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Abstract

The geometric element transformation method (GETMe) described
in this work is a novel approach to finite element mesh smoothing. It
is based on regularizing element transformations represented by ge-
ometric constructions, which iteratively improve the regularity and
thus the quality of single elements. Such transformations are defined
and analyzed for arbitrary polygonal elements as well as for the most
common volumetric element types. In a first stage, GETMe smooth-
ing improves global mesh quality by averaging the new node positions
obtained by element-wise applied transformations. In a second stage,
minimal element quality is improved by successively transforming the
worst elements of the mesh. These stages are generalized by an adap-
tive variant of GETMe smoothing and aspects of implementation and
parallelization are discussed. Various numerical examples presented
in this work confirm that GETMe smoothing leads to superior mesh
quality if compared to other geometry-based methods like variants
of Laplacian smoothing. In terms of resulting mesh quality, it can
even compete with state of the art global optimization-based tech-
niques, despite being conceptually significantly simpler and consider-
ably faster. On the example of Poisson’s equation it will also be shown
numerically that this smoothing method is particularly suitable, from
a finite element application point of view, since it leads to a significant
reduction of discretization errors within the first few smoothing steps
requiring only little computational effort.
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Introduction

The generation of quality meshes plays a fundamental role in computations based
on the finite element method, since mesh quality affects the accuracy of the sim-
ulation as well as the accuracy of direct solvers and the convergence of iterative
solvers. A large number of mesh generation methods for planar polygonal meshes,
surface meshes, and volume meshes have been proposed [1–4]. Amongst the lat-
ter Delaunay-based approaches to tetrahedral mesh generation are quite popular,
since they are comparatively well suited for automation, of reasonable complex-
ity, and since they result in good quality meshes. However, the use of hexahedral
meshes is preferred, for example, in elastic/elasto-plastic solid continuum analysis
or CFD applications, since more accurate results can be obtained with a lower
number of elements [5, 6]. Compared to the case of tetrahedral mesh generation,
meshing complex volume models by hexahedra is considerably harder and the
achieved degree of generality and automation is still far from the state obtained
in the case of tetrahedral meshing. Therefore, the usage of hybrid meshes and
corresponding mesh generators has been proposed in order to combine the ad-
vantages of both element types [7–9]. In addition, pyramids or prisms serve as
transition elements to connect triangular and quadrilateral element faces. De-
pending on the application, hybrid meshes combining other types of elements
might be preferred such as tetrahedral meshes with prismatic boundary layers in
computational biofluid dynamic computations [10].

Usually mesh improvement techniques are incorporated into the correspond-
ing mesh generation processes or applied afterwards [8, 11]. They can be based on
mesh topology altering operations like face swapping, node insertion, and removal
[12–14] or smoothing techniques. The latter improve mesh quality by mesh topol-
ogy preserving node movements only. The most noted approach of this kind is
Laplacian smoothing, where node positions are iteratively updated by the arith-
metic mean of neighboring node positions [15–17]. Hence, Laplacian smoothing
is computationally inexpensive and algorithmically well suited for meshes com-
bining arbitrary element types. However, due to its simple mesh node averaging
scheme Laplacian smoothing does not incorporate element quality aspects and
thus can lead to mesh quality deterioration and the generation of inverted ele-

19



20 INTRODUCTION

ments. This can be avoided by accomplishing node movements only if quality is
improved or by using relaxation techniques. Such methods are denoted as smart
or constrained Laplacian smoothing [18, 19].

Better results with respect to a given quality criterion can be obtained by
local optimization, that is by placing nodes in order to maximize the quality of
adjacent elements. Since this results in a higher computational effort, a combined
approach of Laplacian smoothing and local optimization was proposed in [18],
where optimization is only accomplished in problematic regions of the mesh.

Focusing on overall mesh quality, a natural choice is to use a global opti-
mization approach incorporating quality numbers of all mesh elements into one
objective function [20, 21]. Here, all free vertices are moved simultaneously within
a single iteration. Again, this comes at the expense of a higher implementational
and computational effort. Furthermore, mathematical aspects, like optimization
techniques and the proper choice of quality metrics, play a fundamental role
[22, 23]. For example, in the case of mixed mesh smoothing, quality metrics
have to be applicable and balanced in their behavior for all element types under
consideration. In addition, optimization-specific additional requirements like dif-
ferentiability, or practice-oriented requirements like evaluation efficiency, have to
be taken into account.

A more generalized approach to the construction of appropriate and flexible
objective functions with respect to optimization aims is given by the target-matrix
paradigm [24]. Here, for each sample point of the mesh two matrices are required.
One is the Jacobian matrix of the current mesh, the other is a target-matrix
representing the desired Jacobian matrix in the optimal mesh. Usually sample
points are given by element nodes and the target matrices are derived from type
dependent reference elements. Using objective functions based on these matrices
allow mesh quality to be defined on a higher conceptual level.

Compared to the simple geometry-based approach of smart Laplacian smooth-
ing, global optimization-based methods result in meshes of higher quality at the
expense of significantly higher computational and implementational effort. This
is one of the reasons why smart Laplacian smoothing was able to retain its pop-
ularity even though the resulting mesh quality is inferior. As a way out of this
dilemma between mesh quality and computational effort, the geometric element
transformation method (GETMe), which is the main subject of this work, has
been proposed as a new geometry-based approach to mesh smoothing [25–32].
Various numerical tests indicate that it results in high quality meshes, comparable
to those obtained by global optimization-based approaches, within significantly
shorter runtimes. Being based on regularizing single element transformations it
is easy to implement and is well suited for parallelization. Furthermore, due to
its universal approach GETMe smoothing has proven its effectiveness and prac-
ticability for various kinds of mesh types including triangular and mixed element
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planar or surface meshes, as well as all-tetrahedral, all-hexahedral, and mixed
volume meshes.

The driving force behind GETMe smoothing are regularizing element trans-
formations which, if applied iteratively, lead to more regular hence better quality
elements. Such transformations for polygons with an arbitrary number of nodes
have been proposed and analyzed in this work and published in [33–36]. In the
case of polyhedral elements a special transformation for tetrahedra based on op-
posite face normals is proposed [29] and a more generalized transformation based
on dual elements, which is applicable to all common volumetric elements, is de-
veloped [31].

GETMe smoothing consists of two consecutively applied steps focusing on dif-
ferent aspects of mesh quality. In the first GETMe smoothing step, all elements
are transformed simultaneously and new node positions are obtained as weighted
means of the resulting transformed element nodes, thus improving overall mesh
quality. This is repeated until overall mesh quality converges. In the second
GETMe smoothing step, only the worst elements are iteratively transformed in
order to improve their quality numbers, thus specifically improving minimal el-
ement quality. In both cases, mesh quality is incorporated into the smoothing
process by simple element quality dependent parameters and control mechanisms.
Due to its general approach, GETMe smoothing can be applied to all types of
meshes with elements for which regularizing transformations exist. Aiming at
the generation of regular elements, GETMe smoothing significantly reduces the
number of extremal angles, which makes this approach particularly suitable for
finite element applications [37]. A combined approach of GETMe smoothing and
global optimization for hexahedral mesh untangling and smoothing is proposed
[38]. Here a variant of GETMe smoothing is applied first. Smoothing is termi-
nated if mesh quality is sufficient. Otherwise optimization is applied in order to
untangle or further improve the mesh.

An advanced version of GETMe smoothing, named GETMe adaptive, is pro-
posed [32], which improves the former version with respect to the following as-
pects: Enhanced applicability and flexibility with an adaptive smoothing con-
trol, unified approach by incorporating both smoothing stages within one main
smoothing loop, submesh smoothing instead of worst element smoothing further
facilitating parallelization, and adaptive node relaxation instead of invalid ele-
ment node resetting. Furthermore, from an algorithmic point of view smoothing
control is simplified and the number of parameters is significantly reduced com-
pared to GETMe smoothing. From an application point of view, the resulting
mesh quality is improved whereas memory requirements and smoothing time are
significantly reduced.

Outside the context of mesh smoothing, regularizing transformations also play
a role in classical geometry. For example, the construction of similar figures
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on the sides of a polygon and the resulting symmetric polygons has fascinated
mathematicians for over a century [39]. The most popular theorem in this area
is Napoleon’s Theorem [40] where a regular triangle is constructed within one
transformation step by connecting the centers of equilateral triangles erected on
each side of the initial triangle. Since then, this approach has been generalized
with respect to the number of vertices of the initial polygon, the geometric con-
struction schemes, the resulting symmetries, or the number of transformation
steps [41–44]. One example is the Petr-Douglas-Neumann theorem [45], which
transforms an n-gon within n−2 steps into an equilateral polygon. Another class
of transformation schemes uses an infinite number of iteration steps [44, 46, 47].

In this work, aspects of the finite element method with respect to mesh gen-
eration and improvement will be discussed first in Chapter 1. After giving a brief
overview of the history of the finite element in Section 1.1, aspects of mesh gener-
ation and improvement are discussed in Section 1.2 and Section 1.3, respectively.
In preparation of the definition of the geometric element transformation method
for finite element mesh smoothing, fundamentals of regularizing element transfor-
mations for polygonal elements will be discussed in Chapter 2. Here, the following
polygon transformation will be analyzed. On each side of the polygon, similar
isosceles triangles are erected. After that, the apices of these similar triangles are
connected, which results in a new polygon. In contrast to existing approaches,
the sequence resulting from iteratively applying the same transformation will be
analyzed with respect to the base angle θ ∈ (0, π/2) of the isosceles triangles.
This is done first for triangular elements by means of analysis in Section 2.1,
which also discusses some variants of this transformation.

For polygons with an arbitrary number n ≥ 3 of nodes it will be shown in
Section 2.2 by means of linear algebra that there is a change in the geometry
of limit figures of the sequences of scaled polygons at each characteristic angle
θk = π(2k + 1)/(2n), k ∈ {0, . . . , bn/2c − 1}, leading to a full classification of
possible limit polygons. Whereas the polygons for θ within an interval bounded
by characteristic angles are regular polygons or equilateral stars with possibly
multiple vertices, the polygons for θ = θk, k > 0, are linear combinations of the
neighboring limit polygons. Furthermore, the unscaled polygons degenerate to
their common centroid, become bounded regular n-gons or grow infinitely in the
case of θ being smaller, equal or larger than θ0 = π/(2n).

Following the parameter based approach, more general polygon transforma-
tions based on similar triangles are analyzed in Section 2.3. This is done by using
not only a given base angle θ ∈ (0, π/2), as in the case of isosceles triangles,
but also a subdivision ratio λ ∈ (0, 1) defining the apex perpendicular. Here,
the matrix representation of the linear transformation is derived with respect to
the construction parameters θ and λ. Furthermore, a combined transformation
represented by a circulant Hermitian matrix is defined, which eliminates the rota-
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tional effect of the basic transformation, which is adverse in the mesh smoothing
context. It is shown that the theorems of Napoleon and Petr-Douglas-Neumann
can be naturally deduced by finding the roots of an explicit representation of the
eigenvalues and that there are no other parameter combinations leading to equiv-
alent construction schemes. Additionally, eigenpolygons, their basic properties,
and the decomposition of polygons into eigenpolygons are described. Sequences of
transformed polygons are also analyzed. Explicit representations of the parameter
subdomains are derived, for which the sequence converges to specific eigenpoly-
gons. Furthermore, parameter sets of eigenvalue intersections are extracted, for
which linear combinations of up to three eigenpolygons occur as limit polygons.
This leads to a full classification of similar triangle based transformations with
respect to the construction parameters and the resulting limit polygons.

Regularizing transformations for tetrahedral, hexahedral, pyramidal and pris-
matic finite elements are presented in Chapter 3. Here, the mean ratio quality
criterion is described first in Section 3.1, which provides a general approach to
measure the regularity of polygonal and polyhedral elements. Section 3.2 de-
scribes a regularizing transformation for tetrahedral elements based on shifting
the nodes by the scaled normals of the opposing element faces. A unified regular-
izing transformation scheme for all volumetric element types under consideration
based on dual elements is given in Section 3.3. Properties of all transformations
are analyzed and the regularizing effect is substantiated by numerical tests, which
will also serve as basis for an adaptive choice of transformation parameters in the
context of mesh smoothing.

The geometric element transformation method is discussed in Chapter 4. Af-
ter giving a short overview of its fundamental concepts in Section 4.1, the si-
multaneous approach for mesh smoothing by simultaneously transforming all el-
ements and obtaining new node positions by weighted node averaging is given
in Section 4.2. A description of the sequential approach consisting of iteratively
transforming only the worst quality element is given in Section 4.3. Both ap-
proaches are incorporated in the GETMe smoothing approach as is described in
Section 4.4. Whereas these approaches use static concepts for smoothing control
and a fixed number of elements to be transformed within one smoothing step,
the adaptive approach given in Section 4.5 is based on smoothing a dynamic
subset of elements in the second stage. Furthermore, instead of using a static
concept for repairing inverted elements as in the case of the GETMe approach,
GETMe adaptive incorporates a node-based adaptive relaxation scheme. Imple-
mentational aspects and the use of alternative quality criteria is addressed in
Section 4.6 and Section 4.7, respectively.

An extensive collection of numerical smoothing results is given in Chap-
ter 5 for planar polygonal meshes, polygonal surface meshes, all-tetrahedral,
all-hexahedral and mixed volumetric meshes. Synthetical as well as real world
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models and meshes are considered covering a broad range of aspects and mesh
element numbers. Comparisons with respect to resulting mesh quality, smoothing
runtime, convergence behavior, and memory requirements are not only given for
the described variants of GETMe smoothing, but also for variants of Laplacian
smoothing and a state of the art global optimization-based approach, which are
used for comparison.

Finally, Chapter 6 provides a detailed description of the impact of mesh
smoothing on finite element solution efficiency and simulation accuracy in the
context of the Poisson’s equation. This is demonstrated for a number of com-
paratively large practice-oriented triangular, quadrilateral, tetrahedral and hex-
ahedral meshes, using piecewise linear and quadratic basis functions. Detailed
comparisons are performed with the results of area- or volume-weighted Lapla-
cian smoothing, smart Laplacian smoothing, and a global optimization-based
approach in terms of solution error norms, condition numbers and performance
of system of linear equations solvers. By focusing on the differences in smoothing
runtime behavior, in a novel approach finite element solution errors are derived
after each smoothing iteration. As a result, this approach allows to analyze the
impact of mesh smoothing on mesh quality and finite element solution accuracy
with respect to smoothing time.



Chapter 1

The finite element method and
its mesh creation

In the following, a brief history of the finite element method will be given. The
role of finite element meshes and techniques for mesh generation and mesh im-
provement will be addressed. This is accompanied by a more detailed description
of the mesh smoothing methods used for comparing results in the subsequent
chapters.

1.1 A brief history of the finite element method

The finite element method (FEM) is a versatile numerical technique for com-
puting approximate solutions to boundary value problems incorporating partial
differential equations. Categories of application are equilibrium problems, eigen-
value problems and time-dependent problems originating in the context of struc-
tural analysis, heat transfer, fluid mechanics, electromagnetism, biomechanics,
geomechanics, and acoustics. Key features of the finite element method are [48]:
(a) the continuum is divided into a finite number of parts (elements), the behavior
of which is specified by a finite number of parameters, and (b) the solution of the
complete system as an assembly of its elements. Developing the finite element
method as it is known today was a long evolutionary process in which various
engineers, physicists and mathematicians have provided major contributions over
several decades [49–52].

In World War II Argyris invented the finite element technique in the course of
the stress analysis of the swept back wing of the twin engined Meteor Jet Fighter
[53, 54]. In 1954 and 1955 he published a series of articles, also republished in the
monograph [55], in which the matrix theory of structures is developed for discrete
elements. It is shown that this is only a particular case of the general continuum
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in which stresses and strains have been specified, which leads to the concept
of flexibility and stiffness. Argyris recognized the concept of duality between
equilibrium and compatibility and provides equations relating stresses and strains
to loads and displacements [49]. In the historical overview [50], Clough stated in
2004: “In my opinion, this monograph (...) certainly is the most important work
ever written on the theory of structural analysis, ...”.

Independent of the work of Argyris and from a mathematical point of view
Courant developed in [56] the idea of minimizing a functional using linear approx-
imation over subregions, with the values being specified at discrete points, which
in essence become the node points of a mesh of elements. Courant solved the
Saint-Venant’s torsion of a square hollow box and in the appendix of his paper he
introduced the idea of linear approximation over triangular areas [49]. Courant’s
contribution is based on earlier results by Rayleigh [57] and Ritz [58].

Under the guidance of Turner, Clough started in 1952 to work on in-plane
stiffness matrices for 2D plates for analyzing the vibration properties of delta
wings for Boeing. This resulted in solving plane stress problems by means of
triangular elements whose properties were determined from the equations of elas-
ticity theory as reported in [59]. This publication also addresses the question of
convergence in the case of mesh refinement [49] and introduced the direct stiffness
method for determining finite element properties [51]. Results of further treat-
ments of Clough on the plane elasticity problem are reported in the publication
[60], which also gives the verification that for known geometries and loading the
stresses converged to the corresponding analytic solution [49]. This publication
of Clough also introduced the name finite element method. As an explanation
for his choice, Clough stated in a speech on the early history of the FEM given
in [50]: “On the basis that a deflection analysis done with these new ’pieces’ (or
elements) of the structure is equivalent to the formal integration procedure of
integral calculus, I decided to call the procedure the FEM because it deals with
finite components rather than differential slices”.

The first book on finite elements was published in 1967 by Zienkiewicz. The
revised version [48] of this book is still one of the standard references for FEM.
Being mainly introduced in the context of structural analysis, Zienkiewicz clarified
the connection to function minimization techniques and opened the way to the
analysis of field problems by the FEM [49]. Revealing the broad applicability of
the finite element method, this was also the starting point for a vital research of
the scientific community not only with respect to fields of application but also
with respect to efficiency, effectivity and implementational aspects of the FEM.

This is indicated by Table 1.1, which lists the number of documents pub-
lished over the last decades containing the key words “finite element” in their
title. Results are given for the databases of Google Scholar (http://scholar.
google.de), Scirus (http://www.scirus.com), and Zentralblatt MATH (http:

http://scholar.google.de
http://scholar.google.de
http://www.scirus.com
http://www.zentralblatt-math.org
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Table 1.1: Number of finite element publications

Interval Scholar Scirus ZMATH ZMATH*
1960–1969 965 60 54 59
1970–1979 9,090 1,572 1,513 1,542
1980–1989 15,900 3,763 3,679 7,934
1990–1999 19,500 8,351 5,254 14,257
2000–2009 36,300 19,937 5,959 20,399
2010–2012 16,200 21,169 1,423 4,879

//www.zentralblatt-math.org) as of 2012/10/19. This specific search does not
cover the additional multitude of FEM publications omitting these key words in
their title. This is addressed by the last column of Table 1.1 named ZMATH*
also covering the publications containing the words “finite element” alternatively
in their abstracts or reviews. These numbers impressively show the vivid de-
velopment of the finite element method and its applications for more than 50
years.

1.2 Finite element mesh generation techniques

One step of the finite element method consists of tessellating the simulation do-
main into simple and finite elements, like triangles and quadrilaterals in 2D or
tetrahedra and hexahedra in 3D, in order to define the trial functions approxi-
mating the solution of the boundary value problem to be solved. It is well known
that the finite element solution accuracy and computational efficiency depend on
the size and shape of the elements and hence on the quality of the underlying
mesh [61]. For example, large element angles lead to large errors in the gradi-
ent, whereas small angles can significantly increase the condition of the stiffness
matrix [62, 63] impairing the solution accuracy and the convergence properties
of iterative solvers. Beyond that, requirements on finite element meshes depend
heavily on the type of application [64]. Therefore, in the finite element simulation
process mesh generation techniques play an important role and hence are a main
topic of research. In the following, a brief overview of mesh generation techniques
will be given based on [2–4].

Structured meshes are characterized by the property that all interior nodes
of the mesh have an equal number of adjacent elements. A basic example for
such meshes is a Cartesian grid consist of quadrilateral or hexahedral elements
only. The main idea of all structured mesh generation techniques is to generate
a grid for canonical domains and to map the resulting mesh to a physical domain
defined by its boundary discretization [2]. The generation of structured meshes

http://www.zentralblatt-math.org
http://www.zentralblatt-math.org
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becomes difficult if the complexity of the physical domain increases. Also domain
decomposition techniques can be applied in order to reduce the problem to local
mappings, however, automation of such processes is not straight forward.

In contrast, unstructured meshes allow any number of elements to meet a
single node and therefore provide a significantly greater flexibility in meshing
arbitrarily complex domains. Therefore, these meshes are of greater practical
importance and the following will address common unstructured mesh generation
techniques only.

For simplicial mesh generation, that is meshes consisting entirely of simplices,
the quadtree or octree method [65–67] uses hierarchical tree structures obtained
by recursive subdivision of a square or cube containing the domain or surface
until the desired resolution is reached. On each level, the obtained cells are
classified into outer cells, which can be omitted, irregular cells, where boundary
intersections have to be computed, and inner cells. On the last recursion level,
irregular and inner cells are then meshed into triangles or tetrahedra. To ensure
that element sizes do not change too dramatically, the maximum difference in
subdivision levels between adjacent cells can be limited, hence leading to balanced
trees. Also, subsequent mesh improvement steps are accomplished to increase
mesh quality [68, 69].

In contrast, advancing front techniques progressively build elements inward
starting from the boundary. This iterative technique proceeds by placing new
nodes and the generation of new elements, which are connected to the exist-
ing elements, until the entire domain is meshed [15, 70, 71]. Common steps in
advancing front techniques are: front analysis, internal point creation, element
generation, validation, convergence control, mesh improvement [2]. Due to the
high-quality point distribution, the advancing front method is used in many com-
mercial meshing software packages [4].

Mesh generation by Delaunay triangulation belong to the most popular sim-
plicial mesh generation techniques due to their simplicity, reliability, efficiency
and favorable properties [2, 4, 72, 73]. Common steps in Delaunay-based mesh
generation are: initial triangulation of the bounding box of the domain, boundary
points insertion into the triangulation, original boundary recovery, internal point
creation and insertion, mesh improvement. The triangulation process is based
on the empty sphere criterion [74] stating that any node must not be contained
within the circumsphere of any simplex within the mesh.

One of the remarkable properties of the Delaunay triangulation is its unique-
ness for a non-degenerated set of nodes, i.e. a set of nodes where no three nodes
are on the same line and no four nodes are on the same circle [75]. An essen-
tial property from a finite element application point of view is the fact that the
minimum angle in a Delaunay triangulation is greater than the minimum an-
gle in any other triangulation of the same nodes [75]. Computing the Delaunay
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triangulation of a set of n nodes can be accomplished in O(n log n) as has been
shown in [76]. A modified divide and conquer approach using pre-partitioning was
shown in [77] to run in O(n log log n) expected time while retaining the optimal
O(n log n) worst case complexity. Alternative methods exist, which tetrahedralize
volumetric models by a recursive subdivision approach [78, 79].

Hexahedral meshes are preferred over tetrahedral meshes in specific finite el-
ement and finite volume applications, like for example elastic or elasto-plastic
solid continuum analysis or CFD applications, since more suitable trial functions
can be defined on such tessellations resulting in a higher solution accuracy com-
bined with a lower number of mesh elements [5, 6]. However, depending on the
geometrical complexity of the simulation domain, the generation of good quality
all-hexahedral meshes is in general considerably harder than the generation of
tetrahedral meshes. Hence a variety of hexahedral mesh generators, as described
e.g. in [80–82], are build on subdividing the initial domain into primitives. The
latter can subsequently be meshed using for example sweeping, i.e. by moving a
quadrilateral mesh from a source surface along a given path to a target surface
while generating hexahedral elements [83–85]. Alternative subdomain meshing
techniques can be based on octrees [67, 86, 87], advancing front like approaches
as plastering [88] or Whisker weaving [89, 90]. The latter is based on the con-
cept of the spatial twist continuum, which is the dual of the hexahedral mesh
represented by an arrangement of intersecting surfaces which bisect hexahedral
elements in each direction [4]. Furthermore, specialized algorithms exist for ex-
ample in order to mesh composite domains consisting of heterogeneous materials
with non-manifold region surfaces [11].

Since meshing complex volume models by hexahedra is considerably harder
than by tetrahedra, the achieved degree of generality and automation is still
far from the state obtained in the case of tetrahedral meshing. Therefore, the
usage of hybrid meshes and corresponding mesh generators has been proposed in
order to combine the advantages of tetrahedral and hexahedral elements [7–9]. In
addition, pyramids and prisms serve as transition elements to connect triangular
and quadrilateral element faces. Depending on the application, hybrid meshes
combining other types of elements might be preferred such as tetrahedral meshes
with prismatic boundary layers in computational biofluid dynamic computations
[10].
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1.3 Mesh smoothing

1.3.1 General overview

As has been noted in the previous section, mesh improvement methods are a key
component of the most common mesh generation techniques for the finite element
method since the shape and distribution of the mesh elements have impact on
the trial functions and thus the numerical stability as well as solution accuracy
[1, 2, 61, 63, 91–93]. Furthermore, mesh improvement methods are also applied
in the process of surface reconstruction using scanner data or automated joining
of different meshes [2, 94–98].

The various existing mesh improvement methods can roughly be classified into
two categories: methods that use topological modifications and mesh smoothing
methods preserving mesh topology by applying node relocations only. Typical
topology altering improvement methods refine or coarsen the mesh by element
splitting or merging, node insertion or deletion, local subdivision, and edges or
face swapping [2, 12–14, 99]. In the case of simplicial meshes, these methods
usually try to achieve the Delaunay property for the mesh or to ensure specific
element properties with respect to minimum angle or edge ratios.

Mesh smoothing methods are of particular interest, if mesh interfaces, bound-
aries or even the complete mesh topology has to be preserved like in iterative
solution methods and design optimization algorithms. Furthermore, due to the
specific adjacency structure, topological modifications of hexahedral meshes are
far more complex than in the case of tetrahedral meshes since such modifications
usually propagate along complete sheets. Therefore, improving hexahedral mesh
quality by smoothing is much simpler than improving it by topology altering
operations.

One of the most popular smoothing methods is Laplacian smoothing, where
each node is repeatedly replaced by the arithmetic mean of its edge connected
neighbor nodes [15, 16]. This method is popular due to its simple implementa-
tion, low numerical complexity and fast convergence behavior. However, since
Laplacian smoothing is not specifically geared towards improving element qual-
ity, possible issues of this method are deformation and shrinkage in the case
of surface meshes, occurrence of inverted or invalid elements, and mesh quality
deterioration. In particular, the method, in its basic form, is less suitable for
meshes generated by adaptive octree-based methods [87] and mixed meshes, that
is, meshes consisting of elements of different type like triangles and quadrilaterals
[100].

Therefore, improved methods have been proposed to circumvent these prob-
lems [17, 101]. Amongst these are length weighted Laplacian smoothing, which
uses averaging functions for neighboring nodes and angle based methods [18, 100,
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102] comparing and adjusting angles incident to a node, thus reducing the risk
of generating inverted elements. Alternatively, smart or constrained Laplacian
smoothing incorporate quality aspects by applying node movements only if they
lead to an improvement of local mesh quality with respect to a given metric
[18, 19]. In the case of mixed meshes, significantly better results can be obtained
by using weighted means [19, 102, 103]. A more detailed discussion of Laplacian
smoothing and some of its variants is given in Section 1.3.2.

Whereas geometry-based methods, like Laplacian or angle-based smoothing,
determine new node positions by geometric rules, local optimization techniques
move nodes in order to optimize objective functions based on quality numbers of
the incident elements [104–107]. Such methods effectively prevent the generation
of degenerate or inverted elements [104, 108]. For example, [106] proposes a
smoothing method by relocating interior vertices to the mass centers of their
surrounding hexahedra. As in the case of smart Laplacian smoothing, the solution
of this minimization problem is only applied if quality is improved. A node quality
metric based local optimization method using a combined gradient driven and
simulated annealing technique is presented in [109].

Due to the incorporation of element quality metrics and standard optimiza-
tion techniques, like the conjugate gradient method or linear programming, the
computational costs of local optimization techniques are increased if compared
to geometry-based methods. Therefore, combined methods have been proposed
using variants of Laplacian smoothing as well as local optimization techniques.
Here, local optimization is only applied in the case of elements with a quality
below a given threshold in order to find a balance between quality and computa-
tional effort [18, 19, 110].

Whereas local optimization techniques are well suited in order to efficiently
resolve mesh problems locally, global optimization-based smoothing methods in-
corporating all mesh elements are geared towards effectively improving the overall
mesh quality [20, 21, 111–115]. Due to their holistic approach, global optimiza-
tion techniques result in a superior overall mesh quality. However, depending on
the quality metrics and optimization techniques involved, these methods can be
very demanding in terms of computation time, memory and implementational
complexity. This can be circumvented to some extend by the use of streaming
techniques [116]. A more in-depth description of a global optimization-based
mesh smoothing approach and its main components is given in Section 1.3.3.

Specialized optimization-based methods exist in the case of surface meshes in
order to preserve the given shape and its characteristics like discrete normals and
curvature [117–119]. They are mainly based on using local parameterizations and
modified objective functions. A combined global optimization approach improv-
ing element size as well as shape is presented in [113]. Here, smoothing is driven
by minimizing Riemannian metric non-conformity. Since the objective function
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is not easily differentiable, a brute force approach is used for minimization.
All optimization-based methods have in common that the the proper choice

of quality metrics and objective functions plays a crucial role [22, 23, 120]. For
example, in the case of mixed mesh smoothing, quality metrics have to be appli-
cable and balanced in their behavior for all element types under consideration.
In addition, optimization-specific additional requirements, like differentiability or
practice-oriented requirements like evaluation efficiency, have to be taken into
account. Hence, a lot of effort has been put on finding suitable quality metrics.

Common quality metrics are based on geometric entities like angles, lengths,
surface areas, as well as their aspect ratios [2]. However, in the context of mesh
optimization, algebraic quality metrics are more suitable [22, 23, 121–123]. Fur-
thermore, by a proper choice of the objective function and quality metrics, global
optimization can also be used in order to untangle meshes [124]. In this con-
text [24] provides a more generalized approach to the construction of appropriate
and flexible objective functions with respect to optimization aims by introducing
the target-matrix paradigm. Here, for each sample point of the mesh two ma-
trices are required. One is the Jacobian matrix of the current mesh, the other
a target-matrix representing the desired Jacobian matrix in the optimal mesh.
Usually sample points are given by element nodes and the target matrices are
derived from type dependent reference elements. Using objective functions based
on these matrices allow mesh quality to be defined on a higher conceptual level.
An example for this approach is the mean ratio criterion, for which the definition
is given in Section 3.1. By analyzing two energy functions based on conformal
and isoparametric mappings, this metric has been recently shown in [120] to be
equivalent to the angle-preserving energy. Hence, mesh optimization results in
minimizing the energy.

Due to the rapidly growing complexity of nowadays simulations, there is a
great demand for fast mesh improvement methods providing high quality results.
In this context, the computational effort of global optimization-based methods
may become computationally too expensive. As an alternative, the geometric
element transformation method (GETMe) has been proposed [27–32], which is
also the main subject of this work. Instead of improving element shape based on
solving optimization problems, GETMe achieves mesh improvement by applying
specific geometric element transformations, which successively transform an ar-
bitrary mesh element into its regular counterpart [31, 34–36]. This is combined
with a relaxation and weighted node averaging scheme involving mesh quality.
In doing so GETMe smoothing combines a global-optimization like smoothing
effectivity with a Laplacian smoothing like runtime efficiency.

Further mesh smoothing approaches exist. For example, methods based on
physical models like systems of springs [125], packings of bubbles [126], and solv-
ing a global system derived from local stiffness matrices [114] or statistical ap-
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proaches [127]. In [128] the mesh is considered as a deformable solid. In doing
so, smoothing of the mesh is treated as a matrix problem in finite elements. Al-
ternatively, [129] proposes a method for improving hexahedral meshes by quasi-
statistical modeling of mesh quality parameters and the approach given in [130]
is based on space mapping techniques. In [131] mesh smoothing is conducted by
solving a large nonlinear algebraic system obtained by Laplace-Beltrami equations
for an unstructured mixed element volume mesh. However, solving the system
by using Newton-Krylov methods is a critical task as issues in solver convergence
observed in numerical examples have shown.

There also exist various smoothing methods, which are more intimately con-
nected with the finite element approximation process, such as the a priori-based
approach given in [132]. Here, optimization is based on a measure of the inter-
polation error associated with the finite element model. In contrast, a posteriori
smoothing methods incorporate the information obtained by error estimates [133–
135]. Such adaptive techniques usually apply mesh improvement and refinement
within a finite element iteration scheme. They are particularly well suited for
anisotropic problems or problems with singularities.

Each of the existing methods for mesh improvement faces some distinct prob-
lems. The topology based methods often rely heavily on the insertion of new ele-
ments or the splitting of old ones in order to improve mesh quality. In this case,
the resulting mesh might be comprised of an excessive number of elements or ele-
ments of very small dimensions. Thus, numerical solvers typically used for FEM
computations can be severely affected due to the need for unreasonable comput-
ing power or due to the ill-conditioned numerical models arising when miniscule
elements exist. Furthermore, altering the number of elements makes the mapping
of results in similar models cumbersome. On the other hand smoothing methods
are restricted by the given mesh topology, since adverse topological configurations
prevent smoothing methods from reaching high quality results. Thus it is natural
to develop hybrid methods combining topological modifications, smoothing and
optimization methods as proposed in [18, 19]. In these hybrids, each method can
be used as a preconditioner for the other or iteratively until the desired mesh
quality is achieved.

1.3.2 Laplacian smoothing and its variants

Due to its simplicity and efficiency, one of the most popular smoothing methods
until today is the Laplacian smoothing approach. Let pi denote an arbitrary node
of the mesh and J(i) the index set of all other mesh nodes, which are connected
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to pi by an edge. The new position p′i of pi is derived as

p′i :=
1

|J(i)|
∑
j∈J(i)

pj , (1.1)

where |J(i)| denotes the number of elements in the index set J(i). As can be
seen, p′i is the arithmetic mean of its edge connected nodes [15, 16]. All nodes are
updated according to (1.1) and this is iterated until the maximal node movement
distance maxi |p′i−pi| drops below a given threshold. In the case of a rectangular
grid, this method can be derived by the finite difference approximation of the
Laplace operator, which also justifies its name. Iteratively updating the nodes
in Laplacian smoothing implies that results depend on the order of the nodes.
Furthermore, since no quality or validity criteria are incorporated, mesh quality
can deteriorate, invalid elements can be generated.

A variant is the area- or volume-weighted Laplacian smoothing approach
given in [136]. For an arbitrary mesh element Ej, j ∈ IE, let cj denote its
centroid obtained as the arithmetic mean of all nodes of Ej, and vj the area or
volume of Ej in the 2D or 3D case, respectively. Within one smoothing loop,
each interior node pi is corrected by the movement vector

∆pi :=

∑
j∈J(i) vj(cj − pi)∑

j∈J(i) vj
, (1.2)

where J(i) again denotes the index set of all elements attached to the node pi.
This is repeated until the maximal absolute movement maxi |∆pi| drops a given
threshold. In the current implementation used for comparing results in the sub-
sequent sections, this threshold is given by 1% of the average length of all edges
in the initial mesh. As in the case of Laplacian smoothing by successively updat-
ing all nodes, results of this approach depend on the node order. Furthermore,
due to (1.2) and the geometric termination criterion, area- or volume-weighted
Laplace does not involve the quality measures and thus cannot guarantee quality
improvements and the validity of the resulting mesh.

These issues are addressed by the smart Laplacian smoothing approach given
in [18]. It is based on the classical Laplacian smoothing scheme, where the new
position of an interior node is derived as the arithmetic mean of all edge-connected
nodes. However, this new node position is only set, if this leads to an increase of
the arithmetic mean of quality values of all attached elements. Evaluating this
local mean quality values before and after node movement results in a significantly
increased computational effort.

To ensure that the results of smart Laplacian smoothing are independent
of the node order, which is relevant if run in parallel, the following additional
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modification is also applied. Quality improving node updates are not conducted
immediately, but stored separately until all nodes have been tested. After that,
all relevant node updates are applied. This may lead to the generation of in-
valid elements. Therefore nodes with incident invalid elements are reset to their
previous position. This is iterated until no invalid element remains in the mesh.
Smoothing is terminated if the improvement of arithmetic mean of all element
quality numbers drops below a given tolerance.

1.3.3 Global optimization

Whereas Laplacian smoothing variants are easy to implement and comparably
fast, the resulting mesh quality generally cannot compete with that obtained by
global optimization-based methods [19, 20]. These methods improve overall mesh
quality by minimizing an objective function incorporating quality numbers of all
mesh elements. Optimization is conducted by using standard methods, like the
conjugate gradient approach, Newton’s algorithm or active set algorithm.

As a representative of this class, the shape improvement wrapper of the mesh
quality improvement toolkit Mesquite [137] is described in detail in the follow-
ing. This state of the art global optimization-based approach will also serve as
quality benchmark in subsequent examples. Smoothing is based on minimizing
an objective function representing the arithmetic mean of the quality all mesh
elements and minimization is accomplished by using a feasible Newton approach.
In the following, the key components of the instruction queue of Mesquite used
by the shape improvement wrapper are described in more detail mainly following
the description given in [21]:

Quality metric: The quality metric used by the shape improvement wrapper
is based on the inverse of the mean ratio quality criterion described in Section 3.1.
For each element E of the mesh the mean ratio quality number q(E) represents the
deviation of an arbitrary valid element from its regular counterpart. In addition
to the quality metric value, the analytic gradient and Hessian information is also
provided, which is required by the optimization algorithm.

Objective function: While the quality metric provides a way to evaluate the
properties of individual mesh entities, the objective function provides a way of
combining those values into a single number for the entire mesh. In addition, the
gradient and Hessian with respect to the vertex positions are determined. Fol-
lowing a global optimization based approach, in the shape improvement wrapper
of Mesquite the arithmetic mean of the inverse of the mean ratio number q(Ei)
of all mesh elements Ei is used as an objective function, i.e.

nE∑
i=1

1

q(Ei)
→ min (1.3)
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is determined, where nE denotes the number of all mesh elements.
Quality improver: This method takes as input the objective function and

makes extensive use of the gradient and Hessian information provided therein. In
addition a termination criterion has to be provided to stop iterating over the mesh.
As vertex mover, the feasible Newton Algorithm is applied. Newton’s Method
minimizes a quadratic approximation of a non-linear objective function and is
known to converge super-linearly near a non-singular local minimum. There-
fore, mesh-optimization problems that are performed within the neighborhood of
the minimum are favorable for this approach. The algorithm requires the objec-
tive function value, gradient, and Hessian. The latter is sparse for the objective
function described before, which allows all vertex positions to be improved si-
multaneously. As a draw back, mesh configurations not in the vicinity of a local
minimum may require a significant computational effort in order to be smoothed,
as will be shown in by distorted mesh examples given in Chapter 5.

Termination criterion: This criterion controls the termination of the smooth-
ing process. In case of the the shape improvement wrapper termination is based
on the L2-Norm of the gradient.

Additional components involved are the quality assessor, which evaluates the
quality metric for all mesh elements and accumulates statistical information, and
a mesh untangling preprocessing step in order to ensure mesh validity, which is
a condition in the definition of the mean ratio quality criterion.



Chapter 2

Regularizing transformations for
polygonal finite elements

Regularizing element transformations are the driving force behind the geomet-
ric element transformation method for finite element mesh smoothing, which is
presented later in this work. These transformations represent simple geomet-
ric constructions, which, if applied iteratively to single mesh elements, lead to
more regular, hence better quality elements. In this chapter, regularizing trans-
formations are introduced and analyzed for planar polygonal elements. First,
elementary proofs based on the methods of analysis are given for triangles in Sec-
tion 2.1. Also providing a deep insight into the process of regularization, such an
approach is not straightforward for polygons with an arbitrary number of nodes.
Therefore, an additional study of the general case with the means of linear algebra
is presented in the Sections 2.2 and 2.3. This will result in a full classification of
the given regularizing transformations for planar polygons with respect to their
construction parameters and the resulting limit polygons.

2.1 Iterative geometric triangle transformations

An initial triangle is transformed into a new triangle by erecting isosceles triangles
on each of the sides of the initial one. The apices of the erected triangles are
the vertices of the resulting triangle. Repeating this transformation leads to a
sequence of triangles. The shapes of these triangles converge to a characteristic
shape that does not depend on the choice of the initial triangle but on the shape
of the erected isosceles triangles. In this section it is explicitly shown that this
characteristic shape is approximated in every transformation step. Moreover,
there is an upper bound for the speed of convergence.

37
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2.1.1 Introduction and notation

A well-known theorem in geometry of triangles is the following: If equilateral
triangles are erected externally on the sides of any triangle, their centers form an
equilateral triangle. This theorem can be found in [138] and is often attributed
to Napoleon Bonaparte, although it is questionable whether he knew enough
geometry for this achievement, see [139].

There are several generalizations of this theorem. One is the following, which
can be found in [139, 140]: If similar triangles PCB, CQA and BAR are erected
externally on the sides of any triangle ABC, their circumcenters form a triangle
similar to the three triangles. I. M. Yaglom proves in [141] the following gen-
eralization of the theorem above: On the sides of an arbitrary triangle ABC,
exterior to it, isosceles triangles BCA1, ACB1, ABC1 are erected with angles at
the vertices A1, B1 and C1, respectively equal to α, β and γ. If α + β + γ = 2π,
then the angles of the triangle A1B1C1 are equal to α/2, β/2 and γ/2.

Note that the case α = β = γ = 2π/3 is just the same as taking the centers
of equilateral triangles. It is easy to check that these two generalizations are
equivalent by decomposing the triangle ABC in three isosceles triangles that have
a common vertex in the circumcenter M of ABC (note that ∠BMC = 2·∠BAC).

Considering the formulation of Yaglom, the condition α+β+γ = 2π is dropped
and the transformation is repeated to obtain an infinite sequence of triangles. In
doing so, the angles α, β and γ stay fixed. Two cases are analyzed. In the
first case, all three angles are the same. In the second case, two angles coincide
and the third equals π (hence, the corresponding erected triangle is degenerate).
Equivalently to the second case, one may erect only two similar isosceles triangles
and take the center of remaining side as the third vertex of the new triangle. It
is shown that in both cases, the shape of the triangles converge to the shape of
the triangle one would get if the condition α+ β+ γ = 2π were satisfied. That is
an equilateral triangle in the first case and a rectangular isosceles triangle in the
second case.

In this section ∆0 always denotes the initial triangle with vertices A0, B0

and C0 (ordered counterclockwise). For n ∈ N the points An+1, Bn+1 and Cn+1

are defined recursively such that AnCnBn+1, BnAnCn+1, CnBnAn+1 are isosceles
triangles. The triangle with vertices An, Bn and Cn is denoted by ∆n. The side-
lengths of ∆n are denoted by xn := BnCn, yn := CnAn and zn := AnBn and the
angles are denoted by αn := ∠BnAnCn, βn := ∠CnBnAn and γn := ∠AnCnBn.

The triangles do not have to be non-degenerate. The degenerate case where
all three points are pairwise distinct but on a common line will be used to show
that some given bounds are sharp. In the other degenerate cases there have to
be vertices of the triangle that coincide and hence there has to be a side with
length 0. Although such a side has no direction, this does not cause any problems
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for the iteration since in this case, the erected triangle always degenerates to a
single point. Thus, the new vertex coincides with the two old ones. As a direct
consequence, the degenerate case where all three points coincide is without any
interest since such a triangle is invariant under all transformations introduced
above. Therefore, the case A0 = B0 = C0 is excluded from the following study.

2.1.2 Equilateral case

In this section, the triangles erected externally on the sides of ∆n are similar to
each other. More precisely, there is an angle 0 < θ < π/2 such that ∠An+1BnCn =
∠BnCnAn+1 = ∠Bn+1CnAn = ∠CnAnBn+1 = ∠Cn+1AnBn = ∠AnBnCn+1 = θ.
The so erected triangles are also known as Kiepert triangles [142].

An

Bn

Cn

Cn+1

An+1

Bn+1
P

θ

θ

θ

θ

θ

θ
αn

βn

γn

Figure 2.1: Transformation with similar isosceles externally erected triangles

Remark 2.1. The lines AnAn+1, BnBn+1 and CnCn+1 meet in a common point P ,
see [142] for a proof. Note that this point is inside the triangle ∆n if and only if
all angles of ∆n are < π − θ.

It is first shown how the side-lengths of the triangle ∆n+1 can be expressed
in terms of the preceding triangle. Regarding the transformation there is no
distinction between xn, yn and zn. Therefore, the claims are usually stated for
only one instance, but in the following the analogue statements will be used as
well.
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Lemma 2.1. Let En denote the area of ∆n. Then the following identities hold:

x2
n+1 =

1

2
tan2 θ · (y2

n + z2
n) +

1

4
(1− tan2 θ) · x2

n + 2 tan θ · En (2.1)

x2
n+1 − y2

n+1 =
1

4

(
1− 3 tan2 θ

)
(x2

n − y2
n) (2.2)

Proof. Note that AnCn+1 = 1/(2 cos θ) · zn and AnBn+1 = 1/(2 cos θ) · yn. Hence,
applying the law of cosines to the triangle AnCn+1Bn+1 yields

x2
n+1 =

1

4 cos2 θ
· y2

n +
1

4 cos2 θ
· z2

n − 2 · 1

4 cos2 θ
· ynzn cos(2θ + αn)

=
1

4 cos2 θ

(
y2
n + z2

n

)
− cos(2θ + αn)

2 cos2 θ
· ynzn .

Using the addition theorems for the cosine and the sine one obtains cos(2θ+αn) =
(cos2 θ−sin2 θ) cosαn−2 sin θ cos θ sinαn. Applying this and En = (sinαn/2)ynzn
to the identity above leads to

x2
n+1 =

1

4 cos2 θ

(
y2
n + z2

n

)
− (1− tan2 θ)

2
cosαn · ynzn + tan θ sinαn · ynzn

=
1

4 cos2 θ

(
y2
n + z2

n

)
− 1− tan2 θ

2
· y

2
n + z2

n − x2
n

2
+ 2 tan θ · En

=

(
1− cos2 θ

4 cos2 θ
+

1

4
tan2 θ

)
· (y2

n + z2
n) +

1

4
(1− tan2 θ) · x2

n + 2 tan θ · En

=
1

2
tan2 θ · (y2

n + z2
n) +

1

4
(1− tan2 θ) · x2

n + 2 tan θ · En

The second equation is a direct consequence of the first one together with its
analogue for yn+1.

Corollary 2.1. Let xn ≥ yn. Then

xn+1 ≥ yn+1 if θ ≤ π

6
and

xn+1 ≤ yn+1 if θ ≥ π

6
,

where equality on the left-hand sides hold if and only if θ = π/6 or xn = yn.

Proof. This is a direct consequence of Equation (2.2) since tan2(π/6) = 1/3.

Remark 2.2. It may be assumed that in the initial triangle x0 is the greatest side
and z0 is the smallest. If θ < π/6, the corollary above implies that xn is the
greatest side of ∆n and zn is the smallest one for every n. If θ > π/6, things are
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different. For even n, it holds that xn ≥ yn ≥ zn, whereas xn ≤ yn ≤ zn holds for
odd n. In the special case θ = π/6, the triangle ∆n is equilateral for every n > 0.
This observation is a motivation to consider the two subsequences (∆2n)n∈N and
(∆2n+1)n∈N sometimes separately.

To study the behavior of corresponding side-lengths during the iteration, some
estimates are stated. First, note the following two simple inequations, which will
be used several times.

Lemma 2.2. Let r and s be two positive real numbers. Then r2 + s2 ≥ 1
2
(r+ s)2

and r2 + s2 ≥ 2rs.

Proof. Since (r− s)2 is positive, one obtains 4r2 + 4s2 ≥ (4r2− (r− s)2) + (4s2−
(s − r)2) = (3r − s)(r + s) + (3s − r)(s + r) = (2r + 2s)(r + s). Subtracting
2(r2 + s2) on both sides implies the second claim.

Lemma 2.3. For the corresponding side-lengths of subsequent triangles, the fol-
lowing lower bounds hold:

xn+1 ≥
1

2
xn (2.3)

x2
n+2 ≥

1

16

(
9 tan4 θ + 1

)
· x2

n (2.4)

Moreover, if ∆n is non-degenerate, both bounds are strict.

Proof. By Lemma 2.2 one obtains y2
n + z2

n ≥ 1
2
(yn + zn)2 ≥ 1

2
x2
n. Applying this to

Equation (2.1) yields

x2
n+1 ≥

1

4
tan2 θ · x2

n +
1

4
(1− tan2 θ) · x2

n + 2 tan θ · En ≥
1

4
x2
n .

Now the first inequality follows directly. In the last step 2 tan θ ·En is subtracted.
Since tan θ > 0, equality cannot occur if ∆n is non-degenerate.
Using the analogue of Equation (2.1) provides the following identity:

y2
n+1 + z2

n+1 =
tan2 θ

2

(
2x2

n + y2
n + z2

n

)
+

1− tan2 θ

4

(
y2
n + z2

n

)
+ 4 tan θ · En

= tan2 θ · x2
n +

1 + tan2 θ

4

(
y2
n + z2

n

)
+ 4 tan θ · En
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Applying this to the analogue of Equation (2.1) for x2
n+2 results in

x2
n+2 ≥

1

2
tan2 θ

(
tan2 θ · x2

n +
1 + tan2 θ

4

(
y2
n + z2

n

)
+ 4 tan θ · En

)
+

1− tan2 θ

4

(
tan2 θ

2

(
y2
n + z2

n

)
+

1− tan2 θ

4
· x2

n + 2 tan θ · En
)

=
tan2 θ

4

(
y2
n + z2

n

)
+

8 tan4 θ + (1− tan2 θ)2

16
· x2

n +
3 tan3 θ + tan θ

2
· En

≥ tan2 θ

8
· x2

n +
9 tan4 θ − 2 tan2 θ + 1

16
· x2

n

=
9

16
tan4 θ · x2

n +
1

16
x2
n

In the last but one step (3 tan3 θ + tan θ)En/2 was subtracted. Since 3 tan3 θ +
tan θ > 0, equality cannot occur if ∆n is non-degenerate.

The first lower bound given in the previous lemma is sharp as can be checked
by considering the degenerate case αn = π and yn = zn. The second lower bound
is sharp, too. This can be seen by considering again the degenerate case αn = π
and yn = zn while θ tends to 0. As a consequence of these two estimates, the
following theorems are stated.

Theorem 2.1. For n ≥ 1, the side-length of ∆n are all > 0.

Proof. It may be assumed that ∆n−1 is degenerate since otherwise the claim
follows directly from Equation (2.3).

Since ∆0 has at least one side of length > 0, Equation 2.3 implies that every
triangle has at least one side of length > 0. Suppose xn = 0. Then Equation (2.3)
yields xn−1 = 0. Thus, En−1 = 0 and consequently, x2

n = tan2 θ · (y2
n−1 + z2

n−1)/2
by Equation (2.1). It holds that y2

n−1 + z2
n−1 > 0 since otherwise all vertices of

∆n−1 would coincide. With tan2 θ > 0 follows xn > 0, a contradiction.

Theorem 2.2.

If 0 < θ <
π

6
, then lim

n→∞
xn = 0.

If
π

6
< θ <

π

2
, then lim

n→∞
xn =∞.

If θ =
π

6
, then xn = x1 ∀n > 0.

Proof. First let 0 < θ < π/6. Assume x0 ≥ y0 ≥ z0. Then xn ≥ yn ≥ zn for every
n by Remark 2.2. Hence, limn→∞ xn = 0 implies limn→∞ yn = limn→∞ zn = 0.
Thus, it suffices to prove the claim for the case x0 ≥ y0 ≥ z0. Since xn ≥ yn ≥ zn,
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it holds that αn ≥ βn ≥ γn due to the law of sines. This implies γn ≤ π/6 and
hence, sin γn ≤

√
3/2. With En = (sin γn/2)xnyn, Equation (2.1) implies

x2
n+1 ≤

1

2
tan2 θ ·

(
y2
n + z2

n

)
+

1

4
(1− tan2 θ) · x2

n +

√
3

2
tan θ · xnyn

≤ (
1

4
+

3

4
tan2 θ +

√
3

2
tan θ) · x2

n .

Now θ < π/6 implies tan θ <
√

3/3 and consequently 1
4

+ 3
4

tan2 θ+
√

3
2

tan θ < 1.
The claim follows. Now let π/6 < θ < π/2. Assume x0 ≤ y0 ≤ z0. Then
x2n ≤ y2n ≤ z2n for every n by Remark 2.2. Hence, limn→∞ x2n = ∞ implies
limn→∞ y2n = limn→∞ z2n = ∞. Thus, to prove limn→∞ x2n = ∞ it suffices to
consider the case x0 ≤ y0 ≤ z0. Let n be even. Since xn ≤ yn ≤ zn, one
obtains αn ≤ βn ≤ γn. This implies γn ≥ π

6
and hence, sin γn ≥

√
3/2. With

En = (sin γn/2)xnyn one obtains by Equation (2.1)

z2
n+1 ≥

1

2
tan2 θ ·

(
x2
n + y2

n

)
+

1

4
(1− tan2 θ) · z2

n +

√
3

2
tan θ · xnyn

≥ (
1

4
+

3

4
tan2 θ +

√
3

2
tan θ) · x2

n .

Now θ < π/6 implies tan θ <
√

3/3 and consequently κ := 1
4
+ 3

4
tan2 θ+

√
3

2
tan θ >

1. Since zn+1 ≤ yn+1 ≤ xn+1 by Remark 2.2, it can be concluded analogously
that x2

n+2 ≥ κz2
n+1. Thus, x2

n+2 ≥ κ2x2
n whenever n is even and consequently

limn→∞ x2n = ∞. By analogous reasons one obtains limn→∞ x2n+1 = ∞ and the
claim follows.

In the last case, one concludes by Corollary 2.1 that for every n > 0 the trian-
gle ∆n is equilateral. Furthermore, tan θ =

√
3/3. Thus, for n > 0, Equation (2.1)

yields x2
n+1 = x2

n.

Due to the unbounded growth of the triangles for θ > π/6 and the fact that
for θ < π/6, the triangle sequence collapses to a single point, the only reasonable
case to study seems to be the case where θ equals π/6. However, since only the
shape of the triangle is of interest, the size of the triangle does not matter.

For further estimates another two simple inequations are stated:

Lemma 2.4. Let r, s and t be positive real numbers all smaller than 1. Then
1− s2 < r(1− t2) implies (1− s) < r(1− t).

Proof. It follows 1−s2 < 1− t2 and therefore s > t. Thus, (1−s) = (1−s2)/(1+
s) < r(1− t2)/(1 + s) < r(1− t2)/(1 + t) < r(1− t).
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The following general proposition applies separately to the two triangle se-
quences, i. e. the one with the even and the one with the odd indices. As in
Remark 2.2 the inequation x0 ≥ y0 is assumed for the following proposition.

Proposition 2.1. Let x0 > y0. Then for every angle θ, there is a constant
0 ≤ κ < 1 such that

0 ≤ 1− yn+2

xn+2

≤ κ

(
1− yn

xn

)
,

where equality holds if and only if θ = π/6 or yn = xn.

Proof. First note that for n ≥ 1, Theorem 2.1 states xn > 0. Furthermore, since
x0 ≥ y0 and the case A0 = B0 = C0 is excluded, one obtains x0 > 0.

Equation (2.2) provides

x2
n+2 − y2

n+2 =

(
1

4
− 3

4
tan2 θ

)2

· (x2
n − y2

n)

and hence, 1− y2
n+2

x2
n+2

=
(1− 3 tan2 θ)2

16
· x2

n

x2
n+2

(
1− y2

n

x2
n

)
.

Thus, one may assume xn 6= yn since otherwise one is done. Applying Inequation
2.4 yields

1− y2
n+2

x2
n+2

≤ (1− 3 tan2 θ)
2

1 + 9 tan4 θ

(
1− y2

n

x2
n

)
.

Since 0 ≤ (1−3 tan2 θ)2 < 1+9 tan4 θ the claim follows for κ := (1−3 tan2 θ)2/(1+
9 tan4 θ) by Lemma 2.4. Note that κ = 0 if and only if θ = π/6.

For θ ≤ π/4, the ratio of side-lengths tends to 1 in every step of iteration.
In other the function n 7→ 1−min{xn, yn}/max{xn, yn} is strictly decreasing as
long as the values differ from 0. Note that for θ > π/6, the role of the smaller
side-length alternates.

Proposition 2.2. Let x0 > y0 and θ 6= π/6. Then there is a positive constant
κ < 1 that only depends on θ such that the following holds:

0 < 1− yn+1

xn+1

≤ κ

(
1− yn

xn

)
if θ <

π

6

0 < 1− xn+1

yn+1

≤ κ

(
1− yn

xn

)
if
π

6
< θ ≤ π

4
and n even

0 < 1− yn+1

xn+1

≤ κ

(
1− xn

yn

)
if
π

6
< θ ≤ π

4
and n odd
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Proof. First note that xn > 0 and yn > 0 for n ≥ 1 by Theorem 2.1. Moreover,
x0 > 0 since x0 ≥ y0 and the case A0 = B0 = C0 is excluded.

Let ω := 1− 3 tan2 θ. First assume θ < π/6. Then xn > yn by Corollary 2.1.
Furthermore, 0 < tan2 θ < 1/3 and therefore 0 < ω < 1. Inequation (2.3) implies
xn ≤ 2xn+1. Hence, dividing both sides of Equation (2.2) by x2

n+1 provides

1− y2
n+1

x2
n+1

=
ω

4
· x2

n

x2
n+1

(
1− y2

n

x2
n

)
≤ ω

(
1− y2

n

x2
n

)
.

Now the claim follows from Lemma 2.4 by setting κ := ω.
For θ > π

6
Corollary 2.1 implies that xn > yn if n is even and yn > xn

otherwise. The following is restricted to the case where n is even. The other case
can be obtained by exchanging xn with yn, xn+1 with yn+1 and z0 with z1. Note
that ω < 0 for θ > π

6
.

Assuming π
6
< θ < π

4
implies tan2 θ ≤ 1. Hence, Equation (2.1) yields y2

n+1 ≥
1
2
(x2

n + z2
n) tan2 θ. Furthermore, tan2 θ ≤ 1 implies −ω ≤ 2 tan2 θ. Dividing both

sides of Equation (2.2) by −y2
n+1 results in

1− x2
n+1

y2
n+1

=
−ω
4
· x

2
n

y2
n+1

(
1− y2

n

x2
n

)
≤ tan2 θ

2
· 2x2

n

(x2
n + z2

n) tan2 θ

(
1− y2

n

x2
n

)
=

x2
n

x2
n + z2

n

(
1− y2

n

x2
n

)
.

Now set ε := min{1, ( z0
x0

)2}. Then Proposition 2.1 together with induction implies

z2
n ≥ εx2

n. The claim follows for κ := 1
1+ε

by using Lemma 2.4.

Remark 2.3. For θ > π/4 and xn > yn, it is possible that 1− xn+1/yn+1 exceeds
1 − yn/xn, especially if θ is close to π/2. However, in this situation there is
another observation one can make: While θ tends to π/2, the angle α2n tends
to α0 for every n ∈ N. Analogously, limθ→π/2 β2n = β0 and limθ→π/2 γ2n = γ0.
Hence, the shape of ∆2 tends to the shape of ∆0. On the other hand limθ→π/2 x1 =
limθ→π/2 y1 = limθ→π/2 z1 =∞ as long as ∆0 is non-degenerate. Thus, one cannot
speak of a limit triangle.

To avoid the enormous growth of the triangles, one can dilate each trans-
formed triangle after the iteration with the reciprocal of the largest side-length.
Equivalently, one can apply this dilation before the step of iteration. By doing so,
∆1 converges pointwise while θ tends to π/2 as long as one takes a fixed center
for the dilations. Thus, one obtains a limit triangle called ∆′1. Repeating this
process leads to two sequences of pairwise similar triangle ∆′2n and ∆′2n+1. The
triangles ∆0 and ∆′1 do not have to be similar.



46 CHAPTER 2. TRANSFORMATIONS FOR POLYGONS

Clearly, while θ tends to π/2, the factor of the dilation applied to ∆0 tends
to 0. Thus, the vertices A′1, B′1 and C ′1 of ∆′1 lie on the lines through the dilation
center that are perpendicular to one of the sides of ∆0. Moreover, the proportions
of the distances from the dilation center to A′1, B′1, C ′1 match the proportions of z1,
y1, x1. Hence, a triangle similar to ∆′1 can be obtained by taking three concurrent
rays r0, r1, r2 such that r0 and r1 span the angle 2α0, r0 and r2 span the angle
2β0 and r1 and r2 span the angle 2γ0. Taking the points on r0, r1, r2 at distance
z0, y0, x0, respectively, to the intersection of the three rays provides a triangle
similar to ∆′1.

Since ∆′2 is similar to ∆0 again, the shape of ∆′1 can be seen as some kind of
dual shape to the shape of ∆0.

The following theorem represents the main result of this section, namely,
regarding only the shape of the triangles, ∆n tends to an equilateral triangle for
n→∞.

Theorem 2.3. For every initial triangle ∆0 and every angle 0 < θ < π
2
, the

following two limits hold:

lim
n→∞

xn
yn

= 1

lim
n→∞

αn =
π

3

Proof. The first limit is a direct consequence of Proposition 2.1. The second limit
follows by the first together with the law of sines.

This section is concluded by two theorems concerning the position and the
orientation of the triangles.

Theorem 2.4. For every n > 0, the centroid of ∆n coincides with the centroid
of ∆0.

Proof. Consider the Euclidean plane as vector space. For n ∈ N, let an, bn
and cn be the vectors representing the points An, Bn and Cn, respectively. Let
δ be the linear transformation that rotates the Euclidean plane by π/2. Then
an+1 = 1

2
(bn+cn)+(1

2
tan θ(bn−cn))δ. Since δ is linear, this implies an+1 +bn+1 +

cn+1 = an+ bn+ cn. Thus, the centroid of ∆n, defined as 1
3
(an+ bn+ cn) coincides

with the one of ∆n+1. The claim follows by induction.

Theorem 2.5. For every n > 0, the triangle ∆n is non-degenerate and counter-
clockwise oriented.

Proof. Assume that ∆n is non-degenerate and counterclockwise oriented. By
symmetric reasons one may assume xn ≥ yn ≥ zn. Hence, αn ≥ βn ≥ γn by the
law of sines and therefore βn ≤ π/2 and γn ≤ π/2.
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Let A′n, B′n and C ′n denote the centers of BnCn, CnAn and AnBn, respec-
tively. Since the triangle A′nCnB

′
n is similar to ∆n, one obtains ∠CnA′nB

′
n = βn.

On the other hand, let l be the perpendicular bisector of the side CnAn, i. e.
the line through B′n and Bn+1. Since xn ≥ zn, the line l intersects xn in
a point S. It follows ∠CnSBn+1 = π/2 − γn. Thus, min{βn, π/2 − γn} ≤
∠CnA′nBn+1 ≤ max{βn, π/2 − γn} and therefore 0 < ∠CnA′nBn+1 < π/2. Anal-
ogously, 0 < ∠Cn+1A

′
nBn < π/2. This implies that the angles ∠Cn+1A

′
nAn+1

and ∠An+1A
′
nBn+1 are greater than π/2 and smaller than π and consequently,

∠Bn+1A
′
nCn+1 < π. It follows that A′n is inside the triangle ∆n+1 and the ∆n+1

is counterclockwise oriented since ∠An+1A
′
nBn+1 < π. Now the claim follows by

induction.

2.1.3 Rectangular isosceles case

As in the previous section, the points Bn+1 and Cn+1 are the apices of similar
isosceles triangles erected to the outside of ∆n over the edges yn and zn, respec-
tively. More precisely, there is an angle 0 < θ < π/2 such that ∠Bn+1CnAn =
∠CnAnBn+1 = ∠Cn+1AnBn = ∠AnBnCn+1 = θ. In contrast to the previous
section, the point An+1 is the center of BnCn (or, equivalently, the apex of a
degenerate isosceles triangle with angle π).

An

Bn

Cn

Cn+1

An+1

Bn+1
C ′

n

θ

θ

θ

θ
αn

βn

γn

αn

Figure 2.2: Transformation with two similar isosceles externally erected triangles
and one midpoint of a side

Again, equations for the side-lengths of the triangle ∆n+1 in terms of ∆n are
given first. Regarding the transformation there is no distinction between yn and
zn except for the orientation. Therefore the claims are usually stated for only one
instance, but the analogue statements will be used as well in the following.
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Lemma 2.5. Let En be the area of ∆n. Then the following identities hold:

x2
n+1 =

1

2
tan2 θ · (y2

n + z2
n) +

1

4
(1− tan2 θ) · x2

n + 2 tan θ · En (2.1)

y2
n+1 =

1

4
· y2

n +
1

4
tan2 θ · z2

n + tan θ · En (2.5)

Proof. The first equation is obtain in precisely the same way as in the proof of
Lemma 2.1.

Let C ′n be the center of AnBn. Then Cn+1C ′n = 1
2

tan θ ·zn and An+1C ′n = 1
2
·yn.

Applying the law of cosines to the triangle An+1C
′
nCn+1 (possibly degenerate for

αn = π
2

and oriented clockwise for αn >
π
2
) yields

y2
n+1 =

1

4
· y2

n +
1

4
tan2 θ · z2

n − 2 · 1

4
tan θ · ynzn cos(

π

2
+ βn + γn).

With cos(π
2

+ βn + γn) = sin(−βn − γn) = sin(αn − π
2
) = − sin(αn) and En =

1
2

sinαn · ynzn, the second identity follows.

The following identities are immediate consequences of the previous lemma.

y2
n+1 − z2

n+1 =
1

4

(
1− tan2 θ

)
·
(
y2
n − z2

n

)
(2.6)

y2
n+1 + z2

n+1 =
1

4

(
1 + tan2 θ

)
·
(
y2
n + z2

n

)
+ 2 tan θ · En (2.7)

x2
n+1 − y2

n+1 − z2
n+1 =

1

4

(
1− tan2 θ

)
·
(
x2
n − y2

n + z2
n

)
(2.8)

Corollary 2.2. Let yn ≥ zn. Then

yn+1 ≥ zn+1 if θ ≤ π

4
and

yn+1 ≤ zn+1 if θ ≥ π

4
,

where equality on the left-hand side holds if and only if θ = π
4

or yn = zn.

Proof. This is a direct consequence of Equation (2.6) since tan(π/4) = 1.

Since An+1 is obtained in a different way than Bn+1 and Cn+1, there is no
corresponding condition that involves xn and xn+1. The next step is to give lower
bounds for the side-lengths after two steps of iteration.

Lemma 2.6. For the corresponding side-lengths of subsequent triangles, the fol-
lowing lower bounds hold:

x2
n+2 ≥

1

16

(
1 + tan4 θ

)
x2
n (2.9)

y2
n+2 ≥

1

16

(
1 + tan4 θ

)
y2
n (2.10)
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Proof. Applying Equation (2.7) and Equation (2.1) to the analogue of Equa-
tion (2.1) for x2

n+2 yields

x2
n+2 ≥

tan2 θ

2

(
1 + tan2 θ

4
·
(
y2
n + z2

n

)
+ 2 tan θ · En

)
+

1− tan2 θ

4

(
tan2 θ

2
· (y2

n + z2
n) +

1− tan2 θ

4
· x2

n + 2 tan θ · En
)

=
tan2 θ

4
·
(
y2
n + z2

n

)
+

(1− tan2 θ)2

16
· x2

n +
tan θ + tan3 θ

2
· En

Now Lemma 2.2 implies y2
n + z2

n ≥ (yn + zn)2/2 ≥ x2
n/2 and thus,

x2
n+2 ≥

tan2 θ

8
· x2

n +
1− 2 tan2 θ + tan4 θ

16
· x2

n

=
1

16
x2
n +

1

16
tan4 θ · x2

n .

Using Equation (2.5) repeatedly yields

y2
n+2 ≥

1

4
y2
n+1 +

1

4
tan2 θ · z2

n+1

≥ 1

16
y2
n +

1

8
tan2 θ · z2

n+1 +
1

16
tan4 θ · y2

n

≥ 1

16
y2
n +

1

16
tan4 θ · y2

n .

As in the previous section, the lemma above motivates to consider the sequence
of triangle as two separated sequences.

Theorem 2.6. For n ≥ 1, the side-length of ∆n are all > 0.

Proof. The side-length xn does not depend on An and hence, for a given triangle
∆n−1 and a given angle θ, the side-length xn is just the same as in the previous
section. Thus, xn > 0 by Theorem 2.1.

For yn and zn, one may assume that ∆n−1 is degenerate since otherwise the
claim follows directly from Equation (2.5).

Since ∆0 has at least two sides of length > 0, Equation (2.5) implies y1 > 0 and
analogously, z1 > 0. Now the claim follows by induction using Equation (2.5).

In the following the ratio of corresponding side-lengths are studied.
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Proposition 2.3. Let y0 ≥ z0. Then for every angle 0 < θ < π/2, there is a
constant 0 ≤ κ < 1 such that

0 ≤ 1− zn+2

yn+2

≤ κ

(
1− zn

yn

)
,

where equality holds if and only θ = π/4 or yn = zn.

Proof. Note that yn > 0 for n ≥ 1 by Theorem 2.6. Moreover, y0 > 0 since
otherwise z0 = y0 = 0 and hence, A0 = B0 = C0.

Equation (2.6) provides

y2
n+2 − z2

n+2 =

(
1

4
− 1

4
tan2 θ

)2

· (y2
n − z2

n)

and hence, 1− z2
n+2

y2
n+2

=
(1− tan2 θ)

2

16
· y2

n

y2
n+2

(
1− z2

n

y2
n

)
One may assume yn 6= zn since otherwise one is done. Applying Inequation 2.10
yields

1− z2
n+2

y2
n+2

≤ (1− tan2 θ)
2

1 + tan4 θ

(
1− z2

n

y2
n

)
.

Since 0 ≤ (1− tan2 θ)2 < 1 + tan4 θ the claim follows for κ := (1− tan2 θ)2/(1 +
tan4 θ) by Lemma 2.4. Note that κ = 0 if and only if θ = π/4.

Proposition 2.4. For every angle θ, there is a constant 0 ≤ κ < 1 such that

0 ≤
∣∣∣∣1− y2

n+2 + z2
n+2

x2
n+2

∣∣∣∣ ≤ κ ·
∣∣∣∣1− y2

n + z2
n

x2
n

∣∣∣∣ ,
where equality holds if and only θ = π/4 or x2

n = y2
n + z2

n.

Proof. By Theorem 2.6, the only possibility where one of the fractions is not
defined is the case n = 0 and x0 = 0. In this case, the term at the right hand side
can be understood as a term of infinite value, which makes the claim obviously
true for this case.

Equation (2.8) provides

x2
n+2 − y2

n+2 − z2
n+2 =

(
1

4
− 1

4
tan2 θ

)2

· (x2
n − y2

n − z2
n)

and hence, 1− y2
n+2 + z2

n+2

x2
n+2

=
(1− tan2 θ)

2

16
· x2

n

x2
n+2

(
1− y2

n + z2
n

x2
n

)
.
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One may assume x2
n 6= y2

n + z2
n since otherwise one is done. Applying Inequation

2.9 yields ∣∣∣∣1− y2
n+2 + z2

n+2

x2
n+2

∣∣∣∣ ≤ (1− tan2 θ)
2

1 + tan4 θ
·
∣∣∣∣1− y2

n + z2
n

x2
n

∣∣∣∣ .
For κ := (1 − tan2 θ)2/(1 + tan4 θ), the claim follows since 0 ≤ (1 − tan2 θ)2 <
1 + tan4 θ. Note that κ = 0 if and only if θ = π/4.

Now, the main result can be stated. Regarding only the shape of the triangles,
∆n tends to a rectangular isosceles triangle for n→∞.

Theorem 2.7. For every initial triangle ∆0 and every angle 0 < θ < π
2
, the

following limits hold:

lim
n→∞

y2
n + z2

n

x2
n

= 1 lim
n→∞

αn =
π

2

lim
n→∞

yn
zn

= 1 lim
n→∞

βn =
π

4

Proof. The limits on the left-hand side are immediate consequences of Proposi-
tions 2.3 and 2.4. By the law of cosines it follows that cosαn = 1

2
(y2
n + z2

n −
x2
n)/(ynzn). Now the limits on the left-hand side imply limn→∞ cosαn = 0 and

hence, limn→∞ αn = π/2. The last limit follows from limn→∞ yn/zn = 1 together
with the law of sines.

As in the previous section, the size of the triangles becomes stable for only
one specific choice of θ. For every greater angle, the triangles grow unbounded
and for every smaller angle, the triangles collapse to a single point.

Theorem 2.8.

If 0 < θ <
π

4
, then lim

n→∞
xn = lim

n→∞
yn = 0.

If
π

4
< θ <

π

2
, then lim

n→∞
xn = lim

n→∞
yn =∞.

If θ =
π

4
, then xn = x1 =

√
2 · y1 =

√
2 · yn ∀n > 0.

Proof. First let 0 < θ < π/4. Then tan θ < 1 and hence, Equation 2.7 implies

y2
n+1 + z2

n+1 <
1

2

(
y2
n + z2

n

)
+ tan θ sinαn · ynzn

≤ 1

2

(
y2
n + z2

n

)
+ tan θ · ynzn .
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With Lemma 2.2 one concludes y2
n+1 + z2

n+1 < 1
2
(1 + tan θ)(y2

n + z2
n). Since

1
2
(1 + tan θ) < 1, this implies limn→∞(y2

n + z2
n) = 0 and hence, limn→∞ yn =

limn→∞ zn = 0. The claim follows.
For π

4
< θ it follows that tan θ > 1. Let ε > 0 such that tan θ > (1 + ε)2. By

Theorem 2.7 there are natural numbers nz and nα such that (1 + ε/2)zn > yn for
every n > nz and (1 + ε/2) sinαn > 1 for every n > nα. Set n0 := max{nz, nα}.
Then for every n > n0, Equation (2.5) implies

y2
n+1 >

1

4
· y2

n +
1

4
(1 + ε)4 · z2

n + (1 + ε)2 · 1

2
sinαnynzn

>
1

4
· y2

n +
1

4
(1 + ε)2 · y2

n +
1

2
· y2

n

> (1 +
ε

2
)y2
n

Thus, limn→∞ yn =∞. Now limn→∞ xn =∞ follows from Theorem 2.7.
For the last case, Corollary 2.2 implies yn = zn for every n > 0. The rest

follows from Equation (2.8).

This section is concluded with a statement concerning the orientation of the
triangles ∆n.

Theorem 2.9. For every n > 0, the triangle ∆n is non-degenerate and counter-
clockwise oriented.

Proof. Assume that ∆n is non-degenerate and counterclockwise oriented. By
symmetric reasons it is also assumed that yn ≥ zn. Let B′n and C ′n denote the
centers of CnAn and AnBn, respectively.

First the case xn ≥ yn is considered. Then αn ≥ βn and αn ≥ γn by the law
of sines and therefore βn ≤ π/2 and γn ≤ π/2. Since the triangle An+1CnB

′
n is

similar to ∆n, one obtains ∠CnAn+1B
′
n = βn. On the other hand, let l be the

perpendicular bisector of the side yn, i. e. the line through B′n and Bn+1. Since
xn ≥ zn, the line l intersects BnCn in a point S. One obtains ∠CnSBn+1 =
π/2 − γn. Thus, min{βn, π/2 − γn} ≤ ∠CnAn+1Bn+1 ≤ max{βn, π/2 − γn} and
therefore 0 < ∠CnAn+1Bn+1 < π/2. Analogously, 0 < ∠Cn+1An+1Bn < π/2.
This implies ∠Cn+1An+1Bn < π and the claim holds for ∆n+1.

Now assume xn < yn. Then one obtains analogously to the above 0 <
∠AnB′nCn+1 < π/2 and ∠An+1B

′
nCn = αn < π/2. Thus, both angles ∠An+1B

′
nBn+1

and ∠Bn+1B
′
nCn+1 are greater than π/2 and smaller than π and consequently, it

holds that ∠Cn+1B
′
nAn+1 < π. It follows that B′n is inside the triangle ∆n+1 and

that the claim holds for ∆n+1.
The proof is completed by applying induction.
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Remark 2.4. The missing case where only on one side, say BnCn, an isosceles tri-
angle is erected and of the other two sides the center is taken is not very interest-
ing. Following I. M .Yaglom [141], the distinguished angle for the isosceles triangle
would be ∠CnAn+1Bn = 0 and therefore θ = ∠An+1BnCn = ∠BnCnAn+1 = π,
which is not possible. One gains the idea that the shape to which the tri-
angles converge should be degenerate. Moreover, since every possible choice
θ is smaller than π, the triangles should collapse to a single point. These
claims are easy to prove: One can see immediately xn+1 = xn/2. Furthermore,
yn+1 < yn/2 + tan θ · xn/2 and zn+1 < zn/2 + tan θ · xn/2. Thus, the ratios
xn/yn and yn/zn tend to 0 while yn/zn converges to 1. After reaching the point
tan θ · xn < yn, one obtains additionally yn+1 < yn. The analogue holds for zn.
Hence, limn→∞ xn = limn→∞ yn = limn→∞ zn = 0. Consequentially, for triangles,
the next task would be to consider three different angles θx, θy and θz for the
isosceles triangles that are erected on the sides of ∆n.

2.2 Iterative geometric polygon transformations

The transformation of a triangular element based on erecting isosceles triangles
on its side has been analyzed in the previous section. However, this type of
elementary analysis is not straightforward for polygons with an arbitrary number
of nodes. Therefore, in this section the analysis of the transformation for arbitrary
polygons is based on techniques of linear algebra.

2.2.1 Motivation

In accordance to the triangular case, polygons with an arbitrary number of nodes
are transformed by erecting similar isosceles triangles on its sides. The trans-
formed polygon consists of the apices of these similar triangles. The sequence
resulting from iteratively applying the same transformation will be analyzed with
respect to the base angle θ ∈ (0, π/2) of the isosceles triangles. This is illustrated
in Fig. 2.3 for random initial polygons with n = 10 vertices (upper) and n = 11
vertices (lower).

It can be seen that there is a change in the geometry of limit figures of the
sequences of scaled polygons at each characteristic angle θk = π(2k + 1)/(2n),
k ∈ {0, . . . , bn/2c − 1}. This will be shown in the following, leading to a full
classification of limit polygons of isosceles triangles-based polygon transforma-
tions. Whereas the polygons for θ within an interval bounded by characteristic
angles are regular polygons or equilateral stars with possibly multiple vertices
(positioned above the center of the according interval in Fig. 2.3), the polygons
for θ = θk, k > 0, are linear combinations of the neighboring limit polygons. Fur-
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0 π/20 3π/20 5π/20 7π/20 9π/20 π/2

0 π/22 3π/22 5π/22 7π/22 9π/22 π/2

Figure 2.3: Initial random polygons (plotted above θ = 0) and resulting limit
polygons for n = 10 (upper) and n = 11 (lower) depending on the base angle
θ ∈ (0, π/2)

thermore, the unscaled polygons degenerate to their common centroid, become
bounded regular n-gons or grow infinitely in the case of θ being smaller, equal or
larger than θ0 = π/(2n).

In the following, a representation of the transformation using complex num-
bers and circulant matrices is given. By analyzing the transformation using the
discrete Fourier transform, the characteristic angles are derived and it will be
shown that the obtained shapes are linear combinations of specific eigenpolygons
also known as fundamental polygons [143, 144].

2.2.2 Transformation of a polygon

First, a definition of the transformation of a polygon using complex numbers will
be given. Let z(0) ∈ Cn denote a plane counterclockwise oriented polygon with
n ≥ 3 vertices z

(0)
k := (z(0))k, k ∈ {0, . . . , n − 1}, and sides of length > 0, which

may possibly intersect each other. Over each side z
(0)
k z

(0)
(k+1) modn of the polygon an

outward directed isosceles triangle z
(0)
k z

(1)
k z

(0)
(k+1) modn with base angle θ ∈ (0, π/2)

is constructed, as depicted in Fig. 2.4.

The apices are given by

z
(1)
k := wz

(0)
k + wz

(0)
(k+1) modn with w :=

1

2
(1 + i tan θ)

and w denoting the complex conjugate of w. The vertices z
(1)
k in term define a new

polygon z(1), which can be obtained by using the following matrix formulation.
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θ

θ

θ

θ

θ

θ

θ

θ

z
(0)
0

z
(0)
1

z
(0)
2

z
(0)
3

z
(1)
0

z
(1)
1

z
(1)
2

z
(1)
3

Figure 2.4: Transformation of a polygon in the case of n = 4 using θ = π/6

Definition 2.1. The linear transformation of a polygon z(`) ∈ Cn into a new
polygon z(`+1) ∈ Cn is given by

z(`+1) =


z

(`+1)
0

z
(`+1)
1

...

z
(`+1)
n−2

z
(`+1)
n−1

 :=


w w

w w
. . . . . .

w w
w w


︸ ︷︷ ︸

=:M


z

(`)
0

z
(`)
1
...

z
(`)
n−2

z
(`)
n−1

 = Mz(`) , (2.11)

where w = (1 + i tan θ)/2.

Due to w+w = 1, the sum of each row and column of M is one, thus leading to
the familiar result that the transformation preserves the centroid of the polygon.
That is, 1

n

∑n−1
k=0 z

(`+1)
k = 1

n

∑n−1
k=0 z

(`)
k , which can easily be shown by rearranging

the sum and collecting the coefficients of z
(`)
k .

Iteratively applying the transformation given by definition 2.1 to an initial
polygon z(0) leads to a sequence of concentric polygons z(`), ` ∈ N, with z(`) =
M `z(0). This is depicted in Fig. 2.5 for different transformation angles θ and
iteration numbers `. In this, the same initial 10-gon z(0) as depicted on the upper
left of Fig. 2.3 has been used. Additionally, the polygon size has been normalized
after each iteration step, to avoid the rapid increase of size in the case of larger
θ values. In order to determine the convergence behavior of such sequences, the
matrix M will be analyzed in the following.
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Figure 2.5: Sequences of polygons z(`) = M `z(0) obtained by iteratively applying
the transformation using different transformation angles θ

2.2.3 Circulant matrices and eigenpolygon decompositions

Since each row of M is a cyclic shift of its preceeding row, the theory of circulant
matrices can be applied. For the convenience of the reader, the relevant results
will be given briefly [145, 146].

The square matrix A ∈ Cn×n is called circulant, if it is of the form

A :=


a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
. . .

...
a1 a2 . . . a0

 .

It is fully defined by its first row vector a := (a0, . . . , an−1) with zero-based
element indices. With r := exp(2πi/n) denoting the n-th root of unity it holds
that A is diagonalized by the unitary discrete Fourier matrix

F :=
1√
n

 r0·0 . . . r0·(n−1)

...
. . .

...
r(n−1)·0 . . . r(n−1)·(n−1)


with entries fµ,ν = rµ·ν/

√
n and likewise zero-based indices µ, ν ∈ {0, . . . , n− 1}.

That is, the diagonal matrix D of the eigenvalues ηk, k ∈ {0, . . . , n− 1}, is given
by

D = diag(η0, . . . , ηn−1) := F ∗AF , (2.12)



2.2. ITERATIVE GEOMETRIC POLYGON TRANSFORMATIONS 57

with F ∗ denoting the conjugate transpose of F . Furthermore, the vector η :=
(η0, . . . , ηn−1)t of all eigenvalues can be easily computed by multiplying the non-
normalized Fourier matrix with the transposed first row of A, i.e. η =

√
nFat.

In the case of the geometric transformation M given in the previous section it
holds that a = (w,w, 0, . . . , 0). And like w the eigenvalues ηk depend on the base
angle θ. But in order to simplify the notation, ηk will be used instead of ηk(θ).

Lemma 2.7. The eigenvalues of the iteration matrix M according to (2.11) are
given by

ηk = w + rkw = sec θ cos

(
θ − πk

n

)
eiπk/n , (2.13)

where k ∈ {0, . . . , n− 1}. In particular it holds that η0 = 1.

Proof. Since the representation ηk = w + rkw follows readily from the represen-
tation η =

√
nF (w,w, 0, . . . , 0)t and the definition of F , only the second repre-

sentation has to be shown.
Due to θ ∈ (0, π/2), it holds that |w| = 1

2

√
1 + tan2 θ = 1

2
sec θ. Furthermore,

the argument of w is given by θ and that of rk by 2πk/n. Collecting the real and
imaginary parts of the two summands in ηk = w+rkw and applying trigonometric
identities to the following expressions in squared brackets results in

ηk =
1

2
sec θ

([
cos θ + cos

(
2πk

n
− θ
)]

+ i

[
sin θ + sin

(
2πk

n
− θ
)])

= sec θ cos

(
θ − πk

n

)(
cos

πk

n
+ i sin

πk

n

)
,

which implies (2.13). The special case η0 = 1 follows likewise from (2.13) or
η0 = w + w = 2 Rew = 1.

The fact that all circulant matrices are diagonalizable by the same Fourier ma-
trix F is remarkable and has far reaching consequences with respect to resulting
symmetries. Hence, the orthonormal vectors given by the columns

fk := (f0,k, . . . , fn−1,k)
t =

1√
n

(
r0·k, r1·k, . . . , r(n−1)·k)t

,

k ∈ {0, . . . , n−1}, of F build a natural basis for the analysis of circulant polygon
transformations. The vectors fk can also be interpreted as polygons, which will
be called Fourier polygons.

The coefficients ck in the representation of z(0) =
∑n−1

k=0 ckfk in terms of the
Fourier polygons are given by the entries of the vector c := F ∗z(0). Furthermore,
due to (2.12) the transformation matrix M can be written as M = FDF ∗ with D
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denoting the diagonal matrix of the eigenvalues ηk. Hence, the polygon obtained
by successively applying ` transformation steps can be written as

z(`) = M `z(0) = (FDF ∗)`z(0) = FD`F ∗z(0) = FD`c =
n−1∑
k=0

η`kckfk . (2.14)

That is, z(`) is a linear combination of the n polygons ckfk scaled by the `-th power
of the associated eigenvalues. Therefore, this special polygons will be defined and
analyzed below.

Definition 2.2. For k ∈ {0, . . . , n− 1} the n-dimensional complex vector

vk := ckfk =

(
F ∗z(0)

)
k√

n

(
r0·k, . . . , r(n−1)·k)t

(2.15)

will be called the k-th eigenpolygon of the initial polygon z(0).

Due to f0 = 1√
n
(1, . . . , 1)t and

(
F ∗z(0)

)
0

= 1√
n

∑n−1
k=0 z

(0)
k , each vertex of the

associated degenerated eigenpolygon v0 is 1
n

∑n−1
k=0 z

(0)
k representing the centroid

of z(0). Furthermore, due to η0 = 1 and the decomposition (2.14) it holds that

z(`) =
n−1∑
k=0

η`kvk = v0 +
n−1∑
k=1

η`kvk . (2.16)

It should be noted that the eigenpolygons vk do not necessarily form a basis of Cn,
since some of the coefficients ck might be zero causing the associated vk to become
zero vectors. However, since η0 = 1 in contrast to all other eigenvalues does not
depend on the base angle θ, vo representing the centroid is always preserved as
can be seen by equation (2.16).

Since all circulant (n × n)-matrices can be diagonalized by the same Fourier
matrix F , all geometric transformations represented by such matrices lead to the
same eigenpolygons. Therefore, the eigenpolygons do not depend on the base
angle θ, but only on the initial polygon z(0). Hence, different transformation
schemes result in different eigenvalues thus placing emphasis on different sym-
metric configurations.

Since the eigenpolygon vk is the Fourier polygon fk times the coefficient ck ∈
C, vk preserves the symmetry of the fk. This will be stated more precisely in the
following lemma, since this symmetry is also reflected by the limit polygons of
the iterated transformation.

Lemma 2.8. For k, µ ∈ {0, . . . , n− 1} it holds that

(vk)µ = rµk(vk)0 , (2.17)
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that is, the µ-th vertex of the eigenpolygon vk can be derived by rotating the first
vertex by angle 2πµk/n. In particular it follows that (vk)µmodn = rk(vk)µ−1 where
µ ∈ {1, . . . , n}.
Proof. This follows readily from equation (2.15) since

(vk)µ = ck(fk)µ = ck

(
1√
n
rµk
)

= rµk
(
ck√
n
· 1
)

= rµk(vk)0 .

The rotation angle can be derived from rµk = exp(2πiµk/n) and the representa-
tion (vk)µmodn = rk(vk)µ−1 is implied by equation (2.17).

If ` tends to infinity, z(`) tends to the scaled eigenpolygon belonging to the
eigenvalue with the largest absolute value. Using (2.13) in order to determine the
dominating eigenvalue implies

|ηk| = sec θ

∣∣∣∣cos

(
θ − πk

n

)∣∣∣∣ .
Fig. 2.6 depicts the values of |ηk| depending on θ ∈ (0, π/2) for k ∈ {0, . . . , n−

1} in the case of n ∈ {5, 6}. One can observe that intersections of the functions
|ηk| occur only at angles θ which are multiples of π/(2n). This is stated by the
following lemma.
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Figure 2.6: Absolute values of eigenvalues for θ ∈ (0, π/2) in the case of n = 5
(left) and n = 6 (right). Dominating eigenvalues are named

Lemma 2.9. For k,m ∈ {0, . . . , n − 1}, k 6= m, the functions |ηk| and |ηm| of
θ ∈ (0, π/2) may only intersect for θ = µπ/(2n) where µ ∈ {1, . . . , n− 1}.
Proof. Since |ηk| and |ηm| are positive, this will be shown by analyzing the roots
of the difference function of the squared values

dk,m(θ) := |ηk|2 − |ηm|2 = sec2 θ

(
cos2

(
θ − πk

n

)
− cos2

(
θ − πm

n

))
= sec2 θ sin

(
2θ − π k +m

n

)
sin

(
π
k −m
n

)
. (2.18)
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Since |k−m|/n ∈ {1/n, . . . , (n− 1)/n}, roots can only occur, if the argument of
the first sine factor in (2.18) is a multiple of π, that is

2θ − πk +m

n
= νπ ⇔ θ =

π

2

(
ν +

k +m

n

)
, ν ∈ Z .

Due to θ ∈ (0, π/2), the factor ν + (k + m)/n has to be in (0, 1) thus implying
k + m 6= n and ν = −b(k + m)/nc, where b · c denotes rounding towards zero.
Since k 6= m, this results in (k +m) ∈ {1, . . . , 2n− 3} \ {n}.

In the case of (k + m) ∈ {1, . . . , n− 1} and (k + m) ∈ {n + 1, . . . , 2n− 3} it
follows that ν = 0 and ν = −1 respectively, thus providing the roots

θ =
π

2n
(k +m) and θ =

π

2n
(k +m− n)

respectively, as stated in the lemma.

The behavior of z(`) depends on the dominating eigenvalue, which itself de-
pends on the base angle θ. As can be seen in Fig. 2.6, the dominating eigenvalue
changes at each odd multiple of π/(2n) marked by square markers. This is stated
by the following lemma, which also gives the index of the dominating eigenvalue
for each interval.

Lemma 2.10. For k ∈ {0, . . . , bn/2c − 1}, where b · c denotes rounding towards
zero, let

θk :=
π

2n
(2k + 1) , furthermore θ−1 := 0, θbn/2c :=

π

2
. (2.19)

On each interval (θk−1, θk), k ∈ {0, . . . , bn/2c}, the index of the dominating eigen-
value is given by k, that is

θ ∈ (θk−1, θk) ⇒ |ηk| > |ηm| ∀m ∈ {0, . . . , n− 1} \ {k} . (2.20)

In addition, for k ∈ {0, . . . , bn/2c − 1}

θ = θk ⇒ |ηk| = |ηk+1| > |ηm| ∀m ∈ {0, . . . , n− 1} \ {k, k + 1} , (2.21)

that is, for θ = θk the function |ηk| is only intersected by |ηk+1|.
Proof. Induction over the intervals (θk−1, θk) for k ∈ {0, . . . , bn/2c} will be used.
In the case of k = 0 implying θ ∈ (θ−1, θ0) =

(
0, π/(2n)

)
equation (2.20) holds,

if the associated difference function d0,m(θ) according to (2.18) is positive for all
m ∈ {1, . . . , n− 1}. This is the case, since

d0,m(θ) = sec2 θ︸ ︷︷ ︸
>0

sin
(

2θ − π m
n

)
︸ ︷︷ ︸

<0

sin

(
π
−m
n

)
︸ ︷︷ ︸

<0

> 0 ,
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due to sec2 θ > 0 in the case of the first factor, −π < 2 · 0− π n−1
n

< 2θ − πm
n
<

2 π
2n
− π 1

n
= 0 in the case of the second factor, and −πm

n
∈ (−π, 0) in the case of

the third factor.
In order to show (2.21) the equation

d0,m

( π
2n

)
= sec2 π

2n︸ ︷︷ ︸
6=0

sin
(π
n
− πm

n

)
sin

(
π
−m
n

)
︸ ︷︷ ︸

6=0

!
= 0

implies π
n
−πm

n
= π 1−m

n

!
= νπ with ν ∈ Z, hence m = 1, since m ∈ {1, . . . , n−1}.

That is, for θ = θ0 the function |η0| is only intersected by |η1|. Furthermore, since
all |ηk| are continuous as well as differentiable on (0, π/2) except the points where
|ηk| = 0, and dominated by |η0| on

(
0, π/(2n)

)
, it holds that 1 = η0 = |η1| > |ηm|

for m ∈ {2, . . . , n− 1} in θ0.
For a given k ∈ {1, . . . , bn/2c − 1} it will now be assumed that for θk−1 the

dominating eigenvalue changes from ηk−1 to ηk. In order to prove (2.20) for the
interval (θk−1, θk) it suffices to show that |ηk| is not intersected by any other |ηm|
with m ∈ {0, . . . , n− 1} \ {k}.

According to lemma 2.9 intersections may only occur for θ = πk/n, which is
the midpoint of the interval (θk−1, θk). Since

dk,m

(
πk

n

)
!

= 0 ⇒ sin

(
2
πk

n
− πk +m

n

)
!

= 0

implies 2πk
n
−π k+m

n
= π

n
(k−m)

!
= νπ, ν ∈ Z and therefore m = k, the dominating

function |ηk| is not intersected by any other |ηm| inside of (θk−1, θk).
Finally, (2.21) is shown by analyzing

dk,m (θk) = sec2 θk sin

(
π
k + 1−m

n

)
sin

(
π
k −m
n

)
!

= 0 .

The first sine becomes zero in the case of m = k + 1. The second sine, which
does not depend on θ, is nonzero due to m 6= n− k. Since the difference function
changes its sign in θk, the dominating eigenvalue changes from ηk on the left of
θk to ηk+1 on the right as stated.

2.2.4 Limit polygons

In the case of θ > π/(2n), the absolute value of the dominating eigenvalue is
greater than one causing the vertices of z(`) to tend to infinity if ` increases.
Therefore, the polygons are scaled according to the following definition.
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Definition 2.3. For θ ∈ (θk−1, θk], k ∈ {0, . . . , bn/2c}, with θ 6= π/2 let

z
(`)
s,θ := v0 +

1

|ηk|`
(
z(`) − v0

)
= v0 +

n−1∑
µ=1

(
ηµ
|ηk|

)`
vµ (2.22)

be the sequence of polygons scaled according to the centroid of z(0) and the domi-
nating eigenvalue with index k.

The rightmost representation of z
(`)
s,θ follows readily from (2.16). It also holds

that z(`) = z
(`)
s,θ in the case of θ ∈

(
0, π/(2n)

]
. That is, scaling has no effect in

this case since the dominating eigenvalue is given by η0 = 1. Based on the results
obtained so far, a full classification of the behavior of the sequence z

(`)
s,θ for `→∞

can now be given.

Theorem 2.10. For the base angle θ ∈
(
0, π/2

)
and ` ∈ N, the scaled polygons

z
(`)
s,θ tend to the limit polygons

p
(`)
s,θ :=


v0 if θ ∈ (0, θ0),

v0 + eiπ`/nv1 if θ = θ0,

v0 + eiπk`/nvk if θ ∈ (θk−1, θk), k ∈ {1, . . . , bn/2c},
v0 + eiπk`/nvk + eiπ(k+1)`/nvk+1 if θ = θk, k ∈ {1, . . . , bn/2c − 1},

(2.23)

with θk given by (2.19). That is lim
`→∞

∥∥∥z(`)
s,θ − p

(`)
s,θ

∥∥∥ = 0, with ‖ · ‖ denoting the

norm defined by ‖x‖ =
√
x∗x.

Proof. All four cases will be shown in the following manner. Based on the results
of lemma 2.10 the dominating terms, which lead to the definition of p

(`)
s,θ, will be

separated in the scaled decomposition (2.22) from a remaining finite distortion
sum. The latter will tend to the zero vector if ` tends to infinity.

In the case of θ ∈ (0, θ0) the dominating eigenvalue is given by η0 with the

associated eigenpolygon v0 = p
(`)
s,θ. It follows readily from (2.16) that

lim
`→∞

∥∥∥z(`)
s,θ − p

(`)
s,θ

∥∥∥ = lim
`→∞

∥∥∥∥∥
n−1∑
µ=1

η`µvµ

∥∥∥∥∥ ≤
n−1∑
µ=1

‖vµ‖ lim
`→∞
|ηµ|`︸ ︷︷ ︸

=0

= 0 ,

since |ηµ| < 1 for µ ∈ {1, . . . , n− 1} according to lemma 2.10.
In the case of θ = θ0 = π/(2n) the dominating eigenvalues are η0 and η1 with

η0 = 1 = |η1|, where

η1 = sec
π

2n
cos
( π

2n
− π

n

)
eiπ/n = eiπ/n .
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Thus it can be stated that

z
(`)
s,θ0

= v0 + η`1v1 +
n−1∑
µ=2

η`µvµ = p
(`)
s,θ0

+
n−1∑
µ=2

η`µvµ .

Again, the distortion sum tends to the zero vector if ` tends to infinity since
|ηµ| < 1.

In the case of θ ∈ (θk−1, θk), k ∈ {1, . . . , bn/2c}, it holds that

z
(`)
s,θ = v0 +

(
ηk
|ηk|

)`
vk +

n−1∑
µ=1
µ6=k

(
ηµ
|ηk|

)`
︸ ︷︷ ︸
→0

vµ . (2.24)

At this, the eigenvalue representation (2.13) implies

ηk
|ηk|

= sign

(
sec θ cos

(
θ − πk

n

))
︸ ︷︷ ︸

=1

eiπk/n = eiπk/n ,

with θ ∈ (θk−1, θk), since the argument of the cosine factor varies within the
interval (−π/(2n), π/(2n)). Replacing the obtained exponential representation
of ηk/|ηk| in (2.24) yields the limit polygon as stated in the third case of (2.23).

Finally, in the case of θ = θk, k ∈ {1, . . . , bn/2c − 1} with the dominating
eigenvalues ηk and ηk+1 it holds that

z
(`)
s,θk

= v0 +

(
ηk
|ηk|

)`
vk︸ ︷︷ ︸

=eiπk`/nvk

+

(
ηk+1

|ηk|

)`
vk+1 +

n−1∑
µ=1

µ6=k,k+1

(
ηµ
|ηk|

)`
︸ ︷︷ ︸
→0

vµ ,

due to the results of the previous case for the second summand. In the case of
the third summand it holds that

ηk+1

|ηk|
= sign

(
sec θk cos

(
θk −

π(k + 1)

n

))
︸ ︷︷ ︸

=1

eiπ(k+1)/n = eiπ(k+1)/n,

since the argument of the cosine function is −π/(2n).

It should be noted that the limit polygons p
(`)
s,θ depend on the iteration num-

ber ` due to the exponential coefficients of the eigenpolygons, which reflect the
rotational effect of the transformation. Furthermore, only the counterclockwise
oriented eigenpolygons vk, with k ∈ {0, . . . , bn/2c}, are involved.
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Figure 2.7: Fourier polygons fk for n ∈ {3, . . . , 6} and k ∈ {1, . . . , bn/2c}

The following will now focus on the shapes of the limit polygons given by
theorem 2.10 and therefore on the shapes of the eigenpolygons vk, which are
scaled Fourier polygons. The latter are depicted in Fig. 2.7 for n ∈ {3, . . . , 6} and
k ∈ {1, . . . , bn/2c}. In this, circle markers indicate the scaled roots of unity lying
on a circle with radius 1/

√
n, whereas solid black markers indicate the vertices

of the Fourier polygons. Also given is the vertex index or, in the case of multiple
vertices, a comma separated list of indices. The case k = 0, where f0 degenerates
to one vertex with multiplicity n, is omitted. The shape of eigenpolygons is
described by the following theorem.

Theorem 2.11. Let gcd(n, k) denote the greatest common divisor of the two
natural numbers n and k. Then the following holds for the eigenpolygons vk
and therefore for the limit polygons of z

(`)
s,θ in the case of θ ∈ (θk−1, θk), k ∈

{1, . . . , bn/2c}, and ck 6= 0:

1. The eigenpolygon vk is similar to the polygon obtained by successively con-
necting counterclockwise each k-th root of unity.

2. The eigenpolygon vk is a
(
n/ gcd(n, k)

)
-gon with vertex multiplicity gcd(n, k).

3. The eigenpolygon vk is a convex regular (n/k)-gon, if and only if k =
gcd(n, k).
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Proof. The shape of the eigenpolygon vk as described in item 1 follows readily
from lemma 2.8.

To show item 2 let m := gcd(n, k), which results in the representations n =
m · n̂ and k = m · k̂ with n̂, k̂ ∈ N. According to item 1, numbering n/m roots of
unity by connecting each k root beginning with r0 ends again in r0, since( n

m
· k
)

modn = (n̂ ·m · k̂) modn = (n · k̂) modn = 0 , (2.25)

which implies rnk/m = r0. The following steps reproduce this polygon until each
vertex has multiplicity m. Since m is the greatest common divisor, there is no
larger divisor than m resulting in a polygon with less vertices.

To prove item 3, one can observe in the case of k 6= gcd(n, k) that according
to (2.25) it takes k̂ loops of roots of unity to return to r0 leading to intersecting
sides and therefore star shaped polygons, whereas in the case of k = gcd(n, k) one
returns after n/k steps within one loop to r0 thus leading to a convex polygon
due to the geometry of the roots of unity.

The angles given by the exponential factors in the definition (2.23) of the
scaled limit polygons reveal the rotational effect of the transformation. They
depend not only on the number n of vertices and ` of iterations, but also on the
index k of the associated eigenpolygon thus leading to more symmetries as stated
in the following theorem.

Theorem 2.12. The limit polygons p
(`)
s,θ differ for odd and likewise for even iter-

ation numbers ` only in a counterclockwise cyclic shift of vertex indices, but not
in geometry. More precisely, it holds that(

p
(`)
s,θ

)
(µ+1) modn

=
(
p

(`+2)
s,θ

)
µ
, (2.26)

where ` ∈ N, µ ∈ {0, . . . , n−1}. Furthermore, for θ ∈ (π/(2n), π/2) the sequence

of scaled polygons z
(`)
s,θ contains 2n converging subsequences with

lim
`→∞

z
(2n`+ν)
s,θ = p

(ν)
s,θ , (2.27)

where ν ∈ {0, . . . , 2n− 1}.

Proof. Since p
(`)
s,θ is a linear combination of rotated eigenpolygons, it suffices to

show that (2.26) holds for each summand, that is(
eiπk`/nvk

)
(µ+1) modn

=
(
eiπk(`+2)/nvk

)
µ
,
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where k ∈ {1, . . . , n− 1}. Using lemma 2.8 and the definition of the root of unity
r = exp(2πi/n) this follows from

eiπk`/n (vk)(µ+1) modn = eiπk`/nrk (vk)µ = eiπk(`+2)/n (vk)µ .

Since in the case of k = 0 all entries of v0 are the same this implies (2.26).
Equation (2.27) follows from the 2n-periodicity of the exponential factors

given by the definition of p
(`)
s,θ according to (2.23), that is eiπk(2n`+ν)/n = eiπkν/n

for ν ∈ {0, . . . , 2n− 1}.
In the case θ ∈ (θk−1, θk), k ∈ {1, . . . , bn/2c}, the limit polygon is a rotated

and scaled Fourier polygon with preserved centroid similar to those depicted in
Fig. 2.7. In contrast, for θ = θk, k ∈ {0, . . . , bn/2c − 1} there are two possible
limit polygons each a linear combination of up to two eigenpolygons shifted by
the centroid.

3 4 5 6

0

1

2

k/n

Figure 2.8: Limit polygons for n ∈ {3, . . . , 6}, θ = θk, k ∈ {0, . . . , bn/2c − 1}.
Drawn through lines and dashed lines indicate limits for subsequences with odd
and even ` respectively

For (z(0))µ := (µ + 1) exp(iπµ/(5n)), n ∈ {3, . . . , 6}, µ ∈ {0, . . . , n − 1}, and
k ∈ {0, . . . , bn/2c − 1} the resulting two limit polygons are depicted in Fig. 2.8.
Drawn through lines and dashed lines indicate limits for subsequences with odd
and even ` respectively. In particular the first row contains two regular n-gons
rotated by angle π/n, which is half the angle of the according root of unity.

The first case in Fig. 2.8, that is n = 3, k = 0 and therefore θ = π/6,
represents Napoleon’s theorem. In particular, since η0 = |η1| = 1 and η2 = 0 the
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distortion sum z
(`)
s,θ − p

(`)
s,θ is the zero vector for all `. Therefore one step suffices

to generate a regular triangle. From that point on, according to theorem 2.12,
further iterations lead to a sequence of two alternating dual triangles which are
depicted in the table.

In the case of n > 3, k = 0 the distortion sum is nonzero, hence there is only
one Napoleon. But since the error decreases by powers of the eigenvalue quotients
this leads to a fast convergence and therefore asymptotically also to alternating
dual regular n-gons.

In the following, an overview of properties of the unscaled iterative polygon
transformation is given, which can now be readily derived from the results ob-
tained so far.

Corollary 2.3. The following holds:

1. For θ ∈
(
0, π/(2n)

)
the concentric polygons z(`) degenerate to their common

centroid if ` tends to infinity.

2. In the case of θ = π/(2n) the sequence z(`) consists of bounded polygons
which become regular if ` tends to infinity.

3. For θ ∈
(
π/(2n), π/2

)
the vertices of z(`) tend to infinity as ` grows. In this,

the limit polygons given by theorem 2.10, scaled with respect to the centroid
by the `-th power of the eigenvalue with the largest absolute value, represent
the dominating terms thus the asymptotical behavior.

Proof. The items 1 and 2 follow due to z(`) = z
(`)
s,θ since θ ∈ (0, π/(2n)] and the

results given by theorem 2.10. Likewise item 3, where z
(`)
s,θ differs from z(`) just

in the scaling by |ηk|, which is greater than one because of θ > π/(2n) and the
results given by lemma 2.10. It should be noted that in this case the distortion
sum may also grow to infinity, since the absolute values of other eigenvalues might
be greater than one. Nevertheless, due to the scaling by powers of eigenvalues,
the dominating eigenvalue(s) define the behavior of the sequence z(`) if ` tends to
infinity.

The eigenpolygon decomposition presented in this section has been used to
prove that specific geometric transformations result in regular polygons. Beyond
that, it can also be used in order to find new geometric construction schemes
leading to predefined symmetric configurations. As described in [147], this is done
by an appropriate choice of the eigenvalues ηk and by interpreting the resulting
transformation matrix M = FDF ∗ geometrically.
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2.3 A generalized polygon transformation

From an application point of view, the rotational effect of the transformation
analyzed in the previous section is a major drawback, since it changes the orien-
tation of the element and does not lead to a convergent series of scaled polygons.
Therefore, a modified similar triangles-based transformation will be considered in
the following, which also eliminates the rotational effect of the isosceles triangles-
based transformation.

2.3.1 Definition of the generalized transformation

As in the previous section, let z(0) = (z
(0)
0 , . . . , z

(0)
n−1)t ∈ Cn denote an arbitrary

polygon in the complex plane with n ≥ 3 vertices z
(0)
µ using zero-based indices

µ ∈ {0, . . . , n − 1} and sides z
(0)
µ z

(0)
(µ+1) modn oriented according to the order of

vertices given by the vector z(0). The basic idea is to transform such a polygon
by constructing equally oriented similar triangles on each side and taking the
apices of these triangles which leads to a new polygon with n vertices. In order
to analyze this kind of transformation, two parameters λ and θ are introduced,
which uniquely define the similar triangles.

Here λ ∈ (0, 1) represents the subdivision ratio used for all sides. At each

subdivision vertex λz
(0)
µ + (1−λ)z

(0)
(µ+1) modn a perpendicular is constructed to the

right of the directed side on which the apex z
(1/2)
(µ+1) modn is chosen in such a way

that the triangle side z
(0)
µ z

(1/2)
(µ+1) modn and the polygon side z

(0)
µ z

(0)
(µ+1) modn enclose a

predefined angle θ ∈ (0, π/2). Since the associated height is defined by the length
of the side times (1− λ) tan θ, it holds that the apex is given by

z
(1/2)
(µ+1) modn = wz(0)

µ + (1− w)z
(0)
(µ+1) modn, (2.28)

with the complex weight w := λ + i(1 − λ) tan θ depending on the parameters θ
and λ.

Hence, the linear transformation G− mapping the polygon z(0) to the associ-
ated polygon z(1/2) of apices can be represented by the (n× n)-matrix M− with
entries

(M−)µ,ν :=


1− w if µ = ν

w if µ = (ν + 1) modn

0 otherwise

using zero-based indices µ, ν ∈ {0, . . . , n− 1}. That is z(1/2) = M−z(0).
This is depicted in Fig. 2.9 using λ = 1/3 and θ = π/4. Starting from

the initial polygon with vertices z
(0)
µ , marked by a black drawn through line, the
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construction is performed according to (2.28). This leads to the polygon of apices

z
(1/2)
µ marked by a blue drawn through line. In both cases only some sides of the

polygon are depicted in order to simplify the figure. Gray arcs indicate angles θ
and the perpendiculars subdivide the polygon sides in a ratio of (1− λ) : λ.

z
(0)
µ

z
(0)
µ+1

z
(0)
µ+2

z
(0)
µ+3

z
(0)
µ+4

z
(0)
µ+5

z
(1/2)
µ+1

z
(1/2)
µ+2

z
(1/2)
µ+3

z
(1/2)
µ+4

z
(1/2)
µ+5

z
(1)
µ+1

z
(1)
µ+2z

(1)
µ+3

z
(1)
µ+4

Figure 2.9: Initial polygon z(0) (black), G− transformed polygon z(1/2) = M−z(0)

(blue), and G+ transformed polygon z(1) = M+z
(1/2) = Mz(0) (red)

Due to its construction, the transformation G− has a rotational effect as will
be shown later. Therefore, a second transformation named G+ using the same
construction parameters but with flipped similar triangles is applied in order to
eliminate this effect. The resulting polygon with vertices z

(1)
µ is marked by a

red drawn through line. The representation of the vertices z
(1)
µ can be derived

analogously to (2.28) and is given by

z(1)
µ = (1− w)z(1/2)

µ + wz
(1/2)
(µ+1) modn , (2.29)

where w denotes the conjugate complex of w. Hence, the matrix representation
M+ of the transformation G+ is given by

(M+)µ,ν :=


1− w if µ = ν

w if ν = (µ+ 1) modn

0 otherwise

,

with z(1) = M+z
(1/2). In Fig. 2.9 the transformation maps the blue polygon

with vertices z
(1/2)
µ to the red polygon with vertices z

(1)
µ . As can be seen, the
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subdivision ratio is interchanged and the base angle θ is positioned at the end of
the side with respect to the orientation.

The resulting combined transformation G := G+ ◦ G− and its matrix repre-
sentation M will be defined and analyzed in the following. In Fig. 2.9 it directly
maps the polygon z(0) marked black to the polygon z(1) marked red.

Definition 2.4. For θ ∈ (0, π/2), λ ∈ (0, 1), and

w := λ+ i(1− λ) tan θ

let G denote the polygon transformation z(1) = Mz(0) defined by the matrix

(M)µ,ν :=


|1− w|2 + |w|2 if µ = ν

w(1− w) if µ = (ν + 1) modn

w(1− w) if ν = (µ+ 1) modn

0 otherwise

, (2.30)

where µ, ν ∈ {0, . . . , n− 1}.

The entries of M can be easily derived by multiplying M− and M+ using that
ww = |w|2. Due to the geometric construction M− as well as M+ are circulant
and adjoint matrices, and, as a product of two circulant matrices, M = M−M+ =
M+M− is circulant and according to (2.30) Hermitian. Furthermore, each row
and column of the matrices M , M−, and M+ sum up to one, which implies that
all transformations preserve the centroid, that is,

1

n

n−1∑
µ=0

z(0)
µ =

1

n

n−1∑
µ=0

z(1/2)
µ =

1

n

n−1∑
µ=0

z(1)
µ ,

which can be shown by inserting the representations (2.28), (2.29) and rearranging
the sum in order to collect the coefficients of each vertex.

2.3.2 Eigenvalues and eigenpolygon decomposition

As in the case of the isosceles triangles-based transformation considered in the
previous section, the modified transformation G will be analyzed using the eigen-
polygon decomposition and the eigenvalues of M . Since M is circulant its eigen-
vectors are the columns of the unitary n × n Fourier matrix F with entries
(F )µ,ν := rµ·ν/

√
n, µ, ν ∈ {0, . . . , n−1}, and r := exp(2πi/n) denoting a complex

root of unity [145]. This implies the following results.
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Lemma 2.11. The eigenvalues of the transformation matrix M given by Defini-
tion 2.4 are

ηk :=
∣∣1− w + rkw

∣∣2 = |1− w|2 + |w|2 + 2 Re
(
rkw(1− w)

)
, (2.31)

with k ∈ {0, . . . , n− 1}.
Proof. The eigenvalues of an arbitrary circulant matrix C can be computed by
multiplying

√
nF with the transposed first row of C. Hence (2.31) can be obtained

by simplifying ηk =
∑n−1

ν=0 r
k·ν(M)0,ν or alternatively in preparation of following

results by multiplying the eigenvalues

η
(−)
k =

n−1∑
ν=0

rk·ν(M−)0,ν = rk·0(1− w) + rk·(n−1)w

η
(+)
k =

n−1∑
ν=0

rk·ν(M+)0,ν = rk·0(1− w) + rk·1w

of the circulant matrices M− and M+ having the same eigenvectors. Due to

rk = rk(n−1) it follows that η
(−)
k = η

(+)
k , which implies that the eigenvalues of M

are given by

ηk = η
(+)
k η

(−)
k = η

(+)
k η

(+)
k =

∣∣1− w + rkw
∣∣2 .

The second representation of ηk given by the right hand side of (2.31) follows by

expanding ηk = η
(+)
k η

(−)
k and using uu = |u|2 and u+ u = 2 Reu.

In contrast to the complex eigenvalues of M− and M+, the eigenvalues of M
according to the representation (2.31) are real valued and positive. Furthermore,
it holds that η0 = 1 for all λ ∈ (0, 1) and θ ∈ (0, π/2). The eigenvalues of a
circulant polygon transformation matrix play a central role as has been shown in
the previous section by the eigenpolygon decomposition

z(`) = M `z(0) = (FDF ∗)`z(0) = FD`F ∗z(0) =
n−1∑
k=0

η`kvk ,

according to (2.14) and (2.16).
The eigenpolygon v0 is a degenerate representing n times the centroid of z(0)

and v1 represents a counterclockwise oriented regular n-gon. This is depicted in
Fig. 2.10 showing the decomposition z(0) =

∑n−1
k=0 vk of random n-gons in the case

of n ∈ {5, 6}. Here, the first three vertices have been colored red, green, and blue
respectively in order to denote the orientation.

The eigenpolygons are from left to right the centroid v0, the counterclockwise
oriented regular n-gon v1, and finally the clockwise oriented regular n-gon vn−1.
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= + + + +

= + + + + +

Figure 2.10: Decomposition of a random 5-gon (upper) and 6-gon (lower) into its
eigenpolygons vk

Between them only star shaped n-gons occur if n is a prime number. Otherwise,
folded polygons with multiple vertices exist as can be seen in the case of n = 6
containing two double traversed triangles of opposite orientation and a segment
with vertex multiplicity three.

Special cases occur if an eigenvalue becomes zero, since in this case one step of
the transformation eliminates the associated eigenpolygon in the decomposition
of z(1) = Mz(0). In order to classify these cases, the roots of the eigenvalue
functions with respect to the transformation parameters are determined.

Lemma 2.12. For θ ∈ (0, π/2), λ ∈ (0, 1), the eigenvalue ηk is strictly positive,
i.e. ηk > 0, if and only if k ∈ {0, . . . , bn/2c}. Otherwise ηk has exactly one
isolated root at λ = 1/2, θ = π(2k − n)/(2n).

Proof. Since η0 = 1 has no root it will be assumed that k ∈ {1, . . . , n − 1}.
According to representation (2.31) the eigenvalue ηk is positive and its roots are
given by the solutions of

1− w + rkw = 0 ⇔ w =
1

1− rk =
1

2

(
1 + i cot

πk

n

)
.

Using w = λ− i(1− λ) tan θ yields λ = 1/2 and

θ = − arctan

(
cot

πk

n

)
= −

(
π

2
− πk

n

)
=
π(2k − n)

2n
.

Due to the restriction θ ∈ (0, π/2) this implies k ∈ {bn/2c + 1, . . . , n − 1} as
stated by the lemma.

Since η
(−)
k = η

(+)
k and ηk = η

(+)
k η

(−)
k , the roots given by Lemma 2.12 also hold

for M− and M+. The special case n = 3 and the choice λ = 1/2 and θ = π/6
in order to obtain η2 = 0 and η0 = η1 = 1 represents Napoleon’s theorem [148].
In that case, one step of the transformation suffices to regularize an arbitrary
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triangle, since the eigenpolygon v2 is eliminated by the transformation. This is
the only case where for an arbitrary initial n-gon one step leads to a regular n-
gon, since according to Lemma 2.12 for n > 3 there is no parameter constellation,
where all eigenvalues except η0 and η1 or ηn−1 vanish. Circulant matrices can also
be used in order to derive relations concerning the area of Napoleon triangles as
has been shown in [149].

Nevertheless, all except one of the distorting eigenpolygons vk can be suc-
cessively eliminated by applying n− 2 different transformations with parameters
λ = 1/2 and θ = π(2k − n)/(2n), where k ∈ {1, . . . , n − 1}, which is the result
of the well known Petr-Douglas-Neumann theorem [150–152]. Since there is only
one root for each eigenvalue this choice of the parameters is unique. However, the
construction depends on the orientation of the initial triangle, which leads to an
inner and outer construction, as has also been shown in [153] by using circulant
matrices.

2.3.3 Sequences of transformed polygons

In the following, the behavior of the polygon z(`) will be analyzed with respect
to the parameters λ and θ if ` tends to infinity. According to the decomposition
(2.16) this depends on the dominant eigenvalue ηk. In order to classify parameter
domains of dominant eigenvalues, the according intersection lines are determined
first.

Lemma 2.13. For θ ∈ (0, π/2), λ ∈ (0, 1), the eigenvalues ηk, ηm with k,m ∈
{0, . . . , n − 1} and k 6= m intersect only if (k + m) modn 6= 0. In that case
ηk = ηm only holds along the parameter line

λk,m(θ) := sin θ
(

sin θ + cot
(π
n

(k +m)
)

cos θ
)
, (2.32)

where θ ∈ (0, π/2) and 0 < λk,m(θ) < 1. Furthermore, the eigenvalues only
intersect pairwise.

Proof. According to (2.31) the eigenvalues are positive real valued. Therefore,
eigenvalue intersection parameters can be obtained by finding the roots of the
difference function ηk − ηm, hence the solutions of

Re
(

(rk − rm)w(1− w)
)

= Re
(

(rk − rm)(w − |w|2)
)

= 0 . (2.33)

Due to

rk − rm = −2 sin
(π
n

(k −m)
)(

sin
(π
n

(k +m)
)
− i cos

(π
n

(k +m)
))

︸ ︷︷ ︸
=:u1
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and
w − |w|2 = (1− λ)

((
λ− (1− λ) tan2 θ

)
− i tan θ

)
︸ ︷︷ ︸

=:u2

equation (2.33) simplifies to

−2 sin
(π
n

(k −m)
)

(1− λ) Re(u1u2) = 0 .

Since (k−m) ∈ {−(n−1), . . . , (n−1)}\{0} and λ ∈ (0, 1), the factors preceeding
Re(u1u2) are nonzero. Therefore, the solutions are characterized by Re(u1u2) = 0,
which is

sin
(π
n

(k +m)
)(

λ− (1− λ) tan2 θ
)
− cos

(π
n

(k +m)
)

tan θ = 0 .

In the case of (k + m) modn = 0 this equation reduces to ± tan θ = 0, which
has no solution for θ ∈ (0, π/2). Otherwise, rearranging the terms leads to the
equation

λ(1 + tan2 θ)− tan2 θ = cot
(π
n

(k +m)
)

tan θ .

Since the left side is linear in λ, the following explicit representation of the inter-
section line of the eigenvalues ηk and ηm can be derived

λ =
1

1 + tan2 θ
tan θ

(
tan θ + cot

(π
n

(k +m)
))

,

which simplifies to (2.32).
The eigenvalues intersect only pairwise since there is no index triple k,m, j ∈

{0, . . . , n−1} with k < m < j fulfilling (k+m) modn = µ and (k+ j) modn = µ
where µ ∈ {1, . . . , n− 1}.

Due to the sum of indices in the representation (2.32) and the periodicity of the
cotangent function all index pairs k,m ∈ {0, . . . , n− 1} with (k +m) modn = µ
share the same line of intersection parameters, which can be written as λ0,µ(θ).
Furthermore, since k 6= m, k + m 6= n there are only n − 1 distinct parameter
lines with µ ∈ {1, . . . , n− 1}.

The left side of Fig. 2.11 depicts the intersection lines λ0,µ in the case of n ∈
{5, 6}. The representation (2.32) and the monotonicity of the cotangent function
imply that the intersection lines do not intersect each other. Furthermore, it
holds that limθ→0 λ0,µ(θ) = 0 and limθ→π/2 λ0,µ(θ) = 1. Hence, the parameter
lines (2.32) lead to a natural partition of the parameter domain. In Fig. 2.11,
the resulting subdomains are colored according to the dominant eigenvalues. As
can be seen, there is a change at each second intersection line, which leads to the
following partition.
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Figure 2.11: Domains of dominant eigenvalues ηk and intersection lines λ0,µ (left)
and eigenvalue meshes (right) in the case of n = 5 (upper) and n = 6 (lower)

Definition 2.5. A partition of the parameter domain

D := {(θ, λ) | θ ∈ (0, π/2), λ ∈ (0, 1)}
into subdomains Dk and eigenvalue intersection sets Sk is given by

D =

bn/2c⋃
k=0

Dk

 ∪
bn/2c−1⋃

k=0

Sk

 , (2.34)

with

Dk := {(θ, λ) | θ ∈ (0, π/2), λk(θ) < λ < λk(θ)} ,
Sk := {(θ, λ) | θ ∈ (0, π/2), λ = λk,k+1(θ)} ∩D ,

where

λk(θ) :=

{
0 if k = bn/2c
max

(
0, λ0,2k+1(θ)

)
otherwise

and

λk(θ) :=

{
1 if k = 0

min
(
1, λ0,2k−1(θ)

)
otherwise

.
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Here, b · c denotes rounding towards zero.

The following lemma confirms the assumption of the pattern in which the
dominant eigenvalue changes, as has been used in the partition of the parameter
domain according to Definition 2.5.

Lemma 2.14. For the parameter choice (θ, λ) ∈ Dk, k ∈ {0, . . . , bn/2c}, it
holds that ηk > ηm for all m ∈ {0, . . . , n − 1} \ {k}. In the case of (θ, λ) ∈ Sk,
k ∈ {0, . . . , bn/2c − 1}, it holds that ηk = ηk+1 > ηm for all m ∈ {0, . . . , n− 1} \
{k, k + 1}.

Proof. In the previous section it has been shown for the eigenvalues η
(+)
k of the

transformation M+ and parameters in D̂ := {(θ, λ) | θ ∈ (0, π/2), λ = 1/2} that

for (θ, λ) ∈ D̂ ∩ Dk, k ∈ {0, . . . , bn/2c}, it holds that η
(+)
k > η

(+)
m for all m ∈

{0, . . . , n − 1} \ {k}. Since the eigenvalue functions ηk = |η(+)
k |2 are continuous

on Dk and according to Lemma 2.13 do not intersect each other within Dk, this
dominance pattern also holds for ηk if (θ, λ) ∈ Dk as stated by the lemma.

According to Lemma 2.13 the eigenvalues ηk and ηk+1 intersect for parameters
(θ, λ) ∈ Sk, k ∈ {0, . . . , bn/2c − 1}. Since these eigenvalues are continuous on D
and dominant in the neighboring domains Dk and Dk+1, they are also dominant
in Sk. Furthermore, since eigenvalues intersect only pairwise, there is no other
ηm, m ∈ {0, . . . , n−1}\{k, k+1} with ηm = ηk+1 = ηm, which proves the second
part of Lemma 2.14.

Due to the decomposition (2.16), the dominant eigenvalue determines the
behavior of the polygon z(`) = M `z(0) if ` tends to infinity. This is depicted in
Fig. 2.12, which shows the resulting polygons for some iteration steps `. Here,
the 6-gon depicted on the lower left of Fig. 2.10 has been used as initial polygon.
For each domain Dk or set Sk in the decomposition (2.34) of D one parameter
pair (θ, λ) has been chosen. All polygons have been scaled with respect to their
centroids by (1/ηmax)`, where ηmax := maxk∈{0,...,n−1} ηk denotes the maximal
eigenvalue.

In the case of (θ, λ) ∈ Dk, k ∈ {0, . . . , bn/2c}, the polygons are depicted in the
same color as the associated parameter domains on the lower left of Fig. 2.11. As
can be seen, for (θ, λ) ∈ D0 the polygon degenerates to its centroid (red), whereas
in the case of (θ, λ) ∈ D1 it becomes a counterclockwise oriented regular 6-gon
(blue). These limit figures, as well as the polygons resulting from (θ, λ) being
element of D2 and D3 (green and yellow) can also be found in the decomposition
of z(0) according to Fig. 2.10. For (θ, λ) ∈ Sk, k ∈ {0, . . . , bn/2c − 1} (marked
black), the resulting limit polygons are linear combinations of the neighboring
eigenpolygons as will be stated by the following theorem.
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(θ, λ) ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5 ℓ = 100

(π/16, 3/4) ∈ D0

(π/16, λ0,1) ∈ S0

(π/6, 3/5) ∈ D1

(π/16, λ0,3) ∈ S1

(2π/6, 2/5) ∈ D2

(π/16, λ0,5) ∈ S2

(7π/16, 1/4) ∈ D3

Figure 2.12: Scaled polygons z
(`)
s for different iteration numbers ` and construc-

tion parameters (θ, λ) ∈ D

Theorem 2.13. For ` ∈ N0 let

z(`)
s := v0 +

1

η`max

(z(`) − v0) = v0 +
n−1∑
k=1

(
ηk
ηmax

)`
vk , (2.35)

denote the polygon z(`) = M `z(0) scaled with respect to the centroid v0 by the
inverse of the `-th power of the maximal eigenvalue. Then z(`) tends to

z(∞)
s :=


v0 if (θ, λ) ∈ D0

v0 + vk if (θ, λ) ∈ Dk, k ∈ {1, . . . , bn/2c}
v0 + v1 if (θ, λ) ∈ S0

v0 + vk + vk+1 if (θ, λ) ∈ Sk, k ∈ {1, . . . , bn/2c − 1}

, (2.36)

that is z
(∞)
s = lim`→∞ z

(`)
s .

Proof. The representation (2.36) will be shown by analyzing the eigenvalue quo-
tients ρk := ηk/ηmax ∈ [0, 1], k ∈ {1, . . . , n−1}, in the sum on the right hand side
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of (2.35), which is implied by (2.16) and η0 = 1. In the case of ηmax = ηk it holds
that ρ`k = 1. Hence, the associated eigenpolygon vk is kept unscaled in the sum.
Otherwise ρk < 1 implies that ρ`kvk tends to the zero vector if ` tends to infinity.
Hence, the limit of the sum on the right hand side of (2.35) is given by the sum
of the eigenpolygons belonging to the maximal eigenvalues. The latter are given
by Lemma 2.14.

It should be noticed that in the case k = 0 the maximal eigenvalue is given
by η0 = 1. Hence for (θ, λ) ∈ D0 ∪ S0 it holds that z

(`)
s = z(`). In particular

the unscaled sequence of polygons z(`) degenerates for parameter pairs in D0,
converges to a bounded polygon in S0 and diverges otherwise. Nevertheless,
the transformation has a regularizing effect, since the behavior depends on the
dominant term.

Theorem 2.13 also demonstrates the advantage of combining the basic trans-
formations M− and M+. Since all eigenvalues of M = M+M− are positive, each
step of the transformation has only a scaling effect with respect to the eigen-
polygons and their associated eigenvalues. Hence scaling with (1/ηmax)` leads to

a converging sequence of polygons z
(`)
s . In contrast, the eigenvalues of M+ and

M− respectively are complex valued which implies that one step of the transfor-
mation not only scales each eigenpolygon according to the absolute value of its
associated eigenvalue, but also rotates it by an angle given by the argument of
the eigenvalue. Nevertheless, as has been shown in Section 2.2 for the special
case λ = 1/2, there exist 2n converging subsequences where the limit polygons
for odd and even ` differ only in a cyclic shift of indices, but not in geometry.

For the presented combined transformation, special cases occur if either one
or more of the eigenpolygons in the representation (2.36) of the limit polygon are
zero vectors, that is the according coefficients of the representation of the initial
polygon z(0) with respect to the Fourier polygons are zero, or transformation
parameters are used for which an eigenvalue ηk becomes zero.

For example, let z(0) be a clockwise oriented regular n-gon, λ = 1/2, and
θ = (n−2)π/(2n) be half the interior angle of the regular n-gon. Due to symmetry
reasons, the apices of the isosceles triangles constructed in the first substep G−
all coincide with the centroid of z(0) resulting in z(`) = v0 for ` ∈ N. This can also
be seen by the eigenvalues ηk = csc2(π/n) sin2((1 + k)π/n) of M . Since z(0) is a
linear combination of the first and last column of the Fourier matrix F , one step
of the transformation eliminates the associated eigenpolygon bn−1 since ηn−1 = 0.

It should also be noticed that the eigenpolygons bk, k ∈ {bn/2c+1, . . . , n}, are
not contained in the limit polygons given by (2.36). However, due to symmetry
reasons these eigenpolygons occur as limit polygons if the similar triangles are
constructed to the left of each side.



Chapter 3

Regularizing transformations for
polyhedral finite elements

In this chapter regularizing transformations for the most common volumetric
finite element types, that is tetrahedra, hexahedra, pyramids, and prisms, are
presented. Their regularizing effect is shown numerically, whereby the degree of
regularity is measured by the mean ratio quality criterion, which is introduced
first.

3.1 The mean ratio quality criterion

In order to assess the regularity of mesh elements, the well known mean ratio
quality criterion is used, which has been developed in the context of optimization-
based smoothing methods [20, 22]. It is based on measuring the distance of an
arbitrary simplex in Rn from a corresponding reference simplex. For complete-
ness, the following description will not only cover the volumetric elements under
consideration, but also triangular and quadrilateral planar elements, for which
regularizing transformations have been analyzed in the previous chapter.

Let E := (p1, . . . , p|E|) denote an element with |E| nodes, which can be either
triangular or quadrilateral in R2 or tetrahedral, hexahedral, pyramidal, or pris-
matic in R3. Except for the apex of the pyramidal element, each node pi ∈ Rn,
with n ∈ {2, 3}, of any element is edge-connected to n other nodes pj of the same
element. Thus each node and its edge-connected neighbors define a simplex in
Rn, which will be called node simplex.

Fig. 3.1 gives examples of such simplices associated to p1, which are marked
gray for all element types under consideration. Here, the given elements are
regular and the first two nodes have been set to p1 = (0, . . . , 0) and p2 = (1, 0, . . . ),
respectively. As a prerequisite of the definition of the mean ratio quality criterion,
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(d) Hexahedron
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Figure 3.1: Regular elements with reference simplices marked gray and associated
weight matrices W
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specific element validity conditions have to be stated first. Element validity will
also be assessed based on the node simplices, which will be rendered more precisely
first. In the following, an element of a specific type will be denoted as Etri, Equad,
Etet, Ehex, Epyr, Epri, respectively. The node indices of the node simplices for the
corresponding element type are given by the tuples

N tri :=
(
(1, 2, 3)

)
,

Nquad :=
(
(1, 2, 4), (2, 3, 1), (3, 4, 2), (4, 1, 3)

)
,

N tet :=
(
(1, 2, 3, 4)

)
,

Nhex :=
(
(1, 4, 5, 2), (2, 1, 6, 3), (3, 2, 7, 4), (4, 3, 8, 1), (5, 8, 6, 1), (6, 5, 7, 2),

(7, 6, 8, 3), (8, 7, 5, 4)
)
,

Npyr :=
(
(1, 2, 4, 5), (2, 3, 1, 5), (3, 4, 2, 5), (4, 1, 3, 5)

)
,

Npri :=
(
(1, 2, 3, 4), (2, 3, 1, 5), (3, 1, 2, 6), (4, 6, 5, 1), (5, 4, 6, 2), (6, 5, 4, 3)

)
.

In this representation, the kth element of N ∈ {N tri, Nquad, N tet, Nhex, Npyr,
Npri} represents the n + 1 node indices Nk,i, i ∈ {1, . . . , n + 1}, of the node
simplex associated with pk. The number of node simplices, i.e. the number of
elements in the tuple N , is denoted as |N |. It should be noticed that in the case
of Etri and Etet each of the n + 1 node simplices represents the element itself.
Hence it suffices to use only the node simplex associated with p1 resulting in
|N tri| = |N tet| = 1. Furthermore, the apex p5 of the pyramidal element is the
only node with an incident edge number being not equal to n. However, this
node is omitted, since only the four base node tetrahedra will be used in order
to define the mean ratio quality number of a pyramidal element. Consequently,
for the triangular, tetrahedral as well as the pyramidal element it holds that
|E| 6= |N |.

Definition 3.1. Let E ∈ {Etri, Equad, Etet, Ehex, Epyr, Epri} denote an arbitrary
element with its associated node simplices indices tuple given by N ∈ {N tri, Nquad,
N tet, Nhex, Npyr, Npri}. For each node pk, k ∈ {1, . . . , |N |}, let

Tk :=
(
pNk,1 , . . . , pNk,n+1

)
(3.1)

denote associated the node simplex, and

D(Tk) :=
(
pNk,2 − pNk,1 , . . . , pNk,n+1

− pNk,1
)

the (n × n)-matrix of its spanning edge vectors. The element is called valid if
det(D(Tk)) > 0 holds for all k ∈ {1, . . . , |N |}.
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The given validity criterion excludes in particular specific cases of degener-
ated elements, like for example tetrahedra with collinear nodes, for which the
geometric element transformation given later will not be defined. However, the
prerequisites of the mean ratio quality criterion or additional prerequisites im-
posed by applications like the finite element method requiring a positive interior
Jacobian are stronger than those of the geometric transformation in order to be
well defined.

In the following a definition of the mean ratio quality criterion is given, which
is based on measuring the deviation of simplices in an arbitrary valid element
from their counterpart in an ideal, i.e. regular element, which is represented by a
target matrix W [22].

Definition 3.2. Let E ∈ {Etri, Equad, Etet, Ehex, Epyr, Epri} denote an arbitrary
valid element and N ∈ {N tri, Nquad, N tet, Nhex, Npyr, Npri} its associated indices
tuple of node tetrahedra Tk according to (3.1). The mean ratio quality number of
the element is given by

q(E) :=
1

|N |

|N |∑
k=1

3 det(Sk)
2/3

trace(St
kSk)

, Sk := D(Tk)W
−1, (3.2)

with the element type dependent target simplex weight matrix W given in Fig. 3.1.
Here, the columns of W represent the spanning edge vectors of a node tetrahedron
in the associated regular element.

It holds that q(E) ∈ [0, 1] with small quality numbers representing low quality
elements and q(E) = 1 representing ideal regular elements. In the case of pyrami-
dal elements only the node tetrahedra associated to the four base nodes are used
for quality computation, which is in accordance to [137]. Furthermore, In the
case of non-simplicial elements, the associated difference matrices W represent
non-regular simplices. It should also be noticed that the denominator in (3.2)
represents the squared Frobenius norm of the matrix Sk.

3.2 An opposite face normals-based transforma-

tion for tetrahedra

In the following a simple and efficient regularizing transformation for tetrahedral
elements will be given and analyzed. It is based on deriving new node positions
with the aid of the normals of opposing element faces according to the following
definition.
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Definition 3.3. Let E = (p1, . . . , p4) denote a valid tetrahedral element with the
four inside oriented opposite face normals

n1 := (p4 − p2)× (p3 − p2),

n2 := (p4 − p3)× (p1 − p3),

n3 := (p2 − p4)× (p1 − p4),

n4 := (p2 − p1)× (p3 − p1).

The new nodes p′i, i ∈ {1, . . . , 4}, of the new element E ′ derived by the opposite
face normals transformation are given by

p′i := pi + σ
1√
|ni|

ni , (3.3)

where σ ∈ R+
0 denotes a given scaling factor.

p1

p2

p3

p4p′1

p′2

p′3

p′4

Figure 3.2: Transformation of a tetrahedron using σ = 1

An initial tetrahedron E and its transformed counterpart E ′ using σ = 1 are
depicted exemplarily in Fig. 3.2. In this, associated faces and normals are marked
by the same color. The edges of the resulting tetrahedron E ′ are indicated by
thick black lines.

Due to the orientation of the normals, the transformation enlarges the tetrahe-
dron. Thereby, the magnification is scalable by the factor σ. In the case of σ = 0
it holds that E = E ′. Furthermore, since the normals ni are scaled by 1/

√
|ni|,

the transformation is scale invariant, i.e. for s > 0 it holds that (sE)′ = sE ′.
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In the case of the example depicted in Fig. 3.2, the mean ratio numbers are
given by q(E) = 0.6795 and q(E ′) = 0.9937 for the initial and the transformed
tetrahedron respectively. The resulting tetrahedra obtained by three consecu-
tively applied transformation steps using σ = 1/10 as well as the resulting mean
ratio values and volumes are depicted in Fig. 3.3.

q(E) = 0.6795 q(E′) = 0.7945 q(E′′) = 0.8719 q(E′′′) = 0.9218

vol = 8.67 vol = 14.63 vol = 23.61 vol = 37.21

Figure 3.3: Sequence of consecutive tetrahedron transformations using σ = 1/10

The linear element transformations for planar polygonal elements introduced
in Chapter 2 are based on circulant matrices. Hence, limit polygons can be easily
determined by analyzing the associated eigenvectors. Since the transformation
given by (3.3) is nonlinear and iteratively applying the transformation leads to
complex expressions, proving the regularizing effect is not that simple. Neverthe-
less, it has been substantiated by the following numerical test.

For a given random initial tetrahedron and a fixed value of σ, the transfor-
mation has been iteratively applied until a mean ratio number ≥ (1− 10−6) has
been achieved. In order to investigate the influence of the transformation param-
eter σ and the initial geometry on the convergence of this transformation cycle,
the resulting iteration number has been computed for a broad range of input
data. To be precise, a set of 100,000 different initial tetrahedra with random
nodes pi ∈ [−1, 1]3 and a set of 101 different values of σ equally distributed in
[0, 2] have been used. By performing the transformation cycle for each of the
10,100,000 elements of the Cartesian product of these two sets, a strong evidence
for the general convergence of the successively applied transformation resulting
in regular tetrahedra has been derived. Results of this test with respect to the
transformation parameter σ are depicted in Fig. 3.4.

For each specific choice of σ, the upper and lower bound of the corridor marked
gray represent the maximal and minimal iteration number of all 100,000 regular-
ization cycles performed. The mean iteration number of all cycles with respect
to σ is marked by a thick blue line. The comparatively narrow corridor indicates
that the iteration numbers vary only slightly for a given scaling factor σ. That is,
the mean ratio number and hence the geometry of the initial tetrahedron has only
small influence on the convergence of the transformation. In contrast, the choice
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Figure 3.4: Number of transformations depending on the parameter σ

of the scaling factor σ has a significant impact on the resulting iteration number.
Whereas the mean iteration number grows exponentially if σ tends to zero, it
grows only linearly if σ becomes large. This can be used in order to control the
regularization speed by a quality dependent choice of the scaling factor in the
geometric element transformation method as described in the following chapter.

The mean iteration number becomes minimal in the case of σ ≈ 0.78 and
amounts to 3.69. The minimum of the graph suggests that there might be a
specific choice of σ resulting in an analogon to Napoleon’s theorem for plane
triangles providing a geometric transformation, which regularizes an arbitrary
element within one transformation step. This does not hold for the opposite face
normals transformation for tetrahedra given by Definition (3.3). That is, there
is no specific choice of σ, for which applying the transformation exactly once to
any arbitrary tetrahedron results in a regular one. This can be shown by the
following counterexample.

Let E be the tetrahedron with the nodes p1 = (0, 0, 0)t, p2 = (1, 0, 0)t,
p3 = (0, 2, 0)t, p4 = (0, 0, 3)t. According to (3.3), the nodes of the trans-
formed tetrahedron E ′ are given by p′1 = − σ√

7
(6, 3, 2)t, p′2 = (1 +

√
6σ, 0, 0)t,

p′3 = (0, 2 +
√

3σ, 0)t, p′4 = (0, 0, 3 +
√

2σ)t using an arbitrary scaling factor
σ ∈ R+

0 . In order to be regular, all edge lengths of the transformed tetrahe-
dron have to be equal. Since the equation |p′2 − p′3| = |p′2 − p′4| has the only
valid solution σ =

√
2 +
√

3, and in contradiction |p′2 − p′3| = |p′3 − p′4| implies
σ = 1

2
(
√

2 +
√

6), there is no σ ∈ R+
0 for which the tetrahedron E ′ obtained by

one step of the transformation is regular. However, E can be regularized up to
any given tolerance by several steps of the transformation.

Concerning smoothing applications, regularization within one step is not de-
sirable, since usually this changes geometry to rapidly and might invalidate neigh-
boring elements. Hence, by reliably transforming arbitrary elements successively
into regular ones with a regularization speed easily controllable by the param-
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eter σ, the transformation (3.3) is perfectly suited for the GETMe smoothing
approach described in the following chapter.

It should also be noted, that the transformation given by (3.3) does not pre-
serve the centroid of the tetrahedron, that is 1

4

∑4
i=1 pi 6= 1

4

∑4
i=1 p

′
i, since the

normals ni are scaled by 1/
√
|ni| to ensure the scale invariance of the trans-

formation. In contrast, using the unscaled normals ni results in a regularizing
transformation which preserves the centroid, but is not scale invariant.

3.3 Dual element-based transformations

In the majority of cases mixed volume meshes are assembled of tetrahedra, hex-
ahedra, quadrilateral pyramids, or triangular prisms. Here, a generalization of
the opposite face normals transformation for all element types is not straightfor-
ward. Therefore, an alternative approach based on dual elements is given in the
following.
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Figure 3.5: Node numbering schemes for all element types and their duals

Node numbering schemes for the element types under consideration as well
as their dual elements are depicted in Fig. 3.5. The dual elements, marked blue,
consist of the nodes dk, which will be defined on the basis of the element faces.
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The node index tuples of the latter are given by

F tet :=
(
(1, 2, 3), (1, 2, 4), (2, 3, 4), (3, 1, 4)

)
,

F hex :=
(
(1, 2, 3, 4), (1, 2, 6, 5), (2, 3, 7, 6), (3, 4, 8, 7), (4, 1, 5, 8), (5, 8, 7, 6)

)
,

F pyr :=
(
(1, 2, 3, 4), (1, 2, 5), (2, 3, 5), (3, 4, 5), (4, 1, 5)

)
,

F pri :=
(
(1, 2, 3), (1, 2, 5, 4), (2, 3, 6, 5), (3, 1, 4, 6), (4, 6, 5)

)
.

That is, the kth element of a faces tuple F ∈ {F tet, F hex, F pyr, F pri} represents
the tuple of node indices defining the kth face. The index of the ith node of the
kth face will be denoted as Fk,i. The nodes dk of a dual element are defined as
the arithmetic mean of the not necessarily coplanar face nodes, i.e.

dk :=
1

|Fk|

|Fk|∑
i=1

pFk,i , k ∈ {1, . . . , |F |} , (3.4)

where |Fk| denotes the number of nodes in the kth face and |F | the number of
element faces.

Whereas the tetrahedron and the pyramid are self-dual, the dual elements of
the hexahedron and the prism are an octahedron and a triangular dipyramid,
respectively. In addition, among all dual element faces, the base quadrilateral of
the dual pyramid is the only non-triangular face. Node indices of all dual element
faces are given by

F
tet

:=
(
(1, 2, 4), (1, 3, 2), (1, 4, 3), (2, 3, 4)

)
,

F
hex

:=
(
(1, 2, 5), (1, 3, 2), (1, 4, 3), (1, 5, 4), (6, 5, 2), (6, 2, 3),

(6, 3, 4), (6, 4, 5)
)
,

F
pyr

:=
(
(1, 2, 5), (1, 3, 2), (1, 4, 3), (1, 5, 4), (2, 3, 4, 5)

)
,

F
pri

:=
(
(1, 2, 4), (1, 3, 2), (1, 4, 3), (5, 4, 2), (5, 2, 3), (5, 3, 4)

)
.

The regularizing transformation scheme is based on erecting scaled versions
of the dual element faces normals on suitable base points. Here, the outward
directed face normals are defined as

nk :=

{
(dFk,2 − dFk,1)× (dFk,3 − dFk,1) if |F k| = 3 ,
1
2
(dFk,3 − dFk,1)× (dFk,4 − dFk,2) if |F k| = 4 ,

(3.5)

where k ∈ {1, . . . , |F |} and F denoting a dual element faces tuple taken from

{F tet
, F

hex
, F

pyr
, F

pri}. That is, in the case of triangular faces, the normal is
determined by the cross product of two vectors spanning the face. In the case of
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the quadrilateral base of the pyramid, the normal is defined as the cross product
of the two diagonals of the quadrilateral scaled by 1/2. The base points, on which
the normals will be erected, are defined with the aid of the dual element faces
centroids

ck :=
1

|F k|

|Fk|∑
i=1

dFk,i , k ∈ {1, . . . , |F |} . (3.6)

For the triangular faces of the duals of non-Platonic elements, i.e. pyramids and
prisms, the point

ak(τ) := (1− τ)dFk,1 + τ
1

2

(
dFk,2 + dFk,3

)
,

with τ ∈ R is used. It is located on the line connecting the triangular face apex
and the midpoint of the opposing side. The following definition specifies the
choice of τ with respect to a normals scaling factor σ > 0. The latter will be used
in order to control the regularizing effect of the single element transformation.

Definition 3.4. Let E ∈ {Etet, Ehex, Epyr, Epri} denote an arbitrary element with
|E| nodes pk and dual element face normals nk. Furthermore, let σ ∈ R+ denote
an arbitrary normals scaling factor. The nodes p′k of the transformed element
E ′ = (p′1, . . . , p

′
|E|) are given by

p′k := bk +
σ√
|nk|

nk, k ∈ {1, . . . , |E|}, (3.7)

with element type dependent base points

bk :=


ck if E ∈

{
Etet, Ehex

}
∨ (E = Epyr ∧ k = 5) ,

ak(τ), τ :=
1

2
+ σ if E = Epyr ∧ 1 ≤ k ≤ 4,

ak(τ), τ :=
4

5

(
1−
√

2σ
4
√

39

)
if E = Epri.

(3.8)

A basic prerequisite for regularizing element transformations is that regular
elements are transformed into regular elements. Due to symmetry reasons, this
holds for tetrahedral and hexahedral elements for the specific choice of bk = ck
and arbitrary σ > 0. However, this does not hold for the non-Platonic pyramidal
and prismatic elements. Hence, for these elements an additional degree of freedom
had to be included. It is represented by the σ-dependent parameter τ defining
the position of the base points bk of triangular faces chosen on the line connecting
the apex and the midpoint of the opposing side. The specific choice of τ given
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Figure 3.6: Transformed element construction by erecting normals on the dual
element

in (3.8) has been determined by the basic regularity prerequisite. That is, by
solving an equation based on the equality of transformed element edge lengths.

The construction of the transformed element is depicted in Fig. 3.6 for the
specific choice σ = 1. Here, the faces of the dual elements are marked gray with
blue edges. The base points bk are indicated by black markers, the normals nk by
black arrows, and the resulting transformed elements E ′ red. In the case of the
pyramidal and prismatic element, the line connecting the triangular face apex
with the midpoint of the opposite side is marked green. Here, the resulting base
point bk may lie outside the associated dual element face as can be seen in the
case of the pyramidal element.

In the following, basic properties of the dual elements-based transformation
will be analyzed.

Lemma 3.1. The transformation given by Definition 3.4 is invariant with respect
to translation, rotation, and scaling for all element types.

Proof. It has to be shown that for arbitrary scaling factors ζ > 0, rotation matri-
ces R (i.e. matrices with detR = 1 and R−1 = Rt) and translation vectors t ∈ R3

it holds that (ζRpk + t)′ = ζRp′k + t. This will be accomplished by applying the
geometric transformation given by Definition 3.4 to the nodes p̃k := ζRpk + t of
an element E ∈

{
Etet, Ehex, Epyr, Epri

}
with the corresponding faces tuple F .
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According to (3.4) the nodes d̃k of the dual element associated to the element
with nodes p̃k are given by

d̃k :=
1

|Fk|

|Fk|∑
i=1

p̃Fk,i =
1

|Fk|

|Fk|∑
i=1

(ζRpFk,i + t) = ζR

 1

|Fk|

|Fk|∑
i=1

pFk,i

+ t

= ζRdk + t ,

with k ∈ {1, . . . , |F |}. Using (3.6) it can be shown analogously that the centroid
c̃k of the kth dual element face with node indices given by F k can be written as

c̃k :=
1

|F k|

|Fk|∑
i=1

d̃Fk,i = ζRck + t, for k ∈ {1, . . . , |F |}.

According to (3.8), the base node b̃k is either the centroid c̃k of the kth dual
element face or given by the linear combination

ãk(τ) := (1− τ)d̃Fk,1 +
τ

2

(
d̃Fk,2 + d̃Fk,3

)
= (1− τ)(ζRdFk,1 + t) +

τ

2

(
ζR(dFk,2 + dFk,3) + 2t

)
= ζR

(
(1− τ)dFk,1 +

τ

2

(
dFk,2 + dFk,3

))
+ t = ζRak(τ) + t ,

which implies b̃k = ζRbk + t for k ∈ {1, . . . , |E|}. That is, the normal base
nodes of the scaled, rotated, and translated element can be obtained by scaling,
rotating, and translating the normal base nodes of the initial element.

For the normals ñk of triangular dual element faces with nodes d̃Fk,i it holds
that

ñk :=
(
d̃Fk,2 − d̃Fk,1

)
×
(
d̃Fk,3 − d̃Fk,1

)
=

(
ζR(dFk,2 − dFk,1)

)
×
(
ζR(dFk,3 − dFk,1)

)
= ζ2 det(R)

(
R−1

)t
[
(dFk,2 − dFk,1)× (dFk,3 − dFk,1)

]
= ζ2Rnk .

For normals of quadrilateral faces ñk = ζ2Rnk follows analogously.
These representations of b̃k and ñk finally imply

(ζRpk + t)′ = p̃′k = b̃k +
σ√
|ñk|

ñk = ζRbk + t+
σ

ζ
√
|nk|

ζ2Rnk

= ζR

(
bk +

σ√
|nk|

nk

)
+ t = ζRp′k + t ,

thus proving the invariance property of the transformation as stated by the
lemma.
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The last step in the proof of Lemma 3.1 also gives the motivation for the
choice of the normalization factor 1/

√
|nk| in the definition (3.7) of p′k, since it

ensures the scale invariance of the regularizing element transformation.
For an arbitrary element E ∈

{
Etet, Ehex, Epyr, Epri

}
with |E| nodes pk let

q :=
1

|E|

|E|∑
k=1

pk (3.9)

denote the centroid of the initial element. Furthermore, let

q′ :=
1

|E|

|E|∑
k=1

p′k =
1

|E|

|E|∑
k=1

bk︸ ︷︷ ︸
=:q′b

+
σ

|E|

|E|∑
k=1

1√
|nk|

nk︸ ︷︷ ︸
=:q′n

(3.10)

denote the centroid of the transformed element and its partition into the mean
base node q′b as well as the mean normal q′n. The following lemma considers the
relation between the centroids of initial and transformed elements.

Lemma 3.2. For E ∈
{
Etet, Ehex, Epri

}
it holds that q = q′b. In addition, for

E = Ehex it holds that q = q′, i.e. the transformation preserves the centroid of
hexahedral elements.

Proof. The hexahedral case will be shown first by evaluating the two sums q′b and
q′n according to (3.10) separately. For q′b successively substituting bk := ck by the
representations of the octahedron nodes, centroids and normals yields

1

8

8∑
k=1

ck =
1

8

8∑
k=1

(
1

3

3∑
i=1

(
1

4

4∑
j=1

pFhex

F
hex
k,i ,j

))
=

1

8 · 3 · 4
8∑

k=1

3 · 4 · pk =
1

8

8∑
k=1

pk .

The simplification of the triple sum is based on the fact that each node pk is
involved in three facet centroids of the hexahedron and with each of this in four
facet centroids of the octahedron.

In order to prove q = q′ it remains to show that q′n = (0, 0, 0)t, which holds
since the normals of opposing octahedron faces pairwise sum up to the zero vector.
That is n1 = −n7, n2 = −n8, n3 = −n5, and n4 = −n6, as will be shown
exemplarily for the first identity. The representation of the octahedron normals
implies

n1 = (d2 − d1)× (d5 − d1)

= +
1

16

[
(p5 + p6 − p3 − p4)× (p5 + p8 − p2 − p3)

]
= − 1

16

[
(p2 + p3 − p5 − p8)× (p3 + p4 − p5 − p6)

]
= −

(
(d3 − d6)× (d4 − d6)

)
= −n7 ,
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since the cross product is compatible with scalar multiplication and anti-commutative.
The other identities can be deduced analogously.

In the case of tetrahedral elements successively substituting the expressions
(3.6) and (3.4) in the representation of the base nodes bk = ck implies

q′b =
1

4

4∑
k=1

ck =
1

4

4∑
k=1

(
1

3

3∑
i=1

(
1

3

3∑
j=1

pF tet

F
tet
k,i,j

))
=

1

36

4∑
k=1

9pk = q .

Here, it has been used that each node pk is involved in the three adjacent element
face centroids dk and with each of this in three dual element face centroids ck.

Finally, in the case of prismatic elements the base nodes are given by bk =
ak(τ) resulting in

q′b =
1

6

6∑
k=1

ak(τ) =
1

6

6∑
k=1

[
(1− τ)dFk,1 +

τ

2

(
dFk,2 + dFk,3

)]
=

1

6
[3(1− τ)(d1 + d5) + 2τ(d2 + d3 + d4)]

=
1

6
[(1− τ)(p1 + · · ·+ p6) + τ(p1 + · · ·+ p6)] = q .

Since q′b = q has been shown for arbitrary τ , this holds in particular for the
specific choice of τ given in (3.8).

Whereas Lemma 3.2 implies q′n = (0, 0, 0)t for arbitrary hexahedra, this does
not generally hold for tetrahedral, pyramidal and prismatic elements as can be
shown by simple counterexamples. However, centroid preservation can easily
be achieved by an additional translation step after transforming the element.
According to Lemma 3.2 the required translation vector is given by −q′n in the
case of tetrahedral and prismatic elements and by q− q′ in the case of pyramidal
elements. For the latter even q = q′b does not hold in general as can also be shown
by simple counterexamples.

Due to its geometric construction and depending on the choice of the normals
scaling factor σ given in Definition 3.4, the size of a transformed element can
differ significantly from the size of the initial element. This can be avoided by
an element scaling step, which can be combined with the centroid preservation
step described in the previous paragraph. Let Q = (q, . . . , q) and Q′ = (q′, . . . , q′)
denote 3×|E| matrices with each column representing the initial and transformed
element centroid q and q′, respectively. For an arbitrary scaling factor ζ > 0 the
scaled transformed element E ′s preserving the initial element centroid q is given
by

E ′s := Q+ ζ(E ′ −Q′) . (3.11)
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A natural choice of ζ applicable to all element types is, for example, the mean
length of all edges of E divided by the mean length of all edges of E ′. This
choice of ζ will be denoted as mean edge length preserving scaling. Other scaling
schemes could for example be based on preserving the mean volume of all node
tetrahedra Tk.

Valid initial elements of all types under consideration defined by randomly
chosen nodes and their mean ratio quality numbers can be seen in the leftmost
column of Fig. 3.7. In addition, each row contains the elements obtained by
successively applying the same element transformation using σ = 1 and mean
edge length preserving scaling to prevent the successive growth of the elements.

0.9994

1.0000

0.9982

0.9989

0.9984

0.9999

0.9949

0.9971

0.9956

0.9993

0.9864

0.9921

0.9875

0.9956

0.9556

0.9786

0.9420

0.9495

0.8844

0.9268

0.7521

0.4630

0.5161

0.5719

Figure 3.7: Elements and their mean ratio quality numbers obtained by succes-
sively applying the regularizing transformation using σ = 1 and mean edge length
preserving scaling

Mean ratio quality numbers are successively improved resulting in nearly reg-
ular elements after applying the transformation five times, as can be seen by the
elements depicted in the rightmost column. In particular, the first transformation
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step leads to a considerable improvement of element regularity and with this in
element quality. In the context of mesh smoothing, such a rapid change of shape
is not always favorable since it also increases the risk of invalid neighbor element
generation. Therefore, relaxation is applied, that is the linear combination

E ′r := (1− %)E + %E ′s (3.12)

of the initial element E and the transformed and scaled element E ′s is used, where
% ∈ (0, 1] represents the relaxation parameter. The smaller % gets, the smaller are
the geometric changes compared to the initial element E. For the choice % = 1 it
holds that E ′r = E ′s.

Due to its recursive nature and the involvement of cross products and vector
normalization, proving the regularizing effect of the non-linear transformation
given by Definition 3.4 is not an easy task. Therefore, it has been substantiated
by numerical tests, which also provide more insight into the regularizing behavior
of the transformation with respect to the scaling parameter σ.

The tests are based on generating 100,000 random initial elements of each
type and taking 101 equidistant values for σ ∈ [0, 2]. For each pair (Ej, σk)
taken from the Cartesian product of all elements and all σ-values, the geometric
transformation using the scaling factor σk has been iteratively applied starting
with the initial element Ej until the mean ratio quality number of the resulting
element deviated less than 10−6 from the ideal value one. After each iteration
step the resulting element has been scaled with ζ being set to the inverse of
the arithmetic mean of all edge lengths to avoid numerical instabilities caused
by the successive element growth, which would have occurred otherwise. Due
to the scaling invariance of the transformation according to Lemma 3.1 this has
no influence on the speed of regularization. In addition, relaxation has been
disabled by the specific choice % = 1. For each element type this test resulted in
10,100,000 transformation cycles, each represented by its number of iterations,
thus providing an indication of the speed of regularization.

Results of this test are depicted in Fig. 3.8a. Here, for each element type and
specific choice of σk the according graph gives the average iteration number of all
100,000 transformation cycles performed. In addition, for selected values of σ the
standard deviation is marked by error markers. As can be seen, all graphs show
a similar behavior. To be precise, the average iteration number increases if σ
tends to zero, since the transformation tends to become a node averaging scheme
without regularizing effect. For σ ∈ (1/2, 2), that is after reaching its minimum,
the average iteration number depends almost linearly on σ. Thus, the parameter
σ provides an easy control for the speed of regularization.

Due to the usage of random initial nodes, the probability of an initial ele-
ment being invalid increases with its complexity, i.e. with its number of nodes.
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(a) Arbitrary initial elements
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(b) Valid initial elements
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Figure 3.8: Regularization speed with respect to scaling parameter σ
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This is reflected by the valid initial element percentage amounting to 50.15% for
tetrahedral, 0.37% for hexahedral, 9.36% for pyramidal, and 5.33% for prismatic
elements. That is, in the majority of cases random generated elements are in-
valid. However, the transformation also reliably regularizes invalid elements, as
can be seen by the average iteration numbers given in Fig. 3.8a. Furthermore,
as is shown by the standard deviation error markers the dispersion of iteration
numbers is moderate.

Regularization results are even more uniform, if only valid elements are used
as is common in the case of mesh smoothing. Results based on using 100,000
valid initial elements for each element type are depicted in Fig. 3.8b. Compared
to the test case of arbitrary initial elements the average iteration number becomes
smaller while preserving its qualitative behavior with respect to σ. Furthermore,
the standard deviation is decreased significantly. That is, for a given element type
and normals scaling factor σk elements are regularized quite uniformly. This is
an important fact with respect to the mesh smoothing approach presented below,
assuring a consistent smoothing result.

The transformation of hexahedral elements, not only differs in the centroid
preservation property, but also in its increased speed of regularization as can
be seen in both cases. Hence, for mixed mesh smoothing it is advisable to use
element type dependent values for σ to obtain a uniform regularization for all
elements under consideration.



Chapter 4

GETMe smoothing

Whereas in the previous two chapters single element transformations have been
considered, this chapter discusses how to use such transformations in order to
smooth entire finite element meshes. This results in the definition of the geometric
element transformation method, which is highly effective and efficient although
being conceptually comparably simple.

4.1 Introduction

Let M be a conforming mesh with np ∈ N nodes pi ∈ Rn, where n ∈ {2, 3}
denotes the dimension and with i ∈ I := {1, . . . , np} representing the index set
of all nodes. The latter are connected by ne ∈ N valid mesh elements Ej =
(pj1 , . . . , pj`), where j ∈ J := {1, . . . , ne}. Each element Ej is uniquely defined by
its node indices j1, . . . , j` ∈ I with ` denoting the element type specific number
of nodes. GETMe smoothing, in its presented form, is based on using the mean
ratio quality criterion for transformation and termination control. Due to the
requirements of this quality criterion, the initial mesh has to be valid, that is,
all elements have to be valid according to Definition 3.1. Otherwise, untangling
techniques, similar to those presented in [110, 124], have to be applied first as is
the case in mean ratio-based optimization methods.

By using the mean ratio quality q(Ej) of a single mesh element Ej introduced
in Equation (3.2), minimal and mean mesh quality numbers for the entire mesh
are given by

qmin := min
j∈J

q(Ej) and qmean :=
1

ne

ne∑
j=1

q(Ej) . (4.1)

If boundary nodes are kept fixed during the smoothing process, the element with
the lowest quality might consist entirely of boundary nodes. Since in this case qmin

97
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cannot be improved, q∗min denoting the minimal element quality of all elements
with at least one interior node will be used instead. This number gives the lowest
quality of all improvable elements.

In the following a basic GETMe smoothing approach as well as an advanced
version using concepts of adaptivity will be introduced. Both are founded on a
two-phase smoothing approach. These phases can be distinguished by the number
of element transformations performed within one smoothing step as is illustrated
in Fig. 4.1 on the example of a planar polygonal mesh. Here, the initial nodes are
indicated by black square symbols, initial elements by black edges. Transformed
elements and the associated nodes are marked blue, new node positions obtained
by one smoothing step are marked by red points.

(a) GETMe simultaneous (b) GETMe sequential

Figure 4.1: New node computation in GETMe simultaneous by transformed el-
ement nodes averaging and by direct worst element transformation in GETMe
sequential

Fig. 4.1a depicts a simultaneous approach in which all elements Ej are trans-
formed, scaled, and relaxed first. For each node pi and an attached element Ej
this results in a new temporary node p′i,j. Then, the new mesh node positions are
derived as weighted averages. An alternative approach of mesh smoothing based
on regularizing element transformations is depicted in Fig. 4.1b. In this, only the
improvable element with the lowest quality q∗min is transformed and the obtained
new element nodes are set directly, which also affects all neighboring elements.
This is iteratively applied which results in a sequential approach of single element
improvements.
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4.2 Simultaneous GETMe smoothing

Before defining the single steps of the simultaneous GETMe algorithm, a more
detailed sketch of its procedure will be given also introducing some additional
notation. This scheme is based on transforming all mesh elements Ej simulta-
neously. Let J(i) ⊆ J denote the index set of all mesh elements adjacent to the
node pi. For each node pi and its adjacent elements Ej, j ∈ J(i), this results in
|J(i)| new temporary nodes p′i,j. Out of this, new node positions p′i are derived
as quality weighted means according to

p′i :=

∑
j∈J(i) wjp

′
i,j∑

j∈J(i) wj
with wj :=

(
1− q(Ej)

)η
, (4.2)

where η denotes a prescribed weight exponent. Due to its geometric approach the
validity of the resulting new mesh elements cannot be guaranteed so far. There-
fore, a simple repair step for invalid elements is applied subsequently. All steps
are repeated until the resulting mesh improvement is below a given tolerance.
This results in the simultaneous GETMe smoothing algorithm summarized in
Fig. 4.2.

Input : Initial valid mesh
Output: Smoothed valid mesh

1 for Iter := 1 to MaxIter do

2 ResetTemporaryNodesAndWeights();
3 AddTransformedElementNodesAndWeights();
4 ComputeNewNodes();
5 IterativeInvalidElementResetting();
6 if improvement of qmean by last iteration below threshold then
7 break;
8 end

9 end

Figure 4.2: Algorithmic description of GETMe simultaneous smoothing

In the following, a more detailed description of the sub-functions of simulta-
neous GETMe smoothing is given:

• ResetTemporaryNodesAndWeights: In addition to the current mesh node
coordinates given by pi, old coordinates pold

i , and the nominator p̂i and
denominator ŵi in the representation of p′i according to Equation (4.2)
are used. In this sub-function, these additional variables are initialized to
pold
i := pi, p̂i := (0, 0, 0), and ŵi := 0.
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• AddTransformedElementNodesAndWeights: This sub-function determines
p̂i and ŵi. For this purpose, each element Ej is transformed using one of the
element type specific transformation schemes defined in the previous two
chapters, scaled with respect to its centroid according to (3.11), and relaxed
according to (3.12) using a fixed relaxation value % ∈ (0, 1]. In the case of
transformations not preserving the centroid, the transformed element is also
shifted in order to preserve the centroid. This results in the new temporary
nodes p′i,j and associated weight wj, which are involved in Equation (4.2).
These are added to the corresponding nominator and denominator variable
p̂i and ŵi, respectively.

In the case of polygonal element transformations according to Equation (2.4),
the parameters λ and θ are usually fixed prescribed values. In the case of
volumetric element transformations, the normals scaling factor σ is cho-
sen within a element type dependent interval [σtype

min , σ
type
max ] depending on the

actual element quality according to

σj := σtype
min + (σtype

max − σtype
min )

(
1− q(Ej)

)
.

• ComputeNewNodes: For each node pi of the mesh compute its new position
according to Equation (2.4) by dividing p̂i by ŵi and assign the resulting
new mesh node to pi. If boundary nodes have to preserved, such nodes
are not modified. Otherwise projection techniques can be applied in order
to preserve the shape of the mesh. This also holds in the case of surface
meshes.

• IterativeInvalidElementResetting: Since the previous step might in-
validate elements, like in the case of Laplacian smoothing, nodes of invalid
elements are reset to their old position stored in pold

i . This is iterated un-
til no invalid element remains in the mesh. This loop is guaranteed to
terminate, since the initial mesh is valid.

As has been shown numerically in Section 3.3, the average convergence rate of
the dual element-based transformation for volumetric elements not only depends
on the normals scaling factor σj but also on the element type. Therefore, element
type dependent ranges for σj are used in AddTransformedElementNodesAnd-

Weights to synchronize the speed of regularization. The concrete choice of σj is
based on the individual element quality q(Ej), which allows low quality elements
to be smoothed more carefully than high quality elements. Within the mesh
smoothing context, the element growth, centroid movement, and rapid change
of shape caused by the element transformation are undesirable and hence also
corrected in this sub-function.



4.3. SEQUENTIAL GETME SMOOTHING 101

In AddTransformedElementNodesAndWeights the nominator and denomina-
tor of the new node representation Equation (2.4) are computed. Again, quality
weighted averaging puts an emphasis on low quality elements. This can addition-
ally be enforced by an appropriate choice of the user defined exponent η ≥ 0. If
all elements adjacent to pi are regular, the denominator in the representation of p′i
becomes zero. However, this is no problem, since from a local point of view, the
original node position is already optimal and hence kept unchanged. Whereas
according to the previous sub-function element centroid changes are prevented
on a single element level, they are enabled on the complete mesh level due to
weighted node averaging.

It should also be noted that according to AddTransformedElementNodesAnd-

Weights new node coordinates are not immediately updated, since this would in-
fluence the computation of neighboring nodes. Therefore, new node computation
and applying the new coordinates are conducted in ComputeNewNodes, ensuring
that the computation does not depend on the numbering scheme of nodes and
elements. This is of particular interest for parallelized implementations of the
GETMe approach, in order to obtain reproducible results.

Due to the geometry driven approach, the steps accomplished so far may lead
to the generation of invalid elements. Such elements are identified and removed
in IterativeInvalidElementResetting. For reasons of simplification and due
to good results in various numerical tests, this is done by iteratively resetting the
associated nodes to their previous position pold

i .

A likewise simple approach is used for the termination control of the algorithm.
It is based on the number of iterations performed so far and the mean mesh quality
number of the current and previous iteration. Smoothing is terminated if the
mean mesh quality improvement obtained by one step of GETMe simultaneous
smoothing drops below a given threshold.

4.3 Sequential GETMe smoothing

Although the sequential approach is likewise based on improving element quality
by applying the regularizing element transformation, the way in which trans-
formed element nodes are handled is much simpler. Here, the elements with the
lowest quality are selected iteratively and transformed within the mesh. That is,
new node coordinates are set directly. This is repeated until specific termination
criteria are met. In order to allow an additional control over element selection,
each element quality number q(Ej) is corrected by a quality penalty value πj ≥ 0,
which is initialized to zero. A proper control of this penalty parameter also avoids
an infinite loop of picking, transforming and resetting the same element due to in-
validated neighboring elements. This results in the sequential GETMe algorithm
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as given in Fig. 4.3.

Input : Initial valid mesh
Output: Smoothed valid mesh

1 for Iter := 1 to MaxIter do

2 TransformAndSetWorstQualityElement();
3 InvalidElementAndPenaltyHandling();
4 if no q∗min improvement within the last n iterations then
5 break
6 end

7 end

Figure 4.3: Algorithmic description of GETMe sequential smoothing

The role of the sub-functions of this algorithm are described in more detail in
the following:

• TransformAndSetWorstQualityElement: The index j of the element with
lowest corrected quality q(Ej) + πj is determined first and all its nodes are
stored according to pold

i := pi. Subsequently Ej is transformed using fixed
transformation parameters, scaled while restoring its centroid according
to (3.11) and relaxed according to (3.12) using a fixed parameter value
% ∈ (0, 1] resulting in the new temporary nodes which directly replace the
current nodes pi of the element.

• InvalidElementAndPenaltyHandling: In the case that any of the neigh-
boring elements becomes invalid, revert to the initial node positions. In-
crease quality penalty value πj of element Ej by fixed value ∆πi > 0 if an
invalid element was generated, by ∆πr > 0 if the same element was picked
in previous step, and decrease by ∆πs > 0 if transformation was successful.

In TransformAndSetWorstQualityElement the element Ej with the lowest
quality number is determined first, which is an O(1) operation if a min heap
of quality numbers and associated element indices is used. Subsequently, Ej is
transformed and adjusted similar to the simultaneous approach. However, since
only one element is transformed, there is no need for a quality dependent control
of the transformation and averaging parameters. Hence, it suffices to use a fixed
set of conservatively chosen σtype values to slightly improve element quality while
reducing the risk of invalid element generation.

Since only one element is transformed, its new nodes can immediately be set
after the original node coordinates have been stored for invalid element handling
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purposes. Likewise handling of invalid elements becomes simple, since only the
element Ej and its direct neighbor elements are affected by the node updates. In
the case that one of these elements becomes invalid, the initial node coordinates
are restored in InvalidElementAndPenaltyHandling.

Without further modifications, this could result in an infinite loop of picking,
transforming and reverting the same element and its nodes. This is prevented
by a simple element quality penalty mechanism based on adjusting the quality
penalty value πj associated to the selected element Ej. In this, πj is increased by
∆πi if invalid elements have been generated. This leads to a successively increased
corrected quality number q(Ej) + πj of Ej until a different element is picked first
in TransformAndSetWorstQualityElement. The increase of the penalty term in
case of a repeated selection of the same element can be accelerated by the choice of
∆πr > 0. Finally, if an element Ej has been successfully transformed and applied,
its quality penalty value πj is decreased by ∆πs. Using a min heap for determining
the lowest quality element also requires the update of changed element qualities,
which is an O(log ne) operation for the selected element Ej itself as well as its
neighboring elements if node updates have been successful. Hence, the selection
of the elements, which have to be transformed, can be handled efficiently.

4.4 GETMe smoothing

By deriving new node positions as weighted means of transformed element nodes
for the complete mesh, the simultaneous GETMe approach focuses on the overall
mesh quality. In contrast, transforming only low quality elements in the case
of the sequential approach puts an emphasis on improving the lowest element
quality. These individual strengths with respect to quality and runtime behavior
are combined by applying GETMe simultaneous first, which improves overall
mesh quality and with this problematic parts of the mesh containing the element
with the lowest quality. Therefore, the subsequently applied GETMe sequential
approach can improve the remaining low quality elements more effectively. The
resulting combined approach is simply denoted as GETMe smoothing.

As numerical tests have shown, this basic GETMe smoothing approach al-
ready results in quality numbers at least comparable to those of a state of the
art global optimization approach within significantly shorter runtimes. Results
of these tests are given in Chapter 5.

4.5 The GETMe adaptive approach

The GETMe approach described in the previous section has been further im-
proved with the following aspects in mind: improving smoothing quality, reduc-



104 CHAPTER 4. GETME SMOOTHING

ing the number of control parameters, preserving simplicity, and increasing its
amenability to parallel implementation.

Similar to the GETMe approach, smoothing by the new GETMe adaptive
approach is performed in two stages. The first is geared towards improving qmean,
the second towards improving q∗min. However, in contrast to GETMe smoothing,
these two stages are integrated into one smoothing loop. Furthermore, both
stages use the same weighted node averaging scheme given by

p′i :=

∑
j∈J(i) wjp

′
i,j∑

j∈J(i) wj
, with wj :=

√∑
n∈N(j) q(En)

|N(j)|q(Ej)
, (4.3)

in order to compute new node positions. Here N(j) denotes the index set of the
neighbor elements of Ej, i.e. elements, which share at least one node with Ej.
The number of such neighbor elements is given by |N(j)|. Compared to GETMe
simultaneous smoothing using the averaging scheme according to Equation (4.2),
the first stage of GETMe adaptive smoothing differs in the choice of the weights
wj, as can be seen by Equation (4.3), where the quality of a single element is
related to the mean quality of its direct neighbors. This puts an emphasis on
weights of lower quality elements. In GETMe sequential only the worst element
is transformed and the resulting new element nodes are set directly, affecting all
neighboring elements. In contrast, both stages of GETMe adaptive smoothing
use the weighted node averaging scheme according to Equation (4.3) in order to
provide a more balanced result. The algorithmic description given in Fig. 4.4
provides an overview of the adaptive approach, which will be described in detail
in the following.

In GETMe adaptive, only elements with a mean ratio quality number below
a given threshold qt are transformed. This threshold is set to one in line 1 of
the algorithm, which enforces all elements to be transformed during the first
stage. Furthermore a state variable, indicating the qmean oriented stage, and
an associated table of node relaxation values are initialized. The role of the
relaxation values will be discussed later and specific choices for the parameters
involved will be given in Section 5.5.

The following sub-functions are applied:

• ResetTemporaryNodesAndWeights: For each node initialize a temporary
node sum p̂i := (0, 0, 0) and weight sum ŵi := 0.

• AddTransformedElementNodesAndWeights: For each mesh element Ej with
q(Ej) ≤ qt, compute the associated weight wj according to Equation (4.3),
apply the geometric transformation to Ej using fixed transformation pa-
rameters, scale E ′j with respect to its centroid in order to preserve the sum
of all element edge lengths and add the resulting weighted nodes wjp

′
i,j to
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Input : Initial valid mesh
Output: Smoothed valid mesh

1 qt := 1;
2 State := MeanCycleRunning;
3 SetNodeRelaxationValueTable(State);
4 for Iter := 1 to MaxIter do /* Main smoothing loop */

5 ResetTemporaryNodesAndWeights();
6 AddTransformedElementNodesAndWeights(qt);
7 AddUntransformedElementNodesAndWeights(qt);
8 ComputeNewNodes();
9 IterativeNodeRelaxation();

10 if State = MeanCycleRunning and ∆qmean < tol then
11 State := MinCycleStart;
12 SetNodeRelaxationValueTable(State);

13 end
14 if State = MinCycleRunning then
15 if no q∗min improvement in last iteration then
16 NoMinImproveCounter++;
17 end
18 if NoMinImproveCounter > MaxNoMinImproveCounter then
19 State := MinCycleStart;
20 end

21 end
22 if State = MinCycleStart then
23 if no q∗min improvement in last min cycle then break;
24 State := MinCycleRunning;
25 NoMinImproveCounter := 0;
26 qt := DetermineTransformationThreshold();

27 end

28 end

Figure 4.4: Algorithmic description of the GETMe adaptive smoothing
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the temporary node sums p̂i and the weight wj to the associated temporary
weight sums ŵi.

• AddUntransformedElementNodesAndWeights: Let IT denote the index set
of non-fixed nodes, which belong to at least one transformed element. For
each untransformed element Ej with q(Ej) > qt and at least one node pi
with i ∈ IT compute the associated weight wj according to Equation (4.3)
and add the weighted, but untransformed coordinates wjpi of the nodes
of Ej to the temporary node sums p̂i and the weight wj to the associated
temporary weight sums ŵi.

• ComputeNewNodes: For each i ∈ IT with ŵj > 0 replace the contents of p̂i
by the weighted coordinates (1/ŵi)p̂i resulting in the new node coordinates
p′i according to Equation (4.3). In the case of ŵj = 0 use p̂i := pi.

• IterativeNodeRelaxation: Set the index into the table of relaxation val-
ues of each node to ri := 1 and apply p′i := pi for all i 6∈ IT . For all
i ∈ IT and a given table of relaxation values R = (%1, . . . , %k) compute the
associated new coordinates as

p′i := (1− %ri)pi + %ri p̂i , (4.4)

Subsequently, run the following iterative relaxation process until no invalid
element remains in the mesh: For each invalid element mark the associated
nodes and for each marked node increase the relaxation counter and recom-
pute p′i according to Equation (4.4). Here, the last entry %k in the table R
of descending relaxation values equals 0, and the increase of ri is stopped if
k is reached. This assures that if relaxation cannot avoid the generation of
invalid elements, the nodes are reseted to their original valid position like
in the case of the GETMe approach. After termination of the relaxation
loop set the new mesh node coordinates to p′i.

The subsequent lines 10 to 26 of the algorithm control the two smoothing
stages. Here, the first if-statement of this block controls the termination of
the qmean-oriented first smoothing stage, in which all elements are transformed
due to the choice qt := 1. This stage, indicated by setting the state vari-
able to MeanCycleRunning, is terminated in case the qmean-improvement (de-
noted as ∆qmean) of two consecutive iterations drops below a prescribed thresh-
old tol, which is usually set to 10−4. If this is the case, the state is changed to
MinCycleStart and an alternative table of relaxation values used in Iterative-

NodeRelaxation is set. Specific choices used for the tables of relaxation values
are given in the numerical examples section.
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The second stage, which is geared towards improving q∗min, is divided into
smoothing cycles consisting of an adaptive number of smoothing iterations. Here,
at the beginning of each cycle (cf. line 22 of the algorithm), smoothing is termi-
nated if the previous cycle did not result in an improvement of q∗min. Subsequently,
the no improvement counter is reset and a new element quality threshold qt is
determined. This is done by DetermineTransformationThreshold in which the
quality numbers of all mesh elements are sorted in ascending order. After that,
qt is set to the quality value of a prescribed position in this sorted vector. Usu-
ally, this position is set to a fixed percentage of all elements times the number of
elements.

After determining the new node positions within one q∗min-oriented smoothing
cycle, q∗min is checked in lines 14f. If there is no improvement, then the no im-
provement counter is increased by one and the cycle is terminated as soon as this
counter reaches a prescribed limit.

Due to their common approach of using geometric element transformations in
combination with weighted transformed node averaging, GETMe smoothing as
well as GETMe adaptive smoothing are generally applicable. As has been already
shown by various examples of GETMe smoothing this includes structured and
unstructured surface and volume meshes consisting of triangular, quadrilateral,
tetrahedral, hexahedral, pyramidal, and prismatic elements [27–31, 35]. From an
algorithmic point of view, GETMe adaptive differs from GETMe smoothing in
the following points:

• Incorporation of two smoothing stages within one smoothing loop instead
of applying two separate loops.

• Relaxation is applied to both previous and new node positions instead of
involving previous and transformed elements. Furthermore, the relaxation
parameter is adjusted on a nodal basis, which also replaces the iterative
invalid element node resetting scheme.

• During the q∗min oriented stage, GETMe adaptive transforms more than one
element per iteration, which is more suitable for parallel mesh smoothing.
Furthermore, both stages use the same node averaging approach. However,
nodes of elements with q(E) > qt are directly used without transformation
and scaling.

• Iterations of the second stage are organized in cycles. The transformation
quality threshold qt is updated at the beginning of each smoothing cycle.

• Fixed element transformation parameters are used instead of quality adap-
tive transformation parameters. The adjusted weights in the transformed
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element nodes averaging scheme are based on neighboring element quality
ratios.

• The exponent η of the node weights wj given in Equation (4.2) and the
penalty parameters of GETMe sequential are removed. This eliminates the
need for a minimal element quality heap required by the sequential substep
of GETMe.

4.6 Implementation and parallelization

Results of the GETMe approach are given in the next chapter using a straight-
forward C++ implementation [154]. This first experimental implementation in-
corporates an object-oriented data structure, which provides enhanced topology
information for nodes and elements facilitating implementational flexibility but
also leading to significantly increased memory requirements. Furthermore, the
interchange of information between node and element objects leads to an addi-
tional runtime overhead. Nevertheless, GETMe smoothing turned out to be fast
and effective if compared with other smoothing methods like smart Laplacian
smoothing and a global optimization-based approach.

In order to make one step forward towards demonstrating the true efficiency
of geometry-based smoothing approaches, the GETMe adaptive smoothing is
implemented aiming at improving runtime and memory profile. Although such
an implementation could have been based on C++, the C programming language
[155] has been chosen instead, since it also builds a good foundation for future
developments involving GPU-based computations using OpenCL [156], CUDA
[157], or OpenACC [158], which are mainly C oriented. As has been recently
shown, combined with domain decomposition methods such approaches open a
new era in scientific computing [159]. In the following, some key aspects of this
improved implementation will be discussed.

Mesh nodes and elements are stored in arrays containing the node coordinates
and the node indices of the elements, respectively. Furthermore, since the weights
wj according to Equation (4.3) involve quality numbers of neighbor elements,
a neighbor element index table is also used. In addition to the current node
coordinates pi, GETMe adaptive smoothing also uses arrays in order to store
the temporary node coordinate sums p̂i, the new node coordinates p′i, the weight
sums wi, the element quality numbers qj := q(Ej), and the indices ri into the
table of relaxation values for all i ∈ {1, . . . , nN} and j ∈ {1, . . . , nE}, where nN
and nE denote the number of mesh nodes and elements. Since the mean ratio
quality criterion is expensive to evaluate, entries of the element quality array are
only updated in the case of element node coordinate changes.
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First, all values p̂i, wi are initialized to zero in ResetTemporaryNodesAnd-

Weights. After that, in AddTransformedElementNodesAndWeights each element
is transformed and scaled and the associated weighted new node coordinates and
weights are successively added to the corresponding variables p̂i, wi. Here, the
weights are determined using the tabulated element quality numbers qj. Similarly,
AddUntransformedElementNodesAndWeights adds untransformed but weighted
nodes and the corresponding weights to p̂i and wi. Then, the unrelaxed new node
coordinates according to Equation (4.3) are computed by ComputeNewNodes and
stored in p̂i.

During the q∗min oriented stage of the GETMe adaptive approach, these sub-
functions operate only on a subset of the mesh, which is defined by the ele-
ments with a quality number below the quality threshold qt. This also holds
for IterativeNodeRelaxation, which iteratively determines the final new node
coordinates p′i. Since the relaxation step does not require the re-evaluation of
the weights wi, the element quality vector can already be filled with the quality
numbers of the elements with respect to the new node coordinates p′i. Here, non
positive entries, indicate invalid elements whose nodes require an additional node
relaxation step using an adjusted individual relaxation parameter. The relaxation
loop is terminated when all elements become valid. Then all current mesh nodes
pi are set to the new coordinates p′i.

As can be seen, the loops of all these sub-functions are amenable to paral-
lelization. In the current C implementation of GETMe adaptive parallelization
was realized by using the OpenMP API version 3.1 [160]. Here, simply adding
#pragma omp parallel for directives suffice for the loops to be executed in par-
allel. In this context, reading and updating data like p̂i and wi by simultaneous
threads requires synchronization by the use of atomic operations. Results of the
parallelized version of GETMe adaptive smoothing following this approach are
given in Section 5.5.

Further potential runtime improvements can be achieved by avoiding thread
synchronization caused by atomic operations using thread private dynamically al-
located memory, which requires an additional implementational effort. However,
for the current version, runtime optimization of GETMe adaptive by modifying
data handling on an implementational level has not been applied.

The OpenMP API supports shared memory multiprocessing programming,
where concurrently accessing a large amount of memory by different threads on
the same system often leads to a significant bottleneck. As an alternative, dis-
tributed computing approaches can be applied. Here, the mesh is partitioned and
smoothing of the submeshes is conducted on different systems. GETMe adaptive
smoothing is also suitable for this type of parallelization, since its local smoothing
approach, incorporating only information of direct neighbor elements, results in
a low submesh interface communication overhead.
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4.7 Incorporating alternative quality criteria

In the previous, mesh quality was assessed using the mean ratio quality criterion,
which was introduced in the context of optimization-based smoothing methods
[20, 22]. By measuring the distance of an arbitrary valid element from a prescribed
reference element, the mean ratio criterion not only satisfies basic requirements,
such as being well defined for all element types under consideration and the
invariance under affine transformations, but it also provides flexibility by the
choice of the reference shape. Furthermore, since it is normalized, element quality
can be easily incorporated as a control parameter. Due to these advantages, and
in order to allow an equitable comparison with the results of the mean ratio-
based global optimization approach of Mesquite [137], GETMe smoothing, in
its presented form, has adopted the mean ratio quality criterion for smoothing
control.

However, depending on the application, additional requirements might be im-
posed, which can be measured by more specialized quality metrics. One example
is the warpage of quadrilateral faces of volumetric elements, for which an exem-
plary modification of the sequential GETMe approach will be considered in the
following. The resulting algorithm focuses on improving the lowest element qual-
ity with respect to the mean ratio and the warpage criterion. This shows that
GETMe smoothing is not only flexible with respect to mesh element types, but
also with respect to quality metrics and smoothing objectives.

Let Q := (p0, . . . , p3) denote a quadrilateral face of a volumetric element. The
normal of the triangle defined by a node pk and its connected neighbors is given
by nk :=

(
pk − p(k+3) mod 4

)
×
(
p(k+1) mod 4 − pk

)
, k ∈ {0, . . . , 3}. According to

[161], for n̂k := 1
‖nk‖nk the warpage w(Q) ∈ [0, 2] of Q is defined as

w(Q) := 1−min
{

(n̂0 · n̂2)3, (n̂1 · n̂3)3
}
.

Here, w(Q) = 0 indicates non-warped quadrilaterals consisting of coplanar face
nodes and large values indicate strongly warped low quality quadrilaterals.

Let wmax denote the maximal warpage of all quadrilateral faces in a given
mesh and wmean the arithmetic mean of the warpage values of all unique quadri-
lateral faces. Since iteratively applying the geometric transformation according
to Definition 3.4 leads to regular elements, the warpage of quadrilateral element
faces tends to zero. Hence, GETMe smoothing is also suitable for mesh smooth-
ing with respect to the warpage criterion. In the case of the sequential substep,
only the worst element selection scheme has to be adjusted as is described in the
following.

For a given element E ∈ {Ehex, Epyr, Epri} let IQ denote the index set of all



4.7. INCORPORATING ALTERNATIVE QUALITY CRITERIA 111

its quadrilateral faces Qi. The warpage of an element E is defined as

w(E) :=

{
maxi∈IQ w(Qi) if E ∈ {Ehex, Epyr, Epri} ,
0 otherwise.

This element quality number and the mean ratio criterion are not compatible,
since large values of w(E) ∈ [0, 2] indicate low quality elements, whereas large
values of q(E) ∈ [0, 1] indicate high quality elements. Therefore, w(E) is trans-
formed by (1− w(E)/2) and element quality in the modified GETMe sequential
substep is assessed by the combined criterion

qγ(E) := min
(
q(E), γ(1− w(E)/2)

)
.

Here, the fixed weight γ > 0 allows either to balance the two quality criteria
or to put an emphasis on one of them. For example, large values of γ focus on
mean ratio quality improvements, whereas small values of γ focus on warpage
quality improvements. In all cases, low values of qγ indicate low quality elements.
Consequently, the element with the lowest penalty corrected qγ(E) value in the
mesh is transformed in order to improve its quality. If the lowest combined quality
value is defined by a warped quadrilateral face connecting two elements, the one
with the lower mean ratio quality number is selected for transformation. Results
obtained for such a qγ-based GETMe sequential approach applied to the GETMe
smoothed meshes of the previous examples are given in Section 5.4.4.
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Chapter 5

Numerical mesh smoothing
results

This chapter provides a broad overview and an in-depth analysis of numerical
results obtained by smoothing meshes of various types. Results are given for all
variants of GETMe smoothing, some variants of Laplacian smoothing, and a state
of the art global optimization-based method. Synthetical as well as real world
models and meshes are considered. Partly based on results of [27–32] published
during the last four years, this chapter also documents the progress in the devel-
opment of GETMe smoothing variants both with respect to algorithmic aspects
including default parameter sets and implementational details. In Section 5.1 ex-
emplaric smoothing examples in terms of mesh types and fundamental properties
of different smoothing algorithms will be given first. The subsequent Sections 5.2
to 5.5 focus either on characteristics of specific mesh types or specific GETMe
variants.

5.1 Exemplary mesh smoothing results

In this section, a first overview of smoothing results for generic meshes will be
presented. Three examples are considered: a random planar domain, a surface
mesh of a tensile structure and volumetric meshes of a prestressed concrete bridge
part. Results of GETMe smoothing are compared to those of other smoothing
methods, which are described in detail in Section 1.3.2 and Section 1.3.3.

5.1.1 Planar polygonal meshes

Three meshes of a random planar domain are considered, which differ in element
types and mesh resolution. They are depicted on the left side of Fig. 5.1. The
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first is a mesh generated by Delaunay-triangulation of the nodes of a slightly dis-
torted regular grid. According to the theory of Delaunay-triangulations, slightly
distorting the initial nodes results in a unique triangulation, since no four points
lie on the same circle. The resulting triangular mesh consists of 1838 nodes and
3060 elements. The second mesh considered is a quadrilateral mesh consisting
of 6562 nodes and 6111 elements. Finally, a mixed triangular quadrilateral mesh
has been generated by splitting randomly selected quadrilaterals of an alternative
quadrilateral mesh along their diagonals into two triangles each. The resulting
mesh consists of 8152 nodes and 12,100 elements in total. Here, the number of
triangles amounts to 8732 and the number of quadrilaterals amounts to 3368. In
order to improve the smoothing potential, all meshes have also been distorted
by randomly chosen node movements, which do not invalidate the mesh. The
associated distorted meshes are depicted on the right side of Fig. 5.1.

All undistorted initial meshes as well as the distorted initial meshes have been
smoothed by smart Laplacian smoothing, a state of the art global optimization
based approach and GETMe smoothing consisting of applying consecutively the
simultaneous as well as the sequential substep. In the case of GETMe simulta-
neous, mean element edge length preserving scaling and no relaxation, i.e. % = 1,
have been applied. Furthermore, by using the exponent η = 0, the weighted
node averaging scheme simplifies to the arithmetic mean, which further reduces
the numerical complexity. The element transformation parameters have been set
to λ = 7/20 and θ = π/12. In the case of the GETMe sequential substep like-
wise mean element edge length preserving scaling was used. Furthermore, the
relaxation parameter has been set to % = 1/100, and the penalty parameters
∆πi = 10−4, ∆πr = 10−5, and ∆πs = −10−3 were applied in all cases. Transfor-
mation parameters have been set to λ = 9/20 and θ = 5π/36. Since one iteration
of GETMe sequential smoothing consists of transforming a single element, the
comparatively expensive evaluation of mesh quality, which is used for termina-
tion control, was only assessed after a cycle of 100 consecutive single element
transformations each. Smoothing results are given in Table 5.1.

Results have been obtained by a straightforward C++ implementation of
GETMe smoothing and smart Laplacian smoothing. They are compared to the
results of the feasible Newton-based global optimization approach of Mesquite
[137], which is also implemented in C++. Runtimes have been measured on a
notebook with an Intel R© CoreTM i5-540M CPU (dual core, 3MB cache, 2.53GHz),
4GB RAM, 64bit Linux operating system with kernel 2.6.34.4, and the GNU C++
compiler version 4.5.1.

It can be seen that GETMe smoothing due to the incorporation of the sequen-
tial approach focusing on improving worst element quality leads to superior q∗min

quality numbers for all meshes. Although global optimization focuses on improv-
ing the mean mesh quality, worst element quality numbers are also comparably
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(a) Tri initial undistorted (b) Tri initial distorted

(c) Quad initial undistorted (d) Quad initial distorted

(e) Mixed initial undistorted (f) Mixed initial distorted

Figure 5.1: Initial planar meshes. Mesh elements are colored according to their
mean ratio value
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Table 5.1: Planar mixed mesh smoothing results

Mesh Method Iter Time (s) q∗min qmean

Tri Initial undistorted – – 0.0034 0.8193
Smart Laplace 8 0.02 0.1032 0.9182
Global Optimization 24 0.06 0.5044 0.9190
GETMe 16/4700 0.04 0.5646 0.9157
Initial distorted – – 0.0000 0.3897
Smart Laplace 15 0.03 0.0042 0.9140
Global Optimization 100 0.28 0.5045 0.9190
GETMe 29/3800 0.07 0.5646 0.9155

Quad Initial undistorted – – 0.6195 0.9712
Smart Laplace 1 0.01 0.6157 0.9713
Global Optimization 6 0.20 0.6546 0.9719
GETMe 5/1600 0.03 0.7234 0.9711
Initial distorted – – 0.0003 0.3896
Smart Laplace 26 0.26 0.0109 0.9466
Global Optimization 261 4.33 0.6546 0.9719
GETMe 31/1200 0.20 0.7234 0.9684

Mixed Initial undistorted – – 0.3052 0.8801
Smart Laplace 6 0.11 0.2006 0.9236
Global Optimization 16 0.67 0.4576 0.9411
GETMe 18/1800 0.29 0.5048 0.9354
Initial distorted – – 0.0000 0.4499
Smart Laplace 11 0.22 0.0037 0.9141
Global Optimization 93 2.06 0.4576 0.9411
GETMe 32/1900 0.54 0.5059 0.9354

high. In contrast, the q∗min numbers achieved by smart Laplacian smoothing are
inferior in all examples. This is also reflected by the zoomed sections of the
smoothed versions of the distorted meshes depicted in Fig. 5.2. As can be seen
in the case of smart Laplacian smoothing, clusters of very low quality elements
remain. Here, smart Laplacian smoothing was not able to improve these clusters
since this would have led to invalid elements or a deterioration of local mesh
quality, which is prevented by its smoothing control mechanisms.

As can be seen in Table 5.1, even in the case of the undistorted quadrilateral
and mixed mesh, applying smart Laplacian smoothing leads to a decreased worst
element quality number, since smoothing control is based on the local mean
mesh quality. This is reflected by the good qmean-values obtained. Since global
optimization is geared towards improving the mean mesh quality number by
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(a) Tri initial distorted (b) Quad initial distorted (c) Mixed initial distorted

(d) Tri Laplace (e) Quad Laplace (f) Mixed Laplace

(g) Tri Global Opt. (h) Quad Global Opt. (i) Mixed Global Opt.

(j) Tri GETMe (k) Quad GETMe (l) Mixed GETMe

Figure 5.2: Sections of distorted initial meshes and their smoothed counterparts
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mathematical optimization, the results achieved are on a high level. Although
following a geometric approach, results obtained by GETMe smoothing are on a
comparable level.

By comparing the results for the undistorted mesh with those for the distorted
mesh, it is also visible that with respect to mesh quality global optimization
as well as GETMe smoothing are particularly stable. That is, distorting the
mesh does not influence the resulting mesh quality. In contrast, smart Laplacian
smoothing is less robust as is reflected by the particularly low q∗min values and
decreased qmean values in the case of the distorted meshes.

Whereas global optimization is stable with respect to mesh quality, it is not
stable with respect to smoothing time. For example, this approach required 261
iterations to smooth the distorted quadrilateral mesh, whereas only 6 iterations
where required in the case of the undistorted mesh. With respect to smoothing
time, smart Laplacian smoothing and GETMe smoothing are more stable, that
is, distorting the mesh leads only to a moderate increase of iteration numbers
and smoothing time. Although GETMe smoothing incorporates a element trans-
formation approach, the smoothing time per iteration is low, since the number
of quality evaluations is lower if compared to smart Laplacian smoothing. The
latter requires the quality to be evaluated for each element attached to a node
before and after the node is updated, whereas element quality has to be evalu-
ated only once per element per iteration during GETMe smoothing. In contrast,
global optimization leads to a significantly increased numerical effort due to its
optimization approach incorporating a feasible Newton-based optimization.

5.1.2 Tensile structure surface mesh

The second model considered is a tensile structure depicted in Fig. 5.3. It repre-
sents a pavilion roof with two peaks.

(a) Top view (b) Side view

Figure 5.3: Tensile structure model
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In the case of surface mesh smoothing additional techniques have to be incor-
porated in order to preserve the model. This includes constraint node movements
for boundary nodes and nodes, which are part of feature lines given by the edges
of the model. Movements of all other nodes are restricted to the model surface.
This is realized by simply backprojecting new node positions onto a tessellated
version of the initial mesh and its boundary and feature edges, before the iterative
invalid element resetting step is applied. Both, the smart Laplacian smoothing
algorithm and the GETMe smoothing algorithm have been enhanced accordingly.
In contrast, the third party software Mesquite follows a different approach and
would have required an extensive implementational effort in order to incorporate
shape preservation techniques. Thus it is omitted in the following test.

A quadrilateral mesh consisting of 23,101 nodes and 22,676 elements has been
generated. As can be seen by the mean quality number qmean = 0.9814, the
mesh is of particularly high overall quality. In addition, the minimal element
quality number amounting to q∗min = 0.2467 is comparably good. Results of
smart Laplacian smoothing and GETMe smoothing for the undistorted initial
mesh as well as distorted initial mesh are provided by Table 5.2. They have been
obtained by using the same test system, implementation and parameter set as
described in the previous section.

Table 5.2: Tensile structure smoothing results

Method Iter Time (s) q∗min qmean

Initial undistorted – – 0.2467 0.9814
Smart Laplace 11 3.05 0.3383 0.9872
GETMe 12/42100 1.73 0.4224 0.9857
Initial distorted – – 0.0046 0.4983
Smart Laplace 40 11.48 0.0555 0.9855
GETMe 40/63500 5.26 0.4224 0.9858

As can be seen, performing similar iteration numbers in both cases, GETMe
smoothing is significantly faster compared to smart Laplacian smoothing due to
the lower number of element quality evaluations. In the case of GETMe, the
iteration number of the simultaneous as well as the sequential substep is given.
Although the iterations of the sequential substep are high, computing times are
low, since only one element is transformed per iteration. Again, GETMe leads to
superior minimal element quality numbers. As in the case of the planar example,
smart Laplacian smoothing is able to improve the undistorted mesh but shows
significant deficiencies in the lowest quality element of the distorted mesh. This
is also reflected by the low quality element clusters as depicted in Fig. 5.4.
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(a) Initial undistorted (b) Initial distorted

(c) Laplace undistorted (d) Laplace distorted

(e) GETMe undistorted (f) GETMe distorted

Figure 5.4: Tensile structure meshes with elements colored according to their
mean ratio value
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Although smart Laplacian smoothing results in particularly good mean mesh
quality numbers, in this example, its instability represents a major drawback
with respect to industrial applicability. In contrast, GETMe smoothing is fast
and stable. That is, its results with respect to mesh quality are almost identical
for both, the distorted as well as the undistorted mesh. Furthermore, the partic-
ularly good minimal element quality number is favorable in applications like the
finite element method, where mesh quality has an impact on solution quality and
efficiency. This will also be demonstrated by the examples presented in Chapter 6
discussing the effect of mesh smoothing on finite element solutions in more detail.

5.1.3 Prestressed concrete bridge part volumetric mesh

The part of a prestressed concrete bridge shown in Fig. 5.5 is considered as
volumetric model. It has been meshed by tetrahedra resulting in 53,978 nodes and
262,201 elements. In addition, a hexahedral mesh has been generated consisting
of 307,530 nodes and 260,496 elements.

Figure 5.5: Prestressed concrete bridge part model

The quality initial meshes as well as their distorted counterparts have been
smoothed by the original Laplacian smoothing approach, volume-weighted Lapla-
cian smoothing, smart Laplacian smoothing, the global optimization-based ap-
proach, which is provided by the shape improvement wrapper of Mesquite, and
the GETMe adaptive approach. For the latter the maximum number of it-
erations has been set to 1000 and the qmean improvement tolerance to 10−4.
Tetrahedral elements have been transformed by using the opposite face normal
transformation according to Definition 3.3. In the case of hexahedral elements,
the dual element-based transformation according to Definition 3.4 has been ap-
plied. In both cases, the fixed element transformation parameter σ = 3/2 was
used. The tables of relaxation values have been set to R = (1, 1/4, 1/16, 0) and
R = (1/2, 1/4, 1/10, 1/100, 0) in the case of the qmean and q∗min oriented smooth-
ing stage, respectively. Each q∗min oriented smoothing cycle has been terminated
after five consecutive iterations without q∗min improvement. Cross sections of the
distorted initial meshes and their smoothed counterparts are depicted in Fig. 5.6.

The effect of mesh distortion is obvious for the initial meshes, which are
shown in Fig. 5.6a and Fig. 5.6g. The same holds for the quality improving
effect of all mesh smoothing methods depicted in the other subfigures. However,
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Tetrahedral meshes

(a) Initial (b) Original Laplace (c) Vol.-weighted Laplace

(d) Smart Laplace (e) Global Optimization (f) GETMe adaptive

Hexahedral meshes

(g) Initial (h) Original Laplace (i) Vol.-weighted Laplace

(j) Smart Laplace (k) Global Optimization (l) GETMe adaptive

Figure 5.6: Cross sections of smoothed pretensioned concrete bridge part meshes
with elements colored according to their mean ratio value
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low quality clusters remain in the case of smart Laplacian smoothing due to the
quality controlled restriction of node movements in order to avoid the generation
of invalid elements. Although not obvious from Fig. 5.6, such elements occur in
the case of original and volume-weighted Laplacian smoothing of the tetrahedral
mesh. As can also be seen, due to their increased regular topology, the hexahedral
meshes are of higher quality compared to the tetrahedral meshes.

Resulting smoothing times, iteration numbers, and mesh quality numbers for
all meshes and smoothing methods are given in Table 5.3. These have been
obtained by C++ implementations of original Laplacian smoothing, volume-
weighted Laplacian smoothing and global optimization. In the case of smart
Laplacian smoothing and GETMe adaptive, C implementations were applied.
All programs have been compiled using the GNU Compiler Collection version
4.7.1 [162]. Computations were accomplished on a personal computer with an
Intel R© CoreTM i7-870 CPU (quad core, 8 MB cache, 2.93 GHz), 16 GB RAM,
and a 64 bit Linux operating system.

Smoothing results are provided by Table 5.3, which is divided into two sections
containing the results for the tetrahedral and hexahedral meshes, respectively.
Each of these sections again is divided into two blocks containing the results for
the undistorted and the distorted meshes. As can be seen in the case of the
tetrahedral mesh, original Laplacian smoothing and volume-weighted Laplacian
smoothing led to invalid elements both for the undistorted and distorted initial
mesh. However, iteration numbers of these approaches are not affected by mesh
distortion. Due to local mean quality controlled node movements, smart Lapla-
cian smoothing avoids the generation of invalid elements. Nevertheless, q∗min is
decreased in the case of the undistorted initial mesh or on an unacceptable level
in the case of the distorted mesh. In contrast, global optimization as well as
GETMe adaptive smoothing lead to superior mesh quality results.

The advantage of GETMe adaptive smoothing over global optimization be-
comes particularly obvious by comparing the results for the undistorted and the
distorted meshes. Although quality numbers are comparable in both cases, the
runtime of global optimization is significantly affected by mesh distortion, that
is to say by the quality of the initial mesh. This is caused by the convergence
properties of the mathematical optimization process, which depends on the qual-
ity of the start value and hence the initial mesh configuration. These effect is
also particularly visible for the hexahedral mesh, where mesh distortion leads to
an increase of smoothing time by factor 20.2 in the case of global optimization.
In contrast, smoothing time increases only by factor 2.2 in the case of GETMe
adaptive. The beneficial effect of the two stage smoothing approach of GETMe
adaptive is reflected in both cases by the superior results for q∗min.
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Table 5.3: Prestressed concrete bridge part mesh smoothing results

Mesh Method Iter Time (s) q∗min qmean

Tet Initial undistorted – – 0.2715 0.8486
Original Laplace 17 1.66 invalid invalid
Volume-weighted Laplace 17 4.38 invalid invalid
Smart Laplace 5 0.58 0.1910 0.8741
Global Optimization 12 3.63 0.4791 0.8774
GETMe adaptive 215 2.19 0.5564 0.8766

Initial distorted – – 0.0002 0.4678
Original Laplace 17 1.66 invalid invalid
Volume-weighted Laplace 16 4.13 invalid invalid
Smart Laplace 14 1.62 0.0087 0.8650
Global Optimization 65 19.76 0.4790 0.8774
GETMe adaptive 214 3.36 0.5498 0.8765

Hex Initial undistorted – – 0.6475 0.9626
Original Laplace 10 0.78 0.6384 0.9635
Volume-weighted Laplace 10 11.54 0.5624 0.9634
Smart Laplace 3 2.91 0.6463 0.9638
Global Optimization 5 11.02 0.6783 0.9642
GETMe adaptive 219 3.29 0.7082 0.9639

Initial distorted – – 0.0472 0.4771
Original Laplace 20 1.56 0.6211 0.9634
Volume-weighted Laplace 15 17.30 0.5647 0.9633
Smart Laplace 24 23.21 0.0479 0.8954
Global Optimization 126 222.62 0.6783 0.9642
GETMe adaptive 245 8.02 0.7096 0.9635
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5.2 Tetrahedral mesh smoothing examples

In this section several examples of tetrahedral meshes smoothed by the geometric
element transformation method will be given. Whereas the first example considers
a rather synthetic mesh in order to give a first comparison and to discuss basic
properties of the methods under consideration, a modular hip endoprosthesis
mesh with a more adverse topological configuration is examined in the second
example. In the third example, various graded meshes of a stub axle model are
smoothed representing another real world application. Finally, results are given
for a variety of meshes in order to further substantiate the potential of GETMe-
based smoothing.

In the given examples, results of the following smoothing methods will be
compared: Smart Laplacian smoothing, which was terminated if two consecutive
qmean values deviated less than 10−6 or neither qmin nor qmean have been improved
for the last 50 iterations. The mesh with the best qmean value and the associ-
ated iteration number have been used for comparison. Global optimization-based
smoothing was performed by using the shape improvement wrapper included in
the mesh quality improvement toolkit Mesquite version 1.1.7 [137]. Default set-
tings, as well as the default termination criterion, have been applied. Hence,
smoothing usually stopped at a preliminary state. Therefore, applying the shape
improvement wrapper has been repeated until the convergence or deterioration
of the average mean ratio value. As for all methods, results of the best mesh
obtained during the whole process have been taken for comparison.

The GETMe approach has been applied using the same termination criteria as
in the case of smart Laplacian smoothing for the simultaneous smoothing substep.
The preceding sequential substep has been terminated if 5000 consecutive element
transformations neither improved qmin nor qmean or qmean degraded more than 1%
compared to the initial value generated by the simultaneous substep. For all
examples, the parameters of the simultaneous substep have been consistently set
to σmin = σmax = 40, % = 0.1, mean volume preserving scaling and the averaging
exponent η = 0. For the subsequent sequential substep σmin = σmax = 0.0001,
% = 0.75 and edge length sum preserving scaling have been applied.

Using the smart variant in the case of Laplacian smoothing is essential, since
ordinary Laplacian smoothing, where node updates are performed independent
of quality improvements, often leads to meshes with inverted elements. Laplacian
smoothing is popular due to its simple approach, but results in meshes of inferior
quality if compared to state of the art global optimization-based methods like
that provided by Mesquite. Hence, results of the latter have been used as quality
benchmark with a special focus on the mean element quality qmean since the
optimization approach maximizes this quality number.

In the case of GETMe smoothing, even better results can be obtained by using
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individual parameters. Nevertheless, for the sake of simplicity and better com-
parability, only the unified set of parameters and termination criteria described
before have been used. Furthermore, the particular choices of η in the case of the
simultaneous substep and σmin = σmax further simplify the method, since node
averaging and scaling are performed without respect to quality, hence reducing
computational complexity.

5.2.1 Sphere mesh

The first example considers a tetrahedral mesh of the unit sphere. It has been
generated by Delaunay tessellation of 258 surface nodes obtained by subdividing
the faces of an octahedron three times with subsequent back-projection on the
sphere and 346 inner nodes representing a distorted regular grid. The resulting
initial tetrahedral mesh consists of 3108 elements of which 1745 elements do not
intersect the boundary. On average, each node has 20.6 incident tetrahedra, where
the number of incident elements varies within a range of 4 to 42. The average
number of neighbors per tetrahedron amounts to 72.0 within a range of 33 to 112.
Due to the smoothing approach, topology is never changed and boundary nodes
have been kept fixed, hence these numbers are preserved.

The complete model and the lower hemisphere of the initial mesh are depicted
in the upper row of Fig. 5.7. Thereby, each tetrahedron Ej is colored according
to its mean ratio quality number q(Ej). As can be seen by the colorbar, which is
depicted below the initial meshes, reddish colors indicate elements of bad quality,
whereas bluish colors mark elements of good quality. The lower hemispheres of
the meshes obtained by applying smart Laplacian smoothing, global optimization,
and GETMe using the default configuration described in the beginning of this
section are depicted in the lower row of Fig. 5.7.

Table 5.4: Sphere mesh quality statistics

method / criterion qmin qmean

Initial 0.0010 0.4888
Smart Laplace 0.0010 0.5915
Global Optimization 0.3545 0.7657
GETMe 0.4177 0.7701

As can be seen by the resulting quality numbers given in Table 5.4, the
geometry-based approach of smart Laplacian smoothing only leads to a mod-
erate improvement of the mean element quality number qmean. Furthermore, this
approach fails to improve the worst element quality number qmin, which is a char-
acteristic weakness of smart Laplacian smoothing. Since the global optimization
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(a) Initial Sphere

(b) Smart Laplace (c) Global Optimization (d) GETMe

Figure 5.7: Complete initial sphere mesh and its lower hemisphere (a) with ele-
ments colored according to their mean ratio quality number and smoothed meshes
(b)–(d)

approach is geared towards improving qmean the mean element quality is consider-
ably improved. Nevertheless, the average mean quality number 0.7779 obtained
by the simultaneous substep of the GETMe approach is slightly larger. Subse-
quently applying the sequential GETMe substep in order to further improve the
worst element quality number leads to a slight decrease of qmean, since the trans-
formation of low quality elements also affects the quality numbers of neighboring
elements. Hence, the transformation parameters σmin = σmax = 0.0001 have been
chosen conservatively in order to obtain a moderate change of geometry. As can
be seen by the final results of the geometry-based GETMe approach given in the
last row of Table 5.4, this leads to convincing results for qmin as well as qmean.

In the case of global optimization-based smoothing a total of 41 feasible New-
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ton iterations have been performed within 3 calls of the shape improvement wrap-
per of Mesquite. Smart Laplacian smoothing terminated after 26 iterations in
which 239 node updates had to be discarded in order to avoid the generation of
invalid elements. In contrast, only 6 updates which would have led to invalid
elements have been discarded in the case of GETMe smoothing. However, the
iteration numbers 168 of the simultaneous substep and 159,800 of the sequential
substep are significantly higher if compared to Laplacian smoothing. Thereby,
the number of element transformations applied during the sequential substep
corresponds to that performed within about 51 steps of simultaneous smoothing
approach. This occurs because a tight tolerance for termination control has been
used and mesh quality increases rather moderately after a steep ascent during
the first iterations.
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Figure 5.8: Sphere mesh mean quality improvement with respect to smoothing
time

This is depicted in Fig. 5.8 showing the mean mesh quality qmean with respect
to the accumulated smoothing time in seconds. Each marker represents the results
after an iteration of the associated smoothing method, or, in the case of the first
marker, the initial mean mesh quality 0.4888. Only the iteration times of the
main smoothing loop of each program has been recorded in order diminish the
runtime tampering caused for example by different file i/o strategies, file formats,
and mesh initialization procedures.

A straightforward C++ implementation of GETMe smoothing and smart
Laplacian smoothing is compared to the results of the feasible Newton based
global optimization approach of Mesquite, which is also implemented in C++.
Runtimes have been measured on a notebook with an Intel R© CoreTM2 Duo CPU
T7250 (2MB cache, 2.00GHz, 800MHz FSB), 2GB RAM, Linux operating sys-
tem with kernel 2.6.22.19, and the GNU C++ compiler version 4.2.1. Since
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smart Laplacian smoothing uses the same data structures as GETMe smoothing,
both methods resulted in a peak memory usage of 3.9MB during smoothing the
sphere example. To simplify matters, the data structure stores redundant prox-
imity information to a large extent. Hence, the memory consumption of this first
implementation is larger than the 2.4MB used by the global optimization-based
approach of Mesquite.

The closer the iteration markers in Fig. 5.8 the faster the iterations of a
smoothing method. For the given example, iteration runtimes average to 0.0052s,
0.0054s, and 0.0117s in the case of smart Laplacian smoothing, GETMe simul-
taneous smoothing, and global optimization respectively. In contrast, the total
smoothing runtime of GETMe simultaneous amounts to 0.91s caused by the large
number of iterations, to 0.48s in the case of global optimization and to 0.14s in
the case of smart Laplacian smoothing.

Nevertheless, due to the efficiency of the first smoothing steps, GETMe si-
multaneous smoothing reaches or exceeds the final qmean value of smart Laplacian
smoothing already after 4 iterations being 6.1 times faster and the final qmean

value of global optimization after 33 iterations being 2.5 times faster if compared
to the respective runtimes. Although the following 135 simultaneous GETMe
iterations continuously further increased qmean due to the tight tolerance, the
overall qmean improvement of these following steps only amounts to 1.5%. Hence,
in practice alternative termination criteria avoiding such inefficient iterations can
lead to similar results within a fraction of the number of GETMe simultaneous
steps accomplished in this and the following examples.

The subsequent applied sequential GETMe smoothing substep took in total
4.0s. Hence, sequentially transforming the same number of elements as within one
step of the simultaneous approach took about 0.0778s. Although being simpler,
the sequential approach is therefore slower due to the min heap handling in order
to determine the worst quality element after each iteration and the comparably
expensive mesh quality assessment after 100 iterations each. Furthermore, since
the transformation parameters are chosen conservatively in order to be applicable
to a broad range of meshes, this results in a slow qmin convergence. A speedup
of factor 10.5 could for example be achieved by setting σmin = σmax = 0.001
resulting in 16,000 sequential iterations with a total runtime of 0.4s and a similar
worst element quality of qmin = 0.4170.

The element quality histograms for the sphere meshes are depicted in Fig. 5.9.
As can be seen, smart Laplacian smoothing (blue markers) leads only to a
moderate change in the quality distribution, if compared to the initial mesh
marked black. In contrast, the global optimization approach (green markers)
and the GETMe approach (red markers) have massive impact on the histograms.
Thereby, for larger quality numbers the histogram of GETMe mainly reflects the
results of the simultaneous substep, whereas for smaller numbers it is mainly af-
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Figure 5.9: Sphere mesh element quality histogram

fected by the sequential substep. In particular, the peak of elements with quality
numbers near qmin is characteristic for the sequential substep due to the approach
of successively gently improving the worst elements, which leads to this accumu-
lation.

5.2.2 Modular hip endoprosthesis

The second tetrahedral mesh example considers the modular hip endoprosthesis
depicted on the left of Fig. 5.10. It was developed by NIKI Ltd. [163, 164] within
the research project SKELET funded by the 3rd European Framework program.
The complete initial mesh used for smoothing is depicted in the middle of Fig. 5.10
and a cross section with elements colored according to their mean ratio quality
number is depicted on the right.

The mesh consists of 2669 nodes and 13,192 tetrahedral elements. Again, each
of the 1228 boundary nodes has been kept fixed during the smoothing process.
On average, each node has 19.8 adjacent tetrahedra where the numbers range
from 2 to 56. The average number of neighbors per tetrahedron amounts to 72.5
within a range from 16 to 140. In contrast to the sphere example of the previous
subsection, random inner nodes have been used instead of regular inner nodes.
This results in more adverse topological configurations, which impose a problem
for pure smoothing methods. The improved meshes obtained by smart Laplacian
smoothing, the global optimization-based approach and GETMe are depicted in
Fig. 5.11.

In the case of GETMe 243 iterations of simultaneous smoothing have been
applied first. In the subsequent 253,400 sequential smoothing steps have been
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(a) Real Endoprosthesis (b) Full Model (c) Cross Section

Figure 5.10: Modular hip endoprosthesis and initial model

performed. The resulting quality numbers are given in Table 5.5. Since the
mesh contains fixed low quality elements consisting of four boundary nodes, the
quality number q∗min of the worst tetrahedral element with at least on inner node
is given instead of qmin. That is, q∗min represents the quality number of the worst
improvable element. In the case of smart Laplacian smoothing q∗min is smaller
than the minimal fixed element quality number given by 0.0253. In contrast, for
GETMe and global optimization-based smoothing it holds that q∗min > qmin. In
particular, this implies that the overall minimal quality numbers qmin obtained
by these two methods are the same.

Table 5.5: Modular hip endoprosthesis mesh quality statistics

method / criterion q∗min qmean

Initial 0.0010 0.4748
Smart Laplace 0.0022 0.5640
Global Optimization 0.2265 0.7354
GETMe 0.2353 0.7433

Compared to the 15 iterations performed by smart Laplacian smoothing and
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(a) Smart Laplace (b) Global Optimization (c) GETMe

Figure 5.11: Smoothed modular hip endoprosthesis models

the 52 iterations of the feasible Newton approach, the number of iterations needed
in the case of the simultaneous GETMe substep is significantly higher. Neverthe-
less, once again the first few steps of GETMe smoothing are highly efficient. For
example 3 steps of the simultaneous GETMe substep suffice to yield the mean
quality number 0.5649, which is better than the final result achieved by smart
Laplacian smoothing, and 16 iterations result in qmean > 0.7. The following steps
are of decreasing efficency as is depicted in Fig. 5.12. The number of element
transformations performed in the subsequent sequential GETMe smoothing sub-
step equals that of about 19 simultaneous iterations.

The average smoothing iteration runtimes amount to 0.0285s, 0.0435s, and
0.0499s in the case of smart Laplace, GETMe simultaneous, and global optimiza-
tion using a peak memory of 12.4MB and 5.7MB respectively. At this, GETMe
simultaneous achieves the final qmean results 3.0 and 1.6 times faster than smart
Laplacian smoothing and global optimization respectively. In total, simultaneous
GETMe took 10.57s and the subsequent sequential approach 6.02s.

All numbers refer to non-parallelized implementations. Compared to this, a
first simple parallelized version of GETMe simultaneous obtained by the OpenMP
[160] directive “#pragma omp parallel for” applied to major element loops,
like the element transformation and node averaging loops, resulted in a runtime
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Figure 5.12: Modular hip endoprosthesis quality improvement with respect to
smoothing time

of 6.95s. This already yields a good speedup factor of 1.52 on the test system
named before with a theoretical speedup limit of 2. Hence GETMe smoothing
offers a good potential for parallelization techniques.

On average 17.1 invalid elements per iteration step occurred during smart
Laplacian smoothing. Due to the adverse topological configurations, invalid ele-
ment removal techniques had also to be applied in the case of the simultaneous
GETMe smoothing substep. However, the average number 3.8 of invalid elements
per iteration step is significantly lower. Furthermore, the subsequent sequential
smoothing approach did not lead to any degenerated elements.

Again, smart Laplacian smoothing led only to insufficient improvements for
both quality numbers. This can also be seen by the quality histogram depicted in
Fig. 5.13. In particular, the remaining number of low quality elements prohibits
the use of such meshes for finite element applications. In contrast, the results
obtained by two cycles of the shape improvement wrapper of Mesquite are of high
quality both with respect to the worst and mean quality number. Nevertheless,
GETMe is able to further improve both numbers.

As can be seen by the quality table and the histogram, GETMe leads to a bet-
ter value for q∗min, but also to a higher number of elements with quality numbers
near this value if compared to the global optimization results. This comes due
to the fact that the worst element and deadlock handling of GETMe sequential
was geared towards aggressively improving the worst element leaving all elements
with higher quality numbers unimproved. Alternative control mechanisms could
be applied, which improve elements within a broader range around q∗min. How-
ever, this usually comes at the expense of a higher computational complexity and
a further degradation of the high quality mean number obtained by the simulta-
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Figure 5.13: Modular hip endoprosthesis element quality histogram

neous GETMe substep, since successively transforming low quality elements also
affects the quality of the neighboring elements.

5.2.3 Stub axle

Further aspects of the presented smoothing approaches will be analyzed by var-
ious meshes of the stub axle model depicted on the left of Fig. 5.14. The
STEP file of the underlying geometry model is provided courtesy of INPG by
the AIM@SHAPE shape repository [165]. The model of genus 17 consists of 249
faces bounded by spline curves. On the left of Fig. 5.14 these faces are marked
by different colors.

Three graded meshes with 110,524, 274,607, and 400,128 tetrahedral elements
have been generated using the NETGEN mesh generator version 4.9.9 [166], of
which the finest is depicted on the right of Fig. 5.14. The surface meshes have
only been slightly improved resulting in various low quality elements near the
boundary. Since boundary nodes are kept fixed, this makes smoothing more
difficult. In addition, the volume mesh optimizer provided by NETGEN has not
been applied. The ratio of the maximal and minimal average edge length of
all tetrahedra amount to 660, 1140, and 441 respectively for the three meshes.
Furthermore, in all three cases the maximal and minimal element volume ratios
are of order 1010. Hence, all meshes are strongly graded.

In addition to the three initial meshes generated by NETGEN, also distorted
variants have been generated and smoothed. That is, for each initial mesh, nodes
have been randomly moved preserving the validity of elements. This yields dis-
torted initial meshes of lower quality with a different geometry, but the same
topology if compared to their undistorted counterparts. Investigating the differ-
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(a) Stub axle model (b) Tetrahedral mesh

Figure 5.14: Stub axle model and graded mesh with 400,128 elements

ences of the smoothing results for the undistorted as well as the distorted meshes
gives an indication of geometrical robustness of the smoothing methods.

Table 5.6: Stub axle meshes smoothing results

Mesh Initial Smart Laplace Global Opt. GETMe
tets dist. q∗min qmean q∗min qmean q∗min qmean q∗min qmean

110,524 no 0.0003 0.6792 0.0025 0.7169 0.0311 0.7296 0.0293 0.7306
110,524 yes 0.0010 0.5350 0.0037 0.6884 0.0311 0.7296 0.0294 0.7300

274,607 no 0.0157 0.6890 0.0057 0.6975 0.0169 0.7058 0.0174 0.7132
274,607 yes 0.0003 0.4890 0.0004 0.6498 0.0169 0.7058 0.0173 0.7105

400,128 no 0.0448 0.7175 0.0000 0.7667 0.2089 0.7772 0.2680 0.7806
400,128 yes 0.0001 0.5284 0.0002 0.7481 0.2089 0.7772 0.2678 0.7805

Results for all six initial meshes and the three smoothing approaches are given
in Table 5.6. In this, the first column gives the number of tetrahedral elements
for each mesh. The second column indicates either if the initial mesh has been
additionally distorted (yes) or not (no). As can be seen by the quality numbers of
the initial meshes, distorting leads to a significant decrease of the mean element
quality number qmean, but not necessarily to a deterioration of the quality number
q∗min of all tetrahedra with at least one inner, hence modifiable node. The latter is
used instead of the overall minimal element quality number qmin since completely
fixed boundary elements exist. In all cases, GETMe smoothing yields the best
mean quality number if compared to smart Laplacian smoothing and the global
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optimization approach.
As can also be seen by the quality numbers given in Table 5.6, distorting

the mesh not only has an impact on the quality numbers of the initial mesh,
but also on the results obtained by smart Laplacian smoothing. In all cases,
the mean element quality number deteriorates remarkably, whereas the minimal
element quality number has been improved in two cases. In contrast, distorting
the initial mesh has no impact at all on the results of the global optimization-
based approach, and only a slight impact on the results of GETMe smoothing.

Undistorted mesh

(a) Initial (b) Smart Laplace (c) Global Opt. (d) GETMe

Distorted Mesh

(e) Initial (f) Smart Laplace (g) Global Opt. (h) GETMe

Figure 5.15: Cross sections of initial and smoothed stub axle meshes in the case
of the undistorted initial mesh (upper row) and the distorted initial mesh (lower
row)

This can also be seen by the cross sections of the meshes resulting for the
stub axle part marked by a red rectangle on the right of Fig. 5.14. Such cross
sections for the initial meshes with 400,128 elements as well as that obtained by
all smoothing methods are depicted in Fig. 5.15. Whereas the meshes of smart
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Laplacian smoothing for the undistorted as well as the distorted mesh partly
differ considerably, in the case of global optimization and GETMe smoothing
one mesh resembles the other. This indicates that, even using a geometry-based
approach, GETMe smoothing is significantly less interference-prone with respect
to geometrical changes than smart Laplacian smoothing.
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Figure 5.16: Distorted mid size stub axle mean quality improvement with respect
to smoothing time

Fig. 5.16 shows exemplarily the mean quality development with respect to
smoothing runtime for the distorted stub axle model with 274,607 elements.
Smart Laplacian smoothing terminated after 20 iterations each taking on av-
erage 0.7792s, global optimization after 95 iterations with an average runtime
of 1.1566s and a peak memory usage of 87.9MB. In contrast, GETMe simulta-
neous terminated after 127 iterations with an average runtime of 1.1718s and a
peak memory usage of 229.4MB. The subsequent GETMe simultaneous approach
performed 22,900 iterations within 3.62s.

5.2.4 Mesh variety test

In order to further substantiate the high mesh quality obtained by GETMe based
smoothing, the method has also been applied to the dozen tetrahedral meshes
used by Klingner and Shewchuk in [12, 167]. The initial meshes range from very
low quality random meshes to high quality meshes generated by state of the art
mesh generators, as well as from small meshes of about 1000 tetrahedral elements
to large meshes of about 100,000 tetrahedral elements. Four of these meshes are
depicted in Fig. 5.17.

The initial quality values as well as the results obtained by global optimization-
based and GETMe smoothing are given in Table 5.7. The columns “Improve-
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(a) TFire (b) Rand1 (c) Tire (d) StGallen

Figure 5.17: Selected initial meshes by Klingner and Shewchuk

ment” contain the relative improvement with respect to the initial values in
percent. Since Klingner and Shewchuk use a topology modifying approach to
improve the worst tetrahedra, results cannot be compared to those given in their
publication. Furthermore, the meshes contain low quality elements with no inner
nodes. These cannot be fixed by boundary nodes preserving smoothing methods
as used here. Hence, again the quality number q∗min of the worst element with at
least one inner node is given instead of the overall worst element quality number
qmin.

As expected, the rates of improvement achieved by both methods depend on
the quality of the initial meshes as well as their topological configuration. In
particular, mesh quality can even decrease in the event of high quality initial
meshes, as can be seen by the global optimization results for the meshes Cube1k
or Cube10k. This comes due to the fact, that the objective function used is geared
towards optimizing qmean instead of the worst element quality q∗min. Consequently,
the mean mesh quality has been improved in all cases.

Because of the combined approach of GETMe smoothing applying sequential
smoothing as a final step, the worst element quality is improved in all cases.
However, due to the termination criteria this comes at the expense of a qmean

deterioration up to 1% of its initial value. This is also the reason why the mean
quality number qmean decreases for the meshes Cube1k and Cube10k, if compared
to the initial mesh. The best mean mesh quality numbers obtained by the si-
multaneous GETMe substep amount to 0.8879, 0.8944, 0.9047, and 0.9007 in the
case of Cube1k, Cube10k, Dragon, and StGallen respectively. Hence, the simul-
taneous GETMe approach leads in nine of twelve cases to equal or greater mean
quality numbers if compared to the global optimization approach. However, since
the final GETMe mean quality numbers differ in none of the twelve cases by more
than 0.01 from the values obtained by global optimization, both methods yield
basically similar results with respect to qmean.

Since unified parameters have been used in all cases, this demonstrates the
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broad applicability and power of GETMe smoothing. In addition, even better
results can be obtained by using individually adjusted parameter sets or by ad-
vanced combined approaches consisting of not only one GETMe simultaneous
and GETMe sequential cycle but multiple ones. However, the results also show
that in order to be applicable for arbitrary meshes, smoothing methods should
be combined with topology modifying approaches as described for example in
[12, 99, 168].

5.3 Hexahedral mesh smoothing examples

In this section, results obtained by applying GETMe smoothing will be presented
for a selection of all-hexahedral meshes covering different aspects. This includes
a nonuniform mesh with regular topology, an unstructured mesh generated by
element subdivision, a mesh obtained by sweeping techniques, as well as a complex
real world mesh taken from a CFD application.

Results will be compared to those of smart Laplacian smoothing. In order to
be independent of the node numbering scheme, new node positions are sequen-
tially computed and assessed but stored separately and applied simultaneously
afterwards. The algorithm is terminated if two consecutive mean mesh quality
values deviate less than 10−6. The mesh with the best mean mesh quality is
used for comparison. Results obtained by the shape improvement wrapper of the
mesh quality improvement toolkit Mesquite version 1.1.7 [137] additionally serve
as a quality benchmark. Since the wrapper returns the mesh of the last iteration,
which is not necessarily the best mesh, all intermediate mesh qualities generated
within one wrapper call have been evaluated. As in the case of smart Laplacian
smoothing, the mesh with the best overall mean quality is used for comparison.

In the case of GETMe smoothing, a unified parameter set has been used for
all examples in order to demonstrate the general applicability of this approach.
It has been determined by assessing the results obtained by a systematic pa-
rameter variation using various meshes resulting from different mesh generation
approaches. For the simultaneous GETMe substep these parameters are given by
a quality dependant choice of σ ∈ [0.5, 0.6], average element edge length preserv-
ing element scaling, the relaxation coefficient % = 0.75, and the exponent η = 0.5.
The same termination criterion has been used as in the case of smart Laplacian
smoothing. For the subsequently applied sequential GETMe smoothing substep
parameters have been set to the quality independent factor σ = 0.01, average
element edge length preserving scaling, and the relaxation parameter % = 0.01.
Quality penalty difference values have been set to ∆πi = 0.0002, ∆πr = 0.0004,
and ∆πs = −0.0002, and mesh quality has been assessed after each hundredth se-
quential GETMe step. Smoothing was terminated if qmin did not improve within
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the last ten evaluations.

5.3.1 Nonuniform grid

The first example considers a simple structured nonuniform mesh with nodes ob-
tained by taking the Cartesian product of 13 non-equidistant x-values, 4 equidis-
tant y-values, and 11 non-equidistant z-values. This results in the initial mesh
depicted in the upper row of Fig. 5.18 consisting of 572 nodes and 360 hexahedral
elements with quality numbers ranging from 0.0010 to 0.5714. The initial mean
mesh quality amounts to 0.0943. Due to the regular topology of the mesh each
of the 198 inner nodes is shared by exactly eight adjacent elements.

Cross sections of the initial mesh as well as the smoothed meshes are depicted
in the lower two rows of Fig. 5.18. As can be seen on the right of the middle row,
smart Laplacian smoothing leads to a rather moderate change in geometry and
with that in quality. In contrast, the global optimization-based approach leads
to an unnatural prolongation of the inner elements with respect to the y-axis as
can be seen on the left of the lower row. A cross section of the GETMe smoothed
mesh using the unified parameter set is depicted on the lower right. Quality
numbers of all meshes are given in Table 5.8.

Table 5.8: Nonuniform grid smoothing results

Method / Criterion qmin qmean

Initial 0.0010 0.0943
Smart Laplace 0.0059 0.1083
Global Optimization 0.0054 0.1199
GETMe 0.0204 0.1199

In the case of smart Laplacian smoothing qmean became maximal for the last
of the 30 iterations performed in total, whereas global optimization yielded the
best results after 17 iterations in the first call of the shape improvement wrap-
per performing a total of two cycles and 51 iterations. In the case of GETMe
smoothing 35 iterations of the simultaneous approach and 1000 iterations of the
sequential approach have been performed. Since the sequential approach trans-
forms only one element per iteration the computational effort is significantly
lower compared to that of one simultaneous GETMe iteration transforming all
elements. Thus, the total number of element transformations performed during
all sequential GETMe smoothing iterations corresponds to the number of element
transformations performed in about 2.8 iterations of the simultaneous approach.

GETMe smoothing can even lead to better results if individual parameters are
used. For example, by using adjusted parameters for the sequential substep, the
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(a) Full nonuniform grid

(b) Initial (c) Smart Laplace

(d) Global Optimization (e) GETMe

Figure 5.18: Full nonuniform grid and cross sections of smoothed meshes with
elements colored according to their mean ratio quality numbers
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minimal element quality can be significantly improved to 0.0634 with a moderate
decrease of the mean mesh quality to 0.1165.

GETMe smoothing not only leads to convincing results with respect to quality
numbers, but also with respect to smoothing runtime as is depicted in Fig. 5.19.
In this mean mesh quality numbers are shown with respect to smoothing runtime
whereby each marker indicates the results after one smoothing step. Hence, the
horizontal distance between to markers denotes the runtime of one smoothing
step. In the case of sequential GETMe smoothing markers indicate the results
obtained after 100 sequential element transformations. Results of smart Laplacian
smoothing are marked blue, those of global optimization green, and the two
phases of GETMe smoothing are colored red and magenta respectively.
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Figure 5.19: Nonuniform grid mean quality with respect to smoothing runtime

A straightforward C++ implementation of GETMe smoothing and smart
Laplacian smoothing has been compared to the results of the feasible Newton-
based global optimization approach of Mesquite version 1.1.7 [137], which is also
implemented in C++. Runtimes have been measured on a notebook with an
Intel R© CoreTM2 Duo CPU T7250 (2MB cache, 2.00GHz, 800MHz FSB), 2GB
RAM, 32bit Linux operating system with kernel 2.6.31.12, and the GNU C++
compiler version 4.4.1. Only the pure smoothing time was measured in order to
exclude runtime distorting effects caused by different data formats, initialization
procedures, and so on.

On average, one iteration of smart Laplacian smoothing, global optimization
and GETMe simultaneous smoothing took 0.0116s, 0.0087s, and 0.0019s respec-
tively. Hence, in the given example simultaneous GETMe smoothing is consider-
ably faster than the other two methods. In the case of smart Laplacian smoothing
this comes due to the fact that the number of element quality evaluations is sig-
nificantly larger than in the case of GETMe simultaneous smoothing, since smart
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Laplacian smoothing has to assess the quality of all elements adjacent to the
node, which has to be updated. Hence the quality number of each inner element
has therefore to be evaluated eight times due to its number of changed element
nodes, whereas in the case of GETMe simultaneous smoothing the mean ratio
number has to be evaluated only once per element. According to its definition
the evaluation of the element mean ratio number is computationally expensive
resulting in a significant drawback of smart Laplacian smoothing of hexahedral
meshes. Using standard Laplacian smoothing without quality evaluation would
lead to drastic shorter runtimes but usually also to the generation of inverted
elements or quality deterioration.

5.3.2 Subdivision mesh

The mesh considered in the second example has been generated by repeatedly
subdividing the elements of an initial cube using some of the refinement templates
described in [87]. To be precise, the templates T2, T4, and T8 depicted in Fig. 5.20
in their exploded view have been used. They subdivide a cube into 5, 13, and 27
hexahedral elements respectively. Here, the different mean ratio numbers of the
hexahedra of T2 are given by 0.6357, 0.7048, and 0.8399 respectively. Those of
T4 range from 0.5400 to 1.0000.

(a) T2 (b) T4 (c) T8

Figure 5.20: Hexahedral refinement templates

In order to generate the initial mesh, a cube of edge length 1000 has been
cut in half for each coordinate direction resulting in eight equally sized cubes.
Subsequently, these cubes have been refined by applying the refinement templates
according to the following scheme:

upper layer:
T2 -
T4 T2

lower layer:
T4 T2

T8 T4
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After that, the eight elements forming the lower outer cube of the template T8

have been recursively subdivided following the same subdivision scheme. Apply-
ing this construction scheme ten times results in a cube with a mesh successively
refined towards one of its nodes. By using this mesh as octants of a cube with
edge length 2000, a hexahedral mesh refined towards the center of the cube has
been generated. Since the subdivision templates comprise elements of already
good quality, inner nodes have been additionally distorted by element validity
preserving random node movements in order to decrease the minimal and aver-
age element quality numbers of the subdivided mesh. The resulting initial mesh
is depicted in Fig. 5.21.

Because of the templates T2 and T4 the mesh is unstructured and consists of
6165 nodes and 5984 hexahedral elements. Here, the number of adjacent elements
per node range from 1 in the case of outer corner nodes to 16 in the case of specific
inner nodes and average to 7.8 elements per node. More than 48% of the inner
nodes are irregular, that is they do not have exactly eight adjacent hexahedral
elements. The minimal and average element quality numbers of the initial mesh
are given by 0.1370 and 0.4979 respectively. Due to the iterated subdivision
scheme, the mesh is strongly graded towards the center of the model.

Table 5.9: Subdivision mesh smoothing results

Method / Criterion qmin qmean

Initial 0.1370 0.4979
Smart Laplace 0.1721 0.7906
Global Optimization 0.5662 0.8395
GETMe 0.6619 0.8254

Cross sections of the initial and smoothed meshes are depicted in the lower two
rows of Fig. 5.21 and the according mesh quality numbers are given in Table 5.9.
As can be seen in the case of smart Laplacian smoothing, although the mean mesh
quality has been considerably improved, low quality elements remain in the mesh.
Furthermore, the minimal element quality number qmin = 0.1721 is well below
the undistorted minimal element quality number given by 0.5400. In contrast,
global optimization-based and GETMe smoothing, not only lead to better results
with respect to qmean, but also with respect to the minimal element quality qmin.

This is also reflected by the element quality histogram depicted in Fig. 5.22
using 30 equidistant quality bins. Whereas smart Laplacian smoothing reduced
the number of elements with q(Hj) < 0.6619 from 5476 to 1427, global opti-
mization reduced this number to 296. In the case of the simultaneous GETMe
substep resulting in a mesh with qmin = 0.6357 and qmean = 0.8256, 95 hexahedra
with q(Hj) < 0.6619 remain. Finally, the sequential GETMe substep was able
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(a) Full subdivision model

(b) Initial Mesh (c) Smart Laplace

(d) Global Optimization (e) GETMe

Figure 5.21: Full subdivision model (a) and cross sections of smoothed meshes
with elements colored according to their mean ratio quality number (b)–(e)
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Figure 5.22: Subdivision mesh element quality histogram

to improve all these elements, resulting in no such elements remaining. In prac-
tice, this is particularly important, since finite element solution accuracy can be
significantly affected by low quality elements. Here, GETMe smoothing not only
leads to good qmin values but also reduces the number of low quality elements on
a broad range of low quality numbers more effectively and efficiently.

Smart Laplacian smoothing and GETMe simultaneous smoothing led to best
results in the last of a total of 27 iteration steps in each case. In contrast, the
average number of 1.5 inverted elements, which had to be handled per GETMe
simultaneous iteration step, is substantially lower than the 65 inverted elements
per iteration step in the case of smart Laplacian smoothing. The subsequently
applied 1400 sequential GETMe smoothing steps generated no inverted elements
at all. Mesquite performed a total of 77 iterations within four shape improvement
wrapper calls of which the 71st iteration led to the mesh with the best mean
quality. Here, the fourth call was terminated prematurely after 15 iterations,
since otherwise it would have accomplished more than 1000 iterations without
further improvements.

Mesh quality improvement with respect to smoothing runtime is depicted in
Fig. 5.23. Again, GETMe smoothing leads to a fast and substantial improvement
within the first steps with respect to qmin as well as qmean. The total smooth-
ing runtimes amount to 5.3s, 16.6s, and 1.1s in the case of smart Laplacian,
global optimization-based, and GETMe smoothing. In particular, the simulta-
neous GETMe smoothing substep obtained the mean mesh quality number 0.8
after 4 iterations taking in total 0.16s, which is about 20 times faster than the 23
iterations needed in the case of global optimization-based smoothing taking 3.19s
in total. Smart Laplacian smoothing was not able to achieve this mean mesh
quality level at all.
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Figure 5.23: Subdivision mesh mean quality with respect to smoothing runtime

5.3.3 Sweep mesh

Sweeping techniques, where meshes are generated by projecting a 2D mesh along
a path, are widely used in the generation of all-hexahedral meshes. In this sub-
section, smoothing results for a basic sample mesh created by this approach are
presented. The mesh has been generated by rotating the unstructured mesh of
quadrilateral elements depicted on the left of Fig. 5.24. The resulting full model
is depicted on the right. Here, the overall mesh quality has been additionally
deteriorated by element validity preserving random inner node movements.

The initial 2D sweeping mesh consists of 817 quadrilateral elements, which
have been rotated along a coordinate axis generating 15 layers of hexahedral
elements. The resulting unstructured hexahedral mesh consists of 14,352 nodes
and 12,255 hexahedral elements. On average 6.8 elements are adjacent to a
mesh node, where individual adjacency numbers range from 1 to 12. Due to
the additional distortion of the initial mesh, the minimal and mean mesh quality
numbers given by qmin = 0.0788 and qmean = 0.4452 are comparatively low as can
also be seen by the cross section of the initial mesh depicted on the upper left of
Fig. 5.25.

Results obtained by all smoothing methods are given in Table 5.10. As can
be seen, Laplacian smoothing was not able to improve the worst element to the
same extend as the other two methods. In particular, some clusters of low quality
elements remain as can be seen on the upper right of Fig. 5.25. In contrast, the
results of global optimization and GETMe based smoothing are balanced with
respect to both quality numbers.

In the case of GETMe smoothing using the unified parameter set resulted in 52
simultaneous iteration steps generating a total of 27 invalid elements, which have
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(a) 2D mesh (b) Sweep mesh

Figure 5.24: Unstructured quadrilateral 2D mesh and resulting full 3D model
after sweeping and inner node distortion

Table 5.10: Sweep mesh smoothing results

Method / Criterion qmin qmean

Initial 0.0788 0.4452
Smart Laplace 0.1323 0.7036
Global Optimization 0.4029 0.7227
GETMe 0.4125 0.7235

been handled by the successive note resetting approach. The subsequently applied
sequential approach performed 5600 iteration steps. Smart Laplacian smoothing
performed 55 iterations leading in total to 1828 invalid elements, which is about
68 times more as in the GETMe case. Global optimization based smoothing
performed in total 62 feasible Newton iterations within four optimization cycles.
In doing so, the best mean mesh quality number was achieved after 49 iterations.
Subsequent iterations further improved qmin, but deteriorated qmean. The best
results of GETMe simultaneous smoothing and smart Laplace have been achieved
by the last iteration step in each case.

Again, GETMe smoothing can even lead to better results if individual param-
eters are used. For example, the mean mesh quality can be further improved to
0.7266 by the simultaneous substep and the minimal element quality to 0.5038
by the sequential smoothing substep.
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(a) Initial (b) Smart Laplace

(c) Global Optimization (d) GETMe

Figure 5.25: Cross sections of initial and smoothed sweep meshes



5.3. HEXAHEDRAL MESH SMOOTHING EXAMPLES 151

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

mean ratio number

n
u
m

b
er

 o
f 

h
ex

ah
ed

ra

Initial
Smart Laplace
Global Optimization
GETMe

Figure 5.26: Sweep mesh element quality histogram

Due to the comparatively low number of sequential GETMe steps, there is
no characteristic peak of elements with quality numbers near qmin in the ele-
ment quality histogram depicted in Fig. 5.26. As can also be seen, the quality
graph of GETMe smoothing visually resembles that of the global optimization
approach, whereas smart Laplacian smoothing differs significantly. In particular,
the number of elements with q(Hj) < 0.4 is larger.
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Figure 5.27: Sweep mesh mean quality with respect to smoothing runtime

Fig. 5.27 depicts the mean element quality number with respect to smooth-
ing runtime. Again, GETMe smoothing is significantly faster. To be precise,
smoothing took in total 22.4s, 19.5s, and 4.5s in the case of smart Laplacian,
global optimization-based, and GETMe smoothing, where the simultaneous sub-
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step took 4.2s and the sequential 0.3s. All runtimes refer to non-parallelized im-
plementations. Compared to this, a first simple parallelized version of GETMe si-
multaneous based on the OpenMP [160] directive “#pragma omp parallel for”
applied to major element loops, like that of element transformation and node av-
eraging, resulted in a runtime of 2.4s. This already yields an excellent speedup
factor of about 1.8 on the test system named before with a theoretical speedup
limit of 2.0. Hence, GETMe smoothing is well suited for parallelization tech-
niques.

5.3.4 Aletis CFD-mesh

The last example considers the inner core of a real world computational fluid
dynamics mesh of the car Aletis developed by TWT GmbH Science & Innovation,
commissioned by the Hellenic Vehicle Industry EΛBO S.A. Thessaloniki [169]. A
picture of the fully functional Aletis prototype is shown in the upper row of
Fig. 5.28 and the feature reduced surface mesh of the model used in the CFD
simulation representing one half of the car is depicted in the middle row.

The initial volume mesh generated in 2001 by TWT GmbH Science & Innova-
tion using ICEM-Hexa version 4.0 by ANSYS, Inc. covering the external of the car
model is depicted in the lower row of Fig. 5.28. It comprises of 1,710,978 nodes and
1,610,234 hexahedral elements with quality numbers ranging from qmin = 0.0043
to 0.9998 resulting in a mean mesh quality of qmean = 0.6195. On average 7.5
elements are adjacent to each node, where individual numbers range from 1 to
10. Each element has on average 24.9 adjacent elements, that is elements, which
share at least one node, where numbers range from 7 to 30.

Since the CFD simulation approach uses a specific turbulence model, the
initial mesh contains several layers of thin interface elements near the surface of
the car body. In practice these interface mesh layers would have been kept fix.
However, in order to judge smoothing results under unfavorable circumstances,
all mesh elements including those of the interface layers have been smoothed
imposing additional difficulties due to the rapid change of element size.

Although the initial mesh consists entirely of valid hexahedral elements the
shape improvement wrapper of Mesquite generated eight inverted elements dur-
ing optimization and could not proceed due to invalid gradient computations.
Hence, only results of smart Laplacian smoothing can be given for comparison
with the results of GETMe smoothing using the unified standard parameters as
stated in the beginning of Section 5.3. The quality numbers achieved are given
in Table 5.11.

As can bee seen, both smoothing approaches only led to a slight improvement
of the worst element quality due to disadvantageous geometry and fixed boundary
configurations as depicted in Fig. 5.29. In this, a small bundle of long elements
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(a) Fully functional Aletis prototype

(b) Reduced complexity surface mesh

(c) CFD volume mesh

Figure 5.28: Aletis prototype and meshes
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Table 5.11: Aletis mesh smoothing results

Method / Criterion qmin qmean

Initial 0.0043 0.6195
Smart Laplace 0.0046 0.7546
Global Optimization aborted aborted
GETMe 0.0052 0.7507

including the overall worst element fixed on one side has not the necessary de-
grees of freedom to be improved appropriately. In practice, topology modifying
approaches, like subdivision techniques, have to be involved in order to resolve
such problems.

Figure 5.29: Worst elements of mesh

Although the worst element quality is only slightly improved, GETMe reduces
the number of low quality elements considerably better than smart Laplacian
smoothing as can be seen in the element quality histogram depicted in Fig. 5.30.
For example, whereas the initial mesh contains 33,630 and 125,137 elements with
quality numbers below 0.1 and 0.2 respectively, smart Laplacian smoothing re-
duces these numbers to 17,255 and 69,525, and GETMe smoothing to 1898 and
18,154 respectively. Hence, the number of problematic elements with quality
numbers below 0.1 is therefore about 9 and 18 times smaller as in the case of
smart Laplacian smoothing or the initial mesh respectively.

As can be seen by the quality histogram, smart Laplacian smoothing results in
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Figure 5.30: Aletis mesh element quality histogram

a larger number of elements with high quality numbers and thus yields a slightly
larger mean mesh quality value. However, as is shown by the cross and longitu-
dinal sections of the initial as well as the resulting smoothed meshes depicted in
Fig. 5.31, results of smart Laplacian smoothing are not satisfying from an appli-
cation point of view. Although there are regions of high quality, clusters of low
quality elements and complete layers of non smoothed elements remain with a
rapid change of element size reducing numerical stability and solution accuracy
of the CFD computation. In contrast, GETMe smoothes the entire mesh and re-
sults in an gradual change of element size. As in the case of the other examples,
further improvements can be achieved by using individual parameters for GETMe
smoothing resulting e.g. in a mesh with qmin = 0.0067 and qmean = 0.7580.

To study the influence of the initial node positions on the results of the
smoothing process, hence the robustness of the smoothing approach, the initial
mesh has been additionally distorted by validity preserving random inner node
movements. That is, the undistorted and the distorted initial mesh differ only in
inner node positions but not in boundary node positions, validity and mesh topol-
ogy. Here, the minimal and maximal element quality deteriorated only slightly
to qmin = 0.0042 and 0.9750 respectively. In contrast, the mean mesh quality
deteriorated by nearly 33% to qmean = 0.4165.

Ideally, smoothing results are mainly affected by mesh topology and fixed
boundary node positions but not by initial inner node positions since the resulting
configuration should maximize (at least locally) the overall mesh quality. This
does not hold for smart Laplacian smoothing as can be seen by the results given
in Table 5.12.

As in the case of the undistorted mesh, the shape improvement wrapper of
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(a) Initial

(b) Smart Laplace

(c) GETMe

Figure 5.31: Cross and longitudinal sections of not randomly distorted initial and
smoothed Aletis meshes
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Table 5.12: Distorted Aletis mesh smoothing results

Method / Criterion qmin qmean

Initial 0.0042 0.4165
Smart Laplace 0.0045 0.7059
Global Optimization aborted aborted
GETMe 0.0062 0.7492

mesquite aborted preliminary due to the generation of inverted elements and re-
sulting failed gradient computations. Compared to the quality numbers of the
undistorted initial mesh, the mean mesh quality achieved by smart Laplacian
smoothing deteriorates by more than 6.5%, while in the case of GETMe smooth-
ing qmean deteriorates only by 0.2%. This can also be seen by comparing the
smoothed meshes of the distorted Aletis model depicted in Fig. 5.32 with those
of the undistorted initial model depicted in Fig. 5.31. While the cross sections of
GETMe are graphically nearly the same, quality deterioration is clearly visible
in the results of smart Laplacian smoothing.

This is also substantiated by the histogram difference graphs depicted in
Fig. 5.33. Here, the ordinate of each marker indicates the difference of the num-
ber of elements within a given quality bin for the undistorted and the distorted
Aletis mesh. For example, the positive values for quality numbers q ∈ [0.0, 0.62)
in the initial mesh marked black indicate that the number of low and medium
quality elements in the distorted mesh is significantly larger than in the undis-
torted mesh. In turn, the number of good to high quality elements, i.e. elements
of quality q ∈ [0.62, 1.0], is decreased. The histogram difference graph of smart
Laplacian smoothing marked blue shows a considerably large reduction of high
quality elements with q > 0.85 and an increase of the number of elements with
q < 0.85. In contrast, GETMe smoothing results are affected only little, since
element numbers in the same bin of the histogram for the distorted and the undis-
torted mesh differ only up to 1493 for q ≈ 0.72. In the case of smart Laplacian
smoothing element numbers differ up to 72,542 for q ≈ 0.98 and in the case of
the initial mesh up to 98,963 for q ≈ 0.92.

Again, GETMe smoothing is also more advantageous with respect to its qual-
ity and runtime behavior if compared to smart Laplacian smoothing as is depicted
in Fig. 5.34. Due to the tight termination tolerance used in both cases iteration
numbers and runtimes are comparably large. In the case of the undistorted ini-
tial mesh smart Laplacian smoothing performed 1460 iterations taking 21 hours,
33 minutes, and 12 seconds in total with an average iteration runtime of about
53 seconds. The simultaneous GETMe substep performed 1257 iterations within
three hours, 53 minutes, and 49 seconds with an average iteration runtime of
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(a) Initial

(b) Smart Laplace

(c) GETMe

Figure 5.32: Cross and longitudinal sections of randomly distorted initial and
smoothed Aletis meshes
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Figure 5.33: Distorted Aletis histogram difference graphs

about 11 seconds, hence being about 4.8 times faster than one iteration of smart
Laplacian smoothing. The parallelized version of simultaneous GETMe smooth-
ing achieved the same result in two hours, 11 minutes and 35 seconds resulting
in a speedup factor of about 1.8. The subsequently applied sequential GETMe
substep performed 16,400 iteration steps within 21 seconds.

Due to the comparatively large number of iterations, in Fig. 5.34 iteration
markers would not be distinguishable and hence are omitted. Furthermore, since
the sequential GETMe smoothing time is very short compared to the simultaneous
GETMe smoothing time the GETMe quality and runtime graphs comprise both
smoothing substeps.

Fig. 5.34 also depicts results for the distorted initial Aletis mesh. As can
be seen, distorting the mesh not only has a significant impact on the solution
accuracy but also on the runtime behavior of smart Laplacian smoothing. In
contrast to the case of the undistorted mesh smoothing terminated already af-
ter 700 iterations taking 10 hours, 20 minutes and 12 seconds in total, whereas
GETMe smoothing took three hours, 55 minutes and 19 seconds performing 1240
simultaneous and 2800 sequential smoothing steps. That is, GETMe runtimes
and quality differ only slightly, which can also be seen by the overlapping quality
and runtime graphs in Fig. 5.34. Hence GETMe smoothing is not only stable
with respect to smoothing results, but also with respect to its runtime behavior.
Furthermore, in the case of the distorted initial mesh, GETMe smoothing reaches
a mean mesh quality number of 0.7 after 37 steps taking six minutes and 58 sec-
onds, being about 16 times faster than smart Laplacian smoothing requiring 124
iterations taking one hour and 49 minutes and 54 seconds.

In practice, results can be obtained much faster. For example, using a work-
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Figure 5.34: Undistorted and distorted Aletis mesh mean quality with respect to
smoothing runtime (GETMe results are nearly congruent)

station with two Intel R© XeonTM X5550 processors, being more representative
for a computational engineering environment, one iteration of the parallelized
simultaneous GETMe smoothing of the undistorted Aletis model takes less than
a second. Furthermore, it is reasonable to perform smoothing only as long as
there is a steep ascent in mesh quality. That is, approximately one fourth of
the iterations performed in the presented examples suffice to yield practically
good meshes. On this basis, the total GETMe smoothing time of the undistorted
Aletis model actually reduces to less than six minutes resulting in a mesh with
qmin = 0.0050 and qmean = 0.7422.

5.4 Mixed volume mesh smoothing examples

In this section, three meshes of different type will be considered to illustrate
the effectiveness of GETMe smoothing of mixed volume meshes. Results will be
compared to those obtained by the geometry-based smart Laplacian smoothing
approach, which is terminated, if the qmean values of two consecutive meshes
deviate less than 10−6. GETMe results are also compared to those obtained
by the shape improvement wrapper of the mesh quality improvement toolkit
Mesquite version 2.1.2 [137]. This wrapper has been applied repeatedly using its
default settings until the mean mesh quality could not be further improved. As
in the case of smart Laplacian smoothing, the mesh with the best overall mean
quality is used for comparison.

In the case of GETMe smoothing a common parameter set was used for all
examples. It has been determined numerically by assessing the results of various



5.4. MIXED VOLUME MESH SMOOTHING EXAMPLES 161

meshes and parameter sets. For the simultaneous substep this resulted in σtet ∈
[0.77, 0.84], σhex ∈ [2.57, 3.45], σpyr = 1.86, σpri = 1.59, mean element edge length
preserving scaling, % = 2/3, and η = 1/4. The same termination criterion was
applied as in the case of smart Laplacian smoothing. In the case of the sequential
GETMe substep σtet = 0.81, σhex = 2.74, σpyr = 1.82, σpri = 0.85, average
element edge length preserving scaling, and the more conservative relaxation
parameter % = 0.01 was used. Penalty values have been set to ∆πi = 0.01,
∆πr = 0.0005, and ∆πs = 0.01.

5.4.1 Hexahedral in tetrahedral mesh embedding

The first example considers a hexahedral mesh of a plate with two drill holes
depicted in Fig. 5.35a embedded into a tetrahedral mesh of a cuboid. The plate
mesh consists of 5748 hexahedral elements and is refined towards the drill hole
with the smaller diameter. This mesh has been wrapped by one layer of 2220
pyramidal elements in order to embed it into the tetrahedral mesh consisting of
26,082 elements. A clipped version of the resulting hybrid mesh is depicted in
Fig. 5.35b. Here, different element types are marked by different shades of gray
and the cuboid is marked by thick black lines.

(a) Hexahedral plate mesh (b) Embedded mesh

Figure 5.35: Hexahedral mesh of a plate and its embedding into a tetrahedral
mesh using one layer of pyramidal elements. Different element types are marked
by different shades of grey

In total, the mesh consists of 34,050 elements and 11,371 nodes of which 1022
are boundary nodes on the outer cuboid faces kept fixed during smoothing. The
boundary nodes of the plate model surface have not been fixed and no constraints
have been used in order to allow an unhampered smoothing of adjacent elements
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of different type. Hence, the shape of the embedded plate is not preserved. In
practice, smoothing methods are usually combined with surface and feature line
back-projection techniques or constrained node movement techniques in order to
preserve external and internal boundaries.

Although the lowest element quality qmin = 0.1625 is comparatively low, the
mean mesh quality of qmean = 0.7302 indicates that the overall mesh quality is
already reasonable. The initial mesh has been smoothed using the methods and
parameters as described at the beginning of this section resulting in the runtime
information and quality numbers given in Table 5.13. Cross sections of the initial,
as well as the smoothed meshes, are depicted in Fig. 5.36.

Table 5.13: Embedded plate smoothing results

Method/Criterion Iter Time (s) qmin qmean

Initial – – 0.1625 0.7302
Smart Laplace 21 5.17 0.0258 0.8195
Global Optimization 52 9.72 0.3400 0.8382
GETMe 26/11,500 2.70 0.4476 0.8300

Table 5.13 also provides the iteration numbers and smoothing time in seconds
for all methods. In the case of GETMe smoothing the iteration numbers of both
substeps are given. Smart Laplacian smoothing terminated after 21 iterations
improving qmean by 12.2% but also decreasing qmin significantly by 84.1%. This
generation of low quality elements is also obvious from the cross section depicted
in Fig. 5.36b if compared to the initial mesh depicted in Fig. 5.36a. Here, all
elements are colored according to their mean ratio quality number, where reddish
colors indicate low quality elements and bluish colors elements of high quality.
Since meshes usually have to meet specific minimal requirements in subsequent
applications, such a loss in minimal element quality is a drawback. However, no
invalid elements have been generated due to the smart approach as they would
have been generated by standard Laplacian smoothing.

The global optimization-based approach performed a total of 52 feasible New-
ton iterations within eight shape improvement wrapper cycles of Mesquite. Here,
both quality numbers have been improved, namely qmin by 109.2% and qmean by
14.8%, which can also be seen by the cross section depicted in Fig. 5.36c.

The GETMe simultaneous approach terminated after 26 iterations resulting
in qmean = 0.8351, However, the mean mesh quality slightly decreased during the
subsequently applied GETMe sequential approach, performing 11,500 iterations.
This is caused by directly setting new node positions obtained by transforming
the worst elements, which led to a slight decrease in neighboring elements quality.
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(a) Initial (b) Smart Laplace

(c) Global Optimization (d) GETMe
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Figure 5.36: Initial and smoothed plate embedding meshes with elements colored
according to their mean ratio quality number
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Since only one element is transformed during one iteration step of GETMe
sequential, the total number of element transformations corresponds to those
performed in less than one GETMe simultaneous step, transforming all 34,050
mesh elements at once. Compared to the initial mesh the combined GETMe
approach improved qmin by 175.4% and qmean by 13.7%.
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Figure 5.37: Embedded plate element quality histogram

As can be seen by the element quality histogram depicted in Fig. 5.37 and
the minimal element quality results given in Table 5.13, GETMe smoothing sig-
nificantly reduces the number of low quality elements. To be precise, the number
of elements with a mean ratio value below 0.44 amounts to 2150, 1138, 106, and
0 in the case of the initial mesh and those obtained by smart Laplacian smooth-
ing, global optimization-based smoothing, and GETMe smoothing, respectively.
The peak in the histogram of GETMe smoothing near qmin is caused by the se-
quential substep, which successively improves low quality elements, leading to an
accumulation of elements near this threshold.

GETMe smoothing also has a favorable runtime behavior, as can be seen
in Fig. 5.38 depicting the mean mesh quality qmean with respect to smoothing
runtime in seconds. Here, each circular marker indicates the results of one iter-
ation. Results have been obtained by a straightforward C++ implementation of
GETMe smoothing and smart Laplacian smoothing. They are compared to the
results of the feasible Newton-based global optimization approach of Mesquite
version 2.1.2 [137], which is also implemented in C++. Runtimes have been mea-
sured on a notebook with an Intel R© CoreTM i5-540M CPU (dual core, 3MB cache,
2.53GHz), 4GB RAM, 64bit Linux operating system with kernel 2.6.34.4, and the
GNU C++ compiler version 4.5.1.

The complete smoothing time amounts to 5.17s, 9.72s, and 2.70s in the case
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Figure 5.38: Embedded plate mean mesh quality with respect to smoothing run-
time

of smart Laplace, global optimization and GETMe smoothing respectively. In
the case of GETMe smoothing, the simultaneous substep took 2.18s and the se-
quential 0.52s. In all cases, due to the comparatively tight termination criterion,
the majority of iterations only led to little improvements. In practice, smoothing
would have been stopped at an earlier stage. For example, the mean mesh qual-
ity of 0.83 was reached by global optimization after 12 iterations taking 1.7s and
by GETMe simultaneous after three iterations taking 0.2s. That is, even a not
specifically optimized version of GETMe smoothing can achieve quality meshes
comparable to those obtained by the global optimization approach within signifi-
cantly shorter runtimes. In contrast, smart Laplacian smoothing was not able to
reach this level of mesh quality.

5.4.2 Tetrahedral in hexahedral mesh embedding

The second example considers the embedding of a ring into a hexahedral mesh.
The ring surface mesh depicted in Fig. 5.39a is provided by the Gamma project
mesh database [170] and consists of 5226 triangular elements. It has been em-
bedded into a hexahedral mesh of 24× 25× 16 regular elements. Three layers of
hexahedral elements have been removed around the ring model and the result-
ing space was filled with tetrahedral elements. One layer of pyramidal elements
connects the tetrahedral mesh with the hexahedral mesh. A clipped version of
the resulting mesh is depicted in Fig. 5.39b. Again, different element types are
marked by different shades of gray and the outline of the regular hexahedral mesh
is marked by thick black lines.



166 CHAPTER 5. NUMERICAL MESH SMOOTHING RESULTS

(a) Triangular ring mesh (b) Embedded mesh

Figure 5.39: Triangular mesh of a ring and its embedding into a hexahedral mesh
using a tetrahedral wrapper mesh and one layer of pyramidal elements. Different
element types are marked by different shades of grey

The mesh consists of 74,106 tetrahedra, 7486 hexahedra, and 1618 pyramids
resulting in a total of 83,210 volume elements. All nodes of the outer cuboid
surface as well as all nodes of the ring surface have been kept fixed resulting in
14,246 movable nodes out of total of 25,531 nodes. Since the resulting initial
mesh again was of already good quality, it has been additionally distorted by
element validity preserving random node movements to complicate smoothing.
The resulting initial mesh quality, runtime information, as well as the results
obtained by the smoothing approaches described at the beginning of this section,
are given in Table 5.14.

Table 5.14: Embedded ring smoothing results

Method/Criterion Iter Time (s) qmin qmean

Initial – – 0.0005 0.4499
Smart Laplace 24 9.80 0.0005 0.6542
Global Optimization 72 14.00 0.1984 0.7534
GETMe 30/6700 7.78 0.2324 0.7437

As in the case of the first example, smart Laplacian smoothing was not able
to improve the minimal element quality. However, the mean mesh quality was
improved by 45.4%. In contrast, global optimization not only improved qmean by
67.5% but also improved the minimal element quality significantly, although the
method is mainly geared towards improving qmean. Finally, GETMe smoothing
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even further improved qmin by 17.1% if compared to the value obtained by global
optimization, and the mean mesh quality by 65.3% if compared to the initial
mesh.

The achieved mesh quality is also reflected by the cross sections of the initial
and smoothed versions of the mesh depicted in Fig. 5.40. In the case of smart
Laplacian smoothing several clusters of low quality elements remain, since node
updates are only performed if quality is improved. Standard Laplacian smoothing
would have been able to resolve some of these clusters, but on the other hand
would have led to a lower mean mesh quality and the generation of invalid el-
ements. In contrast, global optimization and GETMe smoothing yielded valid
meshes of high quality.

Compared to the first example, the number of low quality elements is signif-
icantly higher in the case of smart Laplacian smoothing, as can be seen in the
element quality histogram depicted in Fig. 5.41. For example, the number of
elements with a mean ratio quality number below 0.23 amounts to 12,634, 3269,
3, and 0 in the case of the initial mesh and those obtained by smart Laplacian
smoothing, global optimization and GETMe smoothing, respectively. Although
GETMe smoothing is a geometry-based method not using optimization tech-
niques, its histogram resembles that of the global optimization approach.

Finally, Fig. 5.42 depicts the mean mesh quality with respect to smoothing
runtime. For the example under consideration, smart Laplacian smoothing per-
formed 24 iterations within 9.8s. Four cycles of the shape improvement wrapper
performing 72 feasible Newton iterations in the case of the global optimization
approach took 14.0s in total. The simultaneous GETMe substep accomplished
30 iterations within 7.6s, followed by the sequential substep performing 6700 it-
erations within 0.2s, resulting in a total GETMe smoothing time of 7.8s. Again,
a slightly lower mean mesh quality could be obtained much faster in the case of
GETMe smoothing. For example, the threshold qmean = 0.73 was obtained after
8 iterations of the simultaneous substep taking 2.0s in total. In contrast, global
optimization required 44 iterations taking 8.6s in total to achieve this quality
threshold.

In addition, the simultaneous GETMe approach is well suited for paralleliza-
tion, since steps like the single element transformation and new node computation
can be accomplished in parallel. For example, using the OpenMP [160] directive
“#pragma omp parallel for” in order to parallelize these two steps resulted in
an already good speedup factor of 1.7 for the named test system with a theoretical
speedup limit of 2.0.
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(a) Initial (b) Smart Laplace

(c) Global Optimization (d) GETMe
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Figure 5.40: Initial and smoothed ring embedding meshes with elements colored
according to their mean ratio quality number
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Figure 5.41: Embedded ring element quality histogram

5.4.3 Tetrahedral mesh wrapped with prismatic boundary
layer

Tetrahedral meshes wrapped with layers of prisms are used for example in com-
putational biofluid dynamic applications [10]. As an example, a part of an aorta
will be considered in this section. The model, as well as its initial tetrahedral
mesh, is provided courtesy of MB-AWG by the AIM@SHAPE Shape Repository
[165]. It consists of 35,551 tetrahedral elements and has been wrapped with six
layers of prisms with a constant height of 0.012. Here, the height was chosen
small to avoid the intersection of layer elements as well as not to change the
model surface too much. The wrapped model is depicted in Fig. 5.43b. In this,
part of the prismatic boundary layer has been removed for illustration purposes.
The part of the aorta represented by the model is marked by a blue rectangle in
Fig. 5.43a. The scheme itself was created by J. Heuser and is provided by the
Wikimedia Commons media archive [171].

Due to the minimal and average element quality numbers given by 0.2677
and 0.8098 respectively, the initial tetrahedral mesh is of already good quality.
However, adding six layers of thin prisms reduces these numbers significantly as
can be seen by the qmin and qmean values of the initial mesh given in Table 5.15.
The number of prisms amounts to 80,724 resulting in an initial mesh with 49,903
nodes and 116,275 elements in total.

The low quality of the prismatic boundary layers can also bee seen in the
cross section of the initial mesh depicted in Fig. 5.44a. Although smart Lapla-
cian smoothing is able to widen up the prismatic layers resulting in a mean mesh
quality improvement of 86.4%, the minimal element quality halves if compared
to the initial mesh. In particular, results obtained by this approach are not satis-
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Figure 5.42: Embedded ring mean mesh quality with respect to smoothing run-
time

Table 5.15: Aorta smoothing results

Method/Criterion Iter Time (s) qmin qmean

Initial – – 0.0413 0.3077
Smart Laplace 98 120.84 0.0211 0.5737
Global Optimization 140 105.04 0.3895 0.8392
GETMe 251/66,300 95.65 0.5522 0.8231

factory if compared to the other two smoothing methods resulting in significantly
better quality numbers. This is because smart Laplacian smoothing is based on
a simple node averaging scheme being not quality driven. Here, quality only
comes into account in the decision if node movements are applied depending on
the mean quality improvement of adjacent elements. Due to the uniform prism
heights, widening the prismatic boundary layers is mainly induced by the move-
ment of the interface nodes shared by both element types. In addition, overall
mesh improvement is hampered by the interior quality tetrahedral mesh, as can
also be seen in Fig. 5.44. This does not hold for standard Laplacian smooth-
ing leading to a significantly better mean mesh quality of 0.7542 but also to the
generation of 372 invalid elements, thus resulting in an unusable mesh for most
applications.

In contrast, since GETMe smoothing is based on regularizing element trans-
formations and quality weighted node averaging, the prismatic layers are widened
up by the transformation induced node movements. Hence, applying GETMe si-
multaneous resulted in a significantly better mean mesh quality of qmean = 0.8253
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(a) Aorta scheme (b) Aorta mesh cross section

Figure 5.43: Schematic representation of an aorta, and its tetrahedral mesh with
six prismatic boundary layers. Different element types are marked by different
shades of grey

representing an improvement by 168.2% if compared to the initial mesh qual-
ity. The subsequently applied sequential substep of GETMe smoothing slightly
reduced this mean mesh quality number to qmean = 0.8231 while improving the
minimal element quality by factor 13.4, if compared to the initial mesh.

Due to its global optimization-based approach, the shape improvement wrap-
per of Mesquite also widened the prismatic boundary layer significantly, resulting
in a minimal quality improvement by factor 9.4 and a mean mesh quality im-
provement by 172.7% if compared to the initial mesh.

The big difference in mesh quality between smart Laplacian smoothing on the
one hand, and global optimization-based and GETMe smoothing on the other
hand is also obvious from the quality histogram depicted in Fig. 5.45. Here,
the mean initial prisms quality of 0.0866 is reflected by a peak of the initial
mesh histogram. For sake of clarity, this peak representing 49,604 elements in
the quality bin [1/15, 1/10) is not visible. The mean quality of all prisms is
improved by smart Laplacian smoothing to 0.4796. However, the prisms mean
quality numbers 0.8440 and 0.8586 achieved by GETMe smoothing and global
optimization are nearly twice as large. Furthermore, there are a large number of
low quality elements in the case of smart Laplacian smoothing. For example, the
number of elements with a mean ratio number below 0.5522 amounts to 81,381,
58,385, 587 and 0 in the case of the initial mesh, and those obtained by smart
Laplacian smoothing, global optimization, and GETMe smoothing respectively.

For the given example, smart Laplacian smoothing terminated after 98 it-
erations taking 121s in total. Due to the local oriented approach of GETMe
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(a) Initial (b) Smart Laplace

(c) Global Optimization (d) GETMe
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Figure 5.44: Initial and smoothed aorta meshes with elements colored according
to their mean ratio quality number
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Figure 5.45: Aorta element quality histogram

smoothing and the thin initial prismatic boundary-layers, GETMe simultaneous
performed a comparatively large number of 251 iterations taking 93s in total.
That is, one iteration of GETMe simultaneous smoothing is about 3.3 times
faster if compared to one step of smart Laplacian smoothing. This is caused by
the lower number of element quality evaluations, which, in the case of the mean
ratio quality criterion, are comparatively expensive. The subsequently applied
sequential GETMe approach performed 66,300 iterations within 3s resulting in
a total GETMe smoothing time of about 96s. Mesquite performed 140 feasible
Newton iterations within three cycles of the shape improvement wrapper, taking
105 seconds in total. Since one iteration of GETMe simultaneous smoothing is
about two times faster compared to one feasible Newton iteration, the overall
smoothing time of GETMe smoothing is shorter, although a larger number of
iterations was performed.

As in the previous examples, the first iterations of the simultaneous GETMe
substep led to a sharp rise in mesh quality. Hence, practically good meshes can
be obtained in significantly shorter runtimes. For example, GETMe simultaneous
achieved qmean = 0.6 within 14 iterations taking 6s, hence being about 15.7 times
faster than the global optimization approach, which required 128 iterations taking
94s. This is also caused by a slow mean quality improvement of the first shape
improvement wrapper cycle of Mesquite, which achieved qmean = 0.5956 after
127 iterations. The second cycle led to a more rapid improvement, resulting in
qmean = 0.8392 after ten additional iterations. However, even the quality threshold
qmean = 0.8 was achieved about 2.4 times faster by GETMe smoothing.
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Figure 5.46: Aorta mean mesh quality with respect to smoothing runtime

5.4.4 Mean ratio and warpage-based GETMe smoothing

In the previous sections, mesh quality was assessed using the mean ratio quality
criterion only. However, other quality criteria can be incorporated as is described
in Section 4.7 introducing a combined GETMe approach being based on the mean
ratio element quality criterion as well as the warpage criterion for measuring the
quality of quadrilateral element faces. For this approach, named GETMe qγ, and
the mixed volume meshes introduced in the preceeding three sections, smoothing
results are given in Table 5.16.

In this, the first four rows of each example contain the mean ratio and warpage
values for the meshes obtained in the previous examples. As can be seen, global
optimization as well as the mean ratio-based GETMe smoothing led to compa-
rable mean warpage values. Using the example of the embedded ring model,
Fig. 5.47 depicts a considerable reduction of wmean within the first few iterations
of GETMe simultaneous. As a result, GETMe smoothing reached the thresh-
old wmean = 0.01 more than eight times faster than the global optimization-based
approach, whereas smart Laplacian smoothing did not reach this threshold. In ad-
dition, smart Laplace generated strongly warped faces in the case of the ring and
aorta model. However, compared to the results of the global optimization-based
approach, GETMe smoothing led to increased wmax values for the embedded plate
and ring model.

Such low quality elements can effectively be improved by a mean ratio and
warpage-based GETMe sequential substep as it is described in Section 4.7. Re-
sults obtained for such a qγ-based GETMe sequential approach applied to the
GETMe smoothed meshes of the previous examples are given in the rows of Ta-
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Table 5.16: Mesh quality with respect to the mean ratio (q) and warpage (w)
quality criterion for previous examples and results after applying the combined
GETMe approach (denoted as GETMe qγ). Larger mean ratio values indicate
elements of better quality, whereas lower warpage values indicate quadrilateral
faces of better quality

Mesh Method qmin qmean wmax wmean

Plate Initial 0.1625 0.7302 0.7368 0.0100
Smart Laplace 0.0258 0.8195 0.7752 0.0139
Global Optimization 0.3400 0.8382 0.6529 0.0154
GETMe 0.4476 0.8300 0.9192 0.0194
GETMe qγ 0.2346 0.8298 0.2972 0.0179

Ring Initial 0.0005 0.4499 1.8157 0.4498
Smart Laplace 0.0005 0.6542 1.5461 0.0566
Global Optimization 0.1984 0.7534 0.8013 0.0095
GETMe 0.2324 0.7437 1.0856 0.0071
GETMe qγ 0.2324 0.7435 0.1173 0.0047

Aorta Initial 0.0413 0.3077 0.6028 0.0092
Smart Laplace 0.0211 0.5737 1.9245 0.1203
Global Optimization 0.3895 0.8392 0.9915 0.0247
GETMe 0.5522 0.8231 1.0117 0.0355
GETMe qγ 0.4359 0.8231 1.0000 0.0355

ble 5.16 denoted by GETMe qγ. As can be seen, this method led to improved
results with respect to qmin as well as wmax in 4 of 6 cases if compared to global
optimization. In addition, results with respect to the mean quality numbers
qmean and wmean are comparable. Here, for all three examples, the transformation
and penalty parameters of the qγ-based GETMe sequential smoothing substep
have been set to those of the mean ratio-based sequential substep given in the
beginning of section 5.4. In addition, the quality weight γ = 0.25 has been used.

Due to the incorporation of two quality criteria, the qγ-based sequential sub-
step has an increased computational complexity. Furthermore, mesh quality was
assessed after each iteration, since quality changes more rapidly if compared to
the mean ratio-based GETMe sequential approach. This resulted in the smooth-
ing runtimes 0.44s, 2.10s, and 0.01s for the plate, ring and aorta example re-
quiring 2555, 7068, and 218 iterations, respectively. Nevertheless, the overall
runtimes of the GETMe qγ approach amounting to 3.14s, 9.88s, and 95.66s are
significantly lower than those of the global optimization-based approach requiring
9.72s, 14.00s, and 105.04s, respectively.

Differences between the two quality criteria are evident for the aorta example.
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Figure 5.47: Mean quadrilateral warpage wmean with respect to smoothing time
for embedded ring example. Lower values indicate better quality quadrilateral
faces

Here, the initial mesh has been constructed by wrapping a tetrahedral mesh with
six prismatic layers of constant height. Due to this, the nodes of the quadrilateral
faces are almost coplanar, which results in an excellent initial mean warpage of
wmean = 0.0092. In contrast, due to the low heights, these prisms are strongly
non-regular yielding a very low average mean ratio value of qmean = 0.3077. This
is is also visible by the initial mesh cross section depicted in Fig. 5.44a. Applying
global optimization and GETMe smoothing widened up these layers of prisms
resulting in a considerable improvement of its mean ratio quality. At the same
time, the warpage values increased, since the prismatic layer heights and with this
the quadrilateral element faces became less uniform. This shows that both quality
criteria can result in opposing smoothing objectives. Nevertheless, in the case of
qγ-based GETMe smoothing the quality weight γ allows a good compromise to
be found.

For the given examples, numerical tests have shown that applying the se-
quential qγ-based GETMe approach to the results of GETMe smoothing leads
to better results than applying it to the results of the mean ratio-based simul-
taneous substep. Since the same transformation and penalty parameters have
been applied during the two sequential substeps, this can be interpreted as one
sequential substep incorporating a change of the quality criterion.

Further improvements are expected by an adaptive choice of transformation
parameters. Here, numerical tests based on parameter variations have shown that
similar GETMe qγ results as given in Table 5.16 can be achieved within signifi-
cantly shorter runtimes. Furthermore, wmax values have been further reduced by
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12.1 %, 63.3 %, and 2.7 % for the plate, ring and aorta model by using individ-
ual smoothing parameters. It is noted however, that these results should not be
compared with those of smart Laplacian smoothing and the global optimization-
based approach, since the latter are tuned to improve mesh quality with respect
to the mean ratio criterion only.

This first test demonstrates the flexibility of the GETMe sequential smoothing
approach with respect to the quality criterion used for smoothing control. A sim-
ilar potential for improvement is expected for an accordingly adjusted GETMe
simultaneous approach. However, since in this case element quality is also in-
corporated in the computation of element transformation parameters and the
weighted node averaging scheme, adjustments are more closely bound to the char-
acteristics of the quality criterion. Further research regarding these topics has to
be accomplished within the context of specific applications and their individual
requirements for mesh quality.

5.5 Adaptive GETMe smoothing examples

For two generic meshes this section provides a comparison of results obtained by
GETMe adaptive smoothing as well as smart Laplace, a global optimization-based
approach, and basic GETMe smoothing. It will also discuss implementational
aspects by comparing results for the straightforward C++ implementation of
GETMe smoothing with those of a more efficient C implementation of GETMe
adaptive smoothing.

5.5.1 Test description

In the case of GETMe smoothing, the default parameters as given in Section 5.4
and Chapter 6 have been used. For GETMe adaptive smoothing, the maximum
number of iterations has been set to 1000 and the qmean improvement tolerance
to 10−4. The tetrahedral mesh has been smoothed by using the opposite face
normal transformation. For the hexahedral mesh, the dual element-based trans-
formation has been applied. In both cases, the fixed element transformation
parameter σ = 3/2 was used. The tables of relaxation values have been set to
R = (1, 1/4, 1/16, 0) and R = (1/2, 1/4, 1/10, 1/100, 0) in the case of the qmean and
q∗min oriented smoothing stage, respectively. Each q∗min oriented smoothing cycle
has been terminated after the NoMinImproveCounter reached five iterations.

Results of both GETMe variants are compared to those of smart Laplacian
smoothing, which was implemented using the same data structures as the GETMe
adaptive approach. Thus it also benefits from the lean data management of the
C implementation. In addition, results for an OpenMP-based parallelized smart
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Laplacian smoothing approach are provided. Here, testing if a node update would
increase local mesh quality is applied in parallel for all nodes. In this case,
nodes are not updated directly in order to assure reproducibility of results and
the independence of the node numbering scheme. Instead, similar to GETMe
adaptive, new node positions are stored in p′i, which is interchanged with pi
at the end of the iteration. In the case of invalid element generation, nodes
are iteratively reset to their original coordinates until the mesh is valid again.
Smoothing is terminated, if the qmean values of two consecutive iterations differ
by less than 10−4.

The quality of the results is compared to the state of the art global optimization-
based approach provided by the shape improvement wrapper of the mesh quality
improvement toolkit Mesquite version 2.2.0 [21, 137]. This algorithm has been
applied iteratively until the qmean improvements of two consecutive calls dropped
below 10−4.

Mesquite also provides parallel mesh smoothing based on smoothing sub-
meshes and synchronizing submesh interfaces using MPI [172]. However, for the
given examples, the shape improvement wrapper failed due to the detection of
termination criteria issues, which would have led to infinite loops. Therefore, as a
substitute, optimal results have been assumed for the parallel global optimization-
based smoothing approach. That is, the sequential runtime has been divided by
the number of processor cores of the test system to provide an ideal case estimate
of the parallel runtime. In practice, runtimes are expected to be significantly
higher due to the usage of shared resources.

The GETMe approach and the Mesquite toolkit are implemented in C++. In
contrast, GETMe adaptive and smart Laplacian smoothing are implemented in
C. All programs have been compiled using the GNU Compiler Collection version
4.7.1 [162]. Computations have been accomplished on a personal computer with
an Intel R© CoreTM i7-870 CPU (quad core, 8 MB cache, 2.93 GHz), 16 GB RAM,
and a 64 bit Linux operating system. Here, hyper-threading has been deactivated
and all four cores of the processor have been used for parallel computations. Thus,
the ideal speedup factor for the parallel implementation is 4.

5.5.2 Tetrahedral mesh example

The first example considers the piston model depicted in Fig. 5.48. It was con-
structed by completing a partial model provided by the Drexel University Geo-
metric & Intelligent Computing Laboratory model repository [173].

A tetrahedral mesh consisting of 729,923 nodes and 4,129,608 elements has
been generated by Delaunay tetrahedralization resulting in a highly unstructured
mesh with the number of tetrahedra attached to individual nodes ranging from
2 to 48. This mesh was distorted by random element validity preserving node
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Figure 5.48: Full piston model (left) and cross section (right)

movements in order to increase the smoothing potential of the mesh. The result-
ing mesh has been smoothed with the C implementation of the smart Laplacian
smoothing approach, the C++ based shape improvement wrapper of Mesquite,
the C++ implementation of GETMe, and the new C implementation of GETMe
adaptive, as described in the previous sections. Cross sections of the resulting
meshes are depicted in Fig. 5.49. Here, each element is colored according to its
mean ratio quality number, where reddish colors indicate low quality elements
and bluish color high quality elements.

As can be seen in Fig. 5.49a, elements of the initial mesh are severely distorted
to challenge all smoothing methods. At first sight it seems that the mesh qual-
ity obtained by smart Laplacian smoothing is comparable to those of the other
smoothing methods. However, a closer look reveals elements of very low quality,
which can also be verified by the worst element quality number q∗min = 0.0001
given in Table 5.17. In contrast, the corresponding quality numbers of the global
optimization and GETMe-based methods are significantly better. For exam-
ple, the numbers of elements Ej with q∗min ≤ q(Ej) ≤ 0.4 amount to 1,798,777
for the initial mesh and 4463, 164, 514, 32 for its variants smoothed by smart
Laplace, global optimization, GETMe, and GETMe adaptive, respectively. In the
case of smart Laplace, the mean ratio quality of 465 elements is even below 0.1,
which may lead to numerical instabilities in subsequent finite element computa-
tions. Nevertheless, the mesh is valid, which is not the case if classical Laplacian
smoothing is used instead.

The increased number of elements with q(Ej) ≤ 0.4 in GETMe smoothing is
due to its approach of consecutively improving the worst elements, which leads
to an accumulation of elements with a quality number slightly above q∗min. This
effect is ameliorated by the adaptive approach, which also uses the weighted
node averaging scheme of Equation (4.3) during the q∗min-oriented smoothing stage
instead of setting transformed nodes directly. Furthermore, both quality numbers
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Figure 5.49: Piston mesh cross sections with elements colored according to their
mean ratio quality number

obtained by GETMe adaptive smoothing are slightly better than those of GETMe
smoothing.

Table 5.17 also provides the maximum memory size of the application mea-
sured in gibibytes (230 bytes), the smoothing time in seconds, as well as the
number of iterations. In the case of GETMe smoothing, the iteration number
of the simultaneous and sequential substeps are given. Similarly, for GETMe
adaptive iteration numbers are given for the qmean and for the q∗min-oriented stage
of the smoothing process.

Due to its simple approach, memory requirements of smart Laplacian smooth-
ing are low. The large amount of memory used in the case of the C++ implemen-
tation of GETMe smoothing is not caused by the requirements of the algorithm,
but by the use of general data structures storing redundant topology and statis-
tical informations. This can also be seen by the comparably low memory require-
ments of the GETMe adaptive approach implemented in C. Thus, an implemen-
tation of GETMe smoothing using similar lean data structures would result in a
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Table 5.17: Piston mesh smoothing results with (P) indicating parallel versions,
(OP) denoting an estimate for optimal parallelization

Name Mem [GiB] Time [s] Iter q∗min qmean

Initial – – – 0.0000 0.4506
Smart Laplace 0.3 28.90 12 0.0001 0.8584
Global Opt. 2.0 791.42 149 0.2963 0.8654
GETMe 5.7 74.41 12/5500 0.3336 0.8636
GETMe adaptive 1.6 40.05 15/47 0.3421 0.8637

Smart Laplace (P) 0.4 9.18 12 0.0001 0.8584
Global Opt. (OP) 2.0 197.85 149 0.2963 0.8654
GETMe adaptive (P) 1.6 17.29 15/47 0.3421 0.8637

significantly lower memory profile comparable to that of GETMe adaptive. How-
ever, the results for the unmodified C++ implementation of GETMe smoothing
are included for consistency with previous publications. Thus improvements with
respect to memory requirements and smoothing time demonstrated in this work
could also be obtained for the examples given in previous publications.

On average, one iteration of smart Laplacian smoothing requires 2.41s. It can
be seen that smart Laplacian smoothing results in the lowest overall smoothing
time. In contrast, the global optimization-based approach, due to the high av-
erage smoothing time of 5.31s per iteration and the large number of iterations,
takes 27.4 and 19.8 times longer if compared to smart Laplacian smoothing and
GETMe adaptive smoothing, respectively. For the latter, the average time of
2.57s per iteration during the first stage is only slightly larger than that of smart
Laplacian smoothing with 2.41s per iteration, despite the fact that the elements
are transformed. This is due to the lower number of mean ratio quality evalua-
tions. Furthermore, the average runtime per iteration of 0.03s during the second
smoothing stage of GETMe adaptive is low.

Mesh quality with respect to smoothing time is depicted in Fig. 5.50. As can
be seen by the results for the minimal element quality number q∗min given on the
left, smart Laplacian smoothing leads to almost no improvement. In contrast,
GETMe and GETMe adaptive lead to a sharp rise at the beginning of the qmean-
oriented stage, as well as during the complete q∗min-oriented stage. Improvements
of the global optimization-based approach are achieved within the last quarter of
its runtime, which prohibits a preliminary termination from an application point
of view.

The second part of Table 5.17 also provides results for the parallel versions.
Again, it is pointed out that in the case of global optimization a lower bound for
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Figure 5.50: Piston mesh q∗min (left) and qmean (right) with respect to smoothing
time for sequential implementations

the runtime is given, by assuming that the method achieves the optimal speedup
factor 4. The actual speedup factors of smart Laplacian smoothing and GETMe
adaptive smoothing reach 3.1 and 2.3, respectively. As can be seen, the speedup
of GETMe adaptive is inferior due to to the incorporation of atomic memory
operations and a larger amount of data to be transferred.

5.5.3 Hexahedral mesh example

The second example considers the pump carter model depicted in Fig. 5.51, of
which a STEP-file was provided courtesy of Rosalinda Ferrandes, Grenoble INP,
by the AIM@SHAPE Shape Repository [165].

Figure 5.51: Pump carter model

An all-hexahedral mesh consisting of 2,779,096 nodes and 2,646,976 elements
has been generated by sweeping a quadrilateral surface mesh along the z-axis re-
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sulting in an almost regular hexahedral mesh, where 90% of the nodes are shared
by eight hexahedra each. The number of attached elements of the remaining
10% of nodes ranges from two to ten. As in the case of the first example, this
mesh was distorted by element validity preserving random node movements re-
sulting in the initial mesh. The latter has been subsequently improved by all
smoothing methods under consideration. Cross sections of the resulting meshes
are depicted in Fig. 5.52. Compared to the case of the tetrahedral mesh, the
ratio of low quality elements is further increased in the case of smart Laplacian
smoothing. For example, the numbers of elements Ej with q∗min ≤ q(Ej) ≤ 0.5
amounts to 1,586,570, 18,509, 23, 4, and 0 in the case of the initial mesh and
those smoothed by smart Laplace, global optimization, GETMe, and GETMe
adaptive, respectively. Here, the large number of low quality elements in the case
of smart Laplacian smoothing is also reflected by the decreased mean mesh qual-
ity given in Table 5.18. As in the case of the previous example, applying classical
Laplacian smoothing invalidates the mesh.

Compared to global optimization and GETMe smoothing, GETMe adaptive
smoothing leads to a further improvement of q∗min. In all three cases, mean mesh
quality numbers are near the optimal value one, which is also reflected by the
bluish element colors in the cross sections given in Fig. 5.52.

Table 5.18: Pump carter mesh smoothing results with (P) indicating parallel
versions and (OP) denoting an estimate for optimal parallelization

Name Mem [GiB] Time [s] Iter q∗min qmean

Initial – – – 0.0385 0.4709
Smart Laplace 0.7 344.62 30 0.0604 0.9393
Global Opt. 4.4 5241.92 269 0.4501 0.9766
GETMe 2.9 227.25 24/31800 0.4667 0.9720
GETMe adaptive 0.9 88.97 25/43 0.5442 0.9719

Smart Laplace (P) 0.9 103.84 30 0.0604 0.9393
Global Opt. (OP) 4.4 1310.48 269 0.4501 0.9766
GETMe adaptive (P) 0.9 33.81 25/43 0.5442 0.9719

Again, the maximum memory size of smart Laplacian smoothing and GETMe
adaptive is low, if compared to the C++ implementations of GETMe and global
optimization. For example, global optimization requires five times more memory
than GETMe adaptive. Furthermore, GETMe adaptive smoothing is 3.9, 58.9,
and 2.6 times faster, compared to smart Laplacian smoothing, global optimiza-
tion, and GETMe smoothing, respectively. Here, smart Laplacian smoothing is
slower than both GETMe variants, due to the larger number of element quality



184 CHAPTER 5. NUMERICAL MESH SMOOTHING RESULTS

(a) Initial (b) Smart Laplace (c) Global Opt.

(d) GETMe (e) GETMe adaptive

0

0.2

0.4

0.6

0.8

1

Figure 5.52: Pump carter mesh cross sections with elements colored according to
their mean ratio quality number
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evaluations and the fact that determining the mean ratio of hexahedra requires
the computation of eight 3× 3 determinants and Frobenius norms each.

This increased speedup obtained by GETMe adaptive is also apparent in
the quality with respect to smoothing time graphs depicted in Fig. 5.53. As
can be seen, global optimization leads to a decrease of the worst element quality
during the first iteration, which cannot be resolved during almost 4000 smoothing
seconds. In contrast, the same method leads to a slow but steady improvement
of the mean mesh quality within that time. The convergence behavior of smart
Laplacian smoothing and both geometry-based approaches differs significantly.
Here, the first few iterations lead to a sharp rise of mesh quality with respect to
both, q∗min and qmean.
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Figure 5.53: Pump carter mesh q∗min (left) and qmean (right) with respect to
smoothing time for sequential implementations

Table 5.18 also provides results for the parallel versions of smart Laplacian
smoothing and GETMe adaptive based on an OpenMP-approach. Here, the speed
up by applying smart Laplacian smoothing in parallel is 3.3 compared to the
sequential version. The speed up of parallel GETMe adaptive smoothing is 2.6.
Furthermore, the parallel version of GETMe adaptive smoothing is 3.1 and 38.8
times faster compared to the parallel version of smart Laplacian smoothing and
the ideal parallelization of the global optimization-based approach, respectively.
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Chapter 6

Improving finite element
simulation by GETMe smoothing

In this section, the influence of the improvement of mesh quality with the GETMe
smoothing technique on finite element solution accuracy and computational ef-
ficiency will be demonstrated [37]. Fig. 6.1 depicts the main steps in the finite
element-based simulation process, where the mesh generation and the assembly
of the system of linear equations will not be addressed in this study. Hence, these
steps are marked by dotted lines.
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Figure 6.1: Steps of the finite element simulation process

Due to the universal approach of the geometric element transformation method,
smoothing of surface and volume meshes differ only by the involved element trans-
formations, which have to be chosen according to the type of the mesh elements.
To substantiate this, in the following examples a common set of GETMe control
parameters was used for the 2D as well as the 3D meshes. With regard to the
subsequently performed finite element computations, these parameters increase
the smoothing speed while maintaining high mesh quality.

In the case of the GETMe simultaneous substep, mean element edge length
preserving scaling, and no relaxation, i.e. % = 1, have been applied. Furthermore,
by using the exponent η = 0, the weighted node averaging scheme simplifies
to the arithmetic mean, which further reduces the numerical complexity. In
the case of the GETMe sequential substep likewise mean element edge length
preserving scaling was used. Furthermore, the relaxation parameter has been
set to % = 1/100, and the penalty parameters ∆πi = 10−4, ∆πr = 10−5, and

187
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∆πs = −10−3 were applied in all cases. These parameters and the element type
specific transformation parameters stated in the subsequent sections have been
obtained on the basis of the examples of the previous chapter and the results of
a series of parameter variation test for a collection of meshes of different type.

The parameter variation tests also indicate that GETMe simultaneous, due
to its averaging approach, is particularly stable within its parameters. That is,
similar parameter sets lead to similar results. In comparison, due to its single ele-
ment transformation approach, GETMe sequential is more sensitive with respect
to its transformation and relaxation parameters. For example, using parameters
leading to a rapid change of shape of the lowest quality element might invalidate
neighboring elements.

All smoothing methods considered were implemented in C++ and have been
compiled with the GNU C++ compiler version 4.5.1. Runtimes were measured
on a personal computer with an Intel R© CoreTM i7-870 CPU (quad core, 8 MB
cache, 2.93 GHz), 16 GB RAM, and a 64 bit Linux operating system.

6.1 Model Problem

As a model problem, Poisson’s equation with Dirichlet boundary conditions is
considered. This can be interpreted as a steady state heat conduction problem
on a domain Ω ⊂ Rn, n ∈ {2, 3}, with homogeneous material and prescribed
temperature on the domain’s boundary ∂Ω. Setting the thermal diffusivity to
one results in the elliptic boundary value problem

−∇2u = f on Ω , (6.1)

u = g on ∂Ω , (6.2)

where ∇2 denotes the Laplace operator [174]. Here, the solution u : Ω → R
describes the temperature defined over the closure Ω of Ω, f : Ω→ R represents
the heat source, and g : ∂Ω→ R provides the prescribed boundary temperature.

In order to preserve in the following examples the initial boundary condi-
tions of the finite element computation, boundary nodes will be kept fixed by all
smoothing methods applied. This also avoids additional influences caused by the
usage of different shape preservation techniques.

Since inner node positions of meshes improved by different smoothing meth-
ods do not match, the corresponding nodal finite element solutions cannot be
compared directly. Comparing interpolated values instead is also problematic
because of the additional interpolation error. However, in the ideal case, the fi-
nite element solution can be compared with the analytic solution. Therefore, in
the following examples an arbitrarily chosen analytic solution u was prescribed for
a given domain. From this, the boundary value problem was derived and solved
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by a finite element approach. This allows the determination of exact solution
errors for arbitrarily complex domains Ω.

In order to compute the numerical solution, the heat source function f given
by the left hand side of equation (6.1), as well as the boundary conditions accord-
ing to equation (6.2) are required as input data. For this purpose, f has been
determined by applying the Laplace operator to the given analytic solution u and
interchanging signs. Dirichlet boundary conditions have been set to g := u|∂Ω,
i.e. by evaluating the analytic solution for all boundary nodes with the associated
index set I∂Ω. Indices of interior mesh nodes are given by the set IΩ := Ip \ I∂Ω.

Let ũ : Ω → R denote the finite element approximation of the prescribed
analytic solution u. Solution accuracy is assessed by means of the nodal error
numbers

emax := max
i∈IΩ
|u(pi)− ũ(pi)| ,

emean :=
1

|IΩ|
∑
i∈IΩ
|u(pi)− ũ(pi)| ,

which represent the maximal and mean temperature deviation for all inner mesh
nodes. Here, |IΩ| denotes the number of these nodes. In addition,

eL2 :=

√∫
Ω

|u− ũ|2 dx ,

eH1 :=

√√√√∑
|α|≤1

∫
Ω

|∂α(u− ũ)|2 dx

give the errors with respect to the associated norms of the underlying Sobolev
space in which the weak solution is derived. Thereby α = (α1, . . . , αn) ∈ {0, 1}n
represents a partial differentiation multi-index with |α| = ∑n

i=1 αi.

6.2 Planar meshes example

The first example considered is the planar involute gear model with 17 teeth and a
radius of 9.5 units depicted in Fig. 6.2a. In order to demonstrate the sensitivity of
the finite element discretization accuracy, the strongly varying analytic solution

u(x, y) := 40 sin

(
1

2
(x+ 1)(y − 1)

)
+ 60

has been chosen, which is depicted in Fig. 6.2b. Applying the Laplace operator
to u and interchanging signs results in the right hand side f of the Poisson’s
equation used for the finite element computation.
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Figure 6.2: Involute gear problem: Model and model colored according to the
analytic solution u of the Poisson problem

Two different initial meshes for the same domain have been generated. One is
a triangular mesh with 14,346 elements and 7660 nodes, the other a quadrilateral
mesh with 6229 elements and 6716 nodes. Here, the number of elements has been
chosen such, to yield similar average element edge lengths in both cases. These
meshes have been subsequently distorted by element validity preserving random
node movements in order to increase their smoothing potential and to demon-
strate the influence of low quality meshes on finite element solution accuracy.

In the case of GETMe smoothing, the polygonal element transformation
scheme, as described in Section 2.3 and depicted in Fig. 2.9, has been applied.
Here, the simultaneous substep transformation parameters have been set to λ =
7/20 and θ = π/12. In the case of the sequential substep λ = 9/20 and θ = 5π/36
have been applied. Since one iteration of GETMe sequential smoothing consists
of transforming a single element, the comparatively expensive evaluation of mesh
quality, which is used for termination control, was only assessed after a cycle of 100
consecutive single element transformations each. For comparative purposes, the
meshes have also been improved by area-weighted Laplacian smoothing, smart
Laplacian smoothing, and the global optimization-based approach provided by
the shape improvement wrapper of Mesquite version 2.1.2.

Details of the initial, as well as the resulting smoothed meshes, are depicted
in Fig. 6.3. Here, each mesh element is colored according to its individual mean
ratio quality number. As can be seen by the quality color bar shown in the lower
part of Fig. 6.3, low quality elements are marked by reddish colors, whereas high
quality elements are marked by bluish colors.

The resulting smoothing runtime information is provided by Table 6.1. In the
case of GETMe, the iteration numbers of the simultaneous and the sequential
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Figure 6.3: Involute Gear problem: Details of initial and smoothed meshes with
elements colored according to their mean ratio quality number

substep as well as the total smoothing time are given. Table 6.1 also provides the
quality numbers of the best mesh achieved during smoothing, which was used for
the subsequent finite element computation. Since the best mesh is not necessarily
generated by the last iteration, this requires to backup the node coordinates in
case of quality improvements and reverting to these after smoothing has been
terminated according to the termination criteria described before. Area-weighted
Laplacian smoothing does not involve any quality computation. Therefore, results
are given for the final mesh.

As can be seen from Table 6.1, all methods improved the low initial mean
mesh quality number qmean significantly. However, in contrast to area-weighted
Laplacian smoothing, global optimization, and GETMe smoothing, the mini-
mal element quality number qmin was marginally improved by smart Laplacian
smoothing. As can be seen in Fig. 6.3, this is caused by clusters of distorted ele-
ments. Here, node movements have been repeatedly rejected by the smart variant
in order to avoid the generation of invalid elements or a temporary decrease of
local mesh quality, leaving such clusters unchanged. Since area-weighted Lapla-
cian smoothing does not involve any of such quality constraints, all problematic
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regions could be improved although invalid elements occurred during the first
three smoothing steps. In contrast, GETMe smoothing avoided at any time the
generation of invalid elements and led to particularly good qmin values due to the
incorporated sequential substep focusing explicitly on low quality elements.

Table 6.1: Involute gear problem: Performance of mesh smoothing techniques
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Mesh Method Iter Time (s) qmin qmean

Tri Initial – – 0.0000 0.3699
Area-weighted Laplace 24 0.13 0.2045 0.8749
Smart Laplace 18 0.20 0.0000 0.8790
Global Optimization 194 2.27 0.2901 0.8941
GETMe 40/2800 0.31 0.3367 0.8896

Quad Initial – – 0.0004 0.4180
Area-weighted Laplace 39 0.10 0.6484 0.9625
Smart Laplace 27 0.16 0.0050 0.9394
Global Optimization 137 1.83 0.6624 0.9718
GETMe 33/7200 0.13 0.7907 0.9698

The iteration numbers of the global optimization-based approach are signif-
icantly larger than those required by both Laplacian smoothing variants and
GETMe simultaneous smoothing. In combination with the increased time re-
quired per iteration this led to considerable longer overall smoothing runtimes
for the global optimization approach. For example, in the case of the triangu-
lar and quadrilateral mesh, global optimization takes 7.3 and 14.1 times longer
compared to the total GETMe smoothing time. It can also be seen that in both
cases area-weighted Laplacian smoothing is faster than smart Laplacian smooth-
ing despite the fact that the iteration numbers are increased. This is due to the
fact that area-weighted Laplacian smoothing does not involve costly evaluations
of the mean ratio quality criterion.

The finite element solution ũ, approximating the analytic solution u, as well
as the associated error norms have been computed by a solver being based on
the GetFEM++ library version 4.1.1 [175]. Here, the first step consisted of
assembling the stiffness matrix A and the right hand side b of the system of
linear equations Ac = b. Subsequently, this system was solved by the conjugated
gradient (CG) solver using the termination tolerance 10−8 in order to determine
the coefficient vector c of the trial functions modeling the approximate solution
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Table 6.2: Involute gear problem: Performance of CG solver
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Mesh Basis Method cond(A) Iter Time (s)

Tri d = 1 Initial 1.09e+08 10,618 1.78
Area-weighted Laplace 7.39e+02 152 0.02
Smart Laplace 4.28e+06 1204 0.20
Global Optimization 2.88e+02 140 0.02
GETMe 4.26e+02 160 0.03

d = 2 Initial 1.50e+09 43,128 71.04
Area-weighted Laplace 7.22e+03 435 0.72
Smart Laplace 3.45e+07 8421 13.83
Global Optimization 2.99e+03 367 0.61
GETMe 3.05e+03 426 0.70

Quad d = 1 Initial 1.64e+05 1443 0.24
Area-weighted Laplace 3.07e+02 99 0.02
Smart Laplace 1.33e+04 393 0.06
Global Optimization 1.34e+02 94 0.01
GETMe 1.35e+02 94 0.02

d = 2 Initial 2.74e+06 5589 8.87
Area-weighted Laplace 2.67e+03 278 0.43
Smart Laplace 2.19e+05 1580 2.51
Global Optimization 1.14e+03 263 0.42
GETMe 1.16e+03 263 0.42

ũ.

As is well known, mesh quality affects the condition number cond(A) of the
stiffness matrix and hence the computational effort in the case of iterative solvers.
This is reflected by the results given in Table 6.2, where the 2-norm condition
numbers as well as the iteration numbers and solution times are given.

The finite element analysis has been accomplished for piecewise linear (d =
1) as well as piecewise quadratic (d = 2) Lagrangian elements. In doing so,
the resulting number of degrees of freedom for the triangular and quadrilateral
mesh became 7660 and 6716, respectively for the linear case. For the quadratic
basis, using six node triangular Lagrangian elements and nine node quadrilateral
Lagrangian elements the corresponding number of degrees of freedom increased
to 29,670 and 25,894, respectively. As described in Section 6.1, Dirichlet type
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boundary conditions have been applied, i.e. the analytic solution u(pi) has been
prescribed for all boundary nodes pi ∈ I∂Ω. Since these have been kept fixed
during smoothing, boundary conditions are identical for all meshes.

As can be seen in Table 6.2, large condition numbers occur for the very low
quality initial meshes resulting in significantly increased solution times. Applying
area-weighed Laplacian smoothing, global optimization and GETMe smoothing
led to a reduction of these condition numbers by six and three orders of magni-
tude, if compared to the initial triangular and quadrilateral meshes. In conse-
quence, solving the system of linear equations was sped up at least by the factors
59.3 and 12.0, respectively. Compared to this, the results of smart Laplacian
smoothing are inferior.

In practice, CG iteration numbers can be further decreased by applying pre-
conditioning techniques. For example, using diagonal preconditioning in the case
of the quadrilateral elements and d = 2, the number of CG iterations for the initial
mesh, area-weighted Laplace, smart Laplace, global optimization and GETMe are
reduced to 1293, 234, 424, 223, and 226, respectively. As can be seen by compar-
ing these numbers with those given in Table 6.2, CG benefits most from precon-
ditioning in the case of the problematic initial and smart Laplacian smoothing
mesh since condition numbers are particularly large in these cases. However, the
number of iterations are still inferior if compared to the other smoothing methods.

The favorable runtime behavior of GETMe smoothing also becomes apparent,
if smoothing and CG solution time are jointly considered. For example, in the
case of the quadrilateral mesh and piecewise quadratic basis functions, GETMe
smoothing results in a speedup factor of 4.9 and 4.1 compared to smart Laplace
and global optimization, respectively. However, by avoiding expensive mean ratio
quality evaluations and not addressing mesh validity, the area-weighted Laplacian
smoothing is about four percent faster than GETMe smoothing.

Table 6.3 gives results for the finite element error numbers as defined in Sec-
tion 6.1. In accordance to the trend of the condition numbers, low quality initial
meshes led to large solution errors with respect to all criteria. They were signifi-
cantly reduced by all smoothing methods, as is particularly visible in the case of
quadratic basis functions i.e. d = 2. For example, in the case of the triangular
initial mesh the finite element solution error numbers emax, emean, eL2 , and eH1

are 16.4, 13.3, 12.7, and 22.7 times larger compared to those obtained for the
GETMe mesh. For the quadrilateral mesh, the corresponding factors become
29.0, 26.3, 27.3, and 65.0, respectively.

The results in Table 6.3 also clearly show the benefit of higher order basis
functions. For example, in the case of GETMe smoothing the error numbers emax

and eL2 of linear and quadratic basis functions differ by the factors 11.0 and 41.6
for the triangular mesh and by the factors 53.8 and 125.5 for the quadrilateral
mesh. However, this benefit is accompanied by an increased computational effort
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Table 6.3: Involute gear problem: Finite element solution errors
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Mesh Basis Method emax emean eL2 eH1

Tri d = 1 Initial 31.2934 3.0871 54.0214 1097.9148
Area-weighted Laplace 5.0354 0.7406 11.0910 84.0124
Smart Laplace 9.4938 0.8919 15.0708 101.5688
Global Optimization 7.5949 0.8139 13.0744 83.2316
GETMe 6.0528 0.8129 13.1754 79.1765

d = 2 Initial 9.0137 0.1749 4.0055 179.9044
Area-weighted Laplace 0.5407 0.0118 0.2437 8.0906
Smart Laplace 0.9056 0.0163 0.4125 14.1967
Global Optimization 0.6512 0.0146 0.3661 9.1231
GETMe 0.5487 0.0132 0.3166 7.9157

Quad d = 1 Initial 19.3538 2.3280 38.5825 309.5934
Area-weighted Laplace 4.1516 0.5539 8.5329 43.4628
Smart Laplace 9.7240 0.6560 11.4813 81.8776
Global Optimization 4.5228 0.5795 9.4838 43.6133
GETMe 4.3557 0.5788 9.5786 43.3649

d = 2 Initial 2.3459 0.1025 2.0842 85.1985
Area-weighted Laplace 0.1043 0.0040 0.0748 1.5818
Smart Laplace 2.2336 0.0128 0.6341 17.0958
Global Optimization 0.0933 0.0040 0.0773 1.3811
GETMe 0.0810 0.0039 0.0763 1.3109

and higher memory requirements for generating and solving the system of linear
equations.

The numerical tests given in the previous Chapter provided evidence that
GETMe smoothing leads to significant improvements of mesh quality within the
first few iterations, which is particularly advantageous in industrial applications.
To substantiate this, and to provide a deeper insight into the effect of mesh
smoothing on finite element solution accuracy, the solution errors will be subse-
quently analyzed with respect to smoothing time. For this purpose, a complete
finite element analysis was performed for the resulting mesh of each smoothing
iteration. This gives a better insight into the connection between single smooth-
ing iterations and finite element solution errors, and hence allows a more detailed
analysis with respect to smoothing runtime.
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Triangular mesh Quadrilateral mesh
(a) Lowest element quality qmin
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(b) Mean mesh quality qmean
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(c) Maximal nodal solution error emax for linear basis functions
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(d) Mean nodal solution error emean for linear basis functions
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• Area-w. Laplace • Smart Laplace • Global Opt. • GETMe

Figure 6.4: Involute gear problem: Mesh quality with respect to smoothing time
and corresponding finite element discretization errors for the triangular (left) and
quadrilateral meshes (right)
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Results for linear basis functions are depicted in Fig. 6.4. Here, Fig. 6.4a shows
the minimal element quality qmin with respect to smoothing time for the triangular
mesh (left) and the quadrilateral mesh (right). In the given graphs each point
indicates the results after one smoothing iteration or smoothing cycle in the case
of GETMe sequential. Quality improvements of the latter are particularly visible
by the sharp rise of qmin starting after 0.31s for the triangular mesh and after 0.12s
for the quadrilateral mesh. In contrast, the graph of smart Laplacian smoothing
is hardly visible in both cases, since qmin improvements are marginal. In the case
of the triangular mesh and area-weighted Laplacian smoothing, meshes obtained
by the first three iterations are invalid. Hence the finite element solution could
not be computed leading to an according gap in the runtime graphs depicted on
the left side of Fig. 6.4.

Similar to both Laplacian smoothing variants, GETMe simultaneous led to a
sharp rise of the mean mesh quality qmean within the first few steps as is shown in
Fig. 6.4b. In contrast, improvements by the global optimization-based approach
were rather moderate during the first halve of its iterations.

Although mesh quality gives an indication, making a priori statements on the
resulting finite element solution quality is not fully reliable. This holds partic-
ularly for the worst element quality and maximal nodal errors. This is shown
in the lower part of Fig. 6.4 by the finite element solution error diagrams with
respect to smoothing time. In practice, such information is not available since
the finite element analysis is accomplished only once, after mesh smoothing has
been completed and not after each smoothing iteration or cycle.

As can be seen in Fig. 6.4c, depicting the maximal nodal error emax with
respect to smoothing time, the connection to qmin is less obvious. Although smart
Laplacian smoothing failed to improve qmin significantly, emax was reduced up to
a certain extent. However, in the case of the quadrilateral mesh particularly,
the results are inferior if compared to those of global optimization and GETMe.
Area-weighted Laplacian smoothing resulted in the lowest finite element errors
in various cases although the achieved qmin values do not reach those of global
optimization and GETMe smoothing. In the case of the global optimization-based
approach, emax was increased up to 26.2% during smoothing the quadrilateral
mesh compared to the initial error. Therefore, a preliminary termination of the
global optimization approach is not sensible due to its runtime behavior.

Due to the incorporation of all nodes and elements, the mean nodal error
emean shown in Fig. 6.4d is more closely related to the mean mesh quality qmean.
Here, the strong reduction of the finite element error reflects the sharp rise of
mesh quality in the case of the Laplace variants and GETMe-based smoothing.
In the case of global optimization, significant improvements were mainly achieved
within the second half of its runtime.

As can be seen by these results, an effective reduction of finite element solu-
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Table 6.4: Involute gear problem: Mesh smoothing time required to reach pre-
scribed finite element error bounds in the subsequent finite element approximation
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Mesh Basis Error Threshold Global Opt. GETMe Speedup
Tri d = 1 emax 7.8015 1.91 s 0.04 s 49.0

emean 0.8545 2.01 s 0.08 s 26.1
eL2 13.7279 2.03 s 0.11 s 17.7
eH1 87.3932 2.01 s 0.08 s 26.1

d = 2 emax 0.6759 2.10 s 0.11 s 18.3
emean 0.0152 2.01 s 0.07 s 29.1
eL2 0.3807 2.06 s 0.08 s 26.8
eH1 9.5254 2.03 s 0.11 s 18.8

Quad d = 1 emax 4.7485 1.55 s 0.02 s 96.9
emean 0.6083 1.51 s 0.03 s 52.1
eL2 9.9550 1.52 s 0.04 s 35.4
eH1 45.7818 1.57 s 0.03 s 49.1

d = 2 emax 0.0935 1.62 s 0.12 s 13.3
emean 0.0042 1.62 s 0.05 s 31.8
eL2 0.0810 1.62 s 0.05 s 31.8
eH1 1.4486 1.65 s 0.08 s 20.9

tion errors is achieved particularly during the first few GETMe iterations. Hence,
in practice, runtime benefits of GETMe smoothing are even better than those
indicated by comparing the total smoothing times given in Table 6.1. To demon-
strate this, Table 6.4 gives the runtimes required to achieve prescribed finite
element error thresholds, which are given in the fourth column. These thresh-
olds represent the minimal error numbers achieved during global optimization
based smoothing increased by an arbitrarily chosen quantity of 5%. The fifth
and sixth columns give the smoothing runtimes required by global optimization
and GETMe smoothing in order to reach these thresholds in the subsequent finite
element computations. The last column contains the speedup factors obtained
by dividing the runtimes of global optimization by the runtimes of GETMe. This
test reflects the fact that achieving minimal errors has to be payed by a dispro-
portional computational effort. Therefore, from a practical point of view, looking
for almost optimal results is more advantageous since these are accomplished with
significantly shorter runtimes.
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Error bounds have been set on the basis of the global optimization-based
approach. Due to these demanding bounds, smart Laplacian smoothing failed
to achieve the prescribed bounds in all of the 16 cases. Thus, results of smart
Laplacian smoothing are inferior and hence omitted in Table 6.4. Area-weighted
Laplacian smoothing has also been omitted, since it is not guaranteed to result in
valid meshes and thus is not generally applicable. In contrast, GETMe smoothing
achieves the prescribed thresholds for all meshes, basis functions, and error types
within short runtimes. This provides evidence for the practicability and effec-
tiveness of this element transformation-based smoothing approach. Furthermore,
comparing the resulting GETMe runtimes of Table 6.4 with the total smoothing
runtimes of 0.31s and 0.13s for the triangular and quadrilateral mesh, suggests
that in practice weaker smoothing termination criteria may be used.

6.3 Volumetric meshes example

Due to the increased approximation power of the associated finite element basis
functions, hexahedral elements are known to result in more accurate finite ele-
ment solutions with a lower number of elements compared to tetrahedral meshes.
However, depending on the geometrical complexity of the model, the generation
of quality hexahedral meshes is usually far more complex than the generation
of quality tetrahedral meshes. Thus, depending on the application, the usage of
hexahedral elements only pays off in case of reasonably meshable geometries.

(a) Model (b) Analytic solution

30

40

50

60

70

80

90

Figure 6.5: Volumetric problem: Model and model colored with respect to the
analytic solution

The model depicted in Fig. 6.5a is meshable by a sweeping approach, i.e. by
decomposing it into simple sub-parts, which are meshed by sweeping a quadri-
lateral mesh from a source surface onto an adequate target surface [83]. This
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example will be used to demonstrate the influence of mesh quality, different el-
ement types and the polynomial degree of the basis functions on finite element
solution accuracy. Fig. 6.5b depicts the model colored with respect to the analytic
solution, which has been set to

u(x, y, z) := 35 sin(2x+ y) cos(y − 3z) + 60 .

The bounding box of the model is given by (x, y, z) ∈ [−8, 8]× [−8, 8]× [0, 9].
The hexahedral mesh consists of 74,730 nodes and 67,055 elements. For com-

parison reasons, a tetrahedral mesh of the same model consisting of 103,230 nodes
and 566,004 elements is also considered. Since the volume of a regular hexahe-
dron is 6

√
2 ≈ 8.5 times larger than the volume of a regular tetrahedron with

the same edge length, the number of tetrahedral elements has been increased
accordingly. Again, both initial meshes have been distorted by element validity
preserving random node movements. Cross sections of the resulting meshes as
well as their smoothed counterparts are depicted in Fig. 6.6.

In the case of GETMe smoothing, the default parameters have been used. In
addition, the element transformation specific parameter of GETMe simultaneous
has been set to the element quality dependant choice σ = 0.7 + 50(1− q(E)) for
both mesh types. In the case of the GETMe sequential substep, the fixed choice
σ = 17 was applied in both cases.

Table 6.5: Volumetric problem: Performance of mesh smoothing techniques
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Mesh Method Iter Time (s) qmin qmean

Tet Initial – – 0.0001 0.4178
Volume-weighted Laplace 20 10.49 invalid invalid
Smart Laplace 23 15.99 0.0018 0.8748
Global Optimization 74 51.58 0.4935 0.8887
GETMe 26/45000 11.24 0.6591 0.8871

Hex Initial – – 0.0606 0.4631
Volume-weighted Laplace 42 12.42 0.5613 0.9322
Smart Laplace 28 17.71 0.0690 0.8777
Global Optimization 110 53.97 0.6118 0.9410
GETMe 30/600 4.15 0.6125 0.9363

Quality numbers, as well as runtime information for all meshes and smoothing
methods, are summarized in Table 6.5. As can be seen, GETMe is particularly
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Tetrahedral mesh
Initial V.-w. Laplace Sm. Laplace Global Opt. GETMe

Hexahedral mesh
Initial V.-w. Laplace Sm. Laplace Global Opt. GETMe

0 0.2 0.4 0.6 0.8 1

Figure 6.6: Volumetric problem: Cross sections of initial and smoothed meshes
with elements colored according to their mean ratio quality number

fast in the case of the hexahedral mesh, for which smoothing is accomplished 3.0,
4.3, and 13.0 times faster compared to volume-weighted Laplacian smoothing,
smart Laplacian smoothing, and global optimization, respectively. The volume-
weighted Laplacian smoothing is relatively slow in this test, since it requires
a comparably expensive computation of the element volume, for each node and
each attached element, per iteration. The effort of the smart Laplacian smoothing
approach is even higher, since for each node and each attached element the quality
has to be computed twice per iteration. In contrast, GETMe smoothing only
requires one quality evaluation per element per iteration step. Again, the number
of iterations required by the global optimization-based approach is comparably
high.
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(a) Tetrahedral mesh
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(b) Hexahedral mesh
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Figure 6.7: Volumetric problem: Mesh element quality histograms

In the case of the tetrahedral mesh, volume-weighted Laplacian smoothing led
in none of its 20 iterations to a valid mesh. Consequently, finite element solutions
could not be computed. Similar to the case of the planar meshes, smart Laplacian
smoothing failed to improve the lowest element quality considerably, as indicated
in Table 6.5. For example, the tetrahedral mesh smoothed by smart Laplacian
smoothing still contains 2365 elements with a mean ratio number below 0.3. In
contrast, the tetrahedral meshes improved by global optimization and GETMe
smoothing do not contain any elements with quality numbers below 0.4935 and
0.6591, respectively. However, the associated element quality histograms of all
successfully smoothed meshes depicted in Fig. 6.7a differ only slightly. As a
consequence, the resulting mean mesh quality numbers qmean are comparable as
can be seen in Table 6.5.

In the case of the hexahedral elements mesh quality differences are also obvious
with respect to qmean due to a lower number of high quality elements. For example,
the number of mesh elements with a mean ratio quality number larger than 0.8
amounts to 0.6%, 98.4%, 82.3%, 97.9%, and 98.1% in the case of the initial
mesh and those smoothed by volume-weighted Laplace, smart Laplace, global
optimization and GETMe, respectively.

In the case of the valid tetrahedral meshes, the finite element analysis has been
accomplished with 4 and 10 node Lagrangian elements resulting in 103,230, and
791,449 degrees of freedom in the associated systems of linear equations. In the
case of the hexahedral mesh, the linear and quadratic basis have been generated
using 8 and 27 node Lagrangian elements resulting in 74,730 and 566,968 degrees
of freedom. Dirichlet type boundary conditions have been applied for all 18,961
linear basis and 77,043 quadratic basis tetrahedral mesh boundary nodes and
15,154 linear basis and 60,664 quadratic basis hexahedral mesh boundary nodes,
respectively. Table 6.6 summarizes the stiffness matrix condition numbers and
the results of the CG solver.
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Table 6.6: Volumetric problem: Performance of CG solver
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Mesh Basis Method cond(A) Iter Time (s)

Tet d = 1 Initial 2.34e+07 7530 66.06
Volume-weighted Laplace – – –
Smart Laplace 1.30e+05 1267 11.13
Global Optimization 3.66e+02 139 1.23
GETMe 3.57e+02 139 1.23

d = 2 Initial 4.90e+08 42,301 4946.16
Volume-weighted Laplace – – –
Smart Laplace 2.12e+06 6020 705.22
Global Optimization 2.25e+03 323 37.89
GETMe 2.20e+03 326 38.25

Hex d = 1 Initial 1.51e+04 507 3.61
Volume-weighted Laplace 2.89e+02 124 0.89
Smart Laplace 1.94e+03 227 1.62
Global Optimization 4.45e+02 147 1.06
GETMe 3.67e+02 140 1.01

d = 2 Initial 7.35e+05 3809 464.02
Volume-weighted Laplace 2.85e+03 361 43.96
Smart Laplace 2.16e+05 1188 144.72
Global Optimization 4.54e+03 441 53.82
GETMe 3.60e+03 405 49.46

The impact of mesh smoothing on the convergence of the iterative solution
process of the finite element equations is evident in the case of tetrahedral meshes.
Although element quality histograms did not differ much, low quality elements
in the mesh obtained by smart Laplacian smoothing resulted in an increased
condition number and subsequently in a larger number of CG iterations. In con-
sequence, solving the system of linear equations for the linear and quadratic basis
associated to the tetrahedral smart Laplace mesh took 9.0 and 18.4 times longer
compared to those associated to the results of global optimization or GETMe
smoothing. Therefore, in terms of the overall simulation time and resulting mesh
quality, smart Laplacian smoothing is not competitive. Volume-weighted Lapla-
cian smoothing did not lead to any results at all. In contrast, since GETMe
smoothing resulted in a similar CG solution time as global optimization, smooth-
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ing runtime advantages directly pay off.
Due to the sweeping approach, the topological structure of the hexahedral

mesh is almost regular. To be precise, 92.8% of all inner nodes are shared by
exactly eight hexahedral elements. This is also reflected by the resulting high
quality meshes and the comparably low condition number of the associated stiff-
ness matrices for volume-weighted Laplacian smoothing, global optimization and
GETMe smoothing.

Table 6.7: Volumetric problem: Finite element solution errors
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Mesh Basis Method emax emean eL2 eH1

Tet d = 1 Initial 26.5052 3.7173 129.4961 2332.6902
Vol.-weight. Laplace – – – –
Smart Laplace 14.2714 0.8742 31.3861 270.9987
Global Optimization 5.1902 0.8052 28.0895 150.7587
GETMe 4.6681 0.7981 27.7852 147.7948

d = 2 Initial 4.3067 0.2119 8.8008 554.4773
Vol.-weight. Laplace – – – –
Smart Laplace 3.3903 0.0195 1.0386 52.3217
Global Optimization 0.3456 0.0145 0.5396 13.7242
GETMe 0.3050 0.0142 0.5216 13.1961

Hex d = 1 Initial 16.1917 2.0114 66.1737 466.4109
Vol.-weight. Laplace 2.1788 0.4495 14.8826 66.3884
Smart Laplace 8.9167 0.6372 23.2996 126.0352
Global Optimization 2.6647 0.4512 15.6927 68.1431
GETMe 2.2435 0.4479 15.1690 66.7886

d = 2 Initial 3.7028 0.1058 4.8893 105.2790
Vol.-weight. Laplace 0.2760 0.0043 0.2227 2.9266
Smart Laplace 2.4930 0.0133 0.9654 18.6139
Global Optimization 0.1997 0.0045 0.2827 3.2438
GETMe 0.2203 0.0042 0.2369 2.9515

By comparing the finite element solution errors provided in Table 6.7, one can
observe that for the Poisson problem under consideration hexahedral elements
lead to particularly good results. Similarly, finite element solution accuracy is
improved significantly by the higher order basis functions. For example, in the
case of the tetrahedral mesh smoothed by GETMe, quadratic basis functions
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decrease emax, emean, eL2 , and eH1 by the factors 15.3, 56.2, 53.3, and 11.2, if
compared to linear basis functions. The corresponding improvement factors for
the hexahedral mesh are 10.2, 106.6, 64.0, and 22.6, respectively.

As in the case of the planar meshes, the reduction of finite element solution
errors obtained by smart Laplacian smoothing is inferior compared to the results
of global optimization and GETMe smoothing. This is particularly visible for
quadratic basis function, where the maximal nodal errors differ by the factor 11.1
and 11.3 for the tetrahedral and hexahedral mesh. Similarly, large errors occur
in the first derivatives as can bee seen by the results for the H1-norm. Here,
the error numbers of smart Laplacian smoothing are 4.0 and 6.3 times larger, if
compared to the results of GETMe smoothing.

In the case of the hexahedral mesh, results of volume-weighted Laplacian
smoothing are comparable to those of GETMe smoothing. However, to guaran-
tee the preservation of mesh validity in any case, this approach has to be modified
in order to incorporate mesh quality aspects. This will further increase smoothing
time. Furthermore, simple adjustments may not suffice, as can be seen on the
example of the smart Laplacian smoothing approach. This is explained by the
simple node movement techniques of Laplacian smoothing, which do not incorpo-
rate dedicated quality improvement mechanisms like quality based optimization
or quality improving regularizing element transformation as used by global opti-
mization or GETMe smoothing.

As can be seen in Table 6.7, GETMe smoothing resulted in slightly lower finite
element approximation errors in 15 of 16 cases if compared to global optimization.
This is also an indication that the substantial runtime advantages obtained by
adapted GETMe parameters, at the expense of a slight decrease of the mean mesh
quality, do not necessarily have to result in increased finite element approximation
errors.

As in the case of the first example, the finite element analysis has been per-
formed for each iteration or cycle of the mesh smoothing process to provide a
deeper insight into the effect of mesh smoothing on finite element solution ac-
curacy. Results with respect to the minimal element quality numbers qmin are
depicted in Fig. 6.8a. For both the tetrahedral mesh, as well as the hexahedral
mesh, the effect of the GETMe sequential substep is visible by the sharp rise of
qmin after 9.98s and 4.13s, respectively. In the case of the hexahedral mesh, the
GETMe simultaneous step already achieved an excellent minimal element qual-
ity number of 0.5818. With respect to the mean mesh quality qmean, GETMe
simultaneous smoothing led in both cases to remarkably fast and substantial im-
provements as is demonstrated in Fig. 6.8b.

The effect of mesh smoothing on the maximal nodal error for quadratic basis
functions is shown in Fig. 6.8c. As can be seen, during GETMe simultaneous
smoothing, emax decreased significantly although qmin remained comparatively
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(c) Maximal nodal solution error emax for quadratic basis functions
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(d) Mean nodal solution error emean for quadratic basis functions
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Figure 6.8: Volumetric problem: Mesh quality with respect to smoothing time
and corresponding finite element discretization errors for tetrahedral (left) and
hexahedral meshes (right)
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Table 6.8: Volumetric problem: Smoothing time required to reach prescribed
finite element error bounds
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Mesh Basis Error Threshold Global Opt. GETMe Speedup

Tet d = 1 emax 5.0605 31.79 s 1.97 s 16.1
emean 0.8454 29.84 s 1.58 s 18.9
eL2 29.4432 30.56 s 1.97 s 15.5
eH1 158.2460 31.79 s 1.97 s 16.1

d = 2 emax 0.3557 35.47 s 1.97 s 18.0
emean 0.0153 31.79 s 1.97 s 16.1
eL2 0.5649 32.40 s 1.97 s 16.4
eH1 14.4060 32.40 s 1.97 s 16.4

Hex d = 1 emax 2.5883 42.45 s 0.67 s 63.4
emean 0.4718 31.69 s 0.80 s 39.6
eL2 16.2106 32.19 s 0.80 s 40.2
eH1 70.9716 33.18 s 0.80 s 41.5

d = 2 emax 0.2097 47.99 s 1.73 s 27.7
emean 0.0046 35.55 s 0.80 s 44.4
eL2 0.2752 33.66 s 0.67 s 50.2
eH1 3.2797 37.47 s 0.80 s 46.8

low in the case of the tetrahedral mesh. Furthermore, emax increased during
the GETMe sequential substep for the hexahedral mesh while qmin was further
improved. Hence, largest qmin values do not guarantee lowest emax values. How-
ever, according to Table 6.7 the maximal nodal error emax = 0.2203 obtained by
GETMe smoothing is low, since the best qmin value was not obtained in the last
cycle of GETMe sequential smoothing. For the tetrahedral as well as the hexa-
hedral mesh, the reduction of emax is insufficient in the case of smart Laplacian
smoothing, or requires significantly longer time as can be observed in the case
of global optimization. The same holds for the mean nodal errors depicted in
Fig. 6.8d.

To confirm the favorable runtime behavior of GETMe smoothing also for the
case of volumetric meshes, Table 6.8 gives in the fourth column the times required
to reach prescribed quality thresholds. As in the case of the planar meshes, these
thresholds represent the minimal error numbers achieved during global optimiza-
tion based smoothing increased by an arbitrarily chosen quantity of 5% to reflect
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the ability of GETMe to achieve almost optimal results within short times. As in
the case of the planar involute gear example, GETMe reaches all these thresholds
significantly faster than the global optimization-based approach, whereas smart
Laplacian smoothing does not reach these thresholds in all 16 cases. Further-
more, the results given in Table 6.8 indicate that the speedup factors for both
tetrahedral and hexahedral meshes are remarkably high.



Conclusions

The geometric element transformation method has been introduced as a novel
approach for effective and efficient finite element mesh smoothing. In doing so
the stability, effectivity and accuracy of subsequent finite element computations
are improved. In contrast to other smoothing algorithms, GETMe is based on ge-
ometric element transformations, which lead to more regular, thus better quality
elements if applied iteratively. In the case of polygonal elements, such transfor-
mations can be based on classical geometric constructions using similar triangles
as was shown in Chapter 2.

In this thesis triangular elements were transformed by erecting isosceles tri-
angles on each of the sides of the initial triangle as described in Section 2.1. The
apices of the erected triangles are the nodes of the resulting triangle. Repeating
this transformation leads to a sequence of triangles. By means of analysis it was
shown that the shapes of these triangles converge to a characteristic shape that
does not depend on the choice of the initial triangle but on the shape of the
erected isosceles triangles. It was shown explicitly that this characteristic shape
is approximated in every transformation step. Moreover, there is an upper bound
for the speed of convergence.

Using the same transformation scheme in the case of polygons with an ar-
bitrary number of nodes leads to a circulant matrix representation, which was
analyzed by means of linear algebra in Section 2.2. This was done with respect
to the base angle of the isosceles triangles erected on the sides of the polygon. All
characteristic base angles leading to a change in the geometry of the limit polygon
obtained by iteratively applying the same transformation have been determined.
Additionally, it has been shown that these limit polygons are linear combinations
of eigenpolygons of the initial polygon. Since all transformation schemes, which
can be represented by circulant matrices, lead to the same eigenpolygons, the
results obtained are not only applicable to the analyzed transformation, but to
a broad variety of geometric polygon transformations. Furthermore, the classic
theorems of Napoleon as well as of Petr-Douglas-Neumann were naturally de-
duced as special cases in the choice of parameters and number of transformation
steps. In addition, it followed that these results are unique with respect to their

209
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construction and the choice of characteristic parameters.
In Section 2.3 a combined transformation for polygonal elements has been

proposed and analyzed. It eliminates the rotational effect of the original similar
triangles based transformation, which is adverse in the context of finite element
mesh smoothing. This transformation combines two steps of the same transfor-
mation scheme using flipped similar triangles in the second substep, resulting
in a circulant Hermitian transformation matrix with positive eigenvalues. Fur-
thermore, by introducing an additional parameter, in order to define the similar
triangles, this transformation is more general. Nevertheless, all possible resulting
limit polygons have been derived with respect to the underlying parameter do-
main. This facilitates a directed choice of transformation parameters in the mesh
smoothing context.

In preparation of the smoothing of volumetric finite element meshes, regu-
larizing transformations for volumetric elements were considered in Chapter 3.
First, the mean ratio quality criterion was introduced in Section 3.1 as a measure
for element regularity. It is applicable not only to the most relevant volumetric
elements, but also to polygonal elements thus providing a proper basis for mesh
quality evaluation and smoothing control.

Regularizing transformations for tetrahedral, hexahedral, pyramidal and pris-
matic finite elements were introduced in the Sections 3.2 and 3.3. Whereas the
efficient opposite normals based transformation is only applicable to tetrahedral
elements due to their specific topological configuration, the more general dual
element transformation is suitable for all element types under consideration. Nu-
merical tests have shown that both transformations reliably and efficiently regu-
larize even invalid elements of all types within a low number of steps. Additional
mechanisms, like a normal scaling factor and relaxation, allow the speed of regu-
larization to be controlled, which is reasonable with respect to mesh smoothing.
In addition, basic properties of the transformation regarding the preservation
of the centroid as well as the invariance with respect to scaling, rotation, and
translation have been discussed.

Two different approaches of mesh smoothing based on geometric element
transformations and a combination of them were presented in Chapter 4. The first
is the simultaneous GETMe approach combining two driving forces. One is the
regularizing element transformation, the other is a Laplacian smoothing like node
averaging scheme. However, unlike Laplacian smoothing, which is based on com-
puting arithmetic means of neighboring nodes, GETMe simultaneous smoothing
is based on weighted means of temporary nodes obtained by transforming ad-
jacent elements. Hence, quality improvement is mainly caused by the element
quality controlled regularizing transformation and the quality weighted node av-
eraging scheme. The second approach, named GETMe sequential, is based on
successively improving the lowest quality element of the mesh by applying the
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transformation directly. Whereas the strong point of the simultaneous approach
is to improve the overall mesh quality, the sequential approach efficiently improves
the minimal element quality. Therefore, GETMe smoothing, as introduced in Sec-
tion 4.4, consists of applying both methods consecutively, leading to high quality
results with respect to both quality numbers.

An advanced version of the geometric element transformation method for fi-
nite element mesh smoothing was introduced in Section 4.5. In contrast to the
standard GETMe approach, GETMe adaptive involves concepts of adaptivity,
implementing a quality controlled two-stage smoothing technique integrated into
one main smoothing loop, an adaptive node relaxation scheme, in order to avoid
the generation of invalid mesh elements and to accelerate the rate of mesh im-
provement, and a quality ratio-based weighting scheme for updating the nodes,
which is now consistently applied in both smoothing stages. Furthermore, by the
usage of fixed transformation parameters and by eliminating the element quality
penalty parameters, GETMe adaptive further reduces the number of parameters
if compared to the standard GETMe approach.

In addition, an improved code implementation and parallelization of GETMe
adaptive was discussed in Section 4.6. This results in a finite element mesh
smoothing method which has both, a comparably low memory profile and short
smoothing iteration runtimes. In combination with the powerful regularizing ef-
fect of the incorporated element transformations, this leads to an effective smooth-
ing approach for finite element meshes of various types.

The effectivity and efficiency of the geometric element transformation method
was demonstrated by the extensive collection of numerical results demonstrated
in Chapter 5. In this Chapter results are given for a broad variety of mesh types
covering planar polygonal meshes, polygonal surface meshes, all-tetrahedral, all-
hexahedral and mixed volume meshes. The obtained results were compared to
variants of smart Laplacian smoothing and a state of the art global optimization-
based approach. It has been shown that GETMe smoothing leads to convincing
results with respect to both quality and runtime. That is to say, it results in mesh
qualities comparable to those obtained by the global optimization approach, while
being significantly faster than the other methods. Furthermore, any Laplacian
smoothing variant failed to improve the minimal element quality significantly and
thus usually did fulfill the mesh quality requirements of finite element computa-
tions.

This was demonstrated in more detail in Chapter 6. Here the results of
GETMe smoothing have not only been assessed with respect to mesh quality
but also with respect to finite element solution accuracy for a number of Poisson
problems with analytic solutions. Different meshes with regard to element types,
mesh resolution, and the order of the associated finite element basis functions have
been considered, and the beneficial effect of GETMe smoothing with respect to
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finite element system of equations solution efficiency and stability as well as finite
element solution accuracy has been shown.

From an application point of view, additional potential for improvements of
GETMe smoothing lies within the incorporation of adjusted element transforma-
tions, parameter sets and density function-based element scaling schemes, which
might for example be required in order to smooth anisotropic meshes. Further-
more, it should be investigated, to which extent the incorporation of a priori error
estimates or the combination with a posteriori error estimates can facilitate the
smoothing process to achieve a better quality finite element approximation. How-
ever, since smoothing is limited by the initial mesh topology, a practice-oriented
approach should also be combined with mesh topology modification techniques
allowing local refinement or coarsening. From a theoretical point of view, ad-
ditional work has to be done in order to provide a convergence proof for the
volumetric element transformations. Although the transformation schemes are
geometrically simple, involving cross products and normalization in a recursive
approach leads to complex nonlinear expressions. The same holds for the pend-
ing proof of the mesh improving effect and convergence of the entire GETMe
smoothing process.
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