3
£
%

EOGNIKO METXOBIO ITOAYTEXNEIO
3XXOAH EPAPMOXMENQN MAGHMATIKOQN
KAI $YXIKOQN EIIIXTHMOQN

‘A(\ NE
B ) ‘\1’
|\ %
)
L
nvpPoro

ln,

MEeAETT PAUVOUEVWYV OLOULTHOVC
O TAVELAEC OECUNG CWUATLOIWY
oc cLoTNUA 000 PABLOCUYVOTATWY

AIAAKTOPIKH AIATPIBH

OEOAQPOY API'YPOIIOYAOY
Amhopatodyou Puoixol Egapuoydv E.M.IL

EIIIBAEIIQN:
E. I'alnc
Kodnyntic E.M.IL

Tavoudiplog 2015






N
S
‘.tll
5

EOGNIKO METXOBIO ITOAYTEXNEIO
3XXOAH EPAPMOXMENQN MAGHMATIKOQN
KAI $YXIKOQN EIIIXTHMOQN

:\(1 NE
-y ‘ﬂ
7 NPoMHBEVS
L
nVPPOPO

ln,

MEeAETT PAVOUEVELYV OLOUTXOVG
AC TAVELUG OECUNG CWOUATLOLWY
oe cLOTNUA 0VO EABLOCLY VOTHTWY

AIAAKTOPIKH AIATPIBH

OEOAQPOY API'YPOIIOYAOY
Aimhwpatodyov Puoixol Egopuoyodv E.M.IL

TPIMEAHY XTYMBOYAEYTIKH EIITAMEAHY EEETAXTIKH
ETIITPOIIH: ETIITPOIIH:

1. E. I'alne, Kod. E.M.IL. E. lalne, Kod. E.M.IL.

2. O. AleZbnovhog, Kad. E.M.II. ©. Ale€odmovroc, Kod. E.M.II.

3. I". Hanagiiinnou, Egeuvntric CERN . I'. Toamagikinmou, Egeuvntic CERN
E. Shaposhnikova, Egeuvntic CERN
I'. Towmohitne, Kad. E.M.IL

A. Ppavtleondune, Kad. E.K.ILA.
K. XutCavione, Kod. E.M.IL.

N Ot WD

Tovoudiprog 2015






To Fanouria, Panagiotis and Firini

Yrous moAvayannuévous uov Pavouvpia, Ilavayriodtn kar Epnvn






Abstract

Operation with a double RF system is essential for many accelerators in order to increase beam
stability, to change the bunch shape or to perform various RF manipulations. This is also the case
for the operation of the CERN SPS as the LHC proton injector, where in addition to the main
RF system, a fourth harmonic RF system is used in bunch shortening mode in order to increase
the synchrotron frequency spread inside the bunch and thus to enhance Landau damping of the
collective instabilities. In fact the double RF system operation in the SPS is one of the essential
means, together with the controlled longitudinal emittance blow-up to significantly increase the
longitudinal instability thresholds (single and multi-bunch) and deliver a good quality beam for
the LHC. However, for the HiLumi-LHC (HL-LHC) and LHC injector upgrade (LIU) projects
higher beam intensities are required. After all upgrades are in place, the main performance
limitations of the LHC injector complex are beam instabilities and high intensity effects in the
SPS. This thesis elaborates the benefits and the limitations of the operation in a double RF
system. The study is primarily based on the beam and machine parameters of the SPS but
most of the results can be generalized and used for other accelerators as well. In particular,
the single-bunch longitudinal instability threshold is found from measurements, simulations and
analytical calculations for the case of a purely reactive impedance and for the realistic case
of the SPS impedance model. The effect of the relative phase and the voltage ratio between
the two RF systems on beam stability is studied as well. Finally, the measured variation of
the longitudinal emittance along the batch is explained by the modification of the synchrotron
frequency distribution due to the residual effect of beam loading in the SPS double RF system.
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ITepiindm

Ot emitayUVTES CWUATOIWY YENOOTOVOVTL EVEENS CTIC UERES HOG OF OLAPOROUS ETLC TNOVIXOUC
ToUelg, T600 oe Baocr) 600 xou O EQUPUOCUEVY €peuva XadKg ETioNE o OE TOAAG TEYVIXE %ol
Brounyovixd medlon. Iopdtt apyind mpotddnxoay 6Toug TOUElS TNE TUENVIXNS QPUOIXHS XL TNG PUOIXAC
LPMAGY eveRYELDY, elvor TAEOV TOAD onuavTixol ot BLOUNYAVIXES EQUPUOYES, GTNV EMCTAUN TOV
LAY, oTn Broloyla, otny et xat oty oxtivodepaneia. To teheutaior 80 ypodvia 1 ey vOhOYIXN
avamTuEn 08Ny Noe o€ uLol atoonueiwTn adZNoT G TNV EVERYEL XL GTNY EVIUOT TWY DECUMY COUXTLOIWY,
TV ElyE GOy AMOTEAECUO ONUAVTIXG eTLTEDY AT € GAOUC Toug Topelc. oTdoo, 1 cuveyrc abénon
NG EVTAOTS X0 POTEVOTNTIC TWV OECUMY, EYEL WC ATOTEAECUN TNV dnuiovpyid oY LE®Y WOIOTEDIWY
(nMextpopoy vty Tediwy tou dnutoupyolvton and v Bl T déoun) To omola dpouy Tow 6T
0EoUN xou 00NYOUV OE Ao TAVEL X XAUTA GUVETELX O ATWAEL COUATLOMWY.

H mapotoa Slatpif3n mporyotedeton To pto o TadepdTnTog TNG OECUNG Yol CUYXEXPWEVES TURUUETEOUS
e 0éounc xou cuvixeg TG emtayLVTIXG SldTadng, ol omoleg oyetilovtoal xuping pe Tov emi-
Tay vt tpwtoviwy SPS tou CERN. H avdhuon neploptleton 6Ny Stoprixn xivnon twv owpatidiony,
uToYETOVTAUC OTL Elval EVIEADS AMOCUVOESEUEVY OO TNV EYXEQEOLO.  LTNY TEAYUXTIXOTNTA, AUTH 1)
unoveon woylel yior Oheg TG e€eTalOUEVES TEPLTTWOELS.

LNV TASLOVOTATA TV XUXALXWY ETLTOYLYTOY, 1) ETULTEYUVOT| TV OWHaTdlwY ot LPNAéc evépyeleg
TEUYUOTOTIOLE(TOL UE TNV EQPapROYY| EVOC Blopixous eVAAAACOOUEVOL (NUITOVOELSOUS) NAEXTEIXOV
Tediou o Uiot PadLOCUYYOTNTO 1) OTtola, AVAAOYOL UE TO CUYXEXPWEVO UNYAVNUO Xot TO €B0¢ Twv
owUoTOlwY, xuualveton and uepwés exatovtddeg kHz éwg 10-30 GHz. Xtnv meplntwon twv
oUYYPOTEWY , OL GUYVOTNTEG AUTEC TEETEL VAL CUYYPOVIOTOUY WE T1] CLUYVOTNTA TEQLOTEOPNS TWV
cwuaTdlwy €tol wote frr = hfo, 6mou h eivon évoc axéponog apliudc mou ovoudleTal apUOVIXOS
oprduoc. To nhexteind autd medio avaryxdlel To COUATIOL Vo EXTEAODY TOAAVTWOOELS YUPW OO [Lol
otadepr] Pdom @, UE CLYVOTNTES YVWOTEC WG CUYVOTNTEC GUYYEOTEOV. AdYw® NG MEQLOBIXOTNTAC
Tou Tediov RF' undpyouv h nepoyés evotdietas xatd pixog tou emtoyuvty (buckets). T to Aoyo
auT6 Tor owpatidia cuvidng ouadonooviar oe taxéto (bunches).

Extéc and ta e€wtepnd nhextpouoryvntixd medio mou e@opuolovTal GTo QOPTIOUEVI CLUATIOI
TNe 0éoung, Ta omola Tar ETTAUVOUY xou Ta €0 TIECouY, Lndpyouv eniong medio mou TapdyovTol
and TV (Bl T Béoun, eite dueoa (Suvduels ywpeol poptiou, eviodeouxés oxedIoEC CLUATIDIWY)
) UE TNV OAANAETOpaon YE Tot TEQYBAANOVTA LA, AOY® TNG MOAUTAOXOTNTAS XL TNG TOLXLAO-
popoploc (oe oyfua xou UAXE) Tov Slpdpwy ototyeiny e unyavic (cwhfvee déoun, @hdvtlec
oOvdeong, xolbtnte emtdyuvone RE, bpyavo pétenong, YoyvAtes xhm), ta omola dnutovpyoly
QLo avamOpeUX T avopotopoppia oto TEpBdihov g oéounc.  ‘Otav éva QopTiouévo owuatiolo
TEPVA PECW OTOLICONTOTE BLITOUAC HE AOUVEYELD, OleYelpel €val nAexTpopayvnuixd medlo YvewoTtod
w¢ emoryOuevo nedio 1 tedlo aginvione (wake field), Sedouévou 61t tapapével cuvAdne tiow and to
(umep-oyETOTIXG) cwpaTOO ToU TEOXdAEsE TN Slotopay . Autd To emayduevo medio Ya dpdoet
Tlow oTn 6o, SlaTapdocovTaS TNV XivNom TwV cKUATIOWWY Tou Yo axorovdricouv. Oloxinewvovag
OE UL TIEMEQAUOUEVT] XATAVOUT QOPTIOUEVOY OOUATIOWY TolpVOUUE TO EToryOUEVO duvopxd (wake
potential), to onoio xodoplleton amd TN GUVEAET TS CLVAETNONG VPUTIVIONS PE TNV XATAVOUN
poptiou oe évo maxéto (bunch) cwpatdiwy. Eivaw cbvniec otn guomy| emtoyuvtdv va yenot-
HOTIOLE(TOL O Y(WPEOSG TWY GUYVOTHTWY, OTOL oL avokuTixol utoloyiopol elvon o ebxohot. Xe authyv



™y nepinTwon, yenowwonoteitar 1 évvola tng epmédnone ovleving (beam — coupling impedance) 7
omola opiletar w¢ o petacynuatiopds Fourier tne cuvopthoews aginvione [1].

Fevixd, ta medlo mou emdyovton and TN SEoun TEPIEYOLY TEELS YWEIXEC CUVICTWOOES, TOU Tkl
vopolvTon we dtopixng, optldvtia xou xdietn (ot 800 teleuTales amoTehovY To EYXBpaio eninedo).
H Swoprune ouviotodoa tou niextexol nedlou, 6to omoio Yo emxevipwiolue oc ouTh TNV €p-
yaoto, umopel vor ahhdEel 10 TAATOC X TN QAo Tou egapuolouevou Tedlou emTdyuvong xaddg
X0l TNV XOTOUVOUT| EVEQYELNC XAl TO UAXOS TOU Tox€Tou owpatdiny. Emmiéov, n dpdorn tng umopet
vou Otarywpetleton o€ éva 1) TOANG Tox€Ta, AvAAOYO PE TA YUEUXTNELOTIXA NG avTioToly NG duVaUNC.
Enldpaon oe éva pévo moxé€to €youue otay tor medlar ainviong ebvan toyvpd Hovo eviog Twv oplwv
Tou Yeyedoug evog ToxETou CuUATIOIWY xar @iivouv TOM) YEHYopa (GTE VoL APHVOUV AVETNEENC T,
TOL EMOPEVO TOXETAL. 2NV TERITTWOT) TOU ToL TEDIA TUPAUEVOLY OPXETA LOY VRS WO TE VoL ENNEEACOLY T
EMOUEVA TIUXETA COUATIOIDY 1 axOUa XL TO (810 TOXETO GTNV EMOUEVT OTEOPT], TOTE OVUPEROUICTE
OTA PUVOUEVO TTOMNADY TOXETOV 1| ouvoueva oUCeuEng.

To medlo aginviong yivovton loyvedtepa oe LmAdTepa pedpata déoung. Méypl xdmowa évtoon
1 O€our, ToEOTL BlaTaRdcoETAL, TORUUEVEL GToeRT]. 20TOC0, VW ANO XATOLO XATMPAL PEVUNTOC,
Topatneeiton dtouhixne aotdleto Tng déoung, YVwoTh we cvhhoyx aotddew [2]. O tinog g
aotddetag, 1 onola meploptlel TNV Aettoupyla Xou TNV amd800Y) TOU ETUTAYUVTY, EEUPTATOL OE YEYEAO
Bodud amd ta yopaxTNEIo TN Tou unyavApaTos (otouyela unyavic, TOToC Twy owpatdiny), xodog
Xl omd TIC TopauéTpous e déounc (ufxoc, évtaon) [2-4]. T mopdderyua, 1 yeriyoen adZnon
TOU PX0US Tou TaxéTou ouuatdiny Tou napatneiinxe oto SPS oto napeddév [5], npoxhhdnxe
omd ol hixpol ufixoug xOuatog (o8 oUYXELom PE TO WAXOS TOU Tax€Tou) avTioTaoT GUVTOVIOHOU 1)
omofa Stopdydnxe uetd v Ywpdxion twv yoy e avtiotaong authc [6]. Luyxexpyéva, und Ty
enidpoom Tou medlou apimVIong, ohOXANEN 1) Béoun 1 HEPOC TV CWHATOIWY NG BEoung exteAoDY
OLYYPOVWE TOANAVTOCELS PE GLYVOTATES (TEOTOUC TUAAVTWONS) oL omolec Unopoly va tadvoundoly
oe dimohxés, tetpomolxée, efanohunéc, xAn [7]. Ildvew and xdmowo xotdght éviaong, mopatneeito
wlar exdetin) ad&non 6to TAATOC TS ToaAdvTwoTng 1) onola 0dnyel o uroldiuion Tng TodTNTIC TNS
0EOUNC XAl TEAXS OE UMWAEIES COUATLOIWY.

‘Evag Quotxog unyoviodde i tnv meokndn 1 ty andoPeorn g actdielec déoung meoxdnTel
amo TN OLpoEd TWY CUYVOTHTLY CUVYEOTEOV TV CWUATOIWY GTO ECWTERPIXO TOU TAXETOU. LUY-
HEXPUWIEVDL, AV 1) CUYVOTNTA EVOC TEOTOL TOAAVIWONG Tou Oleyelpeton o War dEour, elvor EVTOC
ToU €0POUC TV CLYVOTATWY TWV COUATIOIWY TNg déoung, ToTe autdg o Tedmog Yo anocBéoel. O
UNYOVIoUOS aUTOG Eval YVKOOTOC w¢ andoPeor Landau xou eloriydn Yo TeOTN QOpd GTNY QUOLXH
TAdopatoc [8]. 310 TAaolo TwV SECUOY POPTIUEVMV CLUUTIOmY, Wiol SleEodixh LeEAETN Tou Baotxo
unyovtopol €yer yiver oto [9]. T youniéc evtdoeic 8éoung, 1 Olopopd OTIC CUYVOTNTES TKV
cwpatdiny opiletar and to e&ntepd RF medlo. T éva muitovoeidég elwtepixd medio RE To
elpog auidvetar Pe to uixog tne déoune (avdhoyo tou qzbg/lﬁ, omou ¢y elvan T WO Tou uRoug
ToXETOU OE axTiviaL) X0t ¢ €x ToUTou 1 andofeon Landau eivor To omodoTixt.

Extéc and v adinomn tou peyédoug tou mox€tou cwuatdiny, uio GAAn xown mpocéyyion
v Ty evioyuon g andoPeong Landau civan va yenowornomdel cbotnua padlocuyvoThTwy oe
AATOLOL VA TERT] APUOVIXT), OE GUVOLAOUO UE TO xURlWE GUCTNUA. XTNV TEPITTMON aUTY, 1) CUVORXT
e€wTepT| Tdom Mou BAETOLY Ta cwUaTidl elvo:

Vext(¢) = Vising + Vasin(ng + @2), (1)

6mou V1 xan V2 ta Aty tdong tou xuping xou tou apuovixot RF cuotiuatoc, n = h2/h1 o Aoyoc



TWV CUYVOTATOVY Toug, Po 1 oyYeTIXn) PAoT xou ¢ 1) CUVTETAYUEVT QPACTC TWV CWUATIOWY 6TO xuplwe
RF cbUotnua. o éva un emitayuvouevo Tox€To, To UEYIGTO VPO TWV GUYVOTATWY GUVYEOTEOV
ToL ToXETOL emTUYYGveTon dTay Py = 0,7 [10] mou avuistotyel, oty nepinTwon nou BeloxduaoTe
v and T evépyeta petdBaone (ot mhaiowa tne mapoloug epyooiog VEwpoluE ¢ = ), OTOUG
Tp6ToL Aettovpyiog avZnone -wixouc (BL: Bunch-Lengthening ) xou peiwone -uixouc (BS: Bunch-
Shortening ) tou taxétou cwuaTdiny, avticTotya.

Ye mololg emtoyuvTég yenotponoteitan évo RE cUotnua uhnifc apuovixfc [11] o ouvduooud
ue To xuplwe clo TN Yo SLdpopous AdYouc:

o [l var awgroel To €VPOC TV GLYVOTATWY GUVYEOTEOV

o T'ot vo aAAGEEL TO OYTOL TOU TOXETOU CWUATIOIWY: ETUTEDO TAXETA PE PELWUEVO TAGTOSC EVTUONG
eebUaTOC

o o v adénom tne meployric euoTAVELIC GTO BloWnnn YWEO PACEWY

o Tl RF yeplopolc (Bloymptogds Tou Taxétou owpatidiwy, EAeYyOUevn adinon tne dtopxous
EXTEUTTUXOTNTAC).

Ou npwteg 2 MepinToElc 0ToyeloLY XUplwe oTNY alENnon Ty oplwy cuctddeiag Tne déoung. LNy
TeOTN TEpinTwaoT, To LYNATC apuovixhc RF cUo trua xaheltar cuyvd we xoukotnta Landau, dSnhovovtag
NV avapevouevn adinor tne otadepotntac tne déounc uéow Landau anécBeonc. To heyduevo no-
YnTind cuothuota RE udmiic apuovixhc oe doxTtulloug amotixeucne NAEXTEOVIOV YenoUloToLEl
NV Tdon mou mapdyeton and Ny Bl T 6éoun. Meto€h twv TeoTwY Asttoupylag evoc dimhol RE
OLO TAOTOC, YENOLOTOLETOL TTOAY Tlo Uy VE 0 TpdToc abinone uixous (BLM), dedopévou dtu etvou
O EAXLO TLIXY Yl ToANOUS Adyouc. T'ar tny (BLa Tdom xon apuovinég avahoyleg divel peyahiTepo ebpog
oLYVOTHTWY GLVYEoTEOV. EmnAéov, mapéyel ueyahitepn teploy | euc Tdielag, xodmg xou Uelwon 6To
TAATOG EVTOOTC TOU PEVHATOS COUATIOIWY, UELOVOVTIS To PUVOUEVA Y wetxol @opTiou. 201600, 6w
oty vel autn 1 Stateir), 1 BLM pédodoc €yel Tou dixolc tne meplopiopols. o mopdderyua, otny
nepintwon Tou SPS, n Asttoupyia Tou unyaviuatog pe auth T YEYodo dev elvor SUVATH.

To clotnua duo padlocuyvotAtwy oto SPS elvon €va and To Baond U€ca, GE GUVOLUCUO UE
TNV EAEYYOUEVT AOENOT NG SLOWNXOUC EXTIEUTTIXOTNTOC, Xou T VEo omTtixt) 20, yiot TNV onuavTxn
aOZnom Ty oplwv otaldepdtnrac (EVOC xou TOAMDY TAXETWY) TNS BECUNC X TNV POy T SECUWY
xalic mowwtntoag otov LHC. §lot6c0, yia o yéhhov tou LHC xan tor oyéodia avaBdduiong tou,
HL — LHC xou LIU, 6mou amoutodvton udmhdtepeg evidoelc 6éoung, ol x0plol TEPLopLoUol atny
an6doom tou LHC' mpoépyovtal and @ouuvouevo Tou TpoxahoLy actoel déopeg otov SPS. Me
xtvnteo Ta TpoPAuata Sl rxoug ac Tdielag Twy decuwy Tou SPS, 0 6Toy0g TNE Tapoloug dlTeShc
elvon 1) AEMTOUEPTC UEAETN XA AVIAUGT] TNG AmOB00TE EVOG CUCTAUNTOS 2 padloouyvoThTtwy. Kotd
CUVETEL, TOL AMOTEAEGUATA EQUEUOLOVTOL XUPIWE T TUPUUETEOUS déoune xou Unyavic tou SPS
%At TN Agttoupyia Tou we oo TNUA Tapoy g deouwy atov LHC'. Q01600, T anoTteAEGUATO UTopo0Y
Vo YeEVIXeLJoUv o€ TOANOUC XUXALXOUE ETUTUYUVTES TEWTOVIWV.

To xbplo emtedypata autic e epyaocioc elvar 1 e€iynon, elte pe avahutinég pedodoug 1 e
TPOCOUOLCELS, TV AXOAOUIWY CTUAVTIXDV TELRAUATIXWY TOURATNEHOEWY, To onola Tteploptlouy To
ToEOV Xt To uEAAOVY TN Aettoupyiog Tou SPS:

o Trv cugdvion actdieiog ot dEoun o YoUNAG PEVUA CWUATOIWY 6Ty TO GUCTNUN BUO Po-
OL0oLY VOTHTWY Aettovpyel oty xatdotaon BL.



e Tnv cugdvion actdielog ot SEoun oe YouNAd PedUa CWUATOIWY OTaY To LG TN SUO EAOLO-
CLUYVOTHTOVY Aettoupyel oty xatdotacn BS 6tav n avaroyla uhnirc tdong uetald towv dVo
ovotnudtwy RE V2/V1 <1/4 vy to SPS).

o Trnv e&dptnomn Tou xatwAlov Eviaong evog TaxETou and T oyeTxr| gdon Po uetal Twv 600
cucTnudtey RF.

o T un-opotduoppa eAeYyOUEVT adENCT TNG SLOUNAXOUEG EXTEUTTIXOTNTOS O cUo TN duo RF,
ToU 00MYEL OE BLAXVUAVOELS TOU UAXOUS TV TAXETWY NG déoune.

Apyd 1 Sroprixne euotdieio eVOC TOXETOU COUATIOWY OE OYEDT UE TNV XATAVOUY| CUYVOTATWY
olYYPOTEOV 0T0 EcWTEPIXG TOL ToxéToL wi(J), uehethinxe yio éva cbotnua 2 RE Seltepnc ap-
wovixric (h2/hl = 2) yi eunédnon nov mepthopfdvel LOVo QavtacTixd pépoc. 3TN pehétn auth
oev M@inxe unodn 1 tepinTwon EMTAYLVONG. DUYXEXPWEVA, TO XATOPAL ATWAELNS TN ATOCBECTC
Landau Bpédnxe 1600 and TEOCOUOUOOEL OGO Xl oo ovoAUTIXOUS LTOAOYIGHOUS AoufdvovTag
umodn TN Blatapoy ) Tou duvouxol. H nu-avalutixr) mpocéyyion Baclotnxe oTny elpEcY TKV
droxprtdv Van Kampen ocuvyvotfitwy (culloywxol tpémor tahdviwone ywelc andoPeon Landaw)
ANovovtac oprduntind v yeauuixonompévn ellowon Viasov [12,13].  Ou mpooopounoels npory-
patomotinxay yenowwomoldvTag aptduntind xmdwxa yeauuévo ot Matlab ywr toug oxomolg tng
TapoLCUS UEAETTC.

Ko ot 800 mpooeyyloeig €deilav OtL yioo 0 Aettoupyio BL xau yior plor EToyyLxr eUnédnon
undpyet pa xplowun Ty yior T Stoqunixn exneuntixdtnta (1 8pdon J), méve and Ty onolo 1o xaTdehL
e anooBeor Landau peidveTtal Toyéwe 6To UNdEy, omng gaiveton otny Ewdva 1. Auth n xplown
T avtototyel oty nepoyy) 6mov wi(J) = 0 (=0.6 eV's otnv Ewdva 1). M petatdmion gdong
weTagd Twv 600 RE cuvloTwomy Tévew amd 157 unogel vo Bonifoet otny adEnomn tou xatw@iiov. e
oUTYH TNV TEPIMTWON To Ty AU Tou Toxé€Tou el Vo etvan eninedo. Autd ta amoteAéopata eivon oe
V€on vo eENYNooLY TIC TOEATNEHOELS XATd T Btdpxeta Tng Aettoupylag Tou SPS w¢ cuyxpouo Thpag
pp [14,15]

T o yoenuxd eumédnon ( ywexd goptio) ta xatweha eite auidvovton dpopotind X Sev
UTOpOUY VoL UTOAOYIG TOUY avolUTXd. AuTo eivan oe oupgovia pe Tic Yewpntinéc tpoBiédeic oto [16],
OTOU ATOOEYUNXE OTL Yior TNV EUTEDNOTN YWELXOL QopTiou, TaVL amd TNV eVEPYELX PETABONG, UL
0E0UN OE CTATIXT XUTACTAOT Elvon TdvVTaL G ToERT).

H avdhuon eqopudotnxe yio didpopouc Aoyous opuovixey cuyvothtwy h2/hl = n yetalld
Ty 600 cuoTnudtwy RF, Swtnpodvtag v Blor avodoyia tdone V1/V2 = n. "Eyer anoderydet
OTL TOEOTL UEYAAVTERT THLY TOU V TUREYEL HEYUADTERO QAGUN CUYVOTHTWY GUYYPOTEOY, 1 xplown
TEpLoY Y| UETUTOTULETOL TO XOVTE GTO XEVIPO TOu TUxETou, o outd meptopilel To péyedog tou
Tox€Tou Tou unopel va yenoyloroindel yio otodepy| Aettovpyia Tou emtayuvTy. Amodelydnxe eniong
6T, xatd Tt Aertovpyla BS pe n < 3, ou nepoyée omou wi(J) = 0 epgaviloviar o¢ tomxd
axpotota. Koatd ouvénelo, yia TEC eEXTEUNTIXOTNTOC HEYUAVTERES OO AUTES TIC TWES, TO XOTOPAL
anwietog e Landau andofeong elvon onuovtixd petwpévo omwe galveton oty Ewdva 2 yoon = 4
(0.3 eVs<€<0.6 eVs).

Ta anoteAéopato qUTE CUUPOVOLY TOAD XOAd UE TIC TELROUATIXES TORATNEHOELS AO TN A€l
Tovpyior Tou SPS pe clotnua 2 RF 4ng opuovixiic (b = 4). Ipoyuatonomidnxoay YeTpHoEC TOU
xaTw@Aou NG Slopnxoug oo TalElg EVOC TAXETOU GE OYEoT UE TN OoyeTXY| @don uetoll Towv dvo
oLOTNUETWY padlocuyvothTwy. Xenotporotinxe hoyog v tdoewy V2/V1 = 1/4 xou wo otadepy



2.5+ | —-e-—calc - BLM

—$—sim - BLM

—-&--calc - SRF

2/ | <©—sim - SRF

~-@--calc - BSM

151 | —©—sim-BSM

11
Nth x10° " p)

Figure 1: Kot anwietag anocBeone Landau cuvapthoel NG Slouixous EXTEUTTIXOTNTIC OE
obotnuo Suo RF (BLM - xbxxwo, BSM - umhe) xou o obotnuo woc RF (podeo) pe Bdon
avohuTixoUg utoloylopols (tekeles) xan mpocopoudoels (puBot).
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Figure 2: Koatdgha andieiog anécBeone Landau cuvopTAoEL TG BLaX0US EXTEUTTIXOTNTOS Yid
ha/h1 = 4 oe BSM tpbno Aettovpyeiac, e BAom TEOCOUOIOOELL.

évtaon déounc avd maxéto 1.0 10 H avéluon tov petphoswy €deile dtL n déoun ebvon aotadhc
o1 Olourxn cuviothoa T6co otov BS 6co xaw otov BL tpomo Asrtoupylag. Ou @doeig autég
optlovton oTto unydvnua e uia pédodo Paduovounone Booioyévn otny Bl T déoun xou 1 omolo
TpoyUATOTOE(TON GTNY apy | %dde OElpdc UETPNOEWY. Lop®VOVTIS TN UETATOTLON QAoEwS UeTal)
TV 6V0 cuoTNUdtwy RF, npocdloplotnxe pla teploy ) evotdielog tne 6éoung, pwetadd 502 xow 100°
(6t 800 M Hz) oe oyéon ye v Aettovpyio BS, 6nwe goivetan oty Ewdva 3. Tparypatomoridnxoy



ET{ONC TPOCOUOLWOELS YENOoHOoTOLOVTAC Tov XxWdxo ESME [17] xou to nopdy HovTéro eunédnong
Tou SPS, ye oxond tny emPBefolwon TV anoTEAECUATWY.
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Figure 3: Abyog TEMXOY TPOC EYIX®Y TETEATOMXOY (UETEPNOES) X0t OMOMXOY (Tpoco-

LOLoELS ) Potio 0g grvak 1o ITLoh YUaBEUTORE (LEACUREMEVTC) 0Vd TAATMV TAAVTOONG, TOAATNAGCL-
aopévol pe ) péytotn Th U (ATes) cuvapTtioel Tng ¢gop oTo clotnua 2 RF tou SPS ue
V, = 0.25. Aprdpéc mpotoviey ava taxéto ~ 1 x 10 ye ¢ =~ 0.25 eVs.

To amoteléopata TV TEOCOUOLOOEWY €BeIEoy TOAD XOAT) CLUUPWVIN PE TIC PETENOELS xondg
xatéAnZay oty Bl teployh @doenmy. Mewdhvovtog o hoyo twv tdoewy oe V2/V1 = 1/10 (n tyun
Tou yenotonoteiton ofjuepa o Aettoupyio) odynoe oe otaepornoinon tne déoung oe BS tpémo
hertovpylog, anotéheoya o omolo enlong emPBefouwinxe and TI¢ TEOGOUOLWOELS.

H eZdptnon and tnv @don petald twv 0o cuotnudtny RF', extog and tnv euaoinocia 6to
AoYo TV Tdoewy, Belyvel emlong 6T N andAicw tng Landau andoleone otnv eninedn meployn
NS XATOVOUNE QPACEWY oUYYEOTEOV Yoo 0T Béour, umopel vor elvon wior mdavr e€iynon yior Ty
AmOCBECT) TWV TAAAVINOEWY TOU TapaTtneolvTon oTig peTproelc. o mopdderyua, otn Aettoupyia
BS pe V2/V1 = 1/4, 1o péyedoc twv Taxétwy TOU YENoWonowlvTal oTic PETPRoES (Xou TIC
TPOCOUOLOCELS) Elvol TETOLO KO TE TOMS cwuatidio vo elvon otny teployy) 6mou wi(J) = 0 értou 7
Landau anbéofeon ydvetar. Me tn peiwon tng avahoyiog oe V2/V1 = 1/10 n xotovour ouyvothtwy
oUYYPEOTEOV YIVETAL HOVOTOVY Yo TN Aettoupyio o BS ot w¢ ex TOUTOU EMTUYYAVETOL EUG TAUEL
e déoung, omwe galvetar oty Ewdva 4. To yeyovog autd Bivel 1660 TNV alTlohdYNon ol xau
ToV TEPLopoUs TNy TdoT Twv 800 M Hz tou yenowonowdnxe v i LHC 6éopeg otov SPS.

Axoum xou ue 0 GO TNU 2 pUBLOCUY VOTHTWY TETAPTNE dpUoVIXC o€ AetTovpyla BS ue avoloyia
tdone V2/V1 = 1/10, ot déopec npwtoviny tinov LHC otov SP.S e€oxohoudolv va givor oo tadeic
0710 Téhog g emtdyuvone. T'io To Aoyo autd epoapudleton plar EAEYYOUEVY adENom TNS Blorxoug
EXTIEUNTIXOTNTOC, XAUTA TO OEUTEQO PEPOC TNC EMITAYLUVONG, UE OXOTO TNV MEQUUTERL ALENOCT TOU
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Figure 4:  Kotavour cuyvotitwy cUVYpOTEOV GUVIPTACEL TN OLWUNAXOUC EXTEUTTIXOTNTAS Yid
dtapopeTixéc mapapétooug Tne RE. H padpn opildvtan yeauun napouctdlel to péyedog tou maxétou
ue Bdomn Tic YeTEY|OELS.

(PACUATOC TWV CUYVOTATOV GUYYEOTEOV HECA GTO TOXETO CWUNTIOWY, EVIGYDOVTIC TO (QPOUVOUEVO
¢ Landau ambéofeong. Autd emtuyydvetan ye v ewoaywyr YoplfBou oto clotnua RF twv
200 M Hz. Qct600, 1 pédodog auth| €xel Toug dixolg tne teploplopols. Ipdyuatt, ol netpauatinég
HETENOELC €0etlay OTL UETA TNV EloaywY?| Tou VopUBoU, 1 XATAVOUT TOV UNXOV TWV TUXETWY EYEL
Lol UN-OUoLOUop®T doun, oTwe galvetar oty Ewdva 5. To @awvoyevo autd yivetar eVIovOTERO UE
v aOEnom Tou TAdtoug Tou YoplBou xon anoTehel Evay TEQLOPIOUO GTNV ELCAYWYT TNG 6éoung oTov
LHC 6tav v oxonolg euctdielag o uhnhotepeg evidoeic déoune {nniel yeyaldtepn eyxdpota
EXTEUTTIXOTNTOL

‘Eyet anodevydel xatd tn didpxelo authc Tng epyaciog, Tt oL ueTpolUeveS HETUBOES TNG TEMXAC
OLOTMOUC EXTEUTTIXOTNTOC XATE Uxog TNS Béoune unopolv va e&nynioly and v uetofolr g
AATAVOUNC CUYVOTHTWY GUYYPOTEOV AOYW TNG ENAYOUEVNS TAOTNS OTIC XOLAOTNTES PABLOCGUY VOTHTWY
(beam loading) oto cVotnua 2 REF oto SPS. EWwétepa, hopfdvovtac unddn tny evanouévouoo
EMOYOUEVY TAON OTIC XONOTNTES padlocuyvotitwy twv 200 M Hz (ue o cuoTAuata ovddpeaong
(feed — back) xou avatpogodoaoiuc (feed — forward) ), xou tnv emoryOUeEVN TUON OTIC XOLAOTNTES
Twv 800 M Hz, 1 napatneoluevn uetoorn Tng Véong Twv Toxé€Twy xatd uixog tne 0éoung umopet
vo avamapayOel ue xohn axpelfeta, onwe gaiveton oty Ewodva 6. Me Bdon autd to yoviéro urn-
ohoyloTnxe 1 xaTavouY| GUYVOTHTWY GUYYPOTEOV Yo TUXETA OF OLUPORETIXES VECELS XAT U X0 TNG
0éounc 1 omola umopel vo eENYHOEL TN UEYAAN SLOXOUOVOT OTNY EXTEUTTIXOTNTO TWY TUXETWY VLol
NV e@apuolopevrn cuvdetnon Yopfou.
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CHAPTER 1

Introduction

Particle accelerators are widely used today in science, both in fundamental and applied research,
but also in many technical and industrial fields. Although, initially proposed for nuclear and
particle physics research, now accelerators are of great importance in industrial applications,
in material science (synchrotron light sources and spallation neutron sources), in biological and
medical research and in radiotherapy (cyclotrons). Over the last 80 years, technological progress
allowed a remarkable increase in energy and intensity of the particle beams, leading to numerous
achievements in all the previously mentioned fields. However, the constant demand for beams of
higher current and luminosity! is limited also by the undesirable effects of the electromagnetic
(EM) fields produced by the particles themselves. Those effects can degrade the beam quality
and in some cases lead to beam instabilities and eventually to particle losses.

This thesis investigates the limits of beam stability for some specific beam parameters and
machine conditions, mainly related to the CERN Super Proton Synchrotron (SPS) (see below).
We will study these effects in the so-called circular accelerators, although their real shape is
more complicated, e.g. they usually contain a number of straight sections. Particles in such
accelerators perform a periodic motion around the circumference with revolution period Tj.
In particular, this thesis is focused on the special type of circular machines called synchrotrons,
where the external EM fields are synchronized with the particles’ revolution frequency fo = 1/7p,
confining their orbit in a well-defined path. Furthermore, we will restrict the analysis to the
longitudinal motion of the particles, assuming that it is completely decoupled from the transverse
one. In fact, this assumption is valid for all the considered cases.

Today, in the majority of the circular accelerators, the acceleration of the particles to high
energies is performed by the application of longitudinal alternating (sinusoidal) electric field at
an RF frequency f.¢ which, depending on the specific machine and the type of the particles,
ranges from a few hundred kHz to 10-30 GHz. In the case of synchrotrons, these frequencies
have to be synchronized with the particles’ revolution frequency so that fir = hfy, where h
is an integer called the harmonic number. Consequently, this focusing electric field forces the
particles to perform (synchrotron) oscillations around a stable phase ¢5, with frequencies known
as synchrotron frequencies. Due to the periodicity of the RF field there are h similar stable
regions, called RF buckets. For this reason in synchrotrons the particles are usually grouped into
bunches. In most of the cases several regularly spaced bunches are accelerated simultaneously,
but in some cases there is only a single bunch circulating in the machine.

In addition to the external EM fields which are applied to the charged particles in the bunch,
to accelerate and confine them transversely, there are fields which are generated by the beam
itself, either directly (space charge forces, intra-beam scattering) or by the interaction with its
surrounding (see for example [18]). This effect is imposed by the complexity and diversity

2

!The luminosity, £ in cm™?s™! is a measure of the rate the particles interact per unit area in a collision process.
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(in shape and materials) of the various machine elements (beam pipes with expansion bellows,
connection flanges, accelerating RF cavities, kickers, collimators, beam instrumentation, magnets
etc), which create an unavoidable non-uniformity of the beam surrounding. When a charged
particle passes through any cross-section discontinuity, it excites an EM field known as wake
field (or wake function) since it remains usually behind the (ultra-relativistic) exciting particle.
This wake field will react back on the beam, perturbing the motion of the trailing particles. The
integrated effect over a finite distribution of charged particles is described by the wake potential,
which can be determined by the convolution of the wake function with the charge distribution
in the bunch. It is common in accelerator physics to use also frequency domain where analytic
calculations are usually easier. In that case, one uses the concept of beam-coupling impedance
which is defined as the Fourier transform of the wake function [1].

Generally, the beam induced fields contain three spatial components, classified as longitu-
dinal, horizontal and vertical (the last two constitute the transverse plane). The longitudinal
component of the electric field, on which we will be focusing in this thesis, may change the effec-
tive amplitude and phase of the applied accelerating RF field as well as the energy distribution
in the bunch and its length. Furthermore, its effect can be separated into single-bunch and
multi-bunch, depending on the characteristics of the respective force. Single-bunch effects are
caused by wake fields that are strong only within the limits of the bunch size and are decaying
fast enough, leaving the coming bunches unaffected. In contrast to that, multi-bunch or coupled
bunch effects are caused by forces which remain strong enough to disturb the motion of the later
bunches or even of the same bunch in the next revolution turn.

The wake field becomes stronger at higher beam currents. Up to some intensity the beam,
although perturbed, remains stable. However, above some threshold current, longitudinal in-
stability of the beam will occur, known as collective instability [2]. The type of the instability,
which limits the operation of an accelerator depends strongly on the characteristics of the spe-
cific machine (machine elements, type of particles) as well as the bunch parameters (length,
intensity) [2-4]. For instance, the fast increase of the bunch length observed in the SPS in the
past [5] was caused by a short wavelength (compared to the bunch length) resonant impedance
and disappeared after shielding of the responsible sources [6]. In particular, under the influ-
ence of the wake field, the whole bunch or part of the particles inside the bunch are performing
coherent oscillations with frequencies (modes) which can be classified into dipole, quadrupole,
sextupole, etc., depending on the shape of the oscillations [7]. Above some intensity threshold,
an exponential growth of oscillation amplitude is observed leading to degradation of the beam
quality and eventually to particle losses.

A natural mechanism to prevent or damp the beam instabilities arises from the difference
of the individual particle frequencies inside the bunch (incoherent synchrotron frequencies). In
particular, if the frequency of a coherent mode, excited in a bunch, is within the range of the
incoherent frequencies of the particles, then this mode will be damped. This mechanism is known
as Landau damping and was introduced first in plasma physics [8]. In the context of charged
particle beams, a thorough exposition of the basic underlying mechanism has been provided in [9].
For low intensities, the spread in the particle frequencies is defined by the external RF field. For
a sinusoidal external RF field the spread is increasing with the bunch length (proportional to
(bg /16, where ¢}, is half the bunch length in radians) and thus Landau damping is more effective.
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Besides increasing the bunch size, another common approach to enhance Landau damping in
an accelerator is to use a higher harmonic RF system in addition to the main one. In this case,
the total external voltage seen by the particles is

V;Xt(ﬂﬁ) =Vising + Vs sin(nqb—l—(I)g), (11)

where V7 and V5 are the voltage amplitudes of the main and high harmonic RF systems, n =
ha/hq is the ratio between their frequencies, @, is the relative phase and ¢ is the phase coordinate
of the particles at the main RF system. For a non-accelerating bucket the maximum spread
of the incoherent synchrotron frequencies inside the bunch is obtained when ®2 = 0,7 [10],
corresponding, above transition energy (¢s = 7, the case considered in this thesis), to bunch-
lengthening (BL) and bunch-shortening (BS) mode accordingly (see next Chapter).

In many accelerators a high harmonic RF system is installed [11] in addition to the main RF
system for various applications:

e To increase the synchrotron frequency spread
e To change the bunch shape: flat bunches with reduced peak line density in BLM
e To increase the available stable area in the longitudinal phase space (bucket area)

e For RF manipulations (bunch splitting, bunch rotation, controlled emittance blow-up etc.),
see for example [19].

The first two are mainly aimed at increasing beam stability. In the first case the high harmonic
RF system is often called a Landau cavity to indicate an expected increase of beam stability
through Landau damping. So-called passive high harmonic RF systems in electron storage rings
use the voltage generated by the beam itself by correct choice of cavity de-tuning. Among the
operating modes of a double RF system BLM is used much more often since it is more attractive
for many reasons. For the same voltage and harmonic ratios it gives larger synchrotron frequency
spread. In addition it provides larger bucket area as well as reduced peak line density and
therefore reduced space charge effects and machine elements heating. However, as shown below
BLM has its own limitations. For example, in the case of the SPS, operating the high harmonic
RF system in BLM is not possible [10].

This thesis is dedicated to the study of the beam dynamics in a double RF system for proton
beams. It is motivated by longitudinal stability issues in the CERN SPS [20] during its operation
as the injector of the Large Hadron Collider (LHC) [21]. Thus, for most of the cases the obtained
results are applied to the beam and machine parameters of the SPS (see below). However, most
of them can be generalized to other proton accelerators as well.

1.1 The CERN accelerator complex

The name CERN is derived from the acronym for the French Conseil Européen pour la Recherche
Nucléaire, or European Organization for Nuclear Research. Founded in 1954 in the Franco-Swiss
border near Geneva, by a convention between twelve European countries, CERN is one of the
world’s largest and most advanced centers for scientific research [22].
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During the past years, many significant scientific discoveries were made at CERN (neutral
currents, W and Z bosons, first observation of anti-Hydrogen, etc.). Today, CERN is widely
known to host the 27 km long Large Hadron Collider (LHC) [23]. The LHC is the largest
circular accelerator in the world and the main focus of research at CERN. It it operating since
2009. In the LHC the particles are injected at 450 GeV and accelerated up to the energy of 4 TeV
(an energy of 7 TeV is planned to be reached from 2015 onwards). At top energy the two, counter
rotating, proton or ion beams are made to collide at the four interaction points, where detectors
are placed to observe the debris of the collisions and examine any particles that may be produced
(ATLAS, CMS, ALICE and LHCD). The biggest of these experiments, ATLAS and CMS, use
general-purpose detectors to investigate the largest range of physics possible (as Standard Model,
the Higgs mechanism, Super-symmetry and others). In fact, a particle consistent with a Standard
Model Higgs boson was discovered in 2012 [24,25]. Apart from these four, three other, smaller,
experiments are installed in the LHC tunnel and many more experiments use beam from other
CERN accelerators and facilities, being an important part of the laboratory’s activities.

The energy of the particles injected into the LHC is gradually increased to 450 GeV in the
LHC injector complex shown in Fig. 1.1. Once accelerated in a particular machine, particles are
either transferred to a larger machine or supplied to one of the experiments mentioned before.
Currently, two types of particles are accelerated in the LHC: protons (H"), which are the nuclei
of hydrogen atoms; and lead ions (Pb*82).

LHC

SPS

ATLAS

C’:‘\l

EHE Gran Sasso

East Area

PS

X 1959 (628 m) N
LINAC 2 ‘
C e
[N Leir
LINAC =3 2005 (78 m)
lons
» ion  » neutrons » P (antiproton) —+H— /antiproton conversion  » neutrinos  » electron
LHC Large Hadron Collider SPS  Super Proton Synchrotron  PS  Proton Synchrotron
AD Antiproton Decelerator CNCGS Cern Neutrinos to Gran Sasso  1ISOLDE pE 1
LEIR LowEnergylonRing LINAC LINear ACcelerator n-TofF Neutrons Time Of Flight

Figure 1.1: Schematic view of the present CERN accelerator complex. (©CERN.

For the protons going to the LHC, the injector chain starts with the linear accelerator
LINAC2, accelerating them to 50 MeV. The beam is then accelerated to 1.4 GeV by a 157 m
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length synchrotron, called the Proton Synchrotron Booster (PSB) (4 almost identical superim-
posed rings), before being passed into the Proton Synchrotron (PS). The PS is a 628 m length
synchrotron, where the particles are accelerated up to the energy of 25 GeV. This is the ma-
chine where the longitudinal bunch structure of LHC-type proton beams is produced by multiple
bunch splitting (and merging) using elaborate RF manipulations [26] (see below) which require
a variety of RF systems with different harmonics (10 MHz, 20 MHz, 40 MHz, and 80 MHz RF
systems). Longitudinal bunch rotation is performed just before extraction to ensure that the
bunches have the correct length before injection into the SPS. In the SPS, protons are then
accelerated up to 450 GeV and sent to the LHC.

Lead ions for the LHC start from a source of vaporized lead and enter LINAC3 before being
collected and accelerated in the Low Energy Ion Ring (LEIR). They then follow the same route
to their maximum energy as the protons.

1.2 LHC proton beam production

In the nominal mode of operation for filling the LHC, the PS delivers every 3.6 s a batch of 72
bunches spaced by 25 ns [21]. This distance between bunches is preserved up to the LHC. To
prepare this beam two different splitting schemes are used in the PS [26]. Other bunch trains
with larger bunch spacing and smaller number of bunches are also produced. In fact, during the
previous years of the LHC operation, beam with 50 ns bunch spacing was used, with 36 bunches
per PS batch.

The complete process of the production of the 25 ns bunch spacing LHC beam is schematically
presented in Fig. 1.2. Six bunches delivered in two batches by the PSB are captured in the PS
on harmonic h = 7. On the 1.4 GeV (kinetic energy) injection flat bottom, the 6 bunches are
triple split. This process is started as soon as the second batch is received (1.2 s after the first
injection), which provides 18 consecutive bunches on h = 21 (10 MHz RF system). The beam is
then accelerated on this harmonic up to the 25 GeV flat top, where each bunch is twice split in two
to give 72 consecutive bunches on h = 84 (40 MHz). The whole process consists of a complicated
RF manipulation where many RF harmonics are required simultaneously (h = 7,14, 21 for the
triple splitting and h = 21,42, 84 for the quadruple splitting). Careful design of the RF voltage
and phase programs is necessary in order to obtain equal bunches with the same distribution
of particle density as the initial one [21]. In addition, a beam phase loop is used to suppress
collective oscillations with respect to the RF sum voltage. Moreover,in order to achieve nominal
longitudinal emittance (see below) and ensure beam stability a controlled emittance blow-up is
applied by using phase modulation of the 200 MHz RF system.

Similar procedure is followed during the production of the 50 ns bunch spacing LHC beam,
but without the second splitting in two bunches at 25 GeV. Thus, a batch of 36 bunches are
obtained, spaced by 50 ns.

At the end of the splitting process at 25 GeV, the bunches with a length of around 11 ns are
held by the RF on h = 84 (40 MHz). Since in the SPS the frequency of the main RF system is
200 MHz (RF period of 5 ns) the PS bunches are too long for injection into the SPS. Thus, prior
to the transfer to the SPS, the bunches are rotated in the longitudinal plane during a quarter of a
synchrotron period by a fast (within a few revolutions) increase of the RF voltage on harmonics
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Figure 1.2: Schematic representation of the production of the LHC 25 ns beam in the CERN
PS [27].

h = 84 and h = 168 (80 MHz) [21]. With this, non-adiabatic procedure the bunch length is
reduced to about 4 ns. Up to four consecutive batches of 72 (or 36) bunches are injected every
3.6 s into the SPS at 26 GeV/c.

1.3 The Super Proton Synchrotron as the LHC injector

The SPS is the second largest accelerator in the CERN accelerator complex with a circumference
of 6.9 km. It was fully commissioned in 1976 and since then, it has been used as a proton-
antiproton collider (SppS), served as the injector for the Large Electron-Positron collider (LEP)
and now provides protons and ions to the LHC alongside fixed-target experiments including
CNGS (until 2013), COMPASS and the North Area.

Proton beams for the LHC are injected at a momentum of 26 GeV/c from the PS and
accelerated up to 450 GeV/c before extraction into the LHC. The usual LHC filling cycle in
the SPS (see Fig. 1.3) is designed for up to four injections from the PS. Since the length of
the PS cycle is 3.6 s, an injection plateau of 10.8 s is required in the SPS. After the injection
of the last batch, a ramp to 450 GeV/c with an average ramp rate of 78 GeV/s takes place.
The acceleration voltage is provided by four traveling-wave RF cavities (TWC) [28] operating at
200 MHz. The total length of the cycle is 21.6 s (a multiple of the basic machine period, 1.2 s).
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Figure 1.3: Beam momentum variation during the proton cycle in the SPS for the LHC filling.

The beam characteristics as well as the RF settings in the SPS have been chosen to minimize
the particle losses, increase the longitudinal stability and produce a beam that fulfills the needs
of the LHC. In particular, at PS-SPS transfer the longitudinal emittance ¢; is 0.35 eVs and the
bunch length (4 standard deviations in the Gaussian case) is around 4 ns (produced after rotation
in the PS). These values are determined by beam stability requirements both in PS and SPS.
Smaller £; would give more margin for injection errors and hence less risk of capture loss (particles
that are not captured in the RF buckets at injection), but will degrade the beam quality due to
the decrease of the longitudinal instability thresholds (single and coupled-bunch) [29]. However,
recent studies on the beam transfer from PS to SPS [30] demonstrated that the beam losses could
be halved by optimizing the PS bunch rotation in longitudinal phase space. With higher voltage
and optimized timings used for the rotation, the same bunch length and transmission (in the
SPS) can be maintained for a 40% larger longitudinal emittance, which increases significantly
the longitudinal beam stability [29]. This optimization of the bunch rotation though requires
the use of additional RF cavities in the PS, which are currently reserved as spares.

The matched voltage at injection is 750 kV, but much higher capture voltage is used in
operation (>2 MV). The higher voltage reduces the effect of beam loading [31] (see Chapter 5),
provides more stability against coupled bunch instabilities at 26 GeV/c and produces some
longitudinal emittance blow-up that helps stabilize the beam against instabilities later in the
cycle. After the beam spends a short time (around 100 ms) at injection energy the emittance is
g1 ~ 0.4 eVs. A typical RF voltage programme used for the LHC-type proton beam during the
operation in 2011 and 2012 is shown in Fig. 1.4. Note that these estimations correspond to the
SPS Q26 optics (see below) used in operation until the September of 2012. Both measurments
and simulations presented in the later Chapters of this thesis correspond to these SPS optics.

Up to about 200 GeV (around 14.5 s in the cycle), the 200 MHz voltage is adjusted for a
constant bucket area (0.68 eVs for the example in Fig. 1.4). At flat bottom each PS batch is
injected at 2 MV. However, in order to reduce the capture losses the RF voltage is within 50 ms
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Figure 1.4: Typical voltage programme of the main 200 MHz RF system in the SPS, used in
routine operation for LHC filling in 2011 and 2012 for 50 ns spaced beam with intensities up to
1.6 x 10 p/b. The vertical lines indicate the start and the end of acceleration.

increased from 2 to 3 MV after each injection, as can be seen in Fig. 1.4. Above 200 GeV the
voltage is kept constant (higher than the programmed values) to provide a larger bucket that
is needed for the controlled longitudinal emittance blow-up. The latter is achieved by injecting
band-limited noise through the phase loop of the 200 MHz RF system [32] and helps to stabilize
the beam at high energy where the thresholds for both narrow-band and broad-band impedances
are significantly decreased [29]. At flat top, the RF voltage is increased for reducing the bunch
length before transferring the beam from the SPS 200 MHz bucket to the LHC 400 MHz bucket.
The maximum presently available RF voltage of 7.5 MV is used for this manipulation.

Finally, in routine operation with LHC beams (50 ns bunch spaced with intensities up to
1.6 x 10" p/b), a fourth harmonic RF system (800 MHz) is used as Landau cavity in bunch
shortening mode for increasing the synchrotron frequency spread, which helps stabilizing the
beam. There are two 800 MHz traveling wave cavities in the SPS. Only one is connected to
the RF power, the second is idle. The voltage programme of the 800 MHz system is usually set
to 1/10 of the main accelerating system voltage. The reason for this will be explained later in
Chapter 4.

Both the controlled longitudinal emittance blow-up and the 800 MHz RF system increase
significantly the longitudinal single and coupled bunch instability thresholds (see next Section),
making possible the delivery to the LHC of beam with parameters that exceed the initial expec-
tations [21]. An additional improvement in beam quality was achieved by lowering the transition
gamma - from 22.8 to 18 [33]. This new optics (Q20) was obtained by decreasing the integer
tunes (26.13 and 26.18 in Q26 optics) by 6 units, resulting to a significant increase of the slip-
page factor n = 72 — ;2 (a factor of 2.8 at 26 GeV/c and 1.6 at 450 GeV/c) and thus to a
subsequent increase of the thresholds for longitudinal coupled bunch instabilities, loss of Landau
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damping and transverse mode coupling instability (TMCI) [34]. Note here that a proportional
increase in the RF voltage V¢ is also needed to obtain the same bucket area, since the latter
scales as \/Vi¢/ |n|. This means that the corresponding increase of the instability thresholds is
true only as long as the available RF voltage is enough to provide the same longitudinal pa-
rameters (emittance, bunch length). As mentioned before, already the maximum RF voltage
(7.5 MV) is used for beam transfer to the LHC, but the controlled emittance blow-up can also
be reduced for the same intensity. Indeed the threshold for the loss of Landau damping NJ;ID
(for a non-accelerating bucket) due to the reactive impedance scales like [35]

N o< e | 7. (1.2)

Thus one needs a smaller emittance ¢, ~ /7 for stability, which gives the same bunch length
7 in the Q20 optics as with the Q26. This scaling is in fact confirmed by many measurements
performed in 2011 and 2012 [36]. The beam parameters of the LHC 25 and 50 ns beams, obtained
by the end of the LHC operation run 1 until the end of 2012 are listed in Table 1.1.

Table 1.1: Characteristics of the 50 and 25 ns proton beams at 450 GeV/c in the SPS: 2012
achievements and HL-LHC requirements. The longitudinal emittance for the HL-LHC depends
on the available RF voltage, where 15 MV are assumed for the low intensity beam [37].

Achieved HL-LHC
Bunch spacing [ns] 50 25 50 25
Bunch intensity [x10'] | 1.6 1.3 3.6 2.2
Number of bunches 4x36 | 4x72 | 4x36 | 4xT72
Long. emittance [eVs] 045 | 0.5 0.7 0.7
Bunch Length [ns] 1.5 | 155 | <18 | <18

In order to fully exploit the potential of the LHC and its future upgrades for higher luminosity,
the injectors will have to deliver proton beams with significantly higher beam intensity compared
to the current operation. The activities concerning the luminosity upgrade of the LHC itself
are incorporated in the High Luminosity LHC (HL-LHC) project [38] and the upgrade of the
injector complex is subject of the LHC Injectors Upgrade (LIU) project [39]. In particular, the
LIU project aims at consolidating and upgrading the existing injector synchrotrons (PSB, PS
and SPS) in the CERN complex and using the new linac presently in construction (LINACA4).
The characteristics of the 25 and 50 ns proton beams according to the HL-LHC requirements [40]
are presented in Table 1.1. After commissioning the LINAC4 and upgrading the PSB and the
PS, the main performance limitations of the LHC injector complex are beam instabilities and
high intensity effects in the SPS, the longitudinal aspects of which are discussed below.

1.4 Longitudinal instabilities in the SPS.

The longitudinal multi-bunch instability observed during acceleration in the SPS has very low
intensity threshold: one batch of 36 bunches at 50 ns spacing with 2x10'° p/b and nominal
injected longitudinal emittances ¢, = 0.35 eVs becomes unstable during the ramp, even with
the RF feedback, feed-forward and longitudinal damper (low modes) in operation [41]. This
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instability threshold does not depend on the number of batches in the ring, i.e. the same
instability threshold in energy is observed for a given intensity per bunch with one or four
batches of the 50 ns beam in the machine (with gaps of 250 ns between batches) as can be
seen in Fig 1.5. Possible sources of this instability are the fundamental and higher order modes
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Figure 1.5: Averaged bunch length variation along the cycle for single batch (left) and 4 batches
(right) of the 50 ns LHC beam in a single RF system. Intensity of N, ~ 1.6 x 10! p/b. The
peak-to-peak bunch length spread within the batch is shown by the error bars. The vertical lines
indicate the instability onset.

(HOMs) of the main (200 MHz) and high harmonic (800 MHz) RF systems, since their relatively
low quality factors of 150, 500 and 300 accordingly are compatible with the short-range wake that
is driving this instability. The search for other impedance sources in the SPS ring is ongoing [42].

As expected from calculations, in addition to the impedance, the coupled-bunch instability
threshold clearly depends on the beam energy and the longitudinal emittance [29]

e n
Eogr’

NGB o (1.3)
where Fj is the energy of the synchronous particle, 7 is the slip factor and 7 is the bunch length.
More dense bunches become unstable earlier in the cycle. A comparison of LHC beams with
different bunch spacing Tj shows that the energy threshold scales roughly as 1/FE}y, o< Ny/Ty, or
with total beam current. Indeed, as can be seen in Fig 1.6 for the Q26 optics, the 50 ns beam
with a bunch intensity of N, = 1.6 x 10! p was unstable around 160 GeV /c and the 25 ns beam
with Ny = 1.2 x 10! p at 110 GeV/c. Higher intensity 25 ns and 50 ns beams were also at the
limit of stability on the 26 GeV/c flat bottom.

As was mentioned in the previous Section, in routine operation, the fourth harmonic 800 MHz
RF system is used in the BS mode [10] in order to increase the synchrotron frequency spread
and thus increase both the multi- and single-bunch instability thresholds. To obtain that the
phase ®3 between the two RF systems (see Eq. (1.1)) is programmed during the acceleration
cycle as

Ady = —4ogo + T, (14)
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Figure 1.6: Averaged bunch length variation along the SPS cycle for single batch of the 50 ns
(left) and the 25 ns (right) LHC beam in a single RF system with average intensity of N, =
1.6 x 10!* p/b and N, = 1.2 x 10! p/b accordingly. The peak-to-peak bunch length spread
within the batch is shown by the error bars. The vertical lines indicate the instability onset.
Both cases correspond to the Q26 optics.

where ¢4 is the synchronous phase in a single RF system. However in reality for high intensity
beam the phase ®5 is strongly affected by beam loading (see Chapter 5) in the 800 MHz RF
system itself. In the SPS, unlike many other accelerators, only BS mode is used for beam
stabilization, since for the nominal bunch size the beam is unstable in BL mode all along the
cycle, both for single and multi-bunch cases. Figure. 1.7 presents an example of a single batch
of the 50 ns LHC beam in BS and BL modes with an average intensity of N, = 1.2 x 10! p/b.
The large errobars in the BL mode case indicate that the beam is unstable even at the injection
energy.

Many studies were conducted in order to understand these observations [10,43] and two main
restrictions for the BL mode were identified:

1. The very tight requirements on the accuracy of the relative phase ®5 between the two RF
systems, which is very difficult to achieve due to strong beam loading in both the main
and high harmonic RF systems [10].

2. The non-monotonic behavior of the synchrotron frequency distribution as a function of the
longitudinal emittance (essential for long bunches) reducing the instability threshold (see
Chapter 3).

These two restrictions, also discussed in [41], are thoroughly studied in this thesis together with
other issues related to the beam stability in a double RF system. In particular, the beam stability
with respect to the phase ®5 between the two RF systems is addressed for the case of the SPS.
In addition, the effect that global or local maxima in the synchrotron frequency distribution as
a function of the longitudinal emittance have on beam stability is further investigated, both by
analytical calculations and particle simulations. Note that this effect also appears in the BS
mode for sufficiently large voltage ratio V2/V; and harmonic ratio n = ho/h; > 2.
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Figure 1.7: Averaged bunch length variation along the cycle for single batch of the 50 ns LHC
beam in a double RF system operated in BS mode (left) and BL mode (right). The voltage
ratio is Vo/V4 = 0.1. Intensity of N, = 1.2 x 10* p/b. The peak-to-peak bunch length spread
within the batch is shown by the error bars. In the case of BS mode the vertical line indicates
the instability onset, while in BL mode the large errobars mean that the beam is unstable all
along the cycle. Both cases correspond to the Q26 optics.

Even with the addition of the 800 MHz RF system, individual bunches injected with small
longitudinal emittance can still become unstable during the ramp [35]. An example of the
bunch lengths at injection and extraction for a 50 ns beam with an average intensity of IV, =
1.2 x 10! p/b is presented in Fig. 1.8. As one can see, the bunches with smaller bunch length
(emittances) at injection (7 < 3.5 ns) become unstable during ramp or at flat top. This observa-
tion could be an indication of the loss of Landau damping for single bunches due to the reactive
impedance of the SPS. Note that the loss of Landau damping in a single harmonic RF system,

based on the Sacherer criterion [44], scales as [29]

el

Fy (1.5)

NtIle x
and as in the case of coupled bunch instability, lower threshold is expected at higher beam ener-
gies. Therefore, larger emittances are needed for stability at flat top. However, injecting larger
emittances from the PS results in higher particle losses, although resent studies [30] (without
taking into account intensity effects) have shown that larger emittances can be injected in the
SPS with the same transmission, by using an additional RF system in the PS and optimizing the
rotation time. Nevertheless, a controlled emittance blow-up during the SPS ramp is required for
stability, which is applied in routine operation by introducing band-limited phase noise in the
200 MHz RF system [32].

However, the emittance blow-up in a double RF system has its own limitations due to the
presence of beam loading. This issue is also investigated in details in this thesis. In particular, it
is shown that the non-uniform bunch length distribution obtained at flat top after the controlled
emittance blow-up (see Fig. 1.9) can be attributed to the residual beam loading in the 200 MHz
RF system (with one-turn feedback and feed-forward systems in operation) [45].
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Figure 1.8: Bunch length at injection (upper trace) and on flat top (lower traces) for the 50 ns
LHC beam with intensity of N, ~ 1.2 x 10! p/b and without controlled emittance blow-up. The
800 MHz RF is on in BS mode. Bunches in the second batch with small emittances are unstable
at flat top as can be seen from the bunch length oscillations.

A clear gain in beam stability was expected with the new Q20 optics, since the longitudinal
instability thresholds scale roughly with the slip factor n. Many measurements performed in
2011 and 2012 [33,36] confirmed this expectation and resulted finally in the replacement of the
Q26 optics by the Q20 in 2012 operation run. A detailed analysis of the studies concerning the
Q20 optics can be found in [34]. Significant improvement in beam stability was obtained on
the flat bottom. However on the flat top the high harmonic RF system is still insufficient for
stability (due to the limited RF voltage) even for the operational bunch intensities (both for
50 ns and 25 ns LHC beams) and one needs in addition the controlled emittance blow-up, which
however can be smaller than in nominal optics.

Using all the measures to cure the longitudinal instabilities, i.e. the 800 MHz RF system
operating in BS mode, the controlled emittance blow-up during the ramp and the new Q20
optics, the SPS was able to reliably accelerate much higher beam intensities (see Table 1.1)
than expected [21]. Note that in order to achieve those beam intensities many measurements
were performed during the machine development (MD) sessions in 2010 - 2012 [46]. Figure 1.10
presents one example of the 25 ns LHC beam, where stable beam with an average bunch intensity
of Ny ~ 1.3 x 10" p was obtained at flat top with parameters acceptable for injection into the
LHC. Note that this result represents a record performance of the SPS with the LHC beams.
However, it should be emphasized that, due to losses related to the beam capture and losses on
the flat bottom, an intensity of more than N, ~ 1.4 x 10! p/b had to be injected in this case.
When injecting beams with even higher intensity, the transmission was significantly decreasing
(for example about 85% for Nj =~ 1.55 x 10! p at injection). Similar issues were also faced
with the 50 ns LHC beam for reaching high intensities at flat top (N > 1.6 x 10! p). In order
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Figure 1.9: Bunch length distribution along the 25 ns batch before the controlled longitudinal
emittance blow-up (green), just after (red) and at the flat top of the cycle (blue). Notice the
non-uniform shape after the blow-up is applied.

to stabilize the beam with even higher intensities more longitudinal emittance blow-up will be
required, which in turn requires larger RF voltage for increasing the bucket size in order to
avoid particle loss. However, less RF voltage will be seen by the beam due to the effect of beam
loading and the limited currently available RF power. This becomes critical in particular for
beam extraction to the LHC, where the maximum available voltage (7.5 MV) is already used to
compress the bunch for injection into the LHC 400 MHz bucket. For that reason, an upgrade
of the SPS RF system including the rearrangement of the cavities and the construction of two
additional power plants, which will allow to have higher RF voltage is in preparation [37] as a
part of the LIU project.

Therefore, it is very important to fully understand the benefits that a higher harmonic RF,
can provide and also to identify the limitations or the problems that may exist for higher beam
intensities.

1.5 Outline of the Thesis

In Chapter 2 a review of the longitudinal beam dynamics is presented. First, the basis of
longitudinal motion in synchrotrons without intensity effects is presented. Basic equations and
parameters are defined for a single and a double harmonic RF system. Later, the effects of the
beam intensity are introduced, starting from the potential well distortion. The Vlasov equation
is presented and used together with the perturbation formalism to analyze the coherent motion
of the particles inside the bunch, through the dispersion equation. Finally, the concept of Landau
damping is introduced and described for a bunched beam in the longitudinal plane.

In Chapter 3 the phenomenon of loss of Landau damping is considered in a single and
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Figure 1.10: Measurements with four batches of 72 bunches spaced by 25 ns with N, ~ 1.3 x
10 p/b at SPS. The average bunch length evolution along the cycle (top left), the bunch length
distribution along the bunch train at injection and at at top (top right) and the dipole oscillations
at at top (bottom right) show stable beam conditions.

a double RF system, in the presence of reactive impedance. Instability thresholds are found
both from calculations (by solving numerically the linearized Vlasov equation) and from particle
simulations. The analysis is extended to different harmonic ratios between the two RF systems,

and the results are used to explain experimental observations during the pp operation of the
SPS.

Then in Chapter 4, the particular situation of the SPS is considered, by presenting the single
bunch instabilities studies in the double RF system, consisting of the main and the 4" harmonic
RF systems. Initially, a beam based method of calibrating the phase between the two RF systems
which is used in operation is presented. Then measurements for different values of this phase are
shown, providing the stability region for the specific set of parameters used. The stability region
is also reproduced by macroparticle simulations performed for the same conditions as in the
measurements using the current SPS impedance model and compared with the measurements.
Finally, the results are explained theoretically through the mechanism of the loss of Landau
damping and more precisely, by the analysis of the synchrotron frequency distribution of the
particles inside the bunch.
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Chapter 5 deals with issues of the controlled longitudinal emittance blow-up applied, for
stability reasons, to the multi-bunch LHC beams in the SPS. Beam measurements are presented,
where a non-uniform emittance blow-up is observed together with an anti-symmetric variation
of the bunch positions along the batch. The effect of beam loading in a traveling-wave cavity
is introduced together with the beam loading compensation currently applied in the SPS TW
RF cavities. It is shown that the observed anti-symmetric pattern in the bunch positions, is
determined by the beam loading in the main RF system. Finally, by calculating the synchrotron
frequency distribution of the particles inside different bunches along the batch, the non-uniform
emittance blow-up can be explained.



CHAPTER 2
Review of longitudinal beam
dynamics

In this Chapter some important parameters commonly used in accelerator physics to describe
the longitudinal motion of the particles are defined. Furthermore, a short introduction to the
necessary theory is also presented, and some useful formulas which will be applied later in the
thesis are derived.

2.1 Synchrotron motion

2.1.1 Coordinate system

To describe the longitudinal motion of the particles we first need to define the coordinate system.
There is a range of possibilities for the selection of the longitudinal phase-space variables. How-
ever, since we want to apply the Hamiltonian formalism, the two variables have to be canonical
conjugates [47]. Examples of such pairs are position and momentum (z,p) or time and energy
(t, E). In circular accelerators though, and for practical reasons, the azimuthal angle 6 of the
ring is often used instead of ¢

0 = wot, (2.1)

where wy is the angular revolution frequency, wy = 27 fy.

The motion of the particles is described with respect to the motion of a reference particle [48]
which has a designated energy Ejy and travels along a close orbit (of length Cp) that passes
through the center of any magnet at revolution period Ty = 27/wg. This particle is referred to
as synchronous particle, since it is synchronized with the RF voltage waveform (that is normally
used to accelerate the beam). Therefore, denoting the phase-space coordinates of the synchronous
particle with (6y, Ey), the coordinates of an arbitrary particle, which deviate only slightly from
those of the synchronous one, can be written:

0 =0p+ A0
E =FEy+AE. (2.2)
For convenience we will use the RF phase angle ¢ = w,¢t, where wys is the angular frequency
of the RF voltage. In the absence of acceleration, after each revolution along the ring, the

synchronous particle will encounter the RF voltage at the same phase ¢ = ¢ called synchronous
phase. This requires that

Wrf = hw07 (23)
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where h is a positive integer called the harmonic number. Its value can range from one up to
several thousand. Again, related to the synchronous particle, the phase of any other particle can
be written as

¢ = ¢s + Ad. (2.4)

2.1.2 Energy gain and transit time factor

Charged particles can be accelerated using longitudinal electric fields. In synchrotrons, this
electric field & is provided by RF cavities. The time dependence of the longitudinal electric field
in the RF gap is given by

& = &psin(wyt), (2.5)

where &) is the amplitude of the electric field. Note that here & is assumed to be constant in
the RF gap, which in many practical cases is a good approximation. For circular accelerators,
the origin of time is taken at zero crossing of the RF voltage waveform with positive slope. The
phase ¢ of the RF voltage when a particle crosses the middle of the accelerating gap (at z =0,
z being the longitudinal coordinate) is called the phase of the particle with respect to the RF
voltage, and for the synchronous particle ¢ = ¢. If the change in velocity of the particle when
crossing the gap is neglected, the phase of the synchronous particle at position z in the gap reads

gt = s+ iz, (2.6)

where v is the particle velocity in the middle of the gap.
The energy gain § Ey of the synchronous particle with charge ¢, passing through an RF cavity
with a gap width g is given by [49]
9/2

dEy =q 8 sin(¢s + ﬂs)ds, (2.7)
—g/2 (%

where it is assumed that the gap is symmetric with respect to the plane z = 0. Then

0FEy = qéugT sin ¢, (2.8)
where T is the transit time factor )
T sin(wyrg/2v) (2.9)
wytg/2v

which accounts for the fact that the particle passes through the RF gap within a finite time
interval. The effective peak voltage V' seen by the particle is thus

A~

V = &g, (2.10)

which depends on the particle velocity v through the transit time factor. Below, for relativistic
beams, this effect will be neglected so that all particles will be considered as experiencing the
same peak voltage. Finally, the energy gain of the synchronous particle is:

§Ey = qV sin os. (2.11)
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This energy gain per turn of the synchronous particle should be followed by a variation of the
magnetic field in dipoles to keep the particle on the designed orbit of constant radius, R. Usually,
in most synchrotrons the acceleration cycle lasts for some thousands to millions of revolutions,
which means that the synchronous particle gains a relatively small amount of energy during
each revolution. In all the cases considered below this assumption is considered, i.e. Ej to be a
smooth function of ¢ SE JE iE

TOO = dto = dto = ;—qusinqﬁs, (2.12)

or in terms of the synchronous momentum pg

dpo  qV sin ¢s
o _ 4V S %s 2.1
dt 2R (2.13)

2.1.3 Longitudinal equations of motion

According to Eq. (2.3) the phase coordinate ¢ is related to the azimuthal angle 6 by ¢ = h#,
and thus one can write

A¢ = —hAb. (2.14)

The convention for the sign shows that particles which lag behind the synchronous one (Af < 0)
will arrive later in the RF cavity (A¢ > 0). Using the last equation, the angular revolution
frequency deviation of an arbitrary particle from the synchronous one can be written as

_ G a1 ay o _1dd
Aw = 2 (A9) = —2 2 (Ad) = 3= (2.15)

where it was assumed that ¢, is changing much slower in time (d¢s/dt < d¢/dt). Since w =
27Bc/C, where 8 = v/c (c is the speed of light) and C is the circumference of the machine, the
relative change in angular revolution frequency with respect to the synchronous particle can be
also expressed as:

du_25_ac 10
wo Bo  Co
where 5y and Cj are the velocity (in units of ¢) and the close-orbit length of the synchronous
particle.
Particles with different energy (or momentum p) will be affected differently by the bending
magnets and due to that they will move along different orbits, C'. This effect is described by the
momentum compaction factor a, which in first order gives (see for example [48])

_ AC/Co
Ap/po’

where pg is the momentum of the synchronous particle. Usually o > 0, but it can also be

(2.17)

negative.

From the relativistic momentum p = mgySe¢, with v = 1/4/1 — 32 being the Lorentz factor
and mg the particle’s rest mass, one gets:

Ap AP

=228

. W (2.18)



20 Chapter 2. Review of longitudinal beam dynamics

Combining Egs. (2.16), (2.17) and (2.18) gives:

A 1 A
Aw _ (2 _ a) Ap. (2.19)
wo g Po
Introducing the slip factor
1
n=a-—, (2.20)
Y
one finally has:
A A
e e (2.21)
wo Do

Note that 1 changes sign when + passes through vy, = 1/4/a, and corresponding energy is known
as the transition energy of the ring. The transition energy plays a very important role in the
beam stability which will be consider later in this Chapter.

Substituting Eq. (2.21) into Eq. (2.15) gives the first equation of motion:

d A h AE  hnwi (AE
9 psy 2P = To=2 _ 2 < > (2.22)
dt Po B Ey  B*Ep \ wo
In the equation above, the relation
Ap 1 AFE
po  B* Ep

was used, and the coordinates (¢, %}—f) were introduced as the canonical phase-space coordinates.
Note that from here on Sy is replaced by 3 since, for the relativistic beams considered below,
the relative deviations from the synchronous particle are negligible, (8 — fo)/5o < 1.

The next step is to find the second equation of motion, i.e. the time evolution of the energy
deviation AE. We assume at this point that the energy of the beam can be changed only by the
applied RF field, neglecting any energy variation due to the interaction with the environment
or due to the synchrotron radiation. In addition, the sinusoidal RF voltage is replaced by a
generalized RF voltage V (¢), to take into account the more general case, where higher harmonics
are added to the fundamental sinusoidal RF field. The only conditions V' (¢) needs to fulfill are
periodicity at the lowest RF harmonic and the absence of a direct current (DC) component:

2w
V(g) = V(o + 2m) and V(g)de = 0.
0

Therefore, the energy that a particle of charge ¢ and phase ¢ gains during one turn is
OE = qV(9). (2.23)

Expressing this energy gain with respect to the energy gain of the reference particle, which finds
the RF field always in phase ¢g, one gets:

5 — 6Eo = q[V () — V(s)]. (2.24)
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Assuming again that both E and Ey are smooth functions of ¢, one can write the previous
equation as

E E 1

Z = —qlV() =V 2.25

-2V = Vo) - V(). (2:25)
where E = dE/dt and Ey = dEy/dt. Tt can be shown (for example [48,49]) that the last equation
can be approximated by

d (AE q
— | — | ==[V(p) -V . 2.26
i (5) = o - v (2.26)
Equations (2.22) and (2.26) form the system of equations of longitudinal motion.

Combining the two equations of motion and assuming that Ey varies very slowly during the
acceleration cycle, leads to a second order differential equation for the phase motion

¢ hiwig B
ﬁ o 27T52E0 [V(@) - V(¢s)] =0. (2.27)
Multiplying Egs. (2.22) and (2.26) across

hwi (AE\ d (AEY q B d¢

B2, <WO> dt (W) ~ o [V(¢) = V(gs)] dt’ (2.28)
and integration, one gets

. hnw% AE 2 ¢ q / ’

H= 282, <WO> - /¢S % [V(¢ ) — V(d)s)} do , (2.29)

where H is the first integral of the longitudinal motion [47] of the particles circulating in the
ring, which is constant along an orbit in the phase-space defined by the conjugate variables
(¢, AE /wp). This function corresponds to the Hamiltonian of the system. Indeed, taking partial
derivatives with respect to the phase-space variables we get:

o _a(bE
S =W -vied =5 (L), (2.30)
and
oH _ hnwi (AEY\ d¢
O(AE/wy)  B2E <w0 > Cdt’ (2:31)

which are the canonical Hamilton equations [47] in these variables. The first term in Eq. (2.29)
can be identified as the kinetic energy and the second as the potential energy

U0) =~ [ SL V() - V(o) do (232

showing that the function H is an expression for the total energy of the particle, which in a
conservative system has to remain constant [47].
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2.1.4 Single harmonic RF system and phase-stability

For the case of a single RF system with angular frequency w,s = hwo Eq. (2.27) can be written

¢ hwiVo . .

W — m(suuﬁ — Sin (ZSS) =0. (233)
To find out whether the motion of the particles under the influence of this RF field is stable we
can consider small deviations from ¢s. In that case the parenthesis above can be replaced by

(sin ¢ — sin ¢g) ~ A cos ¢s, (2.34)

where A¢ = ¢ — ¢s. Combining this with (2.33) and assuming again that ¢s changes slowly in
time, leads to a simplified equation

d*(A¢)  hnwg cos ¢sqVo
dt? 2w 32 E)

(Ag¢) = 0. (2.35)

This equation describes a harmonic oscillator with an angular frequency

hw%n cos psqVp
0 =1]— 2.36
Ws0 \/ 27T/82E() ( )

provided that wgg is a real and positive number. Therefore, this condition can be written as
1 cos ¢s < 0. (2.37)

Keeping also in mind that acceleration needs Vs > 0 and thus sin ¢s > 0, two different regions
of oscillatory motion can be identified, depending on whether the accelerator is operated below
or above transition energy

e Below transition (v < ) : 7 <0 = cos¢s >0 & singg >0 = 0< ¢s < 7/2
e Above transition (7 > ;) 7 >0 = cosgs <0 & sings >0 = 71/2 < s <7

This principle of phase-stability assures that ensembles of particles can be accelerated in syn-
chrotrons even if they are not exactly at the synchronous phase and energy. Such particles
just oscillate around the reference particle. The idea of phase-stability due to RF focusing is
schematically presented in Fig. 2.1.

Below transition (7 < 0) a particle with higher momentum than the synchronous one (ép > 0)
will also have higher revolution frequency (dw > 0), as can be seen from Eq. (2.21) and therefore
it will arrive earlier to the RF gap (point Ni). That means that it will receive less energy
gain than the synchronous particle (point P;) and at the next turn will approach more to ¢s.
Similarly, a lower energy particle will arrive at the RF gap later (point M;) and gain more energy
than the synchronous one. The situation is reversed above transition, where the synchronous
phase has to be shifted at m — ¢s (point P,). Note here that in the case when no acceleration is
applied to the synchronous particle i.e.

V(ps) =0 = sin(¢ps) =0

the above conditions give for the synchronous phase
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Figure 2.1: Schematic drawing of an RF wave and the RF phase angles of the synchronous
particles Py, P», particles with higher momentum N;, N, and particles with lower momentum
M, Ms, below (n < 0) and above ( > 0) the transition energy, respectively.

e ¢p; =0, below transition or

e ¢; =m, above transition.

The stability of the particle motion can be better understood from the plot of the RF po-
tential. Let us first consider the Hamiltonian for the sinusoidal RF field

2
H = hiesg 1 (iE> + Al [cos ¢ — cos ¢ + (¢ — ¢s) sin ], (2.38)
0

- B2Ep 2 o

where the potential energy is:

v
U(@) = L2 [cos ¢ — cos ¢, + (¢ — ¢s) sin 6] (2.39)
Figure 2.2 (left) presents U(¢) for the cases of ¢5 = 7 (no acceleration) and ¢s = 7 —7/6 (n > 0).

Near the synchronous phase the particles feel a restoring force which allows them to execute
oscillations around it. Hence, in phase-space they follow closed trajectories with an angular
frequency ws called the angular synchrotron frequency ', which in the case of small amplitude
oscillations (¢ — ¢s = A¢p < 1) is close to wy, see Eq. (2.36). However, the trajectories of the
particles with large deviations from ¢¢ are not bounded any more by the potential well and so
their motion is not oscillatory. This boundary is shown in Fig. 2.2 (left plot) by the horizontal
dashed lines.

The division of the phase-space into regions of bounded and unbounded motion in syn-
chrotrons is the reason of grouping the particles into bunches. The boundary between these two

'Typically ws/wo is of the order < 1072 for proton synchrotrons, which justifies the assumption of small changes
in particle’s energy during one revolution period, see Eq. (2.12).
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U(o)
AE/(DO

¢

Figure 2.2: The left plot presents the RF potential U(¢) for ¢s = 7 (blue curve) and © — 7/6
(red curve) (n > 0). The horizontal dashed lines show the maximum energy for stable motion.
The right plot shows the corresponding buckets using the same color convention. The phase ¢,
presents the turning point of the separatrix.

regions is called the separatrix, while the phase-space area enclosed by the separatrix is called
the bucket. Examples of the buckets that correspond to the potentials of Fig. 2.2 are presented
on the right plot using the same color convention. Particles that are inside these separatrices
can be accelerated to high energies, whiles those that are not captured (outside the separatrix)
are lost. Note that for the blue curves in Fig. 2.2 ¢3 = 7 and thus U(¢s) = 0. This means,
as was mentioned before, that the particles are not accelerated. In this special case we have a
stationary bucket.

Coming back to the phase-stability condition (2.37), one can see that if the energy of the
particles is such that during acceleration v crosses i, the synchronous phase is shifted from the
positive to the negative slope of the RF voltage waveform. For that reason, during operation,
the RF phase must quickly be shifted from ¢g to m — ¢ as transition is crossed. This situation
often occurs at proton synchrotrons where extra care needs to be taken, in order to overcome the
difficulties that follow the transition crossing (particle loss, phase-space dilution and instabilities
due to intensity effects etc.). Transition crossing is not discussed in this thesis, since for the
LHC beam in the SPS the particles are injected above the transition energy (v, = 22.8).

2.1.5 Double RF system

Let’s assume now the case where the accelerator is operated with a double RF system with a
ratio n between the frequencies of the main and the higher harmonic RF system. The total
voltage seen by the particles is (see for example [10])

Vi = Vising + Vo sin(ng + ®2), (2.40)

where Vi, Vo are the voltage amplitudes of the main and the higher harmonic RF systems
and @4 is the relative phase between them. Note that the RF frequencies involved need not
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be harmonically related to each other. It is sufficient that both are multiple of the revolution
frequency. However, in that case the phase ®5 will be different for each bucket.
The potential well U(¢) is

U(p) = (12‘;1{ cos ¢ — cos g + T}?n [Cos(nqﬁ + ®9) — cos(ngs + Pa2)| +
(¢ — bs) [Sin ®s + % sin(ngs + (I’Q)} } (2.41)
1

Similar to Eq. (2.33) the second order equation of motion is

P hnwieVi

yrl 277/82EO{ sin ¢ — sin ¢ + gi [sin(n(b + @) — sin(ngs + q’g)} } =0. (2.42)

Considering now particles very close to the vicinity of the synchronous phase ¢s (A¢p < 1) the
bracket in the formula above can be replaced by

{cos ¢s + n7V2 cos(ngs + @2)] Ag. (2.43)
1

Thus, Eq. (2.42) is simplified to

d*(Ag) + wih
dt? oS ¢

cos ¢s + n7V2 cos(negs + @2)} A¢ =0, (2.44)
1

where the frequency of the single RF case wyy defined by Eq. (2.36) was introduced. Therefore,
these particles perform harmonic oscillations around the phase ¢s with angular synchrotron
frequency given by the following expression

s+ @
s w 4 V2 cos(nds + @) (2.45)

Vi Cos @5

provided again that the condition (2.37) is valid.

Different operating modes of the double RF system are defined by the phase ®5 and for a
non-accelerating bucket they are named according to the consequent effect they have on the
bunch length (for n = 2). Above transition (the case considered in this thesis) and for an even
n, the bunch becomes shorter for @ = 7 and thus one has the bunch-shortening mode (BSM).
In contrast, for @3 = 0 we have the bunch-lengthening mode (BLM). The opposite is true for an
odd value of n or in the case below the transition energy. The BLM is used much more often
in accelerators since it is attractive for many reasons. For the same voltage and harmonic ratios
the BLM gives larger synchrotron frequency spread. In addition, it provides larger bucket area
as well as reduced peak line density and therefore reduced space charge effects.

For the cases of BSM and BLM with n = 2 and V2/V; = 0.5 above transition the total RF
voltage V;, the potential energy U(¢) and the bucket shape (no acceleration) are presented in
Fig. 2.3. The single RF case is also shown for comparison. One can see that in the BLM the
potential well becomes flat in the center and for the same emittance it leads to a larger bunch
length compared to the single RF case. The opposite is true in the BSM.
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The case with V5/V; > 1/n is shown in Fig. 2.4. In the BLM the origin of phase-space
becomes an unstable fixed point and two sub-buckets are created in which particles circulate
around new synchronous phases. In the BSM the bunch is still focused in the center of the
bucket but the available stable area has dramatically decreased.

Analytical treatment of the beam dynamics in a double RF system in the BLM with a
harmonic ratio of two can be found in [50-52]. However, due to the complicated form of the
potential well, a fully analytical treatment for arbitrary parameters (®9,V2/V]) is in general
difficult and thus numerical methods are used instead. For this reason the analytical examples
below are usually presented for the single RF case.

Single RF BLM BSM

> /N
\/

AE/® 0
ftz
N7/

Figure 2.3: RF voltage Vit (top), the potential energy U(¢) (middle) and the bucket shape
(bottom) for the cases of single RF (left), BLM (middle) and BSM (right) with n = 2 and
Va/Vi = 0.5 above transition for a stationary bucket. The red curves inside the buckets show
different phase-space trajectories of constant energy that the particles follow.
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Single RF BLM BSM

AE/O)O

7

-
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Figure 2.4: RF voltage Vi¢ (top), the potential energy U(¢) (middle) and the bucket shape
(bottom) for the cases of single RF (left), BLM (middle) and BSM (rigth) with n = 2 and
Va/Vi = 0.75 above transition for a stationary bucket. The red curves inside the buckets show
different phase-space trajectories of constant energy that the particles follow.
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2.1.6 RF Bucket parameters

The phase-space area enclosed by particle trajectory is

A= 7{ <if> de. (2.46)

It was shown before that(¢, AF /wg) are canonical conjugate variables, meaning that this integral
is the action and thus a constant of motion (Poincare invariant) [47]. The units of an area element
are (energy x time). Normally in accelerators, energy is measured in (eV) and so the resulting
phase-space area is in (eVs).

The phase-space area enclosed by the separatrix is called bucket area and the maximum
energy deviation of the separatrix is called bucket height. These parameters have special signif-
icance since they represent the longitudinal acceptance of the machine.

The value of the Hamiltonian which corresponds to the separtrix can be calculated by taking
into account that one limit of the bucket is a local maximum of the potential. Note that a local
maximum of the potential appears as an unstable fixed point in the longitudinal phase-space,
while local minimum gives a stable fixed point which corresponds to the center of the bucket.
Therefore, from the equations of Hamilton one has that both for the stable and unstable fixed
points AE /wg = 0.

For a single RF system the separatrix can be calculated analytically. Since the local maximum
of the potential is at the point (7 — ¢s, 0) one has

Hsep = U(Tf — ¢s) = % [—2 COs ¢s + (7T — 2¢s> sin ¢s] . (247)

The phase-space trajectory is then:

B hnwil (AE 2
Hgep = & E2§ (wO ) +U(9) (2.48)
or
AFE _ [2B%Ey
wo (¢) - \/ hnwg [Hsep - U(¢)] (2'49)

The second point where particles are still bounded within the separatrix (denoted as ¢, in
Fig. 2.2), for which the energy deviation should also be zero (AE/wy = 0) has to satisfy the
relation:

Hup = U(6) = T2 [cos b, — cos() + [0 — ()] sings] =Ulr — ) (2.50)

or
COS ¢y + Py sin gg = cos(m — ) + (T — ¢ps) sin @s. (2.51)

The difference |¢p, — (7 — ¢s)| is called the bucket width.
The bucket height at phase ¢g can be evaluated from Eq. (2.49):

BF ) = \/ 250 1 U(y)] = \/ 2PB0 00 [ cos gy + (m— 20)sings],  (252)

Wy hnwg hnw% 27
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where Eq. (2.47) has been used and the fact that U(¢s) = 0.
Using Eq. (2.49) and the symmetry around the ¢ axis one can write for the bucket area

A:2/ \/ 250 (o — U(6)d0, (2.53)
o)}

hnwo

where ¢ = m — ¢ and ¢, can be found from Eq. (2.51).
In the special case of stationary bucket (¢s = 0 or ), its area and height can be calculated
analytically. Above transition, ¢s = 7 and then ¢; = 0 and ¢, = 27. Since in this case the

potential energy has the form
Vo
v(g) =L

and Hgep, = 2(qVp/2m), one has for the bucket area
P

2T [2B2E, 22 Eq Vi
/ 26 quo cos §)d = 8 p 02(1 0 (2.55)
hnw? 27r hnwgm
AE 282E,
_ | 02qu‘ (2.56)
wo hnwgm

The symbol (") is used to denote the stationary case.

(14 cos¢) (2.54)

and for the bucket height

2.1.7 Emittance and bunch characteristics

In the previous section all quantities were calculated to the full extend of the stable area. In
practice, in order to avoid particle losses only a fraction of the stable area is usually occupied
by beam, enclosed by a single particle trajectory in the phase-space. This area is called single-
particle emittance. The trajectory of this particle can be derived from Eq. (2.49)

AF 4) = \/ 250 15—y, (2.57)

wo hnwg

where Hge, was replaced by the new value of Hamiltonian H. = U(¢1) with ¢; being a given
point where the trajectory crosses the horizontal axis. The second point ¢o were the orbit crosses
the ¢ axis (AE/wy = 0), fulfills

U(¢2) = U(¢n), (2.58)

or equivalently for a single RF system

coSs o + o Sin g = €oS 1 + ¢1 Sin Ps. (2.59)

After identifying the two turning points, the area under a given trajectory can be calculated

from the integral
232 F
\/ O 11, ~ U)o, (2.60)

hnwo



30 Chapter 2. Review of longitudinal beam dynamics

where the index ¢ indicates the longitudinal single particle emittance. Finally, the energy spread
of the trajectory is determined by Eq. (2.57) evaluated at ¢ = ¢s and considering the fact that

U(d’s) =0
AFE _ 232 Ey
0= e (2.61)

The emittance of a bunch, consisting of many particles (usually in the range of 10° - 10%°
particles), is a statistical quantity and the percentage of the particles contained in a limiting
contour depends strongly on their phase-space distribution. Therefore, the bunch emittance can
be defined in many different ways. One of the most common is the root mean square (RMS)
emittance. Another approach is to define the emittance through the single-particle emittance
of a phase-space trajectory, which contains a certain percentage of the total amount of particles
within the bunch (90%, 95% or 100%-full emittance).

Usually, in the SPS (and at CERN in general) the convention for the longitudinal emittance
used in practice corresponds to the single particle emittance for trajectory in which ¢ — ¢
corresponds to the 40 bunch length. This bunch length (or the o) is obtained by applying a
Gaussian fit to the acquired bunch profiles.

2.1.8 Synchrotron frequency distribution

As was discussed above, particles bounded within the bucket are performing oscillations around
the stable phase ¢s. The oscillation frequency in the longitudinal phase-space is called the
synchrotron frequency fs. It has been shown, for a single RF system, that for particles close to
the synchronous particle, fs is given by Eq. (2.36), which for convenience is repeated below

_wso 1 hw? |n cos ¢s| ¢Vo
2T 2w 2m32E)

fs0 (2.62)

In order to evaluate the time needed for one full synchrotron oscillation, we start from the
first equation of motion

do hnws (AE
i~ 25 o (2.63)
or 9
g—PE__ L (2.64)

N hnwg (AFE /wp)

Assume now that an arbitrary particle in a single RF system follows in the phase-space a tra-
jectory with Hamiltonian H,

H, = (]2—‘;0 [cos @1 — cos ¢s + (1 — ¢s) sin @], (2.65)

where ¢ is the maximum phase deviations of the trajectory. Using Eq. (2.57) the synchrotron
oscillation period can be found from the following expression

L [”(BE, 1 _ [2B%E, [ ~1/2
Ty(H.) = 2/1 <imaJ§WE/cU())> dp =4/ hnwg/l (He —U(o))” /" do, (2.66)
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with ¢2 evaluated through the potential well function U(¢), so that U(¢2) = H.. Substituting
H,. and U(¢) and using also the definition of wgy (2.62) one has

T = YAl [

cos ¢1 — cos ¢ + (¢p1 — @) sin <Z>S]_1/2 do. (2.67)
Ws0 é1

In the stationary case (¢s = 7) the synchrotron frequency period becomes:

_ 1A d(Ag)
T(Ad1) = Ws0 /_A¢1 Vsin2(Ag /2) — sin?(A¢p/2)’ (2.68)

where the Hamiltonian of the trajectory has been replaced by the maximum phase deviation
(Ap1 = ¢1 — ¢s). The fact that in this case the trajectory is symmetric around ¢, is also taken
into account in the integration limits. Changing the integration variable from A¢ to 6 via the
substitution sin(A¢/2) = sin(A¢1/2)sin 6, it can be shown that

Ty(Agy) = M EIR(AA/2) (2.69)

Ws0

where

T dé
K(x) —/ _— (2.70)
0 v1—22sin%0
is the complete elliptic integral of the first kind. Therefore, the angular synchrotron frequency
ws(A¢1) of the particle on this phase-space trajectory is given by

TWs0
Agr) = . 2.71
ws(891) = S sin(A61/2)) (2.71)
In the small amplitude approximation, using the power series expansion of K (x)
12
K(z) = g[u (5) 2+, (2.72)

the angular synchrotron frequency as a function of the maximum phase deviation can be ap-
proximated by )
ws(Ad1) = wso(1 — AT?)- (2.73)

The synchrotron frequency as a function of the phase deviation for the case of a stationary
bucket is shown in Fig. 2.5. The approximated formula is also presented for comparison. Note
that the synchrotron frequency tends to zero when the particles approach the separatrix, since
there the focusing force becomes smaller.

As is shown in Fig. 2.5, there is a spread in the synchrotron frequencies among the particles
in the bunch, which is important for the Landau damping of the collective instabilities (see
Section 2.6). Depending on the bunch emittance, the synchrotron frequency spread of the
particles may vary a lot. Therefore, in the case of a large bunch (substantial fraction of the
bucket area) that is not matched to the bucket (for example the bunch is injected into the bucket
from another ring), this difference in frequencies leads to the so-called beam filamentation. This
process causes the mismatched bunch distribution to evolve into spirals, diluting the phase-space
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Figure 2.5: Synchrotron frequency versus the RF phase in the case of a single RF system and a
stationary bucket. The exact curve is plotted with a solid line, while the approximated one with
a dotted line.
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Figure 2.6: Simulated particle distribution in the longitudinal phase space (left) and its line
density (right) after 1500 revolution periods (=11 synchrotron periods). The fact that the
injected distribution (red trajectory on the left plot), was not matched to the RF bucket led
to strong beam filamentations. No intensity effects are included. Simulations carried out by a
beam dynamics code written in Matlab (see next Chapter).

density of the beam. An example of a mismatched bunch injection and the subsequent beam
filamentation is shown in Fig. 2.6.

The synchrotron frequency spread can be significantly increased by using a double RF system.
Analytical calculations of the synchrotron frequency distribution in BLM and for harmonic ratio
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n = 2 can be found in [50-52]. For example, in the case of a stationary bucket with V5 /V; = 1/2,

one can find in [51] -y
() = K(WSL(;) m’ (2.74)

where r = /H./2 and H. in this case can be obtained from Eq. (2.41) by H. = U(¢1). The
parameter my of the elliptic integral is mg = (r +1)/2.
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Figure 2.7: Synchrotron frequency versus the RF phase angle in the cases of BSM (black), BLM
(red) and single RF system (blue). Note the increase of the frequency spread for the double RF
system (in both modes). A stationary bucket is considered.

The increase of the synchrotron frequency spread in a double RF system with respect to
a single harmonic can be seen in Fig. 2.7 for the case of the RF voltage and harmonic ratios
Vo/Vi = 0.5 and n = 2, respectively. In the BLM the spread on the frequencies of the beam is
maximum for a ¢ = 2. For larger ¢ the region where the derivative of f; is zero appears. For
long enough bunches, this can lead to a decrease of the loss of Landau damping threshold (see
next Chapter).

2.1.9 Action-angle variables

The synchrotron frequency distribution inside the bunch can be also calculated by making use of
the so-called action-angle variables, meaning that the Hamiltonian of the motion is transformed
using a new set of canonical coordinates (¢, J). In fact, this is a common approach when one is
interested in oscillatory motion characterized by an amplitude or a phase [47].

The action variable J is defined as

1= (55 ) a0 (2.75)

Y wo
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gives the phase-space area enclosed by a particle trajectory divided by 27, i.e. comparing with

Eq. (2.46)
A

= %.
Therefore, for a conservative system (as the one discussed here), J is a constant of motion [47].
From the Hamilton equation

J (2.76)

OH(.]) ] _
oy dt

one can see that the Hamiltonian depends only on action, i.e. H(v¢,J) = H(J).
The angle variable ¥ can be obtained from the second Hamilton equation for the new set of

0, (2.77)

variables
OH(J) B dil) B

oJ dt
where wg(.J) is the synchrotron frequency distribution of particles with action J.

ws(J), (2.78)

2.2 Wake fields and impedances

So far it was assumed that the motion of the particles is determined by the external voltage
applied by the RF cavities, and no interaction of the beam with its environment was considered.
However, the beam consists of charged particles which interact with the surrounding equipment
(RF cavities, injection and extraction kickers, various beam pipes, beam instrumentation etc.)
generating electromagnetic fields [18]. These fields act back on the beam perturbing the particle
motion. In the following, we assume that the beam is moving with the speed of light (this is
practically the case for the high-energy proton beams in the SPS studied in this thesis) and
therefore causality dictates that there is no electromagnetic field in front of it. That is why also
these fields are known as wake fields [18].

Let us consider a particle with charge ¢ moving with constant velocity v = Sc¢ inside the ring.
When this particle comes across a discontinuity (for example an RF cavity) or if the wall of the
beam pipe is not perfectly conducting, an electromagnetic field is left behind. If E,(z,t) is the
longitudinal component of the electric field, a second (witness) particle, at a distance Az behind
the source particle, which is traveling with the same speed (see Fig. 2.8), will feel this field.

The induced voltage per unit charge seen by the trailing particle is defined as wake function
(see for example [1]) and is given by

W(Az) = ; / E,(z + Az, t)d, (2.79)

where the integration is taken over the length of the corresponding ring element.
Applying a Fourier transform over the variable 7 = Az/(fc) one can get the longitudinal
coupling impedance (in Ohms) [18]

Z(w) = % / W (T)e™7dr. (2.80)

It is a complex, Hermitian quantity with ReZ(w) and ImZ(w) being an even and odd function
of w, respectively. Thus, the interaction of the beam with its surroundings can be described
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Figure 2.8: Schematic drawing of a witness particle at a distance Az behind some source particle
in a beam. Both particles are traveling along the direction z with velocity v.

equivalently either through the wake functions (time domain) or the impedances (frequency
domain). Depending on the problem, one or the other approach might be preferable.
For a bunch with a particle distribution in the phase-space F(¢, AE/wy), the line density
A(¢) can be defined as
oo
M) = / F(o, AE/wo)d<AE/w0). (2.81)
—oQ
Using the normalization
™
| x@o=1, (2.82)
—m
the voltage induced by the bunch is given by [2]
Vina(1) = Ng / AT YW (r —7))dr (2.83)
—0o0
or in frequency domain
‘/ind(w) = NC])\(W)Z(W), (284)

where A\(w) is the Fourier transform of A(7). Note that above the phase variable ¢ was replaced
by the time variable .

The wake fields can be categorized as short-range (single-bunch effect) or long-range (multi-
bunch effect) depending on the duration of their oscillations inside the different machine elements
after the bunch passage. Local interactions (or short-range) are caused mainly by the space
charge or the inductive wall impedance [2]. All particles of the beam have the same charge,
resulting in a repulsive force between them (space charge). In the ultra-relativistic case (as the
case studied in this thesis), space charge practically does not affect the bunch motion since the
electric field generated by each particle is perpendicular to their motion [18]. The influence of
the beam pipe walls on the beam behavior has a similar but opposite effect as the space charge.
In most accelerators, the walls have inductive impedance at low and medium frequencies and the
space charge acts like a capacitive impedance. Thus, the effects of space charge and inductive
impedance on the bunch can be partly or completely compensated. However, the effect of the
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inductive impedance does not vanish at high energies. It can be shown for a beam with radius
« circulating in a round beam pipe of radius b that the normalized space charge and inductive
wall impedance Z(w)/n, with n = w/wy is given by (see for example [2])

Zglw) =i (g%ig —w0L> , (2.85)

where g = 1+21Inb/a, Zj is the free space impedance and L is the wall inductance. Therefore,
in this approximation the value of Z(w)/n is independent of frequency and is purely imaginary.

In practice, Z(w)/n remains almost constant up to the so-called cut-off frequencies [18]. Note
the 1/42? dependance of the space charge term meaning that at high energies its contribution
can become negligible.

Long-range wakes can be produced by the RF cavities or other cavity-like objects. The total
duration of the excited fields depends on the characteristics of the specific cavity. It can last
long enough to affect the trailing bunches or even the same bunch in the next revolution period.
The coupling impedance of a resonator can be written in the form

Rsh
1+¢Q(w%—%>’

where Ry, w, and @ are the shunt impedance, the resonant frequency and the quality factor,

Z(w) = (2.86)

respectively. Depending on @ this impedance can be either narrow-band (high @, long-range
wake) or broad-band (low @, short-range wake). Applying the inverse Fourier transform one can
show [18] that the wake field of a resonator is

W (r) x Wyexp™“™/2Q, (2.87)

and thus decays exponentially in time with a time constant 2Q)/w,. Therefore, for bunches
spaced by 25 ns (as in the LHC beam) and a resonator at frequency f, = w,/(27) = 1 GHz, if
@ > 7 the induced field of one bunch will affect the motion of the next bunch. Typically, for
the main resonators included in the SPS impedance model, @) is between 5 and 300 within a
frequency range of (0.2 - 1.6) GHz [53]. This is the reason why in beam measurements in the
SPS, a coupling between roughly 10 bunches in the batch is observed [41].

2.3 Vlasov equation

In the conservative deterministic system of the particles in the longitudinal phase-space, de-
scribed by the canonical conjugate variables (¢, AE /wy), the particle trajectories are completely
determined by their initial conditions. That means that two particles starting from the same
point will follow the same phase-space trajectories. For convenience, below we denote the phase-
space variable AFE /wy by e.

Due to the very large number of particles (10'0 — 10'%) in the accelerator, we are more
interested in the evolution of the phase-space distribution function F(¢,¢) and not in single
particle trajectories. The number of particles occupying some small phase-space area is dN =
F(¢,€)dpde and therefore the total number of particles in the bunch is given by the integral

N = / / F (6, €)dede. (2.88)
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The time evolution of the distribution function F'(¢,¢€) is described by the Liouville’s theo-
rem [54]. It asserts that the phase-space distribution function is constant along the trajectories
of the system and can be expressed by the equation

dF (¢, ¢€)

—— =0 2.89
109 _y, (2:39)

or taking into account the dependance on ¢ and e

oF OF . OF
— 4+ — —é=0. 2.90
ot T 950 B¢ (2.90)
This expression is known as the Vlasov equation [54].
Using the Hamilton equations of motion (2.30) and (2.31) we can write Eq. (2.90) in the
form OF
= 4[F H] =0, 2.91
[P H) (291)
where the second part on the right hand side is the Poisson bracket [47] and H is the Hamiltonian
given by Eq. (2.29).
In the case of electron beams, however, the contribution of the synchrotron radiation to
damping and diffusion is much stronger and one needs to use the Fokker-Planck equation in-

stead [55].

2.4 Potential well distortion

The stationary state of the particle distribution and the way it is affected by interaction with
the machine impedance, are important for analysis of beam stability. Since the stationary
distribution function does not depend explicitly on time, we get from the Vlasov equation (2.91)

OF
— =0=[F,H| =0, (2.92)
ot

which means that in this case the distribution function is a function of the Hamiltonian only,

F =F(H).

At low intensities, when Vi,q < V;t the potential well is mainly defined by the external RF
voltage (see Fig. 2.2). As the intensity increases, the effect of the wake fields becomes stronger,
leading to the distortion of the RF potential well. To illustrate this effect we will consider again
the case of a single RF system and a bunch with a length that is short compared to the RF
wavelength. Then the equation of motion for zero intensity is given by Eq. (2.35)

d%¢

ﬁ + w520¢ =0, (2.93)

where wgg can be found from Eq. (2.36). Note that for convenience, in the equation above ¢ was
used instead of A¢ compared to Eq. (2.35).

Introducing now intensity effects through the wake function W(¢), and assuming a short
range wake, the previous equation is modified to

d%¢

o @ wgo‘/;nd (¢)
dt?

2.94
Vigcos s’ (2.54

+ o =
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where Vi,q is given by Eq. (2.83) with ¢ = wyeT

)
Vina(6) = N / AW (6 — @)deo. (2.95)

—00

Here A\(¢) is the particle line density normalized according to Eq. (2.82). Expanding Vi q into a
Taylor series up to the first order in ¢ (small angle approximation) we have

Vind(6) = Vina (0) + Vina(0) + ..., (2.96)
where 0
Via(0) = Na [ M)W (=) (2.97)
and 0
Via(0) = NaAOW(0) + Ng | M)W (=g (2.98)

Thus in this approximation Eq. (2.94) becomes [4]
dQ(b 2 w20 ’
— = —— (Vina(0) + Vi q(0 2.99
T (Vna(0) + V0(0)9) (299)

The first, constant term on the right hand side of Eq. (2.99) shifts the synchronous phase by

~ Ng 0 _ Ng 1 [

Since A(w) is an even function, ImZ(w) (odd function) does not contribute to the later integral
and only the real part of the impedance (even function) is responsible for the phase shift

Ngq &
Apg = ————— A . 2.101
b= g /_ A@ReZ(w)do (2.101)

The second term on the right hand side of Eq. (2.99) will cause a shift in the synchrotron
frequency given by

w2—w20 Ngq 0 / iNg 1 [
5 = MoW (—p)dp = — ————— — Mw)Z(w)dw. 2.102
= [ oW e = - I [ in@z@)de. (2102)

In this case wA(w) is an odd function and therefore only the imaginary part of the impedance
will contribute to the integral and consequently to the synchrotron frequency shift:

2,2 N 1 00

P 0 / WA w)ImZ (w)dw. (2.103)
W Vit cosos 21 J_ o

Note that the last equation gives the synchrotron frequency shift of the particles inside

the bunch, oscillating with small amplitudes around the synchronous particle. However, this

is not the case for the rest of the particles, where the effect of the impedance is in general
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different, leading to a change of the synchrotron frequency distribution inside the bunch (see
next Chapters).
An analytical solution of Eq. (2.103) can be obtained when the wake function has the special
form [2]
W (¢) = S8 (¢). (2.104)

This wake function can be produced by a purely imaginary impedance with constant ImZ/n,

and S being
(1ImZ
§ = h2, MZ). (2.105)

n
Inserting this wake into Eq. (2.95) we have for the induced voltage
Vina(¢) = NgSX'(¢). (2.106)

Assuming now a so-called parabolic line density (often a good approximation for protons) [4]
with ¢¢ denoting the half bunch length (in rad)

30, (2}
o) = v [1 <q§0> ] (2.107)

and following the same steps as before, the synchrotron frequency shift becomes

wi-wh _ Viw® _ 3Ng S (2.108)
w2, Vit coS o 2Vi cos ds (¢ )3
or in terms of the impedance, using Eq. (2.105),
wl—wh __ 3Ng  hPwImZ (2.109)
B Wecosts (G 7

From the latter equation we can see that above transition energy, where cos¢s < 0 the
synchrotron frequency is reduced if the impedance is inductive (ImZ/n > 0) and increased if
it is capacitive (ImZ/n < 0). The reverse applies below transition. Similar dependance of the
synchrotron frequency spread on the beam and machine parameters can be obtained for other
distributions but different in absolute values [4].

The same is also true for the effective voltage that the particles see

3Nqg h*wyImZ

Vet = Vi -
ff £+ 2c08 95 (¢g)3 1

(2.110)

Above transition and for inductive impedance the effective voltage is smaller than the RF voltage
with a consequent reduction of the bucket height. In addition, considering a proton beam with
constant emittance, one would expect that the corresponding bunch length will be increased.
It can be shown [4] that due to the effect of potential well distortion the new bunch length gZ;

satisfies the relation )
(Zg Ws0 COs ¢s
— = —y|——. 2.111
(qbo Ws COS<¢S + A¢s) ( )
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The last formula can be used to distinguish in measurements between the bunch lengthening due
to the potential well distortion from the one resulting from instability [4]. In particular, usually
one observes that by increasing the bunch current the bunch length is increasing with a certain
slope given by Eq. (2.111), until some threshold current, where the slope becomes stepper. This
point is considered to be the instability threshold.

2.5 Perturbation and coherent modes of oscillations

In addition to the potential well distortion, the induced voltage can force all or some of the
particles in the bunch to execute also a collective motion starting from a small perturbation. This
perturbation, under certain circumstances, can grow exponentially leading to beam instability.
Initially, the particle distribution can be presented as a sum of the stationary distribution Fy(H)
and a small perturbation F}(¢,¢,t)

F(p,e,t) = Fo(H) + Fi(p,€,1). (2.112)

This perturbation will introduce an extra term in the voltage

V() = Vo(9) + Vina (9, 1), (2.113)

where V) = Vgt + Vigd is the full voltage in the stationary state and Vhl1C1 is the additional voltage
induced by Fi(¢,€,t)

oo

Vina(@:t) = NQ/

—00

M@ W6 -1 =N [ [ R oW hasa, 2wy
where A1(¢,t) is the line density perturbation given by

oo
M. = [ Rt
—00
The second equation of motion (2.26) becomes

e = o= [Vo(6) + Vina(6,1)] - (2.115)

For the stationary case, the Vlasov equation (2.91) can be written in terms of the phase-space
variables
oFy

OF, .
¢¢ fVo(czS) 50 = O (2.116)

Introducing Eqs. (2.112) and (2.115) into the Vlasov equation (2.90) and keeping only linear
terms in the perturbation (quadratic terms in Fj and also products of Fﬂ/irlld are neglected), we
end-up with the linearized Vlasov equation [7]

— + 7(25 + 7‘/ a9 + o 1nd(¢ t) = 07 (2117)

where Eq. (2.116) was also used.



2.5. Perturbation and coherent modes of oscillations 41

Transforming the phase-space coordinates (¢, €) to the action-angle (¢, J) we find

a (. o 07 . 0J)\ 0
b im = (aer 3 oot (oot oct) a7
0

— ws(‘])%a

where the two parenthesis in the above formula were replaced using Eqgs. (2.77) and (2.78) as
follows:

(2.118)

dJ aJ . 8J
2 e+ e=0
i ¢¢ +
dyp o w
_ — W, 2.11
g w(J) < 90 —é + = ws(J). (2.119)
Remembering the definition of the potential energy in Eq (2.32), we have
aU'l d(¢7 t) q 1
ind\® 7 _ 2y 2.12
3¢ or V;nd(qﬁvt)a ( 0)

while

OF, _dRyOH _dF, 4] 0H _ dFy ¢ 2.121)
de  dH de  dJ dH de  dJ w(J)’ '

Combining the last two equations with Eq (2.118), the linearized Vlasov equation becomes

OF, OFy  OUL (¢,t)dFy
o TG o0 dJ

= 0. (2.122)

The solutions of this equation, for a particular stationary distribution function Fy and wake
function W, determine whether the system is stable or not.

In the case of very weak self-forces, compared to the external forces (Uﬁld < Vi), the last
term of Eq. (2.122) can be neglected. Following Sacherer [7], it can be shown that in this case
the solution of the Vlasov equation has the form

Fi = Ry (J)e™¥et, (2.123)

with w = mws(J) and m being an integer which defines the azimuthal mode. This type of
solutions tells us that the azimuthal modes m, oscillate with frequencies mws(J), defined by the
potential well distortion. A few azimuthal are shown in Fig. 2.9 [3]

Depending on the azimuthal number m, the modes are usually classified as dipole (m = 1),
quadrupole (m = 2), sextupole (m = 3), etc. For example, m = 1 in Fig. 2.9 corresponds to the
rigid-dipole mode oscillations which is usually observed when the bunch is injected with a phase
error. Mode m = 2 corresponds to the rigid-quadrupole oscillations when there is a mismatch
between the bunch shape in phase-space and the RF bucket and then the oscillations appears
to be twice as fast. In general these modes can be described by cosm¢ with 2m nodes in the
longitudinal phase-space (top row of Fig. 2.9). The projection of the phase-space distribution
on the phase axis is the line density which has m nodes in the mth mode not including the ends
(bottom row of Fig. 2.9).
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Figure 2.9: Azimuthal synchrotron modes of a bunch in the longitudinal phase-space (top) and
the resulting line density (bottom) [3].

The function R(.J) defines the radial dependance of the solutions. In fact, there are, for
example, an infinite number of dipole-type modes [7]. A non-rigid mode only appears if the
central part of the initially stationary distribution (first column in Fig. 2.9) is displaced from the
origin. Similarly there is an infinite number of quadrupole modes and of the higher multipole
modes.

For large number of particles the last term of Eq. (2.122) should be also taken into account.
The perturbed distribution can be expanded in the longitudinal phase-space as

Fy =) Rp(J)eme ™, (2.124)

where w is the collective frequency to be determined. In principal w is a complex number, and
therefore, when Imw > 0 the beam is unstable.

Substituting Eq. (2.124) into Eq. (2.122), multiplying both sides by e*imllp and integrating
over 1 we get the following equation

dFO o0 / / /
= ()] R () = =2 Z/O AR, (g (T, (2.125)
where
/ 'L 2w / 6¢ ’ L
B (T = 5 [ av T P (g gy iy, (2.126)
e 21 Jo 0 oY
In the derivation of Eq. (2.125) the following equation was used
8U‘1 2ﬂ- ’ a / !
R A i)Fl IWo—d)

27 ’or
- / dJ/ dw"% (e W (- o). (2.127)
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Finally we end up with the integral equation (2.125) [7], which is an eigen-value problem for
R, (J). Given a longitudinal wake W (¢) and an unperturbed distribution Fy(J), the coherent
frequencies of excitation w can be found. Unfortunately, finding analytic solutions is possible only
for some particular functions W (¢) and Fy(J), and becomes difficult in general case, especially
with a spread in the incoherent synchrotron frequency ws(.J).

In this thesis, solutions of the linearized Vlasov equation were found in a semi-analytical
way following the approach from [12,13], where the potential well distortion and the incoherent
synchrotron frequency distribution were taken into account. We also used the approximation
that the perturbation is small w —mws(J) < ws(J), implying that the coupling between different
azimuthal modes can be neglected. This simplifies the Vlasov equation from a system of infinite
equations to one involving only one azimuthal mode m.

2.6 Landau damping

Landau damping was initially formulated by Landau [8] in plasma physics, as a natural stabi-
lization mechanism against collective instabilities. Today, this phenomenon is of common-place
occurrence in the physics of charged particle beams in storage rings, in the context of beam
stability against the collective modes. The first time that Landau damping was introduced in
beam physics was by Neil and Sessler [56] and since then many studies (see for example [2,9,57])
revealed its great importance for the daily operation of the circular accelerators.

Its application in the accelerators is based on the fact that the beam particles behave as an
ensemble of oscillators with (in principle) a spread in their natural frequencies. For a bunched
beam in the longitudinal plane, Landau damping proceeds through the spread in synchrotron
frequency. This spread is responsible of stabilizing the beam which would otherwise be unstable
due to the various perturbations.

Let us assume that an ensemble of oscillators (as is the bunch) with frequency spread Aw
is subjected to a monochromatic excitation with frequency Q (f ~ e~**) which lies within the
frequency band Aw. The equation describing the displacement y of a single particle is given by

i+ wly = Ae7H (2.128)

where the overdots represent derivatives with respect to time and A denotes the amplitude of
the force. The solution of the above equation proportional to the driving force can be written as

A —it

For a large number of particles the displacement of the center of mass is
<yt)>=A " dw L) i (2.130)
- w2 — 2 )

where the p(w) is the distribution of the resonance frequencies of the particles normalized ac-
cording to

/00 p(w)dw = 1. (2.131)

o0
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Following a treatment by [3] it can be shown that in the approximation when p(w) in narrow
around a center frequency w, the oscillation amplitude of a component corresponding to frequency
w is '

Amplitude(w) = éw
w w—1

(2.132)
This means that all particles having frequency w are excited at ¢ = 0, increase to the maximum
amplitude at ¢ ~ 7/(w — ) which is damped down to zero at ¢t = 27/(w — §2). Thus, energy
is gained but is given back to the system. For w closer to €2, the response amplitude rises to a
larger value and the energy is given back to the system at a later time. For those particles that
have exactly the frequency 2, the amplitude grows linearly with time and the energy keeps on
growing. This process of transferring energy to the few particles having frequencies very close
to € is called Landau damping. An illustration is shown in Fig. 2.10, where the red curve in the
bottom plot shows a particle having exactly the same frequency as {2 with oscillation amplitude
growing linearly, while the other curves show particles with frequencies different from €2 and their
oscillations are decaying with time. The decay time and maximum amplitude depend inversely
on the frequency difference Aw = w — . In other words, particles with w far away from Q get
excited, but the energy is returned to those particles having w close to €2, which are absorbing
energy.

external force

AN

external force acting on oscillator
100 T T T T

<y>

-100 : ’ ‘
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Figure 2.10: Oscillator’s response to a sinusoidal driving force f(t) = AcosQt (top plot). The
bottom plot shows the response of oscillators with different frequencies compared to ().

The energy of the system of the particles on the other hand, is proportional to

sin?(w — Q)t/2

[Amplitude(w)]2 = )

(2.133)

One can see that as time progresses the amplitude square becomes larger and larger (o< t2), while



2.6. Landau damping 45

its width shrinks (Aw oc 1/t). This confirms that energy is being transferred by the particles
having frequencies far away from 2 to particles having frequencies closer to ). Finally, as ¢ — oo,
the linear increase in the energy of the system of the particles is concentrated at those particles
having exactly the same frequency as 2. However, it can be shown that the centroid motion of
the ensemble of the particles, < y >, will be still damped even when a few particles have very
large and still growing amplitudes.

The asymptotic behavior mentioned before applies if one waits for a time longer than 1/Aw.
For ¢t < 1/Aw, the beam response is confounded by transient terms. Furthermore, the resistive
term is proportional to the particle distribution p(2). If the spectrum is such that there are
no particles near frequency €2 to continuously absorb energy, Landau damping will cease and a
beating phenomenon takes over. Since a beam consists of a finite number of particles, Landau
damping will cease when t is larger than 1/dw, where dw is the frequency spacing between two
nearest particles. The range of time for Landau damping to be effective is therefore

1/6w >>t>>1/Aw. (2.134)

With N particles in the beam, one might have dw ~ Aw/N. Taking N = 10! and Aw = 103 s~ !
for example, the time is limited to the range between 1 ms and 108 s.






CHAPTER 3
Loss of Landau damping in a double
RF system

In this Chapter the thresholds of the loss of Landau damping due to the presence of reactive
impedance are determined in a single and double harmonic RF systems, both from calculations
and particle simulations. It is shown that in the bunch lengthening mode (BLM), Landau
damping is effective only below some critical value of longitudinal emittance. Above this value
bunches become more unstable than even in a single RF system. A phase shift of more than
15 degrees between the two RF components is proven able to stabilize the bunch. These results
can explain now observations during the pp operation of the SPS. The critical regions of the
bunch size appear also in the case of bunch shortening mode (BSM) for high harmonic ratio and
sufficiently large voltage ratio between the two RF systems.

3.1 Introduction

The BLM was used in the SPS during its operation as a pp collider, when a 100 MHz RF system
was installed in addition to the existing 200 MHz RF system [14]. At that time, transverse
space charge de-tuning effects together with microwave instability were the main bunch intensity
limitations. By operating in BLM it was possible to significantly increase the bunch intensity.

The bunches were injected into the SPS with a nominal longitudinal emittance of g, =
0.65 eVs (20). However, the synchrotron frequency spread introduced by the second harmonic
RF component was barely sufficient for stability and any injection errors were un-damped with
bunch oscillating along the injection plateau (26 GeV/c). Furthermore, for larger emittances
instability was occurring in the tails of the bunch, and the feedback loops were not able to damp
it. To counteract this instability a phase shift between the 2 RF systems was introduced [15].

Previous studies of beam stability in a double RF system already pointed out that in the
BLM Landau damping can be lost for particles in the region where the synchrotron frequency
distribution has its maximum (w,(.J) = 0) outside the bunch center [51,58]. This region was also
creating problems in the beam control of the CERN PS Booster due to the large coherent signal
in a double harmonic RF system [59]. Indeed, large amplitude coherent response was measured
in beam transfer function (BTF) in the BLM at frequencies corresponding to w,(J) = 0 [60].
Recently, an analytical approach made it possible to find this threshold through the onset of a
discrete Van Kampen mode (coherent mode without Landau damping) by solving numerically
the linearized Vlasov equation [12,13].

The latter method is used in this thesis, together with particle simulations for inductive
impedance, to explain the observations during the pp operation. Only the dipole modes (m = 1)
are addressed since they are expected to have the lowest threshold and no coupling between
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different azimuthal modes is considered. The analysis is also expanded to the cases of the BSM
and a single RF to get a better understanding of the different operating modes. Moreover, the
situation of a higher harmonic ratio between the two RF systems is also considered, which in
fact corresponds to the current situation in the SPS.

3.2 Method of calculations

Below the semi-analytical calculations are done in two steps. First, a steady state solution needs
to be found for the specified conditions (RF voltages, emittance ¢;, intensity and impedance)
and then the linearized Vlasov equation can be solved. These parts are described in more details
in the following sections.

3.2.1 Steady state solution

In order to find the steady state solution, we need to deal with the potential-well distortion. As
mentioned in section 2.2, the induced voltage depends on the line density A(¢) and therefore a
self-consistent solution needs to be found. This can be done by solving the following system of
equations (see ref. [12]):

U@) = Ui+ Uina = Uyt — o / d¢’ / 48" NS YW (P — &) = Unns I\,

J(H) = \/H U(@)]dé = Jrus[U (3.1)
Hmax

ANg) = / Fo (J (H)) de = 24 / H Ié)()qb)]de)\RHs[J,U],

where A = /282E/hnwj and use has been made of Egs. (2.41), (2.32), (2.83) , (2.75), (2.57)
and (2.60). In the last of the above equations Hyax corresponds to the Hamiltonian of the
particles placed at the very edge of the pre-defined bunch emittance. The phase-space density as
a function of action Fy(J) and the wake function W (¢) are required as an input. In order to solve
this system, an iteration procedure can be applied with the initial condition Uy(¢) = Uyt(0):

Un(¢) = Un-1(¢) — e(Un-1(8) — Urns[Mn-1]),
Jn(H) = JRHS[Un], (32)

M(®) = Arus[Jn, Unl.

If the solution exists, the process converges to it provided the convergence parameter € > 0 is
sufficiently small. The problem of existence and uniqueness of that solution is also considered
and discussed in [12]. For the case of the inductive impedance and for the intensities considered
here the algorithm was always converging.
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3.2.2 Stability analysis

Taking into account the potential-well distortion, stability can be determined by solving the lin-
earized Vlasov equation for a small perturbation Fy(J,v,t) to Fy(J) as mentioned in section 2.5.
Using the Oide-Yokoya expansion [61] of the perturbation Fi(J,1,t) in terms of the orthogonal
basis we have

Fi(J,t) = e Y [fnl(J) cos(mp) + gim(J) sin(m))]. (3-3)

m=—0oQ

Substituting Eq. (3.3) into the Vlasov equation (2.122) after multiplying both sides by cos(m1))
or sin(ma)) and integrating over 1) we get the following system of equations:

wfm(J) = mws(J)gm(J),

27 1
L B T e e )

In the above equations we use the fact that ¢(v) = ¢(2r — ¢)) and therefore by making the
substitution 1 = 2w — ¢ one can show that

U q(¢,1)
oY

since the integrand is an odd function. Combining the two equations (3.4) and integrating by

2m
/0 di) cos(ma) =0, (3.5)

part the integral we get

s(J) dFp(J 2w
o = m2()] ) = =D D [y cosmipupaon. (@)
where
N 2 2m / o ! / /! / / !
Uhate) = —5 [ v’ [T AR08 [o0. )~ 00,0
N 2 27
- _fo/o dw/ dJ'S [p(, J) — Z for (J') cos(m'y") (3.7)
and
¢
S@) = [ W) (3.8)
Again for the same reason as before
27
/0 48 [p(,.) — & (0, J)] sin(m') = 0. (3.9)

Inserting Eq. (3.7) into Eq. (3.6) we finally obtain the following integral equation

dFO

[w2 —m2wi(J ) fn(J) = —2m2w,(J

Z / AT Vgt (J, T frr (J7), (3.10)

m/'=—o0
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where

2 ™ s
V(9.7 = = [ [ 0! costonis)cos(on's!) 8 [o(n. 1) =, 7)) 1)

Approximating the integral in Eq. (3.10) by a sum, one ends up with a standard eigenvalue
problem of linear algebra. This equation can be solved numerically to get the spectrum of the
Van Kampen modes as was done in [12,13]. after some modifications to take into account cases
of non-symmetric RF potentials (double RF with a phase shift).

Analyzing the dispersion integral obtained from the Vlasov equation for infinite plasma, Van
Kampen [62,63] has found that it consists of a continuous and a discrete part. The continuous
spectrum (Van Kampen modes) is described by singular eigen-functions coinciding with the
incoherent synchrotron frequencies inside the bunch wy(.J). Landau damping results then from
phase mixing of the Van Kampen modes which are real and do not represent collective motion
of the particles. At low intensities, when the interaction term is negligible (UL ;(¢) ~ 0), all the
modes belong to the incoherent spectrum, w = mw,(J), see Eq. (2.123). On the contrary, above
a certain intensity Ny, the discrete modes can emerge. These modes are described by regular
functions and by definition they lie outside wy(.J), implying that Landau damping is lost [12,13].

Figure 3.1 presents an example of the eigen-modes (red points) obtained from Eq. (3.10) for
the rigid dipole mode (m = 1) and a double RF system in the BLM. One can clearly notice the
discrete mode emerging above the incoherent spectrum (blue curve) meaning that for that mode
Landau damping is lost.

80

incoherent fs(s)

e Eigen-values

0 0.2 0.4 0.6 0.8 1 1.2
emittance [eVs]

Figure 3.1: Example of the eigen-modes (red points) obtained from Eq. (3.6) for m = 1 and
a double RF system in the BLM. The red point above wy(J) (blue curve) corresponds to a
discrete mode which shows that for the emittance of 0.65 eVs Landau damping is lost. The
bunch intensity was 7x10'° p.
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3.3 Macroparticle simulations

In order to verify the loss of Landau damping obtained by the semi-analytical approach described
in section 3.2, a multi-particle tracking code was created in Matlab to simulate the effect. The
concept of macroparticles was used to represent a bunch. Each macroparticle ¢ is tracked in
the phase space (¢;,AE;) of the RF phase (defined by the main RF system) and the energy
coordinate. The longitudinal equations of motion Egs. (2.30), (2.31) were used including the
intensity effects. The code was developed for protons and based on the SPS parameters, so
radiation damping and quantum fluctuation were not considered. The minimum values of ¢;
correspond to the head of the bunch and the maximum to the tail, while AE; = u; is the energy
difference between the macroparticle ¢ and the synchronous particle.

Each turn, the induced voltage is calculated in frequency domain Vi q(w) from the spectrum
A(w) of the line density (projection of macroparticles onto the AE axis) according to Eq. (2.84).
Standard smoothing algorithms were also applied to A(¢) in order to get rid of the numerical
high frequency noise due to a limited number of particles. Then Vinq(¢) is obtained from the
inverse Fourier transform of V;,q(w) and added to the external RF voltage Vi¢(¢) to get the total
effective voltage Viot(¢) seen by the particles. The advance of each macroparticle after one turn
at ng, turn is given by the following equations:

Uint1 = Uin + Viot(di)
2mh
Gintl = QPin—1+ BTEZUi,nJrly (3.12)

with h being the harmonic number of the main RF system.

Numerical simulations presented here were performed using 5 x 10° macroparticles. The
initial matched distribution was created iteratively (as in the semi-analytical calculations) and
placed into the RF bucket with a small phase error of ¢g = 3°, enough to excite the rigid dipole
motion of the bunch. Tracking the particles for ~300 synchrotron periods T was adequate to
study the effect of Landau damping. Figure 3.2 presents examples of the rms bunch position
evolution for the cases below and above the threshold.

The criterion used here to estimate the threshold is based on the relative change of the
dipole oscillation amplitude ¢max (envelope of the oscillations in Fig. 3.2), averaged after 100 T
(transients). The ratio ¢max/¢o is plotted in Fig. 3.3 for different emittances for the BLM. The
threshold was selected to be 80% (horizontal line) and although being a rather random choice
it affects only the absolute values and not the physical interpretation. In particular, as can be
seen in Fig. 3.3, choosing the threshold to be at another level, for example at 50%, it would still
give the same relative result for the different longitudinal emittances.

A comparison of both the analytical approach and the simulations with another tracking
code, for different particle distributions in the case of single RF system and inductive impedance,
showed a very good agreement [64].
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Figure 3.2: The rms bunch position versus number of synchrotron periods for bunch intensity
below the threshold of loss of Landau damping (left) and above it (right) in a double RF system
in BLM. The voltage ratio between the two RF systems at V;/Va = 2.
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Figure 3.3: Relative change of the averaged dipole oscillation amplitude versus bunch intensity

for different emittances in BLM, ¢9 = 3°. The voltage ratio between the two RF systems at
Vi/Va = 2.
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3.4 Results for a second harmonic RF system (n=2)

As mentioned above, both calculations and simulations were applied for the SPS during the pp
operation. The 2 RF systems were set up in the BLM with voltage amplitudes Vig9 = 0.6 MV
and Voo = 0.3 MV, while for the phase-space density the distribution F(J) = (Jim — J)? [14]
was used, close to the one fitted to measurements. The intensity thresholds of the loss of Landau
damping were defined for different longitudinal emittances. These thresholds Ny, found for
the BLM by calculations from the onset of the discrete Van Kampen mode and in simulations
from the crossing of the horizontal line in Fig. 3.3 with the curves for different emittance, are
presented in Fig. 3.4 (red color).
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Figure 3.4: Loss of Landau damping thresholds versus bunch emittance for a double RF (BLM -
red, BSM - blue) and a single RF (black) systems found from calculations (dots) and simulations
(diamonds). Application for the SPS during the pp operation at injection energy (26 GeV/c).
Voltage ratio between the two RF systems at V;/Vo = 2.

Both curves, being in a very good agreement, show that Vi, increases with emittance g, until
some value of ~0.5 eVs. After this point further increase in ¢; leads to threshold reduction. In
fact, an inspection of the incoherent synchrotron frequency distribution, see Fig. 3.5 (red curve),
shows that the flat region where w;(J) = 0 (vertical line) corresponds to the critical emittance
€er = 0.65 €Vs.

This result can actually explain the un-damped oscillations at the injection plateau during
the pp operation, since for the nominal (0.65 eVs) or larger emittances the threshold for the loss
of Landau damping is very low. Although the spread of the ws(J) inside the bunch is still big,
the lack of stability in this case is determined by the non-monotonic behavior of the ws(J) in
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Figure 3.5: Relative synchrotron frequency distribution for a double RF (BLM - red, BSM -
blue) and a single RF (black) systems. No intensity effects are included. The vertical line at
0.65 eVs indicates the maximum of the BLM curve. Similar conditions as in Fig. 3.4.

the tails of the bunch.

The effect of the phase shift (A¢) between the 2 RF systems around e., was also studied.
The calculated Ny, is presented in Fig. 3.6, where one can see that although for small shifts the
threshold goes down, after around 15° a dramatic increase takes place, explaining again the cure
of the instability which was found empirically during the pp operation. However, in this case the
flatness of the bunches is lost since the potential well is not anymore symmetric (see Fig. 3.7).

For completeness, the same studies were also applied for a single RF and a double RF in
the BSM. The results are presented in Fig. 3.4, where one can see that for both of them Ny,
keeps increasing with the emittance, as was expected from the monotonic behavior of their wg(J)
distributions shown in Fig. 3.5. For bunches with ¢, < 0.2 eVs, the BLM is the preferable mode
at operation, while after this value the threshold of the BSM is rapidly increasing, making this
mode a better choice for stability. However, it is clear from Fig. 3.8 that the BSM is unacceptable
above 0.6 eVs due to lack of longitudinal acceptance, which would lead to significant particle
losses. For 4 > 0.6 eVs a single RF seems to be the best option.

Similar results were obtained in ref [12] for a resistive wake where again the threshold for
loss of Landau damping in BLM is the highest for small emittances but for higher emittances
drops first below the threshold in BSM and then below the single RF case.

For a space charge wake above transition the threshold, found both from simulations and
calculations, is significantly increasing, which is in good agreement with theoretical predictions
in [16]. In that case, the induced voltage enhances the focusing of the particles, leading to an
increase of the incoherent and coherent synchrotron frequencies, see Eq. (2.109). In the BLM
the region of w;(J ) = 0 is still present. However, the frequency shift of the coherent mode dw,
is less than the incoherent one Aws and hence the coherent motion is still Landau damped.
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Figure 3.6: Loss of Landau damping thresholds versus the phase shift between the 2 RF systems
found from calculations. Similar conditions as in Fig. 3.4.
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Figure 3.7: Potential well (blue curve) and line density (red curve) in the case of BLM with
e, = 0.65 eVs and a phase shift of —20°. Bunch intensity of 1x 10!,
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Figure 3.8: Bucket area versus emittance for a double RF (BLM - red, BSM - blue) and a single
RF (black) in the cases corresponding to the Ny, in Fig. 3.4. The black straight line is the limit
where ¢/ is equal to the bucket area.

3.5 Results for higher harmonic RF systems (n>2)

In the SPS the 4" harmonic RF system (800 MHz) is installed and used in operation for the LHC
beams. For higher harmonic ratios n = ha/h; a region where w;(J ) = 0 appears again in the
BLM (Fig. 3.9). Note that in the following results, in order to ensure the maximum synchrotron
frequency spread inside the bunch, the ratio between the two RF voltages is assumed to be
Vi/Va =n.

As Fig. 3.9 shows, the second RF system with a high harmonic ratio provides larger syn-
chrotron frequency spread. However, the maximum bunch length is more restricted in operation
due to the fact that the regions where Landau damping is lost are in this case closer to the center
of the bunch. From this point of view the second harmonic RF system has the largest useful
parameter space.

Furthermore, unlike in the case of the second harmonic with n =2, for n =3, 4 the regions
where w;(J) = 0 appear also in the BSM (Fig. 3.10). As mentioned above, particularly inter-
esting, for the SPS today, is the case of the 4" harmonic in the BSM (Fig. 3.10, red curve).
Indeed, simulations for this case and inductive impedance show that the threshold of the loss of
Landau damping is sensitive even to the local extremums of the synchrotron frequency distribu-
tion. These thresholds versus the longitudinal emittance, found from simulations with the same
method as before, are presented in Fig. 3.11. Note that for this shape of the synchrotron fre-
quency distribution the analytical calculations predict a much higher threshold. That is justified
by the fact that the emerge of the discrete mode, above the incoherent spectrum, corresponds to
the center of the bunch (J = 0), where we have the global maximum of ws(.J). Therefore, much
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Figure 3.9: Relative synchrotron frequency distribution inside the bunch for different harmonic

ratios n = ha/hy and voltage ratio V1 /Va = n for the BLM. Example for the 100 MHz voltage
Vi =0.6 MV, 26 GeV/c.
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Figure 3.10: Relative synchrotron frequency distribution inside the bunch for different harmonic
ratios n = hg/hy and voltage ratio Vi /V,a = n for the BSM. Example for the 100 MHz voltage
Vi =0.6 MV, 26 GeV/c.
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Figure 3.11: Loss of Landau damping thresholds versus bunch emittance for ho/hy = 4 in BSM
found from simulations.

One can see from Fig. 3.11 that for small bunches (g, < 0.3 €Vs), where w,(.J) is monotonically
decreasing, the threshold is growing with the emittance. That is not anymore true above the
first minimum in w4(J) when we observe a significantly lower threshold. However, by increasing
further the bunch emittance the situation is improving once again. This can be attributed to the
further increase of the spread Aws of the incoherent synchrotron frequencies inside the bunch
(see Fig. 3.10, red curve).

Today the SPS is used as the LHC injector, where the beam is captured and accelerated with
the 200 MHz RF system. In addition the 4" harmonic RF system (800 MHz) is used in the
BSM to stabilize the beam [60]. Since the nominal values of the injected emittances are around
0.35 eVs the bunch size is bigger than e, for the BLM (~0.15 eVs) and thus in this mode, and
for purely inductive impedance, no Landau damping is present. As mentioned before, the same
is also true for the case of the BSM when the voltage ratio between the two RF components is
high (V4 /Va = 4). The detailed studies for the current parameters of the SPS RF system with a
more realistic model of the longitudinal impedance are presented in the next Chapter.

3.6 Conclusions

Many accelerators in our days are operating with a double RF system in the BLM in order
to decrease the peak line density and to increase the synchrotron frequency spread inside the
bunch, making Landau damping more effective. However, it was proven here, both by simulations
and calculations, that for the inductive impedance there is a critical value of the longitudinal
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emittance, above which the Landau damping threshold decreases rapidly to zero. A phase shift
between the two RF components of more than 15° in the BLM can help to increase the threshold,
but the flatness of the bunches is lost. These results are able to explain observations during the
pp operation of the SPS.

For a capacitive impedance (or space charge above transition) the thresholds are either dra-
matically increased or could not be found, which is in agreement with the theoretical prediction
in [16], where it was proved that for the space charge impedance above transition, a bunch steady
state is always stable.

The analysis was applied for different harmonic ratios ha/h; = n between the two RF systems,
by keeping the voltage ratio V;/Va = n. It was shown that although higher n provides larger
synchrotron frequency spread, the critical region moves closer to the center of the bunch, which
is limiting the bunch length (or the longitudinal emittance for fixed voltage V1) that can be used
in operation. In addition, in the case of the BSM with n > 3 the regions where w(J) = 0 are
also appearing as local extrema. Consequently, for emittances larger than those regions, the
threshold of the loss of Landau damping is significantly decreased. These results agree very well
with the recent measurements in the SPS using the 4"* harmonic RF and this will be presented
in the next Chapter.






CHAPTER 4
Single bunch instabilities in the
CERN SPS double RF system

A fourth harmonic RF system is used in the SPS as a Landau cavity, in order to stabilize the high
intensity LHC proton beam against the longitudinal instabilities. Numerous studies proved that
operation of the two RF systems in bunch shortening mode through the whole cycle is necessary
to provide a good quality beam at extraction to the LHC. Furthermore, it was shown that the
choice of RF parameters such as voltage amplitude ratio and relative phase, is critical for the
beam stability. In this Chapter the single bunch measurements performed in single and double
RF systems with various RF settings are presented and compared with results of macroparticle
simulations for the SPS impedance model. It will be shown that the theoretical approach of the
previous Chapter is also applicable in this, more realistic, situation.

4.1 Introduction

In the SPS, operation of the fourth harmonic RF system is required through the whole cycle,
together with the main 200 MHz RF system, to deliver a good quality beam for the LHC. Indeed,
in a single RF system and the Q26 optics, the LHC beam (one batch of 36 bunches spaced by
50 ns with injected longitudinal emittances of 0.35 eVs) becomes longitudinally unstable during
acceleration already at 2 x 10! ppb (eight times less than the nominal intensity) [41]. Note
that this instability can not be damped by the present RF feedback, feed-forward (around the
200 MHz RF cavities) and longitudinal damper (low modes) used in operation.

The necessity of the double RF system operation for the beam stability in the SPS and
the effect the relative phase (¢gpp) has on it, has initiated different studies both for multi and
single bunch beams [10,65-67]. All these studies had consistently shown that the best operating
mode of the 4*" harmonic RF system is the BSM, whereas in the BLM it is not possible to
produce a stable beam above a relatively low intensity threshold. Moreover, in agreement with
the results of the previous Chapter, instability was also measured in the BSM when the voltage
ratio between the two RF systems was equal to the harmonic ratio, i.e V;. = Vggo/Vaoo = 1/4.

In the previous Chapter we showed that the phase shift between the two RF systems, for
a 2"d harmonic RF in the BLM, increases significantly the loss of Landau damping threshold
and therefore should lead to the damping of the bunch oscillations at the injection plateau
(26 GeV/c). In this Chapter we investigate the effect of ¢gpp on the bunch stability, in the
case of the 4"" harmonic RF, also at the injection energy. In order to enhance the effect of the
800 MHz component, we selected rather a large value of V,, = 0.25. Scanning ¢sggg for this voltage
ratio, different stability regions were obtained as compared to the BSM phase that is being used
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in operation (with V, ~ 0.1). Numerical simulations, performed using the code ESME [17] for
the impedance model of the SPS are compared with the measurements.

4.2 Phase calibration of a double RF system

In a double RF system the total external voltage seen by the particles has the form
V' = Vo sin ¢ + Voo Sin(4¢ + (Z)goo), (4.1)

where Voo9 and Vggg are the voltage amplitudes of the 200 MHz and 800 MHz RF components
and ¢ggo is the relative phase. In operation though, ¢ggo is defined up to some unknown phase
offset ¢y,

P800 = Po + Agsoo, (4.2)

which can be found from a calibration, performed at the beginning of each beam run. This
phase calibration is based on measuring the symmetry of the longitudinal profile of a single low
intensity bunch (~ 1x 1019 p) as a function of the phase ¢goo, at the injection energy (26 GeV/c).

Indeed, in the case of a stationary bunch, the potential well (found from Eq. (2.32)) is
symmetric both in the BSM and the BLM (above transition ¢gg9 = 7 and ¢goo = 0, respectively).
However, by introducing a phase shift between the 2 RF systems, the potential well loses its
symmetry and so does the bunch line density. This can be seen in Fig. 4.1 where the cases
of ¢goo = 180° and ¢ggp = 180° — 50° in the BSM are presented. In addition, one can see in
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Figure 4.1: Potential well (blue curve) and line density (red curve) in the case of the BSM with a
4*" harmonic RF system for ¢gog = 180° (left) and ¢ggg = 180° — 50° (right) No intensity effects
were included.

the right plot of Fig. 4.1 that the synchronous phase ¢, which can be obtained by solving the
following equation for ¢
Vago sin ¢ + Vioo sin(4¢ + ¢sp0) = 0, (4.3)

is not anymore 180° (above transition energy), but an extra phase of ~ 6° was added. The shift
of ¢ versus ¢ggo, calculated from the above equation and for different voltage ratios of the two
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RF systems, is depicted in Fig. 4.2. The points where the curves are crossing zero designate the
BSM or BLM. From this plot one can also see that the region of the allowed phase shift is much
wider in the BSM than in the BLM, where even small variations in ¢ggg cause a big change in
¢s. That tight requirements on the accuracy of ¢ggg is in fact the second main restriction of
operation in the BLM! which, due to strong beam loading in both the main and high harmonic
RF systems, is very difficult to achieve in the SPS (see next Chapter).
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Figure 4.2: Calculated shift of the synchronous phase versus phase ¢gg for different RF voltage
ratios V,.. The region of the BLM is decreasing with the voltage ratio increase.

Similar behavior due to variation of the ¢gog is expected for the asymmetry of the bunch.
Therefore, by scanning the phase ¢ggg and measuring how much the bunch is tilted it is possible
to estimate the points that correspond to the BSM and the BLM. The algorithm used to estimate
the tilt is based on the full widths of the average bunch profile (out of 100 consecutive turns)
at 95% and 30% of the maximum (horizontal black lines in Fig. 4.3). After finding the latter,
the tilt is calculated from the difference between the middle points of the two lines (red points
in Fig. 4.3).

Figure 4.4 presents the results obtained in measurements after a full scan of Agpggg, see
Eq. (4.2). Note that in this plot the phase on the horizontal axis is defined in degrees at the
200 MHz. In addition, in order to minimize the intensity effect on the bunch shape we used
bunches with a relatively low intensity (~ 1x10'° p). The voltage ratio between the 2 RF systems
was V. = 0.25 with the 200 MHz RF voltage at 2 MV. For each phase offset we performed three
acquisitions (blue circles in Fig. 4.4), the mean value of which (black curve) was used to define
the tilt.

!The first restriction is due to the region with a local maximum in the synchrotron frequency distribution
inside the bunch, which, as we saw on Chapter 3, is reducing the instability threshold.
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Figure 4.3: Schematic example of the algorithm used to calculate the tilt of the bunch profiles.
The horizontal lines correspond to the full widths at 95% and 30% of the line density maximum.
This measured bunch profile corresponds to a case of ¢ggo ~ 76°. Voltage ratio V, = 0.25 and
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Figure 4.4: Measured bunch tilt versus relative phase (in deg at 200 MHz, unknown offset),

26 GeV/c, V;, = 0.25 and Vapg = 2 MV.
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Measurements were also performed in a single RF system in order to define the baseline. The
average tilt from 10 acquisitions and its standard deviation are shown in Fig. 4.4 with the solid
and dotted horizontal lines respectively. This baseline is not perfectly identical to zero due to
the remaining induced voltage and also the effects of the pick-up and cable transfer functions,
which also modify the symmetry of the bunch profile. Intersections of the horizontal line with
the calibration curve of the double RF give the correct phases for the BSM and the BLM. By
applying a linear fit to the points around the intersection we have in this case

AGESM — 242,95 4 0.87 (4.4)
ApgtM = 286.02 +0.78 (4.5)

where the errors are defined by the intersection with the dotted lines. As expected, the difference
between the two modes is around 45° (at 200 MHz).

Finally, for high intensity operation the relative phase is selected by small scanning around
the BSM and finding the value of ¢ggp that provides also the most stable beam on the SPS flat
top.

4.3 Measurements in single and double RF systems

The results presented below were obtained during one machine development (MD) session in the
SPS (November 2011) using the Q26 optics. The single bunch intensity was constant and around
1 x 10, close to the nominal value of the LHC beam with a 25 ns bunch spacing. The voltage
amplitude of the 200 MHz RF was set to Vagg = 1 MV since it was found [41] that bunches with
this intensity are much more stable in this capture voltage. This value is close to the matched
voltage for the bunch injected from the PS, and is much lower than the one used in operation
with the LHC beam, where capture losses due to beam loading impose higher values (2 MV at
injection increased after 50 ms to 3 MV). Note that the results obtained for matched voltage
would be easier to compare with analytical calculations, where a steady state distribution is
assumed. The longitudinal emittance £y of the injected bunches was around 0.25 eVs, again
lower than the nominal 0.35 eVs. The scanning of ¢ggg was performed around the BSM phase
(pFM). The feed-back, feed-forward and longitudinal dampers were switched off, whereas the
phase loop was still acting on the bunch. The chromaticity was set high enough for the beam to
be stable in the transverse plane. Longitudinal bunch profiles were acquired along the first 3.7 s
of the 26 GeV/c flat bottom.

The stability analysis is based on the evolution of the 40 bunch length 7 along the flat
bottom, obtained after applying to each acquired profile a Gaussian fit (without corrections for
pick-up and cable transfer functions [68] which can be neglected in our case). An increase of T
at the end of the acquisition time (3.7 s) together with large bunch length amplitude oscillations
(AT) indicates an unstable situation.

Prior to the phase scan in a double RF system, measurements in a single RF were performed
showing that the bunch was stable under these conditions. Figure. 4.5 presents an example of
the bunch length evolution along the flat bottom where one can see that, after the injection
oscillations, the bunch is very stable (no bunch length oscillation or growth).
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Figure 4.5: Bunch length evolution along the flat bottom in a single RF system. Voog = 1 MV.
Bunch with intensity ~ 1 x 10'" and g, ~ 0.25 eVs.

On the other hand, in the case of double RF system operating in the BSM with V,. = 0.25 the
situation was very unstable. This case is shown in Fig. 4.6 where one can observe a continuous
increase both in 7 and oscillation amplitude AT, the maximum of which is presented in the plot
with the two red points.
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Figure 4.6: Bunch length evolution along the flat bottom for ¢ggg = czSéBO%M , Vogo = 1 MV and
Vsoo = 0.25 MV. Bunch with intensity ~ 1 x 10! and g, ~ 0.25 eVs.
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This observation does not in fact contradict to the statement that 800 MHz RF is necessary
for beam stability in the SPS, since in operation a ratio of V. ~ 0.1 is used. Decreasing V, to
this value confirmed this result (Fig. 4.7).
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Figure 4.7: Bunch length evolution along the flat bottom for ¢ggy = gbé%%M , Vago = 1 MV and
Voo = 0.1 MV. Bunch with intensity ~ 1 x 10! and e/ ~ 0.25 €Vs.

Stability could also be improved for V, = 0.25 by shifting ¢ggp in both directions from
the BSM phase, arriving after some point to a stable situation. Figure 4.8 shows the bunch
length variation along the flat bottom for different values of ¢ggg. For completeness the case of
Bs00 = LM is also included (top left plot).

As can be seen from Fig. 4.8, by shifting the phase from the BSM in both directions (¢goo =
dEIM —64° - top right and ¢goo = ¢Lig™ +80° - bottom left) the bunch remains stable along the
cycle. Note that the initial oscillations, caused by the injection mismatch, are quickly damped
(~ 100 ms). Further, a phase shift towards the BLM (bottom right plot) is again leading to
instability.

A summary plot of all the measurements for V,, = 0.25 and different values of ¢ggo (average
of three acquisitions per value of ¢gpo) is presented in Figs. 4.9 and 4.10 (blue trace). Figure 4.9
displays the ratio of final to initial bunch lengths 74, /7, (averages for 100 ms), while Fig. 4.10
shows the ratio of final to initial bunch length oscillation amplitudes ATg,/AT;,, multiplied by
its maximum value ATy, (to take into account the cases where the maximum was reached
not at the end of the acquisition). Therefore, in both figures higher values correspond to more
unstable situations.

As follows from Figs. 4.9 and 4.10, stable regions appear for phase shifts between 50° and
100°, relatively far from the BSM phase in both directions and a phase shift of around +70°
gives the best stability. Moreover, we can see that moving the phase ¢ggg towards the BLM leads
again to degradation of the beam stability.
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Figure 4.8: Bunch length evolution along the flat bottom for different values of ¢ggg, Vogo = 1 MV
and Vgpo = 0.25 MV. Bunch with intensity ~ 1 x 10'" and ¢, ~ 0.25 eVs.

4.4 Macroparticle simulations

The results obtained in the measurements were compared with simulations performed using the
code ESME (version es2009.4), a longitudinal beam dynamics simulation program [17], after
introducing the SPS impedance model. This model was including the fundamental modes of
the 200 MHz (long and short types) and 800 MHz traveling wave RF systems, one higher order
mode (HOM) of the 200 MHz RF system [69] and the impedance of 16 kickers, the latter
approximated by a broad-band resonator with Q=1. The parameters of the impedance sources
used in simulations are presented in Table 4.1.

The initial phase-space particle distribution of the bunch was obtained by reconstructing a
typical tomography measurement in the PS [70] and simulating it through the following compli-
cated RF manipulations till extraction to the SPS [30]. Figure 4.11 presents this distribution at
injection into the SPS. One can see that the bunch is not matched to the SPS bucket. More-
over, due to the bunch rotation applied in the PS before extraction, the distribution has an
unconventional “S-shape”.

Examples of evolution of the rms bunch position (dipole oscillations), obtained in simulations
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Table 4.1: SPS impedance model used in ESME simulations
fr (MHz) R, (MQ) Q

TWC200-F (long) 200.2 2.86 150
TWC200-F (short) 200.2 1.84 120
TWC200-H 629.0 0.39 500
TWCR00-F 800.8 1.94 150
Kickers 800.0 0.06 1
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Figure 4.9: Ratio of final to initial bunch length on SPS flat bottom obtained from measurements
and simulations in the SPS double RF system for different values of ¢ggg for V,. = 0.25. Bunch
with intensity ~ 1 x 10! and &, ~ 0.25 eVs.

for ¢ggo = gbé%%M and ¢goo = qbé%%M +60° are shown in Fig. 4.12. Similarly to the measurements,
the bunch is unstable in the BSM with V,. = 0.25, while it can be stabilized by applying a phase
shift of 60° in both directions.

The simulation results are summarized in Figs. 4.9 and 4.10 (red trace) together with the
measurements. A very good agreement between measurements and simulations can be seen
in Fig. 4.9 for bunch length evolution in the SPS double RF system. Since simulations were
performed without beam phase loop, the dipole oscillations were not damped and can be used
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Figure 4.10: Ratio of final to initial quadrupole (measurements) and dipole (simulations) oscil-
lation amplitude, multiplied by its maximum value (ATax), as a function of ¢gpo in the SPS
double RF system with V. = 0.25. Bunch with intensity ~ 1 x 10! and g/ ~ 0.25 eVs.
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Figure 4.11: Initial particle distribution used in simulations for the SPS (blue points). The
red line corresponds to the SPS RF bucket for double RF in BSM with V59 = 1 MV and
Vgoo = 0.25 MV.
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Figure 4.12: Evolution of the rms bunch position along the flat bottom for different values of
¢s00 obtained from simulations. Vogg =1 MV and Vggg = 0.25 MV.

as well to characterize the instability in a double RF system. Their amplitude is shown in
Fig. 4.10 as a function of the phase shift ¢gog together with the measured quadrupole oscillation
amplitude. In measurements phase loop was on and thus the dipole oscillations were damped.
For the SPS impedance model used, the instability threshold is expected to be lower for the
m =1 (dipole) mode than for m = 2 (quadrupole) mode (see section 2.5) [44] and this is in fact
what was observed in the simulations.

4.5 Effect of the synchrotron frequency distribution

The loss of Landau damping is a possible explanation of the unstable cases appearing for certain
phase shifts between the two RF systems, when any resistive wake would drive instability for the
modes that are not anymore damped. This argument is supported by the synchrotron frequency
distributions (no intensity effects) shown in Fig. 4.13 for a single RF and for different values of
¢s00 and V,. in a double RF system.

Indeed, in the BSM with V;. = 0.25 (blue curve), particles in the tails of the measured bunches
(their 20 emittance is shown with a vertical line) may lose Landau damping, since the derivative
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Figure 4.13: Synchrotron frequency distribution (no intensity effects) as a function of longitudinal
emittance for different RF parameters. The bunch size in measurements is shown with a vertical
line.

of the synchrotron frequency distribution as a function of action J (bunch emittance) w.(.J)
is zero at this point [10]. This behavior was in fact expected from the results of the previous
Chapter (see section 3.5), where it was proven by simulations that for inductive impedance the
regions of w,(J) cause a significant decrease in the loss of Landau damping threshold. Note that
similar results were obtained in [12] for resistive impedance. On the other hand, the dependence
of synchrotron frequency on bunch emittance is monotonic for the other cases shown in the plot,
including the operational BSM with V,. = 0.1. Therefore, the threshold is expected to be higher
and that is, in fact, the reason why the bunches were stable in the measurements and simulations
for those cases. In the BLM (red curve) the bunch size in measurements is much bigger than
the one that corresponds to the maximum of ws(J), which explains why the beam was also not
stable.

It is interesting to note that the measured and simulated single bunch instabilities were
explained in terms of the zero current synchrotron frequency distribution and not the one cor-
responding to the steady state situation (after the bunch filamentation). The reason for that is
possibly the particular bunch distribution at the moment of injection (see Fig. 4.11), which, as
was mentioned before, is not matched (see Fig. 4.14).

Consequently, the system is far from being in a steady state and the synchrotron frequencies
of the particles are mainly determined by the external RF voltage applied through the RF
cavities. Moreover, this modulation of the bunch profile can be a possible explanation of the
relatively low single bunch threshold observed at the SPS flat bottom [41].
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Figure 4.14: Particle distribution in the SPS longitudinal phase space (left) and its line density
(right) after 2000 turns. The initial distribution is shown in Fig. 4.11. Note the high frequency
pattern in the tails of the bunch. Here it is not very strong (compared to operation conditions)
because of the low voltages, Vogg = 1 MV and Vggg = 0.25 MV. No intensity effects are included.

4.6 Conclusions

Thresholds of longitudinal single bunch instability versus the relative phase between the two RF
systems were measured in the SPS for a voltage ratio of 0.25 and constant intensity of ~ 1 x 10!,
They show that a phase shift between 50° and 100° (at 800 MHz) in both directions (relative
to the BSM phase) stabilizes the otherwise unstable bunch. Particle simulations using the SPS
impedance model show a good agreement with these measurements. This dependence on phase
shift, in addition to the sensitivity to the voltage ratio V. (also observed in measurements), indi-
cates that the loss of Landau damping in the flat region of the synchrotron frequency distribution
inside the bunch can be a possible explanation for the observed undamped oscillations. This
gives both a justification and the limitation to the 800 MHz voltage amplitude used in operation
for the LHC beams in the SPS (Vgoo ~ V200/10).






CHAPTER 5
Beam loading and its effect on the
controlled longitudinal emittance

blow-up in the SPS double RF
system

Presently, the use of a double RF system in the SPS operation (with a voltage ratio of V. = 0.1,
for reasons presented in the previous Chapter), is essential for the beam stability all along the
cycle. However, for the LHC beams this is still not sufficient and instability is observed at the end
of the ramp for intensity above the nominal. For that reason a controlled longitudinal emittance
blow-up is applied to further increase the spread in the synchrotron frequencies inside the bunch
and thus to enhance the effect of Landau damping. The emittance blow-up can be achieved by
introducing a band-limited phase noise at some moment during acceleration. Measured variation
of the final emittance along the batch can be explained by the effect of beam loading in a double
harmonic RF system, leading to the modification of the synchrotron frequency distribution in
each bunch.

5.1 Introduction

The nominal LHC beam in the SPS consists of four batches separated by gaps of 225 ns. Each
batch contains 72 bunches spaced by 25 ns with 1.15x10'" protons per bunch. This beam is
accelerated by four 200 MHz traveling wave cavities, equipped with feed-forward and feed-back
systems. However, a longitudinal coupled bunch instability observed at high energies appeared
to be a limiting factor for the beam performance because of its low threshold of 2 x 101° p/b.
The nominal beam is finally stabilized by increased synchrotron frequency spread using a fourth
harmonic RF system [10] and controlled longitudinal emittance blow-up. The latter is applied
during the ramp by introducing band limited noise through the phase loop of the main RF
system [71].

Since the controlled emittance blow-up is necessary to stabilize the nominal intensity beam,
the final bunch length at flat top (and therefore emittance) is limited due to the injection
into the 400 MHz buckets of the LHC. For that reason, bunch-to-bunch emittance variations
along the batch can lead to particle losses in the LHC. Non-uniform emittance blow-up of high
intensity beam in the SPS had been observed for the first time at the end of 2004 and previous
studies [20, 32] suggested that this effect can be attributed to the bunch-to-bunch variation of
the incoherent synchrotron frequency due to the residual beam loading. This analysis showed
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that for the bunches at the edges of the batch the zero amplitude synchrotron frequency is lower
than for those in the middle. Therefore, for a constant noise band along the batch one would
expect the blow-up to be more effective for the bunches in the middle of the batch (optimum
phasing). However, the experimental results show that bunches at the edges of the batch are
blown-up more than those in the middle.

The present work extends the previous analysis by considering how the whole synchrotron
frequency distribution is modified for the different bunches in the batch, defined mainly by the
residual beam loading in the 200 MHz RF system. It will be shown that for the bunches at the
edges of the batch, where the bigger synchronous phase variations due to beam loading occur,

a significant change in the synchrotron frequency distribution appears, making larger blow-up
possible.

5.2 Non-uniform emittance blow-up of the LHC beam

A stable beam with nominal intensity and emittance up to ~0.6 eVs, obtained by controlled
emittance blow-up, can be delivered to the LHC. The measurements presented here were done
for a single batch with nominal intensity with aim to obtain maximum emittance (~0.9 eVs)
which might be requested for stability of higher intensity beams. The synchronous momentum
and applied RF voltages (200 MHz and 800 MHz) for the SPS cycle during these measurements
are shown in Fig. 5.1.
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Figure 5.1: Particle momentum (left) and the 200 MHz and 800 MHz (x10) voltage programs
along the cycle.

The band-limited noise [71] was introduced through the phase loop of the 200 MHz RF
system at 185 GeV (14.8 s along the cycle) and lasted for 3 s. Figure 5.2 depicts the noise band
and the synchrotron frequency spread (calculated for low intensity) during the cycle where the
noise is applied. For nominal intensity beam the low intensity settings should be shifted down
by ~10 Hz due to an incoherent frequency shift (see section 2.4) produced by the SPS inductive
impedance ImZ/n~5 Ohm (before the serigraphy of the kickers [72]).

The bunch lengths were deduced from the acquired bunch profiles after correcting for the
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Figure 5.2: Noise excitation (red dashed lines) and synchrotron frequency spread at the end of
the cycle, calculated for low intensities and for a bunch of 0.5 eVs.

pick-up and cable transfer function [68]. Figure 5.3 shows the results for two cycles where
different noise bands were used. In both cases a single batch of 72 bunches spaced by 25 ns with
1.15 x 10" particles per bunch was injected. The plots present the bunch lengths at different
moments in the cycle. Both cases correspond to a successful blow-up in the sense that bunches
were stable at the flat top. However, it is apparent that bigger blow-up occurs for the bunches
at the beginning and the end of the batch. Furthermore, we can clearly see from the right plot,
where the noise band was lifted up by 10 Hz compared to the left one, that the relative excitation
of the bunches in the edges of the batch was less compared to those in the middle.

The bunch position variation along the batch At, (found from the bunch profiles after a
Gaussian fit), which corresponds in the stable situation to the synchronous phase displacement
Aps = witAt (wif = 27 frr, frr = 200 MHz), is shown in Fig. 5.4 for the same data as presented
in Fig. 5.3. The antisymmetric pattern before the noise excitation (green line) indicates that
the bunch positions are mainly defined by the beam loading in the main 200 MHz RF system,
compensated by the feed-back and feed-forward systems. Indeed, the net effect of beam loading is
expected to modify the stable phase ¢, along the batch, but in a different way; small displacement
of the bunches at the head of the batch are increasing as more bunches entering the cavity until
they reach a steady value. At flat top (blue line), where the bunch lengths become smaller, the
effect of the 800 MHz beam loading (without feed-back and feed-forward systems) also becomes
non-negligible and it modifies the previous pattern. The effects of beam loading are considered
in more details in the next section.
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Figure 5.3: Measured bunch lengths before the controlled blow-up (green), just after (red) and
at the SPS flat top (blue). The noise frequency band was shifted down ~20 Hz (275-175 Hz)
at the left plot and ~10 Hz (285-185 Hz) at the right one with respect to the calculated values
(low intensity).
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Figure 5.4: Longitudinal bunch position shift with respect to the equidistant positions along the
batch. The data correspond to those of Fig. 5.3.

5.3 Beam loading in the traveling wave cavities

In accelerators, beam loading usually refers to the effects induced by the passage of the beam
in the RF cavities. As such, it could be considered as one particular example of the more
general problem of beam interaction with its surroundings, in this case the cavity fundamental
impedance. The reason that beam loading needs a special treatment is that very often the RF
cavities are the largest contributor to the total impedance of the ring (to have high voltage high
impedance is needed), and consequently its effect leads to a significant power loss during the
beam passage. Dedicated correction techniques are usually used to minimize these losses.

When a single particle is passing through a resonant cavity (considering only the fundamental
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resonance) it will excite an additional field, which (see section 2.2) is proportional to the inverse
Fourier transform of the impedance given by Eq. (2.86). For reasonably high @ value (@) > 10)

W(t) = ‘“JrQRshe?S cos (art) | (5.1)

where Rgp, wr and @ are the shunt impedance, the resonance angular frequency and the quality
factor of the cavity and ¢ is the distance (in time) from the particle. Due to causality we have in
Eq. (5.1) that W (t) = 0 for ¢t < 0. The exponentially decaying induced field is plotted in Fig. 5.5.
By superposition, the total field that a trailing particle will see is given by the combination of the
latter with the generator driven waveform V¢ (see Fig. 5.5). Using linearity and superposition
it can be proven that the initial particle itself “sees” one half of its own induced field [73]. This
result is called the fundamental theorem of beam loading.

Vb (arb. units)

Vrf , Vtot (arb. units)

Time

Figure 5.5: Induced (top), external (bottom, black curve) and total (bottom, red curve) voltages
after single particle passage through a resonant cavity.

In the case of a single bunch with line density A(¢), given for example from Eq. (2.107),
the total induced voltage in the cavity V; is given by the convolution of A(t) with W (t), see
Eq. (2.83). This voltage is illustrated in Fig. 5.6.

In vector representation the induced, external and total voltages are presented in Fig. 5.7,
where the fundamental component of the beam current I, defines the reference phase. The total
voltage seen by the bunch is ‘_/;5 = XZf + Vb/ 2. In order to have a certain effective accelerating
voltage (V; = H_/;] sin ¢5) applied to the bunch, the voltage delivered by the generator V;¢ should
be higher.

Whether the impact from one bunch to the following bunch is important, depends on the
cavity time constant Ty = 2Q)/w,. Thus, if T} is the distance between the two bunches, by the
time the second bunch enters the cavity, the induced voltage V; is reduced by a factor e~ 7o/Tr
see Eq. (5.1). The corresponding phase shift is ) = w, T, —27hy,, where hy, is an integer indicating
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Figure 5.6: Single bunch passage through a resonant cavity. The line density A(t) is given by
Eq. (2.107).
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Figure 5.7: Vector diagram of a single-bunch passage through a resonant cavity.

the number of RF periods between the bunches. Finally, the total voltage V; that the trailing
bunch sees is

Vi = Vg + Voe B/T1e% 1V, /2. (5.2)

Following ref. [31], the previous analysis can be extended to a multiple-bunch passage through
the cavity.

In the case of a traveling wave (TW) cavity and for a repetitive train of many bunches,
the fields excited by the previous bunch passages also propagate along the structure. If the
incoming bunches (with velocity v,) are synchronized with the traveling wave, i.e. v, = v, (vy
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is the phase velocity of the wave) then the induced field is simply proportional to the distance
along the cavity. However, if synchronization is not perfect an additional phase slippage occurs,
0 = wt — k.z, where z = v,t and k. is the wave propagation constant. Expanding 6 to a first
order around the synchronous point (w = wy,k, = ko), for which 6y = w,t — k,0z = 0, one
obtains

z

0=wt—Fk,z=(w+ Aw) (k2o + Aky)z = Aw <vg — 1> z, (5.3)

Up Vg \Up
where the group velocity vy = Aw/Ak, was introduced. Since in the traveling wave cavities the

energy transfer from cell to cell is much slower than the bunch velocity, i.e. v, < v}, the previous

equation can be written as

A _
B P Ak (5.4)
Ug Vg

9:

Defining also the angle 7, as the total phase slip between the traveling wave and the bunch along
the cavity

L
™ =—(w—w), (5.5)
Ug
one finally has
g—=_10, (5.6)
L™ ’

where L is the total length of the structure.
Due to superposition the decelerating electric field E, (induced by the beam passage) at
distance z from the cavity entrance is proportional to the integral [28]:

z 1— e—i%”z
E Oy = —— . 5.7
, /0 iz =~ (5.7)
The total induced voltage seen by the beam is obtained by integrating E, along the structure:
Vi [ B Floetr) 5.8
b= /0 202 X /0 W 2, (5.8)
which finally gives [28]:
L2 | /sin\? Ty — Sin T
‘/b = —Iszg ( Ez > - ZQT y (59)
2 b

where the proportionality factor Ry is the series impedance of the traveling wave cavity in Q/m?
defined in [28] as a characteristic of the structure.
Based on the last equation, the beam loading impedance can be defined as

L2 in To\ 2 o
B _ LR (SHTIf) — b TS S;m*’]. (5.10)

Z:—:
A 8

2 Ty

The real and imaginary part of Z; for the SPS 200 MHz TW cavity with 4 sections (short, see
Table 5.1) are plotted in Fig. 5.8.
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Figure 5.8: Beam loading impedance as a function of frequency for an SPS 200 MHz RF TW
cavity of 4 sections (short) and parameters presented in Table 5.1.

Table 5.1: Parameters of the TW cavities (2 of each type)
200 MHz Long 200 MHz Short 800 MHz

Centre frequency f, 200.222 MHz 200.222 MHz 800.888 MHz
Interaction length L 20.196 m 16.11m 3.46 m
Series impedance Ry 27.1k§2/m? 27.1k§)/m? 647 kQ/m?
Filling time L /v, 0.712 us 0.568 us 0.330 pus
Beam loading impedance L?R5/8 1.38 MQ2 0.879 MQ 0.968 MQ

From the last equation it is also possible to find the phase ¢ of the induced voltage V; with
respect to the beam current I, known as beam loading angle.

Im(Zy) —2(m —sinm,) /78 (7 —sinT)
tan ¢ = = = , 5.11
ang Re(Zy) (sinrb/2)2 2 sin® > ( )
/2

which for small values of 73, (1, < 20°) can be approximated with

(1o — 7% + 75/3!)
2(7p/2)?

Therefore, the vector diagram in the case of a TW RF cavity has to be modified with respect to
the one presented in Fig. 5.7 by introducing the beam loading angle as shown in Fig. 5.9. Note
that from there on V; indicates the total induced voltage in the cavity.

This impedance can now be used to calculate the total voltage induced in a TW cavity after
the passage of a bunch train by multiplying Z;, with the beam spectrum and taking the inverse
Fourier transform. The case of a single batch of the nominal LHC beam passing through the

tan ¢ ~ =-—7/3 <= ¢~ —7p/3. (5.12)
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Figure 5.9: Vector diagram of a single bunch passage in a TW cavity.

200 MHz TW RF system is presented in Fig. 5.10. This batch consists of 72 Gaussian bunches
with length of 1.7 ns and intensity 1.15 x 10'* p/b. The impedance of the 200 MHz RF system
was calculated from the parameters presented in Table 5.1.

——beam |
-V

0 500 1000 1500 2000 2500

Time [ns]
Figure 5.10: Induced voltage (green) in the 200 MHz TW RF system by a single LHC batch
of 25 ns beam (blue). Gaussian bunches with 1.15 x 10*! p were assumed. The zero on the

horizontal axis shows the first bunch of the batch. The vertical line indicates the filling time 7
of the RF system.

When the head of the batch enters the cavity, the beam loading voltage rises during the
filling time 7y ~ 620 ns (transient beam loading state) until it reaches its steady state value



Chapter 5. Beam loading and its effect on the controlled longitudinal emittance
84 blow-up in the SPS double RF system

Vi = 3 MV. The vector sum of the latter with the voltage applied by the RF generator Vit gives
the total voltage seen by the beam. Currently, for the intensity of 1.15 x 10*! p/b, the maximum
available RF voltage is around 7.5 MV. Therefore, it is necessary to apply dedicated techniques
in order to minimize the effect of beam loading.

At this point it is useful to introduce also the forward impedance [28]

Vi ZoyRy (sinTy,/2
ZI' = — = L , ].
T, V 2 < 75/2 (5.13)

where I, is the generator current and Zj is the characteristic impedance of the RF chain (50 €2).
This impedance is plotted in Fig. 5.11 for the same cavity parameters as in Fig. 5.8.
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Figure 5.11: Forward impedance as a function of frequency for an SPS 200 MHz RF TW cavity
of 4 sections (short) and parameters presented in Table 5.1.

Comparing Z, and Zy¢ from Egs. (5.10) and (5.13) one can see that, up to a scaling factor,
their real parts are the same. However, since Z,¢ is real, the imaginary parts are completely
different. This makes the compensation of beam loading with feed-back and feed-forward systems
more difficult as compared to the case of standing wave cavities, where Z; and Z,; are identical.

5.4 Beam loading compensation

In order to reduce the beam loading impedance Z;, each SPS 200 MHz TW cavity is equipped
with a dedicated feed-forward (FF) system [74]. The beam current I, is measured with a pick-up
and then is filtered by the transfer function Hgyq. Finally, the output is subtracted from the
generator current to compensate for the beam loading in the cavity.

Further compensation is achieved by the RF feed-back (FB), which is again installed in each
cavity since 1983 [75]. In that case, the voltage sensed by the beam in each cell of the cavity
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is measured with a loop. After addition of these signals (delayed by the corresponding time of
flight of the particle i.e. different delay for each loop) we get the total voltage seen by the beam.
This signal is filtered by the feed-back transfer function Hy,q and re-injected into the cavity
with the proper phase via the power generator.

Finally, the achieved impedance reduction is obtained as the product of the reductions ob-
tained separately by the FF and FB. Therefore, according to [74], the beam loading impedance

after compensation Zj,. becomes
_ Zp — HppZyt

Zpe = .

> 14 HrpZ
The above formula was used to calculate the remaining (with FF and FB in operation) induced
voltage in the 200 MHz RF system and an example for the same beam parameters as before is

(5.14)

shown in Fig. 5.12.

4r —no FF & FB
——with FF & FB
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Figure 5.12: Induced voltage in the 200 MHz TW RF system with and without beam loading
compensation by FF and FB. The beam parameters are the same as in Fig. 5.10.

In Fig. 5.12 one can see a significant decrease in V; which is essential for acceleration of
a stable beam in the SPS without losses. However, the remaining effect of the stable phase
variation along the batch is still important and especially for a double RF system operation the
controlled longitudinal emittance blow-up is analyzed below.

5.5 Beam loading in the SPS 200 MHz RF system

In section 5.3 the voltage V} induced due to beam loading in a TW RF system was calculated.
Based on these calculations, and the fact that the beam loading angle 73,/3 is defined only by
Zy, one can also calculate the variation of the synchronous phase A¢s along the batch. This can
be illustrated schematically in the vector diagram of Fig. 5.13, where the black arrows present
the steady state while the red ones show the transient beam loading case.
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Figure 5.13: Vector diagram of the transient beam loading (red vectors). The black vectors
present the steady state.

Before the beam enters the cavity, V, = 0 and so Vt = ‘Zf. While more and more bunches
enter the cavity, the amplitude of V} is increasing and so V, moves along the red dashed line in
Fig. 5.13 until ¢, reaches its steady state value, ¢5. Assuming a constant Vig provided by the
RF generator, with amplitude and phase shown in the diagram, one can obtain

Vigcosop — Vi cos /3
Viesin¢p, + Vpsint, /3

tan(gso + Ags) = (5.15)
The phase shift A¢, calculated for the SPS 200 MHz RF system (all 4 cavities), with parameters
presented in Table 5.1 are shown in Fig. 5.14. For all the calculations below, the same beam and
machine parameters as those in Fig.5.10 were assumed, to be comparable with the measurements
before the controlled emittance blow-up (see section 5.2). For this beam the DC beam current is
0.74 A, while the 200 MHz Fourier component (Gaussian line density) would be around 1.30 A.
Note that the convention of A¢s > 0 (from Fig. 5.13) for clockwise rotations is assumed below.
Once Ag, is known, the total voltage V; can be found from

Vigcos ¢, — Vi cos1p/3
Sin(¢80 + A¢s)

However, as was mentioned in the previous section, in the 200 MHz RF system the 4 TW cavities
(2 short and 2 long) are equipped with a FF and a one turn FB systems which compensate the
beam loading effect [74] by modifying the impedance Z, see Eq. (5.14). Therefore, V}, will be
significantly reduced as shown in Fig. 5.12. The beam loading angle 7, will be slightly different
from the previous 73, since now it is defined by Z.. Here we assume that FF and FB are
perfectly adjusted for the bunches in the middle of the batch and this corresponds to the steady
state (black vectors in the diagram in Fig. 5.13). For those bunches in the middle the following
relation can be written

‘/t:

(5.16)

dps

V3 sin ==
t ¢50 d n

TI‘eV, (5'17)
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Figure 5.14: Synchronous phase variation (in ps) along one batch due to beam loading in the
200 MHz TW RF system. The beam parameters are the same as in Fig. 5.10.

where ps and V;*® are the synchronous momentum and the RF voltage amplitude, programed
along the cycle. Therefore, at the moment before the controlled emittance blow-up is applied
(green traces in Figs. 5.3 and 5.4) one has
1.79
sin ¢g0 = 15 & pso = 23.4°. (5.18)
Furthermore, from the calculated V; after the beam loading compensation by FF and FB, one
can find the induced voltage at the center of each bunch, see Fig. 5.15.
It is straight forward to calculate Vi from the vector diagram in Fig. 5.13 for the bunches in

the middle of the batch
V¥ cos ¢pg9 — V¥ siny

V¥ sin ¢g + Vi® cos 1y

tan ¢, = (5.19)

Vi sin ¢go + Vi® cos )

cos @,

Vie = : (5.20)

where V;* is used to denote the induced voltage at the steady state (bunches in the middle of
the batch). Since the constant ‘_/;f is known, the bunch position variations A¢, along the batch
in the presence of FF and FB systems can be calculated from Eq. (5.15) and the results are
presented in Fig. 5.16.

5.6 Beam loading in the SPS 800 MHz RF system

In addition, in order to calculate the expected total shift of ¢s along the batch in operation, one
needs to take into account also the beam loading in the 800 MHz RF system. In the SPS two
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Figure 5.15: Calculated beam induced voltage in the 200 MHz RF system at the center of each
bunch, just before the controlled emittance blow-up. The beam parameters are the same as

those in Fig. 5.10.
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Figure 5.16: Residual Synchronous phase variation (in ps) along the batch after the beam loading
compensation in the 200 MHz TW RF system by the FF and FB systems. The beam parameters

are the same as in Fig.5.10.

800 MHz TW cavities are installed but until now only one was used in operation but without FF
or FB systems (to be implemented in 2015). Figure 5.17 presents the calculated values of the
induced voltage in the 800 MHz RF system (both cavities included) at the center of each bunch
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(without taking into account the beam loading effect in the 200 MHz RF system), during ramp
and just before the phase noise application. At this moment, the 800 MHz Fourier component
of the beam current would be around 0.15 A (for the same beam parameters as in Fig 5.10)).
The parameters of the cavities used in calculations are also presented in Table 5.1.
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Figure 5.17: Calculated beam induced voltage in the 800 MHz RF system at the center of each
bunch (without taking into account the beam loading effect in the 200 MHz RF system), during
the ramp and just before the controlled emittance blow-up. The beam parameters are the same
as those in Fig. 5.10.

The formalism described above (see the vector diagram of Fig. 5.13) can be also used to
calculate the phase shift (A¢3%0) along the batch due to the 800 MHz RF system. However, we
need to take into account tha in operation the phase between the two RF systems is programmed
in such way that no energy should be given to the synchronous particles from the 800 MHz RF
component (¢s = ¢s0). Note that here we consider the case when the phase between the two RF
systems is established using measurements in the middle of the batch, i.e. V3% is aligned with
respect to V2%, Finally, using Eqs. (5.15), (5.19) and (5.20) one can calculate A¢SY for all the
bunches inside the batch and the results cn be seen in Fig. 5.18.

The situation for A¢S? is reversed when VEOO, and not V20 is aligned with respect to
V2% That means that initially, when the first bunch enters the cavity, A¢S% = 0. While more
bunches are passing through the cavity A¢3%0 decreases (A¢%"0 < 0) until it reaches its steady
state value (A¢S% ~ —35 ps, see Fig. 5.18). This is illustrated in the vector diagram in Fig. 5.19.

In that case, the phase and amplitude of the generator voltage ‘_/;«f are known and thus \7}
can be found from the following equations

—V, cos Ty, and Vi — —Vpcosmy (5.21)

tan ApS0 = 272 )
P Vig + Vi sint, b7 sin A@800
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Figure 5.18: Synchronous phase variation (in ps) due to the beam loading in the 800 MHz TW
RF system. The beam parameters are the same as in Fig.5.10.
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Figure 5.19: Vector diagram showing the beam loading voltage for the 800 MHz RF system
when fogoo is aligned with respect to V2. The steady state is presented with the black vectors
while the transients are shown in red.

5.7 Beam loading effects on the synchronous phase

The phase shift variations A¢?%° and A¢S% along the batch due to the 200 MHz and 800 MHz
RF systems, respectively can be used to find the total phase shift, by taking into account that
the vectors V;2% and V2% (or VY in the other case) have a phase angle ¢ for the steady state
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(black vectors in Fig. 5.20). According to that the total phase shift A¢s can be derived from

V200 . (DQOO VSOO in A 800
tan @, = Vo SMPHVsinAd (5.22)
V200 ¢os $200 4 17800 o5 A B0

where &3 = ¢5 + Ags, ¢s is the synchronous phase of the total voltage for the steady state and
D200 — ¢ o + Ap200.

7200
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>,

Figure 5.20: Vector diagram showing the beam loading voltage for both the 200 MHz and
800 MHz RF systems when V2 is aligned with respect to V;?®Y. The steady state is presented
with the black vectors while the transients are shown in red.

Using Eq. (5.22) we can calculate the variation of the synchronous phase A¢s which corre-
sponds to the bunch position variation along the batch, just before the noise excitation (green
trace in the plots of Fig. 5.4)). The results for both 200 MHz and 800 MHz RF systems are
plotted in Fig. 5.21 (solid line). An example of measured bunch positions is also presented for
comparison (dashed line).

One can see that this model can closely reproduce the measurements, indicating that the main
cause of the bunch position variation is the induced voltage in the RF systems and in particular
in the 200 MHz RF cavities. Note that similar results were obtained for the two different cases
of the phasing between the RF systems. However, the remaining difference shows that there are
other parameters that have not been taken into account in the model. On the one hand, a more
realistic model of the impedance Zy,., see Eq. (5.14), could be implemented, since above only real
values of the transfer functions Hpp and Hrp were considered. On the other hand, additional
sources of the longitudinal impedance in the ring should be included in the calculations, with the
kickers impedance being the most significant. However, its broad-band nature will contribute
more to the inductive part of the total impedance seen by the beam and less to the resistive
part. Thus, Fig. 5.20 is expected to be similar, while the effect of this additional impedance will
be apparent through the shift of the synchrotron frequency distribution inside the bunch.
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Figure 5.21: Bunch position variation (in ps) along the batch at the time in the cycle before the

noise excitation. Vogg = 4.5 MV and Vgpg = 0.5 MV. The beam parameters are the same as in
Fig.5.10.

5.8 Effect of beam loading on the synchrotron frequency distri-
bution

From the measured bunch position variations along the bunch, resulting from the effect of beam
loading in SPS RF systems, we need to identify what is the actual phase between the two RF
systems. The total external voltage seen by the synchronous particles of the bunches in the
middle of the batch, considering both RF systems is

Vi = V2% sin g0 + V2% sin(4s0 + P2), (5.23)

where ®9 is programmed during the cycle to ®3 = —4¢40 + ™ for the bunch shortening mode
above transition and ¢4 is given by Eq. (5.17). A graphical representation of this situation, at
the moment before the controlled emittance blow-up is applied, can be seen in Fig. 5.22. Note
that at this moment the value of ¢y is 23.4° (see Eq. (5.18)).

The induced voltage at the 200 MHz RF system is changing the synchronous phase by Ags.
Equivalently, A¢s can be introduced as an additional phase shift between the two RF systems

Vi = V% sing + VP sin(4¢ + @3 + Ago), (5.24)

where Ago = 4A¢s. Due to the presence of the second RF system the synchronous phase changes
by d¢s. Considering that for the bunches in the middle of the batch V; = V2% sin ¢, one can
write

V2% sin g0 = V2% sin(gso + 60s) + V% sin(4dso + 465 — ddso + 7 + 40, (5.25)
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Figure 5.22: Voltage waveforms at the steady state (middle of the batch) just before the
controlled emittance blow-up is applied. The vertical solid line shows the synchronous phase
dso = 23.4°. Note that no energy gain is provided by the V;SOO since ®o = —4¢49 + 7.

where the substitution ®o = —4¢49 + 7 was also made. Assuming now small values for d¢s and
that the measured shift of the bunch positions A¢y*** is given by the sum

AT = Aps + 0¢s, (5.26)
one has
0 = V2060, cos g0 — VBV sin(4A41%). (5.27)
Therefore,
800 3 4\ pmeas
5 = Vo SIBUAGTT) (5.28)

‘/;200 cos Cbs

From Egs. (5.26) and (5.28) we have

eas ‘/;800 Sin(4A¢meas)
Apg =4 <A¢s — V200 o (;S , (5.29)
which for small values of A¢T** can be simplified to
/800
Ay = 4N (1 + 4ot 5.30
A GR ) (530

This means that for the batch edges, where Atmeas ~ 100 ps (see plots in Fig. 5.4) we
have A¢y ~ 40°. Inserting this value into (5.24) we can calculate the synchrotron frequency
distribution inside the bunch using for ®5 the programmed value. The results are plotted in
Fig. 5.23 for A¢go = 0,440°. In the plot, the noise frequency bands were lifted up by 10 Hz
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Figure 5.23: Synchrotron frequency as a function of action, normalized to emittance calculated
for the voltage of Eq. (5.24) with &3 = —4¢59 + 7 and Age = 0, £40°, just before the controlled
emittance blow-up is applied. The black curve corresponds to the bunch in the center of the
batch (k=36), the blue to the first bunch (k=1) and the red to the last one (k=72). The dotted
and dashed lines present the phase noise bands that were used for the controlled emittance
blow-up.

(195-295 Hz and 185-285 Hz) compared to those used in operation (185-285 Hz and 175-275 Hz),
since in these calculations the synchrotron frequency shift due to the SPS inductive impedance
was not taken into account .

The blue curve in Fig. 5.23 shows that for the bunch in the head of the batch (with k=1), a
flat region with w’(J) ~ 0 appears in the synchrotron frequency distribution, indicating that for
fixed noise band the bunches in the head of the batch can be blown-up more (0.57 eVs, 0.59 eVs)
than those at the center of the batch (k=36, 0.49 eVs, black curve). This explaines why in
Fig. 5.3 the length of the first bunches in the batch is much higher than for those in the middle.
On the other hand, the synchrotron frequency distribution is different for the end of the batch
(k=72, red curve), which shows that this bunch is blown-up less (0.45 eVs, 0.465 eVs). The
system is very sensitive to the calibration of the phase shift ®5 between the two RF systems,
which is based on beam measurements (bunch shape or beam stability) [32] and we always have
an offset which in general is not known. For that reason the synchrotron frequency distribution
can vary significantly. Moreover, the the noise excitation is applied during the cycle for 3 s where
the bunch parameters are changing. For a more accurate model we need to implement also the
potential well distortion that occurs from other impedances and in particular the kickers. This
impedance does not introduce a difference from bunch to bunch but still modifies the synchrotron
frequency distribution. Furthermore, locking the phase of the voltage in the two RF systems by
a measurement outside the batch can also affect significantly the results, while different moments
during the acceleration when the controlled emittance blow-up is applied should be also studied.
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5.9 Conclusions

Controlled longitudinal emittance blow-up together with the operation of a high harmonic RF
system are essential for the LHC beam stabilization in the SPS. Measurements of bunch lengths
at the flat top show that after the noise excitation a non-uniform emittance blow-up occurs.
Taking into account the residual beam loading in the 200 MHz RF system (with FF and FB in
operation) and the beam induced voltage in the 800 MHz RF system the observed variation of
the bunch position along the batch can be closely reproduced. The bunch positions are mainly
determined by the residual beam loading in the 200 MHz RF system. As a consequence, the
synchrotron frequency distribution variation for bunches at different positions in the batch can
explain the large variation in emittance along the batch for the applied phase noise band during
the controlled emittance blow-up.






CHAPTER 6

Conclusions

Operation with a double RF system is essential for many accelerators in our days in order to
increase beam stability, to change the bunch shape and perform various RF manipulations. In
particular, regarding the beam stability, the bunch-lengthening (BL) mode is used more often
(compared to the bunch-shortening (BS) mode) since in addition to the increased synchrotron
frequency spread inside the bunch (more effective Landau damping) it reduces the peak line
density and therefore reduces the local intensity effects. However, there are some cases in the
hadron accelerators where the BL. mode can not be used since it reduced the threshold of longi-
tudinal beam instabilities, in comparison with the single RF system. This is also the situation
in the operation of the CERN SPS as the LHC proton injector, where the fourth harmonic RF
system is used in BS mode in addition to the main RF system. In fact the double RF system
operation in the SPS is one of the essential means, together with the controlled longitudinal
emittance blow-up, and the new Q20 optics, to significantly increase the longitudinal instability
thresholds (single and multi-bunch) and deliver a good quality beam for the LHC. However,
for the HL-LHC and LIU projects higher beam intensities are required. After commissioning
the LINAC4 and upgrading the PSB and the PS, the main performance limitations of the LHC
injector complex are beam instabilities and high intensity effects in the SPS.

Motivated by the longitudinal stability issues in the CERN SPS, the aim of this dissertation
has been to fully exploit the benefits and the limitations of a double harmonic RF system.
Consequently, it is based primarily on the beam and machine parameters of the SPS during its
operation as the injector of the LHC, although most of the results can be used in other proton
accelerators as well.

The main achievement of this work is the explanation, either by analytical methods or
macroparticle simulations, of the following important experimental facts, which are limiting
the present and the future operation of the SPS

e The low intensity threshold of the longitudinal single bunch instability in a double RF
system operating in the BL mode.

e The low intensity threshold of the longitudinal single bunch instability in the BS mode for
a high voltage ratio between the two RF systems (V2/V; > 1/4 for the SPS).

e The dependence of the single bunch instability threshold on the relative phase ®5 between
the two RF systems.

e The non-uniform controlled longitudinal emittance blow-up at high intensities in a double
RF system, resulting to a bunch to bunch variation along the batch.

Initially the single bunch longitudinal stability with respect to the synchrotron frequency
distribution inside the bunch ws(.J) was addressed for a second harmonic RF system (ha/h1 = 2)
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in the presence of reactive impedance. The study was restrained to a stationary case since no
acceleration was assumed. In particular, the loss of Landau damping threshold was found both
from simulations and calculations after taking into account the potential-well distortion. The
semi-analytical approach was based on finding the discrete Van Kampen mode (coherent mode
without Landau damping) by solving numerically the linearized Vlasov equation [12,13]. The
particle simulations were performed using a numerical tracking code written in Matlab for the
purpose of this study.

Both approaches showed that for the BL mode and an inductive impedance there is a critical
value of the longitudinal emittance (or action J), above which the Landau damping threshold
decreases rapidly to zero. This critical value corresponds to the region where w,(J) = 0. A
phase shift between the two RF components of more than 15° can help to increase the threshold
but the flatness of the bunches is lost. These results are able to explain observations during the
pp operation of the SPS [14,15] and to verify the beam transfer function (BTF) measurements
in BL mode in the SPS, where large amplitude coherent response was observed at frequencies
corresponding to that critical region [60].

For a capacitive impedance (or space charge) the thresholds are either dramatically increasing
or can not be found analytically. This is in agreement with the theoretical prediction in [16],
where it was proved that for the space charge impedance above transition, a bunch in a steady
state is always stable.

The analysis was applied to different harmonic ratios ha/h1 = n between the two RF systems,
by keeping the same voltage ratio V4 /Vo = n. It has been shown that although higher n
provides larger synchrotron frequency spread, the critical region moves closer to the bunch
center, and this is limiting the bunch size that can be used in stable operation. It was also
shown that, in the BS mode with n > 3 the regions where w;(J ) = 0 are also appearing as
local extrema. Consequently, for emittances larger than those values, the threshold of the loss
of Landau damping is significantly decreased.

These results agree very well with the observations from the SPS operation with the 4" har-
monic RF system (n = 4). Measurements of the longitudinal single bunch instability threshold
versus the relative phase between the two RF systems, performed in the SPS flat bottom during
one machine development (MD) session, have been presented. The voltage ratio of Va/V; = 1/4
and a constant intensity per bunch of ~ 1 x 10' was used. The analysis of the measurements
showed that the bunch is longitudinally unstable both in the BS and the BL modes. Note that
these phases are defined in the machine by a beam based calibration method, performed at the
beginning of each operational run. By scanning the phase shift between the two RF systems
a region where the bunches are stabilized was identified. This phase region is found to be be-
tween 50° and 100° (at 800 MHz) with respect to the BS mode. Particle simulations using the
longitudinal beam dynamics simulation program ESME (version es2009_4) [17] were performed
to verify the measured results. The current SPS impedance model consisting of the 200 MHz
(long and short types) and 800 MHz traveling wave RF systems, one higher order mode (HOM)
of the 200 MHz RF system [69] and the impedance of 16 kickers (the latter approximated by a
broad-band resonator with Q=1) was included in the simulations. A very good agreement with
the measurements was obtained since the same stable phase region was reproduced. Decreasing
the voltage ratio to Vo/V; = 1/10 (the value that is currently used in operation) resulted in
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stabilizing the bunch in the BS mode, a result that was again verified from simulations.

The dependence on the phase between the two RF systems, in addition to the sensitivity on
the voltage ratio, indicates that the loss of Landau damping in the flat region of the synchrotron
frequency distribution inside the bunch can be a possible explanation for the undamped oscilla-
tions observed in the measurements. For example, in the BS mode with V5/V; = 1/4, the size of
the bunches used in the measurements (and the simulations) is such that many particles are in
the region where w;(J ) = 0 and Landau damping is lost. By decreasing the ratio to Vo /V; = 1/10
the synchrotron frequency distribution becomes monotonic for the BS mode and therefore the
bunch is stable. This fact gives both a justification and the limitation to the 800 MHz voltage
amplitude used in operation for the LHC beams in the SPS.

Even using the fourth harmonic RF system in the BS mode with a voltage ratio of V5/V; =
1/10, proton beams of the LHC type in the SPS are still unstable at the end of the acceleration
ramp. For that reason a controlled longitudinal emittance blow-up is also applied in routine
operation, during the second part of the ramp, to increase further the spread in the synchrotron
frequencies inside the bunch and thus to enhance the effect of Landau damping. This is achieved
by introducing a band-limited phase noise in the 200 MHz RF system. However, the controlled
emittance blow-up has its own limitations. Indeed, analysis of measured bunch profiles shows
that after the noise excitation the bunch length distribution along each batch at the flat top has
a non-uniform structure. This effect becomes more pronounced by increasing the amplitude of
the phase noise (to obtain larger emittances) and might prove to be a limitation for injection into
the LHC 400 MHz RF buckets, when for stability at higher beam intensities a larger emittance
will be requested.

It has been proved during this thesis, that the measured variations of the final emittance along
the batch can be explained by the modification of the synchrotron frequency distribution due to
the effect of beam loading in the SPS double harmonic RF system. In particular, by taking into
account the residual beam loading in the 200 MHz traveling wave RF cavities (equipped with
feed-back and feed-forward systems) and the beam loading voltage in the 800 MHz traveling wave
RF cavities, the observed variation of the bunch position along the batch was closely reproduced.
The synchrotron frequency distribution calculated for bunches at different positions in the batch
using the total voltage derived from this model can explain the large variation in emittance along
the batch for the applied phase noise band.

The effect of the residual beam loading in the 200 MHz RF system resulting in a non-uniform
emittance blow-up will be significantly reduced after the redesign of the existing beam control
around the 200 MHz cavities (including longitudinal damper and feedback coupled on cavities
of different length). This is a part of the approved LIU project at CERN and will be available in
operation in 2018 [76]. In addition, a feed-back system around the 800 MHz RF system is also
going to be installed and become operational during the 2015 run [77]. Thus, the effect of beam
loading in this RF system will be also reduced and a better control of the phase ®5 between the
two RF systems will be possible, allowing for a better beam stability of the short bunches at the
SPS flat top.
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