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                             Abstract  
 

Cellulose, the most abundant polysaccharide on Earth, is a remarkable pure organic 

polymeric component of plant material, consisting solely of 1,4-linked β-D-

glucopyranose units held together in a giant straight chain molecule. In nature, a 

variety of microorganisms are known for producing a set of enzymes, referred to as 

cellulases, that are capable of degrading this insoluble polymer to soluble sugars, 

primarily cellobiose and glucose. The application and interest in cellulases has 

particularly increased in recent years with the utilization of the enzymes in the 

production of bioethanol from lignocelluloses. Myceliophthora thermophila (synonym 

Sporotrichum thermophile) is a thermophilic filamentous fungus, isolated from soil in 

eastern Russia, classified as an ascomycete, and constitutes an exceptionally powerful 

cellulolytic organism; it synthesizes a complete set of enzymes necessary for the 

breakdown of cellulose. The genome of this fungus has been recently sequenced and 

annotated, allowing systematic examination and identification of enzymes required for 

the decomposition of lignocellulosic biomass. In this thesis, the genes encoding five 

cellulases, including two endoglucanases belonging to glycoside hydrolase families GH5 

and GH7, two cellobiohydrolases belonging to the families GH6 and GH7 and one β-

glycosidase belonging to the family GH3, were cloned and expressed in methylotrophic 

yeast P. pastoris, and their properties were investigated. In addition, the enzymes were 

produced in high cell density cultures, in the controlled environment of fermenters. 

The protein’s overexpression in a host suitable for industrial production is important in 

order to achieve low-cost and highly efficient production. The enzymes were purified 

to their homogeneity and were used for the development of tailor-made enzyme 

mixtures targeted towards particular feedstocks, including agricultural and forest 

residues, where they were tested for their ability to maximize hydrolysis yields.  
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                  Περίληψη 
 

Η κυτταρίνη αποτελεί το αφθονότερο οργανικό πολυμερές που συναντάται στη φύση, 

γεγονός που την καθιστά κατάλληλη ως φτηνά αξιοποιήσιμη πηγή άνθρακα και πρώτη 

ύλη για ποικίλες βιοτεχνολογικές εφαρμογές. Ως εκ τούτου, η απομόνωση νέων 

ενζύμων με δράση που στοχεύει στην αποικοδόμηση ή την τροποποίηση των 

κυτταρινούχων υλικών κρίνεται απαραίτητη. Οι θερμόφιλοι οργανισμοί αποτελούν 

σημαντική πηγή κυτταρινολυτικών ενζύμων με πολλές βιοτεχνολογικές εφαρμογές, 

καθώς οι διεργασίες αυτές συνήθως απαιτούν συνθήκες υψηλής θερμοκρασίας. Ο 

Myceliophthora thermophila είναι ένας θερμόφιλος αερόβιος μύκητας, ο οποίος 

αυξάνεται με μέγιστο ρυθμό σε θερμοκρασίες 45 – 50 οC. Ο μύκητας παράγει πολλά 

θερμοσταθερά ένζυμα τα οποία έχουν απομονωθεί και χαρακτηριστεί και 

χρησιμοποιούνται στη βιομηχανία σε βιοδιεργασίες που απαιτούν υψηλές 

θερμοκρασίες. Σκοπός της παρούσας εργασίας ήταν η απομόνωση και ετερόλογη 

έκφραση πέντε γονιδίων από το γονιδίωμα του συγκεκριμένου μύκητα που 

κωδικοποιούν πρωτεΐνες που εμπλέκονται στην αποικοδόμηση της λιγνοκυτταρίνης, 

καθώς και η παραγωγή και ο καταλυτικός χαρακτηρισμός του ανασυνδυασμένων 

ενζύμων. Οι νουκλεοτιδικές αλληλουχίες δύο ενδογλουκανασών των οικογενειών GH5 

και GH7, δυο κελλοβιοϋδρολασών των οικογενειών GH6 και GH7 και μιας β-

γλυκοσιδάσης της οικογένειας GH3 ανασύρθηκαν από τη βάση δεδομένων Genome 

Portal, ενισχύθηκαν, κλωνοποιήθηκαν στον κατάλληλο φορέα και χρησιμοποιήθηκαν 

για το μετασχηματισμό και την ετερόλογη έκφραση στο ζυμομύκητα P. pastoris. 

Ακολούθησε καθαρισμός των παραγόμενων πρωτεϊνών, τα οποία εν συνεχεία 

χρησιμοποιήθηκαν για τη δημιουργία ενζυμικών μιγμάτων και δοκιμάστηκαν για την 

υδρολυτική τους ικανότητα έναντι φυσικών υποστρωμάτων αγροτικής και δασικής 

προέλευσης.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of contents         

 

CHAPTER 1: Introduction                     (1) 

 

CHAPTER 2                      (7) 

2.1 Cell-wall degrading enzymes                      (7) 

2.1.1 Components and Morphology of the cell wall                   (7) 

2.1.2. Cell-wall degrading enzymes                   (11) 

2.2 Myceliophthora thermophila as a thermophilic fungus                  (25) 

2.3 Pichia pastoris as a methylotrophic yeast                   (30) 

2.3.1 Methanol and Glycerol utilization Pathway at Pichia pastoris                 (32) 

2.3.2. Pichia pastoris expression system                   (35) 

2.3.3. Fermentation of Pichia pastoris using the PAOX1                       (43) 

 

CHAPTER 3: Materials and Methods                   (51) 

 

CHAPTER 4: The lignocellulolytic system of Myceliophthora thermophila                         (71)  

4.1. The Cellulolytic system of M. thermophila                    (72) 

4.2. The Hemicellulolytic system of M. thermophila                          (74) 

4.3. Auxiliary enzymes                     (81) 

4.4. Lignocellulosic potential—statistic                   (83) 

4.5. Conclusions                      (85) 

 

CHAPTER 5: Cloning, expression and characterization of EG7 endoglucanase  

from Myceliophthora thermophila               (103)  

5.1. Identification and cloning of MtEG7a                 (104) 

5.2. Transformation of P. pastoris and screening of recombinant transformants              (106) 

5.3. Production and purification of recombinant MtEG7a – Enzyme assay              (108) 



5.4. Enzyme characterization (I) – Temperature and pH optimal activity / stability      (111) 

5.5. Enzyme characterization (II) – Adsorption on microcrystalline cellulose              (112) 

5.6. Enzyme characterization (III) – Substrate specificity                (113) 

5.7. Viscosity measurements                   (116) 

5.8. Scanning electron microscopy                  (119) 

5.9. Conclusions - Discussion                  (120) 

 

CHAPTER 6: Cloning, expression and characterization of BGL3 β-glucosidase  

from Myceliophthora thermophila               (127) 

6.1. Identification and cloning of MtBgl3a                 (128) 

6.2. Transformation of P. pastoris and screening of recombinant transformants              (131) 

6.3. Production and purification of recombinant MtBgl3 – Enzyme assay              (133) 

6.4. Enzyme characterization – Specificity, T/pH optimal activity/stability              (135) 

6.5. Determination of MtBgl3a kinetic parameters – inhibition studies              (139) 

6.6. Effect of alcohols and transglycosylation activity                (141) 

6.7. Conclusions / Discussion                  (144) 

 

CHAPTER 7: Lignocellulolytic enzymes from Myceliophthora thermophila  

7.1. Cloning, expression and characterization of Endoglucanase MtEG5              (149) 

 7.1.1. Identification and cloning of MtEG5                (151) 

7.1.2. Expression in high-cell density cultures and purification of MtEG5       (155) 

7.1.3. Characterization of purified MtEG5                (160) 

7.1.4 Conclusions - Discussion                 (161) 

7.2. Cloning, expression and characterization of Cellobiohydrolase MtCBH6              (162) 

7.2.1. Identification and cloning of MtCBH6                (162) 

7.3.2. Expression in high-cell density cultures and purification of MtCBH6    (166) 

7.2.3. Characterization of purified MtCBH6                   (169) 

7.2.4 Conclusions - Discussion                 (170) 

 



7.3. Cloning, expression and characterization of Cellobiohydrolase MtCBH7              (172) 

7.3.1. Identification and cloning of MtCBH7                (172) 

7.3.2. Expression in shake flask cultures and purification of MtCBH7             (176) 

7.3.3. Characterization of purified MtCBH7                   (179) 

7.3.4 Conclusions - Discussion                 (180) 

7.4. Production of MtGH61 in fermentor                 (181) 

7.5. Production and purification of enzymes with xylanase activity                (184) 

7.5.1. Purification of xylanases from M. thermophila grown on corn cob           (185) 

7.5.2. Purification of xylanases from M. thermophila grown on wheat straw     (185) 

 

CHAPTER 8: Optimization of tailor-made enzyme cocktail for deconstruction  

          of agricultural and forest residues                           (193) 

8.1. Hydrolysis of phosphoric acid swollen cellulose (PASC)                 (199) 

8.2. Hydrolysis of hydrothermally pretreated wheat straw                (204) 

8.3. Hydrolysis of hydrothermally pretreated with sulphuric acid birch              (209) 

8.4. Hydrolysis of hydrothermally pretreated with sulphuric acid spruce              (214) 

8.5. Hydrolysis of hydrothermally pretreated with sulphuric acid pine              (219) 

8.6. The non-ionic surfactant effect in enzymatic hydrolysis               (223) 

8.7. Conclusions                    (227) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1  
 
Introduction  

 

Cellulose, the most abundant polysaccharide on Earth, is a remarkable pure 

organic polymeric component of plant material, consisting solely of 1,4-linked β-D-

glucopyranose units held together in a giant straight chain molecule. Cellulose has 

long been harvested as commercial fibers from the seed hairs of cotton (over 94% 

cellulose), bast fibers (60–80% cellulose) from flax, hemp, jute and ramie or wood (40–

55% cellulose), which is a common building material or is used as a source for purified 

cellulose. Wood represents a composite material with cellulose as a major part 

combined in excellent form with lignin and hemicelluloses, creating a unique high-

strength and durable material, and recently came again into focus as a renewable 

energy resource. In nature, a variety of microorganisms are known for producing a set 

of enzymes capable of degrading this insoluble polymer to soluble sugars, primarily 

cellobiose and glucose. Enzymes involved in these processes are called cellulases and 

are consisting of at least three classes of enzymes, namely, endoglucanases (EG), 

cellobiohydrolases (CBH) and β-glucosidases (BG). Cellulases can be used in the variety of 

applications within food, vine, animal feed, textile and pulp and paper industry (Bhat, 

2000). The application and interest in cellulases has particularly increased in recent 

years with the utilization of the enzymes in the production of bioethanol from 

lignocellulose (Sun and Cheng, 2002). It has been proposed that agricultural wastes, 

such as wheat straw, and forest residues may be economically converted to bioethanol.  

Bioethanol is derived from alcoholic fermentation of sucrose or simple sugars 

that are produced from biomass and can be used as a petrol additive/substitute. When 

blended at low concentrations (5%) with petrol (gasoline) or diesel for use in today’s 

vehicles, under the EU quality standard EN 228, no engine modification is required; it 

is covered by vehicle warranties and considered to be a sustainable transportation fuel. 

Alternatively, with engine modification and adopted vehicles, bioethanol can be used at 

higher levels, for example, E85 (85% bioethanol). The main motivation for investments 

in research and process development concerning bioethanol production is 

environmental concern related to global warming. The focus has, in particular, been 
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turned towards the reduction of emission of greenhouse gases (GHG), such as carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as VOC (volatile 

organic compounds) and other particles arising from fossil fuel combustion and land-

use change as a result of human activities.  

According to the Renewable Energy Directive (RED) 2003/30/EC of the 

European Parliament, the European Union (EU) creates a Community framework to 

promote the use of biofuels. The ultimate goal is to reduce dependency on the use of 

oil-based fuels, a significant cause for concern in terms of the environment and security 

of supply. The Directive sets a minimum percentage of biofuels (10%) to replace diesel 

or petrol for transport purposes in each Member State and proposes an action plan 

aimed at increasing the share of biofuels to more than 20 % of European petrol and 

diesel consumption by 2020. According to analyses of the Member States’ National 

Renewable Energy Action Plans (NREAPs), biomass will make up 19 per cent of total 

renewable electricity in the year 2020, 78 per cent of total renewable heating and 

cooling in 2020 and 89 per cent of total renewable energy in transport. Altogether, 

bioenergy is expected to contribute over 50 per cent of total renewable energy use.  

Sustainable bioethanol production would decrease the dependency on the 

traditional, natural oil, reserves, which can due to their restricted geographical 

localization cause political tension and economic instability. Under EU proposal 0547 

from November 7, 2001, a series of goals were set for member states to introduce 

biofuels for diesel and gasoline. By 2005, 2 % of transport fuel should be accounted for 

by biofuels; by 2020, the goal is 20 %. There are several reasons for biofuels to be 

considered as relevant technologies by both developing and industrialized countries. 

These include energy security, environmental concerns, foreign exchange savings, and 

socioeconomic issues related to the rural sector (Demirbas 2007). 

 

State of the art in biofuel production and current study 

 

Currently, transportation fuels based on biomass (i.e. biofuels) are identified as 

1st and 2nd generation biofuels. First-generation biofuels are produced from sugar, 

starch, vegetable oil or animal fats using conventional technologies. The basic 

feedstocks are often seeds and grains such as wheat, corn and rapeseed. The most 
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common first generation biofuels are bioethanol, biodiesel and starch-derived biogas, 

but also straight vegetable oils, biomethanol and bioethers may be included in this 

category (Cherubini and Jungmeier 2010). The main advantages of first generation 

biofuels are due to the high sugar or oil content of the raw materials and their easy 

conversion into biofuel. Nevertheless, concerns exist about the sourcing of feedstocks, 

including the impact it may have on biodiversity and land use, and competition with 

food crops (Naik et al., 2010). These limitations are expected to be partially overcome 

by developing the so-called 2nd generation biofuels (Cherubini et al., 2009). Second 

generation biofuels are made from non-edible feedstocks, such as waste from agriculture, 

forestry and industry and dedicated lignocellulosic crops. Contrarily to first generation 

biofuels, where the utilized fraction (grains and seeds), represents only a small portion 

of the above-ground biomass, second generation biofuels can rely on the whole plant 

for bioenergy production and they offer the opportunity for coproduction of valuable 

biofuels and value-added chemical compounds. Following this procedure will lead to 

better energy, environmental and economic performances through the development of 

so-called biorefinery concept (Kamm et al., 2006). Third-generation biofuels are fuels that 

would be produced from algal biomass, which has a very distinctive growth yield as 

compared with classical lignocellulosic biomass (Brennana and Owendea, 2010). 

Production of biofuels from algae usually relies on the lipid content of the 

microorganisms, which can be processed via transesterification to produce biodiesel, 

but still scaling-up faces challenges with several geographical and technical limitations 

associated with algal biomass production (Lee and Lavoie, 2013).  

 

Figure 1.1. Schematic presentation of the conventional biochemical platform featuring 

enzymatic hydrolysis of lignocellulosic-based material.  
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Apart from biofuels, industrial bioproducts – chemicals and materials produced 

from biomass – play a key role in the so-called “biorefinery concept” for fostering a new 

bioindustry. There is a tremendous potential to supplement and supplant the 

petroleum resources used today to manufacture billions of pounds of important 

chemical products, most of which are value-added products, such as sugar and starch 

bioproducts, oil- and lipid- based bioproducts, cellulose derivatives, fibers and plastics, 

gum and wood chemicals (Cherubini 2010; Paster et al., 2003).  

In this thesis the focus is on the second-generation biofuels technology and more 

precisely on the process of enzymatic hydrolysis of cellulose. In general terms, the 

production of bioethanol from lignocellulose involves a degradation of the polymeric 

compounds, primarily cellulose and hemicellulose, to sugars, which are then 

subsequently fermented by microorganisms to ethanol. The process can be performed 

in a number of different ways (Olsson et al., 2004). Figure 1.1 shows an example of the 

process steps used for the conversion of lignocellulosic-based waste material to 

bioethanol. The procedure involves four key steps: pretreatment of the material, 

hydrolysis, fermentation and distillation for product recovery. Pretreatment targets at 

the removal of hemicellulose and lignin parts and isolation of cellulose from the 

lignocellulosic biomass. Many processes have been considered, including classical 

pulping processes (Jin et al., 2010), steam explosion (Lavoie et al., 2010), and organosolv 

processes (Brosse et al., 2009). Isolation of cellulose is a technological challenge because 

it has to produce the highest purity of cellulose to remove most inhibitors without 

consuming too much energy or too many chemicals. The degradation of cellulose to 

glucose is accomplished in the next step, hydrolysis / saccharification. Two approaches 

are generally used for saccharification of cellulose: either enzymatic (Sun and Cheng, 

2002) or by chemical hydrolysis using acids (Chornet et al., 2010). In both cases, there 

are some limitations to the processes, such as the price of the enzymes or the high 

amount of harmful by-products that can hamper the subsequent steps. The discovery of 

new enzymes with high rates of catalytic activity that can be produced easily in large 

scale could reduce the cost. This topic is the main focus of this thesis; the production 

and mode of action of effective cellulolytic monenzymes and enzyme mixtures will be 

described in the following Chapters. After hydrolysis, sugars are produced from 

hydrolysis as reactive intermediates for subsequent fermentation to fuels and 

chemicals. Microorganisms (e.g. yeast) can ferment sugars to ethanol, which is further 
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on distillated, and mixed with gasoline to obtain blends such as E85 (a mixture of 15 % 

gasoline and 85 % ethanol).  

In Chapter 2 of this thesis, the composition of lignocellulose (plant cell wall 

polysaccharides) is introduced, and moreover, the characteristics of cellulose from plant 

materials (used in the industrial processes), and cellulose from model substrates, 

readily used in research, are discussed and compared. Cellulolytic enzymes and their 

main characteristics, as well as cooperative action between the different enzyme classes 

are presented. A brief description of the properties of the thermophilic fungi 

Myceliophthora thermophila and the heterologous expression tool organism, Pichia 

pastoris is given.  

In Chapter 4, an overview of the cellulolytic and hemicellulolytic potential of 

Myceliophthora thermophila is described regarding the degradation of plant cell wall 

material (Paper I). The genome of this fungus has been recently sequenced and 

annotated, allowing systematic examination and identification of enzymes required for 

the decomposition of lignocellulosic biomass. 

In Chapters 5-7, the successful heterologous expression and characterization of 

five genes isolated from M. thermophila’s genome is described in detail. The 

recombinant enzymes, including two endoglucanases belonging to glycoside hydrolase 

families GH5 and GH7, two cellobiohydrolases belonging to the families GH6 and 

GH7 and one β-glucosidase belonging to the family GH3, were expressed in 

methylotrophic yeast P. pastoris, and their properties were investigated. In addition, the 

enzymes were produced in high cell density cultures, in the controlled environment of 

fermenters. The enzyme’s overexpression in a host suitable for industrial production is 

important in order to achieve low-cost and highly efficient production (Papers II & 

III).  

In Chapter 8, tailor-made enzyme mixtures targeted towards particular feed 

stocks were tested for their ability to maximize hydrolysis yields. Four “core” 

cellulases, in the presence of other three “accessory” enzymes, all isolated from M. 

thermophila, were tested against agricultural and forest residues. Synergistic 

interactions among different enzymes were determined through various mixture 

optimization experiments.  
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CHAPTER 2  

2.1 Cell-wall degrading enzymes 

2.1.1 Components and Morphology of the cell wall 

Even though the relative amounts and structures of the cell-wall polysaccharides 

may vary greatly among species and from tissue to tissue within a plant., the 

fundamental mechanisms of interaction between these polysaccharides are highly 

similar (Carpita and McCann, 2000). They are the most abundant organic compounds 

found in nature and are conventionally divided into three groups: cellulose, 

hemicellulose (e.g., xyloglucans, xylans, and mannans), and pectins. Morphologically, 

the cell wall can be distinguished in three different parts (Figure 2.1). The middle 

lamella is synthesized as the first layer.  

 

Figure 2.1: Model of the plant cell wall. (left) Schematic view on a single cell 

surrounded by the primary cell wall; the middle lamella of the cell walls are thought to 

connect and interlink neighboring cells (McCann et al., 1992). (right) Simple model of 

the primary cell wall of flowering plants (Carpita and Gibeaut, 1993). Cellulose 

microfibrils (black horizontal rods) are linked by hemicellulose chains (dotted black 

lines). The cellulose-hemicellulose network is embedded in a matrix of pectins (gray 

dotted lines). 

 

The cell wall is pectin-rich, has a high water-holding capacity and is a deposit 

for sugars, water and ions (Reiter, 2002). The middle lamella is very flexible allowing 
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the cells to quickly expand (Verhertbruggen and Knox, 2006). It is the outermost layer 

of the cell wall and is, in later stages of development, responsible for cell-cell signaling 

and pathogen-attack response mechanisms (Cosgrove, 2005). After the middle lamella 

the primary plant cell wall is synthesized. It mainly consists of celluloses and 

hemicelluloses forming a more rigid but still flexible network (McNeil et al., 1984). 

When cell growth ceases the secondary cell wall is formed. The hemicellulose-cellulose 

network is fortified by the secretion and polymerization of phenols, leading to the 

formation of the stiff, extremely robust lignocellulose network. 

 

Cellulose 

Cellulose is a homopolymer of β-1,4-linked glucose units that is synthesized at 

the plasma membrane by the cellulase-synthase complex. The ascending chains are 

released apoplastically, where they group to cellulose microfibrils (Mutwil et al., 2008). 

Glucose chains are tightly bound to each other by van der Waals forces and hydrogen 

bonds into crystalline structures called elementary fibril (consisting of around 40 

glucan chains), about 40 Å wide, 30 Å thick and 100 Å long (Bidlack et al., 1992). 

Aggregates of elementary fibrils, of essentially an infinite length, and a width of 

approximately 250 Å, are called microfibrils (Fan, et al., 1982).These microfibrils are 

bundles of 36 cellulose chains of approximately 200 nm length, that provide mechanical 

strength to the cell wall. It consists of amorphous regions of loosely arranged fibers 

and crystalline regions that widely persist enzymatic degradation. On average, 

cellulose constitutes 10–30 w/w% of the total cell wall (McNeil et al., 1984).  

Regions within the microfibrils with high order are termed crystalline, and less 

ordered regions are termed amorphous. The term “amorphous” cellulose is widely 

accepted even though it can be contradictory. Amorphous material is defined as 

material which is formless or lacks definite shape, however, amorphous cellulose 

probably still possesses some degree of order (O’Sullivan, 1997). Larsson, et al. (1997), 

investigated molecular ordering of cellulose and reported that most of the amorphous 

regions correspond to the chains that are located at the surface, whereas crystalline 

components occupy the core of the microfibril (Figure 2.3.A). A different molecular 

architecture of crystalline and amorphous cellulose is suggested by Moiser et al. (1999) 

and Tenkanen et al. (2003). They describe cellulose as being semi-crystalline, with 
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regions of high crystallinity averaging approximately 200 glucose residues in length 

separated by amorphous regions, as illustrated at Figure 2.3.B. 

 

Figure 2.2: Chemical structure of cellulose. Linear β-1,4-linked glucose is the chemical 

repeating unit, while the structural repeat is β-cellobiose, and consequently each 

glucoside is oriented at 180° in respect to its neighbors (Hilden and Johansson, 2004).  

 

 

 
 

Figure 2.3: Two different views on how crystalline and amorphous cellulose is 

distributed within the microfibril. A: Crystalline cellulose is in the core of the 

microfibril, and it is surrounded by amorphous substrate. B: Crystalline and amorphous 

regions are being repeated in horizontal dimension. 

 

Cellulose exists in seven crystal structures (polymorphs) designated as celluloses 

Iα, Iβ, II, IIII, IIIII, IVI, and IVII (O’Sullivan, 1997). In nature, cellulose Iα and Iβ are 

the most abundant crystal forms. Iα polymorph is meta-stabile, and thus, more reactive 
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than Iβ. The co-existence of two polymorphs of native cellulose, which have different 

stabilities, may imply that the part of the Iα polymorph within the microfibril is most 

prone to the enzymatic attack. 

 

Hemicelluloses 

Hemicelluloses are a heterogenic group of polysaccharides that share a β-1,4-

linked backbone as a structural motif (Scheller and Ulvskov, 2010). The backbone can 

be composed of glucose (in xyloglucans and β-glucans), xylose (in xylans, 

arabinoxylans and glucuronoarabinoxylans), mannose (in mannans and 

galactomannans) or mannose and glucose (in galactoglucomannans). In contrast to 

cellulose, the backbone of hemicelluloses is usually substituted. In some plants, xylans 

can be substituted with arabinose, xylose, glucuronic acid, acetic acid, coumaric acid, 

ferulic acid or more complex oligomers of these substituents. Because of their cellulose-

like backbone structure, hemicelluloses, like xyloglucan and xylan, can bind non-

covalently to cellulose (Levy et al., 1997). 

 

Figure 2.4. Schematic structure of hemicellulose. 

 

 

Lignin 

Lignin is probably the most complex and the least characterized molecular 

group among the wood components. Its primary purpose is to give strength and water 

permeability to plants, but also to protect plants from pathogen infections. Lignin is 
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composed of p-hydroxyphenoyl, guaiacyl and/or syringyl monomers linked in three 

dimensions. These three monomers differ in the methoxylation pattern of the aromatic 

ring (Douglas, 1996). As it is the case for hemicellulose, the composition and amount of 

lignin present in the woody material varies according to species, cell type and stage of 

tissue development. Lignin accounts for approximately 20-35 % of wood structure (Fan 

et al., 1982). 

 

2.1.2. Cell-wall degrading enzymes 

Types of cell-wall degrading enzymes 

Microorganisms like bacteria and fungi are a rich source of cell-wall degrading 

enzymes. Generally, cell-wall degradation requires two types of enzymes; exo-enzymes 

remove single sugars or small oligomers from the ends of a polymer and hydrolyze 

oligomers down to monomers, whereas endo-enzymes cleave linkages within a polymer 

backbone. Endo-action leads to a rapid decrease in average molecular mass of the 

substrate and to the formation of new ends that may be attacked by exo-enzymes. Most 

enzymes are rather substrate-specific, which means that each cell-wall polysaccharide 

requires a specific set of glucosidases for its degradation. In addition to glucosidases, 

different esterases are required for the removal of non-sugar substituents, like 

methylesters, acetyl groups and feruloyl groups. Auxiliary enzymes, like the recently 

identified lytic-polysaccharide monooxygenases, have been shown to significantly 

increase the accessibility of cellulases to cellulose by the oxidative cleave/disruption of 

crystalline cellulose region (Quinlan et al., 2011; Phillips et al., 2011).  

Classification of cell-wall degrading enzymes 

Cell-wall degrading enzymes can be classified into three main classes of 

enzymes: Glycoside hydrolases (E.C. 3.2.1), Polysaccharide lyases (E.C. 4.2.2) and 

Carbohydrate esterases (E.C. 3.1.1, Webb, 1992). Hydrolases cleave the glycosidic linkage 

between two sugar moieties with the addition of one water molecule. Lyases cleave the 

glycosidic linkage by introducing a double bond. The carbohydrate esterases are a 

heterogeneous group of enzymes that contain pectin methyl esterases, pectin and 

rhamnogalacturonan acetyl esterases and hydroxycinnamic acid esterases, like ferulic 
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acid esterase. An attempt has been made to classify carbohydrate active enzymes based 

on their enzymatic cleavage mechanism and according to their amino acid sequence. 

The Carbohydrate-Active enZYme (CAZy) database, therefore, subdivides the enzyme 

classes glycosyl hydrolase (GH), glycosyl lyase and carbohydrate esterase into different 

families (Coutinho and Henrissat, 1999). The members of one family have similar 

structural motifs, but they may have different substrate specificities and modes of 

action. Analogously, enzymes with the same substrate specificities and modes of action 

may belong to different families. A very detailed data collection is provided by the 

enzyme database (BRENDA, http://www.brendaenzymes.info) that intents to 

summarize all accessible data of known enzymes (Scheer et al., 2011). 

 

Cellulose-degrading enzymes 

Cellulases are modular enzymes that are composed of independently folded, 

structurally and functionally discrete units, referred to as either domains or modules 

(Henrissat et al., 1998). Most commonly, cellulases consist of one catalytic domain (CD) 

and one carbohydrate binding module (CBM), which is usually joined to the CD by a 

relatively long (30-44 amino acids), often glycosylated, linker peptide.  

By definition, a CBM is a contiguous amino acid sequence within a carbohydrate 

active enzyme with a restrained fold and independent carbohydrate-binding activity. It 

is generally accepted that the primary role of CBM is to accommodate physical contact 

of the enzyme to the cellulose, increasing at the same time both the effective 

concentration of the enzyme, but also the time the enzyme will spend in the near 

proximity of the substrate. CBMs are currently distributed within 49 families, ranging 

from small (30-40 amino acids), family 1, peptides, to modules consisting of over 200 

residues (in families 11 and 17). All fungal CBMs (relevant for the enzymes used 

during this thesis) belong to family 1. Those peptides primarily demonstrate affinity 

for crystalline cellulose. The cellulose binding surface has been shown to be a planar 

surface with three aromatic amino acids and few conserved polar residues (Linder et al., 

1995; Mattinen et al., 1998). Such a binding specificity implies that, in perfect cellulose 

crystals, the surface area of the proposed binding site for the CBMs is very limited. 

Lehtio et al., 2003 observed fully reversible binding of family 1 CBM to crystalline 
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cellulose at 4°C. Reversibility of CBM binding to the cellulose is an important issue as 

it will promote the hydrolysis reaction to proceed from another point on the crystal, i.e. 

enzyme loss due to unproductive binding is minimized. Enzymes lacking CBM, i.e. 

only having one module (catalytic domain), have been shown to still have the ability to 

absorb to cellulose, but often with lower affinity compared to the full length enzyme 

(Karlsson et al., 2002). CD and CBM are connected by linker peptide. The linker 

sequences from different enzymes rarely share any apparent sequence homology, but 

their amino acid composition is typically rich in proline and hydroxyl amino acids 

(Gilkes et al., 1991). It has been suggested that linkers represent extended, flexible 

hinges between the two domains facilitating their independent function (Burton et al., 

1989; Bushuev et al., 1989).  

 

Figure 2.5.  Enzymatic activities associated with cellulose deconstruction. The final 

product is glucose, the main carbon source readily metabolized by fungi (de Souza, 

2013).  

Cellulose degradation is attributed to the synergistic action of three 

complementary enzyme activities: (1) endoglucanases (EGs, EC 3.2.1.4); (2) exoglucanases, 

including cellodextrinases (EC 3.2.1.74) and cellobiohydrolases (CBHs, EC 3.2.1.91 for 
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the non-reducing end acting CBHs and EC 3.2.1.176 for the reducing end acting ones) 

and (3) β-glucosidases (BGs, EC 3.2.1.21) (Lynd et al., 2002). Amorphous regions of the 

polysaccharide chain are cleaved randomly by EGs, while CBHs remove processively 

cellooligosaccharides from chain ends. The latter are the most abundant enzymes in the 

secretome of cellulolytic fungi (Jun et al., 2011; Ribeiro et al., 2012). Their main 

representatives are GH family 7 (CBH I) that attack the reducing end of a cellulose 

chain and GH family 6 (CBH II) that are specific toward the non-reducing end of the 

chain. Until very recently, CBHs were considered as the main degraders of the 

crystalline part of cellulose (Sweeney and Xu, 2012). Cellulose degradation may also 

require the presence of non-catalytic proteins, such as expansins, to make cellulose 

more accessible (amorphous) to enzymes (Cosgrove, 2000).  

EGs are widespread among GH families, with examples described for families 5–

9, 12, 44, 45, 48, 51, and 74 on the continually updated CAZy database 

(http://www.cazy.org/; Lombard et al., 2014). Most of them show optimal activity at 

neutral or acidic pH and at temperatures below 50°C (Maheshwari et al., 2000). Exo-

glucanases (or CBHs) act in a processive manner (Davies and Henrissat, 1995) and are 

classified only to two families, as referred previously. One of the important features of 

all CBHs is that they can act on microcrystalline cellulose (Terri, 1997). BGs include 

enzymes of GH1 and GH3 families that hydrolyze cellobiose and short (soluble) 

cellooligosaccharides to glucose that could subsequently fermented to ethanol; e.g., the 

hydrolysis reaction is performed in the liquid phase, rather than on the surface of the 

insoluble cellulose particles, such as EGs and CBHs. The removal of cellobiose is an 

important step of the enzymatic hydrolysis process, as it assists in reduction of the 

inhibitory effect of cellobiose on EG and CBH. BG activity has often been found to be 

rate-limiting during enzymatic hydrolysis of cellulose (Duff and Murray, 1996; Tolan 

and Foody, 1999), and due to that the commercial cellulase enzyme preparations are 

often supplemented with BG activity.  

Hemicellulose-degrading enzymes 

Hemicellulose polymers have a much more diverse structure than cellulose and 

consequently several enzymes are needed to completely degrade the polysaccharide 

into monosaccharides. Xylan that is the major component of hemicellulose in the plant 
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cell wall, is consisted of a β-D-(1,4)-linked xylopyranosyl backbone, which, depending 

on the origin, can be substituted with arabinofuranosyl, 4-0-methylglucopyranosyl, 

feruloyl and acetyl groups (Shibuya and Iwasaki, 1985). Feruloyl groups can form 

strong networks through peroxidase-catalyzed oxidative coupling forming diferuloyl 

bridges (Topakas et al., 2007). The main enzymes needed for depolymerization are 

xylanases, assisted by accessory enzymes such as β-xylosidases and different 

arabinofuranosidases making the xylan backbone more accessible (Sørgensen et al., 

2007). Other accessible enzymes that enhance xylan degradation are acetyl-

xylanesterases (Poutanen et al., 1990), ferulic acid esterases (Topakas et al., 2007), and 

α-glucuronidases (De Vries et al., 1998).  

 Figure 2.6. Enzymatic activities associated with hemicellulose deconstruction.. The 

arrows represent each enzyme active for a determined substrate (de Souza, 2013). 

 

Xyloglucan specific exo-β-1,4-glucanase (Xgl74A; EC 3.2.1.155) is classified to 

GH74 family and catalyzes the hydrolysis of (1-4)-D-glucosidic linkages in xyloglucans 

aiming in the successful removal of oligosaccharides from the chain end (Grishutin et 
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al., 2004). Xyloglucan is a major structural polysaccharide found in the primary cell 

walls of higher plants that interact with cellulose microfibrils via hydrogen bonds to 

form a structural network that is assumed to play a key role in cell wall integrity. It 

consists of a cellulose-like backbone of β-1,4-linked D-glucopyranose (D-Glcp) 

residues, which most of them are substituted at C-6 with α-d-Xylp-(1→6) residues, to 

which other saccharides may be attached (most frequently, d-Galp and l-Fucp). 

Xylan backbone is degraded by endo-xylanases and β-xylosidases. Xylanases 

(endo-1,4-β-xylanases, EC 3.2.1.8) are enzymes hydrolyzing β-1,4-glycosidic linkages 

in the backbone of xylans, while most of them belong to GH family 10 or 11 based on 

amino acid similarities and structural features (Henrissat, 1991). GH10 xylanases 

exhibit less substrate specificity than GH11 enzymes and can hydrolyze different types 

of decorated xylans, while GH11 xylanases are highly specific and do not tolerate 

many decorations on the xylan backbone (Biely et al., 1997). β-Xylosidases (EC 

3.2.1.37) hydrolyze the soluble xylo-oligosaccharides and xylobiose from the non-

reducing end liberating xylose, produced by the activity of xylanases. These enzymes 

play an important role in xylan degradation by relieving the end product inhibition of 

endoxylanases (Knob et al., 2010). 

Mannan polymer primarily consists of a backbone structure composed of β-1,4-

bound mannose residues or combination of glucose and mannose residues and can be 

hydrolyzed to its monomers with the synergistic action of β-mannanases (EC 3.2.1.78), 

β-mannosidases (EC 3.2.1.25), α-galactosidases (EC 3.2.1.22), and acetylmannan 

esterases (E.C. 3.1.1.6) (McCleary, 1988). The backbone of glucomannans can be 

attacked endoglucanases as well. 

Pectin-degrading enzymes 

Homogalacturonan degradation requires the action of an exo-polygalacaturonase 

and an endo-polygalacturonase (endoPG). Rhamnogalacturonan I is degraded by RG-

lyases or RG-hydrolases (Mutter et al., 1998). Acetyl groups are removed by pectin 

acetyl esterases. For the degradation of galactan and arabinogalactan I, endo-

galactanase, β-galactosidase and arabinofuranosidase activities are needed.  
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Arabinan is degraded by a number of different enzymes that belong to the CAZy 

glycoside hydrolase (GH) families 3, 27, 43, 51 54, 62 and 93 (Coutinho and Henrissat, 

1999, http://www.cazy.org). α-L-arabinofuranosidases (AFase; EC 3.2.1.55) are 

enzymes that release arabinofuranose residues substituted at position O-2 or O-3 of 

mono or di-substituted xylose residues (Gruppen et al., 1993). Apart from that, AFases 

act in synergism with other arabinohydrolases, endo-(1,5)-α-L-arabinanases (ABNase; 

EC 3.2.1.99) for the decomposition of arabinan, a major pectin polysaccharide. 

Arabinan consists of a backbone of α-(1,5)-linked L-arabinofuranosyl residues, some of 

which are substituted with α-(1,2)- or α-(1,3)-linked arabinofuranosides (Weinstein and 

Albersheim, 1979). Degradation of arabinan polymer to arabinose sugars is driven by 

the synergistic action of two major enzymes, AFases and ABNases (Kim, 2008). AFases 

specifically catalyze the hydrolysis of terminal non-reducing L-arabinofuranosyl 

residues from arabinan, while the resulting debranched backbone could be efficiently 

hydrolyzed by endo-acting ABNases, thus generating a variety of arabino-

oligosaccharides with an inverting mode of action (Beldman et al., 1997).  

 

The role of auxiliary enzymes 

Until recently, only hydrolytic enzymes were thought to play a role in the 

degradation of recalcitrant cellulose and hemicelluloses to fermentable sugars. Recent 

studies demonstrate that enzymes from the GH family 61 show lytic polysaccharide 

monooxygenase activity (LPMO) and have an enhancing cellulolytic effect when 

combined with common cellulases (Horn et al., 2012). Together with cellobiose 

dehydrogenase (CDH; EC 1.1.99.18), an enzymatic system capable of oxidative 

cellulose cleavage is formed, which increases the efficiency of cellulases and boosts the 

enzymatic conversion of lignocellulose. It has long been thought that the proteins of 

GH family 61 are accessory proteins enhancing cellulose decomposition. They were 

thus frequently referred to as the “cellulose enhancing factors” (Harris et al., 2010) and 

previously thought to have no or only weak endoglucanase activity (Karlsson et al., 

2001). Now, these enzymes are now reclassified to AA9 family of CAZy database and 

their mode of action provide a new dimension to the classical concept of cellulose 

degradation, as recently reviewed by Dimarogona et al. (2013).  
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Figure 2.7. Current view of the components that are involved in the enzymatic 

degradation of cellulose, involving cellobiohydrolases (CΒH), endoglucanases (EG), type1 

and type 2 PMOs (PMO1 hydroxylating the C1 position of the glucose moiety and 

PMO2 being specific for C4, respectively). Cellobiose dehydrogenase (CDH) is a potential 

electron donor for PMOs. (Dimarogona et al., 2012).  

 

These copper-dependent enzymes were shown to cleave cellulose by an 

oxidative mechanism provided that reduction equivalents from CDH or low molecular 

weight reducing agents (e.g., ascorbate) are available (Langston et al., 2011). In some 

genomes, AA9 genes even outnumber cellulose genes. It remains to be elucidated 

whether all of these encoded enzymes have PMO activity, but their large number 

emphasizes the importance of oxidative cellulose cleavage. M. thermophila's genome has 

25 AA9 genes, encoding putative proteins acting as accessory LPMOs enzymes (Berka 

et al., 2011). This number is outstanding in comparison to common lignocellulolytic 

organisms, as A. niger (seven sequences) and T. reesei (nine sequences). This difference 

can explain the high efficiency of hydrolysis of Myceliophthora in nature substrates and 

reveals the crucial role of these enzymes in the whole procedure. 
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2.2 Myceliophthora thermophila as a thermophilic fungus 

Myceliophthora thermophila (synonym Sporotrichum thermophile) is a thermophilic 

filamentous fungus, isolated from soil in eastern Russia, classified as an ascomycete, 

and constitutes an exceptionally powerful cellulolytic organism; it synthesizes a 

complete set of enzymes necessary for the breakdown of cellulose. The cell density and 

the exponential growth rate of the microorganism on cellulose (0.09 to 0.16 h-1) is 

similar to that on glucose (0.1 h-1), revealing its remarkable ability to utilize cellulose 

as efficiently as glucose (Bhat, 1987). Several isolates of M. thermophila can grow on 

cellulose-rich material and can decompose complex substrates such as birch chips, 

wood pulp and wheat straw (Bhat & Maheshwari 1987). Colonies of M. thermophila 

grow rapidly and initially appear cottony-pink, but then turn cinnamon-brown and 

granular in texture. Microscopic examination reveals septate hyphae with several 

obovoidal to pyriform conidia arising singly or in small groups from conidiogenous 

cells. Conidia are typically 3.0 – 4.5 μm x 4.5 - 11.0 μm in size, hyaline, smooth, and 

thick-walled. Occasionally a secondary conidium can form at the distal tip of primary 

conidium (van Oorschot 1977). 

 

Figure 2.8. Colonies grow rapidly at 45 οC in comparison to 30οC or 55οC and appear 

dry, thin, broadly spreading with a surface texture that varies from floccose or cottony 

to granular or powdery. The color is at first white, then pink, buff, and finally fulvous 

or cinnamon brown. Their hyphae are colorless, about 2μm broad (Morgenstern et al ., 

2012).  

Myceliophthora thermophila has a wide range of synonyms over the history of its 

classification and distinction of sexual states. This fungus was originally described as 

Sporotrichum thermophilum (Apnis, 1963) but it was later found that the species lacked 
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clamp connections, a typical characteristic of the basidiomycetous genus, Sporotrichum. 

It was then reclassified to the ascomyceteous genus, Chrysosporium, and became known 

as C. thermophilum (von Klopotek, 1974). Two years later Klopotek described Thielavia 

heterothallica as the teleomorph of C. thermophilum (von Klopotek 1976) before the 

genus Corynascus was introduced by von Arx in 1983. The genus Myceliophthora was 

not used to describe the anamorph until 1977 (van Oorschot 1977). The current name 

for the teleomorph is Corynascus heterothallicus, which has been observed through 

phylogenetic analysis to bear very strong DNA sequence homology to M. thermophila 

(van den Brink et al., 2012). Recently, the C1 wild-type strain VKM F-3500-D, 

extensively studied by Dyadic International Inc., initially classified as Chrysosporlum 

lucknowense, was turn out to be a Myceliophthora thermophila isolate, based on molecular 

studies (Berka et al., 2011). 

 

Kingdom  Fungi 

Phylum  Ascomycota 

Subphhylum Pezlzomycotlna 

Class  Sordarlomycetes 

Subclass  Sordarlomycetidae 

Order  Sordarlales 

Family  Chaetomlaceae 

Genus  Myceliophthora 

Species  Myceliophthora thermophila 

 

Species  Sporotrichum thermophile, A. E. Aipinis 1963 

Synonyms 

Crysosporium thermophilum. A.E. Alpinls von Klopotek 1974 

Thlelalvia heterothallica, A.E. Alpinis C.A. van Oorschot 1977 

Corynascus heterothallicus, J.A. von Arx 1983 

Myceliopthora thermophila, A.E. Aplinis, C.A. van Oorschot 197 

 

Table 2.1. Taxonomy of Myceliopthora thermophila and synonyms of the species 

(Uniprot taxonomy ID: 78579). 
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The 38.7 Mbp genome of M. thermophila, comprising about 9500 genes, 

organized in 7 chromosomes, has been sequenced and annotated (Joint Genome 

Institute. University of California, http://genome.jgi-psf.org; Berka et al., 2011). It 

revealed a large number of genes putatively encoding industrially important enzymes, 

such as carbohydrate-active enzymes (CAZy), proteases, oxido-reductases and lipases, 

while more than 200 sequences have been identified exclusively for plant cell-wall-

degrading enzymes. These sequences encode a large number of glycoside hydrolases 

(GH) and polysaccharide lyases, covering the most of the recognized families, as 

summarized in Table 2.2. In addition, M. thermophila was developed into a proprietary 

mature enzyme production system with easy scaling (C1 strain; Visser et al., 2011). The 

main features of C1 are the high production levels (up to 100 g/l protein), as well as 

the maintenance of low viscosity levels at the culture medium, thus enabling 

fermentation process to reach very high densities. 

M. thermophila exhibits an impressing number of accessory enzymes belonging 

to AA9 (previously described as GH61) and family 1 carbohydrate binding modules 

(CBM), which are the highest found in fungi (Berka et al., 2011). Family 1 CBM 

presents a cellulose-binding function and is almost exclusively found in enzymes of 

fungal origin (http:;;www.cazy.org; Guillen et al., 2009). In addition, M. thermophila 

distinguishes itself from other cellulolytic fungi, such as Aspergillus niger and 

Trichoderma reesei by the presence of a relatively high number of (glucurono) 

arabinoxylan degrading enzymes (Hinz et al., 2009). Eleven putative xylanases were 

found that belong into GH 10 and 11 families compared to five in both A. niger (Broad 

Institute of Harvard and MIT, http://www.broadinstitute.org) and T. reesei (Joint 

Genome Institute, University of California, http://genome.jgi-psf.org), while fourteen 

arabinofuranosidases belonging to GH 43 51 and 62 families were found compared to 

thirteen in A. niger and three in T. reesei, rendering M. thermophila a promising source 

of hemicellulolytic enzymes. Studying the secretome of M. thermophila after 30 h of 

growth in barley and alfalfa straws, it was found to comprise of 683 predicted proteins, 

230 of which are proteins with unknown function (Berka et al., 2011). Based on 

transcriptome analysis, many of these proteins were found at the secretome, including 

accessory enzymes, hypothetical proteins and proteins with unknown function that 

were upregulated when the fungus is grown up in more complex substrates, such as 
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agricultural straws, compared to glucose. This is an indication of their crucial role in 

lignocellulose degradation (Berka et al., 2011). M. thermophila grows in temperatures 

between 25 and 55°C, while a relative growth performance study on mycobroth agar 

plates indicated that the optimum condition is at 45°C (Morgenstern et al., 2012). At a 

suboptimal temperature (30°C), when grown on cellulose, the conidia tend to form a 

very limited mycelium that precociously develops asexual reproductive structures 

(microcycle conidiation). Although the mechanism of this cellular response is not 

understood, microcycle conidiation (Figure 2.9) may be a survival strategy of 

producing propagules in the shortest possible time under suboptimal conditions 

(Maheshwari et al., 2000). The temperature optima for several enzymes with the same 

specific activity that are produced and have been characterized from M. thermophila, 

range from 50°C to 70°C. For example, StEG5 endoglucanase, expressed in A. niger, 

exhibits a Topt of 70°C (Tambor et al., 2012), while recombinant MtEG7 expressed in 

Pichia pastoris exhibited an optimal temperature of 60°C (Karnaouri et al., 2014). The 

same characteristic is also observed for M. thermophila xylanases expressed in A. niger, 

showing optimal activity at temperatures between 50°C and 70°C (Berka et al., 2011), 

underpinning the enzymatic potential that is not only diverse in catalytic activities, but 

also in properties increasing its efficiency in various temperatures.  

Apart from the consortium of enzymes that are encoded by M. thermophila's 

genome for the degradation of lignocellulosic biomass, a number of thermostable 

enzymes with important industrial applications are also produced. Among them are 

broad-specificity HAP- phytases (myoinositol hexakisphosphate phosphohydrolases) 

that are efficient in breaking down phytic acid and can be used for supplementing 

livestock feed with phosphorus (Singh & Satyanaraxana, 2010) and laccases that can act 

as clean substitutes for harmful chemical reagents used in the paper and pulp industry 

and textile dyes (Berka et al., 1997). Laccases are also useful in ecological restoration 

through soil bioremediation and ability to degrade rubber as well as to polymerize 

lignin from waste material from the kraft process, which can be further burned for 

energy production or used as raw materials for a variety of new products (Gargulak 

and Lebo, 2000) obtained by processes involving enzymatic or chemical modifications 

(Sena-Martins et al., 2008). M. thermophila is also able to produce a polygalacturonase 

(PGase), an enzyme with pectinase activity which hydrolyze complex polysaccharides 

mainly composed of D-galacturonic acid, and has applications in the food and textile 
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industries (Kaur et al., 2004). Biosynthesis of fructo-oligosaccharides (FOS), such as 1-

kestose, 6-kestose and neokestose, has been reported during growth of the fungus on 

media containing high sucrose concentrations (Katapodis et al., 2004). These 

oligosaccharides are currently used as feed supplements (Kim et al., 2000) and once 

they are consumed, they stimulate the growth of Bifidobacteria in the gastrointestinal 

tract of humans and animals with important associated (Kunz & Rudloff, 1993). They 

comprise a safe food for diabetics, since they are hardly hydrolyzed by the digestive 

enzymes (Yun, 1996) and they have been related to the decrease in total cholesterol, 

triglyceride and phospholipid levels in the serum (Rivello-Urgell & Santamaria-

Orleans, 2001).  

Specific activity  CAZy module(s) No id. seq.  

Cellulases 

endoglucanases GH 5, 7, 12, 45 8 

cellobiohydrolases GH 6, 7 7 

β-glucosidases GH 1,3 8 

Xylanases 
xylanases GH 10, 11 12 

xylosidases GH 3, 43 4 

Arabinases 
endoarabinases GH 43 3 
exo-arabinases / 
arabinofuranosidases GH 43, 51, 62 11 

Mannanases 
endomannanases GH 5, 26 3 

mannosidases GH 2 2 

Pectinases 

polygalacturonases GH28 2 

rhamnosidases GH78 1 

pectin lyases PL1, PL3, PL4, PL20 8 

pectin esterases CE 8, 12 4 

Esterases 

feruloyl esterases CE 1 4 

acetyl esterases CE 3, 5, 16 8 

acetylmannanesterases CE 12 2 

glycuronoyl esterases CE 15 2 
 
Table 2.2. Number of predicted CAZymes encoded in the genome of M. thermophila. 

GHs, Glycoside hydrolases; CEs ,carbohydrate esterases and PLs, polysaccharide 

lyases are included, covering the most of the recognized families. 
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Figure 2.9. Microcycle conidiation in Myceliophthora thermophila at 30οC. (A) Oval 

asexual spores in a germ ling, after 24 hour incubation of the fungus in shake cultures 

with shredded Whatman filter paper as the carbon source. The insoluble particle is a 

piece of cellulose fiber. (B) Precocious differentiation of asexual spores after 72 hours. 

The germinated conidium is indicated by an arrow (phase-contrast micrographs). 

Conidia appear on short protrusions, singly or in small groups on ampulliform 

swellings, obovoidal to pyriform, hyaline, with the size between 4.5-11.0 x 3.0-4.5 μm. 

They are rough-walled initially and become smooth walled in old cultures, with thick 

walls. (Maheshwari et al., 2000). 
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2.3 Pichia pastoris as a methylotrophic yeast  

 

The ability of certain yeast species to utilize methanol as a sole source of carbon 

and energy was discovered less than 40 years ago by Koichi Ogata. Several years later, 

in the early 1980s, Phillips Petroleum with the Salk Institute Biotechnology/Industrial 

Associate Inc. (SIBIA), a biotechnology company located in La Jolla, Calif., developed 

and established Pichia pastoris as a heterologous gene expression system. Nowadays, 

the methylotrophic yeast P. pastoris is a well established eukaryotic host for the 

production of heterologous proteins preferentially secreted into the medium to simplify 

further down-stream procedures (Cereghino et al., 2002; Cereghino & Cregg, 2000).  

P. pastoris became popular due to the availability of strong inducible and 

constitutive promoter systems for recombinant protein expression, strong tendency for 

respiratory growth as opposed to fermentative growth and extremely high cell density 

fermentation in excess of 100 g/l dry weight (Macauley-Patrick et al., 2005). This 

methylotrophic yeast is a eukaryote, so its intracellular environment is generally more 

suitable for correct folding of eukaryotic proteins and it has the ability of post-

translational disulfide bond formation, proteolytic processing and processing of signal 

sequences, disulfide bridge formation, certain types of lipid addition, and 0- and N-

linked glycosylation, which may be crucial for biological activity. Moreover, when used 

as heterologous host, the stable Integration of expression plasmids at specific sites in P. 

pastoris genome, and the simplicity of techniques needed for the molecular genetic 

manipulation, such as DNA-mediated transformation, gene targeting, gene 

replacement, and cloning by functional complementation, render it a promiscuous 

candidate for heterologous protein expression (Higgins 1998; Cereghino & Cregg, 

2000).  

P. pastoris is a member of Ascomycete yeasts, a monophyletic lineage with a single 

order of about 1000 known species. Asexual production of this genus is described by 

yeast cells arising by multilateral budding on a narrow base. P. pastoris remains haploid 

unless forced to mate. Strains with complementary markers can be mated by subjecting 

them to a nitrogen-limited medium. Conjugation between a cell and its bud or between 

independent cells may occur, leading to the formation of ascosporogenous four-hat-

shaped ascospores, indicating this species is homothallic. After 3 days incubation at 
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25οC, plate culture on agar consists of cells spherical to ovoid in shape, 2-4 x 2.2 - 5.8 

μm which occur singly or in pairs, cream colored, dull to faintly glistening and 

butyrous. Neither pseudohyphae nor true hyphae are produced (Kurtzman and 

Robnett, 1998). P. pastoris' generation time is approximately 90 min in liquid medium 

containing yeast extract, peptone and dextrose (YPD), and approximately 3 h in 

defined medium containing yeast nitrogen base with ammonium sulfate and without 

amino acids and dextrose (YPD). With methanol as sole carbon source and a defined 

culture medium, the generation time is around 5 h (Cregg et al., 2009). Pichia pastoris is 

phylogenetically distinct from other methanol yeasts and has been reassigned to the 

newly described genus Komagataella following phylogenetic analysis of gene sequences 

(Yamada et al., 1995). The type strain of Komagataella pastoris (synonym Pichia pastoris) 

was isolated from a chestnut tree in France (Guilliermond 1919), but the majority of P. 

pastoris strains have been isolated from exudates and rotten wood from a variety of 

trees growing in Europe (Diauchy et al., 2003).  

Kingdom Fungi 

Phylum Ascomycota 

Subphylum Saccharomycotina 

Class Saccharomycetes 

Order Saccharomycetales 

Family Phaffomycetaceae 

Genus Komagataella 

Species Komagataella pastoris 

 

Species Komagataella pastoris (Gullllennond) Y.Yemada, Mmude, Maeda & Mlkata (1995) 

Synonyms 

Zygosaccharomyces pastoris Guilllermond (1919) 

Saccharomyces pastori (Gulll iermond) Lodder & Kreger van Rij (1952) 

Petasospora pastori (Guilllermond) Boldin & Abadie (1954) 

Pichia pastoris (Gullllerrnond) Phaff (1958) 

Zygowilia pastori (Guiiliermond) Kudryavtsev (1960) 

Zymopichia pastori (Guilliermond) Novak & ZSolt (1961) 

 

Table 2.3. Taxonomy of Komagataella pastoris (synonym P. pastoris) and synonyms of 

the species (UniProt taxonomy ID: 4922). 
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Figure 2.10. Pichla pastoris X33 cells growing at fermentor, showing normal budding 

phenotype, as well as two buds attached to the mother cell (Mickey Mouse-like 

appearance). Basal Salts Medium, pH 5.0, methanol used as carbon source, magnitude 

x40 (left) and x100 (right). 

 

2.3.1 Methanol and Glycerol utilization Pathway at Pichia pastoris  

Methylotrophic yeasts, belonging to genera of Pichia, Hansenula, Torulopsis and 

Candida, possess a general methanol utilization pathway (MUT pathway) that is highly 

compartmentalized in methanol-induced micro bodies, peroxisomes, and cytoplasm 

(Faber et al., 1995). This metabolic pathway involves several unique enzymes, which 

are present at substantial levels only when the cells are grown on methanol. In this 

metabolic pathway, peroxisomes play an indispensable role since they harbor the three 

key enzymes, alcohol oxidase. catalase and dihydroxyacetone synthase. The subsequent 

reactions in methanol assimilation and dissimilation pathway are localized in the 

cytosol (Veenhuis et al., 1983).  

Methanol enters the peroxisome and the enzyme alcohol oxidase (AOX) 

catalyzes the first step in the dissimilation pathway, the oxidation of methanol to 

formaldehyde and hydrogen peroxide, utilizing molecular oxygen as an electron 

acceptor. AOX is sequestered within the peroxisome along with catalase, which further 

decomposes hydrogen peroxide to oxygen and water. Catalases can either catalatically 

or peroxidately; which reaction predominates is difficult to establish (Rose & Harrison, 

1989). The formaldehyde generated from the methanol oxidation enters both the 

dissimilatory pathway to yield energy and the assimilatory pathway for generation of 

biomass. In the dissimilatory pathway, a portion of the formaldehyde generated by 

AOX enters the cytosol, where it forms a complex with reduced glutathione, S-
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formylglutathlone, and is further oxidized to carbon dioxide by two subsequent NAD+-

dependent dehydrogenase reactions which are a source of energy for cells growing on 

methanol. In the first step, formaldehyde dehydrogenase catalyzes the production of 

formate, from which carbon dioxide is generated by the action of formate 

dehydrogenase (Subramani 1998). 

 

Mode of action Reaction catalysed 
General mode H202 + RH2  2 H20 + R 

Catalatic H202 + H202  2 H20 + 02 

Peroxidatic 
H202 + CH30H  HCHO + 2 H20 
H202 + HCHO  HCOOH + H20 
H202 + HCOOH  C02 + 2H20 

Table 2.4. Possible reactions catalysed by catalase during methanol metabolism in 

yeast (Veenhuis et al., 1983). The reaction starts with the formation of a primarily 

complex between H2O2 and Fe+3 of the catalase prosthetic group, which reacts either 

with another H2O2 molecule for the catalatic reaction, or with a hydrogen donor for the 

peroxidatic reaction. 

 

In the assimilatory pathway, formaldehyde that remains in the peroxisome 

reacts with xylulose-5-phosphate (Xu5P). In this reaction catalyzed by 

dlhydroxyacetone synthase, two C3 compounds, dihydroxyacetone (DHA) and 

glyceraldehyde-3-phosphate (GAP), are produced, in a transketolase reaction between 

formaldehyde and Xu5P (van Dljken et al., 1978). Dihydroxyacetone is phosphorylated 

by cytosolic dihydroxyacetone kinase. In a subsequent aldolase reaction with GAP, it 

forms fructose-1,6-blphosphate which is converted to fructose-6-phosphate by a 

phosphatase. These compounds are further metabolized in the cytosol to eventually 

regain xylulose-5-phosphate in a cyclic pathway including transaldolase, transketolase, 

pentose phosphate isomerase and epimerase reactions. One-third of the glyceraldehyde-

3-phosphate produced becomes available for central metabolism and the generation of 

biomass. The flux of formaldehyde generated from methanol over the oxidative or the 

biosynthetic pathways is strictly regulated. Regeneration of Xu5Pin the assimilation 

pathway needs ATP, so in case of intracellular energy limitation, there is no available 

substrate for dihydroxyacetone synthase, resulting in an increase of formaldehyde 
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available for energy production (Rose & Harrison, 1989). The final reaction during the 

assimilatory pathway is described below: 

3 HCHO +3ATP  1GAP+3AOP+ 2 Pi 

 

 

Figure 2.11. Methanol metabolism pathways and their compartmentation in 

methylotrophic yeasts. (Hartner & Glleder, 2006). 

AOX: alcohol oxidase (EC 1.1.3.13), CAT: catalase (EC 1.11.1.6), FlD: formaldehyde dehydrogenase 

(EC 1.2.1.1), FGH: S-formylglutathione hydrolase (EC 3.1.2.12), FOH: formate dehydrogenase (EC 

1.2.1.2), DAS: dlhydroxyacetone synthase (EC 2.2.1.3), TPI: triosephosphate isomerase (EC 5.3.1.1), 

OAK: dihydroxyacetone kinase (EC 2.7.1.29), FBA: fructose 1,6-bisphosphate aldolase (EC 4.1.21.13), 

FBP: fructose 1,6-bisphosphatase (EC 3.1.3.11), MFS: methylformate synthase: DHA: 

dihydroxyacetone, GAP: glyceraldehyde 3 -phosphate, DHAP: dihydroxyacetone phosphate, F1, 

6BP: fructose 1,6-bisphosphate, F6P: fructose 6-phosphate, PI: phosphate, XUSP: xylulose 5-

phosphate, GSH: glutathione, PVR: pyruvate; PPP: pentose phosphate pathway, TCA: tricarboxylic 

acid cycle.  
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Regulation of methanol metabolism in yeast is a very complex process including 

control of synthesis and activation of the corresponding enzymes as well as their 

degradation. Synthesis of methanol metabolizing enzymes is induced by methanol, 

formaldeyde, and formate and is repressed by glucose, ethanol and glycerol (Egli et al., 

1980; Unrean 2014).  

Glycerol is utilized as a carbon source under aerobic condition by 

methylotrophic yeast. The catabolic pathway involves passive diffusion across the 

plasma membrane, phosphorylation by a glycerol kinase, and oxidation by a 

mitochondrial glycerol phosphate ubiquinone oxireductase (Gancedo et al., 1968). 

Glycerol enters glycolysis after its conversion to glyceraldehyde 3-phosphate, and 

requires respiration to dispose of NADH in order to serve as an energy source. 

Previous studies (Chiruvolu, 1998) revealed that during the batch, fed-batch, or 

induction phase, the use of glycerol results in ethanol production, resulting 

subsequently to repression of the AOX1 promoter. 

 

2.3.2. Pichia pastoris expression system 

Advantages of the Pichia expression system, as described above in detail, include 

not only growth to very high cell densities in simple defined medium, but also strongly 

inducible promoters (Cregg et al., 1993). The importance of this expression system is 

underscored by its commercialization by Invitrogen as the Pichia pastoris Expression 

System (Invitrogen Corporation, Sarlsbad, CA, USA). Expression of any heterologous 

gene in P. pastoris includes primarily the insertion of the gene of interest into an 

appropriate expression vector, following by the introduction of the recombinant vector 

into the P. pastoris genome and finally, the evaluation and phenotype analysis of the 

strains for the foreign gene product. P. pastoris' genome structure allows the 

homologous recombination between genomic and artificially introduced DNAs. 

Cleavage of a P. pastoris vector within a sequence shared by the host genome stimulates 

homologous recombination events that efficiently target integration of the vector to 

that genomic locus (Cregg and Madden, 1987). A variety of P. pastoris expression 

vectors and host strains are available. All P. pastoris expression strains are derived from 

NRRL-Y 11430 (Northern Regional Research Laboratories, Peoria, IL). Most of them 

have one or more auxotrophic mutations which allow for selection of expression 
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vectors containing the appropriate selectable marker gene upon transformation. All of 

these strains grow on complex media but require supplementation with the appropriate 

nutrient for growth on minimal media. Several protease-deficient strains have been 

shown to be effective in reducing degradation of some foreign proteins (White et al., 

1995). This is especially noticeable in fermenter cultures, because the combination of 

high cell density and lysis of a small percentage of cells results in a relatively high 

concentration of these vacuolar proteases (Goodrick et al., 2001).  

The AOX1 promoter has been the most widely reported and utilized of all the 

available promoters for P. pastoris (Cereghino et al., 2001). AOX1 and AOX2 are two 

genes with 97% homology that encode alcohol oxidase (AOX, EC 1.1.3.13) activity in 

the cell and catalyze the oxidation of methanol to formaldehyde, generating hydrogen 

peroxide within peroxisome. Alcohol oxidase has a poor affinity for oxygen, and P. 

pastoris compensates for this by generating large amounts of the enzyme. Both AOX1 

and AOX2 are regulated in a similar manner. The regulation involves both repression- 

derepression and induction mechanisms (Cregg et al., 1989). The AOX1 promoter 

regulates 85% of the alcohol oxidase activity in the cell, but is repressed at 

transcription level by unlimited growth on ethanol, glycerol or glucose. In cells fed 

with methanol at growth-limiting rates in fermenter cultures, AOX levels are 

dramatically induced, constituting >30% of total soluble protein (Couderc & Baratti, 

1980). The majority of heterologous protein production in P. pastoris is based on the 

fact that enzymes required for the metabolism of methanol are only present when cells 

are grown on methanol (Egli et al., 1980), so AOX promoter has been the most 

successful system reported for this organism. The 'AOX1 promoter-Gene X' 

expression cassette is inserted into the Pichia genome along an existing marker for 

selection of transformed cells. Existing markers include genes that encode for enzymes 

of a biosynthetic pathway (HIS4 for histidinol dehydrogenase, ARG4 for 

argininosuccinate lyase, URA3 for orotidine 5P-phosphate decarboxylase) or antibiotic 

resistance genes, such as the Sh ble gene from Streptoalloteichus hindustanus which 

confers resistance to the bleomycin-related antibiotic zeocin (Cregg 1985; Higgins 

1998; Cregg and Madden 1989; Cereghino et al., 1999). Zeocin causes cell death by 

intercalating into DNA and induces double strand breaks of the DNA. Cu+2 give the 

blue color. In a zeocin resistant strain, when Sh ble gene is expressed, the produced 

polypeptide bounds the drug, thus transforming it into an inactive form. 
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The strong inducibility of AOX1 promoter, the alternative weaker AOX2-

mediated methanol oxidation and the tight regulation of AOX1 promoter variants 

(Hartner and Glieder, 2006) allow the design of different expression strains with 

specific properties. Apart from the wild strain X33, possessing functional AOX1 and 

AOX2 genes (Mut+ strain, methanol utilization plus), several other phenotypes have 

been constructed and are used for the production of heterologous proteins in case, 

depending on the product. MutS strain (methanol utilization slow) is generated when 

AOX1 is knocked out and Mut- (methanol utilization minus) strain is unable to grow 

on methanol as the sole carbon source, as both the AOX1 and AOX2 genes are 

disrupted (Cregg et al., 1989). 

 

 

Figure 2.12. Insertion of the plasmid 5' to the intact AOX1 locus of Pichia pastoris X33 

(Mut+) results in Integration of AOX1 promoter, foreign gene of interest and Sh ble 

zeocin resistance gene. TT represents the AOX1 transcription termination region 

(TT). In addition, for secretion of foreign proteins, most vectors possess a secretion 

signal, such as S. cerevislae α-factor. The S. cerevislae α-factor prepro-signal is the most 

widely used and successful secretion signal, being in some cases better than the leader 

sequence of the native heterologous protein. All expression vectors have been designed 

as Escherichia coli / P. pastoris shuttle vectors, containing an origin of replication for 

plasmid maintenance in E. coli and markers functional in one or both organisms. 
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Apart from the AOX promoters that have therefore been the most widely 

utilized, other promoter options are available for the production of foreign proteins in 

Pichia, and these are discussed comprehensively by Cereghino & Cregg, 2000. 

Alternative promoters are the P. pastoris constitutively expressed GAP promoter, the 

FLD1 promoter which offers the flexibility to induce expression using either methanol 

or methylamine, an inexpensive nontoxic nitrogen source, and the moderately 

expressing promoters PEX8 and YPT1, used in order to prevent proteins from being 

misfolded or unprocessed during post-translational modifications under high levels of 

expression (Brierley, 1998). 

 

Post translational modification: Glycosylation and Proteolysis 

Glycosytatlon patterns 

As a eukaryote, P. pastoris exhibits a variety of post-translational modifications; 

O- and N-linked glycosylation is one of the most common performed by this yeast. 

Glycosylation occurs in the lumen of the endoplasmic reticulum after protein 

translation. A variety of native proteins are glycosylated, so it is necessary for them to 

have the appropriate g1ycosylatlon patterns when expressed heterologously, in order 

to ensure and maintain their biological activity. Unlike Saccharomyces cereviseae that 

tends to hyperglycosylate N-linked sugars of expressed proteins (50 - 150 mannose 

units), P. pastoris glycosylation is characterized by shorter patterns, more similar to 

that of higher eukaryotes with 8-14 mannose residues per chain (Bretthauer & 

Castellino, 1999).  

P. pastoris, like other yeasts and fungi, add O-oligosaccharides to the hydroxyl 

side groups (-OH) of serine and threonine of secreted proteins. These are composed 

only of mannose residues and tend to have more simple structure than those of higher 

eukaryotic cells. Pichia is possible to glycosylate heterologous proteins that are not 

normally glycosylated by the native host or, it may glycosylate proteins on different 

serine and threonine residues than the post translational mechanism of the native host 

(Cereghino and Cregg, 2000). Glycosylation may increase the molecular weight of the 

expressed protein up to 20 kDa higher than the theoretical one, as in case of 

glucoamylase catalytic domain from Aspergillus awamori; glycosylation patterns may 
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alter among heterologous proteins and in some cases and they may be responsible for 

modifying the function of the molecule (Mochizuki et al., 2001).  

Apart from O - glycoylation, P. pastoris adds N - oligosaccharides to the –NH2 

side group of Asn residues of the proteins. A pre-assembled oligosaccharide unit 

consisting of N-acetylglucosamine (GlcNAc), mannose (Man) and glucose (Glc), 

(Glc3Man9GlcNAc2), is transferred from dolichyl pyrophosphate to amide groups of 

asparagine residues, in the lumen of the ER by the enzyme UDP- GlcNAc : dolichol 

PGlcNAc - transferase (Dennis et al., 1999). Prior to transfer, the oligosaccharide is 

bound to the dolichole molecule through a high energy purophosphoric bond and this 

is driving force for the transfer of it. The majority of glycosylation patterns result from 

downstream subsequent modification. In the secretory pathway, the oligosaccharide is 

trimmed further by the removal of the three glucose residues by glucosidase II and I. 

The α-1,2-linked mannose residue is also removed by α-1,2-mannosidases to give 

Man8GlcNAc2 (Lis & Sharon, 1993). Further processing to cis - Golgi involves 

mannoses are added and the oligomannose units can be linked α-1,6 to the α-1,3 

mannose in the Man α-1,3-Man-β-1,4-GlcNAc2 inner core (Herscovics & Orlean, 

1993).  

 

 

Figure 2.13. Representative Structure of the core pre-assembled oligosaccharide 

transferred to asparagine residues and the common O-linked glucans (Man4 –Ser/Thr). 

The branch point where further oligosaccharides are added during further processing 

of N-glycosytated proteins to cis - Golgi is indicated by the star. High mannose content 

is typical of yeast glycosylation.  
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Heterogeneity in glycosylation is a result of differences in oligosaccharide-

protein populations in terms of the type, length and Identity of the oligosaccharides 

added to Asn-X-Ser/Thr sequons, resulting in protein products whose micro-

properties, such as the isoelectric point, vary slightly. The glycoprotein variations may 

be dependent on the surrounding residues (Lis & Sharon, 1993). Even in the same 

glycosylation Golgi machinery of one cell, it is possible for two proteins to be 

differently glycosylated and has been proposed that this heterogeneity is related to 

specific sequences recognized by the various glycosylation systems. It has been 

observed that some proteins heterologously expressed in P. pastoris vary considerably 

in terms of the number of the mannose units added to the same polysaccharide core 

(Daly and Hearn 2005). 

 

Proteolysis 

Proteolysis is of indispensable importance for the control and execution of many 

cellular events. Proteolytic enzymes are designed to act either in the intracellular or 

the extracellular environment. The former are involved in processes such as removal of 

signal peptides after translocation of proteins through membranes, processing of 

Inactive precursors (zymogens/proenzymes) to generate fully active proteins, 

inactivation of short-lived regulatory molecules and degradation of proteins that arise 

from mutations, misfolding, transcription or translation errors. The latter are secreted 

to the culture medium and digest proteins for supplementation of peptides and amino 

acids for nutrition. Based on the mode of action, proteases are divided into those 

hydrolyzing peptide bonds within polypeptide chain, endoproteinases, and those acting 

on the carboxyl· or amino- terminal region, exopeptidases. Based on the features of 

active site, proteolytic enzymes belong to four major classes: serine, metallo-, thiol and 

aspartyl proteases. Serine proteases often have a higher pH optimum, whereas aspartyl 

proteases a lower pH optimum (Dery et al., 1998; Tang & Wong, 1987).  

The protease system that occurs in P. pastoris is similar to this described in S. 

cereviseae and is organized in three main groups of enzymes: vacuolar (lysosomal) 

proteases, proteases located along with the secretory pathway and the cytosolic 

vacuoles contain various proteases whose levels vary according to the nutritional 

conditions. A total of seven vacuolar proteases are known: two endoproteinases, 
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proteinase A (PrA) and proteinase B (PrB); two carboxypeptidases, carboxypeptidases 

Y and S (CpY, CpS); two aminopeptidases, aminopeptidases I and Co (Apl, ApCo) and 

dipeptidyl aminopeptidase B (DPAPB). All the above enzymes are soluble within the 

vacuole, except DPAP-B which found in the vacuolar membrane. The aspartyl protease 

proteinase A. encoded by the gene PEPE4 is capable of self-activation and subsequent 

activation of other vacuolar proteases, such as carboxypeptidase Y and proteinase B. 

Proteinase B is encoded by the PRB1 gene and is a member of the subtilisin family of 

serine proteases. The proteases of the secretory pathway, which are mainly located in 

the Golgi apparatus and the plasmatic membrane, act to process precursors to one or 

more secreted peptides (Flores et al., 1999). This group consists of signal peptidase, 

Kex2 endoprotease and Kex1 carboxypeptidase, dlpeptidyl aminopeptidase A and yeast 

aspartyl protease Ill (Yap3 protease) (Zhang et al., 2007). The cytosolic proteasome of 

Pichia pastoris is a multicatalytic proteinase system, responsible for the selection and 

rapid degradation of short-lived proteins and proteins that are detrimental to the cell 

growth. The interplay between vacuolar and proteasome proteolysis is a key 

regulatory cell process, particularly in response to stress (van den Hazel et al., 1996).  

The most prominent proteolytic enzymes are of vacuolar origin and they 

comprise the major source of problems with degradation of secreted recombinant 

proteins expressed in P. pastoris, particularly under conditions of nutrient deprivation. 

These enzymes are non-specific and do not require ATP. Problems that can be caused 

involve either total degradation of product and reduction of yield or loss of biological 

activity when the product is truncated. Moreover, degradation intermediates can cause 

contamination in downstream processing, because of their similar physico-chemical and 

affinity characteristics (Macauley-Patrick et al., 2005). In general, the secreted 

recombinant proteins can potentially be proteolytically degraded in the culture medium 

by extracellular proteases, cell-bound proteases (Kang et al., 2000) and/or by 

intracellular proteases from lysed cells. Signs of proteolysis include low recombinant 

protein levels and active or immunoreactive products that are smaller than the full-

length product. Degraded protein can also run as a "smear'' after SDS-PAGE, running 

from approximately the correct size of the product to smaller sizes. Although secreted 

recombinant proteins do not go to the vacuole, they can contact proteases in the 

culture medium from the lysis of a small portion of the cells. In fermenters, the 

concentration of other cellular materials, such as proteases, increases as well in high-
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cell density culture. Proteolytic degradation has been a perpetual problem since yeast 

has been employed to express recombinant proteins, especially in fermenters (Van Den 

Hazel et al., 1996). Peroxisome biogenesis has been shown a high dependency on 

methanol consumption. The proliferation of peroxisomes is inhibited in a medium 

containing glucose and stimulated in the methanol phase under a carbon-limited fed-

batch culture condition, which can cause problems at initial inducing phase of 

fermentation (Kim et al., 2013). 

Several strategies, based on engineering of the protein structure to resist the 

protease (protein level strategies), modification of cultivation conditions and selection 

of protease deficient host strains, are used to overcome proteolytic degradation. Protein 

level strategies are based on the molecular engineering of amino acid sequences non-

essential for the function of the protein, in order to modify or delete sequences 

recognized by proteases (Gustavsson et al., 2001).  

Cultivation level strategies include changing the medium composition or the 

incubation conditions (Jahic et al., 2003). P. pastoris is capable of growing across a 

relatively broad pH range from 3.0 to 7.0. This range has little or no effect on the 

growth rate, allowing adjustment of pH to one that causes limited protease activity. 

Different pH values were found to be optimal regarding production levels and protein 

stability. For example, pH 6.0 was found to be optimal for production recombinant 

mouse epidermal factor (Clare et al., 1991), but pH 3.0 was optimal in case of Insulin-

like growth factor I (Brierley, 1998). Medium composition and addition of amino acid 

rich supplements, such as peptone or casamino acids, to the culture medium has been 

shown to reduce protein degradation. The peptone can act as alternative and 

competing substrate for proteases and can also repress protease Induction caused by 

nitrogen limitation (Macauley-Patrick et al., 2005). Addition of protease inhibitors in 

bioreactor has also been reported to result in higher yields (Holmquist et al., 1997). 

There is a positive effect of reduced growth temperature on the secretion of 

heterologous proteins into the culture supernatant. Even though 20 and 30°C 

temperature set-points correspond to 60 and 100% of the maximum specific growth 

rate (μmax) respectively, a reduction of temperature from 30 to 20°C has been reported 

to result in a 3-fold increase of the specific productivity of the expressed recombinant 

protein (Dragosits et al., 2009). A significant amount of proteins, including mainly 

protein fragments and proteins, which are involved in amino acid metabolism, RNA 
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and ribosome biogenesis, genome maintenance and proteasomal components, have been 

shown to expressed in increased levels at lower cultivation temperature (20°C). Lower 

cultivation temperature can influence yields of recombinant proteins since the rate of 

proteolysis is lowered for the pure thermodynamic reason. Moreover, prevents from 

cell lysis and release of protease activity in fermentation media, increases cell viability 

and enhanced protein folding (Hong et al., 2002). 

Cell level strategies include the use of host strains that are defective in the 

vacuolar proteases. SMD1163 (his4 pep4 prb1 ), SMD1165 (his4 prb1), SMD1168 (his4 

pep4) and SMD1168H (his4) are protease deficient strains (Goodrick et al., 2001). The 

pep4 and prbl genes encode proteinase A and B respectively, as mentioned above. 

Proteinase A is responsible for the activation of other vacuolar proteases. Proteinase B, 

prior to its processing and activation of proteinase A, exhibits about half the activity of 

the processed enzyme and carboxypeptidase Y appears to be completely inactive prior 

to proteinase A-mediated proteolytic activation. Therefore, pep4 mutants display a 

substantial decreased or eliminated activity of proteinase A and carboxypeptidase Y, 

and a partial reduction of proteinase B activity. In the prb1 mutant, only proteinase B 

activity is eliminated, whereas pep4 prb1 double mutants show a substantial reduction 

or elimination of all three of these protease activities. Protease-deficient strains, 

combined with other strategies to reduce proteolysis, have been invaluable in the 

production of laccase (Jonsson et al., 1997) and therapeutic cytokine human granulocyte 

macrophage colony stimulating factor (Babu et al., 2008). Despite the advantages that 

they offer, these strains are not as vigorous and robust as wild-type strains. In addition 

to lower viability, they exhibit lower growth rate, are more difficult to transform and 

require greater care in growth and storage. 

 

2.3.3. Fermentation of Pichia pastoris using the PAOX1  

P. pastoris exhibits a preference for respiratory growth, a major advantage 

relative to S. cerevisiae. In high cell density cultures, ethanol (the product of S. cereviseae 

fermentation) may reach toxic levels, acting as a limiting factor for further growth and 

recombinant protein production. In contrast, P. pastoris (Mut+) can be cultured 

aerobically (DOT > 20% air saturation) at extremely high densities (100 g/l dry 

weight) in the controlled environment of the fermentor with high oxygen transfer 
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capabilities and efficient cooling systems are crucial (Schilling et al., 2001). Bioreactor 

controlled cultivation is also required to maintain the methanol concentration at a 

specified level, not exceeding the maximum methanol consumption rate of the cells 

(Jahic et al., 2006).  

Fermentation protocols for Pichia generally include three separate phases, 

glycerol batch phase, glycerol fed-batch phase and methanol fed-batch phase. First is 

the glycerol batch phase, in which cells are initially grown in a batch mode (in a simple, 

defined medium) with the repressing carbon source, glycerol in order to accumulate 

biomass, but no recombinant protein. Repression of the PAOX1 ensures that a high cell 

density is reached before the beginning of the recombinant protein expression and any 

adverse effect that may be caused by methanol. Maximum specific growth rate on 

glycerol for P. pastoris (Mut+) has been reported to be 0.26 h-1 compared to 0.14 h-1 for 

methanol (von Stockar et al., 2007). In addition, the cell viability is higher for cells 

grown on glycerol compared to those grown on methanol which have the additional 

benefit of reducing release of degrading proteases from cell lysis in the cultivation 

medium. 

In the second phase, the glycerol fed-batch phase, a limited glycerol feed is 

initiated following exhaustion of the glycerol, and cell mass is increased to a desired 

concentration level prior to methanol induction. The exponential feed of glycerol 

results in a slight increase in alcohol oxidase activity and, a subsequent expression of 

low amounts of recombinant protein. This is attributed to the fact that the PAOX1 

promoter is de-repressed during this phase due to the absence of excess glycerol 

produced, allowing the cells to tolerate higher initial feed rates of methanol in the 

methanol fed-batch phase. The transition to the methanol feeding has been reported to 

be smoother when this short glycerol phase was inserted, compared to the case when 

no exponential glycerol feed was applied, when a considerable cell death and a much 

longer adaptation to methanol were observed (Jahic et al., 2002).  

Finally, in the methanol fed-batch Induction phase, methanol is added to the 

culture to induce expression of the recombinant protein. This step is typically started 

with very low feed rates of methanol to allow the cells fully adapt to methanol 

metabolism. During the adaptation period the cells generate peroxisomes and the 

adequate enzymes required for methanol metabolism (van der Klei et al., 2006). When 

 44 



the shift of carbon sources has been completed, the methanol feed rate is increased 

upward exponentially in order to maintain constant specific growth rate until the 

oxygen transfer ultimately limits further increase. Careful control of the methanol 

concentration in bioreactor cultivations is crucial for process development, as too high 

concentrations will be toxic to the cells, and too low levels may not be enough to 

induce AOX transcription (Cos et al., 2006).  

 

 

Figure 2.14. For scale-up cultivation of P. pastoris, a three-phase fermentation scheme 

is employed. Inoculum from primary culture in defined medium (BMMY, buffered 

complex glycerol medium, as recommended by Invitrogen) is inoculated to bioreactor. 

After 24 hours of batch glycerol phase. A 4 hour limited glycerol feed phase starts, 

followed by a fed -batch methanol induction phase. 

 

Several limitations to standard P. pastoris methanol fed-batch cultivation arise 

and most of them are attributed to catabolite repression of AOX promoter and 

proteolysis of recombinant proteins (Zhang et al., 2010). AOX1 is catabolite-repressed 

at non-growth-limiting rate, and its activity is much higher at the initial phase of 

methanol induction than later in cultivation. Lysis of cells during cultivation results in 

vacuolar proteases release, as described above. Utilization of methanol as a carbon 

source puts particularly high demands on the oxygen and heat transfer capabilities of 

the bioreactor system, due to high oxygen consumption rates of methanol grown cells 

and high heat generation related to methanol dissimilation (Schilling et al., 2001). 

Moreover, when recombinant proteins are produced at exaggerate levels, it is more 
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likely that proteins with aberrant folding properties or altered glycosylation patterns 

may provoke inefficient product secretion or endoplasmic retention of these molecules. 

This leads to the activation of unfolded protein response (UPR) or endoplasmic 

reticulum associated degradation (ERAD) cell mechanisms, causing lower yield of 

biologically active protein expressed (Vanz et al., 2014). Lower temperature during 

cultivation (20οC) may lead to generally higher stability of proteins and reduced 

degradation mechanisms, resulting in a higher secretion capacity. 
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CHAPTER 3  
 
Materials and Methods  
 

3.1. Equipment - Chemicals 

Equipment available at National Technical University of Athens (NTUA) and Luleå 

Tekniska Universitet (LTU) used in this thesis is listed below 

 pH-meter 537 (WTW, Germany) 

 Systec V-100 (Systec GmbH, Germany) vertical Top Loading Autoclave 

 Eppendorf Thermomixer Comfort Incubator (Eppendorf, Germany) 

 Temperature and agitation controlled water-baths and table incubators 

 Ostwald glass viscometer 

 Anton Paar Physica MCR rheometer (Anton Paar Gmbh, Austria), with a 

parallel plate system with roughened plates 

 Mini-PROTEAN 3 protein electrophoresis cell (BIORAD, U.S.) 

 Floor model incubator shakers ZHWY-211C, ZHICHENG Analytical 

Instruments Manufacturing Co. Ltd (China). 

 Fraction collector (Waters, Millipore, U.S.) 

 Gradient thermal cycler TC-512 TECHNE (U.S.) 

 Low speed lab shaker Orbit LS, Labnet (U.K.) 

 Freeze dryer, Christ ALPHA 1-4, B.Braun Biotec. International, Melsungen, 

(Germany). 

 Electroporation cell Micropulser BIORAD (U.S.) 

 Agarose electrophoresis cell Easigel H1-set, Scie-plas (U.K.) 

 Amicon Ultrafiltration apparatus Stirred Cell Model 8400, 400 mL and PM-10 

membranes (Amicon,  Millipore, U.S.) 

 Gel imaging and analysis system InGenius BioImaging, Syngene  (U.K.) 

equipped with GeneSnap v6.05 and GeneTools v3.06 software.  

 Ultrapure Water Systems Direct-Q (Millipore, U.S.) 

 Low-pressure protein purification system ECONO gradient pump, BIORAD, 

U.S.) equipped with UV detector (280 nm) 
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 ÄKTA Prime Plus liquid chromatography system, equipped with Prime View 

5.31. software (GE Healthcare Life Sciences) 

 3 lt glass autoclavable Applikon bioreactors, equipped with an ez-Control 

system (Applikon Biotechnology B.V., Netherlands) 

 High-performance anion exchange chromatography (HPAEC), with a pulsed 

amperometric detector equipped with a gold electrode (PAD), equipped with a 

CarboPac PA-1 (4 x 250 mm, Dionex) column, Jasco PU 1580i pump (Japan) 

and  Clarity Version 2.3.3.124 software (DataApex, Czech Republic) 

 Refrigerated floor model Centrifuge J-20XP, J2-21 and TJ-6, Beckman Coulter 

(U.S.), ALC 4239R (U.K.) και Eppendorf Brinkmann micro-entrifuge Eppendorf 

3200 (Germany) 

 Tunable Microplate Reader SPECTRAmax 250 (Molecular Devices, U.S.) 

 Spectrophotometer Hitachi UV 2000 

 Novex® XCell SureLockTM Mini-Cell system (Invitrogen, Carlsbad, U.S.) with 

pre-casted Nu-PAGE® Novex 4-12% Bis-Tris gels 

 

Chemicals, which were used in this thesis, were obtained from Merck 

(Darmstadt, Germany), Fluka (Buchs, Switzerland), Sigma-Aldrich (St. Louis, U.S.) 

and AppliChem (Germany). Plastic and glass consumables were obtained from 

Greiner-Bio One (Germany), Sterilin Limited (U.K.), SCHOTT AG (Germany), 

Eppendorf (Gemany), Whatman (U.K.), Millipore (U.S.) και ROTH (U.S.). The 

reagents for molecular biology experiments (enzymes, buffer solutions, nucleotides) 

were obtained from Fermentas (U.S.) New England Biolabs Inc., (U.S.), Takara BIO 

Inc., (Japan), Invitrogen (U.S.) Invivogen (France), Novagen (U.S.), Clontech (U.S.), 

EMD4Biosciences (Germany), Stratagene (U.S.), BIORAD Laboratories (U.S.). DNA 

and RNA Purification and Elution Kits were from Sigma-Aldrich (U.S.) and Qiagen 

(Hilden, Germany).  

All primers were ordered from VBC Genomics (Vienna, Austria). According 

to the manual the lyophilised primers were dissolved with sterile water. After 

incubation for 15 minutes at 65°C the primer stock solution was diluted 1:10 to a 

concentration of 10 mM before it was used for further experiments. All Primers were 

stored at -20°C. 
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3.2. Buffer solutions  

All buffers listed below were prepared with distilled water, apart from those 

used in molecular biology experiments that were used with ultrapure water MilliQ 

(R=18.2 MΩcm-1).  

• DNA extraction solutions  

DNA extraction solution: 0.1 Μ Tris, pH 7.5, 0.7 M NaCl, 10 mM EDTA, 1% (w/v) 

CTAB, 1%(v/v) β-mercaptoethanol 

TE solution: 10 mM Tris-HCl, 1 mM EDTA, pΗ 8.0 

 

• Agarose gel buffers  

TBE (10 X): 108 g/l Tris base, 55 g/l boric acid, 40 mL/l 0.5 M EDTA, pΗ 8.0 

Loading Buffer: 900 μL glycerol 50% (v/v), 100 μL  bromophenol blue 10X 

 

• P. pastoris cultivation media and buffers 

Potassium phosphate buffer (1M): 132 mL of 1M K2HPO4 and 868 mL of 1M KH2PO4 

were combined. The pH was adjusted to 6.0 and was filter sterilized. It was 

stored at 4οC  

10X YNB: 134g yeast nitrogen base with ammonium sulfate and without amino acids 

was dissolved in 1 liter water. 

500X biotin: 20 mg biotin was dissolved in100 water and filter was sterilized. It was 

store at 4οC. 

10X Glycerol: 100 mL glycerol in 900 mL ddH2O 

PTM1 trace salts: 6.0 g cupric sulfate-5H2O, 0.08 g sodium iodide, 3.0 g manganese 

sulfate-H2O, 0.2 g sodium molybdate-2H2O, 0.02 g boric acid, 0.5 g cobalt 

chloride, 20.0 g zinc chloride, 65.0 g ferrous sulfate-7H2O, 0.2 g biotin, 5.0 mL 

sulfuric acid, dH2O to 1 liter 

 

• SDS – PAGE Buffers 

Sample buffer: 3.55 mL 0.25Μ Tris Base pH 6.8, 1.8 mL glycerol 50% (v/v), 1.8 mL β–

mercaptoethanol, 0.71 gr SDS, 2.85 mL bromophenol blue0.1 % (w/v) 
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Gel Running buffer: 3.03 g/l Tris-base, 14.4 g/l glycine, 1 g/l SDS, pΗ 8.3 

Staining solution: 0.4% (w/v) Coomassie G-250, 400 mL methanol, 100 mL acetic acid, 

500 mL ddH2O 

Destaining solution: 200 mL methanol, 100 mL acetic acid,  700 mL ddH2O 

• IEF – PAGE buffers 

Staining solution: 0.02% (w/v) Phast Gel Blue R, 0.1% (w/v) CuSO4, 300 mL methanol, 

100 mL acetic, 600 mL ddH2O 

Destaining solution: 300 mL methanol, 100 mL acetic acid, 600 mL ddH2O 

 

 

3.3. Microbial strains  

1) The thermophilic fungi Sporotrichum thermophile ή Myceliophthora thermophila ATCC 

42464 (DSM No:1799, Germany) as the primary source of genes.  

2) Bacterial strains Esherichia coli TOP10 [F- mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 

nupG] και Esherichia coli TOP10F’ [F´{lacIq Tn10 (TetR)} mcrA Δ(mrr-hsdRMS-

mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL endA1 

nupG]  from Invitrogen. E. coli TOP10 strain was used for cloning of pCR® Blunt 

plasmid (Ιnvitrogen), whereas, TOP10F’ strain for cloning of pPICZαC plasmid 

(Invitrogen). 

3) The methylotrophic yeast Pichia pastoris, X33 (WT strain, Mut+ phenotype) 

(Invitrogen) for the heterologous expression of recombinant proteins.  

 

3.4. Cultivation media and stategies 

The components were dissolved in deionised water and autoclaved at 121°C 

and 0.1 mPa for 20 minutes. When the amount of dextrose was higher than 0,4%, it 

was autoclaved separately. Antibiotics and vitamins were filter sterilized (0.2 μm filter 
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pore diameter) first and added to the media when it had cooled down to a temperature 

of about 55 – 60°C. All media or plates were stored at 4°C. 

• M. thermophila cultures  

Shake flasks liquid medium: 1 g/l Κ2ΗPO4, 0.5 g/l MgSO4.7H2O, 0.1 g/l CaCl2.2H2O, 10 

g/l yeast extract, 1% (w/v) glucose, pH 5.0 

Agar medium: 30 g/l malt extract, 3 g/l peptone, 1.5% (w/v) agar, pH 5.6 

Liquid submerged cultures of M. thermophila were grown in Erlenmeyer flasks, 

volume 250 ml, 45οC, under 180 rpm agitation and incubation for as long as needed in 

order to ensure the efficient biomass production. Cultivation of fungal mycelia on agar 

media was done in slants, at 45οC, for 5-6 days.  

 

• E. coli culture cultures 

LB (Luria Bertani) ± kanamycin: 1% (w/v) NaCl, 1% (w/v) tryptone, 0,5%  (w/v) yeast 

extract, pΗ 7.4 ± 50 μg/mL kanamycin 

LB-agar ± kanamycin: LB with 1.5% (w/v) agar ± 50 μg/mL kanamycin 

LS-LB (low salt LB) ± zeocin: 0.5% (w/v) NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, pΗ 7.4 ± 25 μg/mL zeocin 

LS LB–agar ± zeocin: LB with 1.5% (w/v) agar ± 25 μg/mL zeocin 

E. coli TOP10 and TOP10F’ were cultured at 37οC in LB, when kanamycin was used, 

or in LS – LB, when zeocin was used, as this antibiotic may be inactivated by high 

salinity conditions. After sterilization, LB / LS-LB medium was cooled down in room 

temperature and then was supplemented with antibiotics under sterile conditions. To 

prepare LB agar plates, 15 g L-1 agar was added to the above medium prior to 

autoclave. The LB agar plates containing antibiotic were store at 40 C.  

 

• P. pastoris culture media 

YPD (Yeast extract Peptone Dextrose medium) ± zeocin: 1% (w/v) yeast extract, 2% 

(w/v) peptone, 2% (w/v) dextrose ± 25 μg/mL zeocin 

YPD-agar ± zeocin: YPD with 2% (w/v) agar ± 25 μg/mL zeocin 
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YPDS (Yeast extract Peptone Dextrose Sorbitol medium) ± zeocin: 1% (w/v) yeast extract, 

2% (w/v) peptone, 2% (w/v) dextrose, 1 Μ sorbitol ± 25 μg/mL zeocin 

YPDS-agar ± zeocin: YPDS με 1.5% (w/v) agar ± 25 μg/mL zeocin 

MD (Minimal Dextrose medium)-agar: 1.34% (w/v) yeast nitrogen base (YNB), 2% 

(w/v) dextrose, 4x10-5 % (w/v) biotin και 1.5% (w/v) agar 

MM (Mininal Methanol medium)-agar: 1.34% (w/v) YNB, 4x10-5 % (w/v) biotin, 0.5% 

(v/v) methanol και 1.5% (w/v) agar 

BMGY (Buffered Glycerol complex medium): 1% (w/v) yeast extract, 2% (w/v) peptone, 

100 mM phosphate buffer, pΗ 6.0, 1.34% (w/v) YNB: 4x10-5% (w/v) biotin, 1% 

(v/v) glycerol 

BMMY (Buffered Methanol complex medium): 1% (w/v) yeast extract, 2% (w/v) peptone, 

4×10-5% (w/v) biotin, 0.5% (v/v) methanol 

BSM (Fermentation Basal Salts Medium): 85% (26.7 ml) phosphoric acid, 0.93 g calcium 

sulfate, 18.2 g potassium sulfate, 14.9 g magnesium sulfate-7H2O, 4.13 g 

potassium hydroxide, 30 g glycerol, dH2O to 1 liter + 4.35 ml PTM1 trace salts 

 

 

Figure 3.1. Cultivation of P. pastoris in shake flasks 

Cultivation of P. pastoris was performed under continuous agitation (200 rpm), 

at 28 - 30οC, in YPD, in Erlenmeyer shake flasks (liquid cultures) or in YPD-agar 

plates. After electroporation, the cells were streaked out on YPDS-agar plates 

containing 100 μg mL-1 of zeocin and sorbitol which increases the viability of cells, 

and incubated at 30οC for 72 hours.  MM and MD media were used for screening of 
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transformants. Small scale liquid cultures were performed in BMGY and BMMY 

media. One single P. pastoris colony harboring the recombinant gene was cultivated in 

BMGY medium for 18-24 hours, at 30°C in a shaker (200 rpm) and then inoculated 

into the production medium BMMY reaching OD600=1. When stock cultures were 

prepared, P. pastoris strains containing the recombinant genes were grown in YPD 

medium over night. Then, culture was centrifuged, cells were collected and 

resuspended in YPD containing 15% (v/v) glycerol, to a final OD600 = 50-100 

(approximately 2.5 – 5.0 × 109 cells/mL). The mixture was frozen in liquid nitrogen 

and stored at -80οC. 

Cultivation of P. pastoris cells in high cell-density fermentation was performed in 

the basal salts medium (BSM), as described in the Pichia fermentation guidelines 

provided by Invitrogen (Invitrogen, Pichia Fermentation Process Guidelines). The 

engineered P. pastoris from the frozen glycerol stock was inoculated into BMGY 

medium in a baffled flask containing a total of 5-10% of the initial fermentation volume. 

The culture was grown overnight at 30°C and 200 rpm. The fermenter was sterilized 

with the fermentation Basal salts medium containing 3% glycerol. After sterilization 

and cooling, temperature was set to 28°C, agitation and aeration were adjusted to 

operating conditions, 800 rpm and 4 vvm , respectively. pH of the fermentation 

medium was adjusted to 5.0 with 28% ammonium hydroxide (undiluted ammonium 

hydroxide). The fermentation medium was supplemented aseptically with 4.35 mL of 

PTM1 trace salts per liter of the fermentation medium.  

 

Figure 3.2. Fermentation of Pichia pastoris recombinant strains in Applikon bioreactor, 

equipped with an ez-Control system (Applikon Biotechnology B.V., Netherlands). 

Glycerol and methanol feeding was performed with Alitea XV pump with MasterFlex 

96400 L/S 14 silicon tube (glycerol) and PharmaMed 0.51mm (methanol).  
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The fermenter was inoculated with the culture generated in the propagation 

shake flask to 10% of initial fermentation volume. After 24 hours of batch fermentation 

in glycerol medium, the end of glycerol batch was indicated by a sharp increase in the 

dissolved oxygen (DO) tension. This stage was followed by a 5-hour step of fed-batch 

glycerol one; during this step 50% w/v glycerol, with PTM1 salts was fed at an initial 

flow-rate of 12 mL/h/lt of culture medium and was reduced gradually until it was fully 

consumed. At the same time, temperature was reduced from to 28οC to 25οC and finally 

to 23οC and 2 mL of methanol were added manually in small aliquots with syringe. 

Total consumption of glycerol was again indicated by a spike in the DO. At the onset 

of methanol fed-batch phase, casamino acids solution was added at a final concentration 

of 3 g/lt and then, a feed of 100% MeOH, with PTM1 was initiated at a flow rate of 1.9 

mL/h/lt. The methanol consumption rate was monitored indirectly by stopping the 

feed and checking the “lag phase”, while increasing the methanol feed rate manually. 

After 8h, feed rate was adjusted to a maximum of 5,46 mL/h/lt and maintained for 

~20h, causing extracellular expression of the recombinant enzyme into the 

supernatant.. Then, the temperature was decreased to 21οC and pure oxygen supply 

was set to maintain dissolved oxygen levels between 60-30 %. Induction time lasted 

approximately 145-170h in total. Sampling was performed at the end of each stage and 

twice daily. 10 mL samples were taken for each time point. Samples were analyzed for 

cell growth (OD600 and wet cell weight), protein concentration and enzyme activity.  

 

Figure 3.3. Typical schematic representation of parameters during P. pastoris 

fermentation (green: dissolved oxygen, red: temperature, light blue: agitation).  
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3.5. Plasmid vectors 

  In this study, plasmid vector pCR® Blunt (Invitrogen) was used for 

transformation of bacterial cells E. coli TOP10 and vector pPICZaC (Invitrogen) for 

transformation of E. coli TOP10F’ and P. pastoris yeast cells. 

• pCR® Blunt (Invitrogen) 

The plasmid vector pCR® Blunt (3512 bp) enables the cloning of DNA 

fragments carrying blunt ends, so it is appropriate for the direct cloning of PCR 

products. Insertion place is located between LacZa and ccdB genes. The ccdB (control 

of cell death) gene is interrupted when the gene of interest is inserted, enabling only 

the recombinant bacterial cells containing that gene to grow after transformation. The 

expression vector contains a kanamycin and a zeocin resistance gene that both allow 

selection for positive transformants that are resistant to zeocin.  

 

 

 

 

 

 

 

 

 

Figure 3.4.  Gene map of the plasmid vector pCR® Blunt (3512 bp).  
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• pPICZαC (Invitrogen) 

Among all commercial vectors that are used for expression of recombinant 

protein in P. pastoris, pPICZαC was selected to transfer the agu1 gene into P. pastoris 

The pPICZαC expression cassette contains a copy of α-mating factor (α- MF) signal 

sequence before the multicloning site, which leads to secretion of the recombinant 

protein. This vector also carries the 5´ AOX1 promoter The pPICZαC expression 

vector contains a zeocin resistance gene that allows selection for positive 

transformants that are resistant to zeocin. The short length of the pPICZαC ( 6kb) 

allows for efficient transformation an contributes to prepare stable expression strains 

compared to larger expression vectors developed for transformation into the P. 

pastoris (Daly and Hearn, 2005). 

The alpha–mating factor pre-pro leader sequence (α-MF) consists of two 

regions, namely the pre and pro sequences. The pre-sequence contains a 19 amino acid 

signal peptide and the prosequence consists of a 60 amino acids. Upon translation, the 

pro-protein is translocated into the endoplasmic reticulum, while the signal peptidase 

cleaves the signal peptide sequence off the protein. For further processing the pro-

protein is carried to Golgi where kex2 protease removes the pro-sequence prior to 

secretion of the mature protein into the extracellular media (Brake, et al., 1984).  

 

 

 

 

 

 

 

Figure 3.5.  Gene map of the plasmid vector pPICZaC (3598 bp).  

5 ́ AOX1 is a 942 bp fragment containing the AOX1 promoter that allows methanol-inducible, high-
level expression in Pichia cells, target plasmid integration to the AOX1 locus and allows the 
insertion of expression cassette via homologous recombination.  
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Multiple cloning site with 10 unique restriction sites allows insertion of gene of interest into the 
expression vector 

C-terminal myc-epitope tag (Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu-Asn) permits detection 
of the fusion protein by the respective antibody, in case this is necessary. 

C-terminal polyhistidine tag permits rapid purification of recombinant fusion protein through one 
step affinity chromatography on metal-chelating resin  

AOX1 Transcription Termination (TT) is the native transcription termination and 
polyadenylation signal from AOX 1 gene (~260 bp) that permits efficient 3 ́ mRNA processing, 
including polyadenylation, for increased mRNA stability 

TEF1 promoter is referred to transcription elongation factor 1 gene promoter from Saccharomyces 
cerevisiae that drives expression of the Sh ble gene in Pichia, conferring Zeocin™ resistance 
(GenBank Acc. no. D12478,D01130). 

EM7 (synthetic prokaryotic promoter) is a constitutive promoter that drives expression of the Sh ble 
gene in E. coli , conferring Zeocin™ resistance Sh ble gene (Streptoalloteichus hindustanus ble gene) 
Zeocin™ resistance gene for selection in E. coli  

CYC1 transcription termination region is the 3 ́ end of the Saccharomyces cerevisiae CYC1 gene 
that allows efficient 3 ́ mRNA processing of the Sh ble gene for increased stability (GenBank Acc. no. 
M34014) 

pUC origin allows replication and maintenance of the plasmid in E. coli  

SacI, PmeI, BstX I sites represent unique restriction sites that permit linearization of the vectors at 
the AOX1 locus for efficient integration into the Pichia genome 

 

3.6. DNA molecular techniques 

3.6.1. DNA extraction methods 

At the end of each procedure, DNA concentration was determined by 

measuring the OD260 nm (Sambrook et al., 1989) and foolowing the equation:  

CDNA = [(OD260nm × 50 × dilution) / 1000] (μg/μL) 

as DNA concentration equal to 50 μg DNA/mL of solution corresponds to 

OD260nm=1. In order to determine the purity of DNA sample, the ratio OD260nm/ 

OD280 nm was calculated. OD280nm measurement is indicative of protein content of 

a sample, so increased ratio corresponds to protein free samples.  
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• DNA extraction from M. thermophila  

DNA extraction from therophilic fungus M. thermophila was performed 

according to protocol instructions from Sigma – Aldrich, GenElute ™ Plant, Genomic 

DNA Miniprep Kit. Submerged fungal cultures were incubated for 48h in glucose 

containing medium, then biomass was collected via filtration, freeze-dried, was ground 

vigorously and milled 0.1 g of powder were used for DNA extraction.  

• Plasmid DNA extraction 

Plasmid DNA extraction was performed according to protocol instructions 

from Fermentas, GeneJET™ Plasmid Miniprep Kit, which is based on binding of 

plasmid DNA on the silica membrane in the spin column, removal of contaminants 

and subsequent elution with a small volume of the 10 mM Tris-HCl, pH 8.5.   

• DNA extraction from agarose gel 

DNA extraction from agarose gel is a procedure necessary when PCR reaction 

product contains more than one sequences, so the gene of interest must be separated 

from the mixture. It includes the removal of agarose particles and isolation of the 

nucleic sequence for the subsequent cloning and other molecular techniques. In this 

study, DNA extraction from agarose gel was performed following the instructions of 

Macherey-Nagel, Nucleospin Gel Clean up kit. For better results, high-purity agarose 

gel was used (Seakem® Gold Agarose, Cambrex Bio Science Rockland, Inc., 

Danemark). 

3.4 Polymerase Chain Reaction-PCR 

In the present thesis, PCR reactions were performed at TC-512 

thermocycler (TECHNE, U.S.). Annealing temperature was set according to  nucleic 

sequences melting temperature (Tm), following the equation Tm = 2×(A+T) + 

4×(G+C), where A,G,C,T represent adenine, guanine, cytocine and thymine. Primers 

Tm was defined by Eurofins MWG Operon (Germany).  High-fidelity KOD Hot Start 

(Novagen) polymerase from Thermococcus kodakarensis was used. The enzyme exhibits 

proofreading activity to avoid mismatches.  
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 Target gene length 

 < 500 bp 500 - 1000 bp 1000 - 3000 bp > 3000 bp 

Polymerase 
activation 95oC, 2 min 95oC, 2 min 95oC, 2 min 95oC, 2 min 

Denaturation 95oC, 20 sec 95oC, 20 sec 95oC, 20 sec 95oC, 20 sec 

Annealing 58οC, 10 sec 58οC, 10 sec 58οC, 10 sec 58οC, 10 sec 

 Extension 72oC, 10 s/kb 72oC, 15 s/kb 72oC, 20 s/kb 72oC, 25 s/kb 

Final 
extension  72oC, 1 min 72oC, 1 min 72oC, 1 min 72oC, 1 min 

 

Table 3.1. Polymerase chain reaction conditions depending on the length of the 

target gene. The enzyme used was high-fidelity KOD Hot Start (Novagen), from 

Thermococcus kodakarensis.  PCR reaction takes place for 20 - 40 cycles. When genomic 

DNA is used as template, increased number of cycles is necessary, as the target gene is 

contained in lower amount, whereas when plasmid DNA is used, fewer cycles can be 

used. In case of overlapping PCR, more cycles ensure efficient product concentration, 

which is crucial for the successful subsequent transformation experiments.  

 

Polymerase 1 μL (1 U/μL) 

DNA 5 μL (10-500 ng) 

Primer 1 1 μL (50 pmol) 

Primer 2 1 μL (50 pmol) 

dNTPs mix 5 μL (8 mM) 

MgSO4 (25mM) 3 μL  
Buffer solution 5 μL (10×) 

Ultrapure Η2Ο 29 μL 
 

Table 3.2. Composition of Polymerase Chain Reaction mixture for the amplification 

of DNA fragments. Final reaction volume is 50 μL. 
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3.6.2. Restriction enzymes  

 Restriction enzymes for double-cut restriction analysis, as well as linearization 

of plasmid vectors that were used in this thesis are listed below. Digestion and 

linearization reactions were performed according to Takara’s protocols (Japan).  

Restriction 
enzyme Source organism Restriction site 

ClaI Caryophanon latum  

XbaI Xanthomonas badrii  

SacI Streptomyces achromogenes  

PmeI Pseudomonas mendocina 
 

Table 3.3. Restriction enzymes that were used in this thesis and their action sites. 

 

Restriction enzymes ClaI and XbaI Restriction enzyme SacI and PmeI 

Plasmid vector / gene 5 μL  Plasmid vector / gene  80 μL 

buffer (10x) 2 μL  buffer (10x) 10 μL 
Restriction enzyme 1 μL  Restriction enzyme 5 μL 

Ultrapure water 12 μL Ultrapure water 5 μL 
 

Table 3.4. Composition of Digestion and Linearization reaction mixtures. Digestion 

with ClaI and XbaI was performed to provide sticky complementary ends for the 

subsequent ligation of the DNA gene of interest and the appropriate plasmid vector. 

The enzymes were also used for restriction analysis in order to confirm the insertion 

of gene of interest after ligation. SacI and PmeI enzyme were used for the linearization 

of plasmid vectors before transformation of P. pastoris cells through electroporation.  
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3.6.3. Ligation reactions 

Digested DNA fragments were mixed with the linearized vector in the 

presence of T4 DNA ligase from Fermentas (Maryland, USA). The ligation reaction 

set up was according the manufacturer’s instructions. The ligation mixtures were 

incubated overnight at room temperature. Ligation products were used for 

transformation into pCR® Blunt or pPICZaC vectors according to Zero Blunt® PCR 

Cloning Kit and pPICZa Cloning kit (Invitrogen).  

 

pCR® – Blunt  (25 ng) 1 μL 

PCR product 5 μL 
Buffer (10×) 1 μL 
Ultrapure water 2 μL 

Ligase  (4U/μL) 1 μL 
 

Table 3.5. Composition of Ligation reaction mixture for the insertion of gene to the 

plasmid vector pCR® Blunt. Incubation takes place at 160C for 1-2 hours. Final 

reaction volume is 10 μL. 

 

 
1:3 1:5 1:7 

Control 
1 

Control 
2 

pPICZaC  
(100 - 200 ng) 1 μL 1 μL 1 μL 1 μL 1 μL 
DNA fragment  3 μL 5 μL 7 μL --- --- 
Buffer (10×) 2 μL 2 μL 2 μL 2 μL 2 μL 
Ultrapure water  13 μL 11 μL 9 μL 16 μL 17 μL 
Ligase (4U/μL) 1 μL 1 μL 1 μL 1 μL --- 

 

Table 3.6. Composition of Ligation reaction mixture for the insertion of gene to the 

plasmid vectorpPICZaC. Incubation takes place at 160C for 3-4 hours. Final reaction 

volume is 20 μL. 
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• Τransformation of E. coli competent cells 

500 μL of competent cells E.coli were supplemented with 1 μl of the appropriate 

vector. The mixture was incubate for 30 min on ice before thermal heat shock at 42οC 

for 90 sec. Immediately, the transformation tube was incubated on ice for additional 10 

minutes and 1mL LB medium was added. Cells were incubated at 37οC and 200 rpm 

for 1 hour and then streaked on LB agar plates containing 50 / 100 μg mL-1 

kanamycin / zeocin respectively. Plates were incubate at 30οC overnight and positive 

transformant cells were selected.   

 

• Transformation of P. pastoris by electroporation 

Electric pulses of intensity in kilovolts per centimeter and of duration in 

microseconds to milliseconds cause a temporary loss of the semi -permeability of cell 

membranes, thus leading to ion leakage, escape of metabolites, and increased uptake 

by cells of drugs, molecular probes, and DNA. A generally accepted term describing 

this phenomenon is "electroporation." (Tsong, 1991).  Electroporation has found many 

applications, such as introduction of plasmids or foreign DNA into living cells for 

gene transfections, fusion of cells to prepare heterokaryons, hybridoma etc., insertion 

of proteins into cell membranes, improving drug delivery and hence effectiveness in 

chemotherapy of cancerous cells and alteration of genetic expression in living cells 

(Dower et al., 1988).  In P. pastoris, electroporation is used for the insertion of 

recombinant plasmid vectors carrying the gene of interest, causing the subsequent 

production of the heterologous protein from the yeast cells. This method is more 

effective than other methods of chemical transformation and leads to higher yield of 

living transformed cells (103 – 104 cells/μg linearized DNA).  

P.pastoris X33 was grown overnight, in shake flasks, in YPD medium at 

30οC and 180 rpm in a rotary shaker. Cells were harvested for electroporation 

according to the Invitrogen protocol (Cat. no.V195-20, version F) and resuspended in 

1 mL of 1 M ice cold sorbitol. The linearized vectors were mixed with the 

resuspended cells and then transferred to an electroporation cuvette, which was then 

incubated on ice for 5 min. The BIO-RAD electroporation device’s parameters were 
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adjusted to P. pastoris set up. Cells were pulsed and then 1 mL of 1 M ice cold sorbitol 

was added to the electroporation cuvette. Contents of the cuvette were transferred to 

a 15 mL Falcon tube and incubated at without shaking for 2 hours. Finally the cells 

were streaked out on YPDS agar plates containing 100 μg mL-1 of zeocin and 

incubated at for 72 hours. Zeocin resistant colonies were selected and grown 

overnight, in shake flasks, in YPD medium containing 100 μg mL-1 of zeocin at 30οC. 

Cells were harvested at 12000 rpm and their genomic DNA were isolated by phenol 

chloroform method and amplified by PCR through AOX forward and reverse primers 

to verify the recombination of the expression cassette into the Χ33 strains genome. 

Then the PCR products were ran on gel electrophoresis.  

 

 

Figure 3.6. Schematic representation of plasma cell membrane during electroporation. 

Application of electric pulse leads to increase of permeability through small diameter 

pores, that close immediately after allowing the insertion of linearized plasmid DNA. 

 

4.1.4. Immobilized Metal Affinity Chromatography, IMAC 

 IMAC was introduced in 1975 as a group-specific affinity technique for 

separating proteins (Porath et al., 1975). The principle is based on the reversible 

interaction between various amino acid side chains and immobilized metal ions. 

Depending on the immobilized metal ion, different side chains can be involved in the 

adsorption process. Most notably, histidine, cysteine, and tryptophan side chains have 

been implicated in protein binding to immobilized transition metal ions and zinc 

Α Β Γ 
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(Sulkowski, 1985; Zhao et al., 1991). TALON Resin is cobalt-based IMAC resin 

designed to purify recombinant polyhistidine-tagged proteins (Bush et al., 1991); it is 

compatible with many commonly used reagents and allows protein purification under 

native or denaturing conditions.  

  

Figure 3.7. Schematic diagram of the TALON IMAC System. (left) Part A. TALON 

Metal Affinity Resin; A Sepharose bead bearing the tetradentate chelator of the Co2+ 

metal ion. Part B. The polyhistidine-tagged recombinant protein binds to the resin. 

(right) ÄKTA Prime Plus liquid chromatography system, equipped with Prime View 

5.31. software (GE Healthcare Life Sciences).  

In this thesis, IMAC column containing 15 mL Talon Metal Affinity Resin 

(Clontech, U.S.) was initially equilibrated with 300 mL Talon buffer 1X with flow rate 

2.5 mL/min. Sample containing the histidine-tagged protein in excess was loaded 

onto the column at a flow rate 1 mL/min. Column was washed with 300 mL Talon 

buffer 1X, or until the OD280nm reached the baseline indicating that all non-histidine 

tagged proteins had been eluted. Then, a linear gradient from 0 to 100 mM imidazole 

in 20 mM Tris-HCl buffer containing 300 mM NaCl (60 ml, pH 8.0) was applied at a 

flow rate of 2 ml/min. Fractions (2 ml) containing the protein of interest were 

concentrated and the homogeneity of was examined on a SDS-PAGE.   
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CHAPTER 4  
 
The lignocellulolytic system of Myceliophthora thermophila  
(PAPER I) 
 

 

The filamentous fungus Myceliophthora thermophila constitutes an exceptionally 

powerful cellulolytic microorganism that synthesizes a complete set of enzymes 

necessary for the breakdown of plant cell wall. The genome of this fungus has been 

recently sequenced and annotated, allowing systematic examination and identification 

of enzymes required for the degradation of lignocellulosic biomass. In this chapter, an 

overview of the cellulolytic and hemicellulolytic potential of this fungus regarding the 

degradation of plant cell wall material will be given, revealing the existence of an 

expanded enzymatic repertoire including numerous enzymes with auxiliary activities, 

covering the most of the recognized CAZy families (Table 4.1*). All sequences used in 

this study were extracted from Genome Portal database (http://genome.jgi-psf.org) 

and the continually updated CAZy database (http://www.cazy.org/; Lombard et al., 

2014). The conserved domains were found with Pfam/InterProscan (Punta et al., 2012; 

http://pfam.sanger.ac.uk/), while the theoretical molecular mass and isoelectric point 

for each protein were calculated using the ProtParam tool of ExPASY 

(http://web.expasy.org/protparam/). Predicted secretome was extracted using 

SignalP v4.0 (http://www.cbs.dtu.dk/services/SignalP/). Post-translational 

glycosylation sites were predicted with NetNGlyc 1.0 server 

(http://www.cbs.dtu.dk/services/NetNGlyc/) and NetOGlyc 3.1 server 

(http://www.cbs.dtu.dk/services/NetOGlyc/). These data offer a better understanding 

of activities embedded in fungal lignocellulose decomposition mechanisms and suggest 

that M. thermophila could be made usable as an industrial production host for 

cellulolytic and hemicellulolytic enzymes. 

 

 

 

 

* Tables are provided at the end of this Chapter. 
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4.1. The Cellulolytic system of M. thermophila 

 

The cellulolytic system of M. thermophila consists of a repertoire of enzymes 

with endoglucanase (EG), cellobiohydrolase (CBH) and β-glycosidase (BGL) activity.  

Throughout the genome of this fungus, there are eight sequences encoding EG 

activity, seven sequences of CBH activity and nine sequences of BG activity (Figure 

4.1; Table 4.2*). The theoretical average molecular weight of the translated proteins is 

calculated at 51.05 ± 16.2 kDa and the theoretical pI at 5.58 ± 0.3. EGs are distributed 

to families GH5, 7, 12, and 45, all predicted to possess a secretion signal and several N- 

and O-glycosylation sites. Only two of them exhibit a CBM that belong in family 1. 

CBHs represent three non-reducing acting enzymes of GH6 family and four reducing-

end acting enzymes of GH7 family. All of these enzymes seem to be targeted to 

secretion pathway and modified with glycans during post-translational modifications. 

BGs are classified to GH3 family, except one GH1 sequence, while none of them 

exhibit a CBM, as expected. Four are secreted and have potential N- and O-

glycosylation sites, showing the highest molecular weight compared to the other 

cellulases, with a theoretical average value of 85.18 ± 3.2 kDa. 

 
Figure 4.1. Distribution of cellulolytic enzymes of M. thermophila throughout eight 

GH families. Other activities refer to β-xylosidase (GH3), β-1,6-galactanase, β-1,3-

glucanase, endo-1,4-beta-mannosidase or putative proteins with unknown function 

(GH5). GH74 represents xyloglucan specific 1,4-endoglucanase/xyloglucanase. 

* Tables are provided at the end of this Chapter. 
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Totally, 12 cellulases have been isolated and characterized (Table 4.3*). The 

group of Bukhtojarov et al. (2004) investigated the properties of individual cellulases 

from the multienzyme complex produced by a mutant strain of M. thermophila C1 

(Visser et al., 2011). Among EGs, the highest saccharification activity was displayed by 

EG60 and EG51, representing enzymes of 60 and 51 kDa, respectively, which 

exhibited pI values of 3.6 and 5.0, respectively. It has been shown later that the EG51 

and EG60 represent the GH5 and GH7 EGs from M. thermophila, respectively, 

(Gusakov et al., 2011). A different EG (StCel5A) displays a typical GH5 domain, 

exhibiting optimal activity at pH 6.0 and 70°C and retained greater than 50% of its 

activity following 2 h of incubation at 55°C, diluted in 10 mM citrate buffer pH 4.5 

(Tambor et al., 2012). Two EG genes, belonging to GH7 and GH5 families were 

functionally expressed in methylotrophic yeast P. pastoris and subsequently 

characterized, as described in Chapter 5 and Chapter 7 of this thesis respectively. 

Substrate specificity analysis revealed that the GH7 EG enzyme is one of the most 

thermostable fungal enzymes reported up to now and exhibits high activity on 

substrates containing β-1,4-glycosidic bonds as well as activity on xylan-containing 

substrates (Karnaouri et al., 2014). Moreover, MtEG7a was proved to liquefy rapidly 

and efficiently pretreated wheat straw, indicating EGs' key role to the initial step of 

hydrolysis of high-solids lignocellulose substrates (Karnaouri et al., 2014). This change 

in viscosity of these substrates is probably due to the gradual reduction of the average 

chain length of cellulose polysaccharides by endo-acting enzymes, such as 

endoglucanases.  

Totally, four CBHs and two BGs have been isolated from M. thermophila crude 

supernatant and studied. CBH IIb is the product of MYCTH_66729 gene that 

represents an enzyme of GH6 family, which is attached to polysaccharide substrate 

through a CBM and exhibits high levels of activity in comparison to other CBHs 

(Gusakov et al., 2007). In the same study, the isolation of CBH Ib, a GH7 family 

enzyme (MYCTH_2140736) is reported, which acts mainly against microcrystalline 

cellulose and CMC. Bukhtojarov et al. (2004) studied the properties of CBH Ia and 

CBH IIa, which are classified to GH7 and GH6 family, respectively. CBH Ia is the 

product of MYCTH_109566 gene, and seems to be expressed in two isoforms with 

distinct molecular weights, one exhibiting the catalytic domain owing a CMB and the 
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other only the catalytic domain and part of the linker, after proteolysis. This enzyme is 

produced as a major protein of fungi's secretome (20–25% of the total extracellular 

protein) and adsorbed strongly on microcrystalline cellulose. It has been shown that 

there is a significant synergism between CBH IIb and CBH Ia enzymes during 

substrate hydrolysis (Gusakov et al., 2007). The MYCTH_66729 and MYCTH_109566 

genes encoding the two enzymes belonging to GH6 and EG7 families respectively 

were functionally expressed in methylotrophic yeast P. pastoris and subsequently 

characterized, as described in Chapter 7 of this thesis. 

Apart from the enzymes with cellulolytic activity, M. thermophila was found to 

produce an exo-β-1,4-glucanase (Xgl74A) that catalyzes the hydrolysis of (1-4)-D-

glucosidic linkages in xyloglucans aiming in the successful removal of oligosaccharides 

from the chain end (Grishutin et al., 2004). The enzyme exhibits high specific activity 

toward tamarind xyloglucan, and very low or absent activity against 

carboxymethylcellulose (CMC) and barley β-glucan. Due to its unique substrate 

specificity the enzyme was given a new number in the Enzyme Nomenclature (EC 

3.2.1.155). Apart from Xgl74A, two out of the seven cellulases reported from M. 

thermophila (Cel12A and Cel45A) possess a notable activity against xyloglucan, 

together with their major activities toward CMC and barley β-glucan (Bukhtojarov et 

al., 2004). 

 

4.2. The Hemicellulolytic system of M. thermophila 

As described in Chapter 2, hemicellulose polymers have a much more diverse 

structure than cellulose and consequently several enzymes are needed to completely 

degrade the polysaccharide into monosaccharides. M. thermophila's hemicellulase genes 

are organized in 8 GH families (3, 10, 11, 30, 43, 51, 62, and 67) (Figure 4.2) and nine 

carbohydrate esterase (CE) families (1, 3, 4, 5, 8, 9, 12, 15, and 16) (Figure 4.3). Many 

of the encoding proteins have been isolated from the WT (wild type) culture 

supernatant or expressed in heterologous hosts and finally characterized in terms of 

specific activity and physicochemical properties. The majority of them are predicted to 

follow the secretion pathway, while modified with N- and/or O- glucans, comprising a 
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total amount of 66 enzymes that act synergistically for the degradation of 

hemicellulose. 

 
Figure 4.2. Distribution of hemicellulolytic enzymes of M. thermophila throughout nine 

GH families. Other activities refer to β-glycosidase (GH3), xylanase with endo-exo 

mode of action and xylobiohyrolase (GH30), and galactan 1,3-beta-galactosidase 

(GH43).  

 

Xylanases / Xylosidases 

For the degradation of xylan, the genome of M. thermophila encodes totally 12 

xylanases with endo- mode of activity, classified to GH 10 and 11 and four xylosidases, 

classified to GH3 and 43 families (Table 4.4*). All aforementioned xylan-degrading 

translated sequences, apart from three, are predicted to exhibit a potential secretion 

signal. Xylanases possess 1-3 N-glycosylation and several O-glycosylation sites; 

whereas more N-sites are predicted for xylosidases, though not all of them are 

glycosylated during post-translational modifications. GH family 30 contains two genes 

encoding xylanolytic enzymes with endo-exo activity and one sequence for a 
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characterized xylobiohydrolase, releasing xylobiose units from the substrate (Emalfarb 

et al., 2012). 

Ten xylanases have been purified and characterized from multienzyme 

preparations of M. thermophila modified strains (Ustinov et al., 2008; van Gool et al., 

2013). Four of them, belonging to GH10 family (Table 4.5*), are the products of two 

genes, either with the presence of a family 1 CBM or displaying only the catalytic 

domain after partial proteolytic digestion (Ustinov et al., 2008). These enzymes, 

thought classified to the same family, can hydrolyze different types of decorated xylans. 

They differ in degradation of high and low substituted substrates and the substitution 

pattern seems to be an important factor influencing their efficiency (van Gool et al., 

2012). Six xylanases, belonging to GH11 family, represent true xylanases, with high 

specific activities against glucuronoxylans and arabinoxylans. Four of these enzymes 

exhibit lower thermostability in comparison to GH10 xylanases, in which extended 

glycosylation has been noticed (Ustinov et al., 2008). One showed a substrate specificity 

pattern similar to GH10 enzymes and secreted in two forms, with or without CBM 

(van Gool et al., 2013). 

 
Figure 4.3. Distribution of hemicellulolytic enzymes of M. thermophila throughout nine 

CE families. Family CE4 is comprised of putative proteins with polysaccharide 

deacetylase activity, CE5 of cutinases and CE8, 12 of pectin esterases. ND (not 
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determined) refers to sequences encoding putative proteins with unknown activity 

which are not classified to a specific family. 

 

Esterases 

The role of esterases in the breakdown of lignocellulosic material is complex and 

includes the cleavage of bonds between the main hemicellulose part and many types of 

side chains. So, upon a closer examination of the genome sequences of M. thermophila, 

there is a wide distribution of enzymatic activities through CE families. These enzymes 

are classified into nine families and their main activities, among others, include the 

hydrolysis of feruloyl and acetyl ester bonds. 

Feruloyl esterases (FAEs; EC 3.1.1.73) are enzymes responsible for cleaving the 

ester-link between the polysaccharide main chain of xylans and monomeric or dimeric 

ferulates. They act synergistically with xylanases to release ferulic acid from cell-wall 

material and can be divided into four groups, namely A–D. The main difference 

between groups A and D is their substrate specificity toward synthetic substrates and 

their capability of liberating diferuloyl bridges (Crepin et al., 2004). One of the first 

FAEs reported from thermophilic fungi, was produced from M. thermophila under solid-

state fermentation (SSF) conditions. The esterase activity was isolated and partially 

characterized for its ability to release ferulic acid from complex substrate, destarched 

wheat bran (Topakas et al., 2003). Two other FAEs, StFaeB, a protein with molecular 

weight of 66 kDa (homodimers of 33 kDa) (Topakas et al., 2004) and StFaeC, 46 kDa 

(homodimers of 23 kDa) (Topakas et al., 2005), were purified to homogeneity from 

culture supernatants of M. thermophila. StFaeB hydrolyzed methyl p-coumarate, methyl 

caffeate and methyl ferulate and was active on substrates containing ferulic acid ester 

linked to the C-5 and C-2 linkages of arabinofuranose. StFaeC showed maximum 

catalytic efficiency on 4-hydroxy-3-methoxy cinnamate, a substrate with both hydroxyl 

and methoxy substituents, indicating that it may be the most promising type of FAE as 

a biocatalyst for the enzymatic feruloylation of aliphatic alcohols, oligo- and 

polysaccharides. Properties of characterized FAEs are summarized in Table 4.6*. 

Among the sequences registered to Genome Portal, there are four sequences encoding 
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proteins with catalytic activity of FAE, all belonging to CE family 1. Two of them 

(MYCTH_48379, MYCTH_39279) seem to be identical with characterized FAEs 

secreted from M. thermophila C1 strain (Kühnel et al., 2012). One sequence (JDI ID: 

96478) has been heterologously expressed in P. pastoris and encoded a 39 kDa protein 

(fae1A; MtFae1a), which showed high activity toward methyl caffeate and p-coumarate 

and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate (Topakas et 

al., 2012). In addition, MtFae1 esterase releases ferulic acid from destarched wheat bran 

only by the synergistic action of an endo-xylanase (a maximum of 41% total ferulic acid 

released after 1 h incubation). MYCTH_2302953 sequence has not yet been 

characterized; however it still shows 66% identity with a type B FAE from Neurospora 

crassa (CAC05587.1). All proteins encoded by the above sequences appear to be 

secreted and bring several N- and O-glycosylation sites, as shown in Table 4.7*. 

About 60–70% of the xylose residues in hardwood xylan are acetylated at the C2 

and/or C3 positions (Lindberg et al., 1973). The complete degradation of acetylated 

xylans by microbes requires the action of acetyl esterases (AcEs; EC 3.1.1.72), which 

cleave acetyl side groups from the heteroxylan backbone, and act in synergy with other 

hemicellulases (Tenkanen et al., 1996). Eight sequences that encode proteins with AcE 

activity were detected in the genome of M. thermophila and showed identity with 

characterized enzymes. All of them are secreted, as predicted with SignalP and belong 

to CE families 1, 3, 5, 16 (Table 4.7*). Two of them, Axe2 and Axe3, which bare 

members of CE5 and CE1 families, respectively, were isolated and characterized 

(Pouvreau et al., 2011a). Annotated genes, encoding the putative enzymes were cloned 

into the specially designed M. thermophila C1-expression host (Verdoes et al., 2010) and 

over-produced in the culture medium. Axe2 and Axe3 are able to hydrolyze acetyl 

groups when they are substituted to the O-2 and O-3 positions of acetylated xylo-

oligosaccharides and complex insoluble polymeric substrates and had a preference for 

xylooligosaccharides (Pouvreau et al., 2011a). 

Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to 

play an important role in the dissociation of lignin from hemicellulose and cellulose by 

cleaving the ester bonds between the aromatic alcohols of lignin and the carboxyl 

groups of 4-O-methyl-D-glucuronic acid residues in glucuronoxylan (Špániková and 
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Biely, 2006). Sequence alignment studies of these enzymes have revealed a novel 

conserved amino acid sequence G-C-S-R-X-G that features the characteristic serine 

residue involved in the mechanism of this esterase family. It has been shown that the 

mode of action probably involves a nucleophilic serine (Topakas et al., 2010). The 

genome of M. thermophila possesses two genes classified to family CE15 that encode 

proteins with activity of 4-O-methyl-glucuronoyl esterase. Both putative enzymes are 

secreted and have potential glycosylation sites. The first GE (StEG1), isolated from the 

culture filtrate of M. thermophila, was proved to be a thermophilic enzyme that presents 

a C-terminal CBM, which was active on substrates containing glucuronic acid methyl 

ester (Vafiadi et al., 2009). Another CE15 protein molecule, StGE2 was heterologously 

expressed in yeast P. pastoris and was used to prove that nucleophilic serine residue is 

responsible for catalytic action of GEs, through site-directed mutagenesis studies 

(Topakas et al., 2010) and crystal structure determination (Charavgi et al., 2013). 

Mannan-degrading enzymes 

Mannan is a great component of hemicellulose, therefore, as expected the 

lignocellulolytic toolbox of M. thermophila possesses a complete reservoir of genes 

encoding mannan degrading enzymes. The genome of this fungus encodes three 

enzymes that putatively catalyze random cleavage of the mannan polysaccharide and 

belong to GH family 5 and 26. One of these enzymes has been isolated from culture 

supernatant, characterized and classified as GH5 endo-β-1,4-mannosidase (bMan2, 

Dotsenko et al., 2012). In addition, there are two genes encoding putative β-

mannosidases belonging to GH2 family, while one of them has been characterized in 

terms of its specificity and physicochemical properties (bMann9, Dotsenko et al., 2012). 

Two GH27 and one GH26 α-galactosidases boost the efficiency of fungal culture 

supernatant against hydrolysis of mannan substrate (Emalfarb et al., 2012), while two 

CE12 family genes encoding proteins with high similarity to known acetyl-mannan 

esterases have been found. 

Arabinohydrolases 

L-arabinose is widely present in various hemicellulosic biomass components, 

such as arabinoxylan, where the main β-D-(1,4)-linked xylopyranosyl backbone is 
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substituted with arabinose residues. α-L-arabinofuranosidases (AFase; EC 3.2.1.55) are 

enzymes that release arabinofuranose residues substituted at position O-2 or O-3 of 

mono or di-substituted xylose residues (Gruppen et al., 1993). Apart from that, AFases 

act in synergism with other arabinohydrolases, endo-(1,5)-α-L-arabinanases (ABNase; 

EC 3.2.1.99) for the decomposition of arabinan, a major pectin polysaccharide.  

The genome of the M. thermophila encodes 14 enzymes that putatively release 

arabinose or arabinose oligomers from arabinan (Hinz et al., 2009). Throughout CAZy 

families, arabinohydrolases belong to GH families 43, 51, 54, 62, and 93 (Figure 4.3*). 

Eleven sequences contain a secretion signal peptide and produced as extracellular or 

cell-bounded proteins, while almost all of them exhibit isoelectric point around 4.6–5.6 

(Table 4.8*). Seven of them have been selectively overexpressed homologously in M. 

thermophila C1 host and found to release arabinose from wheat arabinoxylan polymers 

and oligomers (Hinz et al., 2009). M. thermophila arabinofuranosidases are selective in 

releasing arabinose from either single or double substituted xylose residues in 

arabinoxylans. Eight enzymes, belonging to GH families 43, 51, 62, and 93 with 

different type of arabinolytic activity have been purified and characterized (Hinz et al., 

2009; Kühnel et al., 2011; Pouvreau et al., 2011b) (Table 4.9*).  

Abn7 and Abf3 are GH43 and GH51 arabinases respectively, which were 

selectively produced in C1 host. Abn7 was found to hydrolyze arabinofuranosyl 

residues at position O-3 of double substituted xylosyl residues in arabinoxylan-derived 

oligosaccharides, while Abf3 released arabinose from position O-2 or O-3 of single 

substituted xyloses. When these enzymes were incubated together, in combination 

with a GH10 endo-xylanase for the hydrolysis of arabinoxylans, they resulted in a 

synergistic increase in arabinose release from the substrate (Pouvreau et al., 2011b). In 

addition, a-L-arabinohydrolases Abn1, Abn2, and Abn4 were overexpressed in C1 and 

the produced culture supernatant has been shown to produce neutral branched arabino-

oligosaccharides from sugar beet arabinan by enzymatic degradation. As found by 

sugar analysis, neutral arabino-oligosaccharides contained an α-(1,5)-linked backbone 

of l-arabinosyl residues and carried single substituted α-(1,3)-linked l-arabinosyl 

residues or consisted of a double substituted α-(1,2,3,5)-linked arabinan structure 

within the molecule (Westphal et al., 2010). Enzyme Abn4 belongs to GH43 family and 
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is more active toward branched polymeric arabinan substrate that releases arabinose 

monomers from single substituted arabinose residues, while Abn1 and Abn2 are active 

toward linear arabinan (Kühnel et al., 2010). Abn2 is a member of GH93 family that 

consists of exoarabinases acting on linear arabinan, hydrolyzing the α-1,5-linkages of 

arabinan polysaccharides presented as side chains of pectin. Their mode of action was 

studied with Abn2, which binds two arabinose units at the subsites −1 and −2 and 

releases arabinose. Three more arabinohydrolases were also overexpressed in C1 strain 

(Hinz et al., 2009). Abn5 was found to be specifically active toward arabinan, but not 

arabinoxylan. Arabinofuranosidases Abf1 and Abf2, members of GH62 family released 

O-2 or O-3 substituted arabinose or linked arabinofuranosyl from mono substituted 

xylose. GH family 62 arabinofuranosidases are reported to be predominantly active 

toward arabinoxylan and are, therefore, also called arabinoxylan 

arabinofuranohydrolases (Beldman et al., 1997). Several of these enzymes contain either 

a CBM1, like Abf1, or a CBM43 (xylan)-binding domain. 

4.3. Auxiliary enzymes 

In spite of the cooperative activity exhibited by the cellulolytic and 

hemicellulolytic enzymes, the impressive hydrolytic ability of various microorganisms 

in nature cannot be attributed only to this endo–exo mechanism. Apart from the 

hydrolytic system responsible for carbohydrate degradation, it seems that an oxidative 

system catalyze lignin depolymerization and oxidation of plant cell wall components, 

yielding reactive molecules (e.g., H2O2). Recent evidence highlights the critical role of 

alternative enzymatic partners involved in the oxidation of cell wall components. 

Among these enzymes, outstanding role during hydrolysis exhibit the originally 

described as cellulases LPMO enzymes, CDH and multicopper enzymes such as 

laccases. The genome of M. thermophila possesses more than 30 genes that encode 

proteins with such auxiliary activities(Figure 4.4). Members of the LPMO family AA9, 

have been shown to be copper-dependent monooxygenases that enhance cellulose 

degradation in concert with classical cellulases, as aforementioned before and reviewed 

by Dimarogona et al. (2013). These enzymes catalyze the cleavage of cellulose by an 

oxidative mechanism provided that reduction equivalents are available. These 

equivalents either involve low molecular weight reducing agents (e.g., ascorbate) or are 
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produced by CDH activity (Langston et al., 2011). CDHs are extracellular enzymes 

produced by various wood-degrading fungi that oxidize soluble cellodextrins, 

mannodextrins and lactose efficiently to their corresponding lactones by a ping-pong 

mechanism using a wide spectrum of electron acceptors (Henriksson et al., 2000). 

Throughout the genome of M. thermophila, two genes encoding proteins classified to 

AA3 and 8 families have been identified (Figure 4.4). Both of them are predicted to be 

secreted in the culture supernatant and have potential glycosylation sites. The 

translated CDH MYCTH_111388 exhibits a C-terminal CBM and a cDNA clone of 

this sequence has been isolated and biochemically characterized by screening an 

expression library of M. thermophila (Subramaniam et al., 1999). Canevascini et al. 

(1991) purified a monomeric (91 kDa) and a dimeric (192 kDa) form of CDH that 

differed not only in molecular weight, but amino acid composition and carbohydrate 

content. Both forms oxidized cellobiose in the presence of cytochrome c or 

dichlorophenol–indophenol. 

 

Figure 4.4. Distribution of enzymes of M. thermophila with auxiliary activities, 

classified to AA3/8, AA9 families and multicopper oxidases. M. thermophila 

distinguishes itself from other cellulolytic fungi, exhibiting an impressing number of 

LPMOs accessory enzymes belonging to AA9 family (previously described as GH61). 
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Laccases (EC 1.10.3.1) are multicopper enzymes that catalyze the oxidation of a 

variety of phenolic compounds, with concomitant reduction of O2 to H2O. These 

polyphenol oxidases are produced by most ligninolytic basidiomycetes (Baldrian, 2006) 

and can degrade lignin and other recalcitrant compounds in the presence of redox 

mediators (Ruiz-Dueñas and Martínez, 2009). The genome of the M. thermophila 

encodes eight putative enzymes with multicopper oxidase activity. Four of them have 

been annotated and one (MYCTH_51627) matches the lcc1 gene product encoding an 

extracellular laccase (Berka et al., 1997). Four sequences are predicted to possess a 

secretion signal, while one appears to remain membrane-bound. Lcc1 gene has been 

isolated from fungi's genome, heterologously expressed in A. oryzae and the produced 

85 kDa enzyme (MtL) was characterized as a thermostable low oxidation potential 

laccase with high reactivity in aqueous medium at room temperature and neutral pH. 

MtL was tested for its capacity to catalyze enzymatic oxidation of several phenolic and 

polyphenolic compounds (ferulic acid, gallic acid, caffeic acid, and catechin) (Mustafa et 

al., 2005). M. thermophila laccases have been reported to oxidize lignin surface, by 

increasing the amount of radicals during thermomechanical pulp fiber material 

bleaching (Grönqvist et al., 2003) and promote oxidative polymerization of Kraft lignin 

from back liquor, which is the main by-product of pulp and paper industry (Gouveia et 

al., 2013). 

 

4.4. Lignocellulosic potential—statistics 

M. thermophila is a powerful lignocellulolytic organism, which secretes a 

complex system of carbohydrate hydrolases for the breakdown of cellulose and 

hemicellulose, as well as oxidoreductases embedded in lignin degradation. Genome 

analysis in this review revealed 30 genes encoding cellulases classified to 10 GH 

families, 66 genes encoding hemicellulases classified to 10 GHs, 9 CEs and 35 genes 

encoding auxiliary enzymes. The latter include CDHs (AA3/AA8 family), LPMOs 

(AA9 family) and multicopper oxidases (laccases or laccase-like enzymes). Out of the 

total consortium of M. thermophila sequences encoding proteins with putative 

lignocellulosic activity, 80.2% are predicted to have a secretion signal peptide. Almost 
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76% of cellulases, hemicellulases and 88% of the accessory redox enzymes are targeted 

to secretion pathway, while only a very small amount remain inside the cell or 

represent membrane cell—bound macromolecules. Only 15.8% of the secreted enzymes 

in this review are predicted to possess a CBM and the majority of them comprise of 

auxiliary enzyme activities. The theoretical average molecular weight of secreted 

enzymes is 41.36 ± 15.9, varying between 10 and 97 kDa. The majority of secreted 

enzymes have molecular weight varying between 20 and 50 kDa, whereas β-

xylosidases and β-glycosidases (GH3 family), and arabinofuranosidases (GH43 and 

GH51) appear to be high molecular weight proteins (Figure 4.5). The theoretical 

average isoelectric point of secretory enzymes is calculated 5.27 ± 0.8, at a range 4.34–

7.9. In vivo expression and study of these enzymes would give different results, as the 

proteins are glycosylated, so size and pI value tend to moderate. 

 

Figure 4.5. Theoretical molecular weight of secreted enzymes of M. thermophila 

classified in several GHs and CEs families, plotted against theoretical pI. The average 

molecular weight was calculated at 51.05 ± 16.2 kDa (range between 21 and 97 kDa) 

for cellulolytic enzymes, 35.5 ± 19.5 kDa (range between 22 and 89 kDa) for 

hemicellulases (GHs/CEs), and 28.51 ± 4.1 kDa (range between 23 and 39 kDa) for the 

fraction of esterases.  
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Protein glycosylation 

A total proportion of 92.8% of secreted proteins have either N- or O- putative 

glycosylation sites. These proteins are often glycosylated due to the existence of many 

Asn-Xaa-Ser/Thr sequons, which are known to be a prerequisite for N-glycosylation 

post-translational modifications. The molecules of many GHs and accessory enzymes 

have a modular structure consisting of a catalytic module, flexible peptide linker, and 

CBM. Flexible linker peptides, which are rich in Ser and Thr residues, are typically O-

glycosylated (Gilkes et al., 1991). The N-glycosylation seems to be restricted to the 

catalytic modules, and it is usually absent in other parts of enzyme molecules. Various 

N-linked glycan structures have been found in different enzymes from M. thermophila, 

belonging to different enzyme classes and protein families (Gusakov et al., 2008). It has 

been noticed that glycosylation follows a heterogeneity pattern, meaning that in some 

molecules, the same Asn residue was modified with oligosaccharides having different 

structure, while not all of the potential glycosylation sites were found to be occupied. 

The most frequently met N-linked glycan was (Man)3(GlcNAc)2, a pentasaccharide 

which represents a well-known conserved core structure that forms mammalian-type 

high-mannose and hybrid/complex glycans in glycoproteins from different organisms 

(Dwek et al., 1993). Both types of glycosylation occur in 65% of secreted cellulases, 

62.1% of secreted hemicellulases, while only O-glycosylation patterns appear in most of 

accessory enzymes. The presence of N-linked glycans is common for catalytic domain 

of the enzymes, while O-glycosylation usually occurs in linker region. Even though 

predicted to, non-secreted enzymes are not modified in vivo with glycans, since this 

procedure has been noticed as a post-translational modification in proteins targeted to 

the secretory pathway of the cell (Blom et al., 2004). 

 

4.5. Conclusions 

Rapid depolymerization of lignocellulosic material is a distinguishing feature of 

thermophilic fungi, such as M. thermophila, which was isolated from soil and self-

heating masses of composted vegetable matter (Domsch et al., 1993). However, the 

precise biochemical mechanisms and underlying genetics of this procedure are not 
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completely understood. Systematic examination of the M. thermophila genome revealed 

a unique enzymatic system comprising of an unusual repertoire of auxiliary enzymes, 

especially those classified to AA9 family, and provided insights into its extraordinary 

capacity for protein secretion. The current review constitutes, to the best of our 

knowledge, the first genomic analysis of the lignocellulolytic system of M. thermophila. 

The genomic data, along with the observed enzymatic activity of several isolated and 

characterized enzymes suggest that this fungus possesses a complete set of enzymes, 

including 30 cellulases, 66 hemicellulases, and 35 proteins with auxiliary auxiliary 

enzymes, covering the most of the recognized CAZy families. From its cellulases to its 

oxido-reductases and multicopper enzymes, M. thermophila gene complement 

represents several avenues for further research and its diverse array of enzymatic 

capabilities will contribute to the study of lignocellulose degradation and the 

subsequent ethanol biofuel production. 
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Table 4.1.Number of predicted CAZymes encoded in the genome of M. thermophila. 

GHs, Glycoside hydrolases; CEs, carbohydrate esterases; and PLs, polysaccharide 

lyases are included, covering the most of the recognized families. 

 

Specific activity  CAZy module(s) No id. seq.  

Cellulases 

endoglucanases GH 5, 7, 12, 45 8 

cellobiohydrolases GH 6, 7 7 

β-glucosidases GH 1,3 8 

Xylanases 
xylanases GH 10, 11 12 

xylosidases GH 3, 43 4 

Arabinases 
endoarabinases GH 43 3 
exo-arabinases / 
arabinofuranosidases GH 43, 51, 62 11 

Mannanases 
endomannanases GH 5, 26 3 

mannosidases GH 2 2 

Pectinases 

polygalacturonases GH28 2 

rhamnosidases GH78 1 

pectin lyases PL1, PL3, PL4, PL20 8 

pectin esterases CE 8, 12 4 

Esterases 

feruloyl esterases CE 1 4 

acetyl esterases CE 3, 5, 16 8 

acetylmannanesterases CE 12 2 

glycuronoyl esterases CE 15 2 
 

* Tables are provided at the end of this Chapter. 
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EGs
Protein  

ID InterPro ID InterPro 
description

CAZy 
module GenBank ID Location Secretion 

signal Exons pI/MW 
(kDa) Lenght N-gly 

sites
O-gly 
sites

CBM
1 BLAST parameters

MYCTH_5
2068 IPR017853

glycoside 
hydrolase, 

catalytic core
GH5 AEO58455.1 4:188041-

189524 18aa 7 4.66 / 35.2 319aa 3 2 -

MYCTH_8
6753 IPR017853

glycoside 
hydrolase, 

catalytic core
GH5 AEO53769.1 1:2823610-

2825549 16aa 3 5.07 / 40.85 389aa 3 17 +

65% identity with endoglucanase GH5 
from Thermoascus aurantiacus [PDB ID: 
1GZJ] &
79% with β-1,4-endoglucanase from 
Penicillium brasilianum [GenBank: 
ACB06750]

MYCTH_9
4336 IPR017853

glycoside 
hydrolase, 

catalytic core
GH5 AEO57401.1 3:908597-

909880 21aa 1 4.92 / 44.6 406aa 2 4 -
61% identity with cellulase family protein 
from Ophiostoma piceae UAMH 11346 
[GenBank: EPE03278.1]

MYCTH_4
3356 IPR017853

glycoside 
hydrolase, 

catalytic core
GH5 AEO53175.1 1:580471-

581733 26aa 1 7.86 / 44.18 394aa 1 2 -
71% identity with EG from endoglucanase 
Verticillium dahliae [GenBank: 
EGY21718.1] 

MYCTH_1
16157 IPR017853

glycoside 
hydrolase, 

catalytic core
GH7 AEO59361.1 4:4081701-

4083768 20aa 2 4.75 / 47.20 436aa 2 2 -
68% identity with endo-1,4-beta-
glucanase from Humicola grisea 
[UniProtKB/Swiss-Prot:Q12622.1]

MYCTH_1
11372 IPR017853

glycoside 
hydrolase, 

catalytic core
GH7 AEO58196.1 3:4135959-

4137568 22aa 1 4.61 / 46.632 442aa 2 16 +
64% identity with endoglucanase I from 
Hypocrea orientalis [GenBank: 
AFD50194.1]

MYCTH_1
09444 IPR008985 

concanavalin A-
like 

lectin/glucanases 
superfamily

GH12 AEO60532.1 6:212893-
214302 15aa 3 5.46 / 25. 48 247aa - - -

56% identity with Cel12A from Humicola 
grisea  [PDB ID: 1OLR] & 63% with 
endoglucanase from Fusarium oxysporum 
[GenBank: ENH72093.1]

MYCTH_7
6901 IPR014733 barwin-like 

endoglucanase GH45 AEO54078.1 1:4001048-
4002222 18aa 4 4.66 / 21.8 207aa - 3 -

78% identity with endoglucanase from 
Humicola insolens [PDB ID: 1HD5] & 
82%  with endoglucanase from Humicola 
grisea  [GenBank: BAA74957.1]

Table 4.2. Number of predicted sequences encoding enzymes with cellulolytic activity (EGs,CBHs,andBGLs).
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CBHs

Protein_
ID

InterPro_I
D

InterPro_des
cription

CAZy 
module GenBank ID Location Secretio

n signal Exons pI/ MW 
(kDa)

Lengh
t

N-gly 
positio

ns

O-gly 
positio

ns

CBM
1 BLAST  parameters

MYCTH
_51545 IPR016288 

1,4-beta 
cellobiohydrol
ase

GH6 AEO59280.1
4:3726723-

3728113 17aa 3 4.66 /  40.64 378aa - 4 -
49% identity with CBHII from 
Trichoderma reesei  [GenBank: 
ADC83999.1] & 51% with CBHII from 
Trichoderma reesei  [PDB ID: 3CBH]

MYCTH
_66729

IPR016288 
1,4-beta 
cellobiohydrol
ase

GH6 AEO55787.1 2:46305-
48489

17aa 4 5.28 /  49.41 465aa 1 35 +

79% identity with CBH II from 
Humicola insolens [PDB ID: 1BVW] & 
64% with CBHII from Trichoderma viride 
[GenBank: AAQ76094.1]

MYCTH
_2303045 IPR016288 

1,4-beta 
cellobiohydrol
ase

GH6 AEO57190.1
2:5389544-

5391132 18aa 2 5.94 /  39.41 363aa 4 5 -

56% identity with endoglucanase Cel6b 
from Humicola insolens [PDB ID: 1DYS] 
& 39% with Cellobiohydrolase IΙ 
(Cel6a) from Humicola insolens [1BVW] 

MYCTH
_109566 IPR008985 

concanavalin 
A-like lectin 
/ glucanases 
superfamily

GH7 AEO55544.1
1:9753507-

9755507 17aa 2 4.77 /  54 509aa 1 20 +

61% identity with CBH I from Humicola 
grisea [GenBank: BAA09785.1] & 67% 
with cellobiohydrolase Cel7d (Cbh 58)  
Phanerochaete chrysosporium [PDB: 1GPI]

MYCTH
_42937 IPR008985 

concanavalin 
A-like 
lectin/ glucanas
es superfamily

GH7 AEO53522.1
1:1922814-

1924693 20aa 5 4.34 /  47.08 436aa 2 2 -
66% identity with β- 1,4-
cellobiohydrolase from Phanerochaete 
chrysosporium [ UniProtKB: P13860.1]

MYCTH
_97137

IPR008985 

concanavalin 
A-like lectin 
/ glucanases 
superfamily

GH7 AEO61262.1 7:24661-
26448

20aa 6 4.48 /  46.5 430aa -
79% identity with β- 1,4-beta-
cellobiosidase from Melanocarpus 
albomyces [GenBank: CAD56667.1]

MYCTH
_95095 
fragment

IPR008985 

concanavalin 
A-like lectin 
/ glucanases 
superfamily

GH7 AEO58824.1 4:1967106-
1967560

19aa 2 6.87 /  11.82 109aa 1 4
C-

term, 
ND

77% identity with β- 1,4-beta-
cellobiosidase from Acremonium 
thermophilum [ GenBank: CAM98446.1]
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BGLs

Protein_I
D

InterPro_I
D

InterPro_descri
ption

CAZy 
module GenBank ID Location Secretio

n signal Exons pI/ MW 
(kDa)

Lengh
t

N-gly 
positio

ns

O-gly 
positio

ns

CBM
1 BLAST  parameters

MYCTH_
115968 IPR017853

glycoside 
hydrolase, 
catalytic core

GH1 AEO57459.1
3:1092854-

1095039 - 2 5.53 /  54.1 476aa 1 - - 92% identity with β-glucosidase from 
Humicola grisea [GenBank: BAA74958.1]

MYCTH_
38200 IPR017853

glycoside 
hydrolase, 
catalytic core

GH3 AEO61246.1
6:4096305-

4099311 - 2 5.54 /  10.53 968aa 7 3 -
78% identity with β-glucosidase from 
Chaetomium thermophilum var. 
thermophilum [GenBank: EGS22574.1]

MYCTH_
2059579

IPR017853 
/  

IPR026891 

glycoside 
hydrolase /  
fibronectin type 
III-like domain

GH3 AEO56238.1 2:1843191-
1846185

23aa 4 5.94 /  94.8 880aa 6 5 -
57% identity with β-1,4-glucosidase 
from Marssonina brunnea [GenBank: 
EKD11918.1]

MYCTH_
66804

IPR017853 
/  

IPR026891 

glycoside 
hydrolase/  
fibronectin type 
III-like domain

GH3 AEO58343.1 3:4861135-
4863642

17aa 2 4.99 /  75.83 716aa 2 2 - 72% identity with β-glucosidase from 
Trichoderma reesei  [PRF: 227874]

MYCTH_
80304

IPR017853 
/  

IPR026891 

glycoside 
hydrolase /  
fibronectin type 
III-like domain

GH3 AEO58175.1 3:3949561-
3952737

19aa 4 5.05 /  93.3 851aa 11 - -
77% identity with β-glucosidase from 
Chaetomium thermophilum [GenBank: 
ABR57325.2]

MYCTH_
62925 IPR017853

glycoside 
hydrolase, 
catalytic core

GH3 AEO53892.1
1:3330354-

3333832 - 7 5.39 /  97.05 884aa 3 4 -
76% identity with β-glucosidase from 
Fusarium oxysporum [GenBank: 
EMT71863.1]

MYCTH_
2302509 IPR026891 

fibronectin type 
III-like domain GH3 AEO56946.1

2:4612453-
4614052 - 1 5.15 /  47.75 440aa 6 2

60% identity with β-glucosidase from 
Grosmannia clavigera [GenBank: 
EFX01027.1]

MYCTH_
58882

IPR017853 
/  

IPR026891 

glycoside 
hydrolase/  
fibronectin type 
III-like domain

GH3 AEO60477.1 6:51326-
53769

16aa 2 5.21 /  82.46 761aa 5 -

MYCTH_
2129052 
(fragment)

IPR001764
glycoside 
hydrolase, family 
3, N terminal

GH3 AEO59952.1
5:2414101-

2414414 - 2 4.70 /  92.48 83aa 1 -
46% identity with  β-glucosidase from 
Parastagonospora avenae [GenBank: 
CAB82861.1]  
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Enzyme Type of action GH MW-monomer 
(kDa)

pHopt Topt  (OC) pI gene source Reference

StCel5A endoglucanase 5 46 6 70 ND
cDNA library-EST 

analysis, expessed in A. 
niger 

Tambor et al. , 2012

EG51 endoglucanase 5 51 4.7 70 4.8
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al. , 
2004/Gusakov et al., 

2005

MtEG7a endoglucanase 7 65 5 60 multiple bands in  
3.8–4.5 eg7a expressed in P. pastoris Karnaouri et al. , 

2014

EG60 endoglucanase 7 60 4.7 60 3.7
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al. , 
2004 

EG28 endoglucanase 12 28 5.35 60 5.7
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al., 
2004 

EG25 endoglucanase 45 25 5.5 65 4
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al. , 
2004/Gusakov et al., 

2005

CBH Ia 1,4-beta cellobiohydrolase 7 65 5 ND 4.5
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al ., 
2004/Gusakov et al., 

2005

CBH IIa 1,4-beta cellobiohydrolase 6 43 5.4 65 4.2
isolated from the culture 

broth of a C1 mutant 
strain 

Bukhtojarov et al., 
2004/Gusakov et al. , 

2005

CBH Ib 1,4-beta cellobiohydrolase 7 60 ND ND ND
isolated from the culture 

broth of a C1 mutant 
strain 

Gusakov et al ., 2007

CBH IIb 1,4-beta cellobiohydrolase 6 70 ND ND 5.6
isolated from the culture 

broth of a C1 mutant 
strain 

Gusakov et al ., 2007

MtBgl3a beta-glucosidase 3 90 5 70 4.0 bgl3a expressed in P. pastoris Karnaouri et al ., 
2013

Bxl5 beta-glucosidase 3 120 ± 5 4.6 75 5.2 bxl5 homologously expressed  
in C1

Dotsenko et al. , 
2012

Table 4.3. Description of the characterized cellulolytic enzymes either isolated from the culture broth of a M. thermophila C1  mutant strain or expressed in an heterologous host.
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XYLs
Protein 

ID InterPro ID InterPro 
description

CAZy 
module GenBank ID Location Secretion 

signal Exons pI/MW 
(kDa) Lenght N-gly 

sites
O-gly 
sites

Conserved 
domains BLAST parameters

MYCTH_
2139438 IPR013781 glycoside hydrolase, 

catalytic domain GH10 AEO58598.1 4:852357-853828 19aa 3 6.42 / 39.65 356aa 1 -
84% identity with XynA from 
Humicola insolens [GenBank: 
AGG68962.1]

MYCTH_
52904 IPR013781 glycoside hydrolase, 

catalytic domain GH10 AEO59320.1 4:3932271-
3933431 16aa 3 5.70 / 34.20 311aa 1 1

77% identity with endo-1,4-beta-
xylanase protein from 
Chaetomium thermophilum 
[GenBank: EGS20178.1]

MYCTH_
2125938 
(fragment)

IPR013781 glycoside hydrolase, 
catalytic domain GH10 AEO56947.1 2:4614086-

4614433 ND 1 10.11 / 13.53 115aa 1 1
63% identity with XynA from 
Humicola insolens [GenBank: 
AGG68962.1]

MYCTH_
112050 IPR013781 glycoside hydrolase, 

catalytic domain GH10 AEO60457.1 5:4306110-
4307709 17aa 2 5.52 / 42.86 396aa - 22 CBM1

66% identity with endo-1,4-beta-
xylanase A from 
Gaeumannomyces graminis 
[GenBank: EJT78185.1]

MYCTH_
100068 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO57157.1 2:5265193-
5266157 19aa 2 7.77 / 27.53 259aa 1 1 CBM1

74% identity with endo-beta1,4-
xylanase from Chaetomium 
gracile [GenBank: BAA08650.1]

MYCTH_
89603 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO55365.1 1:9130476-
9131260 20aa 2 6.71 / 23.12 208aa 1 1

87% identity with endo-beta-1,4-
xylanase from Chaetomium sp . 
CQ31 [GenBank: ADW78258.1]

MYCTH_
2121801 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO62054.1 7:3382576-
3383357 18aa 2 7.81 / 22.59 200aa 1 2

86% identity with endo-1,4-beta-
xylanase protein from 
Chaetomium thermophilum [ 
GenBank: EGS23409.1]

MYCTH_
99786 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO54512.1 1:5821400-
5822224 21aa 2 5.50 / 22.17 205aa 1 2

56% identity from xylanase II from 
Hypocrea orientalis [GenBank: 
AFD50199.1]

MYCTH_
2309574 
(fragment)

IPR008985 
concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO60385.1 5:4039395-
4039724 ND 1 9.19 / 7.10 66aa 1 -

63% identity with xyn11C from 
Chaetomium thermophilum 
[GenBank: CAD48751.1]

Table 4.4. Number of predicted sequences encoding enzymes with hemicellulolytic activity (β-1,4-xylanases and β-xylosidases)
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MYCTH_
2309575 
(fragment)

IPR008985 
concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO60386.1 5:4039732-
4040297 - 1 5.49 / 16.34 146aa 2 4

77% identity with endoxylanase 
11C from Chaetomium 
thermophilum [ GenBank: 
CAD48751.1]

MYCTH_
56237 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO59539.1 5:215065-215872 18aa 2 4.83 / 22.08 205aa 1 2
72% identity with xylanase from 
Scytalidium thermophilum 
[GenBank: BAD07040.1]

MYCTH_
49824 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH11 AEO58284.1 3:4545212-
4546113 16aa 2 5.93 / 23.79 214aa 3 1

79% identity with endo-1,4-beta-
xylanase from Chaetomium 
cupreum [GenBank: ABI48363.1]

BXYLs

Protein_I
D InterPro_ID InterPro_descripti

on
CAZy 

module GenBank ID Location Secretion 
signal Exons pI/MW 

(kDa) Lenght
N-gly 

position
s

O-gly 
position

s

Conserved 
domains BLAST parameters

MYCTH_
104628 IPR017853 glycoside hydrolase, 

catalytic core GH3 AEO60531.1 6:209038-211675 - 2 4.69 / 89.69 835aa 6 1 BglX

55% identity with 1,4-beta-
xylosidase from Fusarium 
fujikuroi  IMI 58289 [GenBank: 
CCT61496.1]

MYCTH_
50705

IPR017853 / 
IPR026891 

glycoside hydrolase, 
catalytic core / 
fibronectin type III-
like domain

GH3 AEO58346.1 3:4871063-
4873395 21aa 2 5.57 / 79.51 739aa 6 2

53% identity with 1,4-beta-
xylosidase from Neurospora 
crassa  [GenBank: CAB91343.2]

MYCTH_
80104 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH43 AEO58399.1 3:5027172-
5028785 - 1 5.86 / 61.23 537aa 1 - XynB

80% identity with beta-xylosidase 
from Fusarium oxysporum 
[GenBank: EMT73385.1]

MYCTH_
2072383 IPR008985 

concanavalin A-like 
lectin/glucanases 
superfamily

GH43 AEO61672.1  7:1863035-
1864780 19aa 2 4.77 / 53.52 494aa 4 3 XynB

45% identity with beta-xylosidase 
from Micromonospora sp . 
ATCC39149 [NCBI Ref: 
WP_007073468.1]  

 

 

 

 

97 



Table 4.5. Description of the characterized β-1,4-xylanases isolated from the culture broth of a M. thermophila C1 mutant strain. 

XYLs               

Enzyme CAZy 
module 

MW-monomer 
(kDa) pHopt Topt (OC) pI gene Reference 

Xyn10A  GH10 42 / 31* 5.5 - 7.0 65 - 70 7.8 / 8.9 xyl1 Ustinov et al., 2008; van 
Gool et al., 2012 

Xyn10B  GH10 57 / 46* 5.5 - 7.0 80 - 85 4.4 / 4.3 xyl3 Ustinov et al., 2008; van 
Gool et al., 2012 

Xyn10C  GH11 40 5.0 80 4.8 xyl4 Ustinov et al., 2008 

Xyn11A  GH11 24 6.5 70 7.9 xyl2 Ustinov et al., 2008 

Xyn11B  GH11 23 6.0 - 6.5 65 - 70 8.4 xyl6 Ustinov et al., 2008 

Xyn11C GH11 22 4.5 65 6.7 xyl5 Ustinov et al., 2008 

Xyl7 GH11 22 / 30* 5.5 - 6.5 50 - 60 7.3 / 7.6 xyl7 van Gool et al., 2013 

Xyl8 GH11 22 5.5 - 6.0 50 - 65 6.2 xyl8 van Gool et al., 2013 

*isolated in two different forms, with (high molecular weight enzyme) or without CBM (low molecular weight enzyme).  
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ABFs + 
Protein_I

D InterPro_ID InterPro 
description

CAZy 
module GenBank ID Location Secretion 

signal Exons pI/MW (kDa) Lenght N-gly 
positions

O-gly 
positions

Conserved 
domains BLAST parameters

MYCTH_
39555 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO61077.1 6:3204367-
3205350 - 1 4.87 / 37.12 327aa - 1

82% identity with a-N-arabinofuranosidase / 
alpha-L-arabinofuranosidase from Fusarium 
fujikuroi [GenBank: CCT69715.1]

MYCTH_
2303298 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO57303.1 3:514704-
516772 23aa 1 4.91 / 59.16 535aa 1 1 XynB 55% identity with arabinase from Auricularia 

delicata [GenBank: EJD41599.1]

MYCTH_
2305738 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO58423.1 4:27829-
29545 19aa 4 4.90 / 33.18 301aa 1 2

52%  identity with a-N-arabinofuranosidase 2 
from Fusarium oxysporum  [GenBank: 
EMT68952.1]

MYCTH_
103032 IPR016840 

glycoside 
hydrolase 
family 43, 

endo-1,5-alpha-
L-

arabinosidase

GH43 AEO58422.1 4:25889-
27048 20aa 3 5.63 / 32.74 301aa 1 4

60% identity with arabinan endo-1,5-alpha-L-
arabinosidase A  from Aspergillus kawachii 
[GenBank: GAA90221.1]

MYCTH_
2300677 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO56123.1 2:1449574-
1451195 22aa 1 4.79 / 41.72 410aa 5 35

38% identity with endo-arabinase from 
Colletotrichum gloeosporioides [GenBank: 
ELA34066.1]

MYCTH_
2064169 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO58916.1 4:2252824-
2255361 16aa 11 6.42 / 64.17 573aa 7 5 XynB

65% identity with arabinofuranosidase from 
Coprinopsis cinerea  [NCBI Ref: 
XP_001836293.2] & 52% with beta-

MYCTH_
2301869 IPR006710 

glycoside 
hydrolase 
family 43

GH43 AEO56692.1 2:3685597-
3687704 18aa 1 4.89 / 65.71 613αα 3 1 Xyl1

55% identity with Xylosidase/arabinosidase 
(arabinofuranoside) from Fusarium 
oxysporum   [GenBank: ENH67211.1]

MYCTH_
2127683 IPR007934 

a-L-
arabinofuranos

idase B
GH43 AEO58631.1 4:1109767-

1110916 - 3 4.91 / 36.35 339aa 1 3 CBM42 65% with a-N-arabinofuranosidase from 
Chaetomium sp.  [GenBank: AFU88757.1]

MYCTH_
2306666 IPR023296 

glycosyl 
hydrolase, five-
bladed-beta-

propellor 
domain

GH43 AEO58919.1 4:2260967-
2262690 25aa 4 5.26 / 35.76 329aa 1 1

72%  identity with arabinosidase 
(arabinofuranosidase) from Glomerella 
graminicola  [GenBank: EFQ32395.1]

Table 4.6. Number of predicted sequences encoding enzymes with hemicellulolytic activity (endoarabinases and arabinofuranosidases).
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MYCTH_
42071 ΙPR010720 

a-L-
arabinofuranos

idase, C-
terminal

GH51 AEO53569.1  1:2109152-
2111615 18aa 6 5.80 / 69.54 636aa 6 2

54% identity with a-L-arabinofuranosidase 
from Penicillium chrysogenum  [GenBank: 
BAH70480.1]

MYCTH_
83019 ΙPR010720 

a-L-
arabinofuranos

idase, C-
terminal

GH51 AEO58452.1 4:178906-
181205 - 5 5.81 / 57.67 512aa 2 2

75% identity with a-L-arabinofuranosidase 
from Glomerella graminicola  [GenBank: 
EFQ27215.1]

MYCTH_
98003 IPR005193 

glycoside 
hydrolase, 
family 62, 

arabinosidase

GH62 AEO60934.1 6:2448019-
2449251 22aa 2 5.52 / 37.84 353aa - 3 CBM1

73% identity with a-L-arabinofuranosidase 
axhA-2 from Colletotrichum higginsianum 
[GenBank: CCF42219.1]

MYCTH_
55982 IPR005193 

glycoside 
hydrolase, 
family 62, 

arabinosidase

GH62 AEO59813.1  5:1711636-
1712601 19aa 1 4.90 / 33.1 302aa 1 4

77% identity with a-L-arabinofuranosidase 
from Streptomyces ghanaensis  [NCBI Ref: 
WP_004979944.1]

MYCTH_
104827 IPR011040 Sialidases GH93 AEO55492.1 1:9532077-

9534361 17aa 2 5.16 / 41.8 378aa 3 56% with exo-arabinanase  from Penicillium 
chrysogenum  [NCBI Ref: XP_002562032.1]  
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ABs

Enzyme
CAZy 

module
Mode of action

MW-
monomer 

(kDa)
pHopt

Topt 

(OC)
Uniprot / 

SwissProt ID
gene source Reference

Abf1 GH62
Arabinofuranosidase / releases O-2 or O-
3 arabinose from mono-substituted 
xylose

abf1
selectively produced 

in C1-host
Hinz et al ., 2009

Abf2 GH62
Arabinofuranosidase / releases O-2 or O-
3 linked arabinofuranosyl residues from 
mono-substituted xylose

abf2
selectively produced 

in C1-host
Hinz et al ., 2009

Abf3 GH51

Arabinofuranosidase / releases arabinose 
from the
non-reducing end of reduced arabinose 
oligomers

70 5 40 HQ324254 abf3
selectively produced 

in C1-host
Pouvreau et al. , 

2011b

Abn7 GH43
Arabinofuranosidase / releases O-3 
linked arabinofuranosyl residues from di-
substituted xylose

70 5 40 HQ324255 abn7
selectively produced 

in C1-host
Pouvreau et al. , 

2011b

Abn1 GH43 Endoarabinase 36 5.5 60 HQ324251 abn1
overexpressed in 

fermentation 
supernatant

Kühnel et al. , 
2011

Abn2 GH93
Exoarabinase / arabinobiose from the 
non-reducing end of reduced arabinose 
oligomers.

40 4 50 abn2
overexpressed in 

fermentation 
supernatant

Kühnel et al. , 
2011

Abn4 GH43

Arabinofuranosidase / releases arabinose 
from the
non-reducing end of reduced arabinose 
oligomers

33 5.5 60 HQ324253 abn4
overexpressed in 

fermentation 
supernatant

Kühnel et al. , 
2011

Abn5 Arabinofuranosidase abn5
selectively produced 

in C1-host
Hinz et al ., 2009

Table 4.7. Description of the characterized endoarabinases and arabinofuranosidases isolated from the culture broth of a M. thermophila  C1 mutant strain.
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FAEs

Enzyme type
MW-monomer 

(kDa)
pHopt Topt  (OC) pI gene source Reference

 StFaeB B 33* 6 55-60 3,5 isolated from culture supernatant Topakas et al ., 2004

StFaeC C 23* 6 55 <3,5 isolated from culture supernatant Topakas et al ., 2005b

FAE ND 27 8 60 5 isolated from culture supernatant Topakas et al. , 2003

FaeΑ1 A 29 6.5 45 ≈ 5.5
overexpressed in fermentation 

supernatant
Kühnel et al. , 2012

FaeΑ2 A 36 7.5 40 ≈ 5.2
overexpressed in fermentation 

supernatant
Kühnel et al ., 2012

FaeΒ2 B 33 7.5 45 ≈ 6.0
overexpressed in fermentation 

supernatant
Kühnel et al. , 2012

MtFae1a B 39 7 50 ND fae1a expressed in P. pastoris Topakas et al ., 2012

AcEs

Enzyme CE
MW-monomer 

(kDa)
pHopt Topt  (OC) pI gene source Reference

MtAxe3 1 33.6 7 40 ND axe3
overexpressed in fermentation 

supernatant
Pouvreau et al., 2011a

MtAxe2 5 23.6 7 40 ND axe2
overexpressed in fermentation 

supernatant
Pouvreau et al., 2011a

GEs

Enzyme CE
MW-monomer 

(kDa)
pHopt Topt  (OC) pI gene source Reference

StGE2 15 43 7 55 ND ge2 expressed in P. pastoris Topakas et al. , 2010

StEG1 15 58 6 60 ND isolated from culture supernatant Vafiadi et al. , 2009

* dimeric structures are detected, after comparing the results of SDS-PAGE and native electrophoresis

Table 4.8. Description of M. thermophila  characterized esterases (FAEs, AcEs, and GEs).
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CHAPTER 5  
 
Cloning, expression and characterization of EG7 
endoglucanase from M. thermophila (PAPER II) 
 

Endoglucanases [E.C. 3.2.1.4] play a key role in cellulose degradation and act at 

the initial stages of hydrolytic conversion of the cellulosic components into fermentable 

sugars. These enzymes catalyze the initial attack on the polymer by hydrolyzing β-1,4 

glucosidic bonds within amorphous regions of cellulose chains (Xiros et al. 2012). 

Enzyme thermostability is essential during the saccharification process, which converts 

lignocellulosic biomass to reducing sugars, because steam is usually used as a 

pretreatment step in order to make the biomass more suitable for enzymatic hydrolysis. 

The thermostable enzymes can be used directly after the heating step, thereby 

decreasing the processing time, saving energy and improving fermentation yields. 

Considerable emphasis has also been placed on identifying alkalistable enzymes that 

are active on an alkaline pH range used in many biotechnological applications, such as 

modifying the structure of cellulose fibrils, as additives to laundry detergents, as well 

as in cotton treatment process (Anish et al. 2007). Together with the stability of the 

enzymes used in the conversion of lignocellulosic biomass to reducing sugars and the 

subsequent ethanol production, the ability of liquefaction is very important; when 

aiming at ethanol concentrations above 4% (w/w) in the broth (which is considered as 

a minimum prerequisite for a feasible large-scale distillation technology) the initial dry 

matter (DM) loading has to be over 15% for most technical substrates (Fan et al. 2003). 

The high gravity processes (HG, initial DM concentrations of lignocellulose above 12% 

(w/w)) have gained much attention, as they result in high final ethanol concentrations 

and therefore at a significantly decreased cost of the distillation step. However, these 

high-solid contents create an environment in which practically no free water exists in 

the pretreated material, resulting in a difficulty to handle the slurry. The poor mass-

transfer conditions can be improved by means of a partial enzymatic hydrolysis stage 

(liquefaction), where the structured, porous and water-absorbing high solid substrate is 

converted to a more flowable fluid (Szijártó et al. 2011a). This change in viscosity is 
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probably due to the gradual reduction of the average chain length of cellulose 

polysaccharides by endo-acting enzymes, such as endoglucanases.  

The thermophilic fungi Myceliophthora thermophila ATCC 42464, as described in 

Chapter 4, synthesizes a complete set of endoglucanases. In this chapter, the successful 

cloning of the complete genomic DNA sequence of an endoglucanase gene belonging to 

GH7 family, the heterologous expression in methylotrophic yeast P. pastoris and the 

characterization of the recombinant enzyme are described. Although many 

endoglucanases were characterized from fungi previously, the properties of the 

recombinant M. thermophila MtEG7a described here are distinct from them in terms of 

catalytic efficiency and thermostability. Apart from that, viscosity measurements 

showed the liquefaction efficiency of the enzyme on high solid lignocellulose substrates. 

5.1. Identification and cloning of MtEG7a 

From genome analysis, the translation of eg7a open reading frame (ORF) (Model 

ID 111372) from the M. thermophila genome database shows significant primary 

sequence identity with characterized endoglucanases which have been classified to 

family GH7 on CAZy database (http://www.cazy.org/; Cantarel et al. 2009). The 

putative endoglucanase showed high sequence identity (64%) with endoglucanase I 

from Hypocrea orientalis [GenBank: AFD50194.1]. The hypothetical protein of 111372 

was selected as a candidate endoglucanase and the corresponding gene, which was 

provisionally named eg7a, has no introns leading us to the direct cloning and 

expression of the encoding enzyme named MtEG7a (Table 5.1).  

The ORF of eg7a encodes a protein of 464 amino acids including a secretion 

signal peptide of 22 amino acids (MGQKTLQGLVAAAALAASVANA) based upon the 

prediction using SignalP v4.0, which is a web-based program 

(http://www.cbs.dtu.dk/services/SignalP/). The predicted mass and isoelectric point 

(pI) of the mature protein was 46629 Da and pH 4.61, respectively, by calculations 

using the ProtParam tool of ExPASY (http://web.expasy.org/protparam/). 
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Table 5.1. Properties of MtEG7 obtained from genome analysis. 
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The gene coding for the hypothetical protein MtEG7a (Model ID 111372; 

chromosome_3:4135959-4137568) was PCR amplified from genomic DNA using 

primers designed accordingly to the available gene sequence (http://genome.jgi-

psf.org/, DOE Joint Genome Institute) including the ClaI and XbaI restriction enzyme 

sites at their respective 5’-ends. The two specific primers were designed as follows:  

 

A high fidelity KOD Hot Start DNA polymerase producing blunt ends was used for the 

DNA amplification which was carried out with 30 cycles of denaturation (20 s at 95◦C), 

annealing (10 s at 58◦C), and extension (26 s at 70◦C), followed by 1 min of further 

extension at 70◦C. In order to determine the DNA sequence, the PCR product was 

cloned into the PCR-Blunt vector according to the method described by the Zero Blunt 

PCR Cloning Kit (Invitrogen, USA). The PCR Blunt vector carrying the eg7a gene was 

digested with ClaI and XbaI, and the produced fragment was gel-purified before 

cloning into the pPICZαC vector resulting in the recombinant pPICZαC/eg7a which 

was amplified in E. coli TOP10F′, and the transformants were selected by scoring for 

zeocin resistance (25 μg/ml). The recombinant vector pPICZαC/eg7a was confirmed 

by restriction analysis (Figure 4.1). Then, it was linearized with restriction enzyme 

SacI to allow gene replacement at the AOX1 locus and was used to transform P. 

pastoris X33. 

5.2. Transformation of P. pastoris and screening of recombinant transformants 

P. pastoris host strain X33 and pPICZαC (Invitrogen, USA) were used for 

protein expression. P. pastoris was routinely grown in shaking flasks at 30◦C according 

to the instructions in the EasySelect Pichia Expression Kit (Invitrogen, USA). High-

level expression transformants were screened from the YPDS plates containing zeocin 
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at a final concentration of 100 μg/mL. To screen the P. pastoris transformants for 

endoglucanase expression, 50 colonies were plated out on methanol medium (MM) 

(1.34% (w/v) yeast nitrogen base, 4x10-5% (w/v) biotin and 0.5% (v/v) methanol top 

agar containing 1% (w/v) CMC (carboxymethyl-cellulose) at a density of 1 

colony/cm2. After incubation at 30◦C for 24 h, the plates were overlaid with 4 ml of 

0.1% Congo red in phosphate–citrate 100 mM pH 5.0 buffer solution. After incubation 

for 15 min, the plates were washed with 1 M NaCl to reveal clear zones against a red 

background that were developed by the hydrolysis of CMC (Figure 4.2).  

 

 

Figure 5.1. Amplification of eg7 gene through PCR (A), cloning of the PCR product 

into the PCR® Blunt vector (Invitrogen, USA), amplification in E. coli TOP10 cells and 

digestion with ClaI and XbaI (B). The produced fragment was gel-purified before 

cloning into the pPICZαC vector resulting in the recombinant pPICZαC/eg7a (C) 

which was amplified in E. coli TOP10F cells.  
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Figure 5.2. The pPICZαC/eg7a transformants were selected by their ability to grow 

on agar plates containing zeocin and their ability to produce surrounding clear zones 

on MM agar plates containing CMC after Congo red treatment, which are indicative of 

endoglucanase expression.  

 

5.3. Production and purification of recombinant MtEG7a – Enzyme assay 

The production of the recombinant P. pastoris harboring eg7a gene was grown 

and harvested, as previously described (Topakas et al. 2012). The cultures were kept in 

a shaking incubator at 30◦C for 6 days (200 rpm) with the addition of 0.75 ml methanol 

once a day to maintain induction (0.5% v/v). Ten colonies zeocin resistant were 

screened for protein expression and secretion under methanol induction. All 

transformants produced a major secreted protein product of ca. 65 kDa upon 

examination of culture supernatants by SDS-PAGE, whereas no protein could be 

detected with the vector control.  

To confirm the production of endoglucanase activity by the transformants, all 

ten independent clones were assayed using CMC. The endoglucanase activity was 

determined by incubating the enzyme with 1% CMC, for 15 min in 0.1 M citrate-

phosphate buffer pH 5.0. The concentration of reducing ends was determined using the 

dinitrosalicylic acid reagent (DNS) (Miller 1959). Glucose was used for the standard 

curve. One unit (U) of activity was defined as the amount of enzyme which released 1 

μmol of glucose equivalents per min under assay conditions. Recombinant protein was 

determined by measuring A280nm using molar absorptivity of 83070 M-1 cm-1 (Stoscheck 
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1990). The clone showing the highest activity was retained for further study. 

Endoglucanase activity could be first detected in the medium 24 h after inoculation and 

peaked at 144 h with a titer of 468 U/ml (Figure 5.3). 

 

Figure 5.3. Time course of MtEG7a endoglucanase activity (       ) and biomass (●) 

production of the recombinant P. pastoris harbouring the eg7a gene. The endoglucanase 

was expressed in culture broth by induction with 0.5% methanol and measured with 

CMC as substrate.  

For the purification of the recombinant endoglucanase, 800 ml of culture broth 

were centrifuged and concentrated 30-fold using an Amicon ultrafiltration apparatus 

(Amicon chamber 8400 with membrane Diaflo PM-10, exclusion size 10 kDa), 

(Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4 ◦C against a 

20 mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and loaded onto a 

immobilized metal-ion affinity chromatography (IMAC) column (Talon, Clontech; 1.0 

cm i.d., 15 cm length) equilibrated with the same buffer. The column was first washed 

with 300 ml buffer, then a linear gradient from 0 to 100 mM imidazole in 20 mM Tris-

HCl buffer containing 300 mM NaCl (60 ml, pH 8.0) was applied at a flow rate of 2 

ml/min. Fractions (2 ml) containing endoglucanase activity were concentrated and the 

homogeneity of the purified recombinant MtEG7a was examined on a SDS-PAGE, 

which appeared as a single band. The molecular weight was estimated to be ca. 65 kDa 

(Figure 5.4a), which appears to be higher than the predicted value using the 
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ProtParam tool of ExPASY (49455 Da) considering the presence of the myc epitope and 

the polyhistidine tag which contribute 2.8 kDa to the size of MtEG7a. The nominal 

mass discrepancy observed for MtEG7a might be explained by the existence of Asn-

Xaa-Ser/Thr sequons, which are known to be a prerequisite for N-glycosylation post-

translational modifications. Indeed, 2 N-glycosylation sites were predicted by using the 

NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/) to occur at Asn 

residues, while another 2 Asn-Pro-Ser sequons were found in which Pro residue is 

known to preclude N-linked glycosylation in most cases by rendering Asn inaccessible. 

Moreover, several potential O-glycosylation sites were expected along the flexible 

linker peptide rich in Ser and Thr residues between the catalytic and non-catalytic 

CBM of protein, which is often O-glycosylated due to the use of a yeast expression 

system (Conde et al. 2004). Indeed, 13 potential O-glycosylation sites (4 Ser and 9 Thr) 

were identified, as predicted by using the NetOGlyc 3.1 server 

(http://www.cbs.dtu.dk/services/NetOGlyc/).  

 

Figure 5.4 SDS-PAGE (a) and IEF (b) of MtEG7a. (a) Lanes: 1, LMW standard 

protein markers; 2, P. pastoris culture broth; 3, purified MtEG7a. (b) Lanes: 1, standard 

protein markers with pI range 3.5-9.3; 2, purified MtEG7a. 

For the determination of isoelectric point (pI), isoelectric focusing (IEF) was 

performed with the Phastsystem using PhastGel IEF (Amersham Biosciences AB) 

using broad-range IEF markers (pH 3–9) from Pharmacia. The calculated pI value of 
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the translated recombinant MtEG7a was found 4.76, which is very close to the 

experimentally determined value range found from the IEF in the pH range of 3–9 

(multiple bands in the range of 3.8-4.5; Figure 5.4b). 

5.4. Enzyme characterization (I) – Temperature and pH optimal activity / stability 

The optimal temperature was determined using the standard assay procedure at 

temperatures ranging from 30 to 90◦C in 0.1 M citrate-phosphate buffer pH 5.0. 

Temperature stability was determined by measuring the residual activity under the 

standard assay procedure, after incubation of 0.28 mg of purified MtEG7a at various 

temperatures for different amount of time. The optimum temperature activity was 

observed at 60 ◦C, losing rapidly its activity for temperatures over 65◦C (Figure 5.5b). 

The endoglucanase remained fairly stable up to 40 ◦C after preincubation for 8 hours in 

100 mM phosphate-citrate buffer (pH 5.0) at different temperatures (Figure 5.6). 

However, at higher temperatures the enzyme lost part of its initial activity, retaining 

more than 40% at temperatures up to 80◦C for 8 hours of incubation. MtEG7a exhibits 

half-lives of 9.96 h and 6.5 h at 70◦C and 80◦C, respectively.  

 

 
 

Figure 5.5 Effect of pH (a) and temperature (b) on the activity of MtEG7a. The 

experiment was carried out in duplicates. 

The optimal pH was determined by the standard assay at 50◦C over the pH 

range 3.0-11.0 using either 0.1 M citrate-phosphate buffer pH 3.0-7.0, 0.1 M Tris-HCl 

pH 7-9 or 0.1 M glycine-NaOH buffer pH 9-11. The stability at different pH was 

determined after incubating the enzyme in the above buffers at 4◦C for 24 h and then 
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measuring the activity remaining using the standard assay. The enzyme presented the 

highest activity levels at pH 5.0 and the >80% of the peak activity was displayed at pH 

6, while the activity drops rapidly for pH less than 4 or higher than 7 (Figure 5.5a). 

The enzyme was found remarkably stable in the pH range 3-11 after 24 h retaining its 

initial activity (data not shown). The activity of MtEG7a at different pH values and 

temperature conditions reveals that this enzyme corresponds to an acidic thermophilic 

endoglucanase. 

 
 

Figure 5.6 Effect of temperature (● 30◦C, ○ 40◦C, ▼ 50◦C, Δ 60◦C, ■ 70◦C and □ 

80◦C) on the stability of MtEG7a. The experiment was carried out in duplicates. 

 

5.5. Enzyme characterization (II) – Adsorption on microcrystalline cellulose 

The translated sequence of eg7a gene, feature a recognizable carbohydrate 

binding module (CBM), which is quite common not only to other known 

endoglucanases but also to cellulolytic enzymes generally in literature. Through this 

domain, which belongs to the CBM family 1 of the CAZy database, the enzyme adsorbs 

on the surface of the substrate at the initial step of hydrolysis. It contains conserved 

cysteines which form disulfide bridges, five aromatic amino acid residues (Tyr433, 

Trp441, Tyr451, Tyr455 and Trp459), and two glutamines (Gln435 and Gln456) 

which are essential for the adsorption capacity (Linder et al. 1995).  
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Adsorption of the MtEG7a on cellulose was estimated using 10 mg/ml Avicel as 

substrate in 0.1 M citrate-phosphate buffer pH 5.0 (Medve et al. 1998). Enzyme 

solutions with known concentrations of protein (5.7 – 113.6 μg/ml) were incubated for 

1 hour at 4◦C under continuous mixing then filtered and the residual activity was 

estimated by standard assay. The amount of unbound protein was also determined by 

measuring A280nm. This adsorption can often be described by the Langmuir isotherm 

model: [A] = [Amax] x Kad x [E] / (1 + Kad x [E]) where [A] represents the 

adsorbed enzyme, [Amax] the maximum adsorption amount, Kad the adsorption 

equilibrium constant, and [E] the initial enzyme concentration in the reaction (Nimz 

1974).  

The enzyme adsorption on Avicel cellulose is influenced by the concentration of 

the protein relative to the substrate. At initial enzyme concentration 5.7 μg/mg 

substrate, the amount of bounded enzyme was 92 %, at 4 ◦C for 1 hour. The parameters 

in the Langmuir isotherm were optimized using non-linear regression. The maximum 

adsorbed amount (Wmax) was found 110.4 ± 1.8 μg/mg substrate. At the point where 

the adsorbed amount of MtEG7a was half of the maximum amount, the equilibrium 

concentration (1/K) was 128.7 ± 0.02 mg/ml. With the assumptions that the substrate 

binding sites are equivalent and the reaction mix was homogeneous, the Langmuir 

isotherm was found to describe the adsorption well. 

5.6. Enzyme characterization (III) – Substrate specificity 

To investigate substrate specificity of MtEG7a, multiple substrates, such as 

isolated polysaccharides (lichenan, barley β-glucan, laminarin, wheat arabinoxylan, 

HEC, HPMC, Avicel) or xylans (oat spelt, beechwood and birchwood xylan) were 

selected. Enzyme activity was determined after incubation in 0.1 M citrate-phosphate 

buffer (pH 5.0) containing 1.0% of each substrate at 50◦C for 15 min. The amount of 

reducing sugars produced was estimated using the DNS method, as described above. 

The activity against filter paper was determined, as previously described (Wood and 

Bhat 1988). Enzyme activity on p-NPG and p-NPX was tested in reaction mixtures (1 

ml) containing 0.145 mg MtEG7a and 10 mM p-NPG or p-NPX in 0.1 M 

citratephosphate buffer pH 5.0. The mixtures were incubated for 10 min at 50◦C. The 

amount of p-nitrophenol released was measured at A410nm after addition of 0.2 ml 1 M 
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Na2CO3. For determining the kinetic constants (Km, kcat and kcat/Km ratio) of MtEG7a 

for the hydrolysis of CMC, the enzyme was incubated at different concentrations of the 

polysaccharide ranging from 0.10 – 20 % (w/v) in 0.1 M citrate-phosphate buffer pH 

5.0 at 50◦C.  

The enzyme showed relatively high activity toward barley β-glucan (298 U/mg) 

and 1% low viscosity CMC (177 U/mg) and lower activity toward lichenan (26 U/mg), 

wheat arabinoxylan (5 U/mg) and other xylans suggesting that its primal enzymatic 

activity is to hydrolyze the β-1,4 linkages of the substrates (Table 5.2). The enzyme 

exhibited very low activity on Avicel cellulose, while showed no activity toward 

laminarin, arabic gum, and p-NPG. Since β-glucan is a linear polysaccharide formed 

from glucose residues bound by β-1,4 and β-1,3 glucoside bonds, this enzyme could be 

classified as β-1,3-1,4-glucanase. However, MtEG7a completely lacked activity against 

laminarin (β-1,3-glucan), thus it is obvious that the enzyme is strictly specific in 

hydrolyzing β-1,4-bonds. 

Substrate  Specific activity 
(U/mg protein) 

Barley β glucan 1%  298 ± 9 

CMC 4% low viscosity  230 ± 4 

CMC 1% low viscosity  177 ± 6 

CMC 1% high viscosity  106 ± 8 

Lichenan 1% 26 ± 0 

Oat spelt xylan 1%  10 ± 0.2 

Wheat arabinoxylan 1%  5 ± 0.2 

Beechwood xylan 1% 5 ± 0 

Birchwood xylan 1%  4 ± 0.1 

Filter paper 5 ± 0.3 

HEC 1%  2 ± 0 

Avicel 0.24 ± 0 
 

Table 5.2 Activity of purified MtEG7a on polysaccharide substrates. The enzyme was 

not active on the following substrates: p-NPG, p-NPX, HPMC, laminarin and arabic 

gum. 
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For studying the hydrolysis products of cellooligosaccharides under the action 

of the purified enzyme, 1 ng of MtEG7a and 30 μM cellotriose (G3), cellotetraose (G4) 

or cellopentaose (G5), respectively, in 4 ml citrate-phosphate buffer (pH 5.0) was 

incubated at 50◦C for 100 min. During hydrolysis, samples of 250 μl were taken and 

inactivated by boiling for 15 min prior to analysis using high-performance anion 

exchange chromatography (HPAEC), by a CarboPac PA-1 (4 x 250 mm, Dionex) 

column with a pulsed amperometric detector equipped with a gold electrode. For the 

analysis, NaOH (66 mM), NaOAc (500 mM) in 66 mM NaOH and 500 mM NaOH as 

eluent A, B and C respectively, at a flow rate of 1 ml/min. The column was pre 

equilibrated for 20 min in 100% A. Following sample injection, a gradient run was 

performed as follows: 0–5 min, isocratic step (100% A), 5.1– 30 min 0- 20% B, 30.1– 35 

min 100% B, 35.1 – 40 min 100%C. The column was stabilized for 10 min between 

separate injections (100% A). For the identification and quantification of hydrolysis 

products D-glucose and G2–G5 cello-oligosaccharides were used as carbohydrate 

standards. Assuming that the condition [Eo]«[So]«Km is satisfied (where [Eo] and 

[So] represent the concentrations of the enzyme and substrate, respectively), the 

enzymatic hydrolysis of cello-oligosaccharides was regarded as a first-order reaction. 

Since the integrated rate equation for the first-order kinetics can be written as 

k*t=ln([So]/[St]), where k=(kcat/Km)[enzyme], whereas [So] and [St] represent 

substrate concentration prior to the start of the reaction and at a specified time during 

the reaction, respectively (Matsui et al. 1991), the estimation of the catalytic efficiency 

of MtEG7a against cello-oligosaccharides was made using the above equation. 

Analysis of the hydrolysis patterns of cellooligosaccharides G3, G4 and G5 were 

showed that the enzyme displaying no detectable activity against cellobiose (G2). The 

hydrolysis of G3 produced G2 and glucose, the hydrolysis of G4 produced only G2, 

whereas when the enzyme catalyzed the hydrolysis of G5, the products were G2 and 

G3 which was subsequently cleaved to glucose and G2. The catalytic efficiency 

(kcat/Km) of MtEG7a against G3, G4 and G5 was 4.1 x 103, 5.6 x 104 and 6.8 x 104 

min-1 M-1, respectively. Kinetics parameters were also calculated for the hydrolysis of 

CMC at concentrations between 0.10 – 20 % (w/v), where the endoglucanase exhibited 

a catalytic efficiency (kcat/Km) of 18.82 ml mg-1 min-1 (Vmax = 622.5 ± 86.4 U min-1 mg-1 of 

protein and Km = 24 ± 0.5 mg CMC ml-1). 
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5.7. Viscosity measurements 

The change in viscosity of CMC solution was determined using an Ostwald 

viscometer and incubating a 5-ml reaction mixture containing 4% CMC (low viscosity) 

and the enzyme (0.28 μg) in 0.1 M citrate-phosphate buffer, pH 5.0 at 50◦C. The time 

of outflow was measured at different time intervals up to 2 hours. Simultaneously, 

another set of reactions was carried out under identical conditions for different time 

intervals and the amount of reducing sugar released was estimated by DNS method. 

The specific viscosity (nsp) was calculated by the formula nsp= (t-to)/to where to and t 

represent the flow time of the buffer and reaction mixture respectively. This was 

plotted against the amount of released sugars and showed that even a small amount of 

MtEG7a caused rapid decrease in the relative viscosity of the CMC solution. When 

0.28 μg of purified enzyme was added to 5 ml of CMC 4% (w/v) solution, almost 50 % 

loss of viscosity was observed at the initial stage of the reaction, with simultaneous 

release of small sugar amounts (Figure 5.7), which suggested that it is an endo-acting 

endoglucanase catalyzing randomly the cleavage of polymeric cellulose 

(Christakopoulos et al. 1995). 

 

 
 

Figure 5.7 Plot of viscosity decrease (nsp) versus the release of reducing sugars for the 

hydrolysis of CMC by the MtEG7a endoglucanase. 

The capability of MtEG7a to reduce the viscosity of high-solid biomass 

suspensions using an oscillation viscometric measurement method was investigated. 
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The substrate used for the hydrolysis was hydrothermally pretreated wheat straw 

(Triticum aestivum L.; PWS), obtained from Inbicon A/S (Fredericia, Denmark). Wheat 

straw residence time in the hydrothermal reactor averaged 12 min with the reactor 

temperature maintained at 190◦C by injection of steam (Thomsen et al. 2006). The solid 

fiber fraction was analyzed according to the procedure of Xiros et al. 2009 and was 

found to contain 50.2% glucan, 3.8% hemicellulose, 25.5% acid insoluble lignin and 

2.8% starch, based on DM (w/w). The hydrolysis step of PWS catalyzed by purified 

MtEG7a was carried out in a liquefaction reactor based on fall mixing consisted of a 6 

cm wide and 25 cm in diameter chamber (Figure 5.8). A horizontal rotating shaft 

mounted with three paddlers in each chamber was used for mixing/agitation. A 0.37 

kW motor was used as drive and the rotation speed was set at 7 rpm. The direction of 

rotation was programmed to shift twice a minute between clockwise and anti-

clockwise. Mixing and falling down of material results to better saccharification at 

shorter time duration. An oil-filled heating jacket on the outside enables the control of 

the temperature up to 90◦C.  

The experiments were performed at 45 - 60◦C, using 5 mg/g DM of MtEG7a 

that is contained in P. pastoris concentrated culture supernatant adjusted at pH=5.0, 

resulting in 800 g of 18% (w/w) DM. Microbial contaminations were prevented by the 

addition of 0.02% (w/v) sodium azide. For the determination of the viscosity, aliquots 

of the liquefacted PWS were taken in different time intervals and apparent viscosities 

of slurries were measured with an Anton Paar Physica MCR rheometer (Anton Paar 

Gmbh, Austria), using a parallel plate system with roughened plates. This plate system 

is reported to be well suited for measuring nearly all of the rheological properties in 

biomass slurry consisted of pretreated corn stover (Stickel et al. 2009). Oscillatory 

measurements were taken at 25◦C, at angular velocities (ω) of the spindle between 10 – 

100 rad/s and normal force of the parallel plates was set at 0 N. Aliquots of the 

reaction mixture were transferred to pre-weighed Falcon tubes, boiled for 10 min in 

order to inactivate the enzyme, diluted approximately 10-times and centrifuged. Clear 

supernatants of the diluted samples were analyzed for reducing sugars by the DNS 

method (Miller 1959) using D-glucose as standard. 

 

117 



  

Figure 5.8 The laboratory scale liquefaction reactor based on fall mixing that was 

employed for the hydrolysis and the reduction of viscosity of PWS (18% w/w, DM) by 

the recombinant MtEG7a.   

 

Figure 5.9 Effect of the reaction temperature (● 45◦C, ○ 50◦C, ▼ 55◦C and Δ 60◦C) of 

MtEG7a (5 mg/g DM) on the viscosity (a) and release of reducing sugars (b), on the 

hydrolysis of PWS (18% (w/w) DM) during 6 hours of incubation in a laboratory scale 

liquefaction reactor based on fall mixing at 800 g reaction load. 

In all reactions the apparent viscosity decreased with increasing shear rates 

typically found for non-Newtonian liquids (Stickel et al. 2009).The apparent initial 

viscosity of the mixture (t = 0) was found very high (1860 Pa·s), and, as expected, the 

viscosity decreased with reaction time, owing to the loss of the lignocellulose structure 

and water-binding capacity in cellulose degradation. The decrease in viscosity was 

found to be most pronounced within the first 1.5 hour of reaction (Figure 5.9a). Since 

the viscosity response to angular velocity ω was proportional in all reactions at angular 
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velocities of less than 60 rad/s (data not shown), the reactions could be compared at a 

single ω and for the specific velocity of 50 rad/s, at which all measurements at different 

time points for the different reactions were within the linear range. MtEG7a 

endoglucanase was found to catalyze the liquefaction of PWS more efficiently at 55◦C 

(Figure 4.9a). At this temperature, the viscosity decreased drastically from 1773 to 302 

Pa·s within the initial 3 hours of hydrolysis and then became relatively stable for the 

rest of the liquefaction reaction. Moreover, the saccharification levels obtained at 55◦C 

were far above those obtained at 50◦C and 60◦C (Figure 5.9b). 

5.8. Scanning electron microscopy 

Scanning electron microscopy (SEM) was performed to image the surface 

morphology of the initial and the resulting dried fiber fraction from wheat straw after 6 

hours of enzymatic hydrolysis at 55 ◦C. The SEM images were done using a FEI 

Quanta 200 (FEI Company, Eindhoven, The Netherlands), operated at an accelerating 

voltage of 25–30 kV. All samples were coated with gold in an Emitech K550X sputter 

coater. The straw initially exhibited rigid and highly ordered fibrils with smooth and 

contiguous surface (Figure 5.10a), while the fibers of hydrolyzed samples were 

distorted (Figure 5.10b). When the biomass was treated with MtEG7a clefts appeared 

on the surface of PWS, which seems to be slightly corroded and became heterogeneous 

and loose. 

 
 

 

 

 

 

Figure 5.10 SEM images (×3,000 of magnitude) of PWS before (a) and after 6 h of 

hydrolysis (b) catalyzed by MtEG7a in a laboratory scale liquefaction reactor based on 

fall mixing. 
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5.9. Conclusions - Discussion 

The gene encoding MtEG7a from M. thermophila was expressed in the 

heterologous host P. pastoris. After induction with methanol, the hydrolytic activity 

towards CMC and the accumulation of the recombinant enzyme in the culture broth 

increased significantly up to 468 U/ml after 6-day culture. This expression yield is 20–

30-fold higher than levels observed at Volvariella volvacea endoglucanase using the P. 

pastoris system (15.7 – 24.1 U/ml; Ding et al. 2002). Total extracellular enzyme activity 

in the yeast expression system was about 80 times higher compared with that reported 

previously for a E. coli construct developed to produce recombinant Trichoderma reseei 

Cel7B endoglucanase (5.78 U/ml; Nakazawa et al. 2008) and Erwinia chrysanthemi 

endoglucanase (7.8 U/ml; Zhou et al. 1999) for use in industrial applications. 

The P. pastoris expression system has been used successfully to study 

recombinant endoglucanases from various fungi species, like for example from 

Aspergilli species Aspergillus kawachii (AkCel61) (Koseki et al. 2008) and Aspergillus niger 

(EGI) (Shumiao et al. 2010). The methylotrophic yeast P. pastoris is a favorite system 

for expressing heterologous proteins due to its many advantages, such as protein 

processing, protein folding and post-translational modification (Cereghino and Cregg 

2004). 

The calculated molecular mass for MtEG7a and the pI value (46629 Da and pH 

4.61, respectively) are similar to other fungal endoglucanases isolated from 

Gloeophyllum sepiarium (45 kDa, pI 3.8) (Mansfield et al. 1998) and Aspergillus aculeatus 

(45 kDa, pI 4.3) (Naika et al. 2007). However, the higher molecular weight found by 

SDS-PAGE (ca. 65 kDa) might be explained by N- and O-glycosylation post-

translational modifications, particularly along the flexible linker peptide rich in Ser and 

Thr residues between the catalytic and non-catalytic CBM of protein. The same 

observation was indicated in the heterologous expression of a GH61 cellulase from the 

same thermophilic fungus (StCel61a) in P. pastoris, where 23 potential O-glycosylation 

sites were predicted on the Ser-Thr linker region (Dimarogona et al. 2012). The 

glycosylation patterns of the recombinant endoglucanase produced by P. pastoris may 

shift the pI (multiple bands in the range of pH 3.8-4.5), as a result of the charged 

carbohydrate groups added to the molecule during post-translational modification. 
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These glycosylation patterns have been showed to vary considerably in the length and 

the type of oligosaccharides. Even in the same glycosylation Golgi machinery of one 

cell, it is possible for two proteins to be differently glycosylated and has been proposed 

that this heterogeneity is related to specific sequences recognized by the various 

glycosylation systems. It has been observed that some proteins heterologously 

expressed in P. pastoris vary considerably in terms of the number of the mannose units 

added to the same polysaccharide core (Daly and Hearn 2005).  

The purified recombinant MtEG7a showed the highest activity toward barley β-

glucan (298 U/mg), while considerable activity was found on oat spelt xylan (10 

U/mg), wheat arabinoxylan (5.3 U/mg) and other xylans underpinning its primal 

enzymatic activity on the hydrolysis of the β-1,4 linkages. The enzyme was more active 

against barley β-glucan than CMC, maybe due to the reason that CMC is highly 

substituted with methoxy side chains, which may interfere with the enzyme activity 

(Karlsson et al. 2002). Other endoglucanases exhibiting significant xylanolytic activity 

have been reported previously from A. niger (EG1C) (Shumiao et al. 2010) and 

Fomitopsis pinicola (Yoon et al. 2008). It is worth mentioning that EGI of T. reesei is the 

only known cellulase of T. reesei, which displays significant xylanase activity, with a 

specific activity of 7.9 U/mg on glucuronoxylan and 8.3 U/mg arabinoxylan (Markov 

et al. 2006). It has been previously reported that activity on xylans is a common feature 

shared only by endoglucanases of GH7 family. This can be ascribed to the structural 

homology between the GH7 EGs and xylanases. GH7 EGs and xylanases might 

originate from a diverged ancestral gene, and its remnants might enable Cel7 EGs 

active on xylan (Vlasenko et al. 2010). 

The optimum temperature activity of the recombinant enzyme was observed at 

60◦C while a considerable amount of activity was retained up to 80◦C exhibiting more 

than 40% of its initial activity. Thermophilic enzymes would have advantages in 

stability during the course of harsh process conditions, and increased catalytic rates at 

higher temperatures. Other endoglucanases with similar properties (pH=5.0 and 

Τ=60◦C) have been isolated from different fungal species, such as F. pinicola (Yoon et al. 

2008) or Bispora sp. MEY-1 (Luo et al. 2010). 
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The comparison of kcat/Km values of MtEG7a against the oligosaccharides showed 

preference against G5 following a G5>G4>G3 pattern. Similar hydrolysis patterns 

have been observed in the endoglucanases isolated from Gloeophyllum sepiarium and 

Gloeophyllum trabeum (Mansfield et al. 1998), but differ in terms of hydrolysis of G3. 

The recombinant MtEG7a exhibited lower Km than an endoglucanase isolated from 

Bispora sp. MEY-1 (Vmax= 3460 U min-1 mg-1 of protein and Km = 287 mg CMC ml-1; 

Luo et al. 2010). 

M. thermophila has been previously characterized as a powerful source of 

endoglucanases. A very thermostable endoglucanase with properties similar to 

MtEG7a was isolated from the culture filtrates of M. thermophila (Klyosov et al. 1988). 

The molecular weight of the enzyme was 52 kDa, the pI was found 4.7 while the pH 

optimum was determined between 5.0-6.0. The enzyme exhibited high thermostability 

after incubation at different temperatures, at 0.1 M sodium acetate buffer (170 hours at 

65◦C), which is higher than that of the recombinant MtEG7a. Another group 

(Bukhtojarov et al. 2004) investigated the properties of individual cellulases from the 

multienzyme complex produced by a mutant strain of the fungus C. lucknowense C1, 

later reclassified as a M. thermophila isolate (Visser et al. 2011). Among endoglucanases, 

the highest saccharification activity was displayed by EG60 (60 kDa) and EG51 (51 

kDa). The enzymes exhibited pI 3.6 and 5.0 respectively. It has been shown later that 

the EG51 and EG60 represent the GH5 and GH7 endoglucanases from M. thermophila, 

respectively (Gusakov et al. 2011). The latter enzyme first described by Bukhtojarov et 

al. (2004) shows highest activity at 60◦C, pH 5.0 and lacks a CBM domain, which 

implies that EG60 is different from the MtEG7a described in the present work. 

Another endoglucanase (StCel5A) from S. thermophile (synonym of M. thermophila) was 

discovered by Tambor et al. (2012). StCel5A displays a typical GH5 domain, exhibiting 

optimal activity at pH 6.0 and 70◦C. The enzyme retained greater than 50% of its 

activity following 2 hours of incubation at 55◦C, diluted in 10 mM citrate buffer pH 4.5. 

Only a few experiments on hydrolysis and rheological examination of biomass 

slurries are reported under high DM conditions, which involve either a monoenzyme 

treatment under low enzyme loading conditions and a short liquefaction period 

(Szijártó et al. 2011a, 2011b) or a multienzyme treatment under normal enzyme loading 

conditions and a typical liquefaction period (Rosgaard et al. 2007). Under this view, in 
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the present investigation we evaluated MtEG7a monoenzyme for its ability to liquefy 

high-consistency lignocellulosic biomass under conditions that mimics the real 

behavior of that process. MtEG7a was proved to liquefy the biomass efficiently and 

rapidly, similar to EGI/Cel7B endoglucanase of T. reesei (Szijártó et al. 2011b). 

MtEG7a endoglucanase catalyzed the liquefaction of PWS more efficiently at 55◦C by 

decreasing significantly the viscosity of the slurry within the first 3 hours of 

incubation. The cleavage of the long-chain cellulose fibers during liquefaction process 

occurs at the initial stages of liquefaction process by the endoglucanases, as reported by 

Szijártó et al. (2011b) and Lu et al. (2008), who also observed dramatic rheological 

changes in the suspensions during the first hours of the hydrolysis. In addition, 

hydrolysis resulted in the release of small amount of reducing sugars, indicating low 

saccharification rates and the ability of MtEG7a to alter the viscoelastic properties of 

wheat straw, possibly by separating the microfibrils and degrading part of the chains. 

It seems that at the beginning of HG liquefaction experiments, lignocellulosic biomass 

slurry is insoluble in the solvent and the viscosity of the reaction is high. Along with 

the process, more and more macromolecules are dissolved by the solvent, resulting in 

change of the rheological properties and decline in mechanical strength of the material. 

At elevated temperatures, the reaction rates of thermostable endoglucanases are 

higher, potentially reducing processing times. The high thermostability and extended 

life-time of this enzyme can make the liquefaction stage possible at high temperatures. 

In the present study for the first time, to our knowledge, a monoenzyme such as 

the recombinant thermophilic GH7 endoglucanase from M. thermophila has been 

evaluated for its ability to liquefy high-consistency lignocellulosic biomass under 

conditions that mimics the real behavior of that process. Although many 

endoglucanases have been reported to date, the high catalytic efficiency and 

thermostability of MtEG7a, renders it a good candidate for industrial applications, 

including the saccharification of lignocellulosic materials at high DM content for high 

ethanol production at the subsequent fermentation. 
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CHAPTER 6  
 
Cloning, expression and characterization of BGL3 β-
glucosidase from M. thermophila (PAPER III) 
 

Beta-glucosidases (EC 3.2.1.21) are enzymes that participate in the final step of 

cellulose degradation and belong to GH families 1, 3, 5, 9, 30 and 116. They act on 

soluble cello-oligosaccharides produced by the action of β-1,4-endoglucanases (EC 

3.2.1.4) and cellobiohydrolases (EC 3.2.1.91), including cellobiose, towards the release 

of D-glucose, β-Glucosidases hydrolyze soluble cellodextrins and cellobiose to D-

glucose and thus relieve the system from end product inhibition (Himmel et al., 2007). 

As shown in various studies (Bezerra & Dias, 2005; Gruno et al., 2004; Zhao et al., 2004) 

the cellobiose released during the hydrolysis of lignocellulose for ethanol production 

has a high inhibitory effect on cellulases (Sorensen et al., 2013). Thus the need of 

instant cellobiose removal is crucial for the efficiency of the process. Due to the fact 

that the most common cellulolytic commercial complex (Celluclast 1.5L) lacks β-

glucosidase activity, efforts have been made for the production of an enzyme 

supplement that will be rich in this enzymatic activity (Zhang et al., 2010; Gurgu et al., 

2011; Pitson et al., 1997). The presence of sufficient β-glucosidase activity in the 

enzyme mixture is shown to increase the hydrolysis performance by more than 20% 

reaching even 40% increase in the total ethanol production of the processes (Xin et al., 

1993; Han & Chen, 2008). Here lies the need of β-glucosidase activity in the 

lignocellulosic multi-enzyme systems. 

Recently, β-glucosidases have become the focus of many applied studies because 

they are essential part not only in the cellulose breakdown but also in the synthesis of 

oligomers and other complex molecules, such as alkyl-glucosides. The synthetic 

behavior is a result of the transglycosylation activity that has occurred by the presence 

of a stronger nucleophile compared to water, such as methanol. Therefore, these 

enzymes can be used for synthesizing a variety of glycoconjugates, such as alkyl 

glucosides, aminoglycosides and special disaccharide fragments of phytoalexin-elecitor 

oligosaccharides, which are involved in plant and other microbial defence mechanisms 

(Bhatia et al., 2002). The enzymatic production of alkyl glycosides, which are 
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surfactants with good biodegradability and low toxicity, is attractive forming 

stereochemically well-defined products. To date,much of the effort in the enzymatic 

synthesis of alkyl glucosides has been placed into GH1 enzymes (Hansson & 

Adlercreutz, 2001; Goyal et al., 2001), however, there is still a great need to find better 

glycosidases to compete traditional chemical synthesis (Goyal et al., 2001; Turner et al., 

2006).  

The thermophilic fungi Myceliophthora thermophila (synonym Sporotrichum 

thermophile) ATCC 42464, as described in Chapter 4, is an exceptionally powerful 

cellulolytic organism which possesses a great variety of genes encoding proteins with 

β-glucosidase activity, that are necessary for the breakdown of cellulose. This paper 

describes, for the first time, the successful cloning of the complete genomic DNA 

sequence of M. thermophila β-glucosidase gene belonging to GH3 family, and its 

heterologous expression in methylotrophic yeast P. pastoris. This enzyme exhibiting 

high specific activity towards hydrolysis of glucosidic substrates is stimulated by 

alcohols and has been shown to be an efficient biocatalyst in alkyl glucoside synthesis 

at increased cellobiose concentrations due to its transglycosylation activity. Moreover, 

it exhibits a combined tolerance to ethanol, pH and temperature, characteristics that 

render it a good candidate to be used in SSF processes for biofuel production and 

reflect potential commercial significance of the enzyme. 

6.1. Identification and cloning of MtBgl3a 

The translation of bgl3a open reading frame (ORF) (Model ID 66804) from the 

M. thermophila genome database shows significant primary sequence identity with 

known β-glucosidases which have been classified to family GH3 on CAZy database 

(http://www.cazy.org/; Cantarel et al., 2009). The putative β-glucosidase shows high 

sequence identity with β-glucosidases identified in Trichoderma species, such as BGL1 

(70%) fromTrichoderma viride (Liu et al., 2004) and BGL1 (71%) from Hypocrea jecorina 

(anamorph T. reesei) (Mach, 1993). The hypothetical protein of 66804 was selected as a 

candidate β-glucosidase and the corresponding gene, which was provisionally named 

bgl3a, was cloned and used to transform P. pastoris X33; the encoded enzyme named 

MtBgl3a was expressed and finally characterized. 
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The ORF of bgl3a encodes a protein of 733 amino acids including a secretion 

signal peptide of 17 amino acids MTLQAFALLAAAALVRG based upon the 

prediction using SignalP v4.0, which is a web-based program 

(http://www.cbs.dtu.dk/services/SignalP/). The predicted mass and isoelectric point 

(pI) of the mature protein was 79819 Da and pH 5.05, respectively, by calculations 

using the ProtParam tool of ExPASY (http://web. expasy.org/protparam/). 

 

Table 6.1. Properties of MtBgl3a obtained from genome analysis. 

The gene coding for the hypothetical protein MtBgl3a (Model ID 66804; 

chromosome 3:4861135-4863642) was PCR amplified from genomic DNA using 

primers EF/ER (Table 6.2) designed accordingly to the available gene 

sequence(http://genome.jgi-psf.org/, DOE Joint Genome Institute, (Berka et al., 2011) 

including the ClaI and XbaI restriction enzyme sites at their respective 5’-ends. A high 

fidelity KOD Hot Start® DNA polymerase producing blunt ends was used for the DNA 

amplification, which was carried out with 30 cycles of denaturation (20 s at 95οC), 

annealing (10 s at 60οC), and extension (50 s at 70οC), followed by 1 min of further 

extension at 70οC. In order to determine the DNA sequence, the PCR product was 

cloned into the PCR Blunt® vector according to the method described by the Zero 

Blunt® PCR Cloning Kit. 
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Intron removal was achieved using the molecular technique of overlap extension 

polymerase chain reaction (OEPCR) (Topakas et al., 2012) using the polymerase KOD 

Hot Start® (Novagen, USA). Two complementary DNA primers per intron, two 

external primers (EF/EeR, EeF/ER, Table 6.2) and the appropriate PCR 

amplification process were used to generate two DNA fragments harbouring 

overlapping ends. The recombinant plasmid pCRBlunt/bgl3a, at an appropriate 

dilution, was used as template DNA and the PCR conditions for each reaction are given 

as the following: 95οC for 2 min, ensued by 30 cycles of 95οC for 20 s, 60οC for 10 s and 

70οC for 16 s (fragment 407 bp) or 20 s (fragment 1795 bp) respectively, with a final 

extension step at 70οC for 1 min. The two PCR products were combined together in a 

subsequent hybridization reaction. The generated “fusion” fragment was amplified 

further by overlapping PCR through the utilization of the two external primers, EF 

end ER, with an initial denaturation step at 95οC for 2 min, followed by 45 cycles at 

95οC for 20 s, 60οC for 10 s, 70οC for 25 s and a final extension step at 70οC for 1 min. 

An extended annealing was performed (25 min) in order to improve base-pairing 

between the complementary ends of each fragments that have to be fused. The 

produced bgl3a DNA was digested with the enzymes ClaI and XbaI and the DNA 

fragment gel-purified before cloning into the pPICZαC vector, resulting in the 

recombinant pPICZαC/bgl3a which was amplified in E. coli TOP10F’, and the 

transformants were selected by scoring for ZeocinTM resistance (25 μg/ml). The 

recombinant vector pPICZαC/bgl3a was confirmed by restriction analysis and DNA 

sequencing and finally transformed into P. pastoris. The recombinant plasmid 

pPICZαC/bgl3a was linearized with SacI, and then transformation of P. pastoris and 

cultivation in shaken flasks were performed according to the EasySelectTM Pichia 

Expression Kit.  

 

Table 6.1. PCR primers for amplification and intron splicing. 
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Figure 5.1. Amplification of bgl3 gene through PCR, cloning of the PCR product into 

the PCR® Blunt vector (Invitrogen, USA), amplification in E. coli TOP10’ cells and 

digestion with ClaI and XbaI, subsequent amplification of  two exons, final overlapping 

PCR and cloning into the PCR® Blunt vector as previously. The produced fragment 

was gel-purified before cloning into the pPICZαC vector resulting in the recombinant 

pPICZαC/bgl3 (C) which was amplified in E. coli TOP10F’ cells. 

6.2. Transformation of P. pastoris and screening of recombinant transformants 

High-level expression transformants were screened from the YPDS plates 

containing ZeocinTM at a final concentration of 100 μg/ml. The presence of the bgl3a 

gene in the transformants was confirmed by PCR using yeast genomic DNA as 

template and gene specific primers (EF and ER; Table 6.1). For the cloning of the β-

glucosidase gene from M. thermophila, Escherichia coli One Shot®Top10 (Invitrogen, 

USA) and Zero Blunt® PCR Cloning Kit (Invitrogen, USA) were used as the host-

vector system. P. pastoris host strain X-33 and pPICZαC (Invitrogen, USA) were used 

for protein expression. The WT strain of M. thermophila ATCC 42464 was maintained 

on 1.5% malt-peptone-agar slants at 4οC. P. pastoris was routinely grown in shaking 
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flasks at 30οC according to the instructions in the EasySelectTM Pichia Expression Kit 

(Invitrogen, USA). Genomic DNA was prepared and isolated as previously described 

(Topakas et al., 2012). An E. coli/P. pastoris vector, pPICZαC, was used to achieve 

secreted expression of Mtbgl3a. pPICZαC contains the tightly regulated AOX1 

promoter and the Saccharomyces cerevisiae α-factor secretion signal located immediately 

upstream of the multiple cloning site (Higgins et al., 1998).  

To screen the P. pastoris transformants for β-glucosidase expression, 50 colonies 

were plated out on MM (1.34% (w/v) yeast nitrogen base, 4x10-5% (w/v) biotin and 

0.5% (v/v) MeOH top agar at a density of 1 colony/cm2. After incubation at 30 οC for 

24 h, the plates were overlaid with 4 ml of 1% agarose containing 10 mM MeUmbGlc 

and incubated at room temperature for up to 5 min. The plates were inspected 

regularly under UV light for fluorescent haloes surrounding recombinant colonies, 

which is indicative of MeUmbGlc hydrolysis (Figure 6.2).  

 

Figure 6.2. The pPICZαC/bgl3 transformants were selected by their ability to 

hydrolyse MeUmbGlc substrate, as indicated by the fluorescent haloes surrounding the 

recombinant colonies.  

For the quantification of β-glucosidase activity found in the fluorescent positive 

P. pastoris colonies, the different transformants were cultivated in BMGY medium for 

18–24 h, at 30 οC in a shaker (200 rpm) and then inoculated into the production 

medium BMMY reaching OD600 = 1. The extracellular secreted protein was tested for 

β-glucosidase activity after 24 h of incubation at 30 οC and 200 rpm. The best 

recombinant P. pastoris harbouring bgl3a gene was grown and harvested, as previously 

described (Topakas et al., 2012). The cultures were kept in a shaking incubator at 30 οC 
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for 6 days (200 rpm) with the addition of 0.75 ml methanol once a day to maintain 

induction (0.5% v/v). 

6.3. Production and purification of recombinant MtBgl3a – Enzyme assay  

After selection of P. pastoris transformants by their ability to produce fluorescent 

haloes under UV light when covered with agar containing MeUmbGlc substrate, ten 

colonies ZeocinTM resistant were screened for protein expression and secretion under 

methanol induction. All transformants produced a major secreted protein product of ca. 

90 kDa upon examination of culture supernatants by SDS-PAGE, whereas no protein 

could be detected with the vector control (data not shown). The β-glucosidase activity 

was determined by incubating the enzyme with p-β-NPG. The enzymatic reaction 

mixtures (1 ml) containing 50 μl of enzyme solution and 1 mM p-β-NPG (final 

concentration) in 0.1Mcitrate-phosphate buffer pH 5.0 were incubated for 10 min at 

50οC. The amount of p-nitrophenol (p-NP) released was measured at A410, after 

addition of 0.2 ml 1 M Na2CO3 to the reaction mixtures, using a standard curved 

prepared under the same conditions. β-Glucosidase activity could be first detected in 

the medium 24 h after inoculation and peaked at 192 h with a titer of 41 U/ml (Figure 

6.3).  

 

Figure 6.3. Time course of MtBgl3a β-glucosidase activity (       ) and biomass (●) 

production of the recombinant P. pastoris harbouring the blg3a gene. The β-glucosidase 

was expressed in culture broth by induction with 0.5% methanol and measured with p-

β-NPG as substrate.  
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For the purification of the recombinant β-glucosidase, 800 ml of culture broth 

was centrifuged and concentrated 30-fold using an Amicon ultrafiltration apparatus 

(Amicon chamber 8400 with membrane Diaflo PM-30, exclusion size 30 kDa), 

(Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4 οC against a 

20 mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and loaded onto a 

immobilized metal-ion affinity chromatography (IMAC) column (Talon, Clontech; 1.0 

cm i.d., 15 cm length) equilibrated with the same buffer. The column was first washed 

with 300 ml buffer, then a linear gradient from 0 to 100 mM imidazole in 20 mM Tris-

HCl buffer containing 300 mM NaCl (60 ml, pH 8.0) was applied at a flow rate of 2 

ml/min. Fractions (2 ml) containing β-glucosidase activity were concentrated and the 

homogeneity was checked by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) using 10% acrylamide separating gels, which appeared as 

a single band. The molecular weight was estimated to be ca. 90 kDa (Figure 5.6), 

which appears to be higher than the predicted value using the ProtParam tool of 

ExPASY (79819 Da) considering the presence of the myc epitope and the polyhistidine 

tag which contribute 2.8 kDa to the size of MtBgl3a. The nominal mass discrepancy 

observed for MtBgl3a might be explained by the existence of Asn-Xaa-Ser/Thr 

sequons and Ser-Thr residues, which are known to be a prerequisite for N- and O-

glycosylation post-translational modifications respectively. Indeed, 2 N-glycosylation 

and 95 potential O-glycosylation sites (50 Ser and 45 Thr) were predicted by using the 

NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/) and the NetOGlyc 

3.1 server (http://www.cbs.dtu.dk/services/NetOGlyc/). The same observation was 

indicated in the heterologous expression of a feruloyl esterase from the same 

thermophilic fungus (StFaeB) in P. pastoris, where 3 potential N-glycosylation sites 

were predicted (Topakas et al., 2012).  

For the determination of isoelectric point (pI), isoelectric focusing (IEF) was 

performed with the Phastsystem using PhastGel IEF (Amersham Biosciences AB) 

using broad-range IEF markers (pH 3–9) from Pharmacia. Both gels were stained with 

Coomassie brilliant blue G-250. The calculated pI value of the translated recombinant 

MtBgl3a was found 4.0, which is close to the experimentally determined value range 

found from the IEF in the pH range of 3–9 (multiple bands in the range of 3.8–4.5; 

Figure 5.6). Glycosylation patterns may shift the pI as a result of the charged 
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carbohydrate groups added to the molecule during post-translational modification. P. 

pastoris glycosylation patterns have been showed to vary considerably in the length and 

the type of oligosaccharides, thus resulting in diverse structural heterogeneity of the 

protein population. Within the same cell, two different molecules of the same protein 

may have different oligosaccharides; even they have been exposed to the same enzymes 

and glycosylation machinery. It has been observed that some proteins heterologously 

expressed in P. pastoris vary considerably in terms of the number of the mannose units 

added to the same polysaccharide core (Daly and Hearn, 2005). Both molecular mass 

and pI values of the isolated recombinant MtBgl3a are similar to other fungal _-

glucosidases, such as β-glucosidase from Penicillium brasilianum (92.9 kDa, pI 3.9) 

(Krogh et al., 2010). 

 

Figure 6.6. SDS-PAGE (A) and IEF (B) of MtBgl3a. (A) Lanes: 1, LMW standard 

protein markers; 2, P. pastoris culture broth; 3, purified MtBgl3a. (B) Lanes: 1, standard 

protein markers with pI range 3.5–9.3; 2, purified MtBgl3a. 

6.4. Enzyme characterization – Specificity, Temperature and pH optimal activity / stability 

The optimal temperature was determined using the standard assay procedure at 

temperatures ranging from 30 to 80οC in 0.1 M citrate-phosphate buffer pH 5.0. 

Temperature stability was determined by measuring the residual activity under the 

standard assay procedure, after incubation of purified Mtbgl3a at various temperatures 

for different amount of time in 50mMMOPS buffer (pH D 6:5) in the presence of 1 

mg/ml BSA. The optimal pH was determined by the standard assay at 50οC over the 

pH range 3.0–11.0 using either 0.1Mcitrate-phosphate buffer pH 3.0–7.0, 0.1 M Tris-
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HCl pH 7–9 or 0.1 M glycine-NaOH buffer pH 9–11. The stability at different pH was 

determined after incubating the enzyme in the above buffers at 4 οC for 4 h and then 

measuring the activity remaining using the standard assay.  

 
Figure 6.7. Effect of pH (A) and temperature (B) on the activity of MtBgl3a. 

 

  
Figure 6.8. The thermal stability of MtBgl3a preincubated at different temperatures 

(pH 6.5, 30–65°C) in the absence of substrate and assayed for residual activity on p-β-

NPG under standard assay conditions. Incubation temperatures: 30 oC (●), 40 oC (○), 

50 oC (▼), 55 oC (∆), 60 oC (■), 65 oC (□) and 70 oC (+). The experiment was carried 

out in triplicates. 

The enzyme presented the highest activity levels at pH 5.0 and the >80% of the 

peak activity was displayed at pH 6, while the activity drops rapidly for pH less than 4 

or higher than 7 (Figure 6.7). The enzyme was found remarkably stable in the pH 

range 3–7 after 24 h of incubation, retaining almost 90% of the initial activity. The 

specific activity of the MtBgl3a at different temperatures under standard assay 
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conditions was measured and the enzyme exhibited its optimal activity at 70οC (Figure 

6.7). The β-glucosidase was fairly stable up to 60οC for 60 min and retained 56.3% of 

its activity after 2 h preincubation at the same temperature (Figure 6.8). MtBgl3a 

exhibits half lives of 274 min, 214 min and 143 min at 50οC, 55 οC and 60 οC, 

respectively. Other β-glucosidases showing similar values for optimal temperature and 

pH of enzymatic activity have been isolated from different fungal species, such as A. 

fumigatus (pH 6, 60οC; Liu et al., 2012),  P. brasilianum  (pH 4.8, 70 οC; Krogh et al., 

2010) and T. koningii (pH 5, 50 οC; Lin et al., 2010). 

The substrate specificity of Mtbgl3a against p-α-NPG, p-β-NPGal, p-α-NPGal was 

tested with reaction mixtures containing 0.064 mg Mtbgl3a and 5 mM of each 

substrate under the standard assay conditions. Enzyme activity on p-NPCell was tested 

at the same conditions, using 1 mM substrate. Enzyme activity on multiple 

polysaccharide substrates (lichenan, barley β-glucan, laminarin, Avicel) or birchwood 

xylan was also investigated. Enzyme activity was determined after incubation in 0.1 M 

citrate-phosphate buffer (pH 5.0) containing 1.0% of each substrate at 50 οC for 15 min. 

The amount of reducing sugars released was estimated using the dinitrosalicylic acid 

reagent (DNS) (Miller, 1959), using D-glucose for the standard curve. The activity on 

cellobiose was estimated by assaying the amount of released D-glucose using GOD–

POD method (Lin et al., 1999). One unit of activity was defined as the amount of 

enzyme which released 1 μmol of D-glucose equivalents or p-nitrophenol (p-NP) per 

min under assay conditions. The protein was determined by the absorbance at 280 nm 

using molar extinction coefficient of 115655M-1cm-1 (Stoscheck, 1990).  

β-Glucosidase was preferentially active against p-β-NPG when compared to 

cellobiose. The highest activity was observed with 1 mM p-β-NPG (97.7 U/mg) 

followed by laminarin (52.0 U/mg), 10 mM cellobiose (30.7 U/mg) and lichenan (20.6 

U/mg) (Table 6.2). The purified enzyme had lower activity on p-NPCell and barley-β-

glucan, whereas no detectable activity towards p-α-NPGal, p-α-NPG, CMC, xylans 

(wheat and birchwood) and Avicel was observed. Although polymers are not usually 

substrates for β-glucosidases, MtBgl3a can hydrolyze long glucans, such as laminarin 

and lichenan and in this respect resembles an exoglucanase. Several β-glucosidases 

have been found to hydrolyze laminarin and/or lichenan (Mamma et al., 2004; Riou et 
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al., 1998). According to their specific activity β-glucosidases are classified into three 

major groups including aryl β-glucosidases with a strong affinity for aryl β-glucosides, 

cellobiases, which only hydrolyze oligosaccharides (including cellobiose) and β-

glucosidases that are active with both type of substrates (Enari and Niku-Paavola, 

1987). The above results indicate that β-glucosidase MtBgl3a was active against both 

aryl β-glucosides and cellobiose therefore it can be concluded that belong to the last 

group. 

Substrate Specific activity 
(U / mg protein) 

p-β-NPG (1 mM) 97.7 ± 1.07 

p-β-NPGal (5 mM) traces   

p-NPCell 1mM 15.9 ± 0.07 

cellobiose 10mM 30.7 ± 0.97 

laminarin 0.5%  52.0 ± 2.20 

lichenan 1% 20.6 ± 0.04  

barley β-glucan 1% 12.4 ± 0.18  

Table 6.2. Activity of purified MtBgl3a on polysaccharide substrates. Activity was 

measured, as described in “Methods” section. Activity not detected for substrates p-α-

NPG, p-α-NPGal, wheat arabinoxylan, CMC, Avicel, filter paper and birchwood xylan. 

The experiment was carried out in triplicates.  

The effects of various metal ions or other substances at 10 mM on Mtbgl3a 

activity were determined by preincubating the enzyme with the individual compounds 

in 100 mM citrate-phosphate buffer pH 5.0 at 4 oC for 40 min. Activities were then 

measured at 50 οC, under standard assay conditions, in the presence of the metal ions 

or chemical agents. The activity assayed in the absence of metal ions or agents was 

recorded as 100%. The enzyme was slightly inhibited by Ca2+, Co2+,  EDTA  and SDS 

while, it was activated by Mn2+, Mg2+, Zn2+  and Cu2+ (Table 6.3). β-Glucosidases of 

microbial origin are usually affected by EDTA and the cations Mg2+, Ca2+, Co2+, Mn2+, 

Cu2+, and Zn2+ at 1.0 mM (Venturi et al. 2002; Peralta et al. 1997). It has been 

demonstrated that some fungal β-glucosidases are activated by several cations, 

including Ca2+, Mg2+, Co2+, and/ or Mn2+ (Riou et al. 1998; Karnchanatat et al. 2007).  
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Metal ion or 
reagent  Residual activity (%) 

KCl 103 % 
ZnSO4 149 % 
CuSO4 208 % 
MgSO4 110 % 
MnSO4 167 % 
CoCl2 85 % 
CaCl2 94 % 
EDTA 90 % 

urea 95 % 
SDS 91 % 

 

Table 6.3. Effect of metal ions and other chemical reagents (10 mM each) on β-

glucosidase MtBgl3a. The experiment was carried out in triplicates. 

6.5. Determination of MtBgl3a kinetic parameters – inhibition studies 

The values of the Michaelis constant (Km) and the maximum velocity (Vmax) for 

Mtbgl3a were determined by incubating  the enzyme in 100 mM citrate-phosphate 

buffer pH 5.0 at 40 οC with p-β-NPG and cellobiose at concentrations ranging from 0.1 

to 10 mM. The inhibition of Mtbgl3a by D-glucose and xylose was determined by 

assay the enzymatic activity on p-β-NPG in the presence of different inhibitor 

concentrations. Data were fitted to the Michaelis–Menten equation to generate 

estimates of values for Km, Vmax and Ki, using GraFit data analysis software that also 

gives an estimate of the standard error of each parameter (Leatherbarrow 1998). The 

recombinant β-glucosidase showed higher specificity for the hydrolysis of p-β-NPG 

compared to cellobiose, exhibiting Km values of 0.39 ± 0.12 mM and 2.64 ± 0.30 mM, 

respectively. However, both substrates were hydrolysed by the enzyme exhibiting 

similar velocities of 47.9 ± 3.8 and 49.4 ± 2.4 μmol/min/mg for p-β-NPG and 

cellobiose, respectively. A broad range of Km values for p-β-NPG and cellobiose has 

been reported for β-glucosidases produced from different fungal sources, such as 

Aspergillus oryzae (Km =0.29 mM for p-β-NPG; Langston et al., 2006), Aspergillus niger 

(Km =0.57 mM for p-β-NPG and 0.88 mM for cellobiose; Chauve et al. 2010) and 

Trichoderma reesei (Km =0.38 mM for p-β-NPG and 1.36 mM for cellobiose; Chauve et 

al. 2010).  
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The effect of different amounts of D-glucose (0-25 mM), D-xylose (0-10 mM) and 

D-gluconic acid (0-10 mM) on the hydrolysis of p-β-NPG by β-glucosidase was 

investigated (Table 6.4). The enzyme was competitively inhibited by D-glucose and 

D-xylose with Ki values of 282 μM and 30 μM, respectively. β-Glucosidase is 

frequently a rate-limiting factor during enzymatic hydrolysis of cellulose and is very 

sensitive to D-glucose inhibition (Mamma et al. 2004; Riou et al. 1998; Karnchanatat et 

al. 2007). Most of the microbial β-glucosidases, reported to date, are competitively 

inhibited by D-glucose and exhibit Ki values ranging from as low as 0.2 mM to no 

more than 100 mM (Pitson et al.1997; Karnchanatat et al. 2007; Mamma, et al., 2004; 

Seidle et al., 2004;  Harhangi et al. 2002; Lin, Pillay & Singh 1999; Ferreira Filho 1996; 

Parry et al. 2001). However, several fungal β-glucosidases show high glucose tolerance 

with Ki values of more than 100 mM (Riou et al. 1998).  

Inhibitor (mM) Km (mM) 
Vmax 

(μmol/min.mg protein) Ki (μM) 

Glucose 7.262 ± 1.2 100.656 ± 38 282 ± 100 

Xylose 9.017 ± 3.5 389.6 ± 72 30 ± 5 

glucono-δ-lactone 
/gluconic acid  

1.84 ± 0.5 205.4 ± 49 22 ± 2 

Table 6.4. Kinetic parameters of inhibition of p-β-NPG hydrolysis by 0-25 mM 

glucose, 0-10 mM xylose and 0-10 mM glucono-δ-lactone/gluconic acid. The Ki values 

given are the averages of separate experiments on four different substrate 

concentrations performed in duplicate. 

D-Gluconic acid, as a transition state analogue, is by far the most potent inhibitor 

for the microbial β-glucosidases (Harhangi et al. 2002). Cellulolytic fungi have been 

proposed to own an oxidoreductive cellulolytic system composed by different enzymes, 

such as GH-61 proteins that co-exist with the well-studied fungal cellulases resulting 

in efficient lignocellulose conversion (Dimarogona et al. 2012; Langston et al., 2011). 

These enzymes act through a mechanism that involves an hydrolytic and an oxidative 

step, thus generating two new chain ends on the crystalline surface, one normal non-
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reducing and an “oxidized reducing end”, i.e an aldonic acid (Forsberg et al. 2011; 

Langston et al. 2011). Thus the use of β-glucosidases with tolerance for these oxidized 

derivatives, such as D-gluconic acid seems to be a promising approach. Like other 

fungal β-glucosidases, the MtBgl3a was competitively inhibited by D-gluconic acid 

(Pitson et al., 1997; Parry et al. 2001; Riou et al. 1998) with a Ki value of 22 μM in this 

study. Ki values reported for D-gluconic acid are in the range of 3–30 μM (Harhangi et 

al. 2002; Pitson et al. 1997; Parry et al. 2001) with exception of the β-glucosidase from 

A. oryzae, which exhibited a Ki value of 12.5 mM (Riou et al. 1998). 

 

6.6. Effect of alcohols and transglycosylation activity  

β-Glucosidases catalyse the transglycosylation reaction in an aqueous solution, 

in the presence of a second nucleophile stronger than water, such as methanol or 

ethanol (Tsitsimpikou et al. 1997).The effect of alcohols (ethanol, methanol and propanol) 

as strong nucleophile reagents on the hydrolysis of p-β-NPG was studied. Reaction 

mixtures containing 1mM p-β-NPG in 100 mM citrate phosphate buffer, pH 5.0, with 

varying concentrations of short chain alcohols were incubated at 50 oC and the activity 

was measured under standard assay conditions. The stability at various concentrations 

of ethanol up to 50% (v/v) at 30 οC was determined, after incubating the enzyme in 100 

mM citrate-phosphate buffer pH 5.0 for 6 hours and then measuring the residual 

activity using the standard assay.  

In the presence of these alcohols, an increase in enzyme activity was observed. 

Analysis of the reaction products revealed that the optimum methanol concentration 

was 20% (v/v) (Figure 6.9). At concentrations higher than 20 % (v/v), the activation 

was decreased probably due to the denaturation effect of methanol, as many proteins 

break down in response to alcohol exposure. Furthermore, ethanol and propanol 

stimulated the activity of β-glucosidase to concentrations up to 15% (v/v) and 5% 

(v/v), respectively. These results indicate that the presence of short chain alcohols have 

a positive influence on the hydrolytic activity of β-glucosidase. It has been reported 

that the change in polarity of the medium induced by alcohols could stabilize enzyme 

conformation (Mateo & Stefano 2011). Activation by short chain alcohols has been 
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earlier observed for β-glucosidase from Thermoascus aurantiacus (Parry et al. 2001), A. 

oryzae (Riou et al. 1998), Fusarium oxysporum (Christakopoulos et al.1994). 

MtBgl3a remained stable after 6 hours of incubation at different ethanol 

concentrations up to 50% (v/v) at 30 οC. This result is important at the SSF process for 

industrial ethanol production since the enzyme and ethanol coexist in the reactor. 

Various researches have shown that ethanol reduces the enzyme activities of cellulaces 

(Wu & Lee 1997; Jorgensen et al. 2007) thus the presence of an ethanol tolerant β-

glucosidase appears to be critical for the efficiency of the process, as it will be able to 

remove cellobiose even at the late fermentation process eliminating its inhibitory effect. 

 

Figure 6.9. Effect of increasing concentrations of alcohols, such as methanol (□), 

ethanol (●) and propanol (○) on the activity of MtBgl3a. The experiment was carried 

out in triplicates. 

 

Transglycosylation activity was examined using cellobiose as a donor and 

methanol as an acceptor. A 2 ml incubation mixture contained 20% (v/v) of methanol, 

0.02% NaN3 and different concentrations of cellobiose (1, 2, 4, 5 and 6% w/v) in 0.1 M 

citrate-phosphate buffer, pH 5.0 and 64 μg mg of enzyme was used. The reaction 

mixtures were incubated at 50 oC and samples were withdrawn at different time 

intervals for 5 hours. Methyl-D-glucoside synthesis was monitored by employing an 

HPLC system (Shimadzu LC-20AD) equipped with a refractive index detector 

(Shimadzu RID 10A) and a Macherey-Nagel CC 250 x 4.6 mm Nucleosil 100-5 NH2 

column. The mobile phase was acetonitrile:water (87:13 v/v) and the sugars were 
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eluted at a flow rate of 1 ml/min, as described previously (Tsitsimpikou et al. 1997). 

The products were quantified based on peak areas using standard methyl-β-D-

glucopyranoside, D-glucose and cellobiose.  

 
Figure 6.10. Effect of different amounts of cellobiose in transglycosylation reaction 

with methanol activity catalyzed by MtBgl3a. 

The inductive effect of the methyl group and the transglycosylation activity of 

MtBgl3a were further investigated by studying the effect of increasing cellobiose 

concentration on the composition of the product mixture (Figure 6.10). Methanol was 

used at the optimum concentration (20% v/v) found previously for methyl-D-glucoside 

synthesis. Analysis of the reaction products by HPLC revealed that methyl-D-

glucoside synthesis increased sharply at cellobiose concentrations above 4% (w/v) in 

the reaction. The Km values of cellobiose for transglycosylation (methanolysis) were 

calculated to be 91 mM. Similar affinity towards cellobiose for transglycosylation 

(methanolysis) has been reported for β-glucosidase from F. oxysporum (Km=138.2 mM) 

(Tsitsimpikou, 1997). Methanol has a competitive role as a nucleophilic glycosyl 

acceptor, as glycosylation proceeds through a nucleophilic attack to the stronger 

nucleophilic character of methanol compared to that of water (Drueckhammer et al. 

1991). Glycosidase-catalyzed transglycosylation is a promising alternative to classical 

chemical glycosylation methods, with numerous applications not only in the Food and 

Cosmetics but also in Pharmaceutical industry for the production of bioactive 

compounds (Pal et al. 2010). The transferase activity was also studied in β-glucosidase 
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from P. thermophila (Yang et al., 2008), Thermotoga neapolitana (Park et al., 2005), 

thermophilic fungus Melanocarpus sp. (Kaur et al., 2007). 

6.7. Conclusions 

Currently, heterologous expression is the main tool for the production of 

industrial enzymes, with P. pastoris being one of the favorite expression hosts for the 

heterologous expression of eukaryotic biocatalysts. In this study, the gene encoding 

MtBgl3a from M. thermophila was functionally expressed and secreted by the 

heterologous host P. pastoris. β-Glucosidases are of key importance, as they are needed 

to supplement the cellobiohydrolase and endoglucanase activities for ensuring final 

glucose release and at the same time decreasing the accumulation of cellobiose and 

shorter cellooligmers, which are known as product inhibitors for the 

cellobiohydrolases. The low inhibition rate by glucose and ethanol renders this enzyme 

a good candidate for use in many biotechnological processes, including cellulose 

degradation, where combined stability is appreciated. In addition, the ability of the 

enzyme to catalyze transglycosylation reactions seems to be very promising for the 

synthesis of glycoside-containing compounds and bioactive products with potential 

application in both Food and Pharmaceutical industries.  

 

References 

Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J. et al. 2011. Comparative genomic 
analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia 
terrestris. Nature Biotechnology 29:922-927.  

Bezerra RMF, Dias AA. 2005. Enzymatic kinetic of cellulose hydrolysis inhibition by ethanol and 
cellobiose. Applied Biochemistry and Biotechnlogy 126: 49-59. 

Bhat MK. 2000 Cellulases and related enzymes in biotechnology. Biotechnology Advances 18: 355-383. 

Bhatia Y, Mishra S, Bisaria VS. 2002. Microbial b-glucosidases: cloning, properties and applications. 
Critical Reviews in Biotechnology 22: 375–407.  

Cantarel BL Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The 
carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic 
Acids Res. 37: D233-238. 

Cereghino JL, Cregg JM. 2004. Heterologous protein expression in the methylotrophic yeast Pichia 
pastoris. FEMS Microbiology Reviews 24:45-66. 

 

144 



Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N. 2010. Comparative kinetic 
analysis of two fungal beta-glucosidases. Biotechnology for Biofuels 3 :3. 

Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S. 2011. 
Transition of cellulose crystalline structure and surface morphology of biomass as a function 
of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12: 
933-941. 

Christakopoulos P, Goodenough P, Kekos D, Macris BJ, Claeyssen M, Bhat MK. 1994. Purification 
and characterization of an extracellular β-glucosidase with transglycosylation and exo-
glucosidase activities from Fusarium oxysporum. European Journal of Biochemistry 224: 379-385. 

Daly R, Hearn M. 2005. Expression of heterologous proteins in Pichia pastoris: a useful experimental 
tool in protein engineering and production. Journal of Molecular Recognition 18: 119–138.  

Dimarogona M, Topakas E, Olsson L, Christakopoulos P. 2012. Lignin boosts   the cellulase 
performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresource Technology 110: 
480–487. 

Drueckhammer D, Hennen W, Pederson R, Barbas C, Gautheron C, Krach T, Wong CH. 1991. 
Enzyme catalysis in synthetic carbohydrate chemistry. Synthesis 7: 499-525.  

Enari TM, Niku-Paavola ML. 1987. Enzymatic hydrolysis of cellulose: is the current theory of the 
mechanisms of hydrolysis valid? Critical reviews in biotechnology 5: 67-87. 

Ferreira Filho EX. 1996. Purification and characterization of a β-glucosidase from solid-state cultures 
of Humicola grisea var. thermoidea. Canadian Journal of Microbiology 42: 1–5. 

Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn 
SJ, Eijsink VG. 2011. Cleavage of cellulose by a CBM33 protein. Protein Science 20:1479-83. 

Goyal K, Selvakumar P & Hayashi K. 2001. Characterization of a thermostable β-glucosidase (BglB) 
from Thermotoga maritima showing transglycosylation activity. Journal of Molecular Catalysis 
B: Enzymatic 15: 45–53. 

Gruno M, Väljamäe P, Pettersson G, Johansson G. Inhibition of the Trichoderma reesei cellulases by 
cellobiose is strongly dependent on the nature of the substrate. 2004. Biotechnology and 
Bioengineering 86: 503-511. 

Gurgu L, Lafraya Á, Polaina J, Marín-Navarro J. 2011. Fermentation of cellobiose to ethanol by 
industrial Saccharomyces strains carrying the β- glucosidase gene (BGL1) from 
Saccharomycopsis fibuligera. Bioresource Technology 102: 5229-5236.  

Han Y, Chen H. 2008. Characterization of β-glucosidase from corn stover and its application in 
simultaneous saccharification and fermentation. Bioresource Technology, 99: 6081-6087. 

Hansson T & Adlercreutz P. 2001. Enhanced transglycosylation/hydrolysis ratio of mutants of 
Pyrococcus furiosus β-glucosidase: effects of donor concentration, water content, and 
temperature on activity and selectivity in hexanol. Biotechnoogy and Bioengineering 75: 656–
665. 

Harhangi HR, Steenbakkers PJ, Akhmanova A, Jetten MS, van der Drift C, Op den Camp HJ. 2002. A 
highly expressed family 1 β-glucosidase with transglycosylation capacity from the anaerobic 
fungus Piromyces sp. E2. Biochimica et Biophysica Acta 1574: 293–303. 

 

145 



Higgins DR, Busser K, Comiskey J, Whittier PS, Purcell TJ, Hoeffler JP. 1998. Small vectors for 
expression based on dominant drug resistance with direct multicopy selection. In: Higgins, 
D.R., Cregg, J.M., (eds) Methods in molecular biology: Pichia protocols, Humana, Totowa, pp 28-41. 

Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass 
recalcitrance: Engineering plants and enzymes for biofuels production. Science 315: 804-807. 

Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C. 2007. Liquefaction of lignocellulose at high-solids 
concentrations. Biotechnology and Bioengineering 96: 862-870.  

Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P. 
2007. Purification and biochemical characterization of an extracellular beta-glucosidase from 
the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. FEMS Microbiology 
Letters 270: 162–170. 

Kaur J, Chadha B, Kumar B, SAINI, Harvinder S. 2007. Purification and characterization of two 
endoglucanases from Melanocarpus sp. MTCC 3922. Bioresource Technology, 98: 74-81. 

Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L. 2010. 
Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium 
brasilianum. Applied microbiology and Biotechnology 86: 143-54.  

Langston J, Sheehy N, Xu F. 2006. Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. 
Biochimica et Biophysica Acta, 1764: 972–978. 

Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. 2011. Oxidoreductive cellulose 
depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. 
Applied and Environmental Microbiology 77: 7007–7015. 

Leatherbarrow RJ. 1998. GraFit version 4.0. Erithacus Software Ltd., Staines, UK 

Lin J, Pillay B, Singh S. 1999. Purification and biochemical characterization of β-glucosidase from a 
thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnology and Applied Biochemistry 
30:81–87. 

Lin Y, Chen G, Ling M, Liang Z. 2010. A method of purification, identification and characterization 
of β-glucosidase from Trichoderma koningii AS3.2774. Journal of Microbiological Methods 83: 
74–81.  

Liu BD, Yang Q, Zhou Q, Song JZ, Chen DF, Liu H. 2004. Cloning and expression of the endo-beta-
glucanase III cDNA gene from Trichoderma viride AS3.3711. Huan Jing Ke Xue 25:127-32. 

Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q. 2012. Characterization of a thermostable 
β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris 
X33. Microbial Cell Factories 17:11-25. 

Mach RL. 1993. Klonierung und Charakterisierung einiger Gene des Kohlenstoffmetabolismus von 
Trichoderma reesei. Thesis, Mikrobielle Biochemie, Inst. 

Mamma D, Hatzinikolaou DG, Christakopoulos P. 2004. Biochemical and catalytic properties of two 
intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid 
glucosides. Journal of Molecular Catalysis B: Enzymatic 27: 183–190.  

Mansfield SD, Mooney C, Saddler JN. 1999. Substrate and enzyme characteristics that limit cellulose 
hydrolysis. Biotechnology Progress 15: 804-816. 

 

146 



Mateo JJ, Di Stefano R. 1997. Description of the β-glucosidase activity of wine yeasts. Food 
Microbiology 14: 583–591. 

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical 
Chemistry 31: 426–428.  

Pal S, Banik SP, Ghorai S, Chowdhury S, Khowala S. 2010. Purification and characterization of a 
thermostable intra-cellular β-glucosidase with transglycosylation properties from filamentous 
fungus Termitomyces clypeatus. Bioresource Technology 101: 2412–2420.  

Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J. 2005. Substrate specificity 
and transglycosylation catalyzed by a thermostable beta-glucosidase from marine 
hyperthermophile Thermotoga neapolitana. Applied Microbiology and Biotechnology 69: 411-22.  

Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK. 2001. Biochemical 
characterization and mechanism of action of a thermostable β-glucosidase purified from 
Thermoascus aurantiacus. The Biochemical Journal 353: 117–127. 

Peralta RM, Kadowaki MK, Terenzi HF, Jorge JA 1997. A highly thermostable β-glucosidase activity 
from the thermophilic fungus Humicola grisea var. thermoidea: purification and biochemical 
characterization. FEMS Microbiology Letters 146: 291–295. 

Pitson SM, Seviour RJ, McDougall BM. 1997. Purification and characterization of an extracellular P-
glucosidase from the filamentous fungus Acremonium persicinum and its probable role in β-
glucan degradation. Enzyme and Microbial Technology 21:182-190.  

Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, 
Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. 2006. 
The path forward for biofuels and biomaterials. Science 311: 484-489. 

Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P. 1998. Purification, characterization, and substrate 
specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied 
and Environmental Microbiology 64: 3607–3614. 

Seidle HF, Marten I, Shoseyov O, Huber RE. 2004. Physical and kinetic properties of the family 3 β-
glucosidase from Aspergillus niger which is important for cellulose breakdown. The Protein 
Journal 23: 11–23. 

Sorensen A, Lubeck M, Lubeck PS, Ahring BK 2013. Fungal beta-glucosidases: A bottleneck in 
industrial use of linocellulosic materials. Biomolecules 3: 612-631.  

Stoscheck CM. 1990. Quantification of protein. Methods in Enzymology 182: 50-68. 

Topakas E, Moukouli M, Dimarogona M, Christakopoulos P. 2012. Expression, characterization and 
structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora 
thermophila. Applied Microbiology and Biotechnology 94: 399-411. 

Tsitsimpikou C, Christakopoulos P, Makropoulou M, Kekos  D, Macris BJ and Kolisis FN. 1997. Role 
of methanol on the catalytic behavior of b-glucosidase from Fusarium oxysporum Biotechnology 
Letters 19: 31–33. 

Turner C, Turner P, Jacobson G, Waldebäck M, Sjöberg P, Nordberg Karlsson E & Markides K. 
2006. Subcritical water extraction and β-glucosidase catalyzed hydrolysis of quercetin in 
onion waste. Green Chemistry 8:949–959. 

 

147 



Venturi LL, Polizeli Mde L, Terenzi HF, Furriel Rdos P, Jorge JA. 2002. Extracellular beta-D-
glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some 
biochemical properties. Journal of Basic Microbiology 42:  55–66. 

Wu Z, Lee YY. 1997. Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnology 
Letters 19:977–979. 

Xin, Z, Yinbo Q, Peiji G. 1993 Acceleration of ethanol production from paper mill waste fiber by 
supplementation with β-glucosidase. Enzyme and Microbial Technology 15: 62-65. 

Yan Q, Hua C, Yang S, Li Y, Jiang Z. 2012. High level expression of extracellular secretion of a β-
glucosidase gene (PtBglu3) from Paecilomyces thermophila in Pichia pastoris. Protein Expression 
and Purification 84: 64-72. 

Yang S, Qiaojuan Y, Jiang Z, Fan G, Wang L. Biochemical characterization of a novel thermostable 
beta-1,3-1,4-glucanase (lichenase) from Paecilomyces thermophila. 2008. Journal of Argricultural 
and Food Chemistry 56:5345-51 

Zhang M, Su R, Qi W, He Z. 2010. Enhanced enzymatic hydrolysis of lignocellulose by optimizing 
enzyme complexes. Applied Biochemistry and Biotechnology 160: 1407-1414. 

Zhao Y, Wu B, Yan B, Gao P. 2004 Mechanism of cellobiose inhibition in cellulose hydrolysis by 
cellobiohydrolase. Science in China, Series C: Life Sciences 47: 8-24. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

148 



CHAPTER 7  
 
Lignocellulolytic enzymes from M. thermophila  

 

In this Chapter, the cloning, heterologous expression and characterization of one 

GH5 endoglucanase and two cellobiohydrolases (GH6 and GH7), all from M. 

thermophila, are described. The genes encoding the above enzymes were isolated from 

the fungal genomic DNA, then cloned and amplified in E. coli strains and finally 

heterologously expressed in P. pastoris. The recombinant proteins were secreted to the 

culture medium, purified to their homogeneity and characterized.  

The productivity of P. pastoris in shake flasks is typically low and is improved 

greatly by fermentor culturing. The first reason is that only in the controlled 

environment of a fermentor is it possible to grow the organism to high cell densities. 

The second reason is that the level of transcription initiated from the AOX1 promoter 

is greater in P. pastoris cells fed with methanol at growth-limiting rates in fermentor 

culture than in cells grown in excess of methanol (Chirovolu et al., 1997). Therefore 

improving the fermentation methodology is important for P. pastoris based processes. 

These improvements include substrate feeding strategies, oxygen supplementation to 

allow higher cell densities while avoiding oxygen limitation, and mixed-substrate 

feeding strategies, as described in detail in Chapter 2. In this thesis, two basic 

strategies were followed for the production of one endoglucanase belonging to the 

glycoside hydrolase family 5, one cellobiohydrolase belonging to the GH6 and one 

lytic-polysaccharide monooxygenase belonging to the recently reclassified AA9 family 

(previously reported as GH61). These strategies include control of proteolysis through 

low temperature and addition of amino acid rich supplements to the culture medium, as 

well as smooth transition of cell culture from glycerol to methanol feed phase. A 

common procedure was followed for all three enzymes and resulted in the successful 

production of the recombinant proteins in the culture medium.  

Apart from the great variety of cellulases, M. thermophila is capable of 

synthesizing a complete set of enzymes with xylanase activity, as described in Chapter 

4. In this chapter, the partial purification of enzymes with xylanolytic activity is 
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described. Totally three different fractions were isolated from the culture medium of M. 

thermophila either grown on wheat straw or on corn cob. All these fractions exhibited 

relatively high xylanase specific activity, in absence of cellulolytic activity and thus, 

they were used for enrichment of the cellulases cocktail in hydrolysis experiments 

described in Chapter 8. 

 

 

 Subjects described in this Chapter:  

7.1. Cloning, expression and characterization of Endoglucanase MtEG5 

7.2. Cloning, expression and characterization  of Cellobiohydrolase MtCBH6 

7.3 Cloning, expression and characterization  of Cellobiohydrolase MtCBH7 

7.4. Production of MtGH61 in fermentor 

7.5. Production and purification of enzymes with xylanase activity  
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7.1. Cloning, expression and characterization of Endoglucanase MtEG5 

7.1.1. Identification and cloning of MtEG5 

From genome analysis, as described in Chapter 4, the translation of eg5 open 

reading frame (ORF) (Model ID 86753) from the M. thermophila genome database 

shows significant primary sequence identity with characterized endoglucanases which 

have been classified to family GH5 on CAZy database (http://www.cazy.org/; Cantarel 

et al. 2009). The putative endoglucanase showed high sequence identity (65%) with 

structure identified endoglucanase GH5 from Thermoascus aurantiacus [PDB ID: 1GZJ] 

and 79% with endoglucanase from Penicillium brasilianum [GenBank: ACB06750]. The 

hypothetical protein of 86753 was selected as a candidate endoglucanase and the 

corresponding gene, which was provisionally named eg5, was cloned and used to 

transform P. pastoris X33; the encoded enzyme named MtEG5 was expressed and 

finally characterized (Table 7.1). The ORF of eg5 encodes a protein of 389 amino acids 

including a secretion signal peptide of 17 amino acids (MKSSILASVFATGAVA) based 

upon the prediction using SignalP v4.0, which is a web-based program 

(http://www.cbs.dtu.dk/services/SignalP/). The predicted mass and isoelectric point 

(pI) of the mature protein was 40.85 kDa and pH 5.07, respectively, by calculations 

using the ProtParam tool of ExPASY (http://web.expasy.org/protparam/).  

Genome Portal ID 86753 

Chromosome 1: 2823610 - 2825549 

Family Glycoside hydrolase 5 

Domains CBM_1, [Pfam: PR00734, InterProScan] 
 Gene (translation) 1170 bp 

Gene (trancription) [3’UTP, 5’UTP] 1940 bp 

Protein 389 aa 

Exons 3 

Secretion signal MKSSILASVFATGAVA   (17 aa) 

Theoretical predicted MW 40.85 kDa 

theoretical pI 5.07 

Glucosylation sites N-Glyc 3 

Glucosylation sites O-Glyc 17 

Table 7.1. Properties of MtEG5 obtained from genome analysis. 
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For the cloning of the endoglucanase gene from M. thermophila, Escherichia coli 

One Shot® Top10 (Invitrogen, USA) and Zero Blunt® PCR Cloning Kit (Invitrogen, 

USA) were used as the host-vector system. P. pastoris host strain X33 and pPICZαC 

(Invitrogen, USA) were used for protein expression. The WT strain of M. thermophila 

ATCC 42464 was maintained on 1.5% malt-peptone-agar slants at 4 οC. P. pastoris was 

routinely grown in shaking flasks at 30 οC according to the instructions in the 

EasySelectTM Pichia Expression Kit (Invitrogen, USA). Genomic DNA was prepared 

and isolated as previously described (Topakas et al., 2012). 

An E. coli/P. pastoris vector, pPICZαC, was used to achieve secreted expression 

of MtEG5. pPICZαC contains the tightly regulated AOX1 promoter and the 

Saccharomyces cerevisiae α-factor secretion signal located immediately upstream of the 

multiple cloning site (Higgins et al., 1998). The gene coding for the hypothetical 

protein MtEG5 (Model ID 86753, chromosome 1:2823610-2825549) was PCR 

amplified from genomic DNA using primers EF/ER (Table 7.2) designed accordingly 

to the available gene sequence (http://genome.jgi-psf.org/, DOE Joint Genome 

Institute, (Berka et al., 2011) including the ClaI and XbaI restriction enzyme sites at 

their respective 5’-ends. A high fidelity KOD Hot Start® DNA polymerase producing 

blunt ends was used for the DNA amplification, which was carried out with 30 cycles of 

denaturation (20 s at 95 oC), annealing (10s at 56 oC), and extension (25s at 70 oC), 

followed by 1 min of further extension at 70 oC. In order to determine the DNA 

sequence, the PCR product was cloned into the pCRBlunt® vector according to the 

method described by the Zero Blunt® PCR Cloning Kit.  

Intron 1 and intron 2 removal was achieved using the molecular technique of 

overlap extension polymerase chain reaction (OEPCR) (Topakas et al., 2012) using the 

polymerase KOD Hot Start® (Novagen, USA). Two complementary DNA primers per 

intron, two external primers (EF/Ee1R, Ee2F/Ee2R, Ee3F/ER, Table 7.2) and the 

appropriate PCR amplification process were used to generate two DNA fragments 

harbouring overlapping ends. The recombinant plasmid pCRBlunt/eg5, at an 

appropriate dilution, was used as template DNA and the PCR conditions for each 

reaction are given as the following: 95 oC for 2 min, ensued by 30 cycles of 95 oC for 20 

s, annealing for 10 s and extension step, with a final extension step at 70 oC for 1 min. 

Annealing and extension conditions for each fragment are described in Table 7.2.. 
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Figure 7.1. Amplification of eg5 gene through PCR. Intron 1 and 2 removal (A) and 

final OE-PCR (B), cloning of the PCR product into the PCR® Blunt 

vector/amplification in E. coli TOP10 cells and final cloning to pPICZαC 

vector/amplification in E. coli TOP10F’ cells. (A) Lane 1: Hyperladder Marker (Bioline), Lanes 

2-4: exons 1-3, (B) Lane 1: final OE-PCR product, Lane 2: Hyperladder Marker (Bioline), (C) Lane 1: 

Hyperladder Marker (Bioline), Lanes 2-5: Digestion of pPICZαC/eg5 with ClaI/XbaI.  

The two PCR products were combined together in a subsequent hybridization 

reaction. The generated “fusion” fragment was amplified further by overlapping PCR 

through the utilization of the two external primers, EF end ER, with an initial 

denaturation step at 95 oC for 2 min, followed by 45 cycles at 95 oC for 20 s, 56 oC for 

10 s, 59 oC for 26 s and a final extension step at 70 oC for 1 min. An extended annealing 

was performed in order to improve base-pairing between the complementary ends of 

each fragments that have to be fused. The produced eg5 DNA was digested with the 

enzymes ClaI and XbaI and the DNA fragment gel-purified before cloning into the 

pPICZαC vector, resulting in the recombinant pPICZαC/eg5 which was amplified in E. 

coli TOP10F’, and the transformants were selected by scoring for ZeocinTM resistance 
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(25 μg/ml). The recombinant vector pPICZαC/eg5 was confirmed by restriction 

analysis and DNA sequencing and finally transformed into P. pastoris.  

 

 

PCR  Primers  
Fragment 
targeted  Conditions 

#1  EF - ER 1570 bp annealing: 56oC/10s extension: 70oC/25s, 30 cycles 

#2 EF - Ee1R 315 bp annealing: 56oC/10s extension: 70oC/4s, 30 cycles 

#3 Ee2F - Ee2R 745 bp annealing: 56oC/10s extension: 56oC/12s, 30 cycles 
#4 Ee3F - ER 1600 bp annealing: 56oC/10s extension: 70oC/1s, 30 cycles 

#5  EF - ER 1122 bp annealing: 56oC/10s extension: 59oC/26s, 45 cycles 

Table 7.2. Primers and conditions used for the amplification of eg5 gene through PCR 

(#1), removal of introns (#2-4) and final overlapping PCR  (#5). Colored sequences 

represent the restriction sites of ClaI and XbaI enzymes (red, purple), as well as the 

complementary DNA fragments that allowed the hybridization reaction and the 

amplification of the generated “fusion” fragment by overlapping PCR (blue: annealing, 

green: overhang).  

 

 

154 



7.1.2. Expression in high-cell density cultures and purification of MtEG5 

Protein expression of the recombinant enzyme was first evaluated in small scale 

cultures, in shake flasks. For the production of endoglucanase, one single P. pastoris 

colony harboring eg5 gene was cultivated in BMGY medium for 18-24 hours, at 30°C 

in a shaker (200 rpm) and then inoculated into the production medium BMMY 

reaching OD600=1. The extracellular secreted protein was tested for endoglucanase 

activity against β-glucan 1%w/v in 100mM phosphate-citrate buffer pH=5.0, after 24 

hours of incubation at 30 °C and 200 rpm. The clone exhibiting the highest activity 

was chosen for the production of the recombinant enzyme and further characterization 

studies. The cultures were kept in a shaking incubator at 30oC for 6 days (200 rpm) 

with the addition of 0.75 ml methanol once a day to maintain induction (0.5% v/v). 

 

 

Figure 7.2. Studies of initial pH, methanol concentration and agitation influence at the 

MtEG5 production in shake flasks. All experiments were conducted in 50 mL BMMY 

medium, in 250 mL Erlenmeyer flasks.  
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To achieve higher enzyme production, the influence of initial pH, methanol 

concentration and agitation was evaluated (Figure 7.2). According to these studies, the 

enzyme reaches the highest levels of expression at shakes flasks when cultured at pH 

6.0, 200 rpm agitation and 0.5% (v/v) methanol addition. Under optimum culture 

conditions, production of MtEG5 reached a final yield of 377 U/mL of culture 

supernatant in shake flasks containing BMMY culture medium. 

Cultivation of recombinant strain expressing the endoglucanase in high cell-

density fermentation was performed in the basal salts medium (BSM), as described in the 

Pichia fermentation guidelines provided by Invitrogen (Invitrogen, Pichia 

Fermentation Process Guidelines). The basal salts medium consists of mineral salts 

and glycerol as the sole carbon source at the initial phase of cultivation. In addition the 

BSM is supplemented by a trace element solution referred to as PTM1 trace salts 

which also includes biotin (Wegner, 1983). The PTM1 trace salt solution is also 

included in the glycerol- and methanol feeds during glycerol and methanol fed-batch 

phases. The only nitrogen source is ammonium hydroxide which was added as the pH 

was regulated. Cultivation started at 28οC, aeration was set at 4 vvm and agitation at 

800 rpm.  

 
Figure 7.3. Fermentation of Pichia pastoris recombinant strains was carried out in a 3 lt 

glass autoclavable Applikon bioreactor, equipped with an ez-Control system (Applikon 

Biotechnology B.V., Netherlands). Glycerol and methanol feeding was performed with 

Alitea XV pump with MasterFlex 96400 L/S 14 silicon tube (glycerol) and PharmaMed 

0.51mm (methanol).  
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After 24 hours of batch fermentation in glycerol medium (30 g/lt initial 

concentration), the dry cell mass of the culture reached about 17.80 g/lt. Analysis of 

the culture supernatant, after growth in glycerol medium, showed absence of 

recombinant enzyme (based on β-glucan 0.1%w/v activity assay and SDS-PAGE). The 

end of glycerol batch was indicated by a sharp increase in the dissolved oxygen (DO) 

tension. This stage was followed by a 5-hour step of fed-batch glycerol one; during this 

step 50% w/v glycerol, with PTM1 salts was fed at an initial flow-rate of 12 mL/h/lt 

of culture medium and was reduced gradually until it was fully consumed. At the same 

time, temperature was reduced from to 28οC to 25οC and finally to 23οC and 2 mL of 

methanol were added manually in small aliquots with syringe. Total consumption of 

glycerol was again indicated by a spike in the DO. At the end of this stage the dry cell 

mass of the cells reached the amount of 40.1 g/lt.  

At the onset of methanol fed-batch phase, casamino acids solution was added at a 

final concentration of 3 g/lt and then, a feed of 100% MeOH, with PTM1 was initiated 

at a flow rate of 1.9 mL/h/lt. The methanol consumption rate was monitored 

indirectly by stopping the feed and checking the “lag phase”, while increasing the 

methanol feed rate manually. After 8h, feed rate was adjusted to a maximum of 5,46 

mL/h/lt and maintained for ~20h, causing extracellular expression of the recombinant 

enzyme into the supernatant.. Then, the temperature was decreased to 21οC and pure 

oxygen supply was set to maintain dissolved oxygen levels between 60-30 %. Induction 

time lasted 153h in total and approximately 700 mL of methanol were consumed. The 

level of enzyme expression increased with fermentation time and maximum level 

obtained was 6.3 U/mL (β-glucan activity for varying time points shown at Figure 

7.4). As methanol was used as carbon source, there was an increase in cell-density 

during the fed batch phase (Figure 7.4). At the end of the fermentation, the dry weight 

of cells reached 98,63 g/lt of culture medium. The amount of extracellular protein 

produced reached 0,98 g.  

For the purification of the recombinant enzyme, the culture broth was 

centrifuged and concentrated 30-fold using a LabScale Tangential flow filtration 

system (TFF with membrane Pellicon XL Ultrafiltration Module Biomax, exclusion 

size 10 kDa; Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4oC 

against a 20 mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and MtEG5 was 
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rapidly purified by single-step immobilized metal ion affinity chromatography (IMAC), 

with a cobalt charged resin on an ÄKTA Prime Plus system, using 0-100 mM 

imidazole gradient, at a flow rate of 2 ml/min (Figure 7.5). Fractions (2 ml) containing 

endoglucanase activity were concentrated and the homogeneity was checked by SDS-

PAGE (Figure 7.6). MtEG5 was further polished using S300 Gel Filtration 

chromatography column to remove trace endoglucanase contaminants. Removal of 

background impurities from the fermentation broth resulted in 564 mg of pure MtEG5 

per lt of culture supernatant. The molecular weight of the enzyme was estimated to be 

ca. 75 kDa (Figure 7.6), which appears to be higher than the predicted value using the 

ProtParam tool of ExPASY (40.85 kDa) considering the presence of the myc epitope 

and the polyhistidine tag which contribute 2.8 kDa to the size of MtEG5a. The nominal 

mass discrepancy observed might be explained by the existence of Asn-Xaa-Ser/Thr 

sequons and Ser-Thr residues, which are known to be a prerequisite for N- and O-

glycosylation post-translational modifications respectively. Indeed, 3 N-glycosylation 

and 17 potential O-glycosylation sites were predicted by using the NetNGlyc 1.0 

server (http://www.cbs.dtu.dk/services/NetNGlyc/) and the NetOGlyc 3.1 server 

(http://www.cbs.dtu.dk/services/NetOGlyc/). 

 

Figure 7.4. (A) Cell mass concentration during MtEG5 fermentation. Dry cell weight 

reached 40.1 g/lt after glycerol fed-batch phase and 110 g/lt at the end of the 

cultivation. (B) Protein concentration and endoglucanase activity detected in the 

culture medium during fermentation. Protein concentration was determined using the 

BCA protein assay microplate procedure (Pierce Chemical Co., Rockford, IL), 

according to the manufacturer’s recommendations. Specific activity was tested against 

β-glucan 0.1% (w/v), pH 5.0, 60οC in 100mM phosphate-citrate buffer 
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Figure 7.5. Immobilized metal ion affinity chromatography for the purification of the 

recombinant MtEG5. The left peak corresponds to proteins that were not bound to the 

resin and the right one to the His-tagged endoglucanase that was eluted using a 0-100 

mM gradient imidazole. Elution started at 36 mM imidazole, total protein eluted was 

602 mg. 

 
Figure 7.6. SDS – PAGE of MtEG5 during fermentation. Lane 1:  Novex® sharp pre-

stained protein marker, lanes 2-5: samples from fermentation culture broth at 99, 118, 

130 and 153 h of hydrolysis, lane 6: culture broth with MtEG5 after ultrafiltration.  

MtEG5 activity was determined on β-glucan 0.1% w/v for 15 min, at 60οC in 

100 mM citrate–phosphate buffer pH 5.0. The concentration of reducing ends was 

determined using the dinitrosalicylic acid reagent (DNS; Miller 1959). Glucose was 

used for the standard curve. One unit (U) of activity was defined as the amount of 
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enzyme which released 1 μmol of glucose equivalents per minute under assay 

conditions. Protein concentration was determined using the BCA protein assay 

microplate procedure (Pierce Chemical Co., Rockford, IL), according to the 

manufacturer’s recommendations, using bovine serum albumin as standard (Smith et 

al., 1985).  

7.1.3. Characterization of purified MtEG5 

The optimal temperature was determined using β-glucan 0.1% (w/v) as a 

substrate, as described above, at temperatures ranging from 30 to 90◦C in 0.1 M 

citrate-phosphate buffer pH 5.0. Temperature stability was determined by measuring 

the residual activity under the same assay procedure, after incubation of 0.23 mg of 

purified MtEG7a at various temperatures for different amount of time. The optimum 

temperature activity was observed at 70 ◦C, losing rapidly its activity for temperatures 

over 80◦C. The endoglucanase remained fairly stable up to 50 ◦C after preincubation 

for 8 hours in 100 mM phosphate-citrate buffer (pH 5.0) at different temperatures 

(Figure 7.7). MtEG5a exhibits half-lives of 26.9 h and 6.02 h at 55◦C and 60◦C, 

respectively.  

 

MW pHopt Topt (oC) Specific activity (U/mg) T stability 
 75 5-6 70 β-glucan 0.1% w/v 9,53 t1/2 =26.93h at 55oC  

   
CMC 1% w/v 0,12 t1/2 =6.02h at 60oC  

   
Avicel 5% w/v 2,23 

 
Figure 7.7. Properties of purified MtEG5 endoglucanase. 

The optimal temperature was determined using the β-glucan assay procedure at 

temperature ranging from 30 to 80°C in 100 mM citrate–phosphate buffer pH 5.0. 

Temperature stability was determined by measuring the residual activity under the 

 

160 



standard assay procedure, after incubation of 0.43 mg of purified MtEG5 at various 

temperatures for different amount of time. The optimal pH was determined by the 

standard assay at 60°C over the pH range 3.0–11.0 using either 0.1 M citrate–

phosphate buffer pH 3.0–7.0, 0.1 M Tris-HCl pH 7–9 or 0.1 M glycine–NaOH buffer 

pH 9–11. The stability at different pH was determined after incubating the enzyme in 

the above buffers at 4°C for 24 h and then measuring the activity remaining using the 

β-glucan assay. The enzyme presented the highest activity levels at pH 5.0 – 6.0, while 

the activity drops rapidly for pH less than 4 or higher than 7. The enzyme was found 

remarkably stable in the pH range 3-11 after 24 h retaining its initial activity. 

Properties of MtEG5 are described in Figure 7.7.  

7.1.4 Conclusions - Discussion 

MtEG5a is an endoglucanase of glycoside hydrolases family 5, consisting of an 

N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). It has 

specific activity both on microcrystalline cellulose (Avicel) and β-glucan and exhibits 

properties that render it a suitable candidate for use in biotechnological applications, 

such as high temperature stability in 55οC. Its relatively higher activity on 

microcrystalline cellulose in comparison with CMC is indicative of its processivity 

properties. Processivity is thought to be a critical strategy for improving the catalytic 

efficiency for hydrolysis of crystalline substrates and is mainly attributed to 

cellobiohydrolases (Kurasin and Väljamäe, 2011), which are the major components of 

most cellulolytic systems and are responsible for the degradation of crystalline 

cellulose (Teeri, 1997). EGs are typically non processive enzymes that are expressed in 

smaller amounts than CBHs and assist CBHs by randomly attacking internal sites in 

the cellulose chain, thereby generating new chain ends. However, there have been 

reported EGs with processive activity, which cleave cellulose internally and also 

release soluble oligosaccharides before detaching from the polysaccharide. These 

enzymes belong almost exclusively to the GH9 family, but processive EGs belonging 

to the GH5 family have been found to be produced by the brown rot basidiomycete 

Gloeophyllum trabeum (Cohen et al., 2005) and Volvariella volvacea (Zheng and Ding, 

2013). It has been also suggested that there is a strong link between enzyme 

processivity and adsorption-desorption properties attributed to CBM1 domain (Zheng 

and Ding, 2013) which is also present in MtEG5 endoglucanase.  
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7.2. Cloning, expression and characterization of Cellobiohydrolase MtCBH6 

7.2.1. Identification and cloning of MtCBH6 

From genome analysis, as described in Chapter 4, the translation of cbh6 open 

reading frame (ORF) (Model ID 66729) from the M. thermophila genome database 

shows significant primary sequence identity with characterized cellobiohydrolases 

acting on the non-reducing end of the carbohydrate molecules, which have been 

classified to family GH6 on CAZy database (http://www.cazy.org/; Cantarel et al. 

2009). The putative cellobiohydrolase showed high sequence identity (79%) with 

structure identified CBHII from Humicola insolens [PDB ID: 1BVW] and 64% with 

CBHII from Trichoderma viride [GenBank: AAQ76094.1]. The hypothetical protein of 

66729 was selected as a candidate cellobiohydrolase and the corresponding gene, which 

was provisionally named cbh6, was cloned and used to transform P. pastoris X33; the 

encoded enzyme named MtCBH6 was expressed and finally characterized (Table 7.3). 

The ORF of cbh6 encodes a protein of 465 amino acids including a secretion signal 

peptide of 17 amino acids (MAKKLFITAALAAAVLA) based upon the prediction 

using SignalP v4.0 (http://www.cbs.dtu.dk/services/SignalP/). The predicted mass 

and isoelectric point (pI) of the mature protein was 49.41 kDa and pH 5.28, 

respectively, by calculations using the ProtParam tool of ExPASY 

(http://web.expasy.org/protparam/).  

For the cloning of the cellobiohydrolase gene from M. thermophila, Escherichia 

coli One Shot® Top10 (Invitrogen, USA) and Zero Blunt® PCR Cloning Kit 

(Invitrogen, USA) were used as the host-vector system. P. pastoris host strain X33 and 

pPICZαC (Invitrogen, USA) were used for protein expression. The WT strain of M. 

thermophila ATCC 42464 was maintained on 1.5% malt-peptone-agar slants at 4 οC. P. 

pastoris was routinely grown in shaking flasks at 30 οC according to the instructions in 

the EasySelectTM Pichia Expression Kit (Invitrogen, USA). Genomic DNA was prepared 

and isolated as previously described (Topakas et al., 2012). 

An E. coli/P. pastoris vector, pPICZαC, was used to achieve secreted expression 

of MtCBH6. pPICZαC contains the tightly regulated AOX1 promoter and the 

Saccharomyces cerevisiae α-factor secretion signal located immediately upstream of the 
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multiple cloning site (Higgins et al., 1998). The gene coding for the hypothetical 

protein MtEG5 (Model ID 66729, chromosome 2:46305-48489) was PCR amplified 

from genomic DNA using primers EF/ER (Table 7.4) designed accordingly to the 

available gene sequence (http://genome.jgi-psf.org/, DOE Joint Genome Institute, 

(Berka et al., 2011). The EF primer did not include restriction site and was used only 

for fishing gene from M. thermophila’s genome, while the ER primer included the XbaI 

restriction enzyme site at 5’-end. A high fidelity KOD Hot Start® DNA polymerase 

producing blunt ends was used for the DNA amplification, which was carried out with 

30 cycles of denaturation (20 s at 95 oC), annealing (10s at 58oC), and extension (32s at 

70 oC), followed by 1 min of further extension at 70oC. In order to determine the DNA 

sequence, the PCR product, containing exons 2-4 and introns was cloned into the 

pCRBlunt® vector according to the method described by the Zero Blunt® PCR Cloning 

Kit.  

Genome Portal ID 66729 

Chromosome 2:46305-48489 

Family Glycoside hydrolase 6 

Domains CBM_1, [Pfam: PR00734, InterProScan] 
 Gene (translation) 1449 bp 

Gene (trancription) [3’UTP, 5’UTP] 1832 bp 

Protein 465 aa 

Exons 4 

Secretion signal MAKKLFITAALAAAVLA   (17 aa) 

Theoretical predicted MW 49.41 kDa 

theoretical pI 5.28 

Glucosylation sites N-Glyc 1 

Glucosylation sites O-Glyc 35 

Table 7.3. Properties of MtCBH6 obtained from genome analysis. 

Introns removal was achieved using the molecular technique of overlap extension 

polymerase chain reaction (OEPCR) (Topakas et al., 2012) using the polymerase KOD 

Hot Start® (Novagen, USA). Two complementary DNA primers per intron, two 

external primers (Ee2F/Ee2R, Ee3F/Ee3R, Ee4F/ER, Table 7.4) and the 

appropriate PCR amplification process were used to generate two DNA fragments 

harbouring overlapping ends. The primer Ee2F included the sequence of exon 1, as well 
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as the ClaI restriction enzyme site at 5’-end and was used for the synthesis of the N-

terminal part of the protein in order to avoid overlapping PCR (Figure 7.8). The 

recombinant plasmid pCRBlunt/cbh6, at an appropriate dilution, was used as template 

DNA and the PCR conditions for each reaction are given as the following: 95 oC for 2 

min, ensued by 30 cycles of 95 oC for 20 s, annealing for 10 s and extension step, with a 

final extension step at 70 oC for 1 min. Annealing and extension conditions for each 

fragment are described in Table 7.4. 

 
 

Figure 7.8. Amplification of cbh6 gene through PCR. Intron 2 and 3 removal were done 

with complementary DNA primers, while exon 1 was added as part of the Ee2F primer. 

The final OE-PCR resulted in a DNA sequence 1398 bp that is able to encode the 

MtCBH6 protein. Primers Ee2F and ER included the ClaI and XbaI restriction sites 

respectively at their 5’ ends.  
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PCR  Primers 
Fragment 
targeted Conditions 

#1  EF - ER 1614 bp   annealing: 58oC, 10s extension: 70oC/ 32s, 30 cycles 

#2 Ee2F – Ee2R 550 bp   annealing: 55oC, 10s extension: 68oC/ 12s, 30 cycles 

#3 Ee3F – Ee3R 585 bp   annealing: 55oC, 10s extension: 68oC/ 15s, 30 cycles 

#4 Ee4F - ER 263 bp   annealing: 57oC, 10s extension: 70oC/ 7s, 30 cycles 

#5  Ee2F - ER 1398bp   annealing: 54.5oC, 10s extension: 70oC/ 26s, 45 cycles 

Table 7.4. Primers and conditions used for the amplification of cbh6 gene through PCR 

(#1), removal of introns (#2-4) and final overlapping PCR  (#5). Colored sequences 

represent the restriction sites of ClaI and XbaI enzymes (red, purple), as well as the 

complementary DNA fragments that allowed the hybridization reaction and the 

amplification of the generated “fusion” fragment by overlapping PCR (blue: annealing, 

green: overhang).  

The three PCR products were combined together in a subsequent hybridization 

reaction. The generated “fusion” fragment was amplified further by overlapping PCR 

through the utilization of the two external primers, EF end ER, with an initial 

denaturation step at 95 oC for 2 min, followed by 45 cycles at 95 oC for 20 s, 54.5 oC for 

10 s, 70 oC for 26 s and a final extension step at 70oC for 1 min. An extended annealing 

was performed in order to improve base-pairing between the complementary ends of 
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each fragments that have to be fused. The produced cbh6 DNA was digested with the 

enzymes ClaI and XbaI and the DNA fragment gel-purified before cloning into the 

pPICZαC vector, resulting in the recombinant pPICZαC/cbh6 which was amplified in 

E. coli TOP10F’, and the transformants were selected by scoring for ZeocinTM 

resistance (25 μg/ml). The recombinant vector pPICZαC/cbh6 was confirmed by 

restriction analysis and DNA sequencing and finally transformed into P. pastoris.  

7.2.2. Expression in high-cell density cultures and purification of MtCBH6 

Protein expression of the recombinant enzyme was first evaluated in small scale 

cultures, in shake flasks. For the production of cellobiohydrolase, one single P. pastoris 

colony harboring cbh6 gene was cultivated in BMGY medium for 18-24 hours, at 30°C 

in a shaker (200 rpm) and then inoculated into the production medium BMMY 

reaching OD600=1. The extracellular secreted protein was tested for cellobiohydrolase 

activity against Avicel 5% (w/v) in 100 mM phosphate-citrate buffer pH=5.0, after 24 

hours of incubation at 30°C and 200 rpm. The clone exhibiting the highest activity was 

chosen for the production of the recombinant enzyme and further characterization 

studies. The cultures were kept in a shaking incubator at 30oC for 6 days (200 rpm) 

with the addition of 0.75 ml methanol once a day to maintain induction (0.5% v/v).  

Cultivation of recombinant strain expressing the cellobiohydrolase in high cell-

density fermentation was performed in the basal salts medium (BSM) supplemented with 

PTM1 trace salts, as described in the Pichia fermentation guidelines provided by 

Invitrogen (Invitrogen, Pichia Fermentation Process Guidelines) and in § 7.1.2. Batch 

growth on glycerol was used in the first step in order to provide biomass (70,5 g/l wet 

cell biomass), while product formation was prevented due to repression of AOX1. The 

second stage was fed-batch growth on glycerol, followed by a transition phase when 

glycerol was fed together with small amounts of methanol, causing a slight increase of 

the enzyme alcohol oxidase due to the derepression of the AOX1 (Jahic et al., 2002). 

The third stage started with fed-batch growth on methanol, in which the AOX1 was 

strongly induced, and was maintained for the rest of the cultivation, in order to control 

the oxygen demand at the high cell density.     

 Analysis of the culture supernatant, after growth in glycerol medium, showed 

absence of recombinant enzyme (based on Avicel 5%w/v activity assay and SDS-
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PAGE). The end of glycerol batch was indicated by a sharp increase in the dissolved 

oxygen (DO) tension. This stage was followed by a 5-hour step of fed-batch glycerol 

one; during this step 50% w/v glycerol, with PTM1 salts was fed at an initial flow-rate 

of 12 mL/h/lt of culture medium and was reduced gradually until it was fully 

consumed. At the same time, temperature was reduced from to 28οC to 25οC and finally 

to 23οC and 2 mL of methanol were added manually in small aliquots with syringe. 

Total consumption of glycerol was again indicated by a spike in the DO. At the end of 

this stage the dry cell mass of the cells reached the amount of 44.93 g/lt.  The level of 

enzyme expression increased with fermentation time and maximum level obtained was 

0.65 U/mL (activity against Avicel for varying time points shown at Figure 7.9). As 

methanol was used as carbon source, there was an increase in cell-density during the 

fed batch phase (Figure 7.9). At the end of the fermentation, the dry weight of cells 

reached 98,63 g/lt of culture medium. The amount of extracellular protein produced 

reached 0,98 g.  

 

Figure 7.9. (A) Cell mass concentration during MtCBH6 fermentation. Dry cell weight 

reached 44.93 g/lt after glycerol fed-batch phase and 151 g/lt at the end of the 

cultivation. (B) Protein concentration and cellobiohydrolase activity detected in the 

culture medium during fermentation. Protein concentration was determined using the 

BCA protein assay microplate procedure (Pierce Chemical Co., Rockford, IL), 

according to the manufacturer’s recommendations. Specific activity was tested against 

Avicel 5% (w/v), pH 5.0, 60οC in 100mM phosphate-citrate buffer.  

For the purification of the recombinant enzyme, the culture broth was 

centrifuged and concentrated 30-fold using a LabScale Tangential flow filtration 

system (TFF with membrane Pellicon XL Ultrafiltration Module Biomax, exclusion 
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size 10 kDa; Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4oC 

against a 20 mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and MtEG5 was 

rapidly purified by single-step immobilized metal ion affinity chromatography (IMAC), 

with a cobalt charged resin on an ÄKTA Prime Plus system, using 0-100 mM 

imidazole gradient, at a flow rate of 2 ml/min (Figure 7.11). Fractions (2 ml) 

containing cellobiohydrolase activity were concentrated and the homogeneity was 

checked by SDS-PAGE (Figure 7.11). MtCBH6 was further polished using S300 Gel 

Filtration chromatography column to remove trace cellobiohydrolase contaminants. 

Removal of background impurities from the fermentation broth resulted in 564 mg of 

pure MtCBH6 per lt of culture supernatant. The molecular weight was estimated to be 

ca. 75 kDa (Figure 7.10), which appears to be higher than the predicted value using 

the ProtParam tool of ExPASY (49.41 kDa) considering the presence of the myc 

epitope and the polyhistidine tag which contribute 2.8 kDa to the size of MtCBH6. The 

nominal mass discrepancy observed might be explained by the existence of Asn-Xaa-

Ser/Thr sequons and Ser-Thr residues, which are known to be a prerequisite for N- and 

O-glycosylation post-translational modifications respectively. Indeed, 1 N-

glycosylation and 35 potential O-glycosylation sites were predicted by using the 

NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/) and the NetOGlyc 

3.1 server (http://www.cbs.dtu.dk/services/NetOGlyc/). 

 

Figure 7.10. SDS – PAGE of MtCBH6 during fermentation. Lane 1:  Novex® sharp 

pre-stained protein marker, lanes 2-6: samples from fermentation culture broth at 71, 

95, 118, 141 and 162 h of hydrolysis, lane 7: purified MtCBH6 after IMAC. 
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Figure 7.11. Immobilized metal ion affinity chromatography for the purification of the 

recombinant MtCBH6. The left peak corresponds to proteins that were not bound to 

the resin and the right one to the His-tagged cellobiohydrolase that was eluted using a 

0-100 mM gradient imidazole. Elution started at 31 mM imidazole, total protein eluted 

was 348 mg. 

 

7.2.3. Characterization of purified MtCBH6 

The optimal temperature was determined using Avicel 5% (w/v) as a substrate, 

as described above, at temperatures ranging from 30 to 90◦C in 0.1 M citrate-

phosphate buffer pH 5.0. Temperature stability was determined by measuring the 

residual activity under the same assay procedure, after incubation of 0.48 mg of purified 

MtCBH6 at various temperatures for different amount of time. The optimum 

temperature activity was observed at 60 ◦C, losing rapidly its activity for temperatures 

over 70 ◦C. The cellobiohydrolase remained fairly stable up to 55 ◦C after 

preincubation for 24 hours in 100 mM phosphate-citrate buffer (pH 5.0) at different 

temperatures (Figure 7.12) and exhibited half-life of 16.02 h at 60◦C. The optimal 

temperature was determined using the Avicel assay procedure at temperature ranging 

from 30 to 80°C in 100 mM citrate–phosphate buffer pH 5.0. Temperature stability 
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was determined by measuring the residual activity under the standard assay procedure, 

after incubation of 0.56 mg of purified MtCBH6 at various temperatures for different 

amount of time. The optimal pH was determined by the standard assay at 60°C over 

the pH range 3.0–11.0 using either 0.1 M citrate–phosphate buffer pH 3.0–7.0, 0.1 M 

Tris-HCl pH 7–9 or 0.1 M glycine–NaOH buffer pH 9–11. The stability at different pH 

was determined after incubating the enzyme in the above buffers at 4°C for 24 h and 

then measuring the activity remaining using the Avicel assay. The enzyme presented 

the highest activity levels at pH 5.0, while the activity drops rapidly for pH less than 4 

or higher than 6. The enzyme was found remarkably stable in the pH range 3-11 after 

24 h retaining its initial activity. Properties of MtCBH6 are described in Figure 7.12.  

 

MW pHopt Topt (oC) Specific activity (U/mg) T stability 
 75 5 60 β-glucan 0.1% w/v 1,19 stable at 55oC for 24h  

   
CMC 1% w/v 0,25 t1/2 =16.02h at 60oC  

   
Avicel 5% w/v 1,63 

 
Figure 7.12. Properties of purified MtCBH6 cellobiohydrolase. 

7.2.4 Conclusions - Discussion 

Cellobiohydrolases are chacterized as CBH I (GH7 family) and CBH II (GH6 

family) and act on cellulose molecules from reducing and non-reducing ends, 

respectively, as described in Chapter 2. These enzymes can achieve complete, although 

slow, solubilization of cellulose crystals even without help of endoglucanases (Teeri, 

1997). In the presence of endoglucanases, the rate of hydrolysis of crystalline cellulose 

by CBHs increases drastically because of an endo–exo synergy between two classes of 

the enzymes (Wood and McCrae, 1976, Henrissat et al., 1985). An exo–exo synergism 

between two types of cellobiohydrolases has been reported too (Medve et al., 1994). 

The enzymes from each family typically share a high degree of identity in their amino 
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acid sequence and display a common fold. Family 6 enzymes perform catalysis with 

inversion of anomeric configuration of the substrate, whereas family 7 enzymes operate 

with retention of configuration (Schulein, 2000). Fungal cellobiohydrolases usually 

have molecular structure typical for most cellulases, i.e. they have a core catalytic 

module and a cellulose-binding module (CBM) connected by a flexible peptide linker 

(Van Tilbeurgh et al., 1986; Gilkes et al., 1991) and are often glycosylated, involving 

both O-linked and N-linked carbohydrate chains (Maras et al., 1997; Hui et al., 2001). 

Processivity is a feature common to many cellobiohydrolases and is thought to be a 

critical strategy for improving the catalytic efficiency for hydrolysis of crystalline 

substrates (Teeri, 1997). Structure analyses have revealed that CBHs such as CBHI and 

CBHII from Trichoderma reesei have enclosed active site tunnels for substrate binding 

and catalysis (Kurasin et al., 2011). A single glucan chain enters the tunnel from one 

end, and disaccharides are cleaved off at the catalytic center during its passage.  

The cellulolytic system of M. thermophila consists of a repertoire of enzymes 

with cellobiohydrolase (CBH) activity. Totally, four CBHs have been isolated from 

crude supernatant and studied, as described in Chapter 4. MtCBH6 is the product of 

MYCTH_66729 gene that represents an enzyme of GH6 family, which is attached to 

polysaccharide substrate through a CBM and in the same study, was cloned, 

heterologously expressed in Pichia pastoris and partially characterized. The relatively 

high thermostability (stable for 24h at 55οC) that the enzyme exhibited is indicative of 

the potential biotechnological use of the enzyme and can be attributed partially to the 

mannose units added by the post-translational system of P. pastoris that tends to 

hyperglycosylate the secreted proteins, as described in Chapter 2.  
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7.3. Cloning, expression and characterization of Cellobiohydrolase MtCBH7 

7.3.1. Identification and cloning of MtCBH7 

From genome analysis, as described in Chapter 4, the translation of cbh6 open 

reading frame (ORF) (Model ID 109566) from the M. thermophila genome database 

shows significant primary sequence identity with characterized cellobiohydrolases 

acting on the reducing end of the carbohydrate molecules, which have been classified to 

family GH7 on CAZy database (http://www.cazy.org/; Cantarel et al. 2009). The 

putative cellobiohydrolase showed high sequence identity (67%) with structure 

identified Cel7d (Cbh58)  Phanerochaete chrysosporium [PDB: 1GPI] and 61% identity 

with CBH I from Humicola grisea [GenBank: BAA09785.1]. The hypothetical protein 

of 109566 was selected as a candidate cellobiohydrolase and the corresponding gene, 

which was provisionally named cbh7, was cloned and used to transform P. pastoris X33; 

the encoded enzyme named MtCBH7 was expressed and finally characterized (Table 

7.5). The ORF of cbh7 encodes a protein of 509 amino acids including a secretion signal 

peptide of 17 amino acids (MYAKFATLAALVAGAAA) based upon the prediction 

using SignalP v4.0 (http://www.cbs.dtu.dk/services/SignalP/). The predicted mass 

and isoelectric point (pI) of the mature protein was 54 kDa and pH 4.77, respectively, 

by calculations using the ProtParam tool of ExPASY 

(http://web.expasy.org/protparam/).  

Genome Portal ID 109566 

Chromosome 1:9753507-9755507 

Family Glycoside hydrolase 7 

Domains CBM_1, [Pfam: PR00734, InterProScan] 
 Gene (translation) 1581 bp 

Gene (trancription) [3’UTP, 5’UTP] 1934 bp 

Protein 509 aa 

Exons 2 

Secretion signal  MYAKFATLAALVAGAAA  (17 aa) 

Theoretical predicted MW 54 kDa 

theoretical pI 4.77 

Glucosylation sites N-Glyc 1 

Glucosylation sites O-Glyc 20 

Table 7.5. Properties of MtCBH7 obtained from genome analysis. 
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For the cloning of the cellobiohydrolase gene from M. thermophila, Escherichia 

coli One Shot® Top10 (Invitrogen, USA) and Zero Blunt® PCR Cloning Kit 

(Invitrogen, USA) were used as the host-vector system. P. pastoris host strain X-33 and 

pPICZαC (Invitrogen, USA) were used for protein expression. The WT strain of M. 

thermophila ATCC 42464 was maintained on 1.5% malt-peptone-agar slants at 4 οC. P. 

pastoris was routinely grown in shaking flasks at 30 οC according to the instructions in 

the EasySelectTM Pichia Expression Kit (Invitrogen, USA). Genomic DNA was prepared 

and isolated as previously described (Topakas et al., 2012). 

 

PCR  Primers  
Fragment 
targeted  Conditions 

#1  EF - ER 2001 bp annealing: 60oC/10s extension: 70oC/33s, 30 cycles 

#2 EF - Ee1R 409 bp annealing: 60oC/10s extension: 70oC/4s, 30 cycles 

#3 Ee2F - ER 1172 bp annealing: 60oC/10s extension: 56oC/12s, 30 cycles 

#5  EF - ER 1581 bp annealing: 59oC/10s extension: 59oC/25s, 45 cycles 

Table 7.6. Primers and conditions used for the amplification of cbh7 gene through PCR 

(#1), removal of introns (#2-3) and final overlapping PCR  (#5). Colored sequences 

represent the restriction sites of ClaI and XbaI enzymes (red, purple).   

An E. coli/P. pastoris vector, pPICZαC, was used to achieve secreted expression 

of MtCBH7. pPICZαC contains the tightly regulated AOX1 promoter and the 

Saccharomyces cerevisiae α-factor secretion signal located immediately upstream of the 
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multiple cloning site (Higgins et al., 1998). The gene coding for the hypothetical 

protein MtCBH7 (Model ID 109566, chromosome 1:9753507-9755507) was PCR 

amplified from genomic DNA using primers EF/ER (Table 7.6) designed accordingly 

to the available gene sequence (http://genome.jgi-psf.org/, DOE Joint Genome 

Institute, (Berka et al., 2011) including the ClaI and XbaI restriction enzyme sites at 

their respective 5’-ends. A high fidelity KOD Hot Start® DNA polymerase producing 

blunt ends was used for the DNA amplification, which was carried out with 30 cycles of 

denaturation (20 s at 95οC), annealing (10 s at 60οC), and extension (33 s at 70οC), 

followed by 1 min of further extension at 70 οC. In order to determine the DNA 

sequence, the PCR product was cloned into the pCRBlunt® vector according to the 

method described by the Zero Blunt® PCR Cloning Kit.  

Intron removal was achieved using the molecular technique of overlap extension 

polymerase chain reaction (OEPCR) (Topakas et al., 2012) using the polymerase KOD 

Hot Start® (Novagen, USA). Two complementary DNA primers per intron, two 

external primers (EF/Ee1R, Ee2F/ER, Table 7.6) and the appropriate PCR 

amplification process were used to generate two DNA fragments harbouring 

overlapping ends. The recombinant plasmid pCRBlunt/cbh7, at an appropriate dilution, 

was used as template DNA and the PCR conditions for each reaction are given as the 

following: 95 οC for 2 min, ensued by 30 cycles of 95 οC for 20 s, 60 οC for 10 s and 70 

οC for 4 s (fragment 409 bp) or 12 s (fragment 1172 bp) respectively, with a final 

extension step at 70 οC for 1 min. The two PCR products were combined together in a 

subsequent hybridization reaction. The generated “fusion” fragment was amplified 

further by overlapping PCR through the utilization of the two external primers, EF 

end ER, with an initial denaturation step at 95 οC for 2 min, followed by 45 cycles at 95 

οC for 20 s, 59 οC for 10 s, 70 οC for 25 s and a final extension step at 70 οC for 1 min. 

An extended annealing was performed (25 min) in order to improve base-pairing 

between the complementary ends of each fragments that have to be fused. The 

produced cbh7 DNA was digested with the enzymes ClaI and XbaI and the DNA 

fragment gel-purified before cloning into the pPICZαC vector, resulting in the 

recombinant pPICZαC/cbh7 which was amplified in E. coli TOP10F0, and the 

transformants were selected by scoring for ZeocinTM resistance (25 μg/ml). The 

recombinant vector pPICZαC/cbh7 was confirmed by restriction analysis and DNA 
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sequencing and finally transformed into P. pastoris. The recombinant plasmid 

pPICZαC/cbh7 was linearized with PmeI and then transformation of P. pastoris and 

cultivation in shaken flasks were performed according to the EasySelectTM Pichia 

Expression Kit. High-level expression transformants were screened from the YPDS 

plates containing ZeocinTM at a final concentration of 100 μg/ml. The presence of the 

cbh7 gene in the transformants was confirmed by PCR using yeast genomic DNA as 

template and gene specific primers (EF and ER; Table 7.6).  

 

 

Figure 7.12. Amplification of cbh7 gene through PCR. Intron 1 and 2 removal (A) and 

final OE-PCR (B), cloning of the PCR product into the PCR® Blunt 

vector/amplification in E. coli TOP10 cells and final cloning to pPICZαC 

vector/amplification in E. coli TOP10F’ cells. (A) Lane 1: Hyperladder Marker (Bioline), Lane 

2: gene cbh7 (left) and Lanes 2-3: exons 1,2 (right), (B) Lane 1: final OE-PCR product, Lane 2: 

Hyperladder Marker (Bioline), (C) Lane 1: Hyperladder Marker (Bioline), Lanes 2-3: Digestion of 

pPICZαC/cbh7 with ClaI/XbaI.  
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7.3.2. Expression in shake flask cultures and purification of MtCBH7 

Protein expression of the recombinant enzyme was first evaluated in small scale 

cultures, in shake flasks. For the production of cellobiohydrolase, one single P. pastoris 

colony harboring cbh7 gene was cultivated in BMGY medium for 18-24 hours, at 30°C 

in a shaker (200 rpm) and then inoculated into the production medium BMMY 

reaching OD600=1. The extracellular secreted protein was tested for celobiohydrolase 

activity against Avicel 5%w/v n 100mM phosphate-citrate buffer pH=5.0, after 24 

hours of incubation at 30°C and 200 rpm. The clone exhibiting the highest activity was 

chosen for the production of the recombinant enzyme and further characterization 

studies. The cultures were kept in a shaking incubator at 30oC for 6 days (200 rpm) 

with the addition of 0.75 ml methanol once a day to maintain induction (0.5% v/v). 

After examination of cellobiohydrolase activity, no efficient yield of recombinant 

protein has been achieved. The major factor causing this problem was primarily the 

proteolytic degradation of enzymes produced, which hampered the yield. Proteolysis led 

to low recombinant protein levels and active products that were smaller than the full-

length protein. Degraded proteins ran as a ‘‘smear’’ after SDS-PAGE (Figure 7.13). As 

a result, in spite of high protein amounts measured at the culture medium, only a small 

proportion was biologically active.  

In order to achieve eliminate proteolysis and achieve higher production levels of 

homogenous and stable enzyme, several strategies were followed and a series of 

different parameters were evaluated, such as the reduction of incubation temperature, 

the influence of initial pH, ammonium sulfate and methanol concentration and 

agitation. Of all the above parameters, it was found that when the initial concentration 

of ammonium sulfate in the culture medium was 2-fold higher than the one usually 

used (10% w/v, as suggested by EasySelectTM Pichia Expression Kit protocol), the 

protein appeared full length sized and homogenous (Figure 7.13).  

Addition of ammonium ions has also been recommended, in the form of ammonium 

sulfate. Tsujikawa and colleagues (1996), observed 10 fold reduction of proteolysis by 

supplementing medium with ammonium ions. Proteolysis is found to amplify over the 

induction period when the amount of viable cells in the culture is reduced. Salting-out is 

attractive for separation and purification of proteins in both laboratory and industrial 
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scales. Examples include the recovery of proteins, i.e. diagnostic enzymes, insulin, 

human growth hormone, interferon, and food proteins, by salting-out with (NH4)2SO4 

or Na2SO4 (Shih et al. 1992, McNay et al. 2001). However, there are some data on 

literature that report recombinant protein production with salting-out effect to protect 

against proteolytic degradation have been published. Ammonium sulfate had a salting-

out effect on extracellular proteins shown by the higher protein purity on SDS-PAGE 

gels. Kobayashi and Nakamura, 2003 proposed that lower proteolysis can be attributed 

to the fact that the solubility of the proteases decreases with the addition of (NH4)2SO4, 

so total proteolytic activity in the supernatant liquid decreases by sulfate conjugation. 

It was found that the addition of 20 g (NH4)2SO4 l−1 to a culture medium was effective 

for not only increasing the amount of glucoamylase produced but also for maintaining 

glucoamylase activity at a high level. País-Chanfrau et al., 2004 reported an increased 

expression of recombinant mini-proinsulin in Pichia pastoris in bioreactors, achieved by, 

among others, periodical addition of ammonium sulfate.  

 

Figure 7.13. SDS-PAGE of cellobiohydrolase MtCBH7. Lane 1:  Novex® sharp pre-

stained protein marker, Lane 2: samples from culture medium, where BMMY was used 

as substrate, with addition of 10% w/v ammonium sulfate. Signs of proteolysis are 

dominant, as protein exhibit lower molecular weight, run as a “smear” and smaller size 

molecules appear. Lanes 3-4: samples of MtCBH7 from culture medium with addition of 

20% w/v ammonium sulfate, after ultrafitration (3) and after purification with IMAC 

(4). The enzyme appears full length sized and homogenous.  
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Figure 7.14. Immobilized metal ion affinity chromatography for the purification of the 

recombinant MtCBH7. The left peak corresponds to proteins that were not bound to 

the resin and the right one to the His-tagged cellobiohydrolase that was eluted using a 

0-100 mM gradient imidazole. Elution started at 38 mM imidazole, total protein eluted 

was 197.8 mg from 5 lt of initial culture.  

 

For the purification of the recombinant enzyme, the culture broth was 

centrifuged and concentrated 30-fold using a LabScale Tangential flow filtration 

system (TFF with membrane Pellicon XL Ultrafiltration Module Biomax, exclusion 

size 10 kDa; Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4oC 

against a 20 mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and MtEG5 was 

rapidly purified by single-step immobilized metal ion affinity chromatography (IMAC), 

with a cobalt charged resin on an ÄKTA Prime Plus system, using 0-100 mM 

imidazole gradient, at a flow rate of 2 ml/min (Figure 7.14). Fractions (2 ml) 

containing cellobiohydrolase activity were concentrated and the homogeneity was 

checked by SDS-PAGE (Figure 7.13). Removal of background impurities from the 

fermentation broth resulted in 39.5 mg of pure MtCBH7 per lt of culture supernatant. 

The molecular weight was estimated to be ca. 78 kDa (Figure 7.14), which appears to 

be higher than the predicted value using the ProtParam tool of ExPASY (54 kDa) 

considering the presence of the myc epitope and the polyhistidine tag which contribute 
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2.8 kDa to the size of MtCBH6. The nominal mass discrepancy observed might be 

explained by the existence of Asn-Xaa-Ser/Thr sequons and Ser-Thr residues, which 

are known to be a prerequisite for N- and O-glycosylation post-translational 

modifications respectively. Indeed, 1 N-glycosylation and 20 potential O-glycosylation 

sites were predicted by using the NetNGlyc 1.0 server 

(http://www.cbs.dtu.dk/services/NetNGlyc/) and the NetOGlyc 3.1 server 

(http://www.cbs.dtu.dk/services/NetOGlyc/). 

 

7.3.3. Characterization of purified MtCBH7 

The optimal temperature was determined using Avicel 5% (w/v) as a substrate, 

as described above, at temperatures ranging from 30 to 90◦C in 0.1 M citrate-

phosphate buffer pH 5.0. Temperature stability was determined by measuring the 

residual activity under the same assay procedure, after incubation of 0.52 mg of purified 

MtCBH7 at various temperatures for different amount of time. The optimum 

temperature activity was observed at 60 ◦C, losing rapidly its activity for temperatures 

over 70◦C. The cellobiohydrolase remained fairly stable up to 50 ◦C after preincubation 

for 24 hours in 100 mM phosphate-citrate buffer (pH 5.0) at different temperatures 

(Figure 7.15) and exhibited half-life of 18.1 h at 55◦C and 9.41 h at 60◦C, respectively. 

The optimal temperature was determined using the Avicel assay procedure at 

temperature ranging from 30 to 80°C in 100 mM citrate–phosphate buffer pH 5.0. 

Temperature stability was determined by measuring the residual activity under the 

standard assay procedure, after incubation of 0.55 mg of purified MtCBH7 at various 

temperatures for different amount of time. The optimal pH was determined by the 

standard assay at 60°C over the pH range 3.0–11.0 using either 0.1 M citrate–

phosphate buffer pH 3.0–7.0, 0.1 M Tris-HCl pH 7–9 or 0.1 M glycine–NaOH buffer 

pH 9–11. The stability at different pH was determined after incubating the enzyme in 

the above buffers at 4°C for 24 h and then measuring the activity remaining using the 

Avicel assay. The enzyme presented the highest activity levels at pH 5.0, while the 

activity drops rapidly for pH less than 4 or higher than 6. The enzyme was found 

remarkably stable in the pH range 3-11 after 24 h retaining its initial activity. 

Properties of MtCBH7 are described in Figure 7.15.  
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MW pHopt Topt (oC) Specific activity (U/mg) T stability 
 78 5 60 pNP-β-cellobioside (5mM) 0,13 stable at 50oC for 24h  

   

pNP-β-lactopyranoside (5 mM) 2,25 t1/2 =18.1h at 55oC 
t1/2 =9.41h at 60oC  

   
CMC 1% w/v 0,2 

 

   
Avicel 5% w/v 2,8 

 
Figure 7.15. Properties of purified MtCBH7 cellobiohydrolase. 

7.3.4. Conclusions - Discussion  

Proteolytic degradation has been a perpetual problem when yeasts are employed 

to express recombinant proteins in P. pastoris (Gimenez et al., 2000). Yeast vacuoles 

contain various proteases whose levels vary according to the nutritional conditions 

(van den Hazel et al., 1996). Though several strategies have been followed to limit 

proteolytic degradation of the recombinant protein, no in-depth analysis on the 

conditions that promote proteolysis or the nature of the proteases acting on the desired 

protein is exactly known. In this study, it is reported the successful expression of 

cellobiohydrolase MtCBH7 in P. pastoris, under high osmotic pressure and increased 

salinity conditions. 2-fold increase of the ammonium sulfate in the culture medium 

resulted in the production of full length product. MtCBH7 is a process exo-acting, 

cellobiose-releasing enzyme of GH7 family, acting on the reducing end of the cellulosic 

substrate. As other retaining carbohydrases, family 7 cellobiohydrolases may catalyse 

transglycosylation (Gusakov et al., 1991). MtCBH7 is stable at 50oC after 24h 

incubation and exhibits activity on Avicel and pNP-substituted substrates, as described 

above. Though CBHs have a key role to the conversion of biomass to fermentable 

sugars, they are refered to be notoriously slow and susceptible to inhibition. Xylan and 

xylan-fragments have been suggested repeatedly as one cause of the reduced activity of 
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CBHs, together with product inhibition by cellobiose (Selig et al, 2008; Bauman et al., 

2011). The addition of enzymes with xylanolytic activity will increase the yield of 

soluble sugars and provide remedies for xylan inhibition of CBHs’ activity.  

7.4. Production of MtGH61 in fermentor 

The recently discovered family of AA9 lytic polysaccharide monooxygenases 

(LPMOs) includes metallo-enzymes enzymes that have been shown to enhance the 

hydrolytic potential of a cellulase mixture during the enzymatic hydrolysis of 

lignocellulosic substrates (Hu et al., 2013). Unlike the canonical cellulase enzymes 

which have been shown to cleave cellulose by a hydrolytic mechanism involving the 

conserved carboxylic acid residues within either channel or cleft shape substrate 

loading sites, AA9 are thought to cleave cellulose chain by an oxidative mechanism at 

the protein’s planar active site which contains a divalent metal ion (Aachman et al., 

2012; Li et al., 2012; Quinlan et al., 2011). By using electron paramagnetic resonance 

spectroscopy and single-crystal X-ray diffraction, the active site of GH61 is revealed to 

contain a type II copper and, uniquely, a methylated histidine in the copper's coordination 

sphere, thus providing an innovative paradigm in bioinorganic enzymatic catalysis 

(Quinlan et al., 2011). Although a final model mechanism of action has not yet been 

found, some common features of these enzymes include their need of a reductant 

cofactor that works as an external electron donor to enhance their activity and the 

oxidation at the C1 carbon in the glucose ring structure as the most represented 

(Forsberg et al., 2011; Quinlan et al., 2011). Cannella et al., 2012 showed that under 

commercially relevant conditions, around 4.1% of the glycosidic bonds in cellulose 

were oxidatively cleaved by presumably GH61 enzymes, which provides new entry 

sites for the hydrolytic enzymes and increase the access to the substrate.  

MtGH61 represents an enzyme belonging to the AA9 family which has been 

functionally expressed in Pichia pastoris under the transcriptional control of the alcohol 

oxidase (AOX1) promoter and characterized (Dimarogona et al., 2012). In this study, 

the enzyme was produced in fermentor and subsequently used in hydrolysis 

experiments described in Chapter 8. Cultivation of recombinant strain expressing the 

MtGH61 in high cell-density fermentation was performed in the basal salts medium 

(BSM), supplemented by trace element solution PTM1, as described in the Pichia 
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fermentation guidelines provided by Invitrogen (Invitrogen, Pichia Fermentation 

Process Guidelines). The PTM1 trace salt solution was also included in the glycerol- 

and methanol feeds during glycerol and methanol fed-batch phases. The only nitrogen 

source was ammonium hydroxide which was added as the pH was regulated. 

Cultivation started at 28οC, aeration was set at 4 vvm and agitation at 800 rpm.  

After 24 hours of batch fermentation in glycerol medium (30 g/lt initial 

concentration), the end of glycerol batch was indicated by a sharp increase in the 

dissolved oxygen (DO) tension. This stage was followed by a 5-hour step of fed-batch 

glycerol one; during this step 50% w/v glycerol, with PTM1 salts was fed at an initial 

flow-rate of 12 mL/h/lt of culture medium and was reduced gradually until it was fully 

consumed. At the same time, temperature was reduced from to 28οC to 25οC and finally 

to 23οC and 2 mL of methanol were added manually in small aliquots with syringe. 

Total consumption of glycerol was again indicated by a spike in the DO. At the onset 

of methanol fed-batch phase, casamino acids solution was added at a final concentration 

of 3 g/lt and then, a feed of 100% MeOH, with PTM1 was initiated at a flow rate of 1.9 

mL/h/lt. The methanol consumption rate was monitored indirectly by stopping the 

feed and checking the “lag phase”, while increasing the methanol feed rate manually. 

After 8h, feed rate was adjusted to a maximum of 5,46 mL/h/lt and maintained for 

~20h, causing extracellular expression of the recombinant enzyme into the 

supernatant.. Then, the temperature was decreased to 21οC and pure oxygen supply 

was set to maintain dissolved oxygen levels between 60-30 %. Induction time lasted 

160 in total and approximately 700 mL of methanol were consumed. At the end of the 

fermentation, the dry weight of cells reached 117,5 g/lt of culture medium. The 

amount of extracellular protein produced reached 1,27 g.  

For the purification of MtGH61, the culture broth was centrifuged and 

concentrated 30-fold using a LabScale Tangential flow filtration system (TFF with 

membrane Pellicon XL Ultrafiltration Module Biomax, exclusion size 10 kDa; 

Millipore, Billerica, USA). The concentrate was dialyzed overnight at 4oC against a 20 

mM Tris-HCl buffer containing 300 mM NaCl (pH 8.0) and then the enzyme was 

rapidly purified by single-step immobilized metal ion affinity chromatography (IMAC), 

with a cobalt charged resin on an ÄKTA Prime Plus system, using 0-100 mM 

imidazole gradient, at a flow rate of 2 ml/min (Figure 7.16). The eluent, containing 
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MtGH61 with an estimated molecular weight of ~58 kDa (Figure 7.17), was 

concentrated and later was used in hydrolysis experiments.  

 
Figure 7.16. IMAC chromatography for the purification of the recombinant MtGH61. 

The left peak corresponds to proteins that were not bound to the resin and the right 

one to the His-tagged enzyme that was eluted using a 0-100 mM gradient imidazole. 

Elution started at 26 mM imidazole, total protein eluted was 715,8 mg. 

 

 
Figure 7.17. SDS – PAGE of MtGH61 samples after fermentation. Lane 1:  Novex® 

sharp pre-stained protein marker, lane 2: sample from fermentation culture broth after 

ultrafiltration, lane 3: purified protein after IMAC.  
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7.5. Production and purification of enzymes with xylanase activity  

7.5.1. Purification of Xylanases from M. thermophila grown on corn cob 

M. thermophila produces high levels of xylanases, when grown on a cheap carbon 

source such as corn cob. In this study, partially purified crude enzyme mixture from M. 

thermophila ATCC 34628 strain, was kindly offered from Assoc. Prof. Katapodis P., 

University of Ioannina, Department of Biological Applications and Technologies, 

Greece and was used as a source of proteins exhibiting xylanase activity. This mixture 

had been originally purified from submerged cultures supernatant containing corb cod 

as carbon source (Katapodis et al., 2003; Figure 7.18). Xylan represents more than 60% 

of the polysaccharides existing in the cell wall of corn cob, thus inducing the 

expression of xylanases in fungus’ secretome. The sample, exhibiting initial xylanase 

specific activity of 67.31 U/mg against birchwood xylan,  was loaded onto a S-300 

16/60 Sephacryl gel filtration column and fractions were eluted at a 0.4 mL/min flow 

rate using 100mM phosphate-citrate buffer pH=5.0. Four major fractions were eluted 

and tested for xylanase and cellulose activity against birchwood xylan 1%w/v and 

carboxy-methyl-cellulose 1%w/v respectively, in 100mM phosphate-citrate buffer 

pH=5.0 and 15min incubation at 50οC (Figure 7.19). One unit of enzyme activity was 

defined as the amount of enzyme liberating 1 μmol of reducing sugars measured as 

xylose / glucose equivalent per min. Fractions III and IV, that showed relatively high 

xylanase specific activity (Table 7.7), but no cellulose activity corresponded to ~ 38 

kDa and 45 kDa protein band; enzymes were concentrated to a final volume of 2 mL 

and used in the hydrolysis experiments of natural substrates described in Chapter 8.  

 

 

Figure 7.18. SDS-PAGE gel. Lane 1: Partially purified  

crude enzyme mixture from M. thermophila ATCC 34628  

strain  grown on corn cob. Lane 2:  Novex® sharp pre- 

stained protein marker. 
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Figure 7.18. Gel filtration on S-300 16/60 Sephacryl column of the partially purified 

crude enzyme mixture resulted in the elution of four fractions. Fractions III and IV 

showed relatively high xylanase specific activity, but no cellulose activity.  

 

7.5.2. Purification of Xylanases from M. thermophila grown on wheat straw 

The mineral medium used for the production of xylanolytic enzymes contained 

per liter: 

KH2PO4 3.0 

K2HPO4 2.0 

MgSO4 · 7H2O 0.5 

CaCl2 · 2H2O 0.1 

FeSO4 · 7H2O 0.005 

MnSO4 · 4H2O 0.0016 

ZnSO4 · 7H2O 0.0014 

CoCl2 · 2H2O 0.0002 
 

A 5 mL mycelia and spore suspension of M. thermophila ATCC 42464 from a 5-day old 

culture, grown on PDA Petri dish at 45οC, was inoculated to two 1lt Erlenmeyer flasks 

each containing 300mL of the above mineral medium supplemented with wheat straw 

(30g/lt) as carbon source and (NH4)2HPO4 (7.5 g/lt) as nitrogen source. M. thermophila 

 

185 



ATCC 42464 strain has been found to reach the highest yield of xylanase activity in 

culture medium when cultured with wheat straw as carbon source (Katapodis et al., 

2006). The flasks were incubated at 46ΟC in an orbital shaker operating at 200 rpm for 

2 days. After gentle centrifuge and resuspension in 50 mL sterile ultrapure water, 

200mL of the preculture were used to inoculate a 3 lt glass autoclavable Applikon 

bioreactor, equipped with an ez-Control system (Applikon Biotechnology B.V., 

Netherlands), containing 1 lt mineral medium having the above composition and wheat 

straw (30g/lt). The fungus was cultured for 5 days at 46ΟC and pH 5.0. Agitation 

speed was set at 800 rpm, enabling the oxygen concentration to remain above 60% 

saturation during the cultivation process.  

The fermentation broth was centrifuged at 10,000g for 30 min, at 4οC and then 

filtrated consecutively through filters with 0.45 μm and 0.2 μm pore diameter. The 

clear supernatant was assayed for xylanase against 1%w/v birchwood xylan in 100mM 

phosphate-citrate buffer, pH 5.0 and 15 min incubation at 50οC and concentrated 30-

fold using a LabScale Tangential flow filtration system (TFF with membrane Pellicon 

XL Ultrafiltration Module Biomax, exclusion size 10 kDa; Millipore, Billerica, USA). 

The retentate, containing endo-xylanase activity, was used for further purification of 

the enzyme. It was dialyzed overnight at 4 oC against a 20 mM Tris-HCl buffer (pH 

8.0) and further concentrated to 5 mL with Vivaspin 2, 10 kDa MWCO PES (GE 

Healthcare).  

Anion exchange chromatography. After equilibration with 20 mM Tris-HCl buffer (pH 

8.0), crude enzyme preparation was applied on a HiPrep Q HP 16/10 anion exchange 

column (GE Healthcare). The column was washed with 80 mL of the equilibrating 

buffer, following by a linear gradient of 0 - 1 M NaCl in 150 mL of the same buffer. 

Some indicative eluted fractions (# 36, 40, 44, and 50) as well as the flow-through (FT) 

fraction that has been separately kept were tested for xylanase activity against 

birchwood xylan, as described above. The FT and #36 fractions exhibited detectable 

xylanase activity, so the corresponding fractions (see Picture XX) were concentrated to 

2 mL and tested for xylanase and cellulase activity against birchwood xylan and 

carboxymethyl-cellulase respectively. Protein concentration was determined by the 

BCA method (Pierce Chemical Co., Rockford, IL), using bovine serum albumin as a 

standard. Specific activity was calculated (Table XX).  
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Figure 7.19. Anion exchange chromatography with HiPrep Q HP 16/10 anion 

exchange column resulted. The fraction that was eluted before gradient of NaCl was 

started (flow through) contained proteins with xylanolytic activity. 

 

Figure 7.20. SDS-PAGE of samples after anion exchange chromatography, Lane 1:  

Novex® sharp pre-stained protein marker, Lane 2: protein fraction that was eluted with 

linear gradient of 0 - 1 M NaCl, Lane 3: protein fraction that was eluted with 20 mM 

Tris-HCl buffer, before gradient of NaCl was started (flow through). This fraction 

contains proteins with isoelectric point above 8.0, which exhibited relatively high 

xylanolytic, but very low cellulolytic activity. 
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The FT fraction, containing proteins with isoelectric point below 8.0, was 

applied on a S-300 16/60 Sephacryl gel filtration column pre-equilibrated with 100mM 

prosphate-citrate buffer and fractions were eluted at a 0.4 mL/min flow rate using 

100mM phosphate-citrate buffer pH=5.0. Three fractions were eluted. This 

purification step yielded one endoxylanase active fraction (Fraction II), consisted of two 

proteins with molecular weight ~30-35 kDa, as checked by SDS-PAGE. This fraction 

showed relatively high xylanase specific activity, but no cellulose activity. It was 

concentrated to a final volume of 2 mL and used in the hydrolysis experiments of 

natural substrates described in Chapter 7.  

 
Figure 7.22. Gel filtration of FT fraction resulted in three fractions.  

 
 
 

 

 

Figure 7.23. SDS-PAGE of xylanase fragments after gel 

filtration column. Lane 1:  Novex® sharp pre-stained 

protein marker, Lanes 1-3:  Fractions I-III. Fraction II 

exhibited relatively high xylanolytic activity and was used 

in hydrolysis experiments.  
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Table 7.7. Specific activities of fractions purified from M. thermophila culture medium 

grown on two different carbon sources. Xylanase and cellulose activity were tested 

against birchwood xylan 1%w/v and carboxy-methyl-cellulose 1%w/v respectively, in 

100mM phosphate-citrate buffer pH=5.0 and 15min incubation at 50οC. Colored 

fractions were used in hydrolysis experiments.  

Xylanase mixture that was used at hydrolysis experiments described in Chapter 8 

was consisted of 87% Fraction II, 11% Fraction III and 2% Fraction IV. Had a total 

activity of 14.82 Units/mg when tested against birchwood xylan 1% w/v and remained 

stable after 8 hours of incubation at 50οC.  
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CHAPTER 8  
 
Optimization of tailor-made enzyme cocktail for 
deconstruction of agricultural and forest residues 
 

In this chapter, four core enzymes, in the presence of other four “accessory” 

enzymes, all encoded by M. thermophila’s genes and isolated using various purification 

and heterologous expression strategies, were tested against natural substrates to 

determine optimal combinations at 20 mg/g glucan protein loading, using a suitable 

design of experiments methodology. Synergistic interactions among different enzymes 

were then determined through various mixture optimization experiments. Optimal 

combinations were predicted from suitable statistical models which were able to further 

increase hydrolysis yields, suggesting that tailor-made enzyme mixtures targeted 

towards a particular feed stock can help maximize hydrolysis yields.  

Even though the main components of all lignocellulosic feedstocks include 

cellulose, hemicellulose, as well as the protective lignin matrix, there are some 

differences in structure that may influence the degradability of the materials. 

Agricultural residues, such as wheat straw, have the advantage that in most cases they 

are easier to degrade in comparison with forest residues. This is due to the lower lignin 

content, as well as the dimension of the straw being relatively small, which results in a 

material that is more easily accessible for the microbial enzymes. Also, there is usually 

more difficult to hydrolyze softwoods than hardwoods because of the higher lignin 

content of softwoods than that of hardwoods. In hardwood and agricultural plants, 

xylan is the dominant hemicellulosic structure, whereas for softwoods, it is 

glucomannan, leading to the hypothesis that various types of biomass require a 

minimal set of enzymes that has to be tailor-made, i.e. more xylanases for hardwoods 

or more mannanases for softwoods. 

In order to understand better the role of the individual enzymes and their 

synergistic interactions, in the present study, the hydrolysis of wheat straw, two types 

of softwood (pine and spruce) and one type of hardwood (birch) by a six component 

mixture at different stages was analyzed. All the substrates had been hydrothermally 
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pretreated (Table 8.1). In order to ensure an efficient enzymatic hydrolysis of 

cellulose, pretreatment (also called first-stage hydrolysis) is needed to break down the 

shield formed by lignin and hemicellulose, resulting in the disruption of the crystalline 

structure and the reduction of the degree of polymerization of cellulose (Xiros et al., 

2013). Different pretreatment technologies have varying effects on product yield and 

subsequent process steps (Wyman et al., 2005).   

 

Hydrothermal pretreatment with sulphuric acid 

Spruce, tough treated 212°C for 4-8 minutes and pH 1,6-1,8 

Pine 210-215°C for 5 minutes and pH 1,5-1,7 

Birch 190°C for 4-6 minutes and pH 1,8-2,0 

 

Hydrothermal pretreatment 

Wheat straw  190°C for 12 minutes 

Table 8.1 Pretreatment specifications of the materials used in hydrolysis experiments.  

Spruce, pine and birch were purchased from SEKAB E-Technology AB 

(Örnsköldsvik, Sweden), while wheat straw from Triticum aestivum L. (PWS) which was 

purchased from Inbicon A/S, (Fredericia, Denmark). PWS was hydrothermally 

pretreated; residence time in the hydrothermal reactor averaged 12 min with the 

reactor temperature maintained at 190 °C by injection of steam (Thomsen et al. 2006). 

The solid fiber fraction was analyzed according to the procedure of Xiros et al. (2009) 

and was found to contain 50.2 % glucan, 3.8 % hemicellulose, 25.5 % acid insoluble 

lignin, and 2.8 % starch, based on DM (w/w). . Each of forest materials was 

hydrothermally pretreated with sulphuric acid and was received as pretreated slurries 

of low pH. Specifications are given Table 8.1.   

 

194 



An experimental mixture plan was set up for the four major cellulases MtCBH7, 

MtCBH6, MtEG5 andMtEG7, whereas “accessory” enzymes (mannanase, MtCH61, 

xylanases) and β-glucosidase were added at specific loadings. In order to optimize the 

mixture of cellulases so as to achieve increased saccharification, an experimental design 

was employed. More specifically the software Design Expert® 7.0.0 (Stat-Ease inc.) 

was employed where the design D-optimal was used in order to generate 20 

experimental conditions (Table 8.2) where the enzymes varied at specified levels 

(Table 8.3). In all the experimental combinations the summary of the enzymes was set 

to be equal to 1. The same software was used in order to evaluate the results and 

determine the most appropriate model that would be used to fit the experimental data. 

The two models applied during this work were either the quadratic (Eq. 1) or the special 

cubic (Eq. 2): 

 

where y is the response (either total reducing sugars, TRS or glucose, Glc, mg/mL), b 

are the coefficients that were estimated by the model and x are the variables of the 

model. Optimization of the mixture was also performed by the same software, where 

the option to maximize either TRS or glucose was set. At the same moment the 

concentration of the enzymes were set to be in the limits that they were chosen to vary 

(Table 8.5). The efficiency of the model was evaluated by calculating the p-value and 

R2. 

Enzymes were prepared as described in Chapters 4-7. With the exception of 

xylanases, all individual enzymes used in these experiments were produced in Pichia 

pastoris from native M. thermophila genes. MtEG5, MtCBH6 and MtGH61 were 

expressed in BSM medium in fermentors, while MtEG7, MtBGL3, MtCBH7 in BMMY 

medium in shake flasks. Mannanase MtMan26a was generously offered from Assist. 

Prof. E. Topakas, Biotechnology laboratory, School of Chemical Engineering, NTUA, 
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Greece. Xylanases were purified from M. thermophila crude, after induction with wheat 

straw, as described in Chapter 7.  

# React Mt EG5 Mt EG7 Mt CBH6 Mt CBH7
1 0,06 0,07 0,65 0,21
2 0,20 0,05 0,53 0,22
3 0,01 0,40 0,20 0,39
4 0,12 0,33 0,24 0,31
5 0,20 0,40 0,20 0,20
6 0,01 0,05 0,47 0,47
7 0,01 0,08 0,21 0,70
8 0,09 0,19 0,52 0,20
9 0,03 0,19 0,35 0,44

10 0,01 0,40 0,20 0,39
11 0,01 0,24 0,21 0,54
12 0,01 0,05 0,47 0,47
13 0,01 0,33 0,46 0,20
14 0,20 0,40 0,20 0,20
15 0,20 0,21 0,20 0,38
16 0,13 0,05 0,20 0,62
17 0,01 0,33 0,46 0,20
18 0,06 0,07 0,65 0,21
19 0,11 0,24 0,37 0,28
20 0,20 0,05 0,37 0,38

Enzyme proportions

 

Table 8.2. Experimental combinations used for the hydrolysis tests. 

 

Figure 8.1. SDS – PAGE of purified enzymes produced and used in hydrolysis 

experiments. Lanes 1, 8:  Novex® sharp pre-stained protein marker, 2: MtEG7a, 3: 

MtEG5, 4: MtCBH7, 5: MtCBH6, 6: MtGH61, 7: MtBGL3a.  
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Protein concentrations were determined using the bicinchoninic acid (BCA) 

protein assay microplate procedure (Pierce Chemical Co., Rockford, IL), according to 

the manufacturer’s recommendations, using bovine serum albumin as standard (Smith 

et al., 1985). Enzyme activities were assayed as described in previous Chapters. The 

supernatants were filtrated, concentrated using a tangential flow filtration system with 

a 10 kDa-cutoff membrane (Pellicon XL Ultrafiltration Module Biomax 10 kDa, 

Millipore), buffer exchanged in dialysis tubing membrane with ten volumes of 100mM 

phosphate – citrate buffer, pH 5.0, and then concentrated further to 20mL. 

Concentrated desalted enzymes were aliquoted into 1.5 mL tubes and stored at 4 οC, 

with the addition of sodium azide was added (0.02% w/v). Final stock enzyme 

concentrations ranged from 0.2 to1 mg/mL. Purity of the final protein preparations 

was determined by 12.5% SDS-PAGE electrophoresis (Figure 8.1).  

The relative abundances of each of the four major enzymes were varied using an 

experimental design. The borders of the experimental domain were carefully chosen. 

Special attention was paid to avoid a too large domain as this may impact the reliability 

of predictions within the domain. On the other hand, it should not be too small and 

contain the optimum, since extrapolation outside the domain borders is impossible. The 

lower and upper limits of each component were, therefore, determined following 

rational considerations (Billard et al., 2012): 

 Cellobiohydrolases are known to be important for cellulose hydrolysis (Teeri, 1997) 

and the sum of MtCBH7 and MtCBH6 should constitute the majority of the 

enzyme cocktail (>50%). In addition, literature data showed that higher 

CBH7/CBH6 ratios are more beneficial for hydrolysis of steam-exploded wheat 

straw than lower ones (Rosgaard et al., 2007). Their relative abundances were thus 

varied from 13:4 to 2:7. MtCBH7 is produced as a major protein of fungi's 

secretome (20–25% of the total extracellular protein) and adsorbed strongly on 

microcrystalline cellulose, so it is arguably the most important single enzyme 

involved in cellulose deconstruction, which however has limited activity on un-

pretreated lignocellulosic material, due to limited accessible sites of action. 

Moreover, it has been shown that there is a significant synergism between 

MtCBH7 and MtCBH6 enzymes during substrate hydrolysis (Gusakov et al., 2007).  
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 The presence of endoglucanases is necessary and MtEG7 and MtEG5 should each at 

least make up 1% of the mixture. A higher upper limit was chosen for MtEG7, as 

this enzyme was shown to major importance for optimized initial conversion rates 

and final yield for steam-exploded wheat straw according to the literature (Billard 

et al., 2012). Moreover, as described in Chapter 5, MtEG7 has been proved to 

liquefy efficiently high-consistency lignocellulosic biomass by decreasing 

significantly the viscosity of the slurry in the first stage of reaction, underlining 

the crucial role of this enzyme for hydrolysis.    

 

Variable in 
model 

Lower 
limit (%) 

Upper 
limit (%) 

MtEG5 χ1 1 20 

MtEG7 χ2 5 40 

MtCBH6 χ3 20 65 

MtCBH7 χ4 2 70 

Table 8.3. The respective borders for all variables used the experimental design. 

Hydrolysis of phosphoric acid swollen cellulose (PASC) was performed using 

only the four core cellulolytic enzymes and β-glucosidase. In, case of lignocellulosic 

feedstocks, the addition of accessory enzymes was based on the structure and type of 

each material. In all experiments, MtGH61 consisted 4% of the enzyme mixture, while 

gallic acid was added at 10mM concentration, as electron donor. The enzymes with 

xylanase activity consisted 3% of the enzyme mixture for birch (hardwood) and 2% for 

wheat straw and softwoods. In case of softwoods, MtMan26a was used at 3%. 

Enzymatic hydrolysis was performed in safe lock 2 mL volume microtubes. The 

surfactant octylphenol (ethyleneglycol)9,6 ether (Triton X-100) was added at all 

reactions with natural substrates at concentration 1 mg/mL, which is equivalent to a 

surfactant addition of 4% of the substrate dry matter. Enhancement of cellulose 

hydrolysis by adding surfactants to the hydrolysis mixture has been reported by 

several authors (Eriksson et al., 2002; Castanon and Wilke, 1981; Helle et al., 1993; 

Ooshima et al., 1986; Park et al., 1992). Reactions were performed at 50οC, with 2.5% 

initial dry matter content when natural substrates were used and 0.25% in case of pure 

substrate (PASC). The enzymes were loaded at 1 mg/g substrate for PASC and 20 mg/g 

substrate for natural materials. In all reactions, β-glucosidase was added in excess in 
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order to prevent inhibition caused by cellobiose produced by the combined action of 

exo- and endo-1,4-β-glucanases. After 12h of incubation, more enzyme was added, so 

as to ensure the effective release of glucose. All assays were replicated once, sampled 

twice and assayed twice for total reducing sugars (TRS) and glucose (Glc) at 48 h of 

hydrolysis, for a total of four replicates of each mixture each time for each variable 

(TRS and Glc). Total reducing sugars were measured with dinitrosalicylic acid 

colorimetric method (Miller, 1958) and Glc with GO assay (Sigma). All reactions were 

performed with 1200 rpm agitation and contained 0.02% w/v sodium azide to prevent 

microbial contamination.  

 

Figure 8.2. Enzymatic hydrolysis was performed in safe lock 2mL volume microtubes, 

with 1200 rpm agitation in Thermomixer incubator, which offers simultaneous mixing 

and temperature control (Eppendorf, Germany).   

 

8.1. Hydrolysis of phosphoric acis swollen cellulose (PASC) 

PASC is considered to be a representative of amorphous cellulose. It is usually 

prepared from Avicel by phosphoric acid treatment (as described by Schulein, 1997) 

and, opposed to the dry, solid, powder-like composition of Avicel, PASC is relatively 

viscous, unclear (cloudy) liquid. It has been shown that in the cellulose swelling 

process, the macromolecular structure of cellulose as a moiety of fibers is maintained, 

while the physical properties of the sample are changed (Zhang, et al., 2006). In 

particular, specific surface area and sample volume have been shown to increase, due to 
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swelling, while DP of PASC have not changed radically compared to the untreated 

Avicel (Zhang and Lynd, 2005; Zhang, et al., 2006). In this study, the PASC that was 

used was a generous offer from M. Dimarogona, Swedish University of Agricultural 

Sciences, Uppsala, Sweden.  

# React EG5 EG7 CBH6 CBH7 RS (mg/mL) % Hydrolysis Glucose (mg/mL)
1 0,06 0,07 0,65 0,21 0,518 18,660 0,491
2 0,20 0,05 0,53 0,22 0,603 21,709 0,553
3 0,01 0,40 0,20 0,39 0,552 19,879 0,531
4 0,12 0,33 0,24 0,31 0,637 22,928 0,559
5 0,20 0,40 0,20 0,20 0,683 24,584 0,597
6 0,01 0,05 0,47 0,47 0,431 15,524 0,384
7 0,01 0,08 0,21 0,70 0,313 11,255 0,301
8 0,09 0,19 0,52 0,20 0,511 18,399 0,376
9 0,03 0,19 0,35 0,44 0,601 21,622 0,391

10 0,01 0,40 0,20 0,39 0,557 20,054 0,421
11 0,01 0,24 0,21 0,54 0,409 14,740 0,372
12 0,01 0,05 0,47 0,47 0,436 15,698 0,398
13 0,01 0,33 0,46 0,20 0,625 22,493 0,554
14 0,20 0,40 0,20 0,20 0,688 24,758 0,579
15 0,20 0,21 0,20 0,38 0,441 15,872 0,437
16 0,13 0,05 0,20 0,62 0,567 20,402 0,516
17 0,01 0,33 0,46 0,20 0,620 22,319 0,506
18 0,06 0,07 0,65 0,21 0,526 18,921 0,500
19 0,11 0,24 0,37 0,28 0,441 15,872 0,409
20 0,20 0,05 0,37 0,38 0,291 10,471 0,294

BLANK 0,017 0,627 0,060

Enzyme proportions

 

 

Table 8.4. TRS and Glc yields for each enzyme combination used for the hydrolysis of 

PASC. The marked mixture indicates the reaction that produced the highest amount of 

sugars.  
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PASC, Total Reducing Sugars (TRS): special cubic, p=0.0002, R2 =0.9849 

TRS  =     - 21.66724  * EG5  

+ 1.09867  * EG7 

- 0.54947  * CBH6  

- 0.23873  * CBH7  

+ 45.79912  * EG5 * EG7  

+ 45.36321  * EG5 * CBH6  

+ 37.05488  * EG5 * CBH7  

+ 0.22492  * EG7 * CBH6  

- 2.87501  * EG7 * CBH7  

+ 2.75752  * CBH6 * CBH7  

- 97.02937  * EG5 * EG7 * CBH6  

- 19.25658  * EG5 * EG7 * CBH7  

- 64.09204  * EG5 * CBH6 * CBH7  

+14.71254  * EG7 * CBH6 * CBH7  

 

TRS opt: EG5 (0.128) EG7 (0.400) CBH6 (0.200) CBH7 (0.272), Yield: 0.754853 mg/mL 

 

 

PASC, Glucose (Glc):  special cubic, p=0.0116, R2 = 0.9401 

Glc  =       - 20.42708  * EG5  

+ 0.45905  * EG7  

- 0.50713  * CBH6  

- 0.19593  * CBH7  

+ 40.53931  * EG5 * EG7  

+ 40.07249  * EG5 * CBH6  

+ 30.82599  * EG5 * CBH7  

+ 3.85197  * EG7 * CBH6  

+ 1.05697  * EG7 * CBH7  

+ 2.91880  * CBH6 * CBH7  

- 92.35394  * EG5 * EG7 * CBH6  

+ 0.082939  * EG5 * EG7 * CBH7  

- 42.30706  * EG5 * CBH6 * CBH7  

- 9.17932  * EG7 * CBH6 * CBH7 

 

Glc opt: EG5 (0.118) EG7 (0.400) CBH6 (0.200) CBH7 (0.282), Yield: 0.734118 mg/mL 
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Figure 8.3. Ternary plots showing predicted final Total Reducing Sugars (TRS) yields 

from PASC hydrolysis, as a function of three out of four “core” enzymes (X1, X2, X3) 

content. For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal TRS yield, as predicted by the model. 

As illustrated in (A), a decrease in MtEG7 proportion results in a decrease in 

hydrolysis yield, even if MtEG5 levels are higher, indicating the key role of GH7 

endoglucanase for the reaction. Even though it cannot compensate for MtEG7, MtEG5 

is also an important enzyme; as moving towards D point, where MtEG7 and MtCBH7 

are in moderate levels and MtEG5 in its lower limit proportion, the hydrolysis rate is 

very low. 
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 Figure 8.4. Ternary plots showing predicted final glucose (Glc) yields from PASC 

hydrolysis, as a function of three out of four “core” enzymes content (X1, X2, X3). For 

each plot, the forth enzyme (“actual component”) has been fixed to the proportion of 

the point resulting in the optimal glucose yield, as predicted by the model.  
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8.2. Hydrolysis of hydrothermally pretreated wheat straw 

Core enzyme mixtures were tested for their hydrolysis performance on 

hydrothermally pretreated wheat straw. All enzyme loadings were based on equivalent 

bovine serum albumin BCA based measurement. MtGH61 and the xylanase cocktail 

were added as accessory enzymes, as described above. MtBGL3 was loaded in excess 

(10% of the total cellulose loading), in order to prevent cellobiose inhibition. The 

trends for both total reducing sugars (TRS) and glucose (Glc) yields among different 

enzyme mixtures were dependent on the unique enzyme combinations. % rate of 

hydrolysis was calculated from the following equation, assuming that the glucose 

content of wheat straw is 50.2%, according to the analysis of solid fiber fraction by 

Xiros et al. (2009): 

 

# React EG5 EG7 CBH6 CBH7 RS (mg/mL) % Hydrolysis Glucose (mg/mL)

1 0,06 0,07 0,65 0,21 2,967 21,282 2,930
2 0,20 0,05 0,53 0,22 2,793 20,033 2,652
3 0,01 0,40 0,20 0,39 3,229 23,156 3,094
4 0,12 0,33 0,24 0,31 3,142 22,532 3,094
5 0,20 0,40 0,20 0,20 3,635 26,072 3,486
6 0,01 0,05 0,47 0,47 3,084 22,115 3,077
7 0,01 0,08 0,21 0,70 3,432 24,614 3,110
8 0,09 0,19 0,52 0,20 3,113 22,323 3,077
9 0,03 0,19 0,35 0,44 3,316 23,781 3,323

10 0,01 0,40 0,20 0,39 3,258 23,365 3,110
11 0,01 0,24 0,21 0,54 3,606 25,864 3,126
12 0,01 0,05 0,47 0,47 3,113 22,323 3,126
13 0,01 0,33 0,46 0,20 3,345 23,989 2,979
14 0,20 0,40 0,20 0,20 3,693 26,488 3,519
15 0,20 0,21 0,20 0,38 3,809 27,321 3,634
16 0,13 0,05 0,20 0,62 3,490 25,031 3,486
17 0,01 0,33 0,46 0,20 3,287 23,573 2,963
18 0,06 0,07 0,65 0,21 3,025 21,699 2,619
19 0,11 0,24 0,37 0,28 3,200 22,948 3,077
20 0,20 0,05 0,37 0,38 3,055 21,907 2,881

BLANK 0,064 0,458 0,246

Enzyme proportions

 

Table 8.5. TRS and Glc yields for each enzyme combination used for the hydrolysis of 

pretreated wheat straw. The marked mixture indicates the reaction that produced the 

highest amount of sugars.  
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Wheat Straw, Total Reducing Sugars (TRS): quadratic model p< 0.0001,  R2 = 0.9548 

TRS  = + 26.24805  * EG5  

-  0.87730 * EG7  

+ 4.34075 * CBH6  

+ 4.23657 * CBH7 

- 15.49701 * EG5 * EG7  

- 38.29441 * EG5 * CBH6  

- 24.78159 * EG5 * CBH7  

+ 5.40389  * EG7 * CBH6  

+ 6.19993  * EG7 * CBH7  

- 5.36302  * CBH6 * CBH7 

 
TRS opt: EG5 (0.200) EG7 (0.211) CBH6 (0.200) CBH7 (0.389), Yield: 3.7866 mg/mL 

 

Wheat Straw, Glucose (Glc): quadratic p=0.0053, R2 = 0.8411 

Glc =      + 7.15288  * EG5  

+ 0.70601  * EG7  

+ 2.69945  * CBH6  

+ 2.81969  * CBH7  

+ 4.99455  * EG5 * EG7  

- 13.04901  * EG5 * CBH6  

+ 0.051320  * EG5 * CBH7  

+ 2.90623  * EG7 * CBH6  

+ 3.63262  * EG7 * CBH7  

+ 0.23688  * CBH6 * CBH7 

 

Glc opt: EG5 (0.200) EG7 (0.219) CBH6 (0.200) CBH7 (0.381), Yield: 3.34854 mg/mL 
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Figure 8.5. Ternary plots showing predicted final Total Reducing Sugars (TRS) yields 

from wheat straw hydrolysis, as a function of three out of four “core” enzymes (X1, X2, 

X3) content. For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal TRS yield, as predicted by the model.  
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Figure 8.6. Ternary plots showing predicted final glucose (Glc) yields from wheat 

straw hydrolysis, as a function of three out of four “core” enzymes content (X1, X2, 

X3). For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal glucose yield, as predicted by the 

model.  

 

The ternary plot C of Figure 8.3 shows that, when the proportions of MtEG7 

are increasing or decreasing over a large range, a high final yield can be conserved. 

Similar to Billard et al., 2012, that showed that the optimum yield is conserved over a 

range from about 13% to 23% EG7. Same can be noticed also for MtCBH7. Comparing 

hydrolysis yields obtained with high and low MtCBH6/MtCBH7 ratio, it seems that 
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those when MtCBH7 is in higher proportions, the yields are better. As the ratio 

decreases, the hydrolysis yield also follows the same tension, so MtCBH6 does not 

compensate for MtCBH7. Even when cellobiohydrolases participate in low proportions 

(lower limits), there is some hydrolysis that can be attributed to the action of MtEG7. 

Moving vertically towards lower MtEG7 proportions, yields are maintained, so 

MtCBH7 can compensate for MtEG7 (at least partially). Similar assumptions may be 

made for ternary plot C of Figure 8.4 concerning the glucose yield.  

Endoglucanases are of major importance for the efficient hydrolysis of pretreated 

wheat straw, catalyzing the initial attack on the amorphous regions of cellulose chains 

and the gradual reduction of the average chain length of these polysaccharides. Szijarto 

et al. identified EG2 (Cel5a) as a key component for the liquefaction of pretreated wheat 

straw, while MtEG7 has also been proved to liquefy efficiently high-consistency 

lignocellulosic biomass by decreasing significantly the viscosity of the slurry in the 

first stage of reaction, underlining the crucial role of this enzyme for hydrolysis 

(Karnaouri et al., 2014). The crucial role of these enzymes is highlighted in the results 

of present study.  

 

TRS opt (predicted): EG5 (0.200) EG7 (0.211) CBH6 (0.200) CBH7 (0.389), Yield: 3.7866 mg/mL 
 

Figure 8.5. Time-course hydrolysis using the enzyme combination that was predicted 

to lead to the highest Total Reducing Sugars production. Experimental yield appear to 

be slightly lower than the theoretically predicted one. The rate of hydrolysis remains 

almost stable during the first 48h of hydrolysis.  

 

time course reaction (TRS optimal) 

incubation 
time 

RS 
(mg/mL) 

% 
Hydrolysis 

0 0,000 0,000 

12 1,214 8,704 

24 2,019 14,483 

48 3,624 25,989 
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8.3. Hydrolysis of hydrothermally pretreated with sulphuric acid birch 

Core enzyme mixtures were tested for their hydrolysis performance on 

hydrothermally pretreated with sulphuric acid birch. All enzyme loadings were based 

on equivalent bovine serum albumin BCA based measurement. MtGH61 and the 

xylanase cocktail were added as accessory enzymes, as described above. Xylanases’ 

concentration was 3%, as the main hemicellulose of birch is xylan. MtBGL3 was loaded 

in excess (10% of the total cellulose loading), in order to prevent cellobiose inhibition. 

The trends for both total reducing sugars (TRS) and glucose (Glc) yields among 

different enzyme mixtures were dependent on the unique enzyme combinations. % rate 

of hydrolysis was calculated from the following equation, assuming that the glucose 

content of wheat straw is 41%, according to the literature data (Alén, 2000; Sjöström, 

1993; Willför et al., 2005): 

 
 

# React EG5 EG7 CBH6 CBH7 RS (mg/mL) % Hydrolysis Glucose (mg/mL)
1 0,06 0,07 0,65 0,21 0,735 6,456 0,617
2 0,20 0,05 0,53 0,22 0,764 6,711 0,722
3 0,01 0,40 0,20 0,39 0,715 6,277 0,696
4 0,12 0,33 0,24 0,31 0,677 5,946 0,651
5 0,20 0,40 0,20 0,20 0,753 6,609 0,668
6 0,01 0,05 0,47 0,47 0,755 6,634 0,651
7 0,01 0,08 0,21 0,70 0,741 6,507 0,619
8 0,09 0,19 0,52 0,20 0,689 6,048 0,644
9 0,03 0,19 0,35 0,44 0,843 7,399 0,642

10 0,01 0,40 0,20 0,39 0,721 6,328 0,701
11 0,01 0,24 0,21 0,54 0,581 5,104 0,577
12 0,01 0,05 0,47 0,47 0,761 6,685 0,686
13 0,01 0,33 0,46 0,20 0,631 5,538 0,582
14 0,20 0,40 0,20 0,20 0,761 6,685 0,678
15 0,20 0,21 0,20 0,38 0,837 7,348 0,640
16 0,13 0,05 0,20 0,62 0,755 6,634 0,617
17 0,01 0,33 0,46 0,20 0,625 5,487 0,574
18 0,06 0,07 0,65 0,21 0,744 6,532 0,614
19 0,11 0,24 0,37 0,28 0,799 7,017 0,702
20 0,20 0,05 0,37 0,38 0,843 7,399 0,685

BLANK 0,056 0,490 0,061

Enzyme proportions

 

Table 8.6. TRS and Glc yields for each enzyme combination used for the hydrolysis of 

pretreated birch. The marked mixture indicates the reaction that produced the highest 

amount of sugars.  
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Birch, Total Reducing sugars (TRS): special cubic p< 0.0001, R2= 0.9981 

TRS  =   + 23.86839  * EG5  

+ 7.02440  * EG7  

+ 2.52957  * CBH6  

+ 1.81127  * CBH7  

- 55.96731  * EG5 * EG7  

- 37.14665  * EG5 * CBH6  

- 26.39382  * EG5 * CBH7  

- 22.53481  * EG7 * CBH6  

- 20.28144  * EG7 * CBH7  

- 6.27797  * CBH6 * CBH7  

+ 92.42527  * EG5 * EG7 * CBH6  

+ 20.87724  * EG5 * EG7 * CBH7  

+ 4.84800  * EG5 * CBH6 * CBH7  

+ 68.32745  * EG7 * CBH6 * CBH7 

 

TRS opt: EG5 (0.200) EG7 (0.196) CBH6 (0.356) CBH7 (0.248), Yield: 1.00049 mg/mL 

 

Birch, Glucose (Glc): special cubic p=0.0008, R2= 0.9764 

Glc  =     + 7.18980  * EG5   

+ 3.62601  * EG7  

+ 0.79553  * CBH6  

+ 0.75054  * CBH7  

- 23.13030  * EG5 * EG7  

- 8.40950  * EG5 * CBH6  

- 7.08057  * EG5 * CBH7  

- 8.05122  * EG7 * CBH6  
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- 7.10649  * EG7 * CBH7  

- 0.57697  * CBH6 * CBH7  

+ 44.79136  * EG5 * EG7 * CBH6  

+ 10.25298  * EG5 * EG7 * CBH7  

- 5.08012  * EG5 * CBH6 * CBH7  

+ 17.51918  * EG7 * CBH6 * CBH7 

 

Glc opt: EG5 (0.200) EG7 (0.209) CBH6 (0.391) CBH7 (0.200), Yield: 0.773808 mg/mL 

 

 

 

Figure 8.7. Ternary plots showing predicted final Total Reducing Sugars (TRS) yields 

from birch hydrolysis, as a function of three out of four “core” enzymes (X1, X2, X3) 

content. For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal TRS yield, as predicted by the model. 

As illustrated at (C), the location of the optimal domain indicates that MtEG7 and 

MtCBH6 are needed in moderate levels for the maximum hydrolysis.  
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Figure 8.8. Ternary plots showing predicted final glucose (Glc) yields from birch 

hydrolysis, as a function of three out of four “core” enzymes content (X1, X2, X3). For 

each plot, the forth enzyme (“actual component”) has been fixed to the proportion of 

the point resulting in the optimal glucose yield, as predicted by the model. The ternary 

plots A and C show that, when the proportions of MtEG7 and MtEG5 are maintained 

in a moderate range can result in efficient hydrolysis, whereas cellobiohydrolases seem 

to be effective in smaller proportions. Cellobiohydrolases may be inhibited by xylan 

and xylan-fragments produced during the hydrolysis. Birch is a hardwood with its 

main hemicellulolytic component is xylan, so the addition of efficient proportion of 

xylanases  and β-xylosidases is of great importance to maintain an optimal yield and 

eliminate the inhibitory effect that hampers the activity of CBHs.  
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TRS opt: EG5 (0.200) EG7 (0.196) CBH6 (0.356) CBH7 (0.248), Yield: 1.00049 mg/mL 

 

Figure 8.5. Time-course hydrolysis using the enzyme combination that was predicted 

to lead to the highest Total Reducing Sugars production. Experimental yield appear to 

be lower than the theoretically predicted one, but close to the combination #20, that 

that produced the highest amount of sugars. The rate of hydrolysis is the highest one 

during the first 12h of incubation, but later decreases, due to the recalcitrance of the 

forest material.  

 

 

 

 

 

 

 

 

 

time course reaction (TRS optimal) 
incubation 

time 
RS 

(mg/mL) 
% 

Hydrolysis 

0 0,000 0,000 

12 0,448 3,932 

24 0,561 4,926 

48 0,838 7,320 
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8.4. Hydrolysis of hydrothermally pretreated with sulphuric acid spruce 

Core enzyme mixtures were tested for their hydrolysis performance on 

hydrothermally pretreated with sulphuric acid spruce. All enzyme loadings were based 

on equivalent bovine serum albumin BCA based measurement. MtGH61 and the 

xylanase cocktail were added as accessory enzymes, as described above. Xylanases’ 

concentration was 2% and was added in combination with 3% MtMan26a, as spruce 

belongs to softwoods and its main hemicellulose is glucomannan. MtBGL3 was loaded 

in excess (10% of the total cellulose loading), in order to prevent cellobiose inhibition. 

The trends for both total reducing sugars (TRS) and glucose (Glc) yields among 

different enzyme mixtures were dependent on the unique enzyme combinations. % rate 

of hydrolysis was calculated from the following equation, assuming that the glucose 

content of wheat straw is 40.7, according to the literature data (Hakkila, 1989; 

Korhonen, 1997; Sjöström, 1993):  

 

# React EG5 EG7 CBH6 CBH7 RS (mg/mL) % Hydrolysis Glucose (mg/mL)
1 0,06 0,07 0,65 0,21 1,664 15,165 1,729
2 0,20 0,05 0,53 0,22 1,678 15,297 1,621
3 0,01 0,40 0,20 0,39 1,867 17,017 1,865
4 0,12 0,33 0,24 0,31 2,201 20,061 2,203
5 0,20 0,40 0,20 0,20 2,070 18,870 1,913
6 0,01 0,05 0,47 0,47 1,715 15,628 1,685
7 0,01 0,08 0,21 0,70 1,685 15,363 1,633
8 0,09 0,19 0,52 0,20 1,874 17,083 1,766
9 0,03 0,19 0,35 0,44 2,027 18,473 1,876

10 0,01 0,40 0,20 0,39 1,831 16,686 1,821
11 0,01 0,24 0,21 0,54 1,925 17,546 1,780
12 0,01 0,05 0,47 0,47 1,751 15,958 1,715
13 0,01 0,33 0,46 0,20 2,063 18,803 2,070
14 0,20 0,40 0,20 0,20 2,056 18,737 1,933
15 0,20 0,21 0,20 0,38 2,230 20,325 2,097
16 0,13 0,05 0,20 0,62 2,077 18,936 1,787
17 0,01 0,33 0,46 0,20 2,048 18,671 2,060
18 0,06 0,07 0,65 0,21 1,685 15,363 1,736
19 0,11 0,24 0,37 0,28 2,302 20,987 2,217
20 0,20 0,05 0,37 0,38 2,070 18,870 1,855

BLANK 0,176 1,601 0,174

Enzyme proportions

 
Table 8.7. TRS and Glc yields for each enzyme combination used for the hydrolysis of 

pretreated spruce. The marked mixture indicates the reaction that produced the 

highest amount of sugars.  
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Spruce. Total Reducing Sugars (TRS): quadratic, p< 0.0001, R2= 0.9463 

TRS  =    - 5.97838  * EG5  

- 0.90743  * EG7  

+ 0.25214  * CBH6  

+ 0.70942  * CBH7  

+ 13.95667  * EG5 * EG7  

+ 8.95833  * EG5 * CBH6  

+ 15.45688  * EG5 * CBH7  

+ 7.90828  * EG7 * CBH6  

+ 4.67673  * EG7 * CBH7  

+ 3.67017  * CBH6 * CBH7   

 

TRS opt: EG5 (0.178) EG7 (0.200) CBH6 (0.200) CBH7 (0.422), Yield: 2.10181 mg/mL 

 

Spruce, glucose (Glc): quadratic, p=0.0060, R2= 0.8364 

Glc  =       - 5.80615  * EG5  

- 0.42048  * EG7  

+ 0.73850  * CBH6  

+ 0.59326  * CBH7  

+ 12.76669  * EG5 * EG7  

+ 7.65752  * EG5 * CBH6  

+ 13.82491  * EG5 * CBH7  

+ 6.18348  * EG7 * CBH6   

+ 4.43330  * EG7 * CBH7  

+ 2.83733  * CBH6 * CBH7 

 

Glc opt: EG5 (0.124) EG7 (0.275) CBH6 (0.276) CBH7 (0.325), Yield: 1.93566 mg/mL 
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Figure 8.9. Ternary plots showing predicted final Total Reducing Sugars (TRS) yields 

from spruce hydrolysis, as a function of three out of four “core” enzymes (X1, X2, X3) 

content. For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal TRS yield, as predicted by the model. 

MtEG5 and MtCBH7 are the key enzymes for maintaining the highest TRS yield, as 

highlighted by the optimal domains.  
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Figure 8.10. Ternary plots showing predicted final glucose (Glc) yields from spruce 

hydrolysis, as a function of three out of four “core” enzymes content (X1, X2, X3). For 

each plot, the forth enzyme (“actual component”) has been fixed to the proportion of 

the point resulting in the optimal glucose yield, as predicted by the model. MtEG7 is 

an enzyme with crucial role for the optimal glucose yield, as the optimal domain in 

ternary plots A-C is located where higher proportions of this enzyme are used in the 

enzyme mixture.  
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time course reaction (TRS optimal) 
incubation 

time 
RS 

(mg/mL) 
% 

Hydrolysis 

0 0,000 0,000 

12 1,090 9,938 

24 1,519 13,841 

48 2,426 22,112 
 

TRS opt: EG5 (0.178) EG7 (0.200) CBH6 (0.200) CBH7 (0.422), Yield: 2.10181 mg/mL 

 

Figure 8.5. Time-course hydrolysis using the enzyme combination that was predicted 

to lead to the highest Total Reducing Sugars production. Experimental yield appear to 

be higher than the theoretically predicted one, but close to the combination #20, that 

that produced the highest amount of sugars. The rate of hydrolysis is the highest one 

during the first 12h of incubation; later it is maintained with a slight decrease, due to 

the recalcitrance of the forest material.  
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8.5. Hydrolysis of hydrothermally pretreated with sulphuric acid pine 

Core enzyme mixtures were tested for their hydrolysis performance on 

hydrothermally pretreated with sulphuric acid pine. All enzyme loadings were based on 

equivalent bovine serum albumin BCA based measurement. MtGH61 and the xylanase 

cocktail were added as accessory enzymes, as described above. Xylanases’ 

concentration was 2% and was added in combination with 3% MtMan26a, as spruce 

belongs to softwoods and its main hemicellulose is glucomannan. MtBGL3 was loaded 

in excess (10% of the total cellulose loading), in order to prevent cellobiose inhibition. 

The trends for both total reducing sugars (TRS) and glucose (Glc) yields among 

different enzyme mixtures were dependent on the unique enzyme combinations. % rate 

of hydrolysis was calculated from the following equation, assuming that the glucose 

content of wheat straw is 40.7%, according to the literature data (Kilpeläinen et al., 

2003.; Korhonen, 1997; Viikki, 1995; Saarela et al., 2005):  

 

# React EG5 EG7 CBH6 CBH7 RS (mg/mL) % Hydrolysis Glucose (mg/mL)
1 0,06 0,07 0,65 0,21 0,544 4,808 0,467
2 0,20 0,05 0,53 0,22 0,578 5,116 0,492
3 0,01 0,40 0,20 0,39 0,671 5,938 0,608
4 0,12 0,33 0,24 0,31 0,674 5,964 0,596
5 0,20 0,40 0,20 0,20 0,555 4,911 0,458
6 0,01 0,05 0,47 0,47 0,555 4,911 0,532
7 0,01 0,08 0,21 0,70 0,445 3,935 0,442
8 0,09 0,19 0,52 0,20 0,564 4,988 0,502
9 0,03 0,19 0,35 0,44 0,561 4,962 0,496

10 0,01 0,40 0,20 0,39 0,674 5,964 0,610
11 0,01 0,24 0,21 0,54 0,549 4,860 0,454
12 0,01 0,05 0,47 0,47 0,558 4,937 0,525
13 0,01 0,33 0,46 0,20 0,555 4,911 0,471
14 0,20 0,40 0,20 0,20 0,544 4,808 0,457
15 0,20 0,21 0,20 0,38 0,605 5,348 0,486
16 0,13 0,05 0,20 0,62 0,587 5,193 0,499
17 0,01 0,33 0,46 0,20 0,549 4,860 0,469
18 0,06 0,07 0,65 0,21 0,549 4,860 0,471
19 0,11 0,24 0,37 0,28 0,642 5,681 0,520
20 0,20 0,05 0,37 0,38 0,573 5,065 0,469

BLANK 0,059 0,519 0,055

Enzyme proportions

 
Table 8.8. TRS and Glc yields for each enzyme combination used for the hydrolysis of 

pretreated pine. The marked mixture indicates the reaction that produced the highest 

amount of sugars. 
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Pine, Total Reducing Sugars (TRS): quandratic, p= 0.0002, R2=0.9213 

TRS  =     - 5.65174  * EG5  

+ 1.12947  * EG7  

+ 0.16687  * CBH6  

- 0.026177  * CBH7  

+ 5.41898  * EG5 * EG7  

+ 8.20012  * EG5 * CBH6  

+ 9.16821  * EG5 * CBH7  

- 0.98642  * EG7 * CBH6  

+ 0.47835  * EG7 * CBH7  

+ 1.57099  * CBH6 * CBH7 

TRS opt: EG5 (0.073) EG7 (0.400) CBH6 (0.200) CBH7 (0.327), Yield: 0.647236 mg/mL 

 

Pine, Glucose (Glc): special cubic p=0.0002, R2= 0.9868 

Glc  =       - 5.34359  * EG5  

+ 2.40264  * EG7  

- 8.44275 * CBH6  

+ 0.12096  * CBH7  

- 3.37416  * EG5 * EG7  

+ 10.06396  * EG5 * CBH6  

+ 8.08666  * EG5 * CBH7  

- 2.63309  * EG7 * CBH6  

- 2.36182  * EG7 * CBH7  

+ 1.88699  * CBH6 * CBH7  

+ 9.58033  * EG5 * EG7 * CBH6  

+ 18.79645  * EG5 * EG7 * CBH7  

- 9.96154  * EG5 * CBH6 * CBH7  

- 1.17278  * EG7 * CBH6 * CBH7 

Glc opt: EG5 (0.076) EG7 (0.400) CBH6 (0.200) CBH7 (0.324), Yield: 0.611436 mg/mL 
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Figure 8.11. Ternary plot showing predicted final Total Reducing Sugars (TRS) yields 

from pine hydrolysis, as a function of three out of four “core” enzymes (X1, X2, X3) 

content. For each plot, the forth enzyme (“actual component”) has been fixed to the 

proportion of the point resulting in the optimal TRS yield, as predicted by the model. 

As illustrated at (A), when MtEG7 decreases, there is a clear reduction of the TRS 

yield and this reduction is more profound when there is combined decrease of MtEG7 

and MtCBH7 enzymes. Within some limits, when moving from points with lower 

MtCBH7 and higher MtEG7 proportion, hydrolysis yields remain stable; this indicates 

that the one enzyme can partially compensate for the other one.  
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Figure 8.12. Ternary plot showing predicted final glucose (Glc) yields from pine 

hydrolysis, as a function of three out of four “core” enzymes content (X1, X2, X3). For 

each plot, the forth enzyme (“actual component”) has been fixed to the proportion of 

the point resulting in the optimal glucose yield, as predicted by the model. In ternary 

plot (D), there is a clear optimal domain for moderate MtEG5 proportion. When 

moving upwards along the AD axis within the optimal domain, when CBH6 remains 

stable, MtEG5 compensates very well for decreasing MtCBH7 ratios. This can be 

explained at some point in the partial overlapping activities of the two enzymes, as 

MtEG5 is a processive enzyme, ability that can also attributed to cellobiohydrolases. 

The same tension can be found at the plot for glucose yields, with a more stretched 

optimal domain.  
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TRS opt: EG5 (0.073) EG7 (0.400) CBH6 (0.200) CBH7 (0.327), Yield: 0.647236 mg/mL 

 

Figure 8.13. Time-course hydrolysis using the enzyme combination that was predicted 

to lead to the highest Total Reducing Sugars production. Experimental yield appear to 

be similar to the theoretically predicted one. The rate of hydrolysis remains almost 

stable during the first 48h of hydrolysis.  

 

8.6. The non-ionic surfactant effect in enzymatic hydrolysis 

Several factors prevent an effective utilization of lignocellulose raw materials in 

a bioethanol process. The hydrolysis rate rapidly decreases during the time course of 

hydrolysis which leads to decreased yields and long process times. High enzyme 

concentrations are needed to reach high cellulose conversion, and enzyme recycling is 

difficult due to adsorption of enzymes to residual lignocellulose. The addition of 

surfactants increases yield and the rate of enzymatic hydrolysis, leading to reduced 

cellulase dosage for the hydrolysis of lignocellulosic biomasses (Borjesson et al., 2007; 

Kumar and Wyman, 2009; Yang et al., 2011). Different explanations to the surfactant 

effect on cellulose hydrolysis have been proposed until now, including the effect they 

could have on enzyme–substrate interactions leading to more effective conversion of 

cellulose, as well as the ability of surfactants to increase enzyme stability and prevent 

denaturation of enzymes during hydrolysis.  

Lignocellulose conversion to sugar monomers on a commercial scale is 

hampered by the inhibitory effect of lignin (Nakagame et al., 2010; Lee et al., 2009). 

time course reaction (TRS optimal) 
incubation 

time 
RS 

(mg/mL) 
% 

Hydrolysis 

0 0,000 0,000 

12 0,125 1,110 

24 0,265 2,342 

48 0,631 5,579 

 

223 



Lignin provides a physical barrier limiting the accessibility of cellulolytic enzymes to 

the substrate, and the residual lignin could block the removal of the cellulase from the 

cellulose chain (Alvira et al., 2010). In addition, the non-productive adsorption of lignin 

on cellulolytic enzymes reduces the productive hydrolysis of the substrate (Kumar et 

al., 2009). Lignin may also directly inhibit the activities of cellulolytic enzymes (Dyk 

and Pletschke, 2012). Therefore, studies are focusing on additives that improve the 

conversion of lignocellulosic feedstock. A large number of reports have stated that 

surfactants, especially non-ionic surfactants, were the most suitable additives for 

improving the saccharification of lignocellulose and the recovery of cellulolytic 

enzymes (Zhou et al., 2013; Cao and Aita, 2013; Ekcard et al., 2013). The central role of 

surfactants concerns the enzyme-substrate interactions, has no effect on the catalytic 

mechanism of cellulolytic enzymes, but affects the adsorption of enzymes on the substrate. 

Yang et al. reported that non ionic Tween 80 may decrease the non-productive 

adsorption of cellulase to cellulose (Yang et al., 2011). Another study reports that the 

increase in conversion when surfactant was added coincided, in all hydrolysis 

experiments, with a decrease in cellobiohydrolase Cel7A adsorption to the substrate 

(Eriksson et al., 2002). A likely explanation to these results is that the hydrophobic part 

of the surfactant binds through hydrophobic interactions to lignin on the lignocellulose 

fibers and the hydrophilic head group of the surfactant prevents unproductive binding 

of cellulases to lignin. The hydrophilic parts of the non-ionic surfactants are composed 

of short ethylene oxide chains. Thus, the adsorption of surfactant on lignin surfaces 

will prevent unproductive binding of cellulases on lignin. The carbohydrate binding 

domains (or modules) of most of fungal cellulases have hydrophobic amino acids 

exposed on the surface, e.g. tyrosines (Kovacs et al., 2009); the presence of these 

residues on enzyme surfaces is likely to lead to unspecific adsorption to lignin surfaces. 

Unspecific adsorption of enzymes on lignin could have a stronger role with pretreated 

substrate compared to native wood samples due to increased exposure of lignin 

surfaces at the pretreatment process. 

One of the typical characteristics of a surfactant is that it can stabilize the surface 

tension in a solution, so it can decrease the surface tension in supernatants, which 

reduces the energy consumption of hydrolysis and protects the cellulolytic enzymes 

from deactivation on the surface of the liquid phase, acting as an accelerant for 

lignocelluloses hydrolysis in a solid-liquid phase system (Feng et al., 2013). As shown 
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in Figure 8.4, the hydrophilic group can combine the cellulolytic enzymes in the liquid 

supernatant, while the hydrophobic group can bond the solid substrates. Enzymes and 

substrates might be attracted together by the surfactant, which enhances the 

adsorption of enzymes and the accessibility of substrates. The surfactant also appears 

to promote the release of enzymes binding on the substrate by its hydrophobic 

interaction with lignin, thus enhancing the adsorption and desorption between the 

enzymes and the substrate, which is one reason for the improved hydrolysis of 

lignocellulose.  

 

Figure 8.14. Schematic diagram representing the process of lignocellulose hydrolysis 

with the participation of non-ionic surfactant. Enzymes and substrates are attracted 

together by the surfactant (1), which promotes the release of enzymes non-productively 

binding on the substrate (2) and leads to a higher recovery of enzymes at the end of 

hydrolysis (3). The surfactant homogenizes organic matter in solution with its 

hydrophilic and hydrophobic groups (4). The hydrophobic interaction between the 

surfactant and lignin can also enhance the hemicellulose hydrolysis (5) (Feng et al., 

2013).  

Apart from the effect on enzyme-substrate interactions, surfactants have been 

reported to improve the stability of the enzymes during hydrolysis. The activities of 
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many enzymes implicated in the degradation of lignocelluloses (Reese and Mandels, 

1980; Gunjikar et al., 2001; Ye et al., 2012) are known to be decreased by shear stress 

from agitation, either by rotary shaker or impeller, during hydrolysis reaction. The 

increase in the hydrolysis rate by addition of non-ionic Tween 80 was observed under 

the agitated condition only, suggesting that the non-ionic surfactant may prevent the 

decrease of protein concentration brought about by agitation stress (Okino et al., 2013). 

The most profound effect was observed regarding the cellobiohydrolase CBH2. The 

decrease in the protein concentration was likely due to the precipitation observed 

during the experiment, indicating that protein aggregated and precipitated by 

agitation, resulting in the decrease of protein concentration in the solution. Since 

aggregation of proteins correlates to their hydrophobicity, charge, and secondary 

structure propensity (Chiti et al., 2003; Zbilut et al., 2003), the addition of surfactant 

stabilized the enzyme by reducing the hydrophobicity of enzyme surface in hydrolysis 

yield under agitated conditions. The addition of non-ionic surfactants in the medium of 

cellulase production fermentation to stabilize instable components during cellulase 

production has also been reported, underlining the crucial role of surfactants during 

cellulase production fermentation as well as in hydrolysis (Kruszewska et al., 1990; 

Reese and Maguire, 1969).  

 

Triton X-100 

Triton X-100 (C14H22O(C2H4O)n) is a non-ionic surfactant that was used as an 

additive to the hydrolusis experiments described in this Chapter. It has a hydrophilic 

polyethylene oxide chain (on average it has 9.5 ethylene oxide units) and an aromatic 

hydrocarbon lipophilic or hydrophobic group. The hydrocarbon group is a 4-(1,1,3,3-

tetramethylbutyl)-phenyl group. Although, together with Tween, Triton surfactants 

have showed the best improvements of lignocellulose conversion, they are not suitable 

for large-scale use because of the environmental effects due to the presence of the 

aromatic ring in the surfactant. Biosurfactants, surface-active substances synthesised 
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by living cells, are becoming more and more popular for their high efficiency and 

avirulence (Feng et al., 2013).  

 

8.8. Conclusions 

Hydrolysis of the pretreated lignocellulose to simple sugars typically uses a 

complex of enzymes containing high levels of cellulases, together with lower amounts 

of enzymes that attack non-cellulosic polysaccharides such as hemicellulose and pectin. 

Attempts to improve the hydrolytic efficiency of such enzyme complexes have 

traditionally focused on their component cellulases because cellulose is the most 

abundant polysaccharide component in lignocellulose. However, it is now recognized 

that the hydrolytic efficiency of fungal cellulose complexes determined using a model 

cellulosic substrate (e.g. Avicel, PASC) does not provide a reliable indication of its 

performance on pretreated lignocellulose (Berlin et al., 2007, Kabel et al., 2005). 

Evidently, other components in pretreated biomass, particularly hemicellulose and 

lignin, exert significant restraints on cellulose hydrolysis. For example, one mechanism 

whereby lignin seems to reduce hydrolytic performance is by binding enzyme 

components non-productively. Consequently enzyme mixtures with similar cellulase 

activity may show differences in performance on lignocellulose if they differ in affinity 

for lignin (Berlin et al., 2007). Similarly, it is probable that hemicelluloses restrict the 

access of cellulolytic enzymes by coating cellulose fibers. In some lignocelluloses, 

pectin could exert a similar effect. Consequently, enzyme mixtures with similar 

cellulose activity may show differences in performance on lignocellulose if they differ in 

hemicellulase composition (Berlin et al., 2005, 2006). However, it should be possible to 

compensate for deficiencies in these so-called ‘‘accessory’’ enzymes by supplementation 

of cellulase mixtures with appropriate activities. 

As first step towards evaluating this approach for enzyme improvement, we 

sought to increase the hydrolytic activity of biomass derived from agricultural residues 

such as wheat straw, and forest materials from boreal forests, such as softwoods (spruce 

and pine) and hardwoods (birch) show significant quantitative and qualitative 

differences in their non-cellulosic polysaccharide components. A statistical model was 

set up to search for optimized enzymatic mixtures containing four core enzymes, in the 
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presence of other four “accessory” enzymes, all encoded by M. thermophila’s genes. For 

industrial applications, more enzymes and higher substrate content than those applied 

here are needed. It was therefore of interest to test an optimized cellulose mixture 

under such conditions. The present results suggest that MtCBH7 and MtEG7 are 

enzymes of major importance for optimized final TRS and Glc yields during the 

hydrolysis of pretreated wheat straw and pine, while MtCBH7 plays a crucial role in case 

of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key 

enzymes for the hydrolysis of the hardwood (birch); the synergism of these enzymes 

with xylanases have been reported in the literature (Alvira et al., 2011; Qing and 

Wyman, 2011). For the hydrolysis of the pure substrate (PASC), high proportions of 

MtEG7 are needed for efficient yields.  

Future studies must show if these findings are also true for conditions of high 

dry matter content and addition of accessory enzymes, conditions which are relevant 

for enzymatic hydrolysis in industrial applications. It is possible that hydrolysis ratios 

of the optimized mixtures can be improved when other enzyme components are added. 

It was shown for instance that xylanases from different families (10 and 11) act 

synergistically and that their simultaneous presence leads to improvement of glucose 

yields (Banerjee et al., 2010a; Banerjee et al., 2010b; Gao et al., 2011). In our experiments 

we used a cocktail of partially purified xylanases from M. thermophila culture broth, at 

very low concentration (2-3%) of the total enzyme loading. Though the addition of 

enzymes with xylanolytic activity would lead only to minor improvements on steam-

exploded wheat straw, as this substrate contains only very little xylan , it can be 

hypothesized that an additional xylanase (as well as β-xylosidase) would raise the 

release of reducing sugars from birch (xylan is the dominant hemicelluloses 

component) and other forest materials. Another candidate for further hydrolysis 

improvement is the use of feruloyl esterase, as a synergistic effect between cellulases, 

FAEs and xylanases for the hydrolysis of wheat straw have been proven (Tabka et al., 

2006 Selig et al., 2008). Ferulic acid is the most abundant hydroxy cinnamic acid in the 

cell wall (Mueller-Harvey and Hartley, 1986) and is covalentely cross-linked to 

arabinoxylans by ester bonds and to components of lignin mainly by ether bonds (Akin 

et al., 1996). Accessory enzymes such as feruloyl esterases should also act in synergy 

with xylanases by cleaving diferulic bridges between xylan chains, opening the 
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structures and releasing lignin (Yu et al., 2002; Faulds and Williamson, 1995). The 

synergistic action of xylanase with cellulases has already been demonstrated in earlier 

studies using corn stover (Alvira et al., 2011; Qing and Wyman, 2011). Much of the 

synergism between cellulases and xylanolytic enzymes is believed to expose the 

cellulose microfibril core, by either removing the hemicellulose or the hemicellulosic 

side chains (Yu et al., 2003) or reduce the inhibitory effect of xylan and xylo-oligomers 

on the activity cellulolytic enzymes (Qing and Wyman, 2011).  
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