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n o7

Knowledge is power”. Rather, knowledge is happiness, because to have knowledge - broad,
deep knowledge - is to know true ends from false, and lofty things from low. To know the
thoughts and deeds that have marked man's progress is to feel the great heart-throbs of humanity
through the centuries; and if one does not feel in these pulsations a heavenward striving, one
must indeed be deaf to the harmonies of life."

Helen Keller

« «H yvawon eivar dvvaun», Aéve. AAAG n yvwon eivar kat evtoxia, YTt av amoxTac 1
yvwon - v nAateld, pabeid yvoon - EexwpiCeic ta aAnOwa davikd an’ ta PevTika
Kat ta peyadonpena an’ ta yaundda. To va yvwpiCelc Tic okéPels kat TIc TPaselg,
Tiov onuadepav tny mpoodo tov avOpwTov, ivar oa va atobaveoatr Tovg TAALOVS TG
peyaAnc kapdiac tne avpwnotntac oto mépacua twv atwvwv. Ki' adua xaveic d¢
volwBOel 0" avTOVC TOVG TTAAUOVS Ui TTAAN Yia TNV KATAKTNON TWV ovpavwy, ivat ot’
aAnOeia xovpog otic apuovies e Cwng.»

Helen Keller






EYXAPIXTIEX

Kotd ™ Oowdpkeln g mopovcag OaKTOpPIKNG OwTpifr|g ONUOVIIKY MTov 1
kafodnynon mov pov mpocipepe o kaOnyntie k. Zoxpdmg Toayydpnc. Tov
EVYOPLOTA WOTEPMOC YIOL TNV EUTIGTOGVUVI TTOL £J€1EE TPOG TO TPOSMTO LoV OAQ

aLTd o YPOHVIL, Y0 TV EMGTNIOVIKT Kot N0 vrootpién Tov.

Eniong, evyapiotd m Ap. Ocoddpa [ldnmov kar 1o Ap. Zokpdtn Bpoyd yo v
OVCLOCTIKY] cvvepyacsio mov giyope. Xwpig T GLVEIGPOPA TOLG 1 TpocTdbela avTN
Ba Ntav Aewyn. Evyopiotd okdpa tov avaminpot) kadnynt tov Iloivteyveiov
Kpnmg x. lodvvn Nucord kot tov Yn. Ap. ['edpylo Avyddxn yio ) Porfeta mov pov
TPOCEPEPAY GTO avTiKEipevo g aktvoPoriac. Ilpémer vo avoaeepBel pntd 0tL M
pnébodoc memepacpéveov  Oykwv Yoo v emilvon g e€lowong  petagopdg
axtvoPoAiag avamtiynke amd avTovg Kot pHov d00NKeE GE LOPPT VITOPOVTIVAV GTO.
TAOIGLO. TNG GLVEPYNSING Mg GE £pELVNTIKO Tpdypappa. Evyapiotd to vroéiouta
péAN tov gpyactnpiov, to Ap. Xpnoto Mavémovro, tov Yr. Ap. Ioone Movirivo kot

tov Y7 Ap. Eppoavounh AyyeAion yia 61t o kaBévag Toug TpocEpepe.

Emiong, evyapiotd tar dAho dVO PEAN NG TPUEAOVS EMTPOMNG, TOV OVATANPOTY|
Kanynt| k. Zmvpidwvo Bovtowd kot tov avamAnpot) xodnynm K. lodvvn
Avayvootdémovio, Yo TIC TOAVTIHEG GUUPBOVAEC TOVG KOTO TNV TEMKN QAT TNG

dwtppne.

Evyapiotd axopo to péAn g entapelodg emitpomng eE€taong, Tov kafnynt) K.
Anpntpio Mabovidkn, tov kabnynt k. Anuntpro Ilamavtovn, tov emikovpo
KaOnynt K. Anuitpro Mrovpn kou tov Aéktopa K. Baciieio Piluotn yo v tiun

OV OV £KOVOV VO GUUUETAGYOVY GE QVT.

Axopo, tpémel vo avapepBel 0Tt KOTA TN SIUPKELD TOV OOOKTOPIKAOV OV GTOVI®V
vpEa vroTpoPog Tov Idpvpatoc Kpatikwv Yrnotpopuov (ILK.Y.). H tpocpopd tov

LK.Y. frav Wwitepa onpovtiky.

drtdvovtog oto T€A0C avTNg TG Tpootdleiag Ba NBela va vy apPIoTHG® OAOLG AL TOVG
mov pe ompiav Kotd T Sdpkel TV omovd®v pov oto Efvikd Metoopio
[Tolvteyveio, amd to 2004 6mov gilonABa ot GYoA Mnyavordymv Mnyovik®dv og

TPOTTLYLOKOG POLTNTNG HEXPL TNV TEPATMGN TNG TOPOVSAG SLATPIPNC.



Avtoil Aodv ot onoiot asBdvopar 6t pe otpiEav avtd ta xpovia sivor apykd to
LEAN NG OwoYEVELdS Lov, ot Yoveig pov m. [edpyrog kot NikoAEtTa Kot to adépeLo
pov Zon, O®c6dmpog, EAEVN, Mapia-Mavpa kot Empdviog. Eivar avtol mov pe Tig
Buoieg Toug drapdpemaay To VTOPadpo Yo va acyoANO® ATPOGKOTTA E TIG GTTOVOES
pov. Emiong, moAd onpavtiki ftav 1 vTosTipiEn Tov Hov TPocPEpinke amd @ilovg,
amd TN «ueyGAn mapéoy. Eivoar avtol mov pe «€ompwov» pe 1O OIKO TOVG
KOAOTPOOIPETO Kol SLOKPITIKO TPOTO GTO OVIPOPIKO HOVOTATL TOV 0ONyNoE OTN

LLIKPT 00T KOPLOT).

Téhog, Ba MBela vo egvyoploom TV TAElOYNEio TOV KOONYNTOV NG OYOANG
Mnyavordywv Mnyavik®v Kot Tov STUNUOTIKOD LETATTUYLKOD TNG Y TOAOYIGTIKNG
Mnyavikng. Tovg guyapiotd Yoo T0 HEPAKL TOLG GTN OWOOCKOAlM Kot Yo v iom

OVTILETOTIGT TOV POLTNTI GTO TPOCHOTO TOL OO0V EPAETAY VA GLVAGEAPO TOVG.
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ABSTRACT

The aim of the present doctoral dissertation was the development of a numerical-
computational methodology for the simulation of generally unsteady flows with

concurrent heat transfer.

The developed flow solver is used for the simulation of two-dimensional or three-
dimensional, incompressible, laminar or turbulent flows of a viscous and Newtonian
fluid. For the necessary pressure and velocity coupling the artificial compressibility
approach is applied. For the prediction of the buoyant flows of the incompressible
fluid, density differences due to temperature differences are taken into account
according to the Boussinesq approximation. For the turbulent flows two widely
applied Reynolds averaged Navier-Stokes models are used; the k-@ SST model in its
low-Re or high-Re version and the high-Re standard k-& model.

The solver applies a node-centered finite volume discretization technique, using an
edge-based and transparent approach on hybrid numerical meshes. For the calculation
of the inviscid fluxes a Roe's approximate scheme have been developed. Temporal
accuracy is achieved by an implicit dual time stepping scheme for the pseudo-time

and physical-time marching.

All mean flow equations, i.e. continuity, momentum and energy equations, are solved
strongly coupled. The strongly coupled solution was selected after the comparison
with the loosely coupled one, which to the best of our knowledge has not been
presented in the literature before for this set of equations. It showed faster
convergence for significant inviscid effects and permitted us to use greater CFL

numbers making convergence even faster.

For the radiative heat transfer two methods were applied. The first one is an analytical

view factor based model and the second one a finite volume model.

After the development of the numerical methodology a series of representative
benchmark test cases was solved for the validation of the solver, with quite promising
results. The parallelization of the solver showed significant reduction in the time

needed for the prediction of the flow/heat transfer problems.



After the validation and the confirmation of the high performance of the parallel
solver we continued to the simulation of two fire cases in a ventilated tunnel. Fire
events were simulated either taking into account radiation and wall conduction or not.
Radiation and wall conduction modeling seemed to be necessary for the prediction of

realistic temperature fields.
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number at Re=100 (o: [Sha04], o Present solver).

Figure 4-31. Differentially heated square cavity. Convergence histories for the cases
of Ra=10> (left column), Ra=10> (middle column) and Ra=10° (right column) through

pseudo-time.

Figure 4-32. Differentially heated cubic cavity for Ra=10°. Convergence histories
through pseudo-time for u velocity (left column, top row), v velocity (middle column,
top row) w velocity (right column, top row), pressure (left column, bottom row) and

temperature (right column, bottom row).

Figure 4-33. Differentially heated cubic cavity for Ra=10°. Convergence histories
through pseudo-time for u velocity (left column, top row), v velocity (middle column,
top row), w velocity (right column, top row), pressure (left column, bottom row) and

temperature (right column, bottom row).

Figure 4-34. Numerical meshes in two-dimensions (left) and in three-dimensions

(right).
Figure 4-35. Mean Nusselt number at the hot wall as a function of Ra number.

Figure 4-36. Differentially heated cavities. Comparison of two-dimensional and three-
dimensional results. Temperature profiles (left column), u velocity profiles (middle
column), v velocity profile (right column). Ra=10" (1*' row), Ra=10* (2™ row),

Ra=10° (3™ row), Ra=10"" (4" row).

XXii



Figure 4-37. Turbulent natural convection; standard k-¢ turbulence model; Ra=10". u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3™ row).

Figure 4-38. Turbulent natural convection; standard k-¢ turbulence model; Ra=10% u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3™ row).

Figure 4-39. Turbulent natural convection; standard k-¢ turbulence model; Ra=10’. u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3" row).

Figure 4-40. Turbulent natural convection; standard k-¢ turbulence model; Ra=10"" u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3" row).

Figure 4-41. Turbulent natural convection; k-o SST with wall functions; Ra=10". u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2nd row), turbulent kinetic energy (left column, 3" row), turbulent dissipation (right

column, 3" row).

Figure 4-42. Turbulent natural convection; k-o SST with wall functions; Ra=10% u
velocity contour (left column, 1* row), v velocity contour (right column, 1* row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2nd row), turbulent kinetic energy (left column, 3" row), turbulent dissipation (right

column, 3" row).
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Figure 4-43. Turbulent natural convection; k- SST with wall functions; Ra=10". u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3™ row).

Figure 4-44. Turbulent natural convection; k-0 SST with wall functions; Ra=10"". u
velocity contour (left column, 1% row), v velocity contour (right column, 1% row),
temperature contour (left column, 2™ row), eddy kinematic viscosity (right column,
2" row), turbulent kinetic energy (left column, 3™ row), turbulent dissipation (right

column, 3™ row).

Figure 4-45. Turbulent natural convection; low-Re k-0 SST; Ra=10". u velocity
contour and numerical mesh (left column, 1* row), v velocity contour (right column,
1* row), temperature contour (left column, nd row), eddy kinematic viscosity (right

column, 2™ row).

Figure 4-46. Turbulent natural convection; low-Re k-o SST; Ra=10% u velocity
contour (left column, 1* row), v velocity contour (right column, 1% row), temperature

contour (left column, 2™ row), eddy kinematic viscosity (right column, 2" row).

Figure 4-47. Turbulent natural convection; low-Re k-0 SST; Ra=10". u velocity
contour (left column, 1* row), v velocity contour (right column, 1* row), temperature
contour (left column, 2™ row), eddy kinematic viscosity (right column, 2™ row),
turbulent kinetic energy (left column, 3" row), turbulent dissipation (right column, 3™

row).

Figure 4-48. Turbulent natural convection; low-Re k- SST; Ra=10"". u velocity
contour (left column, 1* row), v velocity contour (right column, 1* row), temperature
contour (left column, 2™ row), eddy kinematic viscosity (right column, 2" row),
turbulent kinetic energy (left column, 3" row), turbulent dissipation (right column, 3™

row).

Figure 4-49. Schematic representation of the prismatic enclosure [Lygl2] (left).

Numerical mesh in the middle cross section z=5 (right).
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Figure 4-50. Dimensionless radiative heat flux at the bottom wall in the middle of the

z distance (z=5).

Figure 4-51. Schematic representation of the prismatic enclosure [Lygl2] (left).

Numerical mesh in the middle cross section z=5 (right).

Figure 4-52. Dimensionless radiative heat flux at the inclined wall in the middle of the

z distance (z=5).

Figure 4-53. Schematic representation of the prismatic enclosure [Lygl2] (left).

Numerical mesh in the middle cross section z=5 (right).

Figure 4-54. Independence of the average incident radiation for isotropic scattering

from the angular mesh.

Figure 4-55. Comparison of the dimensionless radiative heat flux in y direction (top)
and the dimensionless average incident radiation (bottom) for isotropic and

anisotropic scattering along the center-line x=0.5 for z=5.

Figure 4-56. Comparison of the dimensionless radiative heat flux along the center-line

x=0.5 when z=0.5 for anisotropic scattering.

Figure 4-57. Comparison of the dimensionless radiative heat flux along the center-line

x=0.5 for anisotropic scattering for various emission coefficients €.

Figure 4-58. Schematic representation of the hexahedral enclosure [Lygl2] (left).

Numerical mesh (right).

Figure 4-59. Comparison of the dimensionless radiative heat flux onto the bottom face

in the middle of the enclosure (z=0.5) (left). Independence of the solution (right).

Figure 4-60. Temperature profiles along the top wall (z=1) and bottom wall (z=0) in
the middle of the y direction (y=5) for the case of the laminar convection without

radiation effects.

Figure 4-61. Comparison of temperature profiles along the top wall (z=1) and bottom
wall (z=0) in the middle of the y direction (y=5) when radiation effects are included
and calculated using the VFBM.
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Figure 4-62. Comparison of temperature profiles when radiative heat transfer is

calculated using either the VFBM or the FVM.

Figure 4-63. Contours inside the enclosure for transparent (left column) and
participating (right column) medium. u velocity (1% row), w velocity (2™ row),

temperature (3" row).
Figure 4-64. Radiative divergence contour for participating medium.

Figure 4-65. Distribution of the average heat flux in z direction along y axis for

transparent medium (T, =15, Pr=0.043, 1=0).

Figure 4-66. Distribution of the average heat flux in z direction along y axis for

participating medium (T =17, Pr=0.016, =1, Ra=10°).

Figure 4-67. Isothermal surfaces when radiation effects are not taken into account

(left column) and when radiation effects are included (right column) (T, =15,
Pr=0.043, 1=0). Ra=10> (1% row), Ra=10* (2™ row), Ra=10° (3™ row), Ra=10° (4"

row).

Figure 4-68. Dimensionless radiative heat flux onto the walls (left) and dimensionless

radiative divergence on mid-plane y=0.5 (T, =17, Pr=0.016, t=1).
Figure 5-1. Mesh2 (10083 nodes and 15044 cells) decomposed into 8 partitions.

Figure 5-2. Speed-up (left column) and efficiency (right column) of the parallelization
for meshl (1686 nodes and 2578 cells), using the k- SST turbulence model (up row)

and the standard k- turbulence model (bottom row).

Figure 5-3. Speed-up (left column) and efficiency (right column) of the parallelization
for mesh2 (10083 nodes and 15044 cells), using the k- SST turbulence model (up

row) and the standard k-¢ turbulence model (bottom row).

Figure 5-4. Speed-up (left column) and efficiency (right column) of the parallelization
for mesh3 (18812 nodes and 34622 cells), using the k-0 SST turbulence model (up

row) and the standard k-¢ turbulence model (bottom row).

Figure 5-5. Comparison of the speed-ups (left column) and efficiencies (right column)

of the parallelization among the numerical meshes.
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Figure 5-6. Cubic cavity decomposed into 8 partitions.

Figure 5-7. Speed-up (left) and efficiency (right) of the parallelization for the laminar

flow in a differentially heated cubic cavity without radiative heat transfer.

Figure 5-8. Speed-up (left) and efficiency (right) of the parallelization for the pure

radiation in a differentially heated cubic cavity.

Figure 5-9. Speed-up (left) and efficiency (right) of the parallelization for the laminar

flow in the differentially heated cubic cavity with radiative heat transfer.
Figure 6-1 [KumO04]. Mont Blanc tunnel fire.

Figure 6-2 [Kaf99]. Operation of the three major mechanically induced ventilation
types.

Figure 6-3. Sketch of the tunnel and heat source.

Figure 6-4. Numerical mesh used for the standard k-¢ turbulence model with wall
functions simulations. Section y=2.7m near the vicinity of the heat source (top). Cross

section x=60m (bottom).

Figure 6-5. Numerical mesh used for the low-Re k-o SST simulations. Section

y=2.7m near the vicinity of the heat source (top). Cross section x=60m (bottom).

Figure 6-6. Temperature isolines through time for case 1. a) standard k-¢ at 0.5s, b)
low-Re k- SST at 0.5s, c) standard k-¢ at 2s, d) low-Re k- SST at 2s, e) standard k-
€ at 5s, f) low-Re k-o SST at 5s, g) standard k-¢ at 10s and h) low-Re k- SST at 10s.

Figure 6-7. Temperature isolines through time for case 2. a) standard k-¢ at 0.5s, b)
low-Re k- SST at 0.5s, c) standard k-¢ at 2s, d) low-Re k- SST at 2s, ¢) standard k-
¢ at 5s, f) low-Re k-o SST at 5s, g) standard k-¢ at 10s and h) low-Re k- SST at 10s.

Figure 6-8. Velocity vectors at characteristic sections and moments for case 1
predicted by the standard k-¢ model (left column) and the low-Re k- SST model
(right column). Section y=2.7m near the heat source at 0.5s (top row), cross section

x=60m at 1s (middle row) and cross section x=60m at 5s (bottom row).

Figure 6-9. Velocity vectors at characteristic sections and moments for case 2

predicted by the standard k-¢ model (left column) and the low-Re k- SST model
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(right column). Section y=2.7m near the heat source at 0.5s (top row), cross section

x=62m at 1s (middle row) and cross section x=62m at 5s (bottom row).

Figure 6-10. Vertical temperature profiles at a distance of 18m (top) and 30m
(bottom) downstream from the heat source for case 2, twenty seconds after fire

breaking.

Figure 6-11. Flame shape comparison for casel. Present solver with the k- model

(top), Ansys Fluent with the k-¢ model (bottom).

Figure 6-12. Flame shape comparison for case2. Present solver with the k-¢ model

(top), Ansys Fluent with k-¢ model (bottom). Definition of the flame angle.

Figure 6-13. Comparison of temperature profiles alogn height when steady state was

reached. Casel(top) and case2 (bottom).

Figure 6-14. Velocity vectors at section y=2.7m and stagnation point (red circle).

Figure 6-15. Source term vQ, along the length of the tunnel for y=2.7m and

Re Pr

7z=0.165m (half of the heat source height).

Figure 6-16. Radiative heat flux q, along the length of the tunnel for y=2.7m and

z=2.4m (ceiling of the tunnel).

Figure 6-17. Comparison of temperature profiles alogn height with the numerical

results of Miloua et al. [Mill1] and the experimental results of Fletcher et al. [Fle94].

Figure 6-18. Temperature profiles alogn height calculated for adiabatic and

conductive walls [Mill1].

Figure 6-19. Comparison of temperature profiles alogn heigh when radiation and wall
heat conduction are taken into account with the numerical results of Miloua et al.

[Mil11] and the experimental results of Fletcher et al. [Fle94].
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CHAPTER 1

INTRODUCTION - LITERATURE SURVEY

1.1 Introduction

Flows with heat transfer, as all engineering multiphysics problems, can be studied
experimentally, theoretically or computationally. Experimental investigation provides
reliable data, limited only by the experimental error. However, experimental
investigation is often prohibitive due to the necessary high cost and the fact that it
may be time-consuming. Theoretical and computational methods are the most
affordable and permit the investigation of various alternative cases with proper
modifications on the model. Their applicability is mainly restricted by the

assumptions made.

This doctoral dissertation aimed at developing a numerical-computational
methodology for the simulation of generally unsteady incompressible and turbulent

flows with concurrent heat transfer.

Heat transfer is the science that deals with the determination of spatial and temporal
field of temperature and the rate of heat transfer. Heat is the form of energy that can
be transferred from one system to another as a result of spatial temperature difference
[Cen02]. The temperature difference is the driving force of heat transfer and the
second law of thermodynamics requires that heat be transferred from systems of
higher temperature to systems of lower temperature. In uniform temperature fields
there is thermal equilibrium. Engineers', dealing with heat transfer problems, scope is
to facilitate or to reduce the heat transfer. There are three ways of heat transfer that
may occur simultaneously or not. These are conduction, convection and radiation.

Below a brief description of each one is given.

Heat transfer through conduction is attributed to the microscopic motion of atoms or
molecules. Conduction takes place at all states of matter; solid, liquid and gas. In
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figure 1-1 an example of heat conduction in a solid is given, where macroscopic

motion is absent.

/

. T -T
Figure 1-1 [Cen02]. Heat conduction through a solid wall (Q = Akf).
X

Heat transfer due to convection is a result of the macroscopic motion of fluid and not
of the microscopic motion of atoms or molecules, which also exists. Convection is
divided into the natural (free) convection, forced convection and mixed convection.
Natural convection is induced by buoyancy forces because of density differences
caused due to temperature variations. Forced convection takes place when fluid
motion is due to external means, such as a fan or a pump. Mixed convection is called
when both natural and forced convection coexist. Examples of all convective heat

transfer mechanisms are given in figure 1-2.

1-2



Natural Forced Mixed

Convection Convection Convection
Air Ailr

— YO AR

2NN S
\ ~ x ) () - — N A~ X
Ve Bl et

Figure 1-2 [Cen02]. Heat convection mechanisms. Natural convection (left), forced

convection (middle) and mixed convection (right).

Thermal radiation is the energy emitted by bodies which temperature is above
absolute zero, in the form of electromagnetic waves (alternative photons). Thermal
radiation differs from other forms of electromagnetic radiation found in the

electromagnetic spectrum. Its wavelength is between 0.1um and 100um (figure 1-3).
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Figure 1-3 [Mod03]. Electromagnetic wave spectrum.



Thermal radiation differs from conduction and convection in that it does not require
an intervening medium. On the contrary, thermal radiation is faster in the vacuum.
Although thermal radiation have been studied in depth by several researchers, its
mechanism is not fully understood [®ov03]. An example of how thermal radiation
acts is the following. The sun, with its extremely high surface temperature
(approximately equal to 6,000 °C) heats the earth through thermal radiation. In a case
of a cold day, a man that stands under the shadow of a shelter feels cold. If he moves
away from the shadow he feels warmer. Nevertheless, under the shadow or not the
atmospheric temperature is the same. In figure 1-4 the radiative heat transfer between

a surface and the surfaces surrounding it is shown.

Surrounding
surfaces at

2 1

sSurr

Figure 1-4 [Cen02]. Radiative heat transfer between two surfaces in a closed cavity

(Qe = 8'A\SG(T;l _Tstrr))'

As it was mentioned before, in this dissertation heat transfer and fluid flow are studied

through the development of a numerical-computational methodology.
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1.2 Modeling of convective heat transfer

Convective heat transfer is dominant in a wide variety of practical engineering
problems, such as cooling of electronic chips [Xiel4], design of heat exchangers
[Ali14] and fire simulation in tunnels [Sto13a]. Nowadays, with the great progress in
computer science, Computational Fluid Dynamics (CFD) has become a valuable tool

for the simulation of such cases.

Many numerical studies have been published in the literature on the development of
solvers for the simulation of convective heat transfer problems. Hortmann et al.
[Hor90] applied a loosely coupled method® based on the SIMPLE algorithm for the
prediction of the differentially heated square cavity case. Convergence to a grid-
independent solution was achieved by a multigrid technique with high accuracy.
Malan et al. ([Mal02a], [Mal02b]) developed and tested a finite volume method
based on the artificial compressibility approach for the solution of laminar isothermal
or non-isothermal viscous flows using unstructured grids. Their proposed method
showed accuracy and robustness in a wide range of flow parameters. Liu et al. [Liu03]
presented a fourth order finite difference method for the prediction of 2D buoyancy
flows. Buoyancy was introduced in the vorticity transport equation by means of
Boussinesq approximation. Below a brief description of issues concerning the

development of an incompressible convective heat transfer solver are given.

The difficulty with the incompressible flows is on the coupling of the pressure and
velocity fields during the numerical solution. For this coupling many techniques have
been developed [Lak91]. The most popular approaches are the pressure correction
method originally introduced by Harlow and Welch [Har65] and the artificial
compressibility method originally introduced by Chorin [Cho67]. A thorough
comparison of these two methods has been done by Tamamidis et al. [Tam96].

! Loosely and strongly coupled solution: The loose and strong coupling of a set of equations
refers to the way that these equations are solved. When the loosely coupled solution is
applied, equations are solved seperately and iteratively untill their convergence. When the
strongly coupled solution is applied, equations are solved simultaneously. In this dissertation
loose and strong coupling refers to the coupling of the continuity and momentum equations
with the energy equation (heat transfer equation). Specifically, when the loosely coupled
solution is applied continuity and momentum equations are first solved with the temperature
field fixed and then the energy equation is solved with the velocity field fixed untill
convergence in pseudo-time. The antithesis of loosely coupled solution is the strongly
coupled solution where all mean flow equations are solved simultaneously.
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According to this study, the most attractive feature of the artificial compressibility
method is the faster convergence as continuity and momentum equations are fully

coupled.

Today, hybrid meshes are widely used ([And95], [Has00], [Kal05], [Vral2], [Sto12],
[Stol13b]). Hybrid numerical meshes can combine efficient viscous layer resolving
capability obtained from their structured elements, with the geometric flexibility of
unstructured meshes [Kal05]. Therefore, they lead to significant savings in memory

and computational time with satisfactory results.

Inviscid fluxes evaluation has received considerable attention in the CFD community.
Developed schemes are distinguished into central and upwind schemes [Hir88].
Hybrid schemes, combining central and upwind schemes, are also found [Ferl3].
Many works have been found in the literature based on central differencing schemes
([Swa92], [Lin06], [Mal02a], [Mal02b], [Kal05], [Lin97]). They gain in simplicity but
they are susceptible to the odd-even mode decoupling, making artificial dissipation
necessary. The most dominant in the upwind schemes is the scheme that is based on
the Roe's approximate Riemann solver ([Kal05], [Liu98], [Yua02], [And95], [Shi01],
[Azh08]). This approach is more complicated, but relieves us from artificial

dissipation, since upwind schemes introduce artificial dissipation implicitly.

Our solver is based on a node centered finite volume discretization technique applying
the artificial compressibility approach for the necessary pressure and velocity
coupling. It utilizes an edge-based approach on hybrid numerical meshes containing
triangles and quadrilaterals in the two-dimensional version and hexahedra, prisms,
tetrahedra and pyramids in the three-dimensional version. Density variations due to

temperature differences are simulated by means of the Boussinesq approximation.

Attention was paid to the strong coupling of the mean flow equations and the
development of an efficient upwind scheme for the calculation of the inviscid fluxes.
The Navier-Stokes and energy equations are solved simultaneously leading to the
concurrent convergence of flow and temperature fields. A Roe's approximate
Riemann solver was developed for the evaluation of the inviscid fluxes. For the
discretization of the viscous fluxes a CPU-time efficient central scheme is used.

Temporal accuracy is achieved by a fully implicit, dual time stepping scheme. The
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algorithms for spatial and temporal discretization of the equations are mesh

transparent’.

1.3 Modeling of radiative heat transfer

Radiative heat transfer is present in a wide range of practical engineering problems. A

simple rule for whether or not radiative heat transfer should be accounted for derives

from the quantity Q_, =o(T. —T ), where c is the Stefan Boltzmann constant.

rad
Radiative heat transfer should be accounted for if Qg is of comparable magnitude to

the convection and conduction heat transfer rates.

For the computational simulation of radiation transfer plenty of methods have been
proposed. These are mainly categorized in methods that are based on view factors and
flux methods. Latter of them demand the satisfaction of the radiant energy
conservation law in each control volume, in a similar way as CFD integral methods
do.

1.3.1 View factor based methods

The first method based on view factors was Hottel's zone method [Hot67]. After the
spatial discretization of the computational domain, the calculation of the view factors
is required. The calculation of the view factors is computationally demanding. As the
number of discrete boundary surfaces increases, the time needed for their calculation
increases exponentially. This fact makes Hottel's zone method inappropriate for
multidimensional problems, though view factors are geometric quantities and they are
calculated once before the main calculation procedure. Analytical expressions could
also be found in the literature for the view factors among surfaces ([Gro81],
[Mod03]).

2 Mesh transparent schemes: Mesh transparent are the schemes that have the same behavior to
the different types of elements of hybrid meshes.
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Monte Carlo method was introduced as a method for finding view factors in radiative
heat transfer problems by Howell [How68]. It shows geometric flexibility but suffers

from slow convergence rates [Ker94].

Many improvements and applications of view factor based methods have been found
in the literature.

Balaji, Venkateshan and Singh ([Bal93], [Bal94], [Bal95], [Sin04]) studied laminar
free convection in open and closed cavities taking into consideration the surface
radiation. The same Cartesian and non-uniform grid was used for the calculation of
fluid flow, convective heat transfer and radiation. View factors were calculated using
crossed-string method [Mod03].

Ridouane et al. [Rid04] studied the interaction of surface radiation and natural
convection in a Rayleigh-Benard type problem in a square enclosure. View factors

were calculated using crossed-string method.

Sharma et al. [Sha07] studied the interaction of surface radiation and turbulent natural
convection in a square cavity heated from below. View factors were calculated using

crossed-string method.

Albanakis and Bouris [AlIb08] used an analytical approach for thermal radiation
modeling. This model applies in building enclosures with high wall emissivities and
limited number of reflections among surfaces. View factors were calculated with

analytical expressions for the boundary surfaces of a Cartesian grid.

Alvarado et al. [Alv08] studied the interaction of surface radiation and laminar natural
convection in 2-D tilted cavities. View factors were calculated using crossed string

method.

Rabhi et al. [Rab08] studied surface radiation and natural convection in inclined

rectangular enclosures. View factors were calculated using the Monte Carlo method.

Ridouane et al. [Rid06] studied a Rayleigh-Benard type problem in a square

enclosure. View factors were calculated using crossed-string method.
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Something that should be mentioned is that all above studies were based on the
assumption of non-participating medium®. Only thermal radiation among solid
surfaces was modeled. Finally, the main advantage of view factor based methods is

their simple programming.

1.3.2 Flux methods

Radiative flux methods operate in a similar way to CFD integral methods. The only
difference is that radiative flux methods require angular discretization except for the
spatial discretization. The dominant flux methods for the radiative heat transfer are
the Discrete Ordinates Method (DOM) and the Finite Volume Method (FVM).

DOM was first used for the simulation of 3-D radiative heat transfer with isotropically
and anisotropically scattering medium by Fiveland ([Fiv87], [Fiv88]). Many
improvements and applications of the DOM have been found in the literature.

Yucel et al. [Yuc89] studied the laminar and steady natural convection in a
differentially heated square cavity. A gray”®, absorbing, emitting and isotropically
scattering medium was assumed. Walls were assumed to be black’. A cell-centered
scheme was used for the calculation of both mean flow equations and radiative
transfer equation (RTE). Cell center radiation intensities and cell boundary radiation
intensities were related using both the diamond scheme and the step (or upwind)

scheme.

In 1994, Chai et al. [Cha94] presented a comparison of the most popular spatial

differencing schemes®, i.e. positive, step and diamond schemes, using DOM in two

® Non-participating or transparent is the medium that has no effect on the radiation passing
through it. It acts like being vacuum.

* Generally, gray is the body with uniform transmission, absorption and reflection of radiation
for all wavelengths. Specifically, gray medium is the medium with constant absorption and
scattering coefficients.

® Black body absorbs all the radiation reaching it, i.e. emissivity coefficient is equal to unity.

® Spatial differencing schemes are used to relate the cell center intensities (for a cell centered

scheme) or node intensities (for a vertex centered scheme) to the face intensities that appear
after the application of the divergence theorem in the radiative transfer equation.
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dimensions. The step scheme was recommended as it produces realistic results.
Diamond scheme produced in some cases negative intensities, which required a fix-up
procedure (negative intensities were set equal to zero or a small value). In some cases
both diamond and positive schemes occurred unrealistic overshoots for radiation

intensity.

Colomer et al. [Col04] and Scarella et al. [Sca08] studied the interaction between
radiation and laminar natural convection in a cubic differentially heated cavity.
Medium was assumed to be absorbing and emitting but non-scattering. Walls were
assumed to be black.

Lari et al. [Larl2] studied the interaction of thermal radiation and laminar natural
convection in a 2-D differentially heated cavity, under the assumption of non-gray
medium. RTE was solved using the DOM and the non-gray part of radiation was
simulated using the full spectrum k-distribution method. Medium was assumed to be
absorbing and emitting but non-scattering and walls were diffusely’ reflecting and

emitting with constant emissivities.

FVM was first introduced by Raithby and Chui in 1990 [Rai90]. Many improvements

and applications of the FVM have been found in the literature.

Chui and Raithby [Chu93] and Chai et al. [Cha95] applied the FVM on non-

orthogonal, quadrilateral grids in two dimensions.

Baek et al. [Bae98] applied the FVM in 3D non-orthogonal enclosures. Medium was
assumed to be absorbing, emitting and isotropically-scattering. Walls were diffusely

emitting and reflecting. To overcame the control angle overlaps® the overlapping

" Diffuse reflection is the isotropic reflection of a wall, where there is no preferred direction
for outgoing rays.

& Control angle overlap is the bisection of a control angle by the control volume face. In such
a control angle, incoming and outgoing radiations are overlapped. Methods found for the
treatment of control angle overlap are the bold approximation method, the pixelation method
and the exact method. When bold approximation is applied the overlapped control angle is
assumed to be wholly either incoming or outgoing. Pixelation method requires the division of
the control angle into smaller ones and then applies the bold approximation for the smaller
overlapped angle. Finally, the exact approach exactly separates the angle into the incoming
and outgoing part. For more information on the control angle overlap issue the reader is
referred to [Kim01].
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angles were divided into incoming and outgoing parts. Step spatial differencing

scheme was applied.

In 1999 Rithby [Rai99] presented a comparison between DO and FV methods. Some
of the weaknesses of the DOM were mentioned on the conservation of the radiant
energy at boundaries when anistropically-scattering medium is assumed. Furthermore,

it was stated that careless angular discretization may lead to large errors.

Han and Baek [Han00] studied the effect of radiation to the steady laminar natural
convection in an enclosure with two baffles. Fluid was assumed to be absorbing,
emitting and isotropically scattering. Walls were assumed to be diffusive. The step
spatial differencing scheme was used.

In 2000 Kim and Huh [KimO0Q] introduced a new non-uniform angular discretization
scheme applied with the FVM. The FT, FVM is compatible with absorbing, emitting
and anisotropically scattering fluid. This scheme implies that if the polar angle is
divided uniformly in an even number n, then the azimuthal angle is uniformly divided
into the numbers of the sequence of 4, 8, 12, ..., 2n-4, 2n, 2n-4, ..., 8, 4 (figure 1-5).
The number of all control angles results to be n(n+2). The FT, scheme results in a
better distribution of the discretized control angles compared to the uniform angular
discretization with Ny polar and N, azimuthal subdivisions (N¢xN,). The FT, FVM
gave more accurate results than the DOM and the FVM with uniform angular
discretization for the same total number of angles, apart from the case of optically

thick medium (large absorption coefficient).
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Figure 1-5. Angular discretization domain. Uniform angular discretization (left), FT, angular

discretization (right).

Kim et al. [KimO1] applied the FVM in 2-D geometries with obstacles, discretized
with unstructured triangular grids. The step spatial differencing scheme was applied.
Regarding the treatment of the unavoidable control angle overlap (unstructured grid),
three different schemes were compared for their accuracy and computational cost; the
bold approximation scheme, the pixelation method and the exact treatment scheme.
Pixelation method and exact treatment scheme showed better accuracy than the bold
approximation method for a small number of control angles, but with a higher

computational cost.

In 2004 Trivic [Tri04] combined the FVM for the radiative transfer equation with a

weighted sum of gray gases model (WSGGM) used for non-gray mediums.

Kim et al. [KimO5] applied the FVM for the radiation transfer on hybrid grids in two
and three dimensions. Medium was assumed to be gray, absorbing and emitting.
Walls were diffusely emitting and reflecting. Pixelation method was adopted for the
unavoidable control angle overlapping. Step differencing scheme was adopted.
Computations were performed in parallel using a spatial domain decomposition
approach. Apart from the pure radiation transfer cases studied, the cases of laminar
natural convection and laminar natural convection-radiation in a cavity were
simulated. Parallelization of the code showed a considerable reduction in the
computational load. Speed-up calculated for the laminar natural convection-radiation

was less than the speed-up for the pure natural convection case for the same number
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of processes. This was attributed to the higher message-passing load, because of the

angular discretization of the RTE.

Kumar and Eswaran [Kum08] used the FVM to study the interaction of radiation and
fluid flow in a conical diffuser. The flow was assumed to be laminar and
incompressible. Natural convection was neglected. The medium was assumed to be
gray, absorbing, emitting and scattering. The spatial differencing scheme used was a

combination of the step scheme and the diamond scheme.

Borjini et al. [Bor08] studied the interaction of radiation and natural convection in a
differentially heated cubic cavity. For the discretization of the radiative transfer
equation the FT, FVM method was used. The medium was assumed to be gray,
absorbing, emitting and isotropically scattering. Gray and diffusive surfaces were
assumed. For the validation of the developed methodology, the cases solved with the

DOM by Colomer et al. [Col04] were used. Remarkable differences were observed.

Ko and Anand [Ko08] studied the conjugate case of forced convection and radiation
in a backward facing step using the FVM both for the radiative transfer equation and
the mean flow equations. Flow was assumed to be steady, incompressible and
laminar. Medium was assumed to be gray, absorbing, emitting and scattering.
Variation of the thermophysical properties with temperature was also considered.
Walls were assumed to be opaque® and diffusive. The effect of the optical thickness
and scattering albedo on the flow were studied. The diamond spatial differencing

scheme was applied.

Mondal and Mishra [MonQ9] studied the conjugate natural convection and radiation
in a square cavity. The medium was assumed to be gray, absorbing, emitting and

isotropically scattering and walls were gray-diffusively reflecting and emitting.

Kim et al. [Kim10] applied the FVM in an axisymmetric enclosure, spatially
discretized using unstructured polygonal meshes. For the creation of the polygonal
meshes, an unstructured triangular mesh was first produced. Then centers of triangles

were connected creating the polygonal mesh (figure 1-6). Fluid was assumed to be

% Opaque wall: In normal conditions, part of the radiation that reaches a wall is transmitted,
absorbed and reflected. Opaque is the idealized wall that does not allow radiation to be
transmitted through it, but only absorbs and reflects radiation.
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absorbing, emitting and isotropically scattering. Step spatial differencing scheme was

applied.

Figure 1-6 [Kim10]. Construction of the polygonal meshes.

Kolsi et al. [Kol11] studied the combined natural convection and radiation in three
dimensional cavities. Flow was assumed to be incompressible and laminar. The FT,
FVM was applied for the discretization of the radiative transfer equation. Medium
was gray, absorbing, emitting and isotropically scattering. Walls were diffusively
reflecting and emitting. For the validation of the developed method the case presented

by Colomer et al. [Col04] was used, with remarkable differences.

In 2012 Lygidakis and Nikolos [Lyg12] presented a three dimensional solver for the
steady radiative transfer equation, based on the FVM. This solver could be applied for
gray, absorbing, emitting and scattering (isotropically or anisotropically) media and
diffusive opaque boundaries. It is a node-centered solver for hybrid grids. The step
spatial differencing scheme is adopted with the bold approximation for the control
angle overlapping. The parallelization of the solver, based on the domain
decomposition approach, showed remarkable reduction of the computational load.
The solver was validated through five benchmark test cases. Afterwards, Lygidakis
and Nikolos [Lyg13b] enhanced their FVM solver, using a second order accurate
spatial and temporal approach and a grid adaptation technique. Specifically, the
second order Monotonic Upstream Scheme for Conservation Laws (MUSCL) was
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applied with either the Van Albada-Van Leer limiter or the Min-Mod limiter, to
facilitate monotonicity. Since radiation intensity is a positive quantity by definition,
negative values coming from the second-order scheme were fixed-up setting them to
zero. They stated that although the fixing practice assure greater or equal to zero
values for the radiative intensity, oscillations may be produced. In order to face them
they turned to the time dependent RTE, for the solution of which the second-order
accurate four stage Runge-Kutta was utilized. Regarding the grid adaptation they
applied the h-refinement approach, which constitutes a grid refinement approach. For
the treatment of the overlapped control angles the pixelation method was added as an
alternative to the bold approximation approach. Finally, they proposed an implicit
way for the boundary conditions in opaque and diffusive surfaces and symmetric

planes.

Two of the above mentioned methods were incorporated into our code. Firstly, we
developed the method of Albanakis and Bouris [Alb08] which is an analytical one,
applicable in enclosures with high wall emissivities and limited number of reflections
among the boundary surfaces. The medium is taken as transparent. This method was
easily programmed but showed to be quite costly in terms of computational time and
storage when used with the serial version of the solver. The second method has been
presented ([Lyg12], [Lyg13]) and programmed into code by Lygidakis and Nikolos. It
is a node centered FVM, applicable for gray, absorbing, emitting and scattering
medium. The fact that the radiation code was based on a node centered edge-based
algorithm facilitated its incorporation into the flow solver. More details on both

methods are given in chapter 3.

1.4 Thesis structure
The structure of the thesis is the following:

e In chapter 1 the aim of the dissertation and the literature survey was given. A
general description of the heat transfer modes was presented. Then, the
literature survey and our modeling on convective and radiative heat transfer

were described.
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In chapter 2 the mathematical background regarding the incompressible flow
of viscous and Newtonian fluids combined with heat transfer with all modes
(conduction, convection and radiation) is presented.

In chapter 3 the numerical methodology is outlined. Specifically, the
techniques used for the spatial and temporal discretization of the equations are
presented. Models used for the radiative heat transfer and the application of
the boundary conditions are analyzed.

In chapter 4 the validation of the solver is presented. Specifically, cases of
buoyant laminar and turbulent flow, pure radiative heat transfer and combined
heat transfer are given. The effect of two slope limiters and coupling methods
is also discussed. Test cases with a wide range of input parameters were
simulated in order to estimate the general applicability of the solver.

In chapter 5 the performance of both the two-dimensional and three-
dimensional parallel solver is tested. What interests us is the variation of
speed-up and efficiency with the number of processes.

In chapter 6 the application of the solver for the prediction of smoke flow and
temperature field in ventilated tunnel fire scenarios is presented. The
importance of modeling all heat transfer modes (convection, radiation, wall
conduction) is revealed in a series of simulations.

Finally, in chapter 7 the main findings and the innovative elements of the
thesis are summarized and future improvements of the developed solver are

discussed.
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CHAPTER 2

MATHEMATICAL MODEL

In this chapter the mathematical model of the dissertation is presented. The
development of the mathematical model into computational code, will give us the
opportunity to simulate conjugate flow and heat transfer problems with all means
(conduction, convection and/or radiation). Equations are written in Cartesian
coordinates and tensorial form to distinguish the two dimensional and three

dimensional versions.

Flow equations describe the unsteady incompressible laminar or turbulent flow.
Viscous and Newtonian fluid was assumed. Viscous dissipation in the energy
equation is neglected, because the thermal energy due to viscous shear in
incompressible flows is small [Mal02a]. For the prediction of buoyant flows the
Boussinesq buoyant approximation [Bou07] is implemented, while for the turbulence
modeling the Boussinesq eddy viscosity approximation [BouO7] is adopted. The
difference between the two Boussinesq approximations is in their scope. The first one
is used for the prediction of buoyancy in incompressible buoyant flows and the latter

for the prediction of turbulent flows under the concept of eddy viscosity.

Mean flow equations, turbulence equations and radiative transfer equation (RTE) are
written in their dimensional and dimensionless form under the application of
reference scales. The physical meaning of the dimensionless parameters is given and
finally mean flow and turbulence equations are presented in vector form under the

concept of artificial compressibility, which is used for the pressure-velocity coupling.
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2.1 Mean flow equations
2.1.1 Continuity equation

ou.
i (2-1)
oX.

]
where subscript j=1, 2, 3. Cartesian velocity components are (u;, uy, u3)=(u, v, w) and

Cartesian coordinates are (X1, X2, X3)=(X, Y, Z).

2.1.2 Momentum equations

ou, O(wu,) 0 ou,
p_l"'p—J:_@"' eff£

— —+ %J —pgo. (2-2)
ot 0X; ox; 0x, ox; 0x, *

where t is the physical time, p is the density, p is the static pressure, peg=p+p is the
effective dynamic viscosity composed of the molecular dynamic viscosity p and the
eddy dynamic viscosity L, g is the gravitational acceleration and d;, is Kronecker's
delta. Subscript « is a constant equal to 2 in the two dimensional version of the
momentum equations and 3 in the three dimensional version. Through this constant,
gravity force acts in the y direction in the two dimensional version of the momentum

equations and in the z direction in the three dimensional version.

The first term of the left-hand side expresses the rate of change of the momentum in
time, while the second term of the left-hand side expresses the convection of
momentum. The right-hand side expresses the forces that act in the fluid which are the

forces due to the pressure gradient, due to the shear stresses and due to the gravity.

As mentioned before both continuity and momentum equations correspond to
incompressible fluid, which implies that density remains constant. Under this
assumption gravity force term remains also constant. However, for buoyant flows
induced due to temperature variations this has no physical meaning and density
differences need to be taken into account in the direction that gravity acts. For the
prediction of buoyant flows of incompressible fluids many approximations have been

proposed ([Bou07], [Han00], [Hun02], [Spa03], [Sca08]). In this dissertation density
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differences due to temperature variations are simulated by means of the Boussinesq

buoyant approximation.

According to the Boussinesq buoyant approximation, in the momentum equation

where gravity force acts, we introduce a fictive hydrostatic state defined by

~ e 5, = P2, -
S, = P80, (2-3)
OX.

where p, and p, denote the hydrostatic pressure and density respectively.

Then momentum equation becomes

ou,  O(uu)  A(p-p,d,) . 0 ou
pP—+p == (p-p )+ l:eff(

. ou,
—+—L |- (p-p,)gd, 2-4
o~ ox, ox. ox, || ox, o ﬂ (P —p,)gd; (2-4)

] i

Defining the reduced pressure p'=p-podix we have

ou. ﬁ(uiuj) op' 0 ou. 8uj
—1 4yp—1t 7 7 ou; i} _ B 8 2_5
ot p ox. ox. an Megr ox. | Ox (p—p,)gd; (2-5)

i i j i
Below, prime (') is removed from the pressure.

According to Boussinesq equation of state
(p_po) = _BTp(T_To) (2_6)

where Br is the thermal expansion coefficient and T, is the temperature for which

p=po, called the reference temperature. Then momentum equation becomes

ou, Owu) op 0 du, Ou;
Wy B8 P O T A B (T = T)es.
Pot TP, T ax ok, || ok, ox Bup (T, ~T)ed, @7

] i i i

Dividing all terms with the density p we conclude to

ou, O(wu) 19p 0 ou, Ou,
4L+ — —L4+—||=B, (T, -T)gd,
ot OX pox;, OX, Yett ox; 0x, Br (T, ~T)ed, (2-8)

] 1

where ve=ler/p 1s the effective kinematic viscosity composed of the molecular

kinematic viscosity v and the eddy kinematic viscosity v;.
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2.1.3 Energy equation

or o(Tu) o (v v (OT| 4. VQ
ot ox, ox,|\Pr Pr)ox, | pC, pC, (2-9)

J

where T is the temperature, Pr is the Prandtl number, Pr; is the turbulent Prandtl

number, C, the specific heat at constant pressure, ¢, is the heat release rate per unit
volume and VQ, is the radiative divergence which is active only for participating

medium in radiative heat transfer. The definition of the radiative divergence is given

below, in the section of the radiative transfer equation (RTE).

The left-hand side expresses the rate of change of the temperature in time and the
convection of temperature. The first term of the right-hand side expresses the
diffusion of temperature, the second term the volumetric heat source and the last one

the radiative energy, for participating medium in radiative heat transfer.

2.2 Radiative transfer equation

For absorbing, emitting and scattering gray media the integro-differential time-
dependent Radiative Transfer Equation (RTE) is
1 0I(1,5) N OI(T,8) c

—(x, + o )I(T,8) + I, (T)+—= | I'(T,8))D(S,s])dw 2-10
o ~ (x, s>(>ab(>4n4jn()<> (2-10)

In the RTE the dependent variable is the radiation intensity I which is a function of
the spatial position T and the angular direction §. t; is the physical time, but in this
dissertation it is used as a pseudo-time, called RTE pseudo-time. More information on
the RTE pseudo-time will be given in chapter 3. ¢ is the speed of light in the medium,
§ is the unit vector in s direction of a solid angle, «, is the absorption coefficient of
the medium, o is the scattering coefficient and @ is the scattering phase function. I, is
the blackbody intensity which depends only on the temperature of the medium and it

1s defined as

4

I, (1) =

ol @-11)
T
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where o is the Stefan-Boltzmann constant (5.67 10® W/m*K*).

The first term in the left-hand side expresses the rate of change of the radiative
intensity in time, while the second term expresses the rate of change of the radiative
intensity in direction s. The first right-hand side term describes the attenuation by
absorption and scattering to other directions, the second is the emission source term
and the last one is the in-scattering integral, describing the intensity gained by

scattering from all other directions s' to the examined direction s.

Because of the large magnitude of the speed of light the first term of the left-hand side
can be neglected. However, in practice the solution of the pseudo-time-dependent

RTE showed more stable operation than the steady RTE.

The radiative divergence in the energy equation is defined as the difference between

the emitted and absorbed radiative energy

(2-12)

4n

VQ, =x, [4nlb(f) - | I(f,é)de

2.3 Turbulence models

Turbulence is present in a wide variety of flows. From the point of view of the
Computational Fluid Dynamics (CFD), turbulence modeling is a very demanding
issue and many approaches/models have been developed. The Direct Numerical
Simulation (DNS) constitute the most exact way for the simulation of a turbulent
flow, as flow equations are solved without any turbulence model. Thereby, errors
inserted through turbulence modeling are skipped. However, DNS of the Navier-
Stokes equations demands that the whole range of the spatial and temporal scales
must be resolved. Computational cost of a DNS approach grows with the cubic power
of the Re number (Re?). Besides this, the mesh needed for the resolution of the spatial
scales increases significantly the memory storage requirements. Thus, DNS is
prohibitively expensive for application in complex geometries and flows with high Re
numbers. For the turbulence modeling of incompressible flows two major categories
of models have been developed. The Reynolds Averaged Navier Stokes (RANS)
models and the Large Eddy Simulation (LES) models. RANS models under the eddy

2-5



viscosity concept arise from the need of simulation of the Reynolds stresses found in
the time-averaged equations. Two equation turbulence models, that require the
solution of two extra transport equations, are the most common for the simulation of
the Reynolds stresses under the eddy viscosity concept. In the LES approach large
eddies are explicitly resolved, while small eddies are modeled through a sub-grid-
scale (SGS) model. Hybrid techniques, called Detached Eddy Simulation (DES)
models, using RANS concept near walls and LES concept for the rest of the domain

have also been developed.

An effective turbulence model should be sufficiently accurate and numerically robust,
without excessive amounts of computational time compared to the mean-flow solver.
Moreover, it should be independent of ambiguous quantities, such as the free-stream
values [Men93]. Nowadays, two equation turbulence RANS models are widely used

as they fulfill the above requirements.

In this dissertation, for the simulation of the turbulent flows two two-equation RANS
turbulence models were developed; the k- SST in its low-Re version and high-Re
version and the high-Re standard k-¢ model. Only pure turbulent flows were studied;
transition from laminar to turbulent flow was not modeled. Below the set of equations

of each model is presented.

2.3.1 Standard k-¢ turbulence model

Standard k-¢ turbulence model is a wide range model first presented by Launder and
Spalding [Lau74]. A serious drawback of it is its weakness in the prediction of

complicated flows, such as flow separations.

The dependent variables of this model are the turbulent kinetic energy k and the

turbulent dissipation €.

The transport equation for the kinetic energy k is

o(ku.
ok Oku) 0 |, Mok +P +G, —¢ (2-13)
ot OX . 0X; Oy ) OX;

]
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The left-hand side expresses the rate of change of the kinetic energy in time and the
convection of the turbulent kinetic energy. The first term of the right-hand side
expresses the diffusion of the turbulent kinetic energy, the second and third terms
correspond to shear and buoyancy production rates of the turbulent kinetic energy

respectively and the last one expresses the destruction of turbulent kinetic energy.

Production terms are defined as

p =y, | Qo S| (2-14)
ox; 0x; |OX;
\% oT
G =——" —39. 2-15
L= T gBTaX i (2-15)

The transport equation for the turbulent dissipation ¢ is

—+t——=—||Vt— | |+|C, (P +C,G,)-C, e |— 2-16
ot * an an fo] OX. +[ el ( k + €3 k) 828] Kk ( )

€ ]

where the terms from left to right expresses the rate of change of the turbulent
dissipation in time, the convection of the turbulent dissipation the diffusion of
turbulent dissipation, the production of turbulent dissipation due to shear and

buoyancy and the destruction of turbulent dissipation.

Turbulent kinematic viscosity is calculated as

2
_ cuk

T (2-17)

Model's constants are 6i=1, 6,=1.3, C;1=1.44, Cn=1.92, Ci3=1, C,=0.09. For the value
of the C¢; constant many different approaches have been proposed ([Bar94], [Wu00],
[XueO1], [Kuy93], [Hua07], [Fle94], [AlbOS8]). In the tunnel fire cases, only for C.3=1

realistic values for the turbulent kinematic viscosity were produced.
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2.3.2 k- SST turbulence model

As it was mentioned above the main drawback of the standard k-¢ turbulence model is
the weakness in accurate prediction of flow separation under adverse pressure
gradients. This fact led to the development of the Wilcox k- model, which performs
significantly better under adverse pressure gradients [Wil88]. Nevertheless, Wilcox k-
o model showed a strong dependency on the arbitrary free-stream values [Wil88]. In
1993 Menter proposed a new k-o turbulence model, called k-0 SST turbulence
model. It is similar to the Wilcox k- model in the inner half of a boundary layer,
with an even better ability in the prediction of flow separation under adverse pressure
gradients, and gradually changes to the less free-stream dependent standard k-¢ model
in the outer boundary layer region. The cost against the Wilcox k- model is that it
consumes little more computing time [Men93]. The dependent variables of the k-®
SST turbulence model is the turbulent kinetic energy k and the specific dissipation

rate .

The transport equation for the kinetic energy k is

ok oku) 5 v, ) ok ,
ot ox ox, o Jox |F Rt G PO (2-18)

k i

This equation is the same with the transport equation for the kinetic energy of the

standard k-¢ turbulence model, taking into account that dissipation rate is defined as

o=— (2-19)

where B'=0.09 (constant value).

The transport equation for the turbulent dissipation rate o is

d(ou.,
do O@u) 0 [y, V)00l Y p ep ye, L6, o’ (2-20)
ot X 0x; G, )0X; | v, .
where

CD, =2(1-F)o,, - K 00

2-21
co@xj axj ( )
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The constants of this model are calculated through linear interpolation between the
constants of the Wilcox k-o turbulence model and the transformed standard k-
turbulence model. If @, is any constant of the Wilcox k- model, ¢, any constant of
the transformed standard k-¢ model and ¢ is the corresponding constant of the k-

SST turbulence model the relation between them is
d) = F1(1)1 + (1 - Fl )(I)z (2'22)

Blending function F; is defined as follows:

J 40 .k
F, = tanh(arg}) , arg, = min(max( k ,m}c—w%] (2-23)
0.090d " d’0 /) CD,d

where d is the distance of each node from the nearest wall and the cross-diffusion

term is defined as:

1 ok oo j
(2-24)

= 26, ————,107%
CDh,, max[ 02 ﬁxj 8xj

Starting from the wall the blending function is equal to unity and gradually goes to
zero, in order to gain from the less free-stream dependent standard k-& model.
Constants of the Wilcox k- model are oy=1/0.85, 6,,=2, p;=0.0750, o;=0.31,
B'=0.09, k=0.41, y, =B, /B — o, k*/\JB" ~0.5532.

Constants of the transformed standard k-¢ model are c,=1.0, 6,,=1/0.856, ,=0.0828,

B'=0.09, k=041, v, =B, /" — 5, k*/\[B ~0.4404

Turbulent kinematic viscosity is calculated as

k
v, =— (2-25)
max (o, o, QF,)
where Q is the absolute vorticity.
F2 function is given by:
F, = tanh(arg}) , arg, = max (2 Vi ’wj (2-26)
0.090d " d’®
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2.3.3 Wall functions

In order to achieve faster simulations and less storage, the usage of coarser meshes in

the vicinity of walls by means of wall functions is sometimes adopted.

When wall functions are used the dimensionless velocity and temperature are given

by the following expressions.

llny+ +55y">11.6
K

u = (2-27)
y" ,y' <11.6
T =Pry'e " +[2.121n(1+y+)+[3(Pr)}e_”r (2-28)
where
0.01(Pry")’
2 . ry
B(Pr)=(3.85Pr'*~1.3) +2.12In(Pr), r:m (2-29)

Dimensionless velocity is defined as u’ =—, where u, is the friction velocity
u

T

u, =,/pt, (tw is the laminar shear stress in the wall and p is the density).

Dimensionless distance from the wall is y* = Y For y" <11.6 the first grid point
\%

is in the viscous sub-layer and for y* > 11.6 in the logarithmic region. When standard

k-¢ model is applied, it is desirable that the first grid point belongs to the logarithmic
region of the boundary layer, where the viscous effects are weaker compared to the

turbulent ones [Lau74].

For the dimensionless temperature, the formulation proposed by Kader is used (2-28),
(2-29), which is valid in all zones of the boundary layer and for a large range of

T, -T

W

T

T

Prandtl numbers [Kad81]. Dimensionless temperature is defined as T =

where Ty, is the wall temperature and T, = (le—w where qy is the wall heat flux.
p pu’C
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Turbulent variables were calculated using the below expressions

k=_h (2-30)
V CH
u 3
o (2-31)
Ky
® = (2-32)
C,xy

where C,=0.09 and «=0.41 (von Karman constant).

More details on the numerical implementation of wall functions is given in chapter 3.

2.4 Non-dimensionalization

All the above equations and boundary conditions were non-dimensionalized. For the
non-dimensionalization the reference scales used are the following ([Col04],

[Bpal2]):

e for the Cartesian coordinates L

e for the velocities u_;

e for the physical time t_, =L_,/u,,

e for the density p

e for the dynamic viscosity p = p (molecular dynamic viscosity)
e for the pressure P, = prefufef

o for the temperature AT =T, — T, (difference between hot and cold temperatures)
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e for the molecular and eddy kinematic viscosities v . =V (molecular kinematic

viscosity)

e for the pseudo-time of the RTE t_. =L ./c

r,ref ref

e for the radiative intensity I, = ¢, T

kAT
ref L_

ref

o for the radiative heat flux Q

) : 1
e for the absorption coefficient —

ref

. . 1
e for the scattering coefficient —

ref

e for the turbulent kinetic energy uZ,

3
. . ...u
e for the turbulent dissipation —=-

ref

C u
e for the turbulent dissipation rate —<

ref

Applying this non-dimensionalization we conclude to the below equations. All
variables are dimensionless and for the rest of the dissertation dimensionless variables

will be given, except for the cases where it is explicitly mentioned.

¢ Continuity equation

— =0 (2-33)
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e Momentum equations

t .
1* version

- O(uu. ~ Ou.
% + (ulu_l) — _@ + 8 1 + a’t aul + J + Grz T6i|<
ot X ox; 0x;| Re (0x; 0x Re

when the dimensional reference temperature T, =T, .

2™ version

- O(uu. ~ Ou.
%-i—M:—@-F a 1+at 8ul_|_ J + Gr2 (T_ljsix
ot 0X ox; 0x;| Re [(0x; 0x Re 2

] 1

T, +T

C

when the dimensional reference temperature T, =

oy is the dimensionless turbulent kinematic viscosity.

e Energy equation

or o(Tu) o | 1 (1 a |oT 1
—+ =—|—|—+—=—"|—|+S, - VQ,
ot ox;  0x;|Re(Pr Pr )ox, Y RePr

where the dimensionless heat source is

S _ qc Lref

T pC, u AT

and the dimensionless radiative divergence is

T T !
VQ, =— 4| < +1| - [1do
Pl |\ T )

where 71 is the optical thickness (dimensionless absorption coefficient).
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e Radiative transfer equation

ol dl

4
il e (to)I+ = T > J.I‘Dd(”
ot, Os n(T, T
e standard k-& equations
o(ku, +a, ok
x, (ka) _ 0 |outa, K +P +G, -
6t X ox;| Oy Re 0x;

ag+8(8uj)_ 0 |o.+o, O
ot ox;  ox

where
Pk = & aui + an 8111
Re( 0x; 0x; )X,

o, Gr aT
Pr Re’ 8X i

k

Dimensionless turbulent kinematic viscosity is a, = Re

e k-0 SST equations

k 5(kU) 0 {GK-FOL ok

0 ox aT G, Re 0x,

J

}+P +G, —B ok

om a(oouj) o |o,+a, 860 Y
— 4 — o
ot an 6xj

o Re 6‘x +—ReP +CD,,

t

Dimensionless functions of k-« SST model are given below:

T;E&rax} [CH(R{+CﬁGk)_CQ8}E

+C, L ReG, B’
o

CD, =2(1-F)oc,, 1%k do , arg, = min| max
® OX. OX.

j i
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(2-39)

(2-40)

(2-41)

(2-42)

(2-43)

(2-44)
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1 dk Ow
D, = 26, ———,107 =R
CD,, max[ > o 0%, Ox, , O, €

o,k
max(o, o, QF,)

Jk sooj

arg, = max (2 ,
0.090d  Red’®

After having applied the non-dimensionalization the below dimensionless parameters

aroused.

prefurefLref — u L

ref ref

H ref vref

e Reynolds number Re =

Mrefcp — Vref
(04

e Prandtl number Pr =
t

where k; is the thermal conductivity and a is the thermal diffusivity of the fluid.

3 2
e Grashof number Gr = Lrefpr+gBAT
Mref
e Planck number Pl = kA;T4
(LGBTC )

C

. *
e Reference temperature ratio T, =

2.5 Meaning of the dimensionless parameters

In this section a brief description of the dimensionless parameters meaning is given, in
order to facilitate the understanding of the limits of the developed code and its results.
Apart from the above mentioned parameters six additional parameters, that we will

meet in the rest of the dissertation, are explained.

Reynolds Number (Re) represents the relative importance of the inertial forces in
comparison with the viscous forces. For low Re numbers viscous forces dominate

over inertial forces and the flow is characterized as laminar. On the contrary, for high
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Re numbers inertial forces dominate over viscous ones and the flow is characterized

as turbulent.

Prandtl Number (Pr) is defined as the ratio of momentum diffusivity to thermal
diffusivity and expresses the relation between thicknesses of the hydrodynamic and
thermal boundary layers. When Pr number is greater than one the thickness of the
thermal boundary layer is smaller than the thickness of the hydrodynamic boundary
layer. When Pr number is equal to one thicknesses are equal and for Pr number less
than one thermal boundary layer is bigger [Kax06]. The mass transfer analogous

dimensionless parameter is Schmidt number.

Grashof number (Gr) expresses the ratio of the buoyancy forces to the viscous forces.
For low Gr numbers viscous forces dominate over buoyancy forces and the flow is
laminar. On the contrary, for high Gr numbers buoyancy forces dominate over viscous

ones and the flow becomes turbulent.

Planck number (PI) in heat transfer represents the relative importance of conductive
heat transfer in comparison with the radiative heat transfer. For low Pl numbers
radiative heat transfer dominates over conductive heat transfer and the opposite

happens for high Pl numbers.

Rayleigh number (Ra) is the product of the Grashof number and the Prandtl number

|5y AT
(Ra=GrPr= Lugh,AT
v

), and represents the relative importance of the natural

convective heat transfer in comparison with the conductive heat transfer. For low Ra
numbers conductive heat transfer dominates over convective heat transfer and the

opposite happens for high Ra numbers.

Richardson number (Ri) in heat transfer is the ratio of the Grashof number to the

Gr  gB,ATL
- 2

ref
> ) and represents

Reynolds number raised to the second power (Ri =
e

ref
the importance of natural convection to forced convection. For small Ri numbers

natural convection can be neglected.
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Nusselt number (Nu) is defined as the ratio of the convective heat transfer to the
conductive heat transfer of the fluid normal to the boundary ( Nu = h?L, where h is the
convective heat transfer coefficient of the fluid).

Mach number (M) is defined as the ratio of the speed of fluid to the local speed of
sound (M = %). Flows with M number less than 0.3 can be characterized as
incompressible flows, which are studied in this dissertation.

Strouhal number (St) expresses the dimensionless frequency when dealing with

I : fL . .
oscillating flow problems and is defined as St =—=C, where f is the vortex shedding
u

ref

frequency.

Peclet number (Pe) in heat transfer is the product of the Reynolds number and the
L .

Prandtl number (Pe=RePr= M) and expresses the importance of forced

convection in comparison with the diffusive heat transfer.

. at . . .
Fourier number (Fo =—"L) is the ratio of the heat conduction rate to the rate of

ref
thermal energy storage in a solid. For large values of Fo number conduction is

significant and steady state is quickly achieved.

2.6 Vector form of equations

In this section continuity equation, momentum equations, energy equation and
turbulent equations which are numerically solved under the concept of artificial

compressibility are written in vector form.

Introducing the artificial compressibility terms, continuity, momentum and energy

equations are:

1op O op o0y
——4+—1=0=>=+p—=0
Bot ox, o P (2-46)

J
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ou, ou O(ww)  9p Ot . Gr
— " —=——+—

L4+ To.
ot ot X ox;  0OX, Re* ™ (2-47)
oT aT  O(Tu)) aq,, 1
—t—+——=—"+8, - \Y%
oo T ek T Repr (2-48)

where 1 is the pseudo-time, B is the artificial compressibility parameter, T __ are the
shear stresses

l+a, (0u, Ou
— t 1 + - 2—49
Txixj Re (8XJ 8X~ j ( )

1

and q, are the heat fluxes

’ Rel\Pr Pr, )k,

The second version of the momentum equation is obvious and it is omitted.

Now in vector form equations are written

QN VE, -VF, =S (2-51)
ot ot

where

E=diag(0, 1, 1, 1, 1) (2-52)

the dependent variables vector is

(2-53)

ol
Il
_H g < = o

the inviscid fluxes vector is
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Bu Bv Bw
u’+p vu wu
E =4 uv pi+4vi+ppj+< wv tk
uw VW w’ +p
uT vT wT

0 0 0

XX - TX)’ N TXZ .
Fvis =Ty (1+ Ty J+17, (K

TZX sz TZZ

Ax 4, q,

and the source term vector is

S 15

2k

i
Il
-
(¢
[

Gr

Re? T3

3k

S. \Y%
4 RePr R

Similarly equations of the standard k-¢ turbulence model are written

QD v,,
ot ot ’

the inviscid fluxes vector is

- uk| - [vk|- [wk]|-
E,. = i+ j+ k
’ ue A W€
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the viscous fluxes vector is

o, +o, ok o, + o, ok

- o, Re ox |- o, Re oy |-
Fvist= ‘ i+ ‘ Y
’ G, ta, oe G, +a, oe
o, Re 0ox c.Re Oy

and the source term vector is

P +G, -¢
g = pes
[Cel(Pk + C£3Gk) - Cszg]E

o, +a, ok

j+

o, Re oz

c, +a, Ot

o, Re oz

Equations of the k- SST turbulence model are written

&—F& _)invt _VF
ot ot ’

where the dependent variables vector is

ool

the inviscid fluxes vector is

- uk |~ [vk|- [wk]|-
Foi = 1+ j+ k
u \{0) (O]

the viscous fluxes vector is

o, + 0o, ok o, + o, ok

- o, Re ox |- o, Re
Fvist: ‘ i+ ‘ ay
’ G, + 0, do G, + 0, do
o, Re 0Ox c,Re oy

and the source term vector is

o, + 0o, ok
o, Re 0z

G, +0, 0o

2-20

o, Re oz

(2-60)

(2-61)

(2-62)

(2-63)

(2-64)
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P +G, —B ok
S= 2-66
Y ReP, +CD, +C, L ReG, - pe’ (2-66)
a’t

t
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CHAPTER 3

NUMERICAL METHODOLOGY

In this chapter the numerical methodology used for the solution of the mathematical
model, given in chapter 2, is presented. A node-centered (or vertex-centered), finite
volume discretization technique is applied for hybrid numerical meshes for all
equations (mean flow equations, turbulence equations and radiative transfer equation).
Therefore, all equations are integrated in the same numerical mesh. The numerical
methodology is based on the artificial compressibility approach for the mean flow and

turbulence equations.

Specifically, the techniques used for the spatial and temporal discretization of the
mean flow and turbulence equations are presented. We mention the two alternatives
for the modeling of radiative heat transfer, the boundary conditions of all equations,
the slope limiters used and two schemes developed in order to preserve temperature
field within realistic bounds. It should be noted that for the rest of the dissertation
writing mean flow equations we refer to the continuity equation, the momentum

equations and the energy equation.

3.1 Computational domain discretization

The numerical solution of the conservation laws under the concept of the finite
volume method demands the discretization of the computational domain into a
numerical mesh. For the integration of the equations it is necessary to define control

volumes.

In this dissertation a node-centered technique is applied, which means that dependent
variables are calculated and stored in the nodes of the numerical mesh. Every node i is
associated to a median dual volume Q;, being its control volume. For the construction
of this dual volume in two dimensions, we connect edge midpoints and centroids of

the cells sharing a common node i, and in three dimensions we connect faces defined
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by edge midpoints, cell centers and face centers sharing a common node i, as it is

shown in figure 3-1.

e—e primary grid

o- - -o median dual grid

L

Figure 3-1. Construction of dual volumes in two and three dimensions.

3.2 Mean flow equations spatial discretization

Integrating the mean flow conservation laws, presented in chapter 2, on the finite

control volume Q;, we have:

(e 0 (= . _ -
aiQdQ+Eaz[QdQ+J2VFdeQ—§[VFmdQ=£SdQ (3-1)

Applying the divergence theorem, the volume integrals of inviscid and viscous fluxes

terms turn into surface integrals:

[ QO+ B [0+ § i 15— § P 1S = [Sa0 (3-2)
Q Q oQ oQ Q
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Assuming that the values of the dependent variables inside the control volume €; are

homogeneous and equal to the respective values of the node i we have:

A9 | g AU _ 1540~ § Fine -7dS +  Fois - 1S = RHS, (3-3)
ot ot o &0 0

where RHS; is defined the right hand side term of equation (3-3) corresponding to

node 1 and
BV, 0
uV, +n,p Ty + Ty 0y +T,,1,
Fiv -n=| vV, +np |, Fus-n=| 1,0, + 1,0, +71,0, (3-4)
wV, +n,p Tl + 7,0, +7T,,1,
Tvn qxnx + qyny + qznz

where V, =un, +vn, +wn, is the normal velocity.

3.2.1 Inviscid fluxes term calculation

The system of conservation laws is transformed from parabolic-elliptic to hyperbolic-
parabolic with the introduction of the artificial compressibility. Therefore, numerical
treatment similar to compressible flow equations can be applied. For the calculation

of the inviscid fluxes two upwind schemes were developed.

The inviscid fluxes term is numerically approximated as:

. ~ nedge(i) _ ~
$Fiv-ndS~ ) (Fi);-niAS; = FINV, (3-5)
0Q

=

where (Finv );; 1s the numerical inviscid flux vector evaluated at the mid-point of edge
ij, ﬁj is the unit normal vector of the control volume ; surface associated with edge
ij.

In [Roe81] Roe proposed an approximate Riemann solver for the solution of the
hyperbolic type compressible Euler problem %_?Jrvﬁnv =0. The first alternative for

the calculation of the inviscid fluxes is based on the characteristics' method of Roe's
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approximate Riemann solver [Roe81]. An earlier attempt for the discretization of the
incompressible inviscid fluxes by means of Roe's approximate Riemann solver was

made by Azhdarzadeh and Razavi ([Azh07], [Azh08]) in two dimensions.

Inviscid fluxes are formed from data on either side of control volume's faces as it is

presented below.

~ - — ~ — — ~

(Finv ); nj = %(Finv (QL)'n +Fyy (QR)'H)+ %‘A (QLaQRan)

(QL-Qx) (3-6)

where Fiw(Q,) and Fiv(Qg) are the inviscid fluxes vectors calculated from the
values of the dependent variables on the left and right side (Q, and Q respectively)

of the control volume's face associated with edge ij. Inviscid fluxes Jacobian, known
as Roe's matrix is defined as A:T‘f\‘f", where A is a diagonal matrix with the

eigenvalues of Roe's matrix, T is the eigenvectors matrix of inviscid fluxes Jacobian

and T~! is the inverse matrix of T .
According to Roe, Jacobian A should satisfy the following properties:

1. The eigenvectors of the inviscid fluxes Jacobian A must be real and linearly

independent.

2.As Q.,Q; > Q then A > A= a;gv

3. AAQ = AEHV = A(QL - QR) = Finv (QL) - Fmv (QR) for any QL:QR

Roe's properties are satisfied if matrices with “~” (Greek circumflex) are calculated
using the algebraic average of Q, and Q, [Tay91]. The eigenvalues and

eigenvectors of the Jacobian matrix in two and three dimensions are presented in the

next two subsections.

Two-dimensional version

The eigenvalues are: A, =V, —c, A, =V, +¢,A; =V, , L, =V,, where c=V,? +j.
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Matrices T and T~! are the following:

L A Dty 0

2¢? 2¢? 2¢?
ch, —CcA, 0 0 1 An A,n, 0

T —(en +n,9) (en,—no) n, 0 T = 2_c2 2¢? 2¢? (3_7)

—(en,—n,@) (cn,+n¢@) -n_ 0 0 (c’n,+¢On,) (—c’n, +¢On,) 0

T T 0 1 2 P &

T On, T On, T
s s s

where ¢ =vn,_ —un,.

Three-dimensional version
The eigenvalues are: A, =V, —c,A, =V +c,A; =V, ,A, =V, , A=V, where

c=4V,2+B.

Matrices T and T~! are the following:

ch, —ch, 0 0 0
_(Cnx +ny(Pz +nz(Py) (Cnx _ny(pz _nz(Py) a, a, 0
T= _(Cny —n,Q, + nz(Px) (Cny +nx(pz _nz(Px) b] b2 0
_(an _nx(Py _ny(Px) (an +nx(Py +ny(px) ¢ G 0
] T T 0 0 1
[ 1 A Any A, 0_ (3-8)
2¢? 2¢? 2¢? 2¢?
1 A,n, A,n, A,n, 0
2¢? 2¢? 2¢? 2¢?
tiolo o e o
2¢? 2¢? 2¢? 2¢?
_%  _S S G5
2¢? 2¢? 2¢? 2¢?
T TOn, TOn, TOn, 1
2 2 ¢ &

where
¢y =Wny,—Vvn,,Q, =wn, —un,,p, =vn, —un,,
XixX2 =(a},b;,¢)x(ay,b,,¢,) =n=(n,,n,,n,

3-5



and

_ 2 2 2 2 2 2
cTl - 2(32(Pxny + aZ(Pxnz - bZ(Pynx - bZ(Pynz + CZ(pznx + C2(pzny

3-9
+a2(‘Pynxny _a2(pznxnz _bZ(pznynz _bZ(Pxnxny +C2(pynynz _CZ(Pxnxnz) ( )
G, = _Z(al(Pxni + al(Pxni _bI(pyni _b1(Pyn§ +01(Pzn>2< +Cl(pzn§/ (3-10)
+al(pynxny _al(PannZ _bl(pznynz _blcpxnxny + Cl(Pynynz _Cl(Pxnxnz
o, = _(cc2k1ny —cczkzny + bchyklnx + bz(pykznX + bchxklny + b2(px7»2ny G-11)
—C,0, M0, —C,0, A0, +¢,0 An, +¢,p,A,n, —b,chin, +b,cA,n,)

c, = cclklny —cclkzny erlcpyk]nX +b1(py7»2nX +b1(pxklny erlcpxkzny (3-12)
_Cl(sz‘lnx _Cl(pz7\‘2nx +Cl(px7\‘1nz +Cl(px}\‘2nz —b1C7\.1HZ +bIC7\‘2nZ

G5 =CCyA\n, —CCyA, N, +a2(pyl1nx +a2(py7»2nX +a2(pxk1ny + a2(pxk2ny (3-13)
+c2(pz7u1ny + cz(pz7b2ny + cz(pyklnZ + cz(pykznZ —a,cAn, +a,cA,n,

6, =—(cc,An, —cc,h,n, +a1l(py7u1nx +a1(py7u2nX +a1(pxklny + algoxkzny (3-14)
+clcpz7»1ny + cl(pzkzny + (:l(pyklnZ + czl(pykznZ —a,cAn, +a,ci,n,)

G; = _(aZ(PZx‘lnx + a2(pz}\‘2nx - a2(px?\’lnz - a2(px7\’2nz + bz(Pz7‘1Hy + bz(szzny (3 15)
+b,o,An, +b,0 A0, —a,chin, +a,cA,n, +b,chn —b,ch,n,)

Cg = al(pzx‘lnx +al(pz7\‘2nx _al(kaan _al(Px}\‘an +b1(Pz7\‘1ny +b1(pz7\‘2ny (3 16)

+b,o,An, +b,o A, n, —a,chn, +a,ch,n, +b,cAn, —b,ch,n,

Vectors Xi and X are tangential to the surface where the flux is calculated, as can

be seen from their definition. For their calculation we perform the following
algorithm: We find the largest in magnitude component of normal vector n and we
set equal to zero the next in cyclic order component of vector Xi. For the calculation
of the other two components we know that the scalar product of vector X; with the
normal vector n is equal to zero and we impose that the length of X is equal to one.

Vector X: is calculated by using the cross product properties as: X2 =nxXi.
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The second inviscid fluxes upwind scheme (IFUS) that was developed is presented

below:
nedge(i) . nedge(i) . .
Z (FiHV)ij 'njASj = Z (Ve QL +V1:eQR)jjAsj (3-17)
J=1 =1
where
Vi =max(V,,,0) , V,, =min(V,,,0) (3-18)
Vne =U, (nx )e +Ve (ny )e + W, (nZ )e (3_ 1 9)
uez(uL—;uR) , Ve:(VL—;VR) , We:(WL;WR) (3_20)

Index e is used for the quantities that correspond to edge ij.

For the reconstruction of the dependent variables vectors Q, and Q. of the mean

flow equations, first order schemes are not suggested [Men93]. For both upwind

schemes, either a second order scheme proposed by [Kal05] was used:

S — 1o~ =

Q. =T, +3VG, T and Qy =0, -3 VG, (3-21)

or a third order scheme proposed by [Tai05]:

Q.=q, +§[(l—k)i“j-va +kAT] and Qp =Q —§[<l—k>iﬁ'-v@j +kA] (3-22)

where A—i*zA—i’:Q -Q, and kzé. The gradients VQ, and VQ,; were calculated

using either the least square method or the Green-Gauss method as they are presented

in [Bpal2].

The first upwind scheme (Roe's Riemann solver) was used when all mean flow
equations (continuity, momentum and energy equations) were strongly coupled. The
second upwind scheme (IFUS) was used when continuity and momentum equations

were loosely coupled to the energy equation.

A comparison of the coupling methods was conducted and is presented in chapter 4

for the cases of natural convection in square and cubic cavities. The first upwind
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scheme together with the strongly coupled solution of the equations showed
superiority compared to the second one with the loosely coupled solution of the
equations. Therefore, Roe's approximate Riemann solver was adopted for the

calculation of mean flow equations' inviscid fluxes.

3.2.2 Viscous fluxes term calculation

The viscous fluxes term is numerically approximated as:

. . nedge(i) _ .
$Fus-ndS~ Y (Fus);-njAS; = VIS, (3-23)
oQ

j=1

where (Fvis)ij is the numerical viscous flux evaluated at the midpoint of edge ij. As it

can be seen from equations (2-49), (2-50) and (2-55), for the calculation of the
viscous fluxes through the control volume boundary AS it is necessary to calculate the
gradients of the velocities and temperature at the mid-point of every edge. A
combined method is used for the calculation of these gradients ([Bpal2], [Vral2]).
Cell gradients are first evaluated using Green's theorem. A face-wise loop is
performed for the calculation of the contribution of every face to the surface integral
and this contribution is distributed with the appropriate sign to the cells that share that
face. After this face-wise loop every cell has gathered the sum of the surface integrals
from the faces that it is consisted of. By dividing this sum with the volume of the

corresponding cell we find the gradients of the variables for that particular cell:

1 ~
(V) =5 — ¢ ®nds (3-24)

cell oV,

cell

Afterwards, a cell-wise loop is performed for the calculation of nodal gradients via

volume averaging (the cell to nodes information is needed):

ncell(i)

Y, (V(ve),)
(VO), ==

(3-25)

ncell(i)
> Vi

k=1

Having found the nodal gradients we compute the gradients at edge midpoints with

the formula proposed by Weiss et al. [Wei97]:
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(V) =(VB), ~[(VD), T — (51T (3-26)
where

oD (Dj_q)i
)ij :T

ij

(%)ij == [(VD), +(VCD)J‘] ,» (

1
- -— 3-27
2 ol ( )

1jj is the unit vector along edge ij, ® =u,v,w,T and Eij denotes the length of edge ij.

3.2.3 Source term calculation

For the numerical approximation of the source term integral found in equation (3-3)

two approaches have been used.

The first and simpler approach is to assume that the value of the source term inside

the control volume Q; of node i1 is homogeneous and equal to its value at node i.

Then:

[saa=5¢0, (3-28)
Q

However, this discretization way may be susceptible to spurious numerical waves,

([Ber94], [Moh99], [Vaz99], [Hub00]).

The second scheme that was used handles the source term vector in a similar way as
the inviscid fluxes vector. More precisely, source term is discretized using an upwind
Roe's approximate Riemann solver. This method have been presented by Bermudez
and Vasquez [Ber94] who applied it in the one-dimensional shallow water problem.
In 1998 [Ber98] it was extended for the solution of the two-dimensional Saint-Venant
(shallow water) equations. Using this method smoother distribution for the energy
equation source term was produced. However, simulations were not stable, because
small but non-zero values were calculated for the zero terms of the source vector.
Therefore, the first alternative for the discretization of the source term vector was

adopted with negligible side-effects.
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In figure 3-2 and figure 3-3 examples of the distribution of the energy equation source
term using both discretization methods are presented and compared for one-
dimensional and two-dimensional cases respectively. We observe that energy

equation source term "follows" the velocity field and its smoother distribution.

—_

energy
equation's
I
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source term
o

—

o

w |

.
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a. Homogeneous discretization scheme for any velocity field.
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85 25
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c. Upwind scheme for u=-1.

Figure 3-2. Comparison of energy equation source term distribution along x axis for one-

dimensional cases, using both discretization schemes.
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Figure 3-3. Comparison of energy equation source term distribution for two-dimensional

cases, using both discretization schemes.
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3.3 Turbulence equations spatial discretization

Turbulence equations spatial discretization was applied in a similar manner as for the
mean flow equations was done, using the same numerical mesh. The basics of the

spatial discretization are presented below.

Integrating the turbulence equations, presented in chapter 2, on the finite control

volume Q; of node 1, we have:

. gjl Que+ES ([ Qo+ J) VFimedQ— i VFuidQ = (j}stdQ (3-29)

where index t mean turbulence quantities. Therefore, Q, is the turbulent dependent
variables vector, Fiv: is the turbulent inviscid fluxes vector, Fus: is the turbulent

viscous fluxes vector and S. is the source term vector.

Applying the divergence theorem, the volume integrals of inviscid and viscous terms
turn into surface integrals and assuming that the values of the turbulence variables

inside the control volume €; are equal to the respective values of the node i we have:

0QuQ) , . 9Q.Q

) _ (5o
- = _Jlsldg

QSFmV,t -ndS+ 95 Fuist -ndS (3-30)
oQ oQ

where for the k-¢ turbulence model:

ck+at(8kn ok +%nj

—n +—n
_ ~ (kV - N Re lox °© Y 0z
Fovi ne| ], Fusono| O6R€ % (3-31)
EAYA c,+o, (0e O O
—4—*t—n_+—n +—n,
o, Re ( 0x oy 7 oz
and for the k- turbulence model:
o, +o, (ok ok ok
kV o, Re = +5ny +6_znz
Finv,t ‘n= [ " j s Fvis,t ‘n = k (3'32)
oV,

n +—n, +
0x oy 7 oz

G, +0, [8_0) 5[0 6_0)n j

o, Re
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3.3.1 Inviscid fluxes term calculation

For the calculation of the inviscid fluxes of the turbulence equations the IFUS scheme

was used. In contrast to the mean flow equations, for the reconstruction of the
dependent variables vectors “Q, ” and “Q, ” of the mean flow equations, a first order

scheme was implemented because inviscid fluxes are not the leading order terms of

turbulence equations [Men93].

Gt,L :Gt,i and Gt,R :Gt,j (3'33)

3.3.2 Viscous fluxes term calculation

Viscous fluxes term is calculated in the same manner as for the mean flow equations

was done. Coefficients of turbulence in the middle of an edge ij are calculated as the

: . . ) : k
average value between the side nodes i and j. Turbulence variables gradients ;— and

X,

8_0) found in the cross diffusion term of the k- SST turbulence model are calculated

axj

in the middle of an edge ij using modified average equation (3-26).

3.3.3 Source term calculation

For the calculation of turbulence source term, we assumed that its value inside the

control volume is homogeneous and equal to its value at node i.

[sda=S,0 (3-34)
Q

3.4 Temporal discretization, solution procedure

For the temporal discretization of both the mean flow and turbulence equations a
dual-time stepping scheme is used, which constitutes a fully implicit time integration
procedure. Specifically, for the physical time marching we apply an implicit second

order backward difference scheme and for the pseudo-time marching an implicit first
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order backward Euler scheme. This way we avoid the severe CFL number restrictions

associated with explicit time integration schemes.

Below, the solution procedure implemented for the mean flow equations is presented
which is the same to the procedure used for the turbulence equations. After the spatial
and temporal discretization and applying Newton's method for the necessary

linearization, equation (3-3) becomes:

n+ - —n+l,k
[A]"" 89 =D (3-35)
where

nitk Q. 300, ORHS! X

Kk _ 34 i i 3-36
[A] At, tE 2At oq ( )
k _ yn+lm _ k n _ ~n-l
B RHsE g, (3 Q! )+ EQ, 3qf +4Q! - Q! (3-37)
Ar, 2At

86: qk+1 _qk (3-38)

“8q ” is the variation vector of the dependent variables between two successive

Newton iterations “k” and “k+1”.

To pass from the pseudo-time step m to the next pseudo-time step m+1, one or two
Newton iterations are applied. To pass from one physical time step to another, either a
predefined number of pseudo-time steps is completed or convergence in pseudo-time
is achieved. The calculation of the local pseudo-time step for every node is the same

with the one applied by Kallinderis and Ahn ([Kal96], [Kal05]):

Qi
A, —CFLAX A, +A, 4D (3-39)
where
2 Q.
A, =(yl+c)S, A, =(vi|+c,)S, A, =(w;|+c,)S, D= i (3-40)

ReS, +S, +S,

the artificial speeds of sound are
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Cy=\Ui +B ¢y =Vi+B c, =W +P (3-41)

and the projected areas are

1 nedzg:e(i)
S, ==
2 j:1

1 nedge(i) 1 nedge(i)

, Sy ) ; |Sy,ij|, S, ) Z |Sz,ij

j=1

Sx,ij

(3-42)

Summations take into consideration each edge ij passing through node i.

Matrix [A] is written as a linear combination of two matrices, that contain the

diagonal ([D] matrix) and off-diagonal (O] matrix) terms of [A]:

—n+l,k

[D]™8q, =bi " —[O]"* 8q; =R| (3-43)

1 ij J

Each node j connected to node i contributes for the calculation of matrix [O].
Equation (3-43) is solved using Jacobi iterations. For each node the following system

in expanded form is solved using Gauss elimination.

D, D, D D, Dys| dp R,
D, D, D,; D, D] oy R,
D;; Dy, Dy Dy Dy || dv; |=| Ry (3-44)
D, D, D, D, D] dw, R,
D, D, D, D, D ST R

v

Mean flow equations and turbulence equations are loosely coupled. At each Newton
step they are solved separately. Mean flow equations are firstly solved and give to the
turbulence equations the velocity field and turbulence equations are sequentially
integrated and give the eddy kinematic viscosity to the mean flow equations. The
loosely coupled solution of the equations is preferred as it makes easier the
introduction of new turbulence models and the use of different methods for the
solution of the mean flow equations and the turbulence equations [Bpal2].
Additionally, the loosely coupled technique for the mean flow and turbulence
equations is easier in programming terms compared to the strongly coupled solution

which is not widely accepted to perform better ([LeeO6a], [Bar98], [Liu96], [Lin97]).
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3.4.1 Linearization procedure

The linearization procedure of the inviscid and viscous terms of the mean flow and
turbulence equations and the source term of turbulence equations have been presented

in [Bpa12]. Jacobians of our viscous fluxes are given in appendix A.

The linearization procedure of the mean flow equations source term vector is given

[Ko08]. The source term vector of the mean flow equations is:

0 0
0 0
Gr
i TS D2 T3,
- Re? Re
- _ - (3-45)
g T8 —7 10
Re? X Re
T 4
S, ——vQ | |8, ———|4f =+1 - [ 1do
Y RePr RePrPl| | T, A
We separate the positive and negative part of the source term
S=S"+§" (3-46)

and we will linearize the negative part in order to facilitate the diagonal dominance

that ensures the solution of the linear system (3-44).

The third and fourth terms of the vector could be either positive or negative. However,
their linearization does not contribute to the main diagonal of matrix [A] and they are

not linearized.

In linear form the source term of the energy equation is written as:

Nk
Si =S+ (%) (T -T}) (3-47)

i

From the source term of the energy equation we keep the second term for the

N
calculation of the gradient (aij which constitutes an explicit function of

i

temperature and takes negative values.

Then:
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o5 ) 16 T V)
(_j = —= | = +1 (3-48)
oT J; Re PrPIT, T, i

3.5 Radiation modeling

For the simulation of radiative heat transfer many approaches have been proposed in
the literature, some of which have been presented in chapter 1. In our code two of
them have been included. Below their implementation and some characteristics are

discussed.

3.5.1 View factor based model

The first radiation model is an analytical view factor based model that uses algebraic
equations. It was presented by Albanakis and Bouris [AIb08]. It is a three dimensional
method that could also be applied in two dimensional cases with symmetry boundary
conditions. This model is applicable in buildings and tunnels with high wall
emissivities (€>0.8), limited number of reflections among walls and non-participating
(transparent) medium. For the calculation of the view factors we use algebraic
equations appropriate for the boundary faces of a Cartesian mesh. This method was
easily programmed. However, it was found to be quite costly in terms of both

computational time and storage, when applied with the serial version of the solver.

2

view

Specifically, for N boundary faces, the calculation and storage of

2

factors and

geometric factors (geometric factors definition is given below) is

necessary. View factors and geometric factors were stored in an economic way in two
different vectors. Reliable results were produced using this method, but in three

dimensions the cost of computational time and storage becomes prohibitively large.

The radiative heat exchange between surface m and surface n, in linearized form is:
Qo = o AL (T, = T) (3-49)

where hp, p 1s the radiative heat transfer coefficient:
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n—m

N-(-g)1-¢ )F A /A ] i

Ny n—m (3_5 0)
811 8m CyA‘m z

h =(T+T)T. +T
m,n (m n)( m n) (1—81)F F

n—i~ m-oi

All-(1-¢)1-¢ )1—-¢)F F

n—i~i->m~ m-n

In the summation for the calculation of the radiative heat transfer coefficient boundary

faces m and n are excluded.

Between boundary faces m and n the following equalities apply that make

calculations faster:

qm,n = _qn,m and hm,n = hn,mAm /An

Then only half of the heat exchanges and radiative heat transfer coefficients need to

be calculated.

Moreover, the terms inside the brackets that contain computationally expensive
summations are only geometry dependent (geometric factors). Therefore, they are
calculated only once at the beginning of the basic computational procedure. During
the computational procedure, coefficients hy,, are calculated using the current

temperature field and the geometric factors.

For each surface n, the net radiative heat flux is given from the summation:

N
9 =D Qo (3-51)
m=1

The calculation of the view factors is computationally demanding. However, when the
computational domain is discretized using a Cartesian mesh (quadrilateral boundary
faces) and contains walls that are parallel or perpendicular to each other, view factors
are calculated faster using analytical expressions presented by Howell [How01]. In

addition to this, taking into account the reciprocity relation A F_=A_F the

n- n—m m- m—n

computational load is further reduced.

The following relations were used for the view factors calculation (figure 3-4):

1 2 2 2 2 o
F_} — (—1)('+J+k+l)G(Xia Y.,N ,E_> ) (3_52)
s (Xz_x1)(Y2_yl);;j21; e
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Figure 3-4 [AlbOS8]. Sketch of possible boundary surfaces formation. Parallel boundary faces
(left), perpendicular boundary surfaces (right).

For parallel boundary faces G term is given by:

(y—mW(x =)’ +7” tan” {%}
- 2 2 4 X-8 _ -
G_2n +Hx =W (y—n)" +z tan {m} (3-33)

—%ln[(x—ég)z +(y—-n)’ +zz]

while for perpendicular boundary faces G term is given by:

L= {M}
G=5 X+ (3-54)

1
¥+ - (- JIn[x + & +(y-n)’]

As mentioned before this method is valid when non-participating fluid is assumed.

Therefore, radiative heat transfer is taken into account only among boundary faces.
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The boundary condition at each boundary node i of an adiabatic wall in dimensional

form is:
k(A -VT) +(qp ); =0 (3-55)

and it is either implicitly applied in the calculation of the boundary viscous flux or

explicitly. k is the thermal conductivity of the fluid and 11 is the unit normal vector.

From the application of equation (3-51) we calculate the radiative heat flux at each
boundary face n. Then, this flux is shared to the nodes of the boundary face using a
weighted average. Specifically, we perform a "do loop" for the boundary faces in

order to give their contribution to their nodes. We calculate the sum of the

node(n)
temperatures of their nodes S, = Z T. . node(n) is the number of nodes of each

i
i=1

boundary face and it is 4 for quadrilaterals. Then weights are w, = I and radiative
T

heat flux at node i is equal to:

(Qua ) = Wid, (3-56)

3.5.2 Finite Volume Method (FVM) model

The second method have been presented and developed into code from Lygidakis and
Nikolos. It is a three dimensional finite volume method, applicable for gray,
absorbing, emitting and scattering (either isotropically or anisotropically) mediums.
A node-centered edge-based algorithm for hybrid meshes was adopted which is
compatible with our flow solver. Thus, radiative transfer equation is integrated with
the other equations in the same numerical mesh. It applies the step differencing
scheme (equivalent to the upstream schemes used by flow solvers) to relate the
midpoint face intensity to node intensity and either the bold approximation or the
pixelation method when control angle overlapping problem is present. It is a second
order spatial and temporal scheme and for the avoidance of under-predictions or over-
predictions of the radiation intensity one of the limiters Min-Mod and Van Albada-
Van Leer could be used. If negative radiative intensities are calculated a fix-up

procedure is used and these are set equal to zero.
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A brief description of the method is presented below. For more information the reader

is referred to Lygidakis' and Nikolos' papers ([Lyg12], [Lygl3a]).

Integrating the radiative transfer equation (RTE) (2-10) for a node P over its control
volume Vp and over the finite solid angle Q™" and applying the step scheme combined

with a second order spatial discretization the following equation need to be solved:

V,AQ™
CAt,

~3(153) DA, - X (1) DELAA, = Ry

AL [—(x, +0,)Ip" + S5 | V,AQ™

(3-57)

where I is the radiation intensity, Vp is the control volume of node P and AQ™" is the

e|ﬂ+ ¢ﬂ+
discrete control angle AQ™ = I J-sinededd). Each solid angle mn is obtained
el"n* ¢ﬂ*

equally  dividing the 4mn  steradians into  NpxN, directions, 1i.e.
AQ" =0 —0™ =n/N, and AY" = ¢"" - ¢" =2n/N, (figure 3-5). c is the speed of

light in the medium, At, is the pseudo-time step of the RTE, «, is the absorption
coefficient of the medium, o is the scattering coefficient, PQ is the edge with

endpoints P and Q, superscripts L and R denote the left and right state at the midpoint
of an edge PQ, AA; is the part of surface area corresponding to edge PQ, and R}" is

called the right hand side of equation (3-57). With the summations the contribution of

all surface areas of the control volume of node P is gathered.

The sum of emissive and in-scattering terms Sy" is:

Syt =x,1, +j—s I I':“‘CI)(m'n',mn)dw

TE4TE

o N L o
) GT4 N (OR NZ Z‘blr;lini@(m'in'i’mn)AQmini

T 47

(3-58)

=K

m}:l nl:l

where @ is the average of the scattering function @, called normalized or average

scattering phase function:

® (m;n;,mn) = m J ] @(min;, mn)odo (3-59)

mn mn;
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The scattering phase function @ is equal to unity for isotropic scattering, while for

anisotropic scattering is calculated using Legendre polynomial expansions [Lygl2].

Dmn

ci,out

and D™

ci,in

are the directional weights calculated using either the bold

approximation or the pixelation method [Lygl3a].

Figure 3-5 [Lygl2]. Angular discretization and solid angle S.

For the pseudo-time marching a second-order four stage Runge-Kutta method was

developed [Lygl13a], where the pseudo-time step for each node P is defined as:
1 .
cAt, = ~ ¢, min (2 e ) (3-60)

where a is the length of the shortest edge around node P and c; takes values less

edge,p

or equal to unity.

3.6 Boundary conditions
3.6.1 Mean flow equations

In this subsection the boundary conditions for the mean flow equations when they are

strongly coupled is presented. The types of boundary conditions are flow inlet, flow
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outlet, solid walls and symmetry boundaries. The treatment of the boundary
conditions is presented in three dimensions (3D). In two dimensions (2D) the
treatment of the boundary conditions is obvious. In figure 3-6 the definition of the

control volume of a boundary node i is given.

Figure 3-6. Definition of the control volume of a boundary node i.

Inlet

At the flow inlet velocity vector and temperature are prescribed and their variations
are set to zero. Pressure is determined according to equation (3-38). Thus, the system

of equations (3-44) becomes:

D11 D]2 DI3 D14 D15 8p Rl
0 1 0 0 0 ou 0
0 0 1 0 o0/ &v|=]|0 (3-61)
0 0 0 1 0 || ow 0
0 0 0 0 1 oT 0
Outlet

Outflow conditions are applied with prescribed pressure. At the outlet, the flow
pressure variation is set equal to zero and variations of the velocity vector and

temperature are calculated according to equation (3-38).
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D, Dy, D, D, Dyl &u R,
D;; Dy, Dy Dy, Ds || &v |=| R4 (3-62)
D, Dy, D; Dy Dy | dw R,
D, D;, Dy Dy Dy |\ 8T R

Solid walls

At the solid walls no-slip boundary conditions are applied, which means that
velocities and variations of them are equal to zero. The pressure variation is

calculated.

For the temperature either it has a certain value (Dirichlet condition) or a certain heat
flux is assumed (Neumann condition). When radiation and/or wall conduction are
taken into account the heat flux differs from zero, while it is equal to zero when they
are not taken into account. The Dirichlet case is applied explicitly, while for the
Neumann case temperature is obtained through the solution of the energy equation.

When temperature has a certain value equation (3-44) becomes:

Dll Dl2 Dl3 Dl4 DlS 8p Rl
0 1 0 0 O0f{du| |0
0 0 1 0 0/|adv|=|0 (3-63)
0 0 0 1 0 f|dw| |0
0o 0o o o 1/[&T) (0

For a node that belongs in an adiabatic wall we put the heat flux in the viscous vector
when contribution of its boundary face is calculated and the system of equations (3-

44) is of the following form:

D11 D]2 DI3 Dl4 D15 8p R]
0 1 0 0 0 /3dul|o
0 0 1 0 0/dv|=|o0 (3-64)
0 0 0 1 0 sw| |0

DSI DSZ D53 D54 D55 ST RS

The above way of imposing boundary conditions at solid walls is used for laminar

flows and turbulent flows with low-Re models.
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When wall functions are used, we assume that nodes in the predefined distance from
the wall y=0 coincide with the boundary nodes, because in practice 6 has a small
value. Then, boundary conditions are applied on the wall [Kov98]. é distance is given
a common value for every node. It is desirable that "wall" nodes (in § distance from
the wall) belong in the logarithmic region (11.6<y <400). However, acceptable results
were produced when y'<11.6 as appropriate functions for the viscous sub-layer are
also given. Our experience at the use of wall functions impose that 6 distance have to
be larger than the distance of the first from the "wall" grid node, but not large enough

to produce values for y" larger than 400.

Having found the velocity V at the boundary nodes we calculate the tangential to the
wall velocity V.=V —V_, where V, is the normal to the wall velocity. Then we
calculate the friction velocity solving equation (2-27) (when y>11.6 an iterative
Newton-Raphson procedure is required). Then the wall shear stress T, = u’p (ty is

given in dimensional form) is inserted in the viscous fluxes vector of the boundary

node.

The contribution of the energy equation in the boundary viscous fluxes vector is
missing. In the boundary either the heat flux or the temperature is known. When the
heat flux is known we insert it in the viscous fluxes vector. When the temperature is

known we calculate the dimensionless temperature T* from equation (2-28) for the

T -T i )
current yJr and then T = WT+ , where T, is the wall temperature and T is node's

temperature. The heat flux which is inserted in the boundary viscous fluxes vector is

q, = T,pC,u, (in dimensional form).

When we calculate the contribution of the boundary faces in the inviscid vector the

normal to the wall velocity is assumed to be zero. Then inviscid vector becomes:

0

n.p
?i11v ﬁ = Ilyp (3'65)

n,p
0
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Symmetry boundaries

In the symmetry boundaries the normal to the boundary velocity is zero. Symmetry
boundary conditions are applied implicitly ([Kov98], [Bpal2]). When we calculate
the contribution of a boundary node we neglect the viscous fluxes vector and for zero
normal to the wall velocity V,, the inviscid fluxes vector is the same to the one of the

wall functions (equation (3-65)).

3.6.2 Turbulence equations

At the inlet, Dirichlet boundary conditions for the turbulence variables are set
explicitly. The values of the turbulence variables are given (k and ¢ for the k-¢, k and
o for the k-o SST), or the turbulent to laminar kinematic viscosity ratio o=vy/v and
the inlet turbulent intensity Tu, or the inlet turbulent intensity Tu and the integral
length scale 1, or the turbulent to laminar kinematic ratio ox=vi/v and the integral

length scale 1.

When the kinematic viscosity ratio and the inlet turbulent intensity are given then
turbulence variables are calculated for the k-¢ turbulence model as:
C k*

k =27y and € = Re—* (3-66)
2 o

t

and for the k-o turbulence model as:

k
k= %Tu2 and ® = Re— (3-67)

o,

When the turbulence intensity and the integral length scale I are given then turbulence

variables are calculated for the k-¢ turbulence model as:

C k*?
k= ETu2 and £ =—* (3-68)
2 1
and for the k-o turbulence model as:
3 k
k= ETuz and ® = # (3-69)
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When the kinematic viscosity ratio and the integral length scale 1 are given then

t

o
turbulence intensity is Tu = 3 and the turbulence variables are calculated using
\f Rel
2

expressions (3-66) or (3-67).

At the flow outlet turbulence variables are calculated. At the solid walls when the
low-Re k-o SST turbulence model is used the turbulence variables are defined by

Dirichlet boundary conditions explicitly as:

6
k=0 and o=10———-——, where Ay is the dimensionless distance to the next

B, Re(Ay)
point away from the wall and ;=0.0750. When wall functions are applied turbulence
variables are defined by the following expressions given in dimensional form:

2 3
u
k =—= and & = ——, for the k-¢ turbulence model or

u
k=—— and o= =

At the symmetry boundaries we neglect the turbulent viscous fluxes vector as we do

, for the k- turbulence model

for the mean flow equations and the inviscid fluxes vector is calculated similar to (3-

65).

3.6.3 Radiative transfer equation
Inlet/Outlet

Open boundaries are assumed to have emissivity coefficient equal to unity (black

walls) and a constant temperature equal to the ambient one.
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Solid walls

Solid walls are assumed to be opaque and diffusively emitting and reflecting, which
means that there is no preferred direction for outgoing rays. When wall emissivity is
equal to unity the wall only emits radiative energy, while for values of the emissivity
less than one the wall emits and reflects radiative energy concurrently. Therefore, the

total radiative energy leaving a solid wall can be calculated as:
qw,out = 8wqw,b + (1 - Sw )qw,r (3_70)

where g 1s the emitted blackbody radiative energy and qy is the reflected radiative
energy. Moreover, it should be mentioned that walls are assumed to be gray, emitting

only monochromatically.

Solid wall boundary conditions are implemented in an implicit way. For a node P
belonging in the wall the radiation intensity is calculated adding to equation (3-57) the

contribution of the wall.

- VeAQ™ e e
AL P(:A—tr_[ (x, +0,) ;" + S | V,AQ o
> (155)" (DA, + DI, AA, )= 3 ((1m)" DIAA, + 17D, AA, )

1 1

where I7" is the radiative intensity of an assumed "ghost" node outside the grid which

1S:

l-g, &
I =g I, +—— > > IpmDm (3-72)
T m;=1n;=1
Symmetry walls

In the symmetry boundary walls the normal radiative heat flux is equal to zero.
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3.7 Slope limiters

The application of first order reconstruction schemes introduce large amounts of
numerical diffusion that may lead to unrealistic solutions. There are two alternatives
to cure this inability. The first one is to use denser numerical meshes. The denser the
numerical mesh the less the numerical diffusion. However, denser meshes require
more computing time and storage. The second alternative is the introduction of higher
order schemes for the reconstruction of the dependent variables. Although higher
order schemes reduce the numerical diffusion, they may lead to spurious oscillations.
Wiggles happen because of under-predictions or over-predictions of the dependent
variables in regions of discontinuities, such as near shock waves, or in regions of bad
quality numerical mesh ([Kov98], [Swe84]). In such cases pure higher order schemes

may lead to instabilities or unrealistic solutions.

The main idea behind slope limiters is to preserve the monotonicity of the
reconstruction schemes controlling the spatial derivatives to realistic values. The
selection of the appropriate limiter depends on the studied problem and is done

through a trial and error procedure.

In our work two slope limiters are applied for the reconstruction of the dependent
variables necessary for the inviscid fluxes calculation and for the reconstruction of the
radiation intensity of the FVM radiation model. These slope limiters are the Van

Albada-Van Leer and the Min-Mod [Bla01].

If Q is the under reconstruction dependent variable (radiation intensity, pressure,
velocity or temperature) then the left and right sides are calculated using the 2™ order

reconstruction scheme under the following functions:
1 . u C s
Q, =0, +5L1m{(VQi) 5.(vQy) -1 (3-73)
l . u c
Qu =Q,~5 Lim{(VQ,)"-§,(vQ,) - (3-74)
where the upwind gradients at nodes i and j are:

(VQ)" =2(VQ,)-(VQ,) (3-75)
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(VQ)" =2(VQ;)-(VQy) (3-76)
and the centered gradient at edge ij is:
(VQ;) -ii=Q,-Q (3-77)

The gradients VQ, and VQ,; were calculated using either the least square method or

the Green-Gauss method when Q was one of the dependent variables of the mean
flow equations and using the following expression when Q was the radiation intensity

of a solid angle mn:

1 nedge(i) 1 ~ nedge,, (i) ~
VQi:a > E(Qi+Qj)-njAsj+ D> Q niwAS,, (3-78)
. = j=1

1

where nedge(i) is the number of edges connected to current node i and nedge, (i) is the
number of boundary edges connected to current node i. When node i is an internal

node the second sum is not taken into account.

Lim is the limiter function, defined for Van Albada-Van Leer limiter as [van82]:

(@’ +e)b+(b° +e)a

Lim(a, b) = Toeze 0 00 (3-79)
s - a + + Z¢ , ab <0
0
and for Min-Mod limiter as [Swe84]:
a,lalk/b| and ab>0
Lim(a,b)=<b,|bl<la| and ab>0 (3-80)

0,ab<0

A significant drawback of slope limiters is that they slowdown or even stall the
convergence to a certain degree which is more pronounced when slope limiters use
non-differentiable functions [Ven93]. This phenomenon is obvious in subsection 4.1.8
where the application of slope limiters for the case of the differentially heated cubic
cavity is presented. Limiters were also applied on the tunnel fire cases for the
reconstruction of the mean flow and turbulent dependent variables without auxiliary
effects. Therefore, slope limiters were removed from the calculation of the inviscid

fluxes, but constitute a choice for the reconstruction of the radiation intensity.
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3.8 Schemes for preserving temperature within realistic bounds

In some simulations, under-predictions or/and over-predictions of the temperature
were produced. Specifically, this happened in the cases of the differentially heated
cavities, presented in chapter 4, and in the tunnel fire cases, presented in chapter 6. In
the cases of the differentially heated cavities, smaller and greater values of
temperature than the lower and upper bounds gradually fade away and in the steady
state under-predictions and over-predictions of temperature were not found. In the
tunnel fire cases, a bit smaller values of temperature than the ambient temperature
were produced near the region of the heat source. This is unrealistic because initial
temperature inside the tunnel was equal to the ambient temperature and there was not

any heat "sink".

Under-predictions of the dependent variables have been reported in a wide range of
computational problems, such as for the turbulence variables [Bpal2], the radiation
intensity ([Lygl2], [Lygl3a]) and the dependent variables of advection-diffusion
equations [Bar89]. This under-predictions are not only unrealistic but can make the

numerical solution unstable or even lead to failure of the final steady state.

We applied two schemes for the treatment of unphysical temperatures; the first one
was used by Vrahliotis [Bpal2] for the treatment of lower than zero values of the
turbulent variables and the second one was used by Bartnicki [Bar89] for the
treatment of lower than zero values of the dependent variable of an advection-

diffusion equation.

The first scheme is very simple and requires inconsiderable additional computational
time. According to this, we check for temperatures smaller than the ambient
temperature after each Newton step. If temperatures smaller than the ambient one are

found we replace them with the temperature value at the previous Newton step.

The second scheme is simple and requires little additional computational time too. If
N, is the number of nodes with temperature greater than the ambient temperature
(T>Tamp), Ny is the number of nodes with temperature equal to the ambient
temperature (T=T,mp) and N3 the number of nodes with temperature smaller than the

ambient temperature (T<T,mp), obviously:

N1+N2+N3:N (3-8 1)
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where N is the total number of nodes.

We define the quantity Ti:
N

T =| 2 (T;-T,) (3-82)
j=1

Then the filtering procedure when applied in serial is given in the following flow

chart:

Compute Ts [

NO

T5>V
Ivzs

Compute
N1

j=0

NO N
=i+l =N

YES _

Q“:»Tam?—' Ti=Tj-Ts/N1
N{T

/ YES
TETamb

NO

YES ,
wy—v Tj=Tamb —

» sror |

Figure 3-7.Flow chart of the Bartnicki's algorithm.
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We found negligible differences between these two schemes. However, the second
scheme when applied in parallel requires extra information to be transferred among
sub-domains for the calculation of the overall Ty and N;, making it more complex.
Therefore, the first scheme was adopted for the preservation of temperatures greater

or equal to the ambient temperature.
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CHAPTER 4

VALIDATION OF THE
NUMERICAL METHODOLOGY

In chapter 4 we present some representative test cases solved for the validation of the
developed solver. These cases are two-dimensional or three-dimensional, steady or
unsteady, laminar or turbulent, with the effect of radiation or not. Specifically, we
simulated two extended Graetz problems, the steady laminar and turbulent flow in a
differentially heated cubic cavity, the steady laminar and turbulent flow in a
differentially heated square cavity, the steady laminar flow in an internally heated
square cavity and the unsteady laminar flow past a square cylinder, under the
influence of aiding and opposing buoyancy. All above mentioned test cases were
simulated using the strongly coupled solution of the mean flow equations (continuity
equation, momentum equations and energy equation). We concluded to the superiority
of their strongly coupled solution after the comparison between the strongly coupled
and the loosely coupled solution methods, which is presented below. The effect of the
use of two slope limiters was also studied. In all the above mentioned cases radiation
was not taken into account. Then, we present some cases of pure radiative heat
transfer in enclosures and some cases of conjugated flow and heat transfer with all

means (conduction, convection and radiation) in cavities.

For the prediction of the steady flows two approaches were applied. In the first
approach we set an extremely large physical-time step (physical-time term in equation
(3-36) become negligible), CFL number between 0.1 and 100 and many pseudo-time
steps in order to achieve convergence of all dependent variables in the first physical-
time step. In the second approach we set a smaller physical-time step (102 was a
typical value), CFL number between 1 and 100 and approximately 100 pseudo-time
steps for each physical-time step. After some physical-time steps convergence of all

dependent variables was achieved.
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The artificial compressibility parameter  controls the artificial speed of sound, as it
can be seen in equations (3-41), and is crucial in determining the convergence rate
and stability of the simulations [Hir90]. The value of 1 was chosen for the artificial

compressibility parameter, as it have been proposed in [Bpal2].

4.1. Laminar flows
4.1.1 Extended Graetz problem 1

First of all an extended Graetz problem was solved. The classic Graetz problem is the
well known problem of forced convection (buoyancy is negligible) in a duct, without
taking into account the axial conduction. The fluid enters the duct with a uniform
temperature and the velocity profile is considered to be fully developed. No internal
heat generation is present and the temperature of the duct is constant. The extended
Graetz problem refers to the classic Graetz problem when axial conduction becomes
important, which happens for small values of the Peclet number (Pe=RePr) [Sch70],
[Pap80]. When Pe number is smaller than 200 axial conduction cannot be neglected
[Sch70].

This extended Graetz problem and the following Graetz problem in subsection 4.1.2
were selected in order to test the introduction and discretization of the energy
equation in the 3-D solver. They are cases that the energy equation is not coupled with

the other mean flow equations.

In this test case, laminar fully developed flow is assumed in a circular duct of radius
equal to 1 and length equal to 20 (figure 4-1). Fluid enters the duct at x=0 with the
parabolic profile of dimensionless velocity u(r)=2(1-r?) (v=w=0) and uniform
temperature profile, Th=1. Velocity was non-dimensionalized by means of the mean
velocity, Vo=um. At the outlet cross section (x=20) pressure is constant. On the duct
walls temperature is Tw=0. No-slip boundary conditions are applied at all walls

(u=v=w=0).
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Figure 4-1. Graetz problem 1. Sketch of the duct and boundary conditions [Sch70].

As initial conditions all dependent variables were set equal to zero except for the u
velocity that was equal to two for faster convergence to the steady state. Three
different hexahedral meshes were used in order to achieve independent results. The
finer was consisted of 540949 nodes and 513600 cells. A typical mesh at a cross

section of the duct that was used is presented in figure 4-2.

Figure 4-2. Graetz problem 1. Typical numerical mesh at a cross section.

In figure 4-3 radial temperature profiles are given and compared to the results

presented by Schmidt and Zeldin [Sch71] at two axial positions , defined as ¢ = Pi.
[

Schmidt and Zeldin [Sch71] used a finite difference technique with equal subdivisions
for the prediction of this case. Negligible differences between our results and those

given by Schmidt and Zeldin are encountered.
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Figure 4-3. Graetz problem 1. Comparison of radial temperature profile at two axial positions

L.

In figure 4-4 the temperature field on mid-plane y=0 is given.

TEMP: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05 055 06 065 0.7 075 0.8 0.85 0.9 0.95

Figure 4-4. Graetz problem 1. Temperature field on mid-plane y=0.

4.1.2 Extended Graetz problem 2

The second Graetz problem is similar to the first one. The differences are that x
counts from -10 to 10, fluid enters the duct with uniform temperature T.=0 and that
the wall temperature is Tc=0 for x<0 and Th=1 for x>0. The same to the first Graetz

problem initial conditions were set and the same numerical meshes were used.
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As mentioned, the flow is assumed to be fully developed, which means that the
velocity profile at the inlet is parabolic, and along the duct, should remain parabolic.
In addition to this, a linear axial pressure drop along the duct should exist for this
fully developed flow, according to Poiseuille’s law, as Navier-Stokes and energy
equations are decoupled for this forced convection case. In figure 4-5 velocity profiles
at positions x=—10 (duct inlet), x=0, x=10 (duct outlet) are given. Pressure along the
axis of the duct (r=0) is also presented. Velocity profiles at these three cross sections
coincide. Therefore, the parabolic profile remains along the duct, indicating flow rate

conservation. Moreover, pressure drop is observed to be linear.

2 0.18
16 A 015 +—+++—+1"+1 1+ 1+ +++1+—1T"
12 012
u Poow4+—
08 4 —x=-10
04 - —x=0 0.06
=7 weene=10 0.03 4
1] T 0
0 0.z 0.4 0.6 0.8 1 10 ] 10
r X

Figure 4-5. Graetz problem 2. Velocity profiles at three different positions along duct (left)
and axial pressure drop along the duct (right).

In figure 4-6 radial profiles of temperature are compared to the analytical results
presented by Papoutsakis et al. [Pap80] at various axial positions {, where { is defined

as ¢ - . Temperature along the axis of the duct is given and compared in figure 4-7.
Pe

Satisfactory comparisons are observed. Papoutsakis et al. managed to find an
analytical solution to the extended Graetz problem using functional analysis

principles.
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Figure 4-6. Graetz problem 2. Radial temperature profiles at various axial positions (.
Comparison with the analytical solution of the literature [Pap80].

1 ]
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—Present solver
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Figure 4-7. Graetz problem 2. Axial temperature along the duct.

Nusselt number is defined for this problem as: Nu = - , Where the bulk

aT/
2 orlr=1
(T, - T,)

r=1

temperature is T, = 2 j ru(r)T(r)dr . The asymptotic tendency of the Nusselt number
r=0
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is a basic characteristic of a Graetz problem. In figure 4-8 Nusselt number along the
duct is given. It takes the value of 3.73 at duct's outlet. It is worth noting that Nusselt
number is very sensitive to the value of the bulk temperature when reaching duct's

outlet.

20

16

12

Nu

Figure 4-8. Graetz problem 2. Nusselt number as a function of axial position.

In figure 4-9 and figure 4-10 the temperature field and the pressure field on the mid-

plane y=0 are given respectively. The linear pressure drop along the duct is obvious.
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Figure 4-9. Graetz problem 2. Temperature field on mid-plane y=0.
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Figure 4-10. Graetz problem 2. Pressure field on mid-plane y=0.

4.1.3 Differentially heated cubic cavity

The case of the differentially heated cubic cavity has already been studied by several
investigators ([Tri00], [Lo07], [Rav08]). Tric et al. [Tri00] solved the case of the
differentially heated cubic cavity using a pseudo-spectral Chebyshev solver, based on
the projection-diffusion method. They applied the Chebysev Gauss-Lobatto method
for the spatial discretization and the second order Crank-Nicolson Adams-Bashforth
scheme for time marching. Lo et al. [Lo07] developed a differential quadrature
algorithm for the solution of the velocity-vorticity formulation of the Navier-Stokes
equations. Ravnik et al. [Rav08] also solved the velocity-vorticity equations coupled
with the energy equation, applying a subdomain boundary element method. For the
determination of the boundary conditions a single domain boundary element method
was used. Buoyancy force was introduced in the vorticity transport equation using the

Boussinesq law.
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The case of the differentially heated cubic cavity was chosen in order to test the
integration of the buoyancy force in the momentum equation and the coupling of the

mean flow equations in the 3-D solver.

A closed cube of size W (figure 4-11) is assumed, with a fluid subjected to a
temperature difference between two opposite vertical walls and four adiabatic walls.
The fluid near the hot wall is heated and due to density difference goes up, while the

reverse phenomenon takes place near the cold wall with the fluid going down.

Specifically, temperature Th=0.5 is prescribed at x=1 (hot wall) and T=—0.5 at x=0
(cold wall). Air is the working fluid with Prandtl number of Pr=0.71. The reference

value used for the non-dimensionalization of the velocity is v0=3v_0, where

a, = K_ is the thermal diffusivity of air. Thus Reynolds number is Re = L There

PoCp Pr

is not any heat source or sink in the cube (S; = 0). Grashof number is calculated for

the Rayleigh values of 10%, 10* and 10° (Gr = Ra/Pr).

= &
T-Z
(hot wall) T=.L

"2
\ (cold wall)
—/
-1

Figure 4-11. Differentially heated cubic cavity. Sketch of the cubic cavity and the boundary
conditions (left) [Tri00]. A typical numerical mesh (right).
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The three Rayleigh varied cases were run successively for increasing Rayleigh
number. For each case the converged flow field of the previous case was used as
initial condition, except for the first case (Ra=10%) where all variables were set equal

to zero.

The finer numerical mesh, for which solution was satisfactorily independent from the
mesh, consisted of 357911 nodes and 343000 cells. For the prismatic region of the
hybrid meshes used, the first layer thickness was equal to 0.01 and the growing factor
equal to 1.2. The prismatic region was extended from the wall about 10% of the size
of the cube.

Our results are presented and compared to those of other researchers. Figure 4-12
presents temperature profiles on y=0.5 and z=0.5 line for 0<x <1. Figure 4-13
presents velocities profiles. u velocity profiles are given on x=0.5 and y=0.5 line for
0<z<1.w velocity profiles are given on y=0.5 and z=0.5 line for 0<x<1. The

comparisons are satisfactory.

In figure 4-14 and figure 4-15 velocities u and w, pressure and temperature fields on
mid-plane y=0.5 for all Ra number cases are given. As is evident from the plots the
contours are generally smooth. From the temperature fields the zero gradient for the

temperature at the adiabatic walls is obvious.

0.50

050

0.25 +
025

T oo | T 0.0 -

-0.25 A -0.25 4

0.00

0,50 T T - -0.50
025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50

X X X
Figure 4-12. Differentially heated cubic cavity. Comparison of temperature profiles on y=0.5
and z=0.5, Ra=10° (left), Ra=10* (middle), Ra=10° (right) (o: [Rav08], continuous line:

Present solver).
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Figure 4-13. Differentially heated cubic cavity. Comparison of velocities profiles. u velocity

profile on x=0.5 and y=0.5 (top row). w velocity profile on y=0.5 and z=0.5 (bottom row).
Ra=10% (left column), Ra=10* (middle column), Ra=10° (right column) (o: [Rav08],

continuous line: Present solver).
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Figure 4-14. Differentially heated cubic cavity. u velocity field on mid-plane y=0.5 (left
column). w velocity field on mid-plane y=0.5 (right column). Ra=10% (top row), Ra=10*
(middle row), Ra=10° (bottom row).
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.

Figure 4-15. Differentially heated cubic cavity. Pressure field on mid-plane y=0.5 (left
column). Temperature field on mid-plane y=0.5 (right column). Ra=10° (top row), Ra=10*
(middle row), Ra=10° (bottom row).
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Maxima values of velocities and global Nusselt number (Nu = [ [—dydz ) values at
o
X
00

the hot wall are presented at table 4-1 and table 4-2 respectively. Nusselt number
expresses the heat flux through a wall. Due to the conservation of energy, Nusselt
number at the hot wall and cold wall should be equal, since all other walls are
adiabatic and heat sources or sinks do not exist. Differences between Nusselt numbers

at hot and cold walls were approximately equal to 10~ for all Rayleigh varied cases.

Ra=10° Ra=10* Ra=10°
8
3
K] . Present ] Present ] Present
> | [Trio0] [Lo07] [Trio0] [Lo07] [Tri00] [Lo07]
solver solver solver
Umax 3.5435 3.5227 3.5255 | 16.7198 | 16.5312 | 16.7108 | 43.9037 | 43.6877 | 43.7705
Vimax 0.1733 0.1726 0.1694 | 2.15657 | 2.1092 | 2.1143 9.6973 9.3720 9.4812
Wmax | 3.5446 3.5163 3.5312 | 18.9835 | 18.6971 | 18.8822 | 71.0680 | 70.6267 | 71.2915

Table 4-1. Differentially heated cubic cavity. Maxima values of velocities compared to other

researchers' results.

Ra | [Tri00] | [LoO7] | [Rav08] | Present solver
10 | 1.0700 | 1.0710 | 1.0713 1.0713
10% | 2.0542 | 2.0537 | 2.0591 2.0659
105 | 4.3370 | 4.3329 | 4.3570 4.3932

Table 4-2. Differentially heated cubic cavity. Nusselt number values at the hot wall compared

to other researchers' results.
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4.1.4 Differentially heated square cavity

The case of the differentially heated square cavity is a widely studied case ([deV83a],
[deV83Db], [Mar84], [Bar94], [Fus91]). De Vahl Davis ([deV83a], [deVV83b]) applied a
finite difference method to solve the stream function-vorticity formulation of the
Navier-Stokes equations. Specifically, a central differencing scheme was applied for
all spatial derivatives and forward differences for time derivatives. Markatos and
Pericleous [Mar84] applied a finite volume technique. A pressure correction equation
combined with the SIMPLEST method was used for pressure-velocity coupling.
Barakos et al. [Bar94] also applied a finite volume method. Velocity components
were calculated at a staggered grid and the scalar variables at the main grid.
SIMPLEC method was used for pressure prediction. Fusegi et al. [Fus91] used a finite
volume approach. A staggered grid was introduced for the velocity components, while
pressure and temperature were calculated and stored in the main grid points. A third
order accurate spatial scheme and a first order accurate temporal scheme were

applied.

The case of the differentially heated square cavity was chosen in order to test the
introduction and discretization of the energy equation, the integration of the buoyancy
force in the y direction momentum equation and the coupling of the mean flow

equations in the 2-D solver.

A 2D square cavity of size H is assumed, with a fluid subjected to a temperature
difference at the two vertical walls and the horizontal walls being adiabatic (figure 4-
16). Density differences, produced by temperature differences, results in a

recirculating flow in the interior of the cavity.
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Figure 4-16. Differentially heated square cavity. Sketch of the square cavity and the boundary
conditions (left) [deV83a]. A typical numerical mesh (right).

More specifically, temperature Th=1 is prescribed at x=0 (hot wall) and T.=0 at x=1
(cold wall). At all walls no-slip boundary conditions are applied (u=v=0). Air is the

working fluid with Prandtl number equal to Pr=0.71. The reference value used for the

non-dimensionalization of the velocity is Vv, = \/gp,AT_H . Thus Reynolds number is

Re=+/Gr . There is not any heat source or sink in the cavity (S, =0). Rayleigh

number values are equal to 103, 10%, 10° and 10°.

The four Rayleigh number varied cases were run successively for increasing Rayleigh
number. For faster convergence to the steady state the converged flow field of the
previous case was used as initial condition of the next one, except for the first case
(Ra=10%) where velocities and pressure were equal to zero and temperature equal to
0.5.

The finer numerical mesh consisted of 7626 nodes and 10962 cells. For its structured
region, consisted of quadrilaterals, the first layer thickness was equal to 0.001 and the
growing factor equal to 1.2. The prismatic region was extended from the wall about

5% of the size of the square cavity.

Our results are presented and compared to those presented by other researchers.

Figure 4-17 presents temperature and velocities profiles. Temperature profile is given
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on y=0.5 line for 0<x <1. u velocity profile is given on x=0.5 line for 0<y<1.v

velocity profile is given on y=0.5 line for 0<x<1. Average Nusselt number

1

aT . "
(Nu = ja—dy) values at the hot (or cold) wall and maxima values of velocities are
X

0

presented at table 4-3 and table 4-4 respectively. Our results match very well with the

results of other researchers.

Figure 4-18 shows velocity vectors for the cases of Ra=10° and Ra=10°. A huge
stagnation region exists at the center of the cavity for the Ra=10° case. Generally,
stagnation region increases with increasing Rayleigh number and a highly convective
region is created near side walls. This is attributed to the decrease of boundary layer
thickness by increasing the Rayleigh number. The satisfactory simulation of this case
shows the general applicability of our solver, as highly diffusive and highly

convective regions coexist in the same cavity.
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Ra [Mar84] [deV83a] [Fus91] [Bar94] Present solver
103 1.108 1.118 1.105 1.114 1.1175
104 2.201 2.243 2.302 2.245 2.2459
10° 4.430 4519 4.646 4510 4.5085
108 8.754 8.799 9.012 8.806 8.8194

Table 4-3. Differentially heated square cavity. Nusselt number values compared to other

researchers' results.

Ra=10?° Ra=10* Ra=10° Ra=10°
Solvers
Umax Vmax Umax Vmax Umax Vmax Unmax Vmax
[deV83a] 0.136 | 0.138 | 0.192 | 0.234 | 0.153 | 0.261 | 0.079 | 0.262
[Fus91] 0.132 | 0.131 | 0.201 | 0.225 | 0.147 | 0.247 | 0.084 | 0.259
[Bar94] 0.153 | 0.155 | 0.193 | 0.234 | 0.132 | 0.258 | 0.077 | 0.262
Present solver 0.137 | 0.139 | 0.192 | 0.233 | 0.130 | 0.256 | 0.076 | 0.262

Table 4-4. Differentially heated square cavity. Maxima values of u and v velocities on the

x=0.5 and y=0.5 lines respectively.
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Figure 4-17. Differentially heated square cavity. Comparison of temperature and velocities
profiles. Temperature profile (left column). u velocity profile on x=0.5 (middle column). v
velocity profile on y=0.5 (right column). Ra=10% (1% row), Ra=10* (2" row), Ra=10° (3"

row), Ra=10° (4" row) (o: [Bar94], continuous line: Present solver).
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Figure 4-18. Differentially heated square cavity. Velocity vectors for the cases of Ra=103
(left) and Ra=10° (right).

In figures 4-19 to 4-22 velocities u and v, pressure and temperature fields for all Ra
number cases are given. Generally smooth contours were calculated passing from the
structured region of the numerical mesh to the unstructured. Zero temperature
gradients at the adiabatic walls were produced from the implicit way of implementing
boundary conditions. Velocities and temperature contours are similar to the respective
case of the cubic cavity. The differences in the values of the velocities are because of

the different reference scales used for the non-dimensionalization of the velocities.
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Figure 4-19. Differentially heated square cavity for Ra=10°. u velocity field (left column, top
row), v velocity field (right column, top row), pressure field(left column, bottom row),
temperature field (right column, bottom row).
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Figure 4-20. Differentially heated square cavity for Ra=10*. u velocity field (left column, top
row), v velocity field (right column, top row), pressure field(left column, bottom row),

temperature field (right column, bottom row).
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Figure 4-21. Differentially heated square cavity for Ra=10°. u velocity field (left column, top
row), v velocity field (right column, top row), pressure field (left column, bottom row),
temperature field (right column, bottom row).
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Figure 4-22. Differentially heated square cavity for Ra=10°. u velocity field (left column, top
row), v velocity field (right column, top row), pressure field(left column, bottom row),
temperature field (right column, bottom row).
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4.1.5 Internally heated cavity

The next test problem deals with the natural convection in a cavity due to uniform
heat generation throughout the fluid. A square cavity of size H internally heated is
assumed, leading to a circulating flow of the fluid. This case was selected in order to

test the incorporation of the heat source term in the energy equation.

No-slip boundary conditions are applied at all walls which are maintained isothermal

with the temperature equal to zero (T.=0). Water is the working fluid with Pr=1. The

reference value used for the non-dimensionalization of the velocity is v, = % where

v is the kinematic viscosity of the fluid (Re=1). The reference value used for the non-

. . . . 1 H? . .
dimensionalization of the temperature is AT0=qZT. The performed simulation

. : : 8 —_
corresponds to Ra=8:10%. The dimensionless heat source is s, e As initial
r

conditions all variables were set equal to zero.

For this case three structured, uniform numerical meshes were used, in order to
achieve independent results from the numerical mesh (figure 4-23). Figure 4-24
presents temperature on some points of the symmetry axis x=0.5, compared with that
of Deshmukh et al. [Des11]. Isolines of temperature, inside the square cavity are also
given. Deshmukh et al. applied a finite volume formulation for the prediction of
velocity components on a staggered grid and scalar variables on the main grid. A first

order upwind scheme was used for the convective terms.

In figure 4-25 the velocities and pressure fields are given. Generally smooth and

symmetric contours were calculated.
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Figure 4-23. Internally heated cavity. Independence of the solution from the numerical mesh.

0.4
0.3 8
o
T 02 1 °
o
o
0.1
o
0 < D.1552~’/\ﬂ'u
0.00 0.25 0.50 0.75 1.00 u.12¢'-’°'°9,1?'
O A

Y

Figure 4-24. Internally heated cavity. Comparison of the temperature profile along the

symmetry axis (left) (o: [Des11], o Present solver). Isolines of temperature (right).
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Figure 4-25. Internally heated cavity. u velocity field (left column, top row), v velocity field

(right column, top row), pressure field (bottom row).

4.1.6 Unsteady mixed convection past a square cylinder

To evaluate the transient capabilities of the proposed methodology, the two-
dimensional case of mixed convection past a square cylinder was simulated. This
problem is challenging as it contains a stagnation point in front of the cylinder and a
recirculation region in the wake. Turki et al. [Tur03] numerically investigated the
flow field produced in a horizontal channel with a built-in heated square cylinder,
under forced (Ri=0) and mixed convection (Ri#0). They concluded to some formulas
for the averaged Nusselt number. Sharma and Eswaran have also published a series of
studies on heat transfer across a square cylinder for unconfined and channel-confined

flows either in the vertical or in the horizontal direction ([ShaO4a], [Sha04b],
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[ShaO5a], [ShaO5b]). They applied a finite volume approach using a pressure
correction method for the coupling of pressure and velocity. Energy equation was

loosely coupled to the other mean flow equations.

In our case the square cylinder is heated or cooled to a constant temperature Th=1 and
is exposed to a constant and uniform free-stream upward velocity (u=0, v=1) and
temperature (T.=0). Free-slip boundary conditions are implemented on left and right
computational boundaries. Pressure is constant at the outlet (figure 4-26). This flow is
periodical with the Strouhal number St being dependent on the Richardson number
RIi.

The governing flow parameters are: Re=100, Pr=0.7 and S;=0. Richardson number

is defined as Ri = %, from which Gr number is calculated. CFL number was equal
€
to 100 for all simulations conducted.

The first studied case was the case of Ri=0. As initial conditions for all other cases the

results predicted from the solved case with the closer Ri was used.

For the simulation of the flow three different numerical meshes were used, in order to
find a solution satisfactorily independent from the mesh. The finer numerical mesh
consisted of 36395 nodes and 71524 cells. For its structured region, consisted of
quadrilaterals, the first layer thickness was equal to 0.001 and the growing factor
equal to 1.2. The structured region was extended from the wall about 20% of the size
of the square cylinder. Each edge of the cylinder was divided into 40 boundary edges.
Figure 4-27 presents a typical mesh that was used and the mesh in the vicinity of the
cylinder, where the structured region is obvious. The numerical mesh was denser in
the region around the cylinder that extended 3 units upstream and sideways and till
the outlet of the computational domain.
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Figure 4-27. Mixed convection past a square cylinder. A typical mesh that was used (left).
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Strouhal number for Reynolds number ranging from 70 to 150 and without taking into
account buoyancy effects (Ri=0) is presented in figure 4-28, compared to the

Mesh near the cylinder (right).



numerical results of Robichaux et al. [Rob99] and Sharma and Eswaran [Sha0O4b].

Figure 4-28 also shows Strouhal number dependency (str=L,f/V,, where f is the

vortex shedding frequency) for various Richardson numbers ranging from —1 to 0.1,
compared to the results of Sharma and Eswaran [ShaO4b]. Differences are less than
5%. It is evident that increasing buoyancy leads to an increase in the shedding
frequency. For Ri=0.15 breakdown of vortex shedding was observed. Generally, for

Ri > 0.15 the flow turns to steady as it happens and for the circular cylinder [Cha89].

017 0.18
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0.15 4
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0.14 +

0.12 Str

0.10

0.13 4 0.08

0.12 T T T 0.06

70 90 110 130 150 -1.00 -0.80 -0.60 -040  -0.20 0.00 0.20

Re Ri

Figure 4-28. Mixed convection past a square cylinder. Comparison of Str for various Re,
when Ri=0 (left) (¢:[Rob99], m:[Sha04], e:Present solver). Comparison of Str for various Ri,
when Re=100 (right) (0:[Sha04], o: Present solver).

In figure 4-29 streamlines for various Ri are presented. It is obvious that cooling the
cylinder, which means decreasing Richardson number, the wake region increases in
width. Heating the cylinder the wake region decreases and vortices gradually fade
away. For Ri=0.15 vortex shedding is vanished. In figure 4-30 variation of coefficient
of total drag Cp and rms (root mean square) values of the fluctuations of drag and lift
coefficients with Richardson number at Re=100, are given. It is obvious that there is a
value of Ri number near -0.15 for which total drag Cp takes its lowest value. In
addition to this, rms values become zero for Ri number greater or equal to 0.15,

meaning that steady state is reached.
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Figure 4-29. Mixed convection past a square cylinder. Streamlines for various Ri numbers.
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Figure 4-30. Mixed convection past a square cylinder. Variation of coefficient of total drag
Cp and rms values of the drag and lift coefficients fluctuations with Richardson number at
Re=100 (o0: [Sha04], o Present solver).
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4.1.7. Coupling methods comparison

In this section we present a comparison of both coupling methods regarding their
convergence behaviour and their stability. When Roe scheme is used equations are
strongly coupled (S-C) (simultaneous solution of the mean flow equations), while
when IFUS scheme is used equations are loosely coupled (L-C). For the L-C method
continuity and momentum equations are firstly solved with the temperature field
fixed. Then, the energy equation is solved with the velocity field fixed. This

procedure is repeated until convergence in pseudo-time is achieved.

The two aforementioned methods were compared at the case of the differentially
heated square cavity for Ra number ranging from 10° to 10°. This range is chosen in
order to evaluate the performance of both methods as inviscid fluxes increase. All
dependent variables were set equal to zero as initial condition field for each
simulation. Runs were conducted as being steady, setting an extremely large physical
time step and CFL number was equal to 100 from the beginning till the end of the
simulations. Figure 4-31 shows the convergence histories of both methods for the
three different Rayleigh cases. For the case of Ra=10% both methods produce
approximately equal convergence rates. However, as inviscid fluxes dominate over
viscous fluxes (with increasing Rayleigh number) the S-C method requires less
pseudo-time steps compared to the L-C one. This benefit is attributed to the fact that
all dependent variables of the inviscid fluxes are "alive™ in the S-C approach and not
fixed as it happens in the L-C one. For the converged flow fields, differences between
the maximum and minimum u and v velocities, predicted by the two methods were
less than 0.3%.
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Figure 4-31. Differentially heated square cavity. Convergence histories for the cases of
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The L-C method requires less CPU time. This is because of the less numerically
demanding calculation of the convective terms and Jacobi iterations. Specifically, for
each node in each Jacobi iteration a system of 4 equations needs to be solved, when
the S-C method in two dimensions is implemented. On the contrary when the L-C
method is implemented a system of 3 equations needs to be solved followed by the
solution of one equation. Since it takes longer to solve a 4x4 system than a 3x3
system followed by a 1x1 system, the CPU time for each Jacobi iteration using the S-
C method is augmented. After some numerical experiments with the serial version of
our code (it is difficult to assess the time needed for message passing), the CPU time
per pseudo-time step for the strongly coupled method and the loosely coupled method
were approximately determined as 0.057s and 0.035s respectively. Table 4-5 shows
the total CPU time needed for each simulation. The convergence criterion was that
corrections between two successive pseudo-time steps of all dependent variables
reach machine zero. For the case of Ra=10° the S-C method gives a speed-up

approximately equal to 1.255 compared to the L-C method.

Ra L-C S-C

103 106.75s 174.99s
10° 78.75s 109.44 s
106 211.75s 168.72 s

Table 4-5. Differentially heated square cavity. Total CPU time needed in seconds for each

simulation using the Loosely Coupled (L-C) and Strongly Coupled (S-C) methods.

The same comparison was conducted for the three-dimensional case of the
differentially heated cubic cavity, using this time the parallel version of our code (in 4
processors). Below we present (figure 4-32) the convergence history of both coupling
methods for Ra=108. It should be noted that when equations were loosely coupled,
CFL number was equal to 10. When equations were strongly coupled, CFL number
was equal to 100. The solution experienced convergence problems when we used
CFL number equal to 100 for the loosely coupled solution. This fact gives precedence
to the S-C method regarding the CPU time needed.
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Figure 4-32. Differentially heated cubic cavity for Ra=10°. Convergence histories through
pseudo-time for u velocity (left column, top row), v velocity (middle column, top row) w
velocity (right column, top row), pressure (left column, bottom row) and temperature (right

column, bottom row).

The CPU time per pseudo-time step for the strongly coupled method and the loosely
coupled method were approximately determined as 0.487s and 0.316s respectively.

The speed-up is approximately equal to 3.087.

Apart from the CPU time, we compared the coupling methods as to the density of the
numerical mesh needed for their convergence. Specifically, we tried to found the
coarser numerical mesh that would lead to convergence. The L-C method required
denser numerical meshes. This fact shows one more advantage of the S-C method to
the L-C one.
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4.1.8. Slope limiters use

Slope limiters are used in order to preserve the monotonicity of the higher order
reconstruction schemes controlling the spatial derivatives to realistic values.
However, a significant drawback of slope limiters is that they slowdown or even stall
the convergence to a certain degree [Ven93]. In this subsection the performance of the
slope limiters van Albada-van Leer and Min-Mod is tested. We apply the slope
limiters combined with the second order reconstruction scheme and compare them to

the second order reconstruction scheme without the inclusion of a limiter.

For the comparison we used the case of the differentially heated cubic cavity for
Ra=10°% The second order reconstruction scheme (equation (3-21)) was used
combined or not with a slope limiter. Simulations were conducted as being steady,
setting an extremely large physical time step and CFL number was equal to 100 from
the beginning till the end of the simulations. Figure 4-33 shows the convergence
histories. It is evident that the use of slope limiters stall the convergence and
corrections perform oscillations. Slope limiters were also applied on the tunnel fire
cases for the reconstruction of the mean flow dependent variables without auxiliary
effects. Therefore, slope limiters were removed as a choice for the reconstruction of

the mean flow dependent variables.

When slope limiters are used and lead to oscillations physical parameters are observed
to test the convergence [Kov98]; for example the lift coefficient when dealing with
external aerodynamic flows. Oscillations because of the use of slope limiters does not
imply that the final solution will be fault. For the case of the differentially heated
cubic cavity small differences were encountered in the profiles of velocities and
temperature among the three reconstruction approaches.
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Figure 4-33. Differentially heated cubic cavity for Ra=10°. Convergence histories through

pseudo-time for u velocity (left column, top row), v velocity (middle column, top row), w

velocity (right column, top row), pressure (left column, bottom row) and temperature (right

column, bottom row).

4.2. Turbulent

flows

4.2.1 Differentially heated cavities

The laminar flow in square and cubic cavities was presented in the previous

subsections. In this subsection, the results of the simulation of the natural convection
in cavities for Ra numbers that lead to turbulent flows (Ra=107-10%°) [EId65] will be

presented. The turbulent natural convection have been studied widely before
(IMar84], [Hen91], [Bar94]). Markatos and Pericleous [Mar84] and Barakos et al.

[Bar94] solvers have been described before in subsection 4.1.4. Henkes et al. [Hen91]

applied a finite volume technique on a staggered grid for velocity components and on

the main grid for all other scalar variables (pressure, temperature, turbulence Kinetic

energy and turb

ulence dissipation).
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This case was selected to test the application of the turbulence models in the 2-D and
3-D solvers. Nusselt number was calculated for the differentially heated square cavity
turbulent case. After the validation of the proper operation in two dimensions the
differentially heated 3-D, symmetric cavity case was solved and compared to the 2-D

case.

Turbulence models that were used are the standard k-& model with wall functions, the
low-Re k-w SST model and the k-o SST model with wall functions. For all
turbulence models the production term due to buoyancy was included only in the k-
equation, which means that parameter C3 of equation (2-16) was equal to zero.

Results produced in the square cavity using the standard k-¢ turbulence model will be
compared to the results for the same model and parameters in a three-dimensional
hexahedral cavity. The three-dimensional mesh was created after the extrusion of the
two-dimensional mesh. The two-dimensional mesh consisted of quadrilaterals near
the walls and triangulars. After its extrusion to the third dimension hexahedral and
prismatic cells were created. The two-dimensional and the three-dimensional

numerical meshes are given in figure 4-34.

Figure 4-34. Numerical meshes in two-dimensions (left) and in three-dimensions (right).

The four Rayleigh number varied cases were run successively for increasing Rayleigh
number. For faster convergence, the converged flow field of the previous case was
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used. In the three-dimensional case symmetry boundary conditions were applied at

planes y=Ymin and y=Ymax.

The numerical mesh used for the wall function simulations was the same used for the
simulation of the laminar natural convection in the square cavity. It consisted of 7626
nodes and 10962 cells. The first layer height was 107. The numerical mesh for the
low-Re k- SST simulations was consisted of 4914 nodes and 5610 cells (figure 4-

45). The first layer height was 10 but the internal mesh was coarser.

Markatos and Pericleous [Mar84], who applied the k-¢ turbulence model with wall
functions, claimed that for this case the first numerical node should be close enough
to the wall so as 1<y*<12. Indeed, we observed that correct Nusselt values were
predicted after the choice of 5 parameter of the wall functions that led to 1<y*<12.
Nusselt number was very sensitive to the value of & parameter. In table 4-6 we give

the values of 6 parameter that were selected.

Ra| 10" | 10® | 10° | 10%
6 | 0.005 | 0.005 | 0.001 | 0.001

Table 4-6. & parameter of wall functions for each Ra case.

In figure 4-35 Nusselt number is presented and compared to the results of other
researchers. Our Nusselt numbers are too close to the results of Markatos and
Pericleous [Mar84] and Henkes et al. [Hen91] when the standard k-e turbulence
model with wall functions and the k-o SST with wall functions are applied. Nusselt
numbers calculated using the low-Re k-o SST model seem to be closer to the results
of Barakos et al. [Bar94] produced under the hypothesis of laminar flow. Indeed,
using the low-Re k- SST turbulence model small eddy kinematic viscosities were
calculated. However, differences are not larger than the differences of the k-e
turbulence model with wall functions used by Barakos et al. [Bar94]. In figure 4-36
we present and compare velocities and temperature profiles of the two and three
dimensional cases. Good agreement of the results is observed. In figures 4-37 to 4-48
the contours of the dependent variables for each Ra case and turbulence model are

given.
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Figure 4-35. Mean Nusselt number at the hot wall as a function of Ra number.
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Figure 4-36. Differentially heated cavities. Comparison of two-dimensional and three-

dimensional results. Temperature profiles (left column), u velocity profiles (middle column),
v velocity profile (right column). Ra=107 (1% row), Ra=10% (2" row), Ra=10° (3" row),

Ra=10% (4" row).
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Figure 4-37. Turbulent natural convection; standard k-¢ turbulence model; Ra=10". u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-38. Turbulent natural convection; standard k-¢ turbulence model; Ra=108. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-39. Turbulent natural convection; standard k-¢ turbulence model; Ra=10°. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-40. Turbulent natural convection; standard k-¢ turbulence model; Ra=10%. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-41. Turbulent natural convection; k-o SST with wall functions; Ra=10". u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic
energy (left column, 3row), turbulent dissipation (right column, 3™ row).
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Figure 4-42. Turbulent natural convection; k- SST with wall functions; Ra=108. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-43. Turbulent natural convection; k- SST with wall functions; Ra=10°. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-44. Turbulent natural convection; k-o SST with wall functions; Ra=10. u velocity
contour (left column, 1% row), v velocity contour (right column, 1% row), temperature contour
(left column, 2" row), eddy kinematic viscosity (right column, 2™ row), turbulent kinetic

energy (left column, 3" row), turbulent dissipation (right column, 3" row).
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Figure 4-45. Turbulent natural convection; low-Re k-o SST; Ra=10". u velocity contour and
numerical mesh (left column, 1% row), v velocity contour (right column, 1% row), temperature

contour (left column, 2" row), eddy kinematic viscosity (right column, 2" row).
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Figure 4-46. Turbulent natural convection; low-Re k-o SST; Ra=108. u velocity contour (left
column, 1% row), v velocity contour (right column, 1% row), temperature contour (left column,
2" row), eddy kinematic viscosity (right column, 2" row).
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Figure 4-47. Turbulent natural convection; low-Re k-o SST; Ra=10°. u velocity contour (left
column, 1% row), v velocity contour (right column, 1% row), temperature contour (left column,
2" row), eddy kinematic viscosity (right column, 2" row), turbulent kinetic energy (left

column, 3"row), turbulent dissipation (right column, 3" row).
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Figure 4-48. Turbulent natural convection; low-Re k-w SST; Ra=10%. u velocity contour (left
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4.3 Radiative heat transfer

In this section some cases of pure radiative heat transfer, simulated using the Finite
Volume Method (FVM) presented in chapter 3, will be given. The application of the
view factor based model (VFBM) will be presented in a case of conjugated flow and
heat transfer in section 4.4.

As it was mentioned, before the FVM is a method applicable for gray, absorbing,
emitting and scattering (either isotropically or anisotropically) mediums. It is based on
a node-centered edge-type algorithm for hybrid numerical meshes. It applies a second
order spatial and temporal scheme. If negative radiative intensities are calculated a
fix-up procedure is used and these are set equal to zero.

The results of the code are compared in terms of:

j I(r,8)dw

the dimensionless average incident radiation G (r) = =
46T

4
o

.[I(?,é)-(é-ﬁi)do)
and the dimensionless radiative heat flux Q" (r) = 4=

4
o

oT

where T, is a reference temperature.

The quantities of the incident radiation and radiative heat flux were selected for the
comparison because they are the only quantities of radiation that affect the
temperature field. Specifically, subtracting the black body radiation from the incident
radiation we have the source term of radiation in the energy equation and the radiative

heat flux is applied in the boundary conditions at the walls.

4.3.1 Prismatic enclosure with equilateral triangular bases

As to the first test problem, the FVM was applied to a prismatic enclosure with
equilateral triangular bases (figure 4-49), filled with gray purely absorbing and
emitting (ka=1) medium (non-scattering, os=0) maintained at the constant temperature

of 1000K. Walls of the enclosure were assumed to be black (¢=1) and cold at the
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constant temperature of OK. At the two side walls of the z direction, symmetry

boundary conditions were applied.

Figure 4-49. Schematic representation of the prismatic enclosure [Lygl2] (left). Numerical

mesh in the middle cross section z=5 (right).

Three different numerical meshes were used to achieve independent results, with the
final spatial grid system composed of 123369 nodes and 116720 cells. The angular

grid used was (NoxN,)=(12x16). As initial condition for the radiative intensity, the

4

black body intensity 1, = <

T

(in dimensional form) was set for all nodes.

We compare the dimensionless radiative heat flux at the bottom wall in the middle of
the z distance (z=5) to the two-dimensional results of Kim et al. [KimO01] at figure 4-
50. Kim et al. applied a finite volume approach. They used the upwind step spatial
differencing scheme and the exact treatment scheme for the unavoidable control angle

overlap.

The reference temperature used for the non-dimensionalization was equal to the

temperature of the fluid, T, =1000K . Taking into account that three-dimensional

simulations insert larger amounts of numerical diffusion compared to two-

dimensional simulations, results seem to agree satisfactorily.
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Figure 4-50. Dimensionless radiative heat flux at the bottom wall in the middle of the z

distance (z=5).

4.3.2 Hexahedral enclosure with trapezoidal bases

The second test case considered deals with the radiative heat transfer in a prismatic

enclosure with trapezoidal bases (figure 4-51). The enclosure is filled with gray

absorbing, emitting and isotropically scattering medium maintained at the constant

temperature of OK. Black walls were assumed (e=1) maintained at the constant

temperature of OK, apart from the bottom wall the temperature of which was equal to

100K. At the two side walls in z direction symmetry boundary conditions were

applied.
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Figure 4-51. Schematic representation of the prismatic enclosure [Lygl2] (left). Numerical

mesh in the middle cross section z=5 (right).

Initial radiative intensity was equal to the black body radiative intensity Ip. The spatial
grid system that gave independent results was composed of 304616 nodes and 290700
cells. For the angular discretization 4 polar and 16 azimuthal angles were used. For

this case, the scattering coefficient was equal to 6s=0.6 and the absorption coefficient

equal to k.=0.4.

In figure 4-52 the independent from the numerical mesh dimensionless radiative heat
flux at the inclined wall in the middle of the z distance (z=5) is shown and compared
to the results of Kim et al. [Kim10]. They used unstructured polygonal meshes and the

upwind step spatial differencing scheme.

The reference temperature used for the non-dimensionalization was equal to the

temperature of the bottom wall, T, =100K . Results seem to agree satisfactorily,

compared to the results of the reference two-dimensional solver [Kim10].
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Figure 4-52. Dimensionless radiative heat flux at the inclined wall in the middle of the z

distance (z=5).

4.3.3 Hexahedral enclosure with quadratic bases

In this test case a hexahedral enclosure with quadratic bases (figure 4-53) was
considered filled with fluid at a constant temperature OK. All walls were maintained
cold at a constant temperature of OK except for the bottom wall, at which a heating
energy E=cT*=1 was implemented. o is the Stefan-Boltzmann constant equal to 5.67
10 W/m?/K*. At the two side walls of the z direction symmetric boundary conditions
were implemented. All walls were assumed to be black (¢=1), except for some cases

where it is explicitly stated.

As initial radiative intensity the black body intensity I, was used. The numerical mesh
that gave independent solution was composed of 410375 nodes and 386104 cells. The
angular mesh was (NexN,)=(8x16). For the selection of the number of polar and
azimuthal angles an independence study similar to mesh independence study was
conducted. In figure 4-54 the dimensionless average incident radiation for isotropic
scattering along the center-line x=0.5 for z=5 is given for four sets of angles. It is
evident that satisfactory independence is achieved for the angular mesh of (8x16)

angles.
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In figure 4-55 the dimensionless incident radiative heat flux in y direction and the
dimensionless incident radiation are given for isotropically and anisotropically
scattering medium on the center-line x=0.5 for z=5 (in the middle of the z direction).
For the non-dimensionalization the heating energy of the bottom wall was used.
Results are also compared to the results of the two-dimensional solver of Kim and Lee
[Kim88]. Extinction coefficient B=xa+os and the scattering albedo w=cs/p for this case
are equal to unity. Then the scattering coefficient is os=1 and the absorption
coefficient is k.=0. It is evident that anisotropic scattering leads to greater values for
the dimensionless radiative heat flux in y direction compared to the isotropic, while
close average incident radiations were calculated for both scattering types. Our results
agree satisfactorily with the results of Kim and Lee [Kim88], who applied a discrete
ordinates method and anisotropic scattering was handled using Legendre polynomials.
In figure 4-56 we compare the dimensionless radiative heat flux in y direction for
anisotropic scattering, along the center-line x=0.5 for z=5. Scattering coefficient is

0s=0.5 and absorption coefficient is k.=0.5. Results agree satisfactorily.

107

Figure 4-53. Schematic representation of the prismatic enclosure [Lyg12] (left). Numerical

mesh in the middle cross section z=5 (right).
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Figure 4-55. Comparison of the dimensionless radiative heat flux in y direction (top) and the
dimensionless average incident radiation (bottom) for isotropic and anisotropic scattering
along the center-line x=0.5 for z=5.
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Figure 4-56. Comparison of the dimensionless radiative heat flux along the center-line x=0.5

when z=5 for anisotropic scattering.

Finally, in figure 4-57 we compare the dimensionless radiative heat flux in the y
direction along the center-line x=0.5 for various emission coefficients €. The

scattering coefficient is os=1 and the absorption coefficient is xa=0. We observe that

reducing the wall emissivity lower values of Q_ are calculated.
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Figure 4-57. Comparison of the dimensionless radiative heat flux along the center-line x=0.5

for anisotropic scattering for various emission coefficients .
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4.3.4 Hexahedral enclosure with trapezoidal bases

The last case considered deals with the radiative heat transfer in a hexahedral
enclosure with trapezoidal bases (figure 4-58). The enclosure contained an absorbing
and emitting but non-scattering medium. The absorption coefficient was k.=1. All
walls were black (¢=1). The fluid had a constant temperature equal to 100 K, while all

walls were at a constant temperature of OK.

_(15,1.2,1)

(0.5,1,1),

(2.1,0,1)

(0,0,0) (2.1,0,0)

Figure 4-58. Schematic representation of the hexahedral enclosure [Lyg12] (left). Numerical

mesh (right).

Initially we considered that the radiative intensity was equal to the black body
intensity Ip. The computational domain was descritized in 255645 nodes and 243124
cells in order to achieve independent results. For the angular discretization we used 10
polar and 10 azimuthal control angles.

In figure 4-59 the dimensionless radiative heat flux, onto the bottom face in the
middle of the enclosure (z=0.5) are given and compared to the results of Baek et al.
[Bae98]. Baek et al. applied a finite volume method combined with the step

differencing scheme and exact treatment of control angle overlap.

The reference temperature used for the non-dimensionalization was equal to the
temperature of the fluid, To=100K. Our results agree satisfactorily with the results of
Baek et al.
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Figure 4-59. Comparison of the dimensionless radiative heat flux onto the bottom face in the

middle of the enclosure (z=0.5) (left). Independence of the solution (right).

4.4 Combined heat transfer

In this section test cases that involve laminar flow and combined heat transfer
(conduction, convection and radiation) in cavities are presented. For the rest of this
chapter when combined heat transfer is mentioned, we mean heat transfer with all
means. Specifically, in the first case the combined heat transfer in a square cavity is
presented. The radiative heat transfer was calculated using both the view factor based
method (VFBM) and the Finite Volume Method (FVM). The second case deals with
the laminar flow and combined heat transfer in a cubic cavity. In this case the
radiative heat transfer was modeled using the FVM. These cases were selected in

order to test the coupling of the radiation models to the 3-D solver.

For the reconstruction of the radiation intensity when the FVM had been applied,
either the second order scheme without any limiter or one of the Min-Mod and Van
Albada-Van Leer limiters had been used. In the below presented test cases negligible
differences had been encountered between the usage of one of the limiters or none of

them.
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4.4.1 Combined heat transfer in a square cavity

The first case deals with the laminar flow and combined heat transfer in a square
cavity of edge H, that have been presented by Kasemi et al. [Kas93]. Kasemi et al.
applied the discrete exchange factor method for radiation modeling. For the prediction
of the flow, they solved the stream function-vorticity form of the Navier Stokes
equations and buoyancy was integrated by means of the Boussinesq approximation.

Inviscid terms were discretized using the third order accurate QUICK scheme.

This case was simulated using both radiation models. Although the test case
constitutes a two-dimensional one, it was simulated using the three-dimensional
version of our code where both radiation models are integrated. The two-dimensional
numerical mesh was constructed and then we extruded it in the third direction (y
direction). The length of the third direction was equal to ten edges of the square. At

the side faces of the third direction symmetry boundary conditions were implemented.

An enclosure with two differentially heated walls (the vertical edges) and two
adiabatic walls (the horizontal edges) was considered. The hot wall was at a constant
temperature of Th=1, while the cold wall's temperature was T.=0. All walls were
black (e=1). The cavity was filled with fluid of Prandtl number equal to 0.7. The

reference velocity used for the non-dimensionalization of the velocity was u = %

where v is the kinematic viscosity. Then Reynolds number was Re=1. There was not

any heat source or sink (Sq =0) and Grashof number was Gr=700. Finally, for the

parameters of radiation, the reference temperature ratio was T, =1 and Planck
number was Pl=1.6. The enclosure was divided into 35x35x35 nodes. The angular
mesh which is necessary for the discretization of the FVM for radiative heat transfer

was composed of 8 polar and 16 azimuthal angles.

In figure 4-60 temperature profiles along the top wall (z=1) and bottom wall (z=0) in
the middle of the y direction (y=5) for the case of the laminar convection without
radiation are given. Our results agree satisfactorily with those of Kasemi et al.
[Kas93].
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Figure 4-60. Temperature profiles along the top wall (z=1) and bottom wall (z=0) in the
middle of the y direction (y=5) for the case of the laminar convection without radiation

effects.

In figure 4-61 and figure 4-62 temperature profiles at the top and bottom walls are
presented with the effect of radiation. In figure 4-61 temperature profiles using the
VFBM are presented, while in figure 4-62 using both methods. The medium is
assumed to be transparent (non-participating). Our profiles are compared to the results
of Kasemi et al. [Kas93] and Albanakis and Bouris. Albanakis and Bouris presented
the same test case, using the same VFBM in [AIb08]. The inclusion of radiation
significantly altered the profiles. There is an excellent agreement with the results of
Albanakis and Bouris and a small divergence from the results of Kasemi et al. This
divergence is permissible as it is less than 5% of the temperature difference (Th-T¢). In
figure 4-62 we observe the agreement of our temperature profiles from the VFBM
with those of the FVM. Therefore, there is agreement between the results of the FVM

and the results of Albanakis and Bouiris.
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Figure 4-61. Comparison of temperature profiles along the top wall (z=1) and bottom wall
(z=0) in the middle of the y direction (y=5) when radiation effects are included and calculated
using the VFBM.
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Figure 4-62. Comparison of temperature profiles when radiative heat transfer is calculated
using either the VFBM or the FVM.
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Afterwards, the case of participating medium was simulated using the FVM. The
medium was assumed to be gray absorbing and emitting, but non-scattering. The
optical thickness (dimensionless absorption coefficient) was equal to t=1. In figure 4-
63 u and w velocities and temperature contours in the square cavity are presented for
transparent and participating medium. The participating medium significantly alters
the contours. In the case of participating medium, less thermal radiation reach the
adiabatic walls from the hot wall, because part of it is absorbed by the medium.
Therefore, temperature gradients at the adiabatic walls are closer to zero for the case

of participating medium. In figure 4-64 we present the contour of the dimensionless

[ 1
radiative divergence vQ, = = 4( T* + 1\ - j Ide | for participating medium.
N |

4n

4
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Figure 4-63. Contours inside the enclosure for transparent (left column) and participating

(right column) medium. u velocity (1% row), w velocity (2" row), temperature (3 row).

2
2

bbbilocanvesao

Figure 4-64. Radiative divergence contour for participating medium.
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4.4.2 Combined heat transfer in a cubic cavity

The second test case deals with the laminar flow and combined heat transfer in a
cubic cavity. This test case was firstly presented by Colomer et al. [Col04] and refers
to a cubic cavity with two differentially heated walls. The other four walls were
adiabatic. The temperature of the hot wall was Th=1 and the temperature of the cold
wall was T.=0. Colomer et al. used a discrete ordinates method to model radiation.

Pressure prediction was achieved using a SIMPLE-like algorithm.

Radiative heat transfer was modeled using the FVM. It should be noted that the same
test case was tried to be simulated using the VFBM with the serial solver. However,
we did not achieve an independent solution because making the numerical mesh

denser, the requirements on CPU time became significantly large.

The Prandtl number of the fluid was Pr=0.71. The reference velocity used for the non-

dimensionalization was u_, = [LgpAT . Thus Reynolds number was Re = J/Gr . There
was not any heat source or sink (s, = 0). Grashof number was calculated for Rayleigh

numbers of Ra=103, 10% 10° 10° (Ra=GrPr). As to the parameters of radiation two
combinations had been applied. In the first one the reference temperature ratio was

T, =15 and Planck number was PI=0.043 for transparent medium, while in the
second one the reference temperature was T, =17 and Planck number was P1=0.016

for participating medium with optical thickness t=1. For the case of PI=0.016 the

radiation effects were greater. In both cases black walls were assumed (e=1).

The enclosure was divided into 65x65x65 nodes. For the angular discretization 8
polar and 16 azimuthal angles were used. In this case we compare the sum of the heat
fluxes because of conduction and radiation onto the hot wall. Specifically, in
comparison is the averaged sum of the heat fluxes in z direction at the hot wall. In
figure 4-65 and figure 4-66 the average heat fluxes at the hot wall as a function of the
position along the y axis are given and compared to the results of Colomer et al.
[Col04]. There are differences between the results, but in the literature significant
divergences among the results of various researchers have been found ([Koll1l],
[Bor08], [Abill], [Sca08]). There is not a general agreement on the correct results as

this case have not been simulated experimentally.
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Figure 4-65. Distribution of the average heat flux in z direction along y axis for transparent

medium (T, =15, PI=0.043, t=0).
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Figure 4-66. Distribution of the average heat flux in z direction along y axis for participating

medium (T, =17, Pr=0.016, t=1, Ra=10°).
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In figure 4-67 the isothermal surfaces are given for all Rayleigh numbers with and
without the radiation, for the case of transparent medium when 1 =15 and Pr=0.016.
We observe that either with the radiation effects or not augmenting the Rayleigh
number isothermal surfaces tern gradually from vertical to horizontal. Additionally,
isothermal surfaces are normal to the adiabatic walls when radiation is not taken into

account, while this does not happen when radiation is included.
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Figure 4-67. Isothermal surfaces when radiation effects are not taken into account (left

column) and when radiation effects are included (right column) (T} =15, PI=0.043, 1=0).

Ra=10% (1% row), Ra=10* (2" row), Ra=10° (3" row), Ra=10° (4" row).

In figure 4-68 we present the dimensionless radiative heat flux onto the walls and the

[ 1
dimensionless radiative divergence vQ, = = 4( T* +1\ - j ldo | on mid-plane
PI LTO J 47

4

y=0.5 for the case of participating medium (T, =17, Pr=0.016, t=1).
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Figure 4-68. Dimensionless radiative heat flux onto the walls (left) and dimensionless

radiative divergence on mid-plane y=0.5 (T, =17, Pr=0.016, 1=1).

4.5 Conclusions

In this chapter some representative test cases for the validation of the developed
solver were presented. Specifically, these cases were cases of laminar or turbulent
flow, cases of pure radiative heat transfer and cases of laminar flow with combined
heat transfer. Radiative heat transfer was simulated using both radiation models, i.e.
the view factor based method (VFBM) and the finite volume method (FVM). A wide
variety of input parameters was applied in order to test the general applicability of our
solver. Details on the numerical meshes, the initial conditions and the parameters of
the solver were provided for each case. Satisfactory comparisons with the results of
other researchers were observed. Generally smooth contours were calculated using

any type of numerical meshes, i.e. hexahedral or hybrid numerical meshes.

Moreover, both coupling methods proposed were compared regarding their
convergence behavior and stability. The strongly coupled solution showed significant
superiority as less CPU time was needed for highly convective cases and more stable
simulations were produced. Afterwards, the effect of the use of slope limiters for the
reconstruction of the mean flow dependent variables was tested. Slope limiters
showed to stall the convergence to a certain degree. Therefore, slope limiters were
removed as a choice for the reconstruction of the mean flow dependent variables, but
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still constitute a choice for the radiation intensity. However, the application of the
slope limiters or not for the radiation intensity did not show to significantly influence

the steady state solutions.
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CHAPTER §

PARALLEL COMPUTING

Something that was not given enough emphasis in the previous chapters is that most
of the computations were performed in parallel. Parallel computing raised because of
the need for faster calculations and was more systematically studied in the last
decades under the Message Passing Interface (MPI) forum [MPI]. It is a form of
computation in which calculations are carried out simultaneously, using multiple

processors after the spatial domain decomposition of the task.

In this dissertation time consuming problems were encountered and for their
simulation parallel computing was necessary. These problems were problems for
which independency of the solution from the numerical mesh and time step was
tested. They are characterized as time consuming problems because of the huge
numerical meshes and small time steps needed. Additionally, three-dimensional
turbulent flows and conjugate flow and radiative heat transfer problems were quite
demanding. The most demanding simulations were those of the tunnel fire cases.
Flows were turbulent and radiation modeling using the finite volume method was

applied.

The parallelization of the algorithm was based on the SPMD (Single Program
Multiple Data) technique, which requires the division of the task in multiple partitions
solved by the equal number of processes. Metis [METIS] was applied for the
partitioning of the numerical meshes, providing high-quality partitioning with less
CPU time. High-quality partitioning is ensured when the number of nodes of each
partition is approximately the same and the number of edges connecting nodes of
adjacent partitions is the least possible. MPI (Message Passing Interface)
communication protocol was applied for the implementation of the parallelization,

which constitutes a common choice in the field of Computational Fluid Dynamics.
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In this chapter the performance of our parallel code is tested for various cases. These
cases are two-dimensional and three-dimensional. Specifically, the two-dimensional
turbulent flow in the differentially heated square cavity was studied for three different
numerical meshes in order to test the reaction of the performance of the parallel solver
when the size of the mesh increases. The standard k-¢ with wall functions and the k-®
SST with wall functions turbulence models were applied. Then, the performance of
the three-dimensional parallel solver was tested in the case of the differentially heated
cubic cavity. We simulated a case of laminar flow without the effect of radiation, a

case of pure radiation and a case of laminar flow with the effect of radiation.

The quantities that interested us when testing the parallel solver are the speed-up and
the efficiency. They are given in graphs for each of the cases. Speed-up in parallel
computing expresses the gain in time from the segmentation of the problem into N

partitions. It is defined as

Sy = (5-1)

-

where T is the time needed for the solution of the serial problem (N is one), while Tx
is the time needed for the solution of the parallel problem (cut into N partitions).

Speed-up is a unit-less quantity. The ideal speed-up is the linear speed-up, when

Ty = % This mean that doubling the number of processors the time needed is halved.

However, in reality the ideal speed-up is not achieved because of the dependence of
the processes (message passing among them is required) and the fact that there is a

fraction of the problem that cannot get parallelized.

According to Amdahl's law the speed-up of a program run in parallel is limited by the
time needed for the sequential fraction of the problem. If f is the fraction of the
problem that can be executed in parallel, then (1-f) is the fraction of the problem that

cannot be executed in parallel. The time needed for the serial part is T, =(1-f)T, and
for the pure parallelized part is T, =f % (when time needed for message passing is

neglected).

Then
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Ty =Ty +T, =(1-)T, +f% (5-2)

and

N . (5-3)
Ty =BT +£ 0 =D+

f takes values between zero and one. The less the value of f is, the more we move
away from the ideal speed-up. From Amdahl's law we could get a prediction of the
speed-up if we knew the fraction of the problem that can be executed in parallel.
However, this fraction is difficult to be assessed and is dependent on the numerical

mesh. It could be estimated if we solve (5-3) equation for f, knowing the speed-up Sx.

Specifically
— (1- SN N 5-4
TN G4

Then we could predict the speed-up for a different number of partitions/processes.

Efficiency is a quantity that provides information on the performance of the parallel
solver when executed for N partitions and it is defined as
Tl SN

= = — 5'5
Ev=xT =N (5-5)

Ey takes values between zero and one. The closer to one the efficiency is, the better is

the performance of the parallel solver.

According to Amdahl's law efficiency could be predicted by

1
By = 0PN T (5-6)
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5.1. Two-dimensional cases
5.1.1 Differentially heated square cavity

The two-dimensional turbulent flow in the differentially heated square cavity was
studied for three successively densing numerical meshes. The first mesh was
composed of 1686 nodes and 2578 cells (meshl), while the second mesh of 10083
nodes and 15044 cells (mesh2) and the third mesh of 18812 nodes and 34622 cells
(mesh3). Both the standard k- and the k- SST turbulence models were used with
wall function treatment near cavity walls. Simulations were conducted in pseudo-time
without writing results. CFL number was equal to unity from the beginning till the
end of the 3000 pseudo-time steps. At each pseudo-time step 2 Newton iterations and
12 Jacobi iterations for the solution of the linear system were executed. The number
of partitions/processes used was 1, 2, 4, 8 and 16. Runs were conducted at the Linux
cluster "VELOS" of the Laboratory of Thermal Turbomachines, Parallel CFD and
Optimization Unit, using at most two PCs of 8 CPUs at 2 GHz.

Figure 5-2 presents the speed-up and the efficiency achieved using meshl and both
turbulence models, while figure 5-3 the respective quantities for mesh2 and figure 5-4
for mesh3. All numerical meshes showed approximate speed-ups and efficiencies for
the different turbulence models and a steep descent of the efficiency from the eight
processes to sixteen. Figure 5-5 presents the comparison among the speed-ups and the
efficiencies of the three numerical meshes. It shows that densing the numerical mesh
the speed-up and the efficiency of the parallelization increases for the same number of
processes. This is in agreement with the literature [Bpa12]. Generally, augmenting the
size of computational load in comparison to the message passing load, with the
increase of the size of the numerical mesh, leads to greater speed-ups for the same

number of processes.

5-4



,
e e S S
P R P O AN A ESDT

e e

2
SNy
]

.-
A A A
I
T
S, VALY VTR
L m.«uﬂ«<»¢>ﬂ<
S s s B e
PO A
A e e e
BRI AT aﬁ»ﬂq&.waﬁmﬁ»..
B g e e P
D
S A PO A A AP oy
AN AVATAV gy 3 A EapoTu o A T Savagy e
i Y oy Pt
RS Ay iy AT A Yy fus
T S e
YRR T T, TN T Ay Yy A
RO DO OIS AR KR el
SE
Amﬁ«.mi?» L A, o VATV,

K]
o
s

Lk

e
B

&
Zar
TAVARIT A

TATAY
A7
¥

K
%
&

B

it

AN
A
STAVATAT,y
Tabii Ve
A‘A'A‘A:
¥
rivl
o

i
Ravi

7o
A A
it ATV
AT
R
e S
T L,

5
i

£
i

H

i
R

A
EE)

15
e
e
e
T
Ao
£r

A¥AY)
:’VA
7
%)

X
55
5
2
%]

]

i
.
4
T
&

e

L <P RO
14 v«mﬂ«ﬂﬂﬂ«mqwufib
RN
SERIRY
L

A

o

KRR,
L
LR
ISEERE
RO
e AT
AEDOR
AR
Sisiee

Figure 5-1. Mesh2 (10083 nodes and 15044 cells) decomposed into 8 partitions.
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Figure 5-2. Speed-up (left column) and efficiency (right column) of the parallelization for
mesh1 (1686 nodes and 2578 cells), using the k- SST turbulence model (up row) and the

standard k-¢ turbulence model (bottom row).
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Figure 5-3. Speed-up (left column) and efficiency (right column) of the parallelization for
mesh2 (10083 nodes and 15044 cells), using the k-o SST turbulence model (up row) and the

standard k-¢ turbulence model (bottom row).
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Figure 5-4. Speed-up (left column) and efficiency (right column) of the parallelization for
mesh3 (18812 nodes and 34622 cells), using the k-o SST turbulence model (up row) and the

standard k-¢ turbulence model (bottom row).
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5.2. Three-dimensional cases

The performance of the three-dimensional parallel solver was tested in the case of the
differentially heated cubic cavity for a single numerical mesh. The numerical mesh
was composed of 274625 nodes and 262144 cells. A case of laminar flow without
radiative heat transfer, a case of pure radiative heat transfer and a case of laminar flow
with the effect of radiation were simulated. It was not our aim to compare the speed-
ups and efficiencies among the three cases but to generally observe the performance
of the parallel solver. Therefore, simulations were conducted in PCs with different

characteristics.

For all cases simulations were conducted in pseudo-time without writing results. CFL
number was equal to unity from the beginning till the end of the pseudo-time steps. At
each pseudo-time step 1 Newton iteration and 3 Jacobi iterations for the solution of
the linear system were executed. The number of partitions/processes used was 1, 2, 4,

6, ..., 28, 30, 32.

Figure 5-6. Cubic cavity decomposed into 8 partitions.
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5.2.1 Laminar flow in a differentially heated cubic cavity without radiation

For the case of the laminar flow in the differentially heated cubic cavity, figure 5-7
presents the speed-up and the efficiency achieved. Even for 22 processes the

efficiency of the parallelization remains greater than 0.7.
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Figure 5-7. Speed-up (left) and efficiency (right) of the parallelization for the laminar flow in

a differentially heated cubic cavity without radiative heat transfer.

5.2.2 Pure radiation in a differentially heated cubic cavity

For the case of pure radiation in the differentially heated cubic cavity a sufficient
number of iterations of the radiation solver was conducted. Absorption and scattering
coefficient were equal to zero. 8 and 4 azimuthal and polar angles were chosen. The
Runge-Kutta method was applied with a first order reconstruction scheme and c,

parameter of equation (3-60) was equal to unity.

Figure 5-8 presents the speed-up and the efficiency achieved. Slightly greater speed-

up and efficiency was calculated than those of the case of laminar buoyant flow.
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Figure 5-8. Speed-up (left) and efficiency (right) of the parallelization for the pure radiation in

a differentially heated cubic cavity.

5.2.3 Laminar flow in a differentially heated cubic cavity with radiation

Finally, for the case of laminar flow in the differentially heated cubic cavity with

radiative heat transfer, figure 5-9 presents the speed-up and the efficiency achieved.

Even for this case that message passing load is great the performance of the solver is

satisfactory.
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Figure 5-9. Speed-up (left) and efficiency (right) of the parallelization for the laminar flow in

the differentially heated cubic cavity with radiative heat transfer.
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For all the three-dimensional cases satisfactory speed-ups and efficiencies were
calculated, significantly greater than those of the two-dimensional ones, which is

attributed to the greater computational load in comparison to the message passing
load.
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CHAPTER 6

NUMERICAL STUDY:
VENTILATED TUNNEL FIRES

After the validation of the developed solver, in this chapter the numerical study of two
ventilated tunnel fires is presented. Specifically, our aim is the prediction of the
smoke flow and the temperature field produced in two fire scenarios in a ventilated

tunnel.

First of all, fire scenarios were simulated without taking into account radiative heat
transfer and wall conduction. Two Reynolds Averaged Navier Stokes (RANS)
turbulence models were applied; the low-Re k-o SST and the standard k-¢ with wall
functions treatment. Subsequently, one of the fire scenarios was simulated taking into
account radiation, using the Finite Volume Solver (FVM) for radiation modeling and
the standard k-¢ turbulence model with wall functions for turbulence modeling. The
application of the low-Re k-w SST turbulence model was impossible concurrently
with radiation modeling, because of the huge computational load coming from the
dense numerical mesh. Finally, radiation and wall conduction were concurrently

modeled using the FVM solver and an 1-D conduction solver respectively.

6.1. Introduction

Nowadays, transport tunnels constitute important and necessary infrastructure works
which can facilitate the financial growth of a country. Safety measures are of the most
major parts during the design and construction of a tunnel. Much attention has been
paid on tunnel fires because of their negative consequences. A case of a fire accident
in a tunnel constitutes an extremely dangerous situation for people who are inside it,
as hot toxic gases are produced. In addition to this, the repair cost and the cost due to

the stop of tunnels operation are often huge. In figure 6-1 the damage after the 1999
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fire incident in the Mont Blanc tunnel is shown. Table 6-1 gives data on three of the

most catastrophic accidents in tunnels.

Figure 6-1 [KumO04]. Mont Blanc tunnel fire.

Tunnel Deads/Injured Repair cost Repair period
Mont Blanc 39/34 450 million Euros 3 years
Channel Tunnel 0/30 250 million Euros >1 year
Tauern 12/49 30 million Euros -

Table 6-1 [Bea05]. Data on three of the most catastrophic tunnel fire accidents.

The most dangerous factor for human lives in tunnel fires is the excess of the
concentration limits of the combustion products and not the extreme temperatures.
Therefore, the appropriate ventilation system is required for the smoke control.
Except for the emergency cases, the ventilation system is responsible to ensure a safe
environment under normal conditions. Its aim under normal conditions is to prevent

the accumulation of vehicular emissions from dangerous levels.
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There are four major types of ventilations and combinations of them. The choice of
the ventilation type depends on various parameters such as the length of the tunnel
and the number of traffic directions (unidirectional or bidirectional) [Li0O3].
Ventilation may be natural, induced by the traffic piston effect, pressure differences
between the entrance and the exit of the tunnel etc, longitudinal, transverse and semi-
transverse. In figure 6-2 the three types of mechanically induced ventilation and how

they operate are presented.
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b. Semi-transverse ventilation.

c¢. Transverse ventilation.

Figure 6-2 [Kaf99]. Operation of the three major mechanically induced ventilation types.
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Both cases examined in this chapter contain longitudinal ventilation. Longitudinal
ventilation is installed in unidirectional road tunnels. In a case of a fire, longitudinal
ventilation systems drive smoke to tunnel's exit, ensuring the safe escape of

passengers through the tunnel's entrance and/or emergency exits.

The methods used for the simulation of a tunnel fire are experimental, theoretical and
computational. Full-scale experimental investigation is often prohibitive due to the
necessary high cost, but it provides large amounts of reliable data. Many full-scale
experiments for the Memorial tunnel are reported in the Memorial tunnel fire
ventilation test program-test report [Mas95]. Small-scale experiments cost less and
require careful choice of the scaling factors between the prototype and small-scale
([Lee05], [Lee06b]). Analytical methods and Computational Fluid Dynamics (CFD)
simulations, are the most affordable and permit the investigation of various alternative
cases with proper modifications on the model. Although CFD is the most accurate
between them, a CFD simulation of a fire scenario requires fluid dynamics,
turbulence, radiation, wall conduction and combustion numerical modeling

concurrently.

Plenty CFD simulations of tunnel fires could be found in the literature, using
commercial, open source and fewer of them research codes. Abanto et al. [Ab06] used
Fluent and a research code to study smoke movement in a case of fire in an
underwater tunnel. Hui et al. [Hui09] have modeled the longitudinal ventilation of the
4t Beijing subway line using CFX and have compared their results for the critical
velocity to previous formulations proposed. Lee and Ryou [Lee06b] have studied the
aspect ratio effect on smoke movement using Fire Dynamics Simulator (FDS) of the
National Institute of Standards and Technology (NIST) and compared their results to
reduced-scale experimental ones. Hu et al. [Hu07] have compared FDS results with
LES turbulence model to full-scale experimental data with promising conclusions for
the validity of FDS solver. Hu et al. [Hu08] have studied the effect of the place of the
fire in the critical velocity using FDS. Wu and Bakar [Wu00] applied an experimental

and CFD investigation, using Fluent, on the critical velocity formulations.

One of the most important aims of a numerical model is the accurate prediction of the
back-layering length and critical velocity. The distance of the smoke front from the

heat source to the upstream direction is the back-layering length. The critical velocity
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refers to longitudinal ventilation systems and it is the lowest ventilation velocity that
could prevent smoke back-layering. The ventilation system should prevent back-
layering, but high ventilation velocities feed the fire with more oxygen, augmenting
the heat release rate [Cho98] and increase the resistance to the passengers, reducing
the escaping rate [Hui09]. For the estimation of the critical velocity mostly Froude
number based semi-empirical formulae have been proposed. Despite their simplicity
they do not account for some specific characteristics of each tunnel such as the
existence of lateral evacuation hallways [Ban08], or the conditions of each fire
scenario such as the place where accident happened or the obstructions that may exist.
It was found that obstructions affect significantly the critical velocity ([Kan06],
[Oka95]). In case of not taking into account all these factors, huge investment costs
for the ventilation system may be produced, or inadequate safety measures may be

adopted.

6.2. Test cases description

The test cases presented below have been widely studied and they are appropriate for
the comparison of our results. Apte et al. [Apt91] have carried out the experimental
investigation. Fletcher et al. [Fle94] have also presented experimental results and a
numerical investigation using a steady state approach and k-g turbulence model with
wall functions. Gao et al. [Gao04] have presented a numerical investigation using an
unsteady approach and an LES turbulence model. Miloua et al. [Milll] also
numerically studied these test cases using FDS for the comparison of combustion

models and wall boundary conditions.

The tunnel geometry is described in figure 6-3. A pool fire exists at 59.5 m from the
entrance of the tunnel. The pool fire was assumed to be a cubic volumetric heat
source, with the heat release rate being constant and having its maximum value from
the beginning till the end of the simulation. The flow field in all cases tested, was

regarded as incompressible, because Mach number remained below 0.3.
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Figure 6-3. Sketch of the tunnel and heat source.

6.2.1 Boundary and initial conditions

As it was mentioned before two test cases were simulated, varying in the total heat
release rate of the heat source and the ventilation rate. The total heat release rate and

the ventilation velocity for these two cases are given in table 6-2.

Case | Ventilation Velocity | Total heat release rate

1 u, =0.85m/s Q, =2.57TMW

2 u, =2m/s Q, =2.29MW

Table 6-2. Ventilation velocity and total heat release rate for casel and case?2.

(Y1)

At the inlet of the tunnel uniform velocity profile was prescribed, with the “u
velocity being equal to the ventilation velocity while “v” and “w” velocities were
equal to zero (v = w = 0). At the outlet of the tunnel, pressure was prescribed and set
equal to the ambient pressure. Attention was paid so that y be larger than 11.6 and
less than 400 when the k-g turbulence model with wall functions was applied so that
the first node belongs in the logarithmic region. y" was less than 2 (in the viscous sub-

layer of the boundary layer) when the low-Re turbulence model was applied.

As initial condition the converged to steady state flow field of the isothermal case
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(without the heat source) was used. The temperature was equal to the ambient

temperature.

6.3. Numerical solution

In this subsection the basic parameters concerning the simulations and the numerical
meshes that were used are presented. Radiation and conduction parameters are given

in subsection 6.5.2 and subsection 6.6 respectively.

For the coupling of the energy equation with the other mean flow equations strongly
coupled method was applied. Loosely coupled approximation stopped to be an

alternative after the comparison of both methods, presented in subsection 4.1.7.

The parameter Cg; for the buoyancy terms of € and ® equations was equal to unity
(equations 2-16, 2-20). Different approaches for the parameter C,; gave unrealistically
large values for the turbulent kinematic viscosity. CFL number was equal to unity
from the beginning till the end of the simulations. Greater values for CFL number
could be used, but sometimes instabilities were produced. One Newton iteration was
applied at each pseudo-time step and the number of Jacobi iterations for the solution
of the linear system was equal to three. The time step was equal to 0.01 seconds and
distance from the solid walls for the wall functions was equal to 0.01. More pseudo-
time steps were needed for the convergence in pseudo-time for casel. All simulations

were run in parallel.

The computing domain was composed of 481950 nodes and 449000 hexahedrons
when standard k-¢ turbulence model with wall functions was used (figure 6-4). The
first layer thickness was approximately equal to 0.01. When low-Re k- SST was
used the computing mesh was composed of 1094252 nodes and 1075400 hexahedrons
(figure 6-5). The first layer thickness was of the order of 10™ and the growing factor

equal to 1.2. Both computing meshes were denser near the heat source.
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Figure 6-4. Numerical mesh used for the standard k-¢ turbulence model with wall functions
simulations. Section y=2.7m near the vicinity of the heat source (top). Cross section x=60m

(bottom).

Figure 6-5. Numerical mesh used for the low-Re k-@ SST simulations. Section y=2.7m near

the vicinity of the heat source (top). Cross section x=60m (bottom).

6.4 Results without radiation and wall conduction
6.4.1 Transient results

When no concentrations of smoke are calculated and radiative heat transfer is not
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considered, it could be assumed that smoke movement is analogous to the temperature
field. In figure 6-6 and figure 6-7 the evolution of the flame and temperature field for
casel and case 2 respectively for the first 10 seconds are presented. It is obvious that

the predicted smoke movement through time by the two turbulence models is similar.
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b »
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Figure 6-6. Temperature isolines through time for case 1. a) standard k-¢ at 0.5s, b) low-Re k-
o SST at 0.5s, ¢) standard k-¢ at 2s, d) low-Re k- SST at 2s, e) standard k-¢ at 5s, f) low-Re
k-o SST at 5s, g) standard k-¢ at 10s and h) low-Re k- SST at 10s.
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Figure 6-7. Temperature isolines through time for case 2. a) standard k-¢ at 0.5s, b) low-Re k-
o SST at 0.5s, ¢) standard k-¢ at 2s, d) low-Re k- SST at 2s, ¢) standard k-¢ at 5s, f) low-Re
k-o SST at 5s, g) standard k-¢ at 10s and h) low-Re k- SST at 10s.
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In a tunnel fire case surrounding medium (air and smoke) in the vicinity of the heat
source is heated and raises up till the ceiling of the tunnel. Then having reached the
ceiling moves to the side walls and along the ceiling to the tunnel exit and the tunnel
inlet forming the back-layering length. Reaching the side walls, smoke moves
downward to the ground. In figure 6-8 and figure 6-9 velocity vectors predicted by
both turbulence models are given at characteristic sections and moments. Velocity
vectors reveal smoke movement. It is obvious that smoke requires less that 1s to reach
the ceiling and less than 5s (~2s) to reach the side wall for both cases. Similar flow

patterns were predicted by both turbulence models.
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Figure 6-8. Velocity vectors at characteristic sections and moments for case 1 predicted by the
standard k-¢ model (left column) and the low-Re k-o SST model (right column). Section
y=2.7m near the heat source at 0.5s (top row), cross section x=60m at 1s (middle row) and

cross section x=60m at 5s (bottom row).
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Figure 6-9. Velocity vectors at characteristic sections and moments for case 2 predicted by the
standard k-¢ model (left column) and the low-Re k-o SST model (right column). Section
y=2.7m near the heat source at 0.5s (top row), cross section x=62m at 1s (middle row) and

cross section x=62m at 5s (bottom row).

In figure 6-10 we present the predicted, using both turbulence models, temperature
vertical profiles at 18m and 30m downstream from the heat source for case 2, twenty
seconds after fire breaking. Small differences (less than 6%) are observed for the

vertical temperature profiles.
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Figure 6-10. Vertical temperature profiles at a distance of 18m (top) and 30m (bottom)

downstream from the heat source for case 2, twenty seconds after fire breaking.

6.4.2. Steady state results

Gao et al. [Gao04] claim that flame shape is defined by the maximum temperature
gradients. In the literature many definitions for the flame angle have been found
[And06]. In figure 6-11 and figure 6-12 flame shapes and the definition used for the
calculation of the flame angle are given. Flame angle f3; is defined by the vertical line
passing through the core of the heat source and the line connecting the core of the heat

source with the upper point of the flame. In the same figures temperature fields in the
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vicinity of the heat source are compared to those predicted by Ansys Fluent. The
greatest temperature values, flame shapes, flame angles and back-layering length
seem to agree satisfactorily. Flame angles and back-layering lengths predicted by our
solver and Ansys Fluent are given in table 6-3. It is evident that the back-flow is less
and flame tilt greater for higher ventilation velocities. The time needed for the smoke
front to reach the steady state back-layering length was about 50s and 15s for case 1

and case 2 respectively.

Figure 6-11. Flame shape comparison for casel. Present solver with the k- model (top),

Ansys Fluent with the k-¢ model (bottom).
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Figure 6-12. Flame shape comparison for case2. Present solver with the k-¢ model (top),

Ansys Fluent with k-¢ model (bottom). Definition of the flame angle.

Case Solver Flame angle (°) Back-layering length (m)
Present solver 8 till entrance
! Ansys Fluent 9 till entrance
Present solver 58 3.2
? Ansys Fluent 58 3.7

Table 6-3. Calculated flame angle and back-layering lenght.

Radiation plays a significant role in a case of fire in a tunnel. The fraction of the heat
release from a heat source in a tunnel fire in form of radiation is in the order of 20%
to 50% ([Bet01], [Gra98], [Hos08]) or even larger. However, the solution of the
radiative heat transfer equation is time consuming because a great number of radiation
intensities have to be calculated at each computational node. Consequently, heat
transfer due to radiation is often not taken into account, or the assumed amount of

radiation loss is subtracted from the heat release rate [Koz09].
In figure 6-13 temperature profiles are given 18m and 40m downstream from the heat
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source. Greater values for the temperature are computed compared to the
experimental values of Fletcher et al. [Fle94]. This discrepancy is attributed to the
omission of radiation modeling, according to the aforementioned role of radiation,
and the omission of heat conduction inside tunnel walls. However, the curves

€ 9
S

calculated are of the same form. Temperature increases with increasing height and

reaches its maximum values inside the smoke plume.
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Figure 6-13. Comparison of temperature profiles alogn height when steady state was reached.

Casel(top) and case2 (bottom).

Velocity vectors for case 2 with the standard k-¢ model when steady state was

achieved are presented in figure 6-14. The stagnation point which define the back-
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layering length is marked with a red circle.

el T
s L I
- 4 e T e el s s .

T o et i et s g

L N B —

e — —— " T —
e ek e iy D R S e e el et et — 5.

— ot =y

Figure 6-14. Velocity vectors at section y=2.7m and stagnation point (red circle).

6.5 Simulation with radiation

Having simulated cases without taking into account radiation and conduction, we
proceeded to the solution of the second case with the radiative heat transfer.
Turbulence was modeled using the standard k-¢ turbulence model with wall functions,
because the numerical mesh needed from the low-Re k- SST model was
prohibitively dense. The simulation of the cases with the radiation modeling provides
us the opportunity to compare the results of both approaches and draw conclusions on

the necessity of radiation modeling.

The numerical mesh used was much coarser because of the huge computational cost

of radiation modeling. It consisted of 64350 nodes and 56000 hexahedrons.

6.5.1 Independence from the angular discretization

Before proceeding to the simulation of the tunnel fires with the radiative heat transfer
we should have selected a number of control angles. Therefore, we studied the
independency of the solution from the angular discretization for three sets of control
angles (8x4, 16x8, 32x16 azimuthal x polar angles). Sets of control angles were
selected so as not to give control angle overlapping with the faces of the hexahedral
numerical mesh. In the case of control angle overlapping, pixelation method would

have to be adopted augmenting the computational load.
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The quantities coming from the solution of the Radiative Transfer Equation (RTE)

which  affect the temperature field are the radiative divergence

4
VQ, = Tl T* +1| - j Idw | and the radiative heat flux at walls Q, = L I ldo.
PI| |\ T, 5 PL;

Both quantities are calculated in the radiation subroutine of the code and then they are

divided by Reynolds and Prandtl numbers to form the source term of the energy

equation VQ, (equation 2-56) and the heat fluxes

Re Pr

q, dtror_11 Q,; (equation 2-50 without taking into account the

j=Re Pr axj _EE

contribution of turbulence).

The study for the independence of the solution from the angular discretization was
conducted in the coarse mesh. For this numerical mesh case 2 without radiation was
simulated till the 5™ second. Then, for the developed temperature field the source term

and the radiative heat flux were calculated.

1 :
In figure 6-15 source term ﬁVQr is presented along the length of the tunnel for
e Pr

y=2.7m and z=0.165m (half of the heat source height). In figure 6-16 radiative heat
flux q, is given along the length of the tunnel for y=2.7m and z=2.4m (ceiling of the

tunnel). We observe that the source term is approximately equal for the three sets of
control angles but there are differences for the radiative heat flux for x being between
57.5m and 67.5m. Since differences for the radiative heat flux are not extremely large
and for computational load reasons the set of 8 azimuthal and 4 polar control angles

was selected.
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Figure 6-15. Source term 1 VQ. along the length of the tunnel for y=2.7m and z=0.165m
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Figure 6-16. Radiative heat flux ¢, along the length of the tunnel for y=2.7m and z=2.4m

(ceiling of the tunnel).
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6.5.2 Radiative transfer equation solution

When radiation was taken into account, emissivity of the walls was equal to unity
because all walls had been blackened, before the experimental investigation [Fle94].
Medium was assumed to be gray absorbing and emitting but non-scattering.
Absorption coefficient was equal to unity [Sel2]. Scattering effect due to soot
particles was neglected because of their smaller size compared with the thermal
radiation wavelength. When water mist suppression systems are applied scattering of

radiation by water droplets cannot be neglected [Hos08].

Inlet and outlet of the tunnel are treated as black walls, where the incoming intensity
is the black body intensity of the ambient temperature. As initial condition for

radiation intensity, it was set equal to the black-body intensity.

As it was mentioned before, the solution of the radiative transfer equation (RTE) is
quite computationally demanding. Therefore, it is a common practice to solve the
RTE only every N iteration. For example SOFIE solves the RTE every 10 internal
iterations, while FDS solves the RTE every 3™ time step and only for a subset of the
directions [Hos08]. In our tunnel fire simulations the RTE was solved every N™
pseudo-time iteration. For the first 2 seconds (before high temperatures reach the
upper and side walls of the tunnel) the RTE was solved at each pseudo-time step. The
first 2 seconds showed to be quite crucial. Afterwards, the RTE was solved every N=3
pseudo-time steps in order to speed-up the solution. For every N pseudo-time step,
only one iteration of the RTE was performed. The value of the parameter c, of
equation 3-60, that controls the pseudo-time step for the RTE was increasing from

0.05 to 0.2 with a linear rate.

The second order spatial scheme combined with the Min-Mod limiter was applied for

the reconstruction of the radiation intensities.

6.5.3 Results with radiation

In figure 6-17 temperature profiles are given 18m and 40m downstream from the heat
source, this time taking into account radiation. At the same figure the numerical

results of Miloua et al. [Mill1] and the experimental results of Fletcher et al. [Fle94]
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are also given. Although smaller temperature values from the simulations without the
radiation have been calculated, they are still greater compared to the results of Miloua
et al. and Fletcher et al. This discrepancy is attributed to the omission of heat
conduction inside tunnel's walls. To support this opinion in figure 6-18 we present the
temperature profiles for a tunnel fire case that was simulated by Miloua et al.
Temperature profiles are calculated either for adiabatic walls or for conductive walls.
It is evident that for the adiabatic boundary conditions the profiles are shifted to

greater temperatures, but keep their form.
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Figure 6-17. Comparison of temperature profiles alogn height when radiation is taken into
account with the numerical results of Miloua et al. [Mill1] and the experimetnal results of

Fletcher et al. [Fle94].
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Figure 6-18. Temperature profiles alogn height calculated for adiabatic and conductive walls

[Mill1].

6.6 Wall heat conduction

As it was presented in the previous subsection, the omission of wall heat conduction
results in great values for temperature inside the tunnel. Therefore, a more realistic
simulation demands the development and incorporation into the solver of a wall heat

conduction model.

For simplicity and computational time reasons an one dimensional (1-D) wall heat
conduction model have been developed. The equation that describes the wall heat

conduction is the time dependent diffusion equation (in dimensional form):

oT _ 0 {LG_T} (6-1)

where ki, p and C, are the heat conduction, density and the specific heat at constant
pressure of the wall. This equation is the energy equation (2-9) without the convection
term, the heat source term and the radiation source term. Moreover, in the viscous

term the eddy viscosity has been removed.

The 1-D version of equation (6-1) is:

oT _ 0 {La_T} (6-2)

o on|pC, on
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where n is the normal to the wall direction.

When wall properties are assumed to be constant, equation (6-2) becomes:

2
6_T: K, 6{ (6-3)
ot pC, on
which in dimensionless form is:
oT o°T
—=Fo 6-4
ot on’ (6-4)

to . . k, . o e s
where Fo = % is the Fourier number and o = é is the thermal diffusivity of the
ref p p

wall.

The second spatial derivative of temperature was numerically approximated using

finite differences on generally non-uniform 1-D grid:

T _2An T, —2(An_ +An,)T +2AnT,, 6-5)
on’ J; B An’An_, + An’ An,
For a uniform grid (An, = An,_, ) equation (6-5) turns to:
2 T, —-2T.+T
a_T — i+l 12 i1 (6-6)
on’ ), An;

which is the well known expression with central differences and accuracy of second

order (O( An?)).
The time derivative of temperature is numerically approximated as:

aT B TinJrl _ Tin

— 6-7
ot At (6-7)

Then, according to the Crank-Nicolson scheme (combination of forward Euler-

explicit scheme and backward Euler-implicit scheme) [Hir88] equation (6-4) in

discretized form is:
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i+1 i+l

At An’An_, + An’ An, An’An_, + An’ An,
(6-8)
or
AT + BT" +CT' =R (6-9)
where
A = —FoAtAn, (6-10)
B =D + FoAtAn, | + FoAtAn, (6-11)
C=-FoAtAn, (6-12)
D =An’An_, +An’ An,, (6-13)
R =DT + FoAtAn_, T, — FoAt(An, , + An;) T + FoAtAn, T, (6-14)

Equation (6-9) expresses a tridiagonal system. For the closure of the system of
equations, boundary conditions need to be implemented in the first and last nodes
normal to the wall. For the first node (i=1) the temperature is equal to the wall
temperature coming from the flow solver. For the last node (i=N) temperature is equal

to the temperature of the previous node (T, =T, ), which corresponds to an

adiabatic boundary condition. The system was solved according to Thomas algorithm

for tridiagonal systems [Ap103].

For the coupling of the wall conduction to the rest of the solver the conductive heat

flux was taken into account in the fluid-solid interface:

oT oT,
kt,s Es = kt,f 8_1': + qrad (6_15)

Index s is for solid and f for fluid.

1-D wall conduction for each boundary wall node was solved implicitly at each
pseudo-time step. The solver was calculating the wall temperature for the wall
conduction problem and the wall conduction model was giving the conductive heat

flux to the solver.
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6.6.1 Results with wall heat conduction and radiation

We did not found sufficient data for the surrounding wall of the under consideration
tunnel. Then, we assumed thickness of the wall equal to 1.5m, thermal conductivity
equal to 0.1W/(mK), density equal to 1750kg/m® and specific heat at constant
pressure equal to 960J/(kgK). The 1-D grid that was used was denser near the fluid-
solid interface. It should be noted that the assumed thickness of the wall was adequate
so that the exterior wall thermal boundary condition has negligible influence on the

flow solver.

In figure 6-19 we present temperature profiles at 18m and 40m downstream from the
heat source, when radiation and wall heat conduction were taken into account
concurrently. At the same figure the numerical results of Miloua et al. [Mill1] and the
experimental results of Fletcher et al. [Fle94] are also given. As expected, temperature
profiles are shifted to lower values compared to those estimated for the adiabatic
boundary condition with the radiation only taken into account. With the heat

conduction our results agree to a better degree to the experimental ones.
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Figure 6-19. Comparison of temperature profiles alogn height when radiation and wall heat
conduction are taken into account with the numerical results of Miloua et al. [Mil11] and the

experimental results of Fletcher et al. [Fle94].
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CHAPTER 7

RECAPITULATION, CONCLUSIONS AND
FUTURE WORK

In the final chapter of the thesis we recapitulate in brief the work presented in the
previous chapters. The conclusions coming from our research and its contribution
with the innovative elements are presented. Finally, some thoughts for the

improvement and extension of the present methodology are given.

7.1. Recapitulation and conclusions

In this dissertation combined flow and heat transfer was studied through the
development of a methodology into computational code. The same code could be
used for the prediction of concentrations, rather than temperatures. With slight
modifications the prediction of both temperature and concentration fields would be

able.

Firstly, a brief description and some examples of all the modes of heat transfer were
given in order to introduce the unskilled reader and explain some terms that were used
systematically in the dissertation. Then, various approaches and studies from the
literature for the discretization of the mean flow equations (continuity, momentum

and energy equations) and the prediction of the radiative heat transfer were presented.

Our flow solver is used for the simulation of two-dimensional or three-dimensional,
steady or unsteady, incompressible, laminar or turbulent flows of a viscous and
Newtonian fluid. It applies a node-centered finite volume discretization technique
appropriate for the integration of all mean flow equations in the same mesh and
utilizes an edge-based and transparent approach on hybrid numerical meshes. For the
necessary pressure and velocity coupling the artificial compressibility approach is

applied which transforms the system of conservation laws from parabolic/elliptic to
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hyperbolic/parabolic and because of this allows treatment similar to compressible
flow equations. Therefore, for the evaluation of the inviscid fluxes a Roe's
approximate Riemann solver was developed. For the viscous fluxes a CPU-time
efficient central scheme was used. It had been developed for the continuity and
momentum equations and applied for the energy equation successfully. For the
integration of the source terms we assumed that their value inside the control volume
of a node was homogeneous and equal to the value at the node. Temporal accuracy
was achieved by an implicit dual time stepping scheme for the pseudo-time and

physical-time marching. All mean flow equations are strongly coupled.

For the prediction of the buoyant flows, density differences due to temperature

differences are simulated according to the Boussinesq approximation.

For the turbulent flows two widely applied RANS models were used; the k- SST
model using either wall functions or not and the high-Re standard k-¢ model. Mean
flow equations and turbulence equations are loosely coupled. Mean flow equations are
firstly solved and give to the turbulence equations the velocity field and turbulence
equations are sequentially integrated and give the eddy kinematic viscosity to the
mean flow equations. The loose coupling of the turbulence equations was preferred
because it is easier in programming terms and makes easier the introduction of new
turbulence models. Additionally, the strongly coupled solution of mean flow and

turbulence equations is not widely accepted in the literature to perform better.

The strongly coupled solution of the mean flow equations was selected after a
comparison with the loosely coupled solution. The strongly coupled solution of the
mean flow equations means that all equations are solved simultaneously with all the
dependent variables at each Newton step alive. When the loosely coupled solution of
the mean flow equations is applied, continuity and momentum equations are firstly
solved with the temperature field fixed. Then, the energy equation is solved with the
velocity field fixed. This procedure is repeated until convergence in pseudo-time is
achieved. Inviscid fluxes were calculated using the Roe's approximate Riemann solver
when mean flow equations were strongly coupled and the IFUS upwind scheme when
they were loosely coupled. The comparison of the coupling methods was conducted
for the cases of natural convection in square and cubic cavities. The comparison

concluded to the superiority of the strongly coupled solution. Strongly coupled
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solution showed faster convergence when inviscid effects becoming larger. It let as
use greater CFL numbers decreasing the time needed for the convergence in pseudo-
time. One more advantage of the strongly coupled solution to the loosely coupled one
is that it leads to convergence for coarser numerical meshes. Generally, the strongly
coupled solution combined with the Roe's approximate Riemann solver showed
superiority regarding the convergence behavior and stability. Therefore, we adopted
the strongly coupled solution of the mean flow equations and the Roe's approximate

Riemann solver for the evaluation of the inviscid fluxes.

For the reconstruction of the dependent variables necessary for the inviscid fluxes
calculation higher order schemes were applied. The effect of the usage of slope
limiters was also studied. The slope limiters tested were the van Albada-van Leer and
Min-Mod limiters and were applied combined with the second order reconstruction
scheme. Slope limiters stalled the convergence to a certain degree and corrections
performed oscillations. However, the second order reconstruction scheme without
slope limiters led the convergence to machine zero. The steady state results coming
from the usage of slope limiters or not were approximately the same. Slope limiters
were also applied on the tunnel fire cases for the reconstruction of the mean flow
dependent variables without auxiliary effects. Therefore, slope limiters were removed

as a choice for the reconstruction of the mean flow dependent variables.

Moreover, for the treatment of the small unrealistic under-predictions of the
temperature calculated in the cases of tunnel fires, we applied and compared two
schemes. They did not presented significant differences in their results. Then the
simplest of them was finally adopted for the preservation of temperatures greater or
equal to the ambient temperature. According to this, we check for temperatures
smaller than the ambient temperature after each Newton step performing a "do loop"
for the nodes. If temperatures smaller than the ambient one are found we replace them

with the temperature value at the previous Newton step.

For the radiative heat transfer two methods were applied. The first one was an
analytical view factor based model that uses algebraic equations. It is applicable in
building and tunnels with high wall emissivities, limited number of reflections among
walls and non-participating medium. For the calculation of the view factors algebraic

equations appropriate for the boundary faces of a Cartesian mesh were used. Although
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this method was easily programmed, it showed to be costly in terms of both

computational time and storage when applied with the serial solver.

The second method was a node-centered finite volume method, applicable for gray
absorbing, emitting and scattering (either isotropically or anisotropically) mediums. It
applies an edge-based algorithm for hybrid meshes making it compatible with our
flow solver. It is a second order spatial and temporal scheme and for the avoidance of
under-predictions or over-predictions of the radiation intensity one of the limiters
Min-Mod and Van Albada-Van Leer could be used. The application of slope limiters
for the radiation intensity did not show to significantly influence the steady state
solutions but still constitute a choice. If negative radiative intensities are calculated a
fix-up procedure is used and these are set equal to zero. The angular discretization is

achieved by equally dividing the 4x steradians into NgxN, directions.

After the presentation of the numerical methodology and all of its aspects, some
representative benchmark test cases were solved for the validation of the solver.
These cases were two-dimensional or three-dimensional, steady or unsteady, laminar
or turbulent, with the effect of radiation or not. A wide range of input parameters was

applied to test the general applicability of our solver.

Results were in good agreement to those presented by other researchers and generally
smooth contours were calculated for all the dependent variables, using any type of

numerical meshes, i.e. tetrahedral/hexahedral or hybrid.

Afterwards, we tested the performance of the parallel solver for various cases,
regarding the speed-up and efficiency. In the dissertation time consuming problems
were encountered and for their simulation parallel computing was necessary. The
most demanding simulations were those of the tunnel fire cases. Flows were turbulent
and radiation modeling using the finite volume method was applied. Satisfactory
speed-up of the simulations was achieved. For increasing computational load, speed-

up and efficiency were also increasing for the same number of processors.

Finally, after the wvalidation of our solver and the confirmation of the high
performance of the parallel solver we continued to the simulation of two fire cases in
a ventilated tunnel. Fire cases were simulated either taking into account radiation and

wall conduction or not. When radiation was not taken into account turbulence had
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been modeled using the standard k-¢ model with wall functions and the low-Re k-®

SST model. Our results were compared to the results of the commercial package

Ansys Fluent. The standard k-¢ model was applied when radiation and wall

conduction were taken into account. Radiation and wall conduction modeling showed

to be necessary for the prediction of realistic temperature fields.

Below the innovative elements of the thesis from the most important to the less

important are listed:

An upwind method based on Roe's approximate Riemann scheme was
developed from scratch for the calculation of the inviscid fluxes of the mean
flow equations both in two-dimensions and three-dimensions. Roe's
approximate Riemann solver as an upwind scheme relieves us from artificial
dissipation which is necessary for the centered schemes. Upwind schemes
introduce artificial dissipation implicitly. Roe's approximate Riemann solver
combined with the strongly coupled solution of the equations showed to

constitute a robust scheme.

A comparison between the strongly coupled solution and loosely coupled
solution of the mean flow equations was conducted, which to the best of our
knowledge has not been presented in the literature before. Strongly coupled
solution showed superiority compared to the loosely coupled one. It showed
faster convergence for large inviscid effects. It let us use greater CFL numbers
decreasing the time needed for the convergence in pseudo-time. Finally, it led
to convergence for coarser numerical meshes compared to the loosely coupled

solution.

For the viscous fluxes a CPU-time efficient central scheme was used, which
had been developed for the continuity and momentum equations and applied

for the energy equation successfully.

Tunnel fire cases were simulated using the new finite volume radiation model
and the 1-D wall conduction model. They produced more realistic temperature

profiles downstream from the heat source compared to the simulation of the
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tunnel fire cases without them.

7.2. Future work

In this subsection some thoughts for the improvement and the further extension of the

methodology are given:

As it was mentioned energy equation, which is a transport equation, is
introduced into the code in two modes. It is either strongly coupled or loosely
coupled to the other equations. One more transport equation for the calculation
of smoke concentration could be introduced in a way similar to the loosely
coupled technique. Having calculated smoke concentration in space and time,
we could use pseudo-gray formulas for the absorption coefficient in tunnel fire

casces.

Moreover, a more exact model for the heat conduction through walls could be
developed. The current solver could be used for the calculation of wall
temperatures with the appropriate boundary condition in the interface between
fluid and solid, but it does not constitute the most computationally efficient
approach. One more alternative is the solution of only the energy equation
inside the wall. A two-dimensional finite element solver have been developed
and could be extended in three-dimensions. Then, they could be incorporated
in the flow solver for the calculation of heat conduction both in two-

dimensions and three-dimensions.

The finite volume radiation solver could be modified for non-gray media.
Many works have been presented in the literature for non-gray media

modeling.

Schemes like the FT, for a better distribution of the angular discretization and
a technique for the solution of the radiative transfer equation for a subset of

direction could be adopted.
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Publications

Finally, the publications that were written on the subject of the dissertation during this

period are given:

» Stokos K.G., Vrahliotis S.I, Pappou Th.I. and Tsangaris S., “Development and
validation of a 3-D Navier-Stokes solver including heat transfer and natural
convection”, 5" International Conference from Scientific Computing to

Computational Engineering, Athens, Greece, 4-7 July, 2012.

» Stokos K.G., Vrahliotis S.I, Pappou Th.I. and Tsangaris S., “Development
and validation of a Navier-Stokes solver including heat transfer and mixed
convection”, 10" HSTAM International Congress on Mechanics, Chania,

Greece, 25-27 May, 2013.

* Stokos K.G., Vrahliotis S.I, Pappou Th.l., Filus M. and Tsangaris S.,
“Numerical study of a ventilated tunnel fire. A turbulence models

comparison”, 10" HSTAM International Congress on Mechanics, Chania,

Greece, 25-27 May, 2013.

*  Stokos K.G., Vrahliotis S.I, Pappou Th.l. and Tsangaris S., “Development
and validation of an incompressible Navier-Stokes solver including convective
heat transfer”, International Journal of Numerical Methods for Heat and Fluid

Flow, Accepted.

* Stokos K.G., Vrahliotis S.I, Pappou Th.I. and Tsangaris S., “Numerical study
of a ventilated tunnel fire. A turbulence models comparison”, Cogent

Engineering, Accepted.

The following diploma theses that were conducted in the Biofluid Mechanics and

Biomedical Engineering laboratory of Fluids Section were quite auxiliary:

o  AleBifoc Oeddmpog, "YTOAOYIGTIKY] HEAETN NG Kivnong Komvoy Katd TNV
ekdnAwon moupkayldg oe agpiopevn onpayya, Authopatiky Epyacia, EOvikd
Metoofio TToivteyveio, 2011.

e  Awpovtidng Ilepudng, "YTOAOYIOTIK TPOGOUOIMOT TUPKOAYIG EVIOC
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aepllopevng  onpayyag  Kavovtog  ypnon  Hoviélov  aktivoPoAiac",

Aumhopatikny Epyoacio, EGvicé Metoopio [Toivteyveio, 2014.
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EKTENHX ITEPIAHYH

H ovyypaon tg mapovoag d1dakTopikng oatpiPng £xel yivel otV ayyAikn yAOcoo
KOl GUVOOEVETOL OO EKTEVY] TEPIANYN OTNV EAANVIKY] YADOGGA, N omoia. akoAovOel
mopokateo. H extevig mepiinyn neprhapfdverl ta kupidtepa onueio KOs kepaiaiov

Kot dgv pémel va BempnBel 6TL avtikab1oTd TO oy yAKo Keipevo.

Eniong, mpénet va avapepbel 0TL 6€ 0p1opéveg TEPTTAOCELS, EVVOIEG OV £lyav oploTel
oTNV ayYAKN] YADOGGO UETAPPACTNKAY KOTO TNV KPion TOL GLYYPOEEN KOl GTNV
ocuvéyew evtog mapevlécemg d0ONKe Kol 0 ayYAMKOG OPIGUOC TOVG. X& OPIGUEVES
TEPMTOGEIS LAAOTO TOV 1] EAANVIKT OTOS00T| OEV TPOGEPEPE KATL OVCIAGTIKO, Y10

TOPASELY L0 GE TEPUTTMCELS OVOUATOV HEBOOWV, dEV £YIvE LETAPPUGT).
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Kepdiaro 1
Ewoaymyn - Biploypo@ikn emokonnon

1.1 Evoayoym

YKOMOG TNG OLYKEKPWEVNS OWOKTOPIKNG OwtpPng Mrav m  avamtuén  pio
PN TIKNC-VTTOAOYIGTIKNG peBodoroyiag yio TNV TPOGOUOIMON YEVIKMG U1 LOVIL®V
pPO®V HE TOVTOYPOVN peTapopd Beppotroc. H petapopd Oeppotrog dev amoteAel
OTOKAEIGTIKA TNV oitio dnpovpyiag g pong. H pon pmopel vo mpoxkAnbei amd

Spopes AAAES autieg, OTMS 1) S1POPA THECTG.

H emomun ¢ petapopds Oeppomrog acyoieitor pe 1oV KoBopiopd Tov
Oepuokpociok®v medlov 6TO0 YDOPO KOl TO ¥POVO KOl TOL PLOUOD UETAPOPAS
Bepuomrag. Oepudmra givar n Lopen TS evépyelag mov umopet va petapepdel and
éva GUOTNUO 6€ GALO OOV OTOTEAEGUO TNG YWOPIKNG OeploKPUGLOKNG SopPOPAC
[Cen02]. H Ogeppokpociokr] o01popd omotedel v Kvntiplo dvvaun yio Tnv
petagopd Beppomtog ot o devtepog vOpog e Oeppodvvoptknig emPaier v
petagopd BeproTTOC OO CLOTAUATA VYNAOTEP®V OEPUOKPACLUDY GE GLGTNHOTA
YouNAOTEP®V BgpoKpacLdVY. Xe opodpopeo Beppokpactokd mtedia vapyel Oepikn
16oppoTic. XTOY0G TOV UNYOVIKOV OV OGYOAOVVTIOL HE TPOPANUOTO HETAPOPAS
Bepuomrag elvan gite va S1EVKOAHVOLV €iTe VL LEWOGOLY TN HETAPOPE BepproTnToC.
Yndpyovv tpeic tpdémol petapopds Bepudmrag mov pmopodv va  cvpPaivovv
tavtdypova 1 Oxt. Avtol givon  aywyn, N covaywyn kot n aktivoBoAiia. TapoakdTm
dtvetanr o ovvioun meprypagn Kobevdg amd TOVG TPES UNYOVIGUOVG UETOPOPAS

Bepuorag.

H petapopd Beppomrag Adym aywyng amodidetol 6T UIKPOGKOTIKN Kivnon Ttov
atopov 1 tov popiov. H ayoyn Aappdvel yopo ce OAeg TIC KATAGTACELS TNG VANG

(oteped, vypN Kot aéplaL).

H petagopd Beppomrag Ad0yw cuvaymyng eivor amotéAecpo NG HOKPOGKOTIKNG
Kivnong pevotov kot Oyl TG WMKPOCKOTIKNG Kivnong atdépmv 1 popiov, 1 omoia
vrdpyer tavtoypova. H ocvvaymyn yopiletor oe @uoikr] (erebBepn) ocvvaywyn,

e€avayKacuévn cuvaymyn kol WKty cvvaymyr. H ouown cvvaywmyn mpokodeitot
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oo TIC OVOOTIKES SVVALELS AOY® S10POPOV GTIS TUKVOTNTES OV TPOKAAOVVTAL OTd
dwpopés Beppokpaciav. H e&avaykaopévn covoywyn Aappavel xyodpa étav n kivnon
TOV PEVOTOV TPOEPYETOL OO eEMTEPIKA PEGH, OMMOC o PTEPOT M H aviAio. H
ocuvaywyn yopokmmpiletor ¢ KT OTOV  GULVUTAPYOLV 1 QUOIKN KOl T

e€OVAYKAGUEVT] GLVOYWOYT.

Oepukn| axtivoforio etvar ) gvépyela mov eknéumetar and copota pe Oeppoxpacio
LEYOADTEPN TOL OMOALTOV PUNOEVOG, LE TN HOPeN MAEKTpOUOYVNTIKOV Kupdtov. H
Oepukn  oktivoPorion  dapépel  amd TG GAAEG  HOPPEG  MAEKTPOUOYVNTIKNG
axtivoPoAiag mov PBpickovtal 610 NAEKTPOUAYVNTIKO GAcpa. To unkog kopatdg g

Kopaiveral amd 0,1um péyxpt 100pm.

H Beppukn axtivofolion dtapépet amd v ay®yn Kol TV cLvay®yr 6To OTL OgV
amorteitor  VmapEn Kdmolov vVAKoL pécov. Avtifétmg M Beppukn aktivoPoiia
eupaviCetoar oto kevd pe eviovotepo pvbud. IMaporlo mov m axtivoPfolrio €xet
peAietn0el og PaBog amd apKeETONG EPEVVNTEG, O UNYOVIGHOG TNG OEV €XEL YiVEL aKOUN
Tpwg kotavontdg [Pov03]. ‘Eva mapddetypo tov mog n Oepuuxn axtivoPfolrio
evepyel elvar 10 moapaxkdto: O NAMOC, pe TV €EAIPETIKO DYNAY EMQOAVEINKT TOL
Bepuokpacia (tepinov ion pe 6000 °C) Beppaiver T yn péow Oepuikng axtvoPoriog.
Xe (ol Kpoa pEPA, KAmolog 0 0moiog OTEKETOL KAT® amd TN oKLl £VOG GTEYAGTPOL
vidOetl 10 kpHo. Av Opmg petaktvnOel pakpid amd TN oKl Tov 6TEYASTPOL Ha VIdGEeL
mo (eotd. Qotdc0, eite Pploketon KAt amd TV okid €ite OxL 1 OTULOGPALIPIKN

Bepurokpaciao givor 1 dua.

H petapopd Beppomrog, dmwg kot 0Ao ta vrdiowmo TPOPANUOTO TNG UNYOVIKNG,
umopet vo peretn et mepapatikd, Oeopnrikd 1| vroroyiotikd. H mepopotikn perémn
napéxel aomaoto dedopéva, mov mepLopilovral Hovayo amd TO TEPUUATIKO GPAALLOL.
Qo1660, N TEPAUOTIKY HEAETN €lval GLYXVE OTOYOPELTIKY] AOY® TOL OOLTOVLEVOL
VYN0V  OKOVOUIKOD KOGTOLG Kol TOL YeYovotog OTL pmopel va eivor oA
ypovoBopoc. H Bewpntikn kot 1 vToAoyloTiKy Tpocéyyion eivatl Aydtepo axpiPég ko
EMTPEMOVV TN  HEAETN TANOOLG EVOALOKTIKOV TEPIMTMOGEMY HE KOATAAANAN
Tpomonoinot Tov povtédov. H duvatdtmra epappoyng toug mepropiletan povéyo amd
TIG TOPAOOYES OV €YOVUE KAVEL ZE aLTH TN OTpPn M HeETOPOopd BepudTnTog

HEAETATOL LEGM TNG AVATTLENG KO EPOPLOYNG UG VTTOAOYIGTIKNG peBodoroyiag.
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1.2 Movtehomoinon g svuvaymyng

H petagpopd Beppomrag pe cvvaymyn elvar koplopyn Kot LEAETATOL GE TOKIAM
TPOKTIKE TPOPANUATO UNYXOVIKNG, OT®G 1 YOEN NAEKTpOVIKGOV KukAmpdtwv (chip)
[Xiel4], n oyediaon evarloktov Oeppomtag [Alil4] kot 1 Tpocopoimon TuPKAyLHV
oe onpayyes [Stol3al. Znuepa, pe ™ peydAn mpdodo mov £xel GLVIEAEGTEL GTO YDPO
NG EMOTNUNG TOV VIOAOYIGTAOV, 1| YoAoylotikn Pevotoduvapikr| (YP) éxet yivet éva

TOAD YPNGLO EPYOAELD Y10 TNV TPOGOUOIMOT TETOIWV TEPIMTMOCEWDV.

[ToAréc apBuntikég peAéteg éxovv omuootevtel ot PifAoypagio move oty
avamTuEn ETAVTOV Y10 TNV TPOGOUOI®moN TPOPANUATOV UETAPOPAS BepuodTNTOS pE
ocuvayoyn. Ot Hortmann et al. [Hor90] gpdppocav po péBodo acbevovg oulevéng,
Bacilopevn otov aiyopiBpo SIMPLE ywa v mpdPreyn e aveooTikng porg £viOg
TETPOYOVIKNG kowdmrtog. H olOykiion omv aveEdptmtn omd 10 mAéypo Avon
emTevyOnNKe PEC® TEYVIKNG TOAVTAEYHOTOC pe peydAn axpifewa. Or Malan et al.
([Mal02a], [Mal02b]) avémtvéav ko €AeyEov o TEMEPACUEVOV YKV HEB0DO,
Baclopevn omv mPOGEYYION TG TEYVNTNG CLUTIEGTOTNTOS YO TNV EMIALCY TNG
OTPOTNG 1600EPLOKPACIOKNG 1| UN-1C00EPLOKPAGIOKNG PONG GLVEKTIKOD PEVGTOV
xpNoLonotmvtag VP TAsypata. H mpotetvopevn pnébodog toug £0eiée axpifeta
Kot evpwaotio (robustness) oe poég peyahov evpovg mapapétpmv. Ot Liu et al. [Liu03]
mopovciocay o T€Taptng TééEng nEBodo menepacUEVOV dopop®dV Yo TV TPoPAeyn

2-A avootik®v podv. H avoon eAqebn vtoyn péco g npocéyyiong Boussinesq.

[Mopakdto dlvetar o cvvroun meptypagn daeopmv Bepdtov mov a@opodv otV
avAmTLEN €VOG OGVLUTIESTOL EMAVTN MEPUTTOCEMV UETAPOPES OepuodTnTog e
oLVAYMYT, Y10 VO KOTOANEOVUE GTN GLVEXELWD OTO PACTKE YOPOKTNPICTIKA TNG KNG

LLOG VTOAOYIGTIKNG HEBOOOV.

H dvokoMa pe T acvumieoteg poég eivar ot ovlevén tov mediov mEcEDY Kot
TOYVTNTOV KATd TV d1dpKelo TG apOuntikng entivonge. o avty ™ ovlevén Exovv
avantuyfel apketég teyvikég [Lak91]. O mepiocdtepo dradedopéves mpooeyyicels
etvar M pébodog 016pBwong g mieong (pressure correction method) mov
napovoldotke omd tovg Harlow & Welch [Har65] wor m péBodog texvnmtig
ovumieototntog (artificial compressibility method) mov mapovcidotnke amd ToOVv
Chorin [Cho67]. M evoeheyng olOykpion petald avtdv tov dvo peboddwv E£xet

napovclootel and tovg Tamamidis et al. [Tam96]. Zopewva pe avt) v €pgvva, T0
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O EAKLOTIKO YOPOKINPIOTIKO TNG HeBOOOL TEYVNTNG OCLUMIECTOTNTOG &ivar M
YPNYOPOTEPT GUYKAMON, KOOMG Ol €S1GMOELS GLVEXEWS Kol OpPUNG €lval TANP®G

MEMAEYUEVEG KT TNV EM{AVOT) TOLG.

fuepa, To VPP TAEypata xpnopomolovvtol evpéms ([And95], [Has00], [Kal05],
[Vral2], [Stol2], [Stol3b]). Ta vPpwdwd aplBunTiKd TAEYHOTOH WHITOPOLV VO
oLVOLACOVY TNV KOAN OlOKPLTOMOINGT TV TEPOYDOV KOVIQ OTO TOUYDOUOTO
YPNOYLOTOIOVTAG GTOXELD SOUNUEVOL TAEYHOTOS Hall Pe TN YEMUETPIKY gveMEla TV
OTOWYEI®V TOV UN-00UNUEVOV TAEYUATOV. ¢ €K TOVTOV, UTOPOVV VO 0ONYHGOVV GE
ONUOVTIKY] Owovopio omd TAELPAS UVIAUNG KOl VTOAOYIGTIKOD YPOVOL  UE

KOVOTIOMTIKOL OTOTEAEG LLATOL.

O d1kdg pog emAvG Paciletal o po TEnEPAGHEVOV OYKOV TEXVIKN Le amobnkevon
TOV PETAPANTOV eTAVONG 6TOVG KOUPOVS TOL TAEYUATOS (KEVTIPOKOUPIKO GYNLL0L) Kot
ePapuolel TNV TPOGEYYION TEYVNTNG CLUMIECTOTNTOS YO TNV omontoVpeVT) cVLeVEn
TEGEMV Kol ToyLuTNTOV. Xpnotwomotel po axpoPacikn (edge based) mpocéyyion og
VPPOIKE apOuNTIKA TAEYHOTO TOL TEPEXOVV TPIy®VA KOl TETPATAELPO GTN 2-A
€kdoom 1oL KMOWO Ko e£dedpa, mpiopaTa, TETPAEdpO Kol mupapides oty 3-A
ékdoon. Ot petaforéc g mukvotrag Adym Tev petofoAdv g OBepuokpaciog
Aappavovtar voym oy €£IGMOM TG OPUNG LEG® TNG TPOcEyYiong Tov Boussinesq

(Boussinesq approximation).

AdBnke mpocoyn otV 1oyvpn ovlevén TV eEl0MCEMY HEGNG PONG KOl GTNV
avAmTLEN EVOG ATOJOTIKOD OVAVTY GYNLLATOS Y10 TOV VITOAOYIGUO TMV UN-GUVEKTIKMOV
Opav. Ot €£160GEG GLVEYELNG KOL OPUNG ETMAVOVIOL TOVTOYPOVO LE TNV EVEPYELOKN
eflomwon odnNydviag oty  Tavtdypovi) GOYKAoN TG Pong Kot Tov  7ediov
Oepurokpacidv. 'Evoc mpooeyyiotikog Riemann gmdvtng tov Roe (Roe's approximate
Riemann solver) avomtoyOnke yio v ekTiunon ToV pn-cuvektikadv opwv. [a
JKPITOTOINGT TOV GLVEKTIK®OV Op®V XPNCLOTOMONKE £€va 0modoTIKO Omd Amoym
rpoévouv CPU kevipikd oynua. Ot adyopifpotl mov ypnoioromonkay yor v Yopikn
KOl ¥POVIKY| dtokprtonoinon twv eflomoemv NTav dapoveic oto mAéyuo (mesh

transparent).
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1.3 Movtehomoinon g Oeppikig axtivoporiog

H petapopd Beppomrog Aoym axtivoPforicg eivar mapovoa ce mANO0C TPAKTIKOV
TPOPANUATOV TOL pNYoviKov Kot givor amapaitmto va Aappdvetor vwoyn Otav M
mocotnta Q. =o(T: —TL ) (o givar n otabepd tov Stefan Boltzmann) eivon

rad ax

oLYKpicuN pe TN pon BeprdTTag LE aywyn Kot GuVAY®YN 6TO 1010 TPOPAN L.

Mo v vroloylotiky| mpocopoimon ¢ petagopds Oeppomtog Aoywm aktivoBoliog
éxel mpotabel mANBog peBodwV. Avtég Kuplwg katnyoptomolovvial 6e pLeBdGO0VG TOL
Bacilovtal otovg Yoviakohg mapdyovteg kot e pnebddovg pong (flux methods). Ot
TEAELTALEG OTTAUTOVY TNV IKOVOTOINGT TOV VOLOL Ol0THPNOTG TNG OKTIVOBOAOVUEVNS
EVEPYELNG 0E KAOE OYKO EAEYYOV, LLE TAPOUOLO TPOTO LE TIG OAOKANP®TIKES HEBOSOVG

NG VTOAOYIGTIKNG PEVCTOSVVOLUIKTG.

1.3.1 M£00d01 YOVIOK®V TOPAYOVT®OV

H mpot pnébodog mov PBacif{dtav 6Tov VTOAOYIGUE TOV YOVIONKOV TOPayOVI®OV Vol 1
nébodoc Hottel (Hottel's zone method) [Hot67]. Metd ™ yopwkn dtakpitomoinon tov
VTOAOYIGTIKOV ®Piov, amotTeiTol 0 VTOAOYIGUOG TOV YOVIOK®OV Topayoviov. [evikd,
0 VTOAOYIGUOG TMV YOVIOKAOV TOPAYOVIOV €IVOL VTOAOYIGTIKA  OTTOLTNTIKOC.
2VYKEKPUEVO, O XPOVOG OV YPELELETAL Y10 TOV VTOAOYIGHO TOVS avEAVEL EKOETIKG LE
ToV aplOpd TV oplak®dv edpdv. Avtd to Yeyovog kdvet T nébodo Hottel axatdAinin
Y. moAvddoToTo TPOoPANHata, TopOAO TOV Ol yoviekol moapdyovieg eivor
YEMUETPIKES TOCOTNTEG Kot LoAoyilovtal por eopd mpwv TN PAcIK VTOAOYIGTIKN
pebodoroyia. Ztn Piprloypapia £xovv Ppebel opiopéveg avalvTikéG EKQPACELS Yo
TOVG YoViokoOs mapdyovies petabd emoeovelidv ([Gro81], [Mod03]). H pébodoc
Monte Carlo eionyfn cov péBodog Yo TOV VTOAOYIGUO YOVIOKOV TOPAYOVIOV GE
mpofAuate aktivofoiovpevng petagopds Beppotmtog and tov Howell [How68].
Avt mapovotdlel yewueTpikn gveléion oAAd pelovektel oto 0Tt divel youniodvg

pvOuovg ovykAiong [Ker94].

2m PPphoypapia éxovv Ppebel apketéc PeATidcelg kol epappoyés pe pedddovg
yoviokev mopayoviov. Ot Balaji et al. ([Bal93], [Bal94], [Bal95], [Sin04])

HEAETNGOV TN OTPMOTH (ULCIKN CLVOY®YY] CE OVOUYTES KOl KAEIOTEG KOLAOTNTEG
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Aappavovtag voyn v aktvoPoria petald empaveidv. To 100 Kapreowavd kon
OVOLLOLOHOPPO  TAEYHO. YPNOWOTOMONKE Yoo TOV VROAOYIOUO TNG PONG, TNG
ocovayoyng Oeppommrog kot g aktivofoMag. Ot yoviakol  mopdyovieg

vroAoyioTnKav Kdvovtag ypnomn g pebodov crossed-string [Mod03].

Ot Ridouane et al. [Rid04] perémmoav v oAANAemidopacn NG EMPOAVEINKNG
axTvoPoAlnG Kot TG ULGIKNG cLVaY®YNS o€ éva mpdPAnua tomov Rayleigh-Benard
oe TeTpayOViKy kowdtmrta. Ot  yoviokol mopdyovies elyav  vmoloyiotel

YpNoomolmvtag T nébodo crossed-string.

Ot Sharma et al. [Sha07] peiémoav Vv OAANAETIOPACT TNG EMPOAVELNKNG
aKTvoBoAiag Kot TG TVPPDOOOVE PLGIKNG CLVAYWYNG GE TETPOYOVIKT KOAOTNTO TOV
Oeppaivetoar  oto  khtew tolywpa. Otv yoviekol mapdyovieg vmoloyioTnkav

¥pnoonotwvtag t péBodo crossed-string.

Ot Albanakis & Bouris [Alb08] ypnoytomoincav po avoAVTIKY] TPOGEYYLoT] Yo TNV
povtedonoinon g Beppkng axtivoforiog. Avtd 10 HOVTEAD €xEL 1GYL GE KTNPLOL LU
VYNAOUG  GUVTEAESTEG  eKmoumn)g  Ttolyyopdtov. Ot yoviekoi  mwopdyovteg
VTOAOYIOTNKOV LE OVOAVTIKEG EKPPACELG KATAAANAES Y100 oplokés £0peg Kapteotavov

apOunTikod TALYPATOG.

Ot Alvarado et al. [AlvV08] perétnoav tnv oAANAERIOPACN NG EMPAVELNKNG
axTVOPBOAlNG HE TN OTPOTN QUOIKN cvvaywyn o€ 2-A vrd KAion kokdmreg. Ot

YOVIOKOL TOUPAYOVTEG ELYOV VITOAOYIGTEL YPNGIULOTOLOVTOGS TN HEBOJO crossed-string.

Ot Rabhi et al. [Rab08] perémoav v emeavelokn axtvofoAin Kot T oTPOTH
ocovaywyn o€ KekMpéves opbBoyovikés kootnteg. Ot yoviokol Topdyovieg
vroAoyionkav ypnowonowwvtag ™ péBodo Monte Carlo. Ot Reddy & Kumar
[RedO8] perémnoav v empovelok” akTivofoiio Kot T QLGIKY GLVOYW®YN GE NALUKO

OUAAEKTY.

Ot Ridouane et al. [Rid06] perétnoav éva mpoPinua tomov Rayleigh-Benard og
TETPOAYOVIKT) KOIAOTNTO. O1 YoViaKol ToapAyovIES VTOAOYIGTNKOAY YPTCLLOTOIMVTOGS TN

pébodo crossed-string.

Kdatt 10 omolo eivar onpavtikd vo avaeepBel givar 01t OAeg o1 Topamdve HEAETEG

Baciomkav ommv vrdBeon T0L SAPAVOVS (UN-CLUUETEXOVTOS) peLGTOD. MoOvo n
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Bepukn axktvoPoria LETAED oTEPEDY EMPAVEIDV povtelomoOnke. Térog, T0 Bacikd

mAeovéKTNUa NG peBdGOoL TV YovieK®V  mopayoviov  glvor 0 €0KOAOG

TPOYPOUUOTIGUOG TNG.

1.3.2 M£6odor porig

Ot péBodot pong yo v axtvoPorior Aettovpyodv pe €vav ToPOUOl0 TPOTO LE TIC
oAoxkAnpoTikég peboddov e YP. H povn dwapopd sivor 6t ot péBodot pong yia tnv
aKTIVOPOAIDL  OOUTOVV KOl  YOVIOKT OlKPLToToinon  ektdg amd  Tn  Yopikn
dwkprronoinon. Otv xvpiapyxeg péBodol pong yw tn peTaQopd Oepudtnrog pe
axtvoPoria elvar n MéBodog Awakprtdyv Tetaypévav - MAT (Discrete Ordinates
Method - DOM) kot n MéBodog Ilenepacuévov Oykov - MITIO (Finite Volume
Method - FVM).

H MAT npotictog ypnoywonombnke yw tv mpocopoimon g 3-A HeETAPOPAg
Oepuomrag pe aktivofolio pe HEco mov okedALEL €ite 100TPOTIKA EITE AVIGOTPOTIKA
v aktvoPorio and tov Fiveland [Fiv87], [Fiv88]. Xt Piploypapia éktote &xovv

ToPoVc1ooTeEl TOAAES PedTidoelg Tng TpdTNS MAT ko epappoyég avtms.

O Yucel et al. [Yuc89] perétmoe 1t oTpOT KOU HOVIUN QUOIKN GLVOY®YN OF
TETPAYOVIKT] KOWMOTNTA, Ocmpdviag @oid pevctd, 7OV OTOPPOPd, EKTEUTEL KOl
okeddlel wotpomkd v aktvoBoria. Ta torydpata Bempndnkav 0Tt givar peravd.
‘Eva xevipoxoyehkd (cell-centered) oynua ypnopomomdnke yio tv oAOKANp®OT)
Tov e§lonoenv pnéong pong kot tng e€locwong petapopds axtivoforiog (Radiative
Transfer Equation - RTE). Ot evtdoeig g axtivoforiog oto KEVIPO TV KEM®MV
OUCYETIOTNKOV HE OVTEG OTIS £OPEG TWV KEMAOV YPNOCUYLOTOLDOVING TO GYNUOTO

diamond o step/upwind.

To 1994, ot Chai et al. [Cha%94] mopovciacav po cOYKPIOY UETAED T®V O
OL0OESOUEVOV GYNUAT®V Y0 TO GUGYETIGUO TNG EVTACEMS NG OKTVOPOAlag OTIC
€0peC TOV OYKOL EAEYYOVL HE VTN OTO KEVIPO TV KEAM®V, dnAad HETAED TV
oynuatwv positive, step kot diamond kéavovtog ypron g MAT otic dvo dlaoTdoelc.
Ynepioyvoe 1 step mpocéyyion 1 omoio £dM0E PEAMOTIKES TIHEG Yo TNV £VIAGT TNG
axtivoPoriag. To oyfua diamond €0moe Ge OPICUEVES TEPIMTAGELS APVNTIKES TUUES

eVtloemg axTvoPoAiag kot €Tol amouthOnke n ypnon wog dadikaciog Kotd v
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omoia ol apvNTIKEG TIHES TG Eviaong Bétovtay {oeg e o undév N Emopvay HKPES
TIWEC. L& OPIGUEVEG TTEPUTMCELS EMiong Ta oyfuata diamond kot positive epuedvicay

UM PEAAMOTIKEG VIEPEKTIUNGELS TNG EVTAONG TNG AKTIVOPOATNG.

Ot Colomer et al. [Col04] kot Scarella et al. [Sca08] peAémooav v aAinieniopaon
HETOED axTVOBOMOG KOl OTPOTNAG PLGIKNG cLVOY®YNG o€ KLPkn Kolkdtrta. To
pevoto BepnOnke 0TL amoppoPd Kot ekmEUTEL 0AAL O€ okeddlel TNV aktivoBolia. Ta

ol OpHOTO BempnONKaV Mg LEAOVA COLOTA.

On Lari et al. [Larl2] peAémoav v aAAnienidpaon g Beppukng axtivofoiiog Kot
MG OTPOTNG QULGIKNG GLVAYOYNS 6€ 2-A Koot Ta, KAT® ond v vrdbeon tov
mpaypatikov pécov (un-eod péco). H e&icmon petapopds axktivopforiog emivOnke
ypnowonowwvtag ™ MAT kot 1 wpaylotikn (UN-eot]) GLUTEPIPOPE TOV PEVLGTOV
npocopolminke ypnowonowwvtag t pébodo full spectrum k-distribution. To pgvotod
Bewpnnke OTL omoppo@d, ekmEUmEl dAAL O okedAlel TNV akTvoPoAia Kot To

TOLYMUATO OVOKAODY KOl EKTEUTOVY 100TPOTIKE Pe 6TABEPO GVVTEAEGTN] EKTOUTNG,.

H MéBodog Tlemepacuévov Oykov - MIIO yoo v aktivofoiio. TopovGLAGTNKE
O™ eopd and tovg Raithby & Chui to 1990 [Rai90]. 'Extote moAlég Pertimoelg
Kot EpOPROYEG TNG LeBddoL avthg Exovv Bpebet otn PiAoypagic.

Ot Chui & Raithby [Chu93] xou Chai et al. [Cha95] epdppocav ™ MIIO cg un-

opBoydvia, TeTpamAeLPIKE TAEY AT GTIC OVO0 O0GTAGELS.

Ot Baek et al. [Bae98] epdappocav ™ MIIO cg 3-A pn-opBoyovikég kothdttec. To
pevotd  Bewpnnke OTL amoppoed, eKmEUTEL Kol OKESALEL 100TPOMIKG TNV
axtivoBoAiia. Ta torydpata OewpnOnke 6Tl avokAOOV Kol EKTEUTOVV IGOTPOTIKA TNV
axtivoPoAia. o va Eemepaotel T0 TPOPANUO TG EMKAALYNG TOV YOVIOV EAEYYOVL
vIpEe PEPULVA Y10 TO SLOYOPICUO TOV EIGEPYOLEVOL KOl EEEPYOLEVOL TUNUOTOS TNG.

Xpnoponombnke eniong to avévin oynua step.

To 1999 o Rithby [Rai99] mapovciace pa cOykpion petad e MAT o MIIO.
Avaeépetar n advvapio g MAT ot dwutrpnon g evépyelag aktvoPoiiag ota
opla. Yo avicotpomikd okeddlov péco. Emiong, mapovcidotnke to mwg n anpdsey
yoviokn owkpitomoinon pe ™ xpnon g MAT 0o pmopovce va odnynoet ce

OTULOVTIKA COAALOTAL.
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O Han & Baek [Han00] peAémmooav tnv emidpoon g aktvoPoriag otn pHoviun
OTPMOTI] PLGIKY CLVOY®YN GE oL KOWOTNTO LE VO E0MTEPIKA eunddia. To pgvotod
Bewpnnie 6t amoppo@d, exméumel kot okeddlel 1woTpomikd v aktivofoliio. Ta

TolyOpoTo OempnOnKav 16oTpomiKd. XpnooroOnke to step oynuo.

To 2000 ot Kim & Huh [Kim0O0] gionyayov £va vEo GO OVOLLOLOHOPPONG YOVIOKNG
dwakprronoinong to onoio epappdctke pe v MIIO. H FT,, MIIO givon copParn pe
PEVGTO MOV ATOPPOPL, EKTEUTEL KOl OKEOALEL YEVIKA OVIGOTPOTIKA. ZOUQ®VO LE
avt T HEBodo av M molkr yovia €xel doupebel opodpopea oe dptio apBpd n
TUNUATOV, TOTE 1) allovbiokn yovia xwpileTol OpotOpopeo 6€ AplOId TUNUATOV TNG
oelpac 4, 8, 12, ..., 2n-4, 2n, 2n-4, ..., 8, 4 (Zympa 1-1). Tehkd o apBuog dAwv tov
yoviov eréyyov stvor n(n+2). To oynpa FT, kataAnyel oe KoADTEPT KATOVOUT] YO TIG
JLOKPITOTOMNUEVES YOVIEG €AEYYOV GE GULYKPIOGN HE TNV OUOWOUOPPN YOVIOKN
dakprromoinon pe Ng moiucég kot N, alywovbuxég yovieg. H FT, MIIO édwoe
neplocoteEPo okpPn amoteréopota amd v MAT kor v MIIO pe opotdpopon
YOVIOKT Olakpitomoinon yi tov {010 GLVOAIKA aplBud YovVidv, €KTOG Omd TV

TEPIMTOON HEGOL PEYAAOV OTTTIKOD ThYOVS (LEYAAOL GLVTEAEGTY| AITOPPOPNGNC).

Control angle ALY

Cosnimol anpde ALY

Zyuo 1-1. Zeaipo yoviakng dwkprromoinong. Opodpopen yoviekn dlokpitomoinon

(aprotepd), FT, yoviakr dwokprronoinon (de€1d).

Ot Kim et al. [Kim01] epdppocav v MIIO oe 2-A yewpetpieg pe v vmopén
EUTOSIMV, JKPITOTOMUEVES He Un-Oounpéva Tprymvikd mAéypota. Eedppocav to

avévtn oynuo step. Ocov a@opd T0 YEPOUO TNG AVATOPELKTNG AOY® TOL UN-
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JoUNUEVOL  TAEYHOTOG EMKOALYNG NG yoviag eAéyyov, ovykpibnkav tpia
SPOPETIKA CYNUATA OG TPOG TNV OKPIPEd TOVG Kol TO VTOAOYICTIKO KOGTOG T
oynuata bold, pixelation wor exact. H pixelation puéfodog kor 10 exact oynua
mapovciocay kaAvtepn akpifele amd to bold oyqua yoo pkpd apdpd yoviov

JKPITOTOINoNG, AAAY KOl LEYAADTEPO VITOAOYIOTIKO KOGTOG,.

To 2004 o Trivic [Tri04] cvvdovace ™ MIIO yw v e€icwon axtvoBoriag e to
noviého WSGGM (Weighted Sum of Gray Gases Model) v mpaypoticd péco (un-

Qoo Péco).

Ot Kim et al. [Kim05] gpdppocav ™ MIIO yia ™ petapopd tng aktivofoAiiog oe
VPpOKd TALYpata otig 600 Kot Tpelg dlaotdoels. To pevotd Bempndnke Qod Tov
amoppo@d Kot ekmépumel v oktivofoiia. Ta toyydpata Bewpnnkov 0Tt avakiobv
Kol EKTEUTOVV TV oKTvoPoAia ootpomikd. YioBetnOnke n pixelation pébodog yio
TNV AVATOPEVKTN EMKAALYN TOV YOVIoV eA&yyov. Emiong, vioBemOnke to avavn
oynua step. Ot vmoloywopol €ywvav moapdAAnio HETA TN dwipecn TOL OPYLKOV
VTOAOYLGTIKOV Y®piov og vroywpia. Extdg and nepumtdoelc petapopds Bepuotrog
OQpLYOS HE aKTIVOPOAIN HEAETNONKAY TEPIMTMOGEIS GTPMOTNG PLUGIKNG CLVOYWYNG KOt
OTPMOTNG PLGIKNG GLVAYWOYNG He akTvoBoria evtog koot tas. H mapaiiniomoinon
TOV KOO £000E ONUAVTIKN pelmon 610 vmoAoylotikd @optio. H vmoioyiopuévn
EMTALVOT YO TNV TEPITTOOT TNG CLVAYWOYNG KE TNV €midpacn TG okTvoPoAiog
Nrav KpOTEPN Ao TNV EMTAYLVON TNG TEPITTOONS TNG PUGIKNG GLVOYMYNG Y0 TOV
00 opBud depyacidv. Avtd amodddnke oto peyaAOTEPO QOPTIO AVTOAANYNG

UNVOUATOV, AOY® TNG YOVIOKNG dtokprtonoinong g e&icmong axtivoBoiiag.

Ov Kumar & Eswaran [KumO8] ypnowonoincav m MIIO yw va peketioovv v
aAAnienidpaon ¢ aktvofoliog pe TN Pon PELOTOL 6 KwViKO dwoyvtn. H pon
BewpnOnke 6T NTav otpoT) Ko acvuriestn. H puoikm cuvaymyn dev eAnedn vmoyn.
To péco Bewpnnke 011 NTOv EAd Kol OmMOPPOEOLSE, eE€meune Kol okEdAlE TNV
axtivofoAia. To oyNUa Yo TO GUGYETIGHO TOV EVIACEMV £0pMV Kol KOUP®V MTav

oLVOLOoUOG TV oyNudTeV step kKot diamond.

Ot Borjini et al. [Bor08] peiétmoav tv aAiniemidopaon tng axtivofoAriog pe v
QUGN cuvvaywyn o€ pio KuPikn kKokdtta. o m dakprromoinon g eiocwong
axtvoBoiiag ypnoworomdnke n FT, MIIO. To péco frav @oid mov amoppo@ovoe,

eéneune ko okédale wotpomikd v axtivoforio. Ta toyydpata Oewpndnkay oid
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Kot 1ootpomikd. [ v emkvpmon ¢ avantvydeicog pebBodoroyiog, emavdnkayv ot
nepumtcel;  avapopds twv Colomer et al. [Col04] ko ovykpifnkav ta

aroteAéopata. Bpédnkav onuavié 010popéc oto anoteAEoUATA TOVC.

O1 Ko & Anand [Ko08] pelémmoav tn ocvlevyuévn mepintoon e£ovoyKacuévncg
CLVOY®YNS Kol aKTvoPoAiag 6€ avamodo okaloTdTt ypnopomoldvtog T MIIO kot
vy v eElowon g aktwvoPoriag kot yu TG e€iodoelg péong pong. H pon
Bewpnnke OTL MTav poOVIUN, acvumiestn Kot otpOT). To pevotd NTav QOd,
amopPOPOVcE, e&émeune ko okédale v aktvoPoiio. Emiong, eAebncav vrdyn ot
petaforéc TtV OBepuo@LCIKOV 1310TNTOV TOoLv pevotod pe ) Ogppokpocio. Ta
Toyyopoto Bewpnnkov o¢ adapovi kot weotpomikd. H emidpoaon tov omtikov
TAYOLG KOl TOV GLVTEAEGSTI GKEOAONG Ot pon emiong peiemOnke. Xpnoyonoincav

10 diamond oynua.

Otv Mondal & Mishra [Mon09] peAétmoov ™ ovlevypévn QULGIKY] GLVOY®OYN LE
aktvoPoAia og teTpaywvikny kKoot to. To pegvotd Bewpnbnke O6TL NTaV GOO TOL
amoppoPd, eKmEUTEL KOl OKeSALEL 1GOTPOTIKG KOl TO TOUYDOUOTO @il Kol OT

OVOKAOVV KOl EKTEUTOVV 1GOTPOTIKE TV aKTVvOBoAla.

Ot Kim et al. [Kim10] gpdppocav tm MIIO ce o aovoouupeTpiky Kodtnta,
YOPIKA SOKPITOTOINUEVT] XPNOLULOTOLOVTOS TOAYOVIKO TAEypa. [ ) dnpovpyio
TOV TOAVYOVIKOV TAEYUATOV OpyIKO KOTOOKELAGTNKE £VOL TPIYOVIKO TAEYUO. XN
CUVEYEWL TA KEVIPO TOV TPLYDOVOV EVOONKOYV dNUOVPYDOVTAS TO TOAVYWOVIKO TAEYLLOL
Zymua 1-2). To pevotd Mtav @owd mov amoppopovce, e&émeune kol okeEdale

eotpomikd TNV axtivoPfoiia. Eniong, ypnoiponoincav 1o avavin oynua step.
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Zyfquo 1-2 [Kim10]. Anpovpyia Tov TOADY®OVIKOD TAEYLATOG.

Ot Kolsi et al. [Koll1] pelétnoav tn cvlevyuévn QLGIKN cuvaymYN Kot oKTvoBoiia
oe 3-A xowdtreg. H pon Bewprinke o0tt Ntov acvurnieotn kor otpot). [a
dwkprronoinon g e€icwong axtivoforiog ypnowonomdnke n FT,, MIIO. To pgvotod
NTav eod Kol Aroppoeovce, e&éneune Kot okédale 1ooTpomikd v aktivoBorio. Ta
TolOHOTO  avakAovoav kot eEémeumoav v oktwvoPfoAiio tootpomikd. T v
eMKOPOON TG avantuydeicog pnebodoroyiag ypnoyLoTodNKaV Ol TEPMTMOCEIS TMV

Colomer et al. [Col04] pe onuavticés dStapopéc.

To 2012 o1 Lygidakis & Nikolos [Lygl2] mapovciocav évav 3-A emivn MIIO yio
m povun e&icwon petagopds oktivoforioc. Avtdg o emidtng Paciletar ot
Bedpnon eaov HEGOL TOL AMOPPOPA, EKTEUTEL Kot okedAlel TNV axtivoPforia, eite
LGOTPOTIKA EITE AVIGOTPOTIKA, HE adlopavn Kot 1coTpomikd opta. [Ipoxettal yio Evav
KEVIPOKOUPIKO emADTN Yo vBpdwd mAfypata. Yiobetel 1o avhvin oynuo step ko
v bold mpocéyyion v v emkdivyn TovV yoviov eréyyov. H mapaiinionoinon
TOV KMOIKO TOPOVGIOCE CNUOVTIKY UEI®OT TOV VTOAOYIGTIKOV @optiov. O emAvTNG
EMKLPOONKE PES® NG EMIAVONG TEVTE TEPIMTAOGEWV AVOPOPAS omd TN PLAtoypagic.
21 ovvéyela or Lygidakis & Nikolos [Lygl3b] Beitiocav tov MIIO emivtn toug
YL T Un-poviun e€locmon PETapopds axTvoBoAlng ¥pMOILOTOU®VTAG OEVTEPNS TAENS
akpifelag yopikn Ko xpovikn mwpocEyyon pall pe pio TeXVIKN TPOCAPUOYNS TOV
mAéypatog (grid adaptation technique). Ewdwcotepa ypnoiponombnke to devtepng
tééng akpipelag oyuo MUSCL (Monotonic Upstream Scheme for Conservation

Laws) pe m ovvatdtra emAoyng evog ek tov van Albada-van Leer xow Min-Mod
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TEPLOPIGTAOV Yol TN SlELKOAVVON TG povotoviag. Miag kot 1 évtacn g aktivoBoliog
etvan €€ oplopob BTk TOcOHTNTA, O1 APVNTIKEG TILEG TOV TPOEPYOVTOL OO TN YPNoN
oV 0evTEPNG TAENG axpifelag oynuatog evtomilovtat kot tibevion ioeg pe to Pnodév.
AAocav 6Tt Taporlo mov avt) N dadikacio pog eEac@alilel THEG HeYOADTEPES 1
{oeg pe 10 uNdév v v €vtaon G akTvoPoAlng, optoUEVES POPES TPOKAAOVVTOV
aotdBeleg g Avone. o v avTIpeTdTIoT TOVg GTPAENKAY GTN UN-poviun e&icmon
aktwvoPoAiag, Yy tnv emilvon g omoiog ypnoipomoincav &va devTeEPNG TAENG
axpipelag ypovikd oymua Runge-Kutta. Ocov apopd v mpocappoyn tov TAEYUATOS
(grid adaptation) gpdppocav v h-refinement tpocéyyion, n onoia evrdooetar 6TV
katnyopia tov peodwv mhxvoong (grid refinement). ' to xepiopd g emKaAvyng
™m¢ yoviog eAEéyyov mpootédnke 1 evaAloktiky tng pixelation peboédov oty bold
npocEyyon. Télog, mpotddnke évag MEMAEYUEVOC TPOTOG YEPIGUOV TMOV OPLOKAOV

oLVONK®OV G€ ad10PAVEIS KO IGOTPOTIKEG EMUPAVELESG KOl GUUUETPIKE ETITESAL.

Avo and T1g Tapoandve avapepbeiceg peBOOOVS EVOOUOTOOMKOV GTOV VTOAOYIGTIKO
pog koodwa. [Ipata avantdsape ™ pébodo twv Albanakis & Bouris [Alb08] n omoia
elvar o avaAvtikn péBodoc, pe epoppoyn e KOMOTTES PE VYNAOVG GUVTEAECTEC
EKTTOUTNG KOl TEPLOPIGUEVO OPLOUO OVOKAACEDV HETAED TOV OPLOK®V EMPAVELDV. To
péso Bempeitor OTL cuUTEPLPEPETOL MG dapaveS. Avti 1 wEB0dOG TPoypaUHaTIoTNKE
e0KoAa aALd Bpébnke va elvar apketd axpifn pe 6povg LIOAOYIGTIKOD YPOVOL Kot
LVAUNG KOTA TN XPNOTM TG UE TN OEPLoKn £kdoot Tov kddwka. H devtepn pébodog
&xel avamtuydel og kmdka amd Toug Lygidakis & Nikolos ([Lygl2], [Lygl3]) ko pog
d00nke v va evoopotobel 6Tov eMAVTN HOG OTA TAOIGLO TNG CLVEPYAGIOG LOG O
gpeuvnTkd mpdypappa. Ipdkertar yio po kevrpokoufikny MIIO, pe epappoyn oe
QOO PEVOTO, TOL ATOPPOPLL, EKTEUTEL Kot okedAlel TV aktivoBolia. To yeyovog 0Tt
0 GLYKEKPEVOS KOOGS Paociletor e KEVIPOKOUPIKO Kot OKHOPACIKO oyfua
OLlEVKOALVE ONUOVTIKG TNV €l00y®Y] TOL oTov KMOKo pong. Ilepiocotepec

AETTOPEPELES Y10 AVTEG TIC OO HeEBOIOVS divovTat 6To KeQAALo 3.

1.4. Aopn] TG gpyaciag
H dopn g mapovcag epyaciog Exel og €ENG:

e 2710 TMPAOTO KEPAAOO TOPOVCIAGTNKE O OKOmMOG TG dwTpiPrig Kot 1
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BiBAoypaeikn avackOTnon Tov aviikelpnévou g oatppnc. Iapovcidotnke
L0 YEVIKT TEPLYPOON TOV HNYOVICUOV petagopds Beppotnrog. ‘Emetrto,
meprypaenkov epyacieg mov PBpédnkav ot PipAoypapio Kot apopodv otn

LOVTEAOTOINGN TEPMTOCEDYV GLVAYWYNG KO AKTVOPOATOC.

210 dgvTEPO KEPGAOO TTapovstaletar To padnuatikd vrdfabdpo e epyaciog
TOV® GTO 0Tol0 CTNPYYONKALE Yot TNV TPOGOUOIWON TG PONG OGVUTIEGTOV,
OUVEKTIKOU Kol NELTOVEWOL PELGTOD GE GLVOLOCUO UE TNV UETOPOPE
Bepuomrog pe OAOLG TOLG SLVATOVG UNXAVIGUOVG (ay®YT, GLVAY®YY Kot

aKTIVOPOALD).

¥10 Tpito KEPAAOO TEPLYPAPETOL 1 aplOunTikny pebodoroyia. Eidikdtepa,
TAPOVGLALOVTOL Ol TEYVIKEG TTOV XPNGLOTOMOMNKAY Y10 TN YOPIKY| KOl YPOVIKY|
dwkprronoinon TV €§lo®ce®V. AvoAvovtal €miong To HOVIEAQ Yo TNV
aKTivooAovpevn peta@opd Bepprotnrag, ol oplakés cLVONKEG Kot Ol TEXVIKES
7OV YpNooTomOnKay yoo v dtatnpnon ¢ Beppokpaciog o€ PEOMOTIKES

TIUES.

¥10 T€T0pTO TapovclaleTal 1 SadKAGIo EMKVPOONG TOL AVATTVYOEVTOC
KOOWKO. ZUYKEKPIUEVA, EMALYOINKAYV TEPUITOGES OTPMOTNG Kot TVPPRdI0VG
OVOOTIKNG PONG, TEPMTMOGELS UETAPOPAG Oeppotrag apyds pe aktivofolio
KO TEPUITAOCELS GLVIVAGUEVNG petapopds Beppotnroc. [lapatiBetan emiong 1
eMidpacmn TG ¥PNoMG SV0 TEPLOPIGTOV Kol GLYKPivovTat ot uéBodot cvieVENG.
Emb0nkav nepimtdoelg pe peydlo €0pog TapapéTpmy 160000 0VTMG MOTE

va eKTiun o0V ot SuvaTOTNTES TOV KMOKA.

210 TEUTTO KEPAAAIO €AEyyovTal Ol EMOOGELS TOV 2-A kot 3-A moapdAiniov
EMADTN. AvTd OV pag evOlaPEPEL glval 1 HETABOAN TG EMTAYVVOTG KOL TOV

Baburov anddoong g mapaiinioroinong pe 1o TAN00g TV dEPYACIOV.

270 €KTO KEPAAOLO TOPOVCIALETOL 1) EPAPLOYN TOV TAEOV SLOTICTOUEVOL MG
aSlOmoToL EMAVTN Yy TNV TPOPAEYN NG PONG TOL KOTVOD KOl TOV
Oepuokpociokod mediov OE MEPWTMOOCELS TLPKOYLG €vidg  aepllopevng
onpoyyas. I'ivetar peoavig n onpovtikOTTa TS LOVIEAOTOINGNS OAMV TV
TPOTOV HETAPOPAS Oepprotnrag (Guvaywyn, akTvofoAia, ay®yn GTO TOTY®UA)

0€ U0 GEPA TPOCOUOUDCEMV.
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Téhog, oto €000 KEQALNLO STVOVTOL GUVOTTIKA TOL CUAVTIKOTEPO EVPNUATO,
T0 oTolyela Kovotopiag g daTpPng Kot opiopéves PEATIOCEIG-EMEKTAGELS

nov O propovsav va yivouv 6Tov avamtuyfEvVTa KOSIKA.
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Kepdiaro 2
MaOnpatiko Movtélo

Ye avtd 10 kePdAowo mapovoswdletar o pabnpatikd poviédo g oSwrpPng. H
avantuén tov pofnpoatikod HOVTEAOL GE LTOAOYIOTIKO KOO, Bo pog dDCEL N
duvvatoTTo  TPOcOopoimong  GLLELYUEVOV TEPMTMOOEMYV PONG KOL  UETOPOPAS
Oepuomrag pe 6AOVG TOL UNYOVIGHOVS (aymyn, cuvaymyn kovn axtivoPfoiin). Ot
e€lomoelg etvor oatvmopéveg oe Kopteolavég cuvtetaypuéves kol [LE TOVLGTIKN
pHopon Yo vo givar €0KOAOG 0 JaY®PICUOS TG GOAGTATNG KOl TPLGOLAGTOTNG

€KOOYNG TOVG.

O e&lomoelg meptypa@ovy Tn Un-puovipn acvumieotn otpmt) 1 tupPddn pon,
oLVEKTIKOV kot Nevtowvelov pevotov. [a v mpofreyn avooTiKOV podv
epappoletoar m mpocéyylon G Gvoong katd Boussinesq [BouO7], evd yw 1
povtedonoinon g tOpPNS viobeteitar M wPocéyyion TVPPDIOVE GLVEKTIKOTNTOG
katd Boussinesq [BouO7]. H dweopd petald twv obo mpooceyyicemv Boussinesq
ocvviotatal 6To okond Tovc. H mpdtn ypnowonoteital yio tnv tpoPAeymn g aGveoong
0€ OCLUTIESTEG OVMOTIKEG POEC VM M Oe0TEPT Yo TNV TPOPAeYN TUPPOI®Y PODV

Bacet ™G 10€aG TS TVPPAOIOVS GLVEKTIKOTNTOC.

Ov e&omoelg péong pong, otv g&lomoelg g TOPPNG Kot N e&lomon UETAPOPAS
axtvoPoriag (EMA) mapatiBevior oty adidotat) Touvg popen. Alvetal n QLGIKY
ONUOGI0 TOV 0SACTATOV TOPAUETPOV KOl TEAOG 01 El0MOELS HEOT|G PONG Kot TOPPNG
TOPOVCIALOVTOL GE OLIVUGHOTIKY] HOPQY] GLUTEPIAOUPBAVOUEVNG Kol TNG TEXVNTNG

CLUTIECTOTNTOG Y10 TV GVLEVEN TOV TESIMV TOV TEGEMV KOl TV TOYVTNTOV.

Mo v adwotatonoinon tov peyebdv ypnoipomomonkay ot TopaKat® KALOKES

adactatonoinong ([Col04], [Bpal2]):

e v 116 Kapteowovég cuvtetaypéveg L,

® Yl TIG TOVTNTES U,
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Y 10 puowd xpovo t =L . /u

ref ref

Y10 TNV TUKVOTNTOL, P, ¢

Y1 T SLVOUIKT) CUVEKTIKOTNTA [ o = L (LOPLOKT] SUVOLLKT) GUVEKTIKOTNTOL)
’ P N 2

'Yl(l Vv e ref — prefuref

v ™ Oeppokpocio AT =T, =T, (dapopd petald vVyNAAg Kot Y OUNANG

Oepuoxpaciog)

Y. TN HOPOKN Kol TUPPAOON KIVNHOTIKY GUVEKTIKOTNTO V.. =V (LOPLOKN

KIVILOTIKY GUVEKTIKOTNTO)

v tov yevdoypdvo mc EMA t. . =L . /c

r,ref ref

Y1 TV éviaon g axktvoBorag I, = 6, T

ref

kAT
ref = L_

ref

Yo TNV axtvofoAiovpevn pon Beppomtog Q

Y10l TO GUVTEAEGTI ATOPPOPNONG 1

ref

. 1
Y10 TO GLVTEAEGTY| GKEOAOTG ——

ref
Y10 TV TUPPDOEN KIVNTIKY EVEPYEIRL U,

3
ref

Y0 TV KOTAGTPOPT TNG TOPPNS E—

ref

, Lo ur f
Yo T0 pLOUO KOTAGTPOPT) TOPPNG L_e

ref
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211 cuvéyela g ekTeVODS TEPIANYNG OAa T pey€Bn Ba divovtan adtacToTonomUévVOL
EKTOC amod TIG TEPUITAOCELS OOV Oa avapépetal pntd Ot Ta peyédn mov divovran eivan

ol0.0TOTA.

2.1 E€lo®osig péong pong

2.1.1 E€iomon cvuvéyerog

—=0 (2-1)

o6mov o odciktng j=1, 2, 3. Ta ctoyeio Twv Kaptesovov tayvttov gival (u, uy,

u3)=(u, v, w) kot ot Kapteowavég ovvietaypuéveg etvan (X, X2, X3)=(X, Y, Z).

2.1.2 E&iodoeig oppig

1" exdoyn

. O(uu, . Ou,
ou, N (u;u)) __Op N 0 |1+a,| ou, L Gr2 Ts. (2-2)
ot OX ox; ox;| Re [(0x; 0x, Re

otav 1 Beppokpacio avapopdg Katd v tpocsyyion Boussinesq givor To=T,.

2" exdoyn
. O(uu, . Ou.
ou,  Ouy) _ Gp 0 \l+ofou O, ar (T—lj&k (2-3)
ot OX ox; 0x;| Re (0x; 0x Re 2
. ; . . . . , T, +T
otav 1 Beppokpacio avapopds katd TV Tpocéyyion Boussinesq ivar T, = 5 :

t elvat 0 QUOIKOC YPOVOG, P M OTOTIKY Tieom, a; €ivar M adidotatn TVPPDOING
Kivnuotikny ovvektikdétta, T elvar 1 Bgppokpocio kot Oy &ivar 10 déATaL TOV
Kronecker. O dgiktng k Aappdvet tv tiun 2 otig 000 SGTAGELS Kot TV TN 3 6TIG
Tpelg dnotdoels. Méow g otabepds K yivetor epgavég 6t ) fopdtnrta vedpyel otV

y d1e00vvon oTig dV0 SGTAGELS Kat 6Ty Z dievhuvon GTIg TPELS OUGTACEL.
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2.1.3 Evepyeraxn eicwon

O(Tu,
or . (Tu) _ o | 1 1, ool g 1 vQ, (2-4)
ot 0x;  0Ox;|Re|Pr Pr )ox, Y RePr

]

6mov 1 adidotarn myn Oepuotnrog eivan

qc Lre
S, = ——r (2-5)
pcp urefAT

Kot M adtdotatn amdkAon g aktivofoAiog opiletar w¢ M dapopd peta&h ™G

EKTEUTOLUEVNG KOL OTOPPOPOVUEVIG EVEPYELNS OKTIVOPOALOG

T T !
vQ, :ﬁ{‘{T* +1j - 4]' Idco} (2-6)

0

q. etvor n woydg g myng BepudtnTag avé povédo dykov, p givol 1 TOKVOTNTO TOV
pevotov ot OBeppokpacio avapopds, C, eivor n €W OBeppoywpnricdmra Vo
otafepn| mieom, T €ivar T0 OMTIKO TAYXOC (UOLAGTATOG GUVTEAEGTNG OATOPPOPNONG

axtivoPoiiag) ko I efvar n évraon g axtivofoliog.

2.2 E&io®osgig povtéhmv Toppng

2.2.1 E€womoeig povrérov topPng k-¢

ok Oku) o o +a, ok

o ox, ox,| o Re ox, FRA G e 2-7)
oe O(gu;)) 9 |o,+0, Ot c

% _ 0 |S.+a O > e _
o ox. x| oo Re ax, |FLCa(BrCaGi)=Casly (-8)

Ot 600 efaptnuéveg peTafAnTég avToL TOL HOVTEAOL &lvarl M TVPPOING KvNTIKNA
evépyewn k kot 1 kataotpoen g tOHpPng €. Ot Téc TV otafep®dv TOV HOVIEAOL
gtvan o=1, 6:~1,3, C;1=1,44, C,=1,92, Cx=1, C,=0,09. I'la. v 1y g otafepdc
Ceg &rovv mpotabel apketég mpooeyyioelg ([Bar94], [Wu00], [XueOl], [Kuy93],
[Hua07], [Fle94], [AIb08]). Xti¢ mepmtdSEIS TLPKAYLAS 6T ofjpayya, povo Yo Cez=1

VIOAOYIOTNKOV PEAMOTIKEG TILEG Y1 TV TUPPDOT KIVNULOTIKT GUVEKTIKOTNTOL.
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O1 6pot mapaywyns TupPOIOVE KIVITIKNG EVEPYELNG AOY® JATUNONG Kot Avmong etvat

avticToryo:
ou,
p, = O | Ou O 10U (2-9)
Re ox; 0x, 8x
a, Gr OT
G =———"_3§. 2-10
“  Pr, Re’ox, - (2-10)
c k’
H adidotatn TopPmddng Kivnuotiky cvvektikoétnta eivar o, = Re—-
€
2.2.2 E&iodosgig povrérov TopPng k-o SST
o(ku. o, +a, ok
ok o) 0 )0t K p G gk (2-11)
ot X ox;| O Re 0x,

o(mu. +a, O
O  OOu) 9 |0, % o +lReP +CD, +C, LReG, —Bo’  (2-12)
ot axj axj o, Re Bx a,

t

Ot 600 efaptnuéveg peTafANTEG aVTOL TOL HOVTEAOL &lvarl M TLPPAOING KvNTIKN

evépyewa k kar o puBpog Katastpoens g Toppng o.

Ot tpéc tov otafepdv avtod T0L poviélov TVUPPNC vroAoyilovtol HE YPOUIKI
nopePPorn HETAED TV TIMOV TV otabepdv tov Wilcox k- poviélov topPng ko
TOV HETOOYNUATIOUEVOL K-€ povTédov TOpPnc. Av @) elvar omoladnqmote oTabepd TOV

Wilcox k-0, ¢, omoliadnqmote otabepd Tov k-g kot ¢ 1 aviiotoyovca otadepd Tov k-m

SST n oxéon pera&d tovg eivar ¢ = F ¢, + (1 -F)d,, 6mov n cuvapmon avapeEng

Jko 500 j 46,k

0.090d Red’w) CD, d°

givor F, =tanh(arg/), arg, = min (max( ] d elvar 1

andotacn kafe xkOpPov amd 10 KOVTVOTEPO TOoiywuo Kou o Opoc CDy, (cross

1 ok ow ,
diffusion) opiletmt wg CD,, = max| 20, 687_ 107 | Zexwévrog amd 10
J

Toiymua 1 ovvaptnon avapeng etvan ion pe ™ povéda Kot otadiakd teivel TPOg To

UNoOEV.
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O1 otaBepéc tov Wilcox k-o povtérov eivar 6x=1/0,85, 6,1=2, B1=0,0750, a;=0,31,
B'=0,09, k=041, v, =P, /B — o, */\[B" = 0.5532.

Ot otabepég T0L petaoynuoTiopévov k-g poviélov eivar op=1, ©4,=1/0,856,

B,=0,0828, B'=0,09, k=0,41, v, =B, /B" — 5., k*/[B" ~0.4404

o,k
max(a,®, QF,)’

H topPddng kivnuatiky cvvektikotnta givor o, = Re omov Q eivan

N arolvtn otpofirotnta (absolute vorticity).

Jko 500 j

H cvvapon F2 eivon F, = tanh(arg}) , arg, = max [2 ,
0.090d Red’®

2.2.3 uvopTiGELS TOLYONATOS

[Ma va emrdyovpe YpNyopOTEPES TPOGOUOUDGELS KOl YPNOT AYOTEPOL ATOONKEVLTIKOV
YOPOV, VIOOETACUUE GE OPIGUEVEG TEPMTMOGEIS OCLVOPTNOCELS Toy®uatog. Ot
EKQPACELS TMOV GCLVOPTNCEDV TOLYDOUOTOC ®OC TPOC TIC OlOOTOTEC E0PTNUEVES

petafintég stvoa:

llny+ +55,y">11.6

ut =<k (2-13)
y" ,y  <11.6
T =Pry'e’ + [2.12 In(1+y")+p (Pr)] e’ (2-14)
4
0.01(Pry")

B(Pr)=(3.85Pr'*~13) +2.12In(Pr), T = (2-15)

1+5Pr y*

. , , u . , ,
H adudotatn toydtnta opiletor og u’ = 6mov u_=,/pt, s&lvon N TayvITO

T

g H adidotarn andotoon and 10 tolympa givor y* = YE: .Tw y" <11.6 o

TPOTOG KOUPog PplokeTor €viOg TOL GTPOTOV OPLAKOV-LITOCTPAOUNTOS KOl Y10l
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T, -T

W

T

T

y">11.6 ot loyopOukny mepoyn. H adidotarn Ogpuokpacio T =

vroAoyileTon amd v Tpotewvouevn oxéon tov Kader [Kad81] mov oydel ko otic 600
TEPLOYES TOL OPLAKOD GTPOUOTOC Y0 LEYAAO €0POG TU®V TOL aptdpod Prandtl. Ty,

q,
pC,u,

gtvar n Swotartr Beppoxpocio tov toryopoatog ko T, = , Omov qyw &ivor m
dwaotaty pon Bepudrag 6To TolYmLLA.

Ov dwotatég mopdueTpol G TOPPNG vmoloyiotnkov PAcCEl TOV  TOPUKATE®

EKQPAGEMV:
2
k=—u (2-16)
V CH
3
. (2-17)
Ky
® = (2-18)
C,xy

onov C,=0.09 xar k=0.41 (ct0bepd von Karman).

2.3 Egicowon petagopdas axtivoforios (EMA)

ol ol
-+ — ==
ot, Os

4
(r+cs)1+l(T* +1j +22 [ 10do (2-19)
n\T 4r ;-

(o}

Ymv EMA n e€aptnuévn petafint stvon n évraon g axtivoBoiiag I n omoia eivarn
OLVAPTNGT TOL YOPOL T KO TNG YOVIAKNG d1evbvveng S. t; lval 0 UGIKOG YPOVOC, O

omoiog Ouw¢ otn dtatpiPn ypnoomoteitar cov yevdoypovog e EMA.

S elvar 10 povadwaio ddvocpa oty s devbuvon ¢ otePeds yoviog, T glvat o
adLIGTATOS GVVIEAEGTNG OTOPPOPNONG, Gs O AOLAGTATOS GVVIEAESTNG oKEdaoNG Ko O

gtvat 1 cuvapTno” GKESAONG.
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2.4 Eppnveio 00146T0TOV TOPARETPOV

Metd v €Qoppoyn G adl0GTATOTONONG TPOEKLYOV Ol TOPAKAT®O OOIICTUTES

TOPAUETPOL:

prefurefLref — u L

ref —ref

!"Lref Vref

e ApBudc Reynolds Re =

ufefcp — vref
a

e ApOuodg Prandtl Pr =

t

omov k¢ etva n Beppucn) ayoypndtra kot o givar n Oeppikn dudyvon Tov PELGTOV.

32
e Apiudc Grashof Gr = LrtPrur€PAT
Mref
e ApBudc Planck Pl = LT“
(LGBTC )

« T
e A0yog avapopag Oepuokpaciov T, = A"CF

O apBpog Re exepdler t oxéon TOV SUVOUE®V AOPAVELNS HE TS OLVAUELS
ovvektikdtTog. o pikpovg Re ot cuvektikég duvapels Kuplapyovv Tov duvapemv
adpdvelag Ko m pon yopoktnpiletor wg otpwth. Avitifétwg, yio vyniovg Re ot

duvapuels adpdvelag Kuplapyobv Kot 1 pon yapaktnpiletar og TopPmong.

O ap1Buodg Prandtl opiletor mg o Adyog g Sidyvong opung Tpog tn Beppukn dudyvon
Kot ekQpalet T oxéon HeTa&D TOV ToYMV TOL VOPOSVLVAUKOD KOl OEPUIKOD 0pLoKO
otpopotoc. e Pr peyoddtepo g povadog to mayog tov Oepuikod oplakod
OTPONOTOC €lvar PIKPOTEPO omd TO TAXOS TOV VIPOSVVAUIKOD OPLOKOD GTPMOTOC.
I"a Pr ico pe ™ povéda ta méyn tov dvo otpoudtov eivar ioa Kot yio Pr pikpotepo

™G Hovadag to Beppikd oplaxd otpmdpa givar peyorvtepo [Kax06].

O apBuodg Grashof exkppdler t0 AOYO TV SLVAPE®V AVEOONG TTPOG TIG GUVEKTIKES
duvapets. o pkpovg Gr ot GUVEKTIKEG GUVALELS KLPLPYOVV TOV AVOGTIKOV KoL 1M

pon eival otpoT. AvTBETOC, Yo vYNAoVG Gr ot aveOTIKEG SLUVAUELS VITEPITYHOLV
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TOV GUVEKTIKAOV Kot 1) por| yivetor TupPdong.

O apBuog Planck ot petagopd Oeppomrog ekepdalet tn oyéomn g UETAPOPIS
Bepuomrag e aymyn pe ™ petapopd Beppotmrag pe axtvoPoirice. o pukpovg Pl n

axtivoPoAia kvuplapyel, evod yuo peydieg tipég tov Pl vepioyvel n aywyn Oepudtnrog.

2.5 AvovuopaTikn popen eEl6O6EmV

g aut v gvotnta divovtor ot eE1I0DGELG HEOTG PONG KOt TOPPNG GE OLOVUGLLATIKY

HOPOY| LETE TNV E16AYOYN TNG TEXVNTNAG CLUTIEGTOTNTOG.

Y& SLOVOGLLOTIKT LOPON 01 EEI0MGELS LEOT|G POTG ETvat

QU pR L vE _v

A =5 2-20
ar at mv vis ( )
0oV
E=diag(0, 1, 1, 1, 1) (2-21)

70 JLVLG O EEQPTNUEVOV LETAPANTOV glval

P
u
Q={v (2-22)
w
T
7O SLAVLGLOL LN-GLVEKTIK®OV OpoV givat
Pu pv pw
u’+p vu wu
E, ={ uv (i+{vi+plj+{ wv Kk (2-23)
uw VW W +p
uT vT wT

7O O14VUGLOL GUVEKTIKMOV OpmV Eivarl
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0 0 0
XX TX)’ sz
B =qT, 1+, ri+1T, 1k (2-24)
sz TZ)’ 7z
qx qy qz
KoL 0 Stévouopa Tmv opwv nyng Yo v 1" ekdoyn tov eElo®oemvy opung sivol
0
0
St 15,
3 Re
S = (2-25)
Gr
RO
S, — ! vQ
i RePr
) , ’ 1 + a’t aui J r ’ ’
Ot dwtunrtikég tdoeig eivan t,, = —+—| ko1 ot poég BeppoTTog givorn
" Re (0x; 0%
1 (1 o |0T
D Pt I et
" Re(Pr Pr )ox,
Opoing ot e&ilomoetg ya to standard k- povtého topPng eivan
QL gp i =§ (2-26)

a’f ét inv,t vis,t t

OOV TO JAVLGLLOL TV EEAPTNUEVOV LETAPANTOV givat

Qt = (2_27)
€

TO SIOVUGLLOL UT-GUVEKTIKMV OpmV givart

. uk |- [vk|- [wk]|-
Fovi = 1+ j+ k (2-28)
’ ue ve wEe

TO O14VLG L0 GUVEKTIKMOV OpmV Eivarl
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jesl

vis,t

o, +a, ok o, +a, ok
GkReﬁ_X i cskRe@_y
c, +a, Ot c, +a, O
chea_x GgReg

KOl TO SOV O TOV OpV TNYNG Elval

S=

[C.

P +G, —¢

€
I(Pk + C£3Gk) - C828]E

o, + o, ok
- o, Re 0z

j+
(@)

.o, O

o, Re oz

Ot e€iomoeig tov k- SST poviélov topPng eivan

Q.
ot

+&+

6mov 10 dtdvuopo eEapTNUEVEOVY HETABANTAOV Eival

t

!

}

TO SIGVUGLOL UT-GUVEKTIK®V OpmV givart

inv,t

:

uk}T {Vk}—: {wk}q
1+ ]+ k
uw v W

70 S1AVLGHLO GUVEKTIKMV Op®V givort

jesl

vis,t

KOl TO SLVOGHO TOV OpV TNYNG Elval

S=

o, +a, ok o, +a, ok
GkReﬁ_x T, GkReg
c,+0, 0o G, +0, 0n
GwReﬁ_X GmReG_y

P +G, —B ok

o, +o, ok

o, Re oz

G, +a, 0m

Y ReP, +CD, +C, L ReG, —Be’

o,

t
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Kepdraro 3
AprOuntikn MeBoooroyia

e ovto T0 KEPAAULO TopovsidleTor 1 apBuntikn pebodoroyia Tov ypnoiponomOnke
yw. Vv emiivon Tov padnUATIKOL pHOVTEAOL Tov dOBnKe ©TO KEPOANO 2.
Epappootmke pia kevipokopupikr, TENEPAcUEVOV OYKOV TEXVIKN GE YEVIKA VPP
mAEypota Yoo OAeg TG eElomoelg (e§lomoelg péong pomg, TOPPNG Ko peTapopds
axtvoPoAing). ¢ ek ToVTOL, OAeS 01 EIGMGEL OAOKANPOONKAY 6TO 1010 aplOunTiKd
mAéyna. H peBodoroyia Baciletar onv mpocsyyion g texvnTig CUUTIEGTOTNTOS Y10l
T1G €E10MGELG PEOTG PONG KoL TOPPNG.

Ewdwotepa, mapovstalovior ol TEYVIKEG TOV YPNOLUOTOMONKAY Y100 TN YOPIKN Kol
YPOVIKN OOKPLTOTOINOT TOV £EI6MOCEMV HEGNG POoNG Kal TOPPNG. Avapépovtal ot d0o
EVOALOKTIKEG Yol TN HovTeEAOTOinom NG aKTivoPoAing, ol oplakeég cLVONKES Kol Ot
TEPLOPIOTES oL ypnowonomdnkav. [pémet va avaeepBel 6Tt 610 VIWOLOUTO NG
EKTEVING mePIANYNMG, ypapovtoag e&lomoelg péong pong evvoovpe v e€icmon

CLVEYELOG, TIC EEIGMOELG OPUNG KoL TNV evepyelakn e€lomaon.

3.1 Awukprtomoinon vTorLoyIGTIKOD Y®Piov

H opBuntiky enilvon tov géiodoemv datnpnong vnd to mpiopa g pebdoov
TMEMEPACUEVOV OYKOV OTOTEL TN OKPLTOTOINGCT TOL VTOAOYIGTIKOD Y®piov o€
aplOunTo mAéypa. o v olokAnpwon tov elo®oewv givol amapoitnto vo

opicovpe dyKovg EAEYYOV.

Ye autn TN OWTPIPn Hol KEVIPOKOUPIKN TEXVIKN EQOPUOGTNKE, TOL onuoaivel OTL ot
eCapmmuéveg petafAntéc vmoroyilovrar kot amoBnkevovtar 6Tovg KOUPOLS TOL
apBuntikod mAéypotoc. Kabe kopfoc i cuvdéetar pe 10 dvadikd tov oyko €, mov
elvar 0 O0ykog eAéyyov Ttov. o TV Kotaokevny TOL AVASIKOD OYKOL OTIS 000
OLOOTAGELG EVOVOLUE TO HEGO TOV OKUOV KOl TO KEVIPOU TOV KEADV OV OVNAKEL O
KOUPOG 1 KOl OTIG TPELS OUGTACELS EVOVOVLE TIG £dpeG oL opilovtan amd Ta HEGH TV

KLLMDV, TO KEVTPO TOV KEAMMV KOl TV E0pMV TOL OVIKEL 0 KOUPOG 1.
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3.2 Xopwn dwekprronoinen tTov eElo@oemv péong pong

OloxAnpovovtog 1§ e£loMGES HESTG PONG, TOL TOPOVCIACTNKOV GTO KEPAANLO 2,
0TOVG OYKOVG eAéyyov i kot epopuoloviag to Bedpnuo amdKAoNG oTA YOPIKA

OAOKANPOUATO TOV UN-CUVEKTIKMOV KOl GUVEKTIKOV 0PV EXOVLE:
2 [Qa0+EL [Qa-+ § Fun - S - § Fu -1t = [Sd2 (3-1)
6‘5 Q at Q o o Q

OepOVTOG TOG Ol TIHEG TV EEUPTNUEVOV HETARANTOV £VTOG TOV YKoV EAEYYOL

elvat opoloyeveic Kot 10€C e TIC OVTIGTOLYXES TIEG TOL KOUPOV 1 EYOoVpE:

A | g AU _ (540~ § Fnn -7dS +  Fuis-dS - RS (3-2)
ot ot 5 ps &

o6mov RHS; elvar 0 6pog tov de&ov péhovg g e&iowong (3-2) mov avtictolyel otov

KOpPo 1 ko
PV, 0
uV, +n,p Ty + Ty 0y +T,,1,
Fiv -n=| vV, +n,p |, Fus-n=| 1,0, + 1,0, +7,0, (3-3)
wV, +1n,p Tl + 7,0, +7T,,1,
TVn qxnx + qyny + qznz

omov V, =un, +vn, +wn, givoun kdbem taydmra.

3.2.1 Ya0roYI610G P1-GUVEKTIKAV 0p®V
["a Tov VTOAOYIGOD TOV UN-GUVEKTIKOV Op®V ovarTLYXON KoV dV0 avAvTn oYLOTOL.

O un-ovvektikdc 6pog g e€icmong (3-2) mpooeyyileTor apOuntikd oc:

. ~ nedge(i) ~
95 Fin -ndS~ Y (Fiw), -njAS; =FINV, (3-4)
oQ

=1
6mov (Finv )ij glval To SAVLGLO TOV UN-GUVEKTIKMOV OP®V VITOAOYIGUEVO GTO UEGO TNG

aKuUNG ij, Nj eivor to povadioaio kaBeTo ddvocpa oty £0pa Tov OYKOL EAEYYoV

TOV GLVOEETOL LE TNV QKUY 1j.
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H mp@®d1tn evOALOKTIKY Y10 TOV DVTOAOYIGUO TOV UN-GLVEKTIKOV Opav Paciletal otov
TPOcEYYoTIKO €mAVT) Riemann tov Roe. Zdppovo pe oavtd to oynuo ot un-
OLVEKTIKEG poéG oymuoatilovtar amd dedopéva ekatépmbev g €6pag Tov OYKOL
EAEYYOL, OTIMG STVETAL TOPAKATE.

(Fin )y 15 = 5 (B (Qu )1+ B (Qu ) 1)+ 3{A(Q1. Qi)

(QL -Qx ) (3-5)

6mov Finv (Q,) kot Finv(Qg) £fvoi 10 SIGVUGHO T®V UN-GUVEKTIKOV POMV 0pIGTEPE Ko
de€1d g €dpag Tov OyKov gAEYYOL TTOL cuvdetan e v akun ij. H lokopiovn tov
LN)-GUVEKTIKOV podV, YVOOTH O¢ UNTp®do Tov Roe opiletor o A :T‘f\‘T", omov A
glvat 10 daydVIO UNTPOO pE TIG WO10TIHEG Tov pntpdov tov Roe, T givar to pntpmdo
10V 110davucpdrov mg lokoplavig kot T etvor o avtiotpopog mivakag tov T.

[ I3RS
~

Mo v wavomoinon tov 1d0tYT@V ToL Roe to untpoa pe (teplommpévn)

vrohoyilovton ypnoiponoidvag Tov olyePpikd péco 6po tov Q, ko Q, [Tay91].

H debtepn evoriaxtikny etvon to avévrn oyfquo IFUS:

nedge(i) . nedge(i) . .
Z (Fim’ )ij ~1’1jASj = z (Vn+eQL +Vn_eQR)ijASj (3'6)
J=1 =1
Omov
Vi, =max(V,,,0) , V.. =min(V,,,0) (3-7)
Vne =U. (nx )e +Ve (ny )e + W, (nZ )e (3_8)
u, Z(uL+uR) v, :(VL+VR) ’ We:(WL+WR) (3-9)
2 2 2

O deilkTng € YPMNCIUOTOLEITOL Y10 TIG TOCOTNTES TOV AVTIGTOLYOVV GTNV OKUN 1j.

Mo v avakataokevn Tov peyebmv aptotepd Kot de&1d TG £6p0C OV OTOLTEITOL Kot

a6 o, OVO AVAVTH GYNUOTO ¥PNCLOTOmONKE gite To devTEPNC TAENG oyua [Kal05]:
— — 1= = = = 1= =

Q. =Qi+§VQi'1J Kot Qg ZQJ'_EVQJ"IJ (3-10)
ette 1o tpitng TN oynua [Tai05]:
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Q1 =Q +51(1-K)5- VG, +KAT xa @y =0, ~ 111GV, +kA] G-11)

omov A; =A; =Q,-Q; kzé. Ov kMogig VQ, kou VQ; vmohoyictnkov

xpnoonotwvtag gite ) néBodo elayiotmv TeTpaydvev ite T néBodo Green-Gauss

omwg mapovcidlovior oto [Bpal2].

To mpdto avavrin oynuo (emAdtng Riemann tov Roe) ypnoipomombnke otov ot
eflomoelg péong pong Mrav woyvpd ovlevyuéves. To devtepo avavrn oynua IFUS
xpNoLoromOnkKe dtav o1 E10MGELG CLVEXELNG Kol OpUNG NTaV acBevdg cvlevypéveg
pe v evepyelokn eElowon. ‘Eywe oldykpion tov dvo pebddov ovlevéng kot
nmopovotaletal oto Kepdiowo 4. To mp®dTO avavtn oynuo pe v woyvpn ovlevén
£0e1&e vepoyn €vavtt Tov devTEPOL pe TV acbevny ovlevén. 'Etol katodn&ope oty
EMAOYN TOV TPOCEYYIGTIKOV €mADTN Riemann tov Roe yw ™) dtaxpiromoinon tov

LN-GULVEKTIKOV OpOV.

3.2.2 YR0LoYIoPOG GUVEKTIKAV 6PV

[a 1tov vmoloyIGHO TWV  CUVEKTIKOV Opwv NG evepyswkng e&lowong
ypnoworomOnke pe emrvyio n pebodoroyia mov epoaprdoTKE Kot Yo TIG EIGMOELS

opung, M omoia avartvyOnKe Kot Tapovsidotnke otig epyosies ([Bpal2], [Vral2]).

3.2.3 Yroroyiopog 6pov Tnymg

o tov vmoloyopd TV Opwv mNYNg ypnooromdnkav kot cvykpibnkav 0600
oynuata. Emiéydnke og arhovotepo kot evotabéotepo 1o oy dmov Bewpovpe dtL
N T Tov 6poL TNYNG EVIOS TOL OYKOL eAEyyov € elval opoloyevig Kot iom pe v

T TOL 6ToVv KOUPo 1.

Téte eivat:

[sda=S0, (3-12)
Q
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3.3 Xopwn dwwkprronoinen eEio@oemv TOpPnc

H yopum dwkprronoinon tov eEiodcewv TopPng £ywve e mopduolo TpoOmo He TIS
elomaelg péong pong. OhokAnpavovtag tig ££1606eS TOPPNG 6ToV OYKO EAEYYOL
oV KOUPov 1, epappoloviog to Bedpnuo OmOKAONG GTO. OAOKANPAOUATO TOV LN-
OUVEKTIKOV KOl GUVEKTIKOV Opwv kol Bewpdviag OTL ot TWES TV TUPPOI®V
petafintav evtdg tov 0ykov eAéyyov Qi eivan {oeg pe TG avtiotoryeg TIHEG TOV

KOuPov 1 éyovpe:

Q%) 0(Q,Q,
o TE g

) [saa- ;,2 Fovs 1S+ 5’2 Foios -1dS (3-13)

o6mov Yo o k-& poviélo tOpPng ot pun-cuvekTikoi Kot cuvvekTikol dpot avricTorya

sivo:

+—n

ck+a[[8k ok ak)
—k +—n ;

_n —
-~ (kV) = . Re \ox * 09y 7 oz
Foven=| |, Fucon=| O y (3-14)
eV, o, +o, (0t Ot Os
—= "t —n +—n, +—n,
o, Re | 0x oy ¥ o0z
Koyl To k- givor:
o, +o, 0ok ok ok
kV o, Re £ +6_yny +§nz
Finv,t ‘n = [ " j ) Fvis,t ‘n= k (3—15)
oV,

o, +0, (80) ow o® ]
_n 2

n
o,Re lox * oy * oz

[o tov vmoloyiopud TV UN-GLVEKTIKOV Opwv TV  eflodcewv  TOPPNG
ypnoponomnke to oynua IFUS. Ze avtiBeon pe tig e€lomoeig péong pong, yo v
AVOKOTOOKEVT TOV £EUPTNUEVOV LETOPANTOV oplotepd Kal Se&1d TV edpdV TOL
OYKOL EAEYYOL XPNGLOTOMONKE TPMOTNG TAENS GO Y1OTL O1 UN-GVVEKTIKOL OpPOL OEV

etvar o1 xvplapyot dpot 6115 e€lodoelg TupPng [Men93].
Gt,L = Gt,i Kot Gt,R = 614‘ (3-16)

["o Tov VTOAOYIG O TV GUVEKTIKGOV Op®V TOV EIGOCEMV TOPPNG YPNOYLOTOONKE 1|

TEYVIKN TOV EPOUPUOGTNKE KOl OTIS EEI0MGELS LEGG POTC.

Téhog, Yo Tov VTOAOYIGUO TV Op®V TNYNS XPNoLoToOnke Eovd 1 TPOGEyyion 0Tt

N TN TOV Op®V TNYNG EVTOS TOL OYKOL EAEYYXOV £lvail OLOLOYEVNG KOl 10T LE TNV TIUN
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oTov Koo 1.

[Sda=8, 0 (3-17)
Q

3.4 Xpoviki] d1uKprtomoinon, owedikacio exilvong

[a ™ ypovikn Owkpitomoinon twv eflodocewv  péong pong kot  TtHPPNg
YPNOOTOmONKE piot TANPOC TEMAEYUEVT dLodIKAGTOL OAOKANP®ONG TOV EEIGDOCEMV.
Ewdwotepa, yio ) xpovompoéracn 610 QUGIKO Xpovo £Paprolovpe Eva TETAEYUEVO
oynua devutePNS TééNg miom S10PoPOV Kol GTOV YELOOYPOVO EVO TETAEYUEVO GYTLLOL
npmtng tééng Euler. Me avtd tov 1pdmo amopelyovpe TOVS aVGTNPOVG TEPLOPIGHOVS

otV €miroyn Tov apBpov CFL tov pntov oynudtov oAokApmong.

[Mopovcidletar n dwdikacio exilvong tov e€lo®ce®Y PHEGNG PONG N omoia ivat 1
O Yo T1c e€lomoelg THPPNG. MeTd T YOPIKN Kol ¥POVIKY SlOKPITOTOINGT Kot TNV

epappoy”n g nebddov ypappukoroinong Newton £xovpe tpog XiAVoT TO GLGTNIOL:

[A]™5q=b" (3-18)

0oV

Q. 30, ORHSM*

n+l,k ;
k_Q _ -1
AT = A Baa T o o)
k n+1,m _2nqk n_ nn-l
Bn+1,k _ RHSinH"k _ Qi (q, - Qi )+ Eg‘z1 3q1 + 4Q1 Qi (3-20)
At 2At
§q=q"" —q (3-21)

8q elvar to Stdvoopo petaPoing twv efapmmuévov petaPAntdv  petald §vo

dradoykmv eravaryemv Newton k kot k+1.

[N va tepdoovpie amd To yevdoypovikd Prpa m oto endpuevo Ppa m+1, ektelodvton
pia 1 dvo emavarnyelg Newton. o va mepdoovpe 6to endpevo euokd Pruo gite
exteheitan  évag  mpoxkabopiopévog  apludg Pnudtov  otov  yevdoyxpovo  eite
emuyybvetar ocOykAMon otov  yeudoxpovo. O VROAOYIGHOG TOV  TOTIKOV

YeLdoypovikoy Prpatog Kabe kdpPov 1 yivetar pe T 6YECELG TOV £ovV TpoTadEl amd
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tovug Kallinderis & Ahn [Kal96], [Kal05].

Ot e&lomoelg péong pong kat topPng elvan aclevidg cvlevypéveg petald tovg. Xe
k60e Prpo Newton emdvoviar Eeympiotd. Apyikd emAvoviar ot e£loMOES UEONS
pong kot divouv otig elomoelg THPPNG TO TESIO TOYVLTNTOV KOl GTN GLVEXELN
emAvovtal ol eElomaelg THPPNG Kot divovv TV TVPPDOON KIVIUOTIKY) GUVEKTIKOTITO
oT1g eElomoelg péong pong. H Eexywpiot) enidvon tov eEicdocewv mpotindton yoti
elvar  gukoAOTEPN 1 evoopdtoon emmAéov poviédmv  TOPPNG Kot M yxpnom
dwpopetikmdv peBddwv vy T oakprromoinon tov elcwoewv [Bpall2]. Emiong
npémel va avopepBet 6TL 1 ac0evadg culevyuévn enilvon TV eEI6MGEMY HEGNG PONG
Kot TOPPNG elvort EDKOAITEPT] TPOYPUULOTIOTIKA GE GYECT LE TNV 10YVPDOG GLLEVYUEVT
emilvon M omoila dev gival KOS amodektd Ot Asttovpyel kaivtepo ([LeeO6bal,

[Bar98], [Liu96], [Lin97]).

["a va evicydoovpe T darydvio Kuprapyio mov Ba pog eEacparicel v enilvomn Tov
YPOUUIKOD GUOTAUOTOG EYIVE YPOUUIKOTOINGT TOL OPOL TNYNG TNG EVEPYEWNKNG

eElomong. Ze YpOUKN Lopen 0 Opo¢ Tyng eiva:

Nk
S =Sk + (%iT] (T 1) (3-22)

Ao TOVG TPELG OPOVG TOL OPOL TNYNG KPOTAUE TOV SELTEPO OV AVTIGTOLKEL OTNV
axtivoPoAia, KOO avtdc maipvel apvnTIKEG TIHEG Kol OmMOTEAEL PN EKEPACT] TNG

Bepuokpaciog. Tote etvau:

os Y 16 T V)
(_) ] L L | (3-23)
oT ) Re Pr PIT, \ T, i

3.5 Movtehomoinon g axtivoforiog

Mo ™ povtelomoinon g petapopds Beppomrag pe oktvofolrio xovv mpotabel
mn0Bog mpooeyyicewv otn Pploypapio, opiopéveg amd TG 0moieg TAPOLGLAGTNKAY
010 KePdAoo 1. Xtov k®Owd pog evoopatdnkay dvo and avtés. Akorovdel ot

CUVEYEL LLLOL GUVTOUT TTEPTYPOAPT) TOVG.
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3.5.1 MovTtéAho YOVIWOKOV TOpayOVT®V

To npdTo povtéro axtivoforiog eivorl Eva avaALTIKO LOVIEAD YOVIOKAOV TOPAYOVI®V
nov ypnowonotel adyeBpikés oyéoels. [lapovoidotnke and tovg Albanakis & Bouris
[AIbO8]. Eivau pua tpiodidotatn pébodog n omoia umopet vo epapuocTel Kot 6TIc 00O
OoTAoES HEe TNV KOTOAANAN €miPoAn oplokdv cvvOnk®v cvupetpiog. Avtd to
LOVTEAO €XEL EQOPUOYN OE KTIpo Kot onpoyyes e LVYNAoUS optfuols eKTOUTNG
toyopdtov (€>0,8), teplopiopévo apBpd avakAdcemv petalld TOV TOYOUATOV Kol
Y. UN-COHUETEY®V  (Ooapaveg) pevotd. T Tov VITOAOYIoUO TOV  YOVIOK®OV
TAPOYOVIWV YPNCUOTOLOVVTOL OAYERPIKEG OXECEIS KATAAANAES YO TIC OPLOKES £DPES
Kopteoiavod miéypatog. Avtiy 1 pébodog elvar €0KOAN GTOV TPOYPOLUUATIGUO TNG.
Qot6c0, Ppédnke va elvar apketd akpiPr 6€ VTOAOYICTIKO YPOVO Kot UvAun, Otov
EPOPUOCTNKE LE TN GEPLOKT €kdoomn Tov KOdKa. Edwkdtepa, yio N oplakég £dpec,

2

amoTEITOL O VTOAOYIGUOG Kol 1) omobnkevon YOVIOKOV TOPAYOVTIOV Kot

N?—-N

YEOUETPIKOV Tapayoviwv. Ot YOVIOKOL TOpAyOvIECG KOl Ol YEMUETPLKOL
TOPAYOVTEG OO KELTNKAV LLE OIKOVOLIKO TPOTO GE OVO JAVOGLLATAL.

H aktivoBolia petald 600 oploK®V EMPAVELOV M KOl N YPNGLUOTOLOVTIOS AVTO TO

povtélo elvat:
qm,n = hm,nAn (Tm - Tn) (3-24)

Omov 0 GuvTeELeoTNG aKTvoBoAiog hy , Elvar:

gngmaném +
[1 - 1 - 811 1 - 8“’1 FHZA)ITIAH /Aﬂ'l]
h,, = (T, + T, )T, +T,) ( X ) (3-25)
’ - (1 —& )FnﬁiFmﬁi
€€, OCA Z
i=1

All-(1-g)(1-¢,)(1-&)F_F_F

n—i"i->m~ m—on

Ymv d0powon ywo oV LVIOAOYIGUO TOL GLVTEAESTN aKTvoPoAiog eSoupodvtol ot

EMPAVELEG M KO .

Meta&h V0 oplok®V €0pMYV M Kol N 1GYLOVY Ol TAPOUKAT® GYEGEIS TOL KAVOLV

YPNYOPOTEPOVS TOVG VITOAOYIGLOVG:
qm,n = _qn,m Kol hm,n = hn,mAm /An (3_26)
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Emiong, a&iler va avapepBel 1L o1 6pot €vtOg TG AyKVLANG TOL TEPLEYOLV AKPPES
afpoicelg efoptdvior pdévo amd TN YEOUETPIOL TOV  VTOAOYIGTIKOL YX®PIiov
(yeopetpikol mapdyovreg). Q¢ ek To0HTOL, LTOAOYILOVTOL UL POPA TPV TNV KLPIMG
vroAoylotiky] Swdwkacio. Kotd 1 ddpkeld TG LTOAOYIGTIKNG  OlodKaGiog
vroroyilovtat ot GuVTEAESTES hin YpNOIHOTOIOVTOG TO TPEYOV Bepokpaciakd medio

KOl TOVG YEMUETPIKOVG TALPAYOVTEG.

[No kéBe opraxn €0pa n,  axtivoforodpevn pon Bepudtnrog vroroyileton omd v

&dBpoion:
N

qn = zqm,n (3_27)
m=1

I'evikd, 0 VTOAOYIGHOG TOV YEOUETPIKAOV TOPAYOVI®OV €ival  VITOAOYIGTIKA
amoTNTIKOG. 261060, OTAV TO VITOAOYIGTIKO YMPI0 OLLKPITOTOLEITOL YPTCLUOTOIDVTOG
Kaopteciavo miéypa (opBoydvia mapalAnAOYPOLUe Y10, OPLOKEG £OPEG) KOl TEPLEYEL
TolYOHOTO OV gival mapdAAnio 1 KaOeta PETAED TOVS, Ol YWVINKOL TOPBEyovTEeS
vroAoyiloviar  ypNyopoOTEPO  YPNCLOTOUDVTOG  OVOAVTIKEG — OYEGES OV
napovcidomkay and tov Howell [How01]. EmnpocOétwg, Aappdavovtag vroyn v
oxéon apoPardnTag yw. TOovg YyoviekoOg mopdyovieg A F o =A F - 10

VTOAOYIOTIKO POPTIO LEDVETOUL TEPETAIP®.

Onwg avaeépdnke mopamdve 1 cvykekpipévn pebodoroyio 1oyvel yio StaQovEg
pevotd. Apa, N Oeppukn aktvoPorio Aapfdvetal veoyn poévo petald TV oplaKdV
edpov. H oprokn ocuovOnkn oe kébe oploxd koOpPfo i adofatikod TOOUATOG O

dotatr popen| givat:

k(- VT,) + (g ), =0 (3-28)

i

Kot epapuoleton glte €Upecsa 6Tov VIOAOYICUO TNG OPLOKNG GUVEKTIKNG PONG &ite
pntd. k glvar  Beppukn ayoyrdTTo TOL PEVCTOL Kol h givol To povadiaio kdbeto

dvoopa.

3.5.2 Mé0ooog Ilenepaocpévov Oykmv (MITO)

H 6e0tepn néBodog v v axtivofoiria £xel mapovoiootel Kot avantuydel og Kadwka
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and tovg Lygidakis & Nikolos. Eivar o tpiedidotatn MIIO katdAAnin v @od
PEVGTO, TOL ATOPPOPA, EKTEUTEL KOt OKEOALEL £1TE 1GOTPOTIKA EITE AVICOTPOTKA TNV
axtivoPoAia. YwoBetel po kevipokopuPikn kot akpoBaciky] TpocEyyion n onoio sivoe
ocoppatn pe T0 OKd pog emAvtn pong. ‘Etol, n egicmon petagopds aktivoBoiiog
OAOKANpOVETOL 6TO 1010 TAEYHO e TIC VTOAoneS e&lomdaets. Epapuoletl to oynua step
TOV EVOL OVTIGTOL(O TMOV AVAVTY GYNUATOV Yo T PO Yo VO GUVOECEL TV EVTAOT)
G oKTVvoPoAlag 6To HEGO TNG £0paG TOL OYKOL EAEYYOVL UE avT 6Tovg kopPovc. I'a
TNV TEPIMTMOTN EMKAALYNG TNG YOVIOG EAEYXOVL VTAPYEL M OLVATOTNTA EMAOYNG
petald g bold mpocéyyiong kot g pixelation peBodoov. Eivar éva dedtepng 1aENG
YOPIKO KL YPOVIKO GYTLLO KOL YL TNV ATOPLYT) VTOEKTIUNGEDV KOl VITEPEKTIUCEMV
™G €évtaong G okTvofoAiag vmdpyet M dvvatdTNTo EMAOYNG €VOG €K TOV
nepopotdv van Albada-van Leer kot Min-Mod. Xeg mepintwon evtomiopon
APVNTIKOV EVTAcE®V oKTvoBoiiog epapudletar pia fix-up dadikacio Kot auTég OTov

evtomoTovV tibevton ioeg pe unodév.

[Ma v yevudoypovikn xpovompoéraom xpnoomoteitat pia 0e0TEPNS TAENG aKpifetag

1e660pnVv fnudtov Runge-Kutta pébodog.

3.6 Oprokéc ovvOnKeg
3.6.1 E&iodoeig péong poiig

Yg auTn TNV VIOEVOTNTA TTEPLYPAPOVTUL Ol OPLaKES cLVONKES TV e€I0DoEMY HEOS

porc.

21V €l6000 TOL VTOAOYIGTIKOD YWPiov opilovpe TO SEVLCLUA TOV TAXYVTATOV KOL TN

Oepuoxpaocio. H micon mpokdmntel omd 10V 1IGOAOYIGUS TNG PONG.

Ymv €000 TOL VTOAOYIOTIKOV Y®Piov €eMPAAAETOL GLYKEKPIUEV TiEOT Ko

TPOKLITOVV 1) TAYVTNTES Kot 1 Oepprokpacio.

Y10 oteped Toywupato emiPdAiovral cuvOnkeg pn-oilicOnong mov ompaiver ot
&yovpe undevikég toyvntec. H mieon vroAoyiletan amd v emnilvon g pong. o
Oepuokpacio eite €xer ovykekpévn Ty (Dirichlet cuvOnim) eite emPdiieTon
ovykekpipévn pom Beppomrog o adtafotikd toiymopa (Neumann cuvnkn). Otav n

axtivoPoAia H/kot n aymyn oto tolyoua Aappdvovtal véym n pon BepuodTnTog sivor
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dpopn Tov UNdevdg, evad etvan iom pe pnodév otav doev Aapfdvovror vmoéyn. H
ouvOnkn Dirichlet emPBaiietor pntd, eved n cvvOnkn Neumann gmifPdileTon Eppeca

GTOV VTTOAOYIGHO TNG GLVEIGPOPAS TMV OPLIK®OV KOUP®V.

Yto Oplo ovppeTpiog n kabetn o avtd TavTNTO ivor pundevikn. Ot GLUUETPIKESG
oplakég ovvOnkeg emPdrrovtal ppeca ([Kov98], [Bpal2]). Otav vroAoyilovpe ™
GUVEIGQOPE TOV OpPloK®OV KOUP®OV aUEAOVUOL TO GULVEKTIKO SLOVOGUO PONG Kot
VTOAOYICOVUE TO UN-CLVEKTIKO S1dvuGHa pong Yo kAT ToybTnTO 6TO TOoiY™Ua Vy,

UNOEVIKN.

3.6.2 E€iomoeig TopPnc

2y €lcodo Tov vmoAoyloTikoL ywpiov tiBevion cvvOnkeg Dirichlet pntd yuo T1g

petafAntég TopPne.
2tV €£000 TOV LTOAOYIGTIKOD Ywpiov Ta peyEdn e THpPng vroAoyilovtat.

Yto oteped Toy®poTo Otov ypnowpomoteitor to yopnAov-Re k-o SST poviéro

TOpPNGS o1 petafintég g TOpPNg vroroyiCovton amd tig Dirichlet oplakég cuvOnkeg
5

2
B, Re (AY)

np®To KOUPo amd to tolyowpa kot B;=0,0750. Otav epapudlovtol GuvapTHGELS

k=0 xu =10 , omov Ay eivon m adidotatn andotacn ond TOV

TOYMUOTOG ol pHeTaPAnTés TOpPNG opiloviar amd TG TOPAKAT®O EKQPACES GE
doToT LOPOY:

2 3
k=—— xo1 g=—2

, YW 0 k-€ povtédo toppng

k="%_ and o= , Y To k- povtédo tOpPng

Yta Opla cvppetpiog opereitol To SIAVUCLUE TOV CUVEKTIKOV POdV OTMS YiveTol Kot
Y TG €EI0ADGELG HECTG PONG KO TO SLAVUGHO TV UN-GUVEKTIKAOV po®V vroAoyiletal

Aoppdvovtag voyn O6TL 1 KABETN ToLTNTO ELVOL PUNOEVIKN.
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3.6.3 Eéicmon Metagopdg Axtivoporioc (EMA)

Ymv eloodo kot oty €€0d0 (avolktd Opla) Bewpovpot OTL €XOVUE GLVIEAEGTY|
ekmoung ico pe t povada (pelavd copata) kot otobepr| Oepuokpacio ion pe Tov

nepaiiovtoc.

Ta oteped toyyopota Oewpovvion OTL givor adw@avy) Kot OTL EKTEUTOLV KoL
AVOKAODV 1GOTPOTIKG TNV oKTvoPoAia, dnAadr pe v idwo €viaon mpog OAEC TIC
devBvvoeic. Otav 0 GVVTEAEGTG eKTOUTNG £lvar 160G e TN povada To Toiympo pdvo
EKTTEUTEL TNV OKTWVOPOALL, EVD Y10 TIWES TOV GUVTEAECTN EKTOUMNG UIKPOTEPES TNG

LOVASOC EKTEUTEL KO AVAKAG TOVTOYPOVE, TNV OKTIVOPOAL.

Yta Opro svppeTpiog n Kabetn og avtd por| Bepprotntog Adyw aktvoPoliiog eivor iom

ne Unoév.

3.7 Ileproprotég

H epappoyn mpd™S 14ENG OYNUATOV OVOKATOCKELTG E0AYEL VYNAEG TOGOTNTES
apBuMTIKNng d1dyvong mov pmopel vo 0dMNYNGEL 68 PN-PEAMOTIKEG AVOELS. Y TapYOLV
V0 EVOALOKTIKEG Y10 VO OVTILETORICOVUE avTh TV advvauio. H mpotn eivon va
xpnoonomocovpe mukvotepa mAEypata. Oco mo mukvod elvar 1o apuntcd TALypa
1060 LIKPOTEPT Kot 1 O1dyvor), aAld amorteiton Kot LEYAAVTEPO VTOAOYIGTIKO KOGTOG
Kot pvnun. H devtepn evoriaxtikn givor n elcaywyn oynudtov vynilotepns taéng
akpifelag. Opwg mopdAo mov To LYNAOTEPNG TAENS OYNMHOTO HELOVOLV TNV
apluntikny Obyvorn, Umopel vo. 0dNYNCOVV GE TOANVIMGELS, EWKE G TEPLOYES
OCLVEXELDV, OTMG KOVTA 6e KOHOTO KPOoOoNG, Kol G€ TEPLOYESG KAKOD VITOAOYLIGTIKOV
mAéypotog ([Kov98], [Swe84]). Xe tétoleg meputtadoelg ta kabapd oynuoTo LYNANG

TAENG pumopel v 00N yNoovv o€ aotdieleg | UN-pEOMOTIKEG ADGELS.

H Boown 10éa micw omd ) ypnon tov mepoplotdv givoar vo fondncovv ot
dlTpnNon G HOVOTOVIOG TOL GYNUOTOS OVOKOTAGKEVLNG, EAEYYOVIOG TN YWOPIKY|
napdywyo o€ pealotikd mAaiclo. H emAoyn tov katdAiniov meplopiot) e€aptdton

a6 To €100G TOL TPOPANUATOG Kot YiveTal HeTd omd dOKIUES.

21 0N oG epyacio QopuocTnKay 000 TEPLOPIGTEG YO TNV OVOKOTUOKELT TMV

eCapmuévav HeETafANTOV oL ivol amapaitnTn Yo TIC UN-CLUVEKTIKES POEC KOL Y10l
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Vv ovaKatackevn g évraong g aktivoforiog ot MIIO. Avtol ot meplopiotég

elvar ot van Albada-van Leer kot Min-Mod [Bla01].

"Eva. onpovTikd PEIOVEKTNLO TOV TEPLOPICTMV Eival OTL KABVGTEPOVV 1) UTOPEL Kot v
OTOLOTAOOVV TN GUYKAION ©€ €va. ouyKekpluévo Pabud kdtt 1o omolo eivon
mhovoTEPO vo ovuPel Otav ol TMEPLOPIOTEG €ival UN-O10POPIGILES GLVOPTNHOELS
[Ven93]. Avtd to @awvdpevo givar epeavég oto kKepahioto 4 6mov yivetan chykpion
MG cLYKAONG e TN ¥PNoN N Ol TEPLOPICTMOV GTNV TEPIMTOOT TNG OVOGTIKNG PONS
oe kP KowdmrTa. Ot TEPOPIGTEG YPNOOTOMONKAV KOl OTIS TEPUTTAOGELS
TLPKAYLIC GTN ONPAyYd, OOV Kot TAAL dnpuovpyncav TpofAnpate otn cuyKkAon. ¢
€K TOUTOV, Ol TEPLOPLIOTEG AMOUOKPVVONKAY MG EMAOYT Y10 TOV VITOAOYIGUO TV LN-
GUVEKTIKOV Op®V, 0AAGL OOTEAODV ETIAOYN Yl TNV OVOKOTOCKELT TNG EVTOONG TNG

aKTivoBoAiag.
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Kepdararo 4
Emkopoon s ApOuntikig MebBodoroyiag

Y10 4° KePAAao TaPOVGIALOVUE OPIGUEVES OVIITPOCMOREVTIKEG TEPITTOCELS OV
EMAVONKAV Yo TNV €MKOPOOT TOL avarTLYXBEVTOG EMADTN. AVTEC Ol TEPIMTMOGELS
etvan 2-A M 3-A, povipeg 1 Un-UOVIHES, OTPOTEC 1 TVPPDOELS, pe TV eMidpaoT NG
axtivoPoAiag N Oxt. Okeg o1 TeEPWTOCELS EMAVOINKAY YPNCLOTOLDOVTAG TNV GYVPN|
ovlevén tov eflodcewv péong pong. KotaAnCoape omv vmepoyn g 1oyxvpd
oLleVYUEVTG EMIAVONG HETA TNV GUYKPLOT| TNG Ue TV acBevdg culevyuévn emilvon n
omoia mapovcialeton mopakdtw. Emiong, peletnke kot mapovsidleton 1 enidpaon

TOV TEPLOPLOTDV.

4.1 Z1poTég poég
4.1.1 llpopinpa Graetz

[Ipdta and 6Aa mapovoidletor €va mpoPinua Graetz. [Ipoxettor yioo mpdPAnpa
e€AVAYKAGUEVIC CLVOY®MYNG €VTOC ay®myoy axtivog 1 ko prkovg 20. To pevotd
EICEPYETOL OTOV ay®YO HE opoopopeo Oepuoxpaciokd mpopid (T=0) wo
TaPAPOAMKO TPOPIA TAYLTTOV TANP®G SULOPPOUEVIC PONG (u(r)=2(1-1%), v=w=0).
Yta toyyopate tov ayoyov 1 Beppokpacio stvor Te=0 yw x<0, Th=1 yio x>0 xou
emkpatovv ocvuvOnkeg un-oAicOnong (u=v=w=0). X dSwtoun €£6d60v 1OV AYWYOL

&xel emPAnOel otabepn undevikn migon.

Onwg avaeépdnke n pon elvar TANP®G SOHOPPOUEVT, TO OToio onuaivel OTL TO
TPOPiL TOV TOLTATOV glvar TaPAPOAIKO Kot KOTE TO UNKOS TOL aymyol TPEMEL Vi
napapével mopaforkd. EmmpocBitmg, mpémel vo vmwhpyel YPOUUIK TTOGN NG
a&OoVIKNg Tieong ovuemva pe To vopo tov Poiseuille, kabmg o1 e§lomaelg opung Kot n
evepyelokn e&lowon dgv eivol TEMAEYUEVES OTNV TEPIMTOOT TNG EEAVAYKAGUEVNC
ouvaymync. Zto oynpa 4-1 divetar to TpoPid TV TOYLTATOV OE TPELS BEGELS KATA TO
pKog tov aymyod Kot M afovik mrtdon mieong. Ta mPoeidh TV TayLTATOV

ouumintovy pe ovTd NG €16000V KoL 1 TTMOOT TEoNS €ivol YPOUUIKY] OTMC
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TEPYLEVOLLE.

16 A
1.2
u
0.8 A —%=-10
04 -l
=] wemey=10
0 T T T T 0 T - T T T T
0 0.2 0.4 0.6 0.8 1 10 7.5 S 25 il 25 5 7.5 10
r X

Yyquo 4-1. TIpogik toyvTTOV GE TPELG SLOPOPETIKEG BECELG KATA TO UWAKOG TOV Oy®YOU

(aprotepd) Ko agovikn TTdom TEoNS KATA TO PKOG TOL oy@yov (5e&1d).

210 oynua 4-2 cuykpivoviol To OKTIVIKE TPOPIA TV BEPUOKPACIOV HE TO AVOAVTIKE

amoteléoparto twv Papoutsakis et al. [Pap80] o didpopeg alovikég Béaeic £, 6mov N

0¢om C opiletar wg ¢ :Pi. H Beppokpacia xatd 1o prrog tov d&ova divetor Kot
€

ovykpivetan 6to oynua 4-3.

1 i — 3= 36 ——2= 3 X=X A —X= e K =X= -x—:-:'_,_"'—'—‘e,
..‘_._,,....1--"""* e,oo‘ﬁ' —
PERRRIREE oo ® o m a [Pap80] (C=-0.02)
0.8 roretet o a —Present solver ((=-0.02)
oo oo o ”F, o [Pap80] ({=0.05)
06 J 002 e o7 pp ---Present solver ((=0.05)
T ’ oo e o [Pap80] (£=0.08)
p—0- = L. = - - Present solver ((=0.08)
04 - e o [Pap80] (C=0.15)
S N0 D,D" — Present solver ((=0.15)
on PO o + [Pap80] (C=0.3)
“ lgges® | e Present solver ({=0.3)
x [Pap80] ((=0.5)
0 T L T T
0 0.2 0.4 0.6 0.8 1
Tr

Zyqua 4-2. Aktivikd Beppokpactakd mpoeid og diapopeg akovikég Bécelg L. Xhykpion pe v
avaAvtikny Aon g Pipioypagiog [Pap80].
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o [Pap80]
—Present solver

0.8 1

yquo 4-3. AEovikd OepokpacloKd TPoia.

oT
Orlr=1

(T, -~ Ty)

O apBuog Nusselt opiletar Yo avtd T0 TPOPANUA ®G Nu = -2 , 0oL 1M

r=1
uéon (average 1 bulk) Oegppoxpooio givor T, =2 _[ ru(r)T(r)dr . H aovpntotikg tdon
r=0

tov apBuov Nu givar éva and ta facikd yopokploTikd tov tpofAnudtov Graetz.
>10 oyfua 4-4 ditvetar o aplBuodg Nu katd 10 UnKog tov aywyov. Xtnv £€£000 TOL
ayoyoy maipver v g 3,73. A&iler va avaeépovpe 6t o apBudg Nu €deite
Wwitepn evocOnoio otnv T g péong Bepuroxkpaciog mincialoviag mpog v

££060 TOL aY®YOV.
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16
12 4
Nu
8
'\‘f

"1 N — & L S8—if— ¢
L.I 1 | | 1

i 2 4 (&) b 10

X

Zyquo 4-4. ApBuog Nusselt cuvaptroet g aovikr| 6€omg Tov aywyov.

4.1.2 AvooTtikn pon 6g Kufikn kKothdétnTO

H mepintwon ¢ aveoTtikng pong o€ kKuPikn Kotkotnta £xel peketn et omd moArovg
epeuvntég oto mapeAbov ([Tri00], [Lo07], [Rav08]). Exovue o kieiot) kofikn
Koot akung W pe peuotod ektebeiévo oe Bepokpaciokt dtapopd LETOEL 600
KOTAKOPLO®V TOy®UATOV Kot Téooepo  adtafotikd toryopato. Ewdwodtepa 1
Oepuokpacia yioo x=1 (Beppd tolyoua) eivar Tp=0.5 ko yioo x=0 (yoypd Tol)®UO)
etvaw T=—0.5. EmA0Onke n ovykekpuévn mepintmon yuo toug apifuovc Rayleigh
10°, 10, 10°.

Tao amotedéopoto OV TPOEKLYAV YO AVTH TNV TEPITTOON TopoLSLdlovTol Kot
oLYKpPIvOvTOl [E TO VTOAOYIOTIKA amoteAéopata G Piproypapiog [Rav08] ota

oynpota 4-5 kot 4-6.
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0.50 0.50
0.50
025 4 0 | 025
T s00 T 000 T oo |
0,25 4 _0.95 -0.25 4
-0.50 -0.50 | - -0.50
0.00 0.25 0.50 0.75 0.00 0.2% 0.75 1.00 0.00 0.25 0.50 0.75 100
X b X
, . . , 3 , 4
Yyquo 4-5. Zoykpion tov Oeppokpaciokdv Tpoeid yioa y=2z=0,5. Ra=10" (apiotepd), Ra=10
, 5 , , , . ,
(néom), Ra=10" (8e&1tr) (o: [Rav08], cuveyng ypoUUn: TOPOV ETAVTNG).
1.00 1.00 © 1.00 =
0.75 A 0.75 4 075
Z 050 Z 050 A Z 050
0.25 0.25 1 0.25
0.00 o T 0.00 T T < T T 0.00 r T r T & T T T T
=30 =20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -850 -40 -30 -20 -10 0 10 20 30 40 50
u u u
30
30 30 20
&0 A
20 A 20 B0
40 A
30 4
10 4 0 20 A
10 4
r W D w 0%
W W 1 10
4 -20 4
10 4 10 % 30 4
40 4
_E0
20 4 =20 A 60
_70
30 =30 -80 T T T
o 025 0.5 0.75 1 0 0.25 05 0.75 1 0 025 0.5 075 1
X X X

Iyquo 4-6. XOykpion Oeppokpaclokdv npoq;ik. Ipoeid u tayvrag Yoo x=y=0,5 (n&vm
ypappn). Tpoeih w taydmntog yo y=z=0,5 (kétw ypoppn). Ra=10° (apiotepny omiin),
Ra=10" (uecaia othAn), Ra=10" (8e&id otidn) (o: [Rav08], cvveync ypouun: mopdv
EMAVTNG).
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11 8T
Ot péyloteg TIHéG TV ToLTHTOV Kot 0 aptBpdc Nu (Nu=”a—xdyd2) oto Oepud
00

Toiyopa mopovcstdlovion otov mivaka 4-1 Ko otov mivaka 4-2 avtictotyo.

Ra=10’ Ra=10" Ra=10’
)
=
B
2
g . [Mapdv . Mopdv . Moapédv
= [Tri00] [Lo07] [Tri00] [Lo07] [Tri00] [Lo07]
EMAVTIG EMADTIG EMADTNG
Unax 3.5435 3.5227 3.5255 16.7198 | 16.5312 | 16.7108 | 43.9037 | 43.6877 | 43.7705
Vinax 0.1733 0.1726 0.1694 | 2.15657 | 2.1092 2.1143 9.6973 9.3720 9.4812
Winax 3.5446 3.5163 3.5312 18.9835 | 18.6971 | 18.8822 | 71.0680 | 70.6267 | 71.2915

[Mivakog 4-1. ZOykpion HeYIoTOV TV TAXVTNTOV LE GALOVS EPEVVNTEC.

Ra | [Tri00] | [LoO7] | [Rav08] | Iapdv emddtng
10° | 1.0700 | 1.0710 | 1.0713 1.0713
10* | 2.0542 | 2.0537 | 2.0591 2.0659
10° | 4.3370 | 4.3329 | 4.3570 4.3932

[Tivakag 4-2. XOykpion apBpov Nu pe dAhovg epeuvntéc.
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4.1.3 Mn-pévipn ikt cvovayoyn yOpm omro aymyo TETPAYMVIKNG OLUTOUNG

o va a&oroynocovpe TG duVOTOHTNTEG TOL GYNUOTOS OLOKPLTOTOINGNG (PLGIKOV
¥pOVOL TOL TPOTaBEVTOG EMAVTN, TPocopolwOnKe 1 2-A mepimTOON TG WKTNG

CLVOYOYNS YOP® otd KOAMVOIPO TETPAYMVIKNG SLOTOUNG.

Xe qUTN TNV TEPITTMOT 0 KOAIVOPOG TETPAYWOVIKNG Otatoung Oeppaiveton  yoyeton pe
otafepn Oeppokpocio Th=1 wor eivon extebeyévog oe otabepn Kol opoldpopen
avavtn toyvnto Kot Oeppokpacia (u=0, v=1, T,=0). Z10 apiotepod kot deE16 Op1o TOL
VIOAOYIGTIKOV Ywpiov €yovv emPAndel cuvOnkec cvppetpiag. H mieom eivor undevikn
otV £€£000. AvTi 1 pon ivar mEPLOdIKN pe T ovuyvotnTa (apBpdc Str) va egaptdton

a6 tov apduo Richardson.

Y10 oynua 4-7 mapovctdletar o apBuog Str yio Re peta&y tov 70 kon tov 150 yopig
va Aapupdvoope vmoyn to eowvopevo dvoong (Ri=0) kot ocvykpivetar pe to
vroAoyloTikd amotedéopota g Piproypaeiog ([Rob99], [Sha04b]). To oynua 4-7
emiong mapovotdlel v eEdptnon tov apBpov Str pe Tov Ri yio Re=100 ko yiveton

ovykpilon pe ta amoteAécpata g Piploypaeiog [Sha04b].

0.17 0.18

0.16
0.16

0.14
0.15 1

Str

0.14

0.12 Str

0.10

0.13 1 0.08

0.12 T T T 0.06
70 90 110 130 150  -1.00  -080 -0.60 -040 -0.20 0.00 0.20

Re Ri

Syquo 4-7. Xoykpion tov Str ocvvoptioel tov Re, 6tav Ri=0 (apiotepd) (¢:[Rob99],
m:[Sha04], e: mopav exlvtng). LOykpion tov Str cvvaptioetl Tov Ri, dtav Re=100 (de&1d)

(0:[Sha04], o: mapdv exA0vTNg).

10 oyfua 4-8 moapovcialovtal ot Ypoupég pong yia dtdpopovg Ri. Etvar sppavég 6t
uewwvovtag tov aplud Ri n meployn tov opodppov avéavel oe TAATOC. AvEdvovtag

tov apBuo Ri n meployn tov opdppov pewdvetar e mAdtog kKot yw Ri=0,15 n pon
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yiveton poévium. Zto oynua 4-9 diveton n tun tov cvvrereot avtictaong Cp kot ot
ms TIWES TOV JUTOPUYDV TOV GUVTIEAECTN OVTIGTAONG KOl TG AVMONG LE TOV aplipo
Ri yio Re=100. Eivor eppavég 6t vdpyet po tipun tov Ri kovtd oto -0,15 6émov o
oVVTELESTNG avTioTaong Aaupdvel v eldyiot Tov . Emmpoctétwe, ot rms tipég
unodeviCovrar ywa Ri peyaidtepovg 1 icovg pe 0,15, mov onuaivel 6TL n pon €xet yivet

poviun.

Ri=0.15

Syquo 4-8. I'pappég pong yia didpopoug optfuovg Ri.

EM-52



I3
i

Bl
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15
1
-1 -5 i 0.5 1
-
Ri
1 a2
i
15 0.15
r..l.rl."r | t-'!:|-r|-1 I:ll 1
s 005 +
1] T - - il
-1 a5 [ s 1 -1 -0.5 1} 0% 1
Ri Ri

Syquo 4-9. Zvvteheotg avtictaong Cp Kot rms TIHEG TOV OLOKVUAVOEMY TOV GUVTEAEGTY|

avtiotaong kot dvoong pe tov aptdud Riyuo Re=100 (o: [Sha04], o napdv emAvng).
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4.1.4 oykpron pedodomv ovleving eElo@oemv

Ye vt TV LTOEVOTNTA TOPOVGIALOVUE TN GUYKPLon TV dVvo peBddmv cvlevéng,
6Gov apopd to pLOUO chykiiong kol v gvotdbeld Tovg. Otav ypnoiponoteitol to
oynua tov Roe ot e€lodoelg emAvovtat 1oyvpd cvlevyuéveg (strongly coupled - S-C)
oNrodn €yovpe TOVTOXPOVN EMIALGON OA®V TOV €EI0MCGEMV PEONG PONG, EVO OTAV
ypnowonoteitar to oyxfuo IFUS ov e&iodoeg emivovior acBevidg cvlevypéveg
(loosely coupled - L-C). Ztnv acBevag cvulevypévn enidvon tov eElo®oemv apyikd
EMADOVTAL Ol EEIGMOELG GUVEXELNG KOl OPUNG Y10 CLYKEKPLUEVO Beprokpactakd medio.
‘Emerta, emivetorl n evepyelokn e£icmon Yo T0 TS0 TOYLTHTOV TOV £YEL TPOKVYEL.

Avt 1 Swdkacio eravarapPavetor PEYPL GLYKAIGE®MS GTOV YELOOYPOVO.

O1 dvo mpoavapepBeices HEBodoL GuyKpiONKaV GTNV TEPITTOON TG AVOGTIKNG PONG
0€ TETPAYOVIKT KOWLOTNTA. AVTH 1| TEPITTOGT OVOIAGTIKA omoTeAel TV 2-A €KdoyN
G MEPIMTMONG NG AVOOTIKNG pong o€ kuPikn kowdtta. Ta 600 katakdpvea
Toyouato Bpickovionl 6e Beprokpactak’ Oopopd Kot To optlovIla ToYMOUATH Elval
odaPatikd. O apduéc Ra mipe twés amd 10° péypr 10°. Ta tpeipnato éyvav ooy
povye, oniadn Bétovrog €va vmepPoikd peyAAo @ULOKO ypovikd Prpa, apBpd
CFL=100 kot exktel®vtog emavoAnyels HOvo otov yevdoypdvo. Xto oynua 4-10
TaPovGLaleTal TO 16TOPIKO GVYKAONG GTOV YELdOXPOVO Yol TIg dV0o pehoddovg. Xtnv
nepintoon tov Ra=107 o1 800 péfodor ovievéne mapiyayay TEpimov Toug idovg
pvOuodvg ovyKMong. Qotdco, e v avénon tov apBpov Ra n S-C enilvon amortet
Myotepa Prinota o oxéon pe v L-C. T'o to cuykekAipévo medio pong ot d1apopég
petalld tov peyebov yu Tig 000 puebddovg TV apeANTEES. TVYKEKPIUEVO, YO TIG
HEYLOTEG KO EAGYIOTEG U KO V TAXDTNTES, OV TPOPAEPTNKAY amd TIG 600 HeBddoLE Ot

drapopéc Nrav pkpotepeg tov 0,3%.
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iterations
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—5-C (Ra=10F)
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Tynua 4-10. Iotopucd ovyKAong otov yevdoypovo yia Ra=10° (apiotepri otihn), Ra=10’

(peoaia othAn) kot Ra=10° (816 oThAN).
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H L-C eniivon amottei Aydtepo ypdévo CPU. Avtd cvpPaiver yiati eivor Arydtepo
OTTOLTNTIKOG O VTOAOYIGHOG TV UN-GUVEKTIK®OV OpOV Kol TOV EXAVOANYE®V Jacobi.
Ytov mivaxa 4-3 divovtar ot ypdévor CPU mov aroutnOnkav yio ka0e mpocopoimon. To
KPUTAPo 6VYKAoNG NMTav ot dopbmoelg petald 600 Sladoy KMV WYELOOPYPOVIKMV
Bnudrov v 6Aa to peyédn va mdcoovv v akpifeta punyovig (machine zero). I'a
TNV TEPITTOON TOL Ra=10° n S-C pébodog €dmoe o emtdyvvon ion pe 1,255 og

oyxéon pe m L-C péboodo.

Ra L-C S-C

10° 106.75 s 174.99 s
10° 78.75 s 109.44 s
10° 211.75 s 168.72 s

[Tivakag 4-3. Xpovog CPU og devtepdrenta yio Kabe Tpocopoimon ypnoiporotdvtog tig L-C

kot S-C pefodovg.

H 10w olykpion €ywve kot yuoo TNV TEPITTMOOT TNG OVOOCTIKNG PONG OTNV KLPIKY|
koot ra. Exel dtomotodnke 6t pe v S-C enilvon towv eE100GEOV UTOPOLLE VO
ypnopomomoovpe  vymAadtepovg aplBuodg CFL  dpa va  emitdyovpe axouo
ypnyopdtepn cvykhon. Eniong, dwamotddnke 6t n L-C enilvon anowtel mokvotepa

aplOUNTIKA TAEYLOTA Y10l VO GUYKATVEL.

4.1.5 Enidpaon teplopiot®v

H ypnomn tov neplopiotdv yiveror o0T®g MGTE v SOTNPTCOVUE T LOVOTOVIO TMV
VYNMIG TOENG OYNUATOV, EAEYYOVTOG TIS YMPIKES TAPOUYDYOLS EVIOS PEOAMOTIKOV
opiov. Qo1060, £vo GNUAVTIKO PEIOVEKTNLO TOV TEPLOPLOTOV £ivar 6Tt KaBvotepovv
N axoue Kot oTapatodv ) cvykMon og Kamoto Pabud [Ven93]. ‘Eyiwve éleyyog tng
amodoons Tov teploptotdv van Albada-van Leer kar Min-Mod. Eeapuocape ovtoig
TOVG TEPLOPIGTES GE GLVOLOCUO LE TO SEVTEPNG TAENG GYNLLO OVOKATAGKEVTG KO TOVG
ovyKpivape ¢ mpog To pulud ocOykAong pe To  dgbtepng TAENG oynfua

OVOKOTOOKEVNC YMPIG TN YPNOT TEPLOPIOTY].
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H obykpion éywve yio v mepintmon g avooTIKNG pong EVIOg KLPIKNG KOWOTNTOG
Kot Yo Ra=10°. O TPOCOUOIDGELS OlEVEPYNONKAY Yoo VYNAS ypovikd Pripa, apldud
CFL=100 xou gmavaAnyelc povo otov yevooypovo. [apatnpndnke ot n ypnon tov
TEPLOPIOTAOV OTAUATNGE TN GVYKALOT Kot Ot dopODCELS TOPOVGIOGHV TUANVIOCELS.
O1 mepropiotég emiong ypnotpomombnkay oty TePInTOON TLPKAYLHG GTN oNpayyd
YlOL TV OVOKOTOGKELT TOV €EAPTNUEVOV HETOPANTOV HECTG PONG ONLLOVPYDVTASG TO
00 TpoOPANua. Q¢ ek TOVTOL, Ol TEPLOPIOTEG aPAPEONKaV ®G EMAOYN Yoo TNV

OVOKOTAOKELT TOV EAPTNUEVAOV LETAPANTOV HEGS POTIG.

4.2 TopPmdeig poég
4.2.1 AvooTiki] po1] 6€ KOWAOTNTES

e avtn TV VToevOTNTA B0 TOPOLGLOGTOVV T ATOTEAEGLATO TNG TPOGOUOIWGNG TNG
oveoTiKAg pofic oe kodtnTes Yo apBpove Ra omd 107-10' mov cvppwva pe ™
Broypaeic odnyovv oe tupPiddelg poég [Eld65]. Oa yiver ovykpion tov
OTOTEAECUATOV LE TNV EPAPLOYT TOV HOVIEA®V TOPPNS oTovg 2-A Kot 3-A emhidTec.
Apyikd, vtoroyiotnke o apOpog Nusselt yia ) 2-A wepintmon ™ avOGTIKNAG PONS
o€ TETPAYOVIKY KOOTNTa. Metd v emPefaimon tg KaAng Asttovpyiog otic 2-A
emMAVONKE M 3-A GUUUETPIKN TEPIMTMOOT Kot GLYKPIONKAY TO ATOTEAEGUOTO Y10l TIC

V0 TEPIMTAGELG.

Ta povtéda tOpPng mov ypnopomombnkav Mrov to standard k-¢ povtédo pe
GLVOPTNAGELS TOY®OUOTOS, T0 YounAdv-Re k-o SST kot 10 k-0 SST povtéro pe
GLVOPTNCELS TOYDOUATOC. € OAQ TO LOVTEAD O OPOC TOPAYDYNS TVPPMOIOVG KIVITIKNG

evépyelog Ady® Gvawong cuumepleAedn pévo oty e&icmon yuo o k.

To tprodidotato mAéypa ypnowomomnke kKavoviag e&mOnomn (extrusion) tov 2-A
mAéynatog oty tpitn devBvvon. To dwwddotato mAéypo amotelobviav amd
TETPATAELPA KOVTOL OTO TOYYOUOTO Kot Tpiyova. Metd v eE@bnon oty tpitn
dtdotoon dnuovpyndnkay e£aedpa Kot TPioUATO. LTO TAEVPIKE EMITEDOD Y=Ymin KOL

Y=Vmax TNG TPITNG dtdoTaons emPAndnkav cuvonkeg coppeTpiog.

Y10 oynua 4-11 moapovcialetor o apOudc Nu kot cvuykpiveton pe o amoTeAEGHATO

AV epevvntav. [Hopatnpolpe 6Tl Ta AMOTEAEGUATA LLOG EIVOL TKOVOTOMTIKE KOVTA
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oto amoteléopata tov Markatos & Pericleous [Mar84] kou Henkes et al. [Hen91]
otav gpapuolovror ta povréa topPng standard k- kot k-0 SST pe cvvaptioeig
toryopotoc. O apBudég Nu mov vroroyionke pe 1o youniov-Re k-o SST Bpioketon
mEPLGGOTEPO KOVTA oTO amoteAécpato Towv Barakos et al. [Bar94] mov mpoékvyav pe
mv vrobeon otpotg pong. Oviwg ypnoipomowdvrag 1o youniov-Re k- SST
VROAOYIOTNKOV PIKPEG TIHES Yol TV TUPPDOT KIVNUOTIKY GUVEKTIKOTNTA. 26TOGO, Ol
SpopEc o Tov aptdpnd Nu dev ftav peyoddtepeg and ta amoteAéopata twv Barakos
et al. mov wpoékvyav pe 10 k-& povrédo TOHPPNG Kot SPOPETIKES amd TIG OIKEG oG
GLVOPTNOELS TOYYOUOTOC. XT0 oynpa 4-12 mapovcidlovpe Kot cuykpivove ta Tpopid
tayvtov kot Oeppokpaciodv yuoo ™ 2-A ko 3-A mepintoon. Ilapoatmpeiton

KOLVOTIOUTIKT) GLULP®VIdL.

0.16 ]
0.14 -
0.12 - —0—[Bar94] (laminar)
~i8-[Bar94] (low-Re k-¢)
0.1 [Bar94] (k-¢, wf)

[Mar84] (k-¢, wf)
0.08 \ —m-[Hen91] (k-¢, wf)
0.06 =@-Present solver (k-¢, wf)

=-Present solver (low-Re k-w sst)

NuRa13

0.04 == Present solver (k-w sst, wf)

0.02

x10"Ra

Zyfqua 4-11. Mécog apBudc Nu oto Beppod toiympa cav cuvdptnon tov appov Ra.
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Syquo 4-12. Zoykpion tov 2-A ko 3-A amotelecudtov. Oepuokpoactokd Tpoeik (aploTtepn|

GTAAN), TPoeik u ToyvTTOS (Hecaior GTAAN), TPOYIL v TaydTnTag (deéid othin). Ra=107 (1"

ypaupn), Ra=10° (2" ypappn), Ra=10" (3" ypappn), Ra=10"" (4" ypoppn).
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4.3 Metagopd Ocppotntog pe axtivofforio

[oa v a&lohdynon tov TUAUATOS TOL KAOJIKO TOV OVOQEPETAL GTY UETAPOPE
Oepuomrag pe oktvoforio pe ™ MIIO emAvOnkav TEPIMTOGES AVOEOPES TOL
Bpédnkav ot Pproypaeio. H epappoyn g MI'TI eAéyytnke oty mepintwon g

AVOOTIKNG poNG Ke aktvoPforio mov Ho TapovclacTel TopoKAT®.

Ta amoteAéopota Tov KOOIKO cLYKPIONKAY OC TPOG:

j I(%,8)do

r r r r * -
™V adtdotatn péon mpoomintovca aktvoBoriia G (1) = 4“4#
c
o

j 1(£,3)- 3+ i, )do
KoL TV od1deTaTn aktvofoiovpevn pori Beppdmrog Q' (T) = 4=

oT?

o
omov T, elvar ) Bepprokpacio avapopdc.

H mocdmrec g mpoomintovcag oktivoPoAiog kot g akTivoBoAOVUEVNG POTg
Oepuomrag emAéyOnkov yo ™ oOykpon Yt givor ot poOvEG TOGOTNTES TNG
axtivoPoAing mov emmpedlovv to Beppokpaciaxd medio. Edkdtepa, aparpmdvtag and
TNV TPOGTHNTOVGO aKTVOPBOoAIL TNG évtaoTt HEAOVOS GOUOTOG TPOKVTTEL O OPOG TNYNG
Mg evepyslokng e€lomong kat 1 aktvoforodpevn pon Beppotnrog ypnoponmoteitol

GTNV 0PLOKT GLVONKT TOL TOLYDOTOC.

[Mopaxdto mapovctdleTal 1 AVITPOGSOTEVTIKOTEPT] TOV TEPUTTAOGEDV OVOPOPAS TOV

emALONKOY.

4.3.1 E€aedpiki] KOIAOTNTA pe TETPAYOVIKES fdoers

Ocwpeiton eEaedpikn KOWOTNTO e TETPpAYOVIKEG PBacels (oynua 4-13) n onoio sivon
yepdn pe pevotd otabepng Beppokpaciog O0K. Ora ta torydpato dtoetnpodviot Kpvo
oe otabepn Bepuokpocio 0K extdg tov Kdt® TOYYOUATOG 6TO Omoio emPBAAAeTON
Oeppukyy evépyelo E=6T*=1. Tta §Vo amévavtt toydpote g z Sievhuvong Exovv

emPAnOel ovvOnkeg cvppetpiag. o givar n otabepd Stefan-Boltzmann wov €xel v
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Tiun 5.67 10® W/m%/K*. Oha ta Toyopata Beopovvtal OtL givor peAavd copoto

(e=1), eKTOG OPICUEVOV TEPUTTOCEMY OOV AVTO AVUPEPETAL PNTA.

YoV apylKn TN yuo. TV évtacn g okTvoPoAiag ypnoipomombnke m évtaom
puédavoc ocopotog I, To aplBuntikd mAéypo mov €8woe  aveaptntn Avon
amotelovvtay and 410375 koépupovg ko 386104 kehd. H yoviokn Sakpitomoinon
éyive yuo (NoxNy)=(8x16). T'w v emhoyn] tov apBuod TV TOAMKOV Kol
alyovBiokmv yovidv dtevepyndnke dadwocio avtictoyn g perétng aveEapmoiog
™G Aong amd 10 aplunTkd mAéypo. 1o oynua 4-14 diveton m adibdotatn péon
TPOGTITTOVGA OKTIVOBOMO Y10 IGOTPOTIKT OKEDAGT KATA UNKOG TNG YPOouung x=0,5
v z=5 yuo Tpeig cvvovacpovg yoviemv. Etvar epeavég 0t yia (8x16) yovieg éxovue

TETVYEL IKOVOTONTIKY| oveEaptnoia.

Y10 oyfua 4-15 diveton M adidotatn aktwvoBoAovpevn pony Bepuodtntog oty y
devBvvon kot M adoTOTN  TPOCTIMTOVGO, OKTIVOPBOAID. Yl 1GOTPOMIKE Kot
avIGOTPOTIKG okeddlov néco ot ypouun x=0,5 yia z=5. T v adloctatomoinon
TV peyedav ypnoworomOnke n emPoiropevn Bepuiky| evEpyElo 6TO KATM TOLYMULOA.
Ta amoteléopatd pog cuykpivoviorl pe avtd Tov 016014oToToL EmMAVTN TV Kim &
Lee [Kim88]. O ocvuvtedeotng okédaong eivor icog pe ™ povéoa (o=1) xor o
oLVTEAEGTNG amoppoenone undevikog (k,=0). Eivar epgovég 0Tt m avicoTpomikng
oKEd0oN 00MNYel o€ pHEYOAVTEPEC TWEG Yol TNV adldotoTn akTvofoAovuevn pom
BepuOTNTOG GE GYXEDN LLE TNV IGOTPOTIKY GKEOAOT], EVM VTOAOYIGTNKAY KOVTIVES TULES
yw ™ péon mpoomintovca okTwvoPoAio yw Tovg dVvo TOHmovg okédaons. Ta
ATOTEAECUATO LOG CUUP®VOLY KavoromTika pe avtd tov Kim & Lee [Kim88], ot
omoiot epdppocav ™ MéBodo Awoxprtov Tetayuévov Kot yioo TV OVIGOTPOTIKN
okédaon ypnoomoincav moAvdvopa Legendre. 1o oyfua 4-16 cvykpivovpe v
adtdotatn aktwvoBoAiovpevn pon Beppotntag oty y oeblvven yuo. oviGOTPOTIKN
oké€doon Kotd pnkog ¢ ypapung x=0,5 kot z=5. O ocvvteleotng okédaong sivat
0s=0.5 ko1 0 cvvterleotg amoppdenong eivarl K,=0.5. Ta amoteAEoHATO GLUPEOVOLY

IKOVOTTOUNTIKAL.
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Syquo 4-13. Zynuatiky avomapdotoaot ¢ Tpouatikig kodtntag [Lygl2] (apiotepd).
ApOuntikd TAéypo oto eminedo z=5 (de&1d).

0.7
0.6
0.5 )
G* 0.4 \ :Z:
0.3 a 0 816
0.2 oA
0.1 :
0 ; '
0 0.2 0.4 0.6 0.8 1

y

Syquo 4-14. Merétn aveboptnoiog e HEONG TPOCTITTOVCAG OKTIVOBOAING Y10 1GOTPOTIKY

OKEQ0OT amd TN YOVIOKT Sl0KPLTOTOINGT).
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" §
® 0.6 \ nﬂﬂun O [Kim88] (isotropic)
Q y Bﬂ 0O [Kim88] (anisotropic)
O 4 Bﬂ Present solver (isotropic)

s.s'&g.’ 8 j === Present solver (anisotropic)

O [Kim88] (isotropic)

0O [Kim88] (anisotropic)

Presentsolver (isotropic)

=== Present solver (anisotropic)

Syquo 4-15. Zoykpion g adldotatng akTivoBorlodevng pong Oeppotntag oty y dtevbuvvon
(Tévw) ka1 ™ adlioTTNG MEGNC TPOCTIMTOVGAS OKTIVOPBOAING (KATM) Y10, IGOTPOTIKY KoL

OVICOTPOTIKY] OKESUGT KATA UAKOG TNG YPOUUnS X=0,5 yia z=5.
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0.8

0.6
o [Kim88]
Q*y \\ —Present solver
" \\\‘\
0.2

y

Zyqua 4-16. ZOykpion e addoToTng aKTvoBoAodevng pong BepudtnTag KOTd PiKOG TNG

ypappung x=0,5 yio z=5 Y10 aviGTPOmIKY GKESAGT).

Téhog, oto oynua 4-17 ovykpivovue TV odldoTOoN OKTVOPBOAOVUEV pon
Oepuomrag ommv y devbuvon katd pnkog g ypopuns x=0,5 yw oidpopovg
ovvteleoTég ekmopumng €. O ouvieheotnc okédaong eival 6:=1 kKot 0 GLUVTEAEGTNG
aroppoenong eivar k,=0. [Mapatnpodpe OTL HEIDOVOVTOG TO GLVTEAECTY] EKTOUTNG

TOYOUATOV € VTOAOYILOVTOL LUKPOTEPES TILES YO TV Q; .
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1

0.8
0.6 "“QQQQQﬂ

“aa,

O [Kim88] (e=0.9
© [Kim88] (e=0.5

Q'y

)
)
A [Kim88] (e=0.1)
(e
(e
(e

&Q_%.& Present solver (¢=0.9)
04 (00-e00 °__°_°'0 ------ Present solver (¢=0.5)
.0-0.0.0.0.0 o === Present solver (e=0.1)
0.2 0000
P**A—A A&t A A-A-A-A A A-A ~& & A A-A-

0 0.2 0.4 0.6 0.8 1

y

Zyqua 4-17. Zoykpion g addoToTng aKTvoBoAodevng pong Bepudtnrtag KoTd PiKog NG
ypappung x=0,5 yio avicoTpomikn 6KESAON Y10 SIAPOPOVS GUVTEAEGTEC EKTTOUMNG TOLYMUATMOV

€.

4.4 Zovovaocpévn peta@opd Oeppotnrog

Yg autn TV €vOTNTO TAPOLGLALOVTOL TEPUTTMGEL CTPOTNG PONG KOl GLVOLACLEVNS
petapopdg Bepudtmrag (aymyn, cuvaymyn kot aktvoBoiia) evrog Kotkotitwv. ' 10
VTOAOITO TOV KEPAAQIOV ovToV o YpnoomoLEiTal 0 OPOg GLVOLOCUEVT LETAPOP
OepuoTTOg OTOV OVOQEPOUACTE OTN UETAPOPE OepudOTNTOG KoL HE TOVS TPELS
duvatovg tpomovs. Ewdwdtepa, oty mpdTN TMEPITTOON EYOLUE CLVOLOCUEVN
petapopd BepprodTTOS EVIOS TETPAYOVIKNG KototnToc. H axtivoBoAia vroloyiotnke
YPNOOTOIVTAG Kot Tic dvo pebddovg (MITI ko MITO). H devtepn mepintwon
AGYOAEITOL IUE TN OTPMTN PON KO GUVIVOAGUEVT] LETOPOPE BEpUOTNTAG EVTOC KUPIKNG
KOWOTTaG. Ze autn TV mepintwon 1 oktivoforio povteromomnke pe ™ MIIO.

Avtég o1 meputtdoelg emAEyONKav Yo va gdeyyBetl 1 o0levén tov 3-A emddn pe To

povtéla aktvoBoAiog.

4.4.1 Tvvovaopévn peTa@opd 0eppoTnToS 6€ TETPAYOVIKY] KOLAOTNTO

H npd mepintmon agopd 61N 6Tp®OTH PoN KOl GUVOLAGUEVT] LETOPOPA BEPLOTNTOC
EVIOC TETPAYOVIKNG Kowottag oxung H, mepinmtowon mov €xer mapovcilactel

malootepo and tovg Kasemi et al. [Kas93]. Avty n mepintwon mpocsopoimdnke
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YPNOYLOTOIDMVTAG KO T dVO LOVTELD aKTVOBOALOG.

Oewpodpe OTL €(ovle TNV TEPIMTOGN TNG OVOCTIKNG PONG EVIOS TETPAYOVIKNG
KOWOTTaG Ommg €xel mapovotactel mopamdve. To Bepud toiympa €xer otabepn
Oepuoxpacio Tp=1 wor to yoypod toiyouo T.=0. Ora ta ToryOpHOTA €lvor peAavd
(e=1). H xolldtta mepiéyet pevotd apibuov Pr=0,7. O apiBuog Reynolds sivor Re=1
Kot 0 apOpog Grashof etvar Gr=700. Térog 0 Beppokpaciarxodg AOYOS avapopas etvat

T,=1 xo1 o apOudg Planck sivoan PI=1,6. H xootta S10kpltomoOnke e

35x35x35 kopPovg. I'a ™ yoviokn dtakpiromoinom ypnoomomdnkoy 8 molkég Kot

16 alipovOiaxéc yovies.

Yta oynuoto 4-18 ko 4-19 mapovcidlovion ta TpoPid BeprokpacidV 6To TAVEO Kol
Kbt Tolympa. Xvykekpiuéva oto oynua 4-18 mapovcidlovior to mPoPik TOL
vroAoyiomnkav and t MI'TL, eved oto oynua 4-19 kar and tic 600 puebddovg. To péco
Bewpeitar dapavég (un-coppetéyov). Ta mpoeilh pog cvykpivovtor pe ovtd tov
Kasemi et al. [Kas93] kot Albanakis & Bouris. Ot Albanakis & Bouris mapovciacay
amoteAéopaTo Yoo TNV 10w mepinTtmon ypnopomoldviag v dw puébodo oty
gpyacia tovg [AlbOS]. Ilapatnpodue 0T LRAPYEL TOAD koA TOVTION TOV
amotelecpdtov pe avtd tov Albanakis & Bouris kot pua pukpn amoékAion ond to
amoteléopato Tov Kasemi et al. 1o oynua 4-19 mopatnpodue ™ cvopeovio Tov
Oepuoxpaciok®dv mpoeid and ™ MITI pe avtd g MIIO. Q¢ ek todTov, VIAPYEL

cupeovia petald tov anotehecpdtov g MIIO kot tov Albanakis & Bouris.
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o [Kas93] (top wall)

o [Kas93] (bottom wall)
—[AIb08] (top wall)
----[Alb08] (bottom wall)
------- VFBM (top wall)
---VFBM (bottom wall)

0 0.2 0.4 0.6 0.8 1
X

Zyua 4-18. XOykpion Tov BeplokpactoK®V TPOPIA KoTd UAKOG TOV TAV® TOy®MUTos (z=1)
Kot Kateo toywpoatog (z=0) oto péco g y oOwevbuvvong (y=5) oOtav m oktivoPforio

vroAoyileton pe ™ MI'TI (VFBM).

1

0.8 g

0.6 T — VFBM (top wall)
T TR ----VFBM (bottom wall)

S FVM (top wall)
0.4 s ---FVM (bottom wall)
N\\
0.2
0
0 0.2 0.4 0.6 0.8 1

Zyuo 4-19. Xoykpion tov OBegppokpaciokdv mpoeid dtav 1 oktivoPfoAin vmoAoyiletan

ypnowonroidvtog t MI'TI (VFBM) kou ™ MIIO (FVM).
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4.4.2 Xvvovaopévn peta@opd Beppotnroc og Kok kothéTnTO

H debtepn mepintwon apopd o1 oTPOTY PO1| LE GLVOLAGUEVT HETAPOPE BepLOTNTOG
€VTOG KUPIKNG KOLOTNTOGS. AVTH M| TEpimTmOT Tapovsldotnke ot PifAoypapio and
tovg Colomer et al. [Col04]. OvclooTikd TPOKELTOL Y10 TNV TEPITTMOON TNG OVOCTIKNG
PONG €vtOG KLPIKNG KOIAATNTOG TOL TOpoVGlAcTNKE Tapanave. H Bepuoxpacio tov
Beppov Toryopatog eivar Th=1 kot Tov yoypov toryopatog eivor T=0. Ot Colomer et

al. ypnowonoincav ™ MAT ywa ™ povtelomoinon g axtivoPoiiag.

Epeig povrehomomocape v axtivofoirio pe ™ MIIO. Ipénet va avaepepBel 611 1 1010
nepintoon €ywe mpoonddeio va emivdel pe v MITI ot oeplokn €kdoon Tov
KOO, Qotd60, dev  KATAQEPAUE Vo emrTOYoLUE aveCdptnn Avon Kabodg
TUKVOVOVTOG TO apluntikd mAéypa, ov anoutnioslg oe CPU ypovo E€ywvov moivy

LEYOAEC.

O op1Opdg Prandtl tov pevotod frov Pr=0,71. O apdudc Reynolds ftav Re =+/Gr
kot o opdpdg Rayleigh firav Ra=10°, 10%, 10°, 10°. T 11 mopapétpove e
axtvoPoAiag emAvOnkav 600 cuvdvacpol. Xtov Tp®dTO 0 BeproKpaclokds AOYOC
avagopdc frav T, =15 kot o opdudg Planck frav P1=0,043 yio Stopavéc psvoto.
Tt devtepn o Beppokpaciakds Adyog avapopds qrav T, =17, o apOudc Planck
ntav P1=0,016 kot 10 ontkd mdyog Nrav 1=1. X dedtepn nepintwon (P1=0,016) ta
eowvopevo axtvoPfoiiag nrav evrovotepa. Kat otigc 600 mepurtmoelg Bempnoape 0t

gxovpe peravd totyopata (e=1).

H xowdtra dwkprtomombnke pe 65x65x65 kOuPovg kol Yoo TN YOVIOKN
dwakprronoinon ypnowonomdnkay 8 moAkéc kot 16 alipovbiokég yovieg. Xe avt
™MV TEPITTOON cLyKpivovpe 10 dBpotoua Twv pomdv BepuodtnTog Ady® oywyng Ko
axtivoPoAiag oto Oepud toiympa. Xto oynuata 4-20 kot 4-21 moapovsialovpe ™)
péon pon Oeppotmmrog oto Oepud toiywpo cav cvvdptnomn g Béong y ko
ovykpivoope pe to amotedéopato towv Colomer et al. [Col04]. IMopatmpovvrot
dpopéc ot amoteléopata, aAAd Yo avt) TV Tepintwon £yxovv Ppebel onpoavtikés
SPOPEC HETAED TOV OMOTEAECUATOV OlaPOp®Y epeuvnTiKOV opddov ([Kolll],
[Bor08], [Abill], [Sca08]). Aev vmdpyel Kowvdg amodekty Adon Kabmg dev €xet

VTOAOYIOTEL 1] GUYKEKPIUEVT] TEPIMTMOON TEPALUATIKA.
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13

00000000000000
0000000 %0000
ogo_oo_ ................................. o_ 09 opo
11
O [Col04] (Ra=10"3)
O [Col04] (Ra=10"4)
9 A [Col04] (Ra=1075)
Q O [Col04] (Ra=1076)
— Present solver (Ra=10"3)
------ Present solver (Ra=10"4)
7 === Present solver (Ra=10"5)
- - =Present solver (Ra=10"6)
5
3

Zyqua 4-20. Katavopn g péong pong Beppotnrag ot z diedbuvon katd piKog Tov y a&ova
yia Sropavég pevatd (T, =15, PI=0,043, 1=0).

18

16

o [Col04]

—Present solver

]. 0 1 1 I

0.00 0.20 0.40 y 0.60 0.80 1.00

Zyua 4-21. Katavoun g péong pong Beppotnrag ot z diedbovvon katd pikog Tov y a&ova
Y1 svppetéyov pevotd (T, =17, Pr=0,016, =1, Ra=10°).
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Kepdararo 5
Hapaiinin Enelepyaocia

Kétt 610 omoio dev d0OnKe apketn Eugaocm ota mponyodueva Ke@AAao etvar OTL ot
TEPLOCOTEPOL LIOAOYIGHOL Tpaypatomombnkay mapdAinAa. T'evikd, omn Swrpipn
TAPOVGLACTNKAY WNTEPMS amantnTikd amd dmoyn CPU ypovov mpofAnuata yio tnv
TPOGOUOimoN TV omoiwv Ntav amapaitnTn 1N ypNon TapaAining enelepyocioc. Ta
TEPIOCOTEPO OMOUTNTIKA NTOV TO TPOPANULATO TEPUTTOCEMY TLPKAYLIS GTN CTPOYYCL.
Ot poég Mtav TupPddel Kot M aKTVOPBOAMO TPOCOUOIMONKE YPNOLUOTOLDOVTOS TN

MIIO.

Y& ot T0 KEPAAao Tapovstaletal n omdS00T TOL TAPAAANAOL ETAVTN GE SIAPOPES
nepmtooelc. Ilpocopoiwbnike n 2-A topPddNG OVOOTIKN PON GE TETPAYMVIKY
Koomta yoo tpia aplBuntkd mAfypata. Mo ™ poviedomoinom g TOPPTNS
ypnoworomOnkav ta poviédo topPng standard k-& koar k-o SST pe ovvaptioelg
TOYOUOTOC. TN ovvéyew eA&yyOnke m oamddoon Tov TopPdAANAOL E€MAVTN oTNV
MEPIMTOON NG AVAOOTIKNAG pong o€ kuPwn kokotmra. I[lpocopowwoape v
TEPIMTOON ™S pONG Ywpic TV aktivoPoArio, v mepintoon petapopag Oeppotnrag

pévo pe axtivofoiio Kot TNV TEPIMTTOOT THG CTPOTNG PONG LE OKTIVOPOALAL.

O1 0o O TEG TOV TAPAKOAOVONGALE KATA TOV EAEYYO TNG OMA00NG TNG TOPUAANAL0G
ntav n emtdyvvon (speed-up) kot o Pabudg amdooong (efficiency). H emtdyvvon
otV TOPAAANAN eneepyocio ekppalel To kEPOOG GE YPOVO TOV TPOEPYETOL OO TNV

Katdtunomn tov tpoPfinuatoc oe N dapepioeis. Opileton wg:

S, =L (5-1)

o6mov T eivan 0 ypodvog mov ypetdleTar yio TV €miAvomn Tov GEPLaKoD TPOPANLOTOC,

eva Ty givar o ypodvog mov ypetdleTot yio Ty exilvomn Tov TapdAANAoL TPOPALOTOC
pe N dopepioeis. H deatr| emrdyvvon eivar n ypoppikr, 6mov Ty :%. Qoc1000,
TNV TPAYLOTIKOTNTA 1 00T EMTAYLVOT) dgV glvar QKT Ady® TG €€ApTnong Tov

dwpepicev (amorteiton avtoAloyn Unvopdteov peta&d Tovs) Kot Tov YEYOVOTOG OTL

VILAPYEL £VOL TUNLLOL TOV TPOPANUATOS TTOV OeV Pmopel va TapariniomomOet.
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O Babuodg amddoong givor o TOGOTNTA TOL LG TANPOPOPEL Yo TNV ATAS00T| TNG
noparinAiog Kot opiletatl og:

L Sy (5-2)

E. = ON
NTNT, N

En maipver tipég petald 0 ko 1. Oco mo kovtd oto 1 Bpioketor o Babudg amddoong,

1060 KaAOTEPN €lvor 1 ardd0on TOL TOPAAANAOL ETAVTN.

5.1. Al6oG.0TUTEG TEPITTAOGELS
5.1.1 AvooTiki] po1] 6€ TETPAYMVIKY] KOLAOTNTO.

H S1o01dotamn TupPddne avooTiK) por G€ TETPUYMVIK KOWOTNTO LEAETNONKE Yo
Tpiot SIPOPETIKNG TLKVOTNTOS TAEYHOTa. To TpdTo MAEYHO amotelovvtay ond 1686
KOpupovg ko 2578 wkeld (meshl), evd to devtepo amd 10083 wopPovg o 15044
KeAMd (mesh2) kot to tpito amd 18812 wopuPovg kot 34622 kehd (mesh3). Ia
povtedomoinon g TopPne ypnoworomOnkav ta povtéra standard k-g ko k- SST
LE CLUVOPTNOELG TOYYDOUATOG. Ot TPOCOUOIMGELS JEVEPYNONKOAV LE ETAVOAMYELS GTOV
YeLdoypoVvo Ywpig va yivetor amobnkevon tov anotehespatov. O apBpds CFL nrav
fcog pe ™ povado yw 3000 wevdoyxpovikég emavainyerc. O aplOuds tov
enefepyact®V oL ypnopworomnkav Nrav 1, 2, 4, 8 kar 16. Ta tpelipata £yvav ot
ovototyio.  vmoAoywotav  (cluster) "VELOS", tov epyaommpiov Oeppkodv
otpofrounyovayv, HovAde  TOPAAANANG  VTOAOYIGTIKNG  PELGTOOLVOUIKNG &
BeAtioTomoinomg, ¥PNOYLOTOIMVTAS TO TOAD VO VLTOAOYIOTEG 8 emeepydoTtdV O

kaBévag ota 2 GHz.

210 oynua 5-1 wapovoidletal  cLYKPION TNG EMTAYLVONS Kot TOL Babpov anddoong
vy to tpie mAEypato. BAémovpe Ott mukvdvovtag to aplOuntikd mAEypo 1
emtdyvvon kot o Babudg amddoons g mapaAiniiog avédvel yuo Tov 00 aplBuod
enefepyaoctov. Avtd Ppioketon oe cvppwvia pe ™ PipAoypaeia [Bpal2]. I'evikd,
avéavovtag to péyebog tov aplBuNTKod TAEYHATOS ALEAVOLUE TO VTOAOYLGTIKO
eoptio oe oyxéon He TO QOPTIO OVTOAAOYNG UNVOUATOV HE ONOTEAEGUO VO
00N YOLLOOTE GE PeYOADTEPES EmTOOVGELS Kot Babods amdooons yio Tov 1010 apfud

EMEEEPYAOTOV.
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k-w SST k-w SST
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14 N
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Sx 10 ho Ex -=mesh2
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04 A
6 - 0.3
/ 02
4
s 0.1
2 0
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N N
standard k-& standard k-
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14 0.9 '\\‘ 3
08 N .\
12 0.7

—ideal -e-meshl

0.6
SN 10 1 -G-mes}}:; EN \ -smesh2
emes 05 1 b -+-mesh3
8 ————% ~+mesh3
é;‘% 04
6 0.3
— 02
4
" 0.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

N N

Zyqua 5-1. Xoykpron emrdyvvong (apiotepd) kot Babpod anddoong (de&id) g mapoariniiog

peTa&l TV aplOuNTIK®OV TAEYHATOV.

5.2. TprodudoTateg TEPTTAOGELS

H omddoomn tov tpiodidotaton emAVTn EAEYXONKe oV MEPITT®ON TNG OVOGTIKNG
pong oe KuPwkn Koomto pe éva apluntikd mAéypo. To aplBuntikd mA&ypa
amotedovvtay amd 274625 wéuPouvg wor 262144 wemd. Ilpocopoidbnkav m
MEPIMTOON TNG OTPMOTING AVAOGCTIKNG PONG Ywpig v axtivoPoiia, n mepimtwon g
HETAPOPAG BepUOTNTOC QULY®G PE aKTIVOPOALD KOl 1) TEPITTOON TNG CTPWTNG PONG LE

™V enidpoomn TG aKTvofoAriog.
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Ye OAEG TIG TEPUITAOCELS OlEVEPYNONKAY ETAVOANYELS LOVO GTOV YELOOYPOVO YWPig
mv anofnkevon omotedespatov. O apBuog CFL frav icog pe v povado. O

aplOpog TV ENTEEEPYASTMOV TOL Ypnoortomdnkay Ntav 1, 2, 4, 6, ..., 28, 30, 32.

5.2.1 Ztpot avooTiki] por} 6€ KUPIKN| KoAOTNTO Y@PIc TNV aKTIVOBoiio

Y10 oynuo 5-2 mopovoidleton M emtdyvvon Kot o Pabudc amdéoons yw v
MEPIMTOON TNG OTPMOTNG OVOOTIKNG PONG 6€ KLPIKN KOootnTa Ywpic axtivofolia.
[Mapatnpodpe 6t axopo kot v 22 oepyociec o Pabudg amddoong mopopével

peyoAvtepog tov 0,7.

34 1
% 09 -
08 e,
% 07 ’\9--\/,,.\'
2 - 0.6 S
S~ 18 o —ideal g 05 —-real

/_/ -e-real

14 04
/ 0.3

.

10
// 02

6 0.1

2 T T T T T 0 T T T T
2 6 0 14 18 22 2 30 34 2 6 0 14 18 22 26 30 34

N N

Zyquo 5-2. Emtdyvvon (apiotepd) kot Pabpog anddoong (0e€id) g mapoaiiniiog yio tnv

TEPIMTOOT TNG CTPOTNG OVAOGTIKNG PONG € KLPIKT KOWAOTNTA YPIg TNV oKTIVOPOAid.

5.2.2 Metagopad Oeppotnrog apryos pe axtivoforio o Kofikn korhotnto

Mo v mepintowon g petapopds Bepuottog apyds pe axtivoBoiia otnv idwo
nepintwon KuPkng Kokdmrag devepynnke emapkng aplOpdc ETOVOAYE®V TOL
eMAOTN akTvoPoriag. O cLVTEAESTNG QmMOPPOPNONG KOl O GUVIEAEGTNG OKESUONG
ntav oot pe to unodév. Ia 1t yoviakn odakpiroroinon mov amortet 1 MIIO

ypnotporomOnkav 8 alipovbiakég kot 4 moMkEg ymvies.
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Y10 oynua 5-3 mapovcialetal n emrdyvvon Kot o Pabudc anddoons. Yroroyiomke
EAPPAOC HEYOADTEPT EMTAYLVOT Kol BoBUOG 0mdd0oNG GE GYXEGN LE TNV TEPITTOON

NG OTPMTNG OVAOCTIKNG POTC.

34 1 \
20 | 0.9 \,_\
0.8 TNy
26 - ooy .
0.7 o
22 —

/ 0.6
—ideal
Sn 18 / oreal Ex 05 - --real
” 04
_/'/ 03

10
) // 0.2

0.1

2 T T T T T 0 T T T T
2 6 10 14 18 22 26 30 34 2 6 10 14 18 22 26 30 34

N N

Yyquo 5-3. Emitdyvovon (apiotepd) ko Pobpog omoddoong (0e€ud) vy v mepimtoon

petapopdg BepudTnTOG CpLY®G PE aKTIVOPoMa.

5.2.3 Ztpo1] avooTiKi] po1} 6€ KUPIKN KOLAOTNTO pE akTivoforio

Téhog, oto oynua 5-4 mapovoidletor N emttdyvvon Kot o Pabudc anddoons yio v
TEPIMTOON NG OTPMTNG OVOCTIKNG poNG o€ KLPkn kotkdtta Aappdvoviog vroyn
Vv aKTvoPoAio. AKOpO Kol Yoo OVTN TNV TEPITTOON MOV TO POPTIO OVTOAAOYNG

unvopdTev gival peyaddtepo 1 anddoon Tov emAOT delyvel Tt eival 1KOVOTOMTIKY.
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yquo 5-4. Emtdyovon (apiotepd) kot fabuog amoddoong (0e€id) e mopaiiniiog yio tnv
MEPIMTOON NG OTPOTAG OVOCTIKAG PONG G€ KUPIKA KOWOTNTO WHE TNV EmOPACT NG

axtvoPoriag.

YOUTEPACUOTIKA, 0 OAeC TIC TPLOGOAOTATEG TEPIMTAOGELS VTOAOYIGTNKOV
IKOVOTOMTIKEG MTOOVGELS Ko fadpol amddoons, onUovTIKG HEYAADTEPOL Omd OTL

0TI O100100TOTEC TEPIMTMCELC.
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Kepdraro 6

AplOpntik Merétn: IMvpkoyia Agprlopevng
payyog

Metd v emkOpmon Tov  avomTuyBEVTog EMADTN, ©€ OLTO TO  KEPAAOLO
napovctaletor N apOuNTIK) HEAET VO TMEPWMTMOCEMV TVPKAYES o€ aeplopevn

onpayya.

Apywd mpocopowmOnkoy o1 mEPMTOCES Ywpig va Aapfdvoope vmdyn v
aKTIVOPOAID KOt TNV ay®YN] OTO TOLYOUATO. XTN GULVEXEWL £vo amd T dVO GEVAPLL
TUPKOYLIC TPOGOUOIDONKE pe TNV  okTvoPoAio kot TéAog TO 1010 ©EVApLo
npocopolminke Aapupdvovtag vwoyn TV oKTvoBoiio Kot TV oywyrn ©TO TOiymuo

TAVTOYPOVA.

6.1. lleprypaon TeputTOOE®V

Ot mepumtoelg mov mopovstalovial mopakdto €£xovv peietnBel oamd mANO0C
gpeovntov ([Apt9l], [Fle94], [Gao04], [Milll]) wor eivor katdAAnieg ywo v

GUYKPIGT TOV ATOTEAECUATOV LOG.

H yeopetplia g onpayyos meprypdeeton oto oynuoe. 6-1. 'Exovpe o wnyn
Bepuomog ota 69,5m and v eicodo g onpayyas. Oswpnoope OTL Exove KLPIKN
mmnyn Bepuodmrog pe v oyl g va gival otabepn kot vo £xel ™ PEYIOTN TN TNG

oo TNV apyn LEYPL TO TEAOG TNG TPOGOUOIMGOTG.
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Yyfquo 6-1. Zynuatikn TopdotacT e onpayyes Kot e anyng fepudtmroag.

6.1.1 Oproxéc ko apyikés ouvOnkeg

Onwg avaeépbnike mponyovpévmg mpocopot@tnkay V0 TEPUTTMOGEL, Ol ONOLES
dlpépovy oty 1ox0 ¢ mYNg Bepudmrag Ko oty taxdnTe. Tov aepopov. Ta

otolyeia avtd divovtar otov mivaka 6-1.

epintomon | Tayvtra agpiopov | loyvg anync Oeppdtnrog

1 u, =0.85m/s Q, =2.5TMW

2 u, =2m/s Q, =2.29MW

[Tivakag 6-1. Toyvtnto agptopol Kot 1oy06 Yo Tig Tepittdoetg 1 Kot 2.

2tV €16000 NG onpayyos 0ETovpE OPOIOHOPPO TPOPIA TOYVTNTOC, LLE TNV U TAXVTNTO
va gtvat iom pe v ToydTNTo AEPIGUOV KoL TI V KOl W TOYVTNTES Vo lval Pnoevikéc.

2tV €£000 g onpayyas, n tieon 1€0nke ion pe ot Tov TEPPAALOVTOG.

Zav apykn cvuvOnKn xPNGLOTOMONKE TO GLYKEKAUEVO GTN OV KoTdoTOoT TEdio
pong yw v 1oofeppokpaciokn mepintwon (yopic v myn Oepuodmrtag). H

Oepuoxpacio ftav ion pe ™ Beppokpacio mepfairovog.
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6.2 Anoteléopato yopic akTvoforio Kol aymyN TOLYONATOG
6.2.1 Amoteréopora perafatikod 6Tadiov

Ye mepintwon moupkaylds evtog onpayyag to mepPariov péco (aépag Kot Kamvog)
oV TEPLOYN Kovtd otnv mnyn Oepuotnrog Oeppoaiveton ko avePaiver péypt v
opopn g onpayyas. Emeita £xoviag @tdost otnv opoen Kiveitol Tpog tor TAELPIKA
TOLYMUOTO KOl KOTE PQKOS TNG 0POPNG TTPOG TNV €000 Kol TNV €1G0J0 TNG GNPAYYOS
dwpopedvovtag 1o unkog omcbopong (back-layering). dtdvoviag oto mAevpikd
TOUYOUOTO, O KAMVOG KIVELTOL TPOG TO £30(p0C. XT0 oynua 6-2 kol oto oynuo 6-3
dtvovtatl To SVOGHOTO TOV TOYLTHTOV Kdvovtag ypnon tov standard k-¢ kot tov
yopnAdv Reynolds k- SST poviélov yw tn poviehomoinon g toppne. Ta
dvOGHOTO ATOKOADTTOUV TNV Kivnon tov kamvov. Paivetar ota oynuate OTL O
Kamvog amontel Ayotepo and 1s yio va gTacel 6ty opoen Kot Aryodtepo amd Ss (~2s)
Y vo. QTAGEL GTA TAEVPIKE TOLYDUOTO Kol Yyl TG dvo meputdoels. [lapopoia

dtvbopata VToAoyioTnKay omd T dVo povTéEAN TOPPNG.
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Zyquo 6-2. AlavOopato ToyVTNTOS GE YOPUKTNPIOTIKEG TOUES KOl YPOVIKES GTIYUES Yo TNV
nepintwon 1 pe 1o standard k- povtého (apiotepr| oTiAN) Kot 0 yauniov Reynolds k- SST
povtéro (de€ld otAn). Toun y=2,7m xovtd otnv mnyn Oepuodtnrag ota 0,5s (mve ypoppn),
toun x=60m oto 1s (pecaia ypappn) Kot topn x=60m ota 5s (KAT® Ypoppn).
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Zyquo 6-3. AlavOopato ToyVTNTOS GE YOPUKTNPIOTIKEG TOUES KOl YPOVIKES GTIYUES Yo TNV
nepintwon 2 pe 1o standard k- povtého (apiotepr| oTiAN) Kot o xoauniov Reynolds k- SST
povtéro (de€ld otAn). Toun y=2,7m xovtd otnv mnyn Oepuodtnrag ota 0,5s (mbve ypoppn),
toun x=60m oo 1s (pnecaio ypoupn) kot top x=60m ota 5s (Katm ypopun).
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6.2.2. Anotehéopato pOVIPNG KATAGTUONG

O1 Gao et al. [Gao04] woyvpilovtor 6Tt T0 oYU TG PAGYaG opiletar amd TIC HEYIOTES
KMoegg g Beppokpacioc. X Piproypaeio £xovv Ppebel apketol opicpol yuo v
yovia eAdyag [And06]. 10 oynua 6-4 ko1 6t0 oynue 6-5 divovror Ta oyNUATO TNG
QAOYOG Kol O OPIGHOG TTOL XPNGIULOTOMONKE Yol TOV VTOAOYIGHO NG Yoviag e H
yovia g eAdYas opileTat omd TV KOTAKOPLET YPOLLLT TTOL TEPVA LEGH TOV TUPNVOL
™mg mYNg OepuodTTog Kot NG YPOUUNG TOV GLVOEEL TOV TUPNVO TNG TNYNG
Oepuomtog pe 10 YynAdTEPO onueio g EAOYAS. Xt 1010 oyNuaTe To. OEpLOKPACIOKE
TPOoPiA 0N Yerrovid g TyNs BepuoTTog cuykpivovrol pe avtd mov TpoPAEPTnroV
amd 10 eumopwkd mokéto Ansys Fluent. IMopatnpodue 6t1 o1 péyioteg Tyécg
Bepuokpaciog, Ta oynuata g EAGYOS, ol Yovies AOYAS Kol To UNKog omtcBopong
CLUP®VOVV OPKETA KAAd. XToV Tivaka 6-2 mapovcstdlovpe Tic KAMoNg eAGYOS Kot TO
uniKog omcopong mov vroAoyioTnKay amd To dkd Hag €MAVTN Kol omd T0 Ansys
Fluent. O ypdvog mov YpeldoTnke 0VTMG OGTE O KOMVOG VO TMAGEL TO UNKOG
ameBopong g poviung Katdotaong nrov 50s kot 15s avtictoyya ylo 11§ TEPIMTOGELS

1 xou 2.

450

Zyqua 6-4. XOykpion oynuitev eroyag yio v tepintoon 1. [apov emdvng pe to k-o SST

povtéro (mévm), Ansys Fluent pe to k-g povtédo (kbro).
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yquo 6-5. X0ykplon oynuitev eroyag yio v tepintoon 2. [apov emdvng pe to k-o SST

povtélo (mévm), Ansys Fluent pe to k-€ povtéro (kdtw). Opiouds yoviog AOYoC.

IepinTtoon Emivtnc K\ion oAéyag (°) Mnkog omio0oporig (m)
[Mopov 8 péypt TV 16000
1
Ansys Fluent 9 péypt v €icodo
[Hapov 58 3.2
2
Ansys Fluent 58 3.7

[Mivakog 6-2. Ymoloyiouévn khion Adyag Kot uikog omicfoponc.

210 oyfua 6-6 mapovcialovror To TPoPid Oeppokpoacidv oto 18m kot oto 40m

Katévin ¢ mnyng  Oeppotntoc.

Meyorbtepeg Téc ywoo ) Oeppokpaocio

vroAoylomnkav o oyéon pe to mepopatikd omoteAéopota tov Fletcher et al.

[Fle94]. Avt) 1 dtapopd omodidetan ot un LovteAomoinon g oKTvoBoAiog Kot TG

ay®ynsg oto toiympa. 26Tt060, 01 KAUTOAES TOL LTOAOYICTNKOV EXOVV TNV 1010 “S”

popon pe ta mepopatikd anoteAéopata. H Beppokpacio avédvel pe 1o Hiyog Ko
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mAveL TN LEYIOT TN TG EVTOG TOL TAOVUIOL TOV KOTVOL.

600
”
550 A -~ ,.:. &
7 s
4 .
500 A a4
¢, A Fletcher et al (18m)
—_— /’ -
i ’
é 450 ”" ® Fletcher et al (40m)
400 ;oA 1
,I o o =k-w SST (18m)
7
350 ~ _- ’.’ - - k- SST (40m)
e -~ _. ’
300 pmmmmm =Tl . . .

0 0.4 0.8 1.2 1.6 2 24

z(m)
600
550 .
i
500 T A Fletcher et al (18m)
— v i
\M, 450 - ,‘ 1 ® Fletcher et al (40m)
= 1
400 7 = -k-w SST (18m)
‘7
D2 A
350 - s/ o ¢ = - k- SST (40m)
- -
300 -I—ﬂ'—"" = T T T T
0 0.4 0.8 1.2 1.6 2 24

Yyquo 6-6. X0ykplon tov Tpodid Oeppokpociog kotd to vyoc. Ilepintoon 1 (mdvw) won

nepintoon 2 (Katw).

10 oynquo 6-7 Tapovstdloviot Ta SLevVOGHOTO TG TOXVTNTS Yo TNV TEPITTOON 2 UE
1o standard k-¢ povtéro. To onueio avakomig mov opilel to pnkoc omcBopong

OTULEUDVETAL [LE TOV KOKKIVO KOKAO.
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Zymua 6-7. AlavOGHOTO TOYLTHTOV 6TV TOWUN y=2,7m kol onpeio avakomng (KOKKivog

KOKAOG).

6.3 IIpocopoimon pe axtivoPoiria

"Eovtag TpocopoltdGEL TIC TEPMTMGELS YOPIg va Aappdvovpe vedyn v axtivofoiio
KOL TNV 0y®YyN OTO TOlYMMO, TPOYMPNCALE GTNV EMIAVLGN TNG OEVTEPNG TEPIMTOONG
Aoppavovtag vmoéyn ™ petagopd Oeppdtrog pe oktvoPoAiio. Xe avt) TV
nepintoon n TOpPn Tpocopolmdnke ypnopomolidvtoc povo to standard k-g povtédo

TOpPNG.

[Ipwv mpoywpncovpe otV Kupiog mpocopoinon €yve Eleyyog g avegaptnoiog g
Aong and v yovwoky dtakprtoroinon. Ta peyédn to omola eléyyOnkav yw v
aveCaptnoia Ntov 0 6pog TNYNG otV evepyelokn eElomon AOY® aKTivoPoAing Kot 1
pon BepuodtTog oto Tolympo Adym axtivofoiiag. Metd amd avt T dtodkocio Kot
vy Adyovg owovopiog vrmoroyiopmv emdéyOnkav 8x4 alipovbiokég Kot moMKEg
yovieg. Mg avtd 10 GUVOLOCUO YOVUDV OTOPEVYOVUE TNV ETKAALYN NG YOVIiog
eAEYyov. Xe mepintmon emkdivyng g yoviag eAéyyov Ba ftav amapaitntn n xpron

g pixelation pebddov, ) onoia Ba avEave To AN LEYAAO VTOAOYIGTIKO POPTIO.

6.3.1 Emidvon g eicwong petapopdc axtivoforiog

O oVVTEAESTNG EKTTOUTNG TOV TOYOUATOV GOUPOVO LE TO TEPAUATIKE OEOOUEVAL
ntav icog pe tn povada [Fle94]. To pguatd Bewpnnke 0Tt eivar @otd Kot amoppopd
Kot ekméumel TV aKTvofoiion aAAd dev TV okeddlel. O GLUVTELEGTNG amoppPOPNONG

ntav icog pe tn povdoa [Sel2].

H enilvom g e&iowong petapopds aktvoforiog (EMA) etvar wwitepa omontn ik

VIOAOYIOTIKE. )G €k TOVTOL glval KON TPAKTIKY va emAveton kdbe N Pripata eite
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ECOTEPIKMOV EMAVOANYEDY EITE EMAVOANYE®MY OTO QUOIKO YPOVO. ZTIG OKEG MO
npocopoiwoels 1 EMA emAbOnke avd N Pruota otov yevdoyxpovo. Xto npmta 2s,
TPV 01 VYNAEG BEpLOKPOGIEG PTACOVV GTNV 0POPT KOl TO TAELPIKE TOUYMUOATO TNG
onpayyas, 1 EMA emAvotov oe kdbe Prupo otov yevdoyxpovo. ‘Emeita, 1 EMA
emvotay avd N=3 frpata otov yevdoypovo yia va emtayvvOet | enidvon. ' kaOe

N yevdofnua, poévo pia eravainyn s EMA devepyovvtav.

Mo v avakotackevn g évtaong g akTivoPoAriog oTig £6peg TV OYK®V EAEYYOV

¥pnooromdnke to devtepng TaENG oYNUe 6€ cVVIVAGUS pe Tov Teploploty Min-

Mod.

6.3.2 Amoteréopata pe TNV oKTIVOPOLI

210 oynuo 6-8 divovror ta TPoeid TV Bepprokpaciov oto 18m kot ota 40m kaTdvn
g TyNS Beppomrag, avtn t eopd Aappdvovtag vedyn v aktvoPorio. Xto id10
duypappo dtvovton emiong ta apBuntikd amoteAécpata tov Miloua et al. [Milll]
Kot to mepapatikd anoteAéopota tov Fletcher et al. [Fle94]. IMopatnpodue oti
TOPOAO OV LIOAOYICTNKOV UIKPOTEPEG TIUES Yo TN Ogpurokpacio Aappavoviog
vdyn ™V okTvoPoAio, ol TIEG TAPAUEVOLY KOO VYNAOTEPES GE GYEOT HE TO
OMOTEAECUATO TOV GAA®V  gpeuvnTOV. AVLTN 1 OlPopd amodideTonl ot uUn

povteAomoinon g aywyng Beppdtnrag 6To ol TG GNPUyYos.

450

400 4 Fletcher et al (18m)
® Fletcher et al (40m)
—_—
é 350 ! —DMiloua et al. (18m)
- e Miloua et al. (40m)
= =k-¢ (18m)
300 - -k-¢ (40m)
250 T T T T T
0 0.4 0.8 1.2 1.6 2 24

z(m)

Zyquo 6-8. Zoykpion tev Oeplokpoaciak®v TPoeiA Katd To Vvyog Otav 1 oKTvofoAio

Aappdvetor vroyn pe ta amotedéopato twv Miloua et al. [Mill1] ko Fletcher et al. [Fle94].
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6.4 Ayoyn Oeppotntog 6to Toiyopo

Mo Adyovg amAdtmrTag Kot VIToAOYIoTIKOD KOGTOVG avamthydnke €va LovodldoTato
(1-A) povtéro yia v aymyn oto toiyopo. H e&icoon 1-A aywyng oe adibotatn
popon etvat:

oT o°T

— =Fo— 6-1

ot on® (6-1
t .

omov Fo =L—“’f elvar o apOuog Fourier, OLZTt getvar  Beppikn d1dyvon oto
ref p P

tolyopo kot n glvor M kéBetn oto tolyopo SevBvvon. ki sivor m Beppkn
ayoypomrta, p n mokvomto kot Cp, n ewdkn Oepudmmro vnd ctabdepr| micon tov

TOYMOUOTOC.

H devtepn  mopdyoyog ¢  Oegppokpaciog  mpooeyylomnke — aplOuntikd
YPNOLUOTOIDOVTOS TEMEPACUEVEG OLOPOPES Y10 YEVIKA un opotopopeo 1-A miéyua. H
YPOVIKN TOPAYWDYOG TPOCEYYIGTNKE e TPOG® daPopEC TPMTNG TAENG akpifetac. Xt
ouvéyela pe v epappoyn tov oynuatog Crank-Nicolson [Hir88] katain&ape oe éva
TPWOy®OVIO cvuotnue M enthvon tov omoiov &ywve katd tov aAdydpiOpo Thomas
[Ap103]. Ztov mpadyto koOuPo M Beppoxpacio Ntav ion pe v Bepuoxpacio Tov
TOYMUATOS TOL TPOEPYETOL OO TOV EMAVTN TNG PONG. XTO TEAOG TOL TOLYDUOTOG

emPdiape adofatikés oplakég cLVONKES.

H oc0levén tov poviélov ayoyng pe tov emAdtn £yve péow g pong Bepprodtntog
MOy ayoyng ot demedvela Tov toyydpatos. H 1-A ayoyn og kébe opraxd kdpupo
TOYOUATOS eEmAVOTAY Eppesa o kb Prna otov yevdoypovo. O emddtng TG porg
vroAdYe TV Beprokpacio TOlYOHATOG Yo TO TPOPANUA TNG OY®YNS KOl TO LOVTELO

aymyng £6tve v pon Beppdmrag AOYm aymyng 6Tov ETADTY).

6.4.1 Amoteiéopato pe TNV ay®YN KoL TNV akTivofoiic

Agv PBprkope opkeTd dedopévo v To mepPdAiov T onpayya toiymua. ‘Etot,
Oewpnoapne mayog toympatog 1,5m, Oepuikny ayoyywomta ion pe 0,1W/(mK),
nokvotnta ion pe 1750kg/m3 kot W OBeppomta ion pe 960J/(kgK). To 1-A

TAEYUOL. TTOV YPTCIULOTOMONKE NTOV TUKVOTEPO KOVIA OTN JEMPAVELD PELGTOV-
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GTEPEOV.

Y10 oynua 6-9 mapovcidlovpe to Bepprokpaciakd TPoPil TOV VIOAOYICTNKAV GTA
18m kot ota 40m xotdvrn g nnyng Beppotrag, 0tav 1 axtivofoAic Kot 1 oymyn
Oepuomrag eedncav voyn TowTOYPOovVa. XTo 110 oynuo divovtor emiong To
aplOuntikd amotedéopato twv Miloua et al. [Milll] kot to 7EpapaTiKd
amoteAéopata tov Fletcher et al. [Fle94]. Onwg mepévape, ta Oeppokpaciokd
pogik £yovv petatomotel og yaunAdTepeg TIES Beppokpaciog. Me v aywyn oto

TOLY OO TO AMOTEAECUATA [LOG CLUP®VOVY GE KOADTEPO PaOUO LE TA TEPOUOATIKAL.

450

a Fletcher et al (18m)

® Fletcher et al (40m)

-~

N e Miloua et al. (40m)

—k-e_w.c. (18m)

250 T T . r ' —- k-e_w.c. (40m)
0 04 0.8 1.2 1.6 2 2.4

Zyua 6-9. Zoykpior Beppokpaciokdv Tpoeil Katd To VYo 6Tav 1 aKTvoBoAin Kol 1 oyyn|
010 Toiympo Aappdvovtor vedyn pe ta aplBunTikd arotedéopata tov Miloua et al. [Mill1]

Kot Ta mepapatikd amoterécpota tov Fletcher et al. [Fle94].
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Kepdararo 7

AvoKeQoLal®on, Xournepacpote Kot MeAlovTiKi
Epyoocia

210 tehevtoio KEQAAOMO TNG OWTPIPNG OVOKEQUANUDVOVLE CE GLUVTOUIOL TO. OO
TOPOVCIACTNKOV GTO TPOoNyovpeva ke@aiaia. [lapovoidlovpe Ta cuuTEPAGLOTO TOV
TPOEKLY OV OO TNV EPEVVA LOG KOL T CUVEIGPOPA TNG £PYOCIOG LE TO KOVOTOUO
otoyeia tg. TéAog, avapépovial oplopéveg OKEYELS Yoo T PeATimon kot emékToon

™g mopovcag puebodoroyiag.

7.1. Avaxke@arai®orn Kol GupmEpacnoTo

2V mopovoa SatpiPn LEAETNONKOV GUVOVAGUEVEG TEPITTAOGELS PONG KOL LETAPOPOAS
Oepuomrog pécm NG avamTLENG GE VTOAOYIOTIKO KMOWKO UG optOuUNTIKNG

pebodoroyiag.

O emAdtg ypnowomomOnke yw v mpocopoimon 2-A 1 3-A, pdévipeov N un-
UOVIL®V, OCLUTIEST®V, OTPOTOV 1 TUPPOOOV PodV GUVEKTIKOD Kot NELTMVEIOL
PELOTOV.  XPNOOTOlEl UL KEVIPOKOUPIKY] TEMEPACUEVOV — OYKOV  TEXVIKY
JKPITOTOINoNG YL TNV OAOKANPWGN OA®V TV €£1I0DCE®V HEGNS PONG GTO 1010
aplBuntikd mAEypo epappoloviog pio akpoPacikn Kot dtagovi Swadikacio o
vPpIKd TAEypaTa. o T ovlevén TV medinv MEGE®V Kol TaXLTNTOV QaprOleTol
N TPOGEYYION TEXVNTNG CLUTLEGTOTNTOG PAoEL TNG OMOilaG TO CLGTNUA TOV EEIGOCEDV
dwtnpnong petatpénetol and mapafoikd/eAlemTIKO o€ vIEpPoAKO/Tapafoiko,
EMTPEMOVTIAG HOG TN XPNON TEYVIKOV OVTIGTOL(®V TOV GULUTIEGTOV PELGTOV. ¢ €K
TOVTOV, Y10 TNV TPOGEYYIOT] TOV UN-CUVEKTIKOV OPOV OVOTTOEAUE TOV TPOCEYYIGTIKO
emA0t Riemann tov Roe. T'e tOUG GLVEKTIKOVC OpOVG YPMOLULOTOONKE [a
amodoTikY| omd dmoyn ypoévov CPU teyvikn. H ypovikn dtaxpiromoinon emtedydnke
HEG® €VOG OPNUATIKOD TEMAEYUEVOL GYNUOTOS YO TNV YPOVOTPOEANCT) GTOV
Yevdoypovo kot to eULoKd ypovo. Oleg ot e€lomoelg péong pong eivar 1oxLPAC
ovlevypéveg, pHetd TN OWOMIGTOON TNG VAEPOYNG LTS £vovil ™S acbevag

ovlevypévng emilvong.
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Mo v mpocopoimwon aveGTIKOV po®V 01 dPOoPES TLKVOTNTAG TPOoGeYYilovTol amd

115 drapopéc Bepuokpaciog Pdoelg g mpocéyyiong Boussinesq.

[Na 11 TupPddetg poés ypnoponomdnkay 600 RANS povtéda toppng, to k- SST pe
N XOPIg GLVOPTNOCELS TOYMUATOG Kol TO VYNAGV aplBudv Reynolds standard k-g. Ot

eElomoelg péomng pong ko TopPng eivan asBevag culevypévec.

[a v oavokatoaokev TOV €£0pTNUEVOV UETARANTOV TTOL OTOUTEITOL YO0 TOV
VTOAOYIGUO TOV UN-GUVEKTIKOV Op®V EPAPUOGOLE GYNLLOTO VYNANG TaENG axpifetas.
Emiong, pekemOnke m ypnom mePOPGTOV Kot SOmoTOONKE OTL GTAUATNCOV TN
oVYKAION o€ éva ouykekplpuévo Babud kai ot dlopbooelc tov peyebdv mapovsiocav
TOAVTOGES. 26 €K TODTOV, Ol TMEPLOPICTEG AMOPPIPTNKOV MG EMIAOYN Yo TNV

OVOKOTOGKELT TV LEYEDDV pEong pong.

Mo ™ poviedomoinon g axtvoPoria epapupootnkav 6vo pébodor. H mpotn
amoterel (o ovolvtikn péBodo yoviakav mapoayoviov (MITI). H oedtepn pnébodog
etvan pia péBodog memepacpévov oykov (MIIO) mov €xet epappoyn v eotd PEGO
OV  amoPPOPd, ekméumel Ko okeddalet v axtwvoPoria. Boaociletor oe évav
akpopactkd aiyopifuo yio vPpdkad mALypata kKabotovtag v cvuPatny pe tov
emAvTN g pong. Etvan dedtepng tdéng axpifetag oto yxdpo kot to xpoévo. H yoviokn
JLKPITOTOINGT EMTLYYAVETOL HECH TNG 1GOTOGNG dtaipeons TV 4T GTEPUKTIVIOV GE

NpxN,, dtevbovoelc.

Metd v mapovcioon g opfuntikng pebodoroyiag Kol TV TOPaUETp®V VTG,
EMAVONKOV OPIGUEVEG TTEPUTTAGELS OVOPOPAS Y10 TNV EMKVPMOT TOV EMAVTY. AVTEG
Ol TEPIMTAGELG NTAV OIGOACTATES 1) TPLGOAGTATEG, LOVILEG 1) UN-LOVILES, OTPMTEG 1|
TUPPMOELS, He TV emidpaocn N oyt ¢ aktvoPoriag. Ta amoteléopata Ppédnioy va
CLUUPOVOVV LLE OVTA TOV TOPOVCIAGTNKAV OO GAAOVG EPEVLVNTEG KOL YEVIKA NTOV

opaAd (smooth) yia OAec Tig e€apTuéveg peTaPANTEG.

>t ovvéxewn eAéyyOnke mn  omddoon TOV TWAPAAANAOL EMAVTN Yo JUUPOPES
TEPMTMOGELS OG TPOGS TNV EMTAYLVOT Kot To Babud anddoonc. [N'evikd, vroloyioTnray

KOVOTOMTIKEG EMTAYVVOELS Kot Babpol amddoong.

Téhog, petd v emkdpwon tov emAvTn kot Vv enPePainon g vyning anddoong
™G TOPOAANAOTOINONG QVTOD TPOYWPNCOAUE GTNV TPOGOUOINGCT) TEPUTTOCEMV

TUPKOYLIC EVIOC ONPOYYOS. X€ OVTEC TIC TEPMTOOCELS Oomiotddnke OtL givot
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amopoitnTn M povteAomoinon g axtivofoAiag Kot TG ay®myng 6To TolYmu Yo Vo

vroAoyicovpe peaAoTiKd Oepokpactokd media.

211 cuvéyela TapovctdlovTol To KavoTopKa ototyeio g StatpiPng EEKvavTag amod

TOL 7O CTULAVTIKG KO KOTOATYOVTOS GTO ALYOTEPO OTULAVTIKAL:

Avoantoynke ex tov pndevog o avdvrn uébodoc Poocilouevn otov
npoceyylotikd e€mAdt Riemann tov Roe ywo tov vmoAoyiopd tov pn-

CUVEKTIKOV Op@V TOV e£l0MGEMV HECTG PONG OTIG OVO KOt TPELS JIUCTACELS.

Atevepynnke ovykpion peta&d g woyvpd ovlevypévng kot acHevmg
ovlevypévng entivong tov eEl0dce®V PLECTG pong, 1 omoia dev Exel Ppebel va

&xel Eavayivel Yo avtég 116 e€lomaoelg Eavd otn PipAtoypaeio.

Mo T0v CLVEKTIKOVG Opovg ypnotpomombnke €vag amodoTikog amd TAELPAG
CPU ypoévov alydpiOuoc, o omoiog elxe avomtuybel yuo 11 €£100GELS
CUVEYEWNG KOL OPUNG KOl EQOPUOCTNKE KOL Yoo TNV evepyelokn e&icmon pe

emruyioL.

Ot TeputdoELg TUPKAYIAG GTN CNPAYYE TPOGOUOOONKAV YPNCULOTOUDVTOG
mv Kowvovpyle MITO yia v aktivoBoiia kot to kovovpylo 1-A povtédo yio

v aymyn Beppdttog 6To TolymuaL.

7.2. MehrovTikn gpyacia

g oot ™V LIogVOTNTA B TAPOLGLUGTOVLV OPIGUEVEG CKEYELS Yo TN PeAtimon ko

TEPUTEPM eMEKTAON TNG HeBodoroyiag:

Onwg avaeépbnke mponyovpéveg 1 evepyelokn e€lcmon emAveTal 1GYVPDOG
ovlevypévn pe TG vtoroweg E16MGES HEoNG pons. Oa pmopovse va yivel
gloaymyn HoG EMmAEOV €EICMONG Y10 TOV VTOAOYICUO T®V GUYKEVIPAOGEDV
Kamvoy Ue mopdpolo Tpomo pe v aclevag cvlevyuévn teyxvikn. Exovtog
VTOAOYICEL TIC GLYKEVIPMGES TOL KOMVOD GTO YMOPO Kol TO Ypovo, Oa
UTTOPOVGALLE VO YPNCUYLOTOGOVHE YeLOO-PaEg (pseudo-gray) mpoceyyloelg
Y10 TO GUVTEAEGTIG AOPPOPNONG KOl GKEAUOTG OTIG TEPUTTMOOELS TUPKAYLAGS.
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e O gmAvtng ™ aktvoBoriog pe v MIIO Ba propovoe va tpomomonei yia
TpoyUaTIKE péca (Un-eotd péca). Xt Biprloypaeio £xovv avapepbel apretég

LLOVTEAOTTOMGELG TETOLOL E100VC.

o Téhog, Ba umopovcape vo viofBetnoovpe Kdmolo oyfua avtictoryo tov FT, yia
NV KOAOTEPT YOVIOKY| SLOKPITOTOINGoT Kot Pid TEYVIKN Yo TNV €milvon g

elomong petapopds aktivofolriog yo TUfpa TV dlevdHveewy.

ANpnoocievoels

Kotd ™ dudpketa tov S100KTOPIKOD KOl TAVEO GTO OVTIKEILEVO TOL O1OOKTOPIKOV
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validation of a 3-D Navier-Stokes solver including heat transfer and natural
convection”, 5" International Conference from Scientific Computing to

Computational Engineering, Athens, Greece, 4-7 July, 2012.

* Stokos K.G., Vrahliotis S.I, Pappou Th.I. and Tsangaris S., “Development
and validation of a Navier-Stokes solver including heat transfer and mixed
convection”, 10" HSTAM International Congress on Mechanics, Chania,

Greece, 25-27 May, 2013.
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APPENDIX A

JACOBIANS OF VISCOUS FLUXES

In appendix A we give the Jacobians of the three-dimensional viscous fluxes which
are necessary for their linearization procedure. The derivation of the two-dimensional

Jacobians is obvious.
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