn+1 − ᾱn)P

D = I +C−1 2

3qn
Hk 1

2σ̄H i
NNT

E =
2

3qn
(ᾱn+1 − ᾱn)P +

2

3qn
Hk 1

2σ̄H i
NNT
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