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Abstract

The subject of the current thesis is the multiscale analysis of nanocom-
posites reinforced by carbon nanotubes (CNTs) and graphene nanopl-
atelets (GnPs), using the conventional and extended finite element
method (FEM/XFEM). Specifically, various modeling techniques are
hierarchically applied, through different length scales from atomistic
to nano, then to micro and finally to macro-scale, in order to study the
mechanical and damping properties of the nano-reinforced polymer
composites. Simulations of representative volume elements (RVEs) of
nanocomposites are performed, where various stochastic parameters
have been considered in order to account for the real microstructure

geometry of the heterogeneous media.

In the context of carbon nanotube-reinforced composites (CNT-RCs),
the effect of interfacial shear strength (ISS) on the mechanical and
damping properties of the material is investigated. The atomic lattice
of CNTs is modeled using the molecular structural mechanics (MSM)
approach and is reduced to an equivalent beam element (EBE). This
beam is used as the basic building block for the construction of full
length CN'Ts, which are then embedded in the polymer matrix. Elas-
tic, as well as plastic, material properties are assigned to the EBEs
for modeling their linear or nonlinear behavior, while the Maxwell-
Wiechert material model is used for modeling viscoelasticity of the
polymer. The interfacial load transfer mechanism between the lat-
eral surface of the CNT and the surrounding matrix is taken into ac-
count with a nonlinear bond-slip friction-type model. Finite element
(FE) models of RVEs are constructed comprised of two independent

meshes: a structured with solid elements for the matrix and a series

X



of embedded EBEs for the full length CNTs. Straight, as well as wavy
CNTs, are considered. In the case of wavy CNTs, random CNT ge-
ometries are generated using the spectral representation method with
evolutionary power spectra (EPS), which are derived from process-
ing scanning electron microscope (SEM) images. Stochastic average
properties are derived through Monte Carlo (MC) simulation. The
mechanical and damping properties of CNT-RCs are assessed on the
basis of sensitivity analyses with respect to various weight fractions
(wf) and ISS values. Numerical results are presented, showing the
significant effect of the ISS, as well as the influence of CNT wavi-
ness, on the damping behavior of CNT-RCs. Then, the multiscale
modeling proceeds to macro-scale through the implementation of a
nonlinear homogenization method. In the context of sequential ho-
mogenization, a novel viscoplastic constitutive model is introduced,
which accounts for anisotropic stiffness and energy dissipation of the
composite due to CNT reinforcement and slip. Sensitivity analysis is
again performed with respect to various wf and ISS values where the
mechanical and damping properties of the homogeneous models are
assessed and compared with direct calculations on detailed fine scale

heterogeneous models.

The other class of materials studied in the current thesis is the graphene
nanoplatelet-reinforced composites (GnP-RCs). Effective elastic prop-
erties are calculated from GnP-RC RVEs through a computational ho-
mogenization method, which accounts for arbitrarily shaped platelet
inclusions. The homogenization combines the extended finite element
method (XFEM) for the microstructural analysis with Monte Carlo
simulation (MCS). The implementation of XFEM is particularly suit-
able for this type of problems since there is no need to generate a
new finite element mesh at each MCS. The inclusions are randomly
distributed and oriented within the medium while their shape is im-
plicitly modeled by the iso-zero of an analytically defined random
level set function, which also serves as the enrichment function in
the framework of XFEM. Hill’s energy condition is satisfied by the



proposed homogenization method, which involves the generation of a
large number of random RVE realizations. The microstructure geome-
tries of these RVEs include specific volume fraction (vf) of inclusions
with various stochastic parameters (e.g. number, shape, spatial dis-
tribution and orientation). The influence of the inclusion shape on the
effective properties of the random media is highlighted. It is shown
that the statistical characteristics of the effective properties can be
significantly affected by the shape of the inclusions, especially in the

case of large volume fraction and stiffness ratio.
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Abstract in Greek

Heptindn

To Yéua tne mapoloag dduxtopintis dlateBrc elvar 1 Tpocouoiwo u-
16 TOMATAES (AUAXES VAVOGUVIETWY UMDY XU 1) AVIAUGCT| QUTWY, UE
Yefion 1600 g cuuBatixric EVOOOU UVIAUCTS UE TO TENEQUOUEVI OTOL-
yeta 660 xou TN e€ehryuévng Uedddou avdhuong UE T EPTAOUTIOUEVA
TETMEPACHEVY OTOLYElD. LUYAEXPUIEVA, Ol XATNYORIES TWY VYOG UVIETWY
UMXOVY TOU HEAETGVTAL 0popoly UATEES and VeEpUOTANCTIXG TOMUUERY,
evioyuuévee elte ue vavoowhhvee dvipoxa (CNTs), elte pe vavoow-
watidio ypageviou (GnPs). ['a tyv mpocopolwon twv eTepoyevey ou-
TV UAX®V EQUEUOLOVTOL LEQUEYIXE, UTd TNV OTOUIXY| OTY) VAVO, ETELTA
oTn uixpo, Y€yl TEMXA OTN) udxpo xh{pond, DLUQPORETIXES TEYVIXES TPO-
copoiwong. Xxomog etvar vo avamtuy el Eva xatdAAnio uTohoYIOTIXG
gpyuhelo xavo yio TNV axEln) xar Yeryoen TEOPAEd TV Unyavixy
WDOTATWY TRV CUYXEXPWEVLY VaVOSUVIETWY UAIX®WY. Y10 mAdfoto ou-
TO, 1) UNYAVLXT] CUUTERLPORY AVTITPOCKOTEUTIXWY GTOLYEIWY &YX0oU TOU
UAMX00, Tou ETNEEGCETAL AT QPUVOUEVA UXEODOUNS, TPOCOUOLWVETAL O-
TO XUTAAANAOL XATACTATIXG UOVTENQ, OL EVERYES TUEAUETEOL TWV OTOl-
WV TPOXUTTOLY PECW ULUC UTOAOYIGTIXNG OLodtxaciog oloyYeEVoTolnoTg.
LUYAEXPWEVA, TO OVTITPOCWTEUTIXO GTOLYEID OYXOU TOU EVIOYUUEVOU
HE VOYOOWANVES GOVIETOU UAIXOU TROCOUOWOVETOL OTIC OIEPORES XAl
poxeg Ue yeriorn Tov e€hc uedosohoyidhv: o) OTNV oTOUXY| XAlona ue
7 pEY000 TNG DOULXNG LORLIXNG UNYOVIXHC TPOCOUOWVETOL TO UTOUXO
TAEYHOL TV YNV OECUMY AvDpaxa-Evipaxo TwY YAVOSWAAVGY UE €-

VoL Ywptx6 Thaloto amoTeAOVUEVO 0md EVERYELAXd LoodUvauEeS doxolc, B)
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CONTENTS

OTN YAVO xAipoaxa e yerion e UEVOBOU TwV RETEQPUCUEVDY GTOLYEIWY
10 Ywexd TAdiolo avuxadiotorton oand Eva loodivouo ototyelo Boxol, Y)
HE YPNON TNG TEYVIXTC TOU EYXIBWTICUEVOL GToLYElOU, EV OELPd GUVOEDE-
HEVAL LOOBUVOUA OTOLYEX BOXOU TOU TEOCOUOLWYOUY TNV YEWUETPIA TWY
VOYOOSWA VWY 01Ny uixeo xhMuaxa eyxBwtilovta evtog twy TplodidoTta-
TWV GTEPEDY GTOLYEIWY TOU TROGOUOIWYOUY TNV UATEA Tou GUVUETOU
uAxol xar B) OTN PdXEO XA 1) GUUTERLPORY TNG UXEOOOUNG TRO-
COHOLOVETOL AT EVOL TEWTOTUTO LEWOOTAUCTIXG XATACTATIXG UOVTEAO.
To povtého autd haufBdver unddty Tou TNV ohic¥noT TWV VOYOSWAN VWY
Gvlpoxa GTNV OLETLPAVELL TOUG UE TO TONUMEQES, OTaV Wio xplown Ti-
U7 TNG OLEmQaveElaxhc dlaTunTinhc avtoyric Tou ukxol emepaotel. Ta
aptdunTIXd ATOTEAECHATA TOU THEOUGLICOVTOL, XUTUDEXVUOUY TNV ETi-
OpacT) TNG %uTd BAPOUC TEQLEXTIXOTNTAS O VOVOCGWANVES dvipona, Tng
TUY LS YEWUETEING AUTOY, xoWE ot TN OLETUPAVELUXAS OTUNTLXAS
AVTOYHG 0TI TEAXES UMY AVIXES IDOTNTES XAt OTNV LXAVOTNTA ATOGPBECTS
evépyetag Tou oUVIETOU UAX0U. ATo Ty dAAY), TO OVTITPOOWTEUTIXG
OTOLYElD OYXOU TOU YAVOGUVUETOU UALXOU TOU TEPLEYEL VUVOOWUATIOW
Youpeviou, TEOCOUOIWYETAL UE YphoT NS HEV6D0U TwY eEeMYUEVWY TE-
TEPAOUEVRY GTOtyElwY. Ot OTOYUCTIXEC TUPAUETEOL TOU BLEQEUVEVTAL
070 TAUO0 TV VAIXGV aut®v oyetiCovial Ye Ty tuyala YEWUETpla
TWY VAVOOWUATIOIWY, TNV V0T TOUC X0l TOY TPOCAUVATOAGUO TOUG UE-
oo oty uRtea. Ot evepyég ehaoTixég mapdueTot Tou yapaxtneiCouy
TNV UNYAVIXT) CUUTERLPORS TWY CUYXEXPWEVLY CUVIETWY UAX®Y TEoX)-
TTOLY U€ow ogoyevomoinore, ye yeron Monte Carlo npocoyoudoewy.
To aprdunTind anoTEAEGUITA TOU TUPOUGLELOVTOL APOPODY AVTITPOCH-
TELTXE GTotyEld HYX0oU TOoU GUVUETOU UAXOU UE DIAPOPETIXY XoT OYXO0
TEPLEXTXOTNTA OE YAVOSWUATIOW, xo®S ot DIAPOPETIX0UG AGYOUS TWV

HETEMVY ENACTIXOTNTAS TWV VAXGY NG IXP000UNS.

XVviil



Extended abstract in Greek

Extevrc Ilepiindn

«AVIANLGT TOANATADY HALLAXK WY
VAVOOSUOVUETWY UVALXODYV e Xpﬁo‘q oupﬁoc‘cmd)v

xall EEEMYUEVWY TENEQACUEVWY GTOLYEIWVY»

1. Etcaywyn

1.1 ¥xondcg tng epyociog

To Vépa tng mapolcag dduxToping dlaTedric etvar 1 Tpocouoiwor) UTO TOANATAES
HMPOAES VOVOSUVIETWY UAXGY Xl 1) AVAAUCT) AUTQY, UE YeHoT T660 TN cuuaTi-
xfg ueEV600L avdhuong Pe To TETEPAOUEVA oTOLYEI 600 %o TN ECEALYUEVNS UeVHBOY
AVAAUOTG UE TA EUTAOUTICHEVA TEMEQUCUEVA OTOLElo. BUyAEXOIUEVA, Ol XaTNY0pleS
TWY YAVOGUHVIETWY UMDY TOU HEAETOVTAL apopoly UHTEES ord JEpUOTAAGTIXNG TO-
Aupepn evioyuuévee elte pe vavoowhrvee dvipaxa (CNTs), eite ye vavoowyatid
veageviou (GnPs). T'a Vv 1pocouoinscy) TwY ETEPOYEVHY AUTWY UAXDY EQapUS-
CovTtan BLdPOPES TEYVIXES TPOCOUOIWOTS. ZEXIVOYTIS A TNV ATomxY| xh{toxo 6Toy
TEOGOUOIGYOYTOL OL YN0l deouol Tou avlpaxd XAl TEOYWEWVTAS LEPURY XA HEYCL
xow TV Lo xhipoxa, efvon BUVATOV Vo TEOGOUOIWVEL PEGL xaTdAAnAng dradtxaciog
OMOYEVOTOINGNC 1) UMY OVLXY) CUUTERLPORY OAOXANEWY XATACHEUWY UTO VAVOGUYIETA
vhixd. To Tov oxomd autod, otny Topoloo epyaoio avanTticoovTol XATIAANAYL %o

TUoTATXE LoVTEAA Tou haufBdvouy urtddy Toug parvoueva wxpodoprc. O evepyég

Xix



EKTENHY ITEPIAHVH

TOQAUETEOL TWY HUXPOOXOTIXGY OUTWY UOVTEAWY TEOXUTTOUY And TNV AVIAUGCT) olv-
TTPOCLTELTXWY oTotyeiwy dyxou (RVEs) twv vavooihvietwv ulixdv. Audgopeg
oTOY A TINES TapdUETEOL hauBdvovTon uTohy xatd Ty xatacxeur Twv RVEs 6nwe 7
Tuyata yewueTtplo Twv CNTs xar GnPs, o apriude toug, 1 9éomn xou o mpocavatoht-
ou6e Toug. Metd tny otamioTiny enedepYaoia TV UTOTEAEOUATWY TOU TEOXUTTOLY
and v avéiucn Monte Carlo oe €va peydhro aprdud RVEs tuyadog uixpodourc,
eZdyovVTaL TOL GTOYACTIXG YAPUXTNEIOTIXG TWV EVERYWY TUQUUETPWY TOU UMXOU TOU

avatileyTol 6T0 JoXEOOKOTIXG LOVTERD TOU GUVIETOU UAIXOU.

H npocopoiworn und mohhamhéc xAMuoxes cUVIETWY UMWDY EVIOYUUEVODY UE Va-
voowlhvee dvipoxa (CNT-RCs) Zexvd and tny arouuxs; xAipoxo xot teoywed tpog
TNV VAvo xhigoxa UECW TNG AVTIXATACTUONG TNG HOPLIXTS DOURC TOU VAVOGWAN VA
dvdpoxa amd €val ywexd TAUGIO amOTEAOUUEVO omd XATIAANAA CUVOEDEUEVA GTOL-
Yeta 50x00. Ot BOTNTES TV OTOYEILY 50%00 AVTIOTOL 0OV GTIC WLOTNTES XL TNV
OUUTERLPOPE. TOU OouooToMX0U BEcUOl UETall) Twv atéuwy Gvipaxa (C-C). T
™V e€aywyT| TV WIOTATWY TNS 00%00 egupudloviar oL dpyéc TNg Do UopLo-
xhe punyovixdc (MSM). H pédodoc auth npolinotétet Ty tooduvayio Twv eVEpYELDY
TOPAUULOLPWOTG EVOC UopLIX0) CGUOTAUATOS, ONhadT TV e€iowon TN EVERYEUXHC
€XQPUOTG TOU TPOXUTTEL EQPAPUOLOVTC TIG 0PYES TNG HOPLIXTG UNYOUVIXAC UE TNV
EVEQYELUXT) EXPEAOT) TOU TEOXVTTEL EQPURUOLOVTAS TIC APYESC TNG DOWXAG UNYOVIXHC.
H petdBacn and v atouw xhipoxa oty vavo xhigoxa xow and exel otny uixpo
xhlpooca yiveTon pe Bdom Tig apy€g NG Unyaviic TOU GUVEYOUS UECOU. LUyXEXpL-
HEVAL, TO Yweixd TAXOL0 TOU AVTITPOCWTEVEL TO Hoptaxd TAEYUN TOU VOYOOWAN VA
UTOBAAAETAL OE ACOVIXO EQEAXUGHO, XA xon GTEEYT UE OTOYO 1) ATOXELOT) TNG VO-
vodourg Tou CNT va avtixatactadel e Eva tlood0ivauo, wg Teog TNV Unyavixr cuy-
Teptpopd, ototyeio doxol (EBE). T tny xotaoxeur| peydhou uhixouc vavoowhivwy
oTnV Uixpo xAuaxd YenoUoTOLNYTOL EV GELRS GUVDOEDEUEVY LOODUVIUN GTOLYElN BO-
xwv, EBEs. Me tov 10670 autd Umopoly vo xataoxeuaotoly eudiypaupol ahhd
xo TLY LA KUUATOELDOUS HORPNC VAVOCWATVES, 1) YEWUETEIA TV OTOWWY TROXUTTEL
HE TNY EQUPUOYT LG XAUVOTOUAS OTOYAoTXHG dladixaotag. Luyxexplpéva, To Tu-
yoto oyfuata Twv CNTs mpocouot@vovTtow Gay €va un OpOYEVES GTOYACTIXG TEdio,
YETOHOTOIWVTIS TNV YEV0D0 TNE PACUATIXS ATEXOVIONS GE GUVOUAOUOS UE Eval ECE-
AMxtx6 gdouo evépyetag (EPS). Méow tne enelepyaoiag evog avuinpoowreutinod

aptdol ebvwy nAexToovixoy uxpooxoriov cdowone twy CNTs mpoxUnTtouy ot
pLu Y e MLXE pwon e
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OTUTIOTIXES WLOTNTES TOU EEEMXTIXOU GACUATOC EVEQYELOG.

Eva oatoonuelwto yopaxtnolotixd Tng TEoTEWOUEYNS dLadixaciog Teocouoin-
ong ebvan 6L 1 akhnhenidpaot mou mapatneeiton oty demipdvela twv CNTs xan
¢ TEpBdhhovoag urteas haufdvetoar LUTOPY TOGO ATO TO UXPEOUOVTEAO 6GO %o
amd 1o TEMXO OUOYEVES XATUOTATIXG HOVTELNO Tou clvietou Lhxol. ‘Ocov ago-
o8 0TO UXPOUOVTEAD 1) DlETLQAVELUX T auTY AAANAET{OpaoT VhoTolElTol UECL EVOS
wovtéhou teifnc, mou Paciletar oe éva vopo ohioUnong-tpooxdoiinons. O vouog
AUTOC EVOWUATOVETOL GTOV XWOXO TV TETEQUOUEVWY CTOLYEIWY X0l CUVETKS 00T
Yl 0TIV OLUORYWOT) EVOG CUCTAUATOS 1) YRUUULXWY EELOWOEWY, ot 0Ttofeg AUvovTo
ue yenon tou un yeopuxol ahyoptiuou twv Newton-Raphson. ‘Ocov agopd 610
OMOYEVES HEXPOUOVTEND 1) ECOTEELXT OMOUNOT TWV VOYOSWANVWY UECH GTNY UNTex
hopfdveton utody uéow TG LhoToinoTg eVOE XATAAATAOU TAACTIXO) HOVTEAOU UE
AWVIUATIXG VOUO XPATUVOTC X0 OVIGOTROTLXY| ERLPAVELN DLARPOTC.

‘Eva dhho onpovtixd (htrua mou avTipetwrileton otny mapoloa dwte3y) eivo
1 oxp3ric TeoBAedn Tne OO0 UG TG CUUTEPLPORIS TOU VEPUOTAAGTINO) UAIXOD
NG WATPOS TOU YOYOGUVIETOU UAIXOU. NUYXEXQUIEVA TO TONUUERES UMXO TIOU YET)-
owonoteltar oty epyacio etvar 1 Toduodepxr) xetdvr poly-ether-ether-ketone 1
PEEK, éva xpuotahhind Yepuomhaotind UAXS UE aCLOOTUEIWTES UNYoVIXES WOLOTY-
tec. [a tny oxpf3 mpoBhedmn tng IEWO0ENAOTIXNSC CUUTECLPORAS TOMUUECKY, OTMC
to PEEK, nou magouctdlouv todhamholc ypdvoug yohdewons anattolvTton CEAYUE-
var xataoTatixd mdoehaoTixd yoviéha. Lo tov Adyo autd oty mapoloa epyacia
yenowonoteiton to wovtého twv Maxwell-Wiechert, nou aroteheltoan and pa oet-
o4 mapdhAnAc GUVBEDEUEVWY amOGBECTRoWY xat ehatnplwy. Ta tnv Poduovéunecn
TOU GUYXEXPUIEVOU LOVTEROU DIEEAYOVTOL TELRGUOT DUVOLXTC Unyovixig avahuong
(DMA) oné o onola teoxintouy ot oTatdepéc TV EAATNEinY X0t oL Ye6Vol Yahdpw-
OTG TOV AVTIOTOL 00V GTOUG ATOCRECTHPES. LTV ouvEYELa dieddyovTon aprdunTixég
Tpocopowwoels doxiwy atd PEEK ce xénwon, 1o anoteAéopata Twv otolwy cuy-
xplvovton pe avtioTolyo metpouatind o tny emiPBeBaiworn tne opvic Baduovéunone
ToU € WO0EAACTIX0) LOVTELOU.

[a v avdiuon twv CNT-RC RVEs ypnowonoteiton 1 yédodog twv nerepa-
ouévwy otoyelwv (FEM). Xuyxexpwéva, n uwitea dioaxprtonoteitar pe tptodidotota
otowyelo cuveyotc uéoou evey o CN'Ts pe ototyela doxol. Emmiéov, ue yeron g

TEYVIXAC TOL EYXIPwTIouévou ototyeiou anonedyovtal ToAOTAOXA DX TUN TEREQAUCUE-
VT Y M X pevy paocu
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EKTENHY ITEPIAHVH

vov ototyelwy. Me tny pédodo auth 10 UnTteo oTBapbTNTAS TOU EYXIBWTICUEVOL
oTOLYEIOU BOXOU EVOWUATOVETAL GTO UNTEMO OTYPUPOTNTIS TOU OTEPEO GToLyYEloy
TOU TO TEQPLEYEL. JUVETWGS, 1) Otadasia auTh ETITEETEL TNV SlaxEttoTolnoy Tou GUV-
Yetou Lhxol and 0o aveldpTnTa TAEypaTa, va yio TNy uitea xon éva dhho yia
Toug vavoowhirveg. To mheovéxtruo tng dadxaoctia authg efvon 1) peiwon tou uto-
AoyioTixol x66Toug xoe emtaylveton 1 mpoenelepyacio (post-processing) tou
HOVTEAOL, 1] HOPYXOY] TOU GUYOALXOU UNTE®OU CTBAROTNTAS Xt 1) ETAUGY) TOU GU-
OTAUATOS TV €EICMOOEWY TOU TEOXUTTOLY. LTNV Toeoloo dlate3y| Siepeuvdrar 1)
enidpaon tng drempavelaxhic Tdone avroyhc (ISS) otic unyavixéc WidTnTee xon oty
wavotnta andoPeong taraviwoewy Tou CNT-RC ukixol, UE6w TpOGOUOIMOEWY GE
RVEs e Stopopetixd nepteyduevo xotd Bdpoc (wf) oe CNTs. To oprduntixd o-
TotehéouaTo Tou TapouctdlovTon oTny epyacio emBELuYouY ToY oNuavTiXd 0Ol
¢ dwdixaciog Tou «functionalization» xar tou «straightening» twv CNTs mowv
TNV OVAUEILT TOUG UE TO TOAUPEPES, WOTE TEMXA TO TUPAYOUEVO VOVOGUVIETO UAXO

VoL THOUGLACEL BEATIGTEG UMY AVIXES LOLOTNTES.

H poxpooxomxry ouurnepipopd twv CNT-RCs progel va npoieqiel ue opxetd
xoh) axpifelo EGw EVOC TEMTOTUTOU XATAGTATIXO) UOVIEAOU TOU TPOTEVETAUL GV
Tapodow Swter.  Xta mhaioo TG avdAuong TOAAUTAGY XMPEXWY, TO HOVTEAO
auTd Yernowomolelton Yl TNV PETAPacT amd THY WXEOXAUoo GTNY Udxpoxhitona
xou efvon ovo Yo Ty TEOPBAEdT TN IEWOOTAACTIXAS CUUTERLPORAS ToU GUVIETOU
uAixoV, 1 omola TpogpyeTton and TNV KEWOOEAACTIXY] CUUTERLPOPS TNE UNTEAS, TNV
ehaoTint| evioyvorn nou mpocgépouy T CNTs xadmg xou v andoBeon tng evép-
YEWS TUQUUOPOWoNG AOYw Tou unyoviowol g oMoinong twv CNTs péoa otny
phtea. To xatactatind autd povtého, mou GUVOUALEL TO LEWOOEAAGTING UOVTELOD
v Maxwell-Wiechert ye to avicotpomixéd poviého mhaoctixétnrac tou Hill, uro-
eel vau Tpofédiel TNy avicotpominy| evioyuon xar ohoUrnon mou meoxahel 1 Tuyaia
xatavopr] 1wv CNTs evtog tng wdoshaotinrc Witeag tou alvietou ukixold. Ot
EVEQYES TUPAUETEOL TOU XATACTATIXOU UOVTEAOU TOU a@opoly oTa LEWOOEAAOTIXS
YUEUXTNELOTIXGL, TNV AEYIXT| EXLPAVELY DLILEOTC XL TOV XIVIUATIXO VOO XPATUVOTC
TEOXUTTOLY UEGL WLog opriuntixig oadxactag Baduovouncrg mou nepthauSdvet o-
vohoeg povtéawy RVEs oty wixpoxiiyaxa. Ta apriuntixd aroteAéopata Tou mo-
EOUGLALOVTAL XATADEXVIOUY TNV ATOTEAECUITIXOTNTA T1)G TROTEWVOUEVNS LEQURYIXTC

TEOGOUOIWONG TOAAUTAGDY XAMUAXWY Yl TNV TEOBAEdN TNG douxig CUUTERLPORUS
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AATAOXEVGY ATO TOAUPERT) UMXE EVIGYUUEVOL UE Vavoowhrives davipoxa. H mpotetvd-
uevn outy| uévodog anotehel Eva Loy upd LTOAOYIOTIXG EpYUAElD UE TO OoTtolo ueYdANg
xhipoxag xataoxeuég and CNT-RC unopodv v avorutoly pe axpifeto xan tayOtn-
to. To mAeovexTtnua tng elvon 10 YeYovog OTL, Qouvopeva pxpoxhipoxag hauSdvovto
UTOPY a6 TO OUOYEVEC LOVTELD UECW XATIAANAGY XATACTATINGDY VOUWY UNX0V.
H dhin xatnyopla vavooivietou uhixol mou Yehetdtar oTny mopoloo epyacio
elvol TOAUUERT| EVIOYLUEVA UE Vavoowuatidia Ypageviou (GnPs). Yta obvieta autd
LAxd Tou efvar yvwotd wg GnP-RCs ta vavocwuatidw arotehodvial and ctoyboy-
uéva @O ypapeviou mou cuvdéovton UETaLY Toug Ue aclevels duvdueig van der
Waals. T tnv npocouoiwon tng pxpodourc twv GnP-RCs yernoiwonootvton 1o
eZehryuéva tenepaouéva ototyeio (XFEM), eved yia T1ov npoodloptoyd tov evepyoy
TOUEUUETEWY TOU UOXPOUOVTEAOU exTEAE(TOL Evag peydhog aptdude and Monte Carlo
(MC) npoooyorwoeic. Enouévwe, 1 Swdacia tng opoyevornoinone ota GnP-RCs
Baotleton otov cuvduaoud g uedodou XFEM ye MC rpocouowwoes. H mpwTto-
TuTtia TG Tapolcug epyactag elvan OTL UEAETEEL TNV ETUORACT, TOU TUYALOL GYAUATOS
v GnPs otig evepyés mapopétoous Tou opoyevols olvUeTou UMxoD. AvaluTi-
AOTEPA, TO TUY O OYHUL TWV VOIVOSOUATIOIWY TROCOUOWVETIL UECHL WAL AVUAUTIXS
OPIOUEVTS TUY UG GUVAPTNOTNG (level set function), 7 omola 6T0 Thadclo g pedo-
dou XFEM ypenowonoteiton xow wg cuvdptnor eumhouTiopod Tou Taotxol Tediou Twy
otoyeiwy. And To apriunTtxd anoteAéopata TOU TUROUCLILOVTUL XUTADELXVIETOL 1)
ONUAVTIXT| ETUBRUCT, TOU OYHUATOS TWV EYXAEIOUATOY GTO TEAXO GUVUETO UAXO,
YEYOVOC Tou Bev AauPdvovtay umody u€yet Twe XuTd TNV dtadixactio TapaywYhg
Tou UAxol. To olvnleg Atay va amhomoleiton 1 Lop®T TwY EYXAEIOUATOY Xt Vo
avuxatotatar and Wavixd oy fuata 6mwe ogaipeg xar elhelherc. H amhonoinuévr
AUTY TRPOCEYYLOY OTWE ATOOEXVUETAL OTNV Tapolcoa gpyacia odnyel o onuavti-
%6 GQINIO XATE TOV TEOGOIOPIOHO TWY UMY UVIXWY WIOTAT®WY Tou TEAXoL cUvieTou

VALX0D.

1.2 Y¥toyoL tng epyaciog

O xdplog 6Toy0¢ TNE Tapodoag SWaxTopX T dtaTEBNS Elval Vo GUVOUAGEL BLapopeTL-
*(EC TEYVIUES TPOCOUOIWOTNE UTG TOAMATAES X{PoKES Xt VoL avamTOZEL VEX XATUOTO-

TIXG HOVTEAN LXOVE VO TOOGOHOLOGOUY TNV UMY UViXY) CUUTEQLPORA YAYOGUVIET®Y
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LAY Ue axpifeto xan ToyOTNTAL BUYREXEWEVY, TO ATOTEAEGHA TNE epyaoiog etvor

1 aVITTUEY) EVOC LoYUEOD UTOAOYLIOTIXOU EpYUAElOU TOU UTOPEl Vo EQUpUOGTEL Yia

TNV TROGOUOIWGT) TNG GUUTERLPORIS TWV 000 XUPLOTELWY XATNYOELOY VUYOGUVIETWY

UNXOV: TOAUUERT| EVioyUUEva e vavoowhrives dvipaxa (CNT-RCs) xow moluyept,

evioyuuéva ue vavoowpatida yeageviou (GnP-RCs). Ewwdtepa ot enpépouc oto-

Yot tng epyasiag cuvodiCovtar ota e€g:

1.

Egapuoy tng pedosou doutxic Loptaxhic Py ovixng (MSM) vy TNV TPOGOo-

Holwon NG atoxnc DoUnS VAVOSWA VWY dvipaxa we Ywexd TAlcto.

TRONOYIOUOC TS YRUUUXAC/UT YRUUUIXTC CUUTERLYORAS to0BUVIUOU GTOoLYEl-
ou doxol (EBE) yio v avixatdotaon tou ywpixol Thasiou ToU vavoow-

AfjvaL.

. Egapuoy?, wog véag otoyactixrc dadactiog tou Bacileton otny enelepyaocta

EGVOV NAEXTEOVIXOU UixpooxoTiou adpwone (SEM) yio tyv npocouoinot,

VOYOOWAAVWY TUY A0S XUUATOELDOUS Hop®TS.

. Avdmtugn xou evowudtwon povtéhou ohicinorne (bond-slip model) o€ x@duxa

TEMEQACUEVMV OTOLYEIWY YIol TNV TEOCOUOIWOT NG OAoUNnong Twv vavoow-

Mvwy evtog g prteas tou CNT-RC viixod.

. Eqopuoy?) tng teyvinti Tou EVOWUATWUEVOU GTOotyElOU (embedded element te-

chnique) yta tny Stoxpttonoinon avtitpocwrevTx®y ototyeiwy dyxou (RVEs)
Tou CNT-RC vhixol xar tny nopaywyr) TAEYUATWY TEREQUOUEVWY OTOLYEIWY

amhnc yewuetplag.

Thomolnor Tou €WHOEAAOTIXOY XATUGTATIXOY LoVTELOU Ty Maxwell-Wiechert
YL THY TE0C0UOIWOT) TNG IEWOOEAUCTIXHG CUUTERLPORES TOU VEQUOTAACTIXOY

UAX00 TNG UNTEIS.

Ategelvnor) Tng enidpaoTg OTIC UNYOVIXES WOTNTES X0 GTNV LXAVOTHTA Omo-
ofeong evépyetag Tou CNT-RC ulixol twv e€hc mapauétomy: a) xatd Bdpog
TEQLEXTIXOTNTL OE Vavoowhivee dvipoxa (wi%), B) Sotuntixd avtoyr oty
Stemipdveta PETAEY Vovoowhiva xat Toluuepols (ISS) xon v) tuyola xuyatoet-

01y yewueTpla Twv vavoowhivey dvdeaxa (CNT waviness).
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8. Avdmtugn xat vhoTolnom IEWIOTAAGTIXOU XATAGTATIXOY UOVTEROU YLOL TNV TPO-
oopoiwon NG ouoYevols unyovixfc ouuneptpopds Tou CNT-RC vlixol hay-
Bévovtac unddv gouvéuevo pxpodounic: o) avicotponixt evioyuon, B) Ewdo-
ENAOTIXY] CUUTEQLPORA TNG UNTEOS Ao Y) AVICOTEOTUXY| ATOCHBECT) EVEQYELNS

AOY® OMoUNGTE TV VOVOSWARYWY.

9. Egopuoyh e uedddou twv elehypévwy menepaouévwy ototyeinv (XFEM)
YLoL TNV TEOCOUOIOT) TNS UXPOBOUAC OVTITPOCMTEUTIXWY OTOYElwY dYxou
tou GnP-RC vAxo.

10. Avdmtuén aprdunTinfc dLadixaciag OUOYEVOTOINGTS TN UNYAVIXTIC GUUTEQRLPO-
edc Tou GnP-RC ulwxo, ue epopuoyh ueydhou aprduo’ Monte Carlo npoco-
HOLOOEWY OE AVTITROCKTEVTIXY OTOYEN OYXOU TOU TEPLEYOUV VUYOOWUATIO

Tuyatag yewueTplog.

11. Awgpedvnon tng enldpaone otig opoyevel ehaotixég wiotnteg Tou GnP-RC
uhixol tov e&fc mapauétpwy: o) tuyaio oyfud Twv vavoowuatdiwy ) ne-
plexTXdTNTO Xatd 6Y%0 o€ vavoowuotida (vi%) xou v) Swapopetinds hbyoc
HETEOU EAAOTIXOTNTAS TOV CUOTATIXMY UAXGOY Tou obvietou (stiff and com-

pliant inclusions).

2. Navoocwinveg dvipoxa

2.1 Aop” VavoowARvey davipoxa

‘Evoc povétoryoc vavoowhivae dvipaxa (SWCNT) mpocouotdleton pe uia owin-
VOELDT| XATAOXEVT] TOU TPOXUTTEL amd TNy TeQéhaoT evog @UARou ypageviou. Ot
TohbToryot vavoowhives dvipaxa (MWCNTSs) anotehotvion oand opdxevipous SW-
CNTs dagopetinic axtivag. H atouxd dour| Tou vavocowhrva tpoodiopiletar and
EVOL YUQAXTNPIOTIXG DLAVUOU Ch, (chiral vector), to onofo pali ye v ywvio ¢
(chiral angle) xatopiler v diedduvorn dimhworne tou @UAkou ypageviou. ‘Onwc
paiveton oto oyfua 1, €vag vavoowhrvag ue chirality (n, m) Tpoxintel x0Bovtog
T0 QOMNO YRUPEVIOU XUTO PRXOC TWY BLUXEXOUUEVMY YRUUUMY XAl SITAWYOVTAS TO

xotar Ty dtevduvor Tou yapuxtnetoTeoy dtaviopatos. To didvuouo autd optleton
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o¢ e&he:

Ch=nd,+m dy (1)

xon 1) Ywvio 0 Tou yapaxtneloTixol Slaviouatog diveto and Ty elowon

f = atan <2\/§ m ) (2)

n+m

omou ay xau o ebvor T Slavbouata Bdong mou gaivovtar oto oyfue 1 eved (n, m)

elvan ot mapdueTeot Tou yoapaxtneilouv To chirality Tou vavoowirva.

Yyfua 1: Atound mAéyua @Olhou ypageviou: llpocdiopiouds tou chiral vector Ch
amo To dravoouata BAong o xou A

Avédoya ye tig tiwée tou Lebyous (n, m) ot VOVOOWAAVES efvor ot DLAPORETIXO
TOTOU. LUVETQG, Yol n = m 0 Vovoowhivag yopoxtnefletor w¢ «armchairy xou 7
ywvia 0 elvor 30° eved yian # 0, m = 0 o vavoowhrivag yapoxtrnelleton ¢ «zig-zagy
xon 1 yovia 6 etvon 0°. 't 010100AT0TE GAAO GUYBUAGUS TWMY TWV TARUPETOWY N
xow m 1) yovio 0 € (0°,30°) xou o vavoowhivag yapoxtneileton we «chiraly. Yto

4 7 4 ’ 4 4
oY NP 2 TEOCPOUOLO(COVTO(L Ol TPELS BLO((POQETLXOL TUToL VO(VOG(O)\T]VO)V.
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(¢) Chiral (n, m)

(a) Armchair (n,n)

Syfua 2: Atopues, Sou vavoowhrva tonou: a) armchair, b) zig-zag xou ¢) chiral

2.2 llpoocopoiwomn VavoowAvwy dvipoxa

[ v mpocouolwseT) Twv vavocswhivey dvipaxa Teeic ebvan oL x0pleg TeYVIXEG IOy
YenoulonotolvTos: o) 1 woplaxy| pocouoiwon ) 1 mpocouoinwan cuveyolc Yooy
xon y) 1 uBetdixh uédodoc mou Poacileton 6TOV GUYSLOOUS AUTOY. TNV TaEoLoA
epyaota epapuoletan 1 P€V0d0g NG douxic Hoptax\g Unyavixhs 1 omolo eUminTEL
oty Teltn xatnyopla xar yenotwomoleiton evplTEQU AOYW TG WXAVOTNTAS TN Vol

TROGOUOIWYVEL HEYAANG xhipoag wovTéha pe axpfBeio xon ToyvTnToL.

2.2.1 Aopixn Loplaxn Wy ovixy

H yédodog tng douuxnic woptonchc unyovixic Bactleton oty avTixatdoTtaor Ty dh-
Anhemdpdoemy Tou YNuxol ogoonokxol deouol dvipoaxa-dvipoxa (C-C) ue éva
LGOOUVAUO DOUIXO GTOLYELD, CUYHEXQWEVA UE ULl EVEQYELXA LoODUVIUY Boxb. 110
oy o 3 exxovilovton oL EVOOUTOUXES AAANAETLOPAOELS TWY DECUWY Ol OTOIEC CUVEL-

GQEEOLY GTNV GUVONXT BUVOLXT EVEQYELXL TOU LORLIX0U GUGTHUITOS!

U= U+ U+ > Ug+ > Vst Y Usaw (3)

Up,Up,Up, Uy, xan Upgw ebvon 1 evépyeta €€ outlag Tou EQeEAXUCH0U Tou dECU0U,
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¢ MeTBolNc TNS Ywviag xdudng, e uetaBohrc Tne diedene yYwviag oteédng, Tne
exTO¢ EMTEDOU OTEEYNS %o TwY duvduewy van der Waals avtictoyo. o tny €x-
(PEUCT) TWV EVEPYEWMY AUT®V €Y ouv TpoTadel didpopa duvAUXd OTWS Yio TAEADELY U
T0 duvaix6 tou Morse, twv Tersoff-Brenner, Lenard-Jones x.a. Xty napoloa ye-
AT yiveTtar 1) UTOVEST) TWY UXEWY TUQUHORPOOENDY TOU YAVOCTWAAVIL Xl GUVETGS
Ol OAANAETUORACELS TV ATOUWY dvipaxa JempolvTal YOUUUIXES, ETLTEETOVTAS TNV

EXPOUCT] TMV EVEQYELAXWY OpWV UEGE AQUOVIXWY CUVILTACEWY TNG UOPPHG:

Uy = ghe (r = o) = oo (Ar)?, (1)
1 , 1 ,
Up = Sk (0 = 00)" = Sko (A9)", (5)
1 2
U = Uy + Uy = 5k (A9) (6)

orov k. , kg xou k; elvon ou otadepec Twv BUVAUEWY aVTICTUOTG TOU AVTIGTOLY OOV
OTIC TUPUUOPPWOEL; TWV BECUMY AOYw UETABoMNG TNne afovixrc andotaong Ar, Tng

ywviog xdudne Af xa g yoviag oteédng Ag.

(a) (b) (©) (d) (¢)

Yy fiuo 3: Evdooatouxéc ohnhentdpdoeic: a) egehxuopde, b) xdudn, c) diedern otpé-
dm, d) extoc emnédou atpédr xou e) van der Waals

Me Bdomn tic apyéc e SoxhAG PNy ovixiG Ol TOQUHOPGMOELS TWV DECUWY AVTL-
GTOLY0UY GTNY TMUPUUORPWST] PLAS GUVEY YIS B0x0U apy ol urixouc L mou utoBdhhe-
Tou oe aovint| @option N, xadaph xdudn M xo xadaph, otpédn T, uetafdlovtog
avtioTotyo 10 alovixd urxoc e xatd AL, Ty yYwvid xdudne twy dxpwy Tng xatd

a xou Ty otpenuxy| Yovia tne xatd AS (oyfua 4). H evépyeia tapaudppwone g
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50x00 Tou avTioTotyel oe xde PoOETIoN BlveTtal and TI¢ EELOMOELS:

1 [F N? 1N%2L 1EA
=— | —dL == = " (AL)?
Ua 2 ), EA 2 EA 3L OB 0
1 [F Mz 1M2L 1EI
= | ——dL == = - (2a)?
Uu=35 ) FI > Bl a2 (®)
1 L7 17T2L  1GJ
U = — —_— = == = — 2 9
7o), GJ 26 — 21 B (9)

L uvoualovTag TIC EVERYELAXES EXPRUTELS TOU TEOXVUTITOUY OO TNV SOULXT] Uy avixT
(EZ.4-6) pe autéc mou mpoxUmTouy and Ty woplax unyavixr (EZ.7-9), uropolv
VoL UTOMOYIOTOUY 1) afoVixt|, XOUTTIXY) xou OTEERTIXY axopdla tne doxol ue Bdor

YVwoTég duvduelg avtiotaong we eChc:

EA=kL, EI =kyL, GJ =k, L (10)

 —— £y i
@ ﬂ S

Yyhua 4: Tapopoppnoeic doxol oe: a) epehxuoud, b) xdudn xo ¢) otpédn

2.2.2 Tood0vapo ortoiyeio doxol

oty petwor Tou UToAoYIoTXO) POETOU %ATd TNV ERIAUCT, TOU YAVOGWATVO Oy
npocoyowdnxe ue v uédodo MSM, 10 ywpeixd thaicio mou oynuatiCouv ot doxol
TOU AVATAPLOTOUY TOUG YMux00g BEcUoUE, avTixa{oTaTon €% VEOU amd €val lGOOU-
vapo ototyeio doxol (EBE). INa tov xadoplopéd wwy otadepndv axaudiog tou EBE
TO YwEWwH TAAGIO UTOBGAAETOL GE Yol OELRd PopTicEwY Tou TepLAauBdvel alovixd
epelxuopo, xadapt, xdudn xou oteédn. Xto oyfjua 5 Swxpivovton To @opTio xan
ol ouvoptaxéc ouvirixeg mou eqopudlovion 610 Ywewd mhaloto tou CNT oe xd-

Ve pio and T mepimtnoeig poptione. To Ty eaywyr| twv axaudiov tou EBE
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YENOoWOTOL0VTAL Ol EELOWOELS:

F,Ly F, T
(B = 5. "L (G), = 5L (11)

(EA)., =

Yyfiuo 5 Poptio xon cuvoptaxée ouviixec oto ywexd mhaioto tou CNT oce: a)
epelxuoPd, b) xdudn xou ¢) otpédn

Emhéyovtac €vo oUYXEXQIIEVO OYHAEOL YLl TNV SLoTouT| TN Loodivoung 8oxol u-
nohoyilovtal ol yopuxTNEIoTIXES TURAUETEOL TNE OTwS TO EUPadoV BlaTouns Aeg,
N kUt pomy| Lo xou 1 TOAXY| POTH aOPAVEWNS Jog. XTNV GUVEYEWL amtd TIC
EZ. (11) vnohoyiloviar o pétpo ehaotixétntac E xat 1o yétpo ddtunonc G tou
EBE. Yta oyfjuata 6a xon 6b avanapiotdvovTon ol THuég Tou UETEOU EANOTIXOTN TG
xo ToU PETEOU BdTUNoNE avTioTolyd GE OYECT YE TNV OWIUETEO VAVOSWARVODY TU-
mou «armchairy xot «zig-zag» cwhnvwtrg dtatourc. O Adyog W’]xog/&o'zpsrpog WV

VOVOOWAAVWY EVAL GE OAEC TIC TEQINTWOEL, TEPITOU BEXAL.
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—+armchair (n.n) 600 - —s—armchair (n,n)

1060 —=-zigzag (n,0) —=zigzag (n,0)
1050 - * - 500
§1040 E é
©.1030 - & 400
2 z
= 1020 = w00
1010 g
51000 1 = 200
2 990 - 2
g w
5= 980 A 100

970
960

0 2 4 6 5 10 12 14 16 18 20 0 2 4 6 5 10 12 14 16 15 20
a) nanotube diameter (nm) b) nanotube diameter (nm)

Yyfua 6: Metofold uétpou a) ehactixdtnrog xau b) Sidtunong vavoswhivwy TOmou

«armchairy xau «zig-zag» COANVWTAC BIATOUNAC WS TEOS TNV OLIUETEO TOUG

3. OesppoTAoCTIXT] UHTEA

To Veppomhaotind LA YENCUOTOOUVTHL EUPEWS GTNY XUTAGKELY] GUVIETWY LAL-
AV WG UNTEES AOYW TWV ECAMPETIXWY WY AVIXWY WBIOTHTOY TOUG X TS EUXOANG
xatepyaoto Toug. Evo dAho onuayTind TAEOVEXTNUA TG YeHons Toug efvar 1 Yer-
YOpT ANOGBEGT) EVERYELNG GE TOAAVIWOELS. LTNV Tapovoa epyacio yprnotuonoteitot
1 mohuardepiny) xetovr «poly-ether-ether-ketoney» 1 «<PEEK». To cuyxexpyiévo u-
A% OTWE XOU TOL TEPLOGOTERA TOAUMERT) TUPOUGLALOUY IEWOOERACTIXY| GUUTERLPOQRA,
Onhady| 1) amdAplor) TOUg ECURTATOL Ad TNY YEOVIXY| DLIEXEL TNG PORTIONS, TOV PUU-
U6 TNG TUpAUOLPWaoTS xot TNV €viact tou peyédoug tng mapaudppwons. Lo tnv
Te0GoUolwoT TNC LEWOOEAUCTIXTC CUUTERLPORAS EpapuélovTon To Baotnd HovTERX

ehatnpiwy xat anooBecThpwY 08 XATIAANAOUS GUYOUAOUOUS.

Yuyxexptuéva, yio Ty tpocouoinot tou PEEK yenowonomdnxe to &wdoeha-
ouxd povtého twv Maxwell-Wiechert to omolo umopel va mpoBiéder rohhamhoig
YEOVOUS YadpwoNS Yiot To UAMXS. 310 oy fud 7 TopouctdleTon 1) LOVODLAGTOTT ova-
TORAGTAGY, TOU GUYXEXQPUEVOU povTéhou. TIpoxetton yia N TopdAAnho GUVOEDEUEVA
empépouc otouyela Maxwell (ehatripio E; oe ev oepd oOvbeo ue anocBectripa n;)
xo o€ TORIAANAT clvdeoT Ue ehatiiplo Ey. To ouyxexpévo poviélo oe relpoua

Yohdpwong, 6mou wa otoepr mapuudppenar £(0) emBdiheton yior poxed Ypovind
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EKTENHY ITEPIAHVH

OLdoTro 6T0 doxipo UM, TEoBAEREL TNV €S YpOVIXT| CUVAPTNOT| TNE TAOTC:

o(t) = Exf(0)+ ) Eje 75 2(0) (12)

omou T; elvat 0 YpOVOg Yahdpwore ToU avTIoTotyEl 610 5t Maxwell oTouyelo Tou
povtéhou. H yapaxtnpiotind e€lowon mou divel To P€Tpo Yahdpwong Tou LALX0U

ExQEACETAL AO TNV TAUPAXATR YEOVIXT) GUVARTNOT):

t

N
[(t) = Ex+ Y _ Eje 7 (13)
j=1

and v EE. (13) mpoxintouy 1o Beaylypovo xat To Laxp6ypovo UETEo Yoldewong

avtioTotya wg eEhc:

Fo =lim (1) = B + 2 E, (14)
]:
I = lim ['(t) = Ey (15)
t—o0
JT
Eq E, Ey
EOO s e e
n, n, Ny

Yyfua 7 IEwdoehaotind povtého Maxwell-Wiechert
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3.1 BaQuovéunon povieéhouv Maxwell-Wiechert

[ty Badyovounom evog wBoeAAoTIX0) UAIXOU TOU TROCOUOWDVETAL ATt TO Xa-
TaoTaTxd poviéro Twv Maxwell-Wiechert yenotuonoodvton melpopatind anotehé-
OUUTO TOU TPOXUTTOUY OO OUVOULXES UMY AVIXES PETRHOELS (DMA). ¥ta tetpdporto
AUTE TO UMXO UTOBIAAETAUL OE EVOANACGOUEVY] ARUOVIXT TORUUOROWOT) EVTOS EVOS
gLy Qdouatog cuYVOTATWY w. Me xatdhhnheg petprioets e€dyovto ot xdide ouyvo-
TrTor T duvapixd pétpa amodhxeuorg [V xon amwiewv I, Avtictowya, to duvoixd

uétpa mou urmoloyilovton aptiunTixd and TO XATACTATIXG UOVTEND BivovTol amd T

eClomoelc:
W22
I'=F—— 16
1 + w272’ (16)
wT
I"=F—— 17
1+ w272 (17)

Méow g ehaylotomoinomg NG MUEaXdTw CUVARTNONG CEIMIATOS TEOXOTTOUY OL

TORAPETEOL TOU LEWwdoEAUoTOU YovTéhou B, n;

M
=3 ;2 (=) (1 =17 (18)
i=1 * 0o
M etvor 0 aprlude TV TELRAUATIXGY UETPHOEWY UTO DLAPORETIXEG GUYVOTNTEC W.
Yo oyfjpata 8 xou 9 mopouctdloviar ot TELRAUATIXES X Ot aprdunTIXéS xauml-
AEC TWV BUVOIXGY HETEWY OmOUAXEUOTC Xt ATWAELDY avT{oTOLY A TOU KPoROVY TO
PEEK. Ou tipéc toug divovtan yta €va eupl gdopa ouyvothtwy w. And tny oly-
APLOT TWV TERUUATIXGDY X0t UPLUUNTIXWY XUUTUA®Y OLITICTMVETAL OTL TO POVTEAO
twv Maxwell-Wiechert npofiénet pe oxplBeta tny 1€wB0EAACTIX CUUTERLPORE TOU

PEEK oc xdie neplntwon cuyvotntag popTiong.
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EKTENHY ITEPIAHVH

1O0E+01 ¢
f ~=—DMA Experiment
 -e--Numerical model [This study]
r oo Contribution of each Maxwell-element
1.00E+00 ¢
[
1.00E-01 ¢
1.00E-02 fom Fyovid b B §of e F e - ali
1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E4+01 1.00E4+03 1.00E405 1.00E+407

w(s'l}

Lo 8: Auvoxd u€tpo amodrixeuong: melpaUaTiX? Vs aptiunTixn| xaumoAT

1O0E+00 T
[ ——DMA Experiment
====Numerical model [This study]
- Contribution of each Maxwell-element
[
1.00E-01 +
]
f
I
! ;
1.00E-02 = T : T L 1
1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01 1.00E4+03 1.00E+05 1.00E+407
w(s™1)

Dyfuo 9 Auvopxd UETEO AMWAEIDV: TELQUPOTIXY VS aplOUNTLC xoTOAN

4. 20OvIeTot UAXA EVICYLVUEVA UE VAVOCWANVES

dvﬂpaxa

Ov vavoowihveg dvlpoxa, AoYw TwY eEOUEETIXMY UNYOVIXGY WOTHTOY TOUS, TOU

HEYEAOU AOYOU UTXOUS TR0 DIGETEO X0l TNV YOUNAT TUXVOTNTA TOUG, ATOTEAOVY
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Wovixd oTotyela Yoo TNV VioYUCT TOAUUERPGY, GUUBAANOVTAS €TOL GTNY XUTACKEUT
TEOMYUEVGDY VOVOOUVIETOY UMX®Y. XTNny atomxt| xhipoxa 1 aAlnienidpaon Tou
uoptoxol mhéyuatoc Twv CNTs pe Tic yoploxés ahucideg Tou Tohuuepolc yivetan
uecw aotevayv duvduewy van der Waals. Katd v @option tou clvietou ulixod
ot deopol autol Abovton oyeddy oxoptaior UE AMOTEAEGUO VO TUpATrRE(TOL OYETXT
oMioOnor otny diemgdveta uetal Twv CNTs xar tne deppomhactinrc uhtpag. Ao-
Y® TOU YEYOVOTOG auToU, 1) ToLoTNTa TNG evioyuong mou tpocgépouy 1o CNTs xou
1) OVAUUEVOUEVT, BEATILON TV Unyovixmy WOTHTOY Tou cLvdeTou LAXoU dev elvan
wavoromntixh. To npdAnua Slopvwveton eQapuolovTag EBES TEYVIXES EVEQYOTO!-
none (functionalization) twv atéuwy dvdpaxa oty mheupixh empdveia wwv CNTs,
OOTE VoL oY NUTioouY 1oy UEoUE YTUxoUe BECUOUE UE TIC LOPtaxE AAUGIDES TOU TTo-
Aupepote. ¢ anotéheopa, 1 Slempovetonr) Swatpntixd avtoyr (ISS) audveta, pe
ouvénela T CNT's var Topauevouy GUVOEDEUEVA UE TNY UATEN UXOUY) X0 O PEYAAES
OUVAPELS POPTIONG TOL GUVUETOU UAIXOU, Teoc@pépovTag £Tot BEATIOTN axapdio.
Yty napoloa gpyacta peretdton 1 enidpact Tou ISS oTic unyaviég WwidTnTES
XL OTNY ATOCBEVOUEVT) EVERYEL TUAIYTWGOTS TOU 6UVIETOU UAIXOU UE YpRoT TR0COo-
UOLWOEWY UTO TOMATAES ¥ MUaxES. LUYXEXQUIEVA, 1) UTOAOYLOTIXY Otodixacto Te-
oLhopBdveL TEOGOUOIOOES GTNY ATOPXT XAlUoa 6oL 0 Beoudg dvipaxa-dvipaxa
TPOCOUOWWVETAL WG OTotyElD B0X0U, GTNY VAvVo xhipoxa 6Tou 10 poplaxd TAEYUA
TOU VAVOGWATVOL dvDpoxa TEOCGOROIOVETOL W¢ Ywetxd ThA(GLo xow 0Ty pixpo xhi-
uoscar 6ToU yia TNy mpocouolwset tou RVE tou civietou uhixol yenowonotoiva
TELOOWIOTATAL GTEREd oTolyElo Yoo TNV UN TR XoL EV OgLpd GUVOEDEUEVA LGODIVOUA
otoyelor doxwv yla Toug vavoowirves. H avdhuon und molhomhéc xhiuoxee ou-
veyileton €wg xon TV Paxpo xhigoxa, OTou YECGw TNG EQUPUOYHS WIS TRWTOTUTNG
uToAOYIoTIXTC Dladtxactag opoyevomoinong xou Ty Baduovouncn evég véou wodo-
TAAGTIXOU XUTAGTATX0) YoVTELOU efvon Buvaty 1 TEOBAEdT TNe cuuTEpLPORdS ToY
wxpopovtélou. Yto oyfua 10 napouctdletar Ypapixd 1 tpocouoiwor tou ohvietoy

UAXOU oTIC OL8popes xAtuaxeg.

4.1 Ilpoocopoilwon Tou CNT-RC RVE

H pxpodour; tou aviimpoowreutixo) otoyeiou dyxou tou yavooivietou UAXoD

TEOCOUOIWVETAL UE YPNon TG xhaowxrc pedodou TwV TETEQUOUEVKDY OTOYElWVY.
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EKTENHY ITEPIAHVH

C-C bond

Space frame

lnano « lmicro < lmacro

Yyfuoe 10: TIpoocouolworn und mohhamiéc xhipoxee twv CNT-RCs

Luyxexpéva, Yo Tny dtaxpitonolnon tng YepUOTAUCTIXTC PATEAS Y ENOHLOTOLOUY-
Ton TEtodLdoToTa GTERES oTotyela oo onofa avatieTon 10 KEWOOEAACTING AATUCTO-
6 povtéro Twv Maxwell-Wiechert nou avahidnxe otny evétnta 3. H yewpetpla
v CNTs avonapiototon ye ev oelpd cuvdedepéva ototyeio doxol EBEs (evétna
2.2.2), ta onola eyxBotiloviar evioc twv otepe®y ototyeiny tne uftpac. To mhe-
OVEXTNUA TN TEY VXS auThS v TL 001YEl GE DOUNUEVO TAEYUAT TENEQACUEVLY
OTOLYELWY, UELWVOVTAS ETCL TOV UTOAOYIOTIXO QPOPTO XAT TNV ENIAUCT] TWV tXEO-
povtédey. H ohioOnon twv CNTs evidg tng urteoas Aopfdvetor unddy and tny
UTOAOYIGTLXY) OLAOLXAGTA UEGL TNG EVOWUATOONS XATAIAANAOL HovTElou TRBHC OToV
AGOIXA TEMEQAOUEVWY GTOLYEIWY. LUYXEXPWEVA, Ol ECLOWOELS TOU YOVTEAOU UTO-
EOUY VoL avamTUY VoY Yio €VOL AVTITPOCWTELTIXG GTOLYEID OYX0U Tou TEQLEYEL Evay

eVH0YPAUUUO VAVOTWATVI DIAXOITOTONUEVO amtd TEELS LOODUVOUES DOX00¢ OTIWS Pi-
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vetar oto oy 11. H e&lowon woopponiog yio 1o xevtpnd ototyeio doxol ypdpeton

o¢ e€rg:

|0Ri — ULZ'| A,L = T;T (Dz + tl) ll (19)

omou A; ebvon 1) emgdvela NG BlaToUhg NS X0lANG 60x%00 1) EEWTERPXT DLAPETEOS TNG
omoldg etvar D; + t; xou to wixog tng l;. Ot xouPuéc aovinés Tdoelc or; xou o,
avtiototya mpoxUnTouy Yotepa and wo Sadixaota eoudivvong. Emhbovioag tnv
EZ. (19) wc npoc TNV OLETLQAVELNXY) DtaTunTixy| TdoT 75 xou cuyxelvovtag Ty Ty
auTy| Ye TV xplown dempovetonry StotunTer avioyr ISS, 1o poviého olicVnong

avantioceTa ws e€rg:

A; < ISS, oteped chvdeor
‘ |oRri — oLl

S (20)
m(D; + ti)l; > 1SS, oModnon

Ti
Edv yio 10080voun doxd mou avTTpooWREVEL £VoL TUHUO ATO TO GUVOAXS Ufixog Tou
vavoowhhiva efvar oe xatdotaor ohioUnong, TOTE 0 DlETPAVELAXOS TNG DECUOS YE
NV nepBdhhouca uritpa £YEL GTAUCEL XA GUVETWS 1) CUYXEXPUIEVT] DOXOG DEV GUVEL-
OQEREL OTNY UETAD0OT) QopTiwy amd Tny uftea. H xatdotacn oklodnorne uog doxol
TROGOUOIWVETAL PELOVOVTUS TNY afovixt| TnG oTPopdTnTd o€ pial eEAGy Loty Tiur. -
UEWWVETAL OTL, 1) XOUTTIXT XU CTEENTIXY OTPapdTNTA TNg doxol dev ennpedlovTo,
UE UTOTEAEOUA 1) DOXOG VoL TAUPUAAUBAVEL XUUTTLNE X OTEETTIXG popTia UECW NS

UATEAS.

4.2 Mn vyeoupixr dtadixacia opoyevonoinong

[ v mpoPBhedm tne oupmeppopds tou CN-RC RVE neotetvetan éva wdonha-
OTO XATAGTATIXG YoVTEAO Tou umopel va yenotwomomldel oty udxpeo xhipona,
hopBdvovTtag cuYyedveg UTOY Tou Qavoueva wixpoTtepns xhipoxag. H yovodid-
OTOTY) OVAUTURIOTUCT, TOU WKEwdoTAacTX0) auTo) Yovtélou dlvetar oto oyfjuo 12.
Luyxexplpéva, To yovtého anotelel cUVOLAOUS TOU EMOOENAGTIXOY UOVTEAOU TWV
Maxwell-Wiechert, mou yernowonoteitar yia Ty T0G0U0woT) TNG EEOO0EAACTIXNNG
CLUTEQLPORAS TNE UATEAS TOU GUVIETOU UAMXOU X0k TOU UVIOOTEOTLXOU TAAGTIXOY [Uo-

vtéhou tou Hill, mou yenotwonoteltar yiow Ty Tpocouolwor 1660 g avicoTeomxg
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IH//IH!HHHH.’IHI!/

Yyrnuoe 11: Egedxvopog RVE pe evdiypoaupo CNT, tdoeig oto xevipiné EBE

evioyuong mou npocpégouy 1o CNTs 600 xou tng anooevouevng evépyelag Aoyw
OMoUnorng autwv péoa otny urtea. o v Padpovouncn tou TEOTEVOUEVOY UO-
VTEAOU AMOULTELTAL O TEOGOLOPIOUOS TWV LEWBOEAUCTIXOV Xl TAAGTIXWY TORUUETOWY
Tou. ‘Oc0ov agopd T IEWOOEAACTIXG YAPAXTNPIOTIXG TOU UOVTEAOU O TPOGBLOPLOUOC
Toug Yiveton uéow TG dtadixactog Tou Teptypdgnxe 0Ty eVOTHTA 3.1 Yo TNV UhTed,
EVM YL TOV TPOGOLOPIGUS TWY EVEQYWY TAAGTIXWY TORUUETEWY axoloude{ton uio un
Yoouux dwdixactia ogoyevoroinong. Ot mhaotixég mapduetpol mou {ntolviou va
xodoploToly elvan 1) oYL TACT) DLUEEOTIC XAk TOL XVNUOTLXGL Y AP TNELOTIXG XA TUY-
ong tou UAxol. Ta yapaxtneiotind autd oyetilovton Ue TNy xplowly) dlempaveLlon

OLUTUNTLXY| TAOT) XU TNV ATOCBEVOUEVT] EVEQYELL AGY W OMGVNONG TV YAVOGWATVODV.

H opoyevornoinon mou axoioudeiton Do mpemet va txxavonotel Ty evepyeLoner} Guv-

Ufxn tou Hill n onola opiCeton and v edlowon:

E:E:i/a:de
V1 Ja

orouv X, E eivon ot paxpooxomixol TavuoTES TAoNG Xl TUQUUOp@wons avtioTorya

(21)
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Ecnt

Hy ip

Yo 120 TEwdomhaotind xatactatind poviéro yio 1o CNT-RC

At
A

My

Ter

i 4

eV 0, € elvan ot ayTioTotyol TaVUoTES GTNY Uixpo xAluaxa. OTolodHTOTE YuxXP0sH0-

mxo péyedog W unopel vo ex@pacTel wg Eva 0Yxixd ohoxARpwu ToU avTioToou

ueyédoug otny Uixpo xAhipaxa tédvew otov 6yxo R tou yovtéhou RVE wg e€g:

\I!:(z/)>(X):%/R¢(X,Y)dY éron V:/RdY

(22)

X ebvar 10 poxpooxomixd didvucua Véorne eve Y ebvar to Sudvucua Yéorg mou

AVTIOTOLYEl GTO AVTIRPOCWTELTXO OTOLYElD OYxou oTny Wixpo xAhfuaxo. To Ty

nepintworn mou to CNT-RC RVE rnepiéyer eudiypopuoug vavoswArfves Tpocuvo-

TOMOUEYOUC P0G Wid XUTELVUVOT O HOXPOOXOTIXOC TAVUGTAS TACEWY CUVOEETOL UE

TOV TOVUGTY) TOUQUHORPMCEWY UEGW EVOE 0pD0TEOTIX0) ENACTIXOU UNTEMOU 0 ECHC:

Ciin1 Ciizo Cyyz3 0
Cag22 Caa33 0
Csszs 0

Ci212
sym.

XXXIX
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C2323_

(23)



EKTENHY ITEPIAHVH

O xdptot d&oveg xatetiuvorg mou opiCovtor tdvw oto CNT-RC RVE nogiotédvovtan
oto oyfua 13. T tov mpocdloploud Twy Tupauétewy Tou opoyevolg untenou C
eMPAAAOVTAL OTO PIXPOUOVTERO TEGOEPLS AVEEHPTNTES POPTIGELS UTH YORPY| OPLIX GV
ouvinxwy Dirichlet.  Muyxexpuuéva TpodlyeYQUUUEVOL TAVUGTES TARUUOPPWOTS
emBarhoviar oto RVE e tny popgt| uetatonioewy we e&hc:

Eyy 0 0 0
0 Ey 0 0
0 0 E 0
u, =DoE yio E = , , 33 , (24)
0 0 0 D)
0 0 0 Ei3
k_O_ _O_ _O_ _E23_)

omou Dy elvon €var YEWUETEXO UNTEMO TOU TEPLEYEL TIC CUVTETAYUEVES TWY CUVOPLO-
AWV xOUPwY ¢ Tou wixpoudovtéhou. And tny enthuct NG WxpOBOUTC O HUXPOCKO-

TXOC TAVUOTAS Tdomg unohoyiletal yiol xde TERIMTmOT QPOPTIONS WS EENG:

1
I D 29
|V’Z qfq ( )

q=1

omou fg elvon ot Suvduele avtidpacelc Tou uTtohoyI{ovTaL GTOUC GUYOELIXOUS XOU-
Bouc g tou yovtéhou tou RVE, n, o cuvolixde aprdude twv cuvoptoxwy xouSnv
xw Voo 6yxog tou RVE. Emfdihovtag yio mopdderyud 10V TpGTO UAXPOOXOTL-
%0 TOYUOTY| TOQUUOPYMOYS GTO WXQPOUOVTEAO UTOPOUV Vol UTOAOYLOTOUY Ot Gpot
Cin = Z:11/E11, Conn = Z322/En aon Cgzpp = 233/En- ETCOHéVO)C, ME TNV
emPoAT) xan TV LToAOITWY aveddeTNTLY Yopticewy xadopiletar TAYPwWS TO EAACTL-
%6 xotaotatixd untewo C tou yaxpopoviéhou. ‘Otav 1) DETLPAVELNXY| BLOUTUNTIXN
TAUOT) TOU AVATTUGOETOL OTNY OIETLPAVELXL vavoow)\f]vwv/pf]‘cpag Eemepdoel TNV xpi-
oY) SLETLPAVELXT) DtTUNTIXY) avToy Y| TOTE Zextvd 1 oMoUnom TwY YavOSWARVLY.
To qavouevo autd AauBdveton UTOYYY ATO TO UAXPOUOVTELD UECH TWY TAAGTIXGOV
TopaUéTowy ot onoleg Ya mpénel va tpoadiopioToly. o Ty mepinTtwon alovixod
egelxuopo oto RVE tou oyfuatog 13, 1 agytxr 1oodivaur tédon dipporic uTo-

hoyiletan and TNV emlAUCY) TOU WXEOUOVTEROU TNV OTIYUY oxei3®¢ Tou cupPaivel 7
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apy ety ohic¥non Tou VavoowATva:

= /3
Yy = 52%2% (26)

67OV Z?j elva oL amoxAVOUGEC TACEIS TOU PoXpOGXOTIX00 TavueTH Tdoewy 3. [a
TOV TEOGOLOPIGHO TNG XAUTUANC HWVAHATIXHAS XPATUYOTS TOU UAMX0U GE xdUE TOOGOU-
Enuxd Bria enthuorng Tou wxpouovtéhou unohoyiletar To (ebyog 1GOdUVOUNE TAOTS
OLPPOTC XU LGOBUVOUTS TAACTIXYG TUPAUOLPWOTC, (i, Ep)

X2

X3

Yyfuer 13: Xootnua x0piwy xateudivoewy oto RVE tou CNT-RC

4.3 AptOunTtind ANOTEAECUATA

H anoteheopatindtnTa 10U TPOTEVOUEVOU IEWOOTAACTIXOU XATACTATIXOU HOVTEAOU
emPePoumdveTon HECW TNG CUYXRIONS TWV XUUTUADY TIOTC-TUPAUOPPWOTS TOU TTPO-
«€0OTTOUY A6 TNV TEOCOPOIWOT) avaxUXMCOUEVTS PORTIONG OTO HUXQPOCXOTIXO Xl
OTO WXPOCKOTUXO UOVTEAO TOU GUVIETOU UAXOU avTioTolyd. Muyxexpluéva, ovo-
AoovTon pe Ty wédodo Tev menepacuévwy ototyelwy RVEs andé CNT-RC ye ne-
olextixotnta xotd Bdpoc oe CNTs (wf) 0.5, 1 xon 2% xou pe demipavetoxr| dio-
tunuxd avroyy| (ISS) 40, 80 xou 160 MPa. Yto uixpooxomxd autd Lovtéra eqop-
UOLETO O POXPOOXOTIXOG TAVVOTYG Topaudppworns B = [E11 0000 O]T 6ToU
En = Epsin(2nvt). Eto oyfpo 14 gaiveton v yeouetpio xot 1 daxpltonoinon e
TOL TEMEPAGPEVAL GTOLyEl Tou UixpodovTélou Twv RVEs. Ané tnv avdhuor xon pe
Bdon v dadixacio opoYEVOTONGTG TOU TEPLYRAPNXE OTNY eVOTNnTA 4.2 Tpocdlopi-
Covtal Ol EVERYEC TORAUETEOL TOU LEWOOTAUCTINO) HOXQOCXOTIXOU UWOVTENOU. TNV

OUVEYELL TO HAXPOOXOTXO HOVTENO UTOPBIAAETAL TNV (Do Lop@T) PORTIONG OTWS X
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10 Uixpodovtého. Metd tny avdhuon tou e€dyovion To aptiunTid amoTEAEGUITA,
mou ouyxpivovtal Ue exciva Tou TEoExuday TEONYOLUEVWS antd TNV avdiuoT Tou
HxpooxoTIX0oU Yovtélou. Xto oyfuata 15-17 napoucidlovton o xopumiies Tdomg-
Tapalbepwong Y xdie tepintwon wi xou ISS. Ynueidveton 6T, Ta aroteréopata
aUTE apoPOUY avoUXMLOUEVT QOETION OE TOD LYNAY cuyvétnta (¥ — 00), 6ToY
1 Vepupomiactixy| uhtpa (PEEK) cuunepipépeton ehaotind pe Pdon to otrypaio pé-
TPO ehaoTXOTNTAS. XTo oyhua 18 napoucidlovTton Ta {Bla anoTEAEGUATA OTIWS GTO
oyfua 17 povo mou twea 1 cuyvétnTa PopTiorng eivar v=1 Hz xou cuverag 1 uftea

OUUTEQLPECETAL LEWDOEANOTIXI.

Yyfuor 14: Tewpetpio xan doxpttonoinon e nenepaouéva ototyelor tou CNT-RC
RVE
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Lyfor 15: X0yrpion xaunuAny TI6TS-TUpAUOpPmOTS GE AVAXUXALOT) UE GUYVOTY T
v — 00 UETUEY UXpOooXOTX00 o Yaxpooxomixol wovtélou yio wi=0.5% xo (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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Eyfuor 16: X0yrplon xounuAny ToTC-TUpAUO0PmOTS O AVAXUXALOT) UE CUYVOTNTA
v — 00 YETOED WXpooXOTIX0U ot oxpooxomxol povtélou v wi=1% xau (a)
ISS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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Yyfuor 17: X0vyrpion xaunuAny T4oTS-TUpaldp@PmoTS O avaxUXALOT) UE CUYVOTY T
v — 00 YETOED UXPOOXOTIXOU Xat UoxpooxoTxol povtélou yia wi=2% xu (a)
[SS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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Yyfor 18: X0y xpiom XaUTUAGDY TACTS ~TaQUUOPPMOTG OF AVIXUXAGT| UE CLUYVOTY T
v=1 Hz petall wxpooxomxol xat poxpooxomxol yovtéhou yia wi=2% xou (a)
[SS=40 MPa, (b) ISS=80 MPa, (c) ISS=160 MPa.
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5. 20vUeTtat UAXA EVIOYLUEVA UE VOUVOCTWUATI-
ol yeopeviou

Ta vavoowuatidu ypageviou (GnPs) anotehotvton and @iAAa ypapeviou dortetary-
Uéval T6 €va Tdve amd To dANOo, cUVBEDEUEVL UETAE) ToUC Ue deouole van der Waals.
To ndyoq Twv cwuatdiny autady xudafvetor yetadd 1-15 nm eved 10 TAATOS TOUg
xupatveton Yetagl 1-100 um. Xuvenmg, unopoly va Yewpniolyv o dioBldoTaTd G-
wotiota 1 yewuetpla TwV oTolwY QaiveTal OTIC EIXOVES NAEXTEOVIXOU WXPOGXOTIOU

odpwong Tou oyrfuatog 19.

20101012 14:06 HL D49 20k 30um

20101012 14:08 HL D45 x40k  20um | |TM-3000 201010112 1601 HL D48 25k 30 um

Yyfua 19: Ewxéveg GnPs and nhextpovind uixpooxomo cdoworng.

‘Orwe oL VavoowAveg dvipoxa €ToL xot To VavoowPatidla Yeapeviou ETOELXVIOUY
eCanpeTIXEG UMy ovinég X QUOLXES WOTNTES. Luyxexpwéva, Ta GnPs éyouv alovi-
%6 pétpo ehaotixdtnrog mepinou 1 TPa, eved 1) egehxuotns avtoyy| Toug elvon Tng
té4énc Twv 10-20 GPa. H yewuetpla twv GnPs héyw g Omaping eheddepwy ato-
UV dvipona GTa dxpa TOU Loptaxol TAEYUATOS TwY QUAAWY YEAUPEVIOU, EUVOEL TNV
OnutovpYiol YUKV BECUWY UE TIC LOPIIXES AAUGIDES TOU TOAUUEROUS. LUVETAC,

n e Vixn evepyonoinone (functionalization) twv atdpwv dvdpoxa, mou epapudle-
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TOL OTNY ETQAVELRL TOU poploxol TAEyuatog Twv CNTSs, dev elvar amoapaltnty otny
nepintwon twy GnPs. To mheovéxtnuo autd o€ cUYOLACUS YE TO UEYSRO AOYO ETL-
pévetag Tpog 6vxo, xahototy 1o GnPs w1oyupoic aviaywviotég évavtt Twv CNTs
YLt TNV EVIGYUCT) TOAUUER®Y XU TNV ONULOURY X TEONYUEV®Y YAVOSUVIET®Y UMXOV.

YNy mapoloa epYacto AVATTUOOETAUL ol TEWTOTUTY UTOAOYLOTIXY OLodlxacia
ouoyevornolnong tne unyavirc ouureppopds RVEs arnd GnP-RC nou haufdver u-
o TG TNV Tuyaio YewUeTpla Twv vavoswuatdiny. H dwdicacta Baotleton oty
enlAuoT) TV UXEOUOVTEAWY UE Yprion TNG HEVODOU TV EEEMYUEVWY TETEQACUEVRY
ototyeiov (XFEM), oe ouvduaousd ue tny otoyaotxy| Touc avdiuo ue yeforn npo-
couowwoewy Monte Carlo. H epyaocio tovilel wioitepa tnv enidpaon tou oy fuatog
Twv GnPs o1ic evepyéc ehaotinéc mapauetoous Tou cuvletou ukixou. To tuyalo
oyfua twv GnPs mpocoyowwvetar ota mhaiolo tng XFEM pe yprion wog ovolu-
Tixd optopévng ouvdptnong level-set, 1 omolo meprypdgel To oy fua evog «Tpay Oy
xUxhou (rough circle). Yto miaiowo tng ped6dou Monte Carlo mpocoupoudvetar e-
vog peYdhog aprdude amd RVEs ue ouyxexpiuévn xat” 6yxo meplextixdtnTo Tuy ol
xotaveunuévey GnPs. H dwduacta ogoyevomoinorng mou axolovdeiton txavonotet

NV evepyetaxt| cuvixrn tou Hill.

5.1 MéVobog eEeAYUEVWY TTENEQACUEVWY CTOLYELWY

H pédodoc twv e€ehyuévwy TEREPACPEVKDY OTOLYEIWY Y pNotoTOETOL Yo TNV avd-
AUGT| QOREWY TOU TERIEYOLY oY LEES 1 aoDevelc aouvéyetes. Ta Topddelyuo gopeic
UE pwYUES TapoUGdlouY AGUVEYELL GTO TEDI0 TWV UETATOTIOEWY EVG QOPES amd
€TEQOYEVH UAXA TapouUaLdlouy aGUVEYELX GTO TESID TAGEWV-TUpAUopPOCEWY. Ta
GnP-RC viixd mou e€etdlouue oty mopoloa gpyacio avhixouy oTnv xotrnyopio
TWY ETEPOYEVAY UAXOY PE ACUVEY Y TEOTY Topdywyo Twv yetatonicewy. To medi-
0 GUVETKS TWV UETATOTIOEWY Tou TpoBhénouy Ta e€ehyuéva TETEpUoUEVA oTotyEl
TepL opfdvel xdmoloug EMTAEOY 6POUC XOVOUS VoL TERLY pdhOUY TNV ACUVEYELL QUTHY
e€” antlog tng mopousiag Twv GnPs evtdg tng mohuuepinic WATEOS. LUYXEXPUEVA,

T0 TEdlo TV UeTATOTIOEWY BlveTon and Ty e€lowon:

W)= Ni(x)ui+ ) Ny (x) (D (x) ag (27)

iel jed
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omou I elvor 10 GUVOAO TV %OUBWY TOL LOVTEAOU TEMEQUOUEVWY GTOLYEIWY TOU %a-
€Y 0ouY Toug xhaowolg Baduols ehevdeplac u, eve J efvon to 6hvolo Ty xOUSny
mou eumioutiCovtar ue Toug emmAéov ThacuaTxole Baduolc ehevdeplag o, Yéow
TV oTolwY TEptypdpeTon 1 acuveyela UAxol. Ot mhacuatixol autol Baduol eheude-
olag mpootideviar oty elowon TwV YETATOTIOEWY ¢ OpoL YVOUEVWY UETUE) TWwV
OLVAPTACEWY GYNUaToS xdle xouBou N xou TG GUVEETNONS ) TOU TEQLYPAPEL
10 oyfua Tou k" vavoowuatdiov. To oyfua xdde vavoowpatdiou reprypdpeton
UECK TLY TWOVY TG ouvdptnorg level-set ¢ mdve otoug xoufoug Tou TAEYUUTOC

TWY TEREPACUEVWY OTOLYEIWY %ot TN TopePPorrc authg ot xdie onueio x péow tng

elowone:
Ui (x) = ZNz' (x) |¢ﬂ - Z N; (x) 925? (28)
iel iel
6mou @ 1 cLuVdpETNoY Tou «rough circley:
¢ (x,0) = |x—c|]| - R(a(x),0) (29)

xow R tuyodor axetivae tou xOxhou mou avtioTtotyel oe xdde Véon X mdvw oTny

ouvoptonet) xoumOAN Line (oyfua 20)

R(a,0) = 0.2+ 0.03Y1(0) + 0.015{Y5(0)cos(kic)+

(30)
Y3(0)sin(kia) + Ya(6)cos(kar) + Ys(0)sin(ker) }

oL ave€dpTnTeg TUYAES UETAPANTES Y:(6) axohoudolv NV {OLa OUOLOUOLPT] KATAVO-
uf oto U (—\/§, \/3) Y10 oyfpa 21 ewxoviCovtar ot woolelc xoauntiec mou mpo-
xomTouy and Tty e&lowon (29) yio tipée ky = 0 xan ky = 3 oty e&lowon (30). H
VoL XoUTOAY Lipe TOU Blvel TO TUY A0 GYHUo TOU VAVOCSOUATIOIOL TEoXOTTEL

anod TNV 1ooldhc ue T Undév.
5.2 Kataoxesur RVEs tuyalog uixpodoung

[ v yévynon tng Tuyodag uxpodouric Twv GnP-RC RVEs yenotuonoteitar o ah-

Yoprluog Tou meptypdpeTon oTov wivaxa 1. Kdde RVE €yel draotdoeic X; x Xy xon
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l-‘incl (9)

L.

Eyfor 200 Eymuatioer avanapdoTtaot) Tng cuvdetnong Tou «rough circle»

”
F 25 .15
o _D_g’l
02 /
S

02 |§ &
P

0.4

-0.25

06

08

@ % ' x o)

Yyfuo 21: a) Tlpoonuoaouévn ouvdptnon level set xou b) wwolelc xounidies yia
]{?1 - 0, kQ - 3

TEQLEYEL Niner APLIUO VAVOSWHATIOIWY OE GUYXEXEWEVY XaT 6Yx0 avaroyia (%vf).
To tuyalo oyfua TV YavOCOUATIOIWY TEOXUTTEL and TNV EQPUPUOYT TwV EELO6M-
oewv (29)-(30) 6mou ov napduetpol ki xon ko elvor otodepés, EVE Ol GTOYAOTIXES
vetaPintéc Y;(0) emhéyovial pe ypnon TN oMoLOpop@nS CUVARTNONG TUXVOTNTAC
mlavoTnTag fy,. Y10 oyfua 22 ewoviCovia Ta StapopeTind oy uata Twv GnP vavo-
oWUATOIWY Tou ueEAETOVTOL oTNY Tdpoloa epyaota. H ouvoptaxt xourntirn I'iq Tou

TEQLYRUPEL TO TUYALO OY AU TWY YAVOCWUATIOWY dloxpttoTotlelton amd n, onueia, 7



Véor twv onolwy xadopileton and To ToEUX AT SLEVUCUA GUYTETUYUEVOV:

Lina(0) : {x=c+ R(«,0) (cosa - €1 + sina - e2)} (31)

eq, ez eivon tor wovadiaba xopteatovd dravbouata. H 9éomn tou xévtpou xdie ow-
woTtotou xad®e xot 0 TEOCAVATOMOUOS TOUG TEOXOTTOUV OO TIC CUVIRTYOELS TTu-
xvotntog miavotntag fo xan fg avtiotorya. Metd tnv dnuoupyior ni,q mAHloug
VAYOoWUATWILY xat Tety autd xataveurndody péoa otny urtea, Yo npénel vo yivet
XoTEAANAY TpocapuoYT Tou ueyédoug toug (scalling), wote vo mpoxinTeL TEvVTAL 1)
emfupnT) Ty e xat’ 6yxo avaroylag Toug oto RVE. Tty pelwon g mavo-
TNTOG XUTA TNV XUTAVOUY| TOUG TA VAVOOWUATIO Yo TEGOUY TO €Val TV GTO dANO,
yivetar mpedTal 1) TaCVOUNeY| Toug xatd Piivouca celpd HEYEDOUC oL OTTV CUVEYELL
emyelpeiton 1 Tonovétnon Toug péoa oty untea. O éheyyog yio emixdhudn dSield-
YeETU PE Yprion evog ahyopliuou doxurc-Addoug, €tol wote xde owpatidio Tou
Beedel va emxaidnTeL Tor )01 LTdEYOVTA Vo emavatoroVeTelTon GUVEYMS UEYPL Vo
Beedel n xatdhinin V€on tou oty pRtea. Y10 oyfua 23 gaiveton 1 TomoVETNo
Nina = 1, 5,10, 20 vavoowuotdiov uéoo oe RVEs ue 30% vi.

o0 %

(b) (c) (d)

Eyfuo 220 Nyhua GnP vavoowpatdiov v a) (ky = 0, ks = 0), b) (k
k’g = 3), C) (kl = O, kQ = 6) piso i d) (kl = 3, kQ = 6)

Il
o

N =1 Njpe=5 Onmmg D :g,::oo @
OO 9 QQ © 20,0
PG | LC&s
50 QO 4| %00

Syhua 23: Torodétnon vavoowpoatdiwy (k1 = 0, ky = 3) oe RVEs pe vf=30%

vf=0.3
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EKTENHY ITEPIAHVH

Hivaxag 1: Akydprduog yévvrong e tuyalag wxpodoprc Twv GnP-RC RVEs

e AEAOMENA

— X3, X9t Méyevog tou RVE

— vi: Tlepiextixdtnra xat” 6yx0 o Vavoowpatiol

= Ninert LUVOAMXOS aptiude vavoowpatdiny oto RVE

— fy;r Buvdptnon muxvotntag miavotnTag mou axoloudolv ot Tuyaieg
uetofantéc Y;(0)

— fes [5 Yuvapthoeg muxvotntag mavotntag tou axohouvlel 1 Véor Tou
(EVTPOL XA 1] YWVIX TEOGUVITOMGUOY TOU VAVOSWUATIHOU

— ki, ko Etadepéc nopduetpol mou xoopilouy Ty SlaxUUavoT TS cuvo-
proxfig xaumUAng tou «rough circle»

e AHMIOYPTIA / IIPOXAPMOI'H MET'EQOTY / TAZINOMHYH NA-
NOXOQMATIAIOQN

— Anuoupyia 1 TARY0US TUYTiRY CwUATIOWY

— Aptduntixdg UTOLOYIONOS UE TOV Xxav6Vo Tou Tpamellou TN GUVOMXYS
ETULPAVELNG TWY TOPAYOUEVWY COUATLOIWY

R Nincl Np & n K
o= S35 ft - ()

k=1 n=1
n=1,..,n, aprudc onueiwy dlaxplToToNoNg TG CUYVORLIXTG XUUT -
Ang Tou «rough circley, (af .25 ) € % (0)

— Ilpooaguoyy| tou ueyédoug tng axtivag tou «rough circle»: R, =

Rn vi X:l Xo

incl
— Ta&wounor 1wv vavoowuatdiny ot @iivouca 6epd avdhoyo Ue To UE-
YeVog TG EMPAVELSS TOUS

e XOPIKH KATANOMH NANOXOQMATIAION XTO RVE

— Bpoyyog emavdindng and k = 1 uéypt Nina

* BElaywyt| tuyalwy petofintav Véorng (x’f, xé) xaL ywviog Tpooavo-
TOMOUOU B* mou axohoudolv OUOLOUORYT XATAVOUY) OTO OLUGTNUAL
[0, X4], [0, X5] xau [0, 27] avtioTotya

* Eleyyog emxdhudne tou Eth owuatdlou e ta o1 TomodeTnuéva
kE —1 ocwuatidw

- E4v AAHOHE, enavatonodétnon tou k™ cwpotido enhéyov-
Tag VEEC YETUPANTES VEoNE X YWVIOG TEOGAVATOMGUOU
- Edv VETAHY, emituyfc Totovétnon
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5.3 Ouoyevornoinon

H Swidixasta tneg opoyevonoinong Poacileton 6to evepyetoxd dewpnuo tou Hill. To
Vempnuo aUTO AEUWMVEL OTL 1) EVERYELX TURAUORPWONG TOU OUOYEVOUS HUXPOCKOTULXOU
wovtélou ebvan {on xatd uéoo dpo ue TNy aviioTtolyn evEpYeld TOU TEOXUTTEL Antd

TNV TOEUUORPwoT) TG wxpodouric. H evepyeiomy| auty| oyéon exgpdletan wg e€ng:

1
E:Ez—/a:de 32
Vi /s (32)

omou X, E ot paxpooxomxol TavUGTESG TUOTG X TULUUORPWOTS EVK O, € OL V-
tiotowyor Tavuotég oty Véon Y g mxpodourc. O Yaxpooxomixée ToGOTNHTES
urohoyilovioal we 10 OROXAPOUA TNG AVTIOTOLY NS WXEOCKOTUXTC TOCOTNTAS VW
otov 6yxo 2 tng wxpodourc. H diadwasia tng ogoyevomoinorng mou egopudcty-
xe otny evotnta 4.2 yio 1o CNT-RC RVEs egopuéleton pe mopouoto tpdmo ot
v to GnP-RC RVEs. Yuyxexpwéva, €vag YvwoTtog Haxpooxomxos TUVUeTHG To-
caubepworng emBIiheTon we cuvoplaxés cuvirxeg Dirichlet oto uixpouovtého tou
RVE 1o onoio taxpitonoteitan ye to e€ehrypéva nenepaouéva otoryeio. And tny
enfluot| Tou XFEM npoAfuatog tpoxdntouy ot SUVAUELS avTidpaoel; oToug ouvo-
oLot00¢ xOuBoug Tou POVTEROU, UECW TWY OTOlWY UTOAOYIETUL UTO Hop®T| HEGOU
HEOU 0 LUXPOGAOTUXAG TAVUCTHC TAGTE TOU AVTIOTOLYEL GTNV DEDOUEVY] TULUUORPE-
o1). Oewp®YTIE 6Tl T0 TEMXO GUVIETO UAXO EYEL LGOTROTUXT| ENACTIXT) CUUTERLPORY

1) OYEOT] TACEWV-TIURAUUORPMOCEWY UTOREl Vo ExpoacTel we eEAG:

Y1 Ceff Degr 0 En
Yoo | = [Desr Cepr 0 Eo (33)
212 0 0 Geff E12
E, R
1—f’; eninedn Evroaon
—v
OTOU Oeff = eff ) (34)
(L= Very) Beyy eninEdN TapAUOPPLON
(1 + vepr) (1 = 2v5y)
€ E@ ’ N i
fo—sz ETMLTEDT) EVTOOT)
[ Y (35)
<! VeriBeys ’

(4 vep) (1= 20017 ETUTEOY) TORAULOPPWOT)
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Eeyy

2(1+ vesy) (36)

xat Gepr =

ot Tov UTOROYIOUO TOU EVERY0U PETEOU EAAGTIXOTNTAS X0t TOU EVERY0D Adyou Pois-
son ané Ti¢ eowoeic (34) xou (35) avtioTtoya, apxel N enfhuoy Tou WxpOUOVTELOU
070 0omolo €QuUPUOTETAL O UUXPOOXOTIXOC TaVUoTHC Topaubppwonc E = [1 0 O]T.
Méow tng dradaciog tne opoyevonolnong UTOROYI(ETOL O HAXQEOGXOTIXOS TUVU-
othc Tdone . Emouévwg, elvar Suvatdc o mpocdloptouds TV TIHWY TV EVERYKY
6wy toU opoYevols unte®ou Cepp = Y11/ E1q xat Depp = Y90/ Err. And Tic Tiég
QUTEG UTOROVY TMEU YO UTONOYIGTOUY Tl Feps X0 Vepp O GV mpaypoToTOMoT

¢ Monte Carlo npocouoiworng.

5.4 AptiunTixd ATOTEAECUAT

Yny evotnTa auth Tpoadioptletar 1) GUVAETNOT XxaTavourc TavOTNTIS TOU EVERYOU
HETEOU EAACTIXOTTTOC o AGYou Poisson mou mpoéxuday and tnv avdiuor 1000 mpo-
copowwoewy Monte Carlo. Ta XFEM povtéha twv RVEs mou avokiinxoay tepté-
YOUY TUY A GYAUATA VAVOSWUATIOWDY GE 0PLGUEVY XUT OYXO TEQIEXTIXOTN T 1UY-
AEXPWEVA, PEAETAUTMAY TECOEPA DLUPORETIXG GYNUAUTA VOUVOCSKOUXTIOlWY, Tar onola
meoé€xudory ueTafdAhovTag TIC TS Twy otadep®y tapauétowy ki xan ky oty e&i-
owaon (30), (k1 =0,ko =0), (k1 =0,k = 3), (k1 = 0,ky = 6) xou (k1 = 3,ky = 6)
AU TRELS OLUPOPETIXEG xaT Oyxo avoroyieg vi=20, 30 xo 40%. To ulhxd té6c0
NG UATEAS 600 XU TV VOVOoWUATWOiwy Jewpelton youuuxd ehaoTtind. Muyxe-
APWEVD, 0 AOYOC TV UETEWY EAACTIXOTNTAS TWY VAVOOWHATIOIWY Teog Ty UhTted
(Einet/ E) etvor 1000 eved ou hbyor Poisson eivan Vi = v, = 0.3, Xrnueidveton
6TL M) TEOTEWOUEVT) U€V0B0C BOXAGTNXE GE BLAPOPETIXOUC AOYOUS Ejpe /By, e
xo OE DAPORETIXNES TWES TV AOYwY Poisson. To yéyedog twv RVEs eivon 10 x 10
mm. Xto oyfua 24 exovilovtan o I6ToYpduUaTa ToU Epp TOU Tpoéxuday and Tig
npocououncel; Monte Carlo yio xdle mepintwon oy AUATOS TV VAVOSKHUATIOIWY o
TEQLEXTWOTNTOS XAT 6Yx0. AvtioTolyd, To LIOTOYRAUUATO TOU Veps EOVICOVTOL GTO
oyfpa 25. To oyfuata 26 xar 27 exoviCouy TiC xaUTOAES NG PEOTC TIUNC XL TOU
GUVTEAEGTH DL OUAVOTNC OE GYECT| UE TOV UpIUUO TV AVUAUCEWY Lo TIC TEPLTTMOELS
0V vovoouuatdiwy e (ky = 0, ke = 0) xou (k1 = 0, ks = 6). O nivaxac 2 tepiéyet

OUYXEVTPWTIXG TIC MEOES THES TOU Fepy Yot OAES TIC TEQITTWOELS OYNUATWY Xl xUT
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OY%0 TEQLEXTXOTNTAC. ATO TNV GUYXQICT TWY TWOY TEOXUTTEL OTL 1) HEYURDTERT
avZnom (16.13%) tou evepyol Yétpou ehaoTxdTNTAC TOU oUVIETOU LMXOU TEOX -
el Yt oyfpota (k= 0, ks = 6) oe oyéon ue ta (k = 0, ko = 0) v vi=40%.
To arotéheopa autd emBeforwvel TNV oNuAVTIXY| ETIOPACT) TOU EYEL TO GYTUA TV
VAVOOWUATWIWY 0TI TEMXES EVERYES TapauéTeoug Tou chvieTou LAxoU. ‘Otwg o-
TOOELXVOETOL 1) EQPARUOYT| ATAOTOLACEWY GTNV YEWUETEIN TMV VAVOCWUATIOWY Xat 1)
AVTIXATAGTAGY| TOUG PE WOEUTA oy fuata xOxhwy 1 eEhhelPewy 0dnyolv oe cpdiuaTa

Ié 7 7, 7 7
e T4Eng Tou 20% GTOV UTROAOYLOUO TV UNYoviXDY IBI0TAT®Y Tou vavooivietou
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Chapter 1
Introduction

”Nanotechnology is the understanding and control of matter at dimensions be-
tween approximately 1 and 100 nanometers, where unique phenomena enable
novel applications. Encompassing nanoscale science, engineering, and technology,
nanotechnology involves imaging, measuring, modeling, and manipulating matter
at this length scale. A nanometer is one-billionth of a meter. A sheet of paper
is about 10% nanometers thick; a single gold atom is about a third of a nanome-
ter in diameter. Dimensions between approximately 1 and 100 nanometers are
known as the nanoscale. Unusual physical, chemical, and biological properties can
emerge in materials at the nanoscale. These properties may differ in important
ways from the properties of bulk materials and single atoms or molecules”, (De-
seription of Nanotechnology as established by National Nanotechnology Initiative,
http://nano.gov).

1.1 Nanocomposites

In the large field of nanotechnology, polymer matrix based nanocomposites have
become a prominent area of current research and development. The expansion
of length scales from meters, micrometers to nanometers introduced tremendous
opportunities for innovative approaches in the processing, characterization, and
analysis/modeling of this new generation of composite materials. As scientists

and engineers seek to make practical materials and devices from nanostructures,


http://nano.gov
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understanding material behavior across length scales from the atomistic to macro-
scopic levels is required. Unlike the conventional top-down material development
approaches, nanocomposite fabrication techniques utilize a bottom-up approach
starting from atoms and molecules. The most common fabrication strategies for
nanocomposites include: solution processing, melt spinning, melt processing and
in situ polymerization. Details about these methods along with other strate-
gies and new trends in nanocomposites are reviewed in many literature papers
(94, 15, 10, 46].

A polymer nanocomposite is a multiphase solid material, which consists of
a polymer matrix and a weight fraction (wf) of dispersed nanofillers acting as
reinforcements to the bulk material. These nanofillers may be of different shape
(e.g. spheroids, fibers, platelets), but at least one of their dimensions is less than
100 nm. The most studied nanofillers are the carbon nanotubes (CNTs) and the
graphene nanoplatelets (GnPs). The unique combination of their mechanical and
physical properties, make them ideal candidates for reinforcement in composite
materials, shifting scientific interest from microscale composites to nanocompos-
ites. There are a number of advantages associated with dispersing nanofillers in
polymeric materials. While some credit can be attributed to the intrinsic prop-
erties of the fillers, most of these advantages stem from the extreme reduction in
filler size combined with the large enhancement in the specific surface area and
interfacial area they present to the matrix phase. In addition, whereas traditional
composites use over 40 wf% of the reinforcing phase, a small weight fraction of
nanofillers into polymeric matrices could lead to dramatic changes in their me-
chanical [40, 111], thermal [26, 72, 108], electrical [26], and damping [87, 75]

properties with added functionalities.

Polymers and polymer matrix based composites are being utilized in an in-
creasing number of industrial applications including transportation, automotive,
aerospace, defence, sporting goods, energy and infrastructure sectors. This is
due to their high durability, high strength, light weight, design and process
flexibility. The advantages obtained from nanoscale polymer reinforcement and
the subsequent supreme mechanical and physical properties of nanocomposites
can lead to myriad of new application possibilities. Particularly, both CNT-
reinforced composites (CNT-RCs) and GnP-reinforced composites (GnP-RCs) of-



fer substantial opportunities in advanced emerging technologies related to electri-
cal/electronics/optoelectronics, photovoltaic cells, biomedical applications, flame
resistance structures, UV screens, sensors, LEDs and to many others future com-
modities [92, 33, 18, 1].

Undoubtedly, nano-reinforced composites offer new and exciting possibilities
in the already exhausted field of microscale composite science. Their utilization
in a wide range of applications exhibits a promising future for various industries.
However, there are still major challenges that scientists have to overcome in or-
der to fully exploit the multifunctional capabilities of these multiphase materials.
The full potential of employing nanofillers as reinforcement is severely limited
due to the existing processing techniques of nanocomposites. There are two crit-
ical interrelated issues that must be addressed during the fabrication process of
nanocomposites, namely: filler dispersion and functionalization. In addition, dis-
tinct size dependence of the material properties is observed at such a small scale.
This is attributed to an intrinsic morphological characteristic of the nanofillers;
that is their large surface area to volume ratio. Especially in CNT-reinforced
composites, despite the desired increase in their stress transfer capability, the
large surface/volume ratio of CNTs leads to strong attractive intermolecular van
der Waals (vdW) forces causing an excessive agglomeration of the nanofillers.
This tendency of the nanofillers to agglomerate degrade the properties of the
nanocomposites as it leads to nonuniform dispersion and weak bonding of in-
terfaces. Many studies on new fabrication technologies in nanocomposites have
been recently published, which aim to cope with such unresolved processing issues

caused by the nanoscale size of fillers [69, 49, 59].

1.2 Modeling techniques for nanocomposites

Nanocomposite technology development requires optimization of processes and
fabrication techniques for producing enhanced materials with outstanding me-
chanical and physical properties. Some critical issues that have to be regarded
during the production process of the nanocomposites are related to alignment,
dispersion, aspect ratio, orientation, and load transfer of the nanofillers. Since

experimentation at nanoscale is still an evolving field, the best way to quantify
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the effects of such parameters is through computational modeling techniques. To
date, a vast number of numerical models for the characterization of nanocompos-
ites have been developed, primarily because of the different modeling techniques
that can be adopted. Due to the multiscale nature of nanocomposite materials
various computational modeling methods can be implemented, from atomistic
based methods such as quantum mechanics, (QM) and molecular dynamics (MD),

to micromechanics (MM) and to continuum mechanics (CM).

Atomistic methods are used to simulate the physical movements of atoms and
molecules at nanoscale. In this context, MD has been extensively used to model
nanostructured materials. This method uses realistic many-body inter-atomic
potential functions (force fields) to calculate the total energy of a system of par-
ticles. When the total potential energy and the force fields of a molecular system
are obtained, then the realistic behavior of atoms and their properties can be cal-
culated. Although the atomistic methods can provide with accurate predictions
of the properties of the nanocomposites, however their usage is limited to small
system sizes. This drawback originates from the fact that the classical equations
of motion for each atom have to be integrated stepwise in time. These time steps
can range from 1 to 10 femtoseconds, and the corresponding simulation times can
range from several picoseconds to nanoseconds, depending on the system being
investigated. Due to the huge number of degrees of freedom involved in atom-
istic simulations, these approaches are generally too computationally intensive
that can not even be handled by the state-of-the-art parallel supercomputers.
Atomistic based models have been mainly applied in investigations related to the
interfacial bonding mechanisms between CNT's and a variety of polymer systems.
Many molecular studies have been devoted to interfacial shear strength (ISS) cal-
culations on CNT /polymer interfaces and to investigations of functionalization

effect on nanocomposite material properties [51, 22, 27, 113].

Continuum mechanics approaches have also been applied in order to study
nanoscale materials. In the framework of continuum modeling of nanocompos-
ites, the underlying atomic structure of matter is neglected and replaced with
a continuous and homogeneous material representation. Therefore, continuum
approaches tend to be a more efficient modeling technique for simulating larger-

scale systems or longer time spans than the atomistic based approaches. However,



traditional continuum based models cannot accurately describe the influence of
the nanofillers upon the mechanical properties, bond formation/breakage, and
their interactions in composite systems, because they lack the appropriate con-
stitutive relations that govern material behavior at the finer scales. Particularly,
traditional continuum mechanical concepts applied at nanoscale do not main-
tain their validity and thus gross oversimplifications can arise when a purely
continuum model is used. For instance, the continuum shell model adopted by
many researchers for studying the material properties of CN'Ts neglects the chi-
rality and curvature effects and thus leads to inaccurate numerical predictions
[100, 67]. Such scale-up issues can be addressed by coupling atomistic models
with established micromechanical techniques, where the mechanical behavior of
nanocomposite materials can still be described on a macroscopic level. In this
case, the problem is often formulated at the atomistic scale using the concept of
a representative volume element (RVE), where an homogenization method based
on micromechanics is applied to in order to define effective material properties
for the homogenized medium [64, 13, 62, 74, 76].

The observed macroscale behavior of the nanostructured materials is governed
by processes that occur on many different length and time scales. Since these
processes are often dependent on each other, it is therefore necessary to model
this class of materials using a variety of length scales. Thus, implementation of
multiscale modeling techniques is prerequisite in order to capture the underlying
governing physics of nanomaterials. Multiscale models can be also used to sim-
ulate multiscale phenomena in nanocomposites such as mechanical deformation
and failure. Most multiscale modeling techniques adopt either atomistic based or
coupled continuum approaches to treat this class of problems. In atomistic based
multiscale models the different scales are integrated into a unified approach where
continuum mechanics is employed to describe position of atoms, their interactions,
and the governing interatomic potentials. These interatomic potentials, which are
introduced in these hybrid models through deformation measures, used to capture
the underlying atomistic structure of the different phases considered. Thus, the
influence of the nanophase is taken into account via appropriate atomistic con-
stitutive formulations. Consequently, these measures are fundamentally different

from those in the classical continuum theory. The advantage of using atomistic
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based continuum techniques over discrete modeling ones lies in their ability to
avoid large number of degrees of freedom, while at the same time allowing for the
description of the nonlinear constitutive behavior of the constituents. One par-
ticular approach of this class of methods is the Quasi-Continuum (QC) method
which has been widely used to simulate the mechanical response of polycrystalline

materials [58].

In the coupled continuum approach the multiscale modeling employs quantum
or molecular mechanics (eg. tight binding or MD method) for atomic scale and
finite element method (FEM) for continuum scale. This class of multiscale meth-
ods can be further subdivided into sequential and concurrent coupling methods.
Sequential methods, sometimes referred to as hierarchical methods, pass informa-
tion (displacements or forces) from the finer scale as boundary conditions to the
coarser one. This approach assumes that the problem considered can be easily
separated into processes that are governed by different length and time scales.
Thus a complete separation of scales exists, allowing to the coarse-scale physics to
be completely determined in the fine scale. In this multiscale procedure the micro
to macro relations need to be established. The macroscopic behavior of the con-
tinuum model provides the fine-scale model with appropriate boundary conditions
which in turn through an homogenization procedure provides the macroscopic ef-
fective properties of the continuum. Appropriate constitutive models assigned to
the continuum model are often derived from the knowledge of the corresponding

local properties and the phase arrangement in the finer scale [82, 106, 76].

Concurrent methods, on the other hand, are better suited in representing
scales with a heavy dependence on each other because of the continuous transfer
of information between the different scales. This method performs the entire
multiscale analysis simultaneously and thus data are continually fed from one
length scale to the other in a dynamic process. In that way, all the complexity of
the local microstructure is present during the analysis of the structural component
without summarizing it in some overall constitutive framework. This method can
handle nonlinearities arising from localization phenomena taking place at finer
scales (e.g. cracks, shear bands). During the analysis of such localized problems,
in each time increment, the macroscopic material point ”asks” for the mechanical

response of the microstructured model. This multiscale analysis is accomplished



through the implementation of a localization-homogenization process [57, 43].
Despite the capabilities of concurrent methods in modeling multiscale phenomena
there are serious unresolved issues that can lead to erroneous nonphysical effects.
These issues are mainly related to modeling problems especially in the transition

zones between the different scales [19, 101].

1.3 Scope-novelty of the Thesis

The scope of the thesis is to study the mechanical and damping properties of
the nano-reinforced polymer based composites through multiscale modeling tech-
niques. Specifically, two types of nanoscale reinforcement elements are examined:
carbon nanotubes (CNTs) and graphene nanoplatelets (GnPs). These carbon
based nanostructured materials are used to reinforce bulk matrices made by poly-
ether-ether-ketone (PEEK), a thermoplastic polymer with supreme mechanical
and physical properties. The novelty of the thesis lies in the efficient utilization
and excellent synergy of the different modeling techniques, which are applied hi-
erarchically through various spatial scales, from atomistic to micro and finally to
macro scale.

In the context of multiscale modeling of CNT-reinforced composites (CNT-
RCs), an atomistic based multiscale approach, which couple molecular mechanics
to structural mechanics known as molecular structural mechanics (MSM) ap-
proach, is adopted for modeling CNTs. In this approach the carbon-carbon (C-C)
atomic interactions in the lattice structure of CNTs are simulated by equivalent
continuum elements. The transition from atomic to nano scale is performed
in the context of continuum mechanics, where the response of the space frame
structure of a CNT is projected onto an equivalent beam element (EBE). This
continuum element is able to capture phenomena taking place at the finer scale.
Then, the multiscale modeling proceeds to the micro scale, where long CNTs
built by connected EBEs are embedded into the polymer matrix to form RVEs.
For the generation of random wavy CNT structures a novel stochastic procedure
is introduced. Specifically the randomness of the CNT geometry is derived from
a nonhomogeneous stochastic field using the spectral representation method in

conjunction with evolutionary power spectra (EPS). The statistical properties of
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the EPS are derived from processing a number of CNTs with random geometries
obtained from scanning electron microscope (SEM) images. Monte Carlo (MC)
simulation is used in order to evaluate the effect of stochastic wavy geometry of
CNTs into the mechanical and damping properties of CNT-RC RVEs.

A remarkable characteristic of the proposed multiscale modeling procedure is
that the CNT /polymer interfacial adhesion behavior is incorporated in the CNT-
RC model through the implementation of a bond-slip law for EBEs. This law,
which is related to the developed interfacial shear stresses on the CNT /polymer
interface, affects the constitutive behavior of EBEs. Another important issue han-
dled by the proposed modeling procedure is the prediction of multiple relaxation
times for PEEK viscoelastic material. For this purpose, the Maxwell-Wiechert
constitutive model is assigned to the composite matrix. Effective material pa-
rameters for PEEK are derived after the conduction of suitable calibration tests
on the Maxwell-Wiechert model. The finite element method is used to analyze
the RVE models of the microstructured nanocomposites. To avoid complicated
mesh discretization of the CNT-RC RVEs the embedded element technique is ap-
plied. By this procedure the stiffness contributions of the EBEs which represent
the CNT reinforcements are comprised to the stiffness matrix of the parent solid
elements used to simulate the composite matrix. The effect of ISS on the mechan-
ical and damping properties of CNT-RCs is investigated through simulations on
RVE models with various weight fraction of CNTs. The numerical results of this
study confirm the major role of functionalization and straightening of nanotubes
in producing enhanced CNT-reinforced composite materials, and set the ISS limit

for which optimum properties can be obtained.

In the framework of sequential multiscale modeling, a novel constitutive model
which can capture the macroscopic behavior of the CNT-reinforced composites
is proposed. This model can efficiently simulate the resulting viscoplastic behav-
ior of the nanocomposite, which attributed to the material characteristics of its
constituent phases and the stick-slip mechanism on the interphase region. The
anisotropic stiffness reinforcement of the bulk polymer, and the anisotropic ad-
hesive behavior at the CNT /polymer interface caused by the randomly dispersed
CNTs inside the matrix can be also predicted. This is accomplished by the pro-

posed homogenization method through a novel constitutive model which combines



Hill’s anisotropic plasticity with Maxwell-Wiechert viscoelasticity models. The
calibration procedure followed for the definition of the effective material parame-
ters of the proposed viscoplastic model is also introduced. This procedure is based
on numerical analyses of microstructured RVE models. The presented numerical
results show the efficiency of the proposed sequential multiscale modeling tech-
nique in simulating the structural response of CNT-reinforced composites. The
proposed multiscale method constitutes a novel numerical tool for the simulation
of large scale structures made by CNT-reinforced polymers. The advantage of its
usage lies in the fact that finer scale phenomena are considered in a continuum
manner so that analyses can be performed within reasonable computational time

and accuracy.

The other class of nanocomposite materials studied in the thesis is GnP-
reinforced composites (GnP-RCs). In the context of modeling GnP-RC materials,
different techniques are adopted which aim to homogenize the behavior of such
multiphase materials. In this study simulations are based on the extended finite
element method (XFEM) which is combined with Monte Carlo simulation so as
effective material parameters of GnP-RC material can be derived from random
RVE models. The originality of this study is that it investigates the effect of
random shape graphene inclusions on the effective mechanical properties of the
nanocomposite material. Modeling of random shaped inclusions is performed via
an analytically defined random level set function, which also serves as the enrich-
ment function in the framework of XFEM. Stochastic dispersion and orientation
of GnPs are also considered. The numerical results show an obvious influence
of these stochastic parameters on the derived material properties of the com-
posite. Particularly, the study highlights the surface effects in nanocomposites,
such as the change in surface to volume ratio of the arbitrarily shaped inclusions,
which have a significant impact on the overall effective properties of the compos-
ite material. These effects are often neglected during the fabrication process of
nanocomposites. Therefore, for the numerical characterization of the nanocom-
posite materials, geometry idealizations of the nanofillers, often used by many

researchers, may lead to inaccurate stiffness calculations.
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1.4 Objectives

The main objective of this research is to utilize different multiscale modeling

techniques and develop new models in order to simulate nanocomposite materials

within reasonable computational time and accuracy. A novel numerical tool which

can predict the mechanical properties of CNT and GnP-reinforced composites is

the outcome of this PhD thesis. Specific research objectives are summarized in

the following statements:

1.

To apply the MSM approach in order to model the atomic lattice of CNTs

as a space frame structure.

To project the response of the space frame model onto a linear or nonlinear

EBE in order to construct full length CNTs in micro scale.

. To implement a stochastic procedure for the construction of random wavy

CNT geometries exploiting SEM images.

. To develop a bond-slip model and incorporate it into the FEM code in order

to simulate CNT slippage at the CNT /polymer interface.

. To apply the embedded element technique in order to construct simple finite

element (FE) meshes for the CNT-RC RVE models.

. To implement the Maxwell-Wiechert constitutive model in order to simulate

viscoelasticity of PEEK matrix.

To study the effect of: a) wf content of CNTs in the composite, b) ISS
developed at CNT /polymer interface, and ¢) random CNT waviness in the

mechanical and damping properties of CNT-RC materials.

. To develop and implement a novel viscoplastic model in order to simulate

the homogeneous mechanical behavior of CNT-RC material which can cap-
ture microstructural phenomena: a) anisotropic stiffness, b) viscoelasticity

of polymer matrix and c¢) anisotropic energy dissipation due to slip of CNTs.

. To apply the extended finite element method (XFEM) in order to model

the microstructure of the GnP-RC material.

10



10. To develop a computational homogenization method for GnP-RC material

exploiting the excellent synergy of XFEM with Monte Carlo simulation.

11. To study the effect of: a) random inclusion shape, b) vf content of inclu-
sions in the composite and c) stiffness ratio of material constituents in the

effective elastic properties of GnP-RC material.

1.5 Thesis Structure

The thesis is organized into six chapters. Chapter 1 is an introduction to nan-
otechnology and specifically to polymer matrix based nanocomposite science. An
overview of the exceptional mechanical and physical properties of nanocompos-
ites, along with their promising applications and the major fabrication challenges
are presented. Different modeling techniques, appropriate for each scale from
atomistic to continuum level, are illustrated, while the significance of adopting
multiscale models in simulating such multiphase materials is highlighted. The
scope of the thesis and the introduced novelties are outlined along with the main
research objectives.

The structure of CN'Ts relative to their different chirality types are explained
in Chapter 2 where also the exceptional mechanical properties of CNTs are re-
ported. In addition different modeling techniques for CNTs are discussed with
emphasis to the atomistic based continuum multiscale method of MSM which
is the computational approach followed in this research. Numerical results from
parametric studies conducted on MSM CNT models are presented, where the ax-
ial, bending and torsional stiffness of CNTs are plotted against various nanotube
diameters and different CN'T chiralities.

In Chapter 3 the thermoplastic polymers which can be used during the nanocom-
posite fabrication process as matrices are discussed. Their distinct mechanical
properties along with their vast area of applications are listed. Special reference
to the viscoelastic behavior of this class of polymers is accomplished along with
suitable constitutive models which can capture such a time dependent behavior.
Specifically the Maxwell-Wiechert viscoelasticity model is explained and its cal-

ibration from both relaxation and dynamic mechanical analysis (DMA) tests is
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performed for the case of PEEK polymer.
Chapter 4 is devoted to CNT-reinforced composites. It demonstrates all the

multiscale modeling steps required for the construction of RVE FE models of
CNT-RCs. Initially the computational procedure to pass from the nanoscale
space frame model of CNT to its microscale model, which is build by connected
EBESs, is presented. The stochastic modeling technique which is used to simulate
random wavy CNT geometries by exploiting real SEM images of specimens made
by CNT-RCs is also exhibited. Next the embedded element technique is formu-
lated which serves to keep simple structured FE meshes of the RVE models which
are analyzed using FEM. Also the implementation of a bond-slip model for cap-
turing the stick-slip interfacial mechanisms at the CNT /polymer interface and its
incorporation to the FE analysis code is described. Simulation of cycling loading
on microstructured RVE models provide with numerical results showing the ef-
fect of ISS on stiffness and damping behavior of CNT-RCs. Further, a nonlinear
homogenization method is developed capable to predict the macrocontinuum con-
stitutive response of CNT-RCs. The homogenization is performed through uti-
lization of a constitutive model which combines Hill’s anisotropic plasticity model
and the Maxwell-Wiechert viscoelasticity model. In that way anisotropic stiffness
and slippage of the randomly dispersed CNT reinforcements along with the vis-
coelastic nature of the polymer matrix can be efficiently captured. Calibration of
the proposed model is performed through numerical analyses of microstructured
RVE models for different ISS values. Numerical results are provided confirming
the efficiency of the homogenized model in predicting the microscale behavior of

the composite.

Chapter 5 is referred to GnP-reinforced composites. First the morphology of
GnPs is discussed and their supreme mechanical properties are reported. The
work done in this chapter aims to study the influence of random shaped GnP
inclusions on the effective properties of this class of nanocomposites. In order
to achieve this target the proposed homogenization method utilizes the excellent
synergy of XFEM and MC simulations. The theoretical formulation of XFEM
problem for multiphase media is initially explained. Then an analytically defined
random level set function is introduced in order to describe the random shaped

nanoplatelets. This function also serves as the enrichment function used in the
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displacement approximation scheme of the extended finite elements. Different en-
richment strategies are applied and their accuracy is tested by conducting various
convergence tests in which the extended finite element size is plotted against the
energy and displacement norms. An algorithm to generate random RVE models of
GnP-RCs with specific weight fraction is illustrated. This code accounts for ran-
dom dispersion, orientation and geometry of inclusions. In addition the proposed
computational homogenization approach by which effective material parameters
are calculated, is displayed along with the chosen solution strategy. Numerical
results are presented showing an obvious inclusion shape influence on the me-
chanical properties of GnP-RCs. Finally, Chapter 6 contains the conclusions of

the thesis and some recommendations for future work.
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Chapter 2
Carbon nanotubes

Since their discovery in 1991 by Iijima [34], CNTs have received significant inter-
est among nanocomposite scientists due to their extraordinary mechanical and
physical properties. The density of the CNTs is about 1.3 — 1.8 g/cm?, which is
just one-half of the density of aluminum. Their elastic modulus is in the range
of 1 TPa which is comparable to that of diamond, while their reported tensile
strength is in the range of 150 GPa which is much higher than that of high-
strength steel (2 GPa). In addition, CNTs exhibit elastic strains up to 5% and
fracture strains up to 20% and thus they can sustain larger tensile and bend-
ing deformations, when used as reinforcements in polymers, compared to that of
carbon fibers. These exceptional mechanical properties along with their supreme
electrical and thermal capabilities have established CNTs as ideal reinforcement
elements for nanocomposite materials.

In this chapter a detailed description of the CNT geometry is presented.
Specifically, the formation of the CN'T lattice structure from a hexagonal network
of covalently bonded carbon atoms is explained. Indeed, it is the properties of the
C-C covalent bonds which are responsible for the supreme mechanical properties
of the CNTs. Different modeling techniques applied to CNTs are discussed, from
atomistic, to continuum and to hybrid multiscale models. Especially, the basic
principles of molecular structural mechanics (MSM) approach are presented, as
this method is preferred over others in modeling nanotubes because of its simplic-
ity and effectiveness. The MSM method is implemented into parametric studies

of CNTs, where the provided numerical results confirm the dependence of elas-
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tic moduli on the chirality type and diameter of CNTs. Finally a finite element
model based on the modified Morse interatomic potential is developed, which
accounts for the nonlinear interactions of the atoms in the C-C bonds. Valida-
tion of this nonlinear space frame model of the CNT is performed by comparing
the obtained stress-strain curves with corresponding others, obtained from both

theoretical and experimental literature studies.

2.1 Structure of CNTSs

CNTs are regarded as a new allotrope of carbon. They are long, slender fullerene
structures with aspect ratio greater than 1000. They can be produced by an
array of techniques, such as arc discharge, laser ablation and chemical vapor
deposition [93]. Their lattice structure resembles a thin, hollow cylinder con-
structed by hexagonal networks of covalently bonded carbon atoms. The ends
of the nanotubes might be cupped by fullerene hemispherical structures. They
can be formed either as single-walled (SWCNTSs) or as multi-walled (MWCNTS)
depending on the number of graphene layers. Specifically, a SWCNT can be
imaginary generated by rolling up a graphene sheet into a seamless tube with
a constant radius. MWCNTs are essentially nested SWCNTs. The concentric
CNT shells have an interlayer spacing of approximately 0.34 nm, that is close to
the typical atomic spacing of graphite, and they are stacked together with weak
van der Waals forces acting between their carbon atoms.

The diameter of a SWCNT is uniquely defined by the roll-up vector C7h, which
is named chiral vector, because it characterizes the helicity of the nanotube. This
property is specified in terms of a pair of integers (n,m), which constitute the
multiples of the magnitude of the basis vectors a7}, as, which are defined on the
haxagonal network of the graphene lattice (see Fig. 2.1). The chiral vector is

defined as a linear combination of these basis vectors:

C’lzno?i%—ma} (2.1)

The relation between chiral indices n and m results in different CNT configura-

tions which can be classified into three categories. For n = m the (n,n) CNT is
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Figure 2.1: Graphene lattice structure and definition of chiral vector Ch

constructed, which is usually labeled as ”armchair”, while for m = 0 the (n,0)
CNT is constructed, which is usually labeled as ”zig-zag”. These two CNT types
are generaly named ”achiral nanotubes”. On the other hand, the nanotubes de-
rived from the (n,m) pair of indices, where n # 0 and n # m, are labelled as
”chiral nanotubes”. Figure 2.2 illustrates the lattice structure of each chiral type
CNT. The chirality of the tube has significant impact on the transport properties
of the CNT, particularly on its electronic properties. For a given (n,m) CNT,
if (2n + m) is a multiple of 3, then the nanotube is metallic, otherwise the nan-
otube is a semiconductor. A (n,m) SWCNT can be constructed by cutting the
graphene sheet along the dotted lines (see Fig. 2.1) and rolling it across the chiral
vector direction so as the perimeter of the tube to be equal to the length of chiral
vector. The angle between the vectors C7h and &) which defines the twist of the

tube is the helicity angle and can be calculated by:

05 = atan ( V3 m ) (2.2)

2n+m

From Eq. (2.2) it is simple to evaluate that 5 = 30° for armchair configuration

17



2. CARBON NANOTUBES

and 0 = 0° for zig-zag configuration. For any other chiral nanotube the angle
0 € (0°,30°). The nanotube diameter is defined as:

L oVnZ4+n.m+m?
dn, = || (2.3)

™

where |a}| = |db| is the length of the basis vectors, which equals to v3acc. The
length of C-C bonds is acc = 0.1421 nm, which is shorter than that in diamond,
indicating the superior strength of CNTs. To roll up a graphene sheet into a
SWCNT the following simple rule is followed:

[Ty Yns Zn] = [rn cos (?) Ty Sin (?)yg} (2.4)

where z, and y, are initially the spatial coordinates on the graphene sheet and
ZTn,Yn and z, are the spatial coordinates after the rolling up of the graphene sheet,
which results in a nanotube with radious r,. Fundamental relations governing
the geometry of CNTs are reviewed in Dresselhaus et al [20] along with explicit

examples.

(a) Armchair (n,n) (b) Zig-zag (n, 0) (¢) Chiral (n, m)

Figure 2.2: Lattice of: a) Armchair, b) Zig-zag and ¢) Chiral CNTs
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2.2 Modeling techniques for CNTs

Experimental characterization of CN'T materials is still remaining a great chal-
lenge. This is due to the technological difficulties in handling matter at nano
scale and the excessive cost of the required experimental setups. On the other
hand, many computational techniques have been introduced as an alternative for
the characterization of CNT materials. These can be classified into three main
categories: a) atomistic, b) continuum and ¢) continuum based nanoscale mod-
eling techniques. Different CN'T models constructed by employing each of the

aforementioned approaches are illustrated in Fig. 2.3.

(@) (b)

Figure 2.3: CNT models derived from a) atomistic, b) continuum and c) contin-
uum based nanoscale modeling techniques

In atomistic techniques, the Schrodinger’s wave equation, which is the ana-
logue of Newton’s second law of motion for quantum mechanics, is solved. From
the analysis the time evolution of bond interactions in a system of carbon atoms
and thus the physical properties of CNTs can be computed. Specific interac-
tive forces (force field potentials), which are related to the chemical bonding of
atoms and the system’s energy, have to be prescribed before the analysis. These
force fields act as the boundary conditions in the nonlinear differential equation
of the atomistic boundary value problem. Three basic categories in the context
of atomistic modeling techniques exist, namely the molecular dynamics (MD),
Monte Carlo (MC) and ab initio method. In both MD and MC methods, the
atomic forces are obtained by differentiating the interatomic force field potentials.
These can be pair-wise or many-body potentials, such as harmonic, Brenner, Ter-

sof, Tersof-Brener, Morse potential or even non bonded pair potentials, such as
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Lennard-Jones potential, which is used for calculating van der Waals forces [48].
Molecular dynamics is a deterministic method while Monte Carlo is a stochastic
one. On the other hand ab initio is totally different from the other two as it is
a potential-free method. Here the forces on atoms are found progressively from
electronic structure calculations. Many atomistic numerical studies are reported
in literature, such as tight binding molecular dynamics (TBMD), local density
(LD), and density functional theory (DFT) approaches [35, 17, 107, 29, 73], all
employed in order to predict the elastic moduli and strength of CNTs. Despite
their accuracy, atomistic modeling techniques have a limited range of applica-
bility into short time and small size simulations. So, large molecular systems,
spanning over the range of a few picoseconds in time and a few nanometers in
size, can not be simulated with atomistic techniques, even by the state-of-the-art
supercomputers due to excessive computational time and insufficient computer

memory resources.

Continuum modeling techniques employ the continuum mechanics theories of
rod, trusses, beams, shells, or curved plates in order to study the mechanical
properties of CNTs. The basic assumption in these theories is that the lattice
structure of CNTs is replaced by a continuum medium which has continuous
distribution of mass and stiffness. The validity of the continuum models need
to be carefully tested, as they ignore the real discrete structure of CNT lattice.
In the context of continuum approaches, both analytical and numerical models
have been introduced. Many researchers have employed continuum shell mod-
els to study CNTs. Similarities between the MD model and the macroscopic
shell model of the CNT was presented by Yakobson et al [105]. They have also
shown that mechanical properties of CN'Ts were strongly dependent on helicity
and atomic structure of the tubes. Thus, the effect of curvature and chirality
on the mechanical properties of CNTs cannot be captured by an isotropic shell
model. Chang [12] used an anisotropic shell model. Unlike common shell mod-
els, which assume isotropic elastic properties, this model can predict the chirality
induced anisotropic effects on some mechanical behaviors of CNTs by incorporat-
ing molecular and continuum mechanics. In general, more complex shell theories,
such as Sanders theory, are capable of reproducing the results of MD simulation.

However, some parameters, such as wall thickness of CNTs, are not well defined

20



by the continuum models. The applicability and limitations of shell models in
predicting the mechanical properties of CNTs have been extensively discussed
in many literature papers [100, 67]. Recently, nonlocal continuum theories have
been also employed for the CN'T material characterization. Specifically, Arash
and Wang [2] have pointed out the superiority of nonlocal elasticity models of
beams, shells and plates in simulating CN'T's, compared to the classical continuum

models.

Contrary to continuum modeling of CNTs, where the whole nanostructure is
replaced by a continuum medium, continuum based nanoscale modeling provides
a rationally acceptable compromise by replacing C-C bonds with continuum ele-
ments. In other words, in continuum based nanoscale modeling the C-C atomic
interactions are captured using structural members, whose properties are obtained
through atomistic modeling. In this context, the quasi-continuum (QC) and the
equivalent-continuum (EC) methods have been utilized in modeling CNTs, where
continuum mechanics theories are applied at nanoscale. In the quasi-continuum
method, introduced by Tadmor et al [90], a relationship is established between
the strain energy of a material point on the continuum and the deformation of its
crystal lattice. This relation follows the Cauchy-Born rule. On the other hand,
in the equivalent-continuum method , introduced by Odegard et al [64], a cor-
relation between computational chemistry and continuum structural mechanics
is provided. Here the modeling procedure is performed into two stages. In the
first stage, the discrete molecular structure of the material is replaced with an
intermediate continuum model consisting of two types of truss elements, one of
which captures changes in bond length and the other describes angle variations.
It has been shown that this replacement may be accomplished by equating the
potential energy of the whole molecular system to the strain energy of the truss
elements of the continuum model. In the second stage, the truss-based contin-
uum model is replaced with an equivalent continuous cylinder based once again
on energy equivalence. The main shortcomings of this method are the complexity

of the model and the excessive computations required for its analysis.
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2.2.1 Molecular structural mechanics

Among the EC approaches the molecular structural mechanics (MSM) developed
by Li and Chou [50] has attracted great attention because of its simplicity and
effectiveness. The energy equivalence in this approach is established in a different
way than that in the classical EC method. The potential energy produced by
the C-C atomic interactions is equating to the sum of energies produced by the
deformations of a beam element, which substitute the C-C chemical bond. Thus,
the method results in a space frame model built by connected beam elements,
which is equivalent to the atomistic model of the lattice of the CNT material.
In principle, this approach provides a linkage between molecular mechanics and
continuum structural mechanics by which geometry and material properties of
the beam elements are obtained. Figure 2.4 illustrates the lattice structure of
a CNT which is modeled by the MSM method, where a pattern of a hexagonal

network of beams can be recognized.

carbon atom —»node

¢ C-Chond —»beam element

Figure 2.4: Lattice structure of a CNT modeled by MSM method
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2.2.1.1 Structural mechanics

In structural mechanics analysis the displacements, strains and stresses of a struc-
ture subjected to specific loading conditions are determined. In this context, the
stiffness matrix method is widely used to analyze structures of any geometry. It
can be applied in linear elastic static problems as well as in problems involving
buckling, plasticity and dynamics. Specifically, for linear elastic problems the for-
mulation of the method starts with the elemental equilibrium equation written

for an element in the space frame model (see Fig. 2.5) as follows:

Ku=f (2.5)
where
_ T
u= [ul'i7 Uiy Uzi, Hmiy Hyh 02i7 Ugjy Uyjs Uzgs 0%]7 eij 92]] (26)
f = [fmv fyia fZi7 Mhgiy Maygy Mz, iju fyj: ij7 Mgy Myj, mzj]T (27)

are the nodal displacement vector and nodal force vector of the element, respec-

tively. K is the elemental stiffness matrix, which is formed by the following

submatrices:
Ku Ki'
K= [ - J] (2.8)
Kij ij
where
[ EA/L 0 0 0 0 o |
0 12E[T/L3 0 0 0 (SEII/L2
12F1,/L? —6FEI,/L?
koo | O 0 ./ 0 6EI,/ 0  29)
0 0 0 GJ/L 0 0
0 0 —6EI,/I* 0  4EI,/L 0
0  G6EI/L? 0 0 0 AFIL,/L
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2. CARBON NANOTUBES

[ —FA/L 0 0 0 0 0
0 —12E1,/L? 0 0 0 6EI,/L?
_ 3 _ 2
K, - 0 0 12E1,/L* 0 6EI,/L 0 210
0 0 0 ~GJ/L 0 0
0 0 6EI,/L? 0 2F1,/L 0
0 —6EL/L? 0 0 0 2E1,/L |
[ EA/L 0 0 0 0 0 ]
0 12EL/L? 0 0 0 —6EI,/L?
0 0 12E1,/L* 0  6EIL,/L? 0
Ky — v/ % (2.11)
0 0 0 GJ/L 0 0
0 0 6EL,/L2 0 4EI,/L 0
0 —6FEI,/L? 0 0 0 4E1,/L

Given the length L of a frame element, only the four stiffness parameters need
to be determined in order to define the elemental stiffness matrix K. These are
the tensile resistance F'A, the flexural rigidities £'1, and E1, and the torsional
stiffness GJ. In order to obtain the deformation of a space frame model, the
above elemental stiffness equations should be established for every element in the
model and then all these equations should be transformed from local coordinates
to a global reference system. Finally, a system of linear equations is assembled
according to the requirements of nodal equilibrium. By solving this system and
taking into account the boundary restraints, the nodal displacements can be

obtained.

2.2.1.2 Molecular mechanics for CNTs

In the framework of molecular mechanics, a CNT can be regarded as a molecular
system consisting of carbon atoms. The deformation of the CN'T under a specific
load is governed by the atomic motions which are regulated by a force field. This
force field, which is generated by electron-nucleus and nucleus-nucleus interac-
tions, is usually expressed in the form of a steric potential energy. The general

expression of this total steric potential energy is a sum of energies due to valence
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Figure 2.5: Illustration of a beam element of the space frame model.

or bonded and nonbonded interactions as follows:

U=>U+Y U+ U+ Y Us+ > Usaw, (2.12)

where U,,Uy, Uy, U, and U,qw are the bond-stretching energy, the bond-angle
variation energy, the dihedral-angle torsion energy, the inversion (out of plane
torsion) energy and the van der Waals interaction energy, respectively. Note
that the energy terms due to the electrostatic interactions of the bonds are omit-
ted. The corresponding interatomic interactions are schematically represented in
Fig. 2.6.

(a)

Figure 2.6: Interatomic interactions in molecular mechanics: a) stretching, b)
bending, c¢) dihedral angle torsion, d) out of plane torsion and e) van der Waals.

There are a lot of studies in the field of molecular mechanics proposing dif-

ferent functional forms for the potential energy terms in Eq. (2.12), [8, 71, 16].
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2. CARBON NANOTUBES

These functional forms depend on the particular material and the loading condi-
tions considered, for describing the bond interactions. Both linear and nonlinear
potential expressions have been applied. The most widely used are the harmonic,
Morse, Tersoff-Brenner and Lenard-Jones potentials. In general, for covalent sys-
tems, the main contributions to the total steric energy come from the first four
terms. Under the assumption of small deformation, the harmonic approximation
is adequate for describing the energy [25]. For sake of simplicity and convenience,
we adopt the simplest harmonic forms and merge the energy terms from dihedral

angle torsion and the improper torsion into a single equivalent term, i.e.,

U, = %kr (r—ro)° = %kr (Ar)?, (2.13)
1
U’T - U¢ + Uw = 5’67’ (A¢>2 ) (215)

where k, , kg and k, are the bond stretching, bond angle bending and torsional-
resistance force constants respectively, and Ar, Af and A¢ represent the bond-
stretching, bond-angle and bond-twisting-angle variations, respectively. In prin-
ciple, the bond-angle variation force constant is the sectional bending rigidity

about the major principal axis of the covalent bond for a graphite sheet.

2.2.1.3 Linking molecular mechanics to structural mechanics

As discussed in Section 2.1 the carbon atoms on the CNT lattice are covalently
bonded to each other forming hexagon networks on the wall of the tube. These
covalent bonds are formed in three-dimensional space exhibiting characteristic
bond lengths and bond angles. The total deformation of a CNT subjected to
specific external forces is the result of the bond interactions which constrain the
displacements of the carbon atoms. A CNT could be simulated as a space frame
structure where the covalent bonds are represented by connected beam elements
while the carbon atoms act as joints of the connected elements. The stiffness

and geometric parameters of an equivalent beam can be determined from the
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relationship between the potential energy of the covalent bond due to atomic
interactions and the strain energy of the equivalent beam as a result of structural
deformation. According to structural mechanics, the strain energy of a uniform
beam with length L, Young”s modulus F, and circular cross-section A subjected
to a pure axial force N (Fig. 2.7a) can be expressed as:
1 (*N*  1INL 1EA

— - — e 2
Ua=3 , EA 2EA 21 &Y (2.16)

where AL is the axial stretching deformation. The strain energy of a uniform

beam subjected to a pure bending moment M (see, Fig. 2.7b) is written as:

1 [F M2 1M2L 1EI
Uy = - L= -

—dL == = ——"(2a)* 2.1
2 ), EI > Bl 21 (2.17)

where a denotes the rotational angle at the ends of the beam. Notice that for
circular cross section I, = I,, = I. The strain energy of a uniform beam subjected
to a pure torsion 7' (Fig. 2.7c) is denoted as:

I ;_1T°L _1GJ

Ur ==

_ - - Y 2
2 )y GJ “2ar 2z & (218)

where Af is the relative rotation between the ends of the beam.

Comparing the molecular Egs. (2.13)-(2.15) with the corresponding Eqs. (2.16)-
(2.18) of structural mechanics it can be deduced that both U, and U, represent
the stretching energy, both Uy and U, indicate the bending energy, and both U
and Ur stand for the torsional energy. Accordingly, Ar is reasonably assumed to
equal AL, Af equals 2a, and A¢ equals AS. Therefore, equating the aforemen-
tioned energy expressions the stiffness parameters of the structural beam element

are related with known molecular mechanics force field constants as follows:

EA=kL, EI=ky, GJ=kL (2.19)

Equation (2.19) establishes the foundation of applying the theory of structural
mechanics to the modeling of carbon nanotubes or other similar fullerene struc-
tures. As long as the force constants k,, ks and k, are known, the sectional

stiffness parameters EA, EI and GJ can be readily obtained. Then by following
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2. CARBON NANOTUBES

the solution procedure of stiffness matrix method for frame structures, the de-
formation and related elastic behavior of graphene sheets and nanotubes at the

atomistic scale can be simulated.

(b) | '\T

T
(c)

Figure 2.7: Structural deformations of a beam element: a) tension, b) bending
and ¢) torsion.

2.2.1.4 Parametric studies

In this section parametric studies are conducted in order to compute the me-
chanical properties of both armchair and zig-zag SWCNTs with respect to their
diameters. The MSM approach, described previously, is applied where the space
frame model is constructed by assuming round beam finite elements. The diam-
eter d, Young’s modulus F and shear modulus G of the beams are obtained from
Egs. (2.19) as follows:

EI ko k2L 2k L
d=44)—=— =44/ —, EF =1L G=-"L 2.20
V EA V k. Amky’ 8k (2.20)

The force field constant values k, = 938 kcal-mole-A~2= 6.52 x 10~7 N-nm™!,
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kg = 126 kecal-mole!-rad?= 8.76 x 107 N.-nm-rad? and k, = 40 kcal-mole ! -rad?=
2.78 x 10719 N-nm-rad2, defined by Cornell et al [16], are used in the subsequent
analyses. Substituting these force field constant values and the characteristic
bond length L = ac_¢ = 0.1421 nm into Egs. (2.20) the values of d = 0.147 nm,
E =5.49 TPa and GG = 0.871 TPa of the beam elements are obtained. Then, the
space frame model of a CNT is analyzed using FEM and its stiffness properties
can be calculated. Specifically, the axial, bending and torsional rigidities of a
SWCNT are derived by simulating a space frame model subjected to three inde-
pendent loading conditions, namely tension, bending and torsion. The boundary

and loading conditions for each test case are depicted in Fig. 2.8.

Figure 2.8: FE mesh and boundary conditions of a space frame model in a)
tension, b) bending and ¢) torsion

Specifically, the axial stiffness of a CNT with initial lengh Lg is calculated by
imposing an axial displacement u, at one end of the space frame model, while its
opposite end is kept fixed. The finite element analysis provides with the resulting
reaction forces F, (see Fig. 2.8(a)). Therefore, the equivalent value for the axial
stiffness of the CNT can be derived by the equation:

(EA),, = Folo (2.21)

Ug

In bending loading case, a transverse displacement u, is applied at the center

point of the one end of the space frame model, where all nodes are kinematically
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2. CARBON NANOTUBES

constrained (see Fig. 2.8(b)). The other end, where the resulting reaction forces
F, are calculated, is considered fixed. The equivalent bending stiffness of the
CNT is thus computed by:
F,
EI),, = —LL} 2.22
( )eq 3uy 0 ( )
Similarly, in torsion case, a torque T is applied at the center point of one end
of the model, which is kinematically constrained to the peripheral nodes of this
section, as shown in Fig. 2.8(c). The nodes at the other end section of the model
are fully constrained. The angle of rotation ¢ of the center point is calculated
by means of a FE analysis and the equivalent torsional stiffness of the CNT is
calculated as follows:
T

(GJ)eg = ELo (2.23)

A number of space frame models for both armchair (n,n) and zigzag (n,0)
chirality type nanotubes with aspect ratio approximately ten have been analyzed.
Figure 2.9 illustrates the stiffness values of the CNTs computed from Eqs. (2.21)-
(2.23) with regard to their real diameters (Eq. (2.3)). As it can be observed from
the figure, the chirality type of the CNT slightly affects its stiffness, which seems
to be strongly dependent on the diameter of the CNT. It can be deduced that the
stiffness parameters of a nanotube with theoretically infinity diameter correspond

to these of a graphene sheet.

2.2.2 Modeling the nonlinear C-C bond behavior

The quadratic potential, which results in harmonic approximations of the molec-
ular energies (Egs. (2.13)- (2.15)), is adequate for describing small deformations
of the CNT lattice in the context of MSM approach. However, when the behavior
of CNTs under large strains is to be simulated, the nonlinear behavior of the C-C
bonds has to be modeled. For this reason, the empirical interatomic potentials are
adopted, which can adequately describe the interatomic interactions even when
large deviations from equilibrium occur. There are two types of such potentials,

pairwise and many-body. The major difference between them lies in the consid-
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Figure 2.9: Stiffness values in a) axial, b) bending and c) torsion case for armchair
and zig-zag nanotubes vs diameter

eration of non-bonded interactions by many-body potentials. In order to restrict
the pair potential to nearest neighbors, many-body potentials introduce a cut-off
function, which has found to cause strange features in the resulted force-strain
curve [5]. On the other hand, the pairwise modified Morse potential has been em-
ployed in many studies because of its simplicity over many-body potentials and
its adaptability with FEM [103, 89]. According to the modified Morse potential,

the total potential energy of the nanotube system is expressed as:

U=> U+ U (2.24)
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2. CARBON NANOTUBES

Uy = D |(1 = e 7)1 (2.25)

1
Us = 5k (6~ 60)" [1+ ksextic (6 — 60)'] (2.26)

where U, , Uy are the bond energy due to bond stretching and bond angle-bending
and r, 6 are the current bond length and the current bond angle, respectively.
According to Belytschko et al [5] the parameters of the Morse potential are:
ro = 1.421 x 107 m, D, = 6.03105x 10~ N-m, 3 = 2.625 x 10'° m™, 6, = 2.094
rad, kg = 0.9 x 107"® N-m/rad?, kgeytjc = 0.754 rad™. Belytschko et al [5] have
defined these specific parameters so as to enforce equivalence between Morse’s
potential and Brenner’s potential for strains below 10%.

Differentiation of Eq. (2.25) results to the definition of the nonlinear stretching
force between the carbon atoms in the C-C bond. This relation is given by the

following molecular force-field:
F=28D, (1 — e Prmro)) g=flr=ro) (2.27)

Figure 2.10 plots the relationship between the axial force F' and the axial strain
e for the C-C bonds. The strain of the bond is defined by ¢ = (r — ro) /7. As
may be seen, the force-strain relation is highly nonlinear at the attraction region
especially at large strains. The inflection point (peak force) occurs at 19% strain.
The repulsive force (¢ < 0) increases rapidly as the bond length shortens from
the equilibrium length ry with less nonlinearity than the attractive force.

Also differentiation of Eq. (2.26) results to the definition of the bond moment
M with respect to the bond angle change A6 = 6 — 6. This relation can be

expressed in the form:

M = koG (1 + BkgeyticA0") (2.28)

In Fig. 2.11 the bond moment M is plotted against the bond angle change A#6.
It can be seen that for small angles (< 0.5 rad) the moments are kept low and
linear behavior is observed. The nonlinear bending behavior is obvious for larger

angles where significant increase in moment values occurs.
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Figure 2.10: Force-strain curve of the modified Morse potential
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Figure 2.11: Moment-angle change curve of the modified Morse potential

For modeling the C-C nonlinear bond behavior in nanotubes, Bernoulli beam
elements, which have been assigned material nonlinearity, are used. Specifically,
the von Mises plasticity model is applied, where yielding parameters of beams
are defined from the nonlinear force-strain curve of the modified Morse potential

(Fig. 2.10). Initially, the stiffness of the beam elements is evaluated from the
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2. CARBON NANOTUBES

initial slope of that curve using the element’s cross-sectional area A. Then for each
load increment the total engineering stresses ¢ = F'/A are calculated. Therefore,
assuming a very small elastic strain limit (~ 0.2%), the yield stress-plastic strain
data for the von Mises model are defined. Figure 2.12 presents the yield stress-
plastic strain curve derived for beam elements with diameters d = 0.34 nm, which

are equal to the interlayer spacing of graphite.

100

0 5 10 15
g1 (%0)

Figure 2.12: VYield stress-plastic strain curve for von Mises model obtained for
beams with diameter d = 0.34 nm

The validity of the proposed model is tested on a zig-zag (20,0) CNT space
frame model subjected to an incremental tensile loading. In addition a damage
model is incorporated in the FE analysis to account for nanotube fracture. This
damage model is based on the element deletion technique which is triggered when
the total axial strain on a beam reaches the inflection strain of the bonds (19%).
Notice that as bond stretching dominates nanotube fracture and the effect of
angle-bending potential is very small, only the bond stretching potential is con-
sidered in the simulation. Figure 2.13 shows the comparison of the stress-strain
curves predicted by the proposed modeling technique with those obtained by the
MD simulation of Belytschko et al [5], the progressive fracture model (PFM) of
Tserpes et al [96] and the experiments of Yu et al [109]. As it can be observed,
the experimental curves show very large dispersion, probably due to insufficient

experimental setups at nanoscale. The strain of the nanotube is calculated by
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en = (Ly — Lyy)/ Ly, where L, is the current nanotube length and L, is the ini-
tial length prior to loading (L,, = 41.9 nm). The stress is given by o,, = F,, /A,
where F}, is the total reaction force computing on the fixed end of the nanotube
by summing over all the nodal reaction forces lying there. A, = wd,t is the
cross-sectional area of the uniform nanotube, which has a diameter d,, = 1.57 nm
and a wall thickness ¢ = 0.34 nm. The stress-strain curve, obtained by the pro-
posed modeling technique, show a very good correlation with the corresponding
curve obtained by the MD simulation of Belytschko et al [5]. This fact implies
the efficiency of the proposed continuum base nanoscale model in predicting the

nonlinear mechanical behavior of CNTs.
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Figure 2.13: Nonlinear stress-strain curve of zig-zag (20,0) CNT predicted in
present study, comparison with other theoretical and experimental studies: MD
simulation of Belytschko et al [5], PFM of Tserpes et al [96], experiments of Yu
et al [109]
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Chapter 3
Thermoplastic polymers

Depending on the type of polymer matrix used to fabricate composites, these
are classified as being thermosets or thermoplastics. Unlike thermosets which
require a crosslinking chemical reaction in order to solidify, thermoplastics do
not have crosslinks; hence, they are essentially stronger than thermosets and can
be easily reprocessed. In this chapter the main properties and applications of
thermoplastic polymers are discussed. Suitable constitutive models, which can
simulate the viscoelastic behavior of thermoplastics, are introduced along with

the calibration procedure for specific materials.

3.1 Properties and applications

When considering materials for load-bearing applications, designers are increas-
ingly examining the advantages of using thermoplastics materials, instead of tra-
ditionally accepted materials and, in particular, metals. Thermoplastics have
three main advantages, their low specific gravity, their low energy requirements
for manufacture and their low cost of fabrication, particularly by the injection
moulding route. In Table 3.1 the main properties of the most common used
thermoplastic polymers are recorded. Because of their interesting properties and
their relatively ease of production, thermoplastic polymers are widely used in
various industrial sectors such as in automotive, aerospace, sporting goods, con-

sumer electronics, and many other fields. Although thermoplastics have higher
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3. THERMOPLASTIC POLYMERS

strength-to-weight ratios than aluminium and steel, their main drawback is their
low stiffness-to-weight ratios especially at elevated temperatures. For this rea-
son, reinforcement of thermoplastics is crucial for achieving improved mechanical

properties, so that they can be used in a variety of applications.

Polymer Density ~ Young’s Tensile  Fracture Glass Softening Thermal
(g em™)  modulus strength  toughness temperature expansion conductivity
(20°C 100s) (MPa)  (20°C) T (K) temperature (Wm™! K1)
(GPa) (MPa m'/?) T, (K)
Polyethylene, PE 0.91-0.94 0.15-0.24 7-17 1-2 270 355 0.35
Polypropylene, PP 0.91 1.2-1.7 50-70 3.5 253 31 0.2
Polystyrene, PS 1.1 3.0-3.3 35-68 2 370 370 0.1-0.15
Polyvinyl, PVC 14 2.4-3.0 40-60 2.4 350 370 0.15
Poly-ether-ether-ketone, PEEK  1.3-1.4 2.7-3.5 80-100 - 416 426 -

Table 3.1: Properties of common thermoplastic polymers

3.2 Modeling viscoelasticity

The behavior of a thermoplastic polymer is rather complex due to time, strain rate
and temperature dependence. This complex multivariate behavior is described
as viscoelastic behavior. Viscoelastic materials are distinguished from materials
which are idealized as being purely elastic. They exhibit properties such as relax-
ation, creep, frequency dependent stiffness and dissipative characteristics as well
as strain rate dependent hysteretic behavior. The mathematical models used to
simulate viscoelastic materials are formulated as differential equations or convo-
lution integrals. The latter approach is followed by the models presented in this

section.

3.2.1 Basic assumptions

Formulation of constitutive models for viscoelastic polymers is based on some
fundamental assumptions. Thermorheologically simple materials for which the
time-temperature superposition principle is valid, are initially considered (see
Schwarzl and Staverman [80]). The thermomechanically coupled process is sim-
plified and the generation of heat is not taken into account, i.e., an isothermal

situation is assumed. Furthermore, fatigue damage phenomena usually observed
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during the first loading cycles of polymers are not taken into account. Linear vis-
coelastic material models are considered in this theses, for which the Boltzmann

superposition principle is applicable.

3.2.2 Elementary mechanical models

Elementary mechanical models that can describe some aspects of viscoelastic be-
havior of polymers are described in this section. Although these simple models
are based on some fundamental assumptions and cannot represent the behavior
of real polymers over the complete time history of their use, they are very help-
ful in gaining physical understanding of the phenomena of creep, relaxation and
frequency dependent stiffness. The basic constitutive rheological elements of lin-
ear viscoelasticity are the elastic spring called Hooke-element, which represents
elastic behavior, and the viscous Newton-element, which represents viscous be-
havior (Fig. 3.1). The spring constant F stands for the elastic modulus of a bar
subjected to uniaxial tension, where the linear relation between the elastic strain

¢ and the elastic stress o€ is derived as:

o¢ = Ee° (3.1)

On the other hand, the Newton-element simulates the behavior of a linear viscous
damper, where a linear relation between the viscous strain rate £ and the viscous

stress 0" is established through the coefficient of viscosity n:

o’ =ne’ (3.2)

The Hooke and the Newton-element can be combined in a variety of arrange-
ments in order to produce any viscoelastic response of a polymer. The simplest
viscoelastic model is the Maxwell-element depicted in Fig. 3.1. This consists of
a Hooke-element connected in series with a Newton-element. A relation between
stress and strain can be obtained for any mechanical model by using equilib-

rium and kinematic equations for the system and constitutive equations for the
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Figure 3.1: Elementary mechanical models: a) Hooke-element, b) Newton-
element and ¢) Maxwell-element

elements. The equilibrium equation for the Maxwell model is as follows:

o=0°=0" (3.3)
where o is the applied stress, ¢° is the stress in the spring and oV is the stress in
the damper. The kinematic condition is expressed as:

e=c¢c"+¢" (3.4)

where ¢ is the total strain in the Maxwell-element, € is the strain in the spring and
v is the strain in the damper. The constitutive equations are given by Eq. (3.1)
and Eq. (3.2) for Hooke and Newton-element respectively. By differentiating the

equilibrium and kinematic equations we get:

6 =6"=¢" (3.5)

and
e=¢e%°+¢&" (3.6)

Combining Egs. (3.1), (3.2), (3.5) and (3.6) the fundamental differential equation
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for Maxwell model is derived in the form:

1 1

Equation (3.7) can be written after rearrangement as:
1 .
0+ —0 = FE¢ (3.8)
T

where the relaxation time 7 is expressed in terms of the viscosity parameter n

and the elastic constant £ in the form:

T=+% (3.9)

Thus, the stress-strain relation of a material which exhibits Maxwellian be-
havior is given by the solution of the differential equation (3.7) or (3.8) under
prescribed loading conditions. For instance, a relaxation test is simulated by

applying a constant strain to the Maxwell-element during the total deformation
history of the solid:

£(0) = £(t) = const (3.10)
For this test case the solution of the differential equation (3.8) yields:
on = ce 7 and g, =0 (3.11)

where o0}, and o, are the homogeneous and the particular solution respectively.

By applying the following initial conditions,
for t =0, &(0) = E£(0) (3.12)

the constant ¢ in Eq. (3.11) is defined as ¢ = E£(0). Substituting this to the

solution results to the following stress history equation:

5(t) = E£(0)e ™~ (3.13)

where the relaxation function I, which characterize the viscoelastic response of
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3. THERMOPLASTIC POLYMERS

the material in time domain, is defined by:

['(t)= Ee ~ (3.14)
Figure 3.2 plots the relaxation behavior of a Maxwell-element in terms of stresses
and strains. As shown the relaxation time 7 is given by the initial slope of the
stress-strain curve. From Eq. (3.13) the stress at a time equal to the relaxation
time 7 is derived as 6(0)/e. This quantity can be used as a measure of the
relaxation time of a polymer subjected to relaxation. Notice that as the time
tends to infinity the relaxation stress of the material is fully reduced, o(t —
o0) = 0.

€ A g A

£(0)

»

>

time () t time (t)

Figure 3.2: Relaxation behavior of a Maxwell-element

3.2.3 The Maxwell-Wiechert model

A real polymer does not relax with a single relaxation time as predicted by the
Maxwell model of Section 3.2.2. Usually a distribution of relaxation times exists.
Thus, an extension of the Maxwell model is required, so that more accurate
predictions of the viscoelastic behavior of polymers can be achieved. Such an
advanced viscoelastic model is the Maxwell-Wiechert model, which is formed
by a finite number of separated Maxwell-elements connected in parallel with an

elastic Hooke-element ( see Fig. 3.3). The stress history equation for this model
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is given by:

N
5(t) = Exf(0) + Y Eje 7£(0) (3.15)

j=1
where 7; = n;/E; is the relaxation time for the j™ Maxwell-element, where

j =1,...,N. The response of the N Maxwell-elements and that of the Hooke-
element are contributed to the characteristic relaxation function of the model,

which is expressed as:

t

N
[(t)=Ex+ Y Eje & (3.16)
j=1

The instantaneous and the long term relaxation modulus of the model are defined

respectively in the form:

Iy = lim ['(t) = Bx + 2 E; (3.17)
p
Iy = lim ['(t) = E (3.18)

3.2.4 Boltzman superposition principle

The Boltzman superposition principle is one of the simplest but most powerful
principles in polymer physics. Considering a creep test where a Maxwellian ma-
terial is loaded by a constant stress og for a time period ¢t > t;, the strain history

is given as:

E(t) = Y (t —to)H(t — to)oo (3.19)

where 17, H are the creep compliance and the Heaviside unit step function, re-
spectively. If an additional stress oy is applied on the material at time ¢ > ¢y,

then the equivalent strain response is defined by:

E) =Y (t—to)H(t —ty)oo+ Y (t —t1)H(t — 1) (01 — 00) (3.20)
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A 4

Figure 3.3: Schematic of the Maxwell-Wiechert viscoelastic model.

According to the superposition principle, the strain response of a system at ¢ > t;
is a superposition of the response due to the loading oy applied at to <t < t; and

the response due to the loading Ao = (o7 — 09) applied at ¢ > t; (see Fig. 3.4).

o £
total result
01 ......................................... _?— ://—
’ result of o,
Ac Rt f oo
go| ERasm | Tesultofdo
to ty time (t) to ty time (t)

Figure 3.4: Boltzman superposition principle

The Boltzman superposition principle asserts that for a linear viscoelastic ma-
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terial stresses act independently and the resulting strains add linearly. So for a

combined load history of the form:

M
5(t) =Y H(t—t)Ao; (3.21)

i=1
the resulting strain is computed directly by superposition of the responses due to

the separated loadings Ao; as follows:

M M
Bty =) &t —t) =) Y(t—t;)H(t—t;)Ao; (3.22)

i=1 i=1
Assuming infinitesimal loading steps, the total strain is determined by the integral

equation:

A1) = /0 V(t— $)EH(t — s) dr(s) (3.23)

If the stress history is differentiable with respect to time then the above hereditary

integral is reduced to:

£(t) = /0 tY(t - s)g—‘; ds (3.24)

An equivalent integral representation for the stress history is defined in case of a

relaxation test as:

6(t) = /0 f(t—s)%ds (3.25)

where ['(t—s) is the relaxation function. Creep and relaxation are merely two dif-
ferent aspects of viscoelasticity. The transition from one property to the other can
be done through an integral relationship which is known as convolution integral

and is expressed in the form:

A

t= /tF(s) Y(t—s)ds (3.26)

This convolution integral, which is used to transform creep data to relaxation

data and vice versa, can be derived using inverse Laplace or Fourier transforms.
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3.2.5 Dynamic Mechanical Analysis

In previous sections, the viscoelastic behavior of polymers subjected to creep or
relaxation tests was described in time domain. However, viscoelasticity is better
understood when is formulated at frequency domain. Thus, viscoelastic prop-
erties of polymers are studied by dynamic mechanical analysis (DMA), where a
sinusoidal force (or stress o) is applied to a material and the resulting displace-
ment (or strain €) is measured. For a perfectly elastic solid, the resulting strain
and the applied stress will be perfectly in phase. For a purely viscous fluid, there
will be a 90° phase lag of strain with respect to stress. Viscoelastic polymers have
the characteristics in between, where some phase lag will occur during DMA tests.
Specifically, in the case of an oscillating load, which is expressed by the periodic

stress:

o = opcoswt (3.27)

where oy is the amplitude and w is the load frequency of the oscillation, the
resulting strain oscillates at the same frequency w but lags behind the stress by
the phase shift o:

e = gocos(wt — 0) (3.28)

To describe an harmonic vibration, it is useful to represent the oscillation by a
rotating vector in the complex plane. This complex vector can be expressed in
polar form and can be written in terms of trigonometric functions using the Euler

relationship:

twt

e’ = coswt + i sinwt (3.29)

where i is the imaginary unit which satisfies the equation 2 = —1. Equa-

tions (3.27) and (3.28) can be expressed in polar form as:

o = ope" (3.30)

£ = goe'@t™d (3.31)
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The phase shift ¢, which is often called loss angle, is an important quantity in the
viscoelastic material characterization. It is responsible for the observed hysteresis
loop in the stress-strain curve of a material under an harmonic vibration. The
area filled up by this hysteresis loop is a measure of the dissipated energy of the

material per loading cycle.

The frequency based formulation of viscoelasticity is then applied to the
Maxwell-element described in Section 3.2.2. Thus, rearranging Eq. (3.8) the

differential equation of the Maxwell model is written as:

TEé=16+0 (3.32)

Substituting the polar expression of stress and strain to the above equation results
to:

iwtBeg = oo(1 + iwr)e® (3.33)

From Eq. (3.33) the complex relaxation modulus for the Maxwell model can be
obtained in the form: .
i6 _ p tWT

e _ 90

e (3.34)

€0 1+iwr

The complex modulus I'* can be split into a real and an imaginary part as:

w372 , WwT

=T il =E— _ +ip—"
T 1+w272+l 1+ w2r?

(3.35)

where the components IV and I'” are called storage and loss modulus, respectively.

These moduli, along with the mechanical loss factor

r” 1
tand = — = — 3.36
an T = on (3.36)
which is defined as the ratio of imaginary I and real part IV, are all functions of
frequency w.

In the case of Maxwell-Wiechert model, where N Maxwell-elements are con-

nected in parallel with an elastic spring E, (see Fig. 3.3), the complex relaxation
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modulus is defined as:

I =T 4il”
N 1WT;
=F, + E.——1
; 1 +iwT (3.37)
N w2T? N WT;
=F FE J FE J
+; J14—&127]2_*— Zl 71 4 w2r?

Notice that the complex relaxation function (3.37) can be directly derived at fre-
quency domain by applying a Fourier transform of the time-dependent relaxation
function (3.16).

3.2.5.1 Master curves of viscoelastic materials

Viscoelastic material characterization requires measurements of elastic moduli
over a large range of time or frequency. Notice that time and frequency are
equivalent reciprocal quantities. For technical reasons, elastic moduli are deter-
mined only within a limited range of time or frequency but within a wide range
of temperature. Thus, at a reference temperature 77, a master curve of a vis-
coelastic material can be experimentally determined, by shifting the measured
values by a factor ap according to the time-temperature correspondence prin-
ciple. In this way, the master curve of the material is derived as a continuous
graph of its elastic moduli over a wide range of time or frequency. Different
master curves are obtained, depending on the reference temperature 77 for which
they are constructed. Figure 3.5 illustrates how the time-temperature correspon-
dence principle for modulus M of a material is employed in order to construct its

master curve. This principle is described by the following equation:
N N t
ar

The values of M measured at temperature T, are shifted in time or frequency
space by a factor ar, so as from Eq. (3.38) the equivalent values of M at tem-

perature T; can be calculated. This shifting procedure is repeated for all the
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experimental values measured at temperatures 73 and 7} in Fig. 3.5, so that the
master curve of the material at reference temperature T can be constructed.
Many expressions of the factor a, which shifts the modulus M along the time
or frequency scale according to the temperature increment, have been introduced
in literature. Williams, Landel and Ferry (1955) [102] introduced a quantitative
relation for the correspondence principle named after them as WLF equation.

The shifting factor ar in the WLF equation is given explicitly by

17.4(T — Tg)
51.6 4 (T — T)

logar = (3.39)

which is a function of temperature 7. The constants 17.4, 51.6 vary slightly from
polymer to polymer and thus the only material parameter required is the glass
transition temperature 7. This parameter serves as the reference temperature
for which the master curve of the polymer is constructed and is equivalent to the

temperature 77 in Fig. 3.5.

=
T
o0 1,
o .I \
L
Y P
: T ....... : ....... .
03N ar h
i T4..§ .........
ty tr logt,logw

Figure 3.5: Time-temperature correspondence principle

3.2.6 Calibration of Maxwell-Wiechert model for PEEK

The master curves of a material, which are constructed following the experimen-
tal procedure of Section 3.2.5.1, are used in viscoelastic material characterization.

In the case of a viscoelastic material, which is simulated by the Maxwell-Wiechert
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model, a nonlinear least-squares algorithm is used in order to define the unknown
relaxation times 7; and the elastic spring constants E; of Eq. (3.15). The numer-
ical master curves, which are constructed by using the aforementioned defined
parameters, are the most accurate ones, which best fit to the experimental mas-
ter curves. In this section the experimental master curves of PEEK will be used
to demonstrate the calibration procedure. The error function which has to be

minimized is:

>

R? = i ! (=T 4 (= 1);] (3.40)

2
00

where [V and I are the numerical predicted storage and loss modulus values of
PEEK, while IV and T are the corresponding experimental data measured at M
values of frequency. The master curves of PEEK have been derived from DMA
tests which have been conducted by Prof. Evangelia Kontou in the laboratory
of mechanics at the School of Applied Mathematics and Physical Sciences of Na-
tional Technical University of Athens. The results are illustrated in Fig. 3.6 and
3.7, where the values of storage and loss tensile modulus are depicted with respect
to frequency w in logarithmic axes. The numerical master curves, which are also
plotted in these figures, seems to be very close to the experimental ones verifying
the efficiency of the calibration procedure of PEEK. The instantaneous Young’s
modulus of the material corresponds to the value of the storage tensile modulus
at the highest frequency. From the corresponding master curve this is found to
be Ey ~2.8 GPa. The parameters of the Maxwell-Wiechert model for PEEK
derived after minimization of the error function (3.40) are recorded in Table 3.2.
The nonlinear least-squares fitting algorithm for PEEK results in twelve Maxwell-
elements. Each of these elements contribute to the total viscoelastic response of
PEEK as shown in Fig. 3.6 and 3.7. Notice that the parameter identification
is conducted on the basis of the storage modulus I'. This fact leads to some
unavoidable discrepancies between the numerical predicted and the experimental

values of the loss modulus I'”.

Using the parameters recorded in Table 3.2 the long term tensile modulus of
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Figure 3.6: Storage modulus: experimental master curve vs mathematical model
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Figure 3.7: Loss Modulus: experimental master curve vs mathematical model

PEEK can be calculated as:

Ew=Eo(1-) E (3.41)
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Ej [GP&] T J Ej [GP&] T

8.31E-02 1.42E-06 | 7 3.35E-01 3.77E-01
1.28E-01 1.96E-05 | 8 2.84E-01 2.65E+400
2.29E-01 1.74E-04 | 9 2.19E-01 2.12E401
2.92E-01 1.30E-03 | 10 1.54E-01 2.09E+02
3.47E-01 8.85E-03 | 11 991E-02 2.88E+03
3.60E-01 5.78E-02 | 12 5.97E-02 7.16E+04

D UL W N .

Table 3.2: Parameters of Maxwell-Wiechert model for PEEK

Then, from Eq. (3.16) the time dependent relaxation modulus of PEEK can be
determined. Creep tests on PEEK specimens are simulated by applying the con-
volution integral of Eq. (3.26) in order to compute the compliance modulus of
the material. Experimental results obtained from creep tests on laminated PEEK
specimens have been provided by Victrex (http://www.victrex.com). The ge-
ometry of the specimens used in these experiments along with the mesh of the
FE model used in the numerical analysis are illustrated in Fig. 3.8. Plane stress
quadrilateral elements with a global size of 3 mm are used for the discretization of
the specimen. Figure 3.9(a) plots the strain history obtained from various creep
tests. Each curve corresponds to different constant applied stress magnitudes
ranging from 20 to 60 MPa. The numerical curves predicted by the Maxwell-
Wiechert model are presented in Fig. 3.9(b) . As it can be observed from these
figures, the Maxwell-Wiechert model is also capable of accurate simulation of the
creep behavior of PEEK for each stress magnitude. Figure 3.10 plots the tensile
isochronous stress-strain curves of PEEK derived after creep tests. Both the ex-
perimental and numerical curves have been obtained by applying a constant stress
of 50 MPa on the specimen of Fig. 3.8 for a time period ranging from 0.01 to 1000
hours at room temperature. Once again, for these test cases comparison between
the measured and predicted results confirm the validity of the Maxwell-Wiechert
model in simulating viscoelastic response of PEEK. In Appendix A the viscoelas-
ticity theory is explained in detail where the appropriate viscous equations for

both triaxial and reduced states of stress are presented.
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Figure 3.8: Geometry and FE mesh of specimen used in creep tests
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Figure 3.9: Strain history of PEEK obtained from creep tests: a) Experiments
and b) Simulations
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Figure 3.10: Tensile isochronous stress-strain curves of PEEK: a) Experiments
and b) Simulations
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Chapter 4

Carbon nanotube-reinforced

composites

The significant mechanical and physical properties of CNTs described in Chap-
ter 2, as well as their high aspect ratio and low density, make CNTs ideal rein-
forcements for nanocomposites. Unlike conventional fiber-reinforced composites,
CNTs due to their small size, interact with polymer chains through weak van
der Waals forces, leading to marginal enhancement of the mechanical properties
of the polymer matrices. However, experimental evidence [70, 98, 114] demon-
strated that if functionalization techniques are applied on the surface of carbon
nanotubes, higher interfacial shear strength (ISS) can be achieved, leading to
improved stiffness and damping properties of the CNT-RC materials.

In this chapter, the effect of the ISS on the mechanical and damping proper-
ties of CNT-RCs is investigated using a multiscale modeling approach. Further-
more, for the CNT-RC material characterization a nonlinear hierarchical multi-
scale approach is proposed, considering slippage at CNT /polymer interface. The
presented multiscale modeling strategy encompasses various length scales, from
nano to micro to macro. A schematic representation of all the multiscale mod-
eling steps followed for the simulation of the CNT-RC material is illustrated in
Fig. 4.1.
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C-C bond

lnano « lmicro < lmacro

Figure 4.1: Multiscale modeling steps for simulation of CNT-RCs

4.1 Modeling RVEs of CNT-RC

As shown in Section 2.2.1, the atomic lattice of a CNT is modeled by the molec-
ular structural mechanics (MSM) approach as a space frame structure, which is
then reduced to an equivalent beam element (EBE). This EBE is used as the basic
building block for the construction of full length CNTs embedded in the polymer
matrix (Fig. 4.1). Linear material properties are assigned to the EBEs, while the
Maxwell-Wiechert model of Section 3.2.3 is assigned to the polymer matrix in
order to model its viscoelastic behavior. The interfacial load transfer mechanism
between the lateral surface of the carbon nanotube and the surrounding matrix
is taken into account with a nonlinear bond-slip interfacial model. Finite element

models of representative volume elements (RVEs) are constructed comprised of
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two independent meshes: a structured with solid elements for the matrix and
a series of embedded EBEs for the full length CNTs (see Fig. 4.1). Straight as
well as wavy CNTs are considered. In the case of wavy CNTs, random CNT
geometries are generated using the spectral representation method with evolu-
tionary power spectra (EPS) which are derived from processing scanning electron
microscope (SEM) images. Average mechanical properties of CNT-RC materi-
als are obtained after a stochastic analysis based on the Monte Carlo simulation
(MCS). The mechanical and damping properties of the CNT-RCs are assessed on
the basis of sensitivity analyses with respect to various weight fractions (wt) and
interfacial shear strength (ISS) values. Numerical results are presented, showing
the significant effect of the ISS as well as the influence of CNT waviness on the
damping behavior of CNT-RCs.

4.1.1 Equivalent beam element for space frame CNT model

Although the MSM approach overcomes the restrictions of the MD method in
time and size-scales, the analysis of the space frame model of a full length CNT
demands a huge computational effort. For example a CNT of 14 nm in diameter
and 1 pm in length corresponds to a numerical problem in the order of 107
degrees of freedom. Thus, the analysis of a CNT-RC with only 1 wt% of CNTs
is computationally an extremely demanding task. For this reason, the detailed
MSM model of the CNT is further reduced to an EBE with equivalent material
properties. In order to derive the stiffness properties of the linear EBE, the space
frame model of the CNT is subjected to three independent loading conditions,

namely tension, bending and torsion (see Section 2.2.1.4).

In order to derive the elastic moduli from the rigidities (F'A),,, (ET),, and
(GJ),, defined from Egs. (2.21), (2.22) and (2.23) respectively in Section 2.2.1.4,
a profile-shaped cross-section of the EBE must be assumed. For instance, if a
EBE with a pipe-shaped profile is selected, then its cross-sectional properties are
given by

Aeq = [(deq + t)2 - (deq - t)Q] (4-1)

NS
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I, = éQ [(deg + )" = (deg — 1)*] and J, = 21, (4.2)
where the equivalent mean diameter d., of the beam pipe is calculated from the

axial and bending rigidities, for arbitrarily selected wall thickness ¢:

(ET),,

deqg = /8
! (EA)eq

2 (4.3)

The Young’s moduli of pipe EBEs, which correspond to armchair (8, 8) CNTs with
various wall thickness values, have been computed using Eqs. (4.1)-(4.3). These
values are compared with various results obtained from different methodologies in
literature, including MD simulation, tight-binding models, ab initio computations
and others [38, 29, 45, 50, 52, 64, 65, 97, 105, 104]. In Table 4.1 calculated Young’s
moduli corresponding to different wall thickness values are recorded, allowing for
a direct comparison between the results obtained applying the method in the
present study and the other methods in literature. In addition, the results of the

aforementioned comparison are graphically depicted in Fig. 4.2.

Wall thickness  Young’s modulus (TPa)

Investigators Method (nm) Literature Present study
Yakobson et al [105]  Molecular dynamics 0.066 5.5 5.698
Xin et al [104] Tight-binding model 0.074 5.1 5.082
Tu and Ou-Yang [97] Local density approximation model 0.075 4.7 5.015
Kudin et al [45] Ab initio computations 0.089 3.859 4.226
Pantano et al [65] Continuum shell modeling 0.075 4.84 5.015
. Structural mechanics: 0.34 1.01 1.106
Li and Chou [50} stiffness matrix method
Lu [52] Molecular dynamics 0.34 0.974 1.106
Hernandez et al [29]  Tight binding molecular dynamics  0.34 1.24 1.106
Jin and Yuan [38] Molecular dynamics 0.34 1.238 1.106
Odegard et al [64] Equivalent-continuum modeling 0.69 - 0.545
Present study MSM 0.147 - 2.558

Table 4.1: Young’s moduli of armchair (8,8) CNTs with various wall thickness
values computed by different methodologies

The effect of diameter and chirality of the CNTs on the elastic moduli of the
resulting EBEs are investigated in this study. Specifically, two types of SWCNTs,
namely armchair (n,n) and zigzag (n,0), with diameters ranging from 0.3 to 14

nm are included in the investigation. In all cases, the wall thickness is 0.34
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Figure 4.2: Young’s modulus vs wall thickness ¢ of a pipe EBE representing
armchair (8,8) CNT

nm, which corresponds to the interlayer spacing of graphite. Figure 4.3 plots
the Young’s moduli of both the armchair and zigzag CNTs with respect to their
diameters. A strong effect of diameter can be observed, especially for small
values, on the Young’s moduli of both chirality types CNTs. By increasing their
diameters, their Young’s moduli are also increasing, reaching a plateau. This
tendency is due to the effect of curvature as Li and Chou [50] have pointed it
out in their study. The smaller the diameter of the nanotube is, the higher
is its curvature leading to large distortions of the carbon-carbon (C-C) bonds
and thus in large elongation of the MSM lattice model. As the diameter of
the CNT increases, the effect of curvature diminishes and its Young’s modulus
approaches that of the graphene sheet (1.1 TPa), where no effect of curvature
is present. Figure 4.4 displays the shear moduli of both armchair and zigzag
CNTs with respect to their diameters. As it can be observed from this figure,
the shear moduli of the CNTs depend strongly on their diameters and weakly on
their chirality. This is also verified by Li and Chou [50]. This sensitivity of shear

moduli of CNTs on their diameters is due to the effect of curvature. By increasing
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their diameters, their shear moduli are also increasing for both chirality types,

reaching to a plateau value which corresponds to the shear modulus of graphite

(0.5 TPa).

Figure 4.3:
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Figure 4.4: Shear modulus vs diameter of armchair and zigzag CNT's
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4.1.2 Stochastic modeling of CNT waviness

Random waviness of CNTs is modeled as a non-homogeneous stochastic field
using the spectral representation method in conjunction with evolutionary power
spectra (EPS). The statistical properties of the EPS are derived from scanning
electron microscope (SEM) images of CNT-RCs, by processing the geometry of
a number of wavy CNTs (see Fig. 4.5).

Figure 4.5: SEM image of CNT-RC, processing the geometry of wavy CNT's

4.1.2.1 Method of separation

The EPS depend not only on frequency w but also on spatial state variables. In
case of separable or approximately separable EPS, which is definitely the case
of geometric imperfections [78], the corresponding EPS can be expressed as the
product of a homogeneous power spectrum Sy, (z) and a spatial envelope function

gn(z) as follows:

S(w,z) = Sp(w) - gn(x) (4.4)

Notice that CNT waviness can be regarded as a geometric imperfection of a

identical straight tube. Various methodologies have been proposed in the past
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for estimating EPS from available experimental measurements, i.e., from real
samples of stochastic signals. Among them the most widely used are the short-
time Fourier transform and the wavelet-based EPS estimation [14, 53, 63, 85]. The
basic disadvantage of these approaches is that they cannot achieve simultaneous
resolution in space and frequency domains. A novel methodology was proposed
in Schillinger and Papadopoulos [78] to obtain estimates of EPS of separable
processes. This method is based on simple principles of stochastic process theory
and for this reason it is easy to implement as well as computationally efficient,
while at the same time proved to be accurate enough with optimum simultaneous
resolution in space and frequency [9, 78, 79]. According to this approach an
estimate of the first term in Eq. (4.4) can be readily obtained by averaging the

periodograms over the ensemble:

) = B[ | [ 190

1

B 4.5
2L ] (45)
where f®)(z) is a sample of the stochastic field (in particular the wavy geometry
of the i CNT) and E[-] denotes the mathematical expectation. An estimate of
the spatial envelope function can be obtained from the distribution of the mean

square over the samples as follows:

) E “f(z')(x)ﬂ

gn(T) = W (4.6)

It can be easily shown that an unbiased estimate of the evolutionary power spectra

can be obtained as follows:

Sh(w)

2 [° Sp(w)dw (4.7)

Sw.z) = B ||f9)["]

After the estimation of the EPS by processing the geometry of the wavy CNTs

in Fig. 4.5, samples of wavy CNTs can be generated as follows:

N-1
f(j)(x) -2 Z Ancos(wnx + ¢§j>) (4.8)
n=0
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where

A, =1/258wn, x)Aw n=0,1,...N —1

Wy, = NAw n=0,1,...,.N —1
. (4.9)
w=—
N

Ay =0, S(wy,z)=0

The parameter w,, refers to an upper limit of the frequency beyond which the
autocorrelation function is supposed to be zero. Parameter ¢$3' ) stands for random

phase angles with ¢,, € U [0, 27], for each j* realization.

Figure 4.6 presents the EPS estimated from Eq. (4.7), while some realizations
of wavy CNT's which have been generated using Eq. (4.8), are plotted in Fig. 4.7.
As it can be seen in this figure, a 3D spatial waviness is considered by assuming
that the coordinates z = z(z) and y = y(z) of the CNT are independent stochas-
tic fields generated from Eq. (4.8). Discretization of full length wavy CNTs is
performed through short straight EBEs.
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Figure 4.6: EPS for wavy CNTs derived after the method of separation
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Figure 4.7: Sample of wavy CNT realizations.

4.1.3 Embedded element technique

The embedded element technique is used to specify that an element or group of
elements is embedded in "host” elements. This technique has been used in many
studies to model rebar reinforcement in concrete [36, 54]. In the context of FE
analysis of RVEs of CNT-reinforced composites, the embedded element technique
is also applied so as complicated mesh discretizations of the RVE models to be
avoided. Initially, this method searches for geometric relationships between nodes
of the embedded elements and the host elements. If a node of an embedded
element lies within a host element, the translational degrees of freedom (dofs)
at the node are eliminated and the node becomes an "embedded node”. The
translational dofs of the embedded node are constrained to the interpolated values
of the corresponding dofs of the host element. Embedded elements are allowed to
have rotational dofs, but these rotations are not constrained by the embedding.
Figure 4.8 illustrates an EBE element which has both its nodes ¢ and 57 embedded
in a 8-noded solid elemen, which is used to model the polymer matrix. The
stiffness matrix of the EBE is calculated in the global coordinate system (XYZ)

as follows:

KB =1Tptr =17 { / BTDBdVe] T (4.10)
where kb is the local stiffness matrix of the beam and T is the transformation
matrix which performs the transformation from local to global coordinate system.

The matrix D corresponds to the elasticity matrix of the beam while the matrix B
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contains the derivatives of the shape functions of the beam element, which relate
the strains of the element to its displacements or rotations. The translation dofs
of the beam element are constrained to the nodal displacements of the host solid

element according to the following restrain:

U;

U NM o g [uM

“lele NM oo | |vM (4.11)
v g @ NM||wM

Wy

[ Wi

where

(4.12)

NM:[N;”Nﬂ

N] ... N]

with N! and NJ, n = 1,...,8 the values of the n® nodal shape function of the
solid element, evaluated at its interior points ¢ and 7, which are the points where
the nodes of the embedded beam element are lying (see Fig. 4.8). The nodal

displacements of the host solid element are contained in the vectors:

W%{mm%r,whﬂmm%r,WM:Myw@T (4.13)

The deformation matrix B of Eq. (4.10), which contains the derivatives of
the interpolated local dofs of the beam element, can be expressed in terms of the
global dofs of the host element using Eq. (4.11). After some manipulations, an
extended stiffness matrix K of size (30 x 30) for the beam element is derived.
This matrix contains terms that relate the 24 translations [U Moy Moy M } of the
host element and the 6 rotations [0x;, Oy, 0zi, Ox;, Oy;, 0z, of the beam element
with the external applied unit nodal forces and moments, respectively. Finally,

the stiffness matrix of the "super” element, which is assembled by the stiffness
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matrices of both the embedded and host elements is formulated as:

K (30x30) = (4.14)

B B
KRT KRR

KM 4+ KB, KgR]

where K™ is the stiffness matrix of the solid element and is of size (24 x 24); K2,
is the (24 x 6) submatrix of the extended (30 x 30) stiffness matrix K2 of the
beam element related only to its translation dofs; Accordingly, K5 is the (6 x 6)
submatrix related only to the rotation dofs of the beam element; and I_(QER and

KZE. are the (24 x 6) and (6 x 24) submatrices respectively, which contain the

interactions between the translation and rotation dofs of the beam element.

3D solid element

3D embedded beam element

Figure 4.8: Hlustration of the embedded beam element into host solid element

4.1.4 Interfacial bond-slip model

The mechanical and damping properties of the CNT-RC material are sensitive to
the interfacial characteristics between the CNT and the polymer matrix. Loads
are transferred from polymer to CNTs through their interface. Experimental

evidence [70, 98, 114] verify that if functionalization techniques are applied on
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the surface of carbon nanotubes, then higher interfacial shear strength can be
achieved. The advanced adhesion characteristics attained by functionalization,
combined with the high aspect ratio of CNTs, can lead to composites with en-

hanced stiffness and damping properties.

Pullout tests [24, 3, 68, 77] on CNT-RCs have revealed a stick-slip behavior
of the CNTs inside the polymer matrix. To capture this cohesive behavior, a
nonlinear friction-type bond-slip model is incorporated in the mulitscale anal-
ysis of the CNT-RCs. The model has been initially incorporated in the finite
element analysis software program " ATENA”, and has been applied in order to
describe cohesion between steel reinforcing bars and concrete (www.cervenka.
cz/products/atena). Phenomenologically, the nanoscale problem of CNT-RCs
is similar to that of any fiber-reinforced composite material, such as reinforced
concrete, at the mesoscale. The adopted solution is fairly simple and can provide
results with high accuracy at low computation cost. Figure 4.9 depicts a model of
a RVE consisted of one straight CNT discretized by three connected EBEs. The
EBEs, which have pipe cross-sections, are embedded in the polymer matrix. Solid
elements are used for the discretization of the matrix. The equilibrium equation

for the central EBE can be written as:

lori — ol Ai = 7w (D + ) 1 (4.15)

where A; is the cross-sectional area of the beam element, D; + t; is the outer
diameter of its pipe-section profile and [; is its reference length. A smoothing
operation on the nodal axial stresses og; and o;, which act on the right and the

left end-sections of the beam element, respectively, is performed in the form:

_ Oili + ol

P = 4.16
on li + litq ( )

oili + o1l
= el 4.17
oL It iy (4.17)

Solving Eq. (4.15) for 7;, the shear stresses acting at the interface between the
CNT and the matrix can be calculated. Comparing the computed values to the

interfacial shear strength (ISS) obtained by pullout tests, the bond slip friction-
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type model is expressed by:
< 1SS, fully bonded
(4.18)

A

T = — 7 |ORi — 0Ll

m(D; + t:)l; > 1SS, slip

If one EBE, which simulates some portion of the full length CNT, is in slip
state, this means that its corresponding interface bond has failed, leading to

its inability for further load-transferring. The condition of slip for this beam
element is simulated by reducing its axial stiffness to a very small value. Notice
that bending and torsion rigidities are not affected at all, allowing the element

which is in slip state to resist against bending and torsion.

HH/.’.’HHHHHHHIII

Figure 4.9: Stress states on EBEs in a CNT-RC RVE model in tension

The above procedure is implemented within a full Newton-Raphson incremental-
iterative scheme, used for the solution of the nonlinear equations of the problem,

as follows:
Step 1: Compute the incremental displacements ‘Au(? at increment ¢t and iter-

ation ¢ due to the increment AP of the external load vector
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v ]!
AU = [tKT’ } ‘AP (4.19)
Step 2: Loop over all beam elements and check each element e for slippage

no — (KW =ty
Slippage (4.20)

yes — KW — KUY with (EA), — 0

when slippage occurs, the axial stiffness is reduced to zero resulting in a

local modified tangent stiffness matrix tK;Q

Step 3: Correction of internal forces EAFY of element e and update global force

vector tF®)

PAFD = LK A D) (4.21a)
N

tp@) — t p(i=1) + Z tAFe(z‘) (4,21b)
e=1

Step 4: Compute the residuals

. | <tol then t =t+1 go to next increment
tp() —tp _tp() (4.22)
> tol then 1 =i+ 1 goto Step 1

4.1.5 Numerical results on CNT-RC RVEs
4.1.5.1 RVEs with straight CNTs

In this section, numerical results obtained from the FE analysis of the microstruc-
tured RVE models of CNT-RC material are presented. The RVE models contain
single straight CNTs, placed at the center of the rectangular composite matrix,
as shown in Fig. 4.10. The chirality type of the CNTs is armchair (100, 100)
with diameter 14 nm, calculated by Eq. (2.3). Following the multiscale modeling
procedure of Section 4.1.1, the MSM space frame model of this type of CNTs
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is first reduced to a linear EBE. A pipe cross-section profile with wall thickness
t = 0.34 nm is assumed for the EBE. Using the results obtained from the anal-
ysis of the MSM model, the equivalent geometrical and material properties of
the EBE can be calculated. So, from Eq. (4.3) a mean equivalent diameter of
deqg ~ 13.453 nm for the pipe EBE is obtained. From Egs. (2.21) and (2.23)
the values £ ~ 1.051 TPa and G ~ 0.503 TPa, for the equivalent Young’s and
shear modulus respectively, are also obtained. Then, RVEs with different weight
fractions of CNTs are constructed by changing only the dimension « of the RVE
geometry (see Fig. 4.10). Thus, RVEs with wf=0.1, 0.5, 1 and 2% are constructed
for =130, 59, 42 and 31 nm, respectively, while the length of the rectangular
RVE remains constant at L=260 nm. Note that the density of CNTs has been
taken equal to 1.8 g-cm™, while this of PEEK material has been taken equal to
1.4 g-cm™. The matrix of the RVE in each wf case is discretized with 18081, 3321,
2009 and 1025 solid elements, respectively, while in all wf cases the straight CNT
has constant length L.,;=234 nm and is discretized with 37 EBEs. Bernoulli
beam elements are used to represent EBEs, which are embedded into the solid

elements of the matrix.

Simulations of cyclic axial loading of RVE models are performed for both
high and low excitation frequencies. In particular, excitation of composite at
very high frequency, practically infinity (v — o0), invokes the instantaneous
elastic response of the polymer matrix. Specifically, in this loading case, PEEK
viscoelastic material, which is assigned to the composite matrix, exhibits an in-
stantaneous Young’s modulus of F,, ~ 2.8 GPa and a Poisson ratio v, = 0.4.
On the other hand, excitation of composite at the finite frequency of v = 1 Hz,
invokes the viscoelastic response of PEEK, which is based on the viscoelastic
parameters recorded in Table 3.2 of Section 3.2.6. The cyclic loads, which are
applied on the models through Dirichlet boundary conditions in sinusoidal form,
result in strain amplitudes of +5%. The effect of interfacial shear strength on
both stiffness and damping properties of the CNT-RC material is investigated
through parametric studies, where the ISS values are ranging from 5 to 80 MPa.
Notice that, the tensile elongation of PEEK at yield point is 5% and its shear

strength is 53 MPa (www.victrex.com).

Figures 4.11-4.14 plot the stress-strain curves derived from simulations of
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Figure 4.10: Geometry and FE mesh of RVE model with straight and oriented
CNT.

cyclic tests on RVE models with ISS=0, 5, 10, 20, 40, 80 and oo MPa. Note
that ISS=0 corresponds to the neat PEEK model, while ISS=oc0 corresponds
to the fully bonded model. Each of these figures corresponds to RVE models
with specific weight fraction, wf~2, 1, 0.5 and 0.1%, respectively. In all these
simulations PEEK exhibits instantaneous elastic response as the cyclic loading
is performed at excitation frequency v — oo. Thus, the energy dissipation per
load cycle is attributed only to CNT slippage and not to the viscoelastic behavior
of PEEK. From the figures it can be observed that the stiffness and the energy
dissipation of the CNT-RC material are increasing with the increase of the ISS.
Also, the total stiffness of the composite approaches that of the fully bonded
case and can reach three times the stiffness of the neat PEEK for wi~2%. On
the other hand, with the addition of only 0.1% of CNTs in the bulk matrix, its

mechanical behavior is marginally influenced.

The effective loss factor of the CNT-RC material is computed as the ratio

of its dissipated energy per unit volume to its maximum stored energy per unit
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volume. This parameter, which is used to evaluate damping characteristics of the

material, is expressed as:

D

TOpEQ

tand = (4.23)

where 0y and ¢( are the mean stress and strain amplitudes developed on the RVE
models due to their cyclic excitation. D is the area of the hysteresis loop, which
is observed in the stress-strain curves of the models, and it corresponds to the
dissipated energy per load cycle. In Table 4.2 the loss factor values obtained from
the stress-strain curves of Figs. 4.11-4.14 are recorded. These values express the
amount of energy dissipation of the CNT-RC material, which for these simulations
is only due to the mechanism of slip at the CNT /polymer interface. As previously
mentioned, at very high excitation frequencies the mechanical response of PEEK
is elastic. Thus, for the case of neat PEEK model (ISS=0) and the fully bonded
model (ISS=o00) no dissipating mechanisms exist and therefore no loss factor
values are calculated. Figure 4.15 plots the values of Table 4.2, where an increase
of the loss factor is observed with respect to the ISS. It can also be observed that,
higher wf content of CNTs in the CNT-RC results in larger loss factor values,
when ISS is kept constant.

ISS (MPa) 5 10 20 40 80
wi=2%  0.0235 0.0666 0.1184 0.2493 0.2569
wi=1%  0.0153 0.0242 0.0644 0.1277 0.2128
wf=0.5%  0.0090 0.0141 0.0289 0.0742 0.1116
wf=0.1%  0.0020 0.0021 0.0062 0.0158 0.0163

Table 4.2: Loss factor of CNT-RC material in various wf and ISS values when
energy dissipation is only due to slip

Figures 4.16-4.19, like Figs. 4.11-4.14, plot the stress-strain curves of the RVE
models, but this time simulations of the cyclic tests have been conducted at fre-
quency v = 1 Hz. In these test cases PEEK exhibits viscoelastic response. Thus,
the energy dissipation per load cycle is now attributed to both CNT slippage and
viscoelasticity of PEEK. Once again, the energy dissipation of the CNT-RC ma-

terial is increasing with the increase of the ISS, while its stiffness is approaching
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Figure 4.11: Stress-strain curves from cyclic tests at v — oo of CNT-RC RVEs
with wi~2% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa

that of the fully bonded case. In case of large wf (>0.5%), the energy dissipation
characteristics of the CNT-RC material are more pronounced than that in case
of small wf (<0.1%), where the damping behavior of composite is very similar to
that of neat PEEK.

Table 4.3 records the values of the effective loss factor of the CNT-RC material
for all the wf and ISS of the RVE models considered. The same results are also
plotted in Fig. 4.20 with respect to the ISS, where each curve corresponds to
different wf. Note that the presented loss factor values refer to cyclic tests on RVE
models at frequency v = 1 Hz. Thus, in this excitation frequency the loss factor
represents the dissipation characteristics of the composite material due to both
the CNT slippage and the viscoelastic response of PEEK. The loss factor of the
neat PEEK material (ISS = 0) and of the the fully bonded CNT-RC material (ISS
= o0) are also included in the curves. The increase of the energy dissipation of
the CNT-RC material due to the increase of its ISS is also visualized in Fig. 4.20.
Specifically, the loss factor, which is reaching a peak value for ISS=80 MPa, is
more than 200, 250 and 300% of the loss factor of the neat PEEK material for
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0.32-
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Figure 4.12: Stress-strain curves from cyclic tests at v — oo of CNT-RC RVEs
with wi~1% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa

wi~0.5, 1 and 2%, respectively. This increase, however, is marginal in the case of
small wf, lower than 0.1%. In all wf cases, the loss factor is decreasing for ISS>80
MPa, as for such large values of the ISS the fully bonded case is approached. Note
also that, shear fracture in matrix could be initiated for [ISS>53 MPa, as for this
value the shear strength of PEEK is exceeded. The above numerical findings
imply that successful functionalization of CNTs could be crucial for producing
CNT-RC materials with optimum damping characteristics, especially in the case
where ISS values close or slightly higher than the shear strength of the polymer
could be achieved from the applied functionalization technique.

From Fig. 4.20 it is concluded that the loss factor of the CNT-RC material
depends on its stiffness. Specifically, the stiffness of the material is increasing
due to the increase in the wf of CNTs. This increase in stiffness subsequently
leads to a decrease in loss factor of the material. The aforementioned observation
is more obvious in the case of fully bonded RVE models. However, as wf is
increasing the total area of the lateral surface of the CNTs is increasing too.

A reduction in the developed interfacial shear stresses under the same external
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Figure 4.13: Stress-strain curves from cyclic tests at v — oo of CNT-RC RVEs
with wi~0.5% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa

loads on the RVE models is thus succeeded. This means that higher external
loads can be sustained by the material before its critical ISS value is exceeded
and subsequently slip occurs. The delay of CNT slippage in the composite is the
reason for the enlargement of the hysteresis loop in the stress-strain curves in
Figs. 4.16-4.19. However, for ISS>80 MPa, CNT slippage for strain loading up to
+5% is not initiated, thus the high stiffness of the CNT-RC material is preserved
during the whole strain history. In this case, the loss factor of the CNT-RC

material is only due to the viscoelastic nature of PEEK and is approximately

equal to that of neat PEEK.
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Figure 4.14: Stress-strain curves from cyclic tests at v — oo of CNT-RC RVEs
with wi~0.1% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa

ISS (MPa) 0 5 10 20 40 80 0
wi=2%  0.1434 0.1757 0.2211 02770 0.3744 0.4056 0.1350
wi=1%  0.1434 0.1604 0.2182 0.2266 0.2951 0.3364 0.1340
wi=0.5%  0.1434 0.1534 0.1625 0.1951 0.2262 0.2892 0.1328
wi=0.1%  0.1434 0.1472 0.1473 0.1575 0.1617 0.1780 0.1383

Table 4.3: Loss factor of CNT-RC material in various wf and ISS values when
energy dissipation is due to slip and viscocity
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Figure 4.15: Loss factor vs ISS of CNT-RC material derived from cyclic tests of
RVE models with wf~2, 1, 0.5, 0.1% at v — oo
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Figure 4.16: Stress-strain curves from cyclic tests at v = 1 Hz of CNT-RC RVEs
with wi~2% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa
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Figure 4.17: Stress-strain curves from cyclic tests at v = 1 Hz of CNT-RC RVEs
with wi~1% and ISS = 0, 5, 10, 20, 40, 80 and oo MPa
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Figure 4.18: Stress-strain curves from cyclic tests at v = 1 Hz of CNT-RC RVEs
with wi~0.5% and ISS = 0, 5, 10, 20, 40, 80 and co MPa
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Figure 4.19: Stress-strain curves from cycli tests at v = 1 Hz of CNT-RC RVEs
with wi~0.1% and ISS = 0, 5, 10, 20, 40, 80 and co MPa
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Figure 4.20: Loss factor vs ISS of CNT-RC material derived from cyclic tests of
RVE models with wf~2, 1, 0.5, 0.1% at v = 1 Hz
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4.1.5.2 RVEs with wavy CNTs

In order to evaluate the effect of random CNT waviness on the mechanical and
damping properties of CNT-RC material, stochastic analysis is performed based
on Monte Carlo simulation. For this purpose, CNTs with random geometry are
generated using Eq. (4.8). The CNTs are then embedded in the polymer matrix
in order to construct the random RVE models. Only RVE models with wi~2%
and ISS = 40 MPa are studied in this section. These RVE models are subjected
on cyclic loads at frequency v = 1 Hz. Dirichlet boundary conditions are applied
on the FE models, which result in strain amplitudes of +5%.

In Fig. 4.21 a cloud of stress-strain curves is plotted. These curves have been
derived from the Monte Carlo simulation of 50 RVE models with random wavy
CNTs. The average of these curves is also plotted in the figure, together with the
corresponding curve of the RVE model with a straight CNT. It is pointed that,
all the RVE models contain CNTs with the same length, so that the observed dif-
ferences in the stress-strain curves are attributed solely to the stochastic waviness
of the CNTs. The loss factor of the CNT-RC material is calculated from both
the average curve which corresponds to wavy CNTs and the stress-strain curve
which corresponds to straight CNTs. These values are recorded in Table 4.4. A
15% reduction in the loss factor of the material is observed for the case of ran-
dom wavy CNTs with respect to straight CNTs. From these results, the role of
straightening of CNTs in producing CNT-RC materials with enhanced damping
properties is highlighted.

Straight CNT  Wavy CNTs
Loss factor 0.3744 0.3182

Table 4.4: Loss factor values for straight and wavy CNTs.
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Figure 4.21: Stress-strain curves of: 50 RVEs with random wavy CNTs, average
curve, RVE with a straight CNT (wf = 2% and ISS = 40 MPa)

4.2 Homogenization of CNT-RC material

In this section, a nonlinear multiscale homogenization method is proposed for
CNT-RC material characterization. Specifically, the homogenized mechanical
and damping properties of the CNT-RC material are obtained from the finite el-
ement analysis of RVE models. The novelty of the proposed multiscale approach
is that it combines different modeling strategies in order to accurately pass infor-
mation between scales. This hierarchical approach is demonstrated in Fig. 4.1,
where the modeling steps from nano to micro to macro scale are illustrated. Short
length CNTs are modeled at the nano scale as space frame structures using the
MSM approach of Section 2.2.1. In this method the C-C covalent bonds of the
CNT lattice are substituted by circular beam elements. Since CN'T's form ”ropes”
in the order of micrometers, the aforementioned MSM model is projected into a
linear EBE, which is then used as the basic building element for the discretization
of long straight CN'Ts at microscale. Next, the RVE models are constructed by
embedding these EBEs into a polymer matrix (see Section 4.1.3). The load trans-
fer mechanism at the interface between the lateral surface of the CNT and the

surrounding polymer is modeled with the nonlinear bond-slip friction-type model
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of Section 4.1.4. This bond-slip model is particularly suitable for modeling the
stick-slip behavior of functionalized CNTs, where a chemical treatment is applied
onto their lateral surface in order to form covalent bonds with the hyperbranched
molecules of the surrounding polymer. In this way, functionalization results in
a significant increase of the CNT /polymer interfacial shear strength verified by
Frankland et al [22] and Barber et al [3].

The nonlinear homogenization method is applied to the microstructured RVEs,
so as the effective properties of the homogeneous CNT-RC material to be de-
fined. Microstructural analysis is performed by applying Dirichlet boundary con-
ditions on the FE models of the RVEs. These displacement-type boundary con-
ditions result in prescribed macrostrain tensors on the homogeneous FE models.
Macrostress tensors are calculated as volume averages, using the results obtained
from the FE analysis of the microstructured RVE models. In the context of hier-
archical homogenization method, a phenomenological constitutive law, based on
Hill’s anisotropic plasticity and Maxwell-Wiechert viscoelasticity, is proposed for
the homogeneous CNT-RC material. These combined constitutive models con-
stitute a novel viscoplastic model, which is able to capture both the anisotropic
stiffness and the anisotropic energy dissipation of the CNT-RC material. This
anisotropy of the material is specifically due to the directionality of the CNTs
inside the polymer matrix. The proposed viscoplastic model is capable to predict
stress-strain curves under cyclic loads. Validation of the homogenization method
is performed through sensitivity analysis on RVEs with various wf and ISS values.
The effective mechanical and damping properties of the homogeneous CNT-RC
material are assessed and compared with direct calculations on detailed fine scale

models.

4.2.1 Homogenization method

A hierarchical computational homogenization method is adopted in the thesis in
order to homogenize the nonlinear behavior of the CNT-RC material. In this
class of methods, the microscopic behavior of the heterogeneous medium is pro-
jected to an equivalent homogeneous model at an upper scale. Thus, a specific

constitutive behavior of the material has to be identified from the microstructure
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through FE analysis of the heterogeneous models. As stated by Hashin [28], the
fundamental assumption in all homogenization problems is the statistical homo-
geneity of the heterogeneous medium. This means that all statistical properties
of the state variables are the same at any material point and thus a representa-
tive volume element (RVE) can be recognized. The concept of the RVE requires
complete separation of scales to be valid. Figure 4.22 graphically illustrates the

homogenization method applied to the CNT-RC material.

/—‘//(X’Y)
‘y

macrostructure microstructure

Figure 4.22: Homogenization method applied to the CNT-RC material

According to Miehe and Koch [57], the first step in the homogenization pro-
cedure is to define the relations between the microscopic and macroscopic state
variables, which are known as "micro-macro relations”. By imposing appropriate
boundary conditions on the FE model of RVE, these relations are extracted and
then are used in order to determine the effective material properties of the ho-
mogeneous constitutive model. Macroscopic quantities are formulated as volume
averages of the corresponding microscopic state variables. According to the de-
terministic theories of Hill [31] and Maugin [55] the total macroscopic stress and

strain tensors at some point X of the macroscopic body are computed by

Y (X) = {03)(X), Eyj(X) = {e3;)(X) (4.24)

where the average of a microstructure quantity 1 is defined as its integral over
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the volume V of the RVE as

() (X) = %/RQ/J(X,Y) 4y  with V:/RdY (4.25)

where Y denotes the spatial coordinates of a point in the microstructure (see
Fig. 4.22). The averaging theorem requires the strain energy of the the mi-
crostructured RVE to be equal to that of the homogeneous medium. This equiv-

alence, which is known as the Hill’s energy condition, is formulated as follows:

E:E:L/U:a‘dY (4.26)
V] Jr

4.2.2 Viscoplastic model

The viscoplastic model is intended for modeling materials in which significant
time-dependent behavior as well as plasticity is observed, which for metals typi-
cally occurs at elevated temperatures. Here, the microstructural behavior of the
CNT-RC material is captured at macroscale by a continuum viscoplastic model.
This model is able to simulate the viscosity induced to the CNT-RC material by
the polymer matrix and the anisotropic plasticity induced to the CNT-RC mate-
rial by the anisotropic CNT reinforcement and slip. The nonlinear behavior of the
CNT-RC material is broken down into three parts: elastic, plastic, and viscous.
Figure 4.23 shows a one-dimensional idealization of the proposed viscoplastic
model, with the elastic-plastic and the elastic-viscous networks in parallel. For
the elastic-plastic network, an anisotropic plasticity model proposed by Hill [30]
is implemented in order to define anisotropic yield due to CNT slippage. Note
that, the elastic-plastic network does not take into account rate-dependent yield;
hence, any specification of strain rate dependence for the plasticity model is not
allowed. On the other hand, strain rate dependent behavior of CNT-RC mate-
rial is taken into account by the elastic-viscous network. For this network, the

Maxwell-Wiechert viscoelasticity model of Section 3.2.3 is implemented.

The elastic response of the viscoplastic model depends on the rate of the

applied loads. For the one-dimensional representation of the model shown in
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Fig. 4.23, its time dependent relaxation modulus can be expressed as:

N
_t

Eo(t) = Eent + Emy + Y Epye 7 (4.27)
j=1
If the loads are applied on the model instantly thus ¢ — 0, then the elastic

response of the composite is obtained from its instantaneous elastic modulus

N
Eey = i Eo(t) = Eont + E.. + 2 Ep, (4.28)
]:
If the loads are applied on the model very slowly thus ¢ — oo, then the elastic

response of the composite is obtained from its long term elastic modulus

E

Coo

= lim E(t) = ot + B, (4.29)
—00

The plasticity parameters 7., and Hg;, correspond to the initial yield stress and
to the kinematic hardening of the CNT-RC material, respectively. The shear
stress developed at the CNT /polymer interface at the moment of slip initiation is
regarded as the initial yield stress. Hill’s plasticity can account for an anisotropic
yield surface, which can efficiently predict slip of CNTs in various directions.
After the initiation of slip, the kinematic hardening of the model defines the
nonlinear behavior of the composite, which is due to the evolution of slip. On the
other hand, the nonlinear behavior of the composite, which is due to the viscosity
of the PEEK matrix, is captured by the elastic-viscous network of the viscoplastic

model.

4.2.2.1 Hill’s orthotropic plasticity model

In this section, the basic equations of Hill’s orthotropic plasticity model, which is
assigned to the elastic-plastic network of the viscoplastic model of Section 4.2.2,
are presented. The proposed model can capture the orthotropic elasto-plastic
behavior of the CNT-RC material, which is due to reinforcement of its polymer
matrix by straight and one-direction oriented CNTs. All the equations are ex-
pressed in the reference coordinate system of Fig. 4.24, which remains constant

during the plastic deformation of the material. The stress tensor components o;;
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Figure 4.23: One-dimensional viscoplastic model for CNT-RC material

can then be expressed on the orthonormal basis {ej,es, e3}, where the normal

vectors coincide with the principal axes of plastic orthotropy.

X3

Figure 4.24: Reference coordinate system for CNT-RC orthotropic material
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The yield function associated with Hill’s model can be written in the form:

®(0,5) = F(093—033)°+G(033—011)*+H (01, —022)2+2La§3+2M0f3+2N0f2—62
(4.30)

where F', G, H, L, M and N are constants. These are obtained by testing the

material in all principal directions and can be expressed as:

2
poo(2 v 1y _1(1 1 1
22 ‘732 ‘7:%3 0%1 2 R%z R§3 R%1 ’
G=% (4 41— 1)y—1(1 41 1
22 ‘753 0%1 ‘732 2 R§3 R%1 R%z ’
__ 0§ 1 1 1 1 1 1 1
=35 02—57>—5 TR, TR )
11 22 33 11 22 33
2 (4.31)
[ =3(m) = _3_
2 0923 2R§37

where each 0;; is the measured yield stress value when o;; is applied as the
only nonzero stress component; oq is the reference yield stress which defines the
initial size of the yield surface and 7y is the reference shear yield stress defined
as 1y = 00/\/3. The six yield stress ratios Ry; = 711/00, Res = G92/00, R33 =
033/00, R1a = G12/70, R13 = 713/70 and Rag = G93/70 determine the shape of the
anisotropic yield surface, which is a truly 6-dimensional hypersurface in the space
of stress components. Using matrix notation, the yield condition in Eq. (4.30)

can be rewritten in the form:
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where matrix P is defined as:

H+G -H -G 0 0 0
-F F+H -H 0 0 0
p_| ¢ -F G+F 0 0 0 (433
0 0 0 2N 0 0
0 0 0 0 2M 0
|0 0 0 0 0 2L

and n = o — « is the relative stress tensor written in vector notation and defined
as the difference between the stress tensor o and the back stress tensor c. Hill’s
rate-independent plasticity model postulates an associative plastic flow rule which
is expressed as:
gl = 78—@ =N =9Pn (4.34)
oo
where N = Pn is the flow vector and + is the plastic multiplier. The rate of the

accumulated plastic strain can be expressed as:

e /% (&) Z (&) = "y\/ ; (Pn)” Z (Pn) (4.35)

where matrix Z is a compatibility matrix used to equate the tensorial contraction

to matrix-vectors multiplications. The rate of change of the back stress tensor is

supposed to follow Prager’s nonlinear kinematic hardening rule:

b — gc (&) " — 5C () P (4.36)

where C' (87) = da/déP is the kinematic hardening modulus defined by the scalar
function & (€7) of the accumulated plastic strain. Notice in Eqgs. (4.30) and (5.10)
that, & is the relative yield stress, which in case of isotropic hardening is a function
of &7 and defines the size of the yield surface according to the isotropic hardening
curve H (éP) = do /déP. For materials with only kinematic hardening behavior,
H =0 and ¢ = oy is constant. This means that, the yield surface preserves its
shape and size but translates in the stress space as a rigid body according to

the kinematic hardening law. Kinematic hardening data can be obtained from
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simple uniaxial tests. A detailed description of Hill’s plasticity model, along with
the state update procedure and computation of the associated consistent tangent
modulus of the elastoplastic material can be found in Koji¢ et al [42] and Souza
[84]. These numerical procedures are necessary for the implicit finite element
solution of small strain plasticity problems. Also, a review for the finite element

implementation of Hill’s plasticity equations can be found in Appendix B.

4.2.2.2 Calibration of viscoplastic model

Calibration of the proposed viscoplastic model for the CNT-RC material involves
the definition of all its elastic, plastic and viscous parameters. This is performed
numerically through FE analysis of the microstructured RVEs. Assuming that,
the viscous behavior of the CNT-RC material is only due to the viscoelastic
nature of PEEK matrix, its viscosity parameters are derived from the calibra-
tion procedure of the Maxwell-Wiechert model presented in Section 3.2.6. The
effective elastic properties of the homogeneous CNT-RC material need also to
be computed. The elastic stress-strain relation for the homogeneous model of
an RVE with straight and oriented nanotubes can be expressed in the reference

coordinate system of Fig. 4.24 in the form:

Xn (Ciiii Cige Ciigs O 0 0 E1y
Y92 Caozo Caozz 0 0 0 Fao
Yz | _ Cazzz 0 0 0 E33 (4.37)
Yo Ci212 O 0 Eyy
Y13 sym. Ciziz 0 Fi3
| X3 i Casoz| | Eos ]

where C is a transversely orthotropic elasticity matrix, which involves nine un-
known components. These unknowns are related with Young’s moduli E;, Fs,
E3, which are associated with the orthotropic directions 1, 2, and 3 respectively,
the shear moduli G5, G13, G23, Which are associated with orthotropic planes 12,
13 and 23 respectively (G;; = Gj;), and finally the three Poisson’s ratios v1a, 143

and v93. Four independent Dirichlet boundary conditions have to be applied on
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the FE model of the RVE in order to determine all the unknowns in matrix C.

These are derived from the following set of predefined macrostrains:

¢ 7 B 7 B 7 B T )
Ei 0 0 0
0 FEss 0 0
0 0 E 0

E= , T (4.38)

0 0 0 Eis
0 0 FEis

ul 0 11 0 I _E23_ )

which correspond to point X of the homogeneous material where the RVE model
is assigned (see Fig. 4.22). Thus, the displacement type boundary conditions are

derived from:

u, =D/ E (4.39)

u, contains the displacements of each boundary node ¢ on the FE mesh of the

RVE model. D, is a geometric matrix defined for node ¢ in the form:

T 0 0 %Ig 0 %l’g

DI =10 2o 0 iz iz3 0 (4.40)

D=

0 0 T3 0 %[EQ %Il

where (x1, 29, 3) are the spatial coordinates of the specific node in the microstruc-
ture. For example, substituting the first macrostrain E = [E;; 0 0 0 0 O]T in
Eq. (4.37), the components Ciy11 = X11/E11, Coon = Yoo/FEy; and Cyzqq =
Y33/ Ey1 can be directly obtained. After the FE analysis of the RVE model the
macrostress X is derived from the reaction forces f, calculated on the boundary

nodes ¢ of the FE model in an average form as:

1 &
3= W > Dyf, (4.41)
q=1

where n, is the number of the boundary nodes ¢ and V' is the volume of the

RVE. The other unknown components of the elasticity matrix C are computed in
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a similar way by applying the remaining predefined macrostrains of Eq. (4.38).
Note that, the response of the RVE is considered linear elastic as far as the shear
stresses developed at the CNT /polymer interface do not exceed the ISS of the
composite material. Thus, in order to calibrate the elastic parameters of the
macro constitutive model, the amplitude of the imposed macrostrain have to be
lower than the limit point at which CNT slippage is initiated. This means that
the total strains in the viscoplasticity model are regarded elastic, E = E°, and
thus no permanent deformation occurs. Note also that, these calibration tests
have been performed in high strain rates, thus the computed effective elastic
properties corresponds to the instantaneous elastic response of the material.

On the other hand, calibration of the plasticity parameters is performed at
the long term response of the material where the steady-state behavior of PEEK
matrix is attained. Specifically, calibration of Hill’s plasticity parameters involves
the determination of the constants F, G, H, L, M and N of Eq. (4.31), which
define the yield surface of the model, and the extraction of its kinematic hard-
ening data. For the elastic-plastic network of the viscoplastic model, material
nonlinearity is attributed solely to CNT slippage at the CNT /polymer interface.
Due to the fact that CNTs are oriented and aligned along the longitudinal di-
rection of the RVE (Fig. 4.24), the boundary conditions imposed by the uniaxial
strain E = [Ey; 0 0 0 0 0]" are sufficient for the determination of the yield
parameters of Eq. (4.31). Since the aforementioned imposed strains result in
multiaxial stress conditions, the yield stress value 711 of Eq. (4.31) is obtained as
the equivalent von Mises stress in the form:

- 3

¥, = 52%2% (4.42)

where ij are the deviatoric components of the effective stress tensor defined by:

1
S =%y — 3 (trX) 8 (4.43)

The equivalent stress value ¥, is calculated by the multiaxial stress states de-
veloped in the microstructure at the exact time of slip initiation. This value
corresponds to the initial effective yield stress in the direction of CNT reinforce-

ment. The nonlinear kinematic hardening data are derived by calculating the
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equivalent yield stresses 3 as a function of the accumulated plastic strains E?

()btailled l)y:

where E? is the plastic strain. This is defined from the decomposition of the total
strain E, into the sum of an elastic (or reversible) component, E°, and a plastic

(or permanent) component, E?. So it can be expressed in vector notation as:

E°P=E-E°=E-C'XT (4.45)

Large values are assigned to the other plasticity parameters of Eq. (4.31), which
correspond to the initial yield stresses in the transverse material directions. Thus,
the stresses of the material developed at these directions remain inside the elas-
tic domain delimited by the Hill’s yield surface. This is due to the fact that
at the microsccale, interfacial slippage occurs only in the direction of the CNT

reinforcement and thus plastic flow does not occur in other directions.

4.2.3 Numerical results on homogenization

The validity of the proposed nonlinear hierarchical multiscale homogenization
method is tested in this section. This is performed by comparing the results
obtained from FE simulations of the heterogeneous medium with these of the
homogeneous medium. The results for the heterogeneous medium are obtained
through detailed FE discretization of the corresponding microstructure and thus
serve as a reference solution. Two test cases are considered. The first corresponds
to cyclic tests on microstructured RVEs which contain a single straight and ori-
ented CN'T and the second corresponds to tensile tests on a CNT-RC specimen
reinforced by four CNTs. In both cases, validation of the proposed homogeniza-
tion method is performed through sensitivity analysis on RVEs with respect to

various weight fractions of CNTs and ISS values.
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4.2.3.1 Test case 1: Cyclic tests on CNT-RC RVEs

In this example, the proposed homogenization method is tested through cyclic
tests on CNT-RC material. Initially, calibration of the viscoplastic model of
Section 4.2.2 is performed through FE analysis of microstructured RVE models.
The computed effective properties are then used to simulate the behavior of the
homogenized material. Geometry, materials and mesh characteristics of the RVE
models used in this test case have been described in Section 4.1.5.1. A cyclic
uniaxial macrostrain E = [Ey; 0 0 0 0 0]” is applied on the RVE models with

Ell = EO Sin(QWVt) (446)

where Ej is the strain amplitude, ¢ is the current analysis time and v is the im-
posed circular frequency. According to the homogenization method, the macros-
train F is applied on the RVE models through Dirichlet boundary conditions with
the nodal displacements derived from Eq. (4.39). After the FE analysis of the
RVE models the macrostress X is calculated from Eq. (4.41) using the obtained

microstructural results.

Figures 4.25, 4.26 and 4.27 present the stress-strain curves obtained from the
FE analysis of both the heterogeneous and the homogeneous models of the CNT-
RC material with wf=0.5, 1 and 2% of CNTs, respectively. The plots (a), (b)
and (c) in each figure correspond to ISS=40, 80 and 160 MPa, respectively. The
results of the heterogeneous models are obtained from the multiscale analysis of
the microstructured RVE models and thus can be considered as the reference
solutions. Note that, instantaneous elastic response of PEEK is assumed in all
simulations. This means that, a high, practically infinity, strain rate is imposed
to the models, with v — oo in Eq. (4.46). The strain amplitude in all cyclic
simulations is +£5%. Identical stress-strain curves for the heterogeneous and the
homogeneous models are obtained. The Bauschinger effect, which is attributed to
the stick-slip mechanism at the CN'T /polymer interface, is accurately captured by
the homogeneous model through appropriate kinematic hardening data of Hill’s
orthotropic plasticity model. Small discrepancy of the results may be attributed
to calibration errors. These errors are mainly due to the inaccurate prediction

of the initial yield stress of the plasticity model, which has to be defined at the
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exact time when CN'T slippage in the RVE initiates.
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Figure 4.25: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at v — oo; wf=0.5% and ISS=40, 80 and 160 MPa

The loss factor of the CNT-RC material is calculated by Eq. (4.23) from the
stress-strain curves of both the heterogeneous and the homogeneous models. The
results are plotted in Fig. 4.28(a) with respect to the wf values and in Fig. 4.28(Db)
with respect to ISS values. The loss factor values of the homogeneous material
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Figure 4.26: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at v — oo; wf=1% and ISS=40, 80 and 160 MPa

seem to be close enough to these of the heterogeneous, with the best correlation
occurring for ISS=80 MPa in all wf cases. Notice that, since strain rate effects
are not considered in these simulations, the behavior of the CNT-RC material
during the cyclic loading remains linear elastic and thus the energy dissipation

of the RVE is attributed solely to CNT slippage. Also, some qualitative remarks
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Figure 4.27: Stress-strain curves of heterogeneous and homogeneous CNT-RC
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material from cyclic tests at v — oo; wf=2% and 1SS=40, 80 and 160 MPa

for the damping behavior of the composite can be deduced from these figures.
Specifically, an increase of the loss factor with the increase of the wf value and
a peak point of the loss factor for ISS values between 80 and 160 MPa for all
wi cases, are observed. If the ISS limit point is exceeded, then the loss factor

is decreased. This means that as the full-bond condition is reached, slippage
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of CNTs is hardly initiated and thus no energy dissipation mechanism in the

material exists.

0.25¢ —=—Hetero
_ geneous
ISS=40 MPa _ ‘Homogeneous N
1SS=80 Mpa _~Heterogeneous 7~
- —-+--Homogeneous / /
0.2 [cq_1g0 Mpa = Heterogeneous 4
- —=-Homogeneous
—
o
e
9}
8
n 0151
I
o
—
011
0.05 0.5% 1% 2%
weight fraction (wf)
(a)
0.25 - Wf=0.5% —=—Heterogeneous
=Y27_ . Homogeneous
WF=1% —=—Heterogeneous
—-Homogeneous
0.2+ WF=2% —=—Heterogeneous

—=--Homogeneous

Loss factor
@]
o
T

0.05 80 160
ISS [MPa]

(b)
Figure 4.28: Loss factor of the heterogeneous and homogeneous CNT-RC material

vs (a) wf and (b) ISS

Figure 4.29 plots the stress-strain curves of both the heterogeneous and ho-
mogeneous CNT-RC material obtained from cyclic tests at frequency v = 1 Hz.
The results correspond to CNT-RC models with wf=2% and 1SS=40, 80 and 160
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MPa. In these simulations, PEEK matrix exhibits viscoelastic response, thus the
energy dissipation mechanism of the composite material is due to viscosity and
slip. For this case, the observed differences in the results may be attributed to
insufficient homogenization of the strain rate effects in the material. As men-
tioned in Section 4.2.2.2, effective plasticity parameters are calibrated in the long
term response of the viscoelastic matrix. A more realistic approach would occur,
if these effective properties were obtained in various strain rates. However, the
results are still very close to each other and thus the validity of the proposed

homogenization method is also verified in this case.
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Figure 4.29: Stress-strain curves of heterogeneous and homogeneous CNT-RC
material from cyclic tests at v = 1 Hz; wf=2% and 1SS=40, 80 and 160 MPa

4.2.3.2 Test case 2: Tensile tests on CNT-RC specimens

In this example, tensile tests on CNT-RC specimens are simulated. These spec-
imens are consisted of a rectangular PEEK matrix reinforced by four straight
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CNTs. Distribution of CNTs inside the matrix follows a square pattern. The
efficiency of the proposed homogenization method is evaluated by comparing the
stress-strain curves of the heterogeneous and the homogeneous models. Finite el-
ement meshes of both models are illustrated in Fig. 4.30. Particularly, the matrix
of the composite in both models is discretized by 4100 solid elements, while each
CNT in the heterogeneous model is discretized by 37 Bernoulli beam elements.
The wf of the CNT-RC material of the specimen is 2%, while ISS=40, 80 and
160 MPa. As shown in Fig. 4.31, the microstructure of the heterogeneous model
can be constructed by merging four RVE models with wf=2%. The specific RVEs
were previously analyzed in test case 1 of Section 4.2.3.1. Calibrated parameters
for the viscoplastic model of Section 4.2.2 have been calculated from these RVE
models. In this test case, these calculated effective parameters are assigned to
the homogeneous CNT-RC material of the specimens.

A monotonic axial tensile load is applied on these specimens through Eq. (4.39)
with E=[E;; 0 0 0 0 0]" and Ey, = 5%. Figures 4.32(a), 4.32(b) and 4.32(c)
plot the stress-strain curves of both the heterogeneous and the homogeneous
models for wi=2% and ISS=40, 80 and 160 MPa, respectively. These results
have been obtained without considering strain rate effects of the material. Thus
in these simulations PEEK matrix exhibits instantaneous elastic response. The
stress-strain curves of the homogeneous models are well fitted to these of the
heterogeneous models. The efficiency of the proposed homogenization method
is therefore asserted. Figures 4.33(a), 4.33(b) and 4.33(c) plot the stress-strain
curves of the aforementioned models, but this time viscoelastic response of PEEK
matrix is considered. The imposed strain rates correspond to a loading frequency
of 1 Hz. Small discrepancy of the results may be again attributed to calibration
errors. However, the results are expected to fit each other if larger RVEs with
random distribution of CNTs are considered. In this case, the effect of the local
strain rates in the microstructure can be smoothed away and thus microstructural

behavior can be better captured by the homogeneous models.
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RVE, wf=2%

Figure 4.30: FE mesh of (a) heterogeneous, (b) homogeneous CNT-RC specimen

Figure 4.31: Construction of heterogeneous model of CNT-RC specimen by merg-
101

ing four RVEs with wf=2%
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Figure 4.32: Stress-strain curves of heterogeneous and homogeneous models of
CNT-RC specimen without considering strain rates; wf=2% and ISS=40, 80 and

160 MPa
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Figure 4.33: Stress-strain curves of heterogeneous and homogeneous models of

CNT-RC specimen considering strain rates (v = 1 Hz); wf=2% and ISS=40, 80
and 160 MPa
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Chapter 5

Graphene nanoplatelet-reinforced

composites

Graphene nanoplatelets (GnPs) are unique carbon materials with multifunctional
properties. They are considered as two-dimensional nanoparticles consisting of
small stacks of graphene sheets that are 1-15 nm thick and 1-100 ym wide. These
stacked layers are bonded to each other by van der Waals forces with an inter-
layer distance of 0.34 nm and exhibit a specific surface area of 2630-2965 m?/g
[66, 11]. The geometrical characteristics of GnPs can be tuned by a variety of
techniques, such as intercalation, oxidation, heat treatment, microwave irradia-
tion and ultrasonic treatment [99]. Scanning electron microscope (SEM) images
provided in Fig. 5.1 illustrate the bulk morphology of exfoliated GnPs. Since
GnPs are composed of the same material as carbon nanotubes, they share many
of their electrochemical characteristics, which lead to their supreme mechani-
cal and physical properties. Specifically, GnPs exhibit tensile modulus ~1 TPa,
tensile strength 10-20 GPa, thermal conductivity ~3000 W/(m-K), electrical re-
sistivity ~ 5 x 107°Q-cm, with only a bulk density of 0.03-0.15 g/cm? [39, 41, 37].

Incorporation of GNPs into a polymer matrix has significant advantages over
CNTs. For example, GNPs do not require disentanglement that is one of the most
difficult parts in processing CNTs. The platelet shape offers GnP boundary edges
that are easier to be modified through functionalization, leading to enhanced

interfacial adhesion between GnP and polymer. Also, GNPs are produced from
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the very affordable and abundant natural graphite, and thus can be used as a cost-
effective alternative, replacing the expensive CNTs. These advantages along with
the high aspect ratio and the large surface area make GnP a promising candidate
for enhancing the mechanical and physical properties of polymer composites.
This chapter deals with the homogenization of random GnP-RCs contain-
ing arbitrarily shaped platelets. Homogenization is performed numerically in
the framework of extended finite element method (XFEM) coupled with Monte
Carlo simulation (MCS). In particular, the influence of the platelet shape on the
effective properties of the GnP-reinforced composites is highlighted. The platelet
inclusions are randomly distributed and oriented within the polymer and their
shape is implicitly modeled by the iso-zero of an analytically defined random level
set function, which also serves as the enrichment function in the framework of
XFEM. The analytical function used is a random "rough” circle defined by a set
of independent identically distributed (i.i.d.) random variables and deterministic
constants governing the roughness of the shape [86]. Homogenization is performed
based on Hill’s energy condition and MCS [57]. The homogenization involves the
generation of a large number of random realizations of the microstructure ge-
ometry based on a given volume fraction of the inclusions and other parameters
(shape, spatial distribution and orientation). Although the proposed homoge-
nization method aims to derive effective properties for GnP-RCs, its usage can
be generalized in every heterogeneous medium containing arbitrarily shaped in-
clusions. For this reason, the applicability of the method is tested for various
stiffness ratio values, which correspond to both stiff and compliant inclusions

(see the numerical results of Section 5.3).
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Figure 5.1: Scanning electron microscope images of exfoliated GnPs showing bulk
morphology and average platelet diameter (Source: Duguay [21])

5.1 Modeling RVEs of GnP-reinforced compos-
ites with XFEM

Classical finite element (FE) methods are commonly used to analyze complex
microstructures. In this case, the mesh conforms to the internal material inter-
face boundaries that cause the strong or weak discontinuities in the displacement
solution field. While fast meshing algorithms are available to discretize a domain
with such internal features, this step still involves a significant computational ef-
fort. This is especially true when large number of simulations are to be performed
to quantify the probability distributions involved, with reasonable confidence. In
Zohdi and Wriggers [115], the homogenization of random heterogeneous media is
performed using the standard FE method with material discontinuities within the
elements, following a microstructure-nonconforming approach. Micro-geometrical
idealizations for the irregular shapes of the inclusions are used, where a general-

ized diameter is defined for the smallest sphere that can enclose a single particle,
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which can be considered of arbitrary shape. The development of the extended
finite element method (XFEM) by Moés et al [60] offers the possibility to use a
regular mesh which does not have to be adapted to the internal details (cracks or
material interfaces) of each random realization of the microstructure. Extended
finite element method is therefore particularly suitable to model the local het-
erogeneous material structure in a representative volume element (RVE) for the
application of homogenization techniques.

The extended finite element method uses nodal enrichment functions within
the framework of the partition of unity method to augment the FE approxi-
mations over a structured mesh [56]. These enrichment functions act as addi-
tional bases to model strong or weak discontinuities that occur along the interface
boundaries. The method was initially developed to model strong discontinuities
in the primary field variables as they occur at a crack [60]. It has also been ap-
plied to the modeling of material interfaces which represent weak discontinuities
in the mechanical boundary value problem [4, 88, 61, 23]. In Yvonnet et al [110],
an XFEM /level set approach is implemented in order to model interface effects
and to compute the size-dependent effective properties of composites containing
nanopores. Nowadays XFEM is used in many other applications. Zhao et al
[112] used a smoothed extended finite element method (SmXFEM) to study the
morphological transformation of precipitates in phase-separated alloys. In Lang
et al [47], an extended stochastic FEM (X-SFEM) is applied in order to predict
heat transfer in composite materials with uncertain inclusion geometry. An open
source XFEM library which can handle a wide variety of problems with discon-
tinuities, has been developed by Bordas et al [7]. Talebi et al [91] developed
an open-source software framework called PERMIX for multiscale modeling and
simulation of fracture in solids. A comprehensive review of the method and its

application to material modeling can be found in [6].

5.1.1 Problem formulation

Consider a medium which occupies a domain 2 C R? whose boundary is rep-
resented by T'. Let prescribed traction ¢ applied on surface Iy C ' (natural

boundary conditions) and prescribed displacements u applied on I', C T' (es-
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sential boundary conditions). The medium contains an inclusion which occupies
the domain Q7 and is surrounded by the internal surface I';,; C I' such that
Q=0Q"UQ and T =T, UT, Ul (Fig. 5.2). The governing equilibrium
and kinematic equations for the elastostatic problem of the medium ignoring the

body forces is:

dive =0 in (5.1a)
u=1u inl, (5.1b)
o-n=t inly (5.1c)

[0 ninal =0 inTing (5.1d)

where n and n;,y are the unit normals to I'; and I';,, respectively. Note that

Eq. (5.1d) implies traction continuity along the material interface I'y,.

Figure 5.2: Schematic of a medium which occupies a domain Q = QF U Q™
contains an inclusion () and is subjected to essential and natural boundary
conditions on surfaces I', and I'; respectively

109



5. GRAPHENE NANOPLATELET-REINFORCED COMPOSITES

5.1.2 XFEM weak form

The differential Eq. (5.1a) represents the strong form of the elastostatic bound-
ary value problem. In order to find a numerical solution u of the problem, the
differential equation is transformed into a suitable variational form by first mul-
tiplying it with a test function v and then integrating over the domain 2. So, a
trial solution u is seeked, which satisfies the weak form and the essential boundary

conditions of the problem in a functional space U defined as:

U={ueH (Q):u=1u on I',} (5.2)

The test function v belongs to the functional space V', which contains any set of

kinematically admissible test functions (virtual displacements) and is defined as:

Vi={veH (Q):u=0 on T,} (5.3)

where H' (Q2) is the Sobolev space of functions with square-integrable first deriva-

tives in 2. The weak formulation of the static problem can now be stated as:

find u € U such that Vv € V, a(u,v) =1(v) (5.4)

where the bilinear form a (-, ) and the linear form [ (-) are defined as:

a(u,v) = /Qa(u) : Vo dQ
(5.5)

5.1.3 XFEM discrete system

Considering the Bubnov-Galerkin method for the extended finite element (XFE)
elastostatic problem, the trial function u as well as the test function v are rep-

resented as a linear combination of the same interpolation functions. The weak
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form of the discrete problem can be stated as:

find «" € U" ¢ U such that Yo" € V* C V, .

a (uh,vh) =1 (vh) (56)
where h stands for the characteristic size of the elements in the mesh. Note that
to accurately capture a non-smooth solution resulting from material interfaces,
the traditional FE method requires a mesh that conforms to the inclusion geom-
etry. On the contrary, the XFEM eliminates the requirement of a conforming
mesh by enriching the traditional FE approximation with a suitably constructed
enrichment function. The XFEM displacement approximation for the trial and
test functions can be decomposed into the standard FE part and the enriched

part as follows:

Uh (X) = u];em (X) + ugm‘ (X) =

ZNi (x) w; + Z N;j (x) ¥ (x) o
V(%) = Vo (%) + 0L, (%) =

SN )+ SN ()6 (x) 8,

iel jeJ

(5.7)

where [ is the set of all nodes in the mesh and J is the set of nodes that are en-
riched with the enrichment function 1 that satisfies the local character of the dis-
placement field. A detailed description of the stochastic enrichment function that
has been developed for arbitrarily shaped inclusions is provided in Section 5.1.4.
To satisfy partition of unity, the enrichment function is enveloped by the origi-
nal shape functions N; and additional to the standard nodal variables w; or v;,
enriched nodal variables a; or 8; are introduced in the approximation equations

for u” or v", respectively.

In case of microstructures containing high volume fraction of inclusions or very
nearby inclusions, the use of XFEM/level set method induces numerical artefacts

that degrade the accuracy and convergence of the solution. To avoid these prob-
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lems, the approach proposed by Tran et al [95] and Hiriyur et al [32] has been
adopted in this study. In this approach, a node whose support is cut by multi-
ple inclusions ng is enriched by different enrichment functions v, corresponding
to each inclusion k. The enriched nodal variables aj; or f;;, of Eq. (5.8) corre-
spond to node j whose support is cut by the k-th inclusion. The approximation

displacement field can then be written as:

iel jeJ

vh(x):ZNi(X)Ui+ZNj(X)(

il jed

u" (x) = Z N; (x) u; + Z Nj (x) <Z Uk (x) Oéjk>
0 Y, (x) 5jk>

Substituting Eq. (5.8) into the weak form of Eq. (5.6), a discrete system of alge-

braic equations is obtained:

where [Kuu]ij = a(N;, Nj), [KOéOé]ij = a(N; 2202 Yw Ny D042, ¥) and [Kua]z’j =

[Kaulj; = a(Niy Nj 232, ) are the stiffness matrices associated with the stan-

dard FE approximation, the enriched approximation and the coupling between

F,

r (5.9)

them, respectively. The forces are expressed as [[,]; = [(IV;) and [F,]; =
L(N; Y702, ). From the solution of the system, the nodal displacements u and
enriched variables « are finally obtained. It is worth noting that, although the
algebraic system of Eq. (5.9) is of larger dimension than that before the enrich-
ment, XFEM has the benefits of using a coarser mesh compared with FEM and

thus solving a smaller global system of equations.

5.1.4 Enrichment function

Inclusions into a medium introduce a weak discontinuity in the displacement
field (due to change in material properties), which shows a kink at the interface

and a discontinuous first derivative. For modeling such fields in the framework
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of XFEM, usually a ramp function in the form of absolute distance function is
used to enrich the approximation field [44]. XFEM is typically combined with
the level set approach where a level set function ¢ is used to implicitly describe
random inclusion geometry [83, 47]. While the level set method is often used
to track moving interfaces on a fixed mesh [81], it is used herein to define the
location of the inclusion interface and its stochastic variation. The location of
the interface I';,¢ (0) is implicitly defined by the iso-zero of the following random
level set function representing a "rough” circle, which is taken as the signed radial

distance function to the curve:

¢ (x,0) =[x —c| = R(a(x),0) (5.10)

where x is the spatial location of a point in the meshed domain, c is the center
of the rough circle, R (a(x),0) is a random field representing the radius of the
rough circle, o (x) € [0,27] is the polar angle at position x and € denotes the

randomness of a quantity (Fig. 5.3).

Fincl (9)

Figure 5.3: Schematic representation of a rough circle

113



5. GRAPHENE NANOPLATELET-REINFORCED COMPOSITES

In this study, the following equation is used for the random radius [86]:

R(a,0) = 0.2+ 0.03Y1(0) + 0.015{Y3(0)cos(kia)+ - 11

Y3(0)sin(ky) + Ya(0)cos(kaa) + Ys(8)sin(kaa)} G1)
where the ii.d. uniform random variables Y;(#) € U (—\/3, \/g), i=1,..5.
Note that the first random variable controls the "mean” reference radius while
the other four control its amplitude. ki, ko are deterministic constants which
define the period of oscillations of the random rough circle around the shape of
the reference (perfect) circle. An example of the level set function ¢ for a random
rough circle inclusion with k; = 0 and ky = 3 is shown in Fig. 5.4. The iso-zero
contour level of ¢ displayed in Fig. 5.4(b) defines the boundary I, (#) which

describes the shape of the inclusion.

(a) XZ o | X]

Figure 5.4: a) Signed level set function and b) contour levels of ¢ for a random
rough circle inclusion with k; = 0 and ks = 3

An appropriate enrichment function which captures discontinuous first deriva-
tives in the approximation fields was proposed by Sukumar et al [88]. This is a

ramp function defined as the absolute value of the random level set function
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discretized according to the FE mesh of the spatial domain as follows:

U (x) = Z Ni (x) ¢}

el

(5.12)

where ¢¥ is the value of the level set function of Eq. (5.10) at node 4 for the
k-th inclusion and N; (x) are the FE nodal basis functions. In order for the
XFE approximations to retain the Kronecker-d property of the standard FE ap-
proximations so that at node j, u”(x;) = uj, a shifted enrichment function
Sk (x) = Y, (x) — 1y, (x;) was first suggested by Belytschko et al [4]. By this shift-
ing operator, the enrichment terms vanish at all nodes j € J and thus smoothing
of the discontinuous solution is achieved on the problematic blending elements
leading to improved convergence.

Another choice for the enrichment function was introduced by Moés et al
[61]. This is a ridge function centered on the interface, having zero value on the

elements which are not crossed by the interface and defined as follows:

Y (%) =Y N; (x) |¢F] -

iel

Z Ni (x) ¢}

el

(5.13)

This enrichment function avoids spurious numerical results on blending elements
and thus improves the accuracy and convergence of the XFEM solution, as shown

in the next section.

5.1.5 Convergence study of XFEM solution for single in-

clusion

In this section, three RVE models containing a single centered inclusion with
different geometry are simulated with both XFEM and standard FEM. Equa-
tions (5.10) and (5.11) are used for the construction of the inclusions, where
parameters (ki, ko) are chosen as (0,0), (0,3) and (0,6). All RVEs have a unit
cell geometry with dimensions 10 x 10 mm and a volume fraction (vf) of inclu-
sions 30%. This is achieved by scaling the inclusion geometry as explained in
Section 5.2.1. In the case of XFEM, a structured mesh of bilinear quadrilateral

elements is used. The same type of elements is used for FEM but in this case, the
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mesh must conform to the boundaries of the inclusions (see Figs. 5.7-5.9). The
RVEs with the boundary conditions and loads shown in Fig. 5.5 are subjected to
pure tension. The magnitude of the traction ¢ along the right edge is 1 GPa. The
matrix and the GnP inclusions are modeled using linear elastic isotropic materials
with Young’s moduli F,, = 1 and Ej;,, = 1000 GPa, respectively. The Poisson

ratio for both materials is set equal to 0.3.

A,

X

Figure 5.5: Schematic of boundary conditions and loading of the RVE models
used in Section 5.1.5

A convergence study with regard to XFE size is carried out for the afore-
mentioned RVE models using equispaced rectangular L, X Lj; meshes, where
L, = 10,20,40,80. Since no analytical solution exists for an RVE containing a
single inclusion of arbitrary shape, the results obtained with a fine mesh FEM
model are considered as the reference solution. The convergence study is based

both on the Ly norm and the energy norm, which are defined as:

B H ufem _ uzfem H2

€r, = (514)
’ [RZEA P
H ufem o uzfem ||E | erm o Ha:fem ’
| ufem || g | IL7em |
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where II = %UTK u is the strain energy of the model.

The results of the convergence study are presented in Fig. 5.6. It is verified
that the enrichment function of Eq. (5.13) leads to improved accuracy and con-
vergence compared to the enrichment function of Eq. (5.12). As shown in Fig. 5.6,
the relative error in both L, and energy norms when the enrichment function of
Eq. (5.13) is used, is at most 0.48% for an XFEM mesh of 40 x 40. This mesh size
can be considered sufficiently fine for an accurate representation of the interface
geometry details. Therefore, all the subsequent simulations in this chapter are
conducted using this specific mesh size and the enrichment function of Eq. (5.13).
Figs. 5.7-5.9 display the selected XFE mesh and the fine FE mesh for each RVE
along with the corresponding displacement fields (U,,), which agree very well to
each other. Details about the XFE and FE meshes for the RVE model depicted
in Fig. 5.9 are provided in Table 5.1.

10° ‘ ‘ 10°
107"} 107"}
& 107 & 107
107 ;| 10°
10 10" 10° 10 10" 10°
Size of XFEM element (h) Size of XFEM element (h)

Figure 5.6: Convergence of XFEM to FEM results with regard to four element
sizes corresponding to XFEM mesh density L, x L (L, = 10, 20,40, 80) using
the enrichment functions of Sukumar et al [88] and Moés et al [61]

A convergence study with respect to the matrix-inclusion stiffness ratio is
also conducted for the RVE models described previously. Both stiff (E;,q > E,)
and compliant (E,, > Ej;,q) inclusions are considered for stiffness ratio values
(Einet/ B ot Ey,/Eine) ranging from 5 to 10%. In Fig. 5.10, the relative error in

Lo and energy norm is plotted against the corresponding ratio of elastic moduli.
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(©) (d)

Figure 5.7: Comparison of displacement fields U,, obtained from XFEM and
FEM for RVE with inclusion (ky = 0,k = 0) : a) XFEM mesh, b) XFEM
displacements, ¢) FEM mesh and d) FEM displacements

XFEM
FEM 10x 10 20 x 20 40 x40 80 x 80
nodes 8281 121 441 1681 6561
elements 8120 100 400 1600 6400
dofs 16562 318 1074 3746 13890

Table 5.1: Mesh details of RVE with a single inclusion of arbitrary shape (k; =
0,ky = 6)

In the case of stiff inclusions, the relative error seems to increase as the stiffness
ratio increases whereas for compliant inclusions the relative error seems to reach

a plateau for stiffness ratio greater than 102. For the elastic moduli ratio 103
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Figure 5.8: Comparison of displacement fields U,, obtained from XFEM and
FEM for RVE with inclusion (ky = 0,k2 = 3) : a) XFEM mesh, b) XFEM
displacements, ¢) FEM mesh and d) FEM displacements

used in the numerical examples (Section 5.3), the differences between XFEM and

reference FEM solutions are at most 0.48%.
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(c) (d)

Figure 5.9: Comparison of displacement fields U,, obtained from XFEM and
FEM for RVE with inclusion (ky = 0,k2 = 6) : a) XFEM mesh, b) XFEM
displacements, ¢) FEM mesh and d) FEM displacements
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Figure 5.10: Effect of elastic moduli ratio on the accuracy of the XFEM solution
in terms of Ly and energy norm
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5.2 Homogenization

5.2.1 Generation of random microstructures

In order to proceed to the stochastic homogenization procedure in the framework
of MCS (Section 5.2.2), the first step is to generate a large number of random
realizations of the microstructure geometry of the GnP-RC RVEs. For this pur-
pose an efficient algorithm was used in Hiriyur et al [32], the basic steps of which
are described in Table 5.2. This algorithm has been appropriately modified here
to account for arbitrarily shaped inclusions. A specific volume fraction (vf) and
number of inclusions n;,q is assigned to each RVE with dimensions X; x Xo.
For the generation of arbitrarily shaped inclusions, Equations (5.10) and (5.11)
are used with specific deterministic constants k;, ko and random variables Y;(0)
produced according to a prescribed uniform probability density function (PDF)
fv;- The random boundary curve I';,,4(0) of an inclusion is constructed using N

discrete points as follows:

Lina(0) : {x=c+ R(c,0) (cosa - €1 + sina - e2)} (5.16)

where eq, ez are the unit vectors of the Cartesian coordinate system (Fig. 5.3).
Figure 5.11 presents the different inclusion shapes considered in this study. For
each inclusion, a set of random coordinates representing the center of the rough
circle and its random orientation angle are also generated according to prescribed

uniform distributions f, and fs.

1XX

(b) (c) (d)

Figure 5.11: Shapes of GnP inclusions constructed by: a)k; = 0, ks = 0, b)
]{?120, ]{32:3, C) k‘l:O, k:2:6andd) k’1:3, ]{?2:6

After the generation of n;, inclusions, their size needs to be scaled in order to

achieve the desired vf for the RVE. For this purpose, the cumulative area of all the
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randomly generated inclusions is calculated first and an appropriate scaling factor
is determined which is then applied to the random radius of the rough circle for
all N discrete points. To eliminate the chance of overlap of a particular inclusion
with the others that are spatially distributed in the RVE, the inclusions are sorted
in decreasing order of area size. Starting with the inclusion with the largest area,
the algorithm proceeds to the spatial distribution of the remaining inclusions in
decreasing order of size, checking simultaneously for overlapping. The level set
function corresponding to a specific inclusion is evaluated on the N discretization
points belonging to all previously positioned inclusions. If all the values of the
level set function of the specific inclusion are positive, then no overlapping occurs
and the algorithm proceeds to position the next smaller inclusion according to
its area. If any inclusion placed and oriented according to the generated random
position variables is found to overlap with any previously located inclusion, then
new center coordinates and orientation angle are generated until no overlap is
observed. In Fig. 5.12, a set of RVE realizations generated using the algorithm
of Table 5.2 are shown. These RVEs have a volume fraction vi=30% and contain

different number of inclusions with parameters k; = 0 and ko = 3.

Niner=1 Njpe=5 On,,,c,g Q - n,5,=20 =
Q O 9 Q 2 QO

o0 Q@ QQ@ QOQOQ

Figure 5.12: Sample realizations of generated random microstructures with
vi=30% and parameters k; = 0 and ko = 3

vf=0.3
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Table 5.2: Algorithm for the generation of random microstructure geometry of

RVEs

e INPUT
— X, Xo: Size of RVE

— vi: Inclusion volume fraction in RVE
— Nine: Total number of inclusions in RVE

— fv,;: Independent probability distributions for the random variables
Yi(0) € U(—V3,v3),i=1,..,5in Eq. (5.11)

— fe, fs: Independent probability distributions for the center coordinates
and orientation angle

— k1, k9: Deterministic constants which define the period of oscillations
of the random rough circle boundary curve

e GENERATE / SCALE / SORT INCLUSIONS

— Generate n;,q random inclusions

— Calculate numerically by trapezoidal rule the cumulative area of all
inclusions as

A Nincl N xkzn +xkn
Aincl = Z {Z [(Ilf,n-kl - xlf,n) ' <%>] }

k=1 \n=1
n = 1,...,N: number of discretization points on the boundary curve

of the random rough circle, (24,25 ) € Tt ,(0)

. €D, ¢
— Scale rough circle radii: R, = R, |vf ,211 &
incl

— Sort inclusions in decreasing order of area

e SPATTALLY DISTRIBUTE INCLUSIONS IN RVE

— Loop over inclusions £ = 1 to njpq

+ Generate random numbers (24, 2%) uniform in [0, X;] and [0, X],
respectively and B* uniform in [0, 27] to represent rough circle
center and orientation

x Check overlap with previously positioned inclusions 1 to £ — 1

- If TRUE, repeat step for inclusion £ with new random values

for coordinates (zf,z5) and orientation S*

- If FALSE, proceed to next smaller inclusion
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5.2.2 Homogenization in the framework of MCS

The homogenization scheme adopted in this study is based on the fundamental
assumption of statistical homogeneity of the heterogeneous medium [28], which
means that all statistical properties of the state variables are the same at any
material point and thus a representative volume element (RVE) can be identi-
fied. Effective homogeneous material properties, corresponding to the random
microstructures generated by the algorithm in Section 5.2.1, are obtained by
MCS. For this purpose, a sufficiently large number of elastic analyses are con-
ducted where the RVEs are subjected to displacement boundary conditions [57].
Although there is a constant homogenized material property within the RVE,
this property changes from realization to realization making it a random vari-
able. Assuming that the resulting homogeneous material will remain linear and
isotropic, the effective Young’s modulus F.rs and Poisson ratio v s are the only
parameters to be defined through the stochastic homogenization procedure. It
should be mentioned that a more general orthotropic material model could more
accurately simulate the behavior of the homogenized medium. However, such
model would increase significantly the computational cost and therefore it is not
used in this study. Note also that the isotropy assumption can be considered

valid in an average sense.

Homogenization is based on Hill’s energy averaging theorem, which postulates
that the strain energy of the homogenized macro-continuum has to be equal to

that of the microstructured RVE in an average sense:

b
g:e=— [ o0:edY 5.17
V1 Jo (5:-17)

where Y denotes the coordinate system in the microstructured RVE. The macro-
scopic quantities are related to the corresponding state variables at microscale
through established micro to macro relations. According to the deterministic
theories of Hill [31], the total macroscopic stress and strain tensors at some point

X of the continuum are computed by

5(X) = (o)(X) and &(X) = (e)(X) (5.18)
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where the average of a quantity ¢ at the microstructure is defined as its integral

over the corresponding RVE volume V' as

(X0 = (©X) = 1, [ ¢x.¥)ay
@ (5.19)
with V = /QdY

Miehe and Koch [57] proposed a computational procedure to exclusively de-
fine the overall macroscopic stresses and tangent moduli of a typical microstruc-
ture from the discrete forces and stiffness properties on the boundary nodes of
the meshed RVE model. Following this procedure, a prescribed strain tensor &
is applied on the boundary of the microstructure models through displacement

boundary conditions in the form:

u, =D'e (5.20)

q

where D, is a geometric matrix that depends on the coordinates of the nodal

point ¢ which lies on the boundary of the model, defined by

1 21]1 0
Dy=5 |0 2 (5.21)
i) T

where (z1,22) € Y. The overall macroscopic stress & is then calculated in an

average manner from the nodal reaction forces f, obtained by XFEM analysis as

1 M
&= W > D,f, (5.22)
q=1

where M is the number of boundary nodes ¢q. As mentioned previously, the macro-

scopic stress is related to the imposed macroscopic strain by a linear isotropic
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elastic constitutive matrix in the form

011 Ceff Depr 0 €11
02| = Deff Ceff 0 €29 (523)
012 0 0 Geff €12
where
( Ee
ﬁ plane stress
Cofp = e/t (5.24)
(1 — Vegys) Eeyy .
plane strain
(L verr) (1= 2vesp)
( E
% plane stress
Dejs = e/t (5.25)
VepiBers :
plane strain
(1 + veps) (1= 2vesp)
Eeys
and Gerp = ————— 5.26
u 2 (1 + Veff) ( )

The computation of the effective Young’s modulus and Poisson ratio is accom-
plished by imposing the macrostrain vector & = [£1; 0 O]T in form of displace-
ments (see Eq. (5.20)). Thus Crp = 711/¢11 and D, sy = G92/€11 can be calculated

from which E.sf and v.s¢ are derived for each Monte Carlo sample.

5.2.3 Solution strategy

The XFE elastostatic problem of RVEs with random inclusions requires the solu-
tion of the linear system of Eq. (5.9). The local stiffness matrices of the regular
and enriched elements are calculated numerically by the trapezoidal integration
method with 4 quadrature points in an equispaced 2 x 2 grid and with 64 quadra-
ture points in an equispaced 8 x 8 grid, respectively. The global stiffness matrix
comprises K, which corresponds to the regular dofs u, K,, which corresponds
to the enriched dofs o and K,,=K,, which derive from the coupling between
and a. As the bandwith of this matrix is quite large, the Reverse Cuthill-McKee
algorithm for symmetric sparse matrix reordering is used to reduce the band-

width and accelerate the solution of the linear system. Figure 5.13 illustrates
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the stiffness matrix K of a discretized RVE model with inclusions of shape type
(ky = 0,k = 6), before and after implementation of the reordering algorithm.
The solution is finally obtained by factorizing the reordered narrower bandwidth

stiffness matrix, using the Cholesky decomposition.

T

1000 1000

2000 2000
2000 k. 3000

4000 4000

5000

5000
o] 1000 2000 3000 4000 5000 o] 1000 2000 3000 4000 5000

(b) (c)

Figure 5.13: RVE model with inclusions (k1, k2) = (0,6): a) Mesh, b) Stiffness
matrix K without reordering and c) Stiffness matrix K reordered by Reverse
Cuthill-McKee algorithm

5.3 Numerical examples

The probability distribution of the effective elastic modulus and Poisson ratio
for a plane-stress medium containing inclusions of arbitrary shape is obtained
using the approach described in sections 5.1 and 5.2. As already stated, a linear

isotropic material model is considered for both matrix and inclusions with the
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same Poisson ratio v, = v;,q = 0.3. Moreover, examples with different Poisson
ratios v, = 0.49 (nearly incompressible matrix) and v;,; = 0.3 are presented.
Ecf¢, veps are computed through the coupled XFEM-MCS homogenization ap-
proach of Section 5.2.

A unit cell of size 10 x 10 mm subjected to displacement boundary conditions,
is used in the analyses. A total of 1000 Monte Carlo simulations are performed
for each volume fraction of inclusions considered ranging from 0.2 to 0.4. The
number of inclusions in each MC sample is fixed to 15. Parametric investigations
with respect to the stiffness ratio Ej,q/E,, are conducted to highlight its effect
on the results. It is noted that the computed E,; is in all cases within the upper
and lower bounds defined by the Voigt and Reuss models, respectively.

Figure 5.14 shows the histograms of FE.f¢, v.rr along with the statistical
convergence of their mean and coefficient of variation (COV) for stiffness ra-
tio Eine/FEym = 10, v =0.4 and four different cases of inclusion shape roughness
(k1 = 0,k = 0), (k1 = 0,ky = 3), (ky = 0,ky = 6) and (k; = 3,ky = 6), (see
Fig. 5.11). The same results are displayed in Fig. 5.15 for the case of compliant
inclusions (E,,/FEi,q = 10). It can be seen that the effect of the inclusion shape is
negligible in both cases as the difference in the mean value of the effective elastic
modulus between (k; = 0, ky = 0) (perfect circle) and (k; = 0, ko = 6) (arbitrary
shape) is less than 3.5%.

The effect of the inclusion shape on E.f¢, vefs becomes more pronounced in
the case of large stiffness ratios. Figures 5.16-5.19 display the histograms of E.y,
vers and the statistical convergence of their mean and COV for stiffness ratio
Eina/En = 1000, which is typical in case of GnP-RC RVEs, three values of vf
and four cases of inclusion shape roughness. The differences in the mean value of
the effective elastic coefficient E.sf for the various inclusion shapes and volume
fractions are given in Table 5.3. An increase of about 16% in E, ¢ can be observed
in the case of vf =0.4 between (k; = 0,ky = 0) and (k; = 0, ks = 6). The shape
of the histograms is significantly affected by the volume fraction and shape of the
inclusions, in contrast to the case of a small stiffness ratio (see Fig. 5.14). The
computed COV is also much larger in this case for both E.¢; and veyy.

As shown in Fig. 5.20, a reduction of the effective elastic modulus occurs with

the increase of shape roughness in the case of compliant inclusions (E,,/Fi,q =
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1000). The effect of volume fraction and inclusion shape on the histograms of
Eef¢, Vegy is less pronounced than in the case of stiff inclusions. The differences
in the mean value of E.s; are still significant (Table 5.4). A decrease of about
12% in E.s¢ can be noticed in the case of vf =0.4 between (k; = 0,k = 0) and
(k1 = 0,ko = 6) . Statistical convergence of mean and COV is achieved within
the same number of MC simulations (Figs. 5.22-5.23).

Figures 5.24 and 5.25 present the results obtained with different Poisson ratios
for the matrix and inclusions, respectively. The stiffness ratio is Ej,q/E,, = 1000
in case of stiff inclusions and E,,/F;,q = 1000 in case of compliant inclusions.
The results corresponding to the cases with the largest differences in E.;; are
shown (RVEs with vf=0.4 and inclusions of shape type (k1 = 0,ky = 0) and
(ky = 0,k = 6)). The differences in E.ss are 18% for stiff and 11.6% for com-
pliant inclusions. Note that, for the case of GnP-reinforced composites where
Eina/En ~ 1000, increase of the platelet shape roughness results in higher com-
posite stiffness. Although in this study, full bond condition is assumed at the
GnP /polymer interface, theoretically the increased roughness of the platelets can
also achieve better adhesion to matrix. From the above mentioned issues the

significance of platelet shape in studying GnP-reinforced polymers is highlighted.

vE [(0,0)—(0,3) (0,0)—(0,6) (0,3)—(0,6) (0,0)—(3,6)
0.2 2.55 5.31 2.69 2.89
0.3 3.22 9.77 6.34 4.22
0.4 4.11 16.13 11.55 6.15

Table 5.3: Effect (% increase) of shape roughness (k, k2) on mean(E,yy) for stiff
inclusions (Ej,q/En = 1000)

vE [(0,0)—(0,3) (0,0)—(0,6) (0,3)—(0,6) (0,0)—(3,6)
0.2 2.29 2.81 0.50 -0.28
0.3 4.14 6.28 2.06 1.49
0.4 5.24 11.85 6.28 4.22

Table 5.4: Effect (% decrease) of shape roughness (ki, k) on mean(E,.sf) for
compliant inclusions (E,,/Ei,» = 1000)
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Figure 5.14: Stiff inclusions (Eiuq/Fy = 10): a-b) Histograms, c-d) mean values
and e-f) COVs of E.;f and v,y respectively for RVEs with vf=0.4 and inclusions
with (k1, k2) = [(0,0), (0,3), (0,6), (3,6)]
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Figure 5.15: Compliant inclusions (E,,/Eima = 10): a-b) Histograms, c¢-d) mean
values and e-f) COVs of E.ff and v.ps respectively for RVEs with vf=0.4 and
inclusions with (kq, k2) = [(0,0), (0, 3),(0,6), (3,6)]
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Figure 5.16: Stiff inclusions (Ej,q/FE, = 1000) Histograms of E.fp: a) (k =
0,]62 = 0), b) (kl = O,kg = 3), C) (k’l = O,kg = 6) and d) (k‘l = 3, k‘g = 6) for

vi=[0.2, 0.3, 0.4]
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Figure 5.17: Stiff inclusions (Ej,q/E, = 1000) Histograms of v.rs: a) (k3 =
O,kg == 0), b) (]{1 = O,kg = 3), C) (k’l = 0, ]{72 = 6) and d) (kl = 3, k‘Q = 6) for

vi=[0.2, 0.3, 0.4]
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Figure 5.18: Stiff inclusions (Ej,q/E,, = 1000): a-b) mean(E,ff), mean(v,.ss) for
inclusions with (k; = 0,k = 0) and c-d) mean(E,fs), mean(v,.ss) for inclusions
with (k1 = 0, ke = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.19: Stiff inclusions (Ejua/Enm = 1000): a-b) COV(E.ss), COV(v,yy) for
inclusions with (k; = 0,k = 0) and ¢-d) COV(E,.sf), COV(v,ys) for inclusions
with (k1 = 0, ke = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.20: Compliant inclusions (E,,/Einq
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Figure 5.21: Compliant inclusions (E,,/Ei,¢ = 1000) Histograms of v.ss: a)
(k1 =0,k = 0), b) (k1 = 0,k2 = 3), ¢) (k1 = 0,ky = 6) and d) (k; = 3,k = 6)

for vi=[0.2, 0.3, 0.4]
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Figure 5.22: Compliant inclusions (E,,/Ei,q = 1000): a-b) mean(E.ss),

mean(v,s) for inclusions with (k1 = 0, k2 = 0) and c-d) mean(E,sf), mean(v.ss)
for inclusions with (k; = 0, ks = 6), respectively for vi=[0.2, 0.3, 0.4]
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Figure 5.23: Compliant inclusions (E,,/Epna = 1000): a-b) COV(E.sy),
COV (vesy) for inclusions with (k; = 0, ks = 0) and c-d) COV(E,ss), COV(veyy)
for inclusions with (k; = 0, k2 = 6), respectively for vf=[0.2, 0.3, 0.4]
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Figure 5.24: Case of different Poisson ratios (v, = 0.49, vy, = 0.3) for stiff
inclusions (Ejnq/Em = 1000): a-b) Histograms, c-d) mean values and e-f) COVs
of Eerr and vy respectively for RVEs with vf=0.4 and shape types (k; = 0, ks =
0), (k; =0,ky = 6)
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Figure 5.25: Case of different Poisson ratios (v, = 0.49, v;,, = 0.3) for compliant
inclusions (E,,/Eina = 1000): a-b) Histograms, c-d) mean values and e-f) COVs
of Eerr and vy respectively for RVEs with vf=0.4 and shape types (k; = 0, ks =
0), (k; =0,ky = 6)
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Chapter 6

Conclusions

6.1 Conclusions

In this PhD thesis, different multiscale modeling techniques were utilized and new
constitutive models were developed for the simulation of CNT and GnP reinforced
composite materials within reasonable computational time and accuracy. Various
stochastic parameters have been considered by the proposed multiscale analysis
of the nanocomposite RVEs, so that the real microstructural geometry and in-
terfacial phenomena of such heterogeneous materials were properly simulated. In
the context of CNT-RCs, the coupled atomistic-continuum MSM approach was
adopted for modeling the lattice structure of CN'T's where the atomic C-C cova-
lent bond was substituted by a structural beam element. Then, at the nanoscale
the resulting space frame FE model of the nanotube was replaced by an equiva-
lent beam, which was used as the basic element for the construction of full length
CNTs at the microscale. Random waviness of CN'T's geometry was considered in
the multiscale analysis through a novel stochastic approach, where the spectral
representation method was used with evolutionary power spectra derived from
real SEM images of CNT-RCs. The viscoelastic constitutive model of Maxwell-
Wiechert was implemented for accurate predictions of the nonlinear strain rate
dependent response of polymers, which exhibit multiple relaxation times. Cali-
bration procedure of that model was performed for the case of PEEK material,
which was then assigned to the polymer matrix. The embedded element technique

was also adopted so as the RVE FE models were disretized by two independent
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meshes: a structured one with solid elements for the matrix and a series of em-
bedded beams for the full length CNTs inside the matrix. The interfacial load
transfer mechanism between the lateral surface of the CNT and the surrounding
matrix was taken into account with the incorporation of a nonlinear bond-slip

friction-type model in the FE code.

The mechanical and damping properties of the CNT-RCs were assessed on
the basis of sensitivity analyses with respect to various weight fraction content in
CNTs and different interfacial shear stress values at the CNT /polymer interface.
In case of random CNT waviness stochastic average properties were derived with
Monte Carlo simulation. The presented numerical results have demonstrated
the significant effect of the ISS as well as the influence of CNT waviness on
the mechanical and damping behavior of CNT-RCs. Specifically, it was shown
that the loss factor increases with increasing ISS and reaches a peak value for
ISS values equal or greater than the shear strength of the polymer. This fact
implies that, a successful functionalization process on CNTs which results in
increased interfacial shear strength is crucial for achieving optimum damping
characteristics of CNT-RCs. In addition, it was shown that CNT waviness results
in a reduction of the loss factor. Thus, the significance of straightening the CNT's
before the nanocomposite fabrication is highlighted in order to produce materials

with enhanced mechanical and damping properties.

Analysis of CNT-RCs was then upscaled from micro to macro scale through
a nonlinear multiscale homogenization approach. The novelty of the proposed
sequential homogenization method is that it has been efficiently applied for the
characterization of the mechanical and damping properties of CNT-RCs consid-
ering slippage at CNT /polymer interface. This was performed through the devel-
opment of a novel viscoplastic constitutive model which was then assigned to the
homogeneous composite material. Based on Hill’s anisotropic plasticity model
combined with the viscoelastic Maxwell-Wiechert model, both the anisotropic
stiffness reinforcement of the bulk polymer and the anisotropic adhesive behavior
at the CNT /polymer interface caused by the randomly dispersed CNTs inside
the viscoelastic matrix are adequately described. The presented numerical re-
sults verify the efficiency of the proposed homogenization method in solving large

mechanical problems where finer scale phenomena are considered in a continuum
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manner.

In the context of multiscale analysis of GnP-RCs, a homogenization strategy
was proposed where effective material parameters for polymer matrices reinforced
with arbitrarily shaped graphene platelet inclusions were calculated using XFEM,
coupled with Monte Carlo simulation. In particular, the influence of the inclu-
sion shape on the effective properties of such random media was studied. The
inclusions were randomly distributed and oriented within the medium and their
shape was implicitly modeled by the iso-zero of an analytically defined random
level set function ("rough” circle), which also served as the enrichment function.
The formulation which exploits the characteristic features of XFEM avoiding the
regeneration of a new finite element mesh at each Monte Carlo simulation have
led to accelerated computations. Parametric investigations with respect to the
inclusion /matrix stiffness ratio and the inclusion volume fraction were conducted.
The numerical results have shown that the statistical characteristics of the effec-
tive properties can be significantly affected by the shape of the inclusions. This is
more obvious for RVEs with large volume fraction and high stiffness ratio which

are typical in GnP-reinforced composites.

6.2 Recommendations for future work

The multiscale analysis of CNT and GnP-reinforced composites, as this proposed
in this thesis, constitutes a powerful numerical tool for predicting the mechanical
and damping properties of these types of materials. However, further research is

needed in the following topics:

1. Derivation of the nonlinear EBE which can capture nonlinear phenomena
in CNTs such as buckling or defected C-C bonds.

2. Calibration of the proposed viscoplastic constitutive model in various strain
rates for more accurate predictions of the homogeneous material behavior

when viscoelasticity of the polymer matrix is considered.

3. Investigation of the effect of random CNT orientation and waviness on the

nonlinear effective properties of the CNT-RCs in larger RVEs which contain
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many numbers of CNTs.

4. Computational homogenization of CNT and GnP-RCs RVEs with evolving

micro-cracks.

5. Robust optimum design of CNT-RCs and GnP-RCs for stiffness and strength
with regard to topology and geometry of the nanofillers.

6. Study hybrid nanocomposites containing both CNTs and GnPs.
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Appendix A

Viscoelasticity

Source: Abaqus Theory Manual, Version 6.8.

The basic hereditary integral formulation for linear isotropic viscoelasticity is

a‘(t):/OtQG(T—T’)édt'+I/0tK(T—T')q5dt' (A1)

Here e and ¢ are the mechanical deviatoric and volumetric strains; K is the bulk
modulus and G is the shear modulus, which are functions of the reduced time 7;
and ~denotes differentiation with respect to t'.

The reduced time is related to the actual time through the integral differential

equation

t dt’ dr 1
= | %owy T-EB0m (4-2)

where 6 is the temperature and Ay is the shift function. (Hence, if Ag =1, 7 =1.)
A commonly used shift function is the Williams-Landell-Ferry (WLF) equation,

which has the following form:

99 —
—logAy =h(0) = i (6 —6,)

- Ci+(0-0,) (4.3)

where C{ and Cf are constants and 0, is the "glass” transition temperature. This
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is the temperature at which, in principle, the behavior of the material changes
from glassy to rubbery. If @ < 0,—C}j, deformation changes will be elastic. C{ and
C§ were once thought to be "universal” constants whose values were obtained at

6,, but these constants have been shown to vary slightly from polymer to polymer.

The WLEF equation can be used with any convenient temperature, other than
the glass transition temperature, as the reference temperature. The form of the

equation remains the same, but the constants are different. Namely,

logdy = h() = 10— %)

where 6, is the reference temperature at which the relaxation data are given,
and C7 and C5 are the calibration constants at the reference temperature. The

"universal” constants C{ and CJ are related to C; and Cy as follows:

_ %
L+ (0o —0,) /C3° (A.5)
02 - Cg + 00 - 9g

Cy

Other forms of h () are also used, such as a power series in 6 — 6.

The relaxation functions K (t) and G(t) can be defined individually in terms

of a series of exponentials known as the Prony series:

nK ng
K(t) =Ko+ Y Kie T/, G(t) =G+ Y Gie /70 (A.6)
=1

i=1

where K, and G, represent the long-term bulk and shear moduli. In general, the

relaxation times 7% and 7 need not equal each other; however, we can assume

(2
that 7, = 7 = 7% On the other hand, the number of terms in bulk and shear,

nx and ng, need not equal each other. In fact, in many practical cases it can
be assumed that nx = 0. Hence, we now concentrate on the deviatoric behavior.

The equations for the volumetric terms can be derived in an analogous way.
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The deviatoric integral equation is

¢ ng
S = / 2 (Goo + Z Gie“’—ﬂ/n) & dt’
0 i=1
T o< de
_ (T =7)/Ti B /
_/0 2<Goo+izlee )dT, ar'

We rewrite this equation in the form

S = 2G0 (e — Z aiei> s (A8)
i=1

where Gy = G + Z?Zl G, is the instantaneous shear modulus, o; = G;/Gy is

the relative modulus of term ¢, and

T / de
’ 1 (=) 22 g4 A9
‘ /0 ( ¢ > ar 7 (4.9)

is the viscous (creep) strain in each term of the series. For finite element analysis
this equation must be integrated over a finite increment of time. To perform this
integration, we will assume that during the increment e varies linearly with 7;
hence, de/dr’ = Ae/Ar. To use this relation, we break up Eq. (A.9) into two

parts:

n

et = /T (1 — 6(7’—7n+1)/n-> % dr’
T
07-71+1 ; (A.10)
7! —ntl Ti ©
o, ()
Now observe that
1— e(T/—Tn+1)/Ti -1 e—AT/Ti + e—AT/Ti (1 _ 6(7/—7")/Ti> . (All)
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Use of this expression and the approximation for de/dr’ during the increment

yields

ettt = (1 — e 27/m) / de dr’
0

) dT/
e \_nyy\ de
+ e—AT/”/O (1 el Vﬂ) = dr (A.12)
7_n+1
+ % (1 _ e<7’—7"+1>/n> dr'.

The first and last integrals in this expression are readily evaluated, whereas
from Eq. (A.9) follows that the second integral represents the viscous strain in the
i'" term at the beginning of the increment. Hence, the change in the i** viscous

strain is

A
Ac, = (1— e 27/m) o 4 (577 _ 1) er 4 (A7 — 7, (1 — e 27/m)) 28
AT
- Ar (A.13)
— AZ_ ( - + e7AT/Ti 1) Ae+ (1— e A7) (" — el
If A7 /7; approaches zero, this expression can be approximated by
AT (1
Ae; = T (éAe +e" — e?) : (A.14)
T

The last form is used in the computations if Ar/7; < 107".
Hence, in an increment, Eq. (A.13) or Eq. (A.14) is used to calculate the new
value of the viscous strains. Eq. (A.8) is then used subsequently to obtain the

new value of the stresses.

The tangent modulus is readily derived from these equations by differentiating

the deviatoric stress increment, which is

ng
AS = 2G0 (Ae — Z Q; (e;prl — e?)) <A15)

i=1
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with respect to the deviatoric strain increment Ae. Since the equations are linear,

the modulus depends only on the reduced time step:

GO [1 - Z?:l OZZXZT <£ + €_AT/Ti - 1)] if AT/TZ‘ > 10_7

G = " (A.16)
Go [1 - %aiAT—:] it A7/m <1077
The energy dissipation follows from
1 s
. n+1 ny .
Pp=3 (8 —i—S).;aiAez
_ 1 n+1 n 1 n+1 n (A17)
— (54 87 (Ae o (5714 87)
=P — Py
with the total work .
P=3 (8" +8"): Ae (A.18)
and the elastic energy increase
1
Pp=—— (8" . 8" —§g":. 8", A.19
PG, ( ) (A.19)

Finally, one needs a relation between the reduced time increment, A7, and the
actual time increment, At¢. To do this, we observe that Ay varies very nonlinearly
with temperature; hence, any direct approximation of Ay is likely to lead to large
errors. On the other hand, h (0) will generally be a smoothly varying function of
temperature that is well approximated by a linear function of temperature over
an increment. If we further assume that incrementally the temperature 6 is a

linear function of time ¢, one finds the relation

h(0) = —logAy (0 (t)) = a + bt (A.20)
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or

AZ1 (0 (1)) = et (A.21)

with

1
a=— [t""h(e") — (0"

b= L [n(e™) — n(e)].

Al

This yields the relation

tn+1

AT = / et dt =
tn

This expression can also be written as

(ea+btn+1 - ea+bt"> . (A.23)

S =

At. (A.24)

Reduced states of stress

So far, we have discussed full triaxial stress states. If the stress state is reduced
(i.e., plane stress or uniaxial stress), the equations derived here cannot be used
directly because only the total stress state is reduced, not the individual terms

in the series. Therefore, we use the following procedure.

For plane stress let the third component be the zero stress component. At the
beginning of the increment we presumably know the volumetric elastic strain ¢,
the volumetric viscous strain ¢, and the volumetric viscous strains ¢} associated
with the Prony series. The total volumetric strain can be obtained by adding

together the elastic volumetric strain and the volumetric viscous strain

Q" = ¢¢ + e (A.25)
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The deviatoric strain in the 3-direction follows from the relation ¢ = €1 +¢e9+
€3, which yields:
2
ey =¢ef — " = ggb” — el — €5, (A.26)

The out-of-plane deviatoric stress at the end of the increment is
sath =26, (egJrl ZaGe§f1> : (A.27)

Substituting Eq. (A.13) for e, letting ef ™' = e + Aes, and collecting terms

gives
spth = 2GT Aes + 2Goes [1 — Z o; e_AT/Ti)]
(A.28)
— 2Gy Z ale A7/mien
i=1
The hydrostatic stress is derived similarly as
ng
_pn+1 _ KTA¢+ K0¢n [1 . ZO%K (1 . e—AT/Ti)]
=1 (A.29)
— K, ZO‘K —AT/T; n‘
We can write these equations in the form
st = 2GT Aes + 5
? T (A.30)

_pn—i-l:KTAgb_f

In the third direction the deviatoric stress minus the hydrostatic pressure is zero;

hence,
2GTAes + KTA¢p + 353 —p = 0. (A.31)
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Since Aes = %Agb — Aey — Aegy, it follows that
4
<KT + gGT) Agb = 2GT (A&l + Agg) — 83 + D, <A32)

from which A¢ can be solved. One can then also calculate Ae; and Aes, and
n+1

i .

with Eq. (A.13) or Eq. (A.14) one can update the deviatoric viscous strains e
The volumetric strains ¢! are obtained with a relation similar to Eq. (A.13).

For uniaxial stress states a similar procedure is used. As before, ¢™ follows
from Eq. (A.25) and e} and e} follow from e, 4 2e3 = ¢:

1 1 1
ey =ey =ey — =" = =¢" — 56?. (A.33)

Equations (A.28) and (A.29) can be used to calculate 53 and p, which again leads
to Eq. (A.31). Applying Eq. (A.33) for Aes,

1
<KT + gGT) Agb = GTA&Tl — §3 + ]5 (A34)

After this, one can follow the same procedure as for plane stress.
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Hill’s plasticity

Yield function:

where n = o — o is the relative stress tensor.

Flow rule:

0P

Accumulated plastic strain:

S ,/gépzépzy\/g(Pn)TZ(Pn)

Prager’s nonlinear kinematic hardening rule:

& — gc (&) " — 5C () P

(B.1)

(B.4)

The incremental elastoplastic constitutive problem. Given the values €,

and «,, of the elastic strain and internal variables set at the beginning of the

pseudo-time interval [t,, t,+1], and given the prescribed incremental strain Ae for
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this interval, solve the following system of algebraic equations

ey =€, +Ae—AyPn,
Q1 = oy + AY3C (81 4) Pronn (B.5)

1 =0 + A’Y\/% (Prvns1)’ Z (Prggs)

for the unknowns €;,_ |, a1 and Ay, subjected to the constraints

A’Y Z 07 (p (an+17 5-7 an+1) S 07 A’Y (p (an+17 5-7 an+1) - O (B6)

where As
e _e Q
with D° the orthotropic elasticity matrix and & the equivalent back stresses which
depend on equivalent plastic strains & and are known from the kinematic hard-
ening law. The incremental equations in the system (B.5) have been derived from
the differential equations (B.2) and (B.4) using the backward Euler approxima-
tion scheme. In the above, the notation A(-) = (-),,; — (-),, has been adopted,
with (-), and (),

increment A~ is called the incremental plastic multiplier. Note that once the

denoting the value of (-) at ¢, and t,.1, respectively. The

n

solution &f,; has been obtained, the plastic strain at ¢, can be calculated as
eh . =€eb 4+ Ae — Ag° (B.8)
so that all variables of the model are known at the end of the interval [t,, t,1].

The fully implicit elastic predictor/return-mapping algorithm for numerical inte-

gration of Hill’s elastoplastic constitutive equations can be formulated as:

i. Elastic predictor. Given Ae and the state variables at ¢,,, evaluate the elas-

tic trial state
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e trial

P €
ey =ep + Ag,
—p trial _ trial _ trial _ e e trial
n+1 - 6n’ an—l—l = Qy, Un—l—l - D 8n—l—l

ii. Check plastic admissibility

IF @ (o1l 5, attial) <o

THEN set (-),,, = ()5 and EXIT

n+1

iii. Return mapping. Solve the system

/

e
sn—i—l -

e trial
€n+1

+ A’}/P’I’I,n_H

trial
Qnt1 — Oy

8n—i—l - En—i—l

— Ay3C (&0 ,)) Prng

_ m\/ 2(Prpy)” Z (Pry)

i (Gn+17 a, an—l-l)

for e |, api1 and Ay, with 0,41 = D%y

iv. EXIT

Single-equation return mapping

For the return mapping algorithm the system of the incremental plasticity equa-
tions is solved, based on the governing parameter method [42]. In this context, the
stress integration is practically achieved by solving one nonlinear equation with
respect to the governing scalar parameter. For the return mapping algorithm,

the above system can be reduced to the solution of a single scalar equation for

the plastic multiplier Ay

Newton-Raphson iterative scheme:
AYF) = AyE=D) L A~ K
¢ (Ar)

with AR = —
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The yield function is written in terms of A~y as

O (Ay) == [n(Ay)] Pn(Ay)] - [ (8" (Ay)] =0

N | —

and its derivative with respect to A~y is

d® (A7)

——==[Pn (A
Ny [Pn (Av)]

where H' = do/dz is the isotropic hardening. After some manipulations the

following variables are expressed in terms of the governing parameter

2 ok
n(Avy) =n,q = [I + <A7De + 30 (Qps1 — Q) I> p| ntrial

dn (Ay) .2 _ 2 der

I:| Pnn+1

where H* = C (&7) = da/dz" is the kinematic hardening and ¢,, = \/§ (Pn,)" Z (Pn,)

is an equivalent stress measure. The equivalent plastic strain is expressed as:

eh (Ay) = éth =& + Ay ¢u1

and its derivative is:

de? (A7) T, pdn (A7)
g+ A Pn,.)" ZP
aAy Gn+1 + 73%“ (Pry1) dA~
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The elastoplastic consistent tangent

By differentiating the system of the incremental nonlinear equations, the following

linearized system is obtained:

D + AyP 0 N —AYP

dU7L+1 de® trial
—Ay NTzp 1 —(ny1 A~y NTzZPp P )
Gn+1 ‘ Gni1 Ent1 | _
NT 95 H' 0 N IAn .
2 - 9 0 )
__ﬁ(an—}—l _Oén)P —%HkN 0 I+@(O‘n+1 _an) P_ dan+1 0

After some manipulations the elastoplastic consistent tangent is obtained as:

D = % = [D° '+ AP+ NB(I-D'C'E) - AMyPD'C'E] "
Ee
where )
q,21+1 2Qn-&-10-]_[Z
C:I+§(@n+1—@n)P
"9 1
D=1+C'—H* _NNT
- 3¢, 20H"
2(— ‘)P+2H’“ L NNT
= 5 Opp1 — Gy YR S R
3qn i 3qn 20H"
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