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NepiAnyn

OL OLKOVOULKEG QTWAELEG O TIG BPAABEC TOU MAPOUGCLACTNKAV OE KTNPLO UETA
QMO KATACTPEMTIKOUC OELOUOUG otig HMA kat tnv lanwvia Ntav neplocotePEG TOU
QVOUEVOUEVOU. ETumAéov ekteTapéveg BAAPBEG O KATOOKEUEG META Qmd OmaAvia
OElOMIKA yeyovota (2/50 emimedo emteAeotikotntag) amodibovial otnv avion
KOTAVOUN TWV ECWTEPLKWV SPACEWV, ELOIKOTEPA TWV TEUVOUOWY SUVAPEWV Qo Ta
Katakopuda Sdoulkd otolxeia, n omoia odeiletal otnv xwpobBETnon tTwv SOUKWV
otolxelwv. H OTpeNTIKA pomr, n onoila avantuooeTAL OTNV KATAOKEUH, LEyEBUVETOL
AOYW TNC KN KOWVOVLKOTNTAC TOU KTnpiou og katodn kal mapoaAapBavetal wg {evyog
SUVAUEWYV, LE ATIOTEAECUO OL TIPOCOETEC TEUVOUOEG SUVAUELG AOyw OTPEYNG va
6pouv o0e oUleuén pe TIC UETOPOPLKEG TEUVOUOEC OUVAUELS TIPOKAAWVTOG
emMBApUVON TNG EVTIATIKAG KATAOTOONG TwV SOUKWY otolxeiwv. Aedopévou OTL O
KUPLOG OTOXOC TWV OUYXPOVWV QVILOELOULKWY KOVOVIOUWV Elval n mpootacia tng
avBpwrnvng Iwng, eivat ¢oavepo otL Ba mpémel va AndBouv umoyn emutAéov
KPLTNPLO. OXETIKA HMe TNV €miboon TNG KATAOKEUNG, Ta omola va MePLopilouv Tig
OLKOVOULKEG amwAele¢ kaBw¢ kat Oeikteg BAAPNG wote va moootikomolnBel n
TPWTOTNTA TWV KATACKEUWV O €EVOEXOUEVO OELOUMLKO yeyovog. Etol dpyloe va
vloBeteitat pia véa OBewpnon oxedlaopol HE KPLTAPLA  ETUITEAECTIKOTNTOC
(performance-based design). Ou avtioelwopilkol oxedlaopol pe Bdaon NV
ETUTEAECTIKOTNTA OTOXEUOUV OTNV OTOKPLON TNG KOTOOKEUNG HE €AEYXOUEVEG
BAGBec-InuIEg o Sladopa emineda osloulkng emkivduvotntag. Mpokewevou va
vAomotnBet auti n avtiAndn oxedlaouov anatteital n moootikomnoinon tng BAABNG
pe Seikteg BAABNC, TWV OTOLWV OL TIHEC UIMOPOUV VO CUCXETLOO0UV UE CUYKEKPLUEVN
kataotaon BAGBNG Tou Ktnpiou.

Jtnv mapovoa Siatplfry mapouoialetal €vag véog SelKTNG aAmMOTIUNONG TNG
amoKPLoONG TNG KATAOKEUNG UTIO TNV EMLPPON TOU OTPEMTIKOU dalvouévou, o Adyog
oTp€PnNC, O OmoloC TOOOTIKOTOLEL T TMPOCOeTeG TEUVOUOEG OSUVAUELS TIOU
avamtuooovtal ota Katakopuda OSoplkd otolxéla Adyw Tou GALVOUEVOU TNG
oTPEPNC KAl TNV ETMLPPON TOUC OTNV QTTOKPLON TNG KATAOKEUNG. XITOXOG €ilval n

ToooTikomoinon ¢ enidpaong tou otpemtikol datvopévou (torsional effect) otn
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OSLOULKN ATOKPLON TwV Kotookeuwv. O AOyo¢ oTpePng €KTOC OO KPLTHpPLo
QMOTIUNONG EMEKTEIVETAL KAl O Kpltriplo oxedlaopol, péow NG Sladikaoiog
BeAtiotomoinong €AOXLOTOMOWWVTAG TN OUVIOTWOA TWV TPOCOETWV TEUVOUOWVY
Suvapewv Aoyw otpePng (torsion-induced forces).

Itn ouvéxela avalntwvtol ot BEATIoTOL oxedlaopol TwV KATAOKEUWY TIou Ba
TPOKUYOUV HECW MUN-YPOMMLKAG Suvaulkng availuong. Me tov 6po ‘BéAtiotog
dopootatikdg oxedlaopog evvooUUE TNV €Upecn Tou  KaAutepou Suvatou
oxedlaopol Tou umopel va efeupebel oto mAaiolo €vog TOAUTIAOKOU TIOAU-
TIAPOUETPIKOU TpoBARuatog BeAtiotonoinong, kat oxL tov “padnuatikda” BéAtioto
oxeblaopd o omoiog eival duokolo ewg aduvato va eteupebel. OL ZTPATNYLKEG
E€EAENG elval AapBiveleg pEBodol BeAtioTomoliong oL omoleg péoa and SLadOoXIKEC
BeAtlwoelg Tou oxedSlaopol odnyouV TNV QVILIKELUEVIK CUVAPTNON 0TO “KABOAIKO”
¢ BEAToto. H Stadikacia BeAtiotonoinong oToxeVUeL oTnV TaUTOXpovn e€Upeon
EVOC  LKOVOTIOLNTIKOU  €AaXIOTOU TNG QVTIKEWWEVIKAG OUVAPTNONG KAl oTnv
LKovomoinon OAWV TwV MEPLOPLOUWY TOU AVILOELOULKOU KOVOVIOUOU KOBWC Kal Twv
OPXLTEKTOVIKWY TIEPLOPLOPWY yla Sladopa emineda OElOUKAC €MKVOUVOTNTAC.
EKTOC amd Tov MPOTEWVOUEVO SEIKTN KOl TO KOOTOG KOTOOKEUNG WE OVTLKELUEVLKEC
OUVAPTAOELG XPNOLUOTIONONKAV N EKKEVIPOTNTA WG TPOC TNV akapia Kol wg mpog
TNV aVToxn MPOKELUEVOU va HeAETNOEL n emppon tou dpatvopévou Tng otpEPng otnv
QmOKPLON TNC KATAOKEUNG ylo OAa Tta emimeda OelOUIKAG emikwvduvotntag. H
anotipnon twv PBéAtlotwyv oxedlacpwv mou mpogkuPav pe elaylotomoinon twv
OVWTEPW OVTLIKELUEVLKWY CUVAPTHOEWVY TIPOYLATOTOLETOL UE UTIOBOAN TWV TEALKWY
oXeOLAOUWY OE 1N YPOUUIKEG SUVAULKEG avaAUOELG yla OAa Ta eMiMeESA CELOULKAG
emukwvéuvotntag. AkoAouBel n umépBeon twv mMePBAAAOUCWY  XPOVOLOTOPLWV
TEpvouoag Baong-otpéPncg BAaong yla TNV eVpeon tou oXeSlaopol HE TNV EAAXLOTN
ETILPPON TOU OTPENMTIKOU ALVOUEVOU.

H nmoapovoa Sidaktopikn dtatplfr) amoteAeital and entd kepaAala. Metd amno
NV eloaywyn oto 1° KepdAaio, oto 2° Keddhato mapouctdletal n Slatynmwon tou
pafdwtol otolxelou Suvapewv SokoU He tn HEBOSO TwV WV KABWC Kol ol
KOTOOTOTIKEG OXECELG TIOU XPNOLUOTIOWBNnKav ylat TNV aVvaAUTIKY) TTPOCOUOLWoN TwV
KATOOKEVWV artd omALOMEVO OKUPOSepa ota emdpeva kKepdAata. 2to 3° KedpdAaio

nieplypadovtal ol BaclkeG apxEC Twv Teplypadikwy dtadkaoiwv oxedlacpol Kabwg
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Kol n évvola tou oxedlaopou pe Baon tnv emiteAeotikotnTa. EmumAéov oto kedpalalo
auto mepAappavovtal Ta BACIKA XOPOKTNPLOTIKA OommoTiUNoNng TG EMPPONG TOU
OTPETTLKOU POLVOUEVOU OTNV OVTLOELOULKT CUUTEPLPOPA TWV KATAOKEUWV TOCO OF
eAaoTIK 000 KoL Ot OVveEAAOTKH amokplon. Ito 4° KedpdAawo mapouctdletal o
TIPOTELVOUEVOG SEIKTNG Yyl TNV OMOTIUNON TOU OTPEMTIKOU (aLVOUEVOU OTNV
QamoOKPLON MN CUMMETPLKWY KOTAOKEUWYV KABWCG Kol aplOuntikég edpapuoyeg. Ou
edpapuoyég Tou kepahaiou autol xwpilovtal oe U0 evOTNTEG, EKELVEC TTOU adopolV
povwpoda Kol eKelve¢ Tou adopolv moAuwpoda cuotipata. Kat otig Suo
nepUMTwoelg e€etalovtol TG00 KTNPLO KOVOVIKA O€ KAToyn 000 Kal [ KAvovikd. To
5° KepdAato avadépetal oto mpdPAnpa BEATIOTOU oxXeSLaopol Kat TEpLypAdEL TOV
oAyopLOuOo TwV oTpatnylkwyv eEEAENC TTOU XpNOLUOTIOLONKE OTNV Tapouoa Epyaoia.
Jto 6° Keddhawo Swatunwvetar to TPoPAnpa BEATIOTOU  OXeSLAOUOU  TWV
KOTOOKEUWV KOl O TIPOTELVOUEVOC Oe(KTNG amotiunong otpeYPng emMeKTEVETAL OE
deiktn oxeblaopol péow NG Swadlkaciog PeAtotomoinong. Mapoucialovrtotl
enmumAéov 8U0 povwpodes epapuoyeC. H mpwtn edappoyn €ival Kavovikn evw n
Sevtepn elval pn kavovik oe katoyn. Téhog, oto 7° KepdAawo mepiéxovtal ta
ouumepacpata TG datplBng, N MPWTOTUTN oUUPBOAn TNG Kal Bépata mou Ba
purmopovoav va AmoTteAECOUV TA EMOPEVA €PEUVNTIKA Prpata péoa amd tnv

kateuBuvon mou €xeL Ndn 600l otnv SlatpLPn.
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Ektetapévn NepiAndn AratpBA¢

Extetopéveg BAABEC OE KOTOOKEVEG HETA O OTIAVLIOL OELOULKA yeyovota (2/50
eninedo emreAeotikoTnTACg) amodidovtal otnv AVIoN KOTOVOUN TwWV E0WTEPLKWV
0pacewv, el8IKOTEPO TWV TEUVOUCWY OUVAMEWV TIOU OVATTUOOOVTOL OTa
Katakopuda Sdoulkd otolxeia, n omoila odelletal otnv xwpPoBETNoN TwV SOUIKWV
otolxelwv. H OTpeMTIKA pomr, n onoila avantUooETAL OTNV KATAOKEUH, LeEyEOUVETOL
AOYW TNC KN KOWVOVLKOTNTAC TOU KTnpiou og katodn kal mapoaAapBavetal wg {evyog
SUVAUEWYV, Ye QMOTEAECUA OL TPOCOeTEC TEUVOUOEG SUVAUELG AOYW TNG EMLPPONG
otpentikol datvopévou va Spouv oe oULleUEN HE TIGC UETADOPLKEC TEUVOUOEG
SuVAUEL; TpoKaAwvTOg E€mBApUVON TNG EVIATIKAG KATAOTAONG TWV SOUKWV
oTolelwv.

OL KUplOlL TOPAUETPOL TIOU OXETIW(OVTAL HE TNV EAAOCTIKA OTOKPLON TNG
KOQTQAOKEUNG OTNV ETILPPOI) TOU OTPETTLKOU GALVOUEVOU EIVAL N OTATIKN EKKEVIPOTNTA
€z KOl O AOYOG Un OUTEUYHEVNG OTPETTIKAG TIPOG M CUEUYMEVN UETAPOPLKN
ouxvotnta (). Avaloya He TNV T Tou Adyou () TA KTAPLO KATATAGOOVTOL OF
gvotpenta Kat Suotpemnta. Ma TEG Tou AOyoU HEYAAUTEPEG TNG Lovadag Ta KTrpLa
xapaktnpilovrol SUCTPEMTA, EVW VLA TILEC LKPOTEPNG TNG Hovadag xapaktnpilovrat
evotpemnta. MNa ta duotpenta KTApla Kupiapxn Wlopopdn eival n petadoplkn evw
yla Ta eUOTPEMTA N OTPEMTIKY. Ol MAEUPEC TOUG XopakTnpilovral w¢ SUOKOUMTEC N
EUKAUITEG avAAoya E TNV AmooTacr Toug amod To KEVTPO EAACTIKNG oTpOodr G KAl TO
KEVTPO palac. Eldikotepa, otav n andotaon pla MAEUPAC oo To KEVTpo palag ival
ULKPOTEPN QIO €KELVN QTIO TO KEVTPO EAACTIKAG 0TPOodr G N MAeUpA XapakTnpiletal
geUKAUMTN, VW Ot oavtiBetn mepimtwon yapoaktnpiletalr duokaumtn. Eva Ktrplo
UTTOpEL va €lval EVKAUTITO WC MPOC TN Hia StevBuvon Kot SUCKAUTTO WC MPOC TNV
AGAAn. Zta Suotpemta KTtApla €xouv TapatnpenBel aufnuUéveC UETATOMIOELS OTNV
EUKAUITN TAEUPA KOl UELWHEVEC OTNV SUOKAUTTN O OUYKPLON LE TO CUMUETPLKO
Toug avtiotolyo. Evw ota elotpenmta Ktipla, Ml HEPLdO €peuvnTwyv EXEL
TiapatnpnosL cupunepldopd opola He ekeivn twv Suotpenmtwy Ktnplwv [1], kamolot
AaAAol emonuaivouv avénon Twv PETATOMIOEWV TOCO O0TNV EUKAUTTN 00O KAl OTNV

SUoKaumtn MAEUPA O€ OUYKPLON UE TO CUPUETPLKO TOUC avtiotolyo[2].
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JTOUC TIEPLOCOTEPOUC QVTLOELOULKOUC KOVOVIOHOUG TO ALVOUEVO QUTO
OVTIUETWIT(ETAL UE TN XPAON OTOTIKWV KOl TUXNUOTIKWY EKKEVTPOTATWY ylol TOV
OpWOMO TOU onueiov edpappoyng Twv OTATIKWY OSUVAMEwWV. H Tuxnuatikn
EKKEVTPOTNTA OpileTaol WG €va MoocooTo (yla mapddelyua 5%) tng didotaong tou
ktnplou otnv kaBetn SlevBuvon amod ekeivn ™G epapuoyng tou doptiou. Evw n
OTOTLKA EKKEVIPOTNTA OpllETAL WG N AOOTACN TOU KEVTPOU EAQOTLKNG OTPOdNG Ao
TO Kévtpo palog. Ebikdtepa ota moAuvwpoda kthipla dev eival mavra €PKTO va
opLoTel To KévTpo eAaoTikng otpodnc [3]. O Makadplog [4], [5] 6pLoe ToV MAACUATIKO
eAAOTIKO Gfova Kot TIG aktiveg Suotpeiag, WOTE LECW TOU TAACHATIKOU EAACTIKOU
KEVIpOU va elval mavta €PIKTOC O UTIOAOYLOHOG TWV OTATIKWY EKKEVTPOTNTWY
TIOAVWPOPWV ACUUUETPWY KTNPLWV. Q¢ TTAACUATIKOC EAAOTIKOC Afovag ) EAAOTIKOG
agovag BEAToTng otpeYPng opiletal ekeivog o afovag otov omoio otav Tomobeteitatl
opllovTia oTaTkn PopTion TOTE N oTPEP N 0OAOKANPOU TOU KTNpilou eAoLOTOTOLE(TAL
evw unbéeviletal otnv oplakn Teplmtwon mou o unoyn afovag amoteAel Tov
TIPAYUATIKO €AQOTIKO dfova Tou KTnpilou. Itnv Kataotaon PEATIOTNG OTPEYNG TOU
KTnplou oL oTpod£EG Tou avamtuooovial o€ KABe 0podo elval UIKPOTEPEG ATO
ekelveg mou mpokUmTouv yla Sladopetik) BEon Tou PoPTIOTIKOU eMUMESOU TOU
ktnplou. Etol, pumopel va BewpnBel mMPooeyyLOTIKA OTL TO KTHPLO EKTEAEL peTAdOPLKN
Kivnon kal petadépetal mapdAAnAa pe tov €0utd TOoU HE apeAntéa otpodr. O
Katakopudog afovag pmopel va umoAoyloBel yia 0Aa ta ktripla mou Sltabétouv
KavovikoTtnta kab’ Uo¢ cuudbwva Pe Toug KavoviopoUs. Evw n aktiva duotpeiag
avtiotolxel oto poxAoPpaxiova Ttwv €eAaoTikwv OSuvAPeEwvV emavadopdc yla
otpentikn ¢popTLon Tou KTnplou. MANB0C epeuvnNTWY oXOARONKE UE TNV EMLPPON TOU
OTPENTIKOU PALVOUEVOU OTN OELOUIKN OMOKplon Twv Kataokeuwv. O Paulay [6]
TIPOTEWVE TO EKKEVIPOTNTA QVTOXNC WG KATAAANAOTEPN LOLOTNTA OMOTIUNONG TOU
OTPEMTIKOU POLVOUEVOU OTNV AVEAAOTIKN TIEPLOXN ATIOKPLONG OE OUYKPLON ME TN
OTATIKN €EKKEVTPOTNTA, £POcoV Ta oTolxeia €xouv SlappeVUOEL Kal OL TIUEG TNG
otiBapotntag toug €xouv SladopomolnBel anod TG apxXLkEG. H eKKEVTPOTNTA OVTOXNG
oplleTal WG n AmMOOTACN TOU KEVTIPOU QAVIOXNG OmO TO KEVIPO MAlog. Q¢ KEVTpOo
avtoxng opiletal to onueio ekeivo tou Sladpdypatog amd TO OMOLo TEPVA N
OUVIOTOMEVN TWV HETADOPLIKWY SUVAUEWY, WOTE OTOV 0 0POdOC VIVEL UNXOVIOUOG

bev avamnrtuooestal o€ autov otpodr). EmutAéov o Paulay [7] Slaxwploe Ta Ktrpla o€
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OTPENMTIKA Seopeupéva Kal pn Seopeupéva avaloya PE TNV KOVOTNTA TOUug va
neplopilouv tnv avelaotikn otpodn. Iupudwva PE AUTO To SlaxwpPLoPd Ta KTpla
SLatnpoUV KAToLao UTTOAAELLATIKA OTPEMTIKA oTLRapOTNTA oN UE:

Ktr :)lth (1)

Orou K, n otpemntikr otpapdtnta tou Ktnpiov n omoia Sivetal and tn oxeon:

Kt = z Xizkiy + Z yizkix (2)
OTOU X, KOl Y, 0L OMOCTAOEL TwV OTolXelwv amd To kévipo palag, K, kot ki, oL
HETAPOPIKEG oTPAPOTNTEG OTIG avtioToeg OleuBuvoel. H mapdpetpog A
TIOOOTIKOTIOLEL TO BABOUO OTPEMTIKAG SECUEUONG KAl UTOPEL VO UTTOAOYLOTEL Ao TLG
TIOPAKATW OXEOELG:
Ay =2 %Pk, )1 K, (3)
Ay = 2 (k)1 “
Mo tpég 4 =0 1o olotnpa xopoktnpiletal oTPENTIKA pn SECUEUUEVOD, EVW YLaL
Tég 4 > 0.1510 cvotnua xapaktnpiletal oTPEMTIKA SEOUEVEVO.

OL De La Llera kat Chopra [8] mpotewvav T KOUMUAEG TEUvouoag Paong —
otpéPng PBaong (base shear and torque — BST ultimate surface ), oL omoieg
amoteAouvtal arnd 6Aoug Toug cuvduacopoUg Tépvouaoag Baong — otpédng Baong ol
ornolol 0tav epapUooToUV OTATIKA 08NnNyoUV TNV KATAOKEUT Og Katdappeuon (Ekova
1). OAot oL cuvduaopoi téuvoucag Baong — otpedng Baong oL omoiol Bpiokovtal
TIAVW OTNV KOUMUAN adopolV TouG UNXAVIOHOUC KOTAPPEUONG EVW OL cuvluacopol

EKTOC TNG KAUTTUANG €lval avédLkTol.

T
D c
f(a+h, Vx=0
1 a
K=k
K=k =t K= E fal- B
1ot faet
b | |
-3f 0 f 2f Vy
K=k F
15=t A
) A ath
G H

Ewkova 1. Mapddelypa kamUANG tépvouoag Baong — otpédng Baong [8].



XViii

OL De La Llera kat Chopra [9] emiong eméktewvav tnv WEa auTh Kol O€
noAvwpoda cuoTAUATA, TNV KAUTIUAN TEPvouoag opodou — otpePng opddou (story
shear and torque - SST ultimate surface) (Ewova 2). H kaumUAn autn
Kataokevaletal yla kabBe oOpodo kol amewkovilel OAoug TOuG OuVOUACHOUC
TeEPvVouowv Suvapewv opodou kal otpéPng opodou ol omoiot edappolopevol
OTaTIKA 06nyouv tov 6podo o€ KATAppPeLon. H KaTaoKeur TNG KAUMUANG Baoiletal
o€ €va unepoTtolxeio (super element — SE) ava 0podo kavo va avTtutpooweVOEL TIG
EANQOTIKEG KOl OVEAOQOTIKEG LOLOTNTEC TOU opOdou. To OTOLXEID QUTO EXEL TPELG
BaBuolg eleuBepiag oe kaBe kéuPo, SUo oplldvtioug peTadoplkoUC Kol Eva
oTpOodIKO TIOU ATOTIUA TN OoTPpodn METALU Twv 0podwv Tou cuvdEovtal HUE TO
otolxeio (Ewkova 3)

Base torque T

Central plane at
distanca X
from CM

T
“Vyo ‘ Vya Base shear V,

Point symm.

Central plane
passing through CM

Ewkova 2. Mapddelypo KOUmMUANG Tépvouoag opodou — otpéPng opodou [9].
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SE model

Ewova 3. Movtélo unepotolyeiou yla moAuwpodo ktrplo [9].

Evw oL Kupkog kat AvayvwotomouAlog  [2] mpoédtewvav pla Sdadikaoia
TPOTOTOLNONG YLO TOV OVTLOELOULIKO OXESLOOUO KATAOKEVWVY armod XaAuBa. To mpwto
BrApa otn dadikaoia auTh €lval 0 UTTOAOYLOMOG TWV UETOTOMICEWY TOU QVWTEPOU
0pOdOU OTIC EUKOUMTEC Kol SUOKAUTTEC TAEUPEC TOu Ktnplou kal ot dvo
opllovtieg OleuBbuvoel AOyw TOU OeElopkoU (GOoPTIOU KoL O UTIOAOYLOHOG TWV

TIAPOKATW oUVTEAEOTWYV o€ KABe StevBuvon:

fao =2 — )
flex (ui,flex +ui'Stiﬁ )
fi,flex - (Ui,flex +ui,stiff ) (6)

omnou u.

i, flex

N HETATOMLON TOU avWTEPOU 0pddou oTnV VKAt TAeUPd yia T i
8levBuvon Kat U; g TNV SUOKAUTTTN TTAEUPA. ZTN CUVEXELX Ta EUPASA TNG SLATOUNG

Twv dlaywviwv ouvééouwv kot ot dUo mAsupég moAAamAactalovial UE TOUG
avtiotolyoug ouvteAeoTEG yila kaBe dievBuvon. H idla dtadikaoia akoAouBeital yia
T UTTOOTNAWHOTO KOL TG S0KOUC TOGO OTNV EUKAUMTN OCO0 Kal otn SUCKAUITN
TMAeUpd. ASlleL va onuewwBel OTL otnv éukaumtn MAsUpd auvéavetal n otpapotnta
KaBwg Kal n avroxn twv otolxeiwv. Ou dlatopéc otnv Suokaumtn mAsupd Sev

HElwvovTal KaBw¢ n avtoxn toug kabopiletal kuplwg amd ta povipa doptia. OL
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TIUEG TWV ouvteAeoTwV SladEpouv amo 1.25-1.50 yia TNV eUKAUTTTN TTAEUPA KoL OO
0.85-1.00 yia TNV AKOpTN TAEUPAL.

Itnv mapovoa datplpry moapouctaletal €vag vEog SelKTNG amotipnong tng
ETPPONG TOU OTPENMTIKOU GALVOUEVOU OTNV OMOKPLON TNG KOTAOKEUNG, O Adyo¢
oTpEPNG, O Omolog TIOCOTLKOTIOLEL TIG TIPOCOETEC TEUVOUOEG SUVAUELG TIOU
QVaMTUOOOVTOL OTA KATaKOpudpa OOoULKA oToleld AOyw TOU GALVOUEVOU TNG
oTp€PNC. ZTOXOC €lval N TOCOTIKOTONON TNG EMISPAONC TOU OTPENMTIKOU GALVOUEVOU
(torsional effect) oTn o€lOUIK ATIOKPLON TWV KOTACKEUWV.

O mpotewodpevog deiktng Paciletal otnv mapatipnon OtL To abpoloua Twv
QMOAUTWY TIHWV TWV TEUVOUOWV SUVALEWY TIOU OVATTTUCOOVTAL OTA KATAKOpUd
Soulkd otolxeia eival SLapopeTikog amd to aAyeBplkd TOug ABpolopa yla N
OUUMETPIKA ocuotnuata. H Siadopd aut odelletal OTI EMUTAEOV TEUVOUOEG
Suvapelg Tou oavamtuooovtal ota  Katakopudo Soplkd otolxela AOyw TOU
dawvopévou tng otpéPng, n omoia mapaAapBavetal and TNV KATOOKEUN w¢ (VYOG

Suvapewv. EMOUEVWE EVW YL CUMUETPLKA CUCTAUOTA LOXVUEL N OXEON:
n n
Z‘Vkij ‘ =2 Vi (7)
k=1 k=1

M N CUMMETPLKA CUCTHHATA:

n
> M # 2 Vag (8)
k k
OMou no aplOuog twv otolkeiwy, i n devBuvon tng téuvoucag Suvaung mou
avarntuoostol oto otoleio K kat j n 8tevBuvon tng emBAMOUEVNG OELOULKAG
S1éyeponc.
MNna éva amAo tuyaio €kkevipo cvotnua (Ewkéva 4), oto omoilo emiBarloupe

OELOULKN SLeyepon Katd tnv Y 6levBuvon Ve, LOXUOUV OL TAPAKATW OXECELG:
n n
D Ve | # 2 Vi =0 (©)
k=1 k=1

n n
22Ny | # 2 Vo =Vey (10)
=1 =1
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Ewova 4. Exkevtpo cvotnua umtoBaAOpeVo o€ OelopIkh SLEyepon Katd tnv Y

SlevBuvon.

Eldikotepa, Bewpolpe To povwpodo cuotnua pe katodn onwg otnv Ewova 5.
To oloTNUA €lvOl LOVOCUUUETPLIKO HE Afova CUMMETPLAC Kata T X SlevBuvon Katl
urtoBaMetat oe oelopkn Sleyepon katd tnv Yy Sevbuvon (Ve ). H Béon twv
KEvipwv palag kat akaupiog dalvetar otnv ewkéva 5. H otpodry n omoia

QVOITTUCOETOL OTO ouoTtnpa eival amotéAeopa tng otpepng M, mou mpokaAettat

Qo TNV TEpVoUoa BAONG Ve, OTAV AOKELTOL HE EKKEVTPOTNTA Ecpy -

Ewova 5. Exkevtpo cvotnpa urtoBaAlopevo og oslopikh Siéyepon Katd tnv Y

SievBuvon.
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H otpéPn mapoarapBavetal wg {evyo¢ SUVAHEWV ETILOPWVTAC OTI TEUVOUOEG
Sduvapelg mou avamtuooovtal ota otolxeia. H petadopikr) ouviotwoa (translational
component) T€uvouoag SUVAUNG TTOU OVATTTUCCETAL OTA OTOLXEla UTtoAoyIleTaL Ao
TN oxéon:

V,, =—2-V

iy: n
>k,

y
i=1

By (11)
omou Vg, n tepvouca PBaocng oxedlaopou, ki, n petadopwkn otfapotnta tou
otolxeiov kata tnvy O&tevBuvon kot N o aplBuog Twv otolxeiwv. H otpemtiki

ouviotwoa (torsional component) Sivetal anod tn oxéon:

" M
Vkiy =X kiy ?t (12)
t

OToU X, N amooTacn TOU OTOlEioU amod to Kevipo palag, M, n otpeyn mou
mapayetal ano tnv tepvouca PBdong, evw K, n otpemtikn otPoapdinta tou

OUOTAMATOG, N omola umoAoyiletal anod tn oxéon:

_ 2 2
Kt _zyi I(ix_'_zxi kiy (13)
H ouvoAiki téuvouoa SUvapn ToOU OVANMTUCCETAL O €va oTolxelo divetal amod tn

oxéon:

Vkiy = Vkiy +Vy (14)

iy
AvAAoyeG OXEOELG LOXUOUV YL TIG TEUVOUOEG SUVAUELS TTOU QVOITTUCOOVTOL KATA T
X &tevBuvon. O mpotewopevog Oeiktng, Aoyog otpédng (Ratio Of Torsion)

uTtoAoyieTal amo TNV MAPAKATW OXEON:

n Y. X
Z_ Z ‘Vki,-‘—IVEX|—’VEy‘
ROT = 20 (15)

Vel + ’VEy ‘

OTOU N 0 OUVOALKOG aplOuog Twv otolxeiwv, K o apduodg tou otoweiou, i n

SlevBuvon ¢ téuvouoag SUvVaAPNG TIOU AVATMTUCOETOL OTO OTOWE(O KalL | n

6tevBuvon otng oewoukng Siéyepong, Vg, kau Vg, n évtaon mou emPdMiet n
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OELOMLK SLEYEPON OTNV KOTAOKEUR Katd T SleuBuvoelg x kat Yy, n omoia
avTLoToLXel oTNV TéUvVouoa BAong oTLg avtioToles SleuBUVOoELG.

AapBavovtac opwg umoyn OtL n téuvouca PBaong Looutal HE TO aAyePplko
abpolopa Twv TEUVOUOWV OSUVAUEWV TIOU QVAMTUCOOVTOL OTO OTOlXElo ava

KatevBuvon LoYVEL:

Ve, = Viog (16)
k=1 j=y
n X
Ve, = Vii (17)
k=1 j=y
Enopévwg yia to ovotnua tng Etkdvag 5 o Adyog otpéPng LoouTaL UE:
N R R A A A "
Ve
AapBavovtag untoyn ot
‘VEV‘ - ’Vllw Vi, ‘ + ’szy +V2"yy‘ (19)
To ROT pmnopet va ypadet:
ROT = ’Vl‘yy _Vluyy‘ + ‘VZyy +V2"yy‘ + ’VSxy + ’Vé'l"xy _‘Vllyy _Vl"yy‘ - ’VZyy +V2"yy‘ (20)

Vi =V |+ Moy, +Vay |
n omoia KAaTaAnyEL OTNV MOPAKATW OXECN, TNG omolag o aplOUNTAC LooUTAL UE TIG
OTPEMTIKEG OUVIOTWOEG TWV TEUVOUOWV OSUVAUEWV EVW O TIPOVOUAOCTAG KE TN
OUVOALKN €vtoon mou mapaAapBAveL N KATAOKEUN KOTA TN OsOoULKn SLéyepan.

’Vaxy +\V,

‘ 4xy

ROT =———! (21)
Ve|
O Ab6yog otpédng yia moAvwpoda KtrpLa urtoAoyiletal anod tn oxéon:
|
ROT =) ROT, (22)
m=1

onou | o apBudC Twv opodPwv Tou KTNpiou.
Mpokelpévou va afloloynBel o mpotelvopevog deiktng xpnotpomnotnénkav toco
povwpoda 600 kot moAvwpoda KIpla. ZTo MAALoLo TNG mapoloag epyaciag ta

KTAPla TIoU ULoBeTONKav eival SUOTPEMTO KoL £KKEVIPA WG TPo¢ tn pala. O
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oXeSLaoUOC TOU CUUUETPLKOU avaloyou Baciotnke otov Eupwkwdika (EC8) [10]. 2tn
OUVEXELDL OnuioupynBnkav Tpelg avtiotowxol oxedlaopol Tng dla kaAtoPng pe
ekkevtpotnta 5%, 10% kat 20% w¢g mpog tn palo. H otpédn Pdoswg Ttou
ouoTNUAToG, N otpodr opodng Kot o Adyog oTtpEPng ouykpiBnkav yla SladopeTIKES
TIMEG EKKEVTPOTNTAC WG TPOG TN pala. EmutAéov kataypddnkav oL TLHEG TEUVOUCWV
SUVAUEWV, LETATOTIIOEWY KOL TIOPOUOPPWOEWYV YLO TO KATAKOpUDA OTOLKELQ yLaL TIG
SL0POPETIKEG TLIUEG TNG EKKEVTPOTNTAC. Tl HEAN TOU CUOCTAMOTOC MPOCOUOLWONKav
pe to pafdwtod otolxeio Suvapewv §okou-oTtUAoU Baclopévo otn HEBodo Twv wv
(fiber approach). H uébodoc¢ autr mapouaclalel KATOLEC LOLALTEPOTNTEC. ZUUPWVA PE
™ SlaTUNMWOon authH oL €0WTEPKEG Spaocelg SlopBwvovial wWoTe va UTAPXEL
oupPBatotnTa UE TIC UETATOMIOEL OTOUG KOMBoug tou otolxeiou. H Swadikaoia
810pbwong toug ovopaletal Sadlkaocia kaBoplopol KATAOTOONG OTOLKElOU
(element state determination). EmutAéov oUpdwva pe T SatuMwon auth
amalteitol 0 KaBoploUOC TOU UNTPWOU EVOOOLUOTNTOG YLO TIG ECWTEPLKEG SLATOUEG
Tou otolxeilou (section flexibility matrix) amd omou umoAoyiletal TO HNTPWO
oTLBapPOTNTAC TOU OTOLXELOU KoL OL E0WTEPLKEG Spaocelg kaBe datopns. H Baoikn
UTIOBECN OTO OTOLXELD €VOOOLUOTNTOC ElvaL N XPON CUVAPTHOEWV TOPEUBOANG
TIPOKELUEVOU amo ta eTkoppla poptia va mpokUPouv Ta GUOLKA EVIATIKA EVTIOTIKA
HEVEDN oe dlddope SLATOUEG OTO EOCWTEPLKO TOU oTolxeiou[11]. Zupudwva Pe auth
™ Slatunwon €va otolxeio S0koU — oTUAOU £lval OPKETO yla VO TIPOCOUOLWOEL TN
ouuneplpopd €vog HEAOUG. Ze aviiBeon pe to otolelo SuvdApewv, yla TV
Tipooopolwon HEAWV PE TO OTOLKElO HPETATOMIOEWV ELOIKOTEPA OTNV QAVEAOOTLKNA
TepLoxn €ival amapaitnto kabs pélog va SlakpitomolnBel pe meploodTEp AMO €val
otolxeia SokoU-oTtUAOU. Evw avapévetol mMUKVWOn Tou SIKTUOU OTLG TIEPLOXEC OTIOU
OvVamTUooovVTalL UEYAAEG QVEAOOTIKEG Tapapopdwoel. H ouumepidpopd TOU
okupodépatog o BAIYN mpooopowwOnke pe To povtédo twv Kent kat Park (1973)
[12] 6nwg Tpomomnow)Bnke amnod toug Scott et al. (1982) [13]. Evw n cupmnepipopd Tou
XGAuBa neplypadetal and Sypapko POvTEAO.

Ma tig avaAUoEeLg xpnotpomnotnonke to Aoylopikd OPENSEES. To apytko cluotnua
elval OUUUETPIKO (symmetric: sym) €evw OUyKpPlVETOL ME TA aVTiOTOLXQ TIOU
TIAPOUGCLA{OUV EKKEVIPOTNTEC WG Mpo¢ TN pala katd 5% (mass eccentric: ecc_0.05),

10% (mass eccentric: ecc_0.10) kat 20% (mass eccentric: ecc_0.02). OMAoL ol
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oxeblaopol umoPANBNKav O PN YPAUUKEC SUVAUIKEC avaAUOoEL( yla Ta Tpla
enineda oslopkng emkivduvotntag. H otpédn Baong tou cuotiuatog, n otpodn
0podn¢ KaL o Adyog otpePng cuykplBnkav yla SLadopETIKES TUUEG TNG EKKEVIPOTNTOG
WG TPOG Tt pala ya ta Stadopetika emnineda oelopKnG emikivduvotntag. EmutAéov
Kataypadnkav oL TIHEG TEUVOUOWY SUVAUEWY LETATOMIOEWV KAl Ttapapopdwoswy
yla ta Katokopuda otolxeia kKol ouykpiBnkav yla Tig SLadOopETIKEG TUMEG TNG

EKKEVTPOTNTAG.

ApBuntikn Edpappoyn 1

ItnV mPWTn aplountikn edpappoyn efetaletal €va povwpodo, KAVOVIKO o€
katon, OLafovika EKKEVIPO KINPLO PEAALOTIKWY SLOOTACEWV UTIOBAAAOUEVO OE
oslopkry Sléyepon katd Tt dvo SeuBuvoelg x kat Yy (Ewdva 6). Toco to
CUMMETPIKO 000 KOl TA EKKEVIPA WC TPOG TN Uala avtiotolyd tou onwc daivetal
arnod tov mivaka 1 KaTataocoovTal oTnV Katnyopla twv SUoTpentwy Ktnplwv, edpdoov
0 AOyoC tNG pn ouleuyUEVNC OTPETTIKAG TMPOC TN UN ouleuyuévn HEeTAdOPIKN
ouxvotnta €ival PeyoAUTEPOG TNG Movadag. Itnv ewkova 7 amelkovilovtal ot
TEPVOUOEG SUVANELG EMAEYUEVWY UTIOOTNAWHATWY Katd tv Yy SevBuvon omou
TIAPOTNPEITOL N  OVOUEVOUEVN OUUTEPLPOPA Yl OTPEMTIKA U gvaicbnta
cuvotnuata (torsionally stiff systems) katd Tnv eAaoTIK AMOKPLON TOU CUCTAHATOC.
ElblkOTeEpa, onUeElwvETAL AVENonN TWV TEUVOUOWV OUVAUEWV HOVOTOVIKA HE TNV
EKKEVTPOTNTA OTNV €UKAUMTN TAgupd (n amootacn amd 1o KEVIpo palacg sival
ULKpOTEPN amd TNV amdéotaoh ¢ amod to kévipo akappiag columns 11, 16) kat
peiwon toug otn duokaumtn MAeupd (n andotaon amo To KEvipo akappiag sival
ULKPOTEPN amo auth amd 1o Kévipo paloag _ columns 1, 6). Otav kamowo amnd ta
otolxeio Sloppevosl petafaretal n otfapotnd TOU KAl KATA OUVERELX N
EKKEVTPOTNTA TOU CUCTAMATOC. TO CUOTNUA ELOEPYETAL OTNV AVEAACTLKN TIEPLOXN TNG
amokplong Omou n otBopdtnTa TwV OTOEIWV  HETOPAANAETA, OpOlA KAl N
EKKEVTPOTNTA. H avakatavourn twv duvapewv e8ika yla duvapikni ¢option dev
elvat duvato va mpoPAedpBei. To 6o cupPaivel kol pe Tt B£€0n TOU KEVTPOU
€NAOTIKNC OTpodnC. Emopévwe e pmopel pe aopalela va npoPAedpBel mola mAevpad
elvatl eukaumtn i duokaurmtn. H dla tdon mapatnenOnKe yla TIG LETATOTIOELG KO

TI¢ mapapopdwoelg (Ewkova 8).
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Ewkova 6. AplOuntikn Epappoyn 1 - Ekkevtpo SLafovikd Kavoviko cuotnua utoBaAAOEVO

o€ oeloptkn Sleyepon katd Tig Suo SleuBuvoelg xkat Y.

Nivakag 1. ApBuntikn Edpappoyn 1 - I5lomepiodog Kot AOyog N cUIEVYUEVNG OTPETTITLKAC
TPOG Un oulevypévn petadoptkn Ldloouxvotnta.

) a,
T T, T, Q. =— Q, =—
Q, a)y
sym 0.3593 % 0.34847Y 0.2526" 1.4224 1.3793
ecc0.05 0.3620 % 0.35127 0.2524" 1.4342 1.3914
ecc0.10 0.3753 % 0.35397 0.2519" 1.4898 1.4049
ecc0.20 0.4320 * 0.35497 0.2509" 1.7218 1.4145
200 I I T T T T
150 . o r : 2 -
g 100 : :2?0 . @ ¢ ! : . E . : .
> ecc20 g [ ] ]
50 ; M ] + : ; ; : ; ; : =
0 ct;I1 oo‘le ool‘11 oo=16 co[I1 oo‘le ool‘11 col‘16 oc‘>|1 oo‘l6 00:11 ool‘16
50% 10% o
Hazard Level
(a)
E i B : : ¢ i + H ? "
E’ 05 : ' R ]
2 : : : : : :
i i i i i i i i i i i i
col1 colé %col11 col16 colt col6 100,20”1 col16 colt colé 2‘yool11 col16
Hazard Level :

Ewkova 7. AplBuntikn edapuoyn 1 — Téuvouoeg SUVALELS UTIOCTNAWUATWY KATA TV Y

SlevBuvon yla kABe eminedo oELOPLKAG EMLKIVEUVOTNTAG KAl KABe oxeSlaopo — (a) amoAutn
HEYLOTN TN TEUVOUOWV SUVAEWY Kol (b) KavovikomolnUEVES TEPUVOUOEC SUVAELS WG TIPOG
TN HEYLOTN TLUA.
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Ewova 8. ApiBuntikn edappoyn 1 — KavovikomolnpEVEG WG TIPOG TN KEYLOTN TN KATd TV

y 61ebBuvon yla kabe eminedo oeloULKNG EMIKVOUVOTNTAS Kol KABe axedLaouo — (a)

peTaTomioelg umtooTnAWUATWY Kat (b) mapapopdwaoelg uMOoTNAWUATWV.

Oocov adopd ta peyédn mou oxetilovtal PE TNV EMPPON TOU OTPEMTIKOU
dawopévou - otpédn Baong, otpodr opodng kat Adyog otpéPng - mapaATNPOUE
OTL aUEAVOVTOL HOVOTOVIKA HE TNV EKKEVIPOTNTA Yl OAA TO €MiMeda OELOULIKNG
erukwvduvotntag (Etkéva 9). MNa Ta CUMHUETPLKA CUCTHUOTA TTapaTnPEeitaL OTL 0 Adyog
oTpEPNC elval UNSEVIKOG yla TNV EAACTLKN TIEPLOXH ATOKpLlong. "Onw¢ avadEpObnke
TIOPATIAVW OTNV QVEAQOTIKN TIEPLOXN N OTIRAPOTNTA TWV OTOWKELWV emnpedletal
pMeTaBAllovtag TNV €KKeVIPOTNTA. lNa To AdOyo QUTO TAPATNPEOUVTOL TIUES
SL0POPETIKEG TOU UNEEVOC VIO TO CUUUETPLKO QVILOTOLXO OTNV AVEAQCTLKN TIEPLOXN
anokplong. Ektog and 1o Adyo otpédng n otpéPn Bdaong kabwg kaL n otpodn
opodnG aufAvVouVv TIG TIUEG TOUG YL TO CUMUETPLKO QVTIOTOLXO OTNV OVEAQOTIKN
TIEPLOXN O€ oUyKplon UE eKelveg oTnV eAaoTikr. Emewdn n taén peyéboug Toug eival
TIOAU HIKpn Ko n avénon tou Sev elval opatr) otnv elkova 9, mapatiBetal o mivakog

2.
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Mivakag 2. ZUUUETPLKO avtiotolxo — TpéPn Baaong, otpodr opodrig kat Adyog otpéPng yla
O\ Ta eMIMES A OELOULKAG EMKLVOUVOTNTAC.

Symmetric design

Hazard Levels

50/50 10/50 2/50
ROT 8.78E-03 1.66E-01 3.99E-01
Base Torque 5.66E-08 1.16E-02 5.60E-02
Diaphragm Rotation 5.76E-12 1.62E-07 8.40E-07
-3
400 '134"'0 8
B + sym =
£ 300[| © eccs §3 8
© = eccl0 k] . —
ggoo ecc20| - . n‘ég R Q4 g
§100 B . 81 . & 2.=
[+1] : _‘é‘ : ® *
0 50% 10% 2% 8o 50% 10% 2% 0 50% 10% 2%
Hazard Level Hazard Level Hazard Level
(a) < (b) ()
2
3 5
=4 [=]
g 1 ’E 1 5 1
m 06} - » '§0.6 . g 20.6" » T ]
B - [ 2 ]
N o4 04} g E 04 . o
S . ° ® ° S
g 02 N 0.2 Z 02 -
2 0 E o 0 + *
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Hazard Level z Hazard Level Hazard Level
(e) ®

Ewova 9. AplBuntikn edappoyn 1 — (a) péylotn amolutn twun otpedng Baong, (b) péytotn
amndAutn Tn otpodr Stadpdypatog, (c) péytotn amdAutn T Adyou otpédng (ROT ), (d)
KOLVOVLKOTIOLNLEVN WE TTPOC TN HEYLOTN TN otpédn BAong, (e) KavovIKOTIoLNUEVN WG TIPOG
TN HEYLOTN TR otpodr opodng kal (f) KavoviKomolNEVOG WG TIPOG TN KEYLOTN T AdYog
otpéPnec (ROT ) yia 6Aa ta entineda oelopikng emkivduvdTnTag Kot OAOUC TOUG
oxedlaopouc.

Onwc¢ napatnpeital otnv ewkéva 9 (a), (b), (c) n petafoAn g otpodrg opodng
6ev akohouBel mavta avt g otpePng BAong. MNa TO PN CUUETPLKO AVIIOTOLXO HE
20% €eKKEVTPOTNTA WG TPOC TN HAlo MOPATNPOUME OTL €VW N TIUA TNG HEYLOTN
otpePng Baong aufavetal amod to enimebo pe mbavotnta unépPaong 2% ota
TIEVIVTO XPOVLa O oUYKPLON UE eKElvo pe mBavotnta unépBaong 10% ota mevvia
Xpovia, n TN tng otpodns opodng pelwvetal. O Adyog otpédng petaBaAletal
ocUpPwva pe T otpePn Baong. Afilel va onuelwBel OTL OpOLA CUUTTEPACHATO £XOUV

enaAnBeuBel yla o amAd HovTéAd KaBwE KoL ylo TIo TIOAUTIAOKQL [N KOWVOVLKA OE
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katoPn ktipla umtoBaAAOpEVA TOCO O HOVOAEOVIKI) OO0 Kal 0 SLAEOVIKI) OELOULKN

S1€yepon, ta omola dev mapafarlovral 6w yia AGyouc OlKOVOULAG XWwpPOoU.

ApOuntikn Edpappuoyn 2

H &eltepn aplOuntikn edpoapuoyn adopd éva TETPAWPOPO LN KAVOVIKO OE
katon Stafovika €kkevipo ktnplo (Etkova 10) unoBalopevo os oelouLkn SLEyepon
Katd TG Suo SleuBuvoeLg. AOYw TNG KN KOWVOVIKOTNTAG TOU KTnplou o€ katoyn Atav
OVEDLKTO VO OPLOTEL CUUUETPLKOG OXESLAOUOG, EMOUEVWG 0PLoTNKE OXESLAOUOG UE TN
HKpOTEPN Suvath ekkevtpotnta ton pe 0.4 % kat cupBoAlleTal WG ecc To avTLoToo
Tou ota ypadnuata. Ta umtdlouta EKKEVTpA avtioTolya adopoulV EKKEVIPOTNTES 5%,
10% kat 20% Omw¢ KaL otnv ponyouevn edappoyn kot cuppolifovtal pe ecc0.05,
ecc0.10 kat ecc0.20 avtiotolya. MPOKELTAL KL O€ AUTH TNV MepimTwon yla SUCTPENTO
oloTNUA OMWG GALVETAL OTOV TiivaKa 3 Ao TG TWWEG TOU AOYoU N OUTIEUYHEVNG
OTPEMTIKNG TPOG KN ouleuyuévn UETADOPLK OUXVOTNTO, O omoiog femepvd T

povada yla 6Aoug toug oxeSlacuoug.
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Ewova 10. AplOuntikn Epappoyn 2 - EKKeVTpo SLoEOVIKA [N KAVOVLKO TETpowpodo cloTnpa
untoBaAAopEVO og OeLloULKN SLEyepon KaTa TIG SUo SleuBUVoEL XKaLy .

Onwg ¢aivetat otnv €lkéva 11 Kal otnv ewkova 12 Ta eVTATIKA HEYEONn

(téuvouoeg Suvapelg, petatomiosl Kal mopapopdwoelg) avéavovral ywo Ta

unootnAwpoto Tou Bplokovtat otnv egukapmtn mAsupa (columns 1, 7) kat

HElwvovTal yla ekeiva otnv duokaumtn (columns 3, 6). Ta evtatikd HeyEOn twv
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€lKOVWV 11 kat 12 adopouv Ta otolyeia Tou avwtepou Stadpapyatos. Etol, n nén
TapaTNPNUEVN KL amd aAAOUGC €PEUVNTEC TAON METABOANRC EVIATIKWY HEYEBwWV
SUOTPEMTWY KAVOVIKWVY KTNplwv, emaAnbsUetal Kol yla KN KOVOVIKA O KAtoyn
KTApLL.

Nivakag 3. AplBuntikn Edappoyn 2 - ISlonepiodog kot Adyog n culeUYUEVNG OTPETTTLKNAG
TPOC 1N ouleuyuévn petadoplki lBloocuxvotnta.
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Ewova 11. AptBuntikr ebappoyn 2 — TEUvouoeg SUVANELG UTTIOCTNAWHUAETWY KOTA TNV Y
SlevBuvon yla kABe eminedo oELOUIKAG EMLKIVOUVOTNTAC KAl KABe oxeSlaopo — (a) Héylotn
artOAUTN TLUA TEUVOUCWY SUVAPEWY Kal (b) KOVOVIKOTIOLNUEVES TEUVOUOEG SUVAUELS WG

TPOG TN KEYLOTN TLUN.

Mo tov €kkevtpo oxedlaopo pe 0.4% exkkevipotnta ecc n otpeyPn Baong, n
otpodr opodnc Kal o Adoyog otpePng £xouv oxedOV UNSEVIKA TLUN OTNV EAAOCTIKN
nieploxn amnokplong ( pe mbavotnta unépPacnc 50% ota mevrvia xpovia). Mo Toug
UTtOAOLTTOUG OXESLAGUOUC OL TIUEC TWV aVTIoTOLXWV HeyEBwWY auédvovTtoal LOVOTOVLKA
HE TNV ekkevtpotnta. H dla taon mapoatnpeitol kat yia ta aAa duo enimeda

oelopknG emkvduvotntag ( pe mbavotnta unépPaong 2% kat 10% ota mevAvia
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xpovia), emaAnBevovtag tnv aflomotia Tou Adyou oTPEPNC KoL OTNV AVEAOOTLKA
TiEPLOXN amokplong. Opola cupmEepATUATA £XOUV TTOPATNPNOEL KaL yla KOVOVLKA o€
katon TeETpawpoda KTrpLa, TO00 0 AMAA HOVTEAX OCO KO OE KTHPLA PEQALOTIKWV
Slaotdocswv umoBaAlopeva os povoaovikn r/kal Sta€ovikn oslopikny Stéyepaon, ta

omnola 6ev mapatiBevral e6w yLa AOyoug OLKOVOULAG XWPOU.
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Ewdva 12. AplBuntiki epappoyn 2 — KovoviKOTIOLNUEVEG WE TTPOG TN LEYLOTN TLUN KATA ThV
y &ievBuvon yla kdBe eminedo oelopIKAg emiKVSUVOTNTAG KoL KABE oXeSLoIoUS — (a)

peTaTomioelg umtooTnAWUATWY Kat (b) mapapopdwaoelg uMOoTNAWUATWV.

a b c
400 % 0.025 20
£ + occ )
® eccS = 002
Z .
= 300 ® eccl0 g 15
@ £ 0.015
8 a00 20, 2 . S 10 i
S . g 001 ] .
8 100 2 g ° . 5 ° e
§ u 5 0.005 u -
T . . 8 S . . ¢+ *
° 50% 10% 2% 0 50% 10% 2% 0 50% 10% 2%
Hazard Level Hazard Level Hazard Level
d § e f
@ =
g 1 § 1 1
g . — .
= E Q
208 = 208 T 08
< . £ u B
D06 . S 0.6 - N 0.6 n
3 ° K] n @
N 04 . o % 0.4 . . o E o4 = . o
©
50.2--- %0_2.. Z 02}
[ ] *
2 + Y £ - + - + *
0 50% 10% 2% g 0 50% 10% 2% 0 50% 10% 2%
Hazard Level Hazard Level Hazard Level

Ewova 13. AplBuntikn ebappoyn 2 — (a) péylotn amoAuth Tun otpedng Baong, (b) péylotn
ardAutn T otpodng opodrc Stadpaypatog, (c) uéytotn amdAutn Tl Adyou otpéng (
ROT ), (d) kavovikomotnpévn we mpoc tn péylotn T otpédn Bdong, (e)
KOLVOVLKOTIOLNEVN WE TPOC TN KEYLOTN TN oTtpodr opodng Kat (f) KavoviKomoLlnpUévog we
npog tn péytotn tiur Adyog otpédng (ROT ) yia 6Aa ta enineSa oelopikrg emkvSuvotntag
Kall 6Aou¢ Toug oxedlaopoUlg.
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O AOyoc oTpePnC €KTOC amo Oe(KTNC AMOTIUNONG EMEKTEIVETAL Kal 0 SelkTn
oxeblaopou, péow tng dadikaciag BeAtioTonoinong eAAXLOTOMOLWVTAC TO TTOCOO0TO
TWV MPOCOETWV TEUVOUCWV SUVAUEWV AOYyw oTpEYNG (torsion-induced forces).

Aebopévou OTL 0 KUPLOG OTOXOG TWV CUYXPOVWV AVILOELCULKWY KOVOVIOUWV Eival
n mpootaoia Tng avBpwrnivng {wng, eivat davepo otL Ba mpémnet va AndBouv undoyn
ETIUITAEOV KPLTNPLOL OXETIKA LE TNV EMIS0OON TNG KATAOKEUNG, Ta omoia va replopilouv
TIC OLKOVOULKEG amwAeleg kaBwe kal Seikteg PAAPBNG WOTE va MOCOTLKOTONOEL N
TPWTOTNTA TWV KATAOKEUWV OE EVOEXOMEVO OELOULKO yeyovog. Etol dpyloe va
vloBeteitat pia véa Bewpnon oxedlaopol HE KPLTAPLA  ETUTEAECTIKOTNTOG
(performance-based design). Zupdwva pe TO oOXeSONO pe PBdon TNV
ETUTEAECTIKOTNTA N KATAOKEUN €AEyXETAL yla Sladopa eMIMeESA OELGUIKNEG EVTOONG.
e avtibeon pe tov Eupwkwdika Omou povo Suo emimeda €MITEAECTIKOTNTOG
AapBdavovtal umoyn, n oplaK KOTAOTAON AELTOUPYLKOTNTAC KOL N OPLOKA
kataotaon oaotoxioag. Ma mapadewypa n FEMA-356 mpoteivel téooepa enimeda
ETUTEAEOTIKOTNTAG: TO £Mimedo AELTOUPYIKOTNTAG, TO eMimedo ApeEoNnC xprnong, To
eninedo mpootaciag {wng kat to emninedo amoduyng katdappeuong. Afilel va
OoNUewwBOel OTL n oelwoulkn €vtaon opiletal wg ouvaptnon tng mbavotntag
umépPBaong Tou Oelopol oXeSlaopoU Katd tn Sldpkela Tou xpovou IwNg tng
KATOOKEUNG 0 omoiog cuvABw¢ AapPBavetal iowg pe 50 xpovia. H ocroudatdotnta piag
KOTooKEUNG  Aaufavetat  umoyn  xpnolgomowwvtag yia  kabs  eminedo
ETUTEAEOTIKOTNTAC OELOUO e KATAAANAN mepiodo emavadopdg.

JTO TMAQUOLO TOU QVTLOELOPLIKOU oxedlaopol pe BAon tnv emITEAEOTIKOTNTA
yivetal Sltaxwplopog petafl kavotntag kal amaitnong. Me tov 6po amaitnon
gvvoolvtal ol eTBOAAOUEVEG HeTATOTOELG ( 1] EVAANQKTIKA, TOPAUOPPWOELS,
KOUTIUAOTNTECG, OTPOdEC KAl YWVIEG OXETIKAG UETOKIvNONG SUo opodwv) Adyw TNg
OELOULKAG GOPTLONG, EVW HE TOV OPO LKAVOTNTA EVVOELTAL N HEYLOTN PETATOmon ( N
EVAANQKTIKA, Topauopdwon, KOUMUAOTNTA, otpodn KAl Ywvia  OXETIKAG
HETAKIVNONG) TTOU UTTOPEL VAL OVATTTUEEL Lol KATOOKEUN, Eva LEAOG TNG A LLa Statoun
™c[11].

OL avtloslopikol oxedlaopol pe BAaon TNV EMITEAECTIKOTNTO OTOXEUOUV OTNV
OTOKPLON TNC KATAOKEUNC UE eAeyxopeveg BAABec-InuLEG yia ta dadopa emineda

oclopkAG  emkivduvotntag. MMpokelwévou va vlomownBet aut) n  avtiAnyn
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oxeblaopol amoatteital n moootikomoinon tng PAABng pe deiktec PAAPNG Twv
OTolwV OL TIHEG UIMOPOUV VO CUCXETLOO0UV E OUYKEKPLUEVN Katdotaon BAABNng tou
Ktnplou.

Itn ouvéxela NG Satplpric avalntwvrtal ol PéAtotol oxedlaopol Twv
KATAOKEUWV TIOU Ba PokUPOUV HECW UN-YPOUULKNAG SUVAMLKNAG avaAluong. Me Tov
0po ‘BEATIOTOG SOMOOTATIKOG OXESLOOUOG EVVOOUUE TNV EUPECN TOU KAAUTEPOU
Sduvatou oxedlaouol mou pnopel va e€eupebel oto MAALoLO VOGS TTOAUTTAOKOU TIOAU-
TIAPAUETPIKOU TpoPARuatog BeAtiotonoinong, kot OxL Tov “padnuatikd” BEAtioto
oxeblaopd o omoio¢ eival dUuokoho ew¢ aduvato va e€eupeBel. OL ITPATNYLKEC
E€EALENC elval AapBiveleg péBobdoL BeATioTomoOLoNG OL OTOLEG HETA a0 SLOSOYIKEG
BeAtiwoelg Tou oxedloopoU 06nyoUV TNV AVIIKELUEVLKA ouvaApTnon oto “KaBoAko”
NG BEATLOTO.

Ma tov umoloylwopd tou BEATioTou oxeSlaopoU apxlka eival amapaitntn n
poOnuatiky Statumwon tou MPOoBANUATOC KoL OTN CUVEXELA N €TAUCN TOU UE TN
BonBewa evog alyoplOuou PBeAtiotomoinong. Apxlkd TpEMeL va oplobolv ol
TIAPAUETPOL OXeSLAOUOU Kal N HETAED TOUC OXEON. 2T CUVEXELX va KaBoploTel n
TMpo¢ PeAtoTtonmoinon ouvaptnon Kal oL TEepLoplopol Tou TmpoPAnuatog. H
Slodkaola  OAOKANPWVETAL HE TNV €AoYy Tou KOTAAAnAou aAyoplBuou
BeAtiotomnoinong kat tnv ebappoyn Tou yla tnv TeAkn eniluon tou pofArnuatog. Ot
neploplopol tou TmpoPAnuartog ocuvnbwg avadépovtal oto €UPOG OTO OTMoio
KLVOUVTOL Ol TapAUETPOL oxedlaopol kal emiBAAAovTOL HECW TWV CUVAPTHOEWV
TiEPLOPLOOU  KaBopilovtog To Ywpo amodektwv AUCEWV TOU TPOPANUATOGC.
AkoloUBw¢ mapouoctaletal o  aAyoplBuog  otpatnylkwv  €EEAENG  TOU
xpnotuornow0nke otn dtatpipn.

‘Eva ouvexEg mpoBAnua BEATiotou oxeSlaopol pmopel va StatunmwBOel wg e€NG:

min F(s)
S={8,5, S, 1
l. <s <u,i=12,...,n (23)
g,()20,j=12,...,m

hi(s)=0,j=m+1m+2,....t

]
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omou seivat to Sdvuopa twv petaBAntwv oxedlaopoy, |, U, elval To kdtw Kat to
dvw opto tng petaPAntig oxedracpou S, F (S) elval n QVTIKELUEVLIKT) CUVAPTNON EVW
d;(s),h;(s) elvar oL cuvaptroelg TtEPLOPLOUOL AVIGOTATWV KaLL LOOTATWY QVTioTOKA.

Exktoc amd ta ouvexn mpoPAnuata PBEATIOTOU OXESLAOMOU, UTAPXOUV TA
SLaKpLTa Kal ta PELKTOU TUTOU TpofAnpata. Alakpltd ovopalovtal ta mpofAnuata
ekelva ota omola ot peTaBANTEG oxedlaopol maipvouv SLOKPLTEG TLUEG. Evw HELKTOU
TUmou ovouadovtal Ta mpoPAnuata ekeiva ota omola ol PeTaPAnTég oxeSlaouou
TLALLPVOUV TOOO CUVEXELG 000 Kal SLAKPLTEG TLUEG.

‘Eva Stakplto mpoPAnua BEATIoTou oxeSLaopoU SLATUTWVETAL WG €ENG:

min F(s)
S={8, 5,5, 1
I <s <u,i=12,...n (24)

Si € Rd,i 21,2,...,n
g](s) 201 j :1, 2,--..,m

hi(s)=0,j=m+1m+2,....t

]

6mou R? eivat To medio TUWY TwV SLUKPLTWY LETABANTWV OXESLOGHOU S .

Q¢ petaBAntéc oxeblaopol opilovtal ekelveG oL TTOPALETPOL, OL OTOLEC OTAV
AdBouv cuykekpluévn TR kabBopilouv TANPwE éva oxedlaoud. Otav Karmolol
neploplopol mapapBialovral and €voa cuvbuaopd HETAPANTWY TOTE 0 OXESLAOUOG
KaAe(tal avédplktog, otnv avtiBetn mepinmtwon ovopdaletal eplktoc. Evag ediktog
oxeblaopog bev eival mavta BEATiotog aAAd ival avta epapUooiiod. H KatdAAnAn
npooopoiwon Paociletalt otnv ocwot €mAoy Twv HeTaPAnTwv oxedlaopou.
Anapaitntn npolnodbeon eival ol petaPAntég va eival avefdptnteg petafl TOUG.
KaBw¢ oe mepimtwon mou kamota PetofAnth sival e€aptnuévn amd Kamola AAAn
TOTE MAUEL MAEOV va elval peTaBAntr, aAAA pio mopAdpeTpog n omoiat AaAUBAVEL TUUES
ocUpPwva pe TNV PeTaPAnTi amd tnv omoia e€aptatal. EMUTAEOV N QVTLKELEVIKN
ocuvaptnon odeilel va eival emapkwg €EopTWUEVN ATO OAEC TI( TAPOUETPOUG
oxeblaopou. MNa tov Adyo auto PV TNV TEALKN ETIAOYA TOU poBnUaTikol LOVTEAOU

BeAtwotonoinong ouviotatal n Slevépyela plag avaluong svolodnolag wote va
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eheyxBel to péyeBog svaloOnoilag TNG AVTIKELUEVIKAG OUVAPTNONG O OXECN HE OAEC
TIC TAPOAPETPOUC oXeSlaopUoU. QC QVIIKELUEVIK OUVAPTNON OPLIETAL TO KPLTHPLO
ekelvo Bdaoel tou omoiou emAéyetal o BEATIOTOC OXESLAOMOG Ao €va GUVOAO
eptwv oxedloopwv. Eva mpoPAnUa UMOPEL va cuvioTatal anod MEPLOCOTEPEG ATO
Ml QVTIKELUEVIKEG ouvapTtnoels. Ta MpoBARUATA AUTOU TOU TUTIOU ovopalovtol
npoBAnuata BeAtiotonoinong pe MOAATAEG OVTLKELUEVIKEG CUVAPTNOELG 1 OAALWG
npoPAnuata Pareto. KaBe amaitnon tou oxedlaopol €L0AYETAL OTO HAONUOTIKO
NMpoBAnua PeAtiotonoinong He tTn Mopdr) AVICOTATWVY KOl LOOTATWY, OL OTOLEC
OVTUTPOOWTEVOUV TOUG TIEPLOPLOUOUGS Tou TipoPAnpatoc. KabBe meploplopdg mpemel
va géoptatal and touAdyxlotov pia peTaBAntn oxedlacpou wote va €xel GUOLKO
vonua. Mio ouvaptnon TepPLOPLOPOU OVOUALETAL QVEVEPYOC OTAV LKAVOTIOLE(TOL

QUOTNPWG N aviootnta gj(s*) < 0. H avwootikn ouvaptnon mepLopLlopol Bewpeital

otL mapaBlaetal yla Tov oxedlaopd S otnv MepmTwon mou AapBavel BTk TN

9; (s”) > 0. Avtiotolxa, pia LOOTIKA CUVAPTNON EPLOPLOHOU h;(s) =0 BewpeitaL ot
nopaflidetal oto onpeio S av Sev LoYVEL N LOOTNTA hj(s*);tO. JUVENWG KABe

ePIKTOC oxedLACUOC opileTal amd eVEPYEG N AVEVEPYEC QVIOOTIKEC OUVOPTHOELG
TIEPLOPLOUOU  KABWC KoL amd €EVEPYEG LOOTIKEG OUVAPTHOELG TIEPLOPLOUOU.
MPOKELUEVOU VA EVTOTILOTOUV Ol EVEPYEC GUVAPTHOELG TIEPLOPLOOU TIPETIEL TIPWTA OL
OUVAPTAOELG TOUC VA KAVOVLKOTIOLNBoUV woTe va eivat epLKTr) n cUYKPLOH TOUG .

Onwg mpoavadepbnke otnv mapovoa epyacio xpnolwgomnownke n péBodog
Jtpatnylkwv EEEALENC. H péBodog twv Itpatnywkwv EEEAENG [14], [15], [16]
KATOTAOOETAL O0TNV Katnyopia twv Aopfivelwv HeBOSwV 1 aAAwg €EEAKTIKWV
oAyopiBuwv. To ovopa toug amodidetal oTo yeyovog OtL pipouvtal tn dtadikaoia
e€EAENC TwV ebwv otn dUonN, ONMWE MAPOUCLACTNKE amo To AapfBivo kal avikouv
OTlC TUXNUATIKEG MeBOdoug PeAtiotomoinong. AMeg HEBodoL  EEeAKTIKWV
AlyopiBuwv eivalt n pébodoc twv levetikwv AAyopiBuwv [17], n néBodog Tou
E€eAktikoU Mpoypappatiopol [18] kat n péBodog tou MNevetikou Mpoypappatiopou
[19]. e auth TNV Katnyopila avikel Kot n SladopeTkAG TEXVIKAG HEBOSOG TNG
Mpoocopoiwong Avomtnong [20].

Jopudwva pe ™ HEBOSO TWV ITpatnywkwv EEEALENC €vac mAnBuoupog

aveaptnTwy oxedlaouwv xpnoluormoleital oe kaBe Bripa tng Sladikaciag. Apxlka
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ETUALYETAL YE TUXALO TPOTIO O OPXLKOG MANOUGCUOC. ITn CUVEXELA HE TN XPNON TWV
TEAEOTWV avoouUVOUAOUOU, HETANAAENG Kal €TAOYAG, O OpPXIKOG TIANBUOUOC
e€ellooetal. Me kputriplo tnv emPBiwon tou oxupotépou (survival of the fittest)
obnyovpaote otn PéAtiotn Avon. H péBodo¢ twv Ztpatnyikwv EEEAENG Exel
edappooTel 0TOV XWPO TOou BEATIOTOU OXeSLACUOU Kataokeuwyv [21], [22]. To Baoiko
NG MAEOVEKTNUA €lval OTL AOYw TNG TUXNMOTLKOTNTAC TOU TPOTOU TG £PEUVAG TOU
XWPOU OXESLOOUOU €XEL TIEPLOCOTEPEC TLOAVOTNTEG yla TNV £UPECNH TOU aAmMOAUTA
BéAtiotou oxedloopol o ox€on ME TG HABnuatikeg pebodoug. Ewdikotepa, o€
Suokoha mpoPAnuata  PBeAtiotomoinong pe TOANA TOTIKA €Adylota 1yl
nipoBARUaTa pe TTOAAATTAEG AVTIKELMEVIKEG oUVOPTAOELG [11].

Jtnv napovoa epyacia xpnowomnow)tnke n péBodog twv Itpatnykwyv EEEAENG
MOAwV peAwyv. Z0udwva Pe auth tn HEB0SO n emAoyn TWV HEAWV TNG EMOUEVNG
YEVLAG yiveTal amd ta Lkavotepa LEAN HETAEU TWV £ YOVEWV KoL TwV A amoyovwy Kot
ovopdlovtat (u+A)ESs. Me BAaon outd TO HOVIEAO €vOG YOVEQG UE OVWTEPN
Kovotnta emPBlwong twv UTIOAOIMWY HEAWV TOU TANBUOHOU OUUUETEXEL OTN
Sladikaoia avamapaywyng yla TEPLOCOTEPEC YEVLEG. H kavotnta emiPBiwong kabe
HEAOUC Tou MANBuoHoU KaBopilleTal amd TNV TIUN TNG AVIKELUEVIKAG OUVAPTNONG.
To SeUtepo povtéo emloyng eivat To ( 4, A )ESs 6mou kdBe yoveag éxeL xpovo {wng
(00 pe pla yevid. OL yovelg TG EMOUEVNC YEVLAG ETUAEYOVTAL QMO TOUG ATIOYOVOUG
LOVO TNG ponyoU UEVNC.

H Swadikacia PeAtiotomoinong otoxeVUeL otnv TAUTOXpovn e€elpeon €vOg
LKOVOTIOLNTLIKOU €AOXIOTOU TNG QVTLKELWEVIKIG OUVAPTNONG KOl OTNV Lkavormoinon
OAWV TWV TEPLOPIOUWY TOU QVTIOELOMLKOU KOAVOVIOMOU KaBw¢ Kal Twv
OPXLTEKTOVIKWY TIEPLOPLOPWY yla Slddopa emineda OElOUKAG emKvduvoTNTAC.
EKTOC amd Tov MPOoTeVOUEVO SElKTN KAl TO KOOTOG KOTOOKEUNG WG OVTLKELUEVIKEG
OUVAPTACELG 0TNV apovuoa dLatpLpn xpnolomnolidnkav eniong n EKKEVIPOTNTA WG
TPOG TNV aKapia KoL wG TPOG TNV AVIOXH TIPOKELUEVOU va LEAETNOEL n emippor) Tou
dawopévou NG oTPEYNG OTNV OMOKPLON TNG KATOOKEUNRG yla OAa ta eminmeda
OELOMLKNG ETUKLVOUVOTNTOG.

H amotipnon twv BEATIoTWY oxedlaopuwy mou mpoékuav Pe ehaylotomnoinon

TWV AVWTEPW OVTIKELUEVIKWY OCUVAPTACEWV TIPAYHUOTOTOLETAL HE UTOBOAN TwvV
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TEAIKWV OXESLOOUWVY OE W YPAUULKEC SUVOUIKEC avOAUOELG Yyl OAal Tal eTtimeda
OELOULKAG emikvduvotntag. AkoAouBel n umépBeon twv meplBallovocwy Twv
XPOVOLOTOPLWV TEUVOUOAC BAoNnG-oTpEY NG BAong yla tnv eVPeoN Tou oXeSLACUOU UE
TNV EAAXLOTN EMLPPON) TOU OTPETTIKOU PaLVOUEVOU.
ApBuntikn Epappoyn 3

Itnv Tpitn apduntikn edpapuoyn QMOTIHWVIAL Ol BEATIOTOL QVILOELOULKOL
oxedlaopol ou TpoEkuP AV YL TO KOWOVLIKO o€ KAatoyn amAo povtélo tng Ewkdvag
14. 3tnv swova 14 daivovtal emiong kat oL BEATiotol oxedSlaopol mou mpoékuav
XPNOLLOTIOLWVTOG TO KOOTOG, TN OTATIKN €KKEVIPOTNTA, TNV EKKEVTPOTNTA QVTOXAG
Kal To AOYo OTpEYNG WG OQVIIKELUEVIKEG OUVOPTHOEL], EVW TAUTOXpova
LKovoTolouvTal oL Teploplopol mou emiBaAlovtal and tov Eupwkwdika 8 yla TIg
neputtwoelg CASE A, CASE B, CASE C kot CASE D avrtiotowxa. Mo tig (Sieg
OVTLKELUEVIKEC OUVAPTAOELS AAAA UTIO TOUG TIEPLOPLOUOUG oxeSlaopol pe Baon tnv
ETUTEAEOTIKOTNTA armelkovi{ovtal oL BEATIOTEG KATOYELG emiong otnv Ewkéva 14 wg
CASE E, CASE F, CASE G kot CASE H avtiotoyxa. Ot BEAtiotol oxedlaopol mou
npogkuPav umoPANOnkav oe 2 OslOUIKEG SLEYEPOELG yla KABE emimedo OELOULKAG
ETUKLVOUVOTNTAC TIPOKELUEVOU VA QUTOTLUNOEL N AVTLOELOWLKI) TOUG cuuTeptdopd. Ot
xpovoiotopieg Tépvouoag Paong - otpédng Paong kataypddnkav Kal ot
neplBaAAouoeg toug ouykpiBnkav wote va afloAoynBel n emppon TOU CTPETTLKOU
dalwvopévou otV amokplon Twv PéATloTwv  oxedlaopwv. Itnv  e€lkova 15
amnelkovilovtal ol xpovoiotopieg Téuvouoag Baong — otpédng Bdong tou BEATIoTOU
oxeSlaopoU ToU POEKUPE LE OVTLKELUEVIKI) OUVAPTNON TO KOOTOG UTORBAAAOUEVO
OTOU TEPLOPLOpOUG Tou Eupwkwdika 8 yia ouvnOn oelouikd datvopeva (mbavotnta
unépPBaoncg 50% ota TevvTa XPovia). ITIG EMOUEVEG ELKOVEC YiveTal unépBean Twv
neplBaAloucwy xpovolotoplwy Téuvouoag Baong — otpéPng BAaong yla OAOUC TOUG

oxeblaopoug Kal OAa Ta eTinmeda OELOULKNG EMKLVOUVOTNTAG.
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Ewkova 14. AplBuntikn epappoyn 3 — Apxtkog kal BeAtiotonolnpévol oxedlaopol yla OAeg TIg
OVTLKELUEVIKEG CUVOPTHOELG.
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Response Envelope

Base Shear Vi (kM)

Ewova 15. AplBuntikni ebpappoyn 3 — Xpovolotopieg Tépvouoag Baong — otpéPng Baong kat
n meptPparlouvca yla to oxedlacuo tng CASE A ylo ouvnOn oelopika davopeva.
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Base Torque T (kNm)

Base Shear Vy (kN)

Ewova 16. ApiBuntikr edapuoyn 3 — MNeptBAAOUGEG XpovoioTopLwy TEpvoucas Bacng —
otpéPng Baong katd tnv Y SltevBuvon yla cuxva oelouka dpawvopeva (50in50) yla OAa ta
KPLTAPLA UTIO TOUG TEPLOPLOOUC TTou emtBaAAovTal amo tov Eupwkwdika 8.

Onw¢ daivetal amnod tnv ewkéva 16, oL oxedlaopol oL onoiol BeAtiotonoOnkav
LE OQVTIKELMEVIK ouvaptnon to AOyo oTpedng Kal TNV €KKEVTPOTNTA akaupiog
avémtuéav ULKpOTEPN oTtpéPn Pdaong o€ oUyKPLon UE  EKELVOUG  TIOU
BeAtiotomouibnkav PBAcEl TOU KOOTOUG KAl TNG EKKEVTPOTNTAG  QVTOXNG
UTOBaAAOPEVOL OTOUG TEPLOPLOMOUC ToU Eupwkwdika 8 yla ouxva OELOULKA
dawopeva. Opola CUPMEPACUATA TIPOKUTITOUV KOL YLl TIEPLOTOCLOKA Kal OTtavia

oclopLka yeyovota (Elkoveg 18, 20).
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Ewova 17. ApBuntikn edappoyn 3 — NeptBAANOUCEG XPOVOIoTOPLWV TEUVOUTOG BAaong —
otpéPng Baong katd tnv Y SltevBuvon yla cuxva oelouka dpawvopeva (50in50) yla OAa ta
KPLTNPLO UTIO TOUG TIEPLOPLOKOUG TTOU eMLBAAAOVTAL OO ToV OXeSLAOUO e Baon TV
ETUTEAEOTIKOTNTA.

Jtnv swova 17 mopouoialovtal ol MePLBAANOUCEC XPOVOIOTOPLWY TEUVOUOAC
Baong — otpéPng PBaong ywa OAouc Tou¢ oxeSlaopoug umoPBalAopevoug o€
TIEPLOPLOUOUG BACEL TNG ETUTEAECTIKOTNTACG YO CUXVA OELOMKA datvopeva. O
oXeOLAOUOL HE QVTLKELMEVIKO KPLTAPLO TO AOYO OTPEPNC KOl TNV EKKEVIPOTNTA
okapilog koL oe aut TNV TEpimTwon €xouv TNV KaAutepn emidoon kabBwg
QVATTUCO0UV TNV ULKPOTEPN oTPEYN Baonc. Ta (Sla cupnepdopata Edyovtal yla

TIEPLOTACLOKA KAl OTIAVLA OELOULIKA datvopeva (Etkoveg 19,21).
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Ewkova 18. AplBuntikn epappoyn 3 — MeplBaAAouoceg xpovoioToplwy TEuvouoag Baong —
otpéPng Baong katd tnv Y StelBuvon yla MEPLOTACLOKA CELOMIKA patvopeva (10in50) yia

O\ Ta KpLTAPLA UTIO TOUC TEPLOPLOOUG TToU emLBAaAAovtal arnd tov Eupwkwdika 8.
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Ewkova 19. AplBuntikn epappoyn 3 — MeplBaAAouceg xpovoioToplwy TEuvouoag Baong —
otpéPng Baong katd tnv Y SlelBuvon yla MEPLOTACLOKA CELOMIKA patvopeva (10in50) yia

O\ Ta KpLTpLa UTIO TOUG TTEPLOPLOMOUC Ttou emiBaAlovTal amo tov oxeSlaopud pe Baon thv

EMITEAEOTIKOTNTAL
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Base Torque T (kNm)

Base Shear Vy (kM)

Ewkova 20. AplBuntikn epappoyn 3 — MeplBaAAouoeg xpovoioToplwy TEuvouoag Baong —
otpéPng Baong katd tnv Y SlevBuvon yla omavia oEORIKA palvopeva (2in50) yia oAa ta

KPLTAPLO UTIO TOUG TIEPLOPLOOUG TIou emLBaAAovTal amd tov Eupwkwbdika 8.
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Base Torque T (kNm)

Base Shear Vy (kM)

Ewova 21. ApiBuntikr edapuoyn 3 — MNeptBAAOUCEG XpovoioTopLwy TEpvoucas Baong —
otpéPng Baong katd tnv Y SlevBuvon yla omavia oEORIKA palvopeva (2in50) yia oAa ta
KPLTNPLO UTIO TOUG TIEPLOPLOROUG TToU eMLBAAAOvVTAL artd Tov oXeSLOopd pe Bdon tv
ETUTEAEOTIKOTNTA.

Mpémel va onuewwBel OTL Opolo cupmepdopato €xouv e€axBel Kal yla pn
KaVOVLKO o€ katoPn ktnplo, Sev napatiBetatl edw yia Adyoug olkovopiag xwpou. H
anodoon Twv oxedlaopwv mou PeAtiotonol}Onkav PACEL TOU TPOTELVOUEVOU
KpLutnplou onUEWONKE yla OAEC TIG TEPUTTWOEL KOL OAA TO OELOUIKA ETimeda
ETUKLVOUVOTNTOG avapeoa ot SU0 KOAUTEPEG TOOO O KAVOVLKA o€ KAton KTripla
000 KOL OE WUNn KOVOVIKA. Xe avtiBeon pe ta UTOAOUTA KPLTAPLAO TWV OMOolWwvV N
ocuuneplpopd yla KAmola eminmeda OELOUIKNAG EMKIVOUVOTNTAC ATAV LKAVOTIOLNTIKN
EVW yla KAmoLlo GAAa OxL.

Zuvoyilovtag, otnv mapouoa datplpn mapatnpndnke otL:

o [l amAd POVTEAQ, TA EVIATIKA UEYEDON TOU oXeTI{OVTOL UE TN OTPETTIKA
anokpLon TG Kataokeung — otpen Baong, otpodrn opodng kot Adyog
oTpePNC — aufAvovtol MOVOTOVIKA HE TNV EKKEVTPOTNTA Yyl OAa Ta

enineda oelOMIKAG eTukvOUVOTNTAG. Evw yla HOVTEAQ PEOCALOTIKWVY



xlvi

Slootdoswv n otpedn Baong kat n otpodr) opodng dev akoloubBolv
navta tnv dla taon petaBolng. O Adyog otpeng akoAouBel mavta tnv
Taon LeTaBoAng tng otpePng Baong.

Mpoteilvetal véog OelKTNG QmoTiHNoNG OTPEMTIKOU (ALVOUEVOU OTNV
amoKpLon TWV KATOOKEVWYV, 0 Adyog otpedng. O mpotelvopevog Selktng
TIOOOTIKOTIOLEL TO ALVOUEVO OE OpPOUG TEUVOUCWV OUVAPEWV Kol
ekdpalel To MOCOOTO HeYEBUVONG AUTWV AOYW OTPETTLKOU PaLVOUEVOU.
H tiun tou SeilKTn ylo CUMUETPLKA KTAPLO €lval UNSEVLIKN. ZUVETIWG, O€
avtiBeon pe OAa ta GAANQL EVTOTIKA MEYEON Tou oxetilovtal HE Tn
otpéPn, dev xpeldletal avaAluon TOU CUPUETPLKOU QVILOTOLXOU TNG
KOTQOKEUNG.

H nén mapatnpnuévn taon MeTOPOANG TWV EVIATIKWY HeyebBwv (
TEUVOUOEG SUVAUELG, LETATOTILOELG, TIOPAUOPPWOELS ) VLo KOVOVLKA OE
katoPn Suotpemrta KTrplo — avEnon TOUug OoTNV €UKOUTTN TAEUPA Kol
pelwon otn duokapntn — emPBeBalwONKE KAl yLa pn KAVOVIKA O KAToyn
KTApLa.

To kputiplo amotipnong enidpacng oTPEMTIKOU PALVOUEVOU PECW TNG
Sladikaoiag BeAtiotomnoinong emMekTelveTal 0 KpLTRpPLo oxedlaopou. H
anodoon Twv OxXeSLOMWY TOU TPOEKUPAV XPNOLUOTIOLWVTOG WG
OVTLKELUEVIKI) ouvaAptnon To Aoyo otpéPnc ival mavia AVOPESH OTLG
U0 KaAUTEPEG O CUYKPLON UE Ta UTOAOLTTA KpLtrpla. Ta amoteAéopata
emPeBaiwbnkav KoL yla pn Kovovika oe katon ktipta. Afilel va
onuewBel o6tL n amobdoon tou NATav otabepr yw O6Aa ta emineda
OELOMLKAG ETUKLVOUVOTNTOG.

T€Aog, o mpotelvopevog deiktng, Aoyoc otpePng, Umopel va amoteA£oel
€va XPOLUO €PYAAELD YLO TOUG LNXAVLKOUG ylat TNV TTOCOTLKOTIONGN TNG
enidpaong tou oTpenTikol GALVOUEVOU OTNV ATOKPLON TNG KOTOOKEVUNAG.
ErumtAéov, AapBavovtac umoyn OTL TMPOKUMTEL OO TNV TIUR Twv
TEQVOUOWV SuvApeEwv, oL omoleg HmopolV va UTIOAOYLOTOUV Omo
omolodnNmote AOYLOUIKO, €lval eUkoAa €POpPUOCIUO OE  KINPLO

OTOLA0OATIOTE YEWUETPLAG.
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Optimum Design of Earthquake Resistant Structures implementing Computational Methods ISAAR

1 INTRODUCTION

1.1 Introduction

Buildings subjected to ground shaking undergo simultaneously lateral as well as
torsional motions if their structural plan views do not possess two axes of mass and
stiffness symmetry. Coupled lateral-torsional motions can also occur in nominally
symmetric buildings if ground shaking includes a torsional component or due to
unforeseen conditions such as unbalanced load distributions or differences between
actual and assumed mass and stiffness distributions. Lateral-torsional coupling
causes the building to experience torsional moments and rotational deformations
around vertical axes. Due to the rotational deformation, non-uniform distribution
demand in lateral force resisting elements appear, which leads to increased damages
in an eccentric building. The experience of past earthquakes such as Mexico City
1986 [1, 2] confirms the existence of this torsional effect. The vulnerability of
asymmetric buildings has been addressed by building seismic design codes in the
form of special torsional provisions. In most structural design codes, the effect of
torsion is treated by implementing “accidental” and “static eccentricities” together
with specific provisions for addressing the design of irregular buildings. Accidental
eccentricity is defined as a percentile (e.g. 5%) of the plan view dimension that is

perpendicular to the direction of the lateral forces applied. On the other hand the
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implementation of the static eccentricity is more complicated, since it is defined with
reference to the location of the rigidity center whose position, for the case of
multistory buildings, is not unique and is load-dependent. It is for this reason that
the efficiency of torsional codified provisions has been studied by many researchers.

Usually the investigations of asymmetric buildings are carried out using single-
story structures generally asymmetric along one axis only. Lumped mass models with
unidirectional resisting elements are adopted. Most of the studies use structural
elements with ideal elasto-plastic behavior; more complicated constitutive models
have also been used; examples of such models are bilinear models with post-yielding
stiffness and hysteretic models (e.g. Clough model [3]) that account for element
stiffness degradation under cyclic loading conditions.

The research effort on single-story models have been focusing on the inelastic
behavior of structural elements, the effects of bi-directional excitation and the
influence of the ground motion intensity. In particular, inelastic behavior is of great
interest, since the ability of structures to withstand strong earthquakes depends
upon their ductility and capacity for energy dissipation. Investigations have also been
conducted with reference to double eccentric models, besides to the
monosymmetric used so far. In spite of extensive research efforts, the complexity of
inelastic seismic response and the large number of parameters influencing the
behavior of irregular buildings, as compared to their elastic counterparts, has lead to
a lack of general and universally accepted conclusions. Hence, drawing some
definitive conclusions on this problem remains an open issue within the structural
engineering community.

Although single-story models represent the most extreme idealization of plan
irregular buildings, they have been widely used in the past due to their simplicity in
clarifying the influence of the governing parameters and deriving effective design
criteria. However, in recent years multistory building models have been used
increasingly for the following two reasons: (i) The shortcomings of single-story
models in predicting torsional behavior of real structures, as was evidenced by

several authors, who critically discussed the effectiveness of such models. (ii) The
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development of powerful computational tools which made feasible extensive and
refined numerical analyses of three-dimensional multistory building structures.

A number of studies adopting more realistic multistory models have
demonstrated [4] the shortcomings of simplified single-story models, especially in
predicting qualitative features of inelastic response, such as the location of the most
stressed resisting elements. Furthermore, it was realized that code-designed plan
irregular structures have also shown that specifications subscribed by current major
seismic codes are in need of re-examination in order to properly deal with nonlinear
behavior. More recently, extensive research efforts have been devoted to
developing pushover procedures for plan irregular systems, in order to reach
effective conclusions [5, 6].

As an alternative to traditional design solutions, fresh ideas are coming from
studies on the use of passive control systems by means of various innovative
technologies aimed at mitigating the effects of building torsional response. In
particular, in addition to base isolation, various types of devices, viscous and
frictional, have been considered through ever more refined modelling, and different
optimization techniques have proved effective in identifying the amount and
location of such devices needed to achieve significant reductions in torsional
response [7,8].

Limited research has been devoted to vertically irregular building structures
compared to the plan-asymmetric ones. Nevertheless, in recent years, research
interest in the field of building structures with vertical irregularity has grown, partly
as a result of ever greater availability of efficient nonlinear computer codes that
enable dynamic analysis of large multistory buildings [9, 10].

Recent activities on vertically irregular structures have clarified that
discontinuities of mass, stiffness or strength along the height, considered by current
seismic codes as irregularities in elevation, do not necessarily result in actual
increases in plastic demands and, more generally, in poor seismic behavior. In this
context some researchers have proposed modifications to the nonlinear pushover
procedures for vertically irregular buildings, achieving good correlation of results

with those from nonlinear dynamic analysis [11]. Thus, criteria in major international
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codes aimed at identifying vertical irregularities seem to penalize such
discontinuities excessively and codes are in need of improvement in order to define
indicators that actually predict structural behavior for such cases. On the other hand,
despite some exceptions, design rules specified by major seismic codes for vertically
irregular buildings have resulted in satisfactory seismic performances.

In conclusion, research activity on seismic response of irregular buildings, both
in plan or in elevation, is still very lively, as revealed by the number of papers
published, and full clarification of the main issues, both behavioral and design

oriented, is on the way.

1.2 Objectives and scope

As mentioned above many issues arise as far as the estimation of the torsional
effect on the seismic response of asymmetric in plan buildings is concerned. The
main cause is attributed to the fact that there is not unequivocal definition for the
static eccentricity considering realistic multistory buildings. Moreover, it does not
remain the same for all states of response. Once the elements start yielding entering
the elastoplastic state of response, their stiffness is affected. Consequently, the
value of static eccentricity changes. Taking into consideration that eccentricity is the
main indicator according to which codified torsional provisions treat torsion, further
investigation of the effect of the lateral torsional coupling on the structural behavior
of multistory buildings is necessary. Many researchers noticed that as a result of
coupled lateral torsional motions, the lateral forces experienced by vertical
structural resisting elements would differ by those experienced by the same
elements if the building had symmetric plan and hence responded without torsional
induced vibrations. Based on this observation, an index for assessing the
amplification of shear forces due to torsional effect, called “ratio of torsion” (ROT), is
proposed in the current investigation. Ratio of torsion expresses the percentage of
torsion-induced shear forces normalized to the imposed base shear by the seismic

excitation.
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In order to evaluate the reliability of the proposed index, a group of single-story
systems is implemented first with monosymmetric as well as double eccentric
features, subjected to one- and two-component earthquake excitation.
Subsequently, more realistic plan view single-story systems are used exhibiting also
unidirectional and bidirectional eccentricity. Finally, horizontally irregular single-
story systems are examined. Nonlinear dynamic analyses are performed using
natural records for three hazard levels. In addition to the proposed index, previously
proposed indices, base torque, diaphragm rotation, interstory drifts, displacements
and shear forces, are chosen as response quantities for assessing the structural
behavior of the buildings studied.

At the second part of this investigation, the proposed index is evaluated for
multistory buildings. In particular, four-story buildings exhibiting unidirectional as
well as bidirectional eccentricity are chosen subjected to one - and/or two -
component earthquake excitations. Simple mathematical models, buildings with
realistic plan views and horizontally irregular buildings are chosen in this case too.
The same response quantities as in the case of single-story systems are considered.

At the last part of the investigation, the assessment index ROT, proposed in this
study is extended to a design tool in the framework of evolutionary-based structural
design optimization. ROT is implemented in order to achieve improved designs by
solving a combined topology-sizing optimization problem. In addition to ROT, cost,
static and strength eccentricity are also adopted as objective functions. The location
and cross-sectional size of vertical structural elements are chosen as design
variables. The restrictions imposed by Eurocodes and performance-based design
procedure constitute the behavioral constraints. The optimum designs obtained by
the implementation of various problem formulations were assessed for nonlinear
dynamic excitations and the envelopes of their earthquake response are

superimposed for all hazard levels.
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1.3 Organization and outline

The thesis consists of seven chapters, while its structure is organized as follows:

Chapter 1 includes the introduction of the dissertation which provides a general
description of the motivation and the goals pursued.

Chapter 2 presents the formulation of the flexibility-based beam-column
element implemented for the modelling of structural elements. A step-by-step
outline of the state determination process is also provided. Afterwards, the concrete
and steel material constitutive laws used for the simulation of the models are
described. Finally, a summary of the nonlinear solution algorithm implemented is
given.

Chapter 3 contains the basic principles of the conventional prescriptive and the
Performance-based design procedures. Furthermore, the basic features are
presented associated with the parameters that characterize the torsional effect on
structural behavior subjected to earthquake excitation in elastic as well as inelastic
range of response.

Chapter 4 presents the proposed index for assessing the torsional effect on the
structural behavior of eccentric plan buildings. The numerical applications are also
included and are divided into two groups. The first group contains mass eccentric,
torsionally stiff, horizontally regular as well as irregular single-story systems, while
the second one consists of multistory buildings.

Chapter 5 describes the adopted algorithm for the solution of the optimization
problem. Basic definitions as well as the concept of structural design and the
formulation of the deterministic problem are described. More specifically, the
evolution strategies method is explained in detail.

Chapter 6 presents the results of the extension of the proposed assessment
index as a design tool, by implementing the formerly described optimization
procedure and the numerical applications examined in two single-story, horizontally
regular and irregular buildings.

Finally, in Chapter 7 the conclusions of the research work are presented, as well

as the natural extension of this work and ideas for future work.
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2 NUMERICAL AND MATERIAL MODELLING

2.1 Introduction

This chapter presents the general formulation of a beam-column finite element
based on the flexibility method which is implemented in the current dissertation for
modelling the structural members as well as the constitutive material laws used for
the simulation of concrete and steel.

The formulation of flexibility-type elements is based on interpolation functions
for the internal forces. For geometrically linear structures it is straightforward to
select polynomials that satisfy the element equilibrium in a strict sense, such as
constant axial force and linearly varying bending moments in the absence of element
loads [1, 2]. These interpolation functions represent the exact solution to the
governing equations, irrespective of the geometry and constitutive law of the beam
element. A discretization error, as generally encountered in stiffness-based
formulations, does not occur.

The main obstacle in the widespread use of flexibility-based beam finite
elements was the difficulty of integrating the nonlinear state determination in an
analysis program that is based on direct stiffness method. This obstacle was
overcome by a state determination procedure that iteratively determines the

element resisting forces and stiffness matrix while strictly satisfying element
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equilibrium and compatibility at each iteration. This procedure is considerably more

involved than for stiffness-based elements [3-5].

2.2 Force-based beam-column element

The implemented beam-column element is based on the assumption that
deformations are small and that plane sections remain plane during the loading
history. The formulation of the element is based on the mixed method: the
description of the force distribution within the element by interpolation functions
that satisfy equilibrium is the starting point of the formulation. Based on the
concepts of the mixed method it is shown that the selection of flexibility dependent
shape functions for the deformation field of the element results in a considerable
simplification of the final equations. With this particular selection of deformation
shape functions the general mixed method reduces to the special case of the
flexibility method. The mixed method formalism is, nonetheless, very useful in

understanding the procedure for the element state determination.
The implemented formulation offers several advantages over previous models:

e Equilibrium and compatibility are always satisfied along the element:
equilibrium is satisfied by the selection of force interpolation functions and
compatibility is satisfied by integrating the section deformations to obtain the
corresponding element deformations and end displacements. An iterative
procedure is then used to satisfy the nonlinear section force-deformation
relation within the specified tolerance.

e The softening response of reinforced concrete members, which are either
poorly reinforced or are subjected to high axial forces, can be described

without computational difficulties.
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2.2.1 Definition of generalized forces and deformations

The beam-column finite element is schematically shown in Fig. 2.1. The
reference frame for the element is the local coordinate system X, y,z, while X, Y,
Z denotes the global reference system. The longitudinal axis X is the union of

geometric centroids of each section.

M, (x).x,(x)

Figure 2.1. Generalized forces and deformations at the element and section level [10].

The following convention is followed for the notation of forces, displacements
and deformations: forces are represented by uppercase letters and corresponding
deformations or displacements are denoted by the same letter in lowercase. Normal
letters denote scalar quantities, while boldface letters denote vectors and matrices.

Fig. 2.1 shows the element forces with the corresponding deformations. Rigid
body modes are not included in Fig. 2.1. Since the present formulation is based on
linear geometry, rigid body modes can be incorporated with a simple geometric
transformation. The element has 5 degrees of freedom: one axial extension, gz, and

two rotations relative to the chord at each end node, ((,, G;) and (Q,, Q,),

respectively. For the sake of clarity these are called element generalized
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deformations or simply element deformations in the following discussion. Q,
through Q; indicate the corresponding generalized forces: one axial force, Q;, and

two bending moments at each end node Q, , Q, and Q,, Q, , respectively. The end
rotations and corresponding moments refer to two arbitrary, orthogonal axes y and

Z. The element generalized forces and deformations are grouped in the following

vectors:

Q
Q,
Element force vector: Q=:Q, (2.1)
Q,
Qs

G
Q.
Element deformation vector: q=10, (2.2)
a,
s

Fig. 2.1 also shows the generalized forces and deformations at a section of the
element. Section deformations are represented by three strain resultants: the axial

strain £(x) along the longitudinal axis and two curvatures X,(X) and X, (X) about
two arbitrary, orthogonal axes z and y, respectively. The corresponding force
resultants are the axial force N(x) and two bending moments M, (X) and M, (X) .

The section generalized forces and deformations are grouped in the following

vectors:
M,(x)| [Di(x)

Section force vector: D(X)=yM,(x) ; =4 D,(x) (2.3)
N (x) D, (x)
X, (x| [di(x)

Section deformation vector: d(x) =4 X,(X) r =1d,(X) (2.4)
(x) d; (x)

The element formulation can be readily extended to include the torsional

degrees of freedom, as long as these are uncoupled from the present degrees of
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freedom and are governed by linear elastic behavior. The focus of the present study
is the element in Fig. 2.1., which describes the nonlinear behavior of frame members

under arbitrary cyclic load histories of biaxial bending and axial load.

2.2.2 Beam-column element formulation

In the following the mixed finite element method is used to formulate the beam-
column element. At this stage no reference is made to specific interpolation
functions. It is shown, however, that, if flexibility dependent deformation shape
functions are selected, then the mixed method simplifies to the flexibility method.
The nonlinear section force-deformation relation is also kept general.

The derivation follows the two-field mixed method which uses the integral form
of equilibrium and section force-deformation relations to derive the matrix relation
between element’s generalized forces and corresponding deformations. In order to
arrive at a linear relation, the section force-deformation relation is linearized about
the present state. An iterative algorithm is then used to satisfy the nonlinear section
force-deformation relation within the required tolerance.

In the two-field mixed method [6] independent shape functions are used for
approximating the force and deformation fields along the element. Denoting with A

increments of the corresponding quantities, the two fields are written
Ad' (x) =a(x)Aq' (X) (2.5)
D'(x) =b(x)Q'(X) and AD'(x) =b(x)AQ' (x) (2.6)
where matrices a(x) and b(x)are the deformation and force interpolation matrices,

respectively. Superscript i indicates the i iteration of the Newton-Raphson (N-R)
iteration loop, which is performed at the structure degrees of freedom until
equilibrium between applied loads and internal resisting forces is satisfied [6]. The
use of the superscript in the element formulation becomes necessary because of the
special form of the deformation interpolation functions, which are flexibility
dependent.

In the mixed method formulation the integral forms of equilibrium and section
force deformation relations are expressed first. These are then combined to obtain

the relation between element force and deformation increments.
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The weighted integral form of the linearized section force-deformation relation

f&DT(x)-[Adi(x)— f(x)-AD'(x) |dx =0 (2.7)

The section force-deformation relation appears in the flexibility form
Ad'(x) = F71(x)-AD'(X) (2.8)

so that the resulting element flexibility matrix is symmetric, as discussed in [6]. The
superscript i —1 indicates that at the i™ Newton-Raphson iteration the section
flexibility at the end of the previous iteration is used. Substituting Egs. (2.5) and (2.6)

in Eq. (2.7) results in
5Q" j b™ (x)-[ a(x)Ag' (x) - F(x)-b(x)AQ' |dx=0 (2.9)
0
Since Eq. (2.9) must hold for any 6Q" , it follows that
L . L . -
[IbT (x)-a(x)-dx}Aq' —D‘bT (x)- f'l(x)-b(x)-dx]AQ' =0 (2.10)
0 0
The expressions in square brackets represent the following matrices:

i =ﬁ'bT (x)- f“l(x)-b(x)-dx} (2.11)

T :HbT (x)-a(x)-dx} (2.12)

where F is the element flexibility matrix and T is a matrix that only depends on the
interpolation function matrices. Using Egs. (2.11) and (2.12), Eg. (2.10) can be

written in the form
TAq —F'™-AQ' =0 (2.13)
or equivalently

TAG =F™ AQ' (2.14)
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This is the matrix expression of the integral form of the linearized section force-
deformation relation.

In the next step the equilibrium of the beam element is satisfied. In the classical
two-field mixed method the integral form of the equilibrium equation is derived

from the virtual displacement principle

JL.5dT(x)-[Di‘l(x)JrADi(x)]dx =5q" - P (2.15)

where P' is the vector of applied loads that are in equilibrium with the internal

forces D™ (X)+AD'(X). Egs. (2.5) and (2.6) are substituted in Eq. (2.15) to yield
L
&q" [a" () b()Q" ™ +b(x)AQ" Jdx=5q" - P’ (2.16)
0
Observing that Eq. (2.16) must hold for arbitrary §q7 , it follows that
L ) L ) )
DbT (x)-a(x)~dx]Q"l+[J'bT (x)-a(x).dx]AQ' = P! (2.17)
0 0

If the notation introduced in Eq. (2.12) is used, Eq. (2.17) can be written in matrix
form

T Q7 +T"-AQ =P (2.18)

This is the matrix expression of the integral form of the element equilibrium

equations. The rearrangement and combination of Egs. (2.13) and (2.18) results in

ol e &
TT 0] laq [ |P-T"-Q"

If the first equation in Eq. (2.19) is solved for AQ* and the result is substituted in the

second equation, the following expression results
T i1 i i T [Ai-l
T [F?]-T-Ag =P -T"-Q (2.20)

So far, the specific selection of force and deformation interpolation functions

b(x) and a(x), respectively, has not been addressed. Even though in a mixed finite

element method the deformation interpolation functionsa(x), are completely
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independent of b(x), Eq. (2.12) reveals that a special choice of the deformation
shape functions a(x), results in considerable simplification. With this simplification
in mind a(x), are selected as flexibility dependent shape functions according to the

following expression
a(x) = (x)-b(x)-[F]" (2.21)

These interpolation functions, thus, relate the section deformations with the

corresponding element deformations according to
Ad'(x)= £ -b(x)-[F] - aq' (2.22)

F'? is the tangent element flexibility matrix at the end of the previous Newton-
Raphson iteration. This special selection of the deformation shape functions reduces
matrix T in Eg. (2.12) to a 3x3 identity matrix | . This can be readily proven by
substituting Eq. (2.21) in Eq. (2.12):

T =ﬁbT (x)-a(x)-dx} = HbT(x). f1(x) - b(x) - dx _[,:i-l]fl ] (2.23)

With this choice of the deformation shape functions a(x) Eq. (2.20) becomes

[F=]" ag =P -Q" (2.24)

At the same time this choice of functions a(x) reduces the general mixed
method to the flexibility method. The final matrix equation, Eq. (2.24), expresses the
linearized relation between the applied unbalanced forces F’—Qi_1 and the
corresponding deformation increments Aqi at the element level. The element
stiffness matrix is written in the form [F]_l to indicate that it is obtained by inverting

the element flexibility matrix. The linear equation system in Eq. (2.24) is different
from that obtained by the classical stiffness method in two respects: (a) the element
stiffness matrix is obtained by inverting the element flexibility matrix, as in the
flexibility method, and, (b) the state determination phase of the nonlinear analysis is

different, as will be described in detail in the following section.
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Even though the classical flexibility method yields the same system of linearized
equations in Eqg. (2.24), the above derivation was based on the two-field mixed
method for the following reasons: (a) The mixed method formulation yields directly

the expression for the flexibility dependent deformation shape functions a(x) in Eq.

(2.21). (b) It reveals the consistent implementation of the state determination
process. (c) It is more general in scope allowing alternative deformation shape
functions to be explored in future studies.

Since a(x) is not independent of b(x) and changes during the iterative solution
process, as is apparent from Eq. (2.21), the current method corresponds to the
classical flexibility method. Moreover, this procedure reduces to the stiffness
method for the case that the section constitutive relation is perfectly linear. In other
words, the independence between the two fields is not intrinsic in the definition of
the shape functions, but derives from the material nonlinearity of the section force-

deformation relation.

2.2.3 State determination

Most studies to date concerned with the analysis of reinforced concrete frame
structures are based on finite element models that are derived with the stiffness
method. Recent studies have focused on the advantages of flexibility based models
[1], but have failed to give a clear and consistent method of calculating the resisting
forces from the given element deformations. This problem arises when the
formulation of a finite element is based on the application of the virtual force
principle. While the element is flexibility-dependent, the computer program into
which it is incorporated is based on the direct stiffness method of analysis. In this
case the solution of the global equilibrium equations yields the displacements of the
structural degrees of freedom. During the phase of state determination the resisting
forces of all elements in the structure need to be determined. Since in a flexibility
based element there are no deformation shape functions to relate the deformation
field inside the element to the end displacements (or element deformations) this
process is not straightforward and is not well developed in flexibility based models

proposed to date. This fact has led to some confusion in the numerical
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implementation of previous models. The description of the consistent state
determination process in this study benefits from the derivation of the governing
equations by the two-field mixed method.

In a nonlinear structural analysis program each load step corresponds to the
application of an external load increment to the structure. The corresponding
structural displacement increments are determined and the element deformations
are extracted for each element. The process of finding the resisting forces that
correspond to the given element deformations is known as state determination. The
state determination process is made up of two nested phases: a) The element state
determination, when the element resisting forces are determined for the given end
deformations. b) The structure state determination, when the element resisting
forces are assembled to the structure resisting force vector. The resisting forces are
then compared with the total applied loads and the difference, if any, yields the
unbalanced forces which are then applied to the structure in an iterative solution
process until external loads and internal resisting forces agree within a specified
tolerance.

In the present study the nonlinear algorithm consists of three distinct nested
processes, which are illustrated in Fig. 2.2. The two outermost processes denoted by
indices k and i involve structural degrees of freedom and correspond to classical
nonlinear analysis procedures. The innermost process denoted by index | is applied
within each element and corresponds to the element state determination. Fig. 2.2.
shows the evolution of the structure, element and section states during one load

increment APE" that requires several Newton - Raphson iterations i.

In summary, k: denotes the applied load step. The external load is imposed in a
sequence of load increments PEk . At load step k the total external load is equal to
PX =Pf™" +APY with k=1.....,nstep and P’ =0 ; i : denotes the Newton -
Raphson iteration scheme at the structure level, i.e. the structure state
determination process. This iteration loop yields the structural displacements pk
that correspond to applied loads PEk; j : denotes the iteration scheme at the

element level, i.e. the element state determination process. This iteration loop is
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necessary for the determination of the element resisting forces that correspond to

element deformations qi during the i" Newton-Raphson iteration.

P
A
P B E m—
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-_\P; %
X1
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Figure 2.2. Schematic illustration of state determination at the structure, element and
section level: k denotes the load step, i the structure Newton-Raphson iteration and j the

iteration for the element state determination [10].

The processes denoted by indices k and i are common in nonlinear analysis
programs and will not be discussed further. The iteration process denoted by the
index j, on the other hand, is special to the beam-column element formulation
implemented in this study and will be described in detail. It should be pointed out
that any suitable nonlinear solution algorithm can be used for the iteration process
denoted by index i. In this study the Newton-Raphson method is used. The selection

of this method for iteration loop i does not affect the strategy for iteration loop j,
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which has as its goal the determination of the element resisting forces for the given

element deformations.

Element state determination

[ AQF=[F™'T'- ag™
L A= [FT'- ag™

I

aqH'=Ag'

m?i’ =g

Aql-'s =gt

F;—a - Fr-1

j=3: convergence

F~=F'

q

o) -:,- A i AD'x) = bix) - AQ'
a(x) = fx)-b(x)-[F"']

d'x)| afx)-ag*! d'(x) dix}
AdFYx)

Figure 2.3. Element and section state determination for flexibility-based element:
computation of element resisting forces Q' corresponding to the element deformations g'

[10].

In a finite element that is based on the stiffness method of analysis the section
deformations are obtained directly from the element end deformations by
deformation interpolation functions. The corresponding section resisting forces are
determined subsequently from the section force-deformation relation. The weighted
integral of the section resisting forces over the element length yields the element

resisting forces and completes the process of element state determination.
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In a flexibility-based finite element the first step is the determination of the
element forces from the current element deformations using the stiffness matrix at
the end of the last iteration. The force interpolation functions yield the forces along
the element. The first problem is, then, the determination of the section
deformations from the given section forces, since the nonlinear section force-
deformation relation is commonly expressed as an explicit function of section
deformations. The second problem arises from the fact that changes in the section
stiffness produce a new element stiffness matrix which, in turn, changes the element
forces for the given deformations.

These problems are solved by a special nonlinear solution method. In this
method residual element deformations are determined at each iteration.
Deformation compatibility at the structural level requires that these residual
deformations be corrected. This is accomplished at the element level by applying
corrective element forces based on the current stiffness matrix. The corresponding
section forces are determined from the force interpolation functions so that
equilibrium is always satisfied along the element. These section forces cannot
change during the section state determination in order to maintain equilibrium along
the element. Consequently, the linear approximation of the section force-
deformation relation about the present state results in residual section
deformations. These are then integrated along the element to obtain new residual
element deformations and the whole process is repeated until convergence occurs.
It is important to stress that compatibility of element deformations and equilibrium
along the element are always satisfied in this process.

The nonlinear solution procedure for the element state determination is
schematically illustrated in Fig. 2.3 for one Newton-Raphson iteration i; while for
loop j convergence is reached in three iterations. The consistent notation between
Figs. 2.2. and 2.3. highlights the relation between the corresponding states of the
structure, the element and the section, which are denoted by uppercase Roman
letters.

At the i" Newton-Raphson iteration it is necessary to determine the element

resisting forces for the current element deformations
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qi :qi—1+Aqi (2.25)
To this end an iterative process denoted by index j is introduced inside the "
Newton-Raphson iteration. The first iteration corresponds to j=1. The initial state

of the element, represented by point A and j=0 in Fig. 2.3., corresponds to the
state at the end of the last iteration of loop j for the (i—1) Newton-Raphson

iteration. With the initial element tangent stiffness matrix
[Fo] =[F]" (2.26)

and the given element deformation increments

AQT =Aq' (2.27)
the corresponding element force increments are:
AQ™ =[F ] . Aq™ (2.28)

The section force increments can now be determined from the force interpolation

functions:
AD'Z(x) =b(x)-AQ!™ (2.29)

With the section flexibility matrix at the end of the previous Newton-Raphson

iteration
fI0(x)= f(x) (2.30)

the linearization of the section force-deformation relation vyields the section

deformation increments Ad '™ (x):
AdIT(x) = F17°(x)- AD' (%) (2.31)

The section deformations are updated to the state that corresponds to point B in Fig.

2.3.:
dj:l(x):djzo(x)+Adj:l(X) (2.32)

According to the section force-deformation relation, which is here assumed to

be explicitly known for simplicity's sake, section deformations djzl(X) correspond to
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resisting forces D)™ (x) and a new tangent flexibility matrix f1?(x) (Fig. 2.3.).Ina
finite element based on the stiffness method the section resisting forces DJ™(x)

would be directly transformed to element resisting forces szl thus violating the

equilibrium along the element in a strict sense. Since this is undesirable, in this

approach the section unbalanced forces are first determined
D)™ (x) = AD'™(x) - D7 (x) (2.33)
and are then transformed to residual section deformations r'=(x)

r=(x) = f7(x)- D}™(x) (2.34)

The residual section deformations are thus the linear approximation to the

deformation error made in the linearization of the section force-deformation

relation (Fig. 2.3.). While any suitable flexibility matrix can be used in calculating the

residual deformations, the tangent flexibility matrix used in this study offers the
fastest convergence rate.

The residual section deformations are integrated along the element based on

the virtual force principle to obtain the residual element deformations:

st =

b" (x)-r’?(x)-dx (2.35)

O ey

At this point the first iteration j=1 of the corresponding iteration loop is
complete. The final element and section states for j =1 correspond to point B in Fig.
2.3. The residual section deformations l‘jzl(x) and the residual element

deformations s'™ are determined in the first iteration, but the corresponding
deformation vectors are not updated. Instead, they are the starting point of the

remaining steps within iteration loop j . The presence of residual element

deformations s'= violates compatibility, since elements sharing a common node

would now have different end displacements. In order to restore the inter-element

-1 . .
compatibility corrective forces equal to —[F”] -39 must be applied at the ends

of the element, where F!™ is the updated element tangent flexibility matrix

determined by integration of the section flexibility matrices according to Eq. (2.11). A
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=1

i= _1 i . . .
corresponding force increment —b(x)[F "1] -s’= is applied at all control sections

inducing a deformation increment — f Jﬂ(x)-b(x)-[F H]{s":l . Thus, in the second

iteration j=2 the state of the element and of the sections within the element change

as follows: the element forces are updated to the value
Q7 =Q+AQ"? (2.36)

. R
where AQ'™* = —[F ‘:1] -5’ and the section forces and deformations are updated

to the values
D7 (x) = D'(x) + AD'™*(x) (2.37)
And
dj:z(x) =dj:1(x)+Adj:2(X) (2.38)
j=2 R
where AD'*(x) =—-b(x)-[ F 1| -5’
Ad2(x) = 11 () — £ (x)-b(x) [F 1] s
The state of the element and the sections within the element at the end of the

second iteration j=2 corresponds to point C in Fig. 2.3. The new tangent flexibility

matrices f/¥(x) and the new residual section deformations

ri=?(x) = 2 (x)- D}?(x) (2.39)
are computed for all sections. The residual section deformations are then integrated
to obtain the residual element deformations s’=? and the new element tangent
flexibility matrix F =2 is determined by integration of the section flexibility matrices

f172(x) according to Eq. (2.24). This completes the second iteration within loop j .

The third and subsequent iterations follow exactly the same scheme.
Convergence is achieved when the selected convergence criterion is satisfied. With

the conclusion of iteration loop j the element resisting forces for the given

deformations qi are established, as represented by point D in Figs. 2.2. and 2.3. The

Newton-Raphson iteration process can now proceed with step i1+1.
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It is important to point out that during iteration loop j the element deformations

g do not change except in the first iteration j=1, when increments Aq’™ = Aq'

are added to the element deformations (' at the end of the previous Newton-
Raphson iteration. These deformation increments result from the application of
corrective loads APEi at the structural degrees of freedom during the Newton-

Raphson iteration process. For j>1 only the element forces change until the
nonlinear solution procedure converges to the element resisting forces Qi which

correspond to element deformations qi. This is illustrated at the top of Fig. 2.3.

where points B, C and D, which represent the state of the element at the end of

subsequent iterations in loop j, lie on the same vertical line, while the
corresponding points at the control sections of the element do not, as shown in the
bottom of Fig. 2.3. This feature of the nonlinear solution procedure ensures
displacement compatibility at the element ends.

The described nonlinear analysis method offers several advantages. Equilibrium
along the element is always strictly satisfied, since section forces are derived from
element forces by the force interpolation functions according to Eg. (2.6).
Compatibility is also satisfied, not only at the element ends, but also along the
element. In fact, in the expression for the section deformation corrections

AdT(X) =1 ()~ £17(x)-b(x) [ F ] - (2.40)
the second term satisfies Egs. (2.21) and (2.22), which express the relation between
section and element deformations by means of shape functions a(x) . The residual
section deformations rj_l(X), however, do not strictly satisfy this compatibility
condition. It is possible to satisfy this requirement by integrating the residual
deformations r'?(x) to obtain $'™(x) and then using the deformation shape
functions a(x) to calculate the section deformation increments as a(x)-s' ().
Since this is, however, rather inefficient from a computational standpoint, the small
compatibility error in the calculation of residual section deformations rj_l(X) is

neglected.
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While equilibrium and compatibility are satisfied along the element during each

iteration of loop j, the section force-deformation relation and, consequently, the

element force-deformation relation is only satisfied within a specified tolerance
when convergence is achieved at point D in Fig. 2.3. In other words, during
subsequent iterations the element forces approach the value that corresponds to
the imposed element deformations, while maintaining equilibrium and compatibility
along the element at all times. This approximation of the force-deformation relation
in the implemented nonlinear analysis method is preferable to the approximation of
either the equilibrium or the compatibility conditions of the element, particularly
when considering the uncertainty in the definition of constitutive relations for

reinforced concrete structures.

2.3 Material modelling

2.3.1 Concrete stress-strain relation

In order to compute the concrete stress in each layer, a material law describing
the concrete stress-strain relation under arbitrary cyclic strain histories is needed.
There is some uncertainty as to the influence of the concrete model on the overall
behavior of RC members subjected to bending and small values of axial force. Some
investigators have concluded that a crude concrete model suffices to accurately
predict experimental results. This might be true in the case of monotonic loading and
cyclic loading that is restricted to small excitations. It is not true, however, in the
case of severe cyclic loading. The strength deterioration of RC members under large
cyclic excitations depends largely on the capacity of confined concrete to sustain
stresses in the strain range beyond the maximum strength. This requires the use of a
refined concrete model.

The model implemented in this study is summarized below:

The monotonic envelope curve of concrete in compression follows the model of
Kent and Park (1971) [17] that was later extended by Scott et al. (1982) [18]. Even

though more accurate and complete models have been published since, the so-
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called modified Kent and Park model offers a good balance between simplicity and
accuracy.
In the modified Kent and Park model the monotonic concrete stress-strain

relation incompression is described by three regions:

2
& <¢g o,=Kf 2(3]—(3} (2.41)
€ €
g <& <¢, o, =Kf[1-Z (g, —¢,) ]2 0.2Kf, (2.42)
where
&, =0.002K (2.43)
psf h

K=1+—~% (2.44)
Z= , 05 , (2.45)

?’Jr(.)'if°+o.75pS h —0.002K

145f, —1000 Sh

&, is the concrete strain at maximum stress, K is a factor which accounts for the
strength increase due to confinement, Z is the strain softening slope, fc' is the
concrete compressive cylinder strength in MPa (1 MPa =145 psi), f, is the yield
strength of stirrups in MPa, p, is the ratio of the volume of hoop reinforcement to
the volume of concrete core measured to outside of stirrups, h is the width of
concrete core measured to outside of stirrups, and S, is the center to center spacing
of stirrups or hoop sets.

In the case of concrete confined by stirrup-ties, Scott et al. suggest that ¢, be

determined conservatively from the following equation:

f
=0.004+0.9p, | -2 2.46
oontiosn 1 nas

To account for crushing of concrete cover the strength in a cover layer is reduced

to 0.2f, once the compressive strain exceeds the value of &,, which in this study is

set equal to 0.005. The tensile strength of concrete is neglected in the model, since

Chrysanthi Stathi 27




it only influences the response of a RC section during cycles prior to yielding.
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Figure 2.4. Stress-Strain relation for confined and unconfined concrete.

The following rules govern the hysteretic behavior of the concrete stress-strain

relation (Fig. 2.5):
1. Unloading from a point on the envelope curve takes place along a straight
line connecting the point &, at which unloading starts to a point p € on the

strain axis given by the equations

2
g—p=0.145[ﬁJ +o.13(ﬂ] for (ﬂjd (2.47)
& & & &
3:0.707[3—2]+0.834 for [ijzz (2.48)
& & &y

where &, is the strain level corresponding to the maximum stress in

compression.

Eqg. (2.47) was proposed by Karsan and Jirsa (1969) [19] and relates the
normalized strain on the envelope with the strains at the completion of
unloading through a quadratic formula. Since Eq. (2.47) exhibits unreasonable
behavior under high compressive strain conditions, Eq. (2.48) is added to the
model so that the unloading modulus of elasticity remains positive under high

compressive strains.
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2. The concrete stress is equal to zero for strains smaller than the strain at
complete unloading (open crack) since the tensile resistance is neglected in

this study.

3. On reloading in compression the stress is zero as long as the strain is smaller
than the strain at complete unloading (open crack). Once the concrete strain
becomes larger than that value, reloading continues along the previous
unloading path (Fig. 2.5). In reality unloading and reloading follow nonlinear
paths which together form a hysteresis loop. This was neglected here for
reasons of simplicity, since it has a minor influence on the hysteretic
response of the member. The proposed hysteretic behavior of concrete in
compression does not account for the cyclic damage of concrete. The
importance of this effect on the hysteretic behavior of RC members merits

further study, but is beyond the scope of the present report.
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Figure 2.5. Modified Kent-Park model during loading and unloading.
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2.3.2 Reinforcement steel stress-strain relation — Bilinear

material model

For a bilinear model (Fig. 2.6) the elastic behavior is defined by Hooke law,
having initial modulus of elasticity E and the yielding point is defined by yielding

stress o, . Post yield behavior is defined by a second slope having inclination equal
to tangent modulus of elasticity E;, which is related to the initial modulus of
elasticity by the hardening ratio b :

E, =bE (2.49)

For a perfectly plastic material the hardening ratio is equal to zero. Instead of the
hardening ratiob, sometimes the hardening parameter H is used that relates stress

o and plastic strain &

o=Hs, (2.50)

Figure 2.6. Bi-linear steel material law.
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The hardening parameter H, tangent modulus of elasticity E; and hardening

ratio b are given by:

(2.51)
E, = E(l—%) (2.52)

For steel members, when the yield stress has been exceeded in tension followed
by compression, then yield strength will be different for the next loading cycle. This
is known as Bauschinger effect. The Bauschinger effect refers to a property of
materials where the material’s stress/strain characteristics change as a result of the
microscopic stress distribution of the material. For example, an increase in tensile
yield strength occurs at the expense of compressive yield strength. Bauschinger
effect can be simulated using kinematic of isotropic hardening.

For the isotropic hardening the yield surface is assumed to expand isotropically
in size, keeping its center by this hypothesis. This means that plastic strain does not
affect the shape of yield surface. If the initial yield point is denoted by Y on the
stress-strain curve in Fig. 2.7, unloaded stress AB from point A is the same as the
compressive yield stress BC and is larger than the initial yield stress. The concept of
this hypothesis is too simple to express the generalized Bauschinger effect, but
nevertheless it is widely used for many kinds of analyses when the direction of

loading changes slightly.

7

Figure 2.7. Isotropic hardening.
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For kinematic hardening the model assumes that the vyield surface with
unchanging shape moves in stress space due to plastic deformation as illustrated in
Fig. 2.8 and stress-strain diagram is given under the condition YY '= AC. This results

to a movement of the center of hysteretic loops in a stress-strain curve.

Figure 2.8. Kinematic hardening.

2.4 Summary of nonlinear solution algorithm

After the description of the element state determination process in one of the
previous sections a step-by-step summary of the computations is presented below.
The summary focuses on a single iteration i at the structural degrees of freedom.
The rest of the nonlinear solution algorithm follows well established methods, such
as the Newton-Raphson method selected in this study. Alternative solution
strategies can be implemented without additional effort, since these are
independent of the element state determination. The relation of the Newton-
Raphson iteration to the nonlinear solution of the entire structure is illustrated at the
top of Fig. 2.2, which also shows the relation between the overall solution strategy
and the element state determination process with corresponding states denoted by
uppercase Roman letters. Fig. 2.3 shows in detail the evolution of the state

determination process for an element and corresponds to steps (4) through (13) in
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the following summary. The flow chart of computations for the entire solution
algorithm is shown in Fig. 2.9, while the flow chart of computations for the element

state determination is shown in Fig. 2.10.

k=1

assemble intial structure

tangent stiffness matrix K,

!

AP = initial load increment APM

I AP = next load increment AP®

[ AP = unbalanced load P,
solve AP =K, 4
( . > 3\
for ele =1 numberof elements |
\ . J
state determination of element ele next ele
\-_\— - e
1 et next k

assemble new structure 3
tangent stifiness matrix K,

i

assemble structure resisting force vector Py

!

compute unbalanced force vector R, = P-Py

,/‘\ .\\.

oo
< is |R,| sufficiently small ?

\\\ //

ol

Figure 2.9. Flow chart of structure state determination.
The i-th Newton-Raphson iteration is organized as follows:

(1) Solve the global system of equations and update the structural displacements.

At the i" Newton-Raphson iteration the structure stiffness matrix K!™"at the

end of the previous iteration i—1is used to compute the displacement
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increments Ap' for the given load increments AP! which represent the
unbalanced forces from the previous iteration.
K™ Ap' = AP} (2.53)
p'=pt+Ap (2.54)
(2) Calculate the element deformation increments and update the element
deformations. Using matrix L., which relates structural displacements with
element deformations, the element deformation increments Aqi are
determined:
AQ =L, -Ap' (2.55)
q =g~ +Aq (2.56)
Note that matrix L, is the combination of two transformations: in the first

transformation the element displacements in the global reference system p

are transformed to the displacements 0 in the element local reference
system. In the second transformation the element displacements J are
transformed to element deformations q by elimination of the rigid-body
modes.

As discussed in Section 2.2.3, the new element deformations qi do not
change until the following (i+1) Newton-Raphson iteration. The remaining
operations of the nonlinear solution algorithm make up the element state
determination process which establishes the element resisting forces for the

given element deformations Q'.

(3) Start the element state determination. Loop over all elements in the
structure. The state determination of each element is performed in loop j.

The index of the first iteration is j =1.

(4) Determine the element force increments. The element force increments AQJ

are determined with the element stiffness matrix K'* at the end of the

previous iteration in loop |
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AQ! =K1t . Ag’ (2.57)
When j=1, K® =K' and Aq" =Aq' where i—1 corresponds to the state of
the element at the end of the last Newton-Raphson iteration. When j>1
qu is equal to the residual element deformations of the previous iteration,
as determined in Step (13).
(5) Update the element forces.
Q' =Q"™ +AQ’ (2.58)
When j=1, Q° =Qi’1 where i—1 corresponds to the state at the end of the
last Newton-Raphson iteration.

(6) Determine the section force increments. Steps (6) through (11) are performed

for all control sections (integration points) of the element. The section force
increments ADj(X) are determined from the force interpolation functions

b(x). Subsequently, the section forces D(X) are updated.

AD'(x) =b(x)-AQ’ (2.59)

D!(x) =D} (x)+AD! (x) (2.60)

(7) Determine the section deformation increments. The section deformation
increments Ad'(X) are determined by adding the residual section
deformations from the previous iteration r'*(x) to the deformation
increments caused by the section force increments ADj(X). The latter are

determined with the section flexibility matrix f1™*(x) at the end of the

previous iteration in loop j .
AdT(X) =1 (x) + FI7(X)AD (x) (2.61)
di(x)=d ™ (x)+Ad ! (X) (2.62)
when j=1, r’(x)=0

(8) Determine the tangent stiffness and flexibility matrices of the section.

Assuming for simplicity that the section force-deformation relation is known
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explicitly, the tangent stiffness matrix k’(x) is updated for the new section

deformations d!(x). Stiffness matrix k!(x) is then inverted to obtain the
new tangent flexibility matrix f1(X) of the section.

f10=[ki0]" (2.63)

(9) Determine the section resisting forces. The resisting forces DF{(X) are

determined for the current deformations d’(x) from the section force-

deformation relation.

(10) Determine the unbalanced forces at the section. The section unbalanced
forces D} (X) are the difference between the applied forces Dj(x)and the
resisting forces DJ ().

D} (x) =D’ (x)- D} (x) (2.64)

(11) Determine the residual section deformations. The section unbalanced forces
and the new section flexibility yield the residual section deformations rj(X)

r’(x)= f1(x)D] (x) (2.65)

(12) Determine the element flexibility and stiffness matrices. The element
flexibility matrix F'is formed by integration of the section flexibility
matrices f!(X). This matrix is then inverted to obtain the element tangent

stiffness matrix K.
F {I b" (x)- f J’(x)-b(x)-dx} (2.66)

K =[FIT (2.67)
(13) Check for element convergence. a) If the unbalanced forces at all element

sections are sufficiently small, the element is considered to have converged.
After setting Q' =Q! and K' =K/ the process continues with step (14). b)
If some sections have not converged, the residual element deformations s’

are determined by integration of the residual section deformations r’ (x).
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s)=| [b7 ()1’ (x)-dx (2.68)
0

At this point j is incremented to j+1 and a new iteration begins in loop j.

In this case qu in Eq. (2.57) is replaced with qu+1 which is set equal to —s!

qu+1 — _SJ

(2.69)

and steps (4) through (13) are repeated until convergence is achieved at all

sections of the element.

element |

ele T

| element deformation increment vector  Ag=L- Ap |

} Step (2)

=1 (3)

I update element deformation vector g=q+&q I

| elemeant force increment vector AQ=K-Agq | (4)

I update element force vector Q=Q+AQ I (5)
( for sec = 1,number of section in elemant ele )
r

section deformation increment vector  Ad(x) = r(x) + f(x}- AD{x)

section force increment vector  AD{xj= b{x}-AQ

update saction force vector D{x) = Dix) + AD(x) (6)-(7)
update section deformation vector  djx) = dfx) + Ad(x)

L

saction constitutive law next sec

new section tangent stiffness matrix Fefx)
new section tangent flexibility matrix fix) }(8)
section resisting force vactor Dofx) 9
section unbalanced force vector D, j(x}=D\x} - Dg(x) (10)
section residual deformation vector rix)=f{x) D (x) (11)

<

.

slement tangent flexibility matrix = F
element tangent stiffness matrix K

o

(12)

next j

~_
/has the element >2’ element residual deformation vecior s

element deformation increment vector Ag=- 5

converged?

\/

yes

(13)

Figure 2.10. Flow chart of structure state determination: the section.

Chrysanthi Stathi

37




(14) Determine the resisting forces and the new stiffness matrix of the entire
structure. When all elements have converged, the i" step of the Newton-
Raphson iteration is complete. The element force vectors are assembled to
form the updated structure resisting forces

Pi= Y L (Q), (2.70)

ele=1

where n is the total number of beam-column elements in the structure and
the subscript ele is added as a summation index. The new structure stiffness
matrix is formed by assembling the current element stiffness matrices
n
: . .
KsI = |Z:1 Lele (KI )ele ' I—ele (271)
ele=!

At this point the structure resisting forces PFi are compared with the total
applied loads. If the difference PUi , Which is the structure unbalanced force

vector, is not within the specified tolerance, i is incremented to i+1 and the
next Newton-Raphson iteration begins. Steps (1) through (14) are repeated

after replacing AP. with AP!™ = AP} until convergence takes place at the

structure degrees of freedom.

A graphical overview of the entire nonlinear analysis procedure is presented in
Figs. 2.9 and 2.10. Fig. 2.9 provides an overview of the entire process with the
nesting of the individual iteration loops, while Fig. 10 presents the features of the
element state determination algorithm. Since all integrations along the element in
Egs. (2.66) and (2.68) need to be performed numerically, an additional iteration loop

over all control sections of the element is introduced in this diagram.
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3 DESIGN AND ASSESSMENT PROCEDURES AGAINSTS THE
SEISMIC LOADING

3.1 Introduction

The majority of the seismic design codes belong to the category of the
prescriptive building design codes, which include: site selection and development of
conceptual, preliminary and final design stages. According to a prescriptive design
code, the strength of the structure is evaluated at one limit state between life-safety
and near collapse using a response spectrum corresponding to one design
earthquake [1]. In addition, serviceability limit state is usually checked in order to
ensure that the structure will not deflect or vibrate excessively during its functioning.
Apart from the minimum level of protection in order to safeguard adequately against
partial collapse that endangers human lives, society has responsibilities including
continuing operation of critical facilities, protection against the discharge of
hazardous materials, and protection against excessive damage that may have far-
reaching consequences for society on a local, regional, national, or international
level. Performance-based design is a different approach for the seismic design which
includes, apart from the site selection and the definition of the design stages, the

construction and maintenance of the building in order to ensure reliable and
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predictable seismic performance over its life and to achieve targeted performance
objectives [2]. A performance objective pairs a single hazard level with a single
performance level. Its advantage compared to other seismic design provisions is its

capability to specify the performance for a range of hazard levels [3].

3.2 Prescriptive design procedures

According to the EC8 [4] a number of checks must be performed in order to
ensure that the structure will meet the design requirements and also to ensure the
followings, in the event of earthquakes :

e human lives are protected
e damage is limited and
e structures important for civil protection remain operational.

Each candidate design is assessed using these constraints. All EC2 [5] checks

must be satisfied for the gravity loads using the following load combination:
S, :1.3521_(3” "+"1.50> " Q, (3.1)

where “+” implies “to be combined with”, the summation symbol “%” implies “the

combined effect of”, G,; denotes the characteristic value “k” of the permanent

action j and Q, refers to the characteristic value “k” of the variable action i. If the

above constraints are satisfied, multi-modal response spectrum analysis is
performed, according to EC8 [4] and earthquake loading is considered using the

following load combination (3.2):
Sd — ZJGKJ "+"Ed "+"Zi wZiQki (3.2)

where E, is the design value of the seismic action for the two components

(longitudinal and transverse) respectively and y/,; is the combination coefficient for

the quasi-permanent action i, here taken equal to 0.30.
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The combination coefficient ¢, is computed from the following expression (3.3) :

Ve =@ Wy (3.3)

Table 3.1: Value of ¢ for calculating y/;

Type of variable action Storey [0)
Categories A-C* Roof 1.00
Storeys with correlated 0.8

occupancies
Independently occupied storeys 0.5

Categories D-F* 1.00

and Archives

* Categories as defined in EN 1991-1-1:2002 [6].

The following table 2 shows the values of y,; for the earlier mentioned categories:

Table 3.2: Recommended values of i/,; factor for buildings (ECO [7])

Action i

Imposed loads in buildings, category (see EN 1991-1-1)

Category A : domestic, residential areas 0.3
Category B : office areas 0.3
Category C : congregation areas 0.6
Category D : shopping areas 0.6
Category E : storage areas 0.8
Category F : traffic area 0.6

Furthermore, for spatial problems, E, seismic actions is considered in the Multi-
modal Response Spectrum (MmRS) analysis method for the current case, or for
nonlinear static (pushover) analysis and nonlinear time history analysis in general,

using the following load combinations:
Ey = E, +0.3E,, (3.4)
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E, =0.3E, +E, (3.5)

where E, and E, represent earthquake loading in two directions that are

perpendicular to each other.
The main principle EC8 [4] is to design structural systems based on energy
dissipation and on ductility in order to control the inelastic seismic response.

Designing a multistory RC building for energy dissipation comprises the following

features:
(i) Fulfillment of the strong column/weak beam rule,
(ii) Member verification in terms of forces and resistances for the

ultimate strength limit state under the design earthquake (with return
period of 475 years, probability of exceedance 10% in 50 years), with

the elastic spectrum reduced by the g-factor equal to 3.0 times,
(iii) Damage limitation for the serviceability limit state and

(iv) Capacity design of beams and columns against shear failure.

3.3 Performance-based design procedure

Performance-based seismic design has the following distinctive features with
respect to the prescriptive design codes: (i) Allows the owner, architect, and
structural engineer to choose both the appropriate level of seismic hazard and the
corresponding performance level of the structure. (ii) The structure is designed to
meet a series of combinations of hazard levels in conjunction with corresponding
performance levels. Figure 3.1 illustrates a global framework, which identifies
processes, concepts and major issues that need to be addressed. The issues
encompass seismological, geotechnical, structural, architectural and socio-economic

considerations.
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Figure 3.1. A global framework for Performance-Based Engineering [8].

The PBD process is a displacement-based design procedure where the design
criteria and the capacity demand comparisons are expressed in terms of
displacements rather than forces [9-11]. In order to assess the capacity of
deformation-controlled actions an appropriate Earthquake Demand Parameter (EDP)
should be implemented. Interstory drifts, inelastic deformations, section curvatures,
floor accelerations and velocities are some of the most widespread EDPs [12, 13].
The main part in a performance-based seismic design procedure is the definition of
the performance objectives that will be used. The proposed PBD process can be

described with the following two steps:

(1) Conceptual Design: Proportioning of the longitudinal and transverse
reinforcement of all members on the basis of the serviceability limit state. In this
phase, a structural system capable of fulfilling diverse requirements at various
performance levels needs to be configured. This design phase is critical since most of
the important design decisions are being made in it. Later design phases serve
primarily to evaluate, fine tune, and detail an already existing system. Engineers are
used to design for strength and elastic stiffness, with an implicit understanding of the
importance of ductility, and with a single-level design in mind. Performance-based
design will impose diverse multi-level requirements whose relationship between

ground motion and engineering parameters need to be established and quantified in
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order to provide targets for strength, stiffness and ductility design. Different
performance levels may control different aspects of the design, and simultaneous
consideration of different performance objectives will become a fundamental aspect

of conceptual design.

(2) Design Evaluation and Modification: Use of non-linear dynamic analysis in order
to estimate the structural capacities of the design in the different intensity levels
employed. Revise the reinforcement and the dimension of the members so that the
capacities exceed the seismic demands [10]. This process is at the core of
performance-based design and encompasses all aspects of demand and capacity
predictions needed to carry out design evaluation through assessment of
performance at different levels (or estimation of total costs) and to modify design
decisions of the stated performance objectives are not met (or the costs are
unacceptable). From an engineering perspective, satisfactory performance implies
that the demands imposed by earthquakes do not exceed the capacities the
structural, non-structural and contents components-systems are capable to provide.
Demands and capacities are general terms that take on a specific meaning for
different parameters that may control component and system performance at

various performance levels.

The completion of the Step 1 is necessary for Step 2 as the structural capacity
depends both on the reinforcement and the dimensions of the members. The
constraints considered for Step 2 of the PBD procedure are related to the maximum
interstory drift limits A, which are the largest values of the height-wise peak
interstory drift ratios for each hazard level. This is a commonly used measure of both
structural and non-structural damage because of its close relationship to plastic
rotation demands on individual beam—column connection assemblies. In this study,
three performance objectives are considered that correspond to 50, 10 and 2%
probabilities of exceedance in 50 years hazard levels. The drift limits A, for the three
performance objectives considered, are 0.5%, 1.0% and 3.0% for the three hazard

levels 50in50, 10in50 and 2in50 respectively.
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Performance assessment must be based on a probabilistic hazard representation
and a prediction of seismic demands and capacities for all important components
soil-foundation-structure system and of non-structural and content systems. At this
time neither capacities nor demands can be predicted with good accuracy, because
of insufficient knowledge, lack of tools, and randomness and modelling
uncertainties. We must try to improve description of the randomness and reduce the
modelling uncertainties, but we must acknowledge that we will not be able to
eliminate either. Appropriate analysis methods need to be developed to provide
adequate yet simple means of demand prediction. Nonlinear inelastic time history
analysis is desirable but likely not necessary in many cases. Research on the most
effective demand prediction methods needs to be performed, with emphasis on the

following aspects:

e Assessment of the quality of demand prediction that can be achieved by
various analysis methods (elastic-static, elastic-dynamic, inelastic-static and
inelastic-dynamic).

e Three-dimensional analysis procedures for soil-foundation-structure systems.

e Sufficiently realistic modelling of strength, stiffness and mass irregularities in
plan and elevation.

e Sufficiently realistic modelling of component behavior under cyclic loading.

o Modelling of non-structural components and systems.

e Validation of modelling and analysis procedures through the utilization of
laboratory and field experimentation, earthquake damage data, and vibration

measurements from instrumented structures.

3.3.1 Performance Levels

One performance objective is defined as the combination of a performance level
for a specific hazard level. In this work three performance objectives have been
considered corresponding to the ‘Enhanced Objectives’ of FEMA 356 [14]. The first

step in the definition of the performance objectives is the selection of the
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performance levels. The performance levels that have been considered are the
following:

(i) Operational (OPER): the overall damage level is characterized as very light. No
permanent drift is encountered, while the structure essentially retains original
strength and stiffness.

To attain the operational building performance level, the structural components
of the building shall meet the requirements the immediate occupancy (lO) structural
performance level and the nonstructural components shall meet the requirements
for the operational nonstructural performance level. The immediate occupancy
structural performance level shall be defined as the post-earthquake damage state
that remains safe to occupy, essentially retains the pre-earthquake design strength
and stiffness of the structure.

Also the immediate occupancy structural performance level, means the post-
earthquake damage state in which only very limited structural damage has occurred.
The basic vertical- and lateral-force-resisting systems of the building retain nearly all
of their pre-earthquake strength and stiffness. The risk of life threatening injury as a
result of structural damage is very low, and although some minor structural repairs
may be appropriate, these would generally not be required prior to reoccupancy.
And the operational nonstructural performance level shall be defined as the post-
earthquake damage state in which the nonstructural components are able to
support the pre-earthquake functions present in the building.

At this level, most nonstructural systems required for normal use of the
building—including lighting, plumbing, HVAC, and computer systems—are
functional, although minor cleanup and repair of some items may be required. This
nonstructural performance level requires considerations beyond those that are
normally within the sole province of the structural engineer. In addition to assuring
that nonstructural components are properly mounted and braced within the
structure, it is often necessary to provide emergency standby utilities. It also may be
necessary to perform rigorous qualification testing of the ability of key electrical and
mechanical equipment items to function during or after strong shaking. Users

wishing to design for this nonstructural performance level will need to refer to
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appropriate criteria from other sources (such as equipment manufacturers’ data) to
ensure the performance of mechanical and electrical systems.

Therefore, buildings meeting this target Building Performance Level are
expected to sustain minimal or no damage to their structural and nonstructural
components. The building is suitable for its normal occupancy and use, although
possibly in a slightly impaired mode, with power, water, and other required utilities
provided from emergency sources, and possibly with some nonessential systems not
functioning. Buildings meeting this target Building Performance Level pose an
extremely low risk to life safety.

Under very low levels of earthquake ground motion, most buildings should be
able to meet or exceed this target building performance level. Typically, however, it
will not be economically practical to design for this target building performance level

for severe ground shaking, except for buildings that house essential services.

(ii) Life safety (LS): the overall damage level is characterized as moderate.
Permanent drift is encountered while strength and stiffness has left in all stories.
Gravity-load bearing elements continue to function while there is no out-of plane
failure of the walls. The overall risk of life-threatening injury as a result of structural
damage is expected to be low. It should be possible to repair the structure; however,
for economic reasons this may not be practical.

To attain the life safety building performance level, the structural components
of the building shall meet the requirements for the Life Safety Structural
Performance Level and the nonstructural components shall meet the requirement
for the Life Safety Nonstructural Performance Level.

The structural performance level shall be defined as the post-earthquake
damage state that includes damage to structural components but retains a margin
against onset of partial or total collapse.

Also the structural performance level means the post-earthquake damage state
in which significant damage to the structure has occurred, but some margin against
either partial or total structural collapse remains. Some structural elements and
components are severely damaged, but this has not resulted in large falling debris

hazards, either within or outside the building. Injuries may occur during the
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earthquake; however, the overall risk of life-threatening injury as a result of
structural damage is expected to be low. It should be possible to repair the structure;
however, for economic reasons this may not be practical. While the damaged
structure is not an imminent collapse risk, it would be prudent to implement
structural repairs or install temporary bracing prior to reoccupancy. And the life
safety nonstructural performance level shall be defined as the post-earthquake
damage state that includes damage to nonstructural components but the damage is
non-life threatening.

Also the life safety nonstructural performance level is the post-earthquake
damage state in which potentially significant and costly damage has occurred to
nonstructural components but they have not become dislodged and fallen,
threatening life safety either inside or outside the building. Egress routes within the
building are not extensively blocked, but may be impaired by lightweight debris.
HVAC, plumbing, and fire suppression systems may have been damaged, resulting in
local flooding as well as loss of function. While injuries may occur during the
earthquake from the failure of nonstructural components, overall, the risk of life-
threatening injury is very low. Restoration of the nonstructural components may
take extensive effort.

So, buildings meeting this level may experience extensive damage to structural
and nonstructural components. Repairs may be required before reoccupancy of the
building occurs, and repair may be deemed economically impractical. The risk to life
safety in buildings meeting this target Building Performance Level is low.

This target Building Performance Level entails somewhat more damage than
anticipated for new buildings that have been properly designed and constructed for
seismic resistance when subjected to their design earthquakes. Many building
owners will desire to meet this target Building Performance Level for severe ground
shaking.

(iii) Collapse prevention: the overall damage level is characterized as severe.
Substantial damage has occurred to the structure, including significant degradation
in the stiffness and strength of the lateral-force resisting system. Large permanent

lateral deformation of the structure and degradation in vertical-load bearing capacity
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is encountered. However, all significant components of the gravity load-resisting
system continue to carry their gravity load demands. The structure may not be
technically practical to repair and is not safe for reoccupancy, since aftershock
activity could induce collapse.

To attain the Collapse Prevention Building Performance Level, the structural
components of the building shall meet the requirements for the Collapse Prevention
Structural Performance Level. Nonstructural components are not considered.

The structural performance level shall be defined as the post-earthquake
damage state that includes damage to structural components such that the structure
continues to support gravity loads but retains no margin against collapse.

However, the structural performance level means the post-earthquake damage
state in which the building is on the verge of partial or total collapse. Substantial
damage to the structure has occurred, potentially including significant degradation in
the stiffness and strength of the lateral-force-resisting system, large permanent
lateral deformation of the structure, and—to a more limited extent— degradation in
vertical-load-carrying capacity. However, all significant components of the gravity
load- resisting system must continue to carry their gravity load demands. Significant
risk of injury due to falling hazards from structural debris may exist. The structure
may not be technically practical to repair and is not safe for reoccupancy, as
aftershock activity could induce collapse. And as nonstructural performance is not
considered shall be classified a building rehabilitation that does not address
nonstructural components.

Additionally, in some cases, the decision to rehabilitate the structure may be
made without addressing the vulnerabilities of nonstructural components. It may be
desirable to do this when rehabilitation must be performed without interruption of
building operation. In some cases, it is possible to perform all or most of the
structural rehabilitation from outside occupied building areas. Extensive disruption
of normal operation may be required to perform nonstructural rehabilitation. Also,
since many of the most severe hazards to life safety occur as a result of structural
vulnerabilities, some municipalities may wish to adopt rehabilitation ordinances that

require structural rehabilitation only.
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Figure 3.2. The Design Performances.

3.3.2 Hazard levels

The second step in the definition of the performance objectives is to determine
the earthquake hazard levels. Earthquake hazards include direct ground fault
rupture, ground shaking, liquefaction, lateral spreading and land sliding FEMA-350
[15]. Ground shaking is the only earthquake hazard that the structural design
provisions of the building codes directly address. Ground shaking hazards are
typically characterized by a hazard curve, which indicates the probability that a given
value of a ground motion parameter, for example peak ground acceleration, will be
exceeded over a certain period of time. The ground shaking hazard levels that have
been considered are the following:

(i) Occasional earthquake hazard level: with probability of exceedance 50% in 50

years with interval of recurrence 72 years.

(ii) Rare earthquake hazard level: with probability of exceedance 10% in 50 years

with interval of recurrence 475 years.

(iii) Maximum considered event earthquake hazard level: with probability of

exceedance 2% in 50 years with interval of recurrence 2475 years.
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Performance-based design by itself will not accomplish improved or more
predictable structural performance. Design provides only a set of drawings and
instructions to the builder. The quality of the build product will depend on the clarity
of the documentation and its communication, and the capability and willingness of
the builder to implement the instructions. Thus performance-based design must be
followed by performance-based construction, in which construction engineering
services and quality control play key roles. A rigorous implementation of
Performance-Based Earthquake Engineering may well necessitate radical changes in
engineering and construction practices. Architects, engineers and contractors will
have to work together rather than take on adversary positions, and academic

researchers will have to interact much more than in the past.

3.4 Design Procedures

Depending on the design procedure adopted, as it was described in the previous
section of this chapter, the structural system is assessed using linear or nonlinear
analysis procedures in order to calculate force and displacement response
guantities. In this thesis | focus on the study of the torsional effect on building

structures’ response.

3.4.1 General Overview of EC8

In order to ensure that the structure will satisfy the requirements properties of
the EC8 [4], after the calculation of the solution of the structural optimization
problem, which was considered for this comparative study, were employed checks.
The checks that were applied are: For the case of columns, these elements should be
assessed for (i) bending (biaxial bending: simultaneous bending about two principal
axes, primary tension, centroidal compression (pure buckling : failure due to
instability of a member or structure under perfectly axial compression and without
transverse load), (ii) combination of bending moment and compression force
(compression, yielding of shear reinforcement, yielding of the total longitudinal

reinforcement, yielding of compression reinforcement, yielding of compression
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reinforcement and compression of the total reinforcement, interaction criterion) and
(iii) shear (check inclined compression, check reinforcement bars with seismic action
in shear force, check confined concrete). For the case of beams these elements
should be assessed for (i) bending (uniaxial bending without seismic action, checking
for reinforcement bars in tension and in compression, shear and compression
reinforcement in failure, shear reinforcement in failure and compression
reinforcement in elastic region) and (ii) shear (check stem region, check inclined

compression, check reinforcement bars with seismic action in shear force).

3.4.2 Treatment of torsional effect

A main problem for engineers that has great impact on the dynamic response of
buildings is the lateral-torsional coupling. Coupled lateral-torsional motions occur in
buildings subjected to ground shaking if their plan layouts do not possess two axes of
mass and stiffness symmetry or ground shaking includes a torsional component.
They can also appear due to unbalanced load distributions or differences between
actual and assumed mass and stiffness distributions.

In most structural design codes, the effect of torsion is treated by implementing
accidental and static eccentricities together with specific provisions for addressing
the design of irregular buildings. Accidental eccentricity is defined, with reference to
the location of the mass center, as a percentile (e.g. 5%) of the plan view dimension
that is perpendicular to the direction of the lateral forces applied. On the other hand,
the implementation of the static eccentricity is more complicated, since it is defined
with reference to the location of the rigidity center whose position, for the case of
multistory buildings, is not unique and is load-dependent. It is for this reason that
many researchers studied the efficiency of torsional codified provisions [16, 17].
Inconsistent observations have been attributed to the varying model assumptions
implemented, while a detailed overview has been presented by Rutenberg [18].
Cheung and Tso [19] proposed the generalized center of rigidity and twist under
linear response, while Tso [20] compared two approaches in an effort to measure
the story torsional moments for multistory buildings. In particular, the torsional

moment is calculated using the floor eccentricity in the first approach, while in the

54 Chrysanthi Stathi




Optimum Design of Earthquake Resistant Structures implementing Computational Methods ISAAR

second one using the story eccentricity. Smith and Vezina [21] defined the story
rigidity center of multistory buildings as the point on the story diaphragm where no
torsional action is developed from the application of external horizontal load. Riddell
and Vaquez [22] concluded that the centers of rigidity exist only for a special class of
multistory buildings. Lagaros et al. [23] proposed a combined topology-sizing
optimum design formulation for RC buildings aiming at minimizing the material cost
as well as the static and strength eccentricities taking into account both design code
and architectural restrictions.

Research interest extended also to the inelastic response of single-story
structures [24-26]. De la Llera and Chopra [27] proposed the base shear and torque
surfaces (BST), which represent all combinations of base shear and torque that
would lead to structural collapse when applied statically. Paulay [28, 29] proposed
the center of resistance and identified the elastoplastic mechanism, aiming at
estimating the torsional effects on the seismic response of ductile buildings,
classifying them either as torsionally unrestrained or as torsionally restrained. Dutta
and Das [30, 31] investigated the effects of strength degradation on the bidirectional
response of code-designed systems. The two simple hysteretic models proposed by
the authors accounting for stiffness and strength deterioration characteristics of RC
structural elements indicated that local peak demands, at both stiff and flexible
edge, are more significant when strength degradation is taken into consideration.
Contrary to these conclusions, Tso and Myslimaj [32] observed that results obtained
by a degrading hysteretic model do not differ significantly from those obtained by an
elasto-plastic model. Moreover, Myslimaj and Tso [33, 34] proved that the torsional
effect can be reduced for asymmetric wall-type systems by locating the center of
strength and the center of rigidity on the opposite sides of the center of mass.
Overestimation of torsional response was noticed by De Stefano and Pintucchi [35]
when the inelastic interaction between axial force and bidirectional horizontal forces
in resisting elements is ignored. Aziminejad and Moghadam [36] studied the
nonlinear behavior of irregular code designed single-story structures in order to
optimize configuration of mass, stiffness and strength centers with respect to

different levels of plastic excursions in the framework of performance-based seismic
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design. They concluded that the best configuration varies not only with the assumed
performance level, but also with the selected response parameter or damage
indices.

Trombetti and Conte [37] developed a simplified procedure, the ALPHA method,
for estimating the maximum rotational response under free and forced vibrations of
single-story linear elastic systems. An alternative pushover procedure was
introduced by Moghadam and Tso [38]. The two steps of analysis are: (i) A three-
dimensional elastic response spectrum analysis, in order to compute the roof
displacements and the distribution of lateral forces. (ii) By implementing the target
displacement and the lateral force distribution obtained at the previous step conduct
a planar pushover analysis for each resisting element. With the aim to study the
inelastic torsional response of buildings in nonlinear static (pushover) analysis,
Penelis and Kappos [39] proposed a method consisted of a three-dimensional
pushover analysis, applying spectral load vectors defined from dynamic elastic
spectral analysis. They implemented a generalized equivalent SDOF, taking into
account translational and torsional modes, to record response quantities. Code
recommendations for torsionally unbalanced multistory buildings were assessed by
De-la-Colina [40]. Tena-Colunga [41] studied the response of two irregular 14-story
reinforced concrete buildings. The first one has one bay in slender direction, while
the other two. The results indicate that codified provisions should penalize buildings

with one bay.

3.4.3 Elastic torsional response

For the case of single-story systems there is a position on the diaphragm with
the following properties: (i) Does not rotate when a lateral load is applied to it
(rigidity center); (ii) does not rotate when the resultant of the shear forces is applied
to it (shear center); (iii) remains constant when the structure is subjected to torque
loading (center of twist). For the case of single-story systems only these centers
coincide and they are load-independent. However, for the case of multistory
buildings these centers do not coincide and their effect has been the subject of

extensive research by many researchers in the past.
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The most popular parameters characterizing the torsional effect on a building
for elastic structural behavior are the static eccentricity (€., ) perpendicular to the

direction of ground motion and the ratio of the uncoupled torsional to lateral

frequency ratio (). The static eccentricity €., of single-story structures is defined

as the distance between the center of mass (CM) and the rigidity center (CR). The
rigidity center (CR) is defined as the point on the diaphragm through which a static
horizontal force causes only translation on the diaphragm, irrespective of the force
direction, while mass center (CM) is defined as the point on the diaphragm where
the resultant of the inertia forces is applied to. The buildings are classified as
torsionally-stiff for Q values greater than unity or as torsionally-flexible for Q values
lower than unity. For torsionally-stiff structures the predominant mode is
translational while for torsionally-flexible systems the predominant mode is
torsional. Furthermore, the edges of the structures are denoted as stiff or flexible,
with reference to the position of the mass and rigidity centers. In particular, when
the distance of the edge from CM is smaller than that from CR, the edge is
characterized as flexible otherwise the edge is characterized as stiff. It is worth
noting that a building can be torsionally stiff in one direction and flexible in the
other. Torsionally stiff buildings display increased displacements at the flexible edge
and decreased at the stiff one, compared to the symmetric design, while torsionally

flexible buildings do not follow any specific pattern [32, 33].

3.4.3.1 Location of the center of rigidity for single-story

systems

The undamped equations of motion for single-story system, assuming linear

behavior, subjected to earthquake ground motion accelerations a,,(t), &, (t) along

X and y axes are:

m 0 —MYyeu | | Ux Ky Ky Ky ||Ux Ay (t)
0 m MXey, [$Uy p+| Ky K, Ky Uy p=-M a, (1) (3.6)
—Myen  MXey, ‘]o Uo Kox Koy Ko Uy ~Yum agx (t Xy agy (t)
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where m is the mass moment of the deck, X, and Y, are the coordinates of the
center of mass, K, ,K,,K,,,K,, and K,, are the terms of the stiffness matrix
corresponding to translational (X and y) and rotational (&) degrees of freedom of
the one-story structure, and J, is the polar moment of inertia of the deck about

vertical axis passing through reference point O, given by:
Jo :m(r2+x(23|v| +y(2:M) (3.7)

where ris the radius of gyration of the deck about a vertical axis passing through the

center of mass of the deck.

The building stiffness matrix K for degrees of freedom u' =(u,u,u,), defined

at O, is given by superposition of the element stiffness matrices resulting in:

K, K K

X XY X0
K=K, K, K, (3.8)
KQX KHY KH

with,
Kx =ZKXi , Ky :ZKW: Ka =ZK9i
Kxe = Kex :Z KXHi , KY€ = KHY :Z Kvei
va = KYX = Z KXYi

While if the equations of motion are written for degrees of freedom U, where

ar =<Uxﬁyug> with U, and U, the lateral displacements at the center of rigidity

along the X and y axes, the building stiffness matrix assumes the form:

IZX KXY 0
K=|K, K, 0 (3.9)
0 0 K,

Since any horizontal static force applied through the center of rigidity causes

only lateral displacements and no rotation of the deck.
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The equations of motion written with respect to U are then given by:

m 0 -meg |[G] | Ky Ky 0 ][d, a, (t)
0 m  meg, |10, 0+ Ky K, 0 [0, t=-m a, (t) (3.10)
_meCRy MEcpry J R Ua 0 0 Ka Uy _eCRyagx (t) + eCRxagy (t)

where €, and e, , the X and y components of static eccentricity e, are:

€ore = Xom — Xer (3.11)
eCRy =Yem — Yer (312)

in which X.; and Y. are the coordinates of the center of rigidity and Jj is the polar

moment of inertia about a vertical axis passing through the center of rigidity, given

by:
Jp=m(eZ +r?) (3.13)

From the building stiffness matrix K defined with respect to the degrees of freedom

U at reference point O, where u’ =<uXuYug>, the building stiffness matrix at any

other point can be determined by simple transformation of K . In particular, the

building stiffness matrix K with respect to degrees of freedom (i, where

ar =<le]yl]6> is defined at the center of rigidity of the system, is related to the

building stiffness matrix K by:
K=4a'Ka (3.14)

in which dis a transformation matrix relating U to U:

u=quU, r={0 1 Xp|[{0, p=4ad (3.15)

Substituting equations (3.15) and (3.8) into (3.14), leads to:
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KX KXY Kx Yer _KXYXR +Kxe
KYX KY KYX Yer — KY Xg + KY9 (3-16)
Kex + yCRKX — Xer KYX KHY + yCRKXY — Xer KY Ke

!
1

in which Ke = Ka +2Kex Yer _ZKHYXCR + Kx Y(Z:R _2KXYXCRyCR + KYX(ZZR

Comparison of equations (3.16) and (3.9) leads to the following conditions:

Ky Yer = Ky Xg +Kyp =0 (3.17)
Koy + Yor K 5y — %K, =0 (3.18)
K, =K,,K, =K, and K., =K,, =K, (3.19)
and
K, =K, + 2Ky Yer — 2Ky Xer + Ky Yo — 2K oy Xer Yer + Ky X2 (3.20)

Solution of equations (3.17) and (3.18) yields the coordinates of the center of
rigidity:
_ Kx KYG _KXYKXH

Xen = (3.21)
X KY - K>2<Y

— Ky Kxo = Kur Kyg
2
Kx Ky =K

(3.22)

Yer

Equations (3.21) and (3.22) are further simplified on two special cases:

1. The building has one axis of symmetry, which coincides with one of the
principal axes of the system and the other is perpendicular to it. For instance,

if X axis is chosen in the direction of the symmetry axis, the terms K,,, and

Ky, occur in pairs that are equal in absolute values but are of opposite

algebraic signs. It follows that:

Ky, =Ky =0 (3.23)

and
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Kxo = Kox (3.24)

K
Xer = KYH (3.25)
Y
K
Yer =~ Kxe =0 (3.26)
X

2. The resisting elements of the building are arranged such that their principal
axes form an orthogonal grid in plan. The principal axes of the system are also
in the directions of the elemental principal axes. The coordinates of the

center of rigidity are simplified to:

K.. X

Kyg Z Yi N
Xop = = 3.27
"R, 2K, 227

K ZKXiyi
=——X0 ] 3.28
Yor =~ >K, (3.28)

3.4.3.2 Location of the shear center for single-story systems

The shear center is the point in the plane of the diaphragm through which the

resultant of the shear forces of the resisting elements passes when the diaphragm is

subjected to a system of horizontal lateral forces causing no twist (U, =0) of the

diaphragm. Substituting U, =0 and utilizing the equilibrium of moments of all

shearing forces acting in the plane of the diaphragm about a vertical axis passing
through O, gives an equation which leads to the same expression as the center of
rigidity. It should be noted that center of twist, rigidity and shear centers for one-
story structures coincide [44]; thus, the coordinates of the shear center and the

center of twist are also obtained from Egs. (3.21), (3.22).
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3.4.3.3 Location of the center of twist for single-story

systems

Since the center of twist is the point in the plane of diaphragm that does not
undergo any translational displacement when the diaphragm is subjected to a static
horizontal torsional moment, the building stiffness matrix is identical to (3.8)
considering that the degrees of freedom of the diaphragm are defined at its center
of twist. The same procedure as the one followed for the center of rigidity leads to
the same expressions (eqns. (3.21) and (3.22)) for the coordinates of the center of

twist.

3.4.3.4 Location of the center of rigidity for multistory

systems

The rigidity centers of the stories for the case of multistory buildings cannot be
defined in a strict manner and many definitions have been proposed so far [19, 21,
45, 46]. Indicatively, Humar [42] defined the location of story rigidity center as the
point where the resultant lateral forces of the story when applied to that point does
not cause rotation of the specific story. The other stories may or may not have
rotations. Smith and Vezina [21] defined the location of story rigidity center of
multistory buildings for given distribution of the lateral loads, as the point on the
story where if the external lateral load is applied no torque is observed.

The undamped equations of motion for multistory building, assuming linear

behavior, subjected to earthquake ground motion accelerations a, (t) and a,, (t)

along X and y axes are:

m 0 -my,|(Uy] [Ky Ky Kyp[ux mla,, (t)
0 m mx, {Uy 1+ Ky Ky Ky |qUyp=— mla, (t) (3.29)
-myy, mx, Jy ||Ug] |Kix Ky K, ||Ug -yymla,, (t)+x,mla, (t)

where | denotes a vector of ones of dimension N, the number of stories of the

building, m is a diagonal matrix of dimension N with diagonal entry m; equal to the

mass of the j" floor, Xcw and Y, are diagonal matrices of dimension N with
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diagonal entries equal to X, and Y, the coordinates of the center of mass of the
j" floor relative to reference axes X; and Y;, J, is a diagonal matrix of dimension

N with diagonal entries J; the polar moment of inertia of the jth floor diaphragm

about Z, the reference vertical axis passing through reference points O;, given by:
Joj =M, (r1'2 + XéMj + ngj ) (3.30)

where r;is the radius of gyration of the jth deck about a vertical axis passing
through its center of mass.

The building stiffness matrix K for degrees of freedom u’ :<u; ulu;>, defined
at reference points O,, is given by the superposition of the element stiffness

matrices resulting in:

KX KXY KXH
K=|K,, K, K, (3.31)
KQX KHY K9

Provided that centers of rigidity exist for a building, the equations of motion with

respect to rigidity centers can be written as:

m 0 —meg, [0y K, K, 0]fd mla,, (1)
0 m  meg, {0, + Ky K, 0 [0, p=- mla,, (t) (3.32)
~MEer,  MEcp, N ﬁe 0 0 Ke Uy —€eryM Iagx (t) +€crM |agy (t)

where €, and e, are diagonal matrices of dimension N diagonal entries €, and

€cryj» the X and y components of the static eccentricity eq of the j" floor, given

by:
€cri = Xemj — Xcrj (3.33)
Cery = Yomi — Yer (3.34)

in which X and Ygg are the X and y components of the center of rigidity of the

j" floor relative to its reference axes x; and y;, J; is a diagonal matrix of

Chrysanthi Stathi 63




dimension N with diagonal entries Jr; equal to the polar moment of inertia of the

jth deck about a vertical axis passing through its center of rigidity, given by:

I =m; (e +17) (3.35)
The form of the building stiffness matrix K given in equation below follows from
the definition given for centers of rigidity as the points on floor levels at which static

horizontal forces cause no twist in any of the floors.

KX KXY O
K=|K, K, 0 (3.36)
0 0 K,

If the rigidity centers are not unique, it would not be possible to determine a building
stiffness matrix in the form of K given by equation (3.36).

The building stiffness matrix K written with respect to the degrees of freedom

ar =<l]; GIG;) defined at the centers of rigidity is related to the building stiffness
matrix K written with respect to degrees of freedom U at reference point Oj,
where U' = <u; Uy u;>, by:

K=a'Ka (3.37)

in which & is a transformation matrix relating u to G:

Uy I 0 Yer l]x
u=qu, r={0 I X |q0, p=al (3.38)
u,| [0 0 1 ||u,
Substituting equations (3.37) and (3.35) into (3.36), leads to:
KX KXY Kx yCR_KXYXR+KX6
K= Ky K, Kyx Yer = Ky Xg + Ky, (3.39)
Kax + yCRKX — Xer KYX Kav + yCRKXY — Xer KY Ka

in which Ka = Ke +2K9x Yer _ZKHY Xer + Ky ng — 2Ky XerYer + Ky XCZZR
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Comparison of equations (3.36) and (3.39) yields the coordinates of the centers of
rigidity:
KYB — KYX K>_<1Kx9

Xer = - (3.40)
KY - KYX leva

Kxe — KXY Kv_lKva
Kx - va Kv_lKYx

Yer =— (3.41)

where K, , K, Ky, ,Ky,and K,, are submatrices of the building global stiffness
matrix corresponding to translational (X and y) and rotational (&) degrees of
freedom of the system. Eqgs. (3.40), (3.41) do not lead to a unique definition of the
story rigidity centers. This is due to the fact that the product of the operations of the
second part of Eqgs. (3.40), (3.41) in general do not yield diagonal matrices. This

deficiency is addressed if static lateral loads are introduced as follows:

= 11K, — Ky KKy, =
X = {Py| WX X0 (3.42)
KY_KYXKX va
- 1Ky, — K KUK <
yCRz_{PX} X0 AN BTN Y (3.43)

Kx - va Kv_lKYx

where Px and Pv are the vectors of the static lateral loads. Thus, the definition of
the coordinates of Eqgs. (3.42), (3.43) are load-dependent [44]. However, there is a
special class of buildings, called proportional framing buildings, for which the rigidity
center, shear center and center of twist can be defined and coincide, they are load

independent and lie on a vertical line [22, 44].

3.4.3.5 Location of the shear center for multistory systems

The location of the shear center of a floor is determined by finding the centroid
of the shear forces experienced by individual resisting elements due to a static
loading that causes no twist (U, =0) at any of the stories. The solution of
equilibrium of moments about reference axis Z of all shear forces acting at each

floor level, leads to the coordinates of shear centers X, and Ys:
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Xs :I:Px;:l_l S(KHY — Kox K>_<1KXY)(KY - KYXK)_(lKXY)ISY (3.44)

Ys =[P>I< Tl S ( Kox =Koy KY_lKYx )(Kx - Kyy KY_lKYX ) Ii;x (3.45)

where S is a summation matrix which is upper triangular, of dimension N and of
the form:

S= (3.46)

And [PX ], [PY } denote the diagonal matrix forms of vectors SP, and SP, .

When equations (3.44) and (3.45) lead to diagonal matrix with equal diagonal

entries, simplify to (3.40) and (3.41) and are load-independent.

3.4.3.6 Location of the center of twist for multistory

systems

The center of twist is defined as the point on the diaphragm that is not
subjected to translation but only to twist about it, when torsional moment is
statically applied on the diaphragm. The building stiffness matrix written with
respect to degrees of freedom defined at center of twist would be of the form of
equation (3.36). Following the same procedure as for the center of rigidity leads to
the same expressions for the coordinates of the center of twist as the center of
rigidity (3.40) and (3.41). If these expressions yield diagonal matrices, centers of
twist and centers of rigidity are coincident.

If the equations do not lead to diagonal matrices, the locations of the center of
twist depend on the applied set of static torsional moments. The coordinates of the

center of twist, X; and Y;, can be determined through the procedure below:

P =K (3.47)
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13

. K, K, Ky ¥y =Ky Xp + Ky | [Ty
Y[~ K, K, KYX Yr — KY Xr + KY9 IJY (3'48)
[ Kex + yTKX — X KYX Km + yTKXY =X KY Ke Uy

For a particular set of forces P with P, =P, =0 and T, #0, it is possible to
determine X; and Y;, the coordinates locating the centers of twist, where according

to definition U, =0, =0 but U, #0:
06} =[U, ] (Ky = K KoK ) (K = Ko KK, YU, (3.49)

{yT} = [uﬁ]_l(KX - KYX KY_lKYX )_1(Kx9 - KXY KY_lKve)ug (3-50)

where [u,] represents the diagonal matrix form of vector U,, {X;} and {Y; } the

vector forms of diagonal matrices X; and ;.

3.4.3.7 Torsional moment estimation through static

eccentricity concept

Tso [20] compared two approaches in order to estimate the torsional moment
of multistory buildings. According to the first one, the floor torques at different
floors are determined as the product of the lateral load and the floor eccentricity at
that floor. The story torsional moment is then obtained by summing the floor
torques of the above stories. A two-bay, four-story building consisting of frames A, B,

C spanning the y direction connected with rigid floor diaphragms is implemented
(Fig. 3.3). Static load distribution P is acting at CM of each story. The load is

decomposed in a translational and a rotational component (Fig. 3.3).
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Figure 3.3. Eccentricity concept for multistory building [20].

The translational component causes only translation but no rotation of the
floors. In this way, the load is relocated horizontally to act at center of rigidity of the

floor. Considering that the locus of the centers of rigidity of building are determined,

the floor torques T, can be obtained by the expression:

T =Pe (3.51)

where € is the floor eccentricity defined as the distance between the center of

mass and the center of rigidity at that floor.

€cri = Xemi ~ Xeri (3.52)
The torsional moment at a story K is calculated by the relationship:

(Mt)k :ZikTi (3.53)

In the second approach, the story eccentricity is employed to obtain the
torsional moment via story shear [20]. The torsional moment at any story K is

obtained directly from the story shear by:

(M), =V,& (3.54)

where V, is the story shear and €, is the story eccentricity at story K considering a

cut at story k and lateral and torsional equilibrium of the free body diagram above
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the cut (Fig. 3.4), defined as the horizontal distance between the shear center at the

story and the resultant of all lateral forces above the story being considered.
A B
;i R . R
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e
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Figure 3.4. Free body diagrams of each floor [20].

e
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The two approaches proved to be equivalent resulting to the same story
torsional moments provided that proper definitions of eccentricity are implemented.
Moreover, it has been also proved that the story eccentricity is less sensitive to load
distribution than the floor eccentricity. Therefore, the second approach is supposed

to be more appropriate for structural asymmetry assessment [20].

3.4.3.8 Optimum torsion axis and torsional radii of gyration

for multistory buildings

Makarios et al. [47-49] proposed the optimum torsion axis for multistory
buildings. The optimum torsion axis of the system is an axis upon which when the
level of lateral static seismic forces is placed then the twist of the whole system is
minimalized. In the boundary case that the relevant axis is a real elastic axis of the
system, the twist is marked with zero [50].

In order to define the location of the optimum torsion axis a multistory spatial
frame-wall system is divided into two spatial subsystems, the bending one and the

shear one. Each one of them contain the elastic centers K and S, respectively, and
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its principal elasticity axes |, I, provided that they maintain their elastic and
geometric characteristics unchangeable in elevation. The frame-wall multistory
systems have been proved [51] to possess three vertical torsion axis, ;, Q,, Q,,
which are not upon the same line. The final response of the system, due to the
lateral static loading F(z) continuous distribution in elevation, arises from the
superposition of the three enforced rotations of the system around the relevant axes
(Figure 3.5a). It has been proved [47] that when there is a vertical real elastic axis in

the system is identified with Q, while the Q,, 2, axes move to infinity (Figure

3.6a).

\
QD M‘ C\Qz Q;/D M é2
/
. /.
Q Fa F(z)/d Q4
b

a

Figure 3.5. Axes of enforced torsion in a frame-wall multistory system [50].

Y Y,
MT x| Fea KT s X

Qs Q, Q,

Figure 3.6. Axes of enforced torsion in symmetrical system [50].

On the special occasion that the multistory frame-wall system s

monosymmetric, symmetrical axis X, the axis {); moves to the y -infinity while the

70 Chrysanthi Stathi




Optimum Design of Earthquake Resistant Structures implementing Computational Methods ISAAR

other two axes €2,, €, are upon X. The elastic centers K and S of the bending and
the shear subsystem correspondingly are also upon X. The axes Q,, Q, are always
outside of the (KS) space [50]. When the lateral static loading F(z) has a direction

perpendicular to the symmetric axis of the system and is inside the (€2,(,) space the

two rotations have opposite direction (Figure 3.7b). When the following expression

is satisfied

ming® =(67 +6; +...+6) /N (3.55)

the effects of torsion on the system are minimized.

in which 6, is the rotation angle of the i" floor.

Y Y
Q, Qq Q, T Qs
o o T IV o
N K S X J _J N X
K - S
F(Z) ()
a b

Figure 3.7. Superposition of two rotation about Q,, Q, [50].

The relation (3.55) is satisfied when the rotation angle of the floor is equal to
zero at level z=0.8H (figure 3.8) [37], [48], [49]. Solving the equation that stems

from this condition, the location of the optimum torsion axis is defined, point P,.

rad rad
: i1 ©

; 0.80H
| i A

Figure 3.8. State Optimum Torsion in multistory frame-wall building [50].
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The optimum torsion axis satisfies the following boundary conditions [49]:

a) Its position in the plan coincides with point K, called the elastic/stiffness

b)

c)

center, in the boundary case where the multistory system reduces to the
single-story system.

Its position in the plan coincides with point K when the system transforms
into a purely bending one.

Finally its position in the plan coincides with point S when the building

transforms into purely shear one.

According to a study on a five-story asymmetric building, the optimum torsion

axis is characterized by the following attributes:

The sum of squares of the deck rotations and the sum of squares of the
deck displacements along the fictitious principal Il - axis is minimum, when
the vertical plane of the lateral static seismic forces passes through the

fictitious elastic center P, and is parallel to the fictitious principal | - axis.

The results are similar for lateral seismic forces along the Il - axis.

The translational and rotational components are weakly coupled when the
vertical mass axis coincides with the fictitious elastic axis.

The earthquake ground motion along the fictitious principal | - axis or |l -
axis causes nearly translational vibration along the same axis when the
vertical mass axis coincides with the fictitious elastic axis. The maximum
deck rotations are very small.

The translational and the rotational components of motion are strongly
coupled when the mass axis does not coincide with the fictitious elastic

axis [42].

The torsional radius of gyration p, represents the lever arm, according to K, of

the elastic forces of restoration during the torsional loading of the single-

story/monosymmetric system [50].

It can be calculated in two different ways, which result in the same value:

72

It can be calculated directly from the relation:
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P =7 (3.56)

where K, the torsional stiffness of the single-story system about the axis 11l
and Kk, the translational stiffness of the single-story system according to

principal axis Il .

It can also be calculated according to the ratio of special displacement:

P = ﬁ — (1' Fi )/‘92 (3.57)
Ky F/u,

where U, =F, /K, is the displacement for static load force F, at the point
K, 8, =F, /k,, is the twist angle about K for torsional loading M =1.F,

of the system.

The torsional radius of gyration p, of the frame-wall monosymmetric systems

has not the same value for every level &, but the one in diagrams of Figs 3.9a and

3.9b. It is suggested that the torsional radius of gyration of level z=0.8H is

approximately equal to the torsional radius of gyration of the whole system, since

the optimum torsional axis is defined at this level. According to the relation between

the torsional radius of gyration p, at the center of mass and the radius of gyration of

the diaphragm r the torsional flexibility of the system for dynamic translational

excitation is defined. Actually if p,, <T the system is torsionally flexible.

Pax =\ P+ (3.58)

where €, is the static eccentricity along X axis.
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Figure 3.9. Distribution of torsional radius of the floors [47].

Another criterion for the torsional flexibility of a building is the coordinates of

the center of vibration O, of the floors. A system is characterized as torsionally

flexible when the vibration centers, calculated for the first and the second modal

shape, occur into the circle of the radius of inertia of the diaphragm, which means

that the torsional vibrations of the diaphragm dominate the translational one for

pure translational excitation. The coordinates of the center of vibration O, (exi,eyi)

are given by the expressions below:

q)xi

eyi = w—u
exi = _&
(Dzi

(3.59)

(3.60)

The equivalent static eccentricities e, , €, are used in order to define the

location of the point of application of the lateral static seismic forces and are given

by the expressions (3.59) and (3.60), respectively. The accidental eccentricity € is

also taken into consideration.

74

o,
ef:T'-Rf
e :lol2 _1_ Dr

rl—g

(3.61)

(3.62)
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where
1/2
R, = szzg-[én + Atz _Zglz'pglA;j (3.63)
sin20 (82 52 5.5, )"
D, = 5 .[Alr21“+A;22”+2812'A;r1‘~AEJ (3.64)
tan o, = — 2‘902 (3.65)
& +u -1

If tane, 20, then =0, /2

else @ =90—|a,|/2

_ /h_ /U_F _P
'pl_ kll_ QM’ﬂ r

A=1-g,-tan@, A =1+¢,-cotd

€
&y =

= |$

5.=coto—1, 5, =tanf+1 1 =1
:

,Az
(6 =9%),n, = [+
&, (¢ ).r, A

8% (1+r,) 1;°
(1_ rli)z +4C:2 I '(1+ r12)2

& =

3.4.3.9 Modification procedure for design of earthquake

resistant steel structures

Anagnostopoulos et al. [46] proposed a modification procedure in order to
improve the design of asymmetric eccentric steel structures. A structural design can
be characterized as satisfactory when the limiting values of the controlling response
parameters do not have wide variations within the groups of structural members to
which they apply. In the opposite case, suboptimal use of material may be present as

well as a potentially higher risk of failure in cases of unexpected overloads. Observed
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differences in ductility demands between the opposite edges point to the need for a
design modification that would eliminate or reduce these differences. The proposed
modification procedure aims at increasing the strength of the structural members
(columns, beams, braces) at the flexible edges and reducing the strength of the
braces at the stiff edges without affecting the strength of the other structural
elements (columns, beams).

The first step for application of this modification is to obtain the top story
displacements at the flexible and stiff edges of the buildings in both horizontal
directions due to earthquake loading considered and then compute the following
factors in each horizontal direction:

u

fi o = 2 —— (3.66)
' (ui,flex U, it )
U .
f, g = 27— (3.67)

(ui,flex Ui sitr )

where u. .. is the top story displacement of the flexible edge in the i" direction and

i, flex

U; v the top story displacement of the stiff edge also in the i" direction. According

to the design modification, the axial areas of the bracing members in both the stiff
and flexible edges are multiplied by the corresponding factors in each direction and
to do the same for the beam and column sections but only in the flexible edges to
increase both stiffness and strength of the corresponding frames. The cross sections
of columns and beams of the stiff edges are not reduced, as their strength is
controlled mainly by gravity loads. These factors vary from 1.25 - 1.50 for the flexible
edges and from 0.85 - 1.00 for the stiff edges.

3.4.4 Inelastic Torsional Response

Once a structural element reaches vyield, its stiffness changes affecting the
period as well as the static eccentricity of the structure. The location of the rigidity
center changes as well as the eccentricity of the structure. Based on this observation

Paulay [28] stated that the strength eccentricity is a reliable measure for the
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elastoplastic range. The strength eccentricity is the distance between the CM and the
strength center CV. The strength center is defined as the point through which the
resultant of the lateral forces passes, while if the story becomes a mechanism no

rotation of the diaphragm is developed and its components along the X and y

directions are given by:

’ XiVnyi
Conx = 2—— (3.68)
Vnyi
i=1
Neol
yiani
Cowy = —— (3.69)
Vv

where V ; and V, ; are the nominal strength of the i" resisting element along X

and ydirections. It is worth noting that the strength eccentricity is given by Egs.

(3.68), (3.69) on condition that the resisting elements achieve their nominal
strength. In case that some of them did not reach their nominal strength, the shear
forces computed of those elements are used instead in Egs. (3.68), (3.69).

The wise assignment of the nominal strength of translatory elements would lead
the system to the optimum response, provided that ) V,,; = Vj. The location of CV is
of crucial importance, since during a damaging earthquake some of the lateral force
resisting elements yield and stiffness eccentricity is inappropriate to represent the
asymmetry of structure. In this case, the structure is subjected for portions of time in
the elastic state and for others in the plastic state. It has been proved that the
produced rotations in the different states cancel one another when stiffness and
strength eccentricity have opposite signs, which means that the location of the
center of rigidity and the center of strength are on the opposite sides of the center

of mass.
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3.4.4.1 The BST surface

Moreover, in order to understand the inelastic behavior of one-story buildings
De La Llera and Chopra [27] proposed the base shear and torque surface (BST) Fig.
3.10 which consists of all combinations of base shear and torque that applied
statically would lead to collapse of the structure. In Fig. 3.10(b) is shown the BST
surface of the one-story system depicted in Fig. 3.10(a).

The surface is convex, composed of linear branches and point symmetric with
reference to the origin for identical yield displacements considering load reversals.
The slope of the tangent suggests the position of the element in the building plan
that remains elastic during the mechanism considered. Moreover, the ultimate
surface has as many branches with finite slope as twice the number of resisting

planes in the direction of excitation.

T
D C
f(a+h) Vx=0
1 3
Ka=k
k1= Lol K3=k E fal B
=t fast
b | |
-3f 0 f 2f Vy
K=k F
fa=f A
) -f( a+b)
G H

Figure 3.10. Example of construction of a BST ultimate surface [27].

Subsequently the five parameters that control the shape of the BST surface are
discussed: (i) strength of resisting planes, doubling the strength of resisting planes
results in surface expansion by factor two (Fig. 3.11(b)), (ii) strength of resisting
planes in the orthogonal direction, an increase in strength of resisting planes in
orthogonal direction causes stretching of the BST surface along the base torque axis

in the positive and negative directions (Fig. 3.11(c)), (iii) asymmetry in strength,
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strength distribution among elements affects the skewness and stretching of the BST

surface (Fig. 3.11(d)),

1 ’ 5
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5 3=t 0
®
o
-5
2@b2 k5=k 5 0 5
fx5=f
(2) Reference system
§
S Reference system
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fx4=2f g 5
o
k3sk
fy3=2f @
k1=k -:E 0
fy1=2f >
]
N AN
® -
k5=k E
= 2 -5 5
x5=2f = 0
(b) Global increase in strength
Reference system
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fx4=2f 5
k3=k
fy3=
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(c) Increass in strength of orthogonal resisting planes

Figure 3.11. Effect of different parameters on the shape of the BST surface [27].
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(e) Planwise distribution of strength

Figure 3.11. Effect of different parameters on the shape of the BST surface [27].

(iv) planwise distribution of strength, increasing strength in resisting plane two
passing through CM, for instance (like buildings with strong central cores), relative to
two other planes, the torsional capacity of the system is reduced and the length of
the constant base-torque branches of the BST surface associated with purely
torsional mechanisms is increased (Fig. 3.11(e)), (v) number of resisting planes,
increasing the number of resisting planes the BST surface becomes rounder (Fig.
3.11(f)). It is worth noting that stiffness distribution does not cause any change to
the shape of surface since it is an important parameter considering the elastic

behavior of the structure.
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Figure 3.11. Effect of different parameters on the shape of the BST surface [27].

3.4.4.2 The SST ultimate surface

De La Llera and Chopra [53] extended the same idea to multistory buildings, the

so-called story shear and torque (SST) ultimate surface. The surface is constructed

for each story and depicts all combinations of story shears VX”), Vy“), and torque

T that applied statically would lead the story to collapse. The construction of the
surface is based on the implementation of a single super- element (SE) per building
story, which represents its elastic and inelastic properties. The SE element of building
consists of a single fictitious structural element per story capable of representing the
elastic and inelastic properties of the story and possesses three degrees of freedom
per node (Fig. 3.12) — two horizontal translations and the rotation of the floors
connected by the element.

The elastic and inelastic properties of the SE model are matched to those of the
story with multiple resisting planes. The surface is parametrized in terms of seven

important parameters controlling the seismic response of asymmetric structures.
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Figure 3.13. Parametric representation of the SST surface [53].
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The coordinates of the vertices of the surface are given below:

X =V, Yy =V,oX, +T,(1-V,) (3.70)
X, =V, +V,., Y, =T, =TV, (3.71)

X =V, Ve, ¥y =T, =TV, (3.72)

Xe =V, Yo = VX, + T, (1-V,) (3.73)
X5 ==X,Ys =% (3.74)

Xe ==X Y6 ==Y, (3.75)

X; ==X, Y7 =—Y; (3.76)
X=X Ys=—Ys (3.77)

where (i) V, =V, /V,, is the normalized story shear in X direction, V., :ZM f®is

[
the lateral capacity of the story in X-direction, f) the capacity of the i" resisting
plane in the X-direction and M is the number of resisting planes in the X-direction.
The normalized story shear defines the variation of the SST ultimate surface along V,

shear axis. In the case that component of excitation exists along X axis, the planes
along this axis sustain translation deteriorating their capability of developing coupled

force to resist story torque.

(ii) Vg :Z:il f{ is the lateral capacity of the story in the y-direction, f" the

capacity of the i" resisting plane in the y direction and N is the number of resisting
planes in the y-direction. The lateral capacity of the story corresponds to the

maximum shear that can be developed for purely translational mechanism of the

story.

(iii) V. is the capacity of the resisting planes in the y -direction passing through the

CM of the system, which determines the length of the constant torque branch of the
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SST surface. Constant torque surface represents predominantly torsional
mechanisms of the story, consequently an increase of its value means larger number

of these mechanisms on the surface.

. N | ¢ (i) M@)o - . .
(iv) T, :Zizl‘ fy(')x")‘+zi:l‘ fx(')y(')‘ is the torsional capacity of the system that can
be developed in a purely torsional mechanism of the story. It controls the maximum
and minimum ordinates of the ultimate surface. Large values of T, means that the

system possesses strong resisting planes along the edges, while small values

represent a system with strong central core.

(v) T, :Zzl fx(i)y(i) is the torque provided by the resisting planes in the orthogonal

direction, which controls the length of the constant shear branches of the SST
surface. These branches are associated with story mechanisms, which are

predominantly translational.

(vi) X, :Zi=1 fy(')x(') /Vyo is the strength eccentricity, or first moment of strength

and represents the slope of the ray, which connects the center of the surface and the
middle point of the constant shear branch 1-8 Fig. 3.13. The position of this middle

point is determined by the shear capacity V,, and the torque T=ny(i)x(i)

i=1
corresponding to purely translational mechanism of the story. Strength eccentricity
controls the skewness of the surface. For large values of strength eccentricity
increase the skewness and narrowness of the surface resulting of the predominance
in strength of one resisting plane.
i NN £ ) (@) ]y @ ‘ ’ .
(vii) Vyu _Ziﬂ fy X /‘x ‘ denoted as the ‘strength unbalance’ in the story, which
i#2
controls the abscissa of the central point of the constant torque branch of the SST

surface at positive torque.

3.4.4.3 Torsional mechanisms in ductile building systems

An important aspect of the inelastic behavior of an asymmetric structural system

is the consideration of the degree of control over its inelastic twist. One of the design
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aims should be to restrain the system against unrestricted inelastic twist. This can be
readily achieved with the use of elements which are not subjected to inelastic
translatory displacements. Thereby the system, while developing its expected

translatory displacement ductility capacity, u,, retains some residual stiffness:

K, = 4K, (3.78)

The resisting elements along the perpendicular direction to that of the imposed
excitation can contribute within the elastic domain to significant torsional resistance

and hence to restrain twist. The parameter 4, in equation (3.78) expresses the

degree of torsional restraint. It may be readily evaluated from:
Ay = Z(Xizkiy)/ K, (3.79)

Ay =2 (ki )/ K, (3.80)

Ductile structural systems are classified as either torsionally unrestrained, when
A, =0, or torsionally restrained, when A, >0.15.

Torsionally unrestrained systems are those, which cannot resist torsion in the
post-yield range. In this mechanism, torsion can be resisted only within the elastic
domain of response since elements, which resist torsion during inelastic translator
response, do not exist. As a result one edge element may be subjected to excessive
ductility demands while the one at the opposite side may be in the elastic domain.
This is associated with a reduction of the base shear capacity of the system [28].

For instance, the system of Figure 3.14 is analyzed. It is assumed that the
response of the lateral force resisting elements is perfectly elastic-plastic. When the

element (2) will yield and its displacement ductility capacity z,,.., should not be

exceeded, the system displacement ductility demand should be limited to:

Ay Ay,
My < ﬁA_-'_a:uAZmax A_ (381)
y y

where A is the system yield displacement (for torsionally unrestrained systems),

relevant to CM

Chrysanthi Stathi 85




A, = A, +ah,, (3.82)

with the introduction of a geometric system parameter:

y2
W= (3.83)
PA,
expression (3.81) simplifies to:
+1
g, < Hagmax 2 (3.84)
1+y
A
A y
erx
@ -
Ccv 3
Iwi L 16 -3 ‘;4X>
CM;  CR ~ T
(@]
D Vg @
(s (D] BD
| D

Figure 3.14. Arrangement of lateral forces resisting elements in a torsionally unrestrained

system [28].

When it is found that element (1) is about to yield and its displacement ductility
capacity should not be exceeded, the system displacement ductility should be

limited to:

1y SM (3.85)
1+y

Finally, in the design of such a system the system ductility demand should be limited

to the lesser of the two values (Eqgns. (3.84) and (3.85)).
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Limited torsional restrained systems are those, whose elements exhibit post-

yield stiffness, k; =ok; (o : post-yield stiffness coefficient), i.e. for typical

reinforced concrete elements o < 0.06. In this case, the nominal strength of the one

element is in excess of that assigned to it, for example the element (1), V, =4V,

where 4, >1.00. An upper limit is established, which reassure the development of

post-yield deformation of element (1). Beyond this value and for a given post-yield
stiffness of element (2), element (1) cannot yield. This limit is expressed by the

equation:

A <140 (Hyomex —1) (3.86)

It has been proved [28] that in the case of limited torsional restraint the system

ductility demand should be restricted to:

Ha = Haomax _O_?]l_—_:ll//) (3.87)

Torsionally restrained systems can resist earthquake-induced torque at the
ultimate limit state by elastic transverse elements, which also control the system
twist, while translatory elements are subjected to inelastic displacements of
different magnitudes. The center of resistance of these inelastic translator elements,
CV, can be found by strength eccentricity. Torsionally restrained mechanisms
subjected to inelastic skew displacements must be expected to degenerate into

torsionally unrestrained.

a Restrained

Figure 3.15. Arrangement of lateral forces resisting elements in a torsionally restrained

system [29].
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4 RATIO OF TORSION

4.1 Introduction

Asymmetry into a structural system is introduced by its non-symmetric topology
of the structural elements or mass distribution. In particular, structural asymmetry
results to eccentric structural systems having different locus of the mass and rigidity
centers. During dynamic excitation, the resultant of inertia forces is modelled as
acting through the mass center, while the resultant of resisting forces through the
rigidity center. As a consequence a moment between the two forces is developed,
which induces torsional effect coupled with the lateral motion. Even in case of
buildings possessing two axes of symmetry, moments arise due to earthquake
rotational component. A number of studies have been published dealing with the
structural response of reinforced concrete (RC) buildings taking into consideration
the lateral-torsional coupling [1-4]. In most structural design codes, the effect of
torsion is treated by implementing accidental and static eccentricities together with
specific provisions for addressing the design of irregular buildings. Accidental
eccentricity is defined as a percentile (e.g. 5%) of the plan view dimension that is
perpendicular to the direction of the lateral forces applied. On the other hand the

implementation of the static eccentricity is more complicated, since it is defined with
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reference to the location of the rigidity center whose position, for the case of
multistory buildings, is not unique and is load-dependent. It is for this reason that
the efficiency of torsional codified provisions has been studied by many researchers
[5-6].

For the case of one-story systems there is a position on the diaphragm with the
following properties: (i) No rotation is induced when a lateral load is applied to it
(rigidity center), (ii) or when the resultant of the shear forces is applied to it (shear
center), (iii) remains constant when the structure is subjected to torque loading
(center of twist). Consequently, these centers are coincident and load-independent
for one-story systems. However, for the case of multistory buildings these centers do
not coincide and their effect has been the subject of extensive research by many
researchers in the past. Inconsistent observations have been attributed to the
varying model assumptions implemented, while a detailed overview has been
presented by Rutenberg [7]. Cheung and Tso [8] proposed the generalized center of
rigidity and twist under linear response, while Tso [9] compared two approaches in
an effort to measure the story torsional moments for multistory buildings. In
particular, the torsional moment is calculated using the floor eccentricity in the first
approach, while in the second one using the story eccentricity. Smith and Vezina [10]
defined the story rigidity center of multistory buildings as the point on the story
diaphragm where no torsional action is developed from the application of external
horizontal load. Riddell and Vaquez [11] concluded that the centers of rigidity exist
only for a special class of multistory buildings. Lagaros et al. [12] proposed a
combined topology-sizing optimum design formulation for RC buildings aiming at
minimizing the material cost as well as the static and strength eccentricities taking
into account both design code and architectural restrictions.

Research interest extended also to the inelastic response of one-story structures
[13-15]. De la Llera and Chopra [16] proposed the base shear and torque surfaces
(BST), which represent all combinations of base shear and torque that would lead to
structural collapse when applied statically. They also extended the same idea to
multistory buildings, the so-called story shear and torque (SST) ultimate surface [17].

The surface is constructed for each story and depicts all combinations of story shears
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and torque that applied statically would lead the story to collapse. The construction
of the surface is based on the implementation of a single super-element per building
story, which represents its elastic and inelastic properties. The SE element of building
consists of a single fictitious structural element per story capable of representing the
elastic and inelastic properties of the story. Paulay [18, 19] proposed the center of
resistance and identified the elastoplastic mechanism, aiming at estimating the
torsional effects on the seismic response of ductile buildings, classifying them either
as torsionally unrestrained or as torsionally restrained. Myslimaj and Tso [20, 21]
proved that the torsional effect can be reduced for asymmetric wall-type systems by
locating the center of strength and the center of rigidity on the opposite sides of the
center of mass. Anagnostopoulos et al. 2010 [22] indicated the inadequacies of
simplified one-story, shear-beam type systems for predicting the inelastic response
of asymmetric, multistory framed buildings, subjected to torsion due to earthquake
motions and for deriving general conclusions concerning the torsional provisions of
the design codes.

While static eccentricity and torsional to lateral frequency ratio are considered
to be the most reliable indicators for the elastic state of response. Once the
structure enters the inelastic state of response, strength eccentricity, defined as the
distance between the center of mass and the strength center, exhibits the most
efficient performance. A criterion exhibiting satisfactory performance for all states of
response still lacks. In the present study/investigation an efficient assessment
criterion of the torsional effect on the structures’ response is proposed. The
proposed criterion aims at quantifying the torsional effect in terms of shear forces
developed on vertical structural elements. It expresses the amplification of shear
forces due to torsional effect. The framework of the proposed criterion is based on
the observation that the sum of the absolute values of vertical resisting elements’
shear forces differs from their algebraic sum. The proposed index calculates the
percentage of this quantity normalized to the base shear imposed by the seismic
excitation. One-story as well as multistory buildings, horizontally regular and

irregular, were implemented to evaluate the proposed criterion. Its performance
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was compared to other response parameters related to torsion, such as base torque

and diaphragm rotation and proved to be satisfactory for all states of response.

4.2 Description — Theoretical background

The torsional moments that are developed due to the eccentricity are sustained
by the structural system as a pair of shear forces. Thus, the torsional effect on
buildings is quantified as torsion-induced displacements via torsion-induced shear

forces on the vertical structural elements. When a lateral loading P is applied on the

1
diaphragm, shear forces are developed at each vertical resisting element. Figure 4.1
shows a simple plan view along with the vertical resisting elements (shear walls) and
the corresponding shear forces developed. Without loss of generality the seismic

action is considered along one direction only ( y direction).

Figure 4.1. A typical plan view with shear walls.

The shear forces developed on the vertical resisting structural elements satisfy

the following expression:
n n
> Vi = 2 Vg (4.1)
k=1 k=1

where N is the number of vertical structural elements, while i and j correspond to

the direction of the shear forces of the element k and the seismic excitation with
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reference to the structural axes. Eq. (4.1) denotes that the sum of the absolute
values of the shear forces differs from their algebraic sum. This observation is
attributed to torsional contribution on the shear forces, since torsional moment is
sustained by the system as a pair of opposing shear forces. For the plan view of Fig.

4.1 and seismic action along y direction only, the following relations are satisfied

n
2 Ve
k=1

= kaxy =0 (4.2)
k=1

n n
kZ‘kay‘ ” kakw =V, (4.3)
=1 =1

The torsion induced in the floor is usually computed from the shear forces of the
structural elements, while the elements’ torsional moments are neglected.

Based on the observations described above a criterion is proposed in this study,
called ratio of torsion (ROT) that represents a measure to quantify the torsional

effect. The general expression of ROT for a specific time step t is defined as

Zyzj Vo]V 01}V 0
ROT(t) = Vool ’\/Ey (t)‘

(4.4)

The static equilibrium of forces acting on the diaphragm of the structure along the

two axes X and y can be written as:

Vies = Ve, (4.5)
k=1 j=y
n X
Vigi =Vey (4.6)
k=1 j=y
thus, Eq. (4.4) can be re-written as:
n Y, X n X n o x
Z_ ’Vku‘_ ZZVKXJ - ZZkaj
ROT _ k=1 |:><,j:yn - k=1 j:yn - k=1 j=y (47)
2 2 Ve |+ 22 2 Vi
k=L j=y k=L j=y
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For demonstration purposes only and without loss of generality the simplified
model of Fig. 4.2 is adopted. It is assumed that the lateral force resistance of the
structure is provided by shear walls only, while floor diaphragm is considered rigid.
The system is mono-symmetric with reference to X direction and the eccentricity is
introduced to the system by asymmetric mass distribution. The response of the

system is considered for earthquake loading along y direction only. The locations of
CM and CR are shown in Fig. 4.2, while the stiffness eccentricity e, along X

direction is also denoted.

o g

e,
] CRX c2

—>Viy 4 X

Figure 4.2. Plan view of location of CM and CR.

The twist of the diaphragm is the result of the torque M, induced by the story
base shear Vi, . This torque affects the shear forces developed on vertical resisting

elements. Consequently, the shear forces developed consist of two components, the

translational and rotational one. The translational shear force component of element

k denoted as Vk'iy is calculated by

(4.8)

where Vi is the design base shear along the y direction, kiy is the translational

stiffness of the element k along y direction, n denotes the number of the vertical
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resisting elements and i the direction of the shear force of the element k. The

torsional component is given by

V, M, (4.9)

AT
t

iy
where for simplification reasons time step t is eliminated in the description that

follows. X, is the distance between the vertical resisting element k and CM, M, is
the torque introduced by the design shear forceVEy, while K, represents the

torsional stiffness of the system calculated according to the relationship
Ke =D Yk + D XKy, (4.10)

The total shear force for element K is obtained by

' "

Vigy =Viiy Vi (4.11)

y
Egs. (4.9) to (4.11) hold for X direction as well.

In the case of the considered unidirectional seismic ground motion along y axis,

the elements in the transverse direction X usually contribute to the torsional
stiffness in the elastic range. Consequently, torsion-induced shear forces are

developed in these elements only. As it is noted in Fig. 4.2., shear forces induced by

translation are denoted as V,, , while the torsional component as Viiy - In this case

iy 7

using Eq. (4.4), the value of ROT is calculated as follows:

ROT = ’Vl'w _Vluyy‘Jr’Véw +VZWW‘+‘V3:XV‘+’\/;XV‘_’\/EV‘ (4.12)

Ve

The static equilibrium of forces acting on the diaphragm of the structure is given by:

‘VEY‘ - ’Vlyy _Vl"yy ‘ + NZW +V2"yy‘ (4.13)

Therefore, by substituting Eqg. (4.13) in Eq. (4.12) ROT value becomes

\vl'yy —vl"yy\ + \vz'yy +v2"yy\ + y\/;xy

+ ’V4xy - ’Vl‘yy _Vluyy‘ - ’VZW +V2"yy‘ (4.14)
M |

ROT = .. , :
vlw\ +\v2yy +V,

W yy‘
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ROT =— ‘V{*y +‘V‘,‘"*y ,, (4.15)
Mgy =V | +[Vayy +Vay |
which can be written in a compact form as
ROT = Moo | +}Vas (4.16)

Ve

where the numerator of Eq. (4.16) represents the sum of the absolute values of the
additional torsion - induced shear forces and the denominator represents the base
shear. The base shear can be interpreted as a measure of the response intensity of
the imposed excitation to the structure. The proposed criterion calculates the sum of
absolute values of additional torsion-induced shear forces developed on individual
elements normalized to the base shear which is imposed to the structure by the
seismic action. In this way the amplification due to torsion of the imposed base shear
Vg, is quantified [23].

In order to minimize the additional torsion-induced shear forces it suffices to
minimize the numerator of Eq. (4.13) that corresponds to the sum of their absolute
values. This implies that low ROT index corresponds to low value of the additional
induced torsion. Therefore, ROT can be considered as an appropriate index for
assessing the effect of torsion since it can quantify the amplification of the shear
forces developed at each structural member due to torsional effect. In order to
assess the efficiency of the proposed index the maximum ROT value is compared to
the maximum values of other response quantities related to torsion and to the
seismic structural response in the following numerical examples.

In case of multistory buildings, Eq. (4.4) is calculated for every story of the
building. Thus, the global value of the criterion is defined according to the following

expression:

|
ROT =) ROT, (4.17)

m=1

where | is the number of the building stories, while ROT value is computed for every

time step in case of time history analysis and the maximum value is defined [23].
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4.3 Implementation of ROT for single-story systems

For the nonlinear static or dynamic analysis of structures the plastic hinge or the
fiber approach can be adopted in the regions where inelastic deformations are
expected to be developed. Since the plastic hinge approach has limitations in terms
of accuracy, particularly for dynamic analyses, the fiber beam-column elements [24]
are used in this study. According to the fiber approach, each structural element is
discretized into a number of integration sections restrained to the beam kinematics
and each section is divided into a number of fibers with specific material properties.
Every fiber in the section can be assigned to different material properties, e.g.
concrete, structural steel, or reinforcing bar, while the sections are located at the
Gaussian integration points of the elements. The main advantage of the fiber
approach is that every fiber has a simple uniaxial material model allowing an easy
and efficient implementation of the inelastic behavior. In the numerical test
examples section that follows, all analyses have been performed using the OpenSEES
[25] platform. A bilinear material model with pure kinematic hardening is adopted
for the structural steel. For the simulation of the concrete the modified Kent-Park
model is applied, where the monotonic envelope of concrete in compression follows
the model of Kent and Park [26] as extended by Scott et al. in [27]. This model allows
a more accurate prediction of the capacity for flexure-dominated RC members
despite its relatively simple formulation.

The performance of the numerical applications considered in this study is
assessed for different seismic hazard levels with reference to their structural
behavior, associated with interstorey drifts, displacements, shear forces of the
columns, base shear and diaphragm rotation. For this purpose a number of nonlinear
time history analyses have been carried out applying six natural records for each
hazard level (2/50, 10/50 and 50/50) chosen from Somerville and Collins [28] (see
Table 4.1). The records of each hazard level are scaled to the same PGA in order to
ensure compatibility between the records, in accordance to the hazard curve taken
from the work by Papazachos et al. [29] (see Table 4.2). Eighteen nonlinear dynamic
analyses have been performed for each design in order to assess its performance for

all records and hazard levels.
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Six one-story test examples are considered: torsionally stiff, horizontally regular,
horizontally irregular exhibiting either single or double eccentricity. In all test
examples the following material properties are considered: Concrete C20/25 with
modulus of elasticity equal to 30GPa and characteristic compressive cylinder
strength equal to 20MPa, longitudinal and transverse steel reinforcement B500C
with modulus of elasticity equal to 210GPa and characteristic yield strength equal to
500MPa. In addition to the symmetric design, three different mass distributions
were considered for every test example, corresponding to 5%, 10% and 20%
eccentricity. The design spectrum used correspond to soil type B (characteristic
periods Tg = 0.15 sec, Tc = 0.50 sec and Tp = 2.00 sec). Moreover, the importance
factor y; was taken equal to 1.0, while the damping correction factor n is equal to
1.0, since a damping ratio of 5% has been considered. The symmetric design is
denoted as sym, while the mass eccentric designs are denoted as ecc5, ecc10 and
ecc20 corresponding to 5%, 10% and 20% eccentricity, respectively. The eccentricity
is introduced by assuming non-uniform mass distribution, which results into
different location of the mass center, while the center of rigidity coincides with their
geometric center. The response quantities and proposed criterion values obtained
for the eccentric designs were compared to those obtained for the corresponding
symmetric one. All test examples are classified as torsionally stiff, since the value of
the uncoupled frequency ratio is greater than unity. The first three periods of
vibration and the uncoupled frequency ratios are listed for all test examples in Tables
4.3 to 4.12. In order to study the reliability of the proposed criterion for all states of
response (elastic or elastoplastic) the natural accelerograms of Table 4.1 are used
and the results presented in this study corresponds to maximum values obtained

from the time-history analyses performed for each hazard level.
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Table 4.1: Natural records [28]
Earthquake Station Distance Site
Records in 50/50 hazard level
Honeydew (PT) Cape Mendocino 20 rock
17 August 1991 Petrolia 17 soil
Cape Mendocino (CM) Rio Dell 13 soil
25 April 1992 Butler Valley 37 rock
Cape Mendocino (C2) Fortuna 43 soil
aftershock, 4/26/92 Centerville 28 soil
Records in 10/50 hazard level
Tabas (TB) Dayhook 14 rock
16 September 1978 Tabas 1.1 rock
Cape Mendocino (CM) Cape Mendocino 6.9 rock
25 April 1992 Petrolia 8.1 soil
Chi-Chi (CC), Taiwan TCcu101 4.9 soil
20 September 1999 TCU102 3.8 soil
Records in 2/50 hazard level
Valparaiso (VL), Chile Vina del Mar 30 soil
3 May 1985 Zapaller 30 rock
Michoacan (M), Caleta de Campos 12 rock
Mexico La Union 22 rock
19 September 1985 La Villita 18 rock
Zihuatenejo 21 rock
Table 4.2: Seismic hazard levels [29]
Probability of
Event Recurrence Interval PGA (g)
Exceedance
Frequent 21 years 90% in 50 years 0.06
Occasional 72 years 50% in 50 years 0.11
Rare 475 years 10% in 50 years 0.31
Very Rare 2475 years 2% in 50 years 0.78
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Table 4.3: Monosymmetric - horizontally regular one-story simple mathematical model -

Vibration periods and uncoupled frequency ratios

T T, T, Q, = Z Q, = A

w, @,
sym 0.3339 " 0.3339" 0.1665 ' 2.0360 2.0360
ecc0.05 0.3348" 0.3339" 0.1673" 1.9958 2.0012
ecc0.10 0.3373" 0.3339" 0.1697 " 1.9676 1.9876
ecc0.20 0.3476" 0.3339” 0.1782" 1.8737 1.9506

Table 4.4: Eccentric - horizontally regular one-story simple mathematical model - Vibration

periods and uncoupled frequency ratios

T, T, T Q, = = Q, = o

w, @,
sym 0.3339" 0.3339" 0.1665 " 2.0360 2.0360
ecc0.05 0.3356 " 0.3339" 0.1726" 1.9345 1.9444
ecc0.10 0.3407" 0.3339" 0.1727° 1.9334 1.9728
ecc0.20 0.3600" 0.3339" 0.1720" 1.9412 2.0930

Table 4.5: Monosymmetric - horizontally regular one-story structure - realistic plan views -

Vibration periods and uncoupled frequency ratios

() ,

T, T, T, Q,=— Q, = —

o, ,
sym 0.3593 " 0.3484" 0.2526" 1.4224 1.3793
ecc0.05 0.3594 0.3520Y 0.2570" 1.3984 1.3696
ecc0.10 0.3622" 0.3594" 0.2518" 1.4384 1.4273
ecc0.20 0.4000 * 0.3594" 0.2502 " 1.5987 1.4365
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Table 4.6: Eccentric - horizontally regular one-story structure - realistic plan views - Vibration

periods and uncoupled frequency ratios

a)t _ a)t
T T, T Q,=— Q,=—
o, w,
sym 0.3593 " 0.3484" 0.2526" 1.4224 1.3793
ecc0.05 0.3620 " 0.3512" 0.2524" 1.4342 1.3914
ecc0.10 0.3753* 0.3539" 0.2519" 1.4898 1.4049
ecc0.20 0.4320" 0.3549" 0.2509 ' 1.7218 1.4145

Table 4.7: Horizontally irregular one-story structure 1 - Vibration periods and uncoupled

frequency ratios

T T, T, Q, = 4 Q,= A

w, @,
ecc 0.3212" 0.3207" 0.2243" 1.4320 1.4297
ecc0.05 0.3238" 0.3207" 0.2123" 1.5252 1.5106
ecc0.10 0.3306 " 0.3207" 0.2125" 1.5558 1.5092
ecc0.20 0.3554 " 0.3207" 0.2144" 1.6576 1.4958

Table 4.8: Horizontally irregular one-story structure 2 - Vibration periods and uncoupled

frequency ratios

, o,

T T, T, Q,=— Qy =—
o, )

y
ecc 0.3212°* 0.3207" 0.2243" 1.4320 1.4297
ecc0.05 0.3263 " 0.3207" 0.2119° 1.5398 1.5134
ecc0.10 0.3396 " 0.3207" 0.2124° 1.5988 1.5098
ecc0.20 0.3871” 0.3207" 0.2155" 1.7962 1.4881
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4.3.1 Monosymmetric - horizontally regular single-story

system - simple model

The first test example is a single-story 3D structure, shown in Fig. 4.3 together
with the location of CM for the eccentric designs, which are mono-symmetric with
reference to X axis, while the seismic excitation is applied uni-directionally along y
direction. The absolute and normalized maximum values of the shear forces with
respect to ecc20 results developed at the vertical resisting elements along the X
direction are provided in Fig. 4.4. Despite the fact that seismic excitation is applied

along y direction only, shear forces are developed in both X and y directions for

the eccentric designs. Furthermore, no shear forces are developed for the symmetric
design along X direction, while the shear force values developed along the X
direction for the eccentric designs are proportional to the magnitude of eccentricity.
This is due to the fact that the shear forces along X direction represent the
contribution due to torsion that is increased proportionally to the magnitude of the
eccentricity. The same trend is observed in Fig. 4.5 for the displacements and
interstory drifts along X direction. However, decreased values are observed for the

displacements, interstory drifts and shear forces in the y direction for the structural

elements located at the stiff side (i.e. coll and col3) and increased values for the

elements located at flexible edge (i.e. col2 and col4) as shown in Figs. 4.6 and 4.7.

m
C3 25/25 Sy C4 25/25
A 5.00 +
n I
Y STIFF SIDE CM=CR CM Y FLEXIBLE SIDE
* o &
eCRX
[ m |
C1 25/25 C2 25/25

Figure 4.3. Numerical Example 1 - plan view.
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Figure 4.4. Numerical Example 1 - Shear forces: (a) maximum absolute values and (b)

normalized values along X direction for each design and hazard level.
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Figure 4.5. Numerical Example 1 - (a) normalized displacement values (in meters) and (b)

normalized interstorey drift values (%) along X direction for each design and hazard level.
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Figure 4.6. Numerical Example 1 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.
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Figure 4.7. Numerical Example 1 - (a) normalized displacement values (in meters) and (b)

normalized interstorey drift values (%) along Y direction for each design and hazard level.

Figures 4.8(a) to 4.8(c) depict the trend of the base torque, diaphragm rotation
and ROT values developed for the three hazard levels considered, while their
normalized distributions are also shown in Figs. 4.8(d) to 4.8(f). It should be pointed
out that since base torque, diaphragm rotation and ROT are not quantitatively
comparable, qualitative conclusions will be drawn from their comparison. The
diaphragm rotation, base torque and ROT values increase proportionally to the
magnitude of eccentricity for all states of response. ROT calculation formula is based

on internal shear forces for each hazard level quantifying the amplification due to
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torsional effect. Taking into account that torque is sustained by a system as pairs of
shear forces whose resultant is zero, higher ROT value indicates higher effect of
torsional component on the structural elements. For the symmetric system, ROT
magnitude is zero or almost zero for all states of response. While for the systems
characterized by 20% eccentricity (ecc20) the shear forces amplified their magnitude
due to torsion for 10/50 hazard level (Fig. 4.8(c)). In particular, compared to its
symmetric counterpart the values of the shear forces are doubled for the 10/50

hazard level and tripled for the 2/50 one.
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Figure 4.8. Numerical Example 1 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)
normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for

each design and hazard level.

4.3.2 Eccentric - horizontally regular single-story system -

simple model

For this test example a bidirectional eccentricity is considered for the eccentric
designs, while the symmetric design is identical to test example 1. Figure 4.9 depicts
the location of mass center for the eccentric designs considered, while all designs are

subjected to two-component seismic excitation.
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Figure 4.9. Numerical Example 2 - plan view.
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Figure 4.10. Numerical Example 2 - Shear forces: (a) maximum absolute values and (b)

normalized values along X direction for each design and hazard level.
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Figure 4.11. Numerical Example 2 - (a) normalized displacement values (in m) and (b)

normalized interstorey drift values (%) along X direction for each design and hazard level.
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Figure 4.12. Numerical Example 2 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.

The typical behavior of torsionally stiff systems is also observed for this test
example along both directions. In particular, shear forces along X direction are
decreased at stiff edge (coll and col2) while they are increased at flexible edge (col3
and col4), as shown in Fig. 4.10. Similar observations can be drawn for displacements
and interstory drifts as shown in Fig. 4.11. It is worth noting that the values of the
response quantities along X direction for columns 1 and 2 are proportional to 5%
and 10% eccentricity for 2/50 hazard level. For 20% eccentricity, however, instead of
further decrease on the response quantities observed for the columns at the stiff
side, an increase on the values of shear forces is recorded. Figures 4.12 and 4.13
indicate that the response quantities along y direction are exhibiting consistent
increase and decrease for flexible and stiff edges, respectively. Moreover, as shown
in Figs. 4.14, as eccentricity increases diaphragm rotation, base torque and ROT
values also increase for all states of response. It can also be observed that, for this
system with bidirectional eccentricity subjected to two-component excitation,
increased torsional effect is noticed according to base torque, diaphragm rotation
and ROT values compared to the mono-symmetric test example, i.e. for the 2/50
hazard level ROT value is equal to 2.38, while for mono-symmetric system subjected

to unidirectional excitation is equal to 2.10.
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Figure 4.13. Numerical Example 2 - (a) normalized displacement values (in m) and (b)

normalized interstorey drift values (%) along Y direction for each design and hazard level.
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Figure 4.14. Numerical Example 2 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)
normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for

each design and hazard level.

4.3.3 Monosymmetric - horizontally regular single-story

structure - with more realistic plan view

In addition to the previous test examples, a larger example with regular plan
layout is considered. Figure 4.15 depicts the location of mass center for the eccentric
designs considered. The eccentric designs are monosymmetric and are subjected to

one-component earthquake excitation along y direction.
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Figure 4.15. Numerical Example 3 - plan view.
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Figure 4.16. Numerical Example 3 - Shear forces: (a) maximum absolute values and (b)

normalized values along X direction for each design and hazard level.

Figure 4.16 illustrates that torsional component is developed along X direction

as in the case of first numerical application, since no seismic excitation is imposed

along this direction. While the typical behavior of torsionally stiff structures is

observed along y direction, decrease of shear forces for the elements at stiff edge

(coll, col6) and increase for those at the flexible edge (colll, col16) was observed

(Fig. 4.17). Interstory drifts and displacements followed the trend of shear forces

(Figs. 4.18, 4.19).
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Figure 4.17. Numerical Example 3 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.
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Figure 4.18. Numerical Example 3 - (a) normalized displacement values (in m) and (b)

normalized interstory drift values (%) along X direction for each design and hazard level.
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Figure 4.19. Numerical Example 3 - (a) normalized displacement values (in m) and (b)

normalized interstorey drift values (%) along Y direction for each design and hazard level.

In Figs. 4.20 the values of the response quantities related to torsion are

presented. As it is observed, when eccentricity increases base torque, diaphragm

rotation and ROT values increase for all states of response. The already observed

behavior for monosymmetric simple mathematical model is also confirmed for

realistic plan view model.
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Figure 4.20. Numerical Example 3 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for
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4.3.4 Eccentric - horizontally regular single-story structure -

with more realistic plan view

The same symmetric design as the previous example is implemented in the
current one, while eccentric ones exhibit bidirectional eccentricity and are subjected
to two-component earthquake ground motion. Figure 4.21 shows the plan layout
while some features of eccentric designs are denoted in grey. Similar observations
for the torsionally stiff system’s behavior are also observed in this test example. It is
noticed that consistent variation (increase or decrease) of response quantities
disappears for eccentricity values greater than 10%, while for more realistic layouts
the observed trend is valid for the elastic state. However, once the system enters the
elastoplastic state and elements start yielding, the stiffness is not constant affecting
the location of the rigidity center. The location of the rigidity center in elastoplastic
states is not known and therefore it is not possible to define the flexible and stiff side
of the system. The observations described above are shown in Figs. 4.22 and 4.23 for
response quantities along y direction, while similar behavior is observed in X

direction.
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Figure 4.21. Numerical Example 4 - plan view.
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Figure 4.22. Numerical Example 4 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.
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Figure 4.23. Numerical Example 4 - (a) normalized displacement values (in m) and (b)

normalized interstory drift values (%) along Y direction for each design and hazard level.

In Figures 4.24(a) to 4.24(c) significant increase of the maximum values of base
torque and ROT is observed, while a slight decrease of the maximum diaphragm
rotation is occurred compared to the corresponding to second numerical application.
In this case the shear forces imposed were amplified six times for ecc20 in 2/50
hazard level, while for the simple model of test case 2 the corresponding value was
2.38. Another interesting remark is that the maximum base torque do not always
follow the distribution of the maximum diaphragm rotation. Figures 4.24(b) and
4.24(c) show that for ecc20 design a decrease of the maximum diaphragm rotation is
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observed from rare earthquake event 10/50 to maximum earthquake event 2/50,
whereas for maximum base torque values are increased for the corresponding

states.
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Figure 4.24. Numerical Example 4 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)
normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for

each design and hazard level.

4.3.5 Horizontally irregular single-story structure 1

In the current numerical example a horizontally irregular building (Fig. 4.25) was
implemented to evaluate the performance of the proposed criterion. One-

component earthquake excitation along y direction is imposed. For this test

example was not possible to define a totally symmetric design that complies with the
regulations imposed by the design codes [30]. Consequently, a small amount of
eccentricity 0.83% is noticed for the reference design that is denoted as “ecc”,
instead of the notation “sym” used for the first four test examples. The other designs
considered have the same amount of eccentricities as in the previous examples (5%,
10% and 2%). Since no seismic excitation was imposed along X direction, the
developed shear forces as illustrated in Fig. 4.26 correspond to torsional component
and increases with respect to eccentricity. The already established trend for

torsionally stiff systems is observed in Fig. 4.27 for developed shear forces along y

direction. Increase of shear forces for elements at flexible edge (coll, col7)

respectively to eccentricity and decrease at stiff edge (col3, col6).
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Figure 4.25. Numerical Example 5 - plan view.
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Figure 4.26. Numerical Example 5 - Shear forces: (a) maximum absolute values and (b)
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Figure 4.27. Numerical Example 5 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.
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Figure 4.28. Numerical Example 5 - (a) normalized displacement values (in m) and (b)

normalized interstory drift values (%) along X direction for each design and hazard level.

Interstory drifts and displacements along X direction follow the same trend as
shear forces along this direction (Fig. 4.28). The same happens for the response
quantities along y direction (Fig. 4.29). For "ecc" design almost zero values were
obtained for base torque, diaphragm rotation and ROT for the elastic state of
response (50/50 hazard level), while for the eccentric designs, the corresponding
values are increased proportionally to the eccentricity. Similar observations are

obtained for the other two hazard levels (Fig. 4.30).
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Figure 4.29. Numerical Example 5 - (a) normalized displacement values (in m) and (b)

normalized interstory drift values (%) along Y direction for each design and hazard level.
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Figure 4.30. Numerical Example 5 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for

each design and hazard level.

4.3.6 Horizontally irregular single-story structure 2

The sixth numerical example, shown in Fig. 4.31, is a horizontally irregular

building with bidirectional eccentricity subjected to two-component ground motion.

For this numerical example was not also possible to define a totally symmetric design

that complies with the regulations imposed by the design codes [30]. In this case the
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notation of “ecc” is also adopted. The other designs considered have the same
amount of eccentricities as in the previous examples (5%, 10% and 2%). Figures 4.32
and 4.33 show an increase of the response quantities for 5% and 10% eccentricity for

the elements located at flexible edge (i.e. coll and col7) and a decrease for those

located at stiff edge (i.e. col3 and col6).
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Figure 4.31. Numerical Example 6 - plan view.
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Figure 4.32. Numerical Example 6 - Shear forces: (a) maximum absolute values and (b)

normalized values along Y direction for each design and hazard level.
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Figure 4.33. Numerical Example 6 - (a) normalized displacement values (in m) and (b)

normalized interstory drift values (%) along Y direction for each design and hazard level.
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Figure 4.34. Numerical Example 6 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)

normalized base torque, (e) normalized diaphragm rotation and (f) normalized ROT for

each design and hazard level.

For "ecc" design almost zero values were obtained for base torque, diaphragm

rotation and ROT for the elastic state of response (50/50 hazard level). For the

eccentric designs, the corresponding values are increased proportionally to the

eccentricity. Similar observations are obtained for the other two hazard levels.

Although a slight increase is observed on the magnitude of base torque, calculated

for the 10/50 and 2/50 hazard levels, significant increase for ROT values were

noticed. As mentioned above, however, base torque, diaphragm rotation and ROT

are not directly comparable and therefore qualitative conclusions will be drawn from
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their comparison. It is worth noting that for the 5% eccentricity design, increased
ROT value is noticed for 2/50 hazard level as shown in Fig. 4.34(c). This can be
justified by the asymmetric yielding of the vertical resisting elements due to the
asymmetric plan view of the structure. The trend with respect to the behavioral
quantities observed for the torsionally stiff horizontally regular systems has been

confirmed also for torsionally stiff horizontally irregular systems.

4.4 Implementation of ROT for multistory buildings

The performance of the proposed ROT index is also evaluated for multistory
buildings. Four four-story buildings were implemented in order to illustrate the
efficiency of ROT. One monosymmetric horizontally regular building, two double
eccentric horizontally regular buildings and a horizontally irregular one were tested.
Fiber approach was adopted for modeling of members for multistory buildings too.
The same material laws as in the case of one-story structures were implemented
[26], [27]. In order to conduct the nonlinear dynamic analysis the same natural
accelerograms were used. Tables 4.9 to 4.12 indicate that for these cases also the

buildings are classified as torsionally stiff.

Table 4.9: Monosymmetric - horizontally regular four-story building - simple mathematical

model - Vibration periods and uncoupled frequency ratios

, ()

T T, T; Q,=— Qy =—

o, o,
sym 1.1079" 1.1079" 0.5170" 2.1429 2.1429
ecc0.05 1.1102Y 1.1079" 0.5200° 2.1350 2.1306
ecc0.10 1.1172Y 1.1079" 0.5279" 2.1163 2.1306
ecc0.20 1.1458" 1.1079" 0.5570" 2.0571 1.9890
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Table 4.10: Eccentric - horizontally regular four-story building - simple mathematical model -

Vibration periods and uncoupled frequency ratios

T, T, T, Q, = % Q= %
X y
sym 1.1079" 1.1079" 0.5170" 2.1429 2.1429
ecc0.05 1.1125" 1.1079" 0.5225" 2.1292 2.1204
ecc0.10 1.1268" 1.1079" 0.5500" 2.0487 2.0144
ecc0.20 1.1829" 1.1079" 0.5612" 2.1078 1.9742
Table 4.11: Eccentric - horizontally regular four-story building - realistic plan views -
Vibration periods and uncoupled frequency ratios
T, T, T Q, = % Q,= %
x y
sym 0.9431" 0.8486" 0.5998" 1.5724 1.4148
ecc0.05 0.9464" 0.8063" 0.5711" 1.6572 1.4118
ecc0.10 0.3753" 0.3539" 0.2519' 1.4898 1.4049
ecc0.20 1.0648" 0.8996" 0.6097" 1.7464 1.4755

Table 4.12: Horizontally irregular four-story building - Vibration periods and uncoupled

frequency ratios

, ),
T, T, T Q,=— Q= —
w, ,
ecc 1.0074* 1.0059" 0.6988" 1.4416 1.4395
ecc0.05 1.0218" 1.0074Y 0.7006" 1.4585 1.4379
ecc0.10 1.0633" 1.0074Y 0.6851" 1.5520 1.4704
ecc0.20 1.1933" 1.0074" 0.6313" 1.8902 1.5958
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4.4.1 Monosymmetric - horizontally regular four-story

building - simple model

This test example is a four-story monosymmetric building subjected to
unidirectional excitation along the y direction. The layout of the symmetric design
and a 3D view are given in Fig. 4.35, while some properties of the eccentric designs

considered are also denoted in grey.

m
C3 25/25 =iy C4 25/25
| T
Y STIFF SIDE CM=CR CM Y FLEXIBLE SIDE
* o 8
eCRX
| | I
C1 25/25 C2 25/25
Figure 4.35. Numerical Example 7 - plan and 3D view.
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Figure 4.36. Numerical Example 7 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along X direction for each design and hazard level.

The structural response quantities are presented in Figs. 4.36 to 4.39 for the
columns of the top story for the three hazard levels. Figure 4.40 shows the response

parameters of base torque, diaphragm rotation and ROT that are related to the
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torsional effect. The envelopes of maximum values of the response quantities along
the height of the building are presented in Figs. 4.41 to 4.46 for various structural
elements. It can be seen that although unidirectional seismic excitation is
considered, shear forces are developed at the vertical resisting elements along both
directions for the case of the eccentric designs due to the torsional component. In
particular, the shear forces developed along X direction for the symmetric design
are reduced compared to those developed for the eccentric designs, while their
values are proportional to the eccentricity (Fig. 4.36). Similar behavior is observed
for the displacements and interstory drifts along X direction, while their maximum
values are depicted in Fig. 4.37. The behavior of torsionally stiff systems is observed
for all response quantities along the y direction of seismic excitation, as can be seen
in Figs. 4.38 and 4.39. Decreased values for displacements, interstory drifts and shear
forces are observed for the elements at the stiff side (i.e. coll and col3) for the case
of 5% and 10% eccentricity, while increased values are observed for the elements at

flexible edge (i.e. col2 and col4).
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Figure 4.37. Numerical Example 7 - Peak edge column (a) normalized displacement values (in

m) and (b) normalized interstory drift values (%) along X direction for each design and

hazard level.
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Figure 4.38. Numerical Example 7 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along Y direction for each design and hazard level.
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Figure 4.39. Numerical Example 7 - Peak edge column (a) normalized displacement values (in

m) and (b) normalized interstory drift values (%) along Y direction for each design and

hazard level.
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Figure 4.40. Numerical Example 7 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d)
normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT for each

design and hazard level.

The response quantities related to the torsional effect (i.e. upper diaphragm
rotation, base torque and ROT) and their normalized values are shown in Fig. 4.40
corresponding to the three hazard levels considered. It should be pointed out that
since base torque, diaphragm rotation and ROT are not directly comparable,
qualitative conclusions will be drawn from their comparison. The diaphragm
rotation, base torque and ROT are increased proportionally to the eccentricity for all
states of response. It can also be observed that maximum base torque values are not
always in accordance to the distribution of the maximum diaphragm rotation values.
As it is shown in Figs. 4.40(a) to 4.40(c), the upper diaphragm rotation obtained for
the ecc20 design is increased when the records of the 2/50 hazard level are applied
compared to the rotation values obtained for the 10/50 hazard level, while base
torque and ROT values are reduced. Since, ROT calculation formula is based on the
internal shear forces developed at the vertical resisting elements, it can be said that
this parameter quantifies the amplification of the shear forces due to torsion. Thus,
for the symmetric design, ROT is almost equal to zero for all states of response, while
for the design with 20% eccentricity (ecc20) the shear forces are double (Fig. 4.40(c))
compared to those of the symmetric design. For comparative reasons, two columns
were selected, one located at stiff edge (column 1) and one located at flexible edge

(column 4) and their structural response for all stories is shown in Figs. 4.41 to 4.46.
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For both columns, the shear forces along X direction are proportional to the size of
the eccentricity for all hazard levels (see Figures 4.40 and 4.44). The same trend is
observed for the interstory drifts and displacements (see Figures 4.42, 4.43, 4.45 and
4.46). The response quantities for column 1 are decreased proportionally to the
increase of eccentricity for 5% and 10% (see Figures 8, 9 and 10), while for the case
of column 4 the opposite trend is observed, i.e. the response in increased

proportionally for 5% and 10% eccentricity (see Figs. 4.44, 4.45 and 4.46).
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Figure 4.41. Numerical Example 7 - Column 1 maximum absolute shear force values along X

(a, b, c)and y (d, e, f) direction for all floors and hazard levels.
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Figure 4.42. Numerical Example 7 - Column 1 maximum absolute drift values along X (a, b,

c)and Y (d, e, f) direction for all floors and hazard levels.
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Figure 4.43. Numerical Example 7 - Column 1 maximum absolute displacement values along

X (a, b, c)and Yy (d, e, f) direction for all floors and hazard levels.
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Figure 4.44. Numerical Example 7 - Column 4 maximum absolute shear force values along X

(a, b, c)and y (d, e, f) direction for all floors and hazard levels.
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Figure 4.45. Numerical Example 7 - Column 4 maximum absolute drift values along X (a, b,

c)and Yy (d, e, f) direction for all floors and hazard levels.
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Figure 4.46. Numerical Example 7 - Column 4 maximum absolute displacement values along

X (a, b, c)and Yy (d, e, f) direction for all floors and hazard levels.

4.4.2 Eccentric - horizontally regular four-story building -
simple model

This test problem has the same symmetric design with that of the previous test
example. However, the eccentric designs exhibit bidirectional eccentricities as

denoted in grey in Fig. 4.47, while all designs are subjected to two-component

seismic excitation.
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Figure 4.47. Numerical Example 8 - plan and 3D view.
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Figure 4.48. Numerical Example 8 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along X direction for each design and hazard level.

As it is shown in Fig. 4.48, the shear forces at the stiff edge (i.e. coll and col2)
along the X direction are decreased proportionally to the eccentricity, while they are
increased at the flexible one (i.e. col3 and col4). Similar observations can be drawn
for the displacements and interstory drifts (see Figs. 4.49(a) and 4.49(b)). It is worth
noting that the response quantities along X direction for columns 3 and 4 are

increased when the eccentricity is also increased.
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Figure 4.49. Numerical Example 8 - Peak edge column (a) normalized displacement values (in
m) and (b) normalized interstory drift values (%) along X direction for each design and

hazard level.
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Figure 4.50. Numerical Example 8 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along Y direction for each design and hazard level.

The response quantities of the top diaphragm’s elements along y direction are

increased for the flexible edge and are decreased for the stiff one when eccentricity
is increased (see Figs. 4.50 and 4.51). Moreover, when eccentricity is increased, top
diaphragm’s rotation, base torque and ROT are also increased for all states of

response (see Fig. 4.52).
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Figure 4.51. Numerical Example 8 - Peak edge column (a) normalized displacement values (in
m) and (b) normalized interstory drift values (%) along Y direction for each design and

hazard level.
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Figure 4.52. Numerical Example 8 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d)

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT for each

design and hazard level.

4.4.3 Eccentric - horizontally regular four-story building -

with more realistic plan view

The ninth numerical example considered in this study is shown in Fig. 4.53. It is a

regular building with more realistic plan layout, and exhibits a similar trend for the
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response quantities to the previous test examples examined, for eccentricity values

equal to 5% and 10% (see Figs. 4.54 and 4.55 for the y direction). Similar trend was

observed for the response quantities along X direction. As it is shown in Fig. 4.56,
the maximum values of base torque and ROT are increased significantly, while the
maximum diaphragm rotation developed is slightly decreased in comparison to those

obtained for second test example.
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Figure 4.53. Numerical Example 9 - plan and 3D view.
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Figure 4.54. Numerical Example 9 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along Y direction for each design and hazard level.
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Figure 4.55. Numerical Example 9 - Peak edge column (a) normalized displacement values (in

m) and (b) normalized interstory drift values (%) along Y direction for each design and
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Figure 4.56. Numerical Example 9 - (a) Base torque, (b) diaphragm rotation, (c) ROT , (d)

normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT for each

4.4.4 Horizontally irregular four-story building

design and hazard level.

The last numerical example examined in this study is the horizontally irregular

building with bidirectional eccentricity shown in Fig. 4.57 subjected to two-

component seismic excitation.
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Figure 4.57. Numerical Example 10 - plan and 3D view.

Due to its irregular layout, it was not possible to define the symmetric design

that complies with the restrictions imposed by the design codes [30]. This reference
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design exhibit static eccentricity of 0.4% and is denoted as ecc. Similar to the
previous test examples, the non-symmetric designs considered exhibit the same

eccentricity (i.e. 5%, 10% and 20%).

a
120 i I T : T ;
ecc bl K] H L B
100 oocs e = H
:z: 80 ecc10 - * + ' e ; - -
= ecc20 *
S>> 60 - = E - 8 ‘ * .
H H + ‘
407 +* N c N H ! N 1
20 | | 1 | | 1 L | | 1 | |
col1 col3 col6 col7 col1 col3d colé col7 col1 col3 colé col7
50% 10% 2%
Hazard Level
b
T T T T T T T T T T T T
° S o * ] L] + ? ‘
E + " + : :
g o5l S i
S
0 I I I I I I i I 1 I I I
coll col3 colé col7 coll col3 colé col7 col1 col3 col6 col7
50% 10% %
Hazard Level

Figure 4.58. Numerical Example 10 - Peak edge column shear forces (a) maximum absolute

values and (b) normalized values along Y direction for each design and hazard level.
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Figure 4.59. Numerical Example 10 - Peak edge column (a) normalized displacement values

(in m) and (b) normalized interstory drift values (%) along Y direction for each design and

hazard level.

The response quantities studied (shear forces, displacements and interstory

drifts) will be presented along y direction. Similar results are obtained in X

direction. As can be seen in Figures 4.58 and 4.59 the response quantities for
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elements at the flexible edge (i.e. coll and col7) are increased while for those at stiff

edge (col3, col6) are decreased proportionally to the increase of the eccentricity (5%

to 10%).

a b c
400 < 0.025 20
£ + ecc ]
® eccs = 0.02}-
4 - =
6300 " eccl0 _% oors 15
(] - - .
ecc20 3" =
g 200 . & ] 0 10 .
s 100h e % 4 : Bl e
3 8 £ 0005 oo , , u
° o ®
. " - o - . - ® * *
0 50% 10% 2% 0 50% 10% 2% 0 50% 10% 2%
Hazard Level Hazard Level Hazard Level
d § e f
o k]
% 1 E 1 1
=
2 £ o
2 0.8 " : o8 : €038
= o
& n " s " ] n
206} . S 0.6 . . % 0.6
S e a ) .
No4 ° = 0.4 . . . Eo04 - N
§0_2 ..................................... N gol... 20_2.. e
2, . . . L. . | S
50% 10% 2% ‘g 50% 10% 2% 50% 10% 2%
Hazard Level Hazard Level Hazard Level

Figure 4.60. Numerical Example 10 - (a) Base torque, (b) diaphragm rotation, (c) ROT, (d)
normalized base torque, (e) normalized diaphragm rotation, (f) normalized ROT for each

design and hazard level.

For ecc design almost zero base torque, upper diaphragm's rotation and ROT
values are obtained for the elastic state of response (i.e. for the 50/50 hazard level).
For the non-symmetric designs, the corresponding values are increased
proportionally to the increase of the eccentricity. This trend is observed for the other
two hazard levels indicating ROT as a proper criterion for all states of response. Non-
zero ROT values are obtained for ecc design for the 10/50 and 2/50 hazard levels due
to asymmetric yielding which affects the location of rigidity center, while the
eccentricity is increased (see Fig. 4.60(c)).

Two columns (col6 and col7) are chosen as before in order to present the
variation on the envelopes of the maximum values along the height for all designs.
Both columns are located at the stiff edge along the X direction, while column 6 is

located at the stiff side and column 7 at the flexible side along the y direction. The

response quantities are decreased for all stories when the building performs in the
elastic region, while in the elastoplastic region some response quantities are

increased (see Figs. 4.61 to 4.66). Along the y direction the response quantities of
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column 6 are decreased proportionally to the increase of eccentricity (5% and 10%),

while they are increased for column 7 in both elastic and elastoplastic range.
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Figure 4.61. Numerical Example 10 - Column 6 maximum absolute shear force values along

X (a, b, c)and Yy (d, e, f) direction for all floors and hazard levels.
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Figure 4.62. Numerical Example 10 - Column 6 maximum absolute drift values along X (a, b,

c)and Y (d, e, f) direction for all floors and hazard levels.
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Figure 4.63. Numerical Example 10 - Column 6 maximum absolute displacement values along

X (a, b, c)and y (d, e, f) direction for all floors and hazard levels.
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Figure 4.64. Numerical Example 10 - Column 7 maximum absolute shear force values along
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X (a, b, c)and Yy (d, e, f) direction for all floors and hazard levels.
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Figure 4.65. Numerical Example 10 - Column 7 maximum absolute drift values along X (a, b,

c) and Y (d, e, f) direction for all floors and hazard levels.
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Figure 4.66. Numerical Example 10 - Column 7 maximum absolute displacement values along

X (a, b, c)and Yy (d, e, f) direction for all floors and hazard levels.

4.5 Discussion

In the current chapter, the ratio of torsion (ROT) index as performance
assessment criterion of buildings was evaluated. For this purpose, several regular
and irregular, single-story as well as multistory buildings were considered.
Unidirectional and bidirectional seismic excitations were imposed to monosymmetric

and double eccentric buildings. Nonlinear dynamic analysis was conducted
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implementing natural accelerograms for all hazard levels. The maximum value of
various response quantities, such as interstory drifts, displacements, shear forces,
were examined. The base torque and the upper diaphragm’s rotation were also
recorded for every numerical application. The structures were classified in terms of
their torsional stiffness according to uncoupled torsional to translational frequency
ratios. The characteristic of response quantities increase with respect to eccentricity
for elements at the flexible side of the structure, while the same quantities are
decreased with respect to eccentricity for elements at the stiff side. In order to
examine the behavior for multistory buildings vertical structural elements were
chosen at the stiff and flexible side of horizontally regular and irregular buildings and
their reponse quantities along the height were recorded. The observed behavior for
torsionally stiff structures was confirmed for all stories. In cases of monosymmetric
structures subjected to unidirectional earthquake excitation, it was observed that
despite the fact that no excitation was imposed along X direction shear forces were
developed and their magnitude increased proportionally to eccentricity. The base
torque, the upper diaphragm’s rotation and ROT are also increasing with respect to
eccentricity for all hazard levels. While base torque and ROT follow the same trend
for different hazard levels, upper diaphragm’s rotation does not follow for all cases.
The advantage of ROT in comparison with the other two response quantities related
to torsion is that it quantifies the torsional effect in terms of shear forces, expressing

the percentage of shear forces” amplification normalized to the imposed base shear.
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5 OPTIMIZATION PROCESS

5.1 Introduction

The word “optimum” is latin, and means “the ultimate ideal”. Similarly,
“optimus” means “the best”. Therefore, to optimize refers to try to bring something
towards its ultimate state.

The history of optimization, that is the quest for finding extreme behavior of a
system, dates several hundreds of years during which remarkable progress has been
made in developing new and more efficient methods. Euclid (300B.C.) tackled the
problem of finding the shortest distance which may be drawn from a point to a line
[1], while Heron of Alexandria (100B.C.) studied the optimization problem of light
travelling between two points by the shortest path [1]. Fermat (1657) developed the
more general principle that light travels between two points in a minimum time [2],
while Cauchy (1847) presented for the first time a minimization algorithm (steepest
descent method) implementing function derivatives [3]. The development of calculus
provided the means for the development of the mathematical theory for

optimization. The pioneering works of Courant (1943) on penalty functions [4],

Dantzig (1951) on linear programming [5], Karush (1939) as well as Kuhn and Tucker
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(1951) on optimality conditions for constrained problems [6], [7] initiated the
modern era of optimization.

Particularly in the 60’s, several optimization methods for solving nonlinear
problems were introduced. Rosenbrock (1960) presented the method of orthogonal
directions [8], Rosen (1960) suggested the gradient projection method [9],
Zoutendijk (1960) formed the feasible directions method [10], Hooke and Jeeves
(1961) developed the pattern search method [11], Davidon, Fletcher and Powell
(1963) stated the variable metric method [12], Fletcher and Reeves (1964) presented
the conjugate gradient method [13], Powell (1964) introduced the method of
conjugate directions [14], Nelder-Mead (1965) suggested their simplex method [15],
Box (1965) introduced his homonymous technique [16], while Fiacco and McCormick
(1966) formed the so called Sequential Unconstrained Minimization Technique
(SUMT) [17].

Since 1970 structural optimization has been the subject of intensive research
and several different approaches for optimal design of structures have been
advocated [18-24]. All the aforementioned methods are of deterministic character;
that is, when applied to the same initial design vector, they always result in the same
final design vector. The reason for this is the fact that the element of randomness is
non-existent. As a result, there is appreciable probability of getting trapped in local
minima. Mathematical programming methods make use of local curvature
information derived from linearization of the original functions by using their
derivatives with respect to the design variables at points obtained in the process of
optimization to construct an approximate model of the initial problem. On the other
hand the application of combinatorial optimization methods based on probabilistic
searching do not need gradient information and therefore avoid to perform the
computationally expensive sensitivity analysis step. Gradient-based methods present
a satisfactory local rate of convergence, but they cannot assure that the global
optimum can be found, while combinatorial optimization techniques, are in general
more robust and present a better global behavior than the mathematical
programming methods. They may suffer, however, from a slow rate of convergence

towards the global optimum.
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In contrast to the deterministic optimization methods, the stochastic
optimization procedures allow for randomness to appear. In this way, it is possible to
get different final design vectors, even though the initial vector is the same. In this
category, the most known and widely applied methods are the genetic algorithms
(GA), originating from Holland (1975) [25] and Goldberg (1989) [26], the simulated
annealing (SA) by Kirkpatrick (1983) [27], evolutionary programming (EP) [28], and
the evolutionary strategies (ES) [29], [30], which are used in the present study. The
main characteristic of these methods is the wider exploration and exploitation of the
domain, which in turn increases both the probability of locating the global minimum
and the computational cost. Both GA and ES imitate biological evolution and
combine the concept of artificial survival of the fittest with evolutionary operators to
form a robust search mechanism. Apart from the pure deterministic or pure
stochastic procedure, hybrid schemes have been introduced as well. The main idea
behind the hybridism is to combine the advantages of both methods for a better

result to be obtained [31], [32].

5.2 Structural optimization problem

The main objective of engineers is to design resistant structures, which satisfy all
the constraints (defined by codes) and also acquire specific attributes (low cost, low
weight, small displacements are some of them). This can be accomplished by the
optimization process through a trial and error procedure, a computationally
intensive task. Thanks to developments in Computational Mechanics community the
solution of this problem is feasible using evolutionary algorithms inspired by
Darwinian evolution, this procedure is an imitation of it.

Structural optimization problems are characterized by various objective and
constraint functions that are generally non-linear functions of the design variables.
These functions are wusually implicit, discontinuous and non-convex. The
mathematical formulation of structural optimization problems with respect to the
design variables, the objective and constraint functions depend on the type of the

application. However, all optimization problems can be expressed in standard
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mathematical terms as a non-linear programming problem (NLP), which in general
form can be stated as follows:

min F(s) (5.1)
subjectto g;(s)<0 j=1...,m
s <s <s'i=1..,n

where S is the vector of design variables, F(S) is the objective function to be

minimized, g;(s)are the behavioral constraints, s'and s’ are the lower and the

upper bounds on a typical design variable ;.

5.2.1 Definitions

5.2.1.1 Design Variables

Design variables are the parameters, which when they are fully set the design is
determined. A design is characterized as infeasible when it violates the constraints of
the problem. In the opposite case the design is feasible. The selection of the
appropriate design variables is a crucial step for the formulation of the optimization
problem. The selection of inappropriate design variables may result to wrong
formulation of the problem or even mislead the solution away from the optimum
design. Another important issue is the relative independence of design variables. In
cases that a design variable is dependent on another one, it stops representing a
design variable and become a parameter.

During the formulation of the mathematical optimization model the function to
be optimized should be sufficiently dependent on all the design parameters. Let us
consider the case that the objective function is the weight of the structure, where
the minimum value is obtained and let assume that the magnitude of the weight is at
the order of 1.000 kg. If the weight of a structural member is in the order of 10 kg
or less and let us consider that this member represents one of the design variables of
the problem, then if the value is changed by 100% the influence on the value of the

objective function is negligible. To avoid such conditions, it is necessary that linkage
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between the design variables is imposed. Therefore, some members of the
structures can be represented by a common design parameter. Therefore, it is
recommended to conduct a sensitivity analysis in order to estimate the sensitivity of
the objective function over all the design parameters before the final choice of the
optimization model. Through the sensitivity analysis it is possible to detect design

parameters that have negligible influence on the objective function.

5.2.1.2 Objective function

In order to describe an optimization problem, a large number of feasible designs
are implemented. But not all of them exhibit the same performance. A criterion
should be adopted so as to evaluate the performance of the various designs. A
function that takes a specific value represents that criterion and constitutes the
objective function of the problem depending on the design variables. A maximizing
problem of the function F(S) can be transformed into a minimization problem of

the objective function —F(s).

The appropriate selection of the objective function is of crucial importance at
the state of the mathematical formulation of the optimization problem. Some of the
most widespread objective function in the literature to be optimized are: the cost,
the profit, the energy losses, the weight or generally the performance. There are also
cases that more than one objective functions are necessary, e.g. minimum weight
and minimum stresses. These type of problems are called optimization problems
with multiple objective functions, the multi-objective design or Pareto optimum

design problem.

5.2.1.3 Constraint functions

A structural system is defined on condition that the values of its design variables
should be fully set. In order to avoid designs that do not make sense, engineers’
requirements are introduced in the mathematical formulation of the optimization
problem in the form of equalities or inequalities and are called constraint functions.

Based on these constraint functions, the designs are classified as feasible or
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infeasible. Moreover, constraint functions should be dependent on at least one
design variable so as its existence in the mathematical model make sense.

One inequality constraint function g;(s) <0 is considered as active at the point
s" in the case that the equality is satisfied, i.e. gj(S*) =0. Accordingly, the above

constraint function is considered as inactive for the design s for the case that the

inequality is strictly satisfied, i.e. g;(s") <0. The inequality constraint function is

considered that it is violated for the design s if a positive value that g;(s’) >0,

corresponds to the value of the constraint function. Similarly, an equality constraint

function h;(s) =0 is considered that it is violated for the design s” if the equality is

not satisfied, i.e. h;(s”) #0. Therefore, an equality constraint function might be

active or violated. From all the description provided related to the active or the
inactive constraint functions it is clear that any feasible design is defined by active or
inactive inequality constraint functions and active equality constraint functions.

In order to identify the active constraint functions the values of the constraint
functions should be normalized first [33] to have a single reference system
regardless of the type of the constraint function. For example, it is likely that the
value of a displacement constraint function to take values in the order of 0.1-2.0 cm,
while the value of a stress displacement constraint function to take values is in the
order of 25,000 kPa, so readily it is apparent that it is necessary to homogenize the
sizes of the two constraint functions. The normalization of the value constraint

functions takes place in accordance with the following relations:

g;\‘(S): ‘ |‘ ! (5.2)
J

for a constraint function limited with a lower bound, g; = g'j, and:

9,-9;

gj

9} (s)= <0 (5.3)

for a constraint function limited with an upper bound, g; < g‘; .
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Thus, if the normalized value of the constraint function is equal to +0.50 then it
violates its permissible value by 50%, while if its normalized value is equal to -0.50
then this constraint is 50% below the allowable value. Usually among the active
constraint functions are included those with normalized value greater than -0.1 to -
0.01 [34]. Furthermore, it is also allowed a small tolerance when the constraint
functions violate the minimum allowable value (-0.005 to 0.001) since the process of

simulation, analysis, design and construction involves many uncertainties.

5.3 Classes of optimization

There are mainly three classes of structural optimization problems: sizing, shape
and topology or layout. Initially structural optimization was focused on sizing
optimization, such as optimizing cross sectional areas of truss and frame structures,
or the thickness of plates and shells. The next step was to consider finding optimum
boundaries of a structure, and therefore to optimize its shape. In the former case the
structural domain is fixed, while in the latter case it is not fixed but it has a
predefined topology. In both cases a non-optimal starting topology can lead to sub-
optimal results. To overcome this deficiency structural topology optimization needs
to be employed, which allows the designer to optimize the layout or the topology of
a structure by detecting and removing the low-stressed material in the structure

which is not used effectively.

5.3.1 Sizing Optimization

In sizing optimization problems the aim is usually to minimize the weight of the
structure under certain behavioral constraints on stresses and displacements. The
design variables are most frequently chosen to be dimensions of the cross-sectional
areas of the members of the structure. Due to engineering practice demands the
members are divided into groups having the same design variables. This linking of
elements results in a trade-off between the use of more material and the need of

symmetry and uniformity of structures due to practical considerations. Furthermore,
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it has to be taken into account that due to fabrication limitations the design variables
are not continuous but discrete since cross-sections belong to a certain set.

The sizing optimization methodology proceeds with the following steps: (i) At
the outset of the optimization the geometry, the boundaries and the loads of the
structure under investigation have to be defined. (ii) The design variables, which may
or may not be independent to each other, are also properly selected. Furthermore,
the constraints are also defined in this stage in order to formulate the optimization
problem as in eq. (5.1). (iii) A finite element analysis, is then carried out and the
displacements and stresses are evaluated. (iv) If a gradient-based optimizer is used
then the sensitivities of the constraints and the objective function to small changes
of the design variables are computed. (v) The design variables are being optimized. If
the convergence criteria for the optimization algorithm are satisfied, then the
optimum solution has been found and the process is terminated, else the optimizer

updates the design variable values and the whole process is repeated from step (iii).

5.3.2 Shape Optimization

In structural shape optimization problems the aim is to improve the
performance of the structure by modifying its boundaries. This can be numerically
achieved by minimizing an objective function subjected to certain constraints [35],
[36]. All functions are related to the design variables, which are some of the
coordinates of the key points in the boundary of the structure. Hinton and Sienz [35]
proposed a shape optimization approach for treating two-dimensional problems.
More specifically the shape optimization methodology proceeds with the following
steps: (i) At the outset of the optimization, the geometry of the structure under
investigation has to be defined. The boundaries of the structure are modeled using
cubic B-splines that, in turn, are defined by a set of key points. Some of the
coordinates of these key points will be the design variables which may or may not be
independent to each other. (ii) An automatic mesh generator is used to create a valid
and complete finite element model. A finite element analysis is then carried out and
the displacements and stresses are evaluated. In order to increase the accuracy of

the analysis an h-type adaptivity analysis may be incorporated in this stage. (iii) If a
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gradient-based optimizer is used then the sensitivities of the constraints and the
objective function to small changes of the design variables are computed either with
the finite difference, or with the semi-analytical method. (iv) The optimization
problem is solved; the design variables are being optimized and the new shape of the
structure is defined. If the convergence criteria for the optimization algorithm are
satisfied, then the optimum solution has been found and the process is terminated,

else a new geometry is defined and the whole process is repeated from step (ii).

5.3.3 Topology Optimization

Structural topology optimization assists the designer to define the type of
structure, which is best suited to satisfy the operating conditions for the problem in
question. It can be seen as a procedure of optimizing the rational arrangement of the
available material in the design space and eliminating the material that is not
needed. Topology optimization is usually employed in order to achieve an acceptable
initial layout of the structure, which is then refined with a shape optimization tool.
The topology optimization procedure proceeds step-by-step with a gradual
“removal” of small portions of low stressed material, which are being used
inefficiently. This approach is treated in this study as a typical case of a structural
reanalysis problem with small variations of the stiffness matrix between two
subsequent optimization steps.

Many researchers have presented solutions for structural topology optimization
problems. Topological or layout optimization can be undertaken by implementing
one of the following main approaches, which have evolved during the last few years
[37]: (i) Ground structure approach [38], [39], (ii) homogenization method [40], [41],
[42], (iii) bubble method [43] and (iv) fully stressed design technique [44], [45]. The
first three approaches have several things in common. They are optimization
techniques with an objective function, design variables, constraints and they solve
the optimization problem by using an algorithm based on sequential quadratic
programming (approach (i)), or on an optimality criterion concept (approaches (ii)
and (iii)). However, inherently linked with the solution of the optimization problem is

the complexity of these approaches. The fully stressed design technique on the other
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hand, although not an optimization algorithm in the conventional sense, proceeds by
removing inefficient material, and therefore optimizes the use of the remaining
material in the structure, in an evolutionary process.

At present only a limited number of studies is devoted to 3-D optimal topology
design of structures. For this type of problems the main difficulty when a
homogenization method is used is the orientation of the material voids which is
more complicated than in the 2-D case. This difficulty is not present in the case of
the fully stressed design technique. Hinton and Sienz [37] proposed the
implementation of the evolutionary fully stressed design technique (FSD), while
Papadrakakis et al. [46] presented the improved implementation for 2-D topology
optimization problems.

The algorithm for topology optimization adopted in this study is based on the
simple principle that material which has small stress levels is used inefficiently and
therefore it can be removed. Thus, by removing small amounts of material at each
optimization step the layout of the structure evolves gradually. In order to achieve
convergence of the whole optimization procedure, it is important the amount of
material removed at each stage to be small and to maintain a smooth transition from
one layout of the structure to the subsequent one.

The domain of the structure, which is called the reference domain, can be
divided into the design domain and the non-design domain. The non-design domain
covers regions with stress concentrations, such as supports and areas where loads
are applied, and therefore it cannot be modified throughout the whole topology
optimization process. After the generation of the finite element mesh, the
evolutionary fully stressed design cycle is activated, where a linear elastic finite

element analysis is carried out. The maximum principal stress o, for each element
can be computed which for convenience is called stress level and is denoted as o,

Oevo. The maximum stress level o, of the elements in the structure at the current

optimization step is defined, and all elements that fulfill the condition

o,, <ratrexo,, (5.4)
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are removed, or switched-off, where ratre is the rejection rate parameter [47]. The

elements are removed by assigning them a relatively small elastic modulus which is

typically

E, =10°xE,, (5.5)

In this way the elements switched-off virtually do not carry any load and their
stress levels are accordingly small in subsequent analyses. This strategy is called
“hard kill”, since the low stressed elements are immediately removed, in contrast
with the “soft kill” method where the elastic modulus varies linearly and the
elements are removed more gradually. The remaining elements are considered
active and they are sorted in ascending order according to their stress levels before a
subsequent analysis is performed.

The iterative process of element removal and addition, if element growth is
allowed, is continued until one of several specified convergence criteria are met: (i)
All stress levels are larger than a certain percentage value of the maximum stress.
This criterion assumes that a fully stressed design has been achieved and the
material is used efficiently. (ii) The number of active elements is smaller than a
specified percentage of the total number of elements. For uniform meshes, which
are commonly used in topology optimization problems, this criterion is equivalent to
an area or volume fraction of the initial design, which will be in use in the final
layout. (iii) When element growth is allowed the evolutionary process is completed

when more elements are switched-on than they are switched-off.

5.4 Evolutionary Algorithms

5.4.1 Introduction

The two most widely used optimization algorithms belonging to the class of
evolutionary algorithms (EA) that imitate nature by using biological methodologies
are the genetic algorithms (GA) and evolution strategies (ES). In this work the ES

method is used as the optimization tool for addressing the present problem, based
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on previous experience regarding the relative superiority of ES over the MP and GA
methods in some specific problems [31], [32]. ES imitate biological evolution in
nature and have three characteristics that make them differ from the gradient based
optimization algorithms: (i) in place of the usual deterministic operators, they use
randomized operators: recombination, mutation, selection; (ii) instead of a single
design point, they work simultaneously with a population of design points; (iii) they
can handle continuous, discrete and mixed optimization problems [46]. In the ES

algorithm, each individual is equipped with a set of parameters:

a=[(s4,7). (5,00 )] €(ly. 1) (5.6)
|, =D™ xR"
I, =R™ xR x[-7z,7]"

where S, and S, are the vectors of discrete and continuous design variables,
respectively. Vectors ¥, o and « are the distribution parameter vectors. Vector y

corresponds to the variances of the Poisson distribution, vector o € R* corresponds
to the standard deviations (I <n, gnc) of the normal distribution while vector
ae[-z,z]" corresponds to the inclination angles (n,=(n,—n,/2)(n,-1))
defining linearly correlated mutations of the continuous design variables s, .

Let Pp(t):{ai,...,a#} denotes a parent population of individuals at the t"

generation. The genetic operators used in the ES method are denoted by the

following mappings:

rec:(1,,1,)" = (14,1.)" (recombination) (5.7)
mut:(1,,1.)" = (14,1.)" (mutation) (5.8)
sel“ :(14,1,) = (15,1, )" (selection,k € {4, u+1}) (5.9)

A single iteration of the ES, which is a step from the parent population Prft) to

the next generation parent population Pp(”l) is modelled by the mapping:
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opte, 1(1g, 1) = (14, 1.)" (5.10)

5.4.2 Recombination

In any generation the p-membered parent population P produce an A-

membered offspring population PO“). For every offspring vector a temporary parent

vector is first built by means of recombination. In our implementation the following

recombination scheme has been used, rec, :R™ — R™ recombines the values of the

vector h, where h corresponds to either a design variable vector or a distribution

parameter vector:

rec, (h):= (ha’1 orhy,,...,h, . or hb,nb) (5.11)

h,; and h; are the i" components of the vector h, and h, which are two parent

vectors randomly chosen from the population.

5.4.3 Mutation

The Poisson distribution is controlled by the variance y; which coincides with
the mean value of this distribution. The vector of variances y controls the Poisson
distribution which is used for exploring the discrete part of the design space
n, =0.20n, . On the other hand, parameters o and o determine the variances and
covariances of the N, —dimensional normal distribution, which is used for exploring
the continuous part of the design space. The amount of parameters attached to an
individual can vary, depending on the degree of freedom required by the objective
function in question. The setting that is used in the current study is: n_=n_,

n, :nc(nc—l)/Z, that corresponds to the correlated mutation operator with a

complete covariance matrix for each individual.
According to the generalized structure of the individuals of the populations in

the proposed mixed-discrete EA algorithm, the mutation operator,

mut:(1,,1,)" = (14,1.)", is defined as follows:
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mut :[mu omu, ,mug o(mu, xmua)J (5.12)

Sd

The mutation operator is applied to the intermediate individuals obtained
through the recombination operator. The distribution parameters of the structure of

an individual are mutated first:

(i) mu, : R — R mutates the recombined vectory :
mu, ()= (ylbf,..., 7o by ) (5.13)

where b, ~U ([01]) If, in a sequence of two generations, successful trials occur

e=e-1,else e=e+1.

(i) mug : D™ — D™ mutates the recombined values of the vector of discrete design

variables S, using the already mutated values of the vector of variances y :
mu,, (sd)::(sl+zl,...,snd +an) (5.14)

where z; follows the Poisson distribution with mean value and variance from the

vector y .

(iii) mu_ :R* — R mutates the recombined values of the vector of standard

deviation o :

mu_ (o) ::<a1 exXp(2,+2,),...,0, XP(2, + zo)) (5.15)

-1 -1
where z,»N(0,72), »N(0,7%) "if{1,2,...,n, > and T, :(«/Zns) T :( 2\/E) .

(iv) Mutation operator mu, : R™ — R™ mutates the recombined values of the vector

of inclination angles a:

mu, () ::(a1+zl,...,ana +zna) (5.16)
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wherez, ~ N(0,°)Vie{1,2,...n,} with 5=0.0873(=5").

(v) Mutation operator mu, : R" — R" mutates the recombined values of the vector of

continues design variables S, using the already mutated values of the o and «:

mu, (s)=(s, +cor, (5,@),.....s, +cor, (o,a)) (5.17)

where COr is a random vector with normally distributed correlated components. The
T
vector COr can be calculated according to cor =T -z where z=[z z J with

110001 o

z,~N(0,67)Vie{l...,n,} and

n,-1 n,

T= H Tog (éi) (5.18)

p=L g=p+1

where j=1/2(2n,—p)(p+1)-2n,+q [8]. The rotation matrices qu(aj) are unit
matrices expect of the diagonal terms where t =t =Cos(aj) and

tpg =1y, = —sin (ai ) :

5.4.4 Selection

There are two different types of selection schemes:
(u+A)-ES: Where the best u individuals are selected from a temporary population of
(u+A) individuals to form the parents of the next generation.
(u,A)-ES: Where the u individuals produce A offsprings (u<A) and the selection

process defines a new population of u individuals from the set of A offsprings only.

Combining the recombination, mutation and selection operators the main loop

for the case of (u,A)-ES is formulated as follows:
0Pt 1) s (P(g) ) =sel’ (Uf:1 {mut(rec(P(g) ))}) (5.19)

While for the case of the (u+A)-ES scheme the main loop is formulated as follows:
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opt,. g5 (P ) =sel’ (Uﬁ=1 {mut (rec(P(g’ ))}) (5.20)

The optimization procedure terminates when the following termination criterion
is satisfied: the ratio g4 / 1 has reached a given value &, (=0.8 in the current study)
where g, is the number of the parent vectors in the current generation with the

best objective function value.

5.4.5 The ES algorithm

In Figure 5.1 a pseudo-code of the ES algorithm is depicted. At the beginning of
the procedure in generation t = 0 the initial parent population PFft), composed by u
design vectors, is generated randomly (step 3 of the pseudo-code). Steps 5 to 12
correspond to the main part of the ES algorithm, where in every generation A
offspring vectors are generated by means of recombination and mutation. D, is a
sub-population with two members selected from the parent population of the
current generation P{" (Step 6) which is used by the recombination operator.

Recombination and mutation operators, described in steps 7 to 10, act on the both

design variable vectors S, and distribution parameter vectors o, and @ (both

distribution parameter vectors denoted as Y, in the pseudo-code). In step 11 the

objective and constraint functions are calculated in order to assess the design

vectors in terms of the objective function value and feasibility.
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1. Begin

2. t=0

3. initialize Pp0 = y”?,sw?,F sw? ,m=1..,pu
4, Repeat

5. For [:=1 To A Do Begin

6. D, := marriage Pp '

7. s, = s_recombination D,

8. y, = y_recombination D,

9. § = s_mutation s,

10. gy, = y_mutation y,

11. F=F3

12. End

13. Pot = ylt ,slt JF slt , =1,

14. Case selection_type Of

15. [T Ppt+1 := selection Pot s I
16. pwHA Ppt+1 := selection Pot,Ppt,,u
17. End

18. t=t+1

19. Until termination_criterion

20. End

Figure 5.1. Pseudo-code of the ES algorithm.
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5.4.6 ES for structural optimization problems

Structural optimization problems have been treated traditionally with
mathematical programming algorithms, such as the sequential quadratic
programming (SQP) method, which need gradient information. In structural
optimization problems, where the objective function and the constraints are
particularly highly non-linear functions of the design variables, the computational
effort spent in gradient calculations is usually large. On the other hand EA
optimization methods require more optimization steps.

In a number of studies by Papadrakakis et al. [31], [32], [48] it was found that EA
optimization methods in structural optimization are computationally efficient even if
large number of optimization steps is required to reach the optimum. These
optimization steps are computationally less expensive than in the case of
mathematical programming algorithms since they do not need gradient information.
This property of probabilistic search methods is of greater importance in the case of
Reliability Based Optimization problems since the calculation of the derivatives of
the reliability constraints is very time-consuming. Furthermore, probabilistic
methodologies are considered, due to their random search, as global optimization
methods because they are capable of finding the global optimum, whereas

mathematical programming algorithms may be trapped in local optima.
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6 Improved design of RC buildings by minimizing ROT index

6.1 Introduction

Engineers aim to design economic structures, which satisfy the constraints
imposed by the design codes. This can be accomplished through a trial and error
procedure or by means of an automatic optimization process. A number of studies
have been published dealing with the problem of cost designs based on optimization
of reinforced concrete (RC) structures. In particular, Kanagasundaram and Karihaloo
[1, 2] implemented sequential linear programming and sequential convex
programming techniques to optimize the cost of RC members. Zielinski [3] dealt with
the cost optimum design of RC members imposing internal penalty function
algorithm for nonlinear programming. Sun and Zheng [4] employed a two-level
minimum cost design approach implementing sequential linear programming
techniques for RC plane frames. Choi and Kwak [5] minimized the cost of rectangular
beams and columns of RC frames through a direct search method choosing
appropriate design sections from some predetermined discrete sections. Moharrami
and Grierson [6] investigated an optimality criteria approach to minimize the cost

design of RC building frames subjected to vertical as well as lateral loading, while
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Fadaee and Grierson [7] minimized the cost of 3D RC frames. Balling and Xiao [8]
presented a comparative study of optimization of three-dimensional reinforced
concrete frames including the reinforcement design taking into consideration all
relative details like bar diameter selection, number of bars, longitudinal distribution
of the group of bars acquiring same properties and the specification of size of
stirrups. While, Sarma and Adeli [9] were drawn to the conclusion that great amount
of research effort in this field was devoted to simple elements, while disproportional
percentage of researchers dealt with the minimum cost of framed structures and
realistic three-dimensional structures.

Most of the codes meet the requirements of one seismic hazard level and one
level of performance, usually life-safety. Moreover, they adopt indirect methods and
linear - elastic analysis to define the performance of the structure. Apart from the
minimum level of protection in order to adequately safeguard against partial
collapse that endangers human lives, society has responsibilities including continuing
operation of critical facilities, protection against the discharge of hazardous
materials, and protection against excessive damage that may have far-reaching
consequences for society on a local, regional, national, or international level.
Performance-based design (PBD) aims to achieve targeted performance objectives. A
performance objective pairs a single hazard level with a single performance level. Its
advantage compared to other seismic design provisions is its capability to specify the
performance for a range of hazard levels. In order to help engineers to make better
decisions with respect to their designs in an automated design environment, the
process of PBD of structural systems was incorporated into an optimization design
framework. Many researchers proposed frameworks for optimum performance-
based design of structural systems [10-12].

Lateral-torsional coupling caused by the moment created between the opposing
inertia and resisting forces acting through the mass and rigidity center respectively
burdens an eccentric structure in comparison to its symmetric counterpart, since
amplification of displacements is induced by torsion. Current codified torsional
provisions treat the effect of torsion implementing accidental and static eccentricity

along with imposing restrictions on the design for buildings with irregular layout.
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Many researchers studied the effect of lateral-torsional coupling on the earthquake
response of structures [16-20]. Myslimaj and Tso [21, 22] proposed the balanced
configuration in order to alleviate the torsional effect on the structural response by
locating the center of mass between the center of strength and the center of rigidity.
De la Llera and Chopra [26] proposed the base shear and torque surfaces (BST),
which represent all combinations of base shear and torque that would lead to
structural collapse when applied statically. Paulay [27, 28] proposed the center of
resistance and identified the elastoplastic mechanism, aiming at estimating the
torsional effects on the seismic response of ductile buildings, classifying them either
as torsionally unrestrained or as torsionally restrained. In this chapter the criterion
against torsion (ROT) discussed in chapter four will be used for improving the
performance of buildings against torsional effects. ROT quantifies the amplification
of shear forces due to torsional effect exhibiting satisfactory performance for single-
story and multistory buildings in the elastic as well as inelastic range.

In this chapter the optimum design of reinforced concrete buildings will be
pursued by minimizing torsional effects represented by ROT, since it was noticed
that many damages during earthquake events were attributed to the coupled lateral-
torsional modes of vibration [13-15]. Cost, stiffness eccentricity, strength eccentricity
and ROT are treated as objective functions, while location and size of the vertical
structural elements are the design variables constituting a combined topology-sizing
optimization problem. The obtained optimum designs were subjected to nonlinear
dynamic analyses and their response envelopes of base shear — base torque were
compared. The results indicated that the designs obtained through the formulation
where ROT is used as objective function exhibited among the two most satisfactory

performances for all hazard levels developing low amount of base torque.

6.2 Optimization problem

6.2.1 Formulation

Structural optimization problems are characterized by various objective and

constraint functions that are generally nonlinear functions of the design variables.
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The generalized structural optimization problem, as was detailed expressed in
Chapter 5 is used in the present study:
min f(S) (6.1)

Subjectto 9:(s)<0i=1..,p
h;(s)=0 j=1..m

s' <s<g

where f(s) denotes the objective function and ¢;(S) the set of inequality
constraints, while hj (s) the set of equality constraints. s={si}, i=1..,nis the

vector of design variables whose lower and upper bound ares' = {si'}, and s' = {s,”}

, 1=1,....,n. Subsequently, the necessary definitions for the constraints, the design

variables and the problem formulation are provided.

6.2.2 Architectural constraints

For every feasible design obtained through optimization procedure, behavioral
constraints imposed by the design codes should be satisfied. Apart from behavioral
constraints, architectural constraints should be also fulfilled for every vertical
structural element. The following two architectural constraints are taken into
consideration in the current study.

Architectural constraint 1: The dimensional boundaries of the column or shear
wall constitute the first architectural constraint. A rectangle with dimensions
ACyxAC,, is employed. In order to consider feasible a design, the cross sections of
the columns and the shear walls should be included in this rectangle (Figs. 6.1 and
6.2).

Architectural constraint 2: The topological position of the beams in conjunction
with their supporting columns and/or shear walls is correlated with the second
architectural constraint. The second architectural constraint secures that for every
feasible design the beams and their cross points are supported by columns or shear

walls.

Chrysanthi Stathi 173




Based on the architectural constraints, columns and shear walls are divided into
two types. Columns/shear walls belong to Type | when AC, point corresponds to one
of the corners of the rectangle AC;. While they belong to Type Il if rectangle AC;
includes the AC, point (Figs. 6.1 and 6.2).

F,AC-2

N

AC -1y

/

AC - 1x

(%]
\

Figure 6.1. Sample column Type | with its architectural constraints AC1 and AC2.

S A A

PP1 |

PP2 ® PP4

N

Figure 6.2. Sample column Type Il with its architectural constraints AC1 and AC2.

6.2.3 Combined topology-sizing optimization problem

In the current study a topology-sizing optimization problem is solved in order to
obtain improved earthquake resistant designs. Especially the design variables are
divided into two categories: (i) Topology design variables, referring to the topology
or layout of the columns and shear walls of the building. (ii) Sizing design variables,

referring to sectional dimensions. It is worth noting that sizing variables depend on
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the topology ones, so the topology design variables are defined first. In order to
investigate the most efficient parameters for satisfactory torsional response, apart
from ROT criterion two other parameters were implemented as objective functions,
static eccentricity and strength eccentricity. Initial construction cost is also employed
as objective function since it is one of the most widespread objective functions for
this kind of problems. The mathematical formulation of the combined problem can
be stated as follows when ROT is employed as objective function:
nooy. N x N x
2 222 Viog| =2 2Vl
min ROT = k=1 i=X, j=y k=1 j=y k=1 j=y

> S| +[2

X
k=1 j=y k=1 j=y

Y, X

‘Vkij ‘ -

(6.2)

+ V

kyj

ty,; <1 <t

Sp,; <h; <s

ub, j

ub, j

where n is the number of vertical structural elements, while i and j correspond to
the direction of the shear force of the element k and the seismic excitation with

reference to the structural axes. @,(S) are the behavioral constraints imposed by
design codes, ry is the distance of the individual element center of the jth
column/shear wall from its corresponding AC, point. t, ;,t, ; are the lower and
upper bounds of the sizing design variables imposed by the architectural constraints.
hj is the largest edge of the jth column/shear wall referring to the sizing design

variables. s, ., S, ; are the lower and upper bounds of the sizing design variables

imposed by the architectural constraints. The other three objective functions are

expressed as:

min ey, o = \/( Xem —Xer ) +(Yem —Yer ) (static eccentricity) (6.3)

. mineg, o = \/(XCM ~Xq )’ +(Yom = Yev )2 (strength eccentricity) (6.4)
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n.  minCy, =C,, +C,+C, (initial construction cost) (6.5)

where (Xeu s Yom ), (Xers Yer ) @nd (Xey, Yoy ) are the coordinates of the mass center,
rigidity center and strength center, respectively. C,, is the initial cost of a new

structure, C_, is the concrete cost, C, is the cost of the steel reinforcement and C,,

is the labour cost.

6.2.4 Design variables

The shape of the vertical resisting elements (columns and shear walls) is chosen
to be rectangular hxb, where h2b. As mentioned above, the sizing design variables
depend on the topology ones, so the topology variables are defined first.

Topology design variables

In the case of Type | element, if ACix> ACy, the final position of the element
center will be allocated along ACi, rectangular edge, otherwise along AC,,. For
square architectural constraint the edge is randomly selected. Its lower bound

depends on the indicative minimum column size:

h,;
lp,j = ;m (6.6)

where h_. is the minimum column size imposed by the design codes. Its upper

n
bound is the half size of the corresponding architectural constraint edge (ACi, or

ACy,).

1 2 2
Lo j ZE\/(XS_XF) +(Ys_y|:) (6.7)

The individual element center of the column/shear wall is allocated to the largest

edge of the AC; architectural constraint. S(Xs,ys) is the starting point and

F (XF,yF) is the finishing point of the largest edge, while AC, point coincides with

the finishing point F. In the case of Type Il the edge of the AC; architectural

rectangle, to which the individual element center of the column will be allocated, has
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either already been presented or it will be selected by the smallest distance of the
projection of the AC, point to the four edges of the AC; rectangle. Its lower bound is
defined to be equal to zero:

ty, =0 (6.8)

While its upper bound depends on the side of the projected AC, point the column

mass center will be allocated.

ub, j

t, .= % (if on the left side) (6.9)

Ly = % (if on the right side) (6.10)

where a is the distance of the new position of AC, point from the starting point S

and b is the distance of the new position of AC;, point from the finishing point F .

Sizing design variables

Type | elements are characterized by a direct relationship between the topology

and sizing design variables, this sizing design variable is defined as inactive.
hi =2r, (6.11)

For Type Il elements the relationship between the topology and sizing design

variables is indirect expressed as:

Sy, = 2r (6.12)

i

s\ . =2min(a,b) (6.13)

ub, j

where a'and b'refer to the distance of the individual element center of the vertical
element from points S and F, respectively. In this case the sizing design variable is
active. In this case of active sizing design variable, the dimensions of columns/shear
walls have to be defined by the optimizer and not by the topology design variables as

in the case of Type I. The bounds of the size of the column and shear wall are

dependent on the topological design variable r; .
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6.3 Numerical Tests

For the purpose of this investigation two models are tested in order to evaluate
the behavior of optimized single-story systems for the proposed methodology. The
material properties for both numerical tests considered are: concrete modulus of
elasticity equal to 27.5GPa, concrete characteristic compressive cylinder strength 25
GPa, longitudinal steel reinforcement modulus of elasticity 210GPa and longitudinal
steel reinforcement characteristic yield strength 400MPa. The design spectrum used
corresponds to soil type B (characteristic periods Tg = 0.15 sec, T¢c = 0.50 sec and Tp =
2.00 sec). A bilinear material model with pure kinematic hardening is adopted for the
structural steel. For the simulation of the concrete the modified Kent-Park model is
applied, where the monotonic envelope of concrete in compression follows the
model of Kent and Park [30] as extended by Scott et al. in [31]. Moreover, the
importance factor y, was taken equal to 1.0, while the damping correction factor n is
equal to 1.0, since a damping ratio of 5% has been considered. The members are
modelled implementing the force-based fibre beam-column element. The
dimensions of columns/ shear walls represent the design variables.

The proposed methodology is assessed in the framework of design optimization
and for this purpose eight design cases are formulated, denoted Case A to H. In
particular, the design cases are classified into two groups, those that comply with the
design requirements of Eurocode and those that are based on a PBD procedure.
Cases A to D constitute the first group. The structures in this group are designed in
compliance with EC, while the implemented objective functions are the initial
structure cost, the static eccentricity, the strength eccentricity and ROT, respectively
for Cases A to D. The second group consists of Cases E to H and adopt the same
objective functions but in this case PBD constraints are imposed during the design
procedure.

The solution of the optimization problem is performed with the ES (u+A)
optimization scheme [32] with ten parents and offspring (1 = A = 10) where deviation

y=0.1is employed. The optimization criterion implemented provides that if the

ratio g4 / 1 has reached a given value ranging from 0.5 to 0.8 - in the current case
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0.8 is used - where g4 is the number of the parent vectors in the current generation

with the best objective function and g the number of parent vectors in the current

generation.
Table 6.1. Natural records [33]
Earthquake Station Distance Site
Records in 50/50 hazard level
Honeydew (PT) Cape Mendocino 20 rock
17 August 1991 Petrolia 17 soil
Cape Mendocino (CM) Rio Dell 13 soil
25 April 1992 Butler Valley 37 rock
Cape Mendocino (C2) Fortuna 43 soil
aftershock, 4/26/92 Centerville 28 soil
Records in 10/50 hazard level
Tabas (TB) Dayhook 14 rock
16 September 1978 Tabas 1.1 rock
Cape Mendocino (CM) Cape Mendocino 6.9 rock
25 April 1992 Petrolia 8.1 soil
Chi-Chi (CC), Taiwan TCU101 4.9 soil
20 September 1999 TCU102 3.8 soil
Records in 2/50 hazard level
Valparaiso (VL), Chile Vina del Mar 30 soil
3 May 1985 Zapaller 30 rock
Michoacan (Ml), Caleta de Campos 12 rock
Mexico La Union 22 rock
19 September 1985 La Villita 18 rock

Zihuatenejo 21 rock

The optimal designs obtained for all cases were subjected to two earthquake
excitations for each hazard level chosen from Somerville and Collins [33] (see Table
6.1). The records of each hazard level are scaled to the same PGA in order to ensure
compatibility between the records, in accordance to the hazard curve taken from the
work by Papazachos et al. [34] (see Table 6.2). The envelopes of the base shear-base
torque time histories were superimposed in order to evaluate the performance of

the various criteria.
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Table 6.2. Seismic hazard levels [34]

Probability of

Event Recurrence Interval PGA (g)
Exceedance
Frequent 21 years 90% in 50 years 0.06
Occasional 72 years 50% in 50 years 0.11
Rare 475 years 10% in 50 years 0.31
Very Rare 2475 years 2% in 50 years 0.78

6.3.1 Eccentric - horizontally regular single-story system

The layout of the first numerical test is shown in Fig. 6.3., along with the
optimum designs achieved for the eight formulations considered. The optimum
designs were subjected to two seismic excitations for each hazard level in order to
evaluate their performance. The base shear-base torque time histories were
recorded and implemented to assess their performance against torsion. In Fig. 6.4.
the time history of base shear and base torque can be observed for Case A in the

occasional hazard level designed according to EC constraints.

c2 40/40 c4 40740

N} ICS 30/150

i}
o
iy
Cl 40740 C3 150/30
Initial Layout
u |
Ce 30/30 C4 30/30 C2 40/35 c4 40/40
.C5 30/30 W CS 30/30
c1 30/30 C3 30/30 .El 30/30 C3 55/30
Cases A,B Case C
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te 40/30 C4 40/40
W C5 30/30
Cl 35/30 C3 50/30
Case D
Ce 35/30 C4 30/40
WC5 30/30
Cl 30/35 £3 35/30
Case F
C2 40730 C4 40/40
W cs 30/30
Cl 30/35 C3 50/30
CaseH

te 30730 C4 30/40
i cs 30/40
Cl 30/35 €3 30/30
Case E
€2 30/30 C4 35/40
W CS 30/30
C1 30/30 C3 40/30
Case G
C2 40/30 C4 40/40
P cs 30740
.c1 40/40 C3 45/30
Case |

Figure 6.3. Initial and optimized layout for all design Cases.
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Table 6.3. Numerical example 1 - Comparison between initial and optimized values for all design models

Initial Values Final Values Variation Percentage

;e;ge';s cost e, e, ROT cost e, e, ROT cost e, e, ROT

CASEA 331207 377 211 1,79 28473 097 0.1 0.1 -14.0326  -74.2706  -95.2607 -94.4134
CASEB 331207 377 211 1,79 28764 0.12 116 0.07 -13.154 -96.817 -45.0237  -96.0894
CASEC 331207 377 211 1,79 3130.07 116 0.01 0.22 -549505 -69.2308 -99.5261 -87.7095
CASED 331207 377 211 1,79 286572 0.09 026 0.02 -134765 -97.6127 -87.6777 -98.8827
CASEE 331207 377 211 1,79 286353 386 055 0.36 -13.5426 2.387268 -73,9336 -79.8883
CASEF 331207 377 211 1,79 28473 097 0.1 0.1 -14.0326  -74.2706  -95.2607 -94.4134
CASEG 331207 377 211 1,79 291144 0.08 141 0.03 -12.0961 -97.878 -33.1754  -98.324

CASEH 331207 377 211 1,79 312209 051 003 0.12 -5.7378 -86.4721  -98.5782  -93.2961
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The envelopes of the performances for all cases were superimposed in order to
demonstrate the most efficient objective function. In the occasional earthquake
hazard level with 50 percent probability of exceedance in 50 years (50in50 - Figs. 6.5
- 6.6) in both x and y directions for the first group the Cases B and D appear to
perform better than the other design procedures. In particular Case D is increased by
36% in comparison with Case B concerning the maximum developed base torque.
The Cases A and C performed the least efficiently with their deviation from Case D
reaching to almost 200% (211% for Case A, 188% for Case C). As far as the rare
earthquake hazard level with 10 percent probability of exceedance in 50 years
(10in50 - Figs. 6.9 - 6.10) is concerned, the Cases B and D again behave better than
other designs. Especially, Case D appears to be increased by 118% from Case B. The
less efficient performance was observed for Cases A and C, which burden the
structure more by almost 377.6%. Last in the maximum considered event with 2
percent probability of exceedance in 50 years (2in50 - Figs. 6.13 - 6.14) hazard level,
the Case B again behaves better than Case D by 57.14%, but still are the most well-
performed design procedures. With the percentage of almost 300% increased from
Case B respectively, Case A and Case C exhibited the least efficiently of all design
models. According to results ROT design criterion (Case D) appeared to be one of the
two most satisfactory behaved criteria for all hazard levels as far as the amount of
the developed base torque is concerned. Take into consideration the restrictions
imposed by the PBD, for the second group ROT design criterion (Case H)
outperformed the others for all hazard levels exhibiting the most efficient
performance. Especially, for the occasional hazard level the performance of the
other design criteria exhibited an increase of the developed base torque over the
percentage of 170% in comparison with the performance of ROT (Case H) (50in50 -
Figs. 6.7 - 6.8). The same conclusions can be drawn for the rare earthquake hazard
level (10in50 - Figs. 6.11 - 6.12) and the maximum considered event (2in50 - Figs.
6.15 - 6.16). In Table 6.3, it can be seen that compared to the initial designed
according to Eurocodes, the optimized are improved with reference to the objective
functions considered. It is worth noting that apart from cost for the rest objective

functions a reduction percentage of almost 100 % was noticed.
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50ins0_CM_ricd

50in50_CM_frtn

Response Envelope

Base Torque T (kNm)

Base Shear Vx (kN)
Figure 6.4. Numerical example 1 - Base Shear — Base Torque time history considering CASE A

for the occasional earthquake level.
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' d

Base Torque T (kNm)

Base Shear VWx (kN)

Figure 6.5. Numerical example 1 - The superimposed envelopes of BST time histories for the
occasional earthquake hazard level (50in50) in X direction for all criteria designed in

compliance with EC.
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Base Torque T (kNm)

Base Shear Wy (kN)

Figure 6.6. Numerical example 1 - The superimposed envelopes of BST time histories for the

occasional earthquake hazard level (50in50) in Yy direction for all criteria in compliance with

EC.
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Figure 6.7. Numerical example 1 - The superimposed envelopes of BST time histories for the
occasional earthquake hazard level (50in50) in X direction for all criteria designed in

compliance with PBD.
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Base Torque T (kNm)

Base Shear Wy (kN)

Figure 6.8. Numerical example 1 - The superimposed envelopes of BST time histories for the

occasional earthquake hazard level (50in50) in Yy direction for all criteria in compliance with

PBD.
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Figure 6.9. Numerical example 1 - The superimposed envelopes of BST time histories for the
rare earthquake hazard level (10in50) in X direction for all criteria designed in compliance

with EC.
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)

Base Torque T (kNm
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Base Shear Wy (kN)

Figure 6.10. Numerical example 1 - The superimposed envelopes of BST time histories for

the rare earthquake hazard level (10in50) in Y direction for all criteria designed in

compliance with EC.
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Figure 6.11. Numerical example 1 - The superimposed envelopes of BST time histories for
the rare earthquake hazard level (10in50) in X direction for all criteria designed in

compliance with PBD.
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Figure 6.12. Numerical example 1 - The superimposed envelopes of BST time histories for

the rare earthquake hazard level (10in50) in Y direction for all criteria designed in

compliance with PBD.
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Base Torque T (kNm)

Base Shear Vx (kN)

Figure 6.13. Numerical example 1 - The superimposed envelopes of BST time histories for
the maximum considered earthquake hazard level (2in50) in X direction for all criteria

designed in compliance with EC.

192 Chrysanthi Stathi




Optimum Design of Earthquake Resistant Structures implementing Computational Methods ISAAR

E

=

=

[

] CASE A

g

2 ——— CASEB

o

"

& — — CASEC
—  CASED

Base Shear Wy (kN)

Figure 6.14. Numerical example 1 - The superimposed envelopes of BST time histories for

the maximum considered earthquake hazard level (2in50) in Y direction for all criteria

designed in compliance with EC.
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Base Torque T (kNm)

Base Shear Vx (kN)

Figure 6.15. Numerical example 1 - The superimposed envelopes of BST time histories for
the maximum considered earthquake hazard level (2in50) in X direction for all criteria

designed in compliance with PBD.
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Base Shear Wy (kN)

Figure 6.16. Numerical example 1 - The superimposed envelopes of BST time histories for

the maximum considered earthquake hazard level (2in50) in Y direction for all criteria

designed in compliance with PBD.

6.3.2 Eccentric — horizontally irregular single-story system

The second numerical test is a horizontally irregular one-story building. In this
case initial and optimum designs for all objective functions are shown in Fig. 6.17.
The initial and optimized objective function values are presented in Table 4. As in the
previous example the optimum designs were subjected to two seismic excitations
and the envelopes of their base shear-base torque time histories were superimposed
to detect the most efficient objective function. For occasional seismic events Cases B
and D exhibit the most satisfactory performance with the minimum developed base
torque values for the first group, the difference between them reaching the value of
25%. While Cases A and C exhibits the less efficient performance with their deviation
from the most efficient design reaching up to almost one order of magnitude (50in50

- Figs. 6.18 - 6.19). In the hazard level with probability of exceedance 10 percent in
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50 years, Cases D and C succeeded the minimum developed base torque during
analysis. The maximum developed base torque values were recorded for Cases A and
B, their deviation percentage from the minimum response is 126% and 57%
respectively (10in50 - Figs. 6.22 - 6.23). For maximum considered seismic events
Cases D and A exhibit the most satisfactory performance. Cases C and B develop the
maximum values of base torque exceeding by 50% and 110% percentage the
minimum value of Case D (2in50 - Figs. 6.26 - 6.27). As it can be observed ROT design
criterion exhibited for all hazard levels among the two best performances even for
this case of horizontally irregular building. For occasional earthquake hazard level
ROT exhibited the second most satisfactory performance, while static eccentricity
outperformed the other criteria performing most efficiently. Considering the other
two hazard levels, ROT based designs undergone the lowest amount of the base
torque developed. Static eccentricity and initial structure cost exhibited the second
most satisfactory performance for the hazard levels with probability of exceedance
10% and 2% in 50 years, respectively. Considering the second group, for the
occasional hazard level static eccentricity (Case F) and ROT (Case H) outperformed
the other criteria (50in50 - Figs. 6.20 - 6.21). For rare earthquake events the same
designs exhibited the most satisfactory performances (10in50 - Figs. 6.24 - 6.25).
While for the maximum considered event, strength eccentricity (Case G) and initial
structure cost (Case E) developed the minimum values of base torque (2in50 - Figs.
6.28 - 6.29). It is worth noting that ROT was included, for all cases designed either
according to EC or PBD, among the first two most well performed criteria ensuring its
reliability. The same consistency on the performance was not observed for the other

criteria.
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Figure 6.17. Initial and optimized layout for all design Cases.
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Table 6.4. Numerical example 2 - Comparison between initial and optimized values for all design models

Initial Values Final Values Variation Percentage

:ne;;irl‘s cost e, e, ROT cost e, e, ROT cost e, e, ROT

CASEA 8480.83 493 463 0,99 702664 045 045 0,05 -17.1468  -90.8722  -90.2808  -94.9495
CASEB 8480.83 493 463 0,99 725601 0.03 1.07 0.02 -14.4422  -99.3915  -76.8898  -97.9798
CASEC 8480.83 493 463 0,99 787453 010 0.02 0.03 -7.14906  -97.9716  -99.568 -96.9697
CASED 8480.83 493 463 0,99 725807 004 0.67 0.02 -14.4179  -99.1886  -85.5292  -97.9798
CASEE 8480.83 493 463 0,99 715264 117 058 0.36 -15.6611  -76.2677  -87.473 -63.6364
CASEF 8480.83 493 463 099 700525 103 034 031 -17.399 -79.1075  -92.6566  -68.6869
CASEG 8480.83 493 463 0,99 728321 0.03 040 0.04 -14.4752  -99.3915  -91.3607  -95.9596
CASEH 8480.83 493 463 0,99 7709.23 033 0.03 0.10 -0.09817  -93.3063  -99.3521  -89.899
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Figure 6.18. Numerical example 2 - The superimposed envelopes of BST time histories for
the occasional earthquake hazard level (50in50) in X direction for all criteria designed in

compliance with EC.
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Figure 6.19. Numerical example 2 - The superimposed envelopes of BST time histories for

the occasional earthquake hazard level (50in50) in Yy direction for all criteria designed in
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Figure 6.20. Numerical example 2 - The superimposed envelopes of BST time histories for
the occasional earthquake hazard level (50in50) in X direction for all criteria designed in

compliance with PBD.
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Figure 6.21. Numerical example 2 - The superimposed envelopes of BST time histories for

the occasional earthquake hazard level (50in50) in Yy direction for all criteria designed in

compliance with PBD.
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Figure 6.22. Numerical example 2 - The superimposed envelopes of BST time histories for
the rare earthquake hazard level (10in50) in X direction for all criteria designed in

compliance with EC.
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Figure 6.23. Numerical example 2 - The superimposed envelopes of BST time histories for

the rare earthquake hazard level (10in50) in Y direction for all criteria designed in

compliance with EC.
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Figure 6.24. Numerical example 2 - The superimposed envelopes of BST time histories for
the rare earthquake hazard level (10in50) in X direction for all criteria designed in

compliance with PBD.
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Figure 6.25. Numerical example 2 - The superimposed envelopes of BST time histories for

the rare earthquake hazard level (10in50) in Y direction for all criteria designed in

compliance with PBD.
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Figure 6.26. Numerical example 2 - The superimposed envelopes of BST time histories for
the maximum considered earthquake hazard level (2in50) in X direction for all criteria

designed in compliance with EC.
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Figure 6.27. Numerical example 2 - The superimposed envelopes of BST time histories for

the maximum considered earthquake hazard level (2in50) in Y direction for all criteria

designed in compliance with EC.
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Figure 6.28. Numerical example 2 - The superimposed envelopes of BST time histories for
the maximum considered earthquake hazard level (2in50) in X direction for all criteria

designed in compliance with PBD.
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Figure 6.29. Numerical example 2 - The superimposed envelopes of BST time histories for

the maximum considered earthquake hazard level (2in50) in y direction for all criteria

designed in compliance with PBD.

6.4 Discussion

In the current chapter, the formerly presented assessment criterion of torsional
effect on the seismic response of structures Ratio of Torsion is extended to a design
one implementing optimization procedures. A horizontally regular and an irregular
single-story structures were used in order to evaluate the efficiency of the proposed
criterion. Apart from ROT, initial structure cost, static eccentricity and strength
eccentricity were also adopted as objective functions, while a combined sizing-
topology optimization problem was solved since the size as well as the location of
the vertical structural elements are the design variables of the problem. The initial
layouts of the structures were designed according to the restrictions imposed by EC.
These layouts were optimized divided into two groups. For the first one the objective

functions formerly presented were adopted and restrictions according to EC were
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imposed for every trial of the procedure. For the second one the same objective
functions were used but in this case restrictions were imposed by the PBD. The final
design layouts were subjected to two earthquake excitations for each hazard level,
and their base shear — base torque time histories were superimposed. From this
comparison yields that designs optimized according to ROT belong among the best
two performances developing the lower amount of base torque for all hazard levels.
In conjunction with its ease of implementation, since ROT can be calculated from
routine computations yielding the shear forces, ROT offers to engineers a useful tool

and constitutes as well a reliable assessment and design criterion against torsion.
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7 CONCLUSIONS

7.1 Conclusions

The main objective of the current study is to propose a quantitative criterion
defined as the ratio of torsion (ROT) for assessing the torsional effect on building
structures. In order to investigate the effect of torsion on the seismic response of
mass eccentric buildings, single-story and multistory torsionally-stiff buildings are
considered. In particular, monosymmetric and double eccentric, regular as well as
irregular in plan buildings are examined. Nonlinear dynamic analyses are conducted
using natural record scaled to three hazard levels.

The performance of the proposed criterion proved to be sufficient since it was
observed that its variation follows closely the developed values of the base torque
i.e. increased ROT index corresponds to increased values of base torque ones and
vice versa. The proposed criterion quantifies the torsional effect in terms of shear
forces and is based on the amplification of internal shear forces developed at every
vertical structural element due to the introduced torque. It is noteworthy that upper
diaphragm’s rotation was not in agreement with base torque for all the numerical
applications considered.

The proposed assessment criterion against torsion, ROT, is also implemented as

a design one through an optimization procedure dealt with evolution strategies
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algorithm; for this purpose, eight optimization problems are formulated. Numerical
applications were studied, horizontally regular and irregular single-story buildings
and the torsional behavior of the optimized designs was assessed comparing their
response envelopes corresponding to base shear-base torque that were

superimposed.

More specifically from the numerical investigation conducted it was concluded

that:

e For the simple mathematical models examined, base torque, upper diaphragm’s
rotation and ROT are increasing proportionally to eccentricity for all hazard levels.
For realistic structural models with irregularities, the base torque and ROT values
observed for eccentric designs are increased, as expected compared to the results
obtained for 10/50 and 2/50 hazard levels, while the diaphragm rotation value is
reduced. Consequently, it was questioned whether the upper diaphragm’s
rotation is a valid indicator for the evaluation of buildings’ earthquake torsional

response.

e In comparison to other structural response quantities related to torsion such as
upper diaphragm rotation and base torque, the analysis of the symmetric
counterpart of the structure is necessary in these cases in order to reach to any
conclusions for the magnitude of influence on the structural response due to
torsional effect. However, even when the analysis of the symmetric counterpart is
available or not computationally expensive, no conclusions can be drawn on the
way that the difference between the two values of the upper diaphragm’s
rotation or base torque for the symmetric and eccentric design affects the
response of the vertical structural members. Taking into consideration that ROT
index was always equal to zero for symmetric structures, it gives the researcher
the ability to compare the torsional amplification of shear forces developed on
vertical resisting elements without conducting the analysis of the building’s

symmetric counterpart.
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e The already observed trend in various studies in the literature for torsionally stiff
buildings, i.e. increased response quantities at flexible edge and decreased ones
at the stiff edge, has been also verified with the ROT values obtained in all regular

systems studied, but also confirmed for those exhibiting horizontal irregularity.

e The proposed criterion proved to be independent of the state of response since
its performance was satisfactory for both elastic and elastoplastic response for all

cases examined.

e ROT assessment criterion was extended to design one by means of evolutionary
algorithms. The designs obtained based on the formulation where ROT was
minimised outperformed those obtained with the static and strength eccentricity.
It is also worth noting that its efficient performance was consistent for all hazard
levels. While, this behavior was confirmed not only for the horizontally regular

but also for the irregular building.

e Finally, the fact that ROT formulation is based on the internal shear forces of the
structure, which can be obtained by routine computations, increases its
objectivity and applicability. Design engineers using commercial analysis software
are able to compute ROT. Moreover, it is independent of the plan view and the
geometry of the structure making it applicable to any structural system. Due to its
ease of implementation, it would be a useful tool to practitioner engineers for
designing earthquake resistant structures against torsion or the assessment of

already existing structures.

7.2 Future research

A research topic can never be considered as fully covered. It is clear that any
piece of research work leaves many open issues for future research and sometimes it
seems to raise more questions than it has answered. Following the investigation in
this thesis, there are some natural extensions to this work that would help expand

and strengthen the conclusions obtained:
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e The assessment criterion of torsional effect on the seismic behavior of
asymmetric plan buildings, ratio of torsion, proposed in the current thesis was
evaluated for horizontally regular and irregular, single-story as well as multistory
structures. It can be extended in order to evaluate and explore the behavior of
vertically irregular buildings as well as those exhibiting both horizontal and
vertical irregularity.

e Moreover, the numerical applications considered exhibit mass eccentricity. The
results obtained can also be confirmed for stiffness and strength eccentric
systems. Taking into consideration also that the uncoupled torsional to lateral
frequency ratio classified them as torsionally stiff, torsionally flexible systems can
be examined. Finally, this dissertation refers to reinforced concrete structures,
further investigation can be performed in order to extend the conclusions drawn
to steel structures.

e In order to perform the evaluation of the performance of ROT criterion, one- and
two-component seismic excitations were implemented consisting of only
translational components. It can be interesting to investigate the performance of
ROT when rotational earthquake component is taken into account.

e ROT assessment criterion was extended to a design one in order to improve the
seismic design of asymmetric buildings against torsion by means of evolutionary
algorithms. In the current study only single-story horizontally regular and irregular
systems were examined. Multistory buildings exhibiting different types of
irregularities can also be studied.

e As highlighted throughout this study the proposed index is based on the
observation of many researchers that due to lateral-torsional coupling the shear
forces experienced by vertical structural elements of asymmetric plan buildings
differs from those of their symmetric counterparts. According to the formulation
of ROT, it quantifies the amplification of shear forces because of the torsional
effect normalized to base shear of the imposed seismic excitation. It would be
very interesting to quantify this amplification in terms of displacements. A
comparison can be performed between the two indexes and their effect on the

seismic torsional response can be correlated.
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e Finally, the effect of soil-structure interaction on the seismic torsional response of
structures is an extremely interesting subject to be studied by other researchers

in the future.
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