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Abstract

Operation with a double RF system is essential for many accelerators in order to increase beam

stability, to change the bunch shape or to perform various RF manipulations. This is also the case

for the operation of the CERN SPS as the LHC proton injector, where in addition to the main

RF system, a fourth harmonic RF system is used in bunch shortening mode in order to increase

the synchrotron frequency spread inside the bunch and thus to enhance Landau damping of the

collective instabilities. In fact the double RF system operation in the SPS is one of the essential

means, together with the controlled longitudinal emittance blow-up to significantly increase the

longitudinal instability thresholds (single and multi-bunch) and deliver a good quality beam for

the LHC. However, for the HiLumi-LHC (HL-LHC) and LHC injector upgrade (LIU) projects

higher beam intensities are required. After all upgrades are in place, the main performance

limitations of the LHC injector complex are beam instabilities and high intensity effects in the

SPS. This thesis elaborates the benefits and the limitations of the operation in a double RF

system. The study is primarily based on the beam and machine parameters of the SPS but

most of the results can be generalized and used for other accelerators as well. In particular,

the single-bunch longitudinal instability threshold is found from measurements, simulations and

analytical calculations for the case of a purely reactive impedance and for the realistic case

of the SPS impedance model. The effect of the relative phase and the voltage ratio between

the two RF systems on beam stability is studied as well. Finally, the measured variation of

the longitudinal emittance along the batch is explained by the modification of the synchrotron

frequency distribution due to the residual effect of beam loading in the SPS double RF system.
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Περίληψη

Οι επιταχυντές σωματιδίων χρησιμοποιούνται ευρέως στις μέρες μας σε διάφορους επιστημονικούς

τομείς, τόσο σε βασική όσο και σε εφαρμοσμένη έρευνα καθώς επίσης και σε πολλά τεχνικά και

βιομηχανικά πεδία. Παρότι αρχικά προτάθηκαν στους τομείς της πυρηνικής φυσικής και της φυσικής

υψηλών ενεργειών, είναι πλέον πολύ σημαντικοί σε βιομηχανικές εφαρμογές, στην επιστήμη των

υλικών, στη βιολογία, στην ιατρική και στην ακτινοθεραπεία. Τα τελευταία 80 χρόνια η τεχνολογική

ανάπτυξη οδήγησε σε μια αξιοσημείωτη αύξηση στην ενέργεια και στην ένταση των δεσμών σωματιδίων,

που είχε σαν αποτέλεσμα σημαντικά επιτεύγματα σε όλους τους τομείς. Ωστόσο, η συνεχής αύξηση

της έντασης και φωτεινότητας των δεσμών, έχει ως αποτέλεσμα την δημιουργία ισχυρών ιδιοπεδίων

(ηλεκτρομαγνητικών πεδίων που δημιουργούνται από την ίδια τη δέσμη) τα οποία δρουν πίσω στη

δέσμη και οδηγούν σε αστάθεια και κατά συνέπεια σε απώλεια σωματιδίων.

Η παρούσα διατριβή πραγματεύεται τα όρια σταθερότητας της δέσμης για συγκεκριμένες παραμέτρους

της δέσμης και συνθήκες της επιταχυντικής διάταξης, οι οποίες σχετίζονται κυρίως με τον επι-

ταχυντή πρωτονίων SPS του CERN . Η ανάλυση περιορίζεται στην διαμήκη κίνηση των σωματιδίων,

υποθέτοντας ότι είναι εντελώς αποσυνδεδεμένη από την εγκάρσια. Στην πραγματικότητα, αυτή η

υπόθεση ισχύει για όλες τις εξεταζόμενες περιπτώσεις.

Στην πλειονότητα των κυκλικών επιταχυντών, η επιτάχυνση των σωματιδίων σε υψηλές ενέργειες

πραγματοποιείται με την εφαρμογή ενός διαμήκους εναλλασσόμενου (ημιτονοειδούς) ηλεκτρικού

πεδίου σε μια ραδιοσυχνότητα η οποία, ανάλογα με το συγκεκριμένο μηχάνημα και το είδος των

σωματιδίων, κυμαίνεται από μερικές εκατοντάδες kHz έως 10-30 GHz. Στην περίπτωση των

σύγχροτρων , οι συχνότητες αυτές πρέπει να συγχρονιστούν με τη συχνότητα περιστροφής των

σωματιδίων έτσι ώστε fRF = hf0, όπου h είναι ένας ακέραιος αριθμός που ονομάζεται αρμονικός

αριθμός. Το ηλεκτρικό αυτό πεδίο αναγκάζει τα σωματίδια να εκτελούν ταλαντώσεις γύρω από μια

σταθερή φάση φs, με συχνότητες γνωστές ως συχνότητες σύγχροτρον. Λόγω της περιοδικότητας

του πεδίου RF υπάρχουν h περιοχές ευστάθειας κατά μήκος του επιταχυντή (buckets). Για το λόγο

αυτό τα σωματίδια συνήθως ομαδοποιούνται σε πακέτα (bunches).

Εκτός από τα εξωτερικά ηλεκτρομαγνητικά πεδία που εφαρμόζονται στα φορτισμένα σωματίδια

της δέσμης, τα οποία τα επιταχύνουν και τα εστιάζουν, υπάρχουν επίσης πεδία που παράγονται

από την ίδια τη δέσμη, είτε άμεσα (δυνάμεις χωρικού φορτίου, ενδοδεσμικές σκεδάσεις σωματιδίων)

ή με την αλληλεπίδραση με τα περιβάλλοντα υλικά, λόγω της πολυπλοκότητας και της ποικιλο-

μορφίας (σε σχήμα και υλικά) των διαφόρων στοιχείων της μηχανής (σωλήνες δέσμη, φλάντζες

σύνδεσης, κοιλότητες επιτάχυνσης RF , όργανα μέτρησης, μαγνήτες κλπ), τα οποία δημιουργούν

μια αναπόφευκτη ανομοιομορφία στο περιβάλλον της δέσμης. ΄Οταν ένα φορτισμένο σωματίδιο

περνά μέσω οποιασδήποτε διατομής με ασυνέχεια, διεγείρει ένα ηλεκτρομαγνητικό πεδίο γνωστό

ως επαγόμενο πεδίο ή πεδίο αφύπνισης (wakefield), δεδομένου ότι παραμένει συνήθως πίσω από το

(υπερ-σχετικιστικό) σωματίδιο που προκάλεσε τη διαταραχή. Αυτό το επαγόμενο πεδίο θα δράσει

πίσω στη δέσμη, διαταράσσοντας την κίνηση των σωματιδίων που θα ακολουθήσουν. Ολοκληρώνοντας

σε μια πεπερασμένη κατανομή φορτισμένων σωματιδίων παίρνουμε το επαγόμενο δυναμικό (wake

potential), το οποίο καθορίζεται από τη συνέλιξη της συνάρτησης αφύπνισης με την κατανομή

φορτίου σε ένα πακέτο (bunch) σωματιδίων. Είναι σύνηθες στη φυσική επιταχυντών να χρησι-

μοποιείται ο χώρος των συχνοτήτων, όπου οι αναλυτικοί υπολογισμοί είναι πιο εύκολοι. Σε αυτήν



την περίπτωση, χρησιμοποιείται η έννοια της εμπέδησης σύζευξης (beam− coupling impedance) η

οποία ορίζεται ως ο μετασχηματισμός Fourier της συναρτήσεως αφύπνισης [1].

Γενικά, τα πεδία που επάγονται από τη δέσμη περιέχουν τρεις χωρικές συνιστώσες, που ταξι-

νομούνται ως διαμήκης, οριζόντια και κάθετη (οι δύο τελευταίες αποτελούν το εγκάρσιο επίπεδο).

Η διαμήκης συνιστώσα του ηλεκτρικού πεδίου, στο οποίο θα επικεντρωθούμε σε αυτή την ερ-

γασία, μπορεί να αλλάξει το πλάτος και τη φάση του εφαρμοζόμενου πεδίου επιτάχυνσης καθώς

και την κατανομή ενέργειας και το μήκος του πακέτου σωματιδίων. Επιπλέον, η δράση της μπορεί

να διαχωρίζεται σε ένα ή πολλά πακέτα, ανάλογα με τα χαρακτηριστικά της αντίστοιχης δύναμης.

Επίδραση σε ένα μόνο πακέτο έχουμε όταν τα πεδία αφύπνισης είναι ισχυρά μόνο εντός των ορίων

του μεγέθους ενός πακέτου σωματιδίων και φθίνουν πολύ γρήγορα ώστε να αφήνουν ανεπηρέαστα

τα επόμενα πακέτα. Στην περίπτωση που τα πεδία παραμένουν αρκετά ισχυρά ώστε να επηρεάσουν τα

επόμενα πακέτα σωματιδίων ή ακόμα και το ίδιο πακέτο στην επόμενη στροφή, τότε αναφερόμαστε

στα φαινόμενα πολλών πακέτων ή φαινόμενα σύζευξης.

Τα πεδία αφύπνισης γίνονται ισχυρότερα σε υψηλότερα ρεύματα δέσμης. Μέχρι κάποια ένταση

η δέσμη, παρότι διαταράσσεται, παραμένει σταθερή. Ωστόσο, πάνω από κάποιο κατώφλι ρεύματος,

παρατηρείται διαμήκης αστάθεια της δέσμης, γνωστή ως συλλογική αστάθεια [2]. Ο τύπος της

αστάθειας, η οποία περιορίζει την λειτουργία και την απόδοση του επιταχυντή, εξαρτάται σε μεγάλο

βαθμό από τα χαρακτηριστικά του μηχανήματος (στοιχεία μηχανής, τύπος των σωματιδίων), καθώς

και από τις παραμέτρους της δέσμης (μήκος, ένταση) [2–4]. Για παράδειγμα, η γρήγορη αύξηση

του μήκους του πακέτου σωματιδίων που παρατηρήθηκε στο SPS στο παρελθόν [5], προκλήθηκε

από μια μικρού μήκους κύματος (σε σύγκριση με το μήκος του πακέτου) αντίσταση συντονισμού η

οποία διορθώθηκε μετά την θωράκιση των πηγών της αντίστασης αυτής [6]. Συγκεκριμένα, υπό την

επίδραση του πεδίου αφύπνισης, ολόκληρη η δέσμη ή μέρος των σωματιδίων της δέσμης εκτελούν

συγχρόνως ταλαντώσεις με συχνότητες (τρόπους ταλάντωσης) οι οποίες μπορούν να ταξινομηθούν

σε διπολικές, τετραπολικές, εξαπολικές, κλπ [7]. Πάνω από κάποιο κατώφλι έντασης, παρατηρείται

μια εκθετική αύξηση στο πλάτος της ταλάντωσης η οποία οδηγεί σε υποβάθμιση της ποιότητας της

δέσμης και τελικά σε απώλειες σωματιδίων.

΄Ενας φυσικός μηχανισμός για την πρόληψη ή την απόσβεση της αστάθειες δέσμης προκύπτει

από τη διαφορά των συχνοτήτων σύνχροτρον των σωματιδίων στο εσωτερικό του πακέτου. Συγ-

κεκριμένα, αν η συχνότητα ενός τρόπου ταλάντωσης που διεγείρεται σε μια δέσμη, είναι εντός

του εύρους των συχνοτήτων των σωματιδίων της δέσμης, τότε αυτός ο τρόπος θα αποσβέσει. Ο

μηχανισμός αυτός είναι γνωστός ως απόσβεση Landau και εισήχθη για πρώτη φορά στην φυσική

πλάσματος [8]. Στο πλαίσιο των δεσμών φορτισμένων σωματιδίων, μια διεξοδική μελέτη του βασικού

μηχανισμού έχει γίνει στο [9]. Για χαμηλές εντάσεις δέσμης, η διαφορά στις συχνότητες των

σωματιδίων ορίζεται από το εξωτερικό RF πεδίο. Για ένα ημιτονοειδές εξωτερικό πεδίο RF το

εύρος αυξάνεται με το μήκος της δέσμης (ανάλογο του φ2
b/16, όπου φb είναι το μισό του μήκους

πακέτου σε ακτίνια) και ως εκ τούτου η απόσβεση Landau είναι πιο αποδοτική.

Εκτός από την αύξηση του μεγέθους του πακέτου σωματιδίων, μια άλλη κοινή προσέγγιση

για την ενίσχυση της απόσβεσης Landau είναι να χρησιμοποιηθεί σύστημα ραδιοσυχνοτήτων σε

κάποια ανώτερη αρμονική, σε συνδυασμό με το κυρίως σύστημα. Στην περίπτωση αυτή, η συνολική

εξωτερική τάση που βλέπουν τα σωματίδια είναι:

Vext(φ) = V1 sinφ+ V2 sin(nφ+ Φ2), (1)

όπου V 1 και V 2 τα πλάτη τάσης του κυρίως και του αρμονικού RF συστήματος, n = h2/h1 ο λόγος



των συχνοτήτων τους, Φ2 η σχετική φάση και φ η συντεταγμένη φάσης των σωματιδίων στο κυρίως

RF σύστημα. Για ένα μη επιταχυνόμενο πακέτο, το μέγιστο εύρος των συχνοτήτων σύνχροτρον

του πακέτου επιτυγχάνεται όταν Φ2 = 0, π [10] που αντιστοιχεί, στην περίπτωση που βρισκόμαστε

πάνω από την ενέργεια μετάβασης (στα πλαίσια της παρούσας εργασίας θεωρούμε φs = π), στους

τρόπου λειτουργίας αύξησης -μήκους (BL: Bunch-Lengthening ) και μείωσης -μήκους (BS: Bunch-

Shortening ) του πακέτου σωματιδίων, αντίστοιχα.

Σε πολλούς επιταχυντές χρησιμοποιείται ένα RF σύστημα υψηλής αρμονικής [11] σε συνδυασμό

με το κυρίως σύστημα για διάφορους λόγους:

• Για να αυξήσει το εύρος των συχνοτήτων σύνχροτρον

• Για να αλλάξει το σχήμα του πακέτου σωματιδίων: επίπεδα πακέτα με μειωμένο πλάτος έντασης

ρεύματος

• Για την αύξηση της περιοχής ευστάθειας στο διαμήκη χώρο φάσεων

• Για RF χειρισμούς (διαχωρισμός του πακέτου σωματιδίων, ελεγχόμενη αύξηση της διαμήκους

εκπεμπτικότητας).

Οι πρώτες 2 περιπτώσεις στοχεύουν κυρίως στην αύξηση των ορίων ευστάθειας της δέσμης. Στην

πρώτη περίπτωση, το υψηλής αρμονικήςRF σύστημα καλείται συχνά ως κοιλότητα Landau, δηλώνοντας

την αναμενόμενη αύξηση της σταθερότητας της δέσμης μέσω Landau απόσβεσης. Το λεγόμενο πα-

θητικό συστήματα RF υψηλής αρμονικής σε δακτυλίους αποθήκευσης ηλεκτρονίων χρησιμοποιεί

την τάση που παράγεται από την ίδια τη δέσμη. Μεταξύ των τρόπων λειτουργίας ενός διπλού RF

συστήματος, χρησιμοποιείται πολύ πιο συχνά ο τρόπος αύξησης μήκους (BLM), δεδομένου ότι είναι

πιο ελκυστική για πολλούς λόγους. Για την ίδια τάση και αρμονικές αναλογίες δίνει μεγαλύτερο εύρος

συχνοτήτων σύνχροτρον. Επιπλέον, παρέχει μεγαλύτερη περιοχή ευστάθειας, καθώς και μείωση στο

πλάτος έντασης του ρεύματος σωματιδίων, μειώνοντας τα φαινόμενα χωρικού φορτίου. Ωστόσο, όπως

δείχνει αυτή η διατριβή, η BLM μέθοδος έχει του δικούς της περιορισμούς. Για παράδειγμα, στην

περίπτωση του SPS, η λειτουργία του μηχανήματος με αυτή τη μέθοδο δεν είναι δυνατή.

Το σύστημα δυο ραδιοσυχνοτήτων στο SPS είναι ένα από τα βασικά μέσα, σε συνδυασμό με

την ελεγχόμενη αύξηση της διαμήκους εκπεμπτικότητας, και τη νέα οπτική Q20, για την σημαντική

αύξηση των ορίων σταθερότητας (ενός και πολλών πακέτων) της δέσμης και την παροχή δεσμών

καλής ποιότητας στον LHC. Ωστόσο, για το μέλλον του LHC και τα σχέδια αναβάθμισης του,

HL − LHC και LIU , όπου απαιτούνται υψηλότερες εντάσεις δέσμης, οι κύριοι περιορισμοί στην

απόδοση του LHC προέρχονται από φαινόμενα που προκαλούν ασταθείς δέσμες στον SPS. Με

κίνητρο τα προβλήματα διαμήκους αστάθειας των δεσμών του SPS, ο στόχος της παρούσας διατριβής

είναι η λεπτομερής μελέτη και ανάλυση της απόδοσης ενός συστήματος 2 ραδιοσυχνοτήτων. Κατά

συνέπεια, τα αποτελέσματα εφαρμόζονται κυρίως στις παραμέτρους δέσμης και μηχανής του SPS

κατά τη λειτουργία του ως σύστημα παροχής δεσμών στον LHC. Ωστόσο, τα αποτελέσματα μπορούν

να γενικευθούν σε πολλούς κυκλικούς επιταχυντές πρωτονίων.

Τα κύρια επιτεύγματα αυτής της εργασίας είναι η εξήγηση, είτε με αναλυτικές μεθόδους ή με

προσομοιώσεις, των ακόλουθων σημαντικών πειραματικών παρατηρήσεων, τα οποία περιορίζουν το

παρόν και το μέλλον της λειτουργίας του SPS:

• Την εμφάνιση αστάθειας στη δέσμη σε χαμηλό ρεύμα σωματιδίων όταν το σύστημα δυο ρα-

διοσυχνοτήτων λειτουργεί στην κατάσταση BL.



• Την εμφάνιση αστάθειας στη δέσμη σε χαμηλό ρεύμα σωματιδίων όταν το σύστημα δυο ραδιο-

συχνοτήτων λειτουργεί στην κατάσταση BS όταν η αναλογία υψηλής τάσης μεταξύ των δύο

συστημάτων RF V 2/V 1 ≤ 1/4 για το SPS).

• Την εξάρτηση του κατωφλίου έντασης ενός πακέτου από τη σχετική φάση Φ2 μεταξύ των δύο

συστημάτων RF .

• Τη μη-ομοιόμορφα ελεγχόμενη αύξηση της διαμήκους εκπεμπτικότητας σε σύστημα δυο RF ,

που οδηγεί σε διακυμάνσεις του μήκους των πακέτων της δέσμης.

Αρχικά η διαμήκης ευστάθεια ενός πακέτου σωματιδίων σε σχέση με την κατανομή συχνοτήτων

σύγχροτρον στο εσωτερικό του πακέτου ω′s(J), μελετήθηκε για ένα σύστημα 2 RF δεύτερης αρ-

μονικής (h2/h1 = 2) για εμπέδηση που περιλαμβάνει μόνο φανταστικό μέρος. Στη μελέτη αυτή

δεν λήφθηκε υπόψη η περίπτωση επιτάχυνσης. Συγκεκριμένα, το κατώφλι απώλειας της απόσβεσης

Landau βρέθηκε τόσο από προσομοιώσεις όσο και από αναλυτικούς υπολογισμούς λαμβάνοντας

υπόψη τη διαταραχή του δυναμικού. Η ημι-αναλυτική προσέγγιση βασίστηκε στην εύρεση των

διακριτών V an Kampen συχνοτήτων (συλλογικοί τρόποι ταλάντωσης χωρίς απόσβεση Landau)

λύνοντας αριθμητικά την γραμμικοποιημένη εξίσωση V lasov [12, 13]. Οι προσομοιώσεις πραγ-

ματοποιήθηκαν χρησιμοποιώντας αριθμητικό κώδικα γραμμένο σε Matlab για τους σκοπούς της

παρούσας μελέτης.

Και οι δύο προσεγγίσεις έδειξαν ότι για τη λειτουργία BL και για μια επαγωγική εμπέδηση

υπάρχει μια κρίσιμη τιμή για τη διαμήκη εκπεμπτικότητα (ή δράση J), πάνω από την οποία το κατώφλι

της απόσβεση Landau μειώνεται ταχέως στο μηδέν, όπως φαίνεται στην Εικόνα 1. Αυτή η κρίσιμη

τιμή αντιστοιχεί στην περιοχή όπου ω′s(J) = 0 (εl=0.6 eV s στην Εικόνα 1). Μια μετατόπιση φάσης

μεταξύ των δύο RF συνιστωσών πάνω από 15
o
μπορεί να βοηθήσει στην αύξηση του κατωφλίου. Σε

αυτή την περίπτωση το σχήμα του πακέτου παύει να είναι επίπεδο. Αυτά τα αποτελέσματα είναι σε

θέση να εξηγήσουν τις παρατηρήσεις κατά τη διάρκεια της λειτουργίας του SPS ως συγκρουστήρας

pp̄ [14, 15]

Για μια χωρητική εμπέδηση (ή χωρικό φορτίο) τα κατώφλια είτε αυξάνονται δραματικά ή δεν

μπορούν να υπολογιστούν αναλυτικά. Αυτό είναι σε συμφωνία με τις θεωρητικές προβλέψεις στο [16],

όπου αποδείχθηκε ότι για την εμπέδηση χωρικού φορτίου, πάνω από την ενέργεια μετάβασης, μια

δέσμη σε στατική κατάσταση είναι πάντα σταθερή.

Η ανάλυση εφαρμόστηκε για διάφορους λόγους αρμονικών συχνοτήτων h2/h1 = n μεταξύ

των δύο συστημάτων RF , διατηρώντας την ίδια αναλογία τάσης V 1/V 2 = n. ΄Εχει αποδειχθεί

ότι παρότι μεγαλύτερη τιμή του ν παρέχει μεγαλύτερο φάσμα συχνοτήτων σύγχροτρον, η κρίσιμη

περιοχή μετατοπίζεται πιο κοντά στο κέντρο του πακέτου, και αυτό περιορίζει το μέγεθος του

πακέτου που μπορεί να χρησιμοποιηθεί για σταθερή λειτουργία του επιταχυντή. Αποδείχθηκε επίσης

ότι, κατά τη λειτουργία BS με n ≤ 3, οι περιοχές όπου ω′s(J) = 0 εμφανίζονται ως τοπικά

ακρότατα. Κατά συνέπεια, για τιμές εκπεμπτικότητας μεγαλύτερες από αυτές τις τιμές, το κατώφλι

απώλειας της Landau απόσβεσης είναι σημαντικά μειωμένο όπως φαίνεται στην Εικόνα 2 για n = 4

(0.3 eV s<εl<0.6 eV s).

Τα αποτελέσματα αυτά συμφωνούν πολύ καλά με τις πειραματικές παρατηρήσεις από τη λει-

τουργία του SPS με σύστημα 2 RF 4ης αρμονικής (h = 4). Πραγματοποιήθηκαν μετρήσεις του

κατωφλίου της διαμήκους αστάθειας ενός πακέτου σε σχέση με τη σχετική φάση μεταξύ των δύο

συστημάτων ραδιοσυχνοτήτων. Χρησιμοποιήθηκε λόγος των τάσεων V 2/V 1 = 1/4 και μια σταθερή



Figure 1: Κατώφλι απώλειας απόσβεσης Landau συναρτήσει της διαμήκους εκπεμπτικότητας σε

σύστημα δυο RF (BLM - κόκκινο, BSM - μπλε) και σε σύστημα μιας RF (μαύρο) με βάση

αναλυτικούς υπολογισμούς (τελείες) και προσομοιώσεις (ρόμβοι).

Figure 2: Κατώφλια απώλειας απόσβεσης Landau συναρτήσει της διαμήκους εκπεμπτικότητας για

h2/h1 = 4 σε BSM τρόπο λειτουργείας, με βάση προσομοιώσεις.

ένταση δέσμης ανά πακέτο 1.0 1011
. Η ανάλυση των μετρήσεων έδειξε ότι η δέσμη είναι ασταθής

στη διαμήκη συνιστώσα τόσο στον BS όσο και στον BL τρόπο λειτουργίας. Οι φάσεις αυτές

ορίζονται στο μηχάνημα με μία μέθοδο βαθμονόμησης βασισμένη στην ίδια τη δέσμη και η οποία

πραγματοποιείται στην αρχή κάθε σειράς μετρήσεων. Σαρώνοντας τη μετατόπιση φάσεως μεταξύ

των δύο συστημάτων RF , προσδιορίστηκε μια περιοχή ευστάθειας της δέσμης, μεταξύ 50o και 100o

(στα 800MHz) σε σχέση με την λειτουργία BS, όπως φαίνεται στην Εικόνα 3. Πραγματοποιήθηκαν



επίσης προσομοιώσεις χρησιμοποιώντας τον κώδικα ESME [17] και το παρόν μοντέλο εμπέδησης

του SPS, με σκοπό την επιβεβαίωση των αποτελεσμάτων.

Figure 3: Λόγος τελικών προς αρχικών τετραπολικών (μετρήσεις) και διπολικών (προσο-

μοιώσεις)Ρατιο οφ φιναλ το ινιτιαλ χυαδρυπολε (μεασυρεμεντς) ανδ πλατών ταλάντωσης, πολλαπλασι-

ασμένοι με τη μέγιστη τιμή του (∆Tmax) συναρτήσει της φ800 στο σύστημα 2 RF του SPS με

Vr = 0.25. Αριθμός προτονίων ανα πακέτο ∼ 1× 1011
με εl ' 0.25 eV s.

Τα αποτελέσματα των προσομοιώσεων έδειξαν πολύ καλή συμφωνία με τις μετρήσεις καθώς

κατέληξαν στην ίδια περιοχή φάσεων. Μειώνοντας το λόγο των τάσεων σε V 2/V 1 = 1/10 (η τιμή

που χρησιμοποιείται σήμερα σε λειτουργία) οδήγησε σε σταθεροποίηση της δέσμης σε BS τρόπο

λειτουργίας, αποτέλεσμα το οποίο επίσης επιβεβαιώθηκε από τις προσομοιώσεις.

Η εξάρτηση από την φάση μεταξύ των δύο συστημάτων RF , εκτός από την ευαισθησία στο

λόγο των τάσεων, δείχνει επίσης ότι η απώλεια της Landau απόσβεσης στην επίπεδη περιοχή

της κατανομής φάσεων σύγχροτρον μέσα στη δέσμη, μπορεί να είναι μια πιθανή εξήγηση για την

απόσβεση των ταλαντώσεων που παρατηρούνται στις μετρήσεις. Για παράδειγμα, στη λειτουργία

BS με V 2/V 1 = 1/4, το μέγεθος των πακέτων που χρησιμοποιούνται στις μετρήσεις (και τις

προσομοιώσεις) είναι τέτοιο ώστε πολλά σωματίδια να είναι στην περιοχή όπου ω′s(J) = 0 όπου η

Landau απόσβεση χάνεται. Με τη μείωση της αναλογίας σε V 2/V 1 = 1/10 η κατανομή συχνοτήτων

σύγχροτρον γίνεται μονότονη για τη λειτουργία σε BS και ως εκ τούτου επιτυγχάνεται ευστάθεια

της δέσμης, όπως φαίνεται στην Εικόνα 4. Το γεγονός αυτό δίνει τόσο την αιτιολόγηση αλλά και

τον περιορισμό στην τάση των 800 MHz που χρησιμοποιήθηκε για τις LHC δέσμες στον SPS.

Ακόμη και με το σύστημα 2 ραδιοσυχνοτήτων τέταρτης αρμονικής σε λειτουργία BS με αναλογία

τάσης V 2/V 1 = 1/10, οι δέσμες πρωτονίων τύπου LHC στον SPS εξακολουθούν να είναι ασταθείς

στο τέλος της επιτάχυνσης. Για το λόγο αυτό εφαρμόζεται μια ελεγχόμενη αύξηση της διαμήκους

εκπεμπτικότητας, κατά το δεύτερο μέρος της επιτάχυνσης, με σκοπό την περαιτέρω αύξηση του



Figure 4: Κατανομή συχνοτήτων σύνχροτρον συναρτήσει της διαμήκους εκπεμπτικότητας για

διαφορετικές παραμέτρους της RF . Η μαύρη οριζόνται γραμμή παρουσιάζει το μέγεθος του πακέτου

με βάση τις μετρήσεις.

φάσματος των συχνοτήτων σύγχροτρον μέσα στο πακέτο σωματιδίων, ενισχύοντας το φαινόμενο

της Landau απόσβεσης. Αυτό επιτυγχάνεται με την εισαγωγή θορύβου στο σύστημα RF των

200 MHz. Ωστόσο, η μέθοδος αυτή έχει τους δικούς της περιορισμούς. Πράγματι, οι πειραματικές

μετρήσεις έδειξαν ότι μετά την εισαγωγή του θορύβου, η κατανομή των μηκών των πακέτων έχει

μια μη-ομοιόμορφη δομή, όπως φαίνεται στην Εικόνα 5. Το φαινόμενο αυτό γίνεται εντονότερο με

την αύξηση του πλάτους του θορύβου και αποτελεί έναν περιορισμό στην εισαγωγή της δέσμης στον

LHC όταν για σκοπούς ευστάθειας σε υψηλότερες εντάσεις δέσμης ζητηθεί μεγαλύτερη εγκάρσια

εκπεμπτικότητα.

΄Εχει αποδειχθεί κατά τη διάρκεια αυτής της εργασίας, ότι οι μετρούμενες μεταβολές της τελικής

διαμήκους εκπεμπτικότητας κατά μήκος της δέσμης μπορούν να εξηγηθούν από την μεταβολή της

κατανομής συχνοτήτων σύγχροτρον λόγω της επαγόμενης τάσης στις κοιλότητες ραδιοσυχνοτήτων

(beam loading) στο σύστημα 2 RF στο SPS. Ειδικότερα, λαμβάνοντας υπόψη την εναπομένουσα

επαγόμενη τάση στις κοιλότητες ραδιοσυχνοτήτων των 200 MHz (με τα συστήματα ανάδρασης

(feed − back) και ανατροφοδοσίας (feed − forward) ), και την επαγόμενη τάση στις κοιλότητες

των 800 MHz, η παρατηρούμενη μεταβολή της θέσης των πακέτων κατά μήκος της δέσμης μπορεί

να αναπαραχθεί με καλή ακρίβεια, όπως φαίνεται στην Εικόνα 6. Με βάση αυτό το μοντέλο υπ-

ολογίστηκε η κατανομή συχνοτήτων σύγχροτρον για πακέτα σε διαφορετικές θέσεις κατά μήκος της

δέσμης η οποία μπορεί να εξηγήσει τη μεγάλη διακύμανση στην εκπεμπτικότητα των πακέτων για

την εφαρμοζόμενη συνάρτηση θορύβου.



Figure 5: Μετρήσεις μήκους των πακέτων σωματιδίων πριν την ελεγχόμενη αύξηση της διαμήκους

εκπεμπτικότητας (πράσινο), αμέσως μετά (κόκκινο) και στο τέλος της επιτάχυνσης (μπλέ).

Figure 6: Μεταβολή της θέσης του πακέτου κατα μήκος της δέσμης, πριν την εφαρμογή της

συνάρτησης θορύβου. V200 = 4.5 MV και V800 = 0.5 MV .



Chapter 1

Introduction

Particle accelerators are widely used today in science, both in fundamental and applied research,

but also in many technical and industrial fields. Although, initially proposed for nuclear and

particle physics research, now accelerators are of great importance in industrial applications,

in material science (synchrotron light sources and spallation neutron sources), in biological and

medical research and in radiotherapy (cyclotrons). Over the last 80 years, technological progress

allowed a remarkable increase in energy and intensity of the particle beams, leading to numerous

achievements in all the previously mentioned fields. However, the constant demand for beams of

higher current and luminosity1 is limited also by the undesirable effects of the electromagnetic

(EM) fields produced by the particles themselves. Those effects can degrade the beam quality

and in some cases lead to beam instabilities and eventually to particle losses.

This thesis investigates the limits of beam stability for some specific beam parameters and

machine conditions, mainly related to the CERN Super Proton Synchrotron (SPS) (see below).

We will study these effects in the so-called circular accelerators, although their real shape is

more complicated, e.g. they usually contain a number of straight sections. Particles in such

accelerators perform a periodic motion around the circumference with revolution period T0.

In particular, this thesis is focused on the special type of circular machines called synchrotrons,

where the external EM fields are synchronized with the particles’ revolution frequency f0 = 1/T0,

confining their orbit in a well-defined path. Furthermore, we will restrict the analysis to the

longitudinal motion of the particles, assuming that it is completely decoupled from the transverse

one. In fact, this assumption is valid for all the considered cases.

Today, in the majority of the circular accelerators, the acceleration of the particles to high

energies is performed by the application of longitudinal alternating (sinusoidal) electric field at

an RF frequency frf which, depending on the specific machine and the type of the particles,

ranges from a few hundred kHz to 10-30 GHz. In the case of synchrotrons, these frequencies

have to be synchronized with the particles’ revolution frequency so that frf = hf0, where h

is an integer called the harmonic number. Consequently, this focusing electric field forces the

particles to perform (synchrotron) oscillations around a stable phase φs, with frequencies known

as synchrotron frequencies. Due to the periodicity of the RF field there are h similar stable

regions, called RF buckets. For this reason in synchrotrons the particles are usually grouped into

bunches. In most of the cases several regularly spaced bunches are accelerated simultaneously,

but in some cases there is only a single bunch circulating in the machine.

In addition to the external EM fields which are applied to the charged particles in the bunch,

to accelerate and confine them transversely, there are fields which are generated by the beam

itself, either directly (space charge forces, intra-beam scattering) or by the interaction with its

surrounding (see for example [18]). This effect is imposed by the complexity and diversity

1The luminosity, L in cm−2s−1 is a measure of the rate the particles interact per unit area in a collision process.
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(in shape and materials) of the various machine elements (beam pipes with expansion bellows,

connection flanges, accelerating RF cavities, kickers, collimators, beam instrumentation, magnets

etc), which create an unavoidable non-uniformity of the beam surrounding. When a charged

particle passes through any cross-section discontinuity, it excites an EM field known as wake

field (or wake function) since it remains usually behind the (ultra-relativistic) exciting particle.

This wake field will react back on the beam, perturbing the motion of the trailing particles. The

integrated effect over a finite distribution of charged particles is described by the wake potential,

which can be determined by the convolution of the wake function with the charge distribution

in the bunch. It is common in accelerator physics to use also frequency domain where analytic

calculations are usually easier. In that case, one uses the concept of beam-coupling impedance

which is defined as the Fourier transform of the wake function [1].

Generally, the beam induced fields contain three spatial components, classified as longitu-

dinal, horizontal and vertical (the last two constitute the transverse plane). The longitudinal

component of the electric field, on which we will be focusing in this thesis, may change the effec-

tive amplitude and phase of the applied accelerating RF field as well as the energy distribution

in the bunch and its length. Furthermore, its effect can be separated into single-bunch and

multi-bunch, depending on the characteristics of the respective force. Single-bunch effects are

caused by wake fields that are strong only within the limits of the bunch size and are decaying

fast enough, leaving the coming bunches unaffected. In contrast to that, multi-bunch or coupled

bunch effects are caused by forces which remain strong enough to disturb the motion of the later

bunches or even of the same bunch in the next revolution turn.

The wake field becomes stronger at higher beam currents. Up to some intensity the beam,

although perturbed, remains stable. However, above some threshold current, longitudinal in-

stability of the beam will occur, known as collective instability [2]. The type of the instability,

which limits the operation of an accelerator depends strongly on the characteristics of the spe-

cific machine (machine elements, type of particles) as well as the bunch parameters (length,

intensity) [2–4]. For instance, the fast increase of the bunch length observed in the SPS in the

past [5] was caused by a short wavelength (compared to the bunch length) resonant impedance

and disappeared after shielding of the responsible sources [6]. In particular, under the influ-

ence of the wake field, the whole bunch or part of the particles inside the bunch are performing

coherent oscillations with frequencies (modes) which can be classified into dipole, quadrupole,

sextupole, etc., depending on the shape of the oscillations [7]. Above some intensity threshold,

an exponential growth of oscillation amplitude is observed leading to degradation of the beam

quality and eventually to particle losses.

A natural mechanism to prevent or damp the beam instabilities arises from the difference

of the individual particle frequencies inside the bunch (incoherent synchrotron frequencies). In

particular, if the frequency of a coherent mode, excited in a bunch, is within the range of the

incoherent frequencies of the particles, then this mode will be damped. This mechanism is known

as Landau damping and was introduced first in plasma physics [8]. In the context of charged

particle beams, a thorough exposition of the basic underlying mechanism has been provided in [9].

For low intensities, the spread in the particle frequencies is defined by the external RF field. For

a sinusoidal external RF field the spread is increasing with the bunch length (proportional to

φ2
b/16, where φb is half the bunch length in radians) and thus Landau damping is more effective.
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Besides increasing the bunch size, another common approach to enhance Landau damping in

an accelerator is to use a higher harmonic RF system in addition to the main one. In this case,

the total external voltage seen by the particles is

Vext(φ) = V1 sinφ+ V2 sin(nφ+ Φ2), (1.1)

where V1 and V2 are the voltage amplitudes of the main and high harmonic RF systems, n =

h2/h1 is the ratio between their frequencies, Φ2 is the relative phase and φ is the phase coordinate

of the particles at the main RF system. For a non-accelerating bucket the maximum spread

of the incoherent synchrotron frequencies inside the bunch is obtained when Φ2 = 0, π [10],

corresponding, above transition energy (φs = π, the case considered in this thesis), to bunch-

lengthening (BL) and bunch-shortening (BS) mode accordingly (see next Chapter).

In many accelerators a high harmonic RF system is installed [11] in addition to the main RF

system for various applications:

• To increase the synchrotron frequency spread

• To change the bunch shape: flat bunches with reduced peak line density in BLM

• To increase the available stable area in the longitudinal phase space (bucket area)

• For RF manipulations (bunch splitting, bunch rotation, controlled emittance blow-up etc.),

see for example [19].

The first two are mainly aimed at increasing beam stability. In the first case the high harmonic

RF system is often called a Landau cavity to indicate an expected increase of beam stability

through Landau damping. So-called passive high harmonic RF systems in electron storage rings

use the voltage generated by the beam itself by correct choice of cavity de-tuning. Among the

operating modes of a double RF system BLM is used much more often since it is more attractive

for many reasons. For the same voltage and harmonic ratios it gives larger synchrotron frequency

spread. In addition it provides larger bucket area as well as reduced peak line density and

therefore reduced space charge effects and machine elements heating. However, as shown below

BLM has its own limitations. For example, in the case of the SPS, operating the high harmonic

RF system in BLM is not possible [10].

This thesis is dedicated to the study of the beam dynamics in a double RF system for proton

beams. It is motivated by longitudinal stability issues in the CERN SPS [20] during its operation

as the injector of the Large Hadron Collider (LHC) [21]. Thus, for most of the cases the obtained

results are applied to the beam and machine parameters of the SPS (see below). However, most

of them can be generalized to other proton accelerators as well.

1.1 The CERN accelerator complex

The name CERN is derived from the acronym for the French Conseil Européen pour la Recherche

Nucléaire, or European Organization for Nuclear Research. Founded in 1954 in the Franco-Swiss

border near Geneva, by a convention between twelve European countries, CERN is one of the

world’s largest and most advanced centers for scientific research [22].
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During the past years, many significant scientific discoveries were made at CERN (neutral

currents, W and Z bosons, first observation of anti-Hydrogen, etc.). Today, CERN is widely

known to host the 27 km long Large Hadron Collider (LHC) [23]. The LHC is the largest

circular accelerator in the world and the main focus of research at CERN. It it operating since

2009. In the LHC the particles are injected at 450 GeV and accelerated up to the energy of 4 TeV

(an energy of 7 TeV is planned to be reached from 2015 onwards). At top energy the two, counter

rotating, proton or ion beams are made to collide at the four interaction points, where detectors

are placed to observe the debris of the collisions and examine any particles that may be produced

(ATLAS, CMS, ALICE and LHCb). The biggest of these experiments, ATLAS and CMS, use

general-purpose detectors to investigate the largest range of physics possible (as Standard Model,

the Higgs mechanism, Super-symmetry and others). In fact, a particle consistent with a Standard

Model Higgs boson was discovered in 2012 [24, 25]. Apart from these four, three other, smaller,

experiments are installed in the LHC tunnel and many more experiments use beam from other

CERN accelerators and facilities, being an important part of the laboratory’s activities.

The energy of the particles injected into the LHC is gradually increased to 450 GeV in the

LHC injector complex shown in Fig. 1.1. Once accelerated in a particular machine, particles are

either transferred to a larger machine or supplied to one of the experiments mentioned before.

Currently, two types of particles are accelerated in the LHC: protons (H+), which are the nuclei

of hydrogen atoms; and lead ions (Pb+82).

Figure 1.1: Schematic view of the present CERN accelerator complex. c©CERN.

For the protons going to the LHC, the injector chain starts with the linear accelerator

LINAC2, accelerating them to 50 MeV. The beam is then accelerated to 1.4 GeV by a 157 m
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length synchrotron, called the Proton Synchrotron Booster (PSB) (4 almost identical superim-

posed rings), before being passed into the Proton Synchrotron (PS). The PS is a 628 m length

synchrotron, where the particles are accelerated up to the energy of 25 GeV. This is the ma-

chine where the longitudinal bunch structure of LHC-type proton beams is produced by multiple

bunch splitting (and merging) using elaborate RF manipulations [26] (see below) which require

a variety of RF systems with different harmonics (10 MHz, 20 MHz, 40 MHz, and 80 MHz RF

systems). Longitudinal bunch rotation is performed just before extraction to ensure that the

bunches have the correct length before injection into the SPS. In the SPS, protons are then

accelerated up to 450 GeV and sent to the LHC.

Lead ions for the LHC start from a source of vaporized lead and enter LINAC3 before being

collected and accelerated in the Low Energy Ion Ring (LEIR). They then follow the same route

to their maximum energy as the protons.

1.2 LHC proton beam production

In the nominal mode of operation for filling the LHC, the PS delivers every 3.6 s a batch of 72

bunches spaced by 25 ns [21]. This distance between bunches is preserved up to the LHC. To

prepare this beam two different splitting schemes are used in the PS [26]. Other bunch trains

with larger bunch spacing and smaller number of bunches are also produced. In fact, during the

previous years of the LHC operation, beam with 50 ns bunch spacing was used, with 36 bunches

per PS batch.

The complete process of the production of the 25 ns bunch spacing LHC beam is schematically

presented in Fig. 1.2. Six bunches delivered in two batches by the PSB are captured in the PS

on harmonic h = 7. On the 1.4 GeV (kinetic energy) injection flat bottom, the 6 bunches are

triple split. This process is started as soon as the second batch is received (1.2 s after the first

injection), which provides 18 consecutive bunches on h = 21 (10 MHz RF system). The beam is

then accelerated on this harmonic up to the 25 GeV flat top, where each bunch is twice split in two

to give 72 consecutive bunches on h = 84 (40 MHz). The whole process consists of a complicated

RF manipulation where many RF harmonics are required simultaneously (h = 7, 14, 21 for the

triple splitting and h = 21, 42, 84 for the quadruple splitting). Careful design of the RF voltage

and phase programs is necessary in order to obtain equal bunches with the same distribution

of particle density as the initial one [21]. In addition, a beam phase loop is used to suppress

collective oscillations with respect to the RF sum voltage. Moreover,in order to achieve nominal

longitudinal emittance (see below) and ensure beam stability a controlled emittance blow-up is

applied by using phase modulation of the 200 MHz RF system.

Similar procedure is followed during the production of the 50 ns bunch spacing LHC beam,

but without the second splitting in two bunches at 25 GeV. Thus, a batch of 36 bunches are

obtained, spaced by 50 ns.

At the end of the splitting process at 25 GeV, the bunches with a length of around 11 ns are

held by the RF on h = 84 (40 MHz). Since in the SPS the frequency of the main RF system is

200 MHz (RF period of 5 ns) the PS bunches are too long for injection into the SPS. Thus, prior

to the transfer to the SPS, the bunches are rotated in the longitudinal plane during a quarter of a

synchrotron period by a fast (within a few revolutions) increase of the RF voltage on harmonics
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Figure 1.2: Schematic representation of the production of the LHC 25 ns beam in the CERN

PS [27].

h = 84 and h = 168 (80 MHz) [21]. With this, non-adiabatic procedure the bunch length is

reduced to about 4 ns. Up to four consecutive batches of 72 (or 36) bunches are injected every

3.6 s into the SPS at 26 GeV/c.

1.3 The Super Proton Synchrotron as the LHC injector

The SPS is the second largest accelerator in the CERN accelerator complex with a circumference

of 6.9 km. It was fully commissioned in 1976 and since then, it has been used as a proton-

antiproton collider (SppS), served as the injector for the Large Electron-Positron collider (LEP)

and now provides protons and ions to the LHC alongside fixed-target experiments including

CNGS (until 2013), COMPASS and the North Area.

Proton beams for the LHC are injected at a momentum of 26 GeV/c from the PS and

accelerated up to 450 GeV/c before extraction into the LHC. The usual LHC filling cycle in

the SPS (see Fig. 1.3) is designed for up to four injections from the PS. Since the length of

the PS cycle is 3.6 s, an injection plateau of 10.8 s is required in the SPS. After the injection

of the last batch, a ramp to 450 GeV/c with an average ramp rate of 78 GeV/s takes place.

The acceleration voltage is provided by four traveling-wave RF cavities (TWC) [28] operating at

200 MHz. The total length of the cycle is 21.6 s (a multiple of the basic machine period, 1.2 s).
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Figure 1.3: Beam momentum variation during the proton cycle in the SPS for the LHC filling.

The beam characteristics as well as the RF settings in the SPS have been chosen to minimize

the particle losses, increase the longitudinal stability and produce a beam that fulfills the needs

of the LHC. In particular, at PS-SPS transfer the longitudinal emittance εl is 0.35 eVs and the

bunch length (4 standard deviations in the Gaussian case) is around 4 ns (produced after rotation

in the PS). These values are determined by beam stability requirements both in PS and SPS.

Smaller εl would give more margin for injection errors and hence less risk of capture loss (particles

that are not captured in the RF buckets at injection), but will degrade the beam quality due to

the decrease of the longitudinal instability thresholds (single and coupled-bunch) [29]. However,

recent studies on the beam transfer from PS to SPS [30] demonstrated that the beam losses could

be halved by optimizing the PS bunch rotation in longitudinal phase space. With higher voltage

and optimized timings used for the rotation, the same bunch length and transmission (in the

SPS) can be maintained for a 40% larger longitudinal emittance, which increases significantly

the longitudinal beam stability [29]. This optimization of the bunch rotation though requires

the use of additional RF cavities in the PS, which are currently reserved as spares.

The matched voltage at injection is 750 kV, but much higher capture voltage is used in

operation (≥2 MV). The higher voltage reduces the effect of beam loading [31] (see Chapter 5),

provides more stability against coupled bunch instabilities at 26 GeV/c and produces some

longitudinal emittance blow-up that helps stabilize the beam against instabilities later in the

cycle. After the beam spends a short time (around 100 ms) at injection energy the emittance is

εl ≈ 0.4 eVs. A typical RF voltage programme used for the LHC-type proton beam during the

operation in 2011 and 2012 is shown in Fig. 1.4. Note that these estimations correspond to the

SPS Q26 optics (see below) used in operation until the September of 2012. Both measurments

and simulations presented in the later Chapters of this thesis correspond to these SPS optics.

Up to about 200 GeV (around 14.5 s in the cycle), the 200 MHz voltage is adjusted for a

constant bucket area (0.68 eVs for the example in Fig. 1.4). At flat bottom each PS batch is

injected at 2 MV. However, in order to reduce the capture losses the RF voltage is within 50 ms
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Figure 1.4: Typical voltage programme of the main 200 MHz RF system in the SPS, used in

routine operation for LHC filling in 2011 and 2012 for 50 ns spaced beam with intensities up to

1.6× 1011 p/b. The vertical lines indicate the start and the end of acceleration.

increased from 2 to 3 MV after each injection, as can be seen in Fig. 1.4. Above 200 GeV the

voltage is kept constant (higher than the programmed values) to provide a larger bucket that

is needed for the controlled longitudinal emittance blow-up. The latter is achieved by injecting

band-limited noise through the phase loop of the 200 MHz RF system [32] and helps to stabilize

the beam at high energy where the thresholds for both narrow-band and broad-band impedances

are significantly decreased [29]. At flat top, the RF voltage is increased for reducing the bunch

length before transferring the beam from the SPS 200 MHz bucket to the LHC 400 MHz bucket.

The maximum presently available RF voltage of 7.5 MV is used for this manipulation.

Finally, in routine operation with LHC beams (50 ns bunch spaced with intensities up to

1.6 × 1011 p/b), a fourth harmonic RF system (800 MHz) is used as Landau cavity in bunch

shortening mode for increasing the synchrotron frequency spread, which helps stabilizing the

beam. There are two 800 MHz traveling wave cavities in the SPS. Only one is connected to

the RF power, the second is idle. The voltage programme of the 800 MHz system is usually set

to 1/10 of the main accelerating system voltage. The reason for this will be explained later in

Chapter 4.

Both the controlled longitudinal emittance blow-up and the 800 MHz RF system increase

significantly the longitudinal single and coupled bunch instability thresholds (see next Section),

making possible the delivery to the LHC of beam with parameters that exceed the initial expec-

tations [21]. An additional improvement in beam quality was achieved by lowering the transition

gamma γt from 22.8 to 18 [33]. This new optics (Q20) was obtained by decreasing the integer

tunes (26.13 and 26.18 in Q26 optics) by 6 units, resulting to a significant increase of the slip-

page factor η = γ−2 − γ−2
t (a factor of 2.8 at 26 GeV/c and 1.6 at 450 GeV/c) and thus to a

subsequent increase of the thresholds for longitudinal coupled bunch instabilities, loss of Landau
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damping and transverse mode coupling instability (TMCI) [34]. Note here that a proportional

increase in the RF voltage Vrf is also needed to obtain the same bucket area, since the latter

scales as
√
Vrf/ |η|. This means that the corresponding increase of the instability thresholds is

true only as long as the available RF voltage is enough to provide the same longitudinal pa-

rameters (emittance, bunch length). As mentioned before, already the maximum RF voltage

(7.5 MV) is used for beam transfer to the LHC, but the controlled emittance blow-up can also

be reduced for the same intensity. Indeed the threshold for the loss of Landau damping NLD
th

(for a non-accelerating bucket) due to the reactive impedance scales like [35]

NLD
th ∝ ε2l |η| τ. (1.2)

Thus one needs a smaller emittance εl ∼
√
η for stability, which gives the same bunch length

τ in the Q20 optics as with the Q26. This scaling is in fact confirmed by many measurements

performed in 2011 and 2012 [36]. The beam parameters of the LHC 25 and 50 ns beams, obtained

by the end of the LHC operation run 1 until the end of 2012 are listed in Table 1.1.

Table 1.1: Characteristics of the 50 and 25 ns proton beams at 450 GeV/c in the SPS: 2012

achievements and HL-LHC requirements. The longitudinal emittance for the HL-LHC depends

on the available RF voltage, where 15 MV are assumed for the low intensity beam [37].

Achieved HL-LHC

Bunch spacing [ns] 50 25 50 25

Bunch intensity [×1011] 1.6 1.3 3.6 2.2

Number of bunches 4×36 4×72 4×36 4×72

Long. emittance [eVs] 0.45 0.5 0.7 0.7

Bunch Length [ns] 1.5 1.55 < 1.8 < 1.8

In order to fully exploit the potential of the LHC and its future upgrades for higher luminosity,

the injectors will have to deliver proton beams with significantly higher beam intensity compared

to the current operation. The activities concerning the luminosity upgrade of the LHC itself

are incorporated in the High Luminosity LHC (HL-LHC) project [38] and the upgrade of the

injector complex is subject of the LHC Injectors Upgrade (LIU) project [39]. In particular, the

LIU project aims at consolidating and upgrading the existing injector synchrotrons (PSB, PS

and SPS) in the CERN complex and using the new linac presently in construction (LINAC4).

The characteristics of the 25 and 50 ns proton beams according to the HL-LHC requirements [40]

are presented in Table 1.1. After commissioning the LINAC4 and upgrading the PSB and the

PS, the main performance limitations of the LHC injector complex are beam instabilities and

high intensity effects in the SPS, the longitudinal aspects of which are discussed below.

1.4 Longitudinal instabilities in the SPS.

The longitudinal multi-bunch instability observed during acceleration in the SPS has very low

intensity threshold: one batch of 36 bunches at 50 ns spacing with 2×1010 p/b and nominal

injected longitudinal emittances εl = 0.35 eVs becomes unstable during the ramp, even with

the RF feedback, feed-forward and longitudinal damper (low modes) in operation [41]. This
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instability threshold does not depend on the number of batches in the ring, i.e. the same

instability threshold in energy is observed for a given intensity per bunch with one or four

batches of the 50 ns beam in the machine (with gaps of 250 ns between batches) as can be

seen in Fig 1.5. Possible sources of this instability are the fundamental and higher order modes

Figure 1.5: Averaged bunch length variation along the cycle for single batch (left) and 4 batches

(right) of the 50 ns LHC beam in a single RF system. Intensity of Nb ≈ 1.6 × 1011 p/b. The

peak-to-peak bunch length spread within the batch is shown by the error bars. The vertical lines

indicate the instability onset.

(HOMs) of the main (200 MHz) and high harmonic (800 MHz) RF systems, since their relatively

low quality factors of 150, 500 and 300 accordingly are compatible with the short-range wake that

is driving this instability. The search for other impedance sources in the SPS ring is ongoing [42].

As expected from calculations, in addition to the impedance, the coupled-bunch instability

threshold clearly depends on the beam energy and the longitudinal emittance [29]

NCB
th ∝

ε2l |η|
E0τ

, (1.3)

where E0 is the energy of the synchronous particle, η is the slip factor and τ is the bunch length.

More dense bunches become unstable earlier in the cycle. A comparison of LHC beams with

different bunch spacing Tb shows that the energy threshold scales roughly as 1/Eth ∝ Nb/Tb, or

with total beam current. Indeed, as can be seen in Fig 1.6 for the Q26 optics, the 50 ns beam

with a bunch intensity of Nb = 1.6× 1011 p was unstable around 160 GeV/c and the 25 ns beam

with Nb = 1.2× 1011 p at 110 GeV/c. Higher intensity 25 ns and 50 ns beams were also at the

limit of stability on the 26 GeV/c flat bottom.

As was mentioned in the previous Section, in routine operation, the fourth harmonic 800 MHz

RF system is used in the BS mode [10] in order to increase the synchrotron frequency spread

and thus increase both the multi- and single-bunch instability thresholds. To obtain that the

phase Φ2 between the two RF systems (see Eq. (1.1)) is programmed during the acceleration

cycle as

∆Φ2 = −4φs0 + π, (1.4)



1.4. Longitudinal instabilities in the SPS. 11

Figure 1.6: Averaged bunch length variation along the SPS cycle for single batch of the 50 ns

(left) and the 25 ns (right) LHC beam in a single RF system with average intensity of Nb =

1.6 × 1011 p/b and Nb = 1.2 × 1011 p/b accordingly. The peak-to-peak bunch length spread

within the batch is shown by the error bars. The vertical lines indicate the instability onset.

Both cases correspond to the Q26 optics.

where φs0 is the synchronous phase in a single RF system. However in reality for high intensity

beam the phase Φ2 is strongly affected by beam loading (see Chapter 5) in the 800 MHz RF

system itself. In the SPS, unlike many other accelerators, only BS mode is used for beam

stabilization, since for the nominal bunch size the beam is unstable in BL mode all along the

cycle, both for single and multi-bunch cases. Figure. 1.7 presents an example of a single batch

of the 50 ns LHC beam in BS and BL modes with an average intensity of Nb = 1.2× 1011 p/b.

The large errobars in the BL mode case indicate that the beam is unstable even at the injection

energy.

Many studies were conducted in order to understand these observations [10,43] and two main

restrictions for the BL mode were identified:

1. The very tight requirements on the accuracy of the relative phase Φ2 between the two RF

systems, which is very difficult to achieve due to strong beam loading in both the main

and high harmonic RF systems [10].

2. The non-monotonic behavior of the synchrotron frequency distribution as a function of the

longitudinal emittance (essential for long bunches) reducing the instability threshold (see

Chapter 3).

These two restrictions, also discussed in [41], are thoroughly studied in this thesis together with

other issues related to the beam stability in a double RF system. In particular, the beam stability

with respect to the phase Φ2 between the two RF systems is addressed for the case of the SPS.

In addition, the effect that global or local maxima in the synchrotron frequency distribution as

a function of the longitudinal emittance have on beam stability is further investigated, both by

analytical calculations and particle simulations. Note that this effect also appears in the BS

mode for sufficiently large voltage ratio V2/V1 and harmonic ratio n = h2/h1 > 2.
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Figure 1.7: Averaged bunch length variation along the cycle for single batch of the 50 ns LHC

beam in a double RF system operated in BS mode (left) and BL mode (right). The voltage

ratio is V2/V1 = 0.1. Intensity of Nb = 1.2 × 1011 p/b. The peak-to-peak bunch length spread

within the batch is shown by the error bars. In the case of BS mode the vertical line indicates

the instability onset, while in BL mode the large errobars mean that the beam is unstable all

along the cycle. Both cases correspond to the Q26 optics.

Even with the addition of the 800 MHz RF system, individual bunches injected with small

longitudinal emittance can still become unstable during the ramp [35]. An example of the

bunch lengths at injection and extraction for a 50 ns beam with an average intensity of Nb =

1.2 × 1011 p/b is presented in Fig. 1.8. As one can see, the bunches with smaller bunch length

(emittances) at injection (τ < 3.5 ns) become unstable during ramp or at flat top. This observa-

tion could be an indication of the loss of Landau damping for single bunches due to the reactive

impedance of the SPS. Note that the loss of Landau damping in a single harmonic RF system,

based on the Sacherer criterion [44], scales as [29]

NLD
th ∝

ε2l |η| τ
E0

, (1.5)

and as in the case of coupled bunch instability, lower threshold is expected at higher beam ener-

gies. Therefore, larger emittances are needed for stability at flat top. However, injecting larger

emittances from the PS results in higher particle losses, although resent studies [30] (without

taking into account intensity effects) have shown that larger emittances can be injected in the

SPS with the same transmission, by using an additional RF system in the PS and optimizing the

rotation time. Nevertheless, a controlled emittance blow-up during the SPS ramp is required for

stability, which is applied in routine operation by introducing band-limited phase noise in the

200 MHz RF system [32].

However, the emittance blow-up in a double RF system has its own limitations due to the

presence of beam loading. This issue is also investigated in details in this thesis. In particular, it

is shown that the non-uniform bunch length distribution obtained at flat top after the controlled

emittance blow-up (see Fig. 1.9) can be attributed to the residual beam loading in the 200 MHz

RF system (with one-turn feedback and feed-forward systems in operation) [45].
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Figure 1.8: Bunch length at injection (upper trace) and on flat top (lower traces) for the 50 ns

LHC beam with intensity of Nb ≈ 1.2×1011 p/b and without controlled emittance blow-up. The

800 MHz RF is on in BS mode. Bunches in the second batch with small emittances are unstable

at flat top as can be seen from the bunch length oscillations.

A clear gain in beam stability was expected with the new Q20 optics, since the longitudinal

instability thresholds scale roughly with the slip factor η. Many measurements performed in

2011 and 2012 [33, 36] confirmed this expectation and resulted finally in the replacement of the

Q26 optics by the Q20 in 2012 operation run. A detailed analysis of the studies concerning the

Q20 optics can be found in [34]. Significant improvement in beam stability was obtained on

the flat bottom. However on the flat top the high harmonic RF system is still insufficient for

stability (due to the limited RF voltage) even for the operational bunch intensities (both for

50 ns and 25 ns LHC beams) and one needs in addition the controlled emittance blow-up, which

however can be smaller than in nominal optics.

Using all the measures to cure the longitudinal instabilities, i.e. the 800 MHz RF system

operating in BS mode, the controlled emittance blow-up during the ramp and the new Q20

optics, the SPS was able to reliably accelerate much higher beam intensities (see Table 1.1)

than expected [21]. Note that in order to achieve those beam intensities many measurements

were performed during the machine development (MD) sessions in 2010 - 2012 [46]. Figure 1.10

presents one example of the 25 ns LHC beam, where stable beam with an average bunch intensity

of Nb ≈ 1.3 × 1011 p was obtained at flat top with parameters acceptable for injection into the

LHC. Note that this result represents a record performance of the SPS with the LHC beams.

However, it should be emphasized that, due to losses related to the beam capture and losses on

the flat bottom, an intensity of more than Nb ≈ 1.4 × 1011 p/b had to be injected in this case.

When injecting beams with even higher intensity, the transmission was significantly decreasing

(for example about 85% for Nb ≈ 1.55 × 1011 p at injection). Similar issues were also faced

with the 50 ns LHC beam for reaching high intensities at flat top (Nb > 1.6× 1011 p). In order
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Figure 1.9: Bunch length distribution along the 25 ns batch before the controlled longitudinal

emittance blow-up (green), just after (red) and at the flat top of the cycle (blue). Notice the

non-uniform shape after the blow-up is applied.

to stabilize the beam with even higher intensities more longitudinal emittance blow-up will be

required, which in turn requires larger RF voltage for increasing the bucket size in order to

avoid particle loss. However, less RF voltage will be seen by the beam due to the effect of beam

loading and the limited currently available RF power. This becomes critical in particular for

beam extraction to the LHC, where the maximum available voltage (7.5 MV) is already used to

compress the bunch for injection into the LHC 400 MHz bucket. For that reason, an upgrade

of the SPS RF system including the rearrangement of the cavities and the construction of two

additional power plants, which will allow to have higher RF voltage is in preparation [37] as a

part of the LIU project.

Therefore, it is very important to fully understand the benefits that a higher harmonic RF,

can provide and also to identify the limitations or the problems that may exist for higher beam

intensities.

1.5 Outline of the Thesis

In Chapter 2 a review of the longitudinal beam dynamics is presented. First, the basis of

longitudinal motion in synchrotrons without intensity effects is presented. Basic equations and

parameters are defined for a single and a double harmonic RF system. Later, the effects of the

beam intensity are introduced, starting from the potential well distortion. The Vlasov equation

is presented and used together with the perturbation formalism to analyze the coherent motion

of the particles inside the bunch, through the dispersion equation. Finally, the concept of Landau

damping is introduced and described for a bunched beam in the longitudinal plane.

In Chapter 3 the phenomenon of loss of Landau damping is considered in a single and
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Figure 1.10: Measurements with four batches of 72 bunches spaced by 25 ns with Nb ≈ 1.3 ×
1011 p/b at SPS. The average bunch length evolution along the cycle (top left), the bunch length

distribution along the bunch train at injection and at at top (top right) and the dipole oscillations

at at top (bottom right) show stable beam conditions.

a double RF system, in the presence of reactive impedance. Instability thresholds are found

both from calculations (by solving numerically the linearized Vlasov equation) and from particle

simulations. The analysis is extended to different harmonic ratios between the two RF systems,

and the results are used to explain experimental observations during the pp̄ operation of the

SPS.

Then in Chapter 4, the particular situation of the SPS is considered, by presenting the single

bunch instabilities studies in the double RF system, consisting of the main and the 4th harmonic

RF systems. Initially, a beam based method of calibrating the phase between the two RF systems

which is used in operation is presented. Then measurements for different values of this phase are

shown, providing the stability region for the specific set of parameters used. The stability region

is also reproduced by macroparticle simulations performed for the same conditions as in the

measurements using the current SPS impedance model and compared with the measurements.

Finally, the results are explained theoretically through the mechanism of the loss of Landau

damping and more precisely, by the analysis of the synchrotron frequency distribution of the

particles inside the bunch.



16 Chapter 1. Introduction

Chapter 5 deals with issues of the controlled longitudinal emittance blow-up applied, for

stability reasons, to the multi-bunch LHC beams in the SPS. Beam measurements are presented,

where a non-uniform emittance blow-up is observed together with an anti-symmetric variation

of the bunch positions along the batch. The effect of beam loading in a traveling-wave cavity

is introduced together with the beam loading compensation currently applied in the SPS TW

RF cavities. It is shown that the observed anti-symmetric pattern in the bunch positions, is

determined by the beam loading in the main RF system. Finally, by calculating the synchrotron

frequency distribution of the particles inside different bunches along the batch, the non-uniform

emittance blow-up can be explained.



Chapter 2

Review of longitudinal beam

dynamics

In this Chapter some important parameters commonly used in accelerator physics to describe

the longitudinal motion of the particles are defined. Furthermore, a short introduction to the

necessary theory is also presented, and some useful formulas which will be applied later in the

thesis are derived.

2.1 Synchrotron motion

2.1.1 Coordinate system

To describe the longitudinal motion of the particles we first need to define the coordinate system.

There is a range of possibilities for the selection of the longitudinal phase-space variables. How-

ever, since we want to apply the Hamiltonian formalism, the two variables have to be canonical

conjugates [47]. Examples of such pairs are position and momentum (x, p) or time and energy

(t, E). In circular accelerators though, and for practical reasons, the azimuthal angle θ of the

ring is often used instead of t

θ = ω0t, (2.1)

where ω0 is the angular revolution frequency, ω0 = 2πf0.

The motion of the particles is described with respect to the motion of a reference particle [48]

which has a designated energy E0 and travels along a close orbit (of length C0) that passes

through the center of any magnet at revolution period T0 = 2π/ω0. This particle is referred to

as synchronous particle, since it is synchronized with the RF voltage waveform (that is normally

used to accelerate the beam). Therefore, denoting the phase-space coordinates of the synchronous

particle with (θ0, E0), the coordinates of an arbitrary particle, which deviate only slightly from

those of the synchronous one, can be written:

θ = θ0 + ∆θ

E = E0 + ∆E. (2.2)

For convenience we will use the RF phase angle φ = ωrft, where ωrf is the angular frequency

of the RF voltage. In the absence of acceleration, after each revolution along the ring, the

synchronous particle will encounter the RF voltage at the same phase φ = φs called synchronous

phase. This requires that

ωrf = hω0, (2.3)
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where h is a positive integer called the harmonic number. Its value can range from one up to

several thousand. Again, related to the synchronous particle, the phase of any other particle can

be written as

φ = φs + ∆φ. (2.4)

2.1.2 Energy gain and transit time factor

Charged particles can be accelerated using longitudinal electric fields. In synchrotrons, this

electric field E is provided by RF cavities. The time dependence of the longitudinal electric field

in the RF gap is given by

E = E0 sin(ωrft), (2.5)

where E0 is the amplitude of the electric field. Note that here E0 is assumed to be constant in

the RF gap, which in many practical cases is a good approximation. For circular accelerators,

the origin of time is taken at zero crossing of the RF voltage waveform with positive slope. The

phase φ of the RF voltage when a particle crosses the middle of the accelerating gap (at z =0,

z being the longitudinal coordinate) is called the phase of the particle with respect to the RF

voltage, and for the synchronous particle φ = φs. If the change in velocity of the particle when

crossing the gap is neglected, the phase of the synchronous particle at position z in the gap reads

ωrft = φs +
ωrf

v
z, (2.6)

where v is the particle velocity in the middle of the gap.

The energy gain δE0 of the synchronous particle with charge q, passing through an RF cavity

with a gap width g is given by [49]

δE0 = q

∫ g/2

−g/2
E0 sin(φs +

ωrf

v
s)ds, (2.7)

where it is assumed that the gap is symmetric with respect to the plane z = 0. Then

δE0 = qE0gT sinφs, (2.8)

where T is the transit time factor

T =
sin(ωrfg/2v)

ωrfg/2v
, (2.9)

which accounts for the fact that the particle passes through the RF gap within a finite time

interval. The effective peak voltage V̂ seen by the particle is thus

V̂ = E0gT, (2.10)

which depends on the particle velocity v through the transit time factor. Below, for relativistic

beams, this effect will be neglected so that all particles will be considered as experiencing the

same peak voltage. Finally, the energy gain of the synchronous particle is:

δE0 = qV̂ sinφs. (2.11)
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This energy gain per turn of the synchronous particle should be followed by a variation of the

magnetic field in dipoles to keep the particle on the designed orbit of constant radius, R. Usually,

in most synchrotrons the acceleration cycle lasts for some thousands to millions of revolutions,

which means that the synchronous particle gains a relatively small amount of energy during

each revolution. In all the cases considered below this assumption is considered, i.e. E0 to be a

smooth function of t
δE0

T0
=
dE0

dt
⇒ dE0

dt
=
ω0

2π
qV̂ sinφs, (2.12)

or in terms of the synchronous momentum p0

dp0

dt
=
qV̂ sinφs

2πR
. (2.13)

2.1.3 Longitudinal equations of motion

According to Eq. (2.3) the phase coordinate φ is related to the azimuthal angle θ by φ = hθ,

and thus one can write

∆φ = −h∆θ. (2.14)

The convention for the sign shows that particles which lag behind the synchronous one (∆θ < 0)

will arrive later in the RF cavity (∆φ > 0). Using the last equation, the angular revolution

frequency deviation of an arbitrary particle from the synchronous one can be written as

∆ω =
d

dt
(∆θ) = −1

h

d

dt
(∆φ) = −1

h

dφ

dt
, (2.15)

where it was assumed that φs is changing much slower in time (dφs/dt � dφ/dt). Since ω =

2πβc/C, where β = v/c (c is the speed of light) and C is the circumference of the machine, the

relative change in angular revolution frequency with respect to the synchronous particle can be

also expressed as:

∆ω

ω0
=

∆β

β0
− ∆C

C0
, (2.16)

where β0 and C0 are the velocity (in units of c) and the close-orbit length of the synchronous

particle.

Particles with different energy (or momentum p) will be affected differently by the bending

magnets and due to that they will move along different orbits, C. This effect is described by the

momentum compaction factor α, which in first order gives (see for example [48])

α =
∆C/C0

∆p/p0
, (2.17)

where p0 is the momentum of the synchronous particle. Usually α > 0, but it can also be

negative.

From the relativistic momentum p = m0γβc, with γ = 1/
√

1− β2 being the Lorentz factor

and m0 the particle’s rest mass, one gets:

∆p

p0
= γ2 ∆β

β0
. (2.18)
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Combining Eqs. (2.16), (2.17) and (2.18) gives:

∆ω

ω0
=

(
1

γ2
− α

)
∆p

p0
. (2.19)

Introducing the slip factor

η = α− 1

γ2
, (2.20)

one finally has:

∆ω

ω0
= −η∆p

p0
. (2.21)

Note that η changes sign when γ passes through γtr ≡ 1/
√
α, and corresponding energy is known

as the transition energy of the ring. The transition energy plays a very important role in the

beam stability which will be consider later in this Chapter.

Substituting Eq. (2.21) into Eq. (2.15) gives the first equation of motion:

dφ

dt
= hηω0

∆p

p0
=
hηω0

β2

∆E

E0
=
hηω2

0

β2E0

(
∆E

ω0

)
. (2.22)

In the equation above, the relation
∆p

p0
=

1

β2

∆E

E0

was used, and the coordinates
(
φ, ∆E

ω0

)
were introduced as the canonical phase-space coordinates.

Note that from here on β0 is replaced by β since, for the relativistic beams considered below,

the relative deviations from the synchronous particle are negligible, (β − β0)/β0 � 1.

The next step is to find the second equation of motion, i.e. the time evolution of the energy

deviation ∆E. We assume at this point that the energy of the beam can be changed only by the

applied RF field, neglecting any energy variation due to the interaction with the environment

or due to the synchrotron radiation. In addition, the sinusoidal RF voltage is replaced by a

generalized RF voltage V (φ), to take into account the more general case, where higher harmonics

are added to the fundamental sinusoidal RF field. The only conditions V (φ) needs to fulfill are

periodicity at the lowest RF harmonic and the absence of a direct current (DC) component:

V (φ) = V (φ+ 2π) and

∫ 2π

0
V (φ)dφ = 0.

Therefore, the energy that a particle of charge q and phase φ gains during one turn is

δE = qV (φ). (2.23)

Expressing this energy gain with respect to the energy gain of the reference particle, which finds

the RF field always in phase φs, one gets:

δE − δE0 = q [V (φ)− V (φs)] . (2.24)
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Assuming again that both E and E0 are smooth functions of t, one can write the previous

equation as

Ė

ω
− Ė0

ω0
=

1

2π
q [V (φ)− V (φs)] , (2.25)

where Ė ≡ dE/dt and Ė0 ≡ dE0/dt. It can be shown (for example [48,49]) that the last equation

can be approximated by

d

dt

(
∆E

ω0

)
=

q

2π
[V (φ)− V (φs)] . (2.26)

Equations (2.22) and (2.26) form the system of equations of longitudinal motion.

Combining the two equations of motion and assuming that E0 varies very slowly during the

acceleration cycle, leads to a second order differential equation for the phase motion

d2φ

dt2
− hηω2

0q

2πβ2E0
[V (φ)− V (φs)] = 0. (2.27)

Multiplying Eqs. (2.22) and (2.26) across

hηω2
0

β2E0

(
∆E

ω0

)
d

dt

(
∆E

ω0

)
=

q

2π
[V (φ)− V (φs)]

dφ

dt
, (2.28)

and integration, one gets

H =
hηω2

0

2β2E0

(
∆E

ω0

)2

−
∫ φ

φs

q

2π

[
V (φ

′
)− V (φs)

]
dφ
′
, (2.29)

where H is the first integral of the longitudinal motion [47] of the particles circulating in the

ring, which is constant along an orbit in the phase-space defined by the conjugate variables

(φ,∆E/ω0). This function corresponds to the Hamiltonian of the system. Indeed, taking partial

derivatives with respect to the phase-space variables we get:

∂H

∂φ
= − q

2π
[V (φ)− V (φs)] = − d

dt

(
∆E

ω0

)
, (2.30)

and

∂H

∂(∆E/ω0)
=
hηω2

0

β2E0

(
∆E

ω0

)
=
dφ

dt
, (2.31)

which are the canonical Hamilton equations [47] in these variables. The first term in Eq. (2.29)

can be identified as the kinetic energy and the second as the potential energy

U(φ) = −
∫

q

2π
[V (φ)− V (φs)] dφ (2.32)

showing that the function H is an expression for the total energy of the particle, which in a

conservative system has to remain constant [47].
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2.1.4 Single harmonic RF system and phase-stability

For the case of a single RF system with angular frequency ωrf = hω0 Eq. (2.27) can be written

d2φ

dt2
− hηω2

0qV0

2πβ2E0
(sinφ− sinφs) = 0. (2.33)

To find out whether the motion of the particles under the influence of this RF field is stable we

can consider small deviations from φs. In that case the parenthesis above can be replaced by

(sinφ− sinφs) ≈ ∆φ cosφs, (2.34)

where ∆φ = φ − φs. Combining this with (2.33) and assuming again that φs changes slowly in

time, leads to a simplified equation

d2(∆φ)

dt2
− hηω2

0 cosφsqV0

2πβ2E0
(∆φ) = 0. (2.35)

This equation describes a harmonic oscillator with an angular frequency

ωs0 =

√
−hω

2
0η cosφsqV0

2πβ2E0
(2.36)

provided that ωs0 is a real and positive number. Therefore, this condition can be written as

η cosφs < 0. (2.37)

Keeping also in mind that acceleration needs Vs > 0 and thus sinφs > 0, two different regions

of oscillatory motion can be identified, depending on whether the accelerator is operated below

or above transition energy

• Below transition (γ < γtr) : η < 0 ⇒ cosφs > 0 & sinφs > 0 ⇒ 0 < φs < π/2

• Above transition (γ > γtr) : η > 0 ⇒ cosφs < 0 & sinφs > 0 ⇒ π/2 < φs < π

This principle of phase-stability assures that ensembles of particles can be accelerated in syn-

chrotrons even if they are not exactly at the synchronous phase and energy. Such particles

just oscillate around the reference particle. The idea of phase-stability due to RF focusing is

schematically presented in Fig. 2.1.

Below transition (η < 0) a particle with higher momentum than the synchronous one (δp > 0)

will also have higher revolution frequency (δω > 0), as can be seen from Eq. (2.21) and therefore

it will arrive earlier to the RF gap (point N1). That means that it will receive less energy

gain than the synchronous particle (point P1) and at the next turn will approach more to φs.

Similarly, a lower energy particle will arrive at the RF gap later (point M1) and gain more energy

than the synchronous one. The situation is reversed above transition, where the synchronous

phase has to be shifted at π − φs (point P2). Note here that in the case when no acceleration is

applied to the synchronous particle i.e.

V (φs) = 0⇒ sin(φs) = 0

the above conditions give for the synchronous phase
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Figure 2.1: Schematic drawing of an RF wave and the RF phase angles of the synchronous

particles P1, P2, particles with higher momentum N1, N2 and particles with lower momentum

M1, M2, below (η < 0) and above (η > 0) the transition energy, respectively.

• φs = 0, below transition or

• φs = π, above transition.

The stability of the particle motion can be better understood from the plot of the RF po-

tential. Let us first consider the Hamiltonian for the sinusoidal RF field

H =
hηω2

0

β2E0

1

2

(
∆E

ω0

)2

+
qV0

2π
[cosφ− cosφs + (φ− φs) sinφs] , (2.38)

where the potential energy is:

U(φ) =
qV0

2π
[cosφ− cosφs + (φ− φs) sinφs] . (2.39)

Figure 2.2 (left) presents U(φ) for the cases of φs = π (no acceleration) and φs = π−π/6 (η > 0).

Near the synchronous phase the particles feel a restoring force which allows them to execute

oscillations around it. Hence, in phase-space they follow closed trajectories with an angular

frequency ωs called the angular synchrotron frequency 1, which in the case of small amplitude

oscillations (φ − φs = ∆φ � 1) is close to ωs0, see Eq. (2.36). However, the trajectories of the

particles with large deviations from φs are not bounded any more by the potential well and so

their motion is not oscillatory. This boundary is shown in Fig. 2.2 (left plot) by the horizontal

dashed lines.

The division of the phase-space into regions of bounded and unbounded motion in syn-

chrotrons is the reason of grouping the particles into bunches. The boundary between these two

1Typically ωs/ω0 is of the order ≤ 10−3 for proton synchrotrons, which justifies the assumption of small changes

in particle’s energy during one revolution period, see Eq. (2.12).



24 Chapter 2. Review of longitudinal beam dynamics

Figure 2.2: The left plot presents the RF potential U(φ) for φs = π (blue curve) and π − π/6
(red curve) (η > 0). The horizontal dashed lines show the maximum energy for stable motion.

The right plot shows the corresponding buckets using the same color convention. The phase φu

presents the turning point of the separatrix.

regions is called the separatrix, while the phase-space area enclosed by the separatrix is called

the bucket. Examples of the buckets that correspond to the potentials of Fig. 2.2 are presented

on the right plot using the same color convention. Particles that are inside these separatrices

can be accelerated to high energies, whiles those that are not captured (outside the separatrix)

are lost. Note that for the blue curves in Fig. 2.2 φs = π and thus U(φs) = 0. This means,

as was mentioned before, that the particles are not accelerated. In this special case we have a

stationary bucket.

Coming back to the phase-stability condition (2.37), one can see that if the energy of the

particles is such that during acceleration γ crosses γtr, the synchronous phase is shifted from the

positive to the negative slope of the RF voltage waveform. For that reason, during operation,

the RF phase must quickly be shifted from φs to π − φs as transition is crossed. This situation

often occurs at proton synchrotrons where extra care needs to be taken, in order to overcome the

difficulties that follow the transition crossing (particle loss, phase-space dilution and instabilities

due to intensity effects etc.). Transition crossing is not discussed in this thesis, since for the

LHC beam in the SPS the particles are injected above the transition energy (γt = 22.8).

2.1.5 Double RF system

Let’s assume now the case where the accelerator is operated with a double RF system with a

ratio n between the frequencies of the main and the higher harmonic RF system. The total

voltage seen by the particles is (see for example [10])

Vt = V1 sinφ+ V2 sin(nφ+ Φ2), (2.40)

where V1, V2 are the voltage amplitudes of the main and the higher harmonic RF systems

and Φ2 is the relative phase between them. Note that the RF frequencies involved need not
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be harmonically related to each other. It is sufficient that both are multiple of the revolution

frequency. However, in that case the phase Φ2 will be different for each bucket.

The potential well U(φ) is

U(φ) =
qV1

2π

{
cosφ− cosφs +

V2

V1n

[
cos(nφ+ Φ2)− cos(nφs + Φ2)

]
+

(φ− φs)
[

sinφs +
V2

V1
sin(nφs + Φ2)

]}
. (2.41)

Similar to Eq. (2.33) the second order equation of motion is

d2φ

dt2
− hηω2

0qV1

2πβ2E0

{
sinφ− sinφs +

V2

V1

[
sin(nφ+ Φ2)− sin(nφs + Φ2)

]}
= 0. (2.42)

Considering now particles very close to the vicinity of the synchronous phase φs (∆φ � 1) the

bracket in the formula above can be replaced by[
cosφs +

nV2

V1
cos(nφs + Φ2)

]
∆φ. (2.43)

Thus, Eq. (2.42) is simplified to

d2(∆φ)

dt2
+

ω2
s0

cosφs

[
cosφs +

nV2

V1
cos(nφs + Φ2)

]
∆φ = 0, (2.44)

where the frequency of the single RF case ωs0 defined by Eq. (2.36) was introduced. Therefore,

these particles perform harmonic oscillations around the phase φs with angular synchrotron

frequency given by the following expression

ωs = ωs0

√
1 +

nV2

V1

cos(nφs + Φ2)

cosφs
, (2.45)

provided again that the condition (2.37) is valid.

Different operating modes of the double RF system are defined by the phase Φ2 and for a

non-accelerating bucket they are named according to the consequent effect they have on the

bunch length (for n = 2). Above transition (the case considered in this thesis) and for an even

n, the bunch becomes shorter for Φ2 = π and thus one has the bunch-shortening mode (BSM).

In contrast, for Φ2 = 0 we have the bunch-lengthening mode (BLM). The opposite is true for an

odd value of n or in the case below the transition energy. The BLM is used much more often

in accelerators since it is attractive for many reasons. For the same voltage and harmonic ratios

the BLM gives larger synchrotron frequency spread. In addition, it provides larger bucket area

as well as reduced peak line density and therefore reduced space charge effects.

For the cases of BSM and BLM with n = 2 and V2/V1 = 0.5 above transition the total RF

voltage Vt, the potential energy U(φ) and the bucket shape (no acceleration) are presented in

Fig. 2.3. The single RF case is also shown for comparison. One can see that in the BLM the

potential well becomes flat in the center and for the same emittance it leads to a larger bunch

length compared to the single RF case. The opposite is true in the BSM.
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The case with V2/V1 > 1/n is shown in Fig. 2.4. In the BLM the origin of phase-space

becomes an unstable fixed point and two sub-buckets are created in which particles circulate

around new synchronous phases. In the BSM the bunch is still focused in the center of the

bucket but the available stable area has dramatically decreased.

Analytical treatment of the beam dynamics in a double RF system in the BLM with a

harmonic ratio of two can be found in [50–52]. However, due to the complicated form of the

potential well, a fully analytical treatment for arbitrary parameters (Φ2, V2/V1) is in general

difficult and thus numerical methods are used instead. For this reason the analytical examples

below are usually presented for the single RF case.

Figure 2.3: RF voltage Vrf (top), the potential energy U(φ) (middle) and the bucket shape

(bottom) for the cases of single RF (left), BLM (middle) and BSM (right) with n = 2 and

V2/V1 = 0.5 above transition for a stationary bucket. The red curves inside the buckets show

different phase-space trajectories of constant energy that the particles follow.
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Figure 2.4: RF voltage Vrf (top), the potential energy U(φ) (middle) and the bucket shape

(bottom) for the cases of single RF (left), BLM (middle) and BSM (rigth) with n = 2 and

V2/V1 = 0.75 above transition for a stationary bucket. The red curves inside the buckets show

different phase-space trajectories of constant energy that the particles follow.
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2.1.6 RF Bucket parameters

The phase-space area enclosed by particle trajectory is

A =

∮ (
∆E

ω0

)
dφ. (2.46)

It was shown before that(φ, ∆E/ω0) are canonical conjugate variables, meaning that this integral

is the action and thus a constant of motion (Poincare invariant) [47]. The units of an area element

are (energy × time). Normally in accelerators, energy is measured in (eV) and so the resulting

phase-space area is in (eVs).

The phase-space area enclosed by the separatrix is called bucket area and the maximum

energy deviation of the separatrix is called bucket height. These parameters have special signif-

icance since they represent the longitudinal acceptance of the machine.

The value of the Hamiltonian which corresponds to the separtrix can be calculated by taking

into account that one limit of the bucket is a local maximum of the potential. Note that a local

maximum of the potential appears as an unstable fixed point in the longitudinal phase-space,

while local minimum gives a stable fixed point which corresponds to the center of the bucket.

Therefore, from the equations of Hamilton one has that both for the stable and unstable fixed

points ∆E/ω0 = 0.

For a single RF system the separatrix can be calculated analytically. Since the local maximum

of the potential is at the point (π − φs, 0) one has

Hsep = U(π − φs) =
qV0

2π
[−2 cosφs + (π − 2φs) sinφs] . (2.47)

The phase-space trajectory is then:

Hsep =
hηω2

0

β2E0

1

2

(
∆E

ω0

)2

+ U(φ) (2.48)

or

∆E

ω0
(φ) =

√
2β2E0

hηω2
0

[Hsep − U(φ)]. (2.49)

The second point where particles are still bounded within the separatrix (denoted as φu in

Fig. 2.2), for which the energy deviation should also be zero (∆E/ω0 = 0) has to satisfy the

relation:

Hsep = U(φu) =
qV0

2π
[cosφu − cos(φs) + [φu − (φs)] sinφs] = U(π − φs) (2.50)

or

cosφu + φu sinφs = cos(π − φs) + (π − φs) sinφs. (2.51)

The difference |φu − (π − φs)| is called the bucket width.

The bucket height at phase φs can be evaluated from Eq. (2.49):

∆E

ω0
(φs) =

√
2β2E0

hηω2
0

[Hsep − U(φs)] =

√
2β2E0

hηω2
0

qV0

2π
[−2 cosφs + (π − 2φs) sinφs], (2.52)
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where Eq. (2.47) has been used and the fact that U(φs) = 0.

Using Eq. (2.49) and the symmetry around the φ axis one can write for the bucket area

A = 2

∫ φu

φl

√
2β2E0

hηω2
0

[Hsep − U(φ)]dφ, (2.53)

where φl = π − φs and φu can be found from Eq. (2.51).

In the special case of stationary bucket (φs = 0 or π), its area and height can be calculated

analytically. Above transition, φs = π and then φl = 0 and φu = 2π. Since in this case the

potential energy has the form

U(φ) =
qV0

2π
(1 + cosφ) (2.54)

and Hsep = 2(qV0/2π), one has for the bucket area

Â = 2

∫ 2π

0

√
2β2E0

hηω2
0

qV0

2π
(1− cosφ)dφ = 8

√
2β2E0qV0

hηω2
0π

, (2.55)

and for the bucket height

∆Ê

ω0
=

√
2β2E0qV0

hηω2
0π

. (2.56)

The symbol (ˆ) is used to denote the stationary case.

2.1.7 Emittance and bunch characteristics

In the previous section all quantities were calculated to the full extend of the stable area. In

practice, in order to avoid particle losses only a fraction of the stable area is usually occupied

by beam, enclosed by a single particle trajectory in the phase-space. This area is called single-

particle emittance. The trajectory of this particle can be derived from Eq. (2.49)

∆E

ω0
(φ) =

√
2β2E0

hηω2
0

[Hc − U(φ)], (2.57)

where Hsep was replaced by the new value of Hamiltonian Hc = U(φ1) with φ1 being a given

point where the trajectory crosses the horizontal axis. The second point φ2 were the orbit crosses

the φ axis (∆E/ω0 = 0), fulfills

U(φ2) = U(φ1), (2.58)

or equivalently for a single RF system

cosφ2 + φ2 sinφs = cosφ1 + φ1 sinφs. (2.59)

After identifying the two turning points, the area under a given trajectory can be calculated

from the integral

ε` = 2

∫ φ1

φ2

√
2β2E0

hηω2
0

[Hc − U(φ)]dφ, (2.60)
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where the index ` indicates the longitudinal single particle emittance. Finally, the energy spread

of the trajectory is determined by Eq. (2.57) evaluated at φ = φs and considering the fact that

U(φs) = 0

∆E

ω0
(φs) =

√
2β2E0

hηω2
0

Hc. (2.61)

The emittance of a bunch, consisting of many particles (usually in the range of 109 - 1015

particles), is a statistical quantity and the percentage of the particles contained in a limiting

contour depends strongly on their phase-space distribution. Therefore, the bunch emittance can

be defined in many different ways. One of the most common is the root mean square (RMS)

emittance. Another approach is to define the emittance through the single-particle emittance

of a phase-space trajectory, which contains a certain percentage of the total amount of particles

within the bunch (90%, 95% or 100%-full emittance).

Usually, in the SPS (and at CERN in general) the convention for the longitudinal emittance

used in practice corresponds to the single particle emittance for trajectory in which φ2 − φ1

corresponds to the 4σ bunch length. This bunch length (or the σ) is obtained by applying a

Gaussian fit to the acquired bunch profiles.

2.1.8 Synchrotron frequency distribution

As was discussed above, particles bounded within the bucket are performing oscillations around

the stable phase φs. The oscillation frequency in the longitudinal phase-space is called the

synchrotron frequency fs. It has been shown, for a single RF system, that for particles close to

the synchronous particle, fs is given by Eq. (2.36), which for convenience is repeated below

fs0 =
ωs0

2π
=

1

2π

√
hω2

0 |η cosφs| qV0

2πβ2E0
. (2.62)

In order to evaluate the time needed for one full synchrotron oscillation, we start from the

first equation of motion
dφ

dt
=
hηω2

0

β2E0

(
∆E

ω0

)
(2.63)

or

dt =
β2E0

hηω2
0

1

(∆E/ω0)
dφ. (2.64)

Assume now that an arbitrary particle in a single RF system follows in the phase-space a tra-

jectory with Hamiltonian Hc

Hc =
qV0

2π
[cosφ1 − cosφs + (φ1 − φs) sinφs] , (2.65)

where φ1 is the maximum phase deviations of the trajectory. Using Eq. (2.57) the synchrotron

oscillation period can be found from the following expression

Ts(Hc) = 2

∫ φ2

φ1

(
β2E0

hηω2
0

1

(∆E/ω0)

)
dφ =

√
2β2E0

hηω2
0

∫ φ2

φ1

(Hc − U(φ))−1/2 dφ, (2.66)
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with φ2 evaluated through the potential well function U(φ), so that U(φ2) = Hc. Substituting

Hc and U(φ) and using also the definition of ωs0 (2.62) one has

Ts(Hc) =

√
2| cosφs|
ωs0

∫ φ2

φ1

[cosφ1 − cosφ+ (φ1 − φ) sinφs]
−1/2 dφ. (2.67)

In the stationary case (φs = π) the synchrotron frequency period becomes:

Ts(∆φ1) =
1

ωs0

∫ ∆φ1

−∆φ1

d(∆φ)√
sin2(∆φ1/2)− sin2(∆φ/2)

, (2.68)

where the Hamiltonian of the trajectory has been replaced by the maximum phase deviation

(∆φ1 = φ1 − φs). The fact that in this case the trajectory is symmetric around φs is also taken

into account in the integration limits. Changing the integration variable from ∆φ to θ via the

substitution sin(∆φ/2) = sin(∆φ1/2) sin θ, it can be shown that

Ts(∆φ1) =
4K(sin(∆φ1/2))

ωs0
, (2.69)

where

K(x) =

∫ π

0

dθ√
1− x2 sin2 θ

, (2.70)

is the complete elliptic integral of the first kind. Therefore, the angular synchrotron frequency

ωs(∆φ1) of the particle on this phase-space trajectory is given by

ωs(∆φ1) =
πωs0

2K(sin(∆φ1/2))
. (2.71)

In the small amplitude approximation, using the power series expansion of K(x)

K(x) =
π

2

[
1 +

(1

2

)2
x2 + . . .

]
, (2.72)

the angular synchrotron frequency as a function of the maximum phase deviation can be ap-

proximated by

ωs(∆φ1) = ωs0(1− ∆φ2
1

16
). (2.73)

The synchrotron frequency as a function of the phase deviation for the case of a stationary

bucket is shown in Fig. 2.5. The approximated formula is also presented for comparison. Note

that the synchrotron frequency tends to zero when the particles approach the separatrix, since

there the focusing force becomes smaller.

As is shown in Fig. 2.5, there is a spread in the synchrotron frequencies among the particles

in the bunch, which is important for the Landau damping of the collective instabilities (see

Section 2.6). Depending on the bunch emittance, the synchrotron frequency spread of the

particles may vary a lot. Therefore, in the case of a large bunch (substantial fraction of the

bucket area) that is not matched to the bucket (for example the bunch is injected into the bucket

from another ring), this difference in frequencies leads to the so-called beam filamentation. This

process causes the mismatched bunch distribution to evolve into spirals, diluting the phase-space
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Figure 2.5: Synchrotron frequency versus the RF phase in the case of a single RF system and a

stationary bucket. The exact curve is plotted with a solid line, while the approximated one with

a dotted line.

Figure 2.6: Simulated particle distribution in the longitudinal phase space (left) and its line

density (right) after 1500 revolution periods (≈11 synchrotron periods). The fact that the

injected distribution (red trajectory on the left plot), was not matched to the RF bucket led

to strong beam filamentations. No intensity effects are included. Simulations carried out by a

beam dynamics code written in Matlab (see next Chapter).

density of the beam. An example of a mismatched bunch injection and the subsequent beam

filamentation is shown in Fig. 2.6.

The synchrotron frequency spread can be significantly increased by using a double RF system.

Analytical calculations of the synchrotron frequency distribution in BLM and for harmonic ratio
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n = 2 can be found in [50–52]. For example, in the case of a stationary bucket with V2/V1 = 1/2,

one can find in [51]

fs(r) =
πωs0

K(m2)

√
r/2, (2.74)

where r =
√
Hc/2 and Hc in this case can be obtained from Eq. (2.41) by Hc = U(φ1). The

parameter m2 of the elliptic integral is m2 = (r + 1)/2.

Figure 2.7: Synchrotron frequency versus the RF phase angle in the cases of BSM (black), BLM

(red) and single RF system (blue). Note the increase of the frequency spread for the double RF

system (in both modes). A stationary bucket is considered.

The increase of the synchrotron frequency spread in a double RF system with respect to

a single harmonic can be seen in Fig. 2.7 for the case of the RF voltage and harmonic ratios

V2/V1 = 0.5 and n = 2, respectively. In the BLM the spread on the frequencies of the beam is

maximum for a φ ≈ 2. For larger φ the region where the derivative of fs is zero appears. For

long enough bunches, this can lead to a decrease of the loss of Landau damping threshold (see

next Chapter).

2.1.9 Action-angle variables

The synchrotron frequency distribution inside the bunch can be also calculated by making use of

the so-called action-angle variables, meaning that the Hamiltonian of the motion is transformed

using a new set of canonical coordinates (ψ, J). In fact, this is a common approach when one is

interested in oscillatory motion characterized by an amplitude or a phase [47].

The action variable J is defined as

J =
1

2π

∮ (
∆E

ω0

)
dφ (2.75)
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gives the phase-space area enclosed by a particle trajectory divided by 2π, i.e. comparing with

Eq. (2.46)

J =
A

2π
. (2.76)

Therefore, for a conservative system (as the one discussed here), J is a constant of motion [47].

From the Hamilton equation
∂H(ψ, J)

∂ψ
= −dJ

dt
= 0, (2.77)

one can see that the Hamiltonian depends only on action, i.e. H(ψ, J) = H(J).

The angle variable ψ can be obtained from the second Hamilton equation for the new set of

variables
∂H(J)

∂J
=
dψ

dt
= ωs(J), (2.78)

where ωs(J) is the synchrotron frequency distribution of particles with action J .

2.2 Wake fields and impedances

So far it was assumed that the motion of the particles is determined by the external voltage

applied by the RF cavities, and no interaction of the beam with its environment was considered.

However, the beam consists of charged particles which interact with the surrounding equipment

(RF cavities, injection and extraction kickers, various beam pipes, beam instrumentation etc.)

generating electromagnetic fields [18]. These fields act back on the beam perturbing the particle

motion. In the following, we assume that the beam is moving with the speed of light (this is

practically the case for the high-energy proton beams in the SPS studied in this thesis) and

therefore causality dictates that there is no electromagnetic field in front of it. That is why also

these fields are known as wake fields [18].

Let us consider a particle with charge q moving with constant velocity v = βc inside the ring.

When this particle comes across a discontinuity (for example an RF cavity) or if the wall of the

beam pipe is not perfectly conducting, an electromagnetic field is left behind. If Ez(z, t) is the

longitudinal component of the electric field, a second (witness) particle, at a distance ∆z behind

the source particle, which is traveling with the same speed (see Fig. 2.8), will feel this field.

The induced voltage per unit charge seen by the trailing particle is defined as wake function

(see for example [1]) and is given by

W (∆z) =
1

q

∫
Ez(z + ∆z, t)dz, (2.79)

where the integration is taken over the length of the corresponding ring element.

Applying a Fourier transform over the variable τ = ∆z/(βc) one can get the longitudinal

coupling impedance (in Ohms) [18]

Z(ω) =
1

2π

∫
W (τ)eiωτdτ. (2.80)

It is a complex, Hermitian quantity with ReZ(ω) and ImZ(ω) being an even and odd function

of ω, respectively. Thus, the interaction of the beam with its surroundings can be described
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Figure 2.8: Schematic drawing of a witness particle at a distance ∆z behind some source particle

in a beam. Both particles are traveling along the direction z with velocity ~v.

equivalently either through the wake functions (time domain) or the impedances (frequency

domain). Depending on the problem, one or the other approach might be preferable.

For a bunch with a particle distribution in the phase-space F (φ,∆E/ω0), the line density

λ(φ) can be defined as

λ(φ) =

∫ ∞
−∞

F (φ,∆E/ω0)d
(

∆E/ω0

)
. (2.81)

Using the normalization ∫ π

−π
λ(φ)dφ = 1, (2.82)

the voltage induced by the bunch is given by [2]

Vind(τ) = Nq

∫ τ

−∞
λ(τ

′
)W (τ − τ ′)dτ ′ (2.83)

or in frequency domain

Vind(ω) = Nqλ(ω)Z(ω), (2.84)

where λ(ω) is the Fourier transform of λ(τ). Note that above the phase variable φ was replaced

by the time variable τ .

The wake fields can be categorized as short-range (single-bunch effect) or long-range (multi-

bunch effect) depending on the duration of their oscillations inside the different machine elements

after the bunch passage. Local interactions (or short-range) are caused mainly by the space

charge or the inductive wall impedance [2]. All particles of the beam have the same charge,

resulting in a repulsive force between them (space charge). In the ultra-relativistic case (as the

case studied in this thesis), space charge practically does not affect the bunch motion since the

electric field generated by each particle is perpendicular to their motion [18]. The influence of

the beam pipe walls on the beam behavior has a similar but opposite effect as the space charge.

In most accelerators, the walls have inductive impedance at low and medium frequencies and the

space charge acts like a capacitive impedance. Thus, the effects of space charge and inductive

impedance on the bunch can be partly or completely compensated. However, the effect of the
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inductive impedance does not vanish at high energies. It can be shown for a beam with radius

α circulating in a round beam pipe of radius b that the normalized space charge and inductive

wall impedance Z(ω)/n, with n = ω/ω0 is given by (see for example [2])

Z(ω)

n
= i

(
g0Z0

2βγ2
− ω0L

)
, (2.85)

where g0 = 1 + 2 ln b/α, Z0 is the free space impedance and L is the wall inductance. Therefore,

in this approximation the value of Z(ω)/n is independent of frequency and is purely imaginary.

In practice, Z(ω)/n remains almost constant up to the so-called cut-off frequencies [18]. Note

the 1/γ2 dependance of the space charge term meaning that at high energies its contribution

can become negligible.

Long-range wakes can be produced by the RF cavities or other cavity-like objects. The total

duration of the excited fields depends on the characteristics of the specific cavity. It can last

long enough to affect the trailing bunches or even the same bunch in the next revolution period.

The coupling impedance of a resonator can be written in the form

Z(ω) =
Rsh

1 + iQ
(
ω
ωr
− ωr

ω

) , (2.86)

where Rsh, ωr and Q are the shunt impedance, the resonant frequency and the quality factor,

respectively. Depending on Q this impedance can be either narrow-band (high Q, long-range

wake) or broad-band (low Q, short-range wake). Applying the inverse Fourier transform one can

show [18] that the wake field of a resonator is

W (τ) ∝W0 exp−ωrτ/2Q, (2.87)

and thus decays exponentially in time with a time constant 2Q/ωr. Therefore, for bunches

spaced by 25 ns (as in the LHC beam) and a resonator at frequency fr = ωr/(2π) = 1 GHz, if

Q > π the induced field of one bunch will affect the motion of the next bunch. Typically, for

the main resonators included in the SPS impedance model, Q is between 5 and 300 within a

frequency range of (0.2 - 1.6) GHz [53]. This is the reason why in beam measurements in the

SPS, a coupling between roughly 10 bunches in the batch is observed [41].

2.3 Vlasov equation

In the conservative deterministic system of the particles in the longitudinal phase-space, de-

scribed by the canonical conjugate variables (φ,∆E/ω0), the particle trajectories are completely

determined by their initial conditions. That means that two particles starting from the same

point will follow the same phase-space trajectories. For convenience, below we denote the phase-

space variable ∆E/ω0 by ε.

Due to the very large number of particles (1010 − 1015) in the accelerator, we are more

interested in the evolution of the phase-space distribution function F (φ, ε) and not in single

particle trajectories. The number of particles occupying some small phase-space area is dN =

F (φ, ε)dφdε and therefore the total number of particles in the bunch is given by the integral

N =

∫ ∫
F (φ, ε)dφdε. (2.88)
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The time evolution of the distribution function F (φ, ε) is described by the Liouville’s theo-

rem [54]. It asserts that the phase-space distribution function is constant along the trajectories

of the system and can be expressed by the equation

dF (φ, ε)

dt
= 0, (2.89)

or taking into account the dependance on φ and ε

∂F

∂t
+
∂F

∂φ
φ̇+

∂F

∂ε
ε̇ = 0. (2.90)

This expression is known as the Vlasov equation [54].

Using the Hamilton equations of motion (2.30) and (2.31) we can write Eq. (2.90) in the

form
∂F

∂t
+ [F,H] = 0, (2.91)

where the second part on the right hand side is the Poisson bracket [47] and H is the Hamiltonian

given by Eq. (2.29).

In the case of electron beams, however, the contribution of the synchrotron radiation to

damping and diffusion is much stronger and one needs to use the Fokker-Planck equation in-

stead [55].

2.4 Potential well distortion

The stationary state of the particle distribution and the way it is affected by interaction with

the machine impedance, are important for analysis of beam stability. Since the stationary

distribution function does not depend explicitly on time, we get from the Vlasov equation (2.91)

∂F

∂t
= 0⇒ [F,H] = 0, (2.92)

which means that in this case the distribution function is a function of the Hamiltonian only,

F = F (H).

At low intensities, when Vind � Vrf the potential well is mainly defined by the external RF

voltage (see Fig. 2.2). As the intensity increases, the effect of the wake fields becomes stronger,

leading to the distortion of the RF potential well. To illustrate this effect we will consider again

the case of a single RF system and a bunch with a length that is short compared to the RF

wavelength. Then the equation of motion for zero intensity is given by Eq. (2.35)

d2φ

dt2
+ ω2

s0φ = 0, (2.93)

where ωs0 can be found from Eq. (2.36). Note that for convenience, in the equation above φ was

used instead of ∆φ compared to Eq. (2.35).

Introducing now intensity effects through the wake function W (φ), and assuming a short

range wake, the previous equation is modified to

d2φ

dt2
+ ω2

s0φ =
ω2

s0Vind(φ)

Vrf cosφs
, (2.94)
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where Vind is given by Eq. (2.83) with φ = ωrfτ

Vind(φ) = Nq

∫ φ

−∞
λ(ϕ)W (φ− ϕ)dϕ. (2.95)

Here λ(φ) is the particle line density normalized according to Eq. (2.82). Expanding Vind into a

Taylor series up to the first order in φ (small angle approximation) we have

Vind(φ) = Vind(0) + V
′

ind(0)φ+ . . . , (2.96)

where

Vind(0) = Nq

∫ 0

−∞
λ(ϕ)W (−ϕ)dϕ (2.97)

and

V
′

ind(0) = Nqλ(0)W (0) +Nq

∫ 0

−∞
λ(ϕ)W

′
(−ϕ)dϕ. (2.98)

Thus in this approximation Eq. (2.94) becomes [4]

d2φ

dt2
+ ω2

s0φ =
ω2

s0

Vrf cosφs

(
Vind(0) + V

′
ind(0)φ

)
(2.99)

.

The first, constant term on the right hand side of Eq. (2.99) shifts the synchronous phase by

∆φs =
Nq

Vrf cosφs

∫ 0

−∞
λ(ϕ)W (−ϕ)dϕ =

Nq

Vrf cosφs

1

2π

∫ ∞
−∞

λ(ω)Z(ω)dω. (2.100)

Since λ(ω) is an even function, ImZ(ω) (odd function) does not contribute to the later integral

and only the real part of the impedance (even function) is responsible for the phase shift

∆φs =
Nq

2πVrf cosφs

∫ ∞
−∞

λ(ω)ReZ(ω)dω. (2.101)

The second term on the right hand side of Eq. (2.99) will cause a shift in the synchrotron

frequency given by

ω2
s − ω2

s0

ω2
s0

=
Nq

Vrf cosφs

∫ 0

−∞
λ(ϕ)W

′
(−ϕ)dϕ = − iNq

Vrf cosφs

1

2π

∫ ∞
−∞

ωλ(ω)Z(ω)dω. (2.102)

In this case ωλ(ω) is an odd function and therefore only the imaginary part of the impedance

will contribute to the integral and consequently to the synchrotron frequency shift:

ω2
s − ω2

s0

ω2
s0

=
Nq

Vrf cosφs

1

2π

∫ ∞
−∞

ωλ(ω)ImZ(ω)dω. (2.103)

Note that the last equation gives the synchrotron frequency shift of the particles inside

the bunch, oscillating with small amplitudes around the synchronous particle. However, this

is not the case for the rest of the particles, where the effect of the impedance is in general
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different, leading to a change of the synchrotron frequency distribution inside the bunch (see

next Chapters).

An analytical solution of Eq. (2.103) can be obtained when the wake function has the special

form [2]

W (φ) = Sδ
′
(φ). (2.104)

This wake function can be produced by a purely imaginary impedance with constant ImZ/n,

and S being

S = h2ω0
i(iImZ)

n
, (2.105)

Inserting this wake into Eq. (2.95) we have for the induced voltage

Vind(φ) = NqSλ
′
(φ). (2.106)

Assuming now a so-called parabolic line density (often a good approximation for protons) [4]

with φ̂0 denoting the half bunch length (in rad)

λ(φ) =
3

4φ̂0

[
1−

(
φ

φ̂0

)2
]

(2.107)

and following the same steps as before, the synchrotron frequency shift becomes

ω2
s − ω2

s0

ω2
s0

=
V
′

ind(0)

Vrf cosφs
= − 3Nq

2Vrf cosφs

S

(φ̂0)3
(2.108)

or in terms of the impedance, using Eq. (2.105),

ω2
s − ω2

s0

ω2
s0

=
3Nq

2Vrf cosφs

h2ω0

(φ̂0)3

ImZ

n
. (2.109)

From the latter equation we can see that above transition energy, where cosφs < 0 the

synchrotron frequency is reduced if the impedance is inductive (ImZ/n > 0) and increased if

it is capacitive (ImZ/n < 0). The reverse applies below transition. Similar dependance of the

synchrotron frequency spread on the beam and machine parameters can be obtained for other

distributions but different in absolute values [4].

The same is also true for the effective voltage that the particles see

Veff = Vrf +
3Nq

2 cosφs

h2ω0

(φ̂0)3

ImZ

n
. (2.110)

Above transition and for inductive impedance the effective voltage is smaller than the RF voltage

with a consequent reduction of the bucket height. In addition, considering a proton beam with

constant emittance, one would expect that the corresponding bunch length will be increased.

It can be shown [4] that due to the effect of potential well distortion the new bunch length φ̂

satisfies the relation (
φ̂

φ̂0

)2

=
ωs0

ωs

√
cosφs

cos(φs + ∆φs)
. (2.111)
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The last formula can be used to distinguish in measurements between the bunch lengthening due

to the potential well distortion from the one resulting from instability [4]. In particular, usually

one observes that by increasing the bunch current the bunch length is increasing with a certain

slope given by Eq. (2.111), until some threshold current, where the slope becomes stepper. This

point is considered to be the instability threshold.

2.5 Perturbation and coherent modes of oscillations

In addition to the potential well distortion, the induced voltage can force all or some of the

particles in the bunch to execute also a collective motion starting from a small perturbation. This

perturbation, under certain circumstances, can grow exponentially leading to beam instability.

Initially, the particle distribution can be presented as a sum of the stationary distribution F0(H)

and a small perturbation F1(φ, ε, t)

F (φ, ε, t) = F0(H) + F1(φ, ε, t). (2.112)

This perturbation will introduce an extra term in the voltage

V (φ) = V0(φ) + V 1
ind(φ, t), (2.113)

where V0 = Vext +V 0
ind is the full voltage in the stationary state and V 1

ind is the additional voltage

induced by F1(φ, ε, t)

V 1
ind(φ, t) = Nq

∫ ∞
−∞

λ1(φ
′
, t)W (φ− φ′)dφ′ = Nq

∫ ∞
−∞

∫ ∞
−∞

F1(φ
′
, ε
′
, t)W (φ− φ′)dφ′dε′ , (2.114)

where λ1(φ, t) is the line density perturbation given by

λ1(φ, t) =

∫ ∞
−∞

F1(φ, ε, t)dε.

The second equation of motion (2.26) becomes

ε̇ =
q

2π

[
V0(φ) + V 1

ind(φ, t)
]
. (2.115)

For the stationary case, the Vlasov equation (2.91) can be written in terms of the phase-space

variables
∂F0

∂φ
φ̇+

q

2π
V0(φ)

∂F0

∂ε
= 0. (2.116)

Introducing Eqs. (2.112) and (2.115) into the Vlasov equation (2.90) and keeping only linear

terms in the perturbation (quadratic terms in F1 and also products of F1V
1

ind are neglected), we

end-up with the linearized Vlasov equation [7]

∂F1

∂t
+
∂F1

∂φ
φ̇+

q

2π
V0
∂F1

∂ε
+

q

2π
V 1

ind(φ, t)
∂F0

∂ε
= 0, (2.117)

where Eq. (2.116) was also used.
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Transforming the phase-space coordinates (φ, ε) to the action-angle (ψ, J) we find

φ̇
∂

∂φ
+ ε̇

∂

∂ε
=

(
∂ψ

∂φ
φ̇+

∂ψ

∂ε
ε̇

)
∂

∂ψ
+

(
∂J

∂φ
φ̇+

∂J

∂ε
ε̇

)
∂

∂J

= ωs(J)
∂

∂ψ
, (2.118)

where the two parenthesis in the above formula were replaced using Eqs. (2.77) and (2.78) as

follows:

dJ

dt
= 0⇔ ∂J

∂φ
φ̇+

∂J

∂ε
ε̇ = 0

dψ

dt
= ω(J)⇔ ∂ψ

∂φ
φ̇+

∂ψ

∂ε
ε̇ = ωs(J). (2.119)

Remembering the definition of the potential energy in Eq (2.32), we have

∂U1
ind(φ, t)

∂φ
= − q

2π
V 1

ind(φ, t), (2.120)

while
∂F0

∂ε
=
dF0

dH

∂H

∂ε
=
dF0

dJ

dJ

dH

∂H

∂ε
=
dF0

dJ

φ̇

ω(J)
. (2.121)

Combining the last two equations with Eq (2.118), the linearized Vlasov equation becomes

∂F1

∂t
+ ωs(J)

∂F1

∂ψ
−
∂U1

ind(φ, t)

∂ψ

dF0

dJ
= 0. (2.122)

The solutions of this equation, for a particular stationary distribution function F0 and wake

function W , determine whether the system is stable or not.

In the case of very weak self-forces, compared to the external forces (U1
ind � Vrf), the last

term of Eq. (2.122) can be neglected. Following Sacherer [7], it can be shown that in this case

the solution of the Vlasov equation has the form

F1 = Rm(J)eimψe−iωt, (2.123)

with ω = mωs(J) and m being an integer which defines the azimuthal mode. This type of

solutions tells us that the azimuthal modes m, oscillate with frequencies mωs(J), defined by the

potential well distortion. A few azimuthal are shown in Fig. 2.9 [3]

Depending on the azimuthal number m, the modes are usually classified as dipole (m = 1),

quadrupole (m = 2), sextupole (m = 3), etc. For example, m = 1 in Fig. 2.9 corresponds to the

rigid-dipole mode oscillations which is usually observed when the bunch is injected with a phase

error. Mode m = 2 corresponds to the rigid-quadrupole oscillations when there is a mismatch

between the bunch shape in phase-space and the RF bucket and then the oscillations appears

to be twice as fast. In general these modes can be described by cosmφ with 2m nodes in the

longitudinal phase-space (top row of Fig. 2.9). The projection of the phase-space distribution

on the phase axis is the line density which has m nodes in the mth mode not including the ends

(bottom row of Fig. 2.9).
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Figure 2.9: Azimuthal synchrotron modes of a bunch in the longitudinal phase-space (top) and

the resulting line density (bottom) [3].

The function R(J) defines the radial dependance of the solutions. In fact, there are, for

example, an infinite number of dipole-type modes [7]. A non-rigid mode only appears if the

central part of the initially stationary distribution (first column in Fig. 2.9) is displaced from the

origin. Similarly there is an infinite number of quadrupole modes and of the higher multipole

modes.

For large number of particles the last term of Eq. (2.122) should be also taken into account.

The perturbed distribution can be expanded in the longitudinal phase-space as

F1 =
∑
m

Rm(J)eimψe−iωt, (2.124)

where ω is the collective frequency to be determined. In principal ω is a complex number, and

therefore, when Imω > 0 the beam is unstable.

Substituting Eq. (2.124) into Eq. (2.122), multiplying both sides by e−im
′
ψ and integrating

over ψ we get the following equation

[ω −mωs(J)]Rm(J) = −dF0

dJ

∑
m′

∫ ∞
0

dJ
′
Rm′ (J

′
)gmm′ (J, J

′
), (2.125)

where

gmm′ (J, J
′
) =

i

2π

∫ 2π

0
dψ

∫ 2π

0
dψ
′ ∂φ

∂ψ
W (φ− φ′)eim

′
ψ
′−imψ. (2.126)

In the derivation of Eq. (2.125) the following equation was used

∂U1
ind(φ)

∂ψ
= −

∫ ∞
0

dJ
′
∫ 2π

0
dψ
′ ∂φ

∂ψ
F1(ψ

′
, J
′
)W (φ− φ′)

= −
∫ ∞

0
dJ
′
∫ 2π

0
dψ
′ ∂φ

∂ψ

′∑
m

Rm′ (J
′
)eim

′
ψ
′
W (φ− φ′). (2.127)
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Finally we end up with the integral equation (2.125) [7], which is an eigen-value problem for

Rm(J). Given a longitudinal wake W (φ) and an unperturbed distribution F0(J), the coherent

frequencies of excitation ω can be found. Unfortunately, finding analytic solutions is possible only

for some particular functions W (φ) and F0(J), and becomes difficult in general case, especially

with a spread in the incoherent synchrotron frequency ωs(J).

In this thesis, solutions of the linearized Vlasov equation were found in a semi-analytical

way following the approach from [12,13], where the potential well distortion and the incoherent

synchrotron frequency distribution were taken into account. We also used the approximation

that the perturbation is small ω−mωs(J)� ωs(J), implying that the coupling between different

azimuthal modes can be neglected. This simplifies the Vlasov equation from a system of infinite

equations to one involving only one azimuthal mode m.

2.6 Landau damping

Landau damping was initially formulated by Landau [8] in plasma physics, as a natural stabi-

lization mechanism against collective instabilities. Today, this phenomenon is of common-place

occurrence in the physics of charged particle beams in storage rings, in the context of beam

stability against the collective modes. The first time that Landau damping was introduced in

beam physics was by Neil and Sessler [56] and since then many studies (see for example [2,9,57])

revealed its great importance for the daily operation of the circular accelerators.

Its application in the accelerators is based on the fact that the beam particles behave as an

ensemble of oscillators with (in principle) a spread in their natural frequencies. For a bunched

beam in the longitudinal plane, Landau damping proceeds through the spread in synchrotron

frequency. This spread is responsible of stabilizing the beam which would otherwise be unstable

due to the various perturbations.

Let us assume that an ensemble of oscillators (as is the bunch) with frequency spread ∆ω

is subjected to a monochromatic excitation with frequency Ω (f ∼ e−iΩt) which lies within the

frequency band ∆ω. The equation describing the displacement y of a single particle is given by

ÿ + ω2ẏ = Ae−iΩt, (2.128)

where the overdots represent derivatives with respect to time and A denotes the amplitude of

the force. The solution of the above equation proportional to the driving force can be written as

y(t) =
A

ω2 − Ω2
e−iΩt. (2.129)

For a large number of particles the displacement of the center of mass is

< y(t) >= A

∫ ∞
∞

dω
ρ(ω)

ω2 − Ω2
e−iΩt, (2.130)

where the ρ(ω) is the distribution of the resonance frequencies of the particles normalized ac-

cording to ∫ ∞
∞

ρ(ω)dω = 1. (2.131)
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Following a treatment by [3] it can be shown that in the approximation when ρ(ω) in narrow

around a center frequency ω, the oscillation amplitude of a component corresponding to frequency

ω is

Amplitude(ω) =
A

ω

sin(ω − Ω)t/2

ω − Ω
. (2.132)

This means that all particles having frequency ω are excited at t = 0, increase to the maximum

amplitude at t ≈ π/(ω − Ω) which is damped down to zero at t = 2π/(ω − Ω). Thus, energy

is gained but is given back to the system. For ω closer to Ω, the response amplitude rises to a

larger value and the energy is given back to the system at a later time. For those particles that

have exactly the frequency Ω, the amplitude grows linearly with time and the energy keeps on

growing. This process of transferring energy to the few particles having frequencies very close

to Ω is called Landau damping. An illustration is shown in Fig. 2.10, where the red curve in the

bottom plot shows a particle having exactly the same frequency as Ω with oscillation amplitude

growing linearly, while the other curves show particles with frequencies different from Ω and their

oscillations are decaying with time. The decay time and maximum amplitude depend inversely

on the frequency difference ∆ω = ω − Ω. In other words, particles with ω far away from Ω get

excited, but the energy is returned to those particles having ω close to Ω, which are absorbing

energy.

Figure 2.10: Oscillator’s response to a sinusoidal driving force f(t) = A cos Ωt (top plot). The

bottom plot shows the response of oscillators with different frequencies compared to Ω.

The energy of the system of the particles on the other hand, is proportional to[
Amplitude(ω)

]2
=

sin2(ω − Ω)t/2

ω − Ω
. (2.133)

One can see that as time progresses the amplitude square becomes larger and larger (∝ t2), while
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its width shrinks (∆ω ∝ 1/t). This confirms that energy is being transferred by the particles

having frequencies far away from Ω to particles having frequencies closer to Ω. Finally, as t→∞,

the linear increase in the energy of the system of the particles is concentrated at those particles

having exactly the same frequency as Ω. However, it can be shown that the centroid motion of

the ensemble of the particles, < y >, will be still damped even when a few particles have very

large and still growing amplitudes.

The asymptotic behavior mentioned before applies if one waits for a time longer than 1/∆ω.

For t < 1/∆ω, the beam response is confounded by transient terms. Furthermore, the resistive

term is proportional to the particle distribution ρ(Ω). If the spectrum is such that there are

no particles near frequency Ω to continuously absorb energy, Landau damping will cease and a

beating phenomenon takes over. Since a beam consists of a finite number of particles, Landau

damping will cease when t is larger than 1/δω, where δω is the frequency spacing between two

nearest particles. The range of time for Landau damping to be effective is therefore

1/δω >> t >> 1/∆ω. (2.134)

With N particles in the beam, one might have δω ≈ ∆ω/N . Taking N = 1011 and ∆ω = 103 s−1

for example, the time is limited to the range between 1 ms and 108 s.





Chapter 3

Loss of Landau damping in a double

RF system

In this Chapter the thresholds of the loss of Landau damping due to the presence of reactive

impedance are determined in a single and double harmonic RF systems, both from calculations

and particle simulations. It is shown that in the bunch lengthening mode (BLM), Landau

damping is effective only below some critical value of longitudinal emittance. Above this value

bunches become more unstable than even in a single RF system. A phase shift of more than

15 degrees between the two RF components is proven able to stabilize the bunch. These results

can explain now observations during the pp̄ operation of the SPS. The critical regions of the

bunch size appear also in the case of bunch shortening mode (BSM) for high harmonic ratio and

sufficiently large voltage ratio between the two RF systems.

3.1 Introduction

The BLM was used in the SPS during its operation as a pp̄ collider, when a 100 MHz RF system

was installed in addition to the existing 200 MHz RF system [14]. At that time, transverse

space charge de-tuning effects together with microwave instability were the main bunch intensity

limitations. By operating in BLM it was possible to significantly increase the bunch intensity.

The bunches were injected into the SPS with a nominal longitudinal emittance of ε` =

0.65 eVs (2σ). However, the synchrotron frequency spread introduced by the second harmonic

RF component was barely sufficient for stability and any injection errors were un-damped with

bunch oscillating along the injection plateau (26 GeV/c). Furthermore, for larger emittances

instability was occurring in the tails of the bunch, and the feedback loops were not able to damp

it. To counteract this instability a phase shift between the 2 RF systems was introduced [15].

Previous studies of beam stability in a double RF system already pointed out that in the

BLM Landau damping can be lost for particles in the region where the synchrotron frequency

distribution has its maximum (ω
′
s(J) = 0) outside the bunch center [51,58]. This region was also

creating problems in the beam control of the CERN PS Booster due to the large coherent signal

in a double harmonic RF system [59]. Indeed, large amplitude coherent response was measured

in beam transfer function (BTF) in the BLM at frequencies corresponding to ω
′
s(J) = 0 [60].

Recently, an analytical approach made it possible to find this threshold through the onset of a

discrete Van Kampen mode (coherent mode without Landau damping) by solving numerically

the linearized Vlasov equation [12,13].

The latter method is used in this thesis, together with particle simulations for inductive

impedance, to explain the observations during the pp̄ operation. Only the dipole modes (m = 1)

are addressed since they are expected to have the lowest threshold and no coupling between
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different azimuthal modes is considered. The analysis is also expanded to the cases of the BSM

and a single RF to get a better understanding of the different operating modes. Moreover, the

situation of a higher harmonic ratio between the two RF systems is also considered, which in

fact corresponds to the current situation in the SPS.

3.2 Method of calculations

Below the semi-analytical calculations are done in two steps. First, a steady state solution needs

to be found for the specified conditions (RF voltages, emittance εl, intensity and impedance)

and then the linearized Vlasov equation can be solved. These parts are described in more details

in the following sections.

3.2.1 Steady state solution

In order to find the steady state solution, we need to deal with the potential-well distortion. As

mentioned in section 2.2, the induced voltage depends on the line density λ(φ) and therefore a

self-consistent solution needs to be found. This can be done by solving the following system of

equations (see ref. [12]):

U(φ) = Urf + Uind = Urf −
q

2π

∫ φ

−∞
dφ
′
∫ φ

′

−∞
dφ
′′
λ(φ

′′
)W (φ

′ − φ′′) ≡ URHS[λ],

J(H) =
ε`
2π

=
A

π

∫ φ1

φ2

√
[H − U(φ)]dφ ≡ JRHS[U ], (3.1)

λ(φ) = 2

∫ ε1

0
F0 (J (H)) dε = 2A

∫ Hmax

U(φ)

F0 (J (H))√
2 [H − U(φ)]

dH ≡ λRHS[J, U ],

where A =
√

2β2E0/hηω2
0 and use has been made of Eqs. (2.41), (2.32), (2.83) , (2.75), (2.57)

and (2.60). In the last of the above equations Hmax corresponds to the Hamiltonian of the

particles placed at the very edge of the pre-defined bunch emittance. The phase-space density as

a function of action F0(J) and the wake function W (φ) are required as an input. In order to solve

this system, an iteration procedure can be applied with the initial condition U0(φ) = Urf(φ):

Un(φ) = Un−1(φ)− ε(Un−1(φ)− URHS[λn−1]),

Jn(H) = JRHS[Un], (3.2)

λn(φ) = λRHS[Jn, Un].

If the solution exists, the process converges to it provided the convergence parameter ε > 0 is

sufficiently small. The problem of existence and uniqueness of that solution is also considered

and discussed in [12]. For the case of the inductive impedance and for the intensities considered

here the algorithm was always converging.
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3.2.2 Stability analysis

Taking into account the potential-well distortion, stability can be determined by solving the lin-

earized Vlasov equation for a small perturbation F1(J, ψ, t) to F0(J) as mentioned in section 2.5.

Using the Oide-Yokoya expansion [61] of the perturbation F1(J, ψ, t) in terms of the orthogonal

basis we have

F1(J, ψ, t) = e−iωt
∞∑

m=−∞
[fm(J) cos(mψ) + gm(J) sin(mψ)]. (3.3)

Substituting Eq. (3.3) into the Vlasov equation (2.122) after multiplying both sides by cos(mψ)

or sin(mψ) and integrating over ψ we get the following system of equations:

iωfm(J) = mωs(J)gm(J),

iωgm(J) = −mωs(J)fm(J)− 1

π

dF0(J)

dJ

∫ 2π

0
dψ sin(mψ)

∂U1
ind(φ, t)

∂ψ
. (3.4)

In the above equations we use the fact that φ(ψ) = φ(2π − ψ) and therefore by making the

substitution ψ = 2π − ψ one can show that∫ 2π

0
dψ cos(mψ)

∂U1
ind(φ, t)

∂ψ
= 0, (3.5)

since the integrand is an odd function. Combining the two equations (3.4) and integrating by

part the integral we get

[
ω2 −m2ω2

s(J)
]
fm(J) = −m

2ωs(J)

π

dF0(J)

dJ

∫ 2π

0
dψ cos(mψ)U1

ind(φ, t), (3.6)

where

U1
ind(φ) = −Nq

2

2π

∫ 2π

0
dψ′

∫ ∞
0

dJ ′F1(ψ′, J ′)S
[
φ(ψ, J)− φ′(ψ′, J ′)

]
= −Nq

2

2π

∫ 2π

0
dψ′

∫ ∞
0

dJ ′S
[
φ(ψ, J)− φ′(ψ′, J ′)

] ∞∑
m′=−∞

fm′(J
′) cos(m′ψ′) (3.7)

and

S(φ) =

∫ φ

−∞
dφ′W (φ′). (3.8)

Again for the same reason as before∫ 2π

0
dψ′S

[
φ(ψ, J)− φ′(ψ′, J ′)

]
sin(m′ψ′) = 0. (3.9)

Inserting Eq. (3.7) into Eq. (3.6) we finally obtain the following integral equation

[
ω2 −m2ω2

s(J)
]
fm(J) = −2m2ωs(J)

dF0(J)

dJ

∞∑
m′=−∞

∫ ∞
0

dJ ′Vmm′(J, J
′)fm′(J

′), (3.10)
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where

Vmm′(J, J
′) = −Nq

2

π2

∫ π

0
dψ

∫ π

0
dψ′ cos(mψ) cos(m′ψ′) S

[
φ(ψ, J)− φ′(ψ′, J ′)

]
(3.11)

Approximating the integral in Eq. (3.10) by a sum, one ends up with a standard eigenvalue

problem of linear algebra. This equation can be solved numerically to get the spectrum of the

Van Kampen modes as was done in [12,13]. after some modifications to take into account cases

of non-symmetric RF potentials (double RF with a phase shift).

Analyzing the dispersion integral obtained from the Vlasov equation for infinite plasma, Van

Kampen [62, 63] has found that it consists of a continuous and a discrete part. The continuous

spectrum (Van Kampen modes) is described by singular eigen-functions coinciding with the

incoherent synchrotron frequencies inside the bunch ωs(J). Landau damping results then from

phase mixing of the Van Kampen modes which are real and do not represent collective motion

of the particles. At low intensities, when the interaction term is negligible (U1
ind(φ) ≈ 0), all the

modes belong to the incoherent spectrum, ω = mωs(J), see Eq. (2.123). On the contrary, above

a certain intensity Nth the discrete modes can emerge. These modes are described by regular

functions and by definition they lie outside ωs(J), implying that Landau damping is lost [12,13].

Figure 3.1 presents an example of the eigen-modes (red points) obtained from Eq. (3.10) for

the rigid dipole mode (m = 1) and a double RF system in the BLM. One can clearly notice the

discrete mode emerging above the incoherent spectrum (blue curve) meaning that for that mode

Landau damping is lost.

Figure 3.1: Example of the eigen-modes (red points) obtained from Eq. (3.6) for m = 1 and

a double RF system in the BLM. The red point above ωs(J) (blue curve) corresponds to a

discrete mode which shows that for the emittance of 0.65 eVs Landau damping is lost. The

bunch intensity was 7×1010 p.
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3.3 Macroparticle simulations

In order to verify the loss of Landau damping obtained by the semi-analytical approach described

in section 3.2, a multi-particle tracking code was created in Matlab to simulate the effect. The

concept of macroparticles was used to represent a bunch. Each macroparticle i is tracked in

the phase space (φi,∆Ei) of the RF phase (defined by the main RF system) and the energy

coordinate. The longitudinal equations of motion Eqs. (2.30), (2.31) were used including the

intensity effects. The code was developed for protons and based on the SPS parameters, so

radiation damping and quantum fluctuation were not considered. The minimum values of φi
correspond to the head of the bunch and the maximum to the tail, while ∆Ei ≡ ui is the energy

difference between the macroparticle i and the synchronous particle.

Each turn, the induced voltage is calculated in frequency domain Vind(ω) from the spectrum

λ(ω) of the line density (projection of macroparticles onto the ∆E axis) according to Eq. (2.84).

Standard smoothing algorithms were also applied to λ(φ) in order to get rid of the numerical

high frequency noise due to a limited number of particles. Then Vind(φ) is obtained from the

inverse Fourier transform of Vind(ω) and added to the external RF voltage Vrf(φ) to get the total

effective voltage Vtot(φ) seen by the particles. The advance of each macroparticle after one turn

at nth turn is given by the following equations:

ui,n+1 = ui,n + Vtot(φi)

φi,n+1 = φi,n−1 +
2πhη

β2E0
ui,n+1, (3.12)

with h being the harmonic number of the main RF system.

Numerical simulations presented here were performed using 5 × 105 macroparticles. The

initial matched distribution was created iteratively (as in the semi-analytical calculations) and

placed into the RF bucket with a small phase error of φ0 = 3◦, enough to excite the rigid dipole

motion of the bunch. Tracking the particles for ∼300 synchrotron periods Ts was adequate to

study the effect of Landau damping. Figure 3.2 presents examples of the rms bunch position

evolution for the cases below and above the threshold.

The criterion used here to estimate the threshold is based on the relative change of the

dipole oscillation amplitude φmax (envelope of the oscillations in Fig. 3.2), averaged after 100 Ts
(transients). The ratio φmax/φ0 is plotted in Fig. 3.3 for different emittances for the BLM. The

threshold was selected to be 80% (horizontal line) and although being a rather random choice

it affects only the absolute values and not the physical interpretation. In particular, as can be

seen in Fig. 3.3, choosing the threshold to be at another level, for example at 50%, it would still

give the same relative result for the different longitudinal emittances.

A comparison of both the analytical approach and the simulations with another tracking

code, for different particle distributions in the case of single RF system and inductive impedance,

showed a very good agreement [64].
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Figure 3.2: The rms bunch position versus number of synchrotron periods for bunch intensity

below the threshold of loss of Landau damping (left) and above it (right) in a double RF system

in BLM. The voltage ratio between the two RF systems at V1/V2 = 2.

Figure 3.3: Relative change of the averaged dipole oscillation amplitude versus bunch intensity

for different emittances in BLM, φ0 = 3◦. The voltage ratio between the two RF systems at

V1/V2 = 2.
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3.4 Results for a second harmonic RF system (n=2)

As mentioned above, both calculations and simulations were applied for the SPS during the pp̄

operation. The 2 RF systems were set up in the BLM with voltage amplitudes V100 = 0.6 MV

and V200 = 0.3 MV, while for the phase-space density the distribution F (J) = (Jlim − J)2 [14]

was used, close to the one fitted to measurements. The intensity thresholds of the loss of Landau

damping were defined for different longitudinal emittances. These thresholds Nth, found for

the BLM by calculations from the onset of the discrete Van Kampen mode and in simulations

from the crossing of the horizontal line in Fig. 3.3 with the curves for different emittance, are

presented in Fig. 3.4 (red color).

Figure 3.4: Loss of Landau damping thresholds versus bunch emittance for a double RF (BLM -

red, BSM - blue) and a single RF (black) systems found from calculations (dots) and simulations

(diamonds). Application for the SPS during the pp̄ operation at injection energy (26 GeV/c).

Voltage ratio between the two RF systems at V1/V2 = 2.

Both curves, being in a very good agreement, show that Nth increases with emittance ε` until

some value of ∼0.5 eVs. After this point further increase in ε` leads to threshold reduction. In

fact, an inspection of the incoherent synchrotron frequency distribution, see Fig. 3.5 (red curve),

shows that the flat region where ω
′
s(J) = 0 (vertical line) corresponds to the critical emittance

εcr = 0.65 eVs.

This result can actually explain the un-damped oscillations at the injection plateau during

the pp̄ operation, since for the nominal (0.65 eVs) or larger emittances the threshold for the loss

of Landau damping is very low. Although the spread of the ωs(J) inside the bunch is still big,

the lack of stability in this case is determined by the non-monotonic behavior of the ωs(J) in
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Figure 3.5: Relative synchrotron frequency distribution for a double RF (BLM - red, BSM -

blue) and a single RF (black) systems. No intensity effects are included. The vertical line at

0.65 eVs indicates the maximum of the BLM curve. Similar conditions as in Fig. 3.4.

the tails of the bunch.

The effect of the phase shift (∆φ) between the 2 RF systems around εcr was also studied.

The calculated Nth is presented in Fig. 3.6, where one can see that although for small shifts the

threshold goes down, after around 15◦ a dramatic increase takes place, explaining again the cure

of the instability which was found empirically during the pp̄ operation. However, in this case the

flatness of the bunches is lost since the potential well is not anymore symmetric (see Fig. 3.7).

For completeness, the same studies were also applied for a single RF and a double RF in

the BSM. The results are presented in Fig. 3.4, where one can see that for both of them Nth

keeps increasing with the emittance, as was expected from the monotonic behavior of their ωs(J)

distributions shown in Fig. 3.5. For bunches with ε` < 0.2 eVs, the BLM is the preferable mode

at operation, while after this value the threshold of the BSM is rapidly increasing, making this

mode a better choice for stability. However, it is clear from Fig. 3.8 that the BSM is unacceptable

above 0.6 eVs due to lack of longitudinal acceptance, which would lead to significant particle

losses. For ε` > 0.6 eVs a single RF seems to be the best option.

Similar results were obtained in ref [12] for a resistive wake where again the threshold for

loss of Landau damping in BLM is the highest for small emittances but for higher emittances

drops first below the threshold in BSM and then below the single RF case.

For a space charge wake above transition the threshold, found both from simulations and

calculations, is significantly increasing, which is in good agreement with theoretical predictions

in [16]. In that case, the induced voltage enhances the focusing of the particles, leading to an

increase of the incoherent and coherent synchrotron frequencies, see Eq. (2.109). In the BLM

the region of ω
′
s(J) = 0 is still present. However, the frequency shift of the coherent mode δωc

is less than the incoherent one ∆ωs and hence the coherent motion is still Landau damped.
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Figure 3.6: Loss of Landau damping thresholds versus the phase shift between the 2 RF systems

found from calculations. Similar conditions as in Fig. 3.4.

Figure 3.7: Potential well (blue curve) and line density (red curve) in the case of BLM with

ε` = 0.65 eVs and a phase shift of −20◦. Bunch intensity of 1×1011.
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Figure 3.8: Bucket area versus emittance for a double RF (BLM - red, BSM - blue) and a single

RF (black) in the cases corresponding to the Nth in Fig. 3.4. The black straight line is the limit

where ε` is equal to the bucket area.

3.5 Results for higher harmonic RF systems (n>2)

In the SPS the 4th harmonic RF system (800 MHz) is installed and used in operation for the LHC

beams. For higher harmonic ratios n = h2/h1 a region where ω
′
s(J) = 0 appears again in the

BLM (Fig. 3.9). Note that in the following results, in order to ensure the maximum synchrotron

frequency spread inside the bunch, the ratio between the two RF voltages is assumed to be

V1/V2 = n.

As Fig. 3.9 shows, the second RF system with a high harmonic ratio provides larger syn-

chrotron frequency spread. However, the maximum bunch length is more restricted in operation

due to the fact that the regions where Landau damping is lost are in this case closer to the center

of the bunch. From this point of view the second harmonic RF system has the largest useful

parameter space.

Furthermore, unlike in the case of the second harmonic with n =2, for n =3, 4 the regions

where ω
′
s(J) = 0 appear also in the BSM (Fig. 3.10). As mentioned above, particularly inter-

esting, for the SPS today, is the case of the 4th harmonic in the BSM (Fig. 3.10, red curve).

Indeed, simulations for this case and inductive impedance show that the threshold of the loss of

Landau damping is sensitive even to the local extremums of the synchrotron frequency distribu-

tion. These thresholds versus the longitudinal emittance, found from simulations with the same

method as before, are presented in Fig. 3.11. Note that for this shape of the synchrotron fre-

quency distribution the analytical calculations predict a much higher threshold. That is justified

by the fact that the emerge of the discrete mode, above the incoherent spectrum, corresponds to

the center of the bunch (J = 0), where we have the global maximum of ωs(J). Therefore, much



3.5. Results for higher harmonic RF systems (n>2) 57

Figure 3.9: Relative synchrotron frequency distribution inside the bunch for different harmonic

ratios n = h2/h1 and voltage ratio V1/V2 = n for the BLM. Example for the 100 MHz voltage

V1 = 0.6 MV, 26 GeV/c.

Figure 3.10: Relative synchrotron frequency distribution inside the bunch for different harmonic

ratios n = h2/h1 and voltage ratio V1/V2 = n for the BSM. Example for the 100 MHz voltage

V1 = 0.6 MV, 26 GeV/c.
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higher number of particles is needed.

Figure 3.11: Loss of Landau damping thresholds versus bunch emittance for h2/h1 = 4 in BSM

found from simulations.

One can see from Fig. 3.11 that for small bunches (ε` < 0.3 eVs), where ωs(J) is monotonically

decreasing, the threshold is growing with the emittance. That is not anymore true above the

first minimum in ωs(J) when we observe a significantly lower threshold. However, by increasing

further the bunch emittance the situation is improving once again. This can be attributed to the

further increase of the spread ∆ωs of the incoherent synchrotron frequencies inside the bunch

(see Fig. 3.10, red curve).

Today the SPS is used as the LHC injector, where the beam is captured and accelerated with

the 200 MHz RF system. In addition the 4th harmonic RF system (800 MHz) is used in the

BSM to stabilize the beam [60]. Since the nominal values of the injected emittances are around

0.35 eVs the bunch size is bigger than εcr for the BLM (∼0.15 eVs) and thus in this mode, and

for purely inductive impedance, no Landau damping is present. As mentioned before, the same

is also true for the case of the BSM when the voltage ratio between the two RF components is

high (V1/V2 = 4). The detailed studies for the current parameters of the SPS RF system with a

more realistic model of the longitudinal impedance are presented in the next Chapter.

3.6 Conclusions

Many accelerators in our days are operating with a double RF system in the BLM in order

to decrease the peak line density and to increase the synchrotron frequency spread inside the

bunch, making Landau damping more effective. However, it was proven here, both by simulations

and calculations, that for the inductive impedance there is a critical value of the longitudinal
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emittance, above which the Landau damping threshold decreases rapidly to zero. A phase shift

between the two RF components of more than 15◦ in the BLM can help to increase the threshold,

but the flatness of the bunches is lost. These results are able to explain observations during the

pp̄ operation of the SPS.

For a capacitive impedance (or space charge above transition) the thresholds are either dra-

matically increased or could not be found, which is in agreement with the theoretical prediction

in [16], where it was proved that for the space charge impedance above transition, a bunch steady

state is always stable.

The analysis was applied for different harmonic ratios h2/h1 = n between the two RF systems,

by keeping the voltage ratio V1/V2 = n. It was shown that although higher n provides larger

synchrotron frequency spread, the critical region moves closer to the center of the bunch, which

is limiting the bunch length (or the longitudinal emittance for fixed voltage V1) that can be used

in operation. In addition, in the case of the BSM with n ≥ 3 the regions where ω
′
s(J) = 0 are

also appearing as local extrema. Consequently, for emittances larger than those regions, the

threshold of the loss of Landau damping is significantly decreased. These results agree very well

with the recent measurements in the SPS using the 4th harmonic RF and this will be presented

in the next Chapter.





Chapter 4

Single bunch instabilities in the

CERN SPS double RF system

A fourth harmonic RF system is used in the SPS as a Landau cavity, in order to stabilize the high

intensity LHC proton beam against the longitudinal instabilities. Numerous studies proved that

operation of the two RF systems in bunch shortening mode through the whole cycle is necessary

to provide a good quality beam at extraction to the LHC. Furthermore, it was shown that the

choice of RF parameters such as voltage amplitude ratio and relative phase, is critical for the

beam stability. In this Chapter the single bunch measurements performed in single and double

RF systems with various RF settings are presented and compared with results of macroparticle

simulations for the SPS impedance model. It will be shown that the theoretical approach of the

previous Chapter is also applicable in this, more realistic, situation.

4.1 Introduction

In the SPS, operation of the fourth harmonic RF system is required through the whole cycle,

together with the main 200 MHz RF system, to deliver a good quality beam for the LHC. Indeed,

in a single RF system and the Q26 optics, the LHC beam (one batch of 36 bunches spaced by

50 ns with injected longitudinal emittances of 0.35 eVs) becomes longitudinally unstable during

acceleration already at 2 × 1010 ppb (eight times less than the nominal intensity) [41]. Note

that this instability can not be damped by the present RF feedback, feed-forward (around the

200 MHz RF cavities) and longitudinal damper (low modes) used in operation.

The necessity of the double RF system operation for the beam stability in the SPS and

the effect the relative phase (φ800) has on it, has initiated different studies both for multi and

single bunch beams [10,65–67]. All these studies had consistently shown that the best operating

mode of the 4th harmonic RF system is the BSM, whereas in the BLM it is not possible to

produce a stable beam above a relatively low intensity threshold. Moreover, in agreement with

the results of the previous Chapter, instability was also measured in the BSM when the voltage

ratio between the two RF systems was equal to the harmonic ratio, i.e Vr = V800/V200 = 1/4.

In the previous Chapter we showed that the phase shift between the two RF systems, for

a 2nd harmonic RF in the BLM, increases significantly the loss of Landau damping threshold

and therefore should lead to the damping of the bunch oscillations at the injection plateau

(26 GeV/c). In this Chapter we investigate the effect of φ800 on the bunch stability, in the

case of the 4th harmonic RF, also at the injection energy. In order to enhance the effect of the

800 MHz component, we selected rather a large value of Vr = 0.25. Scanning φ800 for this voltage

ratio, different stability regions were obtained as compared to the BSM phase that is being used
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in operation (with Vr ' 0.1). Numerical simulations, performed using the code ESME [17] for

the impedance model of the SPS are compared with the measurements.

4.2 Phase calibration of a double RF system

In a double RF system the total external voltage seen by the particles has the form

V = V200 sinφ+ V800 sin(4φ+ φ800), (4.1)

where V200 and V800 are the voltage amplitudes of the 200 MHz and 800 MHz RF components

and φ800 is the relative phase. In operation though, φ800 is defined up to some unknown phase

offset φ0,

φ800 = φ0 + ∆φ800, (4.2)

which can be found from a calibration, performed at the beginning of each beam run. This

phase calibration is based on measuring the symmetry of the longitudinal profile of a single low

intensity bunch (∼ 1×1010 p) as a function of the phase φ800, at the injection energy (26 GeV/c).

Indeed, in the case of a stationary bunch, the potential well (found from Eq. (2.32)) is

symmetric both in the BSM and the BLM (above transition φ800 = π and φ800 = 0, respectively).

However, by introducing a phase shift between the 2 RF systems, the potential well loses its

symmetry and so does the bunch line density. This can be seen in Fig. 4.1 where the cases

of φ800 = 180◦ and φ800 = 180◦ − 50◦ in the BSM are presented. In addition, one can see in

Figure 4.1: Potential well (blue curve) and line density (red curve) in the case of the BSM with a

4th harmonic RF system for φ800 = 180◦ (left) and φ800 = 180◦− 50◦ (right) No intensity effects

were included.

the right plot of Fig. 4.1 that the synchronous phase φs, which can be obtained by solving the

following equation for φ

V200 sinφ+ V800 sin(4φ+ φ800) = 0, (4.3)

is not anymore 180◦ (above transition energy), but an extra phase of ∼ 6◦ was added. The shift

of φs versus φ800, calculated from the above equation and for different voltage ratios of the two
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RF systems, is depicted in Fig. 4.2. The points where the curves are crossing zero designate the

BSM or BLM. From this plot one can also see that the region of the allowed phase shift is much

wider in the BSM than in the BLM, where even small variations in φ800 cause a big change in

φs. That tight requirements on the accuracy of φ800 is in fact the second main restriction of

operation in the BLM1 which, due to strong beam loading in both the main and high harmonic

RF systems, is very difficult to achieve in the SPS (see next Chapter).

Figure 4.2: Calculated shift of the synchronous phase versus phase φ800 for different RF voltage

ratios Vr. The region of the BLM is decreasing with the voltage ratio increase.

Similar behavior due to variation of the φ800 is expected for the asymmetry of the bunch.

Therefore, by scanning the phase φ800 and measuring how much the bunch is tilted it is possible

to estimate the points that correspond to the BSM and the BLM. The algorithm used to estimate

the tilt is based on the full widths of the average bunch profile (out of 100 consecutive turns)

at 95% and 30% of the maximum (horizontal black lines in Fig. 4.3). After finding the latter,

the tilt is calculated from the difference between the middle points of the two lines (red points

in Fig. 4.3).

Figure 4.4 presents the results obtained in measurements after a full scan of ∆φ800, see

Eq. (4.2). Note that in this plot the phase on the horizontal axis is defined in degrees at the

200 MHz. In addition, in order to minimize the intensity effect on the bunch shape we used

bunches with a relatively low intensity (∼ 1×1010 p). The voltage ratio between the 2 RF systems

was Vr = 0.25 with the 200 MHz RF voltage at 2 MV. For each phase offset we performed three

acquisitions (blue circles in Fig. 4.4), the mean value of which (black curve) was used to define

the tilt.

1The first restriction is due to the region with a local maximum in the synchrotron frequency distribution

inside the bunch, which, as we saw on Chapter 3, is reducing the instability threshold.
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Figure 4.3: Schematic example of the algorithm used to calculate the tilt of the bunch profiles.

The horizontal lines correspond to the full widths at 95% and 30% of the line density maximum.

This measured bunch profile corresponds to a case of φ800 ≈ 76◦. Voltage ratio Vr = 0.25 and

V200 = 2 MV.

Figure 4.4: Measured bunch tilt versus relative phase (in deg at 200 MHz, unknown offset),

26 GeV/c, Vr = 0.25 and V200 = 2 MV.
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Measurements were also performed in a single RF system in order to define the baseline. The

average tilt from 10 acquisitions and its standard deviation are shown in Fig. 4.4 with the solid

and dotted horizontal lines respectively. This baseline is not perfectly identical to zero due to

the remaining induced voltage and also the effects of the pick-up and cable transfer functions,

which also modify the symmetry of the bunch profile. Intersections of the horizontal line with

the calibration curve of the double RF give the correct phases for the BSM and the BLM. By

applying a linear fit to the points around the intersection we have in this case

∆φBSM
800 = 242.95± 0.87 (4.4)

∆φBLM
800 = 286.02± 0.78 (4.5)

where the errors are defined by the intersection with the dotted lines. As expected, the difference

between the two modes is around 45◦ (at 200 MHz).

Finally, for high intensity operation the relative phase is selected by small scanning around

the BSM and finding the value of φ800 that provides also the most stable beam on the SPS flat

top.

4.3 Measurements in single and double RF systems

The results presented below were obtained during one machine development (MD) session in the

SPS (November 2011) using the Q26 optics. The single bunch intensity was constant and around

1× 1011, close to the nominal value of the LHC beam with a 25 ns bunch spacing. The voltage

amplitude of the 200 MHz RF was set to V200 = 1 MV since it was found [41] that bunches with

this intensity are much more stable in this capture voltage. This value is close to the matched

voltage for the bunch injected from the PS, and is much lower than the one used in operation

with the LHC beam, where capture losses due to beam loading impose higher values (2 MV at

injection increased after 50 ms to 3 MV). Note that the results obtained for matched voltage

would be easier to compare with analytical calculations, where a steady state distribution is

assumed. The longitudinal emittance ε` of the injected bunches was around 0.25 eVs, again

lower than the nominal 0.35 eVs. The scanning of φ800 was performed around the BSM phase

(φBSM800 ). The feed-back, feed-forward and longitudinal dampers were switched off, whereas the

phase loop was still acting on the bunch. The chromaticity was set high enough for the beam to

be stable in the transverse plane. Longitudinal bunch profiles were acquired along the first 3.7 s

of the 26 GeV/c flat bottom.

The stability analysis is based on the evolution of the 4σ bunch length τ along the flat

bottom, obtained after applying to each acquired profile a Gaussian fit (without corrections for

pick-up and cable transfer functions [68] which can be neglected in our case). An increase of τ

at the end of the acquisition time (3.7 s) together with large bunch length amplitude oscillations

(∆T ) indicates an unstable situation.

Prior to the phase scan in a double RF system, measurements in a single RF were performed

showing that the bunch was stable under these conditions. Figure. 4.5 presents an example of

the bunch length evolution along the flat bottom where one can see that, after the injection

oscillations, the bunch is very stable (no bunch length oscillation or growth).
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Figure 4.5: Bunch length evolution along the flat bottom in a single RF system. V200 = 1 MV.

Bunch with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.

On the other hand, in the case of double RF system operating in the BSM with Vr = 0.25 the

situation was very unstable. This case is shown in Fig. 4.6 where one can observe a continuous

increase both in τ and oscillation amplitude ∆T , the maximum of which is presented in the plot

with the two red points.

Figure 4.6: Bunch length evolution along the flat bottom for φ800 = φBSM800 , V200 = 1 MV and

V800 = 0.25 MV. Bunch with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.
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This observation does not in fact contradict to the statement that 800 MHz RF is necessary

for beam stability in the SPS, since in operation a ratio of Vr ' 0.1 is used. Decreasing Vr to

this value confirmed this result (Fig. 4.7).

Figure 4.7: Bunch length evolution along the flat bottom for φ800 = φBSM800 , V200 = 1 MV and

V800 = 0.1 MV. Bunch with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.

Stability could also be improved for Vr = 0.25 by shifting φ800 in both directions from

the BSM phase, arriving after some point to a stable situation. Figure 4.8 shows the bunch

length variation along the flat bottom for different values of φ800. For completeness the case of

φ800 = φBSM800 is also included (top left plot).

As can be seen from Fig. 4.8, by shifting the phase from the BSM in both directions (φ800 =

φBSM800 −64◦ - top right and φ800 = φBSM800 +80◦ - bottom left) the bunch remains stable along the

cycle. Note that the initial oscillations, caused by the injection mismatch, are quickly damped

(∼ 100 ms). Further, a phase shift towards the BLM (bottom right plot) is again leading to

instability.

A summary plot of all the measurements for Vr = 0.25 and different values of φ800 (average

of three acquisitions per value of φ800) is presented in Figs. 4.9 and 4.10 (blue trace). Figure 4.9

displays the ratio of final to initial bunch lengths τfin/τin (averages for 100 ms), while Fig. 4.10

shows the ratio of final to initial bunch length oscillation amplitudes ∆Tfin/∆Tin, multiplied by

its maximum value ∆Tmax (to take into account the cases where the maximum was reached

not at the end of the acquisition). Therefore, in both figures higher values correspond to more

unstable situations.

As follows from Figs. 4.9 and 4.10, stable regions appear for phase shifts between 50◦ and

100◦, relatively far from the BSM phase in both directions and a phase shift of around ±70◦

gives the best stability. Moreover, we can see that moving the phase φ800 towards the BLM leads

again to degradation of the beam stability.
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Figure 4.8: Bunch length evolution along the flat bottom for different values of φ800, V200 = 1 MV

and V800 = 0.25 MV. Bunch with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.

4.4 Macroparticle simulations

The results obtained in the measurements were compared with simulations performed using the

code ESME (version es2009 4), a longitudinal beam dynamics simulation program [17], after

introducing the SPS impedance model. This model was including the fundamental modes of

the 200 MHz (long and short types) and 800 MHz traveling wave RF systems, one higher order

mode (HOM) of the 200 MHz RF system [69] and the impedance of 16 kickers, the latter

approximated by a broad-band resonator with Q=1. The parameters of the impedance sources

used in simulations are presented in Table 4.1.

The initial phase-space particle distribution of the bunch was obtained by reconstructing a

typical tomography measurement in the PS [70] and simulating it through the following compli-

cated RF manipulations till extraction to the SPS [30]. Figure 4.11 presents this distribution at

injection into the SPS. One can see that the bunch is not matched to the SPS bucket. More-

over, due to the bunch rotation applied in the PS before extraction, the distribution has an

unconventional “S-shape”.

Examples of evolution of the rms bunch position (dipole oscillations), obtained in simulations
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Table 4.1: SPS impedance model used in ESME simulations
fr (MHz) Rs (MΩ) Q

TWC200-F (long) 200.2 2.86 150

TWC200-F (short) 200.2 1.84 120

TWC200-H 629.0 0.39 500

TWC800-F 800.8 1.94 150

Kickers 800.0 0.06 1

Figure 4.9: Ratio of final to initial bunch length on SPS flat bottom obtained from measurements

and simulations in the SPS double RF system for different values of φ800 for Vr = 0.25. Bunch

with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.

for φ800 = φBSM800 and φ800 = φBSM800 ±60◦ are shown in Fig. 4.12. Similarly to the measurements,

the bunch is unstable in the BSM with Vr = 0.25, while it can be stabilized by applying a phase

shift of 60◦ in both directions.

The simulation results are summarized in Figs. 4.9 and 4.10 (red trace) together with the

measurements. A very good agreement between measurements and simulations can be seen

in Fig. 4.9 for bunch length evolution in the SPS double RF system. Since simulations were

performed without beam phase loop, the dipole oscillations were not damped and can be used
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Figure 4.10: Ratio of final to initial quadrupole (measurements) and dipole (simulations) oscil-

lation amplitude, multiplied by its maximum value (∆Tmax), as a function of φ800 in the SPS

double RF system with Vr = 0.25. Bunch with intensity ∼ 1× 1011 and ε` ' 0.25 eVs.

Figure 4.11: Initial particle distribution used in simulations for the SPS (blue points). The

red line corresponds to the SPS RF bucket for double RF in BSM with V200 = 1 MV and

V800 = 0.25 MV.
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Figure 4.12: Evolution of the rms bunch position along the flat bottom for different values of

φ800 obtained from simulations. V200 = 1 MV and V800 = 0.25 MV.

as well to characterize the instability in a double RF system. Their amplitude is shown in

Fig. 4.10 as a function of the phase shift φ800 together with the measured quadrupole oscillation

amplitude. In measurements phase loop was on and thus the dipole oscillations were damped.

For the SPS impedance model used, the instability threshold is expected to be lower for the

m = 1 (dipole) mode than for m = 2 (quadrupole) mode (see section 2.5) [44] and this is in fact

what was observed in the simulations.

4.5 Effect of the synchrotron frequency distribution

The loss of Landau damping is a possible explanation of the unstable cases appearing for certain

phase shifts between the two RF systems, when any resistive wake would drive instability for the

modes that are not anymore damped. This argument is supported by the synchrotron frequency

distributions (no intensity effects) shown in Fig. 4.13 for a single RF and for different values of

φ800 and Vr in a double RF system.

Indeed, in the BSM with Vr = 0.25 (blue curve), particles in the tails of the measured bunches

(their 2σ emittance is shown with a vertical line) may lose Landau damping, since the derivative
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Figure 4.13: Synchrotron frequency distribution (no intensity effects) as a function of longitudinal

emittance for different RF parameters. The bunch size in measurements is shown with a vertical

line.

of the synchrotron frequency distribution as a function of action J (bunch emittance) ω
′
s(J)

is zero at this point [10]. This behavior was in fact expected from the results of the previous

Chapter (see section 3.5), where it was proven by simulations that for inductive impedance the

regions of ω
′
s(J) cause a significant decrease in the loss of Landau damping threshold. Note that

similar results were obtained in [12] for resistive impedance. On the other hand, the dependence

of synchrotron frequency on bunch emittance is monotonic for the other cases shown in the plot,

including the operational BSM with Vr = 0.1. Therefore, the threshold is expected to be higher

and that is, in fact, the reason why the bunches were stable in the measurements and simulations

for those cases. In the BLM (red curve) the bunch size in measurements is much bigger than

the one that corresponds to the maximum of ωs(J), which explains why the beam was also not

stable.

It is interesting to note that the measured and simulated single bunch instabilities were

explained in terms of the zero current synchrotron frequency distribution and not the one cor-

responding to the steady state situation (after the bunch filamentation). The reason for that is

possibly the particular bunch distribution at the moment of injection (see Fig. 4.11), which, as

was mentioned before, is not matched (see Fig. 4.14).

Consequently, the system is far from being in a steady state and the synchrotron frequencies

of the particles are mainly determined by the external RF voltage applied through the RF

cavities. Moreover, this modulation of the bunch profile can be a possible explanation of the

relatively low single bunch threshold observed at the SPS flat bottom [41].
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Figure 4.14: Particle distribution in the SPS longitudinal phase space (left) and its line density

(right) after 2000 turns. The initial distribution is shown in Fig. 4.11. Note the high frequency

pattern in the tails of the bunch. Here it is not very strong (compared to operation conditions)

because of the low voltages, V200 = 1 MV and V800 = 0.25 MV. No intensity effects are included.

4.6 Conclusions

Thresholds of longitudinal single bunch instability versus the relative phase between the two RF

systems were measured in the SPS for a voltage ratio of 0.25 and constant intensity of ∼ 1×1011.

They show that a phase shift between 50◦ and 100◦ (at 800 MHz) in both directions (relative

to the BSM phase) stabilizes the otherwise unstable bunch. Particle simulations using the SPS

impedance model show a good agreement with these measurements. This dependence on phase

shift, in addition to the sensitivity to the voltage ratio Vr (also observed in measurements), indi-

cates that the loss of Landau damping in the flat region of the synchrotron frequency distribution

inside the bunch can be a possible explanation for the observed undamped oscillations. This

gives both a justification and the limitation to the 800 MHz voltage amplitude used in operation

for the LHC beams in the SPS (V800 ≈ V200/10).
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Beam loading and its effect on the

controlled longitudinal emittance

blow-up in the SPS double RF

system

Presently, the use of a double RF system in the SPS operation (with a voltage ratio of Vr = 0.1,

for reasons presented in the previous Chapter), is essential for the beam stability all along the

cycle. However, for the LHC beams this is still not sufficient and instability is observed at the end

of the ramp for intensity above the nominal. For that reason a controlled longitudinal emittance

blow-up is applied to further increase the spread in the synchrotron frequencies inside the bunch

and thus to enhance the effect of Landau damping. The emittance blow-up can be achieved by

introducing a band-limited phase noise at some moment during acceleration. Measured variation

of the final emittance along the batch can be explained by the effect of beam loading in a double

harmonic RF system, leading to the modification of the synchrotron frequency distribution in

each bunch.

5.1 Introduction

The nominal LHC beam in the SPS consists of four batches separated by gaps of 225 ns. Each

batch contains 72 bunches spaced by 25 ns with 1.15×1011 protons per bunch. This beam is

accelerated by four 200 MHz traveling wave cavities, equipped with feed-forward and feed-back

systems. However, a longitudinal coupled bunch instability observed at high energies appeared

to be a limiting factor for the beam performance because of its low threshold of 2 × 1010 p/b.

The nominal beam is finally stabilized by increased synchrotron frequency spread using a fourth

harmonic RF system [10] and controlled longitudinal emittance blow-up. The latter is applied

during the ramp by introducing band limited noise through the phase loop of the main RF

system [71].

Since the controlled emittance blow-up is necessary to stabilize the nominal intensity beam,

the final bunch length at flat top (and therefore emittance) is limited due to the injection

into the 400 MHz buckets of the LHC. For that reason, bunch-to-bunch emittance variations

along the batch can lead to particle losses in the LHC. Non-uniform emittance blow-up of high

intensity beam in the SPS had been observed for the first time at the end of 2004 and previous

studies [20, 32] suggested that this effect can be attributed to the bunch-to-bunch variation of

the incoherent synchrotron frequency due to the residual beam loading. This analysis showed
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that for the bunches at the edges of the batch the zero amplitude synchrotron frequency is lower

than for those in the middle. Therefore, for a constant noise band along the batch one would

expect the blow-up to be more effective for the bunches in the middle of the batch (optimum

phasing). However, the experimental results show that bunches at the edges of the batch are

blown-up more than those in the middle.

The present work extends the previous analysis by considering how the whole synchrotron

frequency distribution is modified for the different bunches in the batch, defined mainly by the

residual beam loading in the 200 MHz RF system. It will be shown that for the bunches at the

edges of the batch, where the bigger synchronous phase variations due to beam loading occur,

a significant change in the synchrotron frequency distribution appears, making larger blow-up

possible.

5.2 Non-uniform emittance blow-up of the LHC beam

A stable beam with nominal intensity and emittance up to ∼0.6 eVs, obtained by controlled

emittance blow-up, can be delivered to the LHC. The measurements presented here were done

for a single batch with nominal intensity with aim to obtain maximum emittance (∼0.9 eVs)

which might be requested for stability of higher intensity beams. The synchronous momentum

and applied RF voltages (200 MHz and 800 MHz) for the SPS cycle during these measurements

are shown in Fig. 5.1.

Figure 5.1: Particle momentum (left) and the 200 MHz and 800 MHz (×10) voltage programs

along the cycle.

The band-limited noise [71] was introduced through the phase loop of the 200 MHz RF

system at 185 GeV (14.8 s along the cycle) and lasted for 3 s. Figure 5.2 depicts the noise band

and the synchrotron frequency spread (calculated for low intensity) during the cycle where the

noise is applied. For nominal intensity beam the low intensity settings should be shifted down

by ∼10 Hz due to an incoherent frequency shift (see section 2.4) produced by the SPS inductive

impedance ImZ/n'5 Ohm (before the serigraphy of the kickers [72]).

The bunch lengths were deduced from the acquired bunch profiles after correcting for the
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Figure 5.2: Noise excitation (red dashed lines) and synchrotron frequency spread at the end of

the cycle, calculated for low intensities and for a bunch of 0.5 eVs.

pick-up and cable transfer function [68]. Figure 5.3 shows the results for two cycles where

different noise bands were used. In both cases a single batch of 72 bunches spaced by 25 ns with

1.15 × 1011 particles per bunch was injected. The plots present the bunch lengths at different

moments in the cycle. Both cases correspond to a successful blow-up in the sense that bunches

were stable at the flat top. However, it is apparent that bigger blow-up occurs for the bunches

at the beginning and the end of the batch. Furthermore, we can clearly see from the right plot,

where the noise band was lifted up by 10 Hz compared to the left one, that the relative excitation

of the bunches in the edges of the batch was less compared to those in the middle.

The bunch position variation along the batch ∆tn (found from the bunch profiles after a

Gaussian fit), which corresponds in the stable situation to the synchronous phase displacement

∆φs = ωrf∆t (ωrf = 2πfrf , frf = 200 MHz), is shown in Fig. 5.4 for the same data as presented

in Fig. 5.3. The antisymmetric pattern before the noise excitation (green line) indicates that

the bunch positions are mainly defined by the beam loading in the main 200 MHz RF system,

compensated by the feed-back and feed-forward systems. Indeed, the net effect of beam loading is

expected to modify the stable phase φs along the batch, but in a different way; small displacement

of the bunches at the head of the batch are increasing as more bunches entering the cavity until

they reach a steady value. At flat top (blue line), where the bunch lengths become smaller, the

effect of the 800 MHz beam loading (without feed-back and feed-forward systems) also becomes

non-negligible and it modifies the previous pattern. The effects of beam loading are considered

in more details in the next section.
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Figure 5.3: Measured bunch lengths before the controlled blow-up (green), just after (red) and

at the SPS flat top (blue). The noise frequency band was shifted down ∼20 Hz (275-175 Hz)

at the left plot and ∼10 Hz (285-185 Hz) at the right one with respect to the calculated values

(low intensity).

Figure 5.4: Longitudinal bunch position shift with respect to the equidistant positions along the

batch. The data correspond to those of Fig. 5.3.

5.3 Beam loading in the traveling wave cavities

In accelerators, beam loading usually refers to the effects induced by the passage of the beam

in the RF cavities. As such, it could be considered as one particular example of the more

general problem of beam interaction with its surroundings, in this case the cavity fundamental

impedance. The reason that beam loading needs a special treatment is that very often the RF

cavities are the largest contributor to the total impedance of the ring (to have high voltage high

impedance is needed), and consequently its effect leads to a significant power loss during the

beam passage. Dedicated correction techniques are usually used to minimize these losses.

When a single particle is passing through a resonant cavity (considering only the fundamental
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resonance) it will excite an additional field, which (see section 2.2) is proportional to the inverse

Fourier transform of the impedance given by Eq. (2.86). For reasonably high Q value (Q > 10)

W (t) =
ωrRsh

Q
e
−ωrt

2Q cos (ωrt) , (5.1)

where Rsh, ωr and Q are the shunt impedance, the resonance angular frequency and the quality

factor of the cavity and t is the distance (in time) from the particle. Due to causality we have in

Eq. (5.1) that W (t) = 0 for t < 0. The exponentially decaying induced field is plotted in Fig. 5.5.

By superposition, the total field that a trailing particle will see is given by the combination of the

latter with the generator driven waveform Vrf (see Fig. 5.5). Using linearity and superposition

it can be proven that the initial particle itself “sees” one half of its own induced field [73]. This

result is called the fundamental theorem of beam loading.

Figure 5.5: Induced (top), external (bottom, black curve) and total (bottom, red curve) voltages

after single particle passage through a resonant cavity.

In the case of a single bunch with line density λ(t), given for example from Eq. (2.107),

the total induced voltage in the cavity Vb is given by the convolution of λ(t) with W (t), see

Eq. (2.83). This voltage is illustrated in Fig. 5.6.

In vector representation the induced, external and total voltages are presented in Fig. 5.7,

where the fundamental component of the beam current Ib defines the reference phase. The total

voltage seen by the bunch is ~Vt = ~Vrf + ~Vb/2. In order to have a certain effective accelerating

voltage (Vt = |~Vt| sinφs) applied to the bunch, the voltage delivered by the generator Vrf should

be higher.

Whether the impact from one bunch to the following bunch is important, depends on the

cavity time constant Tf = 2Q/ωr. Thus, if Tb is the distance between the two bunches, by the

time the second bunch enters the cavity, the induced voltage Vb is reduced by a factor e−Tb/Tf ,

see Eq. (5.1). The corresponding phase shift is ψ = ωrTb−2πhb, where hb is an integer indicating
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Figure 5.6: Single bunch passage through a resonant cavity. The line density λ(t) is given by

Eq. (2.107).

Figure 5.7: Vector diagram of a single-bunch passage through a resonant cavity.

the number of RF periods between the bunches. Finally, the total voltage Vt that the trailing

bunch sees is

~Vt = ~Vrf + ~Vbe
−Tb/Tf eiψ + ~Vb/2. (5.2)

Following ref. [31], the previous analysis can be extended to a multiple-bunch passage through

the cavity.

In the case of a traveling wave (TW) cavity and for a repetitive train of many bunches,

the fields excited by the previous bunch passages also propagate along the structure. If the

incoming bunches (with velocity vp) are synchronized with the traveling wave, i.e. vp = vϕ (vϕ
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is the phase velocity of the wave) then the induced field is simply proportional to the distance

along the cavity. However, if synchronization is not perfect an additional phase slippage occurs,

θ = ωt − kzz, where z = vpt and kz is the wave propagation constant. Expanding θ to a first

order around the synchronous point (ω = ωr, kz = kz0), for which θ0 = ωrt − kz0z = 0, one

obtains

θ = ωt− kzz = (ωr + ∆ω)
z

vp
− (kz0 + ∆kz)z =

∆ω

vg

(
vg
vp
− 1

)
z, (5.3)

where the group velocity vg = ∆ω/∆kz was introduced. Since in the traveling wave cavities the

energy transfer from cell to cell is much slower than the bunch velocity, i.e. vg � vp the previous

equation can be written as

θ = −∆ω

vg
z = −ω − ωr

vg
z. (5.4)

Defining also the angle τb as the total phase slip between the traveling wave and the bunch along

the cavity

τb =
L

vg
(ω − ωr), (5.5)

one finally has

θ = −τb
L
z, (5.6)

where L is the total length of the structure.

Due to superposition the decelerating electric field Ez (induced by the beam passage) at

distance z from the cavity entrance is proportional to the integral [28]:

Ez ∝
∫ z

0
eiθdz =

1− e−i
τb
L
z

iτb/L
. (5.7)

The total induced voltage seen by the beam is obtained by integrating Ez along the structure:

Vb =

∫ L

0
Ezdz ∝

∫ L

0

1− e−i
τb
L
z

iτb/L
dz, (5.8)

which finally gives [28]:

Vb = −IbR2
L2

8

[(
sin τb

2
τb
2

)2

− i2τb − sin τb
τ2
b

]
, (5.9)

where the proportionality factor R2 is the series impedance of the traveling wave cavity in Ω/m2

defined in [28] as a characteristic of the structure.

Based on the last equation, the beam loading impedance can be defined as

Zb =
Vb
Ib

= −L
2R2

8

[(
sin τb

2
τb
2

)2

− i2τb − sin τb
τ2
b

]
. (5.10)

The real and imaginary part of Zb for the SPS 200 MHz TW cavity with 4 sections (short, see

Table 5.1) are plotted in Fig. 5.8.
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Figure 5.8: Beam loading impedance as a function of frequency for an SPS 200 MHz RF TW

cavity of 4 sections (short) and parameters presented in Table 5.1.

Table 5.1: Parameters of the TW cavities (2 of each type)

200 MHz Long 200 MHz Short 800 MHz

Centre frequency fr 200.222 MHz 200.222 MHz 800.888 MHz

Interaction length L 20.196 m 16.11 m 3.46 m

Series impedance R2 27.1 kΩ/m2 27.1 kΩ/m2 647 kΩ/m2

Filling time L/υg 0.712µs 0.568µs 0.330µs

Beam loading impedance L2R2/8 1.38 MΩ 0.879 MΩ 0.968 MΩ

From the last equation it is also possible to find the phase φ of the induced voltage Vb with

respect to the beam current Ib, known as beam loading angle.

tanφ =
Im(Zb)

Re(Zb)
=
−2(τb − sin τb)/τ

2
b(

sin τb/2
τb/2

)2 =
(τb − sin τb)

2 sin2 τb
2

, (5.11)

which for small values of τb (τb < 20◦) can be approximated with

tanφ ≈
(τb − τb + τ3

b /3!)

2(τb/2)2
= −τb/3⇐⇒ φ ≈ −τb/3. (5.12)

Therefore, the vector diagram in the case of a TW RF cavity has to be modified with respect to

the one presented in Fig. 5.7 by introducing the beam loading angle as shown in Fig. 5.9. Note

that from there on Vb indicates the total induced voltage in the cavity.

This impedance can now be used to calculate the total voltage induced in a TW cavity after

the passage of a bunch train by multiplying Zb with the beam spectrum and taking the inverse

Fourier transform. The case of a single batch of the nominal LHC beam passing through the
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Figure 5.9: Vector diagram of a single bunch passage in a TW cavity.

200 MHz TW RF system is presented in Fig. 5.10. This batch consists of 72 Gaussian bunches

with length of 1.7 ns and intensity 1.15× 1011 p/b. The impedance of the 200 MHz RF system

was calculated from the parameters presented in Table 5.1.

Figure 5.10: Induced voltage (green) in the 200 MHz TW RF system by a single LHC batch

of 25 ns beam (blue). Gaussian bunches with 1.15 × 1011 p were assumed. The zero on the

horizontal axis shows the first bunch of the batch. The vertical line indicates the filling time τf
of the RF system.

When the head of the batch enters the cavity, the beam loading voltage rises during the

filling time τf ≈ 620 ns (transient beam loading state) until it reaches its steady state value
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Vb ≈ 3 MV. The vector sum of the latter with the voltage applied by the RF generator Vrf gives

the total voltage seen by the beam. Currently, for the intensity of 1.15×1011 p/b, the maximum

available RF voltage is around 7.5 MV. Therefore, it is necessary to apply dedicated techniques

in order to minimize the effect of beam loading.

At this point it is useful to introduce also the forward impedance [28]

Zrf =
Vrf

Ig
= L

√
Z0R2

2

(
sin τb/2

τb/2

)
, (5.13)

where Ig is the generator current and Z0 is the characteristic impedance of the RF chain (50 Ω).

This impedance is plotted in Fig. 5.11 for the same cavity parameters as in Fig. 5.8.

Figure 5.11: Forward impedance as a function of frequency for an SPS 200 MHz RF TW cavity

of 4 sections (short) and parameters presented in Table 5.1.

Comparing Zb and Zrf from Eqs. (5.10) and (5.13) one can see that, up to a scaling factor,

their real parts are the same. However, since Zrf is real, the imaginary parts are completely

different. This makes the compensation of beam loading with feed-back and feed-forward systems

more difficult as compared to the case of standing wave cavities, where Zb and Zrf are identical.

5.4 Beam loading compensation

In order to reduce the beam loading impedance Zb, each SPS 200 MHz TW cavity is equipped

with a dedicated feed-forward (FF) system [74]. The beam current Ib is measured with a pick-up

and then is filtered by the transfer function Hfwd. Finally, the output is subtracted from the

generator current to compensate for the beam loading in the cavity.

Further compensation is achieved by the RF feed-back (FB), which is again installed in each

cavity since 1983 [75]. In that case, the voltage sensed by the beam in each cell of the cavity
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is measured with a loop. After addition of these signals (delayed by the corresponding time of

flight of the particle i.e. different delay for each loop) we get the total voltage seen by the beam.

This signal is filtered by the feed-back transfer function Hback and re-injected into the cavity

with the proper phase via the power generator.

Finally, the achieved impedance reduction is obtained as the product of the reductions ob-

tained separately by the FF and FB. Therefore, according to [74], the beam loading impedance

after compensation Zbc becomes

Zbc =
Zb −HFFZrf

1 +HFBZrf
. (5.14)

The above formula was used to calculate the remaining (with FF and FB in operation) induced

voltage in the 200 MHz RF system and an example for the same beam parameters as before is

shown in Fig. 5.12.

Figure 5.12: Induced voltage in the 200 MHz TW RF system with and without beam loading

compensation by FF and FB. The beam parameters are the same as in Fig. 5.10.

In Fig. 5.12 one can see a significant decrease in Vb which is essential for acceleration of

a stable beam in the SPS without losses. However, the remaining effect of the stable phase

variation along the batch is still important and especially for a double RF system operation the

controlled longitudinal emittance blow-up is analyzed below.

5.5 Beam loading in the SPS 200 MHz RF system

In section 5.3 the voltage Vb induced due to beam loading in a TW RF system was calculated.

Based on these calculations, and the fact that the beam loading angle τb/3 is defined only by

Zb, one can also calculate the variation of the synchronous phase ∆φs along the batch. This can

be illustrated schematically in the vector diagram of Fig. 5.13, where the black arrows present

the steady state while the red ones show the transient beam loading case.
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Figure 5.13: Vector diagram of the transient beam loading (red vectors). The black vectors

present the steady state.

Before the beam enters the cavity, Vb = 0 and so ~Vt = ~Vrf . While more and more bunches

enter the cavity, the amplitude of Vb is increasing and so ~Vt moves along the red dashed line in

Fig. 5.13 until φs reaches its steady state value, φs0. Assuming a constant ~Vrf provided by the

RF generator, with amplitude and phase shown in the diagram, one can obtain

tan(φs0 + ∆φs) =
Vrf cosφL − Vb cos τb/3

Vrf sinφL + Vb sin τb/3
. (5.15)

The phase shift ∆φs calculated for the SPS 200 MHz RF system (all 4 cavities), with parameters

presented in Table 5.1 are shown in Fig. 5.14. For all the calculations below, the same beam and

machine parameters as those in Fig.5.10 were assumed, to be comparable with the measurements

before the controlled emittance blow-up (see section 5.2). For this beam the DC beam current is

0.74 A, while the 200 MHz Fourier component (Gaussian line density) would be around 1.30 A.

Note that the convention of ∆φs > 0 (from Fig. 5.13) for clockwise rotations is assumed below.

Once ∆φs is known, the total voltage Vt can be found from

Vt =
Vrf cosφL − Vb cos τb/3

sin(φs0 + ∆φs)
. (5.16)

However, as was mentioned in the previous section, in the 200 MHz RF system the 4 TW cavities

(2 short and 2 long) are equipped with a FF and a one turn FB systems which compensate the

beam loading effect [74] by modifying the impedance Zb, see Eq. (5.14). Therefore, Vb will be

significantly reduced as shown in Fig. 5.12. The beam loading angle τ∗b will be slightly different

from the previous τb, since now it is defined by Zbc. Here we assume that FF and FB are

perfectly adjusted for the bunches in the middle of the batch and this corresponds to the steady

state (black vectors in the diagram in Fig. 5.13). For those bunches in the middle the following

relation can be written

V ss
t sinφs0 =

dps
dt
Trev, (5.17)
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Figure 5.14: Synchronous phase variation (in ps) along one batch due to beam loading in the

200 MHz TW RF system. The beam parameters are the same as in Fig. 5.10.

where ps and V ss
t are the synchronous momentum and the RF voltage amplitude, programed

along the cycle. Therefore, at the moment before the controlled emittance blow-up is applied

(green traces in Figs. 5.3 and 5.4) one has

sinφs0 =
1.79

4.5
⇔ φs0 = 23.4◦. (5.18)

Furthermore, from the calculated Vb after the beam loading compensation by FF and FB, one

can find the induced voltage at the center of each bunch, see Fig. 5.15.

It is straight forward to calculate ~Vrf from the vector diagram in Fig. 5.13 for the bunches in

the middle of the batch

tanφL =
V ss
t cosφs0 − V ss

b sin τ∗b
V ss
t sinφs0 + V ss

b cos τ∗b
(5.19)

Vrf =
V ss
t sinφs0 + V ss

b cos τ∗b
cosφL

, (5.20)

where V ss
b is used to denote the induced voltage at the steady state (bunches in the middle of

the batch). Since the constant ~Vrf is known, the bunch position variations ∆φs along the batch

in the presence of FF and FB systems can be calculated from Eq. (5.15) and the results are

presented in Fig. 5.16.

5.6 Beam loading in the SPS 800 MHz RF system

In addition, in order to calculate the expected total shift of φs along the batch in operation, one

needs to take into account also the beam loading in the 800 MHz RF system. In the SPS two
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Figure 5.15: Calculated beam induced voltage in the 200 MHz RF system at the center of each

bunch, just before the controlled emittance blow-up. The beam parameters are the same as

those in Fig. 5.10.

Figure 5.16: Residual Synchronous phase variation (in ps) along the batch after the beam loading

compensation in the 200 MHz TW RF system by the FF and FB systems. The beam parameters

are the same as in Fig.5.10.

800 MHz TW cavities are installed but until now only one was used in operation but without FF

or FB systems (to be implemented in 2015). Figure 5.17 presents the calculated values of the

induced voltage in the 800 MHz RF system (both cavities included) at the center of each bunch
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(without taking into account the beam loading effect in the 200 MHz RF system), during ramp

and just before the phase noise application. At this moment, the 800 MHz Fourier component

of the beam current would be around 0.15 A (for the same beam parameters as in Fig 5.10)).

The parameters of the cavities used in calculations are also presented in Table 5.1.

Figure 5.17: Calculated beam induced voltage in the 800 MHz RF system at the center of each

bunch (without taking into account the beam loading effect in the 200 MHz RF system), during

the ramp and just before the controlled emittance blow-up. The beam parameters are the same

as those in Fig. 5.10.

The formalism described above (see the vector diagram of Fig. 5.13) can be also used to

calculate the phase shift (∆φ800
s ) along the batch due to the 800 MHz RF system. However, we

need to take into account tha in operation the phase between the two RF systems is programmed

in such way that no energy should be given to the synchronous particles from the 800 MHz RF

component (φs = φs0). Note that here we consider the case when the phase between the two RF

systems is established using measurements in the middle of the batch, i.e. V 800
t is aligned with

respect to V 200
t . Finally, using Eqs. (5.15), (5.19) and (5.20) one can calculate ∆φ800

s for all the

bunches inside the batch and the results cn be seen in Fig. 5.18.

The situation for ∆φ800
s is reversed when V 800

rf , and not V 800
t , is aligned with respect to

V 200
t . That means that initially, when the first bunch enters the cavity, ∆φ800

s = 0. While more

bunches are passing through the cavity ∆φ800
s decreases (∆φ800

s < 0) until it reaches its steady

state value (∆φ800
s ≈ −35 ps, see Fig. 5.18). This is illustrated in the vector diagram in Fig. 5.19.

In that case, the phase and amplitude of the generator voltage ~Vrf are known and thus ~Vt
can be found from the following equations

tan ∆φ800
s =

−Vb cos τb
Vrf + Vb sin τb

and Vt =
−Vb cos τb
sin ∆φ800

s

. (5.21)
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Figure 5.18: Synchronous phase variation (in ps) due to the beam loading in the 800 MHz TW

RF system. The beam parameters are the same as in Fig.5.10.

Figure 5.19: Vector diagram showing the beam loading voltage for the 800 MHz RF system

when V 800
rf is aligned with respect to V 200

t . The steady state is presented with the black vectors

while the transients are shown in red.

5.7 Beam loading effects on the synchronous phase

The phase shift variations ∆φ200
s and ∆φ800

s along the batch due to the 200 MHz and 800 MHz

RF systems, respectively can be used to find the total phase shift, by taking into account that

the vectors V 200
t and V 800

t (or V 800
rf in the other case) have a phase angle φs0 for the steady state
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(black vectors in Fig. 5.20). According to that the total phase shift ∆φs can be derived from

tan Φs =
V 200
t sin Φ200 + V 800 sin ∆φ800

V 200
t cos Φ200 + V 800

t cos ∆φ800
(5.22)

where Φs = φs + ∆φs, φs is the synchronous phase of the total voltage for the steady state and

Φ200 = φs0 + ∆φ200
s .

Figure 5.20: Vector diagram showing the beam loading voltage for both the 200 MHz and

800 MHz RF systems when V 800
t is aligned with respect to V 200

t . The steady state is presented

with the black vectors while the transients are shown in red.

Using Eq. (5.22) we can calculate the variation of the synchronous phase ∆φs which corre-

sponds to the bunch position variation along the batch, just before the noise excitation (green

trace in the plots of Fig. 5.4)). The results for both 200 MHz and 800 MHz RF systems are

plotted in Fig. 5.21 (solid line). An example of measured bunch positions is also presented for

comparison (dashed line).

One can see that this model can closely reproduce the measurements, indicating that the main

cause of the bunch position variation is the induced voltage in the RF systems and in particular

in the 200 MHz RF cavities. Note that similar results were obtained for the two different cases

of the phasing between the RF systems. However, the remaining difference shows that there are

other parameters that have not been taken into account in the model. On the one hand, a more

realistic model of the impedance Zbc, see Eq. (5.14), could be implemented, since above only real

values of the transfer functions HFF and HFB were considered. On the other hand, additional

sources of the longitudinal impedance in the ring should be included in the calculations, with the

kickers impedance being the most significant. However, its broad-band nature will contribute

more to the inductive part of the total impedance seen by the beam and less to the resistive

part. Thus, Fig. 5.20 is expected to be similar, while the effect of this additional impedance will

be apparent through the shift of the synchrotron frequency distribution inside the bunch.
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Figure 5.21: Bunch position variation (in ps) along the batch at the time in the cycle before the

noise excitation. V200 = 4.5 MV and V800 = 0.5 MV. The beam parameters are the same as in

Fig.5.10.

5.8 Effect of beam loading on the synchrotron frequency distri-

bution

From the measured bunch position variations along the bunch, resulting from the effect of beam

loading in SPS RF systems, we need to identify what is the actual phase between the two RF

systems. The total external voltage seen by the synchronous particles of the bunches in the

middle of the batch, considering both RF systems is

Vt = V 200
t sinφs0 + V 800

t sin(4φs0 + Φ2), (5.23)

where Φ2 is programmed during the cycle to Φ2 = −4φs0 + π for the bunch shortening mode

above transition and φs0 is given by Eq. (5.17). A graphical representation of this situation, at

the moment before the controlled emittance blow-up is applied, can be seen in Fig. 5.22. Note

that at this moment the value of φs0 is 23.4◦ (see Eq. (5.18)).

The induced voltage at the 200 MHz RF system is changing the synchronous phase by ∆φs.

Equivalently, ∆φs can be introduced as an additional phase shift between the two RF systems

Vt = V 200
t sinφ+ V 800

t sin(4φ+ Φ2 + ∆φ2), (5.24)

where ∆φ2 = 4∆φs. Due to the presence of the second RF system the synchronous phase changes

by δφs. Considering that for the bunches in the middle of the batch Vt = V 200
t sinφs0, one can

write

V 200
t sinφs0 = V 200

t sin(φs0 + δφs) + V 800
t sin(4φs0 + 4δφs − 4φs0 + π + 4∆φs), (5.25)
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Figure 5.22: Voltage waveforms at the steady state (middle of the batch) just before the

controlled emittance blow-up is applied. The vertical solid line shows the synchronous phase

φs0 = 23.4◦. Note that no energy gain is provided by the V 800
t since Φ2 = −4φs0 + π.

where the substitution Φ2 = −4φs0 + π was also made. Assuming now small values for δφs and

that the measured shift of the bunch positions ∆φmeas
s is given by the sum

∆φmeas
s = ∆φs + δφs, (5.26)

one has

0 = V 200
t δφs cosφs0 − V 800

t sin(4∆φmeas
s ). (5.27)

Therefore,

δφs =
V 800
t sin(4∆φmeas

s )

V 200
t cosφs

. (5.28)

From Eqs. (5.26) and (5.28) we have

∆φ2 = 4

(
∆φmeas

s − V 800
t sin(4∆φmeas

s )

V 200
t cosφs

)
, (5.29)

which for small values of ∆φmeas
s can be simplified to

∆φ2 = 4∆φmeas
s

(
1 + 4

V 800
t

V 200
t (− cosφs)

)
(5.30)

This means that for the batch edges, where ∆tmeas ' 100 ps (see plots in Fig. 5.4) we

have ∆φ2 ' 40◦. Inserting this value into (5.24) we can calculate the synchrotron frequency

distribution inside the bunch using for Φ2 the programmed value. The results are plotted in

Fig. 5.23 for ∆φ2 = 0,±40◦. In the plot, the noise frequency bands were lifted up by 10 Hz
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Figure 5.23: Synchrotron frequency as a function of action, normalized to emittance calculated

for the voltage of Eq. (5.24) with Φ2 = −4φs0 + π and ∆φ2 = 0,±40◦, just before the controlled

emittance blow-up is applied. The black curve corresponds to the bunch in the center of the

batch (k=36), the blue to the first bunch (k=1) and the red to the last one (k=72). The dotted

and dashed lines present the phase noise bands that were used for the controlled emittance

blow-up.

(195-295 Hz and 185-285 Hz) compared to those used in operation (185-285 Hz and 175-275 Hz),

since in these calculations the synchrotron frequency shift due to the SPS inductive impedance

was not taken into account .

The blue curve in Fig. 5.23 shows that for the bunch in the head of the batch (with k=1), a

flat region with ω′(J) ∼ 0 appears in the synchrotron frequency distribution, indicating that for

fixed noise band the bunches in the head of the batch can be blown-up more (0.57 eVs, 0.59 eVs)

than those at the center of the batch (k=36, 0.49 eVs, black curve). This explaines why in

Fig. 5.3 the length of the first bunches in the batch is much higher than for those in the middle.

On the other hand, the synchrotron frequency distribution is different for the end of the batch

(k=72, red curve), which shows that this bunch is blown-up less (0.45 eVs, 0.465 eVs). The

system is very sensitive to the calibration of the phase shift Φ2 between the two RF systems,

which is based on beam measurements (bunch shape or beam stability) [32] and we always have

an offset which in general is not known. For that reason the synchrotron frequency distribution

can vary significantly. Moreover, the the noise excitation is applied during the cycle for 3 s where

the bunch parameters are changing. For a more accurate model we need to implement also the

potential well distortion that occurs from other impedances and in particular the kickers. This

impedance does not introduce a difference from bunch to bunch but still modifies the synchrotron

frequency distribution. Furthermore, locking the phase of the voltage in the two RF systems by

a measurement outside the batch can also affect significantly the results, while different moments

during the acceleration when the controlled emittance blow-up is applied should be also studied.
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5.9 Conclusions

Controlled longitudinal emittance blow-up together with the operation of a high harmonic RF

system are essential for the LHC beam stabilization in the SPS. Measurements of bunch lengths

at the flat top show that after the noise excitation a non-uniform emittance blow-up occurs.

Taking into account the residual beam loading in the 200 MHz RF system (with FF and FB in

operation) and the beam induced voltage in the 800 MHz RF system the observed variation of

the bunch position along the batch can be closely reproduced. The bunch positions are mainly

determined by the residual beam loading in the 200 MHz RF system. As a consequence, the

synchrotron frequency distribution variation for bunches at different positions in the batch can

explain the large variation in emittance along the batch for the applied phase noise band during

the controlled emittance blow-up.
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Conclusions

Operation with a double RF system is essential for many accelerators in our days in order to

increase beam stability, to change the bunch shape and perform various RF manipulations. In

particular, regarding the beam stability, the bunch-lengthening (BL) mode is used more often

(compared to the bunch-shortening (BS) mode) since in addition to the increased synchrotron

frequency spread inside the bunch (more effective Landau damping) it reduces the peak line

density and therefore reduces the local intensity effects. However, there are some cases in the

hadron accelerators where the BL mode can not be used since it reduced the threshold of longi-

tudinal beam instabilities, in comparison with the single RF system. This is also the situation

in the operation of the CERN SPS as the LHC proton injector, where the fourth harmonic RF

system is used in BS mode in addition to the main RF system. In fact the double RF system

operation in the SPS is one of the essential means, together with the controlled longitudinal

emittance blow-up, and the new Q20 optics, to significantly increase the longitudinal instability

thresholds (single and multi-bunch) and deliver a good quality beam for the LHC. However,

for the HL-LHC and LIU projects higher beam intensities are required. After commissioning

the LINAC4 and upgrading the PSB and the PS, the main performance limitations of the LHC

injector complex are beam instabilities and high intensity effects in the SPS.

Motivated by the longitudinal stability issues in the CERN SPS, the aim of this dissertation

has been to fully exploit the benefits and the limitations of a double harmonic RF system.

Consequently, it is based primarily on the beam and machine parameters of the SPS during its

operation as the injector of the LHC, although most of the results can be used in other proton

accelerators as well.

The main achievement of this work is the explanation, either by analytical methods or

macroparticle simulations, of the following important experimental facts, which are limiting

the present and the future operation of the SPS

• The low intensity threshold of the longitudinal single bunch instability in a double RF

system operating in the BL mode.

• The low intensity threshold of the longitudinal single bunch instability in the BS mode for

a high voltage ratio between the two RF systems (V2/V1 ≥ 1/4 for the SPS).

• The dependence of the single bunch instability threshold on the relative phase Φ2 between

the two RF systems.

• The non-uniform controlled longitudinal emittance blow-up at high intensities in a double

RF system, resulting to a bunch to bunch variation along the batch.

Initially the single bunch longitudinal stability with respect to the synchrotron frequency

distribution inside the bunch ωs(J) was addressed for a second harmonic RF system (h2/h1 = 2)
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in the presence of reactive impedance. The study was restrained to a stationary case since no

acceleration was assumed. In particular, the loss of Landau damping threshold was found both

from simulations and calculations after taking into account the potential-well distortion. The

semi-analytical approach was based on finding the discrete Van Kampen mode (coherent mode

without Landau damping) by solving numerically the linearized Vlasov equation [12, 13]. The

particle simulations were performed using a numerical tracking code written in Matlab for the

purpose of this study.

Both approaches showed that for the BL mode and an inductive impedance there is a critical

value of the longitudinal emittance (or action J), above which the Landau damping threshold

decreases rapidly to zero. This critical value corresponds to the region where ω
′
s(J) = 0. A

phase shift between the two RF components of more than 15◦ can help to increase the threshold

but the flatness of the bunches is lost. These results are able to explain observations during the

pp̄ operation of the SPS [14, 15] and to verify the beam transfer function (BTF) measurements

in BL mode in the SPS, where large amplitude coherent response was observed at frequencies

corresponding to that critical region [60].

For a capacitive impedance (or space charge) the thresholds are either dramatically increasing

or can not be found analytically. This is in agreement with the theoretical prediction in [16],

where it was proved that for the space charge impedance above transition, a bunch in a steady

state is always stable.

The analysis was applied to different harmonic ratios h2/h1 = n between the two RF systems,

by keeping the same voltage ratio V1/V2 = n. It has been shown that although higher n

provides larger synchrotron frequency spread, the critical region moves closer to the bunch

center, and this is limiting the bunch size that can be used in stable operation. It was also

shown that, in the BS mode with n ≥ 3 the regions where ω
′
s(J) = 0 are also appearing as

local extrema. Consequently, for emittances larger than those values, the threshold of the loss

of Landau damping is significantly decreased.

These results agree very well with the observations from the SPS operation with the 4th har-

monic RF system (n = 4). Measurements of the longitudinal single bunch instability threshold

versus the relative phase between the two RF systems, performed in the SPS flat bottom during

one machine development (MD) session, have been presented. The voltage ratio of V2/V1 = 1/4

and a constant intensity per bunch of ∼ 1 × 1011 was used. The analysis of the measurements

showed that the bunch is longitudinally unstable both in the BS and the BL modes. Note that

these phases are defined in the machine by a beam based calibration method, performed at the

beginning of each operational run. By scanning the phase shift between the two RF systems

a region where the bunches are stabilized was identified. This phase region is found to be be-

tween 50◦ and 100◦ (at 800 MHz) with respect to the BS mode. Particle simulations using the

longitudinal beam dynamics simulation program ESME (version es2009 4) [17] were performed

to verify the measured results. The current SPS impedance model consisting of the 200 MHz

(long and short types) and 800 MHz traveling wave RF systems, one higher order mode (HOM)

of the 200 MHz RF system [69] and the impedance of 16 kickers (the latter approximated by a

broad-band resonator with Q=1) was included in the simulations. A very good agreement with

the measurements was obtained since the same stable phase region was reproduced. Decreasing

the voltage ratio to V2/V1 = 1/10 (the value that is currently used in operation) resulted in
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stabilizing the bunch in the BS mode, a result that was again verified from simulations.

The dependence on the phase between the two RF systems, in addition to the sensitivity on

the voltage ratio, indicates that the loss of Landau damping in the flat region of the synchrotron

frequency distribution inside the bunch can be a possible explanation for the undamped oscilla-

tions observed in the measurements. For example, in the BS mode with V2/V1 = 1/4, the size of

the bunches used in the measurements (and the simulations) is such that many particles are in

the region where ω
′
s(J) = 0 and Landau damping is lost. By decreasing the ratio to V2/V1 = 1/10

the synchrotron frequency distribution becomes monotonic for the BS mode and therefore the

bunch is stable. This fact gives both a justification and the limitation to the 800 MHz voltage

amplitude used in operation for the LHC beams in the SPS.

Even using the fourth harmonic RF system in the BS mode with a voltage ratio of V2/V1 =

1/10, proton beams of the LHC type in the SPS are still unstable at the end of the acceleration

ramp. For that reason a controlled longitudinal emittance blow-up is also applied in routine

operation, during the second part of the ramp, to increase further the spread in the synchrotron

frequencies inside the bunch and thus to enhance the effect of Landau damping. This is achieved

by introducing a band-limited phase noise in the 200 MHz RF system. However, the controlled

emittance blow-up has its own limitations. Indeed, analysis of measured bunch profiles shows

that after the noise excitation the bunch length distribution along each batch at the flat top has

a non-uniform structure. This effect becomes more pronounced by increasing the amplitude of

the phase noise (to obtain larger emittances) and might prove to be a limitation for injection into

the LHC 400 MHz RF buckets, when for stability at higher beam intensities a larger emittance

will be requested.

It has been proved during this thesis, that the measured variations of the final emittance along

the batch can be explained by the modification of the synchrotron frequency distribution due to

the effect of beam loading in the SPS double harmonic RF system. In particular, by taking into

account the residual beam loading in the 200 MHz traveling wave RF cavities (equipped with

feed-back and feed-forward systems) and the beam loading voltage in the 800 MHz traveling wave

RF cavities, the observed variation of the bunch position along the batch was closely reproduced.

The synchrotron frequency distribution calculated for bunches at different positions in the batch

using the total voltage derived from this model can explain the large variation in emittance along

the batch for the applied phase noise band.

The effect of the residual beam loading in the 200 MHz RF system resulting in a non-uniform

emittance blow-up will be significantly reduced after the redesign of the existing beam control

around the 200 MHz cavities (including longitudinal damper and feedback coupled on cavities

of different length). This is a part of the approved LIU project at CERN and will be available in

operation in 2018 [76]. In addition, a feed-back system around the 800 MHz RF system is also

going to be installed and become operational during the 2015 run [77]. Thus, the effect of beam

loading in this RF system will be also reduced and a better control of the phase Φ2 between the

two RF systems will be possible, allowing for a better beam stability of the short bunches at the

SPS flat top.
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