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Evyapiotieg

H mpaypatonoinon g mapoloag SUTAOHATIKNG epyaoiag wg éxel dev Ba
gixe Katootel duvartr Xwpi¢ TN OLUBOAN TV TAPOKAT® TPOCAOTMV.
Opeide va guxaploo® tov emPAeénovia pov Anuntpn Pwtdkn yx v
OLOIOTIKN KaBOSTyNo™ oL TPOTEPEPE KATA TNV oLYYPAQIKN Stadikaoia,
aAAG KO Y1OTL €lval aUTOG IOV HE YVOPLOE HE TOV KOOHO TNG OempnTiKNG
[TAnpogopikng. Evxapiotm emiong tovg kabnyntég Ltabn Zayxo kol Apn
[MTayouptdn Y TIg TOAVTIHEG YVAOOELG TOL Kol GLHBOVAEG TIOL HOL €XOLV
TIPOCPEPEL OAX ALTA T XPOVIK, KAB®OG Kol OAa ta pEAN tov Epyaotnpiov

Noyikng koau Emotung YmoAoylotwv. T€Aog, 1 mpayHaTonoinon autrg
NG SIMAWHATIKNG oNHad0TOS0TEL TNV 0AOKANPWOT] T®V GTIOLOWV OV KOl
mv €£080 pHOUL amO TOV QOITNTIKO KOOHO. OEA® VO ELXOPLOTHO® TNV
OIKOYEVELX HOL YlX TNV CLUTAPACTAOT] TNG KKBOAN TNV SapKeElx TwV

OTILOLVO®V HOU, 0AAG KOl TOLG PIAOUG POV Y1 GAX OUTA T LTTEPOYX XPOVIK.






ITepiAnym

LNV Mopodoa SIMAWHATIKT| EPYACia AOXOAOVUQOTE HE TO BN TNG SIXHOPP®OTG
AMOYING 0T KOWVWVIKA SiKTua. ENHEPA TA KOWVWVIKG SIKTua Taidouv KaBoploTiko
POAO 0TV oNpEPLVI] KOVeVia KXBwG emnped(OLV 0OAOEVH KO TIEPLOCOTEPO TIG
KOWVWVIKEG KO OIKOVOHIKEG SpaoTnplotntes. Kabmg ta péAn evog Kovmvikon
SIKTOOL GAAG{OLY TIC ATIOYELG TOUG HEC® TNG OAANAETIOpAOTG HETAED TOLG, Eivat
TOAD OTHAVTIKO VO YVOPL{OLHE av Ta PEAT] ToL SIKTVOL Ba LIoBeT|ooLY TEAIKA pia
OULYKEKPIHEVN amoyn KaBng Kat o amoym Ba eivot autn. e autn TNV
SUTAUOTIKT TIOIKIAQ HOVTEAX SLOpOPQ®OTG GIOYNG ExoLV peAeTnBel dnwg:

10 povtédo DeGroot, Kleiberg-Bindel kaBwg kot to Decentralized Opinion model.
TéAog apovolalovTtal HEPIKA PAOIKG OMOTEAECPATA Y10 HOVTEAX U1 OTaBEPDV
ypaonuatwv onwg: 1o K-NN kot to Hegelsman-Krause model.

A€€erg KAeidua: AhyopiBpkn Oewpia Monyviov, Kowvovikd Aiktoa,
Avvapikn Alapopewon Amoyng






Abstract

In this thesis we deal with opinion dynamics in social networks. Social Networks
play a major role in today’s life since they affect most of the economic and social
activities. Since members of a society change their opinions while intefering with other
people, it is very important knowing whether they will finally adopt a specific opinion
and which opinion it will be. In this thesis various models for opinion dynamics such as
DeGroot, Kleiberg-Bindel model and Decentralized opinion dynamics are examined.
Finally, some basic results are presented for non-steady graph models such as the

K-NN model and the Hegelsman-Krause model.

Keywords: Algorithmic game theory, Social Networks, Opinion dynamics
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Introduction

The unterstanding of human behavior was always a major study field in various sci-
ences. Psychologists, Sociologists and Political Scientists were always interested in
how humans form their opinions and consequently their behaviour. Although biology
has taught us that human characteristics such as height or colour are imprinted on us
by our genes, opinions or beliefs have nothing to do with genes. So a major question
arises: Where do the opinions come from?

Today we are quite confident that the way that we form our beliefs depends on the
experiences that we get from our birth to our death. Apparently, different individu-
als have very different experiences, something that explains why there exist such vast
differences in human’s behavior around the world. The causes that lead a certain
individual to adopt a certain opinion on a specific subject are various and very com-
plicated. For example economic welfare, education ,religion and cultural backround
play a major role in someone’s beliefs. All these factors are very heteregenous, but
they all something in common: They are all trasmitted by the interaction of people
with other people. Thus, society plays an very important role in the opinion forma-
tion. Notice that it is very likely that someone supports the football team that his
friends support rather than another one. Psycology has reavealed the huge impact
that a social network has to its members. This impact has at the same time benefi-
ciary and negative results for the welfare of the society. On the one hand, if a member
of the society has no idea if it will rain tomorrow, it is very likely that he will ask one
of his friends. As a result, society permits the diffusion of information and knowledge

that helps people form opinions and beliefs for various subjects. On the other hand,



this impact can affect people’s rationality. Racism is an example of this case: There
are no scientific evidence that Afroamerican are inferior, but many white men adopt
this belief influenced by their social enviroment.

The evolution of computer science and modern fields of mathematics such us statistics
or game theory provide us tools to model and study how people form their opinions
in a modern and productive way. The invasion of this quite different field to sociology
started with Condorcet’s jury theorem in his 1785 work Essay on the Application of
Analysis to the Probability of Majority Decisions. Latter in 1907 the British scientist
Francis Galton asked around 800 villagers in Plymouth to guess the weight of an
ox (none of them was an expert), suprisingly the mean value of the values that the
villagers had reported was very close to the actual weight of the ox (the actual weight
was 1198 pounds and the mean value was 1197). As a result, Galton claimed that
the collective intelligence of a group of people is much more than the knowledge that
each of them has, something that is known today as wisdom of crowds.

These previous works inspired many scientists in the last century to study social net-
works in a more consistent and formal way. In 1965 American statistician Morris
H. DeGroot proposed a model according to which the opinions in a social network
are formed. This model is known as DeGroot model and it will be studied latter
in an exhaustive way, but the main idea is that each individual trusts some other
individuals who affect his opinion. DeGoot has represented the social network as a
graph G(V, E) at which the nodes stand for the members of the social network and
the edges stand for the trust between them. After DeGroot model many other models
have emerged trying to capture the way that the members of a social network form

their opinions. Although these models present differences, they follow a quite com-

vi



mon framework: There exists a graph G(V, F) representing the social network and
there are cost functions that are defined over the underlying graph and the expressed
opinions of the nodes. The cost functions stands for the cost that disagreement causes
to each individual. As a result, opinion formation in a social network can be viewed
as a game and many of the knowledge on the game theory is very useful in this area.
As we have previously said, the personal cost for disagreement for a specific model, is
explicitly defined in it and thus there exists a implicit updating rule for every member
of the society. The latter is very reasonable since the opinions in a social network
are not stable but they change over time. For every model that we will examine,
we will be mainly interested in computing equilibrium points (Nash Equilibrium in
other words) which are stable over the updating rules. Apart from that, we inves-
tigate mechanisms that lead the agents adopt a specific opinion. Something that is
really important and this is why this field is frequently referred as Opinion Dynam-
ics. Finally notions from game theory such as Price of Anarchy(PoA) or Price of
Stability(PoS) are studied for this class of games. Other very interesting but more
complicating questions are the social influence of certains agents and maximizing or

minimizing this influence.
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Chapter 1

Kleiberg-Bindel Model

1.1 Introduction

In this section we will see a quite simple model proposed by Bindel ,Kleinberg and
Oren [4]. In this model we have a weighted undirected graph G(V, E) representing a
social network. Each node i € V represents who an agent has an opinion z; € [0, 1]
and an internal opinion s; € [0,1] which remains constant over time. The weight
w;; = wj; > 0 of the edge (i, j) represents the influnce between the nodes ¢ and j and
each node has also a weight w; > 0 which is the stuborness to his initial opinion. We
also assume that for every connected component of the graph G(V, E) there exists at
least one agent ¢ € V with w; > 0. For convenience, we consider that if the nodes ¢
and j are not linked with an edge then w;; = wj; = 0.

More pecisely, let & be our strategy profile. Then, each agent i has a personal cost:

Gi(®) =) wij(w — 2;)° + wilw; — s:)°

JjeV



As a result given a strategy profile Z, node i in order to minimize its pesonal cost

updates its personal opinion as follows:

D jev WijTij + Wis;
> jev Wi + w;

Tr; =

Apparently disagreement in a society is always something that provokes a cost. Now

we would like to quantify this cost and we define the social cost function.

SC(@) = ) ¢

1%
= D> O wiylwi — 1) + wilw; — si)?)
eV jev
= 2 wa(:cl — xj)2 -+ Zwl(l’l — 51')2
i<j i€V

Now, some very natural questions arise. Will the society reach at a consesus? If
not, will there be a state where nobody wants to deviate or the agents will always
change their opinions?

In the next section we will try to shed light on these questions.

1.2 Nash Equilibrium

In the previous section we have seen that all the agents change their opinions in their
effort to minimize their personal cost. A very natural question is Will this ever stop?.
In other words, is there a state in which all the players are satisfied and noone wants
to change his opinion? Apparently, we are asking whether there exists a pure Nash

Equilibrium in this game, a question that is not trivial at all.



Let the function ®(z) = Y7, wij(w; — 2;)* + 3 ;e wi(z; — s;)* and N(i) be all the

neighbours of the agent i. We can easily see that:

O(z,x) — O(x,xy) = Zwij(xi — ;) + sz(iﬂl — 5;)?

i<j icv
— Z wi(z! — x)* + Z w;(z;' — 5;)
i<j icv
= Z wi (v, — x5) + wi(z; — 8;)°
JEN()
+ Z wi () — 2;)? +wi(x — ;)
JEN()

= Oi(xhx—i) - C(xilax—i)

Observation 1. If ®(z*) is a minimum of ®(x). Then z* is a Nash Equilibrium.

Proof. Let ®(z*) be a minimum. Thus, ®(x;*, z_;*) — ®(z/,2_;*) = Ci(z;*, ;") —
CZ‘(ZL'I'/, CL’_Z'*) <0

— VieV: Cz(ﬂfl*,l’_l*) < C’i(x/,a:_i*)
Thus, x* is a Nash Equilibrium. O]

Generally ®(x) is called potential function and the games that have a potential
function are called potential games [17]. Now, we can answer some of the previous
questions. ®(x) is a continous function which is also bounded. Thus, there exists a
x* € [0, 1]™ which is a global minimum of the potential function and consequently is a
Nash Equilibrium [1, 6]. We can also observe that ®(z) is a strictly convex function.
As a result, there are no local minimums and there exists a unique global minimum
which is also the unique Nash Equilibrium of the game. The next question is how

we can compute this unique equilibrium? From the above it easy to see that we just



need to find the z* € [0, 1]" at which the potential function ®(z) is minimized. We

will use standard optimization theory to compute x*.

We define the matrices A € R™® B € R™!, C € R as follows:

ij =

— 9 . Qs — .62
Bi=w;-s;and C =) ., w;-s;

Thus,

O(r)=2"-A-2-2-B-2+C
Observation 2. Let 2* be The Nash Equilibrium then v* = A= - B

Proof. 1f x* is the Nash Equilibrium then z* minimizes ®(z). As a result, V®(z*) =

0—=2-A-2—-2-B=0=2*=A"1-B ]

1.3 Local Smoothness and Price of Anarchy

In the previous section we have seen that our game has a unique Nash Equilib-
rium. Let * € [0, 1] be the N.E., then z* minimizes the potential function ®(z) =
> ic; Wiz — x5)? + 3, wi(z; — 5;)°. In this section we will investigate how bad
is the social cost of the Nash Equilibrium. We remind that the social cost func-
tion SC(x) = 237, wij(v; — ;)% + 37, wi(w; — 5:)* # (). As a result, a Nash

Equilibrium is never the optimal solution. Now will introduce the notion of Price



of Anarchy(PoA) which is a quantifier of how bad a N.E. can be in respect to the

optimal solution [14].

Definition 1. Let a game G with social cost function SC(x) and I an instance of

the game. Let also N(I) be the set of all Nash Equilibrium of instance I then:

_ SC()
Pod = VINeeN (D) SC(y)

where SC(y) is the minimum of the cost function.

The Price of Anarchy measures how eficiency of the system degrades due to selfish
behavior of its agents. From the definition the Price of Anarchy follows that for every
N.E. z* : % < PoA, where y* is the optimal solution.

In this section we will prove that PoA = % for this game, which is something good

because the social cost of the optimal solution is very close to the optimal [4, 3].

Before proving that PoA = % we will give an easy upper bound to the PoA.
Observation 3. The PoA < 2

Proof. Let z* be a N.E. and y* is the optimal solution. It is easy to see verify that
Ve € [0,1] : &(x) < SC(x) < 2-P(x) We also know that z* is the minimizer of ®(x)

and y is the minimizer of SC(z).

SC(z*) _ 2-®(z7) D(y)
SC(y*) D(y*) o(y*)
PoA <2



Local Smoothness

We have already found an upper bound to the PoA, but this is not enough. We would
like whether to prove that this bound is tight or to find a lower upper bound. In order
to do this, we will use the local smoothess technique that we will explain latter [3].
Now, we will give some definitions that are necessary to continue. Until now, we have
seen the notion of Nash Equilibrium. Now, we will define two more general notions

of equilibrium, the mixed Nash Equilibrium and the correlated Equilibrium.

Definition 2. A mized N.E. is the equilibrium at which each agent has picked a

distribution o; over expressed strategies, so that we have:
E‘T*i""’*i [Cl(x“ x*l)] < EﬂLz‘NUﬂ' [Cl (ma x,z)]

where o_; denotes the joint distribution of others agents strategies.

Baro[SC(2)]
SC(Opt)

Respectively, mized PoA =
Definition 3. A correlated equilibrium o is a distribution such that for each player i

and each opinion x; in the support of o,
E:B,i~crfi|zi [CZ (:Eia I',Z)] < E:):,iwo',i[ci<x7 :Efz)]

where o_;|x; denotes the distribution o conditioned on x;.

Earo]SC(z)]
SC(Opt)

Respectively, correlated PoA =
From the defitions of Nash Equilibrium , mixed Nash Equilibrium and correlated
Equilibrium follows that a Nash Equilibrium is a mixed Nash Equilibrium and a

mixed Nash Equilibrium is a correlated Equilibrium. As a result, an upper bound at

the correlated PoA is an upper bound to the PoA.



We will use the local smoothness thechnique to give an upper bound to the cor-
related PoA [18].
Let a fixed strategy profile o, A > 0 and p < 1 such that:
d
> [Cilwi, z—) + (0; — 1) —Cilwi, 2-1)] <A+ 8C(0) + - SC(x) (1)

Theorem 1. Let o be a correlated Equilibrium. If equation (1) holds for any profile
x with respect to a fixed profile o. Then, %‘?g(z)] < ﬁ In particular, when o
denotes the optimal profile, the correlated PoA < s

Before things start getting too complicated we will focus on what we have seen
and that will be used to find an upper bound to the PoA. From the above theorem
we know that:
Let A > 0, < 1 such that:
Vo € [0,1] 1 32,[Cilwi, v—s) + (yi — 24) g5 Cilwi, v-)] <X~ SC(y) + - SC(x) (2)
where y is the the optimal profile. Then,

A

PoA < —/—
I—p

Now, we are starting to get some intuition on how we proceed. At first, we will find

a set A C R? such that: V(\,u) € A = equation (2) holds and then we will find

inf{;, (A u) € A}.

Of course our goal is to find an upper bound lower than 2 that we have already found.



Let Al,AQ Q R2
o Api={(\p):Va,y>20, flo)+ 52 f2) <A fly) +p- fx)}
o Ayi={(A\p):Vr,y =20, g(x)+(y—z)-g(x) <X gy) +p-g(z)}

where f(z) = g(x) = 2?

We will show that A; N A, is the A C R? that we are searching.

Observation 4. V(\, u) € Ay N Ay = equation (2) holds.

Proof. Let fij(x) = wy; - f(x) and g;(z) = w; - g(x), where f(z) = g(x) = 2? then:

Ci(wi, xi) = 3 iz; Jig (@i — x5) + gi(wi — 81) =
Z[Q‘(%J—i) + (yi — xz)diC (zi, 2_5) Z Z fij(xi — x;) + ZQZ(Il —8;)
i xi i ity
+Z yz - l’z Zfzj ]

i#j

+Z(yi — 2;)g;(x; — i)

7

= ;2 fig(wi — x5) + (v — i) - fi; (v — x5) + (y5 — 5) - fi;(25 — 24)]
+2lgi(wi — si) + (yi — i) - gi(wi — si)]

= ici2 fig(wi —x5) + (Wi — y5) - fij (@i — x5) — (xi — 25) - fi;(@i — 25)]
+ 2 ilgi(wi = si) + (yi — @) - gilwi — si)]

=i 2 [fij(wi — xj) + Wi vi) 1 (y — ) — S5 fL (2 — )]

+ 2 ilgi(wi — si) + (i — s1) — (@1 — 1)) - gilwi — )] (3)

Now let (\, p) € Ay N Ay =
f(a:i—xj)er-f’(xi—xj)</\~f(yi—yj)+u-f(xi—xj)=>

Wiy (=) g CEE ) < Ny f(gs—y) g (=) =



Fislwi—a)+ 0 (o — ) = 2 (2 — ) <N fig (i — )+ fig(wi—y) =
Sies 2 [figls — ) + W58 - fl (g — ) — 55 f (0 — )] <

AD i 2 iy —yg) 3052 fig(wi —xy) (4)

Respectively,

g(xi — 8i) + (Y — si) — (v — 83)) - g'(wi — 5:) KA g(yi — si) + - gz — s3) =
wig(xi—si) Fwi- ((Yi—si) — (T —5:)) 9" (w0 — 5) < Awi-g(yi—si) +pwi-g(xi—s;) =
gi(zi = si) + (Y — si) — (21— 1)) - gilwi — 1) S A gi(yi — 80) + 1 gilwi — s1) =

Zi[gi(ivi—sz‘)Jr((yz'—Si)—(%‘—Sz‘))'gé(%—si)] < /\'Zi gi(yi_si)+N'Zi gi(wi—s;) (5)

(3),(4),(5) =
Zi[ci(%,x—i) + (yz - xi)dimci(ﬁux—i)] <A ZK]- 2- fij(yi - ?Jj)
"‘M'ZK;’2'fij(33i_ﬂfj)+)\'Zi9i(yi—Si)-i-,u-zigi(l‘i—si) =A-SC(y)+p-SC(x)

As a result,

V(A p) € AiNAy = Zi[ci(xiyx—i)+(yi_xi) ! Ci(ws, )] < A-SC(y)+p-SC(z) O

dzi

Because of the previous observation PoA < inf{ﬁ, (A, p) € Ay N As}t. As we

have said before we will find A; N Ay and then we will find mf{ﬁ, (A, 1) € AiNAs}.
Observation 5. inf{ﬁ, (A ) e AjNA} <2

Proof. 1t is easy to verify that Va,y > 0:

x2+(y;w) 2x<y2+§
x2_|_(y;x) 2-x<y2+§
Then, (1, %) cANA = an{ﬁ, (/\,/J) eAN AQ} <2 ]



The last observation shows as that the local smoothness technique will produce
an upper bound for PoA lower than 2, that we have previously very easily found
Something that encourages us to continue.

Now, it’s time to find a closed from for the set A; N Ay. We will find closed forms for

Ay, Ay respectively and then we will find their intersection.

Finding A,

It is easy to see that A == {(A\,u): A >0,u<1}NA]

where Aj == {(A\p) © Va,y >0 flo) + 52 f(@) S A fy) +p- fl)} =
{p): Vo,y=0: z-y<X-g2+p- 2%},

We have described A} C R? in a very simple way and the next observation produces

a closed form for the set.

Observation 6. (\,u) € 4] <— {\ > ﬁ, A>0,u>0}

Proof. —

Vo,y >20: z-y< A2 +p-22 =
Vo,y >0: z-y <Ay +p-22 =
Vo,y>0: <X (4 +p=
Va>0: N-a’?—a+p>0=—

{A<0,A>0} =

{1-4- 2 pu<0A20={4- A p=2LA>20t= {A>1,,A>0,u>0}

P—

AZ 4 A>0,0>00 =

10



{1-4- X puz=20A>0,u>0} =
Va:A-a®>—a+pu>0=
Ve>0,y>0: z-y<\-y2+pu-a?

For z = 0: A-y% > 0 because A\ > 0 O]

Since the previous observation provides us a closed form for A/, we can easily find
that A; .= {(\,pu) € R?: X\ > ﬁ,)\ > 0,0 < p < 1}. We will procceed with finding

an closed form for the A, C R2.

Finding A

As before we can easily see that: Ay :={(A\, ) : A>0,u <1} N A,

where Ay = {(Ap) © Yo,y 2 0: gla)+(y—x)-g'(x) <A-gly) +p-g(@)} =
{Op): Ve,y>0: 2-2-y < A-y?+ (p+ 1)2*. We will follow the same path as

before.

Observation 7. (\, ) € A, <— {\ > A>0,pu>—1}

u+1’
Proof. —

Ve,y>0: 2-z2-y< A 9>+(u+1) 22 =
Ve,y>0: 2.2 -y<A-y*+(pu+1) 22 =
Vo,y>0: 2-2<X- (4 +(n+1) =

Va>0: Aa>—2-a+(pu+1)>0=
{A<0,A>0} =

{4—4- X (p+1)<0,A >0} =

A (p+1)>1,A>0 =

{A> thl,/\>0 p>—1}

11



—
Az g A>0u> -1} =
{4—4- X p>-1,2>0} =
Va:A-a*—2-a+(pu+1)>0=
Ve>0,y>0: 2-2-y< Ay +(n+1)- 22

For z = 0: A- 9% > 0 because A > 0

As a result, Ay := {(A,M)ER2:A>ﬁ,)\>0,—1<,u<1}.

Now, we can have a closed form for A; N As:
Ay ::{(A,M)ER2:A>ﬁ,)\>0,0<,u<1}

As ::{(A,u)ERQ:)\>ﬁ,)\>0,u>—1}

The intersection of the previous two sets is:
+ fo<p<
ANAy:={(0\p) e RZ:A>00<pu<1,A> a

1 el

Wl

We last closed form for A; N A, is a very useful tool in order to find the inf {ﬁ :

12



(A, ) € A; N A} The following theo

Arv={\p): Yo,y=>0: z-y< Ay +p-22 A>0,u<1}

1
={(\p)eER A2 4—>\>00<u<1}

rem uses this closed form to prove that mf{% (A p) € AyN A} =
Theorem 2. mf{ﬁ (A )€ AiN Ay} = %

Proof. Let the lines hy(u) = —k-pu+k, k> 1. Let (A, ) € hy, then A = —k-p+k —=

\V/()\,,M)Ehki 2=k,

1—p
We can easily see that (2,3) € A; N A, and that hg(%) =3
As a result, mf{ﬁ c(\p) e Ay Ay} < 8.

Now, we have only to prove that there is no other point (A*, u*) € A; N A, such that

A

T = k< 2. Let (A\*, %) such that ﬁ = k* < ¥ then (X, p*) € hj. We can

also observe that (k*,0) € Ay, (3,0) € hs and that hy-, ho intersect at (0,1). Since
k* < 2, then Vi € (0,1) : hye(p) < h%( 0|

4L it 0<p< %
It is trivial that: h%(u) = —% L+

|

< p
% if 3 Lepu<1
Thus, there is no such point in A; N A,.

Until now, we have proven that the PoA < % but we have no idea whether this upper

SC(z*) _ 9

bound is tight or not. We will give an instance of our game at which the SCw) — 8

where z*, y are the Nash Equilibrium and the optimal profile respectively. By this we

13



will prove that PoA = % [4, 3] and we will complete this section.

Let the graph with the nodes ny,no at which s; = 0,55 = 1,wis = wo = % and

w1:U}2:1.

e Nash Equilibruim: — % = % =0= {21 = 2,20 = IIT”} — 7 = (i %)
e Optimal profile: = ng’gEm) = dsdiix) =0= {2, =2, 2= xlTH} —
12
Y= (ga g)
Then,

SC(z*) =32 and SC(y*) = & = 5C@7) 2

Initial Opinions  Nash Equilibrium — Optimal Profile

Now, we can be sure that PoA = %, something that is really encouraging because

any Nash Equilibrium may be not an optimal solution but it is really close it.

1.4 Sequential Best Response Dynamics

Before we start this section, it will be useful to remind what we save seen in the
previous sections. We already know that our model always has a unique Nash Equi-
librium, which can be very easily computed by a matrix multiplication. It is very
positive that the Nash Equilibrium can be computed in polynomial time, but this

implies that there exist an external authority that computes the Equilibrium and

14



then if we want stability in our system this authority must force each of the agents
to adopt a specific opinion. Apparently, it not is always possible or desirable to force
the agents to adopt an opinion. As a result, it will be very important if there were a
mechanism according to which the agents play and finally the system would end up
to the Nash Equilibrium. At this section, we will present such a mechanism and we
will prove that the system always converges to a Nash Equilibrium. Now we will give

the definition of the mechanism according to which the agents play. .

Definition 4. Sequential Best Response Dynamics
Let a random permutation 7 of the n agents.Let x* be the opinion vector, such that xt
is the opinion of the i-th agent in w at time step t. Let s, be the vector of the initial

opinions of the agents according to the permutation . Then,

o ot ift # 1 modn

2’ = s, and xt =
= i modn

Pipy wig Ty wicsi ift
Z#j w;j+w;

Now let’s try to describe the above mechanism, there are rounds, each of which con-
sists of n time steps. At each time step, only one agent plays and the i-th player in
the permutation is the i-th that is permitted to play in the round. When the game
starts each agent adopts his internal opinion, something that is reasonable because
he has no information for the opinions of the others. We also assume that the player

that is permitted to play at each time step, plays his best response. Consequently,

2z Wi T (1) +wi-s;
Doy Wijtw;

agent ¢ at time ¢ adopts the opinion , which is the best response
according to the situation at time ¢ — 1.

Before proving that if the agents play according to this mechanism, they always

15



converge to a Nash Equilibrium, we will give some intuition on it. We have al-
ready seen in the first section that the unique Nash Equilibrium of our model is the
unique minimizer of the potential function ®(z) and vice versa. We also know that
O (z;, x—i) —O(2}, x—i) = Cy(x;, x—1i) — Cy(2}, x—1i) (7). According to the above mech-
anism at each time step, the player that is permitted to play, plays his best response.
Thus, his personal cost is reduced and according to the equation (7), at each time step
the potential function is reduced. Let ®' denotes the value of the potential function
at time step ¢t. Apparently, ®° = ®(s,). As a result, we know that the potential
function has a unique global minimum, is bounded from above and at each time step

® is reduced, things that make us be confident about the convergence.

Theorem 3. There is not a € R such that: limy_,oo ®* = a > P,in, where D, is

the global minimum of the potential function.

Proof. Let’s assume that there exist ¢ € R such that lim;,_.. ®* = a > ®,,.
Then, lim;_, z* # x*, where z* is the Nash Equilibrium. This is true because let
lim; o 2! = 2% = limy_ oo ®* = P,,;n, Which is opposite to our assumption. Now,
we will prove that ®'*" < @', where n is the number of the agents.

From equation (7) we know that ®'! < ¢! = " L ®'. Now, let 5 € N such
that ®*" = o which means that all the player had the chance to decrease their
personal cost and noone of them did, thus 2% is a Nash Equilibrium. This means,

that ® = ®,,;, which contradicts our assumption.
= Vte N: & < @' (8)
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Now, let €(t) = ®' —a. Then, Vi € N : €(t) > 0 because let g such that €(ty) < 0 =

O < a = limy_,o, ' < a, which is a contradiction.

Because of equation (8) : Vt € N : e(t+n) < e(t) and €(t) >0

= lim €(t) =0 (9)

t—o00

Now, it easy to see that ® — &' < €(¢) because let ty € N such that
Plo — plotl > ¢(t) = P! < g = lim;_,o, P! < a, which contradicts

our assumption.Thus,
Vte N: 0<® — o' L e(t) (10)

(9), (10) = lim (" — &"*') =0 (11)

t—o00

We now define the sequences Vi € {1,n} : i = C;(z™F+%) — C;(zm*+itL).

It is easy to verify that ai > 0. We will show that Vi € {1,n} : limj_,o af = 0.
Because of equation (11):

Yo > 0, dty such that:

VE >ty O — P <6

Let t; =tg+n— (to mod n) + i =n-k; +i>ty. Then,

VE >k n-k+izn-k+i>ty= o — okttt < § —

Ci(zm* ) — Cy(am i) < § = ol < § =

V& > 0,3k, such that Vk > k; : af < d. We also know that V& : af > 0. Thus,

Vie {1,n}: lim o' =0

k—o0
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lim o}, = lim (C"* —CM™)
k—ro00 k—o0
n-k+i
= g wi; 4+ w;)? lim (2 FHE 7 2 7=
D isj Wij + Wi

— k—o0
i#j

iy (wigal " pwgesy)
Zi#j Wij+w;
iy (Wijah+wisi)
E#j w;j+w;

— Vi € {1,n} : limy 0o 27T = limy_, o

—Vie{l,n}: limy,z! = lim

lim 2! = «*
t—o0

But, this is impossible because if lim,_,o, 2* = 2* then lim;_ . ®* = ®,.:,. O

Because of the previous theorem it is very easy to prove the convergence to the
Sequential Best Response Mechanism. As we have seen before ®(x) is a strictly
convex function which is bounded from above. We also know that at each time step
the potential function deceases. Thus, 3a € R such that lim; .., ®* = a, but the above
theorem claims that this cannot be possible if a > ®,,;,. Thus, lim;_,o @ = ®,,i,.
Because ®(z) is a continous function if limy o ®* = @,,;, = lim;_,o, = z*, where
x* is a Nash Equilibrium.

Now, we can be sure that if the agents play according to the mechanism that we
described it is certain that they will converge to a Nash Equilibrium. This also
provides us an alternate method to compute the Nash Equilibrium. We just let the
players play till the reach the equilibrium.(Of course we don’t know whether this will
happen after a polynomial number of steps). An easy observation is that in the proof

of the convergence we haven’t used that at the first time step 2° = s,. This means
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that at the first time step z° can be a random vector with values in [0, 1] without any

effect to the convergence.

1.5 Parallel Best Response Dynamics

In the previous section we have seen a mechanism at which one agent play at each
time step making always his best response. In this section, we will decribe a similar
but quite different mechanism, at which at each time step all the agents play their
best response [10]. We will call this mechanism Parallel Best Response Mechanism.
Obviously, we would like to know that if the agents play according to Parallel Best
Response Mechanism, they will converge to a Nash Equilibrium and we will prove
this latter in this section. Before we start analyzing this mechanism, we will give a

more formal definition.

Definition 5. Parallel Best Response Dynamics

Let a random permutation m of the n agents.Let x' be the opinion vector, such
that xt is the opinion of the i-th agent in 7 at time step t. Let s, be the vector of the

wnital opinions of the agents according to the permutation w. Then,

ift=0

t S

vri_
> Cwiiet T w8

iAW T v

D it Wij+w;

ift >0
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As we have said before this model may be similar to the Sequential Best Response,
but they have some major differences that make this case more difficult to prove
that according to this mechanism the system converges to a Nash Equilibrium. In
the previous section, we knew that at each time step the potential function ®(z)
decreased, by using this property we proved the convergence. Unfornunately, this
property is not valid in this case and we have to find another aproach. As we have
said many times before the problem of convergence to a Nash Equilibrium is equivalent
with the problem of minimizing the potential function ®(z). As we already know we
want to minimize ®(z),z € [0,1]", which is a constrained optimization problem, but
we already know that there is a unique global minimum z* € [0,1]" and no local
minimums, something that simplifies our problem because we can use unconstrained
optimization techniques like gradient method. Before we prove the convergence we
will make an introduction to the gradient descent methods [1].

Assume that we want to minimize the function f(x). Many gradient methods are
specified in the form: z**! = 2% — a* . D¥ . Vf(2*). , where D* is a positive definite
symmetric matrix. According to the a*, D* that we select we have different gradient
methods that differ at the convergence and at the convergence rate. There also many
conditions for various gradient methods that can garantee us the convergence of the

method. Some of the most popular methods are:

e Steepest Descent: D¥ =1 k=1,2,--- and I is the n x n identity matrix

e Newton’s Method: D* = (V2f(2%))™%), k = 1,2,--- and provided V?f(z¥) is

positive definite.
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e Diagonially Scaled Steepest Descent:

a0 0
|0 db 0
0 0 d*

where df = (d(i{;%z))_l and di > 0.

Observation 8. The Parallel Best Response Mechanism is the Diagonially Scaled

Steepest Descent with a* = 1 applied to the potential function ®(z).

Proof. Let’s take the the Diagonially Scaled Steepest Descent with a* = 1 applied to

the potential function ®(z). Then, 2" = 2* — D* . V(%) (12)

0 ifi£j
,where ij = .
Pd(z _ e - .
( (C;g);) L ifj =
de@t) _ o y . 9 Lkl Y
Az, (Zz‘;ﬁj wij +w;) - T : (Zi;ﬁj Wij Xy~ + W si) =
(d2<1>(mk)) 1 _ 1

t—1
Zi;ﬁj Wij Ty WS

- C ot
(12) =Vie{l,n}: ol = ST

Thus, the Parallel Best Response Mechanism is a Diagonially Scaled Steepest Descent

applied to the potential function ®(x). O

The above observation is very important because we have reduced the problem of
proving that our mechanism converges to proving that a gradient method converges.
Before proving that this gradient method converges to the global minimum we will

prove another theorem which we will use in our final proof.

Observation 9. Let the method ' = A - 2% | where A symmetric. limy_o 2% =0

if and only if —1 < AM(A) < 1, for all the eigenvalues A\(A) of matriz A.
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Proof. Tt is easy to see that limy . 2F = 0 <= limy_, ||2*|| = 0 So ,we will proof
that limy_,o ||2¥]] = 0 <= —1 < M(A4) < 1, where \(A) is the eigenvalues of matrix
A.

—

limy o0 ||2¥|| = 0 then V§ > 0 : Jky such that Vk > ko @ ||2¥]] < 6.

Then, V||2°|| € R : 3k such that Vk > ko: [|2¥]] < ||2°]] = ||A* - 20| < |20 =
[|AR- 202 < [|2°]]? = (2°)T - A%F .20 < (297 2% = Va0 : (20T (1 — A%F) .20 > 0.
Then matrix (I — A%*) is positive definite=> 1 — A\>*(4) > 0 [15, 19] = —1 <
A(A) < 1, for all the eigenvalues A\(A) of matrix A..

—

Let —1 < A(A) < 1,for all the eigenvalues A\(A) of matrix A. Then,

—1 < Apaz(A) < 1. limy o0 |[2%]? = limp oo ||AF - 20 = limg oo (20)T - A2F . 20 <
limy o0 || Amaz (A)2F]] - [|2°]|* = 0,(A? is positive definite matrix) =

limy,_,o ||2¥]] = 0. O

Theorem 4. Let f(x) = % 22T - Q-x—b-x, where Q is a positive definite matriz.
Let the method ¥+ = 2% —a - D - V f(2*), where D is a positive definite matriz and
a > 0. The method converges to x* = Q™' - b if and only if a € (0, %), where L 1is the

mazimum eigenvalue of the matriz D - Q - Dx.

Proof. Let a8t = 2% —a - D -V f(2*) (13).
(13) can be written as :

Pl —p*=(I—-a-D- Q)" —2*) =
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N

Pl DTt = D_%-(I—a-D-Q)(xk—:p*)

Let y* = 2% and y* = 2*. Then,
Y —y = (I —a-D3-Q-D3)- (b —y).
Now, it is easy to see that 2**1 = 2% —a - D - V f(2¥) converges to Q! - b if and only
if ot —y* = (I —a-Dz-Q-D2)- (y* — y*) converges to 0
Let ubt! = y*+! — y* = ub = y* —y* and A=1—a Dz -Q - D2. Then,
according to the previous observation the method converges if and only if VA(A)
eigenvalue of matrix A: —1 < A(A) < 1.
We will show that VA(A) : =1 < M(A) <1 <= —1<1—a-L <1, where L is the
maximum eigenvalue of the matrix D3 - Q- Dz,
—
VAA): —1<MA)<l=-1<1l—-a-L<1l
—
—1<l—a-L<1=VAD2-Q-Dz):—-1<1—XD2-Q-Dz). But, the matrix
D3 Q- D3 is positive definite. As a result, ‘v’/\(D% Q- D%) : /\(D% Q- D%) >0 =
V)\(D% Q- D%) 1< 11— /\(D% Q- D%) < 1. Consequently, the method converges

ifand only if -1 <1—a-L<1<=ac(0,2). O
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Now, we have the necessary tools to prove that the Parallel Best Response Mechanism
converges to a Nash Equilibrium. Let the matrices Q,xn, bnx1. As we have seen in

the first section ®(z) = 1 -2’ - Q- 2" — bz + ¢, where:

Qij =

— g — g2
bi=2-w;-s;and c =) ., w; - s7.

Minimizing ®(x) is equivalent as minimizing % - 2* - Q - 27 — b- 2. So, without loss of

generality we can set ®(z) = %-xT-Q-xT—b-x. Now, we can easily verify that the Par-

allel Best Response Mechanism is equivalent to the method ¥+ = 2* —a- D - V®(2*)

d 0 - 0
0 dy - 0 .

ifa=land D=1 ‘ ,di:(%)ilzm)'
0 O d,

Because of the previous theorem we just need to show that: 0 < )\max(D% -Q-D%) <2

Now, we will give a more clear form to the matrix D5 - Q - D>

0 ifi=j

N

Dz-Q-D2 =1 —W where: W; =

wiy if i o ]
\/ik;éi wikeri'\/iz;sj wjp+w;

— Anao(D2 - Q- D2) =1 — Apin(W)
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It is easy to see that the matrix D3 - Q@ - D3 is positive definite. Thus, its eigenval-
ues are positive. Then, in order to complete our proof, we just need to show that

Let ®'(z) = — ZWij (s +x)? — Zwi -7

i<j
—Qi fi=

Qi; ifi#j

1
— §'xT-Q’~x,Where Qi =

(1.1)

We have already assumed that for any connected component of our social network,
there exists w; > 0. (This is the minimum condition in order to differ from De Groot
model). Because of this assumption Vo € R" : &' (2) < 0 <= 27 - Q' -2 < 0 = Q' is
a negative definite matrix . It is also easy to verify that since D2 isa positive definite
matrix and @)’ is a negative definite matrix. Then, D3 - Q - D2 isa negative definite
matrix. Notice that Dz - Q'- D2 = —I — W and consequently YA(W) : 1 — A(W) <
0= Anin(W) > —1 (14).

(14) = —Anin(W) <1 =1 = Apin(W) < 2= 0 < Apaa(D? - Q - D2) < 2
Because D7 - Q - D2 is a positive definite matrix.
So we have proven that if all agents play at each round simultaneously it is certain

that they will end up to the unique Nash Equilibrium of the system.
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Chapter 2

De Groot model

2.1 Introduction

DeGroot model is one of the first models trying to descibe how the members of a
social network form an opinion according to a specific matter, we consider that the
opinion is a real number in [0, 1] [8, 13]. This opinion may denote the probability
voting for a specific party or whether it will rain a lot this year. The social network
is represented by a weighted directed graph G(V, E) at which each node represents a
node in the social network and the weight w;; of each edge in the graph represents
the trust that node ¢ has to node j(if the egde (ij) ¢ E we can consider w;; = 0).
There can also exist self loops w;; in the graph that represent the stubborness of each
node. Without loss of generality we consider that Vi € V : Z(z‘j)e p Wi = 1. At first
all the nodes have an initial opinion which is denoted by the vector z(0) and then at

each time step z(t + 1) = T - z(t) ,where T is the updating matrix of the model. The
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underlying graph G(V, E') and the updating matrix 7" have an 1-by-1 relation.

wi; if (i,j) € E
T, - j it (i)
0 if(i,j)¢ L

The question that arise is: Will the agents converge to a specific opinion?

2.2 Markov chains and random walks

In this section, we will see some basic theory of Markov chains and random walks
that we will help to continue our analysis to the De Groot model[16]. Let a weighted
directed graph G(V, E) such that Vi € V : Z(ij)eE w;j = 1. A random walk on G is
the following process starting, which occurs in the sequence of discrete steps: Starting
at a vertex vy, at t=1 we select with probalility w;;, one of the edges adjacent to vy

and we traverse it. In the next vertex, we repeat the previous process.

Definition 6. A finite discrete time Makov chain is a random walk on weighted

directed graph G(V, E) such that Vi € V : Z(ij)eE w;; = 1.
Now, let the random variables Xy, X, ... € V such that
Pr[X; = v;] = Pr[ the Markov chain be at vertex v; at time step t]

Then, Pr[X; = v;|X;1 = v] = wy = Pr[Xy = v;] = 35 cpwij - Pr[Xeq = v
Now, let the vector 7" € Ry such that m;(t) = Pr[X; = v;] and the matrix A, «,

such that A;; = w;;. It is easy to see that:

t)=a"(t-1)-A
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A is called the transition matriz and also notice that for a given graph G(V, F)

A =T where T is the matrix in the updating rule of De Groot model.

Definition 7. A stationary distribution 7 is a stochastic vector such that

As we have seen, 77 (t) = 77 (t — 1) - A. So, if such a 7* exists and there exists tq
such that 7(to) = 7*. Then, Vt >t : w(t) = 7*. As a result, if we start a Markov
chain with distribution over the vertices 7* or at some time step the distribution
become 7*. Then, this distribution will hold forever. Someone can also observe that
7 depends only at the matrix A and not at the initial distribution 7(0). Now, a very
important question arise. Under what conditions there exists a stationary distribution
at a given Markov chain? Before we continue, we will give some definition that are

necessary in order to continue.

Definition 8. A Markov chain is irreducible if and only if its underlying graph is

strongly connected.

Let the underlyig graph G of a given Markov chain and [, lo, ..., [}, are the lengths of

all directed cycles in graph G. Periodicity of the Markov chain is the ged(ly, Lo, ..., lx).
Definition 9. A Markov chain is aperiodic if and only if its periodicity is 1.
Now we will give the fundamental theorem of the Markov chains:

Theorem 5. Any finite, irreducible and aperiodic Markov chain with transition ma-

triz A:

e has a unique stationary distribution m*.
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*

o for any initial distribution 7(0): limy_ (77 (0) - AY) = 7*.

This above theorem tells us something really interesting. Let a Markov chain
which is finite, irreducible and aperiodic. If we let the chain procced for a long time,
then, we will have a distribution 7* over the vetrices that is independent of the initial

distribution 7(0).

2.3 Strongly connected case

In this section we will study a special case of De Groot at which the undelying graph
of the updating matrix T is strongly connected. A directed graph is strongly con-
nected if and only if V(u,v) € V there exists a directed path from u to v. Notice that
in this case there are no opinion leaders(i € V: T}; < 1). We present this case because
it is simple and it will help us to analyze the general case. As we will see consesus in
the society is possible and also notice that if there were two or more opinion leaders
(T;; = 1), consesus in the society wouldn’t be possible. As it is already said the major
questions that we are interested in are whether consesus in the society is possible and
whether there exists a time step at which all the agents adopt a specific opinion. We
will see that in this case the agents either adopt the same opinion or the don’t adopt
any opinion at all. Apparently, we would like to know the conditions under which the
agents end up to consesus, how fast do they converge to the conseus and of course a

way to compute this consesus.
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2.3.1 Convergence to consesus

From the previous section we already know that the updating matrix 7" can be viewed

as a trasition matrix of a Markov chain. From the fundamental theorem of Markov
chains, we know that if a Markov chain is irreducible and aperiodic. Then, for any
initial distribution 7o, 7l - lim;_,o 7% = 7*, where 7* is the stationary distribution.
Without abuse of notation we will say that an updating matrix 7" is strongly connected
and aperiodic if the underlyig graph is strongly connected and aperiodic. From now

on we will consider the updating matrix 7" as strongly connected without mentioning

it.

Observation 10. If the updating matriz T is aperiodic then Tt converges and lim;_,o, T* =

1" - (7*)T, where 1™ is the vector with 1.

Proof. Since T is strongly connected and aperiodic, the Markov chain with transition
martix 7' is irreducible and aperiodic. From Markov chains theory we know that

lim; oo g - T" = (7*)T, for every initial distribution my. Now, let the distribution u;

Ty
7
such that u;(i) = 1 and 0 otherwise. Let also T" =
Tt
Then, '
VieVilimg,oul - T'=n*=VieV :T! =1 = limy_ T =1"- 7 O

Now, we will give an example of this case. Let the social network with the updating
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matrix

0 3 3
100
01 0

the graph of this matrix is illustrated in the following figure.

1/2

1/2
1
2
03 1 21(0)
z(1)=11 0 0 z2(0 | #(2) =
010 25(0

20 21(0)
o114 75(0
100 23(0

. It is easy to see that this matrix is strongly connected and aperiodic and that

T =

2

5

Now, let z(00) = limy 0o T - 2(0) = 2
2

5

The above example shows us not only

2 2z 1
5 5 5
2 2z 1
5 5 5
2 2 1
5 5 5

c21(0) + 2 - 25(0) + £ - 25(0)

l’g(O)

1173(0)

a strongly connected and aperiodic matrix
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that converges, but also that a the 3-member social network that used this updating

matrix, finally adopted the same opinion.

Observation 11. Let a social network using DeGroot model with updating matriz T,
which is strongly connected and aperiodic. Then, Vi € V : x;(c0) = >, 7r - 24(0),

where (7*)T - T = (7*)T.

Proof. From the previous observation we know that: lim; ,,, 7" = 1" - (7*)T =

z(00) = limyoo T - 2(0) = 1" - (7)1 = Vi€ V 1 z5(00) = Y,y 77 - 24(0) O

Observations 10 and 11 are very important because they give the sufficient condi-
tions for convergence and consesus and at the same time it give us a closed form for
the opinion that the agents eventually adopt. But this not enough, we would like to
fully characterize the convergence in the case of a strongly connected updating matrix
T, which means that we want to find necessary and sufficient conditions. What we
will see later in this section is that, aperiodicity is also necessary condition in this
case. From now on we will focus in proving that if matrix 7" is not aperiodic then it
cannot be convergent.

Let a strongly connected updating matrix 7', with periodicity d > 2 that converges.
Thus, lim;_,o, 7% = T*. Apparently, Vz(0) € R" : limy o, T* - x(0) = T* - (0). What
we will do is that we will use the periodicity of T" to construct an instance z(0) such
that 7" - £(0) doesn’t converge. Before doing this we will give an observation that we

will help us with this construction.

Observation 12. Let a stongly connected matriz updating matriz T, which has peri-
odicity d > 2. Now let n* € V and Aq, Ay, ..., Aq_1 CV such that n € A; if and only

if length(path(n*,n)) =i mod d. Then, Ay, A1, ..., Ag_1 is a partition of V.
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Proof. Since the T is strongly connected then it is certain that Vn € V there exist a
path form n* to n. Thus, Yn € V : Ji € {0,d — 1} such that n € A;. Now, we just
have to show that there if n € A; then n ¢ A;, Vj # i.

By definition gcd(Ch, Cs, ..., Cy) = d = 2 where Cy, Cy, ..., C}, are the directed cycles
of the graph. Let a path p,, ., from n; to ny such that length(p,, —n,) = ¢ mod d.
Then, there exists a path pj__,, form ny to ni(7T" is stongly connected) such that
length(p;, _,,,) = (d—i) mod d. This holds because let the sequence of nodes P,,_,,,, =
(Pni—na» Phy—n,) (notice that P, _,, is not a cycle because it is possible that some
nodes are repeated). Then, if we shrink all the cycles contained into P, ,,, we will
get Py _,, ,which is obviously a cycle = length(F}, _,, ) = a’ - d. But, the lengths

of all the cycles that we removed from P,,_,,, are also multiples of d. As a result,
length(Pp, —n,) = a - d = length(p,,,_,,,) = (d — i) mod d.
Now let n € A;, A;,7 > j then there exists a path pj(,+—n) With length(pi(ns—n)) =

i mod d and consequently a path p with length(p,. ) = (d—i) mod d. There

n—n*)

exists also a path py+_y) with length(pa+—n)) = j mod d, as also a path p’z(

n—n*)

with length(p’Q( )= (d—j) mod d. Then P« = (pl(n*ﬂn),p’z( , which has

length a - d + (i — j). With the same argument as above, if we remove all the cycles

of P+, we will get a cycle a cycle P)._,,., with length(P)._,.) = (i — j) mod d.

Something that contradicts the periodicity d of the matrix 7. As a result, we have

proven that Ag, Ay, ..., Ag_1 is a partition of V. m

Now, we are ready to give the proof that the periodicity is a necessary condition

for convergence.

Observation 13. Let T be a strongly connected updating matriz. If T' has periodicity
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d > 2 then T doesn’t converge.

Proof. Let z(t) =T -x(t —1) = T"- 2(0). As we have already discussed we just need

to find a z(0) € R™ so as z(t) doesn’t converge. Let a n* € V and Ay, Ay, ..., Ag_1 a

partition of V', as was defined in the previous observation. Notice that n* € Ay and
- ifi e A

that Vi € V : T;; = 0 since T' has periodicity d > 2. Let x;(0) = Aol

0 otherwise
We can imagine that x;(¢) is a quantity of “money” that node i has at time step
t. Then at t + 1 node i tranfers all of its money to its neighbours proportionally to
T;;. Observe that since Tj; = 0 then noone of the nodes keeps money for himself and
that the total amount of money in the network remains always 1. Since each node
belongs to a unique A; and all nodes of A; give all their money to the nodes of A;,;.
We can see that the total amount of money is tranferred at time step ¢ = (i+1) mod d
from A; to A;11. All nodes in A; remain moneyless until ¢ = ¢ mod d at which A;
gives to A;. Now let limy_,o 2(t) = 2*. Then limy_,o 74,(t) = 2%, where x4, () is the

vector denoting the money each node in A; has at time step . As we have explained

#0 ift=imodd
T A; <t>
=0 otherwise
But in this case x 4,(t) can only converge to 0: Vi € {0,d—1} : limy oo 24,(t) = 0 =
lim;_,o () = 0 something that is impossible because V¢ : > .., x;(t) = 1. Thus,
our assumption that z(t) converges doesn’t hold. Since we can find such a z(0) ,such

that 7" - z(0) doesn’t converge, for every strongly connected updating matrix T with

periodicity d > 2. Then, if T" is not aperiodic then it doesn’t converge. O

Finally, we can express our final theorem that fully describes the case of the
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strongly connected matrix 7.

Theorem 6. A strongly connected updating T converges if and only if T is aperiodic.

Proof. The proof of this Theorem is a direct implementation of observation 11 and

observation 13. ]

The last Theorem also show us that the DeGroot model in this case converges if

and only if the updating matrix T is aperiodic.

2.3.2 Convergence rate to Consensus

We just have seen that if the updating matrix 7' is strongly and connected and
aperiodic, then the social network converges to a consesus. Apparently, we would
like to know how much time do the society members need in order to reach consesus?
This is the question that we will try to answer in next lines. From now one, we will
consider matrix 7" as strongly connected and aperiodic.

Since T is a stochastic matrix, strongly connected and aperiodic then from Perron-
Frobenius Theorem it follows that [19]: 1 = A > |As| = ... = |\,|, where \; are the

eigenvalues of the matrix 7'. According to eigendecomposition
T=U"'AU

, where A is the diagonal matrix with entries the eigenvalues of T" and U is the matrix
of corresponding row eigenvectors. It follows that:
T =mi+ Y N Uyt - Uy =
k=2
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i) =Y Tha;(0) + ) a;(0)- Y N - Uy - Uy =

jev jev E>2

i) — i) = 1D a;(0)- YN~ Uy - Ukl

jev k>2

< D a(0) -] DN URt - Uyl
jev >2

< D a(0)- ol 1D Uy - Uil
jev =2

< C ) ai(0) - Aol

JEV
< O\

Thus, the convergence rate is |A2|, noticy that the Ay may be complex number, but

we know that |Ag| < 1.

2.3.3 Social Influence

Let us consider the following scenario: We have to two different parties the democrats
and the republicans. FEach of the voters has to vote either the democrats or the
republicans. Let also z;(t) € [0,1] denotes the probalility agent ¢ votes for the
republicans if the elections took place at time step t. We also consider that the
voters updates their probabilities at each time step according to the DeGroot model,
with an updating matrix 7" that is strongly connected and aperiodic. From the
previous analysis we already know that if the voters have enough time to update
their probabilities before the elections then:

E[# votes for the republican] = n - Z z;(0) - 7}

i€V

where (7*)7-T = (7*). Apparently, republicans want to maximize n-y ., ;(0)-7;

and the democrats want to minimize it. Now, consider the following problem: The
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republicans have the chance to bride a voter so x;(0) = 1. The problem is which voter
is the best to bride?

Since Vi € V' : 2;(00) = >,y 7 - #;(0) the influence in the consesus of each node is
m;. Apparently, in order to maximize the n -y, , 2;(0) - 7} we just need the voter
that maximizes (1 — z;(0)) - 77. Also notice that (7*)T - T = (7*)7, thus (7*)T is the
left unit eigenvector, which can be computed at O(n®). More generally the vector
7" not only gives as a way to compute the consesus, but also its entries describe the
influence of each node at the final opinion. Trivially, the most influential node is the
one, whose entry in 7* is the maximum. Thus, we have found an easy way to measure

centrality in a social network.

2.4 The Stubborn case

In the previous section, we have examined a special case of the DeGroot model, a case
at which the undelying graph of the updating matrix 7" was strongly connected. We
have managed to show that aperiodicity of T"is necessary and suficient conditions for
convergence and that convergence and consesus are equivalent. Apart from that, it
was shown that the consesus opinion is a linear combination of the initial opinions of
the nodes, providing also a efficient way to compute the influence of each of them at
the final common opinion. Although all these are really positive, it is easy for someone
to understand that the assumption that the undelying graph is strongly connected
is really strong. To understand that, imagine that if only one of the agents were

stubborn(T}; = 1) the graph wouldn’t be strongly connected and our previous analysis
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collapse. The reason that we have analyzed so much this special case is that it will
help us to deal with the general case. In this section we introduce stubborness to our
analysis. At first we will see another special case which is somehow the complement
of the previous case. Then, combining the results of these two special cases it will be

really easy to understand the DeGroot model in all its generality.

2.4.1 Opinion leaders

Now in this special case we will not demand that the updating matrix is strongly
connected. On the contrary our assumption is that there are two types of nodes the
leaders and the followers [20]. In a more formal way the node ¢ € L(Leaders) <=
T;; = 1 and i € F(Followers) <= T;; < 1. We also assume that Vi € F' there is at
least one node j € F' such that there is directed path from node 7 to node j. From now
one we will consider that the updating matrix 7" fullfils the two previous properties.
Until now, we can notice two interesting facts 1) the updating matrix 7" is aperiodic
2) there are no closed and strongly connected groups of followers. Rember that a
group of nodes C' C V is a closed if and only if Vi,j : i € C,j ¢ C then (i,j) ¢ E.
Another interesting observation is that consesus is not possible in this case because
the leaders never change their initial opinion. Although consensus is not possible,
we would like to know if each node adopts a specific opinion. This leads us to two
questions: Is there an opinion vector x* sucn that z* = T - 2*? If there is such an
opinion vector. Will the agents converge to x*7 if they constantly update their opin-
ions according to the update martix 7.

Let zp(t), xL(t) denote the opinion vector of the followers and the leaders respec-
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: : : T Tip
tively. Without loss of generality 27 (t) = (zp(t), z.(t))T and T =

0 I
where T7; are the weights between the followers, Ty, are the weights that followers

pose to the leaders and I = Iz

. (I—Tyu)" T
Observation 14. z* = - 21,(0)

|

L l’}:TH'fE}—FTH'l’z
Proof. By definition x* =T - 2* <

vy = x1(0)

The matrix I — T7; is substochastic and thus it is reversible. As a result:

(I—Ty) - T
o 11 12 0 (0)
I

]

Until now, we have proven that there exists an opinion vector x*, which is stable.
We can understand that this is not enough we would like to know whether the nodes

will reach to z* if they follow the DeGroot model. What we will prove is that

. , [0 A=Tw) T} |
limy oo Tt = ,which is implies that lim, ., x(t) = z*.

0 I

In order to do this we will use some Markov chain theory, which we have already seen.

Observation 15. The matriz T}, converges and limy; o, T}, =
00 --- 0
Proof. Let the Markov chain with transition matrix the matrix 7. In terms of Makov

chain theory the leaders are called absorbing states because once the chain reaches
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such a state, it remains there. Now, it is easy to see that for non absorbing states it

holds that:
pg(t) = pg(t —1)-Tn = pig(o) Ty,

,where pL(t) is the probalility vector of the non absorbing states.

Now from our assumption in the beginning of this section, every follower is connected
with a directed path to at least one leader. We have already observed that this
implies that there are no closed and strongly connected groups of followers. The
interpretation of this to the Markov chain theory implies that if the Markov chain
starts at non absorbing state it is certain that it will end up to an absorbing state.

As a result:

1 ifj=i
Vi€ {1,|F[}: lim uj - T, = lim pp(t) = 0, where u;, =
—00 oo
- 0 ifj+#£i
00 - 0
. t .
=l 7 =
00 - 0
O
' ' Ty Thio
Now let’s return to the updating matrix 7. As we have seen T =
0 1
| o (m & t o
It is easy to see that T = and K(t+1) = T{, - T+ K(t) = > .o T The
0 |

Now we have just to prove that the matrix K (t) converges.

Observation 16. The matriz K(t) converges and limy .o K(t) = (I —Tyy)™ ' - Tyo
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Proof. Firstly we will prove that Y .-, T}; converges.

I— Tf;rl = Zfzo TH — T - ZZ:O Ti = —Tn)- Z::O T, =

(I — Th) - limy oo i T = limyoo(I — T{y') = I, which holds because of the
Observation 14. == lim; oo S1_ T} = (I — Ti1)~' (We have already proven that

(I —Ty1) is a reversible matrix). As a result:

lim K(t) = ([ - Tll)il : T12

t—o00

Using the previous two observation we can see that

-1
o 7t — | 0T e
t—00

0 I

As a result we have proven that in this case that each of nodes converges to a specific

opinion.

2.4.2 DeGroot model(general case)

Having the previous two specific cases in mind, we are ready to handle the general
case of DeGroot. We already know that consesus is not generally possible, but we
would like to know if each of the nodes converge to a specific opinion. Having already
obtained some intuition on the model, we will give a theorem that fully describes

convergence in the general case [11].

Theorem 7. The updating matrix T converges if and only if each closed and strongly

connected subset of the nodes is aperiodic.
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Proof. = 1t is quite simple to prove this direction of the Theorem. Since T is con-
vergent then every subset of the nodes is aperiodic. A closed and strongly connected
group can be viewed as a separate social network, which is strongly connected. We
have proven that since this social network is strongly connnected and convergent then
it is aperiodic.

<= Let an update matrix T" and By, Bs, ..., By, are the closed and strongly connected
groups of nodes in the social network. Notice that a leader(T;; = 1) is also a closed
and strongly connected group. If Vi € {1,k} : B; is aperiodic, then the nodes in B;
will reach a consensus, which is a linear combination of their initial opinions x;(0),

let this opinion be z¢p,1(0). Without loss of generality

T, 0 0
Ty Tio 0 T, ... O
T = ,Where T22 =
0 Ty
0 0 Tg,

Also notice that Vi € {1,k} : limy_o T, = Tp. and consequently lim,_, T35, =
T5,. Now, let’s shrink all the closed and strongly connected groups to single stubborn
nodes(leaders). Thus, we have another social network with updating matrix 7", which
is the case described in (1.4.1), since there are leaders and there doesn’t exist a closed
and strongly connected group of followers. Using the previous notation F' denotes
the set of the followers, L’ denotes the set of the leaders and L = By U --- U By.

Observe that :

42



=T and == T,
(1) zr(t —1) v, (t) wp(t—1)
T T
;where T" = Hoe
0 1

Let z(0) € [0,1]" we construct a 2'(0) € [0,1]" as follows: z-(0) =

27;(0) = 2¢5,3(0) (2¢5,3(0) is defined above). From (1.4.1) we know that:

lim zp(t) = (I-— Tn)_l - Ty, - 27(0)

t—o00

= (I-Tyu) ' Ty T3 21(0)

zp(0) and

We also know that: limy o 21 (t) = limy_yeo T - 21.(0) = Ty - 21(0). As a result:

. N 0 I=Tu)" T T3
Vz(0) € [0,1]" : lim z(¢) = im T° - 2(0) =
t—o0 t—o0

0 15

-1 *
lim 7Tt = 0 (I=Tw)"" T T
t—o00

0 15,

So finally we have proven that if each closed and strongly connected group of nodes

is aperiodic, then T converges.

]

As a result we have found necessary and sufficient conditions for the convergence

of the DeGroot model. Notice that we can check in polynomial time whether all the

closed group of the updating matrix are aperiodic. Thus, it is easy to know whether

an updating matrix converges or not. We can alsoo see that The convergence rate
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to the opinion vector z* is as in the previous case Ay(7") and the proof remains the

salmne.
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Chapter 3

Decentralized Opinion model

3.1 Introduction

In the previous section, we have seen the Kleiberg-Bindel model in which each agent
has an internal opinion s; € [0, 1] and can adopt an opinion z; € [0,1]. It is easy to
argue that although it is possible each agent has an internal opinion s; € [0, 1], it is
not always possible to adopt an opinion z; € [0, 1]. Elections is a very good example
of this case, because each voter can have an internal opinion s; € [0, 1], denoting that
voter i is a fan of the republicans with degree s; and 1 — s; fan of the democrats.
However at the elections he cannot split his vote a s; and 1 — s;, he has to vote only
for one of them. Decentralized opinion dynamics model proposed by Ferroli,Goldberg
and Ventre tries to capture this case [9]. More formally in this model each agent i
has an internal opinion s; € [0, 1], there is an undirected graph G(V, E) representig

the structure of the social network. Each agent i can adopt an opinion z; € {0,1}
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and the cost for choosing opinion x; is:
Cilx) = (z:i — 5:)* + (2; — x;)?
(i,J)eE

Obviously each agent wants to minimize its cost. We give some defintions that help
us simplify our notation. Let N,; be all the neighbours of agent ¢ which have the
same opinion with agent 7. Let N.; be all the neighbours of agent ¢+ which have the
oposite opinion of player ¢ and T; be the opposite of player ’s ¢ strategy. It’s trivial
that:

x1

Respectively we define the social cost function :

SC(x) = Ci(z) =Y (i —b)*+2D(x)
eV =%
where D(z) is the number of discording edges in opinion vector z.
Now we have a complete view of this model, which can be viewed as a rounded case of
the Kleiberg-Bindel model. In the latter, we have seen that the PoA = %, something

very positive since all the N.E. are very close to the optimal solution. Unfortunately,

this doesn’t hold in this model and in the next theorem is proved that the PoA = cc.
Theorem 8. the Price of Anarchy (PoA) of this game is oc.
Proof. Let our instance be a ring graph such that

Vi: s, =0

It is trivial that the optimal strategy profile is that all agents adopt 0. Now con-

sider the strategy profile in which all agents play 1. This opinion vector is a Nash
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Equilibrium because each agent i has personal cost C;(xz) = 1 and if he changes his
strategy to 0 his personal cost will be 2 (there are 2 neighbours that play 1). Let
this strategy profile be y = SC(y) = n, where n is the number of the players.

Apparently, the optimal opinion profile is that Vi € V : z; = 0 = OPT = 0. Thus,

POA}%C;D(?:OO:>POA:OO O

Apart from knowing the PoA of this model, we are also interested in finding an
efficient way to compute the equilibrium of this model. In the previous chapter, it was
proved that the Kleiberg-Bindel model has a potential function and in order to find
the Nash Equilibrium, we had just to find the minimum of the potential function.
In this model, there is also a function ®(z) such that &(x;,x—i) — ®(75,2_;) =

Ci(x;, x—i) — Cy(T;, x_;), which means that ®(x) is a potential function of this game.

Observation 17. The decentralized opinion formation game is a potential game with

potential function

O(x) =) (x; —5:)* + D(x)

i€V
Proof. Let ®(z) = >, (2 — 5:)* + D(z) =
O(xj,w-) — O(Th,2-) = (2 — )+ D(xi, o) — (Ti — 8:)* — D(T5,2-)
= (.Z'Z — Si)2 — (LU_Z - 52'>2 + NTz -+ D,Z-(xi,a;,i) — le — D—Z(l'_“ QT,,L')
= (v — )"+ Nz — (T3 — )" = N,

= Ci(zi,v_;) — Ci(Ti, )

;where D_;(z;,x_;) is the number of discording edges apart from those that belong
to node i. Thus ®(z) = C;(z;, x_;) — Ci(Ti, x_;) a
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Now, it easy to understand that an opinion profile z € {0,1} is a N.E. if and only
if z is a local or global minimum of ®(x). In our case the potential function is defined
over all the the possible opinion vectors x € {0,1}". Since |[{z : x € {0,1}"}| = 2"
it is certain that ®(z) has at least one minimum. As a result, the existence of the
potential function implies the existence of a N.E. of this model.

Notice that when a node ¢ updates its opinion in order to reduce its personal cost
the value of the potential function is reduced. This property holds for every game
having a potential function, but this model has an additional property which is very
important. When an agent ¢ reduces his personal cost not only the potential function,
but also the social cost fuction SC(z) reduces. This property is proved in the next

observation.
Observation 18. If Ci(x;,x_;) > Ci(T7,x—;) then SC(x;,x_;) > SC(T7, ;)

Proof. At first we prove that if C;(z;, x_;) > C;(T;, x_;) then N,; < N

Let Nyy > N = Ny = N+ 1> (25— 8>+ N = (T, — 8)? + Ny >
(; — 8:)? + Nz = Cy(T7,7_;) = Ciwy, x_y).

So if Cj(x;, x—;) > Ci(T;, x—;) then N,; < Ng;. As a result there are two case:

2

Ci(zi,w—) > Ci(T, v_y) = (1, — 83)* > (T — 5;)° =

+Z =52 +2-D_(T5,x_;) + 2N5; >
J#i

Ti— )+ > (2= 8;)* + 2 D_y(wi,7_;) + 2Ny
J#i
— SC(x4,x_;) > SC(T7, ;)
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e N > N, =
N; > Ny +1 =
2-D(xj,x_y) 22 D(T,x_;) +2

It is also easy to verify that
(zi— ) — (T —s:)* = —1

Adding the two previous inequalities we have

(s —8)* +2-D(xy,2_) = (Ti — ) +2- D(T5,0_;) + 1 =

SC(xi,x_;) > SC(T7,x_;)

Consequently, if C;(x;, z_;) > Cy(T;, x_;) then SC(x;,x_;) > SC (77, x_;) O

Previously, we proved that the Price of Anarchy (PoA) of the game is 0o, which
means that there is a N.E. that has a great social cost in respect to the optimal
solution. Let us introduce the notion of the Price of Stability (PoS). The Price of

Stability is the fraction of the social cost of the N.E. with the smallest social cost and

PoS — SC(Nash Equilibriuglpv;ih the smallest cost) ) It is

the optimal social cost of the game. (
easy to see that for every game PoS > 1 and PoA > PoS. Although in this model
the PoA = oo, the PoS = 1 which means that the optimal opinion profile is a N.E.

(notice that this doesn’t hold in the Kleiberg-Bindel model).
Observation 19. the Price of Stability (PoS) = 1

Proof. Because of the previous observation it is easy to see that if SC(x;,x_;) <
SC(77, ;) then Ci(x;,z_;) < Cy(T;,x_;). Let y be the optimal opinion profile.
By definition Vi: SC(y;,y—;) < SC(v;,y—i) = Vi: Ci(yi,y—i) < Ci(¥i,y—;) so the

optimal profile is also a Nash Equilibrium. Thus, PoS = 1. O]
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3.2 Best Response Dynamics

From the the previous section, we already know that the Decentralized Opinion model
always admits a Nash Equilibrium. As before we would like to know whether there
exists a mechanism that garantees the convergence of the agents at a Nash Equilib-
rium. In this section, we will examine the Best Response mechanism that garantees
the convergence of the agents to a Nash Equilibrium after a polynomial number of
steps.

We assume that at each time step only one player plays a move and this move is
always his best response. At first we prove that from any initial state the agents

converge to a Nash Equilibrium at a finite number steps.

Observation 20. From any initial state xy the Best Response Dynamics will reach

a N.E. after a finite number of steps.

Proof. Consider a directed G(V, E) in which each node z € V corresponds to an
opinion vector z € {0,1}". Obviously there are 2" nodes. There are acres only from
node (z;,z_;) to node (77, z_;) if and only if ®(z;, x_;) > ®(7;,x_;). Apparently there
are no cycles in G because let a cycle y1, s, ..., yx. By definition ®(y1) > ®(y2) >

. > ®(yx) > P(yy) which is impossible. As a result T is a DAG and there are
nodes that are sinks. All the sinks in this graph correspond to N.E. because the are
node acres starting from them, which by definition means that Vi € V : ®(z;,x_;) <
®(7;, x_;). The initial state xy of our system is either a sink(N.E.) or a normal

node. A best response move from agent ¢ at state x corresponds to traversing the

acre ((z;,2_;), (Z;,z_;)). Because there are no cycles in the graph and the number of

nodes is finite, after a finite number of best response moves we will end up at a sink,
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which is a N.E. O

Theorem 9. The Best Response Dynamics converges to a N.E. after a polynomial

number of steps.

Proof. Let an opinion vector « = (z;,7_;) and an agent i with s; € (3, 1). It is easy

to verify that agent’s ¢ best response is:

aef{0,1} , Ny> Na
1 >NJ:7,:NE

As a result agent ¢ plays the same moves as if s; were %.

Respectively if s; € (0, %), agent’s 7 best response is:

@E{O,l} 7Na>NE
0 7Nm:NE

1

As a result agent i plays the same moves as if b; = 7.

1
4

Now assume that we round each s; € (0,3) to 1 and s; € (3,0) to 2. We can now
see in both rounded and unrounded casse agent i take the exact same decision. As
a result, the state graphs of the both cases are the same because not only the states
are the same, but also the acres that connect them.

Let the longest directed path in the state graph G of the game from a node z( to a
sink node x; with length P,,,.. We can observe that P,,,; is the maximum number of

times steps needed to reach a N.E from any initial state, which is the same for both

rounded and unrounded case.
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Let’ s take the rounded case:
@(l’o) — (I)(a;l) = Pmax - Admin

O(x) =Y (x;—b)* + D(x) < n” +n=

Pruw - APmin <n®+n

1
Admin = — —
min 16

Prae < 16(n* +n)

So the maximum path length from any node to a leaf is polynomial as a result the

number of steps of best-response dynamics to a N.E. is also poynomial. O]

3.3 Bounding the PoA by Best Response

We have already seen that the PoA is unbounded for this game. In this section we
will describe a best reponse mechanism that leads to Nash Equilibrium with bounded
Price of Anarchy.

More precisely: Let a random sequence of the nodes p = (p1, 2, ..., pn) at each time
step only one agents plays according to this sequence. We assume that all agents

always play their best response move and at the first time step each agent i plays:

[

—
V2]
<)
V
N~

According to observation 20 the agents will converge always to a Nash Equilibrium

since at each time step the potential function is reduced. Let z, € {0,1}" be the
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Nash Equilibrium at which the agents converge if they play according to the above
mechanism with permutation p. We will bound the above the SC(z,) in respect to

the OPT and n, which is the number of agents.

Theorem 10. Let x, be the N.E. in which the agents converge using the previous

. . . SC(zp)
mechanism with permutation p. Then, =557 < 8-n—6

Proof. Let S* be the state of the system at time step ¢. Notice that S° = (s,1, $p2, .- Spn)-

In observation 18 it is proven that when an agents plays his best response move the

. , _ SC(sY) _ SC(SY)
social cost is reduced. As a result: SC(S") < SC(S") = 557 < 5 =

SC(x,) . SC(S%)
OPT ~ OPT

SC(S9)
Opt

Now we have just to bound the .. Before continuing let us give some definitions:

e Ay be the set of players ¢ that play 0 in the optimal solution and b; <

D=

D=

e A, be the set of players ¢ that play 1 in the optimal solution and b; <

D=

e By be the set of players ¢ that play 0 in the optimal solution and b; >

N[

e B; be the set of players ¢ that play 1 in the optimal solution and b; >
we also define:
e D(z) be the set of the discording edges in the strategy profile x.

e (A B) be the number of edges (i,7): i € Aand j € B

53



SC<SO) _ ZZEAO i zzeAl i T ZzeBo( )2 + ZzeBl( o bi)z + 2’D(SO>|

SC(OPT) ZleAO i + ZzEA ( ) + ZzeBo ) + ZzeBl( )2 + 2’D(OPT>’
ZleAl P+ ZZGBO( bi)? 4+ 2(Ao - By) + 2(A; - By)

< 1+
Zl€A1( ) + Z’LGBO i + 2(A0 Al) + 2<BO : Bl)
% + @ +2(Ao - Bo) + 2(A; - By)
s b |A \ \B |
1 _'_ 0
[ A+ 1] + [ Bl
< 248 (|Ao| +|Bi)
< 248-(n—-1)
< 8 n—=6
without loss of generality we assume |Ag| + |By| > 1, otherwise |Ag| = |B;| = 0 and
500((52)) = 1. So finally we have proven that OI(DT) <8 n—6—=
SC(xp)
<8-n—
OPT 8-n—06

]

The last theorem tells us that although the PoA of this model is unbounded, if

agents play reasonably the will avoid ending up to the really “bad” equilibriums.

3.4 Computing Nash Equilibriums

The problem of computing an equilibrium for a game with two or more players is
PPAD-complete, which means that the existence of an algorithm that solves the
problem polynomially in its generality is quite unlikely [7]. However in our case, we

have already found a polynomial algorithm that computes a Nash Equilibrium for our
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problem. We just let the players play according to the mechanism that we described
in the previous section and they will reach a N.E. at O(n?) steps. Notice that if
we want find the optimal opinion vector, which is also a N.E. the above algorithm
fails. Because we have no idea whether the N.E. that the players converge is the
optimal. In this section we provide an algorithm for the optimal opinion profile and
a similar algorithm for computing equilibriums at which two specific nodes adopt
opposite opinions. Notice that in this model there are at least two equilibriums. This
holds because if an opinion vector is a N.E. it is easy to prove that the opinion profile

2* which is the dual complement of z* is also a N.E.

3.4.1 Computing the optimal Nash Equilibrium

Now we provide the algorithm for the optimal Nash Equilibrium. We show that the
problem can be reduced to an equivalent max-flow/min-cut problem to a specially
constructed directed graph.

Let the underlying graph G(V, E) of the social network. We construct a directed

graph G'(V’, E') in the following way:

1. Vi: i € V we construct a node ¢/ € V', we also add two additional nodes 0 and

1.

2. ¥(i,j) € E we construct an edge (z’,j; € E’ and an edge (j,i) € E' both with

capacity 2.

3. Vi': i' € V1 we add an edge (0,2”; with capacity (1 — b?) and an edge (', 1

with capacity b?
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Observation 21. Let a maz-flow/min-cut from node 0 to node 1 in G'. If the nodes
that belong in the same set with the node 0 adopt 0 and the nodes that belong in the

same set with the node 1 adopt 1, then we have the optimal equilibrium.

Proof. Let the OPT < min — cut from 0 to 1. Let the sets A, B be the sets of agents
that play 0 and 1 respectively in the optimal equilibrium and S the set of edges

between the nodes of A and B. Apparently:

OPT =) b7+ (1—1b)*+2|S|

€A i€l

The optimal equilibrium defines a cut in G’ with the sets A’ = AU{0} and B’ = BU
{1}. By definition of G’ the weight of this cut is >, _,, b7+>_._ 5 (1—b;)*+2|S| because
for each edge (i,j) € E there is an edge (i,7) € E’ with capacity 2. Consequently
OPT > min — cut(G') (1).

Reversively, the min-cut of G’ defines a solution y for our game where agent i plays
0 if he belongs in the same set with node 0 and 1 if he belongs in the same set with

the node 1. Thus, min — cut(G') = SC(y) < OPT (2)
(1),(2) = SC(y) = OPT
As a result, OPT = max-flow from node o to node 1 O

So we have a polynomial algorithm for computing the optimal equilibrium.

3.4.2 Computing an Equilibrium in which two specific agents
play O and 1

Before closing this chapter we will provide an algorithm for the following problem:

Let the underlying graph G(V, F) of a social network whose nodes play according the
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Decentralized opinion model. We want to find a N.E. such that nodes iy, 75 play 0 and
1 respectively. The general idea is the same as before, we will reduce this problem to
min-cut problem in an appropriate directed graph G'(V’, E’). As we described before

we construct from a graph G(V, E) a directed graph G'(V', E') as follows:

1. For each i € V we add an edge (i1,i) € E' and (i,iy) € E’ with capacity
c((z’l,z’;) = (1 —0;)?%, c((2,12 )) = b2 if (i1,7) ¢ FE and (i,43) ¢ F

2. if (i1,i) € E and (i,i2) ¢ E then we add an edge (i1,7) € E' and (i,i2) € E
with ¢((41,4)) = 2+ (1 — b;)? and ¢((7, i2 )) =07

3. if (i1,7) ¢ E and (i1,7) € E then we add an edge (i1,7) € E' and (i,iz) € E
with ¢((i1,4)) = (1 — b;)? and ¢((i, ip) = 2 + b?

4. if (i1,7) € E and (i1,i) € E then we add an edge (i1,7) € E' and (i,iz) € E’

with ¢((i1,4)) = 2+ (1 — b;)? and c((i, i2 )) =2+

5. for each egde (i,j) € F with i,j # 11,12 we add the edges (z’,ji, (7,i) € E' with

(i 70) = el(j,1)) = 2

Observation 22. The maz-flow/min-cut from node i1 to node iy in the directed graph
G'(V' E'") is also a Nash Equilibrium if players in the same set with i, play 0 and

those in the same set with the iy play 1.

Proof. Let A, B C V is the min-cut from node i; to i, such that iy € A and i, € B.
Let that player i with strategy x; = 0 wants to deviate. So ¢;(z;,x_;) > ¢;(T;,x_;)
= SC(z;,x_;) > SC(zi,z_;) (1). It is trivial that SC(x;, ;) = b4 + (1 —bi2)* +
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W (A, B) (where W (A, B) is the weight of the cut) and SC (77, z_;) = b4 + (1 —bs)*+

W(AN Az}, BUA{i})
(1) = W(A\{i},BU{i}) > W(A,B)

which is by definition invalid. As a result none of the agents wants to deviate and we

have a Nash Equilibrium. O]
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Chapter 4

Non Steady Graph Models

In the previous chapters we have seen various models, simulating the way that the
members of a social network form their opinions. The general framework of the
previous model was common, each agent had a cost function whose analytic form
was invariant to the time and to the opinions of the other agents. In other words,
the network was represented as a graph whose edges and weights were always the
same. Although in same cases this aproach may be sufficient, experience shows us
that this is not always true. In many cases people tend to trust more those who
have similar opinion with them and generally the trust between two agents is not
something that is always constant. In this chapter we will introduce some models,
that try to descibe this behavior of the society. Unfortunately, these models are much
complex to analyze since in these cases the cost functions have no or very complicated
analytic forms. The very general framework is the same , we will consider that there
is set of nodes(V') representig the members of the society and that the node i has an

opinion at time t: z;(¢) € [0,1] and as in the previous chapters we will be interested
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in equilibrium points, convergence time and price of anarchy(PoA) of these models.

4.1 Hegselmann-Krause model

The Hegselmann-Krause model tries to capture the tension of the agents to trust
only those that have similar opinions [12]. Let V' denotes the set of the agents. Each

agent 7 has a initial opinion x;(0) € [0, 1] and the updating rule of the model is:

Zj:|xi—a:j|<d J;J

(1) =
x( " ) Zj:\xi—xjkdl

,where d € (0,1] is constant parameter of the model. Let another instance of the
HK-model at which 2}(0) = d - 2;(0) and d' = 1. Then, Vt : x;(t) = % - z}(t). So
without loss of generality we will study the case at which x;(0) > 0 and the updating

rule is:
Zj:|ri—xj‘<1 'r.]
Zj:|xi—mj|<1 1

Notice that the edges of the underlying graph of the network change at each time step.

The first question that we would ask is whether the agents will converge to specific
opinion if they update their opinions according to this model [5]. Before proving this

we will give a very important property of this model.
Observation 23. If z;,(0) < z;(0). Then, Vt : z;(t) < z;(t) if i < J.

Proof. Let i, j € V such that x;(0) < x;(0). We have just to prove that if z;(t) < x;(t)
then z;(t + 1) < z;(t + 1). We assume that z;(t) < z;(t).
Let N;(t) = {the nodes that are connected to node i and not to node j at time step t},

N;(t) = {the nodes that are connected to node j and not to node i at time step t} and
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N;;(t) = {the nodes that are connected to node i and to node j at time step t}

Since z;(t) < z;(t) then V(k1, ko, k3) € N; X Nijj X Nj 1 2y, (1) < xp, () < 23 (2) =

Ni'ENZ- (t)+Ni]' 'ENij (t)

zi(t+1) = : — ST,
ING(@)]+¥s5 2)] St ) <oyt 1)
(1) = MmN OFNG I (O
7t +1) = I ermaer - 2 TN

By induction it is proved that V¢ : z;(¢) < x;(t)

]

From now on, without loss of generality we will consider that the nodes are ordered
according to the ording z;(0) < z2(0) < ... < x,(0). Notice that if there exists ¢,
such that x;41(tg) — () = 1, then Vt > ¢y : x;41(t) — 2;(t) > 1 since the value
x; will not increase and the value x;,; will not decrease. Before trying to prove
convergence we would like to know how the equilibrium looks like. Let 7, 23, ..., ),
such that Vi, j € {1,k} : |z} — zi| > 1. It is easy to verify that if all the agents adopt
one of the above opinions, then they will be in an equilibrium. Also notice that the

above property has to hold for every equilibrium. Now, we are ready to prove the

convergence of this model.

Theorem 11. Let the agents update their opinions according to the HK-model. Then

Vi € V i x;(t) converges to x} in a finite number of steps and Vi # j : x}

_ *
;= aj or

lz; — x| > 1

Proof. Since node 1 has only right neighbors then z1(t) < x1(t + 1). Respectively
node n has only le ft neighbors and then z,(t) > x,(t+1). Thus, Vt : 21(0) < z1(t) <

n(t) < 2,(0). As a result, z1(t) < z1(t + 1) and z1(¢) < 2,(0) then 3z} such that
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limy oo 21 (t) = 7.

Now let p the largest index such that z,(t) converges to x;. We will show that there
exists ¢y such that x,.1(to) — z,(to) = 1. Let V¢ : 241 — 2, < 1 then node p+ 1 is
always a neighbor of node p. Since p+1 doen’t converge to x; then there exists dy such
that Vt : z,41(t) — 2] > dp. On the other hand since Vi € {1,p} : x;(¢) converges to z]
then there exists to such that V& > ¢y : z;(t) — 2] < eg = #60. From the definition of
HK-model z,(to+ 1) = %‘Fﬁ'%ﬂ > z%'xf_;%'eo+;%'ml+;ﬁ'5o = €.
Something that contradicts that x, — 27 < €. Now the nodes {p + 1,...,n} are
decomposed from the nodes {1, ..., p} and as a result we can repeat the same argument
to prove that every node i converges to z; and that Vi # j : x7 = 2 or |z} —2}| > 1.
Now we have to prove that the convergence will occur in a finite number of steps.
Without loss of generality we will consider that all the nodes {1, ...,n} converge to z*.
Then there exist ty such that Vt > ¢y : 2* — x1(ty) < % and x,(ty) — 2" < % Adding
the two previous inequalities x,(ty) — z1(tp) < 1, thus at time step ¢y every node has

neighbors all the other nodes and consequently all of them compute the same value

x*. As a result the convergence occurs in a finite number of steps. O

The convergence to a limiting value at finite time, is important. But as always
we would like to know how fast will the system converge. We will prove that this
happens at O(n?®) steps [2]. Before proving that we will give some definitions and
observations that are necessary in order to continue.

Since now we have not demanded that two different nodes start with a different initial
value. Observe that in this case these two nodes are actually one, that has twice as

influence as the others. Also see that if two or more nodes start with different initial

62



values, but at some time step they adopt the same opinion, then they will never be
separated. Now we will introduce the notion of the weight of the node ¢ at time step
t, wi(t) = [{j : zj(t) = z;(t)}|. As a result, from now on when two nodes adopt the
same opinion, we will consider that they form one node whose weight is increased by
one. Also notice, that the weight of a node never decreases and that Y ¢ | w;(t) = n
,where k is the number of nodes at time step ¢t and n is the initial number of nodes.
From now on, N;(¢) will denote the number of neighbors node ¢ has at time step ¢

(we have already used this notation denoting something similar but different).

Observation 24. Let [(t) denotes the most left node (the minimum indexed node)
that has not converged to its limiting value at time t. Then, at time t + 2 the node

I(t) has increased its weight(1) or has converged(2) or has moved to the right at least

= (3).

Proof. Since [(t) is the minimum indexed node that has not already converged, it is
certain that [(¢) has no left neighbors and it has at least one right neighbor(r). Let
Ny (t) = N,p(t), then at time ¢ + 1 : 2,.(t + 1) = x4 (t + 1) which means that [(¢)
has increased its weight. Now let Ny (t) # N, (t) then there exist a node s such that

x5(t) > x,(t) and x4(t) — x4 (t) = 1. As a result:

Nr - s Tyt Ts
Y o0 ),y

T, (t+1) > (

1
:L‘T<t —+ 1) > :L“l(t)(t) + ﬁ

We already know that since [(¢) has no left neighbors is tis certain that z)(t +1) >
x4 (t). Notice that at time ¢+ 1 it is possible that @, (¢ +1) — x4 (¢ +1) > 1 then the

node [(t) has neither right nor left neighbors which means that it has converged to
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its limiting value. On the other hand if z,(t +1) — ) (t +1) < 1 then I(t + 1) = I(t)
and r is the smallest right neighbor of I(¢t + 1). Thus,

Wi+ (E+ 1) - 2y + N (E+1) —wiean(E+ 1)) -2+ 1)
Nisy(t +1)

it (t + 2) >

Ny (t+1) — wyen (E+1) 1
> () + (t+1)( (t+1)( 1
Nl(t+1)(t —+ 1) n

1

> e (t) + "

]

The last observation will lead us to proving that the system converges to O(n?)
steps. Without loss of generality we can assume that z,(0) — z1(0) < 1, because
otherwise the system can be decomposed into independently evolving subsystems.
Notice that [(t) can increase its weight at most n times. Let t; be the number of
time steps at which I(¢) increased its weight, then ¢; < 2 - n. Respectively, [(f) can’t
converge to its limiting value more that n times. As a result, t5 < 2 - n, where t, is
the number of time steps at which [(¢) converged to its limiting value. Finally, let 3
be the number of times steps that the case (3) of the above observation occurs. Since
2,(0) — 21(0) < n = 2,(t) — (1) < n — 55. As a result, ¢t3 < 2-n’. Consequently,

at time step t > 4-n + 2 - n3 the system has converged.

4.2 K-NN model

In this section we present another non steady graph model, the K-NN model. Follow-
ing the general framework we have the set V', |V| = n of nodes representig the agents.
Each node i € V, has an internal opinion s; € [0, 1], which never changes. Given an

opinion vector x = (z;,x_;), each node i forms directed edges to the K closest nodes
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to s;(the nodes with the smallest |z; — s;|). This implies that the underlying graph
of the network is not steady, but it is a function of the opinion vector. The personal

cost of each node ¢ € V' at the opinion vector x is:
C’i(xl-,:r_i) = Z (.Tj — l’z‘)2 -+ P K- (IZ — Sz’)2

JE€S8(4)

,where S, (i) C V denotes the K closest nodes to s; at opinion vector z. As a result,

the opinion z} that the agent i adopts is:

WIS Y=L,
o l4p K

+p-si)
The social cost function is respectively:

SC(x) = Cilwi,z ) =) (Y (wj—a) +p K- (v —s))

i€V i€V jESL(3)

As before, we want to know whether this model has an equilibrium point and an
efficient way to find it. Unfortunately, the K-NN model doesn’t always have a N.E.

something that is proved in the following observation.

Observation 25. Let the instance of the K-NN model: s1 = 0,59 = %, s3=1,K=1

and p = 1. This instance has no N.E.

Proof. Let a N.E. z* = (a, b, ¢) exists, where a, b, ¢ are the opinions of the nodes 1,2,3

a—i—%
2

respectively. Let a = b then a = § and a = , which is impossible. With the same
arguments it can be proved that a # b,b # ¢ and ¢ # a.
Let Sy« (c) = athen 1—a < 1-b = b < a < ¢, since ¢ = £%. Then, Sy+(a) = b(b < ¢)

and a = g > b, which is impossible. As a result, S,«(c) =b=—=a<b< 17“’ =c=

a<b<ec.

NS

a =
Because of the previous relation: , now there are two cases:

1+b

C:2
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— b = % e :[j* = (%’%, %), but n thlS case
1
2

Sy+(b) = ¢ because 5 — ¢ > 2 —
3+ 3+ 2 * 125
ox*(b):c:>b:%: I — b =3 = 2" = (3,5,5), but now
Sp+(b) = a since 3 —3 < 2 —1
Consequently, in this game there is no N.E. O

The above observation provides us an instance at which there is not a N.E., which
implies that on the contrary of the models that we have already seen, the K-NN
model doesn’t always have an equilibrium point. However, we would like to know
the PoA at the instances that have a N.E. We will see that if p = 1+ ¢€,¢ > 0 then
PoA < % On the other hand, when p < 1 then PoA > p% which means that
as p reduces the PoA is unbounded.

We start with the case at which p > 1. Firstly, we will prove that SC(s) < %6 -OPT,

where s = (s1, Sg, ..., S,) is the internal opinion vector and OPT is the minimum of

the social cost function. We give two observations that will help us proving this.

Observation 26. Let the opinion vector x and A, (i) = |j : i € S,(j)|, is the number
of the nodes that have i as neighbor. Let s = (s1,Sa, ..., S,) is the internal opinion

vector then VieV : Ay(i) <2- K.

Proof. Without loss of generality s; < sg < ... < s,. Then it is certain that i ¢
Ss(i + K 4 1), since there exist K nodes between ¢ and i + K + 1. Respectively,

i ¢ Ss(i— K —1). As aresult, A7) < 2- K. O

66



Observation 27. Let s = (s1, S9, ..., S,) and the internal opinion vector and
0 = (01,09, ...,0,) the optimal opinion profile such that SC(0) = OPT. Then,
2, P 2, P 2y _ P 2
Z( Z (0; —0i) +§'(0j—$j) +§'(Oi—5i) )/W'Z Z (si = 55)
i€V jeSo(i) P i€V jeSs(i)

swhere SC(s) = 3 _,cy Ejess(i)<3i —55)%.
Proof. With basic algebra it is easy to prove that:

> L (a+b+r)?

2
ca” +

Wi

Setting r = |o; — 0;],a = |o; — s;| and b= |o; — s;| =

(oi =) = (Joj — ol + |oj — s + |oi — si)?

p
> 16 (si—s5)* (1)

Since by the triangular inequality: |s; — s;| < |oj — 0;| + |oj — 5| + |0; — 4.

Adding the last inequality(1) for every j € S,(i), we get:

WV
-
—
»
|
»
<
N~—
[\
—
[\
SN—

p p
Y (0 —0)+ 3 (05— 57)° + 3 (0= 5:)?
§€S0(4)

Notice that S,(i) are the K closest s; to s; =

D (si—s)’< > (si—s5)” (3)

JE€Ss(4) JE€So (i)

i€V jeSo(i) i€V jES(4)

— D (D (=0 + 5 (0= )2+ 5 - (00— 5)?) > L SC(s)

i€V jeSo(i)
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Now, we are ready to continue with our proof. It is easy to notice that:

YD (oj—0)+

i€V jeSo(i)

DD DO R (o + 53 A (o )

1€V j€8u(7) eV

wiD

Because of observation 20: A,(i) < 2- K =

S oo+ S o s 423 A - (o 57 <

1€V jeSo(7) eV eV
53 (0 -0 3K2< ST S SRC)
i€V j€So(7) eV eV
YD (oj—0)+p-K-D> (o — OPT =
1€V jeSo(7) eV

DD (05— o)+ 5 (0 =)+ § - (0= )°) S OPT (4)

i€V jeSo(i)

Because of observation 21 and the inequality (4) = SC(s) < % -OPT (5). We
use the last inequality to bound the PoA, when p = 1+ ¢€,¢ > 0(p > 1). The local

smoothness technique gives us the upper bound to the PoA.

(7+e€)-(2+€)

Theorem 12. For p =1+ ¢€,¢ > 0 the PoA of the game is at most (10

Proof. From inequality (5) we know that SC(s) < %6 OPT = I—ii -OPT.

Let A > 0 and p < 1 such that:

ZC’i(xi,x_i)—f—(si—xi)-dixiC(xz, L) < A-SCO(s) + - SC(x) (6)

icV

Then PoA < 7+§ -2 We will set 4 = 0 and we will find a A > 0 such that the

1-p

relation (6) holds. In this case the PoA < - \.

68



From now on we will find a A > 0 such that:

Vo 3 () (wi—a) o K(wi—s:)+2-(si—2:)- > (p-K(wi—s:)+ Y (zi—x))

i€V jeS.(i) eV FE€S(3)

Y Y
1€V j€S85(1)
Notice that (z; —z;)? + (2 — $1)*+ 2 (s; — ;) (xi — ;) = (si —2;)* and then inequality

(7) can be transformed to the following inequality:

Z Z ) \Z((P+1)'K'(8i—$i)2+)\- Z (s;

1€V jeSz(7) eV j€Ss ()

Also notice that } -, (i —1;)? < > jess (i (Si— — ;)% because S, () are the K closest
xj to s;. As a result it sufficient to find a A > 0 such that:

r: YY) (s <Y e+ 1) K- (si—am) + A Y (s

1€V jeSs(1) eV JESs (1)
It is easy to prove that for every a,b,d (a+b)* < (d*+1)-a®+ (5 + 1) - b%. Setting

a=(s;—s;),b=(s; — ;) and ®> = LY we get:

Yo (si—m)< ) ((1+L)'(5j—51)2+p2i'(Sj_xj)Q):>

—1
j€Ss(3) jE€Ss (i) P

2
D D i) <Y (o ) K (s =)+ (L =) Y (55— 0)°)
i€V jeSs (i) eV P JESs(7)

As a result we have found A = 1 + % > 0,1 = 0 such that the relation (6) holds.

7 € (7+e€)-(2+€)
ThU_S POA + )\ = W ]

69



The last theorem tells us that in the instances with p > 1 in which an N.E. exists,
the PoA < 7?1—53:;5) Now it’s time to deal with the instances at which p < 1. As we

have already claimed the PoA in this case is at least ,%. Let the following instance

of our game:

Observation 28. Let the insance of the K-NN model, at which K=1, s¢ = s; =

O,s5 =s¢=1and s3=x,54=1—2, < % The following game has PoA > p%

Proof. Let x the opinion vector at which zy = 1 = 0,25 = x4 = 1 and the nodes 3

and 4 point to each other. Let,

=== (r2+p )

P _ Lipa _ Lp(-x)
== 11= 5 and xo e

xgzﬁ-(xqup-(l—x))

Notice that since nodes 3 and 4 point to each other:

Itpz 1+p-(1—x)
p+2 = p+2

-z
— £% L (8), where § = |s3 — 54| =1 —2-x.

1— 1+p-(1—x) > 14+p-(1—x)

2~ prz 7

If inequality (8) holds then: SC(z) = (3 — 24)% + p- (x5 — 53)2 + p- (x4 — 84)% = 2L

52
then, OPT < SC(x) < p—+§ < —p%:>OPT p+1

Now let the 2* the opinion vector at which zfj = 27 = 0,2f = 2§ = 1 and node 3

points to 0 and node 4 points to 5. As a result, x5 = + and z; =1 — %.
r<1— % -
Then: P — 2% <6 (9)
p+1
l-(1-2)<1-o-L25
If we set z = pT 0 then both relation (8) and (9) hold. It is also easy to see
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that: SC(z*) = 2ff;’ and that z* is a NE. =

SC(z*) - SC(z*) S (X

PA> = = _22 -)?
¢ OPT SC(x) ((5) p p)

]

The above observation provide us an instance of the K-NN model at which the
PoA > /%' In the case that p > 1 the above instance doesn’t have something to say
since by definition PoA > 1. On the contrary, if p < 1 then the PoA is unbounded
as p reduces. Now,we have complete our analysis concernig the Nash Equilibrium
and the PoA of this model, However there are still open questions. We would like to
whether the exists an polynomial time algorithm that computes the Nash Equilibrium

of this game as also a mechanism tha leads the agents to a N.E. [13]
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