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Chapter 1

Introduction

1.1 Motivation

Information technology, being a competitive and on demand business, always seeks to

improve the resilience and responsiveness of its services, while in the same time keeping

its operational costs at a minimum level. These driving factors along with contemporary

complex software and hardware solutions (e-commerce, cloud services, e-banking etc.)

which are required to operate under constantly changing user priorities, environments,

and available resources, fuel the problem of managing such systems.

The majority of today’s computing hardware and software infrastructure tackle this issue

with low-level mechanisms (i.e. exceptions, fault-tolerant protocols etc.) which have a

limited view of the system, are application specific, and costly to implement and later

modify. Additionally, this approach depends on well-trained human operators, increases

the maintenance costs, is prone to error and is unable to scale up to the contemporary

multi-layered and complex IT infrastructure.

It follows naturally that the aforementioned needs, push both the research community

and the industry towards devising systems that are able to respond to their environment

in the form of self-adaptation. This notion introduces the idea that systems are able to

decide in an autonomous manner on how to accommodate changes in their environment.

By autonomous we mean that they can either act without any human interference or

with some guidance in the form of high-level objectives (i.e. policies).

The concept of self-adaptation brings design decisions of a system towards runtime in

order to control dynamic behaviors, and enforces it to reason about its state and envi-

ronment. For example, keeping the utilization of a physical host of a cloud data-center

at high levels requires a) the collection of information that showcase the current state of

1
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the host (e.g metrics that prove the host’s low utilization), b) the analysis of this infor-

mation to diagnose possible issues (e.g. correlation of multiple performance metrics), c)

decision making on how to approach this issue(e.g. targeting future workloads on this

host) and d) actions that will take in effect the decisions previously made.

By observing the example previously presented, one can realize that a promising starting

point towards self-adaptation are techniques originating from control engineering and

natural systems[1]. Thus, feedback loops are able to provide a generic mechanism for self-

adaptation. A feedback loop will typically involve four states; collect, analyze, decide,

and act, as shown in figure 1.1. The feedback cycle starts with the collection of relevant

data from environmental sensors and other sources that reflect the current state of the

system. Next, the system analyzes the collected data. Next, a decision must be made

about how to adapt the system in order to reach a desirable state. Finally, to implement

the decision, the system must act via available actuators or effectors.

Figure 1.1: Autonomic Control Loop

Kephart and Chess[2] proposed the first architecture that implemented such a feedback

loop in IBM’s architectural blueprint for autonomic computing[3], which is further dis-

cussed in Section 2.1. Garlan et al[4] have also proposed the addition of an external

controller to the underlying system, essentially implementing a feedback loop. At this

point it is important to discern, that the common factor amongst such initiatives that

aim to achieve self-adaptation, is the need for software that supports the proper engi-

neering and realization of self-adaptation. Building such systems in a cost-effective and

predictable manner is a major software engineering challenge that only recently has seen

the first attempts to establish suitable software engineering approaches for the provision

of self-adaptation. The encouraging results of the research community formed around
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this subject have established self-adaptive systems as an active and interdisciplinary

research field.

1.2 Problem Description

The vision of creating IT systems that are able to manage themselves according to ad-

ministrators’ goals[2], brings with it many open challenges for the Software Engineering

community. [5] and [6] aim to summarize and identify such research challenges that arise

when developing, deploying and managing self adaptive systems, in the following four

axes:

i. Design space: What decisions a developer should address when designing a self-

adaptive software system

ii. Processes: How to define generic processes for the development, deployment, op-

eration, maintenance, and evolution of self-adaptive systems.

iii. Decentralization of control loops : How to approach control loops for various degrees

of centralization and decentralization of the controlled elements.

iv. Practical run-time verification and validation: how to obtain information regarding

trust in self-adaptation.

In this thesis we visit the first two categories of problems. In the context of design space,

bridging the gap between the design and the implementation of self-adaptive systems

constitutes a major challenge. Frameworks and reference architectures can be of signif-

icant assistance in this problem by providing reusable models and robust infrastructure

to developers of self-adaptive systems. They can also contribute in the process of cre-

ating self-adaptive on top of non-self-adaptive systems, by helping developers to better

understand the interaction of the control loop and other self-adaptation mechanisms

with the non-self-adaptive system and how actions of the one system affects the other.

In the context of processes, the key research challenge is the design of a generic frame-

work for self-adaptive software systems that provides reasoning support for the system’s

adaptation based on relative costs and benefits of its actions. Such a framework should

include (i) the appropriate infrastructure and support for the definition of such actions

and the dependencies amongst them; (ii) support for the concrete implementation of

these actions in the framework’s context; (iii) a reasoning and analysis mechanism for

the decisions that the system must take in order to execute them, based on their costs

and benefits.
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The main goal of this thesis is the design and implementation of a framework for self-

adaptive systems able to reason for its decisions according to the benefits and costs of

the actions needed to stabilize its performance. The framework must a) implement the

feedback loop showed in figure 1.1 and provide robust interfaces for the concrete imple-

mentations of all the phases of the loop, b) make use of expressive, domain independent

models that will allow it to decide about self-adaption in an intelligent manner, and c)

be able to reason about these models in an efficient way.

High-performance heterogeneous distributed systems such as data-centers, clusters and

grid computing systems constitute a killer application domain for self-adaptive systems

due to the multi-dimensional goals and objectives that they wish to meet. For example, a

vendor providing cloud services, needs to be able to automatically detect and remediate

reduced performance of its systems in order to provide to its customers the agreed quality

of service (QoS). This could be translated to addition of extra computing resources so

that the vendor can satisfy its customer’s needs. However such a decision works in

contrast to the vendors general policy for better power management and reduction of

operational costs. Hence, such complex and multi-parametric problems present excellent

challenges for self-adaptive computing.

For our proposed framework to be tested, we have built our self-adaptive system on

top of CloudSim[7], a simulation framework for cloud infrastructure which is further

discussed in Section 2.4.2. CloudSim has been extended in order to produce and channel

performance metrics to our system, which monitors CloudSim’s execution. When an

abnormal behavior is observed by our system, the latter creates an alert and its reasoning

mechanism is triggered in order to remediate the monitored issue. For our system to

decide how to react, we model solutions to possible issue as collections of Task Resolution

Models, which are formally introduced in Section 5.1. The reasoning mechanism responds

with a compilation of actions that need to be effected on CloudSim, and finally these

actions are executed after taking in account the current state of CloudSim.

1.3 Contributions

In this thesis we present the design and implementation of a framework for self-adaptive

systems with emphasis on plan compilation and execution. Our contributions are sum-

marized as follows:

• Design of a domain independent reference architecture for self-adaptive systems.

The architecture follows the blackboard architectural model[8] and implements the
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autonomic control loop[9]. The architecture assumes the usage of Task Resolution

Models for its analyze part.

• Definition of a Task Resolution Model that extends the goal models utilized in Re-

quirements Engineering (and further explained in section 2.2) by associating each

entity with a cost/benefit value and by adding contextual constraints. An instance

of our model represents solutions to possible runtime issues and shortcomings that

the self-adaptive system might face during its execution, as AND/OR trees.

• Transformation of the aforementioned Task Resolution Model to propositional for-

mulas and reduction of the planning problem to Boolean Satisfiability.

• Design of an algorithm that guarantees the retrieval of all the parts of our Task

Resolution Model that are relevant to the monitored issue.

• Extension of the CloudSim framework in order to (i) support dynamic workloads

for memory, network and storage metrics; (ii) provide Key Performance Indicators

of its resources.

• Prototype implementation of the self-adaptive framework based on the proposed

architecture, and application of the latter on top of the CloudSim simulation frame-

work.

1.4 Outline

The rest of the thesis is structured as follows:

Chapter 2 introduces background knowledge that is related to our work. The basic

concepts of autonomic computing and self-adaptive systems are introduced along with

a reference architecture defined by IBM. Following these, background information and

definition of Goal Models and some of their variations is presented. Next, we introduce

decision procedures and propositional logic, as the formal system that is employed for

our systems reasoning process. A discussion is held on the boolean satisfiability deci-

sion problem, its algorithms and some of its extensions. Next, we provide some basic

background on cloud computing and finally we present different approaches for modeling

cloud infrastructure.

Chapter 3 presents the designed self-adaptive framework. Section 3.1 showcases the

high level architecture of the system, its core modules and how it related to IBM’s

MAPE-K reference architecture. Section 3.2 introduces the component diagram of our

proposed reference architecture for a self-adaptive framework. Next, each component of
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the reference architecture is visited and its subcomponents, and interfaces are described

in detail. When needed, the interaction of the components with their subcomponents or

other components is explained through sequence diagrams. Finally, section 3.3 provides

a sequence diagram showcasing a session of the basic adaptation loop that the framework

implements.

Chapter 4 presents the domain models of the self-adaptive framework. The core entities

of the framework and their relations are visited. Additionally, the touchpoints of the self-

adaptive system are explained, and finally a domain model of the extensions implemented

to the CloudSim framework, which plays the role of the controlled system, is discussed.

Chapter 5 presents in detail the reasoning framework of the self-adaptive system. First

we introduce the models utilised and formally define them. Then we provide an algorithm

capable of reducing the size of the model that the framework has to reason on, in order to

devise an adaptation plan. Finally, we show the reduction of Plan derivation to boolean

satisfiability and the construction of the cnf formula fed to the sat solver.

Chapter 6 presents experimental evaluation of the proposed framework on top of the

CloudSim simulation framework. Section 6.1 describes the execution setup of our imple-

mented self-adaptive system and the simulation characteristics of the CloudSim frame-

work. Furthermore, in the context of the self-adaptive system, its concrete implemen-

tations of the extensible part of the framework are discussed. Section 6.2 showcases

experiments run for two different use cases, comparing the behavior of the the CloudSim

framework, when the latter is run in a non - adaptive and in an adaptive setup.

Chapter 7 concludes our work and provides directions for future work.



Chapter 2

Related Work

2.1 Autonomic Computing - Adaptive Systems

2.1.1 Basic Concepts

Autonomic computing[2] is a term introduced by IBM in 2001 proposing a computing

environment able to manage itself and dynamically adapt to changes occurring in its

context in order to meet certain objectives and policies. This process is automatic and

minimizes the involvement of an IT professional, essentially hiding the complexity of

the system from operators and users. Both the term and the motivation for autonomic

computing are derived from human biology, as the human body executes most of its

vital tasks i.e. breathing, in a self-managing manner without any conscious effort from

the person itself.

To achieve this autonomic behavior, system components (such as operating systems,

hypervisors, storage units etc) need to be able to act in a self-managing manner by

observing their environment and taking appropriate actions according to the situation.

These components - hereby autonomic elements - are enhanced with control loop func-

tionality which can be organized in the following four categories:

• Self-Configuring: Enables the component to adapt to its changing environment.

By sensing changes on the deployment of the system’s components, removal of

components or critical changes to a component’s state, a self-configuring compo-

nent utilizes policies provided by an IT professional to guarantee strength and

productivity of the IT infrastructure.

• Self-Healing: Enables the component to monitor, analyze and react to upheavals.

After detecting a system malfunction the component enables corrective actions

7
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according to predefined policies, without disrupting the IT environment. Such

actions usually involve altering the state of the component or even effecting changes

in other components of the environment.

• Self-Optimizing: Enables the automatic tuning of resources. A self-optimizing

component will monitor its performance and tune itself in order to meet end-user

business requirements. To do so, it proceeds in actions such as reallocation of

resources to secure high utilization and high standards of service both for the

system and the end user.

• Self-Protecting: Enables the detection, identification and protection of threats

directed to the component from the environment. A self-protecting component

can detect hostile activities and take corrective actions, or even act in a proactive

manner to make itself less vulnerable. Examples of such hostile behaviors are

unauthorized accesses, denial-of-service attacks and these components ensure the

conservation of security and privacy policies.

IBM has also proposed a reference model for control loops [3] called the MAPE-K loop

which is depicted in figure 2.1 and is used to communicate the architectural aspects

of autonomic systems. It represents how a single entity is managed in an autonomic

environment and forms an autonomic element. The managed resource is the controlled

system component and it can either be a single or a collection of resources. The sensors

and effectors provide mechanisms to collect information about the state of the managed

resource and to change its state respectively, and are analyzed in greater detail in the

next section. The autonomic manager is the component that implements the control

loop which is dissected in four parts, namely Monitor, Analyze, Plan, Execute while

constantly consulting and updating its Knowledge of the system.

Autonomic elements do not act independently one from another and may cooperate

to achieve common goals [3], e.g. servers in a cluster optimizing the allocation of re-

sources to applications to minimize the overall response time or execution time of the

applications. Consequently autonomic managers need not be aware only of the condi-

tion of their controlled elements, but also of the condition of other autonomic managers

in their environment. Both multi-agent approaches[2] and hierarchical compositions of

autonomic elements[10] have been proposed.

Although the control loops of these self- * properties share some fundamental parts,

they all aim to secure different attributes that are needed for a system to automate its

tasks. Systems management software is responsible for the system wide orchestration

of tasks defined by these control loop functionalities. To make this process possible,
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Figure 2.1: MAPE-K Loop

IT processes delegation is required in the sense that an autonomic manager, i.e. a self-

optimizing manager, is assigned to a single component, i.e. a server, and is responsible

for optimizing this server’s performance only.

The addition of control loop functionality to system components cannot be instant and

requires gradual, multi-stage evolution of enterprise infrastructure. To better understand

and plan this process, IBM has proposed the following five levels of autonomicity[11]:

Basic (Level 1)

This level is the one in which most contemporary systems belong to. All the components

of the system are manually installed and managed by IT professionals. The latter are

also responsible for monitoring, aggregating and analyzing the systems’ environment

and data.

Managed (Level 2)

This level is reached by systems that aggregate data and actions from multiple com-

ponents into a main central unit by usage of management tools. IT professionals are

responsible for the analysis of data and execution of task, benefiting from the vast

amount of information that the system provides.

Predictive (Level 3)

This level includes systems that are able to monitor and correlate data in order to

recognize patterns and support the IT professionals with recommended tasks and actions.

Management integration across multiple components is achieved, allowing the system to

be managed by professionals with less technical skills.
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Adaptive (Level 4)

This level goes one step beyond the predictive level by not only correlating, developing

and suggesting plans, but also executing plans according to policies. Consequently the IT

infrastructure at this level is more responsive to changing business conditions, allowing

the organization to balance between human and system interactions.

Autonomic (Level 5)

The final level describes well integrated components, able to dynamically manage them-

selves according to rules and policies while communicating with each other. At this

level the staff focuses on the definition of business requirements, which are the main

managing tools of the IT infrastructure.

An overview of the levels of autonomicity is given at figure 2.2.

Figure 2.2: Autonomicity Levels

2.1.2 Architecture Concepts

In their Autonomic Computing blueprint, IBM proposed an autonomic computing ref-

erence architecture depicted in figure 2.3. The bottom part of the architecture contains

the managed resources of the autonomic system that constitute the hardware and soft-

ware of the IT infrastructure. It is possible for some of these components to already

guarantee some basic self-managing capabilities. The next level includes the touchpoints

to the IT infrastructure which serve as an interface to control and manage the system’s

resources. The two following levels are primarily responsible for the automation of the

system and contain the autonomic managers. At level three, an autonomic manager is
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responsible for the control of a single resource, i.e. a database server, and it can imple-

ment one of the four control loop types described above (self-configuring, self-healing,

self-optimizing, self-protecting). Level four includes autonomic managers whose respon-

sibility is the orchestration of the autonomic managers of the previous level and they

are able to implement control loops taking into account a broad view of the system.

Finally the top layer includes a manual manager as an interface for IT professionals

which provides system management capabilities. All five layers are able to obtain and

share information via knowledge sources, as shown in figure 2.3. The building blocks of

the reference architecture are described next.

Figure 2.3: Autonomic System Layers

Autonomic Managers

Autonomic managers are systems components responsible for automating some man-

agement functionality of the system by implementing the intelligent MAPE-K loop and

publishing its results through management interfaces. The internal structure of auto-

nomic managers is organized by the autonomic computing reference architecture in the

following four sections:

• Monitor: The monitor function collects information produced by the managed

resources via touchpoints, aggregates them and models them as symptoms that

can be analyzed. This information involves metrics, configuration details, setting
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etc. The data can be static, meaning that they remain the same or barely change

through time, and dynamic, changing during the systems execution. Data is ag-

gregated, filtered and correlated for the monitor function to determine a symptom

that is related to a particular combination of events. Afterwards, this symptom

is passed to the analyze function. Due to the colossal amount of data that is pro-

cessed from the touchpoint sensor, modeling and interpreting them in an efficient

manner is of paramount importance for an autonomic manager.

• Analyze: The analyze function observes and analyzes symptoms provided by the

monitor function in order to decide whether corrective actions should be applied.

This is achieved by ensuring that the autonomic manager is conformant with the

current policies and goals. Violation of these, triggers the reasoning part of the

analyze function, which by employing data analysis and reasoning techniques on

the observed symptoms and consulting the knowledge data, issues a request for

change to the plan function. This request contains all the information that exhibit

the modifications, that according to the analyze function, need to be applied to

the system in order the remediate the monitored symptoms. The complex analysis

mechanisms allow the autonomic manager to better understand and model the

IT environment leading to easier prediction of future behaviors and thus better

symptom diagnosis.

• Plan: The plan function is responsible for creating a procedure or compiling

multiple ones in a complex workflow, enactment of which will cause the desired

alteration to the system. After the workflow is created it is sent to the execute

function to implement the desired changes to the managed resource.

• Execute: The execution function enacts the plans created by the plan function

to the system through a series of action. The actions are carried out by utilizing

the touchpoint effector of managed resources. Finally the execution part may be

responsible for updating the knowledge of the autonomic manager.

Knowledge Sources

Knowledge sources are repositories in which data such as symptoms, policies, change

requests and plans are stored and shared among autonomic managers. Knowledge has

particular types and semantics and can be used by all four functions of an autonomic

manager. Finally, autonomic managers of autonomic managers can also obtain knowl-

edge from the latter in order to perform additional management tasks.

Manual Manager
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A manual manager involves the implementation of the user interface that allows an

IT professional to execute management function in a manual manner. The manual

can potentially work with other autonomic managers that are on the same level of

orchestration or control autonomic managers and other IT professionals working at lower

levels.

Touchpoints

Touchpoints are system components that expose interfaces called manageability inter-

faces able to query the state of managed resources as well as to execute management

operations on managed resources. Therefore a touchpoint is the implementation of a

manageability interface for a single resource (e.g. a virtual host) or a set of related

managed resources (e.g. a database server, the databases hosted on the server and the

tables of the databases).

The manageability interface of a managed resource is organized into its sensor and

effector interfaces. The sensor interface provides two different types of interactions:

first get-type operations that provide information about the current state of the managed

resource, and second events that follow a send-notify fashion which are issued when

the managed resource reaches states that are worth reporting. The effector interface

respectively, provides the two following types of interactions: set-type operations that

change the state of the managed resource, and events that enable the managed resource

to issue requests to its autonomic manager.

2.2 Goal Models

Goal Models have been extensively utilised in Requirements Engineering to model early

requirements[12] and more recently for behavioral customization of software systems[13].

Goal Models can express high level goals that stakeholders wish to achieve and capture

alternative ways in which these goals can be met.

2.2.1 Goal Trees

Loosely speaking, a Goal Model is a set of goal trees whose nodes are connected by

contribution links. Goal trees consist of goal nodes which are AND/OR decomposed to

subgoals, meaning that if a goal G is AND-decomposed (OR-decomposed) to subgoals

G1, G2, . . . , Gn then if all (at least one) of its subgoals are satisfied, G is also satisfied.

A contribution link is a lateral connection between two goal nodes, expressing how

fulfillment or denial of the source goal affects the target goal. The intuitive meaning of



Chapter 2. Related Work 14

the contribution link G1
++S
�−−−→ G2 (G1

++D
�−−−→ G2) is that given G1 is satisfied (denied),

G2 is satisfied (denied) in return. The meaning of the −−S ,−−D links is dual w.r.t.

the outcome of the target goal. Figure 2.4 depicts an example of a Goal Model.

++

Payment Via
Money Order

Charge
Credit Card

Get CC
Authorization

Get Credit
Card Number

Courier
Delivers to
Customer

Payment
Received

Books Delivered

Fulfill Book
Order

Deliver to
Courier

Handle
Receipt

Place Receipt
in Shipment

Payment Via
Credit Card

Provide
Quote

Customer
Requests

Quote

Customer
Places
Order

Quote Given

Books
Available

Books Ordered Books Acquired

Contact
Supplier

Supplier
Provides

Price

Don’t Place
Receipt

in Shipment

Books Arrive
at Warehouse

Supplier
Ships Books

Receipt Sent

Send Printed
Receipt

Send Electronic
Receipt

Print Receipt

Separate
Receipt Sent

Submit Receipt

Deliver Receipt

Customer
Issues

Money Order

Customer
Sends

Money Order

Receive
Money Order

Place Order
to Supplier

Happy Customer

Use Robust
Legal

Documentation

Payment
Traceability

Reduce
Transaction

Costs

AND

AND

AND

AND

AND

OR

OR

OR

++

++ −− ++

−−

AND

AND AND

AND

AND

++

Figure 2.4: Sample Goal Model

At this point it is important to distinguish the difference between decomposition and

contribution; decomposition expresses intentionality regarding the achievement of a goal

node while contribution works as a side effect. For example, for goal Books Available to

be satisfied one must first assure satisfiability of goals Books Ordered and Books Acquired

to which the first is AND-decomposed to. On the other hand, satisfiability of the source

goal node Send Printed Receipt, leads to lateral denial of node Reduce Transaction Costs

as a result of their −−S relation.

A Goal Model can be formalized as a tuple �G,R� where G is the set of goals and

R is the set of relations among goals. A relation r over goal nodes Gi is denoted as

(G1, . . . , Gn)
r
�−→ G, where G1, . . . , Gn are the source goals and G is the target goal of r.

Boolean relations are the n-ary and, or relations while contribution relations are the bi-

nary ++S ,++D,−−S ,−−D relations. A root goal is any goal with an incoming boolean

relation and no out coming ones and a leaf goal is any goal with no incoming boolean

relations. Finally, every Goal Model has to conform to the following two restrictions:

• each goal has at most one incoming boolean relation

• every loop contains at least one non-boolean relation arc

The propagation of satisfiability and deniability through a Goal Model is formalised by

the axioms presented in table 2.1.
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Relation Axioms

(G1, G2)
and
�−−→ G : (G1 ∧G2) → G

¬G1 → ¬G

¬G2 → ¬G

(G1, G2)
or
�−→ G : G1 → G

G2 → G

(¬G1 ∧ ¬G2) → G

G1
++S
�−−−→: G1 → G2

G1
−−S
�−−−→: G1 → ¬G2

G1
++D
�−−−→: ¬G1 → ¬G2

G1
−−D
�−−−→: ¬G1 → G2

Table 2.1: Satisfiability Axioms

2.2.2 Contextual Goal Models

Traditional Goal Models do not take in account contextual variability and how the latter

can affect the modeled system. To tackle this problem in contemporary high-varying

ubiquitous computing systems, various Requirements Engineering approaches that in-

troduce contextual variability in Goal Models have been suggested [14],[15]. Contextual

Goal Models aim to identify under which set of circumstances parts of the Goal Model

are present and to provide a version of the Goal Model that is conformant to this set.

To define Contextual Goal Models, let E be the set of elements in a Goal Model, and T

be the set of element types (e.g. goal node, decomposition, etc.). A function M maps

each element of E into an element of T relating each element of the Goal Model to a

type. The set TC ⊆ T includes the types of elements that are affected by contexts.

Finally the set EC = {n | n ∈ E ∧ M(n) ∈ TC} contains the elements which are

context dependent. Finally, the set C contains the contextual tags that are assigned to

members of EC representing the conditions under which these elements are part of the

Goal Model. Each tag c ∈ C is assigned a boolean expression p : p → c which defines

when this tag is active. A special tag def that is active by default is also defined, and is

associated with these elements that are visible in the Goal Model regardless of context.

An element is possibly associated with multiple sets of tags e.g. m ∈ MC is assigned the

set of tags {{a, b}, {c, d}} to indicate that m is visible either in the case that a and b are

active or in the case that c and d are active. Tags are implicitly propagated from target

goals to source goals due to the hierarchical structure of Goal Models reducing substan-

tially the number of tags used in a Contextual Goal Model. Examples of Contextual

Goal Models are given in figure 2.5.
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Figure 2.5: Sample Contextual Goal Model

Model elements are contained in the default context which is always active ({def}). To

express that for the goal G to be achieved the context C1 must be active the tag {{C1}}

is attached to G in figure 2.5 A. If a goal can be achieved when either one of the assigned

tags are active, multiple sets of tags have to be used, like the set {{C1}, {C2}} assigned

to G in Fig 3.5B. An example of the tag propagation is give in figure 2.5 B where the

tag C1 applied to G is also applied to G1 and G2. Finally, tags are combined when used

in the same subtree, as is the case of figure 2.5 C. Goal G can be achieved when either

C1 or C2 are active while G1 when C3 is active. Due to G1 being part of the subtree of

G, the combined tags are {{C1, C3}, {C2, C3}}.

2.3 Decision Procedures

A decision problem is a question in some formal system with a yes-or-no answer,

depending on the values of some input parameters and a decision procedure is an

algorithm that, given a decision problem, terminates with a correct yes-or-no answer[16].

In the context of this thesis, the planning part of our autonomic system is modeled as

a decision procedure. A decision procedure in our system would answer to the question

’Given the current state of the system, a set of policies that apply to the latter and a

set of possible repair actions, is there a possible combination of actions that could be

executed in order to remediate the monitored issue?’. For our purposes, we will look into

the Boolean Satisfiability decision problem (SAT) and some of its extensions such

Satisfiability Modulo Theories (SMT), and Weighted MAX-SAT. Before doing

so, we introduce basic knowledge on the propositional logic formal system.

2.3.1 Propositional Logic

Logic was initially studied by the ancient Greeks in order to analyze the laws of reasoning

and was considered to be part of philosophy. The 1800’s was the period when modern

mathematical logic was born and created many questions to mathematicians, who had

to create what later would become computer science.



Chapter 2. Related Work 17

Propositional logic is a simple yet powerful fragment of logic[17] where expressions can

only have two values, namely F and T. The language of propositional logic consists of:

1. The constant expressions true and false which always evaluate to T and F

2. A set of primitive symbols (usually p, q and r) referred to as atoms, propositional

letters or variables that range over the values of T and F

3. A set of operator symbols interpreted as logical operators or logical connectives

We proceed by visiting some logical connectives.

• Negation ¬ is a unary operator and we say that ¬p is the negation of atom p and

is thought of as its denial. When p is true, ¬p is false; and when p is false, ¬p is

true. ¬¬p always has the same truth-value like p.

• Conjuction ∧ is a binary connective between propositions p and q, is denoted by

p∧ q and expresses that each of the propositions is true. For any two propositions

its meaning is given by the truth table 2.2.

• Disjunction ∨ is also a binary connective between two proposition p and q, is

denoted by p ∨ q and expresses that either p or q are true. It must be noted that

while in spoken language or often means p or q but not both, in propositional logic

or always means at least one. This difference becomes obvious in table 2.2.

• Implication ⇒, also called material or logical implication, is denoted by p ⇒ q

where p is the antecedent and q the consequent, and expresses that q is true when

p is true. Implication is usually confused with causation, however implication only

relates two propositions by their truth-values and does not express a cause and

effect relation. To better understand this difference, it is useful to remember that

p ⇒ q is equivalent to ¬ p ∨ q.

• Equivalence ⇔ is denoted by p ⇔ q and expresses that p and q have the same

value.

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q
F F T F F T T

F T T F T T F

T F F F T F F

T T F T T T T

Table 2.2: Truth table of logical connectives
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Truth tables can be used not only to define the connectives, but also to test for valid

sentences. Given a propositional formula, by constructing a truth table for the formula

and looking at the column of values obtained we can characterize it as:

• satisfiable if there is at least one T

• unsatisfiable if it is not satisfiable, i.e., all entries are F

• falsifiable if there is at least one F

• valid if it is not falsifiable, i.e., all entries are T

Finally, a formula is in Conjunctive Normal Form (CNF) or clausal normal form

if it is a conjunction of clauses. A clause is a disjunction of literals, for example a

3-clause is a disjunction of exactly 3 literals (e.g. p ∨ q ∨ ¬r). A literal is a proposition

symbol or its negation (e.g. p or ¬ p). For example (a ∨ b) ∧ (¬b ∨ c ∨ ¬d) ∧ (d ∨ ¬e) is

a CNF formula with three clauses and three literals. As a normal form, it is utilised in

automated theorem proving and it serves as the input format of modern SAT solvers.

2.3.2 Boolean Satisfiability and Extensions

A natural question that arises is whether we can check the satisfiability of a proposi-

tional formula. A simple algorithm would be to construct the formula’s truth table and

afterwards easily decide satisfiability and validity. However the computation time of this

approach is exponential to the number of proposition symbols and therefore impractical.

Satisfiability or SAT is the decision problem of determining if there exists an inter-

pretation that satisfies a given propositional formula. Differently put, it checks if there

is an assignment over the variables of the formula that evaluates to T . If no such as-

signment exist, the formula is identically F and is called unsatisfiable, and satisfiable if

such an assignment exists. Cook showed that SAT is NP-complete [18] - the first known

example of an NP-complete problem - meaning that there is no known algorithm that

efficiently solves all instances of SAT.

The variety of problems appearing in applications such as model checking, automated

planning and scheduling, and diagnosis in artificial intelligence that can be transformed

into instances of the SAT decision problem, make it a hot research topic. A class of

algorithms called SAT solvers that can efficiently solve a large enough subset of SAT

instances, is extremely useful in such applications.

The DPLL algorithm[19] is a complete, backtracking based search algorithm for deciding

the satisfiability of propositional formulas and serves as the basis of the most efficient
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SAT solvers. The algorithm chooses a literal, assigns a truth value to it, simplifies the

formula and then recursively checks if the simplified formula is satisfiable. If it is not,

the same recursive check is executed, assuming the opposite truth value for the literal.

The efficiency of the algorithm greatly depends on the choice of the literal which is

considered in the backtracking step, known as the branching literal. Consequently the

DPLL algorithm includes a family of algorithms, one for each strategy used for the

choice of the branching literal. These strategies are known as branching heuristics, and

are a field of active research. Implementations of the DPLL algorithm include Chaff[20],

zChaff[21] and MiniSat [22], while in the context of this thesis we utilize SAT4J[23],

which is based on MiniSat.

The DPLL algorithm has also been applied to Satisfiability Modulo Theories (SMT)

which generalizes Boolean Satisfiability (SAT) by adding equality reasoning, arith-

metic, fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories[24].

Formally speaking, an SMT instance is a formula in first-order logic, where some func-

tion and predicate symbols have additional interpretations, and SMT is the problem of

determining whether such a formula is satisfiable. Differently put, one can view SMT as

an instance of SAT where some of the binary variables are replaced by predicates over

a suitable set of non-binary variables.

Initial implementations of SMT solvers would translate the SMT problem to a boolean

SAT instance and then pass it to a Boolean SAT solver. The main advantage of this eager

approach is that by transforming to an equivalent Boolean SAT formula one can leverage

the performance of already existing SAT Solvers. However this approach ignores the

more expressive, high-level semantics of the underlying theory, and forces the SAT Solver

to try hard in order to discover obvious facts. The lazy approach intends to integrate the

DPLL sat solving algorithm with theory-specific solvers. For this integration to work,

the theory solver must be able to infer new facts from already established ones, and

must be able to identify conflicts on the theory when the latter arise. Essentially, the

theory solver must be incremental and backtrack-able.

The Partial Weighted MaxSat problem is a generalization of the satisfiability problem

and is useful in situations where one seeks the maximum number of constraints that can

be satisfied with a minimal penalty. The main idea is that sometimes not all restrictions

of a problem can be satisfied, so they are divided in two categories: the restrictions or

clauses that must be satisfied (hard), and the ones that may or may not be satisfied

(soft). Soft clauses can have different weights, representing the penalty for falsifying

them and showcase that not all restrictions are equally important. The addition of

weights to clauses makes the instance weighted, and the distinction of hard and soft

clauses makes the instance partial. Given a weighted partial MaxSat instance we want
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to find the assignment that satisfies the hard clauses so that the sum of the weights of

the falsified clauses is minimal.

The weighted partial MaxSat problem is a NP-hard problem, for which state-of-the-art

solvers have not yet experienced the same success as SAT solvers. In our work, we solve

the weighted partial MaxSat problem by utilizing the SAT4J solver which is based on

successive calls to a SAT solver[25]. This type of MaxSat solvers seem to have better

performance for industrial planning problems and have become very competitive for the

industrial categories in the MaxSat evaluation.

2.4 Cloud Computing

2.4.1 Basic Concepts

Cloud computing is a model that enables the on-demand access to a shared pool of

configurable computing resources such as servers, networks, storage, applications and

services which can be provisioned and released with minimal effort[26]. The National

Institute of Standards and Technology (NIST), along with the the former definition has

discerned the following essential characteristics of cloud computing: on-demand self-

service, broad network access, resource pooling, rapid elasticity and measured service.

Furthermore, NIST has divided the services provided by cloud computing into the three

following service models.

Infrastructure as a Service(IAAS): At this layer the consumer is able to pro-

vision computing, storage, network and other fundamental resources which can

include operating systems, hypervisors etc. To deploy their applications, cloud

users install operating-system images and their application software on the cloud

infrastructure.

Platform as a Service(PAAS): At this layer the consumer is able to deploy

to the cloud infrastructure applications that are created using programming, lan-

guages, frameworks, tools, libraries and services which are supported by the cloud

provider. The consumer has no direct access to the underlying infrastructure such

as servers, operating systems etc, but has control over the deployed applications

and can configure some settings of their environment.

Software as a Service(SAAS): At this layer the consumer has only access over

the provider’s applications which are run on the cloud infrastructure. The appli-

cations can be accessed from client interfaces such as a web browser or even from
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programming interfaces. There consumer is unable to manage the infrastructure

and can only in some cases configure some application specific settings.

As described in the NIST cloud definition, cloud infrastructure can be distinguished by

the way it is operated and is divided into four deployment models. A public cloud is

available to the public over a public network and is usually owned by an organization

providing cloud services. A private cloud is infrastructure that is exclusively used by a

single organization and is operated by either the organization itself or a third party. A

community cloud is used by a community of users or organizations with shared concerns

and vision and it can be owned, managed and operated by one or more of the affiliated

organizations, a third party or a combination of them. In the case of the hybrid cloud the

infrastructure is a composition of two or more distinct cloud infrastructures (possibly

following different deployment models) that remain unique entities, but are bound by

technology and mechanisms that allow data and application portability (e.g. cloud

bursting for load balancing between cloud).

2.4.2 Modeling

As promising as the cloud computing model is, it reveals multiple challenges[27] for

enterprises, one of them being decision making about management of the infrastructure.

This is due to the effects of cloud computing on the work of IT departments and other

parts of the organization as well as due to the costs, risks and benefits of running

systems in the cloud. In order to help managers to make migration decisions, new tools,

techniques and models need to be developed.

Developing a system modeling framework that can be used to model relevant attributes

of large-scale IT systems, such as the system’s infrastructure and executing applications,

would provide multiple benefits, like easier calculation of risks and assistance at migra-

tion decisions. These modeling frameworks are relieved from the inherent rigidity of the

infrastructure making actions such as benchmarking the application performance under

variable conditions or reproduction of results that can be relied upon, less painful.

For this work we have looked into two different approaches to modeling cloud infras-

tructure. First we visit CloudML[28], a domain-specific modeling language (DSML)

to model the provisioning and deployment of multi-cloud systems, and CloudSim[7], a

cloud simulator.
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CloudML

CloudML makes use of model-driven engineering (MDE) methods and techniques, in

order to tackle the heterogeneity and incompatibility of the solutions provided by cloud

providers. These MDE methods aim to facilitate the specification of provisioning, de-

ployment, monitoring and adaptation concerns of multi-cloud systems at design-time

and their enactment at run-time.

Specifically CloudML provides:

• a Domain-specific modeling language (DSML) for modeling the provisioning and

deployment of multi-cloud systems at design-time

• a models@run-time[29] environment for enacting the provisioning, deployment, and

adaptation of these systems, as well as monitor their status at run-time. This run-

time environment can be accessed by a reasoning system through a model-based

interface.

CloudML is agnostic to any development paradigm and technology, meaning that the

developers can design and implement the applications based on their preferred paradigms

and technologies. It considers two possible roles in the deployment work-flow: a cloud-

app developer who knows the internals of the systems and can model their requirements,

constraints and dependencies, and a cloud-app vendor who does not know about the

internal of the systems but can specify some requirements, constraints and dependencies

according to some policy (i.e. budget constraints). The cloud-app developer initially

specifies one or more templates of the provisioning and deployment model and afterwards

the cloud-app vendor adjusts and combines these templates into the actual provisioning

and deployment model.

CloudML considers provisioning and deployment models at two levels of abstraction,

namely Cloud Provider-Independent Model (CPIM), and Cloud Provider-Specific Model

(CPSM), as shown in figure 2.6. The CPIM represents a generic provisioning and de-

ployment model that is independent of the cloud provider. The CPIM is transformed

semi-automatically into a CPSM, which represents a specific provisioning and deploy-

ment model that is dependent on the cloud provider. At run-time, the CPSM is causally

connected to the running system; i.e., a change in the CPSM is reflected on-demand in

the running system, whereas a change in the running system is automatically reflected

in the CPSM.

The models@run-time environment of CloudML which facilitates reasoning about dy-

namic adaptation of running systems by providing an abstract representation of the
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Figure 2.6: CloudML Architecture

system causally connected to the running system, make it a cloud modeling tool capable

to incorporate the self-* properties of an autonomic system.

CloudSim

CloudSim is a generalized and extensible simulation framework that allows modeling,

simulation, and experimentation of emerging Cloud computing infrastructures and ap-

plication services[7]. CloudSim enables it’s users to easily test the performance of newly

developed application services in a fully control and easy to set up environment. The two

main advantages of using CloudSim is (i) time effectiveness, as minimal time and effort

is required to implement the cloud-based application provisioning and (ii) flexibility, as

developers can model and test their applications in heterogeneous Cloud environments

(Amazon, EC2, etc) without any deployment effort and cost.

CloudSim offers the following features:

• support for modeling and simulation of large scale Cloud computing environments,

including data centers, on a single physical computing node

• a self-contained platform for modeling Clouds, service brokers, provisioning, and

allocation policies
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• a virtualization engine that aids in creation and management of multiple, inde-

pendent, and co-hosted virtualized services on a data center node

• flexibility to switch between space-shared and time-shared allocation of processing

cores to virtualized services

At figure 2.7 we present the multi-layered architecture of the CloudSim framework. The

CloudSim simulation layer is responsible for the modeling and simulation of virtual-

ized Cloud data-center environments and includes management interfaces for virtual

machines, applications (hereafter Cloudlets) as well as cloud resources such as mem-

ory, storage and bandwidth. Fundamental actions such as resource provisioning and

Cloudlet execution are handled at this layer. This layer also exposes functionalities that

a cloud developer can extend to perform complex workload profiling and application

performance study, by extending the Cloudlet entity.

At the User code simulation layer the characteristics of the cloud resources that are

simulated are provided by the user. For hosts, the user provides the number of machines,

their specification etc., for Cloudlets the number of tasks and their requirements, for

VMs, the number of cores, users, and broker scheduling policies.

Figure 2.7: CloudSim Architecture

For our implementation of an autonomic cloud system, we decided to utilize the CloudSim

framework for (i) its extensible Java based entities that allowed us to modify some of
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their functionality, such as workload requests, Cloudlet configurations and provisioning

techniques and are further discussed in Chapter 5; (ii) the abstraction it provides by

relieving development from using resources from cloud vendors.



Chapter 3

System Architecture

In this chapter we present the reference architecture of the proposed framework for self-

adaptive systems. In parallel we discuss a concrete implementation of this architecture

that we developed in order to add self-adaptation to the CloudSim framework.

3.1 Architecture Overview

The key features that frameworks should provide to a developer are modularity, exten-

sibility, reusability and inversion of control [30]. Since we are devising a framework for

self-adaptive systems, a feedback loop that controls the self-adaptation process is an

additional cornerstone feature that our framework must provide[1]. Additionally, in our

approach we consider that our self-adaptive system interacts with the controlled system

in a Master/Slave pattern[6]. The latter introduces a hierarchical relationship be-

tween one master (the self-adaptive system constructed with our proposed framework)

that is the sole responsible for the analysis and planning part, and one or more slaves(the

CloudSim framework) who along with the master are responsible for the monitoring and

execution phase of the feedback loop. This hierarchical relationship imposes that our

framework is designed in a way that enforces the seamless attachment of an existing

system to the framework.

Our architecture is built on top of IBM’s architecture for autonomic elements and im-

plements the MAPE-K loop shown in figure 2.1. Furthermore, the architecture of our

framework follows the Blackboard architectural pattern[8]. The driving idea of this ar-

chitectural pattern is that a collection of experts collaborate on shared information in

order to provide a solution to a problem which in general has no closed approach.

26
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We proceed by grouping the core modules of our framework according to their role in

the MAPE-K loop. The high level architecture of our framework when applied on top

of the CloudSim framework is shown in figure 3.1.

Figure 3.1: High Level Architecture

3.1.1 Knowledge

Following IBM’s architectural guideline for autonomic elements, knowledge components

implement repositories that provide access to knowledge regarding the self-adaptive and

the controlled system to the other components of the architecture, through well defined

interfaces. The following modules are associated with the concept of knowledge in our

framework:

Blackboard: This module serves as the main storage unit of our framework. Along

with the Controller module it orchestrates the adaptation loop by receiving events and

data generated by the experts and by providing access to this information to other

modules/experts who require them.

Controller: This module directs the execution of the adaptation loop. It monitors the

blackboard module and notifies accordingly the experts about the former’s state and

contained data. It is then up to the experts to decide whether they can extend the

knowledge contained in the blackboard by executing its functionality and publishing its

results.

ContextService: This module provides the framework with information relevant to the

controlled system that are able to influence the decision making process of the adaptation

loop. Such information can include policies, parameters or runtime constraints of the

controlled system. In the case of CloudSim, contextual constraints can be allocation
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policies (i.e. allocate a specific type of resource) and costs/benefits (i.e. the benefit of

migrating a virtual machine to a host that consumes less power or the cost of providing

worse quality of services to a customer than the agreed service level agreements).

3.1.2 Monitor

The following module is associated with the monitor function of the MAPE-K loop:

LogCollector: This module is responsible for the accumulation of logging data gener-

ated by the controlled system, and thus, strongly interacts with the controlled system’s

probes. The LogCollector module processes the log data and structures them in entities

of the type LogEvents. LogEvents are then sent to the blackboard module where they

are stored and are available for utilization by other experts during the adaptation loop.

LogCollector is considered an expert not only due to the fact that it provides informa-

tion that serve as intermediate results to the problem of self-adaptation but also because

it can exploit the current state of the blackboard (i.e. when the Blackboard contains

identical LogEvents with little to no semantic difference) to provide different solutions

to the subproblem it is responsible for (i.e filtered data).

3.1.3 Analyze

The diagnosis and modeling functionality of the analyze function is distributed between

the following modules:

AlertService: This module includes the components required for the diagnosis and

identification of non-desired states that the controlled system has reached and for the

upraisal of Alerts that model these problematic states. The AlertService expert is no-

tified by the Controller module when LogEvents are stored in the Blackboard and uses

them as input for its alert generation process. This process can be simple such as setting

thresholds for specific metrics of the controlled system and raising Alerts whenever they

are surpassed or complex, like identifying patters of LogEvents that evident some ab-

normal behavior. Once an alert is generated by the AlertService, it is the stored in the

blackboard, as intermediate data that the GoalModelService will utilize in the future.

GoalModelService: This module is responsible for all operations related to Goal Mod-

els in our self-adaptation framework. Such operations involve storing and retrieving the

Goal Model, modifying it according to contextual constraints that apply during execu-

tion time and creating a Hypothesis that our system needs to prove. The GoalMod-

elService expert acts upon being notified about alerts that have been issued by the
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AlertService module and then delivers the Hypotheses that it generates to the Black-

board, as partial knowledge towards finding a plan that will change the system’s state

and remediate the initially monitored issue. Finally, changes that occur in the context

of the self-adaptive system and which are introduced by the ContextService need to be

reflected as changes to the Goal Models by the GoalModelService.

3.1.4 Plan

The plan function of the MAPE-K loop that structures actions into plans in order to

meet goals and objectives, is implemented by the following modules:

SolverService: This module encapsulates the formal reasoning of the self-adaptive

framework and contains all the different classes of algorithms that can provide solutions

over its formal system. Propositional and first order logic are examples of formal systems

that a self-adaptive system could employ, while SAT and SMT solvers can provide the

framework with solutions of their respective formulas. The SolverService expert operates

on top of Hypotheses that are pushed in the Blackboard and after proving that the

Hypotheses can be satisfied, it publishes its results back to the Blackboard. Results

come as models that satisfy the formula provided by the Hypothesis and represent the

set of actions that need to be executed on the controlled system.

PlanService: This module incorporates the functionality related with the compilation

of actions included in the solved Models into executable plans. The PlanService expert

operates with the solved Models as input and is responsible for evaluating the feasibility

of the proposed models, ranking their effectiveness, combining them into more complex

execution plans and finally, based on its results, deciding if they should be applied to the

controlled system. The final verdict of the PlanService is published to the Blackboard.

3.1.5 Execute

Finally, the module that changes the behavior of the controlled system is:

ExecutionService: This module closely interacts with the controlled system in order

to enact the plan proposed by the self-adaptive framework. The Plan proposed by the

PlanService is stored as a set of Actions in the Blackboard component, and encapsulates

tasks that the controlled system should execute in order to change its state.
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3.2 Architecture Description

In this section we present the component diagram of the self-adaptive framework and

describe the functionality of each component in greater detail. In figure 3.2 we depict

the component diagram of the proposed architecture containing the core components,

their subcomponents, their interfaces and the way in which they interact. We proceed

by providing more information for each component as well as sequence diagrams of their

internal functionality when needed.

Figure 3.2: Architecture Component Diagram

3.2.1 Blackboard Component

This component is responsible for storing and providing to the other components infor-

mation that contribute towards composing a final reconfiguration plan for the controlled

system. The Blackboard component stores the following types of partial solutions to the

problem of self-adaptation: LogEvenet, Alert, Goal, Hypothesis, Model, Plan. During

the self-adaptation process, this component must be able to provide a holistic view to

the other components of the system of the currently available knowledge by projecting

its state and its content.

Blackboard exposes the following interfaces:
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- pushData: Store information of the types previously mentioned

- getData: Retrieve information of a specific type

- queryState: Provide information related to the data currently stored in Black-

board

3.2.2 Controller Component

This component orchestrates the execution of all the other components of the self-

adaptive framework by consulting the data present on the blackboard. By monitoring

the latter’s state, it determines which component must execute its functionality next, so

that the system can get closer to a final self-adaptation plan.

The controller component implements the Observer design pattern. During the initial-

ization of the self-adaptive framework, the experts of the framework subscribe to the

controller declaring the types of partial solutions that they require in order to execute

their functionality. Once the controller monitors that a state of the the Blackboard is

such that will allow the proper execution of an expert, it sends a notification to this

component so it can begin its execution.

Controller exposes the following interfaces:

- subscribe: Store an expert that should be notified once data of its interest become

available on the Blackboard.

3.2.3 LogCollector Component

This component encapsulates all functionality related with populating the Blackboard

with logging events that have been issued from the controlled system. It runs in a

separate process from the other components in order to keep pushing log data to the

Blackboard, even if an adaptation loop has started.

The controlled system pushes its log data (CSLogEvents) to the LogCollector compo-

nent, where they are temporarily stored. The LogNormalizer subcomponent runs an

event loop and consumes all the CSLogEvents that are currently stored to the LogCol-

lector component. The consumed events are then sent to the EventModeler subcom-

ponent which transforms the raw log events of the controlled system, into LogEvents

which contain information required for the self-adaptation process and which are under-

stood by the other experts of the system. EventModeler is also responsible for filtering

out events that are of no interest to the self-adaptive framework, duplicates, or events
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containing incomplete information. Finally, the created LogEvents are pushed to the

Blackboard for other experts to utilize.

LogCollector exposes the following interfaces:

- pushCSLogEvent: This interface is used by the controlled system in order to

publish its raw logging data to the self-adaptive framework.

- getCSLogEvents: This interface is exposed only to LogCollector’s subcompo-

nents, and it provides all the LogEvents that are now stored in LogCollector.

- modelEvent: This interface processes the unstructured data present in CSLo-

gEvent and return objects of the type LogEvent that the self-adaptive framework

can reason on.

The sequence diagram of figure 3.3 presents the process of collecting logging data from

the controlled system and updating the contents of the Blackboard component, and is

explained below:

loop: LogCollector always runs in a loop.

1. pushCSLogEvent: The controlled system sends an asynchronous message containing

log data. The data are temporarily stored in LogCollector.

2. checkEvents: LogCollector checks the existence of new log data sent from the

controlled system.

opt: The following steps are executed if LogCollector detects new log data from

the controlled system.

3. modelEvents: EventModeler processes the raw log data and models them into

entities of LogEvent type.

3.1 LogEvents: The modeled data are returned back to LogCollector.

4. pushData: LogCollector updates the contents of Blackboard by adding the newly

generated LogEvents.

3.2.4 AlertService Component

This component plays the role of the expert responsible for diagnosing execution time

issues and raising Alerts that the self-adaptive system needs to address. AlertService
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Figure 3.3: LogCollector Sequence Diagram

requests LogEvents from the Blackboard component and then provides them to the

AlertClassifier subcomponent. The latter includes all the required functionality in

order to decide whether one or more LogEvents imply that the system has reached an

undesirable state and thus an Alert needs to be raised.

AlertService and AlertClassifier implement the Strategy design pattern. Developers can

easily alternate the diagnosis part by implementing the AlertClassifier interface and

creating their own classifiers which may involve more appropriate diagnosis functions

for the domain that the self-adaptive system is applied to. AlertService can also choose

different classification strategies during runtime as a result of changing policies of the

self-adaptive system.

AlertService exposes the following interfaces:

- notify: This interface is implemented by the Controller component in order to

inform the AlertService component that Blackboard includes LogEvents that could

potentially cause the upraisal of an Alert.

- classify: This interface is used internally in the AlertService component to invoke

the alert generation process included in the AlertClassifier subcomponent.

The process of raising Alerts is shown in the sequence diagram of figure 3.4 and is

explained below:
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1. notify: AlertService is notified by the Controller component that LogEvents have

become available to the self-adaptive system.

1.1 getData: AlertService requests from Blackboard the LogEvents.

1.2 pushData: LogEvents are sent to AlertService.

1.3 classify: AlertClassifier receives the LogEvents to be classified as possible Alerts.

opt: The following steps are executed if AlertClassifier judges that the monitored

events impose a threat to the controlled system and thus an Alert needs to be

raised.

1.4 Alert: The generated Alert is sent back to AlertService.

1.5 pushData: AlertService publishes the raised Alert to the Blackboard.

Figure 3.4: AlertService Sequence Diagram

3.2.5 GoalModelService Component

This component is responsible for managing all functionality related to Goal Models.

Goal Models play a key role in the self-adaptive system by modeling solutions to runtime

issues of the controlled system as AND/OR trees and revealing how satisfying a goal can

affect another objective of the system. Goal Models are also able to express environment

variability by containing contextual constraints that alternate the structure of the Goal

Model.
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TheGoalModelRepo subcomponent acts as the storage unit of the defined Goal Model

that regulate the adaptation actions of the self-adaptive system. Once an administrator

has defined a GoalModel by using the UI component, it stores it in the GoalModelRepo

component for the self-adaptive system to use. During the initialization of the system,

the self-adaptive system loads the stored Goal Model and makes it available to the

GoalModelService. It also stores views of the Goal Model due to applying contextual

constraint by the GoalModelSimplifier and makes them available to experts who need

them.

The GoalModelSimplifier subcomponent applies the contextual constraints that the

Blackboard contains to the Goal Model in order to extract a simplified view of the latter.

This process is executed every time that a new session of the self-adaptive framework is

initiated in order to avoid executing the extraction process (which is run on the whole

Goal Model) every time that the adaptation loop is executed.

The GoalModelSelector subcomponent is responsible for associating the Alerts gener-

ated from AlertService with parts of the defined Goal Model that represent how to deal

with the issues that the Alerts represent. Essentially this component defines in which

way the controlled system’s state should be alternated in order to reach a desirable state.

The GoalModelSelector runs when an Alert is published to the Blackboard, and after

selecting the appropriate Goals that need to be satisfied for the self-adaptation to be

successful, it sends them to the Blackboard so that another expert can reason on them.

As the selection process is of paramount importance and highly depends on the nature

of the controlled system, it implements the Strategy design pattern so that it can be

easily adjusted to user’s needs.

The GoalModelInstantiator subcomponent serves the purpose of creating a Hypoth-

esis from the selected Goal Nodes. A Hypothesis contains all the nodes of the Goal

Model that need to be satisfied so that a re-mediation plan can be devised. The hy-

pothesis generation algorithm is described in detail in Chapter 4. Once the Hypothesis

is generated it is then published to the Blackboard.

GoalModelService exposes the following interfaces:

- notify: Equivalent to the AlertService, this interface is implemented by the Con-

troller component in order to notify the GoalModelService that data that can

trigger its encapsulated functionality has become available to the Blackboard.

- simplify: This interface is exposed by the GoalModelSimplifier component and is

implemented internally by AlertService during the system’s initialization. Alert-

Service is notified that there are Constraints present in the Blackboard from which
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a view of the Goal Model can be extracted and then invokes simplify for Alert-

Simplifier to t

- select: This interface is used internally by the GoalModelService component to

initiate the Goal selection process which is encapsulated in the GoalModelSelector

component.

- hypothesize: This interface is used internally by the GoalModelService compo-

nent to invoke the Hypothesis generation algorithm implemented in the GoalMod-

elInstantiator component.

Figure 3.5 shows the sequence diagram of Goal selection and Hypothesis generation by

the GoalModelService and is explained below.

1. notify: The controller notifies GoalModelService that an Alert has been issued.

1.1 getData: GoalModelService requests the Alert from Blackboard.

1.2 Alert: The Alert is returned to the GoalModelService.

1.3 select: GoalModelSelector begins the selection process.

1.3.1 getView: GoalModelSelector request the Goal Model view from the GoalModel-

Repo component.

1.3.2 ContextualGoalModel: GoalModelRepo replies with the view of the Goal Model.

1.3.3 select: GoalModelSelector executes the Goal selection functionality.

1.3.4 Goals: The selected Goals are sent to the GoalModelService.

1.4 pushData: GoalModelService publishes the selected Goals to the Blackboard

2. notify: The controller notifies GoalModelService that Goals are available for it to

hypothesize on.

2.1 getData: GoalModelService request the Goals from Blackboard.

2.2 Goals: The Goals are returned to the GoalModelService.

2.3 hypothesize: GoalModelInstantiator is invokes to generate a Hypothesis using the

previously obtained Goals.

2.3.1 instantiate: GoalModelInstantiator runs the instantiation algorithm in order to

generate a proper Hypothesis.
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2.3.2 Hypothesis: GoalModelService receives the Hypothesis from GoalModelInstantia-

tor.

2.4 pushData: GoalModelService pushed the Hypothesis to the Blackboard.

Figure 3.5: GoalModelService Sequence Diagram

3.2.6 SolverService Component

This component is responsible for the validation of the Hypothesis proposed by the

GoalModelService. It does so my employing solvers who are able to reason on the

Hypothesis stored in the Blackboard.

The Solver subcomponent receives the Hypothesis present in the Blackboard and then

creates a formula from the Hypothesis. The formula generation process is further ex-

plained in Chapter 4. Next, it employs an algorithm to provide a solution for the

constructed formula or decide about its unsatisfiability. The Solver subcomponent im-

plements the strategy design pattern so that different solving algorithms can be attached

to the framework according to the user’s needs.

SolverService exposes the following interfaces:
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- notify: This interface is implemented by the Controller component in order to

inform the SolverService component that another expert has provided a Hypothesis

that needs to be checked.

- solve: This interface is used internally in the SolverService subcomponent and

is mandatory for all solvers to implement. SolverService invokes it in order to

retrieve a model from the Hypothesis, if the latter is satisfiable.

Figure 3.6 depicts the sequence diagram related to the extraction of satisfying models

out of a Hypothesis.

1. notify: The controller notifies SolverService that a Hypothesis is available to be

check for satisfiability.

1.1 getData: SolverService requests the Hypothesis from Blackboard.

1.2 Hypothesis: The Hypothesis is sent to SolverService.

1.3 solve: Solver begins to reason on the Hypothesis.

1.3.1 generateFormula: Solver creates a formula from the provided Hypothesis.

opt: The following steps are only executed if the formula is proven to be satisfiable

by the Solver.

1.3.2 getModel: The Solver is asked to provide the model that satisfies the formula.

1.3.4 Model: The provided model is sent back to the SolverService.

1.4 pushData: SolverService publishes the model that satisfies the Hypothesis to the

Blackboard.

3.2.7 PlanService Component

This component is responsible for compiling the Model that satisfies the Hypothesis into

a reconfiguration plan. Afterwards, the self-adaptive system needs to actuate the plan’s

Actions on the controlled system in order to change its state. PlanService interact

with the Blackboard to provide to its subcomponent the Model on which the Plan is

based as well as runtime parameters that are required for evaluating the Plan prior to

its execution.

The PlanComposer subcomponent fulfills the objective of transforming a Model into

a Plan. It does so, by iterating over the Model’s Tasks and selecting the Actions from
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Figure 3.6: SolverService Sequence Diagram

the ActionRepository component that corresponds to each Task. Actions are the

building blocks of an execution Plan and are bijective to Tasks. Tasks are part of the

Goal Model and are discussed in Chapter 4.

The PlanAssessor subcomponent contributes to the process of creating an execution

Plan only when more than one Models have been provided to the PlanService. This

scenario arises when the Solver utilized is capable of providing more than one Models

that can satisfy the Hypothesis. PlanAssessor is a subcomponent whose functionality

must be defined by the user and thus it implements the Strategy design pattern.

The PlanEvaluator subcomponent returns the final verdict regarding whether each

Action of the composed Plan should be executed or not, according the current state

of the controlled system. In order to reach such a decision, PlanEvaluator queries the

Blackboard in order to observe current parameters of the running system, which are

included in the LogEvents entities. PlanEvaluator finally produces a Plan containing

only the Actions that should be executed. For the same reasons with PlanAssessor,

PlanEvaluator implements the strategy design pattern.

PlanService exposes the following interfaces:

- notify: This interface is implemented by the Controller component in order to

notify the PlanService that SolverService has provided models that satisfy the

proposed Hypothesis.
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- compose: This interface is exposed by the PlanComposer subcomponent and is

implemented internally by PlanService. It includes the required functionality for

the compilation of a Model into an executable plan.

- assess: This interface is used by the PlanService component when more than one

Plans have been created by the PlanComposer subcomponent. It returns ranked

Plans according to the assessing criterion of the PlanAssessor component.

- evaluate: This interface is implemented by the PlanService for it to decide

whether the Actions that constitute the composed Plan are still appropriate for

execution under the current state of the controlled system.

Figure 3.7 depicts the sequence diagram related to the compilation of a Model into a

final execution Plan.

1 notify: The controller notifies PlanService that a Model is ready to be processed

and compiled into an execution Plan.

1.1 getData: PlanService requests the Model from Blackboard.

1.2 Model: The Model is sent to PlanService.

1.3 compose: PlanComposer initiates the Plan compilation process.

loop: Steps 1.3.1, 1.3.2, 1.3.3 are executed for each Task in the Model.

1.3.1 getAction: PlanComposer requests from ActionRepo the Action corresponding to

the current Task.

1.3.2 Action: The Action is sent back to PlanComposer.

1.3.3 addActionToPlan: The Action is added to the Plan.

1.3.4 Plan: The Plan is returned to the PlanService.

opt: Steps 1.4, 1.5 are executed only if more than one Plans have been composed,

due to the existence of more than one satisfying Models.

1.4 assess: PlanAssesor executes its ranking algorithm asses all proposed Plans.

1.5 AssessedPlan: The AssessedPlan is returned to the PlanService.

1.6 evaluate: PlanEvaluator begins to evaluate the feasibility of the proposed Plan.

1.6.1 queryState: PlanEvaluator requests runtime parameters of the controlled system

that are stored into Blackboard.
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1.6.2 RuntimeInformation: The RuntimeInformation are sent back to PlanEvaluator.

loop: The following step is executed for each Action of the composed Plan.

1.6.3 isFeasible: The Actions feasibility is evaluated according to the Runtime informa-

tion. If the verdict is feasible the Action is included in the final execution Plan.

1.6.4 Plan: The final execution Plan is returned to PlanService.

1.7 pushData: The final execution Plan is pushed to the Blackboard.

Figure 3.7: PlanService Sequence Diagram

3.2.8 ExecutionService Component

This component is run last in the adaptation loop and acts as an effector to the controlled

system. Once notified by the controller for the existence of an execution Plan, it receives

it from the Blackboard and proceeds by executing one-by-one the Actions it contains.
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3.2.9 ActionRepository Component

This component serves as the storage unit of Actions. In our self-adaptive framework,

Actions play the role of touchpoints. Actions include low-level functionality of the con-

trolled system and must be implemented by the developer.

3.2.10 UI Component

This component enables the users to define their solutions to possible runtime issues of

the controlled system as Goal Models. The user can create multiple Goal Trees through

a graphical user interface, link goals with contributions, declare costs or benefits of each

goal and add contextual constraints to their solution. Once the Goal Model is created, it

is then stored in the GoalModelRepo subcomponent and is utilized by the self-adaptive

framework during its Analyze phase.

3.2.11 ContextService Component

This component is responsible for introducing Constraints relevant to the controlled

system’s environment to the self-adaptive system. These Constraints are used by the

GoalModelSimplifier subcomponent in order to create a view of the Goal Model that the

users of the self-adaptive system have defined. This ContextualGoalModel represents

how the environment of the controlled system (i.e. the policies applied to it) influence

the decision making process modeled in the Goal Model.

The ContextModeler subcomponent interacts with the controlled system in order to

receive information relevant to its environment and policies. Once the information is

retrieved, ContextModeler is responsible for modeling them into Constraints so that

the GoalModelSimplifier subcomponent can extract a view of the user-defined Goal

Model that conforms to the applying Constraints.

3.3 Component Interaction and Functionality of the Frame-

work

Having seen in detail the functionality of each component of the self-adaptive system

we now present the main execution of the self-adaptive loop by showing the interaction

between its basic components. Figure 3.8 depicts the sequence diagram of the self-

adaptive control loop explaining the order in which the multiple experts of the system
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contribute towards devising and executing a Plan that will change the controlled system’s

state.

1 UpdateContext: At the beginning of the adaptation session, the controller requires

that the ContextService inserts any contextual Constraints of the controlled system

to the Blackboard.

1.1 pushData(Constraints): ContextService published the modeled Constraints to the

Blackboard.

2 adapt: Controller enters the self-adaptation loop

loop: The following steps are executed as long as the controlled system is running.

3 queryState: Controller queries the Blackboard to check for new LogEvents that

the LogCollector might have provided.

4 notify-classify: Controller informs the AlertService that it can execute its classifi-

cation process with LogEvents available from the Blackboard.

4.1 pushData(Alert): AlertService publishes the diagnosed Alert to the Blackboard.

5 notify-select: Controller informs the GoalModelService that it can execute its Goal

selection strategy.

5.1 pushData(Goals): GoalModelService returns the selected Goals that should be sat-

isfied for the system to remediate the monitored Alert.

6 notify-hypothesize: Controller informs the GoalModelService that it can execute

its hypothesis generation algorithm based on the previously selected Goals.

6.1 pushData(Hypothesis): GoalModelService pushes the generated Hypothesis to the

Blackboard.

7 notify-solve: Controller informs the SolverService that a Hypothesis has been issued

and it can be checked for satisfiability.

7.1 pushData(Model): ModelService returns the satisfying instance of the Model if the

Hypothesis can hold, otherwise it returns unsatisfiable.

opt: The following steps are executed only if the Hypothesis is proven to be satis-

fiable and a Model for it is provided.

8 notify-compose: Controller informs the PlanService that one or more Models that

satisfy the Hypothesis are present in the Blackboard.
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8.1 pushData(Plan): PlanService returns the final execution Plan containing only the

Action that the controlled system needs to execute in order to remediate the

diagnosed abnormality.

9 execute: Controller notifies the ExecutionService that a Plan has become available

to execute on the controlled system.

Figure 3.8: Self-adaptive Framework Sequence Diagram
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Domain Models

In this chapter we discuss the Domain Models of our prototype implementation. We

begin by providing the Domain Model of the Task Resolution Model specification, and

then we visit the Domain Model of the core entities of the self-adaptive system. Finally

we present the Domain Model of the extensions we applied to the CloudSim framework.

4.1 Task Resolution Model Specification

Task Resolution Models, which are formally defined in chapter 5, constitute the basis

of our self-adaptive system as they are responsible for modeling the actions that the IT

experts, system administrators and managers wish to be triggered by the self-adaptive

system and executed by the controller system, so that the monitored problems of the

latter can be re-mediated.

By utilizing our proposed models, IT professionals can describe solutions to specific

Alerts in the form of Goal Trees. As explained in section 2.2, Goal Trees are graphs

of goals which can be AND/OR decomposed to other goals expressing that in order to

achieve a goal one should also achieve the goals it is decomposed to. Through these

decompositions, goals are eventually broken down to concrete, atomic, self-contained

tasks that the controlled system needs to execute.

Our Task Resolution Model specification differentiates from the traditional Goal Models

by i) allowing multiple Goal Trees as part of the Goal Model; ii) associating each Goal

and Task with a cost/benefit value; iii) including contextual elements which according

to the controlled system’s execution environment, can omit some parts of the model for

this session.

45
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The tight relation between users and Task Resolution Models as well as their pivotal role

in the self adaptive framework, constitute them as a part of the framework that needs

to be robust, easily extensible and well understood by its users. In order to achieve

this, their Domain Model follows the MOF specification[31] and is implemented using

the Eclipse Modeling Framework[32].

Figure 4.1 depicts the Task Resolution Model Domain Model in the ecore meta-modeling

language provided by EMF. We proceed by describing the classes and interfaces of the

proposed Domain Model.

Figure 4.1: Task Resolution Model Domain Model

4.1.1 Class ContextualGoalModel

This class serves as the container of the proposed model. It has the single attribute name

of type String. It is related to the Contribution class through the containsContribu-

tions composition relation with a 0 ... * multiplicity. It has the composition relation

containsContext of multiplicity 1 with the class Context and the composition relation

containsTree with the class GoalTree of multiplicity 1 ... *. These containment rela-

tions show the three basic elements that our Goal Model is composed by.
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4.1.2 Class GoalTree

This Class represents each Goal Tree that is included in the Task Resolution Model.

Goal Trees model a solution modeled by an IT expert as an AND/OR tree. The class

has the attribute descr of type String that describes the solution that this Goal Tree

aims to provide. It is related to the class ContextualGoalModel as described above, and

with the class Goal through the hasRootGoal composition relation of multiplicity 1.

4.1.3 Interface Node

This interface defines the behavior and the attributes that each node of the Task Reso-

lution Model graph must include. The attribute name of type String declares the name

of the Node while the attribute cost of type int showcases the cost associated with

the satisfaction and achievement of this Node. All the classes that implement the Node

interface must include the operation getDecomposition of type Decomposition which

returns the Decomposition Class containing all the nodes in which the father node is de-

composed to. Finally, the Node interface implements the ContextualElement interface,

meaning that if certain rules apply, a Node might not be visible in the Task Resolution

Model.

4.1.4 Class Goal

This Class implements the Node interface and thus contains all its attributes and defined

operations. It represents the concept of a goal that the self-adaptive system wishes to

achieve and is the building block of our model. Goals are high-level descriptions of

solutions to specific issues related with the controlled system, and when connected via

decompositions or contributions, constitute a strategy that the controlled system must

follow in order to reach the desirable state. A Goal can be decomposed either to one or

more Goals or to one or more Tasks. The goals in which the original Goal is decomposed

to, aim to refine the way in which the goal represented by their ancestor can be eventually

met. Finally the Goal Class has a hasDecomposition association of multiplicity 1 with

the Decomposition Interface (which is explained in a next section) making it mandatory

that a Node of type Goal is decomposed to other Nodes.

4.1.5 Class Task

This Class also implements the Node interface, containing all its attributes and opera-

tions and it represents a task that the self-adaptive system proposes to the controlled
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system for execution. Consequently, this task is associated with a respective Action

from the side of the control system and is described in terms of the latter. The Task

class requires the extra parameter id of type int playing the role of a unique identifier,

needed for the selection of the respective Action that the controlled system must exe-

cute. Contrary to the Goal class, this class is not associated with the Decomposition

interface, meaning that a Task element can be no longer decomposed to other, simple

Nodes of the Task Resolution Model. This modeling decision along with the fact that

each Goal Tree has a unique root goal, guarantee that our model does not contain loops

of decompositions.

4.1.6 Interface Decomposition

This interface declares the attributes and operations that a Decomposition of the Task

Resolution Model must include. The attribute DecType of type DecompositionType

(which is explained in a next section) declares whether the class represents an AND

or an OR decomposition. The operation getNode of type List returns all the objects

that implement the Node interface and are included in the decomposition. Finally,

it implements the ContextualElement interface so that an object that implement the

Decomposition interface can be omitted from the model if some conditions are satisfied.

4.1.7 Class GoalDec

This class implements the Decomposition interface and thus it must have a Dectype

attribute as well as a getNodes method. It is compositionally related with the Goal

class through the decToTask relation which has a 2 ... * multiplicity. In this way, this

container class makes clear that a Goal Node can be AND/OR to at least two subgoals.

4.1.8 Class TaskDec

This class also implements the Decomposition interface and thus it must have a Dectype

attribute as well as a getNodes method. Similarly to GoalDec, it is compositionally

related with the Task class through the decToTask relation which has a 1 ... * multi-

plicity. Conceptually, this class reassures that a Goal that has a Decomposition of the

instance TaskDec can be decomposed to one or more Tasks.
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4.1.9 Class DecompositionType

This class defines the two different Decomposition types between Nodes as an enumer-

ation. The enumeration contains the values AND and OR.

4.1.10 Class Contribution

This class represents the Contribution entity of the Task Resolution Model. Contribu-

tions model the potential side-effect of satisfaction or denial of a Node of the model. It

contains the conType attribute of type ContributionType, which is analyzed later, and

has two associations with the Node interface. The from and to associations refer to the

source and the target Node of the contribution respectively, as explained in section 2.2.

4.1.11 Class ContributionType

This class defines the different Contribution types between two Nodes of the proposed

model as an enumeration. The values contained are i) PPS representing the ++S con-

tribution; ii) PPD representing the ++D contribution; iii) MMS representing the --S

contribution; iv) MMD representing the --D contribution.

4.1.12 Class Context

This class serves as the container of Constraints that arise from the controlled system’s

execution environment. It includes the attribute descr of type String which serves as a

description of what can be contained in the Context Class. It is compositionally related

to the Constraint class (which is explained next) through the hasConstraints relation of

multiplicity 0 ... *.

4.1.13 Class Constraint

This class plays the role of Constraints as explained in section 2.2. It contains the

attribute name of type String indicating the name of the Constraint and the attribute

isActive of type Boolean, which indicates whether this Constraint is active through

an execution session of the controlled system.
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4.1.14 Interface ContextualElement

This interface aims to identify these elements of the Task Resolution Model on which

Contextual Constraints can potentially apply. Thus, all classes and interfaces that im-

plement it, are related to the Constraint class through the hasConstraint association of

multiplicity 0 ... *.

4.2 Self-Adaptive System

In this section we present the core entities affiliated with the self-adaptive system and

the relations between them. We also depict how the internal entities of the self-adaptive

framework interact with those that belong to the controlled system and what infrastruc-

ture the framework provides to developers in order to assist them in the communication

of the two systems.

Figure 4.2 showcases the domain model the self-adaptive system. We proceed by visiting

each class and interface of the system.

Figure 4.2: Self-Adaptive System Domain Model
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4.2.1 Class CSLogEvent

This class represents logging data that the controlled system generates and then channels

to the self-adaptive system. It is related to the LogEvent class (which is presented next)

through the one-way aggregated association of multiplicity 1 . . . *. The log data that

this class carries are stored in JSON format.

4.2.2 Class LogEvent

This class represents normalized log data that the self-adaptive system is in position

to interpret. One or more CSLogEvents constitute towards the creation of a LogEvent.

This Class is related with the Alert class through the raises association of multiplicity

1 . . . *. The AlertService component after examining and correlating LogEvents might

generate an Alert that is caused by a set of LogEvents, showcasing this relation.

4.2.3 Class Alert

This class models an issue that was diagnosed by the self-adaptive system. It bears

with it information related to why it was classified as an alert as well as the the set of

LogEvents that caused the upraisal of the Alert. It is related to the Hypothesis class

through the triggers mutual relation of multiplicity 1.

4.2.4 Class Hypothesis

This class includes the Goals for the satisfaction of which, the self-adaptive system seeks

execution plans that will alter the controlled system’s state. Therefore it is associated

with the Goal class described in section 4.1.4 through the dependsOn relation of multi-

plicity 1 . . . *. In case a Hypothesis is proven to be satisfiable, it is associated with one

or more models that make it valid, as the satisfies relation of multiplicity 0 . . . * shows.

Finally, the Hypothesis class is compositionally associated with the class GoalModelAb-

straction which is analyzed next.

4.2.5 Class GoalModelAbstraction

This class is responsible for abstracting the structure of the Task Resolution Model

that the self-adaptive system employs to an abstract representation of Goal Models. It

provides an interface to add the elements of the model that need to be satisfied or denied,
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as well as other key information such as the cost or benefit of a Goal. After the Goals of

the Goal Model that the Hypothesis needs to satisfy are added to the abstraction along

with their subgoals and their contributions, the GoalModelAbstraction class generates

the AND/OR rules from the added elements of the model (as explained in chapter 5) and

stores them in a format that Solvers can interpret. Therefore the GoalModelAbstraction

class serves as a specification of the Task Resolution Model that is common amongst all

solvers that the self-adaptive system utilizes.

4.2.6 Class Model

This class represents the Models containing assignments to the Goals and Tasks of

the Task Resolution Model that satisfy the given Hypothesis. Models are provided

from Solvers and have a satisfies relation with each instance of the Hypothesis class of

multiplicity 0 . . . 1.

4.2.7 Interface Solver

This interface must be implemented by each Solver or reasoning entity that the self-

adaptive system wishes to employ. Each Solver is associated with the Models it com-

putes through the computes relation of multiplicity 0 . . . *. The existence of the Solver

interface makes changing between different types of Solvers during the system’s exe-

cution easier and more robust by implementing the strategy design pattern. Also, a

Solver is associated with the GoalModelAbstraction class with the operatesOn relation

of multiplicity 1 . . . *.

4.2.8 Class MaxSatSolver

This class implements the Solver interface previously described and is responsible for

checking a formula for max-satisfiability. It is also related to the MaxSatCnfTransformer

through a composition relation in order to be able to transform the given GoalMode-

lAbstraction to a cnf formula.

4.2.9 Class MaxSatCnfTransformer

This class includes all the functionality required to parse the information stored in the

GoalModelAbstraction class in oder to transform it to a cnf formula. The MaxSatSolver

can then accept this formula as input and check its satisfiability.
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4.2.10 Class Plan

This class represents the execution Plan that the self-adaptive system composes for the

controlled system to execute. Each instance of the Plan class is associated to the Model

class through the translate relation. Each Plan is composed by multiple instances

of the Task class, a fact indicated by the aggregation relation between the two, of

multiplicity 1 . . . *.

4.2.11 Class Action

This abstract class represents an atomic set of operations executed by the controlled

system. It therefore contains operations that depend on the application domain of the

controlled system and acts as an effector to the latter. This abstract class defines the

parts of the operations that are necessary for each Action, i.e. preparing the message

that will be sent to the controlled system.Developers of self-adaptive systems need to

extend this class of the framework in order to define their concrete, atomic actions that

will affect the controlled system’s state.

Each instance of a concrete implementation of the abstract class Action is associated

with a single Task of the Task Resolution Model. Finally, this abstract class includes

two abstract methods that each concrete action must implement; isFeasible and execute.

The first is responsible for determining wether an Action can be executed according to

the current state of the controlled system and it does so by interacting with the latter.

The second is responsible for the actual execution of the action on the controlled system.

4.2.12 Class ActionID

This class serves as an enumeration of the different Actions that the developers of the

self-adaptive system have implemented. Actions are identified by their unique identifiers

which are used in order to execute the corresponding Action of a Task while executing

the devised Plan.

4.3 CloudSim Extensions

In this section we present the required extensions that were introduced to the CloudSim

modeling framework. The main objective of these additions is to improve the reporting

mechanism of CloudSim’s core entities so that the implemented self-adaptive system has

sufficient information to reason on.
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In order to produce the required logging data of a controlled system, developers need

to identify the latter’s entities which must be managed by the self-adaptive system.

In the case of the CloudSim framework, these managed resources are Hosts, Virtual

Machines and Cloudlets. The Host class of CloudSim represents a physical host of the

data-center, the VM class represents virtual machines provisioned on the physical hosts,

and the Cloudlet class serves as an abstraction of applications that are executed on

provisioned virtual machines.

The metrics of these core entities are utilized in order to define key performance indi-

cators (KPI) for the managed IT infrastructure. Since these KPIs are related to IaaS,

they are grouped into the four main resource types that IaaS can provide: CPU, Mem-

ory, Bandwidth and Storage. In Appendix A the metrics generated by our extended

version of CloudSim as well as the Key Performance Indicators defined based on them,

are listed.

Figure 4.3 shows the domain model of the implemented changes.

Figure 4.3: Key Performance Indicator Domain Model

Before we explain each class and interface of the domain model, we discuss the design

decisions taken into account for their definition. Our main consideration was to relieve

developers of the self-adaptive system from extracting the required metrics from the

CloudSim framework. For this reason all the functionality of gathering and calculating

this information is abstracted from the final user of the CloudSim framework and is

implemented as operations of abstract classes defined in our Domain Model. The only

obligation of the developer is to extend these classes and then define and calculate the

desired KPIs by utilizing the gathered metrics.
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4.3.1 Interface KeyPerformanceIndicator

This interface declares the main operations that a KPI object must implement. These

are the updateMetrics() and publishKPI() methods. UpdateMetrics is responsible

for gathering the required information for each KPI and publishKPI for calculating the

defined KPI from the available metrics and then making it available to the self-adaptive

system.

4.3.2 Class HostKPI

This abstract class implements the KeyPerformanceIndicator interface and includes the

functionality required by all types of KPIs that can be defined for the Host entity. It

is associated with a single Host element in order to contain information only related to

that specific Host. An example of an operation that each KPI related to the Host entity

must provide is creating log activity to a specific information channel.

This abstract class is extended by the abstract classes HostCPUKPI, HostMemo-

ryKPI and HostBwKPI. Each of them implements the updateMetrics() operation in

order to gather their respective required metrics from the CloudSim framework. All the

metrics related to the host entities and for each associated report that our extensions

implement are listed in table A.3. Some example of CPU metrics for instance, are num-

ber of cores on each physical host, MIPS (million instructions per second) per core, total

requested MIPS per VM allocated on Host etc.

The obligation of the final user is to extend the lastly mentioned abstract classes

(HostCPUKPI etc.) into classes responsible for computing a specific KPI that is re-

lated to the resource type of the abstract class that they implement (i.e. memory). For

example, to define the KPI Percentage of Total Mips Utilization, a developer should

extend the HostCPUKPI abstract class which contains the required metrics shown in

the left column of table A.3, and then use these metrics in order to calculate and publish

the KPI to the self-adaptive system.

4.3.3 Class VmKPI

This abstract class is analogous to the HostKPI abstract class and contains the same

functionality as the latter, only now related to the Vm entity of the CloudSim framework.

It is associated with CloudSim’s Vm class with a multiplicity of 1 so that each KPI

related to virtual machines metrics contains information for a specific Vm entity.
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The same structure for the different types of KPIs according to the resource types

they depend on, is followed in the case of VmKPI mimicking HostKPI. However in the

case of virtual machines, an extra resource type needs to be monitored, that being i/o

operations. For this reason, VmKPI is extended by the extra abstract class VmIOKPI.

Examples of the monitored metrics that these abstract classes keep track of are requested

IOPS (input output operations per second) by a Vm, allocated BW to a virtual machine,

requested mips per core dedicated to a Vm.

The final user needs to implement the same functionality as in the case of the Host

element, extending the VmIOKPI, VmCPUKPi, VmMemoryKPI, VmBwKPI abstract

classes and next calculating and publishing its desired KPIs to the self-adaptive system.

4.3.4 Class CloudletKPI

This abstract class is the equivalent of the HostKPI and VmKPI abstract classes target

towards Cloudlets. Cloudlets are the core entities of the CloudSim framework repre-

senting applications that run on provisioned virtual machines, and with this class we

aim to define important KPIs that showcase the response of the IT infrastructure to the

demands of applications.

CloudletKPI works in an identical way to the VmKPI abstract class. The CloudletCPUKPI,

CloudletMemoryKPI etc. abstract classes gather the important metrics presented in A.1.

Extending these classes, enables the user to define its desired KPIS such these shown

in the previous table. Examples of such KPIs include the total cpu throughput of a

Cloudlet, the active average memory throughput of a Cloudlet etc.
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Reasoning Framework

In this chapter we explain the reasoning mechanism that our self-adaptive system em-

ploys and the models that it utilizes. We present the Task Resolution Model (whose

entities were also described in the previous chapter) which provides to developers and

administrators a high level way to define re-mediation plans that should be applied to

the controlled system when an undesired state has been reached. We provide an instan-

tiation algorithm for the Task Resolution Model which guarantees that all the parts of

the model that can contribute towards compiling a re-mediation plan for the controlled

system are included in the reasoning process. Next, we show how the plan compilation

problem is reduced to SAT and finally the derivation of the cnf formula that is fed to

the SAT solver.

5.1 Task Resolution Modeling

In this section we formally define the modeling framework utilized by the self-adaptive

system in order to resolve an execution Plan. Our models are a variation of the model

presented in [33].

Definition 1: A Task Resolution Model can be formalized as a tuple TRM = �N ,R, C�

where (i) N �= ∅ is a set of nodes, (ii) R �= ∅ is a set of rules between nodes and (iii) C

is a set of contextual tags. Let G and T be two disjoint non-empty sets of goal and task

nodes, and RD and RB two disjoint non-empty sets of decomposition and binary rules

respectively. Then the set of nodes is defined as N = G ∪ T and the set of rules as

R = RD ∪RB. Each node and rule can be assigned a contextual tag.

The above definition explains how nodes of the proposed model are connected to each

other through rules. Decomposition rules are n-ary relations that showcase how a node
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can be AND/OR decomposed to its offsprings. In figure 5.1 we see that for the goal

Provision Resources to be satisfied, at least one of its offspring ProvisionNewHostAnd-

MigrateVM and IncreaseHostProcessingPower needs to be satisfied. Binary rules are

relations that express the side-effects that source node can impose to the target node.

In that sense, satisfaction of goal Provision Resource denies the goal DecreaseEnergy-

Consumption. Next we define these two types of relations.

Definition 2: We denote a decomposition rule rd ∈ RD as the tuple rd = �Td, p, O�

where (i)Td ∈ {AND,OR} is the decomposition type, (ii) p ∈ G is the parent node,

(iii) O = {o1, o2, . . .} with o1, o2, . . . ∈ N is the non-empty set of offspring nodes. In

an equivalent manner, we denote a binary rule rb ∈ RB as the tuple rb = �Tb, s, t� where

(i) Tb ∈ {+ + S/D,− − S/D} is the binary relation type, (ii) s ∈ N is the source

node, (iii) t ∈ N is the target node.

With the above relations we can now define the notions of parent and source nodes as

following:

Definition 3: Given a node n, its parent node is defined as parent(n) = {p ∈ N | ∃rd =

�T, p,O� | n ∈ O}.

Definition 4: Given a node n, the set of its source nodes is defined as S = source(n) =

{si ∈ N | ∃rb = �T, n, si� ∈ RB}.

We proceed to define goal trees, the building block of the reasoning framework.

Definition 5: The non-empty subsets Gi ⊂ G, Ti ⊂ T , Ri ⊂ R where Ni = Gi ∪ Ti,

is a goal tree GT = �Ni, Ri� if an only if Gi contains exactly one root goal rg :

parent(rg) = ∅.

Figure 5.1: Sample Task Resolution Model

Figure 5.1 includes two goal trees: RemediateHostLowThroughput and DecreaseEnergy-

Consumption. We can now revisit the Task Resolution Model definition.
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Definition 6: Given a set of nodes N and a set of rules R a Task Resolution Model

is a tuple TRM = �GT ,R�
B
� where GT is a set of goal trees and R�

B
is a set of binary

rules whose source and target nodes belong to different goal trees.

5.2 Model Instantiation

After an Alert has been issued by the AlertService, the GoalModelSeletor component

will associate this Alert with one or more goal nodes of the TRM saved in the GoalMod-

elRepo. The selected nodes will eventually be decomposed into Tasks that will comprise

the system’s reconfiguration Plan. However, it is possible that the goals and tasks

that the selected goals are decomposed to, are connected to each other through binary

relations which also need to be taken into account when reasoning on the TRM. Addi-

tionally, it can be the case that other goals or tasks, which are not part of the selected

goal trees, can contribute towards finding a resolution plan as source nodes of binary

relations whose targets are goals or tasks included in the selected TRM. These nodes

need to also be instantiated, otherwise the reasoning framework might ignore possible

solutions to the issued Alert.

To ensure that the final TRM that the reasoning framework will reason on, by creating

AND/OR rules and extracting the final cnf formula, includes all the entities that can

contribute towards finding an execution Plan, we provide an algorithm which given a set

of goal nodes selected by the GoalModelSelector component, returns the set of entities

of the designed TRM that must be instantiated. It is then guaranteed, that all possible

Tasks that could provide a solution to the monitored issue have been taken into account

during the reasoning process and the compilation of the execution Plan.

The algorithm is based on a recursive traversal of the TRM, and book-keeping of the

visited nodes. The structure H serves not only as the container of the finally instantiated

TRM elements, but also as the set of nodes that the algorithm has already traversed.

During the traversal of the child nodes of the set of the initially selected nodes (those

provided by the GoalModelSelector) the algorithm checks for possible binary relations

of type Tb = ++S whose target node is the currently visited node. If such a relation is

discovered, the algorithm starts traversing the source node of the binary relation as well

as its offspring nodes. When all nodes have been traversed and all source nodes have

been discovered, the algorithm eventually decides which binary relations of the initial

TRM are still relevant by checking if both their target and source nodes are included in

the set H. If both nodes are included, then the binary relation must also be part of the

instantiated model, and thus it is added to the set H.
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Algorithm 1 Model Instantiation Algorithm

Require: A Task Resolution Model TRM = �N = G ∪ T ,R = RD ∪RB, C�,
and a set of selected nodes GN ⊂ G

Ensure: A set H containing the instantiated nodes and relations
procedure Instantiate(GN)

H := ∅

for all gn ∈ GN do
processNode(gn)

end for
for all rb = �Tb, s, t� ∈ RB do

if s ∈ H ∧ t ∈ H then
H := H ∪ rb

end if
end for

end procedure

function processNode(n)
if n ∈ H then return
else

H := H ∪ n

if ∃rb = �++ S, s, t� ∈ RB then
processNode(s)

end if
if ∃rd = �Td, p, O� ∈ RD then

for all o ∈ O do
processNode(s)

end for
end if

end if
end function

5.3 CNF Formula Extraction

In this section we present the transformation of a TRM to a CNF formula and therefore

the reduction of plan resolution to SAT. The transformation process involves three steps:

1. transform the decomposition rules of each parent node into AND/OR rules

2. expand the AND/OR rules of each parent node with the side-effect rules of its

source nodes

3. transform the AND/OR rules into cnf expressions

Steps 1 and 2 are both explained in table 5.1. The first rule of the table shows the rules

generated by a parent node due to its decomposition relation with its offsprings. The
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rest of the table explains how the AND/OR rules of a parent node with a non-empty

set of source nodes is formed.

Decomposition and Binary
Rules

Tb Generated AND/OR rules

rd = �Td, p, O�, Td ∈ {AND,OR} - pd ↔ Td(o1, o2, . . .), o1, . . . ∈ O

rb = �Tb, si, t�, si ∈ source(t) and
rd = �Td, t, O�, Td ∈ {AND,OR}

++S

t ↔ OR(pd, pc) where
pd ↔ Td(o1, . . .), o1, . . . ∈ O and

pc ↔ OR(s1, s2, . . .)

rb = �Tb, si, t�, si ∈ source(t) and
rd = �Td, t, O�, Td ∈ {AND,OR}

--D

t ↔ OR(pd, pc) where
pd ↔ Td(o1, . . .), o1, . . . ∈ O and

pc ↔ OR(¬s1,¬s2, . . .)

rb = �Tb, si, t�, si ∈ source(t) and
rd = �Td, t, O�, Td ∈ {AND,OR}

--S

t ↔ AND(pd, pc) where
pd ↔ Td(o1, . . .), o1, . . . ∈ O and

pc ↔ OR(s1, s2, . . .)

rb = �Tb, si, t�, si ∈ source(t) and
rd = �Td, t, O�, Td ∈ {AND,OR}

++D

t ↔ AND(pd, pc) where
pd ↔ Td(o1, . . .), o1, . . . ∈ O and

pc ↔ OR(¬s1,¬s2, . . .)

Table 5.1: AND/OR Rule Generation

In the sample TRM of figure 5.1 the parent node GT1 generates the OR rule GT1d ↔

OR(A,B). The parent node GT2 which also serves as a target node for a binary relation,

generates the rule GT2 ↔ OR(GT2d, GT2c) where GT2d ↔ AND(T4, T5), GT2c ↔

OR(¬G2) corresponds to the second step of the transformation and the remaining four

rows of the rule generation table.

Having created the AND/OR rules for each parent node of a TRM, step 3 involves the

transformation of these rules to a cnf formula. Table 5.2 showcases the mapping between

AND/OR rules and their respective cnf formula.

AND/OR Rules Propositional Relations CNF Clauses

p ⇔ AND(o1, o2, . . .)
p → o1, p → o1, . . . , p ←

(o1 ∧ o2 ∧ . . .)
(¬p ∨ o1) ∧ (¬p ∨ o2) ∧

. . . ∧ (¬o1 ∨ ¬o2 ∨ . . . ∨ p)

p ⇔ OR(o1, o2, . . .)
¬p → ¬o1,¬p →

¬o1, . . . ,¬p ← (¬o1∧¬o2∧. . .)
(¬p ∨ o1) ∧ (¬p ∨ o2) ∧
. . . ∧ (o1 ∨ o2 ∨ . . . ∨ ¬p)

Table 5.2: CNF Rule Generation

Following the last example from the sample TRM presented in 5.1, the goal tree GT2

will generate the following cnf formula:

(¬GT2c ∨GT2) ∧ (¬GT2d ∨GT2) ∧ (GT2c ∨GT2d ∨ ¬GT2)∧

(T4 ∨ ¬GT2d) ∧ (T5 ∨ ¬GT2d) ∧ (GT2d ∨ ¬T4 ∨ ¬T5)∧

(G2 ∨GT2c) ∧ (¬G2 ∨GT2c)



Chapter 6

Experimental Evaluation

After describing the architecture of a framework for self-adaptive systems, its core en-

tities and its reasoning framework, we proceed by providing experiments run on our

prototype implementation of a self-adaptive system based on the proposed framework.

Our self-adaptive system operates on top of the CloudSim simulation framework fol-

lowing a master-slave pattern, as described in Chapter 3. In the following, we explain

the execution setup of both systems and present experiments that showcase how the

execution plans that the self-adaptive system has devised, alternate the behavior of the

CloudSim framework.

6.1 Execution Setup

6.1.1 Self-Adaptive System

For the purposes of the following set of experiments, we have configured and extended

the self-adaptive framework so that it can address the issue of overbooking on virtual

machines that are provisioned in the hosts of a data-center. The framework has been

modified by a) defining an AlertClassifier that will generate an alert when Overbooking

of a Virtual Machine is observed, b) defining an appropriate Task Resolution Model

that provides a solution to the problem of Vm overbooking and assigning weights to its

nodes that represent the cost-benefit of achieving them, c) implementing the Actions

that correspond to the Tasks of the TRM, d) using the MaxSat module of the Sat4J

framework to find an execution Plan.

62
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AlertClassifier - Vm Overbooking

As explained in section 3.2.4, the AlertClassifier subcomponent of the self-adaptive

framework is responsible for determining when a sequence of LogEvents indicates an

undesirable state of the controlled system, for which the self-adaptive framework needs

to reason on and provide an execution Plan. This subcomponent provides an interface

with the same name which must be implemented by the developers. For our execution

environment, where we wish to address the problem of Vm Overbooking, we have imple-

mented a classifier which monitors the total overbooking of Mips per Virtual Machine

(see Appendix A), and raises an Alert after the tenth time such a LogEvent is monitored.

Vm Overbooking Task Resolution Model

Figure 6.1 depicts the defined TRM and the costs assigned to its nodes. This TRM

expresses that the issue of overbooking on a virtual machine can be resolved either by

achieving some redistribution of load between the Virtual Machines or by provisioning

new resources. As the second action introduces additional costs for managing the in-

frastructure (i.e. more energy consumption) it has a negative cost-benefit factor which

will make it less favorable for a selection by the MaxSat solver. In the contrary, the

redistribute load node has a positive cost-benefit factor so that it is preferable to the

provisioning of new resources. Both of these two goals, are further decomposed to tasks,

each of which has its own benefit-cost factor, that represents a relative comparison be-

tween the preference amongst them.

Figure 6.1: Task Resolution Model For Vm Overbooking

Actions

For each Task contained in the Vm Overbooking TRM, the corresponding Action is

implemented in our framework by extending the Action abstract class and implementing
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the isFeasible and execute methods which we first introduced in section 4.2.11. Here we

visit the functionality of these actions, to provide better understanding of the evaluation

environment.

ProvisionVm: This action implements the functionality of provisioning a new

Virtual Machine in the managed cloud infrastructure. The method isFeasible de-

termines whether Hosts that can accommodate a new virtual machine are available.

Such a Host may be in use and already serving other Virtual Machines or idle.

If no Host has enough capacity for a new Virtual Machine then the isFeasible

action returns false, and the corresponding Task is falsified so that the MaxSat

solver cannot consider it as a possible solution. The execute method, contains the

required functionality for the creation of a new Virtual Machine to a Host. The

target Host is chosen by giving priority to Hosts who already have assigned Virtual

Machines but are still able to accommodate an extra one. If no such Host exists,

an idle Host is selected as the target Host.

MigrateCloudletToVmInSameHost: This action implements the functional-

ity of migrating a Cloudlet from a source Virtual Machine to a target Virtual

Machine where both are provisioned in the same Host. The isFeasible method

returns true if a Virtual Machine whose average utilization is smaller than the av-

erage required Mips of the Cloudlet exists. The execute method is responsible for

implementing the migration functionality which involves choosing which Cloudlet

should be migrated to a different a Virtual Machine, and choosing which Virtual

Machine will serve as the target Virtual Machine. It does so by implementing a

best-match algorithm between the Virtual Machines’ capacity and the required

Mips of the Cloudlets that are executing in this Host.

MigrateCloudletToVmInDifferentHost: This action implements similar func-

tionality with the previous one, except that in this case all the Virtual Machines

of the data-center (irrespectively of their assigned Host) are considered as poten-

tial target Virtual Machines. Although these actions seem almost identical, the

difference lies in performance and execution costs. Migrating a Cloudlet between

different Hosts introduces latency during the transfer of data and higher utiliza-

tion of the Network’s bandwidth. For this reason, this action is considered to

be more costful than the previous, a fact reflected in the difference between their

benefit-cost factors.
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Sat4J MaxSat Solver

In our implementation we have chosen to use the MaxSat module of the Sat4J solver

in order to construct an execution Plan from a Hypothesis generated by an Alert. The

proposed Hypothesis is transformed into a cnf formula, as described in section 5.3, and

in addition to that each literal that corresponds to a node of the selected TRM, is

associated with an integer value. This formula along with the weights of the literals, are

provided to Sat4J. If the formula is satisfiable, a satisfying model is returned with its

total cost. The truth values of the leaves of the TRM determine of which Actions the

execution Plan will be comprised of.

6.1.2 CloudSim

In this section, we explain the runtime parameters of the CloudSim simulation framework

which are used for our set of experiments.

Simulation Time and Step

For our evaluation process, we define each simulation session to be equal to a calendar

day. The time unit of CloudSim is measured in seconds and therefore the Simulation

Limit constant is set to 300× 60× 60 sec = 86400 sec = 24 h.

CloudSim’s simulation model imposes that the execution progress of each Cloudlet is

continuously updated and monitored at every simulation step. In our set of experiments

the simulation step is equal to five minutes, which is a common window of monitoring

cloud infrastructure. Thus, the Simulation Step constant is set to 300 sec = 5 min.

As shown in [33], the execution time of MaxSat exceeds the Simulation Step for models

of size bigger than 240 nodes. Therefore developers and administrators of the controlled

system using our implementation of the framework which depends on MaxSat, are lim-

ited to defining a TRM consisting of less than 240 nodes.

Resource Characteristics

The cloud infrastructure resources that CloudSim treats as its core entities are Hosts

and Virtual Machines. Table 6.1 showcases the characteristics of Hosts and Virtual

Machines that are used for each simulation session.
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Mips Cores
Host 2660 2
Vm 1000 2

Table 6.1: Host and Vm Simulation Characteristics

The distribution of a Host’s Mips between the Virtual Machines that are assigned to it,

is handled by the VmScheduler entity of the CloudSim framework. We have extended

this entity so that it allows oversubscription of Virtual Machines to Hosts, meaning that

any Virtual Machine can dynamically require more Mips from its Host than its initial

Mips value. This allows us to observe overbooked Hosts who are unable to serve the

requests of the Cloudlets that are running on their Virtual Machines.

The equivalent entity for the Virtual Machine level is the CloudletScheduler entity,

responsible for the update of the execution of Cloudlets running on a Virtual Machine.

The demand of Mips by each Cloudlets is dynamic and changes for each simulation step.

The CloudletScheduler encapsulates the required functionality for the distribution of a

Virtual Machine’s cores and Mips to the Cloudlets. In our extended implementation,

Cloudlets are served in a first come - first serve fashion, which can result in some Cloudlet

entities getting their requests for Mips denied.

Cloudlet Types

As already explained, Cloudlets represent applications that are running on Virtual Ma-

chine. In our execution environment we have defined five different types of Cloudlets,

depending on the demand of Mips they generate. This demand is computed at each ex-

ecution step and is randomly generated as a percentage of the total Mips of the Virtual

Machine that the Cloudlet is running on. In table 6.2 the different types of Cloudlets,

the load they generate and the percentage of the total Cloudlets that they represent is

showcased.

Type Range of generated load (%) % of total Cloudlets In-Out
0 0 − 30 25 ✗
1 50 − 70 10 ✓
2 30 − 50 20 ✗
3 30 − 50 10 ✓
4 50 − 70 25 ✗
5 70 − 90 10 ✗

Table 6.2: Cloudlet Types
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The In-Out flag determines whether a Cloudlet is active during the whole simulation

session. In-Out Cloudlet types will generate load only during some part of the simulation

session, and will otherwise generate 0 load. With this modeling we aim to simulate the

dynamic addition or removal of Cloudlets during a simulation session.

6.2 Experiments

In this section we provide two use cases where the self-adaptive system implemented

with the execution setup introduced in section 6.1.1, is used to control the CloudSim

framework. In each use case we follow the setup of the CloudSim framework defined in

section 6.1.2, changing the number of Hosts, Virtual Machines and Cloudlets. Finally,

we use the same CloudSim setups to run the CloudSim framework without an adaptive

system, and compare the results.

For each use case we provide a) its CloudSim configuration (number of Hosts, Virtual

Machines, Cloudlets), b) a table presenting the types of the Cloudlets, c) a table pre-

senting the re-deployment actions taken, d) a figure for each Virtual Machine showcasing

the % of overbooking it experienced throughout an adaptive and a non - adaptive exe-

cution, and e) a figure for each Cloudlet showcasing the % of denied Mips it experienced

throughout an adaptive and a non - adaptive execution. All figures contain colored

vertical lines which represent the executed Actions, as shown in the Vm Overbooking

Task Resolution Model of figure 6.1.

6.2.1 Use Case 1

In the first use case we choose a CloudSim configuration consisting of four Hosts, five

Virtual Machines and fifteen Cloudlets. The Cloudlet types are shown in table 6.3, the

re-deployment actions in table 6.4 and finally the overbooking % of Virtual Machines

and the denied % of Mips per Cloudlet are shown in figures 6.2 and 6.3 respectively.

In the adaptive execution, a reduction on Vm Overbooking is observed, compared to the

non - adaptive execution, in all Virtual Machines except for virtual machine 2, which

experiences increased overbooking in the first part of the simulation. This behavior is

mainly - but not only - observed due to the addition of Virtual Machines (actions 5,

12, 15) to hosts who were already running, yet they were not fully utilised. However

we can see that the self-adaptive system has chosen to postpone these actions until

the 84000.1 sec of the simulation, trying to find a solution with fewer costs. This is

reflected in actions 0, 1, 2, 3, 4, all of which aim to redistribute the load on the current



Chapter 6. Experimental Evaluation 68

infrastructure without the provisioning additional resources. These actions manage to

improve the overbooking situation on all Virtual Machines except for Virtual Machines 2

and 3, which experiences slightly increased overbooking after the redistribution actions

have been executed. The improvement of performance of Virtual Machine 2, can no

longer be achieved with load redistribution , as the best matches have already been

found and used, and therefore the adaptive system decides to provision new resources

by executing action 5.

After the first provisioning of a new Virtual Machine another set of re-mediation actions

are executed until the In-Out Cloudlets kick in after approximately 35000 sec. This new

demand created by the In-Out Cloudlets forces re-mediation actions 14, 15, 16, which

showcase the adaptivity of the system, which is able to not only redistribute its initial

load, but also accommodate future situations.

Cloudlet Type Cloudlet Ids
0 0, 1, 2
1 3
2 4, 5, 6
3 7
4 8, 9, 10
5 11

Table 6.3: Use Case 1 Cloudlets

Action id Time Action
0 4800.1 Migrating Cloudlet 4 from Vm 4 to VM 2
1 5100.1 Migrating Cloudlet 9 from Vm 4 to VM 2
2 5100.1 Migrating Cloudlet 1 from Vm 1 to VM 2
3 5700.1 Migrating Cloudlet 0 from Vm 0 to VM 2
4 6900.1 Migrating Cloudlet 2 from Vm 2 to VM 3
5 8400.1 Creating Vm on Datacenter 3
6 10500.1 Migrating Cloudlet 1 from Vm 2 to VM 3
7 11700.1 Migrating Cloudlet 6 from Vm 1 to VM 4
8 12300.1 Migrating Cloudlet 3 from Vm 3 to VM 5
9 12900.1 Migrating Cloudlet 5 from Vm 0 to VM 4
10 14700.1 Migrating Cloudlet 7 from Vm 2 to VM 5
11 18300.1 Migrating Cloudlet 4 from Vm 2 to VM 5
12 18900.1 Creating Vm on Datacenter 3
13 30600.1 Migrating Cloudlet 8 from Vm 3 to VM 6
14 34500.1 Migrating Cloudlet 3 from Vm 5 to VM 6
15 36600.1 Creating Vm on Datacenter 3
16 39900.1 Migrating Cloudlet 8 from Vm 6 to VM 7

Table 6.4: Use Case 1 Actions
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Figure 6.2: Use Case 1 Vm Overbooking
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Figure 6.3: Use Case 1 Cloudlet Denied Mips
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6.2.2 Use Case 2

In the second use case, a similar CloudSim configuration consisting of four Hosts, six

Virtual Machines and seventeen Cloudlets is chosen and simulated.

This use case is different to the first one with regards to the available resources that

the self-adaptive system can provision. After a virtual machine is created, the system is

limited only to load redistribution actions. As a result, some virtual machine keep expe-

riencing overbooking during the adaptive execution, although in much lower percentages.

Cloudlet Type Cloudlet Ids
0 0, 1, 2, 3
1 4
2 5, 6, 7
3 8
4 9, 10, 11, 12
5 13

Table 6.5: Use Case 2 Cloudlets

Action id Time Action
1 4500.1 Migrating Cloudlet 5 from Vm 5 to VM 2
2 4800.1 Migrating Cloudlet 11 from Vm 5 to VM 2
3 5100.1 Migrating Cloudlet 1 from Vm 1 to VM 2
4 5100.1 Creating Vm on Datacenter 3
5 6600.1 Migrating Cloudlet 2 from Vm 2 to VM 6
6 8400.1 Migrating Cloudlet 7 from Vm 1 to VM 6
7 8400.1 Migrating Cloudlet 4 from Vm 4 to VM 6
8 9300.1 Migrating Cloudlet 0 from Vm 0 to VM 2
9 10200.1 Migrating Cloudlet 1 from Vm 2 to VM 5
10 10500.1 Migrating Cloudlet 2 from Vm 6 to VM 2
11 13500.1 Migrating Cloudlet 8 from Vm 2 to VM 5
12 17100.1 Migrating Cloudlet 5 from Vm 2 to VM 5
13 26100.1 Migrating Cloudlet 0 from Vm 2 to VM 5
14 45300.1 Migrating Cloudlet 1 from Vm 5 to VM 4
15 69000.1 Migrating Cloudlet 0 from Vm 5 to VM 6
16 81600.1 Migrating Cloudlet 0 from Vm 6 to VM 5

Table 6.6: Use Case 1 Actions
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Figure 6.4: Use Case 2 Vm Overbooking
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Figure 6.5: Use Case 2 Cloudlet Denied Mips



Chapter 7

Conclusion

7.1 General Remarks

In this thesis, we have presented a framework for self-adaptive system re-deployment.

Our work aims to identify the core components of a self-adaptive and autonomous sys-

tem by defining an architecture that implements the autonomic control loop and uses a

reasoning mechanism based on high level models. Developers who extend our proposed

framework, can intervene and extend all the parts of the MAPE-K loop through exten-

sible interfaces and rely on a reasoning framework that will compile a re-mediation plan

for the controlled system based on their preferences.

Our reasoning framework utilizes high level models that associate functional properties of

the controlled system with tasks that are executed on the latter. Its reasoning process

is based on the transformation of these models to a planning problem and essential

reduction of the latter to a satisfiability problem. This is achieved through the rule

generation we propose and the extraction of the corresponding cnf formula. The satisfied

tasks of the cnf formula constitute the re-mediation plan of the self-adaptive system.

With management of cloud infrastructure being an interesting application domain for

self-adaptive systems, we have developed a concrete implementation of our proposed

framework and used it as a self-adaptive system on top of the CloudSim simulation

framework. We have defined concrete Task Resolution Models and their correspond-

ing Actions for the former, and extended the reporting mechanisms of the latter with

additional performance metrics.

Among existing approaches for the design of adaptive systems, the work presented in

this thesis is more closely related to the following two:

81
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• Requirements based approaches, where Requirements Engineering techniques

are extended in order to represent the requirements of adaptation and the un-

certainty of the environment in which the system operates. Zanshin is an Re-

quirements Engineering-based framework for the design of adaptive systems that

exploits concepts of Control Theory to design adaptive software systems[34] and

makes the elements of the feedback loop that provide adaptivity first class citizens

in its requirements models[35].

• Architecture based approaches, where an architectural model that shows system

components and how they communicate amongst themselves through connectors is

proposed. Such proposals can include the runtime software infrastructure on top of

which to build the adaptive system, taking care of its adaptation rules and how to

evolve its models. The Rainbow framework[36] is a prominent architecture- based

approach for the design of adaptive systems. According to the architectural model

proposed, rules are used to monitor the operational conditions of the system and

define actions to be taken if the conditions are unfavorable, using utility theory.

Our framework lies in between these two approaches. It bares similarities with the

Requirements based approach through the definition of Task Resolution Models which

define the requirements of the system that must be satisfied during its execution. Con-

trary to Zanshin, our system does not require strategies to be specified in an additional

manner, as our Task Resolution Models define which actions could/should be taken for

the requirements to be met. When compared to the Architecture base approach, our

framework also enforces the definition of components that communicate with each other

and can potentially involve the runtime infrastructure of the controlled system. How-

ever, the re-mediation plan we compile is not based on utility theory, but on the Task

Resolution Model devised by the developers.

7.2 Future Work

Our proposed framework as well as the extensions that we have implemented in the

CloudSim framework provide a fertile ground for future work. These tasks can be

grouped in two directions, the first one related with the reasoning framework of the self-

adpative framework, and the second related with our concrete prototype implementation

of the self-adaptive system.

Our reasoning framework consisting of Task Resolution Models, an extention of Goal

Models, only considers the adaptation process from the perspective of the self-adaptive

and the controlled system. Differently put, it is unaware of other systems that the latter
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might interact with and their stakeholder’s goals. One solution to this issue would be to

extend our current models with agents and commitments, as they are described in[37].

This would allow for modeling of interesting interactions between different stakeholders

such as vendors providing compensation to clients whose service agreement has been

violated and being able to reason wether this behavior is more beneficiary for them.

Moving to implementation related future tasks, our current implementation of the self-

adaptive system relies on a MaxSat based approach for the compilation of execution

plans. While MaxSat is a complete algorithm and guarantees that the solution provided

is optimal, it gets impractical for models of big size as shown in[33]. Therefore, a pos-

sible direction for future work would be incorporating alternative (possibly incomplete)

algorithms for the compilation of the execution plans, such as the one presented in[33].

Finally, there is much room for improvement and optimization in the actions that the

self-adaptive system executes. For example, algorithms for Vm consolidation could be

used. In the same context, better diagnosis of issues of the controlled system could be

achieved by incorporating trend-analysis methods. These methods would provide teh

self-adaptive system with more meaningful Alerts and avoid re-mediation Plans that

occur only due to some temporal abnormalities of the system.



Appendix A

CloudSim Metrics and KPIs

Table A.1: Cloudlet Metrics and KPIs

Metrics KPIs

Cores

required cores

CPU

total requested mips total cpu throughput ratio (total allocated

mips/total requested mips*%)

total allocated mips per core cpu throughput (per-core allocated

mips/per-core requested mips*%)

requested mips per core active avg. of total\per-core cpu throughput

per session

allocated mips per core range of total\per core cpu throughput per

session

max\min total re-

quested mips

total denied mips pct. ((requested mips - al-

located mips)/requested mips *%)

max\min requested

mips per core

per-core denied mips pct.((required mips per-

core - allocated mips)/required mips *%)

active avg. of total\per-core denied mips pct.

per session

range of total\per core denied mips pct. per

session

range of total\per core requested mips per

session

delta of cpu throughput between cores

delta of requested mips between cores

Continued on next page
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Table A.1 – continued from previous page

Metrics KPIs

IO

requested iops iops throughput (allocated iops/requested

iops*%)

allocated iops active avg. of iops throughput

max\min requested iops range of iops throughput per session

denied iops pct. ((requested iops - allocated

iops)/iops requested*%)

active avg. of denied iops pct.

range of denied iops pct. per session

range of iops requested per session

Memory

requested ram memory throuhgput (ram allocated/ram re-

quested*%)

allocated ram active avg. of memory throughput

max\min requested ram range of memory throughput per session

denied memory pct. ((requested ram - allo-

cated ram)/ram requested*%)

active avg. of denied memory pct.

range of denied memory pct. per session

range of ram requested per session

Network

requested bw network throuhgput (bw allocated/bw re-

quested*%)

allocated bw active avg. of network throughput

max\min requested bw range of network throughput per session

denied network pct. ((requested ram - allo-

cated ram)/ram requested*%)

active avg. of denied network pct.

range of denied network pct. per session

range of bw requested per session

Migration

cost of migration to VM in the same Host

cost of migration to Vm in different Host

benefit of migration to Vm in the same Host

benefit of migration to Vm in different Host
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Table A.2: VM Metrics and KPIs

Metrics KPIs

Cores

total cores pct. of idle cores

used cores pct. of used cores

idle cores active avg. of idle cores

required cores per

cloudlet

active avg. cores requested by cloudlets

CPU

total mips pct. of total\per-core utilization of mips

total allocated mips to

cloudlets

pct. of total\per-core underutilization of

mips

total requested mips by

cloudlets

pct. of total\per-core overbooking of mips

mips per core active avg. pct. of total\per-core utilization

of mips

total allocated mips per

core to cloudlets

delta of pct. utilization of mips between cores

total requested mips per

core by cloudlets

range of pct. of total\per-core utilization per

session

total requested mips per

cloudlet

pct. of total\per-core utlization of mips per

cloudlet

total allocated mips per

cloudlet

delta of pct. of total\per-core utilization be-

tween cloudlets

requested mips per core

per cloudlet

range of pct. of total\per-core utilization per

cloudlet through session

allocated mips per core

per cloudlet

number of cloudlets

running on vm

IO

total iops pct. of iops utilization

total allocated iops pct. of iops underutilization

total requested iops pct. of iops overbooking

iops requested per

cloudlet

active avg. of pct. of iops utilization

Continued on next page
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Table A.2 – continued from previous page

Metrics KPIs

iops allocated per

cloudlet

range of pct. of iops utilization

max\min total iops re-

quested

pct. of iops utilization per cloudlet

delta of pct. of iops utilization between

cloudlets

range of pct. of iops utilization per cloudlet

Memory

total ram pct. of ram utilization

total allocated ram pct. of ram underutilization

total requested ram pct. of ram overbooking

ram requested per

cloudlet

active avg. of pct. of ram utilization

ram allocated per

cloudlet

range of pct. of ram utilization

max\min total ram re-

quested

pct. of ram utilization per cloudlet

delta of pct. of ram utilization between

cloudlets

range of pct. of ram utilization per cloudlet

Network

total bw pct. of bw utilization

total allocated bw pct. of bw underutilization

total requested bw pct. of bw overbooking

bw requested per

cloudlet

active avg. of pct. of bw utilization

bw allocated per

cloudlet

range of pct. of bw utilization

max\min total bw re-

quested

pct. of bw utilization per cloudlet

delta of pct. of bw utilization between

cloudlets

range of pct. of bw utilization per cloudlet

Migration

Continued on next page
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Table A.2 – continued from previous page

Metrics KPIs

cost of migration to Host in the same Data-

center

cost of migration to Vm in different Datacen-

ter

benefit of migration to Vm in the same Dat-

acenter

benefit of migration to Vm in different Dat-

acenter

Table A.3: Host Metrics and KPIs

Metrics KPIs

Cores

total cores pct. of idle cores

used cores pct. of used cores

idle cores active avg. of idle cores

required cores per VM active avg. cores requested by cloudlets

CPU

total mips pct. of total\per-core utilization of mips

total allocated mips to

VMs

pct. of total\per-core underutilization of

mips

total requested mips by

VMs

pct. of total\per-core overbooking of mips

mips per core active avg. pct. of total\per-core utilization

of mips

allocated mips per core

to VMs

delta of pct. utilization of mips between cores

requested mips per core

by VMs

range of pct. of total\per-core utilization per

session

total requested mips per

VM

pct. of total\per-core utlization of mips per

VM

total allocated mips per

VM

delta of pct. of total\per-core utilization be-

tween vms

requested mips per core

per VM

range of pct. of total\per-core utilization per

VM through session

Continued on next page
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Table A.3 – continued from previous page

Metrics KPIs

allocated mips per core

per VM

number of VMs running

on host

Memory

total ram pct. of ram utilization

total allocated ram pct. of ram underutilization

total requested ram pct. of ram overbooking

ram requested per VM active avg. of pct. of ram utilization

ram allocated per VM range of pct. of ram utilization

pct. of ram utilization per cloudlet

max\min total ram re-

quested

delta of pct. of ram utilization between VMs

ram requested per

cloudlet

range of pct. of ram utilization per VM

ram allocated per

cloudlet

Network

total bw pct. of bw utilization

total allocated bw pct. of bw underutilization

total requested bw pct. of bw overbooking

bw requested per vm active avg. of pct. of iops utilization

bw allocated per

cloudlet

range of pct. of iops utilization

max\min total bw re-

quested

pct. of bw utilization per cloudlet

delta of pct. of bw utilization between VMs

range of pct. of bw utilization per VM
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