EONIKO METXOBIO I[TOAYTEXNEIO
S XOAH HAEKTPOAOTOQN MHXANIKON KAT MHXANIKOQN
YTTIOAOTTSTON

Toyéag Emxowvwviwy, Hiextpovinhc xou Yuotnudtwy ITAnpogopinic

Avwayelpion IIAnpogoplag xow ABeBandtntag oc
ITepBdirov IToAharAwyv Etepoyevov IInyoyv
ITAneogpoéenong.

Awaxtopury Atateln

‘Ayyelog - 'ewpylog
Baoihaxdémovioc

EnBAénovoa Kadnyrtelo:
DTy Agppdtn
Kadnyfrew E.M.IL

Adrva, Oxtoferog 2014

3 EGNIKO METXOBIO IIOAYTEXNEIO

sei\ LXOAH HAEKTPOAOI'ON MHXANIKON KAT

1%/ MHXANIKQN YTIOAOTTSTON

Touéac Emxowwwicyv, Hiextpovirc xon Luotnudtwy IIinpogopunc

Awayelpion IIAnpogoploag xow ABeBandtntag oc
ITepBdrrov IToAharAwyv Etepoyevov IInyoyv
[IAnpogpbdenone.

Awbaxtopxry Atatelfn

‘Ayyelog - I'ewpyrog
Boaocihaxdnouviocg

TewweAnc XvuBouvievtiny Enttpony:

1. bt Agedtn, Kad. E.M.II. (emifBAénovoa)
2. Iwdvvne Baouelou, Kad. E.M.IIL.
3. Mavoing I'epyatcoiing, Av. Kot. Iévio [lav.

Entapeinc E€etactixy Enttpony

Pt Agpdtn, Kad. E.M.II. (enBAérovoa)
Iwdvvne Baouielou, Kad. E.M.IIL.

Moavéine I'epyatooting, Av. Kad. Iévio ov.
Nucdhaog [oarnaontpou, Av. Kod. E.M.IIL

Anurterog Potdxng, Enlx. Kad. E.M.IL

[Couned Kapdhn, Enbe. Ko, EK.ILA.

Hovoryidtng Mtopotonoviog, Enix. Kad. E.K.ILA.

NO ot e

Adrva, Oxtoferog 2014.

‘Ayvyyvelog - 'ewpyiog Bacthaxdénouviog
Adxtop tng Lyoric Hiextpohdywy Mnyavixdy xou Mnyavixdv Trohoylotohv

Touv E.M.II.

© (2014) Edvixb Metodfro ITohuteyveio. All rights reserved.

swr\ NATIONAL TECHNICAL UNIVERSITY OF ATHENS
i2:/ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
Division of Communication, Electronic and Information Engineering

Information and Uncertainty Management for Multiple
Heterogeneous Data Sources

Ph.D. Thesis

Angelos - Georgios Vasilakopoulos

Supervisor:
Foto Afrati
Professor
NTUA

Athens, October 2014

Contents

1 Introduction 6

1.1 A Motivating Example of Query Containment for Databases
with Uncertainty and Lineage 9

1.2 A Motivating Example of Data Exchange with Uncertainty
and Lineage 16

1.3 Efficient Query Computing when Combining Uncertainty, Lin-
eage and Possibilities oL 22

1.4 Computing Efficient Lineage for Aggregate Queries on Big Data 22
1.5 Optimising 2-Way Joins with Skewed Big Data on MapReduce 29

1.6 Summary of the thesis 30
2 Preliminaries: The ULDB Model for Databases with Uncer-
tainty and Lineage 33
2.1 Databases with Lineage -LDBs 33
2.2 Databases with Uncertainty and Lineage - ULDBs 35

2.3 Computing Conjunctive Queries (CQs) on the ULDB model . 40

3 Query Containment and its Complexity for Databases with

Uncertainty and Lineage 44
3.1 Imtroduction 45
3.2 Running Example and the ULDB Data Model 49
3.2.1 Non TR-lineage query containment 52
3.3 Basic Definitions on Containment 53
3.4 Semantics #1 (Data containment - Cpy,) and Semantics #2
(Contained Base Lineage - Copase)- - « « « « v v v v v v oo v 58
3.5 Semantics #3: Trio/Transitive Closure of Lineage Contain-
ment (TR-lineage - Crg). o o Lo 63
3.6 Semantics #4 (Same Base Lineage - Cgpase) and Semantics
#5 (Same Lineage Containment - Cggme): « « « v v o v v oo 67
3.6.1 Conjunctive Queries without self-joins 73

3.7 Comparison between Different Semantics 73

Information and Uncertainty Management Angelos Vasilakopoulos

3.8 CQ Query Equivalence, 74
3.9 UCQ Queries Containment and Equivalence 76
3.10 Other Definitions of ULDB Database Containment 78
3.11 Uncertain Equality containment - Cg and semantics of ULDB
Equality containment 79

4 The Complexity of Data Exchange under Lineage and Un-

certainty 91
4.1 Introduction 91
4.1.1 Related Work 97
4.1.2 Ordinary Data Exchange 98
4.2 Data Exchange with Lineage 101
4.3 Computing LDB certain answers 105
4.3.1 Comparison with Oblivious chase 121
4.4 Data exchange for Uncertain Databases with Lineage (ULDBs) 124
4.4.1 U-chase result for our example 127
4.4.2 Complexity of Computing ULDB certain answers . . . 127
4.4.3 Complexity of a ULDB data exchange problem that
includes egds in its set of constraints ¥ 131

5 Efficient Query Computing for Uncertain Possibilistic Databases

with Lineage 133

5.1 Introduction 133

5.1.1 Related Work L. 135

5.2 Properties of the Proposed Model 135

5.2.1 Possibility Theory 136
5.2.2 The Proposed Model: Combining Uncertainty, Possi-

bilities and Provenance 136

5.2.3 Running Example 137

5.3 The Operators. 139

5.3.1 Examples of Operators 143

6 Efficient Lineage for SUM Aggregate Queries 145

6.1 Introduction 145

6.1.1 Our contribution 148

6.2 Computing Aggregate Lineage 149

6.3 Running Example 0000 150

6.4 Approximation Guarantees of Test Queries on Aggregate Lineage152

6.5 A debugging scenario 155

6.6 Discussion 156

6.7 Comparison with Synopses for Data 157

ii

Information and Uncertainty Management

Angelos Vasilakopoulos

7 Optimizing 2-Way Skew Joins in MapReduce

7.1 Introduction

7.2 Analysis of Communication Cost

7.3 Experiments

8 Conclusions and Open Problems

Bibliography

iii

158
158
160
161

163

166

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8

1.9

1.10

1.11

1.12
1.13
1.14

1.15
1.16

The ULDB U of our motivating Example 11
The first Possible Instance Dy of our ULDB Example. 12
The second Possible Instance Dy of our ULDB Example. . . . 12
Query Q1 (x) : —Drives(z,y), Saw(z,y) posed on the Possible
Instance Dy of Figure 1.2. 13
Query @Qa(x) : —Drives(x,y) posed on the Possible Instance
Dy of Figure 1.2.o 13
Query Q1(x) : —Drives(z,y), Saw(z,y) posed on the Possible
Instance D, of Figure 1.3. 14
Query Qz(x) : —Drives(x,y) posed on the Possible Instance
Dy of Figure 1.3. 15
Data Exchange example with ordinary databases and the tgd

dependency & : Saw(witness,car), Drives(p,car) — 3D
Suspects& Dates(p, D). 19
LDB Data Exchange example with the tgd dependency ¢ :
Saw(witness, car), Drives(p,car) — 3D Suspects&Dates(p, D).
................................... 20
ULDB Data Exchange example with the tgd dependency ¢ :
Saw(witness, car), Drives(p,car) — 3D Suspects&Dates(p, D)

and Q(suspect) - Suspects& Dates(suspect,date) 21
SUM (Sal) ~ 10'2. Infeasable to have lineage \ pointing to

~10% tuples. 24
Salary distribution of our example. 27
The probabilities of selecting tuples. 27
How many times each tuple is selected and the number of

tuples in the Aggregate Lineage from each group. 28
The first group with 100 tuples with original salaries 10° . . . 28
From original data to Aggregate Lineage. 29

Information and Uncertainty Management Angelos Vasilakopoulos

1.17 Properties of an Aggregate Lineage with 8,087 tuples. The
first two columns describe the data. The next three columns
describe the Aggregate Lineage relation. The last column

shows how we use this lineage to compute sub-sums. 30
2.1 LDB Qi(D3): Result of posing Q); over LDB Dy. 36
2.2 Non well-behaved ULDB U; 39
2.3 Semantics of posing a query @) over a ULDB 1. 40
2.4 Computing CQs over a ULDB step 2: Horizontal Database. . . 42
2.5 Computing CQs over a ULDB step 3. 42
2.6 ULDB Qq(U): Result of posing Q on U. 43
3.1 Running Example: ULDBU. 46
3.2 Dj: First Possible LDB Instance of ULDB U. 47
3.3 Ds: Second Possible LDB Instance of ULDB U. 47
3.4 Dgio: LDBrelation Ry, for: Qi(z) : —Drives(z,y), Saw(z, y)

posedon Do. 47
3.5 Dgao: LDB relation R, for: Q2(z) : —Drives(x,y) posed on

Do. o o e 48
3.6 Comparison of Different Semantics. 50
3.7 ULDB Relation Rq, for: Qi(z) : —Drives(z,y), Saw(z,y). . . 51
3.8 ULDB Relation Ry, for: Qo(z) : —Drives(z,y). 51
39 ULDBU; 57
310 ULDB Us . . . o o o oo 57
311 LDB D1. . . o o o 60
312 LDB Dy, . o o o 60
3.13 Dg11: LDBrelation Ry, for: Qi(z) : —Drives(z,y), Saw(z, y)

posedon Dy. 63
3.14 Dg21: LDB relation R, for: Q2(z) : —Drives(x,y) posed on

Di. . e 63
315 LDB Do. . . . o oo 64
316 LDB D). o 64
3.17 Example of TR-lineage LDB containment D Crp D'. 65
3.18 Example of D gTR,SBase D" and D’ QTR’SBGSB D......... 65
3.19 ULDB Relation R, for Qs(x) : —Drives(z,y), Saw(z,y),

Saw(w,y). . .« .. 66
3.20 Dgs;: First Possible Instance of ULDB relation Rg,. 66
3.21 Dgse: Second Possible Instance of ULDB relation Rg,. 66
322 LDB Ds. e 67
323 LDB D . . .o 68
3.24 ULDB representing Example 16. 85

Information and Uncertainty Management

Angelos Vasilakopoulos

3.25
3.26
3.27
3.28

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

6.1
6.2

7.1

Actual ULDB database M.
View V; (with @ the identity query)
View V5 (with @5 the identity query)
View V; (with @ the identity query)

ULDB source database A.
Expected materialized target ULDB instance.
Expected Certain Answer of () posed on target database B. .
Source certain instance I
Solution J for fand & oL
Q1(J)
I’ Source LDB Instance of Example 20.
Target LDB relation T3 of Example 20 after second parallel

l-chasestep
Target LDB relation T, of Example 20 after third parallel 1-

chase step.
Target LDB relation T3 of Example 20 after fourth and final

parallel I-chase step
L-derivation graph Grg of Example 21.
Finite L-derivation graph GrL, of Example 21.
Source certain instance I
Solution J for Tand &
Qi1(J)
D;: Pseudo-LDB horizontal Uy of ULDBU.
Target relation Suspects&Dates of Ul
ULDB Certain Answers

Main symbols used in this chapter.
Properties of Aggregate Lineage Lsuarics.sat for b = 8,852.
The first two columns describe the data. The next three
columns describe the Aggregate Lineage relation. The last
column shows how we use this lineage to compute sub-sums.

Communication cost and time comparison of our experiment
when using our optimal proposed Algorithm versus using stan-
dard skew-join algorithm for a heavy hitter with 4 - 108 tuples
in the join output. L.

. 150

Abstract

In this thesis we investigate five problems of databases with uncertainty
and lineage. We start with the analysis for those databases of the query
containment and query equivalence problems. We present and define five
new kinds of semantics for database containment with uncertainty and lin-
eage. We prove that the complexity of query containment for databases
with uncertainty and lineage for conjunctive queries (CQs) and for Unions
of conjunctive queries (UCQs) remains NP-complete as it is with ordinary
databases for all five new kinds of containment semantics. We prove that
the complexity of query equivalence for databases with uncertainty and lin-
eage for CQs and UCQs is also NP-complete for the first two kinds of ULDB
database containment and Graph-Isomorphism-complete for the last three.
Finally we define five new “equality” semantics of ULDB containment and
we show that they are important for ULDB data integration purposes. The
complexity of checking conjunctive query containment under all these five
kinds of “equality” ULDB containment is NP-complete.

Further we study and analyse the data exchange problem for databases
with uncertainty and lineage. We present and define new logical semantics
of certain answers for data with uncertainty and lineage. We present a new
u-chase algorithm that extends the known chase algorithm which is about
ordinary databases. We prove that the new u-chase algorithm can be used
for query answering for conjunctive queries with the complexity of computing
certain answers that remains low, i.e. polynomial time (Ptime), as with
ordinary databases when the set of dependencies between the source and the
target schema is a weakly cyclic set of tuple generating dependencies- tgds.
We prove that when we also have target (equality generating dependencies
- egds) then the problem of query answering for databases with uncertainty
and lineage becomes NP-hard (in contrast with ordinary databases).

We next study and analyse the problem of query computing for conjunc-
tive queries for databases with uncertainty and lineage when we attach belief
values to uncertain data that come from a possibility distribution. We prove
that the model of databases with uncertainty and lineage and with possibilis-

Information and Uncertainty Management Angelos Vasilakopoulos

tic values is closed for conjunctive queries. This result solves the problem of
previous results that show that models with uncertainty and possibilities
(but no lineage) are not closed for conjunctive queries. We prove that in
the model of databases with uncertainty and lineage and possibilities we can
compute conjunctive queries (along with their possibility values) with low
polynomial complexity (Ptime) in contrast with the high complexity #P of
existing approaches where uncertainty values are probabilistic.

The fourth problem that we study is the problem of how to efficiently
compute aggregate queries and specifically SUM queries, posed on big data.
We use a small useful lineage instead of the initial big data. We present a new
Algorithm Comp-Lineage which computes in polynomial time an Aggregate
Lineage with small size that is independent of the size of the initial big data.
We prove that this small Aggregate Lineage can be used to approximate well
any SUM query whose value is large, with time complexity that depends only
on the small size of the Aggregate Lineage and hence independent with the
large size of the initial big data.

Finally we study, analyse and implement in the parallel environment
MapReduce the computation of 2-Way Joins for big data that may also be
skewed. We present a new algorithm, suitable for MapReduce, which com-
putes 2-Way Joins and can efficiently handle data skewness in contrast with
existing algorithms. We prove that our algorithm matches the lower commu-
nication cost bound. We further implement in Java/Hadoop our algorithm
with experiments whose communication cost verifies the theoretical cost.

Chapter 1

Introduction

One of the main important requirements of current research is to inte-
grate information distributed in different sources that are moreover hetero-
geneous [ALP08a, ALP08b, AK08, FKK10, GKIT07, SDH, MM09]. Data
does not anymore come from a single source, for example from a com-
pany, but rather often from many different sources or over the internet. For
this reason, research has focused on the relevant problems of data integra-
tion and data exchange. Research has also shown that in these problems
uncertainty rises, due to the fact that the different sources are heteroge-
neous [FKMP05, ALP08a]. In addition many recent applications involve
uncertain data [AKG91, BGMP92, DS04, 1184, SUW09|. Hence, we need
to be able to efficiently manage data with uncertainty. In a setting where
the answer of a query can come from the reconciliation of data existing in
different sources, it is particularly important for us to be able to record from
where the answer came from, in other words the lineage or provenance of the
data [BSH'08a]. In many other applications it is necessary to record the
lineage of the data [BKT01, BT07, CW00, CW03, GKT07]. We name a few
such applications: bio-informatics, analysis of scientific data or of data com-
ing from the web. The need to record lineage is crucial especially today for
the following additional reason: the computational power we have nowadays
has given us the ability to analyse huge amounts of data, i.e., big data. It
is important to be able to extract from such big data any useful informa-
tion that may exist in them (for example by using techniques from machine
learning) |oral3a, oral3b|. In such a context, a small set of useful data that
can give us information about the answer of a query that is initially posed
on big data becomes the lineage of the answer [AFV14].

In this new setting of many heterogeneous data sources, that moreover
may include big or uncertain data, it is clear the need of efficiently managing
databases with uncertainty and study the problem of data exchange. In

Information and Uncertainty Management Angelos Vasilakopoulos

addition it is important to be also able to record the lineage of the data.
Both these two properties of uncertainty and lineage are only externally
supported in the classic ordinary relational data model. On the other hand,
a new data model which internally supports uncertainty and lineage has
been recently presented (the ULDB - Uncertainty and Lineage DataBase
data model) [BSH"08a|. One of the main reasons for its creation is the that
it would be useful in data exchange and data integration problems in which
uncertainty arises. Uncertainty in the ULDB model is expressed through
a set of possible alternative values (alternatives) that a tuple can have. In
addition, the problem of query computing for conjunctive queries, that is
the SELECT, PROJECT, JOIN subset of SQL, was studied for this model
and showed that its data time complexity is polynomial (Ptime) [BSHT08al.
Further, an extension of this model was studied in which each alternative
value can be assigned with a probability which represents our belief that this
alternative is the correct one. In this case the computation of the probabilities
of the answers of conjunctive queries is a hard problem, with complexity
#P [DS04, GT06, RPT11, STWO0S].

This thesis concerns the study of five general problems:

i) Firstly, we study the problems of query containment and query equiva-
lence for this new model of data with uncertainty and lineage. The study of
these problems is related and needed for the second problem of data exchange
that we study. These two are important problems that have gained a lot
of attention in database research [ALU07, AK10, ALMO06, Ull97, FKMPO05,
CM77|. Most research however, focuses on ordinary databases with no un-
certainty nor lineage recording. In the present thesis five new semantics of
query containment are presented for databases with uncertainty and lineage
and it is shown that the complexity of the query containment for conjunctive
queries (CQs) and for unions of conjunctive queries (UCQs) retain the same
NP-complete data complexity as in the case of ordinary databases with no
uncertainty [CM77]. We move on to the problem of query equivalence and
we show that for both CQs and UCQs the complexity for the first three kinds
of ULDB containment remains NP-complete, while for the last two is Graph-
Isomorphism-complete. On another perspective database containment was
defined in [ASUW10] for uncertain databases without lineage. We also inves-
tigate CQ query containment under this definition, give corresponding new
semantics and show that they are useful in ULDB data integration and that
the complexity remains NP-complete.

ii) In contrast, when we move to the query answering problem for conjunc-
tive queries in a data exchange setting with heterogeneous source and target
schemas and where data (both source and target) have uncertainty and lin-
eage, we show in which cases the complexity remains polynomial (Ptime) as

Information and Uncertainty Management Angelos Vasilakopoulos

with ordinary databases and when it increases to NP-hard. More specifically,
we study and analyse the data exchange problem for databases with uncer-
tainty and lineage. We present and define new logical semantics of certain
answers for data with uncertainty and lineage. We present a new wu-chase
algorithm that extends the known chase algorithm which is about ordinary
databases. We prove that the new u-chase algorithm can be used for query
answering for conjunctive queries with the complexity of computing certain
answers that remains low, i.e. polynomial time (Ptime), as with ordinary
databases when the set of dependencies between the source and the target
schema is a weakly cyclic set of tuple generating dependencies- tgds. We prove
that when we also have target (equality generating dependencies - egds) then
the problem of query answering for databases with uncertainty and lineage
becomes NP-hard (in contrast with ordinary databases).

iii) We study the use of belief values other than probabilities that can
be assigned in uncertain data so that the complexity of conjunctive query
computing can remain polynomial (Ptime) in contrast with existing work
that uses probabilities and has high complexity #P [DS04, GT06, RPT11,
STWO08].

iv) The fourth problem that we study concerns management of informa-
tion on big data. This problem belongs to the very recent and important
need of being able to do efficient computations and find crucial values for an
answer posed on data with big size [oral3a, oral3b]. Specifically we study
how the computation and recording of a useful lineage can be helpful to effi-
ciently compute aggregate queries and specifically SUM queries on big data
with low complexity using this small useful lineage instead of the initial big
data. So, the solution that we propose is the management of this big-sized
information to be done with the use of a new kind of suitable lineage. This
lineage concerns the information of only a few important values which are a
result of suitable computations over the many initial ones. We call this useful
lineage as Aggregate Lineage. We present in this thesis a new algorithm that
can compute Aggregate Lineage in polynomial time. We show that we can
use Aggregate Lineage to approximate well the answer of any SUM query
that can be posed on the initial big data. It is important to point out that
our algorithm computes a small lineage which can be subsequently used to
approximate any SUM query, which we do not need to know beforehand when
we compute the Aggregate Lineage. In contrast, one Aggregate Lineage is
suitable for every possible (and unknown) SUM query that has a large value.

v) Another approach to efficiently make computations on big data is the
use of the parallel MapReduce environment. The fifth and last problem that
we study concerns the design and implementation of an algorithm that can
efficiently and with the least possible communication cost solve the computa-

Information and Uncertainty Management Angelos Vasilakopoulos

tion of a 2-way Join in MapReduce even for cases where existing algorithms
are inefficient due to data skewness.

1.1 A Motivating Example of Query Contain-
ment for Databases with Uncertainty and
Lineage

The problem of query containment and query equivalence have applica-
tions in many important other problems of database research, like data in-
tegration and exchange and the use of views [ALU07, AK10, ALMO06, U197,
FKMPO05]. Additionally it is very relevant with the query optimisation prob-
lem, which is one of the open problems for databases with uncertainty and
lineage [BSH08a]. A query @i is contained in a query s if for every
database D the answer of ()1 is contained in the answer of ()3 when they are
posed on D. In ordinary databases the answer of a query is just a simple set
of tuples, so database containment is just a test of simple set containment.
In contrast, an uncertain database is not a set of tuples, rather it repre-
sents a set of databases that are its possible instances - Pls. Hence, even
the simpler problem of database containment between two given uncertain
database instances is not trivial for uncertain databases. In this research
we study five different semantics for database containment with uncertainty
and lineage, depending on how strict lineage information is required in the
containment. We show in which cases which semantic is more suitable. For
all semantics of database containment we have that data will be contained
with a special kind of multiset (aka bag) containment: we can have many
tuples with the same data if they have different lineage. The query contain-
ment problem in ordinary databases (that have no uncertainty nor lineage)
has NP-complete data complexity for conjunctive queries [CM77|. Given
that: i) The possible instances of a database with uncertainty and lineage
are exponentially many and ii) conjunctive query containment for multisets is
15 — hard [ADG10, CV93], we would expect that conjunctive query contain-
ment belongs to a complexity class higher than NP-complete. In contrast, it
is shown in this thesis that for all five different containment semantics the
complexity of conjunctive query containment and equivalence for databases
with uncertainty and lineage remains NP-complete. It is also shown that the
same holds for Unions of Conjunctive Queries.

In more detail, we have that a database query () defines a mapping from
databases to databases. The problem of query containment is the follow-
ing: A query @), is said to be contained in a query @), if for every database

Information and Uncertainty Management Angelos Vasilakopoulos

D, database Qi(D) is contained in database @Q2(D). So, query contain-
ment depends on the definition of database containment which, for ordinary
databases, is defined as a simple set containment for each relation. This prob-
lem becomes more complicated for Databases with Uncertainty and Lineage
(ULDBs): Each ULDB database relation is not anymore a simple set of tu-
ples. Rather it represents a set of possible instances (Pls). Each possible
instance is a Databases with only Lineage (LDB). In turn, each LDB is not
a simple set of tuples but it also contains lineage information which is in-
formation from which other tuples this tuple is derived from. In an LDB
relation we can have two tuples with the same data that point to different
Lineage. As a result when investigating the problem of query containment
for ULDBs we have to first define database containment for their possible
instances, so for LDBs. Let us give a motiving example to illustrate why
query containment becomes complicated for ULDBs:

Ezample 1. Consider the Database with Uncertainty and Lineage (ULDB)
U of Figure 1.1. We will give technical details of the ULDB model in the
next Chapter 2. For now let us describe what we need for our example:
In the ULDB model each tuple with uncertainty, which is called an x-tuple,
is a set of tuples called alternatives. The semantics of these alternatives is
that at most one of them can be true, but we have uncertainty about which
one. The ULDB model also captures lineage, i.e., from which alternative
another one comes from. In order to succinctly represent lineage we attach
an identifier on each x-tuple. For example suppose that we have the uncertain
information that John drives a Honda or a Mazda car, but we do not know
which one. This information is stored in the two alternatives (John, Honda)
and (John, Mazda) of the first x-tuple (which has identifier 11) of ULDB
relation Drives. We refer to the first alternative (John, Honda) of x-tuple
11 with the identifier (11,1). In our example the other two x-tuples 12 and
13 do not have uncertainty.

Suppose now that we have another ULDB relation Saw which includes the
information that a witness saw a car near a crime-scene (this very suitable
setting for explaining the ULDB model is also presented in [BSHT08Db]).
Let Cathy be also uncertain about which car she saw, either a Honda or a
Mazda. This uncertainty is encoded in the two alternatives (21, 1) and (22, 2)
of x-tuple 21 in ULDB relation Saw. If that was the case this ULDB database
with the two relations Saw and Drives would represent 4 possible instances,
2 for the two choices of x-tuple 11 and 2 for the two choices of x-tuple 21. But
let us also suppose that alternative (21, 1) comes from alternative (11,1) and

10

Information and Uncertainty Management Angelos Vasilakopoulos

ID Drives (name, car)

John, Honda Il John, Mazda
Kate, Honda
Kate, Toyota

Saw (witness, car)

ID
Cathy, Honda Il Cathy, Mazda
’ Amy, Mazda

A

(21,1)={(11,1)}, A21,2)={(11,2)}
("Cathy saw John driving")

AN/

Figure 1.1: The ULDB U of our motivating Example

that alternative (21,2) comes from alternative (11,2). In other words, that
Cathy saw a Honda only if John saw a Honda or that she saw a Mazda
only if he drives a Mazda. This information is encoded with lineage A,
e.g. A(21,1) = {(11,1)} encodes the information that (Cathy, Honda) can
coexist in a Possible Instance only with (John, Honda) (this information can
mean for example that Cathy additionally stated she saw John driving). So
now the ULDB has only two possible instances, for the two choices (11,1)
and (11,2). In general the possible instances of a ULDB are indicated by the
number of alternatives that do not point through lineage to other alternatives,
i.e. that have empty lineage. Such alternatives are called base. We give
more details about these logical restrictions that lineage poses in the possible
instances of a ULDB in the next Chapter 2.

The two Possible Instances (let us denote them D; and D,) of the ULDB
of our example are shown in Figures 1.2 and 1.3 respectively. These possible
instances do not have uncertainty but only lineage information, they are
database with lineage - LDBs.

Consider now the following two Conjunctive Queries (CQs):

Q1(z) : —Drives(z,y), Saw(z,y) and
Q2(x) : —Drives(x,y)

For ordinary databases, query (Q; is contained in query ()2 because there
exists a containment mapping from Q2 to @)1 (which maps variables x and y
to themselves).

But when these queries are posed on the ULDB of our Example this

11

Information and Uncertainty Management Angelos Vasilakopoulos

D1
ID Drives (name, car)
11,1 John, Honda

Kate, Honda

= G 2
=0

ID Saw (witness, car)

21,1 Cathy, Honda

(22,1 k Amy, Mazda

A21,1)={(11,1)}

A

Figure 1.2: The first Possible Instance D; of our ULDB Example.

D2
ID Drives (name, car)
11,2 John, Mazda

12,1 K Kate, Honda >

Kate, Toyota

ID Saw (witness, car)

21,2 Cathy, Mazda)

22,1 Amy, Mazda)
A(21,2)={(11,2)}

Figure 1.3: The second Possible Instance Dy of our ULDB Example.

12

Information and Uncertainty Management Angelos Vasilakopoulos

ID Drives (name, car)

John, Honda ID Q1(name)

(12,1 [Kate, Honda (31,1 X John)
(K Kate, Toyota
33,1 { Kate)

LA

ID Saw (witness, car)

21,1 Cathy, Honda

(22’1 [Amy, Mazda > Q1(name) :- Drives(name,car), Saw(witness,car)
A(B1,1)={(11,1),(21,1)}

A21,1)={(11,1)} AB3,1)={(12,1),(21,1)}

Figure 1.4: Query Qi(x) : —Drives(x,y), Saw(z,y) posed on the Possible
Instance D; of Figure 1.2.

ID Drives (name, car)

John, Honda

Kate, Honda

Kate, Toyota

ID Saw (witness, car)

Q2(name) :- Drives(name,car)
21,1 Cathy, Honda

A(41,2)={(11,1)}
A42,1)={(12,1)}
A(43,1)={(13,1)}

22,1 Amy, Mazda

A21,1)={(11,1)}

Figure 1.5: Query Q2(x) : —Drives(x,y) posed on the Possible Instance D,
of Figure 1.2.

Information and Uncertainty Management Angelos Vasilakopoulos

Q1(D2)

ID Drives (name, car)

John, Mazda ID Q1(name)

(12,1 K Kate, Honda) (31,2(John)
(K Kate, Toyota)
32,1 I John)

ID Saw (witness, car)

21,2 Cathy, Mazda

(22,1 K Amy, Mazda)
Q1(name) :- Drives(name,car), Saw(witness,car)

A(31,2)={(11,2),(21,2)}
A(B2,1)={(11,2),(22,1)}

A21,2)={(11,2)}

Figure 1.6: Query Qq(z) : —Drives(x,y), Saw(z,y) posed on the Possible
Instance Dy of Figure 1.3.

containment does not always hold. Consider the two possible instances of
ULDB U. Since ULDBs and LDBs contain lineage information that points
back to previous data, when we give the answer of a query we retain the
relations over which the query is posed. The answer of (); posed on D is the
LDB database shown in Figure 1.4 (along with relations Drives and Saw that
have lineage pointing to them). The lineage information is natural: The tuple
(31,1) in the answer comes from the information of tuples (11,1) and (21, 1).
That is, the answer John comes form the join of tuples (John, Honda) and
(Cathy, Honda) and a projection on John.

Respectively ()2 posed on D; is shown on Figure 1.5 and on Dy on Figure
1.7. Intuitively @; will return the name of a suspect (a driver that has been
seen from a witness) while Qs will return the names of all drivers. Sometimes
we care only about the fact that if someone is a suspect he must drive a car
and hence say that ()1 is contained in ()5, like it holds for ordinary databases.
Let us consider ()1 and ()> posed on D,. Indeed, if we care only about data,
we see that the data John in relation ()1 of the LDB database (Q1(Ds) on
Figure 1.6 is contained in the set of the data {John, Kate} of Q2 posed in the
same instance Do, shown on Figure 1.7. Alas, tuple John with identifier 31, 2
on @Q1(D3) comes from both 11,2 and 21,2, while the tuple 41,1 with data
John on (QQy(Ds) comes only from 11,2. The semantics of LDB containment
defined in the original work on ULDBs and LDBs [BSH"08a| define that two

14

Information and Uncertainty Management Angelos Vasilakopoulos

Q2(D2)
ID Drives (name, car)
11,2 John, Mazda) ID Q2(name)
12,1 Kate, Honda) (41,1 K John >
(13,1 K Kate, Toyota)
ID Saw (witness, car)
212 Cathy, Mazda > Q2(name) :- Drives(name,car)
A41,1)={(11,2)}
(22,1)(Amy, Mazda) N42,1)={(12,1)}
A(43,1)={(13,1)}

A(21,2)={(11,2)}

Figure 1.7: Query Qo(z) : —Drives(x,y) posed on the Possible Instance Dy
of Figure 1.3.

LDBs are contained if for each tuple in the contained relation we have a tuple
with the same data in the containing relation and with lineage pointing to
the same tuples through its transitive closure. It is easy to see that, under
those semantics of LDB containment, (), is NOT contained in ()5 because
e.g. Q1(D2) is not contained in Qa(Ds) (nor in Q(D;)). To see this we
have that tuple 32,1 John of Q;(Ds) points to both 11,2 and 21,2, while
the transitive closure of the tuple John on Q2(Ds) points only to 11, 2.

On the other hand, as we pointed out, in some scenarios it will suffice that
if someone is a suspect then he should also be a driver, ignoring the lineage
information for LDB containment. Thus we present five different natural se-
mantics for LDB database containment and explore in which practical cases
each one is suitable. More specifically we define the following semantics of
database containment for databases with uncertainty and lineage: i) Data,
suitable if we only care about data, ii) CBase-Lineage, suitable in cases where
we want to preserve data reliability, iii) TR-Lineage which preserves unre-
liability, iv) SBase-lineage which requires same base lineage, and the more
strict v) Same-Lineage which requires exactly the same lineage. We give ex-
amples that illustrate why each different kind might be more suitable than
the others. We study the exact interrelationship among them as concerns
implication.

15

Information and Uncertainty Management Angelos Vasilakopoulos

When we turn back to ULDB database containment, we define that a
ULDB database is contained in another ULDB database if each of its Possible
Instances of the first is LDB contained to a respective Possible Instance of
the second. As a result, the five different semantics of LDB containment give
us five different semantics of ULDB containment. Furthermore we define
five new “equality” semantics of ULDB containment and we show that are
important for ULDB data integration purposes.

We then can move on and revisit the notion of query containment for
ULDBs by defining that a query ()7 is ULDB contained in a query @), if for
every ULDB database U, database @1(U) is ULDB contained in database
Q2(U). Again we have five different semantics on ULDB query containment,
following our LDB and ULDB database containment semantics.

We continue by investigating the complexity of the problem: We first find
which containment test should hold for each kind of the five ULDB query con-
tainment semantics. Even though the definition of ULDB containment relies
on the containment of its Possible Instances, we do not want a containment
test which expensively first computes all the (exponentially many) Possible
Instances of a ULDB. Rather we give a test on the queries themselves. As
we saw, the containment test of ordinary databases which is a containment
mapping from ()5 to ()1 not suffice for the LDB database containment se-
mantics of [BSH08a] and it does not suffice for all of our five semantics.
The complexity of this containment mapping is NP-complete [CM77]. In-
terestingly, we prove that even with the most strict kind of semantics that
require exactly the same lineage information in both contained and contain-
ing databases, the complexity of ULDB query containment for Connjunctive
Queries (CQs) remains NP-complete. In detail, the first two kinds of con-
tainment have the ordinary containment mapping test, while the last three
require a subgoal-onto containment mapping test. We continue and show
that testing query containment for Unions of Conjunctive Queries (UCQs) is
also NP-complete. Next we study the problem of query equivalence: For CQ
and UCQ equivalence we prove that the complexity is NP-complete for the
first two semantics and Graph-Isomorphism-complete for the last three. In
[ASUW10| another kind of containment for uncertain databases with no lin-
eage was discussed that was suitable for uncertain data integration purposes.
We define five new corresponding “equality” semantics of ULDB containment
and we show that are important for ULDB data integration purposes. The
complexity of checking conjunctive query containment under all these five
kinds of equality ULDB containment is NP-complete.

16

Information and Uncertainty Management Angelos Vasilakopoulos

1.2 A Motivating Example of Data Exchange
with Uncertainty and Lineage

After we investigated the query containment problem for Databases with
Uncertainty and Lineage (ULDBs), we can move on and investigate the
problem of query answering in a data exchange setting, which relies on
query containment. One of the reasons for which the ULDB data model
with uncertainty and lineage was created, was its application in the data
exchange problem |[BSH08a]. This problem has been studied in the re-
search for ordinary databases with no uncertainty nor lineage. It concerns
the problem of transforming data that are expressed in a source schema so
that they can be expressed through a target schema. The relation between
source and target schemas is expressed with a set of dependencies. Even
with ordinary databases with no initial uncertainty, the fact that source and
target schemas are heterogeneous creates uncertainty during the data ex-
change [FKMPO05, ALP08a]. It is hence expected to have higher complexity
and additional uncertainty when even the initial data are uncertain (and
moreover our model records lineage). One aspect of the data exchange prob-
lem concerns finding methods that can compute a target instance with poly-
nomial complexity that is useful on query answering for queries expressed on
the target schema. A second aspect concerns the definition and the seman-
tics of these answers, so that they contain useful information (such answers
are called certain answers). For ordinary databases it has been shown that
computing certain answers for conjunctive queries has polynomial complex-
ity if the dependencies between source and target schemas consist of a weakly
acyclic set of tuple generating dependencies (tgds) and of equality generating
dependencies (egds) [FKMPO05]. Certain answer computation is done through
an algorithm called chase which creates a target instance (called universal)
on which queries can be posed. Chase algorithm concerns the dependencies
between source and target schemas. Moving to a data exchange problem
in which source data have uncertainty and lineage we now have two kinds
of uncertainty: i) about which from the possible instances that the source
data represents is the true one and ii) uncertainty due to the heterogeneous
schemas. In this thesis: i) we introduce logical semantics for certain answers
for data with uncertainty and lineage, ii) we present a new u-chase algo-
rithm which extends the existing chase algorithms that was about ordinary
databases, iii) we use the u-chase algorithm that we presented and we show
that the complexity of computing certain answers for initial data with un-
certainty and lineage remains low, specifically polynomial (Ptime) like with
ordinary databases, when the set of source-to-target dependencies is a weakly

17

Information and Uncertainty Management Angelos Vasilakopoulos

acyclic set of tgds, while iv) when we also have a set of target egds then the
problem becomes NP-hard (unlike the ordinary case).

In more detail: Data exchange is the problem of translating data that
is described in a source schema to a different target schema. The rela-
tion between source and target schemas is typically defined by schema map-
pings. For ordinary databases with no uncertainty or lineage, it was shown
in [FKMPO5] that computing certain answers for conjunctive queries can be
done with polynomial data complexity if the constraints satisfy specific con-
ditions (are weakly acyclic). Recently the data exchange problem has been
widely investigated, even for various uncertain frameworks, e.g., probabilis-
tic [FKK10]|. One aspect of the problem is finding procedures that compute in
polynomial-time target instances that represent adequate (usually for query
answering purposes) information. A challenging problem that has received
considerable attention is the problem of giving meaningful semantics and
computing answers of queries posed on the target schema of a data exchange
setting [ALP08a, ALP08b, FKK10].

We present a data exchange framework that is capable of exchanging
uncertain data with lineage and give meaningful certain answers on queries
posed on the target schema. The data are stored in a database with un-
certainty and lineage (ULDB) which represents a set of possible instances
that are databases with lineage (LDBs). Hence we need first to revisit all
the notions related to data exchange for the case of LDBs. Producing all
possible instances of a ULDB, like the semantics of certain answers would
indicate, is exponential. We present a more efficient approach: a u-chase
algorithm that extends the known chase procedure of traditional data ex-
change and show that it can be used to correctly compute certain answers
for conjunctive queries in PTIME for a set of weakly acyclic tuple generating
dependencies (tgds). We further show that if we allow equality generating
dependencies (egds) in the set of target constraints then computing certain
answers for conjunctive queries becomes NP-hard.

More formally we have:

A data exchange problem (S, T, Xy, 3) consists of a source schema S, a
target schema T, a set ¥4 of source-to-target dependencies, and a set ¥; of
target dependencies.

The data exchange problem is the following:

Given a finite source instance I, find a finite target instance J such that
< I, J >=1UJ satisfies X and J satisfies ;. Such a J is called a solution
for I.

We can now start from an Data Exchange example for ordinary databases
and build up a similar database with lineage (LDB) and another similar

18

Information and Uncertainty Management Angelos Vasilakopoulos

Source S Target T
Saw (witness, car) Suspects&Dates (suspect, date)

< Cathy, Peugeot > (Hank, 27/09/2011)
(> (Hank,28/09/2011)

Amy, Peugeot

C Hank, 29/09/2011 D
Drives(person, car)

Hank, Peugeot

Suspects&Dates (suspect, date)
Jimmy, Renault
Hank, d1
‘ Billy, Citroen
\ / Universal Solution

Figure 1.8: Data Exchange example with ordinary databases and
the tgd dependency ¢ : Saw(witness,car), Drives(p,car) — D
Suspects& Dates(p, D).

database with uncertainty and lineage (ULDB) Data Exchange Example, to
illustrate the new challenges:

FExample 2. Suppose we have the ordinary source database S shown on Fig-
ure 1.8 and the set of dependencies consists of the single tgd:

¢ : Saw(witness, car),Drives(p, car) — 3D Suspects&Dates(p,D).

In this Data Exchange setting, there exist infinite possible solutions. There
exist a finite solution which represents all infinite possible solutions. Such a
solution is called a universal solution. One universal solution Suspects& Dates
is shown again in Figure 1.8. The value d; is a null value that can take any
value. The tuple (Hank,d;) represents a set of infinitely many solutions,
some of them are also depicted on Figure 1.8. The reason that we have un-
certainty even in this case that we started with ordinary data arises from the
heterogeneous schemas between the source and the target instances. This
kind of uncertainty is represented with the null value d;.

Consider now the very similar LDB data exchange scenario shown on Fig-
ure 1.9. When moving to LDBs, the ordinary universal solution Suspects&
Dates with only one tuple (Hank,d;), even though it represents an infinite
number of tuples, is not suitable. The reason is that a tuple (Hank,d;) can
be generated from the tgd dependency with two ways: i) From the com-

19

Information and Uncertainty Management Angelos Vasilakopoulos
Saw (witness, car)

(11 (Cathy, Peugeot)
(12 K Amy, Peugeot) Suspects&Dates (suspect, date)

(31 K Hank, d1 >
Drives(person, car)

21 | Hank Peugeot) A31)= {11, 21} or {12, 21} 222
Jimmy, Renault) Not a suitable Solution
' for LDBs
Billy, Citroen)

Figure 1.9: LDB Data Exchange example with the tgd dependency £ :
Saw(witness, car), Drives(p,car) — 3D Suspects& Dates(p, D).

bination of tuples 11 and 21, i.e., (Cathy, Peugeot) and (Hank, Peuogeot)
and ii) From the combination of tuples 12 and 21,i.e., (Amy, Peugeot) and
(Hank, Peuogeot). Remember that LDBs capture where data comes from
through lineage. If we use the ordinary universal solution with only one tuple
(Hank, d;) we would not know which lineage to make it to point to.

The problem becomes even more complicated when having a ULDB source
instance with both uncertainty and lineage. As we have said, a ULDB in-
stance represents a set of LDBs which are its Possible Instances (PIs). Uncer-
tainty is represented with alternative values. As a result a ULDB universal
solution will now have two kinds of uncertainty:

e uncertainty about the possible instances that this source has (repre-
sented with alternatives and with lineage’s logical restrictions)

e uncertainty that arises due to heterogeneous source and target schemas
(represented with null values).

Hence, we need first to revisit the notion and give suitable semantics of
tuple generating dependency - tgd satisfaction and of a universal solution for
LDBs and ULDBs. Consider the ULDB Data Exchange example with the tgd

20

Information and Uncertainty Management

Angelos Vasilakopoulos

ID

11

Saw (witness, car)

Cathy, Peugeot 1l

Suspects&Dates (suspect, date)

Q(suspect)

I Hank, d1) ([Hank)
12 Amy, Citroen |l
Amy, Peugeot 32
33 Billy, d3 Billy 2
ID Drives(person, car) 34 K Hank, d4 Hank)?
21 Hank, Peugeot A(B1,1)={(11,1),(21,1)} A@1,1)={(11,1),21,1)}
A(82,1)={(11.2),(22,1)} A42,1)={(11,2),(22,1)}
(22 KJimmy, Renault) A33,1)={(12,1),(23,1)} A(43,1)={(12,1),(23,1)}
A34,1)={(12.2),(21,1)} A(44,1)={(12,2),(21,1)}

(23 K Billy, Citroen)

Figure 1.10: ULDB Data Exchange example with the tgd dependency ¢ :
Saw(witness, car), Drives(p,car) — 3D Suspects& Dates(p, D) and
Q(suspect) :- Suspects& Dates(suspect, date)

dependency ¢ : Saw(witness, car), Drives(p,car) — 3D Suspects& Dates
(p, D) on Figure 1.10. The source ULDB instance has 4 Possible Instances,
2 x 2 for the two alternative choices of x-tuples 11 and 12. We want to
make sure that that a universal solution has the following property: for each
Possible Instance of the source target, there exists a corresponding Possible
Instance of the universal solution such that together they LDB satisfy the
dependency £. Hence we need to first to investigate and define the LDB data
exchange problem.

It is important to note that with ULDBs we cannot totally ignore lineage:
Since a tgd generated tuples we have to make sure that a generated tuple
will coexist in the correct/same Possible Instance. Thus, the data exchange
notions will correspond to the LDB database containment semantic that re-
quires contained base lineage. We further show that we can extend the known
chase algorithm which was used for ordinary data exchange and present a
new u — chase algorithm that can compute ULDB universal solutions. Our
u-chase algorithm has the correct semantics without having to exponentially
compute all the Possible Instances of a ULDB. We define meaningful certain
answers for queries posed on the target ULDB solutions. We show that the
output of u-chase can be used to compute ULDB certain answers. The ex-
pected UDLDB universal solution and the ULDB certain answers for query
Q(suspect) :- Suspects& Dates(suspect, date) are shown on Figure 1.10.

Finally, rather surprisingly, we prove that u-chase can be used to compute

21

Information and Uncertainty Management Angelos Vasilakopoulos

meaningful UDLB certain answers for conjunctive queries in polynomial time
(Ptime), when the set of dependencies is a set of weakly acyclic tgds. So
the computational complexity in this case remains the same as with ordinary
databases. In contrast we prove that if the dependencies also contain equality
generating dependencies (egds), the problem for ULDBs becomes NP-hard.

1.3 Efficient Query Computing when Combin-
ing Uncertainty, Lineage and Possibilities

For the problem of attaching belief values on uncertain data, if these
values are probabilistic, then computing answers of conjunctive queries is a
problem with high complexity #P [DS04, GT06, RPT11, STW08]. In con-
stant we propose attaching belief values that come from a possibility distribu-
tion. The qualitative nature of possibilities, in contrast with the quantitive
nature of probabilities, make them suitable for the kind of uncertainty that
is described in the ULDB model for data with uncertainty and lineage. One
important open problem of possibilities is that models with uncertainty and
possibilities (and no lineage) is not closed on conjunctive queries. In con-
trast, we show that when we have the model with uncertainty, possibilities
and lineage (i.e., ULDB with attached possibilities in the alternative values)
is closed on conjunctive queries. In addition we also show that computing
possibility values of the answers of conjunctive queries has low polynomial
complexity (Ptime), which makes them more preferable than probabilities
also for complexity reasons.

1.4 Computing Efficient Lineage for Aggregate
Queries on Big Data

The problem of being able to efficiently compute out of big data which part
is important is one of the main challenges of modern systems [oral3a, oral3b].
Many organisations have the infrastructure to maintain big structured data
and need to find methods to efficiently discover patterns and relationships and
to derive intelligence. Another growing fast application where data analytics
are used to explain data is data debugging which allows us to find incorrect
data [MGNS11, MBM13]. Data may come from different, even heterogeneous
sources, with ways unknown to the final user and thus often includes errors.
How to find in which part of the data these errors exist, is an essential
problem for modern companies.

22

Information and Uncertainty Management Angelos Vasilakopoulos

Lineage records from where data comes from. For select-project-join SQL
queries, lineage stores the set of all tuples that were used to compute a tuple
in the answer of the query [BSH"08al. This is natural for select-project-join
SQL queries where original attribute values are “copied” in attribute values
of the answer. However, in an aggregate query the value of the answer is
the result of applying an aggregate function over many numerical attribute
values. When we want to understand why we get an aggregate answer it may
no longer be important or feasible to have lineage to point to all contributing
original tuples and their values. We would rather want to compute few values
that can be used to tell us as much as possible about the origin of the result
of an aggregate query.

Storing the complete lineage can be very expensive, especially when deal-
ing with big data. We study efficient query computing for aggregate queries
and specifically for SUM queries posed on big data. We show that we can
compute a suitable small useful lineage, called Aggregate Lineage that can
be used, instead of the initial big data, for the answer of any aggregate SUM
query, even when we do not know the query when we compute the small
Aggregate Lineage. For example, we show that for an initial big dataset
with one million tuples, we can compute a small Aggregate Lineage with size
less than nine thousand tuples. It is important to note that an Aggregate
Lineage can be computed once and be suitable for all possible SUM queries
of any possible subset of the initial big data. Aggregate Lineage is computed
without having knowledge of the SUM queries that are going to be posed.
Specifically we present an Algorithm Comp-Lineage that computes in poly-
nomial time a small Aggregate Lineage whose size is independent of the size
of the initial big data. We also prove that this small Aggregate Lineage can
be used to approximate well any SUM query and with time complexity de-
pending only with its small size and hence in time independent of the initial
big-sized data. As an example, when the initial data has 10° tuples an Ag-
gregate Lineage with only < 9,000 tuples can be used to approximate well
(with relevant error less than 10%) and with very high probability (i.e., error
probability less than 107%) any sum that can involve any subset of the initial
big dataset, if the sum in question is large (larger than the 0.4 of the total
sum). We show that Aggregate Lineage includes the most possible informa-
tion about initial data, given its small size, and that this information can
be used in the important application of data debugging. For example, it can
indicate why the answer of a SUM query is very large, larger than expected.
These indications are, for example, approximately which of the initial data
are responsible for this very large answer, even though we are only using the
small Aggregate Lineage and not the initial big data.

23

Information and Uncertainty Management Angelos Vasilakopoulos

subset from Salaries (EmplD, Department, Sal)

(1100, Selling, 1,000,000)
(1200, Accounting, 10,000,000)

6
~10
tuples

1,000,010, Selling, 1,000,000

1,000,100, Accounting, 10,000,000

Figure 1.11: SUM (Sal) ~ 10'2. Infeasable to have lineage A pointing to
~ 10° tuples.

FExample 3. Suppose that the accounting department of a big company main-
tains a database with a relation Salaries with ~ 10° tuples. Each tuple in the
relation contains an identifier of an employee stored in attribute EmplID,
his Department stored in attribute Department and his annual salary stored
in attribute Sal. A subset of Salaries relation is shown on Figure 1.11. If
we query for the SUM of all Sal values, then the lineage of the answer would
point to all ~ 10% tuples. In addition if we wanted to be able to have lin-
eage that explains answers of all possible, even unknown, queries over the
data then a naive approach would be to also keep all data. This approach
of keeping the complete lineage is inefficient and can become even infeasable
when dealing with big data.

For aggregate queries we would rather want to keep few representative
values which can be used to tell us as much as possible (approximately)
about the origin of an aggregate query answer. Suppose that we want to
understand why we get an unexpectedly large answer to an aggregate SUM
query. If the unexpectedly large answer is a result of tuples with few “very
large” values and some “small” ones in the aggregated attribute then keeping
only the few tuples with the “very large values” can provide the necessary
information to understand why we get this large answer. On the other hand,
if the unexpectedly large answer was a result of too many small values, we
would like to be able to say that this large sum was due to the summing of
many small values (and approximately which such values and how many).

24

Information and Uncertainty Management Angelos Vasilakopoulos

Going back to our example, other relations can be extracted from the
relation Salaries, e.g., a relation which contains aggregated data such as the
total sum of salaries of all employees. A user is trying to use the second
relation for decision making but he finds that the total sum of salaries is
unacceptably high. He does not have easy access to the original relation or he
does not want to waste time to pose time-consuming queries on the original
big relation. The error could be caused by several reasons (duplication of
data in a certain time period, incorrect code that computes salaries in a new
department). Thus, if for example we could find the total sum of salaries for
employees in the toy department, and see that this is unreasonably high, still
close to the first total sum of all employees’ salaries, then we will be able to
detect such errors and narrow them down to small (and controllable) pieces
of data.

We propose to keep as Aggregate Lineage a small relation under the same
schema of the original relation. In order to select which tuples to include, we
use valued-based sampling with repetition, i.e., weighted random sampling
where the probability of selecting each tuple is proportional to its value on
the summed attribute. The intuition why this method works is the following:
Larger values contribute more to the sum than smaller ones, thus we expect
that tuples with larger values should be selected more often than tuples with
smaller values. Hence, we could end up with a tuple selected many times in
the sample even if it appears only once in the original data. On the other
hand, if there are many tuples with values of moderate size, many of them
will be selected in the Aggregate Lineage, so that their total contribution to
the approximation of the sum remains significant.

We illustrate the properties of Aggregate Lineage in our example. Sup-
pose, for the sake of representation, that our initial big relation Salaries has
tuples that can be divided into five groups according to their salary values:
e.g. 100 employees have salary 10°, 10® employees have salary 10%, etc. This
salary distribution is shown on Figure 1.12. As we said each tuple can be
selected many times in Aggregate Lineage and the higher the salary value,
the more probable it is for this tuple to be selected. We compute an Aggre-
gate Lineage with only at most 8,852 tuples out of the original ~ 10° - we
give more details on Chapter 6. On Figure 1.13 we give the probabilities of
selection in Lineage for the original tuples in the five salary groups. In Figure
1.14 we see how many times each tuple is selected: For example the original
100 tuples with salary values 10° are selected in the Aggregate Lineage 681
times (each tuple is selected many times). Thus we have in the Aggregate
Lineage 100 tuples that correspond to the 100 original tuples with salaries
10°. Each of these 100 tuples is selected in Aggregate Lineage many times
(specifically 3 — 11 times). This value of how many times a tuple is selected

25

Information and Uncertainty Management Angelos Vasilakopoulos

is represented in a new attribute F'r (for Frequency) in the Aggregate Lin-
eage. Figure 1.15 has the details for this first group: We have 5 tuples in
Aggregate Lineage that were selected 3 times, so with frequency 3. We also
have 10 tuples with frequency 4, etc. In total we have from the first group
100 tuples in the Aggregate Lineage with frequencies 3 — 11 that correspond
to the 681 times that tuples from this group were selected with repetition
(35+4-10+519+6-14+ 7134+ 815+ 9-8 +10- 12+ 11-4 = 681). As
we see in Figure 1.14, Aggregate Lineage selected 100 out of the 100 original
tuples from the first group, 497 out of the 1,000 from the second group of
tuples with original salary values 10%, 681 tuples out of the 10,000 original
tuples from the third group and only 6,809 tuples out of the 10° original
tuples from the fourth group, while selects none of the 10 tuples with low
salary 103. Hence, Aggregate Lineage has < 9,000 tuples out of the original
~ 10°. Nevertheless this small Lineage can approximate well and explain all
possible large SUM queries. Aggregate Lineage is a new relation with the
same set of Attributes like the original Salaries relation plus a new attribute
F'r which stores the frequencies of selection. To illustrate its creation, in Fig-
ure 1.16 we suppose that the tuple with identifier 32 of is selected 3 times in
Aggregate Lineage.

How can we use the Aggregate Lineage in order to approximate well large
sums and to debug large answers? On Figure 1.17 we see the properties of
the final Aggregate Lineage. The reason Aggregate Lineage can be used to
approximate well large sums is the following: We can “intelligently” use the
frequency of each tuple of the Lineage to compute a suitable approximated
answer for the salary. Note that out of the ~ 10% original tuples, the Ag-
gregate Lineage of our example selects only 8,087. So we have to suitably
“increase” the approximated salary value of some of the selected tuples in
the Aggregate Lineage in order to still be able to approximate large sums
out of it. The approximated salary value Sal’ is given from the equation:
Sal' = Fr - S/b, where Fr is the frequency of a tuple in the Aggregate Lin-
eage, S is the total sum and b is an upper bound of the tuples that the
Aggregate Lineage can have (in our case we have b = 8,852 - we give more
details on Chapter 6).

Tuples with original large salary values, i.e., 10 are selected with a fre-
quency > 1 (c.f. Figure 1.17). Their approximated salary value that is com-
puted from Aggregate Lineage in order to approximate sums, ranges from
3-S/b=4.41 x 10® to 11-S/b = 1.62 x 10°. We see that their approximated
value is close to the original large one.

Now if we move to the group of the 10%original tuples with salary values
10°, we have that only 6,809 of them are selected in Aggregate Lineage, all
with frequency 1. The approximated salary value for them that is computed

26

Information and Uncertainty Management Angelos Vasilakopoulos

‘ Number of Employees ‘ Salary ‘

102 10”
10° 108
10* 107
10° 10°
10° 10

Figure 1.12: Salary distribution of our example.

from Aggregate Lineage in order to approximate sums, is given from 1- S/b =
1,47 x 10%. We see that their approximated value is increased from their
original value of 10° to 1,47 x 108.

Suppose that we have a SUM query ()1 asking the sum of the salaries of a
subset of the employees of the company defined from a subset of EmplD’s.
Let this subset consist of 50 employees with salary 10%, 5,000 employees with
salary 107 (so half of them) and of all 10° employees with salary 10°. We
compute the query over Salaries and take the exact answer Q; = 1.1 x 102

The sub-lineage of @)1, that is the lineage of)1 when is posed on the
small Aggregate Lineage, points to 50 of the tuples of the Aggregate Lineage
that correspond to original tuples with salaries 10° and to all 6,809 tuples
with original Sal values 10°. It will also point to some tuples of the Lineage
that had original Sal values 10”: On average query @, is applied on half of
the 681 selected in Aggregate Lineage tuples, but in extreme cases it may
include all or none of them.

In one worst case query)1 will include: the 50 tuples with original salaries
10° from Aggregate Lineage tuples with the larger frequencies and all 681
selected tuples with original salaries 107. The approximation @} in this case
is (411 4+ 1210+ ... + 681 + 6,809)S/b = 7,935- S/b = 1.17-10'2. In the
other extreme case (J; includes tuples with the smaller frequencies and none
of the selected in Aggregate Lineage tuples with salaries 107, yielding the
approximation 6,995-S/b = 1.03- 10'2. We see that @ is well approximated.
Of course the approximation bounds are not the same for every SUM query
- we present the guarantees on Chapter 6.

27

Information and Uncertainty Management Angelos Vasilakopoulos

‘ Number of Employees ‘ Salary ‘ Probabilities ‘

102 10? 7.69-1071
103 10® 7.69-107°
10 107 7.69-107°
10° 10° 7.69-1077
10° 10 7.69-10712

Figure 1.13: The probabilities of selecting tuples.

tuples Selected | # tuples
in Salaries | Salary | Probabilities | # times | in Lineage
100 107 7.69-10~% 681 100
1,000 108 7.69-107° 681 497
10, 000 107 7.69-107° 681 681
10° 100 7.69-10~7 6,809 6,809

103 10 7.69-10712 0 0

Figure 1.14: How many times each tuple is selected and the number of tuples

in the Aggregate Lineage from each group.

tuples Selected | # tuples
in Salaries | Salary | Probabilities | # times | in Lineage
| 100 | 10° [7.69-100* | 681 [100
of Tuples | Frequencies F'r | # of Tuples with
in Lineage in Lineage this F'r in Lineage
3 5
4 10
5 19
6 14
100 7 13
8 15
9 8
10 12
11 4

Figure 1.15: The first group with 100 tuples with original salaries 10°

and how it is represented in Aggregate Lineage.

28

Information and Uncertainty Management Angelos Vasilakopoulos

ID Salaries (EmplID, Department, Sal)

(1100, Selling, 10)
30 | 1200, Accounting, 10°) :Selected

ID L salaries.Sal (EmpID, Department, Sal, Fr)

(32)(1200, Accounting, 108, 3)

Figure 1.16: From original data to Aggregate Lineage.

1.5 Optimising 2-Way Joins with Skewed Big
Data on MapReduce

When dealing with big data, one approach to make efficient computations
is to use the parallel environment MapReduce. The main challenges on this
environment are: i) to define algorithms suitable for MapReduce parallelism
paradigm and ii) handle efficiency that is critically reduced when we have
data skew. In such a case a single node may be responsible for the biggest
part of the total computation and this can significantly slow down the total
computation, making it inefficient and close to the time needed if we had no
parallelism at all. We present a new algorithm that is suitable for MapRe-
duce and computes a 2-way Join and can efficiently handle data skewness
in contrast with existing algorithms. We further prove that our algorithm
has the least possible communication cost. Finally we implement the al-
gorithm in Java language using MapReduce’s open source project Hadoop.
Our experiments match the theoretical ones about the minimisation of the
communication cost.

29

Information and Uncertainty Management Angelos Vasilakopoulos

Sal: | # of Tuples Total # of Tuples Fr | # of Tuples with | Sal: Values Fr-S/b
0.V. | in Salaries || in Aggregate Lineage Fr in Aggregate Lineage
3 5 3.5/b=4.41 x 10°
4 10 4-5/b = 5.87 x 10°
51 19 5-S/b="T.34x 108
6 14 6-S/b=8.81 x 10°
10° 100 100 7 13 7-5/b=1.03 x 10°
8 15 8 8/b=1.17 x 10°
9 8 9-58/b=1.32 x 10°
10 12 10-S/b=1.47 x 107
11) 11.5/b = 1.62 x 10°
1 347 S/b=1.47 x 10°
3 2 123 2-S/b=2.94 x 10°
10 1,000 497 3 20 3-5/b=4.41x10°
4 7 4-58/b=5.87 x 10°
107 10,000 681 1 681 S/b =147 x 10°
10° | 1,000,000 6,809 1 6,809 5/b=1.47 x 10°
10 1,000 0 0 0 0

Figure 1.17: Properties of an Aggregate Lineage with 8,087 tuples. The
first two columns describe the data. The next three columns describe the
Aggregate Lineage relation. The last column shows how we use this lineage
to compute sub-sums.

1.6 Summary of the thesis
The main contributions of this thesis are:

e Chapter 2: The preliminaries of our work are given, which include the
technical details of the ULDB model for databases with Uncertainty
and Lineage. This model is initially defined in [BSH*08a].

e Chapter 3 [AV10b]: Study and analysis of the query containment and
query equivalence problems for databases with uncertainty and lineage:

— Presentation and definition of five new kinds of semantics for
database containment with uncertainty and lineage.

— Proof that the complexity of query containment for databases with
uncertainty and lineage and for conjunctive queries (CQs) remains
NP-complete as it is with ordinary databases for all five new kinds
of containment semantics.

— Proof that the complexity of query containment for databases
with uncertainty and lineage and for Unions of conjunctive queries
(UCQs) is also NP-complete.

30

Information and Uncertainty Management Angelos Vasilakopoulos

— Proof that the complexity of query equivalence for databases with
uncertainty and lineage for CQs and UCQs is also NP-complete
for the first two kinds of ULDB database containment and Graph-
Isomorphism-complete for the last three.

— Finally we define five new “equality” semantics of ULDB contain-
ment and we show that are important for ULDB data integration
purposes. The complexity of checking conjunctive query contain-
ment under all these five kinds of equality ULDB containment is
NP-complete.

e Chapter 4 [AV10a]: Study and analysis of the data exchange problem
for databases with uncertainty and lineage:

— Presentation and definition of new logical semantics of certain
answers for data with uncertainty and lineage.

— Presentation of a new u-chase algorithm that extends the known
chase algorithm which is about ordinary databases.

— Proof that the new wu-chase algorithm can be used for query an-
swering for conjunctive queries with the complexity of computing
certain answers that remains low, i.e. polynomial time (Ptime),
as with ordinary databases when the set of dependencies between
the source and the target schema is a weakly cyclic set of tuple
generating dependencies- tgds.

— Proof that when we also have target (equality generating depen-
dencies - egds) then the problem of query answering for databases
with uncertainty and lineage becomes NP-hard (in contrast with
ordinary databases).

e Chapter 5 [VK11]: Study and analysis of the problem of query comput-
ing for conjunctive queries for databases with uncertainty and lineage
when we attach belief values to uncertain data that come from a pos-
sibility distribution:

— Proof that the model of databases with uncertainty and lineage
and with possibilistic values is closed for conjunctive queries. This
result solves the problem of previous results that show that models
with uncertainty and possibilities (but no lineage) are not closed
for conjunctive queries [BP05].

— Proof that in the model of databases with uncertainty and lineage
and possibilities we can compute conjunctive queries (along with

31

Information and Uncertainty Management Angelos Vasilakopoulos

their possibility values) with low polynomial complexity (Ptime)
in contrast with the high complexity #P of existing approaches
where uncertainty values are probabilistic [DS04, GT06, RPT11,
STWOS].

e Chapter 6 |[AFV14]: Study and analysis of the problem of efficient
computing aggregate queries and specifically SUM queries, posed on
big data using a small useful lineage instead of the initial big data:

— Presentation of a new Algorithm Comp-Lineage which computes
in polynomial time an Aggregate Lineage with small size that is
independent of the size of the initial big data.

— Proof that this small Aggregate Lineage can be used to approxi-
mate well any SUM query whose value is large, with time complex-
ity that depends only on the small size of the Aggregate Lineage
and hence independent with the large size of the initial big data.

e Chapter 7 [AUV]: Study, analysis and implementation in the parallel
environment MapReduce of computing 2-Way Joins for big data that
may also be skewed:

— Presentation of a new algorithm, suitable for MapReduce, which
computes 2-Way Joins and can efficiently handle data skewness in
contrast with existing algorithms.

— Proof that our algorithm matches the lower communication cost
bound.

— Implementation in Java/Hadoop of our algorithm with experi-
ments whose communication cost verifies the theoretical cost.

32

Chapter 2

Preliminaries: The ULDB Model
for Databases with Uncertainty
and Lineage

In this Chapter we give the preliminaries of our work , which include
the technical details of the ULDB model for databases with Uncertainty and
Lineage. This model is initially defined in [BSH"08a].

2.1 Databases with Lineage -LDBs

LDBs extend the relational model in the way that apart from a set of
relations R they also consist of a set of identifier symbols S and of lineage
A. In detail, lineage points to other tuples from which a tuple has been
derived. To enable such pointing, tuples in LDBs come with an identifier.
So we attach to each tuple in every relation a unique identifier. The set
I(R) contains all identifiers of relations R. The definition of a database with
lineage (LDB) is now the following:

Definition 1 (Database with lineage LDB). [BSH*08a] An LDB D is a
triple (R, S,), where: R is a set of relations Ry,...,R,. Each R; is a
multiset (bag) of tuples. We attach a unique identifier 7 D(t) to each tuple

t in the database, and I(R) denotes all identifiers in relations Ry, ..., R,.

The set of symbols containing /(R) and any possible external identifiers is
S. With A we denote the lineage function from S to 2.

Note that the lineage A is a function from the set S of identifier symbols
to the powerset of S. In general a tuple t*”” in an LDB relation consists
of: its identifier symbol, its data ¢ and its lineage. We have the following
definition:

33

Information and Uncertainty Management Angelos Vasilakopoulos

Definition 2 (LDB tuple). A tuple t*PZ of an LDB D = (R, S, \) consists of
three things: i) its data ¢ which belongs to a relation in the set R of relations,
ii) its unique identifier symbol denoted as I D(t) and belonging to the set S
of symbols and iii) its lineage A\(/D(t)) (belonging to \) which associates it
with the set of the identifiers of tuples from which it is derived. Thus t*P?
is a triple (ID(t), t, M(ID(1))).

When a tuple’s identifier is clear from the context, we may abuse the
above notation and refer to an LDB tuple only with its identifier 1D (i.e.,
denote its lineage as A(ID)). Alternatively, we may say that we want to have
an LDB tuple with data ¢ and lineage A(t) present in our database, when
confusion does not arise. We refer to the data part of an LDB tuple t“PP
simply with the term tuple t of an LDB.

We now give the definition of the widely used class of Conjunctive Queries,
which covers the SELECT,PROJECT,JOIN subset of SQL:

Definition 3 (Conjunctive Query - CQ). A conjunctive query (CQ) over a
schema R is an expression of the form Q(z):-¢(z,), where Z and § are sets
of constants or variables. Q(Z) is called the head and ¢(z,y) is called the
body of the query. An atomic formula has the form R,,(t1, ..., t,) where R,,
is a relation symbol of a relation with arity n and each t; is a variable or a
constant. The body ¢(z,y) is a conjunction of atomic formulas which are
also called subgoals of the query. Duplicate atoms in the body of the query
are removed.

Unlike traditional databases, the result Q(D) of computing a query @) on
an LDB D includes the original LDB relations along with the new relation
that is the answer to the query. The reason for including original relations
is the fact that the tuples in the query answer have lineage pointing back to
them. Also in the answer of a query posed over an LDB we can have two
alternatives with the same data if they have different lineage (so we can have
a bag of tuples). We have the following algorithm:

Algorithm 1 (Computing CQs over LDBs) [AV10a, BSHT08a|. Let
D = {R,S,\} be an LDB instance and @ a conjunctive query. A homomor-
phism h is a mapping from constants and variables to constants and variables
such that each constance ¢ is mapped to itself, i.e. h(c) = ¢. The answer of
query @ posed on D is the LDB database Q(D) that we get when we take
all the LDB relations of D and add to them an LDB relation R which will
have:

a) tuples that are created when there exists a homomorphism A that maps
variables occurring in () to constants such that the following three hold:

34

Information and Uncertainty Management Angelos Vasilakopoulos

1. h maps all the variables of () to constants occurring in the tuples of D.
2. If R;(%,y) is an atomic formula of the body of @ then R;(h(Z), k(7)) is a
tuple of D.

3. If the head of @ is Q(Z), then the tuples in relation Rg will have data
t = h(z) with data that we get from the head of () when we substitute con-
stants for variables in the body of) and require that all subgoals become a
tuple of D, and

b) lineage the union of the identifiers of all LDB tuples that are the images
under A of the subgoals of the body of @) in step a.

We attach to each created tuple in Ry a new unique identifier. The set of
identifiers in R is denoted with I(Rg).

To illustrate the above algorithm an example of computing a conjunctive
query over an LDB:

Ezample 4. Let us consider the second possible instance of ULDB U of ex-
ample 1 which is shown in Figure 1.3 on Chapter 1. Since Dj is a possible in-
stance it is an LDB. Consider again conjunctive query Q,(z) : —Drives(zx,y),
Saw(z,y). The result Q1(Dy) of posing Q1 over LDB Database D is shown
in Figure 2.1.

We note that in Definition 1 an LDB relation is a multiset (bag) of tuples.
In Figure 2.1 LDB relation R¢; has tuple John twice. This is semantically
correct because John with identifier (31, 2) comes from tuples (John, M azda)
(with identifier (11,2)) and (Cathy, Mazda) (with identifier (21,2)), while
John with identifier (32,1) comes from tuples with identifiers (11,2) and
(22,1). This difference in the origin is stored in the different lineage of tuples
(31,2) and (32,1). As a result it is natural to allow duplicate tuples in
LDBs if they have different lineage: now an LDB “remembers” where a tuple
comes from and distinguishes two tuples with same data if they resulted from
different tuples. In contrast a database with no lineage would only contain
one tuple with data John in the answer of). Intuitively query ()1 would
mean for ordinary databases: return all the suspect names resulting from
tuples in Saw and Drives. In contrast for LDBs query ()1 means: return all
the suspect names resulting from different sets of tuples of Saw and Drives.

2.2 Databases with Uncertainty and Lineage -
ULDBs

A ULDB is an LDB with uncertainty. So again it will contain a lineage
function A and identifier symbols belonging to a set S. The difference is that

35

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car) |
11,2 John,Mazda
12,1 Kate,Honda
13,1 Kate, Toyota
| ID | Saw(witness,car) |
21,2 Cathy,Mazda
22,1 Amy,Mazda
A(21,2) = {(11,2)}
31,2 | John
32,1 | John
{(11,2),(21,2)}
{(11,2), (22, 1)}

l\:)}—‘

A(31,2)
A(32,1)

Figure 2.1: LDB Q1(D3): Result of posing Q)1 over LDB Ds.

instead of ordinary tuples it will consist of x-tuples and its identifiers will
also refer to alternatives. Uncertainty is encoded in these alternatives: for
each x-tuple only one of them (or none if we have a ’?’ symbol) can be true
in a possible instance, i.e., we have mutual exclusion between alternatives of
a same x-tuple. We have the following definition for ULDBs:

Definition 4 (ULDB). [BSH*08a] A ULDB D is a triple D = (R, S, \),
where R is a set of relations that consist of x-tuples which are a multiset
(bag) of tuples called alternatives. The set S contains:

i) x-tuple identifiers which are unique numbers.

ii) alternative identifiers which are pairs of the form (i, 7) where 7 is an x-
tuple identifier and j points to the j-th alternative of x-tuple 4, and

iii) possible external x-tuple and alternative identifiers. The lineage A is a
function from S to 2°. Each x-tuple can also be annotated with a ’?” symbol
which denotes that there exist a possible instance which contains none of the
alternatives of this x-tuple. Such an x-tuple is called a “maybe” x-tuple.

We call all alternatives that have empty lineage as base data. The base
lineage of an alternative will include all the base alternatives that exist in its
unfolded lineage back to base data:

Definition 5 (Base data, Base lineage, Transitive closure of lineage). Let
U= (R,S,\) be a ULDB. We refer to all alternatives in S that have empty
lineage as “base data”. Since the lineage A(t) of an alternative with data ¢

36

Information and Uncertainty Management Angelos Vasilakopoulos

refers to other alternatives, we can expand the lineage of each alternative
occurring in A(t) back to some base alternatives. With A*(¢) we denote the
transitive closure of lineage, i.e., the set of all identifiers that we encounter
when we expand A(f) until we reach a set of base data identifiers. We call
base lineage, denoted with Ap(t), the subset of the unfolded lineage of an
alternative with data t that contains only base alternative identifiers.

To illustrate the above notions let us suppose that we pose query
SuspectsIn formation(name, car):-Drives(name, car), Saw(witness, car)
on our running ULDB U of example 1 on Chapter 1. The result will be
a ULDB U along with relation Rgyspectsinformation 11 Which there exists one
alternative with data (John, Honda) coming from alternatives (11,1) and
(21,1). Let its ID be (31,1). Suppose that over this result we then pose
query SuspectsCars(car):-SuspectsIn formation(name, car). In new rela-
tion Rgyspectscars there exists one alternative with data (Honda) coming from
alternatives (31,1). Let its ID be (41,1). The lineage of alternative (41, 1)
in Rguspectscars 18 A(41,1) = {(31,1)}. Alternative (31,1) is not base, so we
can expand (31, 1) to its lineage in Rgyspectsin formation, S0 to {(11,1),(21,1)}.
Now (21, 1) points to base (11, 1). Hence we have that the transitive closure
of A\(41,1) is A*(41,1) = {(31,1),(11,1),(21,1)}. The base lineage of (41, 1)
is Ap(41,1) = {(11,1)}.

We give the semantics of a ULDB as representing a set of possible in-
stances, where each instance is an LDB:

Definition 6 (Possible instances). [BSHT08a] Let D = (R, S, \) be a ULDB.
A possible LDB Dy, of D is obtained as follows. Pick a set of symbols Sy C S
such that:

o If (i,7) € Sk, then for every j' # j, (i,5") & Sy.

o V(i,j) € Sk, A(7,75) C Sk.

e For any t; such that there does not exist a (7,7) € Sk, the following
hold: (i) ¢; is a maybe x-tuple, and (ii) V(¢,j) € t;, either A(i,5) = 0 or
A(i.j) Z S ’)

The possible LDB Dy, is the triple (Ry, Sk, Ax) where Ry, includes exactly
the alternatives of x-tuples in R such that (i, j) € Sy, and)\ is the restriction
of A\ to Sj.

Intuitively, the first condition in Definition 6 captures the semantics of
alternatives of a same x-tuple: they are mutually exclusive and thus only one
of them can appear in a possible instance. The second condition concerns
lineage semantics. If an alternative is present in a possible instance, so must
be the facts from which it was derived. The third condition says that one
of the alternatives of an x-tuple must be selected and appear in a possible

37

Information and Uncertainty Management Angelos Vasilakopoulos

instance unless: (i) x-tuple has an ‘7’ and (ii) none of its alternatives has
(nonempty) lineage that would make it to appear due to condition 2 (in this
case ‘7" will be selected for this maybe x-tuple). Figures 1.2 and 1.3 on
Chapter 1 show the two possible instances of ULDB U of Example 1.

In our definitions so far the lineage of a ULDB can be arbitrary and
nonintuitive. Consider for example the ULDB of Figure 2.2. According to
Definition 6 one possible instance is the one that selects alternatives (11, 1)
and (21,1). A second possible instance selects again (11,1) and this time
selects (21,2). The third possible instance is empty for both relations. The
previous definition allows (11, 1) to be selected in a possible instance without
having both (21,1) and (21,2) (that have their lineage equal with (11,1))
to appear in it. This is why the second condition implies that when the lin-
eage of some alternatives is present in a possible instance we do not always
have that all such alternatives will also be present. On the other hand if
the lineage of some alternatives of a same x-tuple is present in a possible
instance one of them will appear in it according to the mutual exclusiveness
of alternatives, the semantics of ‘7’ symbol and first, second conditions of
Definition 6. This is why the only case that none of the alternatives of an
x-tuple are present in a possible instance can only occur when it is a maybe
x-tuple and the lineage of none of its alternatives appears in it.

Well-Behaved Lineage

The lineage of ULDB in Figure 2.2 is not intuitive: Two mutual exclusive
alternatives are derived from a same fact. In practice lineage satisfies natural
properties. In [BSH08a| those properties are defined and lineage satisfying
them is called “well-behaved™

Definition 7 (Well-Behaved Lineage). [BSH08a
The lineage of an x-tuple ¢; is well-behaved if it satisfies the following
three conditions:

L Acyclic: V(i, j), (i) & A*(i,]).

2. Deterministic: V(i,7), V(i, ') if 75 # j° then either
A(i, 7) # A(i, j') or A(é, j) = 0.
3. Uniform: v(i,7), Y(i,7) B(i,j) = B(i,j') where

As discussed it is natural for the lineage of two different alternatives of a
same x-tuple to not be equal (condition 2 of well-behaved lineage Definition
7). Similarly in order for alternatives of an x-tuple to be mutually exclusive
they must point to mutually exclusive sets of alternatives, so to alternatives
from a same set of x-tuples (condition 3 of well-behaved lineage Definition

38

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car) || ID | Saw (witness,car) |
‘ 11 ‘ John,Honda H 21 ‘ Cathy,Honda || Cathy,Mazda ‘
A(21,1) = {(11,1)}
A21,2) = {(11,1)}

Figure 2.2: Non well-behaved ULDB U,

7). Finally lineage is created to connect an alternative in an answer of a
query to alternatives already existing in the database from which the answer
was derived or to capture some logical relation between different alternatives.
Hence condition 1 is also natural. Since alternatives of a same x-tuple cannot
occur in a same possible LDB instance, we allow alternatives of a same x-
tuple to have the same data (alternatives of an x-tuple are a bag of tuples)
even if they have same empty lineage (from condition 2 of Definition 7 two
different alternatives of a same x-tuple cannot have same lineage unless it is
the empty lineage).

In [BSH"08a] the following was showed: If we start from a base ULDB
with empty lineage or from a well-behaved ULDB and perform conjunc-
tive queries (queries including select, project and join operations) creating
the natural lineage for the results, the ULDB remains well-behaved. In
[BSH'08a] it was also shown that if we add tuples created from conjunctive
queries that have well-behaved lineage pointing to existing data then those
tuples do not alter the possible instances of previously existing relations.
Since we are interested in conjunctive query containment and practical kinds
of ULDB containment we always assume that our ULDBs are well-behaved.

In addition a ULDB that represents a set of given possible LDBs (so tuples
appearing in different possible given LDBs will never have lineage that make
them appear in one possible instance of that ULDB) has also “well-behaved”
lineage. Note that from condition 2 of the above definition we can no longer
have two alternatives of a same x-tuple with the same non empty lineage
and as a result for well-behaved ULDBs a non base alternative is present in
a possible instance if and only if its lineage appears in it.

One of the desirable properties of a ULDB instance with “well-behaved”
lineage is that its possible instances are determined entirely by the alternative
choices of the base x-tuples. We have the following relevant Theorem which
is proven again in [BSH*08al:

Theorem 1 (Well-behaved instances). Let Dy and Dy be two possible in-

stances of a well-behaved ULDB D = (R, S,)\). Then Dy = Dy if and only if
D1 and D, pick the exact same alternative or ‘?’ for every base z-tuple.

39

Information and Uncertainty Management Angelos Vasilakopoulos

QM

PL(D =Q(PPL(T)) PLI) =Q(PL(T) ---PLMD=QPI@) : LDBs

Figure 2.3: Semantics of posing a query () over a ULDB I.

2.3 Computing Conjunctive Queries (CQs) on
the ULDB model

Semantics of computing a CQ over a ULDB, shown in Figure 2.3, are
defined in [BSH*08al:

Definition 8 (Semantics of computing a CQ over ULDBs). Let a CQ Query
@ and a ULDB U. Suppose that U has n possible instances: PI(U) =
{PL(U),PL(U),...,PI,(U)}. The result of applying @ on U is a ULDB
Q(U) that contains ULDB U and a new ULDB relation R,(/) such that:

ULDB Q(U) has possible instances { PI1{(U), PI;(U), ..., PI/(U)}, where
each PI;(U) is obtained after posing query @ on PI;(U).

However explicitly computing the possible instances of a ULDB U is com-
putationally expensive: from Definition 6 the tuples of each PI(U) must
satisfy complex logical formulas of their lineage. In contrary in [BSH08a]
an algorithm that computes answers of queries for ULDBs in polynomial
time was presented. In this algorithm computing a query is based on first
transforming the ULDB to a “pseudo-LDB” and then apply the query to it.
We present in Algorithm 2 a slight variation of this algorithm, suitable for
conjunctive queries. We need first to give a formal definition of the LDB that
is the result of transforming a ULDB to a “pseudo-LDB”; which is called the
“Horizontal Database” of the ULDB:

Definition 9 (Horizontal Database). Let U be a ULDB with x-relations
{Ry,...,R,}. We define the Horizontal database of U and denote it with
Uy the “pseudo-LDB”: Uy = Ryy, ..., R,y such that Vk, k € [1,n]:

Ry = { tuples (¢,7) | (4,7) is an alternative in Ry}

40

Information and Uncertainty Management Angelos Vasilakopoulos

Intuitively in order to take the Horizontal database of a ULDB we “flat-
ten” each alternative of an x-tuple so that it will become a new tuple.

Algorithm 2: Computing CQs on a ULDB [BSH"084]
input: a ULDB U with x-relations {Ry, ..., R,},
and a Conjunctive Query @ on U

output: a ULDB U" = Q(U)
1. Ry < 0 ; A\g, < undefined function

2. From ULDB U create the Horizontal database, “pseudo-LDB” Uy =
Ry,,...,R,,. More specifically:
For each alternative (¢,7) of ULDB U create a new tuple in Uy that
will have the same data with alternative (i,j) and with identifier the

pair (i, 7) which represents j alternative of x-tuple ¢ for original ULDB
U.

3. Since Uy is a “pseudo-LDB” we can now use Algorithm 1 to compute:

Q(UH) = Un + (RQH7I(RQh)7)\(‘RQH>)

4. Now for each tuple in LDB relation R,,,, create a ULDB relation R,
by creating x-tuples in the following way: if two or more tuples of the
horizontal relation have lineage pointing to the same set of x-tuples then
make them alternatives of the same x-tuple in R,. Add to each x-tuple
of R, symbol ‘7" if there exist a combination of x-tuple alternatives
that is not in the result of R,. Retain the lineage relationship of Q(Ugy).

5. return Q(U) = U + (Ry, I(Ry), Ar,)

We now give an example of the steps of Algorithm 2:

FExample 5. Let us consider again ULDB U of example 1 and conjunctive
query Qi(x) : —Drives(x,y), Saw(z,y). We see in Figures 2.4 and 2.5 the
steps 2 and 3 of Algorithm 2 when it is run with U and @) as its inputs and
in Figure 2.6 its output.

The fact that the output of Algorithm 2 has the correct semantics and is
well-behaved is proven in [BSH*08al:

Theorem 2. Given a ULDB U and a conjunctive query Q:

1. Algorithm 2 returns Q(U) with correct semantics.

2. If Uis a well-behaved ULDB, then so is Q(U).

41

Information and Uncertainty Management Angelos Vasilakopoulos

ID | Drivesy (name,car)
11,1 John,Honda
11,2 John,Mazda
12,1 Kate, Honda
13,1 Kate, Toyota
ID | Sawy (witness,car)
21,1 Cathy,Honda
21,2 Cathy,Mazda
22,1 Amy,Mazda

\N2L1) = {(1L, 1)}
A(21,2) = {(11,2)}

Figure 2.4: Computing CQs over a ULDB step 2: Horizontal Database.

ID | Drivesy (name,car)
11,1 John,Honda
11,2 John, Mazda
12,1 Kate, Honda
13,1 Kate, Toyota

ID | Sawy (witness,car)
21,1 Cathy,Honda
21,2 Cathy,Mazda
22,1 Amy,Mazda

MN2L, 1) = {(11, 1)}
A(21,2) = {(11,2)}

ID | Rowu(U)

31 John

32 John

33 John

34 Kate
A1) = {(11,1), (21,1)}
A(32) = {(11,2), (21,2)}
A(33) ={(11,2),(22,1)}
A(34) = {(12,1),(21,1)}

Figure 2.5: Computing CQs over a ULDB step 3.

42

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car) |
11 | John,Honda || John,Mazda
12 Kate,Honda
13 Kate, Toyota

| ID | Saw(witness,car) |
21 | Cathy,Honda || Cathy,Mazda
22 Amy,Mazda

A21,1) = {(11, 1)}
A(21,2) = {(11,2)}

| ID| R U) |
31 | John || John
32 John ‘7’
33 Kate <7’
AB3L 1) = {(1L, 1), (2L, 1)}
A(31,2) ={(11,2),(21,2)}
A(32,1) = {(11,2), (22,1)}
A(33,1) = {(12,1), (21, 1)}
Figure 2.6: ULDB @4(U): Result of posing ()7 on U.

The containment tests for conjunctive query containment that we define
in the next Chapter make use of the following definitions:

Definition 10 (Containment Mapping). Let @, Q" be two conjunctive queries,
and let h be a mapping from variables and constants of ()’ to variables and

constants of @) such that h is the identity for constants. We say that h is

a containment mapping from Q' to Q if h(head(Q')) = head(Q) and every

atom in the body of)’ is mapped to an atom of the body of () with the

same predicate.

Definition 11 ((Subgoal) Onto-Containment Mapping). A containment map-
ping from @’ to @ is (subgoal) onto if we additionally have that the set of
images of all the subgoals of)’ contains every subgoal of the body of Q.

43

Chapter 3

Query Containment and its
Complexity for Databases with
Uncertainty and Lineage

We define and investigate the computational complexity of the query
containment problem for data that support both uncertainty and lineage.
Query containment depends on the definition of database containment which,
for traditional databases, is defined as a simple set containment for each
relation. As this is not the case in the presence of uncertainty and lineage,
first we revisit the notion of database containment and define various kinds
of it that may be natural in different practical situations. We give examples
that illustrate why each different kind might be more suitable than the others
and study the exact interrelationship among them as concerns implication.

We investigate query containment under lineage and uncertainty for the
various kinds of database containment that we introduce for conjunctive
queries (CQs) and their unions (UCQs). Even though all semantics of data-
base containment are different, it turns out that for conjunctive query con-
tainment the variants fall in two categories as concerns the containment test.
We further study equivalence for both CQs and UCQs. We show that the
complexity of CQ and UC(Q containment is NP-complete under all different
kinds of query containment that we introduce. For CQ and UCQ equivalence
we prove that the complexity is NP-complete for the semantics of the first
two semantics and Graph-Isomorphism-complete for the last three. Finally
we define five new “equality” semantics of ULDB containment and we show
that are important for ULDB data integration purposes. The complexity of
checking conjunctive query containment under all these five kinds of equality
ULDB containment is NP-complete.

44

Information and Uncertainty Management Angelos Vasilakopoulos

3.1 Introduction

Uncertain data appears in many modern applications including infor-
mation extraction from the web, bio-informatics, scientific databases, entity
resolution and sensors. Those and many other applications also require keep-
ing track of the derivation of data, called provenance or lineage. There has
been a lot of recent research that considers systems managing data with un-
certainty [AKG91, BGMP92, DS04, 11.84, SUW09], systems managing data
with lineage tracking [BKT01, BT07, CW00, CW03| and systems that com-
bine data with uncertainty and lineage [BSH'08a]. Semantics and algo-
rithms for computing queries have been defined in those systems. To the
best of our knowledge the problem of query containment has not been con-
sidered for a database system that handles uncertain data and also supports
lineage tracking. We are going to investigate different kinds of query con-
tainment for the ULDB (Uncertainty Lineage DataBase) data model used in
Trio System [BSH*08a| that will be based on different semantics of database
containment for this model.

The problem of query containment arises in many important database
applications like query optimization [ALUO7|, data integration, query an-
swering using views [AK10, ALMO06, Ull97|, data exchange [FKMP05] and
data warehousing. One of the reasons that the ULDB model was introduced
was because it would be important in data integration and data exchange
settings [BSHT08a|. In addition query optimization is recognized as one of
the important open problems of the Trio system. It is already known from
ordinary databases that both these problems rely on query containment.

A database query @) defines a mapping from databases to databases. A
query () is said to be contained in a query @), if for every database D,
database Q1(D) is contained in database Q2(D). For ordinary data- bases,
a database D; is contained in a database D, if the tuples of every relation
in Dy are contained in the corresponding relation of Dy as a set. A relation
of an uncertain database however semantically is not a set; it represents a
set of possible instances - Pls (that have no uncertainty). The answer of a
query over an uncertain database is a new uncertain database. Thus, when
moving to ULDBs or even to uncertain databases without lineage, the set
containment between answers of queries no longer applies.

On the ULDB model a database consists of uncertain tuples. An uncer-
tain tuple called z-tuple consists of a bag of tuples called alternatives. At
most one of those alternatives can exist in a possible instance. If for an x-
tuple we can select none of its alternative in a possible instance then this
tuple is called maybe x-tuple and annotated with “?” symbol. In particular,
apart from their data, ULDB alternatives also consist of: i) a unique identifier

45

Information and Uncertainty Management Angelos Vasilakopoulos

‘ 11]:1) ‘ — DI;WZS(na?ZCT/E i " ID ‘ Saw(witness,car) \
ohn,Honda || John,Mazda 21 | Cathy,Honda || Cathy,Mazda
12 Kate,Honda 59 Amyv.Mazd
13 Kate, Toyota e

M2L, 1) = {(11,1)}
A(21,2) = {(11,2)}

Figure 3.1: Running Example: ULDB U.

and ii) a lineage function that connects them to other alternatives through
the set of their unique identifiers. An uncertain database with lineage rep-
resents a set possible instances that are databases with lineage (LDBs) and
have no uncertainty. As a result, ULDB database containment should not
only consider data containment and it should also be based on the possible
instances of a ULDB. Query containment between queries (; and o will
be based on ULDB database containment between the ULDB relations that
are the answers of the two queries. The fact that ordinary conjunctive query
containment (with containment mapping as a test) does not always suffice
for ULDBs (or LDBs) is illustrated in the following example:

FExample 6. Consider an uncertain database with lineage U containing in-
formation about names of persons who drive cars, stored in relation Drives
(name, car) and about names of witnesses that saw a car near a crime-
scene, stored in relation Saw(witness,car)!. Data in Drives contain un-
certainty (e.g., due to unclear writing). Suppose we have uncertainty whether
John drives a Honda or a Mazda car. Figure 3.1 depicts the two relations
Drives and Saw of ULDB U. We have an x-tuple with two alternatives
(John, Honda) and (John, Mazda), whereas we are sure that Kate drives a
Honda and a Toyota car. Data in relation Saw have also uncertainty. Let
us also suppose that Cathy stated that she saw John driving. Thus if John
drives a Honda then Cathy would have seen a Honda car. This connection
is captured through lineage between alternatives (21,1) and (11, 1) (similarly
for (21,2) and (11,2)). All other alternatives have empty lineage which is
omitted.

ULDB U represents two possible LDB instances, D;, shown in Figure
3.2 and D,, shown in Figure 3.3. Consider the following two Conjunctive
Queries (CQs): Q1(x):-Drives(z,y), Saw(z,y) and
Q2 (z):-Drives(z,y).

!The general setting of our example is similar to the running example found
in [BSHT08a].

46

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car

11,1 John,Honda
12,1 Kate,Honda
13,1 Kate, Toyota

A21,1) ={(11,1)}

) " ID | Saw(witness,car) |
21,1 Cathy,Honda
22,1 Amy,Mazda

Figure 3.2: D;: First Possible LDB Instance of ULDB U.

| ID | Drives(name,car

11,2 John,Mazda
12,1 Kate,Honda
13,1 Kate, Toyota

A(21,2) = {(11,2)}

) “ ID | Saw(witness,car) |
21,2 Cathy,Mazda
22,1 Amy,Mazda

Figure 3.3: Dy: Second Possible LDB Instance of ULDB U.

For ordinary databases, query () is contained in query () because there
exists a containment mapping from @2 to 1 (which maps variables x and y
to themselves). Consider the second possible instance Dy of ULDB U. The
answer of ()1 posed on Dy is the LDB relation R¢; shown in Figure 3.4 (along
with relations Drives and Saw). Respectively Q)2 posed over D, is the LDB
relation R shown in Figure 3.5. We see that if we care only about data
we have that indeed data John in the answer of (); is contained in the set
of tuples in the answer of Q5 ({John, Kate}). But LDBs (and ULDBs) also
contain lineage: The LDB of Figure 3.4, contains the lineage information
that tuple (31, 2) with data John comes from two different tuples (11,2) and
(21,2). In contrast in the LDB of Figure 3.5 the only tuple with data John
comes from tuple (11,2). Thus we have to decide what kind of containment
between lineage information we should have in order to define meaningful
LDB and ULDB containment.

In this chapter we start our investigation with considering various kinds of
ULDB database containment. For each type of ULDB database containment
we define corresponding kinds of ULDB query containment, give conjunctive
query containment test and study its complexity. We also investigate in
which cases each kind of containment is more suitable. In Figure 3.6 we list
the various kinds of database containment and show the relation between
them. Even though the database semantics for those kinds of containment
are different it will turn out that some of them are equivalent for conjunctive
query containment. We will refer in Figure 3.6 in more detail in Section 3.7.

47

Information and Uncertainty Management Angelos Vasilakopoulos

31,2 | John
32,1 | John
A(31,2) ={(11,2),(21,2)}
A(32,1) ={(11,2),(22,1)}

Figure 3.4: Dgia: LDB relation Rg, for: Qq(x) : —Drives(z,y), Saw(z,y)
posed on Ds.

41,2 | John
42,1 | Kate
43,1 | Kate

(4L, 2) = {(11,2)}
A(42,1) = {(12,1)}
A(43,1) = {(13,1)}

Figure 3.5: Dgge: LDB relation Rg, for: Qa(x) : —Drives(x,y) posed on
D.

One obvious kind of ULDB containment is based on the LDB containment
defined on Trio which requires the containment of lineage in the transitive
closure of lineage of the containing relation (Semantics #3 in Figure 3.6). We
show why this kind of LDB containment may be inappropriate for some cases.
Hence we relax this definition and yield a new kind of ULDB containment
based on LDB Data Containment that requires the set containment of data
of every possible instance of a ULDB (Semantics #1 in Figure 3.6). Further
we define two kinds of database containment that take into account only
base lineage (lineage extended back and referring only to alternatives with
empty lineage, called base alternatives). The first kind requires contained
base lineage (Semantics #2) and the second (Semantics #4) requires same
base lineage of the data that is contained between two databases. Semantics
#4 was shown to be suitable for data exchange [AV10a|. The fifth database
containment semantics will require the containment of all data and lineage,
not only base (Semantics #5).

Query containment for ordinary databases is known to be NP-complete
for conjunctive queries [CM77]. A ULDB represents a set of possible in-
stances that are LDBs and whose number can be exponential to its size. In
addition lineage imposes complex logical formulas to alternatives that can be

48

Information and Uncertainty Management Angelos Vasilakopoulos

true on each possible instance. Furthermore a possible instance is an LDB
and contains a bag of tuples (if they have different lineage). Query contain-
ment under bag semantics for CQs is known to be IT5-hard [ADG10, CV93].
So we would expect ULDB query containment to be harder than ordinary set
or bag query containment. In contrast we show that ULDB query contain-
ment for CQs is NP-complete for all the different kinds of containment which
we study. In Section 3.8 we study equivalence for CQs and in Section 3.9 con-
tainment and equivalence for Unions of CQs (UCQs). We show that for CQs
and UCQs the complexity of query equivalence is NP-complete under Data
and CBase semantics and Graph-Isomorphism-complete for the other three
containment semantics, while UCQ query containment is NP-complete for
all semantics. In [ASUW10] another notion of containment has been defined
for uncertain databases without lineage. It was defined in order to be suit-
able for data integration purposes. We prove which conditions should hold
for conjunctive query containment under this kind as well in Section 3.11.
In the same section we also define five new “equality “semantics of ULDB
containment which we show that are important for ULDB data integration
purposes. We prove that the complexity of checking conjunctive query con-
tainment under all five kinds of equality ULDB containment is NP-complete.

Related Work

The need for defining database containment in the presence of uncertainty
and/or lineage has been noticed in [ASUWI10|, [BSH"08a|. For databases
with lineage, containment has been defined in various works: In [BSHT08a]
for LDBs and in [Gre09] for various kinds of semirings. [Gre09] is the first
work that studies the complexity of CQ and UCQ query containment for
databases with lineage. Specifically CQ and UCQ containment, equivalence
and their complexity was investigated for databases with semiring annota-
tions. The semiring model captures many kinds of other provenance models
one of which is the model of LDBs. For LDBs and Same-Lineage seman-
tics Theorems 5, 7, 9 and 11 are essentially derived in [Gre09]. Finally
in [LLRS97] query equivalence and containment is investigated for proba-
bilistic data.

3.2 Running Example and the ULDB Data Model

In this section we present a motivating example illustrating the need of
defining new kinds of database containment, suitable for query containment.
Through this example we will also explain the Trio ULDB model whose

49

Information and Uncertainty Management Angelos Vasilakopoulos

. Implies CQ Containment
Semantics Features DB cont. Test
Set Contained Containment
1 Data - .
Data Mapping
. Contained Containment
2 CBase-Lincage Base Lineage 1 Mapping
Contained
) Transitive .
3 TR-Lineage Closure of 1 Onto Mapping
Lineage
. Same]
4 SBase-Lineage Base Lineage 1,2 Onto Mapping
5 Same-Lineage | Same Lineage 1,2,3.4 Onto Mapping

Figure 3.6: Comparison of Different Semantics.

formal definitions will be given in the next section. An uncertain database
with lineage (ULDB) represents a set of possible instances (PI) which are
databases with lineage (LDBs). Suppose that we have the ULDB U and the
two conjunctive queries ()1 and ()5 from our Example 6. In the ULDB model
the uncertainty of the value of a tuple (i.e. whether John drives a Honda
or a Mazda car) is represented through x-tuples. In general an x-tuple is
a bag of ordinary tuples which we call alternatives and we separate them
with symbol ‘||’. The semantics of alternatives in x-tuples are that at most
one of them can be true in a possible instance. If we can have a possible
instance that selects none of the alternatives of an x-tuple, then we annotate
this x-tuple with ‘7’ symbol.

In order to succinctly represent lineage connections between alternatives
we attach to each x-tuple a unique identifier. For example, in Figure 3.1,
x-tuple (John, Honda)||(John, Mazda) in Drives has identifier 11. If the
identifier of an x-tuple is i, then we refer to its j-th alternative with an
alternative identifier which will be a pair (7,7). We represent the lineage
connection between alternatives (Cathy, Honda) and (John, Honda) with a
lineage function A that connects alternative identifiers to sets of alternative
identifiers, e.g.,: A(21,1) = {(11,1)}. Base data of a ULDB instance consists
of all data that have empty lineage. If two alternatives point, maybe after
many lineage steps, to the same set of base data we say that they have the
same base lineage. In our example U has two possible instances: one for each
possible alternative selection of x-tuple 11.

50

Information and Uncertainty Management Angelos Vasilakopoulos

| 1D | Ro, |
31 | John || John
32 John ‘7’
33 Kate <7’
AL, 1) = {(11,1), (21,1)}
A(31,2) ={(11,2),(21,2)}
A(32,1) ={(11,2),(22,1)}
A(33,1) ={(12,1),(21,1)}

Figure 3.7: ULDB Relation R, for: Qi(z) : —Drives(z,y), Saw(z,y).

| 1D | Ro, |
41 | John || John
42 Kate
43 Kate
A(41,1) = {(11,1)}
A(41,2) = {(11,2)}
A(42,1) = {(12,1)}
A(43,1) = {(13,1)}

Figure 3.8: ULDB Relation R, for: Qa(z) : —Drives(x,y).

51

Information and Uncertainty Management Angelos Vasilakopoulos

Suppose we perform a natural join of Drives and Saw over common at-
tribute car and a projection of attribute name on the result. Conjunctive
query Qi(z):- Drives(x,y), Saw(z,y) performs this operation. Intuitively
()1 will return the names of suspects, i.e., persons who drive a car that was
seen near the crime-scene. The result of computing Q; over ULDB U is a
new ULDB @;(U) that includes ULDB relations Saw and Drives of U and
a new ULDB relation R, which is shown in Figure 3.7. The semantics of
Q1(U) are that its possible instances should be the same with the possible
instances we would have if we first considered the possible instances of U and
computed () over each one of them.

The possible instance Dy of ULDB U is shown in Figure 3.3. The cor-
responding possible instance of ULDB @Q;(U) is the LDB possible instance
which includes relations of D, along with LDB relation R, shown in Figure
3.4 which is one of the possible instances of ULDB relation Rg, shown in
Figure 3.7. Note that a possible instance of a ULDB is an LDB, so it does not
have uncertainty (no alternatives separated with ||), but only ordinary tuples
with unique tuple identifiers and lineage. Since we have no alternatives, LDB
tuples are always present and their unique identifiers can be single numbers
and not pairs. For uniformity in the LDB possible instances of our ULDBs
we use alternative identifier pairs to identify a tuple.

3.2.1 Non TR-lineage query containment

As we mentioned we define first variants for ULDB database containment
and then we base our variants for query containment on these definitions. It
turns out that, for conjunctive queries our variants fall in only two classes,
where the semantics in each class are shown to be CQ-containment equiva-
lent, in that if two conjunctive queries are contained in each other according
to one semantics in the class, then they are also contained according to the
other semantics in the same class. Hence, the question arises whether the two
classes have a meaningful distinction with respect to CQ query containment.
In this subsection, we take the TR-Lineage semantics, the Data and CBase
containment semantics and show that the last two may be more desirable in
certain situations. In addition we show that TR-lineage semantics are not
CQ-equivalent with Data (or CBase) semantics.

Continuing our Example 6, let us consider again queries Qi(x) : —
Drives(z,y), Saw(z,y) and Q2(x) : —Drives(z,y). The result of query Qs
over U will again be a ULDB @»(U) which will include U along with the
ULDB relation Rg, shown in Figure 3.8. In Figures 3.4 and 3.5 we see the
result of posing ()1 and ()2 over the possible instance Dy of U. Intuitively
()1 will return the name of a suspect (a driver that has been seen from a

52

Information and Uncertainty Management Angelos Vasilakopoulos

witness) while Q)2 will return the names of all drivers. Sometimes we care
only about the fact that if someone is a suspect then he also drives a car. It
will then be natural to have that), is contained in Q2. Our #1 semantics of
Data concern this kind of containment and we have that Q)1 Cpaiq @2 holds.

We now consider “contained base lineage” (CBase) containment. It is
natural to consider that we have LDB Database containment between two
LDBs D; and D, if for every tuple with data ¢; and base lineage Ag; in Dy
there exists a tuple in Dy with same data and with a “relaxed” base lineage
Ag2 € Ag1. We will show in Section 3.4 that this kind of LDB containment
is useful when we have unreliable base data. We will also prove in the same
section that even though our first two kinds of Data and CBase containment
are not equivalent for LDB database containment, they are equivalent for
LDB and ULDB Query containment. So which semantics are more suit-
able depends on whether it is important in our application to track lineage
connections.

Observe that if we adopt the definition of Trio’s LDB TR-~containment
(presented in Section 3.5) we will have that Q1 Crg Q2 does not hold. The
reason is that Trio LDB containment requires the containment of all lineage
(not only base) of the contained relation through the transitive closure of
lineage of the containing relation. In our example let us denote with D the
LDB database shown in Figure 3.4 which is relation R, of the answer of
@1 posed on possible instance Dy and with D), the LDB database shown in
Figure 3.5 which is the relation Rgy of Q2 posed on D,. In D) there exists
a tuple with data John and lineage pointing to both alternatives (11,2) and
(21,2). TR-lineage LDB containment between D} and DY, would require that
a tuple with data John will also exist in D} and that the transitive closure of
its lineage in LDB D, will contain not only base (11, 2), but non-base (21, 2)
as well. Hence TR-lineage LDB containment does not hold for the answers
of conjunctive queries (); and ()5 posed on the second possible instance of
U. As a result we do not have TR-lineage CQ query containment between

@1 and Qs.

3.3 Basic Definitions on Containment

We study conjunctive query containment and equivalence not only for
conjunctive queries, but also for unions of conjunctive queries (UCQs). A
union of conjunctive queries (UCQ) Q is a set Q = {Q1,Qs, ..., Q,}, where
each Q; is a conjunctive query. In order to compute a UCQ Q = {Q1, Qs, .. .,
Qn} over a ULDB U we simply compute Q;(U) for every i = 1...n and
return in Q(U) the ULDB relations of U along with a new relation Rg.

53

Information and Uncertainty Management Angelos Vasilakopoulos

ULDB relation Ry includes the union of tuples with data ¢ and lineage A(t)
occurring in Ry, of every @Q;(U) such that tuples with same data and lineage
are merged and x-tuples are then formed using the method of step 2 in
Algorithm 2, presented on Chapter 2.

The containment tests for conjunctive query containment under our dif-
ferent kinds of semantics will make use of the following definitions: Let
Q, @' be two conjunctive queries, and let h be a mapping from variables
and constants of ()’ to variables and constants of () such that h is the iden-
tity for constants. We say that h is a containment mapping from Q' to Q) if
h(head(Q")) = head(Q) and every atom in the body of @' is mapped to an
atom of the body of () with the same predicate. Duplicate atoms are allowed
in the query bodies. A containment mapping from @’ to @ is (subgoal) onto
if we additionally have that the set of images of all the subgoals of)’ contains
every subgoal of the body of Q.

Some query equivalence tests will also make use of the notion of Isomor-
phic conjunctive queries. Two conjunctive queries (); and) are isomor-
phic, denoted with ;1 >~ @4, if there exists a containment mapping between
h: Qs — @ that is bijective and its inverse h~! is also a containment map-
ping from)1 —). Hence isomorphic queries are identical up to renaming
of non-distinguished variables and up to a reordering of their subgoals.

LDB and ULDB Database and Query Containment:

We present now the formal definitions for the five different kinds of LDB
database containment. In the following three sections we will illustrate their
meaning in detail, giving motivating examples that highlight their differences
and show in which case each of them may be more suitable.

The first kind of Data LDB Containment will use the notion of S_ which
we explain in this paragraph. Suppose there are one or more relations in a
ULDB U = (R, S, \Y) such that none of their identifiers appear in the lineage
of some alternative of U. Let S” be the set of identifiers of all x-tuples and
alternatives of those relations. If there is no such relation then S’ = (). We
denote with S_ the symbols of S that are not in S’. If S’ = () then S_ = S.
The set S_ includes the identifiers of all x-tuples and alternatives in relations
that have lineage pointing to them.

This notion is used for the following reason: recall from Algorithm 1 of
Chapter 2 that we attach a new unique identifier in every tuple in relation
Rg of the answer of a CQ @ over an LDB D (the same holds also for ULDB
identifiers, see Algorithm 2). As a result when we have a given LDB D and
pose to it a query () the result will be a new LDB which will contain D and
a new relation Rg; with new identifiers. On the other hand when we pose

54

Information and Uncertainty Management Angelos Vasilakopoulos

another query ()5 over D the result will be a new LDB which will contain D
and the LDB relation R, again with new identifiers. But the newly created
identifiers in Rg: or Rgs may not be the same. When we want to check
containment between the LDB answers of (); and ()5 we just want to check
containment between data and lineage. Clearly identifiers do not alter data.
As far as lineage is concerned the newly created identifiers do not appear
in any lineage (only the opposite holds: the lineage of new tuples refers to
existing identifiers of D). This holds more general, i.e., given an LDB the
identifiers of relations which never occur in any lineage do not have any
effect to its data or its lineage connections. As far as containment between
two LDBs D and D’ is concerned, if a tuple with data t and identifier 1.D
occurs in a relation R; of D that has lineage pointing to it then there must
exist a tuple with dame data and identifier in relation R; of D’. We must
have condition S_ C S’ to hold as well in order to cover possible external
identifiers occurring in the set of symbols of D and D'

With IDpg,(t) we denote the identifier that a tuple with data ¢ has in
relation R;. The formal definitions for those first two kinds of LDB database
containment are the following:

Definition 12 (Data LDB Containment Cpgq). Let D = (R, S,A\P) and
D' = (R, S, \P") be two LDBs, where R and R’ have the same set of rela-
tions. We say that D is Data LDB-contained in D’ (denoted as D Cpgi D),
if the following two hold:

1. S.Cys.

2. For every i = 1,2,...,n, either of the following hold: a) if ¢ € R; and
IDg,(t) is not contained in S_ then there exists a tuple with data ¢ in R;.
b) if t € R; and IDg,(t) is contained in S_ then there exists a tuple with
data t in R and IDg,(t) = IDp (1)

The above definition do not impose lineage restrictions. The other four
semantics of database containment will concern lineage restrictions as well,
hence they will also include a lineage condition COND;, i = 2...5. The
lineage conditions will concern lineage A(t) of the tuple with data ¢ in R; and
the lineage X' (t) of the tuple with data ¢ in R} in clauses (2a) and (2b) of
Definition 12. Thus, we will define each of these four semantics by the same
definition as above with the only modification that we add COND; in the
end of clauses (2a) and (2b) of Definition 12. Note that for Semantics #1
(Definition 12) CON D, is empty. Specifically we have:

Definition 13 (CBase, TR, SBase, Same LDB Containment C). The
additional condition is:
e CONDy: Ng(t) C Ap(t),

55

Information and Uncertainty Management Angelos Vasilakopoulos

for Contained Base Lineage (CBase-lineage) LDB Containment Cepgse-
e COND;: A\(t) C N*(t),

for Trio-Transitive Closure-Lineage (TR-lineage) LDB Containment Crg.
e CONDy : Ng(t) = Ap(t)

for Same Base-Lineage (SBase- lineage) LDB Containment Cgpgse.

e COND;s: N(t) = At),

for Same-Lineage LDB Containment Cggme.

2

A ULDB represents a set of possible instances that are LDBs. Our defi-
nition of when two ULDB databases are contained in each other under one
of the above five variants depends on the corresponding definitions of LDB
database containment C;. We have:

Definition 14 (ULDB Database Containment Cp,). Let Cj, denote one of the
variants Cpaie; CoBase, ©TR, TSBases Tsame 0f LDB database containment
of Definitions 12 or 13.

Let U and U’ be two ULDB’s. We say that U is UDLB L-contained in U’
(denoted with Cj) if the following hold:

i) for every possible instance D; of U there exists a possible instance D’ of
U’ such that: D; C;, D’ holds according to the corresponding notion of LDB
containment definition and

ii) for every possible instance D’ of U’ there exists a possible instance D; of
U such that: D; Cp, D; holds.

The above definition of ULDB Database Containment is natural to define
for the above five kinds of ULDB containment semantics that are based on
LDB containment between pairs of possible instances:

A ULDB represents a set of possible instances and we do not know which one
is the one that “captures the truth”. If there exists even one possible instance
Dy, of a ULDB U that is not LDB contained in any possible instance of a
ULDB U’ then this D, might be the “correct” one. Hence in this case we
will lose the containment between the “true” possible instances. Similarly
suppose that there exists one possible instance D; of U’ such that there
exists no possible instance Dy, of U such that Dy C; D;. Then again the
“true” possible instance of U’ might be D for which there will be no possible
instance of U that is contained to it (note that the empty database may not
be a possible instance of U). To illustrate why this direction is necessary
consider ULDBs U; and U, shown in Figures 3.9 and 3.10. ULDB U; has
only one possible instance, let us denote it with D, with one tuple with data

2In [BSH*08a] same tuple identifier was required even for relations to which no other
relation point through lineage, but we relax this too restricted definition using the notion
of S_.

56

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Saw(witness,car) |
‘ 11 ‘ Cathy,Honda ‘

Figure 3.9: ULDB U,

| ID | Saw (witness,car) |
| 11 | Cathy,Honda || Cathy,Mazda |

Figure 3.10: ULDB U,

(Cathy, Honda) and empty lineage. ULDB U, has two possible instances:
one identical with the possible instance of Uy, let us denote it with Dy; and
another one, say Dagy, with only tuple (Cathy, Mazda) (and again empty
lineage). Clearly direction (i) of Definition 14 holds. If the possible instance
of U, is indeed Dy then containment between identical Di; and Ds; holds.
But if the true possible instance of Us is Dy then even Data LDB containment
will not hold between D1; and Dss. So intuitively we do not want U; C;, Uy
to hold for the ULDB databases in Figures 3.9 and 3.10 under any of the
other four containment semantics which subsume Data containment. Since
we do not know which possible instance of U, is the correct one we must
make sure that the containment holds between all possible instances of both
U, and Uy, i.e., condition (ii) of Definition 14 must also hold.

We now give the following definitions of ULDB query containment and
equivalence:

Definition 15 (ULDB Query Containment). Let 1 and ()5 be two arbitrary
queries and L one arbitrary semantic of ULDB database containment. Query
21 is ULDB L-contained in a query ()2, denoted with Q1 Cp @Qs, if for every
ULDB U we have that: Q1(U) Cp, Q2(U), where Q1(U) and Q2(U) are the
two ULDBs that are the answers of (); and)5 over U.

Definition 16 (ULDB Query Equivalence). Let @)1 and @2 be two arbitrary
queries and L one arbitrary semantic of ULDB database containment. Query
(1 is ULDB L-equivalent with a query), denoted with Q) = @5, if for
every ULDB U we have that: Q1(U) Cp Q2(U) and Q2(U) Cp, Q1(U), where
Q1(U) and Q2(U) are the two ULDBs that are the answers of () and Q-
over U.

For query containment purposes there exists an one-to-one and onto cor-
respondence between the possible instances of two ULDBs, as the following

57

Information and Uncertainty Management Angelos Vasilakopoulos

Proposition 1 shows. Given a ULDB U and two queries ()1 and)5 we say
that for every possible instance of Q1 (U) there exists one corresponding pos-
sible instance of Q2(U).

Proposition 1. Let Q1 and Qo be two arbitrary queries, U an arbitrary
ULDB and Cp an arbitrary kind of LDB database containment . Then the
following hold:

i) If Q1 Cp Qo then there exists an one-to-one and onto correspondence
between all the possible instances of Q1(U) and Q2(U), i.e., if U has n
possible instances Dy, Ds, ..., D, then for each i = [1...n] we have that
Q1(D;) Cp Q2(D;) holds according to the Cp notion of LDB containment
definition.

i) If Cp, is one of the variants Cpata, CoBase; SR, CSBases CSames then the
opposite of (i) also holds. Le., if Q1(D;) Cp Q2(D;) for each i = [1...n]
then Q1 Cr Q2.

Proof. i) Suppose that U is a ULDB with n possible instances: Dy, Do, ..., D,.
We will show now that for each ¢ = [1...n] we will have that: Q1(D;) Cp,
Q2(D;). Let D; be one arbitrary possible instance of U. Let ULDB U’ be
the ULDB that has only one LDB possible instance which is LDB D;. Since
@1 C; @2 holds we have from Definition 15 that for every ULDB U we
will have that Q1(U) Cr Q2(U). So for ULDB U’ we will also have that
Q1(U") Cr, Q2(U’) or equivalently that Q1 (D;) Cp Q2(D;) holds.
ii) If Cy, is one of the variants Cpata, CeoBases STR; CSBases SSame We have
that if Q1(D;) Cr Q2(D;) holds for each i = [1...n], then both conditions of
Definition 14 are satisfied. So from Definition 15 we will have that)1 Cr)s.
OJ

Notice that the two clauses of Proposition 1 refer to different kinds of
ULDB containment. In fact, the first clause refers to general ULDB con-
tainment that includes the ULDB containment definitions in Section 3.11 3,
whereas the second clause refers only to the definition of ULDB containment
of Definition 14. The second clause is not true for the ULDB containment
definitions in Section 3.11.

3Tt is actually useful in proofs in Section 3.11

58

Information and Uncertainty Management Angelos Vasilakopoulos

3.4 Semantics #1 (Data containment - Cp.,)
and Semantics #2 (Contained Base Lin-

eage - gC’Base) .

It is natural for ULDB query containment between two queries @ and '
to require that for every ULDB U, we will have that if a tuple with data ¢
exists in relation R of a possible instance of Q(U) then a tuple with same
data t will also exist in relation R¢/ in the corresponding possible instance of
Q'(U). Our first Data containment (Definition 12) is based on this kind of
semantics which are useful in situations where we care only about data, as we
saw in subsection 3.2.1. The other kinds of database containment retain this
natural condition of contained data and additionally have lineage constraints.
In a possible LDB instance of a ULDB we allow duplicates of data only if they
have different lineage (LDB Definition 1). With LDB database containment
under Data semantics where lineage is ignored we may have the case where
a tuple with data t appears (with different lineage) in a relation R; of the
contained LDB D more times than the times it appears in the containing
LDB D’ (again with different lineage). In order for this to happen we must
have that the identifiers of tuples in relation R; of the contained LDB D do
not belong in S_. Thus we only want that if a tuple with data ¢ appears in
a contained LDB D then containing LDB D’ will also have t in it. On the
other hand if identifiers of R; belong in S_ only R; of containing LDB D’ can
contain more tuples with same data than R; of D because the identifier of a
tuple with data ¢ in D must also be the identifier of a tuple with data ¢ in
D’. This subtlety does not affect query containment between two queries (0
and (@) since both relations Ry, and R, have no lineage pointing to them,
so their identifiers do not belong in S_.

As we saw on Definition 2 an LDB tuple t*PP has a “data part” (a tuple
t), a unique identifier and a lineage function that connects it to other LDB
tuples through the set of their identifiers. So, depending on the application,
we may define LDB containment considering not only data, but lineage as
well: From Definition 13 we have CBase LDB database containment between
two LDBs Dy and D, if for every tuple with data ¢; and base lineage Ag; in D;
there exists a tuple in Dy with same data and with base lineage Ags C Ap;.
The containment of base lineage goes from the containing database D’ to
the contained D. This is the opposite way with the containment of data
(Definition 12) and with the lineage containment condition of Trio’s TR-
lineage containment.

CBase LDB containment is important to consider in the practical cases
where we can have that a base tuple can be unreliable. The reason is that

59

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car) | | ID | Saw(witness,car) |
‘ 11 ‘ John,Mazda ‘ ‘ 21 ‘ Cathy,Mazda ‘
A(21) = {(11)}

Figure 3.11: LDB D;.

| ID | Drives(name,car) | | ID | Saw(witness,car) |
11 John,Mazda ‘ 21 ‘ Cathy,Mazda
12 Kate,Mazda N(21) = {(11),(12)}

Figure 3.12: LDB Dj.

it “preserves” reliability: if a tuple is reliable in D; because it does not come
from an unreliable source then it will also be reliable in D,. This is illustrated
in the following example:

FEzample 7. Consider LDB instances D; and D/, shown in Figures 3.11 and
3.12 respectively. Suppose that in the first case Cathy was sure that she
saw John driving, while in D] she stated that she saw both John and Kate.
Those connections are again modeled through lineage. We trivially have
Dy Cpata Dy. On the other hand Dy Zopase D) because the base lineage of
tuple (Cathy, Mazda) in D contains tuple 12 which is not contained in the
base lineage of any tuple with data (Cathy, Mazda) in relation Saw of D;.
If base tuple 12 is considered unreliable then tuple (Cathy, Mazda) would be
reliable in Dy but unreliable in D}. So the lineage connection between tuples
21 and base tuple 12 is important and should not be ignored. If, for example,
a system deletes unreliable tuples then not even data containment would
hold between D; and Dj. As a result this is an example where semantics
#1 of LDB database containment are not suitable and justify the need of
introducing semantics #2.

Data and CBase-lineage query containment definitions follow from gen-
eral Definition 15 if we replace C; with Cpge and Copase. Since ULDB
query containment follows from Definition 14 of ULDB database containent
which reasons on possible instances, it is expected that even in semantics #1
the lineage will affect query containment. This is reasonable if we remember
that the possible instances of an uncertain database depend on base lineage.
Specifically, given two ULDBs U and U’, a tuple with data ¢ in a Possible In-
stance (PI) D; will appear in the same corresponding PI D! of the containing

60

Information and Uncertainty Management Angelos Vasilakopoulos

U"if Nz(t) € Ap(t) (see Theorem 1). It turns out that for ULDB conjunc-
tive query computing purposes the query containment test for the above two
notions is the same. This result also holds for LDB query containment, since
an LDB can be thought as a ULDB with only one alternative on each x-tuple
(and itself as its single possible instance). We have the following Theorem:

Theorem 3. Suppose that Q)1 and Q)5 are two conjunctive queries. Then the
following are equivalent:

Z) Ql gData QZ-

”) Ql gC’Base Q2~

iii) there exists a containment mapping h: Q2 — Q1 (not necessarily onto).

Proof. Let U be an arbitrary ULDB and @1, Q2 two CQs:
(ili—ii): Let g : @2 — @1 be a containment mapping. We want to show
that Q1 CcoBase @2. From Proposition 1 it suffices to show that for any
arbitrary PI Dy of U the corresponding PIs @Q1(Dy) and Q2(Dy) are CBase
LDB contained according to Definition 13. Let Dy be an arbitrary PI of U.
The first condition S_ C S’ of CBase containment holds because relations
Rg, and Rg, do not have any lineage pointing to them, so their identifiers
do not belong in S_ and LDB relations of Dy, are the same (so with same
identifiers) in both Q1(Dy) and Q2(Dy). It now remains to show that if a
tuple with data ¢ exists in Q1(Dy) then a tuple with data ¢ and contained
base lineage exists in Q2(Dy). From Algorithm 2 of computing a CQ over a
ULDB we have that an alternative with data ¢ exists in ULDB relation R¢;
of Q1(U) if there exists a mapping o from the body of Q) to the alternatives
of U. Its lineage is the union of the identifiers of the alternatives that are the
images of ()1 under this mapping. Then o o y is a substitution for variables
of (). Because p is a containment mapping ¢ o u maps the subgoals of),
to a subset of the subgoals of);. According to Algorithm 2, because we
have a containment mapping between ()5 and ()1, the substitution o o u will
add to ULDB relation Rgs of Q2(U) an alternative with data ¢ and lineage
Ao(t) € Ai(t). Expanding lineages A\; and Ay back to base data we have:
Apa(t) € Api(t). We have that Dy is an arbitrary PI of U. So Dy, occurs due
to the selection of a set Ag of base tuples. If an alternative with data ¢ and
and lineage A\;(t) occurs in the answer of Q;(Dy) then it will also occur in
the answer of QQ2(Dy), according to Theorem 1, because: i) PI Dy, will have
selected the same base alternatives, ii) Apa(t) C Api(t) and iii) answers of
CQs have always well-behaved lineage pointing to existing tuples.

(i—iii): Suppose that Q1(U) Cpara @2(U) holds for every ULDB U. Let
Dy, be an arbitrary PI of U. From clause (i) of Proposition 1 we have that:
Q1(Dk) Cpata Q2(Dy). Since Q1(U) Cpata Q2(U) holds for every ULDB
U, it must hold also for any ULDB that has empty lineage. Any possible

61

Information and Uncertainty Management Angelos Vasilakopoulos

instance of such a ULDB is an ordinary database with no lineage and no
data duplicates. As a result (); must be query contained in @ for ordinary
databases. In [CM77] it was shown that this is true only if there exists a
containment mapping from conjunctive query Q)5 to Q.

(ii—1): Suppose that Q1(U) Cepase @2(U) holds. Let Dy be an arbitrary
PI of U. From Proposition 1 clause (i) we have that: Q1(Dx) CoBase @2(Dy).
Since CBase containment includes the data constraint of Data containment
we have that Q1(Dy) Cpaa @2(Dy) also holds. From Proposition 1 clause
(ii), we have that: Q1 Cpaie @2, because U and Dy, are arbitrary. O

Note that, in contrast with conjunctive query containment, for LDB
database containment the first two semantics are not equivalent (see Ex-
ample 7). For the ULDB U and CQs of Example 6 we have that there exists
a containment mapping from @2 to @; and indeed ULDB Q;(U) is both
Data and CBase contained in ULDB Q2(U) as the following example shows.
Since there exists a containment mapping between the two queries CBase
and Data Query containment will hold for every ULDB and not only for the
one in our example.

Example 8. For the ULDB U and CQs of Example 6 we have that @ is
CBase-lineage and Data query contained in () as we intuitively expected.
This holds because the mapping which maps variables x and y to themselves
is a containment mapping from ()s to ;. Indeed for every possible instance
D; of this ULDB U we have Q(D;) is CBase and Data LDB contained in
Q2(D;). For the second possible instance Dy (Figure 3.3) of U we have:
The instances of relations Rg; and Rge (shown in Figures 3.4,3.5), refer-
ring to the possible instance Dy both contain a tuple with data John. So
Q1(D2) Cpata @2(D2) holds. For tuple (31,2) with data John that has base
lineage equal with (11,2) in Q1(D2) (note that alternative (21, 2) is not base
and points again to base (11,2)) there exists tuple (41,2) in @Q2(D3) with
data John and base lineage contained in the base lineage of (31,2). Actually
in this example base lineage is not only contained but equal, i.e., we have that
Ap(41,2) = {(11,2)} = Ap(31,2). Similarly for tuple (32,1) with data John
and Ap(32,1) = {11, 2} there exists in Q2(D>) tuple again (41, 2) with same
data and contained (in our example again equal) base lineage. In addition
identifiers in relations Rg; and Rge do not belong to S_, while relations of
U whose identifiers can be in S_ are the same in Q1(U) and Q3(U). Hence
Q1(D3) Cepase @2(D2) holds. It is easy to check that LDB CBase contain-
ment also holds for the answers shown in Figures 3.13, 3.14 of the two queries
posed on the first possible instance D; of U. As a result from Definition 14
of ULDB Database Containment we have that Q1(U) Copase @2(U).

62

Information and Uncertainty Management Angelos Vasilakopoulos

31,1 | John

33,1 | Kate
A(31,1) = {(11,1),(21,1)}
A(33,1) ={(12,1),(21,1)}

Figure 3.13: Dg11: LDB relation Rg, for: Qi(z) : —Drives(z,y), Saw(z,y)
posed on D;.

41,1 | John
42,1 | Kate
43,1 | Kate

AL 1) = (11, 1)}
A(42,1) = {(12,1)}
A(43,1) = {(13,1)}

Figure 3.14: Dgo1: LDB relation Rg, for: Qa(x) : —Drives(z,y) posed on
D.

In [CMT77] it was shown that checking for the existence of a containment
mapping between two conjunctive queries is NP-complete. Hence we have:

Corollary 1. Suppose that ()1 and Qs are two conjunctive queries. Then
the following holds: Checking whether Q1 Cpaa Q2 0 Q1 CoBase @2 1S
NP-complete.

3.5 Semantics #3: Trio/Transitive Closure of
Lineage Containment (TR-lineage - Crpp).

TR-lineage LDB containment was firstly defined in Trio [BSH"08a]. For
two LDBs D; and D, it requires that data in D; is contained in the data of
Dy and all the lineage connections of LDB D; are preserved in the transitive
closure of the lineage of Dy. With A* we denote the transitive closure of
lineage A. Specifically the lineage constraint for TR-lineage LDB database
containment between two LDBs D; and D, is that for every tuple with data
t1 and lineage A1 (t) in D; there exists a tuple in Dy with same data and with
lineage that contains A;(¢) in its transitive closure, i.e. A;(t) C A\5(¢).

63

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Drives(name,car) | | ID | Saw(witness,car) |
‘ 11 ‘ John,Mazda ‘ ‘ 21 ‘ Cathy,Mazda ‘
A(21) = {(11)}

‘ ID ‘ Color(car,color) ‘
‘ 31 ‘ Mazda, Blue ‘
A(31) = {(21)}

Figure 3.15: LDB Ds.

| ID | Drives(name,car) | | ID | Saw(witness,car) |
‘ 11 ‘ John,Mazda ‘ ‘ 21 ‘ Cathy,Mazda ‘
XN(21) ={(11)}

| ID | Color(car,color) |
‘ 31 ‘ Mazda, Blue ‘
X(31) = {(11)}

Figure 3.16: LDB D5.

TR-lineage LDB containment is also important to consider in the practical
cases where we can have that a non-base tuple can be unreliable. The reason
is that it “preserves” unreliability: if a tuple is unreliable in D; then it will
also be unreliable in Dy. In such cases we need to “retain” all lineage of the
contained database through the transitive closure of lineage of the containing
database:

FEzample 9. Consider LDB instances Dy and Dy, shown in Figures 3.15 and
3.16 respectively. Trivially we have Dy Cpge D5 and we can check that
Dy Cepase DY also holds. On the other hand Dy i D because the lineage
connection between tuples (Mazda, Blue) and (Cathy, Mazda) in Dy is not
retained in D). If non-base tuple 21 is considered unreliable (but other tuples
in the database before posing the queries are considered reliable) then tuple
(Mazda, Blue) would be unreliable in Dy but reliable in D). So the non-base
lineage connection between tuples 21 and 31 is important and should not be
ignored. As a result this is an example where semantics #1 and #2 of LDB
database containment are not suitable and justify the need of introducing
semantics #3.

64

Information and Uncertainty Management Angelos Vasilakopoulos

D: R1 R, b: R, R, R,

1, 21t e, 21t, 311
S N NS

p: R, R, D¢ R RyRy
t t
11t1 21 tz 1Y 21 t, 31 ¢,
C N
2h)
Figure 3.18: Example

/
Figure 3.17: Example of Of, D ST SBase D" and

TR-lineage LDB contain- CTRSBase D-
ment D Crp D’.

In Figure 3.17 we see an example of TR-lineage LDB containment (for
clarity, lineage is represented through arrows). It is easy to check that D Crp
D’. In Figure 3.18 we see an example of two LDBs D and D’ for which it
holds that D Crr D" and D’ Crr D. For conjunctive query TR-containment
we have the following Theorem which follows from Theorem 5 proven in the
next section:

Theorem 4. Given two conjunctive queries Q1 and Qs we have that Q1 Crgr
Q2 iff there exists a subgoal-onto containment mapping p: Qs — Q1.

In [CV93] it was shown that checking for a subgoal-onto containment
mapping between two conjunctive queries is NP-complete. Hence from the
above theorem we have:

Corollary 2. Suppose that ()1 and Q)2 are two conjunctive queries. Then
the following holds: Checking whether Q1 Crr Qo ts NP-complete.

We now present an example of two onto-contained conjunctive queries
and show that for the ULDB U and CQs of Example 6 we have TR-lineage
query containment (as we will have for every ULDB):

Ezample 10. We continue Example 6. Consider another query Q3(z):-Drives
(z,y), Saw(z,y), Saw(w,y). The answer of Q)3 posed in ULDB U will return
the names of persons who drive a car that was shown near the crime-scene
and with lineage pointing at one or two witnesses. The result of this query

65

Information and Uncertainty Management Angelos Vasilakopoulos

D] fo |
51 | John || John
52 John 7’
53 Kate ‘7’
54 John ‘7’
A(51,1) = {(11,1),(21,1)}
A(51,2) ={(11,2),(21,2)}
A(52,1) ={(11,2),(22,1)}
A(53,1) ={(12,1),(21,1)}
A(54,1) ={(11,2),(21,2),(22,1)}

Figure 3.19: ULDB Relation Rq, for Qs(x) : —Drives(z,y), Saw(z,y),
Saw(w,y).

51,1 | John
53,1 | Kate
A(51,1) = {(11,1),(21,1)}
A(53,1) ={(12,1),(21,1)}

Figure 3.20: Dgs;: First Possible Instance of ULDB relation Rg,.

51,2 | John
52,1 | John
54,1 | John
A(51,2) = {(11,2),(21,2)}
AG21) = (112, (22.1)
A4, 1) = {(11,2), (21, 2), (22,1)}

Figure 3.21: Dgsa: Second Possible Instance of ULDB relation Rg,.

66

Information and Uncertainty Management Angelos Vasilakopoulos

over U (according to Algorithm 2) will be a ULDB Uz which will include
ULDB relations Saw and Drives of U along with the ULDB relation R,
shown in Figure 3.19. The possible instances of relation Rg, are the LDBs
D@31 and Dgsz, shown in Figures 3.20 and 3.21. The first possible instance of
Us = Q3(U) includes LDB relations of D; (first possible instance of U, shown
in Figure 3.2) together with LDB relation Dgs;. Accordingly the second PI
of Us consists of Dy (shown in Figure 3.3) and Dgss. Note that for ordinary
databases without lineage or uncertainty we have both that @), C @3 and
@3 C @1, but when we take lineage into account as well only the former
containment holds: Remember that (); asks for suspects that were shown
from a witness and so every alternative in R¢; has lineage pointing at one
witness. Hence we expect Q1(U) to be ULDB contained to Q3(U) since a
relation with an alternative with lineage pointing to one witness is expected
to be contained to a relation with an alternative with lineage pointing to one
witness and an alternative with lineage pointing to two witnesses. Indeed for
the first possible instance of query ()1 posed over Dy, shown in Figure 3.13
we have that there exists a tuple with data John and lineage equal with the
set {(11,1),(21,1)}. Tuple (51,1) in the possible instance of Q)3 shown in
Figure 3.20 has equal data and lineage. The same holds also for the second
tuple (33, 1) of Figure 3.13 and tuple (53, 1) of Figure 3.20. Hence TR-lineage
holds for the first possible instance of Q1(U) and Q3(U). It is easy to check
that this is true also for the second possible instance of @1(U), shown in
Figure 3.4, and the second possible instance of Q3(U), shown in Figure 3.21.
TR-lineage containment between @)1 and (3 holds for every ULDB since it
is easy to check that the mapping v+ — =, y = vy, 2 = 2z, w — z is an onto
containment mapping from Q3 to ;.

3.6 Semantics #4 (Same Base Lineage - Cgp,c)
and Semantics #5 (Same Lineage Contain-
ment - gSame)-

Consider LDBs D3 and Dj of Figures 3.22, 3.23. The base lineage of a
tuple includes all the base tuples that appear in the transitive closure of its
lineage (see Definition 5). With A”* we denote the lineage function of Ds
and with A5 the lineage of D}. We have D3y Zpg Dj because the lineage
connection between tuples 31 and 21 (A(31) = {21}) in D3 is not retained in
the transitive closure A'*(31) of Dj. On the other hand they have the same
base lineage: Ap(31) = N(31) = {11,12}. Suppose that we consider reliable
HighSuspects only the ones that were seen from two different witnesses, i.e.,

67

Information and Uncertainty Management Angelos Vasilakopoulos

‘ ID ‘ Saw (witness,car) ‘ ‘ ID ‘ Suspect(name) ‘
11 Cathy,Mazda ’ 21 ‘ John
12 Amy,Mazda A(21) = {11,12}
‘ ID ‘ High-Suspect(name) ‘
BN John |
A(31) = {21}

Figure 3.22: LDB Ds.

| ID | Saw(witness,car) | | ID | Suspect(name) |
11 Cathy,Mazda ‘ 21 ‘ John ‘
12| AmyMazda N(21) = {11, 12}

| ID | High-Suspect(name) |
| 31| John |
N(31) = {11, 12}

Figure 3.23: LDB D5.

68

Information and Uncertainty Management Angelos Vasilakopoulos

come from two different base tuples. In this case both tuples 31 in D3 and
D} would be reliable. Then the information about the connection between
tuples 31 and 21 (which is non-base) will not be important and we intuitively
should have LDB database containment between D3 and Dj. On the other
hand the fact that both 31 tuples have 11 and 12 as base lineage should not
be ignored.

In situations like this it is natural to require for the data of an LDB
D to be included in the data of an LDB D’ with exactly the same base
lineage. Such a condition is also important in ULDB data exchange purposes,
for containment of certain answers [AV10a|. The SBase-lineage semantics
(Definition 13) capture this requirment by making sure that our tuples in
the containing relation come from the same set of base tuples. Note that
CBase containment semantics do not suffice for this case:

Ezample 11. Consider again LDB Dj of Figure 3.22 and now an LDB DY with
same data and IDs but this time with \”(21) = {11} (and again \"(31) =
{11}). In this case tuple 31 in DY should not be considered reliable because
it comes only from base tuple 11. But we have D3 Cpopase D4 because
N5(31) = {11} C {11,12} = Ap(31). On the other hand we correctly do not
have SBase containment: D3 Zgpase Df.

We also note that TR-lineage containment does not imply SBase contain-
ment, as the following example shows:

Ezxample 12. For LDBs D; and D) shown on Figures 3.11 and 3.12 we have
TR-lineage containment but not SBase containment. TR-lineage contain-

ment holds because the lineage connection A\(21) = {11} is preserved in .
On the other hand A\p(21) = {11} # {11,12} = N3(21).

The more strict kind of containment (Same Lineage - Definition) is re-
quiring data containment with exactly the same lineage (not only base). It
is important in cases where we want to combine the conditions of TR-lineage
and SBase lineage. So when we want both to: i) retain all the lineage and
not only the base one (like in TR-lineage containment), and ii) we do not
want to have lineage connections to a tuple from a base tuple that exists only
in the containing relation (we did not want this to happen in SBase-lineage
- see Example 12). It is easy to check that SBase lineage containment does
not imply Same lineage containment:

FEzample 13. For the LDBs Dy and DY, shown in Figures 3.15 and 3.16 we
have SBase-lineage containment Dy Cgpase Dy (because A\p(31) = {11} =
N5(31)) but not Same-lineage containment (Dy Zsame D5). The reason is
that A(31) = {21} is not equal with \'(31) = {11}. Note also that because 21
is not in A'*(31) TR-lineage LDB containment does not hold (Dy Z7r D}).

69

Information and Uncertainty Management Angelos Vasilakopoulos

It turns out that SBase-lineage conjunctive query containment holds be-
tween two CQs @1 and ()5 if and only if there exists an onto containment map-
ping from)5 to ()1, like in TR-lineage C(Q containment. The same holds also
for Same-lineage CQ containment, as the following Theorem 5 shows. It will
make use of the following Lemma which states that Same ULDB (and LDB)
database containment implies both TR and SBase database containment.
SBase-lineage containment for LDBs is equivalent with the Why-semiring
containment that is defined in [Gre09] for databases with lineage, where
it was shown that Why-semiring CQ containment between two conjunctive
queries ()7 and ()5 holds if and only if there exists an onto containment from

Q2 to Q.

Lemma 1. For oll ULDBs Uy and Uy we have that the following holds:
U1 Csame Us tmplies that Uy Crg Us and that
Ul gSBase UZ-

Proof. Let U; and U, be two arbitrary ULDBs. Suppose that Uy Cgeme Us
holds. Let Dj; be a possible instance of U;. From ULDB containment
Definition 14 we have that there exists a possible instance of Us, let us denote
it with Dy, such that Dy; Cgame Dio holds. Let a tuple with data ¢ and
lineage Aq(t) belong to Dy;. From Same containment we have that there
exists a tuple in Dyo with same data t and lineage A\o(t) = Ai(t). Similarly
if D5 is a possible instance of U, there exists a possible instance Dy of U
which has a tuple with same data and lineage.

(U1 Cgame U2) = (Uy Crr Uy): Let 1Dy € A\ (t). We want to show that
IDy € XNj(t). Because ID; € X\(t) we have that ID; belongs to a relation
that has lineage pointing to it, so to the set S_ of Dy;. From the fact that
Xo(t) = Ai(t) we have that ID; belongs to \y(¢) (and to S_ of Dys). So
ID; € \y(t) and hence 1Dy € M\i(t).

(U1 Csame Uz) = (Ur Cspase Ua): Let 1Dy € A\i(t). Similarly with the
above case, we have that I D; belongs to the set S_ of Dy, to A\o(t) and to
S_ of Dys. If I Dy is a base tuple identifier then it will also belong to the base
lineage of A\o(t). For the same reason if 1D, is a base tuple identifier in Ao (%)
it will also belong to the base lineage of A\;(¢). So in this case U; Cgpase Ua
holds. Otherwise let a base tuple with identifier /D3 and data t' occur if we
expand A;(t) one level. Then from Same-containment we will have that a
base tuple with same identifier /D5 also exists if we expand Ao(t) one step.
If k£ is the distance of ¢ to the base data of Dy through Aj(t), then we can
repeat this procedure k times and yield that Dy Cspase Dio. Similarly the
same will hold for each base tuple occurring in the base lineage of Ay(t).

O

70

Information and Uncertainty Management Angelos Vasilakopoulos

Theorem 5. Given two conjunctive queries Q1 and Qs we have that the
following are equivalent:

i) there exists an onto containment mapping

p: Qa — Q.

i) Q1 Crr Q.

iii) Q1 Cspase Qs

’ZU) Ql gSame QQ-
The complexity of all the above CQ query containment tests is NP-complete.

Proof. Let U be an arbitrary ULDB and @, Qs two CQs. Let Dy be an
LDB possible instance of U. Let Dy be the possible instance of Q;(U) that
contains the answer of J; posed on D,. Let Dy be the possible instance of
Q2(U) that contains the answer of Q)2 posed on the same Dy. Let L be one of
TR, SBase, or Same LDB-containmnent semantics. From Proposition 1 we
have that 1 Cp, @2 holds if and only if Q1(Dy) Cp Q2(Dy) or, equivalently,
Dkl QL DkQ holds.
(1 — di): Let p: Q2 — @1 be an onto containment mapping. We want
to show that Dy; Crr Die. Condition S C S” of TR containment holds
because relations R, and Rgs of Dy and Dyy have no lineage pointing
to their tuples. Hence their identifiers do not belong to S_ and do not
affect containment. In addition all tuples in relations of D have the same
identifiers in both Q1(Dy) and Q2(Dy). Now in order to have Dy Crp Dio
we must have from Definition 13 of LDB TR-containment that for each tuple
with data t in Dy; with lineage A\;(t) there exists in Dy a tuple with same
data t and with lineage Ao(t) such that: A (¢) € A5(¢). Without loss of
generality let ()1 have n; subgoals and ()5 ny > ny subgoals. From Theorem
3 because p is a containment mapping we will have that Dy Cpua Dio-
So if a tuple with data t exists in Dy then a tuple with data t will also
exist in Dyo. For the lineage we have: A tuple with data ¢ and lineage
M()={IDy, ID,, ..., ID, } in LDB relation Rg; of Dy, is produced by
some substitution o on the variables of (); that maps all n; subgoals of
(21 to tuples of Dy, one with /D, one with ID,, etc until one with ID,,.
Then o o p is a substitution for variables of (). Because p is onto o o u
maps the subgoals of ()5 to the same set of tuples of D with the same set
of identifiers {I D, ..., ID,}. So, according to Algorithm 1 on Chapter
2, because we have a subgoal onto containment between Q2 and @), the
substitution o o pu will add to LDB relation Ry of Dys a tuple with data
t and lineage A\y(t) = A{(t). Since we have equality and lineages \o(t) and
A1(t) points to LDB relations in Dy, A;(t) € A3(¢) will also hold as well.

(79t — 1): Suppose that Dy Cgpese Di2 holds. From Definition 13 for
LDB SBase-containment we have that if there exists a tuple with data ¢ in

71

Information and Uncertainty Management Angelos Vasilakopoulos

relation Rg; of Dy with base lineage Api(t) then there exists in relation
Rgs of Dyy a tuple with same data ¢ and with base lineage Aps(t) such
that: Ap1(t) C Apa(t). In order to have the containment only for data
from Theorem 3 we must have that there exists a (not necessarily onto)
containment mapping from Qs to Q1.

We will now prove the contrapositive: we will suppose that there exists
no onto containment mapping and prove that in this case SBase-containment
does not hold. Suppose that there exists no onto containment mapping from
Q2 to Q1. We will show that in this case Dy Zspase Dr2- Let h be a
containment mapping from ()5 to ;. From our assumption h will not be
onto. From Definition of onto containment mapping we will have that for
every containment mapping from ()5 to ()1 there will exist some subgoals
of)1 that are not in the set of images of all the subgoals of Q2. So let
Rji, Rja, ..., Rj be the predicates of the subgoals of (); that are not in the
set of the images of the subgoals of Q)2 under h. Let IDji, IDjs,..., IDy
be the set of the identifiers of tuples of Dy that are the images under h of
Rji, Rja, ..., Rj subgoals of ;. The important observation for our proof is
the following: Since SBase query containment must hold for every ULDB, we
can have that all tuples of D}, that are the images under h of R;1, Rjs,..., R;
subgoals of)1 are base tuples. In this case Dy; will contain a tuple with data
t and base lineage A\gi1(t) = {IDj1, IDjs, ..., IDj}. From Algorithm 1 and
from the fact that there exists no onto containment mapping from @ to @,
there exists no tuple in the answer of ()5 in Dy, with data t and lineage
that contains I Dy, I Djs, ..., IDj. Since IDj1, IDjs, ..., IDj refer to base
tuples, there exists no tuple in the answer of ()5 in Dy, with data t and base
lineage equal with IDji, IDjs, ..., IDj.

(1s — 1): Suppose that Dy Crg Dye. From Definition 13 for LDB TR-
containment we have that if there exists a tuple with data ¢ in relation Rg,
of Dy; with lineage A () then there exists in Ry of Dyy a tuple with same
data ¢ and with lineage Ao(t) such that: A\;(¢) C A5(¢). In order to have the
containment only for data from Theorem 3 we must have that there exists a
(not necessarily onto) containment mapping from Qs to Q1.

Similarly with direction (7 — i) we can prove the contrapositive: if we
suppose that there exists no onto containment mapping we can show that
in this case TR-containment does not hold: If 1D}y, IDjs,..., IDj are the
identifiers of the images of the predicates of the subgoals of (); that are not
in the set of the images of the subgoals of ()5 under a non onto h, then there
exists no tuple in the answer of ()5 in Dyy with data ¢ and lineage containing
IDji, IDjs, ..., IDj. So TR-containment will not hold. Note that the only
way for TR-containment to hold would be to have I.D;i, IDj,, ..., IDj con-
tained in the transitive closure of the lineage of the images of the subgoals

72

Information and Uncertainty Management Angelos Vasilakopoulos

of ()>. But since ULDB U is arbitrary we may not assume any lineage con-
nection between its alternatives (e.g., we can have that all alternatives in U
have empty lineage). This is illustrated in the following example:

Ezample 14. Let Q(z) : —R(x,z), R(z,y) and Q'(z) : —R(x,z) be two con-
junctive queries. We have that there exists a containment mapping h from @’
to Q but no onto containment mapping exists. Let ULDB U’ be the follow-
ing: It contains a ULDB relation R(a,b) with two x-tuples with IDs 11 and
12. Let x-tuple 11 contain only one alternative with data (3,3) and 12 one
alternative with data (3,2). Also suppose that all alternatives have empty
lineage and no “?” symbol. This ULDB contains only one possible instance
Dy, which contains one LDB relation R(a,b) with two tuples which are the
only one possible selection from each x-tuple of U. Then Q(Dy) will contain
Dy, along with relation Rg which will have two tuples with data 3, the first
with lineage {11} (from the mapping © — 3 and y — 3) and the second with
lineage {11,12} (from the mapping x — 3 and y — 2) . On the other hand
D;. will contain Dy, along with relation Rg which will have one tuple with
data 3 but lineage X' = {11}. So we have that Dy Zrr D; because there
exist no tuple in Ry with data 3 and {11,12} in its transitive closure of
lineage. This is due to the fact that the second subgoal of () is not an image
of Q" under any containment mapping h. The only way for TR-containment
to hold would be to have that 12 is in the transitive closure of A\(11), i.e., if
we had A(11) = {12} in Dj. But since we must have TR-containment for
every ULDB U, we may not assume any lineage connection.

(1 — dv): It follows from the proof of direction (i — i) where we showed
that if there exists an onto containment mapping, then for each tuple with
data t in Dy with lineage A;(¢) there exists in Dy a tuple with same data
and lineage.

The remaining cases of (iv — i) and (iv — i) are a consequence of
the previous Lemma. The NP-completeness follows from the completeness of
checking for a (subgoal) onto containment mapping between two CQs [CV93].

]

3.6.1 Conjunctive Queries without self-joins

A query has self-joins if its body contains at least two subgoals with the
same relation name. In [IR95] it was shown that testing for the existence of
a (subgoal) onto containment mapping between two conjunctive queries has
complexity O(n-logn). Thus for the case of conjunctive queries without self-
joins, the query containment test has O(n -logn) complexity for all different
five semantics.

73

Information and Uncertainty Management Angelos Vasilakopoulos

3.7 Comparison between Different Semantics

In Figure 3.6 of the Introduction we have a comparison of the five notions
of containment that we defined. Column Implies DB cont. shows implica-
tions between different kinds of database containment. For example if a
ULDB or LDB database is contained in another under Semantics #4, then
it will be contained under Semantics #1 and #2 as well. These implications
between different database containment semantics are easy to check from
their definitions. For negative implication results we give counter-examples:

In LDBs D; and D; of Figures 3.11 and 3.12 we have an example of
Data containment and TR-lineage containment between databases (LDBs)
D and D', but with non CBase database containment, due to the fact that
Ng(21) = {11,12} € {11} = Ap(21) (note that for CBase the base lineage
containment goes from the containing to the contained database). For the
same reason we do not have same base lineage nor same lineage between D
(where A\g(21) = {11}) and D" (where N3(21) = {11,12}). In LDBs Dy
and D of Figures 3.22 and 3.23 we see an example of Data, CBase-lineage
and SBase-lineage LDB database containment (because Ag(31) = N3(31) =
{11,12}), but with non TR-lineage nor Same-lineage containment, due to
the fact that non-base lineage connection A(31) = {21} of Dj3 is not retained
in Dj. Lastly, in Example 11 we have an example of CBase-lineage database
LDB containment, because the base lineage of 21 in Df is {11} which is a
subset of the base lineage of 21 in D3. But in the same Example we do not
have SBase-lineage database containment between D3 and Dj due to the fact
that the connection 12 € Ag(21) of Dj is not retained in Dj. Note that these
positive and negative results of database containment implications hold for
both LDBs and ULDBs since an LDB can be thought as a ULDB with only
one possible instance.

3.8 CQ Query Equivalence

In this section we investigate the problem of ULDB conjunctive query
equivalence. From Definition 16 which defines query equivalence as a two-way
query containment, Theorems 3 and Corollary 1 the next theorem follows:

Theorem 6. Given two conjunctive queries Q1 and Qo we have that the fol-
lowing are equivalent:

i) there exists a containment mapping

h: Qy — Q1 and a containment mapping

n: Ql — QQ.

”) Ql =Base QQ'

74

Information and Uncertainty Management Angelos Vasilakopoulos

“Z) Ql =CBase QQ-

Moreover the CQ equivalent test for Base and CBase semantics is NP-complete.

Note that having a ULDB U and two Base or CBase equivalent queries
Q and @' does not necessarily mean that Q(U) and Q'(U) will be two
ULDBs with possible LDB instances that will have equal data and lin-
eage. This is illustrated in the following example: Consider queries Q1(x):-
Drives(z,y), Saw(z,y) and Q3(z):- Drives(x,y), Saw(z,y), Saw(w, y) of Ex-
ample 10. We have that there exists a containment mapping from @), to Q3
and from @3 to Q1. So @)1 and ()3 are Data and CBase Equivalent. If we
look at the second possible LDB instance Dgi2 of Q1(U) in Figure 3.4 and
at the corresponding second possible LDB instance Dgss of Q3(U) in Figure
3.21 we see that Dgio contains two different tuples with data John while
D32 contains three different tuples with data John. But the two ULDBs
Q1(U) and Q3(U) instances are “equivalent” according to the notion of Data
containment: if a tuple with data ¢ occurs in a possible instance of Q;(U)
then a tuple with data ¢ will also exist in the corresponding possible instance
of Q3(U) and the opposite. So Data CQ equivalence means that the sets of
tuples between corresponding possible LDB instances of Q1(U) and Q3(U)
are equal and is a suitable notion of equivalence when we care only about
data. Similarly if we replace query ()3 with its CBase equivalent)7 which
has less subgoals then we will get in the answer the same set of data tuples
that have “minimal” base lineage. That is, if a tuple with data ¢ and base
lineage Ap occurs in a possible instance of Q3(U) then a tuple with data ¢
and with “minimal” base lineage A3 C Ap will exist in the corresponding
possible instance of Q1(U). In cases where CBase containment is useful we
care only about containment of base lineage and considering CBase equiv-
alency is meaningful even though two CBase equivalent databases will not
have equal data and lineage. As a result for Data or CBase query equivalency
the traditional CQ optimization algorithm can be used.

If for two conjunctive queries ()1 and ()5 there exists an onto containment
mapping h : Q2 — ()1 and an onto containment mapping b’ : Q1 — Qo
then @, and @, are isomorphic: Let X; and X, be the sets of all variables
that occur in ()7 and)5 respectively. Since there exists an onto containment
mapping h : (2 —)1 we have the head and some subgoals of ()5 are mapped
to the head and all subgoals of Q)1. As a result for all variables of ()1 there
exists a variable of @, that is mapped under h to it, i.e.: Vay; € X3, dzy; €
X, : To; —p T1;. 1f we take the inverse h~! of h then it will map all variables
of ()1 to some variables of). Since there exists also an onto containment
mapping i’ : Q1 — Q2 we have that the inverse h~! will map all variables of
(21 to all variables of ()2 such that all subgoals of ()5 have a mapping from

75

Information and Uncertainty Management Angelos Vasilakopoulos

all subgoals of ()1. Hence)1 and ()5 are isomorphic.

The following Theorem is now a result again of Definition 16 and this
time of Theorem 5. Checking isomorphism between two CQs is GI-complete
where GI is the complexity of checking graph isomorphism, which belongs in
NP but is not proven to be either in P or NP- complete [Mat79].

Theorem 7. Given two conjunctive queries Q1 and Qs we have that the
following are equivalent:

i) Q1 ~ Qa, i.e., Q1 and Qo are isomorphic.

ii) Q1 =7r Q2.

”7') Ql =JSBase QQ-

iU) Ql =Same QQ-

Checking conjunctive query equivalence under TR, SBase or Same-lineage
semantics has Graph-Isomorphism (GI)-complete complexity.

From Theorem 7 it follows that the possible LDB instances of two TR,
SBase or Same isomorphic queries posed over a ULDB will have equal data
and lineage. Hence if redundant joins of a CQ are removed, the result will
have different lineage that will affect TR, SBase and Same lineage equiv-
alence. From the definition of Same-lineage equivalence semantics we have
that this result also holds for database equivalence, i.e., the possible instances
of two Same equivalent ULDBs will have equal data and lineage. On the
other hand this does not hold for TR and SBase ULDB database contain-
ment. For example consider LDBs D and D’ of Figure 3.18, where we have
both D Crr D', D' Crr D and D Cgpase D', D' Copase D, but the lineage
functions of D and D’ are not equal (for example we have 11 € X'(31) while
11 € A(31) - only 11 € A*(31) holds). As a result TR and SBase Lineage
ULDB database containment are not partial orders.

3.9 UCQ Queries Containment and Equivalence

We now extend our results to unions of conjunctive queries (UCQs).

Theorem 8. Given two unions of conjunctive queries Q, = {Q11, @12, ...,
Qun} and Qs = {Qa1, . .., Qom} we have that the following are equivalent:

i) @1 Cpata Qa-

”) Ql gC’Base Q2-

ii) for every Qu, i = [1...n] there exists a Qo; € Q2 and a containment
mapping (not necessarily onto)
h: Qo — Qui-

The query containment test for UCQs with the above semantics is NP-complete.

76

Information and Uncertainty Management Angelos Vasilakopoulos

Proof. Let U be an arbitrary ULDB and Q1 = {Q11,Q12,...,Q}, Q2 =
{Q21,Q, . .., Qo } two UCQs. Suppose that Q1(U) Cepase @2(U) holds.
From Proposition 1 it follows that we have an one-to-one correspondence
between the possible instances of Q;(U) and Q5(U). Let Dy, be a possible
instance of U. Let Dy be the possible instance of Ql(U) that contains the
answer of Q1 posed on Dy, and let Dy, be the corresponding possible instance
of Q2(U). When computing UCQs over ULDBs we have that a tuple with
data t and lineage \(t) in Q1 (Dy) is the answer of a CQ Qy; € Q;. Similarly a
tuple with data t and lineage \'(¢) in Qo(Dy) is the answer of a CQ Qa5 € Qo.
From this fact and Theorem 3 we have that if a tuple with data ¢t and base
lineage Ap(t) exists in Q1;(Dy) then a tuple with the same data t and base
lineage Ng(t) C Ap(t) exists in Qq;(Dy,) if and only if we have that for every
Qui, i = [1...n] there exists a Qy; € Qo and a containment mapping (not
necessarily onto) h: Q2; — Q1;. Identifiers of relations R and Rgs do not
belong to S_ and tuples of relations in D, remain with the same identifiers
in Dy and Dgs. Thus we have that Dy Copase Do (and Dy Cpara Dio)
if and only if we have that for every Q1;, i = [1...n] there exists a Qq; € Q>
and a containment mapping (not necessarily onto) h: Qq; — Q1;. O

In the above proof if we replace Cpgta 0r Copase With one of TR, SBase
or Same lineage query containment semantics then from Theorem 5 we get
the following result:

Theorem 9. Given two unions of conjunctive queries Q1 = {Q11, Q1a, . .., Qin}
and Qs = {Qa1, ..., Qom} we have that the following are equivalent:

i) for every Qu, i = [1...n] there exists a Q25 € Q2 and an onto contain-
ment mapping h : QQa; — Q1;.

i) Q1 Crr Q2.

i1i) Q1 CsBase Q2-

iU) Ql gSame QQ-

The query containment test for UCQs with the above semantics is NP-complete.

From Definition 16 which defines query equivalence as a two-way query
containment the previous two theorems and Corollary 1 the next two theo-
rems follow:

Theorem 10. Given two unions of conjunctive queries Q1 = {Q11, Q12 .. .,
Qun} and Qs = {Qa1, ..., Qam} we have that the following are equivalent:

i) for every Qu;, i = [1...n] there exists a Qa2; € Qo and a (not necessarily
onto) containment mapping h : Q2 — Q1; and

for every Qq;, i = [1...m] there exists a Qy1; € Q1 and a (not necessarily
onto) containment mapping h: Q1; = Q

7

Information and Uncertainty Management Angelos Vasilakopoulos

“’) Q} =Data QQ;
Z“’) Ql =CBase QQ-

Moreover the UCQ) equivalent test for the above semantics is NP-complete.

Theorem 11. Given two unions of conjunctive queries Q1 = {Q11, Q1 .. .,
Qun} and Qs = {Qa1, . .., Qam} we have that the following are equivalent:

i) for every Qu, i = [1...n] there exists a Qo; € Qo such that there exists
an onto containment mapping from Qz; to Q1; and

for every Qq, i = [1...m] there exists a Q1; € Q1 such that there exists an
onto containment mapping from Q1; to Qo

i) Q1 =rr Q2.

ZZZ) Ql =SBase _622-

iU) Ql =Same QQ-

Moreover the UCQ) equivalent test for the above semantics is GI-complete.

We note that both ways onto containment between two UCQs Q; =
{Q11,...,Qun} and Qo = {Qa1, . . ., Qo } does not yield that every Qy; of Qy
will be isomorphic with a ()g; of (2, but the semantics of equivalence hold.
We give an example to illustrate this subtlety:

Ezample 15. Consider UCQs Q1 = {Q11, Q12} and Qy = {Qa1, Q22 } where:
Q11(z):-Drives(z,y), Saw(z,y), Saw(w,y), Saw(v, y),
Q12(z):-Drives(z,y), Saw(z,y), Saw(w, y),

Qa1 (x):-Drives(x,y), Saw(z,y), Saw(w, y), Saw(v, y),
Qa2(x):-Drives(x,y), Saw(z,y).

We have that there exists an onto containment mapping from 51 to both
Q11 and ()12. In addition there exists an onto containment mapping from
from Q12 to both Q2 and Q2. As a result condition (i) of Theorem 11
holds. We have that Qs is not equivalent with none of the CQs of @, but
UCQ equivalence holds: Obviously ()11 and ()91 are isomorphic since they
are equal. So for tuples with data ¢ and lineage A(t) occurring in Q; from
the answer of Q1; there will exist in Q, a tuple with same data and lineage.
For tuples occurring in @, from the answer of Q1o we have: There exists an
onto containment mapping from)11 to Q12 and as a result a tuple with data
t and lineage A(¢) occurring in the answer of ()12 will also exist in the answer
of Q11 with the same data and lineage. Hence it will also exist in Q, due to
(21 The other direction will similarly hold for the data and lineage in the
answer of Q.

78

Information and Uncertainty Management Angelos Vasilakopoulos

3.10 Other Definitions of ULDB Database Con-
tainment

In this Section we point the following interesting observation: We can
define ULDB database containment for Data, CBase, TR, SBase and Base
lineage using one of the two following alternative definitions. From Propo-
sition 1 it follows that even when we define ULDB database containment
using any of the following definitions instead of Definition 14, the results of
Theorems 3— 11 still hold.

Definition 17. Let C; denote one of the variants Cpuie, CcBases TTR,
CsBase; Csame 0f LDB database containment of Definitions 12 or 13.

Let U and U’ be two ULDB’s. We say that U is ULDB L-contained in U’
(denoted with Cj) if the following hold:

i) If U has n possible instances Dy, Do, ..., D,, then U’ has the same number
n of possible instances D1, ..., D) and

ii) There exists an one-to-one and onto correspondence for all the possible
instances of U and U’, i.e., for each ¢ = [1...n| we have that D; C;, D holds
according to the corresponding notion of LDB containment definition.

Definition 18. Let U and U’ be two ULDB’s. We say that U is ULDB
L-contained in U’ (denoted with Cp) if the following holds:

For every possible instance D; of U there exists a possible instance D;- of U’
such that: D; Cp, D; holds according to the corresponding notion of LDB
containment definition.

3.11 Uncertain Equality containment - Cz and
semantics of ULDB Equality containment

In [ASUW10] another kind of containment for uncertain databases with
no lineage was discussed that was suitable for uncertain data integration
purposes. An uncertain database (with no lineage and without identifiers)
is defined as a set of ordinary databases called Possible Worlds (PWs) (in
convention we use the notion Possible Worlds whenever we have no lineage
and we retain the notion of Possible Instances in the case with lineage). The
definition of equality containment is the following:

Definition 19 (Equality Containment Cg). [ASUWI0]
Base case for databases with one relation: Consider two uncertain databases
Uy and U, both containing a single relation R. Let T(U;) denote the set of

79

Information and Uncertainty Management Angelos Vasilakopoulos

all tuples appearing in any possible world of U; and respectively we define
T(Usz). We say that U; is equality-contained in Uy (U; Cg Us), if and only
if: T(Uy) CT(Uy) and PW(Uy) ={WNnTU,) | W e PW(U,)}.

For databases with more than one relations: Consider two uncertain databases
Uy and U, that contain a same set of relations R = {R;,...R,}. Then
U, Cg U, holds if for every relation R; of R we have that U; and U, restricted
to relation R; are equality contained according to the base case definition.

Informally the above containment means that if we throw away from the
possible worlds of U, all tuples that do not appear in any possible world of
Ui, then the resulting possible worlds are the worlds of U;. The notions of
database containment we defined in the previous sections were data-driven:
all kinds of them implied set containment of data (Semantics #1). In con-
trast the notion of equality containment focuses on retaining correlation and
mutual exclusion between data: if two tuples in the contained database occur
only in different worlds then no containing world can include both of them.
In addition if two tuples occur only together in a possible world of the con-
tained database then any containing world that has one of them must have
the other as well. We note that Us can have more PIs than U;. In [ASUW10]
another notion of superset containment was also discussed which coincides
with equality containment for query containment. Thus wee do not discuss
it in here.

Now consider an uncertain database U that is a set of n ordinary databases
that are its possible worlds. Posing a query @ over it will give a new uncer-
tain relation with n possible worlds, each containing the answer of () over
the possible worlds of U. We have that even an onto containment between
two conjunctive queries, which yielded the stronger same-lineage conjunctive
queries containment does not suffice for equality containment. We illustrate
this in the following Example 16. This result is not surprising since the no-
tion of equality containment does not focus on data containment like the
ones we presented.

Ezample 16. Consider conjunctive queries Q1 (z):- R(x, x) and Qz(x):—R(x, y).
There exists an onto containment mapping from @5 to ;. This implies that

(21 is Same-Lineage contained in (). However we shall show that there exists

a ULDB U such that), is not equality contained in (). Consider an un-

certain database U containing the uncertain relation R = {{(a,a)},{(b,0)},

{(a,b), (b,a)}}, where a and b are two different constants. Then @Q;(U) =

{{a},{b},0} and Qo(U) = {{a},{b},{a,b} }. If we restrict the third pos-

sible world of Q2(U) to the tuples a and b that occur in @;(U) then the

resulting world {a,b} is not a possible world of @1(U). Hence Q7 is not

equality contained in Q5.

80

Information and Uncertainty Management Angelos Vasilakopoulos

It turns out that two conjunctive queries @); and ()» are equality con-
tained if and only if they are homomorphically equivalent, i.e., there exists a
containment mapping h: Q2 — ()1 and a containment mapping h': Q1 — Qo,
or if)y is the empty query:

Theorem 12. Given two conjunctive queries Q)1 and Qo we have that Q)1 Cg
Q- iff Q1 is the empty query or there exists a containment mapping h: Qs —
Q1 and a containment mapping h': Q1 — Q. In addition checking whether
Q1 Cg Qo is NP-complete.

Proof. (if:) Let U be an arbitrary uncertain database with Dy, ..., D, pos-
sible worlds.

If @y is the empty query then for every ¢ = 1...n. we will have that
Q1(D;) is empty. Thus the set of all tuples appearing in any Q;(D;) is the
empty set. Hence regardless of the form of query @5 if we restrict the tuples
of every QQ2(D;) to the empty set we will get empty worlds, which are equal
with the empty possible worlds of Q;(D;).

Suppose that ()7 and Q)3 are homomorphically equivalent. For each D;
we will have that Q,(D;) and Q2(D;) have exactly the same data. As a result
we will restrict the tuples of every Qa(D;) to its own tuples. Thus the result
will be the same world @Q»(D;) which is equal with the world @Q(D;). So
equality-containment will hold for every uncertain database U.

(only if:) Let U be an arbitrary uncertain database with Dy, ..., D,, pos-
sible worlds. Suppose that @)1 Cg @2 holds. So if we restrict all the possible
worlds of Q2(U) to all the tuples appearing in any possible worlds of Q1 (U),
we will get the possible worlds of @1(U). One way for this to hold is to have
that) is the empty query. Otherwise if () is not the empty query we will
suppose that ()1 and)5 are not homomorphically equivalent and yield to the
contradiction that ¢}y Cg ()2 does not hold. We have three possible cases:

o If there exists only a homomorphism A : Q)3 — @ (and no homomorphism
B Q1 — @) : Example 16 is an example where there exists only a homo-
morphism A : Qs — Q1 but)1 Cg Q)2 does not hold.

e If there exists only a homomorphism A’ : @Q; — @3 (and no homomor-
phism A : Q2 — @1): The equality-containment must hold for any uncertain
database U. So let us suppose that U has only one arbitrary possible world
D;. Since there exists only a homomorphism A’ : 7 — Q2 we have that
Q2(D1) € Q1(D1). So all tuples of Q2(D;) will also be tuples of Q1(D;),
hence we do not throw away any tuple from @Q2(D;). From Q2(D;) C Q1(D)
we have the possible world of ()5 posed over D, is not equal with the possible
world of (01 posed over D and (1 Cg ()5 does not hold.

e If there exists no homomorphism h : ()2 — @7 and no homomorphism
h : Q1 — Q3 The equality-containment must hold for any uncertain

81

Information and Uncertainty Management Angelos Vasilakopoulos

database U. So let us suppose that U has two possible worlds Dgp and
De¢s. Let us create a unique constant for each variable appearing in conjunc-
tive queries)1 and (). Suppose that D¢ is the canonical database of @y,
i.e., all the subgoals of); with the chosen constants substituted for variables.
Similarly suppose that D¢o is the canonical database of Q3. Then Q1(D¢y)
contains the head of (J; with the chosen constants substituted for variables
(“frozen head” of (7). Because there exists no homomorphism A : Q2 — Q1
we have that Q2(D¢1) does not contain the frozen head of @);. Because there
exists no homomorphism 2’ : Q1 — Q2 we also have that Q2(Dc2) does not
contain the frozen head of ();. As a result none of the two possible worlds of
Q2(U) contains the frozen head of (). So none of the two possible worlds of
Q2(U) when restricted to tuples appearing in the possible worlds of Q;(U)
can be equal to Q1(D¢1). Hence Q1 Cg Q2 does not hold.

The NP-completeness follows from the completeness of checking equiva-
lence between two queries over ordinary databases which holds if and only if
the two queries are homomorphically equivalent [CM77]. OJ

Equality containment for ULDBs

In Sections 4,5,6 we presented five different notions of ULDB containment
that concerned containment of data and of different kinds of lineage infor-
mation. Equality containment for uncertain databases focuses on preserving
the correlation of data in the possible worlds. We can retain this property by
defining Equality Data (EData) containment Cgpa, for ULDBs: Given two
ULDBs U; and U, equality ULDB database containment will retain correla-
tions of data between the possible instances of U; and U;. EData containment
is an extension of Equality containment Definition 19 for uncertain databases
for the case of ULDBs. Since a ULDB apart from data and uncertainty also
contains lineage and identifiers we can pose lineage constraints on top of the
data constraints of EData equality ULDB containment. It is natural to con-
sider the useful lineage constraints that we had in CBase, TR, SBase and
Same lineage containment. We denote these four notions of ULDB equality
containment with Cgcgase; CETR, CESBases CEsame- 1N the next subsection
we show that introducing lineage constraints on top of Equality Data ULDB
containment can be useful in a setting of ULDB data integration.

Given a set of data tuples 77 and and LDB D we define the *“ Ti-Reduced”
LDB D? as the LDB that we have when we remove from LDB D all tuples
that have data not occurring in the set 77, along with their identifiers and
lineage. The LDB Dg contains only tuples with data occurring in 77 along
with the original identifiers and lineage they had in LDB D.

A possible instance of a ULDB is an LDB which contains data, identifiers

82

Information and Uncertainty Management Angelos Vasilakopoulos

and lineage. Suppose we have two ULDBs U; and U, and T'(U;) is the set
of tuples appearing in any possible instance of U;. In order extend Equality
containment of Definition19 to ULDBs it is natural to require that if we
reduce to T'(U;) the Pls of U, then we will get Pls that have the same set
of data tuples with the PIs of U;. In other words as we saw in Section
3.8 we must have that for every possible instance D; of U; there exists a
possible instance Dy of Us; and such that Di =pg. Dg};Ul) and for every
possible instance D) of U, there exists a possible instance D] of U; such
that D] =pata DZ%(U”. We can now give Equality Data ULDB containment
definition which concerns ULDBs with a single relation due to simplicity.
Extending it for databases with many relations is straightforward similarly
with Definition 19.

Definition 20 (Equality Data ULDB Database Containment Cgpa,). Con-
sider two ULDBs Uy and U,. Let T(U;) denote the set of all tuples (only
their data without identifiers or lineage) appearing in any possible instance
of U; and respectively we define T'(Us). We say that U; is Equality Data
ULDB contained in Uy (Uy Cgpaia Us), if and only if:

1. T<U1> g T(UQ) and

2. for every possible instance D; of U; there exists a possible instance Dy of
U, such that D; =pata DQTI(%Ul) and

3. for every possible instance Dy of U, there exists a possible instance D; of
U, such that Di =pasa D;gUl).

The answer of a query)1 over a ULDB U includes all ULDB relations of
U and a new ULDB relation Rg;. Thus relations of ULDB U exist in both
Q1(U) and Q2(U), so we are interested in equality containment between the
new relations Rg; and Rgs.

Apart from requiring that the possible instances of a ULDB U; will have
the same set of tuples with the reduced to T'(U;) set of tuples of the possible
instances of Uy, we can additionally require that if a tuple with data ¢ occurs
with lineage A in a possible instance of Uy, then a tuple with same data and
lineage also occurs in a reduced to T'(Uy) possible instance of Us. This lineage
requirement gives rise to ESame ULDB equality containment semantics. We
have the following definition:

Definition 21 (Equality Same ULDB Database Containment C ggame). Con-
sider two ULDBs U; and Us. Let T(U;) denote the set of all tuples (only
their data without identifiers or lineage) appearing in any possible instance
of Uy and respectively we define T'(Us). We say that U; is Equality Same
ULDB contained in Uy (U; Cgsame Us), if and only if:

1. T(U1> Q T(UQ) and

83

Information and Uncertainty Management Angelos Vasilakopoulos

2. for every possible instance D1 of U; there exists a possible instance D2 of
U, such that D1 =pg, DQE(U“ and D1 Cggme Dgg(Ul) and

3. for every possible instance D2 of U, there exists a possible instance D1 of
U, such that D1 =pg, DZE(UI) and D1 Cgume D2£(U1),

Similarly we define ECBase, ETR and ESBase equality ULDB contain-
ment by replacing Cgqme in the above definition with one of the corresponding
notions of lineage containment in the cases where we require that for every
tuple with data ¢ existing in a PI of U; there exists in the reduced to T'(U;)
Pls of U, a tuple with same data and CBase, TR or SBase-contained lineage.

In contrast with Data, CBase, TR, SBase and Same lineage containment,
for all kinds of equality containment we can have that query containment
between two queries holds for LDBs but ULDB query containment does not
hold for the same two queries. This is due to the fact that data existing in
different possible instances can affect EData (and all other equality seman-
tics) ULDB database and query containment. In such a case we can have
LDB containment between all the Pls of two ULDBs U and U’ but ULDB
containment between U and U’ may not hold (only the opposite holds). For
LDBs EData CQ query containment coincides with ordinary query contain-
ment, i.e., Q1 Cepaa—rpp @2 if there exists a containment mapping h from
Q2 to @Q1: If we have an arbitrary LDB D, then, due to h, relation Rgo
of Q2(U) will have all the tuples occurring in the sets of tuples appearing
in Rg; and also possibly some more tuples which would not belong to the

set T(Q1(D)). As a result they will not occur in QQ?QMD)) and hence Rg
reduced to tuples appearing in 1(D) will have the same set of tuples with
Ql(D); i.e., Ql QEData QQ will hold for LDBs.

On the other hand this result does not hold for ULDB EData CQ query
containment: Consider conjunctive queries Q1 (z):—R(z,z) and Qs(x):— R
(x,y). There exists a containment mapping from ()3 to 1. This implies that
(1 is LDB EData contained in ()>. However we shall show that there exists
a ULDB U such that)7 is not ULDB EData contained in (). ULDBs are
a complete model so they can represent any given set of possible instances.
The ULDB shown in Figure 3.24 represents the three possible worlds of
Example 16. This ULDB has three possible instances one for the three
choices of mutually exclusive external identifiers (31,1), (31,2) and (31, 3).
In the possible instance of Rg; which occurs from selection of (31, 3) we have
that Rg; is empty and Rge contains two tuples, one with data a and one
with data b. But tuples with data a and b occur in the (other two) possible
instances of Rg; so they will not be removed, similarly with Example 16.
Hence 1 Cgpata @2 does not hold for ULDBs even though it holds for
LDBs.

84

Information and Uncertainty Management Angelos Vasilakopoulos

1D | R |
11 | a,a || b,b || a,b
12 b,a ‘7’
A1L, 1) = {(31, 1)}
A(11,2) = {(31,2)}
A(11,3) ={(31,3)}
A(12,1) = {(31,3)}

Figure 3.24: ULDB representing Example 16.

Similarly for LDB containment ESame coincides with Same query con-
tainment, i.e., Q1 Cgseme—_rpB @2 if there exists an onto containment map-
ping from Q)5 to @)1: Due to onto containment the answers of ()1 and Q)5 will
have the same sets of data and if a tuple with data ¢ and lineage A\ occurs
in relation Rg; of LDB relation @1(U) then a tuple with same data and
lineage will occur in LDB relation Rge. Hence @1 Crgame @2 will hold for
LDBs and weaker ECBase, ETR and ESame query containment for LDBs
will hold as well. In contrast this requirement is not enough even for EData
ULDB CQ query containment whose data requirement is subsumed in all
other semantics: For queries Q1(z):—R(x,z) and Q(x):—R(z,y) there ex-
ists an onto containment mapping from (2 to Q1. So they are ESame CQ
query contained for LDBs, but as we saw they are not EData, hence not
ESame, CQ query contained for ULDBs. We will show in the last subsection
of this Section that for ULDB conjunctive query containment under all five
equality containment semantics we must have that there exists a (not neces-
sarily onto) containment mapping from @1 to Q2 as well.

The Usefulness of ULDB Equality Containment in Data Integration

Equality containment is shown in [ASUW10] to be useful for the problem of
data integration of uncertain sources: Specifically it is important when each
source has access to a part of information of an existing uncertain database.
The problem of data integration is to find the “best” uncertain database that
reconciles in the best way the hidden uncertain database from the informa-
tion of the sources in order to answer queries.

In this setting of uncertain data integration there exists one implicit log-
ical mediated uncertain database (Mediator) and each source is defined as
a view over the Mediator (Local-As-View uncertain data integration). The
semantics of uncertain data integration are given in the following two defini-

85

Information and Uncertainty Management Angelos Vasilakopoulos

tions of Views and Sources. These definitions in [ASUW10] concern equality
containment. We naturally extend them for the five semantics of equality
ULDB containment. A view under uncertain integration is defined from a
view extension (an uncertain database V') and from a view definition (Q which
is posed over the Mediator in order to get the database V.

Consider a ULDB V', a query @ and let E; be one of EData, ECBase,
ETR, ESBase, ESame equality ULDB containment. For a (logical) ULDB M
the ULDB uncertain database V' is a view extension under Fi with respect
to view definition @ if and only if V' Cg, Q(M). A source S = (V,Q) is
specified by a view extension V' and a view definition). View V contains
the uncertainty, data and lineage in the source and () is the query used to
map the source to the Mediator. A key notion for uncertain and ULDB data
integration is “consistency”. Let F; be one of EData, ECBase, ETR, ESBase,
ESame equality ULDB containment. The set of sources S = {S; ..., Sn},
where S; = (V;, Q;), is consistent if and only if there exists a ULDB database
(Mediator) M such that: i) M # 0, and ii) Vieq,. myVi Cg, Qi(M).

A set of ULDB sources is consistent if and only if there exists a ULDB
mediator from which they could have been derived. Checking consistency
of sources is fundamental for uncertain data integration: Query answering
is meaningful only if a given set of views is consistent. In [ASUWI0] it
was shown that for uncertain databases without lineage and for equality
containment Cpg the complexity of checking consistency is NP-hard even
when we have only identity views, i.e., for every source .S; we have that Q;
is the identity query.

When the uncertain sources are ULDBs and thus apart from data and
uncertainty have also lineage information it is natural to consider equality
ULDB containment semantics that also concern lineage. In ULDB data
integration each source has access only to a part of the data of a ULDB
Mediator M. As a result it is natural to have in M a tuple with data t and
lineage A; and another tuple again with data ¢ this time with lineage Ao,
but a source to have access only to the first tuple. So a source that has a
tuple with data ¢ and lineage A\; should be ESame contained to Mediator M
since data correlations in PlIs required in EData containment also hold. This
is why in ESame Definition 21 we required containment and not equality
between the PIs of the contained ULDB (source) and the reduced Pls of
the containing ULDB (mediator). On the other hand in ESame definition
we required EData equivalence in order for sets of data to be equal, thus
preserving data correlations. The same holds for all other three kinds of
ULDB equality containment that concern lineage. We show in the following
Example 17 why linage information, in our Example ESame lineage, can
be important in a data integration scenario with ULDBs and simple EData

86

Information and Uncertainty Management Angelos Vasilakopoulos

containment does not suffice:

FExample 17. Suppose we are given two views V; and V5 with data the ULDB
shown in Figures 3.26 and 3.27. Both views are defined through the identity
query. The ULDBs V; contains two ULDB relations Saw(witness) with
names of witnesses and Suspects(name) with names of Suspects. Lineage
in Suspects connects names of suspects with the witness that accused them.
In addition due to lineage A(22,1) = {(21,1)} we have that Cathy and Amy
always coexist in a PI (this can represent for example the fact that they were
witnesses of the same crime).

ULDB V; has two possible instances, occurring from the two choices of
alternatives of x-tuple 21. The first possible instance of V; has in LDB
relation Saw witnesses Cathy and Amy and in LDB relation Suspects Kate
because she was accused from Cathy. The second possible instance of Vj
has Celine in Saw and John in Suspects. ULDB V5, has also two possible
instances, occurring from the two choices of alternatives of x-tuple 21. The
first possible instance of V5 has in LDB relation Suspects Kate and George
because they were both accused from Cathy. The second possible instance
of V1 has Celine in Saw and the emptyset in Suspects.

It is easy to check that Vi and V5 are consistent under ESame ULDB
equality containment (hence under all other 4 kinds of ULDB containment):
Specifically for the ULDB M shown in Figure 3.25 we have that: M # 0,
Vi Cesame M and Vo Cgseme M (note that @ and @, are the identity
queries). Suppose now that instead of V4 we had another identical view Vi
shown in Figure 3.28. Then V; and Vj are EData consistent but not ESame
consistent. The reason is that in the first possible instance of V] LDB relation
Saw has witnesses Cathy and Amy and LDB relation Suspects has George
with lineage pointing to Amy and not to Cathy. Thus we have V, Crpara M
but V3 Zgsame M. But different lineage can be important: If for Example
Cathy was considered an unreliable witness and hence George was deleted
in M but not in V; (because witness Amy remained reliable) then not even
EData consistency would hold. As a result M in this case would not be
a suitable Mediator, while another M’ with a tuple with data George in
Suspects pointing to Amy would be ESame contained to V; and V. The
semantics of EC'Base, FTR, ESBase are also useful in data integration
scenarios with reliable and unreliable data similar with the cases where cor-
responding notions of C'Base, T'R and S Base database lineage containment
were important.

CQ Query Complexity for CBase, EData, ETR, ESBase and ESame
ULDB equality containment

87

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Saw(witness) |
21 | Cathy || Celine
22 Amy <7
A22,1) = {(21, 1)}
| ID | Suspects(name) |
31 John || Kate
32 George
A(31,1) ={(21,2)}
A(31,2) = {(21,1)}
A(32,1) ={(21,1)}

Figure 3.25: Actual ULDB database M.

| ID | Saw(witness) |
21 | Cathy || Celine
29 Amy 7
A22,1) = {(21, 1)}
| ID | Suspects(name) |
| 31 | John || Kate |
A(31,1) ={(21,2)}
A(31,2) ={(21,1)}

Figure 3.26: View V; (with @; the identity query)

| ID | Saw(witness) |
21 | Cathy || Celine
22 Amy ‘7
A(22,1) ={(21,1)}
| ID | Suspects(name) |
31 Kate
32 George
A(31,1) ={(21,1)}
A(32,1) ={(21,1)}

Figure 3.27: View V5 (with Qs the identity query)

88

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Saw(witness) |
21 | Cathy || Celine
22 Amy ‘7’
A22,1) = {(21, 1)}
| ID | Suspects(name) |
31 John
32 George
A(31,1) ={(21,2)}
A(32,1) ={(22,1)}

Figure 3.28: View VJ (with @ the identity query)

Even when we care only about preserving data correlations in possible LDB
instances of a ULDB and we do not care about lineage or identifiers the
following Theorem shows that Q1 Cgpae @2 if and only if there exists a
containment mapping h from @ to Q)1 and a containment mapping A’ from

Q1 to Qs.

Theorem 13. Given two conjunctive queries ()1 and Qo we have that

Q1 CEData Q2

iff Q1 is the empty query or there exists a containment mapping h: Qs — Q1
and a containment mapping h': Q1 — Q. In addition checking whether
Q1 CEpata @2 18 NP-complete.

Proof. The case of an empty () is similar with the proof of Theorem 12.
(if:) Let U be an arbitrary ULDB with D, ..., D, possible instances. Sup-
pose that there exists a containment mapping h: (s — (1 and a containment
mapping h': Q1 — Q2. Then for every possible instance D; of U, LDB re-
lation R of Q1(D;) has the same set of tuples with LDB relation Rgo of
Q2(D;). Since this holds for every D; we have that the set of tuples T'(Q)
occurring in all possible instances of Rg is equal with T(Q2). As a re-
sult for each possible LDB instance D} of ULDB relation Rg, we have that
D’z’IT%(Ql) = D!. Since there exists a containment mapping h: Q2 — @ and
a containment mapping h": QQ; — Q2 we also have that D, =pu, D;. As a
result we have that: D’ngl) = D! =paa Di. Hence from Definition 20 we
have that)1 Cepata Q2-

(only if:) Suppose that Q1 Cgpate Q2 holds. Let U be a ULDB representing
possible instances with no lineage and no duplicates. From the fact that
we have EData equality containment it follows from Definition 20 that the
possible instances of Q2(U) containing only tuples occurring in any possible

89

Information and Uncertainty Management Angelos Vasilakopoulos

instance of (1(U) are equal with the possible instances of @1(U). Since U
represents possible instances with no lineage and no duplicates we have from
Theorem 12 that there exists a containment mapping h: Q2 — @; and a
containment mapping h': Q1 — Q.]

For all remaining notions of ECBase, ETR, ESBase and ESame equivalent
conjunctive query containment we have that their definition always require
EData containment. From Theorem 13 this holds if and only if there exists a
containment mapping h from @, to ()1 and a containment mapping A’ from
Q1 to Q2. This means that all possible instances of relations Rg; and Rgo
will have exactly the same sets of tuples and hence we do not remove any
tuple from any possible instance of Rgo when we compute its reduced LDB
instances. As a result the condition: D1 Cgrgame DQE(Ul) of Definition 21
becomes equivalent with: D1 Cggame D2. Hence from the previous Theorem
and from Theorems 3 and 5, the following two Theorems follow:

Theorem 14. Given two conjunctive queries Q)1 and Q2 we have that

Q1 CECBase Q2

iff Q1 is the empty query or there exists a containment mapping h: Q2 — ()1
and a containment mapping h': Q1 — Q. In addition checking whether
Q1 CECBase @2 is NP-complete.

Theorem 15. Given two conjunctive queries Q)1 and Q2 we have that

Q1 CETR,ESBase, ESame Q2

iff Q1 is the empty query or there exists an onto containment mapping h:
Q2 — Q1 and a (not necessarily onto) containment mapping h': Q1 — Qs.
In addition CQ containment checking for these semantics is NP-complete.

90

Chapter 4

The Complexity of Data
Exchange under Lineage and
Uncertainty

We present a data exchange framework that is capable of exchanging
uncertain data with lineage and give meaningful certain answers on queries
posed on the target schema. The data are stored in a database with uncer-
tainty and lineage (ULDB) which represents a set of possible instances that
are databases with lineage (LDBs). Hence we need first to revisit all the no-
tions related to data exchange for the case of LDBs. Producing all possible
instances of a ULDB, like the semantics of certain answers would indicate, is
exponential. We present a more efficient approach: a u-chase algorithm that
extends the known chase procedure of traditional data exchange and show
that it can be used to correctly compute certain answers for conjunctive
queries in PTIME for a set of weakly acyclic tuple generating dependen-
cies. We further show that if we allow equality generating dependencies in
the set of constraints then computing certain answers for conjunctive queries
becomes NP-hard.

4.1 Introduction

Data exchange is the problem of translating data that is described in a
source schema to a different target schema. The relation between source and
target schemas is typically defined by schema mappings. Recently the data
exchange problem has been widely investigated, even for various uncertain
frameworks, e.g., probabilistic [FKIK10]|. One aspect of the problem is finding
procedures that compute in polynomial-time target instances that represent

91

Information and Uncertainty Management Angelos Vasilakopoulos

adequate (usually for query answering purposes) information. A challenging
problem that has received considerable attention is the problem of giving
meaningful semantics and computing answers of queries posed on the target
schema of a data exchange setting [ALP08a, ALP08b, FKK10]. In [FKMP05]
it was shown that computing certain answers for conjunctive queries over or-
dinary relational databases can be done with polynomial data complexity
if the constraints satisfy specific conditions (are weakly acyclic). Query an-
swering for data exchange was also studied for aggregate queries [AK08| and
queries with arithmetic comparisons [ALPO8b]. To the best of our knowl-
edge the data exchange problem and query answering has not been studied
for models of databases that incorporate both uncertainty and lineage. On
Uncertainty-Lineage Databases (ULDBs) an uncertain database represents a
set of possible instances (PIs) that are certain databases with lineage (LDBs).
The semantics for possible instances of an uncertain instance are that only
one of them “captures the truth”, but we do not know which. Thus we have
two kinds of uncertainty: i) uncertainty about the possible instances that
this source represents (which one is the “true”) and ii) uncertainty that arises
due to heterogeneous source and data schemas. Many modern applications
like data extraction from the web, scientific databases, sensors and even data
exchange systems of certain sources often contain uncertain data. These ap-
plications may require recording the origin of data, which is modeled through
lineage or provenance. Databases that track down the provenance of certain
data have been extensively studied [BKT01, CW03, GKTO07].

The Trio model [BSH"08a| combines and supports both lineage and un-
certainty in ULDBs. This model was proven to be complete for succinctly
representing any set of databases with lineage (LDBs) [BSH"08a|. In this
model a) each uncertain tuple (x-tuple) is a set of traditional tuples, called
“alternatives”, that represent its possible values (i.e. we have uncertainty as
to which of them is the “true” one) and b) each alternative comes with its lin-
eage. One of the reasons ULDB model was introduced is that it would be im-
portant for data exchange [BSH08a]. Computing conjunctive queries, that
is SPJ queries, on ULDBs was shown to require polynomial-time [BSHT08a].
Trio implements ULDBs in a database system build on top of a traditional
SQL system with necessary encoding [BSH08a].

In general a data exchange problem for a data model consists of a source
instance represented in this model and of a set X of constraints that consists
of source-to-target constraints Xy and target constraints ¥, (X = Xy UY,).
Given a finite source instance I, the data exchange problem is to find a finite
target instance J such that < I, J >= I U J satisfies X; and J satisfies X;.
Such a J is called a solution for I or, simply a solution if the source instance
I can be easily understood [FKMPO05|. The query answering problem on

92

Information and Uncertainty Management Angelos Vasilakopoulos

a data exchange setting is which target instance to materialize to be used
for obtaining meaningful answers (called certain answers) of a query. In
this chapter we investigate the data exchange problem for the ULDB model.
We consider source-to-target (s-t) and target tuple-generating dependencies
(tgds) as constraints. In addition we consider a ULDB source whose lineage
is “well-behaved”, a constraint defined in [BSH"08a] and in practice is true
for most databases. The important property of “well-behaved” lineage for
our results is that the lineage of a tuple, even if expanded, cannot refer to
itself (lineage transitive closure does not contain cycles).

We investigate the data exchange problem of the Trio model and address
the relevant query answering problem for Conjunctive Queries (CQs). Our
contributions are: i) We present natural semantics for ULDB certain answers.
ii) We give u-chase algorithm which extends the well-known chase algorithm
for certain databases. iii) We use u-chase to show that if the source is a
well-behaved ULDB, the source to target constraints consists of tgds and the
target of a set of weakly acyclic tgds then we can compute ULDB certain
answers in PTIME. iv) We prove that if we incorporate equality generating
dependencies (egds) in the set of target dependencies then computing certain
answers for conjunctive queries on a ULDB data exchange setting becomes
NP-hard.

Intuitively the semantics of ULDB certain answers are the following: A
certain answer is a ULDB that represents a set of possible LDB instances.
We want those instances to be the same as if we had considered first the
LDB possible instances of the source ULDB and computed certain answers
for each data exchange problem that rose from each one possible LDB source
instance. An obvious way to tackle this problem is to follow the direction
that semantics indicate: if the ULDB source has n possible LDB instances
then produce n LDB certain answers computed from n LDB data exchange
problems. But the number of the possible instances of a (source) ULDB can
be exponential on the size of the data [BSH"08a|. As a result this proce-
dure would be computationally very expensive and would not be suitable
for large data sets. In contrast our proposed u-chase algorithm computes
certain answers in polynomial time for weakly acyclic tgds. Another reason
which shows that moving from the well-studied data exchange problem for
ordinary databases to databases with uncertainty and lineage is not trivial is
the following: In the former case computing certain answers with egds in the
target dependencies remains polynomial, while in our case we prove that this
problem becomes NP-hard. The correct meaning of ULDB certain answer
semantics is illustrated in Example 18. For simplicity it does not include any
target constraints.

93

Information and Uncertainty Management Angelos Vasilakopoulos

FExample 18. Suppose that a local police department contains a database A
with two relations: Saw(witness,car) and Drives(person,car) (we have
borrowed the source schema from [BSH"08a]). The department has a list of
drivers along with their cars that contains the information that Hank drives
a Honda, Jimmy a Mazda and Billy a Toyota car. All this information
is certain and stored in relation Drives(person,car). The source ULDB
relation Drives is shown in Figure 4.1. For every crime if a witness reports
that he/she saw a car near the crime scene then the local department stores
in relation Saw the witness and the car-make that the witness saw. Suppose
now that a witness named Cathy saw a car near the crime scene but she was
not sure whether it was a Honda or a Mazda. A witness named Amy saw a
car but she was uncertain whether it was a Toyota or a Honda. Note that
in Figure 4.1 empty lineage of the source data is omitted.

A ULDB relation consists of x-tuples instead of tuples. Each x-tuple has
a unique identifier and a multiset of “alternative values”, separated with ||
symbol. The semantics are that only one alternative (or zero if we have sym-
bol ¢?’) from each x-tuple can be true in a possible instance [BSH"08a|. For
example ULDB relation Saw on Figure 4.1 has four LDB possible instances
due to the two choices of alternatives for x-tuple 11 and the two choices for
12. If Saw had n x-tuples each with two alternatives and again empty lineage
then it would represent 2" possible instances (exponential in the number of
alternatives). As we will see in the following section lineage will pose further
logical complex constraints to the possible instances that a UDLB relation
represents.

Now a private investigator owns a database B that has a single rela-
tion: Suspects&Dates(suspect,date). Suppose that the private investiga-
tor wants to transfer the information from the database of the local police
department to his own database. But he only wants to store the suspect
and date for each crime since he is not interested about witness’ names
or car information. The following source-to-target tgd & models this exam-
ple: Saw(witness, car),Drives(p, car) —3D Suspects&Dates(p,D). We
note that Suspects&Dates contains only the names of persons p that drove
a car that was seen near a crime-scene (i.e., contains only suspects). The
date attribute is not present in the source schema and is represented as an
“unknown” - “null” value in the target. Even in certain data exchange the
heterogeneity between the source and the target schema gave rise to ‘“null”
values that appear as distinct variables in a database instance [FKMPO5].
Hence a materialized target instance that we expect due to tgd £ is shown in
Figure 4.2.

Suppose now that the private investigator wants to ask about all the
names of all the suspects. This query posed over his target database B is the

94

Information and Uncertainty Management Angelos Vasilakopoulos

¢: Saw(witness,car),Drives(p, car) — 3D Suspects&Dates(p,D)
(Q): Q(suspect) : —Suspects&Dates(suspect, date)

| ID | Saw(witness,car

) H ID | Drives(person,car) |

11 | Cathy,Honda || 21 Hank, Honda
Cathy,Mazda 29 Jimmy, Mazda

12 Amy,Toyota || 23 Billy, Toyota
Amy,Honda :

Figure 4.1: ULDB source database A.

ID | Suspects&Dates
(suspect,date)

31 Hank,d; ?

32 Jimmy,dy 7

33 Billy,ds ?

34 Hank,dy ?
Ap(31) = {(11,1),(21,1)}
Ap(32) = {(11,2),(22,1)}
As(33) = {(12,1),(23,1)}
Ag(34) = {(12,2),(21,1)}

Figure 4.2: Expected materialized target ULDB instance.

| ID | Q(suspect) |
41 Hank ?
42 | Jimmy ?
43 Billy ?
44 Hank ?
Ap(41) = {(11,1), (21, 1)}

Figure 4.3: Expected Certain Answer of () posed on target database B.

95

Information and Uncertainty Management Angelos Vasilakopoulos

following conjunctive query @): Q(suspect) :- Suspects&Dates(suspect,
date). Query @ is a projection of attribute suspect of Suspects&Dates.
Since the source instance is a database with uncertainty, the target database
B will also be uncertain and have lineage pointing to source data. It will
represent a set of possible instances which are databases with lineage (and
no uncertainty). Accordingly the answer of the query @ posed on B will
represent a set of possible instances. Intuitively we expect the following:

i) Hank should exist as a suspect in the certain answers of @ if the
car that Cathy saw was in reality a Honda car. So in the relation @) the
lineage will record the pointer back to the fact that Cathy saw a Honda
(base alternative 11,1). Answer Hank also comes from the certain fact that
Hank drives a Honda (alternative 21, 1). ii) But Hank can also be a suspect
in the certain answers of @) if the car that Amy saw was in reality a Honda
car. Thus the suspect Hank will be recorded twice in the answers but with
different lineage. As we see in an LDB we can have that tuples with same
data appear many times if their lineage is different. iii) Similarly we expect
Jimmy to exist as a suspect in the certain answers of () if the car that C'athy
saw was in reality a Mazda car, so with lineage that contradicts the lineage
(11,1) of the first tuple with Hank data (since at most one alternative can
be true from x-tuple 11).

As a result we expect the certain answer of () to be a ULDB as shown
in Figure 4.3. With s(i,j) we denote the j-th alternative of x-tuple with
identifier i. Base data of a ULDB instance is its source data with empty
lineage. If two alternatives point to the same base data we say that they
have the same base lineage which is lineage extended back and containing
only base data. In Figure, 4.3 Ap(s(i,7)) denotes the base lineage of an
alternative s(i,7). We note that lineage does not just track where data
comes from, but also poses logical restrictions to the possible LDB instances
that a ULDB represents. An alternative of an x-tuple can be true in a
possible instance if its lineage is true. For example Jimmy cannot appear in
all possible instances but only to the two ones that have selected alternative
(11,2) to be true. Symbol ‘7’ indicate that there exists a possible instance
that does not contain any alternative from this x-tuple (such a tuple is called
a “maybe” x-tuple [BSH'08a).

Note that in a certain data exchange setting where we have no lineage
and no uncertainty tuple (Hank,d,) in materialized target instance Sus-
pects&Dates is redundant since there already exists tuple (Hank, d;), so as
concerns only data, tgd & is satisfied. But if we take lineage and uncer-
tainty into account if we have only (Hank,d;) and not (Hank,d,) in our
target then in the possible instance which has selected alternatives (11,2)
(Cathy, Mazda) and (12,2) (Amy, Honda) we would have tgd ¢ would re-

96

Information and Uncertainty Management Angelos Vasilakopoulos

quire a tuple with suspect Hank to appear in the target from tuples (12, 2)
and (21,1). But (Hank,d;) has base lineage {(11,1), (12,2)} so it will not
appear in the this possible instance which has selected (11,2) from the two
mutually exclusive alternatives of x-tuple 11. As a result in a ULDB data
exchange setting we also have to take lineage into account. Since the possible
instances of a ULDB are determined from the choices of base data we need
to retain tuples in the target instance that point back to different base data
even though they have same data. This is why tuple Hank, d, must exist
in the ULDB target instance even though Hank, d; already exists since they
have different base lineage.

Other data models that represent a set of possible worlds to capture in-
complete information are presented in [IL84]. The conditional tables of [IL84]
are complete for representing possible instances that are certain databases
but do not support lineage tracking. In |[GKITO7| peer data exchange for
LDBs is considered that uses mappings of various trustworthiness and fo-
cuses on filtering out the untrusted answers. In their lineage (provenance)
model, they record more detailed information than the LDB model we con-
sider in our work here.

4.1.1 Related Work

A similar with data exchange problem is data integration. In [SDH] data
integration with uncertain mappings is considered but for certain sources.
The procedure that is presented produces first all possible certain data inte-
gration problems that are represented due to uncertain mappings and then
computes ordinary certain answers separately. In [MMO09] the sources can
be uncertain (but with no lineage) and several properties of uncertain data
integration (a problem generally more complicated than data exchange) are
formalized and discussed. The procedure that is used for certain query an-
swering first produces all possible instances without uncertainty.

97

Information and Uncertainty Management Angelos Vasilakopoulos

4.1.2 Ordinary Data Exchange

We refer to the data exchange problem for traditional databases with no
lineage nor source uncertainty as ordinary/certain data exchange problem.
Even in this case due to the fact that source and target can be different
schemas we can have many possible target instances that satisfy the con-
straints called solutions.

Definition 22 (Certain Data Exchange). [FKMPO05]

A data exchange problem (S, T, 3, ¥¢) consists of a source schema S,
a target schema T, a set X, of source-to-target dependencies, and a set X,
of target dependencies.
The data exchange problem associated with this setting is the following:
given a finite source instance I, find a finite target instance J such that
< I, J >= TUJ satisfies >, and J satisfies ;. Such a J is called a solution
for I or, simply a solution if the source instance I is understood from the
context. The set of all solutions for I is denoted by Sol(I).

Definition 23 (Tuple Generating Dependency). Let D be a database schema.
A tuple generating dependency (tgd) is a first-order logical formula of the
form:

Vx(o(x) = Jy ¥(x,y))

where ¢(x) is a conjunction of atomic relational formulas over D with vari-
ables in x. Each variable in x occurs in at least one formula in ¢(x). In
addition, ¥ (x,y) is a conjunction of atomic relational formulas over D with
variables in x and y and each variable in y occurs in at least one formula in

(X, y).

In the rest of this chapter we will drop the universal quantifier in front
of a tgd rule. Further we will refer to to the right hand side (left hand side
respectively) of a tgd with rhs or body (lhs or head respectively). Satisfaction
of a tgd for a traditional certain database is defined as:

Definition 24 (Tgd satisfaction). Let d be a tgd of the form:

VX(Rl(Xl), RQ(X2)7 e Rn(xn)) —

Ely(Tl(X&?Y1)>T2(X,27Y2)> s ’Tm(xina ym))
where x; € X, y; €Y.

A database D will satisfy d if for every homomorphism A that maps
Rl (Xl), RQ(Xz), ceey Rn(Xn) to tuples Rl(tl), RQ(tQ), ey Rn(tn) in D then
there exist a homomorphism A’ that is an extension of h that maps the
rhs of d to tuples Ti(t)), Ta(th), ..., Tu(t)) in D.

The following is an example of a certain data exchange problem.

98

Information and Uncertainty Management Angelos Vasilakopoulos

Example 19. Let us modify our running Example 18 so that the source is an
ordinary certain database with no uncertainty and without keeping track of
the lineage of derived tuples. In particular we now suppose that Cathy and
Amy are certain that they saw a Honda car. Relation Drives was already
certain so it will stay the same. We only have to remove lineage and the
unique IDs of each tuple that were used for lineage tracking. The certain
source instance is now shown in Figure 4.4.

The source-to-target tgd of Example 18 stays the same. So we assume
that again the private investigator wants to transfer the information from
the database of the local police department to its own database, but he only
wants to store the Suspects and Date for each crime:
¢ :Saw(i,w,c),Drives(p,c) —

1D Suspects&Dates(i,p,D)

According to Definition 24, Figure 4.5 shows a possible solution J; where
d; represents an “unknown” null value that is represented through a unique
variable).

The query @1 also remains the same, i.e. the investigator wants to ask
his database for the names of all the suspects:
Q;(suspect) :- Suspects&Dates(suspect, date)

Figure 4.6 shows the result of applying ()1 to J. In this case our partic-
ular J contains no null values and Q(.J) coincides with the certain answers
of (; of a certain data exchange setting with [as source and &; as constraints.
Intuitively regardless of the date of the crime, Hank will be a suspect.

| Saw (witness, car) |

Cathy, Honda
Amy, Honda

| Drives (person, car) |
Hank, Honda
Jimmy, Mazda
Billy, Toyota

Figure 4.4: Source certain instance [

We finish this section with the following standard definitions from certain
data exchange:

99

Information and Uncertainty Management Angelos Vasilakopoulos

‘ Suspects&Dates(suspect,date) ‘
‘ Hank, d; ‘

Figure 4.5: Solution J for I and ¢

Q1(J)

Figure 4.6: Q1(J)

Definition 25 (Conjunctive Query - CQ). A conjunctive query Q(z) over a
schema T is a formula of the form Jy ¢(z,y), where ¢(x,y) is a conjunction
of atomic formulas over T'.

Definition 26 (Weakly acyclic tgds). For a set ¥ of tgd’s over a database
schema R the dependency graph of X is the directed graph that has as vertices
(R,i), where R € R, and i € 1,...,arity(R). The graph has two types of
edges:
1. Regular edges. There is a regular edge between vertices (R, %) and (.5, j)
if there a tgd in X that has a variable y that appears both in position (R, %)
in the body, and in position (5, j) in the head.
2. Existential edges. There is an existential edge between vertices (R,) and
(S,7) if there is a tgd in ¥ that has a variable 224 that appears in position
(R,i) of the body and in some position in the head, and an existentially
quantified variable z that appears in position (S, j) in the head.

A set of ¥ of tgd’s is said to be weakly acyclic if the dependency graph of
> does not have any cycles containing an existential edge.

Definition 27 (Ordinary Chase). The ordinary chase works on an instance
K with constants and null values. Let ¥ be a set of tgd’s and let £ be a tgd
in 2. Let h be a homomorphism from the lhs of £ to I. If there exists no
homomorphism which is an extension of h that maps the rhs of £ to K then
an extension h” of h which maps the existential variables of the rhs of £ to
fresh new null values is applied to the rhs of £ producing new tuples that are
added in K. In that case we say that the ordinary chase “fires” with £ under
' producing a new instance K’, denoted with K —&" K’

In [FKMPO5| the following was shown:

Theorem 16. Let ¥ be a weakly acyclic set of tgd’s. Then ordinary chase
terminates in polynomial time.

100

Information and Uncertainty Management Angelos Vasilakopoulos

4.2 Data Exchange with Lineage

We have that the possible instances (Pls) of a ULDB are LDBs [BSH'08a].
Since we do not know which one captures the “truth”, intuitively all the LDB
possible instances of a ULDB solution must satisfy data exchange constraints.
So we need to revisit all the data exchange relevant definitions of the cer-
tain case for an LDB data exchange setting. The data exchange problem for
databases with lineage has the same setting as in the certain case. The dif-
ference now is that the tuples in the source instance and the target instance
(to be materialized) have lineage information. The LDB model extends the
relational model in the way that every tuple apart from its data has also a
unique identifier attached and a lineage function pointing to the set of tuple
identifiers from which this tuple was derived from. As we already discussed
in the Introduction of this Chapter, heterogeneity between the source and the
target schema can give rise to “null” values that appear as distinct variables
in a target instance.

We denote by Const the set of all values that occur in source instances
and we call them constants. In addition, we assume an infinite set Var of
values, which we call labeled nulls, such that Var N Const = 0. If R is a
database schema and K is an instance over R with values in Const N Var,
then Var(K) denotes the set of labelled nulls occurring in relations in K.

When tuples have values from constants then we say that it is a ground
database instance with lineage (ground LDB instance). When tuples have
values from constants and variables (where these two sets are disjoint) then
we say that we have a database instance with lineage (LDB instance).

The lineage function is empty for base relations. For derived relations it
points to the identifiers of the tuples from which it was derived. If a tuple is
derived as an answer of a query, lineage points to the tuples that were used
in order to get this tuple in the answer relation. Algorithms 1 and 2 that
we present on Chapter 2 compute conjunctive queries (CQs) over LDBs and
ULDBs following the methods presented on [BSH"08a].

We focus on computing certain answers and correct lineage. Correct
lineage for a tuple that is derived as an answer of a C(Q has been already
defined in CQ computing algorithms of [BSH08a|. But now we also have to
compute semantically correct lineage for a tuple that is derived from a data
exchange setting. The important difference between LDB conjunctive query
computing and CQ computing on ordinary databases is the following: Now
a tuple can exist in the answer of a query more than once if it is derived
from different tuples. So two or more tuples can have the same data if they
have different lineage. In a similar way the semantics of satisfying tuple
generating dependencies should also be slightly different. We will refer to

101

Information and Uncertainty Management Angelos Vasilakopoulos

the right hand side (left hand side respectively) of a tgd with rhs or body
(lhs or head respectively). It is natural to define that a tuple generating
dependency rule d is LDB-satisfied if it is satisfied in the traditional sense
and, moreover, the lineage of the image of the lhs tgd atoms is related to
the lineage of the image of the rhs tgd atoms. For Data Exchange purposes
it turns out that we are interested in retaining that tuples come from the
same base tuples, i.e., have the same set of base lineage. This is natural
since the base tuples are tuples appearing in the source database instance
and with same base lineage we make sure that the target tuples come from
the correct “top-origin” of the source. The usefulness of such a definition is
more obviously seen when we use it in the context of ULDB data exchange
query answering. For now we only note that the base data is the one which
defines: i) the number of possible instances of a ULDB and ii) which derived
tuples with well-behaved lineage will be also appearing (apart from the base
ones) at each instance. This property is proved in [BSH08a|. So base
data is the one which exclusively determines (through base lineage) the LDB
possible instances of a ULDB. The formal definition follows:

Definition 28 (LDB satisfaction of a tgd). Let D be an LDB and d be a
tgd of the form:

Vx(Ry(x1), Ra(X2), ..., Ro(xn) = Jy (11 (%1, ¥1), To (X4, ¥2), - s T (X, Yim)))
We will say that LDB D l-satisfies d, if for each homomorphism h that maps
Ri(x), Ry(x),..., ,R.(x) to tuples: Ri(t;) with ID = ID;, Ry(tz) with
ID = IDy, ..., R,(t,) with ID = ID, in D, then there exists a homo-
morphism A’ that is an extension of h that maps the rhs of d to tuples
Ty (t), To(ty), ..., Tn(t,) in D with :

Ag(th) = {As(ID1)UA(ID3)...UAp(ID,)},

Ag(th) = {As(IDy)UAp(IDs)...UAp(ID,)},

Ap(tn,) = {A(ID1) UAp(IDs) ... UAs(ID,)},

where, e.g., Ap(t}) is the base lineage of tuple). In the above union if a
tuple with identifier 1Dy is base, we replace Ag(IDy) not with its empty
lineage but with base identifier I Dj,.

The identifiers in the answer of a CQ apart from the fact that need
to be unique and different than the existing ones, their exact value is not
important. For example a tuple with identifier 41, data value Hank and
lineage A(41) = {11,21} says that Hank exists in the answer due to facts
with ids {11,21}. At this point the newly created answer-identifier 41 could
have been as well 51: the important fact is that Hank is in the answer and
due to base tuples {11,21}. We will have in mind this difference in order

102

Information and Uncertainty Management Angelos Vasilakopoulos

to define l-certain answers: For a tuple t“PP of an LDB we can “drop” its

identifier information and thus take a pair (¢, A(ID(t))), which we denote
by IDgrop (t#PB). We extend IDgy,p, to apply to databases:

Definition 29. Given an LDB D, we define IDg,.,(D) to be derived from
D by changing each tuple t*P7 in each relation of D to I D, (t*PF).

Since it is the base lineage which determines the possible instances of a
ULDB and is important in LDB tgd-satisfiability we are interested in retain-
ing in LDB-certain answers LDB tuples with data and base lineage that must
appear in every solution in order to satisfy the tgds.

Given an I Dy, (t*PP) tuple we can replace its lineage with its base lin-
eage and thus take a pair (t, Ap(ID(t)), which we denote with Aygse (£ Darop
(tEPBY). We extend Apese to apply to databases:

Definition 30. Given an LDB D, we define Ag({Dgop(D)) to be derived
from D by changing each tuple t“PB in each relation of D to Apgse(] Dy op
(tLPBY),

Since we have no alternatives, LDB tuples are always present and their
unique identifiers can be single numbers and not pairs referring to alternatives
(like it is the case for ULDBs). When a tuple’s identifier is clear from the
context, we may refer to an LDB tuple only with its unique identifier 1D
(i.e. denote its lineage as A\(ID)). Alternatively, we may say that we want
to have an LDB tuple with data ¢ and lineage A(t) present in our database,
when confusion does not arise.

We can extract only relations of target schema J using polynomial ex-
traction algorithm found in [BSH"08a|. It extracts a subset of relations of
an LDB or a ULDB along with all their base lineage information. Data from
tuples not appearing in retained relations are not being kept. Only their
lineage and only if it is referred through the base lineage of remaining tuples.
From now on we use the term extracting a relation, which is applying the
following extraction algorithm [BSH'08a] with the extracted relation as its
input.

EXTRACTION ALGORITHM:

1. input: ULDB D = (R, S, \), and X C R
2. output: a ULDB D’ = (X, S, \)

3. 5" = I(X) U (Uperx) A" ()

4. XN = A|g, the restriction of A to S’

103

Information and Uncertainty Management Angelos Vasilakopoulos

5. return D’
We can now define LDB certain answers and LDB solutions:

Definition 31 (LDB Solutions). Let (S, T, X4, 3¢) be an LDB data ex-
change setting. An LDB solution to this data exchange setting is an LDB J
of target schema T such that together with I l-satisfies the tgds in >.

Definition 32 (LDB Certain Answers). Let ¢ be a conjunctive query over
the target schema 7" and I an LDB source instance. For each LDB so-
lution J we drop the identifiers producing IDg.,(q(J)). We further re-
place all lineage with its base lineage producing Apgse({Darop(q(J))) Then
l-certarop(q, I) = N{ Xvase(I Darop(q(J)))}. Finally the LDB certain answers
(l-certain answers) are produced by attaching a fresh distinct identifier to
each tuple of I-certy0p(q, I) and produce l-cert(q, I).

Universal solutions of a certain data exchange setting are target rela-
tions, such that there exists a homomorphism from them to each other solu-
tion [FKMPO5]. In order to define LDB Universal Solutions we first have to
revisit the notion of homomorphism. We keep the “data part” of definitions
as it is in the certain case and for the lineage part we require the mapped
tuples to have the same base lineage. Once again, the usefulness of such a
definition is more obviously seen when we use it in the context of ULDB data
exchange query answering where the base lineage will pose logical restrictions
to the possible LDB instances that the ULDB Universal Solution represents,
since base data is the one which exclusively determines (through base lin-
eage) the LDB possible instances of a (well-behaved) ULDB [BSH08a]. We
can now define LDB homomorphism (denoted as I-homomorphism) and LDB
Universal Solution.

Definition 33 (LDB homomorphism A;). Let Dy, Dy be two LDB instances
over the same schema with values in Const U Var. We say that D; l-maps
to Dy (D7 — Do) if there exists a homomorphism h from variables and
constants of D; to variables and constants of D, such that: i) it maps every
base fact t} of Dy to a base fact h(t;) =t of Dy with ID(h(t})) = ID(t?)
and ii) for every non base fact R;(t) of D; we have that R;(h(t)) is a fact of
Dy with Ag(R;(h(t)) = Ap(R;(t)), where Ap is the lineage extended back to
and containing only base data.

Definition 34 (LDB Universal Solution). Consider a data exchange setting
(S, T, Xg, 34). If Lis a source LDB instance, then an l-universal solution for
I is a solution J such that for every solution J’ we have that there exists an
LDB homomorphism h; such that: J —, J'.

104

Information and Uncertainty Management Angelos Vasilakopoulos

4.3 Computing LDB certain answers

Now that we have all the necessary notions from the previous sections,
we can define l-chase. L-chase will be used in the next section in order
to compute ULDB certain answers in PTIME. Again the “data part” of I-
chase will be similar to the certain definition. Certain chase is a procedure
that makes sure that its result will satisfy a given tgd. We will similarly
also need to extend it with a “lineage part”, according to our definition of
l-homomorphism in order for its result to l-satisfy a tgd:

Definition 35 (l-chase step). Let K be an LDB instance. Let d be a tgd of
the form: Vx(Ri(x1), Ra(X2), ..., Ra(xn) — Jy(T1(x,y1), To(X4, y2), - - -,
T (X, Ym))). Let h be a homomorphism from Ry (x), Ra(X), . .., Ru(x) to
tuples Ry(t1), Ra(t2), ..., Ru(t,) in K with IDs: {ID;,IDs, ... ID,} such that
there exist no homomorphism A’ that is an extension of h that maps the rhs
of d to tuples Ty (t)), To(t5), ..., Tn(t,,) in K with:

A(t)) = Ag(t1) UAp(t2) U...UXg(t,),

Ap(th) = Ap(t1) UAp(t2) U... U Ap(t,),

Ap(th) = Ap(t1) UAg(t2) U... U Ag(t,).
We say that d can be l-applied to K with homomorphism h (in this case
l-chase “fires”).

Let LDB K’ be the union of K with the set of facts obtained by: (a)
extending h to A’ such that each variable in y is assigned a fresh labeled null,
followed by (b) taking the image of the atoms of y under A’ and adding them
to the relations of the rhs of d along with a new non-used identifier (c) set
as lineage of each atom of (b) the set {ID;,ID,,...,ID,}. We say that the

result of applying d to K with h is K’ | and write K ﬂn K.

Definition 36 (1-Chase). Let ¥ be a set of tgds and K be an LDB instance.
e An I-chase sequence of K with X is a sequence (finite or infinite) of 1-chase
steps K; ﬂn Ky, with e =0,1,..., with K = Ky and d; a dependency in
3.

e A finite l-chase of K with X is a finite l-chase sequence K; ﬂn K1, 0<
i < m, where there is no dependency d; of ¥ and there is no homomorphism
h; such that d; can be l-applied to K,, with h;. The result of the finite I-
chase is then K,,. In this case of a finite chase sequence we say that l-chase
terminates.

With A%h we denote the base lineage to which the lhd of d is pointing
to under h, which is computed in the following way: A%h = Ag(IDy) U

105

Information and Uncertainty Management Angelos Vasilakopoulos

Ap(IDy),U...UAg(ID,). The function Ag(/D) maps the identifier of a base
tuple to itself and the identifier of a non-base tuple to the set of identifiers
in its base lineage.

Our l-chase is a sequence of l-chase steps. It is an extension of the well
known chase procedure for traditional databases. Our l-chase algorithm is
an extension of the well known chase procedure for traditional databases.

We also define parallel chase step I —s, I’ of an instance I with a set
of tgds . Parallel chase step fires all applicable to I ordinary chase steps
simultaneously:

Definition 37 (Parallel chase step). Let ¥ be a set of tgds and I be an
instance consisting of constants and nulls. A parallel chase step I —5%9me [’
fires with all tgds & in ¥ such that for each &; there exists a homomorphism
h from the lhs of & to I for which there exists no extension homomorphism
h' that maps the rhs of & to I.

We can naturally define parallel l-chase step to fire over an LDB instance
I with all tgds & in X such that for each &; there exists a homomorphism A
from the lhs of & to I for which there exists no extension homomorphism A’/
that maps the rhs of & to tuples of I with base lineage equal with the base
lineage to which the lhs points to. We illustrate the differences of (parallel)
l-chase and ordinary (parallel) chase in the following example:

Example 20. Consider an ordinary source instance I with two unary relations
R, and R,, with one tuple with data 1 in R; and one tuple with data 2 in
Rs. Consider now the LDB source instance I’ shown in Figure 4.7. Instance
I’ has two relations R; and Ry with the same data with ordinary /. But an
LDB can have many tuples pointing to different lineage. So let us suppose
that LDB Relation R; has two tuples with same data 1 the first pointing to
base lineage 11 and the second to base lineage 12. LDB Relation R, also
has two tuples with same data 2 the first pointing to base lineage 13 and
the second to base lineage 14. Base tuples 11,12,13,14 can be thought as
external tuples or we can suppose that there exists also a source relation R
with four LDB tuples with IDs 11,12, 13, 14.

Now consider the set of tgds ¥ = {&1, &9, &3, &}, where:
§1 : Rl(l') — Tl(l')
52 : RQ(I) — TQ(I)
& Th(x), To(y) — 32T5(2,y, 2)
€a - T1($),T3(l‘,y, U) - TQ(y)
Ordinary parallel chase will terminate in two steps: The first parallel ordinary
chase step will fire with & and & and create one tuple with data 1 in T} and
one tuple with data 2 in 7. The second parallel ordinary chase step will fire

106

Information and Uncertainty Management Angelos Vasilakopoulos

Figure 4.7: I’ Source LDB Instance of Example 20.

with &5 and create tuple 1,2, z; in T5. Then &, or any other tgd will not fire
again.

Now parallel l-chase will terminate after four parallel l-steps: The first
parallel 1-chase step will fire with £ and & and create two LDB tuples with
data 1 in T3, one pointing to base lineage {11} and the other to {12} and
two LDB tuples with data 2 in T5. The second parallel I-chase step will fire
with &3 and create tuples in T3 shown in Figure 4.8. Then, in the third step,
&, will fire and create T, shown in Figure 4.9. In the fourth and final step
l-chase step will fire again with &5 and create tuples in 73 shown in Figure
4.10. We now have that l-chase terminates: L-chase will not fire again with
&4 over the new created tuples 45,46, 47,48 of Tj.

E.g., if we map the lhs of & to LDB tuple of 75 with data 1,2, z5 and
Ap = {11,12,13} and to LDB tuple of T} with data 1 and Ap = {11}, then
we will have that there already exists tuple with data 2 in 75 pointing to
base lineage {11,12,13}U11 = {11,12,13}. It is easy to check that the same
holds for all possible mappings of the lhs of &,.

In general we have that under any LDB instance parallel 1-chase under
3 will fire at most in &’ more parallel l-chase steps than ordinary parallel
chase over an arbitrary instance, where £’ is the constant number of target
to target tgds in X, in our example k' = 2.

For the source to target tgds & and & chase and l-chase will both perform
one parallel step: If there exists a tuple with data ¢t and base lineage \p; in
Ry then l-chase will fire and add a tuple with data ¢ with base lineage Apy
in T} and & will not fire again. The same holds for & in the first l-chase
parallel step.

Now parallel ordinary chase terminates in two parallel steps. We will

107

Information and Uncertainty Management Angelos Vasilakopoulos

show that l-chase terminates in at most more k' = 2 parallel l-chase steps.
Since we have target to target tgds the reason for l-chase to fire another
parallel l-chase step is when a newly created tuple in the rhs of a tgd can
make another tgd to fire. This can only happen if an atom in the rhs of a tgd
is repeated in the lhs of another (or the same) tgd. In our example 75 in the
rhs of &, is repeated in the lhs of £3. In addition T3 in the rhs of &3 is repeated
in the lhs of £,. We want to show that after at most 2 more parallel l-chase
steps l-chase will not fire again. Hence we must show that after 2 + 2 = 4
parallel chase steps the newly creation of a tuple in 75 from the rhs of &, will
not cause &3 to fire again and also that the newly creation of a tuple in T3
from the rhs of &3 will not cause &4 to fire again.

Equivalently we can show that after at most k = 4 parallel 1-chase steps
for every tuple in Ty (resp. T3) with Aps to be created from an l-chase step
there already exists a tuple in Ty (resp. T3) with Aps such that Ags = Ap3
and such that their exist a homomorphism from the data of the one to be
created to the one already existing.

Since we want to show that I-chase will stop after &’ more parallel steps let
us suppose that we have an arbitrary LDB instance J that has arbitrary LDB
tuples in target relations T7,7,. So let an LDB tuple with data t; and base
lineage Ap; exist in 7} and an LDB tuple with data t5 and base lineage Ap»
exist in T5. Since ordinary parallel chase has stopped, 1-chase continues only
if homomorphically equivalent tuples make tgds fire due to their lineage. In
the second parallel l-chase step we have that &3 fires and creates a tuple ¢} in
Ty with base lineage Ag; UAps. In the third parallel I-chase step tuples t; and
ts will make &, fire and create a tuple ¢, in 75 homomorphically equivalent to
to with base lineage Ag;UAp3 and a tuple ¢ in T, homomorphically equivalent
to ty with base lineage Ag; U Ags U Agg . In the fourth parallel I-chase step
the newly created, homomorphically equivalent to t5, tuple t5 of T, with base
lineage Ap1UApaUA g3 will make &3 to fire again with ¢; and ¢ creating a tuple
t4 in T3 homomorphically equivalent to t3 with base lineage Ag1 U Ag2 U Aps.
Now for & we have: The tuple ¢} of T3 created in the second parallel step
has base lineage A\g; U Aga U Agg . So there exists a homomorphism from the
lhs of &4 to tuples ¢; and ¢} to a tuple homomorphically equivalent to ¢t with
base lineage Ag; U Aps U Ags . But 15 already has a tuple homomorphically
equivalent to t, with base lineage Ag; U Ags U Ap3. As a result & will not
fire again after the fourth l-parallel step. Hence l-chase will terminate after
k = 4 parallel 1-chase steps.

Definition 38 (I-derivation graph). Let K be an LDB instance over a schema
R consisting of relation atoms. Let X be a set of tgds of the form: ¢(x,y) —
3z ¢ (x,y,2). We construct the [-derivation graph of K over 3, denoted as

108

Information and Uncertainty Management

Angelos Vasilakopoulos

A1 12,2

Figure 4.8: Target LDB relation T3 of Example 20 after second parallel I-

chase step

51
52
53
54
55
56
57
58
59
60
Ap(51) = {13}
Ap(52) = {14}
Ap(53) = {11,13}
Ap(54) = {11,12,13}
Ap(55) = {11,14}
Ap(56) = {11,12, 14}
Ap(57) = {12,13}
Ap(58) = {11,12,13}
A5(59) = {12, 14}
Ap(60) = {11,12,14}

DOIN| NN NN NN DN DN

Figure 4.9: Target LDB relation 75 of Example 20 after third parallel 1-chase

step.

109

Information and Uncertainty Management

Angelos Vasilakopoulos

A1 [1.2,
12 [12,2
13 [1,22
44 | 12,2,
45 1,2,2’5
46 | 1,22
47 [1.2,2
48 | 1,22
Ap(41) = {11,13}
Ap(42) = {11,14}

Ap(43) = {12,13}
4)

Ap(44) = {12, 14}
11,12,13}

45) = {
(11,12, 14}
{
{

Ap(45)
Ap(46)
Ap(47)
Ap(48)

4
4

11,12,13}
11,12, 14}

Figure 4.10: Target LDB relation T3 of Example 20 after fourth and final

parallel 1-chase step

110

Information and Uncertainty Management Angelos Vasilakopoulos

Gr¥ | as follows:

e Each node of the tree is a pair (R;(t), Ag) consisting of an LDB tuple with

data t in relation R; € R and a set of base lineage \g.

e The bottom nodes of the derivation tree of K over ¥ consist of all pairs

(Ri(t), \p) where R; is an LDB relation of K which has an LDB tuple with

data t and pointing to base lineage Ap.

e We then keep adding edges and new nodes by repeating the following

procedure:

An edge connects a node (R;(t),Ag) with a new node (R;(t'),) if there

exists in ¥ a tgd £ : ¢(x,y) = Iz ¥(x,y,z) such that:

i) R; € ¢(x,y) and R € ¥(x,y,2).

ii) (Ri(t), A\p) is a node in Gr& and there exists in ¥ a tgd & : ¢(x,y) —

3z 9)(x,y,z) such that a homomorphism h maps the lhs of £ to Gr | where

atom R; € ¢(x,y) is mapped to an LDB tuple in relation R; with data ¢ and

base lineage Ap such that there exists no extension of A homomorphism A’

which maps the rhs of £ to existing nodes in Gr so that atom R. € 1(x,y)

is mapped to an LDB tuple in relation R, with data ¢’ and base lineage
/B = AB.

We add to Gr& a node R.(t'), N3 where ¢’ is the tuple to which i’ maps
atom R, € ¥(x,y,x) and Ny is the union of the base lineages of all LDB
tuples that are mapped from the lhd of & under h. We repeat the same
procedure for the new Grf.

Consider for example LDB K with a single LDB relation 7} (x, y) which
consists of a single LDB tuple with data (1,2) and pointing to base lineage
Ap1. Let X consist of the following two tgds:

& Ti(z,y) — To(z,y) and

9 Th(x,y) = Ti(x,y).
Then Grf will have Ty, (1,2), Ap; as a single bottom node and an edge con-
necting 71, (1,2), A to Ts, (1,2), Ap;. Both ordinary chase and l-chase will
stop after one (parallel) step which will map 77, (1,2), Agy to Ts, (1,2), Ap;.
It is not always the case such that ordinary chase and l-chase stop at the
same parallel step, as we show in the following example.

Example 21. Consider an ordinary source instance I with three binary rela-
tions Ry, Ry and R3 with one tuple with data (1,1) in R;, one tuple with
data (1,2) in Ry and one tuple with data (1,3) in Rs. Consider now the
LDB source instance I’ with the same data with ordinary I but with LDB
tuples Ry(1,1), Ra(1,2) and R3(1,3) pointing to base lineages Ap1, Aps and
Ap3 respectively.
Now consider the set of tgds ¥ = {&1, &, &3, &4}, where:

& o Ra(z,y) = Th()

111

Information and Uncertainty Management Angelos Vasilakopoulos

§2 o Ra(z,y
£ 1 Ry(x,y) — Ts(x)

& Th(x) — Ty(x)
55 . TQ(.T) — Tg(l')
56 : T3(l‘> — Tl(.I)

The l-derivation graph GrL is shown if Figure 21.

Ordinary parallel chase will terminate in one step: The first parallel ordi-
nary chase step will fire with &, & and &3 and create three tuples with data
1in Ty, Ty and T3. Then no other tgd will fire again since all T3, T, and T3
have equal data.

Now parallel I-chase will terminate after at most three more parallel 1-
steps, because we may have after the first step LDB tuples with equal data,
but they are not pointing to the same base lineage:

The first parallel l-chase step will fire with & & and &3 and create thee
LDB tuples with data 1 and pointing to base lineage Apy in 77, to base lineage
)\BQ in T2 and to)\Bg in T3

For the second l-chase parallel step we have the following: The newly
created LDB tuple T7(1) with Ap; will cause &4 to fire and create tuple T5(1)
with Apgj. Similarly from 75(1) with Ags and &5 we will get tuple T3(1) with
Ap2 and from T3(1) with Ap3 and & we will get tuple 77 (1) with Ap;.

In the third l-chase parallel step we will similarly have tuples 75(1) with
Ag1, T1(1) with Ags and T5(1) with Aps created.

L-chase will terminate after the third parallel step because newly created
data cause LDB tuples with existing data and base lineage to be fired created
again.

Consider now the subset ¥’ of ¥ which does not include &.

The l-derivation graph Grg, is shown if Figure 21. Ordinary chase again
stops after one parallel step but parallel l-chase terminates after two more
steps: In the longest path & and &5 fire again with l-chase.

Theorem 17. i) Given a set of tgds, L-chase terminates if and only if or-
dinary chase terminates. i) Given a set of weakly acyclic tgds ¥, l-chase
terminates on Y in polynomaial time.

Proof. 1)

(if:)

Let ¥ be a set of tgds of the form: & : ¢(x,y) — 3z (X,y,2z). Suppose
that ordinary chase terminates with > over any ordinary instance. Let D be
an arbitrary ordinary instance over a relation schema R. Let I be an LDB
instance over R whose LDB tuples have the same data with the ordinary
tuples of D. Since D is arbitrary, I is also arbitrary. We will show that

112

Information and Uncertainty Management Angelos Vasilakopoulos

I-chase stops

T1(1), Ae1 T2(1), A2 Ts(1), Ass

| | |

R1(1,1), As1 R2(1,2), As2 Rs(1,3), Ass

Figure 4.11: L-derivation graph Gr% of Example 21.

113

Information and Uncertainty Management Angelos Vasilakopoulos

T3(1),)\31
T2(1), Ae1 Ts(1), Ae2

, _____ordinary chase stops
T1(1), Ae1 T2(1), As2 Ts(1), Aas
Ri1(1,1), As1 Rz(1,2), As2 Rs(1,3), Aes

Figure 4.12: Finite L-derivation graph Grg, of Example 21.

114

Information and Uncertainty Management Angelos Vasilakopoulos

l-chase terminates over I with ¥. Let Grl be the I-derivation graph of I
over Y. Since ordinary chase terminates we have that there exists a finite
step k such that for each homomorphism h from the lhs of every & € ¥ to an
LDB tuple in R; with data ¢ there exists an extension of A homomorphism
h" which maps the rhs of ¢; to an LDB tuple in R; with data h'(t).

Let Ri(t1), Ap1 be an arbitrary root node of Gri. From the definition
38 of l-derivation graph we have that when ordinary chase fires with a tgd,
I-chase also fires and maps the lhs of the same tgd to Gr& such an atom of its
lhs is mapped to R;(t;) then there exists a node in l-derivation graph Gri
connecting R;(t1), Ag1 to another node. We have that after at most k steps
of ordinary chase in a path of GrL starting from root node R;(t;), \p; we
reach a node, say T5(t2), Apa, such that the data of all nodes of the path from
Ry (t1), A1 to Tu(ta), Ap2 do not cause ordinary chase to fire again after the
creation of node Ty(t3), Aga. From the definition 38 of I-derivation graph we
have that /\Bl Q)\B2.

If there exists no tgd in ¥ with relation 75 in its lhs then the arbitrary
path in GrL starting from R;(t;), A terminates in node Ty (t3), Age. From
the definition of l-derivation graph we have that l-chase also does not fire
again for the facts occurring in the nodes of this path and terminates in at
most k steps.

If not let & : ¢(x,y) — 3z ¥(x,y,2) be a tgd in ¥ such that Ty €
¢(x,y) and T3 is an arbitrary atom of 1 (x,y,z). Suppose that l-chase fires
with & So there exist in Gré an edge connecting T5(t2), A2 to a node
Ts(t3), Aps. From the definition 38 of l-derivation graph we have that there
exists a homomorphism h which maps the lhs of £ to Gr&, where atom
Ty € ¢(x,y) is mapped to an LDB tuple in relation T, with data t; and
base lineage A\po such that there exists no extension of A homomorphism A’
which maps the rhs of £ to existing nodes in Gr& so that atom Ts € ¥(x,y)
is mapped to an LDB tuple in relation T3 with data t3 and base lineage
A3 C Apo.

Then in node T3(t3), Aps, we have that t3 is the tuple to which A" maps
atom T3 € 1(x,y,x) and the following hold: a)Aps is the union of the base
lineages of the images of ¢(x,y) under h and, b) Ag; C Apy C Aps.

Let K’ be the LDB instance which includes facts with data and lineage
occurring in nodes of GrL, with distance less or equal than k + k" where k is
the number of steps where ordinary parallel chase stops and &’ the number of
target to target tgds. Ted £ fires with l-chase if there exists a homomorphism
h from ¢(x,y) to K’ such that there exists an extension A’ which maps the
¥(x,y) to K’ which maps an atom 7; in ¥ (x,y) to a tuple with data ¢ in
K’ we have that the union of the base lineages of the images of ¢(x,y) in K’
under A is not included in Ap(t;) of K’. But the union of the base lineages of

115

Information and Uncertainty Management Angelos Vasilakopoulos

the images of ¢(x,y) in K’ under h already exists K’ in node T3(t3), Aps. In
addition if an atom in ¢(x,y) appears in the rhs of another tgd £ such that
l-chase fires in a path starting from root node R;(t), Ap1 and going though
nodes T5(t2), Ag2 and T3(t3), Ap3 then a fact with base lineage the image of
o(x,y) from & will also be created once for this rule after ordinary chase
terminates.

As a result parallel l-chase will not fire again under £. Hence parallel 1-
chase can only fire at most once for every tgd after ordinary chase terminates,
so at most k' times where &’ is the number of target tgds in ¥. From the
definition 38 of l-derivation graph we have that the arbitrary path starting
from root node Ry (t1), A1 going though arbitrary node Ty(t2), A2 in at most
k steps will reach a node that has no outgoing edges in at most more k&’ steps.
Since the root node and the path where chosen arbitrarily, we have that any
path starting from any root node of GrL will reach a node with no outgoing
edges in at most k + k' steps. Equivalently from the definition of I-derivation
graph we have that parallel lI-chase will terminate in at most k& + &’ steps.
Since parallel l-chase terminated we have that l-chase also terminates.

(only if:) Suppose that l-chases terminates with ¥. Let Ly be an arbitrary
LDB. We will show that ordinary chase terminates with > and any arbitrary
ordinary instance. Let Dy be the ordinary instance that has the same set of
tuples with the set of the data that LDB tuples of arbitrary L, have. Since
l-chase terminates we have on each l-chase step with &;, h; that there exists
no extension of h; such that it: a) maps the rhs of & to tuples in L; ; and
b) they point to the base lineage of the image of the lhs of & under h;. Since
(a) holds we have that the ordinary chase will also not fire. As a result the
ordinary chase with Dy and ¥ also terminates (with fewer steps than l-chase).

ii) Let ¥ be a set of &’ weakly acyclic tgds. We have that ordinary chase
terminates in polynomially many k steps. In the (if) part of the proof of
(i) we have that parallel l-chase terminates in k + k" steps. Since &’ is a the
constant number of tgds in ¥ and k is polynomial to the size of data of any
ordinary instance, we have that k is also polynomial to the size of the data of
any LDB. As a result parallel l-chase terminates in polynomial time. Hence
l-chase terminates in polynomial time.

]

Figure 4.14 shows the extraction of target relation Suspects& Dates from
the result of l-chasing source LDB [with ¥ = {£}. We are going to prove
that the extraction of target relations from the result of a finite I-chase is
always an l-universal solution.

Example 22. We give an example that is an “LDB version” of Example 19:
Again we suppose that Cathy and Amy are certain that they saw a Honda

116

Information and Uncertainty Management Angelos Vasilakopoulos

car. Tuples now must have a unique ID since we will keep track of lineage
so we will use the LDB data model. The LDB source instance, with omitted
empty lineage for each tuple, is now shown in Figure 4.13.
The source-to-target tgd of Example 18 (or 19) is again the same:
¢ : Saw(w,c),Drives(p,c) —
3D Suspects&Dates(p,D).

As we can see from Definition 32, Figure 4.14 shows a possible solution J;
(again d; and dy represent “unknown” null values).

Indeed according to Definition 28 we have the homomorphism Ay @ w —
Cathy, ¢ — Honda, p — Hank that maps the head Saw(w, ¢), Drives(p, c)
of £ to tuples Saw(Cathy, Honda) with ID=11 and Drives(Hank, Honda)
with ID=21 of LDB source instance I. Then it exists the extension h}; which
maps w — Cathy, ¢ = Honda,p — Hank and D — d; that maps the body
Suspects& Dates(p, D) of £ to tuple Suspects& Dates(Hank,dy)) of J that
has lineage pointing to tuples with IDs 11 and 21.

Now for the homomorphism his : w — Amy, c — Honda,p — Hank that
maps the head Drives(person, car) of £ to tuples Saw(Amy, Honda) with
ID=12 andDrives(Hank, Honda) with ID=21 of LDB source instance I we
similarly have that it exists the extension A/, which also maps D — dy that
maps the body Suspects& Dates(p, D) of £ to tupleSuspects& Dates(Hank,
dy) of J that has lineage pointing to tuples 12 and 21.

The query @); also remains the same, i.e. the investigator wants to ask
his database for the names of all the suspects:

Q;(Suspect) :- Suspects&Dates(Suspect,Date)

Figure 4.15 shows the relation Ry, () extracted from the result of apply-
ing Q1 to J (using LDB query answering Algorithm 1, presented on Chapter
2).

FExample 23. Continuing the previous example we have that intuitively re-
gardless of the date of the crime, Hank will be a suspect. But infinitely many
solutions can exist. In our example they are represented by the unknown val-
ues of dy,dy. As a result if the query posed on J was:

Q2(s,d) :- Suspects&Dates(s, d)

then we would take a different answer for each solution that has different d;
or dy value. So a certain answer for (); for our example coincides with the
answer over J (because J has only constants) shown on Figure 4.15 while
for (), it is the empty set. We note that we could have another certain an-
swer with different IDs, i.e. 51, 52 instead of 41,42. We would then require
Ap(b1l) = {11,21} and Ap(52) = {12,21}.

117

Information and Uncertainty Management Angelos Vasilakopoulos

Figure 4.13: Source certain instance

| ID | Saw (witness, car) |

11 Cathy, Honda
12 Amy, Honda
| ID | Drives (person, car) |
21 Hank, Honda
22 Jimmy, Mazda
23 Billy, Toyota

Figure 4.14: Solution J for I and &

‘ ID ‘ Suspects&Dates(person,date) ‘
31 Hank, d;
32 Hank, ds

A(31) = {11, 21}

A(32) = {12,21}

Figure 4.14 shows the extraction of target relation Suspects& Dates from
the result of l-chasing source LDB I with ¥ = {£}. We are going to prove
that the extraction of target relations from the result of a finite l-chase is
always an l-universal solution. The result of l-chase can be used in order to
polynomially compute l-certain answers for weakly acyclic tgds as it is stated

in the following Theorem:

Lemma 2. Let K5 be the result of an I-chase-step with an initial instance

Figure 4.15: Q1(J)

41 | Hank
42 | Hank
A(41) = {31}, A\p(41) = {11,21}
A(42) = {32}, A\p(42) = {12,21}

118

Information and Uncertainty Management Angelos Vasilakopoulos

Ky and a tgd d (K, ﬂ)l K,). Let K be an LDB instance such that:

i) LDB K satisfies d and K contains K, that is for every LDB tuple with
data t and lineage A\ in Ky, there exists in K a tuple with same data and
lineage.

ii) there exists an LDB homomorphism hy: K; — K.

Then there exists an LDB homomorphism hy: Ky — K.

Proof. Let d be a tgd of the form:
VX, Y(Rl(X]_, Y1), R2<X2, YQ), ey .Rn(Xn7 Y1) —
Ez(Tl(Xl, 71), T5(X2,22), -, Trn(Xm, zm)))

We have:
1) K1 ﬂ)l KQZ
From the Definition 35 of the l-chase step, let A be a homomorphism from
the lhs of d, Ry(x1), Ra(X2), ..., Ry(xn) to LDB tuples with data tq,%s,...%,
with identifiers 1D, Dy, ... 1D,.

With A%h we denote the base lineage to which the lhd of d is pointing
to under h, which is computed in the following way: A%" = Ag(ID;) U
Ag(IDy),U...UAB(ID,). The function Ag(ID) maps the identifier of a base
tuple to itself and the identifier of a non-base tuple to the set of identifiers in
its base lineage. If I-chase does not fire then K; = K5 and since K contains
K it also contains K5 and the result is trivial.

Else if there exists no extension h’ of h that maps the rhs of d to tuples
in K all with base lineage contained in Ag then l-chase “fires” with d and h.
The l-chase step will produce instance Ky by adding to K; the LDB tuples
are the images of the rhs of d under b’ with data t|,t,,...¢ and all with
same base lineage equal with A%" = Ap(IDy) UAp(IDy),U...UAg(ID,).

ll) hli Kl — K:
Now h; is an LDB homomorphism from K; = (R, S,\) to K = (R, S, X).
As a result all the base data of K7 will be mapped under h; to base data in
K and with the same IDs. For all data of K; that is not base, we have that
homomorphism A; maps them to facts in K such that they have the same
base lineage (from ii). As a result all tuples of K; are mapped through h,
to tuples of K so that i) base tuples of K; are mapped to base tuples of K
with same IDs and ii) non base tuples of K; become non base tuples of K
and have the same base lineage. So for every tuple t; € K, with identifier
ID! and A\(ID}) = () we will have that hy maps it to tuple h;(t;) € K with
AID}) = (). For every non base tuple of ¢t; € K; (with A\(ID;) # () we will
have that h; maps it to tuple hi(t;) € K with Ag(ID}) = Ag(ID;). Hence
all LDB tuples with data ¢, ts, . .. t,, which occur in K; (under the homomor-
phism A which maps the rhs of d to tuples of K') are mapped to LDB instance
K with data hl(tl), hl(tg), ce hl(tn> Let tuples hl(tl), h1 (tg), Ce h1<tn) in K

119

Information and Uncertainty Management Angelos Vasilakopoulos

have identifiers 1D}, ID), ... I1D;. Since hy is a l-homomorphism the lin-
eage of tuples hy(t1),hi1(t2),...hi(t,) points to the same set of base lin-
eage identifiers through Ag, ie.: Ap(ID}) U Ag(ID}),U...UAg(ID)) =
Ap(IDy)UAR(IDy),U...UAR(ID,) = AL.

As a result there exists an ordinary homomorphism h; o h from the lhs
of d, Rl(Xl), RQ(Xz), ceey Rn(Xn) to LDB tuples hl(tl), hl(tg), e hl(tn) n
K, with identifiers 1D}, ID), ... ID! and pointing to the same Ap with the
tuples tq,ts,...t, of Kj.

iii) We also have that K l-satisfies d. So from Definition 28 for each
ordinary homomorphism h; that maps the lhd of d to tuples in K pointing to
a base lineage identifier set A%hi we have that there exists a homomorphism
R which is an extension of h; that maps the rhs of d to tuples all with base
lineage equal with or contained in A%h". Homomorphism h; ok from part (ii)
is such a homomorphism because it maps the lhs of d to tuples in K. As we
saw in part (ii) it maps the lhs of d to LDB tuples hq(t1), hi(t2), ... hi(t,)
in K and pointing to the same Ap with the tuples t1,t5,...%, of K;. As
a result each extension (h; o h)” of hy o h that maps the lhs of d to tuples
hi(t1), hi(te),...hi(t,) in K and it maps the rhs of d to tuples with base
lineage equal with A%h from part (i). If we take the extension (hy o h)" of
hi o h which is defined through the same extension h’ of h that we have in
part (i) then (hy o h) will map the rhs of d to tuples with data ¢}, ¢,,...¢, in
K and all with same base lineage equal with A%h.

From part (i) we have that K includes the tuples t1, to, . .. t, of K; which
are mapped to K with the same base lineage through h;. Instance K, also
includes the newly “fired” tuples ¢}, t5, ...t/ with base lineage A%h. Those are
mapped from K, to the tuples of K" which are the images of (h; oh)’ through
the extension A’ of h of part (i) with base lineage equal with A%h. As a result
there exists an I-homomorphism from K, — K which is the extension of h;
to the mappings of variables z defined through the extension of A'. O

Let < I,J > be the result of I-chase of I under a set ¥ of tgds. Then if
we extract J from < I,.J >, we have that J is an l-universal solution of the
LDB data exchange setting with I as a source LDB and a X:

Theorem 18. If we extract J from the result < I, J > of l-chase of an LDB
source instance I under a set of tgds X, then J is an l-universal solution.

Proof. Since ¥; uses only target relation data, it follows that extracting J
from I, J by retaining source IDs as external lineage retains all base lineage
information. Let J' be an arbitrary solution. The identity mapping id :
I, — I,J is an l-homomorphism. By applying Lemma 2 at each chase
step, we obtain an l-homomorphism A : I,J — I,J’. Hence h is also an

120

Information and Uncertainty Management Angelos Vasilakopoulos

l-homomorphism from J to J’ (the base IDs that extraction algorithm keeps
as external are the same for J and J’ since J l-maps to J'). Thus, J maps
to every certain-information l-solution.]

Theorem 19. Consider an LDB data exchange setting with an LDB source
instance I with schema S , and T be the target schema and a set of tgds 3.
Let q be a conjunctive query over the target schema T. If J is an l-chase
result with inputs I and ¥, then | — cert(q,I) = Ry(J) | with respect to data
and base lineage, where R,(.J) | is the LDB with the set of all tuples of R,(J)
that contain only constants along with their base lineage.

Proof. Let q be a conjunctive query of the form Jy ¢(x,y) and let ¢ be a
tuple of constants from the source LDB instance I or from rules in X. If
t € l—cert(q,I), then t € R,(J) with the same base lineage (from Definition
32), since J is a solution. Conversely, assume that ¢ € R,(J) J. Then ¢
consists only of constants. Also from LDB query computing Algorithm we
have that there exists a homomorphism ¢ : ¢(x,y) — J such that g(x) =
t. Let J' be an arbitrary solution. Since the result of l-chase J is an 1-
universal solution (from Theorem 18), there is an l-homomorphism h; : J —
J'. So, considering only data, there exists a homomorphism A : J — J'.
Then h o g is a homomorphism from ¢(x,y) to J’. Homomorphisms are
identities on constants, hence h(g(x)) = h(t) = t. Now because there exist
a homomorphism ¢ : ¢(x,y) — J and an l-homomorphism h; : J — J we
have that all images of ¢(x,y) under g that exist in J will also exist in J’
with same base lineage. Hence t will exist in J' with same base lineage as in
J. As a result it will belong to l-cert(q, I). O

From the previous two Theorems, the following result is immediate:

Theorem 20 (Computing LDB certain answers). Consider an LDB data
exchange setting with an LDB source instance I with schema S, T be the
target schema and ¥ be a set of source to target tgds and weakly acyclic
target tgds. Let q be a conjunctive query over the target schema T'. We can
compute cert(q, 1) in time polynomial to the size of LDB I.

4.3.1 Comparison with Oblivious chase

The oblivious chase was defined in [CGKOS|:

Definition 39 (Oblivious Chase). The oblivious chase works on an instance
K with constants and null values. Let 3 be a set of tgd’s and let £ be a tgd
in 3. Let h be a homomorphism from the lhs of £ to K such that the image
of the lhs of £ under h does not occur in K. Then an extension h’ of h that

121

Information and Uncertainty Management Angelos Vasilakopoulos

maps the rhs of £ to K then an extension h” of h which maps the existential
variables of the rhs of £ to fresh new null values is applied to the rhs of &
producing new tuples that are added in K. In that case we say that the
oblivious chase “fires” with £ under A’ producing a new instance K’, denoted
with K —&" K.

The oblivious chase “fires” with A and £ even if there exists an extension
h' that maps the rhs of £ to K. On the other the same homomorphism h
from the lhs of £ is fired only once with the same tgd £. In contrast with our
l-chase the oblivious chase does not terminate under arbitrary weakly acyclic
tgds. Specifically it terminates only with a set of strongly acyclic tgds which
are defined as follows:

Definition 40 (Richly acyclic tgds). The notion of Richly acyclic tgds was
given in [HSO7|: Extend the dependency graph of a tgd by also adding an
existential edge from position (R,) and (S, 7) whenever there is a dependency
in &ind that has a variable y that appears in position (R,) (even if y does
not appear in the rhs of &) of the lhs and an existentially quantified variable
z that appears in position (.5, j) in the rhs of £&. The newly created graph is
called extended dependency graph.

A set of ¥ of tgd’s is said to be richly acyclic if the extended dependency
graph of ¥ does not have any cycles containing an existential edge.

In our example 18 we have that tgd £: Saw(witness, car),Drives(p, car)
— 3D Suspects&Dates(p,D)
is weakly and richly acyclic. In contrast with ordinary chase the oblivious
chase will correctly compute not only Hank,d; but also Hank,d, as the
following Example 24 illustrates. On the other hand if a target tgd & is
added, where ¢’: Suspects&Dates(p,d) — 3D’ Suspects&Dates(p,D’)
then &, &' is a set of weakly acyclic tgds but not richly acyclic. We also show
in the Example 24 that indeed the oblivious chase does not terminate:

Example 24. The pseudo-LDB database Uy is shown in Figure 4.16.
We have that there exist four homomorphisms hy, hs, h3, hy from the lhs
of £ to Uy. Namely they are:

hy @ witness — Cathy,car — Honda,p — Hank,
hs @ witness — Cathy, car — Mazda,p — Jimmy,
hs : witness — Amy, car — Toyota,p — Billy,

hg @ witness — Amy, car — Honda,p — Hank

So the oblivious chase will fire with £ and the extensions h}, hf, kY, b that
map variable date to dy,ds,ds and dy respectively, producing the instance

122

Information and Uncertainty Management Angelos Vasilakopoulos

| ID | Saw(witness,car) |
11,1 Cathy,Honda
11,2 Cathy,Mazda
12,1 Amy,Toyota
12,2 Amy,Honda

| ID | Drives(name,car) |
21,1 Hank,Honda
22,1 Jimmy,Mazda
23,1 Billy, Toyota

Figure 4.16: D;: Pseudo-LDB horizontal Uy of ULDB U.

ID | Suspects&Dates
(suspect,date)

31 Hank,d; 7
32 Jimmy,ds 7
33 Billy,ds ?
34 Hank,dy ?

Figure 4.17: Target relation Suspects& Dates of Uj

U}; which has the relation in Uy along with the Suspects& Dates relation of
Figure 4.17

Then the oblivious chase will terminate because there exists no new ho-
momorphism under which the lhs of £ is mapped to U}.

On the other hand of we add target tgd ¢’: Suspects&Dates(p,d) —
3D’ Suspects&Dates(p,D’)
then the oblivious chase will fire with the following four homomorphisms
from the lhd of &:
hor : p— Hank,d — dy,
hoo : p— Jimmy,d — do,
has : p — Bllly, d — dg,
h24' p—>Hank d—>d4
with the extensions hfy,, hf,, b4, b, that map variable date to ds, dg, d7 and
dg respectively. But then the homomorphism A%, : p — Hank,d — ds is a
new homomorphism under which & has not ﬁred.

123

Information and Uncertainty Management Angelos Vasilakopoulos

4.4 Data exchange for Uncertain Databases with
Lineage (ULDBs)

For ordinary databases we had the following definition for certain an-
swers: given a query ¢ posed over a certain instance I with null values, then:
certain(q,I) = { N(J) | where J is a solution }. However, for a ULDB data
exchange setting, if we take the intersection of the answers to the query over
all possible instances, it is easy to see that we will mostly derive an empty set
of answers. Moreover, this does not agree with the intuition that only one
of the possible instances is the correct one. If so, then taking the intersec-
tion between facts appearing in the one “true” instance and all other “false”
possible instances is meaningless. Thus, in order to semantically define cer-
tain answers in a ULDB data exchange setting we think as follows (similar
intuition was applied in the definition of certain answers in [ALP08b]): Each
possible instance D; of a ULDB source instance [is an LDB and gives rise
to an LDB data exchange problem with D, as its source instance and the
same set of dependencies ¥. Since we do not know which possible instance
is the one that captures the “truth” it is natural to consider them all but
“separately”. We note that since possible instances are LDBs, they are al-
lowed in them duplicates of data if they have different lineage. We retain
this property, i.e. we do not perform any kind of duplicate elimination.

As a result when we pose a query to any of the solutions of all LDB
data exchange problems that arise from the D; possible instances of a source
ULDB we expect to get the corresponding certain answer. We thus have the
following definition:

Definition 41 (ULDB Certain answers). Consider a data exchange setting
(S, T, X = 35 U3,). IfIis asource ULDB instance with PI(I) = Dy, ..., D,
and ¢ a query over target schema T then the certain answers of ¢ with respect
to I, denoted as uldb-cert(q, I) is a complete ULDB C' (with no nulls) with
PI(C)= DY,..., D! such that:

each D! is an l-certain answer of the LDB data exchange problem with D;
as its LDB source instance and X as its set of constraints.

Figure 4.18 illustrates the notion of ULDB certain answers. We want to
give an appropriate procedure to compute uldb-cert(q, I') which will be based
on l-chase for databases with lineage. We do not to explicitly produce the
possible instances of the source instance, which is computationally expensive,
but rather compute in polynomial time directly a ULDB that will be used for
the computation of uldb-cert(q,I). On the other hand the semantics of the
result of this procedure should be the following: the possible instances of the

124

Information and Uncertainty Management Angelos Vasilakopoulos

Solutions of Pl (1)

[D, D, - Dy } /_\q(Dlj) =1—cert(q,PI|(I))
j

Solutions of PI2(I)
/ [Dy Dy Dy }f\q(Dzj)=l—cert(q,PI(I))
w |0 Pl N
1™ solutions of PLD ° : : : e
[P D v Dy }/}Q(Dnj) =l~cert(q,PI(D)/

uldb—cert(q,l)

Figure 4.18: ULDB Certain Answers

125

Information and Uncertainty Management Angelos Vasilakopoulos

ULDB that will be the result of our uncertain-chase (which we will denote
by u-chase) procedure should be the same with the possible instances that
we would have if we first took the possible instances of the ULDB instance
and apply l-chase to each one of them.

We will make use of a way to transform a ULDB into a “pseudo-LDB”
called its “Horizontal Relation” that we also presented on Chapter 2. A sim-
ilar approach was used in an algorithm in [BSH"08a] to correctly compute
answers of CQs over ULDBs in PTIME without producing all possible in-
stances. Horizontal relations were first defined in [SUWO09| in a variation
without lineage. Intuitively in order to take the Horizontal database of a
ULDB we “flatten” each alternative so that it will become a new x-tuple
(with no other alternatives), but retain the lineage information (now re-
ferring to tuples and not to alternatives). As is stated in [BSHT08a|, we
have that since the size of Dy is the same as the size of ULDB relations
Ry, Ry, ..., R,, complexity does not increase when we compute a horizontal
relation of a ULDB. We repeat the definition here:

Definition 42 (Horizontal Relation, Horizontal Database). Let R be an
relation of a ULDB. We define the Horizontal relation of R and denote it
with Ry the LDB (with no uncertainty -no alternatives- but with lineage):
Ry = { tuples s(i, j) | s(i,j) is an alternative in R}.

Let D be a ULDB with x-relations { Ry, ..., R,,}. We define the Horizontal
database of D and denote it with Dy the LDB: Dy = Riy,..., R,g such
that Vk, k € [1,n]: Ryg = { tuples s(4,7) | s(¢,7) is an alternative in Ry}

Definition 43 (U-Chase sequence). input: A source schema S, a target
schema T, a source ULDB D with x-relations {Ry,...,R,} and ¥ a set of
source-to-target and target tgds. output: a ULDB D’. Steps:

1. From ULDB source D create the horizontal database Dy. 2. Since Dy is
an LDB we can now apply an l-chase sequence with Dy as the source LDB
instance and constraints ¥ and produce D’;. 3. Create a ULDB D’ that
is the union of i) the source ULDB relations {Ry, ..., R,} and of ii) target
ULDB relations that are created from the target horizontal relations of DY,
by treating each LDB tuple as a maybe x-tuple with one alternative (so with
symbol ‘?’) and retaining the lineage relationship of D%;. 4. Return D'.

A terminating u-chase sequence is the one that applies a terminating I-chase
sequence.

Note that in the u-chase result we do not regroup alternatives of target
relations to x-tuples, like ULDB conjunctive query algorithm in [BSH'08a]
does. The possible instances of our ULDB output will be the same even
without regrouping due to the constraints posed by lineage information. In

126

Information and Uncertainty Management Angelos Vasilakopoulos

addition when we compute certain answers of a CQ (which is the reason we
defined u-chase for), ULDB conjunctive query algorithm will then regroup
alternatives to x-tuples.

4.4.1 U-chase result for our example

Example 25. Let us consider the ULDB data exchange problem of our running
Example 18: The source ULDB [is shown in Figure 4.1. We follow the steps
of u-chase: We first create the horizontal relations of the source database
A. Since horizontal relations are LDBs we apply 1-chase to them and get an
intermediate LDB Suspects&Datesy. In our example, this is the result of a
single 1-chase step since our tgd will not l-fire again.

We form a ULDB from the LDB result of l-chase: Each LDB horizontal
tuple becomes a ULDB x-tuple with one alternative and we retain all lineage
connections, now referring to alternatives. We have to add ‘7’ at each x-tuple
because we no longer have an LDB: In LDBs all tuples are certain (since LDBs
have one possible instance). Some of those ‘7’ symbols might be extraneous,
but we can remove them in polynomial time, as it proven in [BSH08a]. The
extracted Suspects&Dates target relation of U-chase result is the same as
the one we expected in Example 18, shown in Figure 4.2. Let us denote
with J’ this materialized target instance of relation Suspects&Dates which
is the target result of U-chase. This result can be used in order to compute
ULDB certain answers (uldb-cert(Q,1)): Q(J]) are the extracted certain
answers of query @) of Example 18. Indeed the result of Q(Ji) is the same
with the ULDB certain answers of () which we intuitively expected, shown
in Figure 4.3. So for each possible instance of the source database A we get
the l-certain answer that would be real if we had a data exchange problem
with that instance. The retained lineage will logically restrict the possible
instances of the target ULDB. For example tuples having 11,1 in their base
lineage will never coexist in a possible instance with tuples having 11,2 in
their lineage, even though the “data part” of source x-tuple 11 would have
been removed. This is one of the aims of data exchange: to be able to
compute certain answers only from target database when the source data in
no longer available. We are now going to prove that the result of u-chase
result can always be used in order to compute ULDB certain answers.

4.4.2 Complexity of Computing ULDB certain answers

First we prove that any u-chase sequence on a well-behaved ULDB U that
creates a ULDB U’ is equivalent to applying an l-chase sequence to each of

127

Information and Uncertainty Management Angelos Vasilakopoulos

the possible instances of U. Then in Lemma 3 we prove that a terminating u-
chase on U produces a ULDB with possible instances which are the result of
a terminating l-chase applied on each of the possible instances of U. Finally
we have the last Theorem 22 which states that for a well-behaved source
ULDB instance and a set of weakly acyclic tgds we can use the result of
u-chase in order to compute ULDB certain answers of conjunctive queries in
polynomial time. Its proof will make use of Theorem 21 and Lemma 3:

Theorem 21. Suppose we start with a well-behaved ULDB Dy and after a
u-chase sequence steps we arrive at a ULDB D;. Suppose that the possible
instances of Dy are: DY, D2,... Di. Suppose that the possible instances of
Dj are: D}, D? ... D¥. Then the following holds: i) i =i’ and ii) every D%
comes from a Dg/ after a sequence of l-chase steps.

Proof. i) Since we consider only tgds at each u-chase step only one alterna-
tive can be generated that points to previous alternatives with well-behaved
lineage. So from the previous lemma we have that the result of a u-chase
preserves the instances of the ULDB it started with. As a result the number
of the possible instances of the result of a u-chase sequence will be the same
as the number of possible instances of initial source Dj.

i1) By induction on the number of l-chase steps j.

Base step: The base step is trivial for j = 0 since if we start with Dy and
perform no u-chase then the result will be again Dy with the same possible
instances.

Inductive hypothesis: Suppose that if we start with a ULDB D, with
possible instances: D}, D2, ..., D} and perform a sequence of j < n u-chase
steps and arrive at a ULDB D; with possible instances: D}, D, ..., D%, then
every D;? comes from a Dgl after a sequence of l-chase steps.

As aresult for j = n—1 ULDB D,,_; has possible instances: D} |, D? |,
.., Dl

We prove that then if we start with ULDB D,,_; with possible instances:
D! ,,D? ., ...,D: , and perform a u-chase step we will arrive at a ULDB
D,, with possible instances: D}, D2, ... D! such that then every D comes
from a D¥ | after an l-chase step or is equal with a DF .

Let the n'" u-chase step use tgd d. Let d be a tgd of the form:
Vx(Ri(x1), Ra(x2), ..., Ru(xn)) — Ty (Ti(x1,y1), To(xh,y2), -, Tin (X,
Ym)).

Then u-chase will first create the horizontal relations of all R;, so alter-
natives s(¢, j) of ULDB D,,_; will become identifiers of LDB tuples.

Since u-chase “fires” it generated alternatives T(t1), Ta(t2),..., T (tn)
each with same lineage, i.e.:

128

Information and Uncertainty Management Angelos Vasilakopoulos

Vi e [17 s 7’)7,] :)‘(ti) = {S(irlajr1)7 T S(irnvjrn)}

As a result all Ty(t1),T2(t2),...,T,(t,) will belong to all the possible
instances of D,, that have all s(i,,, jr,), S(irys Jry), - - -5 S(ir,, Jr,,) in them. The
notation represents the fact that s(i,,, j.,) is the alternative where R;(x1) is
mapped to in current u-chase step.

Let AL = Ag(8(iry, Jr)) U ... UAB(S(iry, Jry))-

If AL contains two base tuples of the form s(7,7) and s(i, j') with j # j/
then none of the newly generated tuples appear in any possible instance
of D,. This holds because s(i,j) and s(,j") correspond to two alternative
values of a same base x-tuple. But alternative values of one x-tuple are
mutually exclusive and can never coexist in a possible instance. In general
such alternatives that can never exist in any possible instance are called
“extraneous” [BSH*08al.

Thus none of Ti(t1), Tx(t2), ..., T.(t,) belong to any of the possible in-
stances of D,,. Hence its possible instances remain the same as the ones of
D,,_1. From the inductive hypothesis ULDB D, _; has possible instances:
D} [D? | ... D! | and every DF | comes from a Df after a sequence of
l-chase steps.

If AL does not indicate “extraneous” alternatives. Then pick an arbitrary
Dﬁfl that is a possible instance of D,,_.

If even one of alternatives of AL does not occur in D¥_, then none
of Ti(t1), Ts(ts),. .., T,(t,) will belong to it. This holds because for well-
behaved lineage an alternative exists in a possible instance if and only if
all of the alternatives in its lineage exist in it (see Definitions 6, 7). The
existence of an alternative in a possible instance is in turn determined (in
well-behaved ULDBs) from the choices of base x-tuples (Theorem 1). So in
this case the ‘firing’ of u-chase does not alter possible instance D _|.

Else we must have that all alternatives of AL occur in D ;. Then all
Ti(t1), To(t2), ..., T, (t,) will belong to the corresponding possible instance
DF of ULDB D,, that is the result of u-chase step. But since u-chase “fires”
we have that there exists a homomorphism A from the lhs of d to horizontal
relations of Ry,..., R, (so from R; alternatives of ULDB D,,_; according to
u-chase Algorithm 43) such that there exists no homomorphism A’ extension
of h that maps the rhs of d to tuples of the horizontal relations of T3, ..., T},
(to T; alternatives of ULDB D,,_;) so that the base lineage of each one is
equal with AL (from Definition 35 of I-chase step). But since all alternatives
of AL occur in DF_; we will have l-chase of in D _| will also “fire” and produce
exactly T1(t1), To(tz), . . ., T, (t,) with the same lineage. Because if I-chase did
not “fire” in D _| this would mean that there existed T} (t1), Ta(t2), - . ., Th(tn)
in DF_, all of them with lineage AL. But then those Ti(t1), Ta(t2), - . ., Th(tn)
would also exist in the horizontal relation of T1(t1), Ts(t2), ..., Th(t,) with

129

Information and Uncertainty Management Angelos Vasilakopoulos

that lineage, causing u-chase not to fire.]

Lemma 3. Suppose that we have a data exchange problem with a well-
behaved ULDB source Dy with PI(Dy) = D}, D3,..., Dy and a set ¥ of
tgds. Then the result of a terminating u-chase with ¥ is a ULDB D; with
PI(D;) = D},DJQ», ..., D} such that for every i = 1...n we have that D;
is an l-universal solution (if we extract target relations) of the LDB data
exchange problem with Dj as the source and X as constraints.

Proof. Suppose that u-chase terminates. Then u-chase does not fire with any
of the tgds in ¥. We will suppose that l-chase would fire on one of Dé with
a tgd d in ¥ and yield a contradiction.

Let d be a tgd in ¥ with the following form:

VX(Rl(Xl), RQ(Xz), RN Rn<Xn)) —

Sy (T34, ¥2), o, Y2+« T (Ko, ¥om).

Let Df be a possible instance of D;. If I-chase fires on D;-“ under d then

there exists a homomorphism A from the lhs of d to tuples Ry (t1), ..., Ry(t)
of D} with IDs ID(t;),1D(ts),...,ID(t,) such that there exists no homo-
morphism &', extension of A, that maps the rhs of d to tuples 71 (¢}), ..., Tn(t),)
of D} so that the base lineage of each one of T3 (t}), ..., T, (t),) is equal with
AL = X\g(ID(ty)) U...U A (ID(t,)) of DI. Then u-chase would also fire,
which is a contradiction, because:
The only case for u-chase to not fire is if tuples 71(t}), ..., T,»(t,,) with base
lineage for each one of them be AL to exist in the horizontal relations of T;.
But if Ty (t)),...,T,,(t.) with base lineage for each one of them be AL al-
ready existed in the horizontal relation ot T; then they would all exist in the
same possible instances, because they have the same base lineage. Moreover
they will exist in Df because this possible instance contains all base tuples
of their lineage. So then l-chase would not fire.

Since l-chase does not fire with any of the tgds in ¥ and for any of D;,
we have from Theorem 18 that the result of a terminating l-chase is an LDB
solution. So for every ¢ = 1...n we have that D; is an l-universal solution
(if we extract target relations) of the LDB data exchange problem with D}
as the source and ¥ as constraints. O

From Lemma 3, Theorem 21 and from Theorems 20, of the previous
section we have the following:

Theorem 22 (ULDB Certain Answers). Consider a ULDB data exchange
setting with a well-behaved ULDB source instance I with schema S, T be
the target schema and X be a set of source to target tgds and weakly acyclic
target tgds. Let q be a conjunctive query over the target schema T'. We can

130

Information and Uncertainty Management Angelos Vasilakopoulos

compute uldb-cert(q, I) in time polynomial to the size of I using the result of
u-chase.

4.4.3 Complexity of a ULDB data exchange problem
that includes egds in its set of constraints X

Let us modify a little our running example by adding one new attribute
signa- ture to relation Saw which contains the name that appears in the
signature of a witness. Suppose that C'athy is not certain if the car she saw
was a Honda or a Mazda but we always have her name in the signature. On
the other hand Amy saw a Toyota car but we have uncertainty if the witness
report has a signature with name Amy or Annie (for example due to a not
clear signature). Now we suppose that the private investigator also stores
information about the name of the witness and her signature. Hence target
Suspects&Dates now has schema: {witness ,8ignature,suspect, date}.
So we change the source to target tgd to the following &;: Saw(witness,
signature,car), Drives(p,car) — 4D Suspects&Dates(witness,
signature,p,D). Now let us consider that we also have the target egd
&>: Suspects&Dates(witness,signature,suspect,date) — (witness =
signature).

Since we do not know which instance captures the “truth” we would want
all the possible instances to satisfy the egd. Intuitively the ULDB result
of u-chase with & should represent only the two possible instances that do
not contain any result derived from the possible instances that contain in
Saw a tuple with name Amy and signature Annie. The reason is that any
possible instance of the source containing tuple Saw(Amy, Annie, Toyota)
will give a failing l-chase. But we prove in the following theorem that even
asking for a solution in a ULDB data exchange problem that contains egds
in its constraints is an NP-hard problem. The proof will be a reduction
from 3-coloring. A UDLB solution will be a target instance that satisfies
the constraints. Satisfaction for ULDBs of a constraint d (egd or tgd) is
formally defined in Definition 45 which uses the following Definition 44 for
egds and LDBs. Finally we note that for an LDB data exchange setting with
weakly acyclic tgds, we can include egds and still compute 1-certain answers
in polynomial time.

Definition 44 (LDB satisfaction of an egd). Let D be an LDB and d be

an egd of the form: Vx(R;(x1), Ra(X2), ..., Ra(Xn) = (21 = 72)). We will

say that LDB D l-satisfies d, if for each homomorphism A that maps R;(x),

Ry(x), ..., R,(x) to tuples: Ry(t1) with ID = ID;, Ry(t2) with ID = IDs,
oy Rn(ty) with ID = IDy in D, then h(z;) = h(xs).

131

Information and Uncertainty Management Angelos Vasilakopoulos

Definition 45 (ULDB satisfaction of an egd/tgd). Let D be a ULDB in-
stance. Suppose that the possible instances of D are LDBs: D', D?, ... D"
Let d be a tgd or an egd constraint. Then D will ULDB satisfy (u-satisfy) d
if for every i the following holds: D’ l-satisfies d.

Theorem 23. Consider a UDLB data exchange setting with a well-behaved
ULDB source I and a set of dependencies ¥ that can contain egds as well
as tgds and a CQ Q. Then the following problems are an NP-hard: i) “Is

there a solution of the data exchange setting I and 77, ii)“ls a tuple t in
uldb-cert(Q,I)?”.

Proof. (sketch) i) By reduction from 3-coloring: Let G be a graph. Consider
a ULDB relation Color(vertex,coloring) that for each vertex v; of G has
one x-tuple of the form: Color(v;, blue) || Color(v;,red) || Color(v;, green).
The ULDB source (with empty lineage) I has relation Color and one more
relation edge(x,y). Relation edge contains an x-tuple with one alterna-
tive (vg,v;) if there exists an edge in G that connects vertices vy and v, and
an x-tuple with one alternative (v;,v;) for every vertex v; of G. Consider
the following 2 source-to-target (copy) tgds: Color(x,y) — Colors(z,y) and
edge(x,y) — es(x,y) and the following 3 target egds: es(x,y), Colors(x, blue),
Colory(y, blue) — x =y,

es(x,y), Colory(x, red), Colory(y, red) — = = y and

ex(x,y), Colory(x, green), Colory(y, green) — = = y. Then it is easy to see
that there exists a solution of this ULDB data exchange problem if and only
if there exists a 3-coloring for the graph that is represented by the source
relations.

ii) Consider the data exchange problem in the proof of part (i). Let Q(z,y):-
ea(x,y) and let t € Q(z,y) be an arbitrary arc of G. Then due to the data
exchange constraints ¢ € uldb-cert(Q, I) if and only if ¢ is an arc of a graph
G that has a 3-coloring. O]

132

Chapter 5

Efficient Query Computing for
Uncertain Possibilistic Databases
with Lineage

We propose an extension of possibilistic databases that also includes lin-
eage (aka provenance). The introduction of provenance makes our model
closed under selection with equalities, projection and join. In addition the
computation of query computing with possibilities is polynomial, in contrast
with current models that combine provenance with probabilities and have
#P complexity.

5.1 Introduction

Modeling, representing and manipulating uncertain data has gained a lot
of research attention. There has been a plethora of models that capture
different kinds of uncertainty: i) when an attribute can take a value from a
finite set of alternatives (model of or-sets), ii) when the existence of a whole
tuple is not certain (model of ?-tuples). The last two kinds can be combined
yielding the z-tuple and z-relation model R} [BSH™08a, GT06]. On top of
uncertain models we can also put “confidence” values. For example in the
model of 7-tuples if we attach on each tuple the probability of the event that
this tuple is indeed present in our data we yield the model of probabilistic
databases [DS04].

One of the key aspects of an uncertain database framework is how efficient
it can compute queries. Consider a query) and an uncertain database
U. An uncertain database U represents a set of possible worlds PW (U).
One naive approach in order to compute) over U would be to compute

133

Information and Uncertainty Management Angelos Vasilakopoulos

first all the possible worlds of PW (U) and pose the query over each one of
them. This approach is not efficient since computing the possible worlds of
an uncertain database can be intractable in the size of the data. For example
if we have an uncertain relation with n x-tuples and each one of which has m
different alternatives then the possible worlds are m™. In contrast we would
like to be able to efficiently compute query @) posed directly on uncertain
database U and the result Q(U) to be a new uncertain database which can
be represented in our model with the correct semantics, i.e., we have that
PW(Q(U)) = Q(PW(U)) [IL84]. If this holds for an uncertainty model and
a query language L we say that this model is closed under L.

Possibilistic databases extend the x-tuple model by attaching on each al-
ternative value degrees from a possibility distribution. In [BP05] it was shown
that possibilistic databases are not closed under: i) selection with a condition
that involves different attributes, ii) projection that performs duplicate elimi-
nation in the tuples of the answer and iii) under the join operator. In addition
existing database models with provenance that attach “belief values” by using
probabilities have high complexity # P [DS04, GT06, RPT11, STW08]. We
solve the first problem and for the second problem we offer a suitable alter-
native to probabilities by proposing a new model which extends possibilistic
databases by adding provenance. The proposed model has the following ben-
efits:

e Closed under: i) selection involving equalities even over different attributes,
ii) projection even after duplicate elimination and iii) join. This property is
a result of the introduction of provenance in the possibilistic model.

e The possibility values of each tuple alternative in the answer of a query
involving the above three operators are computed in polynomial time.

Our main contribution is that we define operators for equality select, pro-
jection (wth duplicate elimination) and join that can be posed directly on a
database expressed in our model of provenance and possibilities without the
need to compute first all the possible worlds. The result of each operator
is a new database of our model that has the correct semantics: its possible
worlds are the same with the ones we would have if we first computed all the
possible worlds and pose queries over them. Moreover our operators compute
data and possibilities for each alternative of the result in polynomial time.
We think that the employment of possibilities instead of probabilities in
our model offers more suitable modeling of alternative belief values, due to
the qualitative nature of possibilities. For example suppose that we want
to model the fact that a witness Amy is uncertain of whether she saw a
Mazda or a Toyota car but she believes that more likely it was a Mazda.
These kinds of real-life situations are well-represented though possibilistic

134

Information and Uncertainty Management Angelos Vasilakopoulos

theory. In addition even when only probabilities of alternatives are avail-
able, there exists a way to “translate” probability values to possibilities such
that the more probable events will also be more possible, as it is intuitively
expected [DEMPO04].

5.1.1 Related Work

The possibilistic model is not closed for SPJ queries because it is not
powerful enough to pose logical constraints on the alternative values that
tuples can take of the answer of a query (e.g., indicate that two alternatives
of two different tuples cannot coexist in a possible world [BP05]). Recent
work [BPP09]| efficiently computes SPJ queries over a limited possibilistic
model (specifically where only one alternative has possibility 1 and all others
have 1 — a) and the answers of the queries include only tuples appearing
in a complete possible world (a world with possibility 1). In contrast our
approach returns all tuples appearing in any possible world and does not
require the initial data to have this limitation in its possibilities.

Many models have been proposed that are able to handle uncertainty
and keep track of the provenance of data which is usually modeled though
semiring annotations on data [BT07, GKT07, KIT10]. Those models are
closed under positive relational algebra but if probabilistic confidence values
are added on each possible alternative tuple then the computation of the
probabilities of the answer of a query that involves projection (with duplicate
elimination) is intractable (specificaly #P) [DS04, GT06, RPT11, STWO08].
The provenance used in Trio system [BSH'08a] is one out of many kinds of
provenance that semirings can model [GKTO07]. Our proposed model extends
possibilistic databases by adding Trio’s provenance used in the Uncertain and
Lineage ULDB model [BSHT08a] (where provenance is called “lineage”). The
reason we choose this model is because it expresses tuple uncertainty and
provenance tracking over the R9 (or-set and ?-tuple) x-tuple model which is
also used in possibilistic databases!.

5.2 Properties of the Proposed Model

In this section we illustrate the key aspects of possibilistic databases and
of the provenance/lineage semiring of Trio. We also investigate how we can

I'Note that our proposed model that extends possibilistic databases with Trio’s prove-
nance can be equivalently regarded as an extension of the ULDB model with possibilistic
confidence values on each alternative

135

Information and Uncertainty Management Angelos Vasilakopoulos

combine uncertainty (x-tuples), provenance (Trio’s lineage semiring) and pos-
sibilities. We begin with stating the basic properties of the Possibility The-
ory [BPP09].

5.2.1 Possibility Theory

A possibility distribution is a function 7 from a domain X to the interval
[0,1]. Possibility 7(a) is a qualitative measure expressing the degree of “how
possible” it is for the considered variable to take the value a. Each possibility
distribution has a normalization condition posing the constraint that at least
one of the values of X is completely possible, i.e., has possibility 1. We use
a discrete domain of possible values and we denote with {ay:my, ..., a,:m,}
the fact that for each i = 1...n value a; has possibility ;. The axioms of
possibility are the following: i) TI(X) = 1, ii) II(}) = 0, iii) [I(E; U Fy) =
max(I1(Ey), II(Ey)), iv) II(E; N Ey) < min(II(Ey),[I(Ey)) and when E; and
E, are not-interactive: II(E£; N Ey) = min(II(E}), [I(Ey)). For the events E
and E (opposite of E) the only valid relation is: max{II(E), II(E)} = 1.
Apart from possibility each event has a necessity measure N which is dual

with IT and their relation is expressed through: N(E) =1 — I[I(F).

5.2.2 The Proposed Model: Combining Uncertainty, Pos-
sibilities and Provenance

Possibility theory can be naturally adapted to the model of x-relations
and the semiring of Trio [BSH08a]. In x-relations model we no longer have
ordinary tuples. Instead we have x-tuples which include a bag of possible
ordinary tuples, called alternatives. The semantics are the following: on
each possible world at most one of the alternatives of an x-tuple can be true.
If from an x-tuple we can select none of its alternatives then this is a maybe-
xtuple annotated with symbol ‘7’. It is then straightforward that we can
combine possibilistic theory and x-tuples in the following way: Suppose that
we have an uncertain database which contains x-tuples. We attach on each
alternative a possibility degree and on each x-tuple at least one alternative
should be assigned with possibility 1 (the most possible one(s)). Furthermore
for each x-tuple with a ‘?” symbol we attach to it a necessity degree less than
1 and to all other x-tuples necessity equal to 1 (since an alternative of each one
of them is always possible). We do not have to explicitly attach a possibility
degree on each x-tuple since it is equal to the minimum possibility of each
alternative. So we always begin with an uncertain database containing x-
tuples with possibility degrees on each alternative and necessity degrees on
each x-tuple.

136

Information and Uncertainty Management Angelos Vasilakopoulos

Trio’s provenance (called “lineage” in Trio) semiring works as follows: If
we pose queries over initial data we want to keep track of the provenance of
the answers, i.e., from which data the answers are derived from. In order to
do this efficiently we attach a unique identifier ¢ over each x-tuple. We also
identify the alternatives of each x-tuple: In general the pair (7,) identifies
the j-th alternative of x-tuple 7. If an alternative with data t is a result
from two other alternatives t; and ¢, but can also be the result of our query
combining two other alternatives t3 and ¢, then we have for its lineage: A\(t) =
(id(ty) Nid(te)) V (id(t3) Aid(ts)). We note that lineage plays a double role:
it relates answers of queries to the data they are coming from and also poses
logical restrictions: an alternative can be true only in a possible world in
which its lineage is true. We note that initial data have empty lineage. Initial
data with empty lineage is defined as base data. We refer to [BSH"08a| for
more details about lineage and possible worlds. We borrow from the same
work the general setting of our following running example.

5.2.3 Running Example

Consider x-relation Saw(witness, car) having two x-tuples with two al-
ternatives each. Suppose that witness Amy saw a car near a crime-scene but
she was not sure if it was a Mazda or a Toyota car. Moreover she believed
it was more possible that the car was a Mazda and a little less possible
that it was a Toyota. The first tuple has identifier 11 and the second 12.
We separate different alternatives of a same x-tuple with || symbol. After
each alternative we attach its possibility and after each x-tuple its necessity
measure, i.e., <tj:a|[th:b>:c is an x-tuple with necessity ¢ that has two al-
ternatives: alternative with data ¢] has possibility a and alternative ¢, has
possibility b. Suppose also that in x-relation Drives(person, car) we encode
uncertainty about who is driving a car of a specific brand. The uncertain
database U with Trio’s provenance of our running example is:

Saw (witness,car)=

{11<Amy, Mazda:1||Amy, Toyota:0.8>:1,

12<Billy, Mazda:0.4 || Billy, Lexus:1>:1}

Drives(person,car)=

{21<Hank, Mazda:0.6||Hank, Toyota, :1>:1}

There is a total of 23 = 8 possible worlds. Suppose that we pose query Qs
which is a projection of attribute person on the result of query)1 which is the
join of Saw and Drives over common attribute car, i.e.: Q1 = Saw N g—cqr
Drives and Q2 = Tperson(@Q1(U)). Only five of the possible worlds include
answers over (1 (and Q)2). Those worlds are:

137

Information and Uncertainty Management Angelos Vasilakopoulos

W1: Saw—{11,1<Amy, Mazda:1>:0.2,

12,1<Billy, Mazda:0.4>:0}

Drives={21,1<Hank, Mazda:0.6>:0}

I(W1) =04, NW1)=0

W2: Saw={11,1<Amy, Mazda:1>:0.2,

12,2<Billy, Lexus:1>:0.6}

Drives={21,1<Hank, Mazda:0.6>:0}

[I(W2) =0.6, N(W2) =0

W3: Saw={11,2<Amy, Toyota:0.8>:0,

12,1<Billy, Mazda:0.4>:0}

Drives={21,1<Hank, Mazda:0.6>:0}

I(W3) =04, NW3)=0

W4: Saw—{11,2<Amy, Toyota:0.8>:0,

12,1<Billy, Mazda:0.4>:0}

Drives={21,2<Hank, Toyota:1>:0.4}

[I(W4) =04, N(W4) =0

W5: Saw={11,2<Amy, Toyota:0.8>:0,

12,2<Billy, Lexus:1>:0.6}

Drives={21,2<Hank, Toyota:1>:0.4}

I(W5) =0.8, N(W5) =0

For example the possibility of PWj is equal to the minimum of the possi-
bilities of its alternatives, so with min{1, 0.4, 0,6} = 0.4. Its necessity is
equal to 1 minus the maximum possibility from the possibilities of alterna-
tives which do not belong to this world have: 1 —max{0.8, 1,1} =1—-1=0.
The necessity of x-tuple (11,1) is equal to 1 minus the maximum possibility
of the other alternatives (in our case only alternative 11,2) of initial x-tuple
11, i.e., equal to 1 — max{0.8} = 0.2.

For the answers of queries we have similar semantics with the ones defined
for probabilities in [DS04]: The answer of a query @ is a set of alternatives
and their possibilities. Intuitively for the answer of (); we should have:
Q1 (U)={31<Amy, Mazda, Hank:0.6>:0,
32<Billy, Mazda,Hank:0.4>:0
33<Amy, Toyota,Hank:0.8>:0}

For example alternative (Amy, Mazda, Hank) appears in W7, a world with
possibility 0.4 and in W5 with possibility 0.6 (while both necessities are 0 -
note that only a world whose all tuples have possibility 1 has necessity greater
than 0). As a result in the answer of query ()1 we want to have a tuple with
data (Amy, Mazda, Hank) with possibility the union of the events that this
tuple appears in Wy or in W5. So with the maximum of the possibilities of
0.4 and 0.6. According to Trio’s semiring provenance we attach the following

138

Information and Uncertainty Management Angelos Vasilakopoulos

lineage on each alternative:

A(31) = (11,1) A (21, 1)

A(32) = (12,1) A (21,1)

A(33) = (11,2) A (21,2).

Similarly in the answer of query)3 we expect:
Q2(Q1(U))={41<Hank:0.8>:0}

A41) ={((11, 1) A (21,1)) vV ((12,1) A (21,1)) V ((11,2) A (21,2))}

We would like to be able to directly compute those answers of (1 and Q)
without having to compute all (exponentially many) possible worlds. As we
already mentioned, existing work about possibilistic theory, join or projection
with duplicate elimination was not possible due to the fact that possibistic
sets were not powerful enough to express the disjunction of two different
tuples occuring in the answer [BP05|. For example possibility theory could
not model the fact that, e.g., tuples 31 and 33 in the answer of @); could
not coexist. Provenance poses additional logical restrictions to where an
alternative can exist, thus overcoming this obstacle.

On the other hand until now provenance has only been combined with
probabilistic theory and not with possibilistic. But probabilities have high
complexity: for example if we want to compute the probability of alternative
41 Hank we must compute the probability of {((11,1) A (21,1)) V (12,1) A
(21,1) v ((11,2) A (21,2))}. In general computing the probability of a DNF
boolean formula is #-P complete [BSH"08a, DS04, RPT11]. In contrast in
our model which uses possibilities we can compute answers of selection with
equality, projection and join in polynomial time. Note in particular that the
possibility of the union of two events is always equal to the maximum of
their possibilities. We use provenance only to restrict data. The computa-
tion of possibilities and necessities is not based on provenance; instead, they
are computed directly from initial data. Provenance (which includes only
possibilities of alternatives and not necessities of x-tuples) is inadequate of
computing x-tuple necessities.

5.3 The Operators

In this section we give the definitions of selection, projection and join
operators. These definitions enable us to directly compute the answers of
SPJ queries posed over an uncertain database of our model with x-tuples and
possibilities without having to compute first its possible worlds. In addition
the computation of the possibilities of the answers is polynomial.

Let r be an uncertain relation of our model, A an attribute and (A = ¢)
a logical selection condition where ¢ can be another attribute or a constant.

139

Information and Uncertainty Management Angelos Vasilakopoulos

With alt(t) we denote the alternatives of x-tuple t:

Selection

select(r, A = q) = {< restict(alt(t),A=q) >: N’
such that ¢:N € r and where:

N’'=min{1 — max){H(t’i)}, N(t)} and:

ti€alt(t)At;E(A=q
restrict(alt(t), A = q) =
{t":I1, A(t') such that: t' € alt(t), where t € r, and t' E (A = ¢) and
[T =TI(¢) and A\(t') = Id(t')}.
We keep in the select result only the alternatives that satisfy our select con-
dition, with the same possibility that they had in our initial database. We
set as their lineage, the lineage pointing to the identifiers of the initial alter-
natives. As for necessity of each resulting x-tuple, it is the minimum of: 1)
the necessity of the original x-tuple they belonged to, ii) the initial necessity
of the original alternatives and iii) of 1 minus the maximum possibility that
an alternative of the same original x-tuple that does not satisfy our selection
condition has. The proof that our system is closed under selection with equal-
ity conditions uses a combination of the closure of Trio system [BSH'08a]
and the closure of selection on Possibilistic databases [BP05].

Projection
project(r, X) = {<t. X : II' >: N’
such that: ¢ € randt’ € alt(t) and N’ = rrxlfm_x{Ni} where: A; = {N; | t;:N; €

rand 3t; € alt(t;) with ;. X =t X}
and IT" = ngaX{Hi} where:

B; = {11, | t;: 1I; where t; € alt(t;) and t; € r and ¢;.X =t.X}.

We also set: A\(t'.X) = Vg id(t;) where C; = {id(t)) | t; € alt(t;) where
t; € alt(t;) and t; € r and t;.X =t.X}.

We project the set of attributes X from every alternative and we perform al-
ternative duplicate elimination. Thus the necessity of each resulting x-tuple
is equal to the maximum necessity of each original x-tuple that includes an
alternative that has the same projected value as the one alternative of our
resulting x-tuple has. The same holds for the new possibility as well. Finally
we set as lineage the disjunction of alternatives that give the same projected
value. The proof that our system is closed under projection is easy. Let us
just mention that the use of lineage allows duplicate elimination without los-
ing the correct possible worlds. In addition for the possibilities we can easily
use the maximum for the union of two alternatives with same data when we
perform duplicate elimination.

140

Information and Uncertainty Management Angelos Vasilakopoulos

Join
join(ry, 79, A = B) = {restrict(alt(t;) ® alt(ts), A = B)
such that: ¢; : Ny € r; and t3 : Ny € o where:
restrict(alt(ty) ® alt(ty), A = B) =
<th ety I, N(t) &ty) >: N’ such that: t; € ry and t| € alt(ty) and to € ro
and t, € alt(ty) and ¢} & t), = (A = B) and II' = min{II(¢)),I1(#,)} and
N =min{l — max {II(t})},
1) ealt(t1)/t)
1— max {I(ty)}, N1, No} and

tip€alt(ta)/th

N(th @ th) = id(t)) A id(t)).
We note that & denotes the concatenation of tuples. Also the above defi-
nition can be easily adopted to the case where the join condition involves a
conjunction of attribute equalities. We restrict in the join results only the
tuples that satisfy the join condition and we perform duplicate elimination on
alternatives. The new possibility of each alternative of the result is equal to
the minimum of the possibilities of the original alternatives that contributed
to its value. The necessity of each resulting x-tuple is the minimum of: i) 1
minus the maximum possibility of each other alternative that exists in the
original contributing x-tuples and ii) the necessities of the original contribut-
ing x-tuples. We also set as lineage the conjunction of the initial contributing
alternatives.

We now show that our system with Trio’s lineage, x-tuples, possibilities
and necessities is closed for the join operation. Moreover it follows from the
definitions of our operators that their complexity is polynomial to the size of
the data (alternatives) of our initial uncertain database.

Theorem 1: The possibilistic database model with provenance is closed
under the join operation.

Proof: We want to prove that PW (join(r1, 72, A = B)) = join(PW (ry,rs), A =
B). Suppose that r; and 5 both contain a single x-tuple. So suppose that
r1 has x-tuple ¢1:N; and ry has x-tuple t5:N5. Note that we have no loss of
generality: The possibilities that alternatives have in every x-tuple in base
relations form a possibilistic distribution. As a result in every base x-tuple
always exists (at least one) alternative with possibility equal to 1. Suppose
now that ¢ is an alternative in the result of a join query, resulting from two
alternatives t| of ¢; and t} of t5. The possibility of ¢’ in the join result ac-
cording to our definition is equal to the minimum of possibilities of ¢} and
ty. If 71 and ro had more x-tuples then t| and ¢}, would exist in more possi-
ble worlds resulting from the choices of alternatives from the other x-tuples.
According to our semantics in the join result ¢’ should have the possibility of

141

Information and Uncertainty Management Angelos Vasilakopoulos

the union of all its occurrences in every possible world. From the definition
of possibility union this would be equal to the maximum of the possibilities
of all possible worlds in which ¢} and ¢, both exist. But the maximum pos-
sibility exists in the possible world where ¢} and t}, are selected from ¢; and
to and for all the other x-tuples the alternative with possibility equal to 1
has been selected. Hence the possibility of this possible world is equal to
min{II(¢}), TI(t5), 1,...,1} = min{II(#}), [I(t5)}, so equal to the case where
r1 and ro had only one x-tuple.

So suppose that r; has x-tuple ¢;:N; and ro has x-tuple t5:N5. We re-

mind that with alt(t;) we denote the set of alternatives that exist in x-
tuple ¢; (respectively for ¢5). We first show that PW (join(ry, 9, A = B)) C
join(PW (ry,r2), A= B). Let W, be a possible world of PW (join(ry, 72, A =
B)) and m its possibility. We want to show that W is also a world of
join(PW (ry,r2), A = B) with the same possibility. We consider two cases:
e W, # (): We denote with ¢’ an arbitrary alternative in Wj. From the
definition of join the data of ¢ comes from the concatenation of two al-
ternatives ¢} of x-tuple ¢; and ¢}, of ¢, that satisfy the join condition (i.e.,
t' =t; B ty). These two alternatives also exist in a PW (ry,73), let us denote
it with W} 2. On the other hand if there exists a combination of two alter-
natives of x-tuples of r; and 75 in a possible world W} of PW (ry,rs) that
satisfy the join condition then the join answer resulting from them appears
in join(PW(ry,re), A = B). So there exists a possible world exactly equal
to Wy, as concerns data (and with lineage pointing to the same base data) in
PW (join(ry, 72, A = B)). Note that as concerns data (and lineage) a similar
result was also proven in [BSHT(08a).

Now for the possibilities of W, and W}: Again let ¢’ be an arbitrary
alternative in Wy € PW ((join(ry,72, A = B)). As we just showed, a tuple
with same data also appears in W] € join(PW (ry,rs), A = B). Its possibility
in W} is associated with the possibilities of t| € PW (ry) and t, € PW (rs).
Specifically it is equal to the minimum of possibilities of #| and ¢/, since
a possible world that produces t' must include them both (conjunction of
possibilities). The same choices have been made in Wy to derive ¢’ and
according to our join definition the possibility degrees of the join query is
equal to the minimum of possibilities of alternatives that produce the result.
So the possibilities are the same in W, and Wj.

e W, =0: We can have two subcases: either join(ry,re, A = B) is empty (¢
does not exist) or the necessity N’ of ¢’ is less than 1. If it is empty then
(PW(ry,m2), A = B) is also empty and the possibility of the empty world is

2Unless they have extraneous lineage, but in that case they also not exist in
PW (join(ry, 72, A = B), we refer to [BSHT08a] for more details).

142

Information and Uncertainty Management Angelos Vasilakopoulos

in both cases equal to the maximum possibility of any possible world, i.e., :
min{ max {II(;})}, max {II(t;5)}}.

! €alt(tr) ¢, alt(ts)

If join(ry,79, A = B) is not empty then the necessity degree N’ of ¢’ is
less than 1 and the empty world W) has possibility 1 — N’. The possibil-
ity of W}, must correspond to a world of PW (ry,re) with the most possi-
ble choices of alternatives t} of r; and t, of o that do not satisfy the join
condition, i.e., with possibility: max{ max {II(%)}, max {II(t,)},

1"

t1 €alt(tr1) /1) troCalt(te) /1)
1 — Ny, 1 — No}. From our definition of join we see than indeed this would
be the possibility of the empty world Wj. Using a similar logic it is now easy
to also prove that join(PW (ry,r), A = B) C PW (join(ry,re, A = B)).

5.3.1 Examples of Operators

We present in this subsection that if our join and project operators are
posed over the initial data of our running example, their result directly com-
putes the results Q1 (U) and Q2(Q1(U)) with the correct data and provenance
that we expected and presented in subsection 5.2.3.

Join

We illustrate the use of our operators join and project though our running
example. Query () is a projection of attribute person on the result of query
(1 which is the join of Saw and Drives over common attribute car. We
begin with join query ;. According to our definition we have the query
join(Saw, Drives,car = car). In our result we naturally restrict the com-
binations of all possible alternatives of the two relations Saw and Drives to
the ones that satisfy the condition car = car. In our example there exist
three such combinations. For the first one we have: Alternatives 11,1 and
21,1 from x-tuples 11, with necessity Ni; = 1 and 21 with necessity Noy = 1,
yield alternative (Amy, Mazda, Hank). According to our join definition its
possibility is II" = min{II(11,1),11(21,1)} = min{1,0.6} = 0.6. Respectively
its necessity is N’ = min{1 —max{II(11,2)}, 1 — max{II(21,2)}, N1y, No1 } =
min{l—max{0.8},1—max{1},1,1} = min{1-0.8,1—1, 1,1} = min{0.2,0, 1,
1} = 0. The lineage of (Amy, Mazda, Hank) is equal to the conjunction of
the identifiers of the alternatives that produce it, i.e., with (11,1) A (21,1).
For the other two combinations of alternatives that satisfy our join condition,
the procedure is similar. In order to succinctly denote lineage we attach a
new fresh identifier to each tuple-alternative of the answer. The final result is:

143

Information and Uncertainty Management Angelos Vasilakopoulos

Q1 (U)={31<Amy, Mazda, Hank:0.6>:0,
32<Billy, Mazda,Hank:0.4>:0

33<Amy, Toyota,Hank:0.8>:0}

A(31) = (11,1) A (21, 1)

A(32) = (12,1) A (21, 1)

A(33) = (11,2) A (21,2)

Projection

We continue with query)» which is a projection of attribute person from
the result Q1(U), i.e., project(Q1(U), person). Our result has a singe x-tuple
with one alternative Hank. Its necessity, according to our definition is equal
to the maximum of the necessities of the x-tuples that produce the same re-
sult Hank (we perform duplicate elimination). In our case all x-tules 31, 32
and 33 produce Hank, so the set A; includes the necessities of all of them. So
the necessity of Hank in the result is: N’ = max{N(31), N(32),N(33)} =
max{0} = 0. The possibility of Hank is equal to the maximum of the
possibilities of all the alternatives that give result Hank. In our case the
set B; of such alternatives includes (31,1), (32,1) and (33,1). So the pos-
sibility of Hank in the result is: II" = max{II(31,1),11(32,1),11(33,1)} =
max{0.4,0.8,0.6} = 0.8. The lineage of Hank is equal to the disjunction of
the identifiers of the alternatives that have Hank in the data of the projection
result. In order to succinctly denote lineage we attach new identifier 41 to
x-tuple Hank of the answer. So we have: A(41) = {(31,1)V (32,1)Vv(33,1)}.
As noted in [BSH™08a] we can use the lineage information of the initial Q,(U)
and expand with polynomial complexity lineage back to base data. Hence we
can replace, e.g., (31, 1) with its lineage in Q;(U), which is: {(11,1)A(21,1)}.
The final result is:

Q2(Q1(U))={41<Hank:0.8>:0}
A1) = {((11,1) A (21,1)) Vv ((12,1) A (21,1)) V ((11,2) A (21,2))}

144

Chapter 6

Efficient Lineage for SUM
Aggregate Queries

Al systems typically make decisions and find patterns in data based on
the computation of aggregate and specifically sum functions, expressed as
queries, on data’s attributes. This computation can become costly or even
inefficient when these queries concern the whole or big parts of the data
and especially when we are dealing with big data. New types of intelligent
analytics require also the explanation of why something happened.

In this chapter we present a randomised algorithm that constructs a small
summary of the data, called Aggregate Lineage, which can approximate well
and explain all sums with large values in time that depends only on its size.
The size of Aggregate Lineage is practically independent on the size of the
original data. Our algorithm does not assume any knowledge on the set of
sum queries to be approximated.

6.1 Introduction

Big data poses new challenges not only in storage but in intelligent data
analytics as well. Many organisations have the infrastructure to maintain
big structured data and need to find methods to efficiently discover patterns
and relationships to derive intelligence [oral3a, oral3b|. Thus, it would be
desirable to be able to construct out of big data a right representative part
that can explain aggregate queries, e.g., why the salaries or the sales of a
department are high.

Al systems typically make decisions based on the value of a function com-
puted on data’s attributes. Several approaches have in common the compu-
tation of aggregates over the whole or large subsets of the data that helps

145

Information and Uncertainty Management Angelos Vasilakopoulos

explain patterns and trends of the data. E.g., recommendation systems rank
and retrieve items that are more interesting for a specific user by aggregating
existing recommendations [RRSK11|. For another example, collaborative fil-
tering computes a function which uses aggregates and a sum over the existing
ratings from all users for each product in order to predict the preference of
a new user |[BHK98, KvdLvW09]. User preferences are often described as
queries [Jan09], e.g., queries that give constraints on item features that need
to be satisfied.

Another reason for which data analytics seek to explain data is for data
debugging purposes. Data debugging, which is the the process that allows
users to find incorrect data [MGNS11, MBM13], is a research direction that is
growing fast. Data are collected by various techniques which, moreover, are
unknown to and uncontrolled by the user, thus are often erroneous. Finding
which part of the data contains errors is essential for companies and affects
a large part of their business.

All these applications call for techniques to explain our data. Aggregation
is a significant component in all of them. In this chapter we offer a technique
that constructs a summary of the data with properties that allow it to be
used efficiently to explain much of the data behaviour in aggregate for sums.
We refer to this summary as Aggregate Lineage, since in most applications it
represents the source of an aggregate query!.

Lineage (a.k.a. provenance) keeps track of where data comes from. Lin-
eage has been investigated for data debugging purposes [ICF"12|. Storing
the complete lineage of data can be prohibitively expensive and storage-
saving techniques to eliminate or simplify similar patterns in it are studied
in [CJRO8|. For select-project-join SQL queries, lineage stores the set of all
tuples that were used to compute a tuple in the answer of the query [BSH*08a).
This is natural for select-project-join SQL queries where original attribute
values are “copied” in attribute values of the answer. However, in an ag-
gregate query the value of the answer is the result of applying an aggregate
function over many numerical attribute values. When we want to understand
why we get an aggregate answer it may no longer be important or feasible to
have lineage to point to all contributing original tuples and their values. We
would rather want to compute few values that can be used to tell us as much
as possible about the origin of the result of an aggregate query. However is
this at all possible and if it is what are the limitations?

In this chapter we initiate an investigation of such questions and, inter-
estingly, we show that useful and practical solutions exist. In particular,
we offer a technique that uses randomisation to compute Aggregate Lineage

ILineage used to be referred to as “explain” in database papers of the late 80’s.

146

Information and Uncertainty Management Angelos Vasilakopoulos

which is a small representative sample (it is more sophisticated than just a
simple random sample) of the data. This sample has the property to allow
for good approximations of a sum query on ad hoc subsets of data — we call
them test queries. Test queries are applied to the Aggregate Lineage — not
the whole original data. The test queries which we consider are sum queries
with same aggregated attribute conditioned with any grouping attributes de-
pending on which subsets of the data we want to test. We give performance
guarantees about the quality of the results of the test queries that show the
approximation to be good for test queries with large values (i.e., close to the
total sum over the whole set of data). Our performance guarantees hold,
with high probability, for any set of queries, even if the number of queries
is exponentially large in the size of the lineage. The only restriction is that
the queries should be oblivious to the actual Aggregate Lineage. This re-
striction is standard in all previous work on random representative subsets
for the evaluation of aggregate queries and is naturally satisfied in virtually
all practical applications. The following example offers a scenario about how
Aggregate Lineage can be used in data debugging and demonstrates how
some test queries can be defined.

FExample 26. Suppose that the accounting department of a big company
maintains a database with a relation Salaries with hundreds of attributes
and millions of tuples. Each tuple in the relation may contain an identi-
fier of an employee stored in attribute EmpllD, his Department stored in
attribute Department, his annual salary stored in attribute Sal and many
more attribute values. Other relations are extracted from this relation, e.g.,
a relation which contains aggregated data such as the total sum of salaries of
all employees. A user is trying to use the second relation for decision making
but he finds that the total sum of salaries is unacceptably high. He does not
have easy access to the original relation or he does not want to waste time
to pose time-consuming queries on the original big relation. The error could
be caused by several reasons (duplication of data in a certain time period,
incorrect code that computes salaries in a new department). Thus e.g., if
we could find the total sum of salaries for employees in the toy department
during 2009, and see that this is unreasonably high, still close to the first
total sum of all employees’ salaries, then we will be able to detect such errors
and narrow them down to small (and controllable) pieces of data.

In order to do that, we need the capability of posing sum queries restricted
to certain parts of the data by using combinations of attributes. This will
help the user understand which piece of data is incorrect. We do not know
in advance, however, which piece of data the user would want to inquire
and thus Aggregate Lineage should allow the user to be able to get good

147

Information and Uncertainty Management Angelos Vasilakopoulos

approximated answers to whatever queries he wants to try. There are billions
of such possible queries and hence billions of subsets of data which we want
to compute a good approximation of the summation of salaries. We want
Aggregate Lineage to offer this possibility.

We propose to keep as Aggregate Lineage a small relation under the same
schema of the original relation. In order to select which tuples to include, we
use valued-based sampling with repetition, i.e., weighted random sampling
where the probability of selecting each tuple is proportional to its value on
the summed attribute. The intuition why this method works is the following.
Larger values contribute more to the sum than smaller ones, thus we expect
that tuples with larger values should be selected more often than tuples with
smaller values. Hence, we could end up with a tuple selected many times in
the sample even if it appears only once in the original data. On the other
hand, if there are many tuples with values of moderate size, many of them
will be selected in the Aggregate Lineage, so that their total contribution to
the approximation of the sum remains significant.

6.1.1 Our contribution

In our approach Aggregate Lineage is a small relation with same schema
as the original relation and with the property to offer good approximations
to test queries posed on it.

To present performance guarantees, we build on Althofer’s Sparsification
Lemma [Alt94]. In [Alt94], Althofer shows that the result of weighted random
sampling over a probability vector is a sparse approximation of the original
vector with high probability. This technique has found numerous applications
e.g., in the efficient approximation of Nash equilibria for (bi)matrix games
[LMMO3], in the very fast computation of approximate solutions in Linear
Programming [LY94], and in selfish network design [FKS12].

In this chapter, we show for the first time that the techniques of [Alt94] are
also useful in the context of sum database queries with lineage. Our results
show that the Aggregate Lineage that we extract has the following properties
(which we describe in technical terms and prove rigorously in Section 6.4):

e Its size is practically independent of the size of the original data.

e It can be used to approximate well all “large” sums (i.e., with values
close to the total sum), of the aggregated attribute in time that depends
only on its size, and thus is almost independent of the size of the original
data.

148

Information and Uncertainty Management Angelos Vasilakopoulos

t[A] value of attribute A in tuple ¢
S sum of all values over attribute A
Dt probability that Algorithm Comp-Lineage selects tuple ¢
Fr additional attribute recording the frequency of a tuple in the lineage
Lga the lineage relation computed by Algorithm Comp-Lineage wrto attribute A

Q(R.A) (Sec. 4) | a sub-sum query computed over original relation R wrto attribute A
Q' (Lg.a) (Sec. 4) | sub-sum query @ computed over the aggregate lineage relation
Ig (Sec. 4) set of identifiers of the tuples in relation R that satisfy the predicates in query @

Figure 6.1: Main symbols used in this chapter.

6.2 Computing Aggregate Lineage

In this section, we present randomised algorithm Comp-Lineage which
computes Aggregate Lineage in one pass over the data and in time linear in
the size n of the original database relation. In Section 6.4 we show that the
output of Comp-Lineage is useful to approximate arbitrary ad-hoc sum test
queries in time independent of n. We note that our algorithm is agnostic of
the specific sum queries that will be approximated by using its output.

Suppose that we are given a database with a relation R with n tuples
and we are given a positive integer b which is the number of tuples we have
decided to include in the Aggregate Lineage (in Section 6.4 we will explain
how we decide b to give good performance and approximation guarantees).
Suppose that A is a numerical attribute of R which takes nonnegative values.
Let S be the sum of values of attribute A over all n tuples. The algorithm
essentially is a biased sampling with repetition that selects b tuples from R.
Each tuple t has probability to be selected equal to p, = t[A]/S where t[A] is
the value of attribute A in ¢. It collects initially a bag (a.k.a. multiset and is
allowed to have the same element more than once) of tuples (since each tuple
may be selected multiple times) which is turned in a set of tuples by adding
an extra attribute F'r (for Frequency) which shows the number of times this
tuple is selected. We denote by Lr s the Aggregate Lineage of relation R
with sum attribute A.

ALGORITHM COMP-LINEAGE
Input: A relation R with n tuples and positive integer b < n.
Output: An Aggregate Lineage relation Lp 4 with at most b tuples.

e Randomly select with repetition one out of the n tuples of R in b trials where
each tuple t is selected with probability p;.

e Form relation Lr 4 by including all tuples selected above and adding an
extra attribute F'r to each tuple to record how many times this tuple was
selected.

149

Information and Uncertainty Management Angelos Vasilakopoulos

Sal: | # of Tuples Total # of Tuples Fr | # of Tuples with | Sal: Values Fr-S/b
0.V. | in Salaries || in Aggregate Lineage Fr in Aggregate Lineage
3 5 3.5/b=4.41 x 10°
4 10 4-5/b = 5.87 x 10°
51 19 5-S/b="T.34x 108
6 14 6-S/b=8.81 x 10°
10° 100 100 7 13 7-5/b=1.03 x 10°
8 15 8 8/b=1.17 x 10°
9 8 9-58/b=1.32 x 10°
10 12 10-S/b=1.47 x 107
11) 11.5/b = 1.62 x 10°
1 347 S/b=1.47 x 10°
3 2 123 2-S/b=2.94 x 10°
10 1,000 497 3 20 3-5/b=4.41x10°
4 7 4-58/b=5.87 x 10°
107 10,000 681 1 681 S/b =147 x 10°
10° | 1,000,000 6,809 1 6,809 5/b=1.47 x 10°
10 1,000 0 0 0 0

Figure 6.2: Properties of Aggregate Lineage Lsuaries.sar for b = 8,852. The
first two columns describe the data. The next three columns describe the
Aggregate Lineage relation. The last column shows how we use this lineage
to compute sub-sums.

We can use the techniques of [ES06| for weighted random sampling and effi-
ciently implement our algorithm to run in linear time in the size of the input either
in a parallel/distributed environment or over data streams.

Table 6.1 summarizes the main symbols used throughout the chapter.

6.3 Running Example

Ezample 27. We illustrate Algorithm Comp-Lineage by applying it to Example 26
with b = 8,852 and presenting the data and the Aggregate Lineage in Figure 6.2.
Actually Figure 6.2 only shows the value of the aggregated attribute (Sal in our
example), the rest of the tuple is not shown.

The first two columns of Figure 6.2 present the data in relation Salaries. In
order to be able to present many tuples we have chosen a relation with a few values
for attribute Sal, actually five (i.e., 109,10% 107, 10° and 10) and their Original
Values (O.V.) are shown in the first column. The second column shows how many
tuples in Salaries have these values in Sal. Thus, it says, e.g., that there are 100
tuples with value in Sal equal to 10°, 1,000 tuples with value in Sal equal to 10%
and so on.

The third column in Figure 6.2 shows how many tuples from Salaries with a
specific value in Sal are selected by ALGORITHM COMP-LINEAGE to be included

150

Information and Uncertainty Management Angelos Vasilakopoulos

in the Aggregate Lineage relation. Thus, e.g., all 100 tuples with Sal = 10° were
chosen, only 681 tuples with Sal = 107 were chosen and no tuple with Sal = 10
was chosen.

In order to represent the Aggregate Lineage relation Lggjgries.sq in the most
demonstrative way, we have chosen to partition its tuples in blocks (each block
further divided in multiple rows in columns 4, 5 and 6), each block corresponding
to one value of Sal in Salaries. Thus the first block has 9 rows, the second block
has 4 rows and the last three blocks have one row each. This breaking into blocks
gives a visualisation of the characteristics of the algorithm.

The fourth column stores the extra attribute frequency Fr which tells how
many times a certain tuple was selected by the algorithm and the fifth column
stores the number of tuples that were selected so many times. Thus, e.g., the first
row says that 5 tuples were selected 3 times each. The ninth row says that 4 tuples
from Salaries were selected 11 times each.

The blocks give us an intuition of the characteristics of the Aggregate Lineage.
The first block corresponds to the largest value of Sal and tuples with this value
(i.e., Sal = 10°) contributed quite heavily to the lineage - all 100 tuples with
Sal = 10° were selected multiple times. In more detail, there are 100 tuples
with value Sal = 10%. Of those tuples, 5 were added in the bag 3 times each,
10 tuples were added in the bag 4 times each, and so on. Thus, by considering
these 100 tuples, the Algorithm Comp-Lineage added in the bag 3-5 + 4-10 +
51946-14+ 713+ 815+ 9-8 +10-12 + 11-4 = 681 tuples in total. That is
to say, each of those 100 tuples contributed on average 6.81 to the bag. When we
get a set out of the bag by using frequencies (to avoid repeating a tuple multiple
times), then we see that the average frequency per tuple is 6.81. So, from this
first block, the 681 tuples in the bag of Algorithm Comp-Lineage are transformed
to a set of 100 tuples in Aggregate Lineage with average frequency 6.81. We can
compare it with the average frequency in the second block which is 0.681 (this is
1-347 + 2-123 4+ 3-20 + 4- 7 = 681 divided by 1000 tuples) and see that, in the
data of our example, each tuple of the first block contributes more heavily to the
lineage.

As we will explain in more detail later, this shows partly why the lineage is
useful for discovering almost accurately sub-sums that are large compared to the
total sum, whereas when a sub-sum is small in comparison, then the lineage cannot
be used to compute it accurately.

The second block did not contribute that heavily but still quite a lot, around
half of tuples with Sal = 10® were selected at least once and quite a few more
than once, in total this block contributed 681 tuples in the bag. The third block
contributed moderately. The fourth block is interesting because the value of Sal
is very small only 10° but it contributed quite a lot due to the fact that there are
many tuples in Salaries with Sal = 10°, thus it contributed almost 85 percent of
the tuples in the Aggregate Lineage.

Finally the last column in the figure shows how much each tuple from the

151

Information and Uncertainty Management Angelos Vasilakopoulos

Aggregate Lineage contributes to the approximation of sub-sums that are computed
by the test queries. The same tuple is added in the Aggregate Lineage several times
as recorded in the new attribute F'r and thus, in order to calculate the contribution
of a certain tuple, we multiply its frequency in Fr by S/b. By doing so, some tuples
(e.g., the ones in the fourth block) in our example of Figure 6.2 will contribute much
more than their actual value in Sal. But this is to compensate for the tuples with
value close to it (same value in our example) that are not selected to be included
in the Aggregate Lineage. In the next section we give the technical details on how
Aggregate Lineage can be used in order to approximate sub-sums.

Note that Aggregate Lineage does not assume any knowledge of the query
set: i.e., we run the random selection of Algorithm Comp-Lineage only once and
compute Lp 4 without assuming anything about the queries. Then, this same
relation Lp 4 can be used to make us understand any sub-sum test query, without
requiring that the test queries are given beforehand or requiring that the test queries
are chosen in any specific fashion (e.g., they do not have to be chosen uniformly at
random), as long as the query choice is oblivious to the actual sample computed
by Aggregate Lineage?. We first present the theoretical approximation guarantees
and then demonstrate how these guarantees play for debugging on our running
example.

6.4 Approximation Guarantees of Test Queries
on Aggregate Lineage

In this section we prove the theoretical guarantees of Aggregate Lineage. Let R
be a relation with a nonnegative numerical attribute A. We consider SUM queries
that ask for the sum of attribute’s A values over arbitrary subsets of the tuples
in relation R. We use tuple identifiers in order to succinctly represent subsets of
tuples. Thus, any SUM query defines a set of tuple identifiers for tuples that satisfy
its predicates, hence the following formal definitions:

Definition 46 (Exact SUM Q(R.A)). Let R be a database relation. We attach
a tuple identifier on each tuple of R. We denote by Iy the set of all identifiers in
relation R. Given an attribute A in the schema of R, we denote by a; the value of
attribute R.A in the tuple with identifier 7 in R.

Let @Q be a SUM query over R.A. We denote by Ig the set of tuple identifiers
from Iy for tuples of R that satisfy Q)’s predicates.

2In technical terms, the queries are posed by an oblivious adversary, i.e., an adversary
that knows how exactly Aggregate Lineage works but does not have access to its random
choices. The restriction to oblivious adversaries is standard and unavoidable, since if one
knows the actual value of Ly 4, he can construct a query that includes only tuples not
belonging to Lz 4, for which no meaningful approximation guarantee would be possible.

152

Information and Uncertainty Management Angelos Vasilakopoulos

The result of a SUM query, Q(R.A), is the summation of the values of R.A
over the set of tuples with identifiers that appear in IQ, ie, Q(R.A) = ZieIQ a;.
R

Definition 47 (Approximated SUM Q'(Lg.4)). Let Q be a SUM query over R.A
and let Lr 4 be an Aggregate Lineage. We attach a tuple identifier on each tuple
of Lr o. We denote by Iy, the set of all identifiers in Lz 4. We denote by ILQ the
set of tuple identifiers from I}, for tuples of Ly 4 that satisfy @Q’s predicates (since
the set of attributes of R is a subset of the set of attributes of Lg 4, we have that
the predicates of a SUM query @, expressed on attributes of R, define Ig)

We denote by f; the value of attribute Lz 4.Fr in the tuple with identifier ¢ in
Lg.a.

The approximated result of SUM query @, denoted by Q'(Lg.4), is the sum-
mation of the values of L 4.F'r over the set of tuples with identifiers that appear
in Ig multiplied by S/b, i.e., Q' (Lr.a) = Zielg fi-S/b.

The following theorem provides the performance guarantees for any arbitrary
set of m SUM queries computed over the Aggregate Lineage relation in order to
serve as an approximation of the corresponding SUM queries over the original data.

Theorem 24. Let R be a relation with n tuples having nonnegative values ay, . . ., ay
on attribute A, and let S =" | a;. Then, for any collection of m SUM queries
Q1(R.A),...,Qm(R.A) (not known to the algorithm), any p € (0,1), and any € >
0, the Algorithm Comp-Lineage with input all tuples of R and b = [In (2m/p)/(2€?)]
derives an Aggregate Lineage Lp 4 such that |Qj(R.A) — Q(Lr.a)| < €S, for all
J € [m], with probability at least 1 — p.

Proof. The proof is an adaptation of the proof of Althéfer’s Sparsification Lemma
[Alt94]. For simplicity, we assume, without loss of generality, that the set I of all
tuple identifiers of R in Definition 46 is Ir = {1,...,n}. We define b independent
identically distributed random variables X1, ..., X3, which take each value ¢ €
[n] with probability a;/S. Namely, each random variable X; corresponds to the
outcome of the i-th trial of Comp-Lineage. For each tuple i, its frequency in the
sample is f; = [{k € [b] : X}, =i}

Let us fix an arbitrary SUM query Q;(R.A). For each k € [b], we let ij be a

random variable that is equal to 1, if X3 € I K4 , and 0, otherwise. Since the random
variable ij is equal to 1 with probability Q;(R.A)/S, IE[Y]k] = Q;(R.A)/S. We
observe that the random variables {ij}ke[b} are independent, because the random

variables { Xy }epp are independent. Furthermore, we let Y; be a random variable
defined as

By definition, Y; = Z,GIQj fi/b = Z,GIQJ. fi/b, and thus we have that Y; =
SR el

Q;(LR, 4)/S, ie., Yj is equal to the approximated result of the SUM query di-
vided by S. Also, by linearity of expectation, IE[Y;] = Q;(R.A)/S.

153

Information and Uncertainty Management Angelos Vasilakopoulos

Applying the Chernoff-Hoeffding bound, we obtain that for the particular choice
of b, with probability at least 1 — p/m, the actual value of Y; differs from its
expectation Q;(R.A)/S by at most €, which implies that Q;(LR,A) differs from
Q;j(R.A) by at most €S. Formally, by the Chernoff-Hoeffding bound 3,

Pr{|Q;(La.a) — Q;(R.A)| > €]
— Pr{[Y; - Q;(R.A)/S| >
< 2exp 2 < p/m,

where the last inequality follows from the choice of b.
Applying the union bound, we obtain that

Pr[3j € [m] : |Q;-(LR_A) - Qj(RA) >eS] <p
which concludes the proof of the lemma. O

Example 28. Suppose, in our running example, we want to be able to answer with
good approximation m = 10% queries. What are the guarantees that the theorem
provides? The original data have n ~ 105 tuples. Suppose we select the number of
tuples in the Aggregate Lineage to be b &~ 9000. Then the theorem says that, by
setting € = 0.04, we can compute any of 10 arbitrary queries within 0.04S of its
real value with probability 1 — 1075, Thus, if the real exact value of the query Q
is equal to Q1(Salaries.Sal) = 0.4S = S; (remember S is the sum over all tuples
of relation R) then the approximation will be 0.04S = 0.045,/0.4 = 0.15;. If for
another query Q2 we have Q2(Salaries.Sal) = 0.85 = Sy then the approximation
will be 0.055%, so, then with high probability we get an answer that is within a
factor of 0.05 of the actual answer.

Observations on the practical consequences of Theorem 24. Examining closely
equation b = [In (2m/p)/2¢2] which gives us an upper bound of the number of
tuples in the Aggregate Lineage for m queries and with p and € guarantees as in
its statement, we make the following observations:

e The value of b depends on m as the logarithm, hence if we go from m to m?

queries, we only need to multiply b by 2 in order to keep the same performance
guarantees. Thus it is reasonable to state that, in many practical cases the
number m of queries that can be approximated well can be as large as a
polynomial on the size of data — even with coefficient in the order of a few
hundreds.

3We use the following form of the Chernoff-Hoeffding bound (see [Hoe63]): Let
Y',...,Y® be random variables independently distributed in [0,1], and let Y =
%Zzzl Y*. Then, for all € > 0, Pr[|]Y — E[Y]| > ¢] < 2exp~2¢?, where exp = 2.71 ... is
the basis of natural logarithms.

154

Information and Uncertainty Management Angelos Vasilakopoulos

e The value of b does not depend much on p (again only as in the logarithm)
but it depends mainly on e which controls the approximation ratio (the
approximation ratio itself is €/p if the query to be computed has a sum

S" = pS).

6.5 A debugging scenario

Here is what a user can do for data debugging when using the Aggregate Lineage
we propose.

e He computes sub-sums by filtering some attributes and possibly specific val-
ues for these attributes. E.g., what was the sum of salaries of employees in
the toy department in Spring 2010 and only for those employees who were
hired after 2005. The user devises several such test queries as he sees ap-
propriate and while he computes them and checks that sub-data is ok or
suspicious, he devised different test queries to suit the situation. E.g., if he
observes an unusually large value, close to the total sum, in the query about
employees in the toy department and hired before 2005, then the rest of the
queries he devises stay within this department and within the range until
2005, and tries to narrow down further the wrong part of data. E.g., now
he narrows down to each month or/and to employees that are hired between
2005 and 2007, etc. On the other hand, if he finds the answer satisfactory,
then he announces this part of the data correct, therefore stays outside this
sub-data and tries to find some other part of the data that are faulty. The
user uses and poses his test queries over the stored small Aggregate Lineage
instead of inefficiently use the original big relation.

In the following example we show how using Aggregate Lineage to approximate
test queries applies to our running example.

Example 29. We continue our running Example 27 where we computed Aggregate
Lineage Lguiaries.sai- Suppose that we have a SUM test query)1 asking the
sum of the salaries of a subset of the employees of the company defined from a
subset of EmpID’s. Let this subset consist of 50 employees with salary 10°, 5,000
employees with salary 107 (so half of them) and of all 106 employees with salary
105. We compute the query over Salaries and take the exact answer 1.1 x 102,
In order to use Aggregate Lineage to understand our data we compute Igl.
The Aggregate Lineage has at most 8,852 tuples. The identifiers of Igl define the
sub-lineage of query Q1 over Lggiaries.Sal- The sub-lineage of Q)1 points to 50 of the
tuples of Lgaiaries.Sar With original salaries 10? and to all 6,809 tuples with original
Sal values 10° (cf. Figure 6.2). It will also point to some tuples of Lgaiaries.Sal
with Sal values 107: On average query @ is applied on half of the 681 selected
in Aggregate Lineage tuples, but in extreme cases it may include all or none of
them. For this reason, it is a good practice to run the randomised algorithm more

155

Information and Uncertainty Management Angelos Vasilakopoulos

than once and compute a few distinct summaries in order to have better results.
For instance, we may compute three summaries, use some benchmark sub-queries
to decide a distance between summaries, toss the summary which is the more
distant and keep one of the others arbitrarily. Note that it is easy to compute the
benchmark queries in one pass through the original data in parallel with computing
the lineage.

We now use the Aggregate Lineage Lggiaries.sai Shown in Figure 6.2 to approx-
imate the value of the sum answer to Q1. In one worst case query (1 will include:
the 50 tuples with salaries 109 from Lgqiaries.sal tuples with the larger frequencies
and all 681 selected tuples with salaries 107. The approximation Q') (Lsalaries.Sal)
in this case is (4-11+12-10+ ...+ 681 +6,809)S/b = 7,935- S/b = 1.17-10'2. In
the other extreme case ()1 includes tuples with the smaller frequencies and none
of the selected in Aggregate Lineage tuples with salaries 107, yielding the approx-
imation 6,995- S/b = 1.03-10'2. We see that Q is well approximated. Of course
the approximation bounds are not the same for every SUM query - we presented
the guarantees in Section 6.4.

Another straw man approach would be to select as lineage the 8,852 tuples
with larger salary values. This method will select all 100 tuples with salaries 10?,
all 1,000 tuples with salaries 10® and the remaining 7, 752 tuples from tules with
salaries 107. With this approach, query Q; will be on average approximated with
the value 50-10% + 3,876-107 ~ 8.8 x 10!0 because it loses all the information
about all original 10® tuples with salaries 10® contributing to the sum. On another
approach, a simple random sampling of 8,852 tuples will almost always select
all of them from the 10% many tuples with salaries 106. Query Q; will then be
approximated with the value 8,852-10% ~ 8.8 x 10°. Note, on the other hand, that
if all original tuples had the same salaries then our method would coincide with
simple random sampling.

6.6 Discussion

We have focused in our exposition only on a single aggregated attribute (e.g.,
Sal in our example). This is done for simplicity. Our ideas can be easily extended
to include more aggregated attributes as long as we are willing to keep a distinct
aggregate lineage for each attribute. E..g., suppose we also had a Rev (for Revenue)
attribute for each employee. In such a case we keep two lineage relations, one for
Sal and one for Rev. The algorithm to compute them can be thought of as a
parallel implementation of two copies of the algorithm Comp-Lineage. We need
only one pass through the original data. The only difference is that now, a) we need
the two total sums Sg, and Sge, and b) for each tuple ¢, we have two probabilities
pf“l and pf‘“ﬂ the first to be used for the lineage related to attribute Sal and the
second to be used for the lineage related to attribute Rev.

Algorithm Comp-Lineage performs a weighted random sampling which selects
with replacement b out of n tuples of R where the weight w; for the tuple with

156

Information and Uncertainty Management Angelos Vasilakopoulos

identifier i is equal to the value of attribute A of this tuple. Using b copies (each
copy selects a single element) of the weighted random sampling with reservoir
algorithm presented in [ES06], we can implement Comp-Lineage in one-pass over
R, in O(bn) time and O(b) space. This implementation can also be applied to data
streams and to settings where the values of n and S are not known in advance.
However the technique in [ES06], does not seem to be efficiently parallelizable,
at least not in a direct way. Thus the problem of how to efficiently implement
our technique in distributed computational environments such as MapReduce re-
mains open. Issues about how to implement sampling in MapReduce are discussed
in [GC12|. Another open problem is how to apply this technique to evolving
data [GR02]. In data streams, we assume that the sample is to be computed over
the entire data. When data continuously evolve with time, the sample may also
change considerably with time. The nature of the sample may vary with both the
moment at which it is computed and with the time horizon over which the user is
interested in. We have not investigated here how to provide this flexibility.

6.7 Comparison with Synopses for Data

There has been extensive research on approximation techniques for aggregate
queries on large databases and data streams. Previous work considers a vari-
ety of techniques including random sampling, histograms, multivalued histograms,
wavelets and sketches (see e.g., [CGHJ12] and the references therein for details and
applications of those methods). Most of the previous work on histograms, wavelets,
and sketches focuses on approximating aggregate queries on a given attribute A for
specific subsets of the data that are known when the synopsis is computed (e.g., the
synopsis concerns the entire data stream or a particular subset of the database).
Thus, such techniques typically lose the correlation between the approximated A
values and the original values of other attributes. For the more general case of
multiple queries that can be posed over arbitrary sets of attributes and subsets of
the data not specified when the synopsis is computed, those techniques typically
lead to an exponential (in the number of other attributes involved) increase in the
size of the synopsis (see e.g., [DGGR02, DGGRO04]).

In contrast, our approach is far more general and does not focus on approximat-
ing queries over specific attributes or subsets of the data. Our algorithm computes
a small sample without assuming any knowledge on the set of queries and keeps
the association between the sampled A values and all other attributes. Then, we
can use the Aggregate Lineage to approximate large-valued sum queries over ar-
bitrary subsets of the data that can be expressed over any set of attributes. The
Aggregate Lineage can approximately answer a number of queries exponential in
its size. Of course, the queries should be oblivious to the actual Aggregate Lineage
(technically, they should be computed by an oblivious adversary), but this tech-
nical condition applies to all previously known randomised synopses constructions
(see e.g., [CGHJ12]).

157

Chapter 7

Optimizing 2-Way Skew Joins in
MapReduce

Techniques have been proposed and implemented for skew joins in order to han-
dle loss of parallelism when a small number of values of the join attribute(s) appear
in a significant fraction of the tuples. However, these techniques do not minimize
the communication cost — the amount of data transmitted from the mappers to the
reducers. Communication cost is known to be an important parameter in MapRe-
duce algorithms. In this chapter we propose a novel technique that minimizes the
communication cost and show that it improves significantly on the techniques that
have previously been implemented for handling skew in joins.

7.1 Introduction

Skew is a big concern when we design algorithms for parallel systems and in
particular in MapReduce algorithms. Skew occurs when a small number of Map
tasks and/or Reduce tasks do a significant fraction of the work. Since the work of
a task cannot be divided among compute nodes, the entire job must take at least
as much time as the longest task. For example, if one task requires 20% of the
total time of all the tasks, then no matter how many compute nodes are used, the
speed-up due to parallelism cannot be greater than a factor of 5.

Systems such as Pig or Hive that implement SQL or relational algebra over
MapReduce have mechanisms to deal with joins where there is significant skew;
i.e., values of the join attributes that appear very frequently (see, e.g., [ORST08,
TSJT10, TSJT09]). Both use a two-round algorithm, where the first round iden-
tifies the heavy hitters, those values of the join attribute(s) that occur in at least
some given fraction of the tuples. In the second round, tuples that do not have a
heavy-hitter for the join attribute(s) are handled normally. That is, there is one

158

Information and Uncertainty Management Angelos Vasilakopoulos

reducer! for each key, which is a value of the join attribute(s). This reducer han-
dles all the tuples from both relations having that value for the join attribute(s).
Since the key is not a heavy hitter, this reducer handles only a small fraction of
the tuples, and thus will not cause a problem of skew.

Suppose some value b for attribute B is identified as a heavy hitter in the join
of R(A, B) with S(B,C). Suppose there are r tuples of R with B = b and there
are s tuples of S with B = b. Suppose also for convenience that r > s; that is,
the larger of the two sets of tuples with B = b comes from R, and the smaller set
comes from S. For any integer k we can hash values of attribute A to k buckets,
using a hash function &, so the tuples of R that have B = b will each be assigned
to exactly one of these buckets. The buckets are the keys in a MapReduce job that
handles only the value b. Each tuple R(a,b) is sent to the bucket h(a) only; that
is, we partition the larger set of tuples with B = b. However, a tuple S(b, ¢) is sent
to all k of the buckets, so it can be joined with all the tuples of R that have B = b.
We say the smaller set of tuples with B = b is replicated.

In practice, there is not one MapReduce job for each heavy hitter. Rather,
after the first job determines which values are heavy hitters, and how frequently
they appear in each relation, it is a small matter to select an appropriate value of k
for each heavy hitter (the k’s need not be the same) and to decide, for each heavy
hitter, which of the relations will have their tuples with this heavy-hitter value
partitioned, while the other is replicated. Now a second MapReduce job can treat
all the tuples of R and S appropriately. Tuples without a heavy-hitter value for
B are handled normally; the B-value becomes the key. Tuples with a heavy-hitter
value for B are either partitioned or replicated, depending on whether the tuple is
part of the larger or smaller set of tuples with that value.

The approach described above appears not only in Pig and Hive, but dates back
to [WDY93]. This work, which looked at a conventional parallel implementation of
join rather than a MapReduce implementation, uses the same (highly non-optimal)
strategy of choosing one side to partition and the other side to replicate.

However, these techniques do not optimize the communication cost, which is
an important component of the total cost of a MapReduce algorithm — often the
dominant cost. The communication cost is the total amount of data transmitted
from the mappers to the reducers. The communication cost per input is the replica-
tion rate. These measures have been defined and studied in earlier work, including
[ASSU13, ABST12].

In [AU11], the shares technique is presented, which minimizes the communica-
tion cost for multiway joins. In the shares algorithm, keys are vectors of buckets.
Here, we use the same idea to construct an algorithm for 2-way join that handles
skew and gives a better communication cost than the algorithm described above;
in fact, we show that the communication is minimized by our algorithm. Our

'In this chapter, we use the term reducer to mean the application of the Reduce function
to a key and its associated list of values. It should not be confused with a Reduce task,
which typically executes the Reduce function on many key-list-of-values pairs.

159

Information and Uncertainty Management Angelos Vasilakopoulos

proposed algorithm assigns shares appropriately to the values of the non-join at-
tributes of a two-way join for each.

Example: Let R = (A, B) and S(B, C) be two binary relations whose join we
want to compute. Suppose B = 10 is a heavy hitter. Let R have r = 1,000 x 10°
tuples with B = 10 and S have s = 250x10? tuples with B = 10.? Suppose we want
to use k = 400 reducers. The standard skew-join algorithm partitions the tuples of
R with B = 10 to the 400 reducers and sends all tuples in S with B = 10 to all 400
reducers. Then the communication cost is 7 + ks = 1000 x 10% 4- 400 x 250 x 109 =
1.01 x 104,

But we can do much better. We identify each of the 400 reducers by a pair
(4,7), i = 1,2,...,80 and j = 1,2,3,4,5. We define a hash function h, that
sends each A value to exactly one out of i = 80 buckets and a hash function hg
that similarly partitions C' values to j = 5 buckets. We still have 80 x 5 = 400
reducers. Now we send each tuple (a, 10) of relation R to the following 5 reducers:
(1, hp(a)), (2, hp(a)), ..., (5, hy(a)). Similarly we send each tuple (10, ¢) of relation
S to 80 reducers (hs(c), 1), (hs(c),2),...(hs(c),80). Thus we have communication

57 +80s = 5 x 1,000 x 10 + 80 x 250 x 10° = 2.5 x 103

Hence we have reduced the communication by a factor of almost 4. As we will
analyze now we can do even better if we chose 10 shares for relation R (instead of
5) and 40 shares for relation S (instead of 80). This will give communication cost
equal to 2 x 103, which is the best communication cost we can achieve.

7.2 Analysis of Communication Cost

Let R = (A, B) and S(B,(C) be two binary relations whose join we want to
compute. Suppose B = b is a heavy hitter. Let R have r > s tuples with B = b
and S have s tuples with B = b.

We partition the tuples of R with B = b into x groups and we also partition
the tuples of S with B = b into y groups, where xy = k. We use one of the k
reducers for each pair (i,7) for a group i from R and for a group j from S. Then
we send each tuple (a,b) of R to all reducers of the form (7, q), where i = h,(a) is
the group in which tuple (a,b) belongs and ¢ ranges over all y groups. Similarly
for each tuple (b, c¢) from relation S. Thus each tuple with B = b from R is sent
to y reducers and each tuple with B = b from S is sent to = reducers. Hence the

2Evidently, it is not feasible to output this join in its entirety, but we can assume that
the join is followed by some aggregation, e.g., finding the maximum sum of A + C for any
tuple in the join. In Pig or Hive implementation, this aggregation would be done by the
same reducers that produce the join, so the join itself would never have to be materialized.

160

Information and Uncertainty Management Angelos Vasilakopoulos

communication cost is ry + sz. We will show that by minimizing ry + sx under
the constraint 2y = k we achieve communication cost equal to 2v/krs.

In order to prove that 2v/krs is optimal, we use the method of Lagrangean
multipliers. We begin with the equation ry+ sz — A(xy—k), take partial derivatives
with respect to the two variables & and y, and set the results equal to zero. We
thus get the following equations:

1. r = Az, which implies ry = \zy = A\k.
2. s = Ay, which implies sz = Azy = Ak.

If we multiply (1) and (2) we get rszy = rsk = A\2k?, which implies A =
rs/k. From (1) we get © = y/kr/s and from (2) we get y = \/ks/r. Thus the
communication cost, which is ry + sz, is seen equal to 2v/krs.

On the other hand, the standard skew join, assuming r > s, partitions the
tuples of R with B = b among all of the k available reducers and replicates all
tuples in S with B = b to all k reducers. Then the communication cost is r + ks. If
we compare this expression with the optimum that we computed above, 2v/krs, the
improvement is significant. The optimal communication cost grows as vk, while
r+ ks grows linearly with k. For example, suppose s = r. Then r + ks = r(k + 1),
while 2v/ksr = 2rVk.

When there is more than one heavy hitter, then we apply the above technique
for each, after we have decided the number of reducers we assign to each.

7.3 Experiments

We have implemented our optimal Algorithm in Java/Hadoop and run experi-
ments on Infolab Hadoop Cluster of Stanford University. This cluster has 21 data
nodes with a total of 254 cores, 448 GB of RAM and 18.93 TB of disk space. We
suppose some value b for attribute B is identified as a heavy hitter in the join of
R(A, B) with S(B,C). In our experiment we have r = 4 - 10* tuples of R with
B = b and we also have s = 10 tuples of S with B = b. The size of the output join
for this heavy hitter has r - s = 4 - 10% tuples and occupies 6.98 GB of disk space.
We use k£ = 4,000 buckets. Using our optimal Algrorithm Hadoop computes a
total communication cost of 2,500,157 that matches the theoretical lower-bound
of communication which is 2vkrs = 2,529,822. In contrast if we use the standard
skew-join algorithm, Hadoop computes a total communication cost of 40,044,001
(the theoretical cost of standard skew-join algorithm is r + ks = 40, 040, 000). This
large difference in the communication cost between the standard and our proposed
Algorithm has a direct impact in the total clock time of the computation: Using
our Algorithm the total time of the computation is 7 minutes and 40 seconds while
when using the standard algorithm for the same computation, the time rises to 10
minutes and 20 seconds. We summarise our experiment results on Figure 7.1.

161

Information and Uncertainty Management

Angelos Vasilakopoulos

‘ Communication cost ‘ Total Time

Standard skew-join Algorithm

40,044, 001

10 minutes and 20 seconds

The proposed optimal Algorithm

2,500, 157

7 minutes and 40 seconds

Figure 7.1: Communication cost and time comparison of our experiment
when using our optimal proposed Algorithm versus using standard skew-join
algorithm for a heavy hitter with 4 - 10® tuples in the join output.

162

Chapter 8

Conclusions and Open Problems

In this thesis we investigate five problems of databases with uncertainty and
lineage. We start with the analysis for those databases of the query containment
and query equivalence problems. We introduce several variants of ULDB database
containment and corresponding variants of query containment. We show that the
variants of ULDB database containment are all different. However, when we in-
vestigate conjunctive query containment we show that the various variants can be
partitioned in two classes that are CQ query containment equivalent. We prove
that the complexity of query containment for databases with uncertainty and lin-
eage for conjunctive queries (CQs) and for Unions of conjunctive queries (UCQs)
remains NP-complete as it is with ordinary databases for all five new kinds of
containment semantics. We prove that the complexity of query equivalence
for databases with uncertainty and lineage for CQs and UCQs is also NP-
complete for the first two kinds of ULDB database containment and Graph-
Isomorphism-complete for the last three. On another perspective database
containment was defined in [ASUW10| for uncertain databases without lin-
eage. We also investigate CQ) query containment under this definition. We
further extend it for the case of ULDBs by defining and studying the CQ
query containment complexity of five new semantics of ULDB equality con-
tainment and show that they are useful in ULDB data integration.

Various open problems remain, starting with finding the complexity of
ULDB database containment for the various kinds of containment we have
defined here. A first open problem is how query optimization techniques can
benefit from this investigation of query containment. Another direction is to
show that the, related to data exchange, problem of ULDB data integration
can benefit from our query containment results. Future investigation can go
beyond CQs and UCQs: define a new query language suitable for databases
with uncertainty, i.e., that will support uncertainty or lineage querying and
study the query containment problem for this uncertain language. Another

163

Information and Uncertainty Management Angelos Vasilakopoulos

open area is to study containment and complexity for richer languages, e.g.,
CQs with negation.

Further we investigate the problem of query answering in a data exchange
setting in which the source data that is to be exchanged has uncertainty and
lineage. We present and define new logical semantics of certain answers for
data with uncertainty and lineage. A straightforward way to compute such
ULDB certain answers is to first compute all the possible LDB instances of
the source and compute LDB certain answers for each one. Even though
LDB certain answering of CQs is polynomial for a set of weakly acyclic tgds,
the number of the possible instances of a ULDB may be exponential, making
this approach computationally expensive and unsuitable for large data sets.
In contrast we presented a u-chase procedure that can be used in order to
polynomially compute ULDB certain answers of CQs for a set of weakly
acyclic tgds and a well-behaved ULDB source. U-chase will create a “pseudo-
LDB”, use our l-chase procedure on it and finally return a ULDB. Finally we
showed that computing certain answers for CQs is no longer polynomial if
we allow egds in our dependencies, contrary to what happens in certain data
exchange.

We next study and analyse the problem of query computing for con-
junctive queries for databases with uncertainty and lineage when we attach
belief values to uncertain data that come from a possibility distribution. We
prove that the model of databases with uncertainty and lineage and with
possibilistic values is closed for conjunctive queries. This result solves the
problem of previous results that show that models with uncertainty and pos-
sibilities (but no lineage) are not closed for conjunctive queries [BP05]. We
prove that in the model of databases with uncertainty and lineage and pos-
sibilities we can compute conjunctive queries (along with their possibility
values) with low polynomial complexity (Ptime) in contrast with the high
complexity #P of existing approaches where uncertainty values are proba-
bilistic [DS04, GT06, RPT11, STWO0S|.

The fourth problem that we study is the problem of how to efficiently
compute aggregate queries and specifically SUM queries, posed on big data.
We have presented a method that computes lineage for aggregate queries by
applying weighted sampling. The aggregate lineage can be used to compute
arbitrary test aggregate queries on subsets of the original data. However the
test queries can be computed with good approximation only if the result of
each test query is large enough with respect to the total sum over all the data.
The aggregate lineage we compute cannot be used to compute test queries
if their result is comparatively small. We give performance guarantees. The
idea of getting a single (possibly weighted) random sample from a large data
set and using it for repeated estimations of a given quantity has appeared

164

Information and Uncertainty Management Angelos Vasilakopoulos

before in the context of machine learning and statistical estimation. Boosting
techniques [Sch03] such as bootstrapping [Efr79, ET93] are used. In [KTSJ12]
BLB is used for the efficient estimation of bootstrap-based quantities in a
distributed computational environment.

Finally we study, analyse and implement in the parallel environment
MapReduce the computation of 2-Way Joins for big data that may also be
skewed. We present a new algorithm, suitable for MapReduce, which com-
putes 2-Way Joins and can efficiently handle data skewness in contrast with
existing algorithms. We prove that our algorithm matches the lower commu-
nication cost bound. We further implement in Java/Hadoop of our algorithm
with experiments whose communication cost verifies the theoretical cost.

It was only a few years ago that the optimal serial algorithm to take
a multiway join was discovered [NPRR12|. Previous algorithms could be
significantly suboptimal when there was significant skew and/or there were
many dangling tuples (tuples that do not contribute to the result). This
result does not extend directly to parallel algorithms. Our result leads to an
algorithm that minimizes communication for a MapReduce algorithm, when
we constrain the problem by limiting the number of tuples that can be sent
to any one reducer. This constraint is reasonable, because controlling the
number of inputs to a reducer allows us to guarantee that the Reduce function
can be applied in main memory, and it also allows us to force a desired degree
of parallelism. These two motivations were discussed in [ASSU13|. There is
a suggestion that one can find parallel algorithms for multiway join in a
manner that combines techniques such as we have proposed and techniques
for optimal serial algorithms [Ré¢14|, but at present no such algorithm is
known.

165

Bibliography

IABS*12|

[ADG10]

[AFV14]

[AKOS]

[AK10]

[AKGO1]

[ALMOG6]

|ALPO8a]

|ALPOSD)

Foto N. Afrati, Magdalena Balazinska, Anish Das Sarma, Bill
Howe, Semih Salihoglu, and Jeffrey D. Ullman. Designing good
algorithms for mapreduce and beyond. In SoCC; page 26, 2012.

Foto N. Afrati, Matthew Damigos, and Manolis Gergatsoulis.
Query containment under bag and bag-set semantics. Inf. Pro-
cess. Lett., 110(10):360-369, 2010.

Foto N. Afrati, Dimitris Fotakis, and Angelos Vasilakopoulos.
Efficient lineage for sum aggregate queries. To appear in Al
Communications Journal, 2014.

Foto N. Afrati and Phokion G. Kolaitis. Answering aggregate
queries in data exchange. In PODS, pages 129-138, 2008.

Foto N. Afrati and Nikos Kiourtis. Computing certain answers
in the presence of dependencies. Inf. Syst., 35(2):149-169, 2010.

Serge Abiteboul, Paris C. Kanellakis, and Gosta Grahne. On
the representation and querying of sets of possible worlds.
Theor. Comput. Sci., 78(1):158-187, 1991.

Foto N. Afrati, Chen Li, and Prasenjit Mitra. Rewriting queries
using views in the presence of arithmetic comparisons. Theor.
Comput. Sci., 368(1-2):88-123, 2006.

Foto Afrati, Chen Li, and Vassia Pavlaki. Data exchange:
Query answering for incomplete data sources. In InfoScale 08:
Proceedings of the 3rd international conference on Scalable in-
formation systems, pages 1-10. ICST, 2008.

Foto N. Afrati, Chen Li, and Vassia Pavlaki. Data exchange
in the presence of arithmetic comparisons. In EDBT, pages
487-498, 2008.

166

Information and Uncertainty Management Angelos Vasilakopoulos

[Alt94]

[ALU07|

[ASSU13|

[ASUW10]

[AU11]

[AUV]

[AV10a]

[AV10D)

[BGMP92]

[BHKOS]

[BKTO1]

I. Althofer. On sparse approximations to randomized strategies
and convex combinations. Linear Algebra and Applications,
99:339-355, 1994.

Foto N. Afrati, Chen Li, and Jeffrey D. Ullman. Using views
to generate efficient evaluation plans for queries. J. Comput.
Syst. Sci., 73(5):703-724, 2007.

Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jef-
frey D. Ullman. Upper and lower bounds on the cost of a
map-reduce computation. PVLDB, 6(4):277-288, 2013.

Parag Agrawal, Anish Das Sarma, Jeffrey D. Ullman, and
Jennifer Widom. Foundations of uncertain-data integration.
PVLDB, 3(1):1080-1090, 2010.

Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway
joins in a map-reduce environment. I[EEE Trans. Knowl. Data
Eng., 23(9):1282-1298, 2011.

Foto N. Afrati, Jeffrey D. Ullman, and Angelos Vasilakopou-
los. Optimizing 2-way skew joins in mapreduce. Submitted in
International Workshop.

Foto N. Afrati and Angelos Vasilakopoulos. Managing lineage
and uncertainty under a data exchange setting. In jth In-
ternational Conference of Scalable Uncertainty Managements
(SUM), pages 28-41, 2010.

Foto N. Afrati and Angelos Vasilakopoulos. Query containment
for databases with uncertainty and lineage. In /th International
Workshop on Management of Uncertain Data (MUD). In con-
jJunction with VLDB 2010., pages 67-81, 2010.

Daniel Barbara, Hector Garcia-Molina, and Daryl Porter. The
management of probabilistic data. IEEE Trans. Knowl. Data
Eng., 4(5):487-502, 1992.

John S. Breese, David Heckerman, and Carl Myers Kadie. Em-
pirical analysis of predictive algorithms for collaborative filter-
ing. In UAI, pages 43-52, 1998.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why
and where: A characterization of data provenance. In ICDT,
pages 316-330, 2001.

167

Information and Uncertainty Management Angelos Vasilakopoulos

[BPOS]

[BPP09)

[BSH*08a]

[BSH*08b]

[BTO7]

[CGHI12|

[CGKOS]

[CJROS]

[CM77]

(V93]

[CW00]

Patrick Bosc and Olivier Pivert. About projection-selection-
join queries addressed to possibilistic relational databases.
IEEE T. Fuzzy Systems, 13(1):124-139, 2005.

Patrick Bosc, Olivier Pivert, and Henri Prade. A model based
on possibilistic certainty levels for incomplete databases. In
SUM, pages 80-94, 2009.

Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin
Theobald, and Jennifer Widom. Databases with uncertainty
and lineage. VLDB J., 17(2):243-264, 2008.

Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin
Theobald, and Jennifer Widom. Databases with uncertainty
and lineage. VLDB J., 17(2):243-264, 2008.

Peter Buneman and Wang Chiew Tan. Provenance in
databases. In SIGMOD Conference, pages 1171-1173, 2007.

Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and
Chris Jermaine. Synopses for massive data: Samples, his-

tograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1-294, 2012.

Andrea Cali, Georg Gottlob, and Michael Kifer. Taming the in-
finite chase: Query answering under expressive relational con-
straints. In Proceedings of the 21st International Workshop on
Description Logics (DL2008), Dresden, Germany, May 13-16,
2008, 2008.

Adriane Chapman, H. V. Jagadish, and Prakash Ramanan.
Efficient provenance storage. In SIGMOD Conference, pages
993-1006, 2008.

Ashok K. Chandra and Philip M. Merlin. Optimal implemen-
tation of conjunctive queries in relational data bases. In STOC,
pages 77-90, 1977.

Surajit Chaudhuri and Moshe Y. Vardi. Optimization of eal
conjunctive queries. In PODS, pages 59-70, 1993.

Yingwei Cui and Jennifer Widom. Practical lineage tracing in
data warehouses. In ICDE, pages 367-378, 2000.

168

Information and Uncertainty Management Angelos Vasilakopoulos

[CWO03]

[DFMPOA4]

IDGGRO2]

IDGGRO4|

[DSO04]

[Efr79)]

[ES06]

[ET93]

[FKK10]

[FKMPO5]

[FKS12|

[GC12|

Yingwei Cui and Jennifer Widom. Lineage tracing for general
data warehouse transformations. VLDB J., 12(1):41-58, 2003.

Didier Dubois, Laurent Foulloy, Gilles Mauris, and Henri
Prade. Probability-possibility transformations, triangular
fuzzy sets, and probabilistic inequalities. Reliable Computing,
10(4):273-297, 2004.

A. Dobra, M.N. Garofalakis, J. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In SIG-
MOD Conference, pages 61-72. ACM, 2002.

A. Dobra, M.N. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-
based multi-query processing over data streams. In Proc. of the
9th International Conference on Fxtending Databas Technology
(EDBT 2004), volume 2992 of Lecture Notes in Computer Sci-
ence, pages b51-568. Springer, 2004.

Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864-875, 2004.

B. Efron. Bootstrap methods: Another look at the jackknife.
The Annals of Statistics, 7(1):1-26, 1979.

Pavlos Efraimidis and Paul G. Spirakis. Weighted random sam-
pling with a reservoir. Inf. Process. Lett., 97(5):181-185, 2006.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall, New York, NY, 1993.

Ronald Fagin, Benny Kimelfeld, and Phokion Kolaitis. Prob-
abilistic data exchange. To appear in 13th International Con-
ference on Database Theory (ICDT), 2010.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian
Popa. Data exchange: semantics and query answering. Theor.
Comput. Sci., 336(1):89-124, 2005.

D. Fotakis, A.C. Kaporis, and P.G. Spirakis. Efficient meth-
ods for selfish network design. Theoretical Computer Science,
448:9-20, 2012.

Raman Grover and Michael J. Carey. Extending map-reduce
for efficient predicate-based sampling. In ICDFE, pages 486—497,
2012.

169

Information and Uncertainty Management Angelos Vasilakopoulos

[GKIT07]

[GKTO7]

[GRO2|

|Gre09|

[GT06|

|[Hoe63]

[HS07]

ICF+12]

[IL84]

[IR95]

[Jan09]

[KIT10]

Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and
Val Tannen. Update exchange with mappings and provenance.
In VLDB, pages 675-686, 2007.

Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, pages 31-40, 2007.

V. Ganti and R. Ramakrishnan. Mining and monitoring evolv-
ing data. Springer, 2002.

Todd J. Green. Containment of conjunctive queries on anno-
tated relations. In ICDT, pages 296-309, 2009.

Todd J. Green and Val Tannen. Models for incomplete and
probabilistic information. In EDBT Workshops, pages 278-
296, 2006.

Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Associ-
ation, 58(301):13-30, 1963.

André Hernich and Nicole Schweikardt. Cwa-solutions for data
exchange settings with target dependencies. In PODS, pages
113-122, 2007.

Robert Ikeda, Junsang Cho, Charlie Fang, Semih Salihoglu,
Satoshi Torikai, and Jennifer Widom. Provenance-based de-
bugging and drill-down in data-oriented workflows. In ICDE,
pages 1249-1252, 2012.

Tomasz Imielinski and Witold Lipski. Incomplete information
in relational databases. J. ACM, 31(4):761-791, 1984.

Yannis E. Ioannidis and Raghu Ramakrishnan. Containment
of conjunctive queries: Beyond relations as sets. ACM Trans.
Database Syst., 20(3):288-324, 1995.

Dietmar Jannach. Fast computation of query relaxations for
knowledge-based recommenders. AI Commun., 22(4):235-248,
2009.

Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.
Querying data provenance. In SIGMOD Conference, pages
951-962, 2010.

170

Information and Uncertainty Management Angelos Vasilakopoulos

[KTSJ12|

[KvdLvWO09]

[LLRS97]

[LMMO3]|

[LY94]

[Mat79]

IMBM13]

IMGNS11]

[MMO9]

INPRR12)

[oral3al

[oral3b]

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and
Michael 1. Jordan. The big data bootstrap. In ICML, 2012.

Martijn Kagie, Matthijs van der Loos, and Michiel C. van
Wezel. Including item characteristics in the probabilistic la-
tent semantic analysis model for collaborative filtering. ATl
Commun., 22(4):249-265, 2009.

Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and
V. S. Subrahmanian. Probview: A flexible probabilistic
database system. ACM Trans. Database Syst., 22(3):419-469,
1997.

R.J. Lipton, E. Markakis, and A. Mehta. Playing large games
using simple strategies. In Proc. of thejth ACM Conference on
Electronic Commerce (EC ’03), pages 36-41, 2003.

R.J. Lipton and N.E. Young. Simple strategies for large
zero-sum games with applications to complexity theory. In
Proc. of the26th ACM Symposium on Theory of Computing
(STOC °94), pages 734-740, 1994.

Rudolf Mathon. A note on the graph isomorphism counting
problem. Inf. Process. Lett., 8(3):131-132, 1979.

Kivan¢ Muslu, Yuriy Brun, and Alexandra Meliou. Data de-
bugging with continuous testing. In ESEC/SIGSOFT FSE,
pages 631-634, 2013.

Alexandra Meliou, Wolfgang Gatterbauer, Suman Nath, and
Dan Suciu. Tracing data errors with view-conditioned causality.
In SIGMOD Conference, pages 505-516, 2011.

Matteo Magnani and Danilo Montesi. Towards relational
schema uncertainty. In SUM, pages 150-164, 2009.

Hung Q. Ngo, Ely Porat, Christopher Ré¢, and Atri Rudra.
Worst-case optimal join algorithms: [extended abstract|. In
PODS, pages 37-48, 2012.

Information Management and Big Data. An Oracle White Pa-
per, February 2013.

Big Data Analytics - Advanced Analytics in Oracle Database.
An Oracle White Paper, March 2013.

171

Information and Uncertainty Management Angelos Vasilakopoulos

|ORS*08]

[Ré14]

[RPT11]

[RRSK11]

[Sch03]

[SDH]

[STWOS]

[SUWO09]

[TSJ+09)

[TSJ*10]

[U197]

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. Pig latin: a not-so-foreign lan-
guage for data processing. In SIGMOD Conference, pages
1099-1110, 2008.

Christopher Ré. Links between join processing and convex ge-
ometry. In ICDT, page 2, 2014.

Sudeepa Roy, Vittorio Perduca, and Val Tannen. Faster query
answering in probabilistic databases using read-once functions.
In ICDT, pages 232-243, 2011.

Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors. Recommender Systems Handbook. Springer,
2011.

R. Schapire. The boosting approach to machine learning: An
overview. In Nonlinear Estimation and Classification, 2003.

A. Das Sarma, L. Dong, and A. Halevy. Uncertainty in data
integration. In "Managing and Mining Uncertain Data" Editor
C. Aggarwal, Springer, 2009.

Anish Das Sarma, Martin Theobald, and Jennifer Widom. Ex-
ploiting lineage for confidence computation in uncertain and
probabilistic databases. In ICDE, pages 1023-1032, 2008.

Anish Das Sarma, Jeffrey D. Ullman, and Jennifer Widom.
Schema design for uncertain databases. In AMW, 2009.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. Hive - a warehousing solution over a map-
reduce framework. PVLDB, 2(2):1626-1629, 2009.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Ning Zhang, Suresh Anthony, Hao Liu, and
Raghotham Murthy. Hive - a petabyte scale data warehouse
using hadoop. In ICDE, pages 996-1005, 2010.

Jeffrey D. Ullman. Information integration using logical views.
In ICDT, pages 19-40, 1997.

172

Information and Uncertainty Management Angelos Vasilakopoulos

[VK11]

[WDY93|

Angelos Vasilakopoulos and Verena Kantere. Efficient query
computing for uncertain possibilistic databases with prove-
nance. In 3rd USENIX Workshop on the Theory and Practice
of Provenance (TaPP), 2011.

Joel L. Wolf, Daniel M. Dias, and Philip S. Yu. A parallel sort
merge join algorithm for managing data skew. [EFEE Trans.
Parallel Distrib. Syst., 4(1):70-86, 1993.

173

