
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Ανάπτυξη Εραείου ια την Επαήευση
Δοκιμών Βασισμένν σε Προδιαραφές

Διπματική Ερασία
της

Zής Παρασκευοπούου

Επιέπν: Νικόαος Παπασπύρου
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Σεπτέμριος 2014

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Ανάπτυξη Εραείου ια την Επαήευση
Δοκιμών Βασισμένν σε Προδιαραφές

Διπματική Ερασία
της

Zής Παρασκευοπούου

Επιέπν: Νικόαος Παπασπύρου
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 8η Σεπτεμρίου, 2014.

........................
Νικόαος Παπασπύρου Κστής Σαώνας Ιάννης Σμαραδάκης
Αν. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Κ.Π.Α.

Αήνα, Σεπτέμριος 2014

...
Ζή Παρασκευοπούου

Διπματούος Ηεκτροόος Μηανικός
και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Ζή Παρασκευοπούου, 2014.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Παρότι η τυαία δοκιμή οισμικού ασισμένη σε προδιαραφές (random property-based
testing) είναι μια αποτεεσματική μέοδος εύρεσης σφαμάτν και ετίσης της ποιότητας
του οισμικού, άη στην διαδικασία εέου μπορεί να συκαύψουν σημαντικά σφάματα
στο οισμικό και να μειώσουν την αποτεεσματικότητα της μεόδου. Στη διπματική
αυτή παρουσιάζουμε μια καινοτόμο μέοδο που μας επιτρέπει να επαηεύσουμε τυπικά τις
τενικές δοκιμής οισμικού, την οποία ενσματώνουμε στο εραείο QuickChick, το οποίο
παρέει τη δυνατότητα αυτόματν δοκιμών ασισμένν σε προδιαραφές ια το εραείο
διαδραστικών αποδείξεν Coq. Ο στόος της επέκτασης του εραείου είναι η τυπική
απόδειξη ορότητας του εκτεέσιμου κώδικα που ρησιμοποιείται ια τη δοκιμή οισμικού
αναφορικά με υψηού επιπέδου προδιαραφές, οι οποίες αποτυπώνουν πιο άμεσα την υπό
δοκιμή υπόεση. Προκειμένου να επιτευεί κάτι τέτοιο παρέουμε τη δυνατότητα τυπικής
απόδειξης ορότητας ια εννήτορες τυαίν δεδομένν αντιστοιίζοντας τους στα σύνοα
τν τιμών που έουν μη μηδενική πιανότητα να παραούν. Χρησιμοποιώντας την μεοδοο-
ία μας αποδείξαμε την ορότητα τν περισσότερν συνδυαστών που παρέονται από την
διεπαφή του εραείου QuickChick, έοντας ς αναφορά έναν μικρό αριμό αυτών ια τους
οποίους ορίσαμε τη σημασιοοία τους αξιματικά. Τέος, αξιοοήσαμε την προτεινόμενη
μεοδοοία μέσα από έναν αριμό μη τετριμμένν περιπτώσεν εφαρμοής της και δείξαμε
ότι μπορεί να κιμακεί σε δοκιμές σύνετν συστημάτν ρίς να απαιτούνται ααές σε
ήδη υπάροντα κώδικα.

Λέξεις Κειδιά

software testing, property-based testing, verification, test data generation, proof assistants,
Coq

5

Abstract

While random property-based testing is often an effective way for quickly finding bugs and
increasing software quality, testing errors can conceal important bugs and thus reduce its
benefits. In this thesis we introduce a novel methodology for formally verified property-
based testing; this methodology is embodied by a framework built on top of the QuickChick
testing plugin for Coq. Our verification framework is aimed at proving the correctness
of executable testing code with respect to a high-level specification, which captures the
conjecture under test in a more direct way. To this end, we provide a systematic way
for reasoning about the set of values a random data generator can produce with non-zero
probability. We have used our methodology to prove the correctness of most QuickChick
combinators, with respect to the axiomatic semantics of a small number of primitive ones.
We have evaluated our verification methodology on two sizable case studies showing that
it is modular, scalable, and requires minimal changes to existing code.

Keywords

software testing, property-based testing, verification, test data generation, proof assistants,
Coq

7

Ευαριστίες

Αρικά, α ήεα να ευαριστήσ τον επιέποντα της πρακτικής μου στα παίσια της
οποίας εκπονήηκε η παρούσα διπματική ερασία, Cătălin Hriţcu, ια την ευκαιρία που
μου προσέφερε, την υποστήριξη και τη συνερασία του.

Θα ήεα επίσης να ευαριστήσ τους καηητές μου στο Πουτενείο και κυρίς τους
Νικόαο Παπασπύρου και Κστή Σαώνα ια την καοδήηση, την οήεια τους και το
συνεές ενδιαφέρον που επιδεικνύουν στο έρο τους. Τους ρστά ένα μεάο ευαριστώ
καώς μέσα από τη διδασκαία τους μου μετέδσαν την αάπη τους ια την πηροφορική και
τις ώσσες προραμματισμού.

Χρστά επίσης ένα μεάο ευαριστώ στην οικοένεια μου και τους φίους μου που έουν
στηρίξει κάε μου επιοή και έουν συμάει στο να ίν το άτομο που είμαι σήμερα.

Τέος, α ήεα να ευαριστήσ τον Νίκο Γιανναράκη που ια πάν από δύο ρόνια ρίσκεται
κοντά μου και προσπαεί μαζί μου ια το καύτερο.

Zή Παρασκευοπούου

Η ερασία αυτή είναι επίσης διαέσιμη ς Τενική Αναφορά CSD-SW-TR-5-14, Ενικό Μετσόιο Πουτενείο,
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών, Τομέας Τενοοίας Πηροφορικής και
Υποοιστών, Εραστήριο Τενοοίας Λοισμικού, Σεπτέμριος 2014.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 12

1 Introduction 13

2 Randomized Property-Based Testing in Coq 17
2.1 Randomized Property-Based Testing . 17

2.2 The Value of Counterexamples or Lack Thereof 17

2.3 Combining Testing and Proving . 18

2.4 QuickChick . 19

2.4.1 Generators . 20

2.4.2 Properties . 23

2.4.3 Execution . 23

3 A Framework for Verified Testing in Coq 29
3.1 Generators . 29

3.1.1 Set of Outcomes Monad . 30

3.1.2 Axiomatization . 32

3.1.3 Derived Combinators . 36

3.1.4 Lemma Library . 36

3.1.5 A Motivating Example for Combinator Lemmas 41

3.1.6 Arbitrary Type Class . 44

3.2 Checkers . 45

11

12 Contents

3.2.1 Semantics . 45

3.2.2 Lemma Library . 48

3.2.3 Provable Type Class . 50

3.2.4 A Motivating Example for Combinator Lemmas 54

4 Case Studies 57
4.1 Red-black Trees . 57

4.1.1 Representation . 57

4.1.2 Declarative Definitions . 58

4.1.3 Generators . 59

4.1.4 Executable Definitions . 61

4.1.5 An End to End Proof . 64

4.2 IFC Case Study . 64

5 Related Work 67
5.1 Property Based Testing and Proof Assistants 67

5.1.1 Isabelle/HOL . 67

5.1.2 Agda/Alfa . 67

5.2 Testing Evaluation Techniques . 67

5.2.1 Mutation Testing . 67

5.2.2 Coverage Analysis . 68

6 Conclusions and Future Work 69

Bibliography 71

List of Listings 74

List of Theorems and Definitions 75

Chapter 1

Introduction

Software testing has been a widely accepted method of software validation, aiming to
show that the software under test meets its requirements. Although, as Dijkstra famously
quoted, testing can only show the presence of bugs, in practice, it is the most commonly
used approach for ensuring the quality of software.

Randomized property-based testing has gained a lot of popularity since the QuickCheck
project started on 1999 [7, 13], especially in the functional programming community,
giving the ability to quickly test formal specifications of programs on a large number
of randomly generated inputs. The programmer writes checkers, executable programs
that test the desired specification. Checkers are written in the same language as the
programs providing full expressive power. If testing fails, a counterexample is returned,
providing useful information for debugging. The programmer may also need to write
random generators in order to generate user defined data types or fine-tune a generator
that is being used by a specific checker.

However, one may wonder, “who watches the watchmen?”; how much confidence can we
have about the program under test adhering its specifications, when the testing cannot find
any more bugs? In fact there are quite a few things that can tamper with the effectiveness
of property-based testing. Two common causes of ineffective testing are bugs in the test
data generators and bugs in checkers. There can be various types of bugs in the generators:
a generator may fail to cover sufficiently the input space or may lead to a lot of discarded
test cases for which the specification under test holds vacuously as they fail to satisfy a
certain precondition. On the other hand, checkers may fail to capture the desired high-level
specification, especially when it comes to large systems with complex invariants.

Several methods have been proposed in order to evaluate the effectiveness of the testing
method such as coverage metrics based on control or data flow [20, 9], mutation test-
ing [14, 15] etc. The goal of this thesis is to propose a way to gain formal guarantees
about the quality of testing by proving that the conjecture we are testing corresponds to
a high-level declarative specification. Therefore, the programmer need not trust that the
checker captures the intended conjecture but only trust the high-level declarative spec-
ification corresponds to the desired requirement, which is generally the case in formal
verification. We devise a mechanism to automatically map both generators and checkers
to declarative semantics that we can use to prove them equivalent to the desired high-level
declarative specifications. The guarantee that this method provides is that if we could enu-
merate the output space of the generators used without producing any counter-examples

13

14 Chapter 1. Introduction

then we would have a proof by exhaustion for the desired declarative specification. While
exhaustion is very rarely possible in practice and would be incompatible with our ran-
domized approach, this theoretical guarantee ensures us that we are thoroughly testing
the correct conjecture. Most bugs in real generators and checkers are breaking even this
rather weak guarantee. This verification methodology is demonstrated in fig. 1.1.

VeriQuickChick

QuickChick

Property Checkers

Generators

Propositions

Predicates

Specifications

Propositions

Predicates

System Under Test

Implementation
Executable Definitions

Model
Declarative Definitions

semantics

sets of outcomes
semantics

equivalence

proofs

use use

equivalence

proofs

equivalence

proofs

use

te
st

use

informal
conjecture

exp
ressed

as

trusts
top-le

vel
sp

ec
ifi

ca
tio

n

Figure 1.1: The proposed verification methodology

Our verification framework is built on top of QuickChick1, a recent Coq clone of QuickCheck
for Haskell [7, 13]. Our extension allows us to reason about the correctness of generators
by mapping each generator to its set of outcomes, the set of values that have non-zero
probability of being generated. Given the set of outcomes of a generator we can prove that
the generator is sound (i.e. all the possible outcomes satisfy a predicate) and complete
(i.e. all the values that satisfy a predicate can be generated) with respect to a higher-level
specification (also a set of outcomes). By using the set of outcomes semantics for genera-
tors we can map checkers to propositions and obtain a logical proposition that corresponds
to the exact conjecture under test. We can then prove that proposition equivalent to the
high-level specification that we claim is being tested.

As in QuickCheck, in QuickChick we can use the library, containing a large number of
reusable generator combinators, in order to write a custom generator. We want our ex-

1The QuickChick development, along with our extension, can be found at https://github.com/
QuickChick/QuickChick

https://github.com/QuickChick/QuickChick
https://github.com/QuickChick/QuickChick

15

tension to be seamlessly integrated into QuickChick, without requiring any significant
changes to existing code. We achieve this by overloading each generator combinator with
a dual semantics. We can either map a generator to the standard semantics and run it
in order to obtain input data, or map it to its set of possible outcomes in order to reason
about its output space. In order to avoid proof duplication when proving properties for
the set of outcomes of generators, we prove each generator combinator provided by the
QuickChick interface correct with respect to a high-level specification, providing a set of
reusable lemmas. This way we can structure the proofs for the generators that use the
combinators in a compositional way, achieving a high level of reusability and independence
from the implementation of each combinator.

Similarly to generators, the user can use a library of combinators in order to write checkers.
The simplest way of writing a checker is writing a boolean function and test it with
input generated by a suitable generator. We can trivially map a boolean function to a
logical predicate by requiring the result to be equal with true for each possible input that
belongs to the set of outcomes of the generators being used. However, the user can form
more complex checkers by using a series of combinators to fine-tune the testing process
by specifying the generators to be used, changing the expected testing result, collecting
information about test case distribution, etc. As with generator combinators, we can give
checker combinators dual semantics, hence they can be used either for the actual testing
or for obtaining logical propositions. As with generators, we provide a series of reusable
lemmas for the checker combinators in QuickChick in order to make the proving process
of user-level checkers easier.

Nonetheless, even with the maximum amount of reusability, formal verification requires a
considerable amount of human effort and our verification framework requires the user to
do manual proofs. One of the future directions of QuickChick includes the development
of a framework for automatically deriving generators from formal specifications. Our
verification framework could be used in verifying such a generation framework, achieving
both automation and formal guarantees.

The aim of this thesis is to present in detail our verification methodology and evaluate it
through examples and a larger case study.

Thesis Outline

The rest of the thesis is organized as follows: In chapter 2 we briefly present randomized
property-based testing in general and how testing and proving can be combined. We also
introduce the QuickChick framework and we describe how it works. In chapter 3, the
main chapter of this thesis, we present the extensions we made to the tool in order to
provide a generic framework for formally verifying testing code. In chapter 4 we evaluate
our methodology through a red-black tree case study and we describe our experiences from
applying our methodology to the infrastructure used to test an information control-flow
machine. In the final chapters we discuss related work as well as conclusions and future
work.

Chapter 2

Randomized Property-Based
Testing in Coq

2.1 Randomized Property-Based Testing

Property-based random testing (RPBT) has gained a lot of popularity since the appearance
of QuickCheck for Haskell [7], and has been re-implemented in numerous other languages,
including Erlang [18, 3], Prolog [1] and even proof assistants like Isablell/HOL [4, 5]
and Agda [8]. Property-based random testing is a form of black-box testing in which
the programs are being tested against properties, expressed as formal specifications that
should be satisfied for every possible input. The specifications are being tested on a large
number of randomly generated inputs, if they are falsified, a counterexample is returned,
often shrinked in order to be more useful in the debugging procedure.

Property-based random testing achieves a high level of automation by combining two
ideas, executable properties as oracles and random input data generation. This means
that the user need not to check each output separately nor write test data manually, as is
commonly the case with more traditional unit testing frameworks in which the user must
provide both the test cases and their corresponding expected outputs.

However, testing complex specifications may need fine-tuned custom generators in order
for testing to be efficient. For instance, conditional properties, i.e. properties that require
the input to satisfy a certain precondition, can be hard to be tested effectively as the
precondition may be satisfied from a relatively small portion of the possible inputs. In
such cases, writing custom generators may greatly improve the efficacy of testing, as this
allows the user to have control over the probability distribution of the test cases. In
addition, custom generators need to be provided for generation of user defined data types.

2.2 The Value of Counterexamples or Lack Thereof

RPBT facilitates debugging process by providing counterexamples to failing properties.
Such examples can be very useful in understanding and fixing bugs in both programs and
specifications. However, failure reports can be long and it may take manual effort to
extract the useful information that reveals the bug. In fact, when it comes to randomly

17

18 Chapter 2. Randomized Property-Based Testing in Coq

generated inputs the failing case may contain a considerable amount of irrelevant “noise”.
QuickCheck and QuickCheck-inspired tools provide a shrinking mechanism which tries to
isolate the part of the failing input that triggers the failure by repeatedly simplifying the
counterexample until any further simplification does not trigger the failure. Although this
mechanism provides no formal guarantees about the minimality of the returned counterex-
ample, it greatly reduces the time needed to locate the fault.[13]

When a counterexample is encountered it means that the conjecture being tested is wrong.
However, a counterexample can be spurious in the sense that it lies outside the set of values
for which the specification is supposed to hold. In that case, one may need to reformulate
the checkers that test the specification in order to restrict their domain by adding or
strengthening preconditions.

Nevertheless, the absence of counterexamples does not imply that our programs are cor-
rect. In fact, depending from the quality of our methodology, testing can provide too few
guarantees about the validity of our specifications. One reason testing could fail to find
counterexamples to wrong conjectures is the insufficient coverage of the domain of the
specification. A generator that only covers a subset of the valid inputs may miss coun-
terexamples that have no chance of being generated. The distribution of the test data also
affects the effectiveness of testing. Even if there is non-zero probability for all the valid
inputs to be generated the underlying distribution may be biased towards some values
making it very hard to hit counterexamples that have a small probability of being gener-
ated. For example we can consider a generator that generates all the values from a finite
set with uniform distribution and a generator the same set of outcomes which generates
an element, which we assume it not a counterexample, with 1/2 probability and the rest
1/2 is uniformly distributed amongst the other elements. Then it is two times less likely
for the second generator to hit counterexamples, making the testing process less efficient.

Generators can also fail to satisfy preconditions of conditional properties, leading to test
case discards. This can greatly affect the efficiency of testing as a large portion of the
generated data may be discards causing interesting test cases to be less frequent and thus
having lower probability of hitting counterexamples. We can again consider a specification
which is being tested with integer values and it is guarded by a precondition that requires
the input to be an odd number. Then a generator that uniformly generates odd numbers
up to an upper bound has two times more chances of hitting a counterexample than a
generator that uniformly generates all the integers up to the same bound.

Checkers can also be the reason of inadequate testing as they are executable programs
and like all programs may contain bugs. Turning high-level specifications to efficiently
executable properties can be an error-prone task. In addition, it is a common practice
to use other programs to classify the output and, unless they are formally verified, this
programs may not behave correctly. In such cases testing can easily miss counterexamples
as, for instance, an erroneously strong precondition will discard test cases for which the
specification should be tested.

2.3 Combining Testing and Proving

The idea of combining testing and proving is not new, there are already testing frameworks
for various proof assistants including Isabelle/HOL [4, 5] and Agda [8]. In a way, writing
a formal specification for testing resembles formal verification techniques, only that we

2.4 QuickChick 19

are looking to disprove a specification rather that prove it. In particular, RPBT can
complement formal verification and reduce its overall cost. Property-based testing can
be used as a counterexample finder to conjectures before commencing a time consuming
proof. Detection of bugs in definitions and properties at the early stages of development
can save a considerable amount of time and significantly reduce failed proof attempts.
Coming up with the correct set of lemmas can be a hard and speculative procedure and
discovering flows through failed proof attempts comes at a very high cost, as each iteration
is associated with the cost of trying to prove a wrong conjecture. Finding design flows
by testing can be much more cost-effective and can allow a much more rapid iteration on
designs.

In this thesis, we are exploring another way of how testing and proving can be combined
focusing on how formal verification can be used to provide formal guarantees about the
quality of testing. More specifically our framework maps generators to sets of values se-
mantics and executable specifications to logical predicates semantics. We can then form
a logical formula, expressed as a Coq proposition, that completely describes the testing
infrastructure. We can use the set of outcomes semantics to prove soundness and com-
pleteness for generators and the logical formula to prove that what our testing indeed
corresponds to the desired high-level specification.

The intuitive guarantee we get from this method is that if we could enumerate the complete
output space of our generators without producing any counterexamples then we would have
a proof by exhaustion for the desired specification. While it is almost always impractical
to completely enumerate the set of outcomes of generators, as it can very well be infinite,
with this guarantee we can have confidence that we are indeed testing the right conjecture.

We built our framework on top of QuickChick, an existing PBRT for Coq, which we will
describe in the following section.

2.4 QuickChick

QuickChick is prototype for property-based testing for Coq, being a QuickCheck clone,
it provides most of the functionality of QuickCheck. The largest part of QuickChick is
implemented in Gallina, Coq’s purely functional programming language but it relies on
extraction (currently in OCaml) for acquiring and passing random seeds, for random gen-
eration of elements of primitive types, and for efficient execution and tracing of programs
and properties.

As we discussed above, the main reason of having such a tool embedded in a proof assistant
is testing the validity of conjectures. However, QuickChick currently does not facilitate
any kind of testing for the non-executable part of Gallina and specifications have to be
written in the purely functional subset of it. That means that, in order to test the validity
of lemmas that are expressed as relational specifications, one needs to manually write and
maintain equivalent executable variants for the lemmas under test. Given that restriction
of the framework, the biggest advantage of QuickChick is that it eliminates the manual
effort to extract executable properties in Haskell and run QuickCheck. Our extension to
the framework provides us with one more argument of having such a tool embedded in a
proof assistant.

20 Chapter 2. Randomized Property-Based Testing in Coq

In order to explain our extensions we will present the architecture of the framework which
closely follows the one of QuickCheck.

2.4.1 Generators

Representation

The generators are represented internally using the type Gen. Gen is an inductive type
indexed by a type, with only one constructor that essentially wraps a function, which given
a random seed and a size parameter returns an element of the type given as a parameter.� �

1 Axiom RandomGen : Type.
2

3 Inductive Gen (A : Type) : Type :=
4 | MkGen : (RandomGen → nat → A) → Gen A.� �

Listing 2.1: Generator representation

RandomGen is the type of the random seed. As we rely on extraction for seed generation,
it is only stated as an axiom in Coq, omitting the actual definition. Currently the target
language for extraction is OCaml and we map RandomGen to Random.State.t.
The size parameter is often used by generators as an upper bound for the size of generated
elements. Although there is no obligation whatsoever on the way a generator can use
this size parameter, some may even ignore it, it is a good a practice to limit the size of
the generated elements for efficiency reasons. Without the use of an upper bound some
generators for recursive types may have some probability of never terminating. QuickChick
will start by passing a small size parameter and gradually increase it up to a predefined
bound.

Generators for Primitive Types

QuickChick relies on the target language for generation of primitive data types, such as
Nat, Int and Bool. For each one of these types use an axiom to specify a function that
given a range (l, h) and a seed it generates a random values from the closed interval
[l, h]. More complex generators are built on top of these primitive ones. We define the
type class Random to which we add the method randomR to provide a common interface
for the functionality described above. Since this function takes as an argument a pair
that corresponds to a range we need to have an ordering relation for the types we make
instances of this class. For this reason we make this type class a subclass of OrdType class
which provides a binary relation that satisfies reflexivity, transitivity and antisymmetry.
This means that instances of the Random type class can be only types with a partial order.
Note that calling RandomR with an invalid range, for which it holds that

h < l

, is an unspecified behavior that depends from the target language we are extracting
to. Currently, since we are extracting to OCaml, such a call causes an invalid-argument
exception.

2.4 QuickChick 21

� �
1 Class OrdType (A: Type) :=
2 {
3 leq : A → A → bool;
4 refl : ∀ a, leq a a;
5 trans : ∀ a b c, leq b a → leq a c → leq b c;
6 antisym : ∀ a b, leq a b → leq b a → a = b
7 }.
8

9 Instance OrdBool : OrdType bool := { ... }.
10

11 Instance OrdNat : OrdType nat := { ... }.
12

13 Instance OrdZ : OrdType Z := { ... }.
14

15 Axiom randomRBool : bool * bool → RandomGen → bool * RandomGen.
16 Axiom randomRNat : nat * nat → RandomGen → nat * RandomGen.
17 Axiom randomRInt : Z * Z → RandomGen → Z * RandomGen.
18

19 Class Random (A : Type) :=
20 {
21 randomR : A * A → RandomGen → A * RandomGen;
22 }.
23

24 Instance Randombool : Random bool :=
25 {
26 randomR := randomRBool;
27 }.
28

29 Instance Randomnat : Random nat :=
30 {
31 randomR := randomRNat;
32 }.
33

34

35 Instance RandomZ : Random Z :=
36 {
37 randomR := randomRInt;
38 }.� �

Listing 2.2: Random type class

22 Chapter 2. Randomized Property-Based Testing in Coq

Generators Interface

The generators interface is a combinator library which can be used in order to write custom
generators. Combinators fall into two categories: primitive combinators and derived com-
binators. Primitive combinators depend from the internal representation of generators, as
they are using the MkGen constructor directly. On the other hand, derived combinators are
composed from other generators and they don’t directly use the MkGen constructor. This
distinction is important for the way we will later give dual semantics to these combinators.

� �
1 (* Monadic return *)
2 returnGen
3 : ∀ A : Type, A → Gen A
4

5 (* Monadic bind *)
6 bindGen
7 : ∀ A B : Type, Gen A → (A → Gen B) → Gen B
8

9 (* Maps a function over a generator *)
10 fmapGen
11 : ∀ A B : Type, (A → B) → Gen A → Gen B
12

13 (* Generates a random element in a given inclusive range. The type of
14 the element must be an instance of the Random type class *)
15 choose
16 : ∀ A : Type, Random A → A * A → Gen A
17

18 (* A function used to construct generators that depend on the runtime
19 size parameter *)
20 sized
21 : ∀ A : Type, (nat → Gen A) → Gen A
22

23 (* Overrides the runtime size parameter with the given constant size.
24 Only the first application has effect. *)
25 resize
26 : ∀ A : Type, nat → Gen A → Gen A
27

28 (* Promotes a monadic generator to a generator of monadic values *)
29 promote
30 : ∀ (M : Type → Type) (A : Type),
31 ((Gen A → A) → M (Gen A) → M A) → M (Gen A) → Gen (M A)
32

33 (* Runs a generator and returns a list of example values. *)
34 sample
35 : ∀ A : Type, Gen A → list A� �

Listing 2.3: Primitive combinators

Although Gen implements the monadic interface, monad laws are not directly provable.
For instance, it is easy to see that a generator g and the generator binfGen g returnGen
are not propositionally equal by unfolding the definitions or even extensionally equal by
running the two generators. However the monad laws hold for equality of the underlying
probability distributions.

2.4 QuickChick 23

It may seem counterintuitive that fmapGen is considered a primitive combinator, as it
can be easily implemented using bindGen and returnGen. However, for efficiency reasons
fmapGen is implemented in a primitive way without using other combinators. The resulting
probability distribution is the same with the one we would have obtained with the standard
implementation.

Arbitrary

Arbitrary is a type class that provides a common interface for types we can generate
random elements. Arbitrary class has two fields arbitrary, which is the generator for the
given type and shrink which given an element returns a list of immediate shrinks.

2.4.2 Properties

Property

Checkers are represented internally by the type Property. Results are represented by the
type Result, a record keeping information about the outcome of the testing, the expected
outcome. the reason of failing, etc.. In order for something to be testable it must to
produce test results from randomly generated inputs, thus Property represents a non-
deterministic computation in the Gen monad that produces a Result. More precisely,
Property is a generator of lazy rose1 Result trees. The reason of keeping a rose tree
instead of just a Result is to keep track of the results of shrinking. The children of each
node are the testing results for all the immediate shrinks that can produced from input
data for of this node. Nevertheless, in order to inspect the result of testing is suffices to
look only at the root as shrinking will only take place if this result is a failure.

Testable

Testable is the class of things that can be tested, i.e. turned into a Property. In order
for a type to be an instance of the type class Testable it has to provide a function from
an element of this type to a Property. This mechanism provides an automated way of
deriving a Property. However, the user is free to construct their own checkers by using
a library of combinators. At the listing 2.7 we can see the typeclass and some significant
instances.
In order for a function to be an instance of Testable then the types of its arguments have
to be instances of the Arbitrary type class. If not such instance exists for this type then
no instance for Testable can be derived. The generator and the shrinker provided by the
Arbitraty interface are the default ones but one can override them by specifying others
using forAll and forAllShrink combinators.

2.4.3 Execution

Once generators and checkers are defined one can start testing. A number of run-time
parameters are used to specify the maximum number of successful and discarded test cases,

1Rose trees or Multi-way trees are trees with arbitrary number of subtrees in each node

24 Chapter 2. Randomized Property-Based Testing in Coq

� �
1 (* Monadic lifting *)
2 liftGen
3 : ∀ A B : Type, (A → B) → Gen A → Gen B
4

5 liftGen2
6 : ∀ A1 A2 R : Type, (A1 → A2 → R) → Gen A1 → Gen A2 → Gen R
7

8 liftGen3
9 : ∀ A1 A2 A3 R : Type,

10 (A1 → A2 → A3 → R) → Gen A1 → Gen A2 → Gen A3 → Gen R
11

12 liftGen4
13 : ∀ A1 A2 A3 A4 R : Type,
14 (A1 → A2 → A3 → A4 → R) →
15 Gen A1 → Gen A2 → Gen A3 → Gen A4 → Gen R
16

17 liftGen5
18 : ∀ A1 A2 A3 A4 A5 R : Type,
19 (A1 → A2 → A3 → A4 → A5 → R) →
20 Gen A1 → Gen A2 → Gen A3 → Gen A4 → Gen A5 → Gen R
21

22 (* Monadic sequencing. Evaluates each generator from left to right and
23 collects the results *)
24 sequenceGen
25 : ∀ A : Type, list (Gen A) → Gen (list A)
26

27 foldGen
28 : ∀ A B : Type, (A → B → Gen A) → list B → A → Gen A
29

30 (* Generates a value that satisfies a boolean predicate. Returns
31 None if it fails to find one. *)
32 suchThatMaybe
33 : ∀ A : Type, Gen A → (A → bool) → Gen (option A)
34

35 (* Randomly chooses one of the generators in the given list. Should
36 the list be empty it returns the default one *)
37 oneof
38 : ∀ A : Type, Gen A → list (Gen A) → Gen A
39

40 (* Chooses one of the given generators with a probability that
41 corresponds to the given weights. Should the list be empty or all
42 the weights set to zero it returns the default generator *)
43 frequency
44 : ∀ A : Type, Gen A → list (nat * Gen A) → Gen A
45

46 (* Returns a list of random length using the given generator *)
47 listOf
48 : ∀ A : Type, Gen A → Gen (list A)
49

50 (* Returns a generator that randomly chooses one of the elements of
51 the given list of the default element if the list is empty *)
52 elements
53 : ∀ A : Type, A → list A → Gen A� �

Listing 2.4: Derived combinators

2.4 QuickChick 25

� �
1 Class Arbitrary (A : Type) : Type :=
2 {
3 arbitrary : Gen A;
4 shrink : A → list A
5 }.� �

Listing 2.5: Arbitraty type class

� �
1 Record Result :=
2 MkResult {
3 ok : option bool;
4 expect : bool;
5 reason : string;
6 interrupted : bool;
7 stamp : list (string * nat);
8 callbacks : list Callback
9 }.

10

11 Inductive Rose (A : Type) : Type :=
12 MkRose : A → Lazy (list (Rose A)) → Rose A.
13

14 Record QProp : Type := MkProp
15 {
16 unProp : Rose Result
17 }.
18

19 Definition Property := Gen QProp.� �
Listing 2.6: Property

26 Chapter 2. Randomized Property-Based Testing in Coq

� �
1 Definition Property := Gen QProp.
2 Class Testable (A : Type) : Type :=
3 {
4 property : A → Property
5 }.
6

7 Instance testResult : Testable Result :=
8 {|
9 property r := returnGen (MkProp (returnRose r))

10 |}.
11

12 Instance testBool : Testable bool :=
13 {|
14 property b := property (liftBool b)
15 |}.
16

17

18 Instance testFun {A prop : Type} ‘{ Show A}
19 ‘{ Arbitrary A} ‘{ Testable prop} : Testable (A → prop) :=
20 {|
21 property f := forAll show arbitrary f
22 |}.� �

Listing 2.7: Testable type class

� �
1 (* Lifts a boolean to a result. The boolean value is added to the ok
2 field of the Result *)
3 liftBool : bool → Result
4

5 (* Maping functions *)
6

7 mapProp
8 : ∀ P : Type, Testable P → (QProp → QProp) → P → Property
9

10 mapRoseResult
11 : ∀ P : Type,
12 Testable P → (Rose Result → Rose Result) → P → Property
13

14 mapTotalResult
15 : ∀ prop : Type,
16 Testable prop → (Result → Result) → prop → Property� �

Listing 2.8: Property lifting and mapping

2.4 QuickChick 27

� �
1 (* adds a callback *)
2 callback
3 : ∀ prop : Type, Testable prop → Callback → prop → Property
4

5 (* Given a Testable type prop, a shrinker for elements o type A, an
6 element a of type A and a function from A to prop, shrinks the
7 argument if (f a) fails. *)
8 shrinking
9 : ∀ prop A : Type,

10 Testable prop → (A → list A) → A → (A → prop) → Property
11

12 (* Prints a message if testing fails. *)
13 printTestCase
14 : ∀ prop : Type, Testable prop → String.string → prop → Property
15

16 whenFail
17 : ∀ prop : Type, Testable prop → (nat → nat) → prop → Property
18

19 (* Uses a test case generator to test a function A → prop *)
20 forAll
21 : ∀ A prop : Type,
22 Testable prop →
23 (A → String.string) → Gen A → (A → prop) → Property
24

25 (* The same with forAll, but tries to shrink the argument of failing
26 test cases. *)
27 forAllShrink
28 : ∀ A prop : Type,
29 Testable prop →
30 (A → String.string) →
31 Gen A → (A → list A) → (A → prop) → Property
32

33 (* Attaches a label to a property *)
34 label
35 : ∀ prop : Type, Testable prop → String.string → prop → Property
36

37 (* Labels a property with a value.
38 collect x = label (show x) *)
39 collect
40 : ∀ A prop : Type,
41 Show.Show A → Testable prop → A → prop → Property
42

43 (* Labels a property according to a boolean condition. *)
44 classify
45 : ∀ prop : Type,
46 Testable prop → bool → String.string → prop → Property
47

48 cover
49 : ∀ prop : Type,
50 Testable prop → bool → nat → String.string → prop → Property� �

Listing 2.9: Property combinators

28 Chapter 2. Randomized Property-Based Testing in Coq

the maximum size bound, etc. Those parameters are defined in a record. One can use
either QuickCheck function to run testing using the default parameters of QuickCheckWith
to in order to provide custom parameters.� �

1 Record Args := MkArgs {
2 (* Specified if we want to repeat a previous test *)
3 replay : option (RandomGen * nat);
4 (* Maximum number of test cases before success *)
5 maxSuccess : nat;
6 (* Maximum number of discard before giving up *)
7 maxDiscard : nat;
8 (* Maximum number of shrinks *)
9 maxShrinks : nat;

10 (* Maximum sizeparametr to be passed to a generator *)
11 maxSize : nat;
12 (* Verbosity *)
13 chatty : bool
14 }.� �

Listing 2.10: Parameters for running the tests

� �
1 (* Run test using the default parameters*)
2 quickCheck
3 : ∀ prop : Type, Testable prop → prop → Result
4

5 (* Run test using custom parameters *)
6 quickCheckWithResult
7 : ∀ prop : Type, Testable prop → Args → prop → Result� �

Listing 2.11: Functions for running the tests

Chapter 3

A Framework for Verified Testing
in Coq

The first step towards mapping checkers to logical propositions is to able to reason about
the values that can be produced by the generators used. To this end, we will abstract
from the internal generator representation making generators parametric in the generator
type constructor.

3.1 Generators

In order to be able to reason about the output space of the generators we map them
to the sets of values that have non-zero probability of being generated. This is only an
over-approximation of the underlying probability distribution but it allows us to prove
statements about the exact set of values that can be produced. Using the set of outcomes
semantics of a generator we can prove that it is sound with respect to a specification, i.e.
all the outcomes of the generator satisfy the specification, and complete with respect to a
specification, i.e. all the values that satisfy the specification can be generated.

Definition 3.1 (Soundness Definition). A generator is sound w.r.t. a predicate P , if its
set of outcomes G satisfies the following proposition:

∀ x, x ∈ G → P (x)

Definition 3.2 (Completeness Definition). A generator is complete w.r.t. a predicate P ,
if its set of outcomes G satisfies the following proposition:

∀ x, P (x) → x ∈ G

We can combine definitions 3.1 and 3.3 to form a correctness statement about generators
that completely specifies the set of outcomes. A generator is correct with respect to a
predicate if it can generates all the values that satisfy the predicate and only them.

Definition 3.3 (Correctness Definition). A generator is correct w.r.t a predicate P if its
set of outcomes G satisfies the following proposition:

∀ x, P (x) ↔ x ∈ G

29

30 Chapter 3. A Framework for Verified Testing in Coq

Example 3.4 (Generator of even numbers). Assume that we have a generator which we
claim that produces all the possible even numbers and only them. We can formally verify
our claim by proving the following proposition for its set of outcomes G:

∀ x, x | 2 ↔ x ∈ G

3.1.1 Set of Outcomes Monad

In order to map the generators to sets of outcomes we need to come up with a represen-
tation of sets. The output space of a generator can be infinite so the representation has
to support infinite sets and furthermore it has to be a proof-oriented representation that
allows to easily prove statements about sets. We represent sets of type A as a function
from an element of that type to a proposition. In order to prove that an element belongs
to a set we will have to prove the proposition that results from applying the set to that
element. Although this representation may not seem very intuitive at first, it is quite
natural as predicates are very often used to define sets in a very compact way with the
set-builder notation. For instance, we can define the set of the natural even numbers as
{x : x | 2}.

We can now define set equality and set inclusion. We define equality using functional and
propositional extensionality on the predicates that represent the sets. Listing 3.1 shows
the corresponding Coq code.

Definition 3.5 (Set equality). Two sets S1, S2 are if the application of S1 and S2 to the
same element yields to equivalent propositions:

∀ x, S1 x ↔ S2 x

From now on we will denote set equality as:

S1 ←→ S2

Definition 3.6 (Set inclusion). A set S1 is a subset of S2 if for each value the proposition
that results from the application S1 that value implies the proposition that results from the
application of S2 to the same value:

∀ x, S1 x → S2 x

Example 3.7 (The set of even natural numbers). We can define the set of even numbers
as a predicate:

Even ≡ fun (x : nat)⇒ x | 2

We can now prove that 42, for instance, belongs to the set by proving the proposition

Even 42

which is by definition equal to
42 | 2

which trivially holds.

3.1 Generators 31

We give the monadic interface to the sets and we prove that the monad laws hold with
respect to set equality. We define return as the function which given an element a returns
the singleton set:

return a ≡ {x : x = a}

We also bind as the function which, given a set S and a function f which maps elements of
this set to another set, returns the set of all elements e, for which there exists an element
s of S such that e belongs to f s. In other words, it returns the union of the sets that we
obtain if we apply f to all the elements of S.

bind S f ≡ {x : ∃ s, S s ∧ f s x} ←→
∪
s∈S

f s

� �
1 (* Set representation *)
2 Definition Pred (A : Type) := A → Prop.
3

4 (* Set equality *)
5 Definition set_eq {A} (m1 m2 : Pred A) :=
6 ∀ A, m1 A ↔ m2 A.
7

8 Infix ”←→ ” := set_eq (at level 70, no associativity) : pred_scope.
9

10 (* Set inclusion *)
11 Definition set_incl {A} (m1 m2 : Pred A) :=
12 ∀ A, m1 A → m2 A.
13

14 (* Returns the singleton set *)
15 Definition returnP {A} (a : A) : Pred A :=
16 fun x ⇒ eq a x.
17

18 Definition bindP {A B} (g : Pred A) (f : A → Pred B) : Pred B :=
19 fun b ⇒ ∃ a, g a ∧ f a b.
20

21 Lemma left_identity :
22 ∀ {A B} (f : A → Pred B) (a : A),
23 (bindP (returnP a) f) ←→ (f a).
24

25 Lemma right_identity :
26 ∀ {A} (m: Pred A),
27 (bindP m returnP) ←→ m.
28

29 Lemma associativity :
30 ∀ {A B C} (m : Pred A) (f : A → Pred B) (g : B → Pred C),
31 (bindP (bindP m f) g) ←→ (bindP m (fun x ⇒ bindP (f x) g)).� �

Listing 3.1: Set representation

32 Chapter 3. A Framework for Verified Testing in Coq

3.1.2 Axiomatization

We want to be able to instantiate each generator with both executable and set of outcomes
semantics. We do that by abstracting over the Gen monad, defined in listing 2.1. Genera-
tors will be parametrized by the type of monad which can be either instantiated with the
concrete Gen monad or with Pred, the sets of outcomes monad. When instantiated with
Gen a generator can be used for the actual generator and when instantiated with Pred
can b mapped to its set of outcomes. From now on, we will attach the suffix Gen only to
functions that abstract over the generator representation, the suffix G to functions that
are concrete with regard to Gen type and the suffix P to functions that are concrete with
regard to Pred type.

However, as we pointed out in section 2.4.1, there are a few combinators that are primitive
in the sense that they are dependent from the generator representation and thus they
cannot abstract over it. Those functions should have different implementations for each
representation. In order to be to write combinators in a generic way that can be mapped
to both executable and set of outcomes semantics both representations should have a
common interface. In order to achieve this, we define a type class which specifies the
functions each type should implement and we make both Gen and Pred instances of this
type class. All other combinators can then be defined in terms of this set of primitive
combinators. At the next paragraphs we will explain what functions should be included
in the typeclass and how they are implemented for the set of outcomes representation.

bind and return

Both bindGen and returnGen are primitive combinators and should be defined in the
type class. Listing 3.1 shows how these functions are implemented for the set of outcomes
monad.

fmap

The combinator fmapGen is also a primitive one, as for type Gen it is not defined in terms
of bindGen and returnGen, as we already discussed in section 2.4.1. For the Pred type
constructor we define fmapP using bindP and returnP. We also prove the functor laws
holds for set equality and up to functional extensional equality of the resulting functions.
Listing 3.2 shows the implementation and the lemmas we proved.

choose

The combinator Choose takes a pair of elements of a type, that is instance of the type
class Random, and returns a generator that generates values that lie in the inclusive range
that the given pair defines. Since the type needs to be an instance of the Random type
class it also needs to be an instance of the OrdType type class. We can use the less or
equal than relation that it is defined by the OrdType type class in order to express the set
of outcomes of the resulting generator. A value belongs to the resulting set of outcomes
if and only if it is less or equal than the first element of the pair and the second element
of the pair is less or equal that the value. If lo ≤ hi doesn’t hold then the resulting set is
empty.

3.1 Generators 33

� �
1 Definition fmapP {A B} (f : A → B) (a : Pred A) : Pred B :=
2 bindP a (fun a ⇒ returnP (f a)).
3

4 (* Functor laws *)
5 Lemma fmap_id:
6 ∀ A (a: Pred A), (fmapP id a) ←→ (id a).
7

8 Lemma fmap_composition:
9 ∀ A B C (a : Pred A) (f : A → B) (g : B → C),

10 (fmapP g (fmapP f a)) ←→ (fmapP (fun x ⇒ g (f x)) a).� �
Listing 3.2: fmapP

choose (lo, hi) ≡ {x : lo ≤ x ∧ x ≤ hi}

� �
1 Definition chooseP {A : Type} ‘{ Random A} (p : A * A) : Pred A :=
2 fun a ⇒ leq (fst p) a ∧ leq a (snd p).� �

Listing 3.3: chooseP

sized

This combinator takes a generators that is parameterized by a natural number and returns
the generator that depends internally from the global size parameter. Since the size
parameter is arbitrary and every natural number could be used as a sized parameter it
shouldn’t restrict the set of possible outcomes. We define sized f to be the union of the
sets that result if we apply f to every natural number, in other words an element belongs
to this set if and only of it exists a natural number n such that it belongs to f n.

sized f ≡ {x : ∃ n, f n x} ←→
∪
n∈N

f n

� �
1 Definition sizedP {A} (f : nat → Pred A) : Pred A :=
2 fun a ⇒ ∃ n, f n a.� �

Listing 3.4: sizedP

resized

This combinator takes a generator and fixes the internal size parameter to a given value.
This combinator is strongly connected to Gen representation thus we will not add it to
the common interface. This means that generators who use it will not be amenable to
dual semantics. Nonetheless, this design choice does not restrict the expressiveness of the

34 Chapter 3. A Framework for Verified Testing in Coq

framework for writing generators. The need for using resized can be bypassed by fixing
manually the parameters of generators that depend on numeric arguments.

sample

This function returns a list of example values of a generator and it is used for debugging
purposes rather than building generators. We will not add this function to the common
interface as we do not have a computational procedure that given a set can determine
whether it is inhabited or not and if yes to return a subset of its elements.

suchThatMaybe

The function suchThatMaybe takes a generator of elements of type A and a boolean pred-
icate on elements of type A and returns a generator for the type option A. If Some a is
returned from this generator then a has to satisfy the boolean predicate. However, there
is no guarantee whatsoever that if an element that satisfies the predicate exists it will
be found, so if None is returned it does not imply that none of the elements that can be
generated satisfies the predicate. The set of outcomes of the returned generator includes
None, that can be returned at any moment, and all the elements that are in the set of
outcomes of the given generator and in addition they satisfy the predicate.

suchThatMaybe g P ≡ {x : x = None ∨ ∃ y, x = Some y ∧ g y ∧ P y}

� �
1 Definition suchThatMaybeP {A} (g : Pred A) (f : A → bool) : Pred (option A) :=
2 fun b ⇒ (b = None) ∨
3 (∃ y, b = Some y ∧ g y ∧ f y).� �

Listing 3.5: suchThatMaybeP

The GenMonad Type Class

We can now define the type class GenMonad that provides a common interface for these
primitive functions. We make both Gen and Pred instances of that type class. We can
now define all the other combinators in terms of that common interface.

All the methods of the type class are implicitly quantified by the type constructor and
the and the GenMonad instance of this type constructor. For example in listing 3.7 we can
see the type of bindGen. The fist two arguments are implicit and can be automatically
instantiated when a type constructor which is an instance of GenMonad is present in the
context.

The set of outcomes denotation we give to each primitive combinator is an assumption we
make about the semantics of each generator. We will not prove that the implementation
for the combinators in terms on set of outcomes indeed corresponds to the implemetation
in terms of concrete generators but we will use the instantiations of this type class as a
trusted computing base in order to build the rest of the framework.

3.1 Generators 35

� �
1 Class GenMonad M :=
2 {
3 bindGen : ∀ {A B : Type}, M A → (A → M B) → M B;
4 returnGen : ∀ {A : Type}, A → M A;
5 fmapGen : ∀ {A B : Type}, (A → B) → M A → M B;
6 choose : ∀ {A} ‘{ Random A}, A * A → M A;
7 sized : ∀ {A}, (nat → M A) → M A;
8 suchThatMaybe : ∀ {A}, M A → (A → bool) → M (option A);
9 promote : ∀ {A : Type}, (Rose (M A)) → M (Rose A)

10 }.
11

12 Instance RealGen : GenMonad Gen :=
13 {
14 bindGen := @bindG;
15 returnGen := @returnG;
16 fmapGen := @fmapG;
17 choose := @chooseG
18 sized := @sizedG;
19 suchThatMaybe := @suchThatMaybeG;
20 promote := @promoteG
21 }.
22

23 Instance PredMonad : GenMonad Pred :=
24 {
25 bindGen := @bindP;
26 returnGen := @returnP;
27 fmapGen := @fmapP;
28 choose := @chooseP;
29 sized := @sizedP;
30 suchThatMaybe := @suchThatMaybeP;
31 promote := @promoteP
32 }.� �

Listing 3.6: The common interface

� �
1 bindGen :
2 ∀ M : Type → Type,
3 GenMonad M → ∀ A B : Type, M A → (A → M B) → M B� �

Listing 3.7: The type of bindGen

36 Chapter 3. A Framework for Verified Testing in Coq

3.1.3 Derived Combinators

The remaining combinators can be built solely by using the functions of the GenMonad type
class. Given that we do not need to change the implementation of any of the combinators
the only thing we need to do is to make them parametric in the generator type constructor.

We achieve this by placing the definitions of the combinators in a Section in which we
assume to have in context an one-argument type constructor which is also an instance of
the GenMonad type class. This technique can be seen in the listing 3.8. We write the two
parameters in curly braces to denote that they are implicit. The primitive combinators,
i.e. the methods of the type class, are automatically instantiated with the type constructor
and the instance we assume in the context. When we close the section all the combinators
written in it become implicitly parameterized by the type constructor and the GenMonad
instance.

� �
1 Section Utilities.
2 Context {Gen : Type → Type}
3 {H : GenMonad Gen}.
4

5

6 Definition vectorOf {A : Type} (k : nat) (g : Gen A) : Gen (list A) :=
7 fold_right
8 (fun m m’ ⇒
9 bindGen m (fun x ⇒

10 bindGen m’ (fun xs ⇒ returnGen (cons x xs)))
11) (returnGen nil) (nseq k g).
12

13

14 ...
15 ...
16 ...
17

18 End Utilities.� �
Listing 3.8: Derived combinators

3.1.4 Lemma Library

Although at this point each generator is mappable to its set of outcomes in order to
prove various statements about custom generators we will have to manually unfold the
definitions of generator combinators which results in a very low level description of the set
of outcomes. We provide a library of lemmas which provide a correctness proof for each
generator combinator with respect to a higher level description of the set of outcomes of
the resulting generator. These lemmas can be applied in a compositional way in order to
prove correctness for other more complex generators.

3.1 Generators 37

Equality Lemmas

Fist, we provide a set of equality lemmas for primitive combinators that we can use for
replacing primitive combinators with their definitions without having to unfold them,
which requires to first unfold the type class method and then the type class instance. We
do the same for lifting combinators to avoid unfolding them and then manually apply the
lemmas for the primitive combinators in their definitions. The proofs of these lemmas are
trivial and they only require unfolding the definitions.� �

1 Lemma bindGen_def :
2 ∀ {A B} (g : Pred A) (f : A → Pred B),
3 (bindGen g f) = fun b ⇒ ∃ a, g a ∧ f a b.
4

5 Lemma returnGen_def :
6 ∀ {A} (a : A),
7 returnGen a = fun x ⇒ a = x.
8

9 Lemma fmapGen_def :
10 ∀ {A B} (f : A → B) (g : Pred A),
11 fmapGen f g = fun b ⇒ ∃ a, g a ∧ f a = b.
12

13 Lemma choose_def :
14 ∀ {A} ‘{ Random A} (p : A * A),
15 @choose Pred _ _ _ p = fun (a : A) ⇒ Random.leq (fst p) a ∧
16 Random.leq a (snd p).
17

18 Lemma sized_def :
19 ∀ {A} (g : nat → Pred A),
20 sized g = fun a ⇒ ∃ n, g n a.
21

22 Lemma suchThatMaybe_def :
23 ∀ {A} (g : Pred A) (f : A → bool),
24 suchThatMaybe g f =
25 fun b ⇒ (b = None) ∨
26 (∃ y, b = Some y ∧ g y ∧ f y).� �

Listing 3.9: Equality lemmas for primitive combinators

Set Equality Lemmas

When we instantiate combinators with the Pred constructor we can obtain set of out-
comes semantics for the generators they return, the predicates that describe these sets
of outcomes are fairly complex and difficult to understand and they often depend other
combinators which have to be replaced manually with their definitions. We provide a set
of lemmas that prove that the resulting set for each combinator is equal to a set that is
described by high-level predicate that does not depend on other combinators, is easier to
understand intuitively and more useful in proofs. Using this library of lemmas a proof for
a complex generator can be built in a more compositional and incremental way avoiding
proof duplication. Also, the proofs are more robust as they do not depend on the imple-
mentation of the generator combinators which can be subject to change over the time. In

38 Chapter 3. A Framework for Verified Testing in Coq

� �
1 Lemma liftGen_def :
2 ∀ {A B} (f: A → B) (g: Pred A),
3 liftGen f g =
4 fun b ⇒
5 ∃ a, g a ∧ f a = b.
6

7 Lemma liftGen2_def :
8 ∀ {A B C} (f: A → B → C) (g1: Pred A) (g2: Pred B),
9 liftGen2 f g1 g2 =

10 fun b ⇒
11 ∃ a1, g1 a1 ∧
12 (∃ a2, g2 a2 ∧ f a1 a2 = b).
13 Lemma liftGen3_def :
14 ∀ {A B C D} (f: A → B → C → D)
15 (g1: Pred A) (g2: Pred B) (g3: Pred C),
16 liftGen3 f g1 g2 g3 =
17 fun b ⇒
18 ∃ a1, g1 a1 ∧
19 (∃ a2, g2 a2 ∧
20 (∃ a3, g3 a3 ∧ (f a1 a2 a3) = b)).
21

22 Lemma liftGen4_def :
23 ∀ {A B C D E} (f: A → B → C → D → E)
24 (g1: Pred A) (g2: Pred B) (g3: Pred C) (g4: Pred D),
25 liftGen4 f g1 g2 g3 g4 =
26 fun b ⇒
27 ∃ a1, g1 a1 ∧
28 (∃ a2, g2 a2 ∧
29 (∃ a3, g3 a3 ∧
30 (∃ a4, g4 a4 ∧
31 (f a1 a2 a3 a4) = b))).
32 Lemma liftGen5_def :
33 ∀ {A B C D E G} (f: A → B → C → D → E → G)
34 (g1: Pred A) (g2: Pred B) (g3: Pred C) (g4: Pred D) (g5: Pred E),
35 liftGen5 f g1 g2 g3 g4 g5 =
36 fun b ⇒
37 ∃ a1,
38 g1 a1 ∧
39 (∃ a2, g2 a2 ∧
40 (∃ a3, g3 a3 ∧
41 (∃ a4, g4 a4 ∧
42 (∃ a5, g5 a5 ∧
43 (f a1 a2 a3 a4 a5) = b)))).� �

Listing 3.10: Equality lemmas for lifting combinators

3.1 Generators 39

the next paragraphs we will explain further the lemmas we proved about each generator.

sequenceGen

Given a list of generators gs this combinator returns a generator of lists each element of
which is generated by the generator in the corresponding position in the initial list. In
order for a list to belong at the resulting set of outcomes must have length equal to the
one of the initial list and each element of it should belong to the set of outcomes of the
corresponding element of the given list. We use the function zip to pair each element of
the generated list to the corresponding element of the initial list and state that the former
should belong to the set of outcomes of the later.� �

1 Lemma sequenceGen_equiv :
2 ∀ {A} (gs : list (Pred A)),
3 sequenceGen gs ←→ fun l ⇒ length l = length gs ∧
4 ∀ x, In x (zip l gs) → (snd x) (fst x).� �

Listing 3.11: sequenceGen lemma

vectorOf

The combinator VectorOf takes a natural number n and a generator g and returns a gen-
erator that produces lists of length n whose elements are generated by the given generator.
A list belongs to the set of outcomes of the returned generator if and only if has length n
and its elements belong to the set of outcomes of g.� �

1 Lemma vectorOf_equiv:
2 ∀ {A : Type} (k : nat) (g : Pred A),
3 vectorOf k g ←→ fun l ⇒ (length l = k ∧ ∀ x, In x l → g x).� �

Listing 3.12: vectorOf lemma

listOf

Given a generator g this combinator returns generator
g that produces lists of random length whose elements re generated by g. A list belongs
to the set of outcomes of the returned generator if and only if its elements belong to the
set of outcomes of g.

oneOf

Given a list generators gs ad a default generator g this combinator returns a randomly
chosen generator from the list or, should the list is empty, g. An element belongs to the
sets of outcomes of the returned generator if and only if it belongs to the set of outcomes
of a generator in the given list, or in the set of outcomes of g if the list is empty.

40 Chapter 3. A Framework for Verified Testing in Coq

� �
1 Lemma listOf_equiv:
2 ∀ {A : Type} (g : Pred A),
3 listOf g ←→ fun l ⇒ (∀ x, In x l → g x).� �

Listing 3.13: vectorOf lemma

� �
1 Lemma oneOf_equiv:
2 ∀ {A} (l : list (Pred A)) (def : Pred A),
3 (oneOf def l) ←→
4 (fun e ⇒ (∃ x, (In x l ∧ x e)) ∨ (l = nil ∧ def e)).� �

Listing 3.14: oneOf lemma

elements

This combinator takes a list of elements and a default element and returns a generator
that randomly picks elements from the list or returns the default element if the list is
empty. An element belongs to the sets of outcomes of the returned generator if and only
if it is an element of the given list, or it is equal to the default element if the list is empty.

� �
1 Lemma elements_equiv :
2 ∀ {A} (l: list A) (def : A),
3 (elements def l) ←→ (fun e ⇒ In e l ∨ (l = nil ∧ e = def)).� �

Listing 3.15: elements lemma

frequency

This combinator takes a list l of pairs consisting of a natural number (frequency) and an
element of type A and a default element a and returns a generator which picks an element
of type A from the given list or the default element should the list is empty or all the
frequencies are equal to zero. If [(f1, a1), . . . , (fi, ai), . . . , (fn, an)] is the given list then
probability of an arbitrary element ai to be generated is:

pi =
fi
n∑

j=0
fj

An element a belongs to the set of outcomes of the generator if and only if exists f ̸= 0
such that (f, a) ∈ l or it is equal to the default element if the list is empty or the sum of
all frequencies is 0.

3.1 Generators 41

� �
1 Lemma frequency_equiv :
2 ∀ {A} (l : list (nat * Pred A)) (def : Pred A),
3 (frequency def l) ←→
4 fun e ⇒ (∃ (n : nat) (g : Pred A),
5 In (n, g) l ∧ g e ∧ n <> 0) ∨
6 ((l = nil ∨ ∀ x, In x l → fst x = 0) ∧ def e).� �

Listing 3.16: frequency lemma

foldGen

This generator takes a function f that takes two arguments of type A and B and returns
a generator of type A, a list of elements of type B and an element a0 of type A. It returns
the generator gn, where n is the length of the given list, which is obtained as following:

gi = f ai−1 bi

where bi is an element of the given list at position i and ai−1 is an element generated by
gi−1 or the initial one if i = 1. In terms of sets of outcomes we can express the resulting
sets with the following recursive formula:

gi ={x : ∃ a, gi−1 a ∧ f a bi x} when i ̸= 1

g1 ={x : f a0 b1 x}

We can use both foldl and foldr to write the above set in a compact way. The corre-
spondence with the above definition is more obvious when we express the set with the use
of foldl.� �

1 Lemma foldGen_left_equiv :
2 ∀ {A B : Type} (f : A → B → Pred A) (bs : list B) (a0 : A),
3 foldGen f bs a0 ←→
4 foldl (fun g b ⇒ fun x ⇒ ∃ a, g a ∧ f a b x) (eq a0) bs.
5

6 Lemma foldGen_right_equiv :
7 ∀ {A B : Type} (f : A → B → Pred A) (bs : list B) (a0 : A),
8 foldGen f bs a0 ←→
9 fun an ⇒

10 foldr (fun b p ⇒ fun a_prev ⇒ ∃ a, f a_prev b a ∧ p a)
11 (eq an) bs a0.� �

Listing 3.17: foldGen lemmas

3.1.5 A Motivating Example for Combinator Lemmas

We emphasize the value of this lemma library through an example. Let genNat be a
generator of natural numbers and we want to build a generator for lists of natural numbers

42 Chapter 3. A Framework for Verified Testing in Coq

with length 5. We write those generators in a section assuming a type constructor which
is instance of the GenMonad type class in context, as we can see in listing 3.18.� �

1 Section Generators.
2 Context {Gen : Type → Type}
3 {H : GenMonad Gen}.
4

5 Definition genNat : Gen nat := sized (fun n ⇒ choose (0, n)).
6

7 Definition genList5 : Gen (list nat) := vectorOf 5 genNat.
8

9 End Generators.� �
Listing 3.18: Generator for lists of length 5

The we can prove that genList5 produces all the possible lists of natural numbers with
length 5. First, we have prove that GenNat produces all the possible natural numbers
by proving the lemma in listing 3.19. We can try to do this without using the equality
lemmas for choose and sized.� �

1 Lemma genNat_correct:
2 genNat ←→ fun _ : nat ⇒ True.� �

Listing 3.19: Lemma for genNat correctness

Fist we try to unfold genNat, sized and choose. Then we have to unfold PredMonad
instance and finally we have to unfold chooseP and sizedP. We can see the intermediate
goals in listings 3.20 to 3.22. Instead of doing this we can simply replace the definitions
of sized and choose using the corresponding equality lemmas and immediately reach the
third goal. We can see the final proof in listing 3.23� �

1 1 subgoals, subgoal 1 (ID 5)
2

3 ============================
4 (let (_, _, _, _, sized, _, _) := PredMonad in sized) nat
5 (fun n : nat ⇒
6 (let (_, _, _, choose, _, _, _) := PredMonad in choose) nat
7 Random.Randomnat (0, n)) ←→ (fun _ : nat ⇒ True)� �

Listing 3.20: Goal after unfolding genNat, sized and choose

We can now use this proof to prove that genList5 generates all the possible list of natural
number with length 5 and only them. The lemma is stated in listing 3.24. We can try
to do the proof without using the set equality lemma for vectorOf. First, we unfold
genList5 and afterwards we unfold vectorOf. After some simplification we obtain the
goal shown in listing 3.25. Proving such a goal would be a very tedious process as we
would have to repeatedly apply the same lemmas for the used combinators. Instead we
can use vectorOf_equiv lemma to obtain a very compact representation for the sets of

3.1 Generators 43

� �
1 1 subgoals, subgoal 1 (ID 6)
2

3 ============================
4 sizedP (fun n : nat ⇒ chooseP (0, n)) ←→ (fun _ : nat ⇒ True)� �

Listing 3.21: Goal after unfolding PredMonad

� �
1 1 subgoals, subgoal 1 (ID 7)
2

3 ============================
4 (fun a : nat ⇒
5 ∃ n : nat,
6 is_true (Random.leq (fst (0, n)) a) ∧
7 is_true (Random.leq a (snd (0, n)))) ←→ (fun _ : nat ⇒ True)� �

Listing 3.22: Goal after unfolding chooseP and sizedP

� �
1 Lemma genNat_correct:
2 genNat ←→ fun _ : nat ⇒ True.
3 Proof.
4 unfold genNat. rewrite sized_def.
5 intros x. split; auto. intros _. ∃ x.
6 rewrite choose_def. split; auto.
7 Qed.� �

Listing 3.23: Proof for genNat correctness

44 Chapter 3. A Framework for Verified Testing in Coq

outcomes and a much smaller and easily provable goal, which is shown in listing 3.26. The
final proof is shown in listing 3.27.

� �
1 Lemma genList5_correct:
2 genList5 ←→ fun l ⇒ length l = 5.� �

Listing 3.24: Lemma for genList5 correctness

� �
1 1 subgoals, subgoal 1 (ID 37)
2

3 l : list nat
4 ============================
5 bindGen genNat
6 (fun x : nat ⇒
7 bindGen
8 (bindGen genNat
9 (fun x0 : nat ⇒

10 bindGen
11 (bindGen genNat
12 (fun x1 : nat ⇒
13 bindGen
14 (bindGen genNat
15 (fun x2 : nat ⇒
16 bindGen
17 (bindGen genNat
18 (fun x3 : nat ⇒
19 bindGen (returnGen nil)
20 (fun xs : list nat ⇒ returnGen (x3 :: xs))))
21 (fun xs : list nat ⇒ returnGen (x2 :: xs))))
22 (fun xs : list nat ⇒ returnGen (x1 :: xs))))
23 (fun xs : list nat ⇒ returnGen (x0 :: xs))))
24 (fun xs : list nat ⇒ returnGen (x :: xs))) l ↔
25 length l = 5� �

Listing 3.25: Goal after unfolding vectorOf

� �
1 l : list nat
2 ============================
3 length l = 5 ∧ (∀ x : nat, In x l → genNat x) ↔ length l = 5� �

Listing 3.26: Goal after using the set equality lemma

3.1.6 Arbitrary Type Class

The Arbitrary type class provides default generators for its instances. In order to be
able to map these generators to set of outcomes we need to parameterize the arbitrary
method with the generator type constructor. We change the definition of the type class as

3.2 Checkers 45

� �
1 Lemma genList5_correct:
2 genList5 ←→ fun l ⇒ length l = 5.
3 Proof.
4 intros l. unfold genList5. rewrite (vectorOf_equiv _ _ _). split.
5 − intros [H _]; auto.
6 − intros H. split; auto. intros x _. by apply genNat_correct.
7 Qed.� �

Listing 3.27: Proof for genList5 correctness

shown in listing 3.28. We instantiate the type class with generators that are parameterized
by the generator type constructor.

� �
1 Class Arbitrary (A : Type) : Type :=
2 {
3 arbitrary : ∀ {Gen : Type → Type} {H : GenMonad Gen}, Gen A;
4 shrink : A → list A
5 }.� �

Listing 3.28: New definition of the Arbitrary type class

We also provide lemmas for these generators proving that they can generate all the possible
elements of the underlying type. In particular for arbList, that uses the arbitrary
method to generate list elements, we prove that it can generate all the possible lists, if
arbitrary for the type of the elements can generate all the possible values of the type.
We can see to proofs in listing 3.30.

3.2 Checkers

Checkers are represented internally with the type Property. In order for something to be
testable it should be able to be turned into a Property. The type class testable provides
some automation for turning testable things into a Property by declaring through type
class instances a canonical way to turn something testable into a Property. In order to
map checkers to propositions we should be able to turn a Property into a proposition.

3.2.1 Semantics

Property represents is a non-deterministic computation of elements of type QProp, i.e. it
is a generator of elements of QProp. The type QProp wraps a record around rose trees
of results, as we have already seen in listing 2.6. We can learn the result of testing
just by looking at the root of the tree, since the other levels of the tree are only used
to facilitate shrinking, which doesn’t change the testing outcome and only happens if a
failure is encountered. Intuitively, we can map a Property to a proposition by requesting
all the results that belong to the set of testing outcomes to be successful.

46 Chapter 3. A Framework for Verified Testing in Coq

� �
1 Section ArbitrarySection.
2 Context {Gen : Type → Type}
3 {H : GenMonad Gen}.
4

5 Definition arbitraryBool := choose (false, true).
6

7 Definition arbitraryNat :=
8 sized (fun x ⇒ choose (0, x)).
9

10 Definition arbitraryZ :=
11 sized (fun x ⇒
12 let z := Z. of_nat x in
13 choose (−z, z)%Z).
14

15 Definition arbitraryList {A : Type} {Arb : Arbitrary A} :=
16 listOf arbitrary.
17

18 End ArbitrarySection.
19

20 Instance arbBool : Arbitrary bool :=
21 {|
22 arbitrary := @arbitraryBool;
23 shrink := shrinkBool
24 |}.
25

26 Instance arbNat : Arbitrary nat :=
27 {|
28 arbitrary := @arbitraryNat;
29 shrink x := shrinkNat x
30 |}.
31

32 Instance arbInt : Arbitrary Z :=
33 {|
34 arbitrary := @arbitraryZ;
35 shrink := shrinkZ
36 |}.
37

38 Instance arbList {A : Type} {Arb : Arbitrary A} : Arbitrary (list A) :=
39 {|
40 arbitrary g H := @arbitraryList g H A Arb;
41 shrink := shrinkList shrink
42 |}.� �

Listing 3.29: Instance definitions for the Arbitrary type class

3.2 Checkers 47

� �
1 Lemma arbBool_correct:
2 arbitrary ←→ (fun (_ : bool) ⇒ True).
3

4 Lemma arbNat_correct:
5 arbitrary ←→ (fun (_ : nat) ⇒ True).
6

7 Lemma arbInt_correct:
8 arbitrary ←→ (fun (_ : Z) ⇒ True).
9

10 Lemma arbList_correct:
11 ∀ {A} {H : Arbitrary A},
12 (arbitrary ←→ (fun (_ : A) ⇒ True)) →
13 (arbitrary ←→ (fun (_ : list A) ⇒ True)).� �

Listing 3.30: Proofs for arbitrary generators

Since Property is a type synonym for Gen QProp and in order to map it to propositions
we need to abstract over the generator by making Property parametric on the generator
type constructor. We change the definition of Property as shown in listing listing 3.31.
As in generators, we put Property combinators in a section in which we assume in context
a type constructor which is instance of the GenMonad type class.� �

1 Definition Property := Property Pred.� �
Listing 3.31: Definition of Property

We should also define what means for the testing outcome to be successful. A Result is
correct either when the field ok is None which denotes a discarded test case, or then the
field ok is equal to Some b and the boolean value b is equal to the value of the expect
field, which denotes the expected testing result. When b does not coincide with expect
then we have a failed Result. The testing outcome, which is of type QProp is successful
when the root node of the rose tree is a successful. The two definitions can be seen in
listing 3.32.� �

1 Definition resultSuccessful (r : Result) : bool :=
2 match r with
3 | MkResult (Some res) expected _ _ _ _ ⇒
4 res == expected
5 | _ ⇒ true
6 end.� �

Listing 3.32: Successful Result definition

Using these definitions, we can map a Property to a proposition by stating that for all the
values that belong to its set of outcomes are successful. The function that maps a Property
to a proposition is named semProperty and we can see its definition in listing 3.33. We
can now give semantics to each element of a type that is instance to the Testable type
class by turning it into a Property and calling the semProperty function.

48 Chapter 3. A Framework for Verified Testing in Coq

� �
1 Definition success qp :=
2 match qp with
3 | MkProp (MkRose res _) ⇒ resultSuccessful res
4 end.
5

6 Definition semProperty (P : Property) : Prop :=
7 ∀ qp, P qp → success qp = true.
8

9 Definition semTestable {A : Type} {_ : Testable A} (a : A) : Prop :=
10 semProperty (property a).� �

Listing 3.33: Semantics for Property

The proposition we obtain by this method completely describes the conjecture under test
and by proving it equivalent to a high-level specification we are proving that the conjecture
under test indeed corresponds to the intended high-level specification.

3.2.2 Lemma Library

Although the type class Testable provides an automated way of deriving Properties, the
later can be also formed by using a library of combinators. We provide a set of lemmas that
prove that the Property obtained from each combinator is equivalent to a less complex
one. We can use this set of lemmas to prove statements about the resulting properties
without having to unfold the definitions of combinators.

Identity Lemmas

A number of Property combinators are intended for instrumentation purposes and thus
they do not affect the testing outcome. We provide a set of lemmas that state that the
proposition we obtain from the Property before applying these combinators is equivalent
to the one we obtain from the Property that is returned after the application of the
combinator.

forAll

This combinators take a generator of elements of type A and a function f from A to a type
that is instance of the testable class and return a Property that tests the given function
using the given generator. It must also be provided with a function for printing elements
of type A, in order to print test cases. We prove that the proposition that we obtain from
the returned Property is equivalent to the proposition that states that all elements a that
can be generated from the generator, satisfy the proposition that we obtain from f a.

implication

The combinator implication takes a boolean parameter and a parameter of a Testable
type and returns a Property that discards all the test case if the boolean parameter is

3.2 Checkers 49

� �
1 Lemma semCallback_id:
2 ∀ {prop : Type} {H : Testable prop} (cb : Callback) (p : prop),
3 semProperty (callback cb p) ↔ semTestable p.
4

5 Lemma semWhenFail_id:
6 ∀ {prop : Type} {H : Testable prop} (s : String.string) (p : prop),
7 semProperty (whenFail s p) ↔ semTestable p.
8

9 Lemma semPrintTestCase_id:
10 ∀ {prop: Type} {H : Testable prop} (s: String.string) (p: prop),
11 semProperty (printTestCase s p) ↔ semTestable p.
12

13 Lemma semShrinking_id:
14 ∀ {prop A : Type} {H : Testable prop}
15 (shrinker : A → list A) (x0 : A) (pf : A → prop),
16 semProperty (shrinking shrinker x0 pf) ↔ semTestable (pf x0).
17

18 Lemma semCover_id:
19 ∀ {prop : Type} {H : Testable prop} (b: bool) (n: nat)
20 (s: String.string) (p : prop),
21 semProperty (cover b n s p) ↔ semTestable p.
22

23 Lemma semClassify_id:
24 ∀ {prop : Type} {H : Testable prop} (b: bool) (s: String.string)
25 (p : prop),
26 semProperty (classify b s p) ↔ semTestable p.
27

28 Lemma semLabel_id:
29 ∀ {prop : Type} {H : Testable prop} (s: String.string)
30 (p : prop),
31 semProperty (label s p) ↔ semTestable p.
32

33 Lemma semCollect_id:
34 ∀ {prop : Type} {H : Testable prop} (s: String.string)
35 (p : prop),
36 semProperty (collect s p) ↔ semTestable p.
37

38 Lemma mapTotalResult_id:
39 ∀ {prop : Type} {H : Testable prop} (f : Result → Result) (p : prop),
40 (∀ res, resultSuccessful res = resultSuccessful (f res)) →
41 (semProperty (mapTotalResult f p) ↔ semTestable p).� �

Listing 3.34: Identity lemmas for Property combinators

50 Chapter 3. A Framework for Verified Testing in Coq

� �
1 Lemma semForAll :
2 ∀ {A prop : Type} {H : Testable prop}
3 show (gen : Pred A) (f : A → prop),
4 semProperty (forAll show gen f) ↔
5 ∀ a : A, gen a → semTestable (f a).
6

7 Lemma semForAllShrink:
8 ∀ {A prop : Type} {H : Testable prop}
9 show (gen : Pred A) (f : A → prop) shrinker,

10 semProperty (forAllShrink show gen shrinker f) ↔
11 ∀ a : A, gen a → semTestable (f a).� �

Listing 3.35: Lemmas for forAll and forAllShrink

not true. We prove that the resulting proposition is equivalent to True if the boolean
parameter is false otherwise is equivalent to the proposition that we can obtain from the
given Testable element.� �

1 Lemma semImplication:
2 ∀ {prop : Type} {H : Testable prop}
3 (p : prop) (b : bool),
4 semProperty (b ==> p) ↔ b = true → semTestable p.� �

Listing 3.36: Lemma for implication

Lemmas for specific types

We also prove that the propositions we obtain by semTestable for some Testable in-
stances are equivalent to some more intuitive and high level propositions. For example
we prove that for boolean values the equivalent proposition is the proposition we get by
setting the boolean value to be equal to true and for Result values the equivalent propo-
sition is setting the result of the function resultSuccessful applied in the value to be
equal to true. For functions from a type A which is instance of Arbitrary type class to
a type prop which is instance of Testable, we prove that the proposition is equivalent to
the one that states that all elements a that can be generated from the arbitrary method
satisfy the proposition that we obtain from f a. For polymorphic functions we prove that
the proposition we obtain is equivalent to the proposition we obtain if we instantiate the
polymorphic type to nat. This is the strongest property we can obtain since by default
polymorphic functions will only be tested for values of type nat.

3.2.3 Provable Type Class

We define the type class Provable to provide some automation for the above lemmas
application. More specifically, Provable provides a proposition for all the types which are
also instances of Testable and a proof that the aforementioned proposition is equivalent to
the one we get by semTestable but more high-level and understandable. This proposition

3.2 Checkers 51

� �
1 Lemma semBool:
2 ∀ (b : bool), semTestable b ↔ b = true.
3

4 Lemma semResult:
5 ∀ (res: Result), semTestable res ↔ resultSuccessful res = true.
6

7 Lemma semUnit:
8 ∀ (t: unit), semTestable t ↔ True.
9

10 Lemma semQProp:
11 ∀ (qp: QProp), semTestable qp ↔ success qp = true.
12

13 Lemma semGen:
14 ∀ (P : Type) {H : Testable P} (gen: Pred P),
15 (semTestable gen) ↔ (∀ p, gen p → semTestable p).
16

17 Lemma semFun:
18 ∀ {A prop : Type} {H1 : Show A} {H2 : Arbitrary A} {H3 : Testable prop}
19 (f : A → prop),
20 semTestable f ↔
21 (∀ (a : A), (arbitrary : Pred A) a → semTestable (f a)).
22

23 Lemma semPolyFun:
24 ∀ {prop : Type → Type} {H : Testable (prop nat)} (f : ∀ T, prop T),
25 (semTestable f) ↔ (semTestable (f nat)).
26

27 Lemma semPolyFunSet:
28 ∀ {prop : Set → Type} {H : Testable (prop nat)} (f : ∀ T, prop T),
29 (semTestable f) ↔ (semTestable (f nat)).� �

Listing 3.37: Lemma for implication

52 Chapter 3. A Framework for Verified Testing in Coq

can also be obtained manually but it would require the application of the lemmas we
described above. Since this type class require its instances to also be instances of the
Testable type class we make it a subclass of it. The definition of the type class and its
instances can be seen in listings 3.38 to 3.40.

� �
1 Class Provable (A : Type) {H: Testable A} : Type :=
2 {
3 proposition : A → Prop;
4 _ : ∀ a, proposition a ↔ semTestable a
5 }.� �

Listing 3.38: Provable type class

� �
1 Program Instance proveResult : Provable Result :=
2 {|
3 proposition := resultSuccessful
4 |}.
5 Next Obligation.
6 by rewrite semResult.
7 Qed.
8

9 Program Instance proveUnit : Provable unit :=
10 {|
11 proposition := fun _ ⇒ True
12 |}.
13 Next Obligation.
14 by rewrite semUnit.
15 Qed.
16

17 Program Instance proveQProp : Provable QProp :=
18 {|
19 proposition qp := success qp = true
20 |}.
21 Next Obligation.
22 by rewrite semQProp.
23 Qed.
24

25 Program Instance proveBool : Provable bool :=
26 {|
27 proposition b := b = true
28 |}.
29 Next Obligation.
30 by rewrite semBool.
31 Qed.� �

Listing 3.39: Provable instances

3.2 Checkers 53

� �
1 Program Instance proveGenProp {prop : Type} ‘{ Provable prop} :
2 Provable (Pred prop) :=
3 {|
4 proposition g := (∀ p, g p → proposition p)
5 |}.
6 Next Obligation.
7 destruct H0 as [semP proof]. rewrite /proposition. split.
8 − move ⇒ H’. apply semGen⇒ p Hgen. apply proof. by auto.
9 − move ⇒ /semGen H’ p Hgen. apply proof. by auto.

10 Qed.
11

12 Program Instance proveFun {A prop: Type} ‘{ Arbitrary A} ‘{ Show A}
13 ‘{ Provable prop}: Provable (A → prop) :=
14 {|
15 proposition p :=
16 (∀ a,
17 @arbitrary _ _ Pred _ a →
18 proposition (p a))
19 |}.
20 Next Obligation.
21 destruct H2 as [semP proof]. rewrite /proposition. split.
22 − move⇒ H’. apply semFun ⇒ a’ /H’ Hgen.
23 by apply proof.
24 − move⇒ H’ a’ Hgen. apply proof. by apply semFun.
25 Qed.
26

27 Program Instance provePolyFun {prop : Type → Type} ‘{Provable (prop nat)} :
28 Provable (∀ T, prop T) :=
29 {
30 proposition f := proposition (f nat)
31 }.
32 Next Obligation.
33 destruct H0 as [semP proof]. rewrite /proposition. split.
34 − move⇒ /proof H’. by apply semPolyFun.
35 − move⇒ /semPolyFun H’. by apply proof.
36 Qed.
37

38 Program Instance provePolyFunSet {prop : Set → Type} ‘{Provable (prop nat)} :
39 Provable (∀ T, prop T) :=
40 {
41 proposition f := proposition (f nat)
42 }.
43 Next Obligation.
44 destruct H0 as [semP proof]. rewrite /proposition. split.
45 − move⇒ /proof H’. by apply semPolyFunSet.
46 − move⇒ /semPolyFunSet H’. by apply proof.
47 Qed.� �

Listing 3.40: Provable instances

54 Chapter 3. A Framework for Verified Testing in Coq

3.2.4 A Motivating Example for Combinator Lemmas

We will emphasize the need for the lemma library and the Provable type class with an
example. We write a checker that checks the property that for every list if we reverse it
twice we will get the initial list. We express it as a boolean predicate that takes a list of
natural numbers and checks if the property holds by using the SSRperator == for
boolean equality. This can be automatically mapped into a Property as it is an instance
of the Testable type class. For the list of natural numbers generation, we will use the
default generators provided by the Arbitraty type class. In particular, arbList will be
used for list which will use arbNat for number generators. We have already proved that
arbList can generate all the possible list if the generator used for the elements if them
can also generate all the possible elements, which is the case for arbNat. We write the
checker in a section to parameterize it by the generator type constructor.� �

1 Section Properties.
2 Context {Gen : Type → Type}
3 {H : GenMonad Gen}.
4

5 Definition prop_reverse := (fun (l : list nat) ⇒ rev (rev l) == l).� �
Listing 3.41: Checker for rev

Then, we can prove that a proposition corresponds to the conjecture under test by proving
the lemma shown in listing 3.42.� �

1 Lemma prop_reverse_correct:
2 (semTestable prop_reverse) ↔ (∀ (l : list nat), (rev (rev l) = l)).� �

Listing 3.42: Lemma for rev checker

In order to prove such a lemma we could start by unfolding semTestable and semPropety
definitions. After that we would need to unfold property and thus the corresponding
Testable instance. That would lead us to the goal shown in listing 3.43. Trying to
prove that goal requires a lot of effort as we would have to reason about forAll. Even
simplification at that point would lead to a very complex and long goal. Instead we can
use semFun lemma to get rid of the outermost call to semTestable leading us to the goal
we can see in listing 3.44. As the proof proceeds can use semBool eradicate the inner
semTestable occurrence.� �

1 1 subgoals, subgoal 1 (ID 91)
2

3 ============================
4 (∀ qp : QProp,
5 forAll show arbitrary shrink prop_reverse qp → success qp = true) ↔
6 (∀ l : seq nat, rev (rev l) = l)� �

Listing 3.43: Goal after unfolding semTestable, semPropety and property

3.2 Checkers 55

� �
1 1 subgoals, subgoal 1 (ID 103)
2

3 ============================
4 (∀ a : seq nat, arbitrary a → semTestable (prop_reverse a)) ↔
5 (∀ l : seq nat, rev (rev l) = l)� �

Listing 3.44: Goal after using semFun

However, instead of manually applying the lemmas we can use the proposition method
to get the corresponding proposition. The lemma to be proved should change to the
one depicted in listing 3.45. Then after simplification we can obtain the goal shown in
listing 3.46. The complete proof can be seen in listing 3.47.� �

1 Lemma prop_reverse_correct’:
2 (proposition prop_reverse) ↔ (∀ (l : list nat), (rev (rev l) = l)).� �

Listing 3.45: Lemma for rev checker using Provable type class

� �
1 1 subgoals, subgoal 1 (ID 93)
2

3 ============================
4 (∀ a : seq nat, arbitraryList a → prop_reverse a = true) ↔
5 (∀ l : seq nat, rev (rev l) = l)� �

Listing 3.46: Goal obtained by using proposition

� �
1 Lemma prop_reverse_correct’:
2 (proposition prop_reverse) ↔ (∀ (l : list nat), (rev (rev l) = l)).
3 Proof.
4 simpl. unfold prop_reverse. split.
5 − intros H l. apply/eqP. apply H. apply arbList_correct; auto.
6 split; auto. intros _. by apply arbNat_correct.
7 − intros H l _. by apply/eqP.
8 Qed.� �

Listing 3.47: Lemma for rev checker using Provable type class

Chapter 4

Case Studies

At this chapter we will use our verification framework to prove correct a non-trivial gen-
erator for red-black trees and finally prove the executable checker we will write to test the
implementation or red-black trees corresponds to a high level proposition. Furthermore, we
will describe our experience from using our framework to verify the testing infrastructure
of a more complex development of an information-flow control (IFC) machine.

4.1 Red-black Trees

A Red-black tree is a binary search tree, each node of which is additionally labeled with
a color, namely red or black. It is a self-balancing data structure and the balance is
preserved by enforcing the following invariants:

• The root is always black

• The leaves are empty and black

• For all the node the path to each possible leaf has the same number of black nodes

• Red nodes have only black children

From these invariants it follows that the longest path to a leave is at most twice as long
as the shortest and this allows all operations to run in O(logn) time, where n is the total
number of nodes. An implementation in a purely functional setting has been proposed by
Okasaki in [17] and verified in Coq by Appel in [2]. We will the implementation proposed
in [17] the to write generators and checkers that will test that the red-black invariant is
preserved by the insertion operation. That claim has already been verified in [2] however
our intention is to demonstrate how testing infrastructure can be formally verified rather
that find counterexamples in the implementation of red-black trees.

4.1.1 Representation

The representation of red-black trees is straightforward and only requires a small modifi-
cation to the common binary tree data type in order to keep a color label in each node.
For simplicity, we choose the key of the node to be an natural number.

57

58 Chapter 4. Case Studies

� �
1 Inductive color := Red | Black.
2

3 Inductive tree :=
4 | Leaf : tree
5 | Node : color → tree → nat → tree → tree.� �

Listing 4.1: Red-black trees data type

4.1.2 Declarative Definitions

As we can see in [2], the red-black tree invariant can be formalized as an inductive defini-
tion. We can see the invariant definition in listing 4.2.

� �
1 Inductive is_redblack : tree → color → nat → Prop :=
2 | IsRB_leaf: ∀ c, is_redblack Leaf c 0
3 | IsRB_r: ∀ n tl tr h,
4 is_redblack tl Red h → is_redblack tr Red h →
5 is_redblack (Node Red tl n tr) Black h
6 | IsRB_b: ∀ c n tl tr h,
7 is_redblack tl Black h → is_redblack tr Black h →
8 is_redblack (Node Black tl n tr) c (S h).� �

Listing 4.2: Red-black invariant

The definition takes tree parameters, the tree, a natural number and a color. The natural
number represents the black-height i.e. the number of black nodes in any path from the
root node to the leaves. The color represents the color-context i.e. the color that the
parent node can have in order for the tree to be a sub-tree of a well-formed red-black tree.
A leaf is a well-formed red-black tree with black-height 0 in any color-context. A tree
with a red root is a well-formed red-black tree with black-height h if both of its subtrees
have black-height equal to h and the color-context is black. Intuitively that means that a
red node does not change the black-height and cannot have a red parent. A tree with a
red root is a well-formed red-black tree with black-height h+1 if both of its subtrees have
black-height equal to h and in whatever color-context. Intuitively that means that a black
node increases the black-height by one and it has no restrictions for the color of its parent
node. In each case the black-height of the child nodes must be equal in order for the third
bullet of the invariant to be satisfied. A tree t is satisfies the red-black tree invariant if

∃ h, is_redblack h Red t

Since the root has to be always black the outermost color-context has to be red in order
to enforce this.

We implement an insert functions that adds a node to a given tree. The exact implemen-
tation of the insert function is beyond the scope if this case study and it can be found
in the given references. A correct insert implementation must preserve the red-black
invariant. We can formalize our claim with the following proposition. The corresponding
Coq code can be seen in listing 4.3.

4.1 Red-black Trees 59

∀ t n h, is_redblack h Red t → ∃ h′, is_redblack h′ Red (insert x t)

� �
1 Definition insert_is_redblack :=
2 ∀ x s h, is_redblack s Red h →
3 ∃ h’, is_redblack (insert x s) Red h’.� �

Listing 4.3: Invariant preservation by insert

4.1.3 Generators

In order to be able to test that insert preserve the invariant we need a generator for
red black trees. We could write a generator that does not enforce the red-black invariant
and then filter out the generated trees that are do not respect the invariant. However,
this would be extremely inefficient as is highly unlikely that a randomly generated tree
will be well-formed. We will write a generator that satisfies the red-black invariant by
construction.

First, we write a generator for colors. The genColor generator generates red or black with
equal probability. Then we write a red-black tree generator that is parameterized by the
color-context and the black-height. The generation strategy goes as follows: It the black-
height is zero and the color-context is red then only leaf, that are black by default, can be
generated. If the black-height is zero and the color-context is black either a leaf or a red
node with two leaves for child nodes can be generated. If the black-height is h+1 and the
color-context is red then when we generate a black node with a randomly key and we call
the generator recursively to generate two subtrees with black-height h and color-context
red. If the black-height is h + 1 and the color-context is black that we randomly choose
the color of the node. If we pick black then we follow then we do the procedure we just
described. If we pick red then we generate a red node with random key and we attach each
one two black nodes with random keys and we call recursively the generator to generate
for subtrees with black color-context and a black-height of h which we attach in the black
nodes.

We can now use this generator to write a red-black tree generator for an arbitrary black-
height. We set the outer color-context to red to enforce the root and we call sized in order
to make the black-height parameter to depend from the global size parameter. We claim
that this generator can generate all the possible trees that satisfy the red-black invariant
and only them.

Indeed, we can use our framework to verify that claim. First, we prove that genColor
generates both Black and Red. Although this is trivial we will use this proof to build the
proof for the red-black tree generator in order to avoid reasoning about genColor each
time it occurs in the proof.

Next we prove that for all possible color-contexts c and black-heights h the generator
genRBTree_height h c generates all the possible trees that satisfy the red-black invari-
ant with black-height h and color-context c and only them. This lemma can be seen in
listing 4.6.

60 Chapter 4. Case Studies

� �
1 Section Generators.
2 Context {Gen : Type → Type}
3 {H: GenMonad Gen}.
4

5

6 Definition genColor := elements Red [Red; Black].
7

8 Fixpoint genRBTree_height (h : nat) (c : color) :=
9 match h with

10 | 0 ⇒
11 match c with
12 | Red ⇒ returnGen Leaf
13 | Black ⇒ oneof (returnGen Leaf)
14 [returnGen Leaf;
15 bindGen arbitraryNat (fun n ⇒
16 returnGen (Node Red Leaf n Leaf))]
17 end
18 | S h ⇒
19 match c with
20 | Red ⇒
21 bindGen (genRBTree_height h Black) (fun t1 ⇒
22 bindGen (genRBTree_height h Black) (fun t2 ⇒
23 bindGen arbitraryNat (fun n ⇒
24 returnGen (Node Black t1 n t2))))
25 | Black ⇒
26 bindGen genColor (fun c’ ⇒
27 match c’ with
28 | Red ⇒
29 bindGen (genRBTree_height h Black) (fun tl1 ⇒
30 bindGen (genRBTree_height h Black) (fun tl2 ⇒
31 bindGen (genRBTree_height h Black) (fun tr1 ⇒
32 bindGen (genRBTree_height h Black) (fun tr2 ⇒
33 bindGen arbitraryNat (fun n ⇒
34 bindGen arbitraryNat (fun nl ⇒
35 bindGen arbitraryNat (fun nr ⇒
36 returnGen (Node Red (Node Black tl1 nl tr1) n
37 (Node Black tl2 nr tr2)))))))))
38 | Black ⇒
39 bindGen (genRBTree_height h Black) (fun t1 ⇒
40 bindGen (genRBTree_height h Black) (fun t2 ⇒
41 bindGen arbitraryNat (fun n ⇒
42 returnGen (Node Black t1 n t2))))
43 end)
44 end
45 end.
46

47 Definition genRBTree := sized (fun h ⇒ genRBTree_height h Red).
48

49 End Generators.� �
Listing 4.4: Red-black tree generation

4.1 Red-black Trees 61

� �
1 Lemma genColor_correct:
2 genColor ←→ (fun _ ⇒ True).� �

Listing 4.5: Correctness lemma for genColor

� �
1 Lemma genRBTree_height_correct:
2 ∀ c h,
3 (genRBTree_height h c) ←→ (fun t ⇒ is_redblack t c h).� �

Listing 4.6: Correctness lemma for genRBTree_height

Finally, we can use the previous lemma to prove that genRBTRee generates all the possible
trees that satisfy the red-black invariant.

� �
1 Lemma genRBTree_correct:
2 genRBTree ←→ (fun t ⇒ ∃ h, is_redblack t Red h).� �

Listing 4.7: Correctness lemma for genRBTree

4.1.4 Executable Definitions

In order to be able to test the hypothesis about insert function we need an executable
variant of the is_redblack invariant. Since the definition of the invariant we have gives
us a Prop we are only able to prove that a tree satisfies it rather than efficiently test it.
For this reason we will write a boolean predicate that given a tree and a color-context
returns true if the tree is a well-formed red-black tree under the given color-context. We
can describe a decision procedure that can determine whether a tree is well-formed. If the
tree is a Leaf then it is well-formed regardless of the color-context. If the root node is black
then the tree is well-formed regardless the color-context if both of the subtrees have the
same black-height and they are well-formed under black color-context. If the root node
is red then the tree is well-formed only under a red color-context if both of the subtrees
have the same black-height and they are well-formed under red color-context. In order to
express this as a boolean predicate we need a way to calculate the black-height of a tree.

We define the function black_height_dec that returns Some n if the black-height invariant
holds for each node and the black-height of the root node is n and None if the black-height
invariant does not hold. This is depicted in listing 4.9.

Using the above function we can define a boolean predicate that checks if a red-black tree
is well-formed under a color-context.

We can now form a checker that check that if we insert a node to a tree that satisfy the
red-black invariant the resulting tree will also satisfy the red-black invariant.

However, in order to be sure that our decision procedure is correct we have to prove
them equivalent to the inductive one. We will use the SSR[11, 10] library and

62 Chapter 4. Case Studies

� �
1 Fixpoint black_height_dec (t: tree) : option nat :=
2 match t with
3 | Leaf ⇒ Some 0
4 | Node c tl _ tr ⇒
5 let h1 := black_height_dec tl in
6 let h2 := black_height_dec tr in
7 match h1, h2 with
8 | Some n1, Some n2 ⇒
9 if n1 == n2 then

10 match c with
11 | Black ⇒ Some (S n1)
12 | Red ⇒ Some n1
13 end
14 else None
15 | _, _ ⇒ None
16 end
17 end.� �

Listing 4.8: A procedure that calculates the black-height

� �
1 Fixpoint is_redblack_dec (t : tree) (c: color) : bool :=
2 match t with
3 | Leaf ⇒ true
4 | Node c’ tl _ tr ⇒
5 match c’ with
6 | Black ⇒
7 (black_height_dec tl == black_height_dec tr) &&
8 is_redblack_dec tl Black && is_redblack_dec tr Black
9 | Red ⇒

10 match c with
11 | Black ⇒
12 (black_height_dec tl == black_height_dec tr) &&
13 is_redblack_dec tl Red && is_redblack_dec tr Red
14 | Red ⇒ false
15 end
16 end
17 end.� �

Listing 4.9: A procedure that decides if a red-black tree is well-formed under a given color-
context

4.1 Red-black Trees 63

� �
1 Section Checker.
2 Context {Gen : Type → Type}
3 {H: GenMonad Gen}.
4

5 Definition insert_is_redblack_checker : Gen QProp :=
6 forAll show_nat arbitraryNat (fun n ⇒
7 (forAll showRBTree genRBTree (fun t ⇒
8 (is_redblack_dec t Red ==>
9 is_redblack_dec (insert n t) Red) : Gen QProp)) : Gen QProp).

10

11 End Checker.� �
Listing 4.10: Invariant preservation checker

in particular the inductive predicate reflect that relates equivalent boolean and logical
definitions. Our goal is to prove that is_redblack_dec t c is true if and only if exists a
black-height h such that is_redblackc t c h.

First we prove that if is_redblackc t c h holds if and only if is_redblack_dec t c is
true and black_height_dec is equal to Some n. Then, we prove that if is_redblack_dec
t c is true then t has a black-height. Using those two lemmas we can prove the final lemma
that corresponds to our claim. We can see the statements of the lemmas in listings 4.11
to 4.13.

� �
1 Lemma is_redblackP :
2 ∀ (t : tree) (c : color) n,
3 reflect (is_redblack t c n)
4 (is_redblack_dec t c && (black_height_dec t == Some n)).� �

Listing 4.11: Reflection proof between is_redblack and is_redblack_dec

� �
1 Lemma has_black_height_dec :
2 ∀ t c, is_redblack_dec t c → ∃ n, black_height_dec t = Some n.� �

Listing 4.12: Lemma for black_height_dec

� �
1 Lemma is_redblack_exP :
2 ∀ (t : tree) (c : color),
3 reflect (∃ n, is_redblack t c n)
4 (is_redblack_dec t c).� �

Listing 4.13: Reflection proof between is_redblack and is_redblack_dec

64 Chapter 4. Case Studies

4.1.5 An End to End Proof

The final goal is to prove that the checker we wrote indeed correspond to the specification
shown in listing 4.3. We will use semProperty to map our checker to a proposition and the
prove this equivalent with the insert_is_redblack proposition. In order to prove that
lemma we make use of the correctness proof for red-black tree generators, the correctness
proofs of the executable definitions and finally the proofs for the Property combinators
we use that are provided by the lemma library of our framework. The formulation of the
lemma we proved can be seen in listing 4.14.� �

1 Lemma insert_is_redblack_checker_correct:
2 semProperty insert_is_redblack_checker ↔ insert_is_redblack.� �

Listing 4.14: Lemma stating that the conjecture under test corresponds to the high-level
specification

4.2 IFC Case Study

We applied our methodology to verify the generators used in a complex testing infrastruc-
ture aimed to test an information flow control machine1 [12]. The goal was to test that
starting from any pair of indistinguishable states any two executions results to final states
are also indistinguishable. Each state consists of the instruction and the data memory, a
program counter, a stack and a set of registers.
The generators we verified were used to generate state variations, i.e. pairs of indistinguish-
able states according to a given indistinguishability definition. According to the generation
strategy followed the fist state was generated arbitrarily and the second by varying the
fist in order to create a second indistinguishable state. The are two kinds of generators,
generators that are used to generate arbitrary state components and generators that given
a state component produce a variation of it. Those generators were composed in order
to write the final generator used for state variation generation. The utmost goal of this
testing method was to create only indistinguishable states and all the possible meaningful
pairs.
We verified each of these generators with respect to a high-level specification. We proved
soundness of the generation strategy, i.e. that any pair generated by the variation genera-
tors was indeed indistinguishable, thus state variation generation is sound with respect to
indistinguishability. We also prove completeness for the generators with respect to indis-
tinguishability and some additional constraints that arise from the way we are generating
the state components. This indicates that there are pairs of indistinguishable states that
cannot be generated and this could potentially affect the effectiveness of the method. One
could prove the testing method complete by either removing the additional constraint or
proving that these constraints do not affect the generality of the method, i.e. if the desired
specification hold for states that have these constraints then it holds for all the states.
Through this case study we were able to verify preexisting code that was not written
with verification in mind. The generators of this case study were built in a compositional

1The development, along with our proofs, can be found at https://github.com/QuickChick/IFC

https://github.com/QuickChick/IFC

4.2 IFC Case Study 65

manner that allowed us to structure our proofs in a compositional and modular way. We
were able to locate incomplete generators with respect to the indistinguishable relation
and we were able to reason about the exact sets of values that can be generated.

Chapter 5

Related Work

5.1 Property Based Testing and Proof Assistants

5.1.1 Isabelle/HOL

A lot of progress has been made in combining random testing and Isabelle theorem prover,
by extending the prover with a QuickCkeck-like tool that supports random testing for spec-
ifications written in executable fragment of Isabelle/HOL [4, 5, 6]. The New QuickCheck
for Isabelle also provides automatic test data generator synthesis taking specifications into
account. However, up to our knowledge, no formal guarantee about the completeness and
the soundness of the synthesized generators is provided.

5.1.2 Agda/Alfa

The proof assistant Agda/Alfa is extended with a QuickCheck-like tool that facilitates
debugging of programs and specifications before a proof is attempted [8]. The are showing
how the fact the generators are themselves written in Agda/Alfa can be exploited to use
the dependent type system in order to prove properties such us surjectivity about them.
For instance, in order to prove surjectivity (i.e. that all the possible elements can indeed be
generated) one has to prove that for each the value it exists a random seed such that given
that random seed the generator generates that value. Although Dybjer et al. touch the
subject of generator completeness they do no not provide any infrastructure for reasoning
about the correctness of generators.

5.2 Testing Evaluation Techniques

5.2.1 Mutation Testing

Mutation testing is a method for evaluating the quality of the testing methodology [14] by
modifying the software under multiple times in order to create a set of mutants that are
then being tested with the same methodology as the original program. The percentage
of the mutants that are discovered by testing to have different behavior than the original
program provides a measure for the effectiveness of the applied testing method. Mutation

67

68 Chapter 5. Related Work

testing has been traditionally used for evaluating the adequacy of a test suite but it has also
been used to spot weaknesses in specifications used for property base testing [16]. Although
mutation testing can be effective in evaluating testing methodologies and especially novel
test techniques, it is associated with the high cost of finding the inadequacies of the testing
method from mutants that appear to have the same behavior as the original program.
The effectiveness of mutation testing is also very sensitive to the set of mutation operators
applied thus with an inadequate set of mutation operators even a good mutation score
can provide very little assurance about the quality of the testing method. Concluding,
mutation testing is a technique that can be effective when designed correctly but comes
with no formal guarantees about the effectiveness of the testing method that is being
evaluated.

5.2.2 Coverage Analysis

Code coverage is also used as a metric to determine the thoroughness of a test suite.
Different kinds of coverage can be used in order to evaluate the completeness of the test
data, such as statement or branch coverage. This technique can be very effective in finding
paths of the programs that have never been exercised and may contain bugs. Nevertheless,
even if the code is 100% covered the testing can still be incomplete as test cases that
produce other kinds of errors, such as arithmetic overflows may never be produced.

Chapter 6

Conclusions and Future Work

We extended QuickChick with a verification mechanism that allows us to reason about the
effectiveness of testing infrastructure. We provide an automatic way to map checkers into
logical propositions that correspond to the exact conjecture under test. The user can use
those propositions in order to prove that they are equivalent to a more intuitive high-level
declarative specification. Our framework facilitates reasoning about probabilistic programs
by abstracting over the random generation representation and over-approximating the
underlying probability distribution with the set of values that have non-zero probability
to be generated. By mapping generators to sets of outcomes one can prove soundness and
completeness for generators.

We used our verification methodology in order to prove statements for an already existing
complex testing infrastructure with minimal changes to the code. Essentially the only
change we had to do was to put generator and checker definitions in a Coq section in order
to make them parametric in the generator type constructor. Our framework encourages
the user to structure the proofs in a compositional way achieving modularity and thus
more robust and scalable proofs. We can build proofs about complex generators that are
independent from the implementation of the individual components being used and only
depend from their specifications.

We also proved high-level specifications for QuickChick combinators. These lemmas can
be used in order to prove statements about user defined generators that are using the
combinators without having to unfold their definitions. The verification with respect
to high-level specification of built-in combinators is a first stew towards a fully verified
QuickChick implementation.

As a future goal, we could try to lift our assumptions by proving that the primitive genera-
tor combinators indeed correspond the to set of outcomes semantics we axiomatically give
them. This way we can obtain a fully verified QuickChick interface for building generators
and checkers. However, in order to be able to to reason about the primitive combinators
we should be able to reason about things that are not currently implemented in Coq. Be-
fore attempting to prove that primitive combinators are sound and complete with respect
to the sets of outcomes that we map them to, QuickChick should be deeper integrated
into Coq as currently we are relying on the extraction language for generation of some
built-in types and seed generation and passing.

The set of outcomes abstraction provides only an over-approximation of the underlying

69

70 Chapter 6. Conclusions and Future Work

probability distribution and even generators that are proved correct can have a bad prob-
ability distribution that affects the effectiveness of the testing method, as elements which
belong to the set of outcomes may have very small probability to be generated in practice.
We believe that we can reason about the probability distributions of generators by in-
stantiating the abstract generator type class with a probability monad in order to be able
to map generators to probability distributions semantics. This will give us the ability to
prove properties about the probability distributions of the generators such as uniformity.
To this direction, we might consider using ALEA [19] library, that will allows us to reason
about randomized programs in Coq.

Although our tool eases the verification required there is manual effort required to prove
the automatically derived propositions equivalent to the desired ones. A potential direction
would be to try to provide more automation that could minimize the manual verification
effort required. To this end we could build a framework for automatic generator synthesis
from specifications and eliminate the manual effort required for required for proving correct
custom generators by verifying, using out verification framework, that the automatically
produced generators are correct and complete with respect to the given specifications
using.

Bibliography

[1] C. Amaral, M. Florido, and V. Santos Costa. Prologcheck – property-based testing
in prolog. In M. Codish and E. Sumii, editors, Functional and Logic Programming,
volume 8475 of Lecture Notes in Computer Science, pages 1–17. Springer International
Publishing, 2014.

[2] A. W. Appel. Efficient verified red-black trees, 2011.

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software with
quviq quickcheck. In Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang,
ERLANG ’06, pages 2–10, New York, NY, USA, 2006. ACM.

[4] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In 2nd International
Conference on Software Engineering and Formal Methods (SEFM), pages 230–239.
IEEE Computer Society, 2004.

[5] L. Bulwahn. The new Quickcheck for Isabelle - random, exhaustive and symbolic
testing under one roof. In 2nd International Conference on Certified Programs and
Proofs (CPP), volume 7679 of Lecture Notes in Computer Science, pages 92–108.
Springer, 2012.

[6] L. Bulwahn. Smart testing of functional programs in Isabelle. In 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
volume 7180 of Lecture Notes in Computer Science, pages 153–167. Springer, 2012.

[7] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP), ICFP, pages 268–279. ACM, 2000.

[8] P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in dependent
type theory. In 16th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), volume 2758 of Lecture Notes in Computer Science, pages 188–203.
Springer, 2003.

[9] A. Gill and C. Runciman. Haskell program coverage. In Proceedings of the ACM
SIGPLAN Workshop on Haskell Workshop, Haskell ’07, pages 1–12, New York, NY,
USA, 2007. ACM.

[10] G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq.
Journal of Formalized Reasoning, 3(2):95–152, 2010. RR-7392 RR-7392.

[11] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA, 2008.

71

72 Bibliography

[12] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. Azevedo
de Amorim, and L. Lampropoulos. Testing noninterference, quickly. In 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP), Sept. 2013.

[13] J. Hughes. QuickCheck testing for fun and profit. In 9th International Symposium
on Practical Aspects of Declarative Languages (PADL), volume 4354 of Lecture Notes
in Computer Science, pages 1–32. Springer, 2007.

[14] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

[15] D. Le, M. A. Alipour, R. Gopinath, and A. Groce. Mucheck: An extensible tool
for mutation testing of haskell programs. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014, pages 429–432, New York,
NY, USA, 2014. ACM.

[16] D. Le, M. A. Alipour, R. Gopinath, and A. Groce. Mutation testing of functional
programming languages. Technical report, Oregon State University, 2014.

[17] C. Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477,
July 1999.

[18] M. Papadakis and K. Sagonas. A PropEr integration of types and function specifica-
tions with property-based testing. In Proceedings of the 2011 ACM SIGPLAN Erlang
Workshop, pages 39–50, New York, NY, Sept. 2011. ACM Press.

[19] C. Paulin-Mohring. Alea: A library for reasoning on randomized algorithms in Coq
version 7. Description of a Coq contribution, Université Paris Sud, Feb. 2012. Con-
tributions by David Baelde and Pierre Courtieu.

[20] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based testing tools. In Pro-
ceedings of the 2006 International Workshop on Automation of Software Test, AST
’06, pages 99–103, New York, NY, USA, 2006. ACM.

List of Listings

2.1 Generator representation . 20
2.2 Random type class . 21
2.3 Primitive combinators . 22
2.4 Derived combinators . 24
2.5 Arbitraty type class . 25
2.6 Property . 25
2.7 Testable type class . 26
2.8 Property lifting and mapping . 26
2.9 Property combinators . 27
2.10 Parameters for running the tests . 28
2.11 Functions for running the tests . 28
3.1 Set representation . 31
3.2 fmapP . 33
3.3 chooseP . 33
3.4 sizedP . 33
3.5 suchThatMaybeP . 34
3.6 The common interface . 35
3.7 The type of bindGen . 35
3.8 Derived combinators . 36
3.9 Equality lemmas for primitive combinators 37
3.10 Equality lemmas for lifting combinators . 38
3.11 sequenceGen lemma . 39
3.12 vectorOf lemma . 39
3.13 vectorOf lemma . 40
3.14 oneOf lemma . 40
3.15 elements lemma . 40
3.16 frequency lemma . 41
3.17 foldGen lemmas . 41
3.18 Generator for lists of length 5 . 42
3.19 Lemma for genNat correctness . 42
3.20 Goal after unfolding genNat, sized and choose 42
3.21 Goal after unfolding PredMonad . 43
3.22 Goal after unfolding chooseP and sizedP 43
3.23 Proof for genNat correctness . 43
3.24 Lemma for genList5 correctness . 44
3.25 Goal after unfolding vectorOf . 44
3.26 Goal after using the set equality lemma . 44
3.27 Proof for genList5 correctness . 45
3.28 New definition of the Arbitrary type class 45

73

74 List of Listings

3.29 Instance definitions for the Arbitrary type class 46
3.30 Proofs for arbitrary generators . 47
3.31 Definition of Property . 47
3.32 Successful Result definition . 47
3.33 Semantics for Property . 48
3.34 Identity lemmas for Property combinators 49
3.35 Lemmas for forAll and forAllShrink . 50
3.36 Lemma for implication . 50
3.37 Lemma for implication . 51
3.38 Provable type class . 52
3.39 Provable instances . 52
3.40 Provable instances . 53
3.41 Checker for rev . 54
3.42 Lemma for rev checker . 54
3.43 Goal after unfolding semTestable, semPropety and property 54
3.44 Goal after using semFun . 55
3.45 Lemma for rev checker using Provable type class 55
3.46 Goal obtained by using proposition . 55
3.47 Lemma for rev checker using Provable type class 55
4.1 Red-black trees data type . 58
4.2 Red-black invariant . 58
4.3 Invariant preservation by insert . 59
4.4 Red-black tree generation . 60
4.5 Correctness lemma for genColor . 61
4.6 Correctness lemma for genRBTree_height 61
4.7 Correctness lemma for genRBTree . 61
4.8 A procedure that calculates the black-height 62
4.9 A procedure that decides if a red-black tree is well-formed under a given

color-context . 62
4.10 Invariant preservation checker . 63
4.11 Reflection proof between is_redblack and is_redblack_dec 63
4.12 Lemma for black_height_dec . 63
4.13 Reflection proof between is_redblack and is_redblack_dec 63
4.14 Lemma stating that the conjecture under test corresponds to the high-level

specification . 64

List of Theorems and Definitions

3.1 Definition (Soundness Definition) . 29

3.2 Definition (Completeness Definition) . 29

3.3 Definition (Correctness Definition) . 29

3.5 Definition (Set equality) . 30

3.6 Definition (Set inclusion) . 30

75

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Introduction
	Randomized Property-Based Testing in Coq
	Randomized Property-Based Testing
	The Value of Counterexamples or Lack Thereof
	Combining Testing and Proving
	QuickChick
	Generators
	Properties
	Execution

	A Framework for Verified Testing in Coq
	Generators
	Set of Outcomes Monad
	Axiomatization
	Derived Combinators
	Lemma Library
	A Motivating Example for Combinator Lemmas
	Arbitrary Type Class

	Checkers
	Semantics
	Lemma Library
	Provable Type Class
	A Motivating Example for Combinator Lemmas

	Case Studies
	Red-black Trees
	Representation
	Declarative Definitions
	Generators
	Executable Definitions
	An End to End Proof

	IFC Case Study

	Related Work
	Property Based Testing and Proof Assistants
	Isabelle/HOL
	Agda/Alfa

	Testing Evaluation Techniques
	Mutation Testing
	Coverage Analysis

	Conclusions and Future Work
	Bibliography
	List of Listings

