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Summary 
 

The miniaturization of systems and devices creates the need to address the material 

properties on smaller scales. More specifically, plastic deformation in microscale differs 

from the macroscopic plasticity in two respects:  

(i) the flow stress of small samples depends on their size, the small samples are 

much stronger and  

(ii) the scatter of plasticity increases immensely due to the dynamics of discrete 

defects which exist, move and interact in the sample, referred to as 

dislocations.  

In this work we focus on the scatter of plasticity while the scale dependence of the flow 

stress creates a motivation for future work. Initially, we statistically characterize the 

deformation process of micropillars under tension using results from discrete 

dislocation dynamics (DDD) simulations. Afterwards, we propose a stochastic 

microplasticity model which uses the extracted information from the above statistical 

characterization to build up a stress-strain curve of the same micropillars. This model 

aims to map the complex dynamics of interacting dislocations onto stochastic processes 

involving the continuum variables of stress and strain.  Therefore, it combines a 

classical continuum description of the elastic problem with a stochastic description of 

the discrete dislocation dynamics. By that way, it overcomes the conduction difficulties 

of an experiment and reduces tremendously the computational time of a simulation of 

micropillars under tension compared with a DDD simulation. 
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Περίληψη 
 

Οι ανάγκες της σύγχρονης εποχής για συσκευές όλο και μικρότερου μεγέθους ωθoύν στο  

ν’ανακαλύψουμε τις ιδιότητες των υλικών σε μικρότερες κλίμακες. Πιο συγκεκριμένα η πλαστική 

παραμόρφωση σε μικροκλίμακα διαφέρει απο την πλαστική παραμόρφωση σε μακροκλίμακα σε 

δυο βασικά σημεία: 

(i) το όριο διαρροής  των μικρών δειγμάτων εξαρτάται απο τις διαστάσεις τους, τα 

μικρότερα δείγματα είναι πιο ανθεκτικά και 

(ii) η διασπορά της πλαστικής παραμόρφωσης αυξάνει σημαντικά λόγω της διάδοσης κ 

αλληλεπίδρασης ελαττωμάτων που υπάρχουν μέσα στα υλικά κ λέγονται εξορμώσεις. 

Σε αυτή την διπλωματική επικεντρωνόμαστε στη δεύτερη απο τις παραπάνω διαφοροποιήσεις ενώ 

η πρώτη αποτελεί κίνητρο μελλονικής έρευνας. Αρχικά, υλοποιούμε μια στατιστική ανάλυση ώστε 

να εκμαιεύσουμε τα χαρακτηριστικά της διαδικασίας παραμόρφωσης δειγμάτων της τάξης των 

μικρόμετρων υπο εφελκυσμό. Για το σκοπό αυτό χρησιμοποιούμε αποτελέσματα προσομοιώσεων 

(discrete dislocation dynamics simulations(DDD)) οι οποίες αντιμετωπίζουν τις εξορμώσεις ώς 

διακριτά στοιχεία μέσα στο υλικό κ περιγράφουν με λεπτομέρεια την περιλοκή δυναμική των 

εξορμώσεων μέσα σ’αυτό. Έπειτα, προτείνουμε ένα στοχαστικό μοντέλο πλαστικής παραμόρφωσης 

σε μικροκλίμακα, βασισμένο στην παραπάνω ανάλυση, ώστε να διευκρινήσουμε την δυναμική των 

εξορμώσεων μέσω μιας στοχαστικής διαδικασίας που περιλαμβάνει τις μεταβλητές της μηχανικής 

συνεχούς μέσου, δηλαδή τάση κ παραμόρφωση.Έτσι, συνδέουμε την μηχανική συνεχούς μέσου με 

μια στοχαστική περιγραφή των DDD προσομοιώσεων και ξεπερνάμε απο τη μια τις δυσκολίες που 

παρουσιάζουν τα πειραμάτα κ απο την άλλη μειώνουμε αποτελεσματικά τον υπολογιστικό χρόνο 

προσομοίωσης δοκιμίου σε μικροκλίμακα σε σχέση με μια DDD προσομοίωση. 
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Introduction 

 

In this thesis we discuss the statistics of fluctuations in microscale plasticity and the 

implications of computational modelling of the plastic deformation and finally 

propose a new type of constitutive models which combine a classical continuum 

description of the elastic problem with a stochastic description of the dynamics of 

plastic flow.   

Chapter 1 gives an overview of the dislocation theoretical background and how 

plasticity relates to the dislocation theory. Moreover, a brief introduction into the 

three-dimensional discrete dislocation dynamics (DDD) is presented. 

Chapter 2 is dedicated to the motivation of this work and the implementation of a 

stochastic description of the deformation process in the microscale. We statistically 

characterize the deformation process of micropillars under tension using results 

from discrete dislocation dynamics simulations. To this end, we implement a 

stochastic microplasticity model which predicts the stress-strain curve of the same 

micropillars as a sequence of deformation segments according the above statistical 

analysis. 

The results of our stochastic model are presented in chapter 3, where in order to 

examine the effectiveness of the stochastic model we compare the DDD with the 

stochastic simulations. More specifically, we calculate the mean and the standard 

deviation of stress as a function of strain for both DDD and stochastic simulations. 
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Chapter 4 presents the weakness of our initial stochastic model and introduces an 

improved stochastic model based on the same statistical characterization as the 

previous one. 

In Chapter 5 the results of the improved model and their comparison with the DDD 

results are shown using the same statistical analysis as for the first stochastic model. 

Finally, chapter 6 illustrates the results of the statistical analysis for both stochastic and 

DDD simulations on the same graph in order to consider which model approximates 

better the DDD simulations. Moreovere, future research is suggested. 
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1. Theoretical background 
 

This chapter gives an overview of the dislocation theoretical background and presents 

briefly a three-dimensional discrete dislocation dynamics (DDD) plasticity model. A 

complete introduction about dislocations can be found in Hull & Bacon (1965)[1] or Hirth & 

Lothe (1982) [2] and a detailed description of the DDD model in the respective journal 

article by Weygand et. al. (2002) [3]. 

1.1 Dislocations 
 

Crystals are not perfect; they always contain imperfections which affect their properties. 

These imperfections can be of dimension 0 (point defects), 1 (line defects), 2 (planar 

defects), 3 (volume defects). In this work we focus on line defects called dislocations, a 

concept which was introduced to theoretically understand the experimentally observed 

values of yield stress in 1934 to the early 1950s  [4-8]. 

A dislocation is a lattice disruption along a line which separates a crystallographic plane into 

two perfect parts. One side of the boundary is shifted with respect to the other by a lattice 

vector, which corresponds to the Burgers vector of the dislocation. This creates a linear 

defect along the boundary separating the shifted and un-shifted parts: the dislocation line. 

Locally, the dislocation is completely characterized by the direction of the dislocation line 

and the Burgers vector. 

There are three types of dislocations, edge dislocations, screw dislocations and mixed 

dislocations. The type of the dislocation depends on the orientation of the dislocation line in 

respect to the Burgers vector: perpendicular for edge dislocations, parallel for screw 

dislocations, intermediate for mixed dislocations. 
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1.1.1 Edge Dislocation 

 

An edge dislocation is created by moving the yellow part of the crystal by one lattice 

constant to the right and inserting an additional lattice plane ABCD to fill the gap as shown 

in Figure 1. The dislocation line in this case lies in the DC direction [1]. 

 

Figure 1 
Left: cubic perfect lattice sample 

Right: Edge dislocation, DC dislocation line 

Cutting the lattice normally to the inserted plane as shown in Figure 2 we demonstrate 

the dislocation line as   , which represents a positive dislocation line. If the plane 

would be inserted from the opposite direction we would have a negative dislocation line 

which would be represented by T. Subsequently, the Burgers vector is defined by 

drawing a closed atom-to-atom path around an area which includes dislocations shown 

at the left part of Figure 2, called Burgers circuit. If the same path is drawn on a perfect 

lattice there is a mismatch at the end. The Burgers vector is the negative of the shift 

vector, its magnitude of is one lattice distance and it is perpendicular to the dislocation 

line for an edge dislocation. 
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Figure 2 
Left: Clockwise burgers circuit on a containing edge dislocation area 

Right: Clockwise burgers circuit on a perfect crystal area,    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗Burgers vector 
 

 

1.1.2 Screw dislocation 

 

A screw dislocation is created when the lattice is separated along the ABCD plane and the 

yellow part is shifted backwards by one lattice constant before re-connecting the crystal. 

This creates a step at the front and back surface as shown in Figure 3, as well as a screw  

dislocation line in the DC direction  

 

Figure 3 
Left: cubic perfect lattice sample under shear stress τ 

Right: Screw dislocation, DC dislocation line 

Drawing the Burgers circuit around the screw dislocation and transferring the same 

path to a perfect lattice we define the Burgers vector as the mismatch   ⃗⃗ ⃗⃗ ⃗⃗   which in this 
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case is parallel to the dislocation line (Figure 4) and again corresponds to the negative 

of the shift vector. 

. 

 

Figure 4 
Left: Clockwise burgers circuit on a containing screw dislocation area 

Right: Clockwise burgers circuit on a perfect crystal area,   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Burgers vector 

 

Apparently the Burgers’ vector direction depends on the direction of the Burgers circuit. In 

this case the circuit is taken as clockwise and the Burgers vector as the vector which corrects 

the mismatch from the finish to the start point (RH/FS convention). 

 

1.1.3 Mixed Dislocation 

 

Dislocations usually are mixed, which means that interpolate between edge and screw 

dislocations. When the Burgers vector and dislocation line form an arbitrary angle the 

dislocation is called mixed and is shown in Figure 5. 
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Figure 5 
Mixed dislocation, the dislocation AB is a screw dislocation on the left hand side and an edge on the 

right 

 

1.1.4 Movement of Dislocations 

 

Generally there are two types of dislocation movement. Glide when the dislocation moves 

on the glide plane defined by the dislocation line and the Burgers vector. Climb when the 

dislocation moves out of the glide plane. Climb requires long-range transport of matter. This 

can be seen immediately in the case of the edge dislocation in Figure 3 since, to move the 

dislocation vertically downward or upward, one would have to insert or remove atoms at 

the end of the ABCD plane. Therefore climb can only occur at high temperatures when there 

are point defects (vacancies and interstitials) in the crystal. In this work we focus on 

deformation at low and intermediate temperatures, and therefore only glide motions of 

dislocations on slip planes are studied. 

Dislocations require external stress to move, and they create an internal stress field. The 

stress field of an edge dislocation is shown in Figure 6, where the region over the glide plane 

is under compression as the distance between the atoms is less than in the equilibrium 

position and the region under the glide plane in tension because the atoms’ distance is 

larger than in the equilibrium position.  
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Figure 6 
A positive edge dislocation which creates a stress and strain field in a region around because of 

lattice distortion 

Stress fields lead to dislocation interactions. So, two edge dislocations either repulse or 

attract and even annihilate each other. More specifically, the imposed force on a 

dislocation  caused by an adjacent dislocation is called Peach-Koehler(PK) force [9] and 

calculated as: 

   (   ⃗ )     (1) 

Where σ is the stress tensor coming from the stress field of other dislocations,   ⃗⃗⃗   is the 

Burgers vector of the dislocation we examine and    the unit vector in its line direction. 

The stress field around a dislocation decays like        where G is the shear modulus 

of the material, b the Burgers vector modulus and r is the vertical distance from the 

dislocation. To estimate the magnitude of dislocation interactions the dislocation 

density is used which is defined as follows: 

  
                           

           
 (2) 

Finally, we need to address the main mechanism of dislocation generation, the Frank-

Read source. Assuming that a segment of a dislocation line with pinned ends and length 

equal to l is exposed to an external stress τ. The force applied perpendicular to the line 
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tends to curve the line. As the stress increases the radius of curvature decreases, 

reaches the minimum value of l/2 and then the dislocation becomes unstable and 

expands until the last stage when it becomes a loop. The process is illustrated in Figure 

7. 

 

Figure 7 

Graphical representation of the operation of a Frank-Read source, l is the length of the source, R the 
radius of curvature, the arrows indicate the direction of the PK force 

 

1.1.5 Dislocations and Microplasticity 

 

Dislocations are the primary carrier of plastic deformation of crystalline materials [10-12]. 

The origin of plasticity in crystalline materials is crystal slip. Conversely with the elastic 

deformation, which involves only the stretching of interatomic bonds, slip requires the 

breaking and re-forming of interatomic bonds and the motion of one plane of atoms relative 

to another (Figure 8).  
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Figure 8 
Visualisation of plastic deformation on a small region of crystallographic structure 

 

Slip occurs on certain crystal planes and in certain specific crystal directions. The 

combination of a slip plane and a slip direction is called a slip system. These tend to be the 

most densely packed planes and the directions in which the atoms are packed closest 

together. In face centered cubic (fcc) materials, the most densely packed planes are the 

diagonal planes of the unit cell shown in Figure 9. 

 

Figure 9 
Diagonal plane (111) on a unit cell of fcc material; the slip system (   )[  ̅ ]. 

 

The full family of slip systems in such crystals may be written (   )[  ̅ ] and there are 12 

such systems in an fcc crystal (four planes each with three directions). 

The plastic slip as referred previously is the outcome of a shearing process. Let’s assume a 

single crystal in the shape of a rod which is tested in tension. The axis of the rod is parallel to 

unit vector   . The crystal has an active slip plane, normal in direction of unit vector  ⃗ . It has 

a slip direction parallel to unit vector   , as shown in Figure 10. 
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Figure 10 

Illustration of the geometry of slip in crystalline materials;  ⃗⃗  the normal unit vector of the slip 

plane,    the unit vector parallel to rod axis,  ⃗  the unit vector on the slip direction, σ the tensile 

stress, τ the shear stress on the slip system.  
 

When the applied tensile stress is σ, the shear stress acting on the slip plane and in the slip 

direction is τ which may be found as follows: if the cross-sectional area of the rod is A, the 

force in the slip direction is          and it acts on an area         of the slip plane. Hence 

the resolved shear stress is: 

                     (      ⃗ )(       ) (3) 

The theoretical shear strength of a crystal, calculated assuming that the shear is 

homogeneous (the entire crystal shears simultaneously on one plane), is given by: 

     
 

  
 (4) 

Where G is the shear modulus. That     is many orders of magnitude greater than the 

observed values. This mismatch comes from the assumption that the shear stress is 

homogeneous which is wrong because plastic deformation in crystals occurs by the 

movement of dislocations. The glide of a dislocation involves only very local rearrangements 

of atoms close to it, and requires a stress much lower than    . 

 The plastic deformation because of the dislocation movement is expressed in terms of 

deformation tensors as follows: 
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     ∑     
  (5) 

Where     is the plastic strain tensor,   the shear strain on slip system α and  

   
 

 
(      ⃗     ⃗     ) with      ⃗   the slip direction and the slip plane normal of the 

slip system a respectively.  

Finally in order to explain plasticity in terms of dislocation theory we relate the shear strain 

  to dislocation motion by Orowan’s equation[7]: 

 ̇      (6) 

Where   is the Burgers modulus,   the dislocation density and   the dislocation velocity. 

If a piece of crystal with volume       contains a slip plane as shown in Figure 11 : 

 

Figure 11 
 Piece of crystal with       dimensions which contains a slip plane. 

  

Then the shear strain of one dislocation which glides through the whole crystal is: 

  
 

 
  (7) 

If the dislocation glides through a part of the crystal the shear strain is: 

   
  

 

 

 
 (8) 

And if N dislocations glide through a part of the crystal the shear strain is: 

   
  

 

 

 
 
  

 

  

 

 

 
 
       

 
  (9) 

Subsequently, if we consider that dislocation density is defined as: 
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  (10) 

Then, from equations 9 and 10 we take  

           (11) 

Finally, if we take the time derivative of equation 11 the strain rate derives: 

 ̇  
  

  
 
 (      )

  
   

 (  )

  
      (12) 

Equation 12 is the Orowan’s equation which correlates the type, the quantity and the 

velocity of dislocations with plastic deformation.  

 

1.2 Three-dimensional Discrete Dislocation Dynamics plasticity    model 
 

Traditional continuum theories of plasticity are insufficient to describe the stress and strain 

fields of materials containing dislocations on small scales. That’s why a computational model 

which treats the dislocations as a system of lines described by discrete segments should be 

envisaged. In our work we use a three-dimensional Discrete Dislocation Dynamics (DDD) 

plasticity model which was originally created by Daniel Weygand [3] and is presented 

subsequently. 

 

1.2.1 Discretization 

 

The model used superimposes a finite element method in order to evaluate the stresses 

due to surface tractions and boundary constraints with a nodal representation of 

dislocation lines to simulate the evolution and interactions of the dislocations in a face-

centered cubic metal. On the finite element side, cubic elements of 20 nodes (fem-

nodes) are used to implement the specimen. On the dislocation side, dislocation 
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segments are simulated as one-dimensional linear objects connected by nodal points (d-

nodes). Each d-node has 6 degrees of freedom which indicate its position and velocity. 

The dislocation lines lie on glide planes which are lattice planes of the FEM grid. They 

are placed in 4 directions according to Thompson’s tetrahedron and have Miller’s 

indices(   ) (  ̅ ̅) ( ̅ ̅ ) ( ̅  ̅), corresponding to the glide planes observed in a fcc 

lattice structure. The distance between these parallel planes is defined by the user. 

 

 

Figure 12 

Description of a dislocation loop on its glide plane;  ⃗⃗  is the normal vector of the glide plane,  ⃗⃗  is the 
Burgers vector,    the local orientation of the dislocation loop, {…,A-1,A,A+1,…} node labels,  ⃗⃗ ( ) is the 

position of each point on the loop, l the line length coordinate. 

 

Figure 12 shows a dislocation loop on a glide plane. A sequence of linear members 

produces the dislocation loop. The nodes are sequentially marked as {…,A-1,A,A+1,…} ,  ⃗  

indicates the Burgers vector,  ⃗  the normal vector of the glide plane and    the orientation 

of the loop in accordance with the right-hand convention. The dislocation line between 

the nodes is defined by drawing a linear connection. The position on the dislocation line 

is characterized by the curvilinear coordinate l, for example       (  )  

At the beginning straight dislocation segments of prescribed length are randomly 

located on the glide planes and their endpoints are pinned to create Frank-Read 

sources. These endpoints coincide with fem-nodes. Subsequently, under the external 
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and internal stress field the dislocations move and interact with each other, thus new 

nodes are created in order to simulate the referred processes. The local velocity of a 

general point on a dislocation is determined by linear interpolation between velocities 

of adjacent d-nodes: 

  ( )  
      

       
     

    

       
        (  ) 

Where           is the line length coordinate,           indicates the i-th 

component of the velocity and     the i-th component of the velocity of the A node. The 

velocity of a d-node is assumed to be a function of the resultant force on that node, 

which is obtained by integrating the Peach Koehler(PK) forces acting on the two 

adjacent segments. The PK forces, in turn, follow from the stresses which locally arise 

from the dislocation interactions and from the external boundary conditions. The 

former are obtained by summing up the stress fields created by all linear dislocation 

segments contained within the system, while the latter are obtained from the FEM 

solution of the elastic boundary value problem (see next section). The Peach Koehler 

force lies on the        ⃗  direction, and the resultant force on d-node A follows as: 

         ∫   ( )
 

   
  ( )         ∫   ( )

   

 
  ( )   (14) 

where   ( ) is the linear interpolation function of the fem representation which limits 

the domain of integration which contains the segments sharing node A,         is the in-

plane unit normal to vector to the segment with endpoints A-1 and A (Figure 12). 

 

 



 

25 

 

1.2.2 Boundary conditions 

 

The boundary conditions are not a trivial issue since the stress fields of the dislocation 

segments (needed for evaluating the dislocation interactions) are known only in an  

infinite body. To deal with boundary conditions in a finite body, one uses an approach 

originally introduced by Van der Giessen and Needleman [13] for problems in two 

dimensions. The DDD model implements the same method in three dimensions. One 

first evaluates the stress field that the actual dislocation configuration would create 

when contained within an infinite body. This field implies, at the location of the actual 

boundaries, surface tractions and displacements which are inconsistent with the 

imposed boundary conditions. In a second step, one therefore applies opposing 

tractions and displacements to the surface in order to restore the actual surface 

boundary conditions. One then solves the corresponding elastic problem for a 

hypothetical dislocation-free body. The superposition of the two fields produces the 

field of the dislocation system within the finite body with the actual surface boundary 

conditions.   

 

1.2.3 Movement of dislocations-Interactions 

 

At the beginning of a simulation the DDD model creates dislocation loops. Afterwards, 

while dislocations move different lines may intersect  and produce junctions (Figure 

13a) or evolve and even escape from the free sample’s boundaries. In this case a 

dislocation part out of the sample, called virtual dislocation closes the loop (Figure 13b). 



 

26 

 

 
Figure 13a 

Two dislocation lines interact and create a 
junction, ⃗⃗  and  ⃗⃗   are the normal vectors of 

their glide planes,        indicates the 

intersection line. 

 
Figure 13b 

A dislocation line comes out of the sample, 
       indicates the intersection line. 

 
Figure 13 

 

Figure 13a shows an interaction between two dislocations called junction. Dislocations 

lie on different glide planes. The nodes that create this junction are constrained to move 

only on the line direction defined by the intersection of the two glide planes. Figure 13b 

shows a dislocation crossing the surface including the virtual dislocation part which 

completes the loop out of the sample. These boundary nodes are constrained to move 

on the intersection between the glide plane and the sample’s boundary.  

 

1.2.4 Time-stepping and evolution 

 

Iteration timesteps    are used to identify the evolution of the dislocation lines in the 

sample. However, in order to reduce the computational time the DDD model uses a two 

level time-stepping. The basic idea is that the local evolution of the dislocation structure 
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is much faster than the change in surface boundary conditions in the FEM calculation, 

which depend on the externally imposed tractions/displacements as well as on the 

cumulative stress/displacement fields induced by all dislocations at the surface.  Thus, a 

sub-timestep    for local changes in the dislocation arrangement is defined as the time 

needed for a dislocation line to propagate until the change in length of a segment 

exceeds a prescribed value. Subsequently, the whole process is demonstrated. 

   timestep 

 The boundary conditions(e.g. strain) are imposed to the sample 

 The correction of the stress field at the boundary as explained in 1.2.2 is 

applied. 

 The stress filed in the volume is calculated  by superimposing the solution of 

the FEM boundary problem with the internal stress field that is obtained by 

summing the stresses of all dislocation segments.  

   sub-timestep 

o      is defined as the duration of the dislocation evolution 

until the stopping condition as referred previously. The 

Peach-Koehler force and subsequently the velocity of each 

dislocation are calculated in this step 

o Determine the minimum      

o Update the dislocation microstructure using explicit Euler 

integration 

   (    )     ( )   ⃗  ( )      (15) 

Where       (   ) for all A 
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o Re-calculate the interactions and start again the same 

process. 

 When the sum of the δt reaches Δt the code incorporates the changes of the 

microstructure to the simulated sample and starts from the very beginning, 

re-calculating the boundary conditions and evaluating an updated solution to 

the FEM problem.  

Using different timesteps for the dislocation evolution and the FEM codes code 

minimizes the computational time without compromising the accuracy. Despite 

all efforts to increase computational efficiency, DDD simulations are 

computationally very expensive when compared to standard FEM plasticity 

calculations. It is therefore important to find new ways to incorporate the  

peculiar features of small-scale plasticity into more conventional plasticity 

models. DDD simulations can, however, play an important role in developing 

such models. In the following we introduce a stochastic model for simulating the 

stress-strain curves of small samples deforming by dislocation motion. We  use 

DDD results to parameterize and improve this model, which aims at replacing 

the complex and intricate dynamics of the dislocations with a much simpler 

stochastic process. 
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2. Stochastic model 
 

2.1 Introduction 

 
 
The miniaturization of systems and devices creates the need to address the material 

properties on smaller scales. More specifically, plastic deformation in microscale differs 

from the macroscopic plasticity. In Figure14 a series of deformation curves of Mo 

micropillars together with a macroscopic deformation curve of the same material under 

comparable deformation conditions is shown [14-16]. It is seen that the micropillar 

curves differ from the macroscopic curve in two respects: (i) the small samples are 

much stronger, (ii) the stress strain curves of the small samples exhibit a huge scatter.  

A lot of work has been dealing with the size dependent flow stress of small samples by 

developing constitutive equations for plasticity which include length scales, something 

which is absent from the classical plasticity models [17, 18]. These continuum theories 

make deterministic predictions and thus cannot address the issue of fluctuations. In the 

following we attempt to address the problem of statistical variation by modelling 

deformation as a stochastic process. 
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Figure14 
 Top: stress-strain curves of [100] oriented Mo micropillars  

Bottom: stress-strain curve of macroscopic [100] oriented Mo single crystal [14]. 

 
 

 The scatter of microplasticty comes from the dynamics of discrete objects, namely 

dislocation interactions. Therefore dislocation dynamics simulations naturally account 

for fluctuations. However, the DDD simulations are confined to small systems/small 

strains and have difficulties in handling complex boundary conditions [3]. Hence, we 

need to generalize continuum models to include local variability. This is implemented 

by an appropriate stochastic description of deformation process; more specifically in 

this chapter we illustrate the process of constructing a stochastic model which produces 

stress-strain curves. The referred process requires a statistical characterization of 

simulation results or experimental data. Using results from DDD simulations and not 

experimental data for the statistical characterization of deformation curves we take 

advantage of the direct access to stress and strain results. Therefore, we demonstrate a 

statistical analysis of DDD tension simulations in order to define a stochastic model 
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which predicts stress strain curves of micropillars in tension. We create these stress-

strains curves as a sequence of maxima and minima studied according to the following 

statistical analysis. 

 

2.2 Discrete Dislocation Dynamics Tensile Simulations 

 
 
We simulate a strain-controlled tensile experiment on a cubic sample with dimensions 

0.50 x 0.50 x 0.50    . The sample is a face centered cubic (fcc) single crystals, and the 

edges of the sample are oriented along the cubic axes. We impose a constant 

displacement rate to the upper surface, corresponding to an imposed strain rate 

(displacement velocity divided by specimen height) of 5000   . The bottom surface of 

the specimen remains fixed, and the side surfaces are free (Figure 15). The initial 

dislocation microstructure consists of 48 randomly distributed Frank-Read sources. 

There are 4 sources on each slip system of 0.22 μm length each. The material that we 

use at the simulations has Young’s modulus, E = 72.7 GPa and it is called by our team 

“computonium” because it is close to the Aluminium with Young’s modulus, E= 69 GPa 

but also is an imaginary material addressed for computational reasons. 
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Figure 15 
Cubic sample under tension loading 

 

 The simulations produce, as function of time, the following outputs: 

1. Imposed strain, ε 

The strain is the imposed displacement of the upper surface, divided by the 

specimen height.  

2. Stress , σ(Pa) 

The stress in tensile direction is evaluated as the sum of the average stressses of the 

finite elements in tensile direction and the average stresses of the dislocations in 

tensile direction. 

3. Plastic strain, εpl 

The imposed strain is the sum of the elastic and plastic strain. 

So, the plastic strain (   ) is defined as the imposed strain (ε) minus the elastic (   ) 

strain, where the elastic strain is the stress(σ) divided by the Young’s modulus(E). 
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4. Plastic strain rate,    ̇  

Is calculated from the plastic strain     with finite differencing 

The simulations took place at the cluster of the Institute for Reliability of Components 

and Systems (IZBS) in the Karlsruhe Institute of Technology (KIT) which has 30 nodes 

and each node has 8 processors. Each simulation was running on a different node and 

its duration was about one day. We end up with results from 22 different simulations of 

the same specimen but with different initial dislocation position (Figure 16). 

 

Figure 16 
 stress-strain curves of 22 DDD simulations 

 

In Figure 16 the stress strain curves of the DDD simulations are illustrated.  We observe 

a significant scatter comparable to the experimental observations shown in Figure 13. In 

addition, the curves are characterized by an irregular sequence of stress drops 

separated by near-elastic stress rises. In the following we investigate the origin of these 

stress drops in more detail.  
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2.3  Statistical analysis of microdeformation simulations 

 
 

2.3.1 Data processing 

 
 
Tensile straining deformation curves of micropillars can be characterized by strongly 

intermittent behaviour. Deformation proceeds as a discrete sequence of ‘deformation 

events’ during which the plastic deformation rate increases significantly (Figure 17). 

These events are called avalanches [19]. During an avalanche the plastic strain rapidly 

increases (Figure 17b) and the stress decreases (Figure 17a).  

 
 

Figure 17a 
Black: Plastic strain rate versus time  

Blue: Stress versus time 

 

Figure 17b 
Black: Plastic strain rate versus time  

Blue: Strain versus time 
 

Figure 17 

 

Figure 17a, Figure 17b, demonstrate the correlation between stress and plastic strain 

rate and the correlation between plastic strain and plastic strain rate, respectively. 

Clearly we are dealing with two different processes – the avalanches and the intervals in 

between. The first step toward the statistical characterization of stress-strain curves 

consists therefore of separating our time records into active and inactive parts. The 
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active parts are the time intervals which include the avalanches. The inactive parts are 

the intervals between the avalanches.  

Firstly, we smooth all the time record by an averaging process of adjacent points. In 

Figure 18 is illustrated the simulations’ imposed strain rate (blue line) and the 

smoothing by the referred process (green line). This serves to eliminate the rapid 

oscillations visible in Figure 18 which stem from the discrete timestepping of the DDD 

code and are thus numerical artefacts. We note that an analogous procedure is needed 

in analysing experimental data where comparable oscillations arise from the 

mechanical action and electronic control of the microdeformation rig [15]. 

 

 

 

Figure 18 
Blue: simulations’ imposed strain rate versus time 

Green: smoothing of the simulations’ strain rate by averaging adjacent points  
 

 
Then we extrapolate the elastic part which is approximately chosen from DDD 

simulations and impose a threshold value on the plastic strain rate. By choosing this 

threshold to equal the imposed strain rate, we separate the stress strain curve into 

decreasing (active) and increasing (inactive) parts. Therefore, the avalanche is defined 
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in our case as a time interval over which the strain rate exceeds the imposed value. (The 

actual threshold value used was 5100    , i.e. it is slightly over the external strain rate, 

for calculating reasons which will be explained later). 

We define the active part as the time interval between the first point in the avalanche 

and the first point after the avalanche, namely AB, CD, EF (Figure 19). Accordingly, the 

inactive part is defined as the time interval between the first point after the avalanche 

and the first point in the following avalanche, namely BC, DE (Figure 19). Henceforth, 

the first point in the avalanche is termed “before point” and the first point after the 

avalanche “after point”. 

 

 

Figure 19 
Blue: strain rate versus time; Cyan: The imposed threshold 5100(1/s) 

Green: before point; Red: after point 
 

 
In our results each point corresponds to a time value and each time corresponds, apart 

from a strain rate value, to a stress and a plastic strain value as well. Subsequently, we 

define the stress difference of the active part as the difference of the after point of an 

avalanche minus the stress of the before point of an avalanche. Furthermore, we 

calculate the stress difference of the active part in terms of strain. 



 

37 

 

         (16) 
 
Where Ε is the Young’s modulus and s, e the stress and strain respectively as derived 

from DDD results(p. 20). Taking the time derivative of the equation (2) gives the stress 

rate, 

 
 ̇      ̇  (17) 
 
Hence, 
 

         ⇒  ̇    ̇    ̇ ⇒   ̇   ̇    ̇  (18) 

 
Substituting equation (11) into equation (10) gives: 
 
 ̇   ( ̇    ̇ ) (19) 

 
Integrating the equation 19 the stress difference is: 
 

∫  ̇   
  

  
∫  ( ̇    ̇ )  
  

  
  ⇒ ∫  ̇   

  

  
∫   ̇   ∫    ̇   

  

  

  

  
  

 
Where     after point,      before point,   ̇  constant external strain rate, thus 
 

∫  ̇     ̇
  

  
∫    ∫    ̇   ⇒ 

  

  

  

  
  

 
 (  )   (  )    ̇(     )   [   (  )     (  )]  

 
So, the stress difference of active part in terms of strain is given by 
 
    [ ̇(     )      ]  (20) 

 
From equation 20 we define the excess strain in an avalanche as, 

                . 

For the inactive part we calculate the stress difference,         . The stress difference is 

evaluated as the stress of the before point of an avalanche minus the stress of after point 

of the previous avalanche point and similarly. The resulting series of stress and strain 

jumps can be statistically characterized in terms of probability distributions of stress 
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decreases and stress, strain increases at the active and inactive parts respectively. In 

order to define these probability distributions we use rank ordering statistics [20]. 

 

2.3.2 Rank ordering 

 

Let’s assume n random variables X1, X2, ... , Xn where their index corresponds to the 

recorded order. Now, let’s sort them descendingly X(1), X(2), ..., X(n) where the index in 

brackets is referring to their rank after sorting. The probability of the number of 

variables larger than X(i),  P(X> X(i)) is given by the ranks of the observations divided by 

the summary of the observations plus one. For instance, suppose four numbers between 

1 and 10 X1=6, X2=9, X3=3, X4=8. Sort our sample from higher to lower value X(1)=9, 

X(2)=8, X(3)=6, X(4)=3. Then the probability of finding a number in our space larger than 

another one is P(X>X(i)) = i/(N+1) where N is the total number of observations. Thus, in 

our case P(X>9) =1/5, P(X>8) =2/5, P(X>6) =3/5, P(X>3) =4/5.  

 

2.3.3 Probability distributions  

 
 
The random variables in our case are the stress and strain differences of the active and 

inactive parts      ,        . We collect the results from each simulation and we merge 

them. Afterwards, we evaluate by rank ordering the probability distribution of: 

 the strain difference of an avalanche p(     )  

 the stress difference of the inactive part p(        ) 
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2.3.3.1 Active part 

 
 
The probability distribution of       is illustrated in Figure 16, more specifically in 

linear axis in Figure 20a and in double log axis in Figure 20b. 

 
Figure 20a 

Probability distribution of active strain difference  
in linear axis 

 
 

 
Figure 20b 

Probability distribution of active strain difference in  
double log axis 

 
 

Figure 20 
 

In Figure 20a strain difference larger than      is shown to be not so likely to occur 

because the probability of a strain difference larger than      is less than 0.1. More 

importantly, Figure 20a is very sharp for strain differences less than         .  

Therefore, we plot in double log-log scale in the Figure 20b. This allows observation of 

small strain differences (      <  
  ) with probability near to 1 most likely to occur. It 

is well established that plastic strain increments       produced by slip avalanches 

follow a power law distribution p(     )       
   [21] . The p(     ) in our case 

appears to be well described by a truncated power law , 

 (     )  (
     
        

)

  

     (  
     

        
)

  

   (  ) 
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Figure 21 
Black: probability distribution of strain difference during active part - simulation data 

Red: probability distribution of strain difference during active part -fitting function 
 

Figure 21 demonstrates p(     )  which comes from the statistical analysis of the 

simulation data (black curve) and its fitting function (red curve). The fitting function is: 

 (     )  {
                                                                                                

  

(
     

         
)
     

     ( 
     

          

   
)                          

  
   (22) 

Where                     and                       for the second part of the 

fitting function, while for the first part of the fitting function is equal to unit as 

illustrated in the Figure 21. 
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2.3.3.2 Inactive part 

 

In Figure 22 is shown the probability distribution of the stress difference at the inactive 

parts p(        ) in a log-log plot. The black curves presents the data and the red curve 

the fitting function as previously in Figure 21 

 
 

Figure 22 
Black: probability distribution of stress difference during inactive part - simulation data 

Red: probability distribution of stress difference during inactive part - fitting function 
  
 

We note that there is a remarkable degree of similarity in p(     )  Figure 21 and 

p(        ) Figure 22. The fitting function follows the same distribution equation 21. In 

this case the fitting function is: 

 (       )  {
                                                                                     

      

(
       

        
)
     

     ( 
       

     

   
)                 

 
 (23) 
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Finishing the statistical analysis we need to clarify one last thing. At the beginning of 

this chapter was mentioned that the imposed threshold on the strain rate was chosen 

equal to 5100    for calculating reasons. After the statistical analysis it is feasible to 

identify these reasons. The initial smoothing may cause a small relocation of the data 

points. Subsequently, this relocation affects the strain and stress differences of the 

active and inactive intervals. Thus, we choose a threshold of 5100    to make sure that 

all the active intervals identified correspond to strain bursts, namely increases of strain. 

On the other hand, the inactive part is slightly affected. During the inactive part the 

stress increases, so the stress difference         should be positive. However, because of 

smoothing a small fraction ( 0.4%) of the “inactive” parts still corresponds to a stress 

drop (negative values). This  percentage is too small to affect our analysis and we 

simplydiscard them from the distribution. To sum up, in order to choose the right 

threshold value we considered that the active part was not affected from the smoothing, 

while the influence on the inactive part was insignificant. 

 

2.4 Stochastic Modelling of Microplasticity 

 

As it is mentioned in the introduction the aim of this stochastic microplasticity model is 

to map the complex dynamics of interacting dislocations onto stochastic processes 

involving the continuum variables of stress and strain. Using statistical information 

extracted from DDD, our stochastic model is constructed to reproduce the essential 

statistical features of the deformation processes in small volumes of a material. 

Consequently, we demonstrate the stochastic simulation of a strain-controlled tension 

experiment on  a cubic sample 0.50 x 0.50 x 0.50       The sample is restrained at the 
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bottom surface and loaded at the top by imposing a constant displacement rate, 

corresponding to a strain rate of 5000   (Figure 15). The simulation is terminated once 

the total  strain exceeds 0.007. The stochastic simulations envisage the stress strain 

curve as a sequence of uncorrelated deformation steps which correspond to the 

alternating “active” and “inactive” parts in the DDD simulation.  The statistics of these is 

taken from  the statistical analysis of the DDD curves. In a strain controlled tension 

stochastic simulation the stress strain curve consists of an initial elastic part with up to 

a stress         Pa and a stain ε = 0.001. The yield point is approximately chosen 

from the DDD simulations. Afterwards, the plastic part consists of a segment of stress 

decrease distributed according to equation 22 (after multiplication with E) and then 

another segment of stress increase distributed according to equation 16 and at the same 

time a strain increase. This strain increase comes from the stress distributed according 

to equation 16 divided by E. The first segment corresponds to the active part as 

demonstrated at the above statistical analysis, while the second one corresponds to the 

inactive part. To generate the stress increase/decrease, we choose a random number 

uniformly distributed on the closed interval [0,1] and determine the corresponding 

stress difference of the active or inactive part by inverting Equation 22 or 23,  

depending on the case.  

The sequence of active and inactive segments is continued until the stopping condition 

of our stochastic simulation completes the plastic part of the stress strain curve. More 

specifically this stochastic model is structured as follows: 

1. Elastic part 

2. Plastic part 

Execution of the following iterative process 

 Active part 
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a. Decrease the stress by a random amount         drown from the 

distribution of equation 7 

b. Keep the same strain 

 Inactive part 

a. Increase the stress by a factor of         drown from the distribution 

equation 8 

b. Increase the strain by a factor of        /E. 

 Repeat until the total strain exceeds the value of 0.007  

 

A stochastic simulation is shown in Figure 23. 

 

Figure 23  
Stress-Strain curve calculated from stochastic model 

 

In order to define the above stochastic model we made some simplifications. Firstly, 

during the active part we assume that the strain remains constant. This is explained as 

follows: This stochastic model attempts to simulate a strain controlled tensile test, so 
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the strain rate is constant and the strain is a straight line with constant slope 5000(1/s) 

equal. 

 
Figure 24 

Blue: total strain versus time during a DDD simulation 
Green: elastic strain versus time during a DDD simulation 

Red: plastic strain versus time during a DDD simulation 
Yellow interval: Active time interval 
Grey interval: Inactive time interval 

 

Figure 24 indicates the strain versus time, total strain is the blue line, elastic strain the 

green line and plastic strain the red one. At the same figure two sequent time intervals 

Δtactive (the yellow) and Δtinactive (the grey) are shown. Since, 

 ̇  
         

        
 
          

          
         (24) 

and                       then                      

This becomes evident if we consider the average mean of strain difference during active 

and inactive parts, where                
   and                  

  . According to 
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these observations the strain difference during the active part is significantly smaller 

than during the inactive part and is in the following assumed zero.  

Secondly, during the inactive part we assume that the strain increase comes only from 

the elastic strain and we discard the plastic strain. Looking in more detail the strain 

during a DDD simulation (Figure 24) we observe that the elastic (green line) and the 

plastic strain (red line) complement each other, which is rational concerning that 

            and ε varies proportionally to time. Observing closer (Figure 25) during 

the inactive part the plastic strain difference is much smaller than the elastic strain 

difference.  

 
 

Figure 25 
Green line: elastic strain versus time during the time interval (5.5-6.5)10-7sec 
Red line: plastic strain versus time during the time interval (5.5-6.5)10-7sec 
Green double arrow: The elastic strain difference during the inactive part 

Red double arrow: The plastic strain difference during the inactive part 
Yellow interval: Active time interval 
Grey interval: Inactive time interval 

 
 

 



 

47 

 

We can easily generalize this observation for all DDD simulations if we compare the 

average mean of plastic strain difference during the active and inactive part, where 

                         
   and                          

  . Therefore, the strain 

increase during the inactive part derives mainly from the elastic strain difference. 

Subsequently, stochastic results are collected in order to implement a statistical analysis 

to examine the effectiveness of the stochastic model in reproducing the respective DDD 

results. 
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3. Discussion of the stochastic model’s results  
 

3.1 Introduction 

 

In order to examine the effectiveness of the stochastic model that we presented in the 

previous chapter we compare the DDD simulations with stochastic simulations. More 

specifically, we have calculated the mean and the standard deviation of stress as a 

function of total strain for both DDD and stochastic simulations. Each statistical 

aggregate will be presented in the same graph for DDD and stochastic simulations. The 

results of the DDD simulations are presented in Figure 26. 

 

Figure 26 
 Stress strain curves of the 22 DDD simulations 

 
Running the stochastic model does not require computational resources. Therefore, we 

can easily have many stochastic simulations for better statistical analysis.  By that way 

we eliminate the difference between DDD and stochastic simulations due to poor 
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statistics on the side of the stochastic simulations. Therefore, we run our model 1000 

times and the results are illustrated in Figure 27. 

 

Figure 27 
 Stress strain curves of 1000 stochastic simulations 

 

 

3.2 Statistical analysis of the Discrete Dislocation Dynamics simulations 

 

Starting the statistical analysis from the DDD simulations we observe that there is 

scatter already in the initial parts of stress strain curves. The reason of this scatter is 

that there hasn’t been a proper initial relaxation before starting the simulation. As has 

already mentioned the dislocation lines are randomly distributed in the sample at the 

beginning of the simulation, which means that they may start interact each other and 

move even without any external loading. Thus, in the initial configuration the 

dislocations produce a small plastic strain which may be either positive or negative. If 

this 'instant strain' is positive, it creates a negative stress, otherwise if it is negative it 

creates a rapid stress rise to a positive value. (The inverse proportional relation of 



 

50 

 

plastic strain and stress is easily explained by the inverse proportional relation of 

plastic and elastic strain during a DDD simulation which was explained in chapter 2 

(Figure 24). The referred relaxation which obviously hasn’t taken place before the 

simulation can be remedied in  a simple manner which is shown in Figure 28 and Figure 

29.  

 

Figure 28 

 Remedy of missed initial relaxation before starting the DDD simulation - Stress increase 

Blue: initial stress strain curve 

Red: extrapolation of the nearly linear elastic part of the curve and find the intersection strain point 

Green: Resent the corrected stress strain curve back to zero   

 

Figure 28 shows the case where the stress-strain curve starts with a rapid stress rise. 

The initial stress strain curve is illustrated by a blue line. Subsequently we take the 

nearly-linear elastic part of the stress strain curve in each simulation, extrapolate it and 

determine the intersection with the strain axis (red line). Finally we substitute the 

initial stress increase of the stress strain curve by that extrapolation and subtract the 
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strain of the intersection from all strain values, thus resent the initial strain to zero. 

Figure 29 shows the case of an initial stress drop. The process of remedy is the same but 

in this case we do not need to extrapolate the elastic part to find the intersection. The 

requested point is the cross point of the initial stress strain curve with the strain axis 

(red point). Thus, we extract the points before the cross point and move the curve back 

to zero (green line). 

 

 

Figure 29 

 Remedy of missed initial relaxation before starting the DDD simulation - Stress decrease 

Blue: initial stress strain curve 

Red: the cross point of the initial configuration and strain axis 

Green: Resent the corrected stress strain curve back to zero   

Correcting all the stress strain curves we end up with the results of Figure 30. 
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Figure 30 
 DDD simulations after proper initial relaxation 

 

Proceeding to the statistical analysis, in order to determine the mean and the standard 

deviation we use the following formulas. 

The mean of stress is defined as: 

    
 

 
 ∑   
 
   (  )    (25) 

And the standard deviation as: 

    {
√
∑   

  
   (  )

 
 〈  〉 } (26) 

Where N=22 and             by strain-step 10-5 . The mean of stress and the scatter 

are shown in Figure 31. 
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Figure 31 

Black: average mean of stress on a standard strain of DDD simulations 

Blue: scatter of stress by error bars  

 

 

 

3.3 Statistical analysis of the stochastic simulations 

 

To implement the statistics of the stochastic simulations we first organise our results in 

order to have the right value on each needed point, something that is not obvious 

because we have to deal with discrete values which produce a stress-strain curve and 

not with a function. In DDD simulations it was easier to edit the results because we have 

dense results (the strain-step is 10-6 ). On the other hand, in stochastic simulations we 

have to deal with sparse points. 

For that reason we interpolate the results by strain-step 10-6 (Figure 32). 
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Figure 32 

Blue: zoom in a stress strain curve of a stochastic simulation 

Red: Interpolation 

The mean and the standard deviation of stress are defined as it is shown in Equation 10 

& Equation 11 respectively, but in this case : 

                           
                 

             

            

and N=1000 

The first two points define the elastic part in our stochastic model which does not 

contain any stochastic process, so it is needless to  include it into  our statistical 

analysis. On the other hand, the strain-step of the check points during plastic part is 10-5 

, the same as for DDD simulations. The results are shown in Figure 33, the black line 

illustrates the mean of stress and the blue bars the scatter. 



 

55 

 

 

Figure 33 

Black: average mean of stress on a standard strain of stochastic simulations 

Blue : scatter of stress by error bars  

During the plastic part we observe a linear hardening. The hardening rate is constant and 

equal to: 

  
〈  〉

  
 (27) 

Where Δσ, Δε is the stress and strain difference occurred during the plastic part as shown in 

Figure 34. 

〈  〉  〈∑ (                   )
 
   〉    〈                   〉 (28) 

Where            correspond to the upward movement of the stress,          to the 

downward and N is the number of iterations till the last segment does not exceed the 0.007 

strain for all the simulations as explained at the stochastic model in chapter 2.So, 
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〈          〉  
 (29) 

Recalling that the active part of our stochastic model occurs instantaneously and the 

inactive without plastic deformation we can find the number of iterations from the 

deviation of     over the mean of the            〈          〉  .Finally from (27), (28), 

(29) occur the hardening rate. 

  
  (〈          〉 〈        〉)

  〈          〉  
   (  

〈        〉

〈          〉
) =   (  

         

          
)      GPa      (30) 

 

 

Figure 34  
Hardening rate of the plastic part of the mean stress versus strain 
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3.4 Compare the statistics of DDD and stochastic simulations 
 

To end up we observe the results of the statistical analysis from the DDD simulations 

and stochastic simulations on the same graphs Figure 35. 

 

 

Figure 35 
(a): average stress of DDD simulations (blue line) and stochastic simulations (green line) 

(b): stress standard deviation of DDD simulations (blue line) and stochastic simulations(green line) 
 

 

Figure 35 shows the mean of stress and the standard deviation of stress on a standard 

strain for both DDD and stochastic simulations. More specifically in the Figure 35(a) is 

demonstrated the mean of stress while in Figure 35(b) the standard deviation of stress. 

The blue line illustrates the results from the statistical analysis of the DDD simulations 

while the green one the results from the statistical analysis of the stochastic 

simulations.   
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Firstly, we observe that the statistical analysis of the stochastic simulations produces 

almost smooth mean and mean scatter. This is an outcome of the large number of 

simulations (1000) which used for the statistical analysis. On the other hand both mean 

and scatter of the DDD simulations fluctuate because we had only 22 results to 

elaborate. 

Focusing on the stress mean (Figure 35(a)) the elastic part coincides which is a 

consequence of the definition of the model’s elastic part. More specifically the elastic 

part is produced by the calculation of the yield point from the DDD simulations directly, 

namely there is no stochastic factor in this part, so it shouldn’t be criterion of the 

effectiveness of our model. On the other hand, during the plastic part we observe a small 

stress decrease right after the yield point (Figure 36). This stress drop comes from the 

fact that the plastic part starts with an active part, namely a stress drop. Subsequently, 

we observe that the model produces a linear hardening during the plastic part which 

does not seem that representative at the initial plastic part but overall give a better 

approximation of the DDD simulations. 

According to the stress scatter (Figure 35(b)) during the elastic part, namely until the 

strain value of 0.001 the DDD’s scatter is negligible while the model’s scatter is zero, 

both cases are mutually consistent. In first case because during  the elastic part there is 

not much dislocation motion, so the fluctuations are really small and in the second case 

the elastic part is a straight line, so there is no scatter. During the plastic part, the DDD 

stress scatter remains low but the models stress scatter increases rapidly at the 

beginning and rises until the end of the simulations fact which derives from the random 

nature of the model. From the comparison it is clear that the stochastic model greatly 

over-estimates the scatter of the stress values. 
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Figure 36 

Average stress of DDD simulations (blue line) and stochastic simulations (green line) and zoom to 
the region after the yield point 

 

 

Thus, the stochastic model does not represent the DDD simulations adequately and 

needs improvements in order to avoid the rapid increase of stress scatter during the 

plastic part and eliminate the phenomena of stress drops under the yield point (Figure 

27).  
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4. Correlated stochastic model 
 

 

4.1 Introduction 

 

To improve the stochastic model we check the assumption that the stress changes 

during “active” and “inactive” parts are uncorrelated random variables. For that reason 

we check the stress difference during each interval at the same graph. In Figure 37 is 

shown the stress difference of the active and the inactive part versus an index which 

indicates the recorded order. 

 

Figure 37 

Black line:Stress difference versus Index during the active part 

Red line:Stress differrence versus Index during the inactive part 

 

Recalling the process of saving the results of the statistical characterization, the stress 

difference of both active and inactive parts is the merge of the stress differences recorded 

in all simulations. So, in Figure 37 the first 134 values correspond to the first simulation, the 
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next 354 to the second simulation and so on. In each simulation the active and inactive parts 

are saved with the same order that they occurred, thus the first active part is followed by 

the first inactive part and so on. The stress difference of the active part corresponds to an 

avalanche, a stress drop as explained previously, while the stress difference of the inactive 

part exactly the opposite. Focusing on one simulation, let’s assume the first one (Figure 38) 

we observe that the initial stress drops are almost zero while the stress increases are not 

negligible. This fact derives from  the different behaviour of the sample during the elastic 

and the plastic part. 

 

Figure 38 

Black line:Stress difference versus Index during the active part- zoom in the first simulation 

Red line:Stress differrence versus Index during the inactive part- zoom in the first simulation 

 

During the elastic part there is not a significant dislocation activity which means that the 

stress increasses almost strictly and the small dislocation interactions correspond to 
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unimportant stress drops. Conversely, during the plastic part the stress drops and increases 

match.  

The referred observations lead to the definition of an advanced stochastic model, where a 

correlation factor is established between the active and the inactive part of the plastic part 

while the elastic part remains a straight line up to the yield point which is approximately 

chosen from the DDD simulations. 

 

4.2 Definition of the correlated stochastic model - Correlation factor 
 

The statistical characterization of the deformation process remains the same as in  the 

uncorrelated stochastic model but we establish a correlation between subsequent active 

and inactive parts. To this end, we still choose active and inactive stress changes from 

the respective distributions by choosing two uniformly distributed random numbers 

between 0 and 1 and then determining the corresponding stress values from the 

cumulative distributions. However, now these two random numbers are correlated.  

The correlation factor q controls the degree of correlation between the active and the 

inactive part. The correlation factor lies in the closed interval [0,1]. When q=1 the two 

random numbers are identical while  while when q=0 the random variables are 

completely independent. To construct correlated uniformly distributed random 

numbers, we use the following method: We generate two independent random 

variables  R1 and  R2 drawn from the standard normal distribution. Using the fact that 

the sum of two independent Gaussian random variables is also a Gaussian random 

variable we create a pair of Gaussian random variables as follows. Let’s assume a 

constant value given by: 
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where q is the correlation factor. Then we use the reffered property and generate the 

pair of Gaussian random variables: 

            √         (32) 

These two random variables are correlated with correlation factor q. When a random 

variable is Gaussian distributed we can convert it to a uniformly distributed variable 

using the probability integral transform [22]. Thus L~N(0,1) and Y=Φ(L) is uniformly 

disrtibuted, where: 
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Subsequently, the above process is implemented into our stochastic model. Y1, Y2  are 

uniformly distributed probabilities which correspond  to a strain difference according 

to the probability distribution of the strain difference (equation 22, Figure 21) and to a 

stress difference according to the probability distribution of the stress difference 

(equation 23, Figure 22) respectively.  

In order to check our method we calculate the correlation coefficient for the two 

extreme cases, for q=1 where    should be equal to    and for q=0 where       should 

be completely uncorrelated. The correlation coefficient of two random variables      is 

defined as: 

         
     

      
  (34) 

Where       is the covariance of X and Y and         the standard deviations of    and 

   respectively.Then, 
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      are Gaussian distributed variables with mean μ=0 and standard deviation s=1. So, 
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 If q=1 then from equation 31 a=1, from equation 32        

And from equation 34 
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So,             and       are completely correlated 

 If q=0 then from equation 31    
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  But   ,    are also Gaussian variables so as in equation 37  [  
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So,           
 

 
 
 

 
 = 0    and       are completely uncorrelated. 

Each intermediate value of the correlation factor leads to a result between the two 

referred situations. 

 

4.3 Correlated Stochastic Model  

 

The definition of the correlated stochastic model is exactly the same as that of the 

simple stochastic model with the only difference that now subsequent active and 

inactive parts (but not vice versa!) are correlated through the correlation factor that 
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was described previously. Simulating a strain controlled tension experiment of an [010] 

oriented  cubic sample 0.50 x 0.50 x 0.50      loaded by strain rate of 5000    on the y 

direction (Figure 15), we run the following correlated stochastic model. The elastic part 

is a straight line with slope E = 72.74 GPa up to the yield point, stress         Pa and  

strain ε = 0.001,  which is determined from the DDD simulations. The plastic part is the 

summation of segments of stress decease during the active part and stress and strain 

increase during the inactive part as at the simple stochastic model. But, in this case the 

correlation factor indicates the correlation level between two sequent (active-inactive) 

intervals. In more details: 

3. Elastic part 

4. Plastic part 

Execution of the following iterative process 

 Choose the correlation factor 

Generate 2 correlated random variables Y1,Y2 according to equation 3. 

 Active part 

a. Decrease the stress by          drown from the probability 

distribution of equation 1, where        
  (  ) 

b. Keep the same strain 

 Inactive part 

a. Increase the stress by a factor of         drown from the probability 

distribution of equation 2,          
  (  ) 

b. Increase the strain by a factor of        /E. 

 Repeat until the total strain exceeds the value of 0.007. 
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Stochastic simulations with correlation factors equal to 1 and 0.4 are presented to 

Figure 39 and Figure 40 respectively. 

 

Figure 39 

Stress strain curve calculated from the correlated stochastic model  

for correlation function equal to 1. 

 

 

Figure 40 
Stress strain curve calculated from the correlated stochastic model  

for correlation function equal to 0.4. 
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Comparing the figures above we observe that correlated stochastic simulation which 

derives from the model with correlation factor equal to 1 exhibits an interesting shape. 

The stress decrease during the active part and the stress increase during the inactive 

part are of the same order of magnitude. This fact is rational if we consider that the two 

sequence intervals (active-inactive) are strongly correlated and their probability 

distributions display a remarkable similarity.  On the other hand, the correlated 

stochastic simulation which derives from the model with correlation factor equal to 0.4 

seem more like the stress strain curve from the simple stochastic model. Concluding, in 

order to investigate the degree of approximation of the correlated stochastic model we 

make a statistical analysis and compare the results of that model using different 

correlation factors with those of the DDD simulations and those of the simple stochastic 

simulations. 
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5. Discussion of the correlated stochastic model’s results  
 

5.1 Correlated stochastic simulations 

 

In order to investigate the impact of the correlation factor on the results of the  

stochastic model we illustrate on the same graph the mean and the standard deviation 

of stress as a function of strain for DDD simulations and correlated stochastic 

simulations for different correlation factors. As mentioned in the third chapter running 

an uncorrelated stochastic simulation does not require much computational resources. 

However, running a correlated stochastic simulation lasts more than running an 

uncorrelated one since generating the correlated random numbers takes more time. 

Even if a correlated stochastic simulation needs more time, the time needed for running 

1000 correlated simulations remains negligible comparing even with just one DDD 

simulation. Thus, correlated stochastic simulations were run, a 1000 times, for each 

correlation factor, q=0, q=0.1, q=0.2, q=0.3, q=0.4, q=0.5, q=0.6, q=0.7, q=0.8, q=0.9, q=1. 

As an example, the stress strain curves of the stochastic simulations for the minimum 

and the maximum correlation factor are demonstrated in Figure 41a and Figure 41b 

respectively. 
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Figure 41a 

1000 stress strain curves from correlated stochastic 
simulations with correlation factor q=0;the elastic part 

coincides for all the simulations 

 
Figure 41b 

1000 stress strain correlated stochastic simulations with 
correlation factor q=1;the elastic part coincides for all the 

simulations 
 

Figure 41  
Correlated stochastic simulations 

 

The contribution of the correlation factor is obvious if we compare the two graphs. The 

scatter is narrower and the downdrafts under the yield point have been significantly 

reduced when the correlation factor equals to one. The statistical analysis of the 

correlated stochastic simulations is exactly the same with the analysis for the simple 

stochastic simulations which are demonstrated in detail in chapter 3.  
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5.2 Comparison of DDD and correlated stochastic simulations 
 

 

 

Figure 42 
(a): average stress of DDD simulations (blue line) and correlated stochastic simulations (coloured 

lines according to the correlation factor) 
(b): stress standard deviation of DDD simulations (blue line) and correlated stochastic simulations 

(coloured lines according to the correlation factor) 
 

 

Figure 42 shows the results of the statistical analysis for DDD and correlated stochastic 

simulations. The blue line indicates the results from the DDD statistical analysis ,the rest 

coloured lines indicate the statistical analysis of the correlated stochastic simulation for 

different correlation factors. The black line indicates the results for correlation factor 

equal to 0, the yellow for q=0.2, the grey for q=0.2, the purple for q=0.3, the light green 

for q=0.4, the brown for q=0.5, the cyan for q=0.6, the pink for q=0.7, the orange for 

q=0.8, the green for q=0.9 and finally the red for q=1. 
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More specifically, in Figure 42(a) is shown the mean stress as a function of strain. We 

should highlight at this point that the mean stress is not significantly affected by the 

correlation factor. Moreover, we observe that the stochastic simulations produce linear 

hardening with hardening rate equal to 2.9GPa calculated by equation 30 in chapter 3. 

In order to extract more information about our results we consider the standard 

deviation of mean stress as a function of  strain as shown in the bottom part of Figure 

42(b). Other than with the mean stress, the scatter of stress is affected by the different 

values of the correlation factor, as observed to Figure 41 as well. More specifically, for 

correlation factors from 0 to 0.4 we cannot see large differences between the scatter 

that they produce, on the other hand for correlation factors from 0.5 to 1 we observe a 

significant decrease of the scatter. While the factor increases from 0.5 to 1 the stress 

scatter decreases and approaches the scatter of the DDD simulations. In other words, as 

the correlation increases between the active and inactive intervals the model becomes 

more reliable in reproducing the fluctuations around the mean stress level. 

In particular, the correlated stochastic model for correlation factor equal to 1 gives a 

better approximation as the downdrafts under the yield point are reduced (Figure 41) 

and its scatter approaches the scatter of the DDD simulations(Figure 42). 

Subsequently, the statistical analysis of DDD, uncorrelated and correlated results are 

compared in order to conclude which model represents best the DDD simulations. 
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6. Results-Future work 
 

6.1 Results 
 

The statistical analysis of each simulation includes the average and the standard 

deviation of stress on a standard strain. Comparing these statistical aggregates of each 

stochastic simulation with the respective of DDD simulations we determine which 

stochastic model approaches better the results of the DDD model.  

 

Figure 43 

(a): average stress of DDD simulations (blue line), simple stochastic simulations (red line) and 
correlated stochastic simulations (coloured lines according to the correlation factor) 

(b): stress standard deviation of DDD simulations (blue line), simple stochastic simulations (red line) 
and correlated stochastic simulations (coloured lines according to the correlation factor) 

 

 

In Figure 43 the statistical results of DDD (blue line), uncorrelated (green line with star 

marker) and correlated (rest lines for different correlation factors) simulations are 
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shown. Figure 43(a) illustrates the mean stress and Figure 43(b) the standard deviation 

of stress respectively. 

Observing the mean stress of the simulations (Figure 43(a)) we note that both stochastic 

simulations (simple and correlated) produce the same linear hardening which is 

rational because the hardening rate (equation 30) is not affected by the correlation 

factor. For that reason different correlation factors do not affect the mean stress of the 

correlated simulations.  

Observing the stress scatter of the simulations (Figure 43(b)) we note that the scatter of 

mean stress of the uncorrelated stochastic simulations is of the same order of 

magnitude of the correlated simulations with correlation factors 0-0.3. but as the 

correlation factor increases from 0.4 to 1 the stress scatter decreases. So when the 

correlation factor is 0-0.3 the correlated model does not provide better results from the 

uncorrelated one but when the correlation factor increases from 0.4 to 1 the correlated 

model approaches the DDD results and for correlation factor equal to one we observe 

the best approximation. 

Evidently, the correlated model with correlation factor equal to one provides a good 

estimation of the DDD simulations by decreasing the stress scatter during the plastic 

part and eliminating the stress drops under the yield point as explained in chapter 5 as 

well. 
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6.2 Future work 
 

In order to check more deeply the correlation between the active and the inactive parts 

one will have to check the correlation function between these parts. A correlation 

function indicates the dependency between the same or different functions at two 

different points in time or distance. The correlation function will indicate a thorough 

correlation between the active and the inactive part in our case. 

Moreover, the linear hardening that both models produce does not represent the 

hardening coming from the DDD simulation sufficiently well. In order to produce 

nonlinear hardening one might construct a model with nonstationary distributions. At 

the same time, more DDD simulations with different specimen dimensions, say, 

0.5x1.5x0.5 μm3 should be undertaken in order to check the hardening in this case. This 

arrangement permits the dislocation movement, so the accumulation of the dislocations 

near the upper and lower surfaces is avoided which was characteristic of our 

simulations until now may be avoided and the stong kinematic hardening may be 

suppressed  

Finally it is known that mcroplasticity differs from macroscopic plasticity in two 

respects, firstly the scatter of plasticity which increases immensely due to dislocation 

movement and secondly the flow stress depends on the size of the sample. In this work 

we focus on the scatter of plasticity but in the future one should also address the 

probability distribution of the yield point. By that way the yield point will not be fixed as 

in the present models and we can examine the differences in flow stress between 

samples of different size as observed in DDD simulations. 
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