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Performance based design and soil improvement methods of shallow foundations on 

liquefiable soils. 
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ΕΚΣΕΝΗ ΠΕΡΙΛΗΨΗ 
  

I Περιγραφι του προβλιματοσ 

Σφμφωνα με τουσ ιςχφοντεσ αντιςειςμικοφσ κανονιςμοφσ, θ καταςκευι τεχνικϊν ζργων με 

επιφανειακι κεμελίωςθ ςε περιοχζσ με κίνδυνο εκδιλωςθσ ρευςτοποίθςθσ λόγω ςειςμοφ, 

είναι εκ προοιμίου μθ αποδεκτι χωρίσ τθν προθγοφμενθ βελτίωςθ του εδάφουσ. Αυτό 

γιατί, θ εκδιλωςθ ρευςτοποίθςθσ προκαλεί ςθμαντικι απομείωςθ τθσ διατμθτικισ αντοχισ 

του εδάφουσ, θ οποία οδθγεί ςτθ ςυςςϊρευςθ δυναμικϊν κακιηιςεων, κακϊσ και τθν 

απομείωςθ τθσ μεταςειςμικισ φζρουςασ ικανότθτασ τθσ κεμελίωςθσ ζωσ και τθν αςτοχία. 

Αντιπροςωπευτικά παραδείγματα των καταςτρεπτικϊν αυτϊν επιπτϊςεων ςε περιπτϊςεισ 

καταςκευϊν με επιφανειακι κεμελίωςθ, παρουςιάηονται ςτθν Εικόνα 1. 

Η ιςχφουςα φιλοςοφία ςχεδιαςμοφ ςτισ ςυγκεκριμζνεσ εδαφικζσ ςυνκικεσ, περιλαμβάνει 

τθ κεμελίωςθ των τεχνικϊν ζργων με τθ χριςθ παςςάλων, οι οποίοι παρακάμπτουν το 

ρευςτοποιιςιμο ςτρϊμα και μεταφζρουν τα φορτία τθσ καταςκευισ ςε βακφτερεσ, μθ-

ρευςτοποιιςιμεσ εδαφικζσ ςτρϊςεισ. Ραράλλθλα, για τθν απομείωςθ των προκαλοφμενων 

ροπϊν ςτουσ παςςάλουσ, το περιβάλλον ζδαφοσ ςυχνά βελτιϊνεται με τθ χριςθ δυναμικισ 

ςυμπφκνωςθσ, κακϊσ και χριςθ χαλικοπαςςάλων/ςτραγγιςτθρίων. Τα μζτρα αυτά 

αποτρζπουν τθν ανάπτυξθ υψθλϊν επιπζδων υδατικϊν υπερπιζςεων πόρων και ςυνεπϊσ 

τθν εκδιλωςθ ρευςτοποίθςθσ.  
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Εικόνα 1: Ρεριπτϊςεισ αςτοχιϊν επιφανειακϊν κεμελιϊςεων λόγω ρευςτοποίθςθσ, 
ςε 4 μεγάλουσ ςειςμοφσ (a) Dagupan, Philippines, 1990, M=7.8, (b) Kobe, 
Japan, 1995, M=7.2 (c) Adapazari, Turkey (1999) M=7.4, (d) Sendai, Japan, 
2011 M=8.9. 

 

Η ανωτζρω πρακτικι ςχεδιαςμοφ εφαρμόηεται ακόμα και ςε περιπτϊςεισ, όπου θ 

παρουςία μιασ μθ-ρευςτοποιιςιμθσ κροφςτασ ικανϊν διαςτάςεων και αντοχισ κα μετρίαηε 

τισ ανωτζρω επιπτϊςεισ τθσ ρευςτοποίθςθσ, εξαςφαλίηοντασ τθν ικανοποιθτικι ςειςμικι 

ςυμπεριφορά τθσ κεμελίωςθσ. Μάλιςτα, ςθμαντικζσ ςε πρωτοτυπία πειραματικζσ ζρευνεσ, 

αλλά και παρατθριςεισ από ιςτορικά περιςτατικά [Liu  & Dobry, (1997), Hausler & Sitar 

(2001), Hausler et al.(2002), Adalier et al. (2003), Dashti et al. (2010), Sitar & Hausler, (2012)] 

υποδεικνφουν τθν ευεργετικι παρουςία μιασ επιφανειακισ μθ-ρευςτοποιιςιμθσ εδαφικισ 

κροφςτασ ςτθν απομείωςθ των ςειςμικϊν κακιηιςεων και τθ ςυνολικά αποδεκτι 

ςυμπεριφορά τθσ κεμελίωςθσ.  

Ρρωτοπόροι ςτθν πειραματικι διερεφνθςθ του προβλιματοσ υπιρξαν οι Liu & Dobry 

(1997), οι οποίοι διεξιγαγαν μια ςειρά πειραμάτων ςε φυγοκεντριςτι, με ςκοπό να 

διερευνιςουν τθν επίδραςθ μιασ επιφανειακισ ηϊνθσ ςυμπυκνωμζνθσ άμμου, επί μθ-

βελτιωμζνου ρευςτοποιιςιμου εδάφουσ, ςτθ ςειςμικι απόκριςθ επιφανειακϊν 

(b) (a) 

(c) (d) 
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κεμελιϊςεων. Σκοπόσ ιταν θ διερεφνθςθ του μθχανιςμοφ ανάπτυξθσ των δυναμικϊν 

κακιηιςεων, αλλά και θ αξιολόγθςθ τθσ ςειςμικισ απόκριςθσ τθσ κεμελίωςθσ ςε όρουσ 

επιβαλλόμενων επιταχφνςεων. Συγκεκριμζνα, ςτα πζντε πειράματα, που 

πραγματοποιικθκαν, εξετάςτθκε θ επίδραςθ του βάκουσ τθσ ηϊνθσ του ςυμπυκνωμζνου 

εδάφουσ από μθδενικό πάχοσ (δθλαδι απευκείασ ζδραςθ τθσ κεμελίωςθσ ςτο 

ρευςτοποιιςιμο ζδαφοσ) ζωσ και το ςυνολικό πάχοσ τθσ ρευςτοποιιςιμθσ ςτρϊςθσ, όπωσ 

παρουςιάηεται ςτο χιμα 1. Αναφζρεται ότι θ εν λόγω ςειρά πειραμάτων διεξιχκθ ςε 

φυγοκεντρικι επιτάχυνςθ ίςθ με 80g. Συνεπϊσ, με βάςθ του νόμουσ κλίμακασ, οι οποίοι 

διζπουν τα πειράματα ςε φυγοκεντριςτι, οι πρωτότυπεσ διαςτάςεισ του κεμελίου είναι 

4.56m, ενϊ το πάχοσ τθσ ρευςτοποιιςιμθσ άμμου 12.5m.  

 

 

χιμα 1: Ρειραματικι διάταξθ πειραμάτων Liu & Dobry (1997) με τισ αντίςτοιχεσ 
διαςτάςεισ υπό κλίμακα. 

 

Τα αποτελζςματα των πειραμάτων των Liu & Dobry (1997), ςυνοψίηονται ςτο χιμα 2, απ’ 

όπου διαπιςτϊνεται θ ευεργετικι επίδραςθ τθσ βελτιωμζνθσ κροφςτασ εδάφουσ ςτθ 

μείωςθ των ςειςμικϊν κακιηιςεων. Αντίκετα, θ επζκταςθ τθσ βελτιωμζνθσ ηϊνθσ ζωσ το 

ςυνολικό βάκοσ τθσ ρευςτοποιιςιμθσ ςτρϊςθσ ζχει ωσ αποτζλεςμα τθν ενίςχυςθ τθσ 

ςειςμικισ κίνθςθσ και τθ μετάδοςθ ςθμαντικϊν επιταχφνςεων ςτθν εδαφικι επιφάνεια και 

ςυνεπϊσ τθν επιπρόςκετθ καταπόνθςθ τθσ κεμελίωςθσ.  
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χιμα 2: Αποτελζςματα δυναμικϊν κακιηιςεων (αριςτερά) και επιταχφνςεων (δεξιά) 
από τα πειράματα ςε φυγοκεντριςτι των Liu & Dobry (1997). 

 

Σε αντίςτοιχα ςυμπεράςματα κατάλθξαν και οι Adalier et al. (2003), οι οποίοι εξζταςαν τθν 

επίδραςθ των χαλικοπαςςάλων ςτθ ςειςμικι απόκριςθ μιασ κορεςμζνθσ ιλυϊδουσ 

εδαφικισ ςτρϊςθσ, αρχικά υπό ςυνκικεσ ελεφκερου πεδίου, και ςτθ ςυνζχεια υπό τθν 

παρουςία μια επιφανειακι κεμελίωςθσ. Οι τζςςερεισ ςυνολικά πειραματικζσ διατάξεισ 

υποβλικθκαν ςε μια ςειρά τριϊν αλλεπάλλθλων ςειςμικϊν διεγζρςεων. Η δεφτερθ ομάδα 

πειραμάτων, θ οποία εξετάηει τθν ςειςμικι ςυμπεριφορά τθσ επιφανειακισ κεμελίωςθσ, 

περιγράφεται ςτο χιμα 3 και παρουςιάηει και το μεγαλφτερο ενδιαφζρον.  

Από τα αποτελζςματα των δοκιμϊν, αποδεικνφεται ότι θ παρουςία των χαλικοπαςςάλων 

κακυςτερεί τθν ανάπτυξθ των υδατικϊν υπερπιζςεων εντόσ του βελτιωμζνου εδάφουσ, και 

ςυνεπϊσ αυξάνει τθ διατμθτικι αντοχι του εδάφουσ κεμελίωςθσ, μειϊνοντασ ζτςι τισ 

δυναμικζσ κακιηιςεισ. Ρροσ επιβεβαίωςθ τθσ εν λόγω παρατιρθςθσ, οι δυναμικζσ 

κακιηιςεισ τθσ κεμελίωςθσ κατά τθ διάρκεια των τριϊν ςειςμικϊν διεγζρςεων, πριν και 

μετά τθν εγκατάςταςθ των χαλικοπαςςάλων, παρουςιάηονται ςτο χιμα 4. Επιπρόςκετα, 

ςφμφωνα με τουσ Adalier et al. (2003), ενδιαφζρον παρουςιάηει και θ κατανομι των 

υδατικϊν υπερπιζςεων, οι οποίεσ είναι χαμθλότερεσ κάτω από τθ κεμελίωςθ και 

αυξάνονται με το βάκοσ και τθν απόςταςθ από αυτι. 
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(α) 

 

(β) 

χιμα 3: Ρειραματικζσ διατάξεισ των Adalier et al. (2003), για τθν εξζταςθ τθσ 
επίδραςθσ των χαλικοπαςςάλων ςτθ ςειςμικι απόκριςθ μιασ επιφανειακισ 
κεμελίωςθσ – (α)  απευκείασ ζδραςθ του κεμελίου ςτθν ιλυϊδθ ςτρϊςθ (β) 
βελτίωςθ του εδάφουσ με χαλικοπαςςάλουσ.  

 

 

χιμα 4: Επίδραςθ των χαλικοπαςςάλων ςτισ ςυςςωρευόμενεσ κακιηιςεισ λόγω 
ςειςμοφ, Adalier et al. (2003). 
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Ακόμα πιο πρόςφατα, οι Dashti et al. (2010) αναγνϊριςαν τθν αδυναμία εφαρμογισ των 

υπαρχουςϊν εμπειρικϊν μεκόδων υπολογιςμοφ των κακιηιςεων λόγω ρευςτοποίθςθσ, 

ςτθν περίπτωςθ κτιρίων με άκαμπτθ επιφανειακι κεμελίωςθ, με δεδομζνο ότι αυτζσ 

αναφζρονται κατά κφριο λόγο ςε ςυνκικεσ ελεφκερου πεδίου. Τόνιςαν επίςθσ, τθν ανάγκθ 

δθμιουργίασ ενόσ νζου κανονιςτικοφ πλαιςίου για τον υπολογιςμό των δυναμικϊν 

κακιηιςεων επιφανειακϊν κεμελιϊςεων ςε ρευςτοποιιςιμα εδάφθ, το οποίο να 

ενςωματϊνει του κυρίαρχουσ μθχανιςμοφσ που διζπουν το φαινόμενο.  

Στα πειράματα ςε φυγοκεντριςτι, τα οποία πραγματοποίθςαν, εξετάηεται θ ςειςμικι 

απόκριςθ κτιρίων, εδραηόμενων μζςω άκαμπτων επιφανειακϊν κεμελιϊςεων, ςε ςχετικά 

λεπτζσ ςτρϊςεισ ρευςτοποιιςιμθσ άμμου. Η πειραματικι διάταξθ παρουςιάηεται ςτο 

χιμα 5. Η αξιολόγθςθ των αποτελεςμάτων πραγματοποιείται ςε όρουσ κακιηιςεων, 

επιβαλλόμενων επιταχφνςεων και ανάπτυξθσ υπερπιζςεων πόρων. Από τα βαςικότερα 

ςυμπεράςματα είναι ότι θ ζναρξθ ςυςςϊρευςθσ, κακϊσ και ο ρυκμόσ και το μζγεκοσ των 

ςειςμικϊν κακιηιςεων είναι άμεςθ ςυνάρτθςθ τθσ ζνταςθσ τθσ ςειςμικισ διζγερςθσ. 

Ραράλλθλα, θ ςχετικι πυκνότθτα τθσ ρευςτοποιιςιμθσ άμμου διαδραματίηει ςθμαντικό 

ρόλο, κακϊσ ελζγχει τθν ανάπτυξθ των υπερπιζςεων πόρων κακϊσ και το μζγεκοσ των 

κακιηιςεων και των επιταχφνςεων, οι οποίεσ μεταδίδονται ςτθν εδαφικι επιφάνεια και 

ςτθν ίδια τθν καταςκευι. 

 

 

χιμα 5: Ρειραματικι διάταξθ των δοκιμϊν ςε φυγοκεντριςτι των Dashti et al. 
(2010). 
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Ραρ’ όλεσ τισ ανωτζρω εξαιρετικά ςθμαντικζσ και διαφωτιςτικζσ πειραματικζσ εργαςίεσ, 

δεν υφίςταται ςιμερα μια ολοκλθρωμζνθ μεκοδολογία ςχεδιαςμοφ επιφανειακϊν 

κεμελιϊςεων ςε ρευςτοποιιςιμα εδάφθ με περιοριςμζνθ (όχι κακολικι) βελτίωςθ του 

ρευςτοποιιςιμου εδάφουσ. Η διαπιςτωμζνθ αυτι ζλλειψθ ςυχνά οδθγεί το μθχανικό ςε 

υπερ-ςυντθρθτικζσ λφςεισ με ςθμαντικι επιβάρυνςθ του ςυνολικοφ κόςτουσ καταςκευισ 

του ζργου. Ρροσ αυτι τθν κατεφκυνςθ, οι Karamitros et al. (2013α&β), ανζπτυξαν τθν 

πρϊτθ απλοποιθμζνθ αναλυτικι μεκοδολογία για τον υπολογιςμό των ςειςμικϊν 

κακιηιςεων (ρdyn) κακϊσ και τθσ απομειωμζνθσ φζρουςασ ικανότθτασ επιφανειακϊν 

κεμελιϊςεων (qult
deg), εδραηόμενων ςε μια μθ-ρευςτοποιιςιμθ κροφςτα εδάφουσ. Η εν 

λόγω μεκοδολογία όμωσ, αναφζρεται ςε μια φυςικι αργιλικι κροφςτα εδάφουσ επί 

ρευςτοποιιςιμθσ άμμου. Δεν καλφπτει δθλαδι τθν περίπτωςθ ςτθν οποία θ 

ρευςτοποιιςιμθ άμμοσ εκτείνεται ζωσ τθν επιφάνεια του εδάφουσ και επομζνωσ θ μθ 

ρευςτοποίθςιμθ κροφςτα κα πρζπει να δθμιουργθκεί τεχνθτά. (π.χ. με δυναμικι 

ςυμπφκνωςθ και ςτραγγιςτιρια).  

 

II κοπόσ τθσ διατριβισ 

Με ςκοπό τθν κάλυψθ του εν λόγω κενοφ, θ παροφςα διατριβι πραγματεφεται τθν 

ανάπτυξθ μιασ ολοκλθρωμζνθσ μεκοδολογίασ ςχεδιαςμοφ επιφανειακϊν κεμελιϊςεων  

μεγάλου μικουσ (πεδιλοδοκϊν) ςε ρευςτοποιιςιμα εδάφθ, με περιοριςμζνο βάκοσ και 

πλάτοσ βελτίωςθσ, λαμβάνοντασ υπόψθ κριτιρια επιτελεςτικότθτασ (κακιηιςεων και 

φζρουςασ ικανότθτασ).  

Σφμφωνα με τθ νζα μεκοδολογία, τα βαςικά ςτάδια ςχεδιαςμοφ περιλαμβάνουν:  

 Τον υπολογιςμό τθσ πυκνότθτασ του καννάβου των χαλικοπαςςάλων και των 

διαςτάςεων (βάκοσ και πλάτοσ), ςτισ οποίεσ κα πρζπει να επεκτακεί θ βελτίωςθ 

του εδάφουσ, κακϊσ και των απαιτοφμενων τεχνικϊν προδιαγραφϊν.  

 Τον υπολογιςμό τθσ απομειωμζνθσ (αμζςωσ μετά το πζρασ τθσ ςειςμικισ δόνθςθσ) 

ςτατικισ φζρουςασ ικανότθτασ τθσ κεμελίωςθσ. 

 Τον υπολογιςμό των κακιηιςεων οι οποίεσ ςυςςωρεφονται κατά τθ διάρκεια τθσ 

δόνθςθσ. 
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Οι βαςικζσ διαφορζσ τθσ εν λόγω μεκοδολογίασ με αυτι των Karamitros et al. (2013) για 

αργιλικι κροφςτα εδάφουσ, οι οποίεσ κατζςτθςαν αναγκαία τθν εκπόνθςθ τθσ παροφςασ 

διδακτορικισ διατριβισ, ςυνοψίηονται ςτα εξισ:  

 Στθν παροφςα διατριβι, θ επιφανειακι κροφςτα μθ ρευςτοποιιςιμου εδάφουσ ζχει 

προζλκει από τθ βελτίωςθ τθσ ρευςτοποιιςιμθσ άμμου με βακιά δονθτικι 

ςυμπφκνωςθ και χαλικοπαςςάλουσ και ςυνεπϊσ είναι διαπερατι.  

 Λόγω τθσ ανωτζρω ιδιότθτασ, κατά τθ διάρκεια τθσ ςειςμικισ δόνθςθσ 

αναπτφςςονται εντόσ τθσ κροφςτασ ελεγχόμενεσ, και προκακοριςμζνεσ από το 

ςχεδιαςμό, υδατικζσ υπερπιζςεισ, οι οποίεσ οδθγοφν αναπόφευκτα ςε μερικι 

απϊλεια διατμθτικισ αντοχισ. 

 Κατ’ επζκταςθ του ανωτζρου, μεταξφ τθσ βελτιωμζνθσ κροφςτασ και του φυςικοφ 

εδάφουσ δθμιουργείται μια μεταβατικι ηϊνθ με μερικϊσ ρευςτοποιθμζνο ζδαφοσ, 

θ οποία κα πρζπει επίςθσ να λθφκεί υπόψθ ςτθ διαςταςιολόγθςθ του κεμελίου.  

 Εκτόσ από το βάκοσ, θ τεχνθτι κροφςτα βελτιωμζνου εδάφουσ ζχει πεπεραςμζνο 

πλάτοσ, το οποίο κα πρζπει να λθφκεί υπόψθ ωσ ξεχωριςτι παράμετροσ ςτο 

ςχεδιαςμό. 

 Τζλοσ, επειδι θ μθ ρευςτοποιθμζνθ κροφςτα είναι τεχνθτά διαμορφωμζνθ, 

υπειςζρχονται ςτθ διαδικαςία ςχεδιαςμοφ τθσ και οικονομικο-τεχνικζσ παράμετροι.  

 

III Επιμζρουσ Ερευνθτικζσ Εργαςίεσ 

Ε.Ε.1.  Βιβλιογραφικι Αναδρομι 

Ππωσ ζχει προαναφερκεί, θ τεχνθτά διαμορφωμζνθ επιφανειακι κροφςτα κα πρζπει να 

πλθροί ςυγκεκριμζνεσ προδιαγραφζσ καταςκευισ, και να είναι ςχεδιαςμζνθ ςφμφωνα με 

καλά τεκμθριωμζνεσ μεκοδολογίεσ. Στα πλαίςια αυτά, ςτο κεφάλαιο 2 τθσ διδακτορικισ 

διατριβισ, παρουςιάηονται τα αποτελζςματα μιασ εκτενοφσ αναδρομισ ςτθ διεκνι 

βιβλιογραφία, ςχετικά με: 

 Προδιαγραφζσ καταςκευισ χαλικοπαςςάλων ςε μθ ςυνεκτικά εδάφθ.- 

Αναλυτικότερα, περιγράφονται και ταξινομοφνται οι κυριότερεσ μζκοδοι 

καταςκευισ, όπωσ φαίνεται ςτο χιμα 6, ενϊ περιγράφεται και ο απαιτοφμενοσ 

μθχανικόσ εξοπλιςμόσ ςε κάκε κατθγορία.  
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 Προδιαγραφζσ υλικοφ, και μεκοδολογίεσ υπολογιςμοφ των μθχανικϊν 

χαρακτθριςτικϊν του βελτιωμζνου εδάφουσ.- Ρεριγράφονται οι ιςχφουςεσ 

προδιαγραφζσ των χρθςιμοποιοφμενων υλικϊν για τθν καταςκευι των 

χαλικοπαςςάλων (διαπερατότθτα και κοκκομετρικι διαβάκμιςθ). Ραράλλθλα, 

παρουςιάηονται εμπειρικά διαγράμματα προςδιοριςμοφ των βελτιωμζνων 

εδαφικϊν ιδιοτιτων λόγω τθσ επιβαλλόμενθσ δόνθςθσ κατά τθ φάςθ καταςκευισ 

των χαλικοπαςςάλων (αρικμόσ SPT, ςχετικι πυκνότθτα). 

 

 

χιμα 6: Κατθγοριοποίθςθ διακζςιμων μεκόδων καταςκευισ χαλικοπαςςάλων. 

 

 Μεκοδολογίεσ για τον υπολογιςμό των υδατικϊν υπερπιζςεων λόγω ςειςμοφ.- 

Αναφζρονται οι απαραίτθτεσ παράμετροι ςχεδιαςμοφ και ςτθ ςυνζχεια 

περιγράφονται οι βαςικότερεσ αναλυτικζσ μεκοδολογίεσ ςχεδιαςμοφ, οι οποίεσ 

λαμβάνουν υπόψθ τθν αποςτραγγιςτικι δράςθ των χαλικοπαςςάλων. Εξ’ αυτϊν 

ιδιαίτερθ μνεία γίνεται εδϊ ςτθν πρόςφατα προτακείςα μεκοδολογία των 

Bouckovalas et al. (2009), θ οποία και υιοκετικθκε ςτθν παροφςα διατριβι.  

Συγκεκριμζνα, οι Bouckovalas et al. (2009) επανεξζταςαν τθν μακθματικι ζκφραςθ τθσ 

ανάπτυξθσ υδατικϊν υπερπιζςεων rU-N/NL από τθ κεωρία των Seed & Booker (1977). 

Σκοπόσ ιταν να ενςωματϊςουν φαινόμενα ςυμπφκνωςθσ του εδαφικοφ ςκελετοφ (shake-

down effects), τα οποία αναπτφςςονται ςτο φυςικό ζδαφοσ υπό ανακυκλιηόμενθ φόρτιςθ 

και να ανακεωριςουν τα υπάρχοντα διαγράμματα ςχεδιαςμοφ.  

Οι γεωμετρικζσ διαςτάςεισ a και b, οι οποίεσ απαιτοφνται για τθν χριςθ των εν λόγω 

διαγραμμάτων εμφανίηονται ςτο χιμα 7, ενϊ επιπλζον: 
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όπου   ks (m/sec)      = θ διαπερατότθτα του εδάφουσ κατά τθν οριηόντια διεφκυνςθ 

td (sec)           = χρόνοσ δυναμικισ φόρτιςθσ  

mv,3 (1/kPa)  = ςυντελεςτισ ογκομετρικισ ςυμπιεςτότθτασ 

γw (kN/m3)    = ειδικό βάροσ του νεροφ 

  a (m)              = θ ακτίνα του ςτραγγιςτθρίου 

Τα νζα προτεινόμενα διαγράμματα ςχεδιαςμοφ των Bouckovalas et al. (2009) 

παρουςιάηονται ςτο χιμα 8. 

 

 

 χιμα 7: (a) Kάτοψθ και (b) τομι τθσ διάταξθσ των χαλικοπαςςάλων εντόσ 
ρευςτοποιιςιμου εδάφουσ (Seed & Booker, 1977). 
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χιμα 8: Νζα διαγράμματα ςχεδιαςμοφ ςτραγγιςτθρίων από τουσ Bouckovalas et al., 
2009. 

 

Εναλλακτικοί τφποι ςτραγγιςτθρίων.- Η εγκατάςταςθ των χαλικοπαςςάλων ςυνοδεφεται 

από ςθμαντικι όχλθςθ, ενϊ ανάλογα με τθν μζκοδο εγκατάςταςθσ παράγονται ςθμαντικζσ 

ποςότθτεσ δυνθτικά επικίνδυνων υλικϊν. Επιπρόςκετα, ςφνθκεσ φαινόμενο κατά τθν 

εγκατάςταςθ, αλλά και τθν περίοδο λειτουργίασ των χαλικοπαςςάλων, αποτελεί θ 

απόφραξι τουσ (γνωςτι και ωσ clogging), θ οποία αποδυναμϊνει τθν αποςτραγγιςτικι τουσ 

ικανότθτα. Για τθν αντιμετϊπιςθ αυτϊν των μειονεκτθμάτων ζχουν αναπτυχκεί 

εναλλακτικοί τφποι ςτραγγιςτθρίων, όπωσ τα ΕQ-Drains και τα επονομαηόμενα Screen 

pipes. Στο κεφάλαιο 3, τθσ διδακτορικισ διατριβισ αναφζρονται οι βαςικζσ προδιαγραφζσ 

εξοπλιςμοφ, εγκατάςταςθσ και ςχεδιαςμοφ των νζων αυτϊν τεχνολογιϊν, ενϊ 

παρουςιάηονται και τυπικά αποτελζςματα από τθν πειραματικι αξιολόγθςθ και των δφο 
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ομάδων ςτραγγιςτθρίων. Ραράλλθλα, πραγματοποιείται ςυγκριτικι αξιολόγθςθ μεταξφ των 

νζων εναλλακτικϊν τφπων ςτραγγιςτθρίων και των κλαςςικϊν χαλικοπαςςάλων.  

Κριτιρια Επιτελεςτικότθτασ.- Στο κεφάλαιο 4  τθσ διδακτορικισ διατριβισ, ςυνοψίηονται τα 

αποτελζςματα τθσ βιβλιογραφικισ αναδρομισ ςχετικά με τθν επικρατοφςα φιλοςοφία 

ςχεδιαςμοφ με βάςθ κριτιρια επιτελεςτικότθτασ (performance based design). 

Συγκεκριμζνα, αναλφονται τα τρία βαςικά ςτάδια ςτο ςχεδιαςμό γεφυρϊν και κτιρίων, τα 

οποία ςυνοψίηονται ςτα εξισ:  

 Σειςμικζσ δράςεισ ςχεδιαςμοφ.- οι οποίεσ διαφζρουν ανάλογα με τθν κατθγορία 

τθσ καταςκευισ. Οι εν λόγω ςειςμικζσ δράςεισ χαρακτθρίηονται από μια 

πικανότθτα εκδιλωςθσ κατά τθσ διάρκεια ηωισ του ζργου (ι τθν περίοδο 

επαναφοράσ) και ποικίλουν ανάλογα με τθ ςειςμικότθτα τθσ περιοχισ.  

 Επίπεδα λειτουργικότθτασ.- τα οποία προςδιορίηουν τθν ζκταςθ των βλαβϊν και 

τθν ποιότθτα υπθρεςίασ του τεχνικοφ ζργου, μετά τθν εκδιλωςθ τθσ ςειςμικισ 

δράςθσ ςχεδιαςμοφ.  

 Επιτρεπόμενα όρια παραμορφώςεων.- τα οποία ποςοτικοποιοφν ςε όρουσ 

επιτρεπόμενων παραμορφϊςεων τα ανωτζρω επίπεδα λειτουργικότθτασ, ανάλογα 

με τον τφπο και το υλικό καταςκευισ του φζροντα οργανιςμοφ. Από τθ 

βιβλιογραφικι ζρευνα, διαπιςτϊκθκε ότι οι ιςχφοντεσ Σειςμικοί Κϊδικεσ δεν 

παρζχουν επαρκείσ πλθροφορίεσ ςχετικά με επιτρεπόμενα όρια ςειςμικϊν 

παραμορφϊςεων, ςυνεπϊσ, τα όρια που παρουςιάηονται αφοροφν τισ 

επιτρεπόμενεσ τιμζσ υπό ςτατικζσ ςυνκικεσ. 

Τονίηεται ότι τα όρια των επιτρεπόμενων κακιηιςεων υπό ςτατικζσ ςυνκικεσ που 

παρουςιάηονται, κα πρζπει να χρθςιμοποιοφνται με προςοχι, κακϊσ ζχουν προκφψει υπό 

τθν παραδοχι ότι οι αντίςτοιχεσ καταςκευζσ εδράηονται ςε ομοιόμορφα αμμϊδθ ι 

αργιλικά εδάφθ. Αυτό ςυνεπάγεται, ότι πολλζσ περιπτϊςεισ ανομοιογενϊν εδαφικϊν 

ςυνκθκϊν δεν περιγράφονται ικανοποιθτικά, δυςχεραίνοντασ ζτςι τον κακοριςμό 

επιτρεπόμενων τιμϊν κακιηιςεων. Σε αυτζσ τισ περιπτϊςεισ, ο βακμόσ ανομοιογζνειασ και 

θ επίδραςι του ςτθν καταςκευι κα πρζπει να κακορίηεται μζςω επί τόπου γεωτριςεων και 

εργαςτθριακϊν δοκιμϊν. Ραράλλθλα, οι επιτρεπόμενεσ παραμορφϊςεισ ςτουσ ιςχφοντεσ 

κανονιςμοφσ, αναφζρονται ςε τυπικζσ καταςκευζσ, και επομζνωσ θ εφαρμογι τουσ ςε 

καταςκευζσ με μθ-ομοιόμορφα κατανεμθμζνο φορτίο ζχει μικρότερθ αξιοπιςτία.  
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Ε.Ε.2. Μεκοδολογία χεδιαςμοφ Χαλικοπαςςάλων 

Η βελτίωςθ του εδάφουσ ζναντι ρευςτοποίθςθσ, επιτυγχάνεται με τθ βοικεια 

χαλικοπαςςάλων και οφείλεται ςε δφο βαςικοφσ παράγοντεσ:  

 τθ ςυμπφκνωςθ των ρευςτοποιιςιμων εδαφικϊν ςτρϊςεων, κατά τθν δονθτικι 

καταςκευι των χαλικοπαςςάλων, θ οποία αποτιμάται με τθν βοικεια εμπειρικϊν 

διαγραμμάτων τα οποία και αναηθτικθκαν ςτθν διεκνι βιβλιογραφία. 

 τθν ενεργοποίθςθ οριηόντιασ ακτινικισ ςτράγγιςθσ εντόσ του ρευςτοποιιςιμου 

εδάφουσ, θ οποία οδθγεί ςε μερικι αποτόνωςθ των υδατικϊν υπερπιζςεων που 

προκαλεί θ ςειςμικι δόνθςθ. Η ςυγκεκριμζνθ δράςθ ζχει αποτελζςει αντικείμενο 

αναλυτικισ διερεφνθςθσ ςτο παρελκόν, από τθν οποία ζχουν προκφψει μάλιςτα και 

αντίςτοιχα διαγράμματα ςχεδιαςμοφ *π.χ. Seed & Booker (1977)+. Ωςτόςο, 

πειραματικζσ μετριςεισ ζχουν δείξει ότι υπάρχει ανάγκθ επανεξζταςθσ των 

παραδοχϊν των εν λόγω αναλυτικϊν λφςεων, με ζμφαςθ ςτθ βαςικι ςχζςθ που 

περιγράφει τθν ανάπτυξθ υδατικϊν υπερπιζςεων rU-N/NL.  

Στο κεφάλαιο 5 τθσ διδακτορικισ διατριβισ, παρουςιάηονται αποτελζςματα δοκιμϊν 

ρευςτοποίθςθσ υπό ελεγχόμενθ διατμθτικι παραμόρφωςθ, οι οποίεσ αποδίδουν με 

μεγαλφτερθ ακρίβεια τισ ςυνκικεσ ςειςμικισ φόρτιςθσ ςτθ φφςθ. Οι εν λόγω 

εργαςτθριακζσ δοκιμζσ εκτελζςτθκαν ςτα πλαίςια του ερευνθτικοφ προγράμματοσ X-SOILS1, 

από τθν Αν. Κακθγιτρια του Ε.Μ.Ρ. κα Β. Γεωργιάννου.  Με βάςθ αυτά, αποδεικνφεται ότι ο 

ςυντελεςτισ Α, ςτθν παρακάτω ςχζςθ υπολογιςμοφ τθσ υπερπίεςθσ πόρων (De Alba et al., 

1975) μπορεί να λάβει μεγαλφτερεσ τιμζσ από το 0.7 που προτείνουν οι ςυγγραφείσ. 
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Μάλιςτα, όπωσ παρουςιάηεται ςτο χιμα 9, οι προτεινόμενεσ τιμζσ του Α κυμαίνονται από 

Α = 1.40 – 2.00. Επίςθσ, αποδεικνφεται ότι θ τιμι του Α εξαρτάται από τον τφπο τθσ δοκιμισ 

(ανακυκλικι τριαξονικι ι απευκείασ διάτμθςθ), τθν τάςθ ςτερεοποίθςθσ, ς’vo, κακϊσ και 

από τισ εκάςτοτε εδαφικζσ ιδιότθτεσ, όπωσ το ποςοςτό λεπτόκοκκων και θ ςχετικι 

πυκνότθτα. Συνεπϊσ, για τθ μεκοδολογία των Bouckovalas et al. (2009), επαναλιφκθκε θ 

αναλυτικι επίλυςθ των διαφορικϊν εξιςϊςεων 1-D υδατικισ ροισ γφρω από τον 

                                                            
1 Το πρόγραμμα “X-SOILS: Θεμελίωςθ τεχνικϊν ζργων ςε ςειςμικϊσ “προβλθματικά” εδάφθ υπό ιςχυρι 

ςειςμικι δόνθςθ” (2003 – 2006), χρθματοδοτικθκε από τθν Ευρωπαϊκι Ζνωςθ και τθ Γενικι Γραμματεία 
Ζρευνασ και Τεχνολογίασ.  
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χαλικοπάςςαλο, με τθν μζκοδο των πεπεραςμζνων διαφορϊν, για διάφορεσ τιμζσ του Α και 

διατυπϊκθκαν νζα διαγράμματα ςχεδιαςμοφ. Στα εν λόγω διαγράμματα, ζχει εξαλειφκεί θ 

επίδραςθ τθσ διάρκειασ τθσ ςειςμικισ δόνθςθσ, αντικακιςτϊντασ τον αδιάςτατο χρονικό 

παράγοντα Tad με τον όρο Tal, ο οποίοσ ορίηεται από τθν ακόλουκθ ςχζςθ:  

           
2

,3 a
h l

al

v w

k t
T

m γ
                                                               [3] 

Επίςθσ, αποδεικνφεται ότι ςειςμικζσ διεγζρςεισ με ιςοδφναμο αρικμό κφκλων φόρτιςθσ 

μεγαλφτερο από τον απαιτοφμενο αρικμό κφκλων για ρευςτοποίθςθ (Neq/NL > 1) δεν ζχουν 

ςθμαντικι επίδραςθ ςτο ςχεδιαςμό, ιδιαίτερα εντόσ του ςυνικουσ εφρουσ τιμϊν 

ςχεδιαςμοφ του επιτρεπόμενου λόγου υπερπίεςθσ πόρων ru,max = 0.20 ÷ 0.50. Συνεπϊσ, τα 

τελικά διαγράμματα ςχεδιαςμοφ κεωροφν μια μοναδικι τιμι ςειςμικισ ζνταςθσ Neq/NL, 

όπωσ παρουςιάηεται ςτο χιμα 10. 
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χιμα 9: Σφγκριςθ μεταξφ ςφγχρονων εργαςτθριακϊν καμπυλϊν ρευςτοποίθςθσ (X-
SOILS) και αναλυτικισ ςχζςθσ De Alba (1974) για διάφορεσ τιμζσ του Α. 
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χιμα 10: Διαγράμματα ςχεδιαςμοφ για τθν ανακεωρθμζνθ μεκοδολογία ςχεδιαςμοφ 
των Bouckovalas et al. (2009) για A=0.70, 1.00, 1.40, 2.00 και Neq/NL=1.00, 
1.50, 2.00. 

 

Ρροσ επιβεβαίωςθ τθσ αξιοπιςτίασ των νζων διαγραμμάτων ςχεδιαςμοφ τθσ 

ανακεωρθμζνθσ μεκοδολογίασ των Bouckovalas et al. (2009), ςτο κεφάλαιο 6 

πραγματοποιείται θ αρικμθτικι προςομοίωςθ τθσ αποςτραγγιςτικισ δράςθσ των 

χαλικοπαςάλων μζςω ςοφιςτευμζνων 3-Δ δυναμικϊν μθ-γραμμικϊν αναλφςεων.  

Η εν λόγω αρικμθτικι προςομοίωςθ πραγματοποιικθκε ωσ ακολοφκωσ:  

 Χρθςιμοποιικθκε ο κϊδικασ πεπεραςμζνων διαφορϊν FLAC3D. Στον εν λόγω 

κϊδικα εφαρμόηεται ζνασ μθ πεπλεγμζνοσ αλγόρικμοσ αρικμθτικισ ολοκλιρωςθσ, 

γεγονόσ που τον κακιςτά υπολογιςτικά πιο αποτελεςματικό ςε ζντονα μθ-γραμμικά 

προβλιματα μεγάλων μετατοπίςεων με χρονικι εξζλιξθ (π.χ. ροι υγροφ των πόρων, 

δυναμικι φόρτιςθ). Επίςθσ, επιτρζπει τθν ενςωμάτωςθ από τον χριςτθ 

εξειδικευμζνων καταςτατικϊν προςομοιωμάτων (User-Defined-Models) για τθν 

ακριβζςτερθ προςομοίωςθ τθσ ςυμπεριφοράσ του εδαφικοφ ςτοιχείου.  
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 Η απόκριςθ τθσ ρευςτοποιιςιμθσ άμμου Nevada προςομοιϊκθκε με το 

καταςτατικό προςομοίωμα NTUA_SAND (Papadimitriou & Bouckovalas, 2002, και 

Andrianopoulos et al., 2010), όπωσ ενςωματϊκθκε ςτον κϊδικα FLAC3D ςτα 

πλαίςια τθσ διδακτορικισ διατριβισ του Δ. Καραμιτρου (2010). Το εν λόγω 

προςομοίωμα βακμονομικθκε ζναντι πειραματικϊν αποτελεςμάτων από 

μονοτονικζσ και ανακυκλικζσ δοκιμζσ ςε άμμο Nevada 

 Η απόκριςθ των χαλικοπαςςάλων και των αργιλικϊν ςτρϊςεων κεωρικθκε ελαςτικι. 

Ξεκινϊντασ από τθν απόκριςθ του εδάφουσ υπό ςυνκικεσ ελεφκερου πεδίου, εν ςυνεχεία 

εξετάηεται θ παρουςία των χαλικοπαςςάλων εντόσ του ρευςτοποιιςιμου εδάφουσ, 

κεωρϊντασ τθν επίδραςθ του αρικμοφ τουσ, τθσ διάταξθσ ςε μία ι δφο ςειρζσ, κακϊσ και 

τθσ ακαμψίασ και τθσ διαπερατότθτάσ τουσ ςε ςχζςθ με τθ ςτρϊςθ τθσ άμμου. Ραράλλθλα, 

εξετάηεται θ επίδραςθ παραμζτρων μθ-ςχετιηόμενων με τουσ χαλικοπαςςάλουσ, όπωσ θ 

διακριτοποίθςθ του καννάβου και οι ςυνοριακζσ ςυνκικεσ. Τα αρικμθτικά αποτελζςματα 

αξιολογοφνται ςε όρουσ υπερπιζςεων πόρων (Δu) και λόγου υπερπιζςεων πόρων (ru) και 

δευτερευόντωσ ςε όρουσ οριηόντιων επιταχφνςεων. Σε όλθ των ανωτζρω διερεφνθςθ, θ 

ρευςτοποιιςιμθ ςτρϊςθ τθσ άμμου είναι εγκιβωτιςμζνθ μεταξφ δφο αργιλικϊν ςτρϊςεων, 

ζτςι ϊςτε να εξεταςτεί μεμονωμζνα θ αποςτραγγιςτικι δράςθ των χαλικοπαςςάλων. Η 

τελικϊσ επιλεγείςα διάταξθ παρουςιάηεται ςτο χιμα 11. 

 

χιμα 11: Διάταξθ εδάφουσ – χαλικοπαςςάλων κι εδαφικζσ ιδιότθτεσ. 
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Στθ ςυνζχεια, πραγματοποιικθκαν αρικμθτικζσ αναλφςεισ, ςτισ οποίεσ θ διαπερατότθτα 

τθσ άμμου μεταβαλλόταν από ksand = 0 (αςτράγγιςτεσ ςυνκικεσ) ζωσ 1*10-4m/s, όπωσ 

παρουςιάηεται ςτον Πίνακασ 1. Σε όλεσ τισ αναλφςεισ θ διαπερατότθτα του υλικοφ του 

χαλικοπαςςάλου ιταν 100 φορζσ μεγαλφτερθ από αυτι τθσ άμμου.  

 

Πίνακασ 1: Tιμζσ ςυντελεςτι διαπερατότθτασ k(m/sec). 

Ανάλυςθ 
Διαπερατότθτα άμμου 

(m/sec) 
Διαπερατότθτα 

χαλικοπαςςάλου (m/sec) 

a. 10-4 10-2 

b. 5*10-5 5*10-3 

c. 2*10-5 2*10-3 

d. 10-5 10-3 

e. 5*10-6 5*10-4 

f. 2*10-6 2*10-4 

 

Οι χρονοϊςτορίεσ του λόγου υπερπιζςεων πόρων ςτθν κεντρικι ηϊνθ τθσ κεωροφμενθσ 

διάταξθσ παρουςιάηονται ςτο χιμα 12. Ραρατθρείται ότι οι αρικμθτικά υπολογιηόμενεσ 

καμπφλεσ παρουςιάηουν τθ χαρακτθριςτικι μορφι των αναλυτικϊν προβλζψεων, όπου 

μετά τθν εκδιλωςθ μιασ μζγιςτθσ τιμισ ru, ςε ενδιάμεςα ςτάδια τθσ δόνθςθσ, εν ςυνεχεία 

οι τιμζσ του λόγου υπερπιζςεων πόρων μειϊνονται ζωσ το τζλοσ αυτισ.  

 

 

χιμα 12: Aρικμθτικά αποτελζςματα και αναλυτικζσ προβλζψεισ χρονοϊςτοριϊν 
λόγου υπερπιζςεων πόρων (ru) για διαφορετικζσ τιμζσ διαπερατότθτασ. 

 

Το επόμενο βιμα, ςτθ διαδικαςία τθσ αρικμθτικισ επαλικευςθσ, αφορά τθ δυνατότθτα 

αναπαραγωγισ των αρικμθτικϊν προβλζψεων με ζνα μοναδικό ςετ εδαφικϊν παραμζτρων, 



Εκτενισ Ρερίλθψθ 

 

xix 

 

εξαιρουμζνθσ βζβαια τθσ διαπερατότθτασ, θ οποία μεταβάλλεται. Ρροσ αυτι τθν 

κατεφκυνςθ, αρχικά επιχειρείται θ προςαρμογι τθσ αναλυτικισ ςχζςθσ ανάπτυξθσ 

υδατικϊν υπερπιζςεων rU-N/NL των De Alba et al. (1975) υπό αςτράγγιςτεσ ςυνκικεσ ςτα 

αρικμθτικά αποτελζςματα, μζςω επαναλθπτικϊν υπολογιςμϊν. Ππωσ παρουςιάηεται και 

ςτο χιμα 13, αυτό επιτυγχάνεται για τθν τιμι του ςυντελεςτι Α = 1.40 και απαιτοφμενο 

χρόνο για τθν εκδιλωςθ ρευςτοποίθςθσ ίςο προσ tl= 1.3sec.  

 

 

χιμα 13: Αρικμθτικϊσ υπολογιηόμενθ χρονοϊςτορία λόγου υπερπιζςεων πόρων  και 
αναλυτικά αποτελζςματα για Α = 1.40 και tl = 1.3sec. 

 

Ζχοντασ προςδιορίςει τισ παραμζτρουσ to, A, και tl, ςτο επόμενο βιμα, επιδιϊκεται θ 

προςαρμογι των αρικμθτικά υπολογιηόμενων χρονοϊςτοριϊν ru, ςτισ αναλυτικά 

υπολογιηόμενεσ υπό ςτραγγιηόμενεσ ςυνκικεσ. Η εν λόγω διαδικαςία πραγματοποιικθκε 

μζςω του επαναλθπτικοφ υπολογιςμοφ του ςυντελεςτι ογκομετρικισ ςυμπιεςτότθτασ mv,3, 

μιασ και θ ςυγκεκριμζνθ παράμετροσ δεν απαιτείται για τθ διεξαγωγι των αρικμθτικϊν 

αναλφςεων. 

Ο ςυντελεςτισ ογκομετρικισ ςυμπιεςτότθτασ αποδεικνφεται ςθμαντικι παράμετροσ ςτο 

ςχεδιαςμό των ςτραγγιςτθρίων, τθν ίδια ςτιγμι που δεν υπάρχει δυνατότθτα απευκείασ 

μζτρθςισ του μζςω των ςυμβατικϊν δοκιμϊν τθσ εδαφομθχανικισ. Συνεπϊσ, θ τιμι του 

mv,3 προςδιορίηεται κατά κφριο λόγο με βάςθ δθμοςιευμζνα πειραματικά δεδομζνα από 

αςτράγγιςτεσ δοκιμζσ ανακυκλικισ τριαξονικισ φόρτιςθσ (PHRI, 1997). Με ςκοπό τθν 

περαιτζρω διερεφνθςθ των κατάλλθλων τιμϊν του ςυντελεςτι ςυμπιεςτότθτασ ςτο 
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ςχεδιαςμό των ςτραγγιςτθρίων, οι  προθγοφμενεσ επαναλθπτικά υπολογιηόμενεσ τιμζσ 

ςυγκρίνονται ζναντι τριϊν ανεξάρτθτων ομάδων τιμϊν:  

 Αρικμθτικά υπολογιηόμενεσ τιμζσ mv,3 βάςει τθσ προςομοίωςθσ τθσ μετα-ςειςμικισ 

ςτερεοποίθςθσ του ρευςτοποιθμζνου εδάφουσ. Συγκεκριμζνα, βαςιηόμενοι ςτον 

οριςμό του ςυντελεςτι ςυμπιεςτότθτασ (Εξίςωςθ [4]), κατά τθ χρονικι ςτιγμι 

εκδιλωςθσ τθσ μζγιςτθσ τιμισ των υδατικϊν υπερπιζςεων, Δumax, θ ςειςμικι 

δόνθςθ διακόπτεται, και ακολουκεί μια ανάλυςθ ςτερεοποίθςθσ, ζωσ τθν πλιρθ 

αποτόνωςθ των υδατικϊν υπερπιζςεων.  





,3

max

vol
vm

u
                                                               [4] 

 όπου   Δumax = θ μζγιςτθ τιμι υπερπίεςθσ πόρων  

 Δεvol = θ ογκομετρικι παραμόρφωςθ που αναπτφςςεται κατά τθ 

   διάρκεια  τθσ ςτερεοποίθςθσ. 

 Αρικμθτικά υπολογιηόμενεσ τιμζσ mv,3 ςε επίπεδο εδαφικοφ ςτοιχείου.- Για τθν 

εκτίμθςθ των εν λόγω τιμϊν, προςομοιϊκθκαν αρικμθτικά, με τον κϊδικα FLAC3D, 

εργαςτθριακζσ δοκιμζσ ανακυκλικισ τριαξονικισ (CTX) και απλισ διάτμθςθσ (DSS), 

όπωσ προςδιορίηονται ςτα χιμα 14 και 15. Η αρχικι τάςθ ςτερεοποίθςθσ ορίςτθκε 

ςτα 100kPa, ενϊ ο υπολογιςμόσ του mv,3  πραγματοποιικθκε ςφμφωνα με τον 

οριςμό που παρουςιάςτθκε ανωτζρω. 

 

 

χιμα 14: Διάταξθ και ςυνοριακζσ ςυνκικεσ για τθν αρικμθτικι προςομοίωςθ 
ανακυκλικισ τριαξονικισ δοκιμισ ρευςτοποίθςθσ.  
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χιμα 15: Διάταξθ και ςυνοριακζσ ςυνκικεσ για τθν αρικμθτικι προςομοίωςθ 
ανακυκλικισ δοκιμισ ρευςτοποίθςθσ απλισ διάτμθςθσ.  

 

 Πειραματικζσ τιμζσ από τθ διεκνι βιβλιογραφία (PHRI,1997).- για άμμουσ 

διαφορετικισ κοκκομετρικισ διαβάκμιςθσ. Οι εν λόγω τιμζσ, αναφζρονται τόςο από 

τθν Japanese Geotechnical Society (JGS, 1998) όςο και από το Port & Harbor 

Research Institute (PHRI, 1997) και ζχουν προκφψει από ανακυκλικζσ τριαξονικζσ 

δοκιμζσ ρευςτοποίθςθσ. Επίςθσ, αναφζρεται ότι οι εν λόγω τιμζσ αντιςτοιχοφν ςε 

αρχικι τάςθ ςτερεοποίθςθσ 100kPa και επίπεδα λόγου υπερπίεςθσ πόρων ru < 0.5. 

Τα κφρια ςυμπεράςματα που προζκυψαν από τθν αρικμθτικι προςομοίωςθ τθσ 

αποςτραγγιςτικισ δράςθσ των χαλικοπαςςάλων ςυνοψίηονται ακολοφκωσ:  

 Η παραδοχι των Seed & Booker (1977) και των Bouckovalas et al. (2009) περί ενόσ 

ςτακεροφ ςυντελεςτι ςυμπιεςτότθτασ mv,3 ςε όλθ τθν ζκταςθ τθσ ρευςτοποιιςιμθσ 

ςτρϊςθσ επαλθκεφεται αρικμθτικά. Μάλιςτα, για το ςφνθκεσ εφροσ ςχεδιαςμοφ 

του λόγου υπερπιζςεων πόρων ru,max θ τιμι του 1/mv,3 μπορεί να κεωρθκεί περίπου 

ίςθ με 3*105kPa.  

 Ραρατθρείται ικανοποιθτικι ςυμφωνία ανάμεςα ςτισ αρικμθτικά και αναλυτικά 

υπολογιηόμενεσ τιμζσ 1/mv,3, για το ίδιο ςετ παραμζτρων του καταςτατικοφ 

προςομοιϊματοσ, ανεξάρτθτα από τθν ιςτορία τθσ φόρτιςθσ. 

 Η χριςθ ανακυκλικϊν τριαξονικϊν δοκιμϊν για τθν εκτίμθςθ του 1/mv,3 οδθγεί ςε 

τιμζσ μικρότερεσ από τισ αναλυτικά και αρικμθτικά υπολογιηόμενεσ. Συνεπϊσ, για 

δεδομζνο επιτρεπόμενο λόγο υπερπιζςεων πόρων ru,max, μικρζσ τιμζσ του 1/mv,3 

οδθγοφν ςε μεγαλφτερο αδιάςτατο χρονικό παράγοντα Tad, και τθν επιλογι 

μεγαλφτερου λόγου a/b, δθλαδι ςε πυκνότερθ διάταξθ χαλικοπαςςάλων και 

ςυντθρθτικό ςχεδιαςμό. Αντίκετα, θ χριςθ πειραματικϊν αποτελεςμάτων απλισ 

ανακυκλικισ διάτμθςθσ οδθγεί ςε περιςςότερο ρεαλιςτικζσ τιμζσ του 1/mv,3, 

ιδιαίτερα εντόσ του εφρουσ ςχεδιαςμοφ του λόγου υπερπιζςεων πόρων ru,max. Ωσ εκ 
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τοφτου, οι ςυγκεκριμζνεσ εργαςτθριακζσ δοκιμζσ πλεονεκτοφν ζναντι των 

τριαξονικϊν. 

 

Ε.Ε.3-Α.  Αναλυτικι Μεκοδολογία χεδιαςμοφ Επιφανειακϊν Θεμελιϊςεων     

(περιγραφι αναλφςεων και παραδοχών)  

Το πρϊτο βιμα για τθν ανάπτυξθ τθσ αναλυτικισ μεκοδολογίασ ςχεδιαςμοφ επιφανειακϊν 

κεμελιϊςεων ςε ρευςτοποιιςιμα εδάφθ προχποκζτει το ςχεδιαςμό μιασ επιφανειακισ 

κροφςτασ και τον προςδιοριςμό των βελτιωμζνων ιδιοτιτων αυτισ. Ζτςι, ςτο κεφάλαιο 7, 

παρουςιάηεται θ κεϊρθςθ του «Ιςοδφναμου Ομοιόμορφου Βελτιωμζνου Εδάφουσ», που 

χρθςιμοποιείται για τθν αρικμθτικι προςομοίωςθ τθσ επιφανειακισ κροφςτασ 

βελτιωμζνου εδάφουσ. Η εν λόγω κροφςτα, κεωρείται ομοιόμορφθ, με κατάλλθλα 

βελτιωμζνεσ εδαφικζσ ιδιότθτεσ (ςχετικι πυκνότθτα και διαπερατότθτα), οι οποίεσ 

προςδιορίηονται όπωσ περιγράφεται ςτισ επόμενεσ παραγράφουσ.  

χετικι πυκνότθτα Dr,imp(%).- Ρροςδιορίηεται με βάςθ τθ ςχετικι πυκνότθτα του φυςικοφ 

εδάφουσ, τον ςυντελεςτι αντικατάςταςθσ αs, και τα εμπειρικά διαγράμματα του χιμα 16. 

Συγκεκριμζνα, ςφμφωνα με τισ οδθγίεσ τθσ Japanese Geotechnical Society (JGS, 1998), ο 

αρικμόσ NSPT ςτο βελτιωμζνο ζδαφοσ (Nimp) υπολογίηεται ωσ εξισ: 

(1 )
imp s pile s ground

N N N                                            [5] 

όπου  Npile   είναι ο διορκωμζνοσ αρικμόσ χτφπων NSPT ςτθν περιοχι του παςςάλου  

                              (χιμα 16). 

Nground  είναι ο διορκωμζνοσ αρικμόσ χτφπων NSPT ςτο μεςο-διάςτθμα δφο   

                διαδοχικϊν χαλικοπαςςάλων (χιμα 16). 

Ακολοφκωσ, θ ςχετικι πυκνότθτα ςχετίηεται με τον διορκωμζνο αρικμό Νimp., μζςω τθσ 

εμπειρικισ ςχζςθσ, που προτείνεται από τουσ Tokimatsu & Seed (1987):  

  244impN Dr                                                                [6] 
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χιμα 16: Διαγράμματα εκτίμθςθσ του αρικμοφ NSPT για αμμϊδθ εδάφθ με ποςοςτό 
λεπτόκοκκων μικρότερο του 20% (JGS, 1998). 

 

υντελεςτισ διαπερατότθτασ βελτιωμζνθσ κροφςτασ (keq.).- Σαν πρϊτθ προςζγγιςθ, θ 

υδατικι ροι διαμζςου τθσ βελτιωμζνθσ κροφςτασ, κεωρείται κατακόρυφθ, ζτςι ϊςτε θ 

ιςοδφναμθ διαπερατότθτα τθσ κροφςτασ να μπορεί να  λθφκεί ωσ ζνασ ςτακμιςμζνοσ 

μζςοσ όροσ των ςυντελεςτϊν διαπερατότθτασ του φυςικοφ εδάφουσ (ksand) και του 

χαλικοπαςςάλου (kdrain), όπωσ περιγράφεται από τθν ακόλουκθ εξίςωςθ: 

.
(1 )

eq s drain s sand
kk k                                                  [7] 

Λαμβάνοντασ υπόψθ ότι ο λόγοσ kdrain/ksand πρζπει να είναι μεγαλφτεροσ από 200 και επίςθσ 

ότι ο ςυντελεςτισ αντικατάςταςθσ as κυμαίνεται από 0.05 ζωσ 0.20 προκφπτει ότι keq.> (11 ÷ 

41)ksand.  

Στθ ςυνζχεια, θ μελζτθ τθσ ςειςμικισ απόκριςθσ μιασ επιφανειακισ κεμελίωςθσ λωρίδασ ςε 

ρευςτοποιιςιμο ζδαφοσ, με προθγοφμενθ ελεγχόμενθ βελτίωςθ, πραγματοποιικθκε μζςω 

αρικμθτικισ ανάλυςθσ και βαςίςτθκε ςτισ ακόλουκεσ παραδοχζσ: 

 Χρθςιμοποιικθκε ο κϊδικασ πεπεραςμζνων διαφορϊν ςε δφο διαςτάςεισ FLAC, ο 

οποίοσ παρουςιάηει τα ίδια πλεονεκτιματα με τον αντίςτοιχο κϊδικα ςε τρεισ 

διαςτάςεισ, όπωσ ζχει προαναφερκεί.  

 Η προςομοίωςθ των εδαφικϊν ςτρϊςεων υπό ςτατικζσ και δυναμικζσ ςυνκικεσ 

πραγματοποιικθκε με το καταςτατικό προςομοίωμα NTUA-SAND, όπωσ ζχει επίςθσ 
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προαναφερκεί. Τονίηεται ότι για τουσ ςκοποφσ τθσ παροφςασ επιμζρουσ 

Ερευνθτικισ Εργαςίασ, το καταςτατικό προςομοίωμα βακμονομικθκε εκ νζου, 

προκειμζνου να περιγράφει με ακρίβεια τθ διατμθτικι αντοχι τθσ άμμου ςε 

υψθλζσ τιμζσ ςχετικϊν πυκνοτιτων. Η διαδικαςία αξιολόγθςθσ τθσ υπάρχουςασ 

βακμονόμθςθσ και οι λόγοι που οδιγθςαν ςε επαναπροςδιοριςμό δφο εκ των 

παραμζτρων του καταςτατικοφ προςομοιϊματοσ περιγράφονται ςτο Παράρτθμα Β.  

 Διαφορετικζσ ςυνοριακζσ ςυνκικεσ κεωρικθκαν κατά το ςτάδιο τθσ ςτατικισ και 

δυναμικισ φόρτιςθσ. Συγκεκριμζνα, κατά τθν επιβολι των γεωςτατικϊν τάςεων και 

του φορτίου του κεμελίου περιορίςτθκαν οι οριηόντιεσ μετατοπίςεισ των άκρων, 

ενϊ κατά τθν κατακόρυφθ διεφκυνςθ περιορίςτθκαν μόνο τα κάτω όρια του 

καννάβου, ϊςτε να επιτρζπεται θ ελεφκερθ κακίηθςθ του ςυςτιματοσ. Για τθ 

διεξαγωγι τθσ δυναμικισ φόρτιςθσ, ςτα άκρα του κεωροφμενου ςυςτιματοσ, 

επιβλικθκαν πλευρικά ςφνορα «ςυηευγμζνων κόμβων» (tied-nodes), τα οποία 

χρθςιμοποιοφνται ςτθν περίπτωςθ ςειςμικισ φόρτιςθσ εδαφϊν με οριηόντια 

ςτρωματογραφία και οριηόντια ελεφκερθ επιφάνεια. 

 Το επιφανειακό κεμζλιο προςομοιϊνεται περιορίηοντασ τισ οριηόντιεσ και 

κατακόρυφεσ μετατοπίςεισ των αντίςτοιχων κόμβων, ςυνδζοντάσ τουσ μζςω ενόσ 

άκαμπτου ςτοιχείου δοκοφ και επιβάλλοντασ μια ομοιόμορφθ τάςθ ζδραςθσ ίςθ με 

q. Θεωρείται επίςθσ ότι ζχει μθδενικι μάηα, ϊςτε να αποφεφγονται αδρανειακά 

φαινόμενα. 

 Οι υπόλοιπεσ επιμζρουσ παραδοχζσ τθσ αρικμθτικισ μεκοδολογίασ (μζγεκοσ 

καννάβου, διακριτοποίθςθ, είδοσ απόςβεςθσ) οριςτικοποιικθκαν μετά από μια  

ςειρά παραμετρικϊν αναλφςεων ευαιςκθςίασ. 

Τελικϊσ, ο χρθςιμοποιοφμενοσ κανναβοσ παρουςιάηεται ςτο χιμα 17. 

Η αλλθλουχία τθσ φόρτιςθσ περιλαμβάνει τρία ξεχωριςτά ςτάδια, τα οποία παρουςιάηονται 

ςχθματικά ςτο χιμα 18:  

Φάςθ 1: Επιβάλλονται αρχικζσ γεωςτατικζσ τάςεισ και το φορτίο του κεμελίου επιβάλλεται 

ςταδιακά ςε βιματα των 5kPa, ζωσ τθν επικυμθτι τάςθ ζδραςθσ q (κλάδοσ a-b). 

Φάςθ 2: Ρραγματοποιείται μια πλιρωσ ςυηεγμζνθ δυναμικι ανάλυςθ ενεργϊν τάςεων, θ 

οποία υποβάλλει το ςφςτθμα εδάφουσ – κεμελίωςθσ ςε αρμονικι διζγερςθ, με 

παράλλθλθ υδατικι ροι. Κατά τθ διάρκεια τθσ φάςθσ αυτισ, αναπτφςςονται 



Εκτενισ Ρερίλθψθ 

 

xxv 

 

υπερπιζςεισ πόρων και οι δυναμικζσ κακιηιςεισ ςυςςωρεφωνται υπό ςτακερι 

τιμι του ςτατικοφ φορτίου Q (κλάδοσ b-c).  

Φάςθ 3: Μετά το τζλοσ τθσ δζγερςθσ, και ενϊ το ζδαφοσ τελεί ακόμθ υπό κακεςτϊσ 

ρευςτοποίθςθσ, το ςτατικό φορτίο Q αυξάνεται ζωσ τθν αςτοχία (κλάδοσ c-d), 

προςδιορίηοντασ ζτςι τθν απομειωμζνθ φζρουςα ικανότθτα τθσ κεμελίωςθσ. 

Τονίηεται ότι το μετα-ςειςμικό ςτάδιο πραγματοποιείται υπό ςτραγγιηόμενεσ 

ςυνκικεσ, ωςτόςο για να λθφκοφν υπόψθ οι ςυνζπειεσ τθσ ρευςτοποίθςθσ, οι 

υπερπιζςεισ πόρων διατθροφνται ςτακερζσ. Αυτό επιτυγχάνεται, αναςτζλλωντασ 

τθν υδατικι ροι και κζτωντασ μια μικρι τιμι ςτο μζτρο ςυμπίεςθσ του νεροφ 

(μείωςθ από 2*106 ςε 1kPa) ϊςτε να μθν μεταβλθκοφν οι υπερπιζςεισ πόρων από 

τθν επιβολι επιπλζον εξωτερικοφ φορτίου. 

 

χιμα 17: Χρθςιμοποιοφμενοσ κάνναβοσ ςτισ 2-Δ αρικμθτικζσ αναλφςεισ. 

 

Η ςυςτθματικι εξζταςθ των αρικμθτικϊν αποτελεςμάτων, ςε ςυνδυαςμό με παρατθριςεισ 

από ςχετικά πειράματα ςε φυγοκεντριςτι από τθ διεκνι βιβλιογραφία, υποδεικνφουν ότι θ 

ςυςςϊρευςθ των δυναμικϊν κακιηιςεων δεν είναι το αποτζλεςμα τθσ δυναμικισ 

ςυνίηθςθσ τθσ άμμου. Είναι περιςςότερο το αποτζλεςμα ενεργοποίθςθσ ενόσ μθχανιςμοφ 

ολιςκαίνοντοσ ςτερεοφ κατά Newmark, ο οποίοσ αναλφεται λεπτομερϊσ ςτα πλαίςια του 

κεφαλαίου 7. Συνοπτικά, αναφζρεται ότι θ ςυςςϊρευςθ των κακιηιςεων ςυνδζεται με τθν 

ενεργοποίθςθ ενόσ ςφθνοειδοφσ μθχανιςμοφ αςτοχίασ, ο οποίοσ εκδθλϊνεται δφο φορζσ 

κατά τθ διάρκεια ενόσ πλιρουσ κφκλου φόρτιςθσ, μία από κάκε πλευρά του κεμελίου. 

 

H to
t.
=2

0m
Hcrust=4,6,8m

Zliq.=16,14,12m

B=5m

Dr,o=35, 40, 45, 50 55, 65, 70%

Dr,imp.=f (αs)

1m 1
m

1.5m 1
m

2.0m 1
m

tied node boundary conditions

q=100kPa

keq.=f (ksand, αs)
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χιμα 18: Τυπικι καμπφλθ φορτίου – μετατόπιςθσ. 

 

Η εκδιλωςθ ρευςτοποίθςθσ ςτθν άμμο, εκτόσ από τθ ςυςςϊρευςθ κακιηιςεων, επιφζρει 

ςχεδόν ολοκλθρωτικι απϊλεια τθσ διατμθτικισ τθσ αντοχισ, κακϊσ και μερικι απϊλεια 

διατμθτικισ αντοχισ ςτθ βελτιωμζνθ κροφςτα, ωσ αποτζλεςμα τθσ αναπόφευκτθσ, αλλά 

ελεγχόμενθσ ανάπτυξθσ υπερπιζςεων πόρων. Το εν λόγω φαινόμενο προκαλεί τθν 

παροδικι απομείωςθ τθσ φζρουςασ ικανότθτασ τθσ κεμελίωςθσ, εντόσ του χρονικοφ 

διαςτιματοσ, το οποίο απαιτείται για τθν πλιρθ αποτόνωςθ των υδατικϊν υπερπιζςεων. Ο 

αναπτυςςόμενοσ μθχανιςμόσ αςτοχίασ τθσ επιφανειακισ κεμελίωςθσ περιγράφεται 

διεξοδικά ςτο κεφάλαιο 7. Ενδεικτικά αναφζρεται, ότι θ αναπτυςςόμενθ επιφάνεια 

αςτοχίασ είναι αντίςτοιχθ του μθχανιςμοφ που προτείνεται από τουσ Meyerhoff & Hanna 

(1978) για επιφανειακζσ κεμελιϊςεισ ςε 2-ςτρωτα εδαφικά προφίλ, όπωσ παρουςιάηεται 

ςτο χιμα 19. Στθν εν λόγω μεκοδολογία διευκρινίηεται ότι το πάχοσ τθσ βελτίωςθσ (Ηimp) 

κακορίηει και τθ μορφι του μθχανιςμοφ αςτοχίασ. Ειδικότερα, για μικρζσ τιμζσ του βάκουσ 

βελτίωςθσ αναπτφςςεται ζνασ μθχανιςμόσ διάτρθςθσ τθσ κεμελίωςθσ εντόσ του 

υποκείμενου ρευςτοποιθμζνου εδάφουσ - punching shear failure - (χιμα 19α), ενϊ ςε 

περιπτϊςεισ αυξθμζνου πάχουσ, ο μθχανιςμόσ αςτοχίασ αναπτφςςεται εξ’ολοκλιρου εντόσ 

τθσ κροφςτασ (χιμα 19β). 
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                                     (α)                               (β) 

χιμα 19: Φζρουςα ικανότθτα επιφανειακισ λωριδωτισ κεμελίωςθσ ςε δίςτρωτο 
εδαφικό προφίλ (Meyerhof & Hanna, 1978). 

 

Ρροσ επιβεβαίωςθ τθσ κεϊρθςθσ του Ιςοδφναμου Ομοιόμορφου Βελτιωμζνου Εδάφουσ και 

επαλικευςθ τθσ αρικμθτικισ μεκοδολογίασ που περιγράφθκε ανωτζρω, ζγινε ςφγκριςθ με 

τα δθμοςιευμζνα και καλά τεκμθριωμζνα πειραματικά αποτελζςματα ςε φυγοκεντριςτι 

των Liu & Dobry (1997), τα οποία περιγράφονται ςτθν πρϊτθ ενότθτα τθσ Εκτενοφσ 

Ρερίλθψθσ. Στα πλαίςια αυτά, εξετάςτθκαν δφο ςενάρια αναφορικά με τθν τιμι τθσ 

διαπερατότθτασ του ρευςτοποιιςιμου εδάφουσ:  

 Διαπερατότθτα υπό ςτατικζσ ςυνκικεσ (Arulmoli et al.,1992) 

 Διαπερατότθτα υπό δυναμικζσ ςυνκικεσ, όπωσ προτείνεται από τουσ ίδιουσ τουσ 

Liu & Dobry (1997).  

Τα αρικμθτικά και πειραματικά αποτελζςματα ςυγκρίνονται ςτο χιμα 20, ςε όρουσ 

δυναμικϊν κακιηιςεων και λόγου επιταχφνςεων Θεμελίου/Βάςθσ. Η παρατθροφμενθ 

ικανοποιθτικι ςυμφωνία είναι ενδεικτικι τθσ ορκότθτασ τθσ αρικμθτικισ προςομοίωςθσ 

που υιοκετείται τελικά για τθ μελζτθ τθσ ςειςμικισ απόκριςθσ του κεμελίου. Επιςθμαίνεται 

ότι θ επίδραςθ τθσ διαπερατότθτασ είναι ςθμαντικι κυρίωσ ςτθν πρόβλεψθ των ςειςμικϊν 

επιταχφνςεων και λιγότερο ςτθ ςυςςϊρευςθ των κακιηιςεων. Η τιμι τθσ διαπερατότθτασ 

υπό ςτατικζσ ςυνκικεσ προςφζρει τθν καλφτερθ ςυνολικά ςφγκριςθ με τα πειραματικά 

αποτελζςματα και ςυνεπϊσ υιοκετείται ςτισ παραμετρικζσ αρικμθτικζσ αναλφςεισ που κα 

ακολουκιςουν.  
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χιμα 20: Σφγκριςθ πειραματικϊν και αρικμθτικϊν αποτελεςμάτων Liu & Dobry 
(1997). 

 

Ε.Ε.3-Β.  Αναλυτικι Μεκοδολογία χεδιαςμοφ Επιφανειακϊν Θεμελιϊςεων  

(παραμετρικζσ αρικμθτικζσ αναλφςεισ)  

Με αποδεδειγμζνθ τθν αξιοπιςτία τθσ αρικμθτικισ μεκοδολογίασ, ςτο κεφάλαιο 8 

υλοποιείται το πρώτο βιμα για τθ διατφπωςθ τθσ μεκοδολογίασ ςχεδιαςμοφ, δθλαδι ο 

κακοριςμόσ του απαιτοφμενου ςυντελεςτι αντικατάςταςθσ αs, ανάλογα με τον 

επιτρεπόμενο μζγιςτο λόγο υπερπιζςεων ru,max  εντόσ τθσ βελτιωμζνθσ εδαφικισ κροφςτασ, 

το επικυμθτό πάχοσ αυτισ (παράμετροσ θ οποία δεν υπειςζρχεται ςτα διαγράμματα 

ςχεδιαςμοφ των Bouckovalas et al.,2009)  και τθν αρχικι ςχετικι πυκνότθτα του φυςικοφ 

εδάφουσ. Για το ςκοπό αυτό πραγματοποιικθκε μια ςειρά 72 παραμετρικϊν αναλφςεων 

ςειςμικισ απόκριςθσ ελεφκερου πεδίου για τρία διαφορετικά βάκθ βελτίωςθσ (Ηimp=4, 6 & 

8m), για ςυντελεςτζσ αντικατάςταςθσ αs = 0, 0.05, 0.10, 0.15 & 0.20 και για αρχικι ςχετικι 

πυκνότθτα του φυςικοφ εδάφουσ Dr,o = 35%, 40%, 45%, 55%, 65% & 70%. Τα αρικμθτικά 

αποτελζςματα παρουςιάηονται υπό τθ μορφι  διαγραμμάτων ςχεδιαςμοφ, ςτο χιμα 21. 

Το δεφτερο βιμα για τθ διατφπωςθ τθσ προτεινόμενθσ μεκοδολογίασ, περιλαμβάνει τον 

κακοριςμό των ιςοδφναμων εδαφικών ιδιοτιτων τθσ βελτιωμζνθσ ηώνθσ, δθλαδι τθσ 

ςχετικισ πυκνότθτασ και τθσ διαπερατότθτασ. Οι εν λόγω ιδιότθτεσ δφναται να 

προςδιοριςτοφν από τα διαγράμματα του χιμα 22 ςυναρτιςει του ςυντελεςτι 

αντικατάςταςθσ αs, ο οποίοσ προςδιορίςτθκε ςτο προθγοφμενο βιμα.  
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χιμα 21: Απαιτοφμενοσ ςυντελεςτισ αντικατάςταςθσ αs ςε ςχζςθ με τθν αρχικι 
ςχετικι πυκνότθτα Dr,o(%), τρεισ τιμζσ πάχουσ βελτίωςθσ Himp και τρεισ τιμζσ 
επιτρεπόμενων ru,max. 
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(α) 

 

(β) 

χιμα 22: Εκτίμθςθ βελτιωμζνων εδαφικϊν ιδιοτιτων: (α) ςχετικι πυκνότθτα 
Dr,imp(%) και (β) διαπερατότθτα keq.(m/sec), ςυναρτιςει του ςυντελεςτι 
αντικατάςταςθσ αs. 

 

Στο τρίτο βιμα για τθ διατφπωςθ τθσ αναλυτικισ μεκοδολογίασ, θ ςειςμικι ςυμπεριφορά 

τθσ επιφανειακισ κεμελίωςθσ αποτιμάται αρχικά για το 2-ςτρωτο εδαφικό προφίλ του 

χιμα 17, το οποίο αντιςτοιχεί ςε εκτενι πλευρικισ ζκταςθσ βελτίωςθ του εδάφουσ. Για 

τθν υλοποίθςθ του παρόντοσ βιματοσ, καταςτρϊκθκε και παρουςιάηεται ςτο κεφάλαιο 8 

μια εκτενισ παραμετρικι διερεφνθςθ αποτελοφμενθσ από 84 αρικμθτικζσ αναλφςεισ οι 

οποίεσ εξετάηουν τθν επίδραςθ:  
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I. εδαφικϊν ιδιοτιτων (ςχετικι πυκνότθτα, διαπερατότθτα φυςικοφ εδάφουσ)  

II. ςειςμολογικϊν παραμζτρων (μζγιςτθ επιτάχυνςθ, περίοδοσ διζγερςθσ και αρικμόσ 

κφκλων φόρτιςθσ) κακϊσ και  

III. των παραμζτρων του κεμελίου (πλάτοσ και επιβαλλόμενθ τάςθ)  

Ππωσ ζχει ιδθ τονιςτεί, οι διαςτάςεισ τθσ τεχνθτά διαμορφωμζνθσ κροφςτασ είναι 

πεπεραςμζνεσ. Με δεδομζνο ότι το βάκοσ τθσ βελτίωςθσ (Ηimp) ζχει ιδθ ενςωματωκεί ςτθν 

προθγοφμενθ παραμετρικι διερεφνθςθ, θ επίδραςθ του πλάτουσ τθσ βελτίωςθσ (Limp) ςτθν 

απόκριςθ τθσ επιφανειακισ κεμελίωςθσ μελετάται ανεξάτθτα, μζςω 96 επιπλεόν 

παραμετρικϊν αναλφςεων. Ειδικότερα, επιλζχκθςαν οι πλζον αντιπροςωπευτικζσ 

περιπτϊςεισ από τθν προθγοφμενθ ομάδα αναλφςεων, και ςτθ ςυνζχεια, ςε κάκε 

περίπτωςθ το πλάτοσ τθσ βελτίωςθσ μειωνόταν ςταδιακά ζωσ περίπου το πλάτοσ του ίδιου 

του κεμελίου.  

 

Ε.Ε.3-Γ.  Αναλυτικι Μεκοδολογία χεδιαςμοφ Επιφανειακϊν Θεμελιϊςεων  

(ςτατιςτικι επεξεργαςία αποτελεςμάτων αρικμθτικών αναλφςεων)  

Ακολοφκωσ, ςτο κεφάλαιο 9 πραγματοποιείται θ ςτατιςτικι επεξεργαςία τθσ πρϊτθσ 

ομάδασ των αρικμθτικϊν αποτελεςμάτων, για εκτενι πλευρικά βελτίωςθ, και 

αναπτφςςονται κατάλλθλεσ αναλυτικζσ ςχζςεισ υπολογιςμοφ. Ζτςι με δεδομζνα τα 

χαρακτθριςτικά  

 τθσ κεμελίωςθσ, δθλαδι τθ μζςθ τάςθ ζδραςθσ q(kPa) και το πλάτοσ του B(m) 

 τθσ διζγερςθσ, δθλαδι τθσ μζγιςτθσ επιτάχυνςθσ ςτθ βάςθ του εδαφικοφ 

ςτρϊματοσ αmax (g), του αρικμοφ των ςθμαντικϊν κφκλων τθσ φόρτιςθσ No και τθσ 

δεςπόηουςασ περιόδου τθσ διζγερςθσ Texc (sec). 

 Τθν ελαςτικι περίοδο τθσ εδαφικισ ςτιλθσ  Tsoil (sec). 

οι δυναμικζσ κακιηιςεισ υπολογίηονται με βάςθ τθν ακόλουκθ αναλυτικι ςχζςθ:   

   
4

2

in

c

2 c
1 max exc soil o 3

deg
nf

d
f

eg
i

1 1
T + aT N +2 ( ) 1+c

F.S. F.S.
dynρ c α

  
       

                      [8]                            

όπου c1=0.019, c2=0.45, c3=0.25 c4=4.5 and a=0.633 

Με βάςθ το μθχανιςμό ολιςκαίνοντοσ ςτερεοφ κατά Newmark αποδεικνφεται ότι  
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*
2 2

max

0

( (t))dt
t N T

t

a T N π abs v




                                                    [9] 

όπου v(t) είναι θ χρονοϊςτορία τθσ επιβαλλόμενθσ ταχφτθτασ.  

Συνεπϊσ, θ αντίςτοιχθ αναλυτικι ζκφραςθ για αρμονικζσ διεγζρςεισ μπορεί να επεκτακεί 

ςε οποιοδιποτε τφπο ςειςμικισ διζγερςθσ.  

Η ακρίβεια τθσ προτεινόμενθσ αναλυτικισ Εξίςωςθσ [8] για τον υπολογιςμό των ςειςμικϊν 

κακιηιςεων αποτιμάται ςτο χιμα 23 με το 91.6% των προβλζψεων να αποκλίνει μεταξφ  

±20% από τισ αρικμθτικζσ τιμζσ. Το ςχετικό ςφάλμα των αναλυτικϊν προβλζψεων  

παρουςιάηεται ςτο χιμα 24, απ’ όπου υπολογίηεται ότι θ τυπικι απόκλιςθ του ςχετικοφ 

ςφάλματοσ ανζρχεται ςτο 14%.  

 

 

χιμα 23: Αρικμθτικζσ  και αναλυτικά υπολογιηόμενεσ τιμζσ ςειςμικϊν κακιηιςεων. 

 

 

χιμα 24: Σχετικό ςφάλμα ςυναρτιςει των αρικμθτικά υπολογιηόμενων τιμϊν των 
ςειςμικϊν κακιηιςεων ρdyn

num (m). 
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Ρζραν τθσ ανωτζρω ςχζςθσ, θ οποία είναι ςυμβατι με τθ κεϊρθςθ δυναμικισ αςτοχίασ 

τφπου “ολιςκαίνοντοσ ςτερεοφ” (Νewmark), πραγματοποιικθκε και ανεξάρτθτθ 

πολυπαραμετρικι ςτατιςτικι επεξεργαςία των αρικμθτικϊν αποτελεςμάτων. H νζα αυτι 

αναλυτικι ςχζςθ προβλζπει τισ ςειςμικζσ κακιηιςεισ με λίγο μεγαλφτερθ ακρίβεια, ωςτόςο 

εξαρτάται από τισ μονάδεσ κάκε παραμζτρου και δεν είναι εφκολα εφαρμόςιμθ ςτθν 

περίπτωςθ πραγματικϊν διεγζρςεων. 

Η εκτίμθςθ τθσ απομειωμζνθσ φζρουςασ ικανότθτασ τθσ κεμελίωςθσ qultdeg
inf μετά το 

πζρασ τθσ δόνθςθσ, βαςίηεται ςτθν αναλυτικι ςχζςθ των Meyerhoff & Hanna (1978), θ 

οποία τροποποιείται κατάλλθλα ϊςτε να περιγράφει τισ ιδιαίτερεσ ςυνκικεσ του 

προβλιματοσ. Συγκεκριμζνα, ωσ αποτζλεςμα τθσ ταχείασ αποτόνωςθσ των υδατικϊν 

υπερπιζςεων από τθ ρευςτοποιιςιμθ άμμο προσ τθν περιςςότερο διαπερατι βελτιωμζνθ 

κροφςτα, παρατθρείται ο ςχθματιςμόσ μιασ μεταβατικισ ηϊνθσ μερικϊσ ρευςτοποιθμζνου 

εδάφουσ ανάμεςα ςτθ βελτιωμζνθ κροφςτα και το πλιρωσ ρευςτοποιθμζνο ζδαφοσ, όπωσ 

φαίνεται ςτο χιμα 25. 

 

 

 

 

 

 

χιμα 25: Καμπφλεσ λόγου υδατικϊν υπερπιζςεων ςτο τζλοσ τθσ ςειςμικισ διζγερςθσ, 
υποδεικνφοντασ το ςχθματιςμό μιασ μθ ρευςτοποιθμζνθσ ηϊνθσ φυςικοφ 
εδάφουσ.  

 

Η μεταβατικι αυτι ηϊνθ λειτουργεί ωσ μια δευτερεφουςα κροφςτα και ουςιαςτικά 

αναγκάηει τθν επιφάνεια αςτοχίασ τφπου Prandl να αναπτυχκεί ςτο υποκείμενο πλιρωσ 

ρευςτοποιθμζνο ζδαφοσ. Υποκζτοντασ ότι το πάχοσ τθσ μεταβατικισ ηϊνθσ εκφράηεται ωσ 

Uff <1!Uff <1!
(1+α)Η1

Η1, γ’, φ1

Η2, γ’, φ2,3

Uff =1 Uff =1



Εκτενισ Ρερίλθψθ 

 

xxxiv 

 

ποςοςτό α τθσ βελτιωμζνθσ κροφςτασ και κεωρϊντασ ζνα ενιαίο ειδικό βάροσ για το 

ζδαφοσ (γ1=γ2=γ), θ αναλυτικι ςχζςθ των Meyerhof & Hanna (1978) μεταςχθματίηεται ωσ 

εξισ:  

1

1,deg 2,deg2 2 2
ult,deg 1 s 1 s 1

γ3 1 q3

1
γ BNγ

2
tanφ tanφ

q min γ Η Κ γ *(1 α) 1+ Η Κ γ (1 α)H
B B

1
γ BN γ (1 α)H N

2

 
 

 
 

           
 
 

    
 

            [10] 

Οι ςυντελεςτζσ Nq & Nγ εκφράηονται από τισ ακόλουκεσ ςχζςεισ: 

,degtan2
, ,degtan (45 / 2) iπ φ

q i iN φ e                                              [11a] 

, , ,deg2( 1)tanγ i q i iN N φ                                                            [11β] 

Η εφαρμογι τθσ ανωτζρω ςχζςθσ απαιτεί τον προθγοφμενο προςδιοριςμό των ακόλουκων 

παραμζτρων, οι οποίεσ προςδιορίςτθκαν μετά από κατάλλθλθ ςτατιςτικι επεξεργαςία των 

αρικμθτικϊν αποτελεςμάτων.  

υντελεςτισ α._ αφορά το πάχοσ τθσ μερικϊσ ρευςτοποιθμζνθσ μεταβατικισ ηϊνθσ, θ 

οποία ςχθματίηεται κάτω από τθ βελτιωμζνθ ηϊνθ, και προςδιορίηεται με βάςθ τθν 

ακόλουκθ αναλυτικι ςχζςθ:  

0.256

imp

3.76
 

  
  

eqk TN
α

H
                                                        [11]                                                       

Αρχικι γωνία τριβισ φi,ini.- Οι ςυνκικεσ φόρτιςθσ δεν παραμζνουν ομοιόμορφεσ κατά 

μικοσ τθσ ενεργοποιοφμενθσ επιφάνειασ αςτοχίασ. Συνεπϊσ θ αρχικι τιμι τθσ γωνίασ 

τριβισ και για τισ δφο εδαφικζσ ςτρϊςεισ εκτιμϊνται με βάςθ τθν Εξίςωςθ [12], κεωρϊντασ 

το μζςο όρο ανάμεςα ςε φόρτιςθ τριαξονικισ κλίψθσ, τριαξονικοφ εφελκυςμοφ και απλισ 

διάτμθςθσ, υπό αςτράγγιςτεσ και ςτραγγιηόμενεσ ςυνκικεσ. Οι ςυγκεκριμζνεσ τιμζσ 

προκφπτουν από τθν νζα βακμονόμθςθ του καταςτατικοφ προςομοιϊματοσ ςτο 

Ραράςτθμα Β.  

i,TX C i,TX E i,DSS
i,ini

φ φ φ
φ

3

  
                                                    [12]                                               
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Απομειωμζνθ γωνία τριβισ φi,deg.- Η απομείωςθ τθσ διατμθτικισ αντοχισ των εδαφικϊν 

ςτρϊςεων, λόγω μερικισ ι ολικισ εκδιλωςθσ ρευςτοποίθςθσ, λαμβάνεται υπόψθ μζςω τθσ 

κατάλλθλθσ απομείωςθσ των αντίςτοιχων τιμϊν γωνιϊν τριβισ. Η εν λόγω απομείωςθ είναι 

ςυνάρτθςθ του αναπτυςςόμενου λόγου υδατικϊν υπερπιζςεων, όπωσ περιγράφεται ωσ 

ακολοφκωσ:  

 1
i,deg i ,iniiφ  tan 1 U anφ ]t[                                                [13]                                                                                    

όπου ο δείκτθσ i λαμβάνει τισ τιμζσ, i= 1 για τθ βελτιωμζνθ κροφςτα, 2 για τθ μεταβατικι 

ηϊνθ και 3 για τθ ρευςτοποιθμζνθ άμμο. Οι αντίςτοιχοι λόγοι υπερπιζςεων πόρων Ui, 

προςδιορίηονται ςτισ ακόλουκεσ υπο-ενότθτεσ. 

Λόγοσ υπερπιζςεων πόρων U1 ςτθ βελτιωμζνθ ςτρϊςθ.- αντιςτοιχεί ςτο τζλοσ τθσ 

ςειςμικισ διζγερςθσ και υπό ςυνκικεσ ελεφκερου πεδίου, εκφράηεται ΔΕ ωσ ποςοςτό του 

μζγιςτου επιτρεπόμενου λόγου υπερπιζςεων ςχεδιαςμοφ Udesign:  

1 designU 0.54U                                                                 [14]                                                                                                                         

Λόγοσ υπερπιζςεων πόρων ςτθ μεταβατικι ηϊνθ U2.- ο οποίοσ αναπτφςςεται εντόσ τθσ 

μεταβατικισ ηϊνθσ. Λαμβάνεται ίςοσ με τθ μζςθ τιμι μεταξφ του λόγου U1 και τθσ 

αντίςτοιχθσ τιμισ για πλιρωσ ρευςτοποιθμζνο ζδαφοσ, θ οποία ιςοφται με τθ μονάδα:  

   design1

2

1 0

2

.54U1 U
U  

2


                                                      [15]                                          

Λόγοσ υπερπιζςεων πόρων ςτο ρευςτοποιθμζνο ζδαφοσ U3.- αφορά το ρευςτοποιθμζνο 

ζδαφοσ, εντόσ μιασ αντιπροςωπευτικισ περιοχισ κάτω από το κεμζλιο. Ρροςδιορίηεται με 

βάςθ τθν ακόλουκθ ζκφραςθ, ςυναρτιςει τθσ απομειωμζνθσ φζρουςασ ικανότθτασ qultdeg
inf:  

inf
ultdeg 0.18

3

q
U 0.86( )   1.00

p
 

α

                                                 [16]                                                                                            

υντελεςτισ Ks.-  Αντιπροςωπεφει τθν ενεργοποιοφμενθ διατμθτικι αντοχι ςτθν πλευρικι 

επιφάνεια τθσ μερικϊσ ρευςτοποιθμζνθσ επιφανειακισ κροφςτασ και τθσ υποκείμενθσ 

μεταβατικισ ηϊνθσ, κάτω από τα άκρα του κεμελίου. 

Για τθν καλφτερθ κατανόθςθ τθσ φυςικισ ςθμαςίασ του ςυντελεςτι Ks, παρουςιάηεται το 

ακόλουκο χιμα 26 ςτο οποίο ο ςυντελεςτισ Κs ειςάγεται ςτισ δυνάμεισ πλευρικισ τριβισ 

Τ1 & Τ2, ωσ ακολοφκωσ:  
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2
1 s 1 imp s 1,deg

1
T = K P  = γ'Η K tanφ

2
                       [17] 

 2 2
2 s 2 imp s 2,deg

1
T = K P  = γ'Η K *(1 ) -1+tanφ 

2
α                    [18] 

 

χιμα 26: Μθχανιςμόσ αςτοχίασ του κεμελίου και αναπτυςςόμενεσ δυνάμεισ που 
κεωρικθκαν για τον προςδιοριςμό του ςυντελεςτι Ks. 

 

Θεωρϊντασ ιςορροπία δυνάμεων κατά τθν κατακόρυφθ διεφκυνςθ, προκφπτει θ αναλυτικι 

ζκφραςθ υπολογιςμοφ του ςυντελεςτι Ks (Εξίςωςθ [19]).  

  
ult. int.

s 22
imp 1,deg 2,deg 

W Q P
K

γ  H tanφ 1 α 1 tanφ

 


   
 

    [19] 

Η εφαρμογι τθσ εν λόγω αναλυτικισ ςχζςθσ ςε μια ομάδα 27 επιλεγμζνων αρικμθτικϊν 

αναλφςεων, και θ ακόλουκθ ςτατιςτικι επεξεργαςία των αποτελεςμάτων, οδιγθςε ςτθ 

διαμόρφωςθ τθσ τελικϊσ προτεινόμενθσ ςχζςθσ υπολογιςμοφ του ςυντελεςτι Ks:  

0.30 0

imp

.

s

50
Hq

K 1.00
p Bα



 
 

 
 

 


 
     [20]                                                                                                  

όπου   pα   θ ατμοςφαιρικι πίεςθ (= 98.1kPa) 

q(kPa)   θ επιβαλλόμενθ τάςθ ζδραςθσ του κεμελίου 

Himp(m)   το πάχοσ τθσ βελτιωμζνθσ ηϊνθσ 

Β (m)   το πλάτοσ του κεμελίου 
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Η εξάρτθτθ τθσ παραμζτρου U3 από τθν απομειωμζνθ φζρουςα ικανότθτα qultdeg
inf, 

επιβάλλει τθν ταυτόχρονθ και επαναλθπτικι επίλυςθ των Εξιςώςεων [10] και [16], ζωσ 

ότου αυτζσ να ςυγκλίνουν και ζτςι να προςδιοριςτεί ο απομειωμζνοσ ςυντελεςτισ 

αςφαλείασ F.S.deg
inf*. Για τθ βελτίωςθ των προβλζψεων τθσ αναλυτικισ μεκοδολογίασ, ςτθν 

ανωτζρω τιμι εφαρμόηεται ο ακόλουκοσ διορκωτικόσ ςυντελεςτισ και τελικϊσ 

προςδιορίηεται ο απομειωμζνοσ ςυντελεςτισ αςφαλείασ για ςυνκικεσ εκτενοφσ πλευρικά 

(κεωρθτικά "άπειρθσ") βελτίωςθσ F.S.deg
inf :  

 

inf*
deg inf*

deg deg0.85inf

i

*
eg

nf

d

F.S.
F.S.  0.60F.S.

0.05 0.60 F.S.
 


              [21]                                                      

Συνεπϊσ, με δεδομζνο τον μετα-ςειςμικό ςυντελεςτι αςφαλείασ F.S.deg
inf, υπολογίηονται οι 

αντίςτοιχεσ ςειςμικζσ κακιηιςεισ. Στο χιμα 27 παρουςιάηεται θ αξιολόγθςθ των 

αναλυτικϊν προβλζψεων τθσ μεκοδολογίασ ςυναρτιςει των αντίςτοιχων αρικμθτικϊν 

τιμϊν, όπωσ επίςθσ και το υπολογιηόμενο ςχετικό ςφάλμα με τθν τυπικι απόκλιςθ αυτοφ. 



Εκτενισ Ρερίλθψθ 

 

xxxviii 

 

  

χιμα 27: Αξιολόγθςθ αναλυτικϊν προβλζψεων απομειωμζνθσ φζρουςασ ικανότθτασ, 
ςυντελεςτι αςφαλείασ και ςειςμικϊν κακιηιςεων.  
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Σε πραγματικζσ εφαρμογζσ, θ τεχνθτά διαμορφωμζνθ κροφςτα ζχει πεπεραςμζνεσ 

διαςτάςεισ, θ μία εκ των οποίων (το πλάτοσ Limp) ζχει ζωσ τϊρα κεωρθκεί πολφ μεγάλο 

(κεωρθτικά άπειρο). Συνεπϊσ, το τζταρτο βιμα τθσ αναλυτικισ μεκοδολογίασ, αφορά ςτον 

υπολογιςμό των κακιηιςεων και τθσ απομειωμζνθσ φζρουςασ ικανότθτασ του κεμελίου 

υπό ςυνκικεσ πεπεραςμζνθσ πλευρικισ ζκταςθσ τθσ βελτίωςθσ και υλοποιικθκε με 

ςτατιςτικι επεξεργαςία των αντιςτοιχων αρικμθτικϊν προβλζψεων.  

Δυναμικζσ κακιηιςεισ ρdyn(m).- Εκφράηονται ωσ ςυνάρτθςθ των διαςτάςεων τθσ 

βελτιωμζνθσ κροφςτασ (Himp και Limp) κανονικοποιθμζνων προσ το πλάτοσ του κεμελίου Β:  

     
               

1 0.30

inf / 1 exp 1.05 imp imp

dyn

H L

B B
                        [22]  

Aπομειωμζνθ Φζρουςα Ικανότθτα qult
deg και υντελεςτισ Αςφαλείασ F.S.deg.- Λόγω τθσ 

ευαιςκθςίασ των αρικμθτικϊν αποτελεςμάτων για τα εν λόγω μεγζκθ ο προςδιοριςμόσ του 

μετα-ςειςμικοφ ςυντελεςτι αςφαλείασ για πεπεραςμζνθ πλευρικά βελτίωςθ ζγινε ζμμεςα, 

από ςυνδυαςμό των ςχζςεων [8] και [22]. Κατ’ αυτό τον τρόπο προζκυψε θ ακόλουκθ 

ςχζςθ, θ οποία επιλφεται επαναλθπτικά: 

 

 

4.5

4.5

0.45 1 0.30

4.5

F.S.
F.S. 0.25

F.S.F.S. H L
1 exp 1.05

F.S. B B F.S. 0.25





 
                       

          

deginf
deg inf

degdeg imp imp

inf inf
deg deg

   [23] 

 

Ε.Ε.4 Διαγράμματα χεδιαςμοφ. 

Ρροσ διευκόλυνςθ ςτθ χριςθ τθσ προτεινόμενθσ αναλυτικισ μεκοδολογίασ, τα χιμα 28 

ζωσ 30 επιτρζπουν τθν εκτίμθςθ του λόγου των ςειςμικϊν κακιηιςεων για πεπεραςμζνθ 

προσ άπειρθ βελτίωςθ ρdyn/ρdyn
inf, ωσ ςυνάρτθςθ τριϊν διαφορετικϊν παραμζτρων 

ςχεδιαςμοφ, δθλαδι τουσ λόγουσ Limp/B, Limp/Himp και Vimp/B2,  

όπου   Limp  είναι το πλάτοσ τθσ βελτιωμζνθσ ηϊνθσ,  

B  είναι το πλάτοσ του κεμελίου,  

Himp  είναι το βάκοσ τθσ βελτίωςθσ,  



Εκτενισ Ρερίλθψθ 

 

xl 

 

Vimp  είναι o όγκοσ τθσ βελτιωμζνθσ ηϊνθσ, οριηόμενοσ ϊσ το γινόμενο 

του πλάτουσ (Limp) επί το βάκοσ (Himp) για τισ 2-διάςτατεσ ςυνκικεσ 

του προβλιματοσ. 

 Ο λόγοσ των ςειςμικϊν κακιηιςεων παρουςιάηεται για επτά (7) διαφορετικζσ τιμζσ του 

λόγου Himp/B (= 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00).  

Σχετικά με τον κανονικοποιθμζνο λόγο του απομειωμζνου ςυντελεςτι αςφαλείασ 

F.S.deg/F.S.deg
inf τα αντίςτοιχα διαγράμματα ςχεδιαςμοφ ςυνοψίηονται ςτα χιμα 31 ζωσ 33. 

Στα εν λόγω διαγράμματα, ο λόγοσ των απομειωμζνων ςυντελεςτϊν αςφαλείασ για 

πεπεραςμζνθ προσ άπειρθ βελτίωςθ  F.S.deg/F.S.deg
inf παρουςιάηεται ςυναρτιςει των ίδιων 

παραμζτρων ςχεδιαςμοφ που προαναφζρκθςαν. 

Στα ανωτζρω ςχιματα, οι παχφτερεσ γκρι γραμμζσ οριοκετοφν τθν περιοχι πζραν τθσ 

οποίασ ο ρυκμόσ μεταβολισ των καμπυλϊν είναι μικρότεροσ του 5%. Το εν λόγω όριο 

ςθμαίνει πρακτικά ότι αφξθςθ των διαςτάςεων τθσ κροφςτασ περαιτζρω αυτϊν των ορίων 

δεν είναι οικονομικά ςυμφζρουςα, οδθγεί δθλαδι ςε μικρι βελτίωςθ τθσ ςυμπεριφοράσ 

του κεμελίου για μεγάλο ςχετικά πρόςκετο κόςτοσ. Είναι αξιοςθμείωτο ότι τα εν λόγω όρια 

“βζλτιςτθσ οικονομο-τεχνικά βελτίωςθσ”, τα οποία προζκυψαν ουςιαςτικά από τισ 

αρικμθτικζσ αναλφςεισ, ςυμφωνοφν ικανοποιθτικά με τα όρια που προτείνονται από τθν 

Ιαπωνικι Υπθρεςία Ρυροπροςταςίασ (JFDA, 1974) και τουσ Tchuchida et al. (1976) για τθ 

βελτίωςθ ρευςτοποιιςιμων εδαφϊν πριν τθν καταςκευι επιφανειακϊν κεμελιϊςεων. Τα 

εν λόγω όρια ζχουν προκφψει από ανεξάρτθτεσ πειραματικζσ παρατθριςεισ και 

παρουςιάηονται με παχιζσ γραμμζσ ςτα χιμα 31 ζωσ 33. Επιςθμαίνεται ωςτόςο, ότι ςτισ 

ςυγκεκριμζνεσ ςυςτάςεισ προτείνεται θ βελτίωςθ ολόκλθρου του πάχουσ τθσ 

ρευςτοποιιςιμθσ ςτρϊςθσ και επομζνωσ ο ςυνολικόσ όγκοσ του βελτιωμζνου εδάφουσ 

είναι ςθμαντικά μεγαλφτεροσ από τον όγκο που προκφπτει εφαρμόηοντασ τθν προτεινόμενθ 

μεκοδολογία.  

Με βάςθ τθν προτεινόμενθ μεκοδολογία για τθν εκτίμθςθ του λόγου των ςειςμικών 

κακιηιςεων διαπιςτϊνεται ότι υπάρχει ουςιαςτικι επίδραςθ των διαςτάςεων τθσ κροφςτασ 

(δθλαδι ο ρυκμόσ μεταβολισ υπερβαίνει το 5%) για τιμζσ του λόγου Limp/Himp μεγαλφτερεσ 

από περίπου 5 και τιμζσ του κανονικοποιθμζνου όγκου Vimp/B2 μεγαλφτερεσ από περίπου 7, 

για το μζγιςτο πάχοσ βελτίωςθσ. Για μικρζσ τιμζσ των λόγων Himp/B και Vimp/B2 και μικρά 

πλάτθ βελτίωςθσ, παρατθρείται αρκετά μικρότερθ αφξθςθ των ςειςμικϊν κακιηιςεων.  
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Ως  προς  το  λόγο  του  απομειωμένου  συντελεστή  ασφαλείας,  παρατηρείται  μια  αρκετά 

απότομη αλλαγή στις υπολογιζόμενες τιμές για αυξανόμενες τιμές του λόγου Limp/Himp. Η εν 

λόγω  παρατήρηση  ήταν  εμφανής,  ήδη  από  την  εκτέλεση  των  αριθμητικών  αναλύσεων, 

όπου  ακόμα  και  μια  μικρή  μείωση  του  πλάτους  βελτίωσης  οδηγούσε  σε  σημαντική 

απομείωση  στις  υπολογιζόμενες  τιμές  του  συντελεστή  ασφαλείας  F.S.deg,  ειδικά  στις 

περιπτώσεις  μεγάλου  πάχους  βελτίωσης.  Συνεπώς,  συμπεραίνεται  ότι  η  επιλογή  ενός 

περιορισμένου  πλάτους  αλλά  μεγάλου  πάχους  σχήματος  βελτίωσης  δεν  εγγυάται 

απαραιτήτως την  ικανοποιητική σεισμική συμπεριφορά του θεμελίου, σε αντίθεση με μια 

ευρύτερης  σε  πλάτος  και  λεπτότερης  κρούστας.  Ποσοτικά,  η  επίδραση  του  πλάτους  της 

κρούστας για τιμές του λόγου Limp/Himp μεγαλύτερες από περίπου 2 και του λόγου Vimp/B
2 

μεγαλύτερες από 3.  

 

Σχήμα 28:  Δυναμικές καθιζήσεις (ρdyn) κανονικοποιημένες προς την τιμή καθίζησης για 
άπειρη  βελτίωση  (ρdyn

inf)  συναρτήσει  του  λόγου  Limp/Β  για  διαφορετικές 
τιμές του λόγου Himp/B. 

 

Σχήμα 29:  Δυναμικές καθιζήσεις (ρdyn) κανονικοποιημένες προς την τιμή καθίζησης για 
άπειρη βελτίωση  (ρdyn

inf) συναρτήσει του λόγου Limp/ Himp για διαφορετικές 
τιμές του λόγου Himp/B. 
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χιμα 30:  Δυναμικζσ κακιηιςεισ (ρdyn) κανονικοποιθμζνεσ προσ τθν τιμι κακίηθςθσ για 
άπειρθ βελτίωςθ (ρdyn

inf) ςυναρτιςει του λόγου Vimp/B2 για διαφορετικζσ 
τιμζσ του λόγου Himp/B.  

 

 

χιμα 31: Απομειωμζνοσ ςυντελεςτι αςφαλείασ (F.S.deg) κανονικοποιθμζνοσ προσ τθν 
αντίςτοιχθ τιμι για άπειρθ βελτίωςθ (F.S.deg

inf) ςυναρτιςει του λόγου Limp/B 
με βάςθ τισ απλοποιθμζνεσ αναλυτικζσ ςχζςεισ και τρεισ αρχικζσ τιμζσ 
απομειωμζνου ςυντελεςτι αςφαλείασ F.S.deg

inf.  
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χιμα 32: Απομειωμζνοσ ςυντελεςτι αςφαλείασ (F.S.deg) κανονικοποιθμζνοσ προσ τθν 
αντίςτοιχθ τιμι για άπειρθ βελτίωςθ (F.S.deg

inf) ςυναρτιςει του λόγου 
Limp/Himp για τρεισ αρχικζσ τιμζσ απομειωμζνου ςυντελεςτι αςφαλείασ 
F.S.deg

inf.  
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χιμα 33: Απομειωμζνοσ ςυντελεςτι αςφαλείασ (F.S.deg) κανονικοποιθμζνοσ προσ τθν 
αντίςτοιχθ τιμι για άπειρθ βελτίωςθ (F.S.deg

inf) ςυναρτιςει του λόγου 
Vimp/B2 για τρεισ αρχικζσ τιμζσ απομειωμζνου ςυντελεςτι αςφαλείασ 
F.S.deg

inf. 
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IV υμπεράςματα  

Τα κυριότερα ςυμπεράςματα τθσ παροφςασ διατριβισ ςυνοψίηονται ςτα ακόλουκα:  

1. Στα πλαίςια επανεξζταςθσ τθσ βαςικισ ςχζςθσ που περιγράφει τθν ανάπτυξθ υδατικϊν 

υπερπιζςεων rU-N/NL, ςτθν αναλυτικι μεκοδολογία των Bouckovalas et al. (2009), 

διαπιςτϊνεται ότι ο ςυντελεςτισ Α εξαρτάται από τον τφπο τθσ δοκιμισ (ανακυκλικι 

τριαξονικι ι απευκείασ διάτμθςθ), τθν τάςθ ςτερεοποίθςθσ, ς’vo, κακϊσ και από τισ 

εκάςτοτε εδαφικζσ ιδιότθτεσ, όπωσ το ποςοςτό λεπτόκοκκων και θ ςχετικι πυκνότθτα. 

Με βάςθ αποτελζςματα εργαςτθριακϊν δοκιμϊν, δφναται να λάβει τιμζσ από 0.7 ζωσ 

2.00.  

2. Με δεδομζνο το νζο εφροσ τιμϊν του ςυντελεςτι Α, διατυπϊνονται νζα διαγράμματα 

ςχεδιαςμοφ, ςτα οποία:  

 κεωροφνται διαφορετικζσ τιμζσ του ςυντελεςτι Α = 0.70, 1.00, 1.40 και 2.00. 

 ζχει εξαλειφκεί θ επίδραςθ τθσ διάρκειασ ςειςμικισ δόνθςθσ, αντικακιςτϊντασ 

τον αδιάςτατο χρονικό παράγοντα Tad με τον όρο Tal. 

 αποδεικνφεται ότι και θ ζνταςθ τθσ ςειςμικισ κίνθςθσ (Neq/NL) δεν ζχει 

ςθμαντικι επίδραςθ, εντόσ του ςυνικουσ εφρουσ τιμϊν ςχεδιαςμοφ του 

επιτρεπόμενου λόγου υπερπίεςθσ πόρων ru,max = 0.20 ÷ 0.50. 

3. Η αξιοπιςτία των νζων διαγραμμάτων ςχεδιαςμοφ ελζγχεται μζςω τθσ αρικμθτικισ 

προςομοίωςθσ τθσ αποςτραγγιςτικισ δράςθσ των χαλικοπαςςάλων, με τθ βοικεια 

ςοφιςτευμζνων 3-Δ δυναμικϊν μθ-γραμμικϊν αναλφςεων. Στα πλαίςια αυτά, 

επαλθκεφεται και αρικμθτικά θ παραδοχι των Seed & Booker (1977) και των 

Bouckovalas et al. (2009) περί ενόσ ςτακεροφ ςυντελεςτι ςυμπιεςτότθτασ mv,3 ςε 

όλθ τθν ζκταςθ τθσ ρευςτοποιιςιμθσ ςτρϊςθσ. Επίςθσ, ο προςδιοριςμόσ του 

ςυντελεςτι ςυμπιεςτότθτασ mv,3 ςυνίςταται να πραγματοποιείται μζςω 

πειραματικϊν αποτελεςμάτων ανακυκλικισ απλισ διάτμθςθσ.  

4. Η χρθςιμοποιοφμενθ αρικμθτικι μεκοδολογία για τθν παραμετρικι διερεφνθςθ τθσ 

ςειςμικισ απόκριςθσ τθσ επιφανειακισ κεμελίωςθσ επαλθκεφκθκε επιτυχϊσ, 

ζναντι των δθμοςιευμζνων και καλά τεκμθριωμζνων πειραματικϊν αποτελεςμάτων 

ςε φυγοκεντριςτι των Liu & Dobry (1997), ωσ προσ τθν ανάπτυξθ των δυναμικϊν 

κακιηιςεων. 

 



Εκτενισ Ρερίλθψθ 

 

xlvi 

 

5. Η ςυςςϊρευςθ των δυναμικϊν κακιηιςεων τθσ επιφανειακισ κεμελίωςθσ είναι το 

αποτζλεςμα τθσ ενεργοποίθςθσ ενόσ μθχανιςμοφ ολιςκαίνοντοσ ςτερεοφ κατά 

Newmark, και ςυνδζεται με τθν ενεργοποίθςθ ενόσ ςφθνοειδοφσ μθχανιςμοφ 

αςτοχίασ, ο οποίοσ εκδθλϊνεται δφο φορζσ κατά τθ διάρκεια ενόσ πλιρουσ κφκλου 

φόρτιςθσ, μία από κάκε πλευρά του κεμελίου.  

6. Η ανωτζρω παρατιρθςθ οδιγθςε και ςτθ ςυςχζτιςθ των δυναμικϊν κακιηιςεων, 

ρdyn, με τον όρο amaxT
2N, ο οποίοσ απορρζει από τθ κεϊρθςθ του μθχανιςμοφ 

ολιςκαίνοντοσ ςτερεοφ για τθν απλι περίπτωςθ αρμονικισ διζγερςθσ. 

7. Η αναπτυςςόμενθ επιφάνεια αςτοχίασ κατά τθ ςταδιακι αφξθςθ του φορτίου τθσ 

επιφανειακισ κεμελίωςθσ είναι αντίςτοιχθ του μθχανιςμοφ που προτείνεται από 

τουσ Meyerhoff & Hanna (1978) για επιφανειακζσ κεμελιϊςεισ ςε 2-ςτρωτα 

εδαφικά προφίλ. Στθν εν λόγω αναλυτικι μεκοδολογία, το πάχοσ τθσ βελτίωςθσ 

(Ηimp) κακορίηει και τθ μορφι του μθχανιςμοφ αςτοχίασ, όπου για μικρζσ τιμζσ του 

βάκουσ βελτίωςθσ αναπτφςςεται ζνασ μθχανιςμόσ διάτρθςθσ τθσ κεμελίωςθσ εντόσ 

του υποκείμενου ρευςτοποιθμζνου εδάφουσ (punching shear failure), ενϊ ςε 

περιπτϊςεισ αυξθμζνου πάχουσ, ο μθχανιςμόσ αςτοχίασ αναπτφςςεται 

εξ’ολοκλιρου εντόσ τθσ κροφςτασ.  

8. Η βελτιωμζνθ επιφανειακι κροφςτα διακζτει ςθμαντικά μεγαλφτερθ 

διαπερατότθτα ςε ςχζςθ με τθν υποκείμενθ ρευςτοποιιςιμθ άμμο. Το αποτζλεςμα 

αυτισ τθσ διαφοράσ είναι θ ταχεία αποτόνωςθ των υδατικϊν υπερπιζςεων από τθ 

ρευςτοποιιςιμθ άμμο προσ τθν επιφανειακι κροφςτα και ο ςχθματιςμόσ μιασ 

μεταβατικισ ηϊνθσ μερικϊσ ρευςτοποιθμζνου εδάφουσ μεταξφ τουσ. Η φπαρξθ τθσ 

μεταβατικισ ηϊνθσ λαμβάνεται υπόψθ ςτον υπολογιςμό τθσ μεταςειςμικισ 

φζρουςασ ικανότθτασ τθσ κεμελίωςθσ μζςω του κατάλλθλου μεταςχθματιςμοφ τθσ 

αναλυτικισ ςχζςθσ των Meyerhoff & Hanna (1978). 

9. Ο προςδιοριςμόσ τθσ μετα-ςειςμικισ φζρουςασ ικανότθτασ του κεμελίου είναι 

ςυηευγμζνοσ με τθν ανάπτυξθ των υδατικϊν υπερπιζςεων πόρων ςτθ 

ρευςτοποίθςιμθ άμμο, με αποτζλεςμα τθν επαναλθπτικι επίλυςθ των αντίςτοιχων 

αναλυτικϊν εκφράςεων τθσ προτεινόμενθσ μεκοδολογίασ. 

10. Τα προτεινόμενα όρια “βζλτιςτθσ οικονομο-τεχνικά βελτίωςθσ”, τα οποία 

προζκυψαν ουςιαςτικά από τισ αρικμθτικζσ αναλφςεισ, ςυμφωνοφν ικανοποιθτικά 

με τα όρια που προτείνονται από τθν Ιαπωνικι Υπθρεςία Ρυροπροςταςίασ (JFDA, 
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1974) και τουσ Tchuchida et al. (1976) για τθ βελτίωςθ ρευςτοποιιςιμων εδαφϊν 

πριν τθν καταςκευι επιφανειακϊν κεμελιϊςεων. 

11. Η μεγιςτοποίθςθ των ωφελειϊν από τθν παρουςία τθσ επιφανειακισ βελτιωμζνθσ 

κροφςτασ (δθλαδι θ πρόβλεψθ των ελάχιςτων δυνατϊν κακιηιςεων και τθσ 

μζγιςτθσ μεταςειςμικισ φζρουςασ ικανότθτασ) επιτυγχάνονται για ςχετικά εκτενζσ 

εφροσ βελτίωςθσ, το οποίο φτάνει ζωσ και 20 φορζσ το πλάτοσ του κεμελίου. Η 

υιοκζτθςθ τόςο μεγάλων τιμϊν πλάτουσ βελτίωςθσ ςυνεπάγεται και τθν εκτόξευςθ 

του αντίςτοιχου κόςτουσ καταςκευισ. Συνεπϊσ, θ προτεινόμενθ μεκοδολογία 

ςχεδιαςμοφ είναι τεχνικά και οικονομικά βιϊςιμθ για τιμζσ πλάτουσ βελτίωςθσ 2 – 

5 φορζσ το βάκοσ τθσ βελτιωμζνθσ κροφςτασ, ιτοι Limp = (2÷5) Himp.  

 

V Προτάςεισ για μελλοντικι ζρευνα 

Με βάςθ τα ανωτζρω ςυμπεράςματα, εντοπίηονται τα ακόλουκα ςθμεία, τα οποία 

αποτελοφν προτάςεισ για μελλοντικι ζρευνα:  

 H επζκταςθ τθσ παροφςασ αναλυτικισ μεκοδολογίασ ςχεδιαςμοφ, θ οποία ιςχφει 

για κεμελιϊςεισ μεγάλου μικουσ (κεμελιολωρίδεσ), ςτθν περίπτωςθ ορκογωνικϊν 

και τετραγωνικϊν κεμελίων. 

 Η εξζταςθ τθσ επίδραςθσ του βάκουσ εγκιβωτιςμοφ και θ κατάλλθλθ προςαρμογι 

των αντίςτοιχων αναλυτικϊν ςχζςεων υπολογιςμοφ. 

 Η εξζταςθ φαινομζνων αλλθλεπίδραςθσ εδάφουσ – καταςκευισ δεδομζνου ότι 

ςτθν παροφςα διατριβι τζτοια φαινόμενα ζχουν αγνοθκεί, εφόςον θ ςειςμικι 

κίνθςθ ςτθν εδαφικι επιφάνεια φτάνει εξαςκενθμζνθ, εξαιτίασ τθσ εκδιλωςθσ 

ρευςτοποίθςθσ ςτθν υποκείμενθ άμμο.  
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1 Introduction 

 

 

1.1 Problem description 

According to contemporary seismic codes, soils susceptible to liquefaction are classified as 

extreme soil conditions, in which the installation of shallow foundations is, by all means, 

prohibited without prior soil remediation. More specifically, liquefaction occurrence causes 

severe shear strength degradation of the foundation soil, which may lead to the 

accumulation of excessive seismic settlements as well as to post-shaking bearing capacity 

failure. The detrimental consequences of earthquake-induced liquefaction upon shallow 

foundations are also evident in Figure 1.1. The design philosophy characterizing current 

practice, involves the installation of pile foundations, which essentially bypass the liquefiable 

layer and transfer the structure loads to deeper and non-liquefiable strata. In parallel, the 

liquefiable layer is often improved against excess pore pressure built up using gravel drains, 

while some degree of densification is obtained during their installation.  

Recent experimental and theoretical studies on the seismic response of shallow foundations 

on liquefiable soils [Cascone & Bouckovalas (1998), Liu  & Dobry, (1997), Dashti et al. (2008), 

Sitar & Hausler, (2012)] provide well-established evidence that the aforementioned 

conventional design approach may be drastically changed with beneficial effects on the 

overall foundation cost, while maintaining acceptable performance and safety levels. 

Namely, it is indicated that the presence of a naturally occuring or artificially manufactured 

surface crust of non-liquefiable soil may moderate the detrimental consequences of 

liquefaction to such an extent that the use of shallow foundations becomes acceptable. The 
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above objective is achieved, provided the particular crust has adequate dimensions 

(thickness and width below and around the footing) and shear strength to sustain the 

foundation loads after the onset of liquefaction in the subsoil. 

Recently, Karamitros (2010) has conducted an in-depth investigation to analyze the 

mechanisms governing the liquefaction performance of shallow foundations resting upon a 

two-layer soil profile consisting of liquefiable sand overlain by a surface clay crust. The 

outcome of the numerical simulation of the problem is a complete analytical methodology 

for the performance-based design of strip and rectangular shallow foundations. The 

particular methodology enables the computation of seismic settlements as well as post-

shaking bearing capacity degradation [Karamitros et al (2013a), Karamitros et al. (2013b)].  

 

 

 

 

Figure 1.1: Liquefaction-induced failure of shallow foundations from various 
earthquakes (a) Dagupan, Philippines, 1990, M=7.8, (b) Kobe, Japan, 1995, 
M=7.2 (c) Adapazari, Turkey (1999) M=7.4, (d) Sendai, Japan, 2011 M=8.9. 

 

(a) (b) 

(c) (d) 
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1.2 Scope of work 

The scope of the present thesis is to develop an analytical methodology for the 

performance-based design of strip shallow foundations resting directly on liquefiable soil, 

namely when the non-liquefiable crust is not encountered naturally but needs to be 

artificially created. Following the traditional requirements for the static design of shallow 

foundations, the specific methodology will enable the computation of the seismically 

induced settlements, as well as the post-shaking bearing capacity degradation.  

The manufactured soil crust has the same initial consistency as the liquefiable soil, but 

opposite to the latter, in the occurrence of earthquake-induced liquefaction, the generated 

excess pore pressures are restrained to levels well below unity (e.g. ru=0.3-0.4). The above 

objective is obtained through vibrocompaction or vibro-replacement methods. In both 

methods, along with the creation of gravel drains, which accelerate excess pore pressure 

dissipation and thus mitigate liquefaction, the natural soil is considerably densified. This 

combined intervention creates a quite complex pattern regarding the density distribution, 

the shear strength and the excess pore pressure dissipation mechanism in the improved 

ground.  

The accomplishment of the aforementioned effort is based on the following resources: 

 An extensive literature survey with regard to (i) the use of gravel drains in 

liquefaction mitigation, in order to define the basic design requirements and 

analytical methodologies used in current practice, as well as (ii) the available 

performance-based criteria, with paticular emphasis on performance levels and the 

associated allowable deformation limits specified in different international codes. 

 The re-evaluation of the available analytical methodologies in gravel drain design, in 

view of new laboratory data, which aimed at improving the efficiency of the 

proposed design charts for drain design, hence leading to a refined and cost-

effective design.  

 The subsequent execution of 3-dimensional numerical analyses, aiming in the 

verification of the revisited analytical methodologies and the overall evaluation of 

the gravel drain performance. 

 A well-established set of centrifuge experiments is utilized in the verification of the 

numerical methodology, before it is used in the parametric investigation of the 

problem under examination. 
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 A broad parametric investigation is performed with the aid of 2-dimensional 

numerical analyses, aiming at investigating the mechanisms governing the 

foundation performance,as well as providing quantitative means for evaluating the 

seismic settlements, and the post-shaking bearing capacity degradation. The specific 

investigation is targeted in two fronts, namely response of the footing under 

conditions of “infinite” and “finite” improvement, through two distinct sets of 

parametric analyses. The difference lies in the lateral width of the improved area. 

 The numerical methodology applied for this purpose is based on an advanced elasto-

plastic constitutive model, which is calibrated against a large number of laboratory 

experiments, including resonant column, monotonic and cyclic triaxial and simple 

shear tests.  

 

1.3 Preview of thesis contents 

Soil improvement is performed with the use of gravel drains, which should follow specific 

standards regarding their installation procedure, the used equipment, as well as the inserted 

material, which modifies the post-improvement soil properties. Their drainage capacity 

depends largely on the used material as well as the spacing ratio and gravel pile dimensions 

and allows the control over the dissipation rate of the earthquake induced excess water 

pressures. Drain spacing and dimensions are determined following analytical design 

methods, available in the literature and widely used in current practice. The above aspects 

of gravel drain design for liquefaction mitigation are covered through an extensive literature 

survey in Chapter 2.  

Gravel drains are traditionally used as the main liquefaction countermeasure; nevertheless, 

they present several drawbacks. The main shortcoming appears either during installation or 

during the serviceable period of the drains and refers to clogging, namely the reduction of 

their drainage capacity, due to the migration of the finer sand particles towards the coarser 

fill material. Hence, in Chapter 3, a detailed literature survey is conducted emphasizing on 

alternative types of drains, which do not present many of the shortcomings of the traditional 

gravel piles. The particular research is performed in terms of materials, design and 

installation methodologies as well as equipment requirements.  

The installation of shallow foundations on the previously mitigated ground against 

liquefaction, without the use of pile foundations, entails the accumulation of seismic 

settlements, which affect its structural and operational level. In the context of performance-
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based engineering the significance of the induced damage, is evaluated with regard to the 

predefined seismic performance objective under established levels of seismic risk. Hence, 

Chapter 4 summarizes the available performance-based criteria appearing in seismic design 

guidelines and provisions.  

In view of new experimental data, Chapter 5 revisits the two main design methodologies in 

drain design to account for the effect of soil properties on the empirical correlation between 

the excess pore pressure ratio and the number of cycles required for liquefaction. The main 

conclusions include the formulation of updated design charts, which improve the predicting 

capacity of the revised methodology, while alongside highlighting the over-conservatism of 

the traditional design methodology. 

The validity of the previous analytical methodology is checked through a number of 

numerical analyses for different coefficients of the sand permeability, namely ranging from 

“undrained” conditions to a considerably permeable sand material (in the order of 10-4m/s). 

The particular numerical simulation of the gravel drain performance is achieved using 

advanced numerical tools such as FLAC3D. The specific verification procedure is thoroughly 

explained in Chapter 6. 

Before executing a parametric investigation on the liquefaction performance of shallow 

foundations, the simulation of the footing response is thoroughly assessed. More 

specifically, the theory of the Equivalent Uniform Improved Ground (E.U.I.G.) is introduced 

and established. According to this, the improved ground layer is considered uniform with 

appropriately computed unique soil parameters, which take into account the properties of 

the natural ground, the properties of the gravel, as well as the extent of ground 

improvement. In the sequel, the numerical methodology is validated against well-

established centrifuge experiments in terms of the accumulation of seismic settlements. The 

above activities are included in Chapter 7. 

In the sequel, in Chapter 8, an extensive parametric investigation is performed through a 

number of 1-D numerical analyses, simulating the free-field response of the improved 

ground. The intention is to identify the required replacement ratio αs to restrain excess pore 

pressure generation, in the improved ground, within the target range of u, maxr = 0.30 – 0.50. 

Additionally, the behavior of strip (2-dimensional) footings resting on a 2-layer soil profile, 

consisting of liquefiable sand overlain by improved ground is parametrically investigated 

through the execution of a considerable number of numerical analyses. The particular set of 
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parametric analyses incorporated the effect of only one dimension of the improved crust, 

namely that of the thickness of it.  

The processing of the previously obtained numerical results, combined with a physical 

interpretation of the governing mechanisms, allows the formulation of simplified analytical 

relations for the evaluation of the degraded bearing capacity and the corresponding seismic 

settlements. The results of the numerical investigation and the resulting analytical 

expressions are presented in Chapter 9. 

The lateral extent of soil remediation around a footing is a significant problem parameter, 

which has not been thoroughly investigated by the existing design guidelines not the 

previously established analytical methodology. Namely, the numerical investigation and the 

resulting analytical expressions of Chapter 9 are applicable to conditions of “infinite” 

improvement. Hence, the processing of the second set of numerical results leads to the 

formulation of simplified analytical relations for the evaluation of the degraded bearing 

capacity and the corresponding seismic settlements. The updated analytical expressions are 

summarized in Chapter 10.  

Chapter 11 summarizes the main steps of the proposed analytical methodology for designing 

shallow foundations on liquefiable ground after proper soil improvement. Namely, the user 

is guided through the different stages of the performance – based design of shallow strip 

foundations, starting from the selection of the appropriate spacing of gravel drains, to the 

evaluation of the seismic settlements and the degraded post-shaking bearing capacity of the 

foundation, given the dimensions (thickness and width) of the improvement area. 

 

Equation Chapter 2 Section 1
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CHAPTER   2 

 

 

2 Gravel Drains for Liquefaction Mitigation 

 

 

2.1 Introduction 

Earthquake induced liquefaction is a problem commonly encountered in highly seismic areas 

where loose saturated sandy layers are encountered. Soil improvement is often required in 

such cases, either prior to any construction activity or when seismically retrofitting existing 

structures. The available soil remediation techniques include either densification of the 

natural soil through compaction and/or insertion of new material, or control and dissipation 

of the earthquake induced excess pore water pressures through the installation of gravel 

drains.  

The gravel drain method is often applied in liquefaction remediation projects, aiming at 

improving the natural soil mainly by enhancing the overall drainage capacity of the 

liquefiable stratum. In the current chapter, the key aspects (design parameters, installation 

methods, required equipment etc) of the method are analyzed and the available design 

methodologies are outlined.  

 

2.2 Installation and equipment 

Gravel drains should be composed of coarse grained material, which is highly permeable 

compared to the surrounding liquefiable natural soil, thus allowing the fast dissipation of the 

earthquake – induced excess pore water pressures. Hence, the material used in current 
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practice is gravel or crushed stone, that follows specific standards in terms of permeability, 

as explained in the present paragraph.  

Gravel drains are commonly installed in the form of single columns in a grid configuration, as 

presented in Figure 2.1a. Less often, drains may appear in the form of walls or mats, 

surrounding existing foundations (Figure 2.1b). Installation may be achieved with or without 

vibration. In the first case, some degree of densification of the surrounding soil is achieved, 

which can be taken into consideration during the design of the drain system. Depending on 

the selected installation method, different equipment requirements apply. 

 

 

 

                                 (a)                                                                 (b) 

Figure 2.1:     Example of installation of gravel drains (a) in single columns and (b) wall –
shaped drain surrounding an underground structure (JGS, 1998).  

 

2.1.1 Vibratory methods 

Vibratory methods for gravel drain installation involve the use of electrical vibrators to help 

advance the hole and densify the surrounding soil. The two primary vibratory techniques 

described below, concern the use of either pressurized water or air to aid the installation 

process. 

The top feed method (Vibro-flotation).- Gravel drain installation is achieved with horizontal 

vibration of the vibro-flot, while jetting water from the tip of the vibrator, then gradually 

retracting it and inserting the gravel material from the ground surface into the hole, as it is 

schematically presented in Figure 2.2. The vibro – flot is attached to the rod of the crane and 

the two members are connected to the crane through a shock absorber so that vibration 
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does not affect the rest of the equipment. Usually, vibro-flots are 30 – 45cm in diameter, 2 

to 4m in length and 4 to 8t in weight. A typical vibro-flot is presented in Figure 2.3.  

 

Figure 2.2:  Installation stages in the vibro-flotation method (Hayward – Baker Inc.). 

 

 

Figure 2.3:  Photograph (provided by Nilex Inc.) and schematic representation of a Vibro 
– flot (Bell, 1993).  

 

The vibro – flot technique is further explained Figure 2.4. The equipment is initially installed 

at the desired location and in the sequel the penetration begins, using jetted water from the 

tip and applying horizontal vibration, down to the design depth (phases a & b). The 

penetration rate is fast enough and may reach 0.5m/min in non-cohesive soils. Next, the 

vibro-flot is retracted at increments of 30 – 60cm/min and gravel material is fed from the 

ground surface, and compacted due to the continuing vibration (phase c). Water continues 
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to be flushed from the sides of the vibro-flot, in order to ensure a downward flow for the 

gravel transport. The resulting gravel column has a diameter of 50 to 80cm.  

As a result of the applied vibration, the saturated soil adjacent to the gravel column locally 

liquefies and consequently a greater degree of densification is achieved. The range of 

vibration is 5 – 25mm with a frequency of 30 – 50Hz. A snap-shot of the top feed method is 

also given in Figure 2.5.  

 

 

Figure 2.4:  Installation stages of vibro – flotation technique (Bell, 1993). 

 

Figure 2.5: Snap-shot of the wet top feed method (Nilex Inc.). 
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The bottom feed method (Vibro-displacement).- is applied in mixed grained and fine 

grained soils with fines content greater than 10 – 15 %. The main difference compared to 

the top feed method concerns the mode of insertion of the gravel material, which is now fed 

from the tip of the vibrator, instead of the ground surface, thus resulting in a continuous 

column. 

The main steps of the method are outlined in Figure 2.6a. The vibrator is placed at the 

desired location and the skip is filled with aggregate. The skip is lifted and empties the 

aggregate into the air chamber of the vibrator. Subsequently, the vibrator penetrates into 

the ground and is lowered to the design depth, aided by compressed air and pull-down force 

stemming from the vibro-cat. Occasionally, water may be used for lubrication, in order to 

overcome high friction from the surrounding soils. After reaching the design depth, the 

vibrator is retracted in increments, releasing gravel material at the same time. The gravel 

material is then compacted by re-penetration of the vibrator. A closer view of the rod and 

the vibrator used in the present method is provided in Figure 2.6b.   

 

 

 

 

 

 

 

     

 

 

 

 

 

                                      (a)                                                                                  (b)  

Figure 2.6:  (a) Construction stages of the bottom feed method (Bauer,2010), (b) Cross-
section of the rod and the vibrator used in the bottom feed method. (Keller– 
Ground Engineering Pty, Ltd). 
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2.2.2 Non-Vibratory methods 

Gravel drain installation is possible without vibration, using the casing auger method, as 

explained below. The casing auger method, although not frequently used in current practice, 

it is mentioned in the present chapter in order to provide a detailed overview of the 

available installation methods. 

As indicated in Figure 2.7 the casing auger is first mounted at the center of rotation of the 

earth auger and perpendicularity is confirmed (phase a). Then, the rotating auger is 

advanced into the ground, displacing the natural soil, and the gravel or crushed stone is 

poured into the casing from its upper end (phases b & c). Consequently, the auger is lifted 

up while discharging the gravel at the bottom and the gravel column is formed (phases d & 

e). Pressurized water or air is occasionally used to stabilize the lower end of the casing.  

 

 

Figure 2.7: Casing auger method (Japanese Geotechnical Society, 1998). 

 

The installation equipment consists of a crawler type driver, an earth auger, a casing with 

screws for displacing soil and a hopper for supplying the gravel material. Figure 2.8 presents 

the installation equipment. Occasionally, the ductility of the column is increased by vibrating 

the gravel material and the surrounding soil either by a compacting rod at the center of the 

casing or by vibrating the lower end of the casing. Nevertheless, the achieved densification is 

very small and is disregarded in design applications. 
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Figure 2.8:  Installation equipment used in the casing auger method (PHRI, 1997). 

 

Comparative evaluation of installation methods.- Figure 2.9 provides an overview on the 

classification of the available installation methods described in the present section. Namely, 

these are divided into two main categories i.e vibratory and non-vibratory, based on the 

induced vibration during their installation. The main difference between the two installation 

techniques concerns the excessive noise and degree of vibration to the surrounding 

environment. In view of the above observation, the casing auger method causes the least 

disturbance to the environment and the adjacent structures, compared to the vibratory 

methods.  

In the case where some degree of vibration is required, the selection of the appropriate 

installation method and equipment depends mainly on the ground conditions as presented 

in Figure 2.10. Obviously, in the presence of fines in the liquefiable stratum, the bottom feed 

method is recommended for use, by all major contracting companies, whereas in the case of 

clean sands the top feed method is more suitable.  

Additionally, when acceptable vibration and noise levels have to be considered in the 

selection of the appropriate vibratory drain installation method, it is acknowledged that the 

bottom feed method induces less noise and vibration. The standard type of vibro-hammer 

used, has a frequency of 10Hz and force capacity 40t, whereas when more tight noise and 

vibration restrictions apply, lighter equipment may be selected (20Hz, 25t). In case of soil 

strata with high penetration resistance heavier equipment (e.g. 10Hz, 88t) is necessary for 

the gravel column installation. Note that both methods are reported to be inadequate for 

compaction near the ground surface, thus other methods are recommended.  
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Figure 2.9: Classification of gravel drain installation methods. 

 

 

Figure 2.10:  Application range for the bottom feed (Vibro-displacement) and top feed 
(vibro-flotation) methods (Bauer, 2010).  

 

Another major difference between the two categories of vibratory methods concerns the 

compaction mechanism. In the top feed method, gravel is placed from the surface into the 

hole, to fill in the voids created in the soil from the induced vibration, therefore the quantity 

of the fill varies depending on the capacity of the vibrator. Namely, under new installation 

data, e.g. changing the vibrator’s capacity, it is necessary to revise the design method and 

the quantity of fill to be used. On the contrary, in the bottom feed method the quantity of 

the inserted material is determined in advance and automatically controlled during 

installation, as compaction is accomplished by placing the gravel below the ground surface 

by vibrating the casing.  

Two major drawbacks in the application of the top feed method concern the use of water as 

well as the applied vibration levels. More specifically, the use of water (primarily in the top 

feed method) may entail environmental hazards, if polluted spoil material is washed inside 

VD VF 
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the hole and transferred to the surface after constructing the gravel column. Additionally, 

the locally induced soil liquefaction in combination with the insertion of the gravel material 

may contaminate the gravel column with finer sand particles and therefore reduce its 

drainage capacity. In support of the above observation, Boulanger et al. (1998) indicate that 

the permeability of stone columns, was often two orders of magnitude less than the 

expected values from laboratory results. Special consideration is therefore required with 

respect to clogging, which can be avoided with the use of the top feed method, or the non-

vibratory methods described below. The main features and limitations of each installation 

method are reviewed in Table 2.1. 

 

Table 2.1:  Main features and limitations of vibratory methods.  

Installation 
Method 

Maximum 
Installation 
Depth (m) 

Maximum 
Fines Content 

for 
compaction 

efficiency 

Influence on 
the 

surrounding 
areas 

Remarks 

Vibro – 
displacement 
(Bottom-feed) 

20 10 - 15% 
Relatively high 
levels of noise 
and vibration.  

The method is less 
effective for layers with 
interpositioned clayey 

material due to 
obstacles to the supply 

of filling material 

Vibro – flotation 
(Top – feed) 

8 - 30 
depending on 

the used 
equipment*. 

  

< 10% 

Little noise 
and vibration 
compared to 

vibro-
displacement 

The method is less 
effective for layers with 
interpositioned clayey 

material due to 
obstacles to the supply 

of filling material 

Casing auger 
method  

(Non vibratory) 
Up to 20m 

No available 
data 

Low noise and 
vibration levels 

No degree of 
densification is achieved.  

*In Europe the 30HP vibrator allows installation depths of up to 20m. 

 

2.2.3 Evaluation of post – improvement soil properties 

The densification of the liquefiable soil surrounding the gravel drains needs to be taken into 

consideration during drain design, hence it is essential to be able to evaluate the properties 
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of the improved soil in advance. This is possible with the aid of a number of empirical 

methods, as described below, based on the design guidelines proposed by the Japanese 

Geotechnical Society (JGS, 1998): 

(a) N – Dr – e relationship for clean sands.- The improved soil’s void ratio e1 is specified from 

charts such as those appearing in Figure 2.11, as a function of the initial void ratio eo, initial 

and post-improvement SPT values No & N1 respectively. The replacement ratio αs is then 

calculated based on Equation 2.1:  

   s o 1 oα = e - e / 1+ e                                                               2.1                                                  

The effective overburden pressure appearing in the charts is calculated at half or one third 

of the thickness of the layer.  

(b) N – Dr – e relationship considering fines content (f > 5%).- The current procedure is 

essentially an extension of the previous Method (a), further taking into account the effect of 

fines content. It is completed in the following steps:  

 Determination of maximum and minimum void ratio (emax and emin) as a function of 

the fines content as presented below:  

  emax = 1.0 + 0.02f (%)   and    emin = 0.6 + 0.008f(%)                          2.2 

 Calculation of the initial void ratio eo from the initial relative density, Dro, the 

maximum and minimum void ratio (emax and emin). The initial relative density Dro can 

be obtained from Equation 2.3 as a function of the SPT blow count No and the 

confining vertical stress ς’vo.  

1/2 2
ro o vo vo[ ( )D  21 N / 0.7 ς’    ς’ in kg /] ( )cm                           2.3 

 Evaluation of the correction factor β, which depends on the the fines content f(%) as 

shown in the following equation:  

 10β  1.05 –  0.51log f %                                                2.4 

 Use of the correction factor for the correction of the SPT blowcount, based on 

Equation 2.5:  

 1 o 1 oN’  N  N –  N /β                                               2.5 

 Determination of the replacement ratio αs from Equation 2.1.   

(c) Charts based on empirical data.- Charts from actual projects or full scale experiments 

are used to determine the post improvement SPT blow count (denoted as N1 or Np), as a 

function of the original SPT blow count No and the replacement ratio αs. The particular 
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charts, appear in Figure 2.12, and are valid for sandy soils with fines content lessr than 

20%.  

 

(a) Relationship between particle size – grain size and emax, emin 

 

 (b) Relationship between relative density Dr and N value. 

emax

emin
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(c) N – Dr – e relation 

Figure 2.11: N – Dr – e charts for evaluating improved soil’s properties for clean sands.  

 

 

 

Figure 2.12: Correlation of initial (No) and post improvement N-value (N1 or Np) to the  
 replacement ratio αs (JGS, 1998).  
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2.3 Design parameters  

In the present section, the main parameters involved in the design of gravel drains and the 

means to evaluate them in practice are addressed.   

Coefficient of natural soil permeability ks.- of the natural soil is determined either using 

permeability tests (in situ or laboratory) or empirical methods. In most current design 

methodologies, it is assumed that water flow, during an earthquake, occurs in the horizontal 

direction, hence the coefficient of horizontal permeability, also denoted as kh, is used in 

design. For a relatively uniform soil stratum with a coefficient of uniformity Uc < 5 and d10 = 

0.1 to 0.3mm the coefficient of permeability can be obtained from Equation 2.6 (PHRI, 

1997):  

 
2

s 10k  100  d                                                                       2.6 

When the above constraints are not satisfied, the Port & Harbour Research Institute (PHRI, 

1997) propose Tables 2.2 and 2.3, which can provide a fairly accurate value of permeability.  

 

Table 2.2: Diameter of sand particles (d50) and associated coefficient of Permeability 
(after PHRI,  1997).   

Soil Type  
Particle Size 

(d50) (mm) 

Coefficient of 

permeability (cm/sec) 

Very fine sand 0.05 - 0.10 0.001 - 0.005 

Fine sand 0.10 - 0.25 0.005 - 0.01 

Medium sand 0.25 - 0.50 0.01 - 0.1 

Coarse sand 0.50 - 1.00 0.1 - 1.0 

Small peebbles 1.00 - 5.00 1.0 - 5.0  
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Table 2.3:  Diameter of sand particles (D20) and associated coefficient of Permeability 
(after PHRI, 1997).   

 

 

Coefficient of volume compressibility mv.- The coefficient of volume compressibility can be 

obtained through undrained cyclic triaxial tests by measuring the residual volumetric strain 

of undisturbed samples. It is estimated using Equation 2.7 and is usually expressed in units of 

1/kPa or cm2/kgf:  

v,3

max

ΔV 1
m

V u
                                                                      2.7 

where   ΔV    = the change in the specimen’s volume during consolidation  

V      = initial volume  

umax = excess pore water pressure at the beginning of consolidation  

(usually, consolidation begins when the excess pore pressure ratio 

umax/ς’vo reaches a specified value, less than 0.5).  

However, because such tests are rather complex and require sophisticated laboratory 

equipment and skilled personnel, mv,3 is usually calculated based on published data for sands 

with different gradation. Typical values of the coefficient of volume compressibility are 

summarized in Table 2.4, provided by the Port & Harbor Research Institute (PHRI, 1997). The 

associated gradation curves for the tested sands are presented in Figure 2.13.  

D20 (mm) k (cm/sec) Soil type D20 (mm) k (cm/sec) Soil type 

0.005 3.00 × 10-6 Coarse clay 0.12 2.6 × 10-3

0.01 1.05 × 10-5 Fine silt 0.14 3.8 × 10-3

0.02 4.00 × 10-5 0.16 5.1 × 10-3

0.03 8.50 × 10-5 0.18 6.85 × 10-3

0.04 1.75 × 10-4 0.2 8.90 × 10-3

0.05 2.80 × 10-4 0.25 1.40 × 10-2

0.06 4.60 × 10-4 0.3 2.20 × 10-2

0.07 6.50 × 10-4 0.35 3.20 × 10-2

0.08 9.00 × 10-4 0.4 4.50 × 10-2

0.09 1.40 × 10-3 0.45 5.80 × 10-2

0.1 1.75 × 10-3 0.5 7.50 × 10-2

0.6 1.10 × 10-1

0.7 1.60 × 10-1

0.8 2.15 × 10-1

0.9 2.00 × 10-1

1 3.60 × 10-1

2 1.8 Fine gravel

Fine sand

Medium sand

Coarse sand

Coarse silt 

Very fine sand
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Table 2.4:  Diameter of sand particles and associated coefficient of volume 
Compressibility PHRI, 1997) 

Type of sand 

Coefficient of volume 

compressibility 

(cm2/kgf)  

References (year)  

Sacramento river sand 2.00 × 10-3 Lee et al. (1974) 

El Monte sand (D)  2.00 × 10-3 Lee et al. (1974) 

El Monte sand (E) 2.00 × 10-3 Lee et al. (1974) 

Akita Port sand  3.00 - 4.00 × 10-3 Zen et al. (1984) 

El Monte sand (C)  4.00 × 10-3 Lee et al. (1974) 

Monterey sand 4.00 × 10-3 Lee et al. (1974) 

Fuji River sand  6.00 × 10-3 Ishihara et al. (1978) 

El Monte sand (B)  8.00 × 10-3 Lee et al. (1974) 

Ogishima sand  10 × 10-3 Ono et al. (1983)  

 

The coefficient of volume compressibility depends on the mean effective vertical stress ς’m 

and the relative density of the soil Dr. For excess pore pressure ratio values (umax/ς’v) less 

than 0.5, the dynamic coefficient mv,3 can be satisfactorily approximated by the static 

coefficient of volume compressibility (JGS, 1998), implying that mv,3 exclusively depends on 

the vertical effective stress ς’v. For that reason, it is noted that the mv,3 values in Table 2.4 

were obtained at a confining pressure of ς’v = 100kPa and excess pore water pressure ratio 

ru < 0.5. For different levels of confining pressure ς’v the obtained mv,3 values must be 

multiplied by 1/√(ς’vo/pa), where pa is the atmospheric pressure and ς’vo the ever current 

vertical effective stress.  
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Figure 2.13: Gradation curves for the tested sands presented in Table 2.4, for 
determining their coefficient of volume compressibility (PHRI,  1997).  

 

The coefficient of volume compressibility mv,3 can also be correlated to the one-dimensional 

Young’s modulus Es, considering that  

v,3m  1 /K                                                                 2.8 

where   K is the bulk modulus for which  

  sK 0.50  0.75  E                                                          2.9 

Table 2.5 is taken from the Japanese Geotechnical Society (1998) and summarizes cuclic 

triaxial test results on undisturbed samples, in which mv,3 values were measured and 

correlated to the relative density of the samples. The examples clearly indicate an 

association between the two soil properties; however, a quantitative relationship has not 

been established yet.  

 

Table 2.5: Coefficient of volume compressibility and relative density (after JGS, 1998).  

Type of soil Relative Density (%)  
Coefficient of volume 

compressibility (cm2/kgf)  

Silty sand  - 0.005 - 0.02 

Loose sand 20 - 40 0.005 - 0.01 

Medium dense sand 40 - 60  0.002 - 0.005  

Dense sand 60 - 80  0.001 - 0.002 

Gravel - 0.0005 - 0.001 
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Coefficient of drain permeability kd.- The coefficient of drain material permeability depends 

primarily on the hydraulic gradient i, the ramming degree achieved during installation as 

well as the size distribution curve of the material.  

The hydraulic gradient i is associated to the developing excess pore pressure ratio ru, within 

the improved ground, which may be conservatively considered equal to the allowable excess 

pore pressure ratio rud, used in design. Hence, in the case where fast dissipation of the 

excess pore pressures is required, (namely low ru values) the permeability kd of the material 

needs to be high enough, to create a low hydraulic gradient i. The specific observation is 

clarified in the upper graph of Figure 2.14, which correlates typical permeability values to 

the hydraulic gradient i, and the densification degree achieved during installation (ramming). 

In this chart, the term ““rammed 500 or 1000 times” indicates the number of tamping with a 

4.5kgf ram”. The lower graph presents the size distribution curves for the same materials.  

Gradation of drain material.- In the event of an earthquake, the horizontal water flow may 

carry along fine sand particles that eventually migrate from the natural soil into the gravel 

column. This effect, also known as clogging, can significantly reduce the flow capacity of a 

gravel column, decreasing its initial coefficient of permeability.  

To avoid clogging, a series of empirical criteria has been proposed, mainly based on filtering 

criteria for selecting anti-clogging gravel drain material for earth dams. More specifically, 

according to the Japanese Geotechnical Society (1998), if D is the diameter of the drain 

material and d that of the natural soil and under long term seepage flow conditions, clogging 

is avoided when:  

 D15/d85 < 4   (Terzaghi’s criterion)  

 D15/d85 < 5 (Japanese Society of Large Dams)  

where D15 = grain size of gravel drain material corresponding to 15% finer by  

         weight  

           d85 = grain size of natural soil corresponding to 85% finer by weight  

The Port and Harbour Research Institute in Japan (PHRI, 1997), also provides the following 

criteria:  

 D25/d75  ≤  9.5 or   

 D15/d85  ≤ 6.4  

(where D25 and d75 are similarly defined as noted above for 25% and 75% diameters)  
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Due to the short duration of an earthquake, materials should also be selected based on 

results on short seepage flow. For that reason the following criteria appear in the literature:  

 D15/d85 < 9 [Ohno et al. (1984)] 

 20d15 < D15 < 8d85   [Nakajima et al. (1985)] 

The Department of Defense Handbook on Soil Dynamics and Special Design Aspects (1997) 

slightly modifies Nakajima’s relationship for short-term flow and erosion, which appears in 

the following form:  

 20d15 < D15 < 9d85  

 

 

Figure 2.14:  Permeability values and associated gradation curves for gravel materials 
typically used in drain construction (PHRI, 1997). 
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2.4 Design methods 

2.4.1 Basic design considerations 

The basic design principle behind the gravel drain method concerns the correlation between 

the dissipation and generation rates of excess pore water pressures during a seismic event. 

A gravel drain allows a faster dissipation rate of excess pore pressures compared to their 

generation rate. Higher pore pressure generation rates occur in loose soils subjected to an 

intense and sudden earthquake loading. Additionally, higher pore pressure dissipation rates 

are obtained in highly permeable and non – compressible soils, i.e. having high ks and low 

mv,3 values. 

Many researchers have mathematically expressed the above observations via analytical 

solutions, having thus quantified the controlling parameters of the phenomenon and have 

formulated appropriate design charts for practical use. The main theoretical approaches and 

the related design charts, appearing in the literature, are outlined in this section. The key 

design parameters involved in all methodologies are explained below: 

 The maximum allowable excess pore pressure ratio ru,max, is defined as the ratio of 

the maximum excess pore pressure developing between the gravel drains, umax, over 

the effective vertical stress ς’vo and is a critical design parameter, in all design 

methodologies. Seed & Booker (1977) indicated that maximum pore pressure ratio 

values greater than 0.5, have a significant effect on the coefficient of volume 

compressibility mv,3, as shown in Figure 2.15, and can lead to excessive post-

earthquake settlements, thus it is recommended to avoid design values greater than 

0.6. In practice, typical allowable ru,max values range from 0.2 ÷ 0.6, with the lower 

boundary values being considered the most conservative. 

 The diameter of gravel drains (D) and effective spacing (b), usually corresponding to 

the effective radius, in most design charts, are determined based on a consolidation 

analysis, estimating the dissipation of earthquake – induced excess pore pressures 

with time. Given the effective spacing, the actual center – to – center distance, S, 

between gravel drains is determined, depending on the selected grid configuration. 

The relationship determining the drain spacing is as follows: 

Sb  05.12    for a triangular grid configuration                      2.10a 

Sb  13.12    for a square grid configuration                            2.10b 



Chapter 2: Gravel Drains for Liquefaction Mitigation 

Page | 26  
 

 Additionally, the area replacement ratio defined as the area of the gravel column 

over the area of the unit cell affected by the drain, provides a good estimate of the 

obtained soil improvement. This index denoted as αs, is computed according to 

Equation 2.11:  

2

2












b

D
s                                                                2.11 

Depending on the grid configuration, αs is estimated as presented in Table 2.6, where D is 

the diameter of the gravel drain and S the center – to – center distance between two 

consecutive drains. 

 

Figure 2.15:  Relationship between coefficient of volume compressibility mv and pore 
pressure     built up (Seed & Booker, 1977).  

 

Table 2.6:  Replacement ratio (αs) as a function of the grid pattern and the spacing 
distance.  

Grid  Center - to - center 
distances 

αs (%) 

Triangular S 0.91(D/S)2 

Square  S 0.785(D/S)2 

Quadrilateral Sx, Sy 0.785D2/(SxSy) 
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The design methodologies that follow, have developed around two theoretical approaches. 

The first assumes a ‘perfect’ drain, namely a column of infinitely large permeability, and has 

been proposed by Seed & Booker (1977). The second approach incorporates the drain’s 

resistance to excess pore pressure dissipation and has been proposed by Okita et al. (1986) 

and Onoue (1988). Most recently, however, Bouckovalas et. al. (2009) revisited the Seed and 

Booker (1977) theory and proposed new design charts which effectively account for the 

effect of fabric evolution on ru,max.  

 

2.4.2 The Seed & Booker (1977) method  

Seed & Booker (1977) first examined the earthquake induced pore pressure build up in 

liquefiable soils and the dissipation obtained through gravel drains. They generalized the 

one-dimensional theory of pore – water pressure generation and dissipation developed by 

Seed, Martin and Lysmer (1975), to the three dimensions and applied it to the analysis of 

gravel drains under various earthquake conditions. The geometry of the examined problem 

is presented in Figure 2.16, where a equals the radius of the gravel drain and b the radius of 

the drain’s effective area.  

The assumption that water flow is governed by Darcy’s law, and the considerations of 

continuity of flow lead to the following equation:  
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                                  2.12  

in which  u = the excess hydrostatic pore – water pressure 

kv, kh  = coefficients of permeability in the vertical and horizontal directions  

                               respectively  

γw = the unit weight of water 

 ε = the volume strain, with volumetric reduction being considered positive.  

During a time interval of dt, the pore – water pressure in a soil element will exhibit a change 

du, while it will also be subjected to dN cycles of alternating shear stress, which will cause an 

additional increase in pore pressure - i.e. (∂ug/∂N)dN  

in which  ug = the pore pressure generated by the alternating shear stresses.  
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Therefore, considering the change in bulk stress to be negligible, the volume change, dε, of 

the element in time dt is  















 dN

N

u
dumd

g

v 3,                                                      2.13 

in which mv,3 = the coefficient of volume compressibility.  

 

 

Figure 2.16:  Plan arrangement (a) and elevation (b) of the problem geometry  (Seed & 
Booker, 1977).  

 

Combining the previous equations, under the assumption of constant values of the 

coefficients of permeability ks and volume compressibility mv,3, and for the axisymmetric 

conditions considered in the examined problem we get: 
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                              2.14 

For purely radial drainage Equation 2.14 reduces to the following form, i.e. Equation 2.15:  
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Based on undrained cyclic simple shear tests, Seed, Martin, Lysmer (1975), propose that for 

many soils ug and N can be expressed as a function of the vertical effective stress ς’vo and the 

required number of cycles for liquefaction Nl, as demonstrated in Equation 2.16:  

A
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1
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sin
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                                                           2.16  

in which  ς’vo = the initial mean bulk effective stress for triaxial test conditions or the   

                                         initial vertical effective stress for simple shear conditions and  

A = an empirical constant that has a typical value of 0.7.  

The A = 0.7 value resulted from statistical processing of laboratory data from cyclic simple 

shear tests as illustrated in Figure 2.17.  

 

 

Figure 2.17: Rate of pore pressure built up from cyclic simple shear test (De Alba et al., 
1975). 

 

Considering the partial derivative of the generated excess pore pressures, ug, with respect to 

the number of cycles N, the previous equation takes the form:  
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                                           2.17  

in which ru = u/ ς’vo equals the excess pore pressure ratio 

For practical purposes, the irregular cyclic loading induced by a seismic excitation can be 

converted to an equivalent number, Neq, of uniform stress cycles, at a stress ratio of τh/ ς’vo, 
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occurring in some duration of dynamic time td of earthquake shaking. Thus the ∂N/∂t term 

of the basic Equation 2.14 is transformed into:  

d

eq

t

N

t

N





                                                                    2.18 

Following a thorough parametric investigation which falls outside the scope of the present 

analysis, Seed & Booker (1977) propose a set of design charts presenting the variation of the 

maximum excess pore pressure ratio, ru,max, as a function of the spacing ratio a/b, for Neq/Nl 

equal to 1, 2, 3, 4 and for a wide range of values of a dimensionless time factor Td. The 

dimensionless time factor Td is described as : 

s d
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v,3 w

k t
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                                                             2.19 

where   ks (m/sec)     = the horizontal soil permeability 

td (sec)           = dynamic time  

mv,3 (1/kPa)  = the coefficient of volume compressibility 

γw (kN/m3)    = water unit weight 

a (m)               = the radius of the gravel drain 

Therefore, for any particular soil, given the gravel drain diameter, shaking intensity 

(expressed through the Neq/Nl ratio) and drainage capacity Td, the a/b value corresponding 

to an allowable excess pore pressure ratio ru,max, can be obtained from Figure 2.18.   
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Figure 2.18:  The Seed & Booker (1977) design charts. 

 

Note that the Seed & Booker (1977) theory is based on the following simplifying 

assumptions: 

 Purely horizontal drainage is considered to be the dominant mechanism of drainage. 

Taking into account that the permeability of the sand in the vertical direction is one third 

of that in the horizontal direction, and that the drain installation creates significantly 

shorter horizontal drainage paths compared to those in the vertical direction, the above 

assumption is justified.  

 The drain material is assumed to be infinitely permeable, thus disregarding any 

resistance to water flow imposed from the material inside the drain. Based on 

parametric analyses, it is reported by Seed & Booker (1977) that “the drain operates 

perfectly, provided it has a permeability of the order of 200 times that of the sand”. 

Based on this observation, medium to fine gravel is judged to be a suitable filling 

material.  

 The natural soil surrounding the drain is considered elastic.  
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2.4.3 The Okita (1986) and Onoue (1988) methods  

Following the pioneering work by Seed & Booker (1977), many geotechnical engineers re-

examined the basic assumptions of their theory. Particularly the assumption of the infinitely 

permeable drain was proven to be inadequate to describe the actual water flow inside the 

drain. Okita et al. (1986) and Onoue (1988) introduced a new parameter to capture the 

drain’s resistance to flow, denoted as well resistance L (or Lw) and defined through Equation 

2.20:  

2
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                                                           2.20 

where  

ks (cm/sec) = the coefficient of permeability of the natural soil  

kd (cm/sec) = the coefficient of permeability of the drain material  

H (m)            = the thickness of the sand layer (equal to the length of the drain) 

α (m)             = the radius of the gravel drain 

Okita et al. (1986) recommended the use of the initial design charts by Seed & Booker (1977) 

after a correction in the dimensionless time factor Td, while Onoue (1988) proposed entirely 

new design charts.  

Evidently, the key parameter for the use of methodologies considering well resistance, over 

the simplified methodology of Seed and Βooker (1977), appears to be the coefficient of well 

resistance Lw. According to the Port Harbour Research Institute of Japan (PHRI, 1997), a drain 

can be considered infinitely permeable when the coefficient of well resistance is less than or 

equal to unity. Expressing the above condition with respect to the coefficient of permeability 

of the drain material kd it appears that:  
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                                                             2.21  

where   H equals the depth of the drain installation and  

a denotes the radius of the drain.  

Equation 2.20 clearly indicates that the accuracy of the simplified methodology developed 

by Seed & Booker (1977) is directly related to the permeability of the drain material. When 

the above condition is not satisfied, one of the methodologies including well resistance 

should be applied. In case the drain material permeability decreases to less than the one 
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given by Equation 2.21, the installation spacing is reduced up to the extreme case which 

leads to total replacement of the natural liquefiable stratum by the gravel drain material.  

Okita et al. (1986).- According to the Japanese Geotechnical Society (JGS, 1998), Okita et al. 

(1986) proposed a method, in which the value of the dimensionless time factor Td, is 

decreased to T’d to incorporate the effect of well resistance. Namely, for a given b value, the 

corrected time factor T’d is calculated from Equation 2.22:  
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                                                            2.22  

where   F(n) is given by Equation  2.23: 
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with   n = b/a  

Given the intensity of the seismic excitation (Neq/Nl ratio), the maximum pore pressure ratio, 

ru,max, is estimated from the design charts proposed by Seed & Booker (1977) as a function of 

T’d and the spacing ratio a/b. If the estimated ru,max value is lower than the allowable one, 

the assumed effective radius of the drain cell b is considered adequate and the center – to – 

center spacing distance S is evaluated (depending on the grid configuration). In the opposite 

case, computations are repeated assuming a lower b value.  

Onoue (1988).- Even though Okita’s methodology is quite straightforward and simple to use, 

Onoue (1988) stresses out that the related nomograph, incorporating well resistance for 

reading Seed & Booker’s (1977) design charts, is limited to a pore pressure ratio (ru) equal to 

0.5 and coefficient of well resistance equal to unity. Thus, an analytical method is developed, 

to incorporate well resistance in the basic equations of flow and new design charts are 

proposed.  

The basic equations developed by Seed & Booker (1977) are kept identical and are 

supplemented by a new continuity equation (Equation 2.24) along the drain periphery, 

initially proposed by Yoshikuni & Nakanodo (1974) for a consolidation analysis.   
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                                            2.24 

Equations 2.14, 2.17 and 2.24 are solved as a continuous equation, considering the boundary 

conditions presented in Figure 2.19. The initial condition is u = 0 when t = 0. The coefficients 

of ground permeability in the horizontal and vertical direction, denoted as kh and kv 
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respectively, are assumed to be equal to ks, when horizontal flow towards the drain and 

vertical drainage towards the surface of the sand layer are taken into consideration. In the 

case where vertical drainage is disregarded, kv equals zero.  

 

Figure 2.19:  Drain well and boundary conditions in Onoue (1988) solution.  

 

The design charts generated by Onoue (1988) are presented in Figure 2.20 and correspond 

to the case where both horizontal and vertical drainage in the sand layer are considered. The 

spacing ratio (a/b) is correlated to the coefficient of well resistance Lw, as a function of the 

allowable maximum excess pore pressure ratio ru,max and the time factor Td. It is also pointed 

out that ignoring vertical drainage becomes significant only in the case of Neq/Nl =1, thus an 

additional design chart is provided in Figure 2.21 for this case.  

The design process using Onoue’s design charts is not different than the one described for 

the Seed & Booker (1977) case. Practically, all steps are repeated, but the design charts 

presented in Figure 2.20 & Figure 2.21 are used for the final evaluation of the spacing ratio 

a/b.  
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Figure 2.20:  Design charts correlating well resistance to spacing ratio for different 
maximum excess pore pressure ratios and shaking intensities (Onoue, 1988).  

 

 

Figure 2.21:  Relationship between spacing ration and well resistance in the case where 
vertical drainage is disregarded (Onoue, 1988).  
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2.4.4 The Bouckovalas et al. (2009) method 

Bouckovalas et al. (2009) re-examined the basic mathematical assumption concerning the 

earthquake – induced excess pore pressure generation in the Seed & Booker (1977) theory. 

Namely, the Seed & Booker (1977) theory overlooks the shake – down effect occurring 

during cyclic loading, thus underestimating the effectiveness of the gravel drain. The new 

implementation of the equation for the rate of undrained excess pore pressure generation, 

proposed by Bouckovalas et al. (2009), focuses on the discrimination of two separate terms 

controlling the excess pore pressure build up. Differentiating Equation (2.16) with respect to 

N, and expressing it as a function of Neq/Nl, leads us to the following expression: 
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Expressions F1 & F2, described in the previous Equations 2.26 and 2.27 are plotted against 

the normalized number of cycles Neq/Nl in Figure 2.22.   

In the present formulation the term F1 affects the soil response during the initial stages of 

loading, representing the gradual evolution of the sand fabric towards a more stable state 

after each loading cycle. The fabric evolution is a process which continues with time and 

therefore F1 is expressed as a function of Neq/Nl. Considering that N = t/T, where T is the 

predominant period of shaking, F1 is described as follows:  
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                                                              2.28 

The term F2, appears to control the soil response at the final stages of shaking, where the 

rate of excess pore pressure build up becomes higher with each loading cycle. Therefore, F2 

was preserved as a function of the excess pore pressure ratio ru, following the Seed & 

Booker (1977) formulation (Equation 2.17). Combining the above expressions with Equation 

2.25, the final expression for the rate of excess pore pressure build up is formulated:  
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Consequently, Equations 2.15, 2.18 and 2.29 are combined and the resulting expression is 

expressed in non-dimensional form as presented as follows:  
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The parameter Tad is a normalized time factor equal to Td used in the Seed & Booker (1977) 

method (Equation 2.19). The above Equation 2.30 is solved, applying the following initial and 

boundary conditions:  

 ru(R,t* = 0) = 0  

 ru(R = 1,t*) = 0 

   0*,/ 



tabR

R

ru  



Chapter 2: Gravel Drains for Liquefaction Mitigation 

Page | 38  
 

 

Figure 2.22:  Excess pore pressure generation rate with respect to normalized loading 
cycles from cyclic simple shear tests (Bouckovalas et al., 2009).  

 

The revised design charts for the computation of the maximum excess pore pressure ratio as 

a function of the spacing ratio (a/b = 0 to 0.5), the shaking intensity (Neq/Nl = 1 to 4) and the 

dimensionless time factor (Tad = 2 to 200), are presented in Figure 2.23.  

The implications of the proposed modifications on the design of gravel drain systems are 

explored in Figure 2.24a, considering a maximum allowable excess pore pressure ratio 

ru,max=0.40 and a triangular pile arrangement, rendering αs equal to 0.91(a/b)2. The required 

replacement ratio αs is plotted against the dimensionless time factor Tad, for various shaking 

intensities, for the Seed & Booker (1977) (solid lines) and the revised method described 

herein (dashed lines). Moreover, Figure 2.24b presents the respective variation for the ratio 

of the revised over the original prediction as a function of Tad. As it is seen, the values 

predicted by the revised method are systematically lower with respect to the equivalent 

values predicted by the Seed & Booker (1977) method.  
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Figure 2.23:  New proposed design charts based on the revised methodology by 
Bouckovalas et al., 2009. 

                                           (a)                                                                                    (b) 

Figure 2.24:  (a) Replacement ratio αs with respect to drainage potential (Tad) for an 
allowable ru,max = 0.40 and various shaking intensities (Neq/Nl) as predicted by 
Seed &Booker (1977) and Bouckovalas et al. (2009). (b) Comparative 
evaluation of the above predictions *αs,rev. and αs,S&B]. (Bouckovalas et 
al.,2009). 



Chapter 2: Gravel Drains for Liquefaction Mitigation 

Page | 40  
 

Equation Chapter 3 Section 1



Chapter 3: Composite Drains for Liquefaction Mitigation 

Page | 41  
 

 

 

CHAPTER   3 

 

 

3 Composite Drains for Liquefaction Mitigation 

 

 

3.1 Introduction 

Undoubtedly, gravel drains are the most effective liquefaction countermeasure used in 

current practice. Nevertheless, environmental issues and construction constraints tend to 

reduce the method’s efficiency and level of confidence. Gravel drain installation entails 

significant traffic disturbance, and depending on the selected installation method, produces 

considerable amounts of potentially hazardous spoil material. Clogging during installation is 

an issue typically encountered, especially in the case of the top feed method, and reduces 

the column’s drainage capacity. Additionally, the space and considerable time required for 

the installation of each column may frequently hinder or even postpone the implementation 

of the method in various projects, thus urging for alternative liquefaction countermeasures.  

In the current chapter, two new innovative types of drains are thoroughly described, in 

terms of material specifications, installation procedure, equipment requirements and design 

methodology, which are intended to overcome some of the drawbacks of the gravel drain 

method, mentioned above. Namely: 

 EQ-drains, which were initially developed and have been used in various projects in the 

U.S.A.  

 Screen pipes, which originate and are used in a number of technical projects in Japan.  
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The effectiveness of the innovative drain types has been tested through laboratory and in-

situ tests, which are also presented in the present chapter. Blast and vibration induced 

liquefaction and centrifuge tests have been carried out to test the performance of EQ-drains. 

The performance of screen pipes has been tested with shaking table tests and in situ 

experiments.  

3.2 Earthquake (or EQ-) drains 

Prefabricated geocomposite drains, also referred to as EQ-drains, have been recently 

introduced as an alternative to gravel drains for liquefaction remediation projects. EQ-drains 

consist of a synthetic corrugated pipe, enclosed in geotextile filter fabric and are usually 

installed with a vibrating mandrel. Their primary role is to provide a path for the immediate 

and unhindered dissipation of earthquake induced excess pore pressures, while a secondary 

effect is the soil densification occurring during installation. EQ-drains have been used in a 

variety of applications such as:  

 Highway and railway embankments 

 Seismic retrofit of existing buildings and bridge foundations  

 Commercial and residential developments 

Many companies in the U.S.A. are involved in the design and installation of earthquake 

drains; the three major being Nilex Corporation, Geo-Technics America Inc. and Ellington 

Cross. In the following paragraphs material specifications, installation methods and 

equipment requirements, provided by the above companies, as well as the available design 

methods are outlined, to provide a detailed description of this new approach in liquefaction 

remediation.   

3.2.1 Design parameters 

The main parameters involved in the design of EQ-drains concerning the surrounding soil, 

are the coefficient of permeability ks and the coefficient of volume compressibility mv,3. The 

determination of the above parameters does not differ from what was mentioned in the 

case of gravel drains, and is therefore omitted. In the sequel, specifications regarding the 

materials used in the manufacturing of EQ-drains are provided.  

Pipe requirements.- The corrugated pipe used for the construction of EQ-drains has a typical 

nominal inside diameter ranging from 75 - 200mm and is composed of high density 

polyethylene (HDPE). In addition, the pipe has a minimum average wall thickness of 0.042 

inches. Typically, for most projects encountered in the literature, the 75mm diameter is used 
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and recommended by the contracting companies. A sample of the corrugated pipe used in 

practice is presented in Figure 3.1a &b. 

 

(a)                                                             (b) 
Figure 3.1: Corrugated pipe without filter fabric (a) and enclosed in filter fabric (b) (Nilex 

Inc.; personal communication).  

 

Filter requirements.- The filter fabric is suggested to be non-woven and made of thermally 

spun bonded polypropylene with minimum weight of 3.9oz/ft2 (128g/m2), maximum 

apparent opening size (AOS) of 0.21mm and minimum grab strength of 440N (100lbs). It is 

preferable that the filter fabric is not exposed to sunlight for more than 72 hours. Depending 

on the drainage application and the soil classification, several geotextiles are available to 

use. A completed EQ-drain ready for installation is presented in Figure 3.2.  

 

Figure 3.2:  EQ-drain ready to be installed (after E. Naesgaard; personal communication). 
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Clogging Criteria.- The Japanese Geotechnical Society (1998) specifies a relationship used to 

determine the size of the openings in steel pipes. The above relationship is expressed in the 

following Equation: 

 Oe ≤ Ds85     [Chen et al.,1981]  

where Oe = the effective size of the opening  

Ds85 = grain size of natural soil corresponding to 85% finer by weight 

Nevertheless, there is no reference in the U.S.A. field of practice to clogging issues. 

3.2.2 Installation and equipment 

EQ-drains are installed both in new projects as well as in the seismic retrofit of existing 

structures. The installation procedure and associated equipment are mentioned below: 

 A tubular steel mandrel, like the one presented in Figure 3.3, is positioned over the 

desired spot and the drain enclosed in the filter material is fed from the bottom, as 

shown in Figure 3.4.   

 The mandrel is advanced into the soil to the design depth using a combination of 

static crowd and vibration, as shown in Figure 3.5, from an actual project in the 

U.S.A.  

 When reaching the design depth, the drain is anchored with a specially designed 

anchor plate (also called shoe or lost point), demonstrated in Figure 3.6.   

 

 

Figure 3.3:  Tubular steel mandrel for EQ-drain installation (left figure) and dimension 
specifications (Nilex Inc.;personal communication).  
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Figure 3.4:  Feeding the EQ-drain into the mandrel (Ellington Cross LLC).  

 

 

Figure 3.5: Installing EQ-drains at a construction site (Bay bridge project Nilex 
Corporation).  

 

 

Figure 3.6:  Pre-assembled EQ-drains with the specially configurated anchorplate (Nilex 
corporation).  
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 After installation, the mandrel is retracted, protecting the corrugated pipe and filter 

sock from tears, cuts and abrasions.  

 All installed drains are trimmed on the top and a special plastic elbow is attached. All 

elbows maintain the same orientation, as indicated in Figure 3.7.  

 Reservoir space is often required to accommodate the expelled water during a 

seismic event. The reservoir space may take the form of a naturally occurring 

permeable layer of gravel, on top of the drains. The gravel material is bladed from 

the closed side of the elbows, to avoid falling into the drains as shown in Figure 3.8. 

Moreover, the natural reservoir is carefully designed to be above the water table.  

 In case where an artificial reservoir is formed, individual reservoirs may be 

constructed at each drain. Usually, in practice, an additional length of drain material 

is attached to the main drain body, folded and buried at each drain.  

 

 

Figure 3.7: Finished EQ-drains with all elbows oriented in the same direction (Home 
Depot Yuma project, Nilex Corporation).  
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Figure 3.8:  EQ-drains installed and reservoir under construction (Bay bridge project 
Nilex, Corporation).  

 

In cases where vibration is detrimental to existing structures or foundations, EQ-drains are 

installed with restricted-access drilling equipment, as shown in Figure 3.9. The steel casing is 

drilled to the desired depth and the drain is inserted through the center of the casing. The 

casing in then withdrawn, leaving the drain in place, as shown in Figure 3.10. The pictures 

appearing in the above figures correspond to the seismic retrofit project of the Historic 

Charleston Courthouse in the U.S.A., undertaken by Geotechnics America Inc.  

The following installation guidelines and specifications are proposed by the main EQ-drain 

contractors in the U.S.A namely, Nilex Corporation, Geo-Technics America Inc. and Ellington 

Cross:  

 If the rate of mandrel penetration is less than (<) 80mm/sec, under full static force 

and vibrator output, the drain may be abandoned. 

 Falling weight impact hammers are not allowed for installation. 

 Water may be used occasionally to facilitate drain anchoring.  

 Augering (or other methods) may be used for loosening of stiff upper soil   layers 

prior to installation, unless they extend more than 60cm into the liquefiable 

stratum.  
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 In the case of severe obstructions, the drain is completed from the obstruction up to 

the surface and a new drain is installed within 50cm of the obstructed drain (at the 

direction of the Engineer). A maximum of 2 attempts are made.  

 The equipment must be tested for plumbness and shall not deviate from the vertical 

by more than 8cm/m during installation.  

 Stakes must be preserved by the Contractor and drains’ final position must not differ 

by more than 15cm from the locations indicated by the Engineer. Drains out of 

proper position may be abandoned in place or removed.  

 Trial drains are usually installed to test the available equipment and drain 

performance. 

 

 

 

Figure 3.9:  Restricted access drilling equipment and EQ-drain installation (Historic 
Charleston Courthouse, Geotechnics America Inc.).  
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Figure 3.10:  EQ-drains installed under an existing structure (Historic Charleston 
Courthouse, Geotechnics America, Inc.).  

 

3.2.3 Design methods 

In EQ-drain design, there are still no appropriate design charts formulated for use in current 

practice in the U.S.A.. The three major EQ-drain contractors in the U.S.A. rely on the use of 

the finite element program FEQdrain for the analysis and design of the EQdrain grid 

configuration. The set of design charts, proposed by the Japanese Geotechnical Society (JGS, 

1998), is presented herein. Additionally, the Japanese Geotechnical Society (JGS) propose 

the use of specific design charts also presented in the current section.  

FEQdrain (Pestana et al., 1997).- This finite element program is capable of simulating the 

response of a perforated plastic pipe, either alone or enclosed in geotextile, and computing 

the excess pore pressures throughout the effective area of the drain. The excess pore 

pressure flow occurring in the natural ground is simulated according to Darcy’s law and the 

same equation is applied to describe the pore pressure built up as explained in the Seed & 

Booker (1977) theory. The basic mechanism describing the function of the pipe is based on 

the non-linear discharge capacity Qd as a function of hydraulic gradient (dh/dz). 

More analytically, the head loss (Δh) for the water entering the drain is expressed as: 
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where   vr = Darcy’s discharge velocity in the radial direction at the drain boundary  

                      (r=rw)  
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corf = is a coefficient describing the entrance loss through the orifices in 

terms of entrance kinetic energy head. It is used to reduce the amount 

of flow through the perforations and can range from 0.5 to 2, with the 

lower end boundary (corf =0.5) assuming minimum or no head loss 

through the perforations. FEQdrain user’s manual recommends that corf 

equals unity. 

αorf =   is the dimensionless ratio of the orifice area to the lateral surface area 

of the perforated pipes, defined as 2orf worf / r  , where orf 

denotes the  area of openings per unit length in the perforated pipe and 

rw is the outside radius of the drain.  

ψ =  is the permittivity of the geofabric [1/t] 

g = acceleration of gravity (m/sec2) 

The hydraulic gradient in the vertical direction inside the drain is described by the modified 

Manning’s equation as:  
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    for z > zres                                              3.2 

where   Qd      = the vertical flow inside the drain and  

c1, c2 = constants provided by the manufacturer, expressing the discharge 

capacity of the perforated plastic pipe, when the water level in the 

pipe is lower than the depth of the reservoir zres.  

When the water level is above the depth of the reservoir Equation 3.3 is derived: 
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where          c3, c4 = constants provided by the manufacturer, expressing the discharge 

capacity of the perforated plastic pipe, when the water level in the 

pipe is higher than the depth of the reservoir zres.  

To simulate the flow in the plastic pipe and the flow through the geofabric and pipe orifices, 

the drain space is divided in two elements: an inner and an outer core, respectively. The flow 

in the outer core is assumed to be radial, whereas inside the inner core the flow is 

considered essentially vertical. The above assumptions are better illustrated in Figure 3.11. 
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The two elements are characterized by a linearized equivalent hydraulic conductivity 

representing the head gradient in the vertical and horizontal directions.  

 

(a) Profile                                            (b) Plan view 

Figure 3.11:  Simulation of flow within drain elements (FEQ-Drain User’s Manual).  

 

The radial flow in the outer core element dQr, can be expressed as: 
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where   kheq = is the equivalent horizontal hydraulic conductivity of the outer core  

                          element at time t and  

Asurf = the surface area of the axisymmetric element with height dl.  

The surface area Asurf  is given based on the following expression: 

dlrA wsurf  2                                                             3.5 

The head loss across the outer core can be expressed as a function of the energy loss due to 

orifice entrance and permeation through the geofabric. In terms of horizontal flow through 

the outer element the head loss is expressed as:  
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where   ψ =     is the permittivity of the geofabric [1/t] 

Asurf = the surface area of the axisymmetric element with height dl,  
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The horizontal flow dQr, can be rewritten as a function of the average excess pore pressure 

Δu, across the examined element and the properties of the prefabricated drain. Therefore 

the previous Equation 3.6 is transformed as shown below:  
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Solving Equation 3.7 with respect to the equivalent hydraulic conductivity during a time 

increment Δt, we get:  
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Subsequently, substituting into Equation 3.4, the final expression for kheq is given through 

Equation 3.9: 
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Apparently, the equivalent hydraulic conductivity for a specific element is not constant with 

time, but is related to the average excess pore pressure during Δt. Therefore, the problem is 

solved iteratively.  

Likewise, the average vertical hydraulic conductivity for the inner core is computed based on 

Equation 3.10:  
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where   Qd = is the average vertical flow for the examined element 

It is important to clarify that the separation of the drain space into inner and outer sections 

is totally arbitrary and does not relate to the physical dimensions of the geofabric and the 
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perforated slots of the plastic pipes. For the sake of simplicity, it is assumed that the inner 

and outer core elements have the same radial dimension (i.e. ro = rd = rw/2).  

Due to the nonlinearity of the problem, and in order to avoid numerical inaccuracies, the 

software analytically computes the solution of excess pore pressures for the outer core 

elements of the pipe, based on Equations 3.2 and 3.3 and in the sequel applies the solution 

in the form of transient boundary conditions to the inner core element.  

JGS (1998).- The Japanese Geotechnical Society (1998) referring to a similar type of artificial 

drains, proposes the following process for determining the spacing distance b. Following the 

gravel drain method for the determination of the dimensionless time factor Td0, the 

coefficient of well resistance and the cycle number ratio (Neq/Nl), the following steps are 

followed:  

 A spacing ratio a/b is assumed and the correction factor m is determined from 

Figure 3.12 and the corrected time factor Td is calculated.  

 Given the maximum excess pore pressure ratio ru,max, the related b/a ratio is defined 

from Figure 3.13. 

 In case of considerable deviation between the two specified b/a values, the process 

is repeated until convergence.  

 

 

Figure 3.12:  Determination of m correction factor (JGS, 1998). 
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Figure 3.13: Design charts proposed by JGS (1998) for the spacing of artificial drains.  

 

3.3 Screen pipe method  

A relatively new technique developed in Japan appears to gain ground in the seismic retrofit 

of existing structures, especially in cases of very limited working space. The screen pipe 

method is proposed by Harada (2004, 2006) and includes specially constructed metal pipe 

drains, which are installed in loose sands with relatively light equipment and the least 

possible disturbance in the adjacent structures.  

3.3.1 Design parameters 

 The screen pipe is made of equally interspaced metal rods in the axial direction with metal 

rings surrounding them. The diameter of the screen pipe typically ranges from 50 to 100mm 

and the opening size between the rings is of the order of 0.1 – 0.3mm. Characteristic details 

of a screen pipe are demonstrated in Figure 3.14. The screen pipe exhibits much greater 

permeability compared to the natural soil, since it is hollow in the inside. Thus, excess pore 

water pressures are dissipated much faster, compared to the conventional gravel drains. 
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Moreover, clogging during seismic excitation is prevented, due to the narrow opening size of 

the external steel rings.  

 

 

Figure 3.14: Characteristic screen pipe details (Harada et al.,2006).   

 

3.3.2 Installation and equipment 

Screen pipes are installed using small machinery, such as boring machines and vibratory pile 

drivers, as presented in Figure 3.15. It is also reported that human power through air 

hammers may be also applied. A typical air hammer apparatus is demonstrated in Figure 

3.16. The installation procedure is outlined in Figure 3.17 and is completed in the following 

stages:  

 The selected machinery is positioned over the correct installation spot 

 The screen pipe, which is attached to the rod of the boring machine is inserted into 

the ground by mechanical blows 

 A drain mat is constructed on top of the screen pipe.  

The installation interval ranges from 0.5 to 1.5m and drains can be installed vertically or 

inclined to a pre-determined depth.  

 

 

 

Screen pipe : Φ50-100mm

outside inside

Opening size : 0.1-0.3mm
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Figure 3.15:  Application range for the bottom feed (Vibro-displacement) and top feed 
(vibro-flotation) methods (Bauer, 2010).  

 

 

Figure 3.16:  Use of Air Hammer for screen pipe installation (Photograph provided by 
Prof. I. Towhata after personal communication). 
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Figure 3.17:  Construction sequence of the screen pipe method (Harada et al., 2006).  

 

3.3.3 Design method 

The screen pipe method has recently appeared in the international literature and is still 

experimentally investigated. Research in this field of soil improvement remains active and 

suitable installation guidelines and design charts are expected in the future. Nevertheless, 

because the function of screen pipes is essentially the same as that for EQ-drains, their 

design may be based on FEQ-Drain or even the Seed & Booker (1977), or the Bouckovalas et 

al. (2009) method for perfect drains (without internal flow).  

According to Harada et al. (2006), the main benefits obtained from the screen pipe method 

are summarized in the following:  

 Screen pipes can be used for soil improvement under or in the vicinity of existing 

structures, especially in cases with serious space limitations.  

 The construction procedure is simple and efficient with little time requirements. 

 The installation activity causes minor environmental impacts (such as noise and 

vibration).  

 Experimental investigation through shaking table tests and field experiments 

confirm the method’s efficiency in excess pore pressure dissipation, nevertheless, 

indicate that for strong seismic events (exceeding 200gals) liquefaction may not be 

prevented. In such cases the use of screen pipes in conjunction with piles may 

preserve shear strength and mitigate earthquake induced damage to pile supported 

structures.  

 Screen pipes can be inserted at any desired angle.  

 The technique is performed without any soil removal. 

 The steel pipe configuration prevents clogging phenomena.  
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3.4 Experimental evaluation of alternative drain types.  

3.4.1 EQ-drains 

In the absence of actual performance data, from past seismic events, many researchers have 

conducted laboratory and field tests to evaluate the efficiency of EQ-drains. The most 

important findings are summarized below. 

Rollins et al. (2003).- evaluated the effectiveness of EQ-drains through controlled blasting 

techniques in two test sites, located in Treasure Island - San Francisco and Vancouver, 

Canada. The performed blasts investigated the pore pressure dissipation efficiency of EQ-

drains, as well as, the obtained densification of the surrounding soil during installation.  

Treasure Island, San Francisco Test Site.- EQ-drains were installed in eight separate clusters, 

each one consisting of seven drains in triangular spacing, incorporating different spacing 

distances, use of filter fabric and intensity of vibration used for installation.  

The test layout is presented in Figure 3.18. The soil profile consisted of hydraulically placed 

fill and native sands to a depth of 4.2m, underlain by silty sand to a depth of 7.5m. Bay mud 

was encountered at a depth of 7.5m. The water table was located approximately 0.15m 

below the ground surface.  

Soil improvement during installation was evaluated through settlement monitoring and CPT 

soundings. One week following installation, a CPT sounding performed within the drain 

cluster indicated an increase of the cone tip resistance in the order of 20 – 35% compared to 

the initial values, which is translated to a 5 – 10% increase in relative density. A cross section 

of the soil conditions, along with profiles of CPT cone tip resistance, SPT blow count and 

associated relative density values before and after installation at the site is presented in 

Figure 3.19. Additionally, the installation induced settlements in the tested site ranged from 

20 to 275mm, depending on spacing and amount of vibration.  

Dynamic loading consisted of sixteen (16) explosive charges, which were placed around the 

periphery of two circles, 5m in diameter. The performance of the treated site was compared 

to the response of an adjacent untreated site, in terms of pore pressure built up and 

observed settlement accumulation.  
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Figure 3.18: Layout of drain clusters, pore pressure transducers and blast charges at test 
site on Treasure Island in San Francisco (Rollins et al.,2003).   

 

Due to the rapid and abrupt nature of loading, EQ-drains did not prevent liquefaction from 

occurring, nevertheless, they effectively dissipated excess pore pressures, as indicated in 

Figure 3.20. The Authors note that the rise of ru values for the treated area from 0.1 to 0.3 

before dropping again is attributed to sand infiltration in the drains, despite the fact that the 

geofabric met all related filter criteria. In terms of blast-induced settlements, about 20 – 

40% less settlement occurred in the center of the treated area compared to the untreated 

site. The maximum amount of settlement in the treated area occurred near the 

improvement boundaries and was comparable to the maximum settlement in the untreated 

area.  
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Figure 3.19: Typical soil profile, SPT, CPT and Dr profiles, before and after drain 
installation from Treasure Island in San Francisco (Rollins et al.,2003).   

 

 

Figure 3.20:  Excess pore pressure ratio time history for the treated and the untreated 
test sites at depth of 2.7m (Rollins et al.,2003).  
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Vancouver, Canada Test Site.- In the particular site, drain performance was evaluated by 

installing a single cluster consisting of 35 EQ-drains and comparing the blast induced 

settlement and pore pressures with regard to an untreated site displaying comparable soil 

properties.  

Soil conditions generally, consisted of silt and clay to a depth of 5m, underlain by loose 

liquefiable sand to a depth of 15m, with very low CPT values, ranging from 5 – 7 MPa. Based 

on the CPT measurements, the relative density ranged between 40 – 45%. The water table 

was located at 2.8m below the ground surface. A cross section of the soil conditions, along 

with profiles of CPT cone tip resistance and interpreted relative density values before and 

after installation at the site is presented in Figure 3.21.  

The drains were spaced at 1.22m (center – to – center distance) in a triangular grid and were 

installed to a target depth of 12.8m using a steel mandrel. A new, improved filter fabric was 

used in order to eliminate the clogging issues encountered in the previous test and the end 

of the fabric tube was tied to further prevent infiltration. During installation, approximately 

350mm of settlement occurred near the center of the cluster which gradually decreased to 

about 50mm along the periphery.  

 

Figure 3.21: Typical soil profile, CPT and relative density (Dr) profiles, before and after 
drain installation from the Vancouver, Canada test site (Rollins et al.,2003).  
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Four blast holes were created around the periphery of a circle 5m in diameter and overall, 

16 charges were detonated at different depths. The experiment layout along with the 

positions of the blast holes and the pore pressure transducers is demonstrated in Figure 

3.22.  

 

 

Figure 3.22:  Layout of drains, pore pressure transducers and blast hole for the Vancouver 
test site (Rollins et al.,2003).  

 

Figure 3.23 presents the excess pore pressure ratio time histories from various depths for 

the treated and the untreated area. The drains did not succeed in preventing liquefaction, 

however, higher dissipation rates were obtained in the treated areas. Moreover, EQ-drains 

reduced settlements by 30 – 65% compared to the untreated site, as it is shown in Figure 

3.24. Note that this reduction may be partly attributed to the increased dissipation rate, 

since significant densification had already occurred during installation. 

According to the Authors, in contrast to actual seismic events, blast induced liquefaction was 

obtained in 2 – 3 seconds, which leaves very little time for pore pressure built up, therefore 

diminishing the effectiveness of the drains. Considering this to be the main reason for 

liquefaction occurrence in the treated sites, numerical simulations using FEQdrain software 

were carried out to further investigate the EQ-drains’ effectiveness. The settlement and 

excess pore pressure measurements from the blasting test sites were used to calibrate the 

numerical model’s soil properties, and the comparison between the measured and 

computed excess pore pressure ratio is presented in Figure 3.25 and Figure 3.26 

respectively. The above calibrated computer model was subsequently tested against various 

earthquake motions with different intensities and durations and the results are summarized 
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in Table 3.1, in terms of excess pore pressure ratios, ru, and settlement accumulation. 

Opposite to the blasting test results, the numerical investigation indicated that properly 

spaced drains can prevent liquefaction and significantly reduce excess pore pressures and 

settlements, under properly simulated earthquake loading conditions.  

 

 

Figure 3.23:   Excess pore pressure ratio time histories for the untreated and the treated 
site at various depths (Rollins et al.,2003). 
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Figure 3.24:  Liquefaction induced settlement versus radial distance from the center of 
the drain for the treated and untreated test areas.  

 

 

Figure 3.25:  Comparison of measured ru time history with time history computed using 
FEQ-drain for Treasure Island (upper graph) and Vancouver (lower graph) 
test site respectively (Rollins et al.,2003).  
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Figure 3.26:  Comparison of measured settlements against computed settlements with 
time using FEQ-drain for Vancouver test site (Rollins et al.,2003). 

 

Table 3.1: Computed values of pore pressure ratios (Ru) and settlement for various 
earthquake events and drain spacings for the Vancouver test site.  

Magnitude 
Duration 

(sec) 
Neq/Nl 

Drain Spacing 
(m) 

Maximum Ru 
Settlement 

(mm) 

Blast 8 4.0 1.22 1.0 310 

6.0 8 2.0 0.91 0.40 31 

6.75 17 2.0 0.91 0.47 35 

6.75 17 3.0 0.91 0.61 48 

7.5 35 2.0 0.91 0.65 53 

 

Rollins et al. (2004).- Based on the previous work by Rollins et al. (2003), Rollins & Anderson 

(2004) further investigated the effect of installation induced vibration to the effectiveness of 

EQ-drains. They evaluated the behavior of EQ-drains under low and high levels of vibration 

at the same test site with the previous blasting test, located in Vancouver, Canada. Each test 

area consisted of a cluster of 35 drains, installed to a target depth of 12.8m, arranged in a 

triangular grid with a center – to center spacing of 1.22m. The experiment layout is 

presented in Figure 3.27.   

In the first test area, drains were installed with a pipe mandrel, in an effort to induce as little 

densification as possible, thus very little settlement was observed. In the second test area, 
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drains were installed with a finned mandrel, designed to induce soil densification, leading to 

significant settlement (volumetric strains of 2.5%). Blast holes were created in a similar 

manner as described earlier (see Figure 3.22). Excess pore pressure ratio time histories are 

presented in Figure 3.28 and Figure 3.29 for the two test areas. The untreated site response 

is also plotted for comparison purposes.  

 

 

 

Figure 3.27:  Test layout at Vancouver, Canada (Rollins et al, 2004). 
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Figure 3.28:  Excess pore pressure ratio Ru time histories at various depths in the 
untreated area and the test Area 2 (high vibration). The time histories for 
the untreated soil are provided for comparison purposes.  
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Figure 3.29: Excess pore pressure ratio ru time histories at various depths in the 
untreated area and the test Area 1 (low vibration).  

 

The test results indicated that even though drains did not prevent initial liquefaction during 

the rapid loading conditions of the blasting test, higher dissipation rates of excess pore 

pressures were recorded compared to the untreated site. Dissipation rates were alike for the 

two tested areas, thus the amount of induced vibration did not affect the dissipation rates. 

CPT soundings performed at the test sites about 2 months later indicated a 20% increase in 

relative density in the case where drains were installed with high vibration and a 10% 

increase for the low vibration test area. Additionally, the blast induced settlements are 

plotted with respect to the radial distance from the center of the test area in Figure 3.30, for 

the untreated site and the two treated sites.  The settlements in the high vibration test area 

were reduced to 60% of the settlements measured in the untreated test site, whereas in the 

low vibration area the settlement reduction was in the order of 80%.  
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Figure 3.30: Blast induced settlements vs radial distance from center of test area for the 
untreated site and the two treated cases. 

 

Chang et al. (2004).- In the previously described field tests, vibration during installation 

induced some densification to the surrounding soil; therefore the effect of drainage to the 

reduction of pore pressure generation could not be directly assessed. The dynamic in situ 

liquefaction testing program performed by Chang et al. (2004) aimed at exactly isolating the 

drainage function of EQ-drains and study its effect to excess pore pressure generation, post 

– shaking pore pressure dissipation and associated settlements.  

The tests were performed at two reconstituted test specimens, of saturated sand, with 

dimensions 1.2m  1.2m  1.2m, enclosed in an impervious membrane. The configurations 

for the untreated and treated specimen are shown in Figure 3.31.  For the Drain test, the 

100mm diameter drain was placed in the one end of the test area, in order to simulate a 

200mm diameter drain spaced at 2.4m. Additionally, to avoid any installation-induced 

vibrations and evaluate solely the drainage function of the drain, the latter was placed inside 

the test area before the specimen preparation by water pluviation. The liquefiable sand used 

in the tests, had a relative density of 36% and shear wave velocities between 90 and 

115m/sec. Dynamic loading was applied through a vibroseis truck that has been extensively 

used in the past, as a wave source in geophysical explorations. The vibroseis truck induced 

vibrations in the vertical direction on a footing constructed in the vicinity of the test area. 

The test involved staged loading, in which small shaking level was initially applied followed 

by increasing levels of shaking.  
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                                                  (a)                                                                          (b) 
Figure 3.31:  Test layout for the untreated (a) and the treated (b) case.  

 

The shear strain and pore pressure time histories corresponding to the largest loading level 

are presented in Figure 3.32 for both test configurations. In the “No drain” case the shear 

stain amplitude varies throughout the test, as a result of the high excess pore pressures 

generated during loading. The soil liquefies after approximately 35 loading cycles and 2.5cm 

of settlement, corresponding to 2.1% of volumetric strain. In the Drain case, shear strain 

amplitude remains constant during shaking, as a result of the low levels of excess pore 

pressure ratio, which did not exceed 0.35. Only 0.6cm of settlement occurred, 

corresponding to 0.5% volumetric strain.  

 

 

                                                  (a)                                                                          (b) 
Figure 3.32: Shear strain (*10-3%) and excess pore pressure ratio ru time histories for the 

(a) No drain and the (b) Drain test case, for the greatest loading intensity.  
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Post shaking pore pressure dissipation rates were also examined and the related time 

histories for the two tests are presented in Figure 3.33. It is concluded that the post – 

shaking dissipation rate is accelerated due to the presence of the drain in the second test 

configuration.  

 

 

Figure 3.33:  Excess pore pressure dissipation rates for the No Drain and the Drain test.  

 

Marinucci et al. (2008).- conducted a series of centrifuge tests to examine the effectiveness 

of prefabricated drains for liquefaction remediation.  

The centrifuge model consisted of sloping ground (approximately 3%) towards a central 

channel. The soil profile is composed of a 4.8m liquefiable layer of loose Nevada sand (Dr = 

40%) overlain by a 1m thick crust of compacted Yolo loam in prototype scale. Soil 

improvement was applied only on the left side of the channel as presented in Figure 3.34. 

Overall, 58 drains were installed in a triangular pattern, spaced at 1.5m center – to – center 

in prototype scale (100mm in model scale). The drain, was modeled by a nylon tube and had 

a diameter of 100mm in prototype (7mm in model scale). It was enclosed in filter fabric to 

prevent clogging and it is shown in Figure 3.35. Due to the relatively small centrifugal 

acceleration of 15g and the low permeability of Nevada sand, the use of water as pore fluid 

was justified by the Authors.  

Twelve shaking events were applied to the model, each one consisting of 20 cycles of 

sinusoidal motion at a prototype frequency of 2Hz. The input base acceleration (PGA) varied 

between 0.01 and 0.28g. The drain performance was evaluated based on the last 5 shaking 

events with intensities of 0.01g, 0.028g, 0.063g, 0.11g and 0.28g. The experiment 

instrumentation involved 88 accelerometers, 57 pore pressure transducers, 13 

potentiometers as well as vertical and surface markers.  
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Figure 3.34:  Plan arrangement of test set up (a) and cross section (b)  

 

 

 

Figure 3.35:  (a) 7mm model drain and (b) geosynthetic drain (D = 100m) in prototype 
scale  

 

 

(a) 

(b) 

 

(a) (b) 
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Typical test results are presented in Figure 3.36a & b in terms of pore pressure ratio time 

histories for base PGA equal to 0.28g, for both treated and untreated side of the channel. It 

appears that even though ru values greater than 0.5 develop in the treated side, they remain 

well below unity for depths greater than 3m. The soil on the untreated site liquefies at all 

depths shortly after the beginning of shaking and large ru values are maintained, for a long 

time after the end of shaking.  

 

 

 

Figure 3.36:  Excess pore pressure ratio Ru time histories at selected depths for the (a) 
treated (b) non treated site, for PGA = 0.28g.  
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Horizontal and vertical displacements as a function of time are presented in Figure 3.37a & b 

for the main five shaking events. Displacements in both directions are considered negligible 

for low shaking levels, but increase significantly for the last two events, especially in the case 

of the untreated side. Overall, permanent horizontal displacements on the treated side were 

reduced by 80% compared to the equivalent displacement amplitude for the untreated side.  

 

 

Figure 3.37: Shaking induced displacements in the (a) horizontal and (b) vertical 
directions for both examined cases.  

 

3.4.2 Screen Pipes 

Shaking Table Tests (Harada et al.,2006).- The behavior and effectiveness of the screen pipe 

method was evaluated with a series of shaking table tests on a 22 pile foundation resting 

on improved soil. The response of the pile foundation was examined under different drain 

configurations around the piles and different levels of shaking intensity.  

The apparatus used in the experiments is presented in Figure 3.38. The shaking table is 3.0  

2.0m in dimension and is equipped with electrodynamic shakers in the two horizontal 

directions, able for a maximum acceleration input of 1.2g. The laminar box is 1.0m in width, 

0.5m in depth and 1.0m in height and consists of 11 rectangular metal rings of 80mm in 

thickness. Between the rings, two pairs of chains with bearings 4mm in diameter, ensure 

that the laminar box follows the soil deformation.  
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Figure 3.38: Apparatus used in the experimental investigation of the effectiveness of the 
screen pipe method.  

The soil profile consisted of two layers, both made of Silica sand, with different relative 

densities. The upper liquefiable layer had a relative density of 40% and was created by water 

pluviation. The lower non – liquefiable layer was created by air-pluviation and had a relative 

density of 80%. Typical properties for Silica sand are summarized in Table 3.2. Both layers 

were saturated with a cellulose solution with about 11 times higher viscocity than that of 

water, to abide by the related scaling laws. The excessive dissipation of water on the ground 

surface was restricted by laying a vinyl sheet on the surface and a thin layer of gravel on top.  

 

Table 3.2: Silica sand properties 

Material Gs D50 (mm) Fc (%) 

Silica sand 2.62 0.18 5 

 

A 22 pile foundation with a pile cap at the top was simulated in the experiments at a scale 

of 1/25 of the prototype. The pile cap weighted 80N, corresponding to a reinforced concrete 

bridge pier (weighting around 1250kN). The rectangular cross section of the pile (B = 38mm, 

t = 4.5mm, L = 800mm, EI = 5.90e4kNmm2) allowed adequate displacement limits during 

shaking.  

The drains were constructed of a screen pipe, 22mm in diameter, with 0.1mm openings. 

Figure 3.39 provides a rough comparison between the coefficients of permeability for a 

gravel pile and a screen pipe as a function of the hydraulic gradient. It is observed that the 

permeability of the screen pipe can be greater than that of a conventional gravel drain by 

the order of a magnitude. Before the main experiment, a group of preliminary tests was 

performed, to investigate the possible inertial effects of screen pipe drains on soil response 

during shaking. The outline of the preliminary experiments is presented in Figure 3.40. 
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Overall, three cases were examined, each at a shaking intensity of 500gal, and a 100mm 

square arrangement of pipes, as summarized in Table 3.3. 

 

 

Figure 3.39: Drainage capacity of gravel pile and screen pipe 

 

 

Figure 3.40: Test set up of preliminary test. 
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Table 3.3:  Summary of preliminary experiments 

No Drain Material Input motion (gal) 

1 No drain 500 

2 Screen pipe 500 

3 
Prevention of drainage from embebed 

pipes, by vinyl tape rolled on top. 
500 

 

The response acceleration time histories from the three examined cases are presented in 

Figure 3.41. It is not specified if the above recordings correspond to the ground surface, 

however, it is concluded that soil response is controlled by the pore pressure dissipation 

rather than the rigidity of the inserted steel pipes.  

 

Figure 3.41: Ground acceleration time histories for the preliminary experiment at an 
input motion intensity of 500gal. 
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The main experimental sequence included the following arrangements: Case (1) No drains 

present Case (2) Sparse arrangement of drains, Case (3) dense arrangement of drains and 

Case (4) drains installed around the circumference and outside the footing. The overview 

and cross section of the experiment set up is presented in Figure 3.42.  

The models were subjected to harmonic excitation with a frequency of 10Hz. The input 

motions had intensities of 50, 100, 200, 300, 400, and 500gal, whereas the last test of each 

case was run with a horizontal load of 60N acting on the pile cap, in an attempt to 

investigate the drainage effect to the horizontal resistance of the soil. The input motion with 

an intensity of 300gal is provided in Figure 3.43. 

 

Figure 3.42: Overview and cross – section of the main experiment series. 

 

Figure 3.43: Input motion at 300gal. 
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Accelerometers and pore pressure transducers were placed on selected depths around the 

pile foundation and far away from it, as indicated in the same Figure 3.42. The recording 

time included the stage of excess pore pressure dissipation after the end of the input 

motion. Pile bending strain was also measured at 15 locations; however, priority is given 

here to the drainage capacity of the screen pipe.  

The excess pore pressure ratio time histories, recorded for each examined case are 

presented in Figure 3.44 for shaking intensity equal to 300gal. The recordings correspond to 

the mid - depth of the liquefiable layer i.e. the G.L.-280mm view point.  

 

 

Figure 3.44: Overview and cross – section of the main experiment series. 

 

It is concluded that in the No – drain case (1) the ground liquefies uniformly and remains in a 

liquefied state for a long time after the end of shaking. The installation of screen pipes and 

variation of spacing appears to significantly affect the efficiency of steel pipes in pore 

pressure dissipation. In the sparse pipe configuration (Case 2) the drainage effect of the 

screen pipes is not significant, since the pore pressure time history near the pile foundation 

does not differ significantly from the free – field recording. Nevertheless, the screen pipes 

become more efficient in dissipating the excess pore water pressure, when installed in a 

dense configuration, as observed in Case 3. Additionally, although screen pipes were not 

 

 

Case 1 Case 2 

Case 3 Case 4 
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installed beneath the footing (Case 4) the pore pressure ratio is not significantly affected, 

compared to Case 3. It is interesting though, that pore pressures outside the footing in Case 

4 increased, compared to the equivalent recording in Case 3, due to the lack of the 

additional drainage capacity provided by the pipes inside the footing.  

On-site experiment (Harada et al., 2006).- The efficiency of the new liquefaction mitigation 

method was also investigated by in-situ liquefaction testing.  

The layout (cross – section and plane arrangement) of the on-site test is presented in Figure 

3.45. On the whole, four different cases were examined, the first without drains and the 

following three with drains at various spacing intervals (1.5m, 1.0m, and 0.5m respectively). 

The screen pipes had a diameter of 48.6mm with openings of 0.3mm and extended from the 

ground surface to the bottom of the liquefiable sand layer. A small boring machine was used 

for the installation, and shaking induced liquefaction was generated by a steel pipe 508mm 

in diameter and 12m in length, attached to a vibratory pile driver of 60kW in capacity and 

frequency of 18.3Hz as presented in Figure 3.46.  

 

Figure 3.45: Cross section and plane arrangement of in-situ test. 
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Shaking was induced by penetrating the pile driver into the liquefiable layer to a depth of 

8m, at a rate of 1 – 2m/min, vibrating the steel pipe at a constant power. The different 

shaking intensities were achieved by placing the steel pipe at different horizontal distances 

with respect to the measuring instrument (4, 3, 2, and 1m respectively), as presented in 

Figure 3.47 (same figure as in experiment layout). Figure 3.47 provides a snap shot taken 

from the site, for the 1m grid spacing, provided by Prof. Ikuo Towhata, after personal 

communication.  

Steel pipe acceleration, acceleration at the ground surface and excess pore water pressure 

at a depth of 5m, were permanently recorded during the in-situ experiments. Moreover, the 

excess pore water pressure in a screen pipe was instrumented to investigate potential 

clogging phenomena. All instrumentation positions are denoted in Figure 3.45. 

The tests were conducted at the reclaimed land of Uraysu-shi at Chiba, mainly consisting of 

loose fine sands, displaying a high liquefaction potential. A cross section of the test area is 

provided in Figure 3.48. The groundwater level is located at a depth of 1.7m and the average 

N-value is around six.  

The time history of excess pore pressures (kN/m2) for all four cases, when placing the pile 

driver at a distance of 1m from the measuring instrument, is plotted in Figure 3.49. High 

pore water pressures are quickly generated and maintained for a long time in the case of the 

unimproved ground (Case 1). On the contrary, pore pressures, in the improved ground, are 

effectively dissipated through the screen pipes (Cases 2, 3, 4). The dense pipe configuration 

allowed fast dissipation of excess pore pressures, and consequently the occurrence of lower 

peak values. 
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Figure 3.46: Vibratory pile used for  shaking induced liquefaction. 

 

 

 

 

Figure 3.47: Close-view of the screen pipe grid and the pile driver (Photograph provided 
by Prof. I. Towhata).  
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Figure 3.48:  Typical soil profile of the examined site. 

 

Figure 3.49: Excess pore pressure time history for the 4 examined cases and the most 
intense induced shaking.  

 

3.5 Comparative evaluation of drain types and design methods.  

In the present paragraph, typical design considerations for all three types of drains are 

summarized and a comparative evaluation of the available design tools is provided in an 

attempt to assess and compare their results.  

Typical design considerations for gravel drains.- Gravel drains are typically spaced at center 

– to – center distances between 1.8 and 3.0m and have a diameter ranging from 0.6 to 1m. 

Thus, considering a diameter of 1m and drain permeability of 1cm/sec the flow rate is 

roughly equal to 6.51*10-3 m3/sec. The cost per linear meter is estimated to vary between 60 

and 90€ including gravel material and installation costs, while construction time ranges from 

15 to 45 minutes per column, depending on installation depth and grid spacing. The major 

drawbacks of the method include significant traffic disturbance and dust problems at the 
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construction site, spoil material generated during installation (approximately 1 - 3 m3 per 

column) as well as clogging concerns.  

Typical design considerations for EQ-drains.- For EQ-Drains, typical center – to – center 

spacing may range from 1m – 1.5m, depending on the design earthquake magnitude and the 

soil properties (i.e. relative density and permeability). This is roughly half the spacing 

required for gravel drains to provide an equivalent level of liquefaction protection. The 

corrugated pipe has a diameter typically between 75 – 100mm. Given the above data, for D 

= 100mm, hydraulic gradient i = 0.25, the flow rate is estimated to be in the order of 

0.093m3/sec, significantly greater than the equivalent rate estimated for gravel drains. Cost 

is also drastically lower, varying between 5 – 10€ per linear meter, including the cost of 

drains, filter fabric and installation. Installation time is considerably shorter compared to 

that of gravel drain, ranging from 1 to 3 minutes per drain depending on installation depth 

and spacing. Moreover, EQ-drains do not generate spoil material and cause only minor 

environmental disturbance.  

Typical design considerations for screen pipes.- In the case of screen pipes, the installation 

spacing ranges from 0.5 to 1.5m. Unfortunately, there was no available data in the literature 

in terms of drainage capacity, cost estimate and installation time. Nevertheless, it appears 

safe to assume that installation time is comparable to the time required for EQ-Drains, given 

the presented equipment. It is important to stress out that the use of screen pipes does not 

induce any densification of the surrounding soil, which is something to be considered in 

design. Moreover, as it was already mentioned, screen pipes prove to be insufficient in 

preventing liquefaction during strong earthquakes, thus it is suggested to be used 

concurrently with piles.  

Design application.- The performance and efficiency of the available design methods 

concerning gravel drains, and the comparative evaluation between gravel drains and EQ-

drains is presented in the following paragraph.  

The comparative evaluation of the various design methodologies was performed in the case 

of a uniform liquefiable sand layer, possessing the soil properties summarized in Table 3.4. 

 

Table 3.4: Soil properties used in the FEQ-Drain analysis. 

 

 

 Clay Sand 

kh (m/s) 3.05*10-10 7.60*10-5 

mv,3 (m2/kN) 4.17*10-5 4.17*10-5 
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 In the present application, the site was treated with gravel drains, 0.06m in radius, arranged 

in a triangular grid. The design referred to a seismic motion intensity (Neq/Nl) equal to 2, a 

maximum allowable pore pressure ratio, ru,max, equal to 0.5 and several values of the 

dimensionless time factor Tad, ranging from 2 to 200. The three most popular design 

methodologies [Seed & Booker (1977), Onoue (1999) and Bouckovalas et al. (2009)) were 

applied and the resulting area replacement ratio αs is plotted against the dimensionless time 

factor Tad in Figure 3.50. The method proposed by Onoue (1988) was applied for different 

well resistance values, Lw, ranging from 1 to 18. Apparently, the incorporation of well 

resistance into the dominant flow theory slightly increases the required area replacement 

ratio αs producing an increasing trend at increasing Tad values. Moreover, there is a distinct 

improvement in the predicted αs values between the traditional Seed & Booker (1977) and 

the revised Bouckovalas et al. (2009) theory, with the latter leading to lower area 

replacement ratios, this being translated to a more economical design.  

The comparison between gravel drains and EQ-drains was performed considering a different 

soil profile. Namely, the soil profile under examination consisted of a 9.14m (30ft) liquefiable 

sand layer overlain by a 2.75m (9ft) clay cap. The soil properties are presented in Table 3.4. 

Both gravel drains and EQ-drains had a radius of 0.06m, whereas both analyses were 

performed for a constant Tad value equal to 647,84. The sand layer was considered to liquefy 

after 15 cycles of shaking, whereas the seismic excitation consisted of 25 equivalent cycles, 

rendering a Neq/Nl ratio equal to 1.67 and dynamic time td equal to 12.5sec.  

The ground water table was initially located at 1.22m (4.0ft) below the ground surface and 

the resulting maximum pore pressure ratio, ru,max, is plotted against the usual range of 

spacing ratios (a/b) used in current practice as presented in Figure 3.51. The above analysis 

was repeated for different locations of the ground water table [(i.e. -1.68m (-5.5ft), -1.83m (-

6.0ft) & -2.13m (7.0ft)) and the resulting curves are also plotted in the above figure. The 

observed divergence between the initial analysis (ground water table at -1.22m) and the 

Seed & Booker (1977) solution is consistently reduced in the subsequent analyses, the most 

probable reason being the hydraulic head which is formed around the circumference of the 

drain, when the dissipation of the excess pore pressures occurs above the sand layer. 
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Figure 3.50: Comparative evaluation of the three major design methodologies [Seed & 
Booker (1977), Onoue (1988), & Bouckovalas et al. (2009)]. 

 

 

Figure 3.51: Comparison between analysis with EQ-Drains and gravel drains designed 
according to Seed & Booker (1977) theory.Equation Chapter 4 Section 1
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CHAPTER   4 

 

 

4 Performance - Based Criteria 

 

 

4.1 Introduction 

Performance based engineering approaches the design of structures within a predefined 

seismic performance objective, under established levels of seismic risk. The main concept 

behind it is, essentially, the extent of damage that the owner/user of a structure is willing to 

accept, under specific seismic hazard levels, considering a wide range of economic and social 

issues such as the cost of initial design and repair or the effect on human life in case of 

severe damage or collapse.  

There are essentially three basic steps to be followed for a complete performance based 

approach: The Design Seismic Motions specified for each structure category, essentially set 

the frame for the seismic design, taking into consideration local seismic conditions as well as 

the importance of the structure. Performance Levels & Objectives describe the service level 

and the extent of damage in the structure, after the occurrence of each of the design seismic 

motions defined above, while in the last step, Performance Levels are linked to Deformation 

Limits in order to provide quantitative criteria for the seismic design of new and the 

retrofitting measures of already existing structures.  

In the present chapter the above steps are further explained, based on the specifications of 

Seismic Design Guidelines and Provisions currently in effect in Europe and other areas, such 

as the U.S.A. and Japan. The following review is narrowed in structures founded on spread 

footings, i.e. bridges and buildings.  
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4.2 Design seismic motions 

In specifying Design Seismic Motions, attention is given to the seismicity of the area of 

interest, which leads to the definition of a set of (typically two) design ground motions, 

associated with specific levels of hazard and probabilities of occurrence.  The lower level 

ground motion refers to seismic events of moderate intensity that are likely to occur during 

the life time of the structure, while the upper level ground motion refers to strong seismic 

events that are less frequent and thus, have a low probability of occurrence during the life 

span of the structure. This set of design ground motions is assigned different return periods, 

which serve as a guide for the selection of the appropriate intensity of earthquake motion 

considering suitable local seismic hazard maps.  

In most Design Specifications presented below, design earthquake motions are assigned a 

Probability of Exceedance (PE), which essentially expresses the probability of a ground 

motion to exceed a specific level of intensity, within the life time of a structure. Probability 

of exceedance (PE) is assumed to follow a Poisson probability model, where earthquakes of 

given magnitudes occur randomly in time at an average rate. The occurrence of an 

earthquake is assumed to have no effect on the timing or probability of a future earthquake. 

It is given by the following Equation 4.1, as a function of the lifetime of the structure (t) and 

the annual frequency of exceedance of the ground motion amplitude (ν): 

1 Lt

EP e 
                                                                      4.1 

Since, the annual frequency of exceedance (ν) of the ground motion amplitude is set equal 

to the inverse of the Return Period (T) i.e. ν = 1/Τ, Equation 4.1 may be appropriately 

transformed, to provide the return period in terms of the probability of exceedance (PE), and 

the lifetime of the structure tL as shown below:  

1/

1

1 (1 ) Lt

E

T
P


 

                                                                4.2 

For instance, for a common building with design life time tL = 50yrs, the seismic event with PE 

= 10% has a return period of 1/50

1
475

1 (1 0.10)
T yrs 

   

 

4.2.1 Design seismic motions for bridges  

Eurocode 8 (2003).- The EN1998-2 part of Eurocode-8 presented below, applies to “the 

seismic design of bridges in which the horizontal seismic actions are mainly resisted through 
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bending of the piers or at the abutments; i.e. of bridges composed of vertical or nearly 

vertical pier systems supporting the traffic deck superstructure. It is also applicable to the 

seismic design of cable-stayed and arch bridges, although its provisions should not be 

considered as fully covering these cases. Suspension bridges, timber and masonry bridges, 

movable bridges and floating bridges are not covered”. 

The design seismic action, AEd, is defined in terms of (a) the reference seismic action AEk, 

which is linked to a reference probability of exceedance (PE) in 50 years or a return period T 

and (b) the importance factor γI used to take into account the reliability differentiation, as 

expressed below:  

Ed I EkA A                                                                     4.3 

In EC-8 the reference seismic action is assigned a return period T = 475years. 

Bridges are categorized in importance classes based on (i) the consequences of their failure 

on human life, (ii) their role in maintaining communications especially in the immediate 

post-earthquake period, and (iii) the economic consequences in case of collapse.  

Table 4.1 summarizes the three main categories defined in Eurocode 8 as well as the 

importance factors ascribed for each one of them.  

 

Table 4.1: Importance Classes and associated factors for bridges according to EC-8(2006). 

 

 

Recommended LRFD Guidelines for the Seismic Design of Highway Bridges, Part I: 

Specifications (ATC – MCEER 2001).- The particular guidelines are applied to bridges of 

conventional slab, beam girder, box girder and truss superstructure construction and are the 

outcome of the joint venture undertaken by ATC and MCEER to propose updated 

Importance Class Description Importance Factor

I

1. Bridge not critical for communications                                                  

2. The adoption of either the ref. probability of exceedance PNCR 

in 50yrs for the design seismic action or of the standard bridge 

design life of 50yrs is not ecomonomically justified

0.7

II Bridges on motorways and national roads, railroad bridges 1

III

Bridges of critical importance for maintaining communications 

especially in the immediate post-earthquake period, bridges the 

failure of which is associated with a large number of probable 

fatalities and major bridges for which a design life greater than 

normal is required. 

1.3
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performance-based specifications to be incorporated in the AASHTO LRFD Bridge Design 

specifications.  

The proposed seismic performance objective is studied for two levels of design ground 

motions: 

 The Lower level seismic event is referred to as Expected Earthquake (EE) and includes 

motions with 50% probability of exceedance in 75 years or a return period of 

approximately 109 years. The seismic design should essentially ensure the elastic 

response of the bridge under the occurrence of the more frequent events.  

 The Upper level also termed as the Maximum Considered Earthquake (MCE), is 

assigned a probability of exceedance of 3% in 75 years, rendering a return period 

equal to 2463yrs.  

Next to highly active faults, MCE ground motions are bounded deterministically, so that 

ground motion levels do not get unreasonably high. Deterministic bound ground motions 

are calculated assuming the occurrence of maximum magnitude earthquakes on the highly 

active faults and are equal to 1.5 times the median ground motions for the maximum 

magnitude earthquake. Also, special consideration is given so that the estimated ground 

motion accelerations are not less than 1.5g for the short period spectral acceleration plateau 

and 0.6g for the 1.0 second spectral acceleration. Figure 4.1 conceptually describes the 

procedure of incorporating deterministic bounds on MCE maps. 

South Carolina Department Of Transportation (SCDOT, 2002).- The particular provisions 

apply to “bridges of conventional slab, beam, girder and box girder superstructure 

construction with spans not exceeding 150m (500ft)”. The two levels of design ground 

motions are specified as follows: 

The Functional Evaluation Earthquake (FEE) is defined as the ground shaking having a 10% 

probability of exceedance in 50 years or a return period of 474 years.  

The Safety Evaluation Earthquake (SEE) is a low probability seismic event with 2% probability 

of exceedance in 50 years, i.e. return period equal to 2.500 years. Such a design motion 

corresponds to a rare but possible and strong earthquake.  
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Figure 4.1: Incorporation of deterministic bounds in the Maximum Considered                
Earthquake (MCE) ground motion map of the 1997 NEHRP Provisions (BSSC, 
1998). 

 

Seismic Retrofitting Manual for Highway Structures: Part I: Bridges (MCEER, 2005).- The 

specific manual contains methods for evaluating and upgrading the seismic resistance of 

existing “conventional steel and concrete highway bridges, with spans not exceeding 150m 

(500ft). Suspension bridges, cable-stayed bridges, arches, long-span trusses and movable 

bridges are not covered”. The retrofitting approach is based on principles such as Anticipated 

Service Life (ASL), Importance and expected Performance Level under a Lower and Upper 

Level of Ground Motion. 

The Lower Level ground motion includes frequent ground motions and is assigned a 50% 

probability of exceedance in 75 years (i.e. return period of approximately 100years).  

The Upper Level ground motion concerns more rare seismic events and has a probability of 

exceedance of 7% in 75 years, rendering a return period of approximately 1000 years.  

Caltrans Seismic Hazard Practice (1999, 2001).- Seismic Design Criteria issued by Caltrans 

are intended to aid in the design of new reinforced and pre-stressed concrete bridges 

constructed with typical superstructure and substructure components traditionally used in 

California, while steel bridges are not covered. Evaluation Levels in the Caltrans 

Specifications are defined as follows:  
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Functional Evaluation Motion: This probabilistically specified ground motion is proposed in 

the Task 6 Report of NCHRP 20-7(193) Project, conducted by Imbsen & Associates Inc., to 

have a 60% probability of not being exceeded during the useful life of the bridge. In the 

latest Memo to Designers 20-1, issued by Caltrans in June 2010, the specific hazard level is 

proposed to be developed in consultation with the Seismic Safety Peer Review Panel. It is 

also reported that Ordinary Bridges, as will be defined in later sections, are not designed for 

the Functional Evaluation Seismic Hazard Level.  

Safety - Evaluation Ground Motion: The particular ground motion may be specified either 

deterministically or probabilistically. The probabilistically assessed ground motion is 

assigned a long return period, of 1.000 to 2.000 years and applies to Important Bridges. For 

Ordinary bridges, this is the “Design Earthquake” which is defined as follows:  

“In general, the Design Earthquake (DE) is defined as the greater of: 

(a) A probabilistic spectrum based on a 5% in 50 years probability of exceedance (or a 

975yr return period) 

(b) A deterministic spectrum based on the largest median response resulting from the 

maximum rupture (corresponding to Mmax.) of any fault in the vicinity of the bridge 

site 

(c) A statewide minimum spectrum defined as the median spectrum generated by a 

magnitude 6.5 earthquake on a strike-slip fault located 12 kilometers from the 

bridge site.” 

Seismic Design Specifications for Highway Bridges (Japan Road Association 1996, 2002).- 

The revised seismic design specifications issued by the Japanese Road Association in 2002, 

incorporate performance-based design concepts by considering two levels of ground 

motion, without however, providing probabilistic estimations as to the recurrence period of 

each one of the seismic events. Thus: 

Level 1 Earthquake includes moderate ground motions, with the acceleration spectra of 

Figure 4.2a, induced by frequent earthquakes, which essentially corresponds to the most 

severe ground motion that can be resisted by the bridge with elastic response.   

Level 2 Earthquake includes two different types of ground motions: Type-I refers to strong 

interplate earthquakes, reaching a magnitude of around 8 (like the Tokyo recording during 

the 1923 Kanto Earthquake) and Type-II motion refers to inland earthquakes with magnitude 

of around 7, occurring at very short distance, such as the ground motion at Kobe during the 
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Hyogo-ken-Nanbu earthquake. The proposed acceleration spectra for the particular Types of 

motion and different soil classifications are shown in Figure 4.2a, b and c. 

4.2.2 Design seismic motions for buildings 

Eurocode 8 (2003).- Design seismic actions are defined on the same basis as described for 

bridges, also applying Equation 4.3. Importance factors γI take into consideration the type 

and function of the building and are summarized in Table 4.2.  

However, for each importance factor, two levels of earthquake motions are defined as 

follows: the lower level earthquake motion with 10% probability of exceedance in 10yrs, or a 

return period equal to 95yrs, and the upper level seismic motion with 10% probability of 

exceedance in 50yrs, thus a return period of 475yrs. Both levels of seismic motions are later 

associated to specific Performance Levels, mentioned in subsequent sections.   

 

(a) Level 1 earthquake 

  

(b) Level 2 earthquake (Type I)                                    (c) Level 2 earthquake (Type II) 

Figure 4.2: Acceleration spectra for corresponding Levels of ground motion, proposed 
by the Japan Road Association (2002).  
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Table 4.2: Importance Classes for buildings according to EC-8. 

Importance 
Class 

Description 
Importance 

Factor 

I 
Buildings whose integrity during earthquakes is of vital 

importance for civil protaction, e.g. hospitals, fire stations, 
power plants, etc. 

1.4 

II 
Buildings whose seismic resistance is of importance in view of 

the consequences associated with a collapse, e.g. schools, 
assembly halls, cultural institutions etc. 

1.2 

III Ordinary buildings, not belonging to the other categories 1.0 

IV 
Buildings of minor importance for public safety, e.g. agricultural 

buildings, etc. 
0.8 

For buildings housing dangerous installations or materials, the importance factor should be 
established in accordance with the criteria set in EN 1998-4 

 

Structural Engineers’ Association of California (SEAOC, 1999).- The SEAOC Blue Book 

provides a quite extensive analysis of performance criteria, relating seismic hazard levels to 

corresponding performance levels. A complete, although conceptual, framework is 

proposed, which can be incorporated into future guidelines and provisions. 

In this context, seismic hazard is represented by four levels of probabilistic events, as 

presented in Table 4.3. Note that the Recurrence Interval corresponds to the return period.  

 

Table 4.3: Seismic Hazard Levels according to SEAOC (1999). 

Event 
Recurrence 

Interval 
Probability of Exceedance 

Frequent 43 years 50% in 30 years 

Occasional 72 years 50% in 50 years 

Rare 475 years 10% in 50 years 

Very Rare 970 years 10% in 100 years 

 

Uniform Building Code (1997).- In the Uniform Building Code (1997) design seismic motions 

are not defined probabilistically, but each area in the United States is classified in seismic 

zones and assigned a seismic zone factor Z, which is next used in the calculation of 

earthquake loads. Indicatively, the seismic zone factors specified in the U.B.C. are presented 

in Table 4.4.  

Table 4.4: Seismic zone factors Z, according to U.B.C. (1997). 

Zone 1 2A 2B 3 4 

Z 0.075 0.15 0.20 0.30 0.40 
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Nevertheless, the performance based design concept is evident in subsequent steps of the 

seismic design process, where buildings are classified in occupancy categories depending on 

their function, occupant load of people, materials stored in the building etc. A more 

analytical presentation is provided in a later section.  

 

4.3 Performance levels and objectives 

The second step in Performance based design, concerns the selection of performance 

objectives, between the client/owner of the facility and the engineer, given the client’s 

expectations and the seismic hazard analysis. Performance objectives result from the 

combination of an expected performance level given the expected level of ground motion, 

as defined in the previous section. Performance Levels are typically defined taking into 

consideration the post-earthquake service level of the structure, as well as the extent of 

damage in its structural and non-structural components. In the following paragraphs service 

and damage levels are defined separately for bridges and buildings.  

4.3.1 Performance levels & objectives for bridges.  

In most Guidelines, there is a common code as to the definition of Service and Damage 

Levels, thus the core concepts and definitions will be presented herein and additional 

observations will be made where necessary.   

Service Levels refer to the functionality of the bridge in terms of its use by normal or 

emergency traffic. Hence, in the Immediate Service Level access to the bridge by normal 

traffic is possible after inspection of the bridge, while under the Significant 

Disruption/Impaired Level, only limited access (reduced lanes, light emergency traffic) is 

possible after shoring, while the bridge may have to be replaced.  

Damage Level (Extent) is described in terms of structural damage to the components of the 

bridge and the required effort for repair and is typically separated into a Minimal and a 

Significant Level as follows:  

 Minimal Damage: There are some visible signs of damage. Minor inelastic response 

may occur, but post-earthquake damage is limited to narrow flexural cracking to 

concrete and the onset of yielding in steel. Permanent deformations are not 

apparent, and any repairs could be made under non-emergency conditions with the 

exception of superstructure joints which may need removal and temporary 

replacement.  
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 Significant Damage: Although collapse is avoided, the particular damage level  

includes permanent offsets and damage consisting of cracking, yield reinforcement 

and major spalling of concrete, extensive yielding and local buckling of steel 

columns, global and local buckling of steel braces and cracking in the bridge deck 

slab at shear studs along the seismic load path. The above conditions usually require 

closure to repair the damage. Beams may be unseated from bearings but no span 

should collapse. No damage is anticipated in foundations, with the exception of 

large lateral flows due to liquefaction, in which case inelastic deformation in piles 

may be evident, and partial or complete replacement of the columns and piles may 

be necessary. To avoid this scenario, design approaches producing minimal or 

moderate damage such as seismic isolation should be assessed.  

Given the above definitions, the two Performance Levels usually identified in most Seismic 

Design Guidelines are described as follows:  

 Operational Level (Minimization of Damage): The sustained damage is minimal and 

service for emergency vehicles should be immediate after inspection of the bridge. 

Damage is expected to be repairable without interruption of traffic flow.  

 Life Safety (No Collapse): The sustained damage is significant to such a point that 

replacement of the bridge may be necessary and service is disrupted, however, life 

safety is preserved.   

The selection of the appropriate Performance Level for the occurrence of each design 

ground motion largely depends on the importance of the bridge, which is mentioned in all 

Codes and Specifications with slight variations. In EC-8 for instance, bridge importance is 

incorporated in the Reference Seismic Action through the Importance Factor γI as analyzed 

earlier. In all other Code Provisions presented below, bridges are classified as either 

Important or Ordinary/Standard based on the following criteria:  

 A bridge is characterized Important/Essential when: (i) it is expected to provide 

secondary life safety; for example it provides access to local emergency services 

such as hospitals, or carries lifelines such as electric power and water supply 

pipelines, (ii) the time required for restoration of functionality after closure would 

create a major economic impact (iii) it is formally appointed by a local emergency 

response plan as critical, because it will potentially enable the immediate response 

of fire/civil defense departments, or public health agencies to disaster situations.  
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 All bridges not satisfying one or more of the above criteria are characterized as 

Ordinary or Standard.  

In the following paragraphs, an overview of the Seismic Performance Criteria is presented 

from Design Specifications in power in Europe, the U.S.A. and Japan.  

Eurocode 8 (2003).- The basic requirements which have to be satisfied in design are outlined 

below:  

No collapse (Ultimate Limit State).- The bridge is generally anticipated to preserve its 

structural integrity, hold adequate residual resistance in order to avoid total collapse. 

Considerable damage is expected to occur, mainly in the form of flexural yielding of specific 

sections (i.e. the formation of plastic hinges) in the piers, which in the absence of seismic 

isolation is a desirable situation. The bridge deck should in general be designed to avoid 

damage, except for breakage of secondary components, such as expansion joints and 

continuity slabs. Also, the bridge deck must be able to accommodate loads from piers 

experiencing plastic hinging and must not become unseated under extreme seismic 

displacement. In the case of a design seismic action with high probability of exceedance 

within the design life of the bridge, the parts of the bridge contributing to energy dissipation 

are designed to enable emergency traffic and inspections in the post-earthquake period and 

to be easily repairable.  

Minimization of damage (Serviceability Limit State).- A high probability of occurrence seismic 

scenario may cause only minor damage to secondary components and parts of the bridge 

contributing to energy dissipation. All other components of the bridge are expected to 

remain untouched; traffic should not be disturbed and repairs should not be urgent. 

The design seismic criteria proposed in EC-8, aim explicitly at satisfying the no-collapse 

requirement. However, they implicitly cover the damage minimization requirement as well.  

Recommended LRFD Guidelines for the Seismic Design of Highway Bridges, Part I: 

Specifications (ATC – MCEER 2001).- The particular Guidelines initially considered two 

Performance Objectives i.e. the Operational and the Life Safety objective. However, they 

were re-examined in 2002, after concerns of undue liability on behalf of stakeholders, to 

finally consider only the Life Safety Performance Objective. Table 4.5, presents the 

performance matrix currently proposed by the ATC-MCEER specifications. 
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Table 4.5: Design Earthquakes and Seismic Performance Objectives according to   ATC-
MCEER (2001,2002). 

Earthquake Ground Motion  Performance Level 
Performance 

Objective 

Life Safety 

Maximum Considered Earthquake (MCE) 
3% PE in 75 yrs (return period 2463yrs) 

or 1.5 Median Deterministic 

Service Significant Disruption 

Damage Significant 

Expected Earthquake (EE) 
50% PE in 75 yrs (return period 109yrs) 

Service Immediate 

Damage Minimal 

 

South Carolina Department Of Transportation (SCDOT, 2002).- In the present 

Specifications, Service and Damage Levels are slightly altered, in order to become more 

thorough. Bridges are classified into three instead of two Importance Categories – namely, 

Critical, Essential and Normal bridges - described as follows: 

Critical Bridges (I.C. I) are those expected to remain open to all traffic following inspection 

after the occurrence of the Functional Evaluation Earthquake (FEE) and be usable by 

emergency vehicles and for security/defense purposes immediately after the Safety 

Evaluation design Earthquake (SEE).  

Essential bridges (I.C. II) should at a minimum remain open to emergency vehicles and for 

security/defense purposes after the SEE event and open to all traffic within days after the 

SEE event.  

Normal bridges (I.C. III) are those that are not classified as either critical or essential.  

The Dual-Level Design method (i.e consideration of two levels of design ground motion as 

explained earlier) is applied only in the case of critical bridges. Also, two extra Service Levels 

and one additional Damage Level are specified, as indicated in Table 4.6. Namely, the 

Maintained Service Level dictates a necessary short period of closure to public, while the 

bridge is expected to remain open to emergency vehicles. In the Recoverable Service Level 

the short period of closure is dictated only to public traffic, while in the Repairable Damage 

Level no collapse occurs and damage consists of concrete cracking, spalling of concrete 

cover and minor yielding of structural steel. Damage extent is limited and the structure can 

be restored to its pre-earthquake condition with a minimum risk of losing functionality and 

without replacement of reinforcement or structural members.  

 

 



Chapter 4: Performance – Based Criteria 

Page | 99  
 

Table 4.6: Seismic Performance Criteria in the SCDOT (2002) Specifications. 

Earthquake Ground Motion  
Performance 

Level 
Normal 
Bridges 

Essential 
Bridges 

Critical 
Bridges 

Functional Evaluation Earthquake 
(FEE)  

10% PE in 50 yrs  
(return period 474yrs) 

Service 
Not 

Required 
Not Required Immediate 

Damage 
Not 

Required 
Not Required Minimal 

Safety  Evaluation Earthquake (SEE)  
2% PE in 50yrs  

(return period 2500yrs) 

Service Impaired Recoverable Maintained 

Damage Significant Repairable Repairable 

 

Seismic Retrofitting Manual for Highway Structures: Part I: Bridges (MCEER, 2005).- The 

following Table 4.7 summarizes the process of selection of the appropriate Performance 

Level, considering the seismic hazard analysis, bridge importance and its anticipated life 

service as specified by the MCEER Manual (2005).  

 

Table 4.7: Performance Levels for retrofitted bridges. (MCEER, FHWA, 2005). 

Earthquake Ground Motion 

Bridge Importance and Service Life Category 

Standard Essential 

ASL 1 ASL 2 ASL 3 ASL 1 ASL 2 ASL 3 

Lower Level Ground Motion 
50% PE in 75 years  

(return period 100yrs) 
PL 0 PL 3 PL 3 PL 0 PL 3 PL 3 

Upper Level Ground Motion 
7% PE in 75 years  

(return period 1000yrs) 
PL 0 PL 1 PL 1 PL 0 PL 1 PL 2 

 

Anticipated Service Life (ASL) refers to the remaining design life of the bridge and is divided 

into three categories: 

 ASL 1: 0 – 15 years 

 ASL 2: 16 – 50 years 

 ASL 3: >50 years 

Also, the required Performance Levels (PL) are defined below: 

PL 0: No minimum level of performance is recommended.  

PL 1: Life Safety. Significant damage is sustained and service is significantly disrupted, but 

life safety is preserved. The bridge may need to be replaced after a large earthquake.  
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PL 2: Operational. The sustained damage is minimal and service for emergency vehicles 

should be available after inspection and clearance of debris. Bridge should be reparable with 

or without restrictions on traffic flow.  

PL 3: Fully Operational. No damage is sustained and full service is available for all vehicles 

immediately after the earthquake. No repairs are required.  

Caltrans Seismic Hazard Practice (1999, 2001).- The set of seismic performance criteria 

developed by Caltrans for new bridges, is presented in Table 4.8. Definitions of Service and 

Damage levels are not different from what has been presented in the previous paragraphs. 

 

Table 4.8: Performance matrix specified by Caltrans (1999,2001). 

Earthquake Ground Motion  Ordinary Bridges Important Bridges 

Functional-Evaluation Motion 
40% PE in the useful life of the 

bridge 

Immediate Service Level 
Repairable Damage 

Immediate Service Level 
Minimal Damage 

Safety-Evaluation Motion 
5% PE in 50yrs  

(return period 975yrs) 

Limited Service Level 
Significant Damage 

Immediate Service-Level 
Repairable Damage 

 

Seismic Design Specifications for Highway Bridges (Japan Road Association 1996, 2002).-

Table 4.9 presents the performance matrix proposed in the JRA specifications. In Seismic 

Performance Level 1 and for the Level 1 design ground motion, all bridges (Type-A and Type-

B) are expected to behave elastically, without essential structural damage. In the occurrence 

of extreme ground motions (Level 2), critical failure is prevented for Type-A bridges, whereas 

for Type-B bridges limited damage is anticipated.  

 

Table 4.9: Performance criteria according to the JRA Specifications (1996, 2002). 

Earthquake Ground Motion 
Standard Bridges 

(Type A) 
Important Birdges 

(Type B) 

Level 1 Earthquake: Ground motions with high 
probability to occur 

SPL 1: Prevent Damage 

Level 2 Earthquake: Ground 
Motions with Low Probability 

to Occur 

Interplate 
Earthquake 

(Type I) SPL 3: Prevent Critical 
Damage 

SPL 2: Limited Damage 
for Function recovery Inland 

Earthquakes 
(Type II) 
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4.3.2 Performance levels & objectives for buildings.  

Eurocode 8 (2003).- As it is shown in Table 4.10, two performance levels are specified in the 

context of Eurocode 8; namely, the Damage Limitation Requirement, which is associated to 

a 95year event and the No-Collapse Requirement, which is assigned a 475 year event. 

Definitions and analytical description of the two performance levels is provided below:  

 Damage Limitation Requirement.- The structure “is designed and constructed to resist a 

seismic action with a larger probability of occurrence than the design seismic action, 

without the occurrence of damage and the associated limitations of use, the costs of 

which would be disproportionally high in comparison to the costs of the structure itself”. 

According to EC-8 the design seismic motion for the Damage Limitation Requirement is 

characterized by a return period of 95yrs. 

 No Collapse Requirement.- The structure is “designed and constructed to withstand the 

design seismic action without local or global collapse, thus retaining its structural 

integrity as well as a residual load bearing capacity after the occurrence of the seismic 

events”. According to EC-8 the design seismic motion for the No Collapse Limit State is 

characterized by a return period of 475yrs.  

 

Table 4.10: Design Seismic Actions and Performance Requirements (EC-8) 

Earthquake Ground Motion Requirement 

Lower Level  
10% PE in 10yrs 

(return period 95yrs) 

Damage 
Limitation  

Upper Level 
10% PE in 50yrs 

(return period 475yrs) 
No - collapse 

 

Structural Engineer’s Association of California (SEAOC, 1999).- Performance Levels reflect 

both the damage and service level of the building in the post-earthquake period and are 

described as follows:  

 Fully Operational: Facility continues to operate with negligible damage.  

 Operational: Facility continues to operate with minor damage and minor disruption 

in nonessential services.  

 Life safe: Life safety is substantially protected and damage is moderate to extensive. 

 Near Collapse: Life safety is at risk and damage is severe, however structural 

collapse is prevented.  
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Figure 4.3, provides a complete description of the above performance levels, in terms of 

damage extent, while Table 4.11 through Table 4.13 provide detailed damage description by 

Performance Levels and Permissible Structural Damage in structural and non-structural 

components of a building. Corresponding tables with permissible damage for Architectural 

elements, Mechanical/Electrical/Plumbing systems and contents (e.g. furniture, book 

shelves, office equipment and computer systems) are also provided in the Specifications but 

were here omitted due to their excessive size.  

In this context, a set of Minimum and Enhanced Performance Objectives is defined in order 

to facilitate both the engineer and the owner of the facility in choosing performance criteria 

in design. The minimum performance objectives are illustrated in Figure 4.4 and take into 

consideration the building’s importance. The basic objective usually refers to typical new 

buildings, while the Essential/ Hazardous and Safety Critical Objectives may be applicable to 

facilities such as hospitals and nuclear facilities respectively. Moreover, Enhanced Objectives 

may be agreed between the engineer and the client/user of the facility, upon request of the 

latter, however no further description is provided.  

Uniform Building Code (U.B.C., 1997).- In U.B.C. (1997), earthquake resistant design is 

performed considering, among other parameters (e.g. seismic zoning, site characteristics, 

building configuration and structural system) the occupancy of each building or structure.  

Structures are classified in occupancy categories; each one assigned an importance factor, as 

provided in Table 4.15. Design base shear (the minimum design lateral force) is calculated 

using Importance Factor I, whereas, the total design seismic forces are calculated using 

Importance Factor IP. A short description on the various Groups and associated occupancy 

description is provided in Table 4.15. It should be noted that the particular Code does not 

provide any information regarding the permissible damage that buildings may sustain during 

an earthquake. The above importance factors and occupancy categories are used in the 

estimation of earthquake loads. 

 

 

 

 

 



Chapter 4: Performance – Based Criteria 

Page | 103  
 

Table 4.11: General Damage description by Performance Level and various     
components of the building (SEAOC, 1999). 
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Table 4.12: Performance Levels and permissible structural damage to Vertical Elements 
of the building (SEAOC, 1999).                          
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Table 4.13: Performance Levels and permissible structural damage to walls and 
foundations of the buildings SEAOC, 1999). 

 

 

Table 4.14: Performance Levels and permissible structural damage to Horizontal 
Elements of the building (SEAOC, 1999).   



Chapter 4: Performance – Based Criteria 

Page | 106  
 

Table 4.15: Occupancy Categories and associated Importance factors, U.B.C. (1997). 

Occupancy Category Occupancy or functions of structure 
Seismic 

Importance 
factor, I 

Seismic 
Importance 

Factor, IP 

1. Essential Facilities 

Group I, Division 1 Occupancies having surgery and emergency treatment areas 
Fire and police stations 

Garages and shelters for emergency vehicles and emergency aircraft 
Structures and shelters in emergency  preparedness centers 

Aviation and control towers 
Structures and equipment in government communication centers and other facilities required for emergency 

response 
Standby power-generating equipment for Category 1 facilities 

Tanks or other structures containing housing or supporting water or other fire-suppression material or 
equipment required for the protection of Category 1,2 or 3 structures 

1.25 1.50 

2. Hazardous structures 

Group H, Divisions 1,2,6 and 7 Occupancies and structures therein housing of supporting toxic or explosive 
chemicals or substances 

Non-building structures housing, supporting or containing quantities of toxic or explosives substances, that if 
contained within a building, would cause that building to be classified as a Group H, Division 1,2 or 7 Occupancy 

1.25 1.50 

3. Special Occupancy 
structures 

Group A, Divisions 1,2 and 2.1 Occupancies 
Buildings housing Group E, Divisions 1 and 3 Occupancies with a capacity greater than 300 students 

Buildings housing Group B Occupancies used for college or adult education with a capacity greater than 500 
students 

Group I, Divisions 1 and 2 Occupancies with 50 or more resident incapacitated patients, but not included in 
Category 1 

Group I, Division 3 Occupancies 
All structures with an occupancy greater than 5.000 persons 

Structures and equipment in power-generating stations, and other public utility facilities not included in 
Category 1 or Category 2 above, and required for continued operation 

1.0 1.0 

4. Standard Occupancy 
structures 

All structures housing occupancies or having functions not listed in Category 1, 2 or 3 and Group U Occupancy 
towers 

1.0 1.0 

5. Miscellaneous 
structures 

Group U, Occupancies except for towers 
1.0 1.0 
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Table 4.16: Description of Occupancy according to Groups, U.B.C. (1997). 

 

Group Description of Occupancy 

A 
Buildings or portions of buildings having assembly rooms with occupant load from 300 

up to 1,000 or more with or without a legitimate stage, including buildings used for 
educational purposes, stadiums, amusement parks, and reviewing stands.  

B 
A building or structure, or a portion thereof, for office, professional or service type 

transactions, including storage of records and accounts; eating and drinking 
establishments with an occupant load less than 50.   

E 
Buildings used for educational purposes through the 12th grade of for day-care 

purposes 

F 

Low-hazard factory and industrial occupancies including facilities producing non-
combustible or non-explosive materials that during finishing, packing or processing do 

not involve significant fire hazard, or other moderate- hazard factory and industrial 
occupancies . 

H 
Occupancies with materials preenting high/moderate/high fire or physical hazard, 

repair garages, aircraft habgars. 

I 
Nurseries, health-care centers, nursing homes, mental hospitals, mental sanitariums, 

prisons and other reformatory institutions. 

M 
Buildings or structures for the display and sale of merchandise and involving stocks of 

goods, wares or merchandise, incidental to such purposes.  

R Hotels, apartment houses, congregate residences, lodging houses. 

S 

Moderate hazard storage occupancies of combustible materials, low-hazard storage 
occupancies used for storage of non-combustible materials, repair garages where 

work is limited to exchange of parts and maintenance does not require open flame or 
welding,  open parking garages, aircraft hangars, and helistops.  

U 
Private garages, carports, sheds, agricultural buildings, fences (over 6ft), tanks and 

towers. 
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Figure 4.3: Scale of earthquake-induced Damage States and associated Performance 
Levels. 

 

 

Figure 4.4: Matrix of recommended performance objectives for buildings, 
(SEAOC,1999). 
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4.4 Deformation limits 

The last phase in the performance-based design approach concerns the association of the 

previous performance objectives to limiting values of measurable deformations either of the 

structure or the foundation. Note that the Guidelines and Provisions presented earlier do 

not correlate Performance Objectives to specific limiting values of deformations, but rather 

associate different analysis procedures (from elastic to non-linear dynamic analysis) to a 

certain Seismic Performance Category/Level. Due to the geographically local character of the 

previously presented Codes, further description of specific analysis methods falls outside the 

scope of the present chapter and thus will be omitted.  

In the absence of limiting values of earthquake-induced deformations to be linked to specific 

Performance Levels, an overview of the existing allowable values of deformation under 

static loading is attempted in the following paragraphs. This outline provides useful insight 

as to the order of magnitude and the type of such deformations as well as, to their effect on 

the structural integrity of bridges and buildings. In addition it may become a guide for the 

development of more specific earthquake performance criteria, in the future.  

4.4.1 Deformation limits for bridges  

Definitions.- Barker et al. (1991) provide the definitions illustrated in Figure 4.5 concerning 

possible types of deformations that may occur in bridges. According to their investigation, 

bridge deformations may appear in the form of uniform settlement (ρ), uniform tilt (ω) or 

rotation (θ) and differential settlement (δ).  

 Uniform settlement (ρ) is described as the rather theoretical situation in which each of 

the bridge foundations settles by the same amount. Even though no distortion of the 

superstructure occurs, excessive uniform settlement can lead to issues such as 

insufficient clearance at underpasses, as well as discontinuities at the juncture between 

approach slabs and the bridge deck, *also referred to as “the bump at the end of the 

bridge” (Wahls, 1990)+ and inadequate drainage at the end of the bridge.  

 Uniform tilt (ω) or rotation (θ) relates to settlements that vary linearly along the length 

of the bridge. Such type of deformation is most likely to occur in very stiff 

superstructures and single-span bridges. Usually, no distortion occurs in the 

superstructure, except in the case of non-monolithic connection between bridge 

components. In terms of traffic disturbance the same problems (bumps, drainage and 

clearance height) as mentioned above may occur.  
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 Non-uniform settlements lead to deformation when the superstructure is continuous 

over three or more foundations, which causes distortion in the superstructure 

especially in continuous span bridges. It may be either regular or irregular as noted in 

Figure 4.5c & d. A regular pattern in deformation is characterized by a symmetrical 

distribution of settlement, from both ends of the bridge towards the centre. In the 

irregular pattern, deformation is randomly distributed along the length of the bridge. 

Opperational problems caused by non-uniform settlements include bumps at junctures 

with approach slabs, or between subsequent spans, inadequate drainage and 

insufficient clearance height at underpasses.  

 The non-uniform settlement of bridge foundations is also responsible for the onset of 

angular distortion (β), which affects the structural integrity of the superstructure. It is 

schematically described in Figure 4.5d, and defined as:  

             
S


                                                                              4.4 

Where   β = angular distortion (dimensionless) 

δ = differential settlement between two consecutive foundations; in units of   

        length 

S = span length expressed in the same length units as the differential  

                     settlement.  

Movement Criteria.- Limiting values of deformations, as defined above, were assembled 

from numerous researchers, and are summarized in Table 4.17 and Table 4.18 classified by 

type (vertical settlement, horizontal displacement etc) and in increasing order of magnitude. 

The damage caused to the superstructure is also cited in the above tables. The limit between 

tolerable and non-tolerable movement is often difficult to discern, and may depend on 

factors other than the physical condition of the bridge, such as the cost and practical 

problems involved in repair and maintenance.  
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(a) Uniform Settlement (ρ) 

 
(b) Uniform tilt (ω) or rotation (θ) 

 

(c) Non uniform settlement (regular pattern of settlement)  

 

(d) Non-uniform settlement (Irregular pattern of settlement). 

Figure 4.5: Components of settlement and angular distortion in bridges (Barker et al., 
1991).  

 

Bozozuk (1978) attempted to distinguish tolerable from non-tolerable displacements for 

abutments and piers founded on spread footings, as illustrated in Figure 4.6. His survey 

involved 120 cases of spread footings, without specific distinction in terms of type or size. He 

classified displacements as tolerable, when the maintenance needs of the bridge are 

moderate, despite the magnitude of the displacements and as non-tolerable when 

β = Angular Distortion 

β = Difference in settlement between foundations/Distance between foundations = δ/S 
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considerable maintenance and repair works are required. The work by Bozozuk (1978) was 

parallel to that of Walkinshaw (1978) and Grover (1978) and was documented via an 

extensive research on allowable displacements undertaken in the U.S.A. and Canada and 

published by the Transportations Research Board (TRB). Therefore Bozozuk’s definition of 

tolerable and non-tolerable displacements also applies to the limiting values proposed by 

Walkinshaw and Grover, cited in Table 4.17.  

Moulton et al. (1985) adopt the definition for non-tolerable damage proposed by the 

Transportation Research Board’s Committee A2K03 on “Foundations of bridges and other 

structures” based on which: “Movement is not tolerable if damage requires costly 

maintenance and/or repairs and a more expensive construction to avoid this would have 

been preferable”.  

Moreover, Moulton et al. (1985) provide information regarding the possible structural 

damage induced by excessive vertical and horizontal displacement. According to their 

definition excessive values of vertical displacement entail the raising or lowering of the 

superstructure above or below the planned grade, hence leading to heaving and sagging 

phenomena respectively. Structures may require shimming or jacking, while truss structures 

with increased camber are also affected. Excessive horizontal displacement may cause 

misalignment between the bearings and the superstructure as well as the jamming of beams 

against the abutment. Other problems due to horizontal settlement may involve the 

superstructure extending beyond the abutment, beams requiring to be cut and horizontal 

movements occurring to the floor system. 

The potential effects of distress in the superstructure and damage to bearings are also 

identified. Thus, distress in the superstructure consists of cracks or other evidence of 

excessive stress in beams, girders, struts and diaphragms as well as cracking and spalling of 

the deck. It also leads to shearing of anchor bolts, opening/closing or damage of deck joints, 

while the cutting of relief joints may be necessary.  Damage to bearings includes tilting or 

jamming of rockers as well as cases where rockers have pulled off the bearings, or where 

movement resulted in an improper fit between bearing shoes and rockers requiring 

repositioning. Neoprene bearing pads are deformed, anchor bolts in the bearing shoes are 

sheared and cracking of concrete at the bearings is apparent. 
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Table 4.17: Allowable values for vertical, horizontal displacements and their 
combination for bridges.  

 

 

 

 

 

 

 

 

 

Type of deformation 
Magnitude of 

deformation
Damage Level Researcher

 < 50
Tolerable or acceptable 

settlements
Bozozuk (1978) 

51 Not harmful Bozozuk (1978)

63 Ride quality Walkinshaw 

(1978)
63

Occurrence of structural 

distress
Poulos (2001)

> 63 Structural damage Walkinshaw 

(1978)50 ÷100 Harmful but tolerable Bozozuk (1978) 

 > 100 Not tolerable Bozozuk (1978) 

102
Ride quality and structural 

damage
Grover (1978)

102 Harmful but tolerable Bozozuk (1978) 

>102 Not tolerable Wahis (1990) 

25 Acceptable Bozozuk (1978)

< 25
Tolerable or acceptable 

settlements
Bozozuk (1978) 

25.4 - 50.8                  

(38.1mm 

recommended)

Logical tolerable limit on 

horizontal movements for 

abutments

Moulton et al. 

(1986)

25 ÷ 50 Harmful but tolerable Bozozuk (1978) 

< 38 Usually acceptable Moulton et al. 

(1986) 50 Structural damage Walkinshaw 

(1978)
50

Ride quality and structural 

damage
Bozozuk (1978) 

 > 50 Not tolerable Bozozuk (1978) 

Horizontal along with 

vertical displacements 

(mm)

< 25 Acceptable Paikovsky (2005) 

Vertical Settlement 

ρV (mm)

Horizontal 

displacement                            

ρH (mm)
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Table 4.18: Allowable values for Angular distortion (β) and Differential settlement 
(Δρ) for bridges. 

 

 

 

 

 

 

Type of deformation 
Magnitude of 

deformation
 Bridge type Researcher

0.004,                    

1/250

Continuous steel/concrete 

bridges with l ≥ 15.24m 

(50ft) steel

Moulton et al. 

(1986)

0.005,                           

1/200

Simly supported 

steel/concrete bridges with l 

≥ 15.24m (50ft)

Moulton et al. 

(1986)

1/250 Multiple span bridges Poulos (2001)

1/200 Single span bridges Poulos (2001)

1/800

Usual l imit both for 

continuous decks and 

simply supported decks.

Hambly (1979) 

L*/1000 (all  types 

of continuous 

bridges)

Serviceability state 

L/500 (slab bridges) Serviceability state 

L/250 (or even more 

for steel decks)
Ultimate Limit state 

< 76.2

Bridge abutment for bridge 

lifetime (for both steel & 

concrete bridges)

Moulton et al. 

(1986)

< 50.8

Bridge pier for bridge 

lifetime (for both steel & 

concrete bridges) 

Moulton et al. 

(1986)

< 50.8

Bridge abutment following 

bridge completion (for both 

steel & concrete bridges) 

Moulton et al. 

(1986)

< 31.75

Bridge pier following bridge 

completion (for steel 

bridges) 

Moulton et al. 

(1986)

< 38.1

Bridge pier following bridge 

completion (for concrete 

bridges) 

Moulton et al. 

(1986)

Milan (1989)                                    

Current practice 

in France

*L being the shortest span 

Angular Distortion                   

β

Differential 

Settlement                  

Δρ (mm)
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Figure 4.6: Distinction of tolerable and non-tolerable movements for bridge piers and 
abutments (Bozozuk, 1978).  

 

4.4.2 Deformation limits for buildings. 

Definitions.- Burland & Wroth (1974) were perhaps the first to identify and summarize all 

possible types of deformations, that can cause damage to buildings resting on spread 

foundations. Their terminology is still in application today and has also been incorporated in 

Eurocode – 7. 

Figure 4.7a schematically presents the definitions for settlement ρ, maximum relative 

settlement δρmax, rotation θ and angular strain a.  

 Rotation (θ) is defined as the change in gradient of a line joining two reference 

points. 

 Angular strain (a) is positive when producing “sagging” or upward concavity and 

negative when it produces “hogging” or downward concavity. For point B angular 

rotation is estimated as: 

 

BCBA
B

AB BCL L


                                                                      4.5 
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 Relative deflection (Δ) (defined schematically in Figure 4.7b) is defined as the 

displacement relative to the line connecting two reference points at distance L.  

 Deflection ratio is set equal to the relative deflection divided by the distance L 

between the two reference points. The sign convention is kept consistent to the 

convention set for angular rotation. It receives a maximum value when the whole 

building is either in a sagging or a hogging mode. That is the case for symmetric 

buildings under symmetric loading in uniform soil, in which the maximum relative 

deflection is observed at mid span, as illustrated in Figure 4.8a. A more complex 

situation is presented in Figure 4.8b, where, part of the foundation experiences 

sagging and the other part hogging. Reference lines are defined separately for the 

sagging and the hogging deformation pattern and spans are modified appropriately.  

 Tilt (ω) (defined schematically in Figure 4.9) demonstrates the rotation of a rigid 

considered structure or of a well defined part of it. In this case, tilt is evaluated 

assuming that the two points of interest are located on a raft foundation, which 

implies that the definition is incompatible in the case of frame buildings on spread 

footings. Relative rotation (or angular distortion β) is identified as the rotation of the 

line joining two reference points relative to the tilt.  

Settlement Criteria.- Table 4.19 and Table 4.20, summarize the allowable values of various 

types of deformations, as they were defined previously, and proposed by different 

researchers. Each type of deformation is categorized by type of building, in increasing order 

of magnitude and, where available, a brief description is provided of the damage degree.  

It is interest to note that in Annex H, of Eurocode 7 (2003) the specified range for the 

occurrence of a serviceability limit state in the structure is considerably wide and ranges 

from 1/2000 to about 1/300, covering many structure categories, such as open framed 

structures, infilled frames and load bearing or continuous brick walls. According to EC-7 the 

recommended limiting value of 1/500 is considered acceptable for many structures, for the 

serviceability limit state. Moreover, values for both limit states presented in Table 4.19, 

apply to a sagging mode, as illustrated in Figure 4.7, while in case of a hogging mode of 

deformation, values should be halved. It is also stated that “for normal structures with 

isolated foundations total settlements up to 50mm are often acceptable”, which is a slightly 

larger limit compared to Terzaghi & Peck’s (1948) specification. Larger settlements may also 

be tolerable “provided the relative rotations remain within acceptable limits and provided 

the total settlements do not cause problems with the services entering the structure or cause 

tilting etc”. Finally, the above guidelines apply to normal, routine structures under 
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conditions of uniform loading intensity and therefore should not be applied in structures, 

falling outside the particular application range.  

 

(a)                                                                               (b)  
Figure 4.7: Definitions of (a) settlement ρ, relative settlement δρmax, rotation θ and 

angular strain α, (b) relative deflection Δ and deflection ratio Δ/L.  

 

 

(a)                                                                               (b)  
Figure 4.8: Evaluation of deflection ratio in different building configurations (a) 

symmetric building, symmetric loading conditions and uniform soil, (b) non 
uniform conditions.  

 

 

Figure 4.9: Definition of tilt ω and relative rotation (angular distortion) β 

 

The limits of relative rotation β, proposed by Menard (1967) in Table 4.19, may appear 

extremely strict compared to the general trend of the other researchers. The reason is that 

Menard’s criteria are based on settlements determined by the pressuremeter method, 

which often leads to smaller settlements compared to traditional methods.  
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Skempton & MacDonald (1956) were among the first to propose a way of estimating 

tolerable settlements in frame buildings, based on the concept of angular distortion (β). 

They combined field observations from 98 buildings with laboratory tests on reinforced 

concrete frames and brick walls subjected to increasing angular distortion until failure, to set 

the limiting criteria presented in the previous Tables. According to Burland et al. (1977) the 

Skempton & MacDonald criteria should be applied with careful consideration, since they 

present a few but important drawbacks: 

 The majority of the data are based on indirect evidence in which (i) settlement is 

reported but not specified in detail, (ii) no settlement damage occurred in the 

buildings of the database. 

 Damage is characterized as “architectural”, “functional” and “structural” with no 

further classification. 

 The limiting values of relative rotation for structural damage in frame buildings were 

based on elements with average dimensions, therefore no extension can be made to 

large and stiff beams or columns, where the corresponding angular distortion may 

be much less.  

 Because limiting deformations are based on the criterion of maximum relative 

rotation, it is implied that damage to buildings is caused exclusively by shear 

distortion, which is not always the case.  

Due to the aforementioned, Burland et al. (1977) suggest that the Skempton & MacDonald 

(1956) recommendations, particularly regarding differential settlements, to be considered 

more like “routine limits”. Provided deflection ratio and angular distortion are within 

tolerable limits, greater values of differential and maximum settlement can be adopted.  

Polshin & Tokar (1957) developed criteria of allowable deformations based on the concept 

of relative rotation β and deflection ratio Δ/L applicable to frame buildings, reinforced load-

bearing walls and to unreinforced load-bearing walls respectively.  

Burland & Wroth (1974) were based on a beam analogy, in which a beam with span L, height 

H, elastic properties G, E is distorted and loaded in different ways until cracking. Thus, they 

considered the onset of cracking to be the variable that determines serviceability and 

ultimate state limits and developed criteria for sagging and hogging mode of deformation, 

expressed in terms of maximum relative deflection Δmax/L. Note that for the hogging mode 

of deformation it is assumed that the neutral axis of the beam analog coincides with the 

bases of the footings.  
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Figure 4.10, presents the comparison of the three criteria mentioned previously against case 

histories where different extent of damage was observed (none, slight and substantial). It 

appears that the limiting values proposed by Skempton & MacDonald (1956) compare 

reasonably well in the case of frame buildings, while the Polshin & Tokar (1957) standards 

give satisfactory comparisons in the case of unreinforced (masonry) load bearing walls. The 

limiting criteria by Burland & Wroth (1974) apply both to frame and masonry buildings under 

either a sagging or a hogging pattern of deformation.  

Since the onset of cracking is frequently assumed to be the controlling factor in the 

definition of serviceability or ultimate limit states, Table 4.21 associates cracking width to 

observed damage and serviceability/safety matters for three categories of buildings 

(residential, commercial and industrial),thus serving complimentary to the interpretation of 

the observed damage mentioned in Table 4.19 & Table 4.20. 

 

Table 4.19: Limiting values of relative rotation (β) for buildings. 

Type of 

deformation 
Type of Building/Foundation

Magnitude of 

deformation
Damage Level Researcher

Residential Buildings 1/3300 to 1/1500 No description of damage Menard (1967)

Industrial constructions 1/1250 to 1/650 No description of damage Menard (1967)

Indfil led frames 1/1000 No description of damage Meyerhoff (1953) 

No specification 1/750
Danger to machinery sensitive to 

settlement

Wahls (1981) after 

Bjerrum (1963)

No specification 1/600 Danger to frames with diagonals
Wahls (1981) after 

Bjerrum (1963)

1/500
Onset of cracking in walls and 

partitions in steel and concrete frame 

infil led structures

Polshin & Tokar (1957) 

1/500 Cracking in walls and partitions Meyerhoff (1956) 

1/500 Cracking in walls and partitions Bjerrum (1963) 

1/500 Unlikely to lead to eiher SLS or ULS. 
Skempton & MacDonald 

(1956) 

1/500 (1/1000 - 

1/1400) for end bays 

Cracking in walls and partitions in 

framed buildings and reinforced 

loadbearing walls

Poulos (2001)

1/300
 Serviceability Limit State: Cracking in 

walls and partitions observed

Skempton & MacDonald 

(1956) 

1/250 Onset of structural damage Meyerhoff (1956) 

1/200 No infil l  or no danger of damage to 

cladding
Polshin & Tokar (1957) 

1/150 Development of structural damage Bjerrum (1963) 

1/150 (or 1/170 

according to Salgado, 

2007).

Ultimate Limit State: onset of structural 

damage

Skempton & MacDonald 

(1956) 

1/150 - 1/250 Onset of structural damage 
Poulos (2001) after 

several authors

1/2000 to 1/300                

(1/500 is acceptable)
Serviceability Limit 

1/150 Ultimate Limit State 

Relative Rotation or 

Angular Distortion  

(β)

Framed buildings and 

reinforced load bearing walls

EuroCode 7
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Table 4.20: Limiting values of relative deflection (Δ) /deflection ratio (Δ/L), differential 
settlement (δρmax.) and tilt (ω) for buildings. 

Type of 

deformation 
Type of Building

Magnitude of 

deformation
Damage Level Researcher

Load bearing walls or 

continuous brick cladding
1/2000 No description of damage Meyerhoff (1953) 

1/2500 Onset of visible cracking under sagging Meyerhoff (1956) 

L/H < 3; 1/3300                  

L/H >5; 1/2000            

Onset of visible cracking in structures 

founded on sand under sagging
Polshin & Tokar (1957) 

L/H < 3;  1/2500                                         

L/H >5; 1/1500                       

Onset of visible cracking in structures 

founded on clay under sagging 
Polshin & Tokar (1957) 

L/H =1; 1/2500                            

L/H = 5; 1/1250 

Onset of visible cracking in structures 

under sagging 

Burland & Wroth (1975) 

(Also recommended by 

Poulos, 2001)

 L/H =1; 1/5000                

L/H = 5;  1/2500

Onset of visible cracking in structures 

under hogging

Burland & Wroth (1975) 

(Also recommended by 

Poulos, 2001)

Isolated foundation on sand
20 (berweem adjacent 

columns)
Terzaghi & Peck (1948) 

Isolated foundation on sand
25 (for a relative 

rotation of 1/500)

Foundations on clay 40

Isolated foundation on sand 25

Raft foundation on sand 50

Isolated foundation on sand 40

Raft foundation on sand 40 - 65

Isolated foundation on clay 65

Raft foundation on clay 65 - 100

Framed buildings and 

reinforced load bearing walls

50 - 75 (sands)                                

75 - 135 (clays)
Damage to connection to services 

 Poulos (2001), after 

several authors

Tilt (ω)
Framed buildings and 

reinforced load bearing walls
1/300 Effects on visual appearance

 Poulos (2001), after 

several authors

Tilt after lift 

installation (ω)
Tall buildings 1/1200 - 1/2000 Effect on operation to lifts and elevetors

 Poulos (2001), after 

several authors

Relative Deflection 

(Δ) / Deflection 

ratio (Δ/L)

Differential 

Settlement δρ 

(mm)

Maximum 

Settlement ρmax. 

(mm)

Unreinforced load-bearing 

walls

Skempton & MacDonald 

(1956) 

No particular description of damage

No particular description of damage

Terzaghi & Peck (1948) - 

Eurocode 7 (1990)

Skempton & MacDonald 

(1956) 
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Table 4.21: Cracking width related to observed damage and functionality of three 
building categories (modified after Thorburn, 1985).  

Crack Width 

(mm)
Residential Commercial Industrial 

Serviceability or 

safety issues

< 0.1 None None None None

0.1 - 1 Slight Slight Very slight Cracks may be visible 

1 - 2
Slight to 

moderate

Slight to 

moderate
Very slight

Possible penetration 

of humidity

2 - 3 Moderate Moderate Slight
Serviceability may be 

compromised

3 - 15
Moderate to 

severe

Moderate to 

severe
Moderate

Ultimate limit states 

may be reached

> 15
Severe to 

dangerous

Moderate to 

dangerous

Severe to 

dangerous
Risk of collapse

Degree of Damage

Very slight:  Damage is visible on close inspection but is correctable with 

interior design/decoration tools. 

Slight: external cracks may need to be filled for water-tightness; doors and 

windows may jam slightly. 

Moderate:  replacement of small amount of brickwork is needed, service 

pipes may be severed and doors and windows are jammed. 

Severe:  replacement of portions of walls is needed; window and door 

frames are distorted, floors may become uneven, service pipes are detached 

and walls may lean or bulge.

Dangerous:  beams lose bearing, walls may require shoring, windows are 

broken due to distortion and there is danger of instability. 



Chapter 4: Performance – Based Criteria 

Page | 122  
 

(a)  

 

(b) 

 

(c) 

 

Figure 4.10: Comparison of maximum tolerable settlement criteria against settlement 
from field observations and laboratory experiments with none, slight or 
substantial damage. The plots numbered 1 through 5, correspond to: 1 to 3: 
Burland & Wroth (1974) for frame structures – reinforced masonry buildings, 
unreinforced masonry buildings in sagging, unreinforced masonry buildings 
in hogging respectively , 4: Skepmton & MacDonald (1956) and 5:Polshin &  
Tokar (1957) (after“The Engineering of Foundations”,Salgado, 2007). 

 

Relative 

sag 

(Δs
max/L) 

Relative 

sag 

(Δs
max/L) 

L/H 

No damage

Slight damage

Substantial damage 

L      Laboratory value×

(1)     Skempton & MacDonald 
(1956)

(2)     Fjeld (1963)

(3)     Thorburn and McVicar

(1974) 

(4)     Polshin & Tokar (1957)

(5)     Wood (1952) 

(6)     Burhoude (1965) 

(7)     Breth and Chambosse

(1974) 

(8)     Morton and Au (1974) 

(9)     Horn & Lambe (1964) 

(10)   Tchebotarioff (1940) 

(11)   Cheney & Burford (1974) 

(12)   Samuels and Cheney 

(1974)

(13)  Rigby & Dekema (1952) 

(14)   Littlejohn (1974) 

(15)   Vargas & Silva (1973) 



L/H 

L/H 
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4.4.3 Methods for evaluation of differential settlement and angular distortion. 

Differential settlements between two footings usually appear along with the occurrence of 

total settlements in the case where (i) the foundation soil is not absolutely uniform along the 

foundation area, (ii) the dead-to-live load ratio is different between the two footings or (iii) 

there are discrepancies in the built dimensions of the footings (e.g. a slight not intended 

eccentricity). Among the above cases, only case (ii) is computationally predictable, while 

cases (i) and (iii) are accidental and cannot be predicted directly. Hence, due to the 

complexity and uncertainty involved in their estimation many researchers have correlated 

differential settlements to maximum absolute settlements. 

The correlation between total and differential settlement greatly depends on the type of 

foundation. In general, stiffer foundations, such as raft (mat) foundations (operating more 

like a single reinforced-concrete slab), are expected to experience lower differential 

settlements, compared to isolated foundations (e.g. spread footings which essentially 

support one single column). The magnitude of differential settlements is also greatly 

affected by the subsurface soil conditions. Sandy soil profiles present a greater degree of 

heterogeneity, even within the limits of the same structure; therefore significant differential 

settlements are more likely to occur. On the contrary, clay deposits are generally more 

uniform and lower differential settlements are expected, as opposed to sandy soils for a 

known total settlement.  

The proposed correlations by Skempton & MacDonald (1956) between differential and total 

settlements, as a function of soil and foundation type are summarized in Table 4.22. Note 

however, that the above correlation has received an extensive criticism from Terzaghi 

(1956), in the case where long-term consolidation in a thick clay layer dominates. Taking this 

into consideration, it would be advisable to avoid such correlations and estimate each kind 

of settlement separately and proceed to design considering the excessive values of both.  

 

Table 4.22: Ratio of maximum total settlement to maximum angular distortion βmax.  
(modified after Skempton & MacDonald, 1956). 

Soil Type 
Isolated 

Foundations 
Mat Foundations 

Sand/sandy fill 15LR 20LR 

Clay 25LR 30LR 

LR = the reference length = 1m = 40in 
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Burland et al. (1977) were based on the data by Skempton & MacDonald (1956), as well as 

Grant et al. (1972) and others to correlate the degree of damage observed in buildings to the 

maximum settlement and maximum differential settlement. This attempt is presented in 

Figure 4.11, and concerns buildings on isolated or raft foundations, situated on top of 

seemingly uniform clayey layers, under uniform loading conditions. In parallel, Bjerrum 

(1963) has presented a similar figure and the suggested upper limit curves for flexible and 

rigid structures have been incorporated by Burland et al. (1977). Moreover, the dashed 

arrows specify some maximum average values of settlements permitted by the 1962 USSR 

Building Code, while the full arrows indicate the design limits proposed by Skempton & 

MacDonald (1956). Later on, given the differential settlement Δs, Bjerrum (1963) correlated 

it to the maximum angular distortion (Δs/L)max, as presented in Figure 4.12. This correlation 

also applies to clayey foundation soils; however no distinction is made as to the type of 

structure (frame or load bearing building). Equivalent correlations have been proposed by 

Bjerrum (1963) concerning buildings located on sandy soils, and are presented in Figure 4.13 

& Figure 4.14.  

More recently, similar correlations were proposed by Justo (1987), based on observations 

from different researchers. Namely, in Figure 4.15, maximum angular distortion βmax is 

plotted against the maximum settlement smax for isolated foundations, located either on 

clays (Figure 4.15a) or sands and fills (Figure 4.15b). Likewise, Figure 4.16, presents the 

same correlation for buildings on clays (Figure 4.16a) or sands and fills (Figure 4.16b). 

Day (2000) collected data from various sources concerning the relationship between the 

absolute value of differential settlement Δρmax and angular distortion Δ/L and verified the 

relationship initially proposed by Skempton & MacDonald (1956) that is analytically 

expressed through Equation 4.6:  

max 8900 ( / )( )s L mm                                                    4.6 

As mentioned earlier, the above limiting deformation criteria refer to static loading 

conditions, while there is still no complete set of criteria for allowable earthquake-induced 

deformations. The only relevant study found in the literature is that of Yasuda et al. (2001) 

who suggest the use of an empirical relationship for the estimation of the angle of 

inclination due to differential settlement. The proposed empirical relationship correlates the 

angle of tilting θ (deg) to the average settlement ρav. (cm), through Equation 4.7, and is 

based on data from tilted buildings after the Kocaeli (1999) and two other earthquakes: 

0.05 av 
 
                                                                    4.7 
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To further elaborate on the empirical equation provided by Yasuda et al. (2001), it is 

compared against correlations proposed by Bjerrum (1963) for static loading conditions. 

Yasuda et al. (2001) correlate the angle of inclination (θ) to the average total settlement, 

thus, the arctan(θ) provides the angular distortion β and considering different building 

lengths (L = 5 – 12m), the differential settlement (Δρ) is determined. Figure 4.17 illustrates 

the above attempt and incorporates the curves for rigid and flexible structures on clay, 

proposed by Bjerrum (1963) (also plotted in Figure 4.11), as well as the corresponding 

correlation for structures located on sand (also presented in Figure 4.13). With regard to 

Yasuda et al. (2001), for increasing length of structure the earthquake-induced tolerable 

differential settlement is apparently greater for a given value of absolute settlement. For 

small building lengths, the connection between differential and absolute settlements 

appears to be very close and may be satisfactorily described by the correlations for static 

conditions. However, it should be stressed out that this is only a preliminary assessment and 

no conclusive conclusions can be drawn, since there is no information about the soil 

conditions or the rigidity of the structures that Yasuda et al. (2001) used to formulate 

Equation 4.7.   
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Figure 4.11: Observed maximum and differential settlements in buildings on isolated    or 
raft foundations. (after Burland et al., 1977). 
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Figure 4.12 Maximum differential settlements and corresponding angular distortion, for 
clayey foundation soils (after Bjerrum 1963).  

 

Figure 4.13: Correlation of maximum absolute settlement to maximum differential 
settlement for buildings on sandy foundation soils (after Bjerrum, 1963). 

 

Figure 4.14: Correlation of maximum differential settlement to maximum angular 
distortion for buildings on sandy foundation soils (after Bjerrum, 1963). 
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Figure 4.15: Correlation between maximum angular distortion βmax and maximum 
settlement smax, for isolated foundations on (a) clays, (b) sands and fills (after 
Justo, 1987, based on several authors). 

 

 

Figure 4.16: Correlation between maximum angular distortion βmax and maximum 
settlement smax, for buildings on (a) clays, (b) sands and fills (after Justo, 
1987, based on several authors).  
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Figure 4.17: Comparative evaluation of the empirical correlation proposed by Yasuda et 
al. (2001) against correlations for static conditions by Bjerrum (1963). 

 

4.5 Example applications 

To obtain insight as to the order of magnitude of allowable deformations of buildings and 

bridges, typical application examples are provided below. The examined cases refer to three 

different building types and two structural types of bridges shown in Figure 4.18 to Figure 

4.21. Allowable values of settlements will be estimated considering the requirements 

specified in Eurocode 8, namely two levels of design seismic motions, corresponding to 

suitable Limit States.  

4.5.1 Framed buildings on isolated footings  

Problem Outline.- The first application refers to the simplified case of an ordinary one-

storey framed building resting on isolated footings. A typical cross – section is provided in 

Figure 4.18, in which the isolated footings are located 12m apart and the maximum height of 

the building is 4m. According to EC–8 such a building configuration is assigned an 

importance factor equal to unity. Performance criteria are examined for both clay and sand 

foundation soil profiles.  

Performance Requirements.- In the EC–8 guidelines for buildings two performance 

Requirements are specified and briefly outlined below: 

 Damage Limitation Requirement.- The structure “is designed and constructed to resist a 

seismic action with a larger probability of occurrence than the design seismic action, 

without the occurrence of damage and the associated limitations of use, the costs of 

which would be disproportionally high in comparison to the costs of the structure itself”. 
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The design seismic motion for the Damage Limitation Requirement is characterized by a 

return period of 95yrs. 

 No Collapse Requirement.- The structure is “designed and constructed to withstand the 

design seismic action without local or global collapse, thus retaining its structural 

integrity as well as a residual load bearing capacity after the occurrence of the seismic 

events”. According to EC-8 the design seismic motion for the No Collapse Limit State is 

characterized by a return period of 475yrs.  

 

 

Figure 4.18: Framed building on isolated foundations. 

 

Performance Criteria.- Based on Table 4.20 the maximum allowable settlement is equal to 

2.5 – 4cm for a sand foundation layer and 6.5cm for a clay foundation layer, without any 

distinction as to the Limit State.  

Nevertheless, structural damage such as wall cracking and further loss of serviceability in a 

building are not caused by uniform settlements, but rather by the differential settlements 

developing between two footings and the subsequent angular distortion (β). Thus, based on 

Eurocode 7, which provides a complete design approach regarding performance limit states, 

and the correlation proposed by Burland et al. (1977), Bjerrum (1963) and Justo (1987), 

between differential and total maximum settlements the estimated maximum settlements 

ρmax. are summarized in Table 4.23, for both clay and sand foundation soil profiles. More 

analytically, for the allowable value of angular distortion (β) for each Limit State, dictated by 

EC-7, the maximum differential settlement (δρmax.) is calculated, given the 12m distance (L) 

between the two footings, from the building configuration presented in Figure 4.18. 

Subsequently, Figure 4.11, Figure 4.13 and Figure 4.15 are used to estimate the maximum 

allowable settlement. Note that the estimated values are comparable to the proposed 

L = 12m

H = 4m

ρmax.= ?
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values by Terzaghi & Peck (1948) and Skempton & MacDonald (1956), provided in Table 

4.20.   

Table 4.23: Limiting values of maximum settlements for two Performance Levels. 

Deformation 
 

Serviceability Limit 
State 

Ultimate Limit State 
Reference 

Sand/Fills Clay Sand/Fills Clay 

β (=δρmax./L) 1/500 1/150 EC-7 

δρmax.(cm) 2.4 8 - 

ρmax. (cm) 
3 - 4 4.5 12.5 19 

Burland et al. 
(1977), 
Bjerrum 
(1963) 

≈ 3 6 8 20 Justo (1987) 

 

Considering the uncertainty involved in the assessment of allowable settlements, the ranges 

of allowable maximum settlements for the above examined case would be as follows:  

 Sand foundation layer: 3 – 4cm for the Serviceability Limit State and 8 – 12.5cm for 

the Ultimate Limit State. 

 Clay foundation layer: 4.5 – 6.0cm for the Serviceability Limit State and 19 – 20cm 

for the Ultimate Limit State. 

4.5.2 Buildings on flexible raft foundation 

Problem Outline.- The following application refers to a building of 16m in height and 12 in 

width, founded on a flexible raft foundation, like the one presented in Figure 4.19.  

 

Figure 4.19: Ordinary building resting on a (flexible or rigid) raft foundation. 

L = 12m

H = 16m

ρmax.= ?
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Performance Requirements.- The two performance Levels and corresponding requirements 

specified previously are also in effect in this case and will not be further analyzed. 

Performance Criteria.- The maximum allowable settlement for this type of building will 

range from 4 to 6.5cm, with an average value of 5cm for a sand foundation layer, [Skempton 

& MacDonald (1956)], and Terzaghi & Peck (1948) respectively (Table 4.20). The equivalent 

range for a clay foundation layer is from 6.5cm to 10cm, according to Skempton & 

MacDonald (1956).  

The allowable limits of angular distortion according to EC-7 and the corresponding 

differential settlement are the same as discussed in the previous section. Furthermore, 

based on the correlations proposed by Burland et al. (1977), between differential and 

maximum settlements, presented in the lower graph of Figure 4.11, the resulting values of 

maximum settlements are summarized in Table 4.24. 

 

Table 4.24: Limiting values of maximum settlements for two Performance Levels for the 
case of a building resting on a flexible raft foundation. 

Deformation 
Serviceability Limit 

State 
Ultimate Limit 

State Reference 
Sand/Fills Clay Sand/Fills Clay 

β (=δρmax./L) 1/500 1/150 EC-7 

δρmax.(cm) 2.4 8 - 

ρmax. (cm) 3 – 4 4 12.5 14 
Burland et al. 

(1977) 

 

Considering the uncertainty involved in the assessment of allowable settlements, the ranges 

of allowable maximum settlements for the above examined case would be as follows:  

 Sand foundation layer: 3 – 5cm (or even 6.5cm according to Skempton & MacDonald 

(1956)) for the Serviceability Limit State and up to 12.5cm for the Ultimate Limit 

State. 

 Clay foundation layer: 4 – 6.5cm for the Serviceability Limit State and 10 – 14cm for 

the Ultimate Limit State. 

 

4.5.3 Buildings on rigid raft foundation  

Problem Outline.- The previous case study is now re-evaluated considering the building 

configuration presented in Figure 4.19, which is founded on a rigid raft foundation.  
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Performance Requirements.- The two performance Levels and corresponding requirements 

specified in  EC 8 and mentioned in the previous paragraphs are also in effect in this case 

and will not be further analyzed. 

Performance Criteria.- According to Table 4.20, there is no distinction concerning the 

rigidity of a raft foundation and the allowable values of maximum settlement. Therefore, for 

a sand foundation layer the maximum allowable settlements for this type of building will 

range from 4 to 6.5cm [Skempton & MacDonald (1956)], with an average value of 5cm 

[Terzaghi & Peck (1948)]. The equivalent range for a clay foundation layer would range from 

6.5cm to 10cm, according to Skempton & MacDonald (1956).  

The allowable limits of angular distortion according to EC-7 and the corresponding 

differential settlement are the same as discussed in the previous sections. Furthermore, 

based on the correlations proposed by Burland et al. (1977), between differential and 

maximum settlements for rigid structures, presented in the lower graph of Figure 4.11, the 

resulting values of maximum settlements are summarized in Table 4.25. Note that maximum 

allowable settlements for a rigid raft foundation on sand are not different from what is 

predicted in the case of flexible foundations. 

 

Table 4.25: Limiting values of maximum settlements for two Performance Levels for the 
case of a building resting on a rigid raft foundation. 

Deformation 

Serviceability Limit 
State 

Ultimate Limit 
State Reference 

Sand/Fills Clay Sand/Fills Clay 

β (=δρmax./L) 1/500 1/150 EC-7 

δρmax.(cm) 2.4 8 - 

ρmax. (cm) 3 - 4 7 12.5 24 
Burland et al. 

(1977) 

 

In conclusion, the resulting allowable settlements are summarized depending on the 

foundation layer as follows:  

 Sand foundation layer: 3 – 5cm for the Serviceability Limit State and up to 12.5cm 

for the Ultimate Limit State.  

 Clay foundation layer: 7cm for the Serviceability Limit State and up to 24cm for the 

Ultimate Limit State. 

The following Table 4.26 summarizes the allowable maximum settlements estimated in the 

previous applications arranged by type of foundation and foundation layer for the two Limit 
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States defined in EC-7. All three structures were selected to have the same span (i.e. L = 

12m), so that the effect of the type of foundation can be examined independently of the 

geometrical characteristics of the structure involved in the evaluation of allowable 

settlements.  

It is of particular interest that, for a sandy foundation layer, the type of foundation does not 

appear to play a major part in the magnitude of tolerable settlements, since only minor 

differences are observed between different foundation systems. One reason for that, is the 

use of Figure 4.13, proposed by Bjerrum (1963), which does not make any distinction in 

terms of foundation type in the correlation of differential to maximum total settlements.  

For clayey foundation layers, there is obvious distinction in the values of allowable 

settlements, especially in the settlements required to reach the Ultimate Limit State. It is 

noteworthy, that a building founded on isolated footings will tolerate larger settlements (19 

– 20cm) compared to a building constructed on a flexible raft foundation (10 – 14cm) in the 

Ultimate Limit State. Also, a rigid raft foundation is expected to perform better than the 

other two examined cases and withstand larger amount of settlement in both Limit States.  

It should also be stressed out that maximum total settlement has been correlated either to 

the differential settlement δρmax. and then to the maximum angular distortion βmax, or 

directly to the angular distortion βmax, (see Justo, 1987). In the second case it seems that the 

span of the building (L) is not taken into account, or the presented diagrams apply to specific 

building lengths (L), not clearly stated. In any case, for the 12m length selected here, the 

results are in accordance to the predictions by Bjerrum (1963). Furthermore, the second 

figure proposed by Justo (1987), correlating the maximum angular distortion βmax to the 

maximum relative deflection Δmax. also rises similar questions as to the length of the 

buildings considered in the research. Assuming a simple framed building resting on two 

isolated foundations, the resulting maximum relative deflection will be equal to the 

differential settlement between them. Based on the definition of angular distortion (βmax.) 

and the same value for both clays and sands (e.g. 10-3), it appears that the graph for sands 

and fills (Figure 4.16) only applies to buildings with L = 10m and the graph for clays applies 

for buildings with L = 15m. Therefore, attention is required in the application of the graphs 

presented in Figure 4.15 & Figure 4.16, which provide an order of magnitude of the 

expected deformations rather than accurate and exact values to use in analysis.  
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Table 4.26: Summary of limiting total settlements for various foundation types and 
soil formations (settlements in centimeters). 

Type of Foundation  
(sand layer) 

Serviceability Limit 
State 

Ultimate Limit State 

Isolated foundations 3 – 4* 8 – 12.5 

Flexible raft 
3 – 5  

(or even up to 6.5) 
12.5 

Rigid raft 3 – 5 12.5 

Type of Foundation  
(clay layer) 

Serviceability Limit 
State 

Ultimate Limit State 

Isolated foundations 4.5 – 6 19 – 20 

Flexible raft 4 – 6.5  10 – 14  

Rigid raft 7 24 

*Maximum allowable settlements are expressed in centimeters. 

 

4.5.4 Reinforced concrete simply-supported bridges 

Problem Outline.- The following case study concerns a reinforced concrete simply supported 

bridge. The examined bridge is schematically illustrated in Figure 4.20 and consists of two, L 

= 40m in length, spans, and a 10m high, central pier, which corresponds to the maximum 

depth of the valley.  

 

Figure 4.20: Reinforced concrete simply supported bridge.  

 

Performance Requirements.- According to EC-8, the bridge is classified in the second class of 

importance and therefore assigned an importance factor equal to unity. Performance 

Criteria are defined as follows: 

 Minimization of Damage (Serviceability Limit State).-  In this lower level performance 

requirement, “the design seismic action is assigned a high probability of occurrence and 

may cause only minor damage to secondary components and to those parts of the bridge 

intended to contribute to energy dissipation. All other parts of the bridge are expected to 

remain undamaged”. The Eurocode 8 provisions do not clearly specify a return period, 

therefore, for the purposes of the application, it is assumed a return period of 

10m

L = 40m

ρmax.= ?
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approximately 100yrs, which is adopted by other Specifications mentioned in section 

4.2.1. 

 No – collapse (Ultimate Limit State).- In the upper level performance requirement, the 

bridge is generally anticipated to preserve its structural integrity and avoid total collapse. 

In brief, considerable damage is expected to occur, mainly in the form of flexural yielding 

of specific sections (i.e. the formation of plastic hinges) in the piers, which in the absence 

of seismic isolation is a desirable situation. The bridge deck should in general be designed 

to avoid damage, except for breakage of secondary components, such as expansion joints 

and continuity slabs. The return period assigned in this specific performance level is 

475yrs.  

Performance Criteria.- Based on Table 4.17 & Table 4.18 with the exception of the limits 

proposed by Milan (1989) - limiting values of various types of settlements are not associated 

to observed Limit States of the bridge. Therefore, when attempting to establish limiting 

values of deformations for specific Limit States, only simplified approaches are possible. For 

instance, Bozozuk (1978) considers a vertical settlement less than 5cm to be tolerable or 

acceptable; which could be considered to be the Serviceability Limit State. Vertical 

settlements exceeding 5cm and up to 10cm are considered harmful but tolerable, roughly 

corresponding to an Ultimate Limit State condition.  

Note that, assuming zero settlement to the abutments of the bridge, estimated differential 

settlements will correspond to the maximum vertical settlement of the central pier, thus, 

allowable values of differential settlements must also be included in the following 

investigation. For concrete simply supported bridges, Moulton et al. (1986) set a limit in the 

allowable angular distortion equal to 0.005, this being equal to a differential settlement of 

20cm, considering the 40m span of the bridge. Moreover Moulton et al. (1986) specify a 

differential settlement of less than 3.81cm to be acceptable for a bridge pier of a concrete 

bridge following completion, which is a rather conservative value and should not be taken 

into consideration.  

Milan (1989) clearly defines Serviceability and Ultimate Limit State for different types of 

bridges. Thus, maximum differential settlements for a slab bridge (which essentially 

corresponds to the examined case) in the Serviceability Limit State will be equal to L/500, or 

8cm, and of the order of L/250, or 16cm, in the Ultimate Limit State, as summarized in Table 

4.27. 
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Table 4.27: Limiting values of maximum settlements for two Performance Levels for the 
case of a simply supported reinforced concrete bridge. 

Deformation 
Serviceability Limit 

State 
Ultimate Limit 

State 
Reference 

δρmax./L L/500 L/250 
Milan (1989) 

δρmax. = ρmax. (cm) 8 16 

 

Considering the uncertainty involved in the assessment of allowable settlements, the 

maximum allowable settlements for the Serviceability Limit State would not exceed 8 – 

10cm, while in the Ultimate Limit State would be in the order of 16 – 20cm. 

4.5.5 Reinforced concrete continuous bridges 

Problem Outline.- The previous case study is now re-evaluated, considering a different 

structural system, namely a continuous reinforced concrete bridge. The bridge is 

schematically illustrated in Figure 4.21 and presents the same geometrical characteristics as 

before. 

 

Figure 4.21:  Reinforced concrete continuous bridge.  

 

Performance Limit States.- The performance states according to EC-8 are not different from 

what it was mentioned in the previous paragraph, therefore no further analysis is necessary. 

Performance Criteria.- As it was already mentioned, limiting values of various types of 

settlements are not associated to observed Limit States to the bridge. Therefore, based on 

Table 4.17 & Table 4.18, Bozozuk (1978) considers a vertical settlement less than 5cm to be 

tolerable or acceptable; which could be considered to be the Serviceability Limit State. 

Vertical settlements exceeding 5cm and up to 10cm are considered harmful but tolerable, 

roughly corresponding to the Ultimate Limit State.  

Moreover, considering maximum differential settlements equal to the maximum vertical 

ones for zero movement of the abutments, Moulton et al. (1986) set a limit in the allowable 

angular distortion equal to 0.004, this being equal to a differential settlement of 16cm, 

considering the 40m span of the continuous bridge. Moreover Moulton et al. (1986) specify 

10m

L = 40m

ρmax.= ?
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a differential settlement of less than 3.81cm to be acceptable for a bridge pier of a concrete 

bridge following completion, which is a rather conservative value and should not be taken 

into consideration.  

Also, Milan (1989) clearly defines Serviceability and Ultimate Limit State for different types 

of bridges. Thus, maximum differential settlements for a continuous bridge (which 

essentially corresponds to the examined case) in the Serviceability Limit State will be equal 

to L/1000, or 4cm, and of the order of L/250, or 16cm, in the Ultimate Limit State, as 

summarized in Table 4.28.  

 

Table 4.28: Limiting values of maximum settlements for two Performance Levels for the 
case of a simply supported reinforced concrete bridge. 

Deformation 
Serviceability Limit 

State 
Ultimate Limit 

State 
Reference 

δρmax./L L/1000 L/250 
Milan (1989) 

δρmax. = ρmax. (cm) 4 16 

 

Considering the uncertainty involved in the assessment of allowable settlements, the 

maximum allowable settlements for the Serviceability Limit State would not exceed 4 - 5cm 

and in the Ultimate Limit State would be in the order of 10 - 16cm. 

Overall, in the evaluation of limiting values of settlements for bridges, things are more 

straightforward compared to buildings. Table 4.29 summarizes the previously estimated 

settlements, categorized by type of structural system, from which it is concluded that simply 

supported bridges are more tolerant to settlements as opposed to continuous bridges. 

Nevertheless, a major drawback in the above criteria by Moulton et al. (1986) & other 

researchers is the lack of classification of the above criteria with respect to the foundation 

soil layer (i.e. sand or clay), which would make a significant difference as presented in the 

case of buildings.  

 

Table 4.29: Limiting values of maximum settlements for different types of bridges. 

Structural 
System 

Serviceability 
Limit State 

Ultimate Limit 
State 

Simply 
Supported 

Bridges 
8 – 10  16 - 20 

Continuous 
Bridges 

4 – 5  10 – 16  

 Equation Chapter 5 Section 1
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CHAPTER   5 

 

 

5. An Improved Approach for Drain Design 
 

 

5.1 Introduction 

The second main assumption in the Seed & Booker (1977) theory for drain design, concerns 

the infinitely greater permeability of the drain material, compared to the surrounding 

ground, thus allowing the unhindered dissipation of the excess pore pressure generated 

during an earthquake. This, also known as, perfect drain assumption, is preserved in the 

present chapter, in order to examine the effect of the surrounding soil’s properties on the 

existing design charts initially proposed by Seed & Booker (1977) and lately by Bouckovalas 

et al. (2009).  

New experimental data, which are presented here, suggest a considerable deviation from 

the empirical correlation between the excess pore pressure ratio ru and the number of cycles 

required for liquefaction NL, which may have a considerable influence on the existing design 

charts. In view of the inadequacy of the attempted modifications on the existing charts to 

account for the above findings, new design charts are formulated, which improve the 

predicting capacity of the revised methodology proposed by Bouckovalas et al. (2009) and in 

parallel highlight the over-conservatism of the traditional theory proposed by Seed & Booker 

(1977). 
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5.2 Effect of soil properties on the excess pore pressure ratio  

One of the main features in the solution of the basic differential equation in the Seed & 

Booker (1977) theory is the empirical correlation between the excess pore pressure ratio ru 

and the normalized number of cycles N/NL, where NL is the number of cycles required for 

liquefaction. Early cyclic triaxial and cyclic simple shear laboratory tests (Lee & Albaisa, 1974 

and De Alba et al., 1975) have shown that the excess pore pressure ratio ru, when plotted 

against the cycle ratio Neq/NL, lies within a relatively narrow range. More specifically, Lee & 

Albaisa (1974) conducted undrained cyclic triaxial compression tests on different samples of 

clean saturated sands of various relative densities, coming up with the curves presented in 

Figure 5.1. The cyclic simple shear tests conducted by De Alba et al. (1975) on clean 

saturated sands, in a range of relative densities (Dr = 54% - 90%), resulted in the curves 

presented in Figure 5.2. The mathematical expression best describing the above 

experimental data is:                                                            

A

lo

g

N

Nu
2/1

1

'
sin

2










 


                                                   5.1 

where A is on average equal to 0.70. 

However, more recent laboratory testing programs provide evidence that parameter A is 

significantly affected by the soil properties (e.g. relative density and fines content) as well as 

the test type (e.g. cyclic triaxial or cyclic simple shear test). Namely, typical results from 

laboratory testing programs (like VELACS and X-SOILS), processed and presented in the 

following paragraphs, prove that A can receive values greater than 0.70.  

 

 

Figure 5.1:     Rate of pore pressure built-up in cyclic triaxial tests (after Lee & Albaisa,1974). 
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Figure 5.2:     Rate of pore pressure built-up in cyclic triaxial tests (after De Alba et al, 1975). 

 

5.2.1 Test Results from the VELACS1 experimental program 

Arulmoli et al (1992) conducted a series of undrained cyclic triaxial and cyclic simple shear 

tests, with a constant frequency of approximately 1Hz, on clean Nevada sand of relative 

density 40% and 60% and consolidation stresses ranging from 40 to 160kPa. These tests are 

reviewed here, focusing on the effect of the specimen’s relative density on parameter A. The 

Nevada sand #120 used in the program possessed the properties summarized in Table 5.1.  

 

Table 5.1: Properties of Nevada sand - VELACS testing program 

Specific 
Gravity  

Gs 

Max. dry density  
ddry, max   

(kN/m3) 

Min. dry density  
ddry, min  

(kN/m3) 

Maximum 
void ratio 

emax 

Minimum 
void ratio  

emin 

2.67 17.33 13.87 0.877 0.511 

 

The laboratory results were grouped according to the relative density of the specimens (40% 

and 60%) and the type of the test (cyclic triaxial or direct simple shear). The laboratory data 

are presented in Figure 5.3 in terms of excess pore pressure ratio, ru, plotted against the 

normalized number of loading cycles N to the number of cycles required for liquefaction NL. 

The shaded regions correspond to the results from the laboratory tests, while the 

continuous curves correspond to Equation 5.1 for different values of A. Table 5.2 

summarizes the resulting A values for the four examined cases.  

 

                                                            
1 VELACS: Verification of Liquefaction Analyses by Centrifuge Studies.  
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Based on the above, it is observed that the value of 0.70 characterizes the looser sand 

formation examined, and is representative of the undrained cyclic triaxial test results. 

Parameter A increases with relative density and is consistently greater in the case of the 

cyclic direct simple shear test results.  

 

Table 5.2: Typical A values for the VELACS laboratory test results 

Test Type 
A Values 

Dr = 40% Dr = 60% 

Cyclic TX 0.70 0.80 – 1.00 

Cyclic DSS 1.20 – 1.40 1.40 – 1.80 

 

 

Figure 5.3: Comparison of experimental liquefaction curves from VELACS testing 
program and analytical solution for various A values.  
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5.2.2  “X-SOILS” laboratory test results 

The second set of laboratory test results is taken from the research program “X-SOILS: 

Foundations in seismically sensitive soils undergoing strong earthquake motions”2 and 

concerns the series of undrained cyclic torsional tests on hollow specimens coordinated by 

Associate Professor of N.T.U.A. V. Georgiannou. The tests were performed on sand M31 with 

four different values of Fines Content (0, 5, 10, and 15%) and at three different levels of 

consolidation stress (50, 100 and 300kPa). The specific gravity was found equal to Gs = 2.65 

for the clean sand, equal to Gs = 2.66 for the non-plastic silt (NP) and the grain size 

distribution curve for the two soil formations is presented in Figure 5.4. Each specimen was 

tested under a harmonic excitation with constant amplitude of shear stress and loading 

cycle period equal to T = 10sec until liquefaction. Detailed information about each test is 

provided in Table 5.3. Note that all these tests were conducted under isotropic initial 

consolidation stresses (i.e. Ko = 1) and in this respect, they are similar to cyclic triaxial 

liquefaction tests.  

Considering initial liquefaction, when shear strain γ exceeds ±1%, the number of cycles to 

liquefaction NL was determined for all tests. Moreover, given the period of each loading 

cycle, all intermediate cycles were determined and the excess pore pressure ratio was then 

plotted against the N/NL ratio, in the same format as the previous laboratory test results 

from the VELACS project. Figure 5.5 summarizes the aforementioned plots, where tests are 

grouped according to the consolidation stress and the Fines Content. In the same plots, 

Equation 5.1 is also added for different A values, which best fit the experimental curves. 

 

Figure 5.4: Grain size distribution curves for the M31 sand and the Non-Plastic silt used 
in X-SOILS laboratory testing program.  

                                                            
2
 The “X-SOILS: Foundations in seismically sensitive soils undergoing strong earthquake motions” program was 

funded from the European Union and the General Secretariat for Research and Technology (GSRT) 
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The outcome from the above analysis, in terms of the resulting A values, is summarized in 

Table 5.4. It now becomes clear that A equals 0.7 only for the clean sand specimens under 

the lowest consolidation stress of 50kPa. An increase in the consolidation stress leads to an 

increase in the value of A, up to twice the value of 0.7, which was initially proposed by De 

Alba et al. (1974). The fines content (F.C.) appears to influence the A value, in a less 

consistent trend. At low consolidation stress (50kPa) an increase in the fines content (F.C. = 

0 ÷ 15%) leads to an increase in the A value. On the contrary, at large consolidation stresses 

(100 & 300kPa) a corresponding increase leads to a decrease in the obtained A values.  

 

Table 5.3: Cyclic torsional tests performed at N.T.U.A. 

Test 
Number 

Initial 
Height 
(mm) 

Fines 
Content - 
F.C. (%) 

Initial 
void 
ratio 

Consolidation 
stress                    
(kPa)  

Dr (%)  
Final 

Height 
(mm) 

Final 
void 
ratio 

CY-SH1 138.210 0 0.650 300 65 138.04 0.631 

CY-SH3 136.963 0 0.685 300 54 136.833 0.631 

CY-SH4 136.703 0 0.678 50 57 136.693 0.675 

CY-SH5 136.446 0 0.637 50 69 136.406 0.634 

CY-SH6 136.576 0 0.647 50 66 136.556 0.645 

CY-SH7 137.353 0 0.641 100 68 137.323 0.635 

CY-SH8 137.466 0 0.652 100 65 137.396 0.646 

CY-SH9 137.350 0 0.673 100 58 137.29 0.666 

CY-SH10 140.256 0 0.674 100 58 140.206 0.667 

CY-SH11 137.806 5 0.654 300 - 137.586 0.639 

CY-SH12 138.173 5 0.650 300 - 137.933 0.636 

CY-SH13 137.323 5 0.631 300 - 137.123 0.619 

CY-SH14 137.560 5 0.634 300 - 137.41 0.62 

CY-SH15 138.843 5 0.655 50 - 138.843 0.654 

CY-SH16 139.646 5 0.712 50 - 139.646 0.709 

CY-SH17 139.513 5 0.691 50 - 139.463 0.697 

CY-SH18 137.110 5 0.658 100 - 137.06 0.651 

CY-SH20 138.046 5 0.667 100 - 138.006 0.66 

CY-SH21 136.650 5 0.671 100 - 136.6 0.659 

CY-SH24 140.196 15 0.686 300 - 139.966 0.665 

CY-SH25 140.180 15 0.723 300 - 139.93 0.7 

CY-SH26 139.643 15 0.690 300 - 139.443 0.675 

CY-SH28 140.096 15 0.716 100 - 139.996 0.709 

CY-SH29 138.730 15 0.663 100 - 138.67 0.653 

CY-SH30 137.760 15 0.702 50 - 137.75 0.7 

CY-SH35 140.360 10 0.697 300 - 140.1 0.654 

CY-SH36 130.167 10 0.648 300 - 129.832 0.631 

CY-SH40 132.968 10 0.721 100 - 132.926 0.716 
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Table 5.4:  Typical A values for the N.T.U.A. laboratory test results 

Consolidation 
Stress (kPa) 

A Values 

F.C.  
0% 

F.C.  
5% 

F.C.  
10 - 15% 

50 0.70 0.80  1.00 

100, 300 1.20 – 1.40 1.10 – 1.20 0.80 – 1.00 

 

 

Figure 5.5: Comparison between X-SOILS laboratory liquefaction curves and analytical 
solution for different A values. 
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5.3 Investigation of the effect of A on the designparameters of gravel 
drains 

The effect of A on the design of gravel drains is parametrically investigated with the revised 

method by Bouckovalas et al. (2009) and compared to the Seed & Booker (1977) theory. 

Both methodologies were programmed in Mathematica (Wolfram Research Inc) allowing the 

reproduction of the initial design charts by Seed & Booker (1977), as well as the simulation 

of the revised methodology of Bouckovalas et al. (2009). The overall effect of A was 

examined with respect to the drain spacing ratio a/b, the maximum excess pore pressure 

ratio rumax, and the replacement coefficient αs.  

5.3.1 Effect of A on the existing design charts  

The design charts proposed by Bouckovalas et al. (2009), for A = 0.70, were regenerated for 

the new A value of 1.40. For this computation, both initial and boundary conditions were 

kept identical to those originally introduced by the authors, while the basic problem 

parameters are summarized in the following Table 5.5.  

 

Table 5.5:  Basic problem parameters used in the analysis 

Horizontal soil permeability  
ks (m/sec) 

10-4 

Initial vertical effective stress 
ς’v (kPa) 

100 

Empirical parameter A 0.70 & 1.40 

Coefficient of soil compressibility  
mv (m

2/kN) 
5×10-5 

Gravel drain radius a 0.4 

 

The modified design charts are computed for four levels of seismic motion, expressed 

through the N/NL ratio and six values for the dimensionless time factor Tad. More specifically, 

for a given Tad value, the basic differential equation is analytically solved for an initial a/b 

value of 0.001 and the procedure is repeated at an interval of 0.005 until the desired range 

of 0 ≤ a/b ≤ 0.5 is covered. At each step, the maximum excess pore pressure ratio is tracked 

and stored along with the corresponding a/b value in the form of a table. Because this 

computation is rather complicated, the procedure is repetitive and requires numerous steps 

to cover the desirable range for the a/b design parameter (0 ≤ a/b ≤ 0.5). To visibly 

demonstrate the effect of A on the design charts, both sets of diagrams, for A = 0.70 and 
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1.40 are plotted together in Figure 5.6, for Neq/NL ratio from 1 to 4 and all six Tad values (2, 

10, 25, 50, 100 and 200).  

It appears from Figure 5.6, that A significantly affects the design charts. In particular, for 

large ru,max values (greater than about 0.35 for all cases), a reduction in the Tad time factor 

leads to a distinct reduction in the a/b ratio, resulting in a sparser grid of gravel drains. On 

the contrary, smaller ru,max values lead to an increase in the a/b ratio, thus resulting in a 

denser grid of gravel drains. The previous effect is reinforced when Neq/NL ratio increases 

from 1 to 2, while for values greater than 2, no further offset is noticed. Overall, considering 

a design range of ru,max between 0.30 ÷ 0.50, it is concluded that A values greater than 0.70, 

introduce a less conservative approach to the design of gravel drains.  

 

 

Figure 5.6: Effect of A on the design charts proposed by the revised method by 
Bouckovalas et al. (2009). 
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The effect of A is further evaluated through the comparison between the Seed & Booker 

(1977) design charts for A = 0.70 and the revised charts by Bouckovalas (2009) for A = 1.40, 

presented in Figure 5.7. The above charts concern values of Neq/NL ratio from 1 to 4 and Tad 

= 5 ÷ 200. The observation of the two sets of curves reveals the over-conservatism of the 

Seed & Booker (1977) theory, given the greater a/b ratio, which is consistently obtained for 

the same ru,max value. This effect becomes even more intense at increased Neq/NL ratios, 

causing a reduction in the a/b ratio, leading to a sparser gravel drain grid, of up to 20%, for a 

common ru,max design value of 0.5, Neq/NL = 2 and Tad = 5. Note that for Neq/NL > 2 there is 

practically no further improvement in the curve offset, therefore the effect of the intensity 

of the seismic motion is rather limited beyond this threshold. Paradoxically, for ru,max values 

bellow 0.30, the previously described picture is reversed and the revised design curves by 

Bouckovalas et al. (2009) for A = 1.40 result in a denser grid. Such low ru,max values though, 

are not commonly used in design.  

 

  

Figure 5.7: Comparative evaluation of the Seed & Booker (1977) and the revised 
method [Bouckovalas et al. (2009)] design charts.  
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5.3.2 Effect of A on the allowable excess pore pressure ratio rumax 

Proceeding to the effect of A on the excess pore pressure ratio, the ru,max predictions by 

Bouckovalas et al. (2009) for A = 0.70 and 1.40 are plotted against the a/b ratio for Neq/NL=1 

& 2 and Tad = 5÷200 and presented in Figure 5.8. For Neq/NL = 1, the (ru,Rev.)A=1.40/(ru,Rev.)A=0.70 

ratio reaches a minimum at about unity and increases rapidly above a certain a/b threshold, 

which largely depends on the Tad dimensionless factor. For strong seismic motions (i.e. 

Neq/NL=2) the corresponding ratio under examination reaches a minimum at around 0.5, 

then following a similar pattern to the previous case for increasing values of a/b and 

decreasing Tad.  

 

 

Figure 5.8: Effect of A = 1.40 on the ru,max value, predicted by Bouckovalas et al. (2009), 
with regard to the gravel drain spacing a/b.  

 

The effect of A on the excess pore pressure ratio is further evaluated by comparing the 

predictions by Bouckovalas et al. (2009) to the corresponding ru values predicted by the Seed 

& Booker theory (1977). The ratio of (ru,Rev.)A=1.40/(ru,S&B.)A=0.70 is plotted against a/b for Neq/NL 

equal to 1 & 2 and Tad = 5 ÷ 200 as presented in Figure 5.9. Overall, a similar behavior to 

Figure 5.8 is noted, with the main conclusion being that ru depends mainly on the intensity 

of the seismic motion expressed through the Neq/NL term and secondarily on the a/b ratio or 

the dimensionless factor Tad.  

The effect of A on the excess pore pressure ratio becomes even more apparent when 

eliminating all other parameters involved in the comparison, such as the distance between 

the drains (a/b ratio) and the Tad factor. For this purpose, in Figure 5.10 the ratio of the ru 

predictions of the revised method introduced by Bouckovalas et al. (2009), for A equal to 
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0.70 and 1.40, [(ru,Rev.)A=1.40/(ru,Rev.)A=0.70] is plotted against the excess pore pressure ratio for A 

equal to 1.40 (ru,Rev.)A=1.40, taking into account all four levels of seismic motion intensity 

(Neq/NL = 1 ÷ 4).  The ru range used in design, (0.25 ÷ 0.50), is indicated by the shaded region.  

 

 

Figure 5.9: Effect of A = 1.40 on the ru,max value, predicted by Bouckovalas et al. (2009), 
and Seed & Booker (1977) with regard to the gravel drain spacing a/b. 

 

 

Figure 5.10: Deviation of the excess pore pressure ratio predictions by Bouckovalas et al. 
(2009) for A = 0.70 and 1.40.    
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The ratio under consideration [(ru,Rev.)A=1.40/(ru,Rev.)A=0.70] within the shaded region of interest, 

is slightly greater than unity for all Neq/NL values, while the maximum reduction occurs for ru 

values between 0.40 and 0.50, which consist the most commonly used values in design. 

More specifically, in the range of 0.25 ≤ (ru,Rev.)A=1.40  ≤ 0.35 the pore pressure values 

predicted by Bouckovalas et al. (2009) applied for A = 1.40 [(ru,Rev.)A=1.40]  are greater up to 1.5 

times than the equivalent ones when A equals 0.70. [(ru,Rev.)A=0.70], while their ratio remains 

independent of the intensity of ground motion (Neq/NL ratio). In the range of 0.35 ≤ 

(ru,Rev.)A=1.40  ≤ 0.50 the pore pressure values predicted by Bouckovalas et al. (2009) for A = 

1.40 [(ru,Rev.)A=1.40]  are lower than the equivalent ones for A = 0.70 and reach a minimum 

equal to [(ru,Rev.)A=1.40/(ru,Rev.)A=0.70] = 0.9 for Neq/NL = 1 and 0.5 when Neq/NL = 2 ÷ 4. Note that 

a reduction in the ratio under consideration [(ru,Rev.)A=1.40/(ru,Rev.)A=0.70], implies that for the 

same a/b ratio, design charts for A = 1.40 lead to a lower excess pore pressure generation. 

Moreover, all curves for Neq/NL greater that 2 practically coincide, allowing the reduction of 

the initially four design charts to two. 

A similar comparison is attempted in Figure 5.11 between the excess pore pressure ratio 

predicted by the Seed & Booker theory (1977) for A = 0.70 and the corresponding one from 

the revised methodology for A = 1.40. The ratio of (ru,Rev.)A=1.40 over (ru,S&B.)A=0.70 is plotted with 

respect to the (ru,Rev.)A=1.40 for all four Neq/NL categories. Within the shaded region of interest 

*0.25 ≤ (ru,Rev.)A=1.40  ≤ 0.50+ the pore pressure values for the Bouckovalas et al. (2009) 

method, applied for A = 1.40 [(ru,Rev.)A=1.40],  are lower than the equivalent ones when A 

equals 0.70 in the Seed & Booker theory [(ru,Rev.)A=0.70], thus resulting in lower excess pore 

pressures for the revised methodology considering the same grid configuration. It is also 

clear that the greater excess pore pressure ratio reduction (up to 60%) occurs for Neq/NL = 2 

÷ 4, also pointing out the detachment of the excess pore pressure built up from seismic 

motions stronger than Neq/NL = 2.  
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Figure 5.11: Deviation of the excess pore pressure ratio predictions by Bouckovalas et al. 
(2009) for A = 1.40 and Seed & Booker (1977) for A = 0.70.   

 

5.3.3 Effect of A on the replacement coefficient αs.  

Following the comparisons described previously, the effect of A on the replacement 

coefficient αs is examined for both methodologies, for the case of a triangular grid, 

associating αs to the distance between the drains as shown below:  

αs = 0.91× (a/b)2                                                                                                           5.2 

where   a = the radius of the gravel drain  

b = the center-to-center distance between two consecutive drains 

The analysis is performed for a maximum excess pore pressure (ru) value equal to 0.50, 

which consists the most commonly used limit in current practice and four levels of seismic 

motion intensity rendering Neq/NL = 1 ÷ 4.  

In Figure 5.12a, the replacement coefficient αs predicted by the revised method applied for 

A equal to 0.7 and 1.40 is plotted against the dimensionless time factor Tad for ru,max = 0.50 

and Neq/NL = 1 ÷ 4. It is concluded that, for a given Tad value, the solid curves for A = 1.40 

result in lower αs values. For example, for Tad = 5, A = 1.40 and Neq/NL = 4 the design ru value 

of 0.50 is satisfied, in the case of A = 1.40, at αs equal to around 0.13, rendering an a/b ratio 

of 0.38, whereas the use of A = 0.70 requires a ratio of about 0.165 (that is a/b = 0.43), this 

being translated into a 19% reduction in terms of αs.  

The above conclusion is fully clarified in Figure 5.12b, where the ratio of (αs, Rev.)A=1.40 over (αs, 

Rev.)A=0.70, is plotted with respect to the dimensionless time factor Tad. The examined ratio is 
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constantly lower than unity, for all four Neq/NL levels, and follows a reducing trend for 

increasing Tad values. Therefore, the use of A = 1.40 results in lower αs values, allowing the 

configuration of a less dense gravel drain grid, hence leading to a more economical design. 

The following two figures present an equivalent comparison between the revised method’s 

predictions for A = 1.40 and the Seed & Booker (1977) theory predictions for A = 0.70. In 

Figure 5.13a the replacement coefficient αs is plotted against the dimensionless factor Tad 

for a maximum excess pore pressure ratio of 0.50 and Neq/NL = 1 ÷ 4. The reduction in the 

required αs for the same Tad time factor is more than evident, and more importantly, the 

plotted curves present a faster reducing trend when compared to Figure 5.12a. Following 

the previous example, according to the revised method, for Tad = 5 A = 1.40 and Neq/NL = 4, 

the design value of 0.50 is satisfied at a replacement ratio αs equal to 0.13, rendering a/b = 

0.38. Accordingly, the traditional Seed & Booker (1977) theory requires a ratio of about 0.20 

rendering a/b = 0.47, this being translated into a 35% reduction in terms of αs for a 

triangular grid. The above estimate is significantly higher than the equivalent reduction 

evaluated in Figure 5.12a, providing solid evidence on the over-conservatism of the Seed & 

Booker (1977) theory. In Figure 5.13b, the ratio of (αs, Rev.)A=1.40 over (αs, S&B)A=0.70, is plotted 

with respect to the dimensionless time factor Tad. The examined ratio is constantly lower 

than unity, for all four Neq/NL levels, and follows a reducing trend at increasing Tad values as 

was also commented in Figure 5.12b. Note that the reducing trend in this case is much faster 

than in Figure 5.12b, highlighting again the conservative approach in the design of gravel 

drains proposed by Seed & Booker (1977).   

 

                                              (a)                                                                           (b) 
Figure 5.12: Variation of the replacement coefficient αs predicted by Bouckovalas et al. 

(2009) with respect to Tad time factor for A = 0.70 & 1.40, ru,max = 0.50, 

Neq/NL=1  4.  
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                                                (a)                                                                         (b) 

Figure 5.13: Variation of the replacement coefficient αs predicted by Bouckovalas et al. 
(2009) and Seed & Booker (1977), with respect to Tad time factor for A = 0.70 

& 1.40, ru,max = 0.50, Neq/NL = 1  4.  

 

5.4 Designing for different A values 

As pointed out in the previous paragraph, the effect of A cannot be ignored in the design of 

gravel drains. For that reason, the existing design charts could either be modified or new 

charts will be generated, incorporating the role of A in the configuration of the gravel drain 

grid. The modification of the existing design charts was initially attempted based on the 

allowable excess pore pressure ratio (ru,max) and then with regard to the rate of the excess 

pore pressure generation ((∂ru/∂N). In the end, given the inadequacy of both attempts new 

design charts are formulated and incorporated in the revised method proposed by 

Bouckovalas et al. (2009).  

5.4.1 Modification based on the predetermined excess pore pressure ratio 
(PHRI, 1997)  

In the guidelines issued by the Port Harbor Research Institute (1997) the equivalent time to 

attain liquefaction under undrained conditions tl is corrected with respect to the excess pore 

pressure characteristics of the available laboratory tests. In summary, the corrected time is 

given as: 

*

)/(

)/(
l
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Lu

l t
NN

NN
t                                                               5.3 

where   tl = the equivalent time until liquefaction after the correction 
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Nu/NL = the Neq/NL value corresponding to the allowable excess pore 

pressure ratio (ru, design) in the excess pore pressure generation curve 

obtained from the laboratory test 

No/NL = the Neq/NL value obtained from the pore pressure generation curve 

from De Alba et al. (1974), where A = 0.70.  

Based on the above methodology, for a given allowable excess pore pressure ratio, the 

liquefaction curve by De Alba et al. (1974) for A* = 0.70 is modified to fit the experimentally 

constructed curve, in which A is rarely equal to 0.70, in order to specify a new corrected 

Neq/Nl value. 

Following a similar conception, the existing design charts by Seed & Booker (1977) and 

Bouckovalas et al. (2009) are modified according to the procedure described below:    

1. The allowable excess pore pressure ratio ru,max and the suitable A ( 0.70) value best 

fitting the laboratory data are selected.  

2. Given the equivalent number of loading cycles (Neq), the intensity of the seismic 

motion (i.e. Neq/NL = 1 - 4) the number of cycles required to liquefaction NL is 

determined.  

3. The parameters (A and NL), specified in the previous steps, are now used to 

determine the number of loading cycles, N, rendering the design ru,max value (from 

Step 1) through Equation 5.4 [Seed, Martin & Lysmer (1975)].  

1/2

1 2
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A
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N π
r N N r

π N
    

     
  

                           5.4 

4. The same procedure is followed for A* = 0.70 and the previously determined N, 

rendering the equivalent number of loading cycles for liquefaction NL
* for the same 

ru,max value, now solving Equation 5.4 for NL:  

*
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                         5.5   

5. The design methods proposed by Seed & Booker (1977) and Bouckovalas et al. 

(2009) are solved analytically for A* = 0.70 and the NL
* value from step 4, and the 

two design curves are compared. 

The above method was applied for a minimum and a maximum limit of excess pore pressure 

ratio, commonly encountered in design codes, i.e. ru,max = 0.25 and 0.50, A = 0.70 & 1.40, Neq 

= 10 and Neq/NL = 1 & 2.  
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Application for ru,max = 0.25.- The initial liquefaction curves, for A equal to 0.70 and 1.40 

respectively, are plotted in Figure 5.14 with solid lines. For both Neq/NL = 1 and 2, the 

allowable ru,max limit determines the equivalent number of loading cycles N. The initial 

liquefaction curves for A = 0.70 are subsequently shifted, until they converge to the 

previously specified combination of N and allowable excess pore pressure ratio ru,max. The 

corrected curves are outlined in the dashed lines and therefore, the equivalent Neq/NL
* ratio 

is also specified. The new Neq/NL
* value is used to analytically generate the design curves of 

ru,max as a function of the a/b ratio for both methodologies.  

The results for the Seed & Booker (1977) theory are summarized in Figure 5.15, including 

the original and the modified design curves for Tad = 10 and 50. It is observed that there is no 

apparent matching between the A = 1.40 design curve and the approximation for A* = 0.70 

and Neq/NL
* = 3.84. In fact, the modified curve results in a greater a/b ratio, thus in a less 

dense grid, than what is initially predicted for A = 1.40.  

 

 

                                       (a)                                                                                 (b) 

Figure 5.14: Initial and modified liquefaction curves for allowable excess pore pressure 
ratio ru,max = 0.25.  
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                                           (a)                                                                                 (b) 

Figure 5.15: Exact (Neq/NL = 1,2) and modified (Neq/NL* = 3.84, 7.67 respectively) design 
curves for the Seed & Booker (1977) theory. 

 

A similar behavior is observed in terms of replacement coefficients, αs, considering a 

triangular grid. The correlation between the replacement coefficients for a triangular grid, 

when using the initial and the modified Seed & Booker (1977) design charts referred to 

earlier, is plotted on a one-to-one basis in Figure 5.16a, for a typical range of Tad from 10 to 

100. The values obtained with the modified design curve (noted as αs
*) are greater by 25% 

than those obtained with the exact solution (noted as αs). The convergence between the two 

replacement coefficient values is not satisfactory, as it is also apparent from Figure 5.16b, 

where the ratio of the αs values for A = 1.40 over the modified values αs
* (for A = 0.70 and 

Neq/NL
* = 3.84 & 7.67) is plotted with respect to αs

*. The approximated replacement 

coefficients are consistently higher than the exact values for A = 1.40 and Neq/NL = 1 & 2.  
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                               (a)                                                                         (b) 

Figure 5.16: Effect of modified Seed & Booker (1977) design curves on the replacement 
coefficient αs* for allowable ru,max = 0.25 and Tad = 10, 25, 50, 100 and Neq/NL 
= 1 & 2.  

 

Accordingly, the original and the modified design curves for the revised method by 

Bouckovalas et al. (2009) are presented in Figure 5.17a&b, for Neq/NL = 1 & 2 respectively. 

Also in this case there is no apparent convergence between the original and the 

approximated design charts in the initially set allowable excess pore pressure value, but in a 

much lower one. The effect of the above discrepancy is examined in terms of replacement 

coefficients, in Figure 5.18a & b, where it is noted that the modified solution can predict 

replacement coefficients of up to 65% greater than the exact ones.  

 

Table 5.6 summarizes the predictions of the exact and modified design curves in terms of 

drain spacing (a/b) and replacement coefficients for four Tad values and Neq/NL = 1 & 2 for 

both methodologies.  

Therefore, the proposed approximation in the design charts, for such a low allowable excess 

pore pressure ratio, did not render the desired results, leading to conservative design.  
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                                       (a)                                                                             (b) 

Figure 5.17: Exact (Neq/NL = 1,2) and modified (Neq/NL* = 3.84, 7.67 respectively) design 
curves for the Bouckovalas et al. (2009) revised method.  

 

 

             (a)                                                                             (b) 

Figure 5.18: Effect of modified design curves by Bouckovalas et al. (2009) on the 
replacement coefficient αs

* for allowable ru,max = 0.25 and Tad = 10, 25, 50, 
100 and Neq/NL = 1 & 2.  
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Table 5.6: Spacing ratios (a/b) and replacement coefficients for ru,max = 0.25. 

Τad 

Seed & Booker (1977) ru,max=0.25 

Νeq/Nl = 1 Νeq/Nl = 2 

A=1.4, Nl A=0.7, N*l A=1.4, Nl A=0.7, N*l 

a/b as a/b a*s a/b as a/b a*s 

10 0.422 0.162 0.467 0.198 0.500 0.228 0.500 0.228 

25 0.322 0.094 0.367 0.123 0.395 0.142 0.440 0.176 

50 0.256 0.060 0.296 0.080 0.321 0.094 0.366 0.122 

100 0.201 0.037 0.235 0.050 0.257 0.060 0.297 0.080 

Τad 
Revised Method, Bouckovalas et al. (2009) ru,max=0.25 

a/b as a/b a*s a/b as a/b a*s 

10 0.340 0.105 0.428 0.167 0.415 0.157 0.500 0.228 

25 0.255 0.059 0.331 0.100 0.316 0.091 0.403 0.148 

50 0.200 0.036 0.265 0.064 0.250 0.057 0.328 0.098 

100 0.154 0.022 0.210 0.040 0.198 0.036 0.266 0.064 

 

Application for ru,max = 0.50.- The previously described process was applied for an allowable 

excess pore pressure equal to 0.50, which is the most commonly used design limit. The 

original and modified liquefaction curves are presented in Figure 5.19, rendering Neq/NL
* = 

1.62 and 3.25 respectively for initial Neq/NL values of 1 and 2.  

 

 

Figure 5.19: Initial and modified liquefaction curves for allowable excess pore pressure 
ratio ru,max = 0.50.  
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Consequently, the Seed & Booker (1977) theory for A = 0.70, A = 1.40 and all relevant Neq/NL 

values is analytically solved and the resulting design curves for Tad = 10 and 50 are presented 

in Figure 5.20a & b. It is observed that the two design curves do not converge in the 

allowable ru,max design value, but in a much lower one. The modified curves generally result 

in greater a/b ratios thus in a more conservative approach.  

 

 

                                        (a)                                                                           (b) 

Figure 5.20: Exact (Neq/NL = 1,2) and modified (Neq/NL
* = 1.62, 3.25 respectively) design 

curves for the Seed & Booker (1977) theory.  

 

The initial and modified design curves for the Bouckovalas et al. (2009) revised method are 

presented in Figure 5.21, where yet again the desired convergence is attained at much lower 

allowable excess pore pressure values. More importantly, the discrepancy between the two 

sets of design curves appears to be considerable enough when compared to the Seed & 

Booker (1977) theory. 

 In terms of replacement coefficients the previously described behavior does not vary much. 

Figure 5.22 and Figure 5.23 indicate that the modified design curves lead to an increase in 

the replacement coefficients ranging from 40 ÷ 80% for the Seed & Booker (1977) and 

Bouckovalas et al. (2009) method respectively. Moreover, the ratio of αs over αs
* is 

consistently below unity following a slightly increasing trend at increasing Tad values. Table 

5.7 summarizes the predictions of the exact and modified design curves in terms of drain 

spacing (a/b) and replacement coefficients for four Tad values and Neq/NL = 1 & 2 for both 

methodologies.  
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Overall, both applications, developed earlier, indicate that modifying the existing design 

charts with respect to the allowable excess pore pressure ratio ru,max in order to take into 

account A values greater than the traditional value of 0.70, does not provide satisfactory 

results. The modified design charts lead to more conservative spacing dimensions (a/b ratio) 

therefore are not recommended for further use.  

 

               (a)                                                                                (b) 

Figure 5.21: Exact (Neq/NL = 1,2) and modified (Neq/NL
* = 1.62, 3.25 respectively) design 

curves for the Bouckovalas et al. (2009) revised method.  

 

                (a)                                                                              (b) 

Figure 5.22: Effect of modified design curves by Bouckovalas et al (2009) on the 
replacement coefficient αs* for an allowable ru,max = 0.50 Tad = 10, 25, 50, 100 
and Neq/NL = 1 & 2.  
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             (a)                                                                              (b) 

Figure 5.23: Effect of modified design curves by Seed & Booker (1977) on the 
replacement coefficient αs

* for allowable ru,max = 0.50 Tad = 10, 25, 50, 100 
and Neq/NL = 1 & 2. 

 

Table 5.7:  Spacing ratios (a/b) and replacement coefficients for ru,max = 0.50 

Τad 

Seed & Booker (1977) ru,max=0.50 

Νeq/Nl = 1 Νeq/Nl = 2 

A=1.4, Nl A=0.7, N*l A=1.4, Nl A=0.7, N*l 

a/b as a/b a*s a/b as a/b a*s 

10 0.251 0.057 0.289 0.076 0.319 0.093 0.366 0.122 

25 0.182 0.030 0.214 0.042 0.236 0.051 0.276 0.069 

50 0.138 0.017 0.166 0.025 0.183 0.030 0.218 0.043 

100 0.106 0.010 0.129 0.015 0.142 0.018 0.172 0.027 

Τad 
Revised Method, Bouckovalas et al. (2009) ru,max=0.50 

a/b as a/b a*s a/b as a/b a*s 

10 0.196 0.035 0.264 0.063 0.250 0.057 0.329 0.098 

25 0.138 0.017 0.191 0.033 0.181 0.030 0.245 0.055 

50 0.106 0.010 0.150 0.020 0.139 0.018 0.194 0.034 

100 0.078 0.006 0.113 0.012 0.107 0.010 0.151 0.021 
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5.4.2 Modification of design charts with respect to the rate of excess pore 
pressure built up.  

Given the inadequacy of the previous approach, the second method which was applied 

concerns the modification of the initial liquefaction curves for A = 0.70 with regard to the 

rate of excess pore pressure ratio built up (∂ru/∂N) predicted by the corresponding curves 

for A = 1.40 at any allowable ru,max value. The above modification is outlined in the following 

steps:   

1. The allowable excess pore pressure value ru,max and the appropriate A value which 

best fits the available experimental data (A ≠ 0.70) are selected. 

2. The number of cycles for liquefaction NL is determined based on the equivalent 

number of cycles Neq and the Neq/NL value selected for design.  

3. Given all previous data the solution of Equation 5.3 (Seed, Martin & Lysmer, 1975) 

renders the number of loading cycles N for the allowable excess pore pressure value 

ru,max. 

4. The rate of excess pore pressure ratio built up (∂ru/∂N) is given as: 

 
    A
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                                 5.6 

5. Consequently, Equation 5.6 is solved (by trial and error) with regard to the 

equivalent number of loading cycles to liquefaction NL
*, for A* = 0.70, and the terms 

of ∂ru/∂N and N determined previously. Thus Equation 5.7 results:  
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                             5.7 

6. The design methods developed by Seed & Booker (1977) and Bouckovalas et al. 

(2009) are solved analytically for A* = 0.70 and the NL
* value from step 5, and the 

two sets of design curves are then compared. 

For consistency purposes, the above process is applied for a minimum and a maximum limit 

of excess pore pressure ratio, commonly encountered in design codes, ru,max = 0.25 and 0.50, 

A = 0.70 & 1.40, Neq = 10 and Neq/NL = 1 & 2.  

Application for ru,max = 0.25.- Figure 5.24 summarizes Steps 1 through 5 which result in the 

equivalent number of loading cycles to liquefaction NL
*. More specifically, the liquefaction 

curves for A = 0.70 and 1.40 and Neq/NL = 1 & 2, are plotted in the lower part of the graph, 
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whereas the rate of excess pore pressure built up (∂ru/∂N) against the number of loading 

cycles N is located in the upper-part. The required NL
* is the number of loading cycles for 

which the two liquefaction curves for A = 1.40 and A* = 0.70, present the same gradient, that 

is the same ∂ru/∂N value. Thus, for an allowable excess pore pressure ratio ru,max = 0.25 it is 

found that the two design methodologies should be now solved for Neq/NL
* = 1.58 and 3.15 

respectively for initial Neq/NL values of 1 & 2.  

 

 

Figure 5.24: Exact and modified liquefaction curves and corresponding rate of excess 
pore pressure built-up.   

 

The exact and modified design curves, when applying the Seed & Booker method, for Tad = 

10 & 50, are presented in Figure 5.25. It is observed, once again, that the modified sets of 

curves are not in good agreement with the exact curves, rendering, in fact, lower spacing 

dimensions (a/b ratios) for the same allowable excess pore pressure ratio ru,max. In terms of 

replacement coefficient (αs) the correlation between the exact and the approximated values 

of αs presented in Figure 5.26a, for a typical range of Tad from 10 to 100, also indicate the 

above discrepancy. The proposed approximation, results in reduced αs
* values of up to 20%, 

hence leading to inadequate design. The previous conclusion is further justified when 
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looking at the ratio of αs values when A = 1.40 over the modified values for A* = 0.70, 

referred to as αs
*, in Figure 5.26b. The ratio of αs/αs

* consistently receives values greater 

than unity independently of Neq/NL, following a decreasing trend at increasing Tad values.  

Figure 5.27 includes the same group of design curves for the revised method by Bouckovalas 

et al. (2009). The two sets of curves overlap at the desired excess pore pressure ratio and 

the convergence between the exact and the modified design curves appears to be 

independent of the intensity of seismic motion (Neq/NL) and the dimensionless time factor 

Tad. Also, from Figure 5.28a, both replacement coefficients, plotted on a one-to-one 

comparison are practically equal in the Tad range examined. Additionally, the ratio of αs/αs
* 

plotted against the replacement coefficient given by the modified design curve (αs
*), in 

Figure 5.28b, is almost equal to unity, verifying the coincidence observed earlier between 

the two design curves.  Table 5.8 summarizes the predictions of the exact and modified 

design curves in terms of drain spacing (a/b) and replacement coefficients for four Tad values 

and Neq/NL = 1 & 2 for both methodologies. 

 

                (a)                                                                              (b) 

Figure 5.25: Exact (Neq/NL = 1,2) and modified (Neq/NL* = 1.58, 3.15 respectively) design 
curves for the Seed & Booker (1977) theory. 
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                (a)                                                                             (b) 

Figure 5.26: Effect of modified design curves by Bouckovalas et al (2009) on the 
replacement coefficient αs* for an allowable ru,max = 0.25, Tad = 10, 25, 50,100 
and Neq/NL = 1 & 2.  

 

           (a)                                                                              (b) 

Figure 5.27: Exact (Neq/NL = 1,2) and modified (Neq/NL* = 1.58, 3.15 respectively) design 
curves for the Bouckovalas et al. (2009) revised method. 
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                  (a)                                                                       (b) 

Figure 5.28: Effect of modified design curves by Bouckovalas et al. (2009) on the 
replacement coefficient αs* for allowable ru,max = 0.25, Tad = 10, 25, 50, 100 
and Neq/NL = 1 & 2.  

 

Table 5.8: Spacing ratios (a/b) and replacement coefficients for ru,max = 0.25. 

Τad 

Seed & Booker (1977) ru,max=0.25 

Νeq/Nl = 1 Νeq/Nl = 2 

A=1.4, Nl A=0.7, N*l A=1.4, Nl A=0.7, N*l 

a/b as a/b a*s a/b as a/b a*s 

10 0.422 0.162 0.369 0.124 0.500 0.228 0.444 0.179 

25 0.322 0.094 0.279 0.071 0.395 0.142 0.345 0.108 

50 0.256 0.060 0.221 0.044 0.321 0.094 0.279 0.071 

100 0.201 0.037 0.173 0.027 0.257 0.060 0.220 0.044 

Τad 
Revised Method Bouckovalas et al. (2009) ru,max=0.25 

a/b as a/b a*s a/b as a/b a*s 

10 0.340 0.105 0.333 0.101 0.415 0.157 0.405 0.149 

25 0.255 0.059 0.250 0.057 0.316 0.091 0.311 0.088 

50 0.200 0.036 0.196 0.035 0.250 0.057 0.247 0.056 

100 0.154 0.022 0.153 0.021 0.200 0.036 0.197 0.035 

 

Application for ru,max = 0.50.- The previous set of figures was regenerated for an allowable 

excess pore pressure ratio of ru,max = 0.50. The initial (A = 0.70 & 1.40) and modified 

liquefaction curves are presented in Figure 5.29, from which the required Neq/NL
* ratio is 

found equal to 0.86 and 1.71 for initial values of Neq/NL of 1 and 2 respectively. The Seed & 

Booker (1977) initial and modified design curves are plotted in Figure 5.30 for Tad = 10 & 50. 

Note that the approximated curves do not start from unity, since the Neq/NL
* ratio is lower 
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than unity and no liquefaction occurs. The convergence between the exact and the proposed 

approximation is not satisfactory, since the latter lead to lower a/b values, thus in 

inadequate design. The above discrepancy is also obvious when looking into the 

replacement coefficient αs
* required for a triangular grid. The one-to-one comparison 

between the two solutions is presented in Figure 5.31a, followed by the plot of the ratio of 

αs/αs
* with regard to αs

* in Figure 5.31b. The correlation between the two replacement 

coefficients is expressed by the following Equation 5.8, implying that the proposed 

approximation leads to values about 20% lower, than those originally predicted by the exact 

solution. Moreover, the ratio of αs/αs
* receives values consistently higher than unity, 

especially for Neq/NL = 1, further supporting the previous observation.  

αs
*≈ 0.80  αs                                                                   5.8 

 

 

Figure 5.29: Exact and modified liquefaction curves and corresponding rate of excess 
pore pressure built-up.   
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               (a)                                                                                (b) 

Figure 5.30: Exact (Neq/NL = 1,2) and modified (Neq/NL* = 0.86, 1.71 respectively) design 
curves for the Seed & Booker (1977) theory. 

 

 

               (a)                                                                               (b) 

Figure 5.31: Effect of modified design curves by Seed & Booker (1977) on the 
replacement coefficient αs* for allowable ru,max = 0.50, Tad = 10, 25, 50, 100 
and Neq/NL = 1 & 2.  

 

The proposed approximation appears to be more efficient in the case of the revised 

Bouckovalas et al. (2009) method as shown in Figure 5.32. The good agreement observed in 

the design chart for Neq/NL = 1 is slightly disturbed for Neq/NL = 2, resulting in greater a/b 

values than those expected for A = 1.40. The replacement coefficient αs
* given by the 

proposed modification, considering a triangular grid is also in good agreement with the 

equivalent coefficient αs, given by the exact solution with A = 1.40. Figure 5.33a visualizes 
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the above observation with a one-to-one comparison between the two coefficients. 

Additionally, the ratio of αs/αs
* plotted against the modified coefficient αs

*, in Figure 5.33b, 

is quite close to unity, for both Neq/NL values examined. The ratio of αs/αs
* slightly deviates 

from unity, for Neq/NL = 2, underestimating the required a/b ratio.  

Overall, the proposed modification, based on the rate of excess pore pressure generation 

(∂ru/∂N), did not match the exact values predicted for A = 1.40 in the case of the Seed & 

Booker (1977) theory, underestimating the required a/b ratio, as opposed to the 

modification based on the allowable excess pore pressure ratio ru,max, developed by PHRI 

(1997), which overestimated the corresponding ratio.  

On the contrary, it appears that the revised method by Bouckovalas et al. (2009) is 

adequately approximated for Neq/NL = 1 and more importantly, independently of the 

allowable ru,max value used in design. The accuracy of the proposed modification is 

questioned though for Neq/NL = 2, given that for increasing ru,max design values, there is a 

deviation of about 15 – 20%, compared to the exact solution. Table 5.9 summarizes the 

predictions of the exact and modified design curves in terms of drain spacing (a/b) and 

replacement coefficients for four Tad values and Neq/NL = 1 & 2 for both methodologies.  

 

 

             (a)                                                                                (b) 

Figure 5.32: Exact (Neq/NL=1,2) and modified (Neq/NL*=0.86, 1.71 respectively) design 
curves for the Bouckovalas et al. (2009) revised method. 
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               (a)                                                                               (b) 

Figure 5.33: Effect of modified design curves by Bouckovalas et al (2009) on the 
replacement coefficient αs* for an allowable ru,max = 0.50 Tad = 10, 25, 50, 100 
and Neq/NL = 1 & 2. 

 

Table 5.9: Spacing ratios (a/b) and replacement coefficients for ru,max = 0.50. 

Τad 

Seed & Booker (1977) ru,max=0.50 

Νeq/Nl = 1 Νeq/Nl = 2 

A=1.4, Nl A=0.7, N*l A=1.4, Nl A=0.7, N*l 

a/b as a/b a*s a/b as a/b a*s 

10 0.251 0.057 0.203 0.038 0.318 0.092 0.297 0.080 

25 0.181 0.030 0.145 0.019 0.236 0.051 0.217 0.043 

50 0.139 0.018 0.111 0.011 0.182 0.030 0.172 0.027 

100 0.106 0.010 0.084 0.006 0.141 0.018 0.132 0.016 

Τad 
Revised Method Bouckovalas et al. (2009) ru,max=0.50 

a/b as a/b a*s a/b as a/b a*s 

10 0.196 0.035 0.190 0.033 0.249 0.057 0.269 0.066 

25 0.139 0.018 0.135 0.016 0.181 0.030 0.197 0.035 

50 0.106 0.010 0.102 0.010 0.139 0.018 0.153 0.021 

100 0.081 0.006 0.077 0.005 0.107 0.010 0.118 0.013 

 

5.4.3  New design charts for different A values 

Given the inadequacy of the previous attempts to modify the existing design charts, the 

revised method by Bouckovalas et al. (2009) is analytically solved for different A values so 

that new design charts are proposed. In the formula for the dimensionless factor Tad, given 

by Equation 5.9, the dynamic time (td) is replaced by the time required for liquefaction tl, 

leading to Equation 5.10 below:  
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Therefore, the new proposed design charts will now be solely a function of the soil 

properties, eliminating the effect of the duration of the seismic motion. The two 

dimensionless time factors (Tad & Tal) are linked through the following relationship (Equation 

5.11):  
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The new design charts are presented in Figure 5.34 for A values 0.70, 1.00, 1.40 and 2.00 

and Tal values 5, 10, 25, 50 and 100 and are generated for three levels of intensity of seismic 

motion (that is Neq/NL = 1, 1.50 & 2), since as it has been pointed out earlier, there is not 

much accuracy added to the design for seismic motions of greater intensity.  
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Figure 5.34: New design charts for the revised method by Bouckovalas et al. (2009) for 
A=0.70, 1.00, 1.40, 2.00 and Neq/NL=1.00, 1.50, 2.00. 

 

More importantly, the effect of the seismic motion intensity becomes important for ru,max 

values greater than about 0.50, since all design curves for any Tal,  converge for ru,max values 

below 0.50. Therefore, the above design charts are further simplified, and are presented in a 

range of ru,max  0 – 0.50, in Figure 5.35. Following a different presentation mode, the design 

charts presented in Figure 5.36 are based on the allowable excess pore pressure ratio value 

ru,max. The a/b ratio is plotted with regard to the dimensionless time factor Tal, for ru,max 

values of 0.20, 0.30, 0.40 and 0.50 and the previously mentioned range of A values.  
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Figure 5.35: New design charts for the revised method by Bouckovalas et al. (2009) for 
A=0.70, 1.00, 1.40, 2.00 maximum ru,max=0.50 and one single Neq/NL intensity.  
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Figure 5.36: Design charts for the revised method by Bouckovalas et al. (2009) for fixed 
allowable excess pore pressure ratio values and A = 0.70, 1.00, 1.40, 2.00. 

Equation Chapter 6 Section 1 
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CHAPTER   6 

 

 

6. Numerical Simulation of Gravel Drain Performance  

 

 

6.1 Introduction 

The present chapter focuses on the drainage function of gravel piles under seismic loading, 

which is numerically simulated using sophisticated numerical tools such as FLAC3D. Starting 

from the free field response, the presence of gravel piles within the liquefiable sand layer is 

then examined, considering the effect of the number of piles, their arrangement in the grid, 

their stiffness relatively to the sand layer, and their relative permeability to the sand layer. 

Moreover, effects not directly related to the drains, such as the grid discretization and the 

boundary conditions are also examined. The particular numerical analyses are evaluated 

primarily in terms of excess pore pressure Δu and excess pore pressure ratio ru, built up and 

secondarily in terms of horizontal acceleration response.  

The most numerically stable and computationally effective arrangement is selected and 

subsequently used in the numerical verification of the analytically derived design charts 

proposed in the design methodology by Bouckovalas et al. (2009). The particular verification 

focuses initially on the appropriate fitting of the epp built-up relationship proposed by De 

Alba et al. (1975), under undrained conditions and then the matching of the numerically 

derived epp ratio (ru) time histories to the analytically derived curves, under drained 

conditions. Due to the lack of information as to a suitable mv,3 value to be used in the 

analytical methodology, the last stage of the verification is performed through back-fitting of 

the analytical solution for specific mv,3 values.  
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Given the uncertainty in the selection of an appropriate mv,3 value, particular effort is 

dedicated in the specification of a suitable range for the particular parameter. To achieve 

this, the back-calculated values are evaluated against (i) numerically obtained mv,3 values, 

referring to the gravel drain – soil system and the element level soil response and (ii) the 

associated mv,3 values proposed in the literature.  

 

6.2 Numerical simulation 

6.2.1 Basic assumptions 

The numerical analyses presented in the present chapter are performed with the finite 

difference code FLAC 3-D, which is described in detail in Appendix A. All the common 

characteristics of the performed numerical analyses are outlined below, followed by 

additional information on each grid configuration.  

Soil Profile & Grid Configuration.- The examined soil profile consists of a 0.50m thick 

liquefiable sand layer encased between two practically impermeable, 0.45m thick, clay 

layers. Besides the free field arrangement, three additional grid configurations, including 

two and four gravel piles arranged either in one or two rows, are examined in order to 

evaluate the effect of the drain number and their arrangement. Subsequently, the optimum 

grid set up is selected to proceed to the analysis of the drainage capacity of gravel piles. The 

particular configurations are described below  

 Free – field (ff) configuration.- In the particular case, a 5.60m×1.40m×1.0m soil 

profile is  considered, also presented in Figure 6.1. The mesh consists of 27 zones of 

0.20m, in the x-direction while in the z-direction the clay layer is divided into three 

zones of 0.15m each and the sand layer into 5 zones of 0.10m. In the y-direction 

only one zone was considered, since for the free field conditions, no differentiation 

along the particular direction is expected. Excess pore pressures and acceleration 

time histories are computed along the mid-depth of the sand layer. 

5.60m 

 

Figure 6.1: Free-field configuration (ff). 

1.0m 

1.40m 
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 Two-pile configuration.- Preserving the soil profile described above, two gravel 

drains are considered along the total height of the mesh. The total dimensions of the 

configuration are 5.60m in length and 1.40m in the other two directions. The two 

gravel drains are 1m(=2a) in diameter, situated at a 2.80m(=b) center – to – center 

distance, rendering a ratio a/b = 0.5/1.4 = 0.357. Due to the symmetry of the 

problem, only half the drains are simulated. Figure 6.2 presents a detailed view of 

the grid configuration which is composed of 4 1.30m×1.40m×1.40m “radial cylinder” 

blocks, such as the one illustrated in Figure 6.3, appropriately oriented to simulate 

vertical cylindrical surfaces. For optimum discretization each block is divided into 6 

zones in the horizontal direction and 11 zones in the vertical direction. As a result, 

the clay layer is divided into 0.20m×0.15m zones, the sand layer into 0.20m×0.10m 

and the gravel drain into 0.25m×0.15m elements within the clay layer and 

0.25m×0.10m elements within the sand layer.  

 

 

 

Figure 6.2: 2-pile configuration (2p) 

 

 

Figure 6.3: Radially graded mesh around cylindrical shaped area – radcylinder.  

 

 Four-pile in one single row (4p).- The specific configuration includes four gravel piles 

located in one single row, presenting the same geometrical features with the 

1.40m 

1.40m 

5.60m 
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previous grid configuration, in terms of drain dimensions and replacement 

coefficient αs. The total length of the grid is 11.20m in the horizontal direction and 

1.40m in the other two directions and the mesh is composed of the same “radial 

cylinder” blocks presenting the same discretization with the two-pile configuration. 

The above are demonstrated in Figure 6.4. 

 

 

Figure 6.4: 4-pile configuration in single row (4p). 

 

 Four-piles in two rows (4psq).- The last configuration consists of four gravel drains 

arranged in a two rows of two drains each, essentially forming a square 

arrangement. The main geometrical features are preserved, using the same “radial 

cylinder” blocks, exhibiting the same mesh discretization. Figure 6.5 displays a 

detailed view of the specific grid. 

 

 

Figure 6.5: 4-pile configuration in square arrangement (4psq). 

 

Soil Properties.- Initial stresses are calculated considering a dry density ρξ = 1.607Mgr/m3 

and a saturated density ρsat = 2Mgr/m3. The resulting effective vertical stress in the middle of 

the sand layer is selected to be equal to 100kPa to facilitate the numerical computations of 

the excess pore pressure ratio ru, in the particular depth. Given the shallow depth of the 

configuration, the 100kPa effective vertical stress in the mid-depth is achieved be applying a 

1.40m 

1.40m 

11.20m 

5.60m 

1.40m 

5.60m 
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uniform vertical pressure of 186kPa and a pore pressure of 93kPa on top of the grid, thus 

ensuring the continuous saturation of the soil deposit throughout the applied excitation.  

Damping.- During dynamic loading local non-viscous damping is applied to all materials. For 

the sand, under small shear strain amplitude, a damping value of 2% is selected, which is in 

accordance to the minimum value reported by Vucetic & Dobry (1991). For larger shear 

strain amplitudes, hysteretic damping is simulated by the non linear response of the 

constitutive model itself. The clay layers are assigned a damping value equal to 10%, which is 

representative of shear strains less than 0.1% for soils with a plasticity index of PI = 15%, 

according to Vucetic & Dobry (1991). The gravel pile material is also assigned a damping 

value equal to 10%, corresponding to shear strains in the order of 0.01% for sands and 

gravels.  

Cyclic soil response.- Soil response is simulated based on the constitutive model described 

in Appendix A, using the parameters corresponding to Nevada sand. The initial void ratio is 

equal to eo = 0.661, corresponding to porosity n = 0.398 and a relative density of Dr = 60%. 

Note here, that the externally applied stress essentially ensures the function of the 

constitutive model in the sand layer, within a uniform stress field with small gradient, 

avoiding the occurrence of different stress conditions, i.e. contractive and dilative behavior, 

within the same layer. The clay crusts and the gravel drains were simulated using the elastic 

linear model, assigning a shear modulus equal to G = 60MPa and bulk modulus equal to K = 

130MPa. Poisson’s ratio is set equal to ν = 0.33 in both constitutive models.  

Excitation.- The seismic excitation is applied at the base of the model and is essentially 

sinusoidal, consisting of 12 cycles with period T = 0.20sec and peak acceleration αmax = 0.08g 

(Figure 6.6). A cycle of smaller amplitude is added at the beginning and at the end of the 

time history to ensure a gradual increase of the input acceleration and eliminate erroneous 

numerical results that could result due to an abrupt change in loading conditions.  

 

 

Figure 6.6: Seismic excitation applied at the base. 
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Boundary Conditions.- In all cases, tied node boundary conditions are imposed at the 

boundary grid-points of the model, along the y-direction, in order to ensure the same 

horizontal and vertical displacements at the two borders of the configuration. The particular 

type of boundary conditions proves more efficient in reproducing the deformation pattern 

of the free field for level ground conditions.  

6.2.2 Effect of ru computation method  

Excess pore pressure ratio is computed based on two different methodologies, namely 

directly from FLAC 3-D and analytically.  

In FLAC 3-D , the built-in computation, is performed through the definition of two extra 

variables, which correspond to the excess pore pressure Δu and the excess pore pressure 

ratio ru respectively. More specifically, in each zone the hydrostatic pore pressure is 

computed and stored in the memory and subsequently, in each calculation step it is 

subtracted from the total pore pressure so that the excess pore pressure due to cyclic 

loading (Δu) is estimated. Then, Δu is divided by the initial effective vertical stress of each 

zone and the excess pore pressure ratio ru is calculated.  

In the analytical computation, excess pore pressure ratio is calculated dividing Δu, with the 

current effective vertical stress during cyclic loading, as it is below:  

u
u
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                                                                    6.1                                     

where   ςzz = the current total vertical stress (kPa)  

u0 = the initial hydrostatic pore pressure at the corresponding depth of the  

          sand layer, which in all examined zones herein corresponds to the mid- 

          depth of the sand layer, namely 99.5kPa. 

To assess the effectiveness of the different computational approaches of ru, the response of 

equivalent zones from the free-field and the 2-pile configurations is examined in terms of 

excess pore pressures Δu, excess pore pressure ratio (ru) and effective vertical stress time 

histories. 

Free field.- Excess pore pressures and corresponding epp ratios (ru) from zones 1 through 5 

(horizontal distance from the axis of symmetry x = 0, 0.6, 0.8, 2.0, 2.4m respectively), 

located in the mid-depth and along the liquefiable sand layer, are plotted versus time in 

Figure 6.7 & Figure 6.8. Taking advantage of the grid symmetry, zones only on the one side 

of the arrangement are examined. Figure 6.7 presents the excess pore pressure (Δu) time 
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histories from zones 1 through 5, as computed by FLAC 3-D, from which it is concluded that 

the response is practically uniform for zones 1 to 3, but as approaching to the tied node 

boundaries, zones 4,5 develop higher excess pore pressures and reach liquefaction (i.e. Δu = 

ς’vo = 100kPa) earlier, compared to the middle zones of the arrangement.  

 

 

Figure 6.7 Excess pore pressure for the free-field configuration. 

 

The excess pore pressure build up in zones 1 through 5 is also assessed in terms of ru time 

histories provided in Figure 6.8a & b. Based on Figure 6.8a, it is observed that approaching 

the boundaries of the model, ru values significantly deviate from the expected behavior, 

resulting especially in the case of zone 5, in ru values lower than unity. This indicates the non 

occurrence of liquefaction, despite the time history of excess pore pressures, which dictates 

differently. When computing ru analytically, (Figure 6.8b) the behavior is improving, since 

zones 4 & 5 give a very comparable response with regard to each other as well as with 

regard to the middle zones of the model.  

The reason for this divergence becomes evident when examining the vertical effective stress 

time history for the particular zones, illustrated in Figure 6.9. Vertical effective stresses were 

manually calculated by subtracting the pore pressure value (pp) from the total vertical stress 

(ςzz), as the last was computed by FLAC 3-D. Indeed, the zone close to the boundaries is 

numerically affected, since they are not assigned the same effective vertical stresses 
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compared to the other zones, for static conditions. Namely, zone 5 (x = -2.4m) has initial 

vertical stresses equal to ς’vo = 112kPa.  

In the case where ru is routinely computed from FLAC 3-D (i.e. ru =Δu/ς’vo), the higher Δu 

values developing in zone 5 are divided by a higher effective vertical stress (ς’vo = 112kPa), 

and from t = 0 to 1.2sec (corresponding to 6 loading cycles) those two competing effects 

appear to become counterbalanced, rendering ru values, which are comparable to the other 

zones. After the occurrence of liquefaction (at approximately 6 – 7 cycles) and till the end of 

shaking, Δu values are practically the same in all zones under examination. Hence, the effect 

of higher initial effective vertical stresses becomes obvious, and leads to lower ru values, 

(0.85 instead of 1) for zone 5, as illustrated in Figure 6.8a. In the alternative method used for 

the assessment of excess pore pressure ratio [i.e. ru = Δu/(ςv – uo)] the response of all zones 

(Figure 6.9) is practically uniform, in terms of the reduction rate of ς’v, therefore the 

influence of the effective vertical stress divergence is eliminated and a more uniform 

response is achieved.  

2-pile configuration (2p).- Excess pore pressure (Δu) time histories, from zones located at 

the same horizontal distance from the axis of symmetry as in the free-field configuration, are 

plotted and presented in Figure 6.10. It is observed that again zone 5 presents a discrepancy 

with regard to zones 1 & 2, developing excess pore pressures at a faster rate and reaching 

liquefaction (i.e. Δu = ς’vo = 100kPa) at approximately one loading cycle earlier. Moreover, 

zones 3 & 4, which are in contact with the gravel pile, also deviate from the anticipated 

behavior of the first two zones, reaching liquefaction with a slight delay. The particular 

behavior is attributed to the presence of the pile, which could hinder a uniform response 

along the horizontal direction of the grid, but the particular effect will be further studied in 

later sections.  
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(a) 

 

(b) 

Figure 6.8: (a) Built-in excess pore pressure ratio (ru) for ff configuration (b) Manually 
calculated excess pore pressure ratio (ru) for ff configuration. 
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Figure 6.9: Effective vertical stress time histories for ff configuration. 

 

 

Figure 6.10: Excess pore pressure (Δu) time histories at selected zones for 2-pile (2p) 
configuration. 

 

Figure 6.11 presents a one – to – one comparison of the excess pore pressure ratio (ru) time 

histories computed based on the two different approaches, for the equivalent zones 

examined in the free field configuration. The two alternative means of ru assessment, have 

very little effect in the excess pore pressure built up of zones 1, 2 & 3, nevertheless there is 

some effect in the case of zones 4 & 5, due to their proximity to the boundaries of the 

model.  
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Based on the above analysis, it is concluded that the built-in ru computation presents a 

satisfactory performance especially for zones located far from the boundaries. In locations 

close to the boundaries the particular approach should be utilized with caution, and cross-

checked with the excess pore pressure Δu values, since it may have – only – minor effects 

and lead to underestimated excess pore pressure ratio values. In all the comparisons 

performed in the sequel, only zones located between the two piles are considered. 

Therefore, to facilitate and speed up the required comparisons the built-in ru computation is 

adopted.  

 

 

Figure 6.11: Effect of ru computation method at selected zones for the 2-pile (2p) 
configuration. 

 
 



Chapter 6: Numerical Simulation of Gravel Drain Performance 

Page | 188  
 

6.2.3 Effect of number of piles 

The effect of the number of piles on the excess pore pressure built-up and the response of 

the system in terms of horizontal accelerations is studied through three different 3-D 

configurations. Namely, the free-field configuration and arrangements of two and four 

gravel piles both positioned in one single row. Comparisons are performed for undrained 

conditions and in terms of excess pore pressure ratio and acceleration time histories. 

Excess Pore Pressure Ratio (ru) time histories.- Excess pore pressure ratio time histories 

from the middle zone of the free field simulation and the mid-distance between two 

consecutive gravel drains are plotted in Figure 6.12. The black continuous line corresponds 

to the free field simulation, the gray line to the 2-pile configuration and the light gray line to 

the row of four gravel piles.  In the last case, time histories from zones 1a and 1b as noted in 

the attached grid to verify the alleged symmetry along the horizontal distance of the 

configuration.  

 

 

Figure 6.12 Effect of number of piles on the excess pore pressure (ru) time histories in 
the central zone for the ff, 2p and 4p configurations. 
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The 2-pile configuration appears to give comparable results to the free field conditions, 

reaching liquefaction with a time offset of the order of 0.2sec, corresponding to one loading 

cycle. On the contrary, the 4-pile configuration presents a totally different excess pore 

pressure ratio built-up behavior, also exhibiting significant discrepancy between zones 

located at the mid-distance of two consecutive gravel drains, which were expected to give 

equivalent results. More specifically, zone 1a reaches liquefaction approximately at the end 

of shaking, while zone 1b does not liquefy at all and excess pore pressures continue to build 

up till the end of shaking. The particular effect is attributed to the overall stiffness of the 

configuration which affects the excess pore pressure built up and renders a different 

behavior in geometrically symmetrical zones.  

Figure 6.13 summarizes excess pore pressure ratio time histories computed at the mid-

distance between the left gravel drain and the boundary of the arrangement, for all three 

cases. Note that epp ratio here is computed analytically avoiding the observed discrepancies 

mentioned in the previous section and capture the actual epp built up response. Line format 

is preserved the same for consistency purposes. Once more, the free field and the 2-pile 

models present very comparable behavior, with the second displaying slightly reduced 

excess pore pressures at the end of each loading cycle, but reaching analogous and time-

synchronized ru values by the end of shaking. The 4-pile arrangement presents a higher and 

faster pore pressure built up at the early stages of shaking reaching liquefaction, with a time 

offset of about two loading cycles earlier compared to the free field case.  

Based on the above analysis, it appears that the two-pile configuration approaches the most 

the free field response, hence it is chosen over the four piles situated in one single row. 
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Figure 6.13: Effect of number of piles on the excess pore pressure (ru) time histories in 
the left central zone for the ff, 2p and 4p configurations.  

 

Horizontal acceleration (xacc) time histories.- Figure 6.14 summarizes horizontal 

acceleration time histories computed at the base, the mid-height and the top of the three 

examined arrangements. The 2-pile arrangement renders a very comparable response to the 

free field simulation, with equal mean horizontal acceleration values (i.e. 0.20g), recorded 

on the mid-height, inside the liquefiable sand layer. On the contrary, the 4-pile simulation 

appears to overdamp the seismic motion, reducing the expected mean acceleration to the 

middle of the sand layer up to 50%, thus becoming clear that the 2-pile configuration 

renders comparable results to the free field simulation in terms of mean horizontal 

acceleration.   

Moreover, even though liquefaction occurs in terms of epp ratio values, proof of liquefaction 

is not observed in the obtained acceleration time histories. Namely, the significantly high 

acceleration values at the top of the grid imply that the liquefied ground does not act as a 

natural seismic isolation, as expected. To explain the particular phenomenon, the thickness 

of the sand layer is compared against the wave length of the imposed excitation. 

Particularly, for a relative density Dr=60%, the shear wave propagation velocity in the sand 

ranges between 150 – 200m/sec, with an average value of 175m/sec being considered a 
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satisfactory approximation. In a liquefied state the shear wave propagation velocity 

significantly decreases and may reach 50 – 70m/sec (Theocharis, 2011). Therefore, given the 

period of the excitation (T=0.2sec), the sand layer should be (50÷70)*0.2 = 10÷14m thick to 

satisfactorily capture evidence of liquefaction in terms of acceleration time history 

recordings.  

In our case, the sand layer is only 0.5m thick; therefore the observed response is justified. 

Moreover, while it is generally suggested that layer thicknesses should range from 8-10 

times the wavelength of the imposed excitation, for the non-liquefied sand, this was not 

applied in the particular case. The reason lies in the extreme computational cost involved for 

each analysis, especially for the consolidation analyses presented later, which required some 

days to complete, even for the considered lay-out. Besides, as it is proved subsequently, 

numerical results are adequately verified by the corresponding analytical, well established 

predictions.  
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Figure 6.14: Effect of number of piles on horizontal acceleration time histories at the base, mid-height and top of the ff, 2p and 4p configurations. 
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6.2.4 Effect of pile arrangement 

The effect of the number of rows of gravel piles on the system response is examined in the 

following paragraph. The two arrangements consist of one and two rows of piles and are 

simulated and analyzed preserving the same problem parameters mentioned in earlier 

sections.  

Excess Pore Pressure Ratio (ru) time histories.- Figure 6.15, summarizes the excess pore 

pressure ratio time histories at zones 0 through 5, on a one-to-one basis. Note that zone 0 is 

located at the middle of the arrangement of the double row of drains and in the mid-depth 

of the sand layer. Moreover, for zone 5, epp ratio is computed both internally from FLAC 3-D 

(using a user-defined subroutine in FISH) and analytically (plotted with the dashed lines), as 

described in previous section, to get a clear view of the actual epp ratio, undisturbed from 

any potential boundary effects. In all zones examined herein, epp built up appears to be 

synchronized and liquefaction is achieved concurrently within the imposed loading time 

history, i.e. at approximately 7 – 8 loading cycles. Note again the delay in the epp built up in 

zones 3 & 4, which will be analyzed in subsequent paragraph.  

Horizontal acceleration (xacc) time histories.- Figure 6.16, displays the horizontal 

acceleration time histories computed at the base, the mid-depth and mid-length of the sand 

layer and the top of the clay layer of each configuration. The consistency observed between 

the two models is also obvious, rendering equivalent maximum acceleration values and time 

histories. Overall, the response between the two models is consistent and only minor 

differences are observed in terms of epp ratio peak values. The major drawback in the case 

of the double row of gravel piles is the overall size of the grid and the time required to 

perform each numerical analysis. Therefore, due to the increased computational load, the 

particular arrangement was abandoned and the 2-pile configuration is finally selected for the 

execution of the main body of numerical analyses.  



Chapter 6: Numerical Simulation of Gravel Drain Performance 

Page | 194  
 

 

Figure 6.15: Effect of pile arrangement on excess pore pressure ratio (ru) time histories 
for the 2p and 4psq configurations. 
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Figure 6.16: Effect of pile arrangement on horizontal acceleration time histories at the 
base, mid-height and top of the 2p and 4psq configurations. 

 

6.2.5 Effect of drain permeability 

Both basic design methodologies namely the first proposed by Seed & Booker (1977) and the 

suggested revision published by Bouckovalas et al. (2009) assume that the drain material is 

200 times more permeable than the sand material. On the other hand, in the finite 

difference code FLAC 3-D the time step required in each computational cycle significantly 

increases for a low permeability coefficient, thus proportionally affecting the required 

computational time. In the following section the above assumption (i.e. kdrain = 200*ksand) is 

revisited and is attempted to reduce kdrain by half, aiming in reducing the required 

computational time with negligible effects in the accuracy of the predictions.  

The 2-pile configuration is examined under partially drained loading conditions, initially 

considering the permeability coefficients reported previously (i.e. ksand = 10-5 m/sec and kdrain 
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= 2*10-3m/sec) and subsequently, reducing by half the permeability coefficient of the drain, 

i.e. kdrain = 10-3m/sec. The two separate analyses are compared in terms of excess pore 

pressure time histories in equivalent zones, summarized in Figure 6.17. Apparently, there is 

very little effect by the performed change in the permeability coefficients; therefore in 

subsequent analyses, the reduced permeability for the gravel drain material will be applied. 

 

 

Figure 6.17: Effect of drain permeability on excess pore pressure ratio (ru) time histories 
for the 2p configuration. 

 

6.2.6 Effect of pile stiffness  

Returning to the discrepancy observed in the excess pore pressure ratio response of the 

zones in contact to the gravel pile, the following parametric analyses aim at clarifying 

whether the particular behavior, may be attributed to the stiffness of the pile. Zones 3 & 4 

are most affected exhibiting very comparable epp ratio built up response. Among the two, 

focus will be given on zone 3, which is later used in the calculation of the compressibility 

coefficient mv,3.   
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In the basic analysis the elastic parameters (bulk and shear modulus) of the clay layers and 

the gravel material are set equal to K=130,000kPa and G=60,000kPa respectively. Based on 

the relationships of elasticity, the above parameters render a Young’s modulus equal to 

Edrain=156,000kPa and a 1-D compression modulus equal to Ddrain=210,000kPa, which remains 

constant throughout the analysis. For the sand layer, the maximum shear modulus (Gmax) is 

expressed through Equation 6.2, namely the well-established relationship proposed by 

Hardin (1978)  

 

6.2 

where:   B model parameter 

e the void ratio  

p isotropic effective stress 

pa atmospheric pressure (=98.1kPa) 

Thus, for the mid-depth of the sand layer, a relative density Dr = 60% (i.e. e = 0.661) and a 

ratio of effective stresses Ko = 0.5, the maximum shear modulus Gmax is equal to 79.700kPa. 

Considering a Poisson’s ratio equal to ν = 0.33, the maximum Young’s modulus is 

Emax=268,128kPa and the respective 1-D Compression Modulus in the order of 

Dsand=315.000kPa. Note that the ratio of the gravel pile to the sand layer permeability 

coefficient was set equal to 100. 

The parametric investigation included four additional cases, in which the pile stiffness is 

reduced to different portions of Go, namely G = 0.75, 0.50, 0.25 and 0.08Go (Go=60.000kPa) 

respectively. The obtained results are compared in terms of excess pore pressure built up 

under undrained conditions, focusing on the response of zones 1 and 3, as demonstrated in 

Figure 6.18. It is observed that the reduction of the pile stiffness does not significantly affect 

the excess pore pressure ratio built up, and the discrepancy in the response of the examined 

zones is preserved even in the case where the gravel pile stiffness is reduced to 0.08Gmax, 

namely to about 5.000kPa.  

max
0.3 0.7
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a
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Figure 6.18: Effect of drain permeability on excess pore pressure ratio (ru) time histories 
for the 2p configuration. 
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6.2.7 Effect of mesh descritization 

The response of the gravel drain – soil system is evaluated under a differently discretized 

grid, in order to eliminate potential numerical - induced effects. Hence, the new grid exhibits 

a denser discretization around the interface area of the gravel pile and the soil, as illustrated 

in Figure 6.19. In particular, beginning from the axis of symmetry of the pile the zone width 

is reduced by half and then increased at a ratio of 1:1.5 till the center of the grid 

arrangement. The analysis is executed under the same problem parameters, in order to be 

able to evaluate the effect of the increased grid density and preserving the low gravel pile 

stiffness (0.08Gmax = 5000kPa).  

Figure 6.20, presents the response of zones 1 through 6, whose location is marked in the 

attached grid, in terms of excess pore pressures Δu, and excess pore pressure ratio ru. It is 

interesting to note that the response of zone 6 exhibits a fast rate of excess pore pressure 

ratio built up, comparable to the response of the other zones, also reaching liquefaction 

within the same loading cycle, as opposed to the behavior detected previously. Overall, the 

system response is judged to be satisfactory in terms of excess pore pressure ratio built up. 

The proposed grid refinement is also evaluated against the original configuration and the 

free field response in Figure 6.21a & b. Figure 6.21a summarizes the excess pore pressure 

ratio time histories derived for the central zone of each case, from which it is concluded that 

the refinement effect is not so significant, since in both cases the free field response is 

satisfactorily captured. Figure 6.21b presents the corresponding epp ratio time histories for 

the zone in contact to the pile for the 2-pile configuration, or the zone at the equivalent 

horizontal distance from the axis, for the free field configuration. Clearly, the proposed 

refinement leads to an acceleration of the excess pore pressure ratio built up, and creates a 

more uniform response in terms of excess pore pressures, adequately capturing the free 

field response. Given the above, the refined grid is going to be adopted in the the 

assessment of the drainage capacity of the gravel drains presented in the following sections. 
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Figure 6.19: New proposed refined grid. 

 

 

 

Figure 6.20: Excess pore pressure Δu and epp ratio (ru) time histories for selected zones of 
the refined grid. 

1.40m 

5.60m 

1.40m 
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1                                                                         (b)  

Figure 6.21: Excess pore pressure ratio (ru) time histories for (a) central zone and (b) 
adjacent zone to pile for ff, original 2p grid and proposed refinement. 

 

6.3 Numerical verification of the new analytical approach 

6.3.1 Analytically computed mv,3 

To check the validity of the revised analytical approach by Bouckovalas et al. (2009) for drain 

design, a number of numerical analyses were performed, in which the coefficient of sand 

permeability varied from ksand = 0 (undrained conditions) to 1*10-4m/s, as shown in Table 

6.1. In all analyses the coefficient of drain permeability was 100 times that of ksand.  

The results of these analyses are presented in Figure 6.22 in the form of excess pore 

pressure time histories. The first thing to observe is that the curves in Figure 6.22 show the 

characteristic shape of the revised analytical predictions, where a peak is attained at 

intermediate stages of shaking, followed by a smooth decrease, while shaking persists.  

The second thing requiring checking is whether the numerical predictions may be fitted with 

a unique set of soil parameters, excluding the permeability coefficient, which varied as in 

Table 6.1. The first step was to fit the numerical predictions for undrained shaking (i.e. ksand = 

kdrain = 0), which was achieved by trial and error as it is shown in Figure 6.23. Namely, Figure 

6.23 includes numerically derived (under undrained conditions) epp ratio (ru) time histories 

from 22 zones around the gravel pile as well as analytical predictions of epp ratio built-up, 

based on Equation 5.1, (Seed, Martin & Lysmer, 1975) for three distinct values of A, namely 

0.70, 1.40 and 2.00 and three representative tl values, namely tl=1.2,1.3 & 1.4sec. Note that 
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the analytical predictions begin with a time offset of 0.2 sec, to disregard the first loading 

cycle of increasing magnitude, (see also Figure 6.6) and the following conclusions are drawn: 

 The comparison between numerical results and analytical predictions, essentially 

confirms the ability of the numerical analysis to simulate the analytically predicted 

epp ratio built up, hence providing a solid numerical background for the study of the 

gravel drain-soil system response under drained conditions.  

 The recommendation made in chapter 4 concerning the use of an A value, in the 

analytical relationship by De Alba et al. (1975), equal to 1.40 is now further justified 

and will be adopted in the subsequent steps. 

 The required time for liquefaction ranges from tl=1.20 to 1.40sec, rendering 5, 5.5 

and 6 cycles to liquefaction for T=0.2sec, respectively. The most representative value 

of tl=1.3sec will be adopted in the following sections. 

 

Table 6.1: Values of permeability coefficient (m/sec). 

Name of 
Analysis 

Sand Permeability 
coefficient (m/sec) 

Gravel drain permeability 
coefficient (m/sec) 

a. 10-4 10-2 

b. 5*10-5 5*10-3 

c. 2*10-5 2*10-3 

d. 10-5 10-3 

e. 5*10-6 5*10-4 

f. 2*10-6 2*10-4 

 

 

 

 Figure 6.22: Numerically derived excess pore pressure ratio (ru) time histories in the 
central zone for different permeability coefficients. 
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Figure 6.23: Numerically derived ru time histories and analytical predictions for different 
A values. 

 

Having specified to, A, and tl, the second step includes the fitting of the analytical predictions 

to the numerically predicted ru time histories, by changing the volume compressibility 

coefficient mv,3. The associated comparisons are shown in Figure 6.24 through Figure 6.27. 

Namely, Figure 6.24 presents all the zones starting from the zone in contact with the pile, to 

the axis of symmetry of the configuration, in which mv,3 is computed. The obtained values 

are summarized in Figure 6.24 for one of the numerical analyses (c. k=2*10-5m/sec) . The 

specific values are practically constant, independently of the distance b. 

For all numerical analyses, back calculation of mv,3 is performed based on two different 

convergence criteria and for the middle zone of the configuration. According to the first 

criterion, the back-calculated mv,3 values must render the same peak ru,max value to the 

numerical simulation whereas according to the second one, mv,3 values produce the 

maximum ru,max value at the same moment of dynamic shaking as the numerical simulation. 

The analytically computed liquefaction curves based on the Bouckovalas et al. (2009) 
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methodology are plotted along with the numerically computed time histories in Figure 6.26. 

The set of numerical and analytical predictions for undrained conditions is also plotted for 

consistency purposes with the thicker lines. The resulting 1/mv,3 values are summarized in 

Table 6.2. Considering a small permeability coefficient (k=2*10-6m/s), convergence is hardly 

obtained based on both criteria. Hence, the specific analysis is not considered in the back-

fitting of the Seed & Booker (1977) methodology nor included in the subsequent sections. 

Figure 6.27 presents a comparison between the analytical methodology proposed by Seed & 

Booker (1977) and the numerical predictions. The comparison is performed for A=0.70 and 

1.40, following the first convergence criterion.  

 

 

Figure 6.24: Horizontal distances (b) from the center of the pile. 
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Figure 6.25: Numerical verification of analytical solution.
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Figure 6.26: Back-fitting of the Bouckovalas et al. (2009) methodology for A=1.40, to 
numerical predictions for two criteria of convergence for tl=1.3sec and 
different values of permeability coefficient k. 
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Figure 6.27: Back-fitting of the Seed & Booker (1977) methodology for A=0.7, to 
numerical predictions, based on ru,max for tl=1.3sec and different values of 
permeability coefficient k(m/s). 

 

Table 6.2: Back-calculated 1/mv,3 values for the Bouckovalas et al. (2009) methodology 
and two convergence criteria. 

Bouckovalas et al. (2009) – A=1.40 

1st Convergence criterion 2nd Convergence criterion 

k (m/sec) mv,3 (*10-6) 
1/mv,3 
(*105) 

ru,max Tad 
mv,3 

(*10-6) 
1/mv,3 
(*105) 

ru,max Tad 

10-4 2.05 4.88 0.17 39.02 3.80 2.63 0.17 21.05 

5*10-5 2.95 3.39 0.26 13.56 3.66 2.73 0.26 10.93 

2*10-5 3.26 3.07 0.39 4.91 3.40 2.94 0.39 4.71 

10-5 2.92 3.42 0.51 2.74 2.65 3.77 0.51 3.02 

5*10-6 2.10 4.76 0.63 1.90 2.13 4.69 0.63 1.88 

2*10-6 5.80 1.72 0.47 2.76 - - 0.47 - 
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Based on Figure 6.25  the following conclusions are drawn: 

 Coefficient of volume compressibility mv,3 is practically constant, independently of 

the distance b from the gravel drain. 

 Assuming the appropriate mv,3 value, the analytical solution agrees with the 

numerical results, hence implying that a fully dynamic problem can be adequately 

captured by a pseudostatic approach, adopted in the Seed & Booker (1977) 

analytical methodology.  

The mv,3 values which were used to fit the numerical predictions are plotted against the 

maximum ru value of each analysis in Figure 6.28. Observe that for ru,max values within 0.2 – 

0.5, which is the useful range for drain design,  1/mv,3 values remain practically constant 

independently of the sand permeability. Moreover, for a given permeability coefficient the 

numerical predictions change slightly from one zone to the other, with the central zone 

having about 40%  larger 1/mv,3 than the zone adjacent to the pile. Finally, taking into 

account that the fitting procedure is rather gross and approximate it may be concluded that 

mv,3 can be indeed assumed to be constant (ru independent) for ru = 0.2 – 0.5 as it is assumed 

by the original as well as the revised analytical method for drain design. 

 

Figure 6.28: Back-fitted mv,3 values for the useful ru,max range in drain design. 
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6.4 Numerical evaluation of the volumetric compressibility coefficient 
mv,3 

From the entire evaluation of the drain performance presented in this chapter as well as in 

the previous Chapter 5, it is realized that drain design is mostly dependent on the correct 

choice of the volume compressibility index mv,3. Unfortunately, this soil parameter cannot be 

directly measured from conventional soil mechanics tests (e.g. such as the soil permeability 

coefficient kr) and is mostly derived on the basis of published experimental data from 

undrained cyclic triaxial tests (PHRI, 1997).  

Hence to gain insight to the proper mv,3 values that need to be used in drain design, the 

back-calculated values presented earlier are compared against three independent sets of 

mv,3 values. Namely: 

Numerically predicted mv,3 values.- obtained from the simulation of the post-shaking 

consolidation of the liquefied ground. To obtain this set of data, the definition of the 

coefficient of volume compressibility, expressed through Equation 6.3, is used. Namely, the 

time of the maximum excess pore pressure Δu,max occurence is located and a consolidation 

analysis is initiated until total dissipation of excess pore pressures. 

,3

max

vol
vm

u





                                                               6.3 

where    Δu,max = the maximum excess pore pressure 

Δεvol = the volumetric strain developing during consolidation 

The consolidation analysis is performed by removing the seismic excitation, zeroing all 

velocities in the grid and allowing enough time for epp dissipation. The epp ratio time 

histories up to the maximum excess pore pressure development, followed by the 

consolidation part are presented in Figure 6.29. Volumetric strains are monitored 

throughout the consolidation analysis and the relative volumetric strain to the time of 

initiation of consolidation is considered in the calculations. 1/mv,3 values are determined for 

all the zones of the grid, starting from the axis of symmetry to the zone in contact with the 

gravel drain.  
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Figure 6.29: Typical excess pore pressure built-up and dissipation time histories for the 
performed numerical analyses. 

 

Numerically predicted mv,3 based on DSS & CTX tests.- To obtain this set of data, laboratory 

test simulations (cyclic triaxial and direct simple shear) are performed with FLAC 3D, also 

using the same constitutive model for the liquefiable sand. Coefficient of volume 

compressibility is measured and computed following the same definition as above. 

The cyclic isotropic triaxial test, which is also proposed by Seed & Booker (1977) as the 

appropriate laboratory test to estimate mv,3, was simulated considering a 1m×1m×1m cubic 

element of liquefiable sand at an initial effective confining stress of 100kPa. Velocities were 

considered to be constant in all boundaries and loading conditions included applying a cyclic 

deformation along the vertical direction z, of constant magnitude, and cyclic deformations 

along directions x and y, having half the magnitude of the vertical deformation. The overall 

set-up, loading and boundary conditions are demonstrated in Figure 6.30. The element 

response analysis was repeated for several epp ratio (ru) values (i.e. 0.10, 0.20, 0.30, 0.40, 

0.50) and then followed by a one-dimensional consolidation analysis, performed by zeroing 

all nodal velocities and imposing an adequately small velocity at the top boundary of the 

element, until total reconstitution of the initial effective stresses. Consequently, mv,3 was 

computed following the procedure described in previous sections. 

For the direct simple shear test the same grid layout was assumed, with the same boundary 

conditions and constitutive model. Loading conditions involved a constant vertical stress and 

a cyclic shear stress both imposed at the top boundary of the element, as illustrated in 

Figure 6.31. Analyses were performed following the same procedure described for the cyclic 
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isotropic TX test. The resulting 1/mv,3 values from the two test simulations are summarized 

in Table 6.3, for the different ru,max levels. 

 

 

Figure 6.30: Set-up and boundary conditions for the cyclic triaxial (TX) test simulation 
performed with FLAC3D. 

 

 

Figure 6.31: Set-up and boundary conditions for the direct simple shear (DSS) test 
simulation performed with FLAC3D. 

 

Table 6.3: Summary of 1/mv,3 values from laboratory test simulations. 

ru,max 
Cyclic Triaxial Test (TX) Direct Simple Shear Test (DSS) 

1/mv,3 (*105 kPa) 1/mv,3 (*105 kPa) 

0.1 2.17 2.88 

0.2 2.11 2.86 

0.3 2.01 2.76 

0.4 1.95 2.59 

0.5 1.83 2.49 

 

Analytically back-calculated 1/mv,3 values for tl=1.30sec, as well as numerically computed 

1/mv,3 values from all examined zones, are assembled and plotted as a function of the 

corresponding maximum epp ratio ru,max in Figure 6.32. The analytical predictions by 

Bouckovalas et al. (2009) correspond to both convergence criteria, plotted with the dashed 

lines and the average value, plotted with the continuous line. Numerical results are plotted 

for each performed analysis, each time extracting a representative average 1/mv,3 value. The 
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1/(mv,3)avg is calculated as 1/(mv,3)avg= 1/(Σmv,3i)/n, where n the number of the zones under 

consideration. Overall, the analytically determined 1/mv,3 values appear in good agreement 

with the numerical results, especially in the range between 0.20 – 0.50 of ru,max, which 

consists the typically encountered range in current practice. Especially the use of the first 

convergence criterion renders the most satisfactory results, further validating the revised 

methodology. The fitting to the time increment of the ru,max occurrence does not compare as 

well to the numerical results and therefore will be disregarded from the following analysis. 

Moreover, the DSS element test results appear to better describe the above range of 1/mv,3 

values, while the TX tests show a clear 1/mv,3 underestimation. Thus, it is evident that the 

Seed & Booker (1977) suggestion concerning the use of TX test results for the determination 

of mv,3 may lead to conservative design, compared against the use of DSS laboratory tests, 

which render more realistic values of coefficient of volume compressibility. 

Experimental values reported in the literature (PHRI,1997).- for sands of different 

gradation, summarized in Table 6.4. The specific values are mentioned both by the Japanese 

Geotechnical Society (JGS, 1998) as well as by the PHRI, (1997) to result after cyclic triaxial 

liquefaction tests. The specific values are obtained at an initial confining pressure of 100kPa 

and ru<0.5. The comparison for the specific case is presented in Figure 6.33. The related 

gradation curves for each sand material are plotted in the lower part of Figure 6.33, where 

the curve for Nevada sand, simulated in the numerical analyses, is also plotted. 

Given the similarity in terms of gradation profile between Nevada sand and Akita Port Sand, 

it is concluded that the inverse of coefficient of volume compressibility should result in the 

range between 0.3-0.4*105kPa. The discrepancy between the laboratory obtained values 

and the numerical results is approximately one order of magnitude and is mainly attributed 

in the very different volumetric strains developing during the consolidation numerical 

analysis, both in the boundary value problem and the element test simulations. This 

observation led to an extensive investigation of a number of reasons, which could be 

responsible and are listed in the following paragraph. 
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Table 6.4: Typical values of coefficient of vol. compressibility of sands (PHRI, 1997). 

Type of sand 
Coefficient of volume 
compressibility (cm2/kgf)* 

References (year) 

Sacramento River Sand 2*10-3 Lee et al. (1974) 

El Monte Sand (D) 2*10-3 Lee et al. (1974) 

El Monte Sand (E) 2*10-3 Lee et al. (1974) 

Akita Port Sand 3~4*10-3 Zen et al. (1984) 

El Monte Sand (C) 4*10-3 Lee et al. (1974) 

Monterey Sand 4*10-3 Lee et al. (1974) 

Fuji River Sand 6*10-3 Ishihara et al. (1978) 

El Monte Sand (B) 8*10-3 Lee et al. (1974) 

Ogishima Sand 10*10-3 Ono et al. (1983) 

*Measured at u/ς’c<0.5, σ’c=1kgf/cm2 = 98.06kPa 

 

 

Figure 6.32: Numerically derived and analytically back-calculated 1/mv,3 values for the 
performed drained analyses. 
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Figure 6.33: Comparison of numerical & analytical 1/mv,3 values against literature 
proposed values. 

 

6.5 Analysis of the volumetric strain development mechanism  

Volumetric Strain Measurement.- Before any investigation, it was crucial to guarantee that 

the correct volumetric strain was derived from FLAC 3D. The accuracy of the numerically 

computed volumetric strains was checked by applying nodal displacements of known 

magnitude on one element and measuring the resulting deformations. It was indeed found 

that the numerically derived volumetric strain was equal to the manually calculated one (i.e 

the sum of exx, eyy and ezz strains), providing absolute confidence in the numerical 

computations. 

It was also noted that due to drained conditions, volumetric strains developed already from 

the dynamic loading part in the boundary value problem. On the contrary, in the laboratory 

tests simulation cyclic loading is applied under zero volume change and volumetric strains 

start developing only during consolidation. Including the dynamically induced volumetric 

strains in the 1/mv,3 calculation would undoubtedly improve the consistency between 
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numerically derived and the literature proposed values, nevertheless such a calculation 

would not be consistent to the initial definition of 1/mv,3. Additionally, if the dynamic loading 

part of the numerical analysis is performed under undrained conditions, thus under zero 

volumetric strains, followed by a typical consolidation analysis, the resulting volumetric 

strains due to consolidation do not significantly change, rendering similar 1/mv,3 values. 

Effect of Constitutive Model’s Parameters.- So far, the constitutive model for the liquefiable 

sand is applied for the set of dynamic parameters (B and a1) proposed by Andiranopoulos et 

al. (2010). More specifically maximum shear modulus, Gmax, is computed based on the 

mathematic expression proposed by Hardin (1978) for a model parameter value B equal to 

600 and the parameter expressing the non linearity of “elastic” shear modulus, a1, is set 

equal to 0.6. Taking into account the monotonic character of a consolidation analysis, the 

related model parameters are re-considered. Therefore, for the element test simulations, B 

value was switched from 600 to 180 and then to 100, corresponding to development of 

greater strain amplitudes and the model constant a1
3, is set from 0.6 to 1.0, essentially 

simulating a linear behavior. The system response analyses are also re-evaluated, 

nevertheless, due to the significant computational load of each one of them, only the B 

value equal to 100 is examined.  

The outcome of the above re-evaluation is illustrated in Figure 6.34. The element level 

response is depicted for 3 different sets of model parameters (B,a1), namely (600, 0.6), 

(180,1.0) and (100, 1.0) and the system response behavior for two sets i.e. (600, 0.6) and 

(100, 1.0). In the case of the element test simulations volumetric strains are significantly 

affected, rendering 1/mv,3 values up to 80% lower for the same ru,max levels, which compare 

very well with the literature proposed values for Nevada sand, located in the upper 

boundary of the shaded region. In fact, the increase in volumetric strains is greater when 

considering a lower B value, thus justifying the B value reduction by 6 times, instead of the 

range of 2-4 times, proposed by Andrianopoulos et al. (2010). For the boundary value 

problem, volumetric strains are not proportionally affected by the model parameter change, 

resulting in a 30 - 40% reduction in 1/mv,3 values, hence the discrepancy with the literature 

proposed values is maintained. 

 

                                                            
3 Model parameter a1 is the ratio of the secant shear modulus to the maximum shear modulus for a 
characteristic value of γ1. Values of a1 less than unity correspond to non-linear response, while for 
a1=1, behavior is independent of γ1 and purely hypo elastic. Model constant γ1 essentially determines 
the point beyond which any further shear degradation is due to development of plastic strains. 
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Figure 6.34: Effect of B value on 1/mv,3 values. 

 

 Obviously, the boundary value problem exhibits a much stiffer behavior, which does not 

allow for the development of large volumetric strains. The particular aspect is going to be 

further evaluated in the subsequent sections. In an attempt to reduce excessive 

computational load all analyses that follow were executed considering the monotonic model 

parameters and for one value of permeability coefficient, k=10-5m/sec. 

Effect of y-Discretization.- The imposed boundary conditions restrict any deformation in the 

out of xz plane direction, thus potentially confining the development of vertical 

displacements.  For that purpose, two additional analyses were performed, in which 

discretization along the y-axis was increased. Figure 6.35 presents the two configurations, in 

which the first involves 3 zones in the middle part, and the second, 4 zones, followed by the 

related increase in the radial cylinder elements.  

The increase of discretization did not have any effect in the development of volumetric 

strains, essentially rendering very similar results with the less dense discretization examined 

earlier. 
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Figure 6.35: Consideration of denser discretization along y-axis. 

 

Effect of Permeability Coefficient Increase.- All numerical analyses reported previously, are 

carried out assuming the same coefficient of permeability in both stages, namely the 

dynamic loading part and the consolidation analysis that follows. Nevertheless, according to 

field investigations (Ishihara 1994, Schofield 1981), laboratory tests (Jafarzadeh & 

Yanagisawa, 1995) and analytical studies (Arulanandan & Sybico, 1992) soil permeability 

increases significantly during seismically induced pore water pressure generation. Hence, 

the consideration of a constant coefficient of permeability throughout a liquefaction analysis 

may lead to an underestimation. 

To account for the permeability increase in the numerical simulation of liquefaction, 

researchers usually multiply the initial “static” value of permeability by a constant factor. 

More specifically, Arulanandan & Sybico (1992) propose a factor of 3.67, Balakrishan (2000) 

consider a factor of 4 and Taiebat et al. (2007) consider the “dynamic” value of permeability 

to be one order of magnitude greater. Even more recently, Shahir, Pak, Taiebat & Jeremic 

(2009) suggest that permeability should not be considered constant during excess pore 

pressure generation and dissipation processes. They propose a relationship in which 

permeability varies at each stage (i.e. built-up stage, liquefied stage and dissipation stage) 

and is expressed as a function of the ever-current excess pore pressure ratio ru. As it is also 

noted by the authors, because the proposed relationship still requires further investigation, 
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in the present analysis the method of the “constant increased permeability coefficient” is 

adopted.  

To investigate the potential effect of permeability in the obtained values of mv,3 a 

consolidation analysis was performed, considering a permeability coefficient equal to k=10-

4m/sec, i.e. 10 times greater than the “static” value of permeability. The gravel drain 

permeability was increased proportionally. Still, volumetric strains remained unaffected by 

the increase in permeability, rendering pretty much equivalent 1/mv,3 values. In that case, it 

may be possible that because excess pore pressure ratio does not exceed 0.5, actual 

permeability is not affected.  

Effect of Modelling Approach.- The liquefiable sand layer is simulated using the constitutive 

model developed in NTUA (Papadimitriou, 2001, Andrianopoulos, 2010) and the gravel piles 

are considered elastic. It is thus alleged that the potential interaction between one 

sophisticated constitutive model to the elastic may be responsible for the low volumetric 

strains developing during consolidation. To evaluate this possibility, the component of the 

gravel pile located within the sand layer, is simulated by the NTUA-SAND constitutive model, 

preserving the pile’s permeability coefficient. Both dynamic and consolidation analyses were 

performed; nevertheless, only minor effects were observed, essentially producing almost 

identical results.  

Effect of Interface Surface.- Another factor obstructing the development of settlements was 

claimed to be the presence of the two elastically simulated, undistorted piles, which could 

restricting the undisturbed settlement of the improved soil layer. To eliminate any potential 

pile-soil interaction phenomena and to allow the undisturbed development of settlements 

within the soil, the external stack of zones of the gravel piles was assigned different elastic 

properties during the consolidation analysis. 

The interface area is depicted in Figure 6.36 and it is intended to provide very low resistance 

in shearing and an adequately high bulk modulus value to avoid squeezing towards the pile. 

After an extensive parametric investigation shear modulus G was set equal to 30kPa and 

bulk modulus K equal to 130e4kPa. The particular properties were also verified considering a 

totally elastic grid, with a much softer sand layer compared to the piles and the clay caps, 

producing uniform volumetric strains and settlements along the sand layer. Concurrently, 

the gravel pile’s elastic properties were increased by an order of magnitude (i.e. 

K=130e4kPa, G=60e4kPa) to avoid shear deformation and squeezing from the periphery to 

the centre of the pile. Settlement contours from the reference case (without the interface) 
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and the current analysis are provided in Figure 6.37 and are very descriptive of the interface 

area benefit. The influence proves to be very limited, mainly affecting vertical displacements 

in the vicinity of the gravel piles, producing a more uniform distribution of settlements 

between them.  

 

 

Figure 6.36: Introduction of an interface zone between liquefiable ground and 
gravelpiles. 

 

 

 

Figure 6.37: Vertical displacement contours for the reference case (upper graph) and the 
interface consideration, at the end of consolidation. 

 

Figure 6.38 summarizes the 1/mv,3 values derived after each attempted modification, 

described in the present paragraph, and compared against the corresponding values of the 

reference case. Note that the introduction of the interface area actually leads to greater 

1/mv,3 values, which do not correspond to the expected outcome and the expected 

uniformity in terms of volumetric strain distribution. Hence, despite the attempted 

modifications the resulting 1/mv,3  values remain unaffected. 
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Figure 6.38: Effect of the examined interventions on the final 1/mv,3 for the central zone. 

 

Equation Chapter 7 Section 1
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CHAPTER   7   

 

 

7 Simulation of Footing Response 

 

 

7.1 Introduction 

In the present study it is assumed that the top, non liquefiable crust has the same initial 

consistency as the liquefied sand and has been created using vibrocompaction or vibro-

replacement. In both methods, along with the creation of gravel drains which accelerate 

excess pore pressure dissipation and thus will mitigate liquefaction, the natural soil is 

considerably densified. This combined intervention creates a quite complex pattern 

regarding the density distribution, the shear strength and the excess pore pressure 

dissipation mechanism in the crust of the improved ground. Namely:  

 The relative density of gravel piles is different than that of the surrounding soil. 

Moreover, due to the densification created by vibrocompaction the relative density 

of the densified soil decreases radially from the axis of the gravel drain and 

outwards. 

 The shear strength of the gravel pile is also different than that of the surrounding 

sand, even if the aforementioned radial variation in relative density is not 

considered. 

 The excess pore pressure dissipation mechanisms in the improved ground differ 

than those in the liquefied sand. More specifically, the improved ground drains both 

in the radial and the vertical directions while the underlying liquefied sand drains 

practically vertically  towards the gravel drains installed on top of it.  
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It is definitely possible to simulate these mechanisms based on the present numerical 

capabilities offered by FLAC and FLAC3D and the advanced constitutive model that has been 

implemented to it for the simulation of complex seismic soil response problems. 

Nevertheless, the time required for such analyses would be restrictive for performing  an 

extensive parametric study. Furthermore, a number of the input data required for such 

analyses e.g. permeability coefficient, as well as mechanical parameters of gravel drains 

under monotonic and cyclic loading are not known with accuracy, thus reducing the 

accuracy of the analyses despite any elaborate numerical computations.  

In view of the above objective difficulties, the detailed numerical simulation of the liquefied 

ground response in the presence of a surface crust of improved ground, becomes 

cumbersome and outside the scope and the extent of this study. Consequently, this study 

will proceed using the concept of “Equivalent Uniform Improved Ground”, also noted 

hereafter as E.U.I.G., which is widely accepted in practice when desinging geostructures and 

foundations on weak soil improved with gravel piles. According to this, the improved ground 

layer is considered uniform with appropriately computed unique soil parameters, which take 

into account the properties of the natural ground, the properties of the gravels, as well as 

the extent of ground improvement. Possible means of estimating the related properties of 

the improved surface crust are described in the first part of the present chapter. 

Subsequently, the accuracy of the applied numerical methodology is verified against well-

established centrifuge experiments performed by Liu & Dobry (1997), in terms of the 

accumulating seismic settlements. Particular consideration is dedicated to the suitable 

coefficient of permeability introduced in the numerical analyses, while in parallel, the effects 

on the overall system response are extensively discussed. 

 

7.2 Equivalent Uniform Improved Ground 

7.2.1 Relative density of improved ground 

Based on the initial relative density of the liquefiable sand, and the replacement ratio αs
4 of 

the gravel drain geometry (ground improvement scheme), the relative density of the 

improved ground may be derived from the empirical charts of Figure 7.1. 

                                                            
4 Replacement ratio, as, is defined as the ratio of the plan view area of the gravel drain, over the area 
of the influence zone around the drain. 
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Figure 7.1: Design chart applicable to sandy ground (JGS, 1998). 

 

According to the guidelines accompanying these figures, provided by the JGS (1998), given 

the corrected NSPT value for the natural soil, which is equal to No=NSPT*CN, and the 

replacement ratio (αs) of the applied ground improvement, the corrected NSPT value in the 

improved ground is computed based on the following expression:  

.
(1 )

imp s pile s ground
N N N                                            7.1 

where   Npile is the corrected NSPT blow count value corresponding to the location of               

              the gravel pile (Figure 7.1) and  

Nground the corrected NSPT blow count value obtained at the mid-distance                 

between two consequtive gravel drains (Figure 7.1).  

The above practice is followed for natural soil deposits with initial relative density Dro = 35, 

40, 45, 55, 65 & 70% and replacement ratios αs = 5, 10 15 & 20%. Relative density was 

related to the corrected NSPT blow count through the following empirical equation proposed 

by Tokimatsu & Seed (1987), as expressed below:  

  2
1 60( ) 44N Dr                                                                 7.2

 

where  (N1)60 = the corrected with depth, applied pressure and fines NSPT blow count 

               Dr(%) = relative density  
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The results are summarized in Table 7.1 for the range of initial relative densities mentioned 

above. 

Table 7.1: NSPT values in the improved ground (according to JGS, 1998) and related 
relative density values (based on Tokimatsu & Seed, 1987) for six initial 
relative density scenarios. 

 

 

 

 

It is important to note that for the initial relative density scenario of Dr=70%, the use of the 

empirical figures provided by the Japanese Geotechnical Society (Figure 7.1) is rather 

marginal, since the initial NSPT value, according to Tokimatsu & Seed (1987), i.e. NSPT = 21.5, 

falls outside the designated range of NSPT values. Therefore, to correctly simulate such cases, 

it became inevitable to make an extrapolated use of the suggested empirical graphs. 

Nevertheless, the particular issue concerns a rather limited number of cases and does not 

affect the overall trend of the numerical results, as it is observed in the following 

paragraphs.  

7.2.2 Permeability coefficient of the improved ground 

The permeability coefficient of the improved ground layer is an essential input parameter for 

the numerical analyses, but it is also the most difficult to compute using the concept of 

E.U.I.G.. As a first approximation, flow through the improved crust may be considered 

Dro (%) Dro (%)

No No

as Nground Npile Nimp Drimp (%) as Nground Npile Nimp Drimp (%)

0.05 9 15 9 46 0.05 11 17 12 51

0.1 14 19 14 57 0.1 16 22 17 62

0.15 18 24 19 66 0.15 21 27 22 70

0.2 23 28 24 74 0.2 26 31 27 78

35

5.5

40

7

Dro (%) Dro (%)

No No

as Nground Npile Nimp Drimp (%) as Nground Npile Nimp Drimp (%)

0.05 14 20 14 56 0.05 19 24 19 65

0.1 19 24 19 66 0.1 23 29 24 74

0.15 23 29 24 74 0.15 28 33 29 81

0.2 29 33 29 82 0.2 33 38 34 88

45 55

9 13

Dro (%) Dro (%)

No No

as Nground Npile Nimp Drimp (%) as Nground Npile Nimp Drimp (%)

0.05 24 30 24 74 0.05 26 33 26 77

0.1 28 33 29 81 0.1 31 35 31 84

0.15 33 36 33 86 0.15 35 39 36 89

0.2 37 38 37 93 0.2 38 40 38 98

18.5

65 70

21.5
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vertical so that, a weighted average of the permeabilities for the natural soil and the gravel 

drains might be used, as described below: 

.
(1 )

eq s drain s sand
kk k                                                  7.3 

Taking into account that kdrain/ksand must be greater than about 200 and also that as ranges 

from 0.05 to 0.20 it comes out that keq.> (11 ÷ 41)ksand.  

It is also well known that the permeability coefficient under seismic loading is initially less 

than the equivalent static value but may increase in proportion to ru. Parametric analyses 

performed by Chaloulos (2012) for the simulation of centrifuge tests of a pile into liquefied 

and laterally spreading ground revealed that the static value of permeability is a reasonable 

average for liquefied and non liquefied states and can be used for the numerical 

computations without significant loss in accuracy. According to Arulmoli et al. (1992), the 

static value of the permeability coefficient differs with relative density, and more particularly 

the proposed values are summarized in Table 7.2. 

 

Table 7.2: Permeability coefficient values and relative density for the liquefiable sand 
layer (Arulmoli et al., 1992). 

Dr (%) ksand (*10-5m/s) 

40 6.6 

60 5.6 

90 2.3 

 

The variation of the coefficient of permeability with relative density is plotted in Figure 7.2, 

from which it is concluded that the permeability coefficient remains essentially constant and 

equal to 6.6*10-5 m/s for relative densities up to 40-50%. Therefore, for initial values of 

relative density (35, 40 & 45%) the permeability coefficient is set equal to 6.6*10-5 m/s, 

whereas for the three remaining values (55, 65 & 70%) , it is set equal to 5.8, 5.2 and 

4.5(*10-5) m/s respectively. Also, following Equation 7.3 the values of the equivalent 

coefficient of permeability for the improved crust are summarized in Table 7.3.  
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Figure 7.2: Change in the permeability coefficient with regard to relative density for 
Nevada sand, as proposed by Arylmoli et al. (1992). 

 

Table 7.3: Equivalent permeability coefficient for the improved layer. 

 

 

 

7.3 Numerical analysis outline 

Mesh discretization.- The seismic performance of a shallow foundation is investigated under 

plane strain conditions, through 2-dimensional numerical analyses. The general outline of 

the arrangement is illustrated in Figure 7.3. Starting from a uniform liquefiable sand layer of 

total thickness equal to 20m, three potential improvement depths were considered, namely 

4, 6 & 8 meters. As illustrated in Figure 7.3, in the vicinity of the footing, and around the axis 

30 40 50 60 70 80 90 100
Dr (%)

1

10

k
 (

*1
0

-5
 m

/s
e
c

)

Arulmoli et al. (1992)

Dro (%)

ksand (m/s)

as

0.05

0.1

0.15

0.2

kdrain (m/s) keq. (m/s)

7.23E-04

1.38E-03

2.04E-03

2.69E-03

1.32E-02

35, 40, 45

6.60E-05

Dro (%) Dro (%) Dro (%)

ksand (m/s) ksand (m/s) ksand (m/s)

as kdrain (m/s) keq. (m/s) as kdrain (m/s) keq. (m/s) as kdrain (m/s) keq. (m/s)

0.05 6.35E-04 0.05 5.69E-04 0.05 4.93E-04

0.1 1.21E-03 0.1 1.09E-03 0.1 9.41E-04

0.15 1.79E-03 0.15 1.60E-03 0.15 1.39E-03

0.2 2.37E-03 0.2 2.12E-03 0.2 1.84E-03

1.16E-02 1.04E-02 9.00E-03

55 65 70

5.80E-05 5.20E-05 4.50E-05
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of symmetry of the configuration, 1.0×1.0m zones are generated and the zone-width is 

gradually increased to 1.5×1.0m and 2.0×1.0m, at the boundaries of the configuration.  

 

Figure 7.3: Mesh used in the 2-D numerical analyses. 

 

Excitation.- The 2-layer soil profile is subjected to a harmonic sinusoidal excitation, 

consisting of 12 cycles with period T=0.35sec and peak acceleration αmax = 0.15g, (Figure 

7.4). A cycle of smaller amplitude is added at the beginning and at the end of the time 

history to ensure a gradual increase of the input acceleration and eliminate erroneous 

results due to an abrupt change in the loading conditions.  

 

 

Figure 7.4: Input acceleration time history in the basic numerical analysis 

 

Constitutive Model.- The liquefiable sand response under the imposed dynamic loading is 

simulated using the NTUA-SAND constitutive model, which is re-calibraed to fit the special 

conditions of the problem at hand. Additional information on the neccessity for re-

calibration and the procedure which was applied are provided in Appendix B.  

The improved crust is initially simulated using the Mohr-Coulomb constitutive model. The 

required input strength parameters included the friction angle φ, the cohesion c, and the 

H to
t.
=2

0m
Hcrust=4,6,8m

Zliq.=16,14,12m

B=5m

Dr,o=35, 40, 45, 50 55, 65, 70%

Dr,imp.=f (αs)

1m 1
m

1.5m 1
m

2.0m 1
m

tied node boundary conditions

q=100kPa

keq.=f (ksand, αs)
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dilation angle ψ. Subsequently, the same analysis is repeated considering the NTUA-SAND 

model throughout the soil profile, paying attention to the equivalence in the required 

strength parameters inntroduced in both constitutive models. It is found that the Mohr-

Coulomb model may adequately capture the response of the partially liquefied crust, 

provided a suitable value for the dilation angle is selected. Nevertheless, there is great 

uncertainty involved in the assessment of dilation angle ψ, as opposed to friction angle, 

which discouraged the use of the Mohr-Coulomb model. Hence, the critical state NTUA-

SAND constitutive model is applied in the entire mesh 

Boundary conditions.- Different Boundary Conditions are used for static and dynamic 

loading conditions. For static loading, and for the application of initial geostatic stresses, 

horizontal displacements are restrained in the lateral boundaries, whereas along the vertical 

direction only the bottom boundaries are restrained, allowing the system to settle freely. 

Moreover, the bottom boundaries are allowed to move horizontally, to avoid the generation 

of parasitic shear stresses.  

During dynamic loading, tied-node boundary conditions are considered for the lateral 

boundaries, which are imposed by connecting gridpoints of the same altitude through rigid 

elements, thus compelling them to develop equal horizontal displacements. The philosophy 

behind the development of the specific type of boundary conditions, is to simulate the 

response of a laminar box during seismic loading, which is widely used in centrifuge and 

shaking table laboratory tests. The main drawback of the particular type of boundary 

conditions is that horizontally propagating seismic waves are reflected back into the main 

area of interest and may affect the numerical outcome. Nevertheless, in highly non-linear 

problems, such as the liquefation phenomena studied here, the elasto-plastic behavior of 

the materials produces enough hysteretic damping, which in combination with the initially 

assigned local damping, absorb reflected waves. This reduction is more efficient when 

boundaries are located far away.  

Water level.- Water level is considered to be 1m above the ground surface. This is simulated 

by applying a vertical stress equal to 9.81kN/m3, over the entire ground surface.  

Footing.- The 5m wide strip footing is simulated on top of the improved crust applying a 

uniform contact pressure equal to q. The footing is considered to have zero mass, to avoid 

the generation of inertia effects. Horizontal and vertical displacements of the gridpoints 

corresponding to the footing are restricted by considering a connecting rigid beam element. 

Bearing stresses are applied over four (4) zones simulating a 4×1.00m=4.00m wide footing. 
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Nevertheless, according to ITASCA (2005), bearing pressure is simulated through vertical 

velocity applied at specific gridpoints. This velocity varies linearly from the value at the last 

gridpoint upon which it is applied, to zero at the adjacent gridpoint. Therefore, half the 

width of the adjacent zones should be added to the actual footing width, thus resulting to a 

5m wide strip footing.   

Loading Sequence.- All analyses are conducted in three separate phases, which are 

schematically presented in Figure 7.5 and outlined below:   

Phase 1: Initial geostatic stresses are generated and the foundation load under static 

conditions is incrementally applied at increments of 5kPa until the desired contact pressure 

q is reached (branch a-b). 

Phase 2: A fully-coupled effective stress dynamic analysis is executed, subjecting the soil-

foundation system to a harmonic excitation,with parallel pore water flow throughout the 

grid. During this phase, excess pore pressures develop and dynamic settlements accumulate 

under constant load Q (branch b-c). Note that seismic settlements may become large and 

even exceed the static ones. 

Phase 3: After the end of shaking, the static load Q is increased until bearing capacity failure, 

while the undelying un-improved layer remains liquefied (branch c-d). Branch c-d in the 

figure, practically renders a degraded bearing capacity of the footing, compared to the initial 

static value (branch b-b’), as the subsoil remains liquefied and its shearing resistance has 

practically vanished. The post-shaking stage is performed under drained conditions, 

nevertheless, to account for the effects of liquefaction, excess pore pressures generated 

during shaking are maintained constant. This is achieved by prohibiting water flow and 

setting the water bulk modulus to a very small value (1kPa instead of 2×106kPa) so that pore 

pressures are not affected by the applied static loading. The additional load application was 

performed by fixing the gridpoints corresponding to the foundation in both (horizontal and 

vertical) directions and applying an adequately small velocity of 10-7m/sec, which has proven 

to provide a pretty stable response, with minor unbalanced forces. The related load was 

computed by summing up the vertical resistance forces at the fixed nodes. 
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Figure 7.5: Typical load-displacement curve. 

 

Damping.- Non-hysteretic damping is introduced in order to reproduce the energy loss in a 

natural system when subjected to dynamic loading. The two main damping options 

suggested by FLAC for dynamic simulations are briefly described herein. Also, their effect on 

the numerical outcome is assessed for the case of a shallow footing on top of an improved 

crust in terms of excess pore pressure builtup, soil response and associated dynamic 

settlement accumulation. The numerical analysis considered a 20m thick soil layer of initial 

relative density of Dr,o=65%, improved over the first 8 meters, considering a replacement 

ratio equal to αs=0.10.  

Rayleigh Damping.- It was originally used in the analysis of structures and elastic continua to 

damp the natural oscillation modes of the system. The related equations are expressed in 

the form of a matrix C, which is proportional to the mass (M) and stifness (K) matrices, as 

shown below:   

                   C aM βK                                                                     7.4 

where    α=the mass-proportional damping constant 

β= the stiffness-proportional damping constant 

For a multiple degree of freedom system, the critical damping ratio ξi, at any angular 

frequency of the system ωi, is given in the following equation: 
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The variation of the normalised critical damping ratio with angular frequency ωi is presented 

in Figure 7.6, as the mass and stifness component and the sum of both components. The 

curve representing the sum of both components attains a minimum of 1/2
minξ (αβ) at 

1/2
minω (α /β) . 

 

Figure 7.6: Variation of normalized critical damping ratio with angular frequency. 

 

From the above figure, it is concluded that this particular damping option is largely 

frequency dependent. More specifically, mass-proportional damping is dominant at the 

lower angular-frequency ranges, while stifness-proportional damping dominates at higher 

angular frequencies. Also, at frequency ωmin, (or fmin) mass damping and stifness damping 

each supply half of the total damping force. Despite the above frequency dependence, there 

is a “flat” region, spanning at about one third of the frequency range, in which damping 

becomes frequency-independent. The specific range essentially forms the area of interest in 

a dynamic analysis, in which fmin (or ωmin) is appropriately adjusted so that its 3:1 range 

coincides with the range of predominant frequencies of the problem. Hence frequency 

dependenty effects are canceled out at the frequencies of interest. By the term 

“predominant frequencies” both the input frequencies and the natural modes of the system 

are considered. The term ξmin is adjusted to coincide with the desired value of the damping 

ratio.  
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In the present research, the liquefiable soil element response is simulated with the use of an 

advanced constitutive model, suitably formulated to describe the highly hysteretic behavior 

of liquefiable sands under cyclic loading. Still, there is a need for a viscous damping 

componenet of the order of 2-4%. However, with the NTUA-SAND model, no stiffness 

component is defined. Hence, the damping matrix can only be composed of the mass 

component and the Rayleigh damping equations are appropriately adjusted. The requested 

parameters are set equal to ωmin=10Hz, ξmin= 2% which correspond to the minimum damping 

value reported by Vucetic & Dobry (1991) for very small cyclic shear strain amplitudes 

(0.001%). 

Local damping.- was initially designed as a means to equilibrate static simulations, hence it 

presents certain features that make it attractive for dynamic simulations by providing an 

approximate way to introduce damping. Local damping operates on a gridpoint or structural 

node, by adding mass, whenever the velocity changes sign or substracting mass, when 

velocity passes a maximum or minimum point. Special consideration is given to overall mass 

preservation throughout a full cycle of oscillation. In addition, the use of local damping is 

much simpler than Rayleigh damping, because no frequency-independent area needs to be 

specified. The main drawback of local damping is that it becomes increasingly unrealistic 

with the complexity of the waveform. In our case, local non-viscous damping was assigned 

an initial value of 2%, corresponding to the minimum damping value reported by Vucetic & 

Dobry (1991) for very small cyclic shear strains (0.001%). For greater shear strain amplitudes, 

hysteretic damping is simulated by the non-linear behavior of the NTUA-SAND constitutive 

model.  

Results of the performed analyses are summarized in Figure 7.7, in the form of excess pore 

pressure timehistories obtained at different depths of the arrangement and two locations, 

namely under the footing and away from it. It is concluded that minor variations are 

observed between the two damping options and that there is essentially no significant effect 

of the considered damping on the generated excess pore pressures at any depth.  

Figure 7.8, illustrates the acceleration time histories derived at the ground surface, again 

under the footing and away from it. It is observed that minor variations are again observed 

especially at the later stages of shaking, which do not however hold up in favor of the one or 

the other option. The obtained dynamic settlements are plotted in Figure 7.9, from which it 

is concluded that the use of Rayleigh damping leads to slightly increased settlements, thus 

implying the underdamping of the seismic motion. Nevertheless, compared to the 

complexity involved in the definition of Rayleigh damping the particular deviation is not 
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judged to be significant, so that local non-viscous damping can be considered in all 

subsequent analyses. 

 

 

Figure 7.7: Effect of damping on excess pore pressure generation in different depths of 
the configuration. 
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Figure 7.8: Effect of damping on soil response at the free-field and the footing. 

 

 

Figure 7.9: Effect of damping on the footing settlements. 

 

Lateral Dimensions.- Particular attention is given to the total width of the configuration and 

its effect on the seismic performance of the shallow footing under examination. According 

to DIN 4017 the static failure mechanism of a surface footing resting on top of a relatively 

stiff cohesionless soil may extend up to 8.51 times the footing width B, for a friction angle of 

φ=40o, as exhibited in Figure 7.10. Thus, for the 5m wide stip footing examined herein, an 

85m wide configuration would be at minimum requested. 

Additionally, due to the performed improvement, the relative density of the top crust 

significantly increases and is expected to reach up to 85-90%, always depending on the 

selected replacement ratio αs and the initial relative density Dr,o(%) of the remediated soil. 

The use of the recalibrated NTUA-SAND constitutive model in the simulation of the 

particularly dense sand, leads to the prediction of friction angle values greater than 40 

degrees, especially under simple shear conditions. This particular observation, in 

combination with Figure 7.10, implies that even wider grid configurations may be necessary 
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for the free and unobstructed development of the post-shaking failure mechanism and the 

determination of the degraded bearing capacity of the footing. 

 

Figure 7.10: Bearing failure wedge sizes for strip footings on cohesionless soils, with   
different friction angles φ, (DIN4017). 

 

The lateral sufficiency of the considered grid is parametrically investigated for a 20m thick 

sand layer of initial relative density equal to Dr,o=65%, three depths of improvement, namely 

Himp.=4, 6, & 8m and an average relative density in the improved crust equal to 85%. Initially, 

four grid arrangements are tested for each scenario, considering Lx/B ratios equal to 12, 

16.8, 21.2 and 24.8, rendering total horizontal dimensions equal to Lx=60, 84, 106 and 124 

meters, respectively. Later on, additional analyses are executed in the case of Himp.=6 & 8m, 

for Lx=140 meters, to fully visualize the observed trend between the width of the grid - Lx(m) 

-and the load required to reach failure, qult. (kPa).  

Three of the overall five different grid configurations are summarized in Figure 7.11. The 

narrowest grid considered in the particular investigation (Lx=60m) consists of 42×20=840 

zones, with dimensions varying from 1.0×1.0m around the axis of symmetry to 1.5×1.0m and 

2.0×1.0m, as approaching the boundaries of the configuration. The 84×20m grid 

arrangement resulted after increasing the number of zones in the x-direction to 58, thus 

generating 58×20=1160 zones, preserving at the same time the same discretization pattern. 

The next grid arrangement (Lx=106m) is discretized in 72×20=1440 zones, the Lx=124m mesh 

in  84×20=1680 zones and the widest mesh (Lx=140m) in 96×20=1920 zones, always 

preserving the discretization outline of the initial configuration. 
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Figure 7.12 summarizes the effect of the grid width on dynamic settlements. The three 

different curves correspond to the three different improvement depths, Himp.(m). The 

observed effect is particularly minor and practically independent of the width of the 

considered configuration for Lx/B values greater than about 15.  

Figure 7.13, exhibits the effect of the mesh width on the post-shaking degraded bearing 

capacity of the foundation, again with regard to the normalized width Lx/B. It is observed 

that unlike the previous figure, the load to failure (qult.) significantly decreases with 

increasing grid-width Lx(m), disclosing the major boundary effects that take place in the 

narrower grid arrangements, regardless of the improvement depth. The particular 

observation essentially implies that unless the grid is wide enough, the failure mechanism 

during the post-shaking phase cannot fully develop because the grid-boundaries provide 

substantial lateral resistance, hence leading to false and considerably non-conservative 

estimates of the post-shaking load required to failure. Additionally to the above, it appears 

that the grid demands are higher for deeper improvement schemes, considering that for 

Himp.=8m the derived curve levels off after Lx/B=25. Based on the previous remarks, all 

analyses with Himp.=4 & 6m will be performed  hereafter with Lx=106m while for Himp.=8m the 

width will be increased to Lx=124m to eliminate potential boundary induced effects.  

An untimely but important observation is that, provided the optimum grid width is used, the 

thickness of the improved crust has a distinct effect on both the dynamic-induced 

settlements and the post-shaking bearing capacity. Indeed, dynamic-induced settlements 

greatly diminish from 0.13m to 0.10 and 0.08m after increasing the improvement depth 

from 4 to 6m and then to 8 meters respectively. The opposite trend is observed for the post-

shaking bearing capacity, which increases with increasing depth of improvement. Namely, 

after doubling the thickness of the improved crust from 4 to 8meters, the post-shaking 

bearing capacity increases by a factor of 3, i.e. from 100kPa to 300 kPa. All the above, 

disclose the controlling role of the thickness of the performed improvement, on the seismic 

performance of a shallow foundation, which is going to be thoroughly examined in 

subsequent chapters. 
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Lx=60m  

Lx=106m  

Lx=140m  

Figure 7.11: Parametric investigation of grid width for the execution of the 2-D analyses. Typical grid configurations for Lx=60, 106 & 140m.
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Figure 7.12: Dynamic settlements as a function of width Lx(m) normalized by the footing 

width B(m). 

 

 

Figure 7.13: Ultimate bearing capacity qult. (kPa) as a function of width Lx(m) normalized 
by the footing width B(m). 
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7.4 Typical numerical results. 

The reference analysis, depicted in Figure 7.14, refers to a 20m thick liquefiable sand layer, 

with initial relative density Dr,o=45% and initial coefficient of permeability ksand=6.6*10-5m/s, 

improved at the top 4 meters at a replacement ratio equal to αs=0.07. The improved crust is 

attributed  a relative density equal to Dr,imp.=60% and a coefficient of permeability 

keq.=9.85*10-4m/s. The shallow foundation on top of the above soil profile applies a contact 

pressure equal to q=75kPa. All other associated assumptions involved in the numerical 

analysis have already been described previously.  

The comparisons will be performed regarding the mechanisms of excess pore pressure 

generation, the accumulations of seismic-induced settlements as well as the degradation of 

the footing’s bearing capacity due to liquefaction of the under-laying sand. 

 

 

Figure 7.14: Location of characteristic zones 

 

7.4.1 Excess pore water pressure generation 

The mechanisms of excess pore pressure generation and evolution during shaking as well as 

the post-shaking behavior of the partially or entirely liquefied soil are going to be examined 

in the present paragraph. For that purpose, Figure 7.15 and Figure 7.16, summarize the 

excess pore pressure and excess pore pressure ratio time-histories in three different zones, 

namely underneath the footing (A), at the corner (B) and in the free field (C), and at two 

distinct depths, namely inside the improved crust (A1, B1, C1) and the liquefiable ground 

(A2, B2, C2).  
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Figure 7.15: Excess pore pressure time-histories. 

 

 

Figure 7.16: Excess pore pressure ratio time-histories. 
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One of the main observations that stand out is the fact that the soil underneath the footing 

experiences lower excess pore pressures compared to the soil in the free-field, regardless of 

elevation. The explanation behind the above behaviour, focuses on the foundation-induced 

static deviatoric stresses, preventing excess pore pressures under the foundation to reach or 

exceed the free-field values. The particular observation was originally noticed by Yoshimi & 

Tokimatsu (1977) in their field observations after the Niigata earthquake in 1964. Shaking 

table tests performed by themselves as well as additional shaking table and centrifuge 

experiments performed by other researchers [e.g. Liu & Dobry (1997), Kawasaki et al. 

(1998), Adalier et al., (2003) and Coelho et al., (2004)] provided additional support to the 

particular remark.  

The previous pattern is repeated in the excess pore pressure ratio time histories, which are 

lower underneath the footing and increase with increasing distance from the footing (zones 

A2, B2, C2). The explanation to the particular effect lays in the definition of the excess pore 

pressure ratio itself, also noted by Karamitros et al. (2013). Taking into account the 

additional vertical stress applied by the footing, it is mathematically established that the 

excess pore pressure ratio under the footing will be defined as: 
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                                                  7.6 

Nevertheless, as mentioned above, due to the foundation-induced static deviatoric stresses 

the excess pore pressures developing in the free field are greater than the ones underneath 

the footing. Particularly, under liquefaction, excess pore pressures will equal the effective 

vertical stresses, i.e. Δu,ff = ς’vo, ff =ς’vo, foot. Therefore the above expression is transformed as 

follows:  
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                         7.7 

The above methematical expression also explains the gradual increase of excess pore 

pressure ratio values with depth (zones A1-A2 & B1-B2). Namely, the additional vertical 

stress applied by the footing gradually decreases with depth, therefore, the resulting excess 

pore pressure ratio will increase.  

Lower excess pore pressure ratios developing underneath the footing have also been 

mentioned by Liu & Dobry (1997), after performing centrifuge tests to examine the 

mechanism of liquefaction-induced settlement of a shallow foundation, as well as the effect 
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of sand densification in a specified area under a shallow footing. They attributed the lower 

excess pore pressure ratios to the dilative response of the soil, induced by the applied static 

shear stresses. Moreover, Adalier et al. (2003) observed that excess pore pressures 

increased with depth and distance from the footing and that the footing values did not 

exceed the excess pore pressures in the free field. They attributed this behavior to the 

inability of the liquefied free-field soil to provide sufficient lateral resistance beyond its 

initial vertical effective stress.  

Regarding locations C1 and C2, it is inferred that the obtained excess pore pressure ratio 

within the crust (zone C1) barely exceeds ru,max=0.4, as a result of the performed 

improvement. On the other hand, within the unimproved sand layer, liquefaction occurs 

already from the early stages of loading, as indicated by the excess pore pressure ratio which 

becomes equal to ru=Δu/ς’vo = 1. 

Another interesting characteristic concerns the excess pore pressure generation pattern in 

the vicinity of the footing and inside the improved crust, namely locations A1 & B1. The 

excess pore pressure time-history in location A1, essentially verifies the observation by 

Coelho et al. (2004) about positive peaks of Δu, gradually evolving to intense negative peaks 

as a result of soil dilation. The negative peaks though are not preserved for long, due to the 

groundwater flow arriving to the specific location from the surrounding area. Moreover, at 

the edge of the footing, the previously reported positive spikes appear more intense up to 

about 2secs and consequently reduce to negative values. At the later stages of loading the 

particular effect is smoothed, probably due to the groundwater flow taking place in the 

permeable crust. The decrease in the excess pore pressure time histories in the deeper 

location of the configuration is explained on the same basis of soil dilation. The main 

difference is that the footing-induced static stresses are lower at greater depths and 

therefore greater excess pore pressures are allowed to develop.  

The post-shaking increase of excess pore pressures under the footing, evident in the 

presented time-histories, is explained on the basis of groundwater flow occuring upwards as 

well as from the free field towards the footing. This is also verified by the groundwater flow 

vectors at the end of shaking illustrated in Figure 7.17. Note that the post-shaking increase 

of excess pore pressures within the crust is substantially greater, compared to locations 

within the liquefiable sand, as a consequence of the greater permeability of the drain 

improved upper layer. Liu & Dobry (1997) noted the post-shaking increase in the excess pore 

pressures under the footing as well, which was also attributed to a substantial groundwater 
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flow from the surrounding areas towards the footing. The particular observation is also 

mentioned by Adalier et al. (2003), and Kawasaki et al. (1998). 

 

 

 

 

 

 

 

 

Figure 7.17: Excess pore pressure ratio contours and flow vectors under the footing area 
at the end of shaking. 

 

7.4.2 Settlement accumulation 

The seismic settlement time-history of the footing is illustrated in Figure 7.18. It is observed 

that settlements accumulate linearly with time and mainly develop during shaking, with only 

a minor part being added post-shaking, probably due to excess pore pressure dissipation. 

The specific pattern has also been observed by Liu & Dobry (1997), Adalier et al. (2003) as 

well as Dashti et al., (2010) in centrifuge experiments examining the seismically induced 

settlements of shallow foundations on different configurations of improved densified 

ground. 

Moreover, the deformed mesh at the end of shaking and associated displacement vectors 

are exhibited in Figure 7.19. Evidently, at the footing location, displacement vectors are 

totally vertical, as a result of the consideration of a rigid beam element, as exlained 

previously. More importantly, the footing’s settlement accumulation, leads to significant 

lateral flow of the liquefied underlying sand towards the partially liquefied surface. The 
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particular deformation pattern has also been obseved in centrifuge tests performed by 

Adalier et al. (2003) and Dashti et al. (2010).  

 

 

Figure 7.18: Footing settlement accumulation time-history. 

 

 

Figure 7.19: Deformed mesh and displacement vectors at the end of shaking. 

 

To further analyze the mechanisms behind settlement accumulation, Figure 7.20, 

summarizes the horizontal and vertical components of the footing’s motion including 

acceleration, velocity and displacement time-histories. The particular time-histories refer to 

the baseline case described in the previous section. It is observed that the onset of 

liquefaction leads to a significant de-amplification of the horizontal motion without any 

significant horizontal displacement. On the other hand, the much smaller in magnitude, 

vertical component of motion does not reduce its amplitude and presents a ratio of 2:1 

regarding the predominant frequency of the vertical over the horizontal acceleration, as it 

has also been observed by Coehlo et. (2004). More importantly, from the above figure it is 

implied that the “plateau-shaped” velocity time-history is responsible for the linear 

accumulation of settlement with time, plotted beneath.  
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Figure 7.20: Horizontal and vertical acceleration, velocity and displacement time-
histories at the footing and comparison to the input motion. 

 

The particular pattern was initially identified by Richards et al. (1993), who employed the 

Richards & Elms (1979) sliding-block approach for retaining walls to calculate seismic 

displacements of foundations on uniform dry sand. Namely, they considered a simplified 

Coulomb active-passive wedge failure mechanism, which is activated every time the critical 

acceleration level is exceeded. As a result, the active wedge underneath the footing moves 

downward and sideways, while the passive wedge is displaced laterally. Hence, 

displacements accumulate incrementally during shaking and may be easily computed as a 

function of the excitation characteristics and the seismic counterpart of the active critical 

angle of rupture (ρAE).  

The above work by Richards et al. (1993) may be extended to describe the liquefaction – 

induced settlement accumulation of shallow foundations in saturated liquefiable sands. 

Figure 7.21 illustrates the velocity vectors and shear strain rate contours occurring within 

one loading cycle and more specifically at the time of the maximum acceleration at each 



Chapter 7: Simulation of Footing Response 

 

Page | 246  
 

direction, to justify the above mechanism. More specifically, the combination of the 

footing’s bearing pressure along with the developing horizontal inertia forces in the subsoil 

trigger the activation of the same one-sided wedge-type failure mechanisms. The particular 

wedge system develops twice within one loading cycle, one on each side of the footing and 

opposite to the ever-current direction of the input motion. As a result, during one total 

loading cycle, one vertical and two opposite and equal - therefore cancelling - horizontal 

footing displacements occur. The above observations are also verified by Karamitros et al. 

(2013), who examined the relevant issue of a shallow foundation on liquefiable soil with a 

clay crust.  

 

 

(a) 

 

(b) 

Figure 7.21: Shear strain rate contour and velocity vectors within one loading cycle (a) 
maximum applied acceleration to the right (b) maximum applied 
acceleration to the left. 
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7.4.3 Post-shaking bearing capacity degradation 

The onset of subsoil liquefaction apart from the accumulation of dynamic settlements 

causes total loss of shear strength in the unimproved soil and partial loss of shear strength 

inside the improved crust, due to the inevitable but controled development of excess pore 

pressures. The particular effect leads to the degradation of the shallow foundation’s bearing 

capacity, for a specific period of time, defined as the time required for the total excess pore 

pressure dissipation. As a result, the allowable post-shaking factor of safety may become 

much lower than the conventional values for static loads.  

Figure 7.22a & b, exhibit shear strain rate contours and velocity vectors at failure developing 

for static non-liquefied conditions and the liquefied state respectively, providing a useful 

insight to the developing mechanisms. It is evident that under static conditions, failure 

occurs within a very confined area within the crust. On the contrary, in the case of 

liquefaction occurrence, the footing appears to punch through the partially liquefied crust, 

into the liquefied subsoil whose shearing resistance has practically minimized as a 

consequence of the excess pore pressure generation. The specific failure pattern is also 

referred to as “punching shear failure” (Vesic, 1973) and is encountered in cases of fairly 

loose soils.  

The developing failure pattern is very similar to the mechanism proposed by Meyerhoff & 

Hanna (1978) for shallow foundations on layered soil profiles, illustrated in Figure 7.23a & b. 

In the proposed methodology, it is specified that punching shear failure (Figure 7.23a) 

occurs in relatively thin top layers, thus depending on the H/B ratio, in which H is the 

thickness of the upper layer, and B the width of the footing. In cases where H is relatively 

large, the failure surface develops entirely within the top stronger layer, as illustrated in 

Figure 7.23b.  
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(a) Static load failure mechanism 

 

(b) Post-shaking failure mechanism 

Figure 7.22: Shear strain rate contour and velocity vectors related to (a) static and (b) 
post-shaking bearing capacity failure. 

 

 

Figure 7.23: Bearing capacity of a continuous foundation on layered soil (Meyerhof & 
Hanna, 1978). 

 

Figure 7.24, ehxibits the load-displacement curves for static loading and the post-shaking 

part of the reference analysis (Phase 3 as mentioned previously). The static bearing capacity 

failure was numerically simulated by incrementally increasing the footing’s contact pressure 

(Phase 1) up to the failure load of 1550kPa. The theretically derived ultimate bearing 

capacity of a 2-layer sand formation was estimated between qt=1410 and  1660kPa, 

therefore, essentially verifying the numerical prediction. As a result, the factor of safety 

under static conditions is estimated to be equal to F.S.stat.=1550/75=20.6. The post-shaking 

bearing capacity was computed to be slightly above 90kPa, reducing the safety factor to 
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F.S.deg.=90/75 ≈ 1.20, indicating a marginal avoidance of total structural failure, due to the 

onset of liquefaction in the subsoil.  

 

 

Figure 7.24: Load-displacement curves for initial static loading and post-shaking loading.  

 

7.5 Verification of numerical methodology [Liu & Dobry (1997)].  

The subsequent verification will focus on the effectiveness of the methodology to accurately 

predict the seismically induced excess pore pressure generation and the associated dynamic 

settlements. The selected data are obtained from a series of centrifuge tests performed by 

Liu & Dobry (1997). In brief, Liu & Dobry (1997) investigated the mechanism of liquefaction-

induced settlement of a shallow foundation, as well as the effectiveness of sand 

densification by vibrocompaction in a cylindrical area under a shallow footing. Overall, eight 

centrifuge experiments were performed at the centrifuge facility of the Rensselaer 

Polytechnic Institute (RPI), Troy, NY, considering a circular footing placed on top of a 

medium dense saturated sand layer overlying an impervious rigid base. The first series of 

tests focused on the effect of the depth of compacted soil under the foundation on the 

footing’s acceleration and settlement. The second group consisted of three tests in which 

the effect of soil permeability on excess pore pressure built up and footing settlement is 

investigated, without any performed densification. For the purposes of the specific 

verification, the first group of five tests was considered.  
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7.5.1 Test description and numerical simulation 

Model Configuration and Instrumentation Layout.- The rigid foundation is a circular footing 

of prototype diameter 4.56m applying an average contact pressure of q=100kPa (in 

prototype scale, for a centrifugal acceleration field of 80g). The soil used in all tests is a fine, 

uniform Nevada #120 sand with initial relative density Dr = 52±3% and a total thickness 

equal to 12.5m in prototype scale (Figure 7.25a). The vibro-compacted zone extends to a 

area of about 1.6 times the width of the footing, as illustrated in Figure 7.25b, while the 

compaction depth varies from Zc = 0 to 2.76B, essentially covering to the full thickness of the 

soil statum. The relative density of the compacted zone was estimated around 90%. The 

different testing parameters are summarized in Table 7.4 for all five models. The average 

relative density of the compacted cylindrical soil in test C1 was computed equal to 

Dr,c=106%, which according to Liu & Dobry (1997), is probably due to errors in estimating the 

compacted soil volume.  

 

Table 7.4: Soil properties of series C tests (Liu & Dobry, 1997). 

Test Dr,ini (%) Zc (m) Zc/B Dr,c (%) 

C0 54 0 0 - 

C1 51 3.22 0.71 >100 

C2 55 6.72 1.47 88 

C3 49 9.45 2.07 91 

C4 51 12.58 2.76 89 

 

The permeability of Nevada #120 sand tested in the laboratory at 1g is reported to be equal 

to the dynamic value, i.e. k=0.0021cm/s. The pore fluid used in the particular test series is 

water, therefore, according to the applying scaling laws, the permeability of the prototype 

soil will be n times larger than that obtained in the laboratory test at 1g. Hence, at 80g n 

equals 80 and the permeability coefficient is equal to k=80*0.0021=0.168cm/s, 

corresponding to a coarse sand.  

Figure 7.26 shows the model configuration and instrumentation of the tests. Three 

horizontal accelerometers were installed, the first at the model base, αi, the second on the 

soil surface away from the footing, αs, and the third on the footing itself, αf. Settlements 

were monitored at the center of the footing (Sf) and the free field (Ss), with vertical linear 

voltage differential transformers (LVDT). Also, seven pore pressure transducers were placed 

in the soil at different depths under the center of the footing (locations PC1, PC2 and PC3), 

close to the edge of the footing (location PE) and away from the footing (locations PF1, PF2 
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and PF3). The specific configuration was constructed in a rigid rectangular bucket with 

dimensions 454×204×241mm3. All test configurations were subjected to the same 10-cycle 

uniform sinusoidal excitation with frequency equal to f=1.5Hz and an average acceleration 

amplitude of 0.2g. 

 

(a)  

 

(b)  

Figure 7.25: Centrifuge test soil compaction: (a) profile (b) plan view. 

 

 

Figure 7.26: Model configuration and instrumentation of test series. 
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Model Preparation and Test Procedure.- The model sand deposit was suitably deposited to 

a relative density of Dr,o=52% using the dry pluviation process with the help of a sand rainer. 

Pore pressure transducers and accelerometers were placed in the model during the 

deposition process. After the construction of the uniform sand layer, the densified zone 

around the assumed footing locaion was constructed with a vibrating tube, 6.4mm in 

diameter (0.50m in prototype), which was inserted in 19 locations over a circular area of 

about 1.6 the diameter of the footing. The depth of compaction differs between the tests 

and it was assumed to reach about 1.5 tube diameters below the tip of the tube. During the 

densification process some settlement in the area occurred but the soil was leveled by 

adding additional sand at the ground surface to preserve its initial elevation.  

Following compaction, the container was sealed and de-aired by applying a negative  

vacuum pressure of 101kPa for one hour. De-aired water was then inserted very slowly to 

the bottom of the model in order to achieve fully saturated conditions. When the water 

reached 10mm above the free soil surface, vacuum was removed and the model was loaded 

on the centrifuge platform to be spun at 80g. After consolidation, at the geostatic stresses, 

the centrifuge was stopped and the model footing was placed on the soil surface. The soil-

foundation system was spun back at 80g until the stabilization of all output data of the 

instruments and the dynamic excitation was applied.  

Numerical Simulation.- Due to the three-dimensional nature of the above test series, the 

numerical analyses are performed with the finite difference code FLAC-3Dv4.0. According to 

Liu & Dobry (1997) the rigid rectangular bucket has plan dimensions 454×204mm2, this 

corresponding to prototype dimensions of 36.64×16.32m2 and the sand layer measures a 

thickness of 12.5m. Also, the dynamic loading is applied along the x-direction, thus the 

system’s response is symmetrical along the y-direction. To take advantage of this symmetry, 

only half the footing was modeled, by generating a 36.80×8×12.5m3 grid as presented in 

Figure 7.27. The specific grid is discretized at 0.8×0.8×0.5m3 brick zones, thus creating a total 

of 11500 zones.  
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Figure 7.27: Model simulation in FLAC3D – grid configuration and excitation applied at 
the base. 

 

Footing simulation.- It is reminded that in FLAC, the bearing pressure of a foundation is 

simulated through vertical velocity applied at specific gridpoints. This velocity varies linearly 

from the value at the last gridpoint upon which it is applied, to zero at the adjacent 

gridpoint. Therefore, in such problems, half the width of the adjacent zones should be added 

to the actual footing width. Based on the above and the brick-zone discretized grid, it turned 

out that the application of velocity on a group of gridpoints corresponding to a circular 

footing would lead to very approximate simulations, which would introduce significant 

deviations. Therefore to maintain the configuration outline as accurate as possible, it was 

decided to consider a square footing with an equivalent width B, so that the same contact 

pressure of q=100kPa-or a load of Q=100×π×R2≈1600kN- is applied. Based on this simplifying 

approach, the width of the equivalent square footing is computed equal to 

B=√(1600/100)=4.0m. The square foundation is simulated through shell elements, because 

rigid elements are not supported by FLAC3D. To appropriately reproduce the symmetrical 

conditions, the rotational degree of freedom around the x-axis of the shell nodes laying on 

the symmetry plane, is fixed. The shell elements were assigned the elastic properties of 

concrete, namely Young’s modulus E=30MPa and Poisson’s ratio ν=0.20. 

Nevada #120 sand.- is simulated using the advanced constitutive model NTUA-SAND, which 

has already been described in previous sections. For static loading, and the application of 

initial stresses, horizontal displacements are restrained in the lateral boundaries, whereas 

Ly= 8.0m

0.8m

0.8m

0.5m
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along the vertical direction only the bottom boundaries are restrained, allowing the system 

to freely settle. Moreover, the bottom boundaries are allowed to move horizontally, to avoid 

the generation of parasitic shear stresses.  

Permeability Coefficient.- As mentioned earlier, the permeability coefficient does not remain 

constant during seismic loading, but fluctuates proportionally to the ever-current excess 

pore pressure ratio, ru. Also, according to Chaloulos (2012), the static value of permeability 

can be considered to be a reasonable average between liquefied and non-liquefied states. In 

the present problem, two different sets of analyses are performed, the first considering the 

dynamic value of permeability, which is also reported by the Authors, and the second, 

setting the permeability of the sand equal to k=80*0.0066 = 0.528cm/s, corresponding to 

the static value of permeability for Nevada sand, as proposed by Arulmoli et al. (1992). The 

third option of a varying permeability coefficient was excluded, due to the excessively large 

computed permeability values. Such (prototype scale) values were dramatically decreasing 

the required numerical time-step set by FLAC3D and increased the computational time, 

rendering the particular analyses practically unfeasible.  

Boundary conditions.- The centrifuge model is reported to have been constructed in a rigid 

container. Additionally, even though it is quite usual in such containers to apply a soft, 

flexible dux-seal material at the interior, the Authors do not specify whether such a material 

was used. The purpose of such a material aims at disengaging the container oscillation from 

the soil response as well as minimizing wave reflections from the rigid boundaries towards 

the soil. 

Numerically, the simulation of a rigid box was performed by allowing all motion across the x-

direction and applying the uniform sinusoidal excitation plotted in Figure 7.27, at the base as 

well as the lateral boundaries of the configuration. Reference test C_0, was initially 

performed without considering a dux-seal material and the outcome indicated extended 

motion amplification in the ground surface. Slightly lower levels of excess pore pressures, 

presenting intense fluctuations throughout shaking were recorded and almost twice footing 

settlements developed, compared to the centrifuge recordings.  

Andrianopoulos (2006), in the numerical simulation of VELACS centrifuge test No12, 

examined the response of a rigid footing on top of a thin non-plastic silt underlain by 

liquefiable sand. He particularly examined the effect of boundary conditions –rigid against 

flexible container and rigid with elastic boundaries - on the particular test results. The 

consideration of an elastic material, at the boundaries of the configuration, essentially 
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corresponded to the use of dux-seal material in the centrifuge test. He concluded that there 

is a distinct but somehow restricted effect of the considered boundary conditions on the 

numerical results, particularly noticeable in the soil ground surface acceleration 

timehistories and accumulating seismic settlements. He also suggested that the flexible, 

laminar box type of boundary conditions, provided the most efficient approach to the 

numerical simulation of liquefaction related problems. 

Following, a numerical analysis was performed, considering a lateral zone of elastic flexible 

material with significantly low Young’s modulus. The obtained results indicated a definite 

improvement regarding the acceleration time histories and accumulated settlements being 

in satisfactory comparison with the centrifuge recordings. Nevertheless, the elastic 

properties and thickness of the potentially used dux-seal material are not known, therefore 

the particular solution could not be firmly established. To resolve the boundary conditions 

issue, also based on the previous detailed investigation by Andrianopoulos (2006), tied node 

boundary conditions were finally selected in all five simulations. The particular type 

essentially allows the unconfined soil oscillation during the applied excitation and, as stated 

above has systematically proven to effectively and accurately simulate the actual soil 

behavior.  

7.5.2 Interpretation of numerical results 

Reference test C_0.- Typical results in prototype units from the reference test are 

summarized in Figure 7.28. In brief, the results presented below refer to the analysis with 

the static value of permeability. Both sets of numerical results are evaluated in the 

subsequent section, against the overall influence of the densification depth, where the 

effect of permeability became more tangible. The available centrifuge data are plotted with 

black colour and include (i) acceleration time histories at the free-field (as), and the footing 

(af), (ii) excess pore pressure time histories at selected locations, as well as (iii) settlement 

accumulation at two locations, namely underneath the footing and away from the footing, 

thus corresponding to free field conditions. The numerically obtained results at the same 

locations are plotted with gray colour.  

Acceleration time histories.- Satisfactory agreement is obtained between the centrifuge 

recordings and the numerical results, with minor deviations relative to the magnitude of the 

measured acceleration, as exhibited in Figure 7.28. Note in both cases, how the magnitude 

of the horizontal acceleration in the ground surface (as) is drastically reduced already from 

the 2nd loading cycle, implying the occurrence of extensive liquefaction in the lower parts of 
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the sand layer, which restrains the propagation of the seismic motion to the upper parts of 

the configuration. The same phenomenon is also observed underneath the footing (af), 

where the motion cut-off is slighlty delayed and occurs at the end of the 4th cycle, as a 

consequence of the higher initial vertical effective stresses induced by the footing.  

Excess pore pressure built-up.- The numerically derived results, presented in Figure 7.28, are 

in good accordance with the centrifuge recordings, with the exception of perhaps  location 

PC_1, in which the numerical predictions underestimate the developped excess pore 

pressure. Nevertheless, it should be stressed out that during spinning of the container, and 

as the soil surrounding the transducer liquefied, it is possible that the pore pressure 

transducer located at position PC_1 slipped and sunk deeper into the ground, thus 

measuring pore pressures at a deeper location than the one originally assigned. The 

particular observation becomes even more crucial when comparing the pore pressures 

recorded at locations PC_1 and PC_2, which are very similar to each other. Apart from the 

above inconsistency, it is concluded that excess pore pressures are realistically simulated by 

the numerical model developed herien.  

Settlement accumulation.- Seismic induced settlements under the footing and in the free 

field are plotted in Figure 7.28. Settlements are slightly underestimated up to the first 5sec 

of loading but the rate of settlement accumulation is accelerated and renders a total 

settlement of 0.67m by the end of shaking, (at about 9sec), as opposed to the 0.56m 

measured at the centrifuge test. Overall, it is concluded that the settlement evolution with 

time is satisfactorily described by the applied numerical methodology.  
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Figure 7.28: Typical results for test C_0. 
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The ground surface settlement in the free field is numerically computed equal to 0.03m, and 

in contrast to the centrifugal value of 0.25m is substantially underestimated, as it is also 

illustrated in the corresponding figure. The particular inconsistency may be explained with 

reference to the arrangement which is usually employed to monitor the seismic induced 

settlements in the free-field. Figure 7.29 illustrates a typical arrangement used in the 

majority of centrifuge tests. The depicted configuration was used in a series of centrifuge 

tests performed at the centrifuge facility of the University of Cambridge, UK, by the research 

team of Prof. Bouckovalas in the context of the TNA project entitled “Experimental 

Verification of Shallow Foundation Performance under Earthquake-Induced Liquefaction”. 

The arrangement consists of a vertical Linear Voltage Differential Transformer (LVDT) which 

is connected to a specially-made small footing used to acquire the required data during 

flight. In the present case, under the centrifugal acceleration of 80g, the prototype weight of 

the small footing is scaled by a factor of 80 and therefore may become significant. The 

particular remark, in combination with the triggering of liquefaction already from the 2nd 

loading cycle, in the underlying sand, may have induced the settlement of 0.25m. Thus, the 

measured settlement reported in the experiment could be the product of the above 

mechanism, which of course cannot be numerically predicted.  

 

 

Figure 7.29: LVDT arrangement, typically used in centrifuge tests (Bouckovalas et al., 
2011).  
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Tests C_0 ÷ C_4.- The evaluation of the obtained numerical predictions against the 

experimental results, for all five tests, will be performed with regard to:  

i. The dynamic settlement of the footing and its correlation to all considered 

densification depths Zc.  

ii. The excess pore pressure distribution with depth and its variation during the seismic 

excitation. 

iii. The effect of the densification depth to the propagation of the seismic motion 

towards the soil surface  

The accumulated dynamic settlements of the footing and their variation with the 

improvement depth Zc is illustated in Figure 7.30. The centrifuge data are plotted with the 

black squares while the numerical predictions with different shades of gray, corresponding 

to the effect of the dynamic and static value of permeability respectively. The use of the 

static value of permeability appears to slightly over-estimate the dynamic footing 

settlements, as opposed to the set of analyses assuming the dynamic permeability 

coefficient (k=1.68*10-3m/s). At an average, both sets of analyses capture the centrifuge 

results rather well, up to Zc/B = 1.5, by forming an upper and lower boundary. For Zc/B 

greater than about 1.5, both approaches over-estimate the footing settlements. Apart from 

the above quantitative differentiations, in both cases, the numerical outcome confirms the 

experimentally observed reducing trend of the footing settlements with increasing depth of 

densification Zc. 

 

 

Figure 7.30: Footing settlement Sfoot. versus densification depth Zc normalized with the 
footing width B.   
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The excess pore pressure distribution with depth and its change with time for both 

permeability coefficients is presented in Figure 7.31 - Figure 7.35. The results are obtained 

at t=3.5sec and the end of shaking, and two different locations, namely under the footing 

and away from it. The dashed black lines without symbols correspond to the initial  vertical 

effective stresses as they were calculated in the free field and under the footing as 

ς’vo=γb+Δς’v, where Δς’v the effect of the foundation load estimated using the elastic theory. 

As a general interpretation of the obtained response, it is stated that under free field 

conditions, the numerical analyses verify the propagation of the liquefaction front from the 

shallower towards the deeper loactions extending to depths ranging from 6 to 8meters. 

Under the footing, liquefaction is also systematically prevented since the developping excess 

pore pressures are substantially lower than the effective vertical stresses.  

Focusing on the use of the dynamic coefficient of permeability, (k=1.68*10-3m/s) higher 

excess pore pressures than the experimentally reported, are numerically predicted 

principally in the deeper locations of the configuration, as a result of the limited drainage 

capacity at the specific depths. Moreover, the influence of the permeability coefficient 

becomes even more obvious for increasing thickness of the performed densification (Zc) as 

observed in the case of test C_4. The related excess pore pressures clearly indicate the 

triggering of liquefaction throughout the improved depth already from the early stages of 

loading.  

The consideration of the static value of permeability (k=5.3*10-3m/s)  in the numerical 

analyses, significantly improves the previous numerical predictions in both considered time 

instants. Especially at the deeper locations, excess pore pressures are reduced and the 

liquefaction front does not propagate as deep as previously, thus rendering a very 

reasonable agreement to the centriguge data as well. Especially in the case of test C_4, there 

is still an obvious divergence nevertheless the distribution of excess pore pressures with 

depth indicates the successful mitigation of liquefaction in the improved area of the sand 

layer. 

The effect of the depth of improvement Zc normalized against the footing width B, on the 

propagation of the seismic motion to the ground surface, expressed as the footing/base 

acceleration is summarized in Figure 7.36. Again the results from both sets of analyses are 

plotted and compared against the reported centrifuge data, preserving the same line and 

symbol layout as above.  
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Notice that the use of the dynamic coefficient of permeability systematically leads to lower 

amplification ratios, compared to the centrifuge results. It is of particular interest that for 

the maximum considered ratio Zc/B=2.76 the numerically computed amplification ratio 

separates from the previously established trend and drops. The particular behavior, is 

explained on the basis of the high developing excess pore pressures along the soil column 

underneath the footing, provided previously. Namely, as a result of the insufficient drainage 

capacity the high excess pore poressures drastically reduce the sand’s shear strength and 

the related shear wave velocity, impeding the propagation of the seismic motion to the top. 

The successful liquefaction mitigation illustrated in the previous figures, for the static value 

of permeability (k=5.3*10-3m/s), provides the necessary justification to the improved 

amplification ratio predictions, plotted in Figure 7.36. Indeed the increase of the coefficient 

of permeability by about 5.28/1.68 = 3 times considerably improves the observed motion 

transmission to the top, as a result of the generation of lower excess pore pressures with 

depth.  

In the last two tests (C_3 & C_4) still a noticeable deviation is observed, which may 

attributed to resonance effects, as subsequently explained. Focusing on test C_4, a soil 

column of thickness H=12.5m, relative density Dr=89% and average mean effective pressure 

p=40kPa, is estimated to roughly have a shear wave velocity equal to 200m/sec, this being 

calculated to an elastic period T, equal to T=4*H/Vs = 0.25sec and Tsoil/Texc.=0.25/0.67=0.37. 

Based on a conservative estimate, as a result of the performed densification, the average 

excess pore pressure over depth, during shaking, under free field conditions, is not expected 

to rise above ru,avg=0.80, which is going to reduce the soil’s shear wave velocity to 

Vsliq= 1-ru

4

*Vs,o= 130m/sec. In that case, the period of the soil column is going to climb up 

to T=0.40sec, therefore Tsoil/Texc.=0.40/0.67=0.60. The increase in the Tsoil/Texc. ratio implies 

that the soil column moves closer to resonance (Tsoil/Texc.=1)  and higher amplification ratio 

values are obtained.  
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Figure 7.31: Excess pore pressures distribution with depth for test C_0. 

 

 

Figure 7.32: Excess pore pressures distribution with depth for tests C_1. 
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Figure 7.33: Excess pore pressures distribution with depth for test C_2. 

 

 

Figure 7.34: Excess pore pressures distribution with depth for test C_3. 
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Figure 7.35: Excess pore pressures distribution with depth for test C_4. 

 

 

Figure 7.36: Footing/base acceleration versus Zc/B for all five centrifuge test. 

Equation Chapter 8 Section 1
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CHAPTER   8 

 

 

8 Parametric Analyses of Footing Response 

 

 

8.1 Introduction 

The simplified concept of “Equivalent Uniform Improved Ground”, thoroughly described in 

the previous chapter, essentially led to a 2-layer configuration with the following basic 

characteristics:  

a. A liquefiable sand layer of given uniform density and relatively large thickness, 

covered by a non-liquefiable surface layer, of the same origin as the liquefiable one 

but with larger relative density (due to the vibrocompaction) and larger overall 

permeability due to the presence of the gravel drains.  

b. Following the current design practice, the average over-depth excess pore pressure 

ratios in the top layer should not exceed a safe value, well below 1 (e.g. 

u, maxr = 0.3 ÷ 0.5) 

In relation to the above objectives, it is first necessary to specify a methodology to predict 

beforehand the developing excess pore pressures in the improved crust. For that purpose, a 

number of 1-D numerical analyses is performed, simulating the free-field response of the 

improved ground. The ultimate intention is to identify the replacement ratio αs which is 

required in order to restrain excess pore pressure development in the improved ground 

within the target range of u, maxr = 0.30 – 0.50.  

Following, a number of 2D parametric analyses is performed in order to examine the seismic 

response of a shallow footing on the above specified soil profile. Additionally, a separate set 

of analyses is performed to examine the effect of the lateral extent of improvement on the 



Chapter 8: Parametric analyses of footing response 

 

Page | 266  
 

seismic response of the shallow footing. The basic problem parameters are identified and a 

detailed description of the plan of the parametric investigation is provided in the 

corresponding sections. 

 

8.2 Free field numerical analyses. 

To evaluate the appropriate replacement ratio αs required to restrain the average excess 

pore pressure ratios within the desired range, of u, maxr = 0.30 – 0.5, a series of 1-D free-field 

numerical analyses is performed. The particular numerical investigation is performed for a 

wide range of initial relative densities (i.e. Dr,o=35, 40, 45, 55, 60, 65 & 70%) and related 

permeability coefficients.  

The grid configuration initially consisted of a 28m wide and 20m thick uniform liquefiable 

sand layer, as illustrated in Figure 8.1. Overall, 24×20=480 zones were generated, with 

dimensions varying from 1.0×1.0m around the axis of symmetry to 1.5×1.0m, at the 

boundaries of the configuration. With the initial relative density being the controlling 

parameter, three different depths of improvement were considered in each case, i.e. 4, 6 

and 8m, as well as four different replacement ratios – αs = 0.05, 0.10, 0.15 and 0.20. In total, 

72 numerical analyses were performed.  

 

Figure 8.1: Grid configuration used in the 2-dimensional free-field numerical analyses.  

 

The associated assuptions of the 1-D numerical analyses regarding the applied excitation, 

type of damping, imposed boundary conditions, constitutive model, and water level are the 

same as in the reference case of a surface footing on top of the 2-layered profile and will not 
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be repeated herein. Hence, the rest of this section is devoted to the investigation concerning 

the lateral dimensions of the grid configuration. 

Lateral dimensions.- The tied-node boundary conditions during dynamic loading combined 

with the high permeability coefficient used for the improved crust, were found to generate 

significant boundary effects, concerning the excess pore pressure ratio distribution within 

the improved crust and the associated flow during shaking. The particular effect became 

more intense in the case of increased improvement thickness. For instance, Figure 8.2 

illustrates the excess pore pressure ratio distribution and flow vectors at the end of the 4th 

cycle for the case of a soil layer with initial relative density of Dr,o=65%, improved at the 

maximum considered depth and with the highest replacement ratio, i.e. Himp.=8m & αs=0.20. 

Excess pore pressure ratio distribution appears highly non-uniform and flow vectors indicate 

pretty much irregular flow taking place across the improved crust.  

 

 

Figure 8.2: Non-uniform excess pore pressure ratio distribution and associated flow 
vectors at the end of the 4th loading cycle for Dr,o=65%, Himp=8m, αs=0.20. 

 

To achieve a uniform field of excess pore pressure ratios and pure vertical flow towards the 

surface, a parametric investigation is performed by laterally extending the boundaries of the 

grid from 28m, to 60m and subsequently to 84 meters. The outcome of the above analyses is 

summarized in Figure 8.3, presenting ru time histories derived inside the crust and the axis of 

symmetry, for the three different cases. Moreover, snapshots of excess pore pressure ratio 

contours and flow vectors at the end of the 4th loading cycle are presented in Figure 8.4. It is 

observed that increasing the lateral dimension of the grid diminishes and confines the 
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irregularity in the ru distribution around the edges of the configuration, thus leaving the 

central area unaffected. Moreover, vertical flow is evident around the axis of symmetry, 

with localized fluctuations at the boundaries. As a result, to ensure a uniform excess pore 

pressure field development and pure vertical flow, across the improved crust, the wider grid 

configuration of 84 meters is selected to perform the following 1-D free-field numerical 

investigation. 

 

 

Figure 8.3: Parametric investigation of lateral grid dimensions - epp ratio timehistories 
inside the crust. 
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Lx=28m Lx=60m

Lx=84m   

Figure 8.4: Parametric investigation of lateral grid dimensions- epp ratio contours at the end of the 4th loading cycle.
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8.3 Evaluation of 1-D numerical predictions. 

Due to the large number of parametric analyses, three typical cases are selected and 

presented below, reflecting the response of a loose (Dro=40%), medium dense (Dro=55%) 

and dense (Dro=70%), but still liquefiable, sand under seismic loading. In all three examples 

different replacement ratio (αs) values are selected, achieving to restrain the average in-

crust excess pore pressure ratio to acceptable levels, i.e u, maxr = 0.3 ÷ 0.4 . The above 

analyses will be assessed, in terms of: 

1. the excess pore pressure ratio (ru) distribution with depth at the axis of symmetry. 

The particular distributions are plotted for two different time moments (i) the time 

of the maximum ru occurrence within the improved crust and (ii) the end of shaking.  

2. the excess pore pressure ratio time histories at different depths of the grid, namely 

3m, 7m, 12m and 16m and  

3. the excess pore pressure ratio time histories within the improved crust.  

Predictions for Dro=40%.- Figure 8.5a,b & c, summarize the outcome for the case of initial 

relative density of 40% and improvement depth 4m. From the distribution of excess pore 

pressure ratios with depth, (Figure 8.5a) it is obvious that the underlying sand develops 

much higher ru values, which gradually increase from the interface of the two layers down to 

the bottom of the configuration. By the end of the imposed shaking, liquefaction is evident 

and extends practically to an area starting 2-3 meters below the interface of the two layers, 

up to the bottom of the configuration. As a result, the thickness of the performed 

improvement (Himp.) decisively controls the extent of the liquefied area underneath, by 

delaying or even preventing the occurrence of liquefaction. This indirect advantage is 

translated to extra shear strength, contributing to the shear strength provided by the 

overlying denser crust and is going to be appropriately taken into consideration in the 

development of the analytical methodology in subsequent chapters.  

Figure 8.5b summarizes ru time histories derived from selected depths of the configuration. 

It is of particular interest that the ru time history derived at 7 meters clearly indicates 

liquefaction already from the 3rd loading cycle. However, there is a very limited drainage 

effect present, which prevails over the rate of ru built up at the later stages of loading and 

causes a slight lowering of the ru values. The specific effect indicates the beneficial action of 

the top improved crust which restrains excess pore pressures beyond the improvement 

limits, as it is also illustrated in the following cases.  
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Moreover, excess pore pressure ratio values within the improved crust, illustrated in Figure 

8.5c, are confined within the pre-defined desirable range of u,max
r = 0.3÷0.4 . To achieve 

this, the performed mitigation against liquefaction is materialised for a replacement ratio 

equal to αs=0.10. The slightly increased ru values which are recorded at the shallower zones 

of the grid configuration are attributed to the vertical drainage occuring from the deeper 

parts of the crust towards the surface, thus increasing the excess pore pressure (Δu) at the 

specific depths.  

 

 

Figure 8.5: Typical results for Dro=40%, improvement depth Himp=4m and αs=0.10 a. ru 

distribution with depth at t=1.4 and t=4.9sec, b. ru time histories at selected 
depths of the configuration and c. ru time histories within the improved 
crust-gray lines and derived average-thick black line. 

 

Predictions for Dro=55%.- Figure 8.6a,b & c, summarize the outcome for the case of initial 

relative density of 55% and improvement depth equal to 8m. The ru distribution with depth 

(Figure 8.6a) attains an average value of ru=0.35, at the mid-depth of the improvement, 

which fluctuates from 0.27 at the deepest locations to 0.40 at the shallow parts of the 

improved layer, at the end of the 3rd cycle of the excitation. Figure 8.6b summarizes excess 

pore pressure time histories at selected depths of the configuration. In this example the 

improved crust extends up to 8meters, therefore the corresponding time history derived at 
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7meters indicates a successful liquefaction mitigation. Moreover, excess pore pressure ratio 

values within the improved crust, illustrated in Figure 8.6c, are confined within the pre-

defined desirable range of u, maxr = 0.3 ÷ 0.4 . To achieve this, the performed mitigation 

against liquefaction was materialised for a replacement ratio equal to αs=0.15. The slightly 

increased ru values which are recorded at the shallower zones of the grid configuration are 

attributed to the vertical drainage occuring from the deeper parts of the crust towards the 

surface, thus increasing the excess pore pressure (Δu) at the specific depths.  

 

 

Figure 8.6: Typical results for Dro=55%, improvement depth Himp=8m and αs=0.15 a. ru 
distribution with depth at t=1.4 and t=4.9sec, b. ru time histories at selected 
depths of the configuration and c. ru time histories within the improved 
crust-gray lines and derived average-thick black line. 

 

Predictions for Dro=65%.- The particular example refers to the remediation of a 65% initial 

relative density sand layer by improving the top 6 meters. Figure 8.7a,b & c, indicate that 

the desired response is obtained for a replacement ratio equal to αs=0.20. Maximum excess 

pore pressures attain roughly ru,max=0.25, especially in the shallower parts of the improved 

crust, while, at an average, maximum excess pore pressure values reach approximately 

u,maxr = 0.23 . Figure 8.7b, proves the beneficiary effect of the improvement which affects 
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the excess pore pressure built up beyond its actual thickness. Proof of this is the ru time 

history derived at a depth of 7 meters which remains well below liquefaction triggering.  

Overview of reults.- To fully visualize the replacement ratio value (αs) required to achieve an 

acceptable level of excess pore pressure built-up, for all the examined combinations of initial 

relative density (Dro-%) and depth of improvement (Himp.) a set of figures, which summarize 

the excess pore pressure ratio time histories within the improved crust for all the executed 

numerical analyses is generated. For each case of initial relative density Dro (%), and all four 

examined replacement ratio (αs) values, namely αs=0.05, 0.10, 0.15 and 0.20, excess pore 

pressure ratio time histories, are derived at increments of 0.5m starting from the ground 

surface and proceeding to the bottom of the improved crust. To avoid interrupting the flow 

of the analysis at hand, the particular time histories are plotted in Figures C-1 to C-18 of 

Appendix C.  

 

 

Figure 8.7: Typical results for Dro=65%, improvement depth Himp.=6m and αs=0.20 a. ru 

distribution with depth at t=1.4 and t=4.9sec, b. ru time histories at selected 
depths of the configuration and c. ru time histories within the improved 
crust-gray lines and derived average-thick black line. 

 

 



Chapter 8: Parametric analyses of footing response 

 

Page | 274  
 

Set of Proposed Design Charts.- The average maximum excess pore pressure ratio within 

the improved crust is plotted with regard to the corresponding replacement ratio αs in an 

attempt to provide an easy-to-use design chart. The outcome is exhibited in Figure 8.8, for 

all six different initial relative density scenarios and three depths of improvement. The 

particular figure essentially illustrates the effectiveness of every examined combination of 

initial properties of the sand layer and considered improvement depth.  

Following, Figure 8.9 summarizes the replacement ratio αs required for every initial relative 

density value Dro (%)  and three distinct average 
,maxur  values expected to develop within the 

improved crust, namely 0.30, 0.40 & 0.50. Additionally, depending on the replacement ratio 

αs obtained from the above figure, the properties of the improved crust, i.e. relative density 

Dr,imp (%) and equivalent coefficient of permeability keq. (m/sec) may be easily obtained 

through Figure 8.10a & b. More specifically, Figure 8.10a correlates replacement ratio αs to 

the relative density of the improved crust through seven different curves, each one for an 

initial relative density Dr,o (%). Figure 8.10b, associates the replacement ratio αs to the 

equivalent coefficient of permeability keq. (m/sec) as a function of the permeability of the 

natural sand layer.  
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Figure 8.8: Average ru within the improved crust as a function of replacement ratio αs, for all examined scenarios of initial relative density and 
improvement thicknesses. 
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Figure 8.9: Required replacement ratio αs with regard to initial relative density Dr,o(%) 

and three allowable levels of ru,max. 
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(a) 

 

(b) 

Figure 8.10: Assessment of the improved properties (a) relative density Dr,imp(%) and (b) 
permeability keq.(m/sec), as a function of replacement ratio αs. 

 

8.4 Parameter identification 

Following the numerical methodology developed in Chpater 7, the liquefaction performance 

of a strip foundation is parametrically investigated focusing on two main objectives: 

 the seismically induced footing settlements ρdyn (m) 

 the degraded post-shaking bearing capacity of the footing qult. (kPa) 
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The performed numerical analyses are classified in two categories, based on the lateral 

extent of the performed improvement, namely “infinite” and “finite” width of improvement 

as it is further explained in the subsequent sections.  

8.4.1 “Infinitely” extending improvement  

To simplify the problem at hand, it is initially assumed that the improved zone extends up to 

the limits of the considered grid. Hence, the liquefaction response of the footing is initially 

examined under conditions of “infinite” improvement. Within the above contect, the sliding-

block mechanism identified in the dynamic settlement accumulation mechanism in the 

previous chapter,  also recognized by Karamitros (2010) and subsequently Karamitros et al. 

(2013), allows the recognition of two groups of basic problem parameters: 

Loading and strength parameters.- They are associated to the activated failure mechanism 

and include: (i) the average foundation bearing pressure q, (ii) characteristics of the drain-

improved crust, namely the normalized thickness Himp./B, the friction angle φimproved, as well 

as (iii) properties of the liquefiable sand layer, including the normalized thickness Zliq./B and 

the relative density Dr,o. 

Excitation characteristics.- These parameters control the amount of accumulated 

settlement, and include: the peak bedrock acceleration αmax, the peak bedrock velocity vmax 

and the number of significant loading cycles N. The peak bedrock velocity vmax may be 

alternatively incorporated in the parametric investigation through the predominant 

excitation period T.  

Note that the shear strength of the crust is expressed through the improved relative density 

Dr,imp., which is directly linked to the initial relative density of the underlying liquefiable sand, 

through the replacement ratio αs. Additionally, the improved crust allows the dissipation of 

excess pore pressures and consequently the formation of a flow front propagating upwards 

from the deepest to the shallower locations. The permeability of the crust is practically 

related to the permeability of the original sand layer again through the selected replacement 

ratio αs, as described in Chapter 7. Also, as suggested by the design charts provided in Figure 

8.9,  replacement ratio αs, is directly controlled by the maximum excess pore pressure ratio 

ru,max expected to develop under free field conditions within the improved crust. Hence, it is 

concluded that the key-parameter controlling the properties assigned in the improved crust 

is the maximum anticipated excess pore pressure ratio ru,max, which is set equal to 0.4 for the 

majority of the numerical analyses.  
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The parametric analyses plan is summarized in Table 8.1 and consists of 82 analyses. The 

range of each parameter included in the parametric investigation is summarized below. Note 

that the effect of each parameter was examined separately, with the other parameters 

being given the reference values provided in the parentheses: 

 Average contact pressure applied by the foundation q=52, 60, 70, 75, 80, 90, 100, 

110kPa (52, 100kPa) 

 Relative density of the liquefiable sand layer Dr,o=35, 45, 55, 65% (45%) 

 Thickness of the liquefiable layer Zliq.=6, 8, 10, 12, 14, 16m (16m) 

 Depth of the performed improvement Himp.=4, 5, 6, 7 & 8m (4m) 

 Width of the foundation B=3, 5, 7, 9m (5m) 

 Peak input acceleration, applied at the base of the liquefiable layer αmax=0.10, 0.15, 

0.20, 0.25, 0.30, 0.35g (0.15g) 

 Number of cycles of the sinusoidal motion N=5, 10, 12, 15 (10) 

 Excitation period T=0.15, 0.20, 0.25, 0.35, 0.50sec (0.35sec) 

 Maximum excess pore pressure ratio inside the crust ru,max=0.15, 0.20, 0.30, 0.40 

(0.40). 

To isolate the influence of the improved relative density from the concurrent change in the 

permeability, a separate set of analyses is performed. Namely, the improved crust is 

assigned the appropriate relative density resulting from the design charts but different 

values for the permeability the natural sand are applied. Also, the effect of the relative 

density of the liquefiable sand was separately examined, by preserving the properties (Dr,imp. 

& keq.) of the crust and altering only Dr,o (%). Moreover, the ultimate bearing capacity for 

crust thicknesses Himp.=6 & 8m is investigated, by increasing the initial contact pressure q up 

to immediate post-shaking failure. 

The first set of parametric analyses is performed for an average contact pressure equal to 

q=100kPa and the parameter combination summarized in case No7 of Table 8.1. 

Nevertheless, it turns out that the specific arrangement is located in a meta-stable area, 

with regard to parameter Zliq/B, as illustrated in Figure 8.11. In other words, for Zliq./B=3.2 

(Zliq = 16m) the degraded factor of safety is well above unity, but for lower Zliq./B  values the 

footing has experienced post-shaking failure. For that reason, a second set of analyses is 

performed, with a considerably reduced average contact pressure, equal to q=52kPa, 

ensuring that the particular arrangement is far from post-shaking failure.  
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Figure 8.11: Variation of the degraded bearing capacity F.S.deg versus Zliq/B for constant 
footing presure q = 100kPa and footing width B = 5m. 

 

The discovery of a meta-stable area in the post-shaking response of the shallow footing is 

particularly interesting. It is possible that the thickness of the liquefiable layer, which 

determines the depth of liquefaction occurrence, plays a key role in the particular 

phenomenon. The meta-stable area is also observed, when incrementally increasing the 

footing pressure, q (kPa), independently of the thickness of the improved crust and the 

other parameters of the configuration. Namely, the increase of the applied pressure did not 

provide a continuously reducing degraded factor of safety, but rather its fluctuation around 

unity. The particular observation may be attributed to secondary dilation phenomena in the 

vicinity of the footing, which locally increase the shear strength of the improved crust. The 

observed meta-stable cases are excluded from the statistical processing regarding the 

degraded bearing capacity of the footing. 

 

 

 

 

 

 

 



Chapter 8: Parametric analyses of footing response 

Page | 281  
 

Table 8.1: Summary of parametric analyses plan. 

 

 

No Analysis Name q (kPa)
Dr,o 

(%)

Zliq. 

(m)
ru,max

Himp. 

(m)
B (m) amax(g) T N

keq.                    

(*10-4m/s)

Dr,imp 

(%)

 Limp. 

(m)

1 q=52kPa 52 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

2 q=60kPa 60 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

3 q=70kPa 70 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

4 q=75kPa 75 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

5 q=80kPa 80 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

6 q=90kPa 90 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

7 q=100kPa 100 45 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

8 Dro (%)-35 52 35 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

9 Dro (%)-55 52 55 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

10 Dro (%)-65 52 65 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

11 Zliq.=14m 52 45 14 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

12 Zliq.=12m 52 45 12 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

13 Zliq.=10m 52 45 10 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

14 Zliq.=8m 52 45 8 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

15 Zliq.=6m 52 45 6 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

16
ru,max=0.30 

(αs=0.09)
52 45 16 0.3 4 5 0.15 0.35 10 f(αs) f(αs) inf.

17
ru,max=0.20 

(αs=0.175)
52 45 16 0.2 4 5 0.15 0.35 10 f(αs) f(αs) inf.

18
ru,max=0.15 

(αs=0.20)
52 45 16 0.15 4 5 0.15 0.35 10 f(αs) f(αs) inf.

19 Himp.-5 52 45 15 0.4 5 5 0.15 0.35 10 f(αs) f(αs) inf.

20 Himp.-6 52 45 14 0.4 6 5 0.15 0.35 10 f(αs) f(αs) inf.

21 Himp.-7 52 45 13 0.4 7 5 0.15 0.35 10 f(αs) f(αs) inf.

22 Himp.-8 52 45 12 0.4 8 5 0.15 0.35 10 f(αs) f(αs) inf.

23 B=3m 52 45 16 0.4 4 3 0.15 0.35 10 f(αs) f(αs) inf.

24 B=7m 52 45 16 0.4 4 7 1.15 0.35 10 f(αs) f(αs) inf.

25 B=9m 52 45 16 0.4 4 9 2.15 0.35 10 f(αs) f(αs) inf.

26 B=3m 52 45 16 0.4 5 3 0.15 0.35 10 f(αs) f(αs) inf.

27 amax=0.10g 52 45 16 0.4 4 5 0.10 0.35 10 f(αs) f(αs) inf.

28 amax=0.20g 52 45 16 0.4 4 5 0.2 0.35 10 f(αs) f(αs) inf.

29 amax=0.25g 52 45 16 0.4 4 5 0.25 0.35 10 f(αs) f(αs) inf.

30 amax=0.30g 52 45 16 0.4 4 5 0.30 0.35 10 f(αs) f(αs) inf.

31 amax=0.35g 52 45 16 0.4 4 5 0.35 0.35 10 f(αs) f(αs) inf.

32 T=0.15sec 52 45 16 0.4 4 5 0.15 0.15 10 f(αs) f(αs) inf.

33 T=0.25sec 52 45 16 0.4 4 5 0.15 0.20 10 f(αs) f(αs) inf.

34 T=0.50sec 52 45 16 0.4 4 5 0.15 0.25 10 f(αs) f(αs) inf.

35 T=0.50sec 52 45 16 0.4 4 5 0.15 0.50 10 f(αs) f(αs) inf.

36 N=5 cycl. 52 45 16 0.4 4 5 0.15 0.35 5 f(αs) f(αs) inf.

37 N=12 cycl. 52 45 16 0.4 4 5 0.15 0.35 12 f(αs) f(αs) inf.

38 N=15 cycl. 52 45 16 0.4 4 5 0.15 0.35 15 f(αs) f(αs) inf.
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Table 8.1: Summary of parametric analyses plan (cont.). 

 

Analysis Name q (kPa)
Dr,o 

(%)

Zliq. 

(m)
ru,max

Himp. 

(m)
B (m) amax(g) T 10

keq. 

(m/sec)

Dr,imp 

(%)

 Limp. 

(m)

39 Dr,o-ind = 35% 52 35 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

40 Dr,o-ind = 45% 52 45 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

41 Dr,o-ind = 55% 52 55 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

42 Dr,o-ind = 65% 52 65 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

43
ksand=6.6*10-6m/s 

(αs = 0.23)
52 45 16 0.4 4 5 0.15 0.35 10 3.09 86 inf.

44
ksand=1*10-5m/s              

(αs = 0.2)
52 35 16 0.4 4 5 0.15 0.35 10 4.08 82 inf.

45
ksand=1*10-4m/s               

(αs = 0.06)
52 55 16 0.4 4 5 0.15 0.35 10 12.9 58 inf.

46 Dro (%)-35 100 35 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

47 Dro (%)-55 100 55 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

48 Dro (%)-65 100 65 16 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

49 Zliq.=10m 100 45 10 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

50 Zliq.=8m 100 45 8 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

51 Zliq.=6m 100 45 6 0.4 4 5 0.15 0.35 10 f(αs) f(αs) inf.

52 ru,max=0.30 

(αs=0.09)

100 45 16 0.3 4 5 0.15 0.35 10 f(αs) f(αs) inf.

53 ru,max=0.20 

(αs=0.175)

100 45 16 0.2 4 5 0.15 0.35 10 f(αs) f(αs) inf.

54 ru,max=0.15 

(αs=0.20)

100 45 16 0.15 4 5 0.15 0.35 10 f(αs) f(αs) inf.

55 Himp.-5 100 45 15 0.4 5 5 0.15 0.35 10 f(αs) f(αs) inf.

56 Himp.-6 100 45 14 0.4 6 5 0.15 0.35 10 f(αs) f(αs) inf.

57 Himp.-7 100 45 13 0.4 7 5 0.15 0.35 10 f(αs) f(αs) inf.

58 Himp.-8 100 45 12 0.4 8 5 0.15 0.35 10 f(αs) f(αs) inf.

59 B=3m 100 45 16 0.4 4 3 0.15 0.35 10 f(αs) f(αs) inf.

60 B=3m_Himp=5m 100 45 15 0.4 5 3 0.15 0.35 10 f(αs) f(αs) inf.

61 B=3m_Himp=6m 100 45 14 0.4 6 3 0.15 0.35 10 f(αs) f(αs) inf.

62 amax=0.10g 100 45 16 0.4 4 5 0.10 0.35 10 f(αs) f(αs) inf.

63 amax=0.25g 100 45 16 0.4 4 5 0.25 0.35 10 f(αs) f(αs) inf.

64 amax=0.35g 100 45 16 0.4 4 5 0.35 0.35 10 f(αs) f(αs) inf.

65 T=0.15sec 100 45 16 0.4 4 5 0.15 0.15 10 f(αs) f(αs) inf.

66 T=0.25sec 100 45 16 0.4 4 5 0.15 0.25 10 f(αs) f(αs) inf.

67 T=0.50sec 100 45 16 0.4 4 5 0.15 0.50 10 f(αs) f(αs) inf.

68 N=5 cycl. 100 45 16 0.4 4 5 0.15 0.35 5 f(αs) f(αs) inf.

69 N=12 cycl. 100 45 16 0.4 4 5 0.15 0.35 12 f(αs) f(αs) inf.

70 N=15 cycl. 100 45 16 0.4 4 5 0.15 0.35 15 f(αs) f(αs) inf.

71 Dr,o-ind = 35% 100 35 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

72 Dr,o-ind = 45% 100 45 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

73 Dr,o-ind = 55% 100 55 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

74 Dr,o-ind = 65% 100 65 16 0.4 4 5 0.15 0.35 10 10.87 82 inf.

75 Himp.-6 124 45 14 0.4 6 5 0.15 0.35 11 f(αs) f(αs) inf.

76 Himp.-6 152 45 14 0.4 6 5 0.15 0.35 12 f(αs) f(αs) inf.

77 Himp.-6 176 45 14 0.4 6 5 0.15 0.35 13 f(αs) f(αs) inf.

78 Himp.-6 200 45 14 0.4 6 5 0.15 0.35 14 f(αs) f(αs) inf.

79 Himp.-8 152 45 14 0.4 8 5 0.15 0.35 15 f(αs) f(αs) inf.

80 Himp.-8 200 45 14 0.4 8 5 0.15 0.35 16 f(αs) f(αs) inf.

81 Himp.-8 250 45 14 0.4 8 5 0.15 0.35 17 f(αs) f(αs) inf.

82 Himp.-8 300 45 14 0.4 8 5 0.15 0.35 18 f(αs) f(αs) inf.



Chapter 8: Parametric analyses of footing response 

Page | 283  
 

8.4.2 Effect of lateral extent of improvement (Limp) 

In real applications, the improved crust is going to be artificially manufactured around the 

shallow foundation, disclosing a major independent problem parameter, namely that of the 

extent of the performed improvement, Limp. For that purpose, an additional set of analyses is 

executed, considering various widths of improvement in order to evaluate the observed 

effect on the previously established liquefaction performance of the footing. 

The influence of lateral extent of improvement is investigated comparatively to the footing 

response for conditions of “infinite” improvement. Namely, out of the parametric analyses 

plan presented above, twelve (12) characteristic cases are selected, which exhibit different 

soil, excitation and geometric characteristics. In each set of analyses, the “infinitely” 

extending improved layer is the reference analysis. Subsequently, the width of the improved 

layer (Limp) is progressively reduced down to nearly the width of the footing itself. A detailed 

description of the particular set of parametric analyses as well as the conclusions of the 

statistical processing of the numerical results are provided in the relevant Chapter 10. 
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Equation Chapter 1 Section 1CHAPTER   9  

 

 

9. Analytical Relations for Seismic Settlements & 
Degraded Bearing Capacity: 

Infinite Improvement Width 

 

 

9.1 Introduction 

The present chapter is devoted to the statistical processing of the numerical results obtained 

from the parametric analysis described earlier. The aim of the statistical evaluation is first  to 

identify the parameters controlling the accumulation of dynamic settlements (ρdyn) and the 

post-shaking degraded factor of safety (F.S.deg.) and consequently to quantify their effect. As 

a result, analytical expressions are established for the prediction of seismic settlements of 

the shallow foundation, at the end of shaking, as well as the associated degraded bearing 

capacity qult. and factor of safety F.S.deg.  

 

9.2 Earthquake-induced foundation settlements  

9.2.1 Newmark-based analytical expression 

Systematic examination of the numerical results, combined with observations from relevant 

cetrifuge and large-scale experiments published in the literature, suggests that dynamic 

settlement accumulation of shallow foundations is not the result of sand densification, but 

rather that of the activation of a Newmark-type sliding block failure mechanism. Namely, as 

it has been thoroughly explained in Chapter 8,  settlement accumulation is associated with 
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the activation of two one-sided wedge type failure mechanisms, occuring twice during one 

full loading cycle.   

The correlation of dynamic settlement accumulation to a failure mechanism, may potentially 

lead to its association with the degraded factor of safety, also referred to as F.S.deg. Hence, to 

investigate this option, the effect of the different groups of examined problem parameters 

(i.e.loading, excitation, geometry and soil characteristics) are jointly evaluated for both, the 

footing settlements and the inverse degraded factor of safety, as shown in Figure 9.1 

through Figure 9.4. This parallel evaluation discloses that contact pressure q, as well as all 

geometry and soil characteristics have qualitatively the same effect on both ρdyn. and 

1/F.S.deg.. Hence, dynamic settlements may be directly related to the inverse of the degraded 

factor of safety, thus reducing the total number of the independent variables for estimating 

ρdyn.. It is also evident that this is hardly the case when examining the effect of the excitation 

characteristics on ρdyn. and 1/F.S.deg, presented in Figure 9.2. Hence, the specific parameters 

will be handled as separate variables, following the formulation justified below. 

For the simple case of harmonic loading, the sliding block mechanism results in displacement 

accumulation, which is proportional to Equation 9.1: 

2
2max

max

max

v
N a T N

a
                                                             9.1 

Where vmax is the maximum velocity of the applied excitation  

amax the maximum acceleration magnitude of the applied excitation 

T the period of the applied excitation  

N the number of cycles 

It can be further shown from Equation 9.2 that: 

*
2 2

max

0

( (t))dt
t N T

t

a T N π abs v




                                              9.2 

where v(t) is the applied velocity time history.  

The main advantage stemming from the use of such an expresion is that an analytical 

relation for ρdyn, initially developed for harmonic motions can be subsequently extended to 

any type of input motion. 
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Figure 9.1: Effect of contact pressure q, in ρdyn and 1/F.S.deg. 

 

 

Figure 9.2: Effect of excitation parameters in ρdyn and 1/F.S.deg for two loading levels (52 
and 100kPa). 
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Figure 9.3: Effect of geometry parameters in ρdyn and 1/F.S.deg for two loading levels (52 
and 100kPa).
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Figure 9.4: Effect of soil parameters in ρdyn and 1/F.S.deg for two loading levels (52 and 100kPa).
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Integration of the applied velocity time-history in the performed numerical analyses was 

found equal to αmaxT
2(No+2), where No is the number of significant cycles of the motion. The 

total number of loading cycles is increased by two, to account for the additional cycles of 

varying amplitude, added at the beginning and at the end of the applied excitation.  

In extend of the above, the numerically predicted ρdyn values were normalized against 

αmaxT
2(No+2) and correlated to the inverse of the degraded factor of safety. This correlation 

is illustrated in Figure 9.5. Observe that there is a consistent trend of the data points, 

expressed analytically as: 

0.45 5

2
max deg deg

1 1
0.06* * 1 0.3*

( 2) . . . .

dyn

exc o

ρ

a T N F S F S

    
              

                              9.3 

but the associated scater is considerable and may limit the use of Equation 9.3 in practical 

applications. This is mainly attributed to the fact that soil amplification effects, during 

propagation of the seismic motion from the base to the ground surface, where the 

settlements accumulate, are overlooked. Namely, while the seismic motion parameters 

(vmax, αmax, T) should refer to the base of the “sliding block”, in the present application they 

refer to seismic excitation at the base of the soil column. To account for this mandatory 

drawback a number of theory-inspired modifications were applied as described below. 

 

 

Figure 9.5: Correlation of normalized settlements ρdyn against 1/F.S.deg. considering the 
Newmark approach. 
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Incorporation of the fundamental soil period Tsoil.- To reduce the scatter in Figure 9.5, the 

excitation period was averaged with the elastic soil period Tsoil, the later being expressed as: 

, ,sand

4 4crust sand
soil

S crust S

H H
T

V V
                                                                                   9.4 

where 𝑉𝑠 =  
𝐺𝑚𝑎𝑥

𝜌
  denotes the shear wave velocity and the maximum shear modulus Gmax is 

approximately computed according to the following equation (Hardin et al., 1978):  

max 2
600

0.3+0.7×e
atm

atm

p p
G

p
                                                         9.5 

in terms of the void ratio of the sand (e), the atmospheric pressure (patm = 100kPa) and the 

mean effective pressure (p in kPa) at the mid-depth of each encountered layer (i.e. improved 

crust and natural sand layer) (kPa).  

In more detail, Equation 9.3 was rewritten in a more general form with Texc replaced by (Texc 

+ a×Tsoil):  

   
4

2

c

2 c
1 max exc soil o 3

deg deg

1 1
T + aT N +2 ( ) 1+c

F.S. F.S.
dynρ c α

  
       

                       9.6                

In the sequel, a non-linear regression analysis was performed leading to the following values 

of the coefficients in Equation 9.6: c1=0.019, c2=0.45, c3=0.25 c4=4.5 and a=0.633. The 

correlation of the normalized seismic settlements with the inverse degraded factor of safety 

is shown in Figure 9.6. 

The scatter of the data points is now significantly reduced, verifying the beneficial effect of 

introducing the fundamental soil period. Based on the one-to-one comparison of Figure 9.7, 

between numerical and analytical predictions of ρdyn it is further observed that about 83.3% 

of the predictions with Equation 9.6 lay within a range of ±25% of the numerical results. The 

relative error, expressed as the ratio of (Predicted – Observed)/Observed values, is 

presented in Figure 9.8 with regard to the observed values of dynamic settlements, 

ρdyn
num(m). The uniform scatter around zero is indicative of the good and unbiased predictive 

accuracy of the proposed Equation 9.6, which is further verified by the Standard deviation of 

relative error calculated equal to about 21%.  
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Figure 9.6: Correlation of normalized settlements ρdyn against 1/F.S.deg. considering the 
Newmark approach, incorporating the period of the soil column Tsoil. 

 

 

Figure 9.7: Numerical versus predicted values. 

 

 

Figure 9.8: Relative error plotted against the numerically derived values of settlement 
ρdyn

num (m). 
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9.2.2 Unit-dependent analytical expression 

The purpose of the following investigation is to explore whether there is hidden bias in the 

analytical predictions obtained from the use of Equation 9.6, and appropriately modify it, in 

order to improved its accuracy. To achieve this goal, the ratio of the Observed (numerical) 

over the Predicted (analytical) values of ρdyn is plotted against each one of the four basic 

variables appearing in Equation 9.6, and presented in Figure 9.9.  

 

 

Figure 9.9: Introduced bias for the involved variables and the number of cycles to 
liquefaction NL, expressed through F.S.L. 
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The last chart summarizes the ratio of Obs./Pred. values plotted against the factor of safety 

against liquefaction F.S.L. This particular figure is generated because the correlation of 

seismic-induced settlements to the total number of loading cycles implies that the onset of 

liquefaction coincides with the onset of seismic shaking, which is not entirely true. Also, the 

introduction of the inverse of the degraded factor of safety (1/F.S.deg.) into the analytical 

expression for the dynamic settlements is not conclusive whether it appropriately captures 

any possible effect of the "delayed" liquefaction. Hence, to explore this skepticism, the ratio 

of observed over predicted values of ρdyn is plotted against the factor of safety against 

liquefaction F.S.L, computed based on Equation 9.7 below (Bouckovalas, 2013; personal 

communication): 

0.35

L
0.35

L

N +3.3
F.S. =

N
N +3.3

N

                                                          9.7                      

where N is the total number of cycles and NL is the number of cycles required to initiate 

liquefaction, at the mid-depth of the soil configuration, obtained from free-field numerical 

analyses (for ru>0.90).  

Based on Figure 9.9, it is found that the analytical predictions are indeed biased with regard 

to all three seismic excitation parameters, as opposed to the inverse relation with the 

degraded factor of safety, as well as the factor of safety against liquefaction F.S.L, where the 

predictions are evenly scattered around the observed values. This observation does not 

necessarily revoke the validity of the assumed sliding block mechanism, but essentially 

reveals that merely introducing the elastic soil period was not adequate in order to account 

for soil effects on seismic excitation characteristics. Hence, the power functions describing 

the bias of each variable in Figure 9.9, are introduced in Equation 9.6, and a new non-linear 

regression analysis was performed to define coefficients c1 ÷ c4. Thus, the empirical relation 

for the computation of seismic settlements now becomes: 

   
4

2

c

1.40 0.50 c
1 max exc soil o 3

deg deg

0.40 1 1
T + 0.633T N +2 ( ) 1+c

F.S. F.S.
dynρ c α

  
       

                 9.8                

with c1=0.06, c2=0.45, c3=0.4 and c4=2. The correlation of the normalized seismic settlements 

with the inverse degraded factor of safety is illustrated in Figure 9.10. The scatter of the data 

points is further reduced, verifying the beneficial effect of introducing the correction factors 

mentioned above. 
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Figure 9.10: Correlation of normalized settlements ρdyn against 1/F.S.deg considering bias 
corrections. 

 

The updated one-to-one comparison between numerical and analytical predictions is shown 

in Figure 9.11. Observe that the scatter of the data points has been considerably reduced, 

with 95% of the predictions laying within a ±25% range from the numerical results and 

91.6% of the predictions within a ±20% range, as shown in the corresponding figure. The 

relative error is evaluated in Figure 9.12 with regard to the observed values of dynamic 

settlements, ρdyn
num(m). The even more uniform scatter around zero is indicative of the good 

and unbiased predictive accuracy of Equation 9.8, which is further verified by the reduced 

Standard deviation of relative error calculated equal to 14%.  

 

 

Figure 9.11: Observed versus analytically predicted values after the bias correction 
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Figure 9.12: Relative error plotted against the numerically derived values of settlement 
ρdyn

num (m). 

 

9.3 Post-shaking degraded bearing capacity 

9.3.1 Theoretical background and modifications  

The second part of the proposed analytical methodology focuses on the post-shaking 

bearing capacity of the surface foundation, which has substantially degraded compared to 

the initial value under static conditions, due to liquefaction of the unimproved natural soil. 

For that purpose, an analytical relationship for the evaluation of the degraded bearing 

capacity qult.
deg (kPa) is formulated, based on theory as well as on the results of the numerical 

analyses.  

The proposed analytical methodology is based on a modified version of the Meyerhof & 

Hanna (1978) analytical solution for the bearing capacity of shallow foundations on two-

layered cohesionless soil profiles. According to this methodology, the bearing capacity of 

shallow foundations located on top of a two-layered sand formation (without embedment) 

is evaluated as: 

 
1 1

ult,deg
2 1

1 1 s 1 1 1 γ2 1 1 q2

1
γ BNγ

2q min
tanφ 1

γ Η Κ γ H γ BN γ H N
B 2

 
  

  
      
  

                         9.9                       

where   2 πtanφ
qN =tan (45+φ/2)e                                                                             9.9a     

               γ qN =2(N +1)tanφ                                                                                                    

9.9b  

The coefficient Ks in Equation 9.9 is evaluated based on the chart of Figure 9.13, as a 

function of the q2/q1 ratio, and the friction angle of the upper layer φ1. Bearing capacities q1 
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and q2 refer to the top and the underlying layers respectively, and they are computed based 

on the first line of Equation 9.9a.  Assuming the same unit weight for both layers, the q2/q1 

ratio is reduced to Νγ2/Νγ1.  

 

Figure 9.13: Chart for estimating the Ks coefficient in the Meyerhof & Hanna (1978) 
analytical methodology. 

 

In the problem at hand, it has been noticed that at the end of shaking a transition zone of 

non-liquefied natural ground (with 0< ru < 1.0) is formed between the improved crust and 

the liquefied sand, as a result of the fast dissipation of the seismic induced excess pore 

pressures towards the much more permeable improved crust (see also Figure 9.14). This 

transitional zone acts as a secondary crust and essentially causes the Prandl-type failure 

surface to develop underneath it. If the thickness of the aforementioned layer is expressed 

as a portion α of the thickness of the improved soil crust, and the unit soil weight is 

considered uniform (γ1=γ2=γ), the Meyerhof & Hanna (1978) analytical expression is 

modified as follows:  

1

2 2 21 2
ult,deg 1 s 1 s 1

γ3 1 q3

1
γ BNγ

2
tanφ tanφ

q min γ Η Κ γ *(1 α) 1+ Η Κ γ (1 α)H
B B

1
γ BN γ (1 α)H N

2

 
 

 
 

           
 
 

    
 

            9.10 

Note that the friction angles appearing in Equation 9.10 above should be appropriately 

reduced in order to account for the excess pore pressure build up that is anticipated at the 

end of seismic shaking. To this extent, it will be approximately assumed that: 
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 1
i i ,iniiφ  tan 1 U ]tanφ[                                                     9.11 

where the subscript "ini" denotes the friction angle of the ground at the beginning of 

shaking, while i= 1 for the improved crust, 2 for the transition zone and 3 for the liquefied 

sand. 

 

Figure 9.14: Excess pore pressure ratio contours at the end of shaking, indicating the 
formation of the non-liquefied layer of natural ground.  

 

9.3.2 Calibration of necessary parameters  

Coefficient α._ The thickness of the transition crust (aH) has been defined as the thickness 

of the natural ground over which the free field at the end of shaking is lower than 0.90. The 

variation of coefficient a against each one of the examined problem parameters is provided 

in  

Figure 9.15. Based on that, it is concluded that α mainly depends on the properties of the 

improved layer (Himp., keq.) and the features of the applied excitation (T, N). Furthermore, 

Figure 9.16 shows that a more or less unique trend is formed when “α” is related to the 

combined parameter keqTH/Himp. Namely, “α” may be written as:  

0.256

α

imp

C
 

  
  

eqk TN
α

H
                                                        9.12 

The coefficient Cα receives an average value equal to 3.76 with a Standard Deviation equal to 

St.Dev.=±0.50. The minimum and maximum values are equal to Cα,min=3 and Cα,max=4.5 

respectively. 

Uff <1!Uff <1!
(1+α)Η1

Η1, γ’, φ1

Η2, γ’, φ2,3

Uff =1 Uff =1
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Figure 9.15: Variation of parameter α against each problem parameter. 
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Note that the permeability of the natural soil, ksand, was not included in Equation 9.12 for 

two reasons: the particular effect is indirectly included in the equivalent coefficient of 

permeability (keq), while the associated correlation shown in  

Figure 9.15 is rather weak.  

The accuracy of Equation 9.12, for the average value of Cα=3.76, is evaluated in Figure 9.17a 

& b. In Figure 9.17a the numerically derived values of α are one-to-one compared to the 

analytical predictions, while the relative prediction error is plotted against the numerical 

observations in Figure 9.17b. It is observed that the scatter of the data points is narrow 

whereas the relative error is less than ±20% for the majority of the observed values. 

Additionally, the proposed analytical expression is checked for potential bias with regard to 

each separate problem parameter in Figure 9.18. It is thus observed that in all cases, the 

observed (numerical) over predicted (analytical) a ratio receives values close to unity, 

without exhibiting any significant and consistent trend. 

 

Figure 9.16: Numerical values of coefficient α against the term (keq.TN)/Himp. and the 
fitting power function. 

 

(a)                                                            (b) 

Figure 9.17: (a) One-to-one comparison of analytically computed against numerically 
derived α values (b) Relative error of predicted values. 



Chapter 9: Analytical Relations for Seismic Settlements & Degraded Bearing Capacity: 
                  Infinite Improvement Width 

 
 

Page | 301  
 

 

Figure 9.18: Sensitivity analysis for the mathematical expression for α coefficient.
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Excess pore pressure ratio U1 in the improved crust.- The average epp ratio U1 refers to free 

field conditions and at the end of shaking. To facilitate the performed comparisons, U1 will 

be expressed hereafter as a portion of the design excess pore pressure ratio, Udesign, 

determined from the relevant charts formulated and presented in Chapter 9. The variation 

of ratio β=U1/Udesign against the various problem parameters is summarized in Figure 9.19. 

 

 

Figure 9.19: Variation of parameter β against each problem parameter. 
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It is thus concluded that the examined problem parameters have relatively little effect on 

the obtained β values. Hence, β is not expressed through another analytical expression, but 

instead the average value from all numerical analyses will be considered. To gain more 

insight regarding the range of variation of the specific parameter, Figure 9.20 summarizes all 

the numerically obtained β values plotted against the ultimate degraded bearing capacity 

qult
num(kPa). Based on that, β is set equal to: 

β 0.54 0.08                                                             9.13 

The minimum and maximum values are equal to βmin=0.375 and βmax=0.675 respectively. 

 

 

Figure 9.20: Range of variation of parameter β against the numerically derived values of 
degraded   bearing capacity qul.t

num (kPa). 

 

Excess pore pressure ratio in the transition zone U2.- Parameter U2, corresponds to the 

average excess pore pressure ratio in the transitional non-liquefied zone of the natural 

ground and is estimated as the average between U1 and the excess pore pressure ratio in 

the liquefied soil, which equals unity. Thus, U2 is equal to: 

   design1

2

1 βU1 U
U

2
 

2


                                               9.14 

Initial Friction angle for each layer φi,ini.- Since the seismic response of the soil profile is 

described with the use of the NTUA-SAND constitutive model, the initial friction angle values 

assigned to each layer are chosen based on the model’s predictions. The NTUA-SAND model 

friction angle predictions under TX-Compresion, TX-Extension and DSS loading conditions are 
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summarized in Figures B.52 to B.54 of Appendix B, for three different initial vertical stress 

levels and the entire range of encountered relative densities. Note that, the particular 

predictions refer to both drained and undrained conditions. Since loading and drainage 

conditions are not uniform across the activated failure surface, initial friction angle values 

for both layers are estimated, based on Equation 9.15, considering the average among TX 

Compresion, TX Extension and Direct Simple Shear loading under undrained and drained 

conditions.  

i,TX C i,TX E i,DSS
i,ini

φ φ φ
φ

3

  
                                                   9.15 

Coefficient Ks.- This parameter reflects the shear strength mobilized across the partially 

liquefied improved and transitional soil zones, below the edges of the footing. The 

developing mechanism is schematically demonstrated in Figure 9.21.  

 

Figure 9.21: Punch through mechanism and developing forces for the determination of 
coefficient Ks. 

 

The forces appearing in the figure are explained below: 

 Qult.(kN/m) is the ultimate load to cause post-shaking failure of the shallow 

foundation and is computed based on Equation 9.16 :  

num
ult. ultQ q B                                                           9.16 
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   where qult
num(kPa) = the numerically derived ultimate bearing capacity of the 

foundation  

    B(m) = the width of the footing 

 Weight (W) of the soil is estimated as follows: 

impW γ’ 1 α B)H(                                                   9.17 

where  γ’=the effective unit weight of the soil 

Himp.(m)  = the thickness of the improved layer 

α = the portion by which the thickness of the improved layer is increased in 

order to account  for the development of the transition zone  

B(m) = the width of the footing 

 Pint.(kN/m) is the force developing at the interface between the transition zone and the 

totally liquefied soil underneath the footing. It is computed using  Equation 9.18: 

int vP ς’ B                                                              9.18 

where ς’v(kPa) = the numerical effective vertical stresses measured at the specific depth  

 Shear force T is composed of two components (T1 and T2) corresponding to the shear 

strength developing across the sides of the improved layer and the transition zone 

respectively. It can be readily shown that the particular forces are computed based on 

the following Equations 9.19 and 9.20 respectively: 

2
1 s 1 imp s 1,deg

1
T = K P  = γ'Η K tanφ

2
                                                   9.19 

2 2
2 s 2 imp s 2,deg

1
T = K P  = γ'Η K *(1 ) -1+tanφ 

2
α                                    9.20 

Applying force equilibrium in the vertical direction, it comes out that: 

Pint.+2×T=W+Qult., 

yielding the following analytical expression for Ks:  

  
ult. int.

s 22
imp 1,deg 2,deg 

W Q P
K

γ  H tanφ 1 α 1 tanφ

 


   
 

                                  9.21                            
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To gain insight regarding the magnitude of Ks, and derive a suitable analytical expression, Ks 

was estimated according to Equation 9.21 for 27 cases, which are summarized in Table 9.1. 

Τhe degraded values of the required friction angles, φdeg,i which depend on the excess pore 

pressure ratios U1 and U2, defined earlier, as well as coefficient α were considered equal to 

the numerically derived values for each numerical analysis. It was thus found that Ks 

depends mainly on the normalized thickness of the improved zone Himp./B, as well as on the 

bearing pressure q(kPa). These effects are graphically shown in Figure 9.22a & b, which also 

explain the following analytical expression for the computation of Ks:   



  

 

 
imp0.30

5

s

0. 0
Hq

K ( )
p BsK

α

C                                                   9.22      

where pα = 98.1kPa is the atmospheric pressure. 

Coefficient CKs takes an average value equal to 1.00 with a Standard Deviation equal to 

St.Dev.=±0.15. The minimum and maximum values were estimated equal to CKs,min=0.75 and 

CKs,max=1.30 respectively.  

 

 

                                                     (a)                                                                 (b) 
Figure 9.22: Variation of (a) Ks coefficient against Himp/B ratio and resulting power fitting 

(with the black line) (b) Ks/(Himp/B)0.50 against contact pressure q  
normalized against the atmospheric pressure pα=98.1kPa and resulting  
power fitting (with black line). 

 

The accuracy of Equation 9.22, for the average value of CKs = 1.00, is evaluated in Figure 

9.23a & b. The numerically derived values of Ks are plotted on a one-to-one basis against the 

analytically predicted ones in Figure 9.23a, while the relative error is plotted against the 
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analytical predictions in Figure 9.23b. It can be observed that the scatter of the data points is 

rather narrow (±30% of the numerical predictions), with only a few cases overestimating Ks. 

This particular observation was taken into account when proposing minimum and maximum 

CKs values. 

 

Table 9.1: Analyses considered for the evaluation of the Ks coefficient. 

 

 

 

Himp B (m) q (kPa) qult (kPa) F.S.deg Dr,o (%) Zliq (m) T (sec) αmax (g) N Ks

1 4 5 52 82 1.57 45 16 0.35 0.15 10 1.08

2 5 5 52 96 1.85 45 16 0.35 0.15 10 1.12

3 6 5 52 165 3.17 45 16 0.35 0.15 10 1.05

4 7 5 52 235 4.52 45 16 0.35 0.15 10 0.93

5 8 5 52 360 6.92 45 16 0.35 0.15 10 0.76

6 4 3 52 116 2.24 45 16 0.35 0.15 10 1.32

7 4 5 60 72 1.20 45 16 0.35 0.15 10 1.07

8 4 5 70 87 1.24 45 16 0.35 0.15 10 1.16

9 4 5 80 100 1.25 45 16 0.35 0.15 10 0.89

10 4 5 90 98 1.09 45 16 0.35 0.15 10 0.88

11 6 5 100 150 1.50 45 16 0.35 0.15 10 1.00

12 8 5 100 300 3.00 45 16 0.35 0.15 10 0.85

13 8 5 152 174 1.14 45 16 0.35 0.15 10 0.90

14 5 5 100 100 1.00 45 16 0.35 0.15 10 1.01

15 7 5 100 195 1.95 45 16 0.35 0.15 10 0.91

16 4 5 52 98 1.88 55 16 0.35 0.15 10 1.07

17 4 5 52 112 2.15 65 16 0.35 0.15 10 1.20

18 4 5 52 75 1.44 45 14 0.35 0.15 10 1.34

19 4 5 52 83 1.60 45 12 0.35 0.15 10 1.43

20 4 5 52 87 1.67 45 10 0.35 0.15 10 1.67

21 4 5 52 125 2.40 45 8 0.35 0.15 10 1.50

22 4 5 52 135 2.60 45 6 0.35 0.15 10 1.40

23 4 5 52 91 1.75 45 16 0.25 0.15 10 1.08

24 4 5 52 90 1.73 45 16 0.5 0.15 10 1.21

25 4 5 52 73 1.40 45 16 0.35 0.25 10 1.33

26 4 5 52 95 1.83 45 16 0.35 0.35 10 1.26

27 4 5 52 85 1.64 45 16 0.35 0.15 12 1.32
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                                                     (a)                                                                 (b) 
 Figure 9.23: (a) One-to-one comparison of predicted Ks against numerically computed 

values (b) Relative error of predicted values and standard deviation. 

 

Excess pore pressure ratio in the liquefied ground U3.- The excess pore pressure ratio U3  

refers to the liquefied ground, over a representative area underneath the footing and below 

the improved crust. To gain insight regarding the variation of U3, its value has been back-

calculated considering the numerically derived values for α, U1, (and hence U2) and qult and 

the initial values for the friction angles φini1,2 described earlier.  

Following a sensitivity analysis on the U3 dependence on the various problem parameters, it 

was concluded that the various effects could be collectively represented through a 

composite problem variable, namely the degraded ultimate bearing capacity qult. at the end 

of shaking. This is shown in Figure 9.24, where the back-calculated values of U3 are related 

to the ultimate bearing capacity ratio qult/pa. Observe that all data points form a narrow 

band fitted by the following average analytical relation:  

 
3

0.18ult
3 U

q
U C ( )   1.00

pα

                                                          9.23 

The average CU3 coefficient is equal to 0.86 with a Standard Deviation equal to ±0.03, while 

the minimum and maximum values are CU3,min=0.81 and CU3,max=0.95. 
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Figure 9.24: Back-calculated values of U3 plotted against the numerically obtained values 
of degraded bearing capacity qult.

num normalized against the atmospheric 
pressure pa=98.1kPa. 

 

The accuracy of Equation 9.23 is evaluated in Figure 9.25a & b. Namely, the back-calculated 

values of U3 are plotted in Figure 9.25a against the analytical predictions, in a one-to one 

comparison, while the relative prediction error is plotted against the numerically derived 

ultimate bearing capacity ratio qult.
num/pα in Figure 9.25b. It is observed that the scatter of 

the data points is relatively narrow, and the relative error is less than ±10% (St.Dev. = 4%).  

 

 

                                       (a)                                                                          (b) 
Figure 9.25: (a) One-to-one comparison of analytically predicted versus back-calculated 

U3 values (b) Relative error of predicted values against qult.
num/pα. 
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9.3.3 Analytical computation of qult
deg   

Following the analytical definition of the parameters required for the computation of the 

degraded bearing capacity, the associated relationships will be applied for all parametric 

numerical analyses in order to evaluate the overall accuracy of the proposed methodology. 

It is noted in advance that, due to the dependence of U3 on qult the relevant equations 

(Equations 9.10 and 9.23) are solved concurrently. Two different iterative procedure are 

used for this purpose, as explained below.  

Simplified itterative solution.- The associated analytical expressions are programmed in an 

Excel spreadsheet and, based on the available input data, all necessary parameters are 

evaluated. In the sequel, the proposed methodology is solved iteratively, following the Steps 

outlined below:  

Step 1: An initial value for U3,i is assumed and the ultimate bearing capacity qult.
analyt

 is  

               computed from Equation 9.10. 

Step 2: The above value of qult.
analyt

 is introduced to Equation 9.23 and a new excess pore   

               pressure ratio U3,i+1 is calculated 

Step 3: The relative error between the values of U3 obtained in Steps 1 & 2 is calculated          

               as follows:  

3, 1 3,

3, . .

3,

i i

rel err

i

U U
U

U

 
                                                        9.24 

Step 4: If the resulting relative error is greater than 0.001, the average of the computed  

               values of U3 (i.e U3,i and U3,i+1) is derived and Steps 1 to 3 are repeated. The  

               constraint  of 𝑈3𝑖+2 ≤ 1.00 also applies in the current calculation step.  

The iterative procedure is repeated, separately for each parametric nuumerical analysis, 

until the relative error becomes less than 0.001.  

Automated iterative solution.- To facilitate and speed up the calculation process, the 

iterative solution may also be performed using the Solver Add-In, which is a built-in tool for 

Excel spreadsheet computations. The particular application is based on the optimization 

method of Lagrange multipliers, “which is a strategy for finding the local maxima or minima 

of a function subject to equality constraints”. In its generalized form, the particular 

optimization method requires two different functions, namely f(x,y) and g(x,y), which are 

somehow interrelated. For example, the minimization of function f(x,y) may be requested, 
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while function g(x,y) is subject to a specific condition i.e. g(x,y)=c. To satisfy the requested 

condition, the method is based on deriving the gradients of the two functions, therefore for 

the application of the specific method the functions f(x,y) and g(x,y) need to have 

continuous first partial derivatives. In the optimization process a new extra variable (λ), 

called Lagrange multiplier, is introduced and defined as:  

     Λ , , , * , +x y λ f x y λ g x y c                                                 9.25 

The auxiliary function presented above is solved by adding or subtracting the Lagrange 

multiplier λ to satisfy the following condition:  

 , , Λ , , 0x y λ x y λ                                                                9.26      

In our case, the solution process follows the steps outlined below: 

Step 1: A starting value for U3 is assumed and the ultimate bearing capacity qult.
U3

 is           

               computed from Equation 9.10. 

Step 2: Considering the same starting value for U3 the ultimate bearing capacity qult.
analyt

 is  

              computed from Equation 9.23. 

Step 3: The relative error between the two obtained values of qult. is calculated based on  

               Equation 9.27: 

. 3
. .

. . . .
.

analyt U
ult ult

ult rel err analyt
ult

q q
q

q


                                                          9.27 

Step 4: In the sequel, U3 is automatically altered until satisfaction of the requested 

convergence condition. The convergence critetion is specified by the user and in 

the particular case is set to qult.rel.err. = 0.001                                              

Additionally, throughout the iterative procedure U3 is constrained to be less than or equal to 

unity, i.e 𝑈3 ≤ 1.0. 

Evaluation of analytical predictions.- Considering the average values of the Ci coefficients in 

Equations 9.12, 9.13, 9.22, and 9.23 both convergence approaches, described above, were 

applied for the assessment of excess pore pressure ratio U3 and the associated post-shaking 

ultimate bearing capacity qult
analytical. Obtained U3 values with the two approaches turned out 

to be indentical for the majority of the numerical analyses outlined in the previous Chapter. 

In some cases though, Solver Add-In did not converge to a feasible solution which satisfied 

the convergence condition dictated in Equation 9.27. This occured for large values of U3, 
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close to unity, where Equation 9.23 does not have a continuous first partial derivative, as 

required by the Lagrange multiplier method. To deal with this particular inconsistency, it was 

decided to preserve the Solver Add-In result for relative error values less than 5% and adopt 

the result from the simplified method in the remaining cases (namely set U3 equal to unity 

and obtain a convervative prediction for the ultimate degraded bearing capacity qult
analytical). 

The resulting analytical predictions for the ultimate degraded bearing capacity qult
analytical, the 

degraded Factor of Safety F.S.deg
analytical, and the inverse of the degraded Factor of Safety 

1/F.S.deg
analytical are evaluated in  

Figure 9.26. Additionally, the inverse of the degraded Factor of Safety 1/F.S.deg
analytical is 

plugged into Equation 9.6 for the computation and the subsequent evaluation of seismic 

settlement ratio ρdyn
analytical/B. The grey data points in all graphs, correspond to the non-

converging cases according to the conditions discussed previously. The left column of figures 

summarizes the one-to-one comparison between the analytical predictions against the 

numerically observed values, while the right column plots summarize the relative error in 

the prediction of the above quantities in relation to the analytically derived values. 

Observe that, despite the caution exercised in calibrating the analytical methodology for the 

computation of qult., it becomes strikingly over-conservative for low values of qult. (< 150 kPa), 

whereas it is consistently under-conservative for larger qult.values. The above observation 

has an immediate effect on the derived degraded factor of safety F.S.deg, as well as on 

seismic settlements computation ρdyn.  
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Figure 9.26: Overall evaluation of analytical predictions in terms of qult, F.S.deg, 1/F.S.deg 
and ρdyn/B. 
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9.3.4 Correction of the degraded Factor of Safety F.S.deg  

To improve the accuracy of the proposed methodology, the analytically obtained value of 

F.S.deg is corrected, in view of the relative error in predicted qult, shown in Figure 9.27. 

Namely, the degraded factor of safety obtained analytically, based on the Meyerhof and 

Hanna failure mechanism is considered as a "bearing capacity index" and is hereafter 

referred to as F.S.deg
*. In the sequel, the "actual" value of the degraded Factor of Safety 

F.S.deg is re-evaluated by applying the depicted mathematical expressions, each one 

corresponding to a different level of conservatism. Namely, the equation plotted with the 

black line corresponds to a best-fit approach, and when solving for the Observed value, the 

following Equation 9.28 results:  

 

*
deg *

deg deg0.85*
deg.

F.S.
F.S.  0.60F.S.

0.05 0.60 F.S.
 


                                       9.28 

The above correction is applied to all analytical predictions and the final outcome is 

summarized and evaluated in Figure 9.28, preserving the layout described in Figure 9.26. 

Evidently, the corrected analytical predictions for the degraded bearing capacity qult. have 

improved, presenting a significantly narrower scatter around the diagonal. Note that the 

corrected analytical predictions appear to slightly overestimate qult., nevertheless the 

obtained relative error has been considerably reduced as proven by the Standard Deviation, 

which is estimated equal to St.Dev.=0.22. Additionally, the predictions for the degraded 

Factor of Safety, F.S.deg., are in very good agreement with the numerical observations. 

Indeed, the specific parameter no longer receives values less than unity, indicating post-

shaking failure of the foundation, which did not occur in any of the performed numerical 

analyses. Moreover, the obtained relative error is decreased compared to the initial 

prediction, ranging roughly between ±40% with a reduced Standard Deviation equal to 

St.Dev.=0.22.  

The previous satisfactory agreement is preserved with respect to the inverse F.S.deg., and the 

predicted dynamic settlements. Indeed, the ρdyn
analyt./B ratio compares consistently well with 

the associated numerical predictions. Namely, the data points appear evenly distributed 

around the diagonal, with a minor tendency to underestimate dynamic settlements in the 

higher range of ρdyn/B. Moreover, as a result of the appropriate estimation of 1/F.S.deg., 

dynamic settlements are satisfactorily predicted by ±22%, as dictated by the standard 

deviation in the relative error. 
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Conservative (Upper bound) predictions.- The previous approach, provided the best-fit 

evaluation of the degraded factor of safety F.S.deg.
analytical and the associated seismic 

settlements ρdyn. Taking into account the complexity of the problem analyzed herein, and 

the associated uncertainties in the proposed soil-foundation model, Equation 9.29, also 

plotted in Figure 9.27 with the grey line, provides a reasonable upper bound (conservative) 

prediction for the degraded factor of safety:  

 

*
deg *

deg deg0.85*
deg.

F.S.
F.S.  0.55F.S.

0.20 0.60 F.S.
 


                                    9.29 

The conservative analytical predictions according to Equation 9.29 are presented in Figure 

9.29, following the same layout as in Figure 9.26 and Figure 9.28. It is now observed that the 

analytical methodology overall underestimates the degraded bearing capacity qult.(kPa) 

throughout the examined range of qult., with only few exceptions. The calculated relative 

error is reduced and appears to be restrained between -50% and +20%, with a Standard 

Deviation equal to St. Dev. = 0.19. Additionally, the degraded Factor of Safety F.S.deg also 

appears to be underestimated in most cases, as opposed to the best-fit solution, whereas 

the obtained relative error is also reduced with a Standard Deviation equal to St. Dev. = 0.19.  

The above observation is not verified in the case of the inverse of F.S.deg., which appears 

slightly overestimated, with the associated relative error ranging between -20% and +50% 

with a higher Standard Deviation equal to St. Dev. = 0.29, compared to the best-fit solution. 

This has an immediate impact on the obtained dynamic settlements, ρdyn, which present a 

clear tendency for overprediction in the majority of cases. This is also evident in the 

obtained relative error. Indeed, standard deviation of relative error has increased from St. 

Dev.=0.22 to St. Dev.=0.54.  

 

Figure 9.27: Correction factors applied upon the analytically computed degraded factor 
of safety F.S.deg. 
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Figure 9.28: Overall evaluation of analytical predictions after the F.S.deg correction in 
terms of qult, F.S.deg, 1/F.S.deg and ρdyn/B. 
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Figure 9.29: Overall evaluation of analytical predictions after the upper bound F.S.deg 
correction in terms of qult, F.S.deg, 1/F.S.deg and ρdyn/B. 
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Equation Chapter 10 Section 1 

CHAPTER  10 

 

 

10. Effect of Ground Improvement Dimensions 

 

 

10.1  Introduction 

The analytical methodology developed in the previous chapter is applicable to “infinitely” 

extending two-layered soil profiles, hence it does not incorporate the influence of the lateral 

extend of the performed improvement (Limp). The specific parameter is necessary in the 

design of the required improvement scheme, and is generally determined in accordance to 

the ground improvement method.  

In the following, the available guidelines are summarized for determining the soil 

improvement area when using the ground compaction method. Note that, in all guidelines, 

the depth of improvement extends down “to the deepest part of the liquefiable soil layer”, 

following standard practice procedures. Furthermore they do not provide quantitative 

means for evaluating the foundation performance in the case of a smaller or a larger area is 

improved. 

Japanese Fire Defense Agency (1978).- The JFDA guidelines for oil tanks recommend that 

the soil improvement area, in excess to the footing width, also denoted as SL,  equals two 

thirds of the improvement depth and must be within 5m < SL < 10m, as illustrated in Figure 

10.1.  
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Figure 10.1: Design of soil improvement area of tank foundation. 

 

Thuchida et al. (1976).- recommends that the improvement width around a slightly 

embedded structure is correlated to the friction angle (φ) of the soil as presented in Figure 

10.2. Specifically, α1 is the passive failure angle and α2 the active failure angle, also defined 

in the figure. SD is the depth of improvement, which, as stated earlier, equals the total 

thickness of the liquefiable layer.  

 

 

 

 

Figure 10.2: Specification of lateral extent of improvement based on the friction angle of 
the soil (Thuchida et al.,1976). 

 

α1:   Passive failure angle = 45o + φ/2 

α2:   Active failure angle= 45o - φ/2 
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PHRI (1997).-  The Port & Harbour Research Institute widely refers to the work performed by 

Iai et al. (1991) covering the required improvement extend for various types of structures. In 

the specific study, the excess pore pressure ratio ru appears to be the controlling design 

parameter. Namely, based on undrained cyclic loading laboratory test results, excess pore 

pressure ratio values ru below 0.5 induced practically negligible loss of strength in the sand 

specimen. On the contrary, for ru values above 0.5, the cyclic shearing  led to significant 

shear strength loss in the soil and should be accounted for in the design.  

According to Iai et al. (1991), the shear strength of the liquefied un-improved soil should be 

considered totally lost, especially for loose to medium sands. Moreover, they indicated that 

the area in which ru exceeds 0.5 is adequately described by the area ACD in Figure 10.3. 

Therefore, the particular area does not contribute to the bearing capacity of the soil, which 

depends only on the shear resistance mobilized along the surface EFG. Hence, given the 

depth of improvement, the extent of the improvement area is associated to the above 

surface, which provides the necessary shear resistance to ensure the stability of the 

foundation. Moreover, pressures from the liquefied sand may also be included in the 

stability analysis of the structure. The specific static pressure corresponds to an earth 

pressure coefficient Ko=1 after subtracting the dynamic earth pressures. The particular 

pressures are applied upon the GG’ surface.  

 

 

Figure 10.3: Schematic figure to determine improvement area against liquefaction for a 
shallow foundation (Iai et al., 1991).  
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Based on the above, it appears that there are relatively few experimental studies that 

examine the effect of the improvement width on the seismic response of shallow 

foundations, so that the limits, given by regulations, define a simple extend for common 

applications. Moreover, all guidelines assume the treatment of the entire thickness of the 

liquefiable soil, which may potentially lead to over-conservative and costly improvement 

solutions.  

In the above context, the influence of the lateral extend of the applied improvement is 

numerically investigated through a separate set of analyses, which are presented in section 

10.2 below. Namely, the effect of the improvement width (Limp) on the dynamic settlements 

(ρdyn) and the degraded Factor of Safety (F.S.deg) is quantified with reference to the results 

for “infinite” ground improvement (i.e. Limp → ∞), discussed extensively in the previous 

chapter. Particular modifications are further compared to the existing guidelines mentioned 

earlier and an updated set of design charts is developed for application.  

 

10.2 Description of numerical analyses 

The plan of parametric analyses is summarized in Table 10.1 and consists of 12 different 

sets, which exhibit different soil, excitation and geometric characteristics. Each set examines 

the effect of an individual parameter, the value of which appears in the second column of 

the table. The remaining problem parameters are given the values of the reference analysis, 

namely: q = 52kPa, Dr,o = 45%, Zliq  = 16m, Himp = 4, B = 5m, amax = 0.15g, N = 5, and T = 0.35s. 

Moreover, in each set, the infinitely extending improved layer is considered the reference 

analysis, and subsequently, the width of the improved layer (Limp) is progressively reduced 

down to nearly the width B of the footing itself. The different values of Limp normalized 

against the footing width B, are listed in the last column of the table. Figure 10.4 presents 

the basic symbol definitions associated with the geometry of the examined problem. 

The assumptions of the numerical methodology, as well as the three distinct phases of the 

loading sequence, have been thoroughly explained in Chapter 8, and are maintained in the 

present numerical investigation. It is observed that the Limp/B ratio systematically receives 

values greater than unity. The particular observation is attributed to numerical reasons and 

particularly to the simulation approach of the shallow footing. As mentioned in Chapter 8, 

the numerical simulation of the bearing pressure q of the shallow footing is performed 

through applying vertical velocity at specific gridpoints. This velocity varies linearly from the 

value at the last gridpoint upon which it is applied, to zero at the adjacent gridpoint. Hence, 
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half the width of the adjacent zones should be added to the actual footing width. On the 

other hand, soil properties are assigned to zones, implying that the width of the improved 

zone is always going to be at least equal to the number of zones upon which the bearing 

stresses are applied, further increased by two, one at each side of the footing. 

 
Figure 10.4: Definition of basic symbols. 

 

Table 10.1: Overview of numerical analyses. 

Case No. Examined Parameter Limp/B 

1 q= 52Kpa  
1.2, 2, 5.4, 7.8, 10.2, 12, 13.2, 

14.8, 17.2, 19.6, 21 

2 B=3m 1.3, 4, 7.3, 12.33, 17,21 

3 Dro= 55%  
1.2, 2, 5.4, 7.8, 10.2, 12, 13.2, 

14.8, 17.2, 19.6, 21 

4 Zliq = 8m  
1.2, 2, 5.4, 10.2, 13.2, 14.8, 

17.2, 19.6 

5 Zliq = 12m  
1.2, 2, 5.4, 10.2, 13.2, 14.8, 

17.2, 19.6, 21 

6 amax= 0.30g  
1.2, 2, 5.4, 7.8, 10.2, 12, 13.2, 

14.8, 17.2, 19.6, 21 

7 N= 5  
1.2, 2, 5.4, 10.2, 13.2, 14.8, 

17.2, 19.6, 21 

8 T= 0.50sec  
1.2, 2, 5.4, 7.8, 10.2, 12, 13.2, 

14.8, 17.2, 19.6, 21 

9 Himp=6m  
1.2, 2, 5.4, 10.2, 13.2, 14.8, 

21 

10 Himp= 8m  
1.2,2, 5, 5.4, 9.8, 13.4, 15.2, 

20, 24.8 

11 Himp=6m (amax=0.30g) 
1.2, 2, 5.4, 10.2, 13.2, 14.8, 

21 

12 Himp= 8m (amax=0.30g) 
1.2, 2, 5, 5.4, 9.8, 13.4, 15.2, 

20, 24.8 
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10.3 Effect of Limp on earthquake-induced foundation settlements ρdyn 
(m). 

To visualize the effect of the lateral extent of the improved zone (Limp) on the accumulation 

of dynamic settlements (ρdyn), Figure 10.5 summarizes the obtained dynamic settlements 

(ρdyn) from the entire group of analyses, plotted against Limp/B ratio. In each set of analyses 

the obtained dynamic settlements appear normalized against the corresponding value for 

conditions of “infinite” improvement (ρdyn
inf). The black colour corresponds to the baseline 

analysis (case No. 1 in Table 10.1), while the data sets examining the effect of the different 

problem parameters are plotted with different tints of grey.  

Based on the particular plot, it is concluded that, among the examined parameters, only the 

thickness of the improved zone (Himp) is significantly influencing the accumulation of 

dynamic settlements for different Limp configurations. All other parameters have a relatively 

minor effect, which may be initially neglected in the formulation of the corresponding 

analytical expression for ρdyn. Hence, the effects of the width (Limp) and depth (Himp) of the 

improved zone are independently examined for the formulation of a suitable analytical 

expression as described in the following sections. To produce a dimensionless expression, 

both parameters (Limp and Himp) are normalized hereafter against the footing width B.  

Effect of Limp/B.- Based on Figure 10.3, the trend of the inverse of the normalized dynamic 

settlement (ρdyn
inf/ρdyn) ranges between zero and unity as the ratio of Limp/B ranges between 

zero to “infinite” improvement. The particular trend is mathematically expressed below:  
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To visualize the effect of Limp/B on the ratio of dynamic settlements ρdyn
inf/ρdyn, Equation 10.1 

is re-arranged, as described in Equation 10.2, and plotted in a logarithmic axis-system as 

illustrated in Figure 10.6.  
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Figure 10.5: Effect of different problem parameters on dynamic settlements ρdyn 
normalized against the “infinite” value (ρdyn,inf) versus Limp/B. 
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The solid lines correspond to sets of analyses with different Himp/B values with all other 

parameters preserved constant, namely Cases 1, 2, 3, 9 and 10 of Table 10.1. It is observed 

that each data set is satisfactorily described through a power function, also plotted with the 

thicker lines. This essentially verifies the validity of the selected formulation. With regard to 

coefficient C1, it equals –ln(1-ρdyn,inf/ρdyn) when the width of improvement equals the footing 

width (Limp/B = 1), exhibiting a wide range of variation depending on the ever-current Himp/B 

ratio.  

Coefficient C2,, corresponds to the inclination of the thick lines in Figure 10.6, displaying a 

narrower range of variation for different Himp/B values. Based on the particular observation 

C2 is taken as the average of the eight different values obtained from the fitting curves and it 

is set equal to C2 = 0.30.  

 

  

Figure 10.6: Effect of Limp/B on the normalized dynamic settlements ρdyn,inf/ρdyn for five 
different Himp/B values – evaluation of coefficient C2. 

 

Effect of Himp/B.- To further investigate the observation that coefficient C1 depends on the 

ever-current Himp/B ratio, the effect of the thickness of the improved crust, Himp, on the ratio 

of ρdyn
inf/ρdyn is appraised in Figure 10.7 for different Limp/B values. Indeed, the increase of 

the earthquake-induced settlements ρdyn, becomes more prominent and the corresponding 

ratio of ρdyn
inf/ρdyn decreases significantly with increasing thickness of the improved zone 

Himp. Nevertheless, the particular observation does not imply that more settlements will 
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accumulate, for thicker improved zones and decreasing Limp/B values. As thoroughly 

exhibited in Chapter 9, under “infinite” improvement conditions the selection of a thicker 

improved zone results in drastically reduced settlements, ρdyn
inf. Therefore, the ratio of 

ρdyn
inf/ρdyn may be lower for increasing Himp/B values but it is still possible to obtain the same 

or even a lower amount of settlement, for greater Himp values, depending on the selected 

Limp/B value.  

 

 

Figure 10.7: Effect of Himp/B on the normalized dynamic settlements ρdyn,inf/ρdyn for 
different Limp/B values. 

 

Based on the above, the effect of the crust thickness ratio Himp/B, is going to be incorporated 

in the final analytical expression and specifically in the formulation of coefficient C1. To 

achieve this, Equation 10.2 is solved for coefficient C1, after setting coefficient C2 equal to 

0.30:  

 1 0.30

ln 1
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The different C1 values obtained from Equation 10.3 for each Limp/B value are plotted with 

regard to the specific Himp/B case in Figure 10.8 with the black symbols. The grey rhombuses 

correspond to the average C1 values obtained from the different data sets. The power 

function drawn among the above symbols renders the following adopted analytical 

expression: 
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Hence, the final analytical expression for the conservative lowr-bound estimation of the 

dynamic settlements for different widths of improvement is provided through the following 

expression: 
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Figure 10.8: Effect of Himp/B on coefficient C1. 

 

Effect of other problem parameters.- So far, the proposed analytical expression 

incorporates only the effect of the geometry of the improved area, namely the thickness 

Himp and lateral width of the improved zone Limp. The effect of the excluded parameters may 

be accounted for by appropriately modifying the constant factor 0.944. Namely, Equation 

10.5 is re-arranged as presented below:  
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and subsequently, Y is estimated for all the numerical analyses having Limp/B ratio less than 

or equal to Limp/B ≤ 15. Typical results from the analyses so far excluded from the statistical 

processing 0are summarized in Figure 10.9. The fitting curve in each figure corresponds to 
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the average Y values obtained for each set of analyses. Based on Figure 10.8, the average 

value of Y, turned out equal to Y=1.05 and the final analytical expression is modified 

accordingly: 
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Figure 10.9: Effect of Zliq(m), αmax(g), T(sec), N, Dr,o(%) on the ratio of –ln(ρdyn,inf/ρdyn)  
normalized against (Himp/B)-1(Limp/B)-0.30, versus different widths of  
improvement (Limp) normalized against the footing width B. 
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Evaluation of analytical expression.- The analytical predictions obtained from Equation 10.7 

are compared against the numerical results in terms of the inverse of the normalized 

settlement, i.e. (ρdyn
inf/ρdyn) in Figure 10.10a. The relative error between numerical and 

analytically obtained values of the above ratio is also plotted with regard to the numerical 

results in Figure 10.10b. The black symbols correspond to the numerical results used in the 

formulation of the proposed analytical relation (i.e Limp/B ≤ 15), whereas, the white symbols 

represent the excluded numerical analyses with Limp/B ratio greater than Limp/B > 15. It is 

observed that the proposed analytical expression predicts with relatively good accuracy the 

inverse of the seismically induced settlement for “limited” improvement widths, normalized 

against the corresponding value for “infinite” improvement conditions. The specific 

satisfactory behavior is observed even for the excluded cases, which do not deviate 

significantly from the main group of datapoints. Particularly, the proposed analytical 

expression under-predicts the specific ρdyn
inf/ρdyn values by approximately 20%, which 

essentially corresponds to the maximum obtained relative error. The latter ranges between 

±20% with a standard deviation equal to St. Dev.=0.10.  

The predictive accuracy of the proposed analytical relation is further verified from Figure 

10.11a & b, in terms of the obtained settlements for given extent of improvement Limp, 

preserving the same format considering the color of the used symbols. The specific values of 

ρdyn, as well as the associated relative error, are calculated based on the numerical values of 

ρdyn,
inf and Equation 10.7. Hence, Figure 10.8a allows the evaluation of the proposed 

relation, independently of the introduced error stemming from the analytical expression 

used in the evaluation of ρdyn
inf, presented in Chapter 9. Also, based on Figure 10.8b, the 

particular relative error ranges between ±20% and exhibits a standard deviation equal to St. 

Dev.=0.7.  
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(a) 

  

(b) 

Figure 10.10:    (a) Evaluation of the proposed analytical relation with regard to the ratio of 
ρdyn

inf/ρdyn for limited lateral improvement, on a one-to-one basis,  
(b) Obtained relative error plotted against the numerically derived ratio of 
ρdyn

inf/ρdyn. 
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(a) 

 

(b) 

Figure 10.11:  (a) Evaluation of the proposed analytical relation with regard to the 
obtained value of dynamic settlement ρdyn, on a one-to-one basis  
(b) Obtained relative error plotted against the numerically derived value of 
ρdyn (lower chart).  

 

In the sequel, Equation 10.7 is applied for different improvement geometries in order to 

produce a practical design chart. The outcome is presented in Figure 10.12 in which both 

dimensions, i.e. lateral extent (Limp) and thickness (Himp) of the improved zone are expressed 

as a portion of the footing width (B). Namely, the thickness of the improved crust (Himp) 

ranges from 0.5B to 2.00B, whereas the lateral extent (Limp) starts from 30B and narrows 

down to 1B. 
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Figure 10.12: Design chart for the evaluation of the amount of dynamic settlement ρdyn 
(m), given the geometry of the improvement scheme, described through the 
width (Limp) and thickness (Himp) of the crust, normalized against the footing 
width (B).  

 

There are two worthy observations in the particular figure. The first is that dynamic 

settlements decrease steadily with increasing width of the improved zone. In other words, 

there is not a certain width in terms of Limp/B ratio, beyond which dynamic settlements 

stabilize to their minimum value. The second observation is that a fairly extensive 

improvement may be required in order to get the total benefit of ground improvement. For 

instance, in the common case of Himp/B = 1.00 – 1.50, a Limp/B ratio equal to Limp/B = 20 – 40 

is required to reduce settlement values that are only 10% higher, compared to the 

theoretical low for infinite improvement.  

 

10.4 Effect of Limp on the post-shaking degraded Factor of Safety F.S.deg. 

The effect of the improvement width ratio Limp/B, on the post-shaking degraded factor of 

safety, F.S.deg, is depicted in Figure 10.13, for all the examined cases. It is observed that, 

opposite to the uniformity of the data regarding the dynamic settlements, the scatter in the 

obtained values of FS.deg is considerably larger.  

Regarding the numerical aspect of the problem, it is mentioned that the last stage of the 

loading sequence, i.e. the evaluation of the degraded bearing capacity qult.(kPa), is 

performed based on an analysis under static conditions. Also, according to Itasca (2005), in 

FLAC, a static solution is reached by artificially damping the relevant equations of motion, 

when the rate of change in kinetic energy in a model approaches a negligible value,. Hence, 
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even though the magnitude of the applied velocity upon the corresponding grid-points of 

the footing is very small, numerical instabilities are still likely to occur, even in areas of the 

grid far away from the footing. Different approaches to locate and resolve the particular 

issue were investigated, with minor effects on the obtained results. Moreover, the 

consideration of applying an even smaller magnitude of vertical velocity was abandoned, 

given the required excessive computational time, which would prohibit the execution of a 

broad parametric investigation. It is indicatively mentioned that the post-shaking static 

analysis required on average 4 days for the “infinite” improvement scheme and 2 days for 

different Limp/B values (with FLAC v5.0).  

Due to the considerable scatter of numerical predictions, the development of a suitable 

analytical expression for evaluating F.S.deg followed a different approach compared to the 

procedure for the dynamic settlements. More specifically, settlements in Equation 10.7 were 

expressed in terms of the degraded factor of safety, for infinite and for limited ground 

improvement, using the general Equation 9.6 derived in Chapter 9. In the sequel, the 

resulting relationship was solved for the F.S.deg/F.S.deg
inf ratio and used to express the desired 

effects of ground improvement dimensions. Note that, for this approach to be valid, it is 

essential that the ρdyn – F.S.deg relationship of Chapter 9 is unique, i.e. it applies regardless of 

ground improvement dimensions. Hence, this issue was given priority to the following 

investigation. The data sets exhibiting a widespread scatter, i.e. Cases 6, 10, 11 & 12, as well 

individual data points with F.S.deg less than F.S.deg < 1.15 were considered unstable analyses 

and hence were excluded from the statistical evaluation. The particular cases are marked 

with white symbols in Figure 10.13. Overall, out of the 96 performed numerical analyses 

only 48 were used for the statistical processing presented in the subsequent paragraphs. 
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Figure 10.13: Summary of numerical results of degraded Factor of Safety and excluded 
“toxic” cases (white symbols).  

 

ρdyn and F.S.deg relationship- In Chapter 9, dynamic settlements are expressed as a function 

of the degraded Factor of Safety F.S.deg. In the current paragraph it is examined whether the 

above relation can be extended to describe the dynamic settlement accumulation in the 

case of “limited” improvement width. Hence, Equation 9.6 is applied for stable numerical 

analyses with F.S.deg
num > 1.15, considering the associated numerically derived degraded 

factor of Safety F.S.deg. The dynamic settlements obtained in this way are summarized in 

Figure 10.14. The numerical results and analytical predictions are plotted in the gray and 
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black symbols respectively. Based on the above figure it is concluded that the two data sets 

are in fairly good agreement.  

 

 

Figure 10.14: Comparison between numerically derived dynamic settlements (grey 
symbols) and analytical predictions based on the analytical expression for 
conditions of “infinite” improvement (black symbols).  
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The above satisfactory agreement is better appraised in Figure 10.15a, presenting the 

analytically predicted dynamic settlements against the numerical results on a one-to-one 

basis. Figure 10.15b provides the relative error plotted against the analytically computed 

dynamic settlements from which it is concluded that the relative error of the analytical 

predictions ranges between ±25% and the standard deviation of relative error is equal to St. 

Dev. = 0.19.  

Based on the above, it is concluded that the proposed correlation between dynamic 

settlements and degraded factor of safety for “infinite” ground improvement apples to cases 

of finite improvement dimensions as well. 

Analytical expression for the degraded factor of safety.- Given the applicability of Equation 

9.6 for cases of “limited” improvement, it is used in the formulation of an analytical 

expression for the computation of the associated degraded factor of safety. Particularly, 

Equation 9.6 is applied once for conditions of “infinite” improvement and secondly for 

“limited” improvement width. In the sequel, the resulting equations are divided against each 

other, leading to the following analytical expression for the dynamic settlement ratio: 
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In the sequel, the combination of Equations 10.7 and 10.8, and the rearrangement of the 

expression with regard to the ratio of F.S.deg/F.S.deg
inf, results to the following non-linear 

equation for its computation:  
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(a) 

 

(b) 

Figure 10.15:  (a) Evaluation of the analytical relation for conditions of “infinite”  
improvement with regard to the obtained value of dynamic settlement ρdyn, 
on a one-to-one basis (b) Obtained relative error plotted against the 
analytically computed value of ρdyn.  
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The above analytical expression correlates the geometric features of the improved area, 

(thickness Himp and width Limp) to the degraded factor of safety for “infinite” improvement 

conditions F.S.deg
inf, as well as to the ratio of the degraded factor of safety for “limited” over 

that for “infinite” improvement conditions, i.e. F.S.deg/F.S.deg
inf. Note that the F.S.deg/F.S.deg

inf 

ratio appears in both sides of Equation 10.9, meaning that an iterative solution is required.  

The predictive accuracy of Equation 10.9 is appraised in Figure 10.16a & b, in terms of the 

ratio of the degraded factor of safety for “limited” over the corresponding value for 

“infinite” improvement. In Figure 10.16a the comparison is performed against the numerical 

predictions on a one-to-one basis, and refers to the numerically stable analyses. Note that 

the numerically derived value of F.S.deg
inf is plugged into the ratio of the analytical 

predictions, so that the efficiency of the current analytical expression is evaluated 

independently of the generated error due to the analytical expression proposed for the 

computation of F.S.deg
inf presented in Chapter 9. The relative error is plotted against the 

analytical predictions in Figure 10.16b. Based on the above figures it is observed that, with 

minor exceptions, Equation 10.9 predicts with substantial accuracy the degraded factor of 

safety F.S.deg, with a deviation ranging between ±25%. Relative error of the predictions 

ranges between ±25% with a standard deviation equal to St. Dev. = 0.25.  
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(a) 

 

(b) 

 

Figure 10.16:  (a) Evaluation of the analytically obtained ratio of F.S.deg/F,.S.deg
inf with 

regard to the numerically derived ratio, on a one-to-one basis 
(b) Obtained relative error plotted against the numerically derived ratio of 
F.S.deg/F,.S.deg

inf. 
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To facilitate the use of the complex analytical expression presented above, Equation 10.9 is 

solved for four different values of Himp/B (= 0.5, 1.0, 1.5, 2.0) and three different values of 

the degraded factor of safety for “infinite” improvement conditions, namely F.S.deg
inf = 1.0, 

2.0 & 3.0. The outcome is presented in the form of design charts in Figure 10.17. It is 

interesting to note that for increasing values of crust thickness, the influence of the 

degraded factor of safety for “infinite” improvement conditions, F.S.deg
inf, becomes more 

pronounced, disclosing the sensitivity of the results at thicker improvement schemes. 

Moreover it turns out that the effect of F.S.deg
inf is not excessive, even for the cases of very 

thick crust, i.e. Himp/B = 2.0. Hence, in view of the overall uncertainties in determining F.S.deg, 

discussed in previous sections, it is permissible to overlook the effect of F.S.deg
inf in Equation 

10.9, assuming an average value of F.S.deg
inf = 2.0. The resulting simplifications are discussed 

next. 

 

 

Figure 10.17: Design charts relating the F.S.deg/F.S.deg
inf ratio to the normalized - against the 

footing width B - lateral width of improvement (Limp/B) for four distinct 
Himp/B values. 

 

 



Chapter 10: Effect of Ground Improvement Dimensions 

 
 

Page | 342  
 

Simplified analytical expression.- Given the drawbacks in the use of Equation 10.9, in the 

present paragraph a simplified analytical expression is formulated, which enables the direct 

evaluation of the degraded factor of safety F.S.deg for “limited” improvement conditions. In 

its generalized form, this simplified relation is described in the form of Equation 10.10: 

4C

3

F.S. L
1 exp C

F.S. B

deg imp

inf
deg

  
    

   

                                          10.10 

where coefficients C3 and C4 will have to be appropriately specified.  

To facilitate the evaluation of coefficients C3 and C4 the above expression is transformed into 

Equation 10.11: 

  
4C

3

F.S. L
ln 1 C

F.S. B

deg imp

inf
deg

   
      

  

                                                10.11 

The cases included in the statistical processing, exhibit a degraded factor of safety under 

conditions of “infinite” improvement, on average, equal to two. Hence, coefficients C3 and C4 

are calculated based on Equation 10.11, setting F.S.deg
inf equal to two and different Himp/B 

ratios, i.e. Himp/B = 0.5, 1.0, 1.5, 2.0. The resulting curves are summarized in Figure 10.18 

plotted against the lateral width of improvement, Limp, normalized against the footing width 

B, in a double logarithmic axis system.             

  

 

Figure 10.18: Evaluation of coefficients C3 and C4 for four distinct values of Himp/B. 
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Coefficient C4.- Given the form of the resulting curves, coefficient C4 corresponds to the 

inclination of each one of them, which is independent of the Limp/B ratio and may be 

considered constant and, at an average, equal to C4 = 0.29. 

Coefficient C3.- corresponds to the value of –ln(F.S.deg/F.S.deg
inf) for Limp/B equal to unity and it 

turns out that it depends on the thickness of the improved zone, Himp, normalized against 

the footing width B. Substituting C4 with the previously specified value and rearranging 

Equation 10.11, C3 can be evaluated as follows:  

3 0.29

F.S.
ln 1

F.S.
C

L

B

 
   

 


 
 
 

deg

inf
deg

imp

                                                          10.12 

The application of Equation 10.12 for different values of Limp/B ( = 1, 2, 3, 5, 10, 20, 30) and 

the four different Himp/B ratios mentioned earlier, leads to the different values of C3 plotted 

in Figure 10.19 with regard to Himp/B. The power function drawn amongst the presented 

data points is described by Equation 10.13 and is hereafter going to be used for the 

evaluation of C3:  

1.03

3

H
C 0.82

B



 
  

 

imp                                                              10.13 

 

  

Figure 10.19: Dependence of coefficient C3 on the considered Himp/B range and best-fitting 
power function.  
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In the above context, the simplified expression for evaluating F.S.deg for “limited” 

improvement width is transformed as follows: 

1.03 0.29
F.S. H L

1 exp 0.82
F.S. B B

    
      

     

deg imp imp

inf
deg

                                    10.14 

Note that Equation 10.14 is formulated considering a degraded factor of safety for “infinite” 

improvement width equal to F.S.deg
inf = 2.0 and applies over a specific range of Himp/B values, 

namely Himp/B = 0.5 ÷ 2.0. Figure 10.20a presents the comparison between the obtained 

analytical predictions and the numerical results, exhibiting F.S.deg
inf values within a slightly 

wider range, i.e. F.S.deg
inf =  1.5 ÷ 2.5. It is thus concluded that, Equation 10.14 can be applied 

with substantial accuracy for a slightly wider range of F.S.deg
inf. The obtained relative error, 

plotted against the analytical predictions, is presented in Figure 10.20b, from which it is 

concluded that it ranges between ±25% with a standard deviation equal to St. Dev. = 0.23.  

Given the predictive efficiency of the above analytical expression, the particular process is 

repeated for two additional values of F.S.deg
inf, i.e. F.S.deg

inf = 3.0 & 4.0. The resulting 

analytical expressions are provided below in the form of Equations 10.15 and 10.16 

respectively:  

1.30 0.34
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                                       10.15 

1.30 0.38
F.S. H L

1 exp 0.56
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deg imp imp

inf
deg

                                       10.16 

To facilitate the use of the simplified relations provided earlier, Equations 10.14, 10.15 and 

10.16 are solved for seven (7) different values of Himp/B, i.e. 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 

2.00 and a lateral width of improvement ranging from 30B down to 1B. The outcome of the 

above process is a set of suitable and handy design charts presented in Figure 10.21.  
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(a) 

  

(b) 

Figure 10.20:  (a) Evaluation of the analytically obtained ratio of F.S.deg/F,.S.deg
inf with 

regard to the numerically derived ratio, on a one-to-one basis  
(b) Obtained relative error plotted against the numerically derived ratio of 
F.S.deg/F,.S.deg

inf. 
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Figure 10.21: Design charts relating the F.S.deg/F,.S.deg
inf ratio to the Limp/B value, based on 

the simplified analytical expressions, for three initial F.S.deg
inf values.  

 

10.5 Overview of analytical methodology and design charts 

Evaluation of degraded Factor of Safety F.S.deg- The first step of the proposed analytical 

methodology, includes the evaluation of the degraded factor of safety of the shallow 

foundation, immediately after the end of shaking and while the underlying soil is still under a 

liquefied state. This is accomplished through Equation 10.9, allowing the evaluation of F.S.deg 

for any improved zone geometry (depth Himp and width Limp). The specific analytical 

expression is provided in a non-linear formulation, requiring an iterative solution. Moreover, 

it requires the prior knowledge of the degraded factor of safety for “infinite” improvement 

conditions, which is obtained through the application of Equation 9.10. 

To reduce the computational effort required for the evaluation of F.S.deg, Equation 10.9 is 

solved for different F.S.deg
inf and Himp/B values and the outcome is presented in Figure 10.21. 

The particular design charts summarize the effect of the lateral width of improvement 
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normalized against the footing width B (Limp/B) on the degraded factor of safety, normalized 

against the corresponding values for conditions of “infinite” improvement.  

Evaluation of dynamic settlements ρdyn.- Similarly to the analytical expressions proposed for 

the degraded factor of safety, the evaluation of the seismic-induced settlements ρdyn 

requires the prior assessment of ρdyn
inf. The specific parameter is evaluated using Equation 

10.6, given the necessary input data, namely the characteristics of the seismic excitation and 

the degraded factor of safety for conditions of “infinite” width of improvement, F.S.deg
inf, as 

specified above. In the sequel, the ratio of ρdyn/ρdyn
inf is computed as a function of the width 

and depth of improvement, normalized against the footing width B - Limp/B, Himp/B 

respectively - as illustrated in Figure 10.12.  

Design Charts for Limp/Himp.- To gain additional insight regarding the practical application of 

the previously generated design charts, the corresponding analytical expressions are 

appropriately modified to incorporate the ratio of the width over the depth of the improved 

zone, Limp/Himp. Hence, Equation 10.7  is transformed into Equation 10.17 : 

0.300.7

1 exp 1.05

   
             

inf
dyn imp imp

dyn imp

H L

B H




                                         10.17 

Accordingly, the simplified analytical expressions for F.S.deg are transformed into Equations 

10.18a, b and c respectively: 
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deg( . . 4.00)F S                       10.18c 

The above equations are solved for seven (7) distinct Himp/B ratios (= 0.50, 0.75, 1.00, 1.25, 

1.50, 1.75, 2.00) and the outcome is summarized in an updated set of design charts, as 

exhibited in Figure 10.22 and Figure 10.23. The thicker grey lines correspond to the points 

on the different curves beyond which increasing the ratio of Limp/Himp renders a rate of 

variation less than 5%, i.e. the cost-effect ratio is high. 
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Design Charts for Vimp/B2.- The correlation between the selected dimensions of an improved 

zone around the shallow foundation to the generated cost becomes a lot more 

straightforward when incorporating the resulting volume of improvement Vimp, which is a 

more direct cost indicator. For the plane strain conditions considered in the problem, the 

volume of the improved area is defined as the product of the depth (Himp) times the width 

(Limp) of the improved zone. To preserve the dimensionless form of the initially proposed 

equations, volume is divided by B2 and the outcome of the modification is exhibited in 

Equations 10.19 and 10.20a, b and c. 
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The normalized dynamic settlements and the degraded factor of safety are plotted against 

Vimp/B2 in Figure 10.24 and Figure 10.25 respectively. Note that the grey line connects the 

points on the different curves beyond which increasing the volume of the performed 

improvement renders a rate of variation less than 5%. The red and blue lines correspond to 

the empirical methodologies proposed by JDFA (1974) and Tchuchida et al. (1976) 

respectively. The above guidelines have been presented in the introduction of the current 

chapter and provide an estimate of the width of the compacted zone around shallow or 

slightly embedded structures. Note however, that both empirical methodologies refer to 

compaction as the main improvement technology and hence do not incorporate the 

drainage effects offered by the presence of gravel drains. Additionally, in the specific 

studies, it is recommended that the entire thickness of the liquefiable sand layer is 

mitigated. Hence, in the relevant figures, both recommendations are applied for relatively 

thin liquefiable layers, ranging from 0.5 – 2 times the width of the footing. The consideration 

of a 20m thick liquefiable layer (as it is assumed in the numerical investigation) is going to 
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shift the resulting curves to the right, hence severely increasing the volume of the mitigated 

soil and increasing the associated cost.  

Based on the above sets of design charts it is concluded that the rate of variation in the ratio 

of dynamic settlements becomes significant, i.e. exceeds 5%, for Limp/Himp values greater 

than about 5, in the case of the maximum improvement thickness examined herein. For low 

values of Himp/B dynamic settlements experience only a minor increase, especially for 

narrow widths of improvement. 

Regarding the degraded factor of safety, there is a rather abrupt change in the values of the 

normalized ratio even for large Limp/Himp values, which was obvious already from the 

execution of the parametric investigation. Namely, even a minor reduction in the 

improvement width was leading to a major decline in the obtained degraded factor of safety 

F.S.deg. This was even more evident for greater values of improvement depth, Himp.  

Conditions of “infinite” width of improvement render a very un-conservative estimate both 

in terms of dynamic settlements and degraded factor of safety. The specific conditions are 

attained for at least 20 times the footing width. Such a design width is practically prohibited 

and can lead to excessive construction costs. Hence, the examined method of ground 

improvement becomes technically and financially efficient for improvement widths within 2 

– 5 times the depth of the improvement, namely Limp = (2÷5) Himp.  

 

Figure 10.22: Normalized dynamic settlements plotted with respect to Limp/Himp for 
different Himp/B values. 
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Figure 10.23: Normalized degraded factor of safety plotted with respect to Limp/Himp for 
different Himp/B values and three values of F.S.deg

inf. 
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Figure 10.24:  Normalized dynamic settlements plotted with respect to Vimp/B2 for 
different Himp/B values.   
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Figure 10.25: Normalized degraded factor of safety plotted with respect to Vimp/B2 for 
different Himp/B values and three values of F.S.deg

inf.  

Equation Chapter 11 Section 1 
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Equation Chapter 1 Section 1CHAPTER   11 

 

 

11 Analytical Methodology & Design Charts for the 
Performance-Based Design of Shallow 

Foundations on Liquefiable Ground 

 

 

11.1 Overview of proposed analytical methodology 

The analytical methodology established and evaluated in the previous chapters is 

summarized in the current chapter. The purpose is to guide the user through the different 

stages of the performance – based design of shallow strip foundations starting from the 

selection of the appropriate spacing of gravel drains, to the evaluation of the seismic 

settlements and the degraded post-shaking bearing capacity of the foundation, given the 

dimensions of the mitigated area. 

Step 1: Determination of the replacement ratio αs.- The creation of the non-liquefiable 

crust involves the installation of gravel drains and the obtained soil improvement is mostly 

estimated through the replacement ratio αs. The selection of the appropriate value of αs 

depends on (i) the initial relative density of the treated soil, Dr,o (%), (ii) the thickness of the 

performed improvement Himp(m) as well as (iii) the maximum excess pore pressure ratio 

ru,max allowed to develop within the improved zone, which according to current practice, is 

equal to ,max , 0.30 0.50u u designr r   . Given the above, Figure 11.1 allows the determination 

of the replacement ratio αs, taking into account the aforementioned input parameters. 
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Figure 11.1: Required replacement ratio αs with regard to initial relative density Dr,o(%) 

and three allowable levels of ru,max. 
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Step 2: Determination of the equivalent properties of the improved zone.- The liquefaction 

mitigated zone presents larger overall permeability (keq., m/s) due to the presence of the 

gravel drains, as well as greater relative density,also denoted Dr,imp (%) due to the 

vibrocompaction applied during gravel drain installation. The specific improved soil 

properties are determined based on Figure 11.2 as a function of the previously selected 

replacement ratio αs and the initial relative density of the liquefiable sand Dr,o (%). 

 

 

(a) 

 

(b) 

Figure 11.2: Assessment of the improved properties (a) relative density Dr,imp(%) and (b) 
permeability keq.(m/sec), as a function of replacement ratio αs. 
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Step 3: Evaluation of seismic performance of the shallow foundation under conditions of 

“Infinite” Improvement.- Having specified the equivalent properties and thickness of the 

improved zone, the seismic performance of the shallow foundation is evaluated initially for 

the two - layered soil profile. The seismic performance of the foundation includes the 

evaluation of (i) the seismically induced footing settlements ρdyn (m) and (ii) the degraded 

post-shaking bearing capacity of the footing qult. (kPa) 

The current step requires the prior knowledge of the basic problem parameters, namely:  

 the footing characteristics, namely the average contact pressure q(kPa) and width of 

the footing B(m) 

 the excitation characteristics, including the peak bedrock acceleration αmax (g) the 

number of significant loading cycles No and the predominant excitation period Texc 

(sec). 

 the elastic fundamental period of the soil column Tsoil (sec). 

Evaluation of dynamic settlements ρdyn
inf.- Seismically-induced settlements are evaluated 

based on the following Newmark-based relation: 
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                       11.1                

in which c1=0.019, c2=0.45, c3=0.25 c4=4.5 and a=0.633. 

Evaluation of degraded bearing capacity qultdeg
inf and associated F.S.deg

inf.- Degraded bearing 

capacity qultdeg
inf is calculated based on the modified analytical relation initially proposed by 

Meyerhoff & Hanna (1978) as follows: 
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            11.2 

Coefficients Nq & Nγ are provided below: 

3,degπtanφ2
q3 3,degN =tan (45+φ /2)e                                             11.2a     

γ3 q 3,degN =2(N +1)tanφ                                                           11.2b  
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The application of the above relation requires the specification of the following parameters: 

Coefficient α._ is associated to the thickness of the transition partially liquefied crust, 

formed underneath the improved zone and is computed based in the equation below. After 

the statistical processing presented in Chapter 9, coefficient Cα is set equal to 3.76.  

0.256

α

imp

C
 

  
  

eqk TN
α

H
                                                        11.3                                                       

Initial Friction angle for each layer φi,ini.- Loading and drainage conditions are not uniform 

across the activated failure surface, hence initial friction angle values for both layers are 

estimated, based on Equation 11.4, considering the average among TX Compresion, TX 

Extension and Direct Simple Shear loading under undrained and drained conditions.  

i,TX C i,TX E i,DSS
i,ini

φ φ φ
φ

3

  
                                                     11.4                                               

Degraded friction angle for each layer φi,deg.- The friction angles appearing in the analytical 

expression are appropriately reduced to account for the excess pore pressure build up which 

is anticipated at the end of seismic shaking. To this extent, it is approximately assumed that: 

 1
i,deg i ,iniiφ  tan 1 U anφ ]t[                                            11.5                                           

where the subscript "ini" denotes the friction angle of the ground at the beginning of 

shaking, while i= 1 for the improved crust, 2 for the transition zone and 3 for the liquefied 

sand. The associated excess pore pressure ratios Ui are separately evaluated below. 

Excess pore pressure ratio U1 in the improved crust.- The average epp ratio U1 refers to free 

field conditions and at the end of shaking and is expressed as a portion of the allowable 

excess pore pressure ratio, Udesign, set equal to: 

1 designU 0.54U                                                            11.6                                                                

Excess pore pressure ratio in the transition zone U2.- Parameter U2, corresponds to the 

average excess pore pressure ratio in the transitional non-liquefied zone of the natural 

ground and is estimated as the average between U1 and the excess pore pressure ratio in 

the liquefied soil, which equals unity. Thus, U2 is equal to: 

   design1

2

1 0

2

.54U1 U
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2


                                      9.7 
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Excess pore pressure ratio in the liquefied ground U3.- The excess pore pressure ratio U3  

refers to the liquefied ground, over a representative area underneath the footing and below 

the improved crust. It is evaluated through the following equation, in which coefficient CU3 is 

equal to 0.86.  

3

in
ultdeg 0.18

3

f

U

q
U C ( )   1.00

pα

                                             11.8                                                 

Coefficient Ks.- This parameter reflects the shear strength mobilized across the partially 

liquefied improved and transitional soil zones, below the edges of the footing. It is a function 

of the contact pressure q and the Himp/B ratio as shown in Equation 11.9. After the statistical 

processing presented in Chapter 9, coefficient CKs is set equal to 1.00. 
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where pα = 98.1kPa is the atmospheric pressure.  

Due to the dependence of U3 on qult, Equations 11.2 and 11.8 are solved concurrently until 

convergence and in the sequel, the degraded factor of safety F.S.deg
inf* is derived. To further 

improve the accuracy of the proposed methodology, a correction factor is applied on the 

initially obtained value as shown below: 
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                          11.10                               

 

Step 4: Evaluation of seismic performance of the shallow foundation under conditions of 

“Finite” Improvement.- In real applications, soil improvement is applied over a designated 

area of limited dimensions. The determination of the particular area should grant the 

optimum solution between the required performance criteria specified for the shallow 

foundation and the associated construction costs. Hence, the current step summarizes the 

proposed analytical expressions to evaluate the appropriate improvement area dimensions. 

Note that both aspects of the seismic performance of the foundation (i.e ρdyn & F.S.deg) 

appear with reference to the results for “infinite” ground improvement, implying their prior 

assessment. 
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Dynamic settlements ρdyn.- are associated to the Himp/B and Limp/B ratio. The ratio of 

ρdyn
inf/ρdyn is evaluated based on the direct analytical expression presented below: 

1 0.30

1 exp 1.05

    
      

     

inf
dyn imp imp

dyn

H L

B B




                                 11.11 

Degraded bearing capacity qult
deg and Factor of Safety F.S.deg.- Due to a number reasons 

thoroughly explained in Chapter 10, the ratio of F.S.deg/F.S.deg
inf, is computed through the 

following non-linear equation. Hence F.S.de is the outcome of a cumbersome iterative 

procedure.  
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Given the complexity in the use of Equation 11.12, a set of simplified analytical expressions 

is formulated, which enable the direct evaluation of the degraded factor of safety F.S.deg for 

“limited” improvement conditions. The following sets of equations are expressed with 

regard to the required Limp/Himp ratio and each one of them is applicable for a different range 

of F.S.deg
inf. 

F.S.deg
inf= 1.50 – 2.50:     
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F.S.deg
inf= 2.50 – 3.50:    
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F.S.deg
inf= 3.50 – 4.50:    

1.30 0.38
F.S. H L

1 exp 0.56
F.S. B B

    
      

     

deg imp imp

inf
deg

                  11.15 

 

Step 5: Cost - Benefit Estimate.- To gain additional insight regarding the practical application 

of the previously generated analytical expressions, regarding ρdyn and F.S.deg, they are 

appropriately modified to incorporate the ratio of the width over the depth of the improved 

zone, Limp/Himp. Hence, the outcome for the ratio of dynamic settlements is summarized 

below: 
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Accordingly, the simplified analytical expressions for F.S.deg are transformed into Equations 

11.17, 11.18, 11.19 respectively: 

F.S.deg
inf= 1.50 – 2.50:            
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The correlation between the selected dimensions of an improved zone around the shallow 

foundation to the generated cost becomes a lot more straightforward when incorporating 

the resulting volume of improvement Vimp, which is a more direct cost indicator. For the 

plane strain conditions considered in the problem, the volume of the improved area is 

defined as the product of the depth (Himp) times the width (Limp) of the improved zone. To 

preserve the dimensionless form of the initially proposed equations, volume is divided by B2 

and the outcome of the modification is exhibited below both for the dynamic settlements 

and the degraded factor of safety. 
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11.2 Design charts 

In the present section, the previously presented analytical expressions are used to 

formulated practice-oriented design charts for the direct evaluation of the two aspects of 

the seismic performance of shallow foundations.  

The predictions of the empirical methodologies, proposed by JDFA (1974) and Tchuchida et 

al. (1976), are also included in the following design charts and particularly compared against 

the proposed methodology in terms of the required improvement volume Vimp. The specific 

guidelines have been presented in Chapter 10 and provide an estimate of the width of the 

compacted zone around shallow or slightly embedded structures. Nevertheless, both 

empirical methodologies refer to compaction as the main improvement technology and do 

not incorporate the drainage effects offered by the presence of gravel drains. Hence, any 

conclusions should be handled with caution. Moreover, the above guidelines, do not provide 

any quantitative means of assessing the foundation performance, as a function of the 

improvement area dimensions. Hence, the associated curves result from the combination of 

the guidelines and the proposed analytical relations.  

Figure 11.3 through Figure 11.5 allow the assessment of the ratio of dynamic settlements 

ρdyn/ρdyn
inf as a function of three different variables, namely the Limp/B, the Limp/Himp and the 

Vimp/B2 ratio. The ratio of dynamic settlements is plotted for seven (7) distinct Himp/B values 

(= 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00). The thicker dotted grey lines in Figure 11.4 and 

Figure 11.5 correspond to the points on the different curves beyond which, increasing the 

ratio of Limp/Himp renders a rate of variation less than 5%, i.e. the cost-effect ratio is high.  

 

Figure 11.3: Design chart for the evaluation of the ratio of dynamic settlements 
ρdyn/ρdyn

inf, with regard to the Limp/B ratio for different Himp/B values. 
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Figure 11.4:  Normalized  dynamic  settlements  plotted  with  respect  to  Limp/Himp  for 
different Himp/B values. 

 

 

Figure 11.5:   Normalized  dynamic  settlements  plotted  with  respect  to  Vimp/B
2  for 

different Himp/B values. 
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Regarding the normalized ratio of the degraded factor of safety, F.S.deg/F.S.deg
inf

 the 

corresponding design charts are summarized in Figure 11.6 to Figure 11.8. The specific 

charts present the F.S.deg/F.S.deg
inf ratio also with regard to the Limp/B, the Limp/Himp and the 

Vimp/B2 ratio.  

 

Figure 11.6: Design charts relating the F.S.deg/F,.S.deg
inf ratio to the Limp/B value, based on 

the simplified analytical expressions, for three initial F.S.deg
inf values.  
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Figure 11.7: Normalized degraded factor of safety plotted with respect to Limp/Himp for 
different Himp/B values and three values of F.S.deg

inf. 
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Figure 11.8: Normalized degraded factor of safety plotted with respect to Vimp/B2 for 
different Himp/B values and three values of F.S.deg

inf.  
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12 APPENDIX   A    

 

 

A. Numerical Methodology Outline 

 

 

A.1 FLAC finite difference code 

FLAC makes use of the Finite Difference Method, whose central idea is that every derivative 

in the set of governing equations is replaced by an algebraic expression written in terms of 

the field variables (stress, displacements) at discrete points in space, while no variation of 

these variables within the elements needs to be specified. A typical FLAC calculation cycle is 

shown in Figure A-1. Starting from a given displacement state at each grid point the 

incremental strains for each zone are first evaluated for a given displacement increment 

(velocity). Following, the new stresses at each zone are calculated based on the adopted 

constitutive law. Then, stresses are used to estimate forces at each node. If these forces are 

close to zero, then the system is in equilibrium or steady state flow under constant velocity. 

Otherwise, for non-zero nodal forces, the aforementioned unbalanced nodal forces lead to 

nodal accelerations. Each full circle of this loop is taken as one timestep. 

The most important characteristic of the explicit finite difference method is that each box in 

Figure A-1 updates all of its grid variables (stresses and displacements) from known values 

that remain fixed while control is within the box. For example, the new stresses computed in 

the lower box are based on a set of velocities already calculated, and is assumed to be 

"frozen" for the operation of the box. This might seem unreasonable, since a change of 

stresses influences the velocities of neighboring grid points. However, if the integration time 

step is adequately small, such that information cannot physically propagate from one 
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element to another, then the "frozen-velocities" assumptions can be justified. This leaves 

the explicit method with one major disadvantage and one major advantage: 

• The disadvantage is that a large number of computation steps is required to 

complete an analysis, even if the latter involves linear materials. 

• The advantage is that no iteration process with matrix inversion is required, 

since elements do not communicate with each other during each solution step. 

Thus, for highly non-linear problems FLAC is expected to perform better than 

implicit Finite Element methods. 

 

 

Figure A-1: Explicit calculation sequence used in FLAC. 

 

A.1.1 The finite difference equations  

The first set of equations of dynamic equilibrium is the generalized Newton’s law of motion 

for a continuous solid body, which is expressed as: 

.
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where    t time 

xi  coordinate vector  

ρ  mass density  

gi  gravitational acceleration 
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.

iu  velocity vector 

ςij  stress tensor 

The other set of equations is the constitutive relation, or stress/strain law, which is given in 

following form:  

.

ij( , , )ijij nM q                                                           A-2 

where   M()  is the functional form of the constitutive law 

.

ij   represents strain rates 

qn  are history parameters depending on the particular law 

The strain rate 
.

ij is derived from velocity gradients as: 
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A.1.2  Mixed discretization  

In order to solve the system of the previous equations, the continuous problem is replaced 

by a discrete one, where velocities and forces are assumed to be concentrated on the nodes 

of a grid (or mesh). Therefore, the laws of motion for the continuum are transformed into 

discrete forms of Newton’s law at the nodes. The spatial derivatives of velocities and forces 

(i,e strain rates and stresses) are assumed to be constant within the zones  (or elements) 

defined by the nodes mentioned above.  

In FLAC, the finite difference mesh consists of quadrilateral elements, which are internally 

subdivided into two overlaid sets of constant-strain triangular elements, as shown in Figure 

A-2. The use of triangular elements eliminates problems which may occur with the 

deformational patterns of constant-strain finite difference quadrilaterals. More specifically, 

for polygons with more than three nodes, the combinations of nodal displacements may 

produce no strain and no opposing forces. To overcome this problem, the isotropic stress 

and strain components are taken to be constant and are averaged over the whole 

quadrilateral element, while the deviatoric components are maintained and treated 

independently for each triangular sub-element. Mart & Cundall (1982) describe this 
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procedure, using the term mixed discretization. The term arises from the different 

discretization for the isotropic and deviatoric parts of the stress and strain tensors. 

 

 

Figure A-2: (a) Overlaid quadrilateral elements used in FLAC, (b) typical triangular 
element with velocity vectors and (c) typical triangular element with force 
vectors and unit normal to the element’s surfaces. 

 

A.1.3 Discrete-model form of the finite different equations  

The finite difference equations for the triangular sub-elements of FLAC are derived using the 

generalized form of Gauss’ divergence theorem. According to this theorem, the average 

value of the gradient 
i

f

x




  of a scalar, vector or tensor f over the area A may be computed 

as follows: 

1 1
i
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where   S  the boundary of a closed surface 

ni  the unit normal to the surface 

s  the length of a side of the triangle 

f    is taken to be the average over the side 
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The summation occurs over the three sides of the triangular sub-zone and (a) and (b) are 

two consecutive nodes on a side. Equation A-4 can be used to derive all the components of 

the strain rate tensor based on nodal velocities.  

Given the strain-rate tensor, the constitutive law of Equation A-2 is used to derive a new 

stress tensor. Once the stresses have been calculated the equivalent forces applied to each 

point need to be determined.  

In FLAC, each quadrilateral zone contains two sets of two triangular sub-zones. Each corner 

of these sub-zones receives two force contributions, one from each adjoining side:  

 (1) (1) (2) (2)1

2
i ij j jF n S n S                                                        A-5 

Within each set of sub-zones, the forces from triangles meeting at each node are summed. 

The forces from both sets are then averaged to give the nodal force contribution of the 

quadrilateral. At each node, the forces from all surrounding quadrilaterals are summed to 

give the net nodal force vector, which includes contributions from applied loads and from 

body forces due to gravity. Gravity forces ( )g
iF  are computed as:  

( )g
i i gF gm F                                                               A-6 

where mg is the gravitational mass at the node, defined as the sum of one-third of the 

masses of triangles connected to the node 

If the body is at equilibrium, or in steady-state flow Fi on the node will be zero. Otherwise, 

the node will be accelerated according to the finite difference form of Newton’s law of 

motion: 

( /2) ( /2). .
( )

t t t t
t

i i i

t
u u F

m
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Where the superscripts denote the time at which the corresponding variable is evaluated.  

The above formulation is modified for the solution of static problems, by introducing into 

Equation A-7 a form of damping, also referred to as local non-viscous damping, as follows: 

( /2) ( /2). .
( )

,( )
t t t t

t
i i i d i

t
u u F F

m
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where   
,d iF  is the damping force, described by the following expression, in  

    which by default α equals α=0.80. 



Appendix A: Numerical Methodology Outline 

Page |A - 6  
 

( /2).
(t)

, sgn
t t

id i iF a F u
 

  
 

                                                          A-9 

A.1.4 Numerical stability  

The explicit finite difference solution procedure is not unconditionally stable. The speed of 

the "calculation front" must be greater than the maximum speed at which physical 

information propagates. The particular numerical stability condition is expressed in terms of 

a critical timestep. Assuming that the pressure velocity, Cp, is the maximum speed at which 

information can propagate and that Δx is the smallest size of an element, then this critical 

time step is given as: 

crit

Δ
Δ

p

x
t

C
                                                               A-10 

Where   Δx  is the minimum propagation distance, estimated as A/Δxmax(in FLAC)  

C  the p-wave velocity equal to 
4 / 3

p

K G
C




   

It is easily derived that the above expression is equivalent to Equation A-11, which refers to 

a general system of solid materials and networks of interconnected masses and springs: 

min
critΔ

T
t

π
                                                                   A-11 

where Tmin is the smallest eigen-period of the system. For a single mass-spring element, the 

above equation becomes: 

critΔ 2
m

t
k

                                                                 A-12 

For the simple case of a rectangular zone, with area Az, thickness t and diagonal length Ld, 

the grid point mass and the zone stiffness are expressed as shown in Equations A-13 and 

A-14 respectively: 

1

4
zm A T                                                                   A-13 

2

( 4 / 3) d

z

L
k K G T

A
                                                              A-14 
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The combination of Equations A-12, A-13 and A-14 yields Equation A-10, implying that the 

latter may be regarded as an estimate of the local critical timestep, which can be easily 

calculated without computing the eigen-period of the entire system. 

The finally selected time step must be smaller than the critical one obtained previously. For 

that purpose in FLAC applies a factor of 2 upon the critical time step. In dynamic problems, 

the specific time step refers to the simulated problem time. In static analyses, it is more 

efficient to assume a pseudo-static time step Δt = 1 and adjust the nodal masses. Nodal 

masses in FLAC are computed as follows: 

2
max(K 4G/ 3) x

6
nm

A

 
                                                      A-15 

For an affective stress analysis where groundwater is present, the bulk modulus of the fluid 

increases the mechanical stiffness of the saturated zone, thus reducing the selected 

timestep. This is done by modifying the apparent mechanical bulk modulus of the zone, 

according to Equation A-16: 

2:K K a M                                                                 A-16 

where   a  Biot coefficient  

M  Biot modulus 

If the compressibility of the grains is neglected compared to that of the drained material, 

then a=1 and M=Kw/n, where Kw is the fluid bulk modulus and n is the porosity.  

A.1.5 Fluid mechanical interaction 

One of the fundamental features of FLAC is the capacity to model groundwater flow through 

permeable soils. Flow modeling may be done uncoupled, i.e. independently of the 

mechanical calculation, or in a coupled way so that fluid-solid interaction effects are 

captured. According to the latter: 

 The fluid in a zone reacts to mechanically iduced volume changes by a change in the 

pore pressure 

 Changes in pore pressures induce effective stress changes, hence affecting the 

response of the solid.  

FLAC can calculate pore pressure effects, with or without pore pressure dissipation, while 

pore pressure dissipation can be modeled using built-in constitutive models. In the 
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constitutive model implemented herein, dynamic pore pressure is modeled indirectly, as a 

result of the simulated decrease of effective stress. 

In the simple case of saturated flow, where grains are assumed to be incompressible 

compared to the soil skeleton, the equations governing the coupled fluid-deformation 

mechanisms are presented below.  

Initially, water flow is described by Darcy’s law”: 

( )i ij w k k

j

q k P g x
x
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where   qi  the specific charge vector 

kij  mobility coefficient tensor (measure of permeability, equal to the 

hydraulic conductivity kH divided by the fluid’s unit weight: 

k=kH/ρwg) 

P  fluid pressure 

Ρw  mass density of the fluid 

gk  gravitational acceleration vector 

Fluid pressure follows the constitutive law of Equation A-18: 

volP
M

t t
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where   M  Biot’s fluid modulus 

εvol  volumetric strain 

Finally, Equations A-1 and A-2  are expressed in terms of effective stresses ς’ij=ςij-Pδij, while 

mass density ρ is the saturated density ρsat=ρd+nρw (where ρd is the dry density). 

The discretization and finite difference methods follow the general scheme presented in 

previous paragraphs: 

 Pore pressures P are defined at gridpoints, and assumed to vary linearly within each 

sub-zone. 

 The specific change vector qi in Equation A-17 is derived for each sub-zone through 

the Gauss divergence theorem 

 The volumetric strain εvol is the equivalent nodal volume increase arising from 

mechanical deformations of the grid. It is computed as the sum of the contributions 
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from all sub-zones connected to the node. The resulting sum is divided by two, to 

account for the double overlay scheme.  

 Finally, zone pressures necessary to perform an effective stress analysis are derived 

from the surrounding nodal values by simple averaging.  

Simlar to the mechanical solution scheme, a critical timestep is defined to ensure numerical 

stability. The particular timestep is expressed in the following form: 

crit

ij

V
t

M K
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Where   V  equivalent nodal volume  

Kij  permeability matrix, relating nodal pressures to nodal flow rate 

The value of the used timestep is obtained by multiplication of the critical timestep with a 

safety factor of 0.8. Since the permeability appears at the denominator of Equation A-19, the 

flow timestep in many practical applications with low permeability values becomes larger 

that the corresponding mechanical timestep, and is therefore not critical. The maximum 

flow timestep may become critical in cases that gravel or other high permeability materials 

are present, such as gravel drains.  

 

A.2 NTUA-SAND constitutive model 

The NTUA-SAND model (Andrianopoulos et al.,2010a) is a bounding surface, critical state, 

plasticity model with a vanished elastic region, developed primarily for accurate simulation 

of the rate-independent dynamic response of non-cohesive soils under small, medium and 

large cyclic shear strain amplitudes. This is achieved using a single set of values for the 

model constants, irrespective of initial stress and density conditions, as well as loading 

direction. The model is equally efficient in simulating the monotonic response. 

The model builds on the constitutive efforts of Manzari & Dafalias (Manzari & Dafalias, 1997) 

and Papadimitriou & Bouckovalas (Papadimitriou & Bouckovalas, 2002). In particular, key 

constitutive ingredients of the NTUA-SAND model are: 

 the inter-dependence of the critical state, the bounding and the dilatancy (open 

cone) surfaces, that depict the deviatoric stress-ratios at critical state, peak strength 

and phase transformation, on the basis of the state parameter ψ = e – ecs (with e the 

void ratio, and ecs the void ratio at critical state at the same mean effective stress p, 



Appendix A: Numerical Methodology Outline 

Page |A - 10  
 

as per Been & Jefferies (Been & Jefferies, 1985). Figure A-3 presents the shape of 

these surfaces in the π-plane (perpendicular to the hydrostatic p axis) of the 

deviatoric stress-ratio r space, where r = s/p, with s = σ-pI being the deviatoric stress 

tensor (σ and I are the effective stress and the identity second-order tensors) 

 a (Ramberg-Osgood type) non-linear hysteretic formulation for the ‘elastic’ strain 

rate, that governs the response at small to medium cyclic shear strains, 

 a discontinuously relocatable stress projection center rref related to the ‘last’ shear 

reversal point, which is used for mapping the current stress point on model surfaces 

(see Fig. 1) and as a reference point for introducing non-linearity in the ‘elastic’ 

strain rate, and finally, 

 an empirical index of the directional effect of sand fabric evolution during shearing, 

which scales the plastic modulus, and governs the rate of excess pore pressure 

build-up and permanent strain accumulation under large cyclic shear strains 

potentially leading to liquefaction and cyclic mobility. 

The model requires the calibration of eleven (11) dimensionless and positive constants for 

monotonic loading, and an additional two (2) for cyclic loading. Ten (10) out of the above 

thirteen (13) model constants may be directly estimated on the basis of monotonic and 

cyclic element tests, while the remaining three (3) constants require trial-and-error 

simulations of element tests. Details regarding the model formulation and the calibration 

procedure of the model constants can be found in Andrianopoulos et al. (2010a). What is 

presented here is Table A-1, where the model constants are outlined along with their values 

for Nevada sand, i.e. the uniform fine sand used in the VELACS project (Arulmoli et al, 1992) 

and also used for the validation of the NTUA-SAND model performance in element and 

centrifuge tests. 

At element level, the performance of the model has been evaluated based on comparison 

with data from element laboratory tests on fine Nevada sand at relative densities of  Dr = 40 

& 60% and initial effective stresses between 40 and 160 kPa. In particular, data originated 

from tests on resonant column, direct simple shear and triaxial tests, offering a quantitative 

description of various aspects of non-cohesive soil response under cyclic loading, such as 

shear-modulus degradation and damping increase with cyclic shear strain, liquefaction 

resistance and cyclic mobility.  
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Figure A-3: Model surfaces and adopted mapping rule in the π-plane of the deviatoric 
stress-ratio space based on a relocatable projection center rref. 

 

Table A-1: NTUA-SAND model constants: physical meaning and values for Nevada sand 

# Physical meaning Value 

Mc
c Deviatoric stress ratio at critical state in triaxial compression (TC) 1.25 

c Ratio of deviatoric stress ratios at critical state in triaxial extension (TE) over 
TC  

0.72 

Γcs Void ratio at critical state for p=1kPa  0.910 
λ Slope of critical state line in the [e-lnp] space  0.022 
Β Elastic shear modulus constant 600* 
ν Elastic Poisson’s ratio 0.33 
kc

b Effect of ψ on peak deviatoric stress ratio in TC 1.45 
kc

d Effect of ψ on dilatancy deviatoric stress ratio in TC 0.30 
γ1 Reference cyclic shear strain for non-linearity of “elastic” shear modulus 0.025%* 
α1 Non-linearity of “elastic” shear modulus 0.6* 
Αο Dilatancy constant 0.8 
ho Plastic modulus constant  15,000 
No Fabric evolution constant 40,000 

* for monotonic loading of Nevada sand: B = 180, α1 = 1.0 (that renders the value of γ1 irrelevant) 

 

Focusing on the model accuracy under large cyclic shear strain amplitudes, Figure A-4 

presents a one-to-one comparison of simulations to data from a typical cyclic undrained 

simple shear test on Nevada sand at Dr = 40% and initial effective stress ςvo = 160 kPa. In 

order to ascertain whether such a satisfactory accuracy is obtained for all initial conditions, 

Figure A-5 compares the liquefaction resistance curves from all cyclic simple shear tests on 

Nevada sand (Arulmoli et al.,1992) with the respective simulations and pertinent curves 

from the literature (DeAlba et al.,1976). In all simulations, the values of model constants of 

Table A-1 were used, showing that the model is capable of reproducing cyclic sand response 

with the same set of model constants irrespective of initial conditions. Similar accuracy is 

obtained for small and medium cyclic shear strains, i.e. in resonant column tests results of 
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shear-modulus degradation and damping increase with cyclic shear strain, irrespective of 

initial conditions with the same values of model constants presented in Table A-1 (for 

details, see Andrianopoulos et al.,2010a). 

 

 

Figure A-4: Comparison of simulation (using NTUA-SAND) to data for a typical cyclic 
undrained simple shear test on Nevada sand with Dr = 40% (Arulmoli et al., 
1992). 

 

Figure A-5: Summary comparison of liquefaction curves from simulations (using NTUA-
SAND) to data from all cyclic undrained simple shear tests on Nevada sand 
(Arulmoli et al.,1992), as well as established curves from the literature 
(DeAlba et al. 1976). 
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A.3 Implementation to finite difference code 

The NTUA-SAND model was implemented to the commercially available finite-difference 

computer code FLAC (Itasca, 2005), using the User-Defined-Model (UDM) capability. Thus, 

the user of FLAC must supply an external UDM subroutine that will integrate the constitutive 

equations at each incremental solution step. It is then the role of this UDM to accurately 

estimate the effective stress increment and supply an updated set of values for the state 

variables and the hardening parameters, given their old set of values and the applied strain 

increment. 

The equations of motion in FLAC are integrated using the explicit central difference 

integration rule. Therefore, small time increments are used to ensure stability. Thus, the use 

of an implicit stress integration scheme for the implementation of the highly non-linear new 

model would prove unnecessary, while it would require increased computational effort for 

performing iterative calculations with complex derivatives of the various constitutive 

ingredients. No global stiffness matrix is formulated with this computer code. Darcy’s law is 

invoked for fluid flow in a porous solid, while the incremental formulation of coupled 

deformation-diffusion processes provides the numerical representations for the linear quasi-

static Biot theory.  

For this purpose, the sub-stepping technique with automatic error control [Sloan, (1987) 

Sloan et al., (2001)] was adopted. This algorithm belongs to the family of explicit stress 

integration schemes and divides automatically the applied strain increment into sub-

increments (substeps). An appropriate size for each substep is found through the use of a 

modified Euler formula, which is specially constructed to provide an estimate of the local 

error. This scheme is particularly effective in handling multiple hardening parameters along 

with complicated hardening laws (Zhao et al., 2005), as required by the new constitutive 

model. 

With the foregoing computer code, the continuum is divided into a finite difference mesh 

composed of quadrilateral elements (or “zones” in FLAC terminology). Mixed discretization, 

as thoroughly explained in the previous sections, (Martn & Cundall, 1982) is used to solve 

the problem of hourglassing, which may occur with constant-strain finite difference 

quadrilaterals. Namely, each element is automatically subdivided into two overlaid sets of 

constant-strain triangular subzones, and stress integration is performed separately for each 

of the four subzones of the element. However, the mean effective stress (p) and strain 

components (εp) are taken to be uniform over the whole quadrilateral element and equal to 

their average value over the four triangular sub-zones, while the deviatoric components (s 
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and e) are treated separately for each triangular sub-zone. This averaging procedure of p 

and εp is inherent in FLAC and is performed after the end of each applied strain increment. 

Similarly, the UDM subroutine of the proposed model in FLAC introduces averaging of the 

hardening parameters, to ensure that each quadrilateral element possesses uniform 

hardening parameters at the end of each strain increment.  

Integration of the constitutive relations at each zone for a given strain increment is 

performed via a second order modified forward Euler method. Integration is accomplished 

in one or more sub-increments (or substeps), in order to maintain the local truncation error 

at each step below a desired tolerance level STOL. Specifically, to facilitate the integration 

process and especially the error control process that follows, a pseudo-time T is defined, 

with 0 ≤ T ≤ 1 for each strain increment ε  (with T = 0 and T = 1 marking the beginning and 

the end of the integration process for each strain increment). If the error control process 

requires it, each strain increment ε  is further divided to sub-increments 
a

ε , with the aid of a 

pseudo-time sub-increment ΔΤn (0  ΔTn  ≤ 1) according to: 

n

p

n

a

paa ΔΤ
3

ε
ΔΤ

3

ε











 IeεIeε





     A-20 

Thus, stress integration for each strain sub-increment is performed between pseudo-times 

Tn-1 and Tn = Tn-1 + ΔTn, with subscripts n-1 and n denoting the start and the end of the sub-

increment, respectively. Note that if the error control process shows sufficient accuracy, 

then substepping is not performed. Initiating a sub-increment from a current stress state σn-

1, a first approximation of the effective stress increment 1σ  is calculated through the first 

order accurate Euler solution, with all state (stress and void ratio) dependent quantities and 

hardening parameters estimated at the current state σn-1. In this manner, 1σ , its deviatoric 

stress ratio component and the respective increments of the hardening parameters are 

computed. 

Then a temporary update of the stress state (σn-1 + 1σ ), the void ratio e and all hardening 

parameters enable a second order modified Euler approximation of the stress increment 2σ , 

that is calculated with all state (stress and void ratio) dependent quantities and hardening 

parameters estimated at the temporary updated state. In this manner, 2σ , its deviatoric 

stress ratio component and the respective increments of the hardening parameters are 

computed. The new stresses (σn and rn) and hardening parameters at the end of the 

increment are computed and temporarily stored based on the average estimated 
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increments. This two-step averaging procedure employed by the stress integration scheme is 

graphically presented in Figure A-6.  

Further on, for each sub-increment, the local error measure R is found by taking the 

difference between the second and first approximations of stress and hardening increments, 

normalized by their respective temporarily stored values. If the local error for this sub-

increment exceeds the predefined tolerance level STOL, then the sub-increment is rejected 

and a smaller ΔΤn is introduced. This procedure uses a reduction factor ζ that takes into 

account how much was STOL exceeded, as well as a user-defined maximum number of sub-

increments introduced (e.g. a maximum number of 1000 sub-steps may be used during a 

load step). Given this smaller sub-increment, all computations are repeated until R < STOL, 

the condition for accepting a sub-increment. In the sequel, if a sub-increment is accepted, 

then a growth factor ζ is enforced for the next sub-increment, with a maximum value of 10% 

increase relative to the previous sub-increment, and this in an effort to reduce the total 

computational cost. The integration process continues until T=1, a condition that marks the 

end of the increment and which allows for exit of the UDM routine with the final values of 

the stresses σ and all state variables. Further details about the implementation procedure 

adopted can be found in Andrianopoulos et al. (2010b). 

 

 

Figure A-6: Schematic illustration of the two-step modified Euler stress integration 
scheme 
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APPENDIX  B 

 

 

B. Mobilized Friction Angle in the NTUA-
SAND Constitutive Model 

 

 

B.1 Introduction 

Friction angle φ is directly linked to the shear strength of a sand layer and, in the present 

research, it will enter the computation of the developing dynamic settlements as well as the 

post-shaking degraded bearing capacity (FSdeg) of the foundation resting on top of an 

improved sand layer (with gravel drains) underlain by a liquefiable sand. The constitutive 

model, which will be used to describe the response of the sand at the improved and the 

initial states does not incorporate friction angle as a distinct model parameter. Instead, it 

relates the particular parameter to the relative density Dr (%) through the initial void ratio e. 

Therefore, to define the friction angle that the NTUA-SAND model predicts, a series of 

element level numerical simulations was performed and is presented below.  

NTUA-SAND has been originally calibrated based on laboratory tests performed on Nevada 

sand, and consequently the performed investigation concerns this particular material. The 

peak and residual shear strength were estimated through the execution of strain controlled 

tests in 1×1m elements in FLAC 2D, under (i) isotropic triaxial compression (ii) isotropic 

triaxial extension and (iii) simple shear loading conditions. All tests were performed under 

undrained as well as drained conditions. Additionally to the element level test simulations, 

friction angle is also estimated based on the equations describing the bounding surface of 

the NTUA-SAND constitutive model.  
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The above results, as well as the comparison against empirical predictions of the mobilized 

friction angle proposed by various researchers, have revealed that the NTUA-SAND 

constitutive model underpredicted the peak mobilized friction angle especially for large 

values of relative density and for drained loading conditions. Note though, that the initial 

calibration performed by Papadimitriou (1999) referred to a much narrower range of 

relative densities than the one examined herein, i.e. Dr = 40 & 60% and initial consolidation 

pressures of 40, 80 and 160kPa. Hence, it is recognized that the use of the constitutive 

model outside the above range of parameters is essentially an extrapolated prediction. 

Based on the above, the re-calibration of specific model parameters, such as the deviatoric 

stress ratio values Mb
c,e, within a wider range of initial conditions (Dr, ς’vo) was found to be 

necessary.  

The recalibration process focused on the enlargement of the model’s bounding surface, in 

an attempt to achieve a stiffer shear response (directly related to the friction angle) while 

maintaining the originally obtained volumetric and cyclic responses. Following recalibration, 

peak friction angle values were re-evaluated for a range of relative densities 40 – 90% and 

three different initial consolidation stress levels, namely 40, 80 and 160kPa. The above 

procedure led to improved shear strength predictions and further increased the level of 

confidence of the model performance in large relative densities.  

 

B.2 Model equations and tests layout 

B.2.1 Constitutive model equations 

According to Papadimitriou & Bouckovalas (2002), the mobilized friction angle in 

compression - (φcs)c - and extension - (φcs)e - is computed through the mobilized deviatoric 

stress ratios Mb
c,e, which define the shape of the bounding surface for triaxial extension and 

compression respectively, as illustrated in Figure B-1. Also, the deviatoric stress ratios are 

mathematically described through Equation B-1: 

, , ,

c bb

c e c e c e
M M k                                              B-1 

where  Mc
c,e = user defined independent parameters 

kb
c,e = positive constants and  

<> are the Macauley brackets, yielding <x> = x if x>0 and <x> = 0 if x<0.  
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Ψ is the state parameter of Been & Jefferies, defined based on Equation B-2: 

( ) ln( / )e e e e p p
cs cs a a

     
                                  

 B-2 

in which (ecs)α and λ are user-defined parameters and pa is the atmospheric pressure in the 

desired units. All user-defined parameters are summarized in Table B-1. Friction angle is 

linked to the deviatoric stress ratios through Equations B-3 and B-4 for TX compression and 

extension respectively.  
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Table B-1:  Model parameters, calibration, and final values for the TX Compression and 
Extension testing of Nevada Sand. 

Parameter Physical meaning Calibration Nevada sand 

(ecs)a Critical State Line location 
in the [e-lnp] space 

Triaxial tests 
0.809 

λ 0.022 

Mc
c 

Critical state strength in 
triaxial compression 

Triaxial compression 
tests 

1.25 

Mc
e 

Critical state strength in 
triaxial extension 

Triaxial extension tests 0.90 

kb
c 

Effect of ψ on peak stress 
ratio for compression 

Triaxial compression 
tests 

1.45 

kb
e 

Effect of ψ on peak stress 
ratio for extension 

Triaxial extension tests 1.044 
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Figure B-1: Model surfaces in the p-q triaxial stress space – definition of mobilized 
deviatoric stress ratios Md,c,b. 

 

B.2.2 Isotropic TX compression tests 

Isotropic Triaxial Compression laboratory test simulations were performed at two separate 

stages as illustrated in Figure B-2. Namely, consolidation of the element at the desired stress 

level and subsequent monotonic loading till failure were performed. The loading mode 

depended on whether the simulation concerns undrained or drained conditions. The 

following laboratory test simulations were performed under three different isotropic 

consolidation stresses, namely ς’vo = 10, 50 and 100kPa (considering Ko=1) and a wide range 

of relative densities (Dr) ranging from 30 to 90%, at increments of 10%.  

Undrained conditions.- They were simulated considering an axisymmetric constant volume 

mode of deformation, as presented again in Figure B-2, in which the imposed magnitude of 

horizontal extension is half the vertically imposed magnitude of compressive deformation. 

Monotonic loading is continued till failure, defined as the value of the ultimate principal 

stress (pult.), in which the void ratio meets the Critical State Line in the e-lnp space.  
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Figure B-2:  Schematical representation of the Isotropic TX Compression test simulation 
under Undrained and Drained loading conditions. 

 

Typical results from the above tests (stress paths, stress & excess pore pressure - strain 

correlations, e-p correlation) are presented in Figure B-3, B-4 and B-5 for isotropic 

consolidation stress of 100kPa and three distinct values of relative density, namely Dr = 30, 

60 and 90%. In all examined cases, the peak friction angle (φpeak) is estimated based on the 

developed stress state, the resulting Mohr circle and the angle of inclination of the Mohr-

Coulomb failure envelope at the maximum q/p’ ratio. The residual value (φres.) is obtained at 

failure accordingly. The outcome of the above investigation is summarized in Figure B-6, in 

which the resulting values of friction angle (φpeak and φres.) are plotted as a function of 

relative density Dr (%). The solid black lines represent the maximum friction angle activated 

in each case and the dashed black lines represent the residual shear strength of the material. 

The application of the model Equation B-3 is also plotted with the grey solid lines, for the 

same consolidation stress-levels.  
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Figure B-3: Undrained TX Compression test - typical results for ς’vo=100kPa, Dr = 30%. 
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Figure B-4: Undrained TX Compression test - typical results for ς’vo=100kPa, Dr = 60%. 
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Figure B-5: Undrained TX Compression test - typical results for ς’vo=100kPa, Dr = 90%. 



Appendix B: Mobilized Friction Angle in the NTUA-SAND Constitutive Model 

 

Page |B- 9  
 

 

Figure B-6: Undrained TX Compression test simulations – peak (solid lines) and residual 
(dashed lines) values of friction angle φ as a function of relative density Dr. 

 

Drained conditions.-They were simulated by applying only vertical displacement and 

allowing the free lateral deformation of the examined element, as presented in Figure B-2. 

Due to the drained loading conditions, volume change is now allowed. Again, peak friction 

angle is measured at the maximum q/p’ ratio and the residual shear strength of the material 

is determined at the principal stress level pult., in which the void ratio increase meets the CS 

line in the e-lnp space.  

Typical results from the above tests are presented in Figure B-7, B-8, and B-9, for an 

isotropic consolidation stress of 100kPa and three distinct values of relative density, Dr = 30, 

60 and 90%. The outcome of the above investigation is summarized in Figure B-10, in which 

the resulting values of friction angle (φpeak and φres.) are plotted as a function of relative 

density Dr (%). The solid black lines represent the maximum friction angle activated in each 

case and the dashed black lines represent the residual shear strength of the material. The 

application of the model equations is also plotted with the grey solid lines, for the same 

initial consolidation stress levels. Note that the predictions based on the constitutive 

equations do not differ for undrained and drained conditions, as the CS surface (and its 

projection – the CS line) is not associated to specific drainage conditions, the shear path 

direction and the initial consolidation state. 
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Figure B-7:  Drained TX Compression test - typical results for ς’vo=100kPa, Dr = 30%. 
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Figure B-8: Drained TX Compression test - typical results for ς’vo=100kPa, Dr = 60%. 
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Figure B-9: Drained TX Compression test - typical results for ς’vo=100kPa, Dr = 90%. 
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Figure B-10 : Drained TX Compression test simulations – peak (solid lines) and residual (dashed 
lines) values of friction angle φ as a function of relative density Dr (%). 

 

B.2.3 Isotropic TX extension tests 

Isotropic Triaxial Extension laboratory test simulations were performed at two separate stages as 

illustrated in Figure B-11. Namely, consolidation of the considered element at the desired stress 

level, and subsequent monotonic loading till failure. The loading mode depends on whether the 

simulation refers to undrained or drained conditions. The following laboratory test simulations were 

performed under three different isotropic consolidation stresses, namely ς’vo = 10, 50 and 100kPa 

(considering Ko=1) and a wide range of relative densities (Dr) ranging from 30 to 90% at increments 

of 10%.  
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Figure B-11: Schematical representation of the Isotropic TX Extension test simulation under 
Undrained and Drained loading conditions. 

 

Undrained conditions.- They were simulated considering an axisymmetric constant-volume mode of 

deformation, as presented in Figure B-11, in which the magnitude of the imposed horizontal 

compressive displacement is half the vertically imposed extensive displacement. The particular 

mode of monotonic loading is continued till failure, defined as the value of the ultimate principal 

stress (pult.), in which the void ratio meets the Critical State Line in the e-lnp space.  

Typical results from the performed tests (stress paths, stress & excess pore pressure - strain 

correlations, e-lnp correlation) are presented in Figures B-12, B-13 & B-14,  for an isotropic 

consolidation stress equal to 100kPa and three distinct values of relative density, Dr = 30, 60 and 

90%. In all examined cases, peak friction angle - φpeak - is estimated as explained earlier and the 

residual value of shear strength (φres.), following the same procedure at failure. The outcome of the 

above investigation is summarized in Figure B-16, in which the resulting values of friction angle (φpeak 

and φres.) are plotted as a function of relative density Dr (%). The solid black lines represent the 

maximum friction angle activated in each case and the dashed black lines represent the residual 

shear strength of the material. The predictions of the model equations are also plotted with the grey 

solid lines, for the same consolidation stress levels.  

Drained conditions.- They were simulated by applying only vertical extensive deformation and 

allowing the free lateral deformation of the examined element, as presented in Figure B-11. Due to 

the drained loading conditions, volume change is now allowed. Peak friction angle is measured at 

the point of maximum q/p’ ratio, based again on the developed stress state and the corresponding 
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pult., in which the void ratio change crosses the CS line in the e-lnp space. Note though, that due to 

the model’s configuration, Critical State is reached in significantly large deformation levels, which 

are not obtained experimentally.  

Typical results from the above tests are presented in Figure B-16, B-17 and B-18, for consolidation 

stress of 100kPa and three distinct values of relative density, that is Dr = 30, 60 and 90%. The 

outcome of the above investigation is summarized in Figure B-19, in which the resulting values of 

friction angle (φpeak and φres.) are plotted as a function of relative density Dr (%). The solid black lines 

represent the maximum friction angle activated in each case and the dashed black lines represent 

the residual shear strength of the material. The predictions of the model equations are also plotted 

with the grey solid lines, for the same consolidation stress levels. 
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Figure B-12:  Undrained TX Extension test - typical results for ς’vo=100kPa, Dr = 30%. 
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Figure B-13: Undrained TX Extension test - typical results for ς’vo=100kPa, Dr = 60%. 
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Figure B-14: Undrained TX Extension test - typical results for ς’vo=100kPa, Dr = 90%. 
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Figure B-15: Undrained TX Extension test simulations – peak (solid lines) and residual 
(dashed lines) values of friction angle φ as a function of relative density Dr 
(%). 
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Figure B-16: Drained TX Extension test - typical results for ς’vo=100kPa, Dr = 30%. 
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Figure B-17: Drained TX Extension test - typical results for ς’vo=100kPa, Dr = 60%. 
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Figure B-18: Drained TX Extension test - typical results for ς’vo=100kPa, Dr = 90%. 
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Figure B-19: Drained TX Extension test simulations – peak (solid lines) and residual (dashed lines) 

values of friction angle φ as a function of relative density Dr (%). 

 

B.2.4 Simple shear tests 

Simple Shear laboratory test simulations were performed at two separate stages as illustrated in 

Figure B-20. Namely, consolidating the considered element at the desired stress level, and 

subsequently monotonically loading till failure. The loading mode depends on whether the 

simulation concerns undrained or drained conditions. The following laboratory test simulations were 

performed under three different non-isotropic consolidation vertical stresses ς’vo, namely 10, 50 and 

100kPa, considering Ko=0.5, and a wide range of relative densities (Dr) ranging from 30 to 90%, at 

increments of 10%.  

 
Figure B-20: Schematical representation of the Simple Shear test simulation under Undrained and 

Drained loading conditions.
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Undrained conditions.- They were simulated considering a constant height mode of 

deformation, as presented in Figure B-20, applying only horizontal shearing displacement. 

The particular mode of monotonic loading is continued till failure, defined as the value of the 

ultimate principal stress (pult.), in which the void ratio meets the Critical State Line in the e-

lnp space. In all examined cases, peak friction angle - φpeak - is estimated at the occurrence of 

the maximum value of the q/p’ ratio and the residual value of shear strength (φres.) at failure. 

At both stages, given the stress state developing on the horizontal and vertical planes of the 

examined element, the friction angle is estimated through the corresponding Mohr circle 

and the angle of inclination of the Mohr-Coulomb failure envelope, as illustrated in Figures 

B-21, B-22 and B-23. The particular figures also contain a complete set of typical results from 

the performed tests, for consolidation vertical stress equal to 100kPa and three distinct 

values of relative density, namely Dr = 30, 60 and 90%. The outcome of the above 

investigation is summarized in Figure B-24, in which the resulting values for friction angle 

(φpeak and φres.) are plotted as a function of relative density Dr(%). The solid black lines 

represent the maximum friction angle activated in each case and the dashed black lines 

represent the residual shear strength of the material. 
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Figure B-21: Undrained Simple Shear test - typical results for ς’vo=100kPa, Dr = 30%.
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Figure B-22: Undrained Simple Shear test - typical results for ς’vo=100kPa, Dr = 60%. 
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Figure B-23: Undrained Simple Shear test - typical results for ς’vo=100kPa, Dr = 90%.
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Figure B-24: Undrained Simple Shear test simulations – peak (solid lines) and residual 
(dashed lines) values of friction angle φ as a function of relative density Dr 
(%). 

 

Drained conditions.- were simulated by applying a combination of shearing deformation in 

the form of horizontal displacement, allowing the undisturbed displacement of the upper 

bound of the element, under constant vertical stress, as presented in Figure B-20. The 

particular mode of loading is continued till failure. Peak friction angle - φpeak - is computed at 

the maximum q/p’ ratio and the residual friction angle - φres. - at failure.  

Typical results from the above tests are presented in Figures B-25, B-26 and B-27 for 

consolidation vertical stress of 100kPa and three distinct values of relative density, namely 

Dr = 30, 60 and 90%. The outcome of the above investigation is finally summarized in Figure 

B-28, in which the resulting values of friction angle (φpeak and φres.) are plotted as a function 

of relative density Dr (%). The solid black lines represent the maximum friction angle 

activated in each case and the dashed black lines represent the residual shear strength of 

the material. 
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Figure B-25: Drained Simple Shear test - typical results for ς’vo=100kPa, Dr = 30%. 
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Figure B-26: Drained Simple Shear test - typical results for ς’vo=100kPa, Dr = 60%. 



Appendix B: Mobilized Friction Angle in the NTUA-SAND Constitutive Model 

 

Page |B- 31  
 

 
Figure B-27: Drained Simple Shear test - typical results for ς’vo=100kPa, Dr = 90%.
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Figure B-28: Drained Simple Shear test simulations – peak (solid lines) and residual 
(dashed lines) values of friction angle φ as a function of relative density Dr 
(%). 

 

B.3 Empirical data 

The previously presented numerical results provide a detailed report regarding the 

performance of the NTUA-SAND constitutive model under different loading conditions. In 

the present paragraph the aforementioned results are compared against empirical 

relationships, which either connect relative density directly to the peak friction angle or 

indirectly through the N-SPT number and the effective vertical stress ς’vo or mean pressure 

p’ (kPa).  

Friction angle φ(deg) and relative density Dr(%).- Schmertmann (1978) provides evidence 

that correlate peak friction angle – φmax. – directly to relative density - Dr (%) - for four 

different sand categories, namely (i) uniform fine sand, (ii) uniform medium fine/well-graded 

fine sand (iii) uniform coarse sand/well graded medium fine sand and (iv) uniform 

gravel/well graded sand-gravel, as illustrated in Figure B-29.  
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Figure B-29: Peak friction angle as a function of relative density for (i) uniform fine sand, 

(ii) uniform medium fine/well-graded fine sand (iii) uniform coarse sand/well 
graded medium fine sand and (iv) uniform gravel/well graded sand-gravel, 
Schmertmann (1978). 

 

Andersen & Schjetne (2012) assembled a database of laboratory test results on sands under 

different loading and drainage conditions and provide direct correlations between peak 

friction angle and corresponding relative density. Namely, Figure B-30 summarizes the 

outcome of 336 drained TX Compression laboratory tests performed in different sand 

materials under different consolidation stresses. Moreover, the results of 138 undrained TX 

Compression laboratory tests are summarized in  

Figure B-31, for different levels of consolidation stress. Bolton (1986), proposes a correlation 

of the maximum friction angle to the critical value of friction angle, expressed through 

Equation B-5: 

.
' 3

crit R
I                                                                     B-5 

where the proposed value for φcrit. equals 33o for quartz and  

* (10 ln ') 1
R r

I D p                                                       B-6 

Cavallaro et al. (2001) have also proposed an empirical relationship between friction angle 

and relative density expressed through Equation B-7: 

0.238 (%) 28.4
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Figure B-30: Drained peak friction angle as a function of relative density Dr(%). 

 

Friction angle and NSPT number.- Peak friction angle has also been directly related to NSPT 

number, by various researchers, such as Osaki, Dunham and Peck & Thornburn (1974). The 

proposed correlations are illustrated in Figure B-32a & b, while empirical mathematical 

expressions are provided by Osaki and Dunham below: 

12N' 15                                                                B-8 

                                                                12N' 25                                                               B-9 

Also, De Mello (1971) after examining fine-grained or coarse-grained sand soils, correlated 

NSPT test results, corrected for field conditions only, to effective vertical stress - ς’vo - for 

distinct values of friction angle, as illustrated in  

Figure B-33.  
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Figure B-31: Undrained effective stress friction angle as a function of relative density Dr 
(%).  

 

 

(a)                                                                (b) 

Figure B-32: Peak friction angle (φmax.) as a function of corrected N-SPT number N’ 
according to (a) Osaki, Dunham and (b) Peck & Thornburn (1974). 
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Figure B-33: Corrected N-SPT number N as a function of effective vertical stress ς’vo (kPa) 
(De Mello, 1971). 

 

Friction angle φ(deg) and initial stress conditions.- Additionally to the above empirical 

evidence, Kutter & Chen (1997) performed undrained and drained triaxial compression and 

extension tests on fine Nevada sand No120, within a relatively narrow range of relative 

densities, namely Dr = 70±7%. They also conducted undrained cyclic shear tests in a hollow 

cylinder with rotation of the stress directions; however, the particular results are not 

included in the present investigation, due to the difficulty to numerically simulate such test 

on element level. The Nevada sand used in the laboratory tests is a uniform fine sand with 

uniformity coefficient Cu = 2, mean grain size D50 = 0.17mm, specific gravity 2.67, maximum 

and minimum void ratio 0.887 and 0.511 respectively, corresponding exactly to the material 

parameters considered for the calibration of NTUA-SAND constitutive model. The outcome 

of the work by Kutter & Chen (1997) is presented in Figure B-34, in which peak mobilized 

friction angle is plotted as a function of the initial mean normal pressure p (kPa).  

In a subsequent publication, Chen & Kutter (2009) comment on the prior test results and 

provide representative friction angle estimates. Namely, for the compression tests the q/p’ 

ratio approaches a maximum value of about 1.45 (φpeak = 36ο) for undrained loading and 

ranges from 1.7 to 2.1 for drained loading conditions, that being translated to friction angle 

ranging from φpeak = 41.5 to 51o, providing an average friction angle of about 44 degrees. For 

undrained extension the q/p’ ratio approaches a maximum value of about -0.9 (φpeak = 32ο), 

while for drained conditions the (q/p’)max. ratio ranges from 1 to 1.1, corresponding to 

friction angle values from 36.8 – 42.3, with 40o being the suggested average value. The 

particular results for initial consolidation pressures up to 100kPa – since the numerical 
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investigation referred to ς’vo = 10, 50, & 100kPa - are included in the evaluation of the 

constitutive model’s efficiency in the correct prediction of the mobilized peak friction angle.  

  

 
Figure B-34: Peak friction angle of Nevada sand for Dr = 70 ± 7% (Kutterand Chen, 1997). 

 

B.4 Evaluation of the NTUA-SAND model performance 

TX Compression.-  

 

Figure B-35 summarizes the numerical and empirical predictions for the case of Isotropic TX 

Compression loading conditions. Apparently, the NTUA-SAND constitutive model performs 

satisfactorily within the range of loose to medium dense sands and predicts friction angle 

values, which lie at the lower boundary of the presented empirical relations. In the opposite, 

for values of relative density greater than Dr=60%, the peak mobilized friction angle is rather 

underestimated.  
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Namely, for loose and medium dense sands (Dr <60%) the NTUA-SAND predictions lie within 

the proposed range by Osaki – Dunham, while a much better agreement is noticed with the 

Peck-Thornburn (1974) curve. With increasing relative density, (Dr>60%) the prior acceptable 

agreement is not preserved and discrepancies are observed both under undrained and 

drained conditions. The Kutter & Chen (1997) laboratory results for Nevada sand are also 

included in the comparative evaluation, represented in the black dots, and refer to initial 

mean normal pressure p=50 – 100kPa. Note that there may be in good agreement with the 

numerical predictions for undrained loading conditions (with only 2 degrees difference), 

nevertheless, for drained loading conditions the laboratory results indicate a much higher 

friction angle value, which agrees with the empirical correlation by Terzaghi-Peck & 

DeMello. In both drainage conditions, Schmertmann’s predictions lie consistently higher that 

the model’s predictions, while there is little agreement with the Terzaghi-Peck-DeMello 

empirical correlation within a narrow relative density range, i.e. Dr = 30-40%.  

TX-Extension.- Figure B-36 summarizes the numerical and empirical predictions for the case 

of Isotropic TX Extension loading conditions. The Kutter & Chen (1997) laboratory results for 

Nevada sand are also included in the comparative evaluation, represented in the black dots, 

and refer to initial mean normal pressure p=50–100kPa.  

Under undrained loading conditions, the prior satisfactory performance of NTUA-SAND is 

repeated for relative density values of up to Dr=70%, since the numerical predictions plot 

between the Osaki-Dunham and Peck & Thornburn (1974) results. For higher values of 

relative density friction angle is underestimated and lies outside the area defined by the 

empirical results. Also, the Kutter & Chen (1997) laboratory results agree quite well with the 

NTUA-SAND predictions.  

For Drained TX Extension, the constitutive model’s predictions appear slightly improved and 

in very good agreement with most of the empirical predictions, especially Peck & Thornburn 

(1974), throughout the examined range of relative densities. The Kutter & Chen (1997) 

experimental results render φ values well above the numerical predictions ranging from 39 

to 44 degrees for consolidation stresses from 50 -100kPa, as opposed to numerical 

predictions of 36 – 38 degrees, for the same relative density.  

Simple Shear.- Figure B-37 summarizes the numerical and empirical predictions for the case 

of Simple Shear loading. Kutter & Chen (1997) conducted only TX Compression & Extension 

tests; hence no experimentally derived φ values are available. Under simple shear 

conditions, the NTUA-SAND model renders significantly improved φ values for the entire 
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examined range of relative densities and initial consolidation stresses. Particularly for 

Undrained conditions, the numerical results agree with Schmertmann’s predictions (for 

uniform medium fine/well-graded fine sand) independently of initial consolidation stress 

level. Additionally, the numerical predictions agree with the Terzaghi – Peck – DeMello 

curves, within a narrow range of relative densities, i.e. Dr=40–50%. Accordingly, the above 

satisfactory performance of the constitutive model is preserved for drained conditions with 

minor deviations.  
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Figure B-35: Friction angle predicted from empirical relations and numerical results for TX 
Compression loading under Undrained and Drained conditions. 
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Figure B-36: Friction angle predicted from empirical relations and numerical results for TX 

Extension loading under Undrained and Drained conditions. 
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Figure B-37: Friction angle predicted from empirical relations and numerical results for 

Simple Shear loading under Undrained and Drained conditions. 
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B.5 Recalibration process of NTUA-SAND constitutive model 

The low values of friction angle predicted by the NTUA-SAND constitutive model, particularly 

for relative density values greater than Dr=60% and isotropic loading, were attributed to the 

size of the bounding surface, originally controlled by the kb
c model parameter. In the original 

model configuration, Papadimitriou et al. (2002) were based on triaxial compression tests on 

Nevada sand (Arulmoli et al., 1992), in order to quantify the kb
c model parameter, which was 

finally set equal to 1.45. The particular value provided the best fit to the experimentally 

derived correlation between ηmax and the initial state parameter ψο (for given po and Dr). 

Note that the particular parameter essentially expresses the effect of the state parameter ψ 

on the peak stress ratio (ηmax = q/p’) by controlling the size of the bounding surface as seen 

in Equation B-1. 

In the above context, two similar constitutive models were also examined, in terms of the 

considered mathematical formulation of their bounding surface, namely the SANISAND 

model (Taiebat & Dafalias, 2008) and the model proposed by Loukidis & Salgado (2009). The 

particular models, which are briefly described in the following paragraph, have also been 

developed in the framework of critical state soil mechanics and bounding surface plasticity 

and therefore are directly comparable to the NTUA-SAND constitutive model. 

SANISAND (Taiebat & Dafalias, 2008).- The particular constitutive model consists of a closed 

yield surface as well as three more surfaces, namely, the critical state, the dilatancy and the 

bounding surfaces, as presented in Figure B-38. Similarly to the NTUA-SAND model, the 

three surfaces appear as open wedges in the triaxial p-q space and their shape is described 

by the slope ac
c,b,d for triaxial compression. The slope of the bounding surface in compression 

(αb
c) is expressed as a function of the ac

c, related to the position of the CSL, and the ever-

current value of the state parameter ψ, through an exponential relationship, as seen in 

Equation B.10. The equivalent expressions for extension conditions are described through 

the well-known parameter c, expressing the extension to compression ratio. 

exp( )
b c b

c c
                                                               B.10 

SANISAND constitutive model is calibrated for Toyoura and Sacramento river sand and the 

necessary model parameters for the application of Equation B.10 are provided in the 

following Table B-2. 
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Table B-2: Parameters for the mathematical expression of the B.S. in compression for 
the SANISAND model.  

Parameter Symbol Toyoura sand Sacramento river sand 

CSL ac
c 1.2 1.3 

Kinematic hardening ηb 1.25 1.3 

 

 
Figure B-38: Schematic representation of the SANISAND model surfaces in triaxial space. 

 

Loukidis & Salgado (2009).- This constitutive model is also formulated considering an 

exponential form for the locus of the Bounding surface, which is described through Equation 

B-11:  

exp( )
b c b

c c c
M M k                                                       B-11 

It has been calibrated for Toyoura and Ottawa clean sands and also for Ottawa sand with 5% 

and 10% silt. For the application of Equation B-11 the required parameters are summarized 

in Table B-3 for each one of the examined sand materials. 

 

Table B-3: Parameters for the mathematical expression of the bounding surface in      
compression for the Loukidis & Salgado (2009) model. 

 

Parameter 
symbol 

Parameter value 

Toyoura 
(dry 

deposited) 

Toyoura 
(moist 

tamped) 

Ottawa 
CS 

Ottawa 5% 
silt 

Ottawa 
10% silt 

CSL Mc
c 1.27 1.27 1.21 1.24 1.31 

Bounding 
surface 

kc
b 1.5 1.1 1.9 1.7 1.6 
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Also, Table B-4 summarizes basic characteristics for the sand materials used for the 

parameter calibration of the abovementioned constitutive models, thus rendering them 

comparable to the NTUA-SAND model.  

 

Table B-4: Soil properties for the different sand materials used for the calibration of 
NTUA-SAND, SANISAND & Loukidis-Salgado constitutive models. 

Material emax emin D50 (mm) Reference 

Nevada 0.887 0.511 0.10 Arulmoli et al. (1992) 

Toyoura 0.98 0.60 0.16-0.20 Loukidis (2009) 

Sacramento river 1.03 0.61 D60 = 0.22 Lee & Seed (1967) 

Ottawa clean sand 0.78 0.48 0.39 Murthy et al. (2007) 

 

Recalibration of NTUA-SAND.- According to the Authors, in the previous constitutive 

models, ηb and kc
b model parameters correspond to the best fit to the experimental TX 

Compression test results between the maximum shear stress ratio ηmax and the state 

parameter ψ at failure, rather than the initial ψο as considered in NTUA-SAND original 

calibration. When performing the particular task for the VELACS experimental TX 

Compression results (Arulmoli et al.,1992), as presented in Figure B-39, it appears 

reasonable to adopt a kb
c value up to 2 for the NTUA-SAND constitutive model, as opposed 

to the 1.45, which was initially considered. Also, when comparing Equations B.1, B.10 and 

B.11 in terms of ηmax versus ψ, as illustrated in Figure B-40 a value of 2 appears to agree 

satisfactorily well with the other constitutive models within the range of interest, i.e. for 

negative values of ψ.  
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Figure B-39: Recalibration of the kb

c parameter for the NTUA-SAND model. 

 

 
Figure B-40: ηmax versus ψ state parameter for NTUA-SAND, SANISAND and Loukidis & 

Salgado constitutive models.  

 

Setting kb
c equal to 2, resulted in the enlargement of the bounding surface and consequently 

the stiffer behavior of the constitutive model under monotonic loading. Nevertheless, the 

ultimate purpose was to maintain the particular benefit, while leaving the remaining aspects 

of monotonic response intact. In parallel, another primary concern revolved around the 

maintenance of the original cyclic behavior of the model and the associated resistance to 

liquefaction, which increased after the modification of the bounding surface. The above 

goals were accomplished through a trial and error procedure and involved the obligatory 

modification of two extra model parameters, namely the dilatancy constant Ao and the 

plastic modulus constant ho, as described by Andrianopoulos et al. (2010). The original and 

modified values of the model parameters are summarized in Table B-5. Subsequently, the 

 

kc
b = 2.0

kc
b = 1.45

Mc
c = 1.25

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

ψ

1

1.25

1.5

1.75

2

η
m

a
x

NTUA-SAND

SANISAND-Sacramento sand

SANISAND-Toyoura sand

L&S (2009)-Toyoura dry sand

L&S (2009)-Toyoura moist sand

L&S (2009)-Ottawa Clean Sand
Mc

c = 1.25

2.0

kb
c=1.45
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modified NTUA-SAND constitutive model was extensively examined under monotonic and 

cyclic loading conditions, in order to obtain a detailed representation of its behavior. 

 

Table B-5: Initially proposed and modified values of NTUA-SAND model parameters. 

Parameter Physical meaning Old value Modified value 

kc,
b Effect of ψ on peak deviatoric stress ratio in TC 1.45 2.00 

Ao Dilatancy constant 0.8 0.65 

ho Plastic modulus constant 15,000 7,500 

 

Monotonic element level tests were performed aiming at verifying that an increased shear 

strength level was obtained, along with preserving a compatible strain behavior to the initial 

calibration. Figure B-41 through B-49, summarize typical results for the three types of 

element level tests, namely TX Compression, Extension and Direct Simple Shear (considering 

Ko=0.5 conditions) under drained and undrained loading conditions. The presented typical 

results concern an initial consolidation stress of 80kPa and three values of relative densities, 

namely 40, 60 and 90%.  

Cyclic Triaxial - CTX and Cyclic Simple Shear - CSS element level, strain controlled tests were 

executed under three distinct initial stress conditions i.e. 40, 80 and 160kPa, and three 

values of relative densities, 40, 60 and 90%. The particular series of element level tests 

aimed at examining the response of the modified model under cyclic conditions and 

obtaining a compatible liquefaction resistance behavior to the original model response. 

Figure B-50 and B-51, summarize the resistance to liquefaction with regard to the number of 

cycles N, for the two types of tests and the three examined values of relative densities. For 

comparison purposes, the original model predictions are also plotted in the particular 

figures, along with the VELACS experimental results (Arulmoli et al., 1992) which were used 

for the original calibration of the constitutive model.  

Shear Strength Predictions.- Having established higher shear strength levels with a 

compatible cyclic response to the initial NTUA-SAND model, peak friction angle values were 

re-evaluated for a range of relative densities 40÷90% and three different initial consolidation 

stress levels, namely 40, 80 and 160kPa. Figure B-52, summarizes the model predictions for 

Triaxial Compression loading conditions under drained and undrained conditions. The black 

solid lines correspond to the original calibration (Papadimitriou 2002), while the dotted gray 

lines denote the improved predictions. Figure B-53 & B-54, present the corresponding 

results for Triaxial Extension and Direct Simple Shear loading conditions.  
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Figure B-41: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-42: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-43: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-44: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-45: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-46: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-47: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-48: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-49: Typical results for the original and recalibrated NTUA-SAND model. 
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Figure B-50: Liquefaction resistance curves for the re-calibrated NTUA-SAND model for 
CSS  test conditions. 



Appendix B: Mobilized Friction Angle in the NTUA-SAND Constitutive Model 

 

Page |B- 58  
 

 

Figure B-51: Liquefaction resistance curves for the re-calibrated NTUA-SAND model for 
CTX  test conditions. 
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Figure B-52: Initial (dashed gray lines) and new (solid black lines) predictions of friction 
angle φ as a function of relative density Dr(%) for Triaxial Compression test 
simulations. 
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Figure B-53: Initial (dashed gray lines) and new (solid black lines) predictions of friction 
angle φ as a function of relative density Dr(%) for Triaxial Extenstion test 
simulations. 
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Figure B-54: Initial (dashed gray lines) and new (solid black lines) predictions of friction 
angle φ as a function of relative density Dr(%) for Simple Shear test 
simulations 
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C. Overview of 1-D numerical analyses -
Effect of replacement ratio on excess pore 

pressure built-up 
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Figure C-1: ru time histories within the improved crust for Dro=35%, Himp.=4m and all αs. 

 

Figure C-2: ru time histories within the improved crust for Dro=35%, Himp.=6m and all αs. 

 

Figure C-3: ru time histories within the improved crust for Dro=35%, Himp.=8m and all αs. 
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Figure C-4: ru time histories within the improved crust for Dro=40%, Himp.=4m and all αs. 

 

Figure C-5: ru time histories within the improved crust for Dro=40%, Himp.=6m and all αs.  

 

Figure C-6: ru time histories within the improved crust for Dro=40%, Himp.=8m and all αs.  
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Figure C-7: ru time histories within the improved crust for Dro=45%, Himp.=4m and all αs.  

 

Figure C-8: ru time histories within the improved crust for Dro=45%, Himp.=6m and all αs.  

 

Figure C-9: ru time histories within the improved crust for Dro=45%, Himp.=8m and all αs.  
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Figure C-10: ru time histories within the improved crust for Dro=55%, Himp.=4m and all αs.  

 

Figure C-11: ru time histories within the improved crust for Dro=55%, Himp.=6m and all αs.  

 

Figure C-12: ru time histories within the improved crust for Dro=55%, Himp.=8m and all αs.  
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Figure C-13: ru time histories within the improved crust for Dro=65%, Himp.=4m and all αs.  

 

Figure C-14: ru time histories within the improved crust for Dro=65%, Himp.=6m and all αs.  

 

Figure C-15: ru time histories within the improved crust Dro=65%, Himp.=8m and all αs.  
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Figure C-16: ru time histories within the improved crust for Dro=70%, Himp.=4m and all αs.  

 

Figure C-17: ru time histories within the improved crust for Dro=70%, Himp.=6m and all αs.  

 

Figure C-18: ru time histories within the improved crust for Dro=70%, Himp.=8m and all αs. 
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Appendix C: Overview of 1-D analyses – Effect of replacement ratio on excess pore pressure built-up 
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