
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Μελέτη της Επίδρασης της Επικοινωνίας με το
Δίσκο στην Δρομολόγηση Εικονικών Μηχανών σε

Περιβάλλον Υπολογιστικού Νέφους

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΓΙΑΝΝΗΣ ΣΠΗΛΙΟΠΟΥΛΟΣ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2014

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Μελέτη της Επίδρασης της Επικοινωνίας με το
Δίσκο στην Δρομολόγηση Εικονικών Μηχανών σε

Περιβάλλον Υπολογιστικού Νέφους

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΓΙΑΝΝΗΣ ΣΠΗΛΙΟΠΟΥΛΟΣ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 29η Ιουλίου 2014.

. .

Νεκτάριος Κοζύρης
Καθηγητής Ε.Μ.Π.

. .

Νικόλαος Παπασπύρου
Αναπ. Καθηγητής Ε.Μ.Π.

. .

Γεώργιος Γκούμας
Λέκτορας Ε.Μ.Π.

Αθήνα, Ιούλιος 2014

. .

Γιάννης Σπηλιόπουλος
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών
Ε.Μ.Π.

Copyright © Γιάννης Σπηλιόπουλος, 2014.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου
ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή
για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση
να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που
αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον
συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του
Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Τα τελευταία χρόνια παρατηρείται μία ιδιαίτερα σημαντική αύξηση του πλήθους και του με-
γέθους των νέων κέντρων δεδομένων. Πέρα όμως από τα αναμφισβήτητα πολλαπλά οφέλη
που συνεπάγεται, η αύξηση των υπολογιστικών υποδομών έχει γίνει το επίκεντρο ανησυχιών
λόγω της ολοένα αυξανόμενη συνεισφοράς της στην κατανάλωση ηλεκτρικής ενέργειας και
στην παραγωγή ρύπων παγκοσμίως. Ως εκ τούτου, όλο και περισσότεροι ερευνητές αναζη-
τούν τρόπους να αυξήσουν την αποδοτικότητα των υπολογιστικών υποδομών.

Μία από τις πιο δημοφιλής τεχνικές είναι η δυναμική ανακατανομή του διαθέσιμου φόρτου
εργασίας με σκοπό την συγκέντρωση του σε όσο το δυνατόν λιγότερους διακομιστές και την
απενεργοποίηση του υπόλοιπου εξοπλισμού του κέντρου δεδομένων. Σε αυτή την διπλωμα-
τική εργασία, παρουσιάζεται μια πολιτική δρομολόγησης εικονικών μηχανών που λαμβάνει
υπόψη της τον φόρτο τόσο της κεντρικής μονάδας επεξεργασίας όσο και του συστήματος
αποθήκευσης δεδομένων.

Λέξεις κλειδιά

Υπολογιστικό νέφος, εικονική μηχανή, σταθερά αποθηκευτικά μέσα, επικοινωνία, επίδραση,
πολιτική δυναμικής τοποθέτησης, μετεγκατάσταση, προσομοίωση, CloudSim

5

Abstract

During the pas few years we have become witnesses of a significant increase in the num-
ber and size of data centers. Undoubtedly, this increase had multiple benefits for our society.
Nevertheless, it has become the center of attention due to several side effects. Themost impor-
tant of these side effects have been the ever increasing contribution of data centers in global
energy consumption and the concomitant contribution in pollutant production. As a result,
many researchers are seeking ways to increase the efficiency of computing infrastructure.

One of the most popular techniques is the dynamic redistribution of work in order to concen-
trate the available load in the least amount of servers possible and deactivating the rest of the
data center. This diploma thesis presents a policy for energy aware consolidation of Virtual
Machines that takes into account the utilization of both CPU and Storage.

Key words

cloud, virtual machine, storage, I.O., effect, simulation, CloudSim, dynamic placement, mi-
gration

7

Ευχαριστίες

Η διπλωματική αυτή σηματοδοτεί το τέλος της φοίτησης μου στο τμήμα Ηλεκτρολόγων και
Μηχανικών Ηλεκτρονικών Υπολογιστών του Εθνικού Μετσόβιου Πολυτεχνείου. Πιστεύω
λοιπόν πως οι τελευταίες παράγραφοι της διπλωματικής θα πρέπει να αφιερωθούν στους
ανθρώπους που με βοήθησαν να επιτύχω σε αυτή την προσπάθεια.

Αρχικά, θα ήθελα να ευχαριστήσω την οικογένεια μου που μου πρόσφερε απλόχερα την
δύναμη της όποτε την είχα ανάγκη και τους φίλους μου που ήταν εκεί όποτε ένιωθα την
ανάγκη να ξεφύγω από τις υποχρεώσεις της καθημερινότητας.

Ακόμα, θα ήθελα να ευχαριστήσω όσα μέλη του διδακτικού προσωπικού της σχολής απο-
λαμβάνουν ακόμα να διδάσκουν και ειδικότερα τους καθηγητές Νεκτάριο Κοζύρη και Πα-
ναγιώτη Τσανάκα για την καθοδήγηση και βοήθεια τους.

Τέλος, θα ήθελα να ευχαριστήσω τον υποψήφιο διδάκτορα Ευάγγελο Αγγέλου για την πολύ-
τιμη βοήθεια του σε κάθε πρόβλημα που αντιμετώπισα κατά την διάρκεια της διπλωματικής.

Γιάννης Σπηλιόπουλος,

Αθήνα, 29η Ιουλίου 2014

9

Contents

Περίληψη . 5

Abstract . 7

Ευχαριστίες . 9

Contents . 11

List of Figures . 13

List of Tables . 15

1. Introduction . 19
1.1 Cloud Computing . 20
1.2 Virtualization . 21
1.3 Energy Consumption Considerations . 23

1.3.1 Fighting back . 25
1.4 Thesis motivation and scope . 28

2. Virtual Machine Placement . 29
2.1 Related Work . 29

2.1.1 LoadBalancing andUnbalancing for Power and Performance in Cluster-
Based Systems . 29

2.1.2 Managing energy and server resources in hosting centers 29
2.1.3 Energy Conservation in Heterogeneous Server Clusters 30
2.1.4 VirtualPower: Coordinated PowerManagement in Virtualized Enter-

prise Systems . 30
2.1.5 Power and Performance Management of Virtualized Computing En-

vironments Via Lookahead Control 31
2.1.6 Energy Aware Consolidation for Cloud Computing 31
2.1.7 Optimal Online Deterministic Algorithms and Adaptive Heuristics

for Energy and Performance Efficient Dynamic Consolidation of Vir-
tual Machines in Cloud Data Centers 33

2.2 Evaluated Heuristics . 34
2.2.1 Host Overloading Detection . 34
2.2.2 Virtual Machine Selection . 36
2.2.3 Virtual Machine Placement . 37
2.2.4 Underloaded Hosts . 38

3. CloudSim . 39

11

3.1 Architecture . 40
3.2 Important Entities . 42

3.2.1 Cloudlet . 42
3.2.2 Storage and CPU utilization models 43
3.2.3 VM . 44
3.2.4 Host . 44
3.2.5 Provisioners . 44
3.2.6 VM scheduler . 45
3.2.7 Power Model . 46
3.2.8 Datacenter . 46
3.2.9 Vm Allocation Policy . 48
3.2.10 VM Selection Policy . 53

4. Simulation . 55
4.1 Metrics . 55

4.1.1 SLA Violation Metrics . 55
4.1.2 Performance Metrics . 56

4.2 Workloads . 56
4.3 Simulated Environment . 58
4.4 Results . 59

4.4.1 1st Workload . 59
4.4.2 2nd Workload . 70

5. Conclusions . 73

Bibliography . 75

12

List of Figures

1.1 Diagram used in the IBM VM/360 product announcement 21
1.2 Virtualization Isomorphism . 22
1.3 Servers installed base as estimated on 2005 and 2010 23
1.4 Performance and Performance per Watt for a typical server 24
1.5 Worldwide electricity use for data centers 24
1.6 Dynamic range and energy efficiency of a typical server[1] 26
1.7 Power consumption of each server component[26] 26
1.8 Balanced workload versus Consolidated workload 26
1.9 Energy-carbon performance map[21] . 27

2.1 Energy consumption per transaction . 32
2.2 Performance degradation . 32

3.1 Cloud computing environment modeled by CloudSim 39
3.2 CloudSim layered architecture . 41
3.3 CloudSim class diagram . 42
3.4 Power Models for HP Proliant ML110 G4 and HP Proliant ML110 G5 . . . 46
3.5 Updating processing in the data center . 47
3.6 Flowchart for finding the most suitable host for a VM 48
3.7 Flowchart for picking VMs to migrate from overutilized hosts 49
3.8 Flowchart for picking VMs to migrate from hosts that overutilize either only

IOPS or only MIPS . 50
3.9 Flowchart for picking VMs tomigrate from hosts that overutilized bothMIPS

and IOPS . 51
3.10 Flowchart for finding new placement for VMs marked for migration 52
3.11 Flowchart for detecting underutilized hosts and finding a new placement for

their VMs . 53
3.12 Flowchart for optimizing the allocation of VMs 54

4.1 ESV - Very fast storage . 60
4.2 ESV - Slow storage . 60
4.3 ESV - Fast storage . 61
4.4 ESV - Mix of slow and fast storage . 61
4.5 Energy - Very fast storage . 62
4.6 Energy - Slow storage . 62
4.7 Energy - Fast storage . 63
4.8 Energy - Mix of slow and fast storage . 63
4.9 Migrations - Very fast storage . 64
4.10 Migrations - Slow storage . 64
4.11 Migrations - Fast storage . 65

13

4.12 Migrations - Mix of slow and fast storage 65
4.13 SLATAH - Very fast storage . 66
4.14 SLATAH - Slow storage . 66
4.15 SLATAH - Fast storage . 67
4.16 SLATAH - Mix of slow and fast storage 67
4.17 PDM - Very fast storage . 68
4.18 PDM - Slow storage . 68
4.19 PDM - Fast storage . 69
4.20 PDM - Mix of slow and fast storage . 69
4.21 ESV for a range of safety parameter values 70
4.22 ESV . 71
4.23 Transformed distributions . 71

14

List of Tables

4.1 1st Workload - CPU utilization . 57
4.2 2nd Workload - CPU utilization . 57
4.3 2nd Workload - Storage utilization . 57
4.4 Wilcoxon signed-rank tests . 72

15

List of Algorithms

2.1 Power Aware Best Fit Decreasing . 37
2.2 Detect underutilized hosts and find a new placement for their VMs 38

3.1 Time-sharing with over-subscription . 45

17

Chapter 1

Introduction

When W. Shockley, J. Bardeen and Walter Brattain developed the first transistor, in 1947,
they inadvertently initiated the transformation of our society from an analog to a digital one.
The effects of this ongoing shift can be seen almost in every human activity, from using a
mobile device to communicate with friends through a social network to utilizing entire data
centers to shift through petabytes of data to spot new subatomic particles.

It is true that humans had been building machines to automate computation for more than
two millennial before the development of the transistor, even very complex machines like
the Antikythera mechanism[13] (early 1st century BC). Furthermore, these devices were not
just academic eccentricities, they also had business applications (LEO I1). Most importantly,
they played a critical role in ending World War II[35].

Despite their many achievements, the different technologies behind these early machines
lacked the feature that gave transistor its’ transformative power, low cost. As every new
technology, transistors at first had several significant issues and their commercial status at
that point was best described by Donald G. Fink’s analogy:

”Is it a pimpled adolescent, now awkward, but promising future vigor? Or has
it arrived at maturity, full of languor, surrounded by disappointments?” [10]

Fortunately, this stage was short-lived and soon technological breakthroughs like Shockley’s
junction transistor and Integrated Circuits revealed the true potential of transistors. The first
transistorized computers for the commercial market appeared in 1957 and 1958 and compared
to their vacuum-tubed predecessors, where found superior in every way - smaller, faster, more
reliable and economical, and much more powerful.[4]

Obviously, computing would have never become such an essential part of our lives if, as
Gordon Moore observed[23] in 1965, the density of transistors at minimum component cost
had not doubled approximately every two years. This exponential rate in technological ad-
vancement resulted both in halving the prices and doubling the performance per watt every
two years. This trend has held for more than 50 years and it is expected to continue for the
near future.

As prices plummeted and performance and efficiency climbed, both the public and private
sectors started acquiring mainframes, big devices that were used, mainly, in a time-shared
fashion. Soon after that, fast and inexpensive microprocessors made their appearance and

1 http://www .leo-computers.org.uk/

19

IT infrastructure shifted to collections of commodity servers that had to stay close to where
it would be used due to the unavailability of efficient computer networks. These early data
center where configured to handle the theoretical load peaks of the organization they belonged
to. As a result they were often underutilized. In addition to that they had a high upfront cost
and a high maintenance cost.

Increasingly fast communication networks provided people a way to alleviate these problems.
In a way similar to how efficient transmission of electricity converted power generation from
a distributed model to a centralized one, data centers could now be consolidated and comput-
ing could become a utility.[6]

1.1 Cloud Computing

In recent years a new paradigm started forming around the concept of utility Computing;
Cloud computing. ThoughCloud computing is still an evolvingmodel, it is generally accepted
that it possesses five essential characteristics[22]:

• Resource pooling: All computing resources (e.g. storage, network bandwidth, memory
and processing) are pooled and are used to serve multiple users in a multi-tenant model.
The resources are dynamically allocated depending on customer demand. Commonly
the only control that clients may have over the physical resources they are assigned is
the Service Level Agreement2 they have established with the provider.

• Measured service: To optimize their resource usage and provide accurate accounting,
Cloud systems incorporate a metering capability at some level of abstraction appropriate
to the type of service (e.g. storage, processing, bandwidth, and active user accounts).
This is a prerequisite for reliable and fair SLAs.

• Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).

• On-demand self-service: Clients are able to change the amount and/or type of provi-
sioned resources without any human interaction with the service provider.

• Rapid elasticity: Resources are be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. Essen-
tially, the client has an abstract view of a data center with unlimited capabilities that can
be used at any time.

Rapid elasticity is maybe the defining characteristic of cloud computing and, along with the
elimination of upfront costs, one of its’ strongest selling points. It provides perfect scalability
of performance versus cost. Using 1000 computers for 1 hour should cost the same as using
1 computer for a 1000 hours.

Additionally to these five essential characteristics, Cloud computing has three servicemodels[22]:
2 SLAs are, usually formal, agreements between a service provider and a customer. They are used to define

(among other things) the service provided, performance metrics, Quality Of Service guarantees, rewards and
penalties.

20

• Software as a Service (SaaS): Clients are provided with access to a set of applications,
specified by the cloud provider, running on the cloud infrastructure. The client has con-
trol only over application specific configuration settings. Underlying layers including,
among others, hardware and operating systems are completely abstracted out.

• Platform as a Service (PaaS): Clients are given the capability to deploy on the cloud in-
frastructure applications of their own choosing. Clients are limited by the platform (e.g.
the programming languages, libraries, services and tools) supported by the provider.
As before the client has no control over underlying layers but only over the deployed
applications and perhaps over some configuration settings for the application-hosting
environment.

• Infrastructure as a Service (IaaS): Clients are given access to a certain amount of com-
puting recourses like storage, processing power, memory and networking. The client
has unlimited control over the software he deploys including operating systems and ap-
plications. Beyond that, the user has no control over the underlying cloud infrastructure.
This is perhaps the model that closer resembles utility computing.

At this point, an observant reader may wonder how is it possible for a client of an IaaS
provider to be provisioned with a certain amount of computing resources but have no control
over the underlying infrastructure. In addition to that, how can the provider redistribute his
resources without disrupting the operation of his clients while reallocating them. To make all
this possible Cloud computing utilizes hardware virtualization.

1.2 Virtualization

Figure 1.1: Diagram used in the IBM VM/360 product announcement

Virtualization is the concept of creating and interacting with a virtual representation of some-
thing. This concept has been used extensively in computing to create abstractions of under-
lying infrastructure including memory, storage and networks. It can trace its’ routes to the

21

age of the mainframes and IBM’s efforts to create an operating system for S/360 that sup-
ported time-sharing, after S/360 was rejected from Bell Labs and they lost the Project MAC
competition to General Electric[33].

Formally defined, virtualization is the construction of an isomorphism that maps a virtual de-
vice (or guest) to a physical device (or host)[30]. As illustrated in Figure 1.2 the isomorphism
should map the state of the guest to the state of the host and any sequence of actions on the
virtual device to a sequence of actions on the physical device.!� & � ' (�) & !' � �

)�*�����)�*�����)�*�����)�*������������������������������	
�������������������		�����
���
����������	
�������������������		�����
���
����������	
�������������������		�����
���
����������	
�������������������		�����
���
��������� ��� ������ �����

� ++++����������������

Si Sj

Si' Sj'

Guest

Host

V(Si) V(Sj)

e(Si)

e'(Si')

�

&�!����#��&���
���)������
��*
���������	������������������
���������	���� ��+����
�!������������

���
�	���,����-.�/���0�1��.���/��0���

��������������������	��������������!����������		�������������������������������	���������������������
�������!��������
�������������������
�����!������������
�����!������		��������������!������	����������
���������������
�����!������������������������������������!�$%��
���2'��<���
��#������������	����������	�
	����������������
�����!��������������������!����������$�����
�������<��������������	����'�
��������������
�����������������������������	��A��������������
�����!���������������		�����������������
��������
����������!�������������$����
����������������������������!'��(���������������
�����!�$�����
������������
����������	����'��������������������������������������	��������������!���������������������������$�����
���
������=��������������	����'�������������	�����������������������	������������������
�����!���������������������
�������!���!����������������!���	�����

file file

virtualization

�

&�!����2��3����������!������
�����'��������
��*
��������������
�����������������
���
��4�������������

���	���
������������
 ���
�������

���������	���������
��#�����������		������������������
����������
��������!����
����������������������
(���
�����������$<.'������	��
		����������������
����
��������>����������
����%������	��������
��#��������������������������(���.�����������	���
������0��������(�23�����
����������	��������
������1��		��������	������������������������
��

Figure 1.2: Virtualization Isomorphism

Obviously, we could modify the underlying isomorphism without modifying the virtual de-
vice. This allows tomove a virtual device between hosts that provide this translation layer.Although
this provides us with the option to abstract away details of physical devices, that is not strictly
necessary. A virtual device could be a lot more complex than the host it is run on.

Hardware virtualization refers to the concept of creating a virtual machine(VM) that acts
like a real computer. That provides us with a way to create any number of VMs in a physical
device with limited resources, while providing the users the illusion of direct access to their
own hardware.

Modern hardware virtualization systems have the following attributes [15]:

• Isolation: A fault in one virtual machine should not affect another virtual machine that
runs on the same host. Additionally resource allocation is managed so that one virtual
machine’s performance is isolated from another’s

• Encapsulation: Everything that is considered as a virtual machine’s state can be captured
into one simple file representing that virtual machine.

• Portability: A virtual machine can easily be transfered between physical devices that
provide the same virtualization system.

• Interposition: All actions originating from a virtual machine pass through a monitoring
layer. That layer can inspect, modify and even deny operations.

22

Clearly utilizing hardware virtualization in a cloud computing system provides an easy way
to:

• Maximize uptime of services. A server can easily be migrated from a host that has to be
shutdown (i.e. for a scheduled or unscheduled maintenance)

• Efficiently use available resources. A host can accommodate several different services,
each in a separate virtual machine, instead of using one host for every service.

1.3 Energy Consumption Considerations

The incredible growth of the data center sector has attracted the attention of many who wish
to investigate the unintended impacts of their use. One of the side effects gathering a lot of
attention[19, 5, 18] is the amount of electricity that data centers use.

At first glance that may not seem like a great problem since according to Koomey’s Law[17]
the amount of energy needed at a fixed computing load decreases by a factor of two every
year and a half. This however is not the case.

According to J. Koomey and data provided by IDC (see Figure 1.3) from 2000 to 2005 the
number of installed servers almost doubled. From 2005 to 2010 there was a significant slow-
down of installed server growth (only 128%) that was attributed to the financial crisis of
2008. This, however, was just a temporary respite; IDC predicted on 2012 that rapid growth
of data centers should be expected for the coming years.

0

10000

20000

30000

40000

2000 2001 2002 2003 2004 2005 2010
years

S
er

ve
rs

 In
st

al
le

d
B

as
e

as estimated on

2005

2010

Figure 1.3: Servers installed base as estimated on 2005 and 2010

23

Additionally, the growth of performance of a typical server outpaced by far the growth of
performance per watt (Figure 1.4).

As a result worldwide electricity use for data centers rose from 35.4 in 2000 to 76.2 in 2005 to
an estimated value between 130.2 and 92.0 Billions kWh in 2010 (Figure 1.5). To put that in
perspective 10million typical US residential consumers would use approximately 108 Billion
kWh3.

28

Figure 5: Performance and performance per watt trends for Google servers, 2001
to 2008 Figure 1.4: Performance and Performance per

Watt for a typical server

Figure 1.5:Worldwide electricity use
for data centers

Tomakematters evenworse, due to Laundauer’s Principle 4, Koomey’s Law has an expiration
date that if the current trend holds will be reached by 2048.

In addition to the strain data centers put to electrical systems worldwide, they are among
the biggest producers of greenhouse gases. It was estimated that in 2007 the data center sec-
tor produced 116.2 Megatons of CO2 equiv. y−1 or about 0.3% of the global production of
greenhouse gases [34]. In an article published in 2013, Masanet et al. estimated that a typi-
cal US data center with 20,000 volume servers and a US average PUE produced 59 kilotons
CO2 equiv.y−1 [21].

Beyond the obvious ecological considerations, there also serious financial issues with the
sustained growth of data centers. By some estimates the cost of cooling and power for a data
center has exceeded the cost of the it equipment they support [27].

It stands to reason both ecologically and financially to find a way to decrease the electricity
consumption of our data centers.

3 Average annual electricity consumption for a U.S. residential consumer: http://www.eia.gov/tools/faqs/faq.
cfm?id=97&t=3

4 http://en.wikipedia.org/wiki/Landauer%27s_principle

24

http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
http://en.wikipedia.org/wiki/Landauer%27s_principle

1.3.1 Fighting back

Techniques5 for decreasing energy consumption of a data center can be classified to 2 broad
categories:

• Decreasing the consumption of a single server

• Decreasing the consumption of a cluster of servers

Techniques to decrease the energy consumption of a single server include Dynamic Compo-
nent Deactivation (DCD) and Dynamic Performance Scaling, both of which operate at the
hardware level. DCD as its’ name suggests deactivates components of a server when the im-
plemented policy decides that there is a significant chance they will be idle. For components
that support a range of power and performance modes we generally use DPS. For example
typical current generation CPUs support Dynamic Voltage and Frequency Scaling (DVFS).
DVFS is able to reduce the power consumption of a CPU by reducing the frequency at which
it operates as shown by

P = CfV 2 + Pstatic (1.1)

where P is the power consumption of the CPU, C is the capacitance of the transistor gates
(which depends on feature size), f is the operating frequency, and V is the supply voltage. V
is determined by f and if f is reduced then V can also be reduced. Due to the V 2 relationship
between P and V , reducing the voltage can lead to significant reductions in Power[29].

Nevertheless, a typical energy-efficient server has a small dynamic range as can be seen in
Figure 1.6. This power penalty that we pay for just powering up a server, even if we leave
him idle, is comprised of two components:

1. The static power consumption Pstatic of a CMOS circuit. Typically the static power
consumption of CMOS had been praised as low. However, static power dissipation in-
creases considerably with shrinking dimensions and lower operational voltages. As a
result reducing static power has become amajor concern in recent generations of CMOS
circuits.

2. The power consumption of server components that do not provide either DPS or DCD
techniques for managing their power consumption and components with a narrow power
range. Processors that typically were the largest power consumer are being displaced
by memory (see Figure 1.7) a component with a dynamic power range of less than
50%. Other components with narrow range are hard disk drives (2.5%) and networking
switches (15%).[1]

5 We will consider only techniques that control power dynamically and not techniques like the optimization
of component circuitry.

25

December 2007 35

understand the key challenges for achieving energy pro-
portionality. Figure 3 shows the fraction of total server
power consumed by the CPU in two generations of
Google servers built in 2005 and 2007.

The CPU no longer dominates platform power at
peak usage in modern servers, and since processors are
adopting energy-efficiency techniques more aggres-
sively than other system components, we would expect
CPUs to contribute an even smaller fraction of peak
power in future systems. Comparing the second and
third bars in Figure 3 provides useful insights. In the
same platform, the 2007 server, the CPU represents an
even smaller fraction of total power when the system

ENERGY EFFICIENCY AT VARYING
UTILIZATION LEVELS

Server power consumption responds
differently to varying utilization levels.
We loosely define utilization as a mea-
sure of the application performance—
such as requests per second on a Web
server—normalized to the perfor-
mance at peak load levels. Figure 2
shows the power usage of a typical
energy-efficient server, normalized to
its maximum power, as a function of
utilization. Essentially, even an energy-
efficient server still consumes about
half its full power when doing virtu-
ally no work. Servers designed with
less attention to energy efficiency often
idle at even higher power levels.

Seeing the effect this narrow dynamic
power range has on such a system’s
energy efficiency—represented by the
red curve in Figure 2—is both enlight-
ening and discouraging. To derive
power efficiency, we simply divide utilization by its cor-
responding power value. We see that peak energy effi-
ciency occurs at peak utilization and drops quickly as
utilization decreases. Notably, energy efficiency in the 20
to 30 percent utilization range—the point at which
servers spend most of their time—has dropped to less
than half the energy efficiency at peak performance.
Clearly, such a profile matches poorly with the usage
characteristics of server-class applications.

TOWARD ENERGY-PROPORTIONAL MACHINES
Addressing the mismatch between the servers’

energy-efficiency characteristics and the behavior of
server-class workloads is primarily the responsibility
of component and system designers. They should aim
to develop machines that consume energy in propor-
tion to the amount of work performed. Such energy-
proportional machines would ideally consume no
power when idle (easy with inactive power modes),
nearly no power when very little work is performed
(harder), and gradually more power as the activity level
increases (also harder).

Energy-proportional machines would exhibit a wide
dynamic power range—a property that might be rare
today in computing equipment but is not unprecedented
in other domains. Humans, for example, have an aver-
age daily energy consumption approaching that of an
old personal computer: about 120 W. However, humans
at rest can consume as little as 70 W,8 while being able
to sustain peaks of well over 1 kW for tens of minutes,
with elite athletes reportedly approaching 2 kW.9

Breaking down server power consumption into its
main components can be useful in helping to better

100
0

20

10

40

60

80

30

50

70

90

100

Utilization (percent)

Se
rv

er
 p

ow
er

 u
sa

ge
 (p

er
ce

nt
 o

f p
ea

k)

9080706050403020100

Power
Energy efficiency

Typical operating region

Figure 2. Server power usage and energy efficiency at varying utilization levels,
from idle to peak performance. Even an energy-efficient server still consumes
about half its full power when doing virtually no work.

0

20

10

40

60

30

50

2005 server
(peak)

2007 server
(peak)

2007 server
(idle)

Google servers

CP
U

co
nt

rib
ut

io
n

to
 s

er
ve

r p
ow

er

Figure 3. CPU contribution to total server power for two gener-
ations of Google servers at peak performance (the first two
bars) and for the later generation at idle (the rightmost bar).

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

Figure 1.6: Dynamic range and energy efficiency
of a typical server[1]

Memory
(8W x 8)

PSU
Loss

Disk
(12W x 1)PCI Slots

(25W x 2)

Motherboard

Fan
(10W x 1)

NIC
(4W x 1)

CPU
Quadcore

Figure 1.7: Power consumption of each
server component[26]

As can be seen in Figure 1.6 a server’s energy efficiency increases as its’ utilization increases
and is most efficient at 100% utilization. That leads to one of the most important ideas in
decreasing energy consumption in a cluster of servers, consolidating applications from dif-
ferent underutilized servers in a single one and switching off the rest. This process is known
as workload consolidation. To illustrate the power savings we can achieve by applying work-
load consolidation we could look at Figure 1.8.

Figure 1.8: Balanced workload versus Consolidated workload

By balancing the workload through the 4 servers we get a total power consumption of 552W.
If the servers support DVFS then by consolidating the workloads we get a power consumption

26

of 485W, almost 70W less. While DVFS gave us some good results, by switching off the
now idle hosts we achieve a power consumption of just 170W (or 69% savings).Dynamic
workload consolidation, however, has one significant drawback; you risk degrading your
quality of service by over-utilizing your servers.

In 2008 a survey by consulting firm McKinsey found that server utilization in data centers
rarely exceeds 6%[12]. This is caused because data centers are mostly designed to handle
peak loads and therefore are aggressively over provisioned. Consequently, there is significant
room for workload consolidation without degrading the quality of service

Figure 1.9 shows beautifully that the efficiency of IT equipments is the most significant factor
in reducing both the energy consumption and green house gases production. In the same
article from which this figure was retrieved, Masanet et. al conclude that PUE, industry’s de
facto data center energy-efficiency metric, is a suboptimal metric and should be replaced by
a metric of equipment efficiency.

© 2013 Macmillan Publishers Limited. All rights reserved.

NATURE CLIMATE CHANGE | VOL 3 | JULY 2013 | www.nature.com/natureclimatechange 629

drastically different energy and carbon performance. Moreover, a
data centre with a ‘poor’ PUE of 1.8 (for example, point 2D) can
exhibit much lower energy use and carbon emissions than one with
a best-in-class PUE of 1.1 (for example, point 3D).

Data centre location is another characteristic that is often seen as
critical22,33, as it can govern the carbon intensity of purchased elec-
tricity as well as the availability and quality of ‘free cooling’. Free
cooling has been shown to reduce PUE by cooling IT equipment
with outside air that is directly routed into a data centre during
favourable weather conditions43. Here again, Fig. 2 shows that these
location-specific characteristics are most important for data centres
with minimal IT-device efficiency. For data centres with maximal
IT efficiency, optimal location delivers much smaller (albeit non-
trivial) absolute energy and carbon performance benefits. Note also
that although our cases do not explicitly include the possibility of
using waste heat from a SOFC to provide facility cooling through
an absorption or adsorption chiller — a strategy that would lower
a data centre’s PUE — one could easily assess that possibility by
assuming the appropriate PUE improvement that might coincide
with a shift to SOFCs.

Towards low-carbon data centres
Our results and previous analyses suggest that IT-device efficiency
is the most important characteristic to be reinforced through low-
carbon data centre incentives5,6,44–45. Although renewable energy can
significantly reduce a data centre’s carbon emissions, an inefficient
(that is, high-energy) data centre will use far more low-carbon elec-
tricity than is technically required. Data centres that operate in the
low-energy, low-carbon region of Fig. 2 — which requires maxi-
mal IT-device efficiency — will minimize demand on constrained
centralized renewable sources of energy. Maximizing the reach of
renewable energy through demand reduction is a critical policy
goal. Numerous measures can serve as potential proxies for maximal

IT-device efficiency in the near term — such as high-capacity
utilization and the presence of high-efficiency IT devices — but
efforts to develop quantitative metrics for consistent assessment of
IT-device efficiency across data centres should be redoubled27,28,46.
While we await more precise intensity quotients, other extant met-
rics such as PUE and electricity source can play a role in assessing
carbon performance when used concurrently.

Furthermore, data centre energy–carbon performance maps
help expose various degrees of freedom under local design and ret-
rofit constraints, which can allow for flexible policy design. Here
we offer the following recommendations to policymakers who seek
to design effective incentives for low-carbon data centres: all exist-
ing data centres should maximize IT-device efficiency, especially
as these devices can turn over quickly and thereby deliver rapid
improvements. Decisions regarding when to upgrade remaining
devices to more efficient models can be informed in part by a break-
even analysis of the embodied emissions required to manufacture
new devices versus the operational energy savings that would be
realized47. New data centres should locate in areas with ample free
cooling and/or low-carbon electricity grids to further push opera-
tions towards better energy and carbon performance. In new or
existing facilities where optimal IT-device efficiency is not feasi-
ble, significant reductions in PUE critically rise in importance as a
policy aim (but still result in higher energy-use levels than efficient
IT devices would deliver). Where such PUE reductions are con-
strained by location (for example, a lack of free cooling), procur-
ing low-carbon electricity — either from local electricity providers
or through the installation of reduced-carbon self-generation such
as SOFCs — becomes the next chief lever after energy efficiency
has reached its practical limit. With these insights in mind, pub-
lic- and private-sector policymakers can accelerate the transition to
a low-carbon Internet by aligning their incentives with data centre
characteristics that matter.

Figure 2 | Energy–carbon performance map. The shaded area bounds the potential operational energy and carbon performance range of a prototype
US data centre and illustrates the relative performance of different data centre characteristics. Coloured areas indicate general regions of energy–carbon
performance. For some data centres, only subareas of this map will apply depending on equipment and electrical power constraints. Numbered points
are discussed in the text. See section S2 of the Supplementary Information for details. GHG, greenhouse gas.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(A) Renewables
(~ 0.02 kt CO2 equiv. GWh–1)

(B) Natural gas SOFC
(0.35 kt CO2 equiv. GWh–1)

(C) US average electricity
(0.6 kt CO2 equiv. GWh–1)

(D) Coal
(0.96 kt CO2 equiv. GWh–1)

Re
la

tiv
e

da
ta

 c
en

tr
e

en
er

gy
 u

se
 (b

as
el

in
e

=
1)

PUE=1.8, minimal
IT e�ciency

PUE=1.5, minimal
IT e�ciency

PUE=1.3 (free cooling, warm climate), minimal IT e�ciency

PUE=1.8, maximal IT e�ciency

PUE=1.1, maximal IT e�ciency

PUE=1.1 (free cooling, cool climate),
minimal IT e�ciency

(1)

(2)

(3)

(4)

(5)

(6)

High-energy, high-carbon region

High-energy, low-carbon region

Low-energy, low-carbon region

Baseline data centre powered
by coal:
 -Energy use = 92 GWh yr–1

 -GHG emissions = 89 kt CO2
 equiv. yr–1)

Relative data centre GHG emissions (baseline = 1)

Decreasing electric power CO2 intensity

Increasing operational energy e�
ciency

PERSPECTIVENATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1786

Figure 1.9: Energy-carbon performance map[21]

Another way to decrease the power consumption of a cluster of servers is by looking at the
power consumed by supporting machinery specifically the cooling infrastructure. Modern
blade and 1U rack servers due to their high power density and complicated heat dissipation
require almost as much energy to cool them as running them.

One way to tackle this problem is by continuously monitoring the temperature of the servers
and changing the placement of the workloads when servers become overheated. Unfortu-
nately this conflicts with keeping the servers at high utilization in order to achieve high ef-
ficiency. Additionally, cooling problems can be easily mitigated by choosing a location that
provides free cooling for a data center or recycling the heat produced by the servers. An ex-
ample of this approach is the Calcul Quebec data center that uses the heat from the servers
to produce hot water for the Laval university campus and cold outside air to cool the data
center.

27

1.4 Thesis motivation and scope

As we have demonstrated in the previous sections it is imperative to decrease the amount
of energy that our data centers consume. Additionally, we showed (1.9) that increasing the
efficiency of our servers is the most important factor of energy savings and (1.6,1.8) that
switching off most servers and maximizing the utilization of the rest leads to increased effi-
ciency and energy savings.

Current approaches in workload consolidation use almost exclusively cpu and ram utilization
as a metric for server utilization. However, it is our belief that since many workloads are
at some degree bound by the performance of storage devices, storage utilization should be
included as another metric of server utilization.

As a result, this thesis presents a study of the effect that storage utilization has on dynamic
workload placement that minimizes the costs of energy consumption and SLA violations in
an IaaS environment (1.1).

28

Chapter 2

Virtual Machine Placement

2.1 Related Work1

There has been extensive research on the subject of efficient workload allocation (or VM
placement when virtualization is used) in data centers. In the following section we will briefly
present important work that we believe relates with ours.

2.1.1 Load Balancing and Unbalancing for Power and Performance in
Cluster-Based Systems

In 2001, Pinheiro et al.[25] proposed a strategy for distributing workload in a non-virtualized
cluster of servers. It was based on the concept of what they called Load Concentration; dis-
tribute the incoming load to the smallest possible subset of servers while honouring SLAs.
This come in contrast with previous research in workload placement that focused mainly on
balancing load between all available servers, and with previous research in power conserva-
tion which was focused on battery powered devices.

The authors included in their model 3 resources cpu, network and disk. Additionally, they
used throughput and execution time as proxies for QoS. To predict performance degrada-
tion they used a very simple model based on the demand for resources of each load. Adding
or removing a node is done in a per node basis and depends on whether the current perfor-
mance degradation is acceptable. In their implementation, the number of active nodes can
only change by one at a time since as they claimed reconfiguration operations are time-
consuming. As a result, it is unsuitable for fast changes in load. Finally they chose not to
take into account that servers have different power demands at different utilization levels or
consider heterogeneous clusters.

2.1.2 Managing energy and server resources in hosting centers

Almost concurrently with Pinheiro et al., Chase et al.[7] proposed a technique based on the
same idea of dynamically scaling back computing resources, by putting idle servers on low
power modes (e.g sleep, shut down), when a certain QoS can be provided. Their proposed

1 This section is based on the following two studies of the state of the art in energy-efficient computing
systems: [16], [3]

29

architecture was designed for Internet hosting centers, therefore they assumed that servers
are shared among multiple service applications. Furthermore, they defined SLAs in terms of
throughput and latency.

Their allocation scheme is based on a resource economy where each customer bids for re-
sources, a function of volume and quality. After that the system tries to maximize the utility
by balancing the inherent cost (consumed energy) of used resources with the profits and
penalties from the defined by the bids.

In contrast to the approach of Pinheiro et al. they chose to model only processing time as a
resource and they did not take into account the cost of cluster reconfiguration (i.e. activat-
ing/deactivating servers). Similarly to Pinheiro et al. their proposed implementation handles
only homogeneous pools of servers.

2.1.3 Energy Conservation in Heterogeneous Server Clusters

The first investigation of workload distribution in heterogeneous clusters was made by Heath
et al.[25]. They model both resources (e.g. cpu, disk) and requests in terms of throughput.
Then they used analytical models of the expected load to predict overall throughput and
power consumption as a function of the request distribution. To find the request distribution
that minimizes the ratio power

throughput
for each workload intensity level they use simulated an-

nealing. Because this optimization step is time-consuming, it is done offline. A weakness of
this approach is that it is not workload agnostic, since you need prior knowledge to compute
the throughput demand of each request type.

2.1.4 VirtualPower: Coordinated Power Management in Virtualized
Enterprise Systems

Nathuji and Schwan[24] were the first to consider ways to integrate power management
mechanisms and policies in virtualization technologies used in data centers. They wanted
to take advantage of the power policies already included on guest VMs. As a result, they ex-
tended the Xen hypervisor to export to guest VMs soft version of the hardware power states
for which their policies are designed.

After intercepting the guest VMs’ ACPI2 calls, the systems uses them as hints for actual
changes in the hosts’ hardware power states and in the allocation of resources to VMs. They
also provided an alternative to hardware resource scaling, soft scaling that utilizes the hy-
pervisor’s scheduling attributes for a VM to emulate more power states than provided by the
host.

Finally the authors proposed a two level approach in resource management, splitting it into
local and global policies. Local policies, running on each physical machine, driven by VMs’s
desired power states use state-based guidance to determine the appropriate shadow state for
each VM. Global policies use information about the shadow states assigned to VMs by local
policies and the platforms on which they run to consolidate them.

2 Advanced Configuration and Power Interface (ACPI) is an open industry specification for power manage-
ment. http://www.acpi.info/

30

http://www.acpi.info/

The authors considered only CPU as a resource.

2.1.5 Power and Performance Management of Virtualized Computing
Environments Via Lookahead Control

Kusic et al.[20] researched the problem of dynamic provisioning VMs for multi-tiered web
applications. Theymodel SLAs as stepwise pricing function of the response time. The service
provider for rt > rthr receives revenue, while for rt < rthr pays penalties. The objective is to
maximize the provider’s profit by minimizing costs caused by power consumption and SLA
violations.

They tackle the problem of maximizing profit as one of sequential optimization and address
it by Limited Lookahead Control (LLC). LLC provides at each step a decision for the number
of active hosts in the data center, the number of VMs to allocate for each service, the CPU
share allocated to each VM and the fraction of the workload to allocate to each VM. DVFS is
not performed since it is deemed by the authors that it provides only a small power reduction
compared to migrating all VMs from a lightly loaded host and switching it off. Additionally
their model includes the costs incurred by the time lost while switching hosts on and off.

The authors, while implementing their proposed approach, came against the exponential in-
crease in worst-case complexity with longer prediction horizons and increasing number of
control options. They tried several optimizations, including decomposing the problem int
smaller sub-problems and local-search techniques. Nevertheless, complexity still remained
high and the average execution time for the LLC just for 15 hosts is about 30 minutes. In
addition, the controller requires simulation-based learning to make application-specific ad-
justments. Finally the authors considered only CPU as a resource.

2.1.6 Energy Aware Consolidation for Cloud Computing

Srikantaiah et al.[31] experimentally studied the relationship between performance, energy
consumption and resource (e.g. CPU and disk) utilization for applications serving stateless
requests in a data center. The experimental results (see Figures 2.1, 2.2) allowed them to
reach several interesting conclusions. Following that, they used they insights gained from
the experimental study to propose an energy aware consolidation algorithm.

As can be seen from Figure 2.1 the energy per transaction has a surface similar to an elliptic
paraboloid. The power consumption is influenced both by CPU and disk utilizations and the
minimum power consumption is achieved at approximately 70% CPU utilization and 50%
disk utilization. At first glance, this seems to conflict previous data that showed that a server
get more efficient with higher utilization. That is not the case; high resource utilization results
in performance degradation and consequently longer execution time. Additionally, as the au-
thors note, this energy optimal point of operation is dependent on the performance degrada-
tion levels that we can tolerate. Another interesting conclusion is that energy consumption is
more sensitive to variations in CPU utilization as can be seen in the steeper gradient of the
curve along the CPU utilization axis.

31

Furthermore, from Figure 2.2 they reasoned that disk utilization is more significant than CPU
utilization for performance degradation and that disk utilization is a limiting factor for con-
solidated performance.

Figure 2.1: Energy consumption per transaction

Figure 2.2: Performance degradation

The goal of their proposed consolidation algorithm is to keep servers at utilization levels that
efficiently amortize the idle power costs and in the same time evade energy penalties due
to internal contentions. They modeled the problem as a 2-dimensional bin packing problem.
Each active server represents a bin and each dimension a resource of that server. The bin
size along each dimension is the optimal utilization level as determined by the experimental

32

study. Based on their intuition that after an allocation we can use a bin to each fullest potential
if there is maximum space in each dimension, the authors used as a placement heuristic the
minimization of the 2-dimensional Euclidean distance.

Experimental evaluations showed that their proposed algorithm achieved energy consump-
tion 5.4% greater than the optimal at 20% performance degradation tolerance. A drawback
of the proposed method is not including in their model the costs of migrations and switch-
ing host on/off. Another one is the necessity of experimental study to determine the resource
requirements of applications and the optimal utilization levels of the hosts.

2.1.7 Optimal Online Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient Dynamic
Consolidation of Virtual Machines in Cloud Data Centers

Beloglazov et al.[2] studied the energy-performance trade-off in a Cloud computing environ-
ment. They argued that due to the inherent variability of workloads experienced in such an
environment, VM placement should optimized continuously in an online manner. To under-
stand the implications of the online aspect of the problem, they used competitive analysis to
study the single virtual machine migration problem and the dynamic virtual machine consol-
idation problem.

They modeled the single VMmigration problem as a single Host with several VMs allocated
to it. The host is oversubscribed; that is if all VMs request their maximum CPU performance,
specified in the SLA, the total CPU demand exceeds the host’s capacity. The goal is to select
the time at which to migrate a single VM from the host in order to minimize costs from energy
and SLA violations. They proved the cost of the optimal offline algorithm and the ratio of the
cost of an optimal online deterministic algorithm to the cost of the optimal offline algorithm.

Consequently, they modeled the dynamic virtual machine consolidation problem as multiple
hosts and multiple VMs. In this setting VMs have variable workloads and can be migrated
between hosts, using live migration, with a VM-specific migration time. Additionally, hosts
without VMs are switched off. They proved the competitive ratio for the optimal online de-
terministic algorithm.

Following that, they propose three metrics for the Quality of Service that they believe are
application-agnostic and thus suitable for an IaaS environment. They split the problem of
VM consolidation in four distinct parts:

• Determining when a host is overutilized and one or more VMs should be migrated from
it.

• Determining when a host is underutilized and all VMs should be migrated from it in
order to switch off the host

• Selecting the VMs that should be migrated from an overutilized host

• Finding a new placement for the VMs marked for migration.

33

They propose several Heuristics for the host overloadind detection and the vm selection parts,
a modification of the BFD algorithm for finding a newVM placement, and a simple approach
for determining underutilized hosts.

Finally, they used CloudSim3 and workloads from PlanetLab4 to evaluate their approach.
Using a metric that combines both Energy and Sla violations they statistically significant dif-
ference between their approach and both simple DVFS and not using any power management
policy at all.

The approach proposed byBeloglazov et al. satisfies all the necessary conditions of an energy-
aware consolidation technique for IaaS infrastructure. It is online and consequently it can han-
dle varying workloads. Additionally, its’ heuristic nature makes this approach scalable. As a
result, this approach has become the basis for our study of the influence of disk utilization on
energy-aware dynamic VM placement.

In the following section we will describe the heuristics, proposed by Beloglazov et al., that
we have evaluated.

2.2 Evaluated Heuristics

2.2.1 Host Overloading Detection

Static Threshold (THR)
The simplest of the proposed heuristics is a static utilization threshold (THR). If the
utilization of a host exceeds this threshold then one or more VMs should be migrated
from the host to prevent potential SLAV. Since fixed values of utilization thresholds
are unsuitable for environments with dynamic and unpredictable workloads like Cloud
computing data centers, this approach will be used as benchmark for the other heuristics.

Adaptive utilization threshold
The idea behind adaptive utilization threshold is to adjust the utilization threshold based
on the variability of the utilization. Higher variability means there is a higher chance that
there will be a big outlier that will cause an SLA violation. We use robust statistics to
produce estimators of the dispersion of the utilization that are not affected from small
departures from model assumptions. We evaluate the following two heuristics based on
this idea:

Median Absolute Deviation (MAD)
MAD is a robust statistic of dispersion, more resilient to outliers than the standard
deviation. This is easily visible when we see the two measures of statistical disper-
sion in the form of equations.

σ =
√

E[(X − µ)2] (2.1)

MAD = mediani(|Xi −medianj(Xj)|) (2.2)
3 CloudSim is a framework for modeling and simulating Cloud computing infrastructure and services: http:

//www.cloudbus.org/cloudsim/
4 PlanetLab is an open platform for developing, deploying, and accessing planetary-scale services. It consists

of 1211 nodes at 593 sites all over the world: https://www.planet-lab.org/

34

http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
https://www.planet-lab.org/

In standard deviation (Equation 2.1) the distances from mean are squared. As a
result outliers weigh more heavily in standard deviation than inMAD.
The adaptive threshold is given by the following equation:

Tu = 1− s ∗MAD, s ∈ R+ (2.3)

where s is a parameter that allows the adjustment of the aggressiveness of consoli-
dation.

Interquartile Range (IQR)
IQR is the difference between the first and the third quartile. IQR is more robust
than total range since it has a breakdown point of 25% and thus more than 25% of
the observations have to be outliers for it to be affected.

IQR = Q3 −Q1 (2.4)

The adaptive threshold is given by the following equation:

Tu = 1− s ∗ IQR, s ∈ R+ (2.5)

where s is again a parameter that allows the adjustment of the aggressiveness of
consolidation.

Model fitting - Piecewise Regression
The idea behind the following two heuristics is to partition the historical data of utiliza-
tion and fit a simple model to each segment.We then use the fitted model to approximate
the next utilization value.

Local Regression (LR)
In LR we use a variation of the LOESS[8] method. LOESS is a non-parametric
regression method and as such it does not make any assumption about the shape of
the curve of the samples.
In LOESS for each of the segments of data we perform a weighted least squares
regression to fit a low-order (typically the order is 1 or 2) polynomial. The weights
are given by the following function:

wi(x) = T

(
∆i(x)

∆max(x)

)
(2.6)

where∆i(x) is the distance between observation (xi, yi) and (x, y), |xi− x| and T
is the tricube weight function:

T (u) =

{
(1− |u|3)3 if |u| < 1
0 otherwise (2.7)

In this variation we fit a polynomial to the last k observations of utilization for a
single point; the last observation. Since we want to use this fitted polynomial to
approximate the next value we choose a polynomial of degree 1 to reduce bias at
the boundary[9].
This algorithm finds a host overloaded when:

s ∗ ĝ(xk+1) ≥ 1, xk+1 − xk ≤ tm (2.8)

where tm is the maximum time required for a migration of any of the VMs currently
residing in this host and s ∈ R+ is once again a parameter that allows the tuning of
the method’s consolidation aggressiveness.

35

Local Regression Robust (LRR)
LRR is based on an iterative variation of LOESS, proposed by Cleveland[9], that is
more robust to outliers.
Initially, we perform LOESS, as described in LR and then calculate the residuals
ri = yi − ŷi for each observation (xi, yi)

In the second step we compute the robust weights for each observation as shown
below:

rwi = wi(x) ∗B
(

r̂i
6 ∗median|r|

)
(2.9)

where B is the bisquare function:

B(u) =

{
(1− u2)

2 if |u| < 1
0 otherwise

(2.10)

And as in LR we use weighted least squares to fit a polynomial of degree 1.
We perform these two steps for a number of iterations and then we use the estimated
trend line to approximate the next value as in LR.

2.2.2 Virtual Machine Selection

When a host is found overutilized, we apply the following policies multiple times, selecting
each time one VM to migrate, until the host detection policy decides that the host is not
overloaded any more.

Minimum Migration Time (MMT)
In the MMT policy we choose for migration the VM v that requires the minimum mi-
gration time from all the VMs residing in the host. The idea behind this policy is to
minimize the costs associated with a VM migration.Migration time is estimated using
the following simple model:

Memh(v)

Neth
(2.11)

whereMemh(v) is the share of host’s h RAM allocated to VM v and Neth is host’s h
network bandwidth. The condition is formalized below:

v ∈ Vh | ∀ i ∈ Vh,
Memh(v)

Neth
≤ Memh(a)

Neth
(2.12)

Maximum Correlation (MC)
In theMC policy we select for migration the VM v, which utilization has the maximum
correlation with the utilization of all the other VMs residing in host h. This is based on
the idea by Verma et al.[32] that when there is a high correlation between workloads in
a server then there is a higher chance that workloads will request their peak utilization
at the same time and overload the server.

To evaluate the correlation between the utilization of the VMs we use the multiple cor-
relation coefficient [28].

36

Minimum Utilization (MU)
In theMU we select for migration the VM v that has the lowest utilization from all VMs
residing in host h. Since this policy removes the least amount of requested utilization
from the host, it should leave the host in a more efficient state.

v ∈ Vh | ∀ i ∈ Vh, Uv(t) ≤ Ua(t) (2.13)

where Ui(t) is the utilization of VM i at time t.

Random Selection (RS)
In the RS we select a random VM for migration each time.

2.2.3 Virtual Machine Placement

Beloglazov et al. modeled the VM placement problem as a bin packing problem. They pro-
posed a variation of the Best Fit Decreasing (BFD) algorithm that has been shown to use no
more than 11/9 ∗OPT + 1bins[36], where OPT is the number of bins used by the optimal
solution. They sort all the VMs, that have been marked for migration, in decreasing order
of their utilization and allocate every VM to the host that can accommodate it without be-
coming overloaded and produces the least increase in consumed power after the migration.
They call this algorithm Power Aware Best Fit Decreasing or PABFD (see Algorithm 2.1 for
pseudocode).

1 Input: hostList, vmList
2 Output: allocationMap
3

4 sort vmList by decreasing utilization
5

6 for vm in vmList do
7 minPower ←MAX
8 allocatedHost← NULL
9

10 for host in hostList do
11 if host has enough resources for vm) then
12 power ← estimatePower(host,vm)
13 if power < minPower then
14 allocatedHost← host
15 minPower ← power

16 end
17 end
18 end
19

20 if allocatedHost ̸= NULL then
21 allocationMap.add(vm, allocatedHost)
22 end
23 end

Algorithm 2.1: Power Aware Best Fit Decreasing

37

2.2.4 Underloaded Hosts

To detect underutilized hosts, Beloglazov et al., used a very simple approach. Every host that
is not considered overutilized, is considered potentially underutilized.

We pick the host with the least utilization and we try to find a new placement for all the
VMs that reside in it, without forcing any host to become overutilized. If such a placement is
possible, the VMs are scheduled for migration and once all migrations have been completed,
the host is put in a low power state. This step is repeated for every potentially underutilized
host. A detailed description in pseudocode can be found in Algorithm 2.2.

1 Input: hostList, overutilizedHostList, switchedOffHostList
2 Output: allocationMap
3

4 for host in overutilizedHostList do
5 remove host from hostList
6 end
7

8 for host in switchedOffHostList do
9 remove host from hostList
10 end
11

12 underutilizedHostList← hostList
13 newV mPlacementHostList← hostList
14 host← findHostWithMinimumUtilization(hostList)
15

16 while host ̸= NULL do
17 remove host from underutilizedHostList
18 remove host from newV mPlacementHostList
19

20 vmList← getListOfVmNotAlreadyInMigration(host)
21 hostAllocationMap← pabfd(newV mPlacementHostList,vmList)
22

23 for allocation in hostAllocationMap do
24 allocationMap.add(allocation)
25 allocatedHost← getAllocatedHost(allocation)
26 remove allocatedHost from underutilizedHostList

27 end
28

29 host← findHostWithMinimumUtilization(hostList)
30 end
Algorithm 2.2: Detect underutilized hosts and find a new placement for their VMs

38

Chapter 3

CloudSim

Our target environment is that of an Infrastructure as a Service data center. Nevertheless,
performing large-scale experiments on real infrastructure is extremely difficult. Even if ex-
perimenting on a real data center was feasible, we would have no way to produce easily
repeatable and verifiable results. As a result we relied on extensive simulations to study the
effect of storage utilization on the effectiveness of dynamic power-aware resource allocation.

Our simulator of choice was the CloudSim toolkit. This gave us the additional benefit of
being able to reproduce the results of Beloglazov et al. [2] and using them as a benchmark
for our approach.

CloudSim is a discrete-event simulator for Cloud environments. In Figure 3.1 we can see the
environment modeled by CloudSim.

. . .

. . .

Data center
Brokers

Users

Figure 3.1: Cloud computing environment modeled by CloudSim

39

There are 6 different entities:

User:
A User is a service consumer; someone who pays to receive computing resources from
the IaaS provider. That includes individuals, companies, and SaaS and PaaS providers.

Broker:
Brokers are entities that act on behalf of Users. Their role is to search for Data centers
IaaS providers suitable for the needs of the User and optionally negotiate a price for the
requested resources.

Data center:
Data centers are collections of computing resources belonging to different IaaS providers.

Host:
A Host represents a physical server with specific computing resources available to it. A
physical server may host 0 or more VMs.

VM:
A VM is a representation of the contract between a service consumer and a provider. It
specifies the amount of one or more computing resources that should be available for
the applications that the consumer want to deploy on this machine.

Cloudlet:
Cloudlets are representations of the applications the consumer deploys.

Since we are not immediately interested in multiple users or multiple providers, we will sim-
plify our model and use a single user and a single provider connected by a broker that simply
forwards all requests for computing resources from the User to the provider. Additionally we
will simulate only one cloudlet per VM.

In the next section we will briefly present the architecture of the CloudSim toolkit.

3.1 Architecture

User code
At the top-most layer we can specify essential characteristics of the simulation than we
want to run, including among others the behavior of the deployed applications, the SLA
for the VMs, the resources of the hosts and the behavior of the broker.

CloudSim
The CloudSim simulation layer provides the functionality needed to simulate virtualized
data centers. Resource provisioning, application execution and network simulation are
all handled at this layer.

User Interface Structures
This layer defines the core entities VM and Cloudlet.

40

VM Services
This layer provides functionality for the execution of cloudlets and VMs. At this
layer we define the logic for dividing the host’s resources to the VMs and for de-
viding the resources available to a VM to its’ cloudlets. You could for example
simulate a virtual machine with a cpu that is space-shared but not time-shared by
extending the Cloudlet Execution functionality.

Cloud Services
The Cloud Services layer is responsible for allocating VMs to hosts and for pro-
viding accounting for a host’s resources. Alternative migration policies are imple-
mented at this level.

Cloud Resources
At this layer all events related with a data center are handled, including VMmigra-
tions and submitting new requests for resources.

Network
As the name suggests this layer is responsible for simulating an underlying network
and its’ effects on communication between entities.

User code

Cloud
Scenario

User
Requirements

Application
Configuration

...
Simulation

Specification

User or Data Center Broker
Scheduling

Policy

CloudSim

Network
Network
Topology

Message delay
Calculation

Cloud
Resources

Events
Handling

Sensor
Cloud

Coordinator
Data Center

Cloud
Services

VM
Provisioning

CPU
Allocation

Memory
Allocation

Storage
Allocation

Bandwidth
Allocation

Vm
Services

Cloudlet
Execution

VM
Management

User Interface
Structures

Cloudlet
Virtual

Machine

CloudSim Core Simulation Engine

Figure 3.2: CloudSim layered architecture

41

3.2 Important Entities

CloudSim is a fairly large project with more than 60.000 lines of code. Consequently, it is not
feasible to describe it in its entirety. In the following section we will present the most impor-
tant classes of CloudSim and the extensions we implemented to support storage utilization.

Datacenter
VmAllocationPolicy

1 1

Host

1

N

Bw Provisioner

Ram Provisioner

DiskIO Provisioner

Iops

PE (Processing Element) Provisioner

PE List

1

1

1

1

1
Vm

Mips (Requested from user)
Iops (Requested from user)

1

N

Cloudlet

Length of Cloudlet in Million CPU
Instructions
Length of Cloudlet in IO instructions

1

N
Utilization Model Cpu

Utilization Model Io

1

1

1

Power Model1

BW (Requested from user)
Ram (Requested from user)

optimizeAllocation()

VmSelectionPolicy

1 1 getVmToMigrate()findHostForVm()
isHostOverutilized() getMigratableVms()
allocateHostForVm()

processEvent()
updateCloudletProcessing()

updateVmsProcessing()

updateVmProcessing()

allocateMipsForVm()
getUtil ization()

allocateIopsForVm()
getUtilization()

getPower()

getUtilization()

getUtil ization()getUtil izationModelCpu()
getUtil izationModelIo()

Figure 3.3: CloudSim class diagram

3.2.1 Cloudlet

As we have already said a cloudlet represents an application that can be deployed to a VM.
Each cloudlet has a CPU execution length and storage execution length specified inMIPS and
IOPS respectively.When a cloudlet has executed at least as manyMIPS and IOPS as specified
in these two lengths then it is considered completed and the resources that were allocated to
that cloudlet are released. Additionally each cloudlet has a utilization model for each of the
resources. Since we are mainly interested in studying the effects of storage utilization, we
statically allocate network bandwidth and ram (without any over-subscription) and use a zero
utilization model for these two resources. This is consistent with the methodology followed
by Beloglazov et al. in their simulations.

42

3.2.2 Storage and CPU utilization models

The utilization models we implemented where tailored to the two sets of workloads available
to us:

• The first set was included with CloudSim and consisted of CPU utilizations for approx-
imately 1000 VMs, belonging to the PlanetLab platform, for 10 random days, in March
and April of 2011. This was the workload used by Beloglazov et al. We were unable
to retrieve the relevant storage utilization information since, as we informed, they were
lost after a hardware failure1. This workload was used as sanity check for the extensions
we had to implement to support storage utilization.

• The second set was provided to us by professor Vivek Pai and were produced by the
CoMon Infrastructure2. It consisted of CPU and storage utilizations for approximately
500 VMs, belonging to the PlanetLab platform, for 10 days, in July of 2009.

Since the first set of workloads did not supply any information about storage utilization we
needed a way to extrapolate reasonable storage utilization from cpu utilization. To do so, we
used Amdhal’s balanced system law for IO as was revised by J. Gray and P. Shenoy.

”Random IO’s happen about once each 50,000 instructions. Based on rule 10,
sequential IOs are much larger and so the instructions per IO are much higher for
sequential workloads.”[14]

Consequently, for an application that issues mostly random IOs, we issue 20 IOPS for every
MIPS.

Furthermore we had to model the effect that waiting for IOs to complete would have on a
CPU. We chose the following simple approach:

1. Compute the MIPS and IOPS requested by the Cloudlet based on the utilization values
in the workload and the maximum resources specified by the VM (see Section 3.2.3).

2. Store the IOPS requested and the ratio MIPS
IOPS

.

3. When we learn the resources allocated from the host to this VM (and since we have one
cloudlet per VM, to this cloudlet as well), we check if the allocated IOPS are equal to
or more than the requested IOPS. If not then we add to the array of outstanding IOPS
the number of IOPS that where not completed ((requestedIOPS − allocatedIOPS))
together with the ratio MIPS

IOPS
we stored in the previous step.

4. While computing the requested MIPS for the next time span we iterate through the
outstanding IOPS array and add outstandingIOPS ∗ MIPS

IOPS

1 http://lists.planet-lab.org/pipermail/users/2012-November/004159.html
2 CoMon provided monitoring statistics for PlanetLab: http://comon.cs.princeton.edu/

43

http://comon.cs.princeton.edu/

3.2.3 VM

A VM has several properties that represent the SLA of the user and the service provider.
These properties include:

1. The maximum MIPS the VM can request from the host that if not supplied an SLA
violation has occurred.

2. The maximum IOPS the VM can request from the host that if not supplied an SLA
violation has occurred.

3. The amount of RAM that must be statically allocated to the VM.

4. The amount of Storage that must be statically allocated to the VM.

5. The amount of network bandwidth that must be statically allocated to the VM.

In addition, a VM has properties for the currently allocated, from the host, MIPS and IOPS.
This properties get updated every time an updateVmProcessing event occurs.

Finally a VMhas a cloudlet scheduler that provides all the functionality needed for simulating
the execution of multiple cloudlets and allocating resources (e.g. simulating a time-shared
virtual CPU). However, in our simulations each cloudlet is allocated to a separate VM. As a
result, the cloudlet scheduler that we implemented just updates the cloudlet with the currently
allocated resources and checks whether the cloudlet has finished its’ execution.

3.2.4 Host

Ahost represents a physical machine. It has provisioners that each represents a resource of the
host and a VM scheduler that is responsible for the allocation of resources to the VMs residing
in the host. Additionally a host has a power model that estimates the power consumption of
the physical machine. Finally each host is responsible for updating the allocated resources
and the processing of each of its’ VMs.

3.2.5 Provisioners

Provisioners are responsible for the provisioning of a resource. They export functionality to
the host for allocating and deallocating portions of the resources to VMs. In addition to that,
they provide information about the currently available resources, the allocated resources for
a VM and whether a host is suitable for a VM.

There are four provisioners:

1. Network bandwidth provisioner

2. RAM provisioner

3. Processing Elements (PE) Provisioner

4. Storeage IO provisioner

44

3.2.6 VM scheduler

The VM scheduler uses the functionality exported by the provisioners to implement policies
for sharing the resources between multiple VMs running in a host.

The policy we implemented for sharing both MIPS and IOPS is time-sharing with over-
subscription. More specifically if the amount of resource requested from all VMs is less than
the total amount of resource available to the host then every VM receives the full amount of
resource it requested. However, when the total amount of resource requested is greater than
the total amount available every VM gets the amount it requested scaled by totalAvailable

totalRequested
((see

Algorithm 3.1 for pseudocode).

1 Input: vmList, totalAvailable
2 Output: resourceAllocationMap
3

4 totalRequested← 0
5 for vm in vmList do
6 vmRequested← vm.getRequested()
7 totalRequested← totalRequested+ vmRequested

8 end
9

10 scaleFactor ← 1
11 if totalRequested > totalAvailable then
12 scaleFactor ← totalAvailable

totalRequested

13 end
14

15 for vm in vmList do
16 resourceAllocationMap.add(vm,vm.getRequested() ∗ scaleFactor)
17 end

Algorithm 3.1: Time-sharing with over-subscription

45

3.2.7 Power Model

The power models we implemented extrapolate the power consumption of a server from its
CPU utilization based on measurements of total system power against CPU utilization of
real systems.This kind of models has been shown to be fairly accurate for modeling a single
machine. More importantly, it has been shown that when they are used to model the behavior
of a large group of servers, they can achieve errors less than 1%[11].

We use two power models based on the following real servers:

1. Hewlett-Packard ProLiant ML110 G43

2. Hewlett-Packard ProLiant ML110 G54

●
●

●
●

●
●

●
●

●
●

●

0

50

100

0 25 50 75 100
Utilization (%)

P
ow

er
 (

W
)

Type
● HP Proliant ML110 G4

HP Proliant ML110 G5

Figure 3.4: Power Models for HP Proliant ML110 G4 and HP Proliant ML110 G5

3.2.8 Datacenter

The datacenter class implements functionality that deals with User/Broker actions like cre-
ating VMs or submitting cloudlets for execution and with events that should be handled at
the data center level like migrating a VM between two hosts. In addition, the datacenter class
has a vm allocation policy that is responsible for allocating a VM to the most suitable host
available and even optimizing the allocation of all VMs in the data center. Finally, this class

3 http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110127-00342.html
4 http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00339.html

46

http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110127-00342.html
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00339.html

is responsible for updating the processing for every host, VM and cloudlet in the data center
(See a sequence diagram of the process in Figure 3.5).

Datacenter
Host 0

Vm 0
updateVmsProcessing

updateCloudletsProcessing

time of next event

Vm n

updateCloudletsProcessing

time of next event

...

smallest time of next event

Host m
Vm 0

updateVmsProcessing
updateCloudletsProcessing

time of next event

Vm n

updateCloudletsProcessing

time of next event

...

smallest time of next event

...

optimizeVmAllocation

updateProcessingEvent

Figure 3.5: Updating processing in the data center

47

3.2.9 Vm Allocation Policy

As we briefly discussed in the previous section, the two main functions of a Vm Allocation
Policy are i) to allocate a VM to a suitable host and ii) to optimize the allocation of VMs to
hosts over the entire data center.

Finding a Host for a VM

Similarly to the Power Aware Best Fit Decreasing algorithm (see Algorithm 2.1) we choose
the host that can satisfy the VM’s current resource demands (e.g. the host has enough free
MIPS to satisfy the VMs current utilization level), can potentially satisfy the VM’s maximum
resource demands (e.g. the maximum IOPS of the host are greater than the maximum IOPS of
the VM) and produces the least increase in power consumption after the migration (Flowchart
in Figure 3.6).

get next Host

contained in the list of excluded Hosts?

Yes

is Host suitable for this VM?

No

No

Estimate the increase in
Host's power consumption

after allocation

Yes

Is it lower than the lowest found until now?

No

update the candidate
Host

There are more Hosts to consider

Does the Host have currently
enough Ram, Storage, Network
Bandwidth, Mips and Iops available.
Also check if
Host's Max Mips >= VM's Max Mips
and if Host will be overutilized after
this migration.

Figure 3.6: Flowchart for finding the most suitable host for a VM

48

Optimizing Allocation

As we described in Section 2.1.7 optimizing the allocation of VMs to hosts can be split to the
following 4 steps:

Detect overutilized hosts:
We detect overutilization of a single resource using the heuristics described in Section
2.2.1. After detecting which hosts overutilize MIPS and which hosts overutilize IOPS we
split all the hosts in the following four categories:

1. Hosts that overutilize only MIPS
2. Hosts that overutilize only IOPS
3. Hosts that overutilize both MIPS and IOPS
4. Hosts that are not overutilized.

Select VMs to migrate from overutilized hosts
Selecting VMs to migrate from overutilized hosts has three steps that correspond to the
three different categories of overutilized hosts (see Flowchart in Figure 3.7).

pick VMs to migrate
from Hosts that are
overutilized both in

Disk IO and CPU

pick VMs to migrate
from Hosts that are
overutilized only in

Disk IO

pick VMs to migrate
from Hosts that are
overutilized only in

CPU

Figure 3.7: Flowchart for picking VMs to migrate from overutilized hosts

49

1. For each host that overutilizes only MIPS, we repeatedly use the specified VM se-
lection Policy (Section 3.2.10) for MIPS utilization, to pick a single VM to migrate
until the host is no longer overutilized (see Flowchart in Figure 3.8).

2. For hosts that overutilize only IOPS the process is similar with hosts that overutilized
only MIPS. The only difference is that we use the VM selection policy specified for
IOPS utilization (see Flowchart in Figure 3.8).

get next overutilized
Host

pick VM to migrate

remove VM from
Host

add VM to migration
list

No VM to migrate found

Host is still overutilized

There are more Hosts to process

Figure 3.8: Flowchart for picking VMs to migrate from hosts that overutilize either only
IOPS or only MIPS

50

3. For hosts that overutilize both MIPS and IOPS depending on which resource we
have specified as more important we follow one of the following procedures (see
Flowchart in Figure 3.9):

MIPS utilization is more important:
We pick VMs to migrate from hosts based only on MIPS utilization. After that,
we iterate through the list of overutilized hosts and remove those that due to the
removed VMs are not overutilized anymore. Finally, we pick VMs to migrate
from the remaining hosts based only on IOPS utilization.

IOPS utilization is more important:
We pick VMs to migrate from hosts based only on IOPS utilization. After that,
we iterate through the list of overutilized hosts and remove those that due to the
removed VMs are not overutilized anymore. Finally, we pick VMs to migrate
from the remaining hosts based only on MIPS utilization.

Pick VMs to migrate
from Hosts based on

CPU util

Pick VMs to migrate
from Hosts based on

Disk IO util

CPU util. is more important Disk IO util. is more important

Remove from list of
overutilized Hosts
those that do not
overutilize Disk IO

anymore

Remove from list of
overutilized Hosts
those that do not
overutilize CPU

anymore

Pick VMs to migrate
from remaining

Hosts based on CPU
util

Pick VMs to migrate
from remaining

Hosts based on Disk
IO util

Figure 3.9: Flowchart for picking VMs to migrate from hosts that overutilized both MIPS
and IOPS

51

Find a new placement for the VMs coming from overutilized hosts
From the previous step we receive i) a list containing VMs marked for migration because
their host overutilized MIPS and ii) a list containing VMs marked for migration because
their host overutilized IOPS. Depending on which resource we have specified as more
important we follow one of the following procedures (see Flowchart in Figure 3.10):

MIPS utilization is more important:
We use the Power Aware Best Fit Decreasing algorithm (see Algorithm 2.1) to find
new hosts for the VMs in the first list and then we use the same algorithm to find
new hosts for the VMs in the second list.

IOPS utilization is more important:
We use the Power Aware Best Fit Decreasing algorithm (see Algorithm 2.1) to find
new hosts for the VMs in the second list and then we use the same algorithm to find
new hosts for the VMs in the first list.

Sort the list of VMs that where
chosen for migration, because
their host overutilized CPU, by

decreasing CPU utilization

Sort the list of VMs that where
chosen for migration, because
their host overutilized Disk IO,

by decreasing Disk IO utilization

find Hosts for the VMs that
were chosen for migration

because their host
overutilized CPU

find Hosts for the VMs that
were chosen for migration

because their host
overutilized Disk IO

CPU util. is more important Disk IO util. is more important

find Hosts for the VMs that
were chosen for migration

because their host
overutilized CPU

find Hosts for the VMs that
were chosen for migration

because their host
overutilized Disk IO

Hosts from where VMs
are migrating out, are not

candidates

Figure 3.10: Flowchart for finding new placement for VMs marked for migration

52

Detect underutilized hosts and find a new placement for all their VMs
To handle underutilized hosts we use the simple approach described in Section 2.2.4 with
one modification. Depending on which resource we have specified as more important
we find each time the host with the least utilization in MIPS or IOPS respectively (see
Flowchart in Figure 3.11).

Find the Host with the
lowest CPU util not

included in the
excludedHosts list

Find the Host with the
lowest Disk IO util not

included in the
excludedHosts list

CPU util is more important Disk IO util is more important.

Find new Host for each
VM that is not already

scheduled for migration

Find new Host for each
VM that is not already

scheduled for migration

There are more Hosts to consider There are more Hosts to consider

Excluded Hosts are:
 Hosts from which VMs

are being migrated
 Hosts into which VMs

are being migrated
 Switched-off Hosts

 Hosts from which VMs
are being migrated

 Switched-off Hosts
Are not considered as
recipients.

Figure 3.11: Flowchart for detecting underutilized hosts and finding a new placement for
their VMs

3.2.10 VM Selection Policy

The subclasses of vmSelectionPolicy implement the various heuristics that we described in
Section 2.2.2. Their only function is to select which VM should be migrated next.

53

Datacenter Vm Allocation Policy

optimizeVmAllocation

getOverutilizedHostsCpu

getOverutilizedHostsIo

getVmsToMigrateFromHosts

getNewVmPlacement

getMigrationMapFromUnderutilizedHosts

MigrationMap

Figure 3.12: Flowchart for optimizing the allocation of VMs

54

Chapter 4

Simulation

In the following sections we will present the attributes of the simulated environment, the
characteristics of the workloads, the metrics used and discuss the results and our conclusions.

4.1 Metrics

4.1.1 SLA Violation Metrics

In cloud computing as in every other business, customer satisfaction is crucial. Consequently,
meeting the QoS requirements, as formalized in SLAs between customers and providers, is
of utmost importance. To understand this importance, one has only to take a look at one
such SLA. For instance Amazon’s SLA for the EC2 service provides the following service
commitments for monthly uptime percentage and penalties:

• If the monthly uptime percentage is less than 99.95% but greater than 99.9%, Amazon
will credit your account with 10% of the total charges paid.

• If the monthly uptime percentage is less than 99.9%, Amazon will credit your account
with 30% of the total charges paid.

Since service commitments vary greatly for different providers and applications, we will be
using generic application independent metrics proposed by A. Beloglazov et al.[2]. For our
simulations, we will consider that the QoS requirements are fulfilled when the performance
requested by the application at any time is delivered. As we described in the previous chapter
(3.2.3), the application performance requirements are bounded by the characteristics of the
VM on which it is deployed.

Since application residing in a fully utilized host are almost certainly experiencing SLA vi-
olations1, one of the metrics we will be using will be the percentage of time, during which
active hosts have experienced utilization of 100%. We call this metric SLA violation Time
per Active Host (SLATAH).

SLATAH =
1

N

N∑
i=1

Tsi

Tai

(4.1)

1 An exception would be if the performance requested by all applications matches exactly the resources of
the host.

55

where N is the number of hosts, Tsi is the total time host i experienced 100% utilization and
Tai is the total time host i was in an active state.

Another source of SLA violation is the performance degradation experienced by applications
in VMs that are being migrated2. As a result our second metric of SLA violation will be the
percentage of requested performance that was not provided to VMs while being migrated.
We call this metric Performance Degradation due to Migration (PDM).

PDM =
1

M

M∑
j=1

Cdj

Crj

(4.2)

whereM is the number of VMs, Cdj is the performance requested by VM j but not delivered
while being migrated and Crj is the total performance requested by VM j.

Since these two metrics characterize two different sources of SLA violation we will combine
them in a single metric called SLA Violation (SLAV).

SLAV = PDM ∗ SLATAH (4.3)

4.1.2 Performance Metrics

The goal of every power aware resource management system is to minimize the combined
costs of energy consumption and SLA violations. However, these two parameters, energy
consumption and SLA violations, are inversely correlated and as suchwe can not use only one
of those parameters to evaluate our approach. Consequently we will be using the combined
metric, proposed by A. Beloglazov et al., Energy and SLA Violations (ESV).

ESV = Energy ∗ SLAV (4.4)

4.2 Workloads

As we have already mentioned in previous chapters, we used two separate workload sets to
evaluate our approach. Both sets contain data from PlanetLab machines that were provided
as part of the CoMon project3.

The first set of workloads (Table 4.1) is the same set used by A. Beloglazov et al. and besides
allowing us to draw some interesting results, it is also used as a sanity check for the extensions
we implemented. Unfortunately, it contains no data about storage utilization and we were
unable to retrieve them due to a hardware failure experienced by the CoMon project that led
to its’ shutdown4.

2 For our simulations we model the performance degradation that a VM experience during a migration as
10% of the total performance requested

3 CoMon provided monitoring statistics for PlanetLab: http://comon.cs.princeton.edu/
4 http://lists.planet-lab.org/pipermail/users/2012-November/004159.html

56

http://comon.cs.princeton.edu/

This set includes workloads for 10 random days between March and April of 2011. The num-
ber of VMs range approximately from 900 to 1500. Aswe can see themean of CPU utilization
is about 12% and the median is less than 10% leaving a lot of room for consolidating CPU
usage.

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 19

Table II. Workload data characteristics (CPU utilization)

Date Number of VMs Mean St. dev. Quartile 1 Median Quartile 3

03/03/2011 1052 12.31% 17.09% 2% 6% 15%
06/03/2011 898 11.44% 16.83% 2% 5% 13%
09/03/2011 1061 10.70% 15.57% 2% 4% 13%
22/03/2011 1516 9.26% 12.78% 2% 5% 12%
25/03/2011 1078 10.56% 14.14% 2% 6% 14%
03/04/2011 1463 12.39% 16.55% 2% 6% 17%
09/04/2011 1358 11.12% 15.09% 2% 6% 15%
11/04/2011 1233 11.56% 15.07% 2% 6% 16%
12/04/2011 1054 11.54% 15.15% 2% 6% 16%
20/04/2011 1033 10.43% 15.21% 2% 4% 12%

The frequency of the servers’ CPUs are mapped onto MIPS ratings: 1860 MIPS each core of the
HP ProLiant ML110 G5 server, and 2660 MIPS each core of the HP ProLiant ML110 G5 server.
Each server is modeled to have 1 GB/s network bandwidth. The characteristics of the VM types
correspond to Amazon EC2 instance types‡ with the only exception that all the VMs are single-core,
which is explained by the fact that the workload data used for the simulations come from single-core
VMs (Section 7.3). For the same reason the amount of RAM is divided by the number of cores for
each VM type: High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000
MIPS, 3.75 GB); Small Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB).
Initially the VMs are allocated according to the resource requirements defined by the VM types.
However, during the lifetime, VMs utilize less resources according to the workload data, creating
opportunities for dynamic consolidation.

7.2. Performance Metrics

In order to compare the efficiency of the algorithms we use several metrics to evaluate their
performance. One of the metrics is the total energy consumption by the physical servers of a data
center caused by the application workloads. Energy consumption is calculated according to the
model defined in Section 5.2. Metrics used to evaluate the level of SLA violations caused by the
system are SLAV, SLATAH and PDM defined in Section 5.4. Another metric is the number of VM
migrations initiated by the VM manager during the adaptation of the VM placement. The main
metrics are energy consumption by physical nodes and SLAV, however, these metrics are typically
negatively correlated as energy can usually be decreased by the cost of the increased level of SLA
violations. The objective of the resource management system is to minimize both energy and SLA
violations. Therefore, we propose a combined metric that captures both energy consumption and the
level of SLA violations, which we denote Energy and SLA Violations (ESV) (39).

ESV = E · SLAV. (39)

7.3. Workload Data

To make a simulation-based evaluation applicable, it is important to conduct experiments using
workload traces from a real system. For our experiments we have used data provided as a part of
the CoMon project, a monitoring infrastructure for PlanetLab [41]. We have used the data on the
CPU utilization by more than a thousand VMs from servers located at more than 500 places around
the world. The interval of utilization measurements is 5 minutes. We have randomly chosen 10
days from the workload traces collected during March and April 2011. The characteristics of the
data for each day are shown in Table II. The data confirm the statement made in the beginning: the
average CPU utilization is far below 50%. During the simulations, each VM is randomly assigned a
workload trace from one of the VMs from the corresponding day. In the simulations we do not limit

‡Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

Table 4.1: 1st Workload - CPU utilization

The second set of workloads (Table 4.2 and Table 4.3) was provided to us by Professor Vivek
Pai, after we contacted him to inquire about the storage utilization workloads of the first set.

Compared to the first set we can see that the number of VMs is significantly lower (approxi-
mately 500). Additionally, while CPU utilization still remains at very low levels, means and
medians have increased. Finally we can see that Storage utilization is also low leaving room
for consolidating storage usage.

Date Mean St. Dev. Quartile 1 Median Quartile 3
06/07/2009 579 15.51% 15.97% 3% 9% 25%
07/07/2009 571 14.33% 14.82% 2% 8% 22%
08/07/2009 568 16.11% 15.35% 3% 11% 26%
09/07/2009 562 17.29% 15.00% 4% 13% 27%
10/07/2009 575 22.56% 16.70% 7% 21% 33%
11/07/2009 572 21.48% 15.75% 7% 21% 31%
12/07/2009 580 18.17% 15.79% 4% 15% 29%
13/07/2009 567 16.30% 15.26% 3% 11% 26%
14/07/2009 577 19.07% 15.15% 6% 17% 29%
15/07/2009 385 12.36% 15.31% 0% 4% 22%

Number of Vms

Table 4.2: 2nd Workload - CPU utilization

Date Mean St. Dev. Quartile 1 Median Quartile 3
06/07/2009 579 15.39% 24.32% 1.54% 5.34% 16.67%
07/07/2009 571 16.65% 26.43% 1.47% 5.12% 17.53%
08/07/2009 568 17.70% 27.23% 1.52% 5.52% 19.24%
09/07/2009 562 17.11% 26.16% 1.55% 5.65% 18.91%
10/07/2009 575 17.32% 25.93% 1.73% 6.02% 19.32%
11/07/2009 572 14.51% 23.82% 1.38% 4.56% 15.32%
12/07/2009 580 15.04% 24.05% 1.47% 5.12% 16.03%
13/07/2009 567 14.98% 24.26% 1.33% 4.79% 16.01%
14/07/2009 577 15.81% 24.61% 1.43% 5.51% 17.19%
15/07/2009 385 11.25% 22.89% 0.00% 1.49% 9.52%

Number of Vms

Table 4.3: 2nd Workload - Storage utilization

57

4.3 Simulated Environment

For the 1st workload we simulated a data center with 800 Hosts. Half of them are HP ProLiant
ML110 G4 servers and the other half are HP ProLiant ML110 G5. Both G4 and G5 servers
have 2 cores and each core has 1860 (G4) or 2660 (G5) MIPS. Their power consumption is
simulated using the models described in Section 3.2.7.

To study the effect that under-provisioning and over-provisioning of the storage system can
have on a data center we perform 4 simulations with different type of storage systems:

• Slow storage each providing 30000 IOPS

• Fast storage each providing 40000 IOPS

• Very fast storage each providing 100000 IOPS

• Half the hosts have slow storage (30000 IOPS) and the other half have fast (45000 IOPS)
storage

The IOPS ratings mentioned above may initially seem excessive but they are a side-effect of
the utilization model we used to extrapolate storage utilization from CPU utilization. Since
for each MIPS we need 20 IOPS, a G4 server that experiences 100% utilization of its’ CPU
would need more than 70000 IOPS.

For the 2nd workload we simulated a data center with 400 Hosts. Once again, half of them
are HP ProLiant ML110 G4 servers with a storage system rated at 3000 IOPS and the other
half are HP ProLiant ML110 G5 with a storage system rated at 4500 IOPS.

58

4.4 Results

For each simulation we used 3 different dynamic VM placement approaches. Two of them
used both Storage and CPU utilization to decide about the placement, but one gives a slight
priority to Storage utilization (Disk util. First) and the other to CPU utilization (CPU util.
First) (see Chapter 3.2.9). The last approach uses only CPU utilization (CPU util. only) and
is the approach proposed by A. Beloglazov et al.

4.4.1 1st Workload

For the 1st workload we used the safety parameter values suggested by A. Beloglazov et al.:
THR-0.8, IQR-1.5, MAD-2.5, LRR-1.2, LR-1.2.

ESV

It is immediately obvious that for all 4 simulations, selecting to migrate the VMs that will
spend the least time in migration is the best VM selection policy. This is due to the fact that a
shorter migration duration means less performance degradation (less PDM) due to migration
and if the host happens to be overloaded, a faster recovery (less SLATAH). Additionally, we
see that there is almost no difference between the two approaches that use both CPU and
Storage utilization to decide for the placement of VMs.

When the storage system for the data center is under-provisioned (see Figure 4.2) then CPU
util. only achieves less ESV for almost every combination of policies and the ESV for the
best combination (lr-mmt) for Disk util. first and CPU util. first is approximately 50% greater
than the ESV for the best combination (thr-mmt) for CPU util. only.

On the other hand, when the storage system for the data center is over-provisioned (see Figure
4.1) then CPU util. first and Disk util. first give better results for almost every combination of
policies. However, the difference between the best combination for CPU util. only (thr-mmt)
and the best combination for CPU util. first and Disk util. first is insignificant.

From the previous two paragraphs it becomes apparent that when we can not change the ef-
fect that the storage system has on the execution of applications by changing the allocation
of resources, it is better to use an approach that uses only CPU utilization to decide about the
placement. For example, if regardless of the allocation of VMs to hosts the storage system is
overutilized then an allocation system that migrates VMs in response to storage overutiliza-
tion will perform more migrations than a system that migrates VMs only in responce to CPU
utilization (see Section 4.4.1), increasing PDM and consequently ESV.

When the speed of the storage system is more suitable for the workload, the results are very
different. In the case where each host (see Figure 4.3) has fast storage then for almost every
combination CPU util. first and Disk util. first give better results than CPU util. only. Addi-
tionally the ESV of the best combination fo CPU util. only is 50% greater. In the case where
half the hosts have slow storage and half fast storage (see Figure 4.4), Disk util. first and CPU
util. first outperform CPU util. only for every combination and the best case for CPU util.
only is approximately 100% greater.

59

Another important observation is that the heterogeneity in host resources allows us to respond
better to the heterogeneity of the application workloads. That becomes evident when we con-
sider that despite providing less total IOPS (800 ∗ 40000 versus 400 ∗ 30000 + 400 ∗ 45000)
we achieve 28% better results when half the hosts have fast storage (45000 IOPS) and the
other half slow (30000 IOPS) compared to when all hosts have fast storage (40000 IOPS).

Finally, we notice that, with the exception of very fast storage, generally the Local Regression
method for Host Overload Detection provides better results than the other policies.

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

0.00

0.01

0.02

0.03

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
S

V

Disk util. first

Cpu util. first

Cpu util. only

Very Fast Storage

Figure 4.1: ESV - Very fast storage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●
●

● ●

●

●
●

0.00

0.05

0.10

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
S

V

Disk util. first

Cpu util. first

Cpu util. only

Slow Storage

Figure 4.2: ESV - Slow storage

60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.03

0.06

0.09

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
S

V

Disk util. first

Cpu util. first

Cpu util. only

Fast Storage

Figure 4.3: ESV - Fast storage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.03

0.06

0.09

0.12

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
S

V

Disk util. first

Cpu util. first

Cpu util. only

Mix of Slow and Fast Storage

Figure 4.4: ESV - Mix of slow and fast storage

61

Energy

It is apparent that generally Disk util. first and CPU util. first are trading a bigger energy
consumption for less SLA violations. Despite the increase in power consumption for our
proposed approaches, the consumption is still far less than that of a Non-Power aware system
(2419.2 kWh). In addition to that, we can see that by providing more and more performance
to the storage system we achieve significantly lower power consumption, more than 100%
better in some cases. This can be explained by the fact that when applications are not bound
by the performance of the storage system they can finish their execution much faster and
possibly by the fact that we have not included in our model the power consumption of the
storage system. Finally, although we do not observe large differences in power consumption
between different combination of policies, we can safely say that Local Regression and Local
Regression Robust provide better power consumption.

● ●

●

●

● ●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

0

100

200

300

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
ne

rg
y

(k
W

h)

Disk util. first

Cpu util. first

Cpu util. only

Very Fast Storage

Figure 4.5: Energy - Very fast storage

● ●

●
●

● ●

●

●
● ● ●

●

●

0

200

400

600

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
ne

rg
y

(k
W

h)

Disk util. first

Cpu util. first

Cpu util. only

Slow Storage

Figure 4.6: Energy - Slow storage

62

● ●

●

● ●

●

● ●

●

● ●

●

●
●

● ●

●

● ●

●

●
●

●
●

● ●

●

● ●

●

●
●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

0

200

400

600

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
ne

rg
y

(k
W

h)

Disk util. first

Cpu util. first

Cpu util. only

Fast Storage

Figure 4.7: Energy - Fast storage

● ●

●

● ●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

● ●

●

● ●

●

● ●

● ●

●

● ●

●

● ●

●

● ●

● ●

●

● ●

●

0

100

200

300

400

500

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
ne

rg
y

(k
W

h)

Disk util. first

Cpu util. first

Cpu util. only

Mix of Slow and Fast Storage

Figure 4.8: Energy - Mix of slow and fast storage

63

Migrations

With the exception of Very Fast Storage, Disk util. first and CPU util. first generally more
migrations than CPU util. only. This reaches extreme levels when we use Slow Storage when
our approaches perform approximately twice as much migrations and it becomes perhaps the
greatest factor in increasing the achieved ESV values. Once again providing a better storage
system results in less migrations and providing heterogeneity in the storage system allows
the allocation system to respond better to heterogeneity in application workloads (see Figure
4.12 in comparison to Figure 4.11).

●
●

●

●

●

●

● ●
●

●

●

0

10000

20000

30000

40000

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

M
ig

ra
tio

ns

Disk util. first

Cpu util. first

Cpu util. only

Very Fast Storage

Figure 4.9:Migrations - Very fast storage

●

0

25000

50000

75000

100000

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

M
ig

ra
tio

ns

Disk util. first

Cpu util. first

Cpu util. only

Slow Storage

Figure 4.10:Migrations - Slow storage

64

●

●

●

● ●

0

20000

40000

60000

80000

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

M
ig

ra
tio

ns

Disk util. first

Cpu util. first

Cpu util. only

Fast Storage

Figure 4.11:Migrations - Fast storage

●
● ● ●

●
●

●
●

0

20000

40000

60000

80000

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

M
ig

ra
tio

ns

Disk util. first

Cpu util. first

Cpu util. only

Mix of Slow and Fast Storage

Figure 4.12:Migrations - Mix of slow and fast storage

65

SLATAH

SLATAH is where Disk util. first and CPU util. first far outperform CPU util.only, with the
exception of an overprovisioned storage system (see Figure 4.13). Once again heterogeneity
in the storage system provides better results and theMinimumMigration Time is the best pol-
icy for selecting Vms for migration. It is obvious that using both Storage and CPU utilization
to determine whether a host is overloaded provides far better results.

●●

● ●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

● ●

●
● ●

●

●
●

0.00

0.03

0.06

0.09

0.12

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

S
LA

TA
H

Disk util. first

Cpu util. first

Cpu util. only

Very Fast Storage

Figure 4.13: SLATAH - Very fast storage

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●●

0.0

0.1

0.2

0.3

0.4

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

S
LA

TA
H

Disk util. first

Cpu util. first

Cpu util. only

Slow Storage

Figure 4.14: SLATAH - Slow storage

66

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

S
LA

TA
H

Disk util. first

Cpu util. first

Cpu util. only

Fast Storage

Figure 4.15: SLATAH - Fast storage

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

0.0

0.1

0.2

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

S
LA

TA
H

Disk util. first

Cpu util. first

Cpu util. only

Mix of Slow and Fast Storage

Figure 4.16: SLATAH - Mix of slow and fast storage

67

PDM

Since the greatest factor for PDM is the number of migrations, one would expect that the
results for PDM should reflect those for the number of migrations. Although there small
variations, that is the case.

●
●
●

●●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●
●
●

●
●

●
●

●

●

0.0000

0.0005

0.0010

0.0015

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

P
D

M

Disk util. first

Cpu util. first

Cpu util. only

Very Fast Storage

Figure 4.17: PDM - Very fast storage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

0.0000

0.0005

0.0010

0.0015

0.0020

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

P
D

M

Disk util. first

Cpu util. first

Cpu util. only

Slow Storage

Figure 4.18: PDM - Slow storage

68

●

●

●

●

●

●

●

●

●

●

● ●●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

0.0000

0.0005

0.0010

0.0015

0.0020

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

P
D

M

Disk util. first

Cpu util. first

Cpu util. only

Fast Storage

Figure 4.19: PDM - Fast storage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.000

0.001

0.002

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

P
D

M

Disk util. first

Cpu util. first

Cpu util. only

Mix of Slow and Fast Storage

Figure 4.20: PDM - Mix of slow and fast storage

69

4.4.2 2nd Workload

For the 2nd workload we run simulations for a range of safety parameter values and we used
the median values to chose the best values (see Figure 4.21): 1. THR-0.8 2. IQR-0.5 3. MAD-
1.5 4. LRR-1.2 5. LR-1.2

●

●

●

●

0.00

0.02

0.04

0.06

0.08

0.5 1 1.5 2 2.5 3
Parameter

E
S

V

MAD

●●

0.00

0.02

0.04

0.06

0.08

0.5 1 1.5 2 2.5 3
Parameter

E
S

V

IQR

●●

0.00

0.02

0.04

0.06

0.08

1 1.1 1.2 1.3 1.4
Parameter

E
S

V

LR

●●

0.00

0.02

0.04

0.06

0.08

1 1.1 1.2 1.3 1.4
Parameter

E
S

V

LRR

0.00

0.02

0.04

0.06

0.08

0.6 0.7 0.8 0.9 1
Parameter

E
S

V

THR

Figure 4.21: ESV for a range of safety parameter values

70

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

0.00

0.02

0.04

0.06

0.08

iqr
 −

 m
c

iqr
 −

 m
m

t

iqr
 −

 m
u

iqr
 −

 rs

lr
−

m
c

lr
−

m
m

t

lr
−

m
u

lr
−

rs

lrr
 −

 m
c

lrr
 −

 m
m

t

lrr
 −

 m
u

lrr
 −

 rs

m
ad

 −
 m

c

m
ad

 −
 m

m
t

m
ad

 −
 m

u

m
ad

 −
 rs

th
r −

 m
c

th
r −

 m
m

t

th
r −

 m
u

th
r −

 rs

Host Overload Detection − VM Selection Policies

E
S

V

Disk util. first

Cpu util. first

Cpu util. only

Figure 4.22: ESV

We can see that for the 2nd workload, Disk util. first and CPU util. first produce better results
compare to CPU util. only. To confirm that there is a significant difference between the three
approaches we performed statistical analysis. At first we tried to perform the ANOVA test,
however the data failed to pass the Shapiro-Wilk test for normality and the Fligner-Killeen
test of homogeneity of variances, two of the prerequisites of ANOVA. Tomakematters worse,
failing the Fligner-Killeen means that we are unable to perform even non-parametric differ-
ence tests like Kruskal-Wallis.

We transform our data using the square root function. After the transformation the shapes of
the distribution are similar enough (see Figure 4.23) to allow us to perform the Kruskal-Wallis
test.

0

5

10

15

20

25

0.10 0.15 0.20 0.25
sqrt(esv)

de
ns

ity

group

Cpu Util. First

Cpu Util. Only

Disk Util. First

Figure 4.23: Transformed distributions

71

TheKruskal-Wallis test returns p < 2.2∗10−16. Consequently, the null hypothesis that the dis-
tributions are the same, is rejected. Following the Kruskal-Wallis test we performed multiple
Wilcoxon signed-rank tests to determine the difference between each pair of distributions.
The results are presented in Table 4.4. As we can see and as we intuitively concluded for
workload 1, there is a statistical difference between CPU util. only and both Disk util. first
and CPU util. first, but not between CPU util.first and Disk util. first.

Policy 1 Policy 2 Difference (∗10−2) 95% C.I. (∗10−2) P-value
CPU util. only CPU util. first 0.472 (0.413, 0.536) < 2.2 ∗ 10−16

CPU util. only Disk util. first 0.472 (0.410, 0.531) < 2.2 ∗ 10−16

CPU util. first Disk util. first No statistical difference - 0.905

Table 4.4:Wilcoxon signed-rank tests

Following the exact same process we see that Local Regression has a significant difference
from all other host overload detection policies, and Minimum Migration Time has a signifi-
cant difference from all other VM selection policies.

72

Chapter 5

Conclusions

In this study, we investigated the effect that storage utilization may have on VM consolida-
tion mechanisms. We evaluated our approach using extensive simulations using a very large
amount of workloads from real machines. The experiment results showed that in almost ev-
ery case, taking into account both storage and CPU utilization leads to better consolidation
decisions. Additionally, it became apparent that using the MMT policy for selecting VMs
for migration and the LR policy for host overloading detection leads to statistical significant
gains. Moreover, we showed that an underprovisioned system can have many adverse ef-
fects in the execution of a workload, including bigger energy consumption and more SLA
violations.

Obviously, in order to confirm our conclusions real-world experiments are imperative. As a
result, an implementation of our proposed system in a real Cloud computing platform like
Openstack or Eucalyptus would be necessary. Another interesting idea for future work would
be to use separate heuristics for detecting overutilization of different resources. Finally, fur-
ther investigation for more robust and efficient heuristics might also bring greater gains.

73

Bibliography

[1] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. IEEE
computer, 40(12):33–37, 2007.

[2] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of vir-
tual machines in cloud data centers. Concurrency and Computation: Practice and
Experience, 24(13):1397–1420, 2012.

[3] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya. A taxon-
omy and survey of energy-efficient data centers and cloud computing systems. arXiv
preprint arXiv:1007.0066, 2010.

[4] The point contact transistor. http://ds.haverford.edu/bitbybit/bit-by-bit-contents/
chapter-eight/8-2-the-point-contact-transistor/.

[5] Richard Brown et al. Report to congress on server and data center energy efficiency:
Public law 109-431. Lawrence Berkeley National Laboratory, 2008.

[6] R. Buyya, J. Broberg, and A.M. Goscinski. Cloud Computing: Principles and
Paradigms. Wiley Series on Parallel and Distributed Computing. Wiley, 2010.

[7] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar, Amin M Vahdat, and Ronald P
Doyle. Managing energy and server resources in hosting centers. In ACM SIGOPS
Operating Systems Review, volume 35, pages 103–116. ACM, 2001.

[8] William S Cleveland. Robust locally weighted regression and smoothing scatterplots.
Journal of the American statistical association, 74(368):829–836, 1979.

[9] William S Cleveland and Clive Loader. Smoothing by local regression: Principles and
methods. In Statistical theory and computational aspects of smoothing, pages 10–49.
Springer, 1996.

[10] Problem child. http://content.time.com/time/magazine/article/0,9171,818829,00.html.

[11] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for
a warehouse-sized computer. In ACM SIGARCH Computer Architecture News, vol-
ume 35, pages 13–23. ACM, 2007.

[12] W Forrest and K Brill. Revolutionizing data center efficiency. McKinsey & Company,
2008.

75

http://ds.haverford.edu/bitbybit/bit-by-bit-contents/chapter-eight/8-2-the-point-contact-transistor/
http://ds.haverford.edu/bitbybit/bit-by-bit-contents/chapter-eight/8-2-the-point-contact-transistor/
http://content.time.com/time/magazine/article/0,9171,818829,00.html

[13] Tony Freeth, Y Bitsakis, X Moussas, JH Seiradakis, A Tselikas, H Mangou,
M Zafeiropoulou, R Hadland, D Bate, A Ramsey, et al. Decoding the ancient greek
astronomical calculator known as the antikythera mechanism. Nature, 444(7119):587–
591, 2006.

[14] Jim Gray and Prashant Shenoy. Rules of thumb in data engineering. In Data
Engineering, 2000. Proceedings. 16th International Conference on, pages 3–10. IEEE,
2000.

[15] Introduction to virtual machines. https://labs.vmware.com/download/52/.

[16] Si-Yuan Jing, Shahzad Ali, Kun She, and Yi Zhong. State-of-the-art research study for
green cloud computing. The Journal of Supercomputing, 65(1):445–468, 2013.

[17] J.G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of historical trends
in the electrical efficiency of computing. Annals of the History of Computing, IEEE,
33(3):46–54, March 2011.

[18] Jonathan Koomey. Growth in data center electricity use 2005 to 2010. A report by
Analytical Press, completed at the request of The New York Times, 2011.

[19] Jonathan G Koomey. Estimating total power consumption by servers in the us and the
world, 2007.

[20] Dara Kusic, Jeffrey O Kephart, James E Hanson, Nagarajan Kandasamy, and Guofei
Jiang. Power and performance management of virtualized computing environments via
lookahead control. Cluster computing, 12(1):1–15, 2009.

[21] Eric Masanet, Arman Shehabi, and Jonathan Koomey. Characteristics of low-carbon
data centres. Nature Climate Change, 3(7):627–630, 2013.

[22] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

[23] Gordon E. Moore. Cramming more components onto integrated circuits. In
Mark D. Hill, Norman P. Jouppi, and Gurindar S. Sohi, editors, Readings in computer
architecture, pages 56–59.Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

[24] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power management
in virtualized enterprise systems. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 265–278. ACM, 2007.

[25] Eduardo Pinheiro, Ricardo Bianchini, Enrique V Carrera, and Taliver Heath. Load
balancing and unbalancing for power and performance in cluster-based systems. In
Workshop on compilers and operating systems for low power, volume 180, pages 182–
195. Barcelona, Spain, 2001.

[26] The problem of power consumption in servers. https://software.intel.com/en-us/articles/
the-problem-of-power-consumption-in-servers.

[27] In the data center power and cooling costs more than the it equip-
ment it supports. http://www.electronics-cooling.com/2007/02/
in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.

76

https://labs.vmware.com/download/52/
https://software.intel.com/en-us/articles/the-problem-of-power-consumption-in-servers
https://software.intel.com/en-us/articles/the-problem-of-power-consumption-in-servers
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/

[28] Neil JJ Salkind. Encyclopedia of measurement and statistics. Sage Publications, 2006.

[29] Amit Sinha and Anantha Chandrakasan. Dynamic power management in wireless sen-
sor networks. Design & Test of Computers, IEEE, 18(2):62–74, 2001.

[30] J Edward Smith and Ravi Nair. Introduction to virtual machines. Virtual machines:
versatile platforms for systems and processes, pages 9–10, 2005.

[31] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power aware computing
and systems, volume 10. San Diego, California, 2008.

[32] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi Kothari.
Server workload analysis for power minimization using consolidation. In Proceedings
of the 2009 conference on USENIX Annual technical conference, pages 28–28.
USENIX Association, 2009.

[33] History of virtualization. http://www.everythingvm.com/content/history-virtualization.

[34] Molly Webb et al. Smart 2020: Enabling the low carbon economy in the information
age. The Climate Group. London, 1(1):1–1, 2008.

[35] Code-breaking at bletchley park during world war ii, 1939-1945. http:
//www.ieeeghn.org/wiki/index.php/Milestones:Code-breaking_at_Bletchley_Park_
during_World_War_II,_1939-1945.

[36] Minyi Yue. A simple proof of the inequality ffd (l)≤ 11/9 opt (l)+ 1,� l for the ffd
bin-packing algorithm. Acta mathematicae applicatae sinica, 7(4):321–331, 1991.

77

http://www.everythingvm.com/content/history-virtualization
http://www.ieeeghn.org/wiki/index.php/Milestones:Code-breaking_at_Bletchley_Park_during_World_War_II,_1939-1945
http://www.ieeeghn.org/wiki/index.php/Milestones:Code-breaking_at_Bletchley_Park_during_World_War_II,_1939-1945
http://www.ieeeghn.org/wiki/index.php/Milestones:Code-breaking_at_Bletchley_Park_during_World_War_II,_1939-1945

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	Introduction
	Cloud Computing
	Virtualization
	Energy Consumption Considerations
	Fighting back

	Thesis motivation and scope

	Virtual Machine Placement
	Related Work
	Load Balancing and Unbalancing for Power and Performance in Cluster-Based Systems
	Managing energy and server resources in hosting centers
	Energy Conservation in Heterogeneous Server Clusters
	VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems
	Power and Performance Management of Virtualized Computing Environments Via Lookahead Control
	Energy Aware Consolidation for Cloud Computing
	Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers

	Evaluated Heuristics
	Host Overloading Detection
	Virtual Machine Selection
	Virtual Machine Placement
	Underloaded Hosts

	CloudSim
	Architecture
	Important Entities
	Cloudlet
	Storage and CPU utilization models
	VM
	Host
	Provisioners
	VM scheduler
	Power Model
	Datacenter
	Vm Allocation Policy
	VM Selection Policy

	Simulation
	Metrics
	SLA Violation Metrics
	Performance Metrics

	Workloads
	Simulated Environment
	Results
	1st Workload
	2nd Workload

	Conclusions
	Bibliography

