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Περίληψη

Στην παρούσα διπλωματική εργασία ασχολούμαστε με το θέμα της διαμόρφωσης 
άποψης στα κοινωνικά δίκτυα. Σήμερα τα κοινωνικά δίκτυα παίζουν καθοριστικό 
ρόλο στην σημερινή κοινωνία καθώς επηρεάζουν ολοένα και περισσότερο τις 
κοινωνικές και οικονομικές δραστηριότητες.  Καθώς τα μέλη ενός κοινωνικού 
δικτύου αλλάζουν τις απόψεις τους μέσω της αλληλεπίδρασης μεταξύ τους, είναι 
πολύ σημαντικό να γνωρίζουμε αν τα μέλη του δικτύου θα υιοθετήσουν τελικά μία 
συγκεκριμένη άποψη καθώς και ποια άποψη θα είναι αυτή. Σε αυτή την 
διπλωματική ποικίλα μοντέλα διαμόρφωσης άποψης εχουν μελετηθεί όπως:
το μοντέλο DeGroot, Kleiberg-Bindel καθώς και το Decentralized Opinion model. 
Τέλος παρουσιάζονται μερικά βασικά αποτελεσμάτα για μοντέλα μη σταθερών 
γραφημάτων όπως: το K-NN και το Hegelsman-Krause model.  

Λέξεις Κλειδιά: Αλγοριθμική Θεωρία Παιγνίων, Κοινωνικά Δίκτυα, 
Δυναμική Διαμόρφωση Άποψης





Abstract

In this thesis we deal with opinion dynamics in social networks. Social Networks

play a major role in today’s life since they affect most of the economic and social

activities. Since members of a society change their opinions while intefering with other

people, it is very important knowing whether they will finally adopt a specific opinion

and which opinion it will be. In this thesis various models for opinion dynamics such as

DeGroot, Kleiberg-Bindel model and Decentralized opinion dynamics are examined.

Finally, some basic results are presented for non-steady graph models such as the

K-NN model and the Hegelsman-Krause model.

Keywords: Algorithmic game theory, Social Networks, Opinion dynamics
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Introduction

The unterstanding of human behavior was always a major study field in various sci-

ences. Psychologists, Sociologists and Political Scientists were always interested in

how humans form their opinions and consequently their behaviour. Although biology

has taught us that human characteristics such as height or colour are imprinted on us

by our genes, opinions or beliefs have nothing to do with genes. So a major question

arises: Where do the opinions come from?

Today we are quite confident that the way that we form our beliefs depends on the

experiences that we get from our birth to our death. Apparently, different individu-

als have very different experiences, something that explains why there exist such vast

differences in human’s behavior around the world. The causes that lead a certain

individual to adopt a certain opinion on a specific subject are various and very com-

plicated. For example economic welfare, education ,religion and cultural backround

play a major role in someone’s beliefs. All these factors are very heteregenous, but

they all something in common: They are all trasmitted by the interaction of people

with other people. Thus, society plays an very important role in the opinion forma-

tion. Notice that it is very likely that someone supports the football team that his

friends support rather than another one. Psycology has reavealed the huge impact

that a social network has to its members. This impact has at the same time benefi-

ciary and negative results for the welfare of the society. On the one hand, if a member

of the society has no idea if it will rain tomorrow, it is very likely that he will ask one

of his friends. As a result, society permits the diffusion of information and knowledge

that helps people form opinions and beliefs for various subjects. On the other hand,
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this impact can affect people’s rationality. Racism is an example of this case: There

are no scientific evidence that Afroamerican are inferior, but many white men adopt

this belief influenced by their social enviroment.

The evolution of computer science and modern fields of mathematics such us statistics

or game theory provide us tools to model and study how people form their opinions

in a modern and productive way. The invasion of this quite different field to sociology

started with Condorcet’s jury theorem in his 1785 work Essay on the Application of

Analysis to the Probability of Majority Decisions. Latter in 1907 the British scientist

Francis Galton asked around 800 villagers in Plymouth to guess the weight of an

ox (none of them was an expert), suprisingly the mean value of the values that the

villagers had reported was very close to the actual weight of the ox (the actual weight

was 1198 pounds and the mean value was 1197). As a result, Galton claimed that

the collective intelligence of a group of people is much more than the knowledge that

each of them has, something that is known today as wisdom of crowds.

These previous works inspired many scientists in the last century to study social net-

works in a more consistent and formal way. In 1965 American statistician Morris

H. DeGroot proposed a model according to which the opinions in a social network

are formed. This model is known as DeGroot model and it will be studied latter

in an exhaustive way, but the main idea is that each individual trusts some other

individuals who affect his opinion. DeGoot has represented the social network as a

graph G(V,E) at which the nodes stand for the members of the social network and

the edges stand for the trust between them. After DeGroot model many other models

have emerged trying to capture the way that the members of a social network form

their opinions. Although these models present differences, they follow a quite com-
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mon framework: There exists a graph G(V,E) representing the social network and

there are cost functions that are defined over the underlying graph and the expressed

opinions of the nodes. The cost functions stands for the cost that disagreement causes

to each individual. As a result, opinion formation in a social network can be viewed

as a game and many of the knowledge on the game theory is very useful in this area.

As we have previously said, the personal cost for disagreement for a specific model, is

explicitly defined in it and thus there exists a implicit updating rule for every member

of the society. The latter is very reasonable since the opinions in a social network

are not stable but they change over time. For every model that we will examine,

we will be mainly interested in computing equilibrium points (Nash Equilibrium in

other words) which are stable over the updating rules. Apart from that, we inves-

tigate mechanisms that lead the agents adopt a specific opinion. Something that is

really important and this is why this field is frequently referred as Opinion Dynam-

ics. Finally notions from game theory such as Price of Anarchy(PoA) or Price of

Stability(PoS) are studied for this class of games. Other very interesting but more

complicating questions are the social influence of certains agents and maximizing or

minimizing this influence.
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Chapter 1

Kleiberg-Bindel Model

1.1 Introduction

In this section we will see a quite simple model proposed by Bindel,Kleinberg and

Oren [4]. In this model we have a weighted undirected graph G(V,E) representing a

social network. Each node i ∈ V represents who an agent has an opinion xi ∈ [0, 1]

and an internal opinion si ∈ [0, 1] which remains constant over time. The weight

wij = wji ⩾ 0 of the edge (i, j) represents the influnce between the nodes i and j and

each node has also a weight wi ⩾ 0 which is the stuborness to his initial opinion. We

also assume that for every connected component of the graph G(V,E) there exists at

least one agent i ∈ V with wi > 0. For convenience, we consider that if the nodes i

and j are not linked with an edge then wij = wji = 0.

More pecisely, let x⃗ be our strategy profile. Then, each agent i has a personal cost:

ci(x⃗) =
∑
j∈V

wij(xi − xj)
2 + wi(xi − si)

2

1



As a result given a strategy profile x⃗, node i in order to minimize its pesonal cost

updates its personal opinion as follows:

xi =

∑
j∈V wijxij + wisi∑

j∈V wij + wi

Apparently disagreement in a society is always something that provokes a cost. Now

we would like to quantify this cost and we define the social cost function.

SC(x⃗) =
∑
i∈V

ci

=
∑
i∈V

(
∑
j∈V

wij(xi − xj)
2 + wi(xi − si)2)

= 2
∑
i<j

wij(xi − xj)
2 +

∑
i∈V

wi(xi − si)
2

Now, some very natural questions arise. Will the society reach at a consesus? If

not, will there be a state where nobody wants to deviate or the agents will always

change their opinions?

In the next section we will try to shed light on these questions.

1.2 Nash Equilibrium

In the previous section we have seen that all the agents change their opinions in their

effort to minimize their personal cost. A very natural question is Will this ever stop?.

In other words, is there a state in which all the players are satisfied and noone wants

to change his opinion? Apparently, we are asking whether there exists a pure Nash

Equilibrium in this game, a question that is not trivial at all.
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Let the function Φ(x) =
∑

i<j wij(xi − xj)
2 +

∑
i∈V wi(xi − si)

2 and N(i) be all the

neighbours of the agent i. We can easily see that:

Φ(xi, x−i)− Φ(xi
′, x−i) =

∑
i<j

wij(xi − xj)
2 +

∑
i∈V

wi(xi − si)
2

−
∑
i<j

wij(xi
′ − xj)

2 +
∑
i∈V

wi(xi
′ − si)

2

=
∑

j∈N(i)

wij(xi − xj)
2 + wi(xi − si)

2

+
∑

j∈N(i)

wij(xi
′ − xj)

2 + wi(xi
′ − si)

2

= Ci(xi, x−i)− C(xi
′, x−i)

Observation 1. If Φ(x∗) is a minimum of Φ(x). Then x∗ is a Nash Equilibrium.

Proof. Let Φ(x∗) be a minimum. Thus, Φ(xi
∗, x−i

∗) − Φ(xi
′, x−i

∗) = Ci(xi
∗, x−i

∗) −

Ci(xi
′, x−i

∗) < 0

=⇒ ∀i ∈ V : Ci(xi
∗, x−i

∗) < Ci(xi
′, x−i

∗)

Thus, x∗ is a Nash Equilibrium.

Generally Φ(x) is called potential function and the games that have a potential

function are called potential games [17]. Now, we can answer some of the previous

questions. Φ(x) is a continous function which is also bounded. Thus, there exists a

x∗ ∈ [0, 1]n which is a global minimum of the potential function and consequently is a

Nash Equilibrium [1, 6]. We can also observe that Φ(x) is a strictly convex function.

As a result, there are no local minimums and there exists a unique global minimum

which is also the unique Nash Equilibrium of the game. The next question is how

we can compute this unique equilibrium? From the above it easy to see that we just

3



need to find the x∗ ∈ [0, 1]n at which the potential function Φ(x) is minimized. We

will use standard optimization theory to compute x∗.

We define the matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R as follows:

Aij =


∑

i ̸=j wij + wi if i = j

−wij if i ̸= j

Bi = wi · si and C =
∑

i∈V wi · s2i

Thus,

Φ(x) = xT · A · x− 2 ·B · x+ C

Observation 2. Let x∗ be The Nash Equilibrium then x∗ = A−1 ·B

Proof. If x∗ is the Nash Equilibrium then x∗ minimizes Φ(x). As a result, ∇Φ(x∗) =

0 =⇒ 2 · A · x− 2 ·B = 0 =⇒ x∗ = A−1 ·B

1.3 Local Smoothness and Price of Anarchy

In the previous section we have seen that our game has a unique Nash Equilib-

rium. Let x∗ ∈ [0, 1] be the N.E., then x∗ minimizes the potential function Φ(x) =∑
i<j wij(xi − xj)

2 +
∑

iwi(xi − si)
2. In this section we will investigate how bad

is the social cost of the Nash Equilibrium. We remind that the social cost func-

tion SC(x) = 2
∑

i<j wij(xi − xj)
2 +

∑
i wi(xi − si)

2 ̸= Φ(x). As a result, a Nash

Equilibrium is never the optimal solution. Now will introduce the notion of Price

4



of Anarchy(PoA) which is a quantifier of how bad a N.E. can be in respect to the

optimal solution [14].

Definition 1. Let a game G with social cost function SC(x) and I an instance of

the game. Let also N(I) be the set of all Nash Equilibrium of instance I then:

PoA = max
∀I,∀x∈N(I)

SC(x)

SC(y)

where SC(y) is the minimum of the cost function.

The Price of Anarchy measures how eficiency of the system degrades due to selfish

behavior of its agents. From the definition the Price of Anarchy follows that for every

N.E. x∗ : SC(x∗)
SC(y∗)

⩽ PoA, where y∗ is the optimal solution.

In this section we will prove that PoA = 9
8
for this game, which is something good

because the social cost of the optimal solution is very close to the optimal [4, 3].

Before proving that PoA = 9
8
we will give an easy upper bound to the PoA.

Observation 3. The PoA ⩽ 2

Proof. Let x∗ be a N.E. and y∗ is the optimal solution. It is easy to see verify that

∀x ∈ [0, 1] : Φ(x) ⩽ SC(x) ⩽ 2 ·Φ(x) We also know that x∗ is the minimizer of Φ(x)

and y is the minimizer of SC(x).

PoA =
SC(x∗)

SC(y∗)
⩽ 2 · Φ(x∗)

Φ(y∗)
⩽ 2 · Φ(y

∗)

Φ(y∗)
= 2 =⇒

PoA ⩽ 2

5



Local Smoothness

We have already found an upper bound to the PoA, but this is not enough. We would

like whether to prove that this bound is tight or to find a lower upper bound. In order

to do this, we will use the local smoothess technique that we will explain latter [3].

Now, we will give some definitions that are necessary to continue. Until now, we have

seen the notion of Nash Equilibrium. Now, we will define two more general notions

of equilibrium, the mixed Nash Equilibrium and the correlated Equilibrium.

Definition 2. A mixed N.E. is the equilibrium at which each agent has picked a

distribution σi over expressed strategies, so that we have:

Ex−i∼σ−i
[Ci(xi, x−i)] ⩽ Ex−i∼σ−i

[Ci(x, x−i)]

where σ−i denotes the joint distribution of others agents strategies.

Respectively, mixed PoA = Ex∼σ [SC(x)]
SC(Opt)

.

Definition 3. A correlated equilibrium σ is a distribution such that for each player i

and each opinion xi in the support of σ,

Ex−i∼σ−i|xi
[Ci(xi, x−i)] ⩽ Ex−i∼σ−i

[Ci(x, x−i)]

where σ−i|xi denotes the distribution σ conditioned on xi.

Respectively, correlated PoA = Ex∼σ [SC(x)]
SC(Opt)

From the defitions of Nash Equilibrium , mixed Nash Equilibrium and correlated

Equilibrium follows that a Nash Equilibrium is a mixed Nash Equilibrium and a

mixed Nash Equilibrium is a correlated Equilibrium. As a result, an upper bound at

the correlated PoA is an upper bound to the PoA.

6



We will use the local smoothness thechnique to give an upper bound to the cor-

related PoA [18].

Let a fixed strategy profile o, λ > 0 and µ < 1 such that:∑
i

[Ci(xi, x−i) + (oi − xi)
d

dxi
Ci(xi, x−i)] ⩽ λ · SC(o) + µ · SC(x) (1)

Theorem 1. Let σ be a correlated Equilibrium. If equation (1) holds for any profile

x with respect to a fixed profile o. Then, Ex∼σ [SC(x)]
SC(o)

⩽ λ
1−µ

. In particular, when o

denotes the optimal profile, the correlated PoA ⩽ λ
1−µ

.

Before things start getting too complicated we will focus on what we have seen

and that will be used to find an upper bound to the PoA. From the above theorem

we know that:

Let λ > 0, µ < 1 such that:

∀x ∈ [0, 1] :
∑

i[Ci(xi, x−i) + (yi − xi)
d
dxi

Ci(xi, x−i)] ⩽ λ · SC(y) + µ · SC(x) (2)

where y is the the optimal profile. Then,

PoA ⩽ λ

1− µ

Now, we are starting to get some intuition on how we proceed. At first, we will find

a set A ⊆ R2 such that: ∀(λ, µ) ∈ A =⇒ equation (2) holds and then we will find

inf{ λ
1−µ

, (λ, µ) ∈ A}.

Of course our goal is to find an upper bound lower than 2 that we have already found.

7



Let A1, A2 ⊆ R2

• A1 := {(λ, µ) : ∀x, y ⩾ 0, f(x) + (y−x)
2

· f ′(x) ⩽ λ · f(y) + µ · f(x)}

• A2 := {(λ, µ) : ∀x, y ⩾ 0, g(x) + (y − x) · g′(x) ⩽ λ · g(y) + µ · g(x)}

where f(x) = g(x) = x2

We will show that A1 ∩ A2 is the A ⊆ R2 that we are searching.

Observation 4. ∀(λ, µ) ∈ A1 ∩ A2 =⇒ equation (2) holds.

Proof. Let fij(x) = wij · f(x) and gi(x) = wi · g(x), where f(x) = g(x) = x2 then:

Ci(xi, x−i) =
∑

i ̸=j fij(xi − xj) + gi(xi − si) =⇒

∑
i

[Ci(xi, x−i) + (yi − xi)
d

dxi
Ci(xi, x−i)] =

∑
i

∑
i̸=j

fij(xi − xj) +
∑
i

gi(xi − si)

+
∑
i

(yi − xi)
∑
i̸=j

f ′
ij(xi − xj)

+
∑
i

(yi − xi)g
′
i(xi − si)

=
∑

i<j[2 · fij(xi − xj) + (yi − xi) · f ′
ij(xi − xj) + (yj − xj) · f ′

ij(xj − xi)]

+
∑

i[gi(xi − si) + (yi − xi) · g′i(xi − si)]

=
∑

i<j[2 · fij(xi − xj) + (yi − yj) · f ′
ij(xi − xj)− (xi − xj) · f ′

ij(xi − xj)]

+
∑

i[gi(xi − si) + (yi − xi) · g′i(xi − si)]

=
∑

i<j 2 · [fij(xi − xj) +
(yi−yj)

2
· f ′

ij(xi − xj)− (xi−xj)

2
· f ′

ij(xi − xj)]

+
∑

i[gi(xi − si) + ((yi − si)− (xi − si)) · g′i(xi − si)] (3)

Now let (λ, µ) ∈ A1 ∩ A2 =⇒

f(xi − xj) +
(yi−yj)−(xi−xj)

2
· f ′(xi − xj) ⩽ λ · f(yi − yj) + µ · f(xi − xj) =⇒

wij ·f(xi−xj)+wij · (yi−yj)−(xi−xj)

2
·f ′(xi−xj) ⩽ λ·wij ·f(yi−yj)+µ·wij ·f(xi−xj) =⇒
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fij(xi−xj)+
(yi−yj)

2
·f ′

ij(xi−xj)− (xi−xj)

2
·f ′

ij(xi−xj) ⩽ λ·fij(yi−yj)+µ·fij(xi−xj) =⇒∑
i<j 2 · [fij(xi − xj) +

(yi−yj)

2
· f ′

ij(xi − xj)− (xi−xj)

2
· f ′

ij(xi − xj)] ⩽

λ ·
∑

i<j 2 · fij(yi− yj) + µ ·
∑

i<j 2 · fij(xi − xj) (4)

Respectively,

g(xi − si) + ((yi − si)− (xi − si)) · g′(xi − si) ⩽ λ · g(yi − si) + µ · g(xi − si) =⇒

wi ·g(xi−si)+wi ·((yi−si)−(xi−si))·g′(xi−si) ⩽ λ·wi ·g(yi−si)+µ·wi ·g(xi−si) =⇒

gi(xi − si) + ((yi − si)− (xi − si)) · g′i(xi − si) ⩽ λ · gi(yi − si) + µ · gi(xi − si) =⇒∑
i[gi(xi−si)+((yi−si)−(xi−si))·g′i(xi−si)] ⩽ λ·

∑
i gi(yi−si)+µ·

∑
i gi(xi−si) (5)

(3), (4), (5) =⇒∑
i[Ci(xi, x−i) + (yi − xi)

d
dxi

Ci(xi, x−i)] ⩽ λ ·
∑

i<j 2 · fij(yi− yj)

+µ ·
∑

i<j 2 · fij(xi−xj)+λ ·
∑

i gi(yi− si)+µ ·
∑

i gi(xi− si) = λ ·SC(y)+µ ·SC(x)

As a result,

∀(λ, µ) ∈ A1∩A2 =⇒
∑

i[Ci(xi, x−i)+(yi−xi)
d
dxi

Ci(xi, x−i)] ⩽ λ·SC(y)+µ·SC(x)

Because of the previous observation PoA ⩽ inf{ λ
1−µ

, (λ, µ) ∈ A1 ∩ A2}. As we

have said before we will find A1∩A2 and then we will find inf{ λ
1−µ

, (λ, µ) ∈ A1∩A2}.

Observation 5. inf{ λ
1−µ

, (λ, µ) ∈ A1 ∩ A2} ⩽ 2

Proof. It is easy to verify that ∀x, y ⩾ 0:

 x2 + (y−x)
2

· 2 · x ⩽ y2 + x2

2

x2 + (y−x)
2

· 2 · x ⩽ y2 + x2

2

Then, (1, 1
2
) ∈ A1 ∩ A2 =⇒ inf{ λ

1−µ
, (λ, µ) ∈ A1 ∩ A2} ⩽ 2
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The last observation shows as that the local smoothness technique will produce

an upper bound for PoA lower than 2, that we have previously very easily found

Something that encourages us to continue.

Now, it’s time to find a closed from for the set A1 ∩A2. We will find closed forms for

A1, A2 respectively and then we will find their intersection.

Finding A1

It is easy to see that A1 := {(λ, µ) : λ > 0, µ < 1} ∩ A′
1

,where A′
1 := {(λ, µ) : ∀x, y ⩾ 0 : f(x) + (y−x)

2
· f ′(x) ⩽ λ · f(y) + µ · f(x)} ≡

{(λ, µ) : ∀x, y ⩾ 0 : x · y ⩽ λ · y2 + µ · x2}.

We have described A′
1 ⊆ R2 in a very simple way and the next observation produces

a closed form for the set.

Observation 6. (λ, µ) ∈ A′
1 ⇐⇒ {λ ⩾ 1

4·µ , λ > 0, µ > 0}

Proof. =⇒

∀x, y ⩾ 0 : x · y ⩽ λ · y2 + µ · x2 =⇒

∀x, y > 0 : x · y ⩽ λ · y2 + µ · x2 =⇒

∀x, y > 0 : y
x
⩽ λ · ( y

x
)2 + µ =⇒

∀a > 0 : λ · a2 − a+ µ ⩾ 0 =⇒

{∆ ⩽ 0, λ > 0} =⇒

{1− 4 · λ · µ ⩽ 0, λ ⩾ 0} =⇒ {4 · λ · µ ⩾ 1, λ ⩾ 0} =⇒ {λ ⩾ 1
4·µ , λ > 0, µ > 0}

⇐=

{λ ⩾ 1
4·µ , λ > 0, µ > 0} =⇒
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{1− 4 · λ · µ ⩾ 0, λ > 0, µ > 0} =⇒

∀a : λ · a2 − a+ µ ⩾ 0 =⇒

∀x > 0, y ⩾ 0 : x · y ⩽ λ · y2 + µ · x2

For x = 0: λ · y2 ⩾ 0 because λ > 0

Since the previous observation provides us a closed form for A′
1, we can easily find

that A1 := {(λ, µ) ∈ R2 : λ ⩾ 1
4·µ , λ > 0, 0 < µ < 1}. We will procceed with finding

an closed form for the A2 ⊆ R2.

Finding A2

As before we can easily see that: A2 := {(λ, µ) : λ > 0, µ < 1} ∩ A′
2

,where A′
2 := {(λ, µ) : ∀x, y ⩾ 0 : g(x) + (y − x) · g′(x) ⩽ λ · g(y) + µ · g(x)} ≡

{(λ, µ) : ∀x, y ⩾ 0 : 2 · x · y ⩽ λ · y2 + (µ + 1)x2. We will follow the same path as

before.

Observation 7. (λ, µ) ∈ A′
2 ⇐⇒ {λ ⩾ 1

µ+1
, λ > 0, µ > −1}

Proof. =⇒

∀x, y ⩾ 0 : 2 · x · y ⩽ λ · y2 + (µ+ 1) · x2 =⇒

∀x, y > 0 : 2 · x · y ⩽ λ · y2 + (µ+ 1) · x2 =⇒

∀x, y > 0 : 2 · y
x
⩽ λ · ( y

x
)2 + (µ+ 1) =⇒

∀a > 0 : λ · a2 − 2 · a+ (µ+ 1) ⩾ 0 =⇒

{∆ ⩽ 0, λ > 0} =⇒

{4− 4 · λ · (µ+ 1) ⩽ 0, λ ⩾ 0} =⇒

{λ · (µ+ 1) ⩾ 1, λ ⩾ 0} =⇒

{λ ⩾ 1
µ+1

, λ > 0, µ > −1}
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⇐=

{λ ⩾ 1
µ+1

, λ > 0, µ > −1} =⇒

{4− 4 · λ · µ > −1, λ > 0} =⇒

∀a : λ · a2 − 2 · a+ (µ+ 1) ⩾ 0 =⇒

∀x > 0, y ⩾ 0 : 2 · x · y ⩽ λ · y2 + (µ+ 1) · x2

For x = 0: λ · y2 ⩾ 0 because λ > 0

As a result, A2 := {(λ, µ) ∈ R2 : λ ⩾ 1
µ+1

, λ > 0,−1 < µ < 1}.

Now, we can have a closed form for A1 ∩ A2:

A1 := {(λ, µ) ∈ R2 : λ ⩾ 1
4·µ , λ > 0, 0 < µ < 1}

A2 := {(λ, µ) ∈ R2 : λ ⩾ 1
µ+1

, λ > 0, µ > −1}

The intersection of the previous two sets is:

A1 ∩ A2 := {(λ, µ) ∈ R2 : λ > 0, 0 < µ < 1, λ ⩾


1
4·µ if 0 < µ ⩽ 1

3

1
µ+1

if 1
3
< µ < 1

}

We last closed form for A1 ∩ A2 is a very useful tool in order to find the inf{ λ
1−µ

:
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(λ, µ) ∈ A1 ∩ A2}. The following theo

A1 := {(λ, µ) : ∀x, y ⩾ 0 : x · y ⩽ λ · y2 + µ · x2 , λ > 0, µ < 1}

≡ {(λ, µ) ∈ R2 : λ ⩾ 1

4 · µ
, λ > 0, 0 < µ < 1}

rem uses this closed form to prove that inf{ λ
1−µ

: (λ, µ) ∈ A1 ∩ A2} = 9
8
.

Theorem 2. inf{ λ
1−µ

: (λ, µ) ∈ A1 ∩ A2} = 9
8

Proof. Let the lines hk(µ) = −k ·µ+k, k > 1. Let (λ, µ) ∈ hk then λ = −k ·µ+k =⇒

∀(λ, µ) ∈ hk :
λ

1−µ
= k.

We can easily see that (3
4
, 1
3
) ∈ A1 ∩ A2 and that h 9

8
(1
3
) = 3

4
.

As a result, inf{ λ
1−µ

: (λ, µ) ∈ A1 ∩ A2} ⩽ 9
8
.

Now, we have only to prove that there is no other point (λ∗, µ∗) ∈ A1 ∩A2 such that

λ
1−µ

= k∗ < 9
8
. Let (λ∗, µ∗) such that λ

1−µ
= k∗ < 9

8
then (λ∗, µ∗) ∈ h∗

k. We can

also observe that (k∗, 0) ∈ hk∗ , (
9
8
, 0) ∈ h 9

8
and that hk∗ , h 9

8
intersect at (0, 1). Since

k∗ < 9
8
, then ∀µ ∈ (0, 1) : hk∗(µ) < h 9

8
(µ)

It is trivial that: h 9
8
(µ) = −9

8
· µ+ 9

8
⩽


1
4·µ if 0 < µ ⩽ 1

3

1
µ+1

if 1
3
< µ < 1

Thus, there is no such point in A1 ∩ A2.

Until now, we have proven that the PoA ⩽ 9
8
but we have no idea whether this upper

bound is tight or not. We will give an instance of our game at which the SC(x∗)
SC(y)

= 9
8
,

where x∗, y are the Nash Equilibrium and the optimal profile respectively. By this we

13



will prove that PoA = 9
8
[4, 3] and we will complete this section.

Let the graph with the nodes n1, n2 at which s1 = 0, s2 = 1, w12 = w21 = 1
2
and

w1 = w2 = 1.

• Nash Equilibruim: =⇒ dΦ
dx1

= dΦ
dx2

= 0 =⇒ {x1 =
x2

3
, x2 =

x1+2
3

} =⇒ x∗ = (1
4
, 3
4
)

• Optimal profile: =⇒ dSC(x)
dx1

= dSC(x)
dx2

= 0 =⇒ {x1 =
x2

2
, x2 =

x1+1
2

} =⇒

y∗ = (1
3
, 2
3
)

Then,

SC(x∗) = 3
8
and SC(y∗) = 3

9
=⇒ SC(x∗)

SC(y∗)
= 9

8

..0. 1. 1
4

. 3
4

. 1
3

. 2
3

.
1/2

.
1/2

.
1/2

Initial Opinions Nash Equilibrium Optimal Profile

Now, we can be sure that PoA = 9
8
, something that is really encouraging because

any Nash Equilibrium may be not an optimal solution but it is really close it.

1.4 Sequential Best Response Dynamics

Before we start this section, it will be useful to remind what we save seen in the

previous sections. We already know that our model always has a unique Nash Equi-

librium, which can be very easily computed by a matrix multiplication. It is very

positive that the Nash Equilibrium can be computed in polynomial time, but this

implies that there exist an external authority that computes the Equilibrium and
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then if we want stability in our system this authority must force each of the agents

to adopt a specific opinion. Apparently, it not is always possible or desirable to force

the agents to adopt an opinion. As a result, it will be very important if there were a

mechanism according to which the agents play and finally the system would end up

to the Nash Equilibrium. At this section, we will present such a mechanism and we

will prove that the system always converges to a Nash Equilibrium. Now we will give

the definition of the mechanism according to which the agents play. .

Definition 4. Sequential Best Response Dynamics

Let a random permutation π of the n agents.Let xt be the opinion vector, such that xt
i

is the opinion of the i-th agent in π at time step t. Let sπ be the vector of the initial

opinions of the agents according to the permutation π. Then,

x0 = sπ and xt
i =

 xt−1
i if t ̸= i mod n∑
i̸=j wij ·xt−1

j +wi·si∑
i ̸=j wij+wi

if t = i mod n

Now let’s try to describe the above mechanism, there are rounds, each of which con-

sists of n time steps. At each time step, only one agent plays and the i-th player in

the permutation is the i-th that is permitted to play in the round. When the game

starts each agent adopts his internal opinion, something that is reasonable because

he has no information for the opinions of the others. We also assume that the player

that is permitted to play at each time step, plays his best response. Consequently,

agent i at time t adopts the opinion
∑

i ̸=j wij ·xj(t−1)+wi·si∑
i ̸=j wij+wi

, which is the best response

according to the situation at time t− 1.

Before proving that if the agents play according to this mechanism, they always
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converge to a Nash Equilibrium, we will give some intuition on it. We have al-

ready seen in the first section that the unique Nash Equilibrium of our model is the

unique minimizer of the potential function Φ(x) and vice versa. We also know that

Φ(xi, x−i)−Φ(x′
i, x−i) = Ci(xi, x−i)−Ci(x

′
i, x−i) (7). According to the above mech-

anism at each time step, the player that is permitted to play, plays his best response.

Thus, his personal cost is reduced and according to the equation (7), at each time step

the potential function is reduced. Let Φt denotes the value of the potential function

at time step t. Apparently, Φ0 = Φ(sπ). As a result, we know that the potential

function has a unique global minimum, is bounded from above and at each time step

Φ is reduced, things that make us be confident about the convergence.

Theorem 3. There is not a ∈ R such that: limt→∞ Φt = a > Φmin, where Φmin is

the global minimum of the potential function.

Proof. Let’s assume that there exist a ∈ R such that limt→∞ Φt = a > Φmin.

Then, limt→∞ xt ̸= x∗, where x∗ is the Nash Equilibrium. This is true because let

limt→∞ xt = x∗ =⇒ limt→∞ Φt = Φmin, which is opposite to our assumption. Now,

we will prove that Φt+n < Φt, where n is the number of the agents.

From equation (7) we know that Φt+1 ⩽ Φt =⇒ Φt+n ⩽ Φt. Now, let t0 ∈ N such

that Φt0+n = Φt0 , which means that all the player had the chance to decrease their

personal cost and noone of them did, thus xt0 is a Nash Equilibrium. This means,

that Φt0 = Φmin which contradicts our assumption.

=⇒ ∀t ∈ N : Φt+n < Φt (8)
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Now, let ϵ(t) = Φt− a. Then, ∀t ∈ N : ϵ(t) ⩾ 0 because let t0 such that ϵ(t0) < 0 =⇒

Φt
0 < a =⇒ limt→∞ Φt < a, which is a contradiction.

Because of equation (8) : ∀t ∈ N : ϵ(t+ n) < ϵ(t) and ϵ(t) ⩾ 0

=⇒ lim
t→∞

ϵ(t) = 0 (9)

Now, it easy to see that Φt − Φt+1 ⩽ ϵ(t) because let t0 ∈ N such that

Φt0 − Φt0+1 > ϵ(t0) =⇒ Φt0+1 < a =⇒ limt→∞ Φt < a, which contradicts

our assumption.Thus,

∀t ∈ N : 0 ⩽ Φt − Φt+1 ⩽ ϵ(t) (10)

(9), (10) =⇒ lim
t→∞

(Φt − Φt+1) = 0 (11)

We now define the sequences ∀i ∈ {1, n} : αi
k = Ci(x

n·k+i)− Ci(x
n·k+i+1).

It is easy to verify that αi
k ⩾ 0. We will show that ∀i ∈ {1, n} : limk→∞ αi

k = 0.

Because of equation (11):

∀δ > 0, ∃t0 such that:

∀t ⩾ t0 : Φt − Φt+1 < δ.

Let t1 = t0 + n− (t0 mod n) + i = n · k1 + i ⩾ t0. Then,

∀k ⩾ k1 : n · k + i ⩾ n · k1 + i ⩾ t0 =⇒ Φn·k+i − Φn·k+i+1 < δ =⇒

Ci(x
n·k+i)− Ci(x

n·k+i+1) < δ =⇒ αi
k < δ =⇒

∀δ > 0, ∃k1 such that ∀k ⩾ k1 : α
i
k < δ. We also know that ∀k : αi

k ⩾ 0. Thus,

∀i ∈ {1, n} : lim
k→∞

αk
i = 0
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lim
k→∞

αi
k = lim

k→∞
(Cn·+i

i − Cn·+i
i )

= (
∑
i ̸=j

wij + wi)
2 lim
k→∞

(xn·k+i+1
i −

∑
i ̸=j wij · xn·k+i

j + wi · si∑
i̸=j wij + wi

)2 = 0

=⇒ ∀i ∈ {1, n} : limk→∞ xn·k+i+1
i = limk→∞

∑
i̸=j(wij ·xn·k+i

j +wi·si)∑
i̸=j wij+wi

=⇒ ∀i ∈ {1, n} : limt→∞ xt
i = limt→∞

∑
i̸=j(wij ·xt

j+wi·si)∑
i ̸=j wij+wi

=⇒

lim
t→∞

xt = x∗

But, this is impossible because if limt→∞ xt = x∗ then limt→∞ Φt = Φmin.

Because of the previous theorem it is very easy to prove the convergence to the

Sequential Best Response Mechanism. As we have seen before Φ(x) is a strictly

convex function which is bounded from above. We also know that at each time step

the potential function deceases. Thus, ∃a ∈ R such that limt→∞ Φt = a, but the above

theorem claims that this cannot be possible if a > Φmin. Thus, limt→∞ Φt = Φmin.

Because Φ(x) is a continous function if limt→∞ Φt = Φmin =⇒ limt→∞ = x∗, where

x∗ is a Nash Equilibrium.

Now, we can be sure that if the agents play according to the mechanism that we

described it is certain that they will converge to a Nash Equilibrium. This also

provides us an alternate method to compute the Nash Equilibrium. We just let the

players play till the reach the equilibrium.(Of course we don’t know whether this will

happen after a polynomial number of steps). An easy observation is that in the proof

of the convergence we haven’t used that at the first time step x0 = sπ. This means
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that at the first time step x0 can be a random vector with values in [0, 1] without any

effect to the convergence.

1.5 Parallel Best Response Dynamics

In the previous section we have seen a mechanism at which one agent play at each

time step making always his best response. In this section, we will decribe a similar

but quite different mechanism, at which at each time step all the agents play their

best response [10]. We will call this mechanism Parallel Best Response Mechanism.

Obviously, we would like to know that if the agents play according to Parallel Best

Response Mechanism, they will converge to a Nash Equilibrium and we will prove

this latter in this section. Before we start analyzing this mechanism, we will give a

more formal definition.

Definition 5. Parallel Best Response Dynamics

Let a random permutation π of the n agents.Let xt be the opinion vector, such

that xt
i is the opinion of the i-th agent in π at time step t. Let sπ be the vector of the

inital opinions of the agents according to the permutation π. Then,

xt
i =

 sπi
if t = 0∑

i̸=j wij ·xt−1
j +wi·si∑

i̸=j wij+wi
if t > 0
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As we have said before this model may be similar to the Sequential Best Response,

but they have some major differences that make this case more difficult to prove

that according to this mechanism the system converges to a Nash Equilibrium. In

the previous section, we knew that at each time step the potential function Φ(x)

decreased, by using this property we proved the convergence. Unfornunately, this

property is not valid in this case and we have to find another aproach. As we have

said many times before the problem of convergence to a Nash Equilibrium is equivalent

with the problem of minimizing the potential function Φ(x). As we already know we

want to minimize Φ(x), x ∈ [0, 1]n, which is a constrained optimization problem, but

we already know that there is a unique global minimum x∗ ∈ [0, 1]n and no local

minimums, something that simplifies our problem because we can use unconstrained

optimization techniques like gradient method. Before we prove the convergence we

will make an introduction to the gradient descent methods [1].

Assume that we want to minimize the function f(x). Many gradient methods are

specified in the form: xk+1 = xk − ak ·Dk · ∇f(xk). , where Dk is a positive definite

symmetric matrix. According to the ak, Dk that we select we have different gradient

methods that differ at the convergence and at the convergence rate. There also many

conditions for various gradient methods that can garantee us the convergence of the

method. Some of the most popular methods are:

• Steepest Descent: Dk = I ,k = 1, 2, · · · and I is the n× n identity matrix

• Newton’s Method: Dk = (∇2f(xk))−1), k = 1, 2, · · · and provided ∇2f(xk) is

positive definite.
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• Diagonially Scaled Steepest Descent:

Dk =



dk1 0 · · · 0

0 dk2 · · · 0

...
...

. . .
...

0 0 · · · dkn


where dki = (d

2f(xk)
(dxi)2

)−1 and dik > 0.

Observation 8. The Parallel Best Response Mechanism is the Diagonially Scaled

Steepest Descent with ak = 1 applied to the potential function Φ(x).

Proof. Let’s take the the Diagonially Scaled Steepest Descent with ak = 1 applied to

the potential function Φ(x). Then, xk+1 = xk −Dk · ∇Φ(xk) (12)

,where Dk
ij =

 0 if i ̸= j

(d
2Φ(xk)
(dxi)2

)−1 if i = j

dΦ(xk)
dxi

= 2(
∑

i ̸=j wij + wi) · xi − 2 · (
∑

i̸=j wij · xk−1
j + wi · si) =⇒

(d
2Φ(xk)
(dxi)2

)−1 = 1
2(
∑

i ̸=j wij+wi)

(12) =⇒ ∀i ∈ {1, n} : xt
i =

∑
i̸=j wij ·xt−1

j +wi·si∑
i ̸=j wij+wi

.

Thus, the Parallel Best Response Mechanism is a Diagonially Scaled Steepest Descent

applied to the potential function Φ(x).

The above observation is very important because we have reduced the problem of

proving that our mechanism converges to proving that a gradient method converges.

Before proving that this gradient method converges to the global minimum we will

prove another theorem which we will use in our final proof.

Observation 9. Let the method xk+1 = A · xk , where A symmetric. limk→∞ xk = 0

if and only if −1 < λ(A) < 1, for all the eigenvalues λ(A) of matrix A.
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Proof. It is easy to see that limk→∞ xk = 0 ⇐⇒ limk→∞ ||xk|| = 0 So ,we will proof

that limk→∞ ||xk|| = 0 ⇐⇒ −1 < λ(A) < 1, where λ(A) is the eigenvalues of matrix

A.

=⇒

limk→∞ ||xk|| = 0 then ∀δ > 0 : ∃k0 such that ∀k ⩾ k0 : ||xk|| < δ.

Then, ∀||x0|| ∈ R : ∃k0 such that ∀k ⩾ k0: ||xk|| < ||x0|| =⇒ ||Ak · x0|| < ||x0|| =⇒

||Ak ·x0||2 < ||x0||2 =⇒ (x0)T ·A2·k ·x0 < (x0)T ·x0 =⇒ ∀x0 : (x0)T · (I−A2·k) ·x0 > 0.

Then matrix (I − A2·k) is positive definite=⇒ 1 − λ2·k(A) > 0 [15, 19] =⇒ −1 <

λ(A) < 1, for all the eigenvalues λ(A) of matrix A..

⇐=

Let −1 < λ(A) < 1,for all the eigenvalues λ(A) of matrix A. Then,

−1 < λmax(A) < 1. limk→∞ ||xk||2 = limk→∞ ||Ak · x0||2 = limk→∞(x0)T · A2·k · x0 ⩽

limk→∞ ||λmax(A)
2·k|| · ||x0||2 = 0,(A2 is positive definite matrix) =⇒

limk→∞ ||xk|| = 0.

Theorem 4. Let f(x) = 1
2
· xT · Q · x − b · x, where Q is a positive definite matrix.

Let the method xk+1 = xk − a ·D · ∇f(xk), where D is a positive definite matrix and

a > 0. The method converges to x∗ = Q−1 · b if and only if a ∈ (0, 2
L
), where L is the

maximum eigenvalue of the matrix D
1
2 ·Q ·D 1

2 .

Proof. Let xk+1 = xk − a ·D · ∇f(xk) (13).

(13) can be written as :

xk+1 − x∗ = (I − a ·D ·Q)(xk − x∗) ⇐⇒
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D− 1
2 · xk+1 −D− 1

2 · x∗ = D− 1
2 · (I − a ·D ·Q)(xk − x∗)

= (D− 1
2 − a ·D

1
2 ·Q) · (xk − x∗)

= (D− 1
2 − a ·D

1
2 ·Q ·D

1
2 ·D− 1

2 ) · (xk − x∗)

= (I − a ·D
1
2 ·Q ·D

1
2 ) · (D− 1

2 · xk −D− 1
2 · x∗)

Let yk = xk and y∗ = x∗. Then,

yk+1 − y∗ = (I − a ·D 1
2 ·Q ·D 1

2 ) · (yk − y∗).

Now, it is easy to see that xk+1 = xk − a ·D · ∇f(xk) converges to Q−1 · b if and only

if yk+1 − y∗ = (I − a ·D 1
2 ·Q ·D 1

2 ) · (yk − y∗) converges to 0

Let uk+1 = yk+1 − y∗ =⇒ uk = yk − y∗ and A = I − a ·D 1
2 ·Q ·D 1

2 . Then,

according to the previous observation the method converges if and only if ∀λ(A)

eigenvalue of matrix A: −1 < λ(A) < 1.

We will show that ∀λ(A) : −1 < λ(A) < 1 ⇐⇒ −1 < 1 − a · L < 1, where L is the

maximum eigenvalue of the matrix D
1
2 ·Q ·D 1

2 .

=⇒

∀λ(A) : − 1 < λ(A) < 1 =⇒ −1 < 1− a · L < 1.

⇐=

−1 < 1− a · L < 1 =⇒ ∀λ(D 1
2 ·Q ·D 1

2 ) : −1 < 1− λ(D
1
2 ·Q ·D 1

2 ). But, the matrix

D
1
2 ·Q ·D 1

2 is positive definite. As a result, ∀λ(D 1
2 ·Q ·D 1

2 ) : λ(D
1
2 ·Q ·D 1

2 ) > 0 =⇒

∀λ(D 1
2 ·Q ·D 1

2 ) : −1 < 1− λ(D
1
2 ·Q ·D 1

2 ) < 1. Consequently, the method converges

if and only if −1 < 1− a · L < 1 ⇐⇒ a ∈ (0, 2
L
).
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Now, we have the necessary tools to prove that the Parallel Best Response Mechanism

converges to a Nash Equilibrium. Let the matrices Qn×n, bn×1. As we have seen in

the first section Φ(x) = 1
2
· xT ·Q · xT − b · x+ c, where:

Qij =

 2 · (
∑

i ̸=j wij + wi) if i = j

−2 · wij if i ̸= j

bi = 2 · wi · si and c =
∑

i∈V wi · s2i .

Minimizing Φ(x) is equivalent as minimizing 1
2
· xT ·Q · xT − b · x. So, without loss of

generality we can set Φ(x) = 1
2
·xT ·Q·xT−b·x. Now, we can easily verify that the Par-

allel Best Response Mechanism is equivalent to the method xk+1 = xk−a ·D ·∇Φ(xk)

if a = 1 and D =



d1 0 · · · 0

0 d2 · · · 0

...
...

. . .
...

0 0 · · · dn


, di = (d

2Φ(xk)
(dxi)2

)−1 = 1
2·(

∑
i̸=j wij+wi

).

Because of the previous theorem we just need to show that: 0 < λmax(D
1
2 ·Q·D 1

2 ) < 2

Now, we will give a more clear form to the matrix D
1
2 ·Q ·D 1

2

D
1
2 ·Q ·D 1

2 = I −W where: Wij =


0 if i = j

wij√∑
k ̸=i wik+wi·

√∑
l̸=j wjl+wj

if i ̸= j

=⇒ λmax(D
1
2 ·Q ·D 1

2 ) = 1− λmin(W )
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It is easy to see that the matrix D
1
2 · Q ·D 1

2 is positive definite. Thus, its eigenval-

ues are positive. Then, in order to complete our proof, we just need to show that

λmin(W ) > −1.

Let Φ′(x) = −
∑
i<j

wij · (xi + xj)
2 −

∑
i

wi · x2
i

=
1

2
· xT ·Q′ · x,where Q′

ij =

 −Qij if i = j

Qij if i ̸= j

(1.1)

We have already assumed that for any connected component of our social network,

there exists wi > 0. (This is the minimum condition in order to differ from De Groot

model). Because of this assumption ∀x ∈ Rn : Φ′(x) < 0 ⇐⇒ xT ·Q′ ·x < 0 =⇒ Q′ is

a negative definite matrix . It is also easy to verify that since D
1
2 is a positive definite

matrix and Q′ is a negative definite matrix. Then, D
1
2 ·Q ·D 1

2 is a negative definite

matrix. Notice that D
1
2 ·Q′ ·D 1

2 = −I −W and consequently ∀λ(W ) : 1− λ(W ) <

0 =⇒ λmin(W ) > −1 (14).

(14) =⇒ −λmin(W ) < 1 =⇒ 1− λmin(W ) < 2 =⇒ 0 < λmax(D
1
2 ·Q ·D 1

2 ) < 2

Because D
1
2 ·Q ·D 1

2 is a positive definite matrix.

So we have proven that if all agents play at each round simultaneously it is certain

that they will end up to the unique Nash Equilibrium of the system.
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Chapter 2

De Groot model

2.1 Introduction

DeGroot model is one of the first models trying to descibe how the members of a

social network form an opinion according to a specific matter, we consider that the

opinion is a real number in [0, 1] [8, 13]. This opinion may denote the probability

voting for a specific party or whether it will rain a lot this year. The social network

is represented by a weighted directed graph G(V,E) at which each node represents a

node in the social network and the weight wij of each edge in the graph represents

the trust that node i has to node j(if the egde (ij) /∈ E we can consider wij = 0).

There can also exist self loops wii in the graph that represent the stubborness of each

node. Without loss of generality we consider that ∀i ∈ V :
∑

(ij)∈E wij = 1. At first

all the nodes have an initial opinion which is denoted by the vector x(0) and then at

each time step x(t+1) = T · x(t) ,where T is the updating matrix of the model. The
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underlying graph G(V,E) and the updating matrix T have an 1-by-1 relation.

Tij =

 wij if (i, j) ∈ E

0 if (i, j) /∈ E

The question that arise is: Will the agents converge to a specific opinion?

2.2 Markov chains and random walks

In this section, we will see some basic theory of Markov chains and random walks

that we will help to continue our analysis to the De Groot model[16]. Let a weighted

directed graph G(V,E) such that ∀i ∈ V :
∑

(ij)∈E wij = 1. A random walk on G is

the following process starting, which occurs in the sequence of discrete steps: Starting

at a vertex v0, at t=1 we select with probalility wij, one of the edges adjacent to v0

and we traverse it. In the next vertex, we repeat the previous process.

Definition 6. A finite discrete time Makov chain is a random walk on weighted

directed graph G(V,E) such that ∀i ∈ V :
∑

(ij)∈E wij = 1.

Now, let the random variables X0, X1, ... ∈ V such that

Pr[Xt = vi] = Pr[ the Markov chain be at vertex vi at time step t]

Then, Pr[Xt = vj|Xt−1 = vi] = wij =⇒ Pr[Xt = vj] =
∑

(ij)∈E wij · Pr[Xt−1 = vi].

Now, let the vector πt ∈ Rn×1 such that πi(t) = Pr[Xt = vi] and the matrix An×n

such that Aij = wij. It is easy to see that:

πT (t) = πT (t− 1) · A
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A is called the transition matrix and also notice that for a given graph G(V,E)

A = T where T is the matrix in the updating rule of De Groot model.

Definition 7. A stationary distribution π∗ is a stochastic vector such that

(π∗)T = (π∗)T · A.

As we have seen, πT (t) = πT (t− 1) · A. So, if such a π∗ exists and there exists t0

such that π(t0) = π∗. Then, ∀t ⩾ t0 : π(t) = π∗. As a result, if we start a Markov

chain with distribution over the vertices π∗ or at some time step the distribution

become π∗. Then, this distribution will hold forever. Someone can also observe that

π∗ depends only at the matrix A and not at the initial distribution π(0). Now, a very

important question arise. Under what conditions there exists a stationary distribution

at a given Markov chain? Before we continue, we will give some definition that are

necessary in order to continue.

Definition 8. A Markov chain is irreducible if and only if its underlying graph is

strongly connected.

Let the underlyig graphG of a given Markov chain and l1, l2, ..., lk are the lengths of

all directed cycles in graph G. Periodicity of the Markov chain is the gcd(l1, l2, ..., lk).

Definition 9. A Markov chain is aperiodic if and only if its periodicity is 1.

Now we will give the fundamental theorem of the Markov chains:

Theorem 5. Any finite, irreducible and aperiodic Markov chain with transition ma-

trix A:

• has a unique stationary distribution π∗.
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• for any initial distribution π(0): limt→∞(πT (0) · At) = π∗.

This above theorem tells us something really interesting. Let a Markov chain

which is finite, irreducible and aperiodic. If we let the chain procced for a long time,

then, we will have a distribution π∗ over the vetrices that is independent of the initial

distribution π(0).

2.3 Strongly connected case

In this section we will study a special case of De Groot at which the undelying graph

of the updating matrix T is strongly connected. A directed graph is strongly con-

nected if and only if ∀(u, v) ∈ V there exists a directed path from u to v. Notice that

in this case there are no opinion leaders(i ∈ V : Tii < 1). We present this case because

it is simple and it will help us to analyze the general case. As we will see consesus in

the society is possible and also notice that if there were two or more opinion leaders

(Tii = 1), consesus in the society wouldn’t be possible. As it is already said the major

questions that we are interested in are whether consesus in the society is possible and

whether there exists a time step at which all the agents adopt a specific opinion. We

will see that in this case the agents either adopt the same opinion or the don’t adopt

any opinion at all. Apparently, we would like to know the conditions under which the

agents end up to consesus, how fast do they converge to the conseus and of course a

way to compute this consesus.
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2.3.1 Convergence to consesus

From the previous section we already know that the updating matrix T can be viewed

as a trasition matrix of a Markov chain. From the fundamental theorem of Markov

chains, we know that if a Markov chain is irreducible and aperiodic. Then, for any

initial distribution π0, π
T
0 · limt→∞ T t = π∗, where π∗ is the stationary distribution.

Without abuse of notation we will say that an updating matrix T is strongly connected

and aperiodic if the underlyig graph is strongly connected and aperiodic. From now

on we will consider the updating matrix T as strongly connected without mentioning

it.

Observation 10. If the updating matrix T is aperiodic then T t converges and limt→∞ T t =

1n · (π∗)T , where 1n is the vector with 1.

Proof. Since T is strongly connected and aperiodic, the Markov chain with transition

martix T is irreducible and aperiodic. From Markov chains theory we know that

limt→∞ πT
0 · T t = (π∗)T , for every initial distribution π0. Now, let the distribution ui

such that ui(i) = 1 and 0 otherwise. Let also T t =



T t
1

T t
2

...

T t
n


.

Then,

∀i ∈ V : limt→∞ uT
i · T t = π∗ =⇒ ∀i ∈ V : T t

i = π∗ =⇒ limt→∞ T t = 1n · π∗

Now, we will give an example of this case. Let the social network with the updating
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matrix

T =


0 1

2
1
2

1 0 0

0 1 0


the graph of this matrix is illustrated in the following figure.

..1.

2

.

3

.

1/2

.

1/2

.

1

.

1

x(1) =


0 1

2
1
2

1 0 0

0 1 0

 ·


x1(0)

x2(0

x3(0

 , x(2) =


1
2

1
2

0

0 1
2

1
2

1 0 0

 ·


x1(0)

x2(0

x3(0



. It is easy to see that this matrix is strongly connected and aperiodic and that

T∞ =


2
5

2
5

1
5

2
5

2
5

1
5

2
5

2
5

1
5



Now, let x(∞) = limt→∞ T t · x(0) =


2
5
· x1(0) +

2
5
· x2(0) +

1
5
· x3(0)

2
5
· x1(0) +

2
5
· x2(0) +

1
5
· x3(0)

2
5
· x1(0) +

2
5
· x2(0) +

1
5
· x3(0)


The above example shows us not only a strongly connected and aperiodic matrix
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that converges, but also that a the 3-member social network that used this updating

matrix, finally adopted the same opinion.

Observation 11. Let a social network using DeGroot model with updating matrix T ,

which is strongly connected and aperiodic. Then, ∀i ∈ V : xi(∞) =
∑

i∈V π∗
i · xi(0),

where (π∗)T · T = (π∗)T .

Proof. From the previous observation we know that: limt→∞ T t = 1n · (π∗)T =⇒

x(∞) = limt→∞ T t · x(0) = 1n · (π∗)T =⇒ ∀i ∈ V : xi(∞) =
∑

i∈V π∗
i · xi(0)

Observations 10 and 11 are very important because they give the sufficient condi-

tions for convergence and consesus and at the same time it give us a closed form for

the opinion that the agents eventually adopt. But this not enough, we would like to

fully characterize the convergence in the case of a strongly connected updating matrix

T , which means that we want to find necessary and sufficient conditions. What we

will see later in this section is that, aperiodicity is also necessary condition in this

case. From now on we will focus in proving that if matrix T is not aperiodic then it

cannot be convergent.

Let a strongly connected updating matrix T , with periodicity d ⩾ 2 that converges.

Thus, limt→∞ T t = T ∗. Apparently, ∀x(0) ∈ Rn : limt→∞ T t · x(0) = T ∗ · x(0). What

we will do is that we will use the periodicity of T to construct an instance x(0) such

that T t · x(0) doesn’t converge. Before doing this we will give an observation that we

will help us with this construction.

Observation 12. Let a stongly connected matrix updating matrix T , which has peri-

odicity d ⩾ 2. Now let n∗ ∈ V and A0, A1, ..., Ad−1 ⊆ V such that n ∈ Ai if and only

if length(path(n∗, n)) ≡ i mod d. Then, A0, A1, ..., Ad−1 is a partition of V .
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Proof. Since the T is strongly connected then it is certain that ∀n ∈ V there exist a

path form n∗ to n. Thus, ∀n ∈ V : ∃i ∈ {0, d − 1} such that n ∈ Ai. Now, we just

have to show that there if n ∈ Ai then n /∈ Aj, ∀j ̸= i.

By definition gcd(C1, C2, ..., Ck) = d ⩾ 2 where C1, C2, ..., Ck are the directed cycles

of the graph. Let a path pn1→n2 from n1 to n2 such that length(pn1→n2) ≡ i mod d.

Then, there exists a path p′n2→n1
form n2 to n1(T is stongly connected) such that

length(p′n1→n2
) ≡ (d−i) mod d. This holds because let the sequence of nodes Pn1→n1 =

(pn1→n2 , p
′
n2→n1

) (notice that Pn1→n1 is not a cycle because it is possible that some

nodes are repeated). Then, if we shrink all the cycles contained into Pn1→n1 we will

get P ′
n1→n1

,which is obviously a cycle =⇒ length(P ′
n1→n1

) = a′ · d. But, the lengths

of all the cycles that we removed from Pn1→n1 are also multiples of d. As a result,

length(Pn1→n1) = a · d =⇒ length(p′n2→n1
) ≡ (d− i) mod d.

Now let n ∈ Ai, Aj, i > j then there exists a path p1(n∗→n) with length(p1(n∗→n)) ≡

imod d and consequently a path p′1(n→n∗) with length(p′1(n∗→n)) ≡ (d−i) mod d. There

exists also a path p2(n∗→n) with length(p2(n∗→n)) ≡ j mod d, as also a path p′2(n→n∗)

with length(p′2(n∗→n)) ≡ (d−j) mod d. Then Pn∗→n∗ = (p1(n∗→n), p
′
2(n→n∗)), which has

length a · d + (i− j). With the same argument as above, if we remove all the cycles

of Pn∗→n∗ we will get a cycle a cycle P ′
n∗→n∗ , with length(P ′

n∗→n∗) ≡ (i − j) mod d.

Something that contradicts the periodicity d of the matrix T . As a result, we have

proven that A0, A1, ..., Ad−1 is a partition of V .

Now, we are ready to give the proof that the periodicity is a necessary condition

for convergence.

Observation 13. Let T be a strongly connected updating matrix. If T has periodicity
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d ⩾ 2 then T doesn’t converge.

Proof. Let x(t) = T · x(t− 1) = T t · x(0). As we have already discussed we just need

to find a x(0) ∈ Rn so as x(t) doesn’t converge. Let a n∗ ∈ V and A0, A1, ..., Ad−1 a

partition of V , as was defined in the previous observation. Notice that n∗ ∈ A0 and

that ∀i ∈ V : Tii = 0 since T has periodicity d ⩾ 2. Let xi(0) =


1

|A0| if i ∈ A0

0 otherwise

.

We can imagine that xi(t) is a quantity of “money” that node i has at time step

t. Then at t + 1 node i tranfers all of its money to its neighbours proportionally to

Tij. Observe that since Tii = 0 then noone of the nodes keeps money for himself and

that the total amount of money in the network remains always 1. Since each node

belongs to a unique Ai and all nodes of Ai give all their money to the nodes of Ai+1.

We can see that the total amount of money is tranferred at time step t ≡ (i+1) mod d

from Ai to Ai+1. All nodes in Ai remain moneyless until t = i mod d at which Ai−1

gives to Ai. Now let limt→∞ x(t) = x∗. Then limt→∞ xAi
(t) = x∗

Ai
, where xAi

(t) is the

vector denoting the money each node in Ai has at time step t. As we have explained

xAi
(t)

 ̸= 0 if t ≡ i mod d

= 0 otherwise

But in this case xAi
(t) can only converge to 0: ∀i ∈ {0, d−1} : limt→∞ xAi

(t) = 0 =⇒

limt→∞ x(t) = 0 something that is impossible because ∀t :
∑

∀i∈V xi(t) = 1. Thus,

our assumption that x(t) converges doesn’t hold. Since we can find such a x(0) ,such

that T t · x(0) doesn’t converge, for every strongly connected updating matrix T with

periodicity d ⩾ 2. Then, if T is not aperiodic then it doesn’t converge.

Finally, we can express our final theorem that fully describes the case of the
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strongly connected matrix T .

Theorem 6. A strongly connected updating T converges if and only if T is aperiodic.

Proof. The proof of this Theorem is a direct implementation of observation 11 and

observation 13.

The last Theorem also show us that the DeGroot model in this case converges if

and only if the updating matrix T is aperiodic.

2.3.2 Convergence rate to Consensus

We just have seen that if the updating matrix T is strongly and connected and

aperiodic, then the social network converges to a consesus. Apparently, we would

like to know how much time do the society members need in order to reach consesus?

This is the question that we will try to answer in next lines. From now one, we will

consider matrix T as strongly connected and aperiodic.

Since T is a stochastic matrix, strongly connected and aperiodic then from Perron-

Frobenius Theorem it follows that [19]: 1 = λ1 > |λ2| ⩾ ... ⩾ |λn|, where λi are the

eigenvalues of the matrix T . According to eigendecomposition

T = U−1 · Λ · U

, where Λ is the diagonal matrix with entries the eigenvalues of T and U is the matrix

of corresponding row eigenvectors. It follows that:

T t
ij = π∗

j +
∑
k⩾2

λt
k · U−1

ik · Ukj =⇒
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xi(t) =
∑
j∈V

T t · xj(0) +
∑
j∈V

xj(0) ·
∑
k⩾2

λt
k · U−1

ik · Ukj =⇒

|xi(t)− xi(∞)| = |
∑
j∈V

xj(0) ·
∑
k⩾2

λt
k · U−1

ik · Ukj|

⩽
∑
j∈V

xj(0) · |
∑
k⩾2

λt
k · U−1

ik · Ukj|

⩽
∑
j∈V

xj(0) · |λ2|t · |
∑
k⩾2

·U−1
ik · Ukj|

⩽ C ′ ·
∑
j∈V

xj(0) · |λ2|t

⩽ C · |λ2|t

Thus, the convergence rate is |λ2|, noticy that the λ2 may be complex number, but

we know that |λ2| < 1.

2.3.3 Social Influence

Let us consider the following scenario: We have to two different parties the democrats

and the republicans. Each of the voters has to vote either the democrats or the

republicans. Let also xi(t) ∈ [0, 1] denotes the probalility agent i votes for the

republicans if the elections took place at time step t. We also consider that the

voters updates their probabilities at each time step according to the DeGroot model,

with an updating matrix T that is strongly connected and aperiodic. From the

previous analysis we already know that if the voters have enough time to update

their probabilities before the elections then:

E[# votes for the republican] = n ·
∑
i∈V

xi(0) · π∗
i

,where (π∗)T ·T = (π∗)T . Apparently, republicans want to maximize n·
∑

i∈V xi(0)·π∗
i

and the democrats want to minimize it. Now, consider the following problem: The
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republicans have the chance to bride a voter so xi(0) = 1. The problem is which voter

is the best to bride?

Since ∀i ∈ V : xi(∞) =
∑

i∈V π∗
i · xi(0) the influence in the consesus of each node is

π∗
i . Apparently, in order to maximize the n ·

∑
i∈V xi(0) · π∗

i we just need the voter

that maximizes (1− xi(0)) · π∗
i . Also notice that (π∗)T · T = (π∗)T , thus (π∗)T is the

left unit eigenvector, which can be computed at O(n3). More generally the vector

π∗ not only gives as a way to compute the consesus, but also its entries describe the

influence of each node at the final opinion. Trivially, the most influential node is the

one, whose entry in π∗ is the maximum. Thus, we have found an easy way to measure

centrality in a social network.

2.4 The Stubborn case

In the previous section, we have examined a special case of the DeGroot model, a case

at which the undelying graph of the updating matrix T was strongly connected. We

have managed to show that aperiodicity of T is necessary and suficient conditions for

convergence and that convergence and consesus are equivalent. Apart from that, it

was shown that the consesus opinion is a linear combination of the initial opinions of

the nodes, providing also a efficient way to compute the influence of each of them at

the final common opinion. Although all these are really positive, it is easy for someone

to understand that the assumption that the undelying graph is strongly connected

is really strong. To understand that, imagine that if only one of the agents were

stubborn(Tii = 1) the graph wouldn’t be strongly connected and our previous analysis
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collapse. The reason that we have analyzed so much this special case is that it will

help us to deal with the general case. In this section we introduce stubborness to our

analysis. At first we will see another special case which is somehow the complement

of the previous case. Then, combining the results of these two special cases it will be

really easy to understand the DeGroot model in all its generality.

2.4.1 Opinion leaders

Now in this special case we will not demand that the updating matrix is strongly

connected. On the contrary our assumption is that there are two types of nodes the

leaders and the followers [20]. In a more formal way the node i ∈ L(Leaders) ⇐⇒

Tii = 1 and i ∈ F (Followers) ⇐⇒ Tii < 1. We also assume that ∀i ∈ F there is at

least one node j ∈ F such that there is directed path from node i to node j. From now

one we will consider that the updating matrix T fullfils the two previous properties.

Until now, we can notice two interesting facts 1) the updating matrix T is aperiodic

2) there are no closed and strongly connected groups of followers. Rember that a

group of nodes C ⊆ V is a closed if and only if ∀i, j : i ∈ C, j /∈ C then (i, j) /∈ E.

Another interesting observation is that consesus is not possible in this case because

the leaders never change their initial opinion. Although consensus is not possible,

we would like to know if each node adopts a specific opinion. This leads us to two

questions: Is there an opinion vector x∗ sucn that x∗ = T · x∗? If there is such an

opinion vector. Will the agents converge to x∗? if they constantly update their opin-

ions according to the update martix T .

Let xF (t), xL(t) denote the opinion vector of the followers and the leaders respec-
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tively. Without loss of generality xT (t) = (xF (t), xL(t))
T and T =

T11 T12

0 I


where T11 are the weights between the followers, T12 are the weights that followers

pose to the leaders and I = I|L|×|L|.

Observation 14. x∗ =

(I− T11)
−1 · T12

I

 · xL(0)

Proof. By definition x∗ = T · x∗ ⇐⇒

 x∗
F = T11 · x∗

F + T12 · x∗
L

x∗
L = xL(0)

The matrix I− T11 is substochastic and thus it is reversible. As a result:

x∗ =

(I− T11)
−1 · T12

I

 · xL(0)

Until now, we have proven that there exists an opinion vector x∗, which is stable.

We can understand that this is not enough we would like to know whether the nodes

will reach to x∗ if they follow the DeGroot model. What we will prove is that

limt→∞ T t =

0 (I− T11)
−1 · T12·

0 I

 ,which is implies that limt→∞ x(t) = x∗.

In order to do this we will use some Markov chain theory, which we have already seen.

Observation 15. The matrix T t
11 converges and limt→∞ T t

11 =


0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


Proof. Let the Markov chain with transition matrix the matrix T . In terms of Makov

chain theory the leaders are called absorbing states because once the chain reaches
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such a state, it remains there. Now, it is easy to see that for non absorbing states it

holds that:

pTF (t) = pTF (t− 1) · T11 = pTF (0) · T t
11

,where pTF (t) is the probalility vector of the non absorbing states.

Now from our assumption in the beginning of this section, every follower is connected

with a directed path to at least one leader. We have already observed that this

implies that there are no closed and strongly connected groups of followers. The

interpretation of this to the Markov chain theory implies that if the Markov chain

starts at non absorbing state it is certain that it will end up to an absorbing state.

As a result:

∀i ∈ {1, |F |} : lim
t→∞

uT
i · T t

11 = lim
t→∞

pTF (t) = 0, where uij =

 1 if j = i

0 if j ̸= i

=⇒ lim
t→∞

T t
11 =


0 0 · · · 0

...
...

. . .
...

0 0 · · · 0



Now let’s return to the updating matrix T . As we have seen T =

T11 T12

0 I

.

It is easy to see that T t =

T t
11 K(t)

0 I

 andK(t+1) = T t
11·T12+K(t) =

∑t
i=0 T

i
11·T12

Now we have just to prove that the matrix K(t) converges.

Observation 16. The matrix K(t) converges and limt→∞ K(t) = (I − T11)
−1 · T12
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Proof. Firstly we will prove that
∑∞

i=0 T
t
11 converges.

I − T t+1
11 =

∑t
i=0 T

i
11 − T11 ·

∑t
i=0 T

i
11 = (I − T11) ·

∑t
i=0 T

t
11 =⇒

(I − T11) · limt→∞
∑t

i=0 T
t
11 = limt→∞(I − T t+1

11 ) = I, which holds because of the

Observation 14. =⇒ limt→∞
∑t

i=0 T
t
11 = (I − T11)

−1 (We have already proven that

(I − T11) is a reversible matrix). As a result:

lim
t→∞

K(t) = (I − T11)
−1 · T12

Using the previous two observation we can see that

lim
t→∞

T t =

0 (I − T11)
−1 · T12

0 I


As a result we have proven that in this case that each of nodes converges to a specific

opinion.

2.4.2 DeGroot model(general case)

Having the previous two specific cases in mind, we are ready to handle the general

case of DeGroot. We already know that consesus is not generally possible, but we

would like to know if each of the nodes converge to a specific opinion. Having already

obtained some intuition on the model, we will give a theorem that fully describes

convergence in the general case [11].

Theorem 7. The updating matrix T converges if and only if each closed and strongly

connected subset of the nodes is aperiodic.
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Proof. =⇒ It is quite simple to prove this direction of the Theorem. Since T is con-

vergent then every subset of the nodes is aperiodic. A closed and strongly connected

group can be viewed as a separate social network, which is strongly connected. We

have proven that since this social network is strongly connnected and convergent then

it is aperiodic.

⇐= Let an update matrix T and B1, B2, ..., Bk are the closed and strongly connected

groups of nodes in the social network. Notice that a leader(Tii = 1) is also a closed

and strongly connected group. If ∀i ∈ {1, k} : Bi is aperiodic, then the nodes in Bi

will reach a consensus, which is a linear combination of their initial opinions xi(0),

let this opinion be x{Bi}(0). Without loss of generality

T =

T11 T12

0 T22

 ,where T22 =



TB1 0 · · · 0

0 TB2 . . . 0

...
...

. . .
...

0 0 · · · TBk


Also notice that ∀i ∈ {1, k} : limt→∞ T t

Bi
= T ∗

Bi
and consequently limt→∞ T t

22 =

T ∗
22. Now, let’s shrink all the closed and strongly connected groups to single stubborn

nodes(leaders). Thus, we have another social network with updating matrix T ′, which

is the case described in (1.4.1), since there are leaders and there doesn’t exist a closed

and strongly connected group of followers. Using the previous notation F denotes

the set of the followers, L′ denotes the set of the leaders and L ≡ B1 ∪ · · · ∪ Bk.

Observe that :
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xF (t)

xL(t)

 = T ·

xF (t− 1)

xL(t− 1)

 and

xF (t)

x′
L(t)

 = T ′ ·

xF (t− 1)

x′
L(t− 1)



,where T ′ =

T11 T ′
12

0 I



Let x(0) ∈ [0, 1]n we construct a x′(0) ∈ [0, 1]n as follows: x′
F (0) = xF (0) and

x′
Li(0) = x{Bi}(0) (x{Bi}(0) is defined above). From (1.4.1) we know that:

lim
t→∞

xF (t) = (I− T11)
−1 · T ′

12 · x′
L(0)

= (I− T11)
−1 · T12 · T ∗

22 · xL(0)

We also know that: limt→∞ xL(t) = limt→∞ T t
22 · xL(0) = T ∗

22 · xL(0). As a result:

∀x(0) ∈ [0, 1]n : lim
t→∞

x(t) = lim
t→∞

T t · x(0) =

0 (I− T11)
−1 · T12 · T ∗

22

0 T ∗
22

 · x(0) =⇒

lim
t→∞

T t =

0 (I− T11)
−1 · T12 · T ∗

22

0 T ∗
22


So finally we have proven that if each closed and strongly connected group of nodes

is aperiodic, then T t converges.

As a result we have found necessary and sufficient conditions for the convergence

of the DeGroot model. Notice that we can check in polynomial time whether all the

closed group of the updating matrix are aperiodic. Thus, it is easy to know whether

an updating matrix converges or not. We can alsoo see that The convergence rate
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to the opinion vector x∗ is as in the previous case λ2(T ) and the proof remains the

same.
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Chapter 3

Decentralized Opinion model

3.1 Introduction

In the previous section, we have seen the Kleiberg-Bindel model in which each agent

has an internal opinion si ∈ [0, 1] and can adopt an opinion xi ∈ [0, 1]. It is easy to

argue that although it is possible each agent has an internal opinion si ∈ [0, 1], it is

not always possible to adopt an opinion xi ∈ [0, 1]. Elections is a very good example

of this case, because each voter can have an internal opinion si ∈ [0, 1], denoting that

voter i is a fan of the republicans with degree si and 1 − si fan of the democrats.

However at the elections he cannot split his vote a si and 1− si, he has to vote only

for one of them. Decentralized opinion dynamics model proposed by Ferroli,Goldberg

and Ventre tries to capture this case [9]. More formally in this model each agent i

has an internal opinion si ∈ [0, 1], there is an undirected graph G(V,E) representig

the structure of the social network. Each agent i can adopt an opinion xi ∈ {0, 1}
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and the cost for choosing opinion xi is:

Ci(x) = (xi − si)
2 +

∑
(i,j)∈E

(xi − xj)
2

Obviously each agent wants to minimize its cost. We give some defintions that help

us simplify our notation. Let Nxi be all the neighbours of agent i which have the

same opinion with agent i. Let Nxi be all the neighbours of agent i which have the

oposite opinion of player i and xi be the opposite of player ’s i strategy. It’s trivial

that:

Ci(x) = (xi − bi)
2 +Nxi

Respectively we define the social cost function :

SC(x) =
∑
i∈V

Ci(x) =
∑
i∈V

(xi − bi)
2 + 2D(x)

where D(x) is the number of discording edges in opinion vector x.

Now we have a complete view of this model, which can be viewed as a rounded case of

the Kleiberg-Bindel model. In the latter, we have seen that the PoA = 9
8
, something

very positive since all the N.E. are very close to the optimal solution. Unfortunately,

this doesn’t hold in this model and in the next theorem is proved that the PoA = ∞.

Theorem 8. the Price of Anarchy (PoA) of this game is ∞.

Proof. Let our instance be a ring graph such that

∀i : si = 0

It is trivial that the optimal strategy profile is that all agents adopt 0. Now con-

sider the strategy profile in which all agents play 1. This opinion vector is a Nash
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Equilibrium because each agent i has personal cost Ci(x) = 1 and if he changes his

strategy to 0 his personal cost will be 2 (there are 2 neighbours that play 1). Let

this strategy profile be y =⇒ SC(y) = n, where n is the number of the players.

Apparently, the optimal opinion profile is that ∀i ∈ V : xi = 0 =⇒ OPT = 0. Thus,

PoA ⩾ SC(y)
OPT

= ∞ =⇒ PoA = ∞

Apart from knowing the PoA of this model, we are also interested in finding an

efficient way to compute the equilibrium of this model. In the previous chapter, it was

proved that the Kleiberg-Bindel model has a potential function and in order to find

the Nash Equilibrium, we had just to find the minimum of the potential function.

In this model, there is also a function Φ(x) such that Φ(xi, x−i) − Φ(xi, x−i) =

Ci(xi, x−i)−Ci(xi, x−i), which means that Φ(x) is a potential function of this game.

Observation 17. The decentralized opinion formation game is a potential game with

potential function

Φ(x) =
∑
i∈V

(xi − si)
2 +D(x)

Proof. Let Φ(x) =
∑

i∈V (xi − si)
2 +D(x) =⇒

Φ(xi, x−i)− Φ(xi, x−i) = (xi − si)
2 +D(xi, x−i)− (xi − si)

2 −D(xi, x−i)

= (xi − si)
2 − (xi − si)

2 +Nxi
+D−i(xi, x−i)−Nxi

−D−i(xi, x−i)

= (xi − si)
2 +Nxi

− (xi − si)
2 −Nxi

= Ci(xi, x−i)− Ci(xi, x−i)

,where D−i(xi, x−i) is the number of discording edges apart from those that belong

to node i. Thus Φ(x) = Ci(xi, x−i)− Ci(xi, x−i)
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Now, it easy to understand that an opinion profile x ∈ {0, 1} is a N.E. if and only

if x is a local or global minimum of Φ(x). In our case the potential function is defined

over all the the possible opinion vectors x ∈ {0, 1}n. Since |{x : x ∈ {0, 1}n}| = 2n

it is certain that Φ(x) has at least one minimum. As a result, the existence of the

potential function implies the existence of a N.E. of this model.

Notice that when a node i updates its opinion in order to reduce its personal cost

the value of the potential function is reduced. This property holds for every game

having a potential function, but this model has an additional property which is very

important. When an agent i reduces his personal cost not only the potential function,

but also the social cost fuction SC(x) reduces. This property is proved in the next

observation.

Observation 18. If Ci(xi, x−i) > Ci(xi, x−i) then SC(xi, x−i) > SC(xi, x−i)

Proof. At first we prove that if Ci(xi, x−i) > Ci(xi, x−i) then Nxi ⩽ Nxi.

Let Nxi > Nxi =⇒ Nxi ⩾ Nxi + 1 ⩾ (xi − si)
2 + Nxi =⇒ (xi − si)

2 + Nxi ⩾

(xi − si)
2 +Nxi =⇒ Ci(xi, x−i) ⩾ Ci(xi, x−i).

So if Ci(xi, x−i) > Ci(xi, x−i) then Nxi ⩽ Nxi. As a result there are two case:

• Nxi = Nxi

Ci(xi, x−i) > Ci(xi, x−i) =⇒ (xi − si)
2 > (xi − si)

2 =⇒

(xi − si)
2 +

∑
j ̸=i

(xj − sj)
2 + 2 ·D−i(xi, x−i) + 2Nxi >

(xi − si)
2 +

∑
j ̸=i

(xj − sj)
2 + 2 ·D−i(xi, x−i) + 2Nxi

=⇒ SC(xi, x−i) > SC(xi, x−i)
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• Nxi > Nxi =⇒

Nxi ⩾ Nxi + 1 =⇒

2 ·D(xi, x−i) ⩾ 2 ·D(xi, x−i) + 2

It is also easy to verify that

(xi − si)
2 − (xi − si)

2 ⩾ −1

Adding the two previous inequalities we have

(xi − si)
2 + 2 ·D(xi, x−i) ⩾ (xi − si)

2 + 2 ·D(xi, x−i) + 1 =⇒

SC(xi, x−i) > SC(xi, x−i)

Consequently, if Ci(xi, x−i) > Ci(xi, x−i) then SC(xi, x−i) > SC(xi, x−i)

Previously, we proved that the Price of Anarchy (PoA) of the game is ∞, which

means that there is a N.E. that has a great social cost in respect to the optimal

solution. Let us introduce the notion of the Price of Stability (PoS). The Price of

Stability is the fraction of the social cost of the N.E. with the smallest social cost and

the optimal social cost of the game. (PoS = SC(Nash Equilibrium wih the smallest cost)
OPT

). It is

easy to see that for every game PoS ⩾ 1 and PoA ⩾ PoS. Although in this model

the PoA = ∞, the PoS = 1 which means that the optimal opinion profile is a N.E.

(notice that this doesn’t hold in the Kleiberg-Bindel model).

Observation 19. the Price of Stability (PoS) = 1

Proof. Because of the previous observation it is easy to see that if SC(xi, x−i) ⩽

SC(xi, x−i) then Ci(xi, x−i) ⩽ Ci(xi, x−i). Let y be the optimal opinion profile.

By definition ∀i: SC(yi, y−i) ⩽ SC(yi, y−i) =⇒ ∀i: Ci(yi, y−i) ⩽ Ci(yi, y−i) so the

optimal profile is also a Nash Equilibrium. Thus, PoS = 1.
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3.2 Best Response Dynamics

From the the previous section, we already know that the Decentralized Opinion model

always admits a Nash Equilibrium. As before we would like to know whether there

exists a mechanism that garantees the convergence of the agents at a Nash Equilib-

rium. In this section, we will examine the Best Response mechanism that garantees

the convergence of the agents to a Nash Equilibrium after a polynomial number of

steps.

We assume that at each time step only one player plays a move and this move is

always his best response. At first we prove that from any initial state the agents

converge to a Nash Equilibrium at a finite number steps.

Observation 20. From any initial state x0 the Best Response Dynamics will reach

a N.E. after a finite number of steps.

Proof. Consider a directed G(V ,E) in which each node x ∈ V corresponds to an

opinion vector x ∈ {0, 1}n. Obviously there are 2n nodes. There are acres only from

node (xi, x−i) to node (xi, x−i) if and only if Φ(xi, x−i) > Φ(xi, x−i). Apparently there

are no cycles in G because let a cycle y1, y2, ..., yk. By definition Φ(y1) > Φ(y2) >

... > Φ(yk) > Φ(y1) which is impossible. As a result x is a DAG and there are

nodes that are sinks. All the sinks in this graph correspond to N.E. because the are

node acres starting from them, which by definition means that ∀i ∈ V : Φ(xi, x−i) ⩽

Φ(xi, x−i). The initial state x0 of our system is either a sink(N.E.) or a normal

node. A best response move from agent i at state x corresponds to traversing the

acre
−−−−−−−−−−−−−→
((xi, x−i), (xi, x−i)). Because there are no cycles in the graph and the number of

nodes is finite, after a finite number of best response moves we will end up at a sink,
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which is a N.E.

Theorem 9. The Best Response Dynamics converges to a N.E. after a polynomial

number of steps.

Proof. Let an opinion vector x = (xi, x−i) and an agent i with si ∈ (1
2
, 1). It is easy

to verify that agent’s i best response is: α ∈ {0, 1} , Nα > Nα

1 , Nxi = Nxi

As a result agent i plays the same moves as if si were
3
4
.

Respectively if si ∈ (0, 1
2
), agent’s i best response is: α ∈ {0, 1} , Nα > Nα

0 , Nxi = Nxi

As a result agent i plays the same moves as if bi =
1
4
.

Now assume that we round each si ∈ (0, 1
2
) to 1

4
and si ∈ (1

2
, 0) to 3

4
. We can now

see in both rounded and unrounded casse agent i take the exact same decision. As

a result, the state graphs of the both cases are the same because not only the states

are the same, but also the acres that connect them.

Let the longest directed path in the state graph G of the game from a node x0 to a

sink node x1 with length Pmax. We can observe that Pmax is the maximum number of

times steps needed to reach a N.E from any initial state, which is the same for both

rounded and unrounded case.
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Let’ s take the rounded case:

Φ(x0)− Φ(x1) ⩾ Pmax ·∆Φmin

Φ(x) =
∑
i∈v

(xi − bi)
2 +D(x) ⩽ n2 + n =⇒

Pmax ·∆Φmin ⩽ n2 + n

∆Φmin =
1

16
=⇒

Pmax ⩽ 16(n2 + n)

So the maximum path length from any node to a leaf is polynomial as a result the

number of steps of best-response dynamics to a N.E. is also poynomial.

3.3 Bounding the PoA by Best Response

We have already seen that the PoA is unbounded for this game. In this section we

will describe a best reponse mechanism that leads to Nash Equilibrium with bounded

Price of Anarchy.

More precisely: Let a random sequence of the nodes p = (p1, p2, ..., pn) at each time

step only one agents plays according to this sequence. We assume that all agents

always play their best response move and at the first time step each agent i plays: 0 , si ⩽ 1
2

1 , si >
1
2

According to observation 20 the agents will converge always to a Nash Equilibrium

since at each time step the potential function is reduced. Let xp ∈ {0, 1}n be the
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Nash Equilibrium at which the agents converge if they play according to the above

mechanism with permutation p. We will bound the above the SC(xp) in respect to

the OPT and n, which is the number of agents.

Theorem 10. Let xp be the N.E. in which the agents converge using the previous

mechanism with permutation p. Then, SC(xp)

OPT
⩽ 8 · n− 6

Proof. Let St be the state of the system at time step t. Notice that S0 = (sp1, sp2, ..., spn).

In observation 18 it is proven that when an agents plays his best response move the

social cost is reduced. As a result: SC(St+1) < SC(St) =⇒ SC(St)
OPT

⩽ SC(S0)
OPT

=⇒

SC(xp)

OPT
⩽ SC(S0)

OPT

Now we have just to bound the SC(S0)
Opt

.. Before continuing let us give some definitions:

• A0 be the set of players i that play 0 in the optimal solution and bi ⩽ 1
2

• A1 be the set of players i that play 1 in the optimal solution and bi ⩽ 1
2

• B0 be the set of players i that play 0 in the optimal solution and bi >
1
2

• B1 be the set of players i that play 1 in the optimal solution and bi >
1
2

we also define:

• D(x) be the set of the discording edges in the strategy profile x.

• (A ·B) be the number of edges (i, j) : i ∈ A and j ∈ B
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SC(S0)

SC(OPT )
=

∑
i∈A0

b2i +
∑

i∈A1
b2i +

∑
i∈B0

(1− bi)
2 +

∑
i∈B1

(1− bi)
2 + 2|D(S0)|∑

i∈A0
b2i +

∑
i∈A1

(1− bi)2 +
∑

i∈B0
b2i +

∑
i∈B1

(1− bi)2 + 2|D(OPT )|

⩽ 1 +

∑
i∈A1

b2i +
∑

i∈B0
(1− bi)

2 + 2(A0 ·B0) + 2(A1 ·B1)∑
i∈A1

(1− bi)2 +
∑

i∈B0
b2i + 2(A0 · A1) + 2(B0 ·B1)

⩽ 1 +
|A1|
4

+ |B0|
4

+ 2(A0 ·B0) + 2(A1 ·B1)
|A1|
4

+ |B0|
4

⩽ 2 + 8 · |A0||B0|+ |A1||B1|
|A+ 1|+ |B0|

⩽ 2 + 8 · (|A0|+ |B1|)

⩽ 2 + 8 · (n− 1)

⩽ 8 · n− 6

without loss of generality we assume |A0| + |B1| ⩾ 1, otherwise |A0| = |B1| = 0 and

SC(S0)
SC(Opt)

= 1. So finally we have proven that SC(S0)
OPT

⩽ 8 · n− 6 =⇒

SC(xp)

OPT
⩽ 8 · n− 6

The last theorem tells us that although the PoA of this model is unbounded, if

agents play reasonably the will avoid ending up to the really “bad′′ equilibriums.

3.4 Computing Nash Equilibriums

The problem of computing an equilibrium for a game with two or more players is

PPAD-complete, which means that the existence of an algorithm that solves the

problem polynomially in its generality is quite unlikely [7]. However in our case, we

have already found a polynomial algorithm that computes a Nash Equilibrium for our
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problem. We just let the players play according to the mechanism that we described

in the previous section and they will reach a N.E. at O(n2) steps. Notice that if

we want find the optimal opinion vector, which is also a N.E. the above algorithm

fails. Because we have no idea whether the N.E. that the players converge is the

optimal. In this section we provide an algorithm for the optimal opinion profile and

a similar algorithm for computing equilibriums at which two specific nodes adopt

opposite opinions. Notice that in this model there are at least two equilibriums. This

holds because if an opinion vector is a N.E. it is easy to prove that the opinion profile

x∗ which is the dual complement of x∗ is also a N.E.

3.4.1 Computing the optimal Nash Equilibrium

Now we provide the algorithm for the optimal Nash Equilibrium. We show that the

problem can be reduced to an equivalent max-flow/min-cut problem to a specially

constructed directed graph.

Let the underlying graph G(V,E) of the social network. We construct a directed

graph G′(V ′, E ′) in the following way:

1. ∀i: i ∈ V we construct a node i′ ∈ V ′, we also add two additional nodes 0 and

1.

2. ∀(i, j) ∈ E we construct an edge
−−→
(i, j) ∈ E ′ and an edge

−−→
(j, i) ∈ E ′ both with

capacity 2.

3. ∀i′: i′ ∈ V ′: we add an edge
−−−→
(0, i′) with capacity (1 − b2i ) and an edge

−−−→
(i′, 1)

with capacity b2i
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Observation 21. Let a max-flow/min-cut from node 0 to node 1 in G′. If the nodes

that belong in the same set with the node 0 adopt 0 and the nodes that belong in the

same set with the node 1 adopt 1, then we have the optimal equilibrium.

Proof. Let the OPT < min− cut from 0 to 1. Let the sets A,B be the sets of agents

that play 0 and 1 respectively in the optimal equilibrium and S the set of edges

between the nodes of A and B. Apparently:

OPT =
∑
i∈A

b2i +
∑
i∈B

(1− bi)
2 + 2|S|

The optimal equilibrium defines a cut in G′ with the sets A′ = A∪{0} and B′ = B ∪

{1}. By definition ofG′ the weight of this cut is
∑

i∈A′ b2i+
∑

i∈B′(1−bi)
2+2|S| because

for each edge (i, j) ∈ E there is an edge
−−→
(i, j) ∈ E ′ with capacity 2. Consequently

OPT ⩾ min− cut(G′) (1).

Reversively, the min-cut of G′ defines a solution y for our game where agent i plays

0 if he belongs in the same set with node 0 and 1 if he belongs in the same set with

the node 1. Thus, min− cut(G′) = SC(y) ⩽ OPT (2)

(1), (2) =⇒ SC(y) = OPT

As a result, OPT = max-flow from node o to node 1

So we have a polynomial algorithm for computing the optimal equilibrium.

3.4.2 Computing an Equilibrium in which two specific agents

play 0 and 1

Before closing this chapter we will provide an algorithm for the following problem:

Let the underlying graph G(V,E) of a social network whose nodes play according the
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Decentralized opinion model. We want to find a N.E. such that nodes i1, i2 play 0 and

1 respectively. The general idea is the same as before, we will reduce this problem to

min-cut problem in an appropriate directed graph G′(V ′, E ′). As we described before

we construct from a graph G(V,E) a directed graph G′(V ′, E ′) as follows:

1. For each i ∈ V we add an edge
−−−→
(i1, i) ∈ E ′ and

−−−→
(i, i2) ∈ E ′ with capacity

c(
−−−→
(i1, i)) = (1− bi)

2, c(
−−−→
(i, i2)) = b2i if (i1, i) /∈ E and (i, i2) /∈ E

2. if (i1, i) ∈ E and (i, i2) /∈ E then we add an edge
−−−→
(i1, i) ∈ E ′ and

−−−→
(i, i2) ∈ E ′

with c(
−−−→
(i1, i)) = 2 + (1− bi)

2 and c(
−−−→
(i, i2)) = b2i

3. if (i1, i) /∈ E and (i1, i) ∈ E then we add an edge
−−−→
(i1, i) ∈ E ′ and

−−−→
(i, i2) ∈ E ′

with c(
−−−→
(i1, i)) = (1− bi)

2 and c(
−−−→
(i, i2) = 2 + b2i

4. if (i1, i) ∈ E and (i1, i) ∈ E then we add an edge
−−−→
(i1, i) ∈ E ′ and

−−−→
(i, i2) ∈ E ′

with c(
−−−→
(i1, i)) = 2 + (1− bi)

2 and c(
−−−→
(i, i2)) = 2 + b2i

5. for each egde (i, j) ∈ E with i, j ̸= i1, i2 we add the edges
−−→
(i, j),

−−→
(j, i) ∈ E ′ with

c(
−−→
(i, j)) = c(

−−→
(j, i)) = 2

Observation 22. The max-flow/min-cut from node i1 to node i2 in the directed graph

G′(V ′, E ′) is also a Nash Equilibrium if players in the same set with i1 play 0 and

those in the same set with the i2 play 1.

Proof. Let A,B ⊂ V is the min-cut from node i1 to i2 such that i1 ∈ A and i2 ∈ B.

Let that player i with strategy xi = 0 wants to deviate. So ci(xi, x−i) > ci(xi, x−i)

=⇒ SC(xi, x−i) > SC(xi, x−i) (1). It is trivial that SC(xi, x−i) = b2i1 +(1− bi2)
2 +
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W (A,B) (where W (A,B) is the weight of the cut) and SC(xi, x−i) = b2i1+(1−bi2)
2+

W (A \ {i}, B ∪ {i})

(1) =⇒ W (A \ {i}, B ∪ {i}) > W (A,B)

which is by definition invalid. As a result none of the agents wants to deviate and we

have a Nash Equilibrium.
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Chapter 4

Non Steady Graph Models

In the previous chapters we have seen various models, simulating the way that the

members of a social network form their opinions. The general framework of the

previous model was common, each agent had a cost function whose analytic form

was invariant to the time and to the opinions of the other agents. In other words,

the network was represented as a graph whose edges and weights were always the

same. Although in same cases this aproach may be sufficient, experience shows us

that this is not always true. In many cases people tend to trust more those who

have similar opinion with them and generally the trust between two agents is not

something that is always constant. In this chapter we will introduce some models,

that try to descibe this behavior of the society. Unfortunately, these models are much

complex to analyze since in these cases the cost functions have no or very complicated

analytic forms. The very general framework is the same , we will consider that there

is set of nodes(V ) representig the members of the society and that the node i has an

opinion at time t: xi(t) ∈ [0, 1] and as in the previous chapters we will be interested
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in equilibrium points, convergence time and price of anarchy(PoA) of these models.

4.1 Hegselmann-Krause model

The Hegselmann-Krause model tries to capture the tension of the agents to trust

only those that have similar opinions [12]. Let V denotes the set of the agents. Each

agent i has a initial opinion xi(0) ∈ [0, 1] and the updating rule of the model is:

xi(t+ 1) =

∑
j:|xi−xj |<d xj∑
j:|xi−xj |<d 1

,where d ∈ (0, 1] is constant parameter of the model. Let another instance of the

HK-model at which x′
i(0) = d · xi(0) and d′ = 1. Then, ∀t : xi(t) = 1

d
· x′

i(t). So

without loss of generality we will study the case at which xi(0) ⩾ 0 and the updating

rule is:

xi(t+ 1) =

∑
j:|xi−xj |<1 xj∑
j:|xi−xj |<1 1

Notice that the edges of the underlying graph of the network change at each time step.

The first question that we would ask is whether the agents will converge to specific

opinion if they update their opinions according to this model [5]. Before proving this

we will give a very important property of this model.

Observation 23. If xi(0) ⩽ xj(0). Then, ∀t : xi(t) ⩽ xj(t) if i ⩽ j.

Proof. Let i, j ∈ V such that xi(0) ⩽ xj(0). We have just to prove that if xi(t) ⩽ xj(t)

then xi(t+ 1) ⩽ xj(t+ 1). We assume that xi(t) ⩽ xj(t).

LetNi(t) ≡ {the nodes that are connected to node i and not to node j at time step t},

Nj(t) ≡ {the nodes that are connected to node j and not to node i at time step t} and
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Nij(t) ≡ {the nodes that are connected to node i and to node j at time step t}

Since xi(t) ⩽ xj(t) then ∀(k1, k2, k3) ∈ Ni ×Nij ×Nj : xk1(t) ⩽ xk2(t) ⩽ xk3(t) =⇒

 xi(t+ 1) =
Ni·xNi

(t)+Nij ·xNij
(t)

|Ni(t)|+|Nij(t)| ⩽ xNij(t)

xj(t+ 1) =
Nj ·xNj

(t)+Nij ·xNij
(t)

|Nj(t)|+|Nij(t)| ⩾ xNij(t)

=⇒ xi(t+ 1) ⩽ xj(t+ 1)

By induction it is proved that ∀t : xi(t) ⩽ xj(t)

From now on, without loss of generality we will consider that the nodes are ordered

according to the ording x1(0) ⩽ x2(0) ⩽ ... ⩽ xn(0). Notice that if there exists t0

such that xi+1(t0) − xi(t0) ⩾ 1, then ∀t ⩾ t0 : xi+1(t) − xi(t) ⩾ 1 since the value

xi will not increase and the value xi+1 will not decrease. Before trying to prove

convergence we would like to know how the equilibrium looks like. Let x∗
1, x

∗
2, ..., x

∗
k

such that ∀i, j ∈ {1, k} : |x∗
i − x∗

j | ⩾ 1. It is easy to verify that if all the agents adopt

one of the above opinions, then they will be in an equilibrium. Also notice that the

above property has to hold for every equilibrium. Now, we are ready to prove the

convergence of this model.

Theorem 11. Let the agents update their opinions according to the HK-model. Then

∀i ∈ V : xi(t) converges to x∗
i in a finite number of steps and ∀i ̸= j : x∗

i = x∗
j or

|x∗
i − x∗

j | ⩾ 1

Proof. Since node 1 has only right neighbors then x1(t) ⩽ x1(t + 1). Respectively

node n has only left neighbors and then xn(t) ⩾ xn(t+1). Thus, ∀t : x1(0) ⩽ x1(t) ⩽

xn(t) ⩽ xn(0). As a result, x1(t) ⩽ x1(t + 1) and x1(t) ⩽ xn(0) then ∃x∗
1 such that
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limt→∞ x1(t) = x∗
1.

Now let p the largest index such that xp(t) converges to x∗
1. We will show that there

exists t0 such that xp+1(t0) − xp(t0) ⩾ 1. Let ∀t : xp+1 − xp < 1 then node p + 1 is

always a neighbor of node p. Since p+1 doen’t converge to x1 then there exists δ0 such

that ∀t : xp+1(t)−x∗
1 > δ0. On the other hand since ∀i ∈ {1, p} : xi(t) converges to x∗

1

then there exists t0 such that ∀t ⩾ t0 : xi(t)−x∗
1 ⩽ ϵ0 =

p
p+1

·δ0. From the definition of

HK-model xp(t0+1) =
∑p

i=1 xi

p+1
+ 1

p+1
·xp+1 >

p
p+1

·x∗
1−

p
p+1

· ϵ0+ 1
p+1

·x1+
1

p+1
· δ0 = ϵ0.

Something that contradicts that xp − x∗
1 ⩽ ϵ0. Now the nodes {p + 1, ..., n} are

decomposed from the nodes {1, ..., p} and as a result we can repeat the same argument

to prove that every node i converges to x∗
i and that ∀i ̸= j : x∗

i = x∗
j or |x∗

i − x∗
j | ⩾ 1.

Now we have to prove that the convergence will occur in a finite number of steps.

Without loss of generality we will consider that all the nodes {1, ..., n} converge to x∗.

Then there exist t0 such that ∀t ⩾ t0 : x
∗ − x1(t0) <

1
2
and xn(t0)− x∗ < 1

2
. Adding

the two previous inequalities xn(t0)− x1(t0) < 1, thus at time step t0 every node has

neighbors all the other nodes and consequently all of them compute the same value

x∗. As a result the convergence occurs in a finite number of steps.

The convergence to a limiting value at finite time, is important. But as always

we would like to know how fast will the system converge. We will prove that this

happens at O(n3) steps [2]. Before proving that we will give some definitions and

observations that are necessary in order to continue.

Since now we have not demanded that two different nodes start with a different initial

value. Observe that in this case these two nodes are actually one, that has twice as

influence as the others. Also see that if two or more nodes start with different initial
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values, but at some time step they adopt the same opinion, then they will never be

separated. Now we will introduce the notion of the weight of the node i at time step

t, wi(t) = |{j : xj(t) = xi(t)}|. As a result, from now on when two nodes adopt the

same opinion, we will consider that they form one node whose weight is increased by

one. Also notice, that the weight of a node never decreases and that
∑k

i=1wi(t) = n

,where k is the number of nodes at time step t and n is the initial number of nodes.

From now on, Ni(t) will denote the number of neighbors node i has at time step t

(we have already used this notation denoting something similar but different).

Observation 24. Let l(t) denotes the most left node (the minimum indexed node)

that has not converged to its limiting value at time t. Then, at time t + 2 the node

l(t) has increased its weight(1) or has converged(2) or has moved to the right at least

1
n2 (3).

Proof. Since l(t) is the minimum indexed node that has not already converged, it is

certain that l(t) has no left neighbors and it has at least one right neighbor(r). Let

Nl(t)(t) = Nr(t), then at time t + 1 : xr(t + 1) = xl(t)(t + 1) which means that l(t)

has increased its weight. Now let Nl(t)(t) ̸= Nr(t) then there exist a node s such that

xs(t) > xr(t) and xs(t)− xl(t)(t) ⩾ 1. As a result:

xr(t+ 1) ⩾ (Nr(t)− 1) · xl(t)(t) + xs(t)

Nr(t)
⩾ xl(t)(t) +

1

Nr(t)
⩾ xl(t)(t) +

1

n
=⇒

xr(t+ 1) ⩾ xl(t)(t) +
1

n

We already know that since l(t) has no left neighbors is tis certain that xl(t)(t+ 1) ⩾

xl(t)(t). Notice that at time t+1 it is possible that xr(t+1)−xl(t)(t+1) ⩾ 1 then the

node l(t) has neither right nor left neighbors which means that it has converged to
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its limiting value. On the other hand if xr(t+1)− xl(t)(t+1) < 1 then l(t+1) = l(t)

and r is the smallest right neighbor of l(t+ 1). Thus,

xl(t)(t+ 2) ⩾ wl(t+1)(t+ 1) · xl(t+1) + (Nl(t+1)(t+ 1)− wl(t+1)(t+ 1)) · xr(t+ 1)

Nl(t+1)(t+ 1)

⩾ xl(t)(t) +
Nl(t+1)(t+ 1)− wl(t+1)(t+ 1)

Nl(t+1)(t+ 1)
· 1
n

⩾ xl(t)(t) +
1

n2

The last observation will lead us to proving that the system converges to O(n3)

steps. Without loss of generality we can assume that xn(0) − x1(0) ⩽ 1, because

otherwise the system can be decomposed into independently evolving subsystems.

Notice that l(t) can increase its weight at most n times. Let t1 be the number of

time steps at which l(t) increased its weight, then t1 ⩽ 2 · n. Respectively, l(t) can’t

converge to its limiting value more that n times. As a result, t2 ⩽ 2 · n, where t2 is

the number of time steps at which l(t) converged to its limiting value. Finally, let t3

be the number of times steps that the case (3) of the above observation occurs. Since

xn(0)− x1(0) ⩽ n =⇒ xn(t)− l(t) ⩽ n− t
2·n2 . As a result, t3 ⩽ 2 · n3. Consequently,

at time step t > 4 · n+ 2 · n3 the system has converged.

4.2 K-NN model

In this section we present another non steady graph model, the K-NN model. Follow-

ing the general framework we have the set V , |V | = n of nodes representig the agents.

Each node i ∈ V , has an internal opinion si ∈ [0, 1], which never changes. Given an

opinion vector x = (xi, x−i), each node i forms directed edges to the K closest nodes
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to si(the nodes with the smallest |zj − si|). This implies that the underlying graph

of the network is not steady, but it is a function of the opinion vector. The personal

cost of each node i ∈ V at the opinion vector x is:

Ci(xi, x−i) =
∑

j∈Sx(i)

(xj − xi)
2 + ρ ·K · (xi − si)

2

,where Sx(i) ⊆ V denotes the K closest nodes to si at opinion vector x. As a result,

the opinion x′
i that the agent i adopts is:

x′
i =

1

1 + ρ
· (
∑

j∈Sx(i)
xj

K
+ ρ · si)

The social cost function is respectively:

SC(x) =
∑
i∈V

Ci(xi, x−i) =
∑
i∈V

(
∑

j∈Sx(i)

(xj − xi)
2 + ρ ·K · (xi − si)

2)

As before, we want to know whether this model has an equilibrium point and an

efficient way to find it. Unfortunately, the K-NN model doesn’t always have a N.E.

something that is proved in the following observation.

Observation 25. Let the instance of the K-NN model: s1 = 0, s2 =
1
2
, s3 = 1, K = 1

and ρ = 1. This instance has no N.E.

Proof. Let a N.E. x∗ = (a, b, c) exists, where a, b, c are the opinions of the nodes 1,2,3

respectively. Let a = b then a = a
2
and a =

a+ 1
2

2
, which is impossible. With the same

arguments it can be proved that a ̸= b, b ̸= c and c ̸= a.

Let Sx∗(c) = a then 1−a < 1−b =⇒ b < a < c, since c = 1+a
2
. Then, Sx∗(a) = b(b < c)

and a = b
2
> b, which is impossible. As a result, Sx∗(c) = b =⇒ a < b < 1+b

2
= c =⇒

a < b < c.

Because of the previous relation:

 a = b
2

c = 1+b
2

, now there are two cases:
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• Sx∗(b) = a =⇒ b =
1
2
+a
1
2

=
1
2
+ b

2
1
2

=⇒ b = 1
3
=⇒ x∗ = (1

6
, 1
3
, 2
3
), but in this case

Sx∗(b) = c because 1
2
− 1

6
> 2

3
− 1

2
.

• Sx∗(b) = c =⇒ b =
1
2
+c
1
2

=
1
2
+ 1+b

2
1
2

=⇒ b = 2
3
=⇒ x∗ = (1

3
, 2
3
, 5
6
), but now

Sx∗(b) = a since 1
2
− 1

3
< 5

6
− 1

2

Consequently, in this game there is no N.E.

The above observation provides us an instance at which there is not a N.E., which

implies that on the contrary of the models that we have already seen, the K-NN

model doesn’t always have an equilibrium point. However, we would like to know

the PoA at the instances that have a N.E. We will see that if ρ = 1 + ϵ, ϵ > 0 then

PoA ⩽ (7+ϵ)·(2+ϵ)
ϵ·(1+ϵ)

. On the other hand, when ρ < 1 then PoA ⩾ 1
ρ2

which means that

as ρ reduces the PoA is unbounded.

We start with the case at which ρ > 1. Firstly, we will prove that SC(s) ⩽ ρ+6
ρ

·OPT ,

where s = (s1, s2, ..., sn) is the internal opinion vector and OPT is the minimum of

the social cost function. We give two observations that will help us proving this.

Observation 26. Let the opinion vector x and Ax(i) = |j : i ∈ Sx(j)|, is the number

of the nodes that have i as neighbor. Let s = (s1, s2, ..., sn) is the internal opinion

vector then ∀i ∈ V : As(i) ⩽ 2 ·K.

Proof. Without loss of generality s1 < s2 < ... < sn. Then it is certain that i /∈

Ss(i + K + 1), since there exist K nodes between i and i + K + 1. Respectively,

i /∈ Ss(i−K − 1). As a result, As(i) ⩽ 2 ·K.
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Observation 27. Let s = (s1, s2, ..., sn) and the internal opinion vector and

o = (o1, o2, ..., on) the optimal opinion profile such that SC(o) = OPT . Then,

∑
i∈V

(
∑

j∈S0(i)

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2) ⩾ ρ

ρ+ 6
·
∑
i∈V

∑
j∈Ss(i)

(si − sj)
2

,where SC(s) =
∑

i∈V
∑

j∈Ss(i)
(si − sj)

2.

Proof. With basic algebra it is easy to prove that:

∀ρ ⩾ 0 : r2 +
ρ

3
· a2 + ρ

3
· b2 ⩾ ρ

ρ+ 6
· (a+ b+ r)2

Setting r = |oj − oi|, a = |oj − sj| and b = |oi − si| =⇒

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2 ⩾ (|oj − oi|+ |oj − sj|+ |oi − si|)2

⩾ ρ

ρ+ 6
· (si − sj)

2 (1)

Since by the triangular inequality: |si − sj| ⩽ |oj − oi|+ |oj − sj|+ |oi − si|.

Adding the last inequality(1) for every j ∈ So(i), we get:

∑
j∈S0(i)

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2 ⩾ ρ

ρ+ 6
·
∑

j∈So(i)

(si − sj)
2 (2)

Notice that Ss(i) are the K closest sj to si =⇒

∑
j∈Ss(i)

(si − sj)
2 ⩽

∑
j∈So(i)

(si − sj)
2 (3)

(2), (3) =⇒
∑
i∈V

(
∑

j∈S0(i)

(oj−oi)
2+

ρ

3
·(oj−sj)

2+
ρ

3
·(oi−si)

2) ⩾ ρ

ρ+ 6
·
∑
i∈V

∑
j∈Ss(i)

(si−sj)
2

=⇒
∑
i∈V

(
∑

j∈S0(i)

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2) ⩾ ρ

ρ+ 6
· SC(s)
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Now, we are ready to continue with our proof. It is easy to notice that:

∑
i∈V

(
∑

j∈S0(i)

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2) =

∑
i∈V

∑
j∈S0(i)

(oj − oi)
2 +

ρ ·K
3

·
∑
i∈V

(oi − si)
2 +

ρ

3
·
∑
i∈V

Ao(i) · (oi − si)
2

Because of observation 20: Ao(i) ⩽ 2 ·K =⇒∑
i∈V

∑
j∈S0(i)

(oj − oi)
2 +

ρ ·K
3

·
∑
i∈V

(oi − si)
2 +

ρ

3
·
∑
i∈V

Ao(i) · (oi − si)
2 ⩽

∑
i∈V

∑
j∈S0(i)

(oj − oi)
2 +

ρ ·K
3

·
∑
i∈V

(oi − si)
2 +

ρ

3
· 2 ·K ·

∑
i∈V

·(oi − si)
2 =

∑
i∈V

∑
j∈S0(i)

(oj − oi)
2 + ρ ·K ·

∑
i∈V

(oi − si)
2 = OPT =⇒

∑
i∈V

(
∑

j∈S0(i)

(oj − oi)
2 +

ρ

3
· (oj − sj)

2 +
ρ

3
· (oi − si)

2) ⩽ OPT (4)

Because of observation 21 and the inequality (4) =⇒ SC(s) ⩽ ρ+6
ρ

· OPT (5). We

use the last inequality to bound the PoA, when ρ = 1 + ϵ, ϵ > 0(ρ > 1). The local

smoothness technique gives us the upper bound to the PoA.

Theorem 12. For ρ = 1 + ϵ, ϵ > 0 the PoA of the game is at most (7+ϵ)·(2+ϵ)
ϵ·(1+ϵ)

Proof. From inequality (5) we know that SC(s) ⩽ ρ+6
ρ

·OPT = 7+ϵ
1+ϵ

·OPT .

Let λ > 0 and µ < 1 such that:

∀x :
∑
i∈V

Ci(xi, x−i) + (si − xi) ·
d

dxi

Ci(xi, x−i) ⩽ λ · SC(s) + µ · SC(x) (6)

Then PoA ⩽ 7+ϵ
1+ϵ

· λ
1−µ

. We will set µ = 0 and we will find a λ > 0 such that the

relation (6) holds. In this case the PoA ⩽ 7+ϵ
1+ϵ

· λ.
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From now on we will find a λ > 0 such that:

∀x :
∑
i∈V

(
∑

j∈Sx(i)

(xi−xj)
2+ρ·K(xi−si))+2·(si−xi)·

∑
i∈V

(ρ·K(xi−si)+
∑

j∈Sx(i)

(xi−xj))

⩽ λ ·
∑
i∈V

∑
j∈Ss(i)

(si − sj)
2 (7)

Notice that (xi−xj)
2+(xi−si)

2+2 ·(si−xi)(xi−xj) = (si−xj)
2 and then inequality

(7) can be transformed to the following inequality:

∑
i∈V

∑
j∈Sx(i)

(si − xj)
2 ⩽

∑
i∈V

((ρ+ 1) ·K · (si − xi)
2 + λ ·

∑
j∈Ss(i)

(sj − si)
2)

Also notice that
∑

j∈Sx(i)
(si−xj)

2 ⩽
∑

j∈Ss(i)
(si−xj)

2 because Sx(i) are the K closest

xj to si. As a result it sufficient to find a λ > 0 such that:

∀x :
∑
i∈V

∑
j∈Ss(i)

(si − xj)
2 ⩽

∑
i∈V

((ρ+ 1) ·K · (si − xi)
2 + λ ·

∑
j∈Ss(i)

(sj − si)
2)

It is easy to prove that for every a, b, d (a+ b)2 ⩽ (d2 + 1) · a2 + ( 1
d2

+ 1) · b2. Setting

a = (si − sj), b = (sj − xj) and d2 = (ρ−1)
2

, we get:

∑
j∈Ss(i)

(si − xj)
2 ⩽

∑
j∈Ss(i)

((1 +
2

ρ− 1
) · (sj − si)

2 +
ρ+ 1

2
· (sj − xj)

2) =⇒

∀x :
∑
i∈V

∑
j∈Ss(i)

(si − xj)
2 ⩽

∑
i∈V

((ρ+ 1) ·K · (si − xi)
2) + (1 +

2

ρ− 1
)

∑
j∈Ss(i)

(sj − si)
2)

As a result we have found λ = 1 + 2
ρ−1

> 0,µ = 0 such that the relation (6) holds.

Thus, PoA ⩽ 7+ϵ
1+ϵ

· λ = (7+ϵ)·(2+ϵ)
ϵ·(1+ϵ)

.
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The last theorem tells us that in the instances with ρ > 1 in which an N.E. exists,

the PoA ⩽ (7+ϵ)·(2+ϵ)
ϵ·(1+ϵ)

. Now it’s time to deal with the instances at which ρ < 1. As we

have already claimed the PoA in this case is at least 1
ρ2
. Let the following instance

of our game:

Observation 28. Let the insance of the K-NN model, at which K=1, s0 = s1 =

0,s5 = s6 = 1 and s3 = x, s4 = 1− x, x < 1
2
. The following game has PoA > 1

ρ2
.

Proof. Let x the opinion vector at which x0 = x1 = 0, x5 = x6 = 1 and the nodes 3

and 4 point to each other. Let,

 x1 =
1

ρ+1
· (x2 + ρ · x)

x2 =
1

ρ+1
· (x1 + ρ · (1− x))

=⇒ x1 =
1+ρ·x
ρ+2

and x2 =
1+ρ·(1−x)

ρ+2

Notice that since nodes 3 and 4 point to each other:


1+ρ·x
ρ+2

⩾ 1+ρ·(1−x)
ρ+2

− x

1− 1+ρ·(1−x)
ρ+2

⩾ 1+ρ·(1−x)
ρ+2

− x

⇐⇒ ρ·δ
ρ+2

⩽ x (8), where δ = |s3 − s4| = 1− 2 · x.

If inequality (8) holds then: SC(x) = (x3 − x4)
2 + ρ · (x3 − s3)

2 + ρ · (x4 − s4)
2 = δ2·ρ

ρ+2
,

then, OPT ⩽ SC(x) ⩽ δ2·ρ
ρ+2

⩽ 2·ρ·δ2
ρ+1

=⇒ OPT ⩽ 2·ρ·δ2
ρ+1

Now let the x∗ the opinion vector at which x∗
0 = x∗

1 = 0,x∗
5 = x∗

6 = 1 and node 3

points to 0 and node 4 points to 5. As a result, x∗
3 =

ρ·x
ρ+1

and x∗
4 = 1− ρ·x

ρ+1
.

Then:

 x ⩽ 1− ρ·x
ρ+1

− x

1− (1− x) ⩽ 1− x− ρ·x
ρ+1

⇐⇒ ρ·x
ρ+1

⩽ δ (9)

If we set x = ρ+1
ρ

· δ then both relation (8) and (9) hold. It is also easy to see

70



that: SC(x∗) = 2·x2·ρ
1+ρ

and that x∗ is a N.E. =⇒

PoA ⩾ SC(x∗)

OPT
⩾ SC(x∗)

SC(x)
⩾ (

x

δ
)2 ⩾ (1 +

1

ρ
)2 > (

1

ρ
)2

The above observation provide us an instance of the K-NN model at which the

PoA > 1
ρ2
. In the case that ρ ⩾ 1 the above instance doesn’t have something to say

since by definition PoA ⩾ 1. On the contrary, if ρ < 1 then the PoA is unbounded

as ρ reduces. Now,we have complete our analysis concernig the Nash Equilibrium

and the PoA of this model, However there are still open questions. We would like to

whether the exists an polynomial time algorithm that computes the Nash Equilibrium

of this game as also a mechanism tha leads the agents to a N.E. [13]
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