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Περίληψη 

Οι οικονομικζσ απϊλειεσ από τισ βλάβεσ που παρουςιάςτθκαν ςε κτιρια μετά 

από καταςτρεπτικοφσ ςειςμοφσ ςτισ ΗΠΑ και τθν Ιαπωνία ιταν περιςςότερεσ του 

αναμενομζνου. Επιπλζον εκτεταμζνεσ βλάβεσ ςε καταςκευζσ μετά από ςπάνια 

ςειςμικά γεγονότα (2/50 επίπεδο επιτελεςτικότθτασ) αποδίδονται ςτθν άνιςθ 

κατανομι των εςωτερικϊν δράςεων, ειδικότερα των τεμνουςϊν δυνάμεων από τα 

κατακόρυφα δομικά ςτοιχεία, θ οποία οφείλεται ςτθν χωροκζτθςθ των δομικϊν 

ςτοιχείων. Η ςτρεπτικι ροπι, θ οποία αναπτφςςεται ςτθν καταςκευι, μεγεκφνεται 

λόγω τθσ μθ κανονικότθτασ του κτθρίου ςε κάτοψθ και παραλαμβάνεται ωσ ηεφγοσ 

δυνάμεων, με αποτζλεςμα οι πρόςκετεσ τζμνουςεσ δυνάμεισ λόγω ςτρζψθσ να 

δρουν ςε ςφηευξθ με τισ μεταφορικζσ τζμνουςεσ δυνάμεισ προκαλϊντασ 

επιβάρυνςθ τθσ εντατικισ κατάςταςθσ των δομικϊν ςτοιχείων. Δεδομζνου ότι ο 

κφριοσ ςτόχοσ των ςφγχρονων αντιςειςμικϊν κανονιςμϊν είναι θ προςταςία τθσ 

ανκρϊπινθσ ηωισ, είναι φανερό ότι κα πρζπει να λθφκοφν υπόψθ επιπλζον 

κριτιρια ςχετικά με τθν επίδοςθ τθσ καταςκευισ, τα οποία να περιορίηουν τισ 

οικονομικζσ απϊλειεσ κακϊσ και δείκτεσ βλάβθσ ϊςτε να ποςοτικοποιθκεί θ 

τρωτότθτα των καταςκευϊν ςε ενδεχόμενο ςειςμικό γεγονόσ. Ζτςι άρχιςε να 

υιοκετείται μία νζα κεϊρθςθ ςχεδιαςμοφ με κριτιρια επιτελεςτικότθτασ 

(performance-based design). Οι αντιςειςμικοί ςχεδιαςμοί με βάςθ τθν 

επιτελεςτικότθτα ςτοχεφουν ςτθν απόκριςθ τθσ καταςκευισ με ελεγχόμενεσ 

βλάβεσ-ηθμιζσ ςε διάφορα επίπεδα ςειςμικισ επικινδυνότθτασ. Προκειμζνου να 

υλοποιθκεί αυτι θ αντίλθψθ ςχεδιαςμοφ απαιτείται θ ποςοτικοποίθςθ τθσ βλάβθσ 

με δείκτεσ βλάβθσ, των οποίων οι τιμζσ  μποροφν να ςυςχετιςκοφν με ςυγκεκριμζνθ 

κατάςταςθ βλάβθσ του κτθρίου.  

Στθν παροφςα διατριβι παρουςιάηεται ζνασ νζοσ δείκτθσ αποτίμθςθσ τθσ 

απόκριςθσ τθσ καταςκευισ υπό τθν επιρροι του ςτρεπτικοφ φαινομζνου, ο λόγοσ 

ςτρζψθσ, ο οποίοσ ποςοτικοποιεί τισ πρόςκετεσ τζμνουςεσ δυνάμεισ που 

αναπτφςςονται ςτα κατακόρυφα δομικά ςτοιχζια λόγω του φαινομζνου τθσ 

ςτρζψθσ και τθν επιρροι τουσ ςτθν απόκριςθ τθσ καταςκευισ. Στόχοσ είναι θ 

ποςοτικοποίθςθ τθσ επίδραςθσ του ςτρεπτικοφ φαινομζνου (torsional effect) ςτθ 
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ςειςμικι απόκριςθ των καταςκευϊν. Ο λόγοσ ςτρζψθσ εκτόσ από κριτιριο 

αποτίμθςθσ επεκτείνεται και ςε κριτιριο ςχεδιαςμοφ, μζςω τθσ διαδικαςίασ 

βελτιςτοποίθςθσ ελαχιςτοποιϊντασ τθ ςυνιςτϊςα των πρόςκετων τεμνουςϊν 

δυνάμεων λόγω ςτρζψθσ (torsion-induced forces). 

Στθ ςυνζχεια αναηθτϊνται οι βζλτιςτοι ςχεδιαςμοί των καταςκευϊν που κα 

προκφψουν μζςω μθ-γραμμικισ δυναμικισ ανάλυςθσ. Με τον όρο ‘βζλτιςτοσ 

δομοςτατικόσ ςχεδιαςμόσ’ εννοοφμε τθν εφρεςθ του  καλφτερου δυνατοφ 

ςχεδιαςμοφ που μπορεί να εξευρεκεί ςτο πλαίςιο ενόσ πολφπλοκου πολφ-

παραμετρικοφ προβλιματοσ βελτιςτοποίθςθσ, και όχι τον “μακθματικά” βζλτιςτο 

ςχεδιαςμό o οποίοσ είναι δφςκολο εϊσ αδφνατο να εξευρεκεί. Οι Στρατθγικζσ 

Εξζλιξθσ είναι Δαρβίνειεσ μζκοδοι βελτιςτοποιιςθσ οι οποίεσ μζςα από διαδοχικζσ 

βελτιϊςεισ του ςχεδιαςμοφ οδθγοφν τθν αντικειμενικι ςυνάρτθςθ ςτο ”κακολικό” 

τθσ βζλτιςτο. Η διαδικαςία βελτιςτοποίθςθσ ςτοχεφει ςτθν ταυτόχρονθ εξεφρεςθ 

ενόσ ικανοποιθτικοφ ελαχίςτου τθσ αντικειμενικισ ςυνάρτθςθσ και ςτθν 

ικανοποίθςθ όλων των περιοριςμϊν του αντιςειςμικοφ κανονιςμοφ κακϊσ και των 

αρχιτεκτονικϊν περιοριςμϊν για διάφορα επίπεδα ςειςμικισ επικινδυνότθτασ. 

Εκτόσ από τον προτεινόμενο δείκτθ και το κόςτοσ καταςκευισ ωσ αντικειμενικζσ 

ςυναρτιςεισ χρθςιμοποιικθκαν θ εκκεντρότθτα ωσ προσ τθν ακαμψία και ωσ προσ 

τθν αντοχι προκειμζνου να μελετθκεί θ επιρροι του φαινομζνου τθσ ςτρζψθσ ςτθν 

απόκριςθ τθσ καταςκευισ για όλα τα επίπεδα ςειςμικισ επικινδυνότθτασ. Η 

αποτίμθςθ των βζλτιςτων ςχεδιαςμϊν που προζκυψαν με ελαχιςτοποίθςθ των 

ανωτζρω αντικειμενικϊν ςυναρτιςεων πραγματοποιείται με υποβολι των τελικϊν 

ςχεδιαςμϊν ςε μθ γραμμικεσ δυναμικζσ αναλφςεισ για όλα τα επίπεδα ςειςμικισ 

επικινδυνότθτασ. Ακολουκεί θ υπζρκεςθ των περιβαλλουςϊν χρονοιςτοριϊν 

τζμνουςασ βάςθσ-ςτρζψθσ βάςθσ για τθν εφρεςθ του ςχεδιαςμοφ με τθν ελάχιςτθ 

επιρροι του ςτρεπτικοφ φαινομζνου. 

Η παροφςα διδακτορικι διατριβι αποτελείται από επτά κεφάλαια. Μετά από 

τθν ειςαγωγι ςτο 1ο Κεφάλαιο, ςτο 2ο Κεφάλαιο παρουςιάηεται θ διατφπωςθ του 

ραβδωτοφ ςτοιχείου δυνάμεων δοκοφ με τθ μζκοδο των ινϊν κακϊσ και οι 

καταςτατικζσ ςχζςεισ που χρθςιμοποιικθκαν για τθν αναλυτικι προςομοίωςθ των 

καταςκευϊν από οπλιςμζνο ςκυρόδεμα ςτα επόμενα κεφάλαια. Στο 3ο Κεφάλαιο 

περιγράφονται οι βαςικζσ αρχζσ των περιγραφικϊν διαδικαςιϊν ςχεδιαςμοφ κακϊσ 
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και θ ζννοια του ςχεδιαςμοφ με βάςθ τθν επιτελεςτικότθτα. Επιπλζον ςτο κεφάλαιο 

αυτό περιλαμβάνονται τα βαςικά χαρακτθριςτικά αποτίμθςθσ τθσ επιρροισ του 

ςτρεπτικοφ φαινομζνου ςτθν αντιςειςμικι ςυμπεριφορά των καταςκευϊν τόςο ςε 

ελαςτικι όςο και ςε ανελαςτικι απόκριςθ. Στο 4ο Κεφάλαιο παρουςιάηεται ο 

προτεινόμενοσ δζικτθσ για τθν αποτίμθςθ του ςτρεπτικοφ φαινομζνου ςτθν 

απόκριςθ μθ ςυμμετρικϊν καταςκευϊν κακϊσ και αρικμθτικζσ εφαρμογζσ. Οι 

εφαρμογζσ του κεφαλαίου αυτοφ χωρίηονται ςε δφο ενότθτεσ, εκείνεσ που αφοροφν 

μονϊροφα και εκείνεσ που αφοροφν πολυϊροφα ςυςτιματα. Και ςτισ δφο 

περιπτϊςεισ εξετάηονται τόςο κτιρια κανονικά ςε κάτοψθ όςο και μθ κανονικά. Το 

5ο Κεφάλαιο αναφζρεται ςτο πρόβλθμα βζλτιςτου ςχεδιαςμοφ και περιγράφει τον 

αλγόρικμο των ςτρατθγικϊν εξζλιξθσ που χρθςιμοποιικθκε ςτθν παροφςα εργαςία. 

Στο 6ο Κεφάλαιο διατυπϊνεται το πρόβλθμα βζλτιςτου ςχεδιαςμοφ των 

καταςκευϊν και ο προτεινόμενοσ δείκτθσ αποτίμθςθσ ςτρζψθσ επεκτείνεται ςε 

δείκτθ ςχεδιαςμοφ μζςω τθσ διαδικαςίασ βελτιςτοποίθςθσ. Παρουςιάηονται 

επιπλζον δφο μονϊροφεσ εφαρμογζσ. Η πρϊτθ εφαρμογι είναι κανονικι ενϊ θ 

δεφτερθ είναι μθ κανονικι ςε κάτοψθ. Τζλοσ, ςτο 7ο Κεφάλαιο περιζχονται τα 

ςυμπεράςματα τθσ διατριβισ, θ πρωτότυπθ ςυμβολι τθσ και κζματα που κα 

μποροφςαν να αποτελζςουν τα επόμενα ερευνθτικά βιματα μζςα από τθν 

κατεφκυνςθ που ζχει ιδθ δοκεί ςτθν διατριβι. 
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Εκτεταμένη Περίληψη Διατριβής 

Εκτεταμζνεσ βλάβεσ ςε καταςκευζσ μετά από ςπάνια ςειςμικά γεγονότα (2/50 

επίπεδο επιτελεςτικότθτασ) αποδίδονται ςτθν άνιςθ κατανομι των εςωτερικϊν 

δράςεων, ειδικότερα των τεμνουςϊν δυνάμεων που αναπτφςςονται ςτα 

κατακόρυφα δομικά ςτοιχεία, θ οποία οφείλεται ςτθν χωροκζτθςθ των δομικϊν 

ςτοιχείων. Η ςτρεπτικι ροπι, θ οποία αναπτφςςεται ςτθν καταςκευι, μεγεκφνεται 

λόγω τθσ μθ κανονικότθτασ του κτθρίου ςε κάτοψθ και παραλαμβάνεται ωσ ηεφγοσ 

δυνάμεων, με αποτζλεςμα οι πρόςκετεσ τζμνουςεσ δυνάμεισ λόγω τθσ επιρροισ 

ςτρεπτικοφ φαινομζνου να δρουν ςε ςφηευξθ με τισ μεταφορικζσ τζμνουςεσ 

δυνάμεισ προκαλϊντασ επιβάρυνςθ τθσ εντατικισ κατάςταςθσ των δομικϊν 

ςτοιχείων.  

Οι κφριοι παράμετροι που ςχετίηονται με τθν ελαςτικι απόκριςθ τθσ 

καταςκευισ ςτθν επιρροι του ςτρεπτικοφ φαινομζνου είναι θ ςτατικι εκκεντρότθτα 

CRe  και ο λόγοσ μθ ςυηευγμζνθσ ςτρεπτικισ προσ μθ ςυηευγμζνθ μεταφορικι 

ςυχνότθτα  . Ανάλογα με τθν τιμι του λόγου   τα κτιρια κατατάςςονται ςε 

εφςτρεπτα και δφςτρεπτα. Για τιμζσ του λόγου μεγαλφτερεσ τθσ μονάδασ τα κτιρια 

χαρακτθρίηονται δφςτρεπτα, ενϊ για τιμζσ μικρότερθσ τθσ μονάδασ χαρακτθρίηονται 

εφςτρεπτα. Για τα δφςτρεπτα κτιρια κυρίαρχθ ιδιομορφι είναι θ μεταφορικι ενϊ 

για τα εφςτρεπτα θ ςτρεπτικι. Οι πλευρζσ τουσ χαρακτθρίηονται ωσ δφςκαμπτεσ ι 

εφκαμπτεσ ανάλογα με τθν απόςταςι τουσ από το κζντρο ελαςτικισ ςτροφισ και το 

κζντρο μάηασ. Ειδικότερα, όταν θ απόςταςθ μια πλευράσ από το κζντρο μάηασ είναι 

μικρότερθ από εκείνθ από το κζντρο ελαςτικισ ςτροφισ θ πλευρά χαρακτθρίηεται 

εφκαμπτθ, ενϊ ςε αντίκετθ περίπτωςθ χαρακτθρίηεται δφςκαμπτθ. Ζνα κτιριο 

μπορεί να είναι εφκαμπτο ωσ προσ τθ μία διεφκυνςθ και δφςκαμπτο ωσ προσ τθν 

άλλθ. Στα δφςτρεπτα κτιρια ζχουν παρατθρθκεί αυξθμζνεσ μετατοπίςεισ ςτθν 

εφκαμπτθ πλευρά και μειωμζνεσ ςτθν δφςκαμπτθ ςε ςφγκριςθ με το ςυμμετρικό 

τουσ αντίςτοιχο. Ενϊ ςτα εφςτρεπτα κτιρια, μια μερίδα ερευνθτϊν ζχει 

παρατθριςει ςυμπεριφορά όμοια με εκείνθ των δφςτρεπτων κτθρίων *1+, κάποιοι 

άλλοι επιςθμαίνουν αφξθςθ των μετατοπίςεων τόςο ςτθν εφκαμπτθ όςο και ςτθν 

δφςκαμπτθ πλευρά ςε ςφγκριςθ με το ςυμμετρικό τουσ αντίςτοιχο*2+. 
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Στουσ περιςςότερουσ αντιςειςμικοφσ κανονιςμοφσ το φαινόμενο αυτό 

αντιμετωπίηεται με τθ χριςθ ςτατικϊν και τυχθματικϊν εκκεντροτιτων για τον 

οριςμό του ςθμείου εφαρμογισ των ςτατικϊν δυνάμεων. Η τυχθματικι 

εκκεντρότθτα ορίηεται ωσ ζνα ποςοςτό (για παράδειγμα 5%) τθσ διάςταςθσ του 

κτθρίου ςτθν κάκετθ διεφκυνςθ από εκείνθ τθσ εφαρμογισ του φορτίου. Ενϊ θ 

ςτατικι εκκεντρότθτα ορίηεται ωσ θ απόςταςθ του κζντρου ελαςτικισ ςτροφισ από 

το κζντρο μάηασ. Ειδικότερα ςτα πολυϊροφα κτιρια δεν είναι πάντα εφικτό να 

οριςτεί το κζντρο ελαςτικισ ςτροφισ *3+.  Ο Μακάριοσ *4+, *5+ όριςε τον πλαςματικό 

ελαςτικό άξονα και τισ ακτίνεσ δυςτρεψίασ, ϊςτε μζςω του πλαςματικοφ ελαςτικοφ 

κζντρου να είναι πάντα εφικτόσ ο υπολογιςμόσ των ςτατικϊν εκκεντροτιτων 

πολυϊροφων αςφμμετρων κτθρίων. Ωσ πλαςματικόσ ελαςτικόσ άξονασ ι ελαςτικόσ 

άξονασ βζλτιςτθσ ςτρζψθσ ορίηεται εκείνοσ ο άξονασ ςτον οποίο όταν τοποκετείται 

οριηόντια ςτατικι φόρτιςθ τότε θ ςτρζψθ ολόκλθρου του κτθρίου ελαχιςτοποιείται 

ενϊ μθδενίηεται ςτθν οριακι περίπτωςθ που ο υπόψθ άξονασ αποτελεί τον 

πραγματικό ελαςτικό άξονα του κτθρίου. Στθν κατάςταςθ βζλτιςτθσ ςτρζψθσ του 

κτθρίου οι ςτροφζσ που αναπτφςςονται ςε κάκε όροφο είναι μικρότερεσ από 

εκείνεσ που προκφπτουν για διαφορετικι κζςθ του φορτιςτικοφ επιπζδου του 

κτθρίου. Ζτςι, μπορεί να κεωρθκεί προςεγγιςτικά ότι το κτιριο εκτελεί μεταφορικι 

κίνθςθ και μεταφζρεται παράλλθλα με τον εαυτό του με αμελθτζα ςτροφι. Ο 

κατακόρυφοσ άξονασ μπορεί να υπολογιςκεί για όλα τα κτιρια που διακζτουν 

κανονικότθτα κακ’ φψοσ ςφμφωνα με τουσ κανονιςμοφσ. Ενϊ θ ακτίνα δυςτρεψίασ 

αντιςτοιχεί ςτο μοχλοβραχίονα των ελαςτικϊν δυνάμεων επαναφοράσ για 

ςτρεπτικι φόρτιςθ του κτθρίου. Πλικοσ ερευνθτϊν αςχολικθκε με τθν επιρροι του 

ςτρεπτικοφ φαινομζνου ςτθ ςειςμικι απόκριςθ των καταςκευϊν. Ο Paulay [6] 

πρότεινε το εκκεντρότθτα αντοχισ ωσ καταλλθλότερθ ιδιότθτα αποτίμθςθσ του 

ςτρεπτικοφ φαινομζνου ςτθν ανελαςτικι περιόχθ απόκριςθσ ςε ςφγκριςθ με τθ 

ςτατικι εκκεντρότθτα, εφόςον τα ςτοιχεία ζχουν διαρρεφςει και οι τιμζσ τθσ 

ςτιβαρότθτασ τουσ ζχουν διαφοροποιθκεί από τισ αρχικζσ. Η εκκεντρότθτα αντοχισ 

ορίηεται ωσ θ απόςταςθ του κζντρου αντοχισ από το κζντρο μάηασ. Ωσ κζντρο 

αντοχισ ορίηεται το ςθμείο εκείνο του διαφράγματοσ από το οποίο περνά θ 

ςυνιςταμζνθ των μεταφορικϊν δυνάμεων, ϊςτε όταν ο όροφοσ γίνει μθχανιςμόσ 

δεν αναπτφςςεται ςε αυτόν ςτροφι. Επιπλζον ο Paulay [7] διαχϊριςε τα κτιρια ςε 
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ςτρεπτικά δεςμευμζνα και μθ δεςμευμζνα ανάλογα με τθν ικανότθτά τουσ να 

περιορίηουν τθν ανελαςτικι ςτροφι. Σφμφωνα με αυτό το διαχωριςμό τα κτιρια 

διατθροφν κάποια υπολλειματικι ςτρεπτικι ςτιβαρότθτα ίςθ με: 

 tr t tK K  (1) 

Όπου tK  θ ςτρεπτικι ςτιβαρότθτα του κτθρίου θ οποία δίνεται από τθ ςχζςθ: 

 2 2

t i iy i ixK x k y k    (2) 

όπου 
ix και 

iy οι αποςτάςεισ των ςτοιχείων από το κζντρο μάηασ, 
ixk και iyk οι 

μεταφορικζσ ςτιβαρότθτεσ ςτισ αντίςτοιχεσ διευκφνςεισ. Η παράμετροσ 
t  

ποςοτικόποιεί το βακμό ςτρεπτικισ δζςμευςθσ και μπορεί να υπολογιςτεί από τισ 

παρακάτω ςχζςεισ: 

  2 /tx i iy tx k K   (3) 

  2 /ty i ix ty k K   (4) 

Για τιμζσ 0t   το ςφςτθμα χαρακτθρίηεται ςτρεπτικά μθ δεςμευμζνο, ενϊ για 

τιμζσ 0.15t  το ςφςτθμα χαρακτθρίηεται ςτρεπτικά δεςμευμζνο.  

Οι De La Llera και Chopra [8+ πρότειναν τισ καμπφλεσ τζμνουςασ βάςθσ – 

ςτρζψθσ βάςθσ (base shear and torque – BST ultimate surface ), οι οποίεσ 

αποτελοφνται από όλουσ τουσ ςυνδυαςμοφσ τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ οι 

οποίοι όταν εφαρμοςτοφν ςτατικά οδθγοφν τθν καταςκευι ςε κατάρρευςθ (Εικόνα 

1). Όλοι οι ςυνδυαςμοί τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ οι οποίοι βρίςκονται 

πάνω ςτθν καμπφλθ αφοροφν τουσ μθχανιςμοφσ κατάρρευςθσ ενϊ οι ςυνδυαςμοί 

εκτόσ τθσ καμπφλθσ είναι ανζφικτοι. 

 

Εικόνα 1. Παράδειγμα καπφλθσ τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ [8]. 
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Οι De La Llera και Chopra [9+ επίςθσ επζκτειναν τθν ιδζα αυτι και ςε 

πολυϊροφα ςυςτιματα, τθν καμπφλθ τζμνουςασ ορόφου – ςτρζψθσ ορόφου (story 

shear and torque  - SST ultimate surface) (Εικόνα 2). Η καμπφλθ αυτι 

καταςκευάηεται για κάκε όροφο και απεικονίηει όλουσ τουσ ςυνδυαςμοφσ 

τεμνουςϊν δυνάμεων ορόφου και ςτρζψθσ ορόφου οι οποίοι εφαρμοηόμενοι 

ςτατικά οδθγοφν τον όροφο ςε κατάρρευςθ. Η καταςκευι τθσ καμπφλθσ βαςίηεται 

ςε ζνα υπερςτοιχείο (super element – SE) ανά όροφο ικανό να αντιπροςωπεφςει τισ 

ελαςτικζσ και ανελαςτικζσ ιδιότθτεσ του ορόφου. Το ςτοιχείο αυτό ζχει τρεισ 

βακμοφσ ελευκερίασ ςε κάκε κόμβο, δφο οριηόντιουσ μεταφορικοφσ και ζνα 

ςτροφικό που αποτιμά τθ ςτροφι μεταξφ των ορόφων που ςυνδζονται με το 

ςτοιχείο (Εικόνα 3) 

 

Εικόνα 2. Παράδειγμα καμπφλθσ τζμνουςασ ορόφου – ςτρζψθσ ορόφου [9]. 
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Εικόνα 3. Μοντζλο υπερςτοιχείου για πολυϊροφο κτιριο [9]. 

Ενϊ οι Κφρκοσ και Αναγνωςτόπουλοσ  *2+ πρότειναν μια διαδικαςία 

τροποποίθςθσ για τον αντιςειςμικό ςχεδιαςμό καταςκευϊν από χάλυβα. Το πρϊτο 

βιμα ςτθ διαδικαςία αυτι είναι ο υπολογιςμόσ των μετατοπίςεων του ανϊτερου 

ορόφου ςτισ εφκαμπτεσ και δφςκαμπτεσ πλευρζσ του κτθρίου και ςτισ δφο 

οριηόντιεσ διευκφνςεισ λόγω του ςειςμικοφ φορτίου και ο υπολογιςμόσ των 

παρακάτω ςυντελεςτων ςε κάκε διεφκυνςθ: 

 
 

,

,

, ,

2
i flex

i flex

i flex i stiff

u
f

u u



 (5) 

 
 

,

,

, ,

2
i stiff

i flex

i flex i stiff

u
f

u u



 (6) 

όπου ,i flexu  θ μετατόπιςθ του ανϊτερου ορόφου ςτθν εφκαμπτθ πλευρά για τθν thi  

διεφκυνςθ και ,i stiffu  ςτθν δφςκαμπτθ πλευρά. Στθ ςυνζχεια τα εμβαδά τθσ διατομισ 

των διαγωνίων ςυνδζςμων και ςτισ δφο πλευρζσ πολλαπλαςιάηονται με τουσ 

αντίςτοιχουσ ςυντελεςτζσ για κάκε διεφκυνςθ. Η ίδια διαδικαςία ακολουκείται για 

τα υποςτθλϊματα και τισ δοκοφσ τόςο ςτθν εφκαμπτθ όςο και ςτθ δφςκαμπτθ 

πλευρά. Αξίηει να ςθμειωκεί ότι ςτθν ζυκαμπτθ πλευρά αυξάνεται θ ςτιβαρότθτα 

κακϊσ και θ αντοχι των ςτοιχείων. Οι διατομζσ ςτθν δφςκαμπτθ πλευρά δεν 

μειϊνονται κακϊσ θ αντοχι τουσ κακορίηεται κυρίωσ από τα μόνιμα φορτία. Οι 
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τιμζσ των ςυντελεςτϊν διαφζρουν από 1.25-1.50 για τθν εφκαμπτθ πλευρά και από 

0.85-1.00 για τθν άκαμπτθ πλευρά.  

Στθν παροφςα διατριβι παρουςιάηεται ζνασ νζοσ δείκτθσ αποτίμθςθσ τθσ 

επιρροισ του ςτρεπτικοφ φαινομζνου ςτθν απόκριςθ τθσ καταςκευισ, ο λόγοσ 

ςτρζψθσ, ο οποίοσ ποςοτικοποιεί τισ πρόςκετεσ τζμνουςεσ δυνάμεισ που 

αναπτφςςονται ςτα κατακόρυφα δομικά ςτοιχεία λόγω του φαινομζνου τθσ 

ςτρζψθσ. Στόχοσ είναι θ ποςοτικοποίθςθ τθσ επίδραςθσ του ςτρεπτικοφ φαινομζνου 

(torsional effect) ςτθ ςειςμικι απόκριςθ των καταςκευϊν.  

Ο προτεινόμενοσ δείκτθσ βαςίηεται ςτθν παρατιρθςθ ότι το άκροιςμα των 

απολφτων τιμϊν των τεμνουςϊν δυνάμεων που αναπτφςςονται ςτα κατακόρυφα 

δομικά ςτοιχεία είναι διαφορετικόσ από το αλγεβρικό τουσ άκροιςμα για μθ 

ςυμμετρικά ςυςτιματα. Η διαφορά αυτι οφείλεται ςτισ επιπλζον τζμνουςεσ 

δυνάμεισ που αναπτφςςονται ςτα κατακόρυφα δομικά ςτοιχεία λόγω του 

φαινομζνου τθσ ςτρζψθσ, θ οποία παραλαμβάνεται από τθν καταςκευι ωσ ηεφγοσ 

δυνάμεων. Επομζνωσ ενϊ για ςυμμετρικά ςυςτιματα ιςχφει θ ςχζςθ: 

 
1 1

n n

kij kij

k k

V V
 

   (7) 

Για μθ ςυμμετρικά ςυςτιματα: 

 
1 1

n n

kij kij

k k

V V
 

   (8) 

όπου n o αρικμόσ των ςτοιχείων, i  θ διεφκυνςθ τθσ τζμνουςασ δφναμθσ που 

αναπτφςςεται ςτο ςτοιχείο k  και j  θ διεφκυνςθ τθσ επιβαλλόμενθσ ςειςμικισ 

διζγερςθσ. 

Για ζνα απλό τυχαίο ζκκεντρο ςφςτθμα (Εικόνα 4), ςτο οποίο επιβάλλουμε 

ςειςμικι διζγερςθ κατά τθν y  διεφκυνςθ EyV , ιςχφουν οι παρακάτω ςχζςεισ: 

 
1 1

0
n n

kxy kxy

k k

V V
 

    (9) 

 
1 1

n n

kyy kyy Ey

k k

V V V
 

    (10) 
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Εικόνα 4. Ζκκεντρο ςφςτθμα υποβαλλόμενο ςε ςειςμικι διζγερςθ κατά τθν y  

διεφκυνςθ. 

Ειδικότερα, κεωροφμε το μονϊροφο ςφςτθμα με κάτοψθ όπωσ ςτθν Εικόνα 5. 

Το ςφςτθμα είναι μονοςυμμετρικό με άξονα ςυμμετρίασ κατά τθ x  διεφκυνςθ και 

υποβάλλεται ςε ςειςμικι διζγερςθ κατά τθν y  διεφκυνςθ (
EyV ). Η κζςθ των 

κζντρων μάηασ και ακαμψίασ φαίνεται ςτθν εικόνα 5. Η ςτροφι θ οποία 

αναπτφςςεται ςτο ςφςτθμα είναι αποτζλεςμα τθσ ςτρζψθσ tM  που προκάλειται 

από τθν τζμνουςα βάςθσ 
EyV

 
όταν αςκείται με εκκεντρότθτα CRXe .  

 

Εικόνα 5. Ζκκεντρο ςφςτθμα υποβαλλόμενο ςε ςειςμικι διζγερςθ κατά τθν y  

διεφκυνςθ. 
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Η ςτρζψθ παραλαμβάνεται ωσ ηεφγοσ δυνάμεων επιδρϊντασ ςτισ τζμνουςεσ 

δυνάμεισ που αναπτφςςονται ςτα ςτοιχεία. Η μεταφορικι ςυνιςτϊςα (translational 

component) τζμνουςασ δφναμθσ που αναπτφςςεται ςτα ςτοιχεία υπολογίηεται από 

τθ ςχζςθ: 

 '

1

iy

kiy Eyn

iy

i

k
V V

k





 (11) 

όπου 
EyV  θ τζμνουςα βάςθσ ςχεδιαςμοφ,

 iyk  θ μεταφορικι ςτιβαρότθτα του 

ςτοιχείου κατά τθν y  διεφκυνςθ  και n  ο αρικμόσ των ςτοιχείων. Η ςτρεπτικι 

ςυνιςτϊςα (torsional component) δίνεται από τθ ςχζςθ: 

 '' t
kiy i iy

t

M
V x k

K
  (12) 

όπου ix  θ απόςταςθ του ςτοιχείου από το κζντρο μάηασ, tM  θ ςτρζψθ που 

παράγεται από τθν τζμνουςα βάςθσ, ενϊ tK  θ ςτρεπτικι ςτιβαρότθτα του 

ςυςτιματοσ, θ οποία υπολογίηεται από τθ ςχζςθ: 

 2 2

t i ix i iyK y k x k    (13) 

Η ςυνολικι τζμνουςα δφναμθ που αναπτφςςεται ςε ζνα ςτοιχείο δίνεται από τθ 

ςχζςθ: 

 ' ''

kiy kiy kiyV V V   (14) 

Ανάλογεσ ςχζςεισ ιςχφουν για τισ τζμνουςεσ δυνάμεισ που αναπτφςςονται κατά τθ 

x  διεφκυνςθ. Ο προτεινόμενοσ δείκτθσ, λόγοσ ςτρζψθσ (Ratio Of Torsion) 

υπολογίηεται από τθν παρακάτω ςχζςθ: 

 

,

1 ,

y xn

kij Ex Ey

k i x j y

Ex Ey

ROT

V V V

V V

  

 




 
 (15) 

όπου n ο ςυνολικόσ αρικμόσ των ςτοιχείων, k  ο αρικμόσ του ςτοιχείου, i  θ 

διεφκυνςθ τθσ τζμνουςασ δφναμθσ που αναπτφςςεται ςτο ςτοιχείο και j  θ 

διεφκυνςθ ςτθσ ςειςμικισ διζγερςθσ, ExV  και EyV  θ ζνταςθ που επιβάλλει θ 
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ςειςμικι διζγερςθ ςτθν καταςκευι κατά τισ διευκφνςεισ x  και y , θ οποία 

αντιςτοιχεί ςτθν τζμνουςα βάςθσ ςτισ αντίςτοιχεσ διευκφνςεισ. 

Λαμβάνοντασ όμωσ υπόψθ ότι θ τζμνουςα βάςθσ ιςοφται με το αλγεβρικό 

άκροιςμα των τεμνουςϊν δυνάμεων που αναπτφςςονται ςτα ςτοιχεία ανά 

κατεφκυνςθ ιςχφει: 

 
1

n x

Ex kxj

k j y

V V
 

  (16) 

 
1

n x

Ey kyj

k j y

V V
 

  (17) 

Επομζνωσ για το ςφςτθμα τθσ Εικόνασ 5 ο λόγοσ ςτρζψθσ ιςοφται με: 

 

' '' ' '' '' ''

1 1 2 2 3 4yy yy yy yy xy xy Ey

Ey

V V V V V V V
ROT

V

     
  (18) 

Λαμβάνοντασ υπόψθ ότι: 

 ' '' ' ''

1 1 2 2Ey yy yy yy yyV V V V V     (19) 

το ROT μπορεί να γραφεί: 

 

' '' ' '' '' '' ' '' ' ''

1 1 2 2 3 4 1 1 2 2

' '' ' ''

1 1 2 2

yy yy yy yy xy xy yy yy yy yy

yy yy yy yy

V V V V V V V V V V
ROT

V V V V

        


  
 (20) 

θ οποία καταλιγει ςτθν παρακάτω ςχζςθ, τθσ οποίασ ο αρικμθτισ ιςοφται με τισ 

ςτρεπτικζσ ςυνιςτϊςεσ των τεμνουςϊν δυνάμεων ενϊ ο παρονομαςτισ με τθ 

ςυνολικι ζνταςθ που παραλαμβάνει θ καταςκευι κατά τθ ςειςμικι διζγερςθ. 

 

'' ''

3 4xy xy

Ey

V V
ROT

V


  (21) 

Ο λόγοσ ςτρζψθσ για πολυϊροφα κτιρια υπολογίηεται από τθ ςχζςθ: 

 
1

l

m

m

ROT ROT


  (22) 

όπου l ο αρικμόσ των ορόφων του κτθρίου. 

Προκειμζνου να αξιολογθκεί ο προτεινόμενοσ δείκτθσ χρθςιμοποιικθκαν τόςο 

μονϊροφα όςο και πολυϊροφα κτιρια. Στο πλαίςιο τθσ παροφςασ εργαςίασ τα 

κτιρια που υιοκετικθκαν είναι δφςτρεπτα και ζκκεντρα ωσ προσ τθ μάηα. Ο 
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ςχεδιαςμόσ του ςυμμετρικοφ αναλόγου βαςίςτθκε ςτον Ευρωκϊδικα (EC8) [10]. Στθ 

ςυνζχεια δθμιουργικθκαν τρεισ αντίςτοιχοι ςχεδιαςμοί τθσ ίδια κάτοψθσ με 

εκκεντρότθτα 5%, 10% και 20% ωσ προσ τθ μάηα. Η ςτρζψθ βάςεωσ του 

ςυςτιματοσ, θ ςτροφι οροφισ και ο λόγοσ ςτρζψθσ ςυγκρίκθκαν για διαφορετικζσ 

τιμζσ εκκεντρότθτασ ωσ προσ τθ μάηα. Επιπλζον καταγράφθκαν οι τιμζσ τεμνουςϊν 

δυνάμεων, μετατοπίςεων και παραμορφϊςεων για τα κατακόρυφα ςτοιχεία για τισ 

διαφορετικζσ τιμζσ τθσ εκκεντρότθτασ. Τα μζλθ του ςυςτιματοσ προςομοιϊκθκαν 

με το ραβδωτό ςτοιχείο δυνάμεων δοκοφ-ςτφλου βαςιςμζνο ςτθ μζκοδο των ινϊν 

(fiber approach). Η μζκοδοσ αυτι παρουςιάηει κάποιεσ ιδιαιτερότθτεσ. Σφμφωνα με 

τθ διατφπωςθ αυτι οι εςωτερικζσ δράςεισ διορκϊνονται ϊςτε να υπάρχει 

ςυμβατότθτα με τισ μετατοπίςεισ ςτουσ κόμβουσ του ςτοιχείου. Η διαδικαςία 

διόρκωςισ τουσ ονομάηεται διαδικαςία κακοριςμοφ κατάςταςθσ ςτοιχείου 

(element state determination). Επιπλζον ςφμφωνα με τθ διατφπωςθ αυτι 

απαιτείται ο κακοριςμόσ του μθτρϊου ενδοςιμότθτασ για τισ εςωτερικζσ διατομζσ 

του ςτοιχείου (section flexibility matrix) από όπου υπολογίηεται το μθτρϊο 

ςτιβαρότθτασ του ςτοιχείου και οι εςωτερικζσ δράςεισ κάκε διατομισ. Η βαςικι 

υπόκεςθ ςτο ςτοιχείο ενδοςιμότθτασ είναι θ χριςθ ςυναρτιςεων παρεμβολισ 

προκειμζνου από τα επικόμβια φορτία να προκφψουν τα φυςικά εντατικά εντατικά 

μεγζκθ ςε διάφορεσ διατομζσ ςτο εςωτερικό του ςτοιχείου[11]. Σφμφωνα με αυτι 

τθ διατφπωςθ ζνα ςτοιχείο δοκοφ – ςτφλου είναι αρκετό για να προςομοιϊςει τθ 

ςυμπεριφορά ενόσ μζλουσ. Σε αντίκεςθ με το ςτοιχείο δυνάμεων, για τθν 

προςομοίωςθ μελϊν με το ςτοιχείο μετατοπίςεων ειδικότερα ςτθν ανελαςτικι 

περιοχι είναι απαραίτθτο κάκε μζλοσ να διακριτοποιθκεί με περιςςότερα από ζνα 

ςτοιχεία δοκοφ-ςτφλου. Ζνω αναμζνεται πφκνωςθ του δικτφου ςτισ περιοχζσ όπου 

αναπτφςςονται μεγάλεσ ανελαςτικζσ παραμορφϊςεισ. Η ςυμπεριφορά του 

ςκυροδζματοσ ςε κλίψθ προςομοιϊκθκε με το μοντζλο των Kent και Park (1973) 

[12] όπωσ τροποποιικθκε από τουσ Scott et al. (1982) [13]. Ενϊ θ ςυμπεριφορά του 

χάλυβα περιγράφεται από διγραμμικό μοντζλο. 

Για τισ αναλφςεισ χρθςιμοποιικθκε το λογιςμικό OPENSEES. Το αρχικό ςφςτθμα 

είναι ςυμμετρικό (symmetric: sym) ενϊ ςυγκρίνεται με τα αντίςτοιχα που 

παρουςιάηουν εκκεντρότθτεσ ωσ προσ τθ μάηα κατά 5% (mass eccentric: ecc_0.05), 

10% (mass eccentric: ecc_0.10) και 20% (mass eccentric: ecc_0.02). Όλοι οι 
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ςχεδιαςμοί υποβλικθκαν ςε μθ γραμμικζσ δυναμικζσ αναλφςεισ για τα τρία 

επίπεδα ςειςμικισ επικινδυνότθτασ. Η ςτρζψθ βάςθσ του ςυςτιματοσ, θ ςτροφι 

οροφισ και ο λόγοσ ςτρζψθσ ςυγκρίκθκαν για διαφορετικζσ τιμζσ τθσ εκκεντρότθτασ 

ωσ προσ τθ μάηα για τα διαφορετικά επίπεδα ςειςμικισ επικινδυνότθτασ. Επιπλζον 

καταγράφθκαν οι τιμζσ τεμνουςϊν δυνάμεων μετατοπίςεων και παραμορφϊςεων 

για τα κατακόρυφα ςτοιχεία και ςυγκρίκθκαν για τισ διαφορετικζσ τιμζσ τθσ 

εκκεντρότθτασ. 

Αριθμητική Εφαρμογή 1 

Στθν πρϊτθ αρικμθτικι εφαρμογι εξετάηεται ζνα μονϊροφο, κανονικό ςε 

κάτοψθ,  διαξονικά ζκκεντρο κτιριο ρεαλιςτικϊν διαςτάςεων υποβαλλόμενο ςε 

ςειςμικι διζγερςθ κατά τισ δφο διευκφνςεισ x  και y  (Εικόνα 6). Τόςο το 

ςυμμετρικό όςο και τα ζκκεντρα ωσ προσ τθ μάηα αντίςτοιχά του όπωσ φαίνεται 

από τον πίνακα 1 κατατάςςονται ςτθν κατθγορία των δφςτρεπτων κτθρίων, εφόςον 

ο λόγοσ τθσ μθ ςυηευγμζνθσ ςτρεπτικισ προσ τθ μθ ςυηευγμζνθ μεταφορικι 

ςυχνότθτα είναι μεγαλφτεροσ τθσ μονάδασ. Στθν εικόνα 7 απεικονίηονται οι 

τζμνουςεσ δυνάμεισ επιλεγμζνων υποςτθλωμάτων κατά τθν y  διεφκυνςθ όπου 

παρατθρείται θ αναμενόμενθ ςυμπεριφορά για ςτρεπτικά μθ ευαίςκθτα 

ςυςτιματα (torsionally stiff systems) κατά τθν ελαςτικι απόκριςθ του ςυςτιματοσ. 

Ειδικότερα, ςθμειϊνεται αφξθςθ των τεμνουςϊν δυνάμεων μονοτονικά με τθν 

εκκεντρότθτα ςτθν εφκαμπτθ πλευρά (θ απόςταςθ από το κζντρο μάηασ είναι 

μικρότερθ από τθν απόςταςι τθσ από το κζντρο ακαμψίασ _columns 11, 16) και 

μείωςθ τουσ ςτθ δφςκαμπτθ πλευρά (θ απόςταςθ από το κζντρο ακαμψίασ είναι 

μικρότερθ από αυτι από το κζντρο μάηασ _ columns 1, 6). Όταν κάποιο από τα 

ςτοιχεία διαρρεφςει μεταβάλλεται θ ςτιβαρότθά του και κατά ςυνζπεια θ 

εκκεντρότθτα του ςυςτιματοσ. Το ςφςτθμα ειςζρχεται ςτθν ανελαςτικι περιοχι τθσ 

απόκριςθσ όπου θ ςτιβαρότθτα των ςτοιχείων  μεταβάλλετα, όμοια και θ 

εκκεντρότθτα. Η ανακατανομι των δυνάμεων ειδικά για δυναμικι φόρτιςθ δεν 

είναι δυνατό να προβλεφκεί. Το ίδιο ςυμβαίνει και με τθ κζςθ του κζντρου 

ελαςτικισ ςτροφισ. Επομζνωσ δε μπορεί με αςφάλεια να προβλεφκεί ποια πλευρά 

είναι εφκαμπτθ ι δφςκαμπτθ. Η ίδια τάςθ παρατθρικθκε για τισ μετατοπίςεισ και 

τισ παραμορφϊςεισ (Εικόνα 8). 
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Εικόνα 6. Αρικμθτικι Εφαρμογι 1 - Ζκκεντρο διαξονικά κανονικό ςφςτθμα υποβαλλόμενο 

ςε ςειςμικι διζγερςθ κατά τισ δφο διευκφνςεισ x και y . 

Πίνακας 1. Αρικμθτικι Εφαρμογι 1 - Ιδιοπερίοδοσ και λόγοσ μθ ςυηευγμζνθσ ςτρεπτικισ 

προσ μθ ςυηευγμζνθ μεταφορικι ιδιοςυχνότθτα. 

 1T  2T  3T  
t

x

x




   

t
y

y




   

sym 0.3593 
x 

0.3484 
y 

0.2526 
t 

1.4224 1.3793 

ecc0.05 0.3620 
x
 0.3512 

y
 0.2524 

t
 1.4342 1.3914 

ecc0.10 0.3753 
x
 0.3539 

y
 0.2519 

t
 1.4898 1.4049 

ecc0.20 0.4320 
x
 0.3549 

y
 0.2509 

t
 1.7218 1.4145 

 

 

Εικόνα 7. Αρικμθτικι εφαρμογι 1 – Τζμνουςεσ δυνάμεισ υποςτθλωμάτων κατά τθν y   

διεφκυνςθ για κάκε επίπεδο ςειςμικισ επικινδυνότθτασ και κάκε ςχεδιαςμό – (a) απόλυτθ 

μζγιςτθ τιμι τεμνουςϊν δυνάμεων  και (b) κανονικοποιθμζνεσ τζμνουςεσ δυνάμεισ ωσ προσ 

τθ μζγιςτθ τιμι. 
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Εικόνα 8. Αρικμθτικι εφαρμογι 1 – Κανονικοποιθμζνεσ ωσ προσ τθ μζγιςτθ τιμι κατά τθν 

y   διεφκυνςθ για κάκε επίπεδο ςειςμικισ επικινδυνότθτασ και κάκε ςχεδιαςμό – (a) 

μετατοπίςεισ υποςτθλωμάτων και (b) παραμορφϊςεισ υποςτθλωμάτων. 

Όςον αφορά τα μεγζκθ που ςχετίηονται με τθν επιρροι του ςτρεπτικοφ 

φαινομζνου -  ςτρζψθ βάςθσ, ςτροφι οροφισ και λόγοσ ςτρζψθσ  - παρατθροφμε 

ότι αυξάνονται μονοτονικά με τθν εκκεντρότθτα για όλα τα επίπεδα ςειςμικισ 

επικινδυνότθτασ (Εικόνα 9). Για τα ςυμμετρικά ςυςτιματα παρατθρείται ότι ο λόγοσ 

ςτρζψθσ είναι μθδενικόσ για τθν ελαςτικι περιοχι απόκριςθσ. ϋΟπωσ αναφζρκθκε 

παραπάνω ςτθν ανελαςτικι περιοχι θ ςτιβαρότθτα των ςτοιχείων επθρεάηεται 

μεταβάλλοντασ τθν εκκεντρότθτα. Για το λόγο αυτό παρατθροφνται τιμζσ 

διαφορετικζσ του μθδενόσ για το ςυμμετρικό αντιςτοιχο ςτθν ανελαςτικι περιοχι 

απόκριςθσ. Ζκτοσ από το λόγο ςτρζψθσ, θ ςτρζψθ βάςθσ κακϊσ και θ ςτροφι 

οροφισ αυξάνουν τισ τιμζσ τουσ για το ςυμμετρικό αντίςτοιχο ςτθν ανελαςτικι 

περιοχι ςε ςφγκριςθ με εκείνεσ ςτθν ελαςτικι. Επειδι θ τάξθ μεγζκουσ τουσ είναι 

πολφ μικρι και θ αφξθςθ του δεν είναι ορατι ςτθν εικόνα 9, παρατίκεται ο πίνακασ 

2. 
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Πίνακας 2. Συμμετρικό αντίςτοιχο – Στρζψθ βάςθσ, ςτροφι οροφισ και λόγοσ ςτρζψθσ για 

όλα τα επίπεδα ςειςμικισ επικινδυνότθτασ. 

Symmetric design Hazard Levels 

 50/50 10/50 2/50 

ROT 8.78E-03 1.66E-01 3.99E-01 

Base Torque 5.66E-08 1.16E-02 5.60E-02 

Diaphragm Rotation 5.76E-12 1.62E-07 8.40E-07 

 

 

Εικόνα 9. Αρικμθτικι εφαρμογι 1 – (a) μζγιςτθ απόλυτθ τιμι ςτρζψθσ βάςθσ, (b) μζγιςτθ 

απόλυτθ τιμι ςτροφισ διαφράγματοσ, (c) μζγιςτθ απόλυτθ τιμι λόγου ςτρζψθσ ( ROT ), (d) 

κανονικοποιθμζνθ ωσ προσ τθ μζγιςτθ τιμι ςτρζψθ βάςθσ, (e) κανονικοποιθμζνθ ωσ προσ 

τθ μζγιςτθ τιμι ςτροφι οροφισ και (f) κανονικοποιθμζνοσ ωσ προσ τθ μζγιςτθ τιμι λόγοσ 

ςτρζψθσ ( ROT ) για όλα τα επίπεδα ςειςμικισ επικινδυνότθτασ και όλουσ τουσ 

ςχεδιαςμοφσ. 

Όπωσ παρατθρείται ςτθν εικόνα 9 (a), (b), (c) θ μεταβολι τθσ ςτροφισ οροφισ 

δεν ακολουκεί πάντα αυτι τθσ ςτρζψθσ βάςθσ. Για το μθ ςυμμετρικό αντίςτοιχο με 

20% εκκεντρότθτα ωσ προσ τθ μάηα παρατθροφμε ότι ενϊ θ τιμι τθσ μζγιςτθ 

ςτρζψθσ βάςθσ αυξάνεται από το επίπεδο με πικανότθτα υπζρβαςθσ 2% ςτα 

πενιντα χρόνια ςε ςφγκριςθ με εκείνο με πικανότθτα υπζρβαςθσ 10% ςτα πενιντα 

χρόνια, θ τιμι τθσ ςτροφισ οροφισ μειϊνεται. Ο λόγοσ ςτρζψθσ μεταβάλλεται 

ςφμφωνα με τθ ςτρζψθ βάςθσ. Αξίηει να ςθμειωκεί ότι όμοια ςυμπεράςματα ζχουν 

επαλθκευκεί για πιο απλά μοντζλα κακϊσ και για πιο πολφπλοκα μθ κανονικά ςε 
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κάτοψθ κτιρια υποβαλλόμενα τόςο ςε μονοαξονικι όςο και ςε διαξονικι ςειςμικι 

διζγερςθ, τα οποία δεν παραβάλλονται εδϊ για λόγουσ οικονομίασ χϊρου. 

Αριθμητική Εφαρμογή 2 

Η δεφτερθ αρικμθτικι εφαρμογι αφορά ζνα τετραϊροφο μθ κανονικό ςε 

κάτοψθ διαξονικά ζκκεντρο κτιριο (Εικόνα 10) υποβαλλόμενο ςε ςειςμικι διζγερςθ 

κατά τισ δφο διευκφνςεισ. Λόγω τθσ μθ κανονικότθτασ του κτθρίου ςε κάτοψθ ιταν 

ανζφικτο να οριςτεί ςυμμετρικόσ ςχεδιαςμόσ, επομζνωσ ορίςτθκε ςχεδιαςμόσ με τθ 

μικρότερθ δυνατι εκκεντρότθτα ίςθ με 0.4 % και ςυμβολίηεται ωσ ecc το αντίςτοιχό 

του ςτα γραφιματα. Τα υπόλοιπα ζκκεντρα αντίςτοιχα αφοροφν εκκεντρότθτεσ 5%, 

10% και 20% όπωσ και ςτθν προθγοφμενθ εφαρμογι και ςυμβολίηονται με ecc0.05, 

ecc0.10 και ecc0.20 αντίςτοιχα. Πρόκειται και ςε αυτι τθν περίπτωςθ για δφςτρεπτο 

ςφςτθμα όπωσ φαίνεται ςτον πίνακα 3 από τισ τιμζσ του λόγου μθ ςυηευγμζνθσ 

ςτρεπτικισ προσ μθ ςυηευγμζνθ μεταφορικι ςυχνότθτα, ο οποίοσ ξεπερνά τθ 

μονάδα για όλουσ τουσ ςχεδιαςμοφσ. 

 

Εικόνα 10. Αρικμθτικι Εφαρμογι 2 - Ζκκεντρο διαξονικά μθ κανονικό τετραϊροφο ςφςτθμα 

υποβαλλόμενο ςε ςειςμικι διζγερςθ κατά τισ δφο διευκφνςεισ x και y . 

Όπωσ φαίνεται ςτθν εικόνα 11 και ςτθν εικόνα 12 τα εντατικά μεγζκθ 

(τζμνουςεσ δυνάμεισ, μετατοπίςεισ και παραμορφϊςεισ) αυξάνονται για τα 

υποςτθλϊματα που βρίςκονται ςτθν εφκαμπτθ πλευρά (columns 1, 7) και 

μειϊνονται για εκείνα ςτθν δφςκαμπτθ (columns 3, 6). Τα εντατικά μεγζκθ των 
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εικόνων 11 και 12 αφοροφν τα ςτοιχεία του ανϊτερου διαφράμγατοσ.  Ζτςι, θ ιδθ 

παρατθρθμζνθ κι από αλλουσ ερευνθτζσ τάςθ μεταβολισ εντατικϊν μεγεκϊν 

δφςτρεπτων κανονικϊν κτθρίων, επαλθκεφεται και για μθ κανονικά ςε κάτοψθ 

κτιρια. 

Πίνακας 3. Αρικμθτικι Εφαρμογι 2 - Ιδιοπερίοδοσ και λόγοσ μθ ςυηευγμζνθσ ςτρεπτικισ 

προσ μθ ςυηευγμζνθ μεταφορικι ιδιοςυχνότθτα. 

 1T  2T  3T  
t

x

x




   

t
y

y




   

ecc 1.0074
x 

1.0059
y 

0.6988
t 

1.4416 1.4395 

ecc0.05 1.0218
x
 1.0074

y
 0.7006

t
 1.4585 1.4379 

ecc0.10 1.0633
x
 1.0074

y
 0.6851

t
 1.5520 1.4704 

ecc0.20 1.1933
x
 1.0074

y
 0.6313

t
 1.8902 1.5958 

 

 

Εικόνα 11. Αρικμθτικι εφαρμογι 2 – Τζμνουςεσ δυνάμεισ υποςτθλωμάτων κατά τθν y   

διεφκυνςθ για κάκε επίπεδο ςειςμικισ επικινδυνότθτασ και κάκε ςχεδιαςμό – (a) μζγιςτθ 

απόλυτθ τιμι τεμνουςϊν δυνάμεων  και (b) κανονικοποιθμζνεσ τζμνουςεσ δυνάμεισ ωσ 

προσ τθ μζγιςτθ τιμι. 

Για τον ζκκεντρο ςχεδιαςμό με 0.4% εκκεντρότθτα ecc θ ςτρζψθ βάςθσ, θ 

ςτροφι οροφισ και ο λόγοσ ςτρζψθσ ζχουν ςχεδόν μθδενικι τιμι ςτθν ελαςτικι 

περιοχι απόκριςθσ ( με πικανότθτα υπζρβαςθσ 50% ςτα πενιντα χρόνια). Για τουσ 

υπόλοιπουσ ςχεδιαςμοφσ οι τιμζσ των αντίςτοιχων μεγεκϊν αυξάνονται μονοτονικά 

με τθν εκκεντρότθτα. Η ίδια τάςθ παρατθρείται και για τα άλλα δφο επίπεδα 

ςειςμικισ επικινδυνότθτασ ( με πικανότθτα υπζρβαςθσ 2% και 10% ςτα πενιντα 
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χρόνια), επαλθκεφοντασ τθν αξιοπιςτία του λόγου ςτρζψθσ και ςτθν ανελαςτικι 

περιοχι απόκριςθσ. Όμοια ςυμπεράςματα ζχουν παρατθρθκεί και για κανονικά ςε 

κάτοψθ τετραϊροφα κτιρια, τόςο ςε απλά μοντζλα όςο και ςε κτιρια ρεαλιςτικϊν 

διαςτάςεων υποβαλλόμενα ςε μονοαξονικι ι/και διαξονικι ςειςμικι διζγερςθ, τα 

οποία δεν παρατίκενται εδϊ για λόγουσ οικονομίασ χϊρου. 

 

Εικόνα 12. Αρικμθτικι εφαρμογι 2 – Κανονικοποιθμζνεσ ωσ προσ τθ μζγιςτθ τιμι κατά τθν 

y   διεφκυνςθ για κάκε επίπεδο ςειςμικισ επικινδυνότθτασ και κάκε ςχεδιαςμό – (a) 

μετατοπίςεισ υποςτθλωμάτων και (b) παραμορφϊςεισ υποςτθλωμάτων. 

 

Εικόνα 13. Αρικμθτικι εφαρμογι 2 – (a) μζγιςτθ απόλυτθ τιμι ςτρζψθσ βάςθσ, (b) μζγιςτθ 

απόλυτθ τιμι ςτροφισ οροφισ διαφράγματοσ, (c) μζγιςτθ απόλυτθ τιμι λόγου ςτρζψθσ (

ROT ), (d) κανονικοποιθμζνθ ωσ προσ τθ μζγιςτθ τιμι ςτρζψθ βάςθσ, (e) 

κανονικοποιθμζνθ ωσ προσ τθ μζγιςτθ τιμι ςτροφι οροφισ και (f) κανονικοποιθμζνοσ ωσ 

προσ τθ μζγιςτθ τιμι λόγοσ ςτρζψθσ ( ROT ) για όλα τα επίπεδα ςειςμικισ επικινδυνότθτασ 

και όλουσ τουσ ςχεδιαςμοφσ. 
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Ο λόγοσ ςτρζψθσ εκτόσ από δείκτθσ αποτίμθςθσ επεκτείνεται και ςε δείκτθ 

ςχεδιαςμοφ, μζςω τθσ διαδικαςίασ βελτιςτοποίθςθσ ελαχιςτοποιϊντασ το ποςοςτό 

των πρόςκετων τεμνουςϊν δυνάμεων λόγω ςτρζψθσ (torsion-induced forces). 

Δεδομζνου ότι ο κφριοσ ςτόχοσ των ςφγχρονων αντιςειςμικϊν κανονιςμϊν είναι 

θ προςταςία τθσ ανκρϊπινθσ ηωισ, είναι φανερό ότι κα πρζπει να λθφκοφν υπόψθ 

επιπλζον κριτιρια ςχετικά με τθν επίδοςθ τθσ καταςκευισ, τα οποία να περιορίηουν 

τισ οικονομικζσ απϊλειεσ κακϊσ και δείκτεσ βλάβθσ ϊςτε να ποςοτικοποιθκεί θ 

τρωτότθτα των καταςκευϊν ςε ενδεχόμενο ςειςμικό γεγονόσ. Ζτςι άρχιςε να 

υιοκετείται μία νζα κεϊρθςθ ςχεδιαςμοφ με κριτιρια επιτελεςτικότθτασ 

(performance-based design). Συμφωνά με το ςχεδιαςμό με βάςθ τθν 

επιτελεςτικότθτα θ καταςκευι ελζγχεται για διάφορα επίπεδα ςειςμικισ ζνταςθσ. 

Σε αντίκεςθ με τον Ευρωκϊδικα όπου μόνο δφο επίπεδα επιτελεςτικότθτασ 

λαμβάνονται υπόψθ, θ οριακι κατάςταςθ λειτουργικότθτασ και θ οριακι 

κατάςταςθ αςτοχίασ. Για παράδειγμα θ FEMA-356 προτείνει τζςςερα επίπεδα 

επιτελεςτικότθτασ: το επίπεδο λειτουργικότθτασ, το επίπεδο άμεςθσ χριςθσ, το 

επίπεδο προςταςίασ ηωισ και το επίπεδο αποφυγισ κατάρρευςθσ. Αξίηει να 

ςθμειωκεί ότι θ ςειςμικι ζνταςθ ορίηεται ωσ ςυνάρτθςθ τθσ πικανότθτασ 

υπζρβαςθσ του ςειςμοφ ςχεδιαςμοφ κατά τθ διάρκεια του χρόνου ηωισ τθσ 

καταςκευισ ο οποίοσ ςυνικωσ λαμβάνεται ίςωσ με 50 χρόνια. Η ςπουδαιότθτα μιασ 

καταςκευισ λαμβάνεται υπόψθ χρθςιμοποιϊντασ για κάκε επίπεδο 

επιτελεςτικότθτασ ςειςμό με κατάλλθλθ περίοδο επαναφοράσ.  

Στο πλαίςιο του αντιςειςμικοφ ςχεδιαςμοφ με βάςθ τθν επιτελεςτικότθτα 

γίνεται διαχωριςμόσ μεταξφ ικανότθτασ και απαίτθςθσ. Με τον όρο απαίτθςθ 

εννοοφνται οι επιβαλλόμενεσ μετατοπίςεισ ( ι εναλλακτικά, παραμορφϊςεισ, 

καμπυλότθτεσ, ςτροφζσ και γωνίεσ ςχετικισ μετακίνθςθσ δφο ορόφων) λόγω τθσ 

ςειςμικισ φόρτιςθσ, ενϊ με τον όρο ικανότθτα εννοείται θ μζγιςτθ μετατόπιςθ ( ι 

εναλλακτικά, παραμόρφωςθ, καμπυλότθτα, ςτροφι και γωνία ςχετικισ 

μετακίνθςθσ) που μπορεί να αναπτφξει μια καταςκευι, ζνα μζλοσ τθσ ι μια διατομι 

τθσ *11+. 

Οι αντιςειςμικοί ςχεδιαςμοί με βάςθ τθν επιτελεςτικότθτα ςτοχεφουν ςτθν 

απόκριςθ τθσ καταςκευισ με ελεγχόμενεσ βλάβεσ-ηθμιζσ για τα διάφορα επίπεδα 

ςειςμικισ επικινδυνότθτασ. Προκειμζνου να υλοποιθκεί αυτι θ αντίλθψθ 
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ςχεδιαςμοφ απαιτείται θ ποςοτικοποίθςθ τθσ βλάβθσ με δείκτεσ βλάβθσ, των 

οποίων οι τιμζσ  μποροφν να ςυςχετιςκοφν με ςυγκεκριμζνθ κατάςταςθ βλάβθσ του 

κτθρίου.  

Στθ ςυνζχεια τθσ διατριβισ αναηθτϊνται οι βζλτιςτοι ςχεδιαςμοί των 

καταςκευϊν που κα προκφψουν μζςω μθ-γραμμικισ δυναμικισ ανάλυςθσ. Με τον 

όρο ‘βζλτιςτοσ δομοςτατικόσ ςχεδιαςμόσ’ εννοοφμε τθν εφρεςθ του  καλφτερου 

δυνατοφ ςχεδιαςμοφ που μπορεί να εξευρεκεί ςτο πλαίςιο ενόσ πολφπλοκου πολφ-

παραμετρικοφ προβλιματοσ βελτιςτοποίθςθσ, και όχι τον “μακθματικά” βζλτιςτο 

ςχεδιαςμό o οποίοσ είναι δφςκολο εϊσ αδφνατο να εξευρεκεί. Οι Στρατθγικζσ 

Εξζλιξθσ είναι Δαρβίνειεσ μζκοδοι βελτιςτοποιιςθσ οι οποίεσ μζςα από διαδοχικζσ 

βελτιϊςεισ του ςχεδιαςμοφ οδθγοφν τθν αντικειμενικι ςυνάρτθςθ ςτο ”κακολικό” 

τθσ βζλτιςτο.  

Για τον υπολογιςμό του βζλτιςτου ςχεδιαςμοφ αρχικά είναι απαραίτθτθ θ 

μακθματικι διατφπωςθ του προβλιματοσ και ςτθ ςυνζχεια θ επίλυςθ του με τθ 

βοικεια ενόσ αλγόρικμου βελτιςτοποίθςθσ. Αρχικά πρζπει να οριςκοφν οι 

παράμετροι ςχεδιαςμοφ και θ μεταξφ τουσ ςχζςθ. Στθ ςυνζχεια να κακοριςτεί θ 

προσ βελτιςτοποίθςθ ςυνάρτθςθ και οι περιοριςμοί του προβλιματοσ. Η 

διαδικαςία ολοκλθρϊνεται με τθν επιλογι του κατάλλθλου αλγόρικμου 

βελτιςτοποίθςθσ και τθν εφαρμογι του για τθν τελικι επίλυςθ του προβλιματοσ. Οι 

περιοριςμοί του προβλιματοσ ςυνικωσ αναφζρονται ςτο εφροσ ςτο οποίο 

κινοφνται οι παράμετροι ςχεδιαςμοφ και επιβάλλονται μζςω των ςυναρτιςεων 

περιοριςμοφ κακορίηοντασ το χϊρο αποδεκτϊν λφςεων του προβλιματοσ. 

Ακολοφκωσ παρουςιάηεται ο αλγόρικμοσ ςτρατθγικϊν εξζλιξθσ που 

χρθςιμοποιικθκε ςτθ διατριβι. 

Ζνα ςυνεχζσ πρόβλθμα βζλτιςτου ςχεδιαςμοφ μπορεί να διατυπωκεί ωσ εξισ: 

min ( )F s  

 1 2, ,...,
T

ns s ss  

 , 1,2,.....,i i il s u i n    (23) 

( ) 0, 1,2,....,jg j m s  

  0, 1, 2,.....,jh j m m t   s  
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όπου s είναι το διάνυςμα των μεταβλθτϊν ςχεδιαςμοφ, 
il ,

iu είναι το κάτω και το 

άνω όριο τθσ μεταβλθτισ ςχεδιαςμοφ is ,  F s είναι θ αντικειμενικι ςυνάρτθςθ ενϊ 

( ), ( )j jg hs s  είναι οι ςυναρτιςεισ περιοριςμοφ ανιςοτιτων και ιςοτιτων αντίςτοιχα. 

Εκτόσ από τα ςυνεχι προβλιματα βζλτιςτου ςχεδιαςμοφ, υπάρχουν τα 

διακριτά και τα μεικτοφ τφπου προβλιματα. Διακριτά ονομάηονται τα προβλιματα 

εκείνα ςτα οποία οι μεταβλθτζσ ςχεδιαςμοφ παίρνουν διακριτζσ τιμζσ. Ενϊ μεικτοφ 

τφπου ονομάηονται τα προβλιματα εκείνα ςτα οποία οι μεταβλθτζσ ςχεδιαςμοφ 

παίρνουν τόςο ςυνεχείσ όςο και διακριτζσ τιμζσ.  

Ζνα διακριτό πρόβλθμα βζλτιςτου ςχεδιαςμοφ διατυπϊνεται ωσ εξισ: 

min ( )F s  

 1 2, ,...,
T

ns s ss  

 , 1,2,.....,i i il s u i n    (24) 

, 1,2,...,d

i R i n s  

( ) 0, 1,2,....,jg j m s  

  0, 1, 2,.....,jh j m m t   s  

όπου dR είναι το πεδίο τιμϊν των διακριτϊν μεταβλθτϊν ςχεδιαςμοφ s . 

Ωσ μεταβλθτζσ ςχεδιαςμοφ ορίηονται εκείνεσ οι παράμετροι, οι οποίεσ όταν 

λάβουν ςυγκεκριμζνθ τιμι κακορίηουν πλιρωσ ζνα ςχεδιαςμό. Όταν κάποιοι 

περιοριςμοί παραβιάηονται από ζνα ςυνδυαςμό μεταβλθτϊν τότε ο ςχεδιαςμόσ 

καλείται ανζφικτοσ, ςτθν αντίκετθ περίπτωςθ ονομάηεται εφικτόσ. Ζνασ εφικτόσ 

ςχεδιαςμόσ δεν είναι πάντα βζλτιςτοσ αλλά είναι πάντα εφαρμόςιμοσ. Η κατάλλθλθ 

προςομοίωςθ βαςίηεται ςτθν ςωςτι επιλογι των μεταβλθτϊν ςχεδιαςμοφ. 

Απαραίτθτθ προχπόκεςθ είναι οι μεταβλθτζσ να είναι ανεξάρτθτεσ μεταξφ τουσ. 

Κακϊσ ςε περίπτωςθ που κάποια μεταβλθτι είναι εξαρτθμζνθ από κάποια άλλθ 

τότε παφει πλζον να είναι μεταβλθτι, αλλά μία παράμετροσ θ οποία λαμβάνει τιμζσ 

ςφμφωνα με τθν μεταβλθτι από τθν οποία εξαρτάται. Επιπλζον θ αντικειμενικι 

ςυνάρτθςθ οφείλει να είναι επαρκϊσ εξαρτϊμενθ από όλεσ τισ παραμζτρουσ 

ςχεδιαςμοφ. Για τον λόγο αυτό πριν τθν τελικι επιλογι του μακθματικοφ μοντζλου 

βελτιςτοποίθςθσ ςυνίςταται θ διενζργεια μιασ ανάλυςθσ ευαιςκθςίασ ϊςτε να 
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ελεγχκεί το μζγεκοσ ευαιςκθςίασ τθσ αντικειμενικισ ςυνάρτθςθσ ςε ςχζςθ με όλεσ 

τισ παραμζτρουσ ςχεδιαςμοφ. Ωσ αντικειμενικι ςυνάρτθςθ ορίηεται το κριτιριο 

εκείνο βάςει του οποίου επιλζγεται ο βζλτιςτοσ ςχεδιαςμόσ από ζνα ςφνολο 

εφικτϊν ςχεδιαςμϊν. Ζνα πρόβλθμα μπορεί να ςυνίςταται από περιςςότερεσ από 

μία αντικειμενικζσ ςυναρτιςεισ. Τα προβλιματα αυτοφ του τφπου ονομάηονται 

προβλιματα βελτιςτοποίθςθσ με πολλαπλζσ αντικειμενικζσ ςυναρτιςεισ ι αλλιϊσ 

προβλιματα Pareto. Κάκε απαίτθςθ του ςχεδιαςμοφ ειςάγεται ςτο μακθματικό 

πρόβλθμα βελτιςτοποίθςθσ με τθ μορφι ανιςοτιτων και ιςοτιτων, οι οποίεσ 

αντιπροςωπεφουν τουσ περιοριςμοφσ του προβλιματοσ. Κάκε περιοριςμόσ πρζπει 

να εξαρτάται από τουλάχιςτον μία μεταβλθτθ ςχεδιαςμοφ ϊςτε να ζχει φυςικό 

νόθμα. Μία ςυνάρτθςθ περιοριςμοφ ονομάηεται ανενεργόσ όταν ικανοποιείται 

αυςτθρϊσ θ ανιςότθτα *( ) 0jg s . Η ανιςοτικι ςυνάρτθςθ περιοριςμοφ κεωρείται 

ότι παραβιάηεται για τον ςχεδιαςμό *s  ςτθν περίπτωςθ που λαμβάνει κετικι τιμι 

*( ) 0jg s . Αντίςτοιχα, μία ιςοτικι ςυνάρτθςθ περιοριςμοφ ( ) 0jh s  κεωρείται ότι 

παραβιάηεται ςτο ςθμείο *s αν δεν ιςχφει θ ιςότθτα *( ) 0jh s . Συνεπϊσ κάκε 

εφικτόσ ςχεδιαςμόσ ορίηεται από ενεργζσ ι ανενεργζσ ανιςοτικζσ ςυναρτιςεισ 

περιοριςμοφ κακϊσ και από ενεργζσ ιςοτικζσ ςυναρτιςεισ περιοριςμοφ. 

Προκειμζνου να εντοπιςτοφν οι ενεργζσ ςυναρτιςεισ περιοριςμοφ πρζπει πρϊτα οι 

ςυναρτιςεισ τουσ να κανονικοποιθκοφν ϊςτε να είναι εφικτι θ ςφγκριςι τουσ .  

Όπωσ προαναφζρκθκε ςτθν παροφςα εργαςία χρθςιμοποιικθκε θ μζκοδοσ 

Στρατθγικϊν Εξζλιξθσ. Η μζκοδοσ των Στρατθγικϊν Εξζλιξθσ [14], [15], [16] 

κατατάςςεται ςτθν κατθγορία των Δαρβίνειων μεκόδων ι αλλιϊσ εξελικτικϊν 

αλγορίκμων. Το όνομα τουσ αποδίδεται ςτο γεγονόσ ότι μιμοφνται τθ διαδικαςία 

εξζλιξθσ των ειδϊν ςτθ φφςθ, όπωσ παρουςιάςτθκε από το Δαρβίνο και ανικουν 

ςτισ τυχθματικζσ μεκόδουσ βελτιςτοποίθςθσ. Άλλεσ μζκοδοι Εξελικτικϊν 

Αλγορίκμων είναι θ μζκοδοσ των Γενετικϊν Αλγορίκμων *17+, θ μζκοδοσ του 

Εξελικτικοφ Προγραμματιςμοφ [18] και θ μζκοδοσ του Γενετικοφ Προγραμματιςμοφ 

[19]. Σε αυτι τθν κατθγορία ανικει και θ διαφορετικισ τεχνικισ μζκοδοσ τθσ 

Προςομοίωςθσ Ανόπτθςθσ [20]. 

Σφμφωνα με τθ μζκοδο των Στρατθγικϊν Εξζλιξθσ ζνασ πλθκυςμόσ 

ανεξάρτθτων ςχεδιαςμϊν χρθςιμοποιείται ςε κάκε βιμα τθσ διαδικαςίασ. Αρχικά 
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επιλζγεται με τυχαίο τρόπο ο αρχικόσ πλθκυςμόσ. Στθ ςυνζχεια με τθ χριςθ των 

τελεςτϊν αναςυνδυαςμοφ, μετάλλαξθσ και επιλογισ, ο αρχικόσ πλθκυςμόσ 

εξελίςςεται. Με κριτιριο τθν επιβίωςθ του ιςχυροτζρου (survival of the fittest) 

οδθγοφμαςτε ςτθ βζλτιςτθ λφςθ. Η μζκοδοσ των Στρατθγικϊν Εξζλιξθσ ζχει 

εφαρμοςτεί ςτον χϊρο του βζλτιςτου ςχεδιαςμοφ καταςκευϊν [21], [22]. Το βαςικό 

τθσ πλεονζκτθμα είναι ότι λόγω τθσ τυχθματικότθτασ  του τρόπου τθσ ζρευνασ του 

χϊρου ςχεδιαςμοφ ζχει περιςςότερεσ πικανότθτεσ για τθν ζυρεςθ του απόλυτα 

βζλτιςτου ςχεδιαςμοφ ςε ςχζςθ με τισ μακθματικζσ μεκόδουσ. Ειδικότερα, ςε 

δφςκολα προβλιματα βελτιςτοποίθςθσ με πολλά τοπικά ελάχιςτα ι για 

προβλιματα με πολλαπλζσ αντικειμενικζσ ςυναρτιςεισ *11+. 

Στθν παροφςα εργαςία χρθςιμοποιικθκε θ μζκοδοσ των Στρατθγικϊν Εξζλιξθσ 

πολλϊν μελϊν. Σφμφωνα με αυτι τθ μζκοδο θ επιλογι των μελϊν τθσ επόμενθσ 

γενιάσ γίνεται από τα ικανότερα μζλθ μεταξφ των  γονζων και των  απογόνων και 

ονομάηονται (  )ESs. Με βάςθ αυτό το μοντζλο ζνασ γονζασ με ανϊτερθ 

ικανότθτα επιβίωςθσ των υπολοίπων μελϊν του πλθκυςμοφ ςυμμετζχει ςτθ 

διαδικαςία αναπαραγωγισ για περιςςότερεσ γενιζσ. Η ικανότθτα επιβίωςθσ κάκε 

μζλουσ του πλθκυςμοφ κακορίηεται από τθν τιμι τθσ αντικειμενικισ ςυνάρτθςθσ. 

Το δεφτερο μοντζλο επιλογισ είναι το ( ,  )ESs όπου κάκε γονζασ ζχει χρόνο ηωισ 

ίςο με μία γενιά. Οι γονείσ τθσ επόμενθσ γενιάσ επιλζγονται από τουσ απογόνουσ 

μόνο τθσ προθγοφμενθσ. 

Η διαδικαςία βελτιςτοποίθςθσ ςτοχεφει ςτθν ταυτόχρονθ εξεφρεςθ ενόσ 

ικανοποιθτικοφ ελαχίςτου τθσ αντικειμενικισ ςυνάρτθςθσ και ςτθν ικανοποίθςθ 

όλων των περιοριςμϊν του αντιςειςμικοφ κανονιςμοφ κακϊσ και των 

αρχιτεκτονικϊν περιοριςμϊν για διάφορα επίπεδα ςειςμικισ επικινδυνότθτασ. 

Εκτόσ από τον προτεινόμενο δείκτθ και το κόςτοσ καταςκευισ ωσ αντικειμενικζσ 

ςυναρτιςεισ ςτθν παροφςα διατριβι χρθςιμοποιικθκαν επίςθσ θ εκκεντρότθτα ωσ 

προσ τθν ακαμψία και ωσ προσ τθν αντοχι προκειμζνου να μελετθκεί θ επιρροι του 

φαινομζνου τθσ ςτρζψθσ ςτθν απόκριςθ τθσ καταςκευισ για όλα τα επίπεδα 

ςειςμικισ επικινδυνότθτασ.  

Η αποτίμθςθ των βζλτιςτων ςχεδιαςμϊν που προζκυψαν με ελαχιςτοποίθςθ 

των ανωτζρω αντικειμενικϊν ςυναρτιςεων πραγματοποιείται με υποβολι των 
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τελικϊν ςχεδιαςμϊν ςε μθ γραμμικεσ δυναμικζσ αναλφςεισ για όλα τα επίπεδα 

ςειςμικισ επικινδυνότθτασ. Ακολουκεί θ υπζρκεςθ των περιβαλλουςϊν των 

χρονοιςτοριϊν τζμνουςασ βάςθσ-ςτρζψθσ βάςθσ για τθν εφρεςθ του ςχεδιαςμοφ με 

τθν ελάχιςτθ επιρροι του ςτρεπτικοφ φαινομζνου.  

Αριθμητική Εφαρμογή 3 

Στθν τρίτθ αρικμθτικι εφαρμογι αποτιμϊνται οι βζλτιςτοι αντιςειςμικοί 

ςχεδιαςμοί που προζκυψαν για το κανονικό ςε κάτοψθ απλό μοντζλο τθσ Εικόνασ 

14. Στθν εικόνα 14 φαίνονται επίςθσ και οι βζλτιςτοι ςχεδιαςμοί που προζκυψαν 

χρθςιμοποιϊντασ το κόςτοσ, τθ ςτατικι εκκεντρότθτα, τθν εκκεντρότθτα αντοχισ 

και το λόγο ςτρζψθσ ωσ αντικειμενικζσ ςυναρτιςεισ, ενϊ ταυτόχρονα 

ικανοποιοφνται οι περιοριςμοί που επιβάλλονται από τον Ευρωκϊδικα 8 για τισ 

περιπτϊςεισ CASE A, CASE B, CASE C και CASE D αντίςτοιχα. Για τισ ίδιεσ 

αντικειμενικζσ ςυναρτιςεισ αλλά υπό τουσ περιοριςμοφσ ςχεδιαςμοφ με βάςθ τθν 

επιτελεςτικότθτα απεικονίηονται οι βζλτιςτεσ κατόψεισ επίςθσ ςτθν Εικόνα 14 ωσ 

CASE Ε, CASE F, CASE G και CASE H αντίςτοιχα. Οι βζλτιςτοι ςχεδιαςμοί που 

προζκυψαν υποβλικθκαν ςε 2 ςειςμικζσ διεγζρςεισ για κάκε επίπεδο ςειςμικισ 

επικινδυνότθτασ προκειμζνου να αποτιμθκεί θ αντιςειςμικι τουσ ςυμπεριφορά. Οι 

χρονοϊςτορίεσ τζμνουςασ βάςθσ - ςτρζψθσ βάςθσ καταγράφθκαν και οι 

περιβάλλουςεσ τουσ ςυγκρίκθκαν ϊςτε να αξιολογθκεί θ επιρροι του ςτρεπτικοφ 

φαινομζνου ςτθν απόκριςθ των βζλτιςτων ςχεδιαςμϊν. Στθν εικόνα 15 

απεικονίηονται οι χρονοϊςτορίεσ τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ του βζλτιςτου 

ςχεδιαςμοφ που προζκυψε με αντικειμενικι ςυνάρτθςθ το κόςτοσ  υποβαλλόμενο 

ςτου περιοριςμοφσ του Ευρωκϊδικα 8 για ςυνικθ ςειςμικά φαινόμενα (πικανότθτα 

υπζρβαςθσ 50% ςτα πενιντα χρόνια). Στισ επόμενεσ εικόνεσ γίνεται υπζρκεςθ των 

περιβαλλουςϊν χρονοιςτοριϊν τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ για όλουσ τουσ 

ςχεδιαςμοφσ και όλα τα επίπεδα ςειςμικισ επικινδυνότθτασ. 
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Εικόνα 14. Αρικμθτικι εφαρμογι 3 – Αρχικόσ και βελτιςτοποιθμζνοι ςχεδιαςμοί για όλεσ τισ 

αντικειμενικζσ ςυναρτιςεισ. 

 

 

Εικόνα 15. Αρικμθτικι εφαρμογι 3 – Χρονοιςτορίεσ τζμνουςασ βάςθσ – ςτρζψθσ βάςθσ και 

θ περιβάλλουςα για το ςχεδιαςμό τθσ CASE A για ςυνικθ ςειςμικά φαινόμενα. 

 

Case H Case I 
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Εικόνα 16. Αρικμθτικι εφαρμογι 3 – Περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ βάςθσ – 

ςτρζψθσ βάςθσ κατά τθν y διεφκυνςθ για ςυχνά ςειςμικά φαινόμενα (50in50) για όλα τα 

κριτιρια υπό τουσ περιοριςμοφσ που επιβάλλονται από τον Ευρωκϊδικα 8. 

Όπωσ φαίνεται από τθν εικόνα 16, οι ςχεδιαςμοί οι οποίοι βελτιςτοποιικθκαν 

με αντικειμενικι ςυνάρτθςθ το λόγο ςτρζψθσ και τθν εκκεντρότθτα ακαμψίασ 

ανζπτυξαν μικρότερθ ςτρζψθ βάςθσ ςε ςφγκριςθ με εκείνουσ που 

βελτιςτοποιικθκαν βάςει του κόςτουσ και τθσ εκκεντρότθτασ αντοχισ 

υποβαλλόμενοι ςτουσ περιοριςμοφσ του Ευρωκϊδικα 8 για ςυχνά ςειςμικά 

φαινόμενα. Όμοια ςυμπεράςματα προκφπτουν και για περιςταςιακά και ςπάνια 

ςειςμικά γεγονότα (Εικόνεσ 18, 20). 
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Εικόνα 17. Αρικμθτικι εφαρμογι 3 – Περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ βάςθσ – 

ςτρζψθσ βάςθσ κατά τθν y διεφκυνςθ για ςυχνά ςειςμικά φαινόμενα (50in50) για όλα τα 

κριτιρια υπό τουσ περιοριςμοφσ που επιβάλλονται από τον ςχεδιαςμό με βάςθ τθν 

επιτελεςτικότθτα. 

Στθν εικόνα 17 παρουςιάηονται οι περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ 

βάςθσ – ςτρζψθσ βάςθσ για όλουσ τουσ ςχεδιαςμοφσ υποβαλλόμενουσ ςε 

περιοριςμοφσ βάςει τθσ επιτελεςτικότθτασ για ςυχνά ςειςμικά φαινόμενα. Οι 

ςχεδιαςμοί με αντικειμενικό κριτιριο το λόγο ςτρζψθσ και τθν εκκεντρότθτα 

ακαμψίασ και ςε αυτι τθν περίπτωςθ ζχουν τθν καλφτερθ επίδοςθ κακϊσ 

αναπτφςςουν τθν μικρότερθ ςτρζψθ βάςθσ. Τα ίδια ςυμπεράςματα εξάγονται για 

περιςταςιακά και ςπάνια ςειςμικά φαινόμενα (Εικόνεσ 19,21). 
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Εικόνα 18. Αρικμθτικι εφαρμογι 3 – Περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ βάςθσ – 
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Εικόνα 20. Αρικμθτικι εφαρμογι 3 – Περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ βάςθσ – 

ςτρζψθσ βάςθσ κατά τθν y διεφκυνςθ για ςπάνια ςειςμικά φαινόμενα (2in50) για όλα τα 
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Εικόνα 21. Αρικμθτικι εφαρμογι 3 – Περιβάλλουςεσ χρονοϊςτοριϊν τζμνουςασ βάςθσ – 

ςτρζψθσ βάςθσ κατά τθν y διεφκυνςθ για ςπάνια ςειςμικά φαινόμενα (2in50) για όλα τα 

κριτιρια υπό τουσ περιοριςμοφσ που επιβάλλονται από τον ςχεδιαςμό με βάςθ τθν 

επιτελεςτικότθτα. 

Πρζπει να ςθμειωκεί ότι όμοια ςυμπεράςματα ζχουν εξαχκεί και για μθ 

κανονικό ςε κάτοψθ κτιριο, δεν παρατίκεται εδϊ για λόγουσ οικονομίασ χϊρου. Η 

απόδοςθ των ςχεδιαςμϊν που βελτιςτοποιικθκαν βάςει του προτεινόμενου 

κριτθρίου ςθμειϊκθκε για όλεσ τισ περιπτϊςεισ και όλα τα ςειςμικά επίπεδα 

επικινδυνότθτασ ανάμεςα ςτισ δφο καλφτερεσ τόςο ςε κανονικά ςε κάτοψθ κτιρια 

όςο και ςε μθ κανονικά. Σε αντίκεςθ με τα υπόλοιπα κριτιρια των οποίων θ 

ςυμπεριφορά για κάποια επίπεδα ςειςμικισ επικινδυνότθτασ ιταν ικανοποιθτικι 

ενϊ για κάποια άλλα όχι. 

Συνοψίηοντασ, ςτθν παροφςα διατριβι παρατθρικθκε ότι: 

 Για απλά μοντζλα, τα εντατικά μεγζκθ που ςχετίηονται με τθ ςτρεπτικι 

απόκριςθ τθσ καταςκευισ – ςτρζψθ βάςθσ, ςτροφι οροφισ και λόγοσ 

ςτρζψθσ – αυξάνονται μονοτονικά με τθν εκκεντρότθτα για όλα τα 

επίπεδα ςειςμικισ επικινδυνότθτασ. Ενϊ για μοντζλα ρεαλιςτικϊν 
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διαςτάςεων θ ςτρζψθ βάςθσ και θ ςτροφι οροφισ δεν ακολουκοφν 

πάντα τθν ίδια τάςθ μεταβολισ. Ο λόγοσ ςτρζψθσ ακολουκεί πάντα τθν 

τάςθ μεταβολισ τθσ ςτρζψθσ βάςθσ. 

 Προτείνεται νζοσ δείκτθσ αποτίμθςθσ ςτρεπτικοφ φαινομζνου ςτθν 

απόκριςθ των καταςκευϊν, ο λόγοσ ςτρζψθσ. Ο προτεινόμενοσ δείκτθσ 

ποςοτικοποιεί το φαινόμενο ςε όρουσ τεμνουςϊν δυνάμεων και 

εκφράηει το ποςοςτό μεγζκυνςθσ αυτϊν λόγω ςτρεπτικοφ φαινομζνου. 

Η τιμι του δείκτθ για ςυμμετρικά κτιρια είναι μθδενικι. Συνεπϊσ, ςε 

αντίκεςθ με όλα τα άλλα εντατικά μεγζκθ που ςχετίηονται με τθ 

ςτρζψθ, δεν χρειάηεται ανάλυςθ του ςυμμετρικοφ αντιςτοίχου τθσ 

καταςκευισ.  

 Η ιδθ παρατθρθμζνθ τάςθ μεταβολισ των εντατικϊν μεγεκϊν ( 

τζμνουςεσ δυνάμεισ, μετατοπίςεισ, παραμορφϊςεισ ) για κανονικά ςε 

κάτοψθ δφςτρεπτα κτιρια – αφξθςθ τουσ ςτθν εφκαμπτθ πλευρά και 

μείωςθ ςτθ δφςκαμπτθ – επιβεβαιϊκθκε και για μθ κανονικά ςε κάτοψθ 

κτιρια. 

 Το κριτιριο αποτίμθςθσ επίδραςθσ ςτρεπτικοφ φαινομζνου μζςω τθσ 

διαδικαςίασ βελτιςτοποίθςθσ επεκτείνεται ςε κριτιριο ςχεδιαςμοφ. Η 

απόδοςθ των ςχεδιαςμϊν που προζκυψαν χρθςιμοποιϊντασ ωσ 

αντικειμενικι ςυνάρτθςθ το λόγο ςτρζψθσ είναι πάντα άναμεςα ςτισ 

δφο καλφτερεσ ςε ςφγκριςθ με τα υπόλοιπα κριτιρια. Τα αποτελζςματα 

επιβεβαιϊκθκαν και για μθ κανονικά ςε κάτοψθ κτιρια. Αξίηει να 

ςθμειωκεί ότι θ απόδοςθ του ιταν ςτακερι για όλα τα επίπεδα 

ςειςμικισ επικινδυνότθτασ. 

 Τζλοσ, ο προτεινόμενοσ δείκτθσ, λόγοσ ςτρζψθσ, μπορεί να αποτελζςει 

ζνα χριςιμο εργαλείο για τουσ μθχανικοφσ για τθν ποςοτικοποίθςθ τθσ 

επίδραςθσ του ςτρεπτικοφ φαινομζνου ςτθν απόκριςθ τθσ καταςκευισ. 

Επιπλζον, λαμβάνοντασ υπόψθ ότι προκφπτει από τθν τιμι των 

τεμνουςϊν δυνάμεων, οι οποίεσ μποροφν να υπολογιςτοφν από 

οποιοδιποτε λογιςμικό, είναι εφκολα εφαρμόςιμο ςε κτιριο 

οποιαςδιποτε γεωμετρίασ.   
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1 INTRODUCTION 

 

 

 

1.1 Introduction 

Buildings subjected to ground shaking undergo simultaneously lateral as well as 

torsional motions if their structural plan views do not possess two axes of mass and 

stiffness symmetry. Coupled lateral-torsional motions can also occur in nominally 

symmetric buildings if ground shaking includes a torsional component or due to 

unforeseen conditions such as unbalanced load distributions or differences between 

actual and assumed mass and stiffness distributions. Lateral-torsional coupling 

causes the building to experience torsional moments and rotational deformations 

around vertical axes. Due to the rotational deformation, non-uniform distribution 

demand in lateral force resisting elements appear, which leads to increased damages 

in an eccentric building. The experience of past earthquakes such as Mexico City 

1986 [1, 2] confirms the existence of this torsional effect. The vulnerability of 

asymmetric buildings has been addressed by building seismic design codes in the 

form of special torsional provisions. In most structural design codes, the effect of 

torsion is treated by implementing “accidental” and “static eccentricities” together 

with specific provisions for addressing the design of irregular buildings. Accidental 

eccentricity is defined as a percentile (e.g. 5%) of the plan view dimension that is 

perpendicular to the direction of the lateral forces applied. On the other hand the 
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implementation of the static eccentricity is more complicated, since it is defined with 

reference to the location of the rigidity center whose position, for the case of 

multistory buildings, is not unique and is load-dependent. It is for this reason that 

the efficiency of torsional codified provisions has been studied by many researchers.  

Usually the investigations of asymmetric buildings are carried out using single-

story structures generally asymmetric along one axis only. Lumped mass models with 

unidirectional resisting elements are adopted. Most of the studies use structural 

elements with ideal elasto-plastic behavior; more complicated constitutive models 

have also been used; examples of such models are bilinear models with post-yielding 

stiffness and hysteretic models (e.g. Clough model [3]) that account for element 

stiffness degradation under cyclic loading conditions.  

The research effort on single-story models have been focusing on the inelastic 

behavior of structural elements, the effects of bi-directional excitation and the 

influence of the ground motion intensity. In particular, inelastic behavior is of great 

interest, since the ability of structures to withstand strong earthquakes depends 

upon their ductility and capacity for energy dissipation. Investigations have also been 

conducted with reference to double eccentric models, besides to the 

monosymmetric used so far. In spite of extensive research efforts, the complexity of 

inelastic seismic response and the large number of parameters influencing the 

behavior of irregular buildings, as compared to their elastic counterparts, has lead to 

a lack of general and universally accepted conclusions. Hence, drawing some 

definitive conclusions on this problem remains an open issue within the structural 

engineering community.  

Although single-story models represent the most extreme idealization of plan 

irregular buildings, they have been widely used in the past due to their simplicity in 

clarifying the influence of the governing parameters and deriving effective design 

criteria. However, in recent years multistory building models have been used 

increasingly for the following two reasons: (i) The shortcomings of single-story 

models in predicting torsional behavior of real structures, as was evidenced by 

several authors, who critically discussed the effectiveness of such models. (ii) The 
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development of powerful computational tools which made feasible extensive and 

refined numerical analyses of three-dimensional multistory building structures.  

A number of studies adopting more realistic multistory models have 

demonstrated [4] the shortcomings of simplified single-story models, especially in 

predicting qualitative features of inelastic response, such as the location of the most 

stressed resisting elements. Furthermore, it was realized that code-designed plan 

irregular structures have also shown that specifications subscribed by current major 

seismic codes are in need of re-examination in order to properly deal with nonlinear 

behavior. More recently, extensive research efforts have been devoted to 

developing pushover procedures for plan irregular systems, in order to reach 

effective conclusions [5, 6].  

As an alternative to traditional design solutions, fresh ideas are coming from 

studies on the use of passive control systems by means of various innovative 

technologies aimed at mitigating the effects of building torsional response. In 

particular, in addition to base isolation, various types of devices, viscous and 

frictional, have been considered through ever more refined modelling, and different 

optimization techniques have proved effective in identifying the amount and 

location of such devices needed to achieve significant reductions in torsional 

response [7,8]. 

Limited research has been devoted to vertically irregular building structures 

compared to the plan-asymmetric ones. Nevertheless, in recent years, research 

interest in the field of building structures with vertical irregularity has grown, partly 

as a result of ever greater availability of efficient nonlinear computer codes that 

enable dynamic analysis of large multistory buildings [9, 10]. 

Recent activities on vertically irregular structures have clarified that 

discontinuities of mass, stiffness or strength along the height, considered by current 

seismic codes as irregularities in elevation, do not necessarily result in actual 

increases in plastic demands and, more generally, in poor seismic behavior. In this 

context some researchers have proposed modifications to the nonlinear pushover 

procedures for vertically irregular buildings, achieving good correlation of results 

with those from nonlinear dynamic analysis [11]. Thus, criteria in major international 
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codes aimed at identifying vertical irregularities seem to penalize such 

discontinuities excessively and codes are in need of improvement in order to define 

indicators that actually predict structural behavior for such cases. On the other hand, 

despite some exceptions, design rules specified by major seismic codes for vertically 

irregular buildings have resulted in satisfactory seismic performances.  

In conclusion, research activity on seismic response of irregular buildings, both 

in plan or in elevation, is still very lively, as revealed by the number of papers 

published, and full clarification of the main issues, both behavioral and design 

oriented, is on the way. 

1.2 Objectives and scope 

As mentioned above many issues arise as far as the estimation of the torsional 

effect on the seismic response of asymmetric in plan buildings is concerned. The 

main cause is attributed to the fact that there is not unequivocal definition for the 

static eccentricity considering realistic multistory buildings. Moreover, it does not 

remain the same for all states of response. Once the elements start yielding entering 

the elastoplastic state of response, their stiffness is affected. Consequently, the 

value of static eccentricity changes. Taking into consideration that eccentricity is the 

main indicator according to which codified torsional provisions treat torsion, further 

investigation of the effect of the lateral torsional coupling on the structural behavior 

of multistory buildings is necessary. Many researchers noticed that as a result of 

coupled lateral torsional motions, the lateral forces experienced by vertical 

structural resisting elements would differ by those experienced by the same 

elements if the building had symmetric plan and hence responded without torsional 

induced vibrations. Based on this observation, an index for assessing the 

amplification of shear forces due to torsional effect, called “ratio of torsion” (ROT), is 

proposed in the current investigation. Ratio of torsion expresses the percentage of 

torsion-induced shear forces normalized to the imposed base shear by the seismic 

excitation.  
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In order to evaluate the reliability of the proposed index, a group of single-story 

systems is implemented first with monosymmetric as well as double eccentric 

features, subjected to one- and two-component earthquake excitation. 

Subsequently, more realistic plan view single-story systems are used exhibiting also 

unidirectional and bidirectional eccentricity. Finally, horizontally irregular single-

story systems are examined. Nonlinear dynamic analyses are performed using 

natural records for three hazard levels. In addition to the proposed index, previously 

proposed indices, base torque, diaphragm rotation, interstory drifts, displacements 

and shear forces, are chosen as response quantities for assessing the structural 

behavior of the buildings studied. 

At the second part of this investigation, the proposed index is evaluated for 

multistory buildings. In particular, four-story buildings exhibiting unidirectional as 

well as bidirectional eccentricity are chosen subjected to one - and/or two - 

component earthquake excitations. Simple mathematical models, buildings with 

realistic plan views and horizontally irregular buildings are chosen in this case too. 

The same response quantities as in the case of single-story systems are considered. 

At the last part of the investigation, the assessment index ROT, proposed in this 

study is extended to a design tool in the framework of evolutionary-based structural 

design optimization. ROT is implemented in order to achieve improved designs by 

solving a combined topology-sizing optimization problem. In addition to ROT, cost, 

static and strength eccentricity are also adopted as objective functions. The location 

and cross-sectional size of vertical structural elements are chosen as design 

variables. The restrictions imposed by Eurocodes and performance-based design 

procedure constitute the behavioral constraints. The optimum designs obtained by 

the implementation of various problem formulations were assessed for nonlinear 

dynamic excitations and the envelopes of their earthquake response are 

superimposed for all hazard levels. 
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1.3 Organization and outline 

The thesis consists of seven chapters, while its structure is organized as follows: 

Chapter 1 includes the introduction of the dissertation which provides a general 

description of the motivation and the goals pursued. 

Chapter 2 presents the formulation of the flexibility-based beam-column 

element implemented for the modelling of structural elements. A step-by-step 

outline of the state determination process is also provided. Afterwards, the concrete 

and steel material constitutive laws used for the simulation of the models are 

described. Finally, a summary of the nonlinear solution algorithm implemented is 

given. 

Chapter 3 contains the basic principles of the conventional prescriptive and the 

Performance-based design procedures. Furthermore, the basic features are 

presented associated with the parameters that characterize the torsional effect on 

structural behavior subjected to earthquake excitation in elastic as well as inelastic 

range of response. 

Chapter 4 presents the proposed index for assessing the torsional effect on the 

structural behavior of eccentric plan buildings. The numerical applications are also 

included and are divided into two groups. The first group contains mass eccentric, 

torsionally stiff, horizontally regular as well as irregular single-story systems, while 

the second one consists of multistory buildings.  

Chapter 5 describes the adopted algorithm for the solution of the optimization 

problem. Basic definitions as well as the concept of structural design and the 

formulation of the deterministic problem are described. More specifically, the 

evolution strategies method is explained in detail. 

Chapter 6 presents the results of the extension of the proposed assessment 

index as a design tool, by implementing the formerly described optimization 

procedure and the numerical applications examined in two single-story, horizontally 

regular and irregular buildings. 

Finally, in Chapter 7 the conclusions of the research work are presented, as well 

as the natural extension of this work and ideas for future work. 
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2 NUMERICAL AND MATERIAL MODELLING 

 

 

 

2.1 Introduction 

This chapter presents the general formulation of a beam-column finite element 

based on the flexibility method which is implemented in the current dissertation for 

modelling the structural members as well as the constitutive material laws used for 

the simulation of concrete and steel.  

The formulation of flexibility-type elements is based on interpolation functions 

for the internal forces. For geometrically linear structures it is straightforward to 

select polynomials that satisfy the element equilibrium in a strict sense, such as 

constant axial force and linearly varying bending moments in the absence of element 

loads [1, 2]. These interpolation functions represent the exact solution to the 

governing equations, irrespective of the geometry and constitutive law of the beam 

element. A discretization error, as generally encountered in stiffness-based 

formulations, does not occur. 

The main obstacle in the widespread use of flexibility-based beam finite 

elements was the difficulty of integrating the nonlinear state determination in an 

analysis program that is based on direct stiffness method. This obstacle was 

overcome by a state determination procedure that iteratively determines the 

element resisting forces and stiffness matrix while strictly satisfying element 
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equilibrium and compatibility at each iteration. This procedure is considerably more 

involved than for stiffness-based elements [3-5]. 

2.2 Force-based beam-column element 

The implemented beam-column element is based on the assumption that 

deformations are small and that plane sections remain plane during the loading 

history. The formulation of the element is based on the mixed method: the 

description of the force distribution within the element by interpolation functions 

that satisfy equilibrium is the starting point of the formulation. Based on the 

concepts of the mixed method it is shown that the selection of flexibility dependent 

shape functions for the deformation field of the element results in a considerable 

simplification of the final equations. With this particular selection of deformation 

shape functions the general mixed method reduces to the special case of the 

flexibility method. The mixed method formalism is, nonetheless, very useful in 

understanding the procedure for the element state determination. 

The implemented formulation offers several advantages over previous models: 

 Equilibrium and compatibility are always satisfied along the element: 

equilibrium is satisfied by the selection of force interpolation functions and 

compatibility is satisfied by integrating the section deformations to obtain the 

corresponding element deformations and end displacements. An iterative 

procedure is then used to satisfy the nonlinear section force-deformation 

relation within the specified tolerance. 

 The softening response of reinforced concrete members, which are either 

poorly reinforced or are subjected to high axial forces, can be described 

without computational difficulties. 
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2.2.1 Definition of generalized forces and deformations 

The beam-column finite element is schematically shown in Fig. 2.1. The 

reference frame for the element is the local coordinate system x , y , z , while X , Y , 

Z  denotes the global reference system. The longitudinal axis x  is the union of 

geometric centroids of each section. 

 

Figure 2.1. Generalized forces and deformations at the element and section level [10]. 

The following convention is followed for the notation of forces, displacements 

and deformations: forces are represented by uppercase letters and corresponding 

deformations or displacements are denoted by the same letter in lowercase. Normal 

letters denote scalar quantities, while boldface letters denote vectors and matrices. 

Fig. 2.1 shows the element forces with the corresponding deformations. Rigid 

body modes are not included in Fig. 2.1. Since the present formulation is based on 

linear geometry, rigid body modes can be incorporated with a simple geometric 

transformation. The element has 5 degrees of freedom: one axial extension,   , and 

two rotations relative to the chord at each end node, ( 1q , 3q ) and ( 2q , 4q ), 

respectively. For the sake of clarity these are called element generalized 
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deformations or simply element deformations in the following discussion. 1Q   

through 5Q  indicate the corresponding generalized forces: one axial force, 5Q , and 

two bending moments at each end node 1Q  , 3Q  and 2Q , 4Q  , respectively. The end 

rotations and corresponding moments refer to two arbitrary, orthogonal axes y and 

z . The element generalized forces and deformations are grouped in the following 

vectors: 

Element force vector:   

1

2

3

4

5

Q

Q

Q

Q

Q

 
 
  

  
 
 
  

Q  (2.1) 

Element deformation vector: 

1

2

3

4

5

q

q

q

q

q

 
 
  

  
 
 
  

q  (2.2) 

Fig. 2.1 also shows the generalized forces and deformations at a section of the 

element. Section deformations are represented by three strain resultants: the axial 

strain ( )x  along the longitudinal axis and two curvatures ( )zx x  and ( )yx x  about 

two arbitrary, orthogonal axes z  and y , respectively. The corresponding force 

resultants are the axial force ( )N x  and two bending moments ( )zM x  and ( )yM x  . 

The section generalized forces and deformations are grouped in the following 

vectors: 

Section force vector:   

1

2

3

( ) ( )

( ) ( ) ( )

( ) ( )

z

y

M x D x

x M x D x

N x D x

   
   

    
   
   

D  (2.3) 

Section deformation vector:   

1

2

3

( ) ( )

( ) ( ) ( )

( ) ( )

z

y

x x d x

x x x d x

x d x

   
   

    
   
   

d  (2.4) 

The element formulation can be readily extended to include the torsional 

degrees of freedom, as long as these are uncoupled from the present degrees of 
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freedom and are governed by linear elastic behavior. The focus of the present study 

is the element in Fig. 2.1., which describes the nonlinear behavior of frame members 

under arbitrary cyclic load histories of biaxial bending and axial load. 

2.2.2 Beam-column element formulation 

In the following the mixed finite element method is used to formulate the beam-

column element. At this stage no reference is made to specific interpolation 

functions. It is shown, however, that, if flexibility dependent deformation shape 

functions are selected, then the mixed method simplifies to the flexibility method. 

The nonlinear section force-deformation relation is also kept general.  

The derivation follows the two-field mixed method which uses the integral form 

of equilibrium and section force-deformation relations to derive the matrix relation 

between element’  generalized forces and corresponding deformations. In order to 

arrive at a linear relation, the section force-deformation relation is linearized about 

the present state. An iterative algorithm is then used to satisfy the nonlinear section 

force-deformation relation within the required tolerance. 

In the two-field mixed method [6] independent shape functions are used for 

approximating the force and deformation fields along the element. Denoting with Δ 

increments of the corresponding quantities, the two fields are written 

 ( ) ( ) ( )i ix a x x  d q  (2.5) 

 ( ) ( ) ( )i ix b x xD Q  and ( ) ( ) ( )i iΔ x b x x D Q  (2.6) 

where matrices ( )xa and ( )xb are the deformation and force interpolation matrices, 

respectively. Superscript i  indicates the thi  iteration of the Newton-Raphson (N-R) 

iteration loop, which is performed at the structure degrees of freedom until 

equilibrium between applied loads and internal resisting forces is satisfied [6]. The 

use of the superscript in the element formulation becomes necessary because of the 

special form of the deformation interpolation functions, which are flexibility 

dependent. 

In the mixed method formulation the integral forms of equilibrium and section 

force deformation relations are expressed first. These are then combined to obtain 

the relation between element force and deformation increments. 
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The weighted integral form of the linearized section force-deformation relation 

is 

 1

0

( ) ( ) ( ) ( ) 0
L

T i i ix x x x dx        D d f D  (2.7) 

The section force-deformation relation appears in the flexibility form 

 1( ) ( ) ( )i i ix x x  d f D  (2.8) 

so that the resulting element flexibility matrix is symmetric, as discussed in [6]. The 

superscript 1i   indicates that at the thi  Newton-Raphson iteration the section 

flexibility at the end of the previous iteration is used. Substituting Eqs. (2.5) and (2.6) 

in Eq. (2.7) results in 

 1

0

( ) ( ) ( ) ( ) ( ) 0
L

T T i i ix x x x x dx        Q b a q f b Q  (2.9) 

Since Eq. (2.9) must hold for any TQ  , it follows that 

 1

0 0

( ) ( ) ( ) ( ) ( ) 0

L L

T i T i ix x dx x x x dx
   

           
   
 b a q b f b Q  (2.10) 

The expressions in square brackets represent the following matrices: 

 1 1

0

( ) ( ) ( )

L

i T ix x x dx 
 

    
 
F b f b  (2.11) 

 
0

( ) ( )

L

T x x dx
 

   
 
T b a  (2.12) 

where F  is the element flexibility matrix and T  is a matrix that only depends on the 

interpolation function matrices. Using Eqs. (2.11) and (2.12), Eq. (2.10) can be 

written in the form 

 1 0i i i   T q F Q  (2.13) 

or equivalently 

 1i i i T q = F Q  (2.14) 
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This is the matrix expression of the integral form of the linearized section force-

deformation relation. 

In the next step the equilibrium of the beam element is satisfied. In the classical 

two-field mixed method the integral form of the equilibrium equation is derived 

from the virtual displacement principle 

 1

0

( ) ( ) ( )
L

T i i ix x x dx         d D D q P  (2.15) 

where iP  is the vector of applied loads that are in equilibrium with the internal 

forces 1( ) ( )i ix x D D . Eqs. (2.5) and (2.6) are substituted in Eq. (2.15) to yield 

 1

0

( ) ( ) ( )
L

T T i i T ix x x dx       q a b Q b Q q P  (2.16) 

Observing that Eq. (2.16) must hold for arbitrary     , it follows that 

 1

0 0

( ) ( ) ( ) ( )

L L

T i T i ix x dx x x dx
   

          
   
 b a Q b a Q P  (2.17) 

If the notation introduced in Eq. (2.12) is used, Eq. (2.17) can be written in matrix 

form 

 1T i T i i   T Q T Q P  (2.18) 

This is the matrix expression of the integral form of the element equilibrium 

equations. The rearrangement and combination of Eqs. (2.13) and (2.18) results in 

 
1

1

i i

i T iT i





      
     

      

0F T Q

P T QT 0 q
 (2.19) 

If the first equation in Eq. (2.19) is solved for     and the result is substituted in the 

second equation, the following expression results 

 
1

1 1T i i i T i


        T F T q P T Q  (2.20) 

So far, the specific selection of force and deformation interpolation functions 

( )xb  and ( )xa , respectively, has not been addressed. Even though in a mixed finite 

element method the deformation interpolation functions ( )xa , are completely 
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independent of ( )xb , Eq. (2.12) reveals that a special choice of the deformation 

shape functions ( )xa , results in considerable simplification. With this simplification 

in mind ( )xa , are selected as flexibility dependent shape functions according to the 

following expression   

 
1

1 1( ) ( ) ( )i ix x x


      a f b F  (2.21) 

These interpolation functions, thus, relate the section deformations with the 

corresponding element deformations according to 

 
1

1 1( ) ( ) ( )i i i ix x x


       d f b F q  (2.22) 

1iF  is the tangent element flexibility matrix at the end of the previous Newton-

Raphson iteration. This special selection of the deformation shape functions reduces 

matrix T  in Eq. (2.12) to a 3x3 identity matrix I . This can be readily proven by 

substituting Eq. (2.21) in Eq. (2.12): 

 
1

1 1

0 0

( ) ( ) ( ) ( ) ( )

L L

T T i ix x dx x x x dx


 
   

              
   
 T b a b f b F I  (2.23) 

With this choice of the deformation shape functions ( )xa  Eq. (2.20) becomes  

 
1

1 1i i i


      F q P Q  (2.24) 

At the same time this choice of functions ( )xa  reduces the general mixed 

method to the flexibility method. The final matrix equation, Eq. (2.24), expresses the 

linearized relation between the applied unbalanced forces 1iP Q  and the 

corresponding deformation increments iq  at the element level. The element 

stiffness matrix is written in the form  
1

F  to indicate that it is obtained by inverting 

the element flexibility matrix. The linear equation system in Eq. (2.24) is different 

from that obtained by the classical stiffness method in two respects: (a) the element 

stiffness matrix is obtained by inverting the element flexibility matrix, as in the 

flexibility method, and, (b) the state determination phase of the nonlinear analysis is 

different, as will be described in detail in the following section. 
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Even though the classical flexibility method yields the same system of linearized 

equations in Eq. (2.24), the above derivation was based on the two-field mixed 

method for the following reasons: (a) The mixed method formulation yields directly 

the expression for the flexibility dependent deformation shape functions ( )xa  in Eq. 

(2.21). (b) It reveals the consistent implementation of the state determination 

process. (c) It is more general in scope allowing alternative deformation shape 

functions to be explored in future studies.  

Since ( )xa  is not independent of ( )xb  and changes during the iterative solution 

process, as is apparent from Eq. (2.21), the current method corresponds to the 

classical flexibility method. Moreover, this procedure reduces to the stiffness 

method for the case that the section constitutive relation is perfectly linear. In other 

words, the independence between the two fields is not intrinsic in the definition of 

the shape functions, but derives from the material nonlinearity of the section force-

deformation relation. 

2.2.3 State determination 

Most studies to date concerned with the analysis of reinforced concrete frame 

structures are based on finite element models that are derived with the stiffness 

method. Recent studies have focused on the advantages of flexibility based models 

[1], but have failed to give a clear and consistent method of calculating the resisting 

forces from the given element deformations. This problem arises when the 

formulation of a finite element is based on the application of the virtual force 

principle. While the element is flexibility-dependent, the computer program into 

which it is incorporated is based on the direct stiffness method of analysis. In this 

case the solution of the global equilibrium equations yields the displacements of the 

structural degrees of freedom. During the phase of state determination the resisting 

forces of all elements in the structure need to be determined. Since in a flexibility 

based element there are no deformation shape functions to relate the deformation 

field inside the element to the end displacements (or element deformations) this 

process is not straightforward and is not well developed in flexibility based models 

proposed to date. This fact has led to some confusion in the numerical 
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implementation of previous models. The description of the consistent state 

determination process in this study benefits from the derivation of the governing 

equations by the two-field mixed method. 

In a nonlinear structural analysis program each load step corresponds to the 

application of an external load increment to the structure. The corresponding 

structural displacement increments are determined and the element deformations 

are extracted for each element. The process of finding the resisting forces that 

correspond to the given element deformations is known as state determination. The 

state determination process is made up of two nested phases: a) The element state 

determination, when the element resisting forces are determined for the given end 

deformations. b) The structure state determination, when the element resisting 

forces are assembled to the structure resisting force vector. The resisting forces are 

then compared with the total applied loads and the difference, if any, yields the 

unbalanced forces which are then applied to the structure in an iterative solution 

process until external loads and internal resisting forces agree within a specified 

tolerance. 

In the present study the nonlinear algorithm consists of three distinct nested 

processes, which are illustrated in Fig. 2.2. The two outermost processes denoted by 

indices k  and i  involve structural degrees of freedom and correspond to classical 

nonlinear analysis procedures. The innermost process denoted by index j  is applied 

within each element and corresponds to the element state determination. Fig. 2.2. 

shows the evolution of the structure, element and section states during one load 

increment k

EP  that requires several Newton - Raphson iterations i . 

In summary, k: denotes the applied load step. The external load is imposed in a 

sequence of load increments k

EP  . At load step k the total external load is equal to 

1k k k

E E E

 P P P  with 1,......,k nstep  and 0

E  0P  ; i : denotes the Newton - 

Raphson iteration scheme at the structure level, i.e. the structure state 

determination process. This iteration loop yields the structural displacements kp  

that correspond to applied loads k

EP ; j : denotes the iteration scheme at the 

element level, i.e. the element state determination process. This iteration loop is 
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necessary for the determination of the element resisting forces that correspond to 

element deformations iq   during the thi  Newton-Raphson iteration. 

 

Figure 2.2. Schematic illustration of state determination at the structure, element and 

section level: k denotes the load step, i the structure Newton-Raphson iteration and j the 

iteration for the element state determination [10]. 

The processes denoted by indices k  and i  are common in nonlinear analysis 

programs and will not be discussed further. The iteration process denoted by the 

index j , on the other hand, is special to the beam-column element formulation 

implemented in this study and will be described in detail. It should be pointed out 

that any suitable nonlinear solution algorithm can be used for the iteration process 

denoted by index i . In this study the Newton-Raphson method is used. The selection 

of this method for iteration loop i  does not affect the strategy for iteration loop j , 
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which has as its goal the determination of the element resisting forces for the given 

element deformations. 

 

Figure 2.3. Element and section state determination for flexibility-based element: 

computation of element resisting forces    corresponding to the element deformations     

[10]. 

In a finite element that is based on the stiffness method of analysis the section 

deformations are obtained directly from the element end deformations by 

deformation interpolation functions. The corresponding section resisting forces are 

determined subsequently from the section force-deformation relation. The weighted 

integral of the section resisting forces over the element length yields the element 

resisting forces and completes the process of element state determination. 
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In a flexibility-based finite element the first step is the determination of the 

element forces from the current element deformations using the stiffness matrix at 

the end of the last iteration. The force interpolation functions yield the forces along 

the element. The first problem is, then, the determination of the section 

deformations from the given section forces, since the nonlinear section force-

deformation relation is commonly expressed as an explicit function of section 

deformations. The second problem arises from the fact that changes in the section 

stiffness produce a new element stiffness matrix which, in turn, changes the element 

forces for the given deformations. 

These problems are solved by a special nonlinear solution method. In this 

method residual element deformations are determined at each iteration. 

Deformation compatibility at the structural level requires that these residual 

deformations be corrected. This is accomplished at the element level by applying 

corrective element forces based on the current stiffness matrix. The corresponding 

section forces are determined from the force interpolation functions so that 

equilibrium is always satisfied along the element. These section forces cannot 

change during the section state determination in order to maintain equilibrium along 

the element. Consequently, the linear approximation of the section force-

deformation relation about the present state results in residual section 

deformations. These are then integrated along the element to obtain new residual 

element deformations and the whole process is repeated until convergence occurs. 

It is important to stress that compatibility of element deformations and equilibrium 

along the element are always satisfied in this process. 

The nonlinear solution procedure for the element state determination is 

schematically illustrated in Fig. 2.3 for one Newton-Raphson iteration i; while for 

loop j convergence is reached in three iterations. The consistent notation between 

Figs. 2.2. and 2.3. highlights the relation between the corresponding states of the 

structure, the element and the section, which are denoted by uppercase Roman 

letters. 

At the thi  Newton-Raphson iteration it is necessary to determine the element 

resisting forces for the current element deformations 
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 1i i i q q q  (2.25) 

To this end an iterative process denoted by index j  is introduced inside the thi  

Newton-Raphson iteration. The first iteration corresponds to 1j  . The initial state 

of the element, represented by point A and 0j   in Fig. 2.3., corresponds to the 

state at the end of the last iteration of loop j  for the  1i   Newton-Raphson 

iteration. With the initial element tangent stiffness matrix 

 
1 1

0 1j i
 

       F F  (2.26) 

and the given element deformation increments 

 1j i  q q  (2.27) 

the corresponding element force increments are: 

 
1

1 0 1j j j


      Q F q  (2.28) 

The section force increments can now be determined from the force interpolation 

functions: 

 1 1( ) ( )j jx x   D b Q  (2.29) 

With the section flexibility matrix at the end of the previous Newton-Raphson 

iteration 

 0 1( ) ( )j ix x f f  (2.30) 

the linearization of the section force-deformation relation yields the section 

deformation increments 1( )j xd : 

 1 0 1( ) ( ) ( )j j jx x x    d f D  (2.31) 

The section deformations are updated to the state that corresponds to point B in Fig. 

2.3.: 

 1 0 1( ) ( ) ( )j j jx x x   d d d  (2.32) 

According to the section force-deformation relation, which is here assumed to 

be explicitly known for simplicity's sake, section deformations 1( )j xd  correspond to 
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resisting forces 1( )j

R xD  and a new tangent flexibility matrix 1( )j xf   (Fig. 2.3.). In a 

finite element based on the stiffness method the section resisting forces 1( )j

R xD    

would be directly transformed to element resisting forces 1jQ   thus violating the 

equilibrium along the element in a strict sense. Since this is undesirable, in this 

approach the section unbalanced forces are first determined 

 1 1 1( ) ( ) ( )j j j

U Rx x x    D D D  (2.33) 

and are then transformed to residual section deformations 
1( )j xr  

 1 1 1( ) ( ) ( )j j j

Ux x x   r f D  (2.34) 

The residual section deformations are thus the linear approximation to the 

deformation error made in the linearization of the section force-deformation 

relation (Fig. 2.3.). While any suitable flexibility matrix can be used in calculating the 

residual deformations, the tangent flexibility matrix used in this study offers the 

fastest convergence rate. 

The residual section deformations are integrated along the element based on 

the virtual force principle to obtain the residual element deformations: 

 1 1

0

( ) ( )
L

j T jx x dx   s b r  (2.35) 

At this point the first iteration 1j    of the corresponding iteration loop is 

complete. The final element and section states for 1j    correspond to point B in Fig. 

2.3. The residual section deformations 1( )j xr   and the residual element 

deformations 1js   are determined in the first iteration, but the corresponding 

deformation vectors are not updated. Instead, they are the starting point of the 

remaining steps within iteration loop j . The presence of residual element 

deformations 1js  violates compatibility, since elements sharing a common node 

would now have different end displacements. In order to restore the inter-element 

compatibility corrective forces equal to 
1

1 1j j


    F s  must be applied at the ends 

of the element, where 1jF  is the updated element tangent flexibility matrix 

determined by integration of the section flexibility matrices according to Eq. (2.11). A 
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corresponding force increment 
1

1 1( ) j jx


    b F s   is applied at all control sections 

inducing a deformation increment 
1

1 1 1( ) ( )j j jx x


       f b F s  . Thus, in the second 

iteration j=2 the state of the element and of the sections within the element change 

as follows: the element forces are updated to the value 

 2 1 2j j j   Q Q Q  (2.36) 

where 
1

2 1 1j j j


       Q F s and the section forces and deformations are updated 

to the values 

 2 1 2( ) ( ) ( )j j jx x x   D D D  (2.37) 

And 

 2 1 2( ) ( ) ( )j j jx x x   d d d  (2.38) 

where 
1

2 1 1( ) ( )j j jx x


        D b F s   

1
2 1 1 1 1( ) ( ) ( ) ( )j j j j jx x x x


           d r f b F s  

The state of the element and the sections within the element at the end of the 

second iteration 2j    corresponds to point C in Fig. 2.3. The new tangent flexibility 

matrices 2( )j xf   and the new residual section deformations 

 2 2 2( ) ( ) ( )j j j

Ux x x   r f D  (2.39) 

are computed for all sections. The residual section deformations are then integrated 

to obtain the residual element deformations 2js  and the new element tangent 

flexibility matrix 2jF   is determined by integration of the section flexibility matrices 

2( )j xf   according to Eq. (2.24). This completes the second iteration within loop j . 

The third and subsequent iterations follow exactly the same scheme. 

Convergence is achieved when the selected convergence criterion is satisfied. With 

the conclusion of iteration loop j  the element resisting forces for the given 

deformations iq  are established, as represented by point D in Figs. 2.2. and 2.3. The 

Newton-Raphson iteration process can now proceed with step 1i  . 
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It is important to point out that during iteration loop j the element deformations 

iq   do not change except in the first iteration 1j  , when increments 1j i  q q   

are added to the element deformations 1iq  at the end of the previous Newton-

Raphson iteration. These deformation increments result from the application of 

corrective loads i

EP  at the structural degrees of freedom during the Newton-

Raphson iteration process. For 1j   only the element forces change until the 

nonlinear solution procedure converges to the element resisting forces iQ which 

correspond to element deformations iq . This is illustrated at the top of Fig. 2.3. 

where points B, C and D, which represent the state of the element at the end of 

subsequent iterations in loop j , lie on the same vertical line, while the 

corresponding points at the control sections of the element do not, as shown in the 

bottom of Fig. 2.3. This feature of the nonlinear solution procedure ensures 

displacement compatibility at the element ends. 

The described nonlinear analysis method offers several advantages. Equilibrium 

along the element is always strictly satisfied, since section forces are derived from 

element forces by the force interpolation functions according to Eq. (2.6). 

Compatibility is also satisfied, not only at the element ends, but also along the 

element. In fact, in the expression for the section deformation corrections 

 
1

1 1 1 1( ) ( ) ( ) ( )j j j j jx x x x


          d r f b F s  (2.40) 

the second term satisfies Eqs. (2.21) and (2.22), which express the relation between 

section and element deformations by means of shape functions ( )xa . The residual 

section deformations 1( )j xr , however, do not strictly satisfy this compatibility 

condition. It is possible to satisfy this requirement by integrating the residual 

deformations 1( )j xr  to obtain 1( )j xs and then using the deformation shape 

functions ( )xa  to calculate the section deformation increments as 1( ) ( )jx xa s . 

Since this is, however, rather inefficient from a computational standpoint, the small 

compatibility error in the calculation of residual section deformations 1( )j xr   is 

neglected. 
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While equilibrium and compatibility are satisfied along the element during each 

iteration of loop j , the section force-deformation relation and, consequently, the 

element force-deformation relation is only satisfied within a specified tolerance 

when convergence is achieved at point D in Fig. 2.3. In other words, during 

subsequent iterations the element forces approach the value that corresponds to 

the imposed element deformations, while maintaining equilibrium and compatibility 

along the element at all times. This approximation of the force-deformation relation 

in the implemented nonlinear analysis method is preferable to the approximation of 

either the equilibrium or the compatibility conditions of the element, particularly 

when considering the uncertainty in the definition of constitutive relations for 

reinforced concrete structures. 

2.3 Material modelling 

2.3.1 Concrete stress-strain relation 

In order to compute the concrete stress in each layer, a material law describing 

the concrete stress-strain relation under arbitrary cyclic strain histories is needed. 

There is some uncertainty as to the influence of the concrete model on the overall 

behavior of RC members subjected to bending and small values of axial force. Some 

investigators have concluded that a crude concrete model suffices to accurately 

predict experimental results. This might be true in the case of monotonic loading and 

cyclic loading that is restricted to small excitations. It is not true, however, in the 

case of severe cyclic loading. The strength deterioration of RC members under large 

cyclic excitations depends largely on the capacity of confined concrete to sustain 

stresses in the strain range beyond the maximum strength. This requires the use of a 

refined concrete model. 

The model implemented in this study is summarized below: 

The monotonic envelope curve of concrete in compression follows the model of 

Kent and Park (1971) [17] that was later extended by Scott et al. (1982) [18]. Even 

though more accurate and complete models have been published since, the so-
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called modified Kent and Park model offers a good balance between simplicity and 

accuracy. 

In the modified Kent and Park model the monotonic concrete stress-strain 

relation incompression is described by three regions: 

 0c        

2

'

0 0

2 c c
c cKf

 


 

    
     
     

 (2.41) 
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where                                
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 (2.45) 

0  is the concrete strain at maximum stress, K  is a factor which accounts for the 

strength increase due to confinement, Z  is the strain softening slope, '

cf  is the 

concrete compressive cylinder strength in MPa  (1 MPa =145 psi ), yhf   is the yield 

strength of stirrups in MPa , s   is the ratio of the volume of hoop reinforcement to 

the volume of concrete core measured to outside of stirrups, 'h  is the width of 

concrete core measured to outside of stirrups, and hs   is the center to center spacing 

of stirrups or hoop sets. 

In the case of concrete confined by stirrup-ties, Scott et al. suggest that u  be 

determined conservatively from the following equation: 

 0.004 0.9
300

yh

u s

f
 

 
   

 
 (2.46) 

To account for crushing of concrete cover the strength in a cover layer is reduced 

to '0.2 cf   once the compressive strain exceeds the value of u , which in this study is 

set equal to 0.005 . The tensile strength of concrete is neglected in the model, since 
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it only influences the response of a RC section during cycles prior to yielding. 

 

Figure 2.4.  Stress-Strain relation for confined and unconfined concrete. 

The following rules govern the hysteretic behavior of the concrete stress-strain 

relation (Fig. 2.5): 

1. Unloading from a point on the envelope curve takes place along a straight 

line connecting the point r at which unloading starts to a point p ε on the 

strain axis given by the equations 

 

2

0 0 0

0.145 0.13
p r r

  

  

   
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
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 (2.47) 
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 
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 
    for    

0

2r



 
 

 
 (2.48) 

where 0  is the strain level corresponding to the maximum stress in 

compression. 

            Eq. (2.47) was proposed by Karsan and Jirsa (1969) [19] and relates the 

normalized strain on the envelope with the strains at the completion of 

unloading through a quadratic formula. Since Eq. (2.47) exhibits unreasonable 

behavior under high compressive strain conditions, Eq. (2.48) is added to the 

model so that the unloading modulus of elasticity remains positive under high 

compressive strains. 
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2. The concrete stress is equal to zero for strains smaller than the strain at 

complete unloading (open crack) since the tensile resistance is neglected in 

this study. 

3. On reloading in compression the stress is zero as long as the strain is smaller 

than the strain at complete unloading (open crack). Once the concrete strain 

becomes larger than that value, reloading continues along the previous 

unloading path (Fig. 2.5). In reality unloading and reloading follow nonlinear 

paths which together form a hysteresis loop. This was neglected here for 

reasons of simplicity, since it has a minor influence on the hysteretic 

response of the member. The proposed hysteretic behavior of concrete in 

compression does not account for the cyclic damage of concrete. The 

importance of this effect on the hysteretic behavior of RC members merits 

further study, but is beyond the scope of the present report. 

 

Figure 2.5. Modified Kent-Park model during loading and unloading. 
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2.3.2 Reinforcement steel stress-strain relation – Bilinear 

material model 

For a bilinear model (Fig. 2.6) the elastic behavior is defined by Hooke law, 

having initial modulus of elasticity E  and the yielding point is defined by yielding 

stress 
y . Post yield behavior is defined by a second slope having inclination equal 

to tangent modulus of elasticity TE , which is related to the initial modulus of 

elasticity by the hardening ratio b : 

 TE bE  (2.49) 

For a perfectly plastic material the hardening ratio is equal to zero. Instead of the 

hardening ratiob , sometimes the hardening parameter H  is used that relates stress 

  and plastic strain pl : 

 plH   (2.50) 

 

Figure 2.6. Bi-linear steel material law. 
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The hardening parameter H , tangent modulus of elasticity TE  and hardening 

ratio b  are given by: 

 
1

TE
H

b



 (2.51) 

 1T

E
E E

E H

 
  

 
 (2.52) 

For steel members, when the yield stress has been exceeded in tension followed 

by compression, then yield strength will be different for the next loading cycle. This 

is known as Bauschinger effect. The Bauschinger effect refers to a property of 

materials w                l’        /                           g           l         

microscopic stress distribution of the material. For example, an increase in tensile 

yield strength occurs at the expense of compressive yield strength. Bauschinger 

effect can be simulated using kinematic of isotropic hardening. 

For the isotropic hardening the yield surface is assumed to expand isotropically 

in size, keeping its center by this hypothesis. This means that plastic strain does not 

affect the shape of yield surface. If the initial yield point is denoted by Y  on the 

stress-strain curve in Fig. 2.7, unloaded stress AB  from point A  is the same as the 

compressive yield stress BC  and is larger than the initial yield stress. The concept of 

this hypothesis is too simple to express the generalized Bauschinger effect, but 

nevertheless it is widely used for many kinds of analyses when the direction of 

loading changes slightly. 

 

Figure 2.7. Isotropic hardening. 
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For kinematic hardening the model assumes that the yield surface with 

unchanging shape moves in stress space due to plastic deformation as illustrated in 

Fig. 2.8 and stress-strain diagram is given under the condition 'YY AC . This results 

to a movement of the center of hysteretic loops in a stress-strain curve. 

 

Figure 2.8. Kinematic hardening. 

2.4 Summary of nonlinear solution algorithm 

After the description of the element state determination process in one of the 

previous sections a step-by-step summary of the computations is presented below. 

The summary focuses on a single iteration i  at the structural degrees of freedom. 

The rest of the nonlinear solution algorithm follows well established methods, such 

as the Newton-Raphson method selected in this study. Alternative solution 

strategies can be implemented without additional effort, since these are 

independent of the element state determination. The relation of the Newton-

Raphson iteration to the nonlinear solution of the entire structure is illustrated at the 

top of Fig. 2.2, which also shows the relation between the overall solution strategy 

and the element state determination process with corresponding states denoted by 

uppercase Roman letters. Fig. 2.3 shows in detail the evolution of the state 

determination process for an element and corresponds to steps (4) through (13) in 
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the following summary. The flow chart of computations for the entire solution 

algorithm is shown in Fig. 2.9, while the flow chart of computations for the element 

state determination is shown in Fig. 2.10. 

 

Figure 2.9. Flow chart of structure state determination.  

The i-th Newton-Raphson iteration is organized as follows: 

(1) Solve the global system of equations and update the structural displacements. 

At the thi  Newton-Raphson iteration the structure stiffness matrix 1i

s


K at the 

end of the previous iteration 1i   is used to compute the displacement 



 
34 Chrysanthi Stathi 

 

increments ip   for the given load increments i

EP   which represent the 

unbalanced forces from the previous iteration. 

 1i i i

s E

   K p P  (2.53) 

 1i i i p p p  (2.54) 

(2) Calculate the element deformation increments and update the element 

deformations. Using matrix eleL , which relates structural displacements with 

element deformations, the element deformation increments iq are 

determined: 

 i i

ele  q L p  (2.55) 

 1i i i q q q  (2.56) 

Note that matrix eleL is the combination of two transformations: in the first 

transformation the element displacements in the global reference system p 

are transformed to the displacements q  in the element local reference 

system. In the second transformation the element displacements q are 

transformed to element deformations q  by elimination of the rigid-body 

modes. 

As discussed in Section 2.2.3, the new element deformations iq   do not 

change until the following  1i   Newton-Raphson iteration. The remaining 

operations of the nonlinear solution algorithm make up the element state 

determination process which establishes the element resisting forces for the 

given element deformations iq . 

(3) Start the element state determination. Loop over all elements in the 

structure. The state determination of each element is performed in loop j. 

The index of the first iteration is 1j  . 

(4) Determine the element force increments. The element force increments jQ   

are determined with the element stiffness matrix 1jK  at the end of the 

previous iteration in loop j  
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 1j j j  Q K q  (2.57) 

When 1j  , 0 1iK K  and 1 i q q  where 1i   corresponds to the state of 

the element at the end of the last Newton-Raphson iteration. When 1j   

jq  is equal to the residual element deformations of the previous iteration, 

as determined in Step (13). 

(5) Update the element forces. 

 1j j j Q Q Q  (2.58) 

When 1j  , 0 1iQ Q  where 1i   corresponds to the state at the end of the 

last Newton-Raphson iteration. 

(6) Determine the section force increments. Steps (6) through (11) are performed 

for all control sections (integration points) of the element. The section force 

increments ( )j xD  are determined from the force interpolation functions 

( )xb . Subsequently, the section forces ( )xD are updated. 

 ( ) ( )j jx x  D b Q  (2.59) 

 1( ) ( ) ( )j j jx x x D D D  (2.60) 

(7) Determine the section deformation increments. The section deformation 

increments ( )i xd  are determined by adding the residual section 

deformations from the previous iteration 1( )j xr  to the deformation 

increments caused by the section force increments ( )j xD . The latter are 

determined with the section flexibility matrix 1( )j xf  at the end of the 

previous iteration in loop j . 

 1 1( ) ( ) ( ) ( )j j j jx x x x    d r f D  (2.61) 

 1( ) ( ) ( )j j jx x x d d d  (2.62) 

when 1j  , 0( ) 0x r  

(8) Determine the tangent stiffness and flexibility matrices of the section. 

Assuming for simplicity that the section force-deformation relation is known 
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explicitly, the tangent stiffness matrix ( )j xk  is updated for the new section 

deformations ( )j xd . Stiffness matrix ( )j xk   is then inverted to obtain the 

new tangent flexibility matrix ( )j xf   of the section. 

 
1

( ) ( )j jx x


   f k  (2.63) 

(9) Determine the section resisting forces. The resisting forces ( )j

R xD  are 

determined for the current deformations ( )j xd   from the section force-

deformation relation. 

(10) Determine the unbalanced forces at the section. The section unbalanced 

forces ( )j

U xD   are the difference between the applied forces ( )j xD and the 

resisting forces ( )j

R xD . 

 ( ) ( ) ( )j j j

U Rx x x D D D  (2.64) 

(11) Determine the residual section deformations. The section unbalanced forces 

and the new section flexibility yield the residual section deformations ( )j xr   

 ( ) ( ) ( )j j j

Ux x xr f D  (2.65) 

(12) Determine the element flexibility and stiffness matrices. The element 

flexibility matrix jF is formed by integration of the section flexibility 

matrices ( )j xf . This matrix is then inverted to obtain the element tangent 

stiffness matrix jK . 

 
0

( ) ( ) ( )

L

j T jx x x dx
 

    
 
F b f b  (2.66) 

 
1

j j


   K F  (2.67) 

(13) Check for element convergence. a) If the unbalanced forces at all element 

sections are sufficiently small, the element is considered to have converged. 

After setting i jQ Q   and i jK K  the process continues with step (14). b) 

If some sections have not converged, the residual element deformations js  

are determined by integration of the residual section deformations ( )j xr . 
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0

( ) ( )

L

j T jx x dx
 

   
 
s b r  (2.68) 

At this point j  is incremented to 1j   and a new iteration begins in loop j . 

In this case jq  in Eq. (2.57) is replaced with 1jq    which is set equal to js  

 1j j  q s  (2.69) 

and steps (4) through (13) are repeated until convergence is achieved at all 

sections of the element. 

 

Figure 2.10. Flow chart of structure state determination: the section. 
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(14) Determine the resisting forces and the new stiffness matrix of the entire 

structure. When all elements have converged, the thi  step of the Newton-

Raphson iteration is complete. The element force vectors are assembled to 

form the updated structure resisting forces 

  
1

n
i T i

R ele ele
ele

 P L Q  (2.70) 

where n  is the total number of beam-column elements in the structure and 

the subscript ele is added as a summation index. The new structure stiffness 

matrix is formed by assembling the current element stiffness matrices 

  
1

n
i T i

s ele eleele
ele

  K L K L  (2.71) 

At this point the structure resisting forces i

RP  are compared with the total 

applied loads. If the difference i

UP , which is the structure unbalanced force 

vector, is not within the specified tolerance, i  is incremented to 1i   and the 

next Newton-Raphson iteration begins. Steps (1) through (14) are repeated 

after replacing i

EP  with 1i i

E U

  P P  until convergence takes place at the 

structure degrees of freedom. 

A graphical overview of the entire nonlinear analysis procedure is presented in 

Figs. 2.9 and 2.10. Fig. 2.9 provides an overview of the entire process with the 

nesting of the individual iteration loops, while Fig. 10 presents the features of the 

element state determination algorithm. Since all integrations along the element in 

Eqs. (2.66) and (2.68) need to be performed numerically, an additional iteration loop 

over all control sections of the element is introduced in this diagram. 
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3 DESIGN AND ASSESSMENT PROCEDURES AGAINSTS THE 

SEISMIC LOADING 

 

 

 

3.1 Introduction 

The majority of the seismic design codes belong to the category of the 

prescriptive building design codes, which include: site selection and development of 

conceptual, preliminary and final design stages. According to a prescriptive design 

code, the strength of the structure is evaluated at one limit state between life-safety 

and near collapse using a response spectrum corresponding to one design 

earthquake [1]. In addition, serviceability limit state is usually checked in order to 

ensure that the structure will not deflect or vibrate excessively during its functioning. 

Apart from the minimum level of protection in order to safeguard adequately against 

partial collapse that endangers human lives, society has responsibilities including 

continuing operation of critical facilities, protection against the discharge of 

hazardous materials, and protection against excessive damage that may have far-

reaching consequences for society on a local, regional, national, or international 

level. Performance-based design is a different approach for the seismic design which 

includes, apart from the site selection and the definition of the design stages, the 

construction and maintenance of the building in order to ensure reliable and 
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predictable seismic performance over its life and to achieve targeted performance 

objectives [2]. A performance objective pairs a single hazard level with a single 

performance level. Its advantage compared to other seismic design provisions is its 

capability to specify the performance for a range of hazard levels [3]. 

3.2 Prescriptive design procedures 

According to the EC8 [4] a number of checks must be performed in order to 

ensure that the structure will meet the design requirements and also to ensure the 

followings, in the event of earthquakes : 

 human lives are protected 

 damage is limited and 

 structures important for civil protection remain operational. 

Each candidate design is assessed using these constraints. All EC2 [5] checks 

must be satisfied for the gravity loads using the following load combination: 

 1.35 " "1.50d kj kij i
S G Q  (3.1) 

w     “+”   pl    “   b     b     w   ”                   b l “Σ”   pl    “    

   b              ”  kjG                             v l   “k”        permanent 

action j  and kiQ                               v l   “k”        v    bl         i . If the 

above constraints are satisfied, multi-modal response spectrum analysis is 

performed, according to EC8 [4] and earthquake loading is considered using the 

following load combination (3.2): 

 2" " " "d kj d i kij i
S G E Q  (3.2) 

where dE  is the design value of the seismic action for the two components 

(longitudinal and transverse) respectively and 2i  is the combination coefficient for 

the quasi-permanent action i , here taken equal to 0.30. 
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The combination coefficient ψ2i is computed from the following expression (3.3) : 

 2Ei i     (3.3) 

Table 3.1: Value of   for calculating Ei  

Type of variable action Storey φ 

Categories A-C* 

 

Roof 
Storeys with correlated 
occupancies 
Independently occupied storeys 

1.00 
0.8 
 
0.5 

Categories D-F* 

and Archives 

 1.00 

* Categories as defined in EN 1991-1-1:2002 [6]. 

The following table 2 shows the values of 2i  for the earlier mentioned categories:  

Table 3.2: Recommended values of 2i  factor for buildings (EC0 [7]) 

Action ψ2i 

Imposed loads in buildings, category (see EN 1991-1-1)  

Category A : domestic, residential areas 0.3 

Category B : office areas 0.3 

Category C : congregation areas 0.6 

Category D : shopping areas 0.6 

Category E : storage areas 0.8 

Category F : traffic area 0.6 

 

Furthermore, for spatial problems, Ed seismic actions is considered in the Multi-

modal Response Spectrum (MmRS) analysis method for the current case, or for 

nonlinear static (pushover) analysis and nonlinear time history analysis in general, 

using the following load combinations: 

 0.3d dx dyE E E   (3.4) 
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 0.3d dx dyE E E   (3.5) 

where dxE  and dyE  represent earthquake loading in two directions that are 

perpendicular to each other.  

The main principle EC8 [4] is to design structural systems based on energy 

dissipation and on ductility in order to control the inelastic seismic response. 

Designing a multistory RC building for energy dissipation comprises the following 

features:  

(i) Fulfillment of the strong column/weak beam rule,  

(ii) Member verification in terms of forces and resistances for the 

ultimate strength limit state under the design earthquake (with return 

period of 475 years, probability of exceedance 10% in 50 years), with 

the elastic spectrum reduced by the q-factor equal to 3.0 times,  

(iii) Damage limitation for the serviceability limit state and  

(iv) Capacity design of beams and columns against shear failure. 

3.3 Performance-based design procedure 

Performance-based seismic design has the following distinctive features with 

respect to the prescriptive design codes: (i) Allows the owner, architect, and 

structural engineer to choose both the appropriate level of seismic hazard and the 

corresponding performance level of the structure. (ii) The structure is designed to 

meet a series of combinations of hazard levels in conjunction with corresponding 

performance levels. Figure 3.1 illustrates a global framework, which identifies 

processes, concepts and major issues that need to be addressed. The issues 

encompass seismological, geotechnical, structural, architectural and socio-economic 

considerations. 
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Figure 3.1. A global framework for Performance-Based Engineering [8]. 

The PBD process is a displacement-based design procedure where the design 

criteria and the capacity demand comparisons are expressed in terms of 

displacements rather than forces [9-11]. In order to assess the capacity of 

deformation-controlled actions an appropriate Earthquake Demand Parameter (EDP) 

should be implemented. Interstory drifts, inelastic deformations, section curvatures, 

floor accelerations and velocities are some of the most widespread EDPs [12, 13]. 

The main part in a performance-based seismic design procedure is the definition of 

the performance objectives that will be used. The proposed PBD process can be 

described with the following two steps: 

(1) Conceptual Design: Proportioning of the longitudinal and transverse 

reinforcement of all members on the basis of the serviceability limit state. In this 

phase, a structural system capable of fulfilling diverse requirements at various 

performance levels needs to be configured. This design phase is critical since most of 

the important design decisions are being made in it. Later design phases serve 

primarily to evaluate, fine tune, and detail an already existing system. Engineers are 

used to design for strength and elastic stiffness, with an implicit understanding of the 

importance of ductility, and with a single-level design in mind. Performance-based 

design will impose diverse multi-level requirements whose relationship between 

ground motion and engineering parameters need to be established and quantified in 
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order to provide targets for strength, stiffness and ductility design. Different 

performance levels may control different aspects of the design, and simultaneous 

consideration of different performance objectives will become a fundamental aspect 

of conceptual design. 

(2)   Design Evaluation and Modification: Use of non-linear dynamic analysis in order 

to estimate the structural capacities of the design in the different intensity levels 

employed. Revise the reinforcement and the dimension of the members so that the 

capacities exceed the seismic demands [10]. This process is at the core of 

performance-based design and encompasses all aspects of demand and capacity 

predictions needed to carry out design evaluation through assessment of 

performance at different levels (or estimation of total costs) and to modify design 

decisions of the stated performance objectives are not met (or the costs are 

unacceptable). From an engineering perspective, satisfactory performance implies 

that the demands imposed by earthquakes do not exceed the capacities the 

structural, non-structural and contents components-systems are capable to provide. 

Demands and capacities are general terms that take on a specific meaning for 

different parameters that may control component and system performance at 

various performance levels. 

The completion of the Step 1 is necessary for Step 2 as the structural capacity 

depends both on the reinforcement and the dimensions of the members. The 

constraints considered for Step 2 of the PBD procedure are related to the maximum 

interstory drift limits Δ, which are the largest values of the height-wise peak 

interstory drift ratios for each hazard level. This is a commonly used measure of both 

structural and non-structural damage because of its close relationship to plastic 

rotation demands on individual beam–column connection assemblies. In this study, 

three performance objectives are considered that correspond to 50, 10 and 2% 

probabilities of exceedance in 50 years hazard levels. The drift limits Δ, for the three 

performance objectives considered, are 0.5%, 1.0% and 3.0% for the three hazard 

levels 50in50, 10in50 and 2in50 respectively. 
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Performance assessment must be based on a probabilistic hazard representation 

and a prediction of seismic demands and capacities for all important components 

soil-foundation-structure system and of non-structural and content systems. At this 

time neither capacities nor demands can be predicted with good accuracy, because 

of insufficient knowledge, lack of tools, and randomness and modelling 

uncertainties. We must try to improve description of the randomness and reduce the 

modelling uncertainties, but we must acknowledge that we will not be able to 

eliminate either. Appropriate analysis methods need to be developed to provide 

adequate yet simple means of demand prediction. Nonlinear inelastic time history 

analysis is desirable but likely not necessary in many cases. Research on the most 

effective demand prediction methods needs to be performed, with emphasis on the 

following aspects: 

 Assessment of the quality of demand prediction that can be achieved by 

various analysis methods (elastic-static, elastic-dynamic, inelastic-static and 

inelastic-dynamic). 

 Three-dimensional analysis procedures for soil-foundation-structure systems. 

 Sufficiently realistic modelling of strength, stiffness and mass irregularities in 

plan and elevation. 

 Sufficiently realistic modelling of component behavior under cyclic loading. 

 Modelling of non-structural components and systems. 

 Validation of modelling and analysis procedures through the utilization of 

laboratory and field experimentation, earthquake damage data, and vibration 

measurements from instrumented structures. 

3.3.1 Performance Levels 

One performance objective is defined as the combination of a performance level 

for a specific hazard level. In this work three performance objectives have been 

                 p     g        ‘E        Ob     v  ’     E A 356 [14]. The first 

step in the definition of the performance objectives is the selection of the 
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performance levels. The performance levels that have been considered are the 

following: 

(i) Operational (OPER): the overall damage level is characterized as very light. No 

permanent drift is encountered, while the structure essentially retains original 

strength and stiffness.  

To attain the operational building performance level, the structural components 

of the building shall meet the requirements the immediate occupancy (IO) structural 

performance level and the nonstructural components shall meet the requirements 

for the operational nonstructural performance level. The immediate occupancy 

structural performance level shall be defined as the post-earthquake damage state 

that remains safe to occupy, essentially retains the pre-earthquake design strength 

and stiffness of the structure. 

Also the immediate occupancy structural performance level, means the post-

earthquake damage state in which only very limited structural damage has occurred. 

The basic vertical- and lateral-force-resisting systems of the building retain nearly all 

of their pre-earthquake strength and stiffness. The risk of life threatening injury as a 

result of structural damage is very low, and although some minor structural repairs 

may be appropriate, these would generally not be required prior to reoccupancy. 

And the operational nonstructural performance level shall be defined as the post-

earthquake damage state in which the nonstructural components are able to 

support the pre-earthquake functions present in the building. 

At this level, most nonstructural systems required for normal use of the 

building—including lighting, plumbing, HVAC, and computer systems—are 

functional, although minor cleanup and repair of some items may be required. This 

nonstructural performance level requires considerations beyond those that are 

normally within the sole province of the structural engineer. In addition to assuring 

that nonstructural components are properly mounted and braced within the 

structure, it is often necessary to provide emergency standby utilities. It also may be 

necessary to perform rigorous qualification testing of the ability of key electrical and 

mechanical equipment items to function during or after strong shaking. Users 

wishing to design for this nonstructural performance level will need to refer to 
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 pp  p                                  (         q  p                  ’     ) to 

ensure the performance of mechanical and electrical systems. 

Therefore, buildings meeting this target Building Performance Level are 

expected to sustain minimal or no damage to their structural and nonstructural 

components. The building is suitable for its normal occupancy and use, although 

possibly in a slightly impaired mode, with power, water, and other required utilities 

provided from emergency sources, and possibly with some nonessential systems not 

functioning. Buildings meeting this target Building Performance Level pose an 

extremely low risk to life safety. 

Under very low levels of earthquake ground motion, most buildings should be 

able to meet or exceed this target building performance level. Typically, however, it 

will not be economically practical to design for this target building performance level 

for severe ground shaking, except for buildings that house essential services. 

(ii) Life safety (LS): the overall damage level is characterized as moderate. 

Permanent drift is encountered while strength and stiffness has left in all stories. 

Gravity-load bearing elements continue to function while there is no out-of plane 

failure of the walls. The overall risk of life-threatening injury as a result of structural 

damage is expected to be low. It should be possible to repair the structure; however, 

for economic reasons this may not be practical. 

To attain the life safety building performance level, the structural components 

of the building shall meet the requirements for the Life Safety Structural 

Performance Level and the nonstructural components shall meet the requirement 

for the Life Safety Nonstructural Performance Level. 

The structural performance level shall be defined as the post-earthquake 

damage state that includes damage to structural components but retains a margin 

against onset of partial or total collapse.  

Also the structural performance level means the post-earthquake damage state 

in which significant damage to the structure has occurred, but some margin against 

either partial or total structural collapse remains. Some structural elements and 

components are severely damaged, but this has not resulted in large falling debris 

hazards, either within or outside the building. Injuries may occur during the 
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earthquake; however, the overall risk of life-threatening injury as a result of 

structural damage is expected to be low. It should be possible to repair the structure; 

however, for economic reasons this may not be practical. While the damaged 

structure is not an imminent collapse risk, it would be prudent to implement 

structural repairs or install temporary bracing prior to reoccupancy. And the life 

safety nonstructural performance level shall be defined as the post-earthquake 

damage state that includes damage to nonstructural components but the damage is 

non-life threatening. 

Also the life safety nonstructural performance level is the post-earthquake 

damage state in which potentially significant and costly damage has occurred to 

nonstructural components but they have not become dislodged and fallen, 

threatening life safety either inside or outside the building. Egress routes within the 

building are not extensively blocked, but may be impaired by lightweight debris. 

HVAC, plumbing, and fire suppression systems may have been damaged, resulting in 

local flooding as well as loss of function. While injuries may occur during the 

earthquake from the failure of nonstructural components, overall, the risk of life-

threatening injury is very low. Restoration of the nonstructural components may 

take extensive effort. 

So, buildings meeting this level may experience extensive damage to structural 

and nonstructural components. Repairs may be required before reoccupancy of the 

building occurs, and repair may be deemed economically impractical. The risk to life 

safety in buildings meeting this target Building Performance Level is low. 

This target Building Performance Level entails somewhat more damage than 

anticipated for new buildings that have been properly designed and constructed for 

seismic resistance when subjected to their design earthquakes. Many building 

owners will desire to meet this target Building Performance Level for severe ground 

shaking. 

(iii) Collapse prevention: the overall damage level is characterized as severe. 

Substantial damage has occurred to the structure, including significant degradation 

in the stiffness and strength of the lateral-force resisting system. Large permanent 

lateral deformation of the structure and degradation in vertical-load bearing capacity 
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is encountered. However, all significant components of the gravity load-resisting 

system continue to carry their gravity load demands. The structure may not be 

technically practical to repair and is not safe for reoccupancy, since aftershock 

activity could induce collapse. 

To attain the Collapse Prevention Building Performance Level, the structural 

components of the building shall meet the requirements for the Collapse Prevention 

Structural Performance Level. Nonstructural components are not considered. 

The structural performance level shall be defined as the post-earthquake 

damage state that includes damage to structural components such that the structure 

continues to support gravity loads but retains no margin against collapse.  

However, the structural performance level means the post-earthquake damage 

state in which the building is on the verge of partial or total collapse. Substantial 

damage to the structure has occurred, potentially including significant degradation in 

the stiffness and strength of the lateral-force-resisting system, large permanent 

lateral deformation of the structure, and—to a more limited extent— degradation in 

vertical-load-carrying capacity. However, all significant components of the gravity 

load- resisting system must continue to carry their gravity load demands. Significant 

risk of injury due to falling hazards from structural debris may exist. The structure 

may not be technically practical to repair and is not safe for reoccupancy, as 

aftershock activity could induce collapse. And as nonstructural performance is not 

considered shall be classified a building rehabilitation that does not address 

nonstructural components.  

Additionally, in some cases, the decision to rehabilitate the structure may be 

made without addressing the vulnerabilities of nonstructural components. It may be 

desirable to do this when rehabilitation must be performed without interruption of 

building operation. In some cases, it is possible to perform all or most of the 

structural rehabilitation from outside occupied building areas. Extensive disruption 

of normal operation may be required to perform nonstructural rehabilitation. Also, 

since many of the most severe hazards to life safety occur as a result of structural 

vulnerabilities, some municipalities may wish to adopt rehabilitation ordinances that 

require structural rehabilitation only. 
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Figure 3.2. The Design Performances. 

3.3.2 Hazard levels 

The second step in the definition of the performance objectives is to determine 

the earthquake hazard levels. Earthquake hazards include direct ground fault 

rupture, ground shaking, liquefaction, lateral spreading and land sliding FEMA-350 

[15]. Ground shaking is the only earthquake hazard that the structural design 

provisions of the building codes directly address. Ground shaking hazards are 

typically characterized by a hazard curve, which indicates the probability that a given 

value of a ground motion parameter, for example peak ground acceleration, will be 

exceeded over a certain period of time. The ground shaking hazard levels that have 

been considered are the following: 

(i) Occasional earthquake hazard level: with probability of exceedance 50% in 50 

years with interval of recurrence 72 years. 

(ii) Rare earthquake hazard level: with probability of exceedance 10% in 50 years 

with interval of recurrence 475 years. 

(iii) Maximum considered event earthquake hazard level: with probability of 

exceedance 2% in 50 years with interval of recurrence 2475 years.  
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Performance-based design by itself will not accomplish improved or more 

predictable structural performance. Design provides only a set of drawings and 

instructions to the builder. The quality of the build product will depend on the clarity 

of the documentation and its communication, and the capability and willingness of 

the builder to implement the instructions. Thus performance-based design must be 

followed by performance-based construction, in which construction engineering 

services and quality control play key roles. A rigorous implementation of 

Performance-Based Earthquake Engineering may well necessitate radical changes in 

engineering and construction practices. Architects, engineers and contractors will 

have to work together rather than take on adversary positions, and academic 

researchers will have to interact much more than in the past. 

3.4 Design Procedures 

Depending on the design procedure adopted, as it was described in the previous 

section of this chapter, the structural system is assessed using linear or nonlinear 

analysis procedures in order to calculate force and displacement response 

quantities. In this thesis I focus on the study of the torsional effect on building 

          ’    p      

3.4.1 General Overview of EC8 

In order to ensure that the structure will satisfy the requirements properties of 

the EC8 [4], after the calculation of the solution of the structural optimization 

problem, which was considered for this comparative study, were employed checks. 

The checks that were applied are: For the case of columns, these elements should be 

assessed for (i) bending (biaxial bending: simultaneous bending about two principal 

axes, primary tension, centroidal compression (pure buckling : failure due to 

instability of a member or structure under perfectly axial compression and without 

transverse load), (ii) combination of bending moment and compression force 

(compression, yielding of shear reinforcement, yielding of the total longitudinal 

reinforcement, yielding of compression reinforcement, yielding of compression 
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reinforcement and compression of the total reinforcement, interaction criterion) and 

(iii) shear (check inclined compression, check reinforcement bars with seismic action 

in shear force, check confined concrete). For the case of beams these elements 

should be assessed for (i) bending (uniaxial bending without seismic action, checking 

for reinforcement bars in tension and in compression, shear and compression 

reinforcement in failure, shear reinforcement in failure and compression 

reinforcement in elastic region) and (ii) shear (check stem region, check inclined 

compression, check reinforcement bars with seismic action in shear force). 

3.4.2 Treatment of torsional effect 

A main problem for engineers that has great impact on the dynamic response of 

buildings is the lateral-torsional coupling. Coupled lateral-torsional motions occur in 

buildings subjected to ground shaking if their plan layouts do not possess two axes of 

mass and stiffness symmetry or ground shaking includes a torsional component. 

They can also appear due to unbalanced load distributions or differences between 

actual and assumed mass and stiffness distributions.  

In most structural design codes, the effect of torsion is treated by implementing 

accidental and static eccentricities together with specific provisions for addressing 

the design of irregular buildings. Accidental eccentricity is defined, with reference to 

the location of the mass center, as a percentile (e.g. 5%) of the plan view dimension 

that is perpendicular to the direction of the lateral forces applied. On the other hand, 

the implementation of the static eccentricity is more complicated, since it is defined 

with reference to the location of the rigidity center whose position, for the case of 

multistory buildings, is not unique and is load-dependent. It is for this reason that 

many researchers studied the efficiency of torsional codified provisions [16, 17]. 

Inconsistent observations have been attributed to the varying model assumptions 

implemented, while a detailed overview has been presented by Rutenberg [18]. 

Cheung and Tso [19] proposed the generalized center of rigidity and twist under 

linear response, while Tso [20] compared two approaches in an effort to measure 

the story torsional moments for multistory buildings. In particular, the torsional 

moment is calculated using the floor eccentricity in the first approach, while in the 
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second one using the story eccentricity. Smith and Vezina [21] defined the story 

rigidity center of multistory buildings as the point on the story diaphragm where no 

torsional action is developed from the application of external horizontal load. Riddell 

and Vaquez [22] concluded that the centers of rigidity exist only for a special class of 

multistory buildings. Lagaros et al. [23] proposed a combined topology-sizing 

optimum design formulation for RC buildings aiming at minimizing the material cost 

as well as the static and strength eccentricities taking into account both design code 

and architectural restrictions. 

Research interest extended also to the inelastic response of single-story 

structures [24-26]. De la Llera and Chopra [27] proposed the base shear and torque 

surfaces (BST), which represent all combinations of base shear and torque that 

would lead to structural collapse when applied statically. Paulay [28, 29] proposed 

the center of resistance and identified the elastoplastic mechanism, aiming at 

estimating the torsional effects on the seismic response of ductile buildings, 

classifying them either as torsionally unrestrained or as torsionally restrained. Dutta 

and Das [30, 31] investigated the effects of strength degradation on the bidirectional 

response of code-designed systems. The two simple hysteretic models proposed by 

the authors accounting for stiffness and strength deterioration characteristics of RC 

structural elements indicated that local peak demands, at both stiff and flexible 

edge, are more significant when strength degradation is taken into consideration. 

Contrary to these conclusions, Tso and Myslimaj [32] observed that results obtained 

by a degrading hysteretic model do not differ significantly from those obtained by an 

elasto-plastic model. Moreover, Myslimaj and Tso [33, 34] proved that the torsional 

effect can be reduced for asymmetric wall-type systems by locating the center of 

strength and the center of rigidity on the opposite sides of the center of mass. 

Overestimation of torsional response was noticed by De Stefano and Pintucchi [35] 

when the inelastic interaction between axial force and bidirectional horizontal forces 

in resisting elements is ignored. Aziminejad and Moghadam [36] studied the 

nonlinear behavior of irregular code designed single-story structures in order to 

optimize configuration of mass, stiffness and strength centers with respect to 

different levels of plastic excursions in the framework of performance-based seismic 
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design. They concluded that the best configuration varies not only with the assumed 

performance level, but also with the selected response parameter or damage 

indices.  

Trombetti and Conte [37] developed a simplified procedure, the ALPHA method, 

for estimating the maximum rotational response under free and forced vibrations of 

single-story linear elastic systems. An alternative pushover procedure was 

           b    g              *38+       w     p        l        : (і) A      -

dimensional elastic response spectrum analysis, in order to compute the roof 

   pl                       b         l     l         (іі) By implementing the target 

displacement and the lateral force distribution obtained at the previous step conduct 

a planar pushover analysis for each resisting element. With the aim to study the 

inelastic torsional response of buildings in nonlinear static (pushover) analysis, 

Penelis and Kappos [39] proposed a method consisted of a three-dimensional 

pushover analysis, applying spectral load vectors defined from dynamic elastic 

spectral analysis. They implemented a generalized equivalent SDOF, taking into 

account translational and torsional modes, to record response quantities. Code 

recommendations for torsionally unbalanced multistory buildings were assessed by 

De-la-Colina [40]. Tena-Colunga [41] studied the response of two irregular 14-story 

reinforced concrete buildings. The first one has one bay in slender direction, while 

the other two. The results indicate that codified provisions should penalize buildings 

with one bay.  

3.4.3 Elastic torsional response 

For the case of single-story systems there is a position on the diaphragm with 

the following properties: (i) Does not rotate when a lateral load is applied to it 

(rigidity center); (ii) does not rotate when the resultant of the shear forces is applied 

to it (shear center); (iii) remains constant when the structure is subjected to torque 

loading (center of twist). For the case of single-story systems only these centers 

coincide and they are load-independent. However, for the case of multistory 

buildings these centers do not coincide and their effect has been the subject of 

extensive research by many researchers in the past. 
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The most popular parameters characterizing the torsional effect on a building 

for elastic structural behavior are the static eccentricity ( CRe ) perpendicular to the 

direction of ground motion and the ratio of the uncoupled torsional to lateral 

frequency ratio ( ). The static eccentricity CRe  of single-story structures is defined 

as the distance between the center of mass (CM) and the rigidity center (CR). The 

rigidity center (CR) is defined as the point on the diaphragm through which a static 

horizontal force causes only translation on the diaphragm, irrespective of the force 

direction, while mass center (CM) is defined as the point on the diaphragm where 

the resultant of the inertia forces is applied to. The buildings are classified as 

torsionally-stiff for Ω values greater than unity or as torsionally-flexible for Ω values 

lower than unity. For torsionally-stiff structures the predominant mode is 

translational while for torsionally-flexible systems the predominant mode is 

torsional. Furthermore, the edges of the structures are denoted as stiff or flexible, 

with reference to the position of the mass and rigidity centers. In particular, when 

the distance of the edge from CM is smaller than that from CR, the edge is 

characterized as flexible otherwise the edge is characterized as stiff. It is worth 

noting that a building can be torsionally stiff in one direction and flexible in the 

other. Torsionally stiff buildings display increased displacements at the flexible edge 

and decreased at the stiff one, compared to the symmetric design, while torsionally 

flexible buildings do not follow any specific pattern [32, 33].  

3.4.3.1 Location of the center of rigidity for single-story 

systems  

The undamped equations of motion for single-story system, assuming linear 

behavior, subjected to earthquake ground motion accelerations  gxa t ,  gya t  along 

x  and y  axes are: 
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where m  is the mass moment of the deck, CMx  and CMy  are the coordinates of the 

center of mass, XK , YK , XYK , XK   and YK   are the terms of the stiffness matrix 

corresponding to translational ( x  and y ) and rotational ( ) degrees of freedom of 

the one-story structure, and 0J  is the polar moment of inertia of the deck about 

vertical axis passing through reference point O , given by: 

  2 2 2

0 CM CMJ m r x y    (3.7) 

where r is the radius of gyration of the deck about a vertical axis passing through the 

center of mass of the deck. 

The building stiffness matrix K for degrees of freedom T

X Yu u uu , defined 

at O , is given by superposition of the element stiffness matrices resulting in: 

 

  

  

  

  

  

  

 
 
 
  

K =  (3.8) 

with, 

X Xi

i

K K , Y Yi

i

K K , i

i

K K   

X X X i

i

K K K    , Y Y Y i

i

K K K     

XY YX XYi

i

K K K   

While if the equations of motion are written for degrees of freedom u , where 

T

X Yu u uu  with Xu  and Yu  the lateral displacements at the center of rigidity 

along the x  and y  axes, the building stiffness matrix assumes the form: 

 

0

0

0 0

X XY

YX Y

K K

K K

K

 
 
 
 
 

K =  (3.9) 

Since any horizontal static force applied through the center of rigidity causes 

only lateral displacements and no rotation of the deck. 
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The equations of motion written with respect to u  are then given by: 

 

 

   

0 0

0 0

0 0

CRy X XY gx

CRx YX Y gy

CRy CRx R CRy gx CRx gy

m me u K K u a t

m me u K K u m a t

me me J u K u e a t e a t  

 

 

        
       

         
                

 (3.10) 

where CRxe  and 
CRye ,  the x  and y components of static eccentricity CRe  are: 

 CRx CM CRe x x   (3.11) 

 CRy CM CRe y y   (3.12) 

in which CRx  and CRy  are the coordinates of the center of rigidity and RJ  is the polar 

moment of inertia about a vertical axis passing through the center of rigidity, given 

by: 

  2 2

R CRJ m e r   (3.13) 

From the building stiffness matrix K defined with respect to the degrees of freedom 

u  at reference point O , where T

X Yu u uu , the building stiffness matrix at any 

other point can be determined by simple transformation of K . In particular, the 

building stiffness matrix K  with respect to degrees of freedom u , where 

T

X Yu u uu  is defined at the center of rigidity of the system, is related to the 

building stiffness matrix K  by: 

 TK = a K a  (3.14) 

in which a is a transformation matrix relating u  to u : 

 

1 0

0 1

0 0 1

X CR X

Y CR Y

u y u

u x u

u u 

     
    

     
         

u = au  (3.15) 

Substituting equations (3.15) and (3.8) into (3.14), leads to: 
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X CR XY R X

YX CR Y R Y

X CR CR YX Y CR CR Y

K y K x K

K y K x K

K y x K K y x K

  

  

    

 

 

  

  
 

 
 
     

K =  (3.16) 

in which 2 22 2 2X CR Y CR X CR XY CR CR Y CRK K K y K x K y K x y K x          

Comparison of equations (3.16) and (3.9) leads to the following conditions: 

 0X CR XY R XK y K x K     (3.17) 

 0Y CR CR YK y x K     (3.18) 

 ,X X Y YK K K K   and 
XY YX XYK K K   (3.19) 

and 

 2 22 2 2X CR Y CR X CR XY CR CR Y CRK K K y K x K y K x y K x          (3.20) 

Solution of equations (3.17) and (3.18) yields the coordinates of the center of 

rigidity: 

 
2

X Y XY X
CR

X Y XY

K K K K
x

K K K

 



  (3.21) 

 
2

Y X XY Y
CR

X Y XY

K K K K
y

K K K

 



 (3.22) 

Equations (3.21) and (3.22) are further simplified on two special cases: 

1. The building has one axis of symmetry, which coincides with one of the 

principal axes of the system and the other is perpendicular to it. For instance, 

if x  axis is chosen in the direction of the symmetry axis, the terms XYiK  and 

X iK   occur in pairs that are equal in absolute values but are of opposite 

algebraic signs. It follows that: 

 0XY YXK K   (3.23) 

 and 
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 X XK K   (3.24) 

 from which equations (3.21) and (3.22) are simplified to become: 

 Y
CR

Y

K
x

K

  (3.25) 

 0X
CR

X

K
y

K

    (3.26) 

2. The resisting elements of the building are arranged such that their principal 

axes form an orthogonal grid in plan. The principal axes of the system are also 

in the directions of the elemental principal axes. The coordinates of the 

center of rigidity are simplified to: 

 
Yi i

Y i
CR

Y Yi

i

K x
K

x
K K

 



 (3.27) 

  

 
Xi i

X i
CR

X Xi

i

K y
K

y
K K

  



 (3.28) 

 

3.4.3.2 Location of the shear center for single-story systems 

The shear center is the point in the plane of the diaphragm through which the 

resultant of the shear forces of the resisting elements passes when the diaphragm is 

subjected to a system of horizontal lateral forces causing no twist ( ) of the 

diaphragm. Substituting  and utilizing the equilibrium of moments of all 

shearing forces acting in the plane of the diaphragm about a vertical axis passing 

through , gives an equation which leads to the same expression as the center of 

rigidity. It should be noted that center of twist, rigidity and shear centers for one-

story structures coincide [44]; thus, the coordinates of the shear center and the 

center of twist are also obtained from Eqs. (3.21), (3.22).  

0u 

0u 

O
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3.4.3.3 Location of the center of twist for single-story 

systems 

Since the center of twist is the point in the plane of diaphragm that does not 

undergo any translational displacement when the diaphragm is subjected to a static 

horizontal torsional moment, the building stiffness matrix is identical to (3.8) 

considering that the degrees of freedom of the diaphragm are defined at its center 

of twist. The same procedure as the one followed for the center of rigidity leads to 

the same expressions (eqns. (3.21) and (3.22)) for the coordinates of the center of 

twist. 

3.4.3.4 Location of the center of rigidity for multistory 

systems 

The rigidity centers of the stories for the case of multistory buildings cannot be 

defined in a strict manner and many definitions have been proposed so far [19, 21, 

45, 46]. Indicatively, Humar [42] defined the location of story rigidity center as the 

point where the resultant lateral forces of the story when applied to that point does 

not cause rotation of the specific story. The other stories may or may not have 

rotations. Smith and Vezina [21] defined the location of story rigidity center of 

multistory buildings for given distribution of the lateral loads, as the point on the 

story where if the external lateral load is applied no torque is observed.  

The undamped equations of motion for multistory building, assuming linear 

behavior, subjected to earthquake ground motion accelerations  gxa t  and  gya t

along x  and y axes are: 

 

 

   

        
        

          
                 

M Χ Χ gx

M Υ Υ gy

M M 0 θ θ M gx M gy

m 0 -my u u mIa t

0 m mx u u mIa t

-my mx J u u -y mIa t + x mIa t

  

  

  

  

  

  

 (3.29) 

where I denotes a vector of ones of dimension N , the number of stories of the 

building, m is a diagonal matrix of dimension N  with diagonal entry jm  equal to the 

mass of the thj  floor, CMx  and CMy  are diagonal matrices of dimension N  with 
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diagonal entries equal to 
CMjx  and 

CMjy , the coordinates of the center of mass of the 

thj  floor relative to reference axes 
jX  and 

jY , 0J  is a diagonal matrix of dimension 

N  with diagonal entries 
ojJ  the polar moment of inertia of the thj  floor diaphragm 

about Z , the reference vertical axis passing through reference points 
jO , given by: 

  2 2 2

Oj j j CMj CMjJ m r x y    (3.30) 

where 
jr is the radius of gyration of the thj  deck about a vertical axis passing 

through its center of mass. 

The building stiffness matrix K for degrees of freedom T T T T

X Y u u u u , defined 

at reference points jO , is given by the superposition of the element stiffness 

matrices resulting in: 

 

  

  

  

 
 
 
  

K =

  

  

  

 (3.31) 

Provided that centers of rigidity exist for a building, the equations of motion with 

respect to rigidity centers can be written as: 

 

 

   

0

0

CRy X XY gx

CRx YX Y gy

CRy CRx R CRy gx CRx gy

a t

a t

a t a t  

 

 

        
       

         
               

0

0

0 0

m me u K K u mI

m me u K K u mI

me me J u K u e mI e mI

 (3.32) 

 where CRxe and CRye are diagonal matrices of dimension N diagonal entries CRxje  and 

CRyje , the x  and y components of the static eccentricity CRje  of the thj  floor, given 

by: 

 CRxj CMj CRje x x   (3.33) 

 CRyj CMj CRje y y   (3.34) 

in which CRjx  and CRjy  are the x  and y  components of the center of rigidity of the 

thj  floor relative to its reference axes jx  and jy , RJ  is a diagonal matrix of 
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dimension N  with diagonal entries 
RjJ  equal to the polar moment of inertia of the 

thj  deck about a vertical axis passing through its center of rigidity, given by: 

  2 2

Rj j CRj jJ m e r   (3.35) 

The form of the building stiffness matrix K given in equation below follows from 

the definition given for centers of rigidity as the points on floor levels at which static 

horizontal forces cause no twist in any of the floors.  

 

0

0

0 0

X XY

YX Y



 
 
 
 
 

K K

K = K K

K

 (3.36) 

If the rigidity centers are not unique, it would not be possible to determine a building 

stiffness matrix in the form of K given by equation (3.36). 

The building stiffness matrix K written with respect to the degrees of freedom 

T T T T

X Y u u u u  defined at the centers of rigidity is related to the building stiffness 

matrix K written with respect to degrees of freedom u  at reference point jO , 

where T T T T

X Y u u u u , by: 

 TK = a K a  (3.37) 

in which a  is a transformation matrix relating u  to u : 

 

X CR X

Y CR Y

 

     
    

     
         

0

0

0 0

u I y u

u = u I x u au

u I u

 (3.38) 

Substituting equations (3.37) and (3.35) into (3.36), leads to: 

X CR XY R X

YX CR Y R Y

X CR CR YX Y CR CR Y

  

  

    

  
 

 
 
     

K y K x K

K = K y K x K

K y x K K y x K

 

 

  

 (3.39) 

in which 2 22 2 2X CR Y CR X CR XY CR CR Y CR        K K K y K x K y K x y K x  
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Comparison of equations (3.36) and (3.39) yields the coordinates of the centers of 

rigidity: 

 
1

1

Y YX X X
CR

Y YX X XY

 









x

K K K K

K K K K
 (3.40) 

 
1

1

X XY Y Y
CR

X XY Y YX

 






 


y

K K K K

K K K K
 (3.41) 

where XK , YK , XYK , XK and YK  are submatrices of the building global stiffness 

matrix corresponding to translational ( x  and y ) and rotational ( ) degrees of 

freedom of the system. Eqs. (3.40), (3.41) do not lead to a unique definition of the 

story rigidity centers. This is due to the fact that the product of the operations of the 

second part of Eqs. (3.40), (3.41) in general do not yield diagonal matrices. This 

deficiency is addressed if static lateral loads are introduced as follows: 

  
1

1

1

Y YX X X
CR Y Y

Y YX X XY

 










x P P

K K K K

K K K K
 (3.42) 

  
1

1

1

X XY Y Y
CR X X

X XY Y YX

 







 


y P P

K K K K

K K K K
 (3.43) 

where XP  and YP  are the vectors of the static lateral loads. Thus, the definition of 

the coordinates of Eqs. (3.42), (3.43) are load-dependent [44]. However, there is a 

special class of buildings, called proportional framing buildings, for which the rigidity 

center, shear center and center of twist can be defined and coincide, they are load 

independent and lie on a vertical line [22, 44].  

3.4.3.5 Location of the shear center for multistory systems 

The location of the shear center of a floor is determined by finding the centroid 

of the  shear forces experienced by individual resisting elements due to a static 

loading that causes no twist ( 0u  ) at any of the stories. The solution of 

equilibrium of moments about reference axis Z  of all shear forces acting at each 

floor level, leads to the coordinates of shear centers Sx  and Sy : 
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   
1

' 1 1

S y Y X X XY Y YX X XY Y 


     x P S K K K K K K K K P  (3.44) 

   
1

' 1 1

S X X Y Y YX X XY Y YX X 


     y P S K K K K K K K K P   (3.45) 

where S is a summation matrix which is upper triangular, of dimension N  and of 

the form: 

 

1 1 ... 1 1

1 ... 1 1

...

1 1

1

 
 
 
 
 
 
  

S =  (3.46) 

And '

X
  P , '

Y
  P denote the diagonal matrix forms of vectors XSP and YSP . 

When equations (3.44) and (3.45) lead to diagonal matrix with equal diagonal 

entries, simplify to (3.40) and (3.41) and are load-independent. 

3.4.3.6 Location of the center of twist for multistory 

systems 

The center of twist is defined as the point on the diaphragm that is not 

subjected to translation but only to twist about it, when torsional moment is 

statically applied on the diaphragm. The building stiffness matrix written with 

respect to degrees of freedom defined at center of twist would be of the form of 

equation (3.36). Following the same procedure as for the center of rigidity leads to 

the same expressions for the coordinates of the center of twist as the center of 

rigidity (3.40) and (3.41). If these expressions yield diagonal matrices, centers of 

twist and centers of rigidity are coincident.  

If the equations do not lead to diagonal matrices, the locations of the center of 

twist depend on the applied set of static torsional moments. The coordinates of the 

center of twist, Tx  and Ty , can be determined through the procedure below: 

 P Ku  (3.47) 
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X X T XY T X X

Y YX T Y T Y Y

X T T YX Y T T Y

  

  

      

      
    

      
           

P K y K x K u

P K y K x K u

P K y x K K y x K u

 

 

  

 (3.48) 

For a particular set of forces P  with 
X Y  0P P  and   0T , it is possible to 

determine Tx  and Ty , the coordinates locating the centers of twist, where according 

to definition X Y  0u u  but 0 u : 

        
11 1 1

T Y YX X XY Y YX X X   

    x u K K K K K K K K u  (3.49) 

        
11 1 1

T X YX Y YX X XY Y Y   

    y u K K K K K K K K u  (3.50) 

where  u  represents the diagonal matrix form of vector u ,  Tx  and  Ty the 

vector forms of diagonal matrices Tx  and Ty . 

3.4.3.7 Torsional moment estimation through static 

eccentricity concept 

Tso [20] compared two approaches in order to estimate the torsional moment 

of multistory buildings. According to the first one, the floor torques at different 

floors are determined as the product of the lateral load and the floor eccentricity at 

that floor. The story torsional moment is then obtained by summing the floor 

torques of the above stories. A two-bay, four-story building consisting of frames A, B, 

C spanning the y  direction connected with rigid floor diaphragms is implemented 

(Fig. 3.3).  Static load distribution iP  is acting at CM of each story. The load is 

decomposed in a translational and a rotational component (Fig. 3.3).  
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Figure 3.3. Eccentricity concept for multistory building [20]. 

The translational component causes only translation but no rotation of the 

floors. In this way, the load is relocated horizontally to act at center of rigidity of the 

floor. Considering that the locus of the centers of rigidity of building are determined, 

the floor torques iT  can be obtained by the expression:  

 i i CRiT Pe  (3.51) 

where CRie  is the floor eccentricity defined as the distance between the center of 

mass and the center of rigidity at that floor. 

 CRi CMi CRie x x   (3.52) 

The torsional moment at a story k  is calculated by the relationship: 

  
4

t ik i k
M T


  (3.53) 

In the second approach, the story eccentricity is employed to obtain the 

torsional moment via story shear [20]. The torsional moment at any story k  is 

obtained directly from the story shear by: 

  t k kk
M V e  (3.54) 

where kV  is the story shear and ke is the story eccentricity at story k  considering a 

cut at story k  and lateral and torsional equilibrium of the free body diagram above 
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the cut (Fig. 3.4), defined as the horizontal distance between the shear center at the 

story and the resultant of all lateral forces above the story being considered. 

 

Figure 3.4. Free body diagrams of each floor [20]. 

The two approaches proved to be equivalent resulting to the same story 

torsional moments provided that proper definitions of eccentricity are implemented. 

Moreover, it has been also proved that the story eccentricity is less sensitive to load 

distribution than the floor eccentricity. Therefore, the second approach is supposed 

to be more appropriate for structural asymmetry assessment [20]. 

3.4.3.8 Optimum torsion axis and torsional radii of gyration 

for multistory buildings 

Makarios et al. [47-49] proposed the optimum torsion axis for multistory 

buildings. The optimum torsion axis of the system is an axis upon which when the 

level of lateral static seismic forces is placed then the twist of the whole system is 

minimalized. In the boundary case that the relevant axis is a real elastic axis of the 

system, the twist is marked with zero [50].  

 In order to define the location of the optimum torsion axis a multistory spatial 

frame-wall system is divided into two spatial subsystems, the bending one and the 

shear one. Each one of them contain the elastic centers K  and S , respectively, and 
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its principal elasticity axes I , II , provided that they maintain their elastic and 

geometric characteristics unchangeable in elevation. The frame-wall multistory 

systems have been proved [51] to possess three vertical torsion axis, 1 , 2 , 3 , 

which are not upon the same line. The final response of the system, due to the 

lateral static loading ( )F z  continuous distribution in elevation, arises from the 

superposition of the three enforced rotations of the system around the relevant axes 

(Figure 3.5a). It has been proved [47] that when there is a vertical real elastic axis in 

the system is identified with 3  while the 1 , 2  axes move to infinity (Figure 

3.6a). 

 

Figure 3.5. Axes of enforced torsion in a frame-wall multistory system [50]. 

 

 

Figure 3.6. Axes of enforced torsion in symmetrical system [50]. 

On the special occasion that the multistory frame-wall system is 

monosymmetric, symmetrical axis x , the axis 1  moves to the y -infinity while the 
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other two axes 2 , 3  are upon x . The elastic centers K  and S  of the bending and 

the shear subsystem correspondingly are also upon x . The axes 2 , 3  are always 

outside of the  KS  space [50]. When the lateral static loading ( )F z  has a direction 

perpendicular to the symmetric axis of the system and is inside the ( 2 3  ) space the 

two rotations have opposite direction (Figure 3.7b). When the following expression 

is satisfied 

  2 2 2 2

1 2min .... /         (3.55) 

the effects of torsion on the system are minimized. 

in which i is the rotation angle of the thi floor. 

 

Figure 3.7. Superposition of two rotation about Ω1, Ω2 [50]. 

The relation (3.55) is satisfied when the rotation angle of the floor is equal to 

zero at level 0.8z H  (figure 3.8) [37], [48], [49]. Solving the equation that stems 

from this condition, the location of the optimum torsion axis is defined, point 0P .  

 

Figure 3.8. State Optimum Torsion in multistory frame-wall building [50]. 
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      The optimum torsion axis satisfies the following boundary conditions [49]: 

a) Its position in the plan coincides with point K , called the elastic/stiffness 

center, in the boundary case where the multistory system reduces to the 

single-story system. 

b) Its position in the plan coincides with point K  when the system transforms 

into a purely bending one. 

c) Finally its position in the plan coincides with point S  when the building 

transforms into purely shear one. 

According to a study on a five-story asymmetric building, the optimum torsion 

axis is characterized by the following attributes: 

I. The sum of squares of the deck rotations and the sum of squares of the 

deck displacements along the fictitious principal II - axis is minimum, when 

the vertical plane of the lateral static seismic forces passes through the 

fictitious elastic center 0P  and is parallel to the fictitious principal I - axis. 

The results are similar for lateral seismic forces along the II - axis. 

II. The translational and rotational components are weakly coupled when the 

vertical mass axis coincides with the fictitious elastic axis. 

III. The earthquake ground motion along the fictitious principal I - axis or II -

axis causes nearly translational vibration along the same axis when the 

vertical mass axis coincides with the fictitious elastic axis. The maximum 

deck rotations are very small. 

IV. The translational and the rotational components of motion are strongly 

coupled when the mass axis does not coincide with the fictitious elastic 

axis [42]. 

The torsional radius of gyration I  represents the lever arm, according to K , of 

the elastic forces of restoration during the torsional loading of the single-

story/monosymmetric system [50]. 

It can be calculated in two different ways, which result in the same value: 

I. It can be calculated directly from the relation: 
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 III
I

II

k

k
   (3.56) 

where IIIk  the torsional stiffness of the single-story system about the axis III  

and IIk
 the translational stiffness of the single-story system according to 

principal axis II . 

II. It can also be calculated according to the ratio of special displacement: 

 
 1 /

/

II ZIII
I

II II II

Fk

k F u





   (3.57) 

where /II II IIu F k  is the displacement for static load force IIF  at the point 

K , /Z II IIIF k   is the twist angle about K  for torsional loading 1 IIM F   

of the system.      

The torsional radius of gyration I  of the frame-wall monosymmetric systems 

has not the same value for every level  , but the one in diagrams of Figs 3.9a and 

3.9b. It is suggested that the torsional radius of gyration of level 0.8z H  is 

approximately equal to the torsional radius of gyration of the whole system, since 

the optimum torsional axis is defined at this level. According to the relation between 

the torsional radius of gyration I  at the center of mass and the radius of gyration of 

the diaphragm r  the torsional flexibility of the system for dynamic translational 

excitation is defined. Actually if mx r   the system is torsionally flexible. 

 2 2

0mx xe    (3.58) 

where 0xe  is the static eccentricity along x  axis. 
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Figure 3.9. Distribution of torsional radius of the floors [47]. 

Another criterion for the torsional flexibility of a building is the coordinates of 

the center of vibration iO  of the floors. A system is characterized as torsionally 

flexible when the vibration centers, calculated for the first and the second modal 

shape, occur into the circle of the radius of inertia of the diaphragm, which means 

that the torsional vibrations of the diaphragm dominate the translational one for 

pure translational excitation. The coordinates of the center of vibration  ,i xi yiO e e  

are given by the expressions below: 

 xi
yi

zi

e



  (3.59) 

 
yi

xi

zi

e



   (3.60) 

The equivalent static eccentricities fe , re  are used in order to define the 

location of the point of application of the lateral static seismic forces and are given 

by the expressions (3.59) and (3.60), respectively. The accidental eccentricity ie  is 

also taken into consideration. 

 
2

I
f fe R

r


   (3.61) 

 
2

0

1I r
r

r

D
e

r l






 


 (3.62) 
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where 

 

1/2

122 2

1 2 1 2

sin 2 1 1 1
2

2
f n n n n

R
A A A A




 
     

 
  (3.63) 

 

1/2
2 2

1 2 1 2
122 2

1 2 1 2

sin 2
2

2

r r r r
r n n n n

D
A A A A

   


 
     

 
 (3.64) 

 0
0 2 2

0

2
tan

1




 


 
 (3.65) 

If 0tan 0  , then 0 / 2   

else 090 / 2a    

0
0

e

r
  , ,

,

FIII
I

II M
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k



  , 

r


   

1 01 tanA     , 2 01 cotA      

1 cotr rl   , 2 tanr rl   , r
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  


    
 

3.4.3.9 Modification procedure for design of earthquake 

resistant steel structures 

Anagnostopoulos et al. [46] proposed a modification procedure in order to 

improve the design of asymmetric eccentric steel structures. A structural design can 

be characterized as satisfactory when the limiting values of the controlling response 

parameters do not have wide variations within the groups of structural members to 

which they apply. In the opposite case, suboptimal use of material may be present as 

well as a potentially higher risk of failure in cases of unexpected overloads. Observed 
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differences in ductility demands between the opposite edges point to the need for a 

design modification that would eliminate or reduce these differences. The proposed 

modification procedure aims at increasing the strength of the structural members 

(columns, beams, braces) at the flexible edges and reducing the strength of the 

braces at the stiff edges without affecting the strength of the other structural 

elements (columns, beams). 

The first step for application of this modification is to obtain the top story 

displacements at the flexible and stiff edges of the buildings in both horizontal 

directions due to earthquake loading considered and then compute the following 

factors in each horizontal direction: 

 
 

,

,

, ,

2
i flex

i flex

i flex i stiff

u
f

u u



 (3.66) 

 
 

,

,

, ,

2
i stiff

i stiff

i flex i stiff

u
f

u u



 (3.67) 

where ,i flexu  is the top story displacement of the flexible edge in the thi  direction and  

,i stiffu  the top story displacement of the stiff edge also in the thi  direction. According 

to the design modification, the axial areas of the bracing members in both the stiff 

and flexible edges are multiplied by the corresponding factors in each direction and 

to do the same for the beam and column sections but only in the flexible edges to 

increase both stiffness and strength of the corresponding frames. The cross sections 

of columns and beams of the stiff edges are not reduced, as their strength is 

controlled mainly by gravity loads. These factors vary from 1.25 - 1.50 for the flexible 

edges and from 0.85 - 1.00 for the stiff edges. 

3.4.4 Inelastic Torsional Response 

Once a structural element reaches yield, its stiffness changes affecting the 

period as well as the static eccentricity of the structure. The location of the rigidity 

center changes as well as the eccentricity of the structure. Based on this observation 

Paulay [28] stated that the strength eccentricity is a reliable measure for the 
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elastoplastic range. The strength eccentricity is the distance between the CM and the 

strength center CV. The strength center is defined as the point through which the 

resultant of the lateral forces passes, while if the story becomes a mechanism no 

rotation of the diaphragm is developed and its components along the x  and y  

directions are given by: 

 1

1

col

col

n

i nyi

i
CVX n

nyi

i

e

xV

V









 (3.68) 

 1

1

col

col

n

i nxi

i
CVY n

nxi

i

e

yV

V









 (3.69) 

where nxiV  and nyiV  are the nominal strength of the thi  resisting element along x  

and y directions. It is worth noting that the strength eccentricity is given by Eqs. 

(3.68), (3.69) on condition that the resisting elements achieve their nominal 

strength. In case that some of them did not reach their nominal strength, the shear 

forces computed of those elements are used instead in Eqs. (3.68), (3.69). 

The wise assignment of the nominal strength of translatory elements would lead 

the system to the optimum response, provided that ∑      . The location of CV is 

of crucial importance, since during a damaging earthquake some of the lateral force 

resisting elements yield and stiffness eccentricity is inappropriate to represent the 

asymmetry of structure. In this case, the structure is subjected for portions of time in 

the elastic state and for others in the plastic state. It has been proved that the 

produced rotations in the different states cancel one another when stiffness and 

strength eccentricity have opposite signs, which means that the location of the 

center of rigidity and the center of strength are on the opposite sides of the center 

of mass.  
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3.4.4.1 The BST surface 

Moreover, in order to understand the inelastic behavior of one-story buildings 

De La Llera and Chopra [27] proposed the base shear and torque surface (BST) Fig. 

3.10 which consists of all combinations of base shear and torque that applied 

statically would lead to collapse of the structure. In Fig. 3.10(b) is shown the BST 

surface of the one-story system depicted in Fig. 3.10(a). 

The surface is convex, composed of linear branches and point symmetric with 

reference to the origin for identical yield displacements considering load reversals. 

The slope of the tangent suggests the position of the element in the building plan 

that remains elastic during the mechanism considered. Moreover, the ultimate 

surface has as many branches with finite slope as twice the number of resisting 

planes in the direction of excitation. 

 

Figure 3.10. Example of construction of a BST ultimate surface [27]. 

Subsequently the five parameters that control the shape of the BST surface are 

         : (і)      g              g pl         bl  g          g              g pl     

results in surface expansion by factor two (Fig. 3.11(b))  (іі)      g              g 

planes in the orthogonal direction, an increase in strength of resisting planes in 

orthogonal direction causes stretching of the BST surface along the base torque axis 

in the positive and negative directions (Fig. 3.11(c)), (ііі)                   g    
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strength distribution among elements affects the skewness and stretching of the BST 

surface (Fig. 3.11(d)),  

 

 

 

 

Figure 3.11. Effect of different parameters on the shape of the BST surface [27]. 
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Figure 3.11. Effect of different parameters on the shape of the BST surface [27]. 

(іv) pl  w    distribution of strength, increasing strength in resisting plane two 

passing through CM, for instance (like buildings with strong central cores), relative to 

two other planes, the torsional capacity of the system is reduced and the length of 

the constant base-torque branches of the BST surface associated with purely 

torsional mechanisms  is increased (Fig. 3.11(e)),  (v) number of resisting planes, 

increasing the number of resisting planes the BST surface becomes rounder (Fig. 

3.11(f)). It is worth noting that stiffness distribution does not cause any change to 

the shape of surface since it is an important parameter considering the elastic 

behavior of the structure. 
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Figure 3.11. Effect of different parameters on the shape of the BST surface [27]. 

3.4.4.2 The SST ultimate surface 

De La Llera and Chopra [53] extended the same idea to multistory buildings, the 

so-called story shear and torque (SST) ultimate surface. The surface is constructed 

for each story and depicts all combinations of story shears ( )j

xV , ( )j

yV , and torque 

( )jT  that applied statically would lead the story to collapse.  The construction of the 

surface is based on the implementation of a single super- element (SE) per building 

story, which represents its elastic and inelastic properties. The SE element of building 

consists of a single fictitious structural element per story capable of representing the 

elastic and inelastic properties of the story and possesses three degrees of freedom 

per node (Fig. 3.12) – two horizontal translations and the rotation of the floors 

connected by the element.  

The elastic and inelastic properties of the SE model are matched to those of the 

story with multiple resisting planes. The surface is parametrized in terms of seven 

important parameters controlling the seismic response of asymmetric structures.  
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Figure 3.12. SE model of a building [43]. 

 

Figure 3.13. Parametric representation of the SST surface [53]. 
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The coordinates of the vertices of the surface are given below: 

 1 0 1 0
ˆ, (1 )y y p xx V y V x T V     (3.70) 

 2 2 0
ˆ,yu yc xx V V y T T V     (3.71) 

 3 3 0
ˆ,yu yc xx V V y T T V     (3.72) 

 4 0 4 0
ˆ, (1 )y y p xx V y V x T V       (3.73) 

 5 1 5 1,x x y y     (3.74) 

 6 2 6 2,x x y y     (3.75) 

 7 3 7 3,x x y y     (3.76) 

 8 4 8 4,x x y y     (3.77) 

w     (і) 0
ˆ /x x xV V V  is the normalized story shear in x  direction, ( )

0 1

M i

x xi
V f


 is 

the lateral capacity of the story in x -direction, ( )i

xf  the capacity of the thi  resisting 

plane in the x -direction and M is the number of resisting planes in the x -direction. 

The normalized story shear defines the variation of the SST ultimate surface along xV  

shear axis. In the case that component of excitation exists along x  axis, the planes 

along this axis sustain translation deteriorating their capability of developing coupled 

force to resist story torque.  

(іі) ( )

0 1

N i

y yi
V f


  is the lateral capacity of the story in the y -direction, ( )i

yf  the 

capacity of the thi  resisting plane in the y  direction and N is the number of resisting 

planes in the y -direction. The lateral capacity of the story corresponds to the 

maximum shear that can be developed for purely translational mechanism of the 

story.  

(ііі) ycV is the capacity of the resisting planes in the y -direction passing through the 

CM of the system, which determines the length of the constant torque branch of the 
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SST surface. Constant torque surface represents predominantly torsional 

mechanisms of the story, consequently an increase of its value means larger number 

of these mechanisms on the surface. 

(іv) ( ) ( ) ( ) ( )

0 1 1

N Mi i i i

y xi i
T f x f y

 
    is the torsional capacity of the system that can 

be developed in a purely torsional mechanism of the story. It controls the maximum 

and minimum ordinates of the ultimate surface. Large values of 0T
 means that the 

system possesses strong resisting planes along the edges, while small values 

represent a system with strong central core. 

(v) ( ) ( )

1

M i i

xi
T f y 

  is the torque provided by the resisting planes in the orthogonal 

direction, which controls the length of the constant shear branches of the SST 

surface. These branches are associated with story mechanisms, which are 

predominantly translational.  

(vі) ( ) ( )

01
/

N i i

p y yi
x f x V


  is the strength eccentricity, or first moment of strength 

and represents the slope of the ray, which connects the center of the surface and the 

middle point of the constant shear branch 1-8 Fig. 3.13. The position of this middle 

point is determined by the shear capacity 0yV  and the torque ( ) ( )

1

i i

y

i

T f x




corresponding to purely translational mechanism of the story. Strength eccentricity 

controls the skewness of the surface. For large values of strength eccentricity 

increase the skewness and narrowness of the surface resulting of the predominance 

in strength of one resisting plane. 

(vіі) ( ) ( ) ( )
1
2

/
N i i i
iyu y
i

V f x x



 
               ‘     g     b l    ’               w     

controls the abscissa of the central point of the constant torque branch of the SST 

surface at positive torque.  

3.4.4.3 Torsional mechanisms in ductile building systems 

An important aspect of the inelastic behavior of an asymmetric structural system 

is the consideration of the degree of control over its inelastic twist. One of the design 
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aims should be to restrain the system against unrestricted inelastic twist. This can be 

readily achieved with the use of elements which are not subjected to inelastic 

translatory displacements. Thereby the system, while developing its expected 

translatory displacement ductility capacity, 
, retains some residual stiffness: 

 
tr t tK K  (3.78) 

The resisting elements along the perpendicular direction to that of the imposed 

excitation can contribute within the elastic domain to significant torsional resistance 

and hence to restrain twist. The parameter 
t  in equation (3.78) expresses the 

degree of torsional restraint. It may be readily evaluated from: 

  2 /tx i iy tx k K   (3.79) 

  2 /ty i ix ty k K   (3.80) 

Ductile structural systems are classified as either torsionally unrestrained, when 

0t  , or torsionally restrained, when 0.15t  . 

 Torsionally unrestrained systems are those, which cannot resist torsion in the 

post-yield range. In this mechanism, torsion can be resisted only within the elastic 

domain of response since elements, which resist torsion during inelastic translator 

response, do not exist. As a result one edge element may be subjected to excessive 

ductility demands while the one at the opposite side may be in the elastic domain. 

This is associated with a reduction of the base shear capacity of the system [28]. 

For instance, the system of Figure 3.14 is analyzed. It is assumed that the 

response of the lateral force resisting elements is perfectly elastic-plastic. When the 

element (2) will yield and its displacement ductility capacity 2max  should not be 

exceeded, the system displacement ductility demand should be limited to: 

 1 2

2max

y y

y y

   

 
 

 
 (3.81) 

where y is the system yield displacement (for torsionally unrestrained systems), 

relevant to CM 
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1 2y y y       (3.82) 

with the introduction of  a geometric system parameter: 

 2

1

y

y










 (3.83) 

expression (3.81) simplifies to:   

 2max 1

1













  (3.84) 

 

Figure 3.14. Arrangement of lateral forces resisting elements in a torsionally unrestrained 

system [28]. 

When it is found that element (1) is about to yield and its displacement ductility 

capacity should not be exceeded, the system displacement ductility should be 

limited to: 

 1max

1

 











 (3.85) 

Finally, in the design of such a system the system ductility demand should be limited 

to the lesser of the two values (Eqns. (3.84) and (3.85)). 
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Limited torsional restrained systems are those, whose elements exhibit post-

yield stiffness, 
pi ik k  (  : post-yield stiffness coefficient), i.e. for typical 

reinforced concrete elements 0.06  . In this case, the nominal strength of the one 

element is in excess of that assigned to it, for example the element (1), 1 1 1nV V  

where 1 1.00  . An upper limit is established, which reassure the development of 

post-yield deformation of element (1). Beyond this value and for a given post-yield 

stiffness of element (2), element (1) cannot yield. This limit is expressed by the 

equation: 

  1 2max1 1      (3.86) 

It has been proved [28] that in the case of limited torsional restraint the system 

ductility demand should be restricted to: 

 1
2max

1

(1 )


 

 
 


 


 (3.87) 

Torsionally restrained systems can resist earthquake-induced torque at the 

ultimate limit state by elastic transverse elements, which also control the system 

twist, while translatory elements are subjected to inelastic displacements of 

different magnitudes. The center of resistance of these inelastic translator elements, 

CV, can be found by strength eccentricity. Torsionally restrained mechanisms 

subjected to inelastic skew displacements must be expected to degenerate into 

torsionally unrestrained. 

 

Figure 3.15. Arrangement of lateral forces resisting elements in a torsionally restrained 

system [29]. 
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4 RATIO OF TORSION 

 

 

 

4.1 Introduction 

Asymmetry into a structural system is introduced by its non-symmetric topology 

of the structural elements or mass distribution. In particular, structural asymmetry 

results to eccentric structural systems having different locus of the mass and rigidity 

centers. During dynamic excitation, the resultant of inertia forces is modelled as 

acting through the mass center, while the resultant of resisting forces through the 

rigidity center. As a consequence a moment between the two forces is developed, 

which induces torsional effect coupled with the lateral motion. Even in case of 

buildings possessing two axes of symmetry, moments arise due to earthquake 

rotational component. A number of studies have been published dealing with the 

structural response of reinforced concrete (RC) buildings taking into consideration 

the lateral-torsional coupling [1-4]. In most structural design codes, the effect of 

torsion is treated by implementing accidental and static eccentricities together with 

specific provisions for addressing the design of irregular buildings. Accidental 

eccentricity is defined as a percentile (e.g. 5%) of the plan view dimension that is 

perpendicular to the direction of the lateral forces applied. On the other hand the 

implementation of the static eccentricity is more complicated, since it is defined with 
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reference to the location of the rigidity center whose position, for the case of 

multistory buildings, is not unique and is load-dependent. It is for this reason that 

the efficiency of torsional codified provisions has been studied by many researchers 

[5-6].  

For the case of one-story systems there is a position on the diaphragm with the 

  ll w  g p  p      : (і)                        w      l     l l        ppl          

(rigid          )  (іі)    w            l                             ppl          (      

      )  (ііі)                  w                       b             q   l     g 

(center of twist). Consequently, these centers are coincident and load-independent 

for one-story systems. However, for the case of multistory buildings these centers do 

not coincide and their effect has been the subject of extensive research by many 

researchers in the past. Inconsistent observations have been attributed to the 

varying model assumptions implemented, while a detailed overview has been 

presented by Rutenberg [7]. Cheung and Tso [8] proposed the generalized center of 

rigidity and twist under linear response, while Tso [9] compared two approaches in 

an effort to measure the story torsional moments for multistory buildings. In 

particular, the torsional moment is calculated using the floor eccentricity in the first 

approach, while in the second one using the story eccentricity. Smith and Vezina [10] 

defined the story rigidity center of multistory buildings as the point on the story 

diaphragm where no torsional action is developed from the application of external 

horizontal load. Riddell and Vaquez [11] concluded that the centers of rigidity exist 

only for a special class of multistory buildings. Lagaros et al. [12] proposed a 

combined topology-sizing optimum design formulation for RC buildings aiming at 

minimizing the material cost as well as the static and strength eccentricities taking 

into account both design code and architectural restrictions. 

Research interest extended also to the inelastic response of one-story structures 

[13-15]. De la Llera and Chopra [16] proposed the base shear and torque surfaces 

(BST), which represent all combinations of base shear and torque that would lead to 

structural collapse when applied statically. They also extended the same idea to 

multistory buildings, the so-called story shear and torque (SST) ultimate surface [17]. 

The surface is constructed for each story and depicts all combinations of story shears 
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and torque that applied statically would lead the story to collapse.  The construction 

of the surface is based on the implementation of a single super-element per building 

story, which represents its elastic and inelastic properties. The SE element of building 

consists of a single fictitious structural element per story capable of representing the 

elastic and inelastic properties of the story. Paulay [18, 19] proposed the center of 

resistance and identified the elastoplastic mechanism, aiming at estimating the 

torsional effects on the seismic response of ductile buildings, classifying them either 

as torsionally unrestrained or as torsionally restrained. Myslimaj and Tso [20, 21] 

proved that the torsional effect can be reduced for asymmetric wall-type systems by 

locating the center of strength and the center of rigidity on the opposite sides of the 

center of mass. Anagnostopoulos et al. 2010 [22] indicated the inadequacies of 

simplified one-story, shear-beam type systems for predicting the inelastic response 

of asymmetric, multistory framed buildings, subjected to torsion due to earthquake 

motions and for deriving general conclusions concerning the torsional provisions of 

the design codes.  

While static eccentricity and torsional to lateral frequency ratio are considered 

to be the most reliable indicators for the elastic state of response. Once the 

structure enters the inelastic state of response, strength eccentricity, defined as the 

distance between the center of mass and the strength center, exhibits the most 

efficient performance. A criterion exhibiting satisfactory performance for all states of 

response still lacks. In the present study/investigation an efficient assessment 

                         l                         ’    p        p  p           

proposed criterion aims at quantifying the torsional effect in terms of shear forces 

developed on vertical structural elements. It expresses the amplification of shear 

forces due to torsional effect. The framework of the proposed criterion is based on 

the obs  v                           b  l    v l       v      l         g  l      ’ 

shear forces differs from their algebraic sum. The proposed index calculates the 

percentage of this quantity normalized to the base shear imposed by the seismic 

excitation. One-story as well as multistory buildings, horizontally regular and 

irregular, were implemented to evaluate the proposed criterion. Its performance 
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was compared to other response parameters related to torsion, such as base torque 

and diaphragm rotation and proved to be satisfactory for all states of response. 

4.2 Description – Theoretical background 

The torsional moments that are developed due to the eccentricity are sustained 

by the structural system as a pair of shear forces. Thus, the torsional effect on 

buildings is quantified as torsion-induced displacements via torsion-induced shear 

forces on the vertical structural elements. When a lateral loading 
iP  is applied on the 

diaphragm, shear forces are developed at each vertical resisting element. Figure 4.1 

shows a simple plan view along with the vertical resisting elements (shear walls) and 

the corresponding shear forces developed. Without loss of generality the seismic 

action is considered along one direction only ( y direction). 

 

Figure 4.1. A typical plan view with shear walls. 

The shear forces developed on the vertical resisting structural elements satisfy 

the following expression: 

 
1 1

n n

kij kij

k k

V V
 

   (4.1) 

where n  is the number of vertical structural elements, while i  and j  correspond to 

the direction of the shear forces of the element k  and the seismic excitation with 
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reference to the structural axes. Eq. (4.1) denotes that the sum of the absolute 

values of the shear forces differs from their algebraic sum. This observation is 

attributed to torsional contribution on the shear forces, since torsional moment is 

sustained by the system as a pair of opposing shear forces. For the plan view of Fig. 

4.1 and seismic action along y  direction only, the following relations are satisfied 

 
1 1

0
n n

kxy kxy

k k

V V
 

    (4.2) 

 
1 1

n n

kyy kyy Ey

k k

V V V
 

    (4.3) 

The torsion induced in the floor is usually computed from the shear forces of the 

         l  l        w  l       l      ’         l               gl        

Based on the observations described above a criterion is proposed in this study, 

called ratio of torsion (ROT) that represents a measure to quantify the torsional 

effect. The general expression of ROT for a specific time step t is defined as 

 

,

1 ,
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( ) ( ) ( )

( ) ( )

y xn

kij Ex Ey

k i x j y

Ex Ey

ROT t

V t V t V t

V t V t
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 




 
 (4.4) 

The static equilibrium of forces acting on the diaphragm of the structure along the 

two axes x  and y  can be written as: 
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thus, Eq. (4.4) can be re-written as: 
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For demonstration purposes only and without loss of generality the simplified 

model of Fig. 4.2 is adopted. It is assumed that the lateral force resistance of the 

structure is provided by shear walls only, while floor diaphragm is considered rigid. 

The system is mono-symmetric with reference to x  direction and the eccentricity is 

introduced to the system by asymmetric mass distribution. The response of the 

system is considered for earthquake loading along y  direction only. The locations of 

CM and CR are shown in Fig. 4.2, while the stiffness eccentricity 
CRxe  along x  

direction is also denoted.  

 

Figure 4.2. Plan view of location of CM and CR. 

The twist of the diaphragm is the result of the torque 
tM  induced by the story 

base shear EyV . This torque affects the shear forces developed on vertical resisting 

elements. Consequently, the shear forces developed consist of two components, the 

translational and rotational one. The translational shear force component of element 

k  denoted as '

kiyV is calculated by 

 '

1

ky

kiy Eyn

ky

k

k
V V

k





 (4.8) 

where EyV  is the design base shear along the y direction, iyk  is the translational 

stiffness of the  element k  along y  direction, n  denotes the number of the vertical 
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resisting elements and i  the direction of the shear force of the element k . The 

torsional component is given by 

 '' t
kiy k ky

t

M
V x k

K
  (4.9) 

where for simplification reasons time step t is eliminated in the description that 

follows. 
kx  is the distance between the vertical resisting element k  and CM, 

tM is 

the torque introduced by the design shear force EyV , while 
tK  represents the 

torsional stiffness of the system calculated according to the relationship 

 2 2

t k kx k kyK y k x k    (4.10) 

The total shear force for element k  is obtained by 

 ' ''

kiy kiy kiyV V V   (4.11) 

Eqs. (4.9) to (4.11) hold for x  direction as well. 

In the case of the considered unidirectional seismic ground motion along y  axis, 

the elements in the transverse direction x  usually contribute to the torsional 

stiffness in the elastic range. Consequently, torsion-induced shear forces are 

developed in these elements only. As it is noted in Fig. 4.2., shear forces induced by 

translation are denoted as '

kiyV , while the torsional component as ''

kiyV . In this case 

using Eq. (4.4), the value of ROT is calculated as follows: 

 

' '' ' '' '' ''

1 1 2 2 3 4yy yy yy yy xy xy Ey

Ey

V V V V V V V
ROT

V

     
  (4.12) 

The static equilibrium of forces acting on the diaphragm of the structure is given by: 

 ' '' ' ''

1 1 2 2Ey yy yy yy yyV V V V V     (4.13) 

Therefore, by substituting Eq. (4.13) in Eq. (4.12) ROT value becomes 
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which can be written in a compact form as 

 

'' ''

3 4xy xy

Ey

V V
ROT

V


  (4.16) 

where the numerator of Eq. (4.16) represents the sum of the absolute values of the 

additional torsion - induced shear forces and the denominator represents the base 

shear. The base shear can be interpreted as a measure of the response intensity of 

the imposed excitation to the structure. The proposed criterion calculates the sum of 

absolute values of additional torsion-induced shear forces developed on individual 

elements normalized to the base shear which is imposed to the structure by the 

seismic action. In this way the amplification due to torsion of the imposed base shear 

EyV   is quantified [23]. 

In order to minimize the additional torsion-induced shear forces it suffices to 

minimize the numerator of Eq. (4.13) that corresponds to the sum of their absolute 

values. This implies that low ROT index corresponds to low value of the additional 

induced torsion. Therefore, ROT can be considered as an appropriate index for 

assessing the effect of torsion since it can quantify the amplification of the shear 

forces developed at each structural member due to torsional effect. In order to 

assess the efficiency of the proposed index the maximum ROT value is compared to 

the maximum values of other response quantities related to torsion and to the 

seismic structural response in the following numerical examples. 

In case of multistory buildings, Eq. (4.4) is calculated for every story of the 

building. Thus, the global value of the criterion is defined according to the following 

expression: 

 
1

l

m

m

ROT ROT


  (4.17) 

where l  is the number of the building stories, while ROT value is computed for every 

time step in case of time history analysis and the maximum value is defined [23]. 



 
Optimum Design of Earthquake Resistant Structures implementing Computational Methods        ISAAR                                                                                                              

 

Chrysanthi Stathi 101 

 

4.3 Implementation of ROT for single-story systems 

For the nonlinear static or dynamic analysis of structures the plastic hinge or the 

fiber approach can be adopted in the regions where inelastic deformations are 

expected to be developed. Since the plastic hinge approach has limitations in terms 

of accuracy, particularly for dynamic analyses, the fiber beam-column elements [24] 

are used in this study. According to the fiber approach, each structural element is 

discretized into a number of integration sections restrained to the beam kinematics 

and each section is divided into a number of fibers with specific material properties. 

Every fiber in the section can be assigned to different material properties, e.g. 

concrete, structural steel, or reinforcing bar, while the sections are located at the 

Gaussian integration points of the elements. The main advantage of the fiber 

approach is that every fiber has a simple uniaxial material model allowing an easy 

and efficient implementation of the inelastic behavior. In the numerical test 

examples section that follows, all analyses have been performed using the OpenSEES 

[25] platform. A bilinear material model with pure kinematic hardening is adopted 

for the structural steel. For the simulation of the concrete the modified Kent-Park 

model is applied, where the monotonic envelope of concrete in compression follows 

the model of Kent and Park [26] as extended by Scott et al. in [27]. This model allows 

a more accurate prediction of the capacity for flexure-dominated RC members 

despite its relatively simple formulation.  

The performance of the numerical applications considered in this study is 

assessed for different seismic hazard levels with reference to their structural 

behavior, associated with interstorey drifts, displacements, shear forces of the 

columns, base shear and diaphragm rotation. For this purpose a number of nonlinear 

time history analyses have been carried out applying six natural records for each 

hazard level (2/50, 10/50 and 50/50) chosen from Somerville and Collins [28] (see 

Table 4.1). The records of each hazard level are scaled to the same PGA in order to 

ensure compatibility between the records, in accordance to the hazard curve taken 

from the work by Papazachos et al. [29] (see Table 4.2). Eighteen nonlinear dynamic 

analyses have been performed for each design in order to assess its performance for 

all records and hazard levels.  
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Six one-story test examples are considered: torsionally stiff, horizontally regular, 

horizontally irregular exhibiting either single or double eccentricity. In all test 

examples the following material properties are considered: Concrete C20/25 with 

modulus of elasticity equal to 30GPa and characteristic compressive cylinder 

strength equal to 20MPa, longitudinal and transverse steel reinforcement B500C 

with modulus of elasticity equal to 210GPa and characteristic yield strength equal to 

500MPa. In addition to the symmetric design, three different mass distributions 

were considered for every test example, corresponding to 5%, 10% and 20% 

eccentricity. The design spectrum used correspond to soil type B (characteristic 

p       ΤB = 0 15      ΤC = 0 50         ΤD = 2.00 sec). Moreover, the importance 

factor γI was taken equal to 1.0, while the damping correction factor η is equal to 

1.0, since a damping ratio of 5% has been considered. The symmetric design is 

denoted as sym, while the mass eccentric designs are denoted as ecc5, ecc10 and 

ecc20 corresponding to 5%, 10% and 20% eccentricity, respectively. The eccentricity 

is introduced by assuming non-uniform mass distribution, which results into 

different location of the mass center, while the center of rigidity coincides with their 

geometric center. The response quantities and proposed criterion values obtained 

for the eccentric designs were compared to those obtained for the corresponding 

symmetric one. All test examples are classified as torsionally stiff, since the value of 

the uncoupled frequency ratio is greater than unity. The first three periods of 

vibration and the uncoupled frequency ratios are listed for all test examples in Tables 

4.3 to 4.12. In order to study the reliability of the proposed criterion for all states of 

response (elastic or elastoplastic) the natural accelerograms of Table 4.1 are used 

and the results presented in this study corresponds to maximum values obtained 

from the time-history analyses performed for each hazard level. 
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Table 4.1: Natural records [28] 

Earthquake Station Distance Site 

Records in 50/50 hazard level 

Honeydew (PT) 

17 August 1991 

Cape Mendocino 20 rock 

Petrolia 17 soil 

Cape Mendocino (CM) 

25 April 1992 

Rio Dell 13 soil 

Butler Valley 37 rock 

Cape Mendocino (C2) 

aftershock, 4/26/92 

Fortuna 43 soil 

Centerville 28 soil 

Records in 10/50 hazard level 

Tabas (TB) 

16 September 1978 

Dayhook 14 rock 

Tabas 1.1 rock 

Cape Mendocino (CM) 

25 April 1992 

Cape Mendocino 6.9 rock 

Petrolia 8.1 soil 

Chi-Chi (CC), Taiwan 

20 September 1999 

TCU101 4.9 soil 

TCU102 3.8 soil 

Records in 2/50 hazard level 

Valparaiso (VL), Chile 

3 May 1985 

Vina del Mar 30 soil 

Zapaller 30 rock 

Michoacan (MI), 

Mexico 

19 September 1985 

Caleta de Campos 12 rock 

La Union 22 rock 

La Villita 18 rock 

Zihuatenejo 21  rock 

 

Table 4.2: Seismic hazard levels [29] 

Event Recurrence Interval 
Probability of 

Exceedance 
PGA (g) 

Frequent 21 years 90% in 50 years 0.06 

Occasional 72 years 50% in 50 years 0.11 

Rare 475 years 10% in 50 years 0.31 

Very Rare 2475 years 2% in 50 years 0.78 
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Table 4.3: Monosymmetric - horizontally regular one-story simple mathematical model - 

Vibration periods and uncoupled frequency ratios 

 

1T  2T  3T  
t

x

x




   

t
y

y




   

sym 0.3339 
x 

0.3339 
y 

0.1665 
t 

2.0360 2.0360 

ecc0.05 0.3348 
y
 0.3339 

x
 0.1673 

t
 1.9958 2.0012 

ecc0.10 0.3373 
y
 0.3339 

x
 0.1697 

t
 1.9676 1.9876 

ecc0.20 0.3476 
y
 0.3339 

x
 0.1782 

t
 1.8737 1.9506 

 

Table 4.4: Eccentric - horizontally regular one-story simple mathematical model - Vibration 

periods and uncoupled frequency ratios 

 

1T  2T  3T  
t

x

x




   

t
y

y




   

sym 0.3339 
x 

0.3339 
y 

0.1665 
t 

2.0360 2.0360 

ecc0.05 0.3356 
y
 0.3339 

x
 0.1726 

t
 1.9345 1.9444 

ecc0.10 0.3407 
y
 0.3339 

x
 0.1727 

t
 1.9334 1.9728 

ecc0.20 0.3600 
y
 0.3339 

x
 0.1720 

t
 1.9412 2.0930 

 

Table 4.5: Monosymmetric - horizontally regular one-story structure - realistic plan views - 

Vibration periods and uncoupled frequency ratios 

 1T  2T  3T  
t

x

x




   

t
y

y




   

sym 0.3593 
x 

0.3484 
y 

0.2526 
t 

1.4224 1.3793 

ecc0.05 0.3594 
x
 0.3520 

y
 0.2570 

t
 1.3984 1.3696 

ecc0.10 0.3622 
x
 0.3594 

y
 0.2518 

t
 1.4384 1.4273 

ecc0.20 0.4000 
x
 0.3594 

y
 0.2502 

t
 1.5987 1.4365 
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Table 4.6: Eccentric - horizontally regular one-story structure - realistic plan views - Vibration 

periods and uncoupled frequency ratios 

 1T  2T  3T  
t

x

x




   t

y

y




   

sym 0.3593 
x 

0.3484 
y 

0.2526 
t 

1.4224 1.3793 

ecc0.05 0.3620 
x
 0.3512 

y
 0.2524 

t
 1.4342 1.3914 

ecc0.10 0.3753 
x
 0.3539 

y
 0.2519 

t
 1.4898 1.4049 

ecc0.20 0.4320 
x
 0.3549 

y
 0.2509 

t
 1.7218 1.4145 

 

Table 4.7: Horizontally irregular one-story structure 1 - Vibration periods and uncoupled 

frequency ratios 

 1T  2T  3T  
t

x

x




   

t
y

y




   

ecc 0.3212 
x 

0.3207 
y 

0.2243 
t 

1.4320 1.4297 

ecc0.05 0.3238 
x
 0.3207 

y
 0.2123 

t
 1.5252 1.5106 

ecc0.10 0.3306 
x
 0.3207 

y
 0.2125 

t
 1.5558 1.5092 

ecc0.20 0.3554 
x
 0.3207 

y
 0.2144 

t
 1.6576 1.4958 

 

Table 4.8: Horizontally irregular one-story structure 2 - Vibration periods and uncoupled 

frequency ratios 

 1T  2T  3T  
t

x

x




   

t
y

y




   

ecc 0.3212 
x 

0.3207 
y 

0.2243 
t 

1.4320 1.4297 

ecc0.05 0.3263 
x
 0.3207 

y
 0.2119 

t
 1.5398 1.5134 

ecc0.10 0.3396 
x
 0.3207 

y
 0.2124 

t
 1.5988 1.5098 

ecc0.20 0.3871 
x
 0.3207 

y
 0.2155 

t
 1.7962 1.4881 
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4.3.1 Monosymmetric - horizontally regular single-story 

system - simple model 

The first test example is a single-story 3D structure, shown in Fig. 4.3 together 

with the location of CM for the eccentric designs, which are mono-symmetric with 

reference to x  axis, while the seismic excitation is applied uni-directionally along y  

direction. The absolute and normalized maximum values of the shear forces with 

respect to ecc20 results developed at the vertical resisting elements along the x  

direction are provided in Fig. 4.4. Despite the fact that seismic excitation is applied 

along y  direction only, shear forces are developed in both x  and y  directions for 

the eccentric designs. Furthermore, no shear forces are developed for the symmetric 

design along x  direction, while the shear force values developed along the x  

direction for the eccentric designs are proportional to the magnitude of eccentricity. 

This is due to the fact that the shear forces along x  direction represent the 

contribution due to torsion that is increased proportionally to the magnitude of the 

eccentricity. The same trend is observed in Fig. 4.5 for the displacements and 

interstory drifts along x  direction. However, decreased values are observed for the 

displacements, interstory drifts and shear forces in the y  direction for the structural 

elements located at the stiff side (i.e. col1 and col3) and increased values for the 

elements located at flexible edge (i.e. col2 and col4) as shown in Figs. 4.6 and 4.7. 

 

 

Figure 4.3. Numerical Example 1 - plan view. 
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Figure 4.4. Numerical Example 1 - Shear forces: (a) maximum absolute values and (b) 

normalized values along x  direction for each design and hazard level. 

 

 

Figure 4.5. Numerical Example 1 - (a) normalized displacement values (in meters) and (b) 

normalized interstorey drift values (%) along x  direction for each design and hazard level. 
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Figure 4.6. Numerical Example 1 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 

 

 

Figure 4.7. Numerical Example 1 - (a) normalized displacement values (in meters) and (b) 

normalized interstorey drift values (%) along y direction for each design and hazard level. 

Figures 4.8(a) to 4.8(c) depict the trend of the base torque, diaphragm rotation 

and ROT values developed for the three hazard levels considered, while their 

normalized distributions are also shown in Figs. 4.8(d) to 4.8(f). It should be pointed 

out that since base torque, diaphragm rotation and ROT are not quantitatively 

comparable, qualitative conclusions will be drawn from their comparison. The 

diaphragm rotation, base torque and ROT values increase proportionally to the 

magnitude of eccentricity for all states of response. ROT calculation formula is based 

on internal shear forces for each hazard level quantifying the amplification due to 
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torsional effect. Taking into account that torque is sustained by a system as pairs of 

shear forces whose resultant is zero, higher ROT value indicates higher effect of 

torsional component on the structural elements. For the symmetric system, ROT 

magnitude is zero or almost zero for all states of response. While for the systems 

characterized by 20% eccentricity (ecc20) the shear forces amplified their magnitude 

due to torsion for 10/50 hazard level (Fig. 4.8(c)). In particular, compared to its 

symmetric counterpart the values of the shear forces are doubled for the 10/50 

hazard level and tripled for the 2/50 one. 

 

Figure 4.8. Numerical Example 1 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 

4.3.2 Eccentric - horizontally regular single-story system - 

simple model 

For this test example a bidirectional eccentricity is considered for the eccentric 

designs, while the symmetric design is identical to test example 1. Figure 4.9 depicts 

the location of mass center for the eccentric designs considered, while all designs are 

subjected to two-component seismic excitation.  
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Figure 4.9. Numerical Example 2 - plan view. 

 

Figure 4.10. Numerical Example 2 - Shear forces: (a) maximum absolute values and (b) 

normalized values along x  direction for each design and hazard level. 

 

Figure 4.11. Numerical Example 2 - (a) normalized displacement values (in m) and (b) 

normalized interstorey drift values (%) along x  direction for each design and hazard level. 
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Figure 4.12. Numerical Example 2 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 

The typical behavior of torsionally stiff systems is also observed for this test 

example along both directions. In particular, shear forces along x  direction are 

decreased at stiff edge (col1 and col2) while they are increased at flexible edge (col3 

and col4), as shown in Fig. 4.10. Similar observations can be drawn for displacements 

and interstory drifts as shown in Fig. 4.11. It is worth noting that the values of the 

response quantities along x  direction for columns 1 and 2 are proportional to 5% 

and 10% eccentricity for 2/50 hazard level. For 20% eccentricity, however, instead of 

further decrease on the response quantities observed for the columns at the stiff 

side, an increase on the values of shear forces is recorded. Figures 4.12 and 4.13 

indicate that the response quantities along y  direction are exhibiting consistent 

increase and decrease for flexible and stiff edges, respectively. Moreover, as shown 

in Figs. 4.14, as eccentricity increases diaphragm rotation, base torque and ROT 

values also increase for all states of response. It can also be observed that, for this 

system with bidirectional eccentricity subjected to two-component excitation, 

increased torsional effect is noticed according to base torque, diaphragm rotation 

and ROT values compared to the mono-symmetric test example, i.e. for the 2/50 

hazard level ROT value is equal to 2.38, while for mono-symmetric system subjected 

to unidirectional excitation is equal to 2.10. 



 
112 Chrysanthi Stathi 

 

 

Figure 4.13. Numerical Example 2 - (a) normalized displacement values (in m) and (b) 

normalized interstorey drift values (%) along y direction for each design and hazard level. 

 

Figure 4.14. Numerical Example 2 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 

4.3.3 Monosymmetric - horizontally regular single-story 

structure - with more realistic plan view 

In addition to the previous test examples, a larger example with regular plan 

layout is considered. Figure 4.15 depicts the location of mass center for the eccentric 

designs considered. The eccentric designs are monosymmetric and are subjected to 

one-component earthquake excitation along y  direction.  
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Figure 4.15. Numerical Example 3 - plan view. 

 

Figure 4.16. Numerical Example 3 - Shear forces: (a) maximum absolute values and (b) 

normalized values along x direction for each design and hazard level. 

Figure 4.16 illustrates that torsional component is developed along x  direction 

as in the case of first numerical application, since no seismic excitation is imposed 

along this direction. While the typical behavior of torsionally stiff structures is 

observed along y  direction, decrease of shear forces for the elements at stiff edge 

(col1, col6) and increase for those at the flexible edge (col11, col16) was observed 

(Fig. 4.17). Interstory drifts and displacements followed the trend of shear forces 

(Figs. 4.18, 4.19).  

 



 
114 Chrysanthi Stathi 

 

 

 

Figure 4.17. Numerical Example 3 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 

 

 

Figure 4.18. Numerical Example 3 - (a) normalized displacement values (in m) and (b) 

normalized interstory drift values (%) along x direction for each design and hazard level. 
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Figure 4.19. Numerical Example 3 - (a) normalized displacement values (in m) and (b) 

normalized interstorey drift values (%) along y direction for each design and hazard level. 

In Figs. 4.20 the values of the response quantities related to torsion are 

presented. As it is observed, when eccentricity increases base torque, diaphragm 

rotation and ROT values increase for all states of response. The already observed 

behavior for monosymmetric simple mathematical model is also confirmed for 

realistic plan view model. 

 

Figure 4.20. Numerical Example 3 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 
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4.3.4 Eccentric - horizontally regular single-story structure -  

with more realistic plan view 

The same symmetric design as the previous example is implemented in the 

current one, while eccentric ones exhibit bidirectional eccentricity and are subjected 

to two-component earthquake ground motion. Figure 4.21 shows the plan layout 

while some features of eccentric designs are denoted in grey. Similar observations 

                ll              ’  b   v         l    b   v           test example. It is 

noticed that consistent variation (increase or decrease) of response quantities 

disappears for eccentricity values greater than 10%, while for more realistic layouts 

the observed trend is valid for the elastic state. However, once the system enters the 

elastoplastic state and elements start yielding, the stiffness is not constant affecting 

the location of the rigidity center. The location of the rigidity center in elastoplastic 

states is not known and therefore it is not possible to define the flexible and stiff side 

of the system. The observations described above are shown in Figs. 4.22 and 4.23 for 

response quantities along y  direction, while similar behavior is observed in x  

direction.  

 

Figure 4.21. Numerical Example 4 - plan view. 
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Figure 4.22. Numerical Example 4 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 

 

Figure 4.23. Numerical Example 4 - (a) normalized displacement values (in m) and (b) 

normalized interstory drift values (%) along y direction for each design and hazard level. 

In Figures 4.24(a) to 4.24(c) significant increase of the maximum values of base 

torque and ROT  is observed, while a slight decrease of the maximum diaphragm 

rotation is occurred compared to the corresponding to second numerical application. 

In this case the shear forces imposed were amplified six times for ecc20 in 2/50 

hazard level, while for the simple model of test case 2 the corresponding value was 

2.38. Another interesting remark is that the maximum base torque do not always 

follow the distribution of the maximum diaphragm rotation. Figures 4.24(b) and 

4.24(c) show that for ecc20 design a decrease of the maximum diaphragm rotation is 
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observed from rare earthquake event 10/50 to maximum earthquake event 2/50, 

whereas for maximum base torque values are increased for the corresponding 

states. 

 

Figure 4.24. Numerical Example 4 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 

4.3.5 Horizontally irregular single-story structure 1  

In the current numerical example a horizontally irregular building (Fig. 4.25) was 

implemented to evaluate the performance of the proposed criterion. One-

component earthquake excitation along y direction is imposed. For this test 

example was not possible to define a totally symmetric design that complies with the 

regulations imposed by the design codes [30]. Consequently, a small amount of 

eccentricity 0.83% is noticed for the referenc      g                     “ecc”  

                        “sym”                    four test examples. The other designs 

considered have the same amount of eccentricities as in the previous examples (5%, 

10% and 2%). Since no seismic excitation was imposed along x  direction, the 

developed shear forces as illustrated in Fig. 4.26 correspond to torsional component 

and increases with respect to eccentricity. The already established trend for 

torsionally stiff systems is observed in Fig. 4.27 for developed shear forces along y  

direction. Increase of shear forces for elements at flexible edge (col1, col7) 

respectively to eccentricity and decrease at stiff edge (col3, col6).  
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Figure 4.25. Numerical Example 5 - plan view. 

 

 

Figure 4.26. Numerical Example 5 - Shear forces: (a) maximum absolute values and (b) 

normalized values along x direction for each design and hazard level. 
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Figure 4.27. Numerical Example 5 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 

 

Figure 4.28. Numerical Example 5 - (a) normalized displacement values (in m) and (b) 

normalized interstory drift values (%) along x direction for each design and hazard level. 

Interstory drifts and displacements along x  direction follow the same trend as 

shear forces along this direction (Fig. 4.28). The same happens for the response 

quantities along y direction (Fig. 4.29). For "ecc" design almost zero values were 

obtained for base torque, diaphragm rotation and ROT for the elastic state of 

response (50/50 hazard level), while for the eccentric designs, the corresponding 

values are increased proportionally to the eccentricity. Similar observations are 

obtained for the other two hazard levels (Fig. 4.30).  
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Figure 4.29. Numerical Example 5 - (a) normalized displacement values (in m) and (b) 

normalized interstory drift values (%) along y direction for each design and hazard level. 

 

Figure 4.30. Numerical Example 5 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 

4.3.6 Horizontally irregular single-story structure 2 

The sixth numerical example, shown in Fig. 4.31, is a horizontally irregular 

building with bidirectional eccentricity subjected to two-component ground motion. 

For this numerical example was not also possible to define a totally symmetric design 

that complies with the regulations imposed by the design codes [30]. In this case the 
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            “ecc”     l      p                   g                v           

amount of eccentricities as in the previous examples (5%, 10% and 2%). Figures 4.32 

and 4.33 show an increase of the response quantities for 5% and 10% eccentricity for 

the elements located at flexible edge (i.e. col1 and col7) and a decrease for those 

located at stiff edge (i.e. col3 and col6).  

 

 

Figure 4.31. Numerical Example 6 - plan view. 

 

Figure 4.32. Numerical Example 6 - Shear forces: (a) maximum absolute values and (b) 

normalized values along y direction for each design and hazard level. 
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Figure 4.33. Numerical Example 6 - (a) normalized displacement values (in m) and (b) 

normalized interstory drift values (%) along y direction for each design and hazard level. 

 

Figure 4.34. Numerical Example 6 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT  for 

each design and hazard level. 

For "ecc" design almost zero values were obtained for base torque, diaphragm 

rotation and ROT for the elastic state of response (50/50 hazard level). For the 

eccentric designs, the corresponding values are increased proportionally to the 

eccentricity. Similar observations are obtained for the other two hazard levels. 

Although a slight increase is observed on the magnitude of base torque, calculated 

for the 10/50 and 2/50 hazard levels, significant increase for ROT values were 

noticed. As mentioned above, however, base torque, diaphragm rotation and ROT 

are not directly comparable and therefore qualitative conclusions will be drawn from 
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their comparison. It is worth noting that for the 5% eccentricity design, increased 

ROT value is noticed for 2/50 hazard level as shown in Fig. 4.34(c). This can be 

justified by the asymmetric yielding of the vertical resisting elements due to the 

asymmetric plan view of the structure. The trend with respect to the behavioral 

quantities observed for the torsionally stiff horizontally regular systems has been 

confirmed also for torsionally stiff horizontally irregular systems. 

4.4 Implementation of ROT for multistory buildings 

The performance of the proposed ROT index is also evaluated for multistory 

buildings. Four four-story buildings were implemented in order to illustrate the 

efficiency of ROT.  One monosymmetric horizontally regular building, two double 

eccentric horizontally regular buildings and a horizontally irregular one were tested. 

Fiber approach was adopted for modeling of members for multistory buildings too. 

The same material laws as in the case of one-story structures were implemented 

[26], [27]. In order to conduct the nonlinear dynamic analysis the same natural 

accelerograms were used. Tables 4.9 to 4.12 indicate that for these cases also the 

buildings are classified as torsionally stiff. 

Table 4.9: Monosymmetric - horizontally regular four-story building - simple mathematical 

model - Vibration periods and uncoupled frequency ratios 

 

1T  2T  3T  
t

x

x




   t

y

y




   

sym 1.1079
x 

1.1079
y 

0.5170
t 

2.1429 2.1429 

ecc0.05 1.1102
y
 1.1079

x
 0.5200

t
 2.1350 2.1306 

ecc0.10 1.1172
y
 1.1079

x
 0.5279

t
 2.1163 2.1306 

ecc0.20 1.1458
y
 1.1079

x
 0.5570

t
 2.0571 1.9890 
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Table 4.10: Eccentric - horizontally regular four-story building - simple mathematical model - 

Vibration periods and uncoupled frequency ratios 

 

1T  2T  3T  
t

x

x




   t

y

y




   

sym 1.1079
x 

1.1079
y 

0.5170
t 

2.1429 2.1429 

ecc0.05 1.1125
y
 1.1079

x
 0.5225

t
 2.1292 2.1204 

ecc0.10 1.1268
y
 1.1079

x
 0.5500

t
 2.0487 2.0144 

ecc0.20 1.1829
y
 1.1079

x
 0.5612

t
 2.1078 1.9742 

 

Table 4.11: Eccentric - horizontally regular four-story building - realistic plan views - 

Vibration periods and uncoupled frequency ratios 

 

1T  2T  3T  
t

x

x




   t

y

y




   

sym 0.9431
x 

0.8486
y 

0.5998
t 

1.5724 1.4148 

ecc0.05 0.9464
x
 0.8063

y
 0.5711

t
 1.6572 1.4118 

ecc0.10 0.3753
x
 0.3539

y
 0.2519

t
 1.4898 1.4049 

ecc0.20 1.0648
x
 0.8996

y
 0.6097

t
 1.7464 1.4755 

 

Table 4.12: Horizontally irregular four-story building - Vibration periods and uncoupled 

frequency ratios 

 1T  2T  3T  
t

x

x




   t

y

y




   

ecc 1.0074
x 

1.0059
y 

0.6988
t 

1.4416 1.4395 

ecc0.05 1.0218
x
 1.0074

y
 0.7006

t
 1.4585 1.4379 

ecc0.10 1.0633
x
 1.0074

y
 0.6851

t
 1.5520 1.4704 

ecc0.20 1.1933
x
 1.0074

y
 0.6313

t
 1.8902 1.5958 
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4.4.1 Monosymmetric - horizontally regular four-story 

building - simple model  

This test example is a four-story monosymmetric building subjected to 

unidirectional excitation along the y  direction. The layout of the symmetric design 

and a 3D view are given in Fig. 4.35, while some properties of the eccentric designs 

considered are also denoted in grey.  

                             

Figure 4.35. Numerical Example 7 - plan and 3D view. 

 

Figure 4.36. Numerical Example 7 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along x direction for each design and hazard level. 

The structural response quantities are presented in Figs. 4.36 to 4.39 for the 

columns of the top story for the three hazard levels. Figure 4.40 shows the response 

parameters of base torque, diaphragm rotation and ROT that are related to the 
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torsional effect. The envelopes of maximum values of the response quantities along 

the height of the building are presented in Figs. 4.41 to 4.46 for various structural 

elements. It can be seen that although unidirectional seismic excitation is 

considered, shear forces are developed at the vertical resisting elements along both 

directions for the case of the eccentric designs due to the torsional component. In 

particular, the shear forces developed along x  direction for the symmetric design 

are reduced compared to those developed for the eccentric designs, while their 

values are proportional to the eccentricity (Fig. 4.36). Similar behavior is observed 

for the displacements and interstory drifts along x  direction, while their maximum 

values are depicted in Fig. 4.37. The behavior of torsionally stiff systems is observed 

for all response quantities along the y direction of seismic excitation, as can be seen 

in Figs. 4.38 and 4.39. Decreased values for displacements, interstory drifts and shear 

forces are observed for the elements at the stiff side (i.e. col1 and col3) for the case 

of 5% and 10% eccentricity, while increased values are observed for the elements at 

flexible edge (i.e. col2 and col4). 

 

Figure 4.37. Numerical Example 7 - Peak edge column (a) normalized displacement values (in 

m) and (b) normalized interstory drift values (%) along x  direction for each design and 

hazard level. 
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Figure 4.38. Numerical Example 7 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along y direction for each design and hazard level. 

 

Figure 4.39. Numerical Example 7 - Peak edge column (a) normalized displacement values (in 

m) and (b) normalized interstory drift values (%) along y direction for each design and 

hazard level. 
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Figure 4.40. Numerical Example 7 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT  for each 

design and hazard level. 

The response quantities related to the torsional effect (i.e. upper diaphragm 

rotation, base torque and ROT) and their normalized values are shown in Fig. 4.40 

corresponding to the three hazard levels considered. It should be pointed out that 

since base torque, diaphragm rotation and ROT are not directly comparable, 

qualitative conclusions will be drawn from their comparison. The diaphragm 

rotation, base torque and ROT are increased proportionally to the eccentricity for all 

states of response. It can also be observed that maximum base torque values are not 

always in accordance to the distribution of the maximum diaphragm rotation values. 

As it is shown in Figs. 4.40(a) to 4.40(c), the upper diaphragm rotation obtained for 

the ecc20 design is increased when the records of the 2/50 hazard level are applied 

compared to the rotation values obtained for the 10/50 hazard level, while base 

torque and ROT values are reduced. Since, ROT calculation formula is based on the 

internal shear forces developed at the vertical resisting elements, it can be said that 

this parameter quantifies the amplification of the shear forces due to torsion. Thus, 

for the symmetric design, ROT is almost equal to zero for all states of response, while 

for the design with 20% eccentricity (ecc20) the shear forces are double (Fig. 4.40(c)) 

compared to those of the symmetric design. For comparative reasons, two columns 

were selected, one located at stiff edge (column 1) and one located at flexible edge 

(column 4) and their structural response for all stories is shown in Figs. 4.41 to 4.46. 
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For both columns, the shear forces along x  direction are proportional to the size of 

the eccentricity for all hazard levels (see Figures 4.40 and 4.44). The same trend is 

observed for the interstory drifts and displacements (see Figures 4.42, 4.43, 4.45 and 

4.46). The response quantities for column 1 are decreased proportionally to the 

increase of eccentricity for 5% and 10% (see Figures 8, 9 and 10), while for the case 

of column 4 the opposite trend is observed, i.e. the response in increased 

proportionally for 5% and 10% eccentricity (see Figs. 4.44, 4.45 and 4.46). 

 

Figure 4.41. Numerical Example 7 - Column 1 maximum absolute shear force values along x  

(a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.42. Numerical Example 7 - Column 1 maximum absolute drift values along x  (a, b, 

c) and y  (d, e, f) direction for all floors and hazard levels. 
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Figure 4.43. Numerical Example 7 - Column 1 maximum absolute displacement values along 

x  (a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.44. Numerical Example 7 - Column 4 maximum absolute shear force values along x  

(a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 
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Figure 4.45. Numerical Example 7 - Column 4 maximum absolute drift values along x  (a, b, 

c) and y  (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.46. Numerical Example 7 - Column 4 maximum absolute displacement values along 

x  (a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 

4.4.2 Eccentric - horizontally regular four-story building - 

simple model 

This test problem has the same symmetric design with that of the previous test 

example. However, the eccentric designs exhibit bidirectional eccentricities as 

denoted in grey in Fig. 4.47, while all designs are subjected to two-component 

seismic excitation.  
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Figure 4.47. Numerical Example 8 - plan and 3D view. 

 

Figure 4.48. Numerical Example 8 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along x  direction for each design and hazard level. 

As it is shown in Fig. 4.48, the shear forces at the stiff edge (i.e. col1 and col2) 

along the x  direction are decreased proportionally to the eccentricity, while they are 

increased at the flexible one (i.e. col3 and col4). Similar observations can be drawn 

for the displacements and interstory drifts (see Figs. 4.49(a) and 4.49(b)). It is worth 

noting that the response quantities along x  direction for columns 3 and 4 are 

increased when the eccentricity is also increased.  
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Figure 4.49. Numerical Example 8 - Peak edge column (a) normalized displacement values (in 

m) and (b) normalized interstory drift values (%) along x direction for each design and 

hazard level. 

 

Figure 4.50. Numerical Example 8 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along y direction for each design and hazard level. 

       p     q                   p    p   g ’   l        l  g y  direction are 

increased for the flexible edge and are decreased for the stiff one when eccentricity 

is increased (see Figs. 4.50 and 4.51). Moreover, when eccentricity is increased, top 

   p   g ’            b       q       ROT are also increased for all states of 

response (see Fig. 4.52). 
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Figure 4.51. Numerical Example 8 - Peak edge column (a) normalized displacement values (in 

m) and (b) normalized interstory drift values (%) along y direction for each design and 

hazard level. 

 

Figure 4.52. Numerical Example 8 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT  for each 

design and hazard level. 

4.4.3 Eccentric - horizontally regular four-story building - 

with more realistic plan view  

The ninth numerical example considered in this study is shown in Fig. 4.53. It is a 

regular building with more realistic plan layout, and exhibits a similar trend for the 
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response quantities to the previous test examples examined, for eccentricity values 

equal to 5% and 10% (see Figs. 4.54 and 4.55 for the y  direction). Similar trend was 

observed for the response quantities along x  direction. As it is shown in Fig. 4.56, 

the maximum values of base torque and ROT are increased significantly, while the 

maximum diaphragm rotation developed is slightly decreased in comparison to those 

obtained for second test example. 

 

 

 

 

Figure 4.53. Numerical Example 9 - plan and 3D view. 

 



 
Optimum Design of Earthquake Resistant Structures implementing Computational Methods        ISAAR                                                                                                              

 

Chrysanthi Stathi 137 

 

 

Figure 4.54. Numerical Example 9 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along y direction for each design and hazard level. 

 

Figure 4.55. Numerical Example 9 - Peak edge column (a) normalized displacement values (in 

m) and (b) normalized interstory drift values (%) along y direction for each design and 

hazard level. 
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Figure 4.56. Numerical Example 9 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT  for each 

design and hazard level. 

4.4.4 Horizontally irregular four-story building   

Τhe last numerical example examined in this study is the horizontally irregular 

building with bidirectional eccentricity shown in Fig. 4.57 subjected to two-

component seismic excitation.  

 

Figure 4.57. Numerical Example 10 - plan and 3D view. 

Due to its irregular layout, it was not possible to define the symmetric design 

that complies with the restrictions imposed by the design codes [30]. This reference 
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design exhibit static eccentricity of 0.4% and is denoted as ecc. Similar to the 

previous test examples, the non-symmetric designs considered exhibit the same 

eccentricity (i.e. 5%, 10% and 20%).  

 

Figure 4.58. Numerical Example 10 - Peak edge column shear forces (a) maximum absolute 

values and (b) normalized values along y direction for each design and hazard level. 

 

Figure 4.59. Numerical Example 10 - Peak edge column (a) normalized displacement values 

(in m) and (b) normalized interstory drift values (%) along y direction for each design and 

hazard level. 

The response quantities studied (shear forces, displacements and interstory 

drifts) will be presented along y  direction. Similar results are obtained in x  

direction. As can be seen in Figures 4.58 and 4.59 the response quantities for 
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elements at the flexible edge (i.e. col1 and col7) are increased while for those at stiff 

edge (col3, col6) are decreased proportionally to the increase of the eccentricity (5% 

to 10%).  

 

Figure 4.60. Numerical Example 10 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d) 

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT  for each 

design and hazard level. 

For ecc design almost zero base torque, upper diaphragm's rotation and ROT 

values are obtained for the elastic state of response (i.e. for the 50/50 hazard level). 

For the non-symmetric designs, the corresponding values are increased 

proportionally to the increase of the eccentricity. This trend is observed for the other 

two hazard levels indicating ROT as a proper criterion for all states of response. Non-

zero ROT values are obtained for ecc design for the 10/50 and 2/50 hazard levels due 

to asymmetric yielding which affects the location of rigidity center, while the 

eccentricity is increased (see Fig. 4.60(c)). 

Two columns (col6 and col7) are chosen as before in order to present the 

variation on the envelopes of the maximum values along the height for all designs. 

Both columns are located at the stiff edge along the x  direction, while column 6 is 

located at the stiff side and column 7 at the flexible side along the y  direction. The 

response quantities are decreased for all stories when the building performs in the 

elastic region, while in the elastoplastic region some response quantities are 

increased (see Figs. 4.61 to 4.66). Along the y  direction the response quantities of 



 
Optimum Design of Earthquake Resistant Structures implementing Computational Methods        ISAAR                                                                                                              

 

Chrysanthi Stathi 141 

 

column 6 are decreased proportionally to the increase of eccentricity (5% and 10%), 

while they are increased for column 7 in both elastic and elastoplastic range. 

 

Figure 4.61. Numerical Example 10 - Column 6 maximum absolute shear force values along 

x  (a, b, c) and y (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.62. Numerical Example 10 - Column 6 maximum absolute drift values along x  (a, b, 

c) and y  (d, e, f) direction for all floors and hazard levels. 



 
142 Chrysanthi Stathi 

 

 

Figure 4.63. Numerical Example 10 - Column 6 maximum absolute displacement values along 

x  (a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.64. Numerical Example 10 - Column 7 maximum absolute shear force values along 

x  (a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 
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Figure 4.65. Numerical Example 10 - Column 7 maximum absolute drift values along x (a, b, 

c) and y (d, e, f) direction for all floors and hazard levels. 

 

Figure 4.66. Numerical Example 10 - Column 7 maximum absolute displacement values along 

x  (a, b, c) and y  (d, e, f) direction for all floors and hazard levels. 

4.5 Discussion 

In the current chapter, the ratio of torsion (ROT) index as performance 

assessment criterion of buildings was evaluated. For this purpose, several regular 

and irregular, single-story as well as multistory buildings were considered. 

Unidirectional and bidirectional seismic excitations were imposed to monosymmetric 

and double eccentric buildings. Nonlinear dynamic analysis was conducted 
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implementing natural accelerograms for all hazard levels. The maximum value of 

various response quantities, such as interstory drifts, displacements, shear forces, 

w                  b       q            pp      p   g ’           w     l   

recorded for every numerical application. The structures were classified in terms of 

their torsional stiffness according to uncoupled torsional to translational frequency 

ratios. The characteristic of response quantities increase with respect to eccentricity 

for elements at the flexible side of the structure, while the same quantities are 

decreased with respect to eccentricity for elements at the stiff side. In order to 

examine the behavior for multistory buildings vertical structural elements were 

chosen at the stiff and flexible side of horizontally regular and irregular buildings and 

their reponse quantities along the height were recorded. The observed behavior for 

torsionally stiff structures was confirmed for all stories. In cases of monosymmetric 

structures subjected to unidirectional earthquake excitation, it was observed that 

despite the fact that no excitation was imposed along x  direction shear forces were 

developed and their magnitude increased proportionally to eccentricity. The base 

   q         pp      p   g ’               ROT are also increasing with respect to 

eccentricity for all hazard levels. While base torque and ROT follow the same trend 

                z    l v l    pp      p   g ’                      ll w      ll        

The advantage of ROT in comparison with the other two response quantities related 

to torsion is that it quantifies the torsional effect in terms of shear forces, expressing 

    p       g                 ’   pl               l z            p     b           
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5 OPTIMIZATION PROCESS 

 

 

 

5.1   Introduction  

    w    “ p     ”    l                “     l           l”  S   l  l   

“ p     ”       “    b   ”                 p    z                   b   g         g 

towards its ultimate state. 

The history of optimization, that is the quest for finding extreme behavior of a 

system, dates several hundreds of years during which remarkable progress has been 

made in developing new and more efficient methods. Euclid (300B.C.) tackled the 

problem of finding the shortest distance which may be drawn from a point to a line 

[1], while Heron of Alexandria (100B.C.) studied the optimization problem of light 

travelling between two points by the shortest path [1]. Fermat (1657) developed the 

more general principle that light travels between two points in a minimum time [2], 

while Cauchy (1847) presented for the first time a minimization algorithm (steepest 

descent method) implementing function derivatives [3]. The development of calculus 

provided the means for the development of the mathematical theory for 

optimization. The pioneering works of Courant (1943) on penalty functions [4], 

Dantzig (1951) on linear programming [5], Karush (1939) as well as Kuhn and Tucker 
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(1951) on optimality conditions for constrained problems [6], [7] initiated the 

modern era of optimization.  

Particularl         60’     v   l  p    z                    lv  g    l      

problems were introduced. Rosenbrock (1960) presented the method of orthogonal 

directions [8], Rosen (1960) suggested the gradient projection method [9], 

Zoutendijk (1960) formed the feasible directions method [10], Hooke and Jeeves 

(1961) developed the pattern search method [11], Davidon, Fletcher and Powell 

(1963) stated the variable metric method [12], Fletcher and Reeves (1964) presented 

the conjugate gradient method [13], Powell (1964) introduced the method of 

conjugate directions [14], Nelder-Mead (1965) suggested their simplex method [15], 

Box (1965) introduced his homonymous technique [16], while Fiacco and McCormick 

(1966) formed the so called Sequential Unconstrained Minimization Technique 

(SUMT) [17].  

Since 1970 structural optimization has been the subject of intensive research 

and several different approaches for optimal design of structures have been 

advocated [18-24]. All the aforementioned methods are of deterministic character; 

that is, when applied to the same initial design vector, they always result in the same 

final design vector. The reason for this is the fact that the element of randomness is 

non-existent. As a result, there is appreciable probability of getting trapped in local 

minima. Mathematical programming methods make use of local curvature 

information derived from linearization of the original functions by using their 

derivatives with respect to the design variables at points obtained in the process of 

optimization to construct an approximate model of the initial problem. On the other 

hand the application of combinatorial optimization methods based on probabilistic 

searching do not need gradient information and therefore avoid to perform the 

computationally expensive sensitivity analysis step. Gradient-based methods present 

a satisfactory local rate of convergence, but they cannot assure that the global 

optimum can be found, while combinatorial optimization techniques, are in general 

more robust and present a better global behavior than the mathematical 

programming methods. They may suffer, however, from a slow rate of convergence 

towards the global optimum. 
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In contrast to the deterministic optimization methods, the stochastic 

optimization procedures allow for randomness to appear. In this way, it is possible to 

get different final design vectors, even though the initial vector is the same. In this 

category, the most known and widely applied methods are the genetic algorithms 

(GA), originating from Holland (1975) [25] and Goldberg (1989) [26], the simulated 

annealing (SA) by Kirkpatrick (1983) [27], evolutionary programming (EP) [28], and 

the evolutionary strategies (ES) [29], [30], which are used in the present study. The 

main characteristic of these methods is the wider exploration and exploitation of the 

domain, which in turn increases both the probability of locating the global minimum 

and the computational cost. Both GA and ES imitate biological evolution and 

combine the concept of artificial survival of the fittest with evolutionary operators to 

form a robust search mechanism. Apart from the pure deterministic or pure 

stochastic procedure, hybrid schemes have been introduced as well. The main idea 

behind the hybridism is to combine the advantages of both methods for a better 

result to be obtained [31], [32].  

5.2   Structural optimization problem 

The main objective of engineers is to design resistant structures, which satisfy all 

the constraints (defined by codes) and also acquire specific attributes (low cost, low 

weight, small displacements are some of them). This can be accomplished by the 

optimization process through a trial and error procedure, a computationally 

intensive task. Thanks to developments in Computational Mechanics community the 

solution of this problem is feasible using evolutionary algorithms inspired by 

Darwinian evolution, this procedure is an imitation of it. 

Structural optimization problems are characterized by various objective and 

constraint functions that are generally non-linear functions of the design variables. 

These functions are usually implicit, discontinuous and non-convex. The 

mathematical formulation of structural optimization problems with respect to the 

design variables, the objective and constraint functions depend on the type of the 

application. However, all optimization problems can be expressed in standard 
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mathematical terms as a non-linear programming problem (NLP), which in general 

form can be stated as follows: 

 min ( )F s  (5.1) 

subject to ( ) 0jg s  1,....,j m  

l u

i i is s s   1,...,i n  

where s  is the vector of design variables, ( )F s  is the objective function to be 

minimized, ( )jg s are the behavioral constraints, l

is and u

is  are the lower and the 

upper bounds on a typical design variable is . 

5.2.1   Definitions 

5.2.1.1   Design Variables 

Design variables are the parameters, which when they are fully set the design is 

determined. A design is characterized as infeasible when it violates the constraints of 

the problem. In the opposite case the design is feasible. The selection of the 

appropriate design variables is a crucial step for the formulation of the optimization 

problem. The selection of inappropriate design variables may result to wrong 

formulation of the problem or even mislead the solution away from the optimum 

design. Another important issue is the relative independence of design variables. In 

cases that a design variable is dependent on another one, it stops representing a 

design variable and become a parameter. 

During the formulation of the mathematical optimization model the function to 

be optimized should be sufficiently dependent on all the design parameters. Let us 

consider the case that the objective function is the weight of the structure, where 

the minimum value is obtained and let assume that the magnitude of the weight is at 

the order of 1.000 kg. If the weight of a structural member is in the order of 310 kg 

or less and let us consider that this member represents one of the design variables of 

the problem, then if the value is changed by 100% the influence on the value of the 

objective function is negligible. To avoid such conditions, it is necessary that linkage 
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between the design variables is imposed. Therefore, some members of the 

structures can be represented by a common design parameter. Therefore, it is 

recommended to conduct a sensitivity analysis in order to estimate the sensitivity of 

the objective function over all the design parameters before the final choice of the 

optimization model. Through the sensitivity analysis it is possible to detect design 

parameters that have negligible influence on the objective function. 

5.2.1.2   Objective function 

In order to describe an optimization problem, a large number of feasible designs 

are implemented. But not all of them exhibit the same performance. A criterion 

should be adopted so as to evaluate the performance of the various designs. A 

function that takes a specific value represents that criterion and constitutes the 

objective function of the problem depending on the design variables. A maximizing 

problem of the function ( )F s  can be transformed into a minimization problem of 

the objective function ( )F s . 

The appropriate selection of the objective function is of crucial importance at 

the state of the mathematical formulation of the optimization problem. Some of the 

most widespread objective function in the literature to be optimized are: the cost, 

the profit, the energy losses, the weight or generally the performance. There are also 

cases that more than one objective functions are necessary, e.g. minimum weight 

and minimum stresses. These type of problems are called optimization problems 

with multiple objective functions, the multi-objective design or Pareto optimum 

design problem. 

5.2.1.3   Constraint functions 

Α          l                                         v l               g  v    bl   

    l  b    ll                    v        g                 k           g      ’ 

requirements are introduced in the mathematical formulation of the optimization 

problem in the form of equalities or inequalities and are called constraint functions. 

Based on these constraint functions, the designs are classified as feasible or 
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infeasible. Moreover, constraint functions should be dependent on at least one 

design variable so as its existence in the mathematical model make sense.  

One inequality constraint function ( ) 0jg s  is considered as active at the point 

s  in the case that the equality is satisfied, i.e. ( ) 0jg  s . Accordingly, the above 

constraint function is considered as inactive for the design s  for the case that the 

inequality is strictly satisfied, i.e. ( ) 0jg  s . The inequality constraint function is 

considered that it is violated for the design s  if a positive value that ( ) 0jg  s , 

corresponds to the value of the constraint function. Similarly, an equality constraint 

function ( ) 0jh s  is considered that it is violated for the design s  if the equality is 

not satisfied, i.e. ( ) 0jh  s . Therefore, an equality constraint function might be 

active or violated. From all the description provided related to the active or the 

inactive constraint functions it is clear that any feasible design is defined by active or 

inactive inequality constraint functions and active equality constraint functions. 

In order to identify the active constraint functions the values of the constraint 

functions should be normalized first [33] to have a single reference system 

regardless of the type of the constraint function. For example, it is likely that the 

value of a displacement constraint function to take values in the order of 0.1-2.0 cm, 

while the value of a stress displacement constraint function to take values is in the 

order of 25,000 kPa, so readily it is apparent that it is necessary to homogenize the 

sizes of the two constraint functions. The normalization of the value constraint 

functions takes place in accordance with the following relations: 

 ( )

l

j jN

j l

j

g g
g

g


s  (5.2) 

for a constraint function limited with a lower bound, l

j jg g , and: 

 ( ) 0

u

j jN

j u

j

g g
g s

g


   (5.3) 

for a constraint function limited with an upper bound, u

j jg g .  
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Thus, if the normalized value of the constraint function is equal to +0.50 then it 

violates its permissible value by 50%, while if its normalized value is equal to -0.50 

then this constraint is 50% below the allowable value. Usually among the active 

constraint functions are included those with normalized value greater than -0.1 to -

0.01 [34]. Furthermore, it is also allowed a small tolerance when the constraint 

functions violate the minimum allowable value (-0.005 to 0.001) since the process of 

simulation, analysis, design and construction involves many uncertainties. 

5.3   Classes of optimization 

There are mainly three classes of structural optimization problems: sizing, shape 

and topology or layout. Initially structural optimization was focused on sizing 

optimization, such as optimizing cross sectional areas of truss and frame structures, 

or the thickness of plates and shells. The next step was to consider finding optimum 

boundaries of a structure, and therefore to optimize its shape. In the former case the 

structural domain is fixed, while in the latter case it is not fixed but it has a 

predefined topology. In both cases a non-optimal starting topology can lead to sub-

optimal results. To overcome this deficiency structural topology optimization needs 

to be employed, which allows the designer to optimize the layout or the topology of 

a structure by detecting and removing the low-stressed material in the structure 

which is not used effectively. 

5.3.1   Sizing Optimization 

In sizing optimization problems the aim is usually to minimize the weight of the 

structure under certain behavioral constraints on stresses and displacements. The 

design variables are most frequently chosen to be dimensions of the cross-sectional 

areas of the members of the structure. Due to engineering practice demands the 

members are divided into groups having the same design variables. This linking of 

elements results in a trade-off between the use of more material and the need of 

symmetry and uniformity of structures due to practical considerations. Furthermore, 
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it has to be taken into account that due to fabrication limitations the design variables 

are not continuous but discrete since cross-sections belong to a certain set. 

The sizing optimization methodology proceeds with the following steps: (i) At 

the outset of the optimization the geometry, the boundaries and the loads of the 

structure under investigation have to be defined. (ii) The design variables, which may 

or may not be independent to each other, are also properly selected. Furthermore, 

the constraints are also defined in this stage in order to formulate the optimization 

problem as in eq. (5.1). (iii) A finite element analysis, is then carried out and the 

displacements and stresses are evaluated. (iv) If a gradient-based optimizer is used 

then the sensitivities of the constraints and the objective function to small changes 

of the design variables are computed. (v) The design variables are being optimized. If 

the convergence criteria for the optimization algorithm are satisfied, then the 

optimum solution has been found and the process is terminated, else the optimizer 

updates the design variable values and the whole process is repeated from step (iii). 

5.3.2   Shape Optimization 

In structural shape optimization problems the aim is to improve the 

performance of the structure by modifying its boundaries. This can be numerically 

achieved by minimizing an objective function subjected to certain constraints [35], 

[36]. All functions are related to the design variables, which are some of the 

coordinates of the key points in the boundary of the structure. Hinton and Sienz [35] 

proposed a shape optimization approach for treating two-dimensional problems. 

More specifically the shape optimization methodology proceeds with the following 

steps: (i) At the outset of the optimization, the geometry of the structure under 

investigation has to be defined. The boundaries of the structure are modeled using 

cubic B-splines that, in turn, are defined by a set of key points. Some of the 

coordinates of these key points will be the design variables which may or may not be 

independent to each other. (ii) An automatic mesh generator is used to create a valid 

and complete finite element model. A finite element analysis is then carried out and 

the displacements and stresses are evaluated. In order to increase the accuracy of 

the analysis an h-type adaptivity analysis may be incorporated in this stage. (iii) If a 
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gradient-based optimizer is used then the sensitivities of the constraints and the 

objective function to small changes of the design variables are computed either with 

the finite difference, or with the semi-analytical method. (iv) The optimization 

problem is solved; the design variables are being optimized and the new shape of the 

structure is defined. If the convergence criteria for the optimization algorithm are 

satisfied, then the optimum solution has been found and the process is terminated, 

else a new geometry is defined and the whole process is repeated from step (ii). 

5.3.3   Topology Optimization 

Structural topology optimization assists the designer to define the type of 

structure, which is best suited to satisfy the operating conditions for the problem in 

question. It can be seen as a procedure of optimizing the rational arrangement of the 

available material in the design space and eliminating the material that is not 

needed. Topology optimization is usually employed in order to achieve an acceptable 

initial layout of the structure, which is then refined with a shape optimization tool. 

The topology optimization procedure proceeds step-by-step with a gradual 

“    v l”       ll p           l w                 l  w       e being used 

inefficiently. This approach is treated in this study as a typical case of a structural 

reanalysis problem with small variations of the stiffness matrix between two 

subsequent optimization steps. 

Many researchers have presented solutions for structural topology optimization 

problems. Topological or layout optimization can be undertaken by implementing 

one of the following main approaches, which have evolved during the last few years 

[37]: (i) Ground structure approach [38], [39], (ii) homogenization method [40], [41], 

[42], (iii) bubble method [43] and (iv) fully stressed design technique [44], [45]. The 

first three approaches have several things in common. They are optimization 

techniques with an objective function, design variables, constraints and they solve 

the optimization problem by using an algorithm based on sequential quadratic 

programming (approach (i)), or on an optimality criterion concept (approaches (ii) 

and (iii)). However, inherently linked with the solution of the optimization problem is 

the complexity of these approaches. The fully stressed design technique on the other 
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hand, although not an optimization algorithm in the conventional sense, proceeds by 

removing inefficient material, and therefore optimizes the use of the remaining 

material in the structure, in an evolutionary process. 

At present only a limited number of studies is devoted to 3-D optimal topology 

design of structures. For this type of problems the main difficulty when a 

homogenization method is used is the orientation of the material voids which is 

more complicated than in the 2-D case. This difficulty is not present in the case of 

the fully stressed design technique. Hinton and Sienz [37] proposed the 

implementation of the evolutionary fully stressed design technique (FSD), while 

Papadrakakis et al. [46] presented the improved implementation for 2-D topology 

optimization problems.  

The algorithm for topology optimization adopted in this study is based on the 

simple principle that material which has small stress levels is used inefficiently and 

therefore it can be removed. Thus, by removing small amounts of material at each 

optimization step the layout of the structure evolves gradually. In order to achieve 

convergence of the whole optimization procedure, it is important the amount of 

material removed at each stage to be small and to maintain a smooth transition from 

one layout of the structure to the subsequent one. 

The domain of the structure, which is called the reference domain, can be 

divided into the design domain and the non-design domain. The non-design domain 

covers regions with stress concentrations, such as supports and areas where loads 

are applied, and therefore it cannot be modified throughout the whole topology 

optimization process. After the generation of the finite element mesh, the 

evolutionary fully stressed design cycle is activated, where a linear elastic finite 

element analysis is carried out. The maximum principal stress pr  for each element 

can be computed which for convenience is called stress level and is denoted as evo

ςevo. The maximum stress level max  of the elements in the structure at the current 

optimization step is defined, and all elements that fulfill the condition 

 maxevo ratre    (5.4) 
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are removed, or switched-off, where ratre is the rejection rate parameter [47]. The 

elements are removed by assigning them a relatively small elastic modulus which is 

typically 

 510off onE E   (5.5) 

In this way the elements switched-off virtually do not carry any load and their 

stress levels are accordingly small in subsequent analyses. This strategy is called 

“     k ll”            l w           l       are immediately removed, in contrast 

w        “     k ll”        w          l          l   v      l     l          

elements are removed more gradually. The remaining elements are considered 

active and they are sorted in ascending order according to their stress levels before a 

subsequent analysis is performed. 

The iterative process of element removal and addition, if element growth is 

allowed, is continued until one of several specified convergence criteria are met: (i) 

All stress levels are larger than a certain percentage value of the maximum stress. 

This criterion assumes that a fully stressed design has been achieved and the 

material is used efficiently. (ii) The number of active elements is smaller than a 

specified percentage of the total number of elements. For uniform meshes, which 

are commonly used in topology optimization problems, this criterion is equivalent to 

an area or volume fraction of the initial design, which will be in use in the final 

layout. (iii) When element growth is allowed the evolutionary process is completed 

when more elements are switched-on than they are switched-off.  

5.4 Evolutionary Algorithms 

5.4.1 Introduction 

The two most widely used optimization algorithms belonging to the class of 

evolutionary algorithms (EA) that imitate nature by using biological methodologies 

are the genetic algorithms (GA) and evolution strategies (ES). In this work the ES 

method is used as the optimization tool for addressing the present problem, based 
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on previous experience regarding the relative superiority of ES over the MP and GA 

methods in some specific problems [31], [32]. ES imitate biological evolution in 

nature and have three characteristics that make them differ from the gradient based 

optimization algorithms: (i) in place of the usual deterministic operators, they use 

randomized operators: recombination, mutation, selection; (ii) instead of a single 

design point, they work simultaneously with a population of design points; (iii) they 

can handle continuous, discrete and mixed optimization problems [46]. In the ES 

algorithm, each individual is equipped with a set of parameters: 

  [( , ), ( , , )] ,d c d ca s s I I     (5.6) 

d
nn

dI D R 

   

 ,c
nn n

cI R R        

where ds  and cs  are the vectors of discrete and continuous design variables, 

respectively. Vectors  ,   and   are the distribution parameter vectors. Vector   

corresponds to the variances of the Poisson distribution, vector n
R    corresponds 

to the standard deviations  cI n n   of the normal distribution while vector 

 ,
n

a    corresponds to the inclination angles    / 2a Cn n n n I     

defining linearly correlated mutations of the continuous design variables cs . 

Let  ( )

1,...,
t

pP a   denotes a parent population of individuals at the tht  

generation. The genetic operators used in the ES method are denoted by the 

following mappings: 

    : , , ( )d c d crec I I I I recombination
 
  (5.7) 

    : , , ( )d c d cmut I I I I mutation
 
  (5.8) 

      : , , ( , , )
kk

d c d csel I I I I selection k


       (5.9) 

A single iteration of the ES, which is a step from the parent population ( )t

pP to 

the next generation parent population ( 1)t

pP   is modelled by the mapping: 
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    : , ,EA d c d copt I I I I
 
  (5.10) 

5.4.2 Recombination 

In any generation the μ-membered parent population ( )t

pP  produce an λ-

membered offspring population ( )

0

tP . For every offspring vector a temporary parent 

vector is first built by means of recombination. In our implementation the following 

recombination scheme has been used, : h hn n

hrec R R  recombines the values of the 

vector h , where h  corresponds to either a design variable vector or a distribution 

parameter vector: 

    ,1 ,1 , ,: ,...,
b bh a b a n b nrec h h or h h or h  (5.11) 

,a ih  and ,b ih  are the thi  components of the vector ah  and bh  which are two parent 

vectors randomly chosen from the population. 

5.4.3 Mutation 

The Poisson distribution is controlled by the variance i  which coincides with 

the mean value of this distribution. The vector of variances   controls the Poisson 

distribution which is used for exploring the discrete part of the design space 

0.20 dn n  . On the other hand, parameters   and   determine the variances and 

covariances of the cn  dimensional normal distribution, which is used for exploring 

the continuous part of the design space. The amount of parameters attached to an 

individual can vary, depending on the degree of freedom required by the objective 

function in question. The setting that is used in the current study is: cn n  , 

 1 / 2a c cn n n  , that corresponds to the correlated mutation operator with a 

complete covariance matrix for each individual. 

According to the generalized structure of the individuals of the populations in 

the proposed mixed-discrete EA algorithm, the mutation operator, 

   : , ,d c d cmut I I I I
 
 , is defined as follows: 
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 , ( )
d cs s smut mu mu mu mu mu

  
  
 

 (5.12) 

The mutation operator is applied to the intermediate individuals obtained 

through the recombination operator. The distribution parameters of the structure of 

an individual are mutated first:  

(i) :
n n

mu R R 

   mutates the recombined vector : 

  1 1( ) : ,...,e e

n nmu b b
      (5.13) 

where   0,1ib U . If, in a sequence of two generations, successful trials occur 

1e e  , else 1e e  .  

(ii) : d d

d

n n

smu D D mutates the recombined values of the vector of discrete design 

variables ds , using the already mutated values of the vector of variances  : 

    1 1: ,...,
d d ds d n nmu s s z s z    (5.14) 

where iz  follows the Poisson distribution with mean value and variance from the 

vector  .  

(iii) :
n n

mu R R 

   mutates the recombined values of the vector of standard 

deviation  : 

     1 1 0 0( ) : exp ,...., expn nmu z z z z
        (5.15) 

where 2 2

0 0 i σ
z »N(0,τ ), z »N(0,τ ) "iÎ{1,2,…,n }   and    

11

0 2 , 2s sT n T n


  . 

(iv) Mutation operator : na namu R R  mutates the recombined values of the vector 

of inclination angles a : 

  1 1( ) : ,...,
a an nmu a z a z      (5.16) 
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where    20, 1,2,....,i az N i n     with  0.0873 5   . 

(v) Mutation operator : n n

smu R R mutates the recombined values of the vector of 

continues design variables s , using the already mutated values of the   and  : 

       1 1: , ,...., ,
s ss n nmu s s cor s cor       (5.17) 

where cor  is a random vector with normally distributed correlated components. The 

vector cor  can be calculated according to cor T z   where 
1,....,

T

nz z z


     with 

   20, 1,....,i iz N i n    and 

  
1

1 1

n n

pq j

p q p

T T a
 

  

  (5.18) 

where   / 2 2 2j l n p p l n q       [8]. The rotation matrices  pq jT a  are unit 

matrices expect of the diagonal terms where  cospp qq jt t a   and 

 sinpq qp jt t a    . 

5.4.4 Selection 

There are two different types of selection schemes: 

(μ+λ)-ES: Where the best μ individuals are selected from a temporary population of 

(μ+λ)     v    l              p                   g           

(μ,λ)-ES: Where the μ individuals produce λ     p   g  (μλ)           l       

process defines a new population of μ individuals from the set of λ offsprings only. 

Combining the recombination, mutation and selection operators the main loop 

                (μ λ)-ES is formulated as follows: 

 
        ( ) ( )

1,

g g

iES
opt P sel U mut rec P 

  
  (5.19) 

While                     (μ+λ)-ES scheme the main loop is formulated as follows: 
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        ( ) ( )

1

g g

iES
opt P sel U mut rec P 

   
  (5.20) 

The optimization procedure terminates when the following termination criterion 

is satisfied: the ratio /b   has reached a given value d (=0.8 in the current study) 

where b  is the number of the parent vectors in the current generation with the 

best objective function value. 

5.4.5 The ES algorithm 

In Figure 5.1 a pseudo-code of the ES algorithm is depicted. At the beginning of 

the procedure in generation t = 0 the initial parent population ( )t

pP , composed by μ 

design vectors, is generated randomly (step 3 of the pseudo-code). Steps 5 to 12 

correspond to the main part of the ES algorithm, where in every generation   

offspring vectors are generated by means of recombination and mutation. lD  is a 

sub-population with two members selected from the parent population of the 

current generation ( )t

pP  (Step 6) which is used by the recombination operator. 

Recombination and mutation operators, described in steps 7 to 10, act on the both 

design variable vectors ls  and distribution parameter vectors l  and la  (both 

distribution parameter vectors denoted as ly  in the pseudo-code). In step 11 the 

objective and constraint functions are calculated in order to assess the design 

vectors in terms of the objective function value and feasibility. 
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1. Begin 

2.  : 0t   

3.  
0 0 0 0

initialize : , , ,  1,...,
p m m m
P y s F s m   

4. Repeat 

5.    For : 1l  To λ Do Begin 

6.   : marriage
t

l p
D P    

7.   : s_recombination
l l
s D    

8.   : y_recombination
l l
y D    

9.   : s_mutation
l l
s s    

10.   : y_mutation
l l
y y    

11.   :
l l
F F s    

12.  End 

13. : , , ,  1,...,
t t t t

o l l l
P y s F s l   

14.   Case selection_type Of 

15.    
1

, :  : selection ,
t t

p o
P P    

16.   
1

:  : selection , ,
t t t

p o p
P P P    

17.  End 

18.  : 1t t   

19. Until termination_criterion 

20. End 

 

Figure 5.1. Pseudo-code of the ES algorithm. 
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5.4.6 ES for structural optimization problems 

Structural optimization problems have been treated traditionally with 

mathematical programming algorithms, such as the sequential quadratic 

programming (SQP) method, which need gradient information. In structural 

optimization problems, where the objective function and the constraints are 

particularly highly non-linear functions of the design variables, the computational 

effort spent in gradient calculations is usually large. On the other hand EA 

optimization methods require more optimization steps. 

In a number of studies by Papadrakakis et al. [31], [32], [48] it was found that EA 

optimization methods in structural optimization are computationally efficient even if 

large number of optimization steps is required to reach the optimum. These 

optimization steps are computationally less expensive than in the case of 

mathematical programming algorithms since they do not need gradient information. 

This property of probabilistic search methods is of greater importance in the case of 

Reliability Based Optimization problems since the calculation of the derivatives of 

the reliability constraints is very time-consuming. Furthermore, probabilistic 

methodologies are considered, due to their random search, as global optimization 

methods because they are capable of finding the global optimum, whereas 

mathematical programming algorithms may be trapped in local optima.  
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6 Improved design of RC buildings by  minimizing ROT index 

 

 

 

6.1 Introduction 

Engineers aim to design economic structures, which satisfy the constraints 

imposed by the design codes. This can be accomplished through a trial and error 

procedure or by means of an automatic optimization process. A number of studies 

have been published dealing with the problem of cost designs based on optimization 

of reinforced concrete (RC) structures. In particular, Kanagasundaram and Karihaloo 

[1, 2] implemented sequential linear programming and sequential convex 

programming techniques to optimize the cost of RC members. Zielinski [3] dealt with 

the cost optimum design of RC members imposing internal penalty function 

algorithm for nonlinear programming. Sun and Zheng [4] employed a two-level 

minimum cost design approach implementing sequential linear programming 

techniques for RC plane frames. Choi and Kwak [5] minimized the cost of rectangular 

beams and columns of RC frames through a direct search method choosing 

appropriate design sections from some predetermined discrete sections. Moharrami 

and Grierson [6] investigated an optimality criteria approach to minimize the cost 

design of RC building frames subjected to vertical as well as lateral loading, while 
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Fadaee and Grierson [7] minimized the cost of 3D RC frames. Balling and Xiao [8] 

presented  a comparative study of optimization of three-dimensional reinforced 

concrete frames including the reinforcement design taking into consideration all 

relative details like bar diameter selection, number of bars, longitudinal distribution 

of the group of bars acquiring same properties and the specification of size of 

stirrups. While, Sarma and Adeli [9] were drawn to the conclusion that great amount 

of research effort in this field was devoted to simple elements, while disproportional 

percentage of researchers dealt with the minimum cost of framed structures and 

realistic three-dimensional structures.   

Most of the codes meet the requirements of one seismic hazard level and one 

level of performance, usually life-safety. Moreover, they adopt indirect methods and 

linear - elastic analysis to define the performance of the structure. Apart from the 

minimum level of protection in order to adequately safeguard against partial 

collapse that endangers human lives, society has responsibilities including continuing 

operation of critical facilities, protection against the discharge of hazardous 

materials, and protection against excessive damage that may have far-reaching 

consequences for society on a local, regional, national, or international level. 

Performance-based design (PBD) aims to achieve targeted performance objectives. A 

performance objective pairs a single hazard level with a single performance level. Its 

advantage compared to other seismic design provisions is its capability to specify the 

performance for a range of hazard levels. In order to help engineers to make better 

decisions with respect to their designs in an automated design environment, the 

process of PBD of structural systems was incorporated into an optimization design 

framework. Many researchers proposed frameworks for optimum performance-

based design of structural systems [10-12]. 

Lateral-torsional coupling caused by the moment created between the opposing 

inertia and resisting forces acting through the mass and rigidity center respectively 

burdens an eccentric structure in comparison to its symmetric counterpart, since 

amplification of displacements is induced by torsion. Current codified torsional 

provisions treat the effect of torsion implementing accidental and static eccentricity 

along with imposing restrictions on the design for buildings with irregular layout. 
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Many researchers studied the effect of lateral-torsional coupling on the earthquake 

response of structures [16-20]. Myslimaj and Tso [21, 22] proposed the balanced 

configuration in order to alleviate the torsional effect on the structural response by 

locating the center of mass between the center of strength and the center of rigidity. 

De la Llera and Chopra [26] proposed the base shear and torque surfaces (BST), 

which represent all combinations of base shear and torque that would lead to 

structural collapse when applied statically. Paulay [27, 28] proposed the center of 

resistance and identified the elastoplastic mechanism, aiming at estimating the 

torsional effects on the seismic response of ductile buildings, classifying them either 

as torsionally unrestrained or as torsionally restrained. In this chapter the criterion 

against torsion (ROT) discussed in chapter four will be used for improving the 

performance of buildings against torsional effects. ROT quantifies the amplification 

of shear forces due to torsional effect exhibiting satisfactory performance for single-

story and multistory buildings in the elastic as well as inelastic range.  

In this chapter the optimum design of reinforced concrete buildings will be 

pursued by minimizing torsional effects represented by ROT, since it was noticed 

that many damages during earthquake events were attributed to the coupled lateral-

torsional modes of vibration [13-15]. Cost, stiffness eccentricity, strength eccentricity 

and ROT are treated as objective functions, while location and size of the vertical 

structural elements are the design variables constituting a combined topology-sizing 

optimization problem. The obtained optimum designs were subjected to nonlinear 

dynamic analyses and their response envelopes of base shear – base torque were 

compared. The results indicated that the designs obtained through the formulation 

where ROT is used as objective function exhibited among the two most satisfactory 

performances for all hazard levels developing low amount of base torque. 

6.2 Optimization problem 

6.2.1 Formulation 

Structural optimization problems are characterized by various objective and 

constraint functions that are generally nonlinear functions of the design variables. 
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The generalized structural optimization problem, as was detailed expressed in 

Chapter 5 is used in the present study: 

 min ( )f s  (6.1) 

Subject to ( ) 0ig s   1,...,i p  

( ) 0jh s    1,...,j m  

                                                               
l us s s   

where ( )f s  denotes the objective function and ( )ig s  the set of inequality 

constraints, while ( )jh s  the set of equality constraints.  is s , 1,...,i n  is the 

vector of design variables whose lower and upper bound are  l l

is s ,  and  u u

is s

, 1,....,i n . Subsequently, the necessary definitions for the constraints, the design 

variables and the problem formulation are provided. 

6.2.2 Architectural constraints 

For every feasible design obtained through optimization procedure, behavioral 

constraints imposed by the design codes should be satisfied. Apart from behavioral 

constraints, architectural constraints should be also fulfilled for every vertical 

structural element. The following two architectural constraints are taken into 

consideration in the current study. 

Architectural constraint 1: The dimensional boundaries of the column or shear 

wall constitute the first architectural constraint. A rectangle with dimensions 

AC1x×AC1y is employed. In order to consider feasible a design, the cross sections of 

the columns and the shear walls should be included in this rectangle (Figs. 6.1 and 

6.2). 

Architectural constraint 2: The topological position of the beams in conjunction 

with their supporting columns and/or shear walls is correlated with the second 

architectural constraint. The second architectural constraint secures that for every 

feasible design the beams and their cross points are supported by columns or shear 

walls. 
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Based on the architectural constraints, columns and shear walls are divided into 

two types. Columns/shear walls belong to Type I when AC2 point corresponds to one 

of the corners of the rectangle AC1. While they belong to Type II if rectangle AC1 

includes the AC2 point (Figs. 6.1 and 6.2). 

 

Figure 6.1. Sample column Type I with its architectural constraints AC1 and AC2. 

 

Figure 6.2. Sample column Type II with its architectural constraints AC1 and AC2. 

6.2.3 Combined topology-sizing optimization problem 

In the current study a topology-sizing optimization problem is solved in order to 

obtain improved earthquake resistant designs. Especially the design variables are 

  v           w      g     : (і)   p l g  design variables, referring to the topology 

   l               l               w ll         b  l   g  (іі) S z  g     g  v    bl    

referring to sectional dimensions. It is worth noting that sizing variables depend on 
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the topology ones, so the topology design variables are defined first. In order to 

investigate the most efficient parameters for satisfactory torsional response, apart 

from ROT criterion two other parameters were implemented as objective functions, 

static eccentricity and strength eccentricity. Initial construction cost is also employed 

as objective function since it is one of the most widespread objective functions for 

this kind of problems. The mathematical formulation of the combined problem can 

be stated as follows when ROT is employed as objective function: 

 

,

1 , 1 1

1 1

min

y xn n x n x

kij kxj kyj

k i x j y k j y k j y

n x n x

kxj kyj

k j y k j y

V V

ROT

V V

V
      

   

 





   

 

 (6.2) 

subject to ( ) 0ig s  , 1,......,i p  (behavioral constraints) 

, ,

, ,

1,2,......,
lb j j ub j

lb j j ub j

t r t
j ncolumns

s h s

  


  
 (architectural constraints) 

where n  is the number of vertical structural elements, while i  and j  correspond to 

the direction of the shear force of the element k  and the seismic excitation with 

reference to the structural axes.  ( )ig s  are the behavioral constraints imposed by 

design codes, jr  is the distance of the individual element center of the thj  

column/shear wall from its corresponding AC2 point. , ,,lb j ub jt t  are the lower and 

upper bounds of the sizing design variables imposed by the architectural constraints. 

jh  is the largest edge of the thj  column/shear wall referring to the sizing design 

variables. , ,,lb j ub js s   are the lower and upper bounds of the sizing design variables 

imposed by the architectural constraints. The other three objective functions are 

expressed as: 

I.    
2 2

min CM CR CM CR CM CRe x x y y      (static eccentricity)                    (6.3) 

II.    
2 2

min CM CV CM CV CM CVe x x y y      (strength eccentricity)             (6.4) 
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III. min IN con st labC C C C    (initial construction cost)                          (6.5) 

where  ,CM CMx y ,  ,CR CRx y  and  ,CV CVx y  are the coordinates of the mass center, 

rigidity center and strength center, respectively. INC  is the initial cost of a new 

structure, conC is the concrete cost, stC is the cost of the steel reinforcement and labC  

is the labour cost. 

6.2.4 Design variables 

The shape of the vertical resisting elements (columns and shear walls) is chosen 

to be rectangular h×b, where h≥b. As mentioned above, the sizing design variables 

depend on the topology ones, so the topology variables are defined first. 

Topology design variables 

In the case of Type I element, if AC1x > AC1y the final position of the element 

center will be allocated along AC1x rectangular edge, otherwise along AC1y. For 

square architectural constraint the edge is randomly selected. Its lower bound 

depends on the indicative minimum column size: 

 min
,

2
lb j

h
t   (6.6) 

where minh  is the minimum column size imposed by the design codes. Its upper 

bound is the half size of the corresponding architectural constraint edge (AC1x or 

AC1y).  

    
2 2

,

1

2
ub j S F S Ft x x y y     (6.7) 

The individual element center of the column/shear wall is allocated to the largest 

edge of the AC1 architectural constraint.  ,S SS x y  is the starting point and 

 ,F FF x y  is the finishing point of the largest edge, while AC2 point coincides with 

the finishing point F . In the case of Type II  the edge of the AC1 architectural 

rectangle, to which the individual element center of the column will be allocated, has 
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either already been presented or it will be selected by the smallest distance of the 

projection of the AC2 point to the four edges of the AC1 rectangle. Its lower bound is 

defined to be equal to zero: 

 
, 0lb jt   (6.8) 

While its upper bound depends on the side of the projected AC2 point the column 

mass center will be allocated. 

 ,
2

ub j

a
t  (if on the left side) (6.9) 

 ,
2

ub j

b
t  (if on the right side) (6.10) 

where a  is the distance of the new position of AC2 point from the starting point S  

and  b  is the distance of the new position of AC2 point from the finishing point F . 

Sizing design variables 

Type I elements are characterized by a direct relationship between the topology 

and sizing design variables, this sizing design variable is defined as inactive. 

 2i

j jh r  (6.11) 

For Type II elements the relationship between the topology and sizing design 

variables is indirect expressed as: 

 , 2i

lb j js r  (6.12) 

 ' '

, 2min( , )i

ub js a b  (6.13) 

where 'a and 'b refer to the distance of the individual element center of the vertical 

element from points S  and F , respectively. In this case the sizing design variable is 

active. In this case of active sizing design variable, the dimensions of columns/shear 

walls have to be defined by the optimizer and not by the topology design variables as 

in the case of Type I. The bounds of the size of the column and shear wall are 

dependent on the topological design variable jr . 
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6.3 Numerical Tests 

For the purpose of this investigation two models are tested in order to evaluate 

the behavior of optimized single-story systems for the proposed methodology. The 

material properties for both numerical tests considered are: concrete modulus of 

elasticity equal to 27.5GPa, concrete characteristic compressive cylinder strength 25 

GPa, longitudinal steel reinforcement modulus of elasticity 210GPa and longitudinal 

steel reinforcement characteristic  yield strength 400MPa. The design spectrum used 

corresponds to    l   p  B (               p       ΤB = 0 15      ΤC = 0 50         ΤD = 

2.00 sec). A bilinear material model with pure kinematic hardening is adopted for the 

structural steel. For the simulation of the concrete the modified Kent-Park model is 

applied, where the monotonic envelope of concrete in compression follows the 

model of Kent and Park [30] as extended by Scott et al. in [31]. Moreover, the 

importance factor γI was taken equal to 1.0, while the damping correction factor η is 

equal to 1.0, since a damping ratio of 5% has been considered. The members are 

modelled implementing the force-based fibre beam-column element. The 

dimensions of columns/ shear walls represent the design variables.  

The proposed methodology is assessed in the framework of design optimization 

and for this purpose eight design cases are formulated, denoted Case A to H. In 

particular, the design cases are classified into two groups, those that comply with the 

design requirements of Eurocode and those that are based on a PBD procedure. 

Cases A to D constitute the first group. The structures in this group are designed in 

compliance with EC, while the implemented objective functions are the initial 

structure cost, the static eccentricity, the strength eccentricity and ROT, respectively 

for Cases A to D. The second group consists of Cases E to H and adopt the same 

objective functions but in this case PBD constraints are imposed during the design 

procedure.  

      l              p    z      p  bl      p         w        ES (μ+λ) 

optimization        *32+ w        p               p   g (μ = λ = 10) w       v       

0.1   is employed. The optimization criterion implemented provides that if the 

ratio  /b  has reached a given value ranging from 0.5 to 0.8 - in the current case 
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0.8 is used - where 
b  is the number of the parent vectors in the current generation 

with the best objective function and  the number of parent vectors in the current 

generation.  

Table 6.1. Natural records [33] 

Earthquake Station Distance Site 

Records in 50/50 hazard level 

Honeydew (PT) 

17 August 1991 

Cape Mendocino 20 rock 

Petrolia 17 soil 

Cape Mendocino (CM) 

25 April 1992 

Rio Dell 13 soil 

Butler Valley 37 rock 

Cape Mendocino (C2) 

aftershock, 4/26/92 

Fortuna 43 soil 

Centerville 28 soil 

Records in 10/50 hazard level 

Tabas (TB) 

16 September 1978 

Dayhook 14 rock 

Tabas 1.1 rock 

Cape Mendocino (CM) 

25 April 1992 

Cape Mendocino 6.9 rock 

Petrolia 8.1 soil 

Chi-Chi (CC), Taiwan 

20 September 1999 

TCU101 4.9 soil 

TCU102 3.8 soil 

Records in 2/50 hazard level 

Valparaiso (VL), Chile 

3 May 1985 

Vina del Mar 30 soil 

Zapaller 30 rock 

Michoacan (MI), 

Mexico 

19 September 1985 

Caleta de Campos 12 rock 

La Union 22 rock 

La Villita 18 rock 

Zihuatenejo 21  rock 

 

The optimal designs obtained for all cases were subjected to two earthquake 

excitations for each hazard level chosen from Somerville and Collins [33] (see Table 

6.1). The records of each hazard level are scaled to the same PGA in order to ensure 

compatibility between the records, in accordance to the hazard curve taken from the 

work by Papazachos et al. [34] (see Table 6.2). The envelopes of the base shear-base 

torque time histories were superimposed in order to evaluate the performance of 

the various criteria. 
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Table 6.2. Seismic hazard levels [34] 

Event Recurrence Interval 
Probability of 

Exceedance 
PGA (g) 

Frequent 21 years 90% in 50 years 0.06 

Occasional 72 years 50% in 50 years 0.11 

Rare 475 years 10% in 50 years 0.31 

Very Rare 2475 years 2% in 50 years 0.78 

6.3.1 Eccentric - horizontally regular single-story system 

 The layout of the first numerical test is shown in Fig. 6.3., along with the 

optimum designs achieved for the eight formulations considered. The optimum 

designs were subjected to two seismic excitations for each hazard level in order to 

evaluate their performance. The base shear-base torque time histories were 

recorded and implemented to assess their performance against torsion.  In Fig. 6.4. 

the time history of base shear and base torque can be observed for Case A in the 

occasional hazard level designed according to EC constraints.  

 

 

 
 

Initial Layout 

Cases A,B Case C 
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Figure 6.3. Initial and optimized layout for all design Cases.

Case D Case E 

Case F Case G 

Case H Case I 
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Table 6.3. Numerical example 1 - Comparison between initial and optimized values for all design models 

 Initial Values Final Values Variation Percentage 

Design 
Models 

cost 
cre  cve  ROT cost 

cre  cve  ROT cost 
cre  cve  ROT 

CASE A 3312.07 3.77 2.11 1,79 2847.3 0.97 0.1 0.1 -14.0326 -74.2706 -95.2607 -94.4134 

CASE B 3312.07 3.77 2.11 1,79 2876.4 0.12 1.16 0.07 -13.154 -96.817 -45.0237 -96.0894 

CASE C 3312.07 3.77 2.11 1,79 3130.07 1.16 0.01 0.22 -5.49505 -69.2308 -99.5261 -87.7095 

CASE D 3312.07 3.77 2.11 1,79 2865.72 0.09 0.26 0.02 -13.4765 -97.6127 -87.6777 -98.8827 

CASE E 3312.07 3.77 2.11 1,79 2863.53 3.86 0.55 0.36 -13.5426 2.387268 -73,9336 -79.8883 

CASE F 3312.07 3.77 2.11 1,79 2847.3 0.97 0.1 0.1 -14.0326 -74.2706 -95.2607 -94.4134 

CASE G 3312.07 3.77 2.11 1,79 2911.44 0.08 1.41 0.03 -12.0961 -97.878 -33.1754 -98.324 

CASE H 3312.07 3.77 2.11 1,79 3122.09 0.51 0.03 0.12 -5.7378 -86.4721 -98.5782 -93.2961 
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The envelopes of the performances for all cases were superimposed in order to 

demonstrate the most efficient objective function. In the occasional earthquake 

hazard level with 50 percent probability of exceedance in 50 years (50in50 - Figs. 6.5 

- 6.6) in both x and y directions for the first group the Cases B and D appear to 

perform better than the other design procedures. In particular Case D is increased by 

36% in comparison with Case B concerning the maximum developed base torque. 

The Cases A and C performed the least efficiently with their deviation from Case D 

reaching to almost 200% (211% for Case A, 188% for Case C). As far as the rare 

earthquake hazard level with 10 percent probability of exceedance in 50 years 

(10in50 - Figs. 6.9 - 6.10) is concerned, the Cases B and D again behave better than 

other designs. Especially, Case D appears to be increased by 118% from Case B. The 

less efficient performance was observed for Cases A and C, which burden the 

structure more by almost 377.6%. Last in the maximum considered event with 2 

percent probability of exceedance in 50 years (2in50 - Figs. 6.13 - 6.14) hazard level, 

the Case B again behaves better than Case D by 57.14%, but still are the most well-

performed design procedures. With the percentage of almost 300% increased from 

Case B respectively, Case A and Case C exhibited the least efficiently of all design 

models. According to results ROT design criterion (Case D) appeared to be one of the 

two most satisfactory behaved criteria for all hazard levels as far as the amount of 

the developed base torque is concerned. Take into consideration the restrictions 

imposed by the PBD, for the second group ROT design criterion (Case H) 

outperformed the others for all hazard levels exhibiting the most efficient 

performance. Especially, for the occasional hazard level the performance of the 

other design criteria exhibited an increase of the developed base torque over the 

percentage of 170% in comparison with the performance of ROT (Case H) (50in50 - 

Figs. 6.7 - 6.8). The same conclusions can be drawn for the rare earthquake hazard 

level (10in50 - Figs. 6.11 - 6.12) and the maximum considered event (2in50 - Figs. 

6.15 - 6.16). In Table 6.3, it can be seen that compared to the initial designed 

according to Eurocodes, the optimized are improved with reference to the objective 

functions considered. It is worth noting that apart from cost for the rest objective 

functions a reduction percentage of almost 100 % was noticed. 
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Figure 6.4. Numerical example 1 - Base Shear – Base Torque time history considering CASE A 

for the occasional earthquake level. 

 

Figure 6.5. Numerical example 1 - The superimposed envelopes of BST time histories for the 

occasional earthquake hazard level (50in50) in x  direction for all criteria designed in 

compliance with EC. 
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Figure 6.6. Numerical example 1 - The superimposed envelopes of BST time histories for the 

occasional earthquake hazard level (50in50) in y  direction for all criteria in compliance with 

EC. 
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Figure 6.7. Numerical example 1 - The superimposed envelopes of BST time histories for the 

occasional earthquake hazard level (50in50) in x  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.8. Numerical example 1 - The superimposed envelopes of BST time histories for the 

occasional earthquake hazard level (50in50) in y  direction for all criteria in compliance with 

PBD. 

 



 
188 Chrysanthi Stathi 

 

 

Figure 6.9. Numerical example 1 - The superimposed envelopes of BST time histories for the 

rare earthquake hazard level (10in50) in x  direction for all criteria designed in compliance 

with EC.  
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Figure 6.10. Numerical example 1 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in y direction for all criteria designed in 

compliance with EC. 
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Figure 6.11. Numerical example 1 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in x  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.12. Numerical example 1 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in y  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.13. Numerical example 1 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in x  direction for all criteria 

designed in compliance with EC. 
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Figure 6.14. Numerical example 1 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in y  direction for all criteria 

designed in compliance with EC. 
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Figure 6.15. Numerical example 1 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in x direction for all criteria 

designed in compliance with PBD. 
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Figure 6.16. Numerical example 1 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in y  direction for all criteria 

designed in compliance with PBD. 

6.3.2 Eccentric – horizontally irregular single-story system 

The second numerical test is a horizontally irregular one-story building. In this 

case initial and optimum designs for all objective functions are shown in Fig. 6.17. 

The initial and optimized objective function values are presented in Table 4. As in the 

previous example the optimum designs were subjected to two seismic excitations 

and the envelopes of their base shear-base torque time histories were superimposed 

to detect the most efficient objective function. For occasional seismic events Cases B 

and D exhibit the most satisfactory performance with the minimum developed base 

torque values for the first group, the difference between them reaching the value of 

25%. While Cases A and C exhibits the less efficient performance with their deviation 

from the most efficient design reaching up to almost one order of magnitude (50in50 

- Figs. 6.18 - 6.19). In the hazard level with probability of exceedance 10 percent in 
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50 years, Cases D and C succeeded the minimum developed base torque during 

analysis. The maximum developed base torque values were recorded for Cases A and 

B, their deviation percentage from the minimum response is 126% and 57% 

respectively (10in50 - Figs. 6.22 - 6.23). For maximum considered seismic events 

Cases D and A exhibit the most satisfactory performance. Cases C and B develop the 

maximum values of base torque exceeding by 50% and 110% percentage the 

minimum value of Case D (2in50 - Figs. 6.26 - 6.27). As it can be observed ROT design 

criterion exhibited for all hazard levels among the two best performances even for 

this case of horizontally irregular building. For occasional earthquake hazard level 

ROT exhibited the second most satisfactory performance, while static eccentricity 

outperformed the other criteria performing most efficiently. Considering the other 

two hazard levels, ROT based designs undergone the lowest amount of the base 

torque developed. Static eccentricity and initial structure cost exhibited the second 

most satisfactory performance for the hazard levels with probability of exceedance 

10% and 2% in 50 years, respectively. Considering the second group, for the 

occasional hazard level static eccentricity (Case F) and ROT (Case H) outperformed 

the other criteria (50in50 - Figs. 6.20 - 6.21). For rare earthquake events the same 

designs exhibited the most satisfactory performances (10in50 - Figs. 6.24 - 6.25). 

While for the maximum considered event, strength eccentricity (Case G) and initial 

structure cost (Case E) developed the minimum values of base torque (2in50 - Figs. 

6.28 - 6.29). It is worth noting that ROT was included, for all cases designed either 

according to EC or PBD, among the first two most well performed criteria ensuring its 

reliability. The same consistency on the performance was not observed for the other 

criteria. 
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Figure 6.17. Initial and optimized layout for all design Cases. 

 

 

 

Case H Case I 
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Table 6.4. Numerical example 2 - Comparison between initial and optimized values for all design models 

 Initial Values Final Values Variation Percentage 

Design 
Models 

cost 
cre  cve  ROT cost 

cre  cve  ROT cost 
cre  cve  ROT 

CASE A 8480.83 4.93 4.63 0,99 7026.64 0.45 0.45 0,05 -17.1468 -90.8722 -90.2808 -94.9495 

CASE B 8480.83 4.93 4.63 0,99 7256.01 0.03 1.07 0.02 -14.4422 -99.3915 -76.8898 -97.9798 

CASE C 8480.83 4.93 4.63 0,99 7874.53 0.10 0.02 0.03 -7.14906 -97.9716 -99.568 -96.9697 

CASE D 8480.83 4.93 4.63 0,99 7258.07 0.04 0.67 0.02 -14.4179 -99.1886 -85.5292 -97.9798 

CASE E 8480.83 4.93 4.63 0,99 7152.64 1.17 0.58 0.36 -15.6611 -76.2677 -87.473 -63.6364 

CASE F 8480.83 4.93 4.63 0,99 7005.25 1.03 0.34 0.31 -17.399 -79.1075 -92.6566 -68.6869 

CASE G 8480.83 4.93 4.63 0,99 7283.21 0.03 0.40 0.04 -14.4752 -99.3915 -91.3607 -95.9596 

CASE H 8480.83 4.93 4.63 0,99 7709.23 0.33 0.03 0.10 -9.09817 -93.3063 -99.3521 -89.899 
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Figure 6.18. Numerical example 2 - The superimposed envelopes of BST time histories for 

the occasional earthquake hazard level (50in50) in x  direction for all criteria designed in 

compliance with EC. 
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Figure 6.19. Numerical example 2 - The superimposed envelopes of BST time histories for 

the occasional earthquake hazard level (50in50) in y  direction for all criteria designed in 

compliance with EC. 
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Figure 6.20. Numerical example 2 - The superimposed envelopes of BST time histories for 

the occasional earthquake hazard level (50in50) in x  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.21. Numerical example 2 - The superimposed envelopes of BST time histories for 

the occasional earthquake hazard level (50in50) in y  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.22. Numerical example 2 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in x  direction for all criteria designed in 

compliance with EC. 
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Figure 6.23. Numerical example 2 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in y  direction for all criteria designed in 

compliance with EC. 
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Figure 6.24. Numerical example 2 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in x  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.25. Numerical example 2 - The superimposed envelopes of BST time histories for 

the rare earthquake hazard level (10in50) in y  direction for all criteria designed in 

compliance with PBD. 
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Figure 6.26. Numerical example 2 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in x  direction for all criteria 

designed in compliance with EC. 
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Figure 6.27. Numerical example 2 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in y direction for all criteria 

designed in compliance with EC. 
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Figure 6.28. Numerical example 2 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in x direction for all criteria 

designed in compliance with PBD. 
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Figure 6.29. Numerical example 2 - The superimposed envelopes of BST time histories for 

the maximum considered earthquake hazard level (2in50) in y  direction for all criteria 

designed in compliance with PBD. 

6.4 Discussion 

In the current chapter, the formerly presented assessment criterion of torsional 

effect on the seismic response of structures Ratio of Torsion is extended to a design 

one implementing optimization procedures. A horizontally regular and an irregular 

single-story structures were used in order to evaluate the efficiency of the proposed 

criterion. Apart from ROT, initial structure cost, static eccentricity and strength 

eccentricity were also adopted as objective functions, while a combined sizing-

topology optimization problem was solved since the size as well as the location of 

the vertical structural elements are the design variables of the problem. The initial 

layouts of the structures were designed according to the restrictions imposed by EC. 

These layouts were optimized divided into two groups. For the first one the objective 

functions formerly presented were adopted and restrictions according to EC were 
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imposed for every trial of the procedure. For the second one the same objective 

functions were used but in this case restrictions were imposed by the PBD.  The final 

design layouts were subjected to two earthquake excitations for each hazard level, 

and their base shear – base torque time histories were superimposed. From this 

comparison yields that designs optimized according to ROT belong among the best 

two performances developing the lower amount of base torque for all hazard levels. 

In conjunction with its ease of implementation, since ROT can be calculated from 

routine computations yielding the shear forces, ROT offers to engineers a useful tool 

and constitutes as well a reliable assessment and design criterion against torsion.  
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7 CONCLUSIONS 

 

 

 

7.1 Conclusions 

The main objective of the current study is to propose a quantitative criterion 

defined as the ratio of torsion (ROT) for assessing the torsional effect on building 

structures. In order to investigate the effect of torsion on the seismic response of 

mass eccentric buildings, single-story and multistory torsionally-stiff buildings are 

considered. In particular, monosymmetric and double eccentric, regular as well as 

irregular in plan buildings are examined. Nonlinear dynamic analyses are conducted 

using natural record scaled to three hazard levels. 

The performance of the proposed criterion proved to be sufficient since it was 

observed that its variation follows closely the developed values of the base torque 

i.e. increased ROT index corresponds to increased values of base torque ones and 

vice versa. The proposed criterion quantifies the torsional effect in terms of shear 

forces and is based on the amplification of internal shear forces developed at every 

vertical structural element due to the introduced torque. It is noteworthy that upper 

   p   g ’  rotation was not in agreement with base torque for all the numerical 

applications considered. 

The proposed assessment criterion against torsion, ROT, is also implemented as 

a design one through an optimization procedure dealt with evolution strategies 
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algorithm; for this purpose, eight optimization problems are formulated. Numerical 

applications were studied, horizontally regular and irregular single-story buildings 

and the torsional behavior of the optimized designs was assessed comparing their 

response envelopes corresponding to base shear-base torque that were 

superimposed. 

More specifically from the numerical investigation conducted it was concluded 

that: 

            pl             l     l            b       q     pp      p   g ’  

rotation and ROT are increasing proportionally to eccentricity for all hazard levels. 

For realistic structural models with irregularities, the base torque and ROT values 

observed for eccentric designs are increased, as expected compared to the results 

obtained for 10/50 and 2/50 hazard levels, while the diaphragm rotation value is 

reduced. C    q    l      w   q          w            pp      p   g ’  

              v l                      v l          b  l   g ’      q  k          l 

response. 

 In comparison to other structural response quantities related to torsion such as 

upper diaphragm rotation and base torque, the analysis of the symmetric 

counterpart of the structure is necessary in these cases in order to reach to any 

conclusions for the magnitude of influence on the structural response due to 

torsional effect. However, even when the analysis of the symmetric counterpart is 

available or not computationally expensive, no conclusions can be drawn on the 

way that the difference between the two values of the upper diaphragm’  

rotation or base torque for the symmetric and eccentric design affects the 

response of the vertical structural members. Taking into consideration that ROT 

index was always equal to zero for symmetric structures, it gives the researcher 

the ability to compare the torsional amplification of shear forces developed on 

vertical resisting elements without conducting the analysis        b  l   g’  

symmetric counterpart. 
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 The already observed trend in various studies in the literature for torsionally stiff 

buildings, i.e. increased response quantities at flexible edge and decreased ones 

at the stiff edge, has been also verified with the ROT values obtained in all regular 

systems studied, but also confirmed for those exhibiting horizontal irregularity. 

 The proposed criterion proved to be independent of the state of response since 

its performance was satisfactory for both elastic and elastoplastic response for all 

cases examined. 

 ROT assessment criterion was extended to design one by means of evolutionary 

algorithms. The designs obtained based on the formulation where ROT was 

minimised outperformed those obtained with the static and strength eccentricity. 

It is also worth noting that its efficient performance was consistent for all hazard 

levels. While, this behavior was confirmed not only for the horizontally regular 

but also for the irregular building. 

 Finally, the fact that ROT formulation is based on the internal shear forces of the 

structure, which can be obtained by routine computations, increases its 

objectivity and applicability. Design engineers using commercial analysis software 

are able to compute ROT. Moreover, it is independent of the plan view and the 

geometry of the structure making it applicable to any structural system. Due to its 

ease of implementation, it would be a useful tool to practitioner engineers for 

designing earthquake resistant structures against torsion or the assessment of 

already existing structures. 

7.2 Future research 

A research topic can never be considered as fully covered. It is clear that any 

piece of research work leaves many open issues for future research and sometimes it 

seems to raise more questions than it has answered. Following the investigation in 

this thesis, there are some natural extensions to this work that would help expand 

and strengthen the conclusions obtained: 
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 The assessment criterion of torsional effect on the seismic behavior of 

asymmetric plan buildings, ratio of torsion, proposed in the current thesis was 

evaluated for horizontally regular and irregular, single-story as well as multistory 

structures. It can be extended in order to evaluate and explore the behavior of 

vertically irregular buildings as well as those exhibiting both horizontal and 

vertical irregularity. 

 Moreover, the numerical applications considered exhibit mass eccentricity. The 

results obtained can also be confirmed for stiffness and strength eccentric 

systems. Taking into consideration also that the uncoupled torsional to lateral 

frequency ratio classified them as torsionally stiff, torsionally flexible systems can 

be examined. Finally, this dissertation refers to reinforced concrete structures, 

further investigation can be performed in order to extend the conclusions drawn 

to steel structures. 

  In order to perform the evaluation of the performance of ROT criterion, one- and 

two-component seismic excitations were implemented consisting of only 

translational components. It can be interesting to investigate the performance of 

ROT when rotational earthquake component is taken into account. 

 ROT assessment criterion was extended to a design one in order to improve the 

seismic design of asymmetric buildings against torsion by means of evolutionary 

algorithms. In the current study only single-story horizontally regular and irregular 

systems were examined. Multistory buildings exhibiting different types of 

irregularities can also be studied. 

 As highlighted throughout this study the proposed index is based on the 

observation of many researchers that due to lateral-torsional coupling the shear 

forces experienced by vertical structural elements of asymmetric plan buildings 

differs from those of their symmetric counterparts. According to the formulation 

of ROT, it quantifies the amplification of shear forces because of the torsional 

effect normalized to base shear of the imposed seismic excitation. It would be 

very interesting to quantify this amplification in terms of displacements. A 

comparison can be performed between the two indexes and their effect on the 

seismic torsional response can be correlated.  
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 Finally, the effect of soil-structure interaction on the seismic torsional response of 

structures is an extremely interesting subject to be studied by other researchers 

in the future. 
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