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Περίληψη

Τα τελευταία χρόνια, οι τυχαιοκρατικοί αλγόριθμοι έχουν προσφέρει μια σημαντική τε-

χνική σχεδίασης αλγορίθμων στην Θεωρητική Πληροφορική, προσφέροντας αλγόριθμους με

μεγάλη αποδοτικότητα και εύκολη σχεδίαση. Η κλάση BPP σχεδόν αντικατέστησε την P

ως το μοντέλο του αποδοτικού υπολογισμού. Αυτή η πρόοδος, όμως, έθεσε φυσιολογικά το

ερώτημα: Η τυχαιότητα είναι εγγενές χαρακτηριστικό αυτής της υπολογιστικής ‘ευκολίασ’,

ή πρόκειται απλά για μια σχεδιαστική τεχνική που μπορεί να αφαιρεθεί μηχανιστικά επιβαρύ-

νοντας μόνο πολυωνυμικά τον αλγόριθμο· Πρόσφατες καινοτομίες στην ερευνητική περιοχή

δείχνουν ότι, κάτω από κάποιες εύλογες υποθέσεις, κάθε τυχαιοκρατικός αλγόριθμος μπορεί

να προσομοιωθεί από έναν ντετερμινιστικό, χωρίς να υπάρχει παραπάνω από πολυωνυμική επι-

βάρυνση στον αριθμό βημάτων (χρόνο) του αλγορίθμου. Κάποιοι ερευνητές πιστεύουν ακόμα

και ότι BPP = P Σε αυτό το κείμενο θα μελετηθούν τα αποτελέσματα αυτά που αφορούν

Ομοιόμορφες Συνθήκες, δηλαδή υποθέσεις που αφορούν ομοιόμορφα υπολογιστικά μοντέλα.

Μια παράλληλη προσέγγιση έρχεται από το πεδίο των Κυκλωμάτων Boole, που αποτελεί σύνη-

θες εναλλακτικό υπολογιστικό μοντέλο, παρ’οτι μη-ομοιόμορφο. Αποδεικνύεται ότι η ύπαρξη

κάτω φραγμάτων για τέτοια μοντέλα, είναι αποτέλεσμα της ύπαρξης τέτοιων ντετερμινιστικών

προσομοιώσεων.

Λέξεις Κλειδιά

Ντετερμινιστική Προσομοίωση, Τυχαιοκρατικοί Αλγόριθμοι, Τυχαιοκρατικές Κλάσεις Πο-

λυπλοκότητας, Κυκλώματα, Κάτω φράγματα
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Abstract

During the past years, randomization has offered a great comfort in Computer Scie-

nce, by providing efficient algorithms for many computational problems. The class BPP

has almost replaced P, as the class of efficiently solvable problems. This progress also

raised a question: The simplification given to our computations by using a random ”coin

toss” is inherent or circumstantial? In other words, randomization provides a non-trivial

computational boost-up, or it’s just a design comfort, and we can finally remove it. Recent

advances have proven that it is possible, under some reasonable assumptions, to replace

a BPP randomized algorithm with a deterministic one (i.e., to derandomize), only with

polynomial loss of efficiency. Today, there are many researchers who believe that finally

BPP = P. The main reason for this perception to be widely believed, is that real rando-

mness doesn’t really exist in computers. It is under discussion if it even exists in Nature.

Randomized Algorithms and ”random sources” occasionally used by Computer Scienti-

sts (especially Cryptographers) are based on functions whose behavior is simply hard to

predict. It is not clear that our computers have access to an ”endless stream” of indepe-

dent coin tosses. The main topic will be to investigate if we can simulate a randomized

algorithm by a deterministic one, using constructions that provide bits almost indistingui-

shable from bits chosen at random (using he Uniform Distribution). The existence of such

constructions, and the conditions necessary for their existence is a wide field of research

during the last two decades. Also, a different view on the issue of derandomization comes

from another area of research in Theoretical Computer Science, the Boolean Circuits, and

specifically from the effort to find lower bounds for certain families of circuits. The exi-

stence of such bounds could separate known Complexity Classes, and it would imply even

that P �= NP! The ”quest” for lower bounds, using Boolean Circuits as an alternative

model of computation, seemed easier than using the (traditional) Turing Machines, and

there were many and remarkable results. Unfortunately, all these efforts were (so far)

unfruitful, but, as we will see, they are closely related with derandomization conjectures.

Keywords

Derandomization, Uniform Assumptions, Circuit Lower Bounds, Deterministic Simu-

lation, Probabilistic Complexity Classes
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Chapter 1

Introduction

1.1 What is Derandomization?

During the past years, randomization has offered a great comfort in Com-
puter Science, by providing efficient algorithms for many computational
problems. The class BPP has almost replaced P, as the class of efficiently
solvable problems.

This progress also raised a question: The simplification given to our
computations by using a random ”coin toss” is inherent or circumstantial?
In other words, randomization provides a non-trivial computational boost-
up, or it’s just a design comfort, and we can finally remove it.

Recent advances have proven that it is possible, under some reasonable
assumptions, to replace a BPP randomized algorithm with a deterministic
one (i.e., to derandomize), only with polynomial loss of efficiency. Today,
there are many researchers who believe that finally BPP = P.

The main reason for this perception to be widely believed, is that real
randomness doesn’t really exist in computers. It is under discussion if it
even exists in Nature. Randomized Algorithms and ”random sources” occa-
sionally used by Computer Scientists (especially Cryptographers) are based
on functions whose behavior is simply hard to predict. It is not clear that
our computers have access to an ”endless stream” of indepedent coin tosses.

Randomized algorithms have some cases of possible powers, including:

• Randomization always help for hard problems (i.e. BPP = EXP)

• The power orf randomization is problem-specific.

• True randomness is never needed, and random coin tosses can be sim-
ulated deterministically (i.e. BPP = P).

The main topic will be to investigate if we can simulate a randomized al-
gorithm by a deterministic one, using constructions that provide bits almost

1



2 CHAPTER 1. INTRODUCTION

indistinguishable from bits chosen at random (using he Uniform Distribu-
tion). The existence of such constructions, and the conditions necessary for
their existence is a wide field of research during the last two decades.

Also, a different view on the issue of derandomization comes from an-
other area of research in Theoretical Computer Science, the Boolean Cir-
cuits, and specifically from the effort to find lower bounds for certain families
of circuits. The existence of such bounds could separate known Complexity
Classes, and it would imply even that P �= NP! The ”quest” for lower
bounds, using Boolean Circuits as an alternative model of computation,
seemed easier than using the (traditional) Turing Machines, and there were
many and remarkable results. Unfortunately, all these efforts were (so far)
unfruitful, but, as we will see, they are closely related with derandomization
conjectures.

1.2 Short History of Derandomization

As we mentioned above, in Computer Science randomization doesn’t really
exist. Depending on the theory we use to define and measure it, the meaning
of ”randomness” takes different forms. Viewed by Shannon’s Information
Theory, randomness represents the lack of information. In the context of
Kolmogorov’s Complexity Theory, it represents the lack of structure. In the
theory we’ll use as our model for randomness, it is viewed as an effect on an
observer with certain computational abilities. In this model, we view objects
as equal if they cannot be told apart by any efficient procedure. That
is, a Distribution that cannot be efficiently distinguished by the Uniform
Distribution will be considered random.

Hardness-Randomness Tradeoffs The main idea in derandomizing tech-
niques is the use of ahard computational problem to construct pseudorandom
sequences, i.e. sequences of bits that look random to any efficient observer,
which we will use to replace the random bits of a randomized algorithm.
The algorithm will not have enough time to distinguish the pseudorandom
sequence from the truly random one, and so it will behave in the same way.
The above idea, an interpretation of computational hardness as random-
ness, is known as ”Hardness-Randomness Tradeoffs”, and was introduced
during the 80’s by Andew Yao [Yao82], and M. Blum-S.Micali [BM84],
who in their works on Cryptography introduced the concept of hardness-
randomness tradeoffs: If we had a hard-to-compute function, we could use
it to compute a string that ”looks” random to any observer, by constructing
functions that perform this procedure, called Pseudorandom Generators.

The stronger the hardness assumption we make, the better the determin-
istic simulation we obtain! The exchange between computational hardness
and randomness forms a hypothetical ”curve”, in which we can consider two
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sides: The ”High-End”, in which we demand a full derandomization of a
probabilistic complexity class, and we ask for the corresponding hardness
assumption, and the ”Low-End”, in which we aks for the weakest hardness
assumption we can make, in order to obtain any version of a (non-trivial)
deterministic simulation of a probabilistic complexity class.

A few years later, Noam Nisan and Avi Wigderson [NW94] weakened the
hardness assumption, introducing new trade-offs, first time for the purposes
of derandomization, i.e. the simulation of every randomized algorithm by a
deterministic one. They showed that under an “average-case” assumption
we can build a pseudorandom generator strong enough to simulate every
probabilistic polynomial-time algorithm.

This work culminated in 1997, when Russell Impagliazzo and A. Wigder-
son finally proved in [IW97], that P = BPP if E requires exponential-size
circuits. In their proof they managed to show that an assumption about
the worst-case complexity of a problem implies an assumption about its
average-case complexity. Such a result is usually called a hardness ampli-
fication result, and it gave them the possibility to use the aforementioned
resuts of Nisan and Wigderson. This consists a “High-End Tradeoff” be-
tween Hardness and Randomness.

Uniform Derandomization All the above results where based on a non-
uniform setting, that is, the use of lower bounds of uniform classes in non-
uniform models. The problem with non-uniformity is that different model of
computation (circuit) is used for each input length, and there is no a priori
connection between the different circuits used.

In 1998, Impagliazzo and Wigderson gave the first result on a uniform
complexity assumption (namely BPP �= EXP). In their proof the use
the above results on the non-uniform setting, and many other results from
Complexity Theory.

The work on ”uniform” Derandomization was continued, and other classes,
such as ZPP,RP, andAM (which can be viewed as the randomized version
of NP) started to receive attention.

We will mainly focus to advances on Uniform Derandomization of BPP,
RP and Arthur-Merlin games, by presenting all necessary notions and tech-
niques. However, a short introduction to non-uniformm derandomization
(using Pseudorandom Generators) is inevitable, not only for the sake of
the completeness of the text and the historical antecedence of these results,
but because uniform derandomization uses tools developed especially for the
non-uniform setting.
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Chapter 2

Basic Definitions and Results

A basic knowledge of (classical) complexity theory, such as the Turing Ma-
chine computation model, basic complexity classes and fundamental results
is necessary. In the next sections, we briefly mention some basic notions,
which the advanced reader can skip.

2.1 Basic Complexity Facts

Definition 2.1. A function f : N→ N is called time-constructible or space-
constructible if there is a Turing Machine (from now TM) M that computes
tha function f on input n in time O(n+f(n)) or space O(f(n)), respectively.

By “time” we mean the number of steps of the TM M , and by “space”
the extra cells used by M during the computation. The time bound of a
TM must be superlinear, in order the TM to be able to read its input.

Definition 2.2. For a time-constructible function t(n), and a space-constructible
function s(n), let:

• DTIME(t(n)) be the set of languages decided by a polynomial-time
TM in t(n) time.

• NTIME(t(n)) be the set of languages decided by a polynomial-time
nondeterministic TM in t(n) time.

• DSPACE(s(n)) be the set of languages decided by a polynomial-time
TM using s(n) space.

• NSPACE(s(n)) be the set of languages decided by a polynomial-time
nondeterministic TM using s(n) space.

where n is the length of the input string x, usually denoted as |x|.

5



6 CHAPTER 2. BASIC DEFINITIONS AND RESULTS

These classes form hierarchies, that is, sequences of inclusions, which are
proper under some conditions, as we’ll see in the following theorems. The
hierarchies confirm our intuition, that if we let a TM run for strictly more
time or use strictly more space, it can compute strictly more languages.
Using the above definitions, we can construct our basic complexity classes:

• P =
�

c∈NDTIME(nc)

• NP =
�

c∈NNTIME(nc)

• E = DTIME
�
2O(n)

�

• EXP = DTIME
�
2n

O(1)
�

We also define the following Complexity Classes:

• EE = DTIME
�
2n

O(n)
�

• QuasiP = DTIME(2poly logn)

• SUBEXP =
�

�>0DTIME(2n
�
)

and the advice string computational model:

Definition 2.3. Let C be a class of languages, and F a class of functions
from nonnegative integers to strings. We define the class C/F to consist of
all languages A = {x : �x, h(|x|)� ∈ L} for some L ∈ C and h ∈ F . We use
C/h(n) for a certain function h. We call h|x| = h(|x|) advice string for each
input length.

According to the above definition, we introduce the class P/poly as the
class of languages L for which there exists a language B ∈ P and a function
h ∈ poly(n), with h : |h(n)| ≤ p(n) for some fixed polynomial p, such that:

x ∈ L⇔ �x, h(|x|)� ∈ B
It is clear from the definition that we can use a different advice string for
each input length1.

One can note the similarity between this class and the classical char-
acterization of NP (the existence of a succinct certificate for each “yes”
instance2). The difference between the two characterizations is that the cer-
tificate (or witness) h(|x|) of a string x ∈ L must work for all strings of the
same length. We cannot simply guess such a witness, and instead have to
store it in the “program”. In fact, it is known that P/poly −NP �= ∅, since
P/poly contains a non-recursive language (a version of the Halting Problem).

1We will give an alternative definition P/poly on a next chapter, in the context of
Boolean Circuits.

2It’s a classical Complexity’s Theorem that: “A language L ∈ NP if and only if
there exists a relation R, which is polynomially decidable and polynomially balanced (i.e.
(x, y) ∈ R ⇔ |x| ≤ |y|k , for some k ∈ N), such that: L = {x | ∃y : (x, y) ∈ R}”.
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2.2 Oracle Turing Machines and Relativization

Oracle Turing Machines are an extension of regular machines, in which
we add an extra property: the ability to function in an alternative compu-
tational “universe”. There, we can explore new computational abilities, and
find alternative relations between known complexity classes. The transition
to this new “universe” is done by giving access to an extra language A, called
oracle, which we can ask questions of the form: ”Is x in A?”, and take an
instant answer. We give the formal definition:

Definition 2.4. An Oracle Turing Machine is a Deterministic or Nonde-
terministic Turing Machine M , that has a special read-write tape and three
extra states: q? (the query state), and qyes, qno (the answer states). We also
specify a language A ⊆ {0, 1}∗, that is used as the oracle for M .

During the execution, M can enter the state q?, and the machine enters
qyes if z ∈ A, or qno if z /∈ A, where z is the content of the special oracle
tape. Regardless the choice of A, a membership query to A counts as one
single computational step. We denote such a machine M , using A as oracle
on input x as: MA(x).

Also, we can define Oracle Turing Machines using Boolean functions
f : {0, 1}∗ → {0, 1} instead of languages (we always use total functions on
{0, 1}∗), because each such function f can be regarded as the characteristic
function of the language A = {x | f(x) = 1}. We write M f to denote the
computation of M using f as an oracle.

We can group time or space bounded Oracle Turing Machines, and create
variations of our usual classes. For example, PA is the class of all languages
decided by a polynomial-time deterministic Turing Machine with oracle ac-
cess to A, NPA its non-deterministic counterpart, and in general:

Definition 2.5. If C is a complexity class, we denote CA the complexity
class of all languages decided by the same machines as in C, but now with
oracle access to A.

Also, if we define PSAT, where SAT is the language encoding the well-
known NP-complete problem, we can easily see that it is equal to any class
PL, where L ∈ NP, because every L ∈ NP is reduced to SAT in polynomial
time. So, we can rewrite this class as PNP.

In general, when one class uses as oracle another class, it’s implied that
the former’s languages are decided by Turing Machines which use as oracle
any complete problem of the latter.

A bizarre phenomenon concerning this kind of classes is that there is
a language A for which PA = NPA, and another language B for which
PB �= NPB. So, there are contradicting “alternative universes“, which
(unfortunately) means that oracles don’t have a conclusive answer for P vs
NP.
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It is remarkable that Oracle Turing Machines have the fundamental (and
crucial) properties of regulars: They can be also represented by strings,
and one can simulate another with negligible loss of efficiency, regardless of
what is the oracle A. So, any result using only these properties in regular
TMs holds also for TMs with oracle access to every language A. In other
words, it can be “transferred” from our regular computational universe to
any alternative. These results are called relativizing results. P vs NP is a
nonrelativizing result, due to the inconsistency we saw above.

We end this section by defining an “oracle type” reduction, called Turing
reduction. Intuitively, a language A is Turing reducible to a language B,
if there is a TM M for A, which can ask during its computation some
membership questions about language B (i.e. it can use B as an oracle).
We use directly Boolean functions in the formal definition, because we will
find it more flexible in our future use of these reductions:

Definition 2.6 (Turing Reductions). A function f is polynomial-time Tur-
ing reducible to a function g, denoted by f ≤p

T g, if there is a polynomial-time
Oracle Turing Machine M g which computes f .
Of course, we can restrict the length of the queries by writing fn ≤p

T gh(n)
which means3 that the queries to the oracle g have length at most h(n). The
same definition holds for languages (using their characteristic functions): A
language A is polynomial-time Turing reducible to a language B, denoted by
A ≤p

T B,if χA ≤p
T χB.

We mention some essential properties of Turing Reductions:

• A ≤p
T A (Reflexive property)

•
�
A ≤p

T B
�
∧
�
B ≤p

T C
�
⇒ A ≤p

T C (Transitive propery)

• A ≤p
m B ⇒ A ≤p

T B, where ”≤p
m” denotes the (regular) Karp re-

duction, which implies that Turing reductions are stronger than Karp
reductions.

• A ≤p
T B ⇒ A ≤p

T B

• P and PSPACE are closed under Turing reductions.

• NP = coNP if and only if NP is closed under Turing reductions.

3For a Boolean function f , fn denotes the restriction of f to inputs of length n.
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2.3 The Polynomial-Time Hierarchy

Now that we have seen the power given by oracles, it’s reasonable to
question how much power we take by adding a certain oracle, and which is
the relation between different oracle classes.

We will define an hierarchy of such classes, which capture a large variety
of problems, in order to study these questions, and also relate with them
the complexity classes we ’ve already defined.

Definition 2.7 (Polynomial Hierarchy). We recursively define:
Δp

0 = Σ
p
0 = Π

p
0 = P, and for any i ∈ N:

• Δp
i+1 = PΣp

i

• Σp
i+1 = NPΣp

i

• Πp
i+1 = coNPΣp

i

Also we have:
PH ≡

�

i�0

Σp
i

Intuitively, each time we “jump” on the next Δp
i by using the previous

Σp
i−1 as an oracle to a polynomial-time deterministic machine. Then, Σ

p
i is

its non-deterministic analogue, and Πp
i the complementary class of Σ

p
i .

The inclusions are shown in the following Hasse diagram, where A→ B
means A ⊆ B:

Σp
1

���
��

��
��

Σp
2

���
��

��
��

· · ·

P

����������

���
��

��
��

� Δp
2

���������

���
��

��
��

Δp
3

����������

���
��

��
��

�

Πp
1

���������
Πp

2

���������
· · ·

All our regular classes exist in the first two levels:

• P = Δp
1 , NP = Σp

1 , coNP = Πp
1

• PNP = Δp
2 , NPNP = Σp

2 , coNPNP = Πp
2

We remind to the reader that the famous Traveling Salesman Problem
(TSP) is in FPNP (in fact it is FPNP-complete), where FP is the class of
functions (instead of languages) decided by polynomial-time deterministic
Turing Machines, i.e. the ”function variation” class of P, fact that empha-
sizes he robustness of those classes.



10 CHAPTER 2. BASIC DEFINITIONS AND RESULTS

The strange symbols Σ, Π, Δ, are used for traditional reasons, since
Polynomial Hierarchy is the “efficient” analogue of Arithmetical Hierarchy,
defined by Stephen Kleene, whose main difference is that it deals with the
decidability, and not the efficient recognition of languages.

We mention some basic properties of these classes. For every i > 0:

• Σp
i ∪Π

p
i ⊆ Δ

p
i+1 ⊆ Σ

p
i+1 ∩Π

p
i+1 ⊆ PSPACE

• Closure Properties:

– If A,B ∈ Σp
i , then A ∪B ∈ Σ

p
i , A ∩B ∈ Σ

p
i and A ∈ Π

p
i .

– If A,B ∈ Πp
i , then A ∪B ∈ Π

p
i , A ∩B ∈ Π

p
i and A ∈ Σ

p
i .

– A,B ∈ Δp
i , then A ∪B ∈ Δ

p
i , A ∩B ∈ Δ

p
i and A ∈ Δ

p
i .

• Also, NPΣp
i∩Π

p
i = Σp

i .

Despite its elegance, the oracle description of the Polynomial Hierarchy
is not always useful and clear, due to the tricky oracle description. We’ll
give an aternative description of each language L ∈ PH, used also in the
Arthmetical Hierarchy for the first time. Firstly, we will “connect” each
L ∈ Σp

i class to the previous Π
p
i−1 class

4:

Theorem 2.1. Let L be a language ,and i ≥ 1.
L ∈ Σp

i iff there is a polynomially balanced relation R (that is, (x, y) ∈ R⇔
|x| ≤ |y|k for some k), such that the language {x; y | (x, y) ∈ R} is in Πp

i−1,
and:

L = {x | ∃y : (x, y) ∈ R}

In other words, we can jump from Πp
i−1 to Σ

p
i class by adding an(other)

existential quantifier in front of our predicate R. Of course, in the same
way we can “jump” from a Σp

i−1 to a Π
p
i class, by using the complementary

universal quantifier:

Theorem 2.2. Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a

polynomially balanced relation R, such that the language {x; y | (x, y) ∈ R}
is in Σp

i−1, and:

L = {x | ∀y, |y| ≤ |x|k : (x, y) ∈ R}

4Recall the footnote of page 6 for a simplification of this Theorem on the 1st level of
the Polynomial Hierarchy.
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By applying recursively the above Theorems, we can have a full description
of each language in the Polynomial Hierarchy, using alternating quantifiers:

L ∈ Σp
i ⇔ L = {x | ∃y1∀y2∃y3 · · ·Qyi : (x, y1, ..., yi) ∈ R}

where the ith quantifier Q is ∀, if i is even, and ∃, if i is odd. And also:

L ∈ Πp
i ⇔ L = {x | ∀y1∃y2∀y3 · · ·Qyi : (x, y1, ..., yi) ∈ R}

where the ith quantifier Q is ∀, if i is odd, and ∃, if i is even. In both cases R
is a is a polynomially balanced and polynomially-time decicable (i+ 1)-ary
relation. We can intuitively say that a language is in Σp

i if it can be described
by i alternating quantifiers (apllied on a proper prediacate) starting with ∃,
and in Πp

i , if the the first is ∀.
There are certain results concerning the inclusions in this Hierarchy.

So far, we believe that the inclusions are proper, and the Hierarchy has
infinite levels (unless P = NP). The following Theorems show under which
conditions (which are not likely to be valid) that is not happening:

Theorem 2.3. If for some i ≥ 1, Σp
i = Π

p
i , then for all j > i:

Σp
j = Π

p
j = Δ

p
j = Σ

p
i

Or, the polynomial hierarchy collapses to the ith level.

Especially:

• If P = NP, or even NP = coNP, the Polynomial Hierarchy collapses
to the first level.

• If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

It is known that every language in PH can be simulated by a polynomial-
space deterministic Turing Machine, i.e. PH ⊆ PSPACE. But, it is open
question whether PH = PSPACE. If it finally is, then PH has complete
problems (PSPACE has enough), and so it collapses to some finite level.

From the above it is obvious that there are many complexity classes which
can be fully described by the number and the type of quantifiers applied on
a polynomial-time complutable and polynomially balanced predicate.

We present an alternative characterization of complexity classes using
only the quantifiers needed for the quantification implied by the definition
of each class. This notation provides us with a uniform description of com-
plexity classes defined in various contexts (as we’ll see in the next section),
and we’ll be able to obtain immediate relations and inclusions among them.
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Definition 2.8. We denote as C = (Q1/Q2), where Q1, Q2 ∈ {∃, ∀}, the
class C of languages L satisfying:

• x ∈ L⇒ Q1y R(x, y)

• x /∈ L⇒ Q2y ¬R(x, y)

We can easily notice that: coC = co(Q1/Q2) = (Q2/Q1).

So, using the classical existential and universal quantifiers we can define
the basic complexity classes, by implying their definitional properties. For
example, in class P there is a computational path which either accepts,
either rejects. So, it is easy to see that P = (∀/∀). On the other hand, for
languages in class NP there is a computational tree for each input, and we
accept it if there is an accepting branch, or we reject it if all the branches
reject. Hence, we have that: NP = (∃/∀). The complementary class coNP
can be also defined as coNP = (∀/∃).

Instead of using a single quantifier, we can use quantifier “vectors”, and
so we can describe every class in the Poylnomial hierarchy, according to the
alternating quantifier characterization we mentioned above:

• Σp
2 = (∃∀/∀∃), Πp

2 = (∀∃/∃∀), and in general:

• Σp
k = (∃∀ · · ·Qm)/∀∃ · · ·Qn), where:

– Qm represents ∃, if k is odd, or ∀, if k is even, and
– Qn represents ∀, if k is odd, or ∃, if k is even.

• Πp
k = (∀∃ · · ·Qm/∃∀ · · ·Qn), where:

– Qm represents ∀, if k is odd, or ∃, if k is even.
– Qn represents ∃, if k is odd, or ∀, if k is even.

2.4 Randomized Complexity Classes

In this section we will develop a theory for Turing Machines using prob-
abilistic choices. This is a computational model used very widely, as we
saw in the introductory chapter, and the question of the intrinsic relation
between these complexity classes and their deterministic analogues is the
main purpose of this thesis.

Basic definitions and results of Randomized Computation and Complex-
ity Theory will be mentioned, by introducing the notion of a probabilistic
TM, the different types of algorithms used, and the complexity classes con-
taining them.
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Definition 2.9 (Probabilistic Turing Machines). A Probabilistic Turing
Machine (PTM) is a Turing Machine with two transition functions δ0 and
δ1. To execute a PTM M on an input x, we choose in each step with
probability 1/2 to apply the transition function δ0 or δ1. This choice is
indepedent of all previous choises. The machine outputs ”yes” (accepts) or
”no” (rejects). We denote by M(x) the random variable corresponding to
the value M writes at the end of its proccess. For a function T : N → N,
we say that M runs in T (n)-time if for an input x, M halts in T (|x|) steps
regardless of the random choices it makes.

The ressemblance between a PTM and a nondeterministic TM is re-
markable (an NDTM has also two transition functions), and confirms the
universality of non-determinism (which is although a non-realistic model).
The main difference between them is the perception we have about the
computations graph: A NDTM is said to accept, if ∃ a branch that outputs
”yes”, whereas in the case of PTMs, we consider the fraction of accepting
branches.

Definition 2.10 (BPP Class). For T : N → N, and L ⊆ {0, 1}n, we say
that a PTM M decides L in time T (n), if ∀x ∈ {0, 1}n, M halts in T (|x|)
steps, and:

• If x ∈ L⇒ Pr[M(x) = ”yes”] ≥ 2/3

• If x /∈ L⇒ Pr[M(x) = ”no”] ≥ 2/3
We denote by BPTIME(T (n)) the class of languages decided by PTMs in
O(T (n)) time. We also define:

BPP =
�

c

BPTIME(nc)

The class BPP captures our notion of ”effective” probabilistic compu-
tation, exactly as P in deterministic computations. Our main topic wil be
to explore the relation between the two computational models and their
complexity classes.

Also, the class BPP captures the (probabilistic) algorithms with (what
we call) ”two-sided” error, which means that a BPP algorithm is allowed
to make error for both outputs, i.e. answer ”no” when x ∈ L or ”yes” when
x /∈ L.

However, many algorithms have appeared the last decades which have
only ”one-sided” error, that is, they never answer ”yes” if x /∈ L, although
they may answer ”no” when x ∈ L (and vice versa). A classical example is
the ”Miller-Rabin” and ”Solovay-Strassen” primality tests.
So, we need to introduce the proper complexity classes for these problems:

Definition 2.11 (RP Class). RTIME(T (n)) contains all languages L for
which ∃ PTM M , running in T (n) time such that:
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• If x ∈ L⇒ Pr[M(x) = ”yes”] ≥ 2/3

• If x /∈ L⇒ Pr[M(x) = ”no”] = 1

We also define:

RP =
�

c

RTIME(nc)

Basic Properties:

• RP ⊆ NP (Since every accepting path is a ”certificate” for the input.)

• The class coRP = {L|L ∈ RP} captures ”one-sided” algorithms with
the error in the other direction.

• RP ⊆ BPP and coRP ⊆ BPP.

• The choice ”2/3” on the above definitions is arbitrary. By indepedent
repetitions, we can increase it however we want! In fact, we can reduce
it to 1− 2−p(|x|) (for p(|x|) > 1).

• P ⊆ BPP ⊆ P/poly and BPP ⊆ EXP.

• Also BPP ⊆ Σp
2 ∩Πp

2 (Sipser-Gács Theorem)

• If P = NP, then BPP = P.

We know that it’s not very likely that P = NP, but the possibility
that BPP �= P remains still open. However, many researchers suspect
that finally BPP = P. On the next chapters, we will show that if certain
plausible complexity-theoretic conjectures are true, then BPP = P, and
our two models of efficient computations coincide.

Also, BPP has not complete problems (as far as we know). That is an
expected property, sinceBPP is a semantic class, becauseBPP TMs accept
or reject with a certain probability, which is a non-trivial property. We can’t
even ”test” if a given TM has this property, due to classical undecidability
results (Rice’s Theorem).

If, finally, we prove that P = BPP, then BPP will have a complete
problem (Since P has).

2.5 Interactive Proof Systems

The standard ”certificate” NP scenario, where we accept a statement (for
example a proof) if someone provides a succinct certificate (which exists
only for true statements), can be generalized by introducing interaction in
the basic scheme. That is, the person who verifies the proof asks the person
who provides the proof a series of ”queries”, before he is convinced, and if
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he is, he provide the certificate. From now on, the first person will be called
verifier, and the second prover.

If the verifier is a simple deterministic TM, then the interactive proof
system is described precisely by the class NP. So, if we want to obtain more
computational power using the interaction, we have to let the verifier be
probabilistic, which means that the verifier’s queries will be computed using
a probabilistic TM.

We now give the precise definition of probabilistic proof systems, and
the class contains them:

Definition 2.12. For an integer k ≥ 1 (that may depend on the input
length), a language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a function P : {0, 1}∗ →
{0, 1}∗ such that:

• x ∈ L⇒ ∃P : Pr[�V, P �(x) = 1] ≥ 2
3 (Completeness)

• x /∈ L⇒ ∀P : Pr[�V, P �(x) = 1] ≤ 1
3 (Soundness)

We also define:

IP =
�

c≥1

IP[nc]

In class IP, the verifier’s random string is private, since the prover does
not depend on the verifier’s random strings. Often these are called private
coin interactive proofs. In a variation called Arthur-Merlin proofs (or pub-
lic coin proofs), the verifier’s questions are obtained by tossing coins and
revealing them to the prover.

The story goes like this (from [Bab85]5):

“King Arthur recognizes the supernatural intellectual abilities of
Merlin, but doesn’t trust him. How should Merlin convince the
intelligent but impatient King that a string x belongs to a given
language L? If L ∈ NP, merlin will be able to present a witness
which Arthur can check in polynomial time.”

So, Merlin plays the role of the prover, and Arthur the role of the verifier,
but in this case, Merlin has even more power than an ordinary prover, since
he is able to read the whole history of the computation of Arthur on the
given input, including the random coin tosses made by Arthur.

5László Babai used the legend of the medieval England to emphasize the analogy
between a prover’s infinite powers and Merlin’s “magic”. Merlin cannot predict Arthur’s
future random choices, and Arthur has no way of hiding from Merlin the results of his
previous random choices. This will become clearer in the formal definition. The interested
reader is also referred to [BM88]
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Definition 2.13. For every k, the complexity class AM[k] is defined as
a subset to IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that are not
contained in these messages.
We denote AM ≡ AM[2].

So, AM is the class of languages L with an interactive proof, in which
the verifier sends a random string, and the prover responding with a mes-
sage, where the verifier’s decision is obtained by applying a deterministic
polynomial-time algorithm to the message.

Also, the class MA consists of all languages L, where there’s an inter-
active proof for L in which the prover first sending a message, and then the
verifier is ”tossing coins” and computing its decision by doing a determinis-
tic polynomial-time computation involving the input, the message and the
random output (i.e. the ”coins”).

Basic properties of Interactive Proof Systems:

• The ”output” �V, P �(x) is a random variable.

• It is remarkable that every language in the Polynomial Hierarchy has
an interactive proof. In fact, it is known that IP = PSPACE (proved
by Adi Shamir in 1990).

• We can replace in Definition 2.12 the completeness parameter 2/3 with
1− 2−ns

and the soundness parameter 1/3 by 2−n
s
, without changing

the class for any fixed constant s > 0.
We can also replace the (completeness) constant 2/3 with 1, without
changing the class, but replacing the soundness constant 1/3 with 0, is
equivalent with a deterministic verifier, so class IP is reduced to NP.

• Obviously, MA ⊆ AM.

• It should be clear that MA[1] = NP, AM[1] = BPP, and that AM
could be intuitively approached as the probabilistic version of NP
(usually denoted as AM = BP·NP).

• We can relate Arthur-Merlin classes with the Polynomial Hierarchy
(as we did with BPP). In fact: AM ⊆ Πp

2 and MA ⊆ Σp
2 ∩Πp

2.

If we consider the complexity classes AM[k] (the languages that have
Arthur-Merlin proof systems of a bounded number of rounds, they form an
hierarchy :

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Unlike the Polynomial Hierarchy, in which we believe the inclusions are
proper, Arthur-Merlin Hierarchy collapses to the second level:
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Theorem 2.4. For constants k ≥ 2, AM[k] = AM[2].

It is, by definition, AM[k] ⊆ IP[k] for all k. But, S. Goldwasser and M.
Sipser proved in 1987 the following counterintuitive result:

Theorem 2.5. For every k with k(n)-computable in poly(n):

IP[k] ⊆ AM[k + 2]

Also, R. Boppana, J. H̊astad and S. Zachos proved a significant collapsion
theorem:

Theorem 2.6. If coNP ⊆ AM, then the Polynomial Hierarchy collapses
to Σp

2 = Π
p
2 = AM.

The following Hasse diagram caputures the inclusions between the most
important complexity classes we’ve seen so far:

NP �� MA ��

������������ Σp
2

AM

���
��

��
��

��
��

��
��

��
��

��
�

P ��

������������������

���
��

��
��

��
��

��
��

� BPP

�������������������

���
��

��
��

��
��

��
��

��

coAM

������������������������

coNP �� coMA ��

������������
Πp

2

We will now give a (private coin) Interactive Proof system for the most fa-
mous problem in IP that is not known to be inNP: Graph non-isomorphism.
We say that two graphs G1 and G2 are isomorphic, if there is a permutation
π of the labels of the nodes of G1, such that π(G1) = G2. If G1 and G2 are
isomorphic, we write G1

∼= G2. So, we formulate the following problems:

• GI: Given two graphs G1, G2, decide if they are isomorphic.

• GNI: Given two graphs G1, G2, decide if they are not isomorphic.

It is obvious that GI ∈ NP, since a succinct certificate for the isompor-
phism is the permutation π. So, GNI is in coNP, as the complement of GI.
We will give an interactive proof for GNI:
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Verifier: Picks i ∈ {1, 2} uniformly at random. Then, it permutes randomly
the vertices of Gi to get a new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H. Let Gj be the
graph. Sends j to V .
Verifier: Accept if i = j. Reject otherwise.

Now, we can confirm that it is indeed an Interactive Proof protocol:

• If G1 � G2, then the powerfull prover can (nondeterministivally) guess
which one of the two graphs is isomprphic to H, and so the Verifier
accepts with probability 1.

• IfG1
∼= G2, the prover can’t distinguish the two graphs, since a random

permutation of G1 looks exactly like a random permutation of G2. So,
the best he can do is guess randomly one, and the Verifier accepts
with probability (at most) 1/2, which can be reduced by additional
repetitions.

This proof system relies on the Verifier’s access to a private random
source which cannot be seen by the Prover, so we confirm the crucial role
the private coins play.

This protocol couldn’t be an Arthur-Merlin (public coin) proof system,
but we can produce an alternative protocol by restating our problem6, which
places GNI in the AM class:

Theorem 2.7. GNI ∈ AM.

We discussed before why GI ∈ NP. It is open whether GI is NP-
complete, and along with FACTORING, is the most famous problem that is
not known to be either in P or NP-complete.

If it finally is NP-complete, we have that GNI is coNP-complete, and
Theorem 2.6 implies that the Polynomial Hierarchy collapses to the 2nd level.

2.6 Counting Complexity Essentials

We will give a brief introduction to Counting Problems and Classes. In
this kind of computation, we are interested not only in the existence of a
solution, but in the number of different solutions of a certain problem. As
an example, we can define the following variation of SAT:

Definition 2.14 (#SAT). Given a Boolean expression, compute the number
of different truth assignments that satisfy it.

6For detailed analysis of the protocol, see [AB09], pages 151-155.
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A more important problem is counting the number of different perfect
matchings on a bipartite graph. We know that this number is given by a
characteristic of the adjacency matrix, called the permanent, and defined as
follows:

perm(A) =
�

σ∈Sn

n�

i=1

Ai,σ(i)

where A is a “0,1”-matrix, and Sn is the set of all permutations of n elements.
Thus, we have the following formal definition:

Definition 2.15 (PERMANENT). Given the adjacency matrix A of a bi-
partite graph, compute the number of different perfect matchings for this
graph, that is the quantity:

perm(A) =
�

σ∈Sn

n�

i=1

Ai,σ(i)

We can now define a class containing such “counting” problems. This
class contains functions, and not languages (decision problems) as P and
NP, because we are not interested only in a “yes”/“no” output, but in a
certain answer (e.g. the number of satisfying truth assignments for a Boolean
expression).

Definition 2.16 (#P). A function f : {0, 1} → N is in #P, if there exists
a polynomial p : N → N, and a polynomial-time Turing Machine M , such
that for every x ∈ {0, 1}∗:

f(x) =
���
�
y ∈ {0, 1}p(|x|) :M(x, y) = 1

����

Intuitively, #P contains problems of finding the number of y’s satisfying
a polynomial-time decidable relation R(x, y), given the input x.

An important question concering #P is if all problems in it are efficiently
solved, that is is if #P ⊆ FP, or if #P = FP. We do know that if #P =
FP, then P = NP, since computing the number of certificates is harder
than finding out whether a certificate exists, and if P = PSPACE (which
is not likely), then #P = FP, since counting the number of certificates can
be done in polynomial space.

Normally, the next step after introducing a complexity class, is to define
reductions among its problems. The detailed definition of such reductions
will not mentioned here7, but we can intuitively say that a function f is
#P-complete, if it is in #P, and a polynomial-time algorithm for f implies
that # P = FP. We have the following results:

Theorem 2.8. #SAT is #P-complete.

7The reader is referred to Papadimitriou’s [Pap94] and Arora-Barak’s [AB09] textbooks
for formal definitions.
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Theorem 2.9 (Valiant’s Theorem). PERMANENT is #P-complete.

Also, we can define counting classes respicting the parity of the number
of accepting paths:

Definition 2.17. A language L is in class ⊕P iff there is a polynomial-
time nondeterministic Turing Machine M such that x ∈ L iff the number of
accepting paths of M on input x is odd.

We conclude this section by stating a quite counter-intuitive result. Both
#P and PH are natural generalization ofNP, but the they have definitional
differences (alternation of quantifiers and counting solutions), and different
structure (the former is a class of functions while the latter is a class of
languages), so it seemed quite implausible to correlate them somehow.

However, Seinosuke Toda proved in 1989 [Tod91] that counting is stronger
than quantifiers:

Theorem 2.10 (Toda’s Theorem).

PH ⊆ P#SAT

The theorem states that we can efficiently solve any problem in the
Polynomial Hierarchy, given an oracle8 to a #P-complete problem.

2.7 Pseudorandom Constructions

2.7.1 Pseudorandom Generators

The notion of pseudorandomness started from Cryptography, where we need
to extend a random key to a much larger string, which must seem ”random
enough”. Cryptographers’ solution consists on focusing on the distribution
of strings, that such a distribution has to look like the Uniform Distribution
to every polynomial-time algorithm. Such a distribution is called pseudo-
random.

We give the following definition:

Definition 2.18 (Pseudorandom Generators (PRGs)). Let G : {0, 1}∗ →
{0, 1}∗ be a polynomial-time computable function. Also, let S : N→ N be a
polynomial-time computable function such that ∀n : S(n) > n. We say that
G is a pseudorandom generator of stretch S(n), if |G(x)| = S(|x|) for every
x ∈ {0, 1}∗, and for every probabilistic polynomial-time algorithm A, there
exists a negligible9 function � : N→ [0, 1] such that:

��Pr [A(G(Un)) = 1]− Pr
�
A(US(n)) = 1

��� < �(n)

8We remind that a Turing Machine can use a language as “oracle”, that is, it has access
to language’s characteristic function, and each membership (to the language) question
takes one computational step.

9A function � : N → [0, 1] is called negligible if �(n) = n−ω(1).
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for every n ∈ N.

The above definition implies that it is infeasible for polynomial-time
adversaries to distinguish between a completely random string of length
S(n), and a string that was generated by applying the generator G to a
much shorter string of length n.

Also, this definition will not be used till the end. Insted, on a next chap-
ter, we’ll give an alternative and ”weaker” definition based on a different
(non-uniform) model of computation. So, in order to be clear, the Genera-
tor in Definition 2.18 will be called from now on a ”Secure Pseudorandom
Generator”.

As we can see from the definition, a Pseudorandom Generator is defined
by its three fundamental properties:

1. Stretch Function: Any pseudorandom generator stretches ”short”
strings of length n, called seeds, into longer outputs of length S(n).
The function S : N→ N is called the stretch function of the generator.

2. Computational Indistinguishability: A basic property of a gener-
ator is that it ”persuades” certain Turing Machines that it’s output is
uniformly random. In other words, any algorithm A (with certain com-
putational abilities, probabilistic polynomial-time in the above defini-
tion), who might be thought as an ”observer”, cannot decide whether
a string is an output of the generator, or a truly random string.

3. Resources used: Since a generator is a function, it has its own com-
putational complexity, i.e. the computational resources it is allowed
to use. In the above definition, we chose for the generator to work
in polynomial time. As we mentioned above, in next chapters we will
adapt this property.

The most remarkable result concerning Definition 2.18 is that we can
connect the existence of pseudorandom generators, to the (conjectured) ex-
istence of one-way functions. In fact, we can use any one-way function to
construct a generator. The following theorem states that, proved by Johan
H̊astad, Russell Impagliazzo, Leonid Levin and Michael Luby in 1999:

Theorem 2.11. If one-way functions exist, then for every c ∈ N, there
exists a pseudorandom generator with stretch S(n) = nc.

Despite its theoretical value, the above Theorem can’t be used until we
find certain one-way functions. We will use, instead, conjectures on the
hardness of certain functions (that is, the lower bound of resourses needed
for their computation) and on the complexity classes containing them.
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We end this section, by defining a variation (in fact a “relaxed” version)
of a pseudorandom generator, called a Hitting Set Generator. This is a
function G, such that for any adversary A which accepts a randomly chosen
z with probability at least ε, it is required to ”provide” just one example z
that A accepts. Formally:

Definition 2.19 (Hitting Set Generators (HSGs)). A function G : {0, 1}k →
{0, 1}m, for m > k is a Hitting Set Generator for a class A, if for every
function A : {0, 1}m → {0, 1} in A such that Prz∈{0,1}m [A(z)) = 1] > ε,

there exists a y ∈ {0, 1}k such that A(G(y)) = 1.



Chapter 3

Boolean Circuits

3.1 An Introduction to Boolean Circuits

A Boolean Circuit is a natural model of nonuniform computation, a gen-
eralization of hardware computational methods. Its main difference from
the (uniform) Turing Machine model is that while the same T.M. is used on
all input sizes, a nonuniform model allows a different circuit (or a different
algorithm) to be used for each input size. We give the formal definition of
a circuit:

Definition 3.1 (Boolean circuits). For every n ∈ N an n-input, single
output Boolean Circuit C is a directed acyclic graph with n sources and one
sink.

• All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).

• The vertices labeled with ∧ and ∨ have fan-in (i.e. number or incoming
edges) 2.

• The vertices labeled with ¬ have fan-in 1.

• The size of C, denoted by |C|, is the number of vertices in it.

• For every vertex v of C, we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi, and otherwise
val(v) is defined recursively by applying v’s logical operation on the
values of the vertices connected to v.

• The output C(x) is the value of the output vertex.

• The depth of C is the length of the longest directed path from an input
node to the output node.

23
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The fixed size of the input limits our model to only one input size. In
order to overcome this, we need to allow families (or sequences) of circuits
to be used:

Definition 3.2. Let T : N→ N be a function. A T (n)-size circuit family is
a sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and a single
output, and its size |Cn| ≤ T (n) for every n.

Note that these infinite families of circuits are defined arbitrarily. There
is no pre-defined connection between the circuits, and also we haven’t any
”guarantee” that we can construct them efficiently.

Like each new computational model, we can define a complexity class on
it by imposing some restriction on a complexity measure. In the case of
circuits, we can define such a measure by bounding the size of each circuit
of a family that accepts a language L:

Definition 3.3. We say that a language L is in SIZE(T (n)) if there is a
T (n)-size circuit family {Cn}n∈N, such that ∀x ∈ {0, 1}n:

x ∈ L⇔ Cn(x) = 1

And, by taking all circuit families of polynomial size, we define the class
of “efficient” circuit computation:

Definition 3.4. P/poly is the class of languages that are decidable by poly-
nomial size circuits families. That is,

P/poly =
�

c

SIZE(nc)

A main concern in this point, is to connect somehow this new computa-
tional model with our existing one. Using the fact that every language in P
can be transformed to a (polynomial-zize) circuit, as stated in the following
theorem:

Theorem 3.1. Let CVP (CIRCUIT VALUE Problem) denote the language con-
sisting of all pairs �C, x�, where C is an n-input and single-output circuit,
and x ∈ {0, 1}n is such that C(x) = 1. CVP is P-complete. 1.

we can reduce every language in P in P/poly :

Theorem 3.2. P � P/poly

1We remind that a language is P-complete if it is in P, and every language in P is
logspace-reducible to it.
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The inclusion is proper, because we know that there are undecidable lan-
guages with polynomial-sized circuits (which aren’t obviously in P). The
”circuit version” of HALTING PROBLEM is one of them.

Karp and Lipton posed the question of whether SAT is or not in P/poly.
They proved in [KL80] that if that happens, i.e. if SAT has polynomial-size
circuits, then the Polynomial Hierarchy collapses to its second level:

Theorem 3.3 (Karp-Lipton). If NP ⊆ P/poly, then PH = Σp
2.

Similarly, the following theorem shoes that P/poly seems not to contain
EXP2:

Theorem 3.4 (Meyer’s Theorem). If EXP ⊆ P/poly, then EXP = Σp
2.

Just like the Turing Machine model, there exists an Hierarchy Theo-
rem for Boolean Circuits, proving that larger circuits can compute strictly
more functions than smaller circuits (fact that assures the robustness of this
computational model):

Theorem 3.5 (Nonuniform Hierarchy Theorem). For every functions T, T � :
N→ N with 2n

n > T �(n) > 10T (n) > n,

SIZE(T (n)) � SIZE(T �(n))

3.1.1 Uniformly Generated Circuits

The main difference between the classes P and P/poly is that the latter
contain languages for which there exists a circuit family to decide it, even if
we have no way of constructing this family. That’s the reason why patholog-
ical phenomena exist, such as that P/poly contains undecidable languages.

So, a first approach would be to try to restrict our study to the families
that can actually be constructed (let’s say by an efficient Turing Machine):

Definition 3.5 (P-Uniform Circuit Families). A circuit family {Cn} is P-
uniform if there is a polynomial-time Turing Machine that on input 1n out-
puts the description of the circuit Cn.

The problem is that if we restrict circuits to be P-uniform, the class
P/poly (for which we know already that P ⊂ P/poly) collapses to P:

Theorem 3.6. A language L is computable by a P-uniform circuit family
if and only if L ∈ P.

Even if it’s known that every language has circuits of size O(2n/n), it
may be very difficult to construct them. If we place a uniformity condition
on the circuits, that is, if we require them to be efficiently computable, then
the circuit complexity of some languages might exceed 2n.

2This theorem will be crucial for our results in Chapter 4!
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Definition 3.6 (DC-Uniform Circuit Families). Let {Cn}n≥1 be a circuit
family. We say that it is Direct Connect Uniform (DC-Uniform) family if
there is a polynomial-time algorithm that, given the pair �n, i�, can compute
the ith bit of Cn’s adjacency matrix representation. More precisely, a family
{Cn}n∈N is DC-Uniform if and only if the functions:

• SIZE(n): Returns the size S of the circuit Cn.

• TY PE(n, i): Returns the label of the ith vertex of Cn. That is one of
{∧,∨,¬, NONE}.

• EDGE(n, i, j): Returns 1 if there is a directed edje in Cn from the ith

vertex to the jth vertex.

are computable in polynomial time.

A Turing Machine can now generate any required vertex of the circuit in
polynomial time. This is an importantproperty , because we have a succinct
representation of the circuit (in the terms of a T.M.), although it may have
exponential size.

We can now give another characterization of the classPH (The Polynomial-
Time Hierarchy):

Theorem 3.7. A language L ∈ PH iff L can be computed by a DC-Uniform
circuit family {Cn}n∈N that satisfies the following conditions:

1. that uses AND, OR, NOT gates.

2. that has size 2n
O(1)

and constant depth.

3. its gates can have unbounded (exponential) fan-in.

4. its NOT gate appear only at the input level (that is, they are only
applied directly to the input, and not to the result of other gates).

Without the restriction of constant depth, the family describes precisely
the class EXP!

3.1.2 Circuits computing Boolean Functions

We will also use Boolean Ciruits as a computational model for Boolean
functions. Note that {∨,∧,¬} is a complete set, so it can compute all
Boolean functions.

Definition 3.7. For a finite Boolean Function f : {0, 1}n → {0, 1}, we
define the (circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C(x) = f(x), ∀x ∈ {0, 1}n).

We can generalize the above definition for functions f : {0, 1}∗ → {0, 1}∗:
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Definition 3.8 (Circuit Complexity). For a finite Boolean Function f :
{0, 1}∗ → {0, 1}∗, and {fn} be such that f(x) = f|x|(x) for every x.3 The
(circuit) complexity of f is a function of n that represents the smallest
Boolean Circuit computing fn (that is, C|x|(x) = f(x), ∀x ∈ {0, 1}∗).

It is clear by the definition that for each fn we use a different circuit
(having different number of inputs). The analogue of Definition 3.5, and
Theorem 3.6, is that if f has a uniform (i.e. a polynomial-time algorithm
that on input n produces a circuit computing fn) sequence of polynomial-
size circuits, then f ∈ P. Also, any f ∈ P has a uniform sequence of
polynomial-size circuits.

So, a super-polynomial circuit complexity for any (boolean) function in
NP, would imply that P �= NP.

3.1.3 Nondeterministic Circuits

We can also define variants of the Boolean Circuit model, in order to capture
the notion of nondeterminism:

Definition 3.9 (Nondeterministic Circuits). A nondeterministic Boolean
Circuit C(x,w) is a Boolean Circuit that gets x as input, and a string w
as a ”witness”. We say that C(x) = 1 if there exists a witness w such that
C(x,w) = 1, and C(x) = 0 otherwise.
Also, a co-nondeterminicstic Boolean Circuit is defined similarly, with C(x) =
0 if there exists a witness w such that C(x,w) = 0, and C(x) = 1 if
C(x,w) = 1 for all witnesses w.

Definition 3.10 (SV Circuits). A SV (single-valued) circuit is a nondeter-
ministic Boolean Circuit C(x,w) has three possible outputs: 1, 0 and ”quit”,
such that for every input x ∈ {0, 1}n either:

• for all w: C(x,w) ∈ {1, quit}

• for all w: C(x,w) ∈ {0, quit}

We say that C(x,w) = b ∈ {0, 1}, if there exists (at least) one witness w
such that: C(x,w) = b, and then we say that w is a proof that C(x) = b.
When no such w exists, we say that C(x) = quit.
Also, we say that C is a nondeterministic TSV (Total Single-Valued) if C
defines a total Boolean Function on {0, 1} (that is, ∀x ∈ {0, 1}n : C(x) �=
quit).
Otherwise, we say that it is a nondeterministic PSV (Partial Single-Valued)
circuit.

3By |x| we denote the length of string x.
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It’s easy to see that if a TSV Circuit of size O(s(n)) computes a Boolean
function f , then f has also a nondeterministic and a co-nondeterministic
circuit of size O(s(n)).

We could intuitively compare the functions computed by TSV circuits,
with the class NP∩ coNP in the Nondeterministic T.M. model, or with the
class ZPP = RP ∩ coRP in the Probabilistic T.M. model.

Also, we can define oracle circuits, which have special gates called oracle
gates, with arbitrary fan-in. A gate with fan-in s contributes size s to
the circuit, and can be used for oracle access to a fixed language L. The
output of the gate on a string x is 1 if x ∈ L, otherwise the output is
0. Nondeterministic and SV-nondeterministic oracle circuits are defined by
combining the above definitions.

3.2 Circuit Lower Bounds

As we saw, the significance of proving lower bounds for this computational
model is related to the famous ”P vs NP” problem. In fact, if we ever prove
that NP � P/poly, then we’ll have shown that P �= NP (since we now that
P ⊆ NP and P ⊆ P/poly).

The main reason we prefer this computational model, instead of trying
to prove lower bounds for Turing Machines, is that a Boolean circuit is
considered a more direct or ”pervasive” model, and also that we already
know (since 1949) that some functions require very large circuits to compute:

Theorem 3.8 (C.E. Shannon). For every n > 1, ∃f : {0, 1}n → {0, 1} that
cannot be computed by a circuit C of size 2n

10n .

Proof: The proof uses simple counting arguments. We know that the
number of (boolean) functions from {0, 1}n to {0, 1} is 22n . Using the adja-
cency list representation, every circuit of size at most S can be represented
by a string of 9S logS bits. So, the number of such circuits is 29S logS . Let
S = 2n/(10n), and see that the number of circuits of size S is at most
29S logS < 22

n
.

Hence, the number of functions is clearly bigger than the number of
circuits, so there is a function that cannot be computed by circuits of that
size. �

During the 1970s and 1980s, many researchers believed that circuit lower
bounds are indeed the solution to the ”P vs NP” problem, for reasons we
mentioned above. Unfortunately, there is almost no progress on the matter:
The best lower bound for an NP language is 5n−o(n), proved very recently
(in 2005). On the other hand, there are better lower bounds for some special
cases, i.e. some restricted classes of circuits, such as: bounded depth circuits,
monotone circuits, and bounded depth circuits with ”counting” gates. We
will briefly discuss the first two:
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3.2.1 Bounded Depth Circuits

Firstly, recall that the depth d of a circuit is the length of the longest
directed path in it. Intuitively, the notion of depth captures the ”parallel”
time to decide a language, because it can be computed by enough ”proces-
sors” in d stages.

We restrict here the depth d to be a constant, but we allow unbounded
fan-in (∧-gates and ∨-gates taking any number of incoming edges).
Definition 3.11. Let PAR : {0, 1}n → {0, 1} be the parity function, which
outputs the modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n�

i=1

xi( mod 2)

We present a lower bound for PAR (proved by Furst, Saxe, Sipser in
1981):

Theorem 3.9. For all constant d, PAR has no polynomial-size circuit of
depth d.

The above result (improved by H̊astad and Yao) gives a relatively tight
lower bound of exp

�
Ω(n1/(d−1))

�
, on the size of n-input PAR circuits of

depth d.

3.2.2 Monotone Circuits

We define the notion of monotone function and circuit, and we present a
lower bound result for this model:

Definition 3.12. For x, y ∈ {0, 1}n, we denote x � y if every bit that is 1 in
x is also 1 in y. A function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y)
for every x � y.

Definition 3.13. A Boolean Circuit is monotone if it contains only AND
and OR gates, and no NOT gates. Such a circuit can only compute mono-
tone functions.

We consider the CLIQUE problem, which is known to be NP-complete.
CLIQUE is a monotone funcion, since adding an edge to the graph cannot
destroy any clique existed in it. We present a result proved during the ’80s
by Andreev, Alon and Boppana:

Theorem 3.10 (Monotone Circuit Lower Bound for CLIQUE). Denote by

CLIQUEk,n : {0, 1}(
n
2) → {0, 1} be the function that on input an adjacency

matrix of an n-vertex graph G outputs 1 iff G contains an k-clique.
There exists some constant � > 0 such that for every k ≤ n1/4, there is no

monotone circuit of size less than 2�
√
k that computes CLIQUEk,n.
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So, we proved a significant lower bound (2Ω(n1/8)). Similar lower bounds
are known for functions in P.

The significance of the above theorem lies on the fact that there was some
alleged connection between monotone and non-monotone circuit complexity
(e.g. that they would be polynomially related). Unfortunately, Éva Tardos
proved in 1988 that the gap between the two complexities is exponential.

We will use the above notions and results in the next chapter, by ex-
ploiting the ”hardness” of computing certain Boolean functions, in order
to define combinatorial constructions, known as Pseudorandom Generators,
that produce sequences of pseudorandom bits. Their alleged randomness
will be depended on the difficulty to compute a predefined hard function, in
the sense that if we could ”predict” (let’s say by using a circuit) the next
bit of such a sequence, we could use this circuit to easily compute efficiently
the Boolean function, contradicting its hardness.

We end this chapter by an extra paragraph, which may be not prerequisite
for the rest of our results in the technical sense (although some proofs in
Chapters 6 and 7 are inspired from these notions), but it may answer to the
reader’s natural occuring question: Why the circuit approach doesn’t work,
despite the intuition of so many researchers? Boolean Circuits seem to be a
more clear and “pervasive” model than Turing Machines, but we finally face
the same obstacles in the effort to prove that P �= NP. Why?

3.2.3 Epilogue: Where is the problem?

We discussed above that all research for circuit lower bounds was -finally-
a dead-end. It is a fair question to ask (or even to try to prove) the cause
of this difficulty.

A partial answer to that question was given by A. Razborov and S.
Rudich in [RR94]. They connected circuit lower bounds with a notion called
”Natural Proofs”, and proved that a result for a lower bound using such
techniques would imply the inversion of strong one-way functions.

Today, we have a lot of evidence that strong one-way functions cannot
be inverted in subexponential time, so the techniques we use are inherently
weak to prove general lower bounds for circuits.

We briefly give some definitions, and their main theorem:

Definition 3.14. Let P be the predicate: ”A Boolean function f : {0, 1}n →
{0, 1} doesn’t have nc-sized circuits for some c ≥ 1.”

Obviously, P(f) = 0, ∀f ∈ SIZE(nc) for a c ≥ 1. We call this nc-
usefulness. Also:

Definition 3.15. A predicate P is natural if:
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• There is an algorithm M ∈ E such that for a function g : {0, 1}n →
{0, 1}: M(g) = P(g).

• For a random function g: Pr [P(g) = 1] ≥ 1
n

The main result, which expose the inherent problem of our approach, is
the following:

Theorem 3.11. If strong one-way functions exist, then there exists a con-
stant c ∈ N such that there is no nc-useful natural predicate P.
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Chapter 4

Derandomization using
Pseudorandom Generators

4.1 Pseudorandom Generators re-defined

We define again the notion of a pseudorandom generator, in a little different
version, than the secure pseudorandom generators defined in the Introduc-
tory Chapter, for the purposes of Derandomization. The main differences
in this variation are that:

1. We allow the generator to run in exponential time, instead of polyno-
mial.

2. We use nonuniform distinguishers (circuits), instead of the classical
model of probabilistic polynomial-time Turing Machines.

So, this is a relaxation of the original definition, which allow us to con-
struct such generators under weaker conditions, for our derandomization
purposes:

Definition 4.1 (Pseudorandom Generators (PRGs)). A distribution R over
{0, 1}m is an (S, �)-pseudorandom (for S ∈ N, � > 0) if for every circuit C,
of size at most S:

|Pr [C(R) = 1]−Pr [C(Um) = 1] | < �

where Um denotes the uniform distribution over {0, 1}m

If S : N→ N, a 2n-time computable function G : {0, 1}∗ → {0, 1}∗ is an
S(�)-pseudorandom generator if |G(z)| = S(|z|) for every z ∈ {0, 1}∗ and
for every � ∈ N the distribution G(U�) is (S

3(�), 1
10)-pseudorandom.

In the above definition:

33
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• The choices of the constants 3 and 1
10 are (obviously) arbitrary, and

made for convenience.

• The functions S : N → N will be considered time-constructible and
non-decreasing.

4.2 Derandomization Results

The reason we use pseudorandom generators is that they can be used to
efficiently simulate every randomized algorithm in BPTIME. The only re-
quirement is the existence of such constructions.

The general method we use to derandomize a BPP algorithm is quite
simple: Firstly, we know that there is a bounded-time Probabilistic Turing
Machine ”representing” this algorithm in this computational model, using a
string of (truly) random bits of length ρ(n). The näıve approach would be
to enumerate all possible random strings, which are 2ρ(n). So, we have:

BPP ⊆ DTIME(2ρ(n)· poly(n))

which is -unfortunately- exponential in the general case.
But, if we replace the random string with the output of a Pseudorandom

Generator, we only have to enumerate all possible strings of the seed, which
has much smaller length �(n)1 (assuming that the generator has stretch
function S(�(n)) ≥ ρ(n), and if it is equal we take it as it is, if it’s bigger we
take the ρ(n)-bit prefix of the output). Then, we have a result of the form:

BPP ⊆ DTIME(2�(n)· poly(n))

and if �(n) << ρ(n) we could even achieve a polynomial simulation of every
BPP algorithm (e.g. if �(n) = log n). The above ideas can be formalized in
the following result:

Theorem 4.1. Suppose that there exists an S(�)-pseudorandom genera-
tor for a time-constructible nondecreasing S : N → N. Then, for every
polynomial-time computable function � : N→ N, and for some constant c:

BPTIME(S(�(n)) ⊆ DTIME(2c�(n))

Proof : We already know that L ∈ BPTIME(S(�(n)) if ∃ algorithm A
which runs in time cS(�(n)) for some constant c, and satisfies the following
condition2:

Pr [A(x, r) = L(x)] ≥ 2

3
1Because we use our generator along with a BPP algorithm, the length of its seed is

function of the length of the input, exactly as the length ρ(n) of the Probabilistic T.M.’s
random string.

2We remind that L(x) is the characteristic function of L.
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The main idea is to replace the random string r ∈ {0, 1}m (m ≤ S(�(n)))
used by the PTM which computes A with a string G(z), produced by picking
a random z ∈ {0, 1}�(n). Then A will not ”detect” the switch for the most
of the time, so the probability 2

3 will not drop below
2
3 − 1

10 , which is greater
than 1

2 . So we don’t have to simulate all r’s, we only have to enumerate over

all strings G(z), for z ∈ {0, 1}�(n), and check whether or not the majority
make A accept.

So, let B an algorithm computed by a Determinictic Turing Machine.
On input x ∈ {0, 1}n, B will go over all z ∈ {0, 1}�(n), and will compute
A(x,G(z)) (that is, A on input x, using G(z) as random string), and output
the majority answer.

We claim that for sufficiently large n, the fraction of z’s for which
A(x,G(z)) = L(x) is at least 2

3 − 1
10 . (That suffices to show that L ∈

DTIME(2c�(n)), because we can ”feed” the algorithm with the correct an-
swer for finitely many inputs):

Suppose, for the sake of contradiction, that exists a infinite sequence of
x’s such that:

Pr [A(x,G(z)) = L(x)] <
2

3
− 1

10

Then, there exists a distinguisher for the pseudorandom generator: we can
construct a circuit computing the function r �→ A(x, r), where x is ”embed-
ded” into the circuit (that is possible because we use nonuniformity). The
circuit will have size O(S(�(n))2), shich is surely smaller than S(�(n))3,
for sufficiently large n. We have our contradiction, so we proved that
Pr [A(x,G(z)) = L(x)] < 2

3 − 1
10 , and our claim is valid. �

• In the above proof we see the necessity of running the PRG in exponen-
tial time. The derandomized algorithm enumerates over all possible
z’s of length �, so it needs exponential (in �) time.

• Also, allowing the generator to run in exponential time makes it more
”easy” to prove the existence of such a PRG than allowing it run in
polynomial-time, as in secure PRGs, used in Cryptography.

As special cases of the above theorem, we can obtain the following simu-
lations, which make clear the importance of constructing such pseudorandom
generators, in order to achieve a full (or even partial) derandomization of
BPP:

Theorem 4.2. • If there exists a 2��-pseudorandom generator for some
constant � > 0, then BPP = P.

• If there exists a 2�
�
-pseudorandom generator for some constant � > 0,

then BPP ⊆ QuasiP = DTIME(2poly log(n)).
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• If for every c > 1 there exists an �c-pseudorandom generator, then
BPP ⊆ SUBEXP =

�
�>0DTIME(2n

�
).

It is fair to question whether such generators indeed exist, and how we
can prove this existence. We can connect the existence of some pseudoran-
dom generator to the hardness of a function, that is, how ”difficult” is to
compute it.

We can measure the hardness using known complexity measures, such
the number of steps of a Turing Machine, or the minimum size of a circuit
which computes it.

4.3 Pseudorandomness using Hardness of Func-
tions

We introduce the notion of average-case and worst-case harness of func-
tix‘ons. This will be a useful tool for ”measuring” the size of the minimum
Boolean Circuit computing a function:

Definition 4.2 (Average-case and Worst-case hardness). For f : {0, 1}n →
{0, 1}, and ρ ∈ [0, 1] we define the ρ-average-case hardness of f , denoted
Hρ

avg(f), to be the largest S that for every circuit C of size at most S:

Prx∈{0,1}n [C(x) = f(x)] < ρ

We define the worst-case hardness of f , denoted Hwrs(f) to equal H1
avg(f),

and the average-case hardness of f , denoted Havg(f) to equal:

max{S|H1/2+1/S
avg (f) ≥ S}

That is, Havg(f) is the largest number S such that:

Prx∈{0,1}n [C(x) = f(x)] <
1

2
+
1

S

for every Boolean Circuit C on n inputs with size at most S.

The following result will be (just) mentioned, a very important ”Hard-
ness Amplification” theorem, which we will use later:

Theorem 4.3. Let f ∈ E 3 be such that Hwrs(f)(n) ≥ S(n) for some time-
constructible nondecreasing S : N→ N. Then, there exists a function g ∈ E
and a constant c > 0 such that:

Havg(g)(n) ≥ S(n/c)1/c

for every sufficiently large n.

3Recall that E = DTIME
�
2O(n)

�
.
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We will now use the assumption of average-case hardness of certain func-
tions, to construct pseudorandom generators. By using (quantitatively)
stronger assumptions, we construct stronger generators. The strongest as-
sumption will yield a 2Ω(�)-pseudorandom generator, implying that BPP =
P.

The main theorem is the following, finally proved by Chris Umans in
2003, after enormous efforts by many researchers. It is based on a pseu-
dorandom generator constructed by R.Shaltiel and Umans in [SU05]. This
construction will not be mentioned here, instead we will introduce in the
next section the first pseudorandom generator from average-case hardness,
presented by N.Nisan and A. Wigderson in 1988, which is strong enough to
imply a version of Theorem 4.2 for ”average” hardness of functions.

Theorem 4.4 (PRGs from average-case hardness). Let S : N → N be
time-constructible and non-decreasing. If there exists f ∈ E such that ∀n :
Havg(f)(n) ≥ S(n), then there exists an S(δ�)δ-peudorandom generator for
some constant δ > 0.

If we combine the above Theorem 4.4 with Theorem 4.3, we can obtain
the following theorem, which strengthen the possibilities that derandomiza-
tion of probabilistic algorithms is possible.

Theorem 4.5 (Derandomizing under worst-case assumptions). Let S : N→
N be time-constructible and nondecreasing. If there exists f ∈ E such that
∀n : Hwrs(f)(n) ≥ S(n), then there exists a S(δ�)δ-peudorandom generator
for some constant δ > 0.
In particular, the following hold:

1. If there exists f ∈ E and � > 0 such that Hwrs(f)(n) ≥ 2�n, then
BPP = P.

2. If there exists f ∈ E and � > 0 such that Hwrs(f)(n) ≥ 2n
�
, then

BPP ⊆ QuasiP.

3. If there exists f ∈ E such that Hwrs(f)(n) ≥ nω(1), then BPP ⊆
SUBEXP.

We can replace E with EXP in (2) and (3) of Theorem 4.5, which is
very important, because EXP contains many classes we believe to have hard
problems, such as NP, PSPACE, and even ⊕P.

4.4 The Nisan-Wigderson construction

We will focus on the construction of the most important and useful for our
future results pseudorandom generator, the Nisan-Wigderson (NW) gener-
ator, introduced in [NW94].
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This generator streches a short seed into a long string that looks random
to any algorithm from a complexity class C, using a function that is hard
for C.

The simple approach would be to take as many indepedent parts of the
seed as we can, ”feed” to the hard function, and concatenate them to take
the output. Any distinguisher that could tell the difference between the
output and the Uniform Distribution, could be used to construct a circuit
that computes the function, constradicting its hardness assumption.

But such a generator hasn’t the possibility to strech the seed very much
(more than a multiple of the seed). In order to have non-trivial derandom-
ization results, our generator’s output must be exponentially larger than the
input.

So, instead of taking indepedent parts of the seed as arguments for the
hard function, we can take them partially depedent, but we still have to
control and bound the ”amount” of depedence, so we will distribute our
seed into sets which have the same cardinality, and the intersection of every
pair is bounded. Such combinatorial structures are known as Designs:

Definition 4.3 (Combinatorial Designs). A family S = {S1, . . . , Sm}, where
each Si ⊂ {1, . . . , �} is an (�, n, k)-design, if:

1. |Sj | = n, for every j

2. |Si ∩ Sj | ≤ k, for all i �= j

These designs can be efficiently constructible:

Lemma 4.6. For every integer n and fraction γ > 0, there is a (�, n, logm)-
design {S1, . . . , Sm} over {1, . . . , �}, where � = O(n/γ) and m = 2γn. Such
a design can be constructed in O(2��m2) steps.

Now, we are ready to formally define our generator function:

Definition 4.4 (Nisan-Wigderson Generator). Let S = {S1, . . . , Sm} a
(�, n, d)-design and f : {0, 1}n → {0, 1}. The NW-generator is the func-

tion NW f
S : {0, 1}� → {0, 1}m that maps every z ∈ {0, 1}� to

NW f
S (z) = f(z|S1

) ◦ f(z|S2
) ◦ · · · ◦ f(z|Sm

)

where z|Si
denotes the restriction of z to the coordinates indexed by Si.

For example, if z = 10101 and Si = {1, 3, 5}, then z|Si
= 111.

Recall from Definition 4.1 that our generator is allowed to run in expo-
nential time in the size of its input, and we use circuits as distinguishers.

We will prove that NW f
S is a pseudoranom generator:

The main fact that implies the pseudorandomness of NW-Generator, is
that a possible distinguisher can be used to build a circuit which violates
the given hardness of f :
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Theorem 4.7. Let f : {0, 1}n → {0.1} be a Boolean function and S =
{S1, . . . , Sm} be a (�, n, logm)-design. Suppose that D : {0, 1}m → {0, 1} is
such that:

���Prr∈{0,1}m [D(r) = 1]−Prz∈{0,1}� [D(NW
f
S (z)) = 1]

��� > �

Then, there exists a circuit C of size O(m2) such that:

��Prx∈{0,1}n [D(C(x)) = f(x)]− 1/2
�� ≥ �

m

Proof: The main idea of the proof is that if we find a circuit D that can
(as the theorem states) distinguish the output of the NW-generator from
the Uniform Distribution, then we can use it to build another circuit C
computing a large fraction of f ’ s outputs, violating its hardness assumption,
and so we are led to a contradiction. Such a distinguisher can find a bit of
the outut of the generator where the distinction is noticeable. On such a
bit, D is distinguishing f(x) from a random bit, and such a distinguisher
can be used as a predictor for f .

We will use a technique known as the emphhybrid argument: We define
m+1 distributions H0, . . . , Hm as follows: we sample a string v = NW f

S (z)
for a random z, and then a string r ∈ {0, 1}m according to the Uniform
Distribution. Each Hi is defined by taking i bits from v and the last m− i
bits from r. So, H0 is the Uniform Distribution over {0, 1}m, and Hm is

distributed as NW f
S (z). According to our hypothesis, there is a b0 ∈ {0, 1}

such that:
���Prr∈{0,1}m [D�(r) = 1]−Pry∈{0,1}� [D

�(NW f
S (y)) = 1]

��� > �

where D�(x) = b0 ⊕D(x). We observe that:

ε ≤ Pr[D�(NW f
S (y)) = 1]−Pr[D�(r) = 1] = Pr[D�(Hm) = 1]−Pr[D�(H0) =

1]

=
m�

i=1

(Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1])

So, there exists an i such that:

Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1] ≥
ε

m

Now, recall that: Hi−1 = f(z|S1
) ◦ · · · ◦ f(z|Si−1

) ◦ riri+1 ◦ · · · ◦ rm and
Hi = f(z|S1

) ◦ · · · ◦ f(z|Si−1
) ◦ f(z|Si−1

) ◦ ri+1 ◦ · · · ◦ rm.
We can assume without loss of generality that Si = {1, . . . , �}. Then

we can see z ∈ {0, 1}t as a pair (x, y) where x = z|Si
∈ {0, 1}� and

y = z|[t]\Si
∈ {0, 1}t−�. For every j < i and z = (x, y) we define fj(x, y) =

f(z|Si
). Observe that fj depends on |Si ∩ Sj | ≤ logm bits onf x and on
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�− |Si ∩ Sj | ≥ �− logm bits of y. With this notation we have:

Prx,y,ri+1,...,rm [D
�(f1(x, y), . . . , fi−1(x, y), f(x), . . . , rm) = 1]−

−Prx,y,ri+1,...,rm [D
�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1] >

ε

m

The above means that when D� is given a string that contains fj(x, y)
for j < i in the first i− 1 entries, then D� is more likely to accept the string
if contains f(x) in the i-th entry than if it contains a random bit in the i-th
entry. This is food anough to (almost) get a predictor for f .

Consider the following algorithm:

Algorithm A
Input: x ∈ {0, 1}�

1. Pick random ri, . . . , rm ∈ {0, 1}

2. Pick random y ∈ {0, 1}t−�

3. Compute f1(x, y) . . . , fi−1(x, y)

4. If D�(f1(x, y) . . . , fi−1(x, y), ri, . . . , rm) output ri

5. Else output 1− ri

LetA(x, y, r1, . . . , rm the output ofA on input x and random choices y, r1, . . . , rm.
We have:

Prx,y,r[A(x, y, r) = f(x)] =

Prx,y,r[A(x, y, r) = f(x)|ri = f(x)] ·Pry,ri [ri = f(x)]+

+Prx,y,r[A(x, y, r) = f(x)|ri �= f(x)] ·Pry,ri [ri �= f(x)] =

=
1

2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) = ri]+

+
1

2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 0|f(x) �= ri] =

=
1

2
+
1

2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) = b]−

−1
2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) �= b] =
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=
1

2
+Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) = b]−

−1
2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) = b]−

−1
2
Prx,y,r[D

�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm = 1|f(x) �= b] =

=
1

2
+Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1] ≥

1

2
+

ε

m

So A is good, and it is worthwile to see whether we can get an efficient
implementation. Since we have:

Prx,y,r[A(x, y, r) = f(x)] ≥ 1

2
+

ε

m

there surely exist c1, . . . , cm to give to r1, . . . , rm, and a fixed value w to give
to y such that:

Prx,r[A(x,w, c1, . . . , cm) = f(x)] ≥ 1

2
+

ε

m

Since w is fixed, in order to implement A we only have to compute
fj(x,w) given x. However, for each j, fj(x,w) is a function that depends
only on ≤ logm bits of x, and so is computable by circuits of size O(m).
Even composing i − 1 < m such circuits, we still have that the sequence
f1(x, y), . . . , fi−1(x, y), c1, . . . , cm can be computed, given x, by a circuit C
of size O(m2).

Finally, we notice that at this point A(x,w, c) is doing the following:
outputs the XOR between ci and the complement of D

�(C(x)). Since ci is
fixed, either A(x,w, c) always equals D(C(x)), or one is the complement of
the other. In either case, the conclusion follows.
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Chapter 5

Uniform Derandomization of
BPP

5.1 Main Theorem

In this chapter we reach the main topic of this thesis, the derandomization
of probabilistic classes under uniform complexity assumptions. The first
result concerns BPP, and how we can get a non-trivial derandomization
of this class under a uniform hardness assumption. Specifically, the main
theorem states that unless every exponential-time problem can be solved
in probabilistic polynomial time, we can partially derandomize BPP, by
simulating every L ∈ BPP by a subexponential algorithm. This is a ”Low-
End” result, since it provides us a non-trivial derandomization of BPP
under a plausible hardness assumption1.

This result comes with two “defects”: Firtsly, this simulation doesn’t
works everywhere (or even almost everywhere), but only for infinitely many

1 Recall that in the curve of Hardness-Randomness Trade-offs we have the:

• ”High End:” What (usually strong) assumption must we make in order to have a
full derandomization of a probabilistic complexity class?

• ”Low End:” What is the weakest assumption we can make, and still have some
version of non-trivial derandomization of a probabilistic complexity class?

43
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input lengths (i.o. complexity2). Also, it may fail on a negligible fraction of
inputs even of these lengths (called a “heuristic simulation”).

This simulation will not succeed only for inputs chosen according to the
Uniform Distribution, but for inputs chosen according to every distribution
that can be sampled in polynomial time (P-sampleable).

The following theorem was proved by R. Impagliazzo and A. Wigder-
son in 1998, and it was partially based on a 1993’s result of L. Babai, L.
Fortnow, C. Lund and A. Wigderson. After that, new efforts improved and
extended these ideas, and led to similar derandomizations of RP and AM.
Ramifications on these results were presented until very recently. The main
theorem states that:

Theorem 5.1. If EXP �= BPP, then, for every � > 0, every BPP algo-
rithm can be simulated deterministically in (subexponential) time 2n

�
so that,

for infinitely many n’s, the simulation is correct on at least 1 − 1
n fraction

of all inputs of size n.

We can view the above as a gap theorem on Derandomization: Either
BPP = EXP, that is, randomness solves any hard problem (is a computa-
tional “panacea”), or every problem in BPP admits a non-trivial subexpo-
nential derandomization, that works on almost all instances.

5.2 Proof of Theorem 5.1

The proof will be completed in two parts: The first will use the assumption
that EXP � P/poly, it was given by Babai, Fortnow, Lund and Wigderson
[BFNW93], and lied on techniques used in significant previous results on
Interactive Proof Systems in [BFL91] (namely, that MIP = NEXP). The
case of EXP ⊆ P/poly (which is considered high improbable by the scientific
community) was proved by Impagliazzo and Wigderson [IW98], and used
multiple results from Complexity Theory, as well as the Nisan-Wigderson
construction. We start by showing the first part (the “easy” one):

2Indeed, we have two types of hardness:

• If f has circuit complexity exceeding S infinitely often (i.o.), we mean that there
are infinite many n’s, such no circuit of size S(n) can compute f correctly on all
inputs of length n.

• If f has circuit complexity exceeding S almost everywhere (a.e.), we mean that
for all but finitely many n’s, such no circuit of size S(n) can compute f correctly
on all inputs of length n.

It is not known whether an “infinitely-often” type of hardness implies a corresponding
“almost-everywhere” hardness.
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5.2.1 First Part of the Proof

Theorem 5.2 ( [BFNW93]). If EXP � P/poly , then BPP ⊆ SUBEXP
for infinitely many input lengths.

In order to compose the complete proof, we give a series of lemmata.
The first is a result from [BFL91], regarding the power of EXP provers:

Lemma 5.3 ( [BFL91]). Every language L ∈ EXP has a multi-prover
interactive proof system, where the “honest” provers are limited to computing
within deterministic exponential time.

Lemma 5.4. If EXP ⊆ P/poly, then EXP =MA.

Proof: By Lemma 5.3, we imply that a simulation of an EXP language
by a multi-prover interactive protocol will need only EXP-strong provers.
Also, using the hypothesis, for these provers we can find two polynomial-
sized circuits C1 and C2 computing them.
So, Merlin gives Arthur C1 and C2. Then, Arthur simulates the verifier V
using the two circuits for the two provers. This is an MA protocol for any
EXP language.

Proof (of Theorem 5.2). : Let L be an EXP-complete language. We en-
code a the set Ln as a boolean function f . Let p be a prime greater than n,
and let g be the unique multilinear extension of f to Zn

p → Zp.
3

The following lemma gives us information about g:

Lemma 5.5 ( [GL89]). 1. If BPP doesn’t have subexponential simula-
tion for infinitely many input sizes, there is a family of polynomial-size
circuits computing g for all but a 1/3n fraction of the inputs of length
n.

2. If BPP is not in SUBEXP, there for an infinite number of input
lenghts n, there is a polynomial-size circuit computing g for all but a
1/3n fraction of the inputs of length n.

Assume, now, that BPP does not have a i.o. simulation. Then, by
Lemma 5.5 we have a family Dn of circuits (polynomial-size) computing g
for all but 1/3n fraction of the inputs. Since g is random self-reducible,
we can create the following randomized polynomial-size circuit family for
g: Cn will use random inputs to generate the random self-reduction of g
and use the Dn circuit for those queries. The probability of the random
self-reduction queries onte of the strings that Dn fails to compute correctly
is bounded by (n+ 1)/3n < 2/5 for almost every n.

3Recall that if we extend a boolean function to a multilinear extension g over Zp, we
obtain a random self-reducible f -hard and PSPACEf -easy function g. Each function
h : {0, 1}s → Q has a unique multilinear extension h̃ : Qs → Q.
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We can replace (using the techiques of the proof of BPP ⊂ P/poly) the
randomness by non-uniformity: we can use the known amplification tech-
niques to reduce the error below 2−n. Then, there must be a single random
sequence (the advice string) that gives a correct answer for all inputs. We
encode this string into the circuit. It has polynomial length, so the circuit
stays polynomial-size.

5.2.2 Second Part of the Proof

The proof can be completed in four steps:

1. Assume that PERMANENT is EXP-complete.

2. Build a pseudorandom generator (in fact a sequence of gen-
erators) with super-polynomial output size using PERMANENT
as a hard function.

3. Run the simulation for every L ∈ BPP, by replacing the
random string with the possible outputs of the generator.

4. Remove the oracle from fn, by using its properties.

Now, we can examine each step in detail:

Step 1: The Hard Function

In our proof we will make the assumption that EXP ⊆ P/poly, since oth-
erwise every BPP algorithm can be simulated deterministically in subex-
ponential time infinitely often. This is a known result proved by L.Babai,
L.Fortnow, N.Nisan and A.Wigderson, which imply the conclusion of out
theorem (something even stronger, to be accurate):

.. So, we will proceed under the -fair - assumption that EXP ⊆ P/poly.
Then, Meyer’s Theorem (Theorem ??) implies that EXP = Σp

2 ⊆ PH, and
by Toda’s Theorem (Theorem ??) we have that:

EXP ⊆ PH ⊆ PPERMANENT

since PERMANENT problem is #P-complete problem, just as #SAT in the
original theorem’s formulation.

By the above inclusion, we have that every EXP language can be trans-
formed in a PERMANENT instance in polynomial time, so PERMANENT is EXP-
complete under polynomial-time reductions.

This observation is very important for the procedure, since PERMANENT
has two nice properties:
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Firstly, it is random self-reducible, that is, solving the problem on any in-
put x can be reduced to solving it on a sequence of random inputs y1, y2, . . . ,
where each yi is uniformly distributed among all inputs.

Secondly, one can solve PERMANENT in polynomial time using an oracle
for the permanent of smaller matrices. This property is called downward
self-reducibility. We give the formal definition:

Definition 5.1 (Downward Self-Reducibility). A function f is downward
self-reducible if there is a polynomial-time Turing Machine M , such that:

∀n∀x ∈ {0, 1}n :Mfn−1(x) = f(x)

where by fk we denote an oracle that solves f on inputs of size at most k.
Using Turing Reductions (Definition 2.6), we can rewrite the above as:

fn ≤p
T fn−1

Of course, we can use any Σp
2-hard function in EXP with the above two

properties.

Step 2: The Pseudorandom Generator

Now, let f be a function with all the above properties, and fn be the re-
striction of f to inputs of length n. For each input size n, we will construct
a pseudorandom generator (similar to the Nisan-Widgerson generator we
constructed previously), using PERMANENT function f as a hard function.

In order to construct such generators, and connect them somehow, we
need to formalize the notion of ”construction”, ”construction problems”,
and the reductions among them.

In general, a construction problem A = {An} is a family of non-empty
subsets An ⊂ {0, 1}∗.

In these terms, we can define the approximation of f by circuits:

Definition 5.2. Let f : {0, 1}∗ → {0, 1}∗ and � : N→ [0, 1]. The construc-

tion problem Cf,� can be defined as follows: each Cf,�
n contains all circuits

C with n inputs satisfying:

Prx∈{0,1}n [C(x) = f(x)] ≥ �(n)

By writing Cf , we mean Cf,1, i.e. circuits computing f .

In the same way, we can define the notion of distinguishers as construc-
tion problems:

Definition 5.3. Let m : N→ N, � : N→ [0, 1], and G = {Gn : {0, 1}m(n) →
{0, 1}n}. DG,� can be defined as follows: each DG,�

n contains all circuits D
with n inputs satisfying:

Pry∈{0,1}m(n) [D(G(y)) = 1]−Prx∈{0,1}n [D(x)) = 1] ≥ �(n)
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That is, a distinguisher D is a circuit family that, for each n, cannot
be fooled by the generator G, and can ”distinguish” whether a string is an
output of G and not chosen at random4, with non-negligible probability.

A construction problem A can be generated efficiently, if there exists
a probabilistic polynomial-time algorithm taking two inputs n, α, and pro-
duces a member of An with probability at least 1− α, taken over the algo-
rithm’s coin tosses.

For our purposes, it is necessary to ”relate” somehow a construction
problem with another. So we need a kind of reduction:

Definition 5.4. An efficient construction of B from A is a probabilistic
polynomial-time algorithm that ∀n∀α, α ∈ An, outputs a member of Bn

with probability at least 1 − α. If such a construction exists, we denote it
by A → B. When we allow to the construction to make also queries to an
oracle O, we denote it A→O B.

The above definition implies that if A → B, and A is efficiently con-
structible, then B is also efficiently constructible. Note that→ is a transitive
relation.

In the context of the above, we can state a more strict definition of
random self-reducibility (which we introduced in Step 1):

Definition 5.5 (Random Self-Reducibility). A function f : {0, 1}∗ → {0, 1}∗
is random self-reducible if for some c > 0:

Cf,1−n−c → Cf

Now, we can begin constructing our Generator, using a similar method as
we used in Section ..., where we “built” the Nisan-Wigderson construction.

Let d ∈ N be the output of our generator Gd (that is d is a parametriza-
tion of our generators).

• Direct product function:
Let n1 = nc+2. Also define g : {0, 1}n1 → {0, 1}nc+1

by g(x1, . . . , xn) =
f(x1) . . . f(xn).

• Hard-core bit:
Let n2 = n1 + nc+1. Any such string can be viewed as an input x to
g (where |x| = n1), and a string r of length n

c+1. Then, we define5

h(x, r) = �g(x), r�.

• Almost disjoint sets generator:
Let m = n22, � = nd, z ∈ {0.1}m and S = {s1 < s2 < · · · < sn2} be a
subset of bit positions between 1 to m.

4All strings chosen at random in the above definitions, are chosen uniformly at random.
5By �y, r� we denote the inner product modulo 2.
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In Section ..., we have explicitely constructed � such that |Si ∩ Sj | ≤
logn �, for every i �= j, given S1, . . . , S�.
We define Gf

d : {0, 1}m → {0, 1}� as:

Gf
d(z) = h(z|S1)h(z|S2) . . . h(z|S�

)

It is clear that Gfn
d ≤p

T hn2 ≤p
T gn1 ≤p

T fn, so we have that:

Gfn
d ≤p

T fn

Using the above, we can show that a distinguisher for Gfn
d can be used

along with an oracle for fn to efficiently construct a polynomial-size circuit
for fn. So, we finally want to prove that D

Gd,1/5 →fn Cf .
In order to achieve this, we will prove the three following lemmata:

Lemma 5.6. DGd,1/5 →fn Ch,1/2+O(1/�)

Proof: Firstly, note that we can use an oracle for hn2 , because, as we
saw, hn2 ≤p

T gn1 ≤p
T fn. As in Section ..., we can construct a circuit to

predict h:

• Pick i ∈ {1, . . . , �} uniformly at random.

• For each j : 1 ≤ j ≤ �, with j /∈ Si, pick z
j in {0, 1} uniformly at

random.

• For each i� < i, query h at all 2|Si∩Sj | ≤ � strings that might be z|Si�
for a consistent with the zj ’s, and store the answered queries in a table
T .

• Pick bi� ∈ {0, 1} uniformly at random for i ≤ i� ≤ �.

• Let D ∈ DG,1/5
m , and C the following circuit:

– On input x, set z|Si = x, while the other bits of z are chosen
radomly.

– Set bi� = h(z|Si� ), for i
� ≤ i, by looking up the appropriate entry

in T .

– If D(b1, . . . , b� = 1, output bi, else output ¬bi

• By random sampling, using the oracle hn2 , estimate Pr [C(x) = f(x)].
If Pr [C(x) = f(x)] > 1

2 +
1
20� , output C, or else repeat.



50 CHAPTER 5. UNIFORM DERANDOMIZATION OF BPP

In previous Section, we have shown that the expected probability of suc-
cess for C is at least 1

2 +
1
10� , so the number of repetitions before outputting

a ”good” C is at most O(n�) with high probability. �

We also give a lemma without proof:

Lemma 5.7 ( [GL89]). Ch,1/2+O(�−1) → Cg,O(�−3)

Lemma 5.8. Cg,O(�−3) →fn Cf,1−n−c

Proof: Let C ∈ Cg,α
n1 . We can construct a circuit C

� as follows:

• Let n3 = n1/n.

• Repeat from r = 1 to r = n3/α:

– Pick i ∈ {1, . . . , n3} uniformly at random.
– For each j �= i, pick xj ∈ {0, 1}n at random, query f(xj) and
record the answer.

– Flip coins until a ”head” arises or until n ”tails” have been
flipped.

– Let t1 be the number of flips.

Let C �
r be the following three-valued ciruit:

• On input x, compute t: the number of bit positions j �= i where the
j�th bit of C(x1, . . . , xi−1, xi+1, . . . , xn3) disagrees with f(xj).

• If t < t1, output the i
th bit of C(x1, . . . , xi−1, xi+1, . . . , xn3), else out-

put ”reject”.

Let C � be the circuit that outputs the majority answer from those C �
r that

do not reject. We can prove that, for nonnegligible α, C � ∈ Cf,1−n−c
with

high probability.
Also, if α is at least inverse polynomial, this construction takes polynomial
time. �

So, finally we can prove that given an efficient Distinguisher, we can
efficiently construct a circuit computing f (with access to an oracle):

Lemma 5.9. If f is random self-reducible, then:

DGf ,1/5 →fn Cf
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Proof : Using Lemmata 5.6, 5.7, 5.8, and f ’s Random Self-Reducibility
(Definition 5.5), we respectively have:

DGd,1/5 →fn Ch,1/2+O(1/�) → Cg,O(�−3) →fn Cf,1−n−c → Cf

�

Step 3: The Derandomization

We will now use the generators Gfn
d we constructed in the previous step to

derandomize BPP algorithms in deterministic subexponential time 2k
δ
, for

a (arbitrarily) given constant δ > 0. The simulation is described by the
following algorithm:

1. Let δ > 0 be given.

2. Let x, with |x| = k be the input to the BPP algorithm.
The algorithm uses kc1 random bits (polynomial in the size
of the input, as defined) and time.

3. We set d = 2cc1
δ , and n = kδ/2c.

4. Compute the range of Gn, that is a set of n
d = · · · = kc1

strings. The time required for this is O
�
2n

c�
= O

�
2k

δ
�
.

5. We then simulate the BPP algorithm on each element, and
take as output the majority output.

We’ll show that if that simulation fails on all inputs for a given δ, then
we can efficiently construct a distinguisher for Gfn

d using an oracle for fn.

Lemma 5.10. If this (heuristic) algorithm fails to be in SUBEXP, then

we have an efficient distinguisher, that is, DGf
d ,1/5 is efficiently constructible

with oracle access to fn.

Proof: Assume that the above (deterministic) algorithm is incorrect,
with probability 1/kd with respect to some P-sampleable distribution µk,
on k-bit strings6, for all but finitely many k’s.

Then, we can set k = n2c/δ (n is given), and sample r = kO(1) instances
x1, . . . , xr according to µk. The necessary time for this is polynomial (by

6The probability distribution µ (or even the family of probability distributions {µn|n ∈
N}) is polynomially sampleable (P-sampleable) if there is a polynomial p and a polynomial-
time computable function M , so that if r is a p(n)-bit string chosen uniformly at random,
then M(n, r) is distributed according to µ (or µn).
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definition) in k, and so it is in n. The algorithm fails with high probability
for one of these instances!

We can construct in (probabilistic) polynomial time a family of circuits
Di, which view their input as a random sequence, and simulate the BPP
algorithm on xi, using that random sequence.

With high probability, at least one Di is a distinguisher for Gn. To find
which is a ”good” distinguisher, we can use our oracle: We can test all Di’s
by using that Gfn

d can be evaluated with oracle access to fn.
If we reduce the error probability of the BPP algorithm to 1

10 , then our

distinguisher is in DGf
d ,1/5.

�

Step 4: Removing the Oracle

We proved (Lemma 5.10) that if the derandomization algorithm fails, we
have a probabilistic polynomial-time algorithm such that, for every n, con-
structs a circuit for fn by using it as oracle.

If we can remove the oracle need in the above algorithm, we can turn it
into a BPP algorithm computing f :

Lemma 5.11. If f is downward self-reducible, and Cf is efficiently con-
structible using oracle fn, then f ∈ BPP.

Proof: We can construct all circuits C1 ∈ Cf
1 , . . . , Cn ∈ Cf

n . If we

have computed Ci, we can efficiently construct C
f
i+1, with oracle fi+1 and

error e = 1
n2 , by simulating queries to fi+1 by M

Ci (where M is the Turing
Machine described in Definition 5.1).

Also, if T1 denotes the time taken by the construction without the oracle
queries, and T2 the time taken to simulate queries not counting the time to
evaluate oracle calls by M , we have that:

|Ci+1| ≤ T1 · T2

which is a fixed polynomial in n, indepedent of |Ci+1|.
So, we have each |Ci| bounded by a polynomial, thus the time for each

stage (including oracle calls) is also bounded polynomially. The probability

that Cn /∈ Cf
n is at most e · n = 1

n , so the error is bounded and we have
described a BPP algorithm computing f . �

Finally, we proved if our heuristic derandomization algorithm fails, we
have an efficient distinguisher for Gf

d (by Lemma 5.10), and so we have a
BPP algorithm computing f (Lemma 5.11). But f denotes the PERMANENT
function, which we assumed in Step 1 that is EXP-complete. So, every
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language in EXP can be decided by this BPP algorithm, hence BPP =
EXP, which contradicts the hypothesis of our theorem. That completes the
proof. �

5.3 Main Corollaries and Consequences

The main corollary is the following:

Corollary 5.12. There are functions in EXP∩P/poly that cannot be sim-

ulated deterministically in time 2o(n) with extra o(n) advice, so that, for
infinitely many n’s, the simulation to be correct on at least 2

3 fraction of all
inputs of size n.

Corollary 5.13. If every BPP language can be simulated deterministically
in time 2o(n) with extra o(n) advice, so that, for infinitely many n’s, the
simulation to be correct on at least 2

3 fraction of all inputs of size n, then
EXP �= BPP.

Combining the above two Propositions, we have the concluding:

Corollary 5.14. If BPP = EXP ∩P/poly , then BPP = EXP.

We can also give an alternative formulation of Theorem 5.1:

Theorem 5.15. If EXP �= BPP, then, for every � > 0, there is a quick
generator G : {0, 1}n� → {0, 1}n that is pseudorandom with respect to any
P-sapleable family of n-size Boolean Circuits infinitely often.

We can give an analysis of the above proposition:
Let BG(n) be the set of all Boolean Circuits C of size n that are ”bad” for
the generator G, that is:

C ∈ BG(n)⇔ |Prx [C(x) = 1]− Pry [C(G(y)) = 1]| ≥
1

n

Now let R be any probabilistic polynomial-time algorithm that, on input
1n, outputs a Boolean Circuit of size n. Then, there are infinitely many n’s
such that:

Pr [R(1n) ∈ BG(n)] <
1

n

where the probability is taken over the internal coin tosses of R.

The proof of Theorem 5.1 uses, as we saw, Meyer’s Theorem (EXP ⊂
P/poly ⇒ EXP = Σp

2), which is a non-relativizing result. We do not know
if Theorem 5.1 relativizes, unlike the precedent (non-uniform) hardness-
randomness tradeoffs (we mentioned in Chapter 3) which relativize.
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5.4 Simiral Results

In [TV07], Luca Trevisan and Salil Vadhan gave generalization of Theorem
5.1, providing a continuous trade-off between hardness and randomness,
which we state here without proof:

Theorem 5.16. If EXP �
�

c∈NBPTIME(t(t(nc))) for a time-constrictible
function f , then:

BPP ⊆
�

c∈N
DTIME(nc · 2t−1(n))

and the simulation is correct for at least 1− 1
nc fraction of inputs of size n.



Chapter 6

Uniform Derandomization of
RP

Valentine Kabanets obtained in [Kab00] another derandomizing result,
for RP this time, under the -weaker- assumption that EXP �= ZPP. The
simulation he obtained is based also on a easiness assumption: If there is
an efficient algorithm constructing the inputs on which the generator fails,
we can use it to construct another algorithm which can efficiently guess a
Boolean function that is sufficiently hard for the hardness-based generators
we saw in the previous chapters.

First, we present an elegant formalization of languages that cannot be
efficiently distinguished, the parameters of this setting, e.g. the computa-
tional abilities of an adversary that tries to separate them, and some of its
properties.

6.1 Formalizing Computational Indistinguishabil-
ity

In Chapter 1 we exposed different views for randomness, used by several
theories. In our perspective, we consider two subjects as equal, if we cannot
separate (or distinguish) them by any efficient procedure.

In order to develop a formalization for this kind of equality, we introduce
the notion of refuters, which are deterministic Turing Machines that try to
separate a language from another.

6.1.1 Deterministic Refuters

Definition 6.1. A refuter is a (length-preserving) Turing Machine R, such
that R(1n) ∈ {0, 1}n. Refuters can be deterministic, non-deterministic, or
probabilistic. In the case of non-determinism, refuter’s each nondetermin-
istic branch, on input 1n, either produces a string in {0, 1}n, or is marked

55
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with reject.

Intuitively, a refuter is an adversasy, who given specific computational
power, tries to distinguish a language (or a Boolean function) from another.
If it fails, we consider the two languages as equal, i.e. no adversary with
these computational powers can find a string that is in the one language and
isn’t in the other (a string in the symmetric difference of the two languages).
We can formalize the above idea as follows:

Definition 6.2. Let t(n) be a time bound. Two languages L,M ⊆ {0, 1}∗

are t(n)-indistinguishable, denoted as L
t(n)
= M , if for every deterministic

t(n)-time refuter R we have R(1n) /∈ L�M for all but finitely many n’s,
where � denotes the symmetric difference of the two sets.

So, we can write L
P
= M if L

p(n)
= M for every polynomial p ∈ poly(n),

that is if L and M cannot be distinguished by any polynomial-time refuter.

Similarly, we write L
EXP
= M for indistinguishability with respect to an

exponential-time refuter.

Using this equality

Definition 6.3. For a complexity class C of languages over {0, 1}, we can
define the complexity class:

pseudoPC = {L ⊆ {0, 1}∗|∃M ∈ C such that L P
=M}

• The refuters above are required to fail almost everywhere at producing
a certain string (∈ L�M).
This requirement can be relaxed in i.o. complexity setting.

•

Theorem 6.1. For any complexity class C ⊆ EXP, we have that:

C = EXP ∩ pseudoEXPC

Proof : Since C ⊆ EXP, and obviously C ⊆ pseudoEXPC, we have
that C ⊆ EXP∩ pseudoEXPC. In order to prove the opposite inclusion, let
L ∈ EXP∩pseudoEXPC such that L

EXP
= M for some languageM ∈ C (that

is, L andM cannot be distinguished by every refuter running in exponential
time). So, consider an exponential-time refuter R:

On input 1n, R goes though all n-bit strings checking if any of
them is in L�M , and outputs the lexicographically first string
in L�M if such a string exists, or 0n otherwise.
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The above checking can be done easily in exponential time, since L,M ∈
EXP. Now, suppose that L and M differ for infinitely many input lengths.
Then, R will succeed infinitely often to provide at least one such string, so

L
EXP
�= M , contradicting our hypothesis. Hence, L and M must coincide for

all but finitely input lengths, so L ∈ C almost everywhere. �
We can prove a “Time Hierarchy Theorem” for the pseudo setting.

Theorem 6.2. Let t2(n) be a constructible function, and let t1(n) log t1(n) ∈
o(t2(n)). Then, for infinitely many input sizes:

DTIME(t2(n)) � pseudoDTIME(t1(n))

Using refuters, we can express BPP Derandomization Theorem as fol-
lows:

Theorem 6.3 (Theorem 5.1 restated). If BPP �= EXP, then, for infinitely
many input sizes:

BPP ⊆ pseudoBPPSUBEXP

6.1.2 Probabilistic Refuters

We can ”enhance” refuters’ power by allowing them to use randomness.
We can have two ”versions” of such refuters: bounded-error probabilistic
(corresponding to class BPP), and zero-error probabilistic (corresponding
to class ZPP):

Definition 6.4 (Bounded-error probabilistic refuters). Let t(n) be a time
bound. Two languages L,M ⊆ {0, 1}∗ are bounded-error probabilistically

t(n)-indistinguishable, denoted as L
BP−t(n)
= M , if for every probabilistic

t(n)-time refuter R we have:

Pr [R(1n) /∈ L�M ] ≥ 1− n−c

for every c ∈ N, and for all but finitely many n’s.

Similarly:

Definition 6.5 (Zero-error probabilistic refuters). Let t(n) be a time bound.
Two languages L,M ⊆ {0, 1}∗ are zero-error probabilistically t(n)-indistinguishable,

denoted as L
ZP−t(n)
= M , if for every probabilistic refuter R which halts

within time t(n) with probability at least n−c, for some c ∈ N and for all by
finitely many n’s we have: R(1n) /∈ L�M for at least one legal computation
of R on input 1n which halts in time t(n).
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6.2 Main Results

The easiness assumtpion Kabanets used is similar to Natural Proofs we saw
in section ??. This conjecture, that there is no nc-useful natural predicate
P for some c ∈ N, can be expressed it the terms of Boolean Circuits, as
follows:
“For every {Cn}n∈N ⊆ P/poly such that almost every Cn accepts at least a
polynomial fraction of all n-bit inputs, there exists a d ∈ N such that almost
every Cn accepts the n-bit prefix of the truth table of a �log n�-variable
Boolean function with hardness at most �log n�d.”

We can use the above by replacing the random strings with the truth
tables of easy Boolean functions, and accepts if at least one of them works.
If this simulation fails, we can obtain a natural predicate P (recall Definition
??) which can used as a hardness test.

The main result is the following, implying that either BPP ”collapses”
to ZPP, either every RP algorithm can be simulated deterministicallly in
subexponential time:

Theorem 6.4. At least one of the following holds:

1. ZPP = BPP

2. RP ⊆ pseudoZPPSUBEXP infinitely often.

Proof: Let Sδm, for m ∈ N and δ > 0, be the set of truth tables of
all �logm�-variable Boolean functions of hardness at most mδ. Also, let
A ∈ RP that on input x, |x| = n, uses atr most m = nα random bits.
Consider the deterministic algorithm B�

A, for an arbitrary � > 0, which for
inputs x, |x| = n, accepts x iff A(x) accepts for at least one α ∈ S��

m used
as random string, where �� = �

2α . The running time of B
�
A is at most 2n

�

(why?).

If, for every A ∈ RP and every � > 0 it holds that L(A)
ZPP
= L(B�

A),
then RP ⊆ pseudoZPPSUBEXP, and the proof is complete.

Otherwise, there exists an Â ∈ RP, a constant �̂ > 0 and a probabilistic
polynomial-time refuter R, such that, for L1 = L(Â) and L2 = (B �̂

Â
), we

have that R(1n) ∈ L1 � L2 ⇒ R(1n) ∈ L1\L2 (since L2 ⊆ L1) for almost
every n, since R(1n) halts.

Now if R(1n) halts, then Â(R(1n)) can be viewed as a Boolean circuit
Chard, that accepts a significant fraction of all m-bit strings, and every ac-
cepted string consists the truth table of a �logm�-variable Boolean function
f�logm�, with size1 SIZE

�
f�logm�

�
> m�� , where, as before, �� = �̂

2α .
Since R(1n) halts with significant probability and always outputs a string
in L1\L2, we have a zero-error probabilistic algorithm for constructing such
circuits Chard, that run in expected polynomial time.

1Recall Definition 3.3
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We will now show that we can construct a pseudorandom generator G,
with stretch function S(k) = 2k/d and hardness H(G) > k for some d ∈ N, in
zero-error probabilistic polynomial time poly(k). For given ��, concider c and
d as in Theorem 5.1 (Recall the generator’s construction in Section 5.2.2),
and let m = nα = kc. Consider the algorithm that first constructs a testing
circuit Chard, then chooses a string β ∈ {0, 1}m uniformly at random, which
is accepted by Chard, and it uses β to construct a generator Gβ , as described
above. It follows that, for all sufficiently large k’s, Gβ has hardness greater
than k.

The first two stages of the above algorithm can be executed by a ZPP
algorithm. The third stage can be done in deterministic polynomial time.
So, for every L ∈ BPP, we have that L ∈ ZPP, so BPP ⊆ ZPP, and since
the other inclusion is trivial, we have that BPP = ZPP . �

Now, using Theorem 6.4 we can prove a similar to BPP Derandomization
Theorem (Theorem 5.1):

Theorem 6.5. If ZPP �= EXP, then, for infinitely many input sizes:

RP ⊆ pseudoZPPSUBEXP

Proof: Suppose, for the sake of contradiction, thatRP � pseudoZPPSUBEXP
infinitely often. Then, Theorem 6.4 implies that ZPP = BPP, and so
BPP � pseudoBPPDTIME

�
2n

ε�
, for some ε > 0. Hence, by Theorem 5.1

(or 6.3), we have that BPP = EXP ⇒ ZPP = EXP, which contradicts
our hypothesis. �

We end this section by stating Theorem 6.5 in a ”gap” theorem form,
exactly like the Impagliazzo-Wigderson result in the previous chapter. So,
either no derandomization of ZPP is possible, or else RP has a non-trivial
deterministic simulation:

Theorem 6.6. Either:

1. ZPP = EXP

2. RP ⊆ pseudoZPPSUBEXP infinitely often.
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Chapter 7

Uniform Derandomization of
AM

7.1 Nondeterministic Derandomization

As we mentioned in Chapter 1, the class AM is, by definition, the prob-
abilistic analogue of NP (usually denoted as AM = BP·NP). Also, the
next enhances our intuition that BPP collapsing to P is analogue to AM
collapsing to NP:
For a complexity class C, we define the class:

almostC =
�
L|Pr

�
L ∈ CA

�
= 1

�

where the probability is taken all over random choices of oracle A. Bennett
and Gill in their classical paper [BG81], proved that:

Theorem 7.1. almostP = BPP

A few years later, Nisan and Wigderson in [NW94], using the NW-
generator we presented in Section 4.4, proved that also:

Theorem 7.2. almostNP = AM

Also, we have the surprising fact that random oracles do not help Poly-
nomial Hierarchy:

Theorem 7.3. almostPH = PH

7.2 Main Results

Theorem 7.4. At least one of the following holds:

1. AM = NP

61
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2. NP ⊆ pseudoNPSUBEXP infinitely often.

Proof: We will try to simulate NP by using ”easy” functions as po-
tential witnesses. If this succeeds, we could have an efficient simulation of
NP. Otherwise, we will have a resource of hard functions which we’ll use to
construct pseudorandom sequences.

Let A be a language in NP, but not in pseudoNPDTIME
�
2n

ε�
, for

some ε ∈ (0, 1). Since A ∈ NP, there exists by definition a polynomial-
time computable relation M , and a polynomial m = poly(n), such that
∀x ∈ {0, 1}n: x ∈ A if and only if there exists a y ∈ {0, 1}m such that
M(x, y) = 1.

We also denote by Sδm the set of truth tables of all �logm�-Boolean func-
tions of hardness at most mδ, using a SAT oracle, that is, in SIZESAT

�
mδ

�

(by using Chapter 2 notation). Note that Sδm contains at most 2m
2δ
truth

tables (the maximum number of possible circuits of this hardness).
Now, consider the deterministic procedure Dδ

M , which, for x ∈ {0, 1}n,
accepts x if and only if there exists a truth table y ∈ Sδm such thatM(x, y) =
1. A SAT gate in a circuit of size mδ can be evaluated in deterministic
time 2O(mδ), each truth table in Sδm can be generated in this time. So,

Dδ
M ∈ DTIME

�
2m

cδ
�
, for some c ∈ N, and by choosing the constant δ so

that mcδ ≤ nε, we also have that Dδ
M ∈ DTIME

�
2n

ε�
.

Also, from our assumption that A /∈ pseudoNPDTIME
�
2n

ε�
, for some

ε > 0, there is a (nondeterministic) polynomial-time refuter R, such that
for almost every n, every string produced in a branch of R(1n) will be
”misclassified” by Dδ

M : A string is misclassified only when M(x, y) = 0∀y ∈
Sδm but M(x, y) = 1 for some y ∈ {0, 1}m\Sδm.

Let � = �logm�. We have now a nondeterministic polynomial time
procedure for producing the truth table of an �-variable Boolean function
which is not in SIZESAT

�
2δ�

�
, for almost every �:

• Use R to (nondeterministically) produce a misclassified input x

• Guess y of length 2� and produce it if M(x, y) = 1, for a misclassified
x.

As we mentioned in the beginning, this ”misclassification” provided us
with a method to find a hard function. Using the following Lemma, (which
we present without proof, the reader is referred to [KvM99]), we have a
method to construct a pseudorandom generator in time 2O(�) producing
pseudorandom sequences that look random to every circuit in SIZESAT

�
2δ�

�
.

Lemma 7.5 (from [KvM99]). Let A be any language, and suppose that f is
a Boolean function of size SIZEA (f�) = 2Ω(�). Then, there is a procedure
running in deterministic time 2O(�) that transforms the truth table of f� into
a pseudorandom sequence that looks random to all circuits in SIZEA

�
2Ω(�)

�
.
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We still have to connect somehow this results with Arthur-Merlin games.
The following Lemma gives us a general derandomization result for the class
AM:

Lemma 7.6. If a pseudorandom sequence that looks random to circuits in
SIZESAT (n) can be produced in nondeterministic time t(n), then:

AM ⊆ NTIME (poly (t(poly(n))))

Proof (of Lemma 7.6): Let L be a language in AM. Then, there exists
by definition a polynomial-time computable relation M , and a polynomial
m = poly(n) such that, for every x ∈ {0, 1}n:

x ∈ L⇒ Pry∈{0,1}m [∃z ∈ {0, 1}m s.t. M(x, y, z) = 1] ≥ 3

4

x /∈ L⇒ Pry∈{0,1}m [∃z ∈ {0, 1}m s.t. M(x, y, z) = 1] <
1

4

For any fixed x, the predicate ”∃z ∈ {0, 1}m : M(x, y, z) = 1” on y is
in SIZESAT (mc) for some constant c ∈ N. We use the nondeterministic
procedure, running in time t(mc) = t(nc

�
) = t(poly(n)), to produce a pseu-

dorandom set G = {g1, g2, . . . , g|G|} that looks random to all circuits in
SIZESAT (mc). Then:

x ∈ L⇔ Pry∈G [∃z ∈ {0, 1}m s.t. M(x, y, z) = 1] ≥ 1

2

To decide L, we (nondeterministically) guess strings z1, z2, . . . , z|G| from
{0, 1}m, and accept x if and only if M(x, gi, zi) = 1 for most i (the majority
vote). As |G| ≤ t(poly(n)), this procedure runs in nondeterministic time
poly(t(poly(n))). �

So, since our pseudorandom sequence can be produced in nondeterministic
polynomial time, Lemma 7.6, for t(n) = poly(n), implies that AM = NP.

�

It it worth to notice that since the Graph Nonisomorphism Problem (GNI)
belongs to AM and coNP1 (and thus in their intersection), the above The-
orem imply that either GNI is in NP, or that can be simulated in nondeter-
ministic subexponential time, so that the simulation appears correct with
respect to any nondeterministic polynomial-time refuter, for infinitely many
n’s.

1Recall the discussion in page 17, and Theorem 2.7



64 CHAPTER 7. UNIFORM DERANDOMIZATION OF AM

Theorem 7.7. coNP∩AM ⊆ �
ε>0 pseudoNPNTIME

�
2n

ε�
infinitely of-

ten.

Proof: Since pseudoNPSUBSEXP is closed under complement, The-
orem 7.4 implies that, for infinitely many input sizes, either:

• coNP ⊆ pseudoNPSUBSEXP ⊆ �
ε>0 pseudoNPNTIME

�
2n

ε�
, or

• AM = NP ⊆ �
ε>0 pseudoNPNTIME

�
2n

ε�
(trivially)

Hence, we have that coNP ∩AM ⊆ �
ε>0 pseudoNPNTIME

�
2n

ε�

�

So, we obtain the following remarkable conclusion, the first non-trivial
derandomization result for GNI, stating that this problem has subexponential-
size proofs infinitely often, without any assumption:

Corollary 7.8. GNI ∈ �
ε>0 pseudoNPNTIME

�
2n

ε�
, for infinitely many

input sizes.

We can also have a more general result for these tradeoffs:

Theorem 7.9. Either:

• NP ⊆ pseudoNPDTIME (t(n)), or

• AM ⊆ NTIME
�
exp

�
log t−1(expn)

��

for any t(n) = Ω(n).

Proof:
but we’ll use, instead of Lemma 7.5, a more general result, presented

also in [KvM99]:

Lemma 7.10 (from [KvM99]). Let A be any language, and suppose f is a
Boolean function with size SIZEA (f�) ≥ m(�). There is a procedure run-
ning in deterministic time 2O(�) that transforms the truth table of f� into a
pseudorandom sequence that looks random to all circuits in SIZEA (mε(�ε))
for some constant ε > 0.

�

Using the above theorem, by setting t(n) = 2log
o(1) n, we obtain the fol-

lowing (better than Corollary(7.8)) simulation:

Corollary 7.11. GNI ∈ pseudoNPNTIME

�
22

logo(1) n

�
, for infinitely many

input sizes.
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The techniques we developed above, can be used in the same way to
provide also space-time trade-offs between complexity classes. We expose
some results from [Lu00]:

Theorem 7.12. Either:

1. DTIME(t(n)) ⊆ �
ε>0DSPACE(t

ε(n)) infinitely often for any func-

tion t(n) = 2Ω(n), or

2. P = BPP and AM = NP and PH ⊆ ⊕P

Theorem 7.13. Either:

1. DTIME(t(n)) ⊆ �
ε>0DSPACE

�
2log

ε t(n)
�

infinitely often for any

function t(n) = 2Ω(n), or

2. BPP ⊆ QuasiP and AM ⊆ NQuasiP and PH ⊆ ⊕QuasiP

Theorem 7.14. Either:

1. DTIME(t(n)) ⊆ DSPACE(poly(log t(n))) infinitely often for any
function t(n) = 2Ω(n), or

2. BPP ⊆ SUBEXP and AM ⊆ NSUBEXP and PH ⊆ ⊕SUBEXP

7.3 Gap Theorems for Arthur-Merlin Games

7.3.1 The High-End

The following theorem consists a non-deterministic analogue of Impagliazzo
and Wigderson Theorem for AM. While the IW-theorem works in the low-
end setting, this works in the high-end.

Theorem 7.15. If E � AM−TIME(2�n), for some � > 0, then for all
c > 0, and infinitely many input sizes, we have:

AM ⊆ pseudoNTIME(nc)NP

The above theorem can be stated also as a gap theorem for AM: Either
Arthur-Merlin protocols are very strong and everything in E can be proved
to a subexponential-time verifier, or they are very weak and Merlin can prove
nothing that cannot be proven in the pseudo setting by standardNP-proofs.

We also have a similar gap-theorem for AM ∩ coAM:

Theorem 7.16. If E � AM−TIME(2�n), for some � > 0, then, for
infinitely many input sizes:

AM ∩ coAM ⊆ NP ∩ coNP
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The class AM ∩ coAM has a very special interest since it contains the
class SZK (Statistical Zero-Knowledge), and therefore it contains some very
natural problems that are not known to be in NP, e.g. GNI, approximation
of shortest and closest vector in a lattice, Statistical Difference etc.

It is a significant result that for the class AM ∩ coAM, we can (non-
trivially of course) get rid of ”infinitely often” setting, and go up to ”almost
everywhere” complexity:

Theorem 7.17. If E � AM−TIME(2�n) infinitely often, for some � > 0,
then, for all but finitely many input sizes:

AM ∩ coAM ⊆ NP ∩ coNP

We state another gap theorem concerns nondeterministic exponential
time. In the non-uniform results, when moving from BPP to AM we can
allow the hard function to be in NE ∩ coNE, because this affects only the
complexity of the generator: instead of being computable in deterministic
polynomial time, it in now computable inNP∩coNP. Since the application
of the generator to derandomize AM already uses nondeterminism, this still
gives the same reslt.

Theorem 7.18. If NE ∩ coNE � AM−TIME(2δn), for some δ > 0,
then, for infinitely many n’s, and for every c, ε > 0:

AM ⊆ pseudoNTIME(nc)NTIME
�
2n

ε�

And also, for every ε > 0:

AM ∩ coAM ⊆ NTIME
�
2n

ε� ∩ coNTIME
�
2n

ε�

The above result states that either randomness is helpful and every proof
that requires exponentially long witnesses can be replaced by a much more
efficient Arthur-Merlin Game, or else, rendomness is relatively weak and
every (polynomial-time) Arthur-Merlin Game can be replaced by a proof
that does not use randomness while paying at most a subexponential cost
in efficiency.

7.3.2 The Low-End Extension

The above gap theorems for AM and AM ∩ coAM in the above section
are ”High-End” results (recall the ”AM-TIME(2�n)” condition). Its proof
was based in a“resiliency” property of a Hitting-Set Generator construction,
which works only in the High-End.

Using a variant of the aforementioned techniques, since the above dont’t
work when use time bound for AM smaller than 2

√
n, we can obtain and a

”Low-End” result, presented in [SU07a].
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Theorem 7.19. There exists a language A complete for E (resp. EXP),
such that for every time-constructible function t: m < t(m) < 2m, either:

1. A has an Arthur-Merlin protocol running in time t(m)

2. for any language L ∈ AM there is a nondeterministic machine M that
runs in time 2O(m) (resp. 2m

O(1)
) on inputs of length:

n = t(m)Θ(1/(logm−log log t(m))2)

(resp. n = t(m)Θ(1/(logm)2)) such that for any refuter R running in
time t(m) when producing strings of length n, there are infinitely many
n’s on which L and L(M) are t(m)-indistinguishable.

In other words, either E is computable by an Arthur-Merlin protocol in
time s(�), or for everyAM language L there exists a nondeterministic TMM
that runs in time exponential in � and solves L correctly on feasibly generated
inputs of length n = t(m)Θ(1/(logm−log log t(m))2). This is an extension of the
gap theorems of the previous section.

The analogue for AM ∩ coAM follows:

Theorem 7.20. There exists a language A complete for E (resp. EXP),
such that for every time-constructible function t: m < t(m) < 2m, either:

1. A has an Arthur-Merlin protocol running in time t(m)

2. for any language L ∈ AM∩coAM there is a nondeterministic machine
M that runs in time 2O(m) (resp. 2m

O(1)
) on inputs of length:

n = t(m)Θ(1/(logm−log log t(m))2)

(resp. n = t(m)Θ(1/(logm)2)) such that for any refuter R running in
time t(m) when producing strings of length n, there are infinitely many
n’s on which L and L(M) are t(m)-indistinguishable.

Either E is computable by Arthur-Merlin protocols within time s(�), or
for any AM ∩ coAM language L there exists a non-deterministic (and co-
nondeterministic) machine M that runs in time exponential in � and solves
L correctly on all inputs of length n = t(m)Θ(1/(logm−log log t(m))2).

The non-standard implicit way of measuring the running time ofM exists
because it is not possivle to express the running time of M as a function of
its input length in a closed form that covers all possible choices of s(�).

And, like the theorem of the previous section, we can extract the “in-
finitely often” setting and have a more general result:

Theorem 7.21. There exists a language A complete for E (resp. EXP),
such that for every time-constructible function t: m < t(m) < 2m, either:
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1. A has an Arthur-Merlin protocol running in time t(m) which agrees
with L on infinitely many inputs (on other inputs the Arthur-Merlin
protocol does not necessarily have a non-negligible gap between com-
pleteness and soundness), or

2. for any language L ∈ AM∩coAM there is a nondeterministic machine
M that runs in time 2O(m) (resp. 2m

O(1)
) on inputs of length:

n = t(m)Θ(1/(logm−log log t(m))2)

(resp. n = t(m)Θ(1/(logm)2)) such that L = L(M).



Chapter 8

Derandomization vs Lower
Bounds

As we saw in Chapters 4 and 5, the following three basic questions in
Complexity Theory were proven to be equivalent in the nonuniform setting:

1. Existence of worst-case complexity problems in E.

2. Existence of worst-case complexity problems in E.

3. The existence of pseudorandom generators providing subexponential
or even polynomial-time simulations of BPP.

8.1 Derandomization vs Circuit Lower Bounds

Although certain ciruit lower bounds imply Derandomization, they have
been proven, as we saw, very tricky enough to prove, so we have to make
asssumptions and conjectures for derandomization without them.

However, Impagliazzo, Kabanets and Wigderson proved in 2001 that
derandomizing MA would imply lower bounds for NEXP,and, conversely,
that it is impossible to separate NEXP and MA without proving that
NEXP � P/poly. We formalize the previous conclusions as follows:

Theorem 8.1.

NEXP ⊆ P/poly ⇒ NEXP = EXP =MA

Firstly, we show a ”weaker” theorem (which captures only deterministic
exponential time), proved by Babai, Fortnow, Nisan and Wigderson in 1993:

Theorem 8.2.

EXP ⊆ P/poly ⇒ EXP =MA

69
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Proof : Suppose that EXP ⊆ P/poly. Then, by Meyer’s Theorem (The-
orem 3.4):

Σp
2 = PSPACE = IP = EXP ⊆ P/poly

So, every L ∈ EXP has an Interactive Proof, and since we have assumed
that EXP ⊆ P/poly, the Prover can be replaced by a polynomial circuit
family {Cn}. We can now describe an (one-round) interactive proof between
Prover Merlin and Verifier Arthur (i.e. the definitive condition of the class
MA):

• Given input string x, with |x| = n, Merlin sends Arthur a polynomial-
size circuit C, which is supposed to be the circuit Cn for the Prover’s
strategy for L.

• Arthur simulates the interactive proof for L, using C as the Prover,
and making random choices to simulate the Verifier. If the input is
not in the language, then no Prover has a chance of convincing the
Verifier, and so C cannot prove the Verifier.

The MA protocol we described takes any L ∈ EXP, and so it implies that
MA ⊆ EXP⇒MA = EXP. �

8.1.1 Relativizions Of The Above

We can get some weak relativizations of Theorem 8.1:

Theorem 8.3. For any A in EXP, if EXPA is in PA
/poly, then: NEXP

A =

EXPA.

We can do better if A is complete for some level of the polynomial-time
hierarchy! In this (final) section, we will prove the following theorem:

Theorem 8.4. Let A be complete for Σp
k, for any k ≥ 0. If NEXPA is in

PA
/poly, then NEXP

A =MAA = EXP.

From the above theorem, we have a very interesting corollary:

Theorem 8.5. There is at most one k such that NEXPΣp
k is in P

Σp
k

/poly.

In order to prove Theorem 8.4, we expose some necessary tools:

Theorem 8.6. For any A, if EXP is in PA
/poly, then EXP ⊆MAA.

Theorem 8.7. For all A, if NEXPA is in PA
/poly and EXPA is in AMA,

then NEXPNP = NEXP.

Theorem 8.8. For any k ≥ 0, if EXPΣp
k ⊆ EXP/poly, then EXPΣp

k =
EXP



Appendix A

Quantifier Characterizations

A.1 Complexity Classes

A.1.1 Introduction

We present an alternative characterization of complexity classes using
quantifiers, and especially those needed for the quantification implied by
the definition of each class. This notation provides a uniform description of
complexity classes defined in various contexts (deterministic, probabilistic,
interactive), and we’ll be able to obtain immediate relations and inclusions
among them.

For complexity classes like P, NP and their generalizations, the classical
existential and universal quantifiers suffice, but in order to describe classes
using Probabilistic Turing Machines, we will need a new one, which assures
that a computation has “probabilistic” advantage:

Definition A.1 (Majority Quantifier). Let R : {0, 1}∗ × {0, 1}∗ → {0, 1}
be a predicate, and ε a rational number in

�
0, 12

�
. We denote by (∃+y, |y| =

k)R(x, y) the following predicate:

“There exist at least
�
1
2 + ε

�
· 2k strings y of length k for which

R(x, y) holds.”

We call ∃+ the overwhelming majority quantifier.

The overwhelming quantifier provides a “threshold” for the number of
certificates, assuring that the fraction of 2k possible strings in {0, 1}k (that
is, of length k) which accepts the computation (or satisfies the predicate R)
is bounded away from 50% by a fixed amount ε.

We can generalize this quantifier by attaching the fraction of accepting
computations as a parameter. That is, ∃+r means that the fraction r of the
possible certificates of a certain length satisfy the predicate for the certain
input. It is easy to see that: ∃+ = ∃+1/2+ε = ∃

+
2/3 = ∃

+
3/4 = ∃

+
0.99 = ∃+1−2p(|x|)

,

71
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where |x| denotes the length of the input x. Intuitively, this means that
we can “increase” the fraction of the accepting branches (the acceptance
probability) by indepedent repetitions of the computation.

We also introduce a new notation for an arbitrary complexity class, which
utilizes the quantifiers’ role in the classical definition:

Definition A.2. We denote as C = (Q1/Q2), where Q1, Q2 ∈ {∃, ∀, ∃+},
the class C of languages L satisfying:

• x ∈ L⇒ Q1y R(x, y)

• x /∈ L⇒ Q2y ¬R(x, y)
In the above definition, we easily notice that:

coC = co(Q1/Q2) = (Q2/Q1)

So, using the classical existential and universal quantifiers we can define
the basic complexity classes, by implying their definitional properties. For
example, for languages in class P there is a computation path which either
accepts, either rejects. So, it is easy to see that P = (∀/∀).

On the other hand, for languages in class NP there is a computation
tree for each input, and we accept it if there is an accepting branch, or we
reject it if all the branches reject. Hence, we have that: NP = (∃/∀). The
complementary class coNP can be also defined as coNP = (∀/∃).

A family of complexity classes that are naturally defined by alternating
quantifiers is the Polynomial Hierarchy. These classes can be considered as
a natural generalization of NP. Recall that:

Definition A.3 (Polynomial-Time Hierarchy). A language L ∈ Σp
k, k ∈ N,

iff there exists a polynomial-time computable predicate R(x, y1, y2, . . . , yk),
such that, for |yi| ≤ p(n), i ∈ {1, . . . , k}, p ∈ poly(n):

x ∈ L⇔ ∃y1∀y2∃y3 · · ·Qkyk R(x, y1, y2, . . . , yk)

where Qk is ∃ if k is odd, and ∀ if k is even.

Also, a language L ∈ Πp
k iff there exists a polynomial-time computable

predicate R(x, y1, y2, . . . , yk), such that, for |yi| ≤ p(n), i ∈ {1, . . . , k}, p ∈
poly(n):

x ∈ L⇔ ∀y1∃y2∀y3 · · ·Qkyk R(x, y1, y2, . . . , yk)

where Qk is ∀ if k is odd, and ∃ if k is even.

An equivalent definition can be given recursively using oracles: Σp
k =

NPΣp
k−1 and Πp

k = coNPΣp
k−1 , while Σp

0 = Πp
0 = P. So, we have that

Σp
1 = NP, Πp

1 = coNP, Σp
2 = NPNP and so on.

Using quantifier notation, we can re-define these complexity classes as:



A.1. COMPLEXITY CLASSES 73

• Σp
2 = (∃∀/∀∃), Πp

2 = (∀∃/∃∀), and in general:

• Σp
k = (∃∀ · · ·Qm)/∀∃ · · ·Qn), where:

– Qm represents ∃, if k is odd, or ∀, if k is even, and
– Qn represents ∀, if k is odd, or ∃, if k is even.

• Πp
k = (∀∃ · · ·Qm/∃∀ · · ·Qn), where:

– Qm represents ∀, if k is odd, or ∃, if k is even.
– Qn represents ∃, if k is odd, or ∀, if k is even.

A.1.2 Randomized Classes

Using the overwhelming majority quantifier, the following characteriza-
tions are immediate from the definition of each class:

• BPP (Bounded two-sided error, “Monte-Carlo”):

By BPP ’s definition we have:

�
x ∈ L⇒ Pr [accept ] ≥ 2/3
x /∈ L⇒ Pr [reject ] ≥ 2/3 ⇒

�
x ∈ L⇒ Pr [R(x)] ≥ 2/3
x /∈ L⇒ Pr [¬R(x)] ≥ 2/3 , for a predicate R ∈ P ⇒

�
x ∈ L⇒ ∃+y R(x, y)
x /∈ L⇒ ∃+y ¬R(x, y) ⇒ BPP = (∃+/∃+)

• RP (Bounded one-sided error, “Atlantic City”):
Similarly:

�
x ∈ L⇒ Pr [accept ] ≥ 2/3
x /∈ L⇒ Pr [reject ] = 1

⇒
�
x ∈ L⇒ Pr [R(x)] ≥ 2/3
x /∈ L⇒ Pr [¬R(x)] = 1 , for a predicate R ∈ P ⇒

�
x ∈ L⇒ ∃+y R(x, y)
x /∈ L⇒ ∀y ¬R(x, y) ⇒ RP = (∃+/∀)

• Obviously, coRP = (∀/∃+)

So, we have created alterative definitions for the most usual complexity
classes. Now, we can explore what kind of “operations” we can perform
with these quantifiers. Firstly, we determine when we can swap ∀ and ∃+:
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Lemma A.1 (Swapping Lemma). Let R(x, y, z) be a predicate that holds
only if |y| = |z| = p(n) for some polynomial p, where n = |x|, and let C
be a set of strings such that ∀v ∈ C |v| = p(n) and |C| ≤ p(n). Then, for
|y| = |z| = p(n):

i. ∀y∃+z R(x, y, z)⇒ ∃+C∀y �
z∈C R(x, y, z)

ii. ∀z∃+
1−2−ny R(x, y, z)⇒ ∀C∃+y �

z∈C R(x, y, z)

Proof: (i) Assume that ∀y∃+z R(x, y, z) holds. Let p ∈ poly(n) such
that for all y with |y| ≤ p(n) and considering only z with |z| ≤ p(n):
Pr [{z| R(x, y, z)}] > 1

2 + ε. Also, let q(n) = p(n) + 3. We will estimate the
probability of the event ¬∀y �

z∈C R(x, y, z):

Pr

��
C | ∃y :

�

z∈C
¬R(x, y, z)

��
= Pr


 �

|y|≤p(n)

�
C |

�

z∈C
¬R(x, y, z)

�


≤
�

|y|≤p(n)
Pr

��
C |

�

z∈C
¬R(x, y, z)

��
≤

�

|y|≤p(n)

q(n)�

i=1

1

2
≤ 2p(n)+1·

�
1

2

�q(n)

≤ 1

4

Note that the predicate R�(x, y, z) =
�

z∈C R(x, y, z) is polynomial-time
computable, therefore for most of the C:

�
z∈C R(x, y, z), that is

∃+C∀y �
z∈C R(x, y, z).

(ii) Without loss of generality, we can assume that ∀x∀z Pr [{z| R(x, y, z)}] ≥
1 − 1/2p(n) for some p ∈ poly(n). So, for any z, |z| = p(n), we have that
Pr [¬R(x, y, z)] ≤ 2p(n). For a given C, |C| ≤ q(n):

Pr

��
y |

�

z∈C
¬R(x, y, z)

��
≤

�

z∈C
Pr [{y|¬R(x, y, z)}] ≤ q(n)

2p(n)
<
1

4

for sufficiently large n. Therefore, we have that ∀C∃+y �
z∈C R(x, y, z).

The above lemma, can be viewed in terms of a binary matrix A of size
2p(n) × 2p(n), with A(y, z) ⇔ R(x, y, z). The (i) part states that if every
row of A has more than (2/3)p(n) many 1’s, then for the majority of the
choices of p(n) many columns, every row of A contains at least one 1 in
these columns. Similarly for part (ii).

We can prove, using the Swapping Lemma, an alternative, “decisive”
characterization of BPP, stated in the following theorem:
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Theorem A.2 (BPP Theorem). The following are equivalent:

i. L ∈ BPP.

ii. There exists a polynomial-time computable predicate R and a polyno-
mial p, such that for all x, with |x| = n, and |y| = |z| = p(n):

x ∈ L⇒ ∃+y∀z R(x, y, z)

x /∈ L⇒ ∀y∃+z ¬R(x, y, z)

iii. There exists a polynomial-time computable predicate R and a polyno-
mial p, such that for all x, with |x| = n, and |y| = |z| = p(n):

x ∈ L⇒ ∀y∃+z R(x, y, z)

x /∈ L⇒ ∃+y∀z ¬R(x, y, z)

Proof: (i ⇒ ii) Let L ∈ BPP. Then, by definition, there exists a polynomial-
time computable predicate Q and a polynomial q such that for all x’s of
length n:

x ∈ L⇒ ∃+y Q(x, y)
x /∈ L⇒ ∃+y ¬Q(x, y)

Using Lemma A.1(i) we have1, for all x’s of length n and for some y, z, |y| =
|z| = q(n):
x ∈ L⇒ ∃+z Q(x, z)⇒ ∀y∃+z Q(x, y⊕z)⇒ ∃+C∀y [∃(z ∈ C) Q(x, y ⊕ z)],
where C denotes (as in the Swapping’s Lemma formulation) a set of q(n)
strings, each of length q(n).
On the other hand, by using Lemma A.1(ii) we similarly have:
x /∈ L⇒ ∃+y ¬Q(x, z)⇒ ∀z∃+y ¬Q(x, y⊕z)⇒ ∀C∃+y [∀(z ∈ C) ¬Q(x, y ⊕ z)].
Now, we only have to assure that the appeared predicates ∃z ∈ C Q(x, y⊕z)
and ∀z ∈ C ¬Q(x, y⊕ z) are computable in polynomial time (Note that the
above expressions are equivalent to

�
z∈C ¬R(x, y, z) and

�
z∈C ¬R(x, y, z)

we met in Swapping Lemma.): Recall that in Swapping Lemma’s formula-
tion we demanded |C| ≤ p(n) and that for each v ∈ C : |v| = p(n). This
means that we seek if a string of polynomial length exists, or if the predi-
cate holds for all such strings in a set with polynomial cardinality, procedure
which can be surely done in polynomial time.

(ii ⇒ i) Conversely, assume that there exists a predicate R and a polyno-
mial p, as stated is (ii). Then, for each string w of length 2p(n), we “divide”
it in two halfs w1, w2, such that w = w1 ◦w2 and |w1| = |w2| = p(n). Then,
for each x with |x| = n, and |y| = |z| = p(n):

1We define the XOR (eXclusive OR) operator ⊕ of two strings of the equal length as
the bit-by-bit mod2 addition. That is: 0⊕ 0 = 1⊕ 1 = 0, and 0⊕ 1 = 1⊕ 0 = 1.
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x ∈ L⇒ ∃+y∀z R(x, y, z)⇒ ∃+w(|w| = 2p(n)) R(x,w1, w2)
x /∈ L⇒ ∀y∃+z R(x, y, z)⇒ ∃+w(|w| = 2p(n)) ¬R(x,w1, w2)

(i ⇒ iii) It follows immediately from the fact that BPP is closed under
complementation (coBPP = BPP).

In other words, Theorem A.2 states that:

BPP = (∃+∀/∀∃+) = (∀∃+/∃+∀) (A.1)

The above characterization of BPP is decisive in the sense that if we
replace the ∃+ quantifier with ∃ (if “+” is dropped), then we can decide
whether x ∈ L or x /∈ L. That is, the two predicates are still complementary2
to each other, so exactly one holds for x. Note that this doesn’t hold for the
(∃+/∃+) characterization of BPP, because if we replace the ∃+ quantifier
with ∃, the two resulting predicates are not complementary, and they do not
define a complexity class.

By replacing in (A.1) the quantifier ∃+ with ∃ (why is this possible? )
we can obtain immediately the following result, known as the Sipser-Gács
Theorem:

Corollary A.3. BPP ⊆ Σp
2 ∩Πp

2

Theorem A.2 can be generalized for sequences of quantifiers (denoted as
Qi):

Corollary A.4.

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) = (Q1∀∃+Q2/Q3∃+∀Q4)

Using quantifier characterizations, we also have trivially many inclusions
between complexity classes:

• P ⊆ RP, since (∀/∀) ⊆ (∃+/∀) (for all implies for most).

• RP ⊆ BPP, since (∃+/∀) ⊆ (∃+/∃+) (same reason).

• RP ⊆ NP, since (∃+/∀) ⊆ (∃/∀) (for most implies for at least one).

The main inclusions are depicted in the following Hasse diagrams (“→”
denotes “⊆”):

2Two predicates R and P are called complementary if R ⇒ ¬P .
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A.2 Arthur-Merlin Games

A.2.1 Introduction

In this section, we consider the interaction model between two Turing
Machines as a “game”. This setting is very useful to Complexity Theory,
for placing upper bounds in problems’ complexity, and on the other hand
in Cryptography, for proving the security of cryptographic protocols against
(efficient) computational attacks. The terminology used in this games is
mainly anthropomoprphic, known as “Arthur-Merlin” Games.

“King Arthur recognizes the supernatural intellectual abilities of
Merlin, but doesnt trust him. How should Merlin convince the
intelligent but impatient King that a string x belongs to a given
language L? If L ∈ NP, Merlin will be able to present a witness
which Arthur can check in polynomial time.” From [Bab85]

In the above, Arthur is an ordinary player with the ability of making coin
tosses (i.e. randomization), and Merlin is a powerful player capable of opti-
mizing his winning chances at every move. The two players alternate moves,
the history of the game is known to both, and after k moves there is a deter-
ministic polynomial-time Turing Machine that reads the history and decides
who wins. We state the formal definition:

Definition A.4 (Arthur-Merlin Games). An Arthur-Merlin Game is a pair
of interactive Turing Machines A and M, and a predicate ρ such that:
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• On an input x, with length |x| = n, exactly q(n) messages of length
m(n) each are exchanged, where q,m ∈ poly(n).

• Arthur plays first, and at iteration 1 ≤ i ≤ q(n) chooses uniformly at
random a string ri, where |ri| = m(n).

• Merlin’s reply in the ith iteration, denoted yi, is a function of all pre-
vious choices of Arthur and x. That is: yi = M(x, r1, r2, . . . , ri). In
other words, M is the strategy of Merlin.

• For every Turing Machine M�, a conversation between A and M� on
input x is a string:

r1y1r2y2 · · · rq(n)yq(n)
where for every 1 ≤ i ≤ q(n): yi =M�(x, r1r2 · · · ri)

• The predicate ρ maps x and a conversation r1y1r2y2 · · · rq(n)yq(n) to
{accept, reject} in polynomial time, and it is called value-of-the game
predicate.

Now we need to determine how to test the membership for a language L
using an Arthur-Merlin game: Firstly, we define the set of all conversa-
tions between Arthur and Merlin as CONV M

x . Obviously, we have that
|CONV M

x | = 2q(n)m(n). We also define the set of accepting conversations

ACCρ,M
x as:

�
r1 · · · rq(n)|∃(y1 · · · yq(n)) : (r1y1 · · · rq(n)yq(n)) ∈ CONVM

x ∧ ρ(r1y1 · · · rq(n)yq(n)) = accept
�

Intuitively, ACCρ,M
x is the set of all random choices leading Arthur to accept

the input x when interacting with Merlin, and it depends only on Merlin and
the pridecate ρ, given that Arthur follows the protocol. The probability that
Arthur accepts x is:

Pr[Arthur accepts x] =
|ACCρ,M

x |
|CONV M

x |
Definition A.5. A language L is in AM[k] if there exists a k-move Arthur-
Merlin protocol such that for every x ∈ Σ∗ :

• If x ∈ L, there exists a strategy for Merlin such that :

Pr[Arthur accepts x] ≥ 2

3

• If x /∈ L, for every strategy for Merlin we have:

Pr[Arthur accepts x] ≤ 1

3

The first is known as completeness condition, and the second as sound-
ness condition.

The class MA[k] is defined by similar way, but Merlin plays first.
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A.2.2 Quantifier Characterizations

We denote by AM = AM[2], and byMA =MA[2]. Following [Bab85], we
consider as Merlin an NP machine, and as Athur a BPP machine. So, we
can interpret Arthur-Merlin games in terms of quantifiers:

AM = (∃+∃/∃+∀) = BP ·NP

MA = (∃∃+/∀∃+) = N ·BPP
where BP· and N· is the bounded-probabilistic and the nondeterministic
quantifiers respectively (see Appendix A.3 for definitions). It is well known
that we can obtain perfect completeness for interactive proof systems, by
simulating the given protocol by another. This cannot be obtained in the
soundness condition, because this would be equal to a deterministic verifier,
so by definition that class collapses to NP. We prove perfect completeness
for Arthur-Merlin games in the following theorem:

Theorem A.5. i. AM = (∃+∃/∃+∀) = (∀∃/∃+∀)

ii. MA = (∃∃+/∀∃+) = (∃∀/∀∃+)

iii. In general, for even k and AM[k] = (Q1/Q2):

• AM[k + 1] = (Q1∃+/Q2∃+) = (Q1∀/Q2∃+)
• AM[k + 2] = (Q1∃+∃/Q2∃+∀) = (Q1∀∃/Q2∃+∀)

Proof: (i) AM = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) (by Corollary A.4)
⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) (by quantifier contraction).
The other direction is trivial: (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

(ii) MA = (∃∃+/∀∃+) = (∃∃+∀/∀∀∃+) (by Corollary A.4)
⊆ (∃∃∀/∀∀∃+) = (∃∀/∀∃+) (by quantifier contraction).
The other direction is trivial: (∃∀/∀∃+) ⊆ (∃∃+/∀∃+) =MA.

(iii) AMA = (∃+∃∃+/∃+∀∃+) = (∀∃∃+/∃+∀∃+) (by (ii))
= (∀∃∃+∀/∃+∀∀∃+) (by Corollary A.4)
= (∀∃∀/∃+∀∃+) (by quantifier contraction)
and so on for AM[k].

We also prove the following useful lemma:

Lemma A.6. (∃∀/∀∃+) ⊆ (∀∃/∃+∀)

Proof: Let L ∈ (∃∀/∀∃+). Then,
x /∈ L⇒ ∀y ∃+z ¬P (x, y, z)
⇒ ∃+C ∀y ∃z ∈ C ¬P (x, y, z) (by the Swapping Lemma A.1i)
⇒ ∃C ∀y ∃z ∈ C ¬P (x, y, z)
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⇒ ∀y ∃z ¬P (x, y, z)
⇒ x /∈ L
which means that all logical implications are indeed equivalences, and the
second and third lines emply that L ∈ (∀∃/∃+∀).

From the above theorem and lemma, we have the following immediate
inclusions:

Corollary A.7. MA ⊆ AM

Corollary A.8. AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩Πp
2

Lemma A.6 can be generalized as follows:

Corollary A.9.

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4)

If we consider the complexity classes AM[k] (the languages that have
Arthur-Merlin proof systems of a bounded number of rounds), they form an
hierarchy :

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Unlike the Polynomial Hierarchy, in which we believe the inclusions are
proper, Arthur-Merlin Hierarchy collapses to the second level (which is why
we usually denote as AM the class AM[2]):

Theorem A.10. For constants k ≥ 2, AM[k] = AM[2].

Proof. We show as special case the inclusion MAM ⊆ AM:
MAM = (∃∃+∃/∀∃+∀) ⊆ (∃∃+∀∃/∀∀∃+∀) (by the BPP Theorem A.2)
⊆ (∃∀∃/∀∃+∀) (by quantifier contraction)
⊆ (∀∃∃/∃+∀∀) (by Lemma A.6)
⊆ (∀∃/∃+∀) = AM (by quantifier contraction)

We give an alternative proof of a result which provides us with strong
evidence that coNP � AM, originally proved in [BHZ87]:

Theorem A.11. If coNP ⊆ AM, then:

i. PH collapses at the second level, and

ii. PH = AM.

Proof: Since coNP ⊆ AM, we have that (∀/∃) ⊆ (∀∃/∃+∀) as assumption.
Then:

Σp
2 = (∃∀/∀∃) ⊆ (∃∀∃/∀∃+∀) ⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) = AM ⊆ (∀∃/∃∀) = Πp

2

The first inclusion holds from our hypothesis, the second by Lemma A.6.
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The following Hasse diagrams captures the inclusions between the most
important complexity classes we’ve seen so far, the former in classic and the
latter in quantifier notation:
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A.3 Operators on Complexity Classes

Definition A.6 (Operators on Complexity Classes). Let C be an arbitrary
complexity class. We define:

1. The complement operator coC:
A language L ∈ coC if there exists an L� ∈ C such that:

• If x ∈ L⇒ x /∈ L�

• If x /∈ L⇒ x ∈ L�

2. The nondeterministic operator N :
A language L ∈ N·C if there exists an L� ∈ C such that:
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Class Definition Notation

P x ∈ L⇒ R(x) x /∈ L⇒ ¬R(x) (∀/∀)
NP x ∈ L⇒ ∃y R(x, y) x /∈ L⇒ ∀y ¬R(x, y) (∃/∀)
coNP x ∈ L⇒ ∀y R(x, y) x /∈ L⇒ ∃y ¬R(x, y) (∀/∃)
Σp
2 x ∈ L⇒ ∃y∀z R(x, y, z) x /∈ L⇒ ∀y∃z ¬R(x, y, z) (∃∀/∀∃)

Πp
2 x ∈ L⇒ ∀y∃z R(x, y, z) x /∈ L⇒ ∃y∀z ¬R(x, y, z) (∀∃/∃∀)

RP x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∀y ¬R(x, y) (∃+/∀)
coRP x ∈ L⇒ ∀y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∀/∃+)
BPP x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃+/∃+)

Alternative characterization [ZH86]: (∃+∀/∀∃+)
Alternative characterization [ZH86]: (∀∃+/∃+∀)

PP x ∈ L⇒ ∃1/2y R(x, y) x /∈ L⇒ ∃1/2y ¬R(x, y) (∃1/2/∃1/2)
AM x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃+∃/∃+∀)

Alternative characterization [ZF87]: (∀∃/∃+∀)
MA x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃∃+/∀∃+)

Alternative characterization [ZF87]: (∃∀/∀∃+)

Table A.1: Quantifier Notation of the usual Complexity Classes

• If x ∈ L⇒ ∃y RL�(x, y)

• If x /∈ L⇒ ∀y ¬RL�(x, y)

3. The intersection operator Δ:
A language L ∈ Δ·C if L ∈ C and also L ∈ C, that is if L ∈ C∩ coC.

4. The bounded-probabilistic operator BP:
A language L ∈ BP·C if there exists an L� ∈ C such that:

• If x ∈ L⇒ ∃+y RL�(x, y)

• If x /∈ L⇒ ∃+y ¬RL�(x, y)

5. The probabilistic operator P:
A language L ∈ P·C if there exists an L� ∈ C such that:

• If x ∈ L⇒ ∃1/2y RL�(x, y)

• If x /∈ L⇒ ∃1/2y ¬RL�(x, y)

6. The probabilistic operator R:
A language L ∈ R·C if there exists an L� ∈ C such that:

• If x ∈ L⇒ ∃+y RL�(x, y)

• If x /∈ L⇒ ∀y ¬RL�(x, y)

In the above definitions, |y| ≤ poly(|x|), and RL is a polynomial-time
computable predicate responding to the membership question for L. That
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is, RL(x) = 1 iff x ∈ L and RL(x, y) = 1 iff x; y ∈ L. Note that the above
operations require that C is closed under padding.
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