TEXNE)

on

Efvixé Metodfio Ilouteyvelo
Yyon) Hxextporoyov Mrnyavixddv xow Mnyovixcdyv Tnokoyotodyv
Topéag Texvoroyiog I npogopxic xar Troroyio v

Tunixn Enalffsvon EriBorng
Axepandtnrtac Poric-EXéyyouv pe Etixéteg

Atmhopotixn Epyaota

Nuxolaou INavvapdxn

EmpAenov: Nudhaog Haraomdpou
Av. Kofnyntic E.M.IL.

Epyacthpio Teyvoroylog Aoyiouixold
Ab¥va, Yentéufperog 2014

JELNEg Efvixdé Metodfio Tlouteyvelo

Yyony Hhextponoywv Mnyavixddv xou Mnyovixddv Tnokoyotodyv
Topéac Teyvoroylac IInpogopixric xou Tnoloyio v
Epyacthpio Texvohoyloc Aoyiowuxol

Tunixn Enalffsvon EriBorng
Axepandtnrtag Porigc-EXéyyouv pe ETtixéteg

Atmhopotixn Epyaota

Nuxoiaouv INavvapdxn

EmpAenov: Nudhaog Haraomdpou
Av. Kabnyntic E.M.IL

Evxplbnxe and tnv teiuely) eetaotiny emtpony| tny 8" MenteuPpelov, 2014.

Nwdhaog Hanaonbpou Koothc Soywvog Iwévvne Lpaporyddnng
Av. Kofnyntic EEMUIL Av. Kabnyntic E.MIL Av. Kofnyntic E.K.ILA

Ab¥va, YentéuPperog 2014

Nuxoiaog INavvoegdxng
Aimhopoatodyoc Hiextpordyog Mnyavinde
xou Mryovixde Troloyiotov E.M.IL.

Copyright @ — All rights reserved Nuxohoog Tavvapdxne, 2014.
Me empONaEn navtdg BixaduoToc.

Anayopeleton 1 avtiypopt|, anobrixeuon xa Siavour| Tng mopoloas epyaciag, £ ONOXAHEOU
1) TUAUATOS AUTAS, VLot EUTopd oxomd. Emitpénetan 1 avatinwor, anodrxeuon xo diovoyur
Yo OXOTO UN XEEOOOXOTIXO, EXTAUBELTIXNC 1| EPELVNTIXAC PLONE, UTO TNV Tpolmdbeor va
AVUPERETAL 1) TNYT) TEOENELONG XAl VoL BlaTneeiton To Topdy urvuua. Epwthuata tou apopodv
N XENOT TNG ERYUCLAS VLo XEEOOOXOTUXO OXOTO TEETEL Vo anmeLBVVOVTAL TIEOG TOV GUYYPUPEA.

Ov amoédec xou To CUUTERAOUTA TIOLU TEPLEXOVTOL GE QUTO TO €yypapo exPedlouy Tov
oLy ypapéa xou dev TEENEL VoL epunveubel 0Tt avTinpocwrebouy Ti¢ enionueg Béoeig Tou EOvixol
Metodfou Tloluteyvelou.

ITepixndn

Mo evpelor yxdua embéoewy Noyiouxod npooTadody va avaxTAooLY Tov EXEYYO PONG TOU
TEOYPUUUATOS UE OXOTO VO TPOTOTIOLGOLY T cuuneptpopd Tou. H Axepoudtnta EXéyyou-
PoYc etvou plor amoteNeoUATINT TONLTIXY AOQANELNS, TTOL UTtopel VoL amoTeEdel ONeg TiC embBéoelC
TOU ETXELPOVY VOl TAEAXSUPOUY TNV apxixt] 0T EXEYYOU TOU TEOYEAUUATOS.

Ye auth T Simhopotixn epyasia, xenoylonotolue To epyoleio dladpao Ty anodeléewv Coq
YOl VoL LTLONOYHOOUUE TUTIXE TNV 0pBOTNTA Xl TNV AMOTENECUATIXOTNTA EVOS SUVIULIXOD
exeyxt mou emBarkel Axepandtnta EXéyyou-Porc, Baoilouevos o€ éva xavoTouo unyaviopnod
aoareiag mou yenoidonolel Noylowxd ot UNIXG. SUyXEXQUIEVA, ATOBELXYVOUE OTL O UMY OVL-
ouog emParier Axepandotnto EXéyyou-Poric oxxdua xou und v napouasio evog toyupol xaxd-
Boulou xerotn. Emmnhéov amodewxvioupe péon exxabddoiong 6Tl éva unydvnua 6to omoio
TEéXEL 0 BuVaXOS eEXeYXThAC Y TNV Axeponotnta EXéyyou-Porc, enoxpifidc eEouoimvel
ONES TIC OUUTIERLPORES EVOC aPNENUEVOL unyovipaTog Tou €yel Axepondtnta EXéyyou-Porc
EX XATAOXEUNS.

Aglesic KAsou&

PON-ENEYYOU, ACPANELDL, ETMONNOEUCT), AEYITEXTOVIXES UE ETIXETES

Abstract

A wide-range of software attacks attempt to hijack the control-flow of the program in
order to alter its behavior. Control-Flow Integrity is an effective security policy, able to
thwart all attacks that attempt to circumvent the original control-flow of a program.

In this thesis, we use the Coq proof assistant to formally reason about the correctness and
the effectiveness of a dynamic monitor enforcing CFI, based on a novel software-hardware
security mechanism. In particular, we prove that the mechanism enforces CFI even in
the presence of a powerful attacker. Furthermore, we prove by refinement that a machine
running the dynamic monitor for CFI, precisely emulates all behaviors of an abstract
machine that has CFI by construction.

Keywords

control-flow, security, verification, tagged architectures

Euyxapiotieg

Oa nbeha va euyopiothow Tov Catalin Hritcu yio v eumiotoolvn mou you €deile, tnv
guxouplol Vo EQYAOT® GE €V XOPLUPALO EPELVNTIXG XEVTEO Xal TNV XaBodYynom Tou xaTaL TNV
EXTOVNOT QUTASC TNE OLIAOUATIXS pyaoiag.

O HPeka enlong vo suyopio Thow Toug xabnyntég wou Nixo Ianacnipou xou Koot oy dva
Yot TN OaoXaN o TOUG UECK TNG OTOLUG HOU UETEPEPAY TO EVOLAPEQOV TOUS YId TIC YADOOES
TEOYPUUUATIONOU aANG xa TN Porjfela TOu HoOU TPOGEPEPAY OTIOTE TN YEELACTNXA G TN UEYEL
TWEA oXAONUOIX T Lo TopEld.

TéNog, Ba ABeha va euxaploTHAOW TNV OXOYEVELL WoU ot TN cUVTPogo Wou ZoY Ilapa-
OXEVOTIOUNOU YLl TNV Ao TELPELT ToUC GTHELEN XaL oy dm).

H epyaota autr elvon enlong dwbéoyun we Texvinr Avoagopd CSD-SW-TR-4-14, Efvixé Metadfio Ilouteyveio,
YyxoNy Hxextponoywv Mnyovixddv xan Mnyovixodv YTroloyiotdyv, Touéag Teyvoloyioc IIAnpogopixhc xau
Trohoyotov, Egyacthpio Teyxvoloylag Aoyiomxod, Sentéufpelog 2014.

URL: http://www.softlab.ntua.gr/techrep/

FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9

Contents

Mepidndmn

Abstract

Evyxopiotieg

Contents

1 Introduction

1.1
1.2
1.3

Motivation
Contributions

Thesis Outline

2 Micro-policies: Verified, Hardware-Assisted Monitors

2.1
2.2
2.3

24

Micro-Policies oo
Example: Non-Writable Code & Non-Executable Data .
Generic Verification Framework for Micro-Policies
2.3.1 Correctness of micro-policies
2.3.2 Symbolic Machine
A Programmable Unit for Metadata Processing

2.4.1 Hardware Architecture

2.4.2 Concrete Machine Modeling PUMP Architecture

2.4.3 Concrete Policy Monitor

3 Control-Flow Integrity

3.1

Related Work oo
3.1.1 Balancing between performance and security . .

3.1.2 Formal verification of Control-Flow Integrity . .

11

13

15
15
16
16

17
17
18
19
19
19
20
20
22
23

12

Contents

3.2 Micro-Policies for Control-Flow Integrity
3.2.1 Coarse-grained CFI Micro-Policy

3.2.2 Micro-Policy for Fine-Grained Control-Flow Integrity

4 Formally Verified Control-Flow Integrity Micro-Policy
4.1 Control-Flow Integrity Property
4.2 The Abstract Machine
4.2.1 Operational semantics
4.2.2 Attackermodel
4.2.3 Allowed control-flows for the abstract machine
4.2.4 Stopping predicate for the Abstract machine
4.2.5 CFI proof for the Abstract Machine
4.3 The Symbolic Machine
4.3.1 Transfer Function
4.3.2 Attackermodelo
4.3.3 Allowed control-flows for the Symbolic Machine
4.3.4 Initial states of the Symbolic Machine
4.3.5 Stopping predicate for the Symbolic Machine
4.3.6 Symbolic-Abstract simulation
4.4 The Concrete Machine
4.4.1 Concrete tagso
4.4.2 Concrete-Symbolic backward refinement
4.4.3 Attackermodel
4.4.4 Concrete-Symbolic 1-backward simulation for Attacker
4.4.5 Allowed control-flows for the Concrete Machine
4.4.6 Initial states of the Concrete Machine
4.4.7 Stopping predicate for the Concrete Machine
4.5 Generic Preservation Theorem
4.5.1 CFI proof for the Symbolic Machine
4.5.2 CFI proof for the Concrete Machine

5 Conclusions
5.1 Future Work oo
5.1.1 Writing and Verifying Monitor Code
5.1.2 Call-Stack Protection

Contents 13
Bibliography 63
List of Figures 65
List of Listings 67
List of Theorems and Definitions 70

Chapter 1

Introduction

1.1 Motivation

Computer hardware and software continuously grow in size and complexity and as a result
ensuring the absence of exploitable behaviors is becoming increasingly difficult. In the era
in which computer systems are used extensively to carry important information (e.g. credit
card numbers, national security documents), it has been widely accepted that security of
these systems is a priority. Researchers have identified a number of potential vulnerabilities
which arise from the violation of known but in-practice unenforceable safety and security
policies.

So far, computer security has been delegated mostly to software, while the hardware
is being almost completely controlled by the software. High-level languages are becoming
more widely used, due to features such as strong type systems with type inference and
automatic memory management, making programming less error prone and reducing the
number of exploitable bugs. Furthermore, in order to strengthen the security of computing
systems a variety of low-level mitigation techniques [7, 17, 11] have been proposed, however
these are mostly ad-hoc solutions designed to prevent specific known attacks, rather than
enforcing a security policy that prevents a well-defined class of attacks, thus making it
hard to reason about their effectiveness. In fact most of these mitigation techniques can
be circumvented by attackers [18], which has lead to a continuous “chase” between attackers
and security researchers.

One common attack technique is to exploit some low-level vulnerability such as a buffer
overflow, in order to redirect the control flow to attacker injected code. This attack can be
stopped by a simple protection scheme known as W @ X, which enforces that a memory
page is either executable or writable but not both. Unfortunately, clever attack techniques
can bypass W @ X. In particular, attackers have been using code-reuse attacks (e.g.
return/jump - oriented programming) that allows them to chain together existing pieces
of code to achieve malicious behavior without directly introducing new code. Abadi et
al. [1] introduced a security property called Control Flow Integrity (CFI), which when
it holds, provides effective protection against control-flow hijacking attacks. CFI enforces
that any execution of a program will respect a statically computed control flow graph
(CFG), thus thwarting all attacks that attempt to alter the control-flow of a program,
irregardless if the attacker tries to redirect the control-flow to attacker injected code or to
an existing piece of code.

15

16 Chapter 1. Introduction

1.2 Contributions

The main contribution of this thesis is the formalization and verification in Coq of a
dynamic monitor enforcing CF1I, based on a generic hardware-software security mechanism.

To this end, we used Coq to model a powerful attacker (i.e., able to execute buffer
overflows) and proved that the mechanism enforces CFI even in the presence of such an
attacker. In particular we proved a variant of the CFI property proposed by Abadi et al.
[2].

We managed to avoid tackling a direct and complex proof of this theorem, by first
defining an abstract machine that has CFI by construction, proving a simulation between
the concrete and the abstract machine and then transfering the CFI property from the
abstract to the concrete level through a generic preservation theorem that states that
under certain assumptions CFI is preserved by backward simulation.

Additionally, we proved a two-way refinement, between a concrete machine running the
CFI dynamic monitor and the abstract machine that has CFI by construction and acts as
a specification to CFI, showing that the concrete machine emulates all behaviors of the
correct by construction abstract machine.

1.3 Thesis Outline

Chapter 2 of this thesis briefly describes the motivation for effective and efficient security
policies, the desired properties a robust security policy must satisfy and puts into context
the framework we utilize in order to formalize the Control-Flow Integrity policy and reason
about the effectiveness of the enforcement mechanism we used.

Chapter 3 discusses the current state of research on enforcing and formalizing Control-
Flow Integrity and clarifies the design choices of our approach regarding enforcement of
CFIL.

Chapter 4 explains how we used the framework of chapter 2 in order to formally reason
about the security properties of the CFI policy and our approach to enforcing it.

In chapter 5 we discuss potential future directions for our work.

Chapter 2

Micro-policies: Verified,
Hardware-Assisted Monitors

Current hardware provides very limited security mechanisms leaving most of the work to
the software. This requires that the software performs various sanity-checks during an
execution and that it carefully maintains various safety and security invariants, a tedious
and error-prone task that results in security holes and often in high runtime performance
penalties.

Many potentially effective mitigation techniques are not deployed because of the perfor-
mance overhead they incur. Another requirement for deployment of a protection mecha-
nism is the compatibility with existing executables and the degree of intervention required
by a human. Usually even making slight changes to a code and redistributing has high
cost and the protection mechanism is likely to see very low adoption.

The lack of efficient and effective generic ways to enforce security policies, forces pro-
grammers to protect their own code, a task which is not trivial even for the small and
simply programs. As a result most, if not all, software carries weaknesses which can be
exploited by an attacker. “Safe” languages, automate some of the checks required and eases
the work of the programmer, for example by implementing array bounds checking or by
disallowing pointer-arithmetic. However these solutions only reduce the chance of intro-
ducing exploitable bugs in a program and do not enforce stricter, more effective policies
such as Control Flow Integrity or complete Memory Safety (spatial/temporal protection
for heap and stack). In addition, we still need effective and efficient protection mechanisms
for a plethora of software written in unsafe languages such as C.

2.1 Micro-Policies

A wide range of security policies can be enforced by associating metadata to the data
being processed (e.g., this is an instruction, this is from the network, this is private, etc.),
propagating the metadata as instructions are executed and using a set of rules on the
metadata to check whether a policy is violated and how the tags should be propagated.
Abstractly, these rules form a partial function from a set of input tags to a set of output
tags
transfer (opcode, PC, CI, OP1, OP2, MR) = Some (PC’, RES)

informally read as, “if the opcode of the next instruction to be executed is opcode, the
current tag of the program counter is PC, the current tag on the instruction location is CT
and the tags on the operands of the instruction are OP1, OP2 and MR then if execution

17

18 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

of the instruction is allowed the tag on the program counter should be set to PC’ and any
new data created by the instruction should be tagged RES.
More specific, a micro-policy is made up of the following elements:

1. a set of metadata tags used to tag the contents of the memory and all the registers
as well as the pc.

2. a transfer function that implements the checks on the tags and the tag propagation
as described above.

3. a tagging scheme for the initial state of the machine.

4. for some micro-policies, a set of monitor services (i.e., privileged code) that can be
invoked by user code.

Furthermore, as we will see in section 2.4, a software-hardware mechanism that enables
the efficient implementation of micro-policies without sacrificing flexibility (in terms of the
policies that can be enforced) has already been designed. Simulations and benchmarks
show that the runtime overhead is very low compared to dedicated software solutions thus
making it a realistic and appealing way to deploy a wide range of security policies in future
computing systems.

2.2 Example: Non-Writable Code & Non-Executable Data

In order to demonstrate the mechanism explained above we sketch a simply micro-policy
that enforces the W& X protection scheme described in section 1.1, omitting the formaliza-
tion to which we will return in chapter 4. We achieve this by making all code non-writable
(NWC) and all data non-executable (NXD).

We use the set of tags 7 = {Data, Code}. If we initially tag all executable regions in
memory as Code and all non-executable as Data then we can enforce NWC and NXD by
two rules of the form

STORE/DATA
Store : { CI=Code, MR=Data} — { PC'=—, RES=Data} (/)

opcode & {Store}
opcode : { CI=Code} — {PC'=—, RES=—}

(REST)

Figure 2.1: Rules enforcing NWC and NXD

The dashes in the result vector, represent don’t care values, meaning we will not use
their values for anything, so any tag (usually a default tag set by the policy designer) can
be used. Furthermore, we are omitting from the input vector the fields that are unused
by the transfer function. For this simple policy, the transfer function only uses the tag on
the current instruction (CI) and in the case of a Store instruction the tag on the memory
(MR), i.e., the tag on the memory location we are trying to write. If no rule applies,
the execution of the instruction is disallowed. Informally the above rules can be read as
“Execution is allowed only if the tag on the current instruction is Code; if the opcode of
the instruction is Store, we additionally require that the tag of the overwritten memory
location is Data. In that case the tag on the new data on the memory should remain
Data.”

2.3 Generic Verification Framework for Micro-Policies 19

2.3 Generic Verification Framework for Micro-Policies

Unsurprisingly, designing a security policy, reasoning about its effectiveness against po-
tential attackers and encoding it as a micro-policy can become a complex task. Azevedo
et al. [9] built a generic framework for defining and verifying micro-policies on top of a
machine modeling a tagged RISC processor (referred to as concrete machine), formalized
this framework in Coq and used it to define and formally verify micro-policies for dynamic
sealing, control-flow integrity, memory safety, compartmentalization and protecting the
enforcement mechanism (referred to as policy monitor) itself.

The framework offers a higher-level machine, called the symbolic machine, that ab-
stracts away from various - insignificant to security policies - implementation details. The
symbolic machine can be used as an interface to the concrete machine, simplifying the
work of the micro-policy designer and allowing him to use structured objects in order to
define and reason about the micro-policy, avoiding the added complexity of working on
machine words.

In order to implement the micro-policy at the concrete machine level, one needs to
additionally provide machine code that implements the transfer function, an encoding of
tags to words and machine code for any monitor services that the micro-policy may use.
The relation between the symbolic and the concrete machine is formally defined as a two-
way refinement (forward and backward). This is a generic refinement proof, parameterized
by the encoding of the symbolic tags to words and a proof of correctness of the monitor
code for a micro-policy. The designer of a micro-policy can use this two-way refinement
simply by providing these two parameters.

2.3.1 Correctness of micro-policies

For each micro-policy the policy designer should define an abstract machine, which serves
as a specification to the desired invariants. The abstract machine is correct by construction,
meaning that it’s designed to respect those invariants. Using the symbolic machine as an
intermediate step to simplify the proofs, by proving a refinement between the symbolic and
the abstract machine and by utilizing the generic refinement between the symbolic and
the concrete machine, we can prove a refinement between the abstract and the concrete
machine, thus showing that every step of the concrete machine adheres to the specification
expressed by the abstract machine.

All the machines introduced in the original paper by Azevedo et al. [9], as well as
this thesis, have a similar structure. In particular, they share a common RISC-based
instruction set (with a few - uninteresting for the scope of this thesis - exceptions) and
they have a fixed number of general-purpose registers, along with a pc register. Of course
the abstract machine defined by the policy designer can differ in various ways, but more
similarities with the symbolic machine implies easier proofs of correctness.

2.3.2 Symbolic Machine

As mentioned above, the symbolic machine enables us to abstract away from various low-
level details of the concrete machine. We can express and reason about policies in terms of
mathematical objects written in Gallina rather than machine code and the corresponding
proofs for the concrete machine comes for free under some assumptions. In essence, the
symbolic machine is parameterized by a micro-policy as it was defined in 2.1, with the
addition of an internal state that can be used by monitor services.

20 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

The states of the symbolic machine consists of the memory, the registers, the pc register
and the internal state. The memory and register contents, as well as the pc, are all tagged
with a symbolic tag drawn from the set of meta-data tags of the micro-policy. We name
their contents symbolic atoms referred to with the notation w@t, where w is the value
(word) and t is the tag.

At each step, a record named muwector is formed. It consists of the current opcode, the
tag on the pc, the tag on the current instruction and optionally up to three tags depending
on the opcode of the instruction. The mwvector is passed to the transfer function which
decides whether the step violated the enforced policy. In the case of a violation the machine
is halted, otherwise if no violation occurred the transfer function returns a tag for the new
pc and a tag for any results the execution of the instruction produced.

In fig. 2.2 we give, in form of inference rules, the stepping relation for the Symbolic
machine, demonstrating how the transfer function and the tag propagation works at each
step.

Notice for example, that when a store instruction is executed, the tag on the memory
location to be overwritten is fetched, allowing the transfer function to know what kind
of data we are trying to overwrite. Returning to the example micro-policy in 2.2 we can
define the transfer function that is used by the symbolic machine as a Coq function.

Definition transfer ivec : option ovec :—

match ivec with

| mkIVec Store _ Code [_ ; _ ; Data] =
Some (mkOVec _ Data)

| mkIVec Store _ _ _ = None

| mkIVec _ _ Code _ =
Some (mkOVec _ _)

| mkIVec _ _ _ _ = None

end.

Listing 2.1: Transfer function for NWC and NXD in pseudo-code

2.4 A Programmable Unit for Metadata Processing

2.4.1 Hardware Architecture

The Programmable Unit for Metadata Processing (PUMP) architecture [10] allows us to
efficiently implement a wide range of micro-policies, using software to describe the micro-
policy, while the hardware provides efficiency by undertaking the propagation of the tags
and by using a cache for the rules.

On the hardware level, the PUMP is an extension to a conventional RISC architecture.
Every word of data in the machine - whether in memory or a register, is extended with
a word-sized metadata tag. These tags are not interpreted by hardware, instead the
interpretation of the tags is left to the software, thus making it easy to implement new
policies on the metadata. Since tags are word-sized, they can be pointers to complex data-
structures of tags, such as tuples of tags, allowing for complex policies to be expressed and
multiple orthogonal policies to be enforced in parallel.

The hardware undertakes the correct propagation of tags from operands to results ac-
cording to the rules defined by the software. A hardware rule cache mapping sets of input

2.4 A Programmable Unit for Metadata Processing 21

mem[pc] = i1Qt; decode i = Nop
transfer { Nop, PC=t ., CI=t;} — {PC'=t!., RES=—}

pe?

(mem, reg, pcQt ., int) — (mem, reg, pc + 1Qt;, ,int)

(Nop)

mem|pc|] = iQt; decode i = Constn r reg[r]=wodQt o1
transfer { Const, PC=t,., CI=t;, OP1=t 4} — {PC’zt;C, RES=t,.}
req = reg[r<—nQt .

ConsT
mem, reg, pcQt,., int) — (mem, req , pc + 1Qt’ . int ()
P

P>
mem|pc|] = 1Qt; decode i = Mov ry, 75
regr,|=wQt, reg[rs|=woaQt o1
transfer { Mov, PC=t,,, CI=t;, OP1=t,, OPy=t 4} — {PC/:t;)C, RES=t .}
req = regrswQt,

Mov
(mem, reg, pcQt ., int) — (mem, reg, pc + 1Qt;, . int) ()
mem|pc| = iQt; decode i = Binop op), 15 Tt
reglrp|=w,Qt, reg[rs)|=wsQt reg[re|=wo1dQt o1
transfer { Binop op, PC=t,., CI=t;, OPy=t,,, OPs=t,, MR=t 4} — {PC'=t!,, RES=t,.}

per
req = reg[ri<—wp op wsQt,]

Binop
(mem, reg, pcQt,., int) — (mem, reg , pc + 1Qt’ . int) ()

per
mem/[pc] = i1Qt; decode i = Load ry, 75
reg[rp|=w,Qt,, mem[w,|=wQt e, reg[rs|=woaQt o
transfer { Load, PC=t,., CI=t;, OP1=t,, OPo=tmem, MR=tyq} — {PC':t;jc, RES=t .}
reg = reg[rswQt]

LoaDp
mem, reg, pcQt ., int) — (mem, req’, pc + 1Qt/ int ()
p

pC?
mem|pc] = 1Qt; decode i = Store rp, 15
regrp|=w,Qt, reg[rs|=wsQt mem[wy| =w @t o1
transfer { Store, PC=t,., CI=t;, OPy=t,,, OPa=ts, MR=t,4} — {PC':t;,C, RES=t;}
mem = mem|wy,<—w;Qt/)]

(STORE)

(mem, reg, pcQt ., int) — (mem’, reg, pc + 1Qt;,., int)

mem|[pc|] = i1Qt; decode i = Jump r reg[r]=w@Qt,,
transfer { Jump, PC=t,., CI=t;, OP1=t,,} — {PC'=t! RES=—}

pe’

mem, reg, pcQt,., int) — (mem, reg, wQt’ . int
g P g pec

(Jump)

mem[pc|] = iQt; decode i = Bnzr n reg|r]=w@t,,
transfer { Bnz, PC=t,., CI=t;, OPy=t,,} — {PC'=t!,, RES=—}

pc <+ if w=0 then pc+ 1 else pc +n

BNz
(mem, reg, pcQt,., int) — (mem, reg, pc Qt’ . int) ()

pe?
mem[pc] = i1Qt; decode i = Jal r
reg[r]=w@Qt,, reg[ra)=w @t 14
transfer {Jal, PC=t,., CI=t;, OP1=t,,, OPy=t o4} — {PC’:t;m RES=t,.,}
req = reglra<—pc + 1Qt

(JAL)

(mem, reg, pcQt,., int) — (mem, reg’, wQt;,.,int)

mem|[pc] = @ get_service pc = (t;, f)
transfer { Service, PC=t, CI=t;} — {PC'=t,,,, RES=—}
f (mem, reg, pc, int) = (mem/, req, pc, int’)

(SERVICE)

(mem, reg, pcQt,., int) — (mem', reg’, pc'Qt,,, int')

Figure 2.2: Stepping relation for the symbolic machine

22 Chapter 2. Micro-policies: Verified, Hardware-Assisted Monitors

tags to sets of output tags is used for common case efficiency. On each instruction dis-
patch, in parallel with the usual behavior of an instruction (e.g., execution of an addition
in the ALU), the hardware forms the set of input tags and a lookup is performed on the
rule cache. If the lookup is successful a set of output tags is returned and combined with
the results of the normal execution of the instruction a new state is produced. On the
other hand, if the lookup failed, the hardware invokes a trusted piece of system software -
the fault handler - which checks the input tags and decides whether the execution should
be allowed or not. In the first case, the fault handler returns a set of result tags, a pair
of set of input and output tags is formed and inserted into the rules cache, while the
faulting instruction is restarted and will now hit the cache. Otherwise, execution of this
instruction violated some rules of the enforced policy and execution should not continue
normally (e.g., should be halted).

As described in the original PUMP paper by Dehon et al. in [10] a rich set of effective
security policies can be efficiently implemented using the architecture mentioned above.
In particular, implementations of dynamic typing, memory safety for heap-based data,
control flow integrity and taint tracking are described, evaluated against a specific threat
model and benchmarked. The benchmarks are done using a simulation of the described
hardware and the authors have achieved low overhead (3% on average) for each of the
policies named above.

Compared to other software solutions for enforcing security policies, the PUMP offers
significantly lower overhead, thanks to dedicated hardware assistance, while the fact that
interpretation of the metadata is done by software offers flexibility with regard to the
policies that can be implemented, compared to hardware solutions implementing a specific
policy.

While the PUMP offers flexibility at a low runtime performance overhead, there are
more overheads associated to such a mechanism. For example adding metadata to all the
data in the machine, would result in a 100% memory overhead. In addition, the extra
hardware and the rule cache along with potentially larger memories could result into a
400% overhead on energy usage. The authors claim that a careful and well-optimized
implementation can reduce these numbers, resulting in a 50% energy overhead.

2.4.2 Concrete Machine Modeling PUMP Architecture

The concrete machine is a model of the PUMP architecture, modeling a RISC machine
with a rules cache and a software miss handler. The instruction set has been extended with
four additional instructions that are meant to be used by monitor code only, a restriction
that is enforced by the monitor self-protection micro-policy.

The state of the concrete machine consists of the memory, the registers, the pc register,
the epc register - a special purpose register that holds the address of the faulting instruction
so the miss handler can return to it - and a rules cache. The cache works as a key-value
store where a key is an input vector that contains an instruction opcode, the tag of the
current instruction, the tag of the pc and up to three operand tags, and a value is an output
vector which contains a tag for the new pc and a tag for any results from the execution of
the instruction. In the context of the concrete machine a tag is the encoding into a word
of a symbolic tag. Lifting this encoding relation to vectors, we get that a concrete vector
is the encoding of a symbolic vector. Similar to the symbolic machine the contents of the
memory, the registers, the pc and the epc are concrete atoms w@t where w is a word and
t is the encoding of a tag into a word.

The stepping relation for the concrete machine is a bit more complicated than the one

2.4 A Programmable Unit for Metadata Processing 23

for the symbolic machine. In particular, on each step the machine forms the input vector
and looks it up in the cache. If the lookup succeeds then the instruction is allowed, an
output vector is returned by the cache and the next state is tagged according to it. If the
lookup fails, then the input vector is saved in memory, the current pc is stored in the special
register epc and the machine traps to the miss handler. The above are demonstrated in
the two example rules in fig. 2.3.

mem|[pc| = iQt; decode i = Store) 1
reglrp|=w,Qt, reg[rs|=wsQt mem[wp|=w 1@t 514
cache = (Store, tye, ti, tp, ts, towd) = (the thy)
mem’ = mem[w,<—wsQt/)]

; - (STORE)
(mem, reg, pcQt ., epc, cache) — (mem’, reg, (pc+1)Qt], ., epc, cache)
mem|pc|] = iQt; decode i = Store rp 15
reg(rpl=w,Qt, reg[rs|=wsQt mem[wp|=w,1Qt 514

cache = (Store, tye, ti, ty, ts, toia)
mem’ = mem[0..5 < (Store, tye, ti, tp, s, toid)]

(mem, reg, pcQt,., epc, cache) — (mem’, reg, trapaddr@Monitor, pcQt,., cache)
(STORE-MIsS)

Figure 2.3: Concrete step rules for Store instruction

Addresses 0 to 5 are used to store the input vector and 6 to 7 are used by the miss
handler to store the output vector. As a side-note, cache eviction is not modeled (an
infinite cache is assumed).

2.4.3 Concrete Policy Monitor

Unlike the symbolic machine, where the user cannot cannot change the transfer function,
enforcing a micro-policy on the concrete machine requires that we are able to protect the
policy monitor itself and that privileged instructions are not executed by user code. This
self-protection policy can be easily composed with another micro-policy and enforced by
the infrastructure described above.

Using tags of the form, User st, Entry st, Monitor we can distinguish between user-level
data, the monitor and monitor services. In particular User st is used to tag a user-level
atom, where st is the word-encoding of a symbolic tag. Monitor is used to tag the monitor
memory and registers. The pc is tagged with Monitor when a monitor execution takes
place and User st when user-code is executed. The tag Entry st is used to tag the first
instruction of a monitor service and serves as an indication that execution will continue
under the privileged Monitor mode.

The miss handler is a composed policy monitor that protects itself from User code and
that enforces a desired micro-policy. One important thing to note is that the miss handler
for the concrete machine can take an arbitrary number of steps before deciding whether
no violation occurred and returning to User mode, unlike the symbolic transfer function
that does not need to take any steps.

Chapter 3

Control-Flow Integrity

Restricting the control-flow of a program in some way has been proven as an effective
technique to mitigate a wide range of attacks. For example non-executable data (NXD)
can be considered as a form of (very) coarse-grained CFI where control-flow is not allowed
to reach any memory region that holds non-executable data. Another popular mitigation
technique is to protect return addresses on the stack, thus restricting the control-flow on
returns.

3.1 Related Work

3.1.1 Balancing between performance and security

Abadi et al. [1] first proposed a technique to enforce CFI based on Inlined Reference
Monitors (IRMs). In particular, the method they described (and to some extent formal-
ized) marked all valid targets of indirect control transfers with a unique identifier and
injected checks before all indirect jumps (including return instructions). However due to
high runtime overhead, their actual implementation assumed that any two destinations
are equivalent, in the sense that they share the same identifier, if the CFG contains edges
from the same set of sources, which significantly reduced the precision of the CFG. The
authors also note that a 2-ID approach where one identifier is used for calls and another
for returns could provide adequate security in many cases.

The work of Abadi et al. sparked interest of researchers who tried to improve some of
the weaknesses of the initial implementation, usually by choosing between performance
against precision and vice-versa.

Bletsch et al. [5] followed the work of Abadi et al., but changed their checking mechanism
to perform the check after the control flow transfer has occurred which, as the authors
claim, reduced the cache pressure and resulted in better performance. Precision remains
the same with the implementation of Abadi et al..

Zhang et al. [19] proposed Compact Control Flow Integrity and Randomization (CC-
FIR), a new efficient way to enforce coarse-grained CFI. CCFIR collects all valid targets of
indirect control-transfers and stores them in a random order, in a protected section called
“Springboard section”. Indirect control-transfers are only allowed to addresses that are in
the Springboard. Their implementation uses a 3-ID approach where one identifier is used
for calls and the two other identifiers are for returns, separating them between returns
to sensitive and non-sensitive functions. Their implementation also supports interaction
between protected and un-protected modules, which makes it an attractive solution to
coarse-grained CFIL.

25

26 Chapter 3. Control-Flow Integrity

The security of the above coarse-grained techniques is evaluated in [12] where the au-
thors demonstrate code-reuse attacks against binaries protected by coarse-grained CFI.
These attacks illustrate the need for fine-grained CFI which however incurs a high runtime-
overhead penalty making deployment of such a mechanism unlikely.

A recent and promising attempt on fine-grained CFI called Modular Control-Flow In-
tegrity [16] does fine-grained CFI with an acceptable runtime overhead (approximately
10%) and further more supports modular compilation (protected and unprotected mod-
ules). On the downside, it comes with a quite a big toolchain which leaves room for bugs
in the implementation, but the authors claim that formal verification is in their plans for
future work on CFIL.

Standard assumptions for effective CFI Most -if not all- CFI implementations also
come with a set of assumptions under which CFI holds. Two standard assumptions for all
mechanisms that attempt to enforce CFI are:

e Non-Executable Data (NXD), a security mechanism that disallows execution of data.

e Non-Writable Code (NW('). Changing the code of a program would allow an attacker
to circumvent dynamic checks.

Both assumptions are fairly standard for modern computers and are enforced through
hardware or software. In some cases NXD can be lifted, but additional security risks and
complexity is not worth the minor advantages offered by such an action.

Many implementations that attempt to do fine-grained CFI also require that identifiers
used to mark nodes in the CFG are unique.

3.1.2 Formal verification of Control-Flow Integrity

In [2] Abadi et al. extended their original paper, with -among other things- a more detailed
formal study of CFI. Their formalization regarded a much simpler machine than the x86
omitting all the complexity of modern systems. The machine has a few instructions,
a separate data memory and instruction memory which by the operational semantics
of the machine are non-executable and non-writable respectively (enforcing NXD and
NWC by construction), and a small set of registers. Moreover, their attacker model
permits arbitrary changes to the data memory, arbitrary changes to all the registers but
a few distinguished ones that are used during the dynamic checks and no changes to the
instruction memory. The authors proof that under some assumptions every step respects
the control-flow graph even in the presence of an attacker as powerful as the one described
above. Their formal study served as a guideline for the implementation, but as it is done
on paper their proofs cannot be machine checked. Furthermore, their formalization omits
less interesting but important details such as instruction encoding and decoding which as
shown in [15] are far from trivial for the x86.

Machine-checked formal verification efforts include [20], which is a SFI formalization
for the ARM architecture that also enforces CFI. Their formalization was developed using
the HOL theorem prover and a program logic framework they created. However their
benchmarks report a 240% runtime overhead. The authors of [8] claim partial proofs for a
CFI enforcement mechanism focused on the kernel of an operating system. Their runtime
overhead can also reach 100%.

3.2 Micro-Policies for Control-Flow Integrity 27

3.2 Micro-Policies for Control-Flow Integrity

3.2.1 Coarse-grained CFI Micro-Policy

We can use the PUMP to implement the coarse-grained CFI mechanisms described earlier.
Suppose we want to implement 1-ID CFI, we tag all indirect flow destinations and sources
with a tag Marked and the rest of the instructions as Unmarked. Executing instructions
that are sources of indirect flows, propagates their instruction tag to the pc. We then have
to check that the tag on the destination matches the tag on the tag on the pc.

op € {Jump, Jal}

MARK
op : { CI=Marked} — { PC'=Marked, RES=—} ()
Jump, Jal
op ¢ {Jump, Jaly (CHECK)
op : { PC=Marked, CI=Marked} — { PC'=Unmarked, RES=—}
J Jal
op ¢ {Jump, Jal} (NOCHECK)

op : { PC=Unmarked, CI=Unmarked} — { PC'=Unmarked, RES=—}

Figure 3.1: Rules enforcing coarse-grained CFI, NXD and NWC

Rule Mark is used in the case the opcode is Jump or Jal (the only indirect jumps in
the RISC machine we examine) and propagates the Marked tag on the tag of the new pc.
Rule Check applies when the tag on the pc is set to Marked and corresponds to a legal
destination and rule NoCheck corresponds to any instruction that is not a jump source or
target.

We do not further study this coarse-grained approach as we consider it ineffective since
attacks against it has already been demonstrated in [12]. Instead we are going to focus on
implementing and formalizing a fine-grained CFI micro-policy.

3.2.2 Micro-Policy for Fine-Grained Control-Flow Integrity

The PUMP hardware allows us to avoid taking the difficult decision between performance
and security. As shown in follow-up (unpublished) work to [10], we can enforce a fine-
grained CFI policy with an average runtime overhead of less than 3% (maximum overhead
of less than 10%), on the SPEC2006 benchmarks.

We follow the standard approach and require both NXD and NWC in order to cor-
rectly enforce CFI. We designed a composed micro-policy that enforces NXD, NWC and
CFI. We considered designs that lifted the NXD and NWC restrictions but we rejected
them, as there did not seem to be any considerable advantages (i.e., compatibility with
self-modifying programs, JIT compilers, etc.). Moreover unlike other CFI enforcement
mechanisms we do not have to rely on the CPU or the operating system to enforce NXD
and NWC, therefore lifting these restrictions would not reduce our assumptions and con-
sequently would not increase our confidence in the robustness of our approach.

Our approach uses unique identifiers to tag the contents of the memory that correspond
to sources and potential destinations of indirect flows according to a binary relation (on
the identifiers) CFG.

We use the set of tags T = {Data, Code id, Code L} where id is a unique identifier (i.e.,
used to tag the contents of only one location in the memory). One simple way to achieve
this is to use the address of the instruction as it’s id, for example an instruction stored at

28 Chapter 3. Control-Flow Integrity

address 100 would be tagged Code 100. This is the approach we take in our development.
Adapting the rules from 2.2, we shall use Data to tag all contents in memory that are
considered non-executable data, Code id to tag all contents in memory that are considered
executable instructions and are sources or targets of indirect control flows and Code L to
tag all other instructions. The rules to enforce NWC and NXD are intuitively the same
and only change to account for the splitting of the Code tag.

We follow the same idea as with coarse-grained CFI in section 3.2.1, propagating the
instruction tag of instructions that are sources of indirect flows to the tag on the pc of
the next state and upon execution of the next instruction, checking that the tag on the pc
and on the instruction are in some relation. In the case of coarse-grained CFI we required
that they match but for fine-grained CFI we require that they are in the CFG relation.

op € {Jump, Jal} (sre,dst) € CFG
op : {PC=Code src, CI=Code dst} — {PC'=Code dst, RES=—}

(FLow/CHECK)

op € {Jump, Jal}
op : {PC=Data, CI=Code dst} — {PC'=Code dst, RES=—}

(FLow/NOCHECK)

(sre,dst) € CFG
Store : { PC=Code src, CI=Code dst, MR=Data} — { PC'=Data, RES=Data}

(STORE/CHECK)
ti € {Code dst, Code L}
: (STORE/NOCHECK)
Store : { PC=Data, CI=ti, MR=Data} — { PC'=Data, RES=Data}
Jump, Jal, St ,dst) € CF
op & {Jump, Jal, Store} (src,dst) g (Rest/CHEck)

op : {PC=Code src, CI=Code dst} — {PC'=Data, RES=—}

op & {Jump, Jal, Store} ti € {Code dst, Code 1}
op : {PC=Data, CI=ti} — {PC'=Data, RES=—}

(REST/NOCHECK)

Figure 3.2: Rules enforcing fine-grained CFI

We note in the above rules that the tag on the pcis Data when no check for a control-flow
violation is required and Code src where src is some id, when an indirect flow instruction
was executed and a check for a control-flow violation is required. An important observation
is that the rules above allow for one control-flow violation to occur, but disallow the next
step and therefore the machine will certainly halt after a violation.

If the PUMP hardware fetched the tag on the memory address the machine is jumping
to and passed it as an argument to input vector, as it does in the case of a Store instruction,
we would be able to enforce CFI with no violations at all.

Chapter 4

Formally Verified Control-Flow
Integrity Micro-Policy

In this chapter we develop our main results. In particular, we use the Coq proof assistant’
to prove a property capturing the notion of CFI, similar to what was proposed by Abadi et
al. in |2], for the concrete machine running monitor code that implements the micro-policy
of section 3.2.2.

In order to obtain this result we propose a generic preservation theorem that states that
the CFI property is preserved, under certain assumptions, by a {0, 1}-backward simulation.
This allowed us to structure our proofs in a modular way and to avoid a direct - and several
times more complex - proof of CFI on the concrete machine. Furthermore it allowed us to
obtain a proof for CFI for the Concrete machine by leveraging the micro-policies framework
of section 2.3 in order to easily obtain a {0, 1}-backward simulation between the Concrete
and the Symbolic machine. As a result the proof effort required, was considerably reduced,
as we essentially had to do most of our reasoning at the Symbolic level.

The reusable nature of our preservation theorem allowed us to use the Symbolic machine
as an intermediate step in our proofs. In particular we introduced an Abstract machine
that has CFI by construction and therefore a trivial proof of the CFI property. We proved
a 1-backward simulation between the Symbolic and the Abstract machine, which allowed
us to invoke the preservation theorem in order to transfer the CFI property from the
Abstract to the Symbolic machine and consequently to the Concrete machine by invoking
the preservation theorem for a second time.

Finally, we prove a 1-forward simulation between the Abstract and the Symbolic ma-
chine and thus have a complete two-way refinement between the Concrete and the Abstract
machine. These refinement proofs provide us with additional assurance in the correctness
of our micro-policy.

'Our Coq development is freely available at https://github.com/micro-policies

29

https://github.com/micro-policies

30 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

CFI Abstract Machine CFI Property
Preserved
Simulates by backward
simulation
E Symbolic Machine [CFI Micro—Policy] :—{ CFI Property
beioeees T |
E Preserved
Simulates ! by backward
: simulation
O Y e 1
* Concrete Machine (CFI Policy Monitor] — CFI Property

Figure 4.1: Diagram explaining proof structure

Figure 4.1 visualizes our proof structure. Dashes correspond to theorems and definitions
provided by the micro-policies framework, gray colored objects correspond to assumptions
we make and the rest to our proofs and definitions.

4.1 Control-Flow Integrity Property

Our formalization includes a definition of CFI, similar to the one found in [2], which we
prove to be true of all our machines. The need for a new definition arises from funda-
mental differences between our enforcement mechanism on the concrete machine and the
one used by Abadi et al. In particular, our enforcement mechanism does not prevent a
violation, instead it can only detect it after it has occurred by taking an arbitrary number
of “protected” (monitor mode) steps before eventually bringing the machine to a halt. This
does not have any impact on the security effectiveness of our mechanism, it does however
lead to more complex definitions and therefore more complex proofs.

We draw the identifiers used to tag instructions from a set of sub-word sized elements,
for which there is a partial conversion function from words (word to_id), as well as a
total conversion function from identifiers to words (id_to _word). We represent the set of
allowed indirect jumps, as a characteristic function on identifiers (id — id — bool), called
CFG. We can extend this relation to precisely describe the control-flow of a program,
by extending CFG to a function SUCC,rg; on machine states, that represents the set of
allowed targets for all the instructions.

The definition of CFI is further parameterized by an attacker model. We model the
attacker as a step relation (—,). Intuitively the attacker is allowed to change any user-
level data but not the code of the program and the pc, as well as the tags in the case of
a tagged machine. This limitations ensures that an attacker cannot directly circumvent
the monitor protection mechanism and our user-level policies (NWC, NXD and CFI). To
account for attacker steps, the stepping relation is extended as the union of the normal
step relation (—,), as defined by the machine semantics, and the attacker step relation
(—,), as defined by the attacker model.

4.2 The Abstract Machine 31

s = 8 s—, s

s — s s — s

Figure 4.2: Step relation definition

We define a predicate initial s, where s is a machine state, that states that s is an
initial state. We use this predicate to express some invariants that are preserved through
execution (e.g., the initial tagging scheme for the memory). Finally we define a stopping
predicate on an execution trace that characterizes execution traces after a control-flow
violation.

Collecting the above parameters we can define a generic CFI machine that we will later
instantiate with the Abstract, the Symbolic and the Concrete machine.

Definition 4.1 (CFI Machine). A CFI machine is a machine parameterized by, a set of
states (S), an initial state predicate (initial), a step relation (—,), an attacker step relation
(—4), a function that denotes the allowed control-flows for all instructions (SUCCyrg) and
a stopping predicate (stopping).

For a CFI machine we give the following definitions:

Definition 4.2 (Trace has CFI). We say that an execution trace sy — $1 — ... — Sy, has
CFL if for alli € [0,n) if 8; —>n Sit1 then (si, 8i11) € SUCCe -

The above definition corresponds to the one found in [2], however it is stronger in the
sense that it requires that steps that are in the intersection of normal and attacker steps
respect the control-flow. If we did not allow for any violations then the above definition
would be enough, but since our enforcement mechanism allows for one violation we have
to resort to a weaker definition.

Definition 4.3 (CFI). We say that the machine (State, initial, —p, —q, SUCC; z¢, stopping)
has CFI with respect to the set of allowed indirect jumps CFG if, for any execution starting
from initial state sg and producing a trace sg — ... — Sp, either

1. The whole trace has CFI according to definition 4.2, or else

2. There is some i such that s; —p Si+1, and (8;, Si+1) & SZ/{CCC]_-Q, where the sub-traces
So = ... — 8 and Si41 — ... — Sy, both have CFI and the sub-trace sjy1 — ... = Sy
18 stopping.

4.2 The Abstract Machine

The abstract machine has CFI, NXD, and NWC by construction and will serve as a
specification for the symbolic and eventually the concrete machine that implement CFI
through the tag-based system explained in the previous chapter.

Unlike the symbolic and the concrete machine, this abstract machine splits the memory
into two disjoint memories, an instruction memory and a data memory. The instruction
memory is fixed (non-writable) and the machine uses this memory to fetch instructions to
execute, so NWC and NXD are enforced by construction.

In addition the state of the machine includes an ok bit, indicating whether a control-
flow violation has occurred or not. The rest of the machine state is completed by a set
of registers and a pc register. We use a 5-tuple notation for the state (im, dm, reg, pc, ok),
where the first field is the instruction memory, the second the data memory, the third the
registers, the fourth is the pc register and the fifth is the ok bit.

32 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

4.2.1 Operational semantics

In fig. 4.3 we define the operational semantics of the Abstract machine. Notice that the
machine can only step when the ok bit is set to true (i.e., no control-flow violation has
occurred). All executed instructions are fetched from the instruction memory, thus the
machine has NXD by construction. Moreover the rule for Store instructions, mandates
that all memory writes are done on the data memory, thus enforcing NWC' by construction.

Upon execution of an indirect jump (Jump/Jal), we consult the CFG function to check
whether the change of control-flow is allowed. We do that through a function J that
converts the words to identifiers and then invokes the CFG function on them. If the
conversion fails or if the flow is now allowed according to CFG then the jump is taken but
the ok bit is set to false, which will halt the machine in the next step, as it is only allowed
to step when the ok bit is set to true. Otherwise the ok bit will remain true.

As the abstract machine serves as a specification to a machine with CFI, a more intuitive
definition of it would not include the ok bit and would only allow the Jump and Jal
instructions to step if they do not violate the control-flow graph. However, this abstract
machine would not allow for any violations to occur unlike our enforcement mechanism
for the symbolic and the concrete machine and would lead to more complex simulation
proofs, therefore we do not favor it.

The abstract machine also allows for monitor services to be included, although the CFI
enforcement mechanism does not require any. We assume that a monitor service is a
privileged action and that it’s execution does not violate the control-flow of the program.
Execution of a monitor service is done simply by jumping to it’s address, there is no
separate instruction. As with all other instructions, execution of the monitor service is
only allowed if the ok bit is set to true.

4.2.2 Attacker model

The attacker for the abstract machine is allowed to change the contents of the data memory
and the registers at any time, but not the rest of the state.

4.2.3 Allowed control-flows for the abstract machine

We can construct a function SZ/{CCé‘ng for the abstract machine that represents the set of
allowed control-flows for all instructions, by extending the set of allowed jumps CFG we
introduced earlier.

Below we give a specification of the SLICC&“]_-Q function for the abstract machine, in the
form of inference rules. A function is defined in the actual Coq development.

Notice that a monitor service is allowed to return anywhere. As we mentioned before,
monitor services at the concrete level, execute in a protected environment, therefore we
do not want to protect their returns and this is reflected here.

4.2.4 Stopping predicate for the Abstract machine

Finally, we define what it means for the Abstract machine to be “stopping” by defining a
predicate on execution traces:

Definition 4.4 (Abstract Stopping Predicate).

1. All states in the trace are stuck with respect to normal steps (—)

2. All steps in the trace are attacker steps (—,)

4.2 The Abstract Machine 33

im[pc|] =1 decode i = Nop (Nor)
P

(im, dm, reg, pc, true) —,, (im, dm, reg, pc + 1, true)

im[pc] =1 decode i = Const n r
req = reg[r<—n]

CoNsT
(im, dm, reg, pc, true) —, (im, dm, red, pc + 1, true) ()

im[pc] =1 decode i = Mov rp 1
regrpl=w, req = regrs—wp)

Mov
(im, dm, reg, pc, true) —,, (im, dm, red, pc + 1, true) ()

im[pc] = i decode i = Binop op 1p Ts T

reg[rp|=w, reglrs)|=ws req = reg[ri<—wy, op wgl (Biop)

(im, dm, reg, pc, true) —,, (im, dm, red , pc + 1, true)

im[pc] =i decode i = Load 1), 7
reg[ry|=w, imjwpl=w V dm[wp]=w
req = reg[rs<w]

. , (LoaD)
(im, dm, reg, pc, true) —, (im, dm, red, pc + 1, true)

im[pc] =1 decode i = Store) 15
regrpl=w, reg[rs|=ws

dm’ = d s
m mwp<—ws] (SToRE)

(im, dm, reg, pc, true) —,, (im, dm', reg, pc + 1, true)

im[pc) =i decode i = Jump r
reglr] = pd ok= (pc,pd) € J

JumpP
im, dm, reg, pc, true) —, (im, dm, reg, pc, ok ()
(g g

im[pc] =1 decode i = Jal r
reg[r] = pd req = reg[ras—pc + 1] ok = (pc,pd) € I

JAL
(im, dm, reg, pc, true) —, (im, dm, red, pc, ok) (JaL)

mem|pc| =i decode i = Bnzr n reg|r|=w

pd < if w =0 then pc+ 1 else pc+n
(Bnz)

(im, dm, reg, pc, true) —,, (im, dm, req , pc, true)

pc & dom(im) pc & dom(dm) get_service pc = (addr, f)

f (im, dm, reg, pc, true) = (im, dm’, req , pc, true)
(SERVICE)

(im, dm, reg, pc, true) —, (im, dm/, req , pc, true)

Figure 4.3: Operational Semantics of the Abstract Machine

34 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

dom dm = dom dm/ dom reg = dom req

im, dm, reg, pc, ok) =2 (im, dm!, req , pe, ok
a

Figure 4.4: Attacker model for the abstract machine

im[pc] =1 decode i € {Jal r, Jump 1} (pe,pd) e T

: : (INDIRECTFLOWS)
((im, dm, reg, pc, ok), (im, dm’, req , pc, ok)) € SZ/lCCé“fg
im[pc) =i decode i = Bnz r imm
/ = —|— 1 \/ / = —|—)
. (pe = pe .) (]jc pe - imm) —+— (CONDITIONALFLOWS)
((#m, dm, reg, pc, ok), (im, dm’, red , pc’, ok)) € SUCCErg
im[pc] =i decode i & {Jal r, Jump r, Bnz r imm, &}
/ — + 1
, p,c p/c - - (NORMALFLOWS)
((im, dm, reg, pc, ok), (im, dm’, reg , pd’, ok)) € SUCC¢rg
im[pc] = @ dm|pc] = @
t ice pc = (addr,
get_scrvice pe = (addr, J) (SERVICEFLOWS)

((im, dm, reg, pc, ok), (im, dm’, red , pc, ok)) € SL[CCé“fg

Figure 4.5: Allowed control-flows for instructions of the abstract machine

4.2.5 CFI proof for the Abstract Machine

Regarding initial states, we only require that the ok bit is set to true. We can now
instantiate the class of the machines defined in definition 4.1, with the abstract machine
and prove that the abstract machine has CFI according to definition 4.3. We first prove
a helpful lemma, which states that a step that is both a normal and an attacker step is
always safe according to the SUCC&“]_-Q function. The intuition behind this, is that attacker
steps retain the ok bit while a normal step that violates the control-flow would change the
ok bit to false.

/

Lemma 4.5 (Step Intersection). For all states st, st’ such that st —2 st' and st —, st

(st, st') € SUCCL;.
Proof.
e By the relation st —, st’ we know that the ok bit of st is set to true.

e The relation st —Z' st' retains the ok bit of st, therefore st’ has the ok bit set to
true.

e It trivially follows from the definition of SUCC&“IQ that (st, st') € SZ/ICC{;‘;Q.
O

Theorem 4.6 (Abstract CFI). The abstract machine has the CFI property stated by
definition 4.3.

Proof. The proof proceeds by induction on the execution trace.

4.8 The Symbolic Machine 35

e Base Case In this case the execution trace is made up of a single step st — st’. We
proceed with case analysis on the step.

— Attacker Step By lemma 4.5 we note that an attacker step cannot also be a
normal step that is disallowed by SZ/{CCé‘lJ_-g. Thus in this case the whole trace
has CFI according to definition 4.2.

— Normal Step By case analysis, if (st, st') € SZ/{CCé‘lfg then trivially the whole
trace has CFIL. Otherwise (st, st') & SL[CC&“fg and the sub-traces st and st’
vacuously have CFI. In addition the sub-trace st’ is stopping, as the ok bit of
st’ is set to false and the state is stuck with respect to normal steps.

e Inductive Case In this case the execution trace is extended by an additional step
at it’s beginning sg — s;3 — s2 — ... — s,. By the induction hypothesis either:

— The trace s; — s3 — ... — s, has CFI, by case analysis if (sg, s;) € SZ/ICCé“]_-g
the whole trace has CFI. Otherwise (sg, s;) & SZ/{CCé‘ng, the sub-trace sg vac-
uously has CFI and the sub-trace s; — ... — s, has CFI by the induction
hypothesis. Additionally, the sub-trace s; — ... — s, is stopping because:

* The whole trace is made up of attacker steps. Since (sy, s;) & SLICC&“]_-Q
the ok bit of s; will be set to false and a normal step is not allowed by the
operational semantics, while attacker steps retain the ok bit.

* The whole trace is stuck with respect to normal steps. Trivial from the
above.

— There exists a step sy1 —p Sp2 such that (s, Sy2) & SZ/{CCé“fg and the sub-
traces s1 — ... — Sy1 and Sy2 — ... — S, both have CFI and the later is also
a stopping trace.

* If (g, s1) € SUCCZg then definition 4.3 still holds and the sub-trace s; —
... = 8y1 is extended by one step to sg — ... — Sy1-

* Otherwise the ok bit for s; is set to false and the rest of the trace is stuck
with respect to normal steps. However from the induction hypothesis we
know that s,1 —, Sy2, which is a contradiction.

O

4.3 The Symbolic Machine

The symbolic machine was described in section 2.3.2. Unlike the abstract machine, the
symbolic machine has one memory and the distinction between data and executable in-
structions is made through tags, in a fashion similar to what was shown in sections 2.2
and 3.2.2. We instantiate the symbolic machine, according to the aforementioned sections,
with a set of tags T = {Data, Code id, Code 1}.

Although enforcement of CFI does not require any monitor services we expose the
monitor services mechanism and we check whether calls to each monitor service are allowed
or not according to the control-flow graph. This is done by assuming a lookup-table of
monitor services where each entry has a tag that is used to check for control-flow violations
and a semantic function from symbolic state to symbolic state which produces the new
machine state after execution of the system call, as shown in fig. 2.2.

We do not need any internal state for this micro-policy therefore, only the transfer
function is left to implement.

36 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Context {ids : @cfi_id t}.

Inductive cfi_tag : Type : =
| INSTR: option id — cfi_tag
| DATA : cfi_tag.

Listing 4.1: Coq definition of Symbolic tags

4.3.1 Transfer Function

We implement the transfer function based on the rules found in 3.2.2; using Gallina to
define a function mapping input vectors (mvector) to output vectors (rvector).

Definition cfi_handler (ivec : Symbolic.IVec cfi_tags) :
option (Symbolic.0Vec cfi_tags (Symbolic.op ivec)) :=
match ivec with
| mkIVec (Jump as op) (Code (Some n)) (Code (Some m)) _
| mkIVec (Jal as op) (Code (Some n)) (Code (Some m)) _ =
if cfg n m then
Some (mkOVec (Code (Some m)) (default_rtag op))

else
None
| mkIVec (Jump as op) Data (Code (Some n))
| mkIVec (Jal as op) Data (Code (Somen)) _ =

Some (mkOVec (Code (Some n)) (default_rtag op))
| mkIVec Jump Data (Code None)

| mkIVec Jal Data (Code None) _ =
None

| mkIVec Store (Code (Some n)) (Code (Some m)) [_ ; _ ; Data] =
if cfg n m then Some (mkOVec Data Data) else None

| mkIVec Store Data (Code _) [_; _ ; Data] =
Some (mkOVec Data Data)

| mkIVec Store _ _ _ = None

| mkIVec op (Code (Some n)) (Code (Some m)) _ =

(* this includes op = Service *)
if cfg n m then
Some (mkOVec Data (default_rtag op))
else
None
| mkIVec op Data (Code _) _ =
(* this includes op = Service, fall-throughs checked statically *)
Some (mkOVec Data (default_rtag op))
| mkIVec _ _ _ _ = None
end.

Listing 4.2: Transfer function for symbolic machine in Coq pseudo-code

Although, the rules in section 3.2.2 were fairly simply, expressing them using Gallina’s
pattern matching increased their size. We also experimented, with different ways of writing
the transfer function but we decided to stick with the definition above as it is the most
straightforward. It is worth to note that bugs in the above definition were easily made

4.8 The Symbolic Machine 37

apparent when proving theorems involving the transfer function. In fact, an “interesting”
experiment was to re-define the above function in a different way and prove the two
equivalent. It took two iterations before getting both functions to agree and although for
small definitions like the one above, testing or manually reviewing the code will reveal most
if not all bugs, the importance of formal verification in software engineering and critical
software is made obvious even for definitions that may seem trivial at first. Eventually the
correctness of the transfer function will come from the two-way simulation proofs between
the abstract and the symbolic machine.

4.3.2 Attacker model

Similar to the abstract attacker, the symbolic attacker can change all words tagged as
Data but not the ones tagged as Code. This is expressed by the following relations:

S (ATTACKDATA)
w1@Data —- we@Data

_ , (ATTACKINSTR)
w1QCode id —>f w1Q@Code id

Figure 4.6: Attacker capabilities

These attacker capabilities on symbolic atoms are lifted to the memory and registers by
a pointwise extension.

mem —5 mem/ reg —3 reg

mem, reg, pcQt,., int) —> (mem!, req , pcQt,., int
p a p

Figure 4.7: Attacker model for the Symbolic machine

4.3.3 Allowed control-flows for the Symbolic Machine

Similar to the abstract machine of section 4.2.3, we construct SZ/{CC‘CSFQ for the symbolic
machine (fig. 4.8) by extending the set of allowed jumps CFG.

38 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

mem|pc|] = iQ(Code src) decode i € {Jal r, Jump r}
mem[pc’] = {Q(Code dst)
(sre, dst) € CFG

INDIRECTFLOWS
((mem, reg, pc, int), (mem, reg, pc’, int)) € SUCC&S}—Q ()
mem|pc|] = iQ(Code src) decode i € {Jal r, Jump 1}
mem|[pc] = @ get_service pc = (Code dst, f)
, dst) € CF

. (sre, dst) g . 5 (INDIRECTFLOWS2)

((mem, reg, pc, int), (mem, reg, pc', int)) € SUCCExg

mem[pc] = iQ(Code) decode i = Bnz r imm
(pe’ = pe+ DV (p¢ = pe t imm) (CONDITIONALFLOWS)

((mem, reg, pc, int), (mem, reg, pc, int)) € SUCCg]_-g

mem|pc|] = iQ(Code) decode i & {Jal r, Jump r, Bnz r imm, @}
/ — + 1
. pe ,pc — 5 (NORMALFLOWS)
((mem, reg, pc, int), (mem’, reg, pc’, int)) € SUCCE g

mem[pc] = & get_service pc = (t;, f) (SERVICEFLOWS)

((mem, reg, pc, int), (mem’, reg , pc, int’)) € SZ/{CC‘CS]_-Q

Figure 4.8: Allowed control-flows for instructions of the symbolic machine

4.3.4 Initial states of the Symbolic Machine

For the symbolic machine, we do require that certain tagging conventions are respected
initially. Additionally we prove that these initial conditions are invariants of the machine
and they are preserved at every (normal or attacker) step.

These invariants are required for backward simulation between the symbolic and the
abstract machine.

Definition 4.7 (Instructions Tagged). For all addresses addr in the memory such that
mem/[addr] = i@QCode id

it holds that addr is in the domain of word to id and additionally
word_to_id addr=id

Definition 4.8 (Entry Points Tagged). For all addresses addr such that

mem[addr] = &
get_service addr = (it, f)
it = Code id

it holds that addr is in the domain of word to id and additionally
word_to_id addr = id
Definition 4.9 (Valid Jumps Tagged). For all addresses saddr, taddr such that

(saddr, taddr) € J

4.8 The Symbolic Machine 39

it holds that
i, mem|saddr] = iQCode (word_to_id saddr)

and either
37, meml[taddr] = i'QCode word_to_id taddr

or
memltaddr] = &
3(it, f), get service addr = (it, f)
it = Code (word_to_id taddr)

Definition 4.10 (Registers Tagged). For all register sets regs and registers r such that
regs[r] = vQut

it holds that
regs[r] = v@QData

Additionally we need two more invariants for forward simulation. These two invariants
enforce that all Jump and Jal instructions are tagged with a unique identifier.

Definition 4.11 (Jumps Tagged). For all addresses addr and instructions i such that
memladdr] = iQCode x and decode i = Jump r, it holds that

Jid, word_to_id addr =id Nz =1id

Definition 4.12 (Jals Tagged). For all addresses addr and instructions i such that
memladdr] = 1QCode x and decode i = Jal r, it holds that

Fid, word_to_id addr =id Nz =1id
We define a predicate initial that determines whether a symbolic state is an initial state.

Definition 4.13 (Symbolic Initial States). A symbolic state s° is an initial state
(initial® s°) if definitions 4.7 to 4.12 hold for s° and additionally the tag on the pc
1s set to Data.

It’s straightforward by the semantics of the step relations to prove that both normal
and attacker steps preserve each of the invariants. We only need to assume that this holds
for monitor services (i.e., if we were to provide some monitor services they would have to
preserve these invariants).

Lemma 4.14 (Symbolic Invariants preserved by normal steps). For all symbolic states
(st, st’),

mvariants st =—

st —, st —=

. . /
mvariants st

Lemma 4.15 (Symbolic Invariants preserved by attacker steps). For all symbolic states
(st, st’),

1nvariants st =—

st —>aS st =

. . /
mvariants st

40 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

4.3.5 Stopping predicate for the Symbolic Machine

Similar to the abstract machine, we say that an execution trace of the symbolic machine
is stopping if:

Definition 4.16 (Symbolic Stopping Predicate).
o All states in the trace are stuck with respect to normal steps (—p,)

o All steps in the trace are attacker steps (—,)

4.3.6 Symbolic-Abstract simulation

The Symbolic-Abstract simulation formally defines the connection between the two ma-
chines. We prove a 1-backward simulation theorem for both normal and attacker steps.
This means that every step of the symbolic machine can be matched by one step of the
abstract machine. Additionally we prove a 1-forward simulation for normal steps, which
means that every step of the abstract machine can be matched by one on the symbolic ma-
chine. Intuitively the above theorems show that the symbolic machine precisely emulates
all behaviors of the abstract machine.

Definition 4.17 (1-Backward Simulation). A low-level machine simulates a high-level
machine with respect to a simulation relation ~ between low-level machine states and
high-level machine states, if st ~ st and st —,, sk implies that there exists s& such that,
sit ~ sk and st —,, sk,

We visualize the above definition with the following diagram:

H _______ H
57 D
: ‘

(Plain lines denote premises, dashed ones conclusions.)

Definition 4.18 (1-Forward Simulation). A high-level machine simulates a low-level ma-
chine with respect to a simulation relation ~ between low-level machine states and high-
level machine states, if s ~ st and st —,, sk implies that there exists s¥ such that,
sit ~ sk and st —,, sk

Intuitively, backward simulation is enough to capture the desired security property.
Our intuition is further strengthened later, when we prove that the CFI property given
by definition 4.3 is preserved by backward refinement. However, a trivial machine that
cannot take any step also enjoys CFI vacuously. Forward simulation guarantees that this
is not the case for our symbolic machine and proves that it is a meaningful implementation
of the abstract machine.

Simulation Relation

We define the state simulation relation between the symbolic and abstract machine by
defining the simulation relation for each component of the state.

4.8 The Symbolic Machine 41

Definition 4.19 (Data Memory Simulation). An abstract data memory dm is in simula-
tion with a symbolic memory mem, if for all words w, = it holds that

mem|w] = xQData < dm[w] =z

Definition 4.20 (Instruction Memory Simulation). An abstract instruction memory im
is in simulation with a symbolic memory mem, if for all words w, x it holds that

(F it € {id, L}, mem[w] = xQ(Code it)) <= im[u] =z

Definition 4.21 (Registers Simulation). An abstract register set areg is in simulation
with a symbolic register set sreq, if for all registers r and words x it holds that

sreg[r] = xQData <= areg[r] =z

Definition 4.22 (PC simulation). The abstract pc (apc) is in simulation with the symbolic
pe (spcQty.), if it holds that

apc = spc A (tpe = DataV 3n € id, t,. = Code n)

Definitions 4.19 to 4.22 relate the basic components of the state. What is left to do, is
relate the ok bit of the abstract machine with the state of the symbolic machine.

Definition 4.23 (Correctness). The statement of correctness, states that for the symbolic
memory (smem), the symbolic pc (spcQt,.) and the ok bit of the abstract machine, it holds
that for all words i and tags ti,

smem[spc] = iQti —=>
ok = true <=
(Vsrc € id, t,. = Code src —=
Adst € id,
ti = Code dst A (sre,dst) € CFG)

Informally definition 4.23 states that if the tag on the current instruction is ti, then if
the tag on the pc is set to Code src (which means an indirect flow occurred in the previous
step), there exists an id dst which is used to tag the current instruction and additionally
the flow from an instruction with ¢d src to one with id dst is allowed according to CFG, if
and only if the ok bit of the abstract machine is set to true. This definition captures the
notion that a violation in the abstract machine is also a violation in the symbolic machine
and vice-versa.

We give one more definition of correctness, for the case of monitor services. The intuition
is the same, but because monitor services live outside the addressable memory of the
machines, its statement needs to be adapted a bit.

Definition 4.24 (Monitor Service Correctness). Correctness for monitor services, states
that for the symbolic memory (smem), the symbolic pc (spcQt,.) and the ok bit of the
abstract machine, it holds that for all monitor services sc,

smem[spc] = & —=

get_service spc = (ti, f) —

ok = true <—

(Vsre € id, t,. = Code src —=

Jdst € id,
ti = Code dst N\ (src,dst) € CFG)

42 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

The simulation relation (~4g) is defined as the conjunction of definitions 4.19 to 4.24
and the invariants 4.7 to 4.9.

Proving 1-backward simulation for normal steps

Once we have the definition of the simulation relation, proving a 1-backward simulation for
normal steps is relatively straight-forward, thanks to the fact that the symbolic machine
abstracts away many details of the concrete machine that would make the proofs more
tedious. Additionally we do not have to provide such proofs for any monitor service as we
did not use any. Therefore we will only have to reason about the small set of instructions
that the symbolic and the abstract machine share.

We start with some helpful lemmas about registers and memory updates. These lemmas
serve as the basis for proving simulation for instructions that change the registers or the
memory. The corresponding Coq definitions and proofs can be found.

Lemma 4.25 (Registers Update Backward Simulation). For all symbolic register sets
(sreg,sreq’), abstract register sets (areg), registers (r), words (v,v’),

areq ~regs STEY ==
sreg[r] = v@QData —
sreg[r<—v'@QData] = sreqd —
Jared
areg[r<v'] = areg A

/ /
areqg ~regs STEY

Lemma 4.26 (Memory Update Backward Simulation). For all symbolic memories (smem,smem’),
abstract data memories (amem) and words (addr,v,v’),

AMEM ~dmem SMEM ==
smem|addr] = v@QData —
smem|addr<v'@QData] = smem’ —=>
Jamen?,
amem[addr<v'] = amem/ A\

/ /
amem ~dgmem SMEM

With these definitions and lemmas we are able to prove 1-backward simulation for
normal steps between the Symbolic and the Abstract machine as defined by definition 4.17,
where the low-level machine is the Symbolic machine and the high-level machine is the
Abstract machine.

Theorem 4.27 (1-Backward Simulation Symbolic-Abstract). Definition 4.17 holds for
the Symbolic (low-level) and the Abstract (high-level) machines when the two machines are
related by ~4gs.

Proving 1-backward simulation for attacker steps

The same definition as 4.17 of 1-backward simulation is used for the attacker, with the
sole difference being that steps now refer to attacker steps.

4.8 The Symbolic Machine 43

Definition 4.28 (1-Backward Simulation Attacker). A low-level machine simulates a
high-level machine with respect to a simulation relation ~ between low-level and high-
level machine states, if s ~ st and st —L sk implies that there exists sl such that,
H H

sit ~ sk and st =1 sIT

We prove that 1-backward simulation for attacker steps hold, by first showing how we
can construct attacker steps at the abstract level from symbolic attacker steps and then
showing that this way of building attacker steps preserves the simulation relation (~).

A step of the symbolic attacker, as mandated by the semantics of the attacker model,
can only change the memory and register contents tagged Data, formally mem —2 mem/
and reg —2 reg.

Intuitively, we can construct areg by mapping a function on the set of registers, that
changes a symbolic atom to a word by removing it’s tag.

[Deﬁnition untag_atom (a : atom (word t) cfi_tag) := common.val a. }

Listing 4.3: Untag symbolic atom function

We can trivially prove that the abstract attacker can take a step by mapping un-
tag atom over a symbolic register set. This is trivial because the attacker can arbitrarily
change all registers.

Lemma 4.29 (Abstract attacker registers).

sreg —>f sreq —

areg —>f

map untag _atom sreqd

However, we still need to prove that the simulation relation between the two machines
does not break when attacker steps are taken. We can proof that simulation of registers
is preserved by attacker steps. The proof proceeds by using the correctness theorem for
the map function.
Theorem 4.30 (Map Correctness instance).

(map untag _atom sred)[r] = option_map untag _atom (sred[r])

where option__map is defined as

Definition option_map f x :—
match x with
| Some y = Some (f y)
| None = Nomne
end.

Listing 4.4: Option Map function

44 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.31 (Attacker preserves register simulation). For all abstract register sets (areg)
and symbolic register sets (sreg, sreq’),

areg ~pegs STEY ==
sreg —>§ sreqd —=

/ /
map untag_atom sreg ~pegs Sreg

In order to complete the proof of 1-backward simulation for attacker steps, we also need
to construct an abstract memory and to show that the ~,,.,, relation is preserved by
attacker steps. Due to the fact that the abstract machine has split data and instruction
memories, in order to follow the same methodology as with registers, we will need to split
the symbolic memory. We achieve this, using a filter function.

Firstly we proof that attacker steps do not break simulation of instruction memories.
Intuitively this is trivial, as the symbolic attacker can only change memory contents tagged
Data.

Lemma 4.32 (Attacker preserves instruction memory simulation). For all abstract in-
struction memories (imem) and symbolic memories (smem, smem’),

IMEM ~jmem STEM —>
S

/
n smem ==

smem —

. /
TMEM ~jmem STEM

Constructing a data memory is more complicated than in the previous cases. Our ap-
proach, uses the filter function to create a subset of the symbolic memory that only contains
atoms tagged Data and then applies the same methodology with registers, mapping the
untag atom function over this subset to obtain an abstract data memory.

Definition is_data (a : atom (word t) cfi_tag) :=
match common.tag a with
| DATA = true
| INSTR _ = false
end.

Listing 4.5: Function that checks if atom is tagged Data

Again we can prove a few helpful lemmas that ease the final proof.

Lemma 4.33 (Attacker preserves data memory simulation). For all abstract data mem-
ories (dmem) and symbolic memories (smem, smem’),

dmem ~ smem —>
dmem

smem —>§ smem' —

map untag _atom (filter is_data sreq) ~gmem dmem’

The proof of lemma 4.33 is slightly more complex than the one for registers, as we now
have to invoke the filter correctness theorem as well.

Theorem 4.34 (Filter Correctness instance).
(filter is_ data smem')|addr] = option_ filter is_data (smem/[addr])

where option_map is defined as

4.8 The Symbolic Machine 45

Definition option_filter f x :—
match x with
| Some x0 = if f x0 then Some x0 else None
| None = Nome
end.

Listing 4.6: Option Filter function

In all cases, we have to show that the domains of the abstract memories and registers are
also preserved. We include here the corresponding lemma for the data memory. Its proof
was again more complicated, due to the fact that we had to split the symbolic memory.

Lemma 4.35 (Attacker preserves data memory domains). For all abstract data memories
(dmem, dmem’) and symbolic memories (smem, smem’),

dmem ~gmem smem —

/
smem —)5 smem —

/ /
dmem’ ~gmem SMEM —>

D(dmem) = D(dmem/)

Likewise with normal steps, we can now prove a l-backward simulation for attacker
steps as defined by definition 4.28.

Theorem 4.36 (1-Backward Simulation Symbolic-Abstract for Attacker). Definition 4.28
holds for the Symbolic (low-level) and the Abstract (high-level) machines when the two
machines are related by ~ 4g9.

Proving 1-forward simulation for normal steps

The 1-forward simulation proof between the abstract and the symbolic machine is similar
to the 1-backward simulation proof. Again, we take the same approach and prove some
auxiliary lemmas about memory and registers updates.

Lemma 4.37 (Registers Update Forward Simulation). For all abstract register sets (areg,areg’),
symbolic register sets (sreg), registers (r) and words (v’),
areq ~regs STEY ==
areg[r<'] = ared —
Jsred
sreg|r<—v'@QData) = sreg A
areq ~yegs sreqd
Lemma 4.38 (Memory Update Forward Simulation). For all abstract data memories
(dmem,dmem’), symbolic memories (smem) and words (addr,v’),
dmem ~gmem sSMEM —>
dmem[addr<v'] = dmem! —>
Ismen,
smem[addr«v'QData] = smem’ A

/ /
dmem’ ~gmem SMEM

46 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.39 (Outside Memory). For all abstract data memories (dmem), abstract in-
struction memories (imem), symbolic memories (smem) and words (addr),

dmem ~gmem SMEM —>
IMEM ~imem SEM —>
imem[addr] = @ —=
dmem|addr] = & —

smem|addr] = @

For proving forward simulation between the abstract and the symbolic machine it is
required that all indirect jumps are tagged with a unique identifier, which we enforce by
the invariants 4.11 and 4.12.

Theorem 4.40 (1-Forward Simulation Abstract-Symbolic). Definition 4.18 holds for the
Symbolic (low-level) and the Abstract (high-level) machines when the two machines are
related by ~as.

4.4 The Concrete Machine

Assuming the existence of correct code that implements the CFI monitor, we can utilize
the framework of section 2.3 to instantiate the concrete machine and obtain a refinement
between the concrete and the symbolic machines, we need to provide the encoding of
symbolic tags. For the concrete machine we only considered a 32-bit architecture, but we
could very easily instantiate the concrete machine with 64-bit words with minimal changes
to our proofs.

4.4.1 Concrete tags

In order to obtain the concrete tags, we need to wrap the symbolic tags with the monitor
self-protection tags (User, Entry, Monitor) and provide an encoding to words of these
tags.

We use 28 bits for the identifiers. That means, that we can uniquely identify up to
instructions. Trying to tag more instructions than this, would break the symbolic invariant
4.7, because by the simulation relation between the concrete and symbolic machines, the
two machines follow the same tagging scheme for User and Entry tags.

Defining the conversion functions 2> between words and identifiers is straight forward.
We make the simply choice, to convert words to identifiers only if they are equal or less
than the maximum word our 28-bit identifiers can fit. Note that this does not mean we
reduce the addressable space to 28-bits. You can use addresses higher than 228 to place
contents tagged as Data or Monitor or even Code L but not instructions with an identifier.

The conversion from identifiers to words is trivial by expanding the id to 32-bit words
by adding zeros to the high bits.

When using identifiers of 28-bits, we can encode the symbolic tags using 30-bits, with
an encoding like the one in table 4.1, where the two least-significant bits are used to
distinguish between Data, Code 1 and Code id, and the 28 higher-bits are the id in the
last case and zero otherwise.

228

*Numbers in the Coq definitions are off by one (e.g., 27 means 28), for reasons relating to the underlying
words library

4.4 The Concrete Machine 47

Symbolic Tag | Encoding
Data 0
Code L 1
Code id 4id+ 2

Table 4.1: Encoding of Symbolic Tags

Having an encoding into 30-bits of symbolic tags, we can use the 2-bits left, to wrap
the symbolic tags with the monitor self-protection tags. We use the two least-significant
bits to distinguish between User (01), Entry (10) and Monitor (00). Only the User and
Entry wrap around symbolic tags. The policy monitor does not use symbolic tags and the
corresponding tag Monitor does not need to wrap around them. Thus the encoding of the
Monitor tag has all its bits set to zero.

31 3210

id [1]o[o[1]

Figure 4.9: Encoding of an instruction with a unique identifier id

With the above encoding, we can easily define a decode function and prove that the
decode function is the left inverse of the encode function (decode(encode t) = t) and right
inverse for all elements in the domain of decode (decode w =t = encode t = w).

4.4.2 Concrete-Symbolic backward refinement

We can now instantiate the backward refinement between the concrete and the symbolic
machine that is provided by the micro-policies framework [9]. For the concrete to symbolic
backward refinement we no longer get a 1-backward simulation, due to the fact that the
steps the concrete policy monitor takes are not matched by any steps of the symbolic
machine. For user mode steps (i.e., when the tag of the pc is User) the framework does
provide a proof of 1-backward simulation as defined by definition 4.17, with respect to a
simulation relation (~), where the low-level machine is now the concrete machine and
the high-level machine is the symbolic machine.

For Monitor steps a weaker simulation relation (~js) is used. Eventually we obtain a
{0, 1}-backward simulation between the concrete and the symbolic machine.

Definition 4.41 (Weak simulation relation for Monitor steps). A concrete state sC is in
weak simulation with a symbolic state s° (s° ~yr s©), if the tag of the pc of state s© is
Monitor and there exists a concrete user state s§ such that s° ~y s§ and there is an
execution trace sg —n ... = 8C formed only by monitor steps (all states have Monitor
tag on the pc).

We wvisualize the above definition with the following diagram:

i

c —— _, .C
e —
S0 UM 51 M* §

48 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

We define the simulation relation ~cg between the concrete and symbolic machines
inductively.

S~y sC P

stcssc SSNCSSC

Figure 4.10: Concrete-Symbolic simulation relation

Theorem 4.42 ({0, 1}-Backward simulation between Concrete and Symbolic machines).
For all concrete states s§, s and symbolic states s7 such that, s7 ~cs s¢ and s¢ —, s§
it holds that s7 ~cg s§ or there exists s5 such that s7 —, s5 and s5 ~y s§.

Using the 1-backward simulation between the symbolic and abstract machines (the-
orem 4.27) and the {0, 1}-backward simulation between the concrete and the symbolic
machine (theorem 4.42), we can obtain our first result, which is the backward refinement
between the concrete machine running a policy monitor that enforces CFI and the abstract
machine with respect to a refinement relation (~¢c4) between concrete and abstract states.
We define ~¢ 4 in terms of the simulation relation between the concrete and the symbolic
machine (~¢g) and the simulation relation between the symbolic and the abstract machine

(~s54)-
SSNCSSC SANSASS

SANCASC

Figure 4.11: Refinement relation between Concrete and Abstract machines

Theorem 4.43 (Concrete-Abstract backward refinement). For all abstract machine states
(s4), concrete machine states (s¢,s5), if s ~ca s¢ and s§ —% s§ and s§ is in user
mode, then there exists an abstract machine state 4 such that s{' —% s5' and s5 ~ca 5.

In order to obtain our second result, which is a proof that the property stated by
definition 4.3 holds for the concrete machine, we will need to make the concrete machine
an instance of the 4.1, by defining all it’s parameters, similar to what we did for the
abstract and symbolic machines.

4.4.3 Attacker model

The attacker model for the concrete machine, models an attacker that can tamper with
the machine only when it’s in user mode. The capabilities of the concrete attacker when
the machine is in user mode, directly matches the capabilities of the symbolic attacker,
which means that the attacker can only change the values of atoms that have a User tag.
This prevents the attacker from changing monitor data in memory or registers, as well as
the tags.

w1 @ut1 —>§ w9 @utz

& (ATTACKUSER)
w1QUser ut; —, wa@QUser uty

Figure 4.12: Concrete attacker capabilities on atoms

4.4 The Concrete Machine 49

mem —S mem/ reg —C¢ red

(mem, reg, cache, pcQ User ut, epc) — (mem!, req, cache, pcQ User ut, epc)

Figure 4.13: Attacker model for the Concrete machine

4.4.4 Concrete-Symbolic 1-backward simulation for Attacker

For attacker steps we can prove a l-backward simulation, instantiating definition 4.17,
with the concrete machine as the low level machine, the symbolic machine as the high
machine and using ~y as a simulation relation.

In order to prove the simulation, we apply the same technique as in the case of Symbolic-
Abstract backward simulation for attacker steps, constructing attacker steps at the sym-
bolic level from attacker steps in the concrete level and additionally showing that the way
we build the steps preserves the simulation relation.

We can construct a symbolic memory and a symbolic set of registers from their concrete
counterparts by filtering all non-user data of the concrete memory and registers and then
decoding all the concrete tags to symbolic ones. We can achieve this using the filter and
map functions as seen in section 4.3.6.

Definition is_user (x : atom (word mt) (word mt)) :=
rules.word_lift (fun t = rules.is_user t) (common.tag x).

Listing 4.7: Function that returns true if atom has a User tag

Definition coerce (x : atom (word mt) (word mt))
: atom (word mt) (cfi_tag) :=
match rules.decode (common.tag x) with
| Some (rules.USER tg) = (common.val x)@tg
| _ = (common.val x)@DATA (#this is unreachable in our casex)
end.

Listing 4.8: Function that converts a concrete atom to a symbolic one

We can now prove lemmas 4.44 and 4.45 the two lemmas that will allows us to easily
proof the 1-backward simulation for attacker steps.

Lemma 4.44 (Concrete-Symbolic attacker registers 1-backward simulation). For all sym-
bolic register sets (sreg) and concrete register sets (creg, creg’),

sreqg ~regs creq —

creg —)f cred —
S

2 map coerce (filter is_user creq)

sreqg —

Lemma 4.45 (Concrete-Symbolic attacker memory 1-backward simulation). For all sym-

50 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

bolic memories (smem) and concrete memories (cmem, cmem.’),
SEM ~mem CMEM ==

/
cmem —>aC cmem —

map coerce ilter is wuser cmem’ ~ cmem’
_ mem
S

2 map coerce (filter is_user cmem')

smem —

We additionally have to prove that attacker steps preserve some low-level invariants
of the concrete machine that are required by the framework we use, but the proofs are
mostly trivial as the invariants regard pieces of state the attacker cannot tamper with e.g.,
monitor data.

Theorem 4.46 (1-Backward Simulation Concrete-Symbolic for Attacker). Definition 4.28
holds for the Concrete (low-level) and the Symbolic (high-level) machines when the two
machines are related by ~y .

4.4.5 Allowed control-flows for the Concrete Machine

Once again we construct a function that decides the validity of all control-flows Succg FG
this time for the concrete machine. SZ/ICCg g allows all flows involving monitor mode and
only restricts the control-flow for user mode execution.

in_monitor s1 || in_monitor so

MONITORFLOWS
(51, 82) € SL{CCSJTQ ()
mem|pc|] = i@ User (Code src) decode i € {Jal r, Jump r}
mem[pc'] = 7QUser (Code dst)
tpe = Userut t,, = User ut’ (sre, dst) € CFG
— = (INDIRECTFLOWS)
((mem, reg, cache, pcQt,., epc), (mem, reg’, cache, pc' Qt,,., epc)) € SUCCE x¢
mem|pc|] = iQUser (Code src) decode i € {Jal r, Jump 1}
mem[pc’] = ¢ QEntry (Code dst)
tpe = Userut t,, = User ut’
decode i = Nop (sre, dst) € CFG
= (INDIRECTFLOWS2)
((mem, reg, cache, pcQt ., epc), (mem, reg, cache, pc' Qt;,., epc)) € SUCCE x¢
mem|pc|] = iQUser (Code) decode i = Bnz r imm
tpe = User ut th. = User ut/
/ — 1)V / — ;
(pe = pe+ DV (pe = pe timm) (CONDITIONALFLOWS)

((mem, reg, cache, pcQt,., epc), (mem, reg, cache, pc' Qt;, , epc)) € SL[CCS;Q
mem[pc] = iQUser (Code) decode i & {Jal r, Jump 1, Bnz v imm, &}
tye = Userut t,, = User ul
(pd = pc+ 1)V (pd = pc+ imm)

(NORMALFLOWS)

((mem, reg, cache, pcQt,., epc), (mem’, reg , cache, pc' Qt,, , epc)) € SL{CCg}-g

Figure 4.14: Allowed control-flows for instructions of the concrete machine

4.4.6 Initial states of the Concrete Machine

For the concrete machine, we require that its initial states matches the initial states of
the symbolic machine under the simulation relation ~g. This ensures that concrete initial

4.5 Generic Preservation Theorem 51

states satisfy both the invariants we enforced on symbolic initial states and any low-level
invariants enforced by ~.

Definition 4.47 (Concrete Initial States). A concrete state sC is an initial state if there

exists a symbolic state s° such that initial® s° and s° ~y s©.

4.4.7 Stopping predicate for the Concrete Machine

The stopping predicate for the concrete machine is more complex than the one for the
symbolic or the abstract machine, due to the monitor steps. In particular, on the next
step after a violation the machine will enter monitor mode to determine whether the step
is allowed or not. The miss handler will take an arbitrary number of steps to determine
the violation of the enforced policy. This is modeled by disallowing the concrete machine
to return to user mode. However, note that it could be the case that the machine cannot
step at all after a control-flow violation, for example if the pc is outside the memory of the
machine.

In addition to the above, there may be attacker steps. These can only come immediately
after the violating step and before the machine enters monitor mode. Attacker is not
allowed to take steps during monitor mode and as mentioned above the machine will not
return to user mode.

We can summarize the conditions that hold for an execution trace to be stopping.

Definition 4.48 (Concrete Stopping Predicate).

e There is an optional prefix of attacker steps (—)ac) and all states in the prefix are
user states.

e There is an optional suffix of monitor steps (—y) and all states in the suffiz are
monitor steps.

a a a n n n
sg — 5? _ . — 520 — 53C _ . — Sg
| | | |
e User Mode ------- ! '~ Monitor Mode - -'

4.5 Generic Preservation Theorem

In this section, we develop the preservation theorem that we used, along with the sim-
ulation proofs of sections 4.3.6 and 4.4.2, in order to prove CFI (definition 4.3) for the
concrete machine.

The statement of the theorem is parameterized by two CFI machines (definition 4.1).
Moreover, we require that a {0, 1}-backward simulation between the two machines, holds
for normal steps and a 1-backward simulation for attacker steps. The {0,1} simulation
for normal steps, stems from the fact that the steps of the concrete machine in monitor
mode are not matched by any steps on the symbolic (or the abstract) level. We generalize
this, by a notion of checked steps on the steps of the low-level machine. Intuitively we only
check for control-flow violations when a checked step is taken.

We require a strong 1-backward simulation for checked steps and a {0, 1}-backward
simulation for the rest.

52 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

n
sil --mm-- » sh! st
> N
< L
(\ - _
< s
n
st — sk sy ——— st
Figure 4.15: 1-backward simulation Figure 4.16: 0-backward simulation
a
s ------= > shl

Figure 4.17: 1-backward simulation for
attacker

Formally we capture the above specifications with the following definitions:

Definition 4.49 ({0, 1}-Backward Simulation for normal steps). For all states s of the
high-level machine and s, sk of the low-level machine, such that sif ~ sl and st —,, s&

with a checked step, there exists s& such that, sil ~ sk and s —,, sil. If st —, s is an

unchecked step then either the same as above holds or s{{ ~ s%.

Definition 4.50 (1-Backward Simulation for attacker steps). Definition 4.17 holds for
attacker steps.

From these relations on single steps, we can build a refinement relation on execution
traces. We define this trace refinement relation inductively and we say that two traces are
in refinement if they are built this way.

In fig. 4.18 we distinguish between three separate cases, from which we may build two
traces that are in refinement.

Zero Step. If the low-level machine takes an unchecked step, s —, s and for
a high-level machine state s” it holds that s ~ sf and s ~ sf then if traces
st . trf and sf - trl are in refinement, the traces s - trff and st - sk - trl are also
in refinement.

Normal Step. If the low-level machine takes a checked step, sf —n 3% and the
high-level machine takes a step sif —,, sl and sif ~ sl and sl ~ s then if traces
sit - trf and s& - trl are in refinement, the traces sif - sl - trf and s - sk - trF are
also in refinement.

Attacker Step. If the low-level machine takes an attacker step s —Z sk and

additionally si /4, s*2 and the high-level machine takes an attacker step s — sf
and s ~ sl and sif ~ s& then if traces si - tr" and s% - tr’ are in refinement, the

traces st - sl - trf and sl - s - trl are also in refinement.

4.5 Generic Preservation Theorem 53

(TRN1L)

st —, sk —check st sk

sit ~st sf ~ sk
s{{ et s% trk

s{{ S At le . s% trk

(TRNORMALO)

sh—, sk s, sl

H L H L
51 ~ Sy S~ Sy

séq St At s% trk

(TRNORMALL)
s{{ . 35{ S At le . 35 -tk
L L H H L L
ST —a 52 S1 a4 52 ST 7n Sy
H L H L
ST~ 8] 83 ™~ 53

sf St At s% trk

(TRATTACKER)
s{l . 351 et le . s% trk

Figure 4.18: Trace refinement relation

Notice in the last case that we require that the step from s¥ to sl cannot be a normal
step. Intuitively this is used to enforce that if a step is in the intersection of the normal
and attacker step relations, one should prefer the normal step to build the trace.

We can now extend the backward refinement definitions 4.49 and 4.50 to whole execution
traces which we relate with fig. 4.18.

Theorem 4.51 (Trace Backward Refinement). If s ~ sl and s& — ... — sl

n > 0 then, there exists an execution trace such that Sfl — ...sH where m > 0 and

m
additionally the traces st ... st and sl... sk are in refinement.

where

m

In order to prove that CFI is preserved by backwards refinement, we make some addi-
tional assumptions about the two machines.

Definition 4.52 (Step Decidability). The normal step relation of the low-level machine
s decidable.

Definition 4.53 (Initial States). For all initial states of the low-level machine, there exists
an initial state of the high-level machine so that the two are in simulation.

Definition 4.54 (Unchecked Steps). All unchecked steps are allowed according to the
SUCCrxg function.

Definition 4.55 (Successor Functions). For the states s, sl st sl such that sif ~ sk

and st ~ s and st —,, sl and there is a checked step st —,, sk, the functions SL[CCZ#;Q
and SUCC&_-Q agree on their results.

Definition 4.56 (No Attacker Steps on Violation). For a high-level machine step
st = s such that (si,s8) & SUCCHy it holds that s AE sif.

54 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Deﬁnition 4.57 (Stopping Predicates) If there is a step in the high level machine

st —,, s such that (51 , sty ¢ succkt trg and if the traces sit - trf and sk - tr are in
refinement and 3 -trf is a stopping trace for the high-level machine then 32 trl is a
stopping trace for the low-level machine.

Under these assumptions we can now obtain a preliminary result about our CFI defini-
tions.

Theorem 4.58 (Trace Refinement preserves Trace Has CFI). For all execution traces

st — .8l and s§ — ...sk that are in refinement (fig. 4.18), if the high-level trace

n

sit — ... sl has CFI (definition 4.2) then the low-level trace sk — ... sk also has CFL
Proof. The proof proceeds by induction on the trace refinement.

e Base Case In this case the two traces are singletons and the low-level trace vacuously
has CFI.

e Zero Step By the induction hypothesis the trace sOL — ... — sk has CFL In order

to prove that the augmented with an unchecked step st —, sk trace (s¥ —, st —

.= s L also has CFI we need to prove that (s, s§) SUCCCE]_-Q. We know that

sL ~ skl (by construction of the trace refinement relatlon) our goal is immediately
provable by the assumption on unchecked steps (definition 4.54).

e One Step Again by the induction hypothesis we easily obtain that séJ — ... = sk
has CFI, therefore it’s left to prove that for the checked step s —, 56 at the
beginning of the trace it holds that (s© 35) € SZ/{CCCLfg. We know by the trace
refinement that s ~ s’ sfl ~ sl and that s? —,, sfl.

— If the step s¥ —, 86“ is checked, then by the assumption on the SZ/ICC’Cfg

functions (definition 4.55) (s s{]{) € SUCCH; < (sh,s§) € SL{CCCfg

But by the second premise we know that the trace s — 56{ - ... = s

has CFI and therefore (s, s{!) € SUCCE rg- Thus we conclude that (s Losk) e
SUCCgFg.

— If the step s —, sé is unchecked, again it is immediately provable by defini-
tion 4.54.

e Attacker Step By the induction hypothesis we easily obtain that sOL —...—= sk
has CFI. The step s —, 36 is an attacker step and additionally s* /4, 35 by the
trace refinement definition. Therefore it vacuously holds that (s, sf) € SZ/{CC(%_-Q
and the whole trace has CFI.

O

We have now proved that a {0, 1}-backward simulation for normal steps and a 1-
backward simulation for attacker steps as per definitions 4.49 and 4.50 preserves the CFI
property of execution traces. We will use this preliminary result to prove that these back-
ward simulations also preserve the CFI property as described by definition 4.3.

We start with an auxiliary lemma that states that if there is a trace refinement between
a high-level trace and a low-level trace and then we split the high-level trace to sub-traces
in a certain way, then there exists low-level sub-traces such that trace refinement holds
between the sub-traces. Naturally, with definition 4.3 in mind, we choose to split the
high-level trace at the step that violates the control-flow.

4.5 Generic Preservation Theorem 55

.
f
i
1
|

i
o
o
o :
;

Vo)
- =
Vo)
e
Vo)
NS
eCl:
S
eCIJ
St
&

Figure 4.19: Splitting trace refinement on violation

Lemma 4.59 (Refine Traces Split). If the traces sif — ... — st (referred to as tr)

and S(I)' — ... = sk (referred to as tr") are in refinement and there is a splitting of

the high-level trace such that trfl = trll . sB . s . trl and additionally st —, sl

and (s, sy ¢ SUCC&'[]_-Q, then there exists a splitting of the low-level trace such that

H L ;
Wl w1 are in refinement, the traces

H 4. H L . 4L ; H L H L L L
Suo - try and syy - try; are in refinement, S, ~ Sy1, Sya ~ Syo and Sy —rp Sy

trl = tr}%d skt tré, the traces trfd -8, and tr,fd .S

Combining theorem 4.58 and lemma 4.59 we can now prove that {0, 1}-backward sim-
ulation preserves CFI as defined by definition 4.3 under certain assumptions.

Theorem 4.60 (CFI Preservation). If a low-level machine simulates (as defined by defi-
nitions 4.49 and 4.50) a high-level machine and the high-level machine has CFI then the
low-level machine also has CFI under the assumptions 4.52 to 4.57.

4.5.1 CFI proof for the Symbolic Machine

To prove CFI for the symbolic machine, we instantiate the preservation theorem of sec-
tion 4.5 with the abstract machine as the high-level machine and the symbolic machine as
the low-level machine. For the symbolic machine all steps are considered checked. Proving
definitions 4.49 and 4.50 for the symbolic (low-level) and abstract (high-level) machines
is trivial by using the 1-backward simulation for both normal and attacker steps from
section 4.3.6.

The only thing left to prove before being able to use the CFI preservation theorem is
that the required assumptions 4.52 to 4.57 hold for this instantiation.

Lifting preservation assumptions for Symbolic-Abstract machines
Lemma 4.61 (Symbolic Step Decidable). Definition 4.52 holds for the Symbolic machine.

Proof. In order to decide whether sbg —n sf or 5*09 i sf we resort to the computational

interpretation of the step relation. If stepy sy = s° then if 57 = s° we obtain s5 —, s

otherwise we conclude that s§ /£, s7. O

56 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

Lemma 4.62 (Symbolic-Abstract Initial States). Definition 4.53 holds for Symbolic-
Abstract machines.

Proof. To prove that there exists an abstract state that is initial and simulates an initial
symbolic state, we use a technique similar to the one we used when building attacker steps
in sections 4.3.6 and 4.4.4. We build the abstract registers set by mapping the untag atom
function (listing 4.3) over the symbolic registers set and the instruction and data memories
by first using the filter function on the symbolic memory to remove all data tagged Data
(respectively Code) and then mapping the untag atom function. The pc is the same as
the one for the symbolic state and the ok bit is set to true. Proving simulation between
the two states is trivial. O

Lemma 4.63 (Unchecked steps of Symbolic machine). Definition 4.5/ holds for the Sym-
bolic machine.

Proof. Vacuously true in the case the low-level machine is the symbolic machine as all
steps are checked.]

Lemma 4.64 (Successor Functions). Definition /.55 holds for the Symbolic-Abstract ma-
chines.

Proof. The proof is mostly straight-forward by case analysis on the instruction. O

Lemma 4.65 (No Abstract Attacker Steps on Violation). Definition 4.56 holds for the
Abstract machine.

Proof. The proof proceeds by contradiction. Suppose 8‘14 —>;14 8‘24 then by lemma 4.5 we

obtain that (s{!,s5') € SZ/{CC&“]_-Q. But we know by the second premise that (sf,ss) ¢
SZ/lCCé“fg, therefore we reached a contradiction and it must be that s A7 s2'. O

Lemma 4.66 (Abstract stopping implies Symbolic stopping). Definition 4.57 holds for
the Symbolic-Abstract machines.

Proof. According to definition 4.16 we have to prove that all steps in the symbolic trace
are attacker steps and all states in the symbolic trace are stuck with respect to normal
steps. The proof proceeds by induction on the trace refinement.

e Base Case In this case the two traces are singletons. It vacuously holds that all
steps of the symbolic machine are attacker steps. To show that the state forming
the singleton trace is stuck we resort to a contradiction.

Suppose that the state (sS) is not stuck, therefore there exists some state sf such
that s¥ —, s5. Additionally we know by trace refinement that s4 ~,g s°. By 1-
backward simulation (checked step) we conclude that there exists some state s such
that s4 —, 3‘04. But the abstract trace is stopping and by definition 4.4 all states
in it are stuck with respect to normal steps. Therefore we reached a contradiction,

thus it must be that s° is a stuck state.

e Zero Step In this case there is an unchecked step in the trace. But all steps of the
symbolic machine are checked, so we immediately reach a contradiction.

e One Step In this case, the trace refinement relation gives us that there is a normal
step at the abstract level, which contradicts with the fact that the abstract machine
is stuck with respect to normal steps by definition 4.4.

4.5 Generic Preservation Theorem Y

e Attacker Step The two traces are now augmented by an attacker step at their

beginning (s4 —, SOA —q .. —q 50 and s% =, sOS — ... — s5). By the induction
hypothesis we easily obtain that the tail of the symbolic trace is stopping. We need
to prove that new step is an attacker step and that the new state is stuck with
respect to normal steps. The former is trivial as we are in the case an attacker step
is taken. To show that s° is stuck with respect to normal steps, we once again resort

to a contradiction.

Suppose that there exists some s5 such that s° —, s5. We additionally know that
s4 ~ s% by the trace refinement relation. By backward simulation we get that there
exists some state s4 such that s —, s2. But we know that the abstract trace is
stopping, therefore all states in it are stuck with respect to normal steps, thus we

reached a contradiction.

O

We can now utilize the preservation theorem for the first time and obtain that the
Symbolic machine has CFI.

Theorem 4.67 (Symbolic CFI). The Symbolic machine has the CFI property stated by
definition 4.3.

Proof. Follows immediately by theorem 4.60. O

4.5.2 CFI proof for the Concrete Machine

We will now leverage the preservation theorem for a second time, to transfer the CFI
property from the symbolic to the concrete machine.

For this we instantiate the preservation theorem with symbolic machine as the high-level
machine and the concrete as the low-level machine. A step is considered checked only if
both states forming the step are in user mode. Providing a {0, 1}-backward simulation for
normal steps in this case is not as straight-forward as before due to the fact that we have
unchecked steps as well, but we can still take advantage of the {0, 1}-backward simulation
(theorem 4.42) provided by the micro-policies framework. We use ~¢g as the refinement
relation.

Theorem 4.68 (Backward Refinement Normal). Definition 4.49 holds when instantiated
with the Concrete (low-level) and the Symbolic (high-level) machine.

Proof. For a normal step (s —, s§) of the concrete machine and for some symbolic state
s7 such that s7 ~cg s{, we distinguish between three cases.

1. s{ and s§ are user states. In this case the step is checked and by the second case of
theorem 4.42 we obtain the 1-backward simulation required.

2. slc is a user state and sg is a monitor state. In this case the step is unchecked
and the symbolic machine does not take a step. We prove that the simulation
relation (simcyg) is preserved by proving the weak simulation relation. The state s§
is in monitor mode and there exists a concrete state (s¢) such that s7 ~y s{ and
additionally s —,, s§ therefore by 4.41 we obtain that s7 ~)s s§ and consequently

S C

58 Chapter 4. Formally Verified Control-Flow Integrity Micro-Policy

3. slc is a monitor state. In this case the step is unchecked and theorem 4.42 proves
our goal.

For simulation of attacker steps the theorem 4.46 applies directly.
We now have to show that the assumptions 4.52 to 4.57 hold for this instantiation of
the preservation theorem.

Lifting preservation assumptions for Concrete-Symbolic machines
Lemma 4.69 (Concrete Step Decidable). Definition 4.52 holds for the Concrete machine.
Proof. We apply the same technique, we used for Symbolic steps in lemma 4.61. O

Lemma 4.70 (Concrete-Symbolic Initial States). Definition 4.53 holds for Concrete-
Symbolic machines.

Proof. The proof of this is trivial by the way we defined initial states of the concrete
machine in definition 4.47. 0

Lemma 4.71 (Unchecked steps of Concrete machine). Definition 4.54 holds for the Con-
crete machine.

Proof. An unchecked step s¢ —,, s§ implies that either in_monitor s{ or in_monitor s
By rule MonitorFlows of 4.14 (s{,s$) € SUCCS;Q. O

Lemma 4.72 (Successor Functions). Definition 4.55 holds for the Concrete-Symbolic
machines.

Proof. The proof proceeds by case analysis on the instruction. O

Lemma 4.73 (No Symbolic Attacker Steps on Violation). Definition 4.56 holds for the
Symbolic machine.

Proof. We sketch the intuition behind the proof. Suppose sf —n sg . For all instructions

other than Jump and Jal there is a clear contradiction, as (s7,s5) & SUCCSr, implies
that the pc of the new state is not the one mandated by the operational semantics which
cannot be because s§ —, s5.

In the case of a jump or jal instruction, it must be that the instruction is a self-loop,
because s7 —2 s5 implies that s7.pc = s5.pc. If the tag of the instruction at pc is Code x

where = € id, we distinguish two cases:

1. If the tag on the pc of s is different than Code x, according to the semantics of normal
steps for Jump/Jal instructions the tag on the instruction executed is propagated
to the tag on pc of sg, therefore the tag on the pc of s§ should be Code x. But by
the semantics of the symbolic attacker, the tag on the pc of s7 and s5 remains the
same. Contradiction.

2. If the tag on the pc of s§ is Code x, by (s7,s5) & SUCCmS we know that (z,z) &
CFG. Therefore by the transfer function (4.2) s /4, s5. Therefore we reached a
contradiction.

4.5 Generic Preservation Theorem 59

O]

Lemma 4.74 (Symbolic stopping implies Concrete stopping). Definition 4.57 holds for
the Concrete-Symbolic machines.

Proof. According to definition 4.48 we have to prove that the trace is made up of some
optional attacker steps at first and then by some optional monitor steps. By 4.57, we know
that for some sy, s5 it holds that there is step step s7 —, s5 and additionally (s7,s5) ¢
SUCCmS. The proof proceeds by inversion on the construction of trace refinement.

e Base Case In this case both the symbolic and the concrete traces are singletons
made up of sg and ng respectively. The stopping condition holds vacuously since
the trace is a singleton.

e Zero Step In this case an unchecked step sg —n s3C is taken and the trace is of the
form s§ —, s§ — ... — s&. The prefix of the trace is made up of one state that is
in user mode (s§') and it vacuously holds that it is made up of attacker steps. For

the suffix of the trace s§ — ... — s§ we distinguish between two cases.

— In case the mvector for sg exists, as there was a violation, intuitively the transfer
function will not allow any steps from this state. At the concrete level, the policy
monitor will take a number of monitor steps and eventually halt the machine.

— In case the mvector for s3, since s§' —, s§ it must be that the step s7 —, s5

tried to access monitor data (e.g., jumped to monitor code). Again the policy
monitor takes a number of monitor steps and eventually halts the machine.

e One step In this case the trace refinement relation gives us that 5*29 —n sg,? for some
sg . But we know that sg is in the stopping trace of the symbolic machine and all
states in that trace are stuck with respect to normal steps, therefore we reach a
contradiction.

e Attacker step In this case an attacker step 520 . sg is taken and the trace is of
C C

the form s§ —¢ s — ... — s. We distinguish between two sub-cases.

— The whole trace s§ — ... — s

monitor steps in it.

C

., is made of attacker steps and there is suffix of

— At some point in the trace there is a normal step SZC —n S]C. Intuitively because

attacker steps cannot change tags we know that sio —n sjc will be a step from
user to monitor mode. The monitor will detect the violation and take a series
of steps before eventually halting the machine.

d

We now invoke the preservation theorem for a second time, to transfer the CFI property
from the Symbolic to the Concrete machine.

Theorem 4.75 (Concrete CFI). The Concrete machine has the CFI property stated by
definition 4.3.

Proof. Follows immediately by theorem 4.60. O

Chapter 5

Conclusions

In this thesis we formalized and verified a dynamic monitor for CFI. We structured our
proofs in a modular way, building around a generic preservation theorem for the CFI
property. This increased proof re-usability in our development and significantly simplified
our proof efforts. It allowed us to avoid a direct proof of CFI on the Concrete machine and
to focus our reasoning on higher-level machines, namely the Abstract and the Symbolic
machine. Moreover through this proof structure, we also obtained a two-way refinement
between the Abstract machine that has CFI by construction and the Concrete machine
running the CFI monitor. This serves as an additional correctness result.

The size of our development is 5799 lines of Coq code. Of these, 1784 are defini-
tions, 3900 are proofs and 115 comments. Our development is part of the Micro-Policies
project and the code for the whole project is freely available at https://github.com/
micro-policies.

5.1 Future Work

There are many directions still left to explore before we can consider our work done. Some
of them include writing the CFI monitor code and verifying it, increasing precision by
enforcing call-stack protection, scaling to more complex architectures (e.g., ARM) and
looking for ways to enforce CFI-like policies on self modifying programs.

5.1.1 Writing and Verifying Monitor Code

In this thesis, we described the CFI micro-policy and reasoned about its security properties
by using a high-level specification of the policy monitor, expressed in terms of a transfer
function written in Coq. In reality, when we leveraged the micro-policies framework we
assumed the existence of machine code implementing the CFI policy monitor and its
correctness as specified by the high-level transfer function.

Although we have not written the machine code for the policy monitor - and conse-
quently not verified it - we consider the existence of correct code implementing the policy
monitor as a realistic assumption. Azevedo et al. provided code for a dynamic sealing
micro-policy in [9], although they did not verify it. Furthermore in [4], that can be con-
sidered as a predecessor to the micro-policies project, machine code for an IFC monitor
was obtained using structured code generators and a verified DSL compiler.

Arguably the code for a dynamic sealing monitor is simpler than the code for a CFI
monitor, but even an efficient implementation of a CFI monitor would probably resemble

61

https://github.com/micro-policies
https://github.com/micro-policies

62 Chapter 5. Conclusions

a compiled switch statement/match expression, for which there are plenty of resources on
efficient compilation strategies. One could even write the CFI policy monitor by hand,
however we decided not to attempt this, as it seemed that without verifying it, there was
little added value considering the amount of effort required. Furthermore, in order to be
able to at least test the correctness of the implementation, we would be required to provide
machine code for programs and to also compute their control-flow graph, which would be
tedious and time consuming without the appropriate tools.

As noted in [9] it would make more sense to go through the effort of writing and verifying
machine code for a more realistic architecture. In a standard RISC architecture setting
(e.g., ARM) we could write the policy monitor in a higher-level language (even C) and use
a (verified) compiler (e.g., CompCert [14]) to obtain the machine code. Furthermore, we
could leverage existing verification frameworks, either for low-level code [6, 13| or for the
high-level language we used to code the policy monitor (e.g., [3] in the case of C code), in
order to verify the correctness of our implementation.

5.1.2 Call-Stack Protection

CFI enforces that the execution path of a program follows a pre-computed, static control-
flow graph. Thus it cannot enforce that a function returns to the original callsite it was
called from. We can increase the precision of CFI on returns, by using a protected call-
stack. This is the approach taken in [2| in order to increase precision on returns.

We believe that we can use the micro-policies mechanism to enforce a calling convention
and increase the precision of the CFI micro-policy. This would certainly include reserving
a part of the memory as a call-stack and protecting it in a fashion similar (but stronger) to
the NWC micro-policy. We then have to populate this protected call-stack in a meaningful
way. We have not yet concluded on an efficient and effective way to do this although we
have studied a few options. Omne rather crude approach to this would be to use tags
and rules to enforce that suitable book-keeping instructions, manipulating the call-stack,
are executed before and after each call. This would most probably have the desired
effectiveness, however it may be too restrictive in some contexts. A more elegant solution
would be to use the tag on the pc, the tag on the ra register and the tags on the protected
call-stack part of the memory, to store suitable meta-data (e.g., call depth) in order to
determine whether a return should be allowed or not.

Concerning the formal verification of such a micro-policy, an ambitious goal would be
to prove refinement between the concrete machine running a dynamic monitor for call-
stack protection and an abstract machine with a separate protected-call stack. While
this abstract machine provides an intuitive specification for call-stack protection, it would
result in a complex refinement relation due to the fact that the concrete machine would
have to execute some book-keeping instructions which the abstract machine would not.

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

[9]

[10]

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In 12th
ACM Conference on Computer and Communications Security, pages 340-353. ACM,
2005.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity princi-
ples, implementations, and applications. ACM Transactions on Information System
Security, 13(1), 2009.

A. W. Appel. Verified software toolchain. In Proceedings of the 20th European
Conference on Programming Languages and Systems: Part of the Joint European
Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, pages 1-17,
Berlin, Heidelberg, 2011. Springer-Verlag.

A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie,
B. C. Pierce, R. Pollack, and A. Tolmach. A verified information-flow architecture. In

Proceedings of the 41st Symposium on Principles of Programming Languages (POPL),
POPL, pages 165-178. ACM, Jan. 2014.

T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-
flow locking. In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC 11, pages 353-362, New York, NY, USA, 2011. ACM.

A. Chlipala. The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP), pages 391—
402. ACM, 2013.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, SSYM’98, pages 5-5, Berkeley, CA, USA, 1998. USENIX
Association.

J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete control-flow integrity
for commodity operating system kernels. In IEEFE Security and Privacy Symposium,
2014.

A. A. de Amorim, M. Dénés, N. Giannarakis, C. Hritcu, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach. Micro-policies: A framework for verified, hardware-assisted
security monitors. Under Review, July, July 2014.

U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight, B. C.
Pierce, and A. DeHon. PUMP — A Programmable Unit for Metadata Processing. In

63

64

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Proceedings of the 3rd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP ’14, New York, NY, USA, June 2014. ACM.

U. Erlingsson. Low-level software security: Attacks and defenses. In Foundations of
Security Analysis and Design, volume 4677 of Lecture Notes in Computer Science,
pages 92-134. Springer, 2007.

E. Goktag, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Over-
coming control-flow integrity. In IEEE Symposium on Security and Privacy, 2014.

J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic for low-level
code. In 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 301-314. ACM, 2013.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107-115, 2009.

G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt: better,
faster, stronger SFI for the x86. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 395-404. ACM, 2012.

B. Niu and G. Tan. Modular control-flow integrity. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, page 58. ACM, 2014.

PaX Team. Pax address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt.

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in memory. In IEEE
Symposium on Security and Privacy, pages 48—62. IEEE Computer Society, 2013.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical Control Flow Integrity & Randomization for Binary Executables. In IFEE
Symposium on Security and Privacy, 2013.

L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor: fully verified software fault
isolation. In 171th International Conference on FEmbedded Software, pages 289-298.
ACM, 2011.

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Rules enforcing NWC and NXD, 18
Stepping relation for the symbolic machine 21
Concrete step rules for Store instruction 23
Rules enforcing coarse-grained CFI, NXD and NWC 27
Rules enforcing fine-grained CFI 28
Diagram explaining proof structure Lo 30
Step relation definitiono oo 31
Operational Semantics of the Abstract Machine 33
Attacker model for the abstract machine 34
Allowed control-flows for instructions of the abstract machine 34
Attacker capabilities 37
Attacker model for the Symbolic machine 37
Allowed control-flows for instructions of the symbolic machine 38
Encoding of an instruction with a unique identifierid 47
Concrete-Symbolic simulation relation 48
Refinement relation between Concrete and Abstract machines 48
Concrete attacker capabilities on atoms 48
Attacker model for the Concrete machine 49
Allowed control-flows for instructions of the concrete machine 50
1-backward simulation 52
0-backward simulation L 52
1-backward simulation for attacker 0000 52
Trace refinement relation 53
Splitting trace refinement on violation 55

65

List of Listings

2.1 Transfer function for NWC and NXD in pseudo-code 20
4.1 Coq definition of Symbolic tags oo 36
4.2 Transfer function for symbolic machine in Coq pseudo-code 36
4.3 Untag symbolic atom function oo L. 43
4.4 Option Map function 43
4.5 Function that checks if atom is tagged Data 44
4.6 Option Filter function 45
4.7 Function that returns true if atom has a Usertag. 49
4.8 Function that converts a concrete atom to a symbolicone 49

67

List of Theorems and Definitions

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37

Definition (CFI Machine) 31
Definition (Trace has CFI) o 31
Definition (CFI) 31
Definition (Abstract Stopping Predicate) 32
Lemma (Step Intersection) L 34
Theorem (Abstract CFI) 34
Definition (Instructions Tagged), 38
Definition (Entry Points Tagged) 38
Definition (Valid Jumps Tagged) 38
Definition (Registers Tagged) 39
Definition (Jumps Tagged) 39
Definition (Jals Tagged) 39
Definition (Symbolic Initial States) 39
Lemma (Symbolic Invariants preserved by normal steps) 39
Lemma (Symbolic Invariants preserved by attacker steps) 39
Definition (Symbolic Stopping Predicate) 40
Definition (1-Backward Simulation) L. 40
Definition (1-Forward Simulation) 40
Definition (Data Memory Simulation) 41
Definition (Instruction Memory Simulation) 41
Definition (Registers Simulation) 41
Definition (PC simulation) 0oL 41
Definition (Correctness) 41
Definition (Monitor Service Correctness) 41
Lemma (Registers Update Backward Simulation) 42
Lemma (Memory Update Backward Simulation) 42
Theorem (1-Backward Simulation Symbolic-Abstract) 42
Definition (1-Backward Simulation Attacker) 43
Lemma (Abstract attacker registers) 43
Theorem (Map Correctness instance) 43
Lemma (Attacker preserves register simulation) 43
Lemma (Attacker preserves instruction memory simulation) 44
Lemma (Attacker preserves data memory simulation) 44
Theorem (Filter Correctness instance) 44
Lemma (Attacker preserves data memory domains) 45
Theorem (1-Backward Simulation Symbolic-Abstract for Attacker) 45
Lemma (Registers Update Forward Simulation) 45

69

70 List of Theorems and Definitions
4.38 Lemma (Memory Update Forward Simulation) 45
4.39 Lemma (Outside Memory) oo v i 46
4.40 Theorem (1-Forward Simulation Abstract-Symbolic) 46
4.41 Definition (Weak simulation relation for Monitor steps) 47
4.42 Theorem ({0, 1}-Backward simulation between Concrete and Symbolic ma-

chines) o 48
4.43 Theorem (Concrete-Abstract backward refinement) 48
4.44 Lemma (Concrete-Symbolic attacker registers 1-backward simulation) . . . 49
4.45 Lemma (Concrete-Symbolic attacker memory 1-backward simulation) 49
4.46 Theorem (1-Backward Simulation Concrete-Symbolic for Attacker) 50
4.47 Definition (Concrete Initial States) 51
4.48 Definition (Concrete Stopping Predicate) 51
4.49 Definition ({0, 1}-Backward Simulation for normal steps) 52
4.50 Definition (1-Backward Simulation for attacker steps) 52
4.51 Theorem (Trace Backward Refinement) 53
4.52 Definition (Step Decidability) L. 53
4.53 Definition (Initial States) 53
4.54 Definition (Unchecked Steps) 53
4.55 Definition (Successor Functions) 53
4.56 Definition (No Attacker Steps on Violation) 53
4.57 Definition (Stopping Predicates) 54
4.58 Theorem (Trace Refinement preserves Trace Has CFI) 54
4.59 Lemma (Refine Traces Split) 55
4.60 Theorem (CFI Preservation). 55
4.61 Lemma (Symbolic Step Decidable) 55
4.62 Lemma (Symbolic-Abstract Initial States) 56
4.63 Lemma (Unchecked steps of Symbolic machine) 56
4.64 Lemma (Successor Functions) 56
4.65 Lemma (No Abstract Attacker Steps on Violation) 56
4.66 Lemma (Abstract stopping implies Symbolic stopping) 56
4.67 Theorem (Symbolic CFI) 57
4.68 Theorem (Backward Refinement Normal) 57
4.69 Lemma (Concrete Step Decidable) 58
4.70 Lemma (Concrete-Symbolic Initial States) 58
4.71 Lemma (Unchecked steps of Concrete machine) 58
4.72 Lemma (Successor Functions) 58
4.73 Lemma (No Symbolic Attacker Steps on Violation) 58
4.74 Lemma (Symbolic stopping implies Concrete stopping) 59
4.75 Theorem (Concrete CFI) 59

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Micro-policies: Verified, Hardware-Assisted Monitors
	Micro-Policies
	Example: Non-Writable Code & Non-Executable Data
	Generic Verification Framework for Micro-Policies
	Correctness of micro-policies
	Symbolic Machine

	A Programmable Unit for Metadata Processing
	Hardware Architecture
	Concrete Machine Modeling PUMP Architecture
	Concrete Policy Monitor

	Control-Flow Integrity
	Related Work
	Balancing between performance and security
	Formal verification of Control-Flow Integrity

	Micro-Policies for Control-Flow Integrity
	Coarse-grained CFI Micro-Policy
	Micro-Policy for Fine-Grained Control-Flow Integrity

	Formally Verified Control-Flow Integrity Micro-Policy
	Control-Flow Integrity Property
	The Abstract Machine
	Operational semantics
	Attacker model
	Allowed control-flows for the abstract machine
	Stopping predicate for the Abstract machine
	CFI proof for the Abstract Machine

	The Symbolic Machine
	Transfer Function
	Attacker model
	Allowed control-flows for the Symbolic Machine
	Initial states of the Symbolic Machine
	Stopping predicate for the Symbolic Machine
	Symbolic-Abstract simulation

	The Concrete Machine
	Concrete tags
	Concrete-Symbolic backward refinement
	Attacker model
	Concrete-Symbolic 1-backward simulation for Attacker
	Allowed control-flows for the Concrete Machine
	Initial states of the Concrete Machine
	Stopping predicate for the Concrete Machine

	Generic Preservation Theorem
	CFI proof for the Symbolic Machine
	CFI proof for the Concrete Machine

	Conclusions
	Future Work
	Writing and Verifying Monitor Code
	Call-Stack Protection

	Bibliography
	List of Figures
	List of Listings

