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Περίληψη

Η εξέλιξη της επιστήμης των υπολογιστών καθώς και οι αυξημένες απαιτήσεις σε υπολογιστικούς
πόρους αλλά και χώρους αποθήκευσης δεδομένων, έχει οδηγήσει στη ραγδαία ανάπτυξη των κατανε-
μηνένων συστημάτων. Πλεόν μια υπηρεσία παρέχεται σαν το αποτέλεσμα διαφορετικών διεργασιών
οι οποίες αλληλεπιδρούν και εκτελούνται σε διαφορετικούς υπολογιστικούς κόμβους. Ωστόσο, τόσο η
αποσφαλμάτωση όσο και η παρακολούθηση της σωστής λειτουργίας τέτοιων συστημάτων καθίσταται
εξαιρετικά δύσκολη λόγω της πολυπλοκότητας τους. H συμπεριφορά ενός κατανεμημένου συστήμα-
τος εξαρτάται από τις εκάστοτες συνθήκες λειτουργίας, οι οποίες πρέπει να ληφθούν σοβαρά υπόψιν
στην λήψη σχεδιαστικών αλλά και βελτιωτικών αποφάσεων.

Η παρούσα διπλωματική μελετά το σχεδιασμό και την ανάπτυξη μιας υποδομής παρακολούθησης
κατανεμημένων εφαρμογών γραμμένων σε C/C++. Ο μηχανισμός προσφέρει τη δυνατότητα παρακο-
λούθησης της εφαρμογής σε πραγματικό χρόνο καθώς αυτή εκτελείται σε πλήρεις συνθήκες λειτουρ-
γίας, επιβαρύνοντάς της ελάχιστα, ώστε να διευρευνηθεί η συμπεριφορά της κάτω από διαφορετικά
φορτία. Επιπλέον, παρέχεται γραφικό περιββάλον μέσω του οποίου ο τελικός χρήστης μπορεί να
ερευνήσει περαιτέρω το σύνολο των αιτήσεων καθώς και τις σχέσεις εξάρτησης μεταξύ των υποσυ-
στημάτων που συνθέτουν το τελικό προς παρακολούθηση σύστημα. Ο μηχανισμός αυτός ονομάζεται
BlkKin και βασίζεται πάνω σε τεχνολογίες ανοιχτού κώδικα, προσπαθώντας να εκμεταλλευτεί τα
δυνατά στοιχεία κάθε υποσυστήματος και συνδιάζοντάς τα να επιτύχει το ζητούμενο στόχο.

Η συνεισφορά αυτής της διπλωματικής έγγυται στην υλοποίση του μοντέλου καταγραφής συγκεκρι-
μένα για εφαρμογές χαμηλής επιβάρυνσης, καθώς και των συνδετικών τμημάτων μεταξύ των διάφο-
ρων υποσυστημάτων που συνολικά υλοποιούν το BlkKin.

Ο μηχανισμός αυτός χρησιμοποιήθηκε για την παρακολούθηση αιτήσεων Ε/Ε από εικονικές μηχανές
πάνω από Qemu προς το Archipelago, ένα κατανεμημένο συστήματο αποθήκευσης σε περιβάλλον
υπολογιστικού νέφους (cloud computing environment). Η πορεία μιας τέτοια αίτησης καταγράφηκε
μέχρι να ικανοποιηθεί από το κατανεμηνένο σύστημα αποθήκευσης block, το RADOS. Επομένως
δίνεται η δυνατότητα γραφικής απεικόνησης των διαφορετικών στρωμάτων λογισμικού που απαιτού-
νται να συνεργαστούν για την ικανοποίηση της συγκεκριμένης αίτησης.

Λέξεις κλειδιά

καταγραφή αιτήσεων, παρακολούθηση, κατανεμημένο σύστημα αποθήκευσης, RADOS,Archipelago,
LTTng, Dapper
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Abstract

Distributed storage systems require special treatment concerning their monitoring and tracing. In this
thesis, we present the design and implementation of BlkKin, a mechanism that provides the necessary
infrastructure for tracing software-defined storage systems. It enables live tracing and inserts minimal
overhead to the instrumented system, so that it can continue working effectively in production scale.
Its tracing semantics lead to a cross-layered, end-to-end representation of the system and how the IO
requests interact with it. End-to-end request tracing enables elaborate information extraction concern-
ing specific system parts, specific workloads or specific system resources, allowing the, otherwise
impossible, localization of latencies and bottlenecks. BlkKin is based on open-source technologies
and provides a full stack implementation with a data collector, data aggregator and a Web UI for visu-
alizing the tracing information, while it can be easily incorporated by any system, not only distributed
storage, in need of such a tracing framework.

Key words

distributed storage, tracing, real-time, low-latency, low-overhead, LTTng, Zipkin, Dapper, metrics,
RADOS, Archipelago
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Chapter 1

Introduction

When back in April 1965 Gordon E. Moore stated the following

“The complexity for minimum component costs has increased at a rate of roughly a
factor of two per year. Certainly over the short term this rate can be expected to continue, if
not to increase. Over the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at least 10 years. That
means by 1975, the number of components per integrated circuit for minimum cost will
be 65,000. I believe that such a large circuit can be built on a single wafer.”[25]

had no idea that he had actually started a race among the academia and the industry to overcome or at
least abide the his law.

During the early years of this race, since the field was premature, the development was based on the
evolution in VLSI technology which went hand in hand with the evolution in computer architecture.
Themore and faster transistors resulted in the achievement of instruction level parallelism (ILP). From
1975 to 2005 the endeavour put in computer architecture resulted in technological advances varying
from deeper pipelines and faster clock speeds to superscalar architectures. But in around 2005 the
ILP wall was hit. Transistors could not be utilized to increase serial performance, logic became too
complex and performance attained was very low compared to power consumption. This lead to the
creation of multicore systems and entered the programmers to the jungle of parallel software. So far
the evolution was almost in accordance with the famous law. However, in around 2009 to 2011, it
was the power wall’s time to be hit. The famous power equation P = cV 2f along with the CPU to
memory gap (Figure 1.1) led to the technological burst of distributed and cloud computing as a final
attempt to abide by Moore’s law.

Figure 1.1: CPU to Memory gap

i

In 2009 Amazon.com introduced the Elastic Compute Cloud and since then the term ‘cloud’ is one
of the hottest buzzwords not only among the industry and academia but also among everyday people
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that take advantage of the ‘power of cloud’. Although the term may be vague, the definition of cloud
computing, according to NIST (National Institute of Standards and Technology), is the following:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud model is composed of five
essential characteristics ,three service models, and four deployment models.”[26]

Different in motivation, though same in the outcome, the evolution of storage systems followed a dif-
ferent route but again resulted in distributed storage systems that serve the demands of cloud comput-
ing. Several technological aspects ,like the advent of RAID, and economic factors, like the decreasing
hard drives’ price, led to the evolution of distributed storage, which nowadays in the only way to cope
with the profuse amount of data, no matter how fast the storage media may become.

In the previous brief computer chronology, I kept describing bottlenecks and walls to be overcome.
However, it not clear how these bottlenecks become obvious and how scientists can be sure that they
have reached one’s technology’s limits before moving on to the next one. The answer to the previous
questions has always been given through tracing. Tracing is a process recording information about
a program’s execution, while it is being executed. These information may be low level metrics like
performance counters or time specific metrics in order to evaluate system’s latencies and throughput.
Tracing data are mostly useful for developers and can be used for debugging, performance tuning
and performance evaluation. From the single-cpu, integrated computer to the hundreds-node cloud
infrastructure, trace and performance engineers face challenging problems that vary from platform to
platform, but in every case play a vital role the system’s design and implementation.

Cloud and distributed computing provided trace engineers with even more challenging problems. The
system scale is now much greater and program execution is far from deterministic and can take place
in any cluster node. So each program execution is not bounded to a specific context. Other problems
that needed solving was data and time correlation between the different computing nodes. Also, un-
like single chip platforms that can be individually traced and evaluated, cloud infrastructures need to
be traced with full-load under production conditions. This sets more restrictions concerning the over-
head that tracing adds to the application. Finally, tracing is notorious about the amount of data that
produces. So distributed and cloud tracing demands the use of distributed data storage systems and
processing methods like distributed NOSQL databases and Map-Reduce frameworks for keeping and
manipulating the tracing information.

So to sum up, as described by every software design model, the system verification consists a major
part of a system’s implementation and working process. Verification is achieved through monitoring
and tracing. Depending on the system’s nature, the process of tracing and monitoring as well as the
tools used may vary. Picking the right tracing tools that will reveal the system’s vulnerabilities and
faults can be very demanding and it is the performance engineer’s taks to bring them to light, respecting
all the prerequisites set by the system.

1.1 Thesis motivation

The motivation behind this thesis emerged from concerns about the storage performance of the Syn-
nefo 1 cloud software, which powers the ∼okeanos 2 public cloud service [20]. I will briefly explain
what ∼okeanos and Synnefo are in the following paragraphs.

1 www.synnefo.org/
2 https://okeanos.grnet.gr/
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∼okeanos is an IaaS (Infrastructure as a Service) that provides Virtual Machines, Virtual Networks
and Storage services to the Greek Academic and Research community. It is an open-source service
that has been running in production servers since 2011 by GRNET S.A. 3

Synnefo [21] is a cloud software stack, also created by GRNET S.A., that implements the following
services which are used by ∼okeanos :

• Compute Service, which is the service that enables the creation and management of Virtual Ma-
chines.

• Network Service, which is the service that provides network management, creation and trans-
parent support of various network configurations.

• Storage Service, which is the service responsible for provisioning the VM volumes and storing
user data.

• Image Service, which is the service that handles the customization and the deployment of OS
images.

• Identity Service, which is the service that is responsible for user authentication and management,
as well as for managing the various quota and projects of the users.

Synnefo provides each virtual machine with at least one virtual volume provisioned by the Volume
Service called Archipelago[16] and will be furthered detailed in Section 2.2. This thesis’ purpose is
to provide the developer or the system administrator with a cross-layer representation accompanied
with the equivalent metrics and time information of an I/O request’s route within the infrastructure
from the time it is created inside the virtual machine till it is finally served by the storage backend.
The design and implementation has to be done respecting the following two prerequisites:

• The tracing information should be gathered and processed in real-time from every node partici-
pating in the request serving.

• The tracing infrastructure should add the least possible overhead to the instrumented system,
which should continued working properly production-wise

After the end of the tracing infrastructure implementation, the developer should be able to identify the
distinct phases and the duration of each that an IO request passes through, measure communication
latencies between the different layers and collect all the necessary information (chosen by him) that
would help him understand the full context under which this specific request was served. All these
information can be used for software faults detection and performance tuning as well as hardware
malfunctions and faults like disk or network failures that would be difficult to detect otherwise.

The novelty of this thesis consists in combining live cross-layer, multi-node data aggregation, which is
typical for monitoring but not for tracing, with the precision and accuracy of tracing, respecting a hard
prerequisite of low overhead. Previous tracing infrastructures offered only partial solutions. Some of
them would separate the tracing from the working phase because of the great added overhead, others
provided no mechanism for data correlation, while the traditional monitoring systems did not meet
our low-level tracing needs.

The proposed system is called BlkKin. It is designed respecting the aforementioned prerequisites and
makes use of the latest tracing semantics and infrastructures employed by great tech companies like
Google and Twitter.

3 Greek Research and Technology Network, https://www.grnet.gr/
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1.2 Thesis structure

This thesis is structured as follows:

Chapter 2
We provide all the necessary background information, both technical and theoretical, so that the
reader becomes familiar with the concepts and ideas described. We cite a brief overview of the
existing tracing and monitoring infrastructures along with their advantages and disadvantages
and how they affected BlkKin’s design and implementation. Finally, we describe Archipelago
and RADOS, the two systems we instrumented as a BlkKin’s proof of concept.

Chapter 3
We analyze Linux Trace Toolkit - next generation (LTTng), which is one of the basic building
blocks of BlkKin. LTTng is used as BlkKin tracing backend.

Chapter 4
We describe the tracing concepts we employed in BlkKin so that we can achieve the needed
expressiveness.We also present Zipkin, which is an open-source implementation of these tracing
concepts and another BlkKin’s building block.

Chapter 5
We describe the BlkKin’s design and architecture, the communication protocols used and the
tracing information flow.

Chapter 6
We analyze the process of creating BlkKin, our contributions to the tracing infrastructure and
the means used or created to extract the information needed in order to serve the different roles
that BlkKin can play.

Chapter 7
We cite our experience of using BlkKin in Archipelago and RADOS instrumentation and its use
as a debugging and an alerting mechanism.

Chapter 8
We provide some concluding remarks and give some future work that could be done to improve
and evolve BlkKin.
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Chapter 2

Theoretical Background

In this chapter we provide the necessary background to familiarize the reader with the main con-
cepts and mechanism used later in the document. For every subsystem employed in BlkKin we briefly
describe some counterparts justifying our choice. The approach made is rudimentary, intended to in-
troduce a reader with elementary knowledge on distributed systems.

Specifically, Section 2.1 covers the concepts around distributed storage systems and the difficulties
concerning their monitoring. In Section 2.2 we describe Archipelago, Synnefo’s Volume Service, and
how IO requests initiated within the virtual machine end up being served by a distributed storage sys-
tem. In Section 2.3 we explain the need for tracing and cite various open-source tracing systems with
their advantages and disadvantages. Finally, in Section 2.4 we describe the different needs covered by
logging and cite some popular logging systems.

2.1 Distributed storage systems

Providing reliable, high-performance storage that scales has been an ongoing challenge for system de-
signers. High-throughput and low-latency storage for file systems, databases, and related abstractions
are critical to the performance of a broad range of applications. Historically, data centers first cre-
ated ‘islands’ of SCSI disk arrays as direct-attached storage (DAS), each dedicated to an application,
and visible as a number of ‘virtual hard drives’ (i.e. LUNs). Initally, a SAN (Storage-Area-Network)
consolidates such storage islands together using a high-speed network. However, a SAN does not
provide file abstraction, but only block-level operations. Also, the cost of scaling a SAN infrastruc-
ture increases exponentially. These boosted the development of more service-oriented-architectures.
Emerging clustered storage architectures constructed from storage bricks or object storage devices
(OSDs) seek to distribute low-level block allocation decisions and security enforcement to intelligent
storage devices, simplifying data layout and eliminating I/O bottlenecks by facilitating direct client ac-
cess to data. OSDs constructed from commodity components combine a CPU, network interface, and
local cache with an underlying disk or RAID, and replace the convention block-based storage interface
with one based on named, variable-length objects. As storage clusters grow to thousands of devices
or more, consistent management of data placement, failure detection, and failure recovery places an
increasingly large burden on client, controller, or metadata directory nodes, limiting scalability.

One of the design principles of object storage is to abstract some of the lower layers of storage away
from the administrators and applications. Thus, data is exposed and managed as objects instead of files
or blocks. Objects contain additional descriptive properties which can be used for better indexing or
management. Administrators do not have to perform lower level storage functions like constructing
and managing logical volumes to utilize disk capacity or setting RAID levels to deal with disk failure.
File metadata are explicitly separate from data and datamanipulation is allowed through programmatic
interfaces. These interfaces include CRUD functions for basic read, write and delete operations, while
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some object storage implementations go further, supporting additional functionality like object ver-
sioning, object replication, and movement of objects between different tiers and types of storage. Most
API implementations are ReST-based, allowing the use of many standard HTTP calls. This results in
the abstraction shown in Figure 2.1.

Figure 2.1: Storage Abstraction

Alhtough they differ substantially concerning their implementation, some of the most popular exam-
ples of such systems are: Amazon S3, OpenStack Swift and RADOS.

However, one common characteristic of all these systems, that led to the development of this thesis, is
that they provide an architecture that easily scales out, based on APIs, but which is difficult to monitor
and find out what really went wrong in case of a problem. This leads to a dicentralized data collec-
tion and a centralized data processing architecture for tracing information. This is how we designed
BlkKin’s architecture which is analyzed in Chapter 5.

2.1.1 RADOS

RADOS stands for Reliable, Autonomic Distributed Object Store. It is the object store component of
Ceph1. Ceph is a free distributed object store and file system that has been created by Sage Weil for
his doctoral dissertationi[30] and has been supported by his company, Inktank, ever since. RADOS
seeks to leverage device intelligence to distribute the complexity surrounding consistent data access,
redundant storage, failure detection, and failure recovery in clusters consisting of many thousands of
storage devices.

RADOS basic characteristics are:

• Replication, which means that there can be many copies of the same object so that the object is
always accessible, even when a node experiences a failure.

1 http://ceph.com/
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• Fault tolerance, which is achieved by not having a single point of failure. Instead, RADOS uses
elected servers called monitors, each of which have mappings of the storage nodes where the
objects and their replicas are stored.

• Self-management, which is possible since monitors know at any time the status of the storage
nodes and, for example, can command to create new object replicas if a node experiences a
failure.

• Scalability, which is aided by the fact that there is no point of failure, which means that adding
new nodes theoretically does not add any communication overhead.

Ceph’s building blocks can be seen in Figure 2.2

Figure 2.2: Ceph abstraction

RADOS functionality is based on the following components:

• object store daemons, which are userspace processes that run in the storage backend and are
responsible for storing the data.

• monitor daemons, which aremonitoring userspace processes that run in an odd number of servers
that form a Paxos part-time parliament[22]. Their main responsibility is holding and reliably
updating the mapping of objects to object store daemons, as well as self-healing when an object
store daemon or monitor daemon has crashed.

Ceph’s logic is based on CRUSH algorithm. According to this algorithm a map is created, called
CRUSH map, which maps objects to store daemons. A fundamental idea in RADOS is the placement
group (pg). Placement groups are used for load balancing. The number of placement groups is prede-
fined. Then, when we want to create a new object, its name is hashed and assigned to a specific group.
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Each placement group makes IO requests to the same OSDs. So, objects belonging to the same pg,
will be replicated across the same OSDs. The relationship between placement groups and object store
daemons is stored in CRUSH maps that each monitor daemon holds.

Since we would like to instrument RADOS code and measure its performance, apart from the theoreti-
cal background, we should also explain some of its operating internals, to consolidate further analysis.
So, in brief, we will try to explain an IO request’s route within a RADOS infrastructure.

Although, as seen in Figure 2.2, RADOS has multiple entry points (RBD, CephFS, RADOSGW), we
are interested in the interaction with librados. Librados provides a well defined API for data manipu-
lation and control, namely an API that enables to modify (CRUD) objects and interact with the Ceph
monitors. There are binding for various languages like C, Python and Java.

Hypothetically, we have an application using librados, which can also run remotely from the RADOS
cluster. The application wants to write an objects. So, an IO request is initiated from librados. RADOS
employs an asynchronous, ordered point to point message passing library for communication. This
request is serialized and a TCP message is created and sent to the RADOS cluster. After receive, this
packet is handled by the equivalent RADOS Messenger classes, decoded and based on its kind, is
placed in a dispatch queue to be served. This specific object belongs to a certain placement group. So,
when the request reaches the top of the queue, based on this pg, the equivalent OSD undertakes its
serving. Based on the replication factor, the equivalent number of replication requests is sent to other
OSDs responsible for the same pg. During request handling per OSD, based on the request type, there
are phases like Journal Access and finally the Filestore Access.

From the above analysis, we understood that request processing in RADOS is a perplexed procedure
including multiple remote nodes collaborating. The only way to understand the internals and debug
possible latencies and bottlenecks is through tracing and this is what we are going to examine further
in this thesis.

2.2 Archipelago

2.2.1 Overview

Archipelago is a distributed storage layer and is part of the Synnefo cloud software. It decouples
Volume and File operations/logic from the actual underlying storage technology, used to store data. It
provides a unifiedway to provision, handle and present Volumes and Files independently of the storage
backend. It also implements thin clones, snapshots, and deduplication, and has pluggable drivers for
different backend storage technologies. It was primarily designed to solve problems that arise on large
scale cloud environments. Archipelago’s end goal is to:

• Decouple storage logic from the actual data store

• Provide logic for thin cloning and snapshotting

• Provide logic for deduplication

• Provide different endpoint drivers to access Volumes and Files

• Provide backend drivers for different storage technologies

As it is shown in Figure 2.3, Archipelago lies between the VM’s block device and the underlying
storage level.
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Figure 2.3: Archipelago Overview

2.2.2 Archipelago Internals

Archipelago has a modular internal architecture consisting of multiple components communicating
over a custom made IPC mechanism called XSEG. Each component communicating over XSEG is
called peer.

XSEG is a custommechanism that defines a common communication protocol for all peers, regardless
of their type (userspace/kernspace, singlethreared/multithreaded). It builds a shared-memory segment,
where peers can share data using zero-copy techniques.

Figure 2.4: Archipelago APIs

Peers are considered either the Archipelago endpoints (Figure 2.4):

• block device driver

• qemu driver

• user provided process
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• command line tool

• http gateway for files

or the Archipelago internal components:

VoLuMeComposerDaemon(vlmcd) vlmcd accepts requests from the endpoints and translates them
to object requests, with the help of mapperd.

MapperDaemon(mapperd) mapperd is responsible for the mapping of volumes to objects. This
means that it must tackle a broad set of tasks such as knowing the objects that a volume consists
of, cloning and snapshotting volumes and creating new ones.

BlockerDaemon(blockerd) blockerd is not a specific entity but a family of drivers, each of which
is written for a specific storage type (as seen at the down part of Figure 2.4). Blockers have a
single purpose, to read/write objects from/to the storage. Currently, there are blockers for NFS
and the RADOS object storage.

Figure 2.5 shows the interaction between the different peers over XSEG for a VM to perform an IO
operation.

Figure 2.5: XSEG communication

As it is obvious from the above analysis, Archipelago’s modular design is based on XSEG. XSEG
affects significantly the overall Archipelago performance. So, we would like to have a mechanism
that enables Archipelago monitoring without degrading Archipelago’s performance. This mechanism
would reveal the latencies and bottlenecks between the several peers and enable Archipelago engineers
to improve its performance.

2.3 Tracing Systems

Understanding where time has been spent in performing a computation or servicing a request is at the
forefront of the performance analyst’s mind. Measurements are available from every layer of a com-
puting system, from the lowest level of the hardware up to the top of the distributed application stack.
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In recent years we have seen the emergence of tools which can be used to directly trace events relevant
to performance. This is augmenting the traditional event count and system state instrumentation, and
together they can provide a very detailed view of activity in the complex computing systems prevalent
today.

Event tracing has the advantage of keeping the performance data tied to the individual requests, al-
lowing deep inspection of a request which is useful when performance problems arise. The technique
is also exceptionally well suited to exposing transient latency problems. The downsides are increased
overheads (sometimes significantly) in terms of instrumentation costs as well as volumes of informa-
tion produced. To address this, every effort is taken to reduce the cost of tracing - it is common for
tracing to be enabled only conditionally, or even dynamically inserted into the instrumented software
and removed when no longer being used.

In early 1994, a technique called dynamic instrumentation or Dyninst API [19] was proposed to pro-
vide efficient, scalable and detailed data collection for large-scale parallel applications (Hollingsworth
et al., 1994). Being one of the first tracing systems, the infrastructure built for data extraction was lim-
ited. The operating systems at hand were not able to provide efficient services for data extraction.
They had to build a data transport component to read the tracing data, using the ptrace function, that
was based on a time slice to read data. A time slice handler was called at the end of each time slice, i.e
when the program was scheduled out, and the data would be read by the data transport program built
on top.

This framework made possible new tools like DynaProf [10] and graphical user interface for data
analysis. DynaProf is a dynamic profiling tool that provides a command line interface, similar to gdb,
used to interact with the DPCL API and to basically control tracing all over your system.

Kernel tracing brought a new dimension to infrastructure design, having the problem of extracting
data out of the kernel memory space to make it available in user-space for analysis. The K42 project
[3] used shared buffers between kernel and user space memory, which had obvious security issues. A
provided daemon waked up periodically and emptied out the buffers where all client trace control had
to go through. This project was a research prototype aimed at improving tracing performance. Usability
and security was simply sacrificed for the proof of concept. For example, a traced application could
write to these shared buffers and read or corrupt the tracing data for another application, belonging to
another user.

In the next sections, recent tracers and how they built their tracing infrastructure will be examined.

2.3.1 Magpie

One of the earliest and most comprehensive event tracing frameworks is Magpie [5]. This project
builds on the Event Tracing for Windows infrastructure which underlies all event tracing on the Mi-
crosoft Windows platform. Magpie is aimed primarily at workload modelling and focuses on tracking
the paths taken by application level requests right through a system. This is implemented through
an instrumentation framework with accurate and coordinated timestamp generation between user and
kernel space, and with the ability to associate resource utilisation information with individual events.

The Magpie literature demonstrates not only the ability to construct high-level models of a distributed
system resource utilisation driven via Magpie event tracking, but also provides case studies of low-
level performance analysis, such as diagnosing anomalies in individual device driver performance.
Magpie utilises a novel concept in behavioural clustering, where requests with similar behaviour (in
terms of temporal alignment and resource consumption) are grouped. This clustering underlies the
workload modelling capability, with each cluster containing a group of requests, a measure of “clus-
ter diameter”, and one selected “representative request” or “centroid”. The calculation of cluster di-
ameter indicates deep event knowledge and inspection capabilities, and although not expanded on it
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implies detailed knowledge of individual types of events and their parameters. This indicates a need
for significant user intervention to extend the system beyond standard operating system level events.

As an aside, it is worth noting here that, for the first time, we see in Magpie the use of a binary
tree graph to represent the flow of control between events and sub-events across distinct client/server
processes and/or hosts.

2.3.2 DTrace

Then, Sun Microsystems released, in 2005, DTrace [7] which offers the ability to dynamically instru-
ment both user-level and kernel-level software. As part of a mass effort by Sun, a lot of tracepoints
were added to the Solaris 10 kernel and user space applications. Projects like FreeBSD and NetBSD
also ported dtrace to their platform, as later did Mac OS X. The goal was to help developers find
serious performance problems. The intent was to deploy it across all Solaris servers and to use it in
production. If we look at the DTrace architecture, it uses multiple data providers, which are basically
probes used to gather tracing data and write it to memory buffers. The framework provides a user space
library (libdtrace) which interacts with the tracer through ioctl system calls. Through those calls, the
DTrace kernel framework returns specific crafted data for immediate analysis by the dtrace command
line tool. Thus, every interaction with the DTrace tracer is made through the kernel, even user space
tracing. On a security aspect, groups were made available for different level of user privileges. You
have to be in the dtrace proc group to trace your own applications and in the dtrace kernel group to
trace the kernel. A third group, dtrace user, permits only system call tracing and profiling of the user
own processes. This work was an important step forward in managing tracing in current operating sys-
tems in production environment. The choice of going through the kernel, even for user space tracing,
is a performance trade-off between security and usability.

2.3.3 SystemTap

In early 2005, Red Hat released SystemTap [27] which also offers dynamic instrumentation of the
Linux kernel and user applications. In order to trace, the user needs to write scripts which are loaded
in a tapset library. SystemTap then translates these in C code to create a kernel module. Once loaded,
the module provides tracing data to user space for analysis. Two system groups namely stapdev and
stapusr are available to separate possible trac- ing actions. The stapdev group can do any action over
Systemtap facilities, which makes it the administrative group for all tracing control (Don Domingo,
2010) and module creation. The second group, stapusr, can only load already compiled modules lo-
cated in specific protected directories which only contain certified modules. The project also provides
a compile-server which listens for secure TCP/IP connections using SSL and handles module compila-
tion requests from any certified client. This acts as a SystemTap central module registry to authenticate
and validate kernel modules before loading them. This has a very limited security scheme for two rea-
sons. First, privileged rights are still needed for specific task like running the compilation server and
loading the modules, since the tool provided by Systemtap is set with the setuid bit. Secondly, for user
space tracing, only users in SystemTap’s group are able to trace their own application, which implies
that a privileged user has to add individual users to at least the stapusr group at some point in time, cre-
ating important user management overhead. It is worth noting that the compilation server acts mostly
as a security barrier for kernel module control. However, like DTrace, the problem remains that it still
relies on the kernel for all tracing actions. Therefore, there is still a bottleneck on performance if we
consider that a production system could have hundreds of instrumented applications tracing simulta-
neously. This back and forth in the kernel, for tracing control and data retrieval, cannot possibly scale
well.
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2.4 Logging Systems

Logs are a critical part of any system. They give you insight into what a system is doing as well as
what happened in case of failure. Unlike tracing, log data are not low-level and do not refer to the
system’s performance. There is no special care about the overhead that logging add to the system.
Virtually every process running on a system generates logs in some form or another. Usually, these
logs are written to files on local disks. When your system grows to multiple hosts, managing the logs
and accessing them can get complicated. Searching for a particular error across hundreds of log files
on hundreds of servers is difficult without good tools. A common approach to this problem is to setup
a centralized logging solution so that multiple logs can be aggregated in a central location.

There are various options for log data aggregation as well as for visualizing the aggregated data. Some
of them are cited here:

2.4.1 Syslog

Syslog is a standard for computer message logging. It permits separation of the software that generates
messages from the system that stores them and the software that reports and analyzes them.

Syslog can be used for computer system management and security auditing as well as generalized
informational, analysis, and debugging messages. It is supported by a wide variety of devices (like
printers and routers) and receivers across multiple platforms. Because of this, syslog can be used to
integrate log data from many different types of systems into a central repository.

Messages are labeled with a facility code (one of: auth, authpriv, daemon, cron, ftp, lpr, kern, mail,
news, syslog, user, uucp, local0 ... local7) indicating the type of software that generated the messages,
and are assigned a severity (one of: Emergency, Alert, Critical, Error, Warning, Notice, Info, Debug).

Implementations are available for many operating systems. Specific configuration may permit direct-
ing messages to various devices (console), files (/var/log/) or remote syslog servers. Most implemen-
tations also provide a command line utility, often called logger, that can send messages to the syslog.
Some implementations permit the filtering and display of syslog messages.

Syslog is standardized by the IETF in RFC 5424. This standardization specifies a very important char-
acteristic of Syslog that we would like to have available in our tracing infrastructure and this is severity
levels. Every event to be traced is associated with a severity level varying from Emergency when the
system is unusable to informational or debug level messages. From the syslog side the administrator
can define which events he is interested about. So, for testing environments more events should be
traced, while for production environments the events to be traced should be restricted to the absolutely
needed.

2.4.2 Scribe

Anew class of solutions that have come about have been designed for high-volume and high-throughput
log and event collection. Most of these solutions are more general purpose event streaming and pro-
cessing systems and logging is just one use case that can be solved using them. They generally consist
of logging clients and/or agents on each specific host. The agents forward logs to a cluster of collec-
tors which in turn forward the messages to a scalable storage tier. The idea is that the collection tier
is horizontally scalable to grow with the increase number of logging hosts and messages. Similarly,
the storage tier is also intended to scale horizontally to grow with increased volume. This is gross
simplification of all of these tools but they are a step beyond traditional syslog options.
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One popular solution is Scribe2. Scribe is a server for aggregating log data that’s streamed in real time
from clients. It is designed to be scalable and reliable. It was used and released by Facebook as open
source. Scribe is written in C++ and it worths mentioning its transport layer and how Scribe logging
data are processed and finally stored.

Concerning its transport layer, Scribe uses Thrift3. The Apache Thrift software framework, for scal-
able cross-language services development, combines a software stack with a code generation engine to
build services that work efficiently and seamlessly between different programming languages. After
describing the service in a specific file (thrift file), the framework is responsible for generating the code
to be used to easily build RPC clients and servers that communicate seamlessly across programming
languages. For Scribe especially the thrift file is the following:

1 enum ResultCode
2 {
3 OK,
4 TRY_LATER
5 }
6 struct LogEntry
7 {
8 1: string category ,
9 2: string message
10 }
11 service scribe extends fb303.FacebookService
12 {
13 ResultCode Log(1: list<LogEntry > messages);
14 }

Listing 2.1: Scribe thrift definition file

In the above file a Log method is defined, which takes a list of LogEntry items as parameter. Every
LogEntry consists of two strings, a category and a message. This specific Log method can return two
different results codes, either ‘OK’ or ‘TRY_LATER’. Based on this file, using Thrift we can create
Scribe clients for every programming language.

Concerning data manipulation Scribe provides the following options. It can store the messages it
receives either locally to the local filesystem, or remotely to HDFS, so that they can be processed later
using Map-Reduce jobs. Also, based on the message’s category, it can store the log entries in different
files, one per category.

Scribe servers are arranged in a directed graph, with each server knowing only about the next server
in the graph. This network topology allows for adding extra layers of fan-in, as a system grows and
batching messages before sending them between datacenters as well as providing reliability in case
of intermittent connectivity or node failure. So a Scribe server can operate either as a terminal server
where data are finally stored, or as an intermediate server that forwards data to the next Scribe server.
In case of congestion or of network problems, data are stored locally and forwarded when the problem
is restored.

2.4.3 Graphite

Graphite is an enterprise-scale monitoring tool that runs well on cheap hardware. It is released under
the open source Apache 2.0 license and it is used by many big companies like Google and Canonical.

2 https://github.com/facebookarchive/scribe
3 https://thrift.apache.org/
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Although Graphite is not responsible for collecting data, it can store efficiently numeric time-series
data and render graphs of this data on demand. Graphite can cooperate with other tools like collectd4
for data aggregation.

From an architectural aspect, Graphite consists of 3 software components:

carbon - a Twisted daemon that listens for time-series data

whisper - a simple database library for storing time-series data (similar in design to RRD)

graphite webapp - A Django webapp that renders graphs on-demand using Cairo5

2.4.4 Ganglia

Ganglia[23] is a scalable distributed monitoring system for high performance computing systems such
as clusters and grids. It grew out of the University of California, Berkeley and is based on a hierarchical
design targeted at federations of clusters. It relies on a multicast-based listen/announce protocol to
monitor state within clusters and uses a tree of point-to-point connections amongst representative
cluster nodes to federate clusters and aggregate their state. It leverages widely used technologies such
as XML for data representation, XDR for compact, portable data transport, and RRD tool for data
storage and visualization. It uses carefully engineered data structures and algorithms to achieve very
low per-node overheads and high concurrency. The implementation is robust, has been ported to an
extensive set of operating systems and processor architectures, and is currently in use on over 500
clusters around the world.

Ganglia architecture is made up of the following components.

gmond The Ganglia MONitor Daemon is a data-collecting agent that you must install on every node
in a cluster. Gmond gathers metrics about the local node and sends information to other nodes
via XML to a browser window. Gmond is portable and collects system metrics, such as CPU,
memory, disk, network and process data. TheGmond configuration file /etc/gmond.conf controls
the Gmond daemon and resides on each node where Gmond is installed.

gmetad The Ganglia METAdata Daemon is a data-consolidating agent that provides a query mech-
anism for collecting historical information about groups of machines. Gmetad is typically in-
stalled on a single, task-oriented server (the monitoring node), though very large clusters could
require more than one Gmetad daemon. Gmetad collects data from other Gmetad and Gmond
sources and stores their state in indexed RRDtool (round-robin) databases, where aWeb interface
reads and returns information about the cluster. The Gmetad configuration file /etc/gmetad.conf
controls the Gmetad daemon and resides on the monitoring node.

RRDtool RRDTool is an open-source data logging and graphing system that Ganglia uses to store
the collected data and to render the graphs for Web-based reports. Cron jobs that run in the
background to collect information from the HP Vertica monitoring system tables are stored in
the RRD database.

PHP-based Web interface —The PHP-basedWeb interface contains a collection of scripts that both
the Ganglia Web reporting front end and the HP Vertica extensions use. The Web server starts
these scripts, which then collect HP Vertica�specific metrics from the RRD database and gen-
erate the XML graphs. These scripts provide access to HP Vertica health across the cluster, as
well as on each host.

4 https://collectd.org/
5 http://www.cairographics.org/
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Figure 2.6: Ganglia architecture

Web server The Web server uses lighttpd, a lightweight http server that can be any Web server that
supports PHP, SSL, and XML. The Ganglia web front end displays the data stored by Gmetad
in a graphical web interface using PHP.

Advanced tools Gmetric, an executable, is added during Ganglia installation. Gmetric provides ad-
ditional statistics and is used to store user-defined metrics, such as numbers or strings with units.

2.5 Conclusion

To sum up, it is obvious from the previous analysis that the tracing systems mentioned do not fit in
our demands concerning the added overhead to the instrumented application since their solutions pass
through the kernel space. This extra overhead makes them unsuitable for live tracing. The solution for
for the BlkKin tracing backend was given from the Linux Trace Toolkit - next generation (LTTng) be-
cause it provides separate mechanisms for kernel and user space tracing. LTTng is furthered examined
in Chapter 3.

Concerning the logging systems, we need to imitate their architecture for BlkKin’s architecture, since
we need a central trace aggregation point and a UI that visualizes this information. We can conclude
that we need:

34



tracing daemon that runs on every cluster node and collects data with a low-overhead

central data collector where all tracing information are stored

Web UI where tracing information are rendered in a way that extracts the necessary information re-
vealing problems and performance issues in the first place. For more elaborate information ex-
traction, trace information should be furthered processed though other entry points apart from
the UI.

For data collection, we are going to use LTTng, while for the data aggregation and the visualization we
are going to use Zipkin, a distributed tracing system created by Twitter. Zipkin as well as the reasons
for our choice are furthered examined in Section 4.3.
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Chapter 3

Linux Trace Toolkit - next generation (LTTng)

In this chapter we analyze Linux Trace Toolkin - next generation (LTTng), which was our choice for
BlkKin’s tracing backend, and we describe its internal characteristics that led us to using it. Specifi-
cally, we give an overall outline of its architecture and basic notions in Section 3.1. Then, we describe
the buffering scheme used both for kernel and user space (Section 3.2) and we continue by citing
the kernel and use space implementation mechanism in Sections 3.3, 3.4. Finally we cite the tracing
format used by LTTng (Section 3.5) and the mechanism for live tracing in Section .

3.1 Overview

Linux Trace Toolkin - next generation is the successor of Linux Trace Toolkit. It started as theMathew
Desnoyer’s PhD dissertation [11] in École Polytechnique de Montréal. Since then, it is maintained by
EfficiOS Inc1 and the DORSAL lab in École Polytechnique de Montréal.

The LTTng project aims at providing highly efficient tracing tools for Linux. Its tracers help track-
ing down performance issues and debugging problems involving multiple concurrent processes and
threads. Tracing across multiple systems is also possible. This toolchain allows integrated kernel and
user-space tracing from a single user interface. It was initially designed and implemented to repro-
duce, under tracing, problems occurring in normal conditions. It uses a linearly scalable and wait-free
RCU (Read-Copy Update) synchronization mechanism and provides zero-copy data extraction. These
mechanisms were implemented in kernel and then ported to user-space as well.

Apart from LTTng’s kernel tracer and userspace tracer, viewing and analysis tools are part of the
project. In this thesis, we worked with and extended Babeltrace 2.

Except for the fact LTTng is a complete toolchan that can be easily installed in almost any Linux
distribution and the integrated kernel and user space tracing offered, we chose LTTng because of its
minimal performance overhead. Since it was initially designed to ‘reproduce, under tracing, problems
occurring in normal conditions’, LTTng was the ideal tool to use for real-time low-overhead, block-
storage tracing with BlkKin.

In order to understand how LTTng manages to have such a good performance, we have to go through
its internals. But first, we give an overview of its architecture and basic components. According to D.
Goulet’s Master thesis ([17]), LTTng’s architecture can be summarized as shown in Figure 3.1.

The lttng command line interface is a small program used to interact with the session daemon.
Possible interaction are creating sessions, enabling events, starting tracing and so on. The use of this
command line tool to create and configure tracing seesions is further explained in Section 7.2 about
how to use BlkKin.

1 http://www.efficios.com/
2 http://lttng.org/babeltrace
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Figure 3.1: LTTng Architecture

Tracing sessions are used to isolate users from each other and create coherent tracing data between all
tracing sources (Ex: MariaDB vs Kernel). This session daemon routes user commands to the tracers
and keeps an internal state of the requested actions. The daemon makes sure that this internal state is
in complete synchronization with the tracers, and therefore no direct communication with the tracers
is allowed other than via the session daemon. This daemon is self-contained between users. Each user
can run its own session daemon but only one is allowed per user. No communication happens between
daemons.

Consumer daemons extract data from buffers containing recorded data and write it to disk for later
analysis. There are two separate consumer daemons, one handling user space and the second one the
kernel. A single consumer daemon handles all the user space (and similarly for kernel space) tracing
sessions for a given session daemon. It is the session daemon that initiates the execution of the user
space and kernel consumer daemons and feeds them with tracing commands.

LTTng internals define and make use of the following concepts in order to create an abstraction layer
between the user and the tracers.

Domains are essentially a type of tracer or tracer/feature tuple. Currently, there are two domains in
lttng-tools. The first one is UST which is the global user space domain. Channels and events reg-
istered in that domain are enabled on all current and future registered user space applications.
The other domain is KERNEL. Three more domains are not yet implemented but are good ex-
amples of the tracer/feature concept. They are UST PID for specific PID tracing, UST EXEC
NAME based on application name and UST PID FOLLOW CHILDREN which is the same as
tracing a PID but follows spawned children.

Session is an isolated container used to separate tracing sources and users from each other. It takes
advantage of the session feature offered by the tracer. Each tracing session has a human readable
name (Ex.: myapps) and a directory path where all trace data is written. It also contains the user
UID/GID, in order to handle permissions on the trace data and also determine who can interact
with it. Credentials are passed through UNIX socket for that purpose.
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Event relates to a TRACE EVENT statement in your application code or in the Linux kernel instru-
mentation. Using the command line tool lttng, you can enable and disable events for a specific
tracing session on a per domain basis. An event is always bound to a channel and associated
tracing context.

Channel is a pipe between an information producer and consumer. They existed in the earlier LTTng
tracers but were hardcoded and specified by the tracer. In the new LTTng 2.0 version, channels
are now definable by the user and completely customizable (size of buffers, number of subbuffer,
read timer, etc.). A channel contains a list of user specified events (e.g. system calls and schedul-
ing switches) and context information (e.g. process id and priority). Channels are created on a
per domain basis, thus each domain contains a list of channels that the user creates. Each event
type in a session can belong to a single channel. For example, if event A is enabled in channel
1, it cannot be enabled in channel 2. However, event A can be enabled in channel 2 (or channel
1 but not both) of another session.

3.2 Buffering scheme

In this part we analyze the buffering scheme employed by LTTng for efficient tracing.

As mentioned, a channel is a pipe between an information producer and consumer. It serves as a buffer
to move data efficiently. It consists of one buffer per CPU to ensure cache locality and eliminate false-
sharing. Each buffer is made of many sub-buffers where slots are reserved sequentially. A slot is a
sub-buffer region reserved for exclusive write access by a probe. This space is reserved to write either
a sub-buffer header or an event header and payload. Figure 3.2 shows how space is being reserved.
On CPU 0, space is reserved in sub-buffer 0 following event 0.

Figure 3.2: Channel layout

In this buffer, the header and event 0 elements have been complelety written to the buffer. The grey area
represents slots for which associated commit count increment has been done. Committing a reserved
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slot makes it available for reading. On CPU n, a slot is reserved in sub-buffer 0 but is still uncommitted.
It is however followed by a committed event. This is possible due to the non serial nature of event
write and commit operations. This situation happens when execution is interrupted between space
reservation and commit count update and another event must be written by the interrupt handler. Sub-
buffer 1, belonging to CPU 0, shows a fully committed sub-buffer ready for reading.

Events written in a reserved slot aremade of a header and a variable-sized payload. The header contains
information such as the timestamp associated with the event and the event type (an integer identifier).
The event type information allows parsing the payload and determining its size. Themaximum slot size
is bounded by the sub-buffer size. Both the number of the sub-buffers and their size can be configured
by the lttng command line tool.

In order to synchronize the producer and consumer scheme, LTTng makes use of atomic operations.
The two atomic instructions required are the CAS (Compare-And-Swap) and a simple atomic incre-
ment. Each per-CPU buffer has a control structure which contains the write count, the read count,
and an array of commit counts and commit seq counters. The counters commit count keep track of the
amount of data committed in a sub-buffer using a lightweight increment instruction. The commit seq
counters are updated with a concurrency-aware synchronization primitive each time a sub-buffer is
filled. The read count is updated using a standard SMP-aware CAS operation. This is required because
the reader thread can read sub-buffers from buffers belonging to a remote CPU.

In the next two sections we will present how tracing is achieved in the different domains, kernel and
user space.

3.3 Kernel-space tracing

In the previous section we described the buffering scheme used by LTTng. In this chapter we will
analyze the kernel mechanism that enables LTTng to add a minimum overhead to the instrumented
application during tracing or when the tracing is stopped.

In order to trace the Linux kernel with minimum overhead and without hurting the performance when
the tracing is disabled, the equivalent mechanism should be provided by the kernel. The initial ap-
proach was given through Kprobes[24]. Kprobes are a hardware breakpoint-based instrumentation
approach. The Kprobe infrastructure dynamically replaces each kernel instruction to instrument with
a breakpoint, which generates a trap each time the instruction is executed. A tracing probe can then
be executed by the trap handler. However, due to the heavy performance impact of breakpoints, the
inability to extract local variables anywhere in a function due to compiler optimizations, and the main-
tenance burden of keeping instrumentation separate from the kernel code, a more elaborate solution
was needed.

This solution was given by Mathew Desnoyers with the Linux Kernel Markers [9] and Tracepoints
infrastructure. The markers and tracepoints allow us to declare instrumentation statically at the source-
code level without affecting performance significantly and without adding the cost of a function call
when instrumentation is disabled. A marker placed in code provides a hook to call a function (probe)
that can be provided at runtime. A marker can be ‘on’ (a probe is connected to it) and the function
is called so information is logged, or ‘off’ (no probe is attached). When a marker is ‘off’ it has no
effect, except for adding a tiny time penalty (checking a condition for a branch). This instrumentation
mechanism enables the instrumentation of an application at the source-code level. Markers consists
essentially of a C preprocessing macro which adds, in the instrumented function, a branch over a
function call. By doing so, neither the stack setup nor the function call are executed when the in-
strumentation is not enabled. At runtime, each marker can be individually enabled, which makes the
branch execute both the stack setup and the function call
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Having extremely low-overhead when instrumentation is dynamically disabled is crucially important
to provide Linux distributions the incentive to ship instrumented programs to their customers. Markers
and tracepoints consist in a branch skipping a stack setup and function call when instrumentation is
dynamically disabled (dormant). These individual instrumentation sites can be enabled dynamically at
runtime by dynamic codemodification, and only add low overheadwhen tracing. The typical overhead
of a dormant marker or tracepoint has been measured to be below 1 cycle [12] when cache-hot. Static
declaration of tracepoints helps manage this instrumentation within the Linux kernel source-code.
Given that the Linux kernel is a distributed collaborative project, enabling each kernel subsystem
instrumentation to be maintained by separate maintainers helps distributing the burden of managing
kernel-wide instrumentation.

However, statically declaring an instrumentation site for dynamic activation typically incurs a non-
zero performance overhead due to the test and branch required to skip the instrumentation call. To
overcome this limitation, Desnoyers created the concept of activating statically compiled code effi-
ciently by dynamically modifying an immediate operand within an instruction, which is called Imme-
diate Values [12]. This mechanism replaces the standard memory read, loading the condition variable,
by a constant folded in the immediate value encoding of an instruction operand. This removes any
data memory access to test for disabled instrumentation by keeping all the information encoded in
the instruction stream. However, this involves dynamically modifying code safely against concurrent
multiprocessor accesses. This requires either stopping all processors for the duration of the modifi-
cation, or using a more complex, yet more lightweight, core synchronization mechanism. The choice
made was the temporary breakpoint bypass [18].

In order to overcome a Kernel Markers’ drawback, which was the limited type verification to scalar
types because its API is based on format string, Tracepoints 3 were created.

Two elements are required for tracepoints :

• A tracepoint definition, placed in a header file.

• The tracepoint statement, in C code.

In order to use tracepoints, you should include linux/tracepoint.h.

Define an event in include/trace/events/subsys.h as shown in Listing 3.1. You can use the
Tracepoint within kernel code as shown in Listing 3.2.

As far as LTTng is concerned, the traced data is entirely controlled by the kernel. However, a mech-
anism should be provided to interact with the userspace and the lttng tool and the session daemon.
According to [11], the kernel exposes a transport pipeline (Ex: character device or anonymous file
descriptor) and a user space daemon (session daemon) simply extracts data through this mechanism.
This mechanism is based on DebugFS 4

3.4 User-space tracing

User-space tracing needs a different approach from kernel-tracing. Approaches like SystemTap5 or
DTrace6 based user-space tracing on breakpoints or system-calls whenever a tracing point is reached.
However, this has a severe performance impact on the instrumented application and makes them in-
appropriate for live tracing and system monitoring.

3 https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
4 https://www.kernel.org/doc/Documentation/filesystems/debugfs.txt
5 https://sourceware.org/systemtap/
6 http://dtrace.org/blogs/
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1 #undef TRACE_SYSTEM
2 #define TRACE_SYSTEM subsys
3

4 #if !defined(_TRACE_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5 #define _TRACE_SUBSYS_H
6

7 #include <linux/tracepoint.h>
8

9 DECLARE_TRACE(subsys_eventname ,
10 TP_PROTO(int firstarg , struct task_struct *p),
11 TP_ARGS(firstarg , p));
12

13 #endif /* _TRACE_SUBSYS_H */
14

15 /* This part must be outside protection */
16 #include <trace/define_trace.h>

Listing 3.1: Kernel event definition

1 #include <trace/events/subsys.h>
2

3 #define CREATE_TRACE_POINTS
4 DEFINE_TRACE(subsys_eventname);
5

6 void somefct(void)
7 {
8 ...
9 trace_subsys_eventname(arg, task);
10 ...
11 }

Listing 3.2: Kernel Tracepoint activation

During BlkKin’ implementation, we tried to implement a custom tracing mechanism based on a
memory-mapped ring buffer. However, this mechanism should handle with all the consumer-producer
concurrency issues. Inspecting the LTTng user-space tracer, we found out that the aforementioned
buffering scheme (3.2) with the generalized ring buffer is implemented for user-space tracing as well.
This mechanism is not based on breakpoints or system-calls and does not affect the system’s perfor-
mance. So we decided to base out backend on LTTng ust-trace.

As far as LTTng is concerned, while the kernel tracer is the most complex entity in terms of code and
algorithms, it is the simplest to handle. For the session daemon, this tracer is a single tracing source.
However, tracing in user-space sets challenges concerning multiple users and concurrency. D. Goulet
in his master thesis [17] created the lttng-tools project, which provides the needed unified user and
kernel tracing. This project handles with all the issues concerning multiple concurrent tracing sources
and the mechanism for their synchronization.

Since all these problems are handled by LTTng, in this section we will describe the mechanism behind
a single tracing session.

As seen in Figure 3.3, each instrumented application creates a dedicated thread for tracing. This thread
communicated with the sessiond over a UNIX-domain socket. The creation of this dedicated thread is
created when the instrumented application is launched. Its creation is coded within functions labeled
with __attribute__((constructor)). The instrumented applications are dynamically linked with
the ust libraries. So, when the object files are loaded, the specific code is executed and the threads are
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Figure 3.3: User-space tracer architecture

created. The session daemon communicates with the consumer over a UNIX-domain socket. Over
this path all the control messages pass. For example, over these UNIX sockets pass the file descriptors
of the shared memory segment, so that the consumer and the instrumented application refer to the
same segment. The elaborate buffering scheme is deployed on a shared memory segment. The syn-
chronization issues for the access to the segment are handled by the liburcu7. Whenever there are
data available, the instrumented application notifies the consumer over a UNIX pipe. After that the
consumer (which is different from the kernel consumer), writes the tracing data to a local folder. The
tracing data will be available for viewing using viewers like Babeltratrace8 or LTTTV9 only after the
end of the session. This will be furthered discussed in Section 3.5.

Themechanism that supports the Tracepoints was ported in user-space aswell, asmentioned in [6]. The
user-space Tracepoints are defined in a header file. This file is compiled into an object file, which is
finally linked along with the liblttng-ustwith the instrumented application. So, the tracing threads
will be created as mentioned and the tracepoint function calls will trace information only when tracing
is enabled.

3.5 Common Trace Format (CTF)

LTTng makes use of Common Trace Format (CTF)10 for the traces created. CTF is a trace format
based on the requirements of the industry. It is the result of the collaboration between the Multicore

7 https://lttng.org/urcu
8 https://lttng.org/babeltrace
9 https://lttng.org/lttv
10 http://www.efficios.com/ctf
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association11 and the Linux community. This format was created to cover the tracing needs from
versatile communities like the embedded, telecom, high-performance and kernel communities. It is a
high-level model meant to be an industry-wide, common model, fulfilling the tracing requirements.
It is meant to be application-, architecture-, and language-agnostic. One major element of CTF is the
Trace Stream Description Language (TSDL) which flexibility enables description of various binary
trace stream layouts. The CTF format is formally described in RFC.

According to this abstract model:

A trace is divided into multiple event streams. Each event stream contains a subset of the trace event
types. The final output of the trace, after its generation and optional transport over the network, is
expected to be either on permanent or temporary storage in a virtual file system. Because each event
stream is appended to while a trace is being recorded, each is associated with a distinct set of files for
output. Therefore, a stored trace can be represented as a directory containing zero, one or more files
per stream.

An event stream can be divided into contiguous event packets of variable size. An event packet can
contain a certain amount of padding at the end. The stream header is repeated at the beginning of each
event packet

CTF offers a variety of data types for tracing, like integers, arrays or strings, which are defined in the
RFC. Τhese types allow inheritance so that other types can be derived.

The overall structure of an event is:

Event Header
(as specified by the stream meta-data). These information are the same for all streams in the
trace. Example information: trace UUID

Stream Event Context
(as specified by the stream meta-data) The stream context is applied to all events within the
stream. Example information: pid, payload size

Event Context
(as specified by the event meta-data) The event context contains information relative to the
current event. Example information: missing fields

Event Payload
(as specified by the event meta-data) An event payload contains fields specific to a given event
type

As it became obvious, each trace is associated with some metadata. For example, the trace stream
layout description is located in the tracemeta-data or the fields belonging to an event type are described
in the event-specific meta-data. The meta-data is itself located in a separate stream identified by its
name: ‘metadata’.

The fact that the trace metadata are located in a different stream, prevents an LTTng ‘local’ trace from
being read (reliably) without stopping the tracing session. LTTng offers no guarantee that the metadata
on disk contains all the layout information needed to read any packet previously flushed to disk. For
example, a new application, instrumented with previously unknown events, could be launched and
fill a buffer with events. That buffer would then be flushed to disk. At that point, there would be no
guarantee that the lttng-sessiond would have had the chance to flush the updated metadata to disk.
Thus, reading that trace would fail.

11 http://www.multicore-association.org/
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In order to read an LTTng CTF-formatted event before the end of the tracing session, LTTng created
relayd and enabled live tracing, which is furthered analyzed in Section 3.6.

3.6 Live tracing

Version 2.4.0 LTTng introduced live tracing support. Instead of waiting the end of the session in order
to read the traces, lttng-live enabled developers to read the traces live while they are being created
using Babeltrace.

In order to live read trace data, traces have to be streamed, even if the tracer and the viewer operate on
the same machine. Live tracing is achieved through the use of special daemon called relayd. When
creating the tracing session, you can define whether you prefer live tracing. If so, you have to provide
the IP address of the computer node where realyd runs. When the session starts, relayd stores data to
the remote machine, so that they will be saved after the end of the session. In order to view the traces,
you have to use Babeltrace which connects to the relayd and prints text data to the stdout, when they
arrive over the network. Again Babeltrace can run on different machine from the one being traced or
the one where relayd runs.

LTTng relayd handles with the previous-mentioned metadata inconsistencies. Whenever new events
appear, for example when a new instrumented application is launched, the relayd updates the metadata
accordingly. As a result, the viewer (Babeltrace) receives from relayd a data packet with the actual
tracing information and an index packet to properly locate the information. The updated metadata are
also streamed to the client in a separate stream, as already mentioned. At any point, the live client
must have all the metadata associated with the data packets it receives. The resulting interconnection
is seen in Figure 3.4.

Figure 3.4: LTTng live tracing
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Chapter 4

Tracing semantics

Apart from the mechanism that enable tracing, it is very important to choose what kind of information
concerning the application is finally logged. A wise choice will ease the process of data correlation
and assumption extraction. In this chapter, we cite the different schools behind tracing semantics, we
analyze our tracing choice and finally we discuss how this choice is implemented.

4.1 Data correlation

Data resulting after tracing can be very bulky. Consequently, the process of extracting the information
needed that triggered tracing is challenging. Data should be correlated and only the needed parts of the
logs should be isolated and processed in order to extract meaningful information. This requires that
tracing data are capable of being correlated. By data correlation we refer to data grouping concerning
a specific subsystem or a specific system request.

Although there have been proposed many different tracing schemes, according to specific applications
needs, all these schemes can be summarized into two main categories. According to Google’s Dapper
paper[29] these categories are:

black-box schemes [4, 28] assume there is no additional information other than the message record
described above and use statistical regression techniques to infer that association.

annotation-based schemes [5, 14] rely on applications or middleware to explicitly tag every record
with a global identifier that links these message records back to the originating request.

While black-box schemes are more portable than annotation-based methods, they need more data in
order to gain sufficient accuracy due to their reliance on statistical inference. The key disadvantage of
annotation-based methods is, obviously, the need to manually instrument programs by adding instru-
mentation points in their source code.

As mentioned, BlkKin wants to achieve an end-to-end tracing so that latencies and faults between the
different subsystem layers to become obvious. Consequently, we decided to use an annotation-based
tracing schema.

4.2 Dapper tracing concepts

Dapper[29] is a large scale distributed systems tracing infrastructure created by Google. It uses an
annotation-based tracing scheme, which enables Google developers to monitor Google’ infrastruc-
ture only by instrumenting a small set of common libraries (RPC system, control flow). Although
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it is closed source, the tracing semantics used in Dapper are publicly available and have been used
in BlkKin’s development. Indeed, Google proposed a complete annotation-based scheme, which de-
scribes the following concepts for tracing:

annotation The actual information being logged. There are two kinds of annotations. Either timestamp,
where the specific timestamp of an event is being logged or key-value, where a specific key-value
pair is being logged.

span The basic unit of the process tree. Each specific processing phase can be depicted as a different
span. Each span should have a specific name and a distinct span id. It is important to note that
each span can contain information from multiple hosts.

trace Every span is associated with a specific trace. A different trace id is used to group data so
that all spans associated with the same initial request share the common trace id. For our case,
information concerning a specific IO request share the same trace id and each distinct IO request
initiates a new trace id.

parent span In order to depict the causal relationships between different spans in a single trace, parent
span id is used. Spans without a parent span ids are known as root spans.

The previous concepts fit out demands for end-to-end tracing. So, we implemented them in a tracing
library for C/C++ applications, which is described thoroughly in Section 5.3.

4.3 Zipkin: a Dapper open-source implementation

Dapper does not only describe the tracing semantics mentioned before, but is a full stack tracing
infrastructure which includes subsystems to aggregate data per host, a central collector, a storage
service and a user interface to query across the collected information. BlkKin, also has the same needs.
So, to cover some of them, instead of rewriting the needed subsystems, we decided to use Zipkin.

Figure 4.1: Zipkin Architecture

Zipkin1 is an open-source implementation of the Dapper paper by Twitter. It is used to gather timing
data for all the disparate services at Twitter. It manages with both the collection and lookup of this data
through a Collector and a Query service as well as the data presentation through a Web UI. Zipkin is

1 http://twitter.github.io/zipkin/
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written in Scala, while theWeb interface is written in Ruby and Javascript using the D3.js2 framework.
So, Zipkin is a full-stack system that encapsulates the Dapper tracing semantics out of the box. This
is why we chose to use Zipkin.

Concerning transportation, Zipkin uses Scribe, which enables Zipkin to Scale. So, in order to feed
Zipkin with data a Scribe client is needed. As mentioned in Chapter 2.4 about Scribe, a category and
a message is needed to log to Scribe. Zipkin messages themselves are also Thrift encoded so that the
collector can handle them and add them in the database. Zipkin thrift messages are encoded according
to the following thrift file (Listing 4.1)

This thift file defines:

Endpoint is the location where an annotation took place. An endpoint is identified by its name, IP
and port.

Annotation is the tracing information itself, exactly like the Dapper annotation

Span is also theDapper span identified by its name, span, trace and parent ids and can containmultiple
annotations.

Concerning the final data storage Zipkin provides various choices including SQLdatabases like SQLite,
MySQL, and PostgreSQL as well as NoSQL databases like Cassandra and even Redis. Twitter sug-
gests using Cassandra in Zipkin installations. They support that it performs well. However, Cassandra
imposes limitations concerning ad-hoc queries. So we used Zipkin both with Cassandra and MySQL
based on experiment and the information we wanted to extract.

The resulting Zipkin architecture can be seen in Figure 4.1. Although we did not use it, Twitter en-
courages using Zookeeper for trace synchronization purposes. However, in our case and scale there
was no such need.

2 http://d3js.org/
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1 //************** Collection related structs **************
2

3 // these are the annotations we always expect to find in a span
4 const string CLIENT_SEND = "cs"
5 const string CLIENT_RECV = "cr"
6 const string SERVER_SEND = "ss"
7 const string SERVER_RECV = "sr"
8

9 // this represents a host and port in a network
10 struct Endpoint {
11 1: i32 ipv4,
12 2: i16 port // beware that this will give us

negative ports. some conversion needed
13 3: string service_name // which service did this operation

happen on?
14 }
15

16 // some event took place, either one by the framework or by the user
17 struct Annotation {
18 1: i64 timestamp // microseconds from epoch
19 2: string value // what happened at the timestamp?
20 3: optional Endpoint host // host this happened on
21 }
22

23 enum AnnotationType { BOOL, BYTES, I16, I32, I64, DOUBLE, STRING }
24

25 struct BinaryAnnotation {
26 1: string key,
27 2: binary value,
28 3: AnnotationType annotation_type ,
29 4: optional Endpoint host
30 }
31

32 struct Span {
33 1: i64 trace_id // unique trace id, use for all spans

in trace
34 3: string name, // span name, rpc method for example
35 4: i64 id, // unique span id, only used for this

span
36 5: optional i64 parent_id , // parent span id
37 6: list<Annotation > annotations , // list of all annotations/events that

occured
38 8: list<BinaryAnnotation > binary_annotations // any binary annotations
39 }

Listing 4.1: Zipkin message thrift definition file
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Chapter 5

BlkKin Design

In the previous chapters we described the various challenges faced when dealing with distributed
tracing and tools that can be used in order to achieve our tracing goals. In this chapter we cite the design
of the our proposed tracing infrastructure called BlkKin. The name comes from the amalgamation of
Block storage and Zipkin, which is one of the used building blocks and was described thoroughly in
Section 4.3. BlkKin uses different open-source technologies and is designed to scale.

By building BlkKin we wanted to create a tracing infrastructure intended to cover the tracing needs
created in software defined and distributed storage systems (but of course not restricted to them). After
investigating the various needs that this kind of systems and the people developing and monitoring
them have, we tried to summarize the points that are needed for our tracing infrastructure. We defined
the following prerequisites that should be present in BlkKin:

low-overhead tracing
The traced system should be able to continue working in production scale serving real workloads
in order to locate deficiencies and faults that are not obvious in debugging or tracing mode.

live-tracing BlkKin should be able to send traces at the time the are being produced so that the de-
veloper or the administrator can have an overview of the system at that specific time.

Dapper tracing semantics Tracing logic should be implemented in accordance with the concepts
used by Dapper so that causal relationships and cross-layer architecture are depicted through
end-to-end tracing.

User interface BlkKin should provide various endpoints for the end user to collect and analyze data.
One of those should be a graphical user interface that gives a graphical overview of the system’s
performance per specific layer.

In the following sections we will step by step examine BlkKin. Specifically, in Section 5.1 we will
describe the rationale behind Blkin, while Section 5.2 goes through BlkKin’s building blocks and Sec-
tion 5.3 analyzises the BlkKin contributions. Finally, in Section 5.4 we illustrate the resulting BlkKin
architecture and the flow of a traced request from the time created in the instrumented infrastructure
until it ends up handled by BlkKin and stored.

5.1 Design rational

Since distributed systems follow a service-oriented architecture and consist of different software lay-
ers communicating with each other, while running on different cluster nodes, we have to implement
a tracing architecture that provides distributed tracing on each node, but collects all tracing data to a
central repository. Thus, we can discover the relationships between the different layers. Otherwise, it
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would be impossible to find out what actions did a specific event on a specific node triggered through-
out the cluster.

So, imitating the monitoring systems architecture as described in Section 2.4, BlkKin consists of the
following parts

tracing agent
This agent runs on every cluster node. It is responsible for capturing traces both from user and
kernel-space. Is supposed to add minimum overhead to the instrumented application.

central data collector The tracing agents from all the cluster nodes that we are interested about,
should send the aggregated tracing information to a central collecting place so that they can be
correlated. This system includes both the collecting part, a server that receives the data, and a
storage system (database, file system), where information is finally kept.

User interface The aggregated information should be available through a Web user-interface that
depicts the correlation between the systems’ distinct software layers. Through that interface the
user should be able to locate the information hewants andmake basic queries. Also, this interface
should be able to be used as a monitoring and alerting tool in case something misoperates.

5.2 BlkKin building blocks

After having identified our basic needs for BlkKin and respecting the proverb ‘not to reinvent the
wheel’, we turned to the open-source community to find projects that met our requirements and we
could combine to build BlkKin.

First we came across Zipkin (see Section 4.3 for more). Zipkin implements the Dapper semantics and
provides a mechanism for data aggregation, data storage and a Web UI. So, Zipkin could undertake
the collecting, storing and presenting tracing information leaving us to handle with application instru-
mentation and tracing. Another crucial factor in favor of using Zipkin was the fact that it makes use
of Scribe as a collector server. This is important because instead of storing tracing information in a
database, we can store them in HDFS and run Map-Reduce jobs on them. An mentioned, tracing is
notorious for the amount of data it produces, so we also need distributed processing in order to ex-
tract more perplexed information. In order to manipulate that amount of data, Twitter engineers used
distrubuted NoSQL databases and especially Cassandra. However, data from Zipkin that are stored
in Cassandra follow a specific indexing pattern that is created in accordance with Zipkin’s quering
needs. This pattern makes hard (or even prevents) to run ad-hoc custom queries to extract any kind of
correlation or information such as average values. Even Twitter uses Hadoop for these purposes. So
we could use Zipkin for some visualizing purposes and HDFS for custom data manipulation using the
same collecting mechanism and without the need to change data for the one or the other purpose. The
same data stored in the Zipkin database and used to depict the causal relationships in the Web UI, can
be stored in HDFS and investigated through Map-Reduce jobs.

Having covered the data collection and storage and the user-interface part, we had to create or use a
system for the tracing agent. After some some custom endeavours to create such a system, we con-
cluded that in order to be fast, this system has to use memory-mapped IO and specifically a ring buffer
where a producer and a consumer exchange data. We created such a mechanism using a shared mem-
ory segment where the instrumented application wrote binary data and another daemon consumed
them. However, we found out that to build such a mechanism, we had to solve multiple synchroniza-
tion and concurrency problems and the situation would become more difficult with multi-threaded
applications. Since BlkKin was designed to cope with production scale environments, we searched
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for a tested, open-source technology that covers that need. So, we decided to use LTTng. An men-
tioned in Section 3.4, LTTng enables us to trace both kernel and user-space applications with the same
infrastructure. Since LTTng uses tracepoints inserted in the source code, by using it we can deploy
any tracing logic we want. In our case, we had decided beforehand to use an annotation-based logic
through the Dapper semantics. So,custom instrumentation was exactly what we needed. Also, LTTng
provides live tracing support, which couldmake use of for BlkKin’s monitoring purposes. So, instantly
another prerequisite was covered. Finally, like Syslog, LTTng implements different severity levels,
namely a tracepoint can be considered emergency or waring for example. So, this enabled us to create
different tracepoint with different severity levels and in case of live monitoring enable only the most
basic ones, while in case of extensive tracing all tracepoints should be logged.

Finally, since we design BlkKin to be a distributed tracing infrastructure, we should take special care
about the time skews among the cluster node clocks. When tracing a single node, a single clock is
used. However, distributed applications create challenges concerning clock synchronizations. If we
do not care about clock synchronization, there is serious possibility to find a request reply virtually
taking place before the request itself, because there is time skew between the sever and the client.
Older approaches ([2]) used post-processing techniques in order to adjust the time skews. According
to these techniques, each cluster node collects tracing information based on its local clock, while a
specific cluster node is considered anchor. During the tracing session, periodically each host sends
an echo message to the anchor, and the anchor replies with the sender’s timestamp and the anchor’s
current timestamp. The sending host receives the reply and records a time measurement consisting of
three timestamps: send, remote (i.e., anchor), and reply. Relying on the fact that the network commu-
nication time is the same for sending and replying, the time skew can be computed. After the end of the
tracing session these timeskews are interpolated to create the each host’s time-skew-with-the-anchor
line throughout the tracing session. Theses skews are applied to the logged timestamps before the
events end up to the database. These approaches performed quite well, but their major disadvantages
were the post-processing overhead to calculate the skew, which could be significant in case of long
tracing sessions, and the fact that live-tracing was impossible due to this needed post processing.

However, when the previous methods were developed, NTPs performance was not acceptable for
distributed tracing. According to [2] using NTP caused skews over 1000 µsec. In 2010 NTP version
4 was developed. According its RFC1 NTPv4 includes fundamental improvements in the mitigation
and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern
workstations and fast LANs. After experimenting with NTPv4 performance and accuracy, we decided
that it was adequate for our tracing needs, namely there was no response happening before its request,
only after a few hours of NTP syncing. One deployment that we also tried without remarkably better
result, was to use a cluster node as NTP server, since we care only about relative timestamps and
not absolute. Thus, exploiting the fast LAN we waited to have better synchronization results, but we
concluded that even a global NTP server operated well.

5.3 BlkKin contribution

At that point, after having decided about the different building blocks that BlkKin would use, we had
to find a way to make them cooperate. In this section we will explain how we made the above systems
communicating with each other in order to created a unified tracing infrastructure and what we needed
to add in order to complete BlkKin as an end-to-endmonitoring tool. This contribution is returned back
to the open-source community and the major part was created during my participation in the Google
Summer of Code 2014 in the LTTng project, under the supervision of Jeremie Galarneau.

1 http://tools.ietf.org/html/rfc5905
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5.3.1 BlkKin library

Since we had decided on the tracing infrastructure, we had to find a way to trace low-overhead applica-
tion in accordance with the Dapper semantics. Although Zipkin provides a variety of instrumentation
libraries for languages such as Java, Scala or Python, there was no such library for C/C++. So we
created a C/C++ library in accordance with the Dapper semantics which provides a useful API with
all the functions that a programmer would need to instrument such an application. This API is further
explained in Section 6.1. Although this library in backend-independent, which means that anybody
could just keep the API and implement a custom tracing infrastructure, we implemented a backed
based on LTTng. So, our library makes use of LTTng tracepoint in order to log the information we
want. Apart from the Dapper ids manipulation this library is a wrapper around LTTng tracing func-
tion that encapsulates the Dapper semantics, without exposing the LTTng backend to the programmer
instrumenting the application.

In addition, since we wanted to use BlkKin for monitoring purposes as well, BlkKin library should
implement a kind of sampling. Otherwise, the amount of data created would be huge and the network
traffic would be really high. Although a more elaborate mechanism for sampling could have been
created, BlkKin currently implements only a rate sampling which means only 1/N root spans are
actually initiated. Consequently, this sampling will affect the upper software layers as well. No root
span means no children span as well. Since we are talking about IO requests, the route of only one out
of N read/write requests will be actually traced.

5.3.2 Babeltrace plugins

As mentioned, Scribe uses Thrift as a communication protocol. So, we needed to implement a mech-
anism that would tranform LTTng data and send them to Scribe. LTTng data are encoded using the
CTF format and Babeltrace is responsible for transforming these data to a human readable format.
Consequently, we had to extend Babeltrace to communicate with Scribe. At first, we tried to imple-
ment this functionality within Babeltrace. So firstly we created a Scribe client written in C2 which
is used in Babeltrace. This version of Babeltrace3 was abandoned because Babeltrace internal code
architecture was hard to extend. Instead, we decided to use the Babeltrace Python bindings and deploy
this functionality as a Babeltrace plugin.

So, using these Python bindings and the facebook-scribemodule from pipwe created two different
plugins. The first plugin in generic and sends to Scribe any kind of LTTng data after transforming them
into JSON format. Using this plugin, we can avoid the tedious job of searching for information within
log-files. Instead, we can send our data to Scribe and store them in HDFS. After that creating simple
Map-Reduce jobs that read JSON encoded data can subtract any information we want. The motivation
for this functionality came from the Facebook’s equivalent tracing infrastructure called Scuba4 [1].

The other plugin was designed for Zipkin use only. Using the Python bindings reads CTF data and
expects them to have specific fields that will enable the creation of Zipkin messages. This plugin will
operate only when the BlkKin instrumentation library with the LTTng backend is used.

Finally, LTTng live tracing supports only CTF to text transformation and the above plugins could not
be used for live tracing. So we had to extend Babeltrace live support. Because at the spefic moment
of BlkKin’s development, Babeltrace underwent a generic code refactoring, we could only give a
temporary solution. After that refactoring the above plugins would work with live support as well.
Consequently, we offered just an evanescent solution for LTTng live tracing for Zipkin data. According

2 https://github.com/marioskogias/scribe-c-client
3 https://github.com/marioskogias/babeltrace/tree/scribe-client
4 https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920
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to this solution, LTTng is obliged to log only specific tracepoints. After that, Babeltrace sends these
data to a Python consumer communicating over a named Pipe. Implementation details are further
explained in Section 6.4.

5.3.3 BlkKin Monitoring UI

Although Zipkin’s UI was adequate for investigating the correlations between the different storage
layers, it didn’t cover our needs as an alerting tool. To cover this need, we designed a simple Python-
django5 application, what communicates with the Zipkin database. This application is responsible to
gather particular metrics, mostly average values, such as the average network communication over the
last 10 minutes, and present them accordingly. The administrator should be able to provide threshold
values for these metrics. If the values are under the thresholds the UI shows them green, but when
the metrics are over the threshold values, they are illustrated red. These threshold values are the result
from elaborate data analysis over a wide series of data in the HDFS.

5.4 BlkKin architecture and data flow

In this section we present the overall BlkKin architecture and data flow. As we can see in Figure 5.1 we
have an application written in C/C++we are interested to trace or monitor. After we have identified the
different application layers and decided how to implement the Dapper semantics for it, we instrument
its source code using the BlkKik library. The host where the application runs, runs the LTTng daemons
as well. So, whenever an instrumentation point is reached, a tracepoint logs the tracing information
to LTTng. After that, depending on whether we are having a live tracing session or not, the CTF data
will be send either to the relayd or to local storage. In case of live tracing, our version of Babeltrace
will communicate with the relayd, get the CTF data and send them to the Python consumer over
a named Pipe. Then this consumer will transform them into Scribe messages and send them to the
Scribe server. In case of a non-live tracing session, the CTF data will end up to the local disk. After
the end of the session, using our Babeltrace plugins, will transform them again into Scribe messages
and send them to Scribe.

Figure 5.1: BlkKin Internal Communication

One important thing to mention is that, every communication arrow in Figure 5.1 is a TCP connection.
This, in conjunction with the Scribe characteristics, gives us the ability for a variety of BlkKin deploy-
ments within the instrumented cluster. For example we can have multiple relayds and a single Scribe
server. However, as it is going to be clarified in the Evaluation (Chapter 7), the most appropriate and

5 https://www.djangoproject.com/
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even suggested by Twitter deployment is the one illustrated in Figure 5.2. In this deployment, there
is a whole BlkKin stack running on each cluster node, where the instrumented application runs. This
includes a local Scribe daemon as well. This deployment enables us to take advantage of the Scribe
batch messaging capability. All the CTF messages are send to relayd and Babeltrace over localhost
which is faster and then end up to the local Scribe server. Scribe is optimized to batch messages or
temporarily store them locally if the next Scribe server is unavailable. This lowers the network traffic
and prevents us from data loss. Also, it enables us from changing the final data destination (Zipkin or
HDFS) simply by changing the configuration file from which each local Scribe daemon gets config-
ured.

Figure 5.2: BlkKin Deployment
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Chapter 6

BlkKin Implementation

In the previous chapter, we discussed how BlkKin was design to fulfil all the needed prerequisites.
In this chapter, we will present how we implemented the BlkKin’s interconnecting parts and the parts
needed to use BlkKin and subtract useful information. There also included code snippets that clarify
the implementation.

6.1 Instrumentation Library

As mentioned, we needed to implement a library in C/C++ that encapsulates the tracing seman-
tics mentioned in Dapper. This API should give programmers the ability to perform any kind of
tracing operation or correlation they want. Since Zipkin was designed for distributed Web services,
the existing, equivalent Zipkin libraries for other languages, make use of HTTP headers in order to
transport the correlating information. In fact, there are three distinct HTTP headers that travel along
with the HTTP requests and used for tracing. These headers are X-B3-TraceId, X-B3-SpanId and
X-B3-ParentSpanId. In our case, we have C/C++ applications communicating, so instead of these
HTTP headers, we created the equivalent C-struct which includes the same information. This struct is
the one in Listing 6.1.

1 /**
2 * @struct blkin_trace_info
3 * The information exchanged between different layers offering the needed
4 * trace semantics
5 * */
6 struct blkin_trace_info {
7 int64_t trace_id;
8 int64_t span_id;
9 int64_t parent_span_id;
10 };

Listing 6.1: BlkKin basic struct

The above struct is exchanged between the different software layers and used for tracing their corre-
lations.

According to Zipkin, in order to create a trace, you also need an Endpoint and a name for the trace.
So, when an application receives or creates a new struct blkin_trace_info, it also creates a
blkin_trace as seen in Listing 6.2 and then moves on to the other library operations.

After the above structs creation, the instrumented application could either create annotations (Listing
6.4) either timestamp or key-value. Also, based on the instrumentation, the library enables the pro-
grammer to create a child span (Listing 6.3), based on the information of the current span, namely a
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1 /**
2 * @struct blkin_endpoint
3 * Information about an endpoint of our instrumented application where
4 * annotations take place
5 * */
6 struct blkin_endpoint {
7 char *ip;
8 int port;
9 char *name;
10 };
11

12 /**
13 * @struct blkin_trace
14 * Struct used to define the context in which an annotation happens
15 * */
16 struct blkin_trace {
17 char *name;
18 struct blkin_trace_info info;
19 struct blkin_endpoint *trace_endpoint;
20 };

Listing 6.2: BlkKin trace struct

span with the same trace id, a different span id and a parent span id which is the same with the previous
span id. We have to mentioned that there is also a C++ wrapper for these function calls, but is omitted
since it shares exactly the same logic but implemented in an object-oriented way.

1 /**
2 * Initialize a new blkin_trace with the information given. The new trace

will
3 * have no parent so the parent id will be zero.
4 *
5 * @param new_trace the blkin_trace to be initialized
6 * @param name the trace's name
7 * @param endpoint a pointer to a blkin_endpoint struct that contains info

about
8 * where the specif trace takes place
9 *
10 * @returns 1 if success -1 if error
11 */
12 int _blkin_init_new_trace(struct blkin_trace *new_trace , char *name,
13 struct blkin_endpoint *endpoint);
14

15 /**
16 * Initialize a blkin_trace as a child of the given parent bkin_trace. The

child
17 * trace will have the same trace_id , new span_id and parent_span_id its
18 * parent's span_id.
19 *
20 * @param child the blkin_trace to be initialized
21 * @param parent the parent blkin_trace
22 * @param child_name the blkin_trace name of the child
23 *
24 * @returns 1 if success -1 if error
25 */
26 int _blkin_init_child(struct blkin_trace *child, struct blkin_trace *

parent,
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27 struct blkin_endpoint *endpoint,
28 char *child_name);
29

30 /**
31 * Initialize a blkin_trace struct and set the blkin_trace_info field to

be
32 * child of the given blkin_trace_info. This means
33 * Same trace_id
34 * Different span_id
35 * Child's parent_span_id == parent's span_id
36 *
37 * @param child the new child blkin_trace_info
38 * @param info the parent's blkin_trace_info struct
39 * @param child_name the blkin_trace struct name field
40 *
41 * @returns 1 if success -1 if error
42 */
43 int _blkin_init_child_info(struct blkin_trace *child,
44 struct blkin_trace_info *info, struct blkin_endpoint *endpoint ,
45 char *child_name);

Listing 6.3: BlkKin child actions

1 /**
2 * @typedef blkin_annotation_type
3 * There are 2 kinds of annotation key-val and timestamp
4 */
5 typedef enum {
6 ANNOT_STRING = 0,
7 ANNOT_TIMESTAMP
8 } blkin_annotation_type;
9

10 /**
11 * @struct blkin_annotation
12 * Struct carrying information about an annotation. This information can

either
13 * be key-val or that a specific event happened
14 */
15 struct blkin_annotation {
16 blkin_annotation_type type;
17 char *key;
18 char *val;
19 struct blkin_endpoint *annotation_endpoint;
20 };
21

22 /**
23 * Initialize a key-value blkin_annotation
24 *
25 * @param annotation the annotation to be initialized
26 * @param key the annotation's key
27 * @param val the annotation's value
28 * @param endpoint where did this annotation occured
29 *
30 * @returns 1 if success -1 if error
31 */
32 int _blkin_init_string_annotation(struct blkin_annotation *annotation ,

char *key,
33 char *val,
34 struct blkin_endpoint * endpoint);
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35

36 /**
37 * Initialize a timestamp blkin_annotation
38 *
39 * @param annotation the annotation to be initialized
40 * @param event the event happened to be annotated
41 * @param endpoint where did this annotation occured
42 *
43 * @returns 1 if success -1 if error
44 */
45 int _blkin_init_timestamp_annotation(struct blkin_annotation *annot, char

*event,
46 struct blkin_endpoint * endpoint);
47

48 /**
49 * Log an annotation in terms of a specific trace
50 *
51 * @param trace the trace to which the annotation belongs
52 * @param annotation the annotation to be logged
53 *
54 * @returns 1 if success -1 if error
55 */
56 int _blkin_record(struct blkin_trace *trace,
57 struct blkin_annotation *annotation);

Listing 6.4: BlkKin annotations

All these mentioned structs include ids which are supposed to be unique not only per computer node,
but per cluster as well, since we plan to implement distributed tracing. For our implementation, these
ids are uint_64 numbers that are randomly generated. In order to have a simple implementation, we
use rand(). However, the normal procedure to feed it with the current timestamp failed for us, since
we have multiple processes starting almost simultaneously on the same host and this resulted in all
these services taking the same feed and producing the same ids. Instead, we feed srand() by reading
from \dev\urandom, so each process gets at least different initial feed for the random generator.

6.2 LTTng tracing backend

After having defined the above API, we had to provide an implementation which is going to be based
on LTTng. LTTng is activated only whenever the fucntion record is called. So, someone could keep
the rest of the library and implement a custom tracing backend only by changing this function. Con-
cerning the LTTng case, the record() function makes LTTng tracepoint() calls. These calls are
predefined in a header file. This header file is used by LTTng to create the methods bodies and the
object file which is finally linked to the final BlkKin object file, which in turn is linked with the in-
strumented application. In Listing 6.5 you can see how we defined the tracepoint for the key-value
annotations. To avoid repetition, in the Listing only the key-value tracepoint is illustrated. The times-
tamp tracepoint is the same, but instead of key-value information, we have the event name. These
tracepoint function calls are defined in such a way that they include all the necessary information for
Dapper tracing, such as trace ids. In this proof-of-concept version of BlkKin, all the tracepoints are
considered WARNINGS, and the severity level configured is such, so that all of them are eventually
logged.

LTTng assigns a timestamp to every event it records, so in case of the timestamp events we do not need
to care about timing information by calling gettimeofday() for example. Instead, LTTng makes use
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1 TRACEPOINT_EVENT(
2 zipkin,
3 keyval,
4 TP_ARGS(char *, trace_name , char *, service,
5 int, port, char *, ip, long, trace,
6 long, span, long, parent_span ,
7 char *, key, char *, val ),
8

9 TP_FIELDS(
10 /*
11 * Each span has a name mentioned on it in the UI
12 * This is the trace name
13 */
14 ctf_string(trace_name , trace_name)
15 /*
16 * Each trace takes place in a specific machine-endpoint
17 * This is identified by a name, a port number and an ip
18 */
19 ctf_string(service_name , service)
20 ctf_integer(int, port_no, port)
21 ctf_string(ip, ip)
22 /*
23 * According to the tracing semantics each trace should

have
24 * a trace id, a span id and a parent span id
25 */
26 ctf_integer(long, trace_id, trace)
27 ctf_integer(long, span_id, span)
28 ctf_integer(long, parent_span_id , parent_span)
29 /*
30 * The following is the real annotated information
31 */
32 ctf_string(key, key)
33 ctf_string(val, val)
34 )
35 )
36 TRACEPOINT_LOGLEVEL(
37 zipkin,
38 keyval,
39 TRACE_WARNING)

Listing 6.5: BlkKin tracepoints

of CLOCK_MONOTONIC, which is transformed to real timestamp during the reading process in Babel-
trace. As part of the CTF metadata, LTTng also sends the timestamp and the monotonic value of the
time when the session started, so that the real timestamp can be formed during reading.

As far as sampling is concerned, in order not to trace all the requests, one has to export an environ-
mental variable called RATE. This variable is an integer N which indicates that 1/N calls to blkin_-
init_new_trace should actually create a new trace. This way we can regulate the amount of traces
we produce.

So, the BlkKin library provides a header file to be included in the source code and a dynamically
linked object file to be linked with the application. This dll includes all the necessary LTTng functions
as well. However, as we described in Section 3.4, normally the LTTng threads are created whenever
the dll is loaded. This would cause problems for applications that fork(), because the child would
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not have its own LTTng threads to trace. So, instead, we used dlopen dlsym and manually load the
BlkKin functions which in turn load the LTTng object file and create the needed threads whenever the
function blkin_init() is called.

To sum up, we cite an execution example in Listing 6.7 and its Makefile in Listing 6.6.

1 test: test.c $(DLIBFRONT).so
2 gcc test.c -o test -g -I. -L. -lblkin-front
3

4 libblkin-front.so: blkin-front.o
5 gcc -shared -g -o $@ $< -ldl
6

7 blkin-front.o: blkin-front.c
8 gcc -I. -g -Wall -fpic -c -o $@ $<
9

10 libzipkin -c.so: zipkin_c.o tp.o
11 gcc -shared -o $@ $^ $(LIBS)
12

13 zipkin_c.o: zipkin_c.c zipkin_c.h zipkin_trace.h
14 gcc -I. -Wall -fpic -g -c -o $@ $<
15

16 tp.o: tp.c zipkin_trace.h
17 gcc -I. -fpic -g -c -o $@ $<

Listing 6.6: BlkKin example Makefile

1 #include <blkin-front.h>
2

3 int main() {
4 r = blkin_init();
5 if (r < 0) {
6 fprintf(stderr, "Could␣not␣initialize␣blkin\n");
7 exit(1);
8 }
9

10 /*initialize endpoint*/
11 struct blkin_endpoint endp;
12 blkin_init_endpoint(&endp, "10.0.0.1", 5000, "service␣a");
13

14 /*Initialize trace*/
15 struct blkin_trace trace;
16 blkin_init_new_trace(&trace, "process␣a", &endp);
17

18 /*Initialize annotation*/
19 struct blkin_annotation ant;
20 blkin_init_timestamp_annotation(&ant, "Test␣annotation", &endp);
21

22 /*Log a timestamp event*/
23 blkin_record(&trace, &ant);
24 }

Listing 6.7: BlkKin execution example
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6.3 Babeltrace plugins implementation

In this section we will describe how we implemented the Babeltrace plugins that convert CTF data to
Scribe messages and send them to the Scribe server. As mentioned, we implemented two different plu-
gins one generic that sends JSON data to Scribe and one Zipkin-specific that creates Scribe messages
that end up to Zipkin. Since Scribe messages are simple strings after all, both plugins share a common
core that handles with the Scribe connection and message transportation. Each plugin implements a
different message formation part which results to a string message to be sent to Scribe.

First we will explain how we extract the tracing information. Babeltrace exposes a Python library
which is created using swig2.01. According to this library, in order to read the CTF data you have to
create a Tracecollection object and call the method add_trace on it passing the trace path. After
that, a Python generator is created in Tracecollection.events. If we iterate over that generator,
we can take the CTF event trace information formated as a Python object which has properties such
as the event name and the timestamp as well as another generator that returns the event information
in the form of a tuple (item-name, item-value), namely the values passed to the tracepoint function
call. After that we can manipulate the data the way we want.

The case of the JSON format is easy since after that we can easily create a Python dictionary and
transform it into a JSON object which is ready to be forwarded to Scribe as it is already a string. On
the other hand, in order to feed data to Zipkin the procedure is different. As mentioned in Section
4.3, Zipkin makes use of Thrift as well in order to create a binary representation of the events and
the Thrift file used can be found in Listing 4.1. So, in order to create these messages, we used Thrift
to create the Python code from the Zipkin Thrift file. Thrift created the Python classes needed. So,
when we obtained the tracing information with the method mentioned above, we passed them to the
class constructors and created the equivalent Span, Annotation and Endpoint objects. After that
each span is encoded using the Thrift TBinaryProtocol and this value, in order to become a string,
is base64 encoded. After this procedure, we have the final string to forward to Scribe. However, we
should mention that the use of the BlkKin plugin is possible only when the BlkKin library was been
used for application instrumentation and is not a general-purpose plugin.

After having formatted the messages, we have to send them to Scribe. To do that we used the Python
module facebook-scribe from pip. Sending a message to Scribe is as simple as it seen in Listing
6.8.

1 socket = TSocket.TSocket(host="HOST", port=9999)
2 transport = TTransport.TFramedTransport(socket)
3 protocol = TBinaryProtocol.TBinaryProtocol(trans=transport , strictRead=

False, strictWrite=False)
4 client = scribe.Client(protocol)
5 transport.open()
6

7 category = 'zipkin'
8 message = 'hello␣world'
9

10 log_entry = scribe.LogEntry(category , message)
11 result = client.Log(messages=[log_entry])
12 if result == 0:
13 print 'success'

Listing 6.8: Scribe messaging

In case we want to annotate on a subsystem that does not have distinct beginning and end, Zipkin
1 http://www.swig.org/

63



provides some special annotations that are used to start and end a span. They are used only for instru-
mentation and visualization purposes. However, by using these annotations we can be sure that a span
has ended and then forward the packed message to Scribe, namely a message that includes multiple
annotations. This reduces the number of messages and consequently the network traffic and the server
load. Depending on the instrumentation this may not be possible when having a span that collects
annotations from multiple computer nodes in cases of distributed traces. So, the Zipkin plugin has the
option to collect annotations, temporarily store them in a dictionary using as a key the trace and span
id pair and when a predefined annotation is asked to be logged then create a message including all the
annotations for this specific span. In case this is not possible, the plugin just creates single-annotation
messages and forwards them to Scribe.

6.4 BlkKin Live tracing

Although, as alreadymentioned, the solution we gave for live tracing is only termporary, in this section
we explain how we implemented live tracing in BlkKin for reasons of completeness. This solution
probably will be abandoned when Babeltrace refactoring is over. Then, the above plugins will operate
with the live tracing as well.

As mentioned, Babeltrace offers only CTF-to-text transformations for live tracing. Although we could
redirect Babeltrace text output to a process that would create the Scribe messages, we chose to avoid
this CTF-to-text and text-to-Scribe conversion. Instead, we created a version of Babeltrace especially
for BlkKin. This version instead of reading generic CTF-events is aware of the events’ content as
described in 6.5. Consequently, instead of iterating over the CTF trace for generic events, this version
of Babeltrace extracts the included information and creates a C-struct, as seen in Listing 6.9, including
all the necessary information to create a Zipkin message.

1 struct zipkin_trace {
2 char trace_name[20];
3 char service_name[20];
4 int port;
5 char ip;
6 long trace_id;
7 long span_id;
8 long parent_span_id;
9 int kind; // 0 for timestamp 1 for key-val
10 char key[20];
11 char val[50];
12 uint64_t timestamp;
13 };

Listing 6.9: Babeltrace live struct

After that this struct is forwarded to a Unix pipe. On the other side of the pipe there is a Python process.
This process makes use of Python ctypes2. So whenever a struct is read, a Python object is created and
from that point, the Python consumer reuses the Zipkin Babeltrace plugin code to create the equivalent
Span, Annotation and Endpoint objects and finally send the base64-encoded message to Scribe.

2 https://docs.python.org/2/library/ctypes.html
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6.5 BlkKin Endpoints

6.5.1 BlkKin monitoring tool

As we mentioned in the design part, Zipkin covered a basic need for the user interface with its Web
UI. However, this specific UI can be used mostly for trace visualization and not as a tool that can be
used to detect abnormalities, fault or as an alerting mechanism. Thus, we created a simple Python-
django application. In this proof-of-concept implementation, this application communicates with the
Zipkin databse which is a MySQL database. We chose MySQL so that we can make any kind of
ad-hoc queries, avoiding schema-less options like Cassandra. The application queries the database for
aggregate and average information that depict the cluster state over the last Nminutes. After that either
using a threshold for these values or judging on other criteria, it illustrates this information as green
when everything is working properly, or red when there is a possible anomaly. There screenshots of
this tool in the evaluation part (Section 7.4).

6.5.2 Hadoop

Scribe can be configured to store the data it receives in HDFS. So, we used Hadoop 0.21.0 to store
tracing data from BlkKin for further analysis. The usecase scenario includes extensive tracing (not
real time) without sampling and post-processing the tracing data in order to locate the thresholds and
metrics used in the BlkKin monitoring tool. After that BlkKin can use sampling and send data to
Zipkin.

Based on the plugin used, different kind of data ends up inHDFS. If we use the JSONBabeltrace plugin
we end up having JSON data in the HDFS which can be manipulated easily with Map-Reduce jobs.
However, if we use the Zipkin Babeltrace plugin, then in the HDFS we have multiple files containing
base64 encoded strings. In order to extract the information wanted through Map-Reduce, we had to
decode this information following the opposite direction. Again using Thrift and the Zipkin Thrift
file we created the equivalent Java code which created the Annotation, Span and Endpoint classes
in Java. Then after reading from HDFS, we base64 decoded the strings and then TBinaryProtocol
decoded them. After that we could create the Span object. Since most of the data we wanted to extract
where the duration between two specific annotations, we created a simple Java interface to help us.
The interface can be seen in Listing 6.10 and its up to the user how to implement it. This interface
can be implemented either by the Mapper or by a class used by the Mapper used to pick the right
annotations. Whenever a Span with including annotations is read we have to define whether to keep
the span or not. The same decision has to be made for the included annotations in case we keep the
span. The timestamp of the kept annotations will be then forwarded to reducers. This will happen in
the form of a key-value pair (id, timestamp). The reducer’s job is just to subtract the two different
values belonging to the same id. This id is a string and its creation is also defined by the interface. For
our case we needed to create Map-Reduce jobs that compute average durations and it was really easy
to do so using the interface and the Thrift-produced Java code.
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1 public interface AnnotationChooser {
2 /**
3 * Function to decide or not to keep annotations from the specific

span
4 * @param s the specific span
5 * @return true for keep false for the opposite
6 */
7 boolean shouldKeepSpan(Span s);
8 /**
9 * Function to decide whether to keep the specific annotation or not
10 * @param a the annotation
11 * @return true or false
12 */
13 boolean shouldKeepAnnotation(Annotation a);
14 /**
15 * This function returns the string value used as id for the emited

timestamps
16 * @param s The span
17 * @param a The annotation
18 * @return the string id
19 */
20 String getId(Span s, Annotation a);
21 }

Listing 6.10: Hadoop interface
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Chapter 7

Evaluation

In this section we will describe our experience from using BlkKin in a real usecase senario. The in-
strumented infrastructure is described in Section 7.1 and the BlkKin environment in Section 7.2. After
that, in Section 7.3 we analyse performance metrics concerning the network and system overhead that
justify our design and deployment choices. Finally, in Section 7.4 we explain how we used BlkKin
to identify system faults which are virtually inserted by us, but reflect possible real failures or bottle-
necks.

7.1 Instrumented infrastructure

i As a use-case, we used BlkKin to instrument Archipelago and RADOS. These systems were ex-
amined in Sections 2.2 and 2.1.1 respectively. The purpose of this instrumentation is to track the
route of the IO request from the time they are created until they are finally served by RADOS. We
chose to instrument these applications because they require low-overhead instrumentation and en-
tail multiple obscure points because of their multi-layered architecture that BlkKin can shed light to.
Archipelago provides a cmd tool to create IO request archip-bench. However, we chose to instru-
ment Archipelago’s Qemu driver. So, instead of archip-bench the IO requests are initiated by a real
virtual machine based on Qemu that has an Archipelago-backed disk. For our testcases we used fio1
to create the needed IO load to the Archipelago volume.

As far as the instrumentation itself is concerned, Archipelago and Qemu are written in C and RADOS
in C++. So we used both the BlkKin C and C++ library.

The Qemu Archipelago driver receives the IO requests from Qemu and creates XSEG requests for
the VLMC. Qemu initiates the tracing information as well and Qemu spans are the root spans. After
that, this tracing information is carried as part of the XSEG request. To do that, we needed to extend
libxseg2 and add the tracing information needed as shown in Listing 6.1 nested in the XSEG request.
So, as far as Archipelago in concerned, the tracing information is transmitted as part of the XSEG
request. Each Archipelago peer is considered a different service, with a different endpoint that creates
a single span per IO request in the general case. So, in the Zipkin UI we expect to see each peer
represented as a single bar, whose length indicates the time this peer needed to serve this specific
request.

Unlike Archipelago where the instrumentation was obvious, instrumenting RADOS was more chal-
lenging. RADOS exposes a C-API (librados) which is used in the Archipelago rados-peer. So, the first
thing we did was to instrument the read and write calls of this API. Then, we needed to extend the
RADOS classes to transfer the tracing information. In a nutshell, after librados, Ceph protocol, which
is TCP-based, transfers the IO request to the cluster. So, the tracing information is encoded as part of

1 http://linux.die.net/man/1/fio
2 https://github.com/grnet/libxseg
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the MOSDOp Ceph object. Then the request after being decoded, enters a dispatch queue and waits to
be served. Based on the objects affected, a different placement group handles it. After the dispatch
queue, the request is handled by this pg’s primary OSD and then based on the replication factor, equal
number of replication operations are issued that follow the same route. Request handling includes jour-
nal access and filestore access. Through this proof-of-concept RADOS instrumentation, we attempted
not to expose much of the RADOS internals, so that the Zipkin UI would be self-explanatory even
for someone that is not familiar with the RADOS code architecture. We tried to instrument the code
so that we can extract any kind of information that would help, such as the time spent in the dispatch
queue, the network communication time, or the journaling duration and at the same time meaningfully
follow the causal relations used by Zipkin. For example, the IO handling by the primary OSD causes
the replication operations. So the replication operations are children spans of the handling operation
by the primary OSD.

As far as the test-bed is concerned, we used two physical nodes LAN interconnected, and set up two
OSDs on each node. On one of this nodes we installed Archipelago and Qemu. So, on the one node
we had the running VM, Archipelago and 2 OSDs and on the other just two OSDs. Each node had
a whole BlkKin stack running and a local Scribe server. Each Scribe server communicated with the
central Zipkin collector or the Scribe server logging to the Hadoop cluster. For Zipkin we used a
4-core. 8-gb RAM virtual machine, while for the Hadoop cluster, as it was used only as a proof of
concept, we used two 2-core, 4-gb virtual machines.

You can find some specs regarding the hardware and software infrastructure in Tables 7.1 and 7.2.

Component Description
CPU 2 x Intel(R) Xeon(R) CPU E5645 @ 2.40GHz [13]

Each CPU has six cores with Hyper-Threading enabled, which equals to 24 threads.
RAΜ 2 banks x 6 DIMMs PC3-10600

Peak transfer rate: 10660 MB/s
Hard disks 12x 7.2k RPM 2TB SAS HDs, 12x 7.2k RPM 600GB SAS HDs, 6x

100GB SSD SATA HDs

Table 7.1: Test-bed hardware specs

The Ceph OSDs on the one node used two SSD disks in RAID 0, one each, and the other two on the
other node two SAS disks in RAID 0, one each.

Software Version
OS Debian Wheezy
Linux kernel 3.2.0-4
lttng-tools 2.4

Table 7.2: Test-bed software specs

7.2 BlkKin tracing environment

In order to set up the tracing environment, apart from the central Scribe collector which could be either
the Zipkin collector or a Scribe server connected to HDFS, on each cluster node you have to follow
the next steps to live trace:

1. Start the local Scribe daemon
The local Scribe daemon is configured to send the received messages to the next Scribe server.
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In case of connection loss or congestion, the data are stored locally and forwarded when the
problem is solved.

2. Start LTTng live tracing
Create a live tracing session and enable all the userspace events for it. Then start Babeltrace live
and redirect its output to a named pipe.

3. Start the consumer
Start the python consumer that reads from the named pipe and send data to the local Scribe
server.

The overall procedure can be seen in Listing 7.1

1 #!/bin/bash
2

3 #Start the local Scribe server
4

5 src/scribd examples/example2client.conf
6

7 #Create the lttng session
8 lttng create --live 200000 -U net://localhost
9 #Enable all userspace events
10 lttng enable-evenut -u -a
11 #Start the session
12 lttng start
13

14 #Start babeltrace live
15 babeltrace -i lttng-live net://localhost/host/<hostname >/<session_name > >

/var/run/blkin
16

17 #Start the python consumer to send data to localhost to the predefined
Scribe port

18 ./consumer.py localhost 1464 /var/run/blkin

Listing 7.1: Setting up the tracing environment

7.3 Evaluation metrics

In this section we analyze some metrics concerning the network and the system overhead that BlkKin
imposes to the system. These metrics led us to the previous deployment architecture.

7.3.1 LTTng vs Syslog

First of all, we should evaluate the use of LTTng versus another logging system that is based on
system calls every time some information needs to be logged. SystemTap, DTrace or even syslog
make a system call or a stop at a break point whenever they need to trace something. This is claimed
to have high overhead for a system that needs to run in full load. As mentioned the BlkKin library was
backend independent, so we we changed the LTTng backend for a syslog backend and instrumented
a simple client server application with the BlkKin library. Then we measured the time each backend
took to finish tracing. The application was a simple two-process application, that communicate over a
UNIX pipe. The server created a root span, annotated and then passed a message to the client including

69



tracing information. The client created a child span annotated and answered back. A single iteration
triggers four annotations and we repeated this message passing for 10000 times. The results can be
seen in Table 7.3.

Backend Time for 10000 iterations
LTTng 1.8 sec
Syslog 3.38 sec

Table 7.3: LTTng vs Syslog comparison

As it was expected the syslog backend was about 90% slower than LTTng even for this single ex-
ample with few annotations per request. So LTTng was the only choice possible that combined the
low-overhead capability with the variety of tracing options such as user/kernel space tracing and per-
formance counter access.

7.3.2 Thrift vs JSON format

As we mentioned we created two similar Babeltrace plugins, one sending JSON formatted messages
and the other Thrift encoded messages to Scribe. It worths measuring the message size in these two
cases because the smaller the message the lower the network overhead. In order to evaluate this pa-
rameter we created a simple BlkKin message and send it to a Scribe server both with the JSON and
the Zipkin plugin. The message was as simple as seen in Listing 7.2

1 {
2 "event":"start",
3 "name":"process␣a",
4 "timestamp":1412236861119767739,
5 "service_name":"service␣a",
6 "parent_span_id":0,
7 "trace_id":8651812401464566866,
8 "ip":"10.0.0.1",
9 "port":5000,
10 "span_id":7498859655107060208
11 }

Listing 7.2: A simple JSON formatted message

The packet size of the Zipkin-Thrift-encoded and the JSON encoded messages sent to Scribe can be
seen in Table 7.4

Protocol Packet size in bytes
Thrift 246
JSON 316

Table 7.4: Packet sizes per protocol used

As it was expected, the Thrift message is much smaller that the JSON one even in this case that the
service and event names are small.

70



7.3.3 Scribe vs relayd

Another comparison we need to make to decide on the deployment architecture is the network over-
head created by Scribe and relayd. For example, instead of running a local Scribe server, we could run
a central realyd server per cluster and then send the data to the central Scribe server. Scribe, as men-
tioned offers buffering and batch messaging. Also, the LTTng consumerd will be faster when writing
to localhost rather than to a remote server, thus reducing the possibility to lose tracing information.
However, we have to figure out the amount of network traffic produced in the two cases. To evaluate
this, we created 10 simple messages as the previous ones and sent them to a local relayd and then they
were forward using Babeltrace live to the Scribe server. We measured the network traffic to localhost
and to the Scribe server.

Our first notice when using tcpdump on localhost is that relayd polls consumerd on a specific time
interval to find out if there are any new data available. So, we wouldn’t like to have our cluster being
flooded by polling messages. Concerning the tracing data themselves, excluding polling, the sums of
all the TCP packets’ payloads sent for the 10 messages mentioned, can be found in Table 7.5 for each
daemon.

Daemon Data size in bytes
Scribe 1974
relayd 1079

Table 7.5: Data sent for 10 Scribe messages

However, even if CTF-format is more compact that Thrift, we prefer to avoid the polling messages in
the cluster LAN and restrict them to localhost. We chose to make use of the Scribe batch messaging
capability in favor of the less payload size that CTF has to offer.

7.3.4 System overhead

In this subsection we evaluate the overhead that BlkKin poses to the instrumented application. To do
so, we created two different but typical IO loads using fio. The first one was 2GB of random 4Kb
writes and the second was 2GB of 64Kb sequential writes. These loads are diverse but really common
and help up evaluate our system’s performance under different working conditions. So, we ran fio
in the virtual machine towards the Archipelago volume and measured the bandwidth the system had
under different conditions. The scenarios we chose was without instrumentation, live tracing without
sampling, live tracing with 1/500 sampling and tracing without live support. The results can be seen
in Listings 7.1 and 7.2 and Tables 7.7 and 7.6 respectively.

Scenario Bandwidth in Kbytes/sec
no tracing 16887
stopped tracing 16076
normal tracing 14882
live tracing 14941
live tracing sampling 500 15480

Table 7.6: Bandwidth for 64Kb sequential writes
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Figure 7.1: Performance overhead for 4k random writes

Figure 7.2: Performance overhead for 64k sequential writes
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Scenario Bandwidth in Kbytes/sec
no tracing 1326.7
stopped tracing 1247.1
normal tracing 1100
live tracing 1107.8
live tracing sampling 500 11927

Table 7.7: Bandwidth for 4Kb random writes

Although the above figures depict different loads and working conditions, BlkKin performs in a sim-
ilar way. We can see that when tracing is disabled, we have about 5% bandwidth degradation. This
degradation is caused by the check whether LTTng should trace or not. In case of full tracing the per-
formance degradation increases at about 12% in case of sequential writes and at about 17% in case
of small, random writes. This degradation is caused by the tracepoint function calls that actually log
the information. The case of 4Kb writes is more affected because we have more IO request taking
place fast one after the other. So the LTTng load is greater. Both live tracing without sampling and
normal tracing affect the system in a similar way. The only change as far as LTTng is concerned is
that in case of live tracing the consumerd writes the tracing information to a TCP socket instead of
a local file descriptor. Finally, as we see in the scenario of sampled tracing, the degradation is such
that we can afford tracing our system in production scale. In our scenario, we chose to sample 1/500
IO requests. Depending on the system load, this sampling rate can be either reduced or increased.
It should be mentioned that in our instrumentation we used 113 annotations per single IO request in
order to track its whole route. So, the case of no-sampling, live tracing produced a significant amount
of network traffic and should be avoided not only because of this traffic, but also because of it, the
tracing information take more time to reach to Zipkin. Consequently, we will need more time to detect
a possible failure or problem.

7.4 Using BlkKin to detect bottlenecks and failures

As it has become obvious, BlkKin can be used for various reasons and trying to detect different prob-
lems either as part of the debugging process or as part of a fault detectionmechanism. In this subjection
we evaluate both of these uses.

7.4.1 Using Zipkin in debugging and system evaluation

The most simple use of BlkKin is to analyze the system’s performance, measure the communication
latencies, possible computation bottlenecks and generally to get a general overview of the request’s
evolution. For these reasons, the Zipkin UI is really usefull. This UI enables us to do simple queries
and to understand the causal relations, to evaluate the time differences between the different software
layers and to access the key-value annotations or even make queries based on them.

As seen in Figure 7.3 each span is represented as a separate bar whose length is commensurate to the
duration of this specific processing phase. As far as time is concerned, each request, namely its root
span, is considered to start at time 0 and all timestamp annotations have timestamps relative to the
first annotation of the trace. Also, if you click on a span that you are interested about, you can access
this span’s annotations as it can be seen in Figure 7.4. In this screenshot we chose to investigate an
‘OSD Handling op’, namely the span that annotates the OSD’s actions to serve and IO request. At
the top we can see each timestamp annotation with its relative time, while at the bottom we can see
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Figure 7.3: Zipkin UI overview

Figure 7.4: Zipkin UI Annotations view

the key-value annotations. For example, this operation handling refers to the specific RADOS object
whose name can be seen as part of the binary annotation.

During this thesis evolution, Zipkin changed its UI. The old UI offered another visualizing capability
that is planned to be added to the new UI soon. This capability was about service dependencies. As it
is seen in Figure 7.5, each service is depicted as a different circle whose radius is commensurate to the
processing duration of that specific phase. This d3 visualization depicts exactly the information flow.

In case that these visual representations are not enough and we want to extract aggregate values,
such as average values we have other choices. As mentioned Twitter suggest to deploy Zipkin with
Cassandra. However, we deployed Zipkin using MySQL in order to have the ability of ad-hoc queries.
So, depending on the amount of tracing data we can extract the information we want either from the
database or by using Hadoop. In our case, we used Hadoop to calculate the average journaling time
per OSD. So, simply by changing each local Scribe server’s configuration file, we chose to send data
to a Scribe server connected to HDFS and not Zipkin. Then, we created a Map-Reduce job to extract
the information wanted as described in Section 6.5. The information gathered can be seen in Table
7.8.
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Figure 7.5: Zipkin UI Dependencies View

OSD Journaling time (µsec)
OSD1 401
OSD2 494
OSD3 475
OSD4 475

Table 7.8: Average journaling time for the 4 OSDs

7.4.2 Using Zipkin to detect abnormal behaviors

The other BlkKin’s use is as an online anomaly detection mechanism. According to [8], numerous
techniques have been proposed for detecting system anomalies. Among them, the simplest ones are
the threshold-based techniques which are a form of service level agreements (SLAs). They are very
useful on the condition that their users clearly know the key metric to monitor and the best value of
the thresholds in different scenarios. Unfortunately, it is very difficult, even for an expert, to correctly
choose the necessarymetrics tomonitor and set the right values of the thresholds for different scenarios
in the context of today’s complex and dynamic computer systems. In addition, statistical learning or
data mining techniques are widely employed to construct probability models for detecting various
anomalies in large-scale systems based on some heuristics and assumptions, although these heuristics
and assumptions may only hold in some particular systems or scenarios. Other methods ([15]), include
artificial intelligence and neural networks, but they require large training datasets.

In this part of the evaluation, we present how we used Zipkin to detect common cases of anomaly that
are possible to happen in a storage cluster. This abnormalities refer to either network or disk problem.
We tried a threshold based alerting approach as a proof of concept, while the expressiveness and
correlation capabilities of BlkKin allow further investigation of more correlative detection models. In
our model, we conducted several tracing sessions for different IO loads and filled a Hadoop cluster
with these data. Afterwards, through Map-Reduce jobs, we concluded on the thresholds we are going
to use for the specific hardware and depending on the expected load. The thresholds included the
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communication times through the RADOS protocol and the times for journaling and filestore access.
Then, we inserted these threshold values to the BlkKin monitoring tool.

Apart from BlkKin, we needed to find a way to simulate a faulty situation. For a network fault this
was easy using the tc tool. This tool enables the user to insert common network faults, such as packet
loss, latency or packet corruption. However, the case of disk faults is more complex. To simulate a
faulty disk state there are multiple options. The most easy and the finally chosen is to add a significant
IO load with multiple threads making dummy read request to the specific disk. In our case of RADOS,
since we constantly write 4Mb objects, this will increase the disk latency. The second choice is to use
cgroups and the blockio controller. This choice enables us to throttle a disk bandwidth, by throttling
the bandwidth of the processes writing to this disk, namely the OSD process. Another choice is to use
the device mapper to create a faulty sector. The final choice is to use the Linux kernel fault injection
capabilities3. The complexity of the latter choices and the kernel dependencies made us avoid them
and just use a dummy read IO load to the disk that we need to act as in case of a fault using fio.

So, to simulate a disk fault we added a read IO load in the OSD4 journal partition. The results in Zipkin
can be seen in Figure 7.6. As we can see, the Journaling span of the OSD4 takes significantly more
time, when compared to a normal behaviour as seen in Figure 7.3 and as a result the whole request
completion is affected since journaling is synchronous and encapsulated within the request process.

Figure 7.6: Injected disk fault - Journaling Latency

Of course, this journaling duration is above the accepted threshold. So, the BlkKin monitoring UI
would illustrate the problem as seen in Figure 7.7.

A similar situation was simulated for a network problem. Using tc we added 10 ms of latency to the
NIC attached to the host where OSD1 and OSD3 run. The result are extended communication times
that can be seen as part of the Main spans in Figure 7.8. Again this faulty situation is observed as seen
in Figure 7.9 through the BlkKin monitoring tool.

3 https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
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Figure 7.7: Journaling Latency - BlkKin monitoring UI

Figure 7.8: Network Latency - Zipkin UI

Figure 7.9: Network Latency - BlkKin monitoring UI
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Chapter 8

Conclusion

8.1 Concluding Remarks

This thesis handles with the problem of low overhead distributed tracing aimed to analyze software
defined storage systems. In this kind of multi-layered software architectures finding and locating bot-
tlenecks and potential or even real faults is pretty challenging because of their complexity. After eval-
uating both various logging and tracing mechanism as well as different tracing schemas, we decided
to implement our own tracing infrastructure called BlkKin. BlkKin is based on opensource technolo-
gies, specifically LTTng and Zipkin, and implements the tracing semantics used by Google’s Dapper
tracing infrastructure. So BlkKin is a low-overhead tracing infrastructure that enables live tracing for
applications written in C/C++ and provides two distinct user interfaces, so that the end user can take
real time information about the system.

In order to accomplish this endeavour, we had to work with the LTTng community and extend their
software so that it can communicate with Zipkin. We also, created an instrumentation library for easy
application instrumentation.

As a proof of concept for our system, we instrumented Archipelago and RADOS source code. Con-
sequently, we were able to track an IO request’s route from the time Qemu accepted it until it was
finally served by RADOS and investigate any kind of latencies or bottlenecks each processing phase
may have. Also, we simulated different faulty situations that a distributed storage system may face
and investigated the use of BlkKin as an alerting mechanism for such kind of faults.

However, this work was just the beginning of cross-layered distributed tracing, since it provided the
framework for further investigation. Our mechanism can be used in any kind of low-overhead appli-
cation that needs a tracing and visualization infrastructure. So, far the Ceph community has showed
interest for BlkKin and we are in close contact so that BlkKin can become the main tracing infrastruc-
ture for RADOS.

8.2 Future Work

BlkKin future plans/work include:

• Better live support, after the Babeltrace plugin system is released.

• Better sampling mechanism that takes into account the request’s special characteristics, so that
meaningful information is not lost because of sampling

• Offer Babeltrace plugins as part of the LTTng source tree in the form of a Pythonmodule availabe
at pip.
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• Use BlkKin in different kinds of distributed systems such as parallel applications, MPI for ex-
ample.

As far as the RADOS instrumentation is concerned, future work includes:

• Better RADOS instrumentation not only for read and write requests. This instrumentation re-
quires deep knowledge of the software’s internals so that its bottlenecks are found.

• Implementation of a correlative alerting system that relates the replica operations with the clus-
ter’s health in order to avoid our threshold based alerting mechanism.

• Use of BlkKin tracing data from RADOS instrumentation to create an AI-based failure detector.
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