
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Τυπική Επαήευση Επιοής
Ακεραιότητας Ροής-Εέου με Ετικέτες

Διπματική Ερασία
του

Νικόαου Γιανναράκη

Επιέπν: Νικόαος Παπασπύρου
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Σεπτέμριος 2014

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Τυπική Επαήευση Επιοής
Ακεραιότητας Ροής-Εέου με Ετικέτες

Διπματική Ερασία
του

Νικόαου Γιανναράκη

Επιέπν: Νικόαος Παπασπύρου
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 8η Σεπτεμρίου, 2014.

........................
Νικόαος Παπασπύρου Κστής Σαώνας Ιάννης Σμαραδάκης
Αν. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Κ.Π.Α

Αήνα, Σεπτέμριος 2014

...
Νικόαος Γιανναράκης

Διπματούος Ηεκτροόος Μηανικός
και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Νικόαος Γιανναράκης, 2014.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Μια ευρεία κάμα επιέσεν οισμικού προσπαούν να ανακτήσουν τον έεο ροής του
προραμμάτος με σκοπό να τροποποιήσουν τη συμπεριφορά του. Η Ακεραιότητα Εέου-
Ροής είναι μία αποτεεσματική ποιτική ασφαείας, που μπορεί να αποτρέψει όες τις επιέσεις
που επιειρούν να παρακάμψουν την αρική ροή εέου του προράμματος.

Σε αυτή τη διπματική ερασία, ρησιμοποιούμε το εραείο διαδραστικών αποδείξεν Coq
ια να αιτιοοήσουμε τυπικά την ορότητα και την αποτεεσματικότητα ενός δυναμικού
εεκτή που επιάει Ακεραιότητα Εέου-Ροής, ασιζόμενος σε ένα καινοτόμο μηανισμό
ασφαείας που ρησιμοποιεί οισμικί και υικό. Συκεκριμένα, αποδεικνύομε οτι ο μηανι-
σμός επιάει Ακεραιότητα Εέου-Ροής ακόμα και υπό την παρουσία ενός ισυρού κακό-
ουου ρήστη. Επιπέον αποδεικνύουμε μέσ εκκαάρισης ότι ένα μηάνημα στο οποίο
τρέει ο δυναμικός εεκτής ια την Ακεραιότητα Εέου-Ροής, επακριώς εξομοιώνει
όες τις συμπεριφορές ενός αφηρημένου μηανήματος που έει Ακεραιότητα Εέου-Ροής
εκ κατασκευής.

Λέξεις Κειδιά

ροή-εέου, ασφάεια, επαήευση, αριτεκτονικές με ετικέτες

5

Abstract

A wide-range of software attacks attempt to hijack the control-flow of the program in
order to alter its behavior. Control-Flow Integrity is an effective security policy, able to
thwart all attacks that attempt to circumvent the original control-flow of a program.

In this thesis, we use the Coq proof assistant to formally reason about the correctness and
the effectiveness of a dynamic monitor enforcing CFI, based on a novel software-hardware
security mechanism. In particular, we prove that the mechanism enforces CFI even in
the presence of a powerful attacker. Furthermore, we prove by refinement that a machine
running the dynamic monitor for CFI, precisely emulates all behaviors of an abstract
machine that has CFI by construction.

Keywords

control-flow, security, verification, tagged architectures

7

Ευαριστίες

Θα ήεα να ευαριστήσ τον Cătălin Hriţcu ια την εμπιστοσύνη που μου έδειξε, την
ευκαιρία να εραστώ σε ένα κορυφαίο ερευνητικό κέντρο και την καοδήηση του κατα την
εκπόνηση αυτής της διπματικής ερασίας.

Θα ήεα επίσης να ευαριστήσ τους καηητές μου Νίκο Παπασπύρου και Κστή Σαώνα
ια τη διδασκαία τους μέσ της οποίας μου μετέφεραν το ενδιαφέρον τους ια τις ώσσες
προραμματισμού αά και τη οήεια που μου προσέφεραν όποτε τη ρειάστηκα στη μέρι
τώρα ακαδημαϊκή μου πορεία.

Τέος, α ήεα να ευαριστήσ την οικοένεια μου και τη σύντροφο μου Ζή Παρα-
σκευοπούου ια την αστείρευτη τους στήριξη και αάπη.

Η ερασία αυτή είναι επίσης διαέσιμη ς Τενική Αναφορά CSD-SW-TR-4-14, Ενικό Μετσόιο Πουτενείο,
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών, Τομέας Τενοοίας Πηροφορικής και
Υποοιστών, Εραστήριο Τενοοίας Λοισμικού, Σεπτέμριος 2014.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 13

1 Introduction 15
1.1 Motivation . 15

1.2 Contributions . 16

1.3 Thesis Outline . 16

2 Micro-policies: Verified, Hardware-Assisted Monitors 17
2.1 Micro-Policies . 17

2.2 Example: Non-Writable Code & Non-Executable Data 18

2.3 Generic Verification Framework for Micro-Policies 19

2.3.1 Correctness of micro-policies . 19

2.3.2 Symbolic Machine . 19

2.4 A Programmable Unit for Metadata Processing 20

2.4.1 Hardware Architecture . 20

2.4.2 Concrete Machine Modeling PUMP Architecture 22

2.4.3 Concrete Policy Monitor . 23

3 Control-Flow Integrity 25
3.1 Related Work . 25

3.1.1 Balancing between performance and security 25

3.1.2 Formal verification of Control-Flow Integrity 26

11

12 Contents

3.2 Micro-Policies for Control-Flow Integrity . 27
3.2.1 Coarse-grained CFI Micro-Policy . 27
3.2.2 Micro-Policy for Fine-Grained Control-Flow Integrity 27

4 Formally Verified Control-Flow Integrity Micro-Policy 29
4.1 Control-Flow Integrity Property . 30
4.2 The Abstract Machine . 31

4.2.1 Operational semantics . 32
4.2.2 Attacker model . 32
4.2.3 Allowed control-flows for the abstract machine 32
4.2.4 Stopping predicate for the Abstract machine 32
4.2.5 CFI proof for the Abstract Machine 34

4.3 The Symbolic Machine . 35
4.3.1 Transfer Function . 36
4.3.2 Attacker model . 37
4.3.3 Allowed control-flows for the Symbolic Machine 37
4.3.4 Initial states of the Symbolic Machine 38
4.3.5 Stopping predicate for the Symbolic Machine 40
4.3.6 Symbolic-Abstract simulation . 40

4.4 The Concrete Machine . 46
4.4.1 Concrete tags . 46
4.4.2 Concrete-Symbolic backward refinement 47
4.4.3 Attacker model . 48
4.4.4 Concrete-Symbolic 1-backward simulation for Attacker 49
4.4.5 Allowed control-flows for the Concrete Machine 50
4.4.6 Initial states of the Concrete Machine 50
4.4.7 Stopping predicate for the Concrete Machine 51

4.5 Generic Preservation Theorem . 51
4.5.1 CFI proof for the Symbolic Machine 55
4.5.2 CFI proof for the Concrete Machine 57

5 Conclusions 61
5.1 Future Work . 61

5.1.1 Writing and Verifying Monitor Code 61
5.1.2 Call-Stack Protection . 62

Contents 13

Bibliography 63

List of Figures 65

List of Listings 67

List of Theorems and Definitions 70

Chapter 1

Introduction

1.1 Motivation

Computer hardware and software continuously grow in size and complexity and as a result
ensuring the absence of exploitable behaviors is becoming increasingly difficult. In the era
in which computer systems are used extensively to carry important information (e.g. credit
card numbers, national security documents), it has been widely accepted that security of
these systems is a priority. Researchers have identified a number of potential vulnerabilities
which arise from the violation of known but in-practice unenforceable safety and security
policies.
So far, computer security has been delegated mostly to software, while the hardware

is being almost completely controlled by the software. High-level languages are becoming
more widely used, due to features such as strong type systems with type inference and
automatic memory management, making programming less error prone and reducing the
number of exploitable bugs. Furthermore, in order to strengthen the security of computing
systems a variety of low-level mitigation techniques [7, 17, 11] have been proposed, however
these are mostly ad-hoc solutions designed to prevent specific known attacks, rather than
enforcing a security policy that prevents a well-defined class of attacks, thus making it
hard to reason about their effectiveness. In fact most of these mitigation techniques can
be circumvented by attackers [18], which has lead to a continuous “chase” between attackers
and security researchers.
One common attack technique is to exploit some low-level vulnerability such as a buffer

overflow, in order to redirect the control flow to attacker injected code. This attack can be
stopped by a simple protection scheme known as W ⊕X, which enforces that a memory
page is either executable or writable but not both. Unfortunately, clever attack techniques
can bypass W ⊕ X. In particular, attackers have been using code-reuse attacks (e.g.
return/jump - oriented programming) that allows them to chain together existing pieces
of code to achieve malicious behavior without directly introducing new code. Abadi et
al. [1] introduced a security property called Control Flow Integrity (CFI), which when
it holds, provides effective protection against control-flow hijacking attacks. CFI enforces
that any execution of a program will respect a statically computed control flow graph
(CFG), thus thwarting all attacks that attempt to alter the control-flow of a program,
irregardless if the attacker tries to redirect the control-flow to attacker injected code or to
an existing piece of code.

15

16 Chapter 1. Introduction

1.2 Contributions
The main contribution of this thesis is the formalization and verification in Coq of a
dynamic monitor enforcing CFI, based on a generic hardware-software security mechanism.
To this end, we used Coq to model a powerful attacker (i.e., able to execute buffer

overflows) and proved that the mechanism enforces CFI even in the presence of such an
attacker. In particular we proved a variant of the CFI property proposed by Abadi et al.
[2].
We managed to avoid tackling a direct and complex proof of this theorem, by first

defining an abstract machine that has CFI by construction, proving a simulation between
the concrete and the abstract machine and then transfering the CFI property from the
abstract to the concrete level through a generic preservation theorem that states that
under certain assumptions CFI is preserved by backward simulation.
Additionally, we proved a two-way refinement, between a concrete machine running the

CFI dynamic monitor and the abstract machine that has CFI by construction and acts as
a specification to CFI, showing that the concrete machine emulates all behaviors of the
correct by construction abstract machine.

1.3 Thesis Outline
Chapter 2 of this thesis briefly describes the motivation for effective and efficient security
policies, the desired properties a robust security policy must satisfy and puts into context
the framework we utilize in order to formalize the Control-Flow Integrity policy and reason
about the effectiveness of the enforcement mechanism we used.
Chapter 3 discusses the current state of research on enforcing and formalizing Control-

Flow Integrity and clarifies the design choices of our approach regarding enforcement of
CFI.
Chapter 4 explains how we used the framework of chapter 2 in order to formally reason

about the security properties of the CFI policy and our approach to enforcing it.
In chapter 5 we discuss potential future directions for our work.

Chapter 2

Micro-policies: Verified,
Hardware-Assisted Monitors

Current hardware provides very limited security mechanisms leaving most of the work to
the software. This requires that the software performs various sanity-checks during an
execution and that it carefully maintains various safety and security invariants, a tedious
and error-prone task that results in security holes and often in high runtime performance
penalties.
Many potentially effective mitigation techniques are not deployed because of the perfor-

mance overhead they incur. Another requirement for deployment of a protection mecha-
nism is the compatibility with existing executables and the degree of intervention required
by a human. Usually even making slight changes to a code and redistributing has high
cost and the protection mechanism is likely to see very low adoption.
The lack of efficient and effective generic ways to enforce security policies, forces pro-

grammers to protect their own code, a task which is not trivial even for the small and
simply programs. As a result most, if not all, software carries weaknesses which can be
exploited by an attacker. “Safe” languages, automate some of the checks required and eases
the work of the programmer, for example by implementing array bounds checking or by
disallowing pointer-arithmetic. However these solutions only reduce the chance of intro-
ducing exploitable bugs in a program and do not enforce stricter, more effective policies
such as Control Flow Integrity or complete Memory Safety (spatial/temporal protection
for heap and stack). In addition, we still need effective and efficient protection mechanisms
for a plethora of software written in unsafe languages such as C.

2.1 Micro-Policies
A wide range of security policies can be enforced by associating metadata to the data
being processed (e.g., this is an instruction, this is from the network, this is private, etc.),
propagating the metadata as instructions are executed and using a set of rules on the
metadata to check whether a policy is violated and how the tags should be propagated.
Abstractly, these rules form a partial function from a set of input tags to a set of output

tags
transfer (opcode,PC,CI,OP1,OP2,MR) = Some (PC ′, RES)

informally read as, “if the opcode of the next instruction to be executed is opcode, the
current tag of the program counter is PC, the current tag on the instruction location is CI
and the tags on the operands of the instruction are OP1, OP2 and MR then if execution

17

18 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

of the instruction is allowed the tag on the program counter should be set to PC’ and any
new data created by the instruction should be tagged RES.
More specific, a micro-policy is made up of the following elements:

1. a set of metadata tags used to tag the contents of the memory and all the registers
as well as the pc.

2. a transfer function that implements the checks on the tags and the tag propagation
as described above.

3. a tagging scheme for the initial state of the machine.

4. for some micro-policies, a set of monitor services (i.e., privileged code) that can be
invoked by user code.

Furthermore, as we will see in section 2.4, a software-hardware mechanism that enables
the efficient implementation of micro-policies without sacrificing flexibility (in terms of the
policies that can be enforced) has already been designed. Simulations and benchmarks
show that the runtime overhead is very low compared to dedicated software solutions thus
making it a realistic and appealing way to deploy a wide range of security policies in future
computing systems.

2.2 Example: Non-Writable Code & Non-Executable Data
In order to demonstrate the mechanism explained above we sketch a simply micro-policy
that enforces theW⊕X protection scheme described in section 1.1, omitting the formaliza-
tion to which we will return in chapter 4. We achieve this by making all code non-writable
(NWC) and all data non-executable (NXD).
We use the set of tags T = {Data,Code}. If we initially tag all executable regions in

memory as Code and all non-executable as Data then we can enforce NWC and NXD by
two rules of the form

Store : {CI=Code,MR=Data} → {PC′=−,RES=Data}
(S/D)

opcode ̸∈ {Store}
opcode : {CI=Code} → {PC′=−,RES=−}

(R)

Figure 2.1: Rules enforcing NWC and NXD

The dashes in the result vector, represent don’t care values, meaning we will not use
their values for anything, so any tag (usually a default tag set by the policy designer) can
be used. Furthermore, we are omitting from the input vector the fields that are unused
by the transfer function. For this simple policy, the transfer function only uses the tag on
the current instruction (CI) and in the case of a Store instruction the tag on the memory
(MR), i.e., the tag on the memory location we are trying to write. If no rule applies,
the execution of the instruction is disallowed. Informally the above rules can be read as
“Execution is allowed only if the tag on the current instruction is Code; if the opcode of
the instruction is Store, we additionally require that the tag of the overwritten memory
location is Data. In that case the tag on the new data on the memory should remain
Data.”

2.3 Generic Verification Framework for Micro-Policies 19

2.3 Generic Verification Framework for Micro-Policies
Unsurprisingly, designing a security policy, reasoning about its effectiveness against po-
tential attackers and encoding it as a micro-policy can become a complex task. Azevedo
et al. [9] built a generic framework for defining and verifying micro-policies on top of a
machine modeling a tagged RISC processor (referred to as concrete machine), formalized
this framework in Coq and used it to define and formally verify micro-policies for dynamic
sealing, control-flow integrity, memory safety, compartmentalization and protecting the
enforcement mechanism (referred to as policy monitor) itself.
The framework offers a higher-level machine, called the symbolic machine, that ab-

stracts away from various - insignificant to security policies - implementation details. The
symbolic machine can be used as an interface to the concrete machine, simplifying the
work of the micro-policy designer and allowing him to use structured objects in order to
define and reason about the micro-policy, avoiding the added complexity of working on
machine words.
In order to implement the micro-policy at the concrete machine level, one needs to

additionally provide machine code that implements the transfer function, an encoding of
tags to words and machine code for any monitor services that the micro-policy may use.
The relation between the symbolic and the concrete machine is formally defined as a two-
way refinement (forward and backward). This is a generic refinement proof, parameterized
by the encoding of the symbolic tags to words and a proof of correctness of the monitor
code for a micro-policy. The designer of a micro-policy can use this two-way refinement
simply by providing these two parameters.

2.3.1 Correctness of micro-policies
For each micro-policy the policy designer should define an abstract machine, which serves
as a specification to the desired invariants. The abstract machine is correct by construction,
meaning that it’s designed to respect those invariants. Using the symbolic machine as an
intermediate step to simplify the proofs, by proving a refinement between the symbolic and
the abstract machine and by utilizing the generic refinement between the symbolic and
the concrete machine, we can prove a refinement between the abstract and the concrete
machine, thus showing that every step of the concrete machine adheres to the specification
expressed by the abstract machine.
All the machines introduced in the original paper by Azevedo et al. [9], as well as

this thesis, have a similar structure. In particular, they share a common RISC-based
instruction set (with a few - uninteresting for the scope of this thesis - exceptions) and
they have a fixed number of general-purpose registers, along with a pc register. Of course
the abstract machine defined by the policy designer can differ in various ways, but more
similarities with the symbolic machine implies easier proofs of correctness.

2.3.2 Symbolic Machine
As mentioned above, the symbolic machine enables us to abstract away from various low-
level details of the concrete machine. We can express and reason about policies in terms of
mathematical objects written in Gallina rather than machine code and the corresponding
proofs for the concrete machine comes for free under some assumptions. In essence, the
symbolic machine is parameterized by a micro-policy as it was defined in 2.1, with the
addition of an internal state that can be used by monitor services.

20 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

The states of the symbolic machine consists of the memory, the registers, the pc register
and the internal state. The memory and register contents, as well as the pc, are all tagged
with a symbolic tag drawn from the set of meta-data tags of the micro-policy. We name
their contents symbolic atoms referred to with the notation w@t, where w is the value
(word) and t is the tag.
At each step, a record named mvector is formed. It consists of the current opcode, the

tag on the pc, the tag on the current instruction and optionally up to three tags depending
on the opcode of the instruction. The mvector is passed to the transfer function which
decides whether the step violated the enforced policy. In the case of a violation the machine
is halted, otherwise if no violation occurred the transfer function returns a tag for the new
pc and a tag for any results the execution of the instruction produced.
In fig. 2.2 we give, in form of inference rules, the stepping relation for the Symbolic

machine, demonstrating how the transfer function and the tag propagation works at each
step.
Notice for example, that when a store instruction is executed, the tag on the memory

location to be overwritten is fetched, allowing the transfer function to know what kind
of data we are trying to overwrite. Returning to the example micro-policy in 2.2 we can
define the transfer function that is used by the symbolic machine as a Coq function.� �
Definition transfer ivec : option ovec :=
match ivec with
| mkIVec Store _ Code [_ ; _ ; Data] ⇒
Some (mkOVec _ Data)

| mkIVec Store _ _ _ ⇒ None
| mkIVec _ _ Code _ ⇒
Some (mkOVec _ _)

| mkIVec _ _ _ _ ⇒ None
end.� �

Listing 2.1: Transfer function for NWC and NXD in pseudo-code

2.4 A Programmable Unit for Metadata Processing
2.4.1 Hardware Architecture
The Programmable Unit for Metadata Processing (PUMP) architecture [10] allows us to
efficiently implement a wide range of micro-policies, using software to describe the micro-
policy, while the hardware provides efficiency by undertaking the propagation of the tags
and by using a cache for the rules.
On the hardware level, the PUMP is an extension to a conventional RISC architecture.

Every word of data in the machine - whether in memory or a register, is extended with
a word-sized metadata tag. These tags are not interpreted by hardware, instead the
interpretation of the tags is left to the software, thus making it easy to implement new
policies on the metadata. Since tags are word-sized, they can be pointers to complex data-
structures of tags, such as tuples of tags, allowing for complex policies to be expressed and
multiple orthogonal policies to be enforced in parallel.
The hardware undertakes the correct propagation of tags from operands to results ac-

cording to the rules defined by the software. A hardware rule cache mapping sets of input

2.4 A Programmable Unit for Metadata Processing 21

mem[pc] = i@ti decode i = Nop
transfer {Nop,PC=tpc,CI=ti} → {PC′=t′pc,RES=−}
(mem, reg, pc@tpc, int)→ (mem, reg, pc+ 1@t′pc, int)

(N)

mem[pc] = i@ti decode i = Const n r reg[r]=wold@told
transfer {Const,PC=tpc,CI=ti,OP1=told} → {PC′=t′pc,RES=tres}

reg′ = reg[r←n@tres]
(mem, reg, pc@tpc, int)→ (mem, reg′, pc+ 1@t′pc, int)

(C)

mem[pc] = i@ti decode i = Mov rp rs
reg[rp]=w@tp reg[rs]=wold@told

transfer {Mov,PC=tpc,CI=ti,OP1=tp,OP2=told} → {PC′=t′pc,RES=tres}
reg′ = reg[rs←w@tres]

(mem, reg, pc@tpc, int)→ (mem, reg′, pc+ 1@t′pc, int)
(M)

mem[pc] = i@ti decode i = Binop op rp rs rt
reg[rp]=wp@tp reg[rs]=ws@ts reg[rt]=wold@told

transfer {Binop op,PC=tpc,CI=ti,OP1=tp,OP2=ts,MR=told} → {PC′=t′pc,RES=tres}
reg′ = reg[rt←wp op ws@tres]

(mem, reg, pc@tpc, int)→ (mem, reg′, pc+ 1@t′pc, int)
(B)

mem[pc] = i@ti decode i = Load rp rs
reg[rp]=wp@tp mem[wp]=w@tmem reg[rs]=wold@told

transfer {Load,PC=tpc,CI=ti,OP1=tp,OP2=tmem,MR=told} → {PC′=t′pc,RES=tres}
reg′ = reg[rs←w@tres]

(mem, reg, pc@tpc, int)→ (mem, reg′, pc+ 1@t′pc, int)
(L)

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

transfer {Store,PC=tpc,CI=ti,OP1=tp,OP2=ts,MR=told} → {PC′=t′pc,RES=t′d}
mem′ = mem[wp←ws@t′d]

(mem, reg, pc@tpc, int)→ (mem′, reg, pc+ 1@t′pc, int)
(S)

mem[pc] = i@ti decode i = Jump r reg[r]=w@tw
transfer {Jump,PC=tpc,CI=ti,OP1=tw} → {PC′=t′pc,RES=−}

(mem, reg, pc@tpc, int)→ (mem, reg, w@t′pc, int)
(J)

mem[pc] = i@ti decode i = Bnz r n reg[r]=w@tw
transfer {Bnz,PC=tpc,CI=ti,OP1=tw} → {PC′=t′pc,RES=−}

pc′ ← if w = 0 then pc + 1 else pc + n

(mem, reg, pc@tpc, int)→ (mem, reg, pc′@t′pc, int)
(B)

mem[pc] = i@ti decode i = Jal r
reg[r]=w@tw reg[ra]=wold@told

transfer {Jal,PC=tpc,CI=ti,OP1=tw,OP2=told} → {PC′=t′pc,RES=tres}
reg′ = reg[ra←pc+ 1@tres]

(mem, reg, pc@tpc, int)→ (mem, reg′, w@t′pc, int)
(J)

mem[pc] = ∅ get_service pc = (ti, f)
transfer {Service,PC=tpc,CI=ti} → {PC′=t′pc,RES=−}

f (mem, reg, pc, int) = (mem′, reg′, pc′, int′)
(mem, reg, pc@tpc, int)→ (mem′, reg′, pc′@t′pc, int′)

(S)

Figure 2.2: Stepping relation for the symbolic machine

22 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

tags to sets of output tags is used for common case efficiency. On each instruction dis-
patch, in parallel with the usual behavior of an instruction (e.g., execution of an addition
in the ALU), the hardware forms the set of input tags and a lookup is performed on the
rule cache. If the lookup is successful a set of output tags is returned and combined with
the results of the normal execution of the instruction a new state is produced. On the
other hand, if the lookup failed, the hardware invokes a trusted piece of system software -
the fault handler - which checks the input tags and decides whether the execution should
be allowed or not. In the first case, the fault handler returns a set of result tags, a pair
of set of input and output tags is formed and inserted into the rules cache, while the
faulting instruction is restarted and will now hit the cache. Otherwise, execution of this
instruction violated some rules of the enforced policy and execution should not continue
normally (e.g., should be halted).
As described in the original PUMP paper by Dehon et al. in [10] a rich set of effective

security policies can be efficiently implemented using the architecture mentioned above.
In particular, implementations of dynamic typing, memory safety for heap-based data,
control flow integrity and taint tracking are described, evaluated against a specific threat
model and benchmarked. The benchmarks are done using a simulation of the described
hardware and the authors have achieved low overhead (3̃% on average) for each of the
policies named above.
Compared to other software solutions for enforcing security policies, the PUMP offers

significantly lower overhead, thanks to dedicated hardware assistance, while the fact that
interpretation of the metadata is done by software offers flexibility with regard to the
policies that can be implemented, compared to hardware solutions implementing a specific
policy.
While the PUMP offers flexibility at a low runtime performance overhead, there are

more overheads associated to such a mechanism. For example adding metadata to all the
data in the machine, would result in a 100% memory overhead. In addition, the extra
hardware and the rule cache along with potentially larger memories could result into a
400% overhead on energy usage. The authors claim that a careful and well-optimized
implementation can reduce these numbers, resulting in a 50% energy overhead.

2.4.2 Concrete Machine Modeling PUMP Architecture
The concrete machine is a model of the PUMP architecture, modeling a RISC machine
with a rules cache and a software miss handler. The instruction set has been extended with
four additional instructions that are meant to be used by monitor code only, a restriction
that is enforced by the monitor self-protection micro-policy.
The state of the concrete machine consists of the memory, the registers, the pc register,

the epc register - a special purpose register that holds the address of the faulting instruction
so the miss handler can return to it - and a rules cache. The cache works as a key-value
store where a key is an input vector that contains an instruction opcode, the tag of the
current instruction, the tag of the pc and up to three operand tags, and a value is an output
vector which contains a tag for the new pc and a tag for any results from the execution of
the instruction. In the context of the concrete machine a tag is the encoding into a word
of a symbolic tag. Lifting this encoding relation to vectors, we get that a concrete vector
is the encoding of a symbolic vector. Similar to the symbolic machine the contents of the
memory, the registers, the pc and the epc are concrete atoms w@t where w is a word and
t is the encoding of a tag into a word.
The stepping relation for the concrete machine is a bit more complicated than the one

2.4 A Programmable Unit for Metadata Processing 23

for the symbolic machine. In particular, on each step the machine forms the input vector
and looks it up in the cache. If the lookup succeeds then the instruction is allowed, an
output vector is returned by the cache and the next state is tagged according to it. If the
lookup fails, then the input vector is saved in memory, the current pc is stored in the special
register epc and the machine traps to the miss handler. The above are demonstrated in
the two example rules in fig. 2.3.

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

cache ⊢ (Store, tpc, ti, tp, ts, told) 7→ (t′pc, t
′
d)

mem′ = mem[wp←ws@t′d]
(mem, reg, pc@tpc, epc, cache)→ (mem′, reg, (pc+1)@t′pc, epc, cache)

(S)

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

cache ⊢ (Store, tpc, ti, tp, ts, told) ̸7→
mem′ = mem[0..5← (Store, tpc, ti, tp, ts, told)]

(mem, reg, pc@tpc, epc, cache)→ (mem′, reg, trapaddr@Monitor, pc@tpc, cache)
(S-M)

Figure 2.3: Concrete step rules for Store instruction

Addresses 0 to 5 are used to store the input vector and 6 to 7 are used by the miss
handler to store the output vector. As a side-note, cache eviction is not modeled (an
infinite cache is assumed).

2.4.3 Concrete Policy Monitor
Unlike the symbolic machine, where the user cannot cannot change the transfer function,
enforcing a micro-policy on the concrete machine requires that we are able to protect the
policy monitor itself and that privileged instructions are not executed by user code. This
self-protection policy can be easily composed with another micro-policy and enforced by
the infrastructure described above.
Using tags of the form, User st, Entry st, Monitor we can distinguish between user-level

data, the monitor and monitor services. In particular User st is used to tag a user-level
atom, where st is the word-encoding of a symbolic tag. Monitor is used to tag the monitor
memory and registers. The pc is tagged with Monitor when a monitor execution takes
place and User st when user-code is executed. The tag Entry st is used to tag the first
instruction of a monitor service and serves as an indication that execution will continue
under the privileged Monitor mode.
The miss handler is a composed policy monitor that protects itself from User code and

that enforces a desired micro-policy. One important thing to note is that the miss handler
for the concrete machine can take an arbitrary number of steps before deciding whether
no violation occurred and returning to User mode, unlike the symbolic transfer function
that does not need to take any steps.

Chapter 3

Control-Flow Integrity

Restricting the control-flow of a program in some way has been proven as an effective
technique to mitigate a wide range of attacks. For example non-executable data (NXD)
can be considered as a form of (very) coarse-grained CFI where control-flow is not allowed
to reach any memory region that holds non-executable data. Another popular mitigation
technique is to protect return addresses on the stack, thus restricting the control-flow on
returns.

3.1 Related Work
3.1.1 Balancing between performance and security
Abadi et al. [1] first proposed a technique to enforce CFI based on Inlined Reference
Monitors (IRMs). In particular, the method they described (and to some extent formal-
ized) marked all valid targets of indirect control transfers with a unique identifier and
injected checks before all indirect jumps (including return instructions). However due to
high runtime overhead, their actual implementation assumed that any two destinations
are equivalent, in the sense that they share the same identifier, if the CFG contains edges
from the same set of sources, which significantly reduced the precision of the CFG. The
authors also note that a 2-ID approach where one identifier is used for calls and another
for returns could provide adequate security in many cases.
The work of Abadi et al. sparked interest of researchers who tried to improve some of

the weaknesses of the initial implementation, usually by choosing between performance
against precision and vice-versa.
Bletsch et al. [5] followed the work of Abadi et al., but changed their checking mechanism

to perform the check after the control flow transfer has occurred which, as the authors
claim, reduced the cache pressure and resulted in better performance. Precision remains
the same with the implementation of Abadi et al..
Zhang et al. [19] proposed Compact Control Flow Integrity and Randomization (CC-

FIR), a new efficient way to enforce coarse-grained CFI. CCFIR collects all valid targets of
indirect control-transfers and stores them in a random order, in a protected section called
“Springboard section”. Indirect control-transfers are only allowed to addresses that are in
the Springboard. Their implementation uses a 3-ID approach where one identifier is used
for calls and the two other identifiers are for returns, separating them between returns
to sensitive and non-sensitive functions. Their implementation also supports interaction
between protected and un-protected modules, which makes it an attractive solution to
coarse-grained CFI.

25

26 Chapter 3. Control-Flow Integrity

The security of the above coarse-grained techniques is evaluated in [12] where the au-
thors demonstrate code-reuse attacks against binaries protected by coarse-grained CFI.
These attacks illustrate the need for fine-grained CFI which however incurs a high runtime-
overhead penalty making deployment of such a mechanism unlikely.
A recent and promising attempt on fine-grained CFI called Modular Control-Flow In-

tegrity [16] does fine-grained CFI with an acceptable runtime overhead (approximately
10%) and further more supports modular compilation (protected and unprotected mod-
ules). On the downside, it comes with a quite a big toolchain which leaves room for bugs
in the implementation, but the authors claim that formal verification is in their plans for
future work on CFI.

Standard assumptions for effective CFI Most -if not all- CFI implementations also
come with a set of assumptions under which CFI holds. Two standard assumptions for all
mechanisms that attempt to enforce CFI are:

• Non-Executable Data (NXD), a security mechanism that disallows execution of data.

• Non-Writable Code (NWC). Changing the code of a program would allow an attacker
to circumvent dynamic checks.

Both assumptions are fairly standard for modern computers and are enforced through
hardware or software. In some cases NXD can be lifted, but additional security risks and
complexity is not worth the minor advantages offered by such an action.
Many implementations that attempt to do fine-grained CFI also require that identifiers

used to mark nodes in the CFG are unique.

3.1.2 Formal verification of Control-Flow Integrity
In [2] Abadi et al. extended their original paper, with -among other things- a more detailed
formal study of CFI. Their formalization regarded a much simpler machine than the x86
omitting all the complexity of modern systems. The machine has a few instructions,
a separate data memory and instruction memory which by the operational semantics
of the machine are non-executable and non-writable respectively (enforcing NXD and
NWC by construction), and a small set of registers. Moreover, their attacker model
permits arbitrary changes to the data memory, arbitrary changes to all the registers but
a few distinguished ones that are used during the dynamic checks and no changes to the
instruction memory. The authors proof that under some assumptions every step respects
the control-flow graph even in the presence of an attacker as powerful as the one described
above. Their formal study served as a guideline for the implementation, but as it is done
on paper their proofs cannot be machine checked. Furthermore, their formalization omits
less interesting but important details such as instruction encoding and decoding which as
shown in [15] are far from trivial for the x86.
Machine-checked formal verification efforts include [20], which is a SFI formalization

for the ARM architecture that also enforces CFI. Their formalization was developed using
the HOL theorem prover and a program logic framework they created. However their
benchmarks report a 240% runtime overhead. The authors of [8] claim partial proofs for a
CFI enforcement mechanism focused on the kernel of an operating system. Their runtime
overhead can also reach 100%.

3.2 Micro-Policies for Control-Flow Integrity 27

3.2 Micro-Policies for Control-Flow Integrity
3.2.1 Coarse-grained CFI Micro-Policy
We can use the PUMP to implement the coarse-grained CFI mechanisms described earlier.
Suppose we want to implement 1-ID CFI, we tag all indirect flow destinations and sources
with a tag Marked and the rest of the instructions as Unmarked. Executing instructions
that are sources of indirect flows, propagates their instruction tag to the pc. We then have
to check that the tag on the destination matches the tag on the tag on the pc.

op ∈ {Jump, Jal}
op : {CI=Marked} → {PC′=Marked,RES=−}

(M)

op ̸∈ {Jump, Jal}
op : {PC=Marked,CI=Marked} → {PC′=Unmarked,RES=−}

(C)

op ̸∈ {Jump, Jal}
op : {PC=Unmarked,CI=Unmarked} → {PC′=Unmarked,RES=−}

(NC)

Figure 3.1: Rules enforcing coarse-grained CFI, NXD and NWC

Rule Mark is used in the case the opcode is Jump or Jal (the only indirect jumps in
the RISC machine we examine) and propagates the Marked tag on the tag of the new pc.
Rule Check applies when the tag on the pc is set to Marked and corresponds to a legal
destination and rule NoCheck corresponds to any instruction that is not a jump source or
target.
We do not further study this coarse-grained approach as we consider it ineffective since

attacks against it has already been demonstrated in [12]. Instead we are going to focus on
implementing and formalizing a fine-grained CFI micro-policy.

3.2.2 Micro-Policy for Fine-Grained Control-Flow Integrity
The PUMP hardware allows us to avoid taking the difficult decision between performance
and security. As shown in follow-up (unpublished) work to [10], we can enforce a fine-
grained CFI policy with an average runtime overhead of less than 3% (maximum overhead
of less than 10%), on the SPEC2006 benchmarks.
We follow the standard approach and require both NXD and NWC in order to cor-

rectly enforce CFI. We designed a composed micro-policy that enforces NXD, NWC and
CFI. We considered designs that lifted the NXD and NWC restrictions but we rejected
them, as there did not seem to be any considerable advantages (i.e., compatibility with
self-modifying programs, JIT compilers, etc.). Moreover unlike other CFI enforcement
mechanisms we do not have to rely on the CPU or the operating system to enforce NXD
and NWC , therefore lifting these restrictions would not reduce our assumptions and con-
sequently would not increase our confidence in the robustness of our approach.
Our approach uses unique identifiers to tag the contents of the memory that correspond

to sources and potential destinations of indirect flows according to a binary relation (on
the identifiers) CFG.
We use the set of tags T = {Data,Code id,Code ⊥} where id is a unique identifier (i.e.,

used to tag the contents of only one location in the memory). One simple way to achieve
this is to use the address of the instruction as it’s id, for example an instruction stored at

28 Chapter 3. Control-Flow Integrity

address 100 would be tagged Code 100. This is the approach we take in our development.
Adapting the rules from 2.2, we shall use Data to tag all contents in memory that are
considered non-executable data, Code id to tag all contents in memory that are considered
executable instructions and are sources or targets of indirect control flows and Code ⊥ to
tag all other instructions. The rules to enforce NWC and NXD are intuitively the same
and only change to account for the splitting of the Code tag.
We follow the same idea as with coarse-grained CFI in section 3.2.1, propagating the

instruction tag of instructions that are sources of indirect flows to the tag on the pc of
the next state and upon execution of the next instruction, checking that the tag on the pc
and on the instruction are in some relation. In the case of coarse-grained CFI we required
that they match but for fine-grained CFI we require that they are in the CFG relation.

op ∈ {Jump, Jal} (src, dst) ∈ CFG
op : {PC=Code src,CI=Code dst} → {PC′=Code dst,RES=−}

(F/C)

op ∈ {Jump, Jal}
op : {PC=Data,CI=Code dst} → {PC′=Code dst,RES=−}

(F/NC)

(src, dst) ∈ CFG
Store : {PC=Code src,CI=Code dst,MR=Data} → {PC′=Data,RES=Data}

(S/C)

ti ∈ {Code dst,Code ⊥}
Store : {PC=Data,CI=ti,MR=Data} → {PC′=Data,RES=Data}

(S/NC)

op ̸∈ {Jump, Jal,Store} (src, dst) ∈ CFG
op : {PC=Code src,CI=Code dst} → {PC′=Data,RES=−}

(R/C)

op ̸∈ {Jump, Jal,Store} ti ∈ {Code dst,Code ⊥}
op : {PC=Data,CI=ti} → {PC′=Data,RES=−}

(R/NC)

Figure 3.2: Rules enforcing fine-grained CFI

We note in the above rules that the tag on the pc is Data when no check for a control-flow
violation is required and Code src where src is some id, when an indirect flow instruction
was executed and a check for a control-flow violation is required. An important observation
is that the rules above allow for one control-flow violation to occur, but disallow the next
step and therefore the machine will certainly halt after a violation.
If the PUMP hardware fetched the tag on the memory address the machine is jumping

to and passed it as an argument to input vector, as it does in the case of a Store instruction,
we would be able to enforce CFI with no violations at all.

Chapter 4

Formally Verified Control-Flow
Integrity Micro-Policy

In this chapter we develop our main results. In particular, we use the Coq proof assistant1
to prove a property capturing the notion of CFI, similar to what was proposed by Abadi et
al. in [2], for the concrete machine running monitor code that implements the micro-policy
of section 3.2.2.
In order to obtain this result we propose a generic preservation theorem that states that

the CFI property is preserved, under certain assumptions, by a {0, 1}-backward simulation.
This allowed us to structure our proofs in a modular way and to avoid a direct - and several
times more complex - proof of CFI on the concrete machine. Furthermore it allowed us to
obtain a proof for CFI for the Concrete machine by leveraging the micro-policies framework
of section 2.3 in order to easily obtain a {0, 1}-backward simulation between the Concrete
and the Symbolic machine. As a result the proof effort required, was considerably reduced,
as we essentially had to do most of our reasoning at the Symbolic level.
The reusable nature of our preservation theorem allowed us to use the Symbolic machine

as an intermediate step in our proofs. In particular we introduced an Abstract machine
that has CFI by construction and therefore a trivial proof of the CFI property. We proved
a 1-backward simulation between the Symbolic and the Abstract machine, which allowed
us to invoke the preservation theorem in order to transfer the CFI property from the
Abstract to the Symbolic machine and consequently to the Concrete machine by invoking
the preservation theorem for a second time.
Finally, we prove a 1-forward simulation between the Abstract and the Symbolic ma-

chine and thus have a complete two-way refinement between the Concrete and the Abstract
machine. These refinement proofs provide us with additional assurance in the correctness
of our micro-policy.

1Our Coq development is freely available at https://github.com/micro-policies

29

https://github.com/micro-policies

30 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

....CFI Abstract Machine.

Symbolic Machine

.

CFI Micro-Policy

.

CFI Property

. CFI Property.

Preserved
by backward
simulation

.

Concrete Machine

.

CFI Policy Monitor

.

CFI Property

.

Simulates

.

Simulates

.

Preserved
by backward
simulation

Figure 4.1: Diagram explaining proof structure

Figure 4.1 visualizes our proof structure. Dashes correspond to theorems and definitions
provided by the micro-policies framework, gray colored objects correspond to assumptions
we make and the rest to our proofs and definitions.

4.1 Control-Flow Integrity Property
Our formalization includes a definition of CFI, similar to the one found in [2], which we
prove to be true of all our machines. The need for a new definition arises from funda-
mental differences between our enforcement mechanism on the concrete machine and the
one used by Abadi et al. In particular, our enforcement mechanism does not prevent a
violation, instead it can only detect it after it has occurred by taking an arbitrary number
of “protected” (monitor mode) steps before eventually bringing the machine to a halt. This
does not have any impact on the security effectiveness of our mechanism, it does however
lead to more complex definitions and therefore more complex proofs.
We draw the identifiers used to tag instructions from a set of sub-word sized elements,

for which there is a partial conversion function from words (word_to_id), as well as a
total conversion function from identifiers to words (id_to_word). We represent the set of
allowed indirect jumps, as a characteristic function on identifiers (id→ id→ bool), called
CFG. We can extend this relation to precisely describe the control-flow of a program,
by extending CFG to a function SUCCCFG on machine states, that represents the set of
allowed targets for all the instructions.
The definition of CFI is further parameterized by an attacker model. We model the

attacker as a step relation (→a). Intuitively the attacker is allowed to change any user-
level data but not the code of the program and the pc, as well as the tags in the case of
a tagged machine. This limitations ensures that an attacker cannot directly circumvent
the monitor protection mechanism and our user-level policies (NWC , NXD and CFI). To
account for attacker steps, the stepping relation is extended as the union of the normal
step relation (→n), as defined by the machine semantics, and the attacker step relation
(→a), as defined by the attacker model.

4.2 The Abstract Machine 31

s→n s′

s→ s′
s→a s′

s→ s′

Figure 4.2: Step relation definition

We define a predicate initial s, where s is a machine state, that states that s is an
initial state. We use this predicate to express some invariants that are preserved through
execution (e.g., the initial tagging scheme for the memory). Finally we define a stopping
predicate on an execution trace that characterizes execution traces after a control-flow
violation.
Collecting the above parameters we can define a generic CFI machine that we will later

instantiate with the Abstract, the Symbolic and the Concrete machine.
Definition 4.1 (CFI Machine). A CFI machine is a machine parameterized by, a set of
states (S), an initial state predicate (initial), a step relation (→n), an attacker step relation
(→a), a function that denotes the allowed control-flows for all instructions (SUCCCFG) and
a stopping predicate (stopping).
For a CFI machine we give the following definitions:

Definition 4.2 (Trace has CFI). We say that an execution trace s0 → s1 → . . .→ sn has
CFI if for all i ∈ [0, n) if si →n si+1 then (si, si+1) ∈ SUCCCFG.
The above definition corresponds to the one found in [2], however it is stronger in the

sense that it requires that steps that are in the intersection of normal and attacker steps
respect the control-flow. If we did not allow for any violations then the above definition
would be enough, but since our enforcement mechanism allows for one violation we have
to resort to a weaker definition.
Definition 4.3 (CFI). We say that the machine (State, initial,→n,→a,SUCCCFG , stopping)
has CFI with respect to the set of allowed indirect jumps CFG if, for any execution starting
from initial state s0 and producing a trace s0 → . . .→ sn, either
1. The whole trace has CFI according to definition 4.2, or else

2. There is some i such that si →n si+1, and (si, si+1) ̸∈ SUCCCFG, where the sub-traces
s0 → . . .→ si and si+1 → . . .→ sn both have CFI and the sub-trace si+1 → . . .→ sn
is stopping.

4.2 The Abstract Machine
The abstract machine has CFI, NXD, and NWC by construction and will serve as a
specification for the symbolic and eventually the concrete machine that implement CFI
through the tag-based system explained in the previous chapter.
Unlike the symbolic and the concrete machine, this abstract machine splits the memory

into two disjoint memories, an instruction memory and a data memory. The instruction
memory is fixed (non-writable) and the machine uses this memory to fetch instructions to
execute, so NWC and NXD are enforced by construction.
In addition the state of the machine includes an ok bit, indicating whether a control-

flow violation has occurred or not. The rest of the machine state is completed by a set
of registers and a pc register. We use a 5-tuple notation for the state (im, dm, reg, pc, ok),
where the first field is the instruction memory, the second the data memory, the third the
registers, the fourth is the pc register and the fifth is the ok bit.

32 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

4.2.1 Operational semantics
In fig. 4.3 we define the operational semantics of the Abstract machine. Notice that the
machine can only step when the ok bit is set to true (i.e., no control-flow violation has
occurred). All executed instructions are fetched from the instruction memory, thus the
machine has NXD by construction. Moreover the rule for Store instructions, mandates
that all memory writes are done on the data memory, thus enforcing NWC by construction.
Upon execution of an indirect jump (Jump/Jal), we consult the CFG function to check

whether the change of control-flow is allowed. We do that through a function J that
converts the words to identifiers and then invokes the CFG function on them. If the
conversion fails or if the flow is now allowed according to CFG then the jump is taken but
the ok bit is set to false, which will halt the machine in the next step, as it is only allowed
to step when the ok bit is set to true. Otherwise the ok bit will remain true.
As the abstract machine serves as a specification to a machine with CFI, a more intuitive

definition of it would not include the ok bit and would only allow the Jump and Jal
instructions to step if they do not violate the control-flow graph. However, this abstract
machine would not allow for any violations to occur unlike our enforcement mechanism
for the symbolic and the concrete machine and would lead to more complex simulation
proofs, therefore we do not favor it.
The abstract machine also allows for monitor services to be included, although the CFI

enforcement mechanism does not require any. We assume that a monitor service is a
privileged action and that it’s execution does not violate the control-flow of the program.
Execution of a monitor service is done simply by jumping to it’s address, there is no
separate instruction. As with all other instructions, execution of the monitor service is
only allowed if the ok bit is set to true.

4.2.2 Attacker model
The attacker for the abstract machine is allowed to change the contents of the data memory
and the registers at any time, but not the rest of the state.

4.2.3 Allowed control-flows for the abstract machine
We can construct a function SUCCACFG for the abstract machine that represents the set of
allowed control-flows for all instructions, by extending the set of allowed jumps CFG we
introduced earlier.
Below we give a specification of the SUCCACFG function for the abstract machine, in the

form of inference rules. A function is defined in the actual Coq development.
Notice that a monitor service is allowed to return anywhere. As we mentioned before,

monitor services at the concrete level, execute in a protected environment, therefore we
do not want to protect their returns and this is reflected here.

4.2.4 Stopping predicate for the Abstract machine
Finally, we define what it means for the Abstract machine to be “stopping” by defining a
predicate on execution traces:
Definition 4.4 (Abstract Stopping Predicate).
1. All states in the trace are stuck with respect to normal steps (→n)

2. All steps in the trace are attacker steps (→a)

4.2 The Abstract Machine 33

im[pc] = i decode i = Nop
(im, dm, reg, pc, true)→n (im, dm, reg, pc+ 1, true)

(N)

im[pc] = i decode i = Const n r
reg′ = reg[r←n]

(im, dm, reg, pc, true)→n (im, dm, reg′, pc+ 1, true)
(C)

im[pc] = i decode i = Mov rp rs
reg[rp]=wp reg′ = reg[rs←wp]

(im, dm, reg, pc, true)→n (im, dm, reg′, pc+ 1, true)
(M)

im[pc] = i decode i = Binop op rp rs rt
reg[rp]=wp reg[rs]=ws reg′ = reg[rt←wp op ws]

(im, dm, reg, pc, true)→n (im, dm, reg′, pc+ 1, true)
(B)

im[pc] = i decode i = Load rp rs
reg[rp]=wp im[wp]=w ∨ dm[wp]=w

reg′ = reg[rs←w]

(im, dm, reg, pc, true)→n (im, dm, reg′, pc+ 1, true)
(L)

im[pc] = i decode i = Store rp rs
reg[rp]=wp reg[rs]=ws

dm′ = dm[wp←ws]

(im, dm, reg, pc, true)→n (im, dm′, reg, pc+ 1, true)
(S)

im[pc] = i decode i = Jump r
reg[r] = pc′ ok = (pc, pc′) ∈ J

(im, dm, reg, pc, true)→n (im, dm, reg, pc′, ok)
(J)

im[pc] = i decode i = Jal r
reg[r] = pc′ reg′ = reg[ra←pc+ 1] ok = (pc, pc′) ∈ J

(im, dm, reg, pc, true)→n (im, dm, reg′, pc′, ok)
(J)

mem[pc] = i decode i = Bnz r n reg[r]=w
pc′ ← if w = 0 then pc + 1 else pc + n

(im, dm, reg, pc, true)→n (im, dm, reg′, pc′, true)
(B)

pc ̸∈ dom(im) pc ̸∈ dom(dm) get_service pc = (addr, f)
f (im, dm, reg, pc, true) = (im, dm′, reg′, pc′, true)
(im, dm, reg, pc, true)→n (im, dm′, reg′, pc′, true)

(S)

Figure 4.3: Operational Semantics of the Abstract Machine

34 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

dom dm = dom dm′ dom reg = dom reg′

(im, dm, reg, pc, ok)→A
a (im, dm′, reg′, pc, ok)

Figure 4.4: Attacker model for the abstract machine

im[pc] = i decode i ∈ {Jal r, Jump r} (pc, pc′) ∈ J
((im, dm, reg, pc, ok), (im, dm′, reg′, pc′, ok)) ∈ SUCCACFG

(IF)

im[pc] = i decode i = Bnz r imm
(pc′ = pc+ 1) ∨ (pc′ = pc+ imm)

((im, dm, reg, pc, ok), (im, dm′, reg′, pc′, ok)) ∈ SUCCACFG
(CF)

im[pc] = i decode i ̸∈ {Jal r, Jump r,Bnz r imm,∅}
pc′ = pc+ 1

((im, dm, reg, pc, ok), (im, dm′, reg′, pc′, ok)) ∈ SUCCACFG
(NF)

im[pc] = ∅ dm[pc] = ∅
get_service pc = (addr, f)

((im, dm, reg, pc, ok), (im, dm′, reg′, pc′, ok)) ∈ SUCCACFG
(SF)

Figure 4.5: Allowed control-flows for instructions of the abstract machine

4.2.5 CFI proof for the Abstract Machine
Regarding initial states, we only require that the ok bit is set to true. We can now
instantiate the class of the machines defined in definition 4.1, with the abstract machine
and prove that the abstract machine has CFI according to definition 4.3. We first prove
a helpful lemma, which states that a step that is both a normal and an attacker step is
always safe according to the SUCCACFG function. The intuition behind this, is that attacker
steps retain the ok bit while a normal step that violates the control-flow would change the
ok bit to false.

Lemma 4.5 (Step Intersection). For all states st, st’ such that st→A
a st′ and st→n st′,

(st, st′) ∈ SUCCACFG.

Proof.

• By the relation st→n st′ we know that the ok bit of st is set to true.

• The relation st →A
a st′ retains the ok bit of st, therefore st’ has the ok bit set to

true.

• It trivially follows from the definition of SUCCACFG that (st, st′) ∈ SUCCACFG .

Theorem 4.6 (Abstract CFI). The abstract machine has the CFI property stated by
definition 4.3.

Proof. The proof proceeds by induction on the execution trace.

4.3 The Symbolic Machine 35

• Base Case In this case the execution trace is made up of a single step st→ st′. We
proceed with case analysis on the step.

– Attacker Step By lemma 4.5 we note that an attacker step cannot also be a
normal step that is disallowed by SUCCACFG . Thus in this case the whole trace
has CFI according to definition 4.2.

– Normal Step By case analysis, if (st, st′) ∈ SUCCACFG then trivially the whole
trace has CFI. Otherwise (st, st′) ̸∈ SUCCACFG and the sub-traces st and st’
vacuously have CFI. In addition the sub-trace st’ is stopping, as the ok bit of
st’ is set to false and the state is stuck with respect to normal steps.

• Inductive Case In this case the execution trace is extended by an additional step
at it’s beginning s0 → s1 → s2 → . . .→ sn. By the induction hypothesis either:

– The trace s1 → s2 → . . .→ sn has CFI, by case analysis if (s0, s1) ∈ SUCCACFG
the whole trace has CFI. Otherwise (s0, s1) ̸∈ SUCCACFG , the sub-trace s0 vac-
uously has CFI and the sub-trace s1 → . . . → sn has CFI by the induction
hypothesis. Additionally, the sub-trace s1 → . . .→ sn is stopping because:
* The whole trace is made up of attacker steps. Since (s0, s1) ̸∈ SUCCACFG
the ok bit of s1 will be set to false and a normal step is not allowed by the
operational semantics, while attacker steps retain the ok bit.

* The whole trace is stuck with respect to normal steps. Trivial from the
above.

– There exists a step sv1 →n sv2 such that (sv1, sv2) ̸∈ SUCCACFG and the sub-
traces s1 → . . . → sv1 and sv2 → . . .→ sn both have CFI and the later is also
a stopping trace.
* If (s0, s1) ∈ SUCCACFG then definition 4.3 still holds and the sub-trace s1 →

. . .→ sv1 is extended by one step to s0 → . . .→ sv1.
* Otherwise the ok bit for s1 is set to false and the rest of the trace is stuck
with respect to normal steps. However from the induction hypothesis we
know that sv1 →n sv2, which is a contradiction.

4.3 The Symbolic Machine
The symbolic machine was described in section 2.3.2. Unlike the abstract machine, the
symbolic machine has one memory and the distinction between data and executable in-
structions is made through tags, in a fashion similar to what was shown in sections 2.2
and 3.2.2. We instantiate the symbolic machine, according to the aforementioned sections,
with a set of tags T = {Data,Code id,Code ⊥}.
Although enforcement of CFI does not require any monitor services we expose the

monitor services mechanism and we check whether calls to each monitor service are allowed
or not according to the control-flow graph. This is done by assuming a lookup-table of
monitor services where each entry has a tag that is used to check for control-flow violations
and a semantic function from symbolic state to symbolic state which produces the new
machine state after execution of the system call, as shown in fig. 2.2.
We do not need any internal state for this micro-policy therefore, only the transfer

function is left to implement.

36 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

� �
Context {ids : @cfi_id t}.

Inductive cfi_tag : Type :=
| INSTR : option id → cfi_tag
| DATA : cfi_tag .� �

Listing 4.1: Coq definition of Symbolic tags

4.3.1 Transfer Function
We implement the transfer function based on the rules found in 3.2.2, using Gallina to
define a function mapping input vectors (mvector) to output vectors (rvector).

� �
Definition cfi_handler (ivec : Symbolic.IVec cfi_tags) :

option (Symbolic.OVec cfi_tags (Symbolic.op ivec)) :=
match ivec with
| mkIVec (Jump as op) (Code (Some n)) (Code (Some m)) _
| mkIVec (Jal as op) (Code (Some n)) (Code (Some m)) _ ⇒
if cfg n m then
Some (mkOVec (Code (Some m)) (default_rtag op))

else
None

| mkIVec (Jump as op) Data (Code (Some n)) _
| mkIVec (Jal as op) Data (Code (Some n)) _ ⇒
Some (mkOVec (Code (Some n)) (default_rtag op))

| mkIVec Jump Data (Code None) _
| mkIVec Jal Data (Code None) _ ⇒
None

| mkIVec Store (Code (Some n)) (Code (Some m)) [_ ; _ ; Data] ⇒
if cfg n m then Some (mkOVec Data Data) else None

| mkIVec Store Data (Code _) [_ ; _ ; Data] ⇒
Some (mkOVec Data Data)

| mkIVec Store _ _ _ ⇒ None
| mkIVec op (Code (Some n)) (Code (Some m)) _ ⇒
(* this includes op = Service *)
if cfg n m then
Some (mkOVec Data (default_rtag op))

else
None

| mkIVec op Data (Code _) _ ⇒
(* this includes op = Service, fall-throughs checked statically *)
Some (mkOVec Data (default_rtag op))

| mkIVec _ _ _ _ ⇒ None
end.� �

Listing 4.2: Transfer function for symbolic machine in Coq pseudo-code

Although, the rules in section 3.2.2 were fairly simply, expressing them using Gallina’s
pattern matching increased their size. We also experimented, with different ways of writing
the transfer function but we decided to stick with the definition above as it is the most
straightforward. It is worth to note that bugs in the above definition were easily made

4.3 The Symbolic Machine 37

apparent when proving theorems involving the transfer function. In fact, an “interesting”
experiment was to re-define the above function in a different way and prove the two
equivalent. It took two iterations before getting both functions to agree and although for
small definitions like the one above, testing or manually reviewing the code will reveal most
if not all bugs, the importance of formal verification in software engineering and critical
software is made obvious even for definitions that may seem trivial at first. Eventually the
correctness of the transfer function will come from the two-way simulation proofs between
the abstract and the symbolic machine.

4.3.2 Attacker model

Similar to the abstract attacker, the symbolic attacker can change all words tagged as
Data but not the ones tagged as Code. This is expressed by the following relations:

w1@Data→S
a w2@Data

(AD)

w1@Code id→S
a w1@Code id

(AI)

Figure 4.6: Attacker capabilities

These attacker capabilities on symbolic atoms are lifted to the memory and registers by
a pointwise extension.

mem→S
a mem′ reg→S

a reg′

(mem, reg, pc@tpc, int)→S
a (mem′, reg′, pc@tpc, int)

Figure 4.7: Attacker model for the Symbolic machine

4.3.3 Allowed control-flows for the Symbolic Machine

Similar to the abstract machine of section 4.2.3, we construct SUCCSCFG for the symbolic
machine (fig. 4.8) by extending the set of allowed jumps CFG.

38 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

mem[pc] = i@(Code src) decode i ∈ {Jal r, Jump r}
mem[pc′] = i′@(Code dst)

(src, dst) ∈ CFG
((mem, reg, pc, int), (mem, reg, pc′, int)) ∈ SUCCSCFG

(IF)

mem[pc] = i@(Code src) decode i ∈ {Jal r, Jump r}
mem[pc′] = ∅ get_service pc = (Code dst, f)

(src, dst) ∈ CFG
((mem, reg, pc, int), (mem, reg, pc′, int)) ∈ SUCCSCFG

(IF2)

mem[pc] = i@(Code _) decode i = Bnz r imm
(pc′ = pc+ 1) ∨ (pc′ = pc+ imm)

((mem, reg, pc, int), (mem, reg, pc′, int)) ∈ SUCCSCFG
(CF)

mem[pc] = i@(Code _) decode i ̸∈ {Jal r, Jump r,Bnz r imm,∅}
pc′ = pc+ 1

((mem, reg, pc, int), (mem′, reg′, pc′, int)) ∈ SUCCSCFG
(NF)

mem[pc] = ∅ get_service pc = (ti, f)

((mem, reg, pc, int), (mem′, reg′, pc′, int′)) ∈ SUCCSCFG
(SF)

Figure 4.8: Allowed control-flows for instructions of the symbolic machine

4.3.4 Initial states of the Symbolic Machine
For the symbolic machine, we do require that certain tagging conventions are respected
initially. Additionally we prove that these initial conditions are invariants of the machine
and they are preserved at every (normal or attacker) step.
These invariants are required for backward simulation between the symbolic and the

abstract machine.

Definition 4.7 (Instructions Tagged). For all addresses addr in the memory such that

mem[addr] = i@Code id

it holds that addr is in the domain of word_to_id and additionally

word_to_id addr = id

Definition 4.8 (Entry Points Tagged). For all addresses addr such that

mem[addr] = ∅
get_service addr = (it, f)
it = Code id

it holds that addr is in the domain of word_to_id and additionally

word_to_id addr = id

Definition 4.9 (Valid Jumps Tagged). For all addresses saddr, taddr such that

(saddr, taddr) ∈ J

4.3 The Symbolic Machine 39

it holds that
∃i,mem[saddr] = i@Code (word_to_id saddr)

and either
∃i′,mem[taddr] = i′@Code word_to_id taddr

or

mem[taddr] = ∅
∃(it, f), get_service addr = (it, f)
it = Code (word_to_id taddr)

Definition 4.10 (Registers Tagged). For all register sets regs and registers r such that

regs[r] = v@ut

it holds that
regs[r] = v@Data

Additionally we need two more invariants for forward simulation. These two invariants
enforce that all Jump and Jal instructions are tagged with a unique identifier.
Definition 4.11 (Jumps Tagged). For all addresses addr and instructions i such that
mem[addr] = i@Code x and decode i = Jump r, it holds that

∃id, word_to_id addr = id ∧ x = id

Definition 4.12 (Jals Tagged). For all addresses addr and instructions i such that
mem[addr] = i@Code x and decode i = Jal r, it holds that

∃id, word_to_id addr = id ∧ x = id

We define a predicate initial that determines whether a symbolic state is an initial state.
Definition 4.13 (Symbolic Initial States). A symbolic state sS is an initial state
(initialS sS) if definitions 4.7 to 4.12 hold for sS and additionally the tag on the pc
is set to Data.

It’s straightforward by the semantics of the step relations to prove that both normal
and attacker steps preserve each of the invariants. We only need to assume that this holds
for monitor services (i.e., if we were to provide some monitor services they would have to
preserve these invariants).
Lemma 4.14 (Symbolic Invariants preserved by normal steps). For all symbolic states
(st, st’),

invariants st =⇒
st→n st′ =⇒
invariants st′

Lemma 4.15 (Symbolic Invariants preserved by attacker steps). For all symbolic states
(st, st’),

invariants st =⇒
st→S

a st′ =⇒
invariants st′

40 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

4.3.5 Stopping predicate for the Symbolic Machine
Similar to the abstract machine, we say that an execution trace of the symbolic machine
is stopping if:

Definition 4.16 (Symbolic Stopping Predicate).

• All states in the trace are stuck with respect to normal steps (→n)

• All steps in the trace are attacker steps (→a)

4.3.6 Symbolic-Abstract simulation
The Symbolic-Abstract simulation formally defines the connection between the two ma-
chines. We prove a 1-backward simulation theorem for both normal and attacker steps.
This means that every step of the symbolic machine can be matched by one step of the
abstract machine. Additionally we prove a 1-forward simulation for normal steps, which
means that every step of the abstract machine can be matched by one on the symbolic ma-
chine. Intuitively the above theorems show that the symbolic machine precisely emulates
all behaviors of the abstract machine.

Definition 4.17 (1-Backward Simulation). A low-level machine simulates a high-level
machine with respect to a simulation relation ∼ between low-level machine states and
high-level machine states, if sH1 ∼ sL1 and sL1 →n sL2 implies that there exists sH2 such that,
sH2 ∼ sL2 and sH1 →n sH2 .
We visualize the above definition with the following diagram:

..

..sH1 ..sH2

..sL1 ..sL2

.....

(Plain lines denote premises, dashed ones conclusions.)

Definition 4.18 (1-Forward Simulation). A high-level machine simulates a low-level ma-
chine with respect to a simulation relation ∼ between low-level machine states and high-
level machine states, if sH1 ∼ sL1 and sH1 →n sH2 implies that there exists sL2 such that,
sH2 ∼ sL2 and sL1 →n sL2 .

Intuitively, backward simulation is enough to capture the desired security property.
Our intuition is further strengthened later, when we prove that the CFI property given
by definition 4.3 is preserved by backward refinement. However, a trivial machine that
cannot take any step also enjoys CFI vacuously. Forward simulation guarantees that this
is not the case for our symbolic machine and proves that it is a meaningful implementation
of the abstract machine.

Simulation Relation

We define the state simulation relation between the symbolic and abstract machine by
defining the simulation relation for each component of the state.

4.3 The Symbolic Machine 41

Definition 4.19 (Data Memory Simulation). An abstract data memory dm is in simula-
tion with a symbolic memory mem, if for all words w, x it holds that

mem[w] = x@Data ⇐⇒ dm[w] = x

Definition 4.20 (Instruction Memory Simulation). An abstract instruction memory im
is in simulation with a symbolic memory mem, if for all words w, x it holds that

(∃ it ∈ {id,⊥}, mem[w] = x@(Code it)) ⇐⇒ im[w] = x

Definition 4.21 (Registers Simulation). An abstract register set areg is in simulation
with a symbolic register set sreg, if for all registers r and words x it holds that

sreg[r] = x@Data ⇐⇒ areg[r] = x

Definition 4.22 (PC simulation). The abstract pc (apc) is in simulation with the symbolic
pc (spc@tpc), if it holds that

apc = spc ∧ (tpc = Data ∨ ∃n ∈ id, tpc = Code n)

Definitions 4.19 to 4.22 relate the basic components of the state. What is left to do, is
relate the ok bit of the abstract machine with the state of the symbolic machine.
Definition 4.23 (Correctness). The statement of correctness, states that for the symbolic
memory (smem), the symbolic pc (spc@tpc) and the ok bit of the abstract machine, it holds
that for all words i and tags ti,

smem[spc] = i@ti =⇒
ok = true ⇐⇒
(∀src ∈ id, tpc = Code src =⇒
∃dst ∈ id,
ti = Code dst ∧ (src, dst) ∈ CFG)

Informally definition 4.23 states that if the tag on the current instruction is ti, then if
the tag on the pc is set to Code src (which means an indirect flow occurred in the previous
step), there exists an id dst which is used to tag the current instruction and additionally
the flow from an instruction with id src to one with id dst is allowed according to CFG, if
and only if the ok bit of the abstract machine is set to true. This definition captures the
notion that a violation in the abstract machine is also a violation in the symbolic machine
and vice-versa.
We give one more definition of correctness, for the case of monitor services. The intuition

is the same, but because monitor services live outside the addressable memory of the
machines, its statement needs to be adapted a bit.
Definition 4.24 (Monitor Service Correctness). Correctness for monitor services, states
that for the symbolic memory (smem), the symbolic pc (spc@tpc) and the ok bit of the
abstract machine, it holds that for all monitor services sc,

smem[spc] = ∅ =⇒
get_service spc = (ti, f) =⇒
ok = true ⇐⇒
(∀src ∈ id, tpc = Code src =⇒
∃dst ∈ id,
ti = Code dst ∧ (src, dst) ∈ CFG)

42 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

The simulation relation (∼AS) is defined as the conjunction of definitions 4.19 to 4.24
and the invariants 4.7 to 4.9.

Proving 1-backward simulation for normal steps

Once we have the definition of the simulation relation, proving a 1-backward simulation for
normal steps is relatively straight-forward, thanks to the fact that the symbolic machine
abstracts away many details of the concrete machine that would make the proofs more
tedious. Additionally we do not have to provide such proofs for any monitor service as we
did not use any. Therefore we will only have to reason about the small set of instructions
that the symbolic and the abstract machine share.
We start with some helpful lemmas about registers and memory updates. These lemmas

serve as the basis for proving simulation for instructions that change the registers or the
memory. The corresponding Coq definitions and proofs can be found.

Lemma 4.25 (Registers Update Backward Simulation). For all symbolic register sets
(sreg,sreg’), abstract register sets (areg), registers (r), words (v,v’),

areg ∼regs sreg =⇒
sreg[r] = v@Data =⇒
sreg[r←v′@Data] = sreg′ =⇒
∃areg′,
areg[r←v′] = areg′∧
areg′ ∼regs sreg′

Lemma 4.26 (Memory Update Backward Simulation). For all symbolic memories (smem,smem’),
abstract data memories (amem) and words (addr,v,v’),

amem ∼dmem smem =⇒
smem[addr] = v@Data =⇒
smem[addr←v′@Data] = smem′ =⇒
∃amem′,

amem[addr←v′] = amem′∧
amem′ ∼dmem smem′

With these definitions and lemmas we are able to prove 1-backward simulation for
normal steps between the Symbolic and the Abstract machine as defined by definition 4.17,
where the low-level machine is the Symbolic machine and the high-level machine is the
Abstract machine.

Theorem 4.27 (1-Backward Simulation Symbolic-Abstract). Definition 4.17 holds for
the Symbolic (low-level) and the Abstract (high-level) machines when the two machines are
related by ∼AS.

Proving 1-backward simulation for attacker steps

The same definition as 4.17 of 1-backward simulation is used for the attacker, with the
sole difference being that steps now refer to attacker steps.

4.3 The Symbolic Machine 43

Definition 4.28 (1-Backward Simulation Attacker). A low-level machine simulates a
high-level machine with respect to a simulation relation ∼ between low-level and high-
level machine states, if sH1 ∼ sL1 and sL1 →L

a sL2 implies that there exists sH2 such that,
sH2 ∼ sL2 and sH1 →H

a sH2 .

We prove that 1-backward simulation for attacker steps hold, by first showing how we
can construct attacker steps at the abstract level from symbolic attacker steps and then
showing that this way of building attacker steps preserves the simulation relation (∼).
A step of the symbolic attacker, as mandated by the semantics of the attacker model,

can only change the memory and register contents tagged Data, formally mem→S
a mem′

and reg→S
a reg′.

Intuitively, we can construct areg by mapping a function on the set of registers, that
changes a symbolic atom to a word by removing it’s tag.

� �
Definition untag_atom (a : atom (word t) cfi_tag) := common.val a.� �

Listing 4.3: Untag symbolic atom function

We can trivially prove that the abstract attacker can take a step by mapping un-
tag_atom over a symbolic register set. This is trivial because the attacker can arbitrarily
change all registers.

Lemma 4.29 (Abstract attacker registers).

sreg→S
a sreg′ =⇒

areg→A
a map untag_atom sreg′

However, we still need to prove that the simulation relation between the two machines
does not break when attacker steps are taken. We can proof that simulation of registers
is preserved by attacker steps. The proof proceeds by using the correctness theorem for
the map function.

Theorem 4.30 (Map Correctness instance).

(map untag_atom sreg′)[r] = option_map untag_atom (sreg′[r])

where option_map is defined as

� �
Definition option_map f x :=
match x with
| Some y ⇒ Some (f y)
| None ⇒ None
end.� �

Listing 4.4: Option Map function

44 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.31 (Attacker preserves register simulation). For all abstract register sets (areg)
and symbolic register sets (sreg, sreg’),

areg ∼regs sreg =⇒
sreg→S

a sreg′ =⇒
map untag_atom sreg′ ∼regs sreg′

In order to complete the proof of 1-backward simulation for attacker steps, we also need
to construct an abstract memory and to show that the ∼mem relation is preserved by
attacker steps. Due to the fact that the abstract machine has split data and instruction
memories, in order to follow the same methodology as with registers, we will need to split
the symbolic memory. We achieve this, using a filter function.
Firstly we proof that attacker steps do not break simulation of instruction memories.

Intuitively this is trivial, as the symbolic attacker can only change memory contents tagged
Data.
Lemma 4.32 (Attacker preserves instruction memory simulation). For all abstract in-
struction memories (imem) and symbolic memories (smem, smem’),

imem ∼imem smem =⇒
smem→S

a smem′ =⇒
imem ∼imem smem′

Constructing a data memory is more complicated than in the previous cases. Our ap-
proach, uses the filter function to create a subset of the symbolic memory that only contains
atoms tagged Data and then applies the same methodology with registers, mapping the
untag_atom function over this subset to obtain an abstract data memory.� �
Definition is_data (a : atom (word t) cfi_tag) :=
match common.tag a with
| DATA ⇒ true
| INSTR _ ⇒ false

end.� �
Listing 4.5: Function that checks if atom is tagged Data

Again we can prove a few helpful lemmas that ease the final proof.
Lemma 4.33 (Attacker preserves data memory simulation). For all abstract data mem-
ories (dmem) and symbolic memories (smem, smem’),

dmem ∼dmem smem =⇒
smem→S

a smem′ =⇒
map untag_atom (filter is_data sreg′) ∼dmem dmem′

The proof of lemma 4.33 is slightly more complex than the one for registers, as we now
have to invoke the filter correctness theorem as well.
Theorem 4.34 (Filter Correctness instance).

(filter is_data smem′)[addr] = option_filter is_data (smem′[addr])

where option_map is defined as

4.3 The Symbolic Machine 45

� �
Definition option_filter f x :=
match x with
| Some x0 ⇒ if f x0 then Some x0 else None
| None ⇒ None
end.� �

Listing 4.6: Option Filter function

In all cases, we have to show that the domains of the abstract memories and registers are
also preserved. We include here the corresponding lemma for the data memory. Its proof
was again more complicated, due to the fact that we had to split the symbolic memory.
Lemma 4.35 (Attacker preserves data memory domains). For all abstract data memories
(dmem, dmem’) and symbolic memories (smem, smem’),

dmem ∼dmem smem =⇒
smem→S

a smem′ =⇒
dmem′ ∼dmem smem′ =⇒
D(dmem) = D(dmem′)

Likewise with normal steps, we can now prove a 1-backward simulation for attacker
steps as defined by definition 4.28.
Theorem 4.36 (1-Backward Simulation Symbolic-Abstract for Attacker). Definition 4.28
holds for the Symbolic (low-level) and the Abstract (high-level) machines when the two
machines are related by ∼AS.

Proving 1-forward simulation for normal steps

The 1-forward simulation proof between the abstract and the symbolic machine is similar
to the 1-backward simulation proof. Again, we take the same approach and prove some
auxiliary lemmas about memory and registers updates.
Lemma 4.37 (Registers Update Forward Simulation). For all abstract register sets (areg,areg’),
symbolic register sets (sreg), registers (r) and words (v’),

areg ∼regs sreg =⇒
areg[r←v′] = areg′ =⇒
∃sreg′,
sreg[r←v′@Data] = sreg′∧
areg′ ∼regs sreg′

Lemma 4.38 (Memory Update Forward Simulation). For all abstract data memories
(dmem,dmem’), symbolic memories (smem) and words (addr,v’),

dmem ∼dmem smem =⇒
dmem[addr←v′] = dmem′ =⇒
∃smem′,

smem[addr←v′@Data] = smem′∧
dmem′ ∼dmem smem′

46 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.39 (Outside Memory). For all abstract data memories (dmem), abstract in-
struction memories (imem), symbolic memories (smem) and words (addr),

dmem ∼dmem smem =⇒
imem ∼imem smem =⇒
imem[addr] = ∅ =⇒
dmem[addr] = ∅ =⇒
smem[addr] = ∅

For proving forward simulation between the abstract and the symbolic machine it is
required that all indirect jumps are tagged with a unique identifier, which we enforce by
the invariants 4.11 and 4.12.

Theorem 4.40 (1-Forward Simulation Abstract-Symbolic). Definition 4.18 holds for the
Symbolic (low-level) and the Abstract (high-level) machines when the two machines are
related by ∼AS.

4.4 The Concrete Machine
Assuming the existence of correct code that implements the CFI monitor, we can utilize
the framework of section 2.3 to instantiate the concrete machine and obtain a refinement
between the concrete and the symbolic machines, we need to provide the encoding of
symbolic tags. For the concrete machine we only considered a 32-bit architecture, but we
could very easily instantiate the concrete machine with 64-bit words with minimal changes
to our proofs.

4.4.1 Concrete tags
In order to obtain the concrete tags, we need to wrap the symbolic tags with the monitor
self-protection tags (User, Entry, Monitor) and provide an encoding to words of these
tags.
We use 28 bits for the identifiers. That means, that we can uniquely identify up to 228

instructions. Trying to tag more instructions than this, would break the symbolic invariant
4.7, because by the simulation relation between the concrete and symbolic machines, the
two machines follow the same tagging scheme for User and Entry tags.
Defining the conversion functions 2 between words and identifiers is straight forward.

We make the simply choice, to convert words to identifiers only if they are equal or less
than the maximum word our 28-bit identifiers can fit. Note that this does not mean we
reduce the addressable space to 28-bits. You can use addresses higher than 228 to place
contents tagged as Data orMonitor or even Code ⊥ but not instructions with an identifier.
The conversion from identifiers to words is trivial by expanding the id to 32-bit words

by adding zeros to the high bits.
When using identifiers of 28-bits, we can encode the symbolic tags using 30-bits, with

an encoding like the one in table 4.1, where the two least-significant bits are used to
distinguish between Data, Code ⊥ and Code id, and the 28 higher-bits are the id in the
last case and zero otherwise.

2Numbers in the Coq definitions are off by one (e.g., 27 means 28), for reasons relating to the underlying
words library

4.4 The Concrete Machine 47

Symbolic Tag Encoding
Data 0
Code ⊥ 1
Code id 4id+ 2

Table 4.1: Encoding of Symbolic Tags

Having an encoding into 30-bits of symbolic tags, we can use the 2-bits left, to wrap
the symbolic tags with the monitor self-protection tags. We use the two least-significant
bits to distinguish between User (01), Entry (10) and Monitor (00). Only the User and
Entry wrap around symbolic tags. The policy monitor does not use symbolic tags and the
corresponding tag Monitor does not need to wrap around them. Thus the encoding of the
Monitor tag has all its bits set to zero.

012331

id 1 0 0 1

Figure 4.9: Encoding of an instruction with a unique identifier id

With the above encoding, we can easily define a decode function and prove that the
decode function is the left inverse of the encode function (decode(encode t) = t) and right
inverse for all elements in the domain of decode (decode w = t =⇒ encode t = w).

4.4.2 Concrete-Symbolic backward refinement
We can now instantiate the backward refinement between the concrete and the symbolic
machine that is provided by the micro-policies framework [9]. For the concrete to symbolic
backward refinement we no longer get a 1-backward simulation, due to the fact that the
steps the concrete policy monitor takes are not matched by any steps of the symbolic
machine. For user mode steps (i.e., when the tag of the pc is User) the framework does
provide a proof of 1-backward simulation as defined by definition 4.17, with respect to a
simulation relation (∼U), where the low-level machine is now the concrete machine and
the high-level machine is the symbolic machine.
For Monitor steps a weaker simulation relation (∼M) is used. Eventually we obtain a

{0, 1}-backward simulation between the concrete and the symbolic machine.

Definition 4.41 (Weak simulation relation for Monitor steps). A concrete state sC is in
weak simulation with a symbolic state sS (sS ∼M sC), if the tag of the pc of state sC is
Monitor and there exists a concrete user state sC0 such that sS ∼U sC0 and there is an
execution trace sC0 →n . . . →n sC formed only by monitor steps (all states have Monitor
tag on the pc).
We visualize the above definition with the following diagram:

..

. ..sS

..sC0 ..sC1 ..sC

.U .

UM

..M .

M∗

.. M

48 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

We define the simulation relation ∼CS between the concrete and symbolic machines
inductively.

sS ∼U sC

sS ∼CS sC
sS ∼M sC

sS ∼CS sC

Figure 4.10: Concrete-Symbolic simulation relation

Theorem 4.42 ({0, 1}-Backward simulation between Concrete and Symbolic machines).
For all concrete states sC1 , sC2 and symbolic states sS1 such that, sS1 ∼CS sC1 and sC1 →n sC2
it holds that sS1 ∼CS sC2 or there exists sS2 such that sS1 →n sS2 and sS2 ∼U sC2 .

Using the 1-backward simulation between the symbolic and abstract machines (the-
orem 4.27) and the {0, 1}-backward simulation between the concrete and the symbolic
machine (theorem 4.42), we can obtain our first result, which is the backward refinement
between the concrete machine running a policy monitor that enforces CFI and the abstract
machine with respect to a refinement relation (∼CA) between concrete and abstract states.
We define ∼CA in terms of the simulation relation between the concrete and the symbolic
machine (∼CS) and the simulation relation between the symbolic and the abstract machine
(∼SA).

sS ∼CS sC sA ∼SA sS

sA ∼CA sC

Figure 4.11: Refinement relation between Concrete and Abstract machines

Theorem 4.43 (Concrete-Abstract backward refinement). For all abstract machine states
(sA1), concrete machine states (sC1 , sC2), if sA1 ∼CA sC1 and sC1 →∗

n sC2 and sC2 is in user
mode, then there exists an abstract machine state sA2 such that sA1 →∗

n sA2 and sA2 ∼CA sC2 .

In order to obtain our second result, which is a proof that the property stated by
definition 4.3 holds for the concrete machine, we will need to make the concrete machine
an instance of the 4.1, by defining all it’s parameters, similar to what we did for the
abstract and symbolic machines.

4.4.3 Attacker model
The attacker model for the concrete machine, models an attacker that can tamper with
the machine only when it’s in user mode. The capabilities of the concrete attacker when
the machine is in user mode, directly matches the capabilities of the symbolic attacker,
which means that the attacker can only change the values of atoms that have a User tag.
This prevents the attacker from changing monitor data in memory or registers, as well as
the tags.

w1@ut1 →S
a w2@ut2

w1@User ut1 →C
a w2@User ut2

(AU)

Figure 4.12: Concrete attacker capabilities on atoms

4.4 The Concrete Machine 49

mem→C
a mem′ reg→C

a reg′

(mem, reg, cache, pc@User ut, epc)→C
a (mem′, reg′, cache, pc@User ut, epc)

Figure 4.13: Attacker model for the Concrete machine

4.4.4 Concrete-Symbolic 1-backward simulation for Attacker

For attacker steps we can prove a 1-backward simulation, instantiating definition 4.17,
with the concrete machine as the low level machine, the symbolic machine as the high
machine and using ∼U as a simulation relation.
In order to prove the simulation, we apply the same technique as in the case of Symbolic-

Abstract backward simulation for attacker steps, constructing attacker steps at the sym-
bolic level from attacker steps in the concrete level and additionally showing that the way
we build the steps preserves the simulation relation.
We can construct a symbolic memory and a symbolic set of registers from their concrete

counterparts by filtering all non-user data of the concrete memory and registers and then
decoding all the concrete tags to symbolic ones. We can achieve this using the filter and
map functions as seen in section 4.3.6.

� �
Definition is_user (x : atom (word mt) (word mt)) :=
rules.word_lift (fun t ⇒ rules.is_user t) (common.tag x).� �

Listing 4.7: Function that returns true if atom has a User tag

� �
Definition coerce (x : atom (word mt) (word mt))
: atom (word mt) (cfi_tag) :=
match rules.decode (common.tag x) with
| Some (rules.USER tg) ⇒ (common.val x)@tg
| _ ⇒ (common.val x)@DATA (*this is unreachable in our case*)
end.� �

Listing 4.8: Function that converts a concrete atom to a symbolic one

We can now prove lemmas 4.44 and 4.45 the two lemmas that will allows us to easily
proof the 1-backward simulation for attacker steps.

Lemma 4.44 (Concrete-Symbolic attacker registers 1-backward simulation). For all sym-
bolic register sets (sreg) and concrete register sets (creg, creg’),

sreg ∼regs creg =⇒
creg→C

a creg′ =⇒
sreg →S

a map coerce (filter is_user creg′)

Lemma 4.45 (Concrete-Symbolic attacker memory 1-backward simulation). For all sym-

50 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

bolic memories (smem) and concrete memories (cmem, cmem’),
smem ∼mem cmem =⇒
cmem→C

a cmem′ =⇒
map coerce (filter is_user cmem′) ∼mem cmem′

smem→S
a map coerce (filter is_user cmem′)

We additionally have to prove that attacker steps preserve some low-level invariants
of the concrete machine that are required by the framework we use, but the proofs are
mostly trivial as the invariants regard pieces of state the attacker cannot tamper with e.g.,
monitor data.
Theorem 4.46 (1-Backward Simulation Concrete-Symbolic for Attacker). Definition 4.28
holds for the Concrete (low-level) and the Symbolic (high-level) machines when the two
machines are related by ∼U .

4.4.5 Allowed control-flows for the Concrete Machine
Once again we construct a function that decides the validity of all control-flows SUCCCCFG ,
this time for the concrete machine. SUCCCCFG allows all flows involving monitor mode and
only restricts the control-flow for user mode execution.

in_monitor s1 || in_monitor s2

(s1, s2) ∈ SUCCCCFG
(MF)

mem[pc] = i@User (Code src) decode i ∈ {Jal r, Jump r}
mem[pc′] = i′@User (Code dst)

tpc = User ut t′pc = User ut′ (src, dst) ∈ CFG
((mem, reg, cache, pc@tpc, epc), (mem, reg′, cache, pc′@t′pc, epc)) ∈ SUCCCCFG

(IF)

mem[pc] = i@User (Code src) decode i ∈ {Jal r, Jump r}
mem[pc′] = i′@Entry (Code dst)
tpc = User ut t′pc = User ut′

decode i′ = Nop (src, dst) ∈ CFG
((mem, reg, cache, pc@tpc, epc), (mem, reg′, cache, pc′@t′pc, epc)) ∈ SUCCCCFG

(IF2)

mem[pc] = i@User (Code _) decode i = Bnz r imm
tpc = User ut t′pc = User ut′

(pc′ = pc+ 1) ∨ (pc′ = pc+ imm)

((mem, reg, cache, pc@tpc, epc), (mem, reg, cache, pc′@t′pc, epc)) ∈ SUCCCCFG
(CF)

mem[pc] = i@User (Code _) decode i ̸∈ {Jal r, Jump r,Bnz r imm,∅}
tpc = User ut t′pc = User ut′

(pc′ = pc+ 1) ∨ (pc′ = pc+ imm)

((mem, reg, cache, pc@tpc, epc), (mem′, reg′, cache, pc′@t′pc, epc)) ∈ SUCCCCFG
(NF)

Figure 4.14: Allowed control-flows for instructions of the concrete machine

4.4.6 Initial states of the Concrete Machine
For the concrete machine, we require that its initial states matches the initial states of
the symbolic machine under the simulation relation ∼U . This ensures that concrete initial

4.5 Generic Preservation Theorem 51

states satisfy both the invariants we enforced on symbolic initial states and any low-level
invariants enforced by ∼U .

Definition 4.47 (Concrete Initial States). A concrete state sC is an initial state if there
exists a symbolic state sS such that initialS sS and sS ∼U sC .

4.4.7 Stopping predicate for the Concrete Machine
The stopping predicate for the concrete machine is more complex than the one for the
symbolic or the abstract machine, due to the monitor steps. In particular, on the next
step after a violation the machine will enter monitor mode to determine whether the step
is allowed or not. The miss handler will take an arbitrary number of steps to determine
the violation of the enforced policy. This is modeled by disallowing the concrete machine
to return to user mode. However, note that it could be the case that the machine cannot
step at all after a control-flow violation, for example if the pc is outside the memory of the
machine.
In addition to the above, there may be attacker steps. These can only come immediately

after the violating step and before the machine enters monitor mode. Attacker is not
allowed to take steps during monitor mode and as mentioned above the machine will not
return to user mode.
We can summarize the conditions that hold for an execution trace to be stopping.

Definition 4.48 (Concrete Stopping Predicate).

• There is an optional prefix of attacker steps (→C
a) and all states in the prefix are

user states.

• There is an optional suffix of monitor steps (→n) and all states in the suffix are
monitor steps.

..sCv. sC1

. sC2

. sC3

. sCn

.

User Mode

..

Monitor Mode

.. a. a. a. n. n. n

4.5 Generic Preservation Theorem
In this section, we develop the preservation theorem that we used, along with the sim-
ulation proofs of sections 4.3.6 and 4.4.2, in order to prove CFI (definition 4.3) for the
concrete machine.
The statement of the theorem is parameterized by two CFI machines (definition 4.1).

Moreover, we require that a {0, 1}-backward simulation between the two machines, holds
for normal steps and a 1-backward simulation for attacker steps. The {0, 1} simulation
for normal steps, stems from the fact that the steps of the concrete machine in monitor
mode are not matched by any steps on the symbolic (or the abstract) level. We generalize
this, by a notion of checked steps on the steps of the low-level machine. Intuitively we only
check for control-flow violations when a checked step is taken.
We require a strong 1-backward simulation for checked steps and a {0, 1}-backward

simulation for the rest.

52 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

..

..sH1 ..sH2

..sL1 ..sL2

..

n

.

n

..

Figure 4.15: 1-backward simulation

..

..sH

..sL0 ..sL1

..

n

..

Figure 4.16: 0-backward simulation

..

..sH1 ..sH2

..sL1 ..sL2

..

a

.

a

..

Figure 4.17: 1-backward simulation for
attacker

Formally we capture the above specifications with the following definitions:

Definition 4.49 ({0, 1}-Backward Simulation for normal steps). For all states sH1 of the
high-level machine and sL1 , s

L
2 of the low-level machine, such that sH1 ∼ sL1 and sL1 →n sL2

with a checked step, there exists sH2 such that, sH2 ∼ sL2 and sH1 →n sH2 . If sL1 →n sL2 is an
unchecked step then either the same as above holds or sH1 ∼ sL2 .

Definition 4.50 (1-Backward Simulation for attacker steps). Definition 4.17 holds for
attacker steps.

From these relations on single steps, we can build a refinement relation on execution
traces. We define this trace refinement relation inductively and we say that two traces are
in refinement if they are built this way.
In fig. 4.18 we distinguish between three separate cases, from which we may build two

traces that are in refinement.

Zero Step. If the low-level machine takes an unchecked step, sL1 →n sL2 and for
a high-level machine state sH it holds that sH ∼ sL1 and sH ∼ sL2 then if traces
sH · trH and sL2 · trL are in refinement, the traces sH · trH and sL1 · sL2 · trL are also
in refinement.

Normal Step. If the low-level machine takes a checked step, sL1 →n sL2 and the
high-level machine takes a step sH1 →n sH2 and sH1 ∼ sL1 and sH2 ∼ sL2 then if traces
sH2 · trH and sL2 · trL are in refinement, the traces sH1 · sH2 · trH and sL1 · sL2 · trL are
also in refinement.

Attacker Step. If the low-level machine takes an attacker step sL1 →L
a sL2 and

additionally sL1 ̸→n sL2 and the high-level machine takes an attacker step sH1 →H
a sH2

and sH1 ∼ sL1 and sH2 ∼ sL2 then if traces sH2 · trH and sL2 · trL are in refinement, the
traces sH1 · sH2 · trH and sL1 · sL2 · trL are also in refinement.

4.5 Generic Preservation Theorem 53

sH ∼ sL

sH ∼tr sL
(TRN)

sL1 →n sL2 ¬check sL1 sL2

sH1 ∼ sL1 sH2 ∼ sL2

sH1 · trH ∼tr sL2 · trL

sH1 · trH ∼tr sL1 · sL2 · trL
(TRN0)

sL1 →n sL2 sH1 →n sH2

sH1 ∼ sL1 sH2 ∼ sL2

sH2 · trH ∼tr sL2 · trL

sH1 · sH2 · trH ∼tr sL1 · sL2 · trL
(TRN1)

sL1 →a sL2 sH1 →a sH2 sL1 ̸→n sL2

sH1 ∼ sL1 sH2 ∼ sL2

sH2 · trH ∼tr sL2 · trL

sH1 · sH2 · trH ∼tr sL1 · sL2 · trL
(TRA)

Figure 4.18: Trace refinement relation

Notice in the last case that we require that the step from sL1 to sL2 cannot be a normal
step. Intuitively this is used to enforce that if a step is in the intersection of the normal
and attacker step relations, one should prefer the normal step to build the trace.
We can now extend the backward refinement definitions 4.49 and 4.50 to whole execution

traces which we relate with fig. 4.18.

Theorem 4.51 (Trace Backward Refinement). If sH1 ∼ sL1 and sL1 → . . . → sLn where
n > 0 then, there exists an execution trace such that sH1 → . . . sHm where m ≥ 0 and
additionally the traces sH1 . . . sHm and sL1 . . . sLn are in refinement.

In order to prove that CFI is preserved by backwards refinement, we make some addi-
tional assumptions about the two machines.

Definition 4.52 (Step Decidability). The normal step relation of the low-level machine
is decidable.

Definition 4.53 (Initial States). For all initial states of the low-level machine, there exists
an initial state of the high-level machine so that the two are in simulation.

Definition 4.54 (Unchecked Steps). All unchecked steps are allowed according to the
SUCCCFG function.

Definition 4.55 (Successor Functions). For the states sH1 , sH2 , sL1 , s
L
2 such that sH1 ∼ sL1

and sH2 ∼ sL2 and sH1 →n sH2 and there is a checked step sL1 →n sL2 , the functions SUCCHCFG
and SUCCLCFG agree on their results.

Definition 4.56 (No Attacker Steps on Violation). For a high-level machine step
sH1 →n sH2 such that (sH1 , sH2) ̸∈ SUCCHCFG it holds that sH1 ̸→H

a sH2 .

54 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Definition 4.57 (Stopping Predicates). If there is a step in the high-level machine
sH1 →n sH2 such that (sH1 , sH2) ̸∈ SUCCHCFG and if the traces sH2 · trH and sL2 · trL are in
refinement and sH2 · trH is a stopping trace for the high-level machine then sL2 · trL is a
stopping trace for the low-level machine.

Under these assumptions we can now obtain a preliminary result about our CFI defini-
tions.

Theorem 4.58 (Trace Refinement preserves Trace Has CFI). For all execution traces
sH0 → . . . sHn and sL0 → . . . sLm that are in refinement (fig. 4.18), if the high-level trace
sH0 → . . . sHn has CFI (definition 4.2) then the low-level trace sL0 → . . . sLm also has CFI.

Proof. The proof proceeds by induction on the trace refinement.

• Base Case In this case the two traces are singletons and the low-level trace vacuously
has CFI.

• Zero Step By the induction hypothesis the trace sL0 → . . .→ sLm has CFI. In order
to prove that the augmented with an unchecked step sL →n sL0 trace (sL →n sL0 →
. . . → sLm) also has CFI we need to prove that (sL, sL0) ∈ SUCCLCFG . We know that
sL ∼ sH0 (by construction of the trace refinement relation), our goal is immediately
provable by the assumption on unchecked steps (definition 4.54).

• One Step Again by the induction hypothesis we easily obtain that sL0 → . . .→ sLm
has CFI, therefore it’s left to prove that for the checked step sL →n sL0 at the
beginning of the trace it holds that (sL, sL0) ∈ SUCCLCFG . We know by the trace
refinement that sH ∼ sL, sH0 ∼ sL0 and that sH →n sH0 .

– If the step sL →n sL0 is checked, then by the assumption on the SUCCCFG
functions (definition 4.55) (sH , sH0) ∈ SUCCHCFG ⇐⇒ (sL, sL0) ∈ SUCCLCFG .
But by the second premise we know that the trace sH → sH0 → . . . → sHn
has CFI and therefore (sH , sH0) ∈ SUCCHCFG . Thus we conclude that (sL, sL0) ∈
SUCCLCFG .

– If the step sL →n sL0 is unchecked, again it is immediately provable by defini-
tion 4.54.

• Attacker Step By the induction hypothesis we easily obtain that sL0 → . . . → sLm
has CFI. The step sL →a sL0 is an attacker step and additionally sL ̸→n sL0 by the
trace refinement definition. Therefore it vacuously holds that (sL, sL0) ∈ SUCCLCFG
and the whole trace has CFI.

We have now proved that a {0, 1}-backward simulation for normal steps and a 1-
backward simulation for attacker steps as per definitions 4.49 and 4.50 preserves the CFI
property of execution traces. We will use this preliminary result to prove that these back-
ward simulations also preserve the CFI property as described by definition 4.3.
We start with an auxiliary lemma that states that if there is a trace refinement between

a high-level trace and a low-level trace and then we split the high-level trace to sub-traces
in a certain way, then there exists low-level sub-traces such that trace refinement holds
between the sub-traces. Naturally, with definition 4.3 in mind, we choose to split the
high-level trace at the step that violates the control-flow.

4.5 Generic Preservation Theorem 55

..sH0. sH1

. sHv1

. sHv2

. sHi

. sHn

.

sL0

.

sL1

.

sL2

.

. . .

.

sLv1

.

sLv2

.

sLj

.

. . .

.

sLk

.

. . .

.

sLm

..

trH

...

trHhd

...

trHtl

..

trL

...

trLhd

...

trLtl

.........................

Figure 4.19: Splitting trace refinement on violation

Lemma 4.59 (Refine Traces Split). If the traces sH0 → . . . → sHn (referred to as trH)
and sL0 → . . . → sLm (referred to as trL) are in refinement and there is a splitting of
the high-level trace such that trH = trHhd · sHu1 · sHu2 · trHtl and additionally sHu1 →n sHu2

and (sHu1, s
H
u2) ̸∈ SUCCHCFG, then there exists a splitting of the low-level trace such that

trL = trLhd · sLu1 · sLu2 · trLtl, the traces trHhd · sHu1 and trLhd · sLu1 are in refinement, the traces
sHu2 · trHtl and sLu2 · trLtl are in refinement, sHu1 ∼ sLu1, sHu2 ∼ sLu2 and sLu1 →n sLu2.

Combining theorem 4.58 and lemma 4.59 we can now prove that {0, 1}-backward sim-
ulation preserves CFI as defined by definition 4.3 under certain assumptions.

Theorem 4.60 (CFI Preservation). If a low-level machine simulates (as defined by defi-
nitions 4.49 and 4.50) a high-level machine and the high-level machine has CFI then the
low-level machine also has CFI under the assumptions 4.52 to 4.57.

4.5.1 CFI proof for the Symbolic Machine
To prove CFI for the symbolic machine, we instantiate the preservation theorem of sec-
tion 4.5 with the abstract machine as the high-level machine and the symbolic machine as
the low-level machine. For the symbolic machine all steps are considered checked. Proving
definitions 4.49 and 4.50 for the symbolic (low-level) and abstract (high-level) machines
is trivial by using the 1-backward simulation for both normal and attacker steps from
section 4.3.6.
The only thing left to prove before being able to use the CFI preservation theorem is

that the required assumptions 4.52 to 4.57 hold for this instantiation.

Lifting preservation assumptions for Symbolic-Abstract machines

Lemma 4.61 (Symbolic Step Decidable). Definition 4.52 holds for the Symbolic machine.

Proof. In order to decide whether sS0 →n sS1 or sS0 ̸→n sS1 we resort to the computational
interpretation of the step relation. If stepSn sS0 = sS then if sS1 = sS we obtain sS0 →n sS1
otherwise we conclude that sS0 ̸→n sS1 .

56 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.62 (Symbolic-Abstract Initial States). Definition 4.53 holds for Symbolic-
Abstract machines.

Proof. To prove that there exists an abstract state that is initial and simulates an initial
symbolic state, we use a technique similar to the one we used when building attacker steps
in sections 4.3.6 and 4.4.4. We build the abstract registers set by mapping the untag atom
function (listing 4.3) over the symbolic registers set and the instruction and data memories
by first using the filter function on the symbolic memory to remove all data tagged Data
(respectively Code) and then mapping the untag atom function. The pc is the same as
the one for the symbolic state and the ok bit is set to true. Proving simulation between
the two states is trivial.

Lemma 4.63 (Unchecked steps of Symbolic machine). Definition 4.54 holds for the Sym-
bolic machine.

Proof. Vacuously true in the case the low-level machine is the symbolic machine as all
steps are checked.

Lemma 4.64 (Successor Functions). Definition 4.55 holds for the Symbolic-Abstract ma-
chines.

Proof. The proof is mostly straight-forward by case analysis on the instruction.

Lemma 4.65 (No Abstract Attacker Steps on Violation). Definition 4.56 holds for the
Abstract machine.

Proof. The proof proceeds by contradiction. Suppose sA1 →A
a sA2 then by lemma 4.5 we

obtain that (sA1 , sA2) ∈ SUCCACFG . But we know by the second premise that (sA1 , sA2) ̸∈
SUCCACFG , therefore we reached a contradiction and it must be that sA1 ̸→A

a sA2 .

Lemma 4.66 (Abstract stopping implies Symbolic stopping). Definition 4.57 holds for
the Symbolic-Abstract machines.

Proof. According to definition 4.16 we have to prove that all steps in the symbolic trace
are attacker steps and all states in the symbolic trace are stuck with respect to normal
steps. The proof proceeds by induction on the trace refinement.

• Base Case In this case the two traces are singletons. It vacuously holds that all
steps of the symbolic machine are attacker steps. To show that the state forming
the singleton trace is stuck we resort to a contradiction.
Suppose that the state (sS) is not stuck, therefore there exists some state sSc such
that sS →n sSc . Additionally we know by trace refinement that sA ∼AS sS . By 1-
backward simulation (checked step) we conclude that there exists some state sAc such
that sA →n sAc . But the abstract trace is stopping and by definition 4.4 all states
in it are stuck with respect to normal steps. Therefore we reached a contradiction,
thus it must be that sS is a stuck state.

• Zero Step In this case there is an unchecked step in the trace. But all steps of the
symbolic machine are checked, so we immediately reach a contradiction.

• One Step In this case, the trace refinement relation gives us that there is a normal
step at the abstract level, which contradicts with the fact that the abstract machine
is stuck with respect to normal steps by definition 4.4.

4.5 Generic Preservation Theorem 57

• Attacker Step The two traces are now augmented by an attacker step at their
beginning (sA →a sA0 →a . . . →a sAn and sS →a sS0 → . . . → sSm). By the induction
hypothesis we easily obtain that the tail of the symbolic trace is stopping. We need
to prove that new step is an attacker step and that the new state is stuck with
respect to normal steps. The former is trivial as we are in the case an attacker step
is taken. To show that sS is stuck with respect to normal steps, we once again resort
to a contradiction.
Suppose that there exists some sSc such that sS →n sSc . We additionally know that
sA ∼ sS by the trace refinement relation. By backward simulation we get that there
exists some state sAc such that sA →n sAc . But we know that the abstract trace is
stopping, therefore all states in it are stuck with respect to normal steps, thus we
reached a contradiction.

We can now utilize the preservation theorem for the first time and obtain that the
Symbolic machine has CFI.

Theorem 4.67 (Symbolic CFI). The Symbolic machine has the CFI property stated by
definition 4.3.

Proof. Follows immediately by theorem 4.60.

4.5.2 CFI proof for the Concrete Machine
We will now leverage the preservation theorem for a second time, to transfer the CFI
property from the symbolic to the concrete machine.
For this we instantiate the preservation theorem with symbolic machine as the high-level

machine and the concrete as the low-level machine. A step is considered checked only if
both states forming the step are in user mode. Providing a {0, 1}-backward simulation for
normal steps in this case is not as straight-forward as before due to the fact that we have
unchecked steps as well, but we can still take advantage of the {0, 1}-backward simulation
(theorem 4.42) provided by the micro-policies framework. We use ∼CS as the refinement
relation.

Theorem 4.68 (Backward Refinement Normal). Definition 4.49 holds when instantiated
with the Concrete (low-level) and the Symbolic (high-level) machine.

Proof. For a normal step (sC1 →n sC2) of the concrete machine and for some symbolic state
sS1 such that sS1 ∼CS sC1 , we distinguish between three cases.

1. sC1 and sC2 are user states. In this case the step is checked and by the second case of
theorem 4.42 we obtain the 1-backward simulation required.

2. sC1 is a user state and sC2 is a monitor state. In this case the step is unchecked
and the symbolic machine does not take a step. We prove that the simulation
relation (simCS) is preserved by proving the weak simulation relation. The state sC2
is in monitor mode and there exists a concrete state (sC1) such that sS1 ∼U sC1 and
additionally sC1 →n sC2 therefore by 4.41 we obtain that sS1 ∼M sC2 and consequently
sS1 ∼CS sC2 .

58 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

3. sC1 is a monitor state. In this case the step is unchecked and theorem 4.42 proves
our goal.

For simulation of attacker steps the theorem 4.46 applies directly.
We now have to show that the assumptions 4.52 to 4.57 hold for this instantiation of

the preservation theorem.

Lifting preservation assumptions for Concrete-Symbolic machines

Lemma 4.69 (Concrete Step Decidable). Definition 4.52 holds for the Concrete machine.

Proof. We apply the same technique, we used for Symbolic steps in lemma 4.61.

Lemma 4.70 (Concrete-Symbolic Initial States). Definition 4.53 holds for Concrete-
Symbolic machines.

Proof. The proof of this is trivial by the way we defined initial states of the concrete
machine in definition 4.47.

Lemma 4.71 (Unchecked steps of Concrete machine). Definition 4.54 holds for the Con-
crete machine.

Proof. An unchecked step sC1 →n sC2 implies that either in_monitor sC1 or in_monitor sC2 .
By rule MonitorFlows of 4.14 (sC1 , s

C
2) ∈ SUCCCCFG .

Lemma 4.72 (Successor Functions). Definition 4.55 holds for the Concrete-Symbolic
machines.

Proof. The proof proceeds by case analysis on the instruction.

Lemma 4.73 (No Symbolic Attacker Steps on Violation). Definition 4.56 holds for the
Symbolic machine.

Proof. We sketch the intuition behind the proof. Suppose sS1 →n sS2 . For all instructions
other than Jump and Jal there is a clear contradiction, as (sS1 , sS2) ̸∈ SUCCSCFG implies
that the pc of the new state is not the one mandated by the operational semantics which
cannot be because sS1 →n sS2 .
In the case of a jump or jal instruction, it must be that the instruction is a self-loop,

because sS1 →S
a sS2 implies that sS1 .pc = sS2 .pc. If the tag of the instruction at pc is Code x

where x ∈ id, we distinguish two cases:

1. If the tag on the pc of sS1 is different than Code x, according to the semantics of normal
steps for Jump/Jal instructions the tag on the instruction executed is propagated
to the tag on pc of sS2 , therefore the tag on the pc of sS2 should be Code x. But by
the semantics of the symbolic attacker, the tag on the pc of sS1 and sS2 remains the
same. Contradiction.

2. If the tag on the pc of ss1 is Code x, by (sS1 , s
S
2) ̸∈ SUCCmS we know that (x, x) ̸∈

CFG. Therefore by the transfer function (4.2) sS1 ̸→n sS2 . Therefore we reached a
contradiction.

4.5 Generic Preservation Theorem 59

Lemma 4.74 (Symbolic stopping implies Concrete stopping). Definition 4.57 holds for
the Concrete-Symbolic machines.

Proof. According to definition 4.48 we have to prove that the trace is made up of some
optional attacker steps at first and then by some optional monitor steps. By 4.57, we know
that for some sS1 , sS2 it holds that there is step step sS1 →n sS2 and additionally (sS1 , s

S
2) ̸∈

SUCCmS. The proof proceeds by inversion on the construction of trace refinement.

• Base Case In this case both the symbolic and the concrete traces are singletons
made up of sS2 and sC2 respectively. The stopping condition holds vacuously since
the trace is a singleton.

• Zero Step In this case an unchecked step sC2 →n sC3 is taken and the trace is of the
form sC2 →n sC3 → . . .→ sCn . The prefix of the trace is made up of one state that is
in user mode (sC2) and it vacuously holds that it is made up of attacker steps. For
the suffix of the trace sC3 → . . .→ sCn we distinguish between two cases.

– In case the mvector for sS2 exists, as there was a violation, intuitively the transfer
function will not allow any steps from this state. At the concrete level, the policy
monitor will take a number of monitor steps and eventually halt the machine.

– In case the mvector for sS2 , since sC2 →n sC3 it must be that the step sS1 →n sS2
tried to access monitor data (e.g., jumped to monitor code). Again the policy
monitor takes a number of monitor steps and eventually halts the machine.

• One step In this case the trace refinement relation gives us that sS2 →n sS3 for some
sS3 . But we know that sS2 is in the stopping trace of the symbolic machine and all
states in that trace are stuck with respect to normal steps, therefore we reach a
contradiction.

• Attacker step In this case an attacker step sC2 →C
a sC3 is taken and the trace is of

the form sC2 →C
a sC3 → . . .→ sCn . We distinguish between two sub-cases.

– The whole trace sC2 → . . .→ sCn is made of attacker steps and there is suffix of
monitor steps in it.

– At some point in the trace there is a normal step sCi →n sCj . Intuitively because
attacker steps cannot change tags we know that sCi →n sCj will be a step from
user to monitor mode. The monitor will detect the violation and take a series
of steps before eventually halting the machine.

We now invoke the preservation theorem for a second time, to transfer the CFI property
from the Symbolic to the Concrete machine.

Theorem 4.75 (Concrete CFI). The Concrete machine has the CFI property stated by
definition 4.3.

Proof. Follows immediately by theorem 4.60.

Chapter 5

Conclusions

In this thesis we formalized and verified a dynamic monitor for CFI. We structured our
proofs in a modular way, building around a generic preservation theorem for the CFI
property. This increased proof re-usability in our development and significantly simplified
our proof efforts. It allowed us to avoid a direct proof of CFI on the Concrete machine and
to focus our reasoning on higher-level machines, namely the Abstract and the Symbolic
machine. Moreover through this proof structure, we also obtained a two-way refinement
between the Abstract machine that has CFI by construction and the Concrete machine
running the CFI monitor. This serves as an additional correctness result.
The size of our development is 5799 lines of Coq code. Of these, 1784 are defini-

tions, 3900 are proofs and 115 comments. Our development is part of the Micro-Policies
project and the code for the whole project is freely available at https://github.com/
micro-policies.

5.1 Future Work
There are many directions still left to explore before we can consider our work done. Some
of them include writing the CFI monitor code and verifying it, increasing precision by
enforcing call-stack protection, scaling to more complex architectures (e.g., ARM) and
looking for ways to enforce CFI-like policies on self modifying programs.

5.1.1 Writing and Verifying Monitor Code
In this thesis, we described the CFI micro-policy and reasoned about its security properties
by using a high-level specification of the policy monitor, expressed in terms of a transfer
function written in Coq. In reality, when we leveraged the micro-policies framework we
assumed the existence of machine code implementing the CFI policy monitor and its
correctness as specified by the high-level transfer function.
Although we have not written the machine code for the policy monitor - and conse-

quently not verified it - we consider the existence of correct code implementing the policy
monitor as a realistic assumption. Azevedo et al. provided code for a dynamic sealing
micro-policy in [9], although they did not verify it. Furthermore in [4], that can be con-
sidered as a predecessor to the micro-policies project, machine code for an IFC monitor
was obtained using structured code generators and a verified DSL compiler.
Arguably the code for a dynamic sealing monitor is simpler than the code for a CFI

monitor, but even an efficient implementation of a CFI monitor would probably resemble

61

https://github.com/micro-policies
https://github.com/micro-policies

62 Chapter 5. Conclusions

a compiled switch statement/match expression, for which there are plenty of resources on
efficient compilation strategies. One could even write the CFI policy monitor by hand,
however we decided not to attempt this, as it seemed that without verifying it, there was
little added value considering the amount of effort required. Furthermore, in order to be
able to at least test the correctness of the implementation, we would be required to provide
machine code for programs and to also compute their control-flow graph, which would be
tedious and time consuming without the appropriate tools.
As noted in [9] it would make more sense to go through the effort of writing and verifying

machine code for a more realistic architecture. In a standard RISC architecture setting
(e.g., ARM) we could write the policy monitor in a higher-level language (even C) and use
a (verified) compiler (e.g., CompCert [14]) to obtain the machine code. Furthermore, we
could leverage existing verification frameworks, either for low-level code [6, 13] or for the
high-level language we used to code the policy monitor (e.g., [3] in the case of C code), in
order to verify the correctness of our implementation.

5.1.2 Call-Stack Protection
CFI enforces that the execution path of a program follows a pre-computed, static control-
flow graph. Thus it cannot enforce that a function returns to the original callsite it was
called from. We can increase the precision of CFI on returns, by using a protected call-
stack. This is the approach taken in [2] in order to increase precision on returns.
We believe that we can use the micro-policies mechanism to enforce a calling convention

and increase the precision of the CFI micro-policy. This would certainly include reserving
a part of the memory as a call-stack and protecting it in a fashion similar (but stronger) to
the NWC micro-policy. We then have to populate this protected call-stack in a meaningful
way. We have not yet concluded on an efficient and effective way to do this although we
have studied a few options. One rather crude approach to this would be to use tags
and rules to enforce that suitable book-keeping instructions, manipulating the call-stack,
are executed before and after each call. This would most probably have the desired
effectiveness, however it may be too restrictive in some contexts. A more elegant solution
would be to use the tag on the pc, the tag on the ra register and the tags on the protected
call-stack part of the memory, to store suitable meta-data (e.g., call depth) in order to
determine whether a return should be allowed or not.
Concerning the formal verification of such a micro-policy, an ambitious goal would be

to prove refinement between the concrete machine running a dynamic monitor for call-
stack protection and an abstract machine with a separate protected-call stack. While
this abstract machine provides an intuitive specification for call-stack protection, it would
result in a complex refinement relation due to the fact that the concrete machine would
have to execute some book-keeping instructions which the abstract machine would not.

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In 12th
ACM Conference on Computer and Communications Security, pages 340–353. ACM,
2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity princi-
ples, implementations, and applications. ACM Transactions on Information System
Security, 13(1), 2009.

[3] A. W. Appel. Verified software toolchain. In Proceedings of the 20th European
Conference on Programming Languages and Systems: Part of the Joint European
Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, pages 1–17,
Berlin, Heidelberg, 2011. Springer-Verlag.

[4] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie,
B. C. Pierce, R. Pollack, and A. Tolmach. A verified information-flow architecture. In
Proceedings of the 41st Symposium on Principles of Programming Languages (POPL),
POPL, pages 165–178. ACM, Jan. 2014.

[5] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-
flow locking. In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC ’11, pages 353–362, New York, NY, USA, 2011. ACM.

[6] A. Chlipala. The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP), pages 391–
402. ACM, 2013.

[7] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, SSYM’98, pages 5–5, Berkeley, CA, USA, 1998. USENIX
Association.

[8] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete control-flow integrity
for commodity operating system kernels. In IEEE Security and Privacy Symposium,
2014.

[9] A. A. de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach. Micro-policies: A framework for verified, hardware-assisted
security monitors. Under Review, July, July 2014.

[10] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight, B. C.
Pierce, and A. DeHon. PUMP – A Programmable Unit for Metadata Processing. In

63

64 Bibliography

Proceedings of the 3rd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP ’14, New York, NY, USA, June 2014. ACM.

[11] Ú. Erlingsson. Low-level software security: Attacks and defenses. In Foundations of
Security Analysis and Design, volume 4677 of Lecture Notes in Computer Science,
pages 92–134. Springer, 2007.

[12] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Over-
coming control-flow integrity. In IEEE Symposium on Security and Privacy, 2014.

[13] J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic for low-level
code. In 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 301–314. ACM, 2013.

[14] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

[15] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt: better,
faster, stronger SFI for the x86. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 395–404. ACM, 2012.

[16] B. Niu and G. Tan. Modular control-flow integrity. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, page 58. ACM, 2014.

[17] PaX Team. Pax address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt.

[18] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in memory. In IEEE
Symposium on Security and Privacy, pages 48–62. IEEE Computer Society, 2013.

[19] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical Control Flow Integrity & Randomization for Binary Executables. In IEEE
Symposium on Security and Privacy, 2013.

[20] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor: fully verified software fault
isolation. In 11th International Conference on Embedded Software, pages 289–298.
ACM, 2011.

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

List of Figures

2.1 Rules enforcing NWC and NXD . 18
2.2 Stepping relation for the symbolic machine 21
2.3 Concrete step rules for Store instruction . 23

3.1 Rules enforcing coarse-grained CFI, NXD and NWC 27
3.2 Rules enforcing fine-grained CFI . 28

4.1 Diagram explaining proof structure . 30
4.2 Step relation definition . 31
4.3 Operational Semantics of the Abstract Machine 33
4.4 Attacker model for the abstract machine . 34
4.5 Allowed control-flows for instructions of the abstract machine 34
4.6 Attacker capabilities . 37
4.7 Attacker model for the Symbolic machine 37
4.8 Allowed control-flows for instructions of the symbolic machine 38
4.9 Encoding of an instruction with a unique identifier id 47
4.10 Concrete-Symbolic simulation relation . 48
4.11 Refinement relation between Concrete and Abstract machines 48
4.12 Concrete attacker capabilities on atoms . 48
4.13 Attacker model for the Concrete machine 49
4.14 Allowed control-flows for instructions of the concrete machine 50
4.15 1-backward simulation . 52
4.16 0-backward simulation . 52
4.17 1-backward simulation for attacker . 52
4.18 Trace refinement relation . 53
4.19 Splitting trace refinement on violation . 55

65

List of Listings

2.1 Transfer function for NWC and NXD in pseudo-code 20
4.1 Coq definition of Symbolic tags . 36
4.2 Transfer function for symbolic machine in Coq pseudo-code 36
4.3 Untag symbolic atom function . 43
4.4 Option Map function . 43
4.5 Function that checks if atom is tagged Data 44
4.6 Option Filter function . 45
4.7 Function that returns true if atom has a User tag 49
4.8 Function that converts a concrete atom to a symbolic one 49

67

List of Theorems and Definitions

4.1 Definition (CFI Machine) . 31
4.2 Definition (Trace has CFI) . 31
4.3 Definition (CFI) . 31
4.4 Definition (Abstract Stopping Predicate) . 32
4.5 Lemma (Step Intersection) . 34
4.6 Theorem (Abstract CFI) . 34
4.7 Definition (Instructions Tagged) . 38
4.8 Definition (Entry Points Tagged) . 38
4.9 Definition (Valid Jumps Tagged) . 38
4.10 Definition (Registers Tagged) . 39
4.11 Definition (Jumps Tagged) . 39
4.12 Definition (Jals Tagged) . 39
4.13 Definition (Symbolic Initial States) . 39
4.14 Lemma (Symbolic Invariants preserved by normal steps) 39
4.15 Lemma (Symbolic Invariants preserved by attacker steps) 39
4.16 Definition (Symbolic Stopping Predicate) 40
4.17 Definition (1-Backward Simulation) . 40
4.18 Definition (1-Forward Simulation) . 40
4.19 Definition (Data Memory Simulation) . 41
4.20 Definition (Instruction Memory Simulation) 41
4.21 Definition (Registers Simulation) . 41
4.22 Definition (PC simulation) . 41
4.23 Definition (Correctness) . 41
4.24 Definition (Monitor Service Correctness) . 41
4.25 Lemma (Registers Update Backward Simulation) 42
4.26 Lemma (Memory Update Backward Simulation) 42
4.27 Theorem (1-Backward Simulation Symbolic-Abstract) 42
4.28 Definition (1-Backward Simulation Attacker) 43
4.29 Lemma (Abstract attacker registers) . 43
4.30 Theorem (Map Correctness instance) . 43
4.31 Lemma (Attacker preserves register simulation) 43
4.32 Lemma (Attacker preserves instruction memory simulation) 44
4.33 Lemma (Attacker preserves data memory simulation) 44
4.34 Theorem (Filter Correctness instance) . 44
4.35 Lemma (Attacker preserves data memory domains) 45
4.36 Theorem (1-Backward Simulation Symbolic-Abstract for Attacker) 45
4.37 Lemma (Registers Update Forward Simulation) 45

69

70 List of Theorems and Definitions

4.38 Lemma (Memory Update Forward Simulation) 45
4.39 Lemma (Outside Memory) . 46
4.40 Theorem (1-Forward Simulation Abstract-Symbolic) 46
4.41 Definition (Weak simulation relation for Monitor steps) 47
4.42 Theorem ({0, 1}-Backward simulation between Concrete and Symbolic ma-

chines) . 48
4.43 Theorem (Concrete-Abstract backward refinement) 48
4.44 Lemma (Concrete-Symbolic attacker registers 1-backward simulation) . . . 49
4.45 Lemma (Concrete-Symbolic attacker memory 1-backward simulation) 49
4.46 Theorem (1-Backward Simulation Concrete-Symbolic for Attacker) 50
4.47 Definition (Concrete Initial States) . 51
4.48 Definition (Concrete Stopping Predicate) 51
4.49 Definition ({0, 1}-Backward Simulation for normal steps) 52
4.50 Definition (1-Backward Simulation for attacker steps) 52
4.51 Theorem (Trace Backward Refinement) . 53
4.52 Definition (Step Decidability) . 53
4.53 Definition (Initial States) . 53
4.54 Definition (Unchecked Steps) . 53
4.55 Definition (Successor Functions) . 53
4.56 Definition (No Attacker Steps on Violation) 53
4.57 Definition (Stopping Predicates) . 54
4.58 Theorem (Trace Refinement preserves Trace Has CFI) 54
4.59 Lemma (Refine Traces Split) . 55
4.60 Theorem (CFI Preservation) . 55
4.61 Lemma (Symbolic Step Decidable) . 55
4.62 Lemma (Symbolic-Abstract Initial States) 56
4.63 Lemma (Unchecked steps of Symbolic machine) 56
4.64 Lemma (Successor Functions) . 56
4.65 Lemma (No Abstract Attacker Steps on Violation) 56
4.66 Lemma (Abstract stopping implies Symbolic stopping) 56
4.67 Theorem (Symbolic CFI) . 57
4.68 Theorem (Backward Refinement Normal) 57
4.69 Lemma (Concrete Step Decidable) . 58
4.70 Lemma (Concrete-Symbolic Initial States) 58
4.71 Lemma (Unchecked steps of Concrete machine) 58
4.72 Lemma (Successor Functions) . 58
4.73 Lemma (No Symbolic Attacker Steps on Violation) 58
4.74 Lemma (Symbolic stopping implies Concrete stopping) 59
4.75 Theorem (Concrete CFI) . 59

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Micro-policies: Verified, Hardware-Assisted Monitors
	Micro-Policies
	Example: Non-Writable Code & Non-Executable Data
	Generic Verification Framework for Micro-Policies
	Correctness of micro-policies
	Symbolic Machine

	A Programmable Unit for Metadata Processing
	Hardware Architecture
	Concrete Machine Modeling PUMP Architecture
	Concrete Policy Monitor

	Control-Flow Integrity
	Related Work
	Balancing between performance and security
	Formal verification of Control-Flow Integrity

	Micro-Policies for Control-Flow Integrity
	Coarse-grained CFI Micro-Policy
	Micro-Policy for Fine-Grained Control-Flow Integrity

	Formally Verified Control-Flow Integrity Micro-Policy
	Control-Flow Integrity Property
	The Abstract Machine
	Operational semantics
	Attacker model
	Allowed control-flows for the abstract machine
	Stopping predicate for the Abstract machine
	CFI proof for the Abstract Machine

	The Symbolic Machine
	Transfer Function
	Attacker model
	Allowed control-flows for the Symbolic Machine
	Initial states of the Symbolic Machine
	Stopping predicate for the Symbolic Machine
	Symbolic-Abstract simulation

	The Concrete Machine
	Concrete tags
	Concrete-Symbolic backward refinement
	Attacker model
	Concrete-Symbolic 1-backward simulation for Attacker
	Allowed control-flows for the Concrete Machine
	Initial states of the Concrete Machine
	Stopping predicate for the Concrete Machine

	Generic Preservation Theorem
	CFI proof for the Symbolic Machine
	CFI proof for the Concrete Machine

	Conclusions
	Future Work
	Writing and Verifying Monitor Code
	Call-Stack Protection

	Bibliography
	List of Figures
	List of Listings

