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ApagoreÔetai h antigraf , apoj keush kai dianom  thc paroÔsac ergasÐac, ex olokl rou

  tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai dianom 

gia skopì mh kerdoskopikì, ekpaideutik c   ereunhtik c fÔshc, upì thn proôpìjesh na

anafèretai h phg  proèleushc kai na diathreÐtai to parìn m numa. Erwt mata pou aforoÔn

th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton

suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou

EjnikoÔ Metsìbiou PoluteqneÐou.



EuqaristÐec

Me thn an� qeÐrac diplwmatik  ergasÐa oloklhr¸nontai oi proptuqiakèc spoudèc mou

sth sqol  Hlektrolìgwn Mhqanik¸n & Mhqanik¸n Upologist¸n tou EjnikoÔ MetsobÐou

PoluteqneÐou. To perieqìmeno thc ergasÐac apoteleÐ touc karpoÔc èreunac pou diex gaga

sto ergast rio Autom�tou Elègqou twn Mhqanolìgwn Mhqanik¸n upì thn epopteÐa tou

kaj. K. Kuriakìpoulou. Euqarist¸ jerm� ton epiblèponta gia thn empistosÔnh tou kai

thn eukairÐa pou mou pareÐqe na ergast¸ sthn ereunhtik  tou om�da, kaj¸c epÐshc gia

th met�dosh thc empeirÐac kai thc diaÐsjhs c tou sto antikeÐmeno thc ergasÐac kai thn

kajodhghtik  tou an�drash sthn poreÐa ekpìnhs c thc. IdiaÐterec euqaristÐec apeujÔnw

ston ereunht  dr. Q.MpeqlioÔlh gia th sten  sunergasÐa, touc suqnoÔc dialìgouc mac

kai tic diafwtistikèc sumboulèc tou. Ekfr�zw epiplèon tic euqaristÐec mou proc touc kaj.

A. Stafulop�th kai I. Tsini� gia ìsa mou prosèferan didaktik� me ta proptuqiak� touc

maj mata, kaj¸c kai gia thn kajoristik  kai èmprakth sumbol  touc sth diadikasÐa twn

ait sewn gia metaptuqiakèc spoudèc. Euqarist¸ epÐshc ìla ta mèlh thc ereunhtik c om�dac

tou ergasthrÐou. Tèloc, ja  tan par�leiy  mou na mhn anaferj¸ sthn anektÐmhth st rixh

thc oikogènei�c mou se ìlh th makr� poreÐa thc foÐths c mou.
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PerÐlhyh

MÐa sun jhc ergasÐa se èna sÔsthma poll¸n kinht¸n rompìt se arqitektonik  odhgoÔ

- akoloÔjwn eÐnai h an�jesh ston odhgì miac diadrom c se èna (merik¸c) �gnwsto q¸ro.

H diadrom  aut  prokÔptei apì thn probol  sto q¸ro ergasÐac enìc sunìlou sÔnjetwn

energei¸n pou prèpei na ektelèsei o odhgìc, ìpwc h epÐskeyh perioq¸n tou q¸rou erga-

sÐac me sugkekrimènh seir�   periodikìthta, pou wc epÐ to pleÐston èqoun diatupwjeÐ se

mia arkoÔntwc ekfrastik  tupik  gl¸ssa (p.q. LTL). AntÐstoiqa, se kajènan apì touc

akoloÔjouc anatÐjetai na diathroÔn epikoinwnÐa me èna sÔnolo apì �lla rompìt entìc thc

om�dac. 'Ena meÐzon zhtoÔmeno sta sust mata poll¸n rompìt eÐnai h suneq c diat rhsh thc

olik c sundesimìthtac tou diktÔou. Wstìso, h kÐnhsh tou sust matoc se ènan �gnwsto

q¸ro ergasÐac me èna sq ma ìpwc to anwtèrw sunep�getai ìti gia th dièleush tou diktÔou

apì perioqèc me empìdia suqn� apaiteÐtai h anaprosarmog  twn sqèsewn topik c sundesi-

mìthtac metaxÔ twn rompìt, oÔtwc ¸ste h ergasÐa na perat¸netai (dhlad  to sÔsthma na

kineÐtai sth dojeÐsa diadrom ) qwrÐc ap¸leia thc olik c sundesimìthtac.

Sthn paroÔsa ergasÐa proteÐnoume: (a) ènan katanemhmèno algìrijmo pou epitrèpei thn

kÐnhsh tou sust matoc me diat rhsh twn sqèsewn topik c sundesimìthtac, (b) ènan al-

gìrijmo dunamik c anadiamìrfwshc twn sqèsewn topik c sundesimìthtac pou diathreÐ thn

olik  sundesimìthta tou diktÔou, ìtan den epitrèpetai h kÐnhsh tou sust matoc me b�sh to

arqikì sÔnolo prodiagraf¸n geitnÐashc lìgw empodÐwn sto q¸ro ergasÐac.

Lèxeic Kleidi�

SÔsthma Pollapl¸n Rompìt, SqedÐash Diadrom¸n / Katanemhmènoc Suntonismìc Kinh-

t¸n Rompìt, Katanemhmènoi Algìrijmoi, Sq ma OdhgoÔ-AkoloÔjwn, Ubridik� Sust mata,

Diat rhsh Olik c Sundesimìthtac, Anadiamorfwsimìthta, Katanemhmènh Teqnht  Nohmo-

sÔnh, Algebrik  JewrÐa Gr�fwn, Prìblhma IkanopoÐhshc Periorism¸n, Upeperiorismèno

Prìblhma, El�qista Mh-Ikanopoi simoi Pur nec
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Abstract

A common task for a leader- follower type multi-robotic system deployed in a (partially)

unknown workspace is the assignment of a desired path to the leader. This path is usually

derived from the projection to the workspace of a set of complicated mobility tasks which

should be executed by the leader, such as visiting a sequence of regions with specific order,

iterations or periodicity, and is formulated in a sufficiently expressive formal language

(e.g. LTL). Respectively, each follower is assigned to keep contact with a subset of robots

within the team. A major issue in multi-robotic systems is the constant maintenance of

global connectivity of their underlying topology. However, system’s motion in an unknown

workspace in the above-described architecture implies the necessity for reconfiguration

of local connectivity specifications (e.g. when robots pass through neighbourhoods of

obstacles), so that task is being excuted (namely system moves on the path without

getting stuck) and global connectivity is not violated.

In this thesis we propose: (a) a distributed algorithm which allows systems motion

while preserves the set of local connectivity specifications whenever possible , (b) a (cen-

tralized) algorithm that dynamically reconfigures local connectivity specifications of robots

without violating global connectivity, when the system based on the initial set of specifi-

cations gets stuck due to obstacles encountered in workspace.

Keywords

Multi-robotic system, Path Planning / Distributed Coordination of Mobile Robots, Di-

stributed Algorithms, Hybrid Systems, Global Connectivity Maintenance, Reconfigurabi-

lity, Leader-Follower Scheme, Distributed Artificial Intelligence, Algebraic Graph Theory,

Constraint Satisfaction Problem(CSP), Overconstrained Problems, Minimal Unsatisfiable

Cores (MUCs)
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Chapter 1

Introduction

In this introductory chapter we cover recent research activity in multi-agent systems,

with particular focus on the issues of multi-agent coordination, symbolic planning and

global connectivity maintenance. The aim is to arm the reader with a concise, modern

summary of fundamental notions and concepts that will be used later, while revealing

achievements from the recent bibliography, difficulties and work to be done on the area.

1.1 Overview of Distributed Multi-agent Coordination

1.1.1 History

Distributed coordination of multiple robots, including unmanned aerial vehicles, un-

manned ground vehicles and unmanned underwater robots, has been a very active research

subject studied extensively by the systems and control community. The recent results in

this area are categorized into several directions, such as consensus, formation control,

optimization, task assignment, and estimation.

Control theory and practice may date back to the beginning of the last century when

Wright Brothers attempted their first test flight in 1903. Since then, control theory has

gradually gained popularity, receiving more and wider attention especially during the

World War II when it was developed and applied to fire-control systems, missile navigation

and guidance, as well as various electronic automation devices. In the past several decades,

modern control theory was further advanced due to the booming of aerospace technology

based on large-scale engineering systems.

1.1.2 Centralized vs. Decentralized Approach

During the rapid and sustained development of the modern control theory, technology

for controlling a single robot, albeit higher-dimensional and complex, has become relatively

mature and has produced many effective tools such as PID control, adaptive control,

nonlinear control, intelligent control, predictive and robust control methodologies.

Nowadays network science has emerged as a powerful conceptual paradigm in science

13



14 Chapter 1. Introduction

and engineering [23]. Constructs and phenomena such as interconnected networks, ran-

dom and small-world networks, and phase transition appear in a wide variety of research

literature, ranging across social networks, statistical physics, sensor networks, economics,

and of course multiagent coordination and control. The reason for this unprecedented

attention to network science is twofold. On the one hand, in a number of disciplines -

particularly in biological and material sciences - it has become vital to gain a deeper un-

derstanding of the role that inter-elemental interactions play in the collective functionality

of multilayered systems. On the other hand, technological advances have facilitated an

ability to synthesize networked engineering systems - such as those found in multivehicle

systems, sensor networks, and nanostructures - that resemble, sometimes remotely, their

natural counterparts in terms of their functional and operational complexity.

Figure 1.1: Swarm of mobile robots (from Rice Multi-Robot Systems Lab)

In the past two decades in particular, control of multiple robots has received increasing

demands spurred by the fact that many benefits can be obtained when a single compli-

cated robot is equivalently replaced by multiple yet simpler ones. In this endeavour, two

approaches are commonly adopted for controlling multiple robots: a centralized approach

and a distributed approach. The centralized approach is based on the assumption that a

central station is available and powerful enough to control a whole group of robots. Essen-

tially, the centralized approach is a direct extension of the traditional single-robot-based

control philosophy and strategy. On the contrary, the distributed approach does not

require a central station for control, at the cost of becoming far more complex in structure

and organization.

A distributed system consists of a network of agent nodes, each with its own processing

facility, which together do not require any central fusion, control or communication facility.

In a distributed system, fusion and control occur locally at each node on the basis of local

observations and the information communicated from neighbouring nodes, with no need

for a common place where fusion or global decisions are made.
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Although both approaches are considered practical depending on the situations and

conditions of the real applications, the distributed approach is believed more promising

due to many inevitable physical constraints such as limited resources and energy, short

wireless communication ranges, narrow bandwidths, and large sizes of robots to manage

and control. (For a more detailed presentation of the topic reader can refer to [6].)

In distributed control of a group of autonomous mobile robots, the main objective

typically is to have the whole group of robots working in a cooperative fashion throughout

a distributed protocol. Here, cooperative refers to a close relationship among all robots in

the group where information sharing plays a central role.

Advantages of decentralization

The distributed approach has many advantages in achieving cooperative group perfor-

mances, especially with low operational costs, less system requirements, high robustness,

strong adaptivity, and flexible scalability, therefore has been widely recognized and appre-

ciated.

In particular, a distributed scheme is characterised by three constraints ([16]):

1. There is no single central decision centre; no one node should be central to the

successful operation of the network.

2. There is no common communication facility; nodes cannot broadcast results and

communication must be kept on a strictly node-to-node basis.

3. Nodes do not have any global knowledge of network topology; nodes should only

know about connections in their own neighbourhood.

The constraints imposed provide a number of important characteristics:

• Eliminating the central decision centre and any common communication facility

ensures that the system is scalable as there are no limits imposed by centralised

computational bottlenecks or lack of communication bandwidth.

• Ensuring that no node is central and that no global knowledge of the network topol-

ogy is required for control means that the system can be made survivable to the

on-line loss (or addition) of sensing nodes and to dynamic changes in the network

structure.

• As all decision processes must take place locally at each site and no global knowledge

of the network is required a priori, nodes can be constructed and programmed in a

modular fashion.

Drawbacks of decentralization

Although decentralization shows obvious advantages over centralization, such as scal-

ability and robustness, decentralization also has its own drawbacks. One shortcoming is

that, under decentralized protocols, some agents cannot predict the group behaviour based
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Figure 1.2: Cooperation schemes: On the left, a centralized architecture, where the center

of local information fusion is denotated as a red square. On the right, a distributed

architecture, where system’s function is based on mechanisms of local interaction and

information exhange among local nodes.

only on the available local information. Consequently, some group behaviour cannot be

controlled. As a sensible example, current financial crisis actually illustrates some disad-

vantages of behavioural decentralization. One interesting question, therefore, is how to

balance decentralization and centralization so as to further improve the overall systems

performance.

1.1.3 Applications

The study of distributed control of multiple mobile robots was perhaps first motivated

by the work in distributed computing , management science , and statistical physics . In

the control systems society, in some pioneering works an asynchronous agreement prob-

lem was studied for distributed decision-making problems. Thereafter, some consensus

algorithms were studied under various information-flow constraints.

Figure 1.3: Cluster of satellites (Flight Program SPHERES,MIT)

Distributed multi-agent coordination finds application in the following categories of

tasks (which are not independent, but to some extent overlapping):



1.1 Overview of Distributed Multi-agent Coordination 17

1. Consensus and the like (synchronization, rendezvous). Consensus refers

to the group behaviour that all the agents asymptotically reach a certain common

agreement on a state through a local distributed protocol, with or without predefined

common speed and orientation.

2. Distributed formation and the like (flocking, swarming, containment).

Distributed formation refers to the group behaviour that all the agents form a pre-

designed geometrical configuration through local interactions with or without a com-

mon reference. Often agents are made to exhibit behaviors observed in nature, such

as flocking birds, schooling fish, or swarming social insects

3. Coverage. Coverage refers to control of system’s topology, in order to produce

maximally spread networks without making them disconnected or exhibit holes in

their coverage

4. Distributed optimization. This refers to algorithmic developments for the anal-

ysis and optimization of large-scale distributed systems.

5. Distributed task assignment. This refers to the implementation of a task-

assignment algorithm in a distributed fashion based on local information.

6. Distributed estimation and control. This refers to collaborative distributed

control design based on local estimation about the needed global information.

1.1.4 The Necessity for Global Connectivity

Mobile robot networks have recently emerged as an inexpensive and robust way of ad-

dressing a wide variety of tasks ranging from exploration, surveillance, and reconnaissance,

to cooperative construction and manipulation. The success of these stories relies on effi-

cient information exchange and coordination between the members of the team. In both

consensus and formation control problems, it is often assumed that the network topology

satisfies certain fundamental conditions, for example, is connected or has a directed span-

ning tree. However, a practical communication model is typically distance-based, i.e., two

agents can communicate with each other if and only if their distance is smaller than a

certain threshold, called communication range. This is particularly true for sensor net-

works. In order to guarantee consensus or formation control be achieved asymptotically,

a connectivity maintenance mechanism is essential, which has been studied recently.

The main approach to maintaining the connectivity of a team of agents is to define

some artificial potentials (between any pair of agents) in a proper way such that if two

agents are neighbours initially then they will always communicate with each other there-

after. In general, the artificial potential between a pair of agents grows to be sufficiently

large (could be unbounded) when the distance between them increases to be equal to

the communication range. For properly designed control algorithms, which are usually
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composed of the gradients of the artificial potentials, the total artificial potential is non-

increasing. This then indicates that the initial communication patterns can be preserved

because otherwise the total potential will become larger than the initial total artificial

potential, as soon as some communication pattern is broken. Although this approach

provides a systematic way to guarantee the connectivity, the corresponding control al-

gorithms might require infinite large control inputs, which is not practical. Meanwhile,

it is not even necessary to always maintain the initial communication patterns in order

to guarantee the connectivity. Therefore, how to find a more effective way to guaran-

tee connectivity deserves further investigation. An interesting problem appears when the

number of initially existing communication patterns plays a role in the connectivity main-

tenance for the consensus problem with single-integrator kinematics (1) and control input

(2). Roughly speaking, if the initial graph is ”sufficiently” connected in the sense that

each agent has at least a certain number of neighbours, consensus can be guaranteed to

be achieved. Note that the result can only be applied to systems with single-integrator

kinematics therefore further investigation is expected for systems with high-order linear

dynamics or nonlinear dynamics.

In terms of connectivity maintenance for consensus and formation control, research

has been devoted to continuous-time systems but practical systems are more suitable to

be modelled in a discrete-time setting, which makes the study of connectivity maintenance

for discrete-time systems more meaningful. In general, the connectivity maintenance for

discrete-time systems is more challenging due to the fundamental limitation of the corre-

sponding control input, which is usually piecewise constant rather than continuous. Since

the problem examined in this thesis is directly related to connectivity maintenance, we

will refer to this topic to a greater extend later.

Although the existing theoretical research and experiments have solved a number of

technical problems in distributed multi-agent coordination, there are still many interesting,

important and yet challenging research problems deserving further investigation. One of

them is increasing the complexity of the cooperative task to be carried out by the group

of mobile robots.

1.1.5 Mathematical Abstraction of a Networked System

Networked multi-agent systems are widely modelled as graphs where the agents are

represented as nodes and edges exist between the agents that interact directly. Nodes

correspond to agent and are identified unambiguously via an ordering I = {1, 2, ..., N}.
Agents have their ability to move in the workspace according to their kinematic model.

Location of agent i at time t is denotated as qi(t).

Communication among agents is achieved via on-board sensors with a finite range.

Generally, in the following we will consider homogeneous robotic teams with identical

communication range of radius R. Communication status of the network is described by

the topological (or communication or connectivity) graph G = (V,E) over time. Edges of
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the topological graph are defined through the simple rule: (i, j) ∈ E(t) ⇔ |qi(t) − qj(t)|.
Control of the topology of the networked system is essentially control of this topological

graph.

Figure 1.4: A network of agents equipped with omnidiractional range sensor viewed as a

graph, with nodes corresponding to the agents and edges to the interactions

1.2 Symbolic Planning for Mobile Robots

Planning in mobile robotics aims at enabling a system to specify a motion task in a

rich, high-level language and consequently convert this specification into a set of imple-

mentable low-level primitives, such as feedback controllers and communication protocols,

to accomplish the desired task [21].

The initial paradigm in planning was simple specifications of the form ”go from A

to B while avoiding obstacles”. However, this class of tasks is not expressive enough to

include more sophisticated and complex motion tasks that are often of interest in modern

applications. Consider, for example, applications in surveillance (e.g. ”Visit A and then

B infinetely often”), visiting targets sequentially (e.g. ”Visit A, then B, and then C ”),

conditional tasks (e.g. ”If you have reached A, then reach B”), or synchronisation (e.g.

”Robot 1 and robot 2 should enter at the same time regions A and B respectively”). These

concepts have led control scientists to pose the question: can we automatically generate

provably correct control and communication strategies from task specifications given in

rich and human-like language over a workspace?

Recent publications ([22],[12],[5]) have given positive results to this end both in cen-

tralized and distributed framework. ”Rich” and ”human-like” specifications translate nat-

urally to formulas of expressive enough symbolic languages, like Linear Temporal Logic

(LTL) and Computation Tree Logic (CTL). Originally these logics and model checking

algorithms were used to specify and check the correctness of computer programs, which

can be viewed as continuously operating, reactive (concurrent) systems.

Symbolic approaches of planning fit in general to a three-level hierarchy. To gain some

intuition, let’s examine this hierarchy in the case of the simplest motion task for a single

robot in a workspace S :”Go from A to B while avoiding obstacles”. At the first level,
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the obstacle-free configuration space of the robot is partitioned into cells, and adjacency

relations between cells are determined. The result is presented as a graph. Any path

on this graph that starts from A and terminates at B satisfies S ; hence, this is called

the specification level. In the second place, among the (possibly infinite) paths satisfying

the specification, paths are pruned accordingly to robot’s mechanical and communication

constraints; one robot-compatible path is chosen, according to some optimality criteria

(minimal energy cost, minimal travelled distance, maximal distance from obstacles etc.).

This is called the execution level. Both specification and execution level belong to the dis-

crete part of the implementation. The third step, which is called the implementation level,

consists of constructing the continuous controllers that steer the robot on the trajectory

defined from the previous level. The last part is obviously continuous and is inherently

related to the dynamics of the robot.

Figure 1.5: Hierarchical abstraction and computation architecture. A high level specifi-

cation, such as a temporal logic formula over environmental predicates, together with a

discrete graph representation of the environment, produces the set of all possible discrete

solutions to the problem. A discrete execution is selected by taking into account the robot

constraints, and then implemented as a hybrid automaton giving the control strategy for

each robot.

The integrated scheme, namely the combination of the discrete and continuous part of

planning, adds up to a hybrid system.

We should note here that in most approaches of symbolic robotic planning a common

assumption is a discretization of the workspace. Therefore, the control of robotic motion

above implementation level is reduced to the generation of a correct sequence of regions in

the environment. Workspace discretization is task-dependent, since it captures constraints
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regarding robots motion and sensing capabilities, obstacles etc.

In case of specifications involving logical and temporal statements, like those expressed

in LTL, the specification level of symbolic planning instead of a graph results to an automa-

ton. Hence, search performed in the execution level is more complicated than path finding

and is closer to model checking. The architecture of three-level hierarchy is displayed in

figure 1.5.

Extending the framework of symbolic planning to teams of robots implies computa-

tional overhead. Control of team behaviour via a common specification formula is per-

formed through model checking in the product of all agents individual automata. There-

fore most of the computations are done off-line before deployment [20]. In recent scientific

works the focus is placed on minimizing the needs for communication and maximizing

decentralization [7], [13].

1.3 Distributed Connectivity Maintenance

In order to accomplish almost any cooperative tasks, multi-robot systems are required

to communicate among each other. Thus, preserving the connectivity of the communica-

tion graph is a crucial issue. Connectivity maintenance has been extensively studied in

the last few years, usually considering kinematic agents.

Generally speaking, a method that preserves connectivity given an initially connected

multi-robot network, is simply to establish that no change in local connectivity status of

agents can take place. Therefore, a number of publications on the topic aims directly at

maintaining local connectivity. In [2] authors propose a connectivity preserving distributed

control law for a network of unicycles; network maintains its initial connectivity status by

enforcing agents not to lose connectivity by its neighbors. However, this approach seems

to produce a rather conservative solution that cannot be applied in every workspace -since

in many cases it is observed that agents should reconfigure their topology in order to

proceed in a workspace occupied densly by obstacles.

Hence, it is preferable to seek methodologies that offer more robustness. In [9], em-

phasis is given to networks of heterogeneous robots equipped with different sensors with

limited field of view - a decentralized approach is presented for estimating an approximated

minimum strongly connected digraph. In parallel, research is carried out in the field of

degree regularization in multi-robot systems [29]. The issue of robustness in networked

systems subject to structural changes or noise corruption and global connectivity restorage

after agent removals has led to a series of interesting publications [1], [3].

In [27] authors utilize generalized energy functions and develop a control algorithm

which solves the global connectivity problem in a decentralized manner via distributed

connectivity estimation, without requiring maintenance of the local connectivity between

robotic systems. A distributed implementation of an optimization-based method for con-

nectivity control (via algebraic connectivity maximization) is described in [8]. Related to

the last one is [32], where authors introduced a gradient-based control strategy on a class
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of potential fields to guarantee that the second-smallest eigenvalue of the Laplacian matrix

is greater than zero.

A very interesting approach of the problem, presented in [33] (as well as in [31]), has its

roots in the area of hybrid systems - namely systems comprised from a continuous and a

discrete component. Concretely, the idea was to develop a discrete controller (a sequence

of discrete switches) that supervises edges addition/deletion, based on local estimates of

network topology obtained by agents in a distributed way. This control scheme allows

network topology control to be performed in the discrete space of graphs. When multiple

deletions of links can violate connectivity tie breaking is achieved by gossip algorithms and

market-based control. An experimental validation of Zavlanos-Pappas method is provided

in [24].

1.4 Connectivity maintenance and Symbolic Planning

Our initial motivation for writing this thesis was to contribute in the development of

a global connectivity maintenance algorithm compatible with the framework of symbolic

planning. Since symbolic planning is commonly built upon discretized workspaces, a

formulation of the problem in the discrete space has inherent advantages.

It seems trivial to express local connectivity relationships among agents as LTL for-

mulas. For instance , a specification of the form S :”a1 stay connected to a2 forever”

is expressed as follows: ”GS”, with G is the language symbol for ”globally” and S :

|X(a1) − X(a2)| < R (X : Rn −→ N) is the location function in the workspace and R

is the sensing range of the agents. Based on the previous translation local connectivity

specifications can be combined into formulas and evaluated for the whole system.

However, demanding the preservation of the set of initial links among agents through-

out task execution can often be proved too conservative. We need a method that allows

relaxation of neighborhood relationships ( or equivalently reconfiguration of the initial

connectivity formulas) without violation of global connectivity - for the latter a method-

ology is needed that allows supervision of local connectivity relationships that are critical

for global connectivity maintenance. Another challenging aspect lies in dealing with curse

of dimensionality, which is soon encountered in large multi-agent system, due to the con-

struction of the product automaton of the team for the verification of the formulas. To

that end we developed a different framework, by using an innovative formulation of the

problem as a well studied problem introduced in artificial intelligence, namely Constraint

Satisfaction Problem.

1.5 Structure of Thesis

The following chapter contains a verbal statement of the problem taken into consid-

eration, presents objectives of controller design and discusses its significance. In chapter

3, we formulate the problem in technical terms and present the mathematical details of
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the components of our methodology. In chapter 4, we present the whole scheme of our

methodology and incorporate the part of continuous controller. The 5th chapter is devoted

to the demonstration and evaluation of the yielded results in two simulations, while the

last chapter contains a brief presentation of potential future research directions.





Chapter 2

Verbal Statement of the Problem

2.1 Overview

Heterogeneous multi-robot systems hold promise for achieving robustness by leveraging

on the complementary capabilities of different agents and efficiency by allowing sub-tasks

to be completed by the most suitable agent. A key challenge is that agent composition

in current multi-robot systems needs to be constant and pre-defined. Recent approaches

are motivated by the need for increased robustness, heterogeneity and reconfigurability in

future multi-robot setups.

Targeted attributes of modern approaches are:

• Increased robustness. The set of heterogeneous agents with different capabilities

is robust against faults of the individual agents (as any multi-agent system) but also

against design failures in an individual type of agent, for example, if the kinematics

of a certain agent does not allow a particular task, or a sensor system of a particular

type of an agent fails because of environmental conditions - for example, if the

intensity camera of an agent fails because of poor illumination, the depth camera of

another could still work. Hence, this attribute is quantified by the multitude and

the magnitude of the faults/uncertainties the system is able to handle.

• Increased efficiency. The non-uniformity of agents allows inexpensive agents to

be used for tasks achievable by simple agents (e.g. coverage of the visual scene)

so that agents with expensive capabilities, such as manipulation, can be used more

efficiently. This attribute is quantified in terms of the time required to accomplish

a task.

• Online adaptation of the individual agent objectives and controls based on lin-

guistic information exchange and implicit sensor based coordination. Current multi-

robot logic based methods do not address reconfigurability when the verification fails.

In our formulation, we consider adaptation of the individual controller and task to

be accomplished both in the continuous and the discrete level. This attribute is

25



26 Chapter 2. Verbal Statement of the Problem

quantified in terms of the load of change required at the individual controller or task

updates.

• Lean communication requirements. Because communication takes place at the

symbolic level, there is no need for continuous exchange of large data and over-

networking becomes unnecessary for the systems in hand. An important contribution

of the proposed approach is thus that lean communication requirements are adequate

for the correctness of the overall framework. This attribute is thus quantified in terms

of the required bandwidth to exchange data online between the agents.

Reconfigurable navigation is based on the development of distributed navigation schemes

for the complex multi-agent system setup that incorporate in the feedback loop the up-

dated knowledge of the environment that has been accrued through learning and implicit

sensing information, based on their cognitive capabilities, and this provides for a direct

integration of cognitive information in the task planning design of multi-agent systems.

2.1.1 Multi-agent Navigation

i. State of the art

Cooperative control of multiple robots has received considerable attention in the last

decade owing to a wide range of applications such as moving a large number of objects,

environmental monitoring, rescue missions, distributed transportation, and multi-point

surveillance; tasks that cannot be efficiently accomplished by a single robot. In such

cases, the robots are spatially distributed and work together based either on commands

given by a supervisor in a centralized scheme or following some rules and communica-

tion strategies designed in advance in a distributed scheme. Broadly speaking, the latter

falls within the domain of decentralized control. Considering the communication limits,

calculation costs, and required devices to provide a perfect knowledge for a centralized

planner, there are many real world problems in which a decentralized controller can be

found preferable. Moreover, simple, local motion coordination rules at the individual level

resulting in remarkable and complex intelligent behavior at the group level are desirable

for large scale robotic systems.

When approached from a control point of view, particularly in situations where the

agents have competing interests or seek different goals, the coordination problem becomes

difficult to deal with. First, it is important to control robots with different hardware and

software so as to add robustness to the formation. Moreover, taking dynamic environments

and uncertainty external to the multi-robot system itself into account, heterogeneous sys-

tems, with robots in different shapes and abilities, are more applicable in real world

applications than systems with the same team members. In addition, the control methods

need to be computationally inexpensive, taking the real-time response to the environment

into consideration. Furthermore, in respect of autonomous decentralized control, how to

control robots in the most suitable formation considering the ability of each robot is an-
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other problem. Besides, communication is limited in dynamic environments, especially in

the outdoor case.

The concept of coordination of multiple robots has been extensively studied in the

recent. Some of the existing classical motion planning methods include potential func-

tion approach and optimization-based approach. Moreover, the idea of artificial potential

functions for obstacle avoidance, which was proposed in [25], was extended in [11],[10] for

multiple agents.

ii. Beyond the state of the art

Despite the recent progress in multi-agent coordination and navigation, certain issues

concerning lack of global knowledge about the environment and the goal objective, as well

as limited resources and coordination constraints between the agents, still remain open. In

this respect, updated knowledge of the environment, accrued through either learning from

explicit communication with other agents or sensing, and implicit sensing information call

for the need of integration, in order to modify the individual agent controllers in an on-line

manner to fulfill the task in a desired manner.

For example, updating individual knowledge about the environment via explicit com-

munication, detecting the motion intention implicitly by simply watching motion trends or

interpreting force/torque measurements in a manipulation task as motion intentions and

adapting the individual agent controller accordingly, are major steps towards healing the

aforementioned deficiencies in the current literature. Agents replanning due to updated

knowledge of the environment [18], or motion revision due to infeasibility of specifications

[17] are issues that recently have been taken into investigation within the scientific com-

munity. To our knowledge, albeit progress is noted in the field of revising motion in the

workspace due to infeasibility, no results have been presented yet regarding reconfiguration

directly in the space of systems specifications (or re-engineering specifications).

Such integration requires a drastically different new approach to traditional distributed

control approaches, which will actually be our main focus in this thesis. Our goal will be

to design an autonomous system consisting of multiple agents aiming at solving tasks

using interactions among them both explicitly and implicitly. To that end, specification

satisfaction will lead us to formalize the problem in the discrete level as a Constraint

Satisfaction Problem (CSP) - associating a problem from artificial intelligence with discrete

controller synthesis. Towards the implementation of the continuous part of the scheme,

notions from Prescribed Performance Control are used, so as to guarantee the maintenance

of topological properties controlled in the discrete level, as well as satisfaction of the goal

with the desired manner obeying simultaneously operational constraints. Finally, analysis

of connectivity with elements from graph theory will be integrated.

2.1.2 Coordination in Unknown Workspace

In a multi-agent coordination task, for instance, one challenging scenario is to deploy a

team of (possibly heterogeneous) robots in an unknown workspace and assign to them an
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exploration or surveillance mission. A plausible solution to the problem could be to assign

to the most suitable agent (the leader) the task of producing a path to be followed in the

workspace and guide the rest of the networks (the followers) according to that. A major

issue is that the followers maintain connectivity with the leader, in order not to break off

from the network and to be able to contribute to collaborative tasks throughout motion.

Additionally, let’s assume that we initially have a predefined set of neighbours for each

of the agents - or equivalently an initial (globally connected) network topology-, namely

that each agent has to stay in contact with a specific subset of the network during motion.

How such a scheme would react in case it faces obstacles in the workspace in real-time? It

is obvious that the system will get stuck due to its rigid topology when the free space in

the neighborhood of obstacles is insufficient (e.g. imagine a triangular formation trying to

enter a room from a narrow corridor). Then, the leader has to backtrack and search for

another appropriate path in the workspace. This implies further computational effort for

the leader and increases the time of task accomplishment, or even prohibits the execution

of the motion task.

Reasonably, a more efficient approach would be to allow the network reconfigure itself

in regions where, due to workspace limitations, it is impossible to preserve the initial con-

nectivity status. Thus, the system will not have to seek for an alternative path, but keep

moving on leader’s current path, while seeking for an appropriate topological reconfigura-

tion. An additional desired property would be to enable the network restore its original

topology in the future, whenever it is allowed.

The above proposed framework comprises of two categories of specifications:

(i.) Soft local connectivity specifications. These specifications could be relaxed

by need, under the restriction that they do not violate global connectivity.

(ii.) Hard collision avoidance specifications. These specifications cannot be re-

laxed at no point of the task execution.

Assuming a proper discretization of the workspace, the path planned by the leader

will be a sequence of partitions (abstracted by points that correspond to their centres)

that should be visited in specific order. In that context, the reconfigurable coordination

scheme will be a hybrid system composed of two components:

• A discrete controller supervising discrete changes in network’s connectivity graph.

Discrete controller is activated in each discrete step of leader and controls network’s

configuration during the next step.

• A continuous controller which deals with agents motion between two succesive

points of leader’s path. The continuous controller maintains the topological config-

uration as defined by the discrete controller and ensures collision avoidance.
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2.2 Discrete Controller Objectives

Controller synthesis in the discrete domain should be enabled to tackle the following

issues:

• Controller synthesis for each individual agent from individual specifications

(connectivity / collision avoidance)

• Specification adjustments due to updates from implicit/explicit communica-

tion (e.g. detection of obstacles in agent’s environment)

• Gradual verification at meeting events with other agents in the group and

consensus to the next topological status

• Reconfiguration strategies at the discrete level in the event that mutual satisfi-

ability of agents plans are not possible

The discrete controller of our scheme should reason about global connectivity (a prop-

erty for the whole system) from individual local specifications. Moreover, it should be

able to reduce the restrictions imposed by the connectivity maintenance control to the

necessary minimum, which means that it should not impose a specific minimal set of

neighbors for each agent, in order to allow maximal flexibility to the system - the notion

of minimal connectivity used in our work deviates from definition found in [28]; simply

put, we consider a globally connected network graph that is able to drop local connectiv-

ity edges by need as far as they do not violate global connectivity. Actually, if necessary,

discrete controller can drop the whole set of neighbors of a specific agent (transient loss

of connectivity), if it can assign to the agent different neighbors that allow to the system

to proceed whithout violation of global connectivity.

2.3 Motivating Example

We briefly present a motivating example of multi-robot coordination subject to speci-

fications reconfiguration, omitting mathematical details.

As shown in figure 2.1a, leader follows a given plan (sequence of points) in the

workspace until it reaches the target or system gets stuck. Followers try to maintain

their given local connectivity specifications. Initially, we have:

• ATOMIC SPECIFICATIONS

– a0 (Leader): Go to target T, No collision

– a1 (Follower): Stay connected to a0, No collision

– a2 (Follower): Stay connected to a0, No collision

• SYSTEM SPECIFICATIONS

Maintain global connectivity
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(a)

(b)

(c) (d)

(e)

Figure 2.1: Successive plots of a motion task, where specifications reconfiguration is

needed. Regions occupied by obstacles are painted in blue. Initial connectivity speci-

fications are depicted in black, while edges added after reconfiguration are depicted in red.

Dotted line represents leader’s predefined path to the target
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System specification is implicitely controlled via atomic specifications - this is to say

that before removal of an individual connectivity specification, the specification is checked

in order to find out whether it violates the requirement for global connectivity.

The set of local connectivity specifications is abstracted as a graph and corresponds

to the required connectivity graph of the network - which does not neccessarily coincides

with the topological (or communication) graph of the network. Actually, the required

connectivity graph should always be a subgraph of the topological graph, in order the set

of specifications not to be violated. Namely, with the term topological graph we refer to a

graph with edges between agents that can communicate, while with the term specifications

graph we refer to a graph with edges between agents connected through specifications. For

instance, in figure 2.1a, if we assume that the communication range for each agent is its

8-squares neighborgood, edge a1 - a2 does belong to the topological graph, albeit it does

not belong to the specifications graph.

Note that each agent has the ability to communicate if needed with the agents inside its

sensor range, namely the set of neighbors in its connectivity graph (although not restricted

to do) - which includes the set of agents due to constraints.

After the first step, in figure 2.1b, the multi-robot team should enter a room via a

narrow door. Agent a2 detects the obstacle and decides that it cannot move while stay-

ing connected with a0 - since moving one square downwards is conflicting with collision

avoidance specification with a1. As a result, the system should reason about conflicting

specifications, in particular collision avoidance between a2 and a1 and local connectivity

between a2 and a0 and reconfigure specifications set. Since collision avoidance specifi-

cations are hard, local connectivity should be violated. However, removing edge a0 - a1

causes violation of global connectivity in the new specifications graph. As a result, the

system looks for adding a new edge from the available topological graph edges to cure this

removal. Hopefully, it adds a new local connectivity specification between a2 and a1.

The new specifications set will be :

• ATOMIC SPECIFICATIONS

– a0 (Leader): Go to target T, No collision

– a1 (Follower): Stay connected to a0, No collision

– a2 (Follower): Stay connected to a1, No collision

• SYSTEM SPECIFICATIONS

Maintain global connectivity

The formation of robots manages to proceed to the target under the reconfigured

topology ( 2.1c, 2.1d). Upon leader’s arrival at the final destination, in case of enough

free workspace, agents will look for a solution closer to their initial specifications set and

restore initial connectivity status, as in 2.1e .
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Technical Problem Statement

3.1 Discrete Controller

Our scheme’s discrete controller is called in discrete instances during system’s mo-

tion and controls the topology of the network. Thus, it is a step-by-step algorithm with:

INPUT

• Leader’s next position on path

• Sensing information (real-time information gathering from on-board sensors :

obstacle detection, agents positions)

• Agents local connectivity and collision avoidance specifications

OUTPUT

• Next configuration of the system (preserving global connectivity)

OBJECTIVES

• Specifications maintenance (or reconfiguration when system gets stuck, i.e. re-

laxation of specifications without global connectivity violation)

3.2 Reduction to CSP

By inspection of figure 3.1 we can gain some intuition regarding the mathematical

formulation of the problem. Our input is a set of variables, each of which associated

with :

-a set of possible values (domains) defined by mobility constraints of each agent, and

-a number of constraints (local connectivity and collision avoidance) defined over the

above-mentioned domains.

33
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Figure 3.1: The mechanism underlying the discrete controller. Given initial positions,

leader’s next position (over leader’s predefined path) and initial connectivity status, each

of the agents has to decide among the positions it can move to according to its specifications

set.

Expressing these constraints as boolean functions in a straightforward manner, we

obtain a well-studied problem in the field of artificial intelligence, namely Constraint

Satisfaction Problem (CSP) ([26]).

3.2.1 CSP

A CSP is a tuple < X,D,C >, consisting of

• X = {x1, x2, ..., xn}: a set of n variables,

• D = {D1(x1), D2(x2), ..., Dn(xn)}: a set of respective finite, discrete domains, and

• C = {C1(x11, x12, ..., x1j1), C2(x21, x22, ..., x2j2), ..., Cm(xm1, xm2, ..., xmjm)}: a set of

predicates Ci(or constraints) defined on the Cartesian product Di1×Di2× ...×Dij .

A predicate Ci is true if and only if the assignment of its values satisfies the constraint

(it can be viewed as a boolean function).

Solving CSP is equivalent to finding an assignment of values to all variables such that

all constraints are satisfied.

3.2.2 Coordination as CSP

We are ready now to express our coordination under individual specifications problem

as CSP. We will apply this reformulation for the example of figure 3.1, although it is

straightforward to generalize the reduction for different tessellations and robots.
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• X = {x1, x2, ..., xn}, where xi ∈ Z2 is the current position of agent i in the workspace,

• D = {D1(x1), D2(x2), ..., Dn(xn)}, where Di(xi) is the set of regions where agent xi

can move during the next step, according to its mobility constraints - in our example

Di is the subset of 9-square neighbors of xi (including current position) which is not

occupied by obstacles

• C is the set of

– Collision avoidance constraints Ccoll.av.(i, j) = (xi 6= xj),∀i, j : i 6= j

– Local connectivity constraints Ccon(i, j) = (max(|xi1 − xj1|, |xi2 − xj2|) == 1)

3.2.3 Distributed CSP

A distributed CSP (DCSP) is a CSP in which the variables and constraints are dis-

tributed among automated agents.

In this section we loosly follow presentation of formulation and proposed distributed

alforithm for DCSP found in [30].

We assume the following communication model:

• Agents communicate via message passing. An agent can send a message to another

agent if and only if it knows the position of the other.

• Delays in message passing are finite, though random, and messages are received in

the order they are sent.

Each agent has a set of variables and tries to decide for a value among them in order

the final collection of values of the whole system to satisfy problem constraints. Without

loss of generality, we assume that (i.) each agent has exactly one variable, (ii.) constraints

are binary and (iii.) each agent knows all constraint predicates associated with its value.

Moreover, we assume that a unique identifier is assigned to each agent.

It is straightforward to develop centralized and synchronous backtracking methods

that seek for a solution of a DCSP. However, the non-trivial asynchronous backtracking

algorithm of Yokoo et al. owns a set of desirable properties, such as

• agents act asynchronously , concurrently, based on local knowledge, without global

control,

• less information is communicated, succeeding security/privacy of agents, and

• it is sound and complete, namely algorithm terminates with failure if and only if the

CSP has no solution (overconstrained)
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Figure 3.2: Example of constraint network

3.2.4 Asynchronous Backtracking

A DCSP can be visualized as graph G with nodes problem variables xi and edges

between nodes associated with constraints (see for instance 3.2).

Each agent instantiates its variable concurrently and sends its value to the agents which

are connected by outgoing links. After that, agents wait for and respond to messages of

two categories:

1. ok? messages, that a constraint-evaluating agent receives from a value-sending

agent asking whether the value currently chosen is acceptable, and

2. nogood messages, that a value-sending agent receives, as an indication that the

constraint-evaluating agent has encountered a constraint violation.

Figure 3.3: Example of asynchronous backtracking

Each agent receives a set of values from the agents that are connected by incoming

links. These values constitute its agent view. Whenever an ok? message is received,

the evaluating agents adds it to agent view and checks whether its own value assignment

is consistent with the updated agent view. Consistency happens if all constraints the

agent evaluates are true under the value assignments described in agent view and (xi,
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current value), and if all communicated nogoods are not compatible with agent view

and (xi, current value).

(i). if received(ok?,(xj, dj)) then

add (xj , dj) to agent view ;

check agent view

end

(ii). if received(nogood,xj, nogood) then

add nogood to nogood list;

if (xk, dk) where xk is not connected is in nogood then

request xk to add a link from xk to xi ;

add (xk, dk) to agent view

end

old value← current value;

check agent view;

if old value=current value then
send(ok?,(xj ,current value)) to xj

end

end

(iii). function check agent view ;

if agent view and current value are not consistent then

if no value in Di is consistent with agent view then
backtrack

else

select d ∈ Di where agent view and d are consistent ;

current value ← d ;

send (ok?,(xi,d)) to outgoing links

end

end

(iv). function backtrack ;

nogoods ← {V |V = inconsistent subset of agent view } ;

if an empty set is an element of nogoods then

broadcast to the other agents that there is no solution ;

terminate
end

for each V ∈ nogoods do

select (xj , dj) where xj has the lowest priority in V ;

send (nogood, xi, V ) to xj ;

remove (xj , dj) from agent view;

end

check agent view
Algorithm 1: Asynchronous backtracking algorithm

A subset of agent view is a nogood if the agent is not able to find any consistent value
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with the subset. If an agent discovers that a subset of its own agent view is a nogood,

then the assignments of other agents should be changed. Therefore, the agent causes a

backtrack and sends a nogood message to one of the other agents.

For example, in figure 3.3, initially x0 instantiates its value to 0 and sends ok? mes-

sages to agents x1 and x2. x1 receives the message and reacts by instantiating its value

to 1 independently of its previous assignment. x0 can only assign its value to 0, which

contradicts to assignment of x0, due to the constraint x0 6= x2. Consequenlty, x2 sends a

nogood message to x0. x0 reacts by changing its value to 1 and the solution is found.

To avoid infinite loops in the network we use a total order relationship among nodes.

Concretely, we define a priority order among agents by using the alphabetical order of

their unique identifiers. Links are directed according to that order (from the higher to

lower priority agents). Thus, ok? messages are communicated from higher priority to

lower priority agents and nogoods in the opposite direction.

Since agents act asynchronously, an agent view is subject to incessant changes. This

leads potentially to inconsistencies, because a constraint-evaluating agent might send a

nogood message to an agent that has already changed the value of an offending variable

due to other constraints. The phenomenon of inconsistencies is healed through the use

of context attachment in the procedure of checking nogood messages- namely, firstly the

recipient checks compatibility of message with its current agent view and assignment. A

nogood can be viewed as an additional constraint among agents (which are not necessarily

neighbors in the constraint network). This is of course a logical binding, not a physical

one.

Theorem 3.1. If there exist a solution, this algorithm reaches a stable state where all

variable values satisfy all the constraints and if no solution exists the algorithm discovers

this fact and terminates.

Soundedness and completeness of the algorithm are clear. Because a nogood logically

represents a set of assignments that leads to a contradiction, an empty nogood means

that any set of assignments leads to a contradiction. Thus the algorithm terminates with

failure if and only if an empty nogood is found.

Termination of the algorithm in finite time is proved by induction, through the use of

the priority order of agents.

3.2.5 Weak-Commitment Search Algorithm

A more efficient distributed approach to the problem can be achieved by exploiting

appropriate heuristics that allow the abandonment of a partial solution, if no consistent

value with that partial solution exists. In that version, the algorithm uses the min-conflict

heuristic as a value-ordering heuristic.
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3.2.6 Complexity

Constraint satisfaction is NP-complete in general. Worst-case time complexity of pre-

sented distributed algorithms is exponential in the number of variables n. Worst-case

space complexity is determined by the number of recorded nogoods. Since an agent can

forget old nogoods after the creation of a new one and gets rid of incompatible nogoods,

each agent xi needs to record at most |Di| nogoods.

3.2.7 Example

(a) t=0 (b) t=1

(c) t=9 (d) t=12

Figure 3.4: Steps of network configurations during motion task execution

We present a single example, where the network executes a motion task in a workspace

very sparsely occupied by obstacles. Therefore, need for topology reconfiguration is not

encountered. Followers proceed by deciding their next step in a distributed manner, via

solving repeatedly the DCSP for each step of the leader.

It is observed that the network does not maintain formation. Concretely, it seems
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to change formation in a rather counterintuitive way (while preserving network topology

status). This should be attributed to the random way in which each agent seeks for

solution in the DCSP at each leader’s step. Formation keeping can be easily achieved

by introducing memory to the system. In particular, a valid solution would allow each

agent to keep moving at the same direction with its previous step, while it does not

senses obstacles. This technique would moreover reduce the necessity of constantly solving

DCSP for identical instances of the problem (e.g. instances in a workspace which is free

of obstacles).

3.3 Reconfiguration

Let’s briefly summarize what we have achieved so far: We have designed a distributed

discrete controller that outputs networks next configuration under a specifications set if

and only if such a configuration exists. Otherwise, controller decides in finite time that a

solution to our problem does not exist, because the problem is overconstraint.

In this section, we will propose methods to overcome these dead-ends through problem

reformulation. In particular, we are going to relax some of the agents specifications until we

settle at a feasible relaxed version of the original problem. Since collision avoidance cannot

be relaxed, we target at local connectivity specifications. As we have already mentioned,

global connectivity maintenance is vital for the multi-robot system. Consequently, we

are going to relax local connectivity specifications, while checking that they do not imply

violation of global connectivity. Thus, we need a structured method to characterise edges

according to their effect on global connectivity. In the following, we present a distributed

procedure to do it.

3.3.1 Distributed Estimation of Adjecency Matrix

The main idea in this stage is that each agent obtains in a decntralized way an estimate

of the graph adjacency which they update by communicating with its neighbors. During

this update process it is assumed that the graph topology doesn’t change. Although this

assumption is rather controversial, the assumption will work fairly well as long as the

graph remains connected during this process, even if its topology changes.

Thus, if Ak is the estimate of the adjacency matrix made by agent k, we will refer to

the (i, j)th element of the matrix at the pth step of updating it by pAk
i,j . There are two

processes now:

a) Initiation: 0Ak
i,j is initiated for each agent k by the following rule:

0Ak
i,j =

{
1 , if either i or j is connected to agent k

0 , otherwise

b) Propagation: The elements of adjacency matrix are updated by talking to the neigh-
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Figure 3.5: Network graph. On the right, critical edges of the graph are depicted in red,

while noncritical edges are depicted in blue.

bors according to the following rule:

p+1Ak
i,j = max{pAk

i,j , max
l∈Nk

pAl
i,j}

where, Nk is the set of neighbors of agent k.

It can be proved ([1]) that the number of steps that the process of propagation will take

to be completed (i.e. for an agent to obtain the whole adjacency matrix of the connected

component of the graph) is not more than the length of the longest path in the particular

connected component of the graph. Since the agents don’t have an estimate of the length

of the longest path, we run the propagation for N times, which can be the maximum

length of any path in a grap with N nodes.

Moreover it is to be noted that the information about the adjacency matrix that gets

propagated is the one that was initiated at the initiation step. Thus even if the graph

topology gets changed during the propagation process, if the graph remains connected

along this time, the final estimate that each agent will have about the graph adjacency is

the one that was existent at the time of initiation step.

3.3.2 Finding the critical edges connected to a particular agent

Once each agent has an idea about the adjacency of the particular connected com-

ponent of the graph, they should determine which ones are the critical edges that are

connected to itself. So here we define a critical edge of a connected component of a graph

to be such an edge, the removal of which will break the particular connected component

into smaller disconnected components. This notion is illustrated in figure 3.5.

With the above definition for a critical edge, we can tell if an edge is critical or not in

two trivial ways:
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i. Remove the particular edge in question and compute the Laplacian of the newly

formed graph. Compute the second eigenvalue of this Laplacian. If this eigenvalue

is zero then the edge is a critical edge.

ii. Remove the particular edge in question and compute the adjacency matrix Ã of the

newly formed graph. Compute Ãs = Ã · Ã · · · Ã (s times), for all s ∈ {1, 2, . . . , N}.
If at least one of these powers of Ã is a positive matrix (i.e. a matrix with all the

elements being positive), then the particular edge is not a critical edge, else it is.

In practice the second method is computationally less expensive.

We define Ci ⊆ Ni the subset of neighbors to agent i, the connections to which form

critical edges for the particular component of the graph. Agent i will be responsible in

ensuring maintenance of only the critical edge that connect i and j ∈ Ci.

3.3.3 Minimal Unsatisfiable Cores

For an efficient relaxation of the problem, in the first place we need a reasoning of

infeasibility in the level of specifications. To that end we will need the notion of Minimal

Unsatisfiable Cores(MUCs) (introduced in [19],[15]).

(a) t=0 (b) t=1

Figure 3.6: Task subject to specifications reconfiguration. At t=0, MUC is extracted -

comprised from indicated local connectivity and respective collision avoidance specifica-

tion. Discrete controller selects to reconfigure specifications by dropping (noncritical) local

connectivity of a0 and a1

Definition 3.1. Let P =< X,D,C >, P ′ =< X ′, D′, C ′ > be two CSPs. P ′ is an

unsatisfiable core of P iff P ′ is unsatisfiable, X ′ ⊂ X ∧D′ ⊂ D ∧ C ′ ⊂ C.

Different unsatisfiable cores of a given CSP may exist. Those which do not contain

any proper unsatisfiable core are called minimal.
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Figure 3.7: Overconstraint CSP with MUCs shown. Intersections between MUCs may be

non empty, meaning that MUCs may share common constraints.

Definition 3.2. Let P =< X,D,C > be a CSP and P ′ =< X ′, D′, C ′ > be an unsatisfi-

able core of P . P ′ is a Minimal Unsatisfiable Core (MUC) of P iff it does not exist any

unsatisfiable core P ′′ of P ′ s.t. P ′′ 6= P ′.

Every infeasible CSP contains at least one MUC. In order to reach a feasible relaxed

version of a CSP, we should iteratively get rid of existing MUCs. Thus, extracting MUCs

is a valuable procedure in reengineering a CSP, since dropping one constraint within the

MUC reduce the number of MUCs in the obtained relaxed problem by at least one.

3.3.4 Extracting MUCs

In order to extract a minimal core is necessary to iteratively identify the constraints

that are involved in it. Concretely, we know that given an unsatisfiable CSP P and an (ar-

bitrarily defined) total ordering of the constraints C1, C2, ..., Cm, there exists a constraint

Ci such that P↓{C1,...,Ci−1} is satisfiable and P↓{C1,...,Ci} is unsatisfiable. Then Ci belongs

to a MUC, is called a transition constraint of P , while a MUC is contained in P↓{C1,...,Ci}

- as a result, constraint Cj with j > i can be safely removed.

In comparison to constructive and destructive approaches in order to identify a tran-

sition constraint, a more efficient approach is the dichotomic search:
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dcTransitionConstraint(P:CSP,k:int):Constraint

min← k+1;

max← |C|;
while min 6= max do

center ← (min+max)/2;

if P↓{C1,...Ccenter} is satisfiable then

min ← center+1;

else

max ← center+1;

end

return Cmin end

Algorithm 2: Transition Constraint Extraction

To get a second element of the MUC, we apply the same function on a new CSP P ′

which is obtained from P via removing all Cj such that j > i and defining a new order

where Ci is considered as the first element. This iterative process is terminated when all

constraints of the MUC are discovered:

dcMUC(P:CSP):CSP

P ′ ← P ; k ← 0;

while k < |C ′| − 1 ;

do
Ci ← dcTransition(P ′, k);

k ← k + 1;

P ′← P ↑{Cj |j>i};

tmp← Ci;

Cj+1 ← Cj for 1 ≤ j < i ;

C1 ← tmp;

If P ′↑C|C′| is unsatisfiable then

return P ′↑C|C′|

end
Algorithm 3: MUC extraction

The worst case number of calls to the CSP solver is O(log(e)ke), where e = |C| and ke

the number of constraints of the extracted MUC.

3.3.5 Problem Relaxation

Problem relaxation is performed iteratively while CSP is unsatisfiable. MUCs are

iteratively extracted and relaxed through dropping soft constraints. Whenever a MUC

consisting only of hard constraints is extracted, the system cannot proceed further (since

either global connectivity or collision avoidance should occur). In such a case leader has

to wait in its present position (so as the system becomes more connected) or search for
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another path. The latter is not expected to take place in connected workspaces.

Relax(P:CSP):CSP

while P= (X,D,C) is overconstraint;

do
MUC ← dcMUC(P );

if c ∈MUC : c is soft constraint

then
drop c

else
output ”FAILURE”;

break;

end

P=(X,D,C-{c})
end

return P
Algorithm 4: Overconstraint Problem Relaxation





Chapter 4

Proposed Methodology for the

Discrete Controller: Integrated

Scheme

4.1 Reconfigurable Coordination in the Discrete Time

Let’s briefly summarize the tools we have so far analysed to our original end, namely

connectivity-preserving reconfigurable coordination based on a given specifications set.

We assume that the network of robots in leader-follower scheme is initially deployed

in an unknown workspace. Initial topology of the network satisfies the local connectivity

specifications of followers. Moreover, a path is given to be followed by the leader. At time

instant k, followers should decide about their next positions on workspace (at k+ 1) so as

to keep satisfying their specifications set.

Firstly, we presented a distributed algorithm for extracting the followers next positions

whenever a solution to the problem with the original specifications set exists. Otherwise,

a signal is communicated to the network indicating that the original problem has no

solution (or, equivalently, network cannot follow the leader’s motion maintaing its current

connectivity status) and reconfiguration has to take place. For the last case, we developed a

centralized reconfiguration approach that iteratively drops local connectivity specifications

(while checking that they do not violate global connectivity), until reaching a solution - in

other words a less-connected new configuration of the system that allows system’s motion

in the direction of the leader.

In more details, we reduced the problem to a well-studied problem from the area of Ar-

tificial Intelligence, the Distributed Constraint Satisfaction Problem (DCSP). During that

reduction, for reasons of safety, local connectivity specifications set should be augmented

by a set of collision avoidance specifications among agents.

47
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Figure 4.1: Integrated architecture of the proposed scheme. This flow of computations is

iterated for each agent in distributed manner. However, the process of reconfiguration is

centralized for the whole network.
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4.1.1 Synchronisation

Decisions about each agent’s next coordinates should have been completed before mov-

ing to the continuous part of the controller. Each agent converges asynchronously to its

solution during the execution of asynchronous backtracking for the DCSP and a signal

of termination should be communicated to the whole system, when all agents have found

their solution. In case of reconfiguration, an indicative signal should be propagated. In

this case, computations will proceed in a centralised scheme.

4.1.2 The Role of the Leader

The role of the leader is simply to decide about which direction the network will

move to. Leader’s path is designed a priori, via a method we do not take into futher

consideration - e.g. it could be by implementing A* in a prior estimation, when the

task is of the simple form ”go to the target”, or through another algorithm for a more

sophisticated motion task (expressed in LTL, for instance). In case its initial plan is

implementable on the workspace, the leader does not have to do any futher computation,

apart from synchronising its motion with the followers. Moreover, we are not strictly

attached to a scheme with a unique or a specific leader. This is to say that, depending

on the task, system can be easily adapted to have more than one leaders or change leader

throughout task execution.

4.1.3 Integration of Obstacle & Collision Avoidance

Obstacle avoidance is straightforwardly achieved through eliminating from the domain

of values for each agent those regions of the workspace that are occupied by obstacles.

Obstacle sensing is performed in real-time via on-board sensors and it is sufficient for

our scheme that obstacles are discovered when agents move to neighboring regions in the

workspace. Moreover, for our discrete controller we assume that workspace is not changed

during the continuous part of motion. However, system could be subject to dynamic

changes during the execution of the discrete controller (before agents have converged to a

solution).

Collision avoidance is considered to be achieved simplistically if any two agents of the

system do not coexist at the same region of the workspace. Collision avoidance is inserted

to the system as a set of additional individual specifications. Concretely, apart from its

local connectivity specifications, is given a set of collision avoidance specifications with

agents that are reachable in two steps (since two agents reachable in two steps can collide

should they decide both to move in opposite directions). This fact slightly increases the

connectedness of the specifications graph taken into account while solving DCSP.



50 Chapter 4. Proposed Methodology for the Discrete Controller: Integrated Scheme

4.1.4 Specifications Removal

Removal of specifications is performed when the system enters the phase of a centralized

reconfiguration. Edges that can be removed are edges of the specifications graph that

correspond to local connectivity constraints and are not critical for the global connectivity.

This set of ”soft connectivity” specifications is adjusted throughout reconfiguration, since

the iterative removal of edges changes the sets of hard and soft connectivity specifications.

However, it always converges to a relaxed solution of the coordination problem, if the

workspace is connected. Furthermore, as we have already mentioned, agents can decide

whether an edge is critical in a distributed way, albeit the decision about which edge will

be dropped is taken centrally.

4.2 Example

We track the execution of the algorithm at an example involving reconfiguration.

At first, we give some notes about the specific workspace. Worskpace is considered

discretized via a rectangular tesselation. Each cell has 8 neighbors, namely its up, down,

left, right and diagonal cells. Each agent can move omnidirectionally - thus, given current

coordinates of the agent, its subsequent position will be one of its neighboring or the agent

will remain in its current cell. On-board sensors range will also be one cell. Therefore,

obstacles are discovered when agent moves to a neighboring cell and communication can

take place only with neighboring agents.

DCSP solver terminates by indicating that no solution exists. Upon receival of that

fact system extracts a MUC. Reconfiguration on the level of specifications is taking place.

System characterises both a0−a1 and a0−a2 edges as soft and drops one of them at random

(if no further optimization criteria exist). Let’s assume that edge a0−a1 is dropped. Then

DCSP solver runs for the new relaxed version of original problem and provides the solution

displayed in the following.
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(a) t=0: Local Connectivity Specifications Graph (b) t=0: Topological Graph

(c) t=1:Local Connectivity Specifications Graph (d) t=1:Topological Graph

Figure 4.2: Task subject to specifications reconfigurations. At t=0, MUC is extracted -

comprised from indicated local connectivity and respective collision avoidance specifica-

tion. On the left local connectivity specifications is displayed, while on the right topological

graph is displayed. At t=1, we depict network graphs associated with found solution.
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In the next step, initially we will try again to find a solution to the original problem.

After running DCSP solver, we will deduce that again no such solution exist. A new set

of MUCs will be found and the system will reach a relaxed version of the original problem

by dropping soft specifications within them. Formulating identically the coordination

problem, may seem a vague approach, since when the system enters a region of dense

obstacles it is plausible to suppose that solutions after reconfiguration will be increasingly

relaxed. However, starting searching on the basis of the previous relaxed instant of CSP

will lead necessarily to a sequence of less and less connected discrete configurations of the

network. Furthermore, this approach will prohibit initial connectivity status restoration

when robots exit the regions with obstacles and are led to a free area of the workspace.

4.3 Continuous Controller

The continuous part of motion, namely agents motion between two successive positions

defined by the discrete controller, is designed separately. The two basic objectives of

continuous controller are:

1. Collision Avoidance: Transition from cell to cell is performed without moving to

another cell in between.

2. Synchronisation: Since decision about next discrete configurations are taken syn-

chronously, agent should synchronously leave their previous cell and arrive at their

next target.

Design and philosophy of the continuous controller is based on the notion of Prescribed

Performance Control, introduced in [4]. According to the above mentioned objectives, we

define appropriate performance functions. By prescribed performance it is meant that the

output tracking error should converge to a predefined arbitrarily small residual set, with

convergence rate no less than a certain prespecified value, exhibiting maximum overshoot

less than a sufficiently small preassigned constant.

The necessity for collision avoidance, combined with a prescribed control based con-

tinuous controller implies that some further restrictions regarding the tessellation may be

introduced to the workspace. For instance, diagonal motion in a rectangular grid should

be ruled out, since it can cause a collision. Thus, 9-rectangle neighborhoods should be

restricted to 4-rectangle neighborhoods (containing up, down, left and right cell). A far

more appropriate tessellation for our scheme would be an hexagonal one, which will be

used for the simulations performed in the next section.



Chapter 5

Results

5.1 Simulations

In this chapter we present the results we received by applying our control scheme

on two different platforms. In the first simulation, the continuous part of motion was

not integrated, while in the second simulation both discrete and continuous part were

implemented.

5.2 Simulation 1

5.2.1 Technical Description

In simulation 1 we consider a workspace in the plain with rectangular tessellation.

We assume that agents carry on-board omnidirectional sensors with range equal to
√

2.

Thus, local connectivity exists among cells belonging to 9-square neighborhoods. Obstacle

sensing is achieved when agents move at cells adjacent to an obstacle. No prior knowledge

of the workspace, as well as no memory is assumed. Leader’s path is designed a priori.

Moreover, we admit that robots are holonomic (they can decide to move towards each of

the adjacent cells of their current position).

Leader moves on the successive centers of the regions crossed by its path, while followers

should obey their local connectivity and collision avoidance specifications, by solving DCSP

at each step.

Code was implemented in Python 2.7 and executed in computer with Processor Intel

Core i7-2630QM, RAM 4 GB. Execution time of the programm for the whole motion task

was very few seconds.

5.2.2 Evaluation

We confirm that the network is able to reconfigure efficiently and robustly its topology

in order to carry out the assigned task motion without loss of global connectivity. In partic-

ular, we observe that progressively (k=0 until k=4) network extends itself and approaches

53
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k=0 k=1

k=2 k=3

Figure 5.1: Simulations 1.1
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k=4 k=5

k=6 k=7

Figure 5.2: Simulations 1.2
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k=8 k=9

k=10 k=11

Figure 5.3: Simulations 1.3
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k=12 k=13

k=14 k=15

Figure 5.4: Simulations 1.4
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k=16 k=17

k=18 k=19

Figure 5.5: Simulations 1.5



5.2 Simulation 1 59

k=20 k=21

k=22

Figure 5.6: Simulations 1.6
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a near-linear topology in order to pass through the long and narrow corridor created by the

obstacles. Subsequently, upon exiting the obstacle, exploiting the discovered free space,

network finds a better solution to the original CSP and increases connectivity(k=5 until

k=12). Then, the network encounters the square obstacles and extends itself again, suc-

ceeding to procceed in leader’s direction (k=13 until k=14). At this stage, we can observe

that the system avoids square obstacle in a rather counter-intuitive way, since an agent

decides to move through the empty space on the upper side of the obstacle (see config-

uration at k=17), while the others move through the lower side of the obstacle. When

leader reaches its terminal coordinates, instead of aborting the task, we keep moving the

followers until initial connectivity status of the multi-robot system is restored (k=18 until

k=22).

Although the discrete controller produces allowable instances for network configura-

tion, there exists a number of issues tricky to be tackled by the continuous controller, due

to the specific tessellation. For instance, we have to exclude swaps (mutual interchange of

positions) between adjacent agent, since the continuous part of this transition cannot be

handled by a prescribed performance control with guarantee of collision avoidance, and

thus reach a more rigid scheme. This is an evidence that we should look for an even better

tessellation. Hexagonal grid is more appropriate and is the basis for the discretization of

workspcae selected in simulations of the next section.

5.3 Simulation 2

5.3.1 Technical Description

In second simulation we use a hexagonal tessellation of the workspace. The charactris-

tics of robots are identical to the ones of previous simulation. The only difference is that

at the current tessellation we have 6-hexagon neighborhoods.

System is initially globally connected and is deployed in the unknown workspace.

Leader is assigned a motion task, consisting in following a predefined trajectory.

Discrete controller was implemented in Python as described in first simulation, while

for integration with the continuous part and plotting we implemented code in MATLAB

(R2011a).

5.3.2 Evaluation

While passing through the narrow corridor between obstacles, the initially connected

multi-robot system tends gradually to a chain-like formation, by breaking local connectiv-

ity relationships (see subfigures (a)-(f)). Subsequently, the system restores progressively

initial connectivity status (see subfigures (g)-(j)). A nice attribute of the controller in

the specific example, is that the ordering of the agents in linear formation coincides with

the enumeration of them in initial configuration. Furthermore, regarding the continuous
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(a) (b)

(c) (d)

Figure 5.7: Simulations 2.1
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(e) (f)

(g) (h)

Figure 5.8: Simulations 2.2
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(i) (j)

Figure 5.9: Simulations 2.3

part, we notice that agents enter synchronously their new hexagon (which implies that

connectivity is not lost during motion from cell to cell).





Chapter 6

Future Research

In the following we propose some directions for further research to the problem we

dealt with. We should mention here that, to our knowledge, work on the boundaries

between control theory and artificial intelligence is arguably limited, thus we are inclined

to believe that many aspects of the problem worth to be further explored.

• Further Decentralization: Decentralization of Reconfiguration

We have seen that Yokoo et al. decentralized algorithm can determine in finite time if

the original DCSP has solution. Otherwise, we run a centralized reconfiguration pro-

cedure. Although the process of reconfiguration is centralized, in general we observe

that, regarding multi-robot applications, MUCs correspond to local cores within

the network (see for example Figure 3.6). Thus, we have certain indications that

elimination of MUCs can be achieved with local information. Extraction of MUCs

is also centralized. However, a heuristic preprocessing step can be incorporated in

DCSP solver by indicating which agents face the most conflicts while searching for

a solution the problem. This mechanism could allow us to exclude some (hopefully

most of) agents of the network from the reconfiguration procedure.

• The Role of the Leader / Design of Leader’s Path / Early Detection of

Deadlocks

Our scheme is essentially decoupled from the methodology of designing leader’s path.

Concretely, we assume that leader’s trajectory design is carried out by another con-

troller and is based on the complexity of motion task that should be executed by

our multi-robot system. However, leader’s next step coordinates should be given in

every run of our discrete controller, since they define the direction towards which the

network moves. Our scheme allows changes of initially designed leader’s trajectories.

For instance, if leader’s sensor has range greater than 1-step ahead and detects an

obstacle crossing its trajectory, leader can stay at its coordinates and design a new

free of obstacles path.

Moreover, restorage of initial connectivity status in free regions of the workspace

can be achieved by iterating our scheme few times with leader paused at its present
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coordinates. A leader able to sense broad regions in the workspace could manage to

efficiently allow connectivity restorage when possible.

• Multi-leader schemes/ Dynamic selection of leader

Although our scheme guarantees global connectivity maintenance by adjusting sys-

tem’s connectivity graph to obstacles in every connected space, for specific tasks (e.g.

surveillance) employing additional agents as leaders may be useful, since it would

allow to the system to be divided in multiple teams. However, in this scenario, lead-

ers trajectories should be very carefully designed and synchronised in order to allow

future global connectivity restorage, without collisions.

Moreover, another attempt to make the model more powerful would be to allow

dynamic assignment of the role of leader to the agents. For instance, imagine a

system in linear formation blocked in the dead-end of the maze, with leader in front.

In that case, a more efficient technique would be to assign the role of leader to the

last agent of the system, since this agent is the only one who can move to free cells.

• Motion in space free of obstacles /Dealing with counter-intuitive motion

Since we have not employed agents with memory, system tries to repeateadly solve

identical CSPs when moving in regions with no obstacles - identical instances of

CSP can be recognized by comparison of the domains of the variables involved in

the problem. In these cases, it would be plausible to add memory to the agents

in order to remember their previous solution to their problem and not to seek for

alternative solution (this method could also allow formation maintenace when it

is possible). Furthermore, due to the nature of the problem we solve (which is

essentially a problem of exhaustive search in finite domains) we often see counter-

intuitive attributes to the solution we obtain (e.g. two neighbors may not select to

move towards the same direction, but towards diagonal direaction without losing

connectivity). Thas sort of attributes could be excluded by explicitely coupling

decision among neighbors in the network - however, that would pose restrictions to

the decentralization of solving CSP.

• Tessellation

Discretization of the workspace should be considered along the kinematics and dy-

namical model of the agents, the properties of selected continuous controller scheme

as well as sensing capabilities of the agents. In particular, for our methodology, in-

tegrated with Prescribed Performance Controller for the continuous part we realized

that hexagonal grid seem more reasonable than rectangular grids.

• Extending the Method to 3 Dimensions

Although we implemented our scheme on plane workspaces, it is straightforward to

expand the methodology for spaces with more dimensions.
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• Minimization of Calls to the Discrete Controller

In the proposed scheme discrete and contrinuous controller work sequentially at each

step of the cooperative task motion. Namely, in the first place, discrete controller

decides about network configuration, by producing an assignment of each agent to

its next allowable coordinates. Next, continuous controller supervises the transition

of each agents from present to subsequent coordinates. Thus, discrete controller is

called at each step of motion.

A more efficient scheme would be to implement motion in the continuous level and

call discrete controller ”by need” whenever continuous system ”gets stuck” - then

discrete controller would be essentially a scheme that supervises reconfigurations.

A significant question in that approach would be the following: how would the

continuous controller decide that it has got stuck?





Appendix A

Basic Notions from Algebraic

Graph Theory

Algebraic Graph Theory ([14]) provides a compact mathematical framework for ab-

stract modeling of multi-agent systems. In this section we recall some basic concepts.

We define a undirected graph G = (V, E), where V = {u1, u2, ..., un} are the vertices

and E are the edges of the graph.

Degree Matrix ∆(G). The diagonal matrix which contains information about the

degree of each vertex of G - that is, the number of edges attached to each vertex.

Adjacency Matrix A(G). The symmeric matrix which represents which vertices of

the graph are adjacent to which other vertices, as follows:

|A(G)|ij =

1, if uij ∈ E

0, otherwise
(A.1)

Laplacian Matrix L(G). L(G) := ∆(G) − A(G). It is a symmetric and positive

semidefinite matix - thus having real eigenvalues. Furthermore, from its definition is easy

to observe that all rows of the matrix sum up to 0 - consequently, the rank of the matrix

is at most n − 1. By examining the Laplacian matrix we can derive useful conclusions

regarding graph’s properties, as implied by the following theorem.

Theorem 1.2. Assume the following order of Laplacian’s eigenvalues : 0 = λ1(G) ≤
λ2(G) ≤ ... ≤ λn(G). Then graph G is connected iff λ2(G) > 0.
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