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Περίληψη

Κατά το σχεδιασμό μηχανισμών, ο στόχος είναι η δημιουργία δημοπρασιών που

επιτυγχάνουν (ή προσεγγίζουν) τη βέλτιστη κοινωνική ευημερία. Προκειμένου να γί-

νουν γνωστές οι ιδιωτικές πληροφορίες που παρέχονται από στρατηγικές οντότητες,

επιτρέπεται η χρήση χρηματικών ανταλλαγμάτων. Στο μεγαλύτερο μέρος της βιβ-

λιογραφίας, τα ανταλλάγματα αυτά αντιμετωπίζονται απλά ως μέσο απόκτησης των

πληροφοριών.

Ωστόσο, σε πολλές περιπτώσεις, υπάρχουν όρια στο ύψος των χρημάτων που

μπορούν να χρησιμοποιηθούν στα πλαίσια της δημοπρασίας, περιορίζοντας έτσι το

πλήθος των δυνατών σχεδιαστικών επιλογών. Στην εργασία αυτή μελετάμε την επί-

δραση των περιορισμών αυτών και τρόπους παράκαμψης των δυσκολιών που δημιουρ-

γούν. Παρουσιάζουμε τα πρόσφατα αποτελέσματα σε δημοπρασίες με περιορισμένη

ρευστότητα από την πλευρά των πλειοδοτών, και αντίστροφες δημοπρασίες με περι-

ορισμένο προϋπολογισμό από τη μεριά του αγοραστή. Στη συνέχεια αναπτύσσουμε

μία νέα προσέγγιση μείωσης των χρηματικών ανταλλαγμάτων που απαιτούνται και

παρουσιάζουμε τις εφαρμογές της σε υπάρχοντα περιβάλλοντα.

Λέξεις Κλειδιά: Σχεδιασμός Μηχανισμών, Δημοπρασίες, Περιορισμοί Προϋπολο-

γισμού, Περιορισμένη Ρευστότητα



Abstract

In Mechanism Design, the goal is to come up with mechanisms that achieve (or
closely approximate) the optimal social welfare achievable. In order to truthfully
extract private information from the strategic entities holding them, the mech-
anism is allowed to impose monetary transfers upon them. In the majority of
research in algorithmic mechanism design, payments are treated solely as a means
to extract this private information.

However, in many cases there are limits to the amount of monetary tranfers
allowed, thus limiting the space of allowed mechanisms. In this thesis, we study
the effect of imposing budget constraints upon the entities of the mechanism (the
agents or the auctioneer) and the possible ways of circumventing the obstacles
created by them. We survey recent results in auctions with budget constrained
bidders and procurement auctions with a budget constrained center. We then de-
velop a novel approach to reducing payments in order to respect payment bounds,
and present applications to existing settings.

Keywords: Mechanism Design, Auctions, Procurement, Budget Constraints, Liq-
uidity Constraints
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Chapter 1

Introduction

The fact that we belong in a society, inevitably leads to the need for common
decisions affecting the society as a whole. However, more often than not, the
incentives of the society members are not aligned wth each other. The selfishness
of the society members comes in the way of the decision making process affecting
it in a variety of ways.

A great amount of research has been conducted to come up with decision
making procedures called mechanisms that incentivize the participants to behave
in a predictable and desirable way. In this thesis, we present some of the classic
results in mechanism design, namely the seminal VCG mechanism along with
its benefits and drawbacks. Along the way, we define most of the notation and
terminology used in the mechanism design literature and provide insight to the
already existant results.

We then procced to study the effect of liquidity constraints imposed when
participants in the mechanism have an upper bound to the amount of monetary
tranfers they can charged. We survey the results in classic auctions with budget
constrained bidders, presenting the developed mechanisms as well as some intuiton
on their inner workings and rationale. To justify the efficiency of these designs we
measure their performance with respect to various proposed objectives such as
Pareto Optimality and Liquid Welfare.

Additionally we survey the results in procurement auctions, where a center
with a limited budget wishes to purchase goods from the participants. This is
a challenging setting with applications to the modern electronic market where
companies wish to purchase services offered by a large amount of individuals. By
studying these results we will also meet a certain amount of auctions following the
very successful paradigm of posted price auctions, that is auctions where agents
are faced with simple take-it-or-leave-it decision, severely limiting the complexity
of the agent-center interface.

Finally we propose a novel approach to handling liquidity constraints, through
uniformly smoothing the space of mechanism outcomes. Through simple mathe-
matical constructs we are able to create mechanisms that treat agents’ values in a
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smooth way, thus removing a configurable amount of power from them. This way
we can provide hard limits to the amount of payments charged. We present results
of applying this approach to previously studied settings, as well as objectives rising
from imposing different liquidity constraints on the auction.

1.1 Mechanism Design

Game Theory is the field concerned with the study of strategic agents’ actions
when participating in a common game. Each agent is selfish, in the sense that
his sole goal is maximizing his own benefit. In the context of decision making,
the selfish nature of the agents, leads them to attempt to manipulate the decision
making process in order to achieve an outcome they desire. This manipulation
however, often leads to outcomes that are suboptimal for the society as a whole.

A great deal of effort has been spent on quantifying the inefficiency of such
behavior, that is how much worse the outcome gets when players act selfishly
compared to acting in an optimal coordinated way. In many natural games, the
outcome can be arbitrarily bad compared to the optimum, a result often seen in
everyday life as the tragedy of the commons.

Mechanism Design can be thought as reverse game theory. It aims towards
the design of decision making procedures, in which participants have a certain
predictable and desirable behavior. Specifically, since agents are strategic and
pursue their own goals, we aim to align their individual interests with the designer’s
interests.

1.2 Notation and Preliminaries

Formally, there is a set of outcomes O, a set of n agents N and each agent has
a private valuation function ui : O → R (sometimes also referred to as type) from
a set of possible valuations Vi. The designer or center of the mechanism wants
to enforce the result of a function f : V1 × . . . × Vn → O, called the allocation
rule, from the agent utility functions to the set of outcomes. We will call a vector
valuation function u = (u1, . . . , un) a valuation profile and will denote by u−i
the same vector without the i-th coordinate. With a slight notation abuse we
will denote u as (u−i, ui). Finally we denote as V the space of valuation profiles
V1 × . . .× Vn and as V−i the set V1 × . . .× Vi−1 × Vi+1 × . . .× Vn.

However, the valuation of each agent is private and he will not report his true
value if it is not profitable for them to do so. Since, f is designed to be computed
on the valuation profile, allowing agents to falsely submit their types can lead to
undesirable outcomes. In order for the computation to be performed on the actual
problem input we will require that every agent is incentivized to report his true
valuation.
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Definition 1. An allocation rule is truthful iff ∀i ∈ N, ui ∈ Vi, u−i ∈ V−i, u′i ∈
Vi:

ui(f(u−i, ui)) ≥ ui(f(u−i, u
′
i))

From another point of view, since the input of the allocation rule is provided
from the agents in a totally uncontrolled fashion we need to make some behavioral
assumptions on how the agents will act. The weakest possible assumption is that
if every agent has a dominant strategy they will act according to it.

Definition 2. The type t ∈ Vi is a dominant strategy for agent i if ∀ u−i ∈ V−i, t′ ∈
Vi:

ui(f(u−i, t)) ≥ ui(f(u−i, t
′))

Notice that the definition does not require t = ui, and one might naturally
wonder if designing rules that are not truthful but have dominant strategies for
each agent allow for a richer design space. Moreover, could there be more complex
interactions with the agents, rather than simply have them disclose their types,
that enable different designs. Mechanisms where agents simply disclose their type
are called direct. The answer to both questions is negative.

Theorem 3 (Revelation Principle). Any mechanism that implements a certain
allocation rule f in dominant strategies, can be transformed to a direct truthful
mechanism implementing f .

Proof. Suppose that each agent has a certain set of strategies Si and a func-
tion si such that si(ui) is the dominant strategy the agent has. The allocation
rule is a function g :

∏
i Si → O operating on the agent strategies and achieves

that g(s1(u1), . . . , sn(un)) = f(u1, . . . , un) by hypothesis. Since the functions
si are known we can create a direct mechanism h, defined as h(u1, . . . , un) =
g(s1(u1), . . . , sn(un)). By definition, if the initial rule g implements f , then h also
implements f . Moreover since h exactly simulates the behavior of players in the
execution of g, players have no incentize to lie to h, since that would be equivalent
to lying to themselves when faced with g.

Therefore we will limit our attention to direct truthful rules without loss of
generality. A seminal result by Gibbard and Satterthwaite leaves no hope for the
existence of truthful non-trivial rules in this general setting when there are more
than 3 alternatives.

Theorem 4 ([14, 25]). There are no allocation rules that simultaneously satisfy:

• |O| ≥ 3

• the rule is onto, that is for any outcome o there is a valuation profile v ∈ V
such that f(v) = o

• the rule is truthful
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• the rule is not dictatorial, that is there is no agent i with valuation ui such
that for any u−i ∈ V−i, f(ui, u−i) = argmaxoui(o)

The requirements of the rule in the above theorem are quite weak. The second
assumption simply rules out “dummy” outcomes. The third requirement rules out
the rules that simply output the preferred outcome of an arbitrary agent.

To escape this impossibility, two main alternatives are widely researched. The
first is the restriction of the utility functions to match some of the environment
properties, and has produced a variety of important results in areas such as facility
location. The second is allowing the designer to impose payments of the agents.
In this thesis we will consider mainly the second.

Formally, a mechanism M is a pair of functions (f, p) where f is the allocation
rule f : V → O as above and p is the payment rule p : V → Rn. Under this
payment rule agent i has to pay an amount pi(v). Now the agents are not only
interested in maximizing his utility ui(o) but also in minimizing his payments
pi(v). We assume agents are quasi-linear and aim to maximize their surplus, that
is the amount ui(f(ui, u−i))− p(ui, u−i)). Naturally this changes the definition of
truthfulness for mechanisms.

Definition 5. A mechamism M = (f, p) is defined as truthful iff ∀i ∈ N, ui ∈
Vi, u−i ∈ V−i, u′i ∈ Vi:

ui(f(u−i, ui))− p(u−i, ui) ≥ ui(f(u−i, u
′
i))− p(u−i, u′i)

As we mentioned earlier, the imposition of paymetns allows us to construct
truthful mechanism for a variety of not truthful allocation rules.

Definition 6. An allocation rule f is impementable if there exists a payments
scheme p such that the mechanism (f, p) is truthful.

The mechanism is designed in order to output an outcome with certain designed
properties. In order to be able to quantify how good the mechanism performs with
respect to its purpose, we will assume that there is some objective function from
outcomes to real numbers (depending on the agent true values) that the center
wants to maximize. Fox example the center may wish to maximize the amount of
money collected, also known as the revenue of the mechanism.

Definition 7. For a mechanism M = (f, p), we define as the revenue of the
mechanism the quantity

Rev(u) =
∑
i

pi(v)

In this work we concentrate on the most commonly used objective function,
the social welfare. This captures in some sense the total amount of “happiness”
the society enjoys for this particular outcome.

Definition 8. For an outcome o ∈ O we define as social welfare (SW) the quantity

SW (o) =
∑
i

ui(o)
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1.3 The VCG mechanism

1.3.1 Mechanism Description

An early result by Vickrey, Clarke and Groves, shows that maximizing the
social welfare is always an implementable rule, independently of the agents’ valua-
tions. Definition 5 states that implementable mechanisms are exactly those which
optimize for each agent over his set of valuations. Intuitively this means that in
order to achieve truthfulness we need to align the incentives of each agent with
the incentives of the mechanism designer.

Since we are interested in SW maximization it seems natural to award each
agent for the utilities enjoyed by the rest of the agents. Defining the payment
scheme as

pi(u) = −
∑
k 6=i

ui(f(u))

makes each agent interested in the utilities of others exactly as much as in his own.

Definition 9 (Groves mechanisms). The mechanisms defined by

f(u) = argmaxo∈O
∑
i

ui(o)

pi(u) = h(u−i)−
∑
j 6=i

uj(f(u))

in truthful and exactly optimizes SW.

Proof. The SW optimization follows trivially by the definition of the mechanism.
The surplus of agent i for the outcome of the mechanism o

ui(o)−pi(o) = ui(o)+
∑
j 6=i

uj(o)−h(u−i) =
∑
i

ui(o)−h(u−i) ≥
∑
i

ui(o
′)−h(u−i)

for any other outcome o′ by the definition of the allocation rule. Therefore the cho-
sen outcome results in maximal utility for each agent amongst outcomes, rendering
the mechanism truthful.

Notice how the term h(u−i) is of no importance as far as truthfulness is con-
cerned since agent i cannot affect it in any way. It is up to the designer to define
a suitable function h, therefore we refer call the mechanisms of the definition a
family of mechanisms.

We will now demand some additional properties from the mechanism. In most
cases, users have the choice to not participate in a mechanism. In order to incen-
tivize them to do so, we need to guarantee that they cannot lose by participation.
This is a quite natural requirement, known as individual rationality.
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Definition 10. We call a mechanism individually rational (IR) if

∀i, u : ui(f(u))− p(u) ≥ 0

Moreover, in many settings it not desirable for the mechanism to hand out
money to the agents, and we will require that pi(u) ≥ 0.

A payment scheme that satisfies these requirements in many settings was pro-
posed by Clarke and is known as the Clarke tax or the pivot rule. It is defined by
setting

hi(u−i) = max
o

∑
j 6=i

uj(o) = f(u−i) (1.1)

Intuitively, h outputs the outcome of the mechanism if it was applied to the set of
agents, with i removed from it.

The Groves mechanism with h defined as in (1.1) is called the VCG mechanism,
due to the contributions of Vickrey, Clarke and Groves.

Definition 11 (VCG mechanism [28, 7, 16]). The VCG mechanism is defined by
(f, p) such that

f(u) = argmaxo
∑
i

ui(o)

pi(u) =
∑
j 6=i

uj(f(u−i))−
∑
j 6=i

uj(f(u))

The payment of each agent under the VCG mechanism is exactly equal to his
externalities, that is how much he affects the utility of others by participating.
In most natural settings, such as auctions and public project decisions, the VCG
mechanism is IR, and this can be proven with certain mild requirements for the
setting. Also, in many settings, the mechanism never pays money to the agents,
however there is also a variety of settings, mostly procurement auctions, where the
agents suffer costs, for being selected by the mechanism, and have to be paid to
ensure IR.

1.3.2 Examples

Single Indivisible Good Auction

Suppose now, that we wish to sell a single item to a set of players. Each
agent has a value vi if he recieves the item and 0 otherwise. We wish to maximize
the social welfare, so we will allocate the item to the highest bidder. Obviously,
requiring the winner to pay his bid is not a truthful auction, since he has the
incentive to understate his bid to decrease his payments, while continuing to recieve
the item.

The mechanism is maximizing the SW, so we can calculate payments according
to the VCG mechanism. The utilities of losing bidders are zero, while the mech-
anism when run without the highest bidder will allocate the item to the second
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highest bidder. Therefore the payments of the winner will be the second highest
bid. Assuming w.l.o.g. that v1 ≥ . . . ≥ vn, and with some arbitrary tie-breaking
rule.

pi(u) =

{
v2 if i = 1

0 otherwise

One can verify the truthfulness of this payment scheme independently, as well
as the fact that ∀i, 0 ≤ pi(u) ≤ ui(f(u)). This auction is known as the Vickrey
auction or the second price auction and was discovered before the VCG framework.

Public Project

Suppose that the goverment is considering building a bridge that is estimated
to cost a certain amount of money C. Each citizen i enjoys utility vi ∈ R+ if the
bridge is built and 0 otherwise. We can model the goverment as an extra agent
with utility −C if the bridge is built and 0 otherwise. The goverment is interested
in maximizing the total utility so it builds the bridge iff

∑
i vi ≥ C. However in

this game, every agent has a dominant stategy to report C instead of ui so that
the bridge is built anyway, so in order to ensure truthfulness the goverment has to
enforce payments.

Since the objective is SW, the VCG payments will work and are calculated as
follows

pi(u) =

{
C −

∑
j 6=i vi if

∑
j 6=i vj < C ≤

∑
j vj

0 otherwise
(1.2)

These equations make the reason why this payment scheme is called pivot
rule apparent. The only players the are assigned non-zero payments, are the ones
that are pivotal, that is they can change the outcome of the mechanism by their
presence. It easy to verify by the definition of payments that the mechanism is IR
and never pays money to the agents. For every agent i with non-zero payments∑

j 6=i
vj < C ≤

∑
j

vj ⇔ 0 < C −
∑
j 6=i

vj ≤ ui ⇔ 0 < pi(u) ≤ ui

1.3.3 Drawbacks of the VCG

Since VCG solves the problem of truthful SW maximization in the general
setting, one might assume that this field is closed. However, VCG is not without
is downsides, some of which we mention here.

VCG is not always tractable

One of the biggest issues arising in practice is the fact that VCG requires
choosing the outcome maximizing social welfare. There are many setting, for
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example combinatorial auctions (selling m heterogenous items to n players), where
the number of possible outcomes rises exponentially with the bidders or the items
sold. When valuations are arbitrary even describing the valuation function to the
mechanism is impossible in practice. Alternatively, the maximization of SW could
require solving an NP-hard problem. Even though for many of them approximation
algorithms exists, applying the VCG mechanisms with such rules is not truthful
in general.

VCG is not group strategyproof

Although we proved that VCG cannot be manipulated by a single agent in a
profitable way, agents can collide and coordinate to manipulate the mechanism.
Consider the case of the public project, outlined above. If a pair of agents report
that their values are both C, the goverment will build the bridge. Moreover, none
of the agents are pivotal anymore, so all paymetns are 0. This outcome is at least
a good as the one produced by truthful bidding for both the misreporting agents.

VCG is not frugal

Consider the case of the public project as described above and the instance
with n agents each with value for the bridge

vi = v =
C

n− 1
− C

n(n− 1)

. The value of n− 1 agents for the bridge is equal to

(n− 1)v = C − C

n
< C

and the value of n agents

nv = n
C

n− 1
− C

n− 1
=

(n− 1)C

n− 1
= C

Therefore every agents is pivotal and will pay according to Equation 1.2

pi = C − (n− 1)v =
C

n

Therefore the total amount of payments collected is
∑
pi = nCn = C, equal to

the cost of the bridge! In the end the amount charged to the citizens to enforce
truthfulness is enough to actually build the bridge, despite the fact that the funds
were supposed to be provided by other sources.
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Chapter 2

Budget Constraints

In chapter 1 we treated the payments imposed by the mechanism as a means
of truthfully extracting private information from the agents. However, in real-life
situations, bidders are not able to match any payment the mechanism requires and
in fact may not be able to match their own value for the good in money. This
leads to the introduction of budget constraints in auctions, these hard bounds to
the amount an agent can be charged.

Depending on the specific setting, the nature of these liquidity constraints can
vary. We may have public or private budgets, applying to each agent or the set of
them as a whole, or even have a budget constrained designer wishing to purchase
goods or services from strategic agents. In the extreme case, in certain scenarios it
may be infeasible, immoral or even legally prohibited to impose any charge to the
agents of the mechanism. Examples of such environment are political elections,
kidney exchange procedures, assigning students to public school and many more
natural cases.

In this chapter we will mostly consider agents with individual budget con-
straints and survey results in this direction.

2.1 The Infinitely Divisible Good Scenario with

Budgets

The main setting we will consider is the auction of a single infinitely divisible
item to budget constrained bidders. Although the development of these auctions
initiated from the multi-unit indivisible case, we find it mathematically convenient
to focus on the divisible setting. We first define the setting formally.

Each agent reports a value vi ∈ R to the mechanism which represent his utility
for acquiring the whole item. We assume these utilities are additive, and therefore
the utility of an agent for receiving a fraction xi of the item is xi · vi.

Moreover, each agent has a budget Bi which is the maximum amount he can
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be charged by the mechanism. We will not change the utiliity function to accomo-
date for this modification and will simply treat outcomes where payments exceed
budgets as infeasible. We will differantiate the case where budgets are public
knowledge and the case where they are private information and as such have to be
reported to the mechanism in a strategic way.

We will require out mechanisms to be:

• truthful, agents maximize their surplus xivi − pi by bidding truthfully

• individually rational, that is agents never receive negative surplus

• budget feasible, pi ≤ Bi

Since the value of each agent is xivi this is a single parameter environment and
Myerson’s Lemma applies. We fix the values of all agents except i and denote the
allocation and payment of agent i as x(vi), p(vi).

Theorem 12 (Myerson’s Lemma [21]). For any single parameter environment the
following are equivalent:

• the allocation rule is monotone, that is

vi ≤ v′i ⇒ x(vi) ≤ x(v
′
i)

• the unique payment scheme implementing the allocation is

p(vi) = x(vi) · vi −
∫ vi

0
x(z)dz

Our environment is monotone and as such the design of truthful auction reduces
to the design of monotone allocation rules.

We will first describe two auctions for the public budget case and the intuition
behind them. Then, we will show why the classic social welfare objective cannot
be used to measure performance guarantees and study two different proposed ob-
jectives. Finally we will measure the auctions’ performance with respect to these
objectives. For the rest of the chapter we will assume the values of the agents are
pairwise distinct. In the opposite case we can infitinesimally perturb the input or
choose some tie-breaking rule. We will ignore such technical details and focus on
the case of pairwise distrinct input.

2.2 The Market Clearing Price Auction

First we will describe an auction inspired by market equilibrium theory. The
description and properties of the auction follow [10]. The market clearing price is
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the price where the supply and the demand of the good are equal. In our setting
we naturally define the supply as

S = 1

Moreover, if we sell the good at price p per unit and p ≥ vi then player i will not
desire to purchase any amount of the good. If p < vi then the player wants to buy
as much fraction as he can. It is therefore natural to define the demand at price p
as

Di(p) =

{
Bi
p if p < vi

0 otherwise

The idea here is to calculate the maximum price p∗ where
∑

iDi(p
∗) ≤ S.

Notice that we cannot necessarily ensure that demand equals supply, since the
demand drops abruplty when the price reaches some agent’s value.

Assume that agents are sorted in decreasing value order, that is v1 > v2 >
. . . > vn. We wish to find the maximum price p such that∑

i

Di(p) ≤ S ⇔
∑
i:vi>p

Bi
p
≤ 1⇔

∑
i:vi>p

Bi ≤ p

The demand of an agent drops in two ways

• By increasing the price and staying below the value (Di(p) = Bi/p)

• By exceeding the value (Di(p) = 0 if p ≥ vi)

This directly leads to 2 cases

1. If the demand drops because of the first reason then
∑
Di(p) = S and

p =
∑

i=1 kBi where k is the largest integer such that
∑k

i=1Bi ≤ vk.

2. If the demand drops due to an agent falling out of the auction the price will
be that agents value. Let k be the largest integer such that

∑k
i=1Bi ≤ vk.

Then the agent falling out will be agent k + 1 and therefore agent 1, . . . , k
will get allocated a share at price vk+1. In this case the total demand of
the first k players at price vk+1 will be below 1 and we will allocate the
remaining good to agent k + 1.

By the description above it becomes apparent that, if we set k as the maximum
integer such that

∑k
i=1Bi ≤ uk the case we are in depends on whether or not the

agent k + 1 wishes to clinching good or not, which in turns depens on whether∑k
i=1Bi ≤ uk+1 or not.
Surprisingly, charging players the clearing price is not truthful, since in some

cases players have incetives to understate their values to acquire smaller fractions
of the good but at much lower prices. We will therefore resort to Myerson’s Lemma
for the calculation of the payments. We first state the complete description of the
auction following the observations above.
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Definition 13 (Market Clearing Price (MCP) Auction). Assume agents are sorted
in decreasing value order (v1 > . . . > vn). Let k by the maximum integer such that∑k

i=1Bi ≤ uk

1. if
∑k

i=1Bi > vk+1, then xi = Bi∑k
j=1Bj

for i ≤ k and xi = 0 otherwise

2. if
∑k

i=1Bi ≤ vk+1, then xi = Bi
vk+1

for i ≤ k, xi = 0 for i > k + 1 and

xk+1 = 1−
∑k

i=1 xi

Payments are calculated through Myerson’s Lemma (Theorem 12)

We now show that this auction has the desired properties

Lemma 14. The MCP Auction rule is monotone.

The proof is derived directly through case analysis. As a result of charging
Myerson payments we get the following.

Corollary 15. The MCP Auction is truthful in the public budget environment.

Lemma 16. The payments charged by the MCP Auction do not exceed the agent
budgets.

For the sake of concreteness we show an example of the MCP Auction.
Example 1. Suppose we have three agents with values v1 = 2, v2 = 5, v3 = 7
and budgets B1 = 1, B2 = 2, B3 = 2. In Figure 2.1 one can see the demand curve
a the pricve clock ascends. At price p = 4, D(4) = 1 so we allocate according to
that, agents 2 and 3 get half the good, x1 = 0, x2 = 0.5, x3 = 0.5. Obviously agent
1 pays nothing, p1 = 0. We now analyse the payments for agent 2. His allocation
as a function of v2 is as follows:

x2(v2) =


0 if v2 ≤ 2

1− 2
v2

if 2 < v2 ≤ 4

0.5 if v2 > 4

This allows us to calculate the payments though Myerson’s lemma:

p2 = 0.5 · 5−
∫ 4

2
(1− 2

x
)dx−

∫ 5

4
0.5dx =

= 2.5− 2 + 2[lnx]42 − 0.5 = 2 ln 2

Symmetrically we also get that p3 = 2 ln 2. Notice that both players pay below
the clearing price per unit.
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Figure 2.1: Running the MCP auction for the instance of example 1.

2.3 The Adaptive Clinching Auction

2.3.1 Description

The Clinching auction was developed in [1] and was adapted to the budgeted
case in [9]. The auction was described for the multi-unit indivisible item case and
although the case of divisible goods was described intuitively, the study and full
description of the auction was done in [4].

The intuition behind this auction is that instead of calculating the clearing
price and allocating goods at this price, it allocates the good as the price clock
rises. That is players “clinch” different amounts of the goods at different prices.
We will slowly raise the price clock and will allocate goods to an agent i whenever
increasing the price will result in

∑
j 6=iDi < S. Before we formally describe the

auctio, we will show the thought process one can go through to derive the auction.
The auction will maintain and gradually update a set of variables as the price

clock rises.

• the remaining supply of good S(p), initialized at S(0) = 1

• the amount clinched by each agent i xi(p) initialized at xi(0) = 0

• the amount charged to each agent i pi(p) initialized at pi(0) = 0

• the remaining budget of each agent bi(p) initialized at bi(0) = Bi

To ensure consistency of of the action we need to enforce an amount of invari-
ants. We denote at f ′(p) for a function f of p the derivative with respect to p.
Since we do not throw away any good we require that

S(p) = 1−
∑
i

xi(p) (2.1)
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Moreover players do not burn their money and either keep them or give them to
the auction.

bi(p) = Bi − pi(p) (2.2)

We require that agents purchase the good at the current price per unit and there-
fore

p′i(p) = p · x′i(p) (2.3)

During the auction we will place agents in sets according to their role in the
auction. We define the sets of active bidders at price p, A(p) and the set of clinching
bidders at price p, C(p) as follows. We use the same definition for demand as in
the previous section and denote as D−i =

∑
j 6=iDi.

Di(p) =

{
bi(p)
p if p < vi

0 otherwise
(2.4)

A(p) = {i | vi > p} (2.5)

C(p) = {i | i ∈ A(p), D−i(p) = S(p)} (2.6)

We will gradually raise a price clock starting from zero and we will allocate
items in order to ensure S(p) ≤ D−i(p). Notice that agents in the clinching set
are the ones tightly satisfying this constraint. In therefore makes sense to allocate
fractions of the good to them in order to ensure the preservation of the constraint.

i ∈ C(p)⇒ S(p) = D−i(p) (2.7)

In the stages of the auction where demands are continuous and differentiable
(that is if p 6∈ v1, . . . , vn), deriving Equation 2.7 suffices to ensure this, however
we need to take care of the function discontinuities. For a function f and price p
we define f(p−) = limx→p− f(x) and f(p+) = limx→p+ f(x). Moreover we define
a+ = max{a, 0}.

Notice that if some player has a value of vi and we simply drop the bidder at
price vi the discontinuity for some agent with value vj is

δij =

S(v−i )−
∑

k∈A(vi)

Dk(v
−
i )

+

(2.8)

We will therefore sell the excess good produced by the sudden demand drop to
the remaining active players. Notice that no matter which player we choose to sell
first, the supply and the demand are reduced by the same amount and therefore
the rest of the agents are sold their respective quantity δij .

Before stating the auction formally, we will use Equations 2.1 - 2.7 to derive the
auction rules. We mentioned that during the phases, where the price is different
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from agents’ values, the allocation is continuous and the only agents allocating
good are those in the clinching set. So for i ∈ C(p),

S(p) = D−i(p)⇒ S′(p) = D′−i(p) =
∑

j∈A(p)\{i}

(
bj(p)

p

)′
=

∑
j∈A(p)\{i}

(
−bj(p)

p2
+
b′j(p)

p

)

Through equation 2.2 we demand that

b′i(p) = −p′i(p)

And therefore through equation 2.3 we require

b′i(p)

p
= −x′i(p)

By combining these together with equation 2.7 we get that

S′(p) = −S(p)

p
−

∑
j∈A(p)\{i}

x′j(p) (2.9)

At the same time, from equation 2.1 we get

S′(p) = −
∑
i

x′i(p) = −
∑
i∈A(p)

x′i(p) (2.10)

We subtract equations 2.9 and 2.10 to derive

x′i(p) =
S(p)

p
(2.11)

Additionally from equation 2.3 we get that

p′i(p) = S(p) (2.12)

This thought process leads to defining the auction formally as

Definition 17 (Adaptive Clinching Auction). The auction is defined by the set of
differential equations presented below

• if p 6∈ {v1, . . . , vn}

x′i(p) =

{
S(p)
p if i ∈ C(p)

0 if i 6∈ C(p)
(2.13)

p′i(p) =

{
S(p) if i ∈ C(p)

0 if i 6∈ C(p)
(2.14)
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• if p = vj for some j

xi(p
+) = xi(p) =

{
xi(p

−) + δji if i ∈ A(p)

xi(p
−) if i 6∈ A(p)

(2.15)

pi(p
+) = pi(p) =

{
pi(p

−) + δji if i ∈ A(p)

pi(p
−) if i 6∈ A(p)

(2.16)

The above equations fully describes the allocation and payment rule and hence
the auction as a whole. The final allocation described by the limits limp→∞ xi(p)
and limp→∞ pi(p). It should be clear by the auction design that the requirements
of equations 2.1 - 2.7 are satisfied at all stages of the auction.

2.3.2 Properties of the auction

We will not give technical proofs for the following properties when the re-
sults are intuitive and easily understood by simple combinatorial arguments. For
detailed proofs and analysis the reader can consult [4, 15, 9, 10].

Lemma 18. The adaptive clinching auction is truthful for the public budget case.

Proof. The equations deriving the auctions, depend mainly on the budget of the
agents which is public. The only point values come into play is the price at which
an agent drops out of the auction, in the sense that he decreases his demand to
zero.

The agent is allocating good at price p per unit at various points of the auction.
The derivative of the surplus is positive when

vi · x′i(p)− p′i(p) ≥ 0⇔ (vi − p) · x′i(p) ≥ 0⇔ vi ≥ p

The surplus of the agent is therefore (weakly) increasing while p ≤ vi and (weakly)
decreasing while p > vi. As a result the optimal point to quit the auction is exactly
vi which is the default behavior of the auction. Dropping out earlier by reporting
a lower value can only decrease surplus, by missing out on good at a low price, and
dropping out later can only decrease surplus by buying good at a high price.

Lemma 19. The adaptive clinching auction respects budgets and never gives out
money

Proof. Obvious by the definition of the auction.

Notice that by equation 2.7 and the fact that the demand is always below the
supply, only agents with maximal bi(p) can belong in the clinching set

Proposition 20. We denote as bmax(p) = max{bi(p) | i ∈ A(p)}. Then

C(p) 6= ∅ ⇒ C(p) = {i ∈ A(p) | bi(p) = bmax(p)}
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The auction has a simple structure with respect to budgets. Initially the price
rises until the clinching set becomes non-empty, and therefore contains the set of
agents that are active and have maximal budgets. As the clinching goes on these
agents’ (common) budget get reduces, until it reaches the budget of another agent.
Then this agent gets in the clinching set and the process goes on.

At the points when an active agent drops out of the active set due to the
price getting above his value, agents in the clinching set (or about to get in it)
receive some one-shot allocations. When an agent drops out of the clinching set,
the rest of the demand matches the supply and all agents in C(p) are allocated
their demands at that price. By the above description the following proposition is
easily derived.

Proposition 21. If the budget of the highest bidder is above the second highest
value, the whole good is allocated to the highest bidder. Else there is some bidder
k such that the final price of the auction is pf = uk. Then:

• ∀i, xi > 0⇒ vi ≥ vk

• ∀i, vi ≥ vk ⇒ pi = Bi

2.4 Measuring auction performance

So far, we have mentioned nothing about the performance of either the MCP
auction or the clinching auction. The fact that they are truthful and budget
respecting does not mean much as is, since the auction where we simply give the
good to a random player and charge nothing also has these properties.

We would like to prove some performance guarantee with respect to the optimal
social welfare. However it is easy to see that when Bi → 0 we cannot do anything
better that give the item randomly to some bidder, since we cannot the reported
values at all. The only hope would be to prove that the auction performs as well as
any truthful auction respecting the budgets, but such a task seems quite daunting.
Instead we will study alternative notions of optimality and compare to them.

2.4.1 Pareto Optimality

We will first study the notion of Pareto Efficience, a concept emerging from
the economic literature on the subject.

Definition 22. An outcome (o, p) is Pareto Optimal or Pareto Efficient when
there exists no other outcome o′ and payment vector p′ such that ∀i

ui(o)− pi ≥ ui(o′)− p′i∑
p′i ≥

∑
pi

with at least one equality strict.
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Notice that in the setting without budgets the only pareto optimal outcome
is the optimal, or else the high bidder could “buy” good from another agent at a
high enough rate such that both agents are satisfied, thus rendering this outcome
not Pareto Optimal. In the budgeted setting the same intuition leads to a similar
characterization .

Lemma 23. An outcome is Pareto Optimal in the setting with budget constraints
if ∀i, j

xi > 0, vj > vi ⇒ pj = Bj

This lemma exactly captures the notion that in order for an outcome to be
Pareto Optimal for any agent that receives share of the good, all agents with
higher values have exhausted their budget, and therefore no trade amongst the
agents after the auction or desirable for them.

From Proposition 21 it is easy to see that the Clinching Auction produces
Pareto Optimal outcomes. In [9], the following is proved.

Lemma 24. The Clinching Auction is the unique truthful auction for the setting
of public budgets that produces Pareto Optimal outcomes. For the setting of private
budgets there is no such auction.

From this results it is apperent that the MCP auction does not satisfy Pareto
Optimality and the reason lies in the fact that the prices are computed through
Myerson’s Lemma and are therefore below the budgets for many agents.

2.4.2 Liquid Welfare

Apart from Pareto optimality, the objective of Liquid Welfare maximization
was first studied in this context in [10].

Definition 25. For an outcome o the liquid welfare is defined by

W̄ (o) =
∑
i

min{ui(o), Bi}

and we denote as the optimal liquid welfare for an instance as W̄ ∗.

The intuition behind this measure is that the quantity W̄ ∗ is the maximum
revenue and seller with infinite information can extract from this market. This is
exactly the optimal welfare in the unbudgeted case. Following this remark we can
easily calculate the LW optimizing allocation. In order to extract as much revenue
as possible with full information we sell the item to the agent with the highest
value with price per unit his value, and sell exactly the quantity the exhausts his
budget. We continue until we exhaust the whole good.
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Lemma 26. If the players are sorted in non-decreasing value order v1 ≥ . . . ≥ vn
the allocation maximizing LW is

xi = min{Bi
vi
, (1−

∑
j<i

xj)
+}

Lemma 27. The optimal LW allocation can not be implemented truthfully.

This is apparent from the fact that we wish to reduce the agent allocation as
he increases his value, by raising his price. However both of the presented auction
closely approximate the optimal LW achievable.

Proposition 28. The MCP auction produces and outcome o such that

LW (o) ≥ 1

2
W̄ ∗

and is therefore a 2-approximation to the optimal LW.

Proposition 29. The Clinching auction produces and outcome o such that

LW (o) ≥ 1

2
W̄ ∗

and is therefore a 2-approximation to the optimal LW.
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Chapter 3

Smoothening VCG payments

In the previous chapter we defined and discussed the properties of the VCG
mechanism, the mechanism choosing the best outcome for the agents and charges
each one his externalities. We concluded the chapter noticing that this mechanism
can charge the set of agents considerably high prices. In this chapter, we will
present a novel (to the best of our knowledge) way to reduce the total amount
of payments by sacrifing a certain amount of social welfare. To achieve this we
consider a broader class of mechanisms, by allowing the mechanism to use ran-
domization.

3.1 Randomized Mechanisms

In Chapter 1 we defined the allocation rule of the mechanism as a function
f : V → O outputting an outcome. Now we will consider function f : V → ∆(O),
where ∆(O) is the simplex of probability distribution over outcomes, that is we
allow the mechanism to produce a probability distribution over outcomes and then
we sample this distribution to select one of them. In other words, the mechanism
assigns a probability fi to each outcome o such that

∑
i fi(u) = 1. and then

we select outcome o with probability fi(u). In addition to the allocation, the
mechanism outputs a price vector p, as in the deterministic case, which may or
may not depend on the realization of the random flips. In the case where payments
depend on the outcome, the payment of each agent is also a random variable.

The addition of randomization introduces uncetrainty about the payoff of each
agent, since the utility from the outcome of the mechanism is a random variable.
Different agents may have different values when faced with the same random vari-
able based on what we call risk attitude. To make this notion concrete consider
the scenario where we run a lottery with a prize of 1000 $, each ticket has a 1%
chance of winning and it costs c dollars. The expected value for participating in
the lottery is obviously 1000 · 0.01 = 10$. What should the price c be in order for
the agent to consider lottery a good opportunity? The answer is, it depends.
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Conditioning on the risk attitude of each agent we will examine the cases
separately:

• The player is risk averse. He prefers lotteries with lower prizes but higher
chances of success, that is he recieves negative utility for the random vari-
able’s standard deviation. This player prefers to keep the 10$ than give
them for a ticket and would only buy with a lower value, for example 8$.

• The player is risk neutral. He cares only about his expected utility and as a
result would buy a ticket if c ≤ 10$.

• The player is risk seeking. He is willing to participate in lotteries with a
chance of high reward, even if his expected surplus is negative. Therefore
he is willing to buy a ticket even when the price is above 10$ (for example
20$) hoping to win the grand prize.

For the rest of this work we will concentrate exclusively on risk neutral agents.
Besides mathematical convenience, one of the main reasons for this, is the com-
plexity of accuretely modeling the utilities of risk averse agents, and therefore the
robustness of the mechanism when faced with different utilities. Moreover, risk
neutrality is a reasonable assumption when the amount of money considered is
modest for the agents. We will therefore modify the definition of truthfulness to
take into account randomization, assuming agents are risk neutral.

Definition 30. A randomized mechanism M = (f, p) is truthful in expectation
if ∀i ∈ N, ui, u′i ∈ Vi, u−i ∈ V−i:

Eo∼f(u)[ui(o)− pi(u, o)] ≥ Eo∼f(u−i,u′i)
[ui(o)− pi((u−i, ui), o)]

A stronger definition of truthful is the notion of universally truthful mecha-
nisms

Definition 31. A randomized mechanism is universally truthful if it is random-
ization over deterministic truthful mechanisms.

This means that a mechanism is truthful even if the random bits are known
to the agent beforehand. Notice that universal truthfulness is independent of the
agents’ risk attitudes and may seem more attractive in that sense. However, some
easy manipulations of the payment scheme (assuming the center is risk neutral) can
alleviate this and truthful in expectation mechanism can be transformed to remain
truthful even in the presence of risk averse agents with only mild assumptions. For
a more detailed discussion we refer the reader to [12].

Moreover, in a similar notion we modify the definition of individual rationality
to match the randomized fashion of the mechanism.

Definition 32. A randomized mechanism is individually rational in expectation
if ∀i ∈ N, u ∈ V :

Eo∼f(u)[ui(o)− pi(u, o)] ≥ 0
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Definition 33. A randomized mechanism is ex post individually rational if ∀i ∈
N, u ∈ V, o ∈ O:

ui(o)− pi(u, o) ≥ 0

Notice that when a mechanism is IR in expectation, some “unlucky” coin flips
can cause agent to receive negative utility.

3.2 The setting

We will now restrict the setting we are considering by adding some requirements
that are quite reasonable in a variety of natural environments. While defining our
setting we have in mind mainly public projects and auctions so we make the
assumptions that fit to these environments. Suppose that there are m alternatives
to choose from and we restrict agents to having positive valuations over them.
Therefore the valuation of each agent is a vector y ∈ Rm+ such that yi represent his
utility for outcome i. Moreover we treat the utilities of each agent in a particularly
fair way, by considering only strongly anonymous mechanisms.

Definition 34. A (randomized) mechanism with allocation rule g : (Rm+ )n → ∆(O)
is strongly anonymous if there exists a function f : Rm+ → ∆(O) such that:

g(x1, . . . , xn) = f(
∑
i

xi)

This definition captures the notion, that we don’t care from which agent the utility
for each outcome comes.

It follows that the expected utility of an agents is equal to xi · f(
∑

i xi). Since
the utilities of the agents act as a unit of measurement we will require our mech-
anisms to be scale invariant.

Definition 35. A mechanism with allocation rule f is scale invariant if ∀x ∈ Rm+

f(ax) = f(x), ∀a ∈ (0,+∞) (3.1)

Finally we demand that the mechanisms are truthful in expectation, ex post
individually rational and that the payments are always positive (i.e. the mechanism
never pays the agents).

In this setting the definitions of truthfulness will be slightly modified and are
as follows:

Definition 36. A strongly anonymous mechanism is truthful if ∀x, y, y′ ∈ Rm+ :

y · f(x+ y)− p(x, y) ≥ y · f(x+ y′)− p(x, y′) (3.2)

Definition 37. A strongly anonymous mechanism is individually rational in ex-
pectation if ∀x, y ∈ Rm+ :

y · f(x+ y)− p(x, y) ≥ 0 (3.3)

29



3.3 The space of impementable mechanisms

We will now characterize the mechanisms that are implementable in this setting
and the possible payment schemes they admit.

3.3.1 Implementable allocation rules

Proposition 38. Every strongly anonymous and scale invariant mechanism is
implementable iff there is a set S ⊂ Rm+ such that

f(x) ∈ argmaxs∈Sx · s (3.4)

Proof. We require that mechanisms are truthful in expectation and therefore

y · f(x+ y)− p(x, y) ≥ y · f(x+ y′)− p(x, y′), ∀x, y, y′ ∈ Rm+ (3.5)

symmetrically we get that

y′ · f(x+ y′)− p(x, y′) ≥ y′ · f(x+ y)− p(x, y), ∀x, y, y′ ∈ Rm+

and by summing up the inequalities we get that all impementable mechanisms
satisfy weak monotonicity (WMON).

(y′ − y) · (f(x+ y′)− f(x+ y)) ≥ 0 (3.6)

Setting y′ = 0, x = ax and y = (1− a)y for some a ∈ (0, 1) we get

(1− a)y · f(ax+ (1− a)y) ≥ (1− a)y · f(ax)

Since f is scale invariant and a 6= 1,

y · f(ax+ (1− a)y) ≥ y · f(x)

Taking the limit a→ 1,
y · f(y) ≥ y · f(x)

Therefore if we define S = {s | ∃xf(x) = s} we get that any truthfully imple-
mentable function satisfies f(x) ∈ argmaxs∈Sx · s.

In the opposite direction any allocation rule satisfying (3.4) is implementable
if we define payments as p(x, y) = −x · f(x+ y).

y · f(x+ y)− p(x, y) = y · f(x+ y) + x · f(x+ y) =

= (x+ y) · f(x+ y) ≥(3.4) (x+ y) · f(x+ y′) = y · f(x+ y′)− p(x, y′)

30



3.3.2 Possible Payment Schemes

We showed that any function that is a social welfare maximizer can be imple-
mented with payments p(x, y) = −x ·f(x+y). We will now modify these payments
to achieve the required payment properties. This way we end up with the VCG
mechanism.

Proposition 39. For every strongly anonymous and scale invariart implementable
allocation rule, the unique payments scheme satisfying individual rationality, truth-
fulness and positive payments is

p(x, y) = x · f(x)− x · f(x+ y) (3.7)

Proof. We fix a single agent and the utilities of other agents, and let x be the
summation of the utilities of other agents. We first prove two useful lemmas.

Lemma 40. The payment rule imposing thuthfulness can only depend on the out-
put of the mechanism, that is p(y) = g(f(x+ y)).

Proof of Lemma. Suppose there exist y1, y2 ∈ Rm+ such that f(x+y1) = f(x+y2) =
s and p(y1) 6= p(y2) (assume p(y1) > p(y2) w.l.o.g.). It follows that

y2 · f(x+ y2)− p(y2) = y2 · f(x+ y1)− p(y2) > y2 · f(x+ y1)− p(y1)

violating truthfulnes. Therefore p(y1) = p(y2) for every y1, y2 such that f(x+y1) =
f(x+ y2).

Lemma 41. For any payments rules p, p′ that implement f , there is a function h
such that p′(x, y) = p(x, y) + h(x).

Proof of Lemma. We denote pa the payments of the fixed agent when the outcome
is a. There exists a function h such that p′(x, y) = p(x, y) + h(x, y), since h is an
arbitrary function and can therefore cancel out the term p(x+ y).

It suffices to prove that for any y1, y2 ∈ Rm+ such that f(x + y1) = a and
f(x+ y2) = b, h(x, y1) = h(x, y2)⇒ p′b − p′a = pb − pa.

We consider outcomes a, b as close, if for any ε there utilities ya, yb such that
f(x+ ya) = a, f(x+ yb) = b and ∀c ∈ Rm+ , |ya · c− yb · c| ≤ ε.

Let a, b be arbitrary, close outcomes and ya, yb as in the definition of closeness
for a fixed ε. By the definition of truthfulness we get

ya · b− ya · a ≤ pb − pa ≤ yb · b− yb · a

ya · b− ya · a ≤ p′b − p′a ≤ yb · b− yb · a

By the definition of closeness we get that, |ya · a− yb · a| ≤ ε and |ya · b− yb · b| ≤ ε,
therefore |yb · b − yb · a + ya · a − ya · b| ≤ 2ε. Since the bounds of pb − pa and
p′b − p′a coincide and this holds for any ε we conclude that for close outcomes
pb − pa = p′b − p′a.
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Since the outcomes of the mechanism are probility distributions we get that
for every outcome c, |c| ≤ 1. Let an arbitrary valuation ya such that f(x+ya) = a
and any ε > 0. Then for any valuation yb s.t. f(x + yb) = b and |ya − yb| ≤ ε, a
and b are close since |ya · c− yb · c| ≤ |ya − yb| ≤ ε for any outcome c.

This implies that since the valuation space is connected, for any valuations
ya, yb with f(x + ya) = a, f(x + yb), there is a sequence of valuations ya =
y1, . . . , yk = yb such that |yi − yi+1| ≤ ε for any 1 ≤ i ≤ k − 1Therefore. that
outcomes f(x+ yi), f(x+ yi+1) are close and as a result pyi+1 − pyi = p′yi+1 − p′yi .
By adding the k equalities we get that p′b − p′a = pb − pa.

We have showed that the payment scheme p(x, y) = −x · f(x + y) renders
the mechanism truthful, and by the above lemma we know that the only possible
payment scheme is p(x, y) = h(x)−x·f(x+y) for some h. By individual rationality
and the positive payments requirement we get 0 ≤ p(x, y) ≤ y · f(x + y). Since
this holds for any y, setting y = 0 implies p(x, 0) = 0⇒ h(x) = x · f(x).

It is easy to verify that for any mechanism that satisfies (3.4) this payment
scheme gives positive payments. Individual rationality in expectation holds since

y · f(x+ y)− p(x, y)
(3.2)

≥ y · f(x)− p(x, 0) =

= y · f(x)− x · f(x) + x · f(x) = y · f(x) ≥ 0

3.3.3 Derandomizing rationality

We have shown that the mechanism is IR in expectation, however there are
examples where players net negative utility for certain random outcomes. How-
ever the mechanism can be modified to be universally IR. Although we state the
following theorem in terms of this setting, mainly for mathematical convenience,
it does not depend on the scale invariance and strong anonymity assumption, and
therefore holds in a variety of settings.

Theorem 42. Any randomized mechanism with finite outcomes that is individ-
ually rational in expectation, can have its payment scheme modified so that it is
universally invididually rational.

Proof. Fix an agent with utility vector y. Let P = x · f(x) − x · f(x + y) denote
the expected payments that induce truthfulness. We need to compute a vector
p ∈ Rm+ , where pi denotes the payment for realized outcome i. In order to achieve
universal IR we need to satisfy the constrains:

yi ≥ pi (3.8)

Furthermore we require that in expectation the payment scheme remains the same
, that is:

p · f(x+ y) = P (3.9)
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It now suffices to prove the constraints (3.8) and (3.9) are always satisfiable. Con-
straints (3.8) define an m-dimensional hypercube and constrain (3.9) defines an
m-dimensional hyperplane. The cases P = 0 and P = y · f(x + y) are trivial
since we can use p = 0 and p = y respectively. We can therefore assume w.l.o.g.
that 0 < P < y · f(x + y), since payments are positive and the mechanism IR in
expectation.

This implies that the points (0, . . . 0) and y lie on different sides of the plane
defined in Equation 3.9. Notice that these points are vertices of the cube defined in
Equation 3.8. Therefore the hyperplane intersects the hypercube and the feasible
region is non empty.

A simple algorithm to achieve this, is traversing the edges of the hypercude
until the plane is encountered. By using a variable P initialized to the expected
payments x · f(x) − x · f(x + y). Consider each outcome i sequentially and if

P
fi(x+y) ≤ yi then set the price of outcome i to P

fi(x+y) and the rest of the prices

to 0, else set the price to yi and update P to P − yi · fi(x + y). The algorithm
exhausts all of P before the outcomes are exhausted since y · f(x+ y) ≥ P .

Alternatively one can define a “discount rate” as follows for each player,

d =
x · f(x)− x · f(x+ y)

y · f(x+ y)

This can be computed by only knowing the expected payments and expected utility
of the agent. Then the payments can be computed simply as

pi = dyi

for the specific realized outcome. By IR in expectation, follows that d ∈ [0, 1] and
therefore the new payments scheme is IR universally. It is trivial to verify that
the expected payments remaining unaltered.

E[p] = p · f(x+ y) =

(
x · f(x)− x · f(x+ y)

y · f(x+ y)
y

)
· f(x+ y) =

=
x · f(x)− x · f(x+ y)

y · f(x+ y)
(y · f(x+ y)) = P

3.3.4 Payments are unique assuming nothing but ra-
tionality

Lets assume that the only requirent for the payment scheme, is p(x, 0) = 0.
We will augment each coordinate of the y vector to transition between the bid 0
and y. We abuse notation and define v−i for a vector v to be the same vector with
the i-th coordinate zero.

Consider some implementable allocation f with the corresponding payment
scheme p, and fix a vector x of other bidders. For arbitrary a, i, we define h(a) =
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p(x, y−i+ayi), g(a) = f(x+y−i+ayi) and y(a) = y−i+ayi. Then by the definition
of truthfulness:

y(a) · g(a)− h(a) ≥ y(a) · g(a+ e)− h(a+ e)

y(a+ e) · g(a+ e)− h(a+ e) ≥ y(a+ e) · g(a)− h(a)

By combining the inequalities we get:

y(a) · (g(a+ e)− g(a)) ≤ h(a+ e)− h(a) ≤ y(a+ e) · (g(a+ e)− g(a))

We divide by e and take the limit as e approaches 0. The two sides sandwich
together and we get an equality. We denote by h′ and g′ the derivatives of the
functions with respect to a.

h′(a) = y(a) · g′(a)

Note that even if the functions are not differentiable, since they have a bounded
range and we immediately integrate over a bounded domain, we are still valid. We
integrate for a from 0 to 1 (integration by parts holds for vector valued functions
and dot product). ∫ 1

0
h′(a)da =

∫ 1

0
y(a) · g′(a)da⇔

⇔ h(1)− h(0) = y(1) · g(1)− y(0) · g(0)−
∫ 1

0
y′(a) · g(a)da⇔

⇔ p(x, y)− p(x, y−i) = y · f(x+ y)− y−i · f(x+ y−i)−
∫ yi

0
fi(x+ y−i + z)dz

It is easy to see that writing down the equality for each i from 1 to m and summing
them up, causes most of the terms to telescope, leading to the following relation

p(x, y) = y · f(x+ y)−
m∑
i=1

∫ yi

0
fi(x+ y−1...i + z)dz

This concludes the proof that any implementable rule in this setting has uniquely
defined prices assuming normalization.

3.4 Achieving a payment-approximation trade-

off

We have shown that payments are uniquely determined by the allocation rules.
The amount each agent pays is exactly the amount he modifies the utilities of others
by participating. Therefore optimizing SW as an allocation rule leaves no option to
reduce the total payments, which we have already shown to be unpleasingly large.
We will therefore try to create mechanisms that do not change their allocation too
much when players participate.
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3.4.1 The intuition

The characterization of Proposition 38 reduces the design of a truthful, strongly
anonymous, scale invariant mechanism to the choice of a set of feasible solution
to optimize on. Suppose we choose as solution space the simplex of probabilities
over outcomes. Then the optimization problem for a given vector x becomes

maximize f · x =
∑
i

fixi

s.t. |f | =
∑
i

fi = 1

fi ≥ 0

The optimization space is the hyperplane
∑
fi = 1 and the solution is the

extremal point in the direction of x. Therefore assuming that the coordinates of
x are pairwise distinct, the solution is fk = 1 where k = argmaxixi and fi = 0
for i 6= k. This shows that the optimal solution is choosing the outcome with
higher preference deterministically, which is exactly the classic VCG mechanism.
In Figure 3.1 this result is obvious and moreover one can notice that the reason
payments are large is the fact that a infinitesimal change in the direction of x can
cause a different outcome to be chosen.

x1

x2

x

f(x)
x1

x2

x

f(x)

Figure 3.1: Optimizing on the plane, for |O| = 2

This issue is caused by the fact the pure outcomes are strictly better than mixed
in this setting. We will therefore allow our mechanism to output probabilities fi
that do not sum up to 1. This assumption is reasonable in the sense that we
can add one extra outcome, the null outcome that has zero utility for every agent
and receives the probability unallocated in f . The existence of such an outcome
is obvious in the case of auctions, where we simple sell nothing, and in public
project and facility location problems, where we simply construct nothing. A
similar approach, mostly in the setting without money is taken in [8] and [17].
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By allowing the mechanism to output incomplete outcomes we can mix pure
outcomes with the null outcome lowering their value in order to make the opti-
mization produce mixed outcomes.

3.4.2 The mechanism

We define a family of mechanisms fk which respectively maximize on the sur-
faces

Sk =

{
s ∈ Rm+

∣∣ ||s||k ≤ 1

m1−1/k

}
where || · ||k is the Lk norm (3.10)

In Figure 3.2 we notice that the optimization on these surfaces produces out-
comes the tend to be a more “equal mixture” of pure outcomes. The mechanism
exhibits some kind of bias towards outcomes that distribute probabilities equally
and therefore changes in x have a smoother change in f(x), as compared to Figure
3.1

x1

x2

x
f(x)

x1

x2

x

f(x)

Figure 3.2: Optimizing on the smooth surfaces
(k = 1.4 and k = 4 respectively)

The extreme case is observed when k tends to infinity. The surface we optimize
then is a cube and the optimal solution is always the corner, that is the outcome
( 1
m , . . . ,

1
m), as shown in Figure 3.3. In this case it is obvious that the value of

each player is of no importance to the mechanism and as a result the payments
are zero.

Notice that when k = 1 the resulting surface is the plane and we have the VCG
mechanism which exactly optimizes the SW, but charges a large sum of payments.
On the other extreme, when k → +∞, we only achieve an expected welfare that is
m times below the optimal but charges no payments. The transition between the
two extremes is continuous thus achieving a tradeoff between SW and payments.
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x1

x2
x

f(x)

Figure 3.3: Optimizing on the square
The optimal solution is independent of x

We will know prove certain properties of our mechanism and for this we will
need the mechanism in closed form. We denote as xd for any vector x ∈ Rn+ the
vector whose i-th coordinate is xdi , and as |x| the sum of the vector’s coordinates.

Proposition 43. The closed form of the mechanism fk is

fk(x) =
1

m1−1/k

x
1

k−1

||x
1

k−1 ||k

Proof. The outcome of the mechanism is the vector s the optimizes x · s subject

to ||s||k ≤ m−
k−1
k . The surface of Equation 3.10 defines a strictly convex space

(convexity follows immediately from the triangle inequality for normed spaces, and
strictness from the the fact that triangle inequality is strict for colinear vectors
only).

Therefore the optimal point will be on the boundary of the space, at the
extremal point in the direction of x. The boundary is defined by

||s||k =
1

m1− 1
k

⇔ ||s||kk =
1

mk−1

and since we seek the extremal point in the direction of x, x must be perpendicular
to the boundary at the optimal point (else we would be able to follow the boundary
in a direction the would increase the objective). Therefore at the optimal point s∗
the gradient of the surface is in the direction of x, that is there is some c such the

∇(||s∗||kk) = cx⇔ ks∗
k−1 = cx⇔ s∗ =

(cx
k

)1/(k−1)
=
( c
k

) 1
k−1

x
1

k−1

Moreover s∗ need to be to be on the surface, and therefore
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||s∗||kk =
1

mk−1
⇔
∣∣∣∣(cxk ) k

k−1

∣∣∣∣ =
1

mk−1
⇔
( c
k

) 1
k−1

=
1

m
k−1
k ||x||

1
k−1
k

k−1

Replacing in the above equation we get

s∗ =
x

1
k−1

m
k−1
k ||x||

1
k−1
k

k−1

=
1

m1−1/k

x
1

k−1

||x
1

k−1 ||k

We are interested in mechanisms with Sk close to S1, so we set k = l/(l − 1)
for some l ∈ R. The resulting mechanism is

f(x) =
1

m1/l

xl−1

||xl−1|| l
l−1

(3.11)

We can verify the by setting l = 1 we get the uniform mechanism and by
setting l→ +∞ we get the Vickrey auction.

3.4.3 Social Welfare Approximation Ratio

We need a measure to evaluate how good our allocation rule is. We will com-
pare the SW produced by our mechanism to the SW produced by the optimal
allocation.

Definition 44. A mechanism M = (f, p) has an approximation ratio of a or is
an a-approximation to social welfare for some a > 1 if ∀x ∈ Rm+

x · f(x) ≥ 1

a
OPT (x)

where OPT (x) is the SW of the best allocation rule.

For example, when a mechanism 2-approximates SW, the mechanism achieves
at least half of the welfare achieved by the best (implementable or not) allocation
rule. The VCG mechanism we analyzed in Chapter 1 is a 1-approximation while
the uniform mechanism that randomly chooses an outcome is a m-approximation
(consider the case where all agent unanimously prefer one specific outcome).

Lemma 45. For any vector a holds that

||al||1
||al−1|| l

l−1

= ||a||l
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Proof. We denote as ai the i-th coordinate of the vector a

||al||1
||al−1|| l

l−1

=

∑
ali

(
∑
ali)

l−1
l

= (
∑

ali)
1/l = ||a||l

Proposition 46. The mechanism of equation (3.11) has an approximation ratio
of at most m1/l.

Proof. The optimal mechanism outputs with probability 1 the maximum coordi-
nate of x, and as a result the optimal SW is OPT = ||x||∞.

||x||∞
x · f(x)

= m1/l ||x
l−1||l/(l−1)||x||∞
x · xl−1

Lemma 45
= m1/l ||x||∞

||x||l
≤ m1/l

Since m1/l is a decreasing function of l, as l ranges from 1 to +∞, the approx-
imation ratio ranges from m to 1.

3.4.4 Payment Bounds

We will now study the amount of payments charged by the mechanism. The
payments of player i are computed as follows

p(x−i, xi) = x−i · f(x−i)− x−i · f(x)

= x−i · f(x−i)− x · f(x) + xi · f(x)

=
1

m1/l

(
||x−i||l − ||x||l +

xi · x
||x||l−1

l

)
(3.12)

Therefore we can now bind the total amount of payments

Proposition 47. The mechanism of Equation 3.11 charges the set of agents at
most |x|

m1/l .
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Proof. With use of Lemma 45 and basic properties of normed spaces we get

n∑
i=1

p(x−i, xi) =
1

m1/l

∑
i

(
||x−i||l − ||x||l +

xi · x
||x||l−1

l

)

=
1

m1/l

(∑
i

||x−i||l − n||x||l +
(
∑

i xi) · x
||x||l−1

l

)

=
1

m1/l

(∑
i

||x−i||l − n||x||l + ||x||l

)

=
1

m1/l

(
||x||l −

∑
i

(||x||l − ||x−i||l)

)
(3.13)

≤ ||x||l
m1/l

≤ |x|
m1/l

(3.14)

The inequalities used in the last equation are not tight, so payments are strictly
below the presented bound. However this bound expresses clearly the relation
between payments and approximation guarantees. To sum up, we have constracted
a mechanism that achieves at least a m1/l fraction of the SW and charges at
most |x|

m1/l . If we define a = m1/l we denote this family of mechanisms with
approximation ratio a and payments bound |x|/a as[

a,
|x|
a

]
Theorem 48. For every a ∈ [1,m] there exists a mechanism that achieves social
welfare at least 1/a times the optimal and charges at most |x|/a.

3.5 Towards Budget Feasibility

Suppose now there is a budget B denoting the maximum amount that the
players can be charged. We call a mechanism budget feasible if the total amount
of payments does not exceed the collective agents’ budget B. Since our family
of mechanisms exhibits a tradeoff between approximation ratio and payments,
both increasing with l we wish to choose the maximum value of l such that the
mechanism remains budget feasible. However, calculating such l from Equation
3.13 is challenging, so we will use the bound of Equation 3.14

Claim 49. |x|
m1/l is a strictly increasing function of l.

We can exploit this fact so that given any given B, we compute the maximum
value of l so that the payment bound of equation 3.14 is below B.
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Formally, we define a function g that computes such an l and we apply the
mechanism fl to the input. In other words we define a master mechanism

f(x,B) = fg(x,B)(x) , where g(x,B) =
lnm

ln(|x|)− ln(B)

The master mechanism derived by this procedure achieves[
|x|
B
,B

]
and is therefore budget feasible.

However this approach introduces an additional dependence of the mechanism
to the agents’ valuation which was not included in the above analysis of fixed l .
The outcome of the master mechanism is a complex function of x that is no more
truthful. To overcome this issue, we will employ a sampling technique that is
heaviy used in the field. We will split the agents randomly into two equal size sets
S1, S2, define x1, x2 as x1 =

∑
y∈S1

y, x2 =
∑

y∈S2
y. We will use x1 to compute

the optimal value of l, allocating nothing to the agents of S1 and apply fl to set
S2.

Definition 50. We define the complete mechanism as

F (x1, . . . , xn, B) = f
g(
∑bn/2c

i=1 xi,B)

 n∑
i=dn/2e+1

xi


and apply in to a random permutation of the agents. The function g is defined as
g(x,B) = sup{l | l ∈ (1,+∞), |x|/m1/l ≤ B}.

A subtle complication in the sampling phase is introduced if agents in the
sample set actually receive utility from the outcome of the mechanism. In the
case of public projects agents may misreport their true values hoping to end up
in the sampling set and change the mechanism applied dramatically. This is of no
concern in auctions since we can explicitly exclude agents in the sampling set from
any allocation.

Proposition 51. The mechanism F is truthful in expectation.

Proof. Each agents is randomly placed in the sampling set or the allocation set.
If the agents is in the sampling set, any valuation nets zero utility, leaving no
incentive for misreport. Agents in the allocation set participate in the mechanism
fl for some l they cannot control, which is truthful in expectation. The mechanism
F is a randomization of over truthful in expectation mechanisms and is therefore
truthful in expectation.
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Notice that any function computed on the agents of the sampling set, has the
same expected value if computed on the allocation set, due to the symmetry of
the sampling. However, this is not enough to guarantee budget feasibility even in
expectation.

Example. Suppose we have 2 outcomes and 4 agents with values x1 = (1000, 0),
x2 = (10, 0), x3 = (0, 8), x4 = (0, 999) and B = 9. Sampling agents x2, x3 will
chose l = ∞ since we can implement the VCG auction. Running this auction on
agent x1, x4 will charge agent x1 the second price 999 greatly overshooting the
budget.

In order to overcome this issue we need to consider the properties of the en-
vironment and make certain assumptions about the valuations of agents. For the
sake of concreteness we will show the case where the valuations of the agents are
smooth, that is they are a constant factor from each other.

Definition 52. A valuation profile (x1, . . . , xn) ∈ (Rm+ )n is c-smooth if for every
pair of agents i, j:

|xi| ≤ c|xj |

Notice that for any c-smooth profile, the sum of any two equal partitions can
be at most a factor of c apart.

Proposition 53. For every c-smooth valuation profile (x1, . . . , xn) ∈ (Rm+ )n, let
k = bn2 c. Then

|
k∑
k=1

xi| ≤ c|
n∑

i=k+1

xi|

Proof. For all i ≤ k, by the definition of c-smoothness

|xi| ≤ |xk+i|

If n is even, we sum up these inequalities for i ∈ [1, k] and we get

k∑
i=1

|xi| ≤ c
n∑

i=k+1

|xi|

In the case of even n we use the fact the |xn| ≥ 0 to derive the exact same relation.
Changing the order of summation, by associativity we get

|
k∑
k=1

xi| ≤ c|
n∑

i=k+1

xi|
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Applying our mechanism F to smooth profiles, implies that during the sam-
pling phase the mechanism learns the sum of agents’ vectors in the allocation set
at least within a factor of c. By discounting the budget by a factor of c we can
guarantee budget feasibility. Notice that we will charge each agents the expected
amount independently of the realized outcome, to ensure ex post budget feasibility.

Proposition 54. Let F be the mechanism of Definition 50.Then for any c-smooth
valuation profile (x1, . . . , xn) ∈ (Rm+ )n (randomly permuted), the mechanism

F (x1, . . . , xn, B/c)

achieves expected payments and approximation ratio bound by[
c|x|
2B

,B

]
Proof. Let x1, x2 be the valuations of the sampling and allocation set respectively.
The mechanism selects l such the

|x1|
m1/l

=
B

c
⇔ m1/l =

c|x1|
B

The expected approximation ratio of the mechanism is the expectation of m1/l

taken over the randomization of the sampling, that is

E[m1/l] = E

[
|x1|c
B

]
=
cE[|x1|]
B

The expectation of |x1| is the average sum of subsets of agents’ vectors with car-
dinality n/2. In this summation the vector of each agent appears in exactly half
the subsets so

E[|x1|] =
|x|
2

Substituting in the formula above we get the the expected SW approximation ratio
is at most

c|x|
2B

The payments are bound by

|x2|
m1/l

=
|x2|B
|x1|c

≤ c|x1|B
|x1|c

= B

where the inequality holds, due to Proposition 53.

As a result of the smoothness assumption we were able to guarantee budget
feasibility independently of the random outcome of sampling. In order to achieve
this we lost a factor of c in social welfare approximation ratio. Notice that as-
suming some smooth income is not the only assumption leading to budget feasible
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mechanisms in the ex post sense with this technique. Any sampling procedure (to-
gether with some assumptions on the input values) that can guarantee an upper
bound on the sum of the agent values (or some other payment bound) in the ex
post sense can produce similar results.

It follows from our sampling procedure that the complete mechanism is not
scale invariant. Our mechanism solves the optimization problem on a space defined
by sampling half the agents. Formally, if x1, x2 are the sampling and allocation
sets

f(x) = argmaxs∈S(x1)x2 · s

since the feasible region depends on the input of the mechanism.

3.6 An alternative approach - The exponen-

tial mechanism

The reason we are able to achieve the welfare-payment tradeoff is the fact that
through the explicit choice of optimization space we limit ourselves to smooth
distributions, by discriminating against pure outcomes. This way agents cannot
change the welfare by too much, hence reducing the VCG payments. An alternative
approach to achieving the same result is instead of changing the optimization
space, to modify the optimization objective to take into account the “sharpness” of
the outputted distribution, and penalize outcomes with non-smooth distributions.
Such a measure of smoothness in probability distributions in the Shannon entropy

Definition 55. For a probability distribution p ∈ [0, 1]n, the Shannon Entropy is
defined as

S(p) =
∑
i

−pi log(pi)

The definition captures the notion of predictability of random events following
the distribution. The amount of “information” conveyed by a random event is
minus the logarithm of the propability of it. Thus, the Shannon entropy is the
expected information gain by conducting the random experiment. Distribution
with high entropy are the ones where there is high uncertainty about the outcome
of the experiment, and are therefore those which have probabilities of events close
to each other. This captured exactly the notion of smoothness we utilized to
achieve our tradeoff in the previous part of the chapter.

We will therefore want to bias the mechanism in a configurable way towards
mixed outcomes. We define the allocation rule as

f(x) = argmaxs∈∆(O)(x · s+ aS(s))

In [18], it was proved that the result of this optimization objective is exactly
the exponential mechanism
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f(x) =
ex/a

|ex/a|
where for a vector x ∈ Rn+ we denote as ex, ln(x) the vectors with i-th coordi-

nate exi , ln(xi) respectively.
It is easy to verify that as a ← +∞, f becomes the uniform allocation, while

as a← 0 f becomes the optimal allocation.
The result of [18] was developed in order to prove that the exponential mecha-

nism of [20] is indeed exaclty truthful. The exponential mechanism was developed
in the radically different framework of differential privacy. In this framework, the
desired goal is developing mechanism that are resilient to single agent deviations,
thus ensuring the privacy of the participants.

Definition 56. An allocation rule f is ε-differentially private if ∀i ∈ N, u−i ∈
V−i, ui, u

′
i ∈ Vi, o ∈ {0, 1}|O|,

o · f(u−i, ui) ≤ eεo · f(u−i, u
′
i)

The definition captures the amount a single agent can change the probability
of a set of events, and consequently the information the outcome reveals about the
input of individual agents. A survey of results on the topic can be found in [13].
The initial result of [20] proved that the exponential mechanism is 2

a -differentially
private, and by proving the mechanism is a maximizer, it allowed the derivation
of a truthful payment scheme for it.

Lemma 57. The payments that render the mechanism with allocation f truthful
and IR are

p(x, y) = −y · e
(x+y)/a

|e(x+y)/a|
− a ln

(
|ex/a|
|e(x+y)/a|

)
Proof. Following the analysis of section 3 we get that the required payments are

p(x, y) = x · f(x+ y) + aS(f(x+ y))− x · f(x)− aS(f(x))

We denote as ~1 the all-one vector of dimension n. For any input x

S(f(x)) = −f(x) · ln(f(x)) = − ex/a

|ex/a|
· ln

(
ex/a

|ex/a|

)
=

= − ex/a

|ex/a|
·
(x
a
− ln(|ex/a|)~1

)
= −x · e

x/a

a|ex/a|
+ ln(|ex/a|) = −x · f(x)

a
+ ln(|ex/a|)

Substituting in p(x, y) we get

p(x, y) = x·f(x+y)−(x+y)·f(x+y)+a ln(|e(x+y)/a|)−x·f(x)+x·f(x)−a ln(|ex/a|) =
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= −y · f(x+ y)− a ln

(
|ex/a|
|e(x+y)/a|

)
= −y · e

(x+y)/a

|e(x+y)/a|
− a ln

(
|ex/a|
|e(x+y)/a|

)
Notice the relation between a in the exponential mechanism and l in the poly-

proportional mechanism of the previous sections. This relation reveals a deeper
connection between payment amount and allocation smoothness, and is definitely
worth examining deeper.

3.7 Applying smooth mechanism to the per-

player budget case

We will now consider the case where each agent is constrained by a budget B
as in the setting of Chapter 3. We will be restricting the setting to that of a single
divisible good auction with n agents where agent i has a utility vector of xi = vi ·ei
where ei is the unit vector in the direction of axis i and vi ∈ [0,+∞). This can be
also interpreted as the model for randomized allocation rules with single minded
bidders.

In this setting, for the mechanism of (3.11), it is obvious that the highest bidder
has the highest allocation share due to the proportional nature of the mechanism.
Moreover we can prove the following.

Lemma 58. The mechanism with allocation rule f(x) assigns the payments such
that

vi ≥ vj ⇒ p(x−i, xi) ≥ p(x−j , xj)

Proof. Assume vi ≥ vj . The payments for player i are computed as

p(x−i, xi) = x−i · f(x−i)− x · f(x) + xi · f(x) =

=
1

m1/l

(
||x−i||l − ||x||l +

vli
||xl−1|| l

l−1

)
We can assume w.l.o.g. that |xl| = 1, since the mechanism is scale invariant and
if the theorem holds for this case, then it holds for every multiple of x. Therefore
||xl−1||l/(l−1) = 1 and

p(x−i, xi)− p(x−j , xj) ≥ 0⇔ ||x−i||l − ||x−j ||l + vli − vlj ≥ 0⇔

⇔ (1− vli)1/l + vli ≥ (1− vlj)1/l + vlj

Let |xl − xli − xlj | = s⇔ vli + vlj + s = 1. Therefore

(1− vli)1/l + vli ≥ (1− vlj)1/l + vlj ⇔ (s+ vlj)
1/l + vli ≥ (s+ vli)

1/l + vlj ⇔
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⇔ vli − vlj ≥ (vli + s)1/l − (vlj + s)1/l

For the case of s = 0, this is equivalent to

vli − vlj ≥ vi − vj

which holds for l ∈ [1,+∞) since it holds for l = 1 and vli − vlj is increasing with
respect to l.

Moreover, (vli + s)1/l − (vlj + s)1/l is decreasing with s since,

d

ds
((vli + s)1/l − (vlj + s)1/l) =

1

l
((vli + s)1/l−1 − (vlj + s)1/l−1)

and
vi ≥ vj ⇔ vli + s ≥ vlj + s⇔ (vli + s)1/l−1 ≤ (vlj + s)1/l−1

Therefore the inequality holds for every s and the proof is complete.

This lemma allows us to consider only the payments of the highest bidder
and setting them equal to B if v2 ≥ B. However we face the same problem we
faced in Section 3.5, with the agents being able to affect the choice of l. We will
need to develop some similar sampling techniques to derive a truthful complete
mechanism. We strongly believe such a mechanism is a constant approximation
to the LW.
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