ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ ΕΜΠ - ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ DIONYSOS SATELLITE OBSERVATORY NTUA - SCHOOL RURAL AND SURVEYING ENGINEERING

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΕΚΤΟΝΙΚΩΝ ΔΙΑΤΜΗΤΙΚΩΝ ΤΑΣΕΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΝΗΣΟΥ ΚΥΠΡΟΥ ΜΕ ΑΝΑΛΥΣΗ ΙΣΤΟΡΙΚΩΝ ΓΕΩΔΑΙΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΘΕΟΔΩΡΑ ΜΑΤΣΙΚΑΡΗ

ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2014

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφάζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Η έγκριση δε της διδακτορικής διατριβής από την Ανώτατη Σχολή Αγρονόμων Τοπογράφων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου δεν υποδηλώνει αποδοχή των απόψεων του συγγραφέα (N.5343/1932, Άρθρο 202).

v

Πρόλογος

Ήταν ιδιαίτερη χαρά και τιμή για μένα η επεξεργασία, στα πλάισια της διαδακτορικής μου διατριβής, των γεωδαιτικών ιστορικών μετρήσεων της Κυπρου, καθώς αποτελεί την ιδιαίτερη πατρίδα μου.

Θα ήθελα να ευχαριστήσω θερμά τον καθηγητή κ. Δ. Παραδείση για τις συμβουλές, την καθοδήγηση και επίβλεψη του σε όλη την διάρκεια της εργασίας αυτής, καθώς και για την ειλικρινή του συμπαράσταση και βοήθεια σε όλα τα θεωρητικά κα πρακτικά προβλήματα που προέκυψαν.

Θέλω επίσης να ευχαριστήσω ιδιαιτέρως την δρ. Μηχανικό Ε.Μ.Π. κα. Αλεξία Καραμάνου για την ανεκτίμητη βοήθεια της σε όλα τα στάδια της εργασίας αυτής.

Ακόμα, ευχαριστίες οφείλω στον δρ. Μηχανικό Ε.Μ.Π. Θανάση Γκέγκα, καθώς και στους υποψήφιους διδάκτορες Βαγγέλη Ζαχαρή και Θανάση Μπίμη για την βοήθεια που μου παρείχαν.

Τέλος, θέλω να ευχαριστήσω την κ. Φωτεινή Ρικανιάδη - Πούλου, για την φιλική βοήθεια και ηθική συμπαράσταση σε όλη την διάρκεια της εκπόνησης της παρούσας εργασίας.

Πίνακας Περιεχομένων

	σελ.
Πρόλογος	V
Πίνακας Περιεχομένων	vii
Πίνακας Πινάκων	ix
Πίνακας Σχημάτων	xi
Περίληψη	xiii

Κεφάλαιο 1.	Η ΓΕΩΛΟΓΙΑ ΤΗΣ ΚΥΠΡΟΥ	1
	1.1. Εισαγωγή	1
	1.2. Η Γεωτεκτονική Ζώνη του Τροόδους (Οροσειρά του Τροόδους)	3
	1.3. Το Σύναγμα	5
	1.4. Η τεκτονική εξέλιξη της Κύπρου	6
	1.5. Το πεδίο βαρύτητας της Κύπρου	9
Κεφάλαιο 2.	Η ΣΕΙΣΜΙΚΟΤΗΤΑ ΤΟΥ ΚΥΠΡΙΑΚΟΥ ΧΩΡΟΥ	11
	2.1. Γενικά	11
	2.2. Οι σεισμοί στον κυπριακό χώρο	12
	2.2.1. Ιστορικοί σεισμοί	12
	2.2.2. Ενόργανες καταγραφές των τελευταίων 100 χρόνων	13
	2.2.3. Κατανομή της σεισμικής δραστηριότητας στον κυπριακό χώρο	15
Κεφάλαιο 3.	ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΜΙΑΣ ΠΕΡΙΟΧΗΣ ΜΕ ΧΡΗΣΗ	17
	ΓΕΩΔΑΙΤΙΚΩΝ ΜΕΤΤΡΗΣΕΩΝ (ΤΑΝΥΣΤΕΣ ΠΑΡΑΜΟΡΦΩΣΗΣ)	
	3.1. Γενικά	17
	3.2. Το μαθηματικό μοντέλο του υπολογισμού των τεκτονικών παραμορφώσεων	17
	3.3. Χρήση γεωδαιτικών μετρήσεων στον προσδιορισμό των παραμέτρων	26
	παραμόρφωσης	
	3.4. Το λογισμικό υπολογισμού των τανυστών παραμόρφωσης	30
Κεφάλαιο 4.	ΔΕΔΟΜΕΝΑ	33
	4.1. Γενικά	33
	4.2. Μετρήσεις 1914	34
	4.3. Μετρήσεις 1962	39

49
49
50
50
59
59
61

Βιβλιογραφία

63

Πίνακας Πινάκων

		σελ.
Πίνακας 2.1 Οι σημαντ 1999.	ικότεροι σεσμοί στην Κύπρο για την περίοδο από 1896 έως	14
Πίνακας 4.1 Οι γωνιομετ	ρήσεις της περιόδου 1914.	34 - 39
Πίνακας 4.2 Οι μετρήσει	ς αποστάσεων της περιόδου 1962.	40 - 46
Πίνακας 4.3 Οι επίπεδες	συντεταγμένες των κορυφών του δικτύου σε UTM.	47 - 48
Πίνακας 5.1 Συντεταγμέ για κάθε τρί	νες κέντρου βάρους και στοιχεία έλλειψης παραμόρφωσης γωνο.	51
Πίνακας 5.2 Αποτελέσμα	ατα υπολογισμού διατμητικών τάσεων.	52 - 54
Πίνακας 6.1 Ρυθμός ετής	σιας ολικής διάτμησης.	59

Πίνακας Σχημάτων

	σελ.
Σχήμα 1.1 Οι έξι κυριότερες λιθοσφαιρικές πλάκες του φλοιού της γης	2
Σχήμα 1.2 Οι γεωτεκτονικές Ζώνες της Κύπρου.	3
Σχήμα 1.3 Σχηματική απεικόνηση της σύγκρουσης λιθοσφαιρικών πλακών και της	3
έναρξης του σχηματισμού του Τροόδους πρίν 90 εκατομμύρια χρόνια.	
Σχήμα 1.4 Στρωματογραφική στήλη του Οφιόλιθου του Τροόδους και των υπερκείμενων	
ιζηματογενών πετρωμάτων.	5
Σχήμα 1.5 Ο Γεωλογικός Χάρτης της Κύπρου (α).	8
Σχήμα 1.6 Χάρτης ανωμαλιών Bouguer της Κύπρου.	9
Σχήμα 2.1 Σεισμικές εντάσεις και κατανομή τους στον Κυπριακό χώρο για την χρονική	13
περίοδο από 100 π.Χ. μέχρι 1997 μ.Χ	
Σχήμα 2.2 Επίκεντρα 674 σεισμών που καταγράφηκαν από σεισμολογικούς σταθμούς	
στον ευρύτερο Κυπριακό χώρο στην περίοδο μεταξύ 1905 - 1996.	15
Σχήμα 2.3 Διάταξη των Λιθοσφαιρικών πλακών στην Ανατολική Μεσόγειο.	16
Σχήμα 3.1 Συντεταγμένες σημείου τις χρονικές στιγμές t_1 και t_2	19
Σχήμα 3.2 Έλλειψη παραμόρφωσης	29
Σχήμα 4.1 Το τριγωνομετρικό Δίκτυο της Κύπρου	33
Σχήμα 5.1 Τα κοινά τρίγωνα μεταξύ των εποχών μετρήσεων 1914-1962.	49
Σχήμα 5.2 Διατμητικές τάσεις στον Κυπριακό χώρο.	54
Σχήμα 5.3 Τεκτονικές ταχύτητες της Αν.Μεσογείου ως προς την Αραβική τεκτονική πλάκα.	55
Σχήμα 5.4 Τεκτονικές ταχύτητες της Αν.Μεσογείου ως προς την Ευρασιατική τεκτονική πλάκα.	56
Σχήμα 5.5 Τεκτονικές ταχύτητες της Αν.Μεσογείου ως προς το ITRF08.	56
Σχήμα 5.6 Τεκτονικές ταχύτητες της Αν.Μεσογείου ως προς την Αφρικανική τεκτονική πλάκα.	57
Σχήμα 5.7 Ο Γεωλογικός Χάρτης της Κύπρου (β).	58

Περίληψη

Βασικός σκοπός της εργασίας αυτής είναι ο προσδιορισμός των τεκτονικών διατμητικών τάσεων στην περιοχή της Νήσου Κύπρου. Για τον λόγο αυτό διεξάχθηκε πρωτογενής έρευνα και επεξεργασία όλων των ιστορικών δεδομένων γεωδαιτικών μετρήσεων που διατέθηκαν από την Υπηρεσία Κτηματολογίου της Κύπρου.

Οι ιστορικές μετρήσεις αφορούν τόσο σε γωνιομετρήσεις που αναφέρονται στην περίοδο 1914, όσο και σε μετρήσεις αποστάσεων που αναφέρονται στην περίοδο 1962. Το μετρημένο τριγωνομετρικό δίκτυο αποτελείται συνολικά από 32 κορυφές, ενώ μεταξύ των δύο εποχών μετρήσεων παραμένουν κοινά 26 τρίγωνα.

Για την ανάλυση των μετρήσεων αναπτύχθηκε ειδικό λογισμικό σε γλώσσα προγραμματισμού Visual Basic 6.0, το οποίο βασίζεται στην παγκοσμίως εγκεκριμένη, προτεινόμενη από τον κ.Γ.Βέη μεθοδολογία (Πρ. Ακαδημίας Αθηνών, 1992), σύμφωνα με την οποία οι διατμητικές παραμορφώσεις σε κάθε σχηματιζόμενο τρίγωνο του δικτύου προκύπτουν από την διαφορά στις μετρημένες οριζόντιες γωνίες μεταξύ των εποχών παρατήρησης.

Προκειμένου να είναι δυνατή η σύγκριση μεταξύ των δύο εποχών μετρήσεων, οι μετρήσεις αποστάσεων της εποχής 1962 αφού υπόστηκαν τις κατάλληλες διορθώσεις για την αναγωγή τους στο επίπεδο, στην συνέχεια χρησιμοποιήθηκαν για την επίλυση των τριγώνων και τον υπολογισμό των αντίστοιχων οριζόντιων γωνιών.

Η ανάλυση των μετρήσεων δείχνει ότι οι σημαντικότερες τάσεις παρατηρούνται στο νοτιοδυτικό του τμήμα νησιού και κυρίως γύρω από την περιοχή της Πάφου, γεγονός που επιβεβαιώνεται και από το επίσημο Δελτίο του Τμήματος Γεωλογικής Επισκόπησης του Υπουργείου Γεωργίας Φυσικών Πόρων και Περιβάλλοντος Κύπρου, που περιλαμβάνει πίνακα με τους σημαντικότερους σεισμούς των τελευταίων 100 χρόνων.

Επιπλέον, η διεύθυνση των περισσότερων τανυστών παραμόρφωσης από Α-Δ, ταυτίζεται σε ικανοποιητικό βαθμό με την διεύθυνση των διανυσμάτων μετακίνησης του ευρύτερου Ελλαδικού και Τουρκικού χώρου, που είναι αναμενόμενο δεδομένου ότι ο χώρος αυτός αποτελεί φυσική συνέχεια των περιοχών Ελλάδας και Τουρκίας.

Τα παραπάνω συμπεράσματα αποδεικνύουν ότι η έρευνα αυτή αποτελεί το υπόβαθρο για οποιαδήποτε σχετική μελλοντική μελέτη πραγματοποιηθεί στην περιοχή.

1. Η ΓΕΩΛΟΓΙΑ ΤΗΣ ΚΥΠΡΟΥ

1.1. Εισαγωγή

Για να περιγράψουν τη γεωλογία διαφόρων περιοχών της γης οι γεωλόγοι ομαδοποιούν περιοχές της ίδιας γεωλογικής δομής, εξέλιξης και ηλικίας σε αυτό που ονομάζουν γεωτεκτονικές ζώνες. Σε μικρότερη κλίμακα πετρώματα της ίδιας ηλικίας, σύνθεσης και τρόπου σχηματισμού ονομάζονται σχηματισμοί. Στους σχηματισμούς δίνονται ονόματα τα οποία συνήθως προέρχονται από τα τοπωνύμια των περιοχών στις οποίες παρουσιάζουν την μεγαλύτερή τους ανάπτυξη. Οι αρχές αυτές ακολουθούνται και στην προκείμενη περίπτωση, για να διευκολύνονται οι γεωλογικοί συσχετισμοί για ολόκληρη την Κύπρο.

Η γεωλογία της Κύπρου έχει ως πυρήνα το οφιολιθικό σύμπλεγμα του Τροόδους, ηλικίας 92 εκατομμυρίων χρόνων. Τα πετρώματα του Τροόδους αποτελούν ένα κομμάτι αρχαίου ωκεάνιου φλοιού, που άρχισε να αναδύεται από τη θάλασσα πριν 10 περίπου εκατατομμύρια χρόνια. Η γεωλογική εξέλιξη της Κύπρου σε παλαιότερο χρόνο ήταν υποθαλάσσια και σ' αυτήν προέχουν τρία κύρια τεκτονικά επεισόδια: (α) η γένεση του συμπλέγματος του Τροόδους πάνω από μια ωκεάνια ζώνη καταβύθισης και η κατά τον ίδιο χρόνο προσκόλληση σ' αυτό παλαιότερων πετρωμάτων ηλικίας 200 μέχρι 75 εκατομμυρίων χρόνων στα νότια και δυτικά περιθώριά του, (β) η τεκτονική ηρεμία που επικράτησε στην περίοδο από 75 μέχρι 10 εκατομμύρια χρόνια και ααρακτηρίζεται από την υποθαλάσσια εναπόθεση πελαγικών ασβεστολιθικών ιζημάτων και τη βαθμιαία μείωση του βάθους των θαλασσών και (γ) η προσκόλληση της οροσειράς της Κερύνειας στη βόρεια πλευρά του Συμπλέγματος του Τροόδους και η ανύψωση της νήσου στη σημερινή της μορφή.

Για να κατανοήσει κάποιος τον τρόπο σχηματισμού της Κύπρου, θα πρέπει να γνωρίζει τις βασικές διεργασίες και ανακατατάξεις που συμβαίνουν στο φλοιό της Γης.

Σύμφωνα με τη θεωρία των λιθοσφαιρικών πλακών η επιφάνεια της γης χωρίζεται σε μικρό αριθμό άκαμπτων λιθοσφαιρικών πλακών οι οποίες ευρίσκονται σε συνεχή σχετική κίνηση (Σχήμα 1.1). Τα όρια μεταξύ των πλακών είναι τριών τύπων:

α) Αποκλίνοντα όρια. Κατά μήκος των ορίων αυτών οι πλάκες απομακρύνονται η μια από την άλλη και στο κενό που δημιουργείται σχηματίζεται νέος φλοιός, γι' αυτό τα όρια αυτά ονομάζονται και δημιουργικά όρια. Στα όρια αυτά παρατηρείται έκχυση λαβών κατά μήκος ενός άξονα διεύρυνσης και μια σχετική σεισμική δραστηριότητα με μικρού μεγέθους σεισμούς. β) Συγκλίνοντα όρια. Στα όρια αυτά οι δύο πλάκες συγκρούονται και η μια καταδύεται υπό γωνία κάτω από την άλλη. Κατά μήκος αυτών των ορίων σύγκλισης που είναι γνωστά και ως όρια καταβύθισης, το βυθιζόμενο τμήμα της πλάκας καταστρέφεται μέσα στο μανδύα της γης, γι' αυτό και τα όρια αυτά ονομάζονται καταστροφικά. Τα πιο σημαντικά χαρακτηριστικά των ορίων αυτών είναι η έντονη σεισμικότητα και η έντονη ηφαιστειακή δράση

γ) Εφαπτομενικά όρια. Στα όρια αυτά οι δύο πλάκες κινούνται παράλληλα αλλά σε αντίθετη κατεύθυνση. Κατά την κίνηση των πλακών στα όρια αυτά, που ονομάζονται ρήγματα μετασχηματισμού, δεν δημιουργείται αλλά ούτε καταστρέφεται μέρος της λιθόσφαιρας. Σ' αυτά δεν παρατηρείται ηφαιστειακή δράση, παρατηρούνται όμως καταστρεπτικοί σεισμοί. Το ρήγμα του Αγίου Ανδρέα στην Καλιφόρνια των Ηνωμένων Πολιτειών είναι ρήγμα μετασχηματισμού.

Σχήμα 1.1 Οι έξι κυριότερες λιθοσφαιρικές πλάκες του φλοιού της γης.

Νέος φλοιός δημιουργείται κατά μήκος των αποκλινόντων ορίων όπου και σχηματίζονται υποθαλάσσιες οροσειρές, που είναι γνωστές ως μεσοωκεάνιες οροσειρές. Νέος φλοιός μπορεί επίσης να σχηματιστεί πάνω από τις ζώνες καταβύθισης. Ο φλοιός αυτός έχει ένα πάχος της τάξης των 6 χιλιομέτρων και βρίσκεται κάτω από όλους τους ωκεανούς γι' αυτό και ονομάζεται ωκεάνιος φλοιός. Οι γνώσεις μας για τον ωκεάνιο φλοιό προέρχονται από γεωφυσικές μελέτες, γεωτρήσεις και παρατηρήσεις με βαθυσκάφη στους ωκεανούς, αλλά κυρίως από τη μελέτη τμημάτων παλαιού ωκεάνιου φλοιού που έχουν αναδυθεί και ανυψωθεί πάνω από το επίπεδο της θάλασσας και αποτελούν τώρα χερσαία τμήματα. Τέτοια χερσαία τμήματα παλιού ωκεάνιου φλοιού και βρίσκονται συνήθως σε συγκλίνοντα όρια λιθοσφαιρικών πλακών. Η Κύπρος χωρίζεται σε τρεις γεωτεκτονικές ζώνες: την οροσειρά του Τροόδους και την

προέκταση της κάτω από τη Μεσαορία, τη Ζώνη των Μαμωνιών και την Οροσειρά της Κερύνειας, οι οποίες αποτελούνται βασικά από αλλόχθονους σχηματισμούς (Σχήμα 1.2).

Σχήμα 1.2 Οι γεωτεκτονικές Ζώνες της Κύπρου.

1.2. Η Γεωτεκτονική Ζώνη του Τροόδους (Οροσειρά του Τροόδους)

Η οροσειρά του Τροόδους είναι ένας οφιόλιθος και αποτελεί μέρος ενός αρχαίου ωκεάνιου φλοιού, η ανύψωση του οποίου στη σημερινή του θέση οφείλεται μεταξύ άλλων στη σύγκρουση της αφρικανικής λιθοσφαιρικής πλάκας με την ευρα- σιατική και την καταβύθιση της πρώτης κάτω από τη δεύτερη. (Σχήμα 1.3).

Σχήμα 1.3 Σχηματική απεικόνηση της σύγκρουσης λιθοσφαιρικών πλακών και της έναρξης του σχηματισμού του Τροόδους πρίν 90 εκατομμύρια χρόνια.

Ο όρος οφιόλιθος προέρχεται από τις λέξεις όφις και λίθος και δόθηκε, αρχές του 19ου αιώνα, στο πέτρωμα σερπεντινίτης λόγω της προσομοίωσης της όψης του με εκείνη ενός πράσινου

φιδιού. Αργότερα,ειδικότερα στη δεκαετία του 1960 με την αποδοχή της θεωρίας των λιθοσφαιρικών πλακών, ο όρος αυτός χρησιμοποιείται για να προσδιορίσει μια ομάδα βασικών και υπερβασικών πυριγενών και ιζηματογενών πετρωμάτων. Αυτά περιγράφονται πιο κάτω ξεκινώντας από τα στρωματογραφικά ανώτερα προς τα στρωματογραφικά κατώτερα. (Σχήμα 1.4)

α) Ραδιολαριτικοί κερατόλιθοι και πηλίτες με ενδιάμεσες, ασυνεχείς εμφανίσεις φαιοχωμάτων.

β) Ηφαιστειακά πετρώματα και κυρίως ροές προσκεφαλοειδών λαβών.

γ) Φλεβικά πετρώματα βασαλτικής κυρίως σύστασης.

δ) Πλουτώνια πετρώματα.

ε) Πετρώματα της Ακολουθίας του Μανδύα.

Σήμερα πιστεύεται ότι το Τρόοδος σχηματίστηκε πριν 90 περίπου εκατομμύρια χρόνια (Ανώτερο Κρητιδικό), κατά μήκος ενός άξονα διεύρυνσης στα όρια καταβύθισης της αφρικανικής πλάκας κάτω από την πλάκα της Ευρασίας. Στον οφιόλιθο του Τροόδους βρίσκονται όλα τα πετρώματα ενός οφιολιθικού συμπλέγματος. Τα πετρώματα αυτά δεν έχουν διαταραχθεί από την αρχική σχετική τους θέση ούτε έχουν υποστεί οποιαδήποτε αλλαγή εκτός από την θαλάσσια εξαλλοίωση. Ο οφιόλιθος του Τροόδους μαζί με αυτό του Ομάν είναι στρωματογραφικά πλήρεις και από τους καλύτερα διατηρημένους στη γη. Το γεγονός αυτό προκάλεσε την προσοχή και το ενδιάφερον των γεωεπιστημόνων τα τελευταία τριάντα χρόνια. Οι δύο αυτοί οφιόλιθοι είναι τμήματα μιας σειράς οφιολίθων που βρίσκονται κατά μήκος των βορείων ορίων της Αραβικής πλάκας σηματοδοτώντας έτσι την εξαφάνιση ενός αρχαίου ωκεανού, της Τηθύος, που προϋπήρχε στην περιοχή αυτή. Η Μεσόγειος είναι ένα τμήμα που έχει απομείνει από τον αρχαίο αυτό ωκεανό.

Σχήμα 1.4 Στρωματογραφική στήλη του Οφιόλιθου του Τροόδους και των υπερκείμενων ιζηματογενών πετρωμάτων.

1.3 Το Σύναγμα

Είναι ο νεότερος ιζηματογενής σχηματισμός της Κύπρου, πλειστοκαινικής ηλικίας, που επικάθεται με ασυμφωνία σ' όλους τους παλαιότερους γεωλογικούς σχηματισμούς. Αποτελείται από αποθέσεις αμμοχάλικων που προήλθαν από τη διάβρωση κυρίως των οφιολιθικών πετρωμάτων του Τροόδους. Τα συστατικά στοιχεία του συνάγματος είναι γωνιώδη μέχρι αποστρογγυλευμένα τεμάχια, οφιολιθικών πετρωμάτων καθώς επίσης άμμοι, πηλοί και ιλύες. Τα συστατικά αυτά δεν έχουν οποιαδήποτε διαβάθμιση και κυρίως είναι χωρίς ή μόνο με ελαφρή συγκόλληση μεταξύ τους. Σε σπάνιες περιπτώσεις, κυρίως στην κορυφή του συνάγματος, η συγκόληση είναι ισχυρή και; έτσι σχηματίζονται σκληρά λατυποπαγή ανθεκτικά στη διάβρωση. Το υλικό της συγκόλλησης είναι ανθρακικό ασβέστιο.

Οι συγκεντρώσεις των αμμοχάλικων του συνάγματος, που στη γεωλογική ορολογία ονομάζονται επίσης αλλουβιακά ριπίδια, αποτέθηκαν από χειμάρρους. Η εναπόθεση τόσων μεγάλων ποσοτήτων αμμοχαλίκων είναι το αποτέλεσμα ψηλής βροχόπτωσης και απότομης ανύψωσης του Τροόδους, τα πετρώματα του οποίου ως εκ τούτου διαβρώθηκαν έντονα και τα προϊόντα της διάβρωσης μεταφέρθηκαν από τα νερά. Προσεκτική μελέτη των αποθέσεων αυτών οδηγεί στη διάκριση τριών κύκλων απόθεσης, οι οποίοι χωρίζονται μεταξύ τους με την παρουσία κοκκινοχωμάτων (παλαιοεδαφών). Πιθανόν οι κύκλοι εναπόθεσης του συνάγματος να αντιστοιχούν με τις τρεις πρώτες παγετώδεις περιόδους της Ευρώπης και τα παλαιοεδάφη με τις μεσοπαγετώδεις περιόδους. Κατά τις παγετώδεις περιόδους η βροχόπτωση ήταν πολύ ψηλή ενώ κατά τις μεσοπαγετώδεις επικρατούσαν ξηρικές συνθήκες.

1.4. Η τεκτονική εξέλιξη της Κύπρου

Στα προηγούμενα κεφάλαια γίνεται αναφορά στα σημαντικότερα τεκτονικά γεγονότα που οδήγησαν στην ανάδυση της Κύπρου από τη θάλασσα. Η σύγκρουση των παρυφών της Αραβίας με την τάφρο καταβύθισης της Αφρικανικής Πλάκας πάνω απο την οποία σχηματίστηκε το Τρόοδος είχε ως αποτέλεσμα:

α) την παύση της καταβύθισης και τη γένεση οφιολίθων,

β) την αποκόλληση του οφιολίθου του Τροόδους και την περιστροφή του κατά 90° αντίστροφα προς την φορά των ωρολογιακών δεικτών

γ) την τοποθέτηση του συμπλέγματος των Μαμωνιών στα κράσπεδα της γεωτεκτονικής ζώνης
 του Τροόδους και τη συγχώνευσή τους σε μια ενότητα.

Με την καταβύθιση και τις ανάλογες αναπροσαρμογές οι πλάκες κινήθηκαν βορειότερα έτσι που τα νοτιότερα κράσπεδά τους βρέθηκαν στην περιοχή όπου τελικά θα προσκολλόταν η οροσειρά της Κερύνειας. Νότια της περιοχής αυτής επικρατούσε τεκτονική ηρεμία με θαλάσσια ιζηματογένεση σε θάλασσες που προοδευτικά ξεβάθεναν και με το Τρόοδος να αναδύεται στο Μέσο Μειόκαινο.

Ακόμη ένα σημαντικό τεκτονικό επεισόδιο σημειώθηκε στο τέλος του Μειόκαινου και επηρέασε κυρίως το βορειότερο τμήμα της περιοχής που θα αποτελούσε την Κύπρο. Μια σειρά από αλλόχθονους ασβεστόλιθους επωθήθηκαν νότια πάνω στις παρυφές της ζώνης του Τροόδους πτυχώνοντας και επωθώντας όλα τα νεότερα ιζήματα που συνάντησαν στην πορεία τους. Ανατολικά της Κύπρου η Τηθύς θάλασσα έκλεισε και η Μεσόγειος θάλασσα απέκτησε σχεδόν

το σημερινό της σχήμα. Ωστόσο η Αφρικανική Πλάκα δεν σταμάτησε να κινείται βόρεια. Τα όρια των πλακών έπρεπε να αναπροσαρμοστούν και η σχετική κίνηση των πλακών να αλλάξει, ώστε να εξισορροπηθούν οι δυνάμεις.

Μια νέα ζώνη καταβύθισης αναπτύχθηκε νότια και δυτικά της Κύπρου και οι δύο πλάκες ολισθαίνουν παράλληλα μεταξύ τους στα ανατολικά. Σ' αυτό το γεωμετρικό σχήμα, καθώς η Αφρικανική και ειδικότερα η Αραβική Πλάκα κινείται κάτω από την Τουρκία, τη σπρώχνει και την αναγκάζει να κινηθεί δυτικά κατά μήκος δύο κυρίων ρηγμάτων ολίσθησης. Με αυτό τον τρόπο καταβυθίζεται η Αφρικανική Πλάκα στα νότια της Κύπρου, πράγμα που είχε καθοριστική επίδραση στη γένεση και τη γεωλογική εξέλιξη του νησιού.

Ενα μικρό κομμάτι του ηπειρωτικού φλοιού που απεκόπη από την Αφρικανική Πλάκα πριν 200 εκατομμύρια χρόνια, προσέγγισε τη ζώνη καταβύθισης στο τέλος του Μειόκαινου. Το κομμάτι αυτό αποτελεί το υποθαλάσσιο βουνό γνωστό ως Ερατοσθένης. Ο φλοιός αυτός είναι ελαφρότερος και περιέχει πολύ περισσότερο νερό απ' ότι ο ωκεάνιος φλοιός του Τροόδους. Καθώς το κομμάτι αυτό πήγαινε βαθύτερα κάτω από το Τρόοδος, έχασε το περισσότερο από το νερό του, το οποίο μετανάστευσε προς τα πάνω και βοήθησε στη σερπεντινίωση των υπερβασικών οφιολιθικών πετρωμάτων και ειδικότερα των πετρωμάτων της ακολουθίας του Μανδύα. Ο σερπεντινίτης κινήθηκε προς τα πάνω λόγω του μικρότερου ειδικού βάρους του και βοήθησε το Τρόοδος να ανυψωθεί πάνω από το επίπεδο της θάλασσας.

Αυτό δεν ήταν βέβαια και ο μοναδικός παράγοντας ανύψωσης. Ο καταβυθιζόμενος ηπειρωτικός φλοιός, ως πολύ ελαφρύτερος εξασκούσε μια σημαντική άνωση στο κομμάτι του ωκεάνιου φλοιού που θα αποτελούσε την Κύπρο με αποτέλεσμα και τη βαθμιαία ανύψωσή του. Ο ρυθμός της ανύψωσης δεν ήταν σταθερός. Σε περιόδους δραστικής ανύψωσης η διάβρωση ήταν έντονη και οι ποταμοί σχημάτισαν βαθιές κοιλάδες που άφησαν πίσω τους κατάλοιπα των προηγούμενων ποτάμιων αποθέσεων σε διάφορα επίπεδα, πράγμα που χαρακτηρίζει όλους τους ποταμούς της Κύπρου.

Τεράστιες ποσότητες προϊόντων διάβρωσης έχουν δημιουργηθεί κατά τις περιόδους αυτές και έχουν απότομα μεταφερθεί και εναποτεθεί σχηματίζοντας τα πλειοκαινικά ιζήματα (Σύναγμα) που έχουν ήδη περιγραφεί. Η κίνηση των πλακών και η κατα βύθιση της Αφρικανικής Πλάκας νότια της Κύπρου αποτελούν την αιτία των σεισμών που συμβαίνουν στον κυπριακό χώρο. Ο παρακάτω Χάρτης (Σχ.1.5) απεικονίζει τον γεωλογικό σχηματισμό καθώς και τα κυριότερα ρήγματα της Κύπρου.

Σχ.1.5 Ο Γεωλογικός Χάρτης της Κύπρου (α).

1.5 Το πεδίο βαρύτητας της Κύπρου

Η Κύπρος καλύπτεται από ένα ισχυρό πεδίο βαρύτητας με τις τιμές ανωμαλίας να κυμαίνονται μεταξύ 100 και 250 mgal (Gass & Smith, 1963). Οι μεγαλύτερες ανωμαλίες καταγράφονται πάνω από τον ορεινό όγκο του Τροόδος και εκτείνονται σε έναν άξονα με διεύθυνση Ανατολή-Δύση. Είναι χαρακτηριστικό ότι καμία ανωμαλία βαρύτητας αυτού του μεγέθους, μέχρι στιγμής, δεν έχει βρεθεί στην ανατολική Μεσόγειο. Οι υψηλές τιμές των ανωμαλιών σχετίζονται άμεσα με την γεωλογική ιδιαιτερότητα του νησιού, τα σύνθετα και υψηλής πυκνότητας οφιολιθικά πετρώματα της οροσειράς του Τροόδος, ενώ στον παρακάτω Χάρτη 1.2 φαίνονται οι θετικές ανωμαλίες Bouguer κατά τον άξονα Άνατολή-Δύση που καλύπτουν όλο το νησί.

Σχήμα 1.6 Χάρτης ανωμαλιών Bouguer της Κύπρου.

2. Η ΣΕΙΣΜΙΚΟΤΗΤΑ ΤΟΥ ΚΥΠΡΙΑΚΟΥ ΧΩΡΟΥ

2.1. Γενικά

Οι σεισμοί είναι εδαφικές δονήσεις, που προκαλούνται κατά κύριο λόγο από τη διατάραξη της μηχανικής ισορροπίας των πετρωμάτων της γης. Σύμφωνα με τις σύγχρονες αντιλήψεις της γεωλογίας, ο φλοιός της γης αποτελείται από λιθοσφαιρικές πλάκες, οι οποίες κινούνται συνεχώς. Κατά την κίνηση αυτή των πλακών αναπτύσσονται δυνάμεις, που σε ορισμένες περιπτώσεις ξεπερνούν το ανώτατο όριο της ελαστικής παραμόρφωσης των πετρωμάτων με αποτέλεσμα τη διάρρηξή τους και τη ξαφνική και ορμητική απελευθέρωση ενέργειας. Από το σημείο ή την περιοχή όπου προκαλείται η διάρρηξη και ονομάζεται εστία του σεισμού, μεταδίδεται μέσω των πετρωμάτων μια κυματοειδής κίνηση προς όλες τις κατευθύνσεις.

Ορισμένα από τα κύματα φτάνουν στην επιφάνεια της γης, κατά μήκος της οποίας διαδίδονται και τούτο είναι η βασική αιτία καταστροφών. Τα κύματα μπορούν να προκαλέσουν καταστροφές σε κτίρια και άλλες κατασκευές, κατολισθήσεις, καθιζήσεις και διαρρήξεις του εδάφους, υψομετρικές και υδρογραφικές μεταβολές καθώς και παλιρροϊκά κύματα, όταν οι εστίες των σεισμών είναι κάτω από τη θάλασσα. Οι σεισμικές εστίες βρίσκονται σε κάποιο βάθος μέσα στο φλοιό της γης ή ακόμη βαθύτερα, η εκδήλωση όμως του σεισμού φαίνεται να προέρχεται από σημεία της επιφάνειας της γης ακριβώς πάνω από τις σεισμικές εστίες, που ονομάζονται επίκεντρα.

Ο κλάδος της επιστήμης που μελετά τους σεισμούς ονομάζεται Σεισμολογία και έχει αναπτυχθεί τα τελευταία 100 χρόνια περίπου. Ειδικά όργανα, οι σεισμογράφοι, καταγράφουν τις εδαφικές κινήσεις που προκαλούνται από τους σεισμούς και δίνουν τη δυνατότητα στους σεισμολόγους να μελετήσουν τα σχετικά αίτια, τους μηχανισμούς γένεσης, τον τρόπο διάδοσης των σεισμικών κυμάτων καθώς και την επίδρασή τους πάνω στις κατασκευές και γενικά τον άνθρωπο και το περιβάλλον.

Δύο από τις γνωστότερες παραμέτρους, με βάση τις οποίες διαβαθμίζονται οι σεισμοί, είναι η ένταση και το μέγεθος. Η ένταση είναι η σφοδρότητα με την οποία γίνεται αντιληπτός ένας σεισμός σε ένα τόπο και κρίνεται από τα αποτελέσματά του πάνω στους ανθρώπους, τις τεχνικές κατασκευές και το φυσικό περιβάλλον. Η ένταση αυτή μετράται από 1 μέχρι 12 βαθμούς στην κλίμακα Μερκάλλι. Το μέγεθος είναι η ποσότητα της ενέργειας που εκλύεται στην εστία του σεισμού και είναι το κριτήριο της πραγματικής ισχύος του σεισμού. Τούτο μετράται από 1 μέχρι 10 βαθμούς στην λογαριθμική κλίμακα Ρίχτερ.

2.2. Οι σεισμοί στον κυπριακό χώρο

Η Κύπρος βρίσκεται μέσα στη δεύτερη σεισμογενή ζώνη της γης, που εκτείνεται από τον Ατλαντικό Ωκεανό κατά μήκος της λεκάνης της Μεσογείου διαμέσου της Ιταλίας, Ελλάδας, Τουρκίας, Περσίας και των Ινδιών και φτάνει μέχρι τον Ειρηνικό Ωκεανό. Στη ζώνη αυτή εκδηλώνονται σεισμοί, που αντιπροσωπεύουν το 15% της παγκόσμιας σεισμικής δραστηριότητας. Η σεισμική δραστηριότητα στην περιοχή της Κύπρου είναι πολύ μικρότερη από αυτή της Ελλάδας και της Τουρκίας, αλλά μεγαλύτερη από εκείνη της Συρίας και του Λιβάνου. Φαίνεται να είναι ισοδύναμη με εκείνη του Ισραήλ και της Αιγύπτου.

2.2.1 Ιστορικοί σεισμοί

Ιστορικές αναφορές, αλλά και σύγχρονα αρχαιολογικά ευρήματα μαρτυρούν ότι την Κύπρο έπληξαν στο παρελθόν ισχυροί σεισμοί, που σε αρκετές περιπτώσεις κατέστρεψαν τις πόλεις και τους οικισμούς της. Η Σαλαμίνα, το Κίτιο, η Αμαθούντα, το Κούριο, η Πάφος και η Λευκωσία καθώς και πολλά χωριά υπέστησαν καταστροφές σε διάφορες χρονικές περιόδους.

Από ιστορικά δεδομένα προκύπτει ότι από το 26 π.Χ. μέχρι το 1900 μ.Χ. έγιναν 16 καταστρεπτικοί σεισμοί, με ένταση τουλάχιστο 8 στην κλίμακα Μερκάλλι. Το 15 π.Χ. ισοπεδώθηκε η Πάφος, ενώ το 76 μ.Χ καταστράφηκαν η Σαλαμίνα, το Κίτιο και πάλι η Πάφος. Ο σεισμός αυτός θεωρείται ως ο ισχυρότερος που έπληξε ποτέ την Κύπρο. Η Σαλαμίνα και η Πάφος καταστράφηκαν εκ νέου το 332 και 342 μ.Χ. αντίστοιχα. Στο Σχήμα 2.1 δίδονται οι σεισμικές εντάσεις (Μ.Μ.) και η κατανομή τους για την περίοδο 100 π.Χ. μέχρι 2000 μ.Χ. Τα ιστορικά δεδομένα παρουσιάζουν πολλές ανακρίβειες και κενά. Για κάποιες χρονικές περιόδους υπάρχει πλήρης έλλειψη στοιχείων, που φαίνεται να οφείλεται σε ασταθείς πολιτικές συνθήκες. Επιπρόσθετα, πολλά γεγονότα έχουν μεγαλοποιηθεί κατά καιρούς από τους ιστορικούς και τους χρονογράφους που τα περιέγραψαν.

Σχήμα 2.1 Σεισμικές εντάσεις και κατανομή τους στον Κυπριακό χώρο για την χρονική περίοδο από 100 π.Χ. μέχρι 1997 μ.Χ..

2.2.2 Ενόργανες καταγραφές των τελευταίων 100 χρόνων

Από το 1896, όταν άρχισαν να ιδρύονται σεισμολογικοί σταθμοί σε γειτονικές χώρες, άρχισαν να συλλέγονται ακριβέστερα στοιχεία για τους σεισμούς που συμβαίνουν στην Κύπρο και το γύρω θαλάσσιο χώρο. Άρχισε, έτσι, να σχηματίζεται μια εικόνα της σεισμικότητας του κυπριακού χώρου και να αναγνωρίζονται οι περιοχές που παρουσιάζουν μεγαλύτερη σεισμική δραστηριότητα. Κατά την περίοδο 1896 - 1996, 346 σεισμοί με επίκεντρα στην Κύπρο και το γύρω θαλάσσιο χώρο έγιναν αισθητοί σε διάφορες περιοχές της Κύπρου. Από αυτούς 13 προκάλεσαν ζημιές και αυτοί δίδονται με κάποιες λεπτομέρειες στον Πίνακα 2.1 πιο κάτω. Οι πλέον καταστρεπτικοί σεισμοί στον εικοστό αιώνα ήταν εκείνοι του 1941, 1953 και 1995.

Ημερομηνία	Μέγεθος (Ms)	Περιγραφή ζημιών
29/6/1896	6,5	Ζημιές στην επαρχία Λεμεσού και κυρίως στο Ακρωτήρι και
		την Επισκοπή.
8		Ακολούθησαν πολλοί μετασεισμοί.
5/1/1900	5,7	Μικρές ζημιές στη Μεσαορία
23/2/1906	5,3	Μικρές ζημιές στη Λεμεσό και το Κολόσσι. Αισθητός σε όλη την Κύπρο.
18/2/1924	6,0	Μικρές ζημιές στην Αμμόχωστο.
13/12/1927	5,0	Μικρές ζημιές στη Λεμεσό και σε χωριά βόρεια της Λεμεσού (Κοιλάνι, Πέρα-Πεδί, Μονάγρι).
9/5/1930	5,4	Ζημιές στην πόλη της Πάφου και τη γύρω περιοχή.
26/6/1937	4,7	Ζημιές στη νοτιοδυτική Κύπρο (Πάχνα, Όμοδος, Άρσος, Πλάτρες, Σαλαμιού, Άγιος Νικόλαος, Κοιλίνια, Άγιος Ιωάννης).
20/1/1941	5,9	Σοβαρές ζημιές στην επαρχία Αμμοχώστου και κυρίως στο Παραλίμνι, όπου τραυματίστηκαν 24 άτομα και κατέρρευσαν πολλές οικοδομές. Επίσης, προκλήθηκαν περιορισμένες ζημιές στις επαρχίες Λευκωσίας, Λάρνακας και Κερύνειας.
10/9/1953	6,1	Καταστρεπτικός σεισμός με θύματα και πολύ μεγάλες ζημιές στην πόλη και επαρχία Πάφου (63 νεκροί, 200 τραυματισμένοι, 4.000 άστεγοι) προκλήθηκαν κατολισθήσεις σε διάφορες περιοχές και καταστράφηκαν σπίτια σε 158 χωριά. Μετά ακολούθησαν πολλοί μετασεισμοί, ορισμένοι από τους οποίους προκάλεσαν επιπρόσθετες ζημιές.
15/1/1961	5,7	Μικρές ζημιές στη Λάρνακα και τη γύρω περιοχή.
28/3/1984	4,5	Ιδιαίτερα αισθητός στην πόλη και επαρχία Λάρνακας, όπου
22/2/4005		προκάλεσε μικρές ζημιές.
23/2/1995	5,7	Καταστρεπτικός σεισμός στην Πάφο με 2 νεκρούς. Αρκετές κατοικίες κατάρρευσαν στα χωριά Πάνω Αρόδες και Μηλιού. Ζημιές προκλήθηκαν επίσης στα χωριά Περιστερώνα, Στενή, Γιαλιά, Αργάκα, Πωμός, Πύργος, Λεύκα, Νέο Χωριό, Λατσί και Πόλη Χρυσοχούς.
9/10/1996	6,5	Πολύ ισχυρός σεισμός στο νοτιοδυτικό τμήμα της Κύπρου προκάλεσε πανικό στους κατοίκους της Πάφου και Λεμεσού καθώς και σε ενοίκους πολυώροφων κτιρίων στη Λευκωσία, στην Λάρνακα και στο Παραλίμνι. Δύο άτομα έχασαν τη ζωή τους από δευτερογενή αιτία και είκοσι τραυματίστηκαν ελαφρά. Προκλήθηκαν επίσης περιορισμένες ζημιές κυρίως στην Πάφο και τη Λεμεσό. Ακολούθησε μεγάλος αριθμός μετασεισμών, ορισμένοι από τους οποίους έγιναν αισθητοί και προκάλεσαν ανησυχία μέχρι τη Λευκωσία.
11/8/1999	5,6	Ισχυρός σεισμός στη περιοχή Γεράσας προκάλεσε ζημιές σε κτίρια στη Λεμεσό και τα χωριά βόρεια της Λεμεσού. Προκλήθηκαν μικρές κατολισθήσεις στην περιοχή Γερμασόγειας. Έγινε αισθητός σε όλη την Κύπρο. Δεν υπήρξαν θύματα, στη Λεμεσό τραυματίστηκαν ελαφρά 40 άτομα κυρίως από τον πανικό. Ακολούθησε μεγάλος αριθμός μετασεισμών οι οποίοι συνεχίστηκαν μέχρι το τέλος του 1999.

Πίνακας 2.1 Οι σημαντικότεροι σεσμοί στην Κύπρο για την περίοδο από 1896 έως 1999.

Η μελέτη, τόσο των ιστορικών όσο και των νεότερων καταγραφών, δείχνει ότι η χρονική κατανομή της σεισμικής δραστηριότητας δεν είναι κανονική, αλλά υπάρχουν περίοδοι έντονης σεισμικής δραστηριότητας, ακολουθούμενες από περιόδους σεισμικής ύφεσης. Έτσι, ενώ κατά την περίοδο 1918 - 1937 καταγράφηκαν στον κυπριακό χώρο (33,5°B - 37.0°B, 31.0°A - 35,5°A) 28 σεισμοί με μέγεθος Ms > 4,5, κατά την περίοδο 1960 - 1990 καταγράφηκαν μόνο 11. Κατά τα έτη 1995 και 1996 παρατηρήθηκε αύξηση της σεισμικής δραστηριότητας με δύο ισχυρούς σεισμούς μεγέθους Ms > 5.7 και 6.5 αντίστοιχα.

2.2.3 Κατανομή της σεισμικής δραστηριότητας στον κυπριακό χώρο

Μια παραστατική εικόνα της σεισμικής δραστηριότητας στον κυπριακό χώρο παρουσιάζει ο χάρτης στο Σχήμα 2. 2, όπου σημειώνονται τα επίκεντρα 674 σεισμών (ανεξάρτητα από το μέγεθος τους), που καταγράφηκαν από σεισμολογικούς σταθμούς στην περίοδο μεταξύ 1894 και 1996.

Σχήμα 2.2 Επίκεντρα 674 σεισμών που καταγράφηκαν από σεισμολογικούς σταθμούς στον ευρύτερο Κυπριακό χώρο στην περίοδο μεταξύ 1905 - 1996.

Από το χάρτη αυτό είναι φανερό ότι η κύρια σεισμική δραστηριότητα συγκεντρώνεται στα δυτικά και στα νότια του νησιού καθώς και σε μια κατά προσέγγιση τοξοειδή διάταξη στο θαλάσσιο χώρο επίσης δυτικά και νότια. Το μεγαλύτερο ποσοστό της σεισμικής δραστηριότητας κατά την περίοδο 1894 - 1996 παρατηρείται νότια του 35ου παραλλήλου. Στα νοτιοδυτικά του νησιού υπάρχει σεισμική ύφεση κατά τα τελευταία 100 χρόνια σε αντίθεση προς τον κόλπο της Αττάλειας βορειότερα, όπου η σεισμική ύφεση παρατηρείται επίσης βορειοανατολικά της Κύπρου προς τον κόλπο της Αλεξανδρέττας.

Η σεισμικότητα της Κύπρου αποδίδεται κατά κύριο λόγο στην παρουσία στην περιοχή της ανατολικής Μεσογείου του "Κυπριακού Τόξου", που αποτελεί το τεκτονικό όριο μεταξύ της αφρικανικής και ευρασια- τικής λιθοσφαιρικής πλάκας στην περιοχή. Όπως φαίνεται και στο χάρτη του Σχήματος 2.3, το "Κυπριακό Τόξο" εκτείνεται από τον κόλπο της Αττάλειας, όπου

ενώνεται με το "Ελληνικό Τόξο", νότια της Κύπρου με κατεύθυνση προς τον "κόλπο της Αλεξανδρέττας, όπου συναντά το "Ανατολικό Ρήγμα" της Ανατολίας. Το "Κυπριακό Τόξο" αποτελεί τη ζώνη καταβύθισης της αφρικανικής πλάκας κάτω από την ευρασιατική, όπου (λόγω της τριβής που αναπτύσσεται μεταξύ των πετρωμάτων), συσσωρεύονται τεράστιες ποσότητες ενέργειας, που εκλύεται σε αρκετές περιπτώσεις υπό μορφή σεισμών.

Σχήμα 2.3 Διάταξη των Λιθοσφαιρικών πλακών στην Ανατολική Μεσόγειο.

3. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΜΙΑΣ ΠΕΡΙΟΧΗΣ ΜΕ ΧΡΗΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΜΕΤΤΡΗΣΕΩΝ (ΤΑΝΥΣΤΕΣ ΠΑΡΑΜΟΡΦΩΣΗΣ)

3.1 Γενικά

Ο προσδιορισμός της παραμόρφωσης μιας περιοχής είναι πολύ σημαντικός για την μελέτη της τεκτονικής συμπεριφοράς του φλοιού της γης παράλληλα με την μελέτη της σεισμικής δραστηριότητας εξ αιτίας της μεγάλης συσχέτισης που έχουν μεταξύ τους.

Το μεγαλύτερο της πληροφορίας μέχρι σήμερα για την παραμόρφωση του φλοιού της γης προέρχεται από γεωλογικά, παλαιομαγνητικά καθώς και από σεισμολογικά δεδομένα. Όμως είναι σημαντικό να προσδιορισθούν οι τεκτονικές παραμορφώσεις ανεξάρτητα από την σεισμικότητα ώστε να συνδεθούν εκ των υστέρων με την σεισμική δραστηριότητα.

Αυτή την δυνατότητα προσφέρουν οι γεωδαιτικές μετρήσεις, μια ανεξάρτητη εκτίμηση των τιμών της παραμόρφωσης. Αν η θέση μιας σειράς σημείων έχει προσδιορισθεί με ακρίβεια σε διαφορετικές χρονικές στιγμές, οι αλλαγές στις σχετικές τους θέσεις μπορούν να βρεθούν και άρα οι παραμορφώσεις να υπολογιστούν.

3.2 Το μαθηματικό μοντέλο του υπολογισμού των τεκτονικών παραμορφώσεων

Ας θεωρηθεί μια παραμόρφωση (Βέης, 1992) σε δυο διαστάσεις του φλοιού της γης σε συνάρτηση με τον χρόνο, υποθέτωντας ότι ο φλοιός είναι ένα λεπτό κέλυφος πάνω σε μια σφαιρική γη. Η ανάλυση θα μπορούσε να απλοποιηθεί αν χρησιμοποιηθεί μια τυπική προβολή της σφαίρας σε επίπεδο και ληφθούν υπόψη οι χαρτογραφικές παραμορφώσεις που προκύπτουν από την προβολή. Για μια μικρή περιοχή (ακτίνας μικρότερης των 5°) οι χαρτογραφικές παραμορφώσεις (εκτός από αυτές που αναφέρονται στον προσανατολισμό) δεν θα είναι μεγαλύτερες από 10⁻³ σε κλίμακα και άρα μπορούν να αγνοηθούν χωρίς πρακτικά καμία απώλεια σε ακρίβεια.

Με βάση τις παραπάνω παραδοχές, αν θεωρηθεί ότι x_1, y_1 είναι οι επίπεδες συντεταγμένες ενός σημείου της γήινης επιφάνειας οι οποίες προέρχονται από την μετατροπή των γεωδαιτικών συντεταγμένων ϕ, λ , εκφρασμένες σε ένα καλά ορισμένο σύστημα αναφοράς στην εποχή t_1

και x_2, y_2 είναι οι συντεταγμένες του ίδιου σημείου στο ίδιο σύστημα αναφοράς στην εποχή t_2 τα $\delta x = x_2 - x_1$, $\delta y = y_2 - y_1$ εκφράζουν τα διανύσματα μετακίνησης στο ίδιο σύστημα αναφορας και $\frac{\delta x}{\delta t}, \frac{\delta y}{\delta t}$ είναι οι ταχύτητες της μετακίνησης.

Για να προσδιοριστούν θέσεις και μετακινήσεις σε ένα επίπεδο χρειάζεται τουλάχιστον ένα σταθερό γνωστό σημείο και μία διεύθυνση. Αν αυτά δεν υπάρχουν μπορεί να οριστούν αυθαίρετα χωρίς απώλεια της γενικότητας και σε αυτή την περίπτωση είναι προφανές ότι όλες οι συντεταγμένες και οι μετακινήσεις είναι σχετικές.

Ομως είναι πιο ακριβές αντί για τον αυθαίρετο ορισμό σταθερού σημείου και διεύθυνσης να προσαρμοστεί η σειρά των συντεταγμένων της εποχής *t*² στις συντεταγμένες της εποχής *t* προσπαθώντας να εντοπιστεί μια μετάθεση και μία στροφή η οποία θα ελαχιστοποιήσει τις διαφορές. Μαθηματικά και οι δύο μέθοδοι είναι όμοιες.

Οι παραμορφώσεις του φλοιού της γης έχουν ασυνέχειες και στην εξέλιξή τους στον χώρο (ρήγματα) και στον χρόνο (σεισμοί). Συνηθίζεται όμως η μελέτη των παραμορφώσεων σαν να είναι ένα συνεχές φαινόμενο και οι ασυνέχειές τους να μελετούνται ξεχωριστά.

Από τα παραπάνω προκύπτει ότι οι μετακινήσεις του φλοιού σε μια περιοχή θα είναι γνωστές αν οι συντεταγμένες όλων των σημείων σε μια εποχή t₂ μπορούν να εκφραστούν σαν συνάρτηση των συντεταγμένων των σημείων στην εποχή t. Άρα με βάση τα παραπάνω:

$$x_2 = f \quad x_1, y_1$$

$$y_2 = g x_1, y_1$$

Έστω ότι ένα σημείο στην εποχή t έχει συντεταγμένες x, y και στην εποχή t_2 έχει συντεταγμένες X_2, Y_2 (Σχ.3.1).

•
$$t_1 = (x_1, y_1)$$

• $t_2 = (x_2, y_2)$

Σχήμα 3.1 Συντεταγμένες σημείου τις χρονικές στιγμές t_1 και t_2

Από την στιγμή που θεωρήθηκε ότι το φαινόμενο χωρικά και χρονικά δεν παρουσιάζει ασυνέχειες μπορούν να αναπτυχθούν οι άγνωστες συναρτήσεις f, g σε σειρές Taylor ούτως ώστε οι σχέσεις να είναι πάντοτε γραμμικές, υπόθεση η οποία εξασφαλίζει την απαιτούμενη ακρίβεια για μία μικρή περιοχή.

Άρα οι σχέσεις

$$x_{2} = f \quad x_{1}, y_{1}$$

$$y_{2} = g \quad x_{1}, y_{1}$$
(3.1)

με την ανάπτυξη κατά Taylor γίνονται:

$$x_{2} = a_{0} + a_{1} \cdot x_{1} + a_{2} \cdot x_{2}$$

$$y_{2} = b_{0} + b_{1} \cdot x_{1} + b_{2} \cdot x_{2}$$
(3.2)

και οι μετακινήσεις θα δίνονται από τις σχέσεις:

$$\delta x = f \quad x_1, y_1 \quad -x_1$$

 $\delta y = g \quad x_1, y_1 \quad -y_1$
(3.3)

Χρησιμοποιώντας τα διανύσματα των μετακινήσεων και την θεωρία των παραμορφώσεων των χαρτογραφικών προβολών μπορούν να υπολογισθούν οι παραμορφώσεις του στερεού φλοιού.(Ας σημειωθεί εδώ ότι οι παρακάτω γωνίες μετρούνται δεξιόστροφα από τον Βορρά (Υ-άξονας) όπως στις γεωδαιτικές εφαρμογές.)

Θεωρώντας λοιπόν ότι οι σχέσεις μεταξύ των δύο σειρών συντεταγμένων τις εποχές t_1 , t_2 δίνονται από την σχέση (2) μπορούν να εντοπιστούν οι παράλληλοι άξονες στους X και Y ενός σημείου στην εποχή t_1 όπως αυτοί θα είναι την εποχή t_2 . Για κάθε άξονα υπολογίζεται μια μετάθεση d μία στροφή ε και μία επιμήκυνση που εκφράζεται από μια νέα κλίμακα κατά μήκος των αξόνων,

$$K = 1 + e$$

Από τα προηγούμενα προκύπτει ότι η μετάθεση του X άξονα είναι $dx = a_o$ και η μετάθεση του Y άξονα είναι $dy = b_o$ όπως επίσης ότι :

$$\varepsilon_x = \arctan \frac{-b_1}{a_1}$$
 που είναι η στροφή του Χ άξονα
 $\varepsilon_x = \arctan \frac{a_2}{b_2}$ που είναι η στροφή του Υ άξονα

και

$$K_x = \sqrt{a_1^2 + b_1^2} = 1 + e_x \Longrightarrow e_x = \sqrt{a_1^2 + b_1^2} - 1$$

$$K_y = \sqrt{a_2^2 + b_2^2} = 1 + e_y \Longrightarrow e_y = \sqrt{a_2^2 + b_2^2} - 1$$

Στις παραμορφώσεις του φλοιού της γης λαμβάνουν χώρα μετακινήσεις της τάξης των μερικών cm στα μήκη και σχετικές αλλαγές έως και 10^{-7} . Αρα είναι προφανές ότι για χρονικά διαστήματα αιώνων η μετάθεση θα είναι μερικά μέτρα, και τα e και e έως 10^{-4} .

Άρα αγνοώντας τα τετράγωνα των τόσο μικρών ποσοτήτων θεωρώντας δηλαδή ότι tan $\varepsilon_x \approx \varepsilon_x$ η σχέση 2 γράφεται:

$$\delta x = x_2 - x_1 = dx + e_x \cdot x + e_y \cdot y$$

$$\delta y = y_2 - y_1 = dy - e_x \cdot x + e_y \cdot y$$
(3.4)
$$\begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = \begin{pmatrix} dx \\ dy \end{pmatrix} + \begin{pmatrix} e_x & \varepsilon_y \\ -\varepsilon_x & e_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
(3.5)

 $\delta i = di + E \cdot X \tag{3.6}$

όπου $dx = a_0$, $dy = b_0$, και $e_x = a_1 - 1$, $e_y = b_2 - 1$, $\varepsilon_x = -b_1$, $e_y = a_2$ είναι πολύ μικρές ποσότητες.

Το \mathcal{E}_x και το \mathcal{E}_y εκφράζουν την πολύ μικρή παραμόρφωση σε προσανατολισμό σε σχέση με τους πραγματικούς άξονες X και Y ενώ τα e_x και \mathcal{E}_y αναφέρονται στην γραμμική παραμόρφωση, εκφρασμένα επί τοις εκατό ως επιμήκυνση του αρχικού μήκους κατά μήκος των

 $e = \frac{\Delta l}{l}$ очоµа́ζεтан παρаµо́рφωση (strain) кан η παρаµо́рφωση στον προσανατολισµо́ очоµа́ζεтан γωνιακή παραµо́рφωση (orientation strain). Ο ασύµµετρος διδιάστατος πίνακας Ε ονοµа́ζεται τανυστής παραµо́рφωσης και όπως θα αποδειχθεί στην συνέχεια χαρακτηρίζει την τοπική επιφανειακή παραµо́ρφωση µµας περιοχής σε ένα σηµείο x, y. Τα στοιχεία e_x , E_y και ε_x και ε_y ονοµάζονται παράµετροι παραµо́ρφωσης (strain parameters). Ο ασύµµετρος τανυστής E µπορεί να αναλυθεί ως άθροισµα ενός συµµετρικού πίνακα και

Ο ασθημετρος τανθοτης E μπορεί να αναλθεί ως αθροισμά ένος συμμετρικού πινακά και ενός ασύμμετρου δηλαδή $E = E_0 + \Omega$ όπου το Ω αντιπροσωπεύει την στροφή ενός ιδεατού στερεού (το οποίο δεν παραμορφώνεται κατά κανένα άλλο τρόπο).

 $ω = \frac{\varepsilon_y + \varepsilon_x}{2} = \overline{\varepsilon}$ και

$$\varepsilon_0 = \frac{\varepsilon_y - \varepsilon_x}{2} \tag{3.7}$$

τότε προκύπτει: $e_y = \omega + \varepsilon_0$ και $e_x = \omega - \varepsilon_0$ άρα:

$$E = \begin{pmatrix} e_x & e_y \\ -\varepsilon_x & e_y \end{pmatrix} = \begin{pmatrix} \varepsilon_x & \varepsilon_0 \\ \varepsilon_0 & e_y \end{pmatrix} + \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$$
(3.8)

Σε αυτή την περίπτωση το $\omega = \overline{\varepsilon}$ είναι η μέση στροφή των X και Y αξόνων (η συνολική στροφή που θα συνέβαινε σε ένα ιδεατό στερεό ενώ ε_0 είναι η ισοδύναμη και αντίθετη στροφή των δύο αξόνων επιπρόσθετα με την μέση στροφή. Η ορθή γωνία των δύο αξόνων θα μειωθεί κατά δύο ε_0

$$a_{x_1} = 90^0$$

$$a_{y_1} = 0^0$$

$$a_{x_2} = 90^0 - \varepsilon_x, \ a_{y_2} = -\varepsilon_y$$

$$a_{y_1} - a_{x_1} = 90$$

$$a_{y_2} - a_{x_2} = 90 - \varepsilon_x + \varepsilon_y \Longrightarrow$$

$$a_{y_2} - a_{x_2} = 90 - 2 \cdot \varepsilon_0$$

Αρα η εξίσωση (5) γράφεται ως εξής:

$$\begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = \begin{pmatrix} dx \\ dy \end{pmatrix} + \begin{pmatrix} e_x & \varepsilon_0 \\ \varepsilon_0 & e_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
(3.9)
$$\delta i = di + E_0 \cdot x_i + \Omega \cdot x_i$$
(3.10)

Οι παραπάνω σχέσεις είναι δυνατό να χρησιμοποιηθούν μόνο αν η παραμορφωμένη περιοχή μπορεί να συνδεθεί με μετρήσεις με ένα σταθερό σε θέση και προσανατολισμό σύστημα αναφοράς. Στις περισσότερες περιπτώσεις αυτό δεν είναι εφικτό, άρα είναι φανερό ότι το διάνυσμα d_i και ο πίνακας Ω δεν μπορούν να προσδιοριστούν, άρα οι σχέσεις (3.9), (3.10) αλλάζουν ως εξής:

$$\begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = \begin{pmatrix} e_x & \varepsilon_0 \\ \varepsilon_0 & e_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
(3.11)

$$\delta i = E \cdot x_i \tag{3.12}$$

και με αυτόν τον τρόπο μόνο τρεις παράμετροι παραμόρφωσης μπορούν να προσδιορισθούν $e_x, e_y, e_0.$

Με δεδομένο τον τανυστή παραμόρφωσης E (ή E_0) μπορούν να υπολογιστούν οι τοπικές παραμορφώσεις σε ένα σημείο x, y. Αν θεωρηθεί ένα μοναδιαίο διάνυσμα στο σημείο x, yστην διεύθυνση ενός αζιμουθίου a (το οποίο μετράται δεξιόστροφα από τον άξονα Υ) το διάνυσμα θα έχει αρχικές συνιστώσες στην εποχή $t_1 \sin a, \cos a$ και το ίδιο διάνυσμα την εποχή t_2 αφού η παραμόρφωση που εκφράζεται με τον **E** εφαρμοστεί θα γίνει:

$$E\begin{pmatrix} x+\sin a\\ y+\cos a \end{pmatrix}$$
 kai ára η παραμόρφωση του μοναδιαίου διανύσματος θα είναι $E\begin{pmatrix} \sin a\\ \cos a \end{pmatrix}$.

Είναι δυνατό να αναλυθεί η παραμόρφωση σε δύο συνιστώσες, μία ε σε διεύθυνση κάθετη στο αρχικό διάνυσμα και μία ε κατά μήκος του διανύσματος η οποία εκφράζει την γραμμική παραμόρφωση σε αυτή την διεύθυνση.

Τότε:

$$\begin{pmatrix} \varepsilon \\ e \end{pmatrix} = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix} \cdot E \cdot \begin{pmatrix} \sin a \\ \cos a \end{pmatrix}$$
(3.13)

ή

$$e = e_x \cdot \sin^2 a + e_y \cdot \cos^2 a + e_y - e_x \cdot \sin a \cdot \cos a \qquad (3.14)$$

και

$$\varepsilon = \varepsilon_x \cdot \sin^2 a + \varepsilon_y \cdot \cos^2 a + \varepsilon_y - \varepsilon_x \cdot \sin a \cdot \cos a \qquad (3.15)$$

Η σχέση (3.14) δίνει την γραμμική παραμόρφωση σε ένα σημείο x, y ,για το οποίο ο τανυστής παραμόρφωσης είναι δεδομένος, ως συνάρτηση του αζιμουθίου. Είναι γνωστό ότι τα ακρότατα μιας συνάρτησης βρίσκονται εκεί που μηδενίζεται η πρώτη παράγωγος. Δηλαδή αν $\frac{de}{da} = 0$ θα βρεθούν οι μέγιστες και οι ελάχιστες τιμές του e όπως και οι μέγιστες και οι ελάχιστες τιμές του προσανατολισμού (αζιμούθια).

Άρα προκύπτει:

$$e_{\max} = e_1 = \frac{1}{2} \left[e_x + e_y + \sqrt{e_x - e_y^2 + e_y - e_x^2} \right]$$

$$e_{\min} = e_2 = \frac{1}{2} \left[e_x + e_y - \sqrt{e_x - e_y^2 + e_y - e_x^2} \right]$$
(3.16)

και

$$\tan 2a_1 = \frac{\varepsilon_y - \varepsilon_x}{e_y - e_x} \tag{3.17}$$

που είναι η μέγιστη τιμή του αζιμουθίου, $\tan 2a_2 = \frac{-\varepsilon_x - \varepsilon_y}{-e_y - e_x}$ που είναι η ελάχιστη τιμή του αζιμουθίου.

Είναι φανερό από τα παραπάνω ότι οι μέγιστες και οι ελάχιστες τιμές αντιστοιχούν στις κάθετες διευθύνσεις οι οποίες ονομάζονται και κύριες διευθύνσεις.

Αν χρησιμοποιηθεί $\overline{e} = \frac{e_x + e_y}{2}$ ως η μέση τιμή της παραμόρφωσης (strain) κατά μήκος των Χ και Υ αξόνων και ονομασθούν $\gamma_e = \varepsilon_x - \varepsilon_y$ και $\gamma_\varepsilon = \varepsilon_y - \varepsilon_x$ και $\gamma = \sqrt{\gamma_e^2 + \gamma_\varepsilon^2}$ τότε προκύπτουν οι παρακάτω απλές σχέσεις:

$$e_{1} = \overline{e} + \frac{1}{2}\gamma$$
$$e_{2} = \overline{e} - \frac{1}{2}\gamma$$

$$a_1 = \frac{1}{2}\arctan\frac{\gamma_{\varepsilon}}{\gamma_e} \quad \text{kon} \quad a_2 = \frac{1}{2}\arctan\frac{-\gamma_{\varepsilon}}{\gamma_e} \tag{3.18}$$

απ' όπου προκύπτει ότι:

$$\overline{\varepsilon} = \frac{e_y + e_x}{2} \quad \text{kat} \quad \gamma = e_1 - e_2 = e_{\text{max}} - e_{\text{min}} \tag{3.19}$$

Αν προστεθεί 1 στη σχέση (3.14) προκύπτει η εξίσωση μιας έλλειψης με μεγάλο ημιάξονα $a = 1 + e_1$ και μικρό ημιάξονα $b = 1 + e_2$ προσανατολισμένη σε σχέση με τους κύριους άξονες με γωνίες α, και α2. Αυτό αποδεικνύει ότι οποιοσδήποτε μοναδιαίος κύκλος θα παραμορφωθεί σε έλλειψη. Αυτή η έλλειψη χρησιμοποιείται για να δείξει γραφικά την παραμόρφωση και ονομάζεται έλλειψη παραμόρφωσης. Οι παράμετροι παραμόρφωσης ε και ε μπορούν να εκφραστούν ως συναρτήσεις των παραμέτρων που ορίζουν την έλλειψη.

Αν αντί για το αζιμούθιο α χρησιμοποιηθεί η γωνία β (σχ. 3.2) μετρημένη δεξιόστροφα από τον μεγάλο ημιάξονα $\beta = \alpha_1 - \alpha_2$ τότε οι σχέσεις που δίνουν τα ε και ε των σχέσεων (3.14) και (3.15) μπορούν να εκφραστούν ως συναρτήσεις των παραμέτρων που ορίζουν την έλλειψη.

$$e = e_1 \cdot \sin^2 \beta + e_2 \cdot \cos^2 \beta = \overline{e} - \frac{1}{2} \cdot \gamma \cdot \cos 2\beta$$
(3.20)

$$\varepsilon = \frac{1}{2} e_1 - e_2 \cdot \sin 2\beta = \frac{1}{2} \cdot \gamma \cdot \sin 2\beta$$
(3.21)

An hewrheel kaheth dieúhungh sthn β tóte h paramórfwigh ston prosanatolismó ha eínai $\varepsilon_{90} = \frac{1}{2} \cdot \gamma \cdot \sin 2 \ 90 + \beta = -\varepsilon .$

Αυτό σημαίνει ότι η δεξιόστροφη γωνία θα παραμορφωθεί κατά $\psi = 2 \cdot \varepsilon$ η οποία αντιπροσωπεύει την διάτμηση στις γραμμές που είναι παράλληλες στην διεύθυνση της β. Η γωνία ψ ονομάζεται γωνία διάτμησης και δίνεται από την σχέση

$$\psi = \gamma \cdot \sin 2\beta \tag{3.22}$$

Η εφαπτομένη της γωνίας ψ, ονομάζεται διατμητική παραμόρφωση (shear strain), αλλά αφού η ψ είναι μια πολύ μικρή γωνία οι τιμές ψ και tanψ μπορούν να χρησιμοποιούνται αδιακρίτως.

Από την εξίσωση (22) φαίνεται ότι η μέγιστη τιμή της γωνιακής διάτμησης είναι $\psi_{max} = \gamma$ και αντιστοιχεί σε όλες τις δεξιόστροφες γωνίες που ορίζονται από τις διχοτόμους των κυρίων αξόνων.

3.3 Χρήση γεωδαιτικών μετρήσεων στον προσδιορισμό των παραμέτρων παραμόρφωσης

Οι γεωδαιτικές μέθοδοι μπορούν να δώσουν με απ' ευθείας μετρήσεις και την γραμμική και την γωνιακή παραμόρφωση. Αν η οριζόντια απόσταση μεταξύ δύο σημείων Α και Β στη διεύθυνση ενός αζιμουθίου α έχει μετρηθεί και είναι l_1 στην εποχή t_1 και στην εποχή t_2 είναι l_2 τότε προφανώς έχουμε ότι — που είναι η γραμμική παραμόρφωση σε μία διεύθυνση α.

Οποιαδήποτε τέτοια μέτρηση δίνει μια εξίσωση παρατήρησης της μορφής

$$e = e_x \cdot \sin^2 a + e_y \cdot \cos^2 a + \varepsilon_y - \varepsilon_x \cdot \sin a \cdot \cos a \qquad (3.23)$$

Είναι προφανές ότι οι γωνιακές παραμορφώσεις κατά τους X και Y άξονες δηλαδή $\varepsilon_x, \varepsilon_y$ δεν μπορούν να υπολογιστούν ξεχωριστά, άρα οι άγνωστοι που μπορούν να υπολογιστούν από την σχέση (3.23) είναι οι e_x, e_y και $\varepsilon_y - \varepsilon_x = \gamma_\varepsilon = 2 \cdot \varepsilon_0$.

Οποιεσδήποτε τρεις μετρήσεις αποστάσεων μπορούν να δώσουν την δυνατότητα υπολογισμού των τριών αγνώστων με την προϋπόθεση ότι οι τρεις βάσεις δεν είναι παράλληλες. Επίσης όπως προκύπτει από τα προηγούμενα καμία παράλληλη μετάθεση d_x, d_y δεν μπορεί να υπολογιστεί από τέτοιες μετρήσεις από την στιγμή που δεν υπάρχει σύνδεση με εξωτερικά σταθερά σημεία.

Με το ίδιο τρόπο αν μετρηθεί μια οριζόντια γωνία από ένα σημείο P μεταξύ των σημείων A και B και έχει την τιμή \mathcal{G}_1 την εποχή t_1 και \mathcal{G}_2 την εποχή t_2 , η γωνιακή παραμόρφωση θα είναι $\varepsilon_{\mathcal{G}} = \mathcal{G}_2 - \mathcal{G}_1$ η οποία αντιστοιχεί στις διευθύνσεις a_A , a_B των αζιμουθίων των σημείων A και B.

Η τιμή της ε_g είναι $\varepsilon_g = \varepsilon_B - \varepsilon_A$. Η τιμή της ε δίνεται από την εξίσωση (3.15) $\varepsilon = \varepsilon_x \cdot \sin^2 a + \varepsilon_y \cdot \cos^2 a + e_y - e_x \cdot \sin a \cdot \cos a$ αλλά στην περίπτωση που δεν υπάρχει εξωτερικός έλεγχος, η συνολική στροφή ω δεν μπορεί να υπολογιστεί, πράγμα το οποίο σημαίνει ότι $\varepsilon_x = -\varepsilon_y = \varepsilon_0 = \frac{1}{2} \cdot \gamma_{\varepsilon}$ και η σχέση (3.15) γράφεται:

$$\varepsilon = \frac{1}{2} \cdot \gamma_{\varepsilon} \cdot \cos 2a - \frac{1}{2} \gamma_{e} \cdot \sin 2a$$
(3.24)

Τελικά προκύπτει:

$$\varepsilon_{g} = \frac{1}{2} \cdot \gamma_{\varepsilon} \cdot \cos 2a_{b} - \cos 2a_{A} - \frac{1}{2} \cdot \gamma_{e} \cdot \cos 2a_{B} - \cos 2a_{A}$$
(3.25)

Για κάθε γωνία που έχει μετρηθεί προκύπτει μια εξίσωση παρατήρησης της μορφής (3.25). Κάθε δύο μετρήσεις μπορούν να δώσουν την δυνατότητα υπολογισμού των δύο αγνώστων γ_{ε} και γ_{e} . Είναι προφανές ότι από γωνιακές παρατηρήσεις μόνο δεν μπορεί να βγει συμπέρασμα για την γραμμική παραμόρφωση παρά μόνο για την διατμητική.

Αν είναι διαθέσιμες περισσότερες μετρημένες αποστάσεις ή γωνίες, τότε μπορούν να χρησιμοποιηθούν περισσότερες εξισώσεις παρατήρησης και με την χρήση της Μεθόδου των Ελαχίστων Τετραγώνων μπορούν να υπολογιστούν οι καλύτερες τιμές των αγνώστων παραμέτρων. Σε περίπτωση που γίνεται χρήση και γωνιών και αποστάσεων η εξίσωση παρατήρησης και για τις γωνίες πρέπει να γραφεί ως εξής:

$$\varepsilon_g = \frac{1}{2} \cdot e_x \quad \sin 2a_B - \sin 2a_A \quad -\frac{1}{2} \cdot e_y \quad \sin 2a_B - \sin 2a_A \quad +\frac{1}{2} \cdot \varepsilon_y - \varepsilon_x \quad \cos 2a_B - \cos 2a_A \quad (3.26)$$

για να είναι στην ίδια μορφή με την εξίσωση (3.23) που αναφέρεται στις αποστάσεις.

Με την μέθοδο αυτή, με δεδομένες τις διαφορές στις μετρημένες αποστάσεις και γωνίες μεταξύ δύο εποχών μπορεί να γίνει μια εκτίμηση για τα e_x , e_y και ε_0 αλλά όχι και για την συνολική μετάθεση και στροφή ενός στερεού σώματος.

Υπάρχει και μια άλλη μέθοδος η οποία μπορεί να χρησιμοποιηθεί για τον υπολογισμό των παραμέτρων της παραμόρφωσης. Πρώτα υπολογίζονται από γεωδαιτικές μετρήσεις οι συντεταγμένες των σημείων στο ίδιο γεωδαιτικό σύστημα αναφοράς και για τις δύο εποχές t_1 , t_2 . Στη συνέχεια υπολογίζονται οι μετατοπίσεις δ_x , δ_y των σημείων. Αυτές οι μετατοπίσεις είναι συνδεδεμένες με τις παραμέτρους παραμόρφωσης με τις ακόλουθες δύο εξισώσεις :

$$\delta_x = x_2 - x_1 = dx + e_x \cdot x + \varepsilon_y \cdot y$$
$$\delta_y = y_2 - y_1 = dy + \varepsilon_x \cdot x + e_y \cdot y$$

Αν τα σημεία είναι τρία αναπτύσσονται έξι εξισώσεις, δύο για κάθε σημείο, με έξι αγνώστους dx, dy, e_x , e_y , ε_x , ε_y . Αν περισσότερα σημεία είναι διαθέσιμα τότε με την Μέθοδο των Ελαχίστων Τετραγώνων μπορεί να γίνει η εκτίμηση των καλύτερων τιμών.

Για να ισχύουν τα παραπάνω πρέπει οι δύο ομάδες συντεταγμένων να αναφέρονται στο ίδιο γεωδαιτικό σύστημα αναφοράς και ότι και στις δύο εποχές συμπεριλαμβάνεται ένας αριθμός σταθερών σημείων μεταξύ των δύο εποχών.

Αν δεν υπάρχουν σταθερά σημεία, μπορεί αυθαίρετα να θεωρηθεί ένα ως σταθερό αν του δοθούν οι ίδιες συντεταγμένες και στις δύο εποχές, καθώς και μια διεύθυνση σταθερή αν η μία από τις δύο συντεταγμένες παραμείνει η ίδια για ένα δεύτερο σημείο. Δίνοντας αυτές τις αυθαίρετες τιμές ικανοποιούνται οι τρεις βαθμοί ελευθερίας (δύο μεταθέσεις και μία στροφή).

Μια καλύτερη αντιμετώπιση στην περίπτωση που δεν υπάρχουν σταθερά σημεία στα δίκτυα είναι να προσδιοριστούν και στην συνέχεια να εφαρμοστούν οι δύο μεταθέσεις (dx, dy) και η μία στροφή (ω) οι οποίες θα ελαχιστοποιήσουν με την ΜΕΤ τις μετατοπίσεις δx , δy σε μια μηδενική μέση μετατόπιση. Μια τέτοια λύση είναι απολύτως αξιόπιστη ειδικά όταν η περιοχή που καλύπτεται είναι αρκετά μεγάλη.

Μερικές φορές, ειδικά στην περίπτωση των μετρήσεων παλαιών τριγωνισμών, τα γωνιακά δεδομένα είναι μεγάλης αξιοπιστίας σε αντίθεση με τα γραμμικά(αποστάσεις). Σε αυτή την περίπτωση η κλίμακα του δικτύου δεν είναι πολύ καλά προσδιορισμένη και για αυτό είναι σημαντικό να συμπεριληφθεί μαζί με τις μεταθέσεις dx, dy και την στροφή (ω) ένας επιπρόσθετος άγνωστος που αφορά την κλίμακα $K = 1 + \kappa$ για να συνδέσει τις δύο σειρές συντεταγμένων. Αν $x_1^{'}, y_1^{'}$ είναι η δεδομένη σειρά συντεταγμένων την εποχή t_1 για να ταυτιστούν όσο καλύτερα γίνεται στις συντεταγμένες x_2, y_2 στην εποχή t_2 , εφαρμόζοντας την μετάθεση dx, dy, την στροφή ω και την κλίμακα κ πρέπει, να λυθούν με την ΜΕΤ οι παρακάτω εξισώσεις παρατηρήσεις:

$$\begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix} = \begin{pmatrix} dx \\ dy \end{pmatrix} + \begin{pmatrix} k & \omega \\ -\omega & k \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
(3.27)

Αν $d\hat{x}$, $d\hat{y}$, $\hat{\omega}$, $\hat{\kappa}$ είναι οι καλύτερες εκτιμήσεις που προκύπτουν από την λύση της MET, τότε οι νέες συνορθωμένες συντεταγμένες για την εποχή t θα είναι:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} d\hat{x} \\ d\hat{y} \end{pmatrix} + \begin{pmatrix} \hat{k} & \hat{\omega} \\ -\hat{\omega} & \hat{k} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

Αν και δεν είναι δυνατό να προσδιοριστεί καμία μετάθεση και στροφή για ολόκληρη την περιοχή που εξετάζεται, είναι εφικτό να υπολογιστεί ο συνολικός τανυστής παραμόρφωσης συμπεριλαμβανόμενης της μετάθεσης και της στροφής για τμήματα της περιοχής. Αυτό είναι δυνατό από την στιγμή που ένα κοινό σταθερό σύστημα αναφοράς έχει εμμέσως οριστεί με την ελαχιστοποίηση των μετατοπίσεων σε όλη την περιοχή. Οι παράμετροι παραμόρφωσης που περιοχών των περιοχών μεταξύ τους η οποία θα είναι ορθή.

Σχήμα 3.2 Έλλειψη παραμόρφωσης.

3.4 Το λογισμικό υπολογισμού των τανυστών παραμόρφωσης

Ο υπολογισμός των τανυστών παραμόρφωσης πραγματοποιείται σταδιακά με την βοήθεια δύο λογισμικών που αναπτύχθηκαν από το Κ.Δ.Δ.

Το πρώτο πρόγραμμα χρησιμοποιείται για τον υπολογισμό των συντελεστών παραμόρφωσης γ_{ε} και γ_{e} των τριγώνων του δικτύου. Έχει αναπτυχθεί σε γλώσσα προγραμματισμού Visual Basic 6.0 και ως στοιχεία εισόδου δέχεται τις επίπεδες συντεταγμένες των κορυφών του τριγωνομετρικού δικτύου, καθώς και τις αντίστοιχες μετρημένες οριζόντιες γωνίες για τις δύο εποχές μετρήσεων. Οι συντεταγμένες των κορυφών χρησιμοποιούνται για των υπολογισμό των γωνιών διευθύνσεων, ενώ για κάθε τρίγωνο δημιουργούνται τρείς εξισώσεις της μορφής (3.25), που περιέχουν τις διαφορές των οριζόντιων γωνιών μεταξύ των δύο εποχών μετρήσεων. Στην συνέχεια με τη χρήση της Μ.Ε.Τ. και την μέθοδο των εμμέσων παρατηρήσεων υπολογίζονται για κάθε τρίγωνο οι καλύτερες τιμές των συντελεστών παραμόρφωσης γ_{ε} και γ_{e} σε ppm.

Οι τιμές αυτές σε συνδυασμό με τις επίπεδες συστεταγμένες των κορυφών αποτελούν τα στοιχεία εισόδου για το δεύτερο πρόγραμμα που έχει αναπτυχθεί σε γλώσσα προγραμματισμού QuickBASIC. Το πρόγραμμα υπολογίζει το κέντρο βάρους της περιοχής στο οποίο σχεδιάζεται στην συνέχεια η έλλειψη παραμόρφωσης, το σύνολο των σημείων με τις τελικές τους συντεταγμένες, την μετάθεση κατά τους άξονες X και Y S_x , S_y , την τελική στροφή ε, τις κλίμακες κατά X και κατά Y καθώς και τις κύριες κλίμακες, όπως επίσης και τη μέση κλίμακα. Τέλος υπολογίζεται η γωνία A (που δείχνει την στροφή που παρουσιάζουν οι άξονες) καθώς και η συνολική παραμόρφωση γ.

Με χρήση της μέσης κλίμακας, του κέντρου βάρους της περιοχής, της μετάθεσης S_x , S_y των κυρίων κλιμάκων κ_{max} και κ_{min} της γωνίας Α και της παραμόρφωσης γ σχεδιάζεται στη συνέχεια ο μοναδιαίος κύκλος καθώς και η έλλειψη παραμόρφωσης (σχ.3.2).

Να σημειωθεί εδώ ότι οι μεταθέσεις των αξόνων S_x, S_y είναι σχεδόν μηδενικές (αποτέλεσμα της μεθόδου επεξεργασίας) και άρα δεν εμφανίζονται κατά την σχεδίαση.

Σύμφωνα με τους Pope και Frank (Frank, 1966) οι γωνίες των αξόνων των μέγιστων και μηδενικών διατμητικών τάσεων, στην περίπτωση μετρήσεων τριγωνισμού, υπολογίζονται σύμφωνα με τα παρακάτω:

(3.28)

Στο τελικό σχέδιο των αποτελεσμάτων ο άξονας μηδενικής παραμόρφωσης απεικονίζεται με μπλε χρώμα, ενώ ο άξονας μέγιστης διατμητικής τάσης με κόκκινο χρώμα (βλ. Σχ.5.2).

4. ΔΕΔΟΜΕΝΑ

4.1 Γενικά

Οι μετρήσεις αφορούν δύο διαθέσιμα set γεωδαιτικών μετρήσεων που πραγματοποιήθηκαν τις εποχές 1914 και 1962 αντίστοιχα, διαθέσιμα από την Υπηρεσία Κτηματολογίου Κύπρου. Τα μετρημένα δίκτυα καλύπτουν όλη την έκταση του νησιού και αφορούν:

α) Στον τριγωνισμό που πραγματοποιήθηκε το 1914. Το δίκτυο αποτελείται από 32 κορυφές (Εικόνα 4.1), ενώ μετρήθηκαν συνολικά 135 οριζόντιες γωνίες σε 45 σχηματιζόμενα τρίγωνα (Πίνακας 4.1).

β) Στον τριπλευρισμό που πραγματοποιήθηκε το 1962, μετρήθηκαν 111 αποστάσεις (Πίνακας 4.2), ενώ λόγω καταστροφών στα τριγωνομετρικά σημεία του αρχικού δικτύου, μόνο 25 κορυφές παραμένουν κοινές στα δίκτυα.

Επιπλέον για την εποχή 1962 είναι διαθέσιμες οι επίπεδες συντεταγμένες σε UTM των κορυφών του δικτύου (Πίνακας 4.3), που χρησιμοποιούνται στην συνέχεια για τον απαραίτητο υπολογισμό των γωνιών διευθύνσεων.

Σχήμα 4.1 Το τριγωνομετρικό Δίκτυο της Κύπρου.

4.2 Μετρήσεις 1914

Στον παρακάτω Πίνακα 4. 1 φαίνονται αναλυτικά οι γωνιομετρήσεις της περιόδου 1914.

Stehenical soluction and the set	tr	aig
Station angle port adjusted State Plane angles of	Log Sides	Name 9
() Direchlinered 62. 10. 05.90 +1.004 62. 10. 06.9061 62. 10. 06.556		
) Tuetuomo 7 58.26.27.80 - 064 58.26.27.736 58.26.27.386 4.	853,5729	1-1 A-T
³ (1chenilar 2 59. 23. 25. 30 +1.108 59. 23. 26.408 59. 23. 26.958 4.	849,2332	A-JE
(4) Direchingana 31 . 00 . 16.26 ton		
1) achunitori 103. 30. 31.44 727 103. 30. 31.213 103. 30. 16.017 4	·8492332	D- A
6) Pyla 74.45. 29. 12.83 +.494 45. 29 13.324 45. 29. 13.047 4.	983 QOULI	- A " D
730:01: 11 10 000	100 70 41	Ű
8) pyle 34 44-17- 18.10 + 1365 67. 17- 19.320 67-17- 18.913 4.	.8939041	D-p
9) Endeals 14.68.25. 39.52 +.805 68.25. 40.325 68.25. 30.010 4.	859 42 45	" E P .
1.52.0 0.000 4	700 3904	į 4
" " " " " " " Endiald" \$ 09. 46.55 - 258 48. 09. 46.292 48. 09. 45.979 4.	3594295	D-E
2) Augna 6 64. 34. 024 - 360 64. 39. 02. 110 64. 39 - 01. 707 4	7755802	A - E
0.940 0.000	008 0232	"_D
13) Duclimara 54. 29. 36.02 -1.174 54. 29. 34.846 54. 29. 34.566 4.	8680232 3	D-A
5) Yailla 46 .74. 38. 17.66 + 045 74. 38. 17.705 74. 30. 17 1005	794 4715 6	1- A
0.840	73 5195	* Þ
Advice history 160. 13. 11.66 +1.180 60. 13. 12.840 60. 13. 12. 570 4.	773 5-195 Y	(-D)
1) Daten 3:53:35-06:27-2:507 53 25-03 20 20 52	806 3585	• P{
<u>820</u> 0.000	29 2557 I	7 - 11
1 Disectimana 36.39.42.73 +.773 36.39.43.503 36.39. 43.283 4.8	8 Z 9 2 557 I)-P
Trikono 166. 50.2695 -1.509 4.6	141 7877 T	- P
= .680 66.50.25.208 4.8.	53 5726 "	' Ð
-) Initialo " 62. 04.39.42 -1.291 62. 04.38.129 62. 04. 37.689 4.0	2030 AL A	- 1=
") 14(a)" 42-10. 44.90 -1.686 42. 10. 43.214 42. 10. 42.774 4.90 (14 Kitz 2) 25 44.90 -1.686 42. 10. 43.214 42. 10. 42.774 4.90	40 2194 *	GK.
1.320 75. 44. 40.20 -223 75. 44. <u>39.977</u> 75. 44. <u>39.527</u> 4.8	209834 E	4
? Endenlo14 77 . 55. 26.88 144 77 - 55. 26.736 77. 55.		· مىر ب
Cafe Kity 2 45 . 17. 10.45 +2.779 45. 17. 13.239 45. 17. 12.959 4.81	209834 C.M. 887162	
X Ullas 555. 47. 20.93 - 045 56. 47. 20.985 56. 47. 20.595 4.7.	500857 E	4
		i

Πίν. 4.1 (συν.)

ame of Station	Observed Angle	lonn	Spherical Angles	Plane Angle	Log. Sides	Kame
10) Endealo 14	4.84.23.00.79	+ 1.481	\$4. 23. 02.271	84. 23 22 007	11.350.0010	Side
1) Villias 4.	5.49. 39. 42.95	+1.337	49. 39.44.287	49. 30. 111 021	4 730 0839	E - X
10) anona 6	45. 57. 14.15	+.082	45.57.14.232	45 57 13 964	4.775 590:	a
. .	<u>1</u>		.790	0.000	1 110 0002	~ -
si)auona 6	.55-06.49.68	+ 2.203	55-06-51.883	55-06-51-393	4.891 3978	a – x
1) Xillians	-73 . 23 . 03 . 68	+1.075	73 - 23 - 04.755	73. 23.04.265	4-911 8153	C-X
In Cueadory	51-30.03.75	+1.082	51. 30. 04.832	51. 30 04.342	4 979 3223	C-9
DAnna (20 40 10 00		[4/0	0.000		19.
4) Creados 24	0/ 41 55.68	+7. 302	38.40.11.992	38.40.11.542	4 979 3228	c-a
5) Manina 28	69. 37. 49.06	+2.325	69. 37. 51.385.	64. 37. 50 (15	4 803 1292	G-M (
	., , ,		0360	<u>a000</u>	4.484 8244	ι /νι
. Ema 6	45.05.17.88	-2.319	45.05.15.561	45-05. 15:228	49848249 G	2-M
Mauna	.39 - 40. 05.43	+2.317	39. 40. 07.567	39. 40 07.234	4.8367939 a	l-M
1 menaguas	195·14. 38·19		95-14 · 37 <u>·872</u> <u>1.000</u> .	95 · 14 · <u>37 · 538</u> <u>0.000</u>	47917032 a	l-ar.
luona 6	\$59.39.17.17	-1.238	59.39.15.932	59.39 15.669	4.791 7032 4	1. Qu
alongra 3	·60· 29· 28·07	t1.026	60. 29. 29.096	60.29. 28.832	4.790 8194 au	- Ya
) gailla 46	59.51.17.48	-2218	59 51 1 <u>5.762</u> <u>0.790</u>	59.51. 15.499 0.000	4.7944716 au	- ya
1 Xilliao 45	»51. 35 09.60	+0.227	51. 35. 09.827	61- 35- 09-557	4.8887162 7-	CHE
) (afe Kity 7	146 13 23.82	-0.392	46. 13. 23.428	46.13.23.158	4.7868245 44	-CK
) High Hill 16	82. 11. 24.99	+2.565	82. 11. <u>27:555</u> 8 0. <u>8/0</u>	82. 11. 27.285 .000	4.751 3233 H.h	/X
>/ Jullias 45	92- 58.38.58	-1-348	42.58·37.232 q	2. 58. 37-292	4.751 0233 HA	4-X
Phigh Hill	43. 14. 04.42	+0.471	43 14 04 891 4	3. 14. 04.645	4.910 6322 H.H	-M
1) Makikudo	43.47.16.80	+1.817	43. 47. <u>18.617</u> 4 <u>0.740</u>	3. 47. 1 <u>8.371</u> 0.000	4.746 9013 X.	- M
1) Xillias	.35. 36. 03.64	-0.626	35. 36. 03.014 3	5. 36. 02.801	4.7469013 X-	AL S
1) Christenas	NOZ. 29.56.95	094	102.29.56.856 10	2. 29. 56.642	4.687 2554 G.	<i>M</i> ~
) (ucadosta	41. 54.00.84	- 070 4	41. 54. <u>00.770</u> 4 640	1.54.00.557	4.9118156 G	- X
) thoma 24	,46 42.59.58	+.605	46. 4.3 - 00.245 4	6. 42. 50.892	4.807.17	0
1 Manina	160 . 19. 28.00	757	60. 19. 27.243 60	3.19.26.880	4.8799515 L	2 C
' irrados 24	72 57 34.65	-1.048 -	72. 57. <u>33.602</u> 7: 1.090	2.57. <u>33.238</u>	4.9215-163 6-	M
						î î
				I	i	

Πίν. 4.1 (συν.)

me of	Observed	Com-M	Sphenical Anen	for the a	l. Cirl Name
denim	- unquis		1	prane angles	fry. scals side
55) 25-50-50-51-51-5	45.54.30.81				
(16) forcados	50. 44. 03.800	,			
(57) actel phi-	83 . 16 . 18-145		1		
200					
55 Jeomaz	45.59.37.06	+ 1.755	45. 59. 35.81	5 45.59.38.562	4.879 9545 1-0.
n) anolo	4.50.44.05.46	-1.660	50. 44.03 80.	0 50. 44. 03.547	4.739,8464 Q-C
" unecpui	L 83 · 16 · 17 · 85	+0.295	83. 16. 18.148	5 83. 16. 17.891	4.771,8200 a-L
187 Lohan	-39. 27. 56.55	11.801	10 10 100	0.000	
19) Adelphin	-69. 03. 13.97	- 2.263	69 03. 11.70	1 39.27. 58.258	4.7718200 Q-L
") Troodsy	71. 28. 48.42	+1.962	71. 28. 50.38	2 71.28.50.208	4.598 1120 Q-T
E 1. 17	10.11		0.520	.000	+ 100 2140 1-1
2) Trooder 49	69.46.38.73	-3922	69.46.34.808	69. 46.34.45-1	4.765 2190 L-T
1) Zahanny	41. 00.20.31	+3.674	64. 13. 02.278	69.13.01.921	4-920 5835 2-T
			1.070	. 41. 00. 2 <u>3.628</u> 000	4-918 9989 Z-Z
:4) ferha 22	44.30.49.8z	100	44. 30. 49.720	44.30.49.524	4.9:80080 8 7
(5) Lahand	29 - 44 - 30.46	+3.530	29. 44.33990	29. 44. 33.794	4.781 3724 V-Z
· Connig 2	105-44. 35.55	+1.330	105. 44. 36.880	105. 44. 36-682	1.631 1791 K-L
1) koharr.	68-01- 09.76	-1.587	68-01-00.002	.000	
) Vounity.	62-50-56.48	+0.127	62. 50. 56.607	68.01.08.016	-6311791 F-V
) Stoma Muira	49-07. 57.55	-1.860 0	49. 07. 55.690	49.07.55.534 4	·714 1547 Str-L
l d or			0.470	. 000	101 0009 1011-2
) Joma Miring	45.30.48.75 -	11.058	45.30.49.808	45. 30. 49. 578	4-7018269 Stx-L
1) Manna.	36-41. 06.64 -	1.897	11.48.06.139 36.41.04.74.7	97-48-05-909 4	-778 8994 Sth-M
20			0.690	$0 = 4 - 0 4 \cdot 5 1 3 4$	9215163 L-M
7 Mauina	88.30.32.39 -	-2.741	88.30.29-649	88. 30. 29.41.0 L	778 89/11 11 14
1 Jema / huter 3	3.47.59.01 -	0.196 3	33.47.58.814	33. 47. 58.634 4	8517982 C- "
S CUTHOS 4 18	1-41.34.85	2.773 5	7. 41. 32.077	57. 41. 21.897 4	597 2468 C-M
Manna 6	5-10. 59.12 +	243	5. 10. 50		
Comos 21 /8	0· 13.39.91 14	1.291 8	0 - 13 - 41 - 20 1	80. 13. 11 4	5972468 M-C
alenagras 3.	4 . 35 20.68 -	714 3	4. 35. 19.966 3	14. 35. 10.77 L	8347035 A-M
			0 . 5 8 0	1/10 4	4
 	ļ			İ	l i:

Πίν. 4.1 (συν.)

Observed	Conn	010:00		··- ·.	
Flora 13 =68. 38. 26.141	11 200	ophimical Angles	Place angles	Pog. Sides	Side
Adelphi 1 :58. 28 . 47.92	+1. 223	68.38.27.633 58.28. 10 070	68.38.27.423	4.781 9626	M-a
Mahiheras 52. 52. 43.22	- 052	52. 52. 43. 168	58.28.49.619	4.743 5403	4-13
21011		-630	0000	4.714 5190	4-E
Greados 471. 17. 1910	-320	49. 34. 10.860	49. 3.4. 10.660	4.739 841.11	101
Maheras 59. 13. 31.91	-08/	71. 12. 19.013	71. 12. 18.813	4.6872557	M - C
27		9. 13. 30.727	59. 13. 30.527	4.7819626	M-A 6
= lona 13 . 59. 42. 11.08	+ 2. 879	59. 42. 13.950	50. 42 12.22		2
akteras 64. 33. 54.06	224 6	4. 33. 53.836	64-33.53.600	4.743 5403	M-Cl ;
10 00 45.52.6C	t·285 5	5.43. 52.885	55. 43. 52.659	4.782 0643	M- am
lahihund 37. 02. 35. 82	+0.977 3	7.02.34.707	17	·	
144 · 44 · 00.04	- · 2 28 4	4.43.59.812	4443. 59.580	4.762 5735 N	1- Com
10 48. 13. 21.98	12.081 9	8. 13. 24.061 9	78. 13. <u>23.837</u> 4	910 6317 14	H. Com
louaz . 80. 01. 34.28 -	1.889	80: 01: 31.10 l	0.000	, , , ,	···- λ/1,
eel-pt-63.47.07.91 -	1.834 63	3. 47. 06.076 6	3.47.05.442	·782 0693 E	Com
2. June 36. 11. 23.34 -	.507 36	11. 22.833 3	6. 11. 22.400 4	·004 2654 CA	
Fue 13 .39. 36. 38.79 +	1.113 20	$\frac{1300}{36}$	0.000		
K / 10020, 57. 54. 22.43 +	1.066 57	· 54 · 23 · 496 5	4·36.39.540 4	· 463,7409 6H	-14 5-15
ollo 4 82. 28. 56.08 +,	611 82	28. 57.691 8	2.28.57.327 4	772 0187 "1	a ,
ma 32. 04. 06.54 -1	<i>k</i> // _	1.090		07 4061 L-	Ч. р р
loy 195. 21. 49.13 -1.	798 95	· 04. 04.929 32	.04.04.606 4.	895,4661 E-	a , [
na 52.34.08.49 +	219 52.	34. 08.709 52.	34.08:356 4.7	20 6315 KD-	a ,
KaB 146 - 11.00.15		<u>·976</u>	0.000	43 6934 MD.	2.
Pouse 45-29-12.66 +.1	89 45-	10. 59.747 40	- 10. 59.354 4.4	1936934 10-	³ ³
ilo 40 88- 19- 47.28 +.8	04 88.	19. 48.084 88	- 29 -12.956 4.8	P521483 "T7	~
xa 12 133 111 12-		1.180	000	470226 Fl- T	~
Hory 40. 36. 26.80 12.	1/2 33. 183 11/.	46.01.438 33.	46. 01.278 4.8	470226 E-T	
"Ali 1.99. 37. 29.61 - 1	51 99.	3 7. 29.459 On.	36. 29.423 4.59	8/1/16 a-T	- 7 7
m40 the will read		0.480 77	0.000	4 5181 Q-E	
war 16-28-23.34 +2.0	0 45-	41. 32.910 45.	41. 32.627 4.85	-21483 AD. 7-	
Via 67. 50. 03.01 - 4	- 60. z	8. 25.401 66.	28. 25-117 4.740	1634 11 Par.	
<u>ج، ج</u>			30. az. 25% 4.01.		

Πίν. 4.1 (συν.)

· of	NO .	1	0	•	• 0 •	000	······	100					
atten	- any	les	lom	<u>-r-1/2</u>	heuro	al Ungli	<u></u> /.	Mane	Unglis	fog.	Sides	Kame Side	
Trooday	038. 40.	15.5z	+1 243	38	. 40	. 16.76	3 38	•. 40	. 16.47	3 4.8	47, 804	o Tr-1	9
panaya.	184 . 03.	48.56	+2.961	84.	03	. 51.52	1 84	· 03	· 51-23	4. 7	18, 693	5 Z-1	• ∄.
lananu 47	-57. 15.	55.04	- 2.454	57.	15.	<u>57.58</u>	6 57	15	- <u>5 2 · 29</u>	6 4.97	10, 582	3 2- T	
n n .30					r	.81	-		0.00	0			
n. Doua	-84-21.	18.27	+1.704	84	21.	19.974	84	. 21.	19· 797	4.72	0 6315	- M.D. 6	٤
ilite Day	41.43	.23.91	+.609	41.	43.	24.519	41	• 43	24.34	3 4.810	9984	i W.P-C	2
huu prom.	33. 25	• 16-22	- 183	53.	55.	16.03	53	- 55	15.86	4.636	2805	- W.p-K	۵ (
1. Drugt	eh7. 11.	1677	11021			0. <u>550</u>		11	0.00				
White them	62. 50.	27.11	+0.228	47.	11. 50	27.601	47	- 11- CA	77428	4.63	62805	- W.P.M.	D
Variana 41	38.49.	05.56	279	38.	зч. 40:	11.038	1 30.	· 59.	27.464	4.704	5896		
			''		~1	0.520		4 7.	·00		8 0626	- mp-ν	
7. Junit	\$70·42.	42.1] 4 71-173	-1.137	70.	42.	40.973	70.	42.	40-663	4.719	2 6925	- 7-10	
1 mayla	70.53.	$3q \cdot \frac{3q}{557}$	+0.168	70.	53.	39.558	70.	53.	39.248	\$ 4.900	24618	1- p	
Juna 25	38.23.	र्षेण्डम्	- 671	38.2	23-	40.399	38.	Z.3	40.089	4.900	9446	2-Z	
A		_		-	6	930			000		6		
fanager?	138. 56.	54.81	+1.693	38.	56.	56.503	38.	56.	56.277	4.900	74618	2-p	
Chana (94.36.	54.30	+.473	94.	36.	54·773	94.	36.	54.545	4.700	2658	L- Cl	
Jana y	40 26.	09.20	7-204	46.	26.	09 <u>.404</u> .68A	46.	26.	09.178	4.761,	9726	p-4.	
Charda?	89.46.	26.87	+3.616	Pa	1.1	20 (10)	00		0000	1		-	•
Panayin;	\$30.01.	26.07	-4.638	30.	40. 01.	21.445	30.	46.	30.342	4.761	9726	Ch-p	10
Vanorana	-60. 12	. 07.11	-1.412	60.1	2.0	8.537	60.	12 .	08.370	4 823	9266	1-CO	0
41 N= 4	- '¥	7			ć	.460	-	•	.000	+ 5 - 67	ευφ	v-ca.	7
Apoua	63. 55.	30.61	-5.643	63.	55.	24.967	63.	55.	24.700	4.838	0626	14DV	
panaying	68-14-	09.00	553	68.14	4 • 6	18.447	68 .	14.	08.180	4.823	5563	p	.,
1/an loalla 41	47.50.	24.44	+2.946	47.5	0.2	7.386	47:	50.	27.120	4.740	1636	PAD	1
Chanda Q					Ģ	7.800			<u>000</u>				3
Danunia	39. 37. Vno. 15	33-87	+1.768	39.3	37.3	5.638	39. :	3.7.3	5.39 Z	4.740	1635	p-14.D.	
h. Draw	40.13.	56.02	- 5.141	98.1	5 · Z	9.879	98.	15. Z	9.631	4.930	9656	Ch-M.D.	ł
16	40 000	-4-6	-1.04/	42.0)6 · 5 <u>·</u>	740	42 • 0	16.5 <u>4</u>	E-977	4.761	9718	d-p	3
Charda 9	50.08	53.00	+1.850	50.0	, , , ,	Ch. OFA	Ca	<u>v.</u> 		1	A	-	2
7 Variante	108.02.	31.55	+4.368	108. 0	02. 1	5.918	108.	07. 2	4.086	4-930	9656	Q-AD	
M. Desder	21. 48.	. 33.69	-3.947	21.	48. 2	9.743	21.	48.z	- 144 G.570	4 808 4.577	00 ZO	n Cl	
	1					520		· • -	1 - 10	,	0-08	n.	
						ľ						:	
		ľ							1			-	2
	1	l	[. 1	

Πίν. 4.1 (συν.)

tim	Closeuree Angle	d .	Corrie 🙀	OK OK	phen and	egl	Pl	ani	Angh .	bg!	Sides	Na 5'0	yes Le	
nie 33	47. 23.	56.475	-1.01	47.	23.	5-5.468	47	. 23.	5-5-359	4.64	75871	Tr-	pe	1
moza	62.34.	21.345	-1.01	62.	34.	20.335	62.	- 34.	20.228	4.535	6480	1 1	h	
tana 17	70.01.	45.530	-1.01	70.	01.	44.520	2 70.	01	. 44 . 413	4-616	9356	p- 4	K	Ē
						0.3 20	1		.600	1				4
uiton 2	66.51.	59.86	6703	66.	5-1.	59.197	66.	51.	59.01	4.707	9838	ach.	-B	, p
la 34	56.14.	40.45	- 684	56.	14 . 3	39·786	56.	14.	39.60	4.748	5334	Fa-	- py	4
2110 15	56.53.	22.24	-663	56.	53.	21 <u>.577</u>	56.	53.	21.39	4.704	756Z	1/	üch	16
						<u>56 0</u>		-	0.00				2	10
un25	98-12-	41.57	- 374	9 8 ·	12.	41.196	98.	12.	40.856	4.90	09446	4	2	76
ann 47	131. 45	2893	- 379	31.	45	28.557	37.	45.	28.217	5.017	2 0194	<i>H</i> -	<u> </u>	ノ指
āmas 49	50. 01.	51.64	- 5 /9	50.	01.	51.267	30	01.	50.401	4.13	, , , , , , , , , , , , , , , , , , , ,	1	·	7
I ¢,	10.25	10 01	101	+ 110.	25	70/117	1.0.	35.	29.190	4.8	-1 7982	C-	S.M	
Minut	48.30.	. 54.47	- 393	48.	34.	54.027	48.	34.	53.801	4.730	0 3002	11.11-	- <i>s-</i> h	
makitu	2082.49	· 27:63	- 394	82	49. 2	7.236	82.	49.	17.009	4.73.	12159	n	C	0.00
i i i i i i i i i i i i i i i i i i i		, -		с. 	•	680		•	0000					
								-					;	
													:	- 4
				•						ł			-	
				5	\$£	En ti	To the	u/	2			1		2
	,			V	0 -	6.6	6,,					-		45
						9.8	. 16						1	10
														8
			-									·		8
													1	23
													:	
						i							i	5
														4
												Ι,		4
						. :					i.			\$
						•				1				P
														s Ř
												ł		72

Πίν. 4.1 Οι γωνιομετρήσεις της περιόδου 1914.

4.3 Μετρήσεις 1962

Στους παρακάτω Πίνακες 4.2 και 4.3 φαίνονται αντίστοιχα οι μετρήσεις των αποστάσεων μεταξύ των κορυφών του δικτύου για την εποχή 1962, καθώς και οι επίπεδες συντεταγμένες των κορυφών του δικτύου σε UTM.

TRAVI	and sene	LS	08313	(V 20	IN	1962 -	AHD	VIG:	SHO-N	IN
RED	COLOUR	ON I	uajor	REed	FRI AI	GULAT	ION]	DIAG	MA	

20(

A DEPENDENCE OF STREET,
No. CP MOLE	STATION	Points Subtending	THE AMILE	ANDER	REMARKS
1	FORT PAPEDS	r. r. Base	CHARDA (NES)	262 ⁰ 44 ' 20*8	
r,	E.E. BASE	WHITE PROMONTORY	FORT PAPHOS	196 11 28.9	
12	CHARDA (NEW)	PANATIA (NEA	FORT PAPHOS	138 18 16 .6	1
13	94 19	LARA	PAHAYIA (NEY)	94 37 51.0	
12	TADA	KHTOROVOIIIZOS	CHARDA (NESS)	106 52 15.2	-
14	30 10		DANAVIA (MEY)	60 26 38.0	
P	¥	_	attraction (181)		
16	r9	ja.	ZAKHAROU (1953)	22 12 37.0	
17	KHLOROVOUNDS	AOUNI	LARA	140 44 16.3	/
18	•	ŧť	zakharou (new)	83 52 57.0	
19	AONUI	KHLOROVOU NO S	KORMAKITIS	130 29 16.7	· ·
20	ज्ञे	19	STOMA	156 30 07.7	/
21	tə	*	NORONIA	209 21 03.2	
22		18	ZA K HAROU (NEW	324 03 22.8	
33	WHITE FROMONFORY	APPOLION	E. E. BASE	194 50 10.1	/
34	APOLION	LIGHT HOUSE (NES)	WHI'TS PROMONTORY	140 59 26.9	1
Ş ,	LIGHT HOUSE (NEW)	COMPLETING POINT	APOLLON	266 41 30.4	r
51	RORMARITIS	RORINOS (NEX)	VOUNI	107 09 46.8	<i>i</i>
52		5 1	STOMA	82 23 18.7	,
53	KORNOS (NEM)	MORMARITIS	/LON/GRA	173 29 06.3	,
64	COMPACTING POINT	HIGH HILL	LICHT HOUSE (NEW)	140 54 37.4	/
65	RIGH HILL	CAPS XITI	commotini Point	189 50 28.6	1
75	CAPE XITI	PYLA (NEW)	HIGH HILL	192 44 44.4	1
69	ALONAGRA	Kornos (new)	YAILAS	169 40 35.7	,
91	YAILAS	ALONAGRA	PLATANI	159 18 42.8	. .
103	PLATANI	KANTARA	YAILAS	177 28 59.2	
103	KANTARA	Trikomon	PLATANI	70 01 38.9	V
109	TRINOMON	Кантана	AP.VARNAVAS	173 39 37.5	•
113	AP. VARNAVAS	THIKOMON	C. F. STAFF	140 42 53.0	
191	C. P. RPADE	PRAMIS	AP. VARHAVAB	170 31 20.9	

Πίν. 4.2 (συν.)

c

•

~_____

No. OF	STATION PO	INTS SUBTENDLIG	TIR AIBLE	ANUE	REMARKS
			CHARDA (BES)	262 ⁰ 44' 20"8	
3	PORT PAPHOS	LE BADS	PORT PAPHOS	196 11 28.9	
5	E. E. BASE	HITE PREMONICILE	PORT PAPHOS	138 18 16.6	·
1 2	CHARDA (NEW) I	PARAYLA (REA	PANAYIA (NEV)	94 37 51.0 ×	~ V
13	9 H H	LARA		106 52 15.2	
14	LARA	KHTOBOAODYOR	DANATTA (NEV)	60 26 33.0	
15	*	4 8	PRINTIN (USY)	22 02 39.6	
16	1	54 5	ZARHUROU (11517		
. 17	KHLOROYCUROS	VOUNI	LARA	140 44 16.3	
18	•	स	ZAKHAROU (NEV)	83 52 57.0	
10	VOUNI	XIILOROVOU NO 3	KONMAKITIS	130 29 16.7	
Ē		*	STOMA	156 30 07.7	/
. 20		•	KORONIA	209 21 03.2	
21	-	4	ZAKHAROU (NEW	324 03 22.8	1
22	17	NOT TON	E. B. BASB	194 50 10.1	1
33	WHITS FROMONIORI	- TOMAN	WHITE PROMONTOR	r 140 59 26.9	1 -
34	APOLLON		APOLION	266 41 30.4	7
39	LIGHT HOUSE (NEW)	COMPOTING PUINT	VOUNT	107 09 46.8	1
51	KORMAKITIS	RORNOS (REA)	(10)11	82 23 18.7	,
15		3		173 29 06.3	· 2
55	KORNOS (NEN)	BORMAKITI3	/10/0/040	119 19 1000	
<u></u> == 64	COMPRCTING POINT	HIGH HILL	LICHT HOUSE (NEW)	140 54 37.4	· / —
9		CAPE KITI	CONNECTIN	120 50 28.1	· · · · ·
65	Align min		HTCH HTCL	192 44 44+	¥ ✓ ⁹⁸ *
75	CAPE KITI	PYLA (NEW)	YAILAS	169 40 35.	7 🛛
89	ALONAGRA	HURROS (MDH)	PLATAN	159 18 42.	8
92	YAILAS	ALAMAGRA	YAILAB	177 28 59.	2
/ 103	PLATANI	ADMEANA may komo	PLATENI	70 01 38.	9 ~
105	KANTARA	TRIADAON	AP.VARNAVAS	173 39 37.	5 ×
109	TRIECTON	KANIARA	C. F. STAFF	140 42 53.	0
111	AP. VARNAVAS	THIRDEON	AP. VARNAVAS	170 31 30.	9 /
11	3 C. F. STAFF	PINNU3	AKHYRITOU We		_
11	*	• •	TOWER	87 13 57. 78 24 35.	,8 ≤ .6 ≤
11	5 PHAND3	PYLA (NEA)	LOTO DAMATE IS TH	70 27 99. 2020 55 57 98.	.81
11	6 *	*1	AKHIRITUU W.W	188 11 W	,⊕∵
11	7 PYLA (NEW)	OAPH NITI	- ANNAL STRATES	02 63 60 100 001	
11	B	74	NULTRITOG 3410		0 - 4

Πίν. 4.2 (συν.)

				nounder 1
MARD DISTANCES.	DIF. FERNCIS	/ OR LESSEMT	MEAN SLANT DISTANCE	Reduced Spheroidal Distance
19-9565 3119-8963	0,0602	1: 51380	3119•926 ¹ 1	3119.9173
A7 . 001.6 7087 . 0636	0.0310	1: 257650	7967.2791	7987.2397
043-7693 18243-7185	80,08	1: 359130	18243-7439	18243.5751
11.5183 13811.6300	0.1117	1: 12095Q	13511-5742	13511.5102
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.18050	96558 7684	26558.4210
		0.02.34.0	17080 CROET	17081.5531
500 * 200 / 1 CC2T * 200	210.01			20-262 031-5
368-4175 Not Measur	<u>e</u>		29368 .4 175	CHER.00.62
134-3290 29134-390	5 0.0615	1: 473730	29134 • 3598	29132.2506
873-4648 5873-497	5 0.0327	1: 179620	5873 4812	5873.4214
065-8810 29066-014:	1 0.1331	1: 218380	29065.9476	29060.84 W
490.8573 22490.753	5 0.1240	1: 181380	22490-7955	221,90.0578
088.5378 12088.606	0 0.0682	1: 177250	12088.5719	12080.44465
775.2066 16775.073	2 0.1334	1: 125750	16775-1599	16742.7699
585-8372 8585-832	5 0.0047	1: 1826770	8585-8349	8583.9547
712.1187 10712.190	5 0.0718	06164T 1T	10712.1546	10694.9071
326.0724 20326.130	7 0.0583	1: 348650	20325.1015	20301.4987
628.2287 17628.213	7 0.0150	1:1175220	17628.2212	17617-8105
758.2868 16758.125	1 0.1614	1: 103830	16758.2061	16750.9192
	0 0 1070	1 1. 1651 III	21000,2846	20991.4334
	LLANT DISTANCES. WARD BACKWARD BACKWARD BACKWARD BACKWARD BACKWARD BAT. 2946 7987. 2636 387. 2946 7987. 2636 243. 7693 18243. 7185 243. 7693 18243. 7185 243. 7593 18243. 7185 243. 7593 18243. 7185 243. 7593 13511. 6300 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 082. 1233 17082. 8500 134. 3290 29134. 3900 134. 3290 29134. 3900 134. 3290 29134. 3900 135. 2066 16775. 073 190. 85372 8585. 832 192. 1187 10712. 190 1326. 0724 20326. 130 1258. 2266	LANT DISTANCES. DIF. WARD BACKWARD FERNOR. B7.2946 7987.2636 0.00502 243.7693 18243.7185 0.00510 243.7693 18243.7185 0.00510 243.7693 18243.7185 0.00510 558.7366 26558.8001 0.005310 082.1233 17082.83601 0.00535 0682.1233 17082.83601 0.00535 0655.8810 29134.3905 0.00535 0655.8810 29066.0141 0.1331 190.8372 8585.8325 0.0047 585.8372 8585.8325 0.0047 9326.0724 20326.1307 0.0583 9326.0724 20326.1307 0.0583 9326.0724 20326.1307 0.0150 9326.0724 20326.1397 0.0150 9326.0724 20326.1254 0.0150 9326.0724 20326.1254 0.0150 9326.1254 17628.2137 0.0150	HANT DISTANCES DIF. AGR_EMAND HAND HACKWARD FERNCIS 119.9565 3119.8963 0.0602 11 51380 119.9565 3119.8963 0.05310 11 51380 11 51380 187.2946 7987.2636 0.0310 11 51380 11 550 1824,3.7185 0.0062 11 25/650 0.1117 11 20960 511.5183 13511.6300 0.065,5 11 120960 11 120960 582.1233 17082.48369 0.005,5 11 120960 11 120960 583.13290 291,34.3905 0.005,5 11 4,18250 0.655.88310 29066.0141 0.1331 11 2143360 134.3290 291,34.3975 0.02682 11 179620 0.1240 1.1 179620 11 1213380 1490.85378 12088.6060 0.00477 11 125750 1226770 1.1 125750	HART. DISTANCIS. DIF. AGR LEMAN MAAN 119.9565 J119.8963 0.0602 1: 51,360 J119.9264 197.2946 7987.2636 0.0510 1: 257650 7987.2791 243.7693 1824,3.7185 0.0,08 1: 257650 7987.2791 243.7593 1824,3.7185 0.0,08 1: 257650 7987.2791 243.7593 13911.65000 0.1117 1: 1209c0 13511.5742 259.7366 26558.8001 0.063,5 1: 418250 26558.7684 082.0233 17062.8964 0.0729 1: 234320 26558.7684 082.0123 17062.8964 0.0729 1: 234320 29368.7684 082.0137 201.94.3905 0.0729 1: 234320 29368.4175 134.0326 291.34.3598 1: 17962.0868 291.34.3598 291.34.3598 134.0326 291.966.0141 0.1240 1: 121.3800 29065.9476 1490.8578 16775.0732 0.2490.7555 12088.5713 12088.5713 12.182905 0.2497 1:

Πίν. 4.2 (συν.)

2.15 10429(****6			41.38mm/2007 inv.			N. CONTRACT	•
28	10167,34	1:5351230	6100*0	a 20167.3419	10167-3438	CARDA (REM)	VARVARA .
55	30042.19	1: 839170	0.0358	2 30042.1754	30042.2112	ROCK DHORA	SOROTA
758	22454.2	1: 225360	0.0952	1 21154-2282	22454-3234	TROODOS	SONUTE
111	21721.6	1: 349220	0.0622	21721.6403	21721.7025	ROCK DIJORA	TROODS
0 50	1,5809	1: 363440	0.0435	15809.3812	15809-4247	ELOROS	AULITATI
6 8 36	16893.	1: 828120	0.0204	16893.6938	16893.6734	ELOROS	MAHURAS (NEW)
6068	21754.	1:1797900	0.0121	21754-6128	21754.6007	TRIKOMON	H direklimpa $_{ m V}$
0503	7363.	1: 71000	0.1037	7363-1022	7362.9985	PYRCA	KOUKLIA
6417	18456.	1: 185680	t1660°0	18456.0952	18129-1946	MATTERAS (NEW)	vir Thankiv
9779	14861.	1: 149670	£660°0	14862.0275	U1851.9282	WATERVS (NON)	CUVEND (
\$405	17037.	1: 1213620	0.0137	17037-5336	17037-5473	MACHERAS (NEW)	XILLINS
-5402	24879	08647847 :T	0.0513	24879-5145	24879.5658	BREADOS	XILLIAS
•3334	27245	11 260960	0.0657	17145-3005	17145+3662	ENDEALOS	XILLIAS
.8054	23759	1: 417950	0.0568	25739-7770	23739.8338	ARONAS	(XIIIIAS
4780	9345	1: 91350	0.1023	9345-4269	9345-5292	ACHYRITCU W.	AP. VARNAVAS
24717	18180	1: 101570	0.1790	18180.0247	18180.2037	EIDEA LOS	ARONAS
•5764	20916.	11 54650	0.3827	20916.7678	20916-3851	DIREKLIMARA	Nontron J.
4158	32593	11 186780	0.1745	32593+3286	32593-5031	ASHYRITOU W.	
3595	22052.	1: 114680	0.1923	22052.2634	22052.4557	DIRBKLIMARA	S ENDEALOS
STANCA	unan Diant die	/. GRNENSNT	DIF. FERNCE	PACKNARD BACKNARD	SIAN DIR	TO	FROM STATION.

FROM STATION.	TO	SLANT DIST FORWARD	NIC 33	DIF. LEINCE.	AGREENSFT	and a Strail Districs	TALISSICS	r, s h v r z c
	PAHAYTA(NEA)	21436-0848	21486.0652	96T0*0	11 1096230	21486.0750	21465-6662	
V PHITOTHUC	BICROS	18463.2329	18463.2321	0.0003	1: 23079040	18463.2325	18452.5819	
FOIRT	CONSECTING	15102-6682	15102.7491	6030.0	1: 186680	15102.7006	15101-0515	
	POINT HIGH HILL	17195.2049	17195-2232	0.0183	1: 539630	17195.2140	17190.8541	
A HYRITOU R.	PRATOS	16077.6420	16077-14827	0.1593	1: 100930	16077.5624	16076.7857	
TOWER -	PYLA (NGA)	15835.7082	15835.6558	0.0524	1: 302210	15835,6820	15835-4200	
	HINN HILL	2h83h-4720	24834-6463	0.1743	1: 142460	24834.5591	24805.0354	
	COMPECTINO	17667.6518	17667-7372	0.0854	11 206880	17667-6945	17637.6920	
2011X LIA	POINT	1110010022	22604-0315	0.0096	1: 2354590	22604-0363	22603.8348	
. P. VARIAVAS	FYRCA	13222.7466	13222.8282	0.0816	11 162040	13222.7574	13222.7285	
KHYRITOU H.	KUUKLIA	12095-0348	12095-1422	170.1074	1: 112620	12095-0805	12095.0022	
TO	NOHOXI XII	21933-5155	21935.142	10.0728	1: 301280	21933-4791	21955-27144	
TOWER /	NOATH END	7358.7237	7358-8055	0.0313	1: 89960	7558-7646	7550.7180	
OUKLIA	SOUTH ALLOS	5297-1777	5297.106	3 0.0714	1: 74190	5297.1420	5297.0930	
ova œre hiero.	A DULA	7367.6744	7367-852	9 0.1785	1: 41280	7367.7636	7367.7224	
irchilthra	XOURLIA	\$9914-8704	590°5166	8461.0 3	1: 50900	9924.9678	9924-8423	
D LKOYON	AP. VARIAVAS	12588.3899	12588-347	5 0.0424	1: 296890	12588.3687	12588.2014	
LANDEA LOS	CAPS RITI	20184-8948	20184-973	2 0.0784	1: 257460	20184.9340	20181.7601	
MPE XITT	HIOH HILL .	18657.8218	18657.704	6911.0	1: 158750	18557-7634	18655-5566	
· TIN STAT	XILLIAS	23596.5423	23596 - 507	1420.0 ¹ /17	1: 680010	23596-5240	23588.1045	
•	SHARE	3.00 .00 .00	Ĩ	9 <u>66</u> 501	9000 (1980) }	B ac ((3443) ,	۲ ۳۱

Πίν. 4.2 (συν.)

.

	C A A	2,5 2,5	ALKS!	View			CTIN O		0 H M		111.0		LAND L	Wry L	INTIM:	1221			्र जन्म अन्य		
				5				Ę. C		<	*					NO N	\$		NUN STATE	N1 10H	FROM
KONMAKITIS	KCRINOS (NEW)	KCRMAXITIS	(#EN) 501:205	KODINUS (FUSA)	MARINA	KCRIIUS (IIEI4)	ALDIMORA	YATIAS	SVIIVX	DIREKLIMARA	DIESKLIMRA	SVIIVI	PYROA	TRIKOMON	KARTARA	KARTARA	DIRSKLIMARA	PEAROS	PRANOS	STATION	10
16650-4100	21773-4303	29415+3684	12071.5328	16395-0344	6 ¹ 420° 82602	19280-3976	10882.6234	16830,0097	19002.1405	18113,8181	20581.1973	19516-4354	16540-3539	13375-3928	12617.0245	10483-4367	29533 .6841	34410-8039	15252.9422	TRANIO	SLAUT DIE
€\$50.4570	21773-5975	29415.3944	12071.5818	16395.0887	20938-3031	19280+3530	18882.7080	18830-1258	19002-0398	18113-9023	20581.2830	19516.6125	13540-3887	13375-3153	12617-0224	98115 * 5870D	29533-9341	1969*01 ¹ /10	15253-0576	BNOKANED	
01,70	.1672	0260	06100	0.0543	0.282	0.0.16	9480.0	191191	0-1008	21180*0	0.0857	D-1771	842.0	0.0775	0.0021	0.111	0.2500	0.1053	1124	TRAINCS.	519
1: 354260	130220	11131360	1 246350	01910	1: 91750	1: 432290	ut ≟23200	1: 162190	11 188510	1: 215130	051042 :1	110200	1 475300	1: 172580	1:6008100	11 93690	01/1811 :1	1: 325240	1: 132180		1000 00 mm
16650.4335	21773-5139	29415.3814	12071.5573	16395-0616	20958.1890	19280-3753	18082-6657	16830-0678	19002.0902	18113.0602	20581.2402	19516-5240	16540.3713	13375-3540	12617.0234	10483-4927	29533-8091	34410.7510	15252.9999	MEAN DISTANCE	- in the second
16613-11-01-0	21751.4333	294.24.2764	12036 . 2399	16374.7377	20928-2488	10277-5516	18865.9656	16827.3204	18985.8105	18091.8738	20569+3835	19512.9430	16540.2608	1,358,3923	12615.5914	10462.2464	29524-6153	56ti6 60th	15252.0860		
			· · ·	.			action to the second										- -			51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	4

Πίν. 4.2 (συν.)

a. Stratic Manager (1989) and a state of the
						•		-	
-CH INI-	FROM	TO STATION	SIANT DI FORWARD	STANCES BACKHARD	DIF. Fermor.	AGREENT	leart Slavre Distance	SCORVELC TVCIDENCE CCONCER	04 125
ŝ	STOMA	VOUNI	15909-8536	\$5909.8115	Teto°o	11 377900	15909-8326	6264°2065T	
ૼૺૺૼૼૼ	WARINA	STORY	28234.5758	18234-5754	0.0004	1145586430	18234.5756	18230.4853	
20	KORONIA	NR EADOS	17324-2576	17324-1862	0.0714	1: 242500	17314.2219	17310,4256	
SO.	MARINA	KORO NIA	21053.9359	21053.9637	0.0278	1: 757340	21053.9498	21052-7791	
10	MARIEN	NREADOS	19372.2281	19372-2579	0.0298	1: 650070	19372.2430	19369.0612	
ŝ	STOMA	KORONIA	15449-5398	5449-5250	0.0148	1: 1043880	13449-5324	19445-7926	
ŝ	VOUNT	ZOROHIA	18428.9619	18429-1294	0.1675	1: 110020	18429-0457	18428+0808	
5	STORA	SR IMDOS	27984.9480	27985-0338	0.0858	11 326170	27984-9909	27976-8399	
يىر قەر	SWIDEN	MARINA	29432.5660	29432-5557	6.0103	1: 2857530	29432-5609	29430-7523	
្ពុភ្ល	VEOTTON (HITS PROMON-	19724-6328	1972h.6666	0.0338	1: 583570	19724-6497	19723-4475	
- 24	EAST MD MSK	HITS PROMON-	16544-8723	6544.9672	0.0949	1: 174340	16544.9198	2%6°T159T	
.U,	Autra subor	WARVARA	15438.3243	15438-2930	0.0313	1: 493249	15438.3087	15437-2931	
15	MAST AND MASE	VARVARA LI	4922-5980	4922.6505	0.0525	1: 93760	£42 9° 22647	4919-3278	
ST.	FOUT PAPHOS	MET SID BASE	6597-7378	6597-7102	0.0276	1: 239050	0597 - 7240	1802•2659	
7.0	симера (нем)	LAST END BASE	1,3271.2385	3271.0210	0.2175	1: 61020	13271.1298	13255.7796	
ST.	LATA	римера (неж)	15286.5318	5286-6537	0.1219	1: 125400	15286.5928	15284-95 55	
	PARAYIA (NET)		5457*9°5676	24246-2478	0.0198	11 1224560	24246-2577	24238-1666	
- 03 -		CARA.	28436.9321	84,37-0783	0.1462	1: 194510	28437-0052	284;34.0311	
• ∧))≩∞#	(REN) NOWINY V	IMRA	24271.1839	h271.118	0.0421	1: 576510	24271.1629	24261.4792	
	ZAKHAROU (NEW)	PANAYIA (NEW)	1-1 Secu	5952.8456	0.0255	1: Williams	15952.8584	15049-7498	

Πίν.4.2 Οι μετρήσεις αποστάσεων της περιόδου 1962.

LIST OF CU-UKDINALES UP THE OTHE INIANGULALINA

11

.

ere Lui

E.

District CYPRUS . U.T.M. WIM)

NAME or NUMBER		CO-ORD	INAT	TES	IN PEPE (U	T.M	HEIGHT	r			
POINT	+	x (E)		+	y (N)		IN PEET METRE	5.	Brok	Pase	KENGAKAS
Aballa	Subjects				2 0 2 7 1 7 2				4	92	()p 27
T polion		486 912	84		3837413	53	64	2	T	20	<u>LP 21</u>
Rock-Dora	<u>.</u>	475 211	30		3848403	05	742	3~	4	12	CM 28
Panayia Neo		466 4 67	32		3 862 683	13	11:43	5.	1.	44	CP 29A
Varvara		454 321	21		3846 425	81	187	71	4	3	CP 30
White Promontory		467 202	38		3 837 928	54	302	0.	4	8	CP 31
Charda New		450281	86		3 8 55 741	70	612	3.	1	19	CP 32A
Zaharou Now		465 524	86		3 878 598	86	1213	0-	1	42	CP 33A
Vaunin Paphios sid	inder	479 339	82		3890775	-60	255	81	1	66	CP 34
Lara		4 4 3 1 4 5	67		3869252	21	668	5.	1	9	CP 35
Agamas		3									
Cavalier Flag Staff		585 603	87		3887096	88	31	51	3	70	CP 37
Fort Papho		145 748	32		3846 059	63	14	1	4	1	CP 38
Konia		451 552	15		3848658	41	246	6.	4	2	CP 39
West End Base		449 306	23	-	3844 641	00	13	8-	4	1	CP 40
East End Base		451 319	96		3 842 530	43	10	0.	4	2	CP 41
North End Bail		572 813	79	81	3891745	40	17	9 .	3	51	Cr42
South End Base		573 177	24		3888 647	90	16	4	3	51	CP 43
Konklia		568 912	77		3885 508	70	33	1.	3	44	CP 44
postolo Vamana	·	580 180	2.7		3 892 956	91	23	0.	3	62	.CP45
Pread	·	541 944	60		3899607	91	30	2	3	39	CP 46
Doberitori WT		580 850	21		3 983 634	9.1	47	0.	3	63	CRIA
Taikama		579411	22		7 80 (. (17	64	17	2.	2	8	NP 2
Diatani		517 077	P2		2812247	91	724	0	2	-	CP 3
Tingding		26/81/	13	-	D 1/1/4/	26	(24		12	3	Cell
Vinco		561 9A7 08	20		3892.559	65 33	64	1.	3	30	CF 4
Tarllah wazith		549 598	42		3 405 835	31-	236	17.	X	41	GFSA
Hronas	20 17 - 12 5	539681	24		3889451	02	. 18/	8	2	61	CP 6
Endealo		549656	98		3 874 262	42	350	7.	2	73	CP/
Pyla New		578 107	89		3868 049	48	98	2.	3	58	CPS
Alonagra		530690	96		3 906 028	80	935	5-	2	84	CP9

WATTANTANTANTANTAN

of Lands and Surveys

MAJOR

LIST OF CO-ORDINATES OF 3th Order TRIANGULATION

District CYPRUS

U.T.NI .

NAME or NUMBER	•	CO-ORI	INAT	TES	IN TEET	4.7.4	HEIGH	r			
POINT	+	x (E)		<u>±</u>	y (N)		METRE	5	Buok	Page No.	REMARKS
Cape Kity		555083	51		3 854.831	48	28	31	3	25	CC 11
Fanos		593977	22		3 874 354	30	175	0~	3	71	CP 12
Kantara .		579 929	31		3 315 363	63	• 724	9.	3	8	CP 13.
High Hill		537260	68		3849344	04	283	9.	4	57	CP 14
NewMakeras		517 577	91		3864 423	73	1422	81	2	27	VCP ISA
Connecting joint		522 286	91		3847 433	46	439	6v	4	54	C.P. 16
Harina		511 464	73		3897777	70	363	61	2	18	CP 17
· Creados		512790	82		3878461	77	619	1.	2	19	CP 18
Eloros		504 823	17		3 853 369	63	1001	8	2	.9	GP 19
Adelphi		499534	82		3 868 245	45	1312	74.	1	108	CP 20
Troodos		487 640	73		3 866 159	70	1951	5	1	85	CP21
Leuka		490285	66	11	3883 704	29	399	5	1	92	CP22
Cornos New		511 798	42		3 909 824	66	946	6 .	2	77	CP 23A
Stoman		493 254	65		3898472	12	ž	0.	1	97	CP 24A
Kormakity	-	496 220.	25		3 914 848.	97	159	9.	1	1	CP 25
Light House (New)		501 212	09		3825 333	43	58	6.	4	48	Cr 26A
Acheritor		581 365	10		3883 257	91		5	3	64	CPI
Tropdas T.V. Tower		487 259	82.		3 866 427	92			1.	.84	CP ZIA
Joronia	_	4.96 180	87		3 883 312	23	324	0	1	102	CP 127A
Rorovounos		463 344	91		3889249	67	669	7.	1	- 38	CP 144 h
Pamboulos	-	613 838	34		3 932 706	09	دة ت	c	3	-16	CP 50
TROODOS TY NEW A	_	487298	1		3866419	0.	is fixed	Lyl	.1 e	15.	1574
							Low accu	urur	17		
		B									
· · · · · · · · · · · · · · · · · · ·										. 1	

Πίν.4.3 Οι συντεταγμένες των κορυφών του δικτύου σε UTM.

5. Η ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΜΕΤΡΗΣΕΩΝ

5.1 Προσδιορισμός των παραμέτρων παραμόρφωσης

Στην μελέτη της τεκτονικής δραστηριότητας μιας περιοχής, ιδιαίτερα σημαντικό ρόλο παίζει η ανάλυση των γεωδαιτικών μετρήσεων που πραγματοποιούνται σε διαφορετικές χρονικές περιόδους, αφού τα αποτελέσματα των συγκρίσεων μεταξύ διαδοχικών σειρών μετρήσεων επιτρέπουν τον άμεσο προσδιορισμό των τεκτονικών μετατοπίσεων και αποτελούν την βάση για την ερμηνεία των γεωφυσικών φαινομένων που συντελούνται στην εξεταζόμενη περιοχή. Στην εργασία αυτή η σύγκριση πραγματοποιείται μεταξύ των δύο διαθέσιμων σετ γεωδαιτικών μετρήσεων του 1914 και του τριπλευρισμού του 1962. Συνολικά μεταξύ των δύο περιόδων μετρήσεων σχηματίζονται 26 κοινά τρίγωνα με διαθέσιμες μετρήσεις και στις δύο εποχές (Σχ.5.1).

Σχήμα 5.1 Τα κοινά τρίγωνα μεταξύ των εποχών μετρήσεων 1914-1962.

Όπως προαναφέρθηκε, όταν σε μια περιοχή έχουν μετρηθεί οριζόντιες γωνίες σε διαδοχικές χρονικές περιόδους, είναι δυνατός ο υπολογισμός ολικής διάτμησης στην περιοχή σύμφωνα με την παρακάτω σχέση:

$$\varepsilon_{g} = \frac{1}{2}\gamma_{\varepsilon} \cos 2a_{\rm B} - \cos 2a_{\rm A} - \frac{1}{2}\gamma_{e} \sin 2a_{\rm B} - \sin 2a_{\rm A}$$
(5.1)

Όπου $\varepsilon_g = \frac{g_2 - g_1}{\sqrt{n}}$ η γωνιακή παραμόρφωση, g_1 η οριζόντια γωνία που μετράται από ένα σημείο μεταξύ των A, B την εποχή t₁ και θ_2 η αντίστοιχη οριζόντια γωνία που μετράται την εποχή t₂, a_A a_B οι αντίστοιχες διευθύνσεις των αζιμουθίων την εποχή t και $\gamma = \sqrt{\gamma_e^2 + \gamma_e^2}$ η ολική διάτμηση. Αν για κάθε ένα σχηματιζόμενο τρίγωνο δημιουργηθούν τρείς εξισώσεις της παραπάνω μορφής τότε το διάνυσμα των τανυστών παραμόρφωσης $\begin{bmatrix} \gamma_e \\ \gamma_e \end{bmatrix}$ υπολογίζεται εφαρμόζοντας την μέθοδο ελαχίστων τετραγώνων (M.E.T.).

5.2 Αναγωγές Μετρήσεων

Προκειμένου να είναι συγκρίσιμες οι δύο εποχές μετρήσεων, επιλέχθηκε από τις μετρημένες αποστάσεις της εποχής 1962 να υπολογισθούν οι οριζόντιες γωνίες που αντιστοιχούν στα κοινά τρίγωνα. Για το σκοπό αυτό στις δύο σειρές μετρήσεων εφαρμόστηκαν οι παρακάτω διορθώσεις / αναγωγές:

α) Γωνίες (1914)

Αναγωγή στο ελλειψοειδές αναφοράς (Clarke 1858)

- Διόρθωση για σφαιρική υπεροχή
- Συνόρθωση τριγώνου
- Υπολογισμός οριζόντιων γωνιών

β) Αποστάσεις (1962)

Αναγωγή στο ελλειψοειδές αναφοράς Επίλυση τριγώνων στο επίπεδο (με την παραδοχή ότι: = =) Υπολογισμός οριζόντιων γωνιών

5.3 Επίλυση - Αποτελέσματα

Για τον υπολογισμό των συντελεστών και των τανυστών παραμόρφωσης των τριγώνων χρησιμοποιήθηκαν τα δύο ειδικά προγράμματα που περιγράφονται αναλυτικά στην Παρ. 3.4. Αναλυτικά τα αποτελέσματα της επίλυσης φαίνονται στον Πίνακα 5.2, ενώ γραφικά η επίλυση απεικονίζεται στο Σχήμα 5.2., ο δε Πίνακας 5.1 περιλαμβάνει τις συντεταγμένες του κέντρου βάρους και τα στοιχεία της έλλειψης παραμόρφωσης για κάθε τρίγωνο.

			INPU	т				OUTPUT			
		coord	dinates			shear	rates	cent	roid	max	az0
561947.2	3892559.65	579411.73	3905517.64	581365.1	3883257.91	-53768.2	-17316.9	574241.3	3893778.4	56488	81.1
561947.2	3892559.65	581365.1	3883257.91	578107.89	3868049.48	4009.3	56279.1	573806.7	3881289	56421.8	137
561947.2	3892559.65	578107.89	3868049.48	549656.98	3874262.42	9.4	-41.8	563237.4	3878290.5	42.8	38.6
561947.2	3892559.65	549656.98	3874262.42	539681.24	3889451.02	-11.4	30.8	550428.5	3885424.4	32.8	124.9
561947.2	3892559.65	549508.18	3905688.08	567877.83	3912247.96	2.6	3.8	559777.7	3903498.6	4.6	152.4
561947.2	3892559.65	567877.83	3912247.96	579411.73	3905517.64	22.7	-27.4	569745.6	3903441.8	35.6	25.2
549656.98	3874262.42	578107.89	3868049.48	555083.51	3854831.48	3.7	-20.6	560949.5	3865714.5	20.9	39.9
549656.98	3874262.42	555083.51	3854831.48	534482.51	3866302.36	4.9	-5.4	546407.7	3865132.1	7.3	24
549656.98	3874262.42	534482.51	3866302.36	539681.24	3889451.02	1.7	6.6	541273.6	3876671.9	6.8	142.1
539681.24	3889451.02	534482.51	3866302.36	512790.82	3878461.77	0.6	-13.2	528984.9	3878071.7	13.2	43.8
539681.24	3889451.02	512790.82	3878461.77	511464.73	3897777.7	33	0.1	521312.3	3888563.5	33	179.9
539681.24	3889451.02	511464.73	3897777.7	530690.96	3906028.8	-132.9	-30.3	527279	3897752.5	136.3	83.6
539681.24	3889451.02	530690.96	3906028.8	549508.18	3905688.08	-49.3	-5.3	539960.1	3900389.3	49.6	86.9
534482.51	3866302.36	555083.51	3854831.48	537260.68	3849344.04	19.1	-15.2	542275.6	3856826	24.4	19.3
534482.51	3866302.36	537260.68	3849344.04	517577.91	3864423.73	219.9	133	529773.7	3860023.4	256.9	164.4
534482.51	3866302.36	517577.91	3864423.73	512790.82	3878461.77	17.2	451.9	521617.1	3869729.3	452.3	136.1
517577.91	3864423.73	537260.68	3849344.04	522286.91	3847433.46	195.8	-572.5	525708.5	3853733.7	605	35.6
504823.17	3853369.63	522286.91	3847433.46	501212.09	3825333.43	-19607.5	18965.8	509440.7	3842045.5	27279.2	112
504823.17	3853369.63	501212.09	3825333.43	486912.84	3837473.53	-39575.9	-10822.6	497649.4	3838725.5	41029	82.4
504823.17	3853369.63	486912.84	3837473.53	475211.3	3848403.05	-52.3	25.4	488982.4	3846415.4	58.1	102.9
504823.17	3853369.63	475211.3	3848403.05	487640.73	3866159.7	18.7	49.1	489225.1	3855977.5	52.5	145.4
504823.17	3853369.63	487640.73	3866159.7	499534.82	3868245.45	57.5	64.9	497332.9	3862591.6	86.7	155.8
487640.73	3866159.7	475211.3	3848403.05	466467.32	3862683.13	262.2	12.2	476439.8	3859082	262.5	178.7
487640.73	3866159.7	466467.32	3862683.13	465524.86	3878598.86	-49	273.9	473211	3869147.2	278.2	129.9
475211.3	3848403.05	486912.84	3837473.53	467202.38	3837928.54	11.6	3.1	476442.2	3841268.4	12	172.5
475211.3	3848403.05	467202.38	3837928.54	454321.21	3846425.81	6.3	27.1	465578.3	3844252.5	27.9	141.6
465524.86	3878598.86	466467.32	3862683.13	443145.67	3869252.21	-257.6	112.4	458379.3	3870178.1	281	101.8
466467.32	3862683.13	450281.86	3855741.7	443145.67	3869252.21	-194.6	-171	453298.3	3862559	259.1	69.3
450281.86	3855741.7	466467.32	3862683.13	454321.21	3846425.81	-15.2	-34.4	457023.5	3854950.2	37.6	56.9
475211.3	3848403.05	454321.21	3846425.81	466467.32	3862683.13	225.7	-166.1	465333.3	3852504	280.2	18.2

Πίν.5.1 Συντεταγμένες κέντρου βάρους και στοιχεία έλλειψης παραμόρφωσης για κάθε τρίγωνο.

		Dr			Res	sults
C/N		Da	ata		γε	Ye
	arona	539681.24	3889451.02	-0.00614277	γε=-84.5785 cc	γ _e =-19.2821 cc
	marina	511464.73	3897777.7	-0.00058431	γ _ε =-132.86 ppm	γ _e =-30.29 ppm
1	allonagra	530690.96	3906028.8	0.00672709	$\sigma \gamma_{\epsilon}$ =7.53043794190642 ^E -05 cc	σγ _e =6.89212161386222 ^E -05 cc
					σγ _ε =1.18287800287556 ^E -04 ppm	σγ _e =1.08261154438475 ^E -04 ppm
	arona	539681.24	3889451.02	-0.0012752	γε=21.0053 cc	γ _e =0.0775 cc
_	creados	512790.82	3878461.77	-0.00179331	γ _ε =33 ppm	γ _e =0.12 ppm
2	marina	511464.73	3897777.7	0.00192083	σγ _ε =8.29375212149108 ^E -15 cc	σγ _e =1.33748943612165 ^E -14 cc
					σγ _ε =1.30277907095144 ^E -14 ppm	σγ _e =2.10092274217218 ^E -14 ppm
	dareklimara	561947.2	3892559.65	0.38083145	γε=2552.3985 cc	γ _e =35828.4037 cc
	archeritou	581365.1	3883257.91	1.93323682	γε=4009.3 ppm	γ _e =56279.1 ppm
3	pyla	578107.89	3868049.48	-2.31406827	σγ _ε =1.66959800794853 ^E -11 cc	σγ _e =1.79070754911898 ^E -11 cc
				•	σγ _ε =2.62259748036275 ^E -11 ppm	σγ _e =2.81283583475068 ^E -11 ppm
	dareklimara	561947.2	3892559.65	-0.00045693	γ _ε =14.4218 cc	γ _e =-17.4555 cc
	platani	567877.83	3912247.96	0.00219778	γ_{ϵ} =22.65 ppm	γ_e =-27.42 ppm
4	tricomo	579411.73	3905517.64	-0.00174085	σγ _ε =7.3277116574443 ^E -15 cc	σγ _e =5.45173472478273 ^E -15 cc
					σγ _ε =1.15103384396411 ^E -14 ppm	σγ _e =8.56356181832606 ^E -15 ppm
	dareklimara	561947.2	3892559.65	-0.38061602	γε=-34229.9195 cc	γ _e =-11024.3055 cc
_	tricomo	579411.73	3905517.64	2.80505126	γ _ε =-53768.21 ppm	γ _e =-17316.93 ppm
5	archeritou	581365.1	3883257.91	-2.42443525	σγ _ε =5.54796188308904 ^E -05 cc	σγ _e =5.35058635343707 ^E -05 cc
					σγ _ε =8.71471503108454 ^E -05 ppm	σγ _e =8.40467838496602 ^E -05 ppm
	dora	475211.3	3848403.05	-0.00007313	γ _ε =-7.372 cc	γ _e =1.9847 cc
	apollo	486912.84	3837473.53	0.00043741	γε=11.58 ppm	γ _e =3.12 ppm
6	white_prom	467202.38	3837928.54	-0.00036459	σγ _ε =2.32057700428158 ^E -03 cc	σγ _e =1.54607976873605 ^E -03 cc
					σγ _ε =3.64515253099428 ^E -03 ppm	σγ _e =2.4285755532909 ^E -03 ppm
	dora	475211.3	3848403.05	0.00042122	γ _ε =4.0248 cc	γ _e =17.2787 cc
-	apollo	486912.84	3837473.53	-0.00149599	γε=6.32 ppm	γ _e =27.14 ppm
	varvara	454321.21	3846425.81	0.00107476	σγ _ε =8.42686716143217 ^E -05 cc	σγ _e =5.53944483089907 ^E -05 cc
					σγε=1.32368872505296 ^E -04 ppm	σγ _e =8.7013364815731 ^E -05 ppm
	elora	504823.17	3853369.63	0.00239605	γ _ε =11.8767 cc	γ _e =31.2268 cc
	dora	475211.3	3848403.05	0.000193	γε=18.66 ppm	γ _e =49.05 ppm
8	troodos	487640.73	3866159.7	-0.00258905	σγε=1.51555426551419 ^E -14 cc	σγ _e =1.0076854300752 ^E -14 cc
					σγ _ε =2.3806262221014 ^E -14 ppm	σγ _e =1.58286800614998 ^E -14 ppm
	endealo	549656.98	3874262.42	0.00001059	γ _ε =3.1175 cc	γ _e =-3.468 cc
	cape_kity	555083.51	3854831.48	0.00027297	γε=4.9 ppm	γ _e =-5.45 ppm
9	xillias	534482.51	3866302.36	-0.00028356	σγ _ε =8.65364427424657 ^E -16 cc	σγ _e =7.91628556561031 ^E -16 cc
					σγε=1.35931077789679 ^E -15 ppm	σγ _e =1.2434867842057 ^E -15 ppm
	endealo	549656.98	3874262.42	0.00041624	γ _ε =1.0576 cc	γ _e =4.1963 cc
40	xillias	534482.51	3866302.36	-0.00016077	γ _ε =1.66 ppm	γ _e =6.59 ppm
10	arona	539681.24	3889451.02	-0.00025547	σγε=9.07145882016832 ^E -16 cc	σγ _e =7.43690115636128 ^E -16 cc
					$\sigma \gamma_{\epsilon} = 1.42494090983135^{E} - 15 \text{ ppm}$	σγ _e =1.1681852842137 ^E -15 ppm

	panagia	466467.32	3862683.13	-0.00576973	γ _ε =-123.895 cc	γ _e =-108.852 cc
	charda	450281.86	3855741.7	0.01620061	γ _ε =-194.61 ppm	γ _e =-170.98 ppm
11	lara	443145.67	3869252.21	-0.01043088	σγε=6.27980800879245E-14 cc	σγ _e =5.92401858708041E-14 cc
					σγε=9.86429582606963E-14 ppm	σγ _e =9.30542330916466E-14 ppm
	troodos	487640.73	3866159.7	0.00956928	γ _ε =-31.2156 cc	γ _e =174.3548 cc
12	panagia	466467.32	3862683.13	-0.00078781	γ _ε =-49.03 ppm	γ _e =273.88 ppm
12	zaharu	465524.86	3878598.86	-0.00878147	σγε=2.03151575048411E-14 cc	σγ _e =3.4898387318583E-14 cc
					σγε=3.19109633766471E-14 ppm	σγ _e =5.48182390100579E-14 ppm
	xillias	534482.51	3866302.36	0.01567851	γ _ε =10.9384 cc	γ _e =287.715 cc
13	macheras	517577.91	3864423.73	-0.0129142	γ_{ϵ} =17.18 ppm	γ _e =451.94 ppm
13	creados	512790.82	3878461.77	-0.00276431	σγε=7.49376729415071E-14 cc	σγ _e =1.22259788282471E-13 cc
					σγε=1.17711779305562E-13 ppm	σγ _e =1.9204515768036E-13 ppm
	arona	539681.24	3889451.02	0.00008551	γ _ε =0.3613 cc	γ _e =-8.4126 cc
14	xillias	534482.51	3866302.36	0.00056444	γ _ε =0.57 ppm	γ _e =-13.21 ppm
14	creados	512790.82	3878461.77	-0.00064995	σγε=1.71896780967409E-15 cc	σγ _e =1.83171333899759E-15 cc
		-			σγε=2.70014735583879E-15 ppm	σγ _e =2.8772.47555838E-15 ppm
	charda	450281.86	3855741.7	-0.00225317	γ _ε =-9.6564 cc	γ _e =-21.869 cc
15	panagia	466467.32	3862683.13	0.00021332	γ _ε =-15.17 ppm	γ _e =-34.35 ppm
15	varvara	454321.21	3846425.81	0.00203985	σγε=1.01610941444488E-14 cc	σγ _e =7.84093729745641E-15 cc
					σγε=1.59610036512959E-14 ppm	σγ _e =1.23165111015306E-14 ppm
	dareklimara	561947.2	3892559.65	0.00112352	γ _ε =-7.2398 cc	γ _e =195898 cc
16	endealo	549656.98	3874262.42	-0.00179873	γ _ε =-11.37 ppm	γ_e =30.77 ppm
10	arona	539681.24	3889451.02	0.0006752	σγ _ε =6.1489914753233E-05 cc	σγ _e =5.12539990845553E-05 cc
		•			σγε=9.6588097692867E-05 ppm	σγ _e =8.0509564708233E-05 ppm
	dareklimara	561947.2	3892559.65	0.0024483	γε=5.9988 cc	γ _e =-26.5934 cc
17	pyla	578107.89	3868049.48	-0.00027702	γ_{ϵ} =9.42 ppm	γ _e =-41.77 ppm
	endealo	549656.98	3874262.42	-0.00217128	σγε=1.42502794356625E-14 cc	σγ _e =1.11717833111511E-14 cc
		1	1	T	σγ _ε =2.23842785895235E-14 ppm	σγ _e =1.75485899141578E-14 ppm
	dareklimara	561947.2	3892559.65	-0.00012182	γε=1.6812 cc	γ _e =2.4162 cc
18	yaillah	549508.18	3905688.08	0.00026674	γ _ε =2.64 ppm	γ _e =3.8 ppm
10	platani	567877.83	3912247.96	-0.00014492	σγ _ε =8.27520719551852E-16 cc	σγ _e =7.23258768613297E-16 cc
		T	T	ſ	σγε=1.2998660418332E-15 ppm	σγ _e =1.13609181083424E-15 ppm
	dora	475211.3	3848403.05	0.00462076	γε=143.6839 cc	γ _e =-105.7562 cc
19	varvara	454321.21	3846425.81	-0.01317237	γε=225.7 ppm	γ _e =-166.12 ppm
10	panagia	466467.32	3862683.13	-0.0085516	σγε=6.13431868871768E-05 cc	σγ _e =5.18221451353857E-05 cc
					$\sigma \gamma_{\epsilon}$ =9.63576181822387E-05 ppm	σγ _e =8.14020061188554E-05 ppm
	elora	504823.17	3853369.63	-1.61947626	γε=12482.5339 cc	γ _e =12074 cc
20	connecting_pt	522286.91	3847433.46	1.49538693	γε=-19607.51 ppm	γ _e =18965.79 ppm
20	light_house	501212.09	3825333.43	0.12408933	σγ _ε =1.50019329296681E-13 cc	σγ _e =1.64101160229871E-13 cc
		1	1	T	σγ _ε =2.35649727147563E-13 ppm	σγ _e =2.57769407542759E-13 ppm
	elora	504823.17	3853369.63	1.62297113	γε=-25194.8267 cc	γ _e =-6889.8549 cc
21	light_house	501212.09	3825333.43	-0.99579292	γ _ε =-39575.93 ppm	γ _e =-10822.55 ppm
[_]	apollo	486912.84	3837473.53	-0.6271782	σγ _ε =7.48536450245818E-05 cc	σγ _e =4.78897476824647E-05 cc
1					σγ _ε =1.17579788609503E-04 ppm	σγ _e =7.5225012852981E-05 ppm

	endealo	549656.98	3874262.42	0.00014168	γ _ε =2.3466 cc	γ _e =-13.1044 cc		
22	pyla	578107.89	3868049.48	-0.00088542	γ _ε =3.69 ppm	γ _e =-20.58 ppm		
22	cape_kity	555083.51	3854831.48	0.00074683	σγε=1.68963435046783E-02 cc	σγ _e =2.02756777044369E-02 cc		
					σγε=2.65407048234085E-02 ppm	σγ _e =3.18489486733638E-02 ppm		
	macheras	517577.91	3864423.73	0.00900522	γ _ε =124.6321 cc	γ _e =-364.4339 cc		
22	high_hill	537260.68	3849344.04	-0.02393199	γ_{ϵ} =195.77 ppm	γ _e =-572.45 ppm		
23	connecting_pt	522286.91	3847433.46	-0.00359174	σγε=110.802305269682 cc	σγ _e =165.781472784907 cc		
					σγε=174.047791884769 ppm	σγ _e =260.408835388312 ppm		
	troodos	487640.73	3866159.7	-0.01052666	γ _ε =166.95 cc	γ _e =7.7406 cc		
24	dora	475211.3	3848403.05	-0.00164593	γ_{ϵ} =262.24 ppm	γ _e =12.16 ppm		
24	panagia	466467.32	3862683.13	0.01217258	σγε=6.25492469299876E-05 cc	σγ _e =5.23509279020662E-05 cc		
					σγε=9.8252092189984E-05 ppm	σγ _e =8.22326158494332E-05 ppm		
	xillias	534482.51	3866302.36	-0.01573925	γ _ε =139.9613 cc	γ _e =84.6465 cc		
25	high_hill	537260.68	3849344.04	0.00571762	γ_{ϵ} =219.85 ppm	γ _e =132.96 ppm		
25	macheras	517577.91	3864423.73	0.01002163	σγε=3.16888570829849E-14 cc	σγ _e =5.19169358958384E-14 cc		
					σγε=4.97767225079088E-14 ppm	σγ _e =8.1550903043948E-14 ppm		
	zaharu	465524.86	3878598.86	0.01093828	γ _ε =-163.9744 cc	γ _e =71.545 cc		
26	panagia	panagia 466467.32 3862683.13 -0.01657972 γε=-257.57 ppm				γ _e =112.38 ppm		
26	lara	443145.67	3869252.21	0.00564144	σγε=3.18975002744006E-14 cc	σγ _e =5.2016007379006E-14 cc		
					σγε=5.01044583494087E-14 ppm	σγ _e =8.17065241101536E-14 ppm		

Πίνακας 5.2 Αποτελέσματα υπολογισμού διατμητικών τάσεων.

Σχήμα 5.2 Διατμητικές τάσεις στον Κυπριακό χώρο.

Είναι φανερό από την επίλυση ότι οι μεγάλες τιμές παραμορφώσεων στα τρίγωνα στα οποία συμμετέχουν τα σημεία "archeritou" και "light house" οφείλονται στο γεγονός ότι μεταξύ των δύο εποχών μετρήσεων μετρήθηκαν έκκεντρα σημεία.

Επίσης, είναι εμφανές από τον χάρτη οι σημαντικές παραμορφώσεις που έχουν υποστεί οι περιοχές στο νοτιοδυτικό τμήμα της Κύπρου και κυρίως γύρω από την Πάφο, γεγονός που επιβεβαιώνεται και από το επίσημο Δελτίο 2002 του Τμήματος Γεωλογικής Επισκόπησης του Υπουργείου Γεωργίας Φυσικών Πόρων και Περιβάλλοντος Κύπρου, που περιλαμβάνει πίνακα με τους σημαντικότερους σεισμούς (4.5 R) για τη περίοδο από το 1896 έως το 1999 (Πίν.2.1).

Στους χάρτες που παρατίθενται στην συνέχεια απεικονίζονται τα διανύσματα μετακίνησης του ευρύτερου Ελλαδικού και Τουρκικού χώρου, τα οποία, όπως είναι αναμενόμενο, ταυτίζονται σε ικανοποιητικό βαθμό με τις παραμορφώσεις (Α-Δ) που παρατηρούνται στον Κυπριακό χώρο από την ανάλυση της παρούσης διδακτορικής διατριβής, δεδομένου ότι ο χώρος αυτός αποτελεί φυσική συνέχεια των περιοχών Ελλάδας και Τουρκίας.

Σχήμα 5.3Τεκτονικές ταχύτητες της Ανατολικής Μεσογείου ως προς την Αραβική τεκτονική πλάκα.

Σχήμα 5.4Τεκτονικές ταχύτητες της Ανατολικής Μεσογείου ως προς την Ευρασιατική τεκτονική πλάκα.

Σχήμα 5.5 Τεκτονικές ταχύτητες της Ανατολικής Μεσογείου $ω_{\rm C}$ προς το ITRF08.

Σχήμα 5.6 Τεκτονικές ταχύτητες της Ανατολικής Μεσογείου ως προς την Αφρικανική τεκτονική πλάκα.

Στην συνέχεια ακολουθεί ο επίσημος γεωλογικός Χάρτης της Κύπρου (Σχ.5.7) στον οποίο σχεδιάστηκαν το μετρημένο δίκτυο και οι τελικές υπολογιζόμενες διατμητικές τάσεις σε αυτό.

6. ΣΥΜΠΕΡΑΣΜΑΤΑ

6.1 Βασικά Συμπεράσματα

Δεδομένου ότι στην συγκεκριμένη ανάλυση είναι διαθέσιμα μόνο δύο σύνολα μετρήσεων, τα οποία και εξασφαλίζουν μια περίοδο ανάλυσης (1914-1962), καθώς επίσης και του γεγονότος ότι δεν υπάρχουν άλλες σχετικές μελέτες διαθέσιμες για την περιοχή είναι φανερό ότι τα όποια συμπεράσματα θα βασιστούν στα αποτελέσματα και μόνο της συγκεκριμένης ανάλυσης.

Για να διευκολυνθεί η εξαγωγή των συμπερασμάτων δομείται ο ακόλουθος πίνακας, ο οποίος πέραν των διατμητικών παραμορφώσεων, που έχουν ήδη υπολογιστεί περιέχει ακόμα την ολική διάτμηση που εξάγεται από αυτές για κάθε τρίγωνο καθώς επίσης και τον ρυθμό ετήσιας ολικής διάτμησης (προκύπτει από την διαίρεση της ολικής διάτμησης με το χρονικό διάστημα μεταξύ των δύο περιόδων μετρήσεων, δηλαδή τα 48 χρόνια) :

A/A				
ΤΡΙΓΩΝΟΥ	γε	γe	Ytot	$d\gamma_{tot}$
5	-53768.21	-17316.93	56488.02	1176.834
3	4009.3	56279.1	56421.73	1175.453
21	-39575.93	-10822.55	41029.04	854.7716
20	-19607.51	18965.79	27279.22	568.317
23	195.77	-572.45	604.9999	12.60416
13	17.18	451.94	452.2664	9.422217
26	-257.57	112.38	281.0188	5.854558
19	225.7	-166.12	280.2434	5.838403
12	-49.03	273.88	278.2341	5.796543
24	262.24	12.16	262.5218	5.469204
11	-194.61	-170.98	259.0506	5.396887
25	219.85	132.96	256.9288	5.352682
1	-132.86	-30.29	136.2691	2.838939
8	18.66	49.05	52.4795	1.093323
17	9.42	-41.77	42.81903	0.892063
15	-15.17	-34.35	37.55065	0.782305
4	22.65	-27.42	35.56514	0.74094
2	33	0.12	33.00022	0.687505
16	-11.37	30.77	32.8035	0.683406
7	6.32	27.14	27.86614	0.580545
22	3.69	-20.58	20.90819	0.435587
14	0.57	-13.21	13.22229	0.275464
6	11.58	3.12	11.99295	0.249853
9	4.9	-5.45	7.328881	0.152685
10	1.66	6.59	6.795859	0.14158

Πίν.6.1	Ρυθμός	ετήσιας	ολικής	διάτμησης.
---------	--------	---------	--------	------------

Τα κύρια συμπεράσματα τα όποια εξάγονται από την μελέτη του παραπάνω πίνακα είναι τα επόμενα :

- > Τα τρίγωνα ανάλυσης μπορούν να ταξινομηθούν σε τρείς μεγάλες κατηγορίες :
 - Η πρώτη κατηγορία περιλαμβάνει τα τρίγωνα εκείνα τα οποία εμφανίζουν υπερβολικούς ρυθμούς ετήσιας ολικής διάτμησης
 - Η δεύτερη κατηγορία περιλαμβάνει τα τρίγωνα εκείνα τα οποία εμφανίζουν ρυθμούς ετήσιας ολικής διάτμησης, οι οποίοι χρήζουν περαιτέρω διερεύνησης
 - Η τρίτη κατηγορία περιλαμβάνει τα τρίγωνα εκείνα τα οποία εμφανίζουν ρυθμούς ετήσιας ολικής διάτμησης, οι οποίοι δεν χρήζουν περαιτέρω διερεύνησης.
- Η παραμόρφωση των τριγώνων της πρώτης κατηγορίας (τα τέσσερα πρώτα τρίγωνα του παραπάνω πίνακα), είναι προφανές ότι οφείλεται σε παράγοντα μέτρησης. Για τα συγκεκριμένα τρίγωνα ο παραπάνω παράγοντας εδράζεται στο γεγονός ότι για τα σημεία μέτρησης "archeritou" και "light house" μετρήθηκαν έκκεντρα σημεία μεταξύ των δύο εποχών μετρήσεων
- Τα τρίγωνα της δεύτερης κατηγορίας μπορούν περαιτέρω να διαιρεθούν σε δύο κατηγορίες:
 - ✓ Στα δύο τρίγωνα που παρουσιάζουν ετήσιους ρυθμούς διάτμησης άνω των 9 ppm/έτος και στα οποία κεντρικό ρόλο διαδραματίζει το σημείο μέτρησης "macheras".

Δεδομένου ότι από το σχήμα 2.2 προκύπτει ότι στην επιφάνεια των δύο αυτών τριγώνων δεν έχουν υπάρξει σημαντικά σεισμικά γεγονότα κατά την περίοδο ανάλυσης, οι εξαιρετικά υψηλές τιμές μπορούν να αποδοθούν μόνο στην θέση του σημείου μέτρησης "macheras", επί του όρους Τρόοδος, η οποία και επηρεάζει την συμπεριφορά παραμόρφωσης των δύο τριγώνων

 Στα τρίγωνα, τα οποία παρουσιάζουν ετήσιους ρυθμούς διάτμησης της τάξεως των 5 ppm/έτος, η πλειοψηφία των οποίων δομούνται γύρω από το σημείο μέτρησης "panagia"

Όπως προκύπτει από το σχήμα 2.2 στην περιοχή που περιέχεται μεταξύ των παραπάνω τριγώνων έχουν συμβεί αρκετά σεισμικά γεγονότα, τα οποία και εξηγούν σε ένα μεγάλο βαθμό την συμπεριφορά παραμόρφωσης των τριγώνων της περιοχής

- Ως γενικό συμπέρασμα μπορεί να αναφερθεί ότι η ανάλυση των διατμητικών παραμορφώσεων, αν και με σχετικούς περιορισμούς αφού προέρχονται μόνο από μια περίοδο ανάλυσης, καταφέρνει να ταυτοποιήσει δύο βασικά χαρακτηριστικά του κυπριακού χώρου :
 - Τη βασική επίδραση του όρους Τρόοδος στις γεωτεκτονικές διεργασίες που λαμβάνουν χώρα στην περιοχή
 - Την επίδραση των σεισμικών γεγονότων κυρίως στην Δυτική και Νοτιοδυτική περιοχή της Κύπρου

6.2 Προτάσεις Μελλοντικής Έρευνας

Κατόπιν των παραπάνω διατυπώνονται και οι παρακάτω δύο προτάσεις μελλοντικής έρευνας, που σχετίζονται με τα συμπεράσματα της παρούσας διδακτορικής έρευνας και δύνανται να τα αξιοποιήσουν :

- Επαναμέτρηση των σημείων μέτρησης, σε περιοδικά χρονικά διαστήματα με σύγχρονες δορυφορικές μεθόδους (GNSS), ώστε να δημιουργηθούν περισσότερες περίοδοι μέτρησης που με τη σειρά τους θα δομήσουν περισσότερες περιόδους ανάλυσης. Η ανάλυση και η σύγκριση των αποτελεσμάτων των περιόδων αυτών θα επιτρέψουν την εξαγωγή ασφαλέστερων τελικών συμπερασμάτων μέσω της επιβεβαίωσης ή μη των επιμέρους συμπερασμάτων
- Σύγκριση των εξαγόμενων τανυστών παραμόρφωσης με σχετικά στοιχεία που ια προκύψουν από την ανάλυση της σεισμικής ιστορίας των περιοχών που περιέχονται εντός των τριγώνων ανάλυσης. Η σύγκριση αυτή θα διερευνήσει το ποσοστό των τάσεων που έχει εκλυθεί μέσω των σεισμικών γεγονότων ενώ ενδέχεται και να τεκμηριώσει μέρος των προκυπτουσών, από την παρούσα διδακτορική έρευνα, συμπερασμάτων.

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

Ambraseys N. & Adams R. (1993) Seismicity of the Cyprus Region, Terra Nova, vol. 5 pp. 85-94.

Clarke, P.J. (1996) *Tectonic Motions and Earthquake Deformation in Greece from GPS Measurements*, PhD Thesis: University of Oxford.

Dermanis, A. and Livieratos, E. (1983) 'Applications of Deformation Aanalysis in Geodesy and Geodynamics', *Reviews of Geophysics and Space Physics*, pp. 41-50.

England, P. (2003) 'The Alignment of Earthquake T-Axes with the Principal Axes of Geodetic Strain in the Aegean Region', *Turkish Journal of Earth Sciences*, vol. 12, pp. 47-53.

Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.-., Palamartchouk, K., Parsons, B. and England, P.C. (2010) 'A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean', *Journal of Geophysical Research*, vol. 115, p. B10403.

Frank, F.C. (1966) 'Deductions of earth strains from survey data', *Bulletin of the Seismological Society of America*, pp. 35-42.

Hatzfeld, D. (1993) 'Geodynamics of the Aegean : a microseimotectonic approach', Annali di Geofisica, vol. 36, no. 2, pp. 215-227.

Hatzfeld, D. (1999) 'The present-day tectonics of the Aegean as deduced from seismicity', in Durand, B., Jolivet, L., Hornath, F. and Seranne, M. (ed.) *The Mediterranean Basins: Tertiary Extension within the Alpine Orogen*, London: Geological Society.

Hatzfeld, D., Besnard, M., Makropoulos, K. and Hatzidimitriou, P. (1993) 'Microearthquake seismicity and fault - plane solutions in the southern Aegean and its geodynamic implications', *Geophysics Journal International*, vol. 115, pp. 799-818.

Hollenstein, C., Müller, M.D., Geiger, A. and Kahle, H.G. (2008) 'Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003', *Tectonophysics*, vol. 449, pp. 17–40.

Issawy, E.A., Radwan, A.H., Dahy, S.A. and Rayan, A. (2010) 'Monitoring of recent crustal movements around Cairo by repeated gravity and geodetic observations', *Contributions to Geophysics and Geodesy*, vol. 40, no. 2, pp. 173-184.

Kreemer, C. and Chamot-Rooke, N. (2004) 'Contemporary kinematics of the southern Aegean and the Mediterranean Ridge', *International Journal of Geophysics*, pp. 1377–1392.

Le Pichon, X., Chamot-Rooke, N., Lallemant, S., Noomen, R. and Veis, G. (1995) 'Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics', *Journal of Geophysical Research*, July, pp. 12675–12690.

Masson-Smith D. & Gass I. (1963) "The Geology and Gravity Anomalies of the Troodos Massif, Cyprus", *Philosophical Transaction of the Royal Society*, vol. 255, no. 1060, pp. 417-467.

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D. et al. (2000) 'Global

Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus', *Journal of Geophysical Research*, vol. 105, no. B3, pp. 5695-5719.

Nyst, M. and Thatcher, W. (2004) 'New constraints on the active tectonic deformation of the Aegean', *Journal of Geophysical Research*.

Pope, A.J. (1966) Strain Analysis of Repeated Triangulation for the Investigation of Crustal Movement, Ohio State University.

Prescott, W.H. (1976) 'An extension of Frank's method for obtaining crustal shear strains from survey data,', *Bulletin of the Seismological Society of America*, pp. 1847 – 1853.

Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. and Vernant, P. (2010) 'Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone', *Tectonophysics*, no. 488, pp. 22-30.

Rontogianni, S. (2010) 'Comparison of geodetic and seismic strain rates in Greece by using a uniform processing approach to campaign GPS measurements over the interval 1994-2000', *Journal of Geodynamics*.

Savvides, M. (1989) The trigonometrical Surveys of Cyprus, Department of Lands & Surveys.

Stiros, S.C. (1993) 'Kinematics and deformation of central and southwestern Greece fron historical triangulation data and implications for the active tectonics of the Aegean', *Tectonophysics*, vol. 220, pp. 283-300.

Βέης, Γ., Μπιλλίρης, Χ., Νάκος, Β. and Παραδείσης, Δ. (1992) 'Γεωδαιτικός Προσδιορισμός Τεκτονικών Παραμορφώσεων στον Ελληνικό Χώρο', Πρακτικά Ακαδημίας Αθηνών, Αθήνα, 129-166.

Γκέγκας, Α., "Ανάλυση Μικρομετακινήσεων στην Περιοχή του Νότιου Αιγαίου Πελάγους με Συνδυασμό Ιστορικών Γεωδαιτικών, Γεωφυσικών και Σύγχρονων Δορυφορικών Μετρήσεων", Διδακτορική Διατριβή, Σχολή Αγρονόμων Τοπογράφων Μηχανικών Ε.Μ.Π., 2014

Παυλίδης, Σ. (2008) 'Ασθενείς ρηξιγενείς ζώνες του Αιγαίου για ένα σταθερό φλοιό', 3ο Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας.

Τάκος, Ι. (1989) 'Νέα Συνόρθωση των Τριγωνομετρικών Δικτύων της Ελλάδας', Δελτίο Γεωγραφικής Υπηρεσίας Στρατού, pp. 23-93.