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ABSTRACT 

Aim of this thesis was the evaluation of the potential of sweet sorghum 

stalks to serve as raw material for the production of several forms of biofuels. 

Initially, ethanol production was evaluated in two different process 

configurations (either whole stalks or the lignocellulosic fraction (bagasse) 

alone). In order to improve enzymatic digestibility of bagasse, microwave-

assisted hydrothermal pretreatment was evaluated and optimized. Under 

optimal conditions, cellulose content was very high (66.84% w/w) and the 

yield of cellulose conversion reached 30.42% after 8h of digestion. During 

ethanol production trials, 12h of saccharification was proven to be sufficient, 

reaching a cellulose conversion of 59.8%. Ethanol concentration at the 

subsequent fermentation reached 41.4g/L with a volumetric productivity 

equal to 1.88g/L·h. Addition of extra fresh enzymes at the start-up of the 

fermentation had a positive effect on ethanol production.  

When the whole stalks were evaluated as raw material for ethanol 

production under high solids content, it was found during the initial 

experiments that incorporation of an enzymatic treatment step prior to 

fermentation results in increasing ethanol production and productivity. In 

order to optimize the hydrolysis step, the combined effect of hydrolysis 

duration and enzyme load on ethanol productivity was evaluated and 

optimized. Under the optimal conditions found for enzymatic hydrolysis (8.32 

FPU/g enzyme load for 8.6h), ethanol production reached 62.53 g/L and 

productivity 2.98 g/L·h. Finally, when the effect of the solid content was 

evaluated, it was found that initial solids content of 35% w/w resulted in very 

high ethanol production with the highest productivity and very high relative 

yield comparing to the maximum theoretical. 

Based on the obtained results for ethanol production, it can be concluded 

that utilization of the stalks is more beneficial, as less steps are included and the 

obtained ethanol concentration was higher comparing to the bagasse. For this 

reason, the same process was used for the evaluation of microbial lipids 

production which could serve as raw material for biodiesel. Three different 

oleaginous yeasts were evaluated as candidates, namely L. starkeyi CBS 1807, 

T. fermentans CBS 439.83 and R. toruloides CCT 0783. Initially the ability of 
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the stalks to support yeast growth both as nitrogen and carbon source was 

evaluated by supplementing stalks with external nitrogen source. In all the 

yeasts it was found that addition of external nitrogen source results in decrease 

in lipid production. The ability of the stalks to provide with the necessary 

nitrogen it is beneficial for the process economics, as nitrogen 

supplementation is considered to increase the production cost. Presence of the 

enzymatic saccharification prior to yeast cultivation had a positive effect in 

lipid production for all the yeasts and solid contents. The highest lipid 

production concentration was observed when R. toruloides was used and 

reached 13.77 g/L when the cultivation took place on juice that came from 

20% w/w solids. The biodiesel parameters of the obtained oils were predicted 

and all of them have appropriate characteristics to be used as biodiesel. 

Finally, the ability of stalks to serve as raw material for the production of 

methane by anaerobic digestion was examined. Two different treatments were 

evaluated in order to increase the yield of methane production, namely a mild 

thermal and an enzymatic treatment. Thermal treatment had a negative effect 

on methane yield. On the other hand, enzymatic treatment in one-step 

(similar to SSF process) increased methane yield from 238 mL CH4/g VS to 

274 mL CH4/g VS. In a final step, the combined effect of enzyme load and 

I/S ratio was evaluated and resulted in a highest methane yield equal to 

284.37 mL CH4/g VS when the enzyme load was equal to 13FPU/g at a I/S 

ratio equal to 0.7. 
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ΠΕΡΙΛΗΨΗ 

Σκοπός της παρούσας διδακτορικής διατριβής ήταν η αξιολόγηση της 

δυνατότητας χρησιμοποίησης του γλυκού σόργου ως πρώτη ύλη για την παραγωγή 

διαφόρων μορφών βιοκαυσίμων. Αρχικώς αξιολογήθηκε η δυνατότητα παραωγής 

βιοαιθανόλης με την χρήση δύο διαφορετικών στρατηγηκών (είτε την χρήση όλων 

των στελεχών του σόργου είτε με την χρήση μόνο του λιγνινοκυτταρινούχου 

κλάσματος, την βαγάσση). Σε μια προσπάθεια να βελτιωθεί η ενζυμική υδρόλυση 

της βαγάσσης, μελετήθηκε και βελτιστοποιήθηκε η εφαρμογή υδροθερμική 

προκατεργασίας με την χρήση μικρομυμάτων. Κάτω απο τις βέλτιστες συνθήκες 

προκατεργασίας, παρατηρήθηκε υψηλή συγκέντρωση κυτταρίνης (66.84% w/w) 

καθώς και υψηλή υδρόλυση της κυτταρίνης, η οποία ανήλθε σε 30.42% μετά από 8 

ώρες υδρολύσεως. Κατά την διάρκεια των πειραμάτων παραγωγής αιθανόλης, 

παρατηρήθηκε οτι υδρόλυση 12 ωρών ήταν αρκετή για την αποτελεσματική 

υδρόλυση της κυτταρίνης, η οποία ανήλθε σε 59.8%. Η συγκέντρωση της αιθανόλης 

στην ακόλουθη ζύμωση ανήλθε σε 41.4g/L με την παραγωγικότητα να φτάνει σε 

1.88g/L·h. Η προσθήκη επιπλέον φρέσκων ενζύμων κατά την έναρξη της ζύμωσης 

είχε θετική επίδραση στην παραγόμενη αιθανόλη. 

Κατά την διάρκεια των  πειραμάτων όπου χρησιμοποιήθηκαν τα στελέχη του 

σόργου σε συνθήκες υψηλής συγκέντρωσης στερεών, βρέθηκε οτι η ενσωμάτωση 

ενός ξεχωριστού σταδίου ενζυμικής υδρόλησης πριν την ζύμωση είχε ως 

αποτέλεσμα την αύξηση της παραγωγής αιθανόλης καθώς και της 

παραγωγικότητας. Προκειμένου να βελτιωθεί το στάδιο της υδρολύσεως, 

μελετήθηκε η συνδυασμένη επίδραση του χρόνου υδρόλυσης και του ενζυμικού 

φορτίου στην παραγωγικότητα της αιθανόλης. Κάτω από τις βέλτιστες συνθήκες 

που βρέθηκαν (ενζυμικό φορτίο ίσο με 8.32 FPU/g και χρονική διάρκεια 8.6 ωρών), 

η παραγωγή αιθανόλης έφτασε τα 62.53 g/L με την παραγωγικότητα να είναι 2.98 

g/L·h. Τέλος, κατά την διάρκεια της μελέτης της επίδρασης της αρχικής 

συγκέντρωσης στερεών, βρέθηκε ότι συγκέντρωση στερεών ίση με 35% w/w 

οδήγησε στην υψηλή παραγωγή αιθανόλης, στην μέγιστη παραγωγικότητα καθώς 

και σε έναν από τους υψηλότερους συντελεστές απόδοσης, σε σύγκριση με τις 

άλλες συγκεντρώσεις που μελετήθηκαν. 

Λαμβάνοντας υπόψην τα αποτελέσματα σχετικά με την παραγωγή αιθανόλης, 

καταλήξαμε οτι η χρήση των στελεχών του γλυκού σόργου είναι πιο 

αποτελεσματική, καθώς λιγότερα στάδια είναι απαραίτητα και η συγκέντρωση της 

παραγώμενης αιθανόλης ήταν υψηλότερη σε σχέση με την χρήση της βαγάσσης. Για 
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αυτόν τον λόγο αποφασίστηκε να χρησιμοποιηθεί η ίδια διεργασία κατά την 

διάρκεια των πειραμάτων μελέτης παραγωγής μικροβιακών λιπιδίων τα οποία 

μπορούν να χρησιμοποιηθούν για την παραγωγή βιοντίζελ. Τρείς ελαιογόνες ζύμες 

μελετήθηκαν για αυτόν τον σκοπό, πιο συγκεκριμένα οι ζύμες L. starkeyi CBS 

1807, T. fermentans CBS 439.83 και R. toruloides CCT 0783. Αρχικώς εξετάστηκε 

η δυνατότητα των στελεχών του σόργου να υποστηρίξουν την ανάπτυξη των 

διαφόρων ζυμών παρέχοντας τόσο τον άνθρακα όσο και το απαραίτητο άζωτο. Αυτό 

πραγματοποιήθηκε μελετώντας την επίδραση που είχε η προσθήκη εξωτερικής 

πηγής αζώτου στο μέσον της καλλιέργειας. Παρατηρήθηκε ότι η προσθήκη του 

εξωγενούς αζώτου είχε αρνητική επίδραση και στις τρείς ζύμες, μειώνοντας την 

παραγωγή μικροβιακού λίπους. Η ικανότητα των στελεχών του σόργου να 

προσφέρουν τόσο τον απαραίτητο άνθρακα όσο και το απαραίτητο άζωτο είναι 

πολύ σημαντική για την μείωση του κόστους παραγωγής, καθώς η προσθήκη 

αζώτου θεωρείται ότι αυξάνει το συνολικό κόστος. Επιπλέον, η ύπαρξη ενός 

σταδίου ενζυμικής σακχαροποίηση πριν το στάδιο παραγωγής λίπους είχε θετική 

επίδραση στο παραγώμενο λίπος, ανεξαρτήτως της χρησιμοποιηθέντας ζύμης και 

της συγκέντρωσης στερεών. Η υψηλότερη συγκέντρωση λίπους παρατηρήθηκε όταν 

καλλιεργήθηκε η ζύμη R. toruloides σε υπόστρωμα που προέκυψε από 

συγκέντρωση στερεών ίση με 20% w/w, έχοντας αφαιρέσει τα στερεά, και ανήλθε 

σε 13.77 g/L. Στο τελικό στάδιο αυτής της μελέτης, έγινε πρόβλεψη των ιδιοτήτων 

του βιοντίζελ το οποίο θα προέκυπτε αν χρησιμοποιούνταν τα λίπη που προέυψαν 

απο τις τρείς ζύμες που μελετήθηκαν. Βρέθηκε ότι και οι τρεις παράγουν λιπίδια 

που θα έδιναν καλές ιδιότητες στο παραχθέν βιοντίζελ. 

Στο τελικό στάδιο της παρούσας μελέτης, εξετάστηκε η δυνατότητα χρήσης των 

στελεχών του σόργου για την παραγωγή βιομεθανίου μέσω αναερόβιας χώνευσης. 

Αρχικώς, μελετήθηκε η επίδραση δύο διαφορετικών κατεργασιών πριν την 

αναερόβια χώνευση στην απόδοση σε μεθάνιο. Πιο συγκεκριμένα μελετήθηκαν μια 

ήπια θερμική κατεργασία και μια ενζυμική. Η θερμική κατεργασία βρέθηκε ότι είχε 

αρνητική επίδραση στην απόδοση σε μεθάνιο. Από την άλλη μεριά, η ενζυμική 

κατεργασία όταν εφαρμόστηκε σε ένα στάδιο με την αναερόβια χώνευση 

(προσομοιάζοντας την διεργασία SSF) βελτίωσε την απόδοση σε μεθάνιο από 

238mL CH4/g VS σε 274mL CH4/g VS. Σε ένα τελικό στάδιο, εξετάστηκε η 

συνδυαστική δράση του ενζυμικού φορτίου και του λόγου I/S και βρέθηκε ότι η 

υψηλότερη απόδοση σε μεθάνιο επιτεύχθηκε για ενζυμικό φορτίο ίσο με 13FPU/g 

και λόγο I/S ίσο με 0.7 και ανήλθε σε 284.37mL CH4/g VS. 
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1. INTRODUCTION 

Renewable energy alternatives have been subjected to a huge research 

activity due to rising environmental problems combined with an imminent 

shortage of fossil fuels which creates energy insecurity (Li et al., 2010; Sarris et 

al., 2013; Papanikolaou and Aggelis, 2011a). Estimations have shown that the 

greenhouse gas (GHG) emissions have increased by 70% from 1970 to 2004 

(Galbe and Zacchi, 2002). Another report has evaluated the GHG emissions 

for 2012 to have been increased by 2.6% and 58% compared to the emissions 

in 2011 and 1990 respectively (Le Quéré et al., 2012). It was mentioned that 

the total CO2 emissions attributed to petroleum products reached 10.9 giga 

metric tons during 2007, where transport section contributed with 60% of the 

total emissions (Hervé et al., 2011). It is obvious that GHG emissions rapidly 

increased during the last decades, which contributes to several environmental 

problems such as global warming. Moreover, most of the countries worldwide 

are dependent on the importation of fossil fuels to meet their energy demands, 

which make them dependent on the exporter. This fact results in energy 

insecurity which could become crucial. 

According to a report released by I.E.A. (IEA, 2013), the global energy 

supply is based mostly on fossil fuels (81.6% of the total energy) where oil 

accounts for 31.5%, natural gas 21.3% and coal 28.8%. Renewable energy like 

biofuels and wastes accounts for 10% and hydropower only 2.3%. Finally 

nuclear power represents 5.1% of the total energy supply. Recently E.I.A. 

(2014) projected that the global energy consumption will increase by 56% 

from 2010 to 2040 mostly due to the high increase in the energy demands of 

the non-OECD countries (Figure 1) which are presenting high rates of 
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economic growth (http://www.eia.gov). More specifically 85% of this 

increase is attributed to non-OECD Asia and Middle East (EIA, 2014). These 

increasing rates of fossil fuel consumption apart from the environmental 

problems that they cause will result in the depletion of the fossil resources. 

Indeed, according to some researchers oil reserves could be depleted in the 

next 41 years whereas natural gas in the next 64 years (Goldember, 2007).  All 

these facts have alerted the society to take action in order to ensure energy 

supply for the future generation. For example according to the directive 

2003/30/EC, countries member of EU should have incorporated incorporate 

2% and 5.75% of renewable fuels in the transport section by 2005 and 2010 

respectively (EC, 2003). 

 

 

Figure 1: Daily consumption in million barrels of 
petroleum and other liquid fuels in OECD and non-
OECD countries during the period 1990-2040. 
Source: E.I.A. International Energy Outlook 2014 (EIA, 
2014). 

http://www.eia.gov/todayinenergy/detail.cfm?id=12251
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1.1 Renewable energy 

Renewable energy is seen as an excellent solution to both reduce the 

negative impact of humanity on the environment and make the societies 

energy independent. Several forms of renewable energy are used, like 

hydropower, solar energy, geothermal, biofuels, etc. The importance in 

increasing the use of renewable energy is shown in Figure 2, where the 

average annual growth during the last years of different renewable energy is 

presented. There is a clear rising trend in the production of all the forms of 

renewable energy, except from the production of ethanol during 2012. This 

slight decrease could be attributed to the saturation of the sources that are used 

for ethanol production and the need to exploit new ones. The interest for 

new investments on renewable energy production units had increased during 

the last years from 40 billion US dollars in 2004 to 279 billion US dollars in 

2011, with a minor decline to 244 billion in 2012 (REN 21, 2013). It is 

obvious that investors consider renewable energy as a profitable business that 

in the future will play an important role in the energy production worldwide. 

Concerning the biofuels production, several options are available such as 

woodchips, pellets, methanol, ethanol, biodiesel, biogas, syngas, DME, etc 

(Nigam and Singh, 2011). Utilization of woodchips and pellets is considered 

to be a primary and more traditional forms of biofuel as they are natural and 

unprocessed materials, whereas the others are considered to be more advanced 

forms. Regarding the transportation sector, which accounts for 32.6% of the 

total energy consumption in EU (EU, 2010), liquid fossil fuels (i.e. gasoline or 

diesel) are mostly used which reduced the number of potential renewable 

alternatives compared to for example electricity production. Ethanol, biodiesel 

and biogas are some paradigms of renewable fuels that could replace the use of 

fossil fuels in the transport section. Ethanol and biodiesel are the most widely 
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used; as they can replace gasoline and petroleum respectively (Matsakas et al., 

2014). Figure 3 shows a clear increase in their global production from 1975 to 

2010. Finally, after having been upgraded by carbon dioxide removal and 

increase of the methane concentration, biogas can be used as vehicle fuel with 

slight modifications of the vehicle. Biofuels are generally considered to be the 

most promising option of renewable energy for short term use due to their 

market maturity (Nigam and Singh, 2011) and their compatibility with the 

existing infrastructure. Production of biofuels does not only have a positive 

impact by reducing the GHG emissions produced by oil burning, but also but 

also by improving the energy security with the use of domestic natural 

resources for their production and by creating new jobs especially in rural 

areas.  

 

 

Figure 2: Average annual growth of different forms of renewable energy as an 
average during the five years period 2007-2012 and during 2012. 
Source: REN 21, 2013. 
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Generally, biofuels can be distinguished in three generations. In the first 

generation the raw materials used are mainly sugars, grains and seeds which 

represent the storage organs of plants (Hervé et al., 2011). Some characteristic 

examples of raw materials used during first generation biofuels are sugarcane, 

corn, potatoe, wheat, palmoil, rapsoil, soybean,etc (Halvík et al., 2011; Naik 

et al., 2010). The use of these raw materials for biofuels production was 

blamed to contribute to the increase of the food prices globally which resulted 

in severe criticism against biofuels (Papanikolaou and Aggelis, 2011a; Pinzi et 

al., 2013). Moreover, first generation biofuels are also blamed not to 

efficiently contribute to the reduction of GHG emissions (Naik et al., 2010; 

Hervé et al., 2011) or to reduce the efficiency of land use (Nigam and Singh, 

2010). 

In order to deal with the food vs fuel dilemma, researchers have turned their 

interest to the utilization of non-food sources for biofuel production, such as 

lignocelluloses biomass, moving to the second generation biofuels. 

Lignocellulose, which will be discussed later, includes different kind of straws 

(like wheat, corn, rice, etc), leaves, branches, sawdust or even energy grassed 

or trees. Despite the obvious advantages of second generation biofuels, there 

are still some concerns about land-use change and competition in land use 

with crops that are cultivated for food (Brennan and Owende, 2010). 

Finally, the third generation biofuels is based on photosynthetic algae (Lam 

and Lee, 2012). During the third generation biofuels production, carbon 

dioxide is captured and used for the storage of algae lipids which are involved 

in the production of biodiesel. 
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Figure 3: Global production of bioethanol and biodiesel in million tons 
between the years 1975 and 2009. 
Source: Hervé et al., 2011 

 

1.2 Ethanol production 

The use of ethanol as a vehicle fuel is known since 1860s with Nicholas 

Otto and with Henry Ford in 1896 for his first car (Datta et al., 2010). It is 

considered as one of the most important biofuels as it presents several 

environmental benefits when used (Cardona Alzate and Sánchez Toro, 2006). 

It is estimated that globally about 820 million cars and light trucks are working 

with ethanol (Datta et al., 2010). Ethanol can be used in blends with gasoline 

in which the percentage variation in ethanol from 5% (E5) to 100% (E100). 

Conventional cars can use up to E10 without modifications but as the ethanol 

percentage increases some modification are necessary (such as in the fuel 
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injection, fuel pump, evaporative system, etc) and for ethanol blends higher 

than 25% engine modification are also required (The Royal Society, 2008). 

Ethanol as a fuel presents a high octane number (Christakopoulos and 

Topakas, 2010) with even small amounts of ethanol in the blend causing a 

disproportionately large increase in octane number of the blend (Datta et al., 

2010). Moreover, the higher oxygen content improves the efficiency of the 

combustion (Niven, 2005). On the other hand the energy content of ethanol 

represents 66% of the gasoline energy content (Nigam and Singh, 2011). 

Concerning the environmental effect of ethanol use, emissions of GHG are 

generally considered to be reduced. More specifically, ethanol burn results in 

lower emission in carbon monoxide (CO), fine particulate matter (PM), 

volatile organic compounds (VOCs), sulfur oxides, benzene and hydrocarbons 

comparing to fossil fuels (CFDC, 2010). On the other hand, some findings 

indicate that there is an increase in nitrogen oxides (NOx), acetaldehyde, 

ethanol, formaldehyde and acrolein emissions (Niven, 2005). Moreover, 

blends of ethanol up to 10% w/w in gasoline results in increase of the Reid 

Vapor Pressure, which in turn results in increase of the evaporative emissions 

(Poulopoulos et al., 2001). 

Common substrates for ethanol production are sugars and starch. However, 

there is an increasing effort to move towards the second generation ethanol 

where lignocellulose is used. The most commonly used microorganism is the 

yeast Saccharomyces cerevisiae, although some other yeasts (like Kluyveromyces 

sp.), bacteria (like Zymomonas mobilis) or fungi (like Fusarium oxysporum) could 

also be used. The two biggest producers of ethanol worldwide are USA and 

Brazil, using corn and sugars from sugarcane respectively (Oliveira et al., 

2005). Until recently (2005) Brazil was leading in the production of ethanol 

worldwide, with a constant high production rate since the 80s. The last years 



12 

 

USA took the lead presenting an impressive increase in the annual ethanol 

production as can be seen in Figure 4 (Wang et al., 2012). According to 

Gnansounou (2010) ethanol production in Europe represented 5% of the 

global production in 2008, with Germany and France being the main 

producers (Balat, 2007). Despite the fact that there is an increasing interest in 

utilizing alternative sources for ethanol fermentation (such as lignocellulose), 

the main sources of ethanol production in Europe are cereals and sugar beet 

(Demirbas 2009).  

 

 

Figure 4: Annual ethanol production in USA and Brazil between 1981 and 
2011. 
Source: Wang et al., 2012 
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When it comes to the utilization of sugars or starch, the produced ethanol 

is called first generation. The use of sugars is simple, as the yeast can directly 

grow on them and convert them into ethanol. However the use of starch 

requires a step of hydrolysis, where starch is converted into glucose by specific 

amylolytic enzymes, namely glucoamylase and α-amylase, under ‘dry grind’ or 

’wet mill’ processes (Bothast and Schlicher, 2005; Shigechi et al., 2004). 

 There is a rising interest in exploiting lignocellulose for the production of 

second generation bioethanol, in order to minimize usage of food sources. 

However, the utilization of lignocelluloses is more complex compared to that 

of sugars and starch. The main challenge is to efficiently release the sugars 

from mainly cellulose using specific enzymes. For this reason, prior to 

enzymatic hydrolysis a pretreatment step is necessary in most cases (Matsakas 

et al., 2014). Pretreatment and hydrolysis of cellulose will be discussed later. 

No matter which raw materials is used, the production and the use of 

bioethanol contribute to a decrease of CO2 emissions. On the other hand, the 

source of raw materials contributes to a different degree of CO2 reduction, 

where cellulosic ethanol presents a bigger reduction than corn. Wang et al. 

(2012) calculated that GHG emissions (in CO2 equivalents) to be 94g/MJ for 

gasoline production, whereas for ethanol produced from corn and sugar cane 

are 76g/MJ and 45g/MJ respectively. When cellulosic ethanol is produced, 

the emissions are even lower, between 22 and 29 g/MJ depending on the 

cellulose source, according to the same study. Thus, the reduction of GHG 

emissions is dependent on the blend that is used and the source of ethanol. 

With a higher percentage of ethanol in the blend, higher reduction in GHG is 

observed. For corn ethanol, a reduction of 1% in E10 blend has been 

calculated, which is increased to a reduction of 14-19% for E85 blend (Wang 

et al., 1999). When E85 of cellulosic ethanol is used, GHG emission can be 
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reduced by 64% (Wang, 2005). As suggested by Wang et al. (2009) 

improvement of corn ethanol production could result in higher reduction in 

GHG emissions, but on the other hand it is obvious that in order to achieve 

the highest reduction, ethanol production should move towards cellulosic 

ethanol. Despite the clear environmental benefits of cellulosic ethanol 

production it is estimated even in 2020 44% of ethanol will be produced by 

coarse grains and 34% from sugarcane (Vivekanandhan et al., 2013). In order 

to improve the share of cellulosic ethanol in the total ethanol production, new 

technologies, aiming in reducing the production costs need to be applied. In 

the time being, some pilot/demo plants are operating for cellulosic ethanol 

production, such as Inbicon in Denmark, Sekab in Sweden, KL Energy and 

POET LLC in USA, Abengoa in Spain, Iogen in Canada and Chemtex in 

Italy, which will contribute to a better understanding of the process at 

industrial level (Cannella and Jørgensen, 2013; Menon and Rao, 2012).  

1.3 Biodiesel production 

Biodiesel is considered to be an important renewable fuel that could 

replace fossil diesel in compression ignition engines. Apart from being 

renewable, biodiesel has attracted the interest because it is biodegradable, 

nontoxic and improve the lubricity of the fuel as well as reducing GHG 

formation (Li et al., 2008; Zhu et al., 2008; Matsakas et al., 2014; Demirbas, 

2008). Biodiesel consists of a mixture of fatty acid esters which corresponds to 

the product of the transesterification of triacylglycerols (TAGs) with an 

alcohol in the presence of a catalyst (Economou et al., 2010; Agarwal, 2007). 

The different sources of TAGs can be plant oils or animal fats.   

Vegetable oils were positively tested directly as a fuel by Rudolf Diesel on 

his engine when this was not possible with animal fats due to their rich 
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composition in saturated fatty acids which makes them solids at room 

temperature (Ma and Hanna, 1999; Shay, 1993). Despite the environmental 

benefits of using vegetable oils as fuel, several problems have been mentioned 

such as clogging problems, high viscosity, deposit problems due to 

polymerization of the unsaturated components, lower volatility, thickening 

and gelling of the lubricating oil (Nigam and Singh, 2011; Shay, 1993; Ma 

and Hanna, 1999). In order to improve oils characteristics, different 

techniques were applied including pyrolysis, micro-emulsification, 

transesterification, catalytic craking etc (Sharma et al., 2008; Demirbas, 2008). 

Transesterification is considered to be the most promising one (Nigam and 

Singh, 2011). Bases, acids or enzymes can be used as catalysts during the 

transesterification process. (Ma and Hanna, 1999). The use of enzymes 

presents some advantages such as the mild reaction conditions, easy glycerol 

purification and the ability to convert free fatty acids present in the oil into 

biodiesel (Luković et al., 2011). On the other hand, the reactions proceeds at 

slow rates, the cost of the enzymes is still high and the enzymes present low 

stability in the presence of methanol (Luković et al., 2011). The main 

byproduct of transesterification process is glycerol, where 10 kg are produced 

for 100 kg of produced biodiesel (Chatzifragkou and Papanikolaou, 2012). 

Only small amounts of biodiesel were produced until the beginning of this 

century, but then production rapidly increased (Figure 3). The main producer 

of biodiesel globally is EU which accounts for the 71% of the global biodiesel 

production during 2007 (Baier et al., 2009), with Germany and France having 

the lead in EU (Timilsina and Shrestha, 2011). The main oils that are used 

include soybean in USA, rapeseed in EU and palm (Demirbas, 2008). Coding 

of biodiesel blends is the same as for ethanol, where the letter ‘E’ is changed 

to the letter ‘B’; and the specifications for B100 are covered by the standard 
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ASTM D6751 (http://www.astm.org/Standards/D6751.htm). Blends up to 

B20 can be directly used in common engines whereas higher blends might 

require some few engine modifications (Demirbas, 2008). 

As it was previously mentioned, biodiesel is contributing to the reduction 

of gas emissions. An increase in biodiesel percentage in the blend leads to a 

higher reduction of different gases with the exception of NOx (Figure 5). The 

source of the oil used for biodiesel production also affects the emissions 

(Guarieiro and Guarieiro, 2013). 

 

 

Figure 5: Changes in emissions of different blends of biodiesel. NOx: 
Mono-nitrogen oxide, PM: Particulate matter, CO: Carbon monoxide, 
HC: Hydrocarbons. 
Source: EPA, 2002. 

 

Like the case of ethanol production, the use of edible oils for biodiesel 

production is blamed to have increased their price. Unfortunately, FAO 

predicts that the use of vegetable oils will remain at high level even in 2020, 
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when it will contribute with 79% of the total biodiesel production (OECD-

FAO, 2011). Alternative sources of oils should be exploited in order to 

decrease the use of edible oils for biodiesel production. Waste oils, which are 

recycled after used, can serve as raw materials, however the quality of them is 

low (Nigam and Singh, 2011) and the increased free fatty acid content can 

cause problems such as saponification during the transesterification process 

(Pinzi et al., 2013). Microbial oil could be another alternative source of non-

edible oils which could serve as a raw material for biodiesel production 

(Papanikolaou and Aggelis, 2011a; Zhao et al., 2012).  

Microorganisms capable of accumulating microbial oils can be found 

among different genera, like bacteria, yeasts and fungi (Leiva-Candia et al., 

2014). Yeasts present some advantages over the other genera, such as high 

growth rates, high availability of candidates, cultivation that is not affected by 

climate conditions, ability to use low cost raw materials and more suitable 

morphology as well as being easier to handle in large-scale production 

(Ageitos et al., Zhao et al., 2012; Papanikolaou, 2011). Several yeast species 

have already been evaluated and have presented ability to accumulate high 

amounts of microbial oils, such as Cryptococcus curvatus, Lipomyces starkeyi, 

Rhodotorula glutinis, Rhodosporidium toruloides, Yarrowia lipolytica, Trichosporon 

fermentans, etc (Li et al., 2008; Ageitos et al., 2011; Papanikolaou, 2011). The 

main drawback of microbial oils is the high cost of the raw materials used for 

the cultivation. Koutinas et al. (2014) estimated that the production cost 

should be reduced by 50% in order to make microbial oils competitive with 

vegetable oils. The same authors calculated that the cost of glucose and yeast 

extract represent 79% and 16% respectively of the raw material costs during oil 

production from R. toruloides (Koutinas et al., 2014). In order to make 

microbial oil production economically feasible, low cost raw materials must be 

used, such as wastes (e.g. crude glycerol, used oils or fats, cheese whey etc) or 
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lignocellulosic biomass. Besides if the raw material used could provide the 

nitrogen necessary to support growth prior to lipid biosynthesis, the cost of 

lipid production would be further reduced. On the other hand nitrogen rich 

wastes should be avoided as they are not suitable for lipid biosynthesis, as lipid 

accumulation starts when nitrogen is depleted from the growth medium. 

Synthesis of microbial oils (or lipids) starts when an essential element other 

than carbon is depleted from the culture broth; with nitrogen being the most 

common (Amaretti et al., 2010; Ratledge, 2004; Economou et al., 2010). 

More specifically, nitrogen limitation leads to the degradation of intra-cellular 

AMP (adenosine monophospahate) by the activity of AMP-desaminase 

yielding IMP (inosine monophosphate) and NH4
+, which in turn results in 

deactivation of NAD(P)-dependent isocitrate dehydrogenase and citric acid 

accumulation. Citric acid accumulation inside the mitochondria above a 

critical value results in its transportation to the cytoplasm in exchange with 

malate and yields acetyl-CoA after cleavage by ATP-citrate lyase. Acetyl-CoA 

is then condensated to acyl-CoA which is the precursor of fatty acid 

biosynthesis through quasi-inverted β-oxidation reaction (Papanikolaou and 

Aggelis, 2011a; Ratledge and Wynn, 2002; Papanikolaou and Aggelis, 2009). 

For non-oleaginous yeasts, after nitrogen depletion the growth stops and the 

accumulation of oils is less than 10% w/w while the excess of carbon is 

transformed into polysaccharides or remain unutilized (Ratledge, 2004; 

Ageitos et al., 2011; Amaretti et al., 2010). 

During the cultivation of oleaginous microorganisms, it is important not 

only to know the concentration of nitrogen in the culture broth but also the 

ratio between carbon and nitrogen content, which is expressed by the C:N 

ratio (Carbon to Nitrogen ratio). There is a limit of C:N, characteristic for 

each microorganism, where accumulation of lipids takes place. Generally, 
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higher ratios facilitate the accumulation of lipids, but there is an upper limit 

where above this the growth of the microorganism can be inhibited. Other 

factors that affect the accumulation of single cell oil (SCO) are the form of 

nitrogen (organic or inorganic), the temperature, the pH, etc. At the end of 

the cultivation, cells should be separated from the broth followed by a lipid 

extraction step using organic solvents like methanol, chloroform, hexane etc. 

In 2012 the Finnish oil company ‘NESTE OIL’ launched the first pilot 

plant in Europe capable of producing microbial oil from wastes and residues 

(such as straw) using yeasts (http://www.nesteoil.com). Few months later they 

declared that the first phase of the pilot plant was successfully completed and 

that they expected to achieve commercial-scale production by 2015 

(http://www.nesteoil.com). Recently a partnership was announced between 

NESTE OIL and DONG Energy for the optimization of the pretreatment of 

these residues to enhance microbial oil production 

(http://www.nesteoil.com). This fact indicates the importance of further 

development of the processes for microbial oil production from renewable 

resources.  

1.4 Biogas production 

Biogas is the product of the anaerobic digestion of organic materials (Kafle 

et al., 2014; Liu et al., 2009). The two main components of biogas are carbon 

dioxide (CO2) and methane (CH4) and its total energy content is estimated 

between 16,630 and 26,081 kJ/m3 depending on the ratio between these two 

components (Romano et al., 2009). Biogas is mainly used for electricity 

production after burning in CHP (Combined Heat and Power) systems and as 

a vehicle fuel (Jeihanipour et al., 2013). In order to use biogas as fuel the 

methane content should be increased by removing carbon dioxide and other 
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‘contaminants’ by upgrading processes such as water scrubbing, membranes 

etc, followed by liquefaction or compression of the gas (Swedish Gas 

Association, 2011).  

As fuel, biogas can be used directly in vehicles with slight modifications 

such as installation of special fuel tank regulators to reduce the pressure and of 

a special fuel-air mixer (Clarke and DeBruyn, 2012). The benefits of using 

biogas as fuel are the negligible emissions of dust and particles, lower emissions 

of carbon monoxide, hydrocarbons, sulphur compounds and nitrogen oxides 

compared to fossil fuels and no release of GHG in the atmosphere (Swedish 

Gas Association, 2011). Despite the fact that biogas is more important to be 

used as vehicle fuel than for electricity production (due to the wide availability 

of other renewable solutions, such as wind and solar energy), relatively small 

volumes are directed to the transport section (Naik et al., 2010). Generally, 

biogas production is considered to have a better ratio between output and 

input of energy compared to ethanol, from a resource efficiency point of view 

(Jeihanipour et al., 2013) resulting in an output to input ratio as high as 28 

(Zheng et al., 2014). 

Biogas production in EU25 reached 4,898.9 ktoe during 2006 with 

Germany being the leading country (1,665.3 ktoe) with almost 4,000 biogas 

plants followed by UK (1,498.5 ktoe) and Italy (383.2 ktoe) (AEBIOM, 

2009). According to the same report, until 2009 only Sweden (with a biogas 

production of 27.2 ktoe) had established a market for biomethane-driven cars 

and during 2008 17,000 vehicles were driving with biomethane (Figures 6 and 

7). Biogas production in Greece was estimated to 29.8 ktoe of which the 

majority was produced as landfill gas (71.1 % of the total produced biogas). 

Anaerobic digestion is a complex and multi-step biochemical process. Each 

step is catalyzed by a different microbial community, ‘working’ all together as 



21 

 

a unique system where the outputs of one step correspond to the inputs of the 

next step (Mshandete et al., 2005; Parawira, 2012). The main stages of this 

process include hydrolysis, acidogenesis, acetogenesis and methanogenesis. 

During the first step, complex compounds (such as lipids, polysaccharides and 

proteis) are hydrolyzed to more simple ones, which are further converted 

during the second step to volatile fatty acids (VFA) and alcohols by acidogen 

bacteria. Subsequently the VFAs which are longer than acetate are converted 

by acetogenic bacteria to acetate, CO2 and H2. During the last step these 

VFAs are converted to CH4 and CO2 by methanogens (Zhao et al., 2014; 

Adu-Gyamfi et al., 2012; Parawira, 2012). It is important to keep a balance 

between the different steps as the production of VFAs is a faster process than 

methanogenesis and their accumulation can result in pH decrease and 

methanogenesis inhibition (Griffin et al., 1998). The two first steps are 

catalyzed by bacteria, whereas methanogenesis is catalyzed by archaea. Two 

different operating temperatures of the processcan be distinguished; the 

mesophilic (25-35oC) and the thermophilic (45-60 oC) temperatures (Liu et 

al., 2009). Thermophilic digestion presents some benefits, such as more 

favorable thermodynamically conditions leading to a higher methanogenic 

activity which leads to a faster digestion, and the prevention of contaminations 

(Xia et al., 2013; Lesteur et al.2010). 

The main materials that are used for commercial biogas production are 

animal manures, municipal waste waters, food wastes, slaughterhouse wastes 

etc, where high yields have already been obtained resulting in the 

construction and operation of several plants. The need for further production 

of biogas resulted in the need to exploit alternative sources for anaerobic 

digestion such as lignocellulosic biomass. The bacteria present in the 

consortium have the ability to hydrolyze to some extent the cellulose and 

hemicellulose. On the other side, the addition of enzymes can be beneficial to 



22 

 

the process. The hydrolysis step is considered as the rate-limited step during 

exploitation of lignocellulosic biomass for biogas production (Parawira, 2012). 

Due to the recalcitrance of most lignocellulosic materials, materials undergo a 

pretreatment prior to the digestion process resulting in improvement of the 

biogas yields (Zheng et al., 2014).  

 

 

                 Figure 6: Biogas filling unit in Grästorp, Sweden. 
                Source: http://biogasregionen.se/index.php?page=extensions 

 

Anaerobic digestion not only facilitates to the production of biogas but also 

prevents from disposal of organic wastes in landfills. The latter result in 

uncontrolled gas emissions in the environment such as the methane, which is 

considered 20-23 times ‘stronger’ than carbon dioxide as a greenhouse gas 

(Zheng et al., 2014; Browne and Murphy, 2013). It also causes the production 

of leachates which contaminate underground waters. Besides, there is a huge 

concern about the shortage of landfill areas. Moreover, the digestate produced 

is rich in nitrogen, phosphorus, and potassium and presents peculiar rheology; 
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properties which make it an efficient biofertilizer (Kafle et al., 2014; Liu et al., 

2009; Adu-Gyamfi et al., 2012). 

 

 

Figure 7: Train moving with biogas in Sweden. 
Source: http://commons.wikimedia.org/wiki/File:Biogast%C3%A5get_Amanda.jpg 

1.5 Lignocellulosic biomass 

Lignocellulosic biomass is considered one of the most ideal raw materials 

for biofuels production as it is an abundant low cost material (Xia et al., 2013). 

The total annual production reaches 100 billion tones organic matter of land 

biomass and 50 billion tons of aquatic biomass (Naik et al., 2010) with an 

estimated productivity in dry ash free biomass of 7.5 to 15 tons/ha/year (Datta 

et al., 2010). Lignocellulosic biomass can be derived from agricultural residues 

(such as wheat straw, corn cobs, rice straw), forest residues (hardwoods and 

softwoods), solids wastes from industry, paper wastes, etc (Tomás-Pejó et al., 

2008; McKendry, 2002). Energy crops, such as sweet sorghum, Miscanthus and 
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switch grass are an interesting category of lignocellulosic biomass due to their 

high productivities resulting from the C4 pathway of CO2 assimilation that 

they possess. As for CO2 assimilation, there are two major pathways, either 

assimilating it with C3 compounds or with C4 compounds which is 

considered to be more productive and to have higher maximum efficiencies of 

light nitrogen and water than C3 assimilation (Xia et al. 2013). 

Lignocellulose is a complex material of plants cell wall consisting of 

cellulose, hemicellulose, lignin extractives and several inorganic materials 

(Figure 8) (Taherzadeh and Karimi, 2008). The composition of lignocellulose 

in cellulose, hemicellulose and lignin depends on the source of the biomass. 

An average composition is considered to be 35-50% cellulose, 20-35% 

hemicellulose and 5-30% of lignin (Lynd et al., 2002). 

Cellulose is a linear crystalline homopolymer of D-glucose units linked via 

β-1,4 glycosidic bonds presenting a degree of polymerization varying from 

100 to 15,000 units depending on the origination of the substrate  (Zheng et 

al., 2014; Taherzadeh and Karimi, 2008; Zhang and Lynd, 2004). Hydrogen 

bonds are formed by hydroxyl groups both in the same chain and between the 

cellulose chains and together with van der Waals forces are responsible for the 

stabilization of the cellulose chains and the high tensile strength. Cellulose 

chains form microfibrils which are packed into macrofibrils (Taherzadeh and 

Karimi, 2008). Depending on the degree of crystallinity there are two 

different cellulose regions, namely the amorphous (low crystallinity) and the 

crystalline (high crystallinity) regions (Sun et al., 2008).  Crystalline regions are 

more difficult to be hydrolyzed compared to the amorphous. 
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Figure 8: Typical structure of lignocellulose in cell plant wall. 
Source: Ratanakhanokchai et al., 2013 
 

Hemicellulose is an amorphous branched of heteropolymer consisting of 

pentoses (xylose and arabinose), hexoses (glucose, mannose, rhamnose and 

galactose) and uronic acids (glucuronic, methyl glucuronic and galacturonic), 

which is easier to be degraded than cellulose (Zheng et al., 2014). Their 

degree of polymerization is lower than that of cellulose and varies between 70 

and 200 (Saha, 2003). Composition of hemicellulose in pentoses and hexoses 

as well as their structure depends on the source of biomass. Hemicellulose 

interacts with both lignin and cellulose to protect cellulose from enzymatic 

attack. 

Lignin is a large and complex heteropolymeric poly-aromatic compound 

consisting mostly of phenypropane units such as sinapyl alcohol p-coumaryl 

alcohol, and coniferyl alcohol with hydroxyl, methoxyl and carbonyl 

functional units (Nigam and Singh, 2011; Stamatelou et al., 2012). It is also 

the most recalcitrant component of the cell wall (Zheng et al., 2014). Lignin is 

like the ‘cement’ surrounding cellulose and hemicellulose forming the three-

dimensional structure of the cell wall, giving integrity, structural rigidity and 

preventing from swelling of lignocelluloses (Taherzadeh and Karimi, 2008; 
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Zheng et al., 2014). Up to now, applications of lignin are limited and it is 

mostly used to provide heat and electricity.  

The structure of lignocellulose makes it resistant to degradation. More 

specifically, the main factors that affect the cellulose hydrolysis are the degree 

of cellulose crystallinity and polymerization, the accessible surface area, the 

presence of hemicellulose and lignin and the degree of acetylation of 

hemicellulose (Parawira, 2012; Kim and Holtzapple, 2006). In order to 

increase cellulose degradability, a pretreatment step needs to be incorporated 

in the process (Demirbas 2008). Indeed, an efficient pretreatment should lead 

to more easily hydrolysable cellulose, to a low degradation of the sugars 

present in cellulose and hemicellulose, to a low formation of inhibitors, and 

should reduce the operation cost as well as the energy consumption. It also 

implies a simple process configuration and a low environmental impact. There 

is a variety of pretreatment methods in the literature classified as physical, 

physicochemical, chemical and biological. Some examples of pretreatment 

techniques involve steam explosion, hydrothermal, dilute and concentrated 

acid hydrolysis, alkaline hydrolysis, supercritical CO2, ozonolysis, organosolv, 

etc. Simple techniques such as chipping, grinding and milling can also reduce 

the cellulose crystallinity (Nigam and Singh, 2011).  

Pretreatment efficiency strongly depends on the lignocellulosic material. 

For this reason there is no universal solution for all types of biomass. 

Hydrothermal pretreatment and steam explosion are two of the most effective 

pretreatment processes and have been widely evaluated in the literature. The 

main difference between these two is that in steam explosion the pressure is 

suddenly released to atmospheric at the end of the treatment and the material 

undergoes an explosive decompression. A catalyst such as SO4 or a mild 

organic acid can also be included in the pretreatment, which results in 
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improvement of the subsequent enzymatic hydrolysis as it is more effective in 

hemicellulose removal (Ben-Ghedalia et al., 1981). On the other side, use of 

concentrated acids tends to be withdrawn due to the increasing of inhibitors 

formation, corrosive problems in the equipment, toxicity and environmental 

aspects. 

Because of the strong interaction between cellulose and hemicellulose, in 

order to achieve efficient cellulose hydrolysis not only cellulolytic but also 

hemicellulolytic enzymes are required (Ratanakhanokchai et al., 2013). For 

this reason, a mixture of cellulose acting enzymes (endoglucanase, 

exoglucanase, β-glucosidase) and hemicellulose acting enzymes (such as 

xylanase, β-xylosidase, glucuronidase, acetylesterase, galactomannanase and 

glucomannanase) are employed (Nigam and Singh, 2011). Source of these 

enzymes can be either bacteria (e.g. Clostridium, Cellulomonas, Acetovibrio) or 

fungi (e.g. Trichoderma, Mycelliophtora, Fusarium, Neurospora) (Singh et al., 

1992; Menon and Rao, 2012; Lynd et al., 2002). The most commonly used 

microorganism for the production of commercial enzyme solutions is 

Trichoderma reesei (Menon and Rao, 2012).  For example, Novozymes and 

Genencor are two big companies which have recourse to T. reesei. 

During hydrolysis of cellulose, endoglucanases (or endo-1,4-glucanase, EG, 

EC 3.2.1.4) act internally within cellulose chain on amorphous regions 

opening-up reducing and non-reducing ends where exoglucanase (or 

cellobiohydrolase, CBH, EC 3.2.1.91) starts hydrolyzing either from the 

reducing or non-reducing end releasing cellobiose units (Hayes, 2009). 

Moreover, CBH can also hydrolyze crystalline cellulose into cellobiose 

(Igarashi et al., 2009) and consist the major component of the fungal cellulose 

system reaching 40-70% of the total cellulose proteins (Sánchez, 2009). Finally 

β-glucosidase (BG, EC 3.2.1.21) hydrolyzes soluble cellodextrins and 
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cellobiose to form glucose (Lynd et al., 2002). A general overview of the 

enzyme action on cellulose is shown in Figure 9.  

 

 

Figure 9: Synergistic action of different cellulolytic activities during cellulose 
degradation. 

Source: Dimarogona et al., 2012 

 

Cellulase activity presents end-product inhibition by both cellobiose and 

glucose, with the inhibition effect of cellobiose being much higher than that 

of glucose (Adrić et al., 2010). For this reason efficient β-glucosidase activity 

in the mixture is important to keep inhibition effects as low as possible. 

During the last years, a better understanding of some novel enzymatic 

activities enabled to find out that they could act on crystalline regions of 

cellulose. These enzymatic activities are the lytic polysaccharide 
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monoxygenases (LPMOs) and cellobiose dehydrogenases (CDHs). LPMOs act 

by oxidizing glucose units which makes cellulose more easily degradable 

whereas CDHs catalyze the reducing end of cellobiose, cellodextrins and 

other oligosaccharides to the corresponding lactones and act synergistically 

with LPMOs in cellulose hydrolysis (Dimarogona et al., 2012). The ability of 

these enzymes to act on the most recalcitrant part of cellulose is considered 

very important as it results in improved hydrolysis rates (Dimarogona et al., 

2012; Dimarogona et al., 2013). 

 

 

Figure 10: Different configurations of lignocellulose utilization as raw 
material for bioprocesses. 

Source: Philbrook et al., 2013. 
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When it comes to the utilization of lignocellulose for biofuels or bio-based 

chemicals production, the main stages include pretreatment, production of 

enzymes, cellulose and/or hemicellulose hydrolysis, microbial conversion and 

product recovery. There are different process configurations which have been 

widely studied for ethanol production (Figure 10), namely SHF (Separate 

Hydrolysis and Fermentation), SSF (Simultaneous Saccharification and 

Fermentation) and CBP (Consolidated Bio-Process) (Menon and Rao, 2012). 

In all of them, pretreatment is taking place prior to enzymatic saccharification. 

A step may also be included where the enzymes are produced in order to 

reduce the cost of pursuing them. Product recovery follows these 

configurations and the recovery procedure depends on the product. 

In SHF process enzymes are acting on cellulose and/or hemicellulose for a 

specific amount of time in a first stage followed by a second stage during 

which microbial conversion takes place. The main benefit of this 

configuration is the application of optimal temperature conditions of both 

enzymatic saccharification and microbial conversion, resulting in more 

efficient conversion at shorter duration. The two different carbohydrate 

fractions (six and five carbon sugars) could be either utilized together (if the 

microorganism used is capable of consuming pentoses) or in two different 

steps employing different microorganisms. The main drawback of SHF 

concerns the possible glucose inhibition on enzymes during the first step. Use 

of novel enzyme solutions with ‘high tolerance’ in glucose inhibition could 

overcome this problem (Cannella and Jørgensen, 2013).  

In SSF configuration enzymatic hydrolysis and microbial conversation take 

place at the same stage where the temperature is as close as possible to the 

optimum for both enzymes and the microorganism. Due to the low tolerance 

of microorganisms to higher temperature, SSF usually works at lower 
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temperature than the optimum one for the enzymes. This results in lower 

saccharification rates but on the other hand the produced glucose is 

immediately consumed by the microorganism keeping its concentration low 

and in turn preventing from inhibition of cellulases. If the fermenting 

microorganism has the ability to utilize the pentoses fraction then SSF process 

is often characterised as SSCF (Simultaneous Saccharification and Co-

Fermentation). 

 Finally, in CBP configuration only microorganisms which are capable of 

producing the hydrolytic enzymes and at the same time consuming the sugars 

and producing the desired product are used. During ethanol production, 

examples of microorganisms that are capable of both producing the enzymes 

and convert sugars to ethanol are Fusarium oxysporoum, Neurospora crassa and 

Monilia sp. (Taherzadeh and Karimi, 2007; Xiros and Christakopoulos, 2009). 

However ethanol production productivities of these microorganisms are low 

for commercial applications. 

1.6 Sweet sorghum 

Sweet sorghum (Sorghum bicolor (L.) Moench) is a very promising C4 

energy crop presenting high photosynthetic activity and that can grow in 

temperate climates (Matsakas and Christakopoulos, 2013). It contains equal 

amounts of soluble (glucose, fructose and sucrose) and insoluble (cellulose and 

hemicellulose) carbohydrates (Mamma et al., 1995). Sugar concentrations up 

to 15-22oBx in sweet sorghum juice have been reported (Kundiyana et al., 

2010). Compared to other sugar crops (such as sugar beet and sugar cane) 

cultivation of sweet sorghum for sugar production is more beneficial.  Because 

sugar beet is a root, its harvesting requires more energy and sugarcane 

cultivation is limited to only tropical regions (Whitfield et al., 2012). 
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Some characteristics of sweet sorghum such as shorter cultivation time (3-5 

months), higher tolerance to harsh environmental conditions (such as drought 

and cold) and lower requirements in fertilization and irrigation than other 

crop plants, make it as an ideal solution for the exploitation of marginal lands 

(Gnansounou et al., 2005; Wu et al., 2010). More specifically, the 

requirements for irrigation of sweet sorghum are 1/3 and 1/2 of the needs of 

sugarcane and corn respectively (Wu et al., 2010). The fast growth rates 

enable to incorporate sweet sorghum cultivation into rotation with other 

crops or even to achievement of continuous production during the year in 

areas with appropriate climate (Whitfield et al., 2012). Furthermore, Han et 

al. (2011) found that the leaves of sweet sorghum contain high concentrations 

of nitrogen, phosphorus and potassium which could be used in the field in 

order to reduce the addition of fertilizers for the cultivation of other crops. 

Sweet sorghum is cultivated in 99 countries around the world occupying 

around 44 million ha of mostly poor and semi-arid areas (Sakellariou-

Makrantonaki et al., 2007). Due to its remarkable resistance to drought and 

saline solids together with the tolerance to waterlogging, FAO named it as the 

‘camel among crops’ and concluded that cultivation of sweet sorghum could 

be the solution for the agricultural development in areas that have saline soils 

and that are affected by aridity (FAO, 2002). Finally, another advantage of 

sweet sorghum cultivation concerns the production of grains which can reach 

5 to 25% of the total dry weight in maturity and could be used as animal feed 

or even incorporated in the production of biofuels (Whitfield et al., 2012). 

Despite the excellent characteristics of the ethanol produced from sweet 

sorghum, its commercialization presents some serious technical challenges. 

The presence of soluble sugars together with the rich composition of the stalks 

and the high water content can lead to an easy contamination of the stalks by 
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microorganisms which would decrease dramatically their storage stability. The 

high water content also causes problems during transportation as the volume 

of stalks is high and also cooling units are required. Moreover, the seasonal 

characteristics of sorghum cultivation together combined with the low storage 

stability result in problems concerning the availability of stalks all over the 

year. It also impacts on the capital cost of the processing unit. In fact, high 

amounts of sweet sorghum are produced in a short period of time which 

requires a fast utilization of sweet sorghum leading to big facilities which will 

only operate seasonally. Bennett and Anex (2009) mentioned that if sweet 

sorghum could be stored for at least 6-8 months, the capital cost of the 

processing units would be rapidly reduced, as the same amount of sorghum 

would be processed by smaller units. 

Two main strategies are considered when it comes to sweet sorghum 

utilization. In the first case, sweet sorghum stalks are used as it is resulting in 

the need of performing solid-state fermentation. Compared to submerged 

fermentation, solid-state fermentation is more difficult to achieve and makes 

the product recovery more complex. Moreover, in order to achieve higher 

sugar extractability (which is important in order to achieve high levels of 

biofuels production) sweet sorghum should be milled in small particles which 

are beyond the capacity of the harvesting equipment (Whitfield et al., 2012). 

The second strategy of sweet sorghum usage consists in first removing the 

juice and separate use of the juice and the remaining lignocellulosic fraction 

(the so called bagasse). Juice recovery is mostly done by pressing the stalks 

through a roller mill, which results often in less than 50% recovery (Whitfield 

et al., 2012; Prasad et al., 2006; Sun et al., 2010) and the ease of juice 

contamination requires the application of different preservation processes. Wu 

et al. (2010) found that that as much as 20% of the soluble sugars can be lost in 

3 days if the juice is stored at room temperature. These technical challenges 
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makes important to either improve the current techniques in order to preserve 

sweet sorghum or explore alternative ones.  

Until now the main research interest has been focused on the production 

of ethanol from sweet sorghum, by using either juice, bagasse or the whole 

stalks (Kundiyana et al., 2010; Mamma et al., 1995; Prasad et al., 2006; Wu et 

al., 2010; Shen et al., 2012). Apart from ethanol, sweet sorghum has also been 

used for lipid production by fungi (Economou et al., 2010), yeasts (Liang et 

al., 2012) and heterotrophic algae (Gao et al., 2010; Liang et al., 2010). Other 

products that have been produced from sweet sorghum are butanol and 

acetone (Yifeng et al., 2008), lactic acid (Yadav et al., 2011), Hydrogen 

(Ntaikou et al., 2010) and methane (Antonopoulou et al., 2010). 
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AIM OF THIS WORK 

Aim of this work was to obtain a flexible process of sweet sorghum 

utilization which could allow the production of several biofuels or bio-based 

chemicals. During this work the production of several forms of biofuels was 

evaluated. This flexible process is able to switch between the production of 

liquid biofuels (ethanol and biodiesel) and gaseous (methane) depending on 

the needs. Moreover, the same process configuration could be applied in the 

future for the production of other bio-based chemicals. This process also 

provides the ability of switching from more traditional practices (juice 

separation) to an alternative one, where the stalks are used as they are (Figure 

11). This way, when the production of juice is desired, production of biofuels 

could occur from the lignocellulosic fraction. Some of the major technical 

challenges that hinder commercialization of the use of sweet sorghum, such as 

low storage stability and efficient hydrolysis in the presence of soluble sugars, 

were solved. The application of high solids content was pre-requisite for this 

work, as it is considered very important for the commercialization of the 

process. 

 

Figure 11: The flexible process proposed in this work for the use of sweet sorghum 
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2. MATERIALS & METHODS 

2.1 Raw material, microorganisms and enzyme solutions 

The sweet sorghum used during this work was of Keller variety and was 

kindly offered by Prof. George Skarakis, Department of Crop Science, 

Agricultural University of Athens. The leaves and the seeds were immediately 

removed by hand from the fresh stalks and the latter were stored in a freezer at 

-20oC in order to preserve them until usage. The composition of sweet 

sorghum in dry basis was (% w/w): Sucrose, 34.4; glucose, 8.2; fructose, 8.1; 

cellulose, 19.6; hemicellulose, 15.2; and insoluble lignin, 3.2. The 

concentration of volatile solid (VS) and total solids (TS) were 93.44% w/w 

and 95.69% w/w respectively. 

The microorganisms involved in this work for the ethanol production were 

dry baker’s yeast (Jotis, Athens, Greece) for the fermentation of bagasse and 

Saccharomyces cerevisiae MAK2 for the fermentation of dried stalks. The latter 

was kindly provided by Prof. Seraphim Papanikolaou, Department of Food 

Science & Technology, Agricultural University of Athens. For the 

experiments of single cell oil (or lipid) production three different yeasts were 

evaluated, namely Lipomyces starkeyi CBS 1807 and Trichosporon (or Geotrichum) 

fermentans CBS 439.83 which were obtained from CBS-KNAW Fungal 

Biodiversity Centre (Utrecht, The Netherlands) and Rhodosporidium toruloides 

CCT 0783 which was pursued from Coleção de Culturas Tropicais 

(Campinas, Brazil). The anaerobic sludge used as an inoculum during the 

biogas production experiments was collected from the biogas plant in Boden, 

Sweden (Figure 12), where thermophilic co-digestion of sewage sludge and 
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food wastes at 55°C is taking place. The VS and TS content of the inoculum 

were found to be1.17% w/w and 2.04% w/w, respectively. 

The enzyme solutions used during this work were obtained from 

Novozymes A/S (Bagsværd, Denmark). More specifically, either the enzyme 

solution Cellic® CTec2 or a mixture of Celluclast® 1.5L and Novozym® 188 

at a ratio of 5:1 volumes were employed. The cellulose activity expressed as 

filter paper activity for Cellic® CTec2 was found to be 127 FPU/mL, whereas 

that of the mixture was 83 FPU/mL. 

 

 

Figure 12: The biogas plant in Boden, Sweden, source of the 
thermophilic sludge. 
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2.2 Ethanol production from bagasse 

2.2.1 Bagasse preparation 

The sweet sorghum bagasse was prepared by removing the soluble sugars 

present in the stalks with a double aqueous extraction in a 30% w/v solution 

for 1h at 50oC. Subsequently, the solids were filtrated and washed thoroughly 

with distilled water in order to remove remaining sugars. Bagasse was finally 

dried at 80°C until constant weight. The dried sweet sorghum bagasse was 

milled in 0.50 mm particles using a laboratory mill. The cellulose and 

hemicellulose concentration were found to be 39.8% w/w and 34.5% w/w 

respectively. 

2.2.2 Pretreatment of bagasse 

During this work hydrothermal pretreatment was evaluated in order to 

make sweet sorghum bagasse more digestible from the enzymes. 

Hydrothermal pretreatment took place in a microwave digestion equipment 

(speedwave™ MWS-2, Berghof Instruments GmBH, Germany) (Figure 13). 

The sample was placed in special designed digestion vessels which are 

completely made of isostatically-pressed PTFE/TFM (Figure 14). Vessels were 

shielded with a small plastic cap made of the same material and a metal rupture 

and finally a bigger plastic cap placed on the top of the vessels keeping the 

shields in place (Figure 14). All the vessels were connected through a central 

vessel to the exhaust system. If high pressures were generated inside the 

digestion vessel, the plastic and metal shields were disrupted and the pressure 

was released through the exhaust outside of the room to protect the 

equipment and the operators. In order to be able to remotely determine the 

temperature of the vessels the system was equipped with an IR sensor. The 

power of the microwave was set up at 700 W during pretreatment. 
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Figure 13: The microwave digestion 
equipment 

Figure 14: The digestion vessels with 
the pressure protection caps. 

 

Pretreatment of bagasse took place at 10% w/v loading in 0.3% v/v acetic 

acid solution. Prior to hydrothermal pretreatment bagasse soaked at the 

solution of 0.3% acetic acid for 1 h at 80oC to fully hydrate bagasse fibers. In 

order to optimize the hydrothermal pretreatment of bagasse response surface 

methodology (RSM) was used. More specifically, the combined effect of 

treatment temperature and duration was evaluated. The temperature varied 

between 170 and 230oC and the duration between 9 and 51 minutes, resulting 

in 11 treatment combinations (see Results & Discussion). As a result 

(response) of the pretreatment, the efficiency of enzymatic hydrolysis after 8 h 

of incubation was taken into consideration. The results obtained were fitted to 

the equation described in the ‘Response surface methodology’ section (2.7) to 

describe the combined effect of temperature and duration on enzymatic 

hydrolysis efficiency and to optimize this combination. 

At the end of the pretreatment the liquid fraction was separated from the 

solids by vacuum filtration. The solid residues were dried at 80°C overnight 

for structural carbohydrate analysis and saccharification experiments. All the 

pretreatments were performed in duplicates.  
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In each pretreatment the severity factor (SF) was determined according to 

Garrote et al. (1999) by using the following equation: 

100

14.75log( ) log
T

SF R t e
 

    
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in which t and T are the pretreatment duration (min) and temperature 

(oC), respectively. 

2.2.3 Enzymatic saccharification of pretreated bagasse 

Enzymatic saccharification of pretreated bagasse was performed at either 

low solids concentration, in order to evaluate and to optimize the 

pretreatment, or at high solids concentration in order to use it as a substrate 

for ethanol production. 

During the low solids concentration experiments, enzymatic 

saccharification was carried out in 2mL epperdorf tubes in an epperdorf 

thermomixer at 50oC for 8 hours with a mixing rate of 700 rounds per minute 

(rpm). The solids loading was adjusted to 3% w/v in 100mM citrate-

phosphate buffer at pH=5.0 and Cellic® CTec2 was used at an enzyme load of 

10FPU/g solids. Microbial contaminations were prevented by the addition of 

0.02% (w/v) sodium azide. At different time intervals, samples were taken and 

the glucose concentration was determined in order to calculate the percentage 

of cellulose hydrolyzed by applying the following equation (Vasquez et al., 

2006): 
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in which Eh represents the % hydrolysis of the initial cellulose presented in 

the raw material, Cs is the concentration of glucose released during the 

hydrolysis (g/L), F is the stoichiometric factor due to the hydration of 

molecules during the hydrolysis (Fhexoses= 1.111), CPno is the composition of 

the raw material in cellulose (g of cellulose per g of raw material, on dry 

basis), WSR is the water to solid ratio (g water/g of raw material) and ρ is the 

density of hydrolysates which is equal to 1025g/L. 

Once the hydrothermal pretreatment was optimized according to the 

highest cellulose hydrolysis efficiency and sugar concentration, the optimum 

conditions were used to prepare a hydrolysate at high solids concentration 

which was used for ethanol production. A high concentration of solids was 

chosen in order to achieve a high concentration of glucose and in turn a high 

ethanol production rate. During this work the solid concentration was 

adjusted to 18% w/v and saccharification took place in a 

liquefaction/saccharification reactor which was designed and manufactured by 

Biotechnology Lab of Chemical Engineering School of National Technical 

University of Athens (Figure 15). This reactor consists of two vertical drum 

chambers and a rotating shaft for mixing the material. The shafts were 

controlled at a speed of 7rpm and the direction of the rotation programmed to 

shift between clock and anti-clock wise every minute. The drums were 

surrounded by an oil-filled heating jacket which enabled to control the 

temperature at desired levels. The basic idea of this design was that the 

material will be mixed and falling down by gravity, resulting in a better 

contact of the enzymes and the cellulose of the high solids mash. This better 

contact led to higher saccharification efficiency at shorter time duration. The 

temperature was adjusted to 50oC and the enzyme load (Cellic® CTec2) was 

set to 10FPU/g solids in 50mM citrate-phosphate buffer at pH=5.0 without 
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the addition of sodium azide. Saccharification took place for either 12 or 24 

hours and the saccharified material was immediately used for the fermentation 

experiments after being cooled down to room temperature. At the end of the 

saccharification, the concentration of glucose and total reducing sugars in the 

slurries were determined. 

 

  

Figure 15: The saccharification/liquefaction reactor of the Biotechnology Lab. 

 

2.2.4 Fermentation of saccharified bagasse 

Fermentation experiments were run in 100mL Erlenmeyer flasks 

containing 25g of non-sterilized slurry. The incubation process was performed 

anaerobically in an orbital shaker at 30oC with an agitation rate of 80rpm. 

Fermentation was carried out by adding dry baker’s yeast at a concentration 

corresponding to 15mg yeast per gram of solids without any addition of other 

nutrients. At certain time intervals samples were removed from the cultures 

and centrifuged in order to remove the solids. Ethanol was then analyzed in 

the clear supernatant. All the trials were performed in duplicate.  
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2.3 Ethanol production from dried sweet sorghum stalks 

2.3.1 Enzymatic liquefaction of sweet sorghum 

Enzymatic liquefaction of dried sweet sorghum stalks were conducted in 

100mL Erlenmeyer flasks containing 25g of different concentrations of dried 

sweet sorghum (as will be discussed later). The flasks were Incubated took 

place at 50oC and 180rpm in an orbital shaker. Sweet sorghum solutions were 

prepared in distilled water and the enzyme solution used was the mixture of 

Celluclast® 1.5L and Novozym® 188. Novozym® 188 was added at the start-

up of inoculation and not during the liquefaction because it contained 

invertase activity (0.83U/mg) which would result in sucrose hydrolysis, thus 

increasing glucose concentration leading to cellulase inhibition. The enzyme 

load varied according to the experimental configuration (as will be discussed 

in Results & Discussion, section 3.2). All the trials were performed in 

duplicate and were cooled down to room temperature after the liquefaction. 

Finally, they were immediately used for the fermentation trials. 

2.3.2 Media and growth conditions of the yeast 

During this work the yeast strain S. cerevisiae MAK2 was used as a 

fermenting microorganism. Fermentations were performed in 100 mL 

Erlenmeyer flasks containing 25g of the non-sterilized liquefied sweet 

sorghum. Incubation took place anaerobically in an orbital shaker at 30oC and 

80 rpm. The inoculum was 10% v/v of exponential growing pre-culture 

which was carried out in 250 mL Erlenmeyer flasks, containing 100 mL of 

pre-culture growth medium of the following composition (g/L): 

(NH4)2HPO4, 5;  KH2PO4, 5; MgSO4·7H2O, 1; yeast extract, 5; sucrose, 10 

(Mamma et al., 1995). Pre-culture media were inoculated with one loop of 

the yeast and incubated for 18h (in order the yeast growth to be at the end of 
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the exponential phase- Figure 16) at 30oC and 180 rpm before used. Prior to 

inoculation pre-culture media were autoclaved at 120oC for 20 minutes. 

During fermentation experiments, samples were taken at certain time 

intervals, centrifuged in order to remove the solids and analyzed for ethanol 

and sugars. Each experiment was done in duplicate. 

 

 

Figure 16: Growth curve of S. cerevisiae MAK2 in the pre-culture 
medium. 

2.4 Lipids production from sweet sorghum stalks 

2.4.1 Maintenance and pre-culture media for the growth of 

Lipomyces starkeyi and Trichosporon fermentans 

The yeast was maintained at 4oC in slants of the following composition 

(g/L): Glucose, 20; Meat Peptone, 10; Yeast extract, 10; KH2PO4, 6; 

Na2HPO4, 2; agar, 20. Prior to fermentation, the yeast was cultivated in a pre-

culture medium with the same composition without adding agar. The pH of 

the medium was adjusted to 6 for L. starkeyi and to 6.5 for T. fermentans. 
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Besides, prior to the inoculation, the pre-culture medium was sterilized at 

121oC for 15min. Pre-cultures were inoculated with one loop of the yeast and 

incubated in an orbital shaker at 30oC and 200rpm for 48 and 24 hours for 

L.starkeyi and T. fermentans respectively. Media for lipid production trials were 

inoculated with 5% v/v of the pre-culture broth. 

2.4.2 Lipids production from Lipomyces starkeyi and Trichosporon 

fermentans when cultivated on synthetic media 

The yeasts were cultivated in 1L Erlenmeyer flasks containing 200mL 

cultivation broth of the following composition (g/L): KH2PO4, 7; Na2HPO4, 

2.5; MgSO4·7H2O, 1.5; CaCl2, 0.15; FeCl3·6H2O, 0.15; ZnSO4·7H2O, 0.02; 

MnSO4·H2O, 0.06 (Papanikolaou and Aggelis, 2002). The pH of the broth 

was adjusted in the same way as the broth for the two yeasts. The initial sugar 

concentration in all the experiments was set to 40 g/L, where as carbon 

source glucose, fructose and sucrose were used separately or as a mixture. 

During the experiments where the effect of the different sugars was 

determined, a mixture of yeast extract and ammonium sulphate was used as 

nitrogen source at a concentration corresponding to a C:N ratio equal to 100. 

When the effect of the nitrogen source or the C:N ratio was evaluated, the 

mixture of the three sugars was used and the concentration of the nitrogen 

source was adjusted in order to achieved the desired C:N ratio. 

2.4.3 Lipid production from Lipomyces starkeyi and Trichosporon 

fermentans when cultivated on liquefied sweet sorghum stalks 

Enzymatic saccharification of sweet sorghum was performed at 50oC, at the 

combination of enzyme load and hydrolysis duration which was found to be 

optimum during ethanol production (Section 3.2). The same enzyme 

solutions were used and Novozym® 188 was added at the start-up of the 
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cultivation process. The media with sweet sorghum were sterilized (121oC, 15 

min) prior to enzymatic saccharification. After the end of saccharification, the 

broths were left to cool down to room temperature and inoculated. 

During the trials where solids were removed, sweet sorghum was squeezed 

through a coating sheet at the end of the saccharification and was centrifuged 

thereafter. The obtained liquids were then sterilized and utilized for the yeast 

cultivation. In order to evaluate the effect of enzymatic saccharification on 

lipids production, the same experiments (with and without the presence of 

solids) were performed without the addition of enzymes. When the solids 

were removed, sweet sorghum was pre-soaked at 50oC for 2 hours in order to 

facilitate the sugars extraction.  

To prepare the sweet sorghum solutions, the stalks were dissolved in the 

same mineral solution as in the synthetic medium without adding either 

carbon or nitrogen source (unless otherwise stated). The incubation of the 

yeasts was done in an orbital shaker at 30oC and 200rpm. At different time 

intervals samples were taken and analyzed for the concentration of total sugars, 

biomass and lipids. All experiments were done in duplicates. 

2.4.4 Maintenance and pre-culture media for the growth of 

Rhodosporidium toruloides 

R. toruloides was maintained in agar plates containing a medium of the 

following composition (g/L): glucose, 20; meat peptone, 10; yeast extract, 10; 

KH2PO4, 6; Na2HPO4, 2; agar, 20. Prior to any experiment one loop of the 

yeast was inoculated into 250mL Erlenmeyer flasks containing 50mL of the 

pre-culture medium (with the same composition as in agar plates without 

including agar) and incubated at 30oC and 200rpm for 24h. The pH was 

adjusted to 5.5 and all the media were sterilized prior to inoculation at 121oC 
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for 15 min. Media for the trials of lipids production were inoculated with 5% 

v/v of the pre-culture broth. 

2.4.5 Lipid production from Rhodosporidium toruloides when 

cultivated on liquefied sweet sorghum stalks 

Saccharification of sweet sorghum stalks was performed at the same 

conditions as described in section 2.4.3 using a different nutrient solution. The 

cultivation broth, used for growth and lipids accumulation of R. toruloides, was 

supplemented with 1.5g/L of MgSO4·7H2O and KH2PO4 each and 1% v/v of 

the trace element solution. The composition of the trace element solution was 

(g/L): CaCl2·2H2O, 4.0; FeSO4·7H2O, 0.55; citric acid·H2O, 0.52; 

ZnSO4·7H2O, 0.10; MnSO4·H2O, 0.076; and 100μL/L of 18M H2SO4 (Wu 

et al., 2010). Incubation and sampling were also done as previously described 

in Section 2.4.3. All experiments were done in duplicates. 

2.5 Biogas production from sweet sorghum stalks 

2.5.1 Thermal and enzymatic treatment of sweet sorghum 

During this work, the effect of three different treatments of dried sweet 

sorghum stalks on methane yield was studied including a mild thermal 

treatment, an enzymatic one and a combination of both. The thermal 

treatment was performed at 105oC for 1 h in an autoclave apparatus at a solid 

concentration of 20% w/w. 

The enzymatic treatment, in both cases (combined and not combined with 

the thermal treatment) was performed at the same optimal conditions as for 

ethanol production and using the same enzyme solutions. Two different 

process configurations were applied during the enzymatic treatment, namely 
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the one-step and the two-steps process. In the one-step process, which is 

similar to the SSF process for the ethanol production, the enzymes were 

directly added in the sludge. However, for the two-step process, which is 

similar to SHF process, sweet sorghum was enzymatically pre-saccharified 

prior to the addition to sludge. During the two-step process, the 

saccharification was performed at 50oC at the optimal conditions for ethanol 

production and at 20% w/w solids content.   

2.5.2 Biochemical Methane Potential (BMP) test 

BMP tests were performed at the Automatic Methane Potential Test 

System (AMPTS II) equipment which was pursued from Bioprocess Control 

AB (Lund, Sweden) (Figure 17). Incubation took place in 500 mL glass bottles 

containing 400 g of total sample (inoculum and substrate). Flasks were sealed 

properly in order to prevent gas losses and the material was mixed gently. 

Mixing consisted in series of 10min mixing followed by 1min resting. Each 

bottle was connected with a CO2-fixing unit (solubilizing all the produced 

gases and water vapors, except from methane), which consisted of 100mL glass 

flasks containing approximately 80mL of 3M NaOH and thymolphthalein as 

pH indicator. Finally, the volume of methane was measured at the gas flow 

meter unit. It is worth to mention that the room pressure and temperature 

were recorded every time the flow meter cells were opened in order to 

correlate the measured volumes to the normalized ones. 

In every experimental batch, two different controls were also included. 

The first one contained only the inoculum in order to measure the methane 

production by the organic load still present in the sludge. This methane 

production was then removed from the methane produced during digestion of 

the sweet sorghum and calculate the yield of methane per gram of VS. The 
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second control contained the inoculum and the enzymes used. This way the 

methane production from the digestion of the enzymes was determined and 

subsequently removed this from the flasks that enzymes were also included. 

Additionally, a positive control was also included to evaluate the quality of the 

sludge containing avicel cellulose, where the methane yields are known from 

the literature.  

Two different experimental batches were performed during this work. In 

the first one, the effect of the different treatments on methane yield was 

evaluated.  The optimal treatment found was further optimized in the second 

batch by applying RSM (see Results & Discussion, section 3.7.2). In the first 

batch of experiments the Inoculum to Substrate ratio (I/S ratio) in terms of 

VS was equal to 2, whereas in the second batch it varied according to the 

experimental design (see Results & Discussion, section 3.7.2). Each flask was 

supplemented with 10mL/ L each of three solutions containing mineral and 

trace elements. Solution A composed of 7.21g/L of (NH4)2HPO4 and solution 

B of 0.7g/L of FeSO4.7H2O. The composition of solution C was as follow 

(g/L): CaCl2·2H2O, 22.5; NH4CL, 35.9; MgCl2·6H2O, 16.2; KCl, 117; 

MnCl2·4H2O, 1.8; CoCl2·6H2O, 2.7; H3BO3, 0.51; CuCl2·6H2O, 0.24; 

Na2MoO4·2H2O, 0.23; ZnCl2, 0.19; NiCl2·6H2O, 0.2; H2WO4, 0.01 

(Antonopoulou and Lyberatos, 2013; Vlassis et al., 2012). In order to remove 

oxygen from the sludge before the start-up of the digestion each flask was 

sparged with nitrogen for 90 sec. Incubation of the flasks took place in a water 

bath at 55oC and was ended when no significant amounts of methane 

production were observed. All the experiments lasted for a maximum of 21 

days. 
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Figure 17: The AMPTS II system of Bioprocess Control AB. 

2.6 Analytical techniques 

2.6.1 Sugar analysis 

Total reducing sugars were determined according to dinitro-3,5-salicilic 

acid (DNS) method (Miller, 1959). In order to enable sucrose determination 

with the DNS method samples were treated with hydrochloric acid for 15 

min at 70oC to enable sucrose hydrolysis and were subsequently neutralized 

with sodium hydroxide. Glucose was determined photometrically in a 

microplate apparatus by using the commercial enzyme kit of GOD/PAP 

(glucose oxidase / peroxidase). 

2.6.2HPLC analysis 

HPLC was used in order to determine ethanol and in some cases sugars 

(during structural carbohydrate analysis or during ethanol fermentation). The 

HPLC apparatus (Shimadzu LC-20AD) was equipped with a refractive index 
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detector (Shimadzu RID 10A). For ethanol analysis, an Aminex HPX-87H 

(Bio-Rad, 300 x 7.8mm, particle size 9μm) chromatography column was 

employed. The mobile phase used was 5mM H2SO4 in degassed HPLC-water 

at a flow rate of 0.6mL/min and the column temperature was set at 40oC. 

Analysis took place for 30 min. As for sugar analysis, an Aminex HPX-87P 

(Bio-Rad, 300 x 7.8mm, particle size 9μm) chromatography column was 

utilized. The mobile phase used was degassed HPLC-water at a flow rate of 

0.6 mL/min and the column was operating at 70oC. Analysis took place for 35 

min. 

Prior to any analysis with HPLC, samples were filtrated through syringe 

filters with pore size of either 0.4 or 0.2μm in order to remove any remaining 

solids. 

2.6.3 Biomass and lipid determination 

During the experiments of lipid production, yeast biomass was determined 

in order to calculate the % w/w lipid content of cells. When solids were 

present, the biomass concentration was determined by plating samples on agar 

plates and incubating them at 30oC. The number of viable cells was expressed 

as colony forming units per mL (cfu/mL) and was correlated to cell dry mass 

(g/L) using a calibration curve. However, when solids were removed during 

the experiments, samples were centrifuged in order to separate the yeast 

biomass from the broth. The biomass was washed with distilled water to 

remove residual sugars and salts and was centrifuged again. Finally the yeast 

biomass was transferred to pre-weighted glass vials and the biomass 

concentration was estimated by the weight difference after being dried at 80-

90°C until constant weight.  
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Subsequently, lipids were extracted from the dried biomass with a mixture 

of chloroform and methanol at a ratio of 2:1 volumes (Folch et al., 1957). 

Lipid quantification was performed gravimetrically after solvent evaporation 

under vacuum using a rotary evaporator and was expressed in g/L. 

Compositional analysis of the obtained lipids was done in a gas 

chromatography apparatus (Varian CP-3800, Agilent Technologies, USA) 

coupled with a capillary column (WCOT fused silica 100 m×0.25 mm 

coating CPSIL 88 for FAME). Prior to analysis fatty acid methyl-esters were 

formed from the yeast oil according to Appelqvist (1968). The temperature of 

the column oven was initially kept at 175°C for 26 min and thereafter 

increased up to 205°C at a rate of 2°C/min. Finally, the temperature 

remained constant at 205°C for 24 min. The respective temperatures of the 

detector and the injector were 270°C and 300°C. Helium was used as a 

carrier gas at a flow rate of 30ml/min. 

2.6.4 Total solids (TS) and volatile solids (VS) analysis 

TS content was analyzed as the weight difference before and after drying 

the samples at 105oC for 24 hours. The VS content was determined by 

subtracting the weight difference after drying the sample at 550°C for 2 hours 

to the TS content. Temperature during VS analysis was ramped up gradually 

to 550oC with about 1oC/min rate. 

2.6.5 Structural carbohydrates analysis 

Structural carbohydrate analysis was performed according to the official 

protocol of NREL (Sluiter et al., 2008). 
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2.6.6 Enzymatic activities determination 

Total cellulase activity was measured on Whatman No1 paper (Filter Paper 

Activity - FPA) by the standard IUPAC method (Ghose, 1987) and invertase 

(β-fructofuranosidase EC 3.2.1.26) activity was determined on sucrose 

according to Hoffman-Thoma et al. (1996). One unit (U) of enzyme activity 

in filter paper assay was defined as the amount of enzyme required to produce 

1 μmol of glucose per minute and in invertase assay as the amount of enzyme 

required to hydrolyze 1μmol of sucrose per minute.  

All assays were performed in an eppendorf themomixer at 50oC in 100 mM 

citrate - phosphate buffer of pH 5.0.  

2.7 Response surface methodology 

In order to improve some of the processes of this work, an experimental 

design (Response Surface Methodology-RSM) was employed. RSM estimates 

the interactions and the effects of chosen factors in one or more responses. It is 

then possible to build a model that can efficiently describe these interactions. 

Processes can also be optimized by this method. Different experimental 

designs can be used resulting in the generation of different combinations of 

the chosen factors which vary at certain levels. The responses of these 

combinations can be graphically represented and a quadratic or cubic model 

can describe the behavior of the responses. During this work, a Box-Wilson 

Circumscribed Central Composite (CCC) design was utilized generating 11 

experimental combinations which included 3 replicates of the central points 

(Table 1). 
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The quadratic model applied was the following: 

                       
       

           

 

 where ai is representing the 

different coefficients, x1, and x2 are 

the chosen factors and R the 

response. Analysis of variance 

(ANOVA) was used to estimate the 

statistical parameters. The variance 

explained by the model is given by 

the multiple coefficient of 

determination, R2. Fitting of the 

model, regression analysis and 

graphical representation were done 

by using either Sigma plot 11.0 

(Systat software, Richmond, USA) 

or MODDE v.10 of Umetrics. 

 

 

  

Table 1: Treatment combinations 
generating from the experimental design  

 

Treatment Factors 

      

1 -1 -1 

2 1 -1 

3 -1 1 

4 1 1 

5 0 0 

6 0 0 

7 -1.414 0 

8 1.414 0 

9 0 -1.414 

10 0 1.414 

11 0 0 
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3. RESULTS & DISCUSSION 

3.1 Fermentation of liquefacted hydrothermally pretreated 

sweet sorghum bagasse to ethanol at high-solids content 

During this part of the thesis, the ability of utilizing sweet sorghum bagasse 

for ethanol production was evaluated. When it comes to usage of 

lignocelluloses for biofuels production, substrate consistency is one of the most 

important factors from energy balance and process economics point of view. 

High solids loadings result in higher sugar concentrations and in turn in higher 

ethanol concentrations, which allows a significant cut of both capital and 

production costs due to reduced equipment size and energy consumption 

during heating, cooling, and distillation. Concentrations of ethanol above 4% 

w/w are generally considered as the minimum prerequisite for a feasible large-

scale distillation technology and require the solids loading to be more than 

15% w/w (Fan et al., 2003; Wingren et al., 2003). At these consistencies there 

is practically no free water and the handling of the slurry becomes a challenge. 

Incorporation of a liquefaction/saccharification step prior to inoculation can 

result in the deconstruction of cellulose which in turn reduces the water 

binding capacity enabling submerged fermentation (Szijártó et al., 2011). 

Mixing of these high solids materials in conventional systems is not always 

efficient and results in poor contact of cellulases to cellulose. During the last 

few years, new advanced stirring systems have been evaluated by gravimetric 

mixing which enables the use of up to 40% w/w solids concentrations 

(Jørgensen et al., 2007; Larsen et al., 2008). 

Use of untreated lignocellulosic materials usually results in very low 

enzymatic hydrolysis. In order to improve these yields, a pretreatment should 
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be included in the process. During this work, a hydrothermal pretreatment in 

the presence of acetic was done. Heating of the materials took place in a 

microwave oven to rapidly reach the desired temperature. 

3.1.1 Evaluation and optimization of the hydrothermal 

pretreatment of bagasse 

As previously discussed, in order to achieve high ethanol production, high 

hydrolysis rates are necessary. An appropriate pretreatment should result in a 

material with high cellulose content, which would be easily digestible by the 

enzymes. The increase in cellulose content is a result of hemicellulose 

solubilization. For this reason during this work a hydrothermal pretreatment 

was studied, where low concentration of acetic acid was used as a catalyst for 

hemicellulose solubilization. The pretreatment was carried out at a specially 

equipped microwave oven (as described in section 2.2.2) resulting in a rapid 

increase of the temperature to the desired levels. In traditional reactors, a 

certain time is needed for heating up the material. This rise in temperature can 

affect the leading to problems calculating the correct treatment duration. 

In order to optimize the pretreatment, RSM was applied. The independent 

variables were pretreatment temperature and duration, while the response was 

the % hydrolysis of cellulose after 8 h of incubation. The tested temperatures 

for pretreatment were varying between 170 and 230oC with a duration 

changing between 9 and 51 minutes. The different combinations of 

pretreatment can be seen in Table 2. A second order regression model was 

applied to estimate the interactive effects of these two important factors and to 

calculate the pretreatment conditions which will result on the highest 

enzymatic hydrolysis of bagasse. 
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The composition of the pretreated bagasse is shown on Table 3 together 

with the calculated severity factor (SF) of each pretreatment combination. As 

can also been seen on Figure 18 there is a good correlation between severity 

factor and cellulose concentration in the pretreated material, which can be 

described by the following logarithmic equation: 

44.9838 ln( ) 9.5886cC SF    

where Cc is the concentration of cellulose (% w/w on dry basis) and SF the 

severity factor. The probability p-value is very low (p<0.0001) indicating the 

significance of the equation and the high coefficient of determination 

(R2=0.857) indicates a very good correlation between the experimental and 

predicted values. At more severe treatment conditions cellulose concentration 

is increased, reaching even 66.84% w/w with pretreatment conditions of 

230oC and 30 minutes, presenting high potentials as it could result in high 

glucose concentration. Similar results of high cellulose concentration was also 

achieved with other raw materials, such as Eucalyptus globulus (Romaní,et al., 

2012), wheat straw (Moreno et al., 2013; Alfani et al., 2000), aspenwood 

(Mes-Hartree et al., 1988) and sugarcane bagasse (Rocha et al., 2001). 

The glucose released (Table 3) after 8 h of enzymatic hydrolysis can be 

described by the following exponential equation (Figure 19): 

0.62380.2289 SF

glcC e  

 

where Cglc represents the glucose concentration released from raw material 

(g/L) and SF the severity factor. The probability p-value is very low 

(p<0.0001) and the coefficient of determination is high (R2=0.853) indicating 

once again a very good correlation between predicted and experimental 

values. It can be concluded that high glucose levels can be achieved when the 
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pretreatment takes place at high severity factor. This is not only the result of 

the higher cellulose content of the pretreated materials but also the fact that 

cellulose becomes more susceptible to hydrolysis. 

 

Table 2: Process variables used during this work, showing the pretreatment 
combinations and the enzymatic hydrolysis. 

 

Treatment Coding setting level 
(X1= Temperature, 

X2=duration) 

 Actual level (X1= 
Temperature, 
X2=duration) 

Enzymatic 
hydrolysis (% 
of cellulose) 

                

1 -1 -1 180 15 14.06 

2 1 -1 220 15 17.85 

3 -1 1 180 45 12.66 

4 1 1 220 45 25.46 

5 0 0 200 30 21.70 

6 0 0 200 30 21.75 

7 -1.414 0 170 30 14.82 

8 1.414 0 230 30 30.42 

9 0 -1.414 200 9 12.86 

10 0 1.414 200 51 15.44 

11 0 0 200 30 21.52 

12 2 1 240 45 19.01 
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Table 3: Composition of pretreated bagasse under different combinations and severity 
factor of the pretreatments. 

 

Run Severity 

factor 

Cellulose 

(% w/w) 

Hemicellulose 

 (%w/w) 

Glucose release 

(g/L) 

1 3.53 44.60 20.91 2.14 

2 4.71 63.17 3.54 3.85 

3 4.01 57.90 15.24 2.50 

4 5.19 60.93 2.00 5.30 

5 4.42 55.78 15.57 4.14 

6 4.42 57.33 13.32 4.26 

7 3.54 46.46 18.27 2.35 

8 5.30 66.84 n.d. 6.95 

9 3.90 52.63 12.43 2.31 

10 4.65 59.32 9.83 3.13 

11 4.42 55.40 14.54 4.07 
 

n.d. = not detected 

 

 

Figure 18: Relationship between severity factor and 
cellulose concentration of pretreated bagasse 
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Figure 19: Relationship between glucose release 
after enzymatic hydrolysis for 8 h and severity 
factor 

 

As discussed previously, the optimization of pretreatment was done by 

taking into account the cellulose conversion after 8 hours of hydrolysis. In 

industrial applications saccharification should preferably last less than 12 hours. 

The highest enzymatic hydrolysis yields were obtained at pretreatment 

conditions close to those of the upper values of temperature. In order to 

confirm this result, an additional experiment (run number 12) was included in 

the experimental design, as summarized in Table 2. This extra experiment, 

which was performed at the highest severity factor, resulted in lower yield in 

enzymatic hydrolysis which could be attributed to the destruction of cellulose 

present. The second order polynomial regression model that was obtained 

during this study, by applying the equation described in section 2.7, can be 

described by the following equation: 

2 2

1 2 1 2 1 2165.9296 1.5420 0.9744 0.0035 0.0212 0.0018Eh x x x x x x            
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where Eh represents the % enzymatic hydrolysis of cellulose, X1 and X2 the 

temperature and duration of the pretreatment respectively. After testing the 

model for adequacy by the ANOVA (ANalysis Of VAriance), it was shown 

that the probability p-value was very low (p=0.026) and the coefficient of 

determination (R2=0.83) very high, indicating a high significance of the 

model with good ability to describe the experimentally obtained data.  

 

 

Figure 20: Response surface (A) and contour plot (B) of cellulose enzymatic 
hydrolysis yield at different pretreatment conditions 

 

The resulting response surface and contour plot of the model can be seen 

in Figure 20, where the response surface presents a maximum point of 

cellulose hydrolysis. By solving the previous equation, the optimum 

combination of pretreatment temperature and duration was found to be 

229oC and 33.8 minutes with a predicted cellulose hydrolysis of 26.3%. The 

optimum values are fairly close to the values of run 8 (230oC and 30 minutes), 

where the experimentally achieved cellulose hydrolysis reached 30.4%, 

indicating that the model underestimated this value. The results obtained 

during this run were very promising for subsequent ethanol production trial, 



64 

 

as both high cellulose content and high cellulose hydrolysis after only 8 h 

incubation were achieved. 

3.1.2 Fermentation of saccharified bagasse at high solids 

content 

In order to achieve high initial sugar concentrations and subsequent high 

ethanol production, the solids content was increased to 18% w/w. 

Saccharification was performed in the reactor described in section 2.2.3 at 

50oC with an enzyme load equal to 10FPU/g solids. Saccharification took 

place for either 12h or 24h. Another set of experiments was also included, 

where extra enzymes (at the same enzyme loading) were added at the start-up 

of the fermentation in order to evaluate the efficiency of the saccharification 

step. In Figure 21, it can be observed that bagasse was totally liquefied after 

even 12h of hydrolysis. At the same time, glucose and total reducing sugars 

concentration reached 76.3g/L and 81.9g/L respectively, which is very 

promising for the subsequent ethanol fermentation. Since these values slightly 

increased to 77.4g/L and 82.8g/L respectively after 24h of hydrolysis, it was 

concluded that 12h of hydrolysis were enough for efficient cellulose 

conversion. Moreover, the low difference between glucose and reducing 

sugars indicates the high efficiency of Cellic® CTec2 to convert cellulose to 

glucose with no significant accumulation of cellobiose or other 

oligosaccharides. Cellulose hydrolysis (based on total reducing sugar, as no 

hemicellulose is present) reached 59.8% after 12h and 60.5% after 24h of 

enzymatic treatment which might indicate that glucose inhibition on cellulase 

has occurred. High levels of sugars concentration have also been reported 

from sugarcane bagasse (Zhao et al., 2013), agave bagasse (Caspeta et al., 2014) 

and corncob (Chen at al., 2007). 
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Figure 21: Pretreated bagasse at 18% w/v solids loading before (A) and after (B) 
enzymatic hydrolysis for 12h. 

 

The highest ethanol production (in both 12h and 24h saccharification) was 

observed after 22h of fermentation (Figure 22) and reached 41.4g/L with a 

volumetric productivity of 1.88g/L·h (Table 4). The ethanol yield per bagasse 

reached 23g/100g bagasse, which was equivalent to 60.8% of the maximum 

theoretical yield (based on the total conversion of cellulose to ethanol) (Table 

4). Addition of extra enzymes at the start-up of the fermentation enhanced the 

ethanol concentration by 16% and 17% after 12 h and 24 h saccharification, 

respectively. 

Finally when SSF process was evaluated, the ethanol production and 

productivity were significantly lower (Table 4). Highest ethanol production 

reached only 24.44g/L with a volumetric productivity of 0.26g/L·h (Table 4 

and Figure 22). Ethanol yield was 13.6g/100g of bagasse which is equivalent 

to 40% of the maximum theoretical yield. 
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Figure 22: Time course of ethanol production after 12 hours 

liquefaction without (●) and with the addition of extra enzymes (○), 24 

hours of liquefaction without (■) and with (□) the addition of extra 

enzymes and without separate liquefaction step (♦). 

 

It was demonstrated that the application of a separate hydrolysis step (SHF 

process) resulted in an increase of 69.5% in ethanol production and a 7.2 times 

higher productivity compared to the SSF process. Despite the fact that there 

are several reports in the literature showing that a SSF process is more 

beneficial comparing to SHF (Alfani et al., 2000; Tomás-Pejó et al., 2008, 

Öhgren et al., 2007), as was also demonstrated by Cannela and Jørgensen 

(2013), the application of new generations of cellulolytic enzyme preparations 

makes SHF process more advantageous. On the other hand, SSF process is 

more suitable when older generation enzymatic solutions (like Celluclast) are 

applied. The application of saccharification prior to fermentation, especially at 

high solids content, has be proven to be beneficial for liquid hot water pre-



67 

 

treated olive pruning (Manzanares et al., 2011), steam pre-treated spruce 

(Hoyer et al., 2013a,b) and sugarcane bagasse (de Souza et al., 2012). 

 

Table 4: Effect of different saccharification conditions on ethanol production, 
productivity, yield and relative yield (calculated as percentage of maximum theoretical 
yield) 

 

Saccharification conditions Ethanol production 

Duration 

(h) 

Addition 

of extra 

enzymes 

Concentration  

(g/L) 

Yield 

(g/100 g 

DM) 

Productivity 

(g/L·h) 

Relative 

ethanol 

yield  

12 - 41.4 ± 1.2 23.0 ± 0.7 1.88 ± 0.06 60.8 ± 1.9 

12 + 47.9 ± 3.5 26.6 ± 1.9 2.18 ± 0.16 70.4 ± 5.0 

24 - 41.4 ± 2.3 23.0 ± 1.3 1.88 ± 0.10 60.8 ± 3.4 

24 + 48.3 ± 2.4 26.9 ± 1.3 2.20 ± 0.10 71.2 ± 3.4 

0 - 24.4 ± 0.3 13.6 ± 0.2 0.26 ± 0.01 40.0 ± 0.5 
 

 

The ethanol production demonstrated during this work was higher than 

those reported by Ban et al. (2008), where only 5.4g/L of ethanol was 

achieved when the solid fraction of phosphoric acid pre-treated bagasse was 

fermented by S. cerevisiae and 14.5g/L when liquid fraction was fermented by 

Pachysolen tannophilus with the addition of 60FPU/g DM enzyme load. In 

another work, Dogaris et al. (2012) also achieved lower ethanol production 

(27.6g/L) by fermentation with Neurospora crasse of dilute-acid pretreated 

sweet sorghum bagasse. About the same ethanol production (42.3g/L) was 

reported by Li et al. (2010) from AFEX pretreated sorghum bagasse, with 

lower yield (15.9g/100g raw material) comparing to this work. Finally, Chen 

et al (2012) also achieved lower ethanol yields (21g ethanol/100g of raw 

material) during fermentation of ammonia hydroxide pretreatment sorghum 



68 

 

bagasse with the addition of higher enzyme load (60FPU/g of glucan) 

supplemented with high β-glucosidase (64CBU/g of glucan). 

3.2 Ethanol production from high dry matter liquefied dry 

sweet sorghum stalks 

As discussed in the introduction, the main technical challenge of sweet 

sorghum usage concerns its low storage stability. For this reason, sweet 

sorghum should be used in a short term after harvesting, which results in 

problems for an annual availability of the stalks. Moreover, the high volumes 

of the produced sorghum in a really short period of time require the use of big 

facilities which will work only temporarily. 

Common practices of stalks utilization, such as separation of juice from the 

bagasse, sometimes suffer from the low sugar recovery yields and the storage 

stability of the produced juice. In order to preserve stalks or juice from 

contaminations, cooling units should be used which in turn increase the 

overall cost of the process. In most of the cases, if sugars are not separated 

from the lignocellulosic fraction, only solid-state fermentation can be applied 

presenting several problems including difficulties for scaling-up the process 

and ethanol recovery (Singhania et al., 2009). 

Storage stability problems could be solved by drying the stalks until the 

water content is low enough. On the other hand, the necessity of using high 

solids concentration of sweet sorghum particles in order to achieve high sugar 

and ethanol concentrations, results in a high viscosity mash where the 

insoluble materials are very difficult to be separated from the juice without 

addition of water. Under these conditions, only solid state fermentation is 

allowed leading to several problems that previously were mentioned. In order 
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to rapidly decrease the viscosity of the high solid content mash, an enzymatic 

hydrolysis step, prior to the fermentation, was evaluated and optimized during 

this work. This step also enables a better mixing and an easier ethanol 

recovery due to the submerged cultivation of the fermenting microorganisms. 

3.2.1 Inhibition of glucose, fructose and sucrose on the 

commercial enzyme solutions 

The liquefaction of the lignocelluloses present in the stalks of sweet 

sorghum is different from the non-sugar crops. This difference has to do with 

the presence of high concentration of soluble sugars (glucose, fructose and 

sucrose) in the stalks, which results in the inhibition of cellulases and in turn 

in hindering the enzymatic hydrolysis. From these sugars, only glucose is 

known to have an inhibitory effect on cellulases including those from T. reesei 

(Celluclast® 1.5L) and the β-glucosidase from A. niger (Novozym® 188) that 

were used during this work (Xiao et al., 2004). Glucose acts as an inhibitor on 

β-glucosidase leading to cellobiose accumulation. This phenomenon results in 

a strong inhibition of cellobiohydrolases and endoglucanases. It was 

mentioned that the constant of glucose inhibition (KIG) on β-glucosidase 

could be as low as 0.3g/L to 0.5g/L (Oh et al., 2000) which indicates the 

great importance of keeping glucose levels as low as possible. 

For this reason the inhibitory effect of fructose and sucrose on the mixture 

of Celluclast® 1.5L and Novozym® 188 was investigated. Inhibition was 

studied during hydrolysis of Whatman No1 filter paper at a substrate 

concentration of 35g/L. It was found that neither sucrose nor fructose with 

concentration increasing up to 200g/L had an inhibitory effect on cellulases. It 

can thus be concluded that keeping sucrose intact and avoiding its hydrolysis 

to fructose and glucose are very important. In this way, it is possible to 
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prevent from a strong inhibition to commercial cellulases. As a consequence, 

it was interesting to investigate the existence of invertase activity both in 

commercial enzyme solutions and as an endogeny activity in sweet sorghum. 

It was found that Novozym® 188 contained a significant invertase activity 

(0.83Units mg-1 of protein) in contrast with Celluclast® 1.5L which had none. 

Moreover, sweet sorghum was also found to contain some endogenous 

invertase activity (3.73U/g solids). To prevent sucrose hydrolysis, enzymatic 

liquefaction was performed only by Celluclast® 1.5L, whereas Novozym® 188 

was added at the start-up of fermentation when the yeast starts consuming the 

glucose. 

The presence of soluble sugars in sweet sorghum stalks reduces the 

possibility of applying a pretreatment, especially if it involves high 

temperatures. Indeed, these sugars can undergo degradation and caramelisation 

reactions which can result in the formation of inhibitory compounds, such as 

furfural and hydroxyl-methyl-furfural, which in turn can inhibit the 

fermentation process. 

Through this work, in order to reduce the water content and in turn 

making stalks more stable during storage, stalks were air dried at 85oC for 10 

to 12h. In this way, endogenous invertase was also deactivated. Another 

benefit of drying the stalks includes the reduction in total volume and weight, 

making storage and transportation easier. It was also demonstrated that sweet 

sorghum stalks are stable for up to 8 months when the water content is less 

than 13% w/w (Shen and Liu, 2008). 

3.2.2 Effect of the liquefaction step on ethanol production 

During this work, an enzymatic liquefaction step was included in the 

process in order to evaluate the ability to rapidly decrease the viscosity of the 
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slurry and permitting submerged fermentation. Enzymes can also be added at 

the start-up of the fermentation but this can have a negative impact on 

ethanol productivity. This is result that during the initial stages of 

fermentation the high viscosity of the slurry could result into partial inhibition 

of the yeast. The evaluation of the effect of enzyme liquefaction was 

performed at an initial solid content of 35% w/v to evaluate the performance 

of the enzyme under high gravity conditions. The enzyme load applied was 

equal to 13FPU/g solids. 

 
Table 5: Results of ethanol yield and productivity of fermentations at different 
liquefaction duration. Initial solids were 35% w/v and enzyme loading 13FPU/g 

solids. 
 

 

Liquefaction duration 

(h) 

Ethanol yield 

 (g/kg of solids) 

Productivity 

(g/L·h) 

12 191.2 ± 0.90 2.5 ± 0.0 

10 191.0 ± 14.5 2.3 ± 0.2 

6 192.5 ± 12.3 1.3 ± 0.1 

2 198.9 ± 1.10 1.3 ± 0.2 

0 181.7 ± 21.1 1.2 ± 0.1 

No enzymes 153.3 ± 13.8 1.0 ± 0.0 

 

As can be seen in Table 5, the addition of enzymes when combined with a 

separate liquefaction step enhanced the ethanol production by 29.76% and the 

ethanol productivity by 250%. More specifically, after 12h of liquefaction the 

productivity was estimated to be 2.5 g/L·h and the ethanol concentration to 
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60g/L. It can therefore be concluded that the addition of enzymes is necessary 

to increase both ethanol yield and productivity. 

 Finally, it can be noticed that higher productivities can be achieved if the 

enzymes are left for at least 2h to act on the dried stalks prior to inoculation. 

3.2.3 Evaluation of the combined effect of liquefaction duration 

and enzyme load on ethanol productivity 

Liquefaction duration and enzyme load are two very important factors 

during enzymatic hydrolysis of lignocellulose. These two factors interact with 

each other and affect the efficiency of hydrolysis. In an ideal process, both 

enzyme load and duration should be as low as possible and the hydrolysis of 

cellulose as high as possible, in order to reduce the process cost. Efficient 

cellulose hydrolysis affects both the ethanol yield and the productivity during 

the subsequent fermentation. For this reason, an optimum combination of 

these two factors should be found. This optimum will lead to reduced cost of 

liquefaction and will enable high ethanol yield and productivity. 

A RSM regression model was used in order to estimate the interactive 

effects of these two important variables. These factors varied from 1.8 to 10.2h 

and from 2.8 to 11.2FPU/g of solids for liquefaction duration and enzyme 

load respectively. Ethanol volumetric productivity was considered as the 

response of this design, as it was found that ethanol yield was not affected by 

these variations (data not shown). The different treatment combinations are 

shown in Table 6. Preliminary fitting of the equation described in section 2.7 

indicated that the combined effect factor of these two variables (x1·x2) was not 

statistically significantly. For this reason, this factor was removed in order to 

obtain the second regression model described by the following equation: 
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where x1 represents the liquefaction duration and x2 the enzyme load. This 

model was tested by ANOVA for adequacy and it was found that the p-value 

was very low (p=0.0086) and the coefficient of determination (R2=0.867) was 

high. These values indicate the good correlation between the experimental 

and predicted values and support the significance of the model. 

The resulting response surface and contour plot which shows the effect of 

liquefaction duration and enzyme loading on ethanol productivity is shown in 

Figure 23. From the response surfaces it can be observed that there is a 

maximum value of ethanol volumetric productivity. After solving the previous 

equation the optimum combination of liquefaction duration and enzyme load 

was found to be 8.6h and 8.32FPU/g solids, resulting to a predicted 

volumetric productivity of 3.03g/L·h. In order to verify these values, an extra 

fermentation was carried out on liquefied sweet sorghum stalks from this 

combination. Under these conditions, sweet sorghum stalks totally liquefied at 

the end of the hydrolysis (Figure 24). 
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Table 6: Treatment combination from the experimental design and the experimental 
responses of ethanol volumetric productivity. 

 

Treatment Coding setting level 

(X1= Liquefaction 

duration, X2=FPU/g 

DM) 

 Actual level  

(X1=Liquefaction 

duration, X2=FPU/g 

DM) 

Productivity 

(g/L·h) 

               

1 -1 -1 3 4 1.19 

2 1 -1 9 4 2.74 

3 -1 1 3 10 1.60 

4 1 1 9 10 2.76 

5 0 0 6 7 2.74 

6 0 0 6 7 2.61 

7 -1.414 0 1.8 7 1.60 

8 1.414 0 10.2 7 2.65 

9 0 -1.414 6 2.8 1.25 

10 0 1.414 6 11.2 2.76 

11 0 0 6 7 2.85 
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Figure 23: (A) Response surface and (B) contour plot of ethanol productivity resulted 
from fermentations of dried sweet sorghum at 35% w/v solids content. 

 

At the subsequent fermentation, ethanol reached high levels of production 

(62.53g/L) after 21h of fermentation, resulting in an ethanol volumetric 

productivity of 2.98g/L·h (Figure 25), which was fairly close to the model 

prediction. Under these conditions, ethanol yield reached 19.85g/100g of 

solids, which is equivalent to 76.75% of the maximum theoretical yield (based 

on the soluble sugar fraction). Cellulose hydrolysis after the liquefaction and at 

the end of fermentation was found to be 17% and 21% respectively, based on 

total cellulose in the raw material. 

 

 

Figure 24: Sweet sorghum at 35% w/v solids concentration, (A) before liquefaction and 
(B) after liquefaction at optimum conditions. 
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Figure 25: Time course of ethanol production (●) and sucrose (○), glucose 

(▼) and fructose (□) utilization during fermentation of S. cerevisiae MAK2 on 

liquefied stalks at optimum conditions and solids concentration 35% w/v.   

 

3.2.4 Effect of the solids concentration on ethanol production 

At the last stage of this work, the effect of initial solids concentration on 

ethanol production was evaluated in a range from 10% to 50% w/v. High 

solids concentrations are desired to achieve higher concentrations of ethanol. 

On the other hand, as the concentration of solids is increased, the inhibition 

of glucose to commercial enzyme solutions will be more severe and some 

problems might occur during the fermentation step. 

Results of ethanol production under different solids contents are shown in 

Table 7. Ethanol production gradually increased with the increase in the solids 
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content up to 40% w/v. At higher solid content, the ethanol concentration 

was notably low because of glucose inhibition which was very strong and no 

liquefaction observed. Under these conditions, a part of the soluble sugars 

remained intact, indicating problems during the fermentation step. Although 

the ethanol concentration in 40% w/v solids was slight higher than on 35% 

w/v, the volumetric productivity decreased to half when the solids content 

increased from 35% to 40% w/v. This increase also had a negative impact on 

the ethanol yield. It was therefore concluded that the optimal solid 

concentration was 35% w/v since the increase in ethanol concentration above 

this value was not worth compared to the decline in productivity and yield. 

 

Table 7: Fermentation parameters of ethanol production by S. cerevisiae MAK2 on 
liquefacted dried sweet sorghum stalks at different solid contents. Productivity, Yield 
and Relative Yield were calculated at maximum ethanol concentration. Relative 
Yield was calculated on basis of maximum Yield (Yethanol/sugars=0.511) based on soluble 
sugars concentration. Liquefaction was performed at optimum conditions as described 
earlier. 

 

Initial Dry 
Matter 

(w/v) 

Maximum 
ethanol 

concentration 

(g/L) 

Productivity 
(g/L·h) 

Yield (g 
ethanol/100g 

solids) 

Relative 
yield (%) 

10% 20.21 ± 0.95 1.19 ± 0.06 22.45 ± 1.06 86.81 ± 4.00 

20% 36.33 ± 3.22 2.14 ± 0.19 20.18 ± 1.79 78.04 ± 6.90 

30% 55.37 ± 0.95 2.21 ± 0.05 20.51 ± 0.35 79.29 ± 1.40 

35% 62.53 ± 0.46 2.98 ± 0.02 19.85 ± 0.14 76.75 ± 0.56 

40% 64.50 ± 3.60 1.29 ± 0.07 17.91 ± 1.00 69.28 ± 3.90 

50% 38.3 ± 0.51 0.39 ± 0.01 5.11 ± 0.11 19.75 ± 0.40 
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Compared to other works using the whole stalks of sweet sorghum 

(without separation of the juice) for ethanol production, process configuration 

suggested in this work was more advantageous for higher ethanol production. 

Shen and Liu (2008) performed solid state fermentation of dried sweet 

sorghum stalks and they achieved a yield of 27.02g/100g of soluble sugars, 

which was equivalent to 10.55g/100g of solids, after supplementation of sweet 

sorghum with external nutrients. Mamma et al. (1996) achieved 49g/L of 

ethanol with fermentation by mixed cultures of Fusarium oxysporum and S. 

cerevisiae of alkali pretreted stalks, which has a negative impact on the process 

cost. Mizuro et al. (2009) suggested the use of the basidiomycete Flammulina 

velutipes for the fermentation of sorghum, with the addition of Celluclast® 

1.5L, supplemented with β- glucosidase and xylanase. Despite the fact that 

ethanol yield (19.3g/100g) was close to the one achieved in this work, 

fermentation needed 10 days to be completed, resulting in a very low 

productivity. Yu et al. (2010) suggested to pretreat fresh sweet sorghum with 

H2SO3 (0.25g/g of solids) at 100oC for 120 min. With the addition of high 

enzyme load (60FPU/g), they achieved only 44.5g/L. Finally, Siwarasak et al. 

(2011) used crude enzyme powder from Trichoderma reesei to hydrolyze fresh 

sweet sorghum stalks. They achieved an ethanol concentration of only 35g/L 

with a corresponding productivity of 0.18g/L·h. 

When the whole stalks were used, ethanol production was higher than 

when bagasse was used. Moreover, fewer process steps were necessary 

resulting in a more simple process. This also has an impact on the cost of 

ethanol production. For this reason, the use of dried stalks instead of bagasse 

was applied during the next part of this thesis. 
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3.3 Evaluation of lipid production by the yeast Lipomyces 

starkeyi CBS 1807 from dried sweet sorghum stalks 

In this part of this work, the potential of using dried sweet sorghum stalks 

for the cultivation and lipids accumulation of the yeast L. starkeyi was 

evaluated. Apart from the technical challenges of using sweet sorghum 

previously discussed, another challenge is the low carbon to nitrogen (C:N) 

ratio, estimated around 60-65 (Economou et al., 2010) which is a result of the 

protein contained in the stalks. On the other hand, not all the proteins are 

readily available for the yeast and this could result in a higher actual C:N ratio. 

The incorporation of the enzymatic hydrolysis could also result in the increase 

of this ratio as sugars will be released from the structural carbohydrates. 

3.3.1 Evaluation of lipid production from synthetic media 

At the initial stage of this work the cell growth, sugar utilization and lipid 

production patterns of L. starkeyi CBS 1807 were characterized on synthetic 

media with glucose, fructose and sucrose, either as single carbon and energy 

source or in mixtures at the ratio present in sweet sorghum stalks (glucose, 

16%; fructose, 16% and sucrose 68%). All 3 sugars were suitable for the 

growth of the yeast and sufficient for the lipid production (Figure 26). The 

highest lipid production was achieved when glucose was used as carbon 

source. 5.71g/L of lipids were obtained with a lipid content of 49% w/w. The 

lowest lipid production was observed when cultivated in sucrose. However, in 

the sugar mixture 4.49g/L of lipids were produced with a lipid content of 

41.3% w/w were achieved, indicating that the sugar composition of sweet 

sorghum stalks is suitable for the cultivation and lipid production of L. starkeyi. 
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Figure 26: Effect of different sugars on the lipid concentration (A) and lipid content 
(B), under constant C:N ratio of 100 by the addition of a mixture of yeast extract and 
ammonium sulfate. 

 

In order to further evaluate and improve the lipid production from the 

sugar mixture, other factors affecting lipid accumulation were studied and 

optimized. Generally, lipid accumulation is influenced by several factors such 

as nitrogen, temperature etc (Zhu et al., 2008). Among these factors, nitrogen 

plays a very important role as the accumulation of lipids starts after the 

depletion of nitrogen from the cultivation broth (Papanikolaou et al., 2007). 

The form of the nitrogen source (organic or inorganic) can also affect the 

ability of the microorganisms to accumulate lipids (Papanikolaou and Aggelis, 

2011b). For these reasons, it is of great importance to evaluate the nitrogen 

source as well as the ratio of the carbon to nitrogen concentrations (C:N). 

In the first part, the effect of organic (yeast extract, meat peptone and urea) 

and inorganic (NH4Cl, (NH4)2SO4 and (NH4)2HPO4) nitrogen sources on 

lipid production was evaluated at a constant C:N ratio equal to 100. It was 

observed that complex organic nitrogen sources (yeast extract and peptone) 

were more beneficial for lipid accumulation (Figure 27). The highest lipid 

production was observed in the presence of yeast extract and reached 5.23g/L 

with a lipid content of 43.7% w/w. The same positive effect of the presence 
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of organic nitrogen source was reported for different microorganisms like 

Cunninghamella echinulata (Certik et al., 1999), Trichosporon fermentans (Zhu at 

el., 2008) and Rhodosporidium toruloides (Evans and Ratledge, 1984b). 

 

 

Figure 27: Effect of nitrogen source on lipid concentration (A) and lipid content (B) 
using sugar mixture for the yeast cultivation under constant C:N ratio of 100. 

 

Finally, the effect of different C:N ratios in a wide range (40-250) was 

investigated by using yeast extract as a nitrogen source (Figure 28). The lipid 

production increased with the increase of C:N ratio up to 190, where  

5.81g/L and 47.3% w/w of lipid production and lipid content, respectively, 

were achieved. A further rise of the C:N ratio resulted in a slight drop of both 

lipid production and lipid content. Similar results concerning the % w/w lipid 

accumulation at low C:N ratios were reported by Wild et al. (2010) for the 

same microorganism. High lipid production can be achieved in a quite large 

range of C:N ratios. To conclude, high lipid production can be achieved with 

C:N ratios above 100. 

Under the optimum conditions for the yeast cultivation in synthetic media, 

the yield of lipid production per gram of consumed sugars was YL/S = 
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0.131g/g, the productivity 1.162g/L·day and the yield of biomass formation 

YX/S = 0.276g/g (Figure 29). 

 

Figure 28: Effect of different C:N ratios on lipid concentration (A) and lipid content 
(B), when cultivation was performed using the sugar mixture with the addition of 
yeast extract as nitrogen source. 

 

 

Figure 29: Time course of biomass (●) and lipid (○) concentration 

and sugars consumption (♦) when L. starkeyi was cultivated on the 

sugar mixture, at a C:N ratio of 190 and yeast extract as nitrogen 
source. 
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3.3.2 Lipid production from L. starkeyi cultivated on juice 

obtained from dried sweet sorghum stalks 

During the preliminary experiments it was observed that L. starkeyi was not 

able to grow in the presence of solids from sweet sorghum stalks and as a 

result the solids were removed after the enzymatic saccharification. This 

phenomenon could be a result of damages caused by the solids to the cells 

through shear forces, as it was previously suggested during ethanol production 

from chopped sweet sorghum stalks in rotary drum fermentor (Whitfield et 

al., 2012). 

During the initial experiments, the ability of L. starkeyi to exploit sweet 

sorghum’s proteins as nitrogen source was evaluated by studying the effect of 

the addition of an external nitrogen source (more specifically yeast extract) at a 

concentration equivalent to 0.2g/100g of sweet sorghum on lipid production 

(initial sweet sorghum content was 8.7% w/w). This resulted in a significant 

decrease in lipid production from 4.69g/L (lipid content of 28.3% w/w) to 

3.46g/L (lipid content of 20.8% w/w) (Figure 30) probably caused by the 

substantial decrease of the initial C:N ratio of the medium after the addition of 

yeast extract. Moreover, even without the addition of an external nitrogen 

source, the lipid production was lower compared to those obtained in 

synthetic media, underpinning the importance of increasing the C:N ratio by 

increasing the initial sugars concentration.  
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Figure 30: Effect of addition of external nitrogen source (0.2 g yeast 
extract per 100g of sorghum) on lipid concentration and content, 
when L. starkeyi was cultivated on sweet sorghum juice from a sweet 
sorghum initial concentration of 8.7% w/w. Experiment with the 
addition of external nitrogen source is represented by the light gray 
bar and the control by the dark gray bar. 

 

It can be concluded that the incorporation of the enzymatic saccharification 

step can facilitate the increase of the sugar content and in turn the C:N ratio. 

For this reason, the effect of a distinct enzymatic saccharification step on lipid 

production was evaluated at a range of solids concentrations (8.7, 12 and 16% 

w/w). The incorporation of a distinct saccharification step resulted not only in 

an increase of the initial concentration of sugars (approximately 3 to 12%) but 

also in a better recovery of the liquid and in turn also of the sugars by 

reducing the viscosity of the slurry. As it was previously discussed this is an 

effect of the loss of the water-binding capacity due to the degradation and 

collapse of the structure of cellulose (Szijártó et al., 2011). It is also important 

to mention that the presence of a distinct enzymatic saccharification step 

resulted in the increase of lipid production in all the solids concentrations 
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(Figure 31). The highest lipid production was observed when the yeast was 

cultivated in the juice obtained from 12% w/w initial sweet sorghum 

concentration with the incorporation of a distinct saccharification step and 

without any additional nitrogen source (Figure 32). Under these conditions 

the lipid production reached 6.40g/L with a lipid content of 29.5% w/w. The 

lipid yield per gram of consumed sugars was YL/S = 0.077g/g, while the 

corresponding yield for biomass formation was YX/S = 0.262g/g which is 

comparable to the one obtained when using the synthetic media (C:N ratio of 

190). Moreover the lipid productivity was 0.8g/L·day and the lipid yield per 

sweet sorghum solids reached 5.33g/100g of sweet sorghum. Lipid production 

obtained during this work was higher than most of the works reported in the 

literature when L. starkeyi was cultivated on renewable raw materials or on 

sweet sorghum (Table 8). 

 

 

Figure 31: Effect of different initial sweet sorghum contents on lipid concentration 
(A) and content (B), with the presence (dark gray bars) or absence (light gray bars) of 
a distinct enzymatic saccharification step. 
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Figure 32: Time course of biomass (●) and lipid (○) concentration and 

sugars consumption (♦) when L. starkeyi was cultivated on sweet 

sorghum juice that came from 12% w/w sweet sorghum concentration 
without the addition of an external nitrogen source. 

 

The profile of the lipids obtained at the optimum conditions were further 

analyzed (Table 9) in order to evaluate their suitability to be used as raw 

material for biodiesel production. The predominant fatty acid is oleic acid 

(49.85% w/w) following by palmitic acid (42.90% w/w). The high 

concentration of oleic acid is considered to be beneficial for the subsequent 

biodiesel production (Sitepu et al., 2013). Other fatty acids present in smaller 

quantities in the obtained lipids include palmitoleic and stearic acid. A similar 

fatty acid composition was also obtained when L. starkeyi was cultivated on 

starch (Wild at al., 2010), mixtures of glucose and xylose (Zhao et al., 2008) 

and various mixtures of glucose, cellobiose and xylose (Gong et al., 2012). 
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Table 8: Comparison of lipid concentrations obtained during this work with other 
results reported in the literature. 

 

Microorganism Raw material 

Lipid 

concentration 

(g/L) 

Productivity 

(g/L·day) Reference 

L. starkeyi 

Non-detoxified 
dilute sulfuric 
acid pretreated 
wheat straw 

4.6 n.a. 
Yu et al. 
(2011) 

L. starkeyi 

Detoxified 
dilute sulfuric 
acid pretreated 
wheat straw 

3.7 n.a. 
Yu et al. 
(2011) 

L. starkeyi 
Ultrasonic 

treated sewage 
sludge 

1.0 n.a. 
Angerbauer 
et al. (2008) 

L. starkeyi 
Sweet potato 

starch 
4.8 2.40 

Wild et al. 
(2010) 

L. starkeyi 

Glucose-
enriched 
fishmeal 

wastewater 

2.7 0.45 
Huang et 
al. (2011) 

L. starkeyi 

Detoxified 
corncob 

hydrolyzates 
treated with 

dilute sulfuric 
acid 

8.1 1.01 
Huang et 
al. (2014) 

C. curvatus 
Sweet sorghum 

bagasse 
2.6 0.87 

Liang et al. 
(2012) 

Chlorella 
protothecoides 

Sweet sorghum 
juice 

2.9 0.59 
Gao et al. 

(2010) 

Schizochytrium 
limacinum 

Sweet sorghum 
juice 

6.9 1.38 
Liang et al. 

(2010) 

L. starkeyi 
Juice from 
saccharified 

sweet sorghum 
6.4 0.80 

Present  

work 

 

n.a. = not available 
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Table 9: Fatty acid composition of the lipids produced 
during cultivation of L. starkeyi on juice from 12% w/w 
liquefied sweet sorghum stalks. 

 

Fatty acid % concentration (w/w) 

C16:0 42.90 

C16:1 2.15 

C18:0 4.90 

C18:1 (n-9) 49.85 

C20:4 (n-6) 0.17 
 

 

 

3.4 Evaluation of lipid production by the yeast Trichosporon 

fermentans CBS 439.83 from dried sweet sorghum stalks 

During this part of the work, the cultivation of the oleaginous yeast T. 

fermentans on liquefied sweet sorghum stalks in order to produce lipids will be 

discussed. Saccharification of dried sweet sorghum stalks was performed at the 

optimum conditions that were defined during ethanol production from stalks. 

3.4.1 Evaluation of lipid production from synthetic media 

During the initial stage of this work, the growth, sugar utilization and lipid 

production patterns of T. fermentans were characterized in the same sugars as 

for the case of L. starkeyi. From the initial experiments, it was found that T. 

fermentans cannot grow when it is cultivated on sucrose, probably due to the 

lack of invertase activity. For this reason, in all the experiments were sucrose 
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was present, Novozym® 188 was added to the cultivation broth at the same 

volumes that would normally be added when sweet sorghum stalks were used. 

T. fermentans was able to grow in all the sugars (Figure 33) and the higher lipid 

production was observed when it was cultivated in glucose, reaching 1.98g/L 

and 11.36% w/w lipid content. During the cultivation of the yeast in the 

mixture, the lipid concentration and content reached 1.05g/L and 7.59% w/w 

respectively. As for the lipid production, it remained at lower levels than those 

obtained from L. starkeyi on the same synthetic medium, indicating that 

further optimization is necessary. 

 

Figure 33: Effect of different sugars on the lipid concentration (A) and lipid content 
(B), under constant C:N ratio of 100 by the addition of a mixture of yeast extract and 

ammonium sulfate. 

 

Subsequently, the effect of the nitrogen source was examined. The 

different organic nitrogen sources used involve peptone, yeast extract and urea 

and the inorganic sources include ammonium phosphate and ammonium 

sulphate. As for L. starkeyi, it was found that complex organic sources were 

more favourable for lipid accumulation with peptone giving the highest 

concentration (2.06g/L) with the lipid content equal to 11.73% w/w (Figure 

34). A slightly higher lipid content was achieved when yeast extract was used 
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(12.15% w/w), but the concentration of lipids was much lower (1.42g/L), 

which was a result of the lower biomass formation when yeast extract was 

used. 

 

Figure 34: Effect of nitrogen source on lipid concentration (A) and lipid content (B) 
using sugar mixture for the yeast cultivation under constant C:N ratio of 100. 

 

Finally, the effect of the C:N ratio varying between 40 and 220 on lipid 

production in the presence of peptone as nitrogen source was evaluated. With 

increasing the C:N the lipid production is increased up to ratio equal to 160, 

where 3.66g/L of lipids were produced corresponding to a lipid content of 

21.91% w/w (Figure 35). Despite the fact that lipid production increased after 

optimizing the nitrogen source and the C:N ratio, the lipid content remained 

quite low due to the high biomass formation. The optimum C:N ratio found 

during this work was very close to the one reported by Zhu et al. (2008) who 

mentioned an optimal ratio of 163 for the strain CCIC 1368, and to the one 

reported by Huang et al. (2012) for the same strain (ratio 165). 

Under the optimum conditions for the cultivation of the yeast in synthetic 

media, the yield of the lipid production per gram of consumed sugars was 

found to be YL/S = 0.091g/g, the yield of biomass formation YX/S = 0.418g/g 

and the productivity 0.523g/L·day (Figure 36). The obtained lipids by T. 
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fermentans were lower than those produced by L. starkeyi. On the other hand, 

T. fermentans presented higher biomass formation compared to L. starkeyi 

which resulted in the lower lipid content in the cells. 

 

Figure 35: Effect of different C:N ratios on lipid concentration (A) and lipid content 
(B), when the cultivation was performed using sugar mixture with the addition of 
peptone as nitrogen source. 

 

 

Figure 36: Time course of biomass (●) and lipid (○) 

concentration and sugars consumption (♦) when T. fermentans 

was cultivated on sugar mixture, at a C:N ratio of 160 and 
peptone as nitrogen source. 
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3.4.2 Evidence of Crabtree effect 

In an attempt to increase the accumulation of lipids in synthetic media, the 

effect of the initial sugar concentration in a range from 40 to 200g/L was 

examined. During the investigation, it was observed that the pH rapidly 

decreased during the first day of cultivation, as the sugar concentration was 

increasing. More specifically, for 40g/L initial concentration of sugar, the pH 

after the first day of cultivation decreased to 6.04 where it remained more or 

less constant, whereas for 200g/L initial concentration of sugars it decreased to 

3.69. The same trend of the decrease of pH was observed in the other sugar 

concentrations with the values after one day of cultivation being 4.49 (80g/L), 

4.32 (120g/L) and 3.70 (160g/L). 

In order to determine the reason for this decrease in the pH values, an 

HPLC analysis was run and it was found that ethanol was produced. The 

presence of ethanol was also verified with GC (Gas Chromatography) analysis. 

The highest ethanol production was observed at 200 g/L initial sugar 

concentration and reached 25g/L after 116 h of incubation (Figure 37). When 

the lowest concentration of 40g/L was used, only traces of ethanol (0.33g/L) 

could be detected. After a certain point of the cultivation ethanol started to 

get consumed indicating a ‘diauxic growth’ which was also observed by other 

researchers (Sarris et al., 2013; Sarris et al., 2014). All these phenomena are 

evidences of the existence of Crabtree effect on T. fermentans. As far as we 

know, it is the first time that Crabtree effect is found on T. fermentans. 

Crabtree effect is a biochemical phenomenon where ethanol can be produced 

in the presence of air. More specifically, there is a critical value of glucose 

concentration above which the cellular metabolism is shifted towards ethanol 

formation despite the presence of oxygen (Sarris et al., 2013). When glucose 

concentration decreases below this value, the yeast starts consuming ethanol in 
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order to form cell biomass. This phenomenon is a result of catabolite 

repression caused by glucose to some enzyme involved in Krebs cycle and 

oxidative phosphorylation chain, which in turn result in repression of the 

oxidative pathway (Ratledge, 1991). During the lipid production, Crabtree 

effect is not desirable due to its effect on shifting the carbon flow from 

biomass and lipid formation to ethanol. On the other hand, T. fermentans 

could be proven to be an interesting candidate for ethanol production. For 

this reason the ability of the yeast to produce ethanol under anaerobic 

conditions should be further evaluated. 

 

Figure 37: Ethanol production when initial concentration of 

sugar mixture was 40 g/L (●), 80 g/L (○), 120 g/L (▼), 160 

g/L (Δ) and 200 g/L (■). Peptone was used as nitrogen 

source and the C:N ratio was equal to 160. 
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3.4.3 Lipid production from T. fermentans when cultivated on 

dried sweet sorghum stalks 

Initial trials were performed in the presence of solids to evaluate the 

capability of the stalks to support yeast growth both as carbon and nitrogen 

source. For this reason the effect of the addition of peptone at a concentration 

equal to 0.4g/100g sorghum solids on lipid production was evaluated. The 

addition of even such small amount of external nitrogen source had a negative 

impact on lipid production, which decreased from 1.97g/L to 0.79g/L (Table 

10). As it was observed during the cultivation of L. starkeyi that addition of 

external nitrogen source has a negative impact on lipid production which 

might be a result of the further decrease in C:N ratio. As was previously 

discuss, the ability of the stalks to support the yeast both as carbon and as 

nitrogen source has a positive impact on process economics, as the complex 

organic sources have a high cost. In contrast to L. starkeyi, T. fermentans 

growth was not inhibited by the presence of solids in the broth. 

 

Table 10: Effect of enzymatic saccharification and external nitrogen addition 
(peptone at a concentration equal to 0.4g/100g sorghum) on lipid production. 

 

Enzymatic saccharification External nitrogen source Lipid concentration (g/L) 

+ - 1.97 ± 0.00 

+ + 0.79 ± 0.12 

- - 1.05 ± 0.10 

 

Subsequently, the effect of the presence of a distinct enzymatic 

saccharification step on lipid production was examined. As can be seen in 

Table 10, absence of the enzymatic saccharification step had a negative impact 
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on the lipid production, verifying that the presence of a saccharification step 

facilitates to the increase of sugars and in turn improves the C:N ratio. Finally, 

no attempt to increase solids concentration (and in turn sugars concentration) 

was made as the increased sugars would result in Crabtree effect and thus in 

lower lipid production. 

At the last stage of the evaluation of T. fermentans as candidate for lipid 

production when cultivated on sweet sorghum stalks, the effect of solids 

removal was examined. As it was previously found that the presence of solids 

could inhibit the growth of L. starkeyi and the same negative effect could 

occur during growth of T. fermentans. In contrast with L. starkeyi, lipid 

accumulation of T. fermentans was not inhibited by the solids and the lipid 

production was even slight lower when the solids were removed. This could 

be possibly attributed to the action of the enzymes during cultivation and 

further hydrolysis of insoluble polysaccharides when solids are present. Once 

again the absence of the enzymatic saccharification had a negative impact on 

lipid production (Table 11).  

 

Table 11: Effect of enzymatic saccharification in the absence of solids on lipid 
production. 
 

Enzymatic saccharification Lipid concentration (g/L) Lipid content (%w/w) 

+ 1.80 ± 0.29 11.51 ± 2.31 

- 1.45 ± 0.06 8.61 ± 0.21 

 

Taking into account all the above, it can be concluded that the highest 

lipid production achieved without solids removal in the presence of enzymatic 

saccharification. Under these conditions, lipid production reached 1.97g/L 



96 

 

with a productivity of 0.493g/L·day. The yield of lipid production was YL/S = 

0.067g/g. The fatty acid profile of the obtained lipids is presented in Table 12. 

The most abundant was oleic acid (37.9% w/w) followed by palmitic (23% 

w/w) and linoleic acid (19.5% w/w). Siilar composition of fatty acids was 

found by Zhu et al. (2008), were the obtained lipids mainly consisted of 

palmitic, stearic, oleic and linoleic acid. Moreover, they reported that the 

unsaturated fatty acids were 64% of the total lipids, a value that is very close to 

the one obtained during this work (61.3%). Same fatty acid composition was 

also reported by Huang et al. (2009) with a concentration of unsaturated fatty 

acids equal to 65%. The similar composition of the obtained lipids to the 

vegetable oils makes a very promising raw material for biodiesel production.  

 

Table 12: Fatty acid composition of the lipids produced 
during cultivation of T. fermentans on 8.7% w/w liquefied 
sweet sorghum stalks. 

 

Fatty acid % concentration (w/w) 

C8:0 1.6 

C11:0 6.0 

C16:0 23.0 

C16:1 2.0 

C18:0 4.6 

C18:1 (n-9) 37.9 

C18:2 (n-6) 19.5 

C18:3 (n-3) 1.9 
 



97 

 

3.5 Evaluation of lipid production by the yeast 

Rhodosporidium toruloides CCT 0783 from dried sweet 

sorghum stalks 

At the last part of the work concerning biodiesel production, the yeast 

R.toruloides CCT 0783 was evaluated as a possible candidate. Saccharification 

of the sweet sorghum stalks was done as previously described. 

3.5.1 Effect of nitrogen addition on lipid production 

In order to evaluate the ability of R. toruloides to use sweet sorghum 

proteins as a nitrogen source, the effect of the addition of external nitrogen 

(yeast extract) at a concentration equivalent to 0.3g per 100g of stalks was 

evaluated at an initial sweet sorghum concentration of 8.7% w/w. As it was 

previously demonstrated, organic nitrogen sources are more favorable for 

lipids accumulation by R. toruloides (Evans and Ratledge, 1984a,b) and this 

was the reason why yeast extract was chosen. Addition of even this low 

amount of external nitrogen had a negative impact on lipid production 

resulting to a decrease from 6.12g/L to 2.60g/L (Figure 38).  

This result is in good correlation with those obtained when both L. starkeyi 

and T. fermentants were cultivated on sweet stalks when external nitrogen 

source was added. It can be concluded that R. toruloides is also capable of 

efficiently using the proteins present in the stalks as nitrogen source and there 

is no need of the addition of external nitrogen source, fact that has a positive 

impact on the process economics. 
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Figure 38: Effect of external nitrogen addition (0.3g of peptone 
per 100g sorghum on lipid production. Dark and light gray bars 
represents the cultivation without and with the addition of 
external nitrogen, respectively. 

 

3.5.2 Effect of the initial sweet sorghum concentration, in the 

presence or absence of a distinct saccharification step, on lipid 

production yields 

In a next step, the effect of the initial sweet sorghum content on the 

production of lipids was examined in the 8.7–16% w/w range. Lipid 

production increased with increasing the solid content up to 12% w/w, where 

7.2g/L of lipids were produced (Figure 39). Further increase in the solids 

content resulted in a decrease in lipid production probably due to inefficient 

air-transfer properties of the high-solids mash. In all the solid contents absence 

of an enzymatic saccharification step resulted in significantly lower lipid 

production. At the highest solids content of 16% w/w no yeast growth was 

observed in the absence of the enzymatic saccharification step, as the water 

content was low and submerged fermentation could not take place. The 
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higher lipid production in the presence of the enzymatic saccharification step 

underscores once again the great importance of saccharification. As can be 

seen in Figure 40, at the highest solids content of 16% w/w enzymatic 

saccharification resulted in liquefaction of the material and consequently better 

mixing of the yeast. The viscosity of lignocellulosic substrates is known to 

decrease as a result of cellulolytic activity, the most probable reason being the 

collapse of structure and subsequent loss of water-binding capacity upon 

degradation of cellulose (Szijártó et al., 2011). Moreover, enzymatic 

saccharification facilitates the release of soluble sugars from cellulose and 

hemicellulose, and consequently improves the C:N ratio. 

 

Figure 39: Effect of initial sweet sorghum concentration at a range 

from 8.7% w/w to 16% w/w in the presence (dark grey) or absence 

(light grey) of enzymatic saccharification on the production of lipids. 
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Figure 40: Sweet sorghum stalks at 16% w/w concentration (A) without the 
application of enzymatic saccharification and (B) after enzymatic saccharification. 

 

3.5.3 Effect of removal of solids on higher lipid production 

As mentioned previously the presence of solids had a negative impact on 

the ability of the yeast L. starkeyi to grow and accumulate lipids even at low 

solids content. Removal of solids resulted in efficient growth and lipid 

production of the yeast with the most probable reason being that the presence 

of solids reduced the oxygen transfer efficiency. On the other hand when T. 

fermentans was employed, removal of solids resulted in a slight decrease in lipid 

production at low levels of solids consistencies. As a consequence, during the 

last part of this work the effect of solids removal on the lipid production by R. 

toruloides was evaluated both with and without a separate saccharification step.  

It was found that removal of solids after the saccharification step resulted in 

enhanced lipids production even at concentrations of sweet sorghum as high 

as 20% w/w (Figure 41). It was observed that lipid production increases with 

increasing the solids content both in the presence and in the absence of 

enzymatic saccharification. Enzymatic saccharification had a positive impact 

on lipid production on all the solids content. The maximum lipid 

concentration was obtained on 20% w/w solids content and was 13.77g/L 

with lipid content of 33.1% w/w. Cell growth, sugar consumption, and lipid 

production under this solid concentration are shown as a function of time in 
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Figure 42. The yield of lipid formation per gram of consumed sugars was 

equal to 0.105g/g, while the same yield for biomass formation was 0.318g/g. 

The obtained lipid productivity reached 1.377g/L per day and the 

incorporation of a distinct enzymatic saccharification step resulted in an 

increase in lipid production of 15.9% relative to the experiment without 

enzymatic saccharification. 

 

Figure 41: Effect of sweet sorghum concentration at a range between 

8.7% w/w and 20% w/w on lipid production in the presence (dark grey) 
or absence (light grey) of enzymatic saccharification. Solids were removed 
prior to cultivation. 

 

The lipid production obtained with R. toruloides during this work was 

higher than most of the lipid production reported in the literature when 

renewable resources have been used as raw materials (Table 13). Moreover 

during this work an enzymatic treatment of an energy crop was used which 

offers advantages over the acid hydrolysis of lignocellulosic materials (which is 

commonly used to prepare lignocellulosic hydrolysates), such as low energy 
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consumption due to the mild process requirements, high sugar yields, no 

requirement for detoxification and no unwanted wastes. 

 

 

Figure 42: Time course of sugars consumption (♦), biomass (●) and 

lipid (○) concentration when R. toruloides was cultivated on sweet 

sorghum juice coming from 20% w/w sweet sorghum concentration. 

 

 Finally fatty acid profile of the lipids obtained when R. toruloides was 

cultivated on the juice obtained from 20% w/w sweet sorghum is shown in 

Table 14. The predominant fatty acid was oleic (55.78% w/w) followed by 

palmitic acid (29.18% w/w). As discussed previously, high concentrations of 

oleic acid are considered beneficial for the production of biodiesel. The 

percentage of unsaturated fatty acids is high (63.5% w/w) which makes the 

obtained lipids similar to the vegetable ones. The lipid composition obtained 

during this work had higher percentage of unsaturated fatty acids compared to 

the one reported by Hu et al. (2009), as the concentrations of oleic and 
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linoleic acid were lower and those of stearic and palmitic acid were higher. 

Slight differences were also observed with the composition obtained by Li et 

al. (2007) during the last stages of fed-batch cultivation. The lipids obtained 

had a slight lower concentration of unsaturated fatty acids compared to this 

work. 
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Table 13: Comparison of SCO production from renewable raw materials. 

Microorganism Raw material 
Lipid 

concentration 
(g/L) 

Reference 

Rhodosporidium 
toruloides 

Detoxified dilute sulfuric 

acid pretreated wheat 
straw 

2.4 
Yu et al., 

2011 

Yarrowia 
lipolytica 

Detoxified hydrochloric 

acid pretreated sugarcane 
bagasse 

6.7 
Tsigie et al., 

2011 

Rhodotorula 
glutinis 

Sulfuric acid hydrolyzed 
tree leaves 

4.7 
Dai et al., 

2007 

Trichosporon 
fermentant 

Detoxified dilute sulfuric 
acid pretreated rice straw 

11.5 
Huang et al., 

2009 

Rhodotorula 

glutinis 

Monosodium glutamate 

wastewater 
5.0 

Xue et al., 

2008 

Chlorella 
protothecoides 

Sweet sorghum juice 2.9 
Gao et al., 

2010 

Schizochytrium 

limacinum 
Sweet sorghum juice 6.9 

Liang et al., 

2010 

Trichosporon 
fermentans 

Detoxified Sulphuric 
acid-treated sugarcane 

bagasse hydrolysate 

15.8 
Huang et al., 

2012 

Cryptococcus 
curvatus 

Lime pretreated sweet 
sorghum bagasse 

2.6 
Liang et al., 

2012 

Cryptococcus 
curvatus 

Dilute sulphuric acid 

pretreated sweet 
sorghum bagasse 

4.3 
Liang et al., 

2014 

Rhodosporidium 
toruloides 

Juice from enzymatically 
saccharified sweet 

sorghum 

13.8 This work 
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Table 14: Fatty acids of the obtained lipids during 
cultivation of R. toruloides on juice from 20% w/w 
liquefied sweet sorghum stalks. 
 

Fatty acid % concentration (w/w) 

C14:0 0.71 

C16:0 29.18 

C18:0 6.56 

C18:1 (n-9) 55.78 

C18:2 cis12 7.68 
 

 

3.6 Properties of the biodiesel that could come from the 

obtained lipids. 

In order to evaluate the suitability of the yeast oils to serve as raw materials for 

biodiesel production, the properties of the corresponding biodiesel were 

predicted. 

Cetane number (CN) is considered an important parameter of biodiesel and it 

is related to the ignition delay time and the combustion quality, with high 

values indicating better ignition properties (Meher et al., 2006). Also high 

values in CN are correlated with reduced NOX exhaust emissions (Knothe et 

al., 2003) and helps to ensure good cold start properties (Ramos et al.,2009). 

CN should be above 47 in order to fulfill the requirements of the standard 

ASTM D 6751 for use in USA and above 49 to be used in E.U. (e.g. standard 

E DIN 51606) (Knothe et al., 2003). Finally, according to the UNE-EN 

14214 standard CN should be above 51. In order to calculate the CN of the 
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obtained lipids, the CN of each fatty acid methy ester was calculated 

according to Krisnangkura (1986) by the following equation: 

              [(
    

 
)]      

where nc represents the number of carbon atoms and nDB the number of 

double bonds of the each fatty acid. The CN of the lipids was determined as 

the weighted percentage of each of the methyl esters and its individual cetane 

number. All the three obtained oils had a CN above the minimum required 

by the international standards, with the one obtained from L. starkeyi 

presenting the highest value (Table 15). 

 

Table 15: Predicted biodiesel properties of the obtained lipids. 

Property L. starkeyi T. fermentans R. toruloides 

CN 62 55 60 

DU 52 83 71 

LCSF 6.7 4.6 6.2 

CFPP (oC) 5 -2 3 

  

Another important factor is the iodine number. Iodine number is the 

amount of I2 consumed per 100g of substrate to achieve complete saturation 

(Lapuerta et al., 2009) and is used in order to calculate the degree of 

unsaturation of fatty acids. High iodine number correlates with high tendency 

in oxidation of the biodiesel. In order for an oil to serve as raw material for 

biodiesel, according to the EU standard UNE-EN 14214 iodine number 

should be below 120g I2/100g biodiesel. In order to predict the iodine 
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number, the degree of unsaturation (DU) was calculated according to Ramos 

et al. (2009) by the follow equation: 

   (                       )   (                       ) 

As the same authors stated, there is a linear correlation between DU and 

iodine number which is presented in the Figure 42. Taking into account the 

degree of unsaturation (Table 15) all the 3 oils are below the standard and are 

suitable for the production of biodiesel (Figure 43). 

 

Figure 43: Correlation between DU with iodine number and CN. Values of oils 
from different sources were used to calculate this correlation. 
Source: Ramos et al., 2009. 

 

 Finally, CFPP (Cold Filter Plugging Point) is an important property of 

biodiesel, indicating the ability of the biodiesel to be used at low temperatures. 

CFPP is calculated as the highest temperature where a certain volume of 

biodiesel, under standardized cooling conditions, fails to pass within a specific 

time frame through a standardized filtration device (Baptista et al., 2008). 
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Different countries have different standards depending on the environmental 

conditions. Moreover, CFPP values differ between winter and summer. In 

EU, during winter it can vary between -26oC (e.g. Estonia) to -5oC (e.g. 

Greece,) and during summer between -5oC (e.g. Estonia) to +5oC (e.g. 

Austria) (www.biofuelsystems.com). In order to calculate CFPP, the LCSF 

(Long Chain Saturated Factor) was calculated according to Ramos et al. 

(2009) by the following equation: 

            (    )         (    )        (    )         (    )       (    ) 

where wt.% is the amount of the specified methyl ester (in percentage). 

Finally, the CFPP values were calculated by the following equation (Ramos et 

al., 2009): 

                        

The predicted values for the oils obtained during this work varied between 

-2oC and +5oC (Table 15). On the other hand CFPP can be improved with 

the addition of some commercial additives that disrupt the macrocrystalline 

formation or even with the addition of fatty acid ester derivatives (Torres et 

al., 2011). For example the commercial product Wintron Synergy® (Biofuel 

Systems Group LTD, Lancashire, England) is claimed to reduce the CFPP of 

rapeseed methyl esters, even at low concentration equal to 2% v/v, from -6oC 

to -24oC (http://www.biofuelsystems.com/other/wintron_synergy.pdf). 

From all the above, it can be concluded that all the derived yeast oils could 

serve as raw materials for the production of biodiesel. 
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3.7 Evaluation of methane production from dried sweet 

sorghum stalks 

It was previously demonstrated that sweet sorghum stalks are a suitable 

substrate for the production of both ethanol and microbial lipids that could be 

used for the production of biodiesel. During the last part of this work, the 

possibility of producing a gaseous fuel, i.e. methane, from dried sweet 

sorghum stalks through anaerobic digestion was evaluated as well. 

Thermophilic sludge was chosen for the digestion due to the advantages that it 

presents comparing to the mesophilic one (as was discussed in section 1.4). 

3.7.1 Evaluation of different treatments on methane potentials 

Both the soluble and insoluble carbohydrates present in sweet sorghum 

stalks can be used during anaerobic digestion for the production of methane. 

Despite the fact that the methane producing consortia can produce enzymes 

to hydrolyze insoluble carbohydrates (such as cellulose), in most cases the 

obtained methane yields are lower when the lignocellulosic materials are 

utilized without any kind of treatment (Jeihanipour et al., 2013; Vivekanand 

et al., 2013; Zheng et al., 2014). Application of a pretreatment (such as 

hydrothermal, dilute acid and steam explosion) could increase the digestibility 

of insoluble carbohydrates. On the other hand pretreatment of sugar crops like 

sweet sorghum, which contain high amounts of soluble sugars, can result in 

degradation of the sugar and in turn formation of inhibitors (such as furfural 

and HMF). For this reason the application of a physicochemical pretreatment 

at harsh conditions (for example high temperature or presence of acids) is not 

feasible. On the other hand, addition of hydrolytic enzymes could facilitate 

the hydrolysis of both cellulose and hemicellulose and in turn increase the 

methane yield. 
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During this work the enzymatic treatment was evaluated by employing a 

mixture of Celluclast 1.5L and Novozyme 188 at a ratio of 5:1 volumes, at the 

concentration that was previously found optimum for ethanol production. In 

order to evaluate the effect of enzymatic treatment, two different process 

configurations were evaluated, namely the ‘one-step’ and the ‘two-steps’ 

processes which resemble the SSF and SHF processes during bio-ethanol 

production from lignocelluloses.  

 

Figure 44: Effect of enzymatic treatment on methane yields. 
Enzymatic treatment was performed either in one step or in 
two steps.  

 

When no treatment was applied to sweet sorghum stalks methane yield 

reached 238mL/g VS. In contrast, addition of enzymes improved the overall 

methane production yields (Figure 44).It is worth noticing that when a two-

step process configuration was applied the increase of methane yield was only 

1.7%, whereas during the one-step process the increase was 15.1% reaching a 

methane production of 274mL/g VS. This is most likely due to the higher 
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initial sugar concentration in the start-up of anaerobic digestion stage during 

the two-step process, which could result in the production of higher amounts 

of  volatile fatty acids (VFAs). The presence of VFAs could result in lowering 

the pH below optimal which has a negative impact in methane production 

(Zhang et al., 2013; Chen et al., 2008). 

 

Figure 45: Effect of thermal treatment on methane yield with or 
without the combination of enzymatic treatment. 

 

In the next stage the possibility of applying a hydrothermal pretreatment 

was evaluated. As previously mentioned high temperatures could result in 

degradation of sugars and formation of inhibitory compounds. For this reason 

a mild thermal pretreatment (1h at 105oC) was applied, without the addition 

of any acid or basic catalyst which could lead to severe degradation of soluble 

sugars. It was previously reported that a thermal pretreatment under mild 

conditions could enhance methane yield from sweet sorghum stalks 
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(Antonopoulou and Lyberatos, 2013). However the methane yield obtained 

during this work was 5.46% less compared to the untreated one, resulting in a 

methane production of 225mL/gVS. This could be attributed to a minor 

degradation of soluble sugars and formation of inhibitors. The addition of 

enzymes improved the methane production but the overall yield was less 

compared to the yield obtained with the untreated sweet sorghum (Figure 

45). Finally, the same negative effect of the two-step process was also observed 

during utilization of thermally pretreated sweet sorghum stalks. 

3.7.2 Evaluation of the combined effect of enzyme loading and 

I/S ratio on methane production 

From all the above, it can be concluded that enzymatic treatment at ‘one-

step’ process configuration of non-thermally treated sweet sorghum is 

necessary to achieve high yield of methane production. The I/S (Inoculum to 

Solid) ratio is considered to be a very important parameter during anaerobic 

digestion (Liu et al., 2009; Neves et al., 2004). Low ratio could result in 

inhibition of anaerobic digestion due to the accumulation of VFAs (Kafle et 

al., 2014), which is a result of the imbalance between the acidogenic and 

methanogenic stage (Adu-Gyamfi et al., 2012). On the other hand, low ratios 

means that the solids content is higher which in turn results in higher total 

methane production per volume of sludge, which is very important for the 

economic viability of the process. Therefore it is of great importance to 

determine the lowest I/S ratio at which the methane yield is not decreasing 

and at the same time the total production of methane is high. 

In order to evaluate the limits of solids that the sludge is able to digest at 

high yield, microcrystalline cellulose was used as substrate at different I/S 

ratios (2, 0.67 and 0.33). Figure 46 represents the results of methane yield and 
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total methane production per L of sludge. With decreasing I/S ratio down to 

0.67, the methane is increasing reaching a value of 341mL/gVS. Further 

decrease of the ratio results in slight decrease of the methane yield, which still 

remains higher than with an I/S ratio 2. It can be concluded that the sludge is 

capable of digesting materials at low I/S ratios resulting in higher overall total 

methane production, which during these experiments increased from 2.1L 

CH2/L to 10.2L CH2/L when I/S ratio is decreased from 2 to 0.33. 

 

 

Figure 46: Effect of I/S ratio in methane yield and total methane 
production when avicel cellulose was used as substrate. Bars represents 
the yield, whereas dots the total methane. 

 

 

Subsequently the combined effect of enzyme load and I/S ratio was 

evaluated by response surface methodology according to Circumscribed 

Central Composite (CCC) design. The 11 experimental combinations from 
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the experimental design are represented in Table 16 and were performed in 

duplicates. 

 

 

Table 16: Codded and actual values of the experimental design. 

 

Treatment Coding values (X1= 
Enzyme load, X2= I/S 

ratio) 

Actual values (X1= Enzyme 
load, X2= I/S ratio) 

 X1 X2 X1 X2 

1 -1 -1 3 0.7 

2 1 -1 13 0.7 

3 -1 1 3 3.3 

4 1 1 13 3.3 

5 -1.414 0 0.93 2 

6 1.414 0 15.07 2 

7 0 -1.414 8 0.16 

8 0 1.414 8 3.83 

9 0 0 8 2 

10 0 0 8 2 

11 0 0 8 2 
 

 

The results of the duplicate experiments are presented in Table 17. During 

the initial fitting of the quadratic model to the obtained results it was found 

that the R2 was 0.495, whereas the Q2 was -0.067, values that indicate that the 

model was not adequate enough to describe the experimental values and 

predict values of new experimental combinations. For this reason the values of 

the experiments at the combination 8FPU/g sweet sorghum and 0.16g/g I/S 
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ratio were excluded, as the methane production was inhibited (Table 17). The 

obtained model is described by the equation: 

xxxxxxMet
21

2

2

2

121
594616.058786.1014611.09907.16716472.0708.278 

 

The R2 was improved to 0.886 and the Q2 to 0.762 indicating that the model 

is capable of fitting the experimental data and efficiently predicting new data. 

Two additional factors that describe the efficiency of a model are the model 

validity and the reproducibility. For the model obtained during this work 

both of them were high, i.e. 0.735 and 0.849 respectively. Finally, two 

diagnostics tools were employed to verify the adequacy of the model to fit 

experimental data, namely the normal probability plot of residuals and the 

relationship between predicted and experimental data (Figure 47). Normal 

probability plot of residuals is made by plotting the observed residuals are 

plotted against the expected values (Prakash Maran et al., 2013) and is used to 

evaluate the normality of the residuals as well as to detect outliers. Whereas 

plot of experimental obtained data versus predicted ones indicates the 

efficiency of the model to describe the obtained experimental results. The 

model obtained during this work is sufficiently describing the experimental 

result, as the values of the data are fairly close to the linear line. This can also 

be observed in Table 17 where the experimental and predicted values for the 

duplicate experiments are given. 
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Table 17: Experimental obtained and predicted methane yields. 

 

Treatment Met (Methane yield, 

 mL CH4/gVS) 
experimental 

 Met (Methane yield, 

 mL CH4/gVS) 
predicted 

 A B  

1 267.15 273.02 269.57 

2 277.92 290.82 283.23 

3 210.68 225.40 213.51 

4 256.48 239.09 242.64 

5 229.42 246.11 240.16 

6 274.20 260.08 270.41 

7 47.11 49.86 - 

8 201.86 216.86 215.03 

9 242.05 256.17 254.56 

10 257.15 249.21 254.56 

11 259.60 263.16 254.56 
 

 

 

 

Figure 47: Diagnostic tools for model evaluation. (A) Residual normal probability 
and (B) Plot of observed values against predicted. 
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The resulting response surface and contour plot of the model is shown in 

Figure 48.  It can be observed that low I/S ratio in combination with higher 

enzyme loadings lead to increased methane yields, where the yields are more 

affected by the I/S ratio than by the enzyme load. As previously discussed it is 

important to find the lowest I/S ratio at which the methane yield remains 

high, in order to increase the total methane production. During this work the 

highest methane yield (284.37mL CH4/gVS) was achieved at a low I/S ratio 

equal to 0.7 with the addition of 13FPU/g resulting in a total production of 

4.7L CH4/L. 

 

Figure 48: Response surface (A) and contour (B) plots of the methane yield at 
different combinations of enzyme load and I/S ratio. 
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4. CONCLUSIONS 

The main purpose of this thesis was the evaluation of the potential uses of 

sweet sorghum stalks for the production of high added value products. 

Initially, an approach where soluble and insoluble carbohydrate fractions were 

separate utilized was evaluated. The potential of using high dry matter sweet 

sorghum bagasse for the efficient production of ethanol was demonstrated. 

Prior to fermentation, the optimization of the hydrothermal pretreatment of 

sweet sorghum bagasse resulted to a material with high cellulose content 

(66.84% w/w). During hydrolysis trial 30.42% of the initial cellulose was 

converted to glucose. The high cellulose composition of the material and the 

high yield in hydrolysis is very beneficial for the subsequent ethanol 

fermentation processes. Two different approaches were evaluated for ethanol 

fermentation (SSF and SHF) where during SHF configuration ethanol 

production was almost double compared to the SSF. Concerning the duration 

of the hydrolysis, 12h was proven to be adequate for efficient cellulose 

conversation, as the extension of the hydrolysis to 24h did not increased the 

glucose and ethanol concentrations. Finally, addition of extra enzyme load 

favors cellulose hydrolysis and ethanol production. 

In a next step, a different approach of ethanol production was evaluated. 

The ability of using high dry material content of dried stalks for the efficient 

ethanol production was demonstrated. Incorporation of a distinct enzymatic 

hydrolysis step is necessary in order to increase both ethanol concentration and 

productivity. This step resulted in the rapid decrease of slurry’s viscosity which 

in turn permitted the application of submerged fermentation. The combined 

effect of enzyme load and the duration of saccharification of 35% w/w solids 

were optimized, resulted in high ethanol production (62.53 g/L) with high 
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ethanol productivity (2.98 g/L·h). Compared with the approach where only 

the lignocellulosic fraction is used for ethanol production; utilization of whole 

stalks is proven to be more efficient, as more ethanol was produced with high 

volumetric productivity. For this reason, the possibility of using dried sweet 

sorghum stalks for the production of other forms of biofuels was evaluated. 

The potential of producing microbial lipids from dried sweet sorghum 

stalks was evaluated. Three different yeasts, namely L. starkeyi CBS 1807, T. 

fermentans CBS 439.83 and R. toruloides CCT 0783, were evaluated for their 

ability to grow on saccharified stalks and accumulate lipids. Due to the 

presence of nitrogen (in form of proteins) in the stalks, the C:N ratio is not 

high enough for efficient lipid production. On the other hand, due to the 

form of the nitrogen source (proteins) not all of it is available for the yeast. 

Nevertheless, supplementation of the stalks with low amounts of external 

nitrogen source had a negative effect on lipid production from all the yeasts, 

indicating that the amount of proteins in the stalks is sufficient to support yeast 

growth. This fact also underpins the importance of rising the C:N ratio by 

increasing the sugar concentration. Incorporation of a distinct enzymatic 

saccharification step resulted in increased lipid production at all initial solids 

contents with all the yeasts. Removal of solids also had a positive effect in the 

lipid production in all the yeasts, except from T. fermentans. The highest 

obtained lipids were 13.77g/L when R. toruloides was cultivated in sweet 

sorghum juice that came from 20% w/w solids. From the fatty acid profile 

analysis of the obtained lipids, it was concluded that all of them present the 

appropriate characteristics to be suitable for the production of biodiesel. As a 

general conclusion, the ability of dried sweet sorghum stalks to be used as raw 

material for the cultivation of several yeast species was demonstrated. 

Moreover, stalks could serve both as carbon and nitrogen source, decreasing 

this way the cost of biodiesel production. 
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Apart from the liquid biofuels, during the last part of this work the 

potential of producing a gaseous biofuel (methane) was also demonstrated. 

Enzymatic treatment resulted in increased methane yields, whereas when a 

mild thermal treatment was incorporated it had a negative effect on the yields. 

One-step enzymatic treatment configuration resulted in higher methane 

production comparing to the two-step. Finally, the combined effect of 

enzyme load and I/S ratio was evaluated resulting in higher yields and total 

methane production. 

As a general conclusion of this thesis, the ability of using sweet sorghum as a 

flexible substrate for the production of biofuels was demonstrated. Both liquid 

(ethanol and biodiesel) and gaseous (methane) biofuels were produced. A 

flexible process that can be switched between different kinds of biofuels is 

very favourable, as the production can be focused in the specific needs of the 

market at that time.  
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