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Abstract 

 

Global concerns about environmental pollution, regulatory framework, the ever 

increasing fuel costs and the competitive container carriers industry are driving the 

quest for ever improved ships with higher performance efficiency, lower emissions 

and more attractive financially. In order to meet all these requirements, the designers 

need to push their conventional means to the limits and come up with new solutions 

and design features that improve the current solutions. Optimization seems to be the 

promising way to achieve the improvement goals, when applied with state of the art 

techniques that can identify the ship as a whole. Holistic design optimization is the 

way of analyzing and taking into account every system of the ship as a whole and not 

as synthesis of their parts and this scope leads to a more integrated approach of the 

ship design, contrary to the conventional ship design spiral. The most important part 

to materialize this approach is the fully parametric ship design model, made widely 

available lately though the advances of the CAD/CAE technology. Parametric 

modelling enables the designers to investigate their available options with regard to 

improvement efficiency, when combined with variation and optimization techniques. 

By enclosing all ship performance aspects like geometry, hydrostatics, stability, 

resistance and power, economics, energy and operational efficiency, as computational 

modules, the model gives a complete image of the design performance. Within the 

scope of this project, a case study of a 9000 TEU container carrier is modelled with the 

use of the powerful CAD/CAE system CAESES/FRIENDSHIP-Framework. The model 

provide the user with its performance indicators and thus allows the implementation 

in an iterative optimization process. Multi objective optimization with the use of 

Genetic Algorithms investigates the improvement margin of the ship design and 

provides the final Pareto-Front set of optimal designs and among them a top ranking 

design is chosen as representative of the whole procedure. 

 

 

Keywords: 

Optimization; CAD/CAE systems; Holistic Design; Parametric Modelling; FRIENDSHIP-

Framework; 9000 TEU container ship; port efficiency 
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Περίληψη  

 

Οι παγκόσμιες ανησυχίες για περιβαλλοντικά θέματα, το νομικό πλαίσιο, τα 

ολοένα αυξανόμενα κόστη καυσίμων και ο ανταγωνισμός της βιομηχανίας 

μεταφοράς εμπορευματοκιβωτίων, οδηγούν στην αναζήτηση νέων βελτιωμένων 

πλοίων με υψηλότερη αποδοτικότητα, χαμηλότερες εκπομπές και οικονομικότερα. 

Προκειμένου να καλυφθούν όλες αυτές οι απαιτήσεις, οι σχεδιαστές οφείλουν να 

ωθήσουν τα συμβατικά μέσα τους στα όρια και να βρουν νέες λύσεις και σχεδιαστικά 

χαρακτηριστικά που θα βελτιώσουν τις υπάρχουσες λύσεις. Η βελτιστοποίηση 

δείχνει να είναι πολλά υποσχόμενο μέσο για την επίτευξη αυτών των σκοπών, όταν 

εφαρμόζεται με σύγχρονες τεχνικές που αναγνωρίζουν το πλοίο ως σύνολο. Η 

ολιστική βελτιστοποίηση στο σχεδιασμό του πλοίου είναι η μέθοδος ανάλυσης και 

υπολογισμού όλων των υποσυστημάτων του πλοίου ως οντότητες και όχι ως σύνθεση 

των μερών τους και αυτή η θεώρηση οδηγεί σε μια περισσότερο ολοκληρωμένη 

προσέγγιση της σχεδίασης πλοίου, σε αντίθεση με τη συμβατική σπείρα σχεδίασης 

πλοίου. Το σημαντικότερο εργαλείο για την υλοποίηση αυτής της προσέγγισης είναι 

η παραμετρική σχεδίαση, που έγινε τελευταία ευρύτερα διαθέσιμη μέσω της 

ανάπτυξης των τεχνολογιών CAD/CAE. Η παραμετρική σχεδίαση δίνει στους 

σχεδιαστές τη δυνατότητα να διερευνήσουν τις διαθέσιμες επιλογές τους σχετικά με 

την βελτίωση της αποδοτικότητας, συνδυαζόμενη με τεχνικές προσομοίωσης και 

βελτιστοποίησης. Περικλείοντας όλους τους παράγοντες επιδόσεων του πλοίου όπως 

υδροστατικά, ευστάθεια, αντίσταση και πρόωση, οικονομικά, ενεργειακή και 

επιχειρησιακή αποδοτικότητα ως υπολογιστικά τμήματα, το μοντέλο δίνει μια πλήρη 

εικόνα των επιδόσεων του σχεδιασμού. Στα πλαίσια αυτής της εργασίας, 

μοντελοποιείται ένα πλοίο μεταφοράς κιβωτίων τάξης μεγέθους 9000 TEU με τη 

χρήση του ισχυρού CAD/CAE προγράμματος CAESES/FRIENDSHIP-Framework. Το 

μοντέλο παρέχει στο χρήστη τους δείκτες αποδοτικότητας και επιτρέπει την 

εφαρμογή μιας επαναληπτικής βελτιστοποίησης. Η πολυκριτηριακή βελτιστοποίηση 

με τη χρήση γενετικών αλγορίθμων διερευνά το περιθώριο βελτίωσης του 

σχεδιασμού και δίνει ως αποτέλεσμα το τελικό σύνολο των βέλτιστων σημείων 

σχεδίασης Pareto Front, μεταξύ των οποίων και ένα συγκεκριμένο σχέδιο που 

επιλέχθηκε ως το πρώτο στη σχετική κατάταξη, σαν αντιπροσωπευτικό της όλης 

διαδικασίας. 

Λέξεις κλειδιά: 

Βελτιστοποίηση, συστήματα CAD/CAE; ολιστική μελέτη, παραμετρική 

μοντελοποίηση, FRIENDSHIP-Framework, 9000 TEU container ship, αποδοτικότητα 

λιμενισμού  
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1 The Container Shipping Industry 

1.1 Container shipping evolution 

Trading and therefore shipping was one of the activities that humans developed as 

soon as their level of culture demanded the import of indigenous goods or the export 

of their products. Since all these primitive civilizations that developed so early these 

activities and high level of culture were located around the eastern Mediterranean 

and Mesopotamia area, the transport of the exchanged goods was inevitable, 

waterborne trade kicked off. The very first vessels to be used for the transport of 

goods across the Aegean Sea and eastern Mediterranean were human powered, with 

large storage spaces, to accommodate the stowage of the cargo. In modern terms, we 

would describe them as general cargo ships with no primitive handling gear consisting 

mainly of pulleys, ropes and levers, technology available from the construction field 

at the time, while liquids would be carried in clay pots and other grain products in 

sacks. 

That was the case since ancient times and remained in principle the same all the 

way up to the 19th century. Of course, there have been several other ship types 

developed over the time course, but most of them were related to people 

transportation, warships or fishery. The general cargo transportation ships followed 

the same principles for the storage and stowage of cargo on board and some 

evolutions were only made on the propulsion power and construction sides. Up until 

the Middle Ages the volume of trade could be handled by that kind of general cargo 

ships, the grains could still be put in bags and liquids in pots, while in only some cases 

big amounts of grain cargo would be carried in the bare cargo holds. The handling gear 

did not evolve significantly throughout the time and only adopted to the different type 

of cargo transported from time to time and the larger amount of grain cargo 

transported over time. Industrial revolution came to change societies, technology, and 

the nature of the transported goods. Different ship types evolved to cater the different 

cargo to be transported. Tankers for the transportation of liquids and bulk carriers for 

the grains were the first to differentiate, although a conversion of the ship type was 

not difficult for those primitive designs lacking many of the late safety measures. 

General equipment and cargo in small amounts was still transported in general cargo 

ships with large holds and it was not until the 1950s, that a major change in the 

shipping took place.  
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Figure A. 1  Ship Types 

In 1955 a trucking entrepreneur from North Carolina, USA, introduced the idea of 

carrying entire truck trailers with their cargo still inside. Malcom P. McLean realized 

that it would be much simpler and quicker to have one container that could be lifted 

directly from the truck onboard the ship, without having to unload its contents and 

container shipping was born on converted tankers! In the following years, containers 

would become more popular in the states, and specific ships for their transportation 

were built, while around 1960s the standard dimensions of containers were set. 

Intermodalism, was the new era in the seaborne transportation and it would change 

the whole logistics chain by unifying seaborne and land transportation from end to 

end. The International Standardization Organization defined the standard dimensions 

to be used, ensuring compatibility with the Twenty-foot Equivalent Unit- TEU being 

the standard unit, with length of 20 ft, height and breadth of 8 ft, while the Forty-foot 

Equivalent Unit-FEU is the most common used today. Containers were moved 

onboard ships then directly to trucks or trains seamlessly and with the minimum 

handling costs. This new transportation system is believed to be the driver or the 

globalization and the tremendous growth in the second half of the 20th century. 

Since early 70s this new ship type became popular and some big companies to rule 

the whole transportation chain emerged. By operating terminals, rail services and 

shipping lines, companies like Sea-Land (the offspring of Malcom McLean) and 

Maersk, were able to optimize the whole transportation process. At the initial 

development of this new market, consortia of carriers sharing space on ships and 

individual shareholders with shared responsibility were the main supporters and gave 

birth to the first shipping companies of this kind mainly in the US, Denmark and 

Germany. This had been the development model for this industry until recently, when 

more individual ship-owners active in other ship types, invest in containerships. The 
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recent increase in the containerized trade has drawn attention to this industry and 

will continue evenly in the near future. 

 

Figure A. 2  Global Containerized Trade 2001-2011 in million TEU [1] 

At the beginning of this new ship type, the vessels converted or built to carry 

containers, could handle up to 1000 TEU, enough to cover the transportation needs 

at the time. As the industry changed and more commodities and cargo was shipped in 

containers, the need for bigger vessels to cater major trade lines, brought a growth in 

ship sizes and older vessel capacities now served as feeders. The quest for bigger ships 

has reached new growths lately that we expect the deliveries of the first 18000 TEU 

container ships. This work will focus on the medium category for the latest standards, 

at 8000-9500 TEU, vessels that operate in major shipping lines between East Asia and 

northern Europe. 
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Figure A. 3  Containership size evolution [3] 

Figure A. 4  The largest available container ship [3] 
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1.2 Trade routes 

In the era of trade globalization, the trade routes have thickened around the world 

over the last decades. Defined by the trading trends and the industrial production of 

different regions, the container shipping lines expand around the world and especially 

between East Asia and North Europe or North America, the most advanced areas. The 

main trade routes with the highest activity are depicted below: 

Table A. I  Top Trade Routes [2] 

Top Trade Routes (TEU shipped) 2012 

Route 
West 

Bound 
East 

Bound 
North 
Bound 

South 
Bound 

Total 

Asia-North America 7,529,000 14,421,000   21,950,000 

Asia-North Europe 8,959,000 4,406,000   13,365,000 

Asia-Mediterranean 4,371,000 1,875,000   6,246,000 

North Europe-North America 2,632,000 1,250,446   4,637,000 

Asia-Middle East 2,802,151 1,250,446   4,052,597 

Australia-Far East   1,072,016 1,851,263 2,923,279 

Asia-East Coast South America   550,000 1,399,000 1,949,000 

North Europe/Mediterranean-East 
Coast South America 

  824,000 841,000 1,665,000 

North America-East Coast South 
America 

  667,000 574,000 1,241,000 

Figure A. 5  World shipping routes [3] 
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1.2.1 North Europe – East Asia route 

In this case study, the focus will be on the North Europe – Asia route, as 

implemented by some of the major liner companies. This route was chosen upon the 

size of container vessels used at the range of 8000-9500 TEU capacity. The same vessel 

category operates in the pacific route between China and the West Coast of the US. 

Bellow we have retrieved some interesting facts about the operation of our selected 

trade route by two major shipping lines. 

 

Figure A. 6  Alternative routes between North Europe and East Asia [3] 
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Hapag Lloyd (Germany): Loop 4 

 

Total transit time: 46 days 
Port Calls:  8 
Frequency:  weekly 

Ship size operating: 8000-9000 TEU 

Maersk Line (Denmark): AE6 Asia-Europe 

 
 
Total transit time: 47 days 
Port Calls:  10 
Frequency:  unknown 

Ship size operating: 8000-9000 TEU 

COSCO (China): CES service 

Total transit time: 38 days 
Port Calls:  8 
Frequency:  weekly 

Ship size operating: 8500 TEU 
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2 Computer Aided Ship Design and Engineering 

2.1 Evolution of CAD/CAE systems in ship design 

Advances in computer technology and the evolution of Computer Aided Design 

Software since the 1960s, introduced new tools in the ship design industry, which 

enabled the designers to be more creative and effective. These new media were firstly 

introduced to the shipbuilding industry, through the numerical control of a flame 

cutting torch in part production from steel plates [4]. Early adoption of the CAD1 in the 

ship design practice followed the principle of simulating the manual drafting by means 

of elastic curves. These early concepts were extended and based on more advanced 

curve definitions such as Bezier curves, B-Splines and NURBS2, while surface modeling 

followed shortly after. In the years to follow, the software developed would support 

even more intensive applications like hydrostatic calculations, ship stability and some 

structural and hydrodynamic analysis of ships. 

 

The advanced compexity of the ship designs and structures called for a system 

approach to the whole procedure, leading to a novel system analysis for the ship 

design methodology. The quest of the optimum and efficient ship design involved the 

introduction of optimization techniques such as Discrete or integer design variables, 

stohastic decision models and multiple criteria (or Pareto) optimization [4]. 

  

                                                      

1 CAD: Computer Aided Design 
2 NURBS: Non-Uniform Rational B Splines 

Table A. II  Generation of computing hardware and software design [4] 
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2.2 General Methodology of CASD systems 

The introduction of Computer-Aided Design technologies in the field of ship design 

was primarily focused on simulating the existing approach with the new means of 

technology. Thus, the existing familiar approach of the design spiral remained the 

main guideline, defining the four design phases [5]: 

 Conceptual model 

 Preliminary model 

 Final design model 

 Detailed and faired hull form model 

This linear approach though, falls mostly in line with the conventional means of 

ship design, while the advances in the CAD and CAE systems lead to a system-wise 

approach. In the core of this process lies the model, which interacts with the many 

different computational modules attached to it, providing results for different design 

phases. Based on these interrelations and the model structure, it is possible to tell 

apart the functions of each design phase. 

  

Figure A. 7 Model of Ship hull design process [5] 

In the conceptual design phase, data referring to main dimensions and the hard 

definition of geometry are related with physical laws’ functions and even empirical 

formulas, to provide an early estimation of basic ship particulars, e.g. displacement, 

propulsion power etc. Moving to the next phase, the preliminary one, the initial draft 

model and its topology created are used for further and more complex calculations 

including damage stability, oil outflow etc. among others. At this point there may be 
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an iterative or optimization process for the development of the design. During the two 

final phases, the final design and the engineering one, a solid 3D visualization of the 

model is created, minor details get finalized, as well as all construction details, internal 

arrangements and building drawings are taken care of [5]. 

In the bottom line, the application of CAD-CAE systems in hull forms design aims to 

greater effectiveness and higher quality in terms of the performance and safety 

indexes calculated and overall more accurate preliminary results. This leads to greater 

overall efficiency of the ship design process, with some interesting benefits [5]: 

 Shorter time to reach a certain design stage 

 Fast analytical calculations 

 Integration between CAD and CAE 

 Fast geometric manipulations and variations 

 Wider range of the design activities sequence 

 Increased job satisfaction 

2.3 Integrated ship design 

Modern ships need to be energy efficient, economic and reliable in order to 

confront the operational challenges in the industry. In the quest of the above, ship 

design today made a little shift from the traditional procedure, to include smarter 

methods like parametric modelling, numerical analysis, simulations and optimization. 

These advanced methods enabled by our strong computational resources today can 

be implemented at an earlier, rather than later stage of the ship design process to 

achieve better designs in every way possible. As mentioned above, the “combined 

systems” approach within a holistic scope of the ship design, bypasses the original 

design spiral and leads to a more integrated solution. This integrated approach has 

the ship model at its core and all the computational modules interact with it in many 

different layers. 

  

Figure A. 8 Traditional design spiral vs. integrated approach [6] 
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2.4 Parametric modelling 

Under the holistic approach, the model interacts with the different computation 

modules by means of some basic parameters, values that define the model itself, its 

geometry and properties. In modern CAD/CAE tools, the range of the parameters 

defined, demonstrates three major geometric modeling concepts [7]: 

 Conventional design 

 Partially-parametric design 

 Fully-parametric design 

2.4.1 Conventional design 

This case is about the simulation of the traditional design techniques, where the 

designer has full control of the shape by moving the essential points forming the 

curves. This brings also great responsibility, as the designer has to deal with fairing, 

meeting constraints etc. Conventional approach is a rather rigid method, where any 

changes to the original design are a time consuming task. 

2.4.2 Semi-parametric design 

CAD tools under this category are able to build on existing shapes and modify a 

given hull form by controlling parameters that create variants. New hull forms can be 

produced by advanced transformations (e.g. Lackenby transformation) or distortion 

based on a given parent hull form. The method is qualified as “partially parametric”, 

as changes apply only partially to an existing parent geometry, which in the end keeps 

all the shape related information unchanged. It is although favored against 

conventional design, as it can provide the designer some fast simple variants in the 

initial optimization procedure. 

2.4.3 Fully-parametric design 

In this last case, the model itself is generated out of relationships created by form 

parameters. This interaction enables creating ship hulls quickly and effectively, while 

many of the parameters are in many cases performance indicators, providing the 

designer with instant feedback. Moreover, the mathematically defined curves and 

surfaces yield excellent fairness by directly using the model parameters. Since all 

computations are highly integrated in the model, there is a wide range of variants, as 

soon as the model is set up. 

Depending on the required level of control over the design, each approach can be 

chosen. As more and more designers take advantage of the CAD CAE features, they 

move towards the partial and full parametric modelling categories. While partially 

parametric models build on existing shapes and are exceptional for many short term 

applications, they are not compatible with more advanced and automatic procedures. 

Multi objective optimizations require a highly interconnected model as a fully 
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parametric design, in order to apply iterative, AI or machine learning techniques and 

this is the case that this study focuses on. 

 

 Figure A. 9 Conventional modelling (outer) vs form parameter design (inner) 
[8]  

2.5 Containership design 

As part of the transportation chain, containerships are displacement vessels 

following some specific constraints with regard to the containers they carry. Their 

main dimensions are multiplies of the original container dimensions, plus some extra 

spaces like double bottom, double sides, or bay spacing. The shape of the hull of these 

ships is rather more slender than other cargo vessels such as tankers and bulkers, and 

that is due to the higher Froude numbers they operate, since their operational speed 

is also much higher [9]. During the last years, the typical operational speed of a 

container ship would mount to 25 kn, while today they have reduced their speed even 

down to 19-20 kn. That calls for a change in the typical designs lately and this is where 

studies like this and formal optimizations in general come in use. In terms of 

propulsion, the growth of the ship size and the demand for high speed, made twin 

skeg configurations and two propellers typical solutions for the designers, while the 

demand for lower speeds lately and the slow steaming trend, call for a single shaft 

propeller and bulkier aft ship designs. Stability is rarely an issue, as long as the vertical 

centers of weights are kept as low as possible, while the consumables’ changes during 

the trip can affect the stability and should be taken into account. High metacentric 

height GM can also be an issue, by causing high frequency rolling and accelerations 

respectively. Another interesting design feature of this ship type is the bow shape, 

which has a large flare angle, so that a large deck area can accommodate enough 

containers, while at the waterline level and below it needs to be wave piercing and of 

high hydrodynamic performance. The ship design procedure follows the standard 

design spiral procedure, as the design evolves after iterations to meet the 

specifications. 
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3 CAD/CAE Application in Ship Holistic Design Optimization 

Based on holism (derivative of the greek term “holos” (όλος), meaning “the whole”, 

“entire”), this concept optimization takes into consideration all natural systems as 

wholes and not as synthesis of their parts [10]. In terms of ship design optimization, 

this approach addresses the whole ship’s life cycle beginning from the early stages of 

conceptual and preliminary design to the final design, the economic operation of the 

vessel and all the way down to the recycling or sell. Merging all the different 

parameters and indicators to take into consideration under a single model is quite 

hard task and leads to really complex computational models. Setting main 

assumptions as design specifications is a first step in working with such complex 

holistic models, in the quest of the optimum design, which in the end should indicate 

a more efficient design. Efficiency is of course a matter of economic profits and in this 

case, the reduced Required Freight Rate can be a major higher efficiency indicator.  

 

Figure A. 10 Ship functions according to Levander [10] 

Optimizing the ship design in a holistic way, means to address and optimize several 

and gradually all aspects of ship’s life; at least the stages of design, construction and 

operation [10]. The implementation of all the different functional elements, design 

features and geometry modules in a single model, forms a nonlinear optimization 

problem, where unconventional optimization methods and strategies should be 

applied. The use of Genetic Algorithms combined with gradient based search 

techniques and with utility functions for the design evaluation is a popular way to deal 

with that kind of optimization problems. Following this procedure, the generic ship 

design optimization problem describes the exhaustive multi-objective and multi-

constrained optimization with least reduction of the entire real design problem [10]. 

This definition is served by the following basic elements of the whole holistic 

optimization project: 
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 Optimization criteria (merit functions, goals):  that could be a major 

performance indicator, needed to be improved in an economic efficient 

sense. 

 Constraints:  a list of mathematically defined criteria subject to regulations 

in terms of safety or the dimensions of the project. 

 Design parameters:  a list of parameters (vector of design variables) 

defining the design under optimization (mainly dimensions, capacities etc.) 

 Input data:  including all the major design specifications, size parameters, 

reference data, and all the required information for the additional 

calculations for the design performance 

 Output:  again a set of design parameters (vector of design variables) which 

deliver designs with minimized (or maximized, as defined per case) merit 

functions. These are supposed to be the optimal designs, although, there is 

a trade off at the selection of the optimum along the Pareto front, for multi-

objective optimizations. 

 

Figure A. 11 Generic Ship design optimization problem breakdown [10] 
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4 Port Efficiency of Container Vessels 

In the frame of a holistic ship efficiency optimization, targeting for reduced fuel 

consumption at lower speeds, lower emissions and enhanced port efficiency, the time 

spent in port is an important ship design characteristic. The pursue of more efficient 

designs is calling for any kind of design optimization with objectives ranging from 

resistance and sea keeping performance to EEDI and required freight rate. Within the 

ship design holistic optimization context, many objectives are taken into 

consideration, aiming to a better over-all performance of the ship in operation. 

Vessels operate at lower speeds, trying to keep the same voyage times, reducing 

fuel costs, while not compromising on services’ quality. The only way to achieve that 

is by eliminating the time spent in port for loading operations and save it to 

compensate additional voyage time at lower speeds, following an old saying that goes: 

“The fastest trip is made in Port”. In that case, Port Efficiency of a ship design in terms 

of port operations speed, is of particular interest and shall be an optimization 

objective of its own. In this case, container ship designs are studied and optimized, so 

the container ships’ port efficiency is our focus. 

In that sense, the phenomenon can be addressed in many different ways. As a side 

project of this thesis, an extensive loading simulation study has tried to take a look 

into the matter by analyzing statistical data that simulate the actual ship operations. 

At a later stage, that simulation configuration could possible evolve into one of the 

computational modules within fully parametric models and taken into account under 

the umbrella of holistic design optimization. A more simple approach was chosen for 

the scope of this project though, by looking into one particular design characteristic 

that is rather important and has an interesting correlation with the actual port 

efficiency of container vessels and that is the stowage ratio: 
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑜𝑛 𝑑𝑒𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 ℎ𝑜𝑙𝑑
. It seems 

that the more containers stowed on deck over the ones stored in the holds, the more 

efficient and fast for loading operations the ship becomes. This is an assumption that 

follows the common sense.
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1 Case Study: 9000 TEU Class container carrier and transport 

scenario 

The study conducted in the scope of this thesis is focused on the case of an 8000 

TEU class container carrier employed in the North Europe – East Asia line, as described 

in PART A:1.2.1 and is thoroughly presented below. Given the initial design 

specifications, a research of similar ships’ data from available databases was 

conducted, in order to set up some basic design parameters. At the core of this project 

lies the complex parametric model, which was built from scratch, based on similar 

models from previous studies of the Ship Design Laboratory [11, 12]. Several new 

features and computation modules were originally developed and included in this 

model, in an attempt to develop the existing parametric model library of the SDL1, 

make the whole optimization procedure more robust, faster and get more 

independent from costly external software deployed in the computations. 

 

Figure B. 1 Baseline model configuration 

  

                                                      

1 SDL: Ship Design Laboratory; National Technical University of Athens 
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1.1 Operational profile 

As explained above, the Asia – Europe route was studied because of the operational 

scenario involving the specific size of containerships. After studying the differences of 

the implementation of the route from 3 companies as described in PART A:1.2.1, the 

basic parameters for our operational profile were set. The main concept behind the 

optimal speed choice and the range of capacities to look at was to keep the transit 

time pretty much around the industry standards and cater the same capacity. More 

specifically, as a median number of transit days of the investigated scenario, 40 days 

was identified as a feasible and satisfactory time for the round trip voyage of our case. 

The total route length assumed in our model was actually measured on a designed 

route based on the above. Based on these two fixed parameters, an initial 

investigation for different speeds was undertaken, in order to identify a satisfactory 

speed range and any other model sensitivities with regard to speed change and this is 

elaborated later on. 

Containership operational profile 

Transit time 40 days 

Vessel speed 20 knots 

Ship capacity 8000-9500 TEU 

Route Length 13810 sea miles 

Table B. I Operational profile data for round trip 

 

1.2 Similar ships 

For the preliminary design of this model, there were not any parent ships to be 

based on their drawings and characteristics. What was really intuitive though, was a 

list of similar ships’ particulars, for the initial investigation of main dimensions etc. 

  TEU Loa Lpp B D Td Ts 

1 8063 323.00 308.00 42.80 24.6 13.00 14.50 

2 8100 334.00 319.00 42.80 24.6 13.00 14.50 

3 8500 334.00 319.00 42.80 24.6 13.00 14.50 

4 8830 299.90 288.50 48.20 24.60 12.50 14.50 

5 8957 299.90 283.30 48.20 24.80 14.00 14.50 

6 9200 336.70 321.00 45.60 27.2 13.00 15.00 

Table B. II Similar ships’ particulars 
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1.3 Scope of work 

Reading from the title of this study: “Parametric Modelling of Container ship and 

Holistic Design Optimization”, the two main objectives are clarified straight forward. 

The first leg deals mainly with the construction of the parametric model itself, the 

mathematical modelling of all the subsystems as computational modules attached to 

the main geometry and the challenges within. Once the model is completed, it can be 

used to produce many different design variants or perform simulations of the overall 

design process and in that sense it is coupled with the deployed optimization 

algorithm to drive the holistic design optimization of the second leg. In between there 

is a wide range of design parameters and variables, constraints, tests and 

experimenting in the quest of the optimum design. The optimization process is 

iterative and consists of several optimization runs, the results of each one of them are 

post processed, evaluated and ranked by means of the utility functions approach. In 

the following chapters, there is an extensive description of the methods applied and 

the work conducted under this scope. 

 

Figure B. 2 Schematic of the work procedure 
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2 Building the Parametric model 

In this chapter there will be an extensive description of the model setup, the 

structure of the model, the methods used and the additional computations involved. 

2.1 CAD/CAE Framework 

The whole procedure of parametric modelling of the ship design (including hull 

form-geometry and additional computations) can only be materialized in an advanced 

CAD/CAE system, a framework. In this case, the system used is “CAESES1/FRIENDSHIP-

Framework”, developed by Friendship Systems GmbH. The software was originally 

developed for advanced ship design and optimization applications, bringing some 

novelties in the CAD part, by introducing new types of curves and mathematical 

definitions for surface topologies and hull forms. Later on it evolved into a powerful 

simulation and optimization tool by including the software connector to communicate 

with external software and codes, and driving optimization with the built-in 

algorithms. 

Using the CAD part of the program and its drawing capabilities, the initial Main 

Frame is created and the rest of the model is build up based on that section as 

reference. The ship hull is constructed in parts, which take as parametric input some 

function curves tailored to the local geometry. After the whole hull is completed, it is 

transformed using the Lackenby method the basic Hydrostatic computation at this 

point is the connection to most of the computations that follow. On the completed 

hull, there are several other subsystems to fit into, such as the internal compartments, 

the containers on deck, the engine room and the deckhouse, in order to have a 

complete ship model. The last stage of computations involves the performance 

simulations and indicators calculation. While the initial reference geometry is built 

straight forward, most of the surfaces, as well as almost all the computations are 

conducted via “features”, small pre-programmed modules within the model. The 

“Feature programming language” of the FRIENDSHIP-Framework, a simple script 

programming language similar to JavaScript, is used to define these computational 

modules inside the model. Most of these features can be exported and used in other 

parametric models almost straight forward, conducting a part of the design stages. 

Another important functionality of such a parametric design software are the 

interrelations between parameters, curves, points, and other geometric elements, 

that make our model fully parametric. 

                                                      

1 CAESES: Computer Aided Engineering Software for Empowered Simulations 
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2.2 Geometrical model 

As described above, the whole geometrical model builds up on the midship section, 

which holds some basic dimensional parameters. This is the geometry definition on 

the one side of the aft and the forward part, which connect with a ruled surface to 

form the parallel mid body. Apart from this basic geometry, some essential 

dimensional parameters are necessary to define the hull shape. 

Meta surface technology 

The geometry is mainly constructed out of surfaces, which are already of high 

fairness and they are mainly of two kinds; ruled surfaces and meta-surfaces; the 

integrated surface construction technology within FRIENDSHIP-Framework. 

Constructing the meta-surface starts with a feature definition; a pre-programmed 

module that could draw a cross sectional curve of the surface to be constructed. Since 

the surface is fully parametric, the user actually gives a varying input to the parameters 

to design the cross section curves. This input is basically the distribution of the 

parameter over a specific length (e.g. one dimension of the surface) and actually a 

function curve. After the function curves are constructed, a “curve engine” makes use 

of the pre-programmed feature definition creating the potential development of the 

cross sectional curves in the space, without really creating any curve and the meta-

surface module materializes this “curve potential” into the actual surface. This 

technology enables the user to create complex surfaces with pretty much control on 

their shape with the use of function curves as parametric input. Of course, such a 

powerful tool should be used responsibly and be checked for its results, as the 

incompatibility of local parameter values can give some bizarre surfaces not to be 

acceptable. 

Figure B. 3 FRIENDSHIP-Framework interface 
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Figure B. 4 Meta surface construction 

Main Parameters and Frame 

For the initialization of the ship design, a set of essential parameters (vector of 

design variables) is given as input. Most of these parameters are defining dimensions 

such as beam, depth, draft, size of bilge, etc. and are necessary for the construction 

of the hull geometry which follows, while a broader range of more specific parameters 

defining the main frame includes: bilge height and width, deadrise and flare angles, 

and the longitudinal position of many different geometry transition positions. As 

expected, the main dimensions of a containership are usually defined as integers; 

number of bays, number of rows, number of tiers and the final dimensions are always 

a function of these integers respectively. 

Parameter dependent on 

Beam no rows 

draft - 

Engine room aft extent bays aft 

Engine room fwd extent bays aft, ER length 

hatch height no tiers in hold 

Length b.p. no of bays 

Length of cargo space no of bays, ER length 

length of deckhouse - 

Tiers in hold - 

Tiers on deck - 

Table B. III Main Parameters 

The main frame consists of the vertical sides and the horizontal bottom part, since 

there is no deadrise or flare angle at the midship section. The special feature of this 

containership design though, is the elliptic bilge, a concept design investigated at 

similar studies of SDL in the past. It was investigated originally [12] as an optimal 

volume exploitation, combining the shapes of a full rectangle, which would provide 

plenty of cargo space, and a triangular section, which would minimize the wetted 

surface. 

Function curves
Feature definition

Curve engine Meta surface
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Figure B. 5 Rectangular and Triangular sections vs the elliptic one [12] 

For the case of this study, a more conservative approach is adopted, with regard to 

the section shape. Instead of the whole section, only the bilge profile is defined as 

elliptic and the parameters of its size and shape are design variables, to vary during 

the optimization. 

 

Figure B. 6 The main frame with the elliptic bilge 

Aft part 

The aft part starts with the definition provided by the main frame and develops all 

the way to the transom by combining a simple geometry with a specially defined skeg 

surface. More specifically, the bare hull part is mainly a meta-surface consisted of the 

elliptic bilge as an f-spline, while the skeg is a rather complex NURBS curve defined by 

five points, which are distributed along their respective function curves. These two 

surfaces are joined, after the initial “trim” of the bare hull by keeping just the wanted 
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sub-surfaces of the bare hull. Sub-surfaces can be extracted by interception of a 

surface curve on the surface and the transformation through the parametric domain. 

 

 

Figure B. 7 Aft part geometry 
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Forward part 

In the forward direction, the geometry is not that simple, which calls for more 

complex surfaces and more creative definitions of the respective meta-surfaces. At 

the first parts, they generally follow the same construction principles by using and 

extending the bilge spline part, while at later stages, meta-surfaces are based on 

differently defined splines or NURBS curves. At the very fore part, the bulbous bow 

crated as a meta surface is connected to the previous surface with a COONS patch and 

on the upper side, a small surface of revolution forms the bow. 

 
 

 
Figure B. 8 Forward part geometry 
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Lackenby transformation 

After the two parts get connected with a ruled surface, the parallel mid body, the 

ship hull is completed and an initial hydrostatic calculation is performed, to determine 

the basic properties of the hull. The Sectional Area Curve and the center of Buoyancy 

are used at the next stage to the final hull formation. Fixing the ship hull to meet the 

coefficients and parametric input is the main function of the Lackenby 

Transformation. In this case the Generalized Lackenby method is applied in the way it 

is adopted within FRIENDSHIP-Framework [13]. 

The original Lackenby method used in partially parametric models is creating hull 

variants by taking the parent hull and modifying it according to four parameters: 

 Change in prismatic coefficient ΔCp 

 Change in longitudinal center of buoyancy ΔXcb 

 Change in forward position of parallel mid body ΔLpf 

 Change in aft position of parallel mid body ΔLpa 

The transformation itself modifies the Sectional Area Curve by using some 

polynomial shift functions, which may cause dysfunctions, in case length-restricted 

Lackenby transformations (they are usually applicable to the length between 

perpendiculars). In order to confront this issue and apply the method to fully 

parametric models, this approach employs B-splines instead of quadratic transfer 

functions, enabling the model to control the regions of application and the slopes at 

either end of the shift functions [13]. 

 
Figure B. 9 Generalized Lackenby method illustration 
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The transformed and final ship hull looks like this: 

Deckhouse, engine room and funnels 

These parts of the construction are created by the dedicated features provided 

within the FFW1, according to the design strategy that will be described later on. The 

main input needed by the features is the position and the size of each element. At this 

point, it is worth mentioning that the features design more conventional deckhouses 

and funnels being connected, but since the choice was to put the deckhouse all the 

way to the front, the features were pretty much elaborated to separate the two 

structures. Another major change was the separation of the funnel in two pieces to 

be put along the sides of the ship in order to cater the strategy described below. Since 

some properties of the deckhouse like deck areas, volumes or even wall length are 

used for some additional weight computations, all this information had to be 

                                                      

1 FFW: FRIENDSHIP-Framework 

Figure B. 12 Finalized hull form 

Figure B. 11 Lackenby transformation curves and sections 

Figure B. 10 Final hull form 
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extracted from the features, which led to digging into the design and programming 

philosophy of them. 

 

 
 

 
Figure B. 13 Deckhouse, Funnels and Engine Room Arrangement 
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2.3 Computational modules 

After the initial geometrical model construction, the procedure continues with all 

the necessary preliminary design phases. That means calculation and construction of 

some essential ship parts like the internal compartmentation, the cargo stowage on 

deck, Lightship weight estimation and Deadweight analysis, tanks allocation and basic 

Hydrostatics. At a later stage further computations regarding resistance and 

propulsion, trim and stability, energy efficiency and economic profitability are carried 

out to provide the overall performance indicators. It should be noted that even though 

there were no parent ships available for thorough review, some of the calculations are 

roughly based on data extracted out of a couple drawings of similar vessels that we 

obtained. 

 

Figure B. 14 Computational modules’ interrelations 

2.3.1 Cargo stowage and internal compartmentation 

As soon as the ship hull form is finalized, the internal compartments surfaces and 

the cargo stowage surfaces on deck are generated with an advanced pre-programmed 

feature. The stowage feature was developed earlier during other studies of the SDL 

[12, 11], but tailoring it to different projects ended up with some errors when used 

out of some confidence area with regard to dimensions. So, the feature was basically 

re-written from scratch, improved and some extra functionalities were added to make 

it more robust. The containers are stowed in bays with length of two TEU1 (FEU2) with 

a gap of 0.394 m between them, while the space between two bays is 2.5 m. Creating 

                                                      

1 TEU: Twenty foot Equivalent Unit 
2 FEU: Forty foot Equivalent Unit 
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the inner stowage surfaces begins with the construction of a step curve along the 

depth of the hull with the offset of the double side distance and goes all the way to 

the double bottom top, adding a new step, each time the hull moves inwards more 

than the required distance (double side). This curve is extruded to create the inner 

surface. On deck, the feature keeps track of the deck line to define the available beam 

of the area and constructs a solid box for the container stowage. All these features 

provide all the necessary information about volumes, capacity (TEU) and moments, to 

other computations involving cargo at a later stage.  

After the creation of all these stowage bays, a purpose-built feature takes all their 

output regarding capacity, volumes and moments and calculates cargo centers of 

gravity, total capacity and even distribution of Gravity Centers over the volume added 

on deck. 

  

Figure B. 15 Inner stowage surfaces; Bays in hold 

Figure B. 16 Deck stowage surfaces; Bays on deck 
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2.3.2 Hydrostatics 

Right after the finalization of the ship hull form, we can proceed to the Hydrostatics 

computation, which will provide all the necessary hydrostatic properties of our vessel 

to be used in other stages of the design later on. This computation is a feature that 

comes already with the software installed. The required input is set up in the 

Hydrostatic configuration and contains the draft, the length of the ship and most 

importantly, section offsets, out of which the volume is calculated. The results are 

given in a table and they contain displacement volume, center of buoyancy, wetted 

surface, center of flotation and both transverse and longitudinal moments of inertia, 

while it provides the actual Sectional Area Curve. This computation can also be used 

with a heel angle, which is the case at the custom made stability feature. 

 
Figure B. 17 Visualization of the hydrostatic computation within FFW 

 

2.3.3 Resistance and Propulsion 

As long as the resistance and propulsion approximation is concerned, our approach 

adopts the approximation method of Holtrop & Nennen [14]. The resistance analysis 

of this method provides some propulsion parameters such as wake rotation and hull 

efficiency to be used along with the resistance to calculate the actual power. The 

auxiliary power is also calculated with empirical formulas as advised in [15]. 
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2.3.4 Lightship 

The Lightship weight estimation, essential part of the preliminary design is 

modelled within a pre-programmed feature by breaking down the weight categories. 

The main lightship categories taken into account are: 

 W steel 

o W hull structure 

o W superstructures 

 W outfitting 

 W machinery 

Machinery and outfitting weights are calculated according to [15] empirical 

formulas, fine-tuned to contemporary data [11]: 

𝑊𝑀 = 0.541 ∗ 𝑃𝑏1.0241 

𝑊𝑂𝑇 = 0.309 ∗ 𝐿 ∗ 𝐵 + 𝑊𝑙𝑎𝑠ℎ𝑒𝑠 

𝑊𝑙𝑎𝑠ℎ𝑒𝑠 = 𝑇𝐸𝑈𝑜𝑛 𝑑𝑒𝑐𝑘 ∗ 0.043 

Steel weight is a sum of the respective weights of the hull structure and the 

superstructures, while we also calculate the hatches weight and add them to the total 

steel sum. Hull structural weight is calculated by the analytical method of Schneekluth 

[15] and the weight of superstructures is calculated with the Mueller Kostner method 

[15], by extracting all the required data from the deckhouse features in the model. All 

the centers of the weights are calculated with analogy ratios with regard to a couple 

of similar ships that had some of their drawings. 

2.3.5 Deadweight Analysis 

At this stage, we set and calculate a full set of consumables, constant weights, crew, 

provisions etc. The calculations are based on the operational profile defined above, 30 

crew members and the propulsion and auxiliary power installed on board, both of 

which are calculated at another module. The centers of all these weights are assigned 

to positions according to their allocation on board the ship. 

Tanks allocation 

As part of the deadweight analysis, the allocation of all kind of tanks is included. 

Water ballast tanks are mainly placed at the fore and aft peak for trimming purposes, 

in the double bottom, in the first step and the double sides. Fuel and other 

consumables’ tanks are interestingly allocated between the central bays in the 

transverse direction. The advantage of such a configuration is the lower VCG as the 

voyage goes on, when the consumables are reduced and lower their overall 

contribution to the rather high KG, being on the safe side at the Arrival Condition. 
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2.3.6 Trim and Stability 

Our model is required to fulfil the stability criteria set in the Intact Stability Code 

2008 of IMO – MSC 267(85), where there is a special mention to container carriers and 

the tailored criteria that they should meet. Apart from the designated values to meet 

with regard to the area of the GZ curve, an angle of maximum righting arm GZ above 

30 degrees is required and a maximum trim of 0.5% of the ship length. 

The brand new stability feature in this project calculates the righting arm – heeling 

angle curve (GZ-φ) and exports all the indicating values from it, such as areas, heeling 

angles and righting arms. Although in previous similar projects [12] an external 

stability calculation software was used, we opted for a new approach built inside the 

framework, in order to cut down on costs and expand the library of available 

computation features, thus making the model more simple and robust. This feature 

employs the existing hydrostatic computation for different heeling angles, while 

keeping the displacement constant with the use of a tangent search optimization 

method. It is an iterative process for a range of heeling angles, in order to draw the 

GZ-φ curve. If the criteria are not met, another iterative process reduces the overall 

center of gravity to be applied at the loading cases calculation and that happens 

almost always because of the relatively high center of gravity of the cargo. In case the 

trim exceeds the limitation mentioned above, there is also a movement of the overall 

longitudinal center of gravity. 

2.3.7 Loading cases – stowage scenarios 

At this last stage, after the stability check, where requirements are met even by 

changing the expected centers of gravity, we proceed to the loading cases or stowage 

study. This computation module takes as input all the weights and their position 

calculated previously, the tanks, the deadweight items and the distribution of the 

cargo centers of gravity over the capacity. After setting the modified expected overall 

centers of gravity (according to the stability analysis before), the only items that can 

vary are the payload weight and the cargo center of gravity, in order to achieve lower 

overall VCG, that would comply with the stability requirements. 

Two cases are investigated: 

1. Total TEU capacity available 

2. Zero Ballast condition 

In the first case, all available container slots are filled, so the change of the payload 

reduces the homogenous weight per container. Ballast is only loaded for trimming 

purposes, in case the trimming requirement is not met. 

The Zero Ballast condition, a conceptual condition originating from other SDL 

projects in the past; [11], is defined as a condition in which only the required ballast 
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for trimming is loaded and no extra ballast for stability purposes. In that case, 

containers are loaded on deck up to a certain tier, so that the overall center of gravity 

complies with the required one in terms of stability. The number of containers loaded 

in this condition is also an objective or our optimization. 

2.3.8 Energy Efficiency 

Last but not least, two modules that are more relevant to the ship life-cycle analysis 

are calculated. The first one, the Energy Efficiency Design Index, is already a part of 

the design procedure. The implementation of the index calculations for this project 

follow the guidelines issued by Germanischer Lloyd. EEDI should be lower than a 

required value, dependent on the ship displacement. Thus both values are calculated 

and their ratio is taken into account as a performance indicator, since the required 

EEDI changes for every design variant. It should be noted that the low limit of 10% 

required reduction of the index was calculated, although all of the results had a larger 

margin below that limit, so we are still on the safe side for the next years. 

2.3.9 Economics 

One of the most important life cycle indicators and eventually one of the objectives 

of the optimization, is the result of this module. This feature, takes into account all the 

costs of the ship during its lifetime, and calculates the Required Freight Rate for a 

break even investment upon building this ship. The lower this rate gets, the higher are 

the profit margins for operating this ship, making the investment worthwhile and 

fulfilling the purpose of the container carrier. In terms of value levels, the RFR is 

calculated per FEU for a roundtrip. Another more indicative parameter is the cost per 

container mile, which was also implemented in our economic analysis. 

2.3.10 Other parameters 

Apart from the above mentioned dedicated computational modules, there are 

several other parameters define within the fully parametric model that calculate 

individually many different properties and design characteristics of each variant. One 

notable parameter that is also serving as one of the optimization objectives is the 

Stowage ratio, namely the ratio of containers stowed on deck over the containers 

stowed in holds. The main assumption in the scope of this project is the positive 

influence of this ratio towards the actual port efficiency and the speed of the loading 

operations, as described above in 0. 

𝑠𝑡𝑜𝑤𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑜𝑛 𝑑𝑒𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 ℎ𝑜𝑙𝑑
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2.4 The 9000 TEU Container Carrier model 

From the beginning of this thesis project, some guidelines for the design of the 

vessel were set. This design was meant to differentiate from previous projects in terms 

of size and capacity, some design features and the approach of new systems in the 

scope of the life-cycle holistic analysis. After investigating the Panamax class of 3700 

TEU for another project of the SDL, the goal was set for the New Post-Panamax 

category of 8500-9500 TEU, operated according to the industry common practice 

nowadays. Another interesting experiment to be investigated in this project is the 

deckhouse position, decided to be placed all the way to the front. In this way the 

visibility line requirement of IMO has no effect on the deck stowage of the 

containership, leading us to a more compact vessel for this class.  

A special feature to be implemented on this design in particular, is the 

superstructures arrangement. We have opted for a twin island arrangement, where 

the deckhouse is placed all the way forward, while the engine room and the funnels 

are placed at the aft part of the ship. The aim of this arrangement is to investigate the 

advantage of such a configuration because of the lack of the IMO visibility line 

limitation for the container stowage. The engine room remains at a more conventional 

position, while the space above can be loaded with containers on deck normally. The 

funnels are placed at the sides of the ship allowing the stowage of containers between 

them, while the emissions during loading operations coming from auxiliary engines 

can be directed only to one of the two and above the other, the crane could easily 

operate. 

2.5 Design variables and limitations 

This whole complex parametric model is defined of 15 appointed design variables, 

3 of which are fixed after thorough investigation of their impact on the performance 

of the design and the respective sensitivity. The rest 12 design variables are the ones 

defining each new variant and they affect primarily the main dimensions of the ship 

hull. 

Design Variable Baseline 
value 

num. of Bays 19 

num. of Rows 18 

num. of Tiers in hold 8 

num. of Tiers on deck 8 

double side 2.14 

double bottom 2.3469 

relative bilge height (wrt. Depth) 0.18 

relative bilge width (wrt. Beam) 0.52 

relative parallel body length 0.25 

relative parallel body position (from AP) 0.46 
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ΔCp change of prismatic coef. 0.0113 

ΔXCB long. center of buoyancy move -0.00375 

Table B. IV Design Variables 

Each new variant produced from the parametric model, should meet some 

statutory and safety requirements, while also being within a reasonable range for the 

scope of the present project. For this reason, there are a series of constraints set up 

mainly for the optimization process, which will validate or reject each new variant 

according to the following rules: 

 

 

Constraint Comparator Limit 

EEDI ratio attained/required less than 1 

GM initial greater than/equal 0.15 

GZ area 30 to 40 deg greater than/equal E 30-40 

GZ area up to 30 deg greater than/equal E 30 

GZ area up to 40 deg greater than/equal E 40 

angle at max GZ greater than/equal 30 deg 

Trim at FLD less than/equal 0.5% LBP 

homogenous weight per TEU max capacity greater than/equal 6 t 

homogenous weight per TEU zero ballast greater than/equal 7 t 

Table B. V Constraints 

Please note that the stability constraints with regard to the properties of the 

righting arm vs. heeling angle are defined as functions of ship dimensions in the Intact 

Stability Code 2008 of IMO for the case of container carriers as follows: 

𝐸30 =
0.009

𝐶
   𝐸40 =

0.016

𝐶
   𝐸30−40 =

0.006

𝐶
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3 Sensitivity Analysis 

After setting up successfully the fully parametric model and before proceeding to 

the formal optimization, an initial investigation of the model validity and feasibility of 

the produced variants needs to be undertaken. This initial investigation is called 

“sensitivity analysis”, as it is used to show the sensitivities of the model with regard to 

the design variables. In such a complex model with many design variables, we need to 

check a wide range of them in order to set up the optimization correctly. As it is 

mentioned above, apart from the 12 design parameters, which will be used for the 

optimization, there are a couple design variables more (defined as such in the model), 

which are fixed to chosen values and do not vary. The most notable fixed variables are 

the draft and the vessel’s speed. Before the general design of experiment, these two 

need to be set and for that we should investigate the respective model sensitivities. 

3.1 Draft investigation 

The draft is a design variable that was meant to be fixed from the beginning. As a 

matter of consistence, draft should be fixed, so that variants can be comparable. 

Changing the draft has a strong effect on many other parameters, as it increases the 

resistance, thus it influences the creation of new variants and could be a problem for 

the optimization. 

3.2 Speed investigation 

When it comes to the speed selection, it is clear that it affects many different 

aspects of the design, most of which like fuel consumption or resistance 

straightforward, while the effect on others is clearly prominent, while not directly 

connected, like the Required Freight Rate. The selection of speed at a specific level 

will eventually be a compromise for some other performance indicator obviously, but 

since the scope of this work is optimizing a design, the relative results would be 

essentially the same for different speeds. This leads to the main constraint that was 

taken into account, the voyage duration. After studying the liner services 

commercially available today in PART A:1.2.1 , a total round trip time of 40 days was 

chosen, thus leading to the speed selection of 20 knots. 
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Figure B. 18 Speed vs. EEDI ratio 

 
Figure B. 19 Speed vs. cost per ton container mile 
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3.3 Design of Experiment – DoE  

The Design of Experiment, as this investigation is formally known, aims to explore 

the limits of the model feasibility in the design space defined by the design variables 

vector. Driven by a pseudo-random Sobol design engine within the Framework, the 

design variables change in a quasi-random way as they are evenly distributed all over 

the design space defined, to create every possible combination of design vectors and 

produce new variants. The design engine is assigned to create 500 design variants, 

which are more than sufficient to give an image of the model sensitivities, as the 

common practice for such investigations is the creation of variants depending on the 

number of free variables as follows: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)2 

As it is expected, most of these new variants do not comply with the constraints, 

thus only a percentage of the variants are valid and they show the range of 

applicability of the parametric model for the specified application. In other words, this 

is a sensitivity test of the model itself against the change of the design variables. It is 

a great opportunity to check the applicability limits and restrict or widen the range of 

the design variables at the next stage, the optimization. 

The initial design of experiment was set up with the 12 original design variables 

described before within the following limits: 

Design Variable Upper 
Limit 

Lower 
Limit 

num. of Bays 17 20 

num. of Rows 15 20 

num. of Tiers in hold 7 10 

num. of Tiers on deck 7 9 

double side 2 2.5 

double bottom 1.8 3 

relative bilge height (wrt. Depth) 0.1 1 

relative bilge width (wrt. Beam) 0.1 1 

relative parallel body length 0 0.3 

relative parallel body position (from AP) 0.4 0.55 

ΔCp change of prismatic coef. -0.06 0.06 

ΔXCB long. center of buoyancy change -0.02 0.02 

Table B. VI DoE design variables definition 

The useful output of this trial run are the diagrams, which show the actual domain 

areas for the design variables and the validity of each variant. In this way we can have 

a quick evaluation of the design space and possibly recognize a behavioral pattern to 

focus our next run. A first impression about the robustness of our model can be 
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obtained from some key diagrams, while a wider variety of them is still available for 

further study. 

 
Figure B. 20 DoE: Rows vs. TEU capacity 

 

 
Figure B. 21 DoE: no of Bays vs. TEU capacity 
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Figure B. 22 DoE: tiers in hold vs. TEU capacity 

 

 
Figure B. 23 DoE: tiers on deck vs. TEU capacity 
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Figure B. 24 DoE: RFR vs. TEU capacity 

 

 
Figure B. 25 Weight per TEU vs. Displacement 

5.5

6

6.5

7

7.5

8

8.5

9

9.5

70000 90000 110000 130000 150000 170000

w
e

ig
h

t 
p

e
r 

TE
U

 in
 t

o
n

s

displacement in tons

homogenous weight per TEU vs Disp.



Parametric Ship Design and Holistic Design Optimization 

 

 52 

 

 
Figure B. 26 DoE: Payload/displacement vs. TEU capacity 

What is quite interesting to look into, in the figures above, is the range of the design 

variables with higher concentration of valid designs (green). It is worth mentioning 

that no constraint to the ship size or the TEU capacity is set at this stage, so designs 

out of our focus area ~9000 TEU are still valid. As it seems, the design variables space 

is well defined regarding the main dimensions at least. Only the number of tiers in 

hold seems that it should be more than 8, but after some feasible designs at the early 

trial stages of the optimization were found in that area too, this low limit remained 

unchanged. 
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4 Multi Objective Optimization 

This is the actual stage of the second part of this thesis project; design optimization. 

After the investigation runs and the design of experiment, there is a solid design 

baseline to start the optimization procedure. 

4.1 Employed Methods and set up 

The simulation is driven by the genetic algorithm NSGA II, suitable for multi-

objective optimization. Design of Experiment showed that the design space was well 

defined, so the design variables range remained the same for all the 12 variables used 

for the variants production. In terms of limits and constraints, the same as before are 

also here applicable, with two additions of the upper and lower limit for the nominal 

TEU capacity, in order to direct the search in the designated size category of 9000-

9500 TEU. 

The design of experiment was followed by the first optimization round with 6 

generations of 50 variants population size each one, starting from the baseline, since 

it was a good design compared with the results of the Design of Experiment. After the 

conclusion of this round, the valid designs were evaluated according to the method 

described below and the top ranked one was chosen as a starting point for a second 

round. The optimization was eventually run for a second time, again with 6 

generations of 50 variants population size each. 

 
Figure B. 27 Optimization strategy schematic 

Parametric model construction 

Baseline design 

Design of Experiment 
Sobol 500 variants 

Draft investigation 
1.5 m, 15 m  14.5m 

Speed investigation 
18-26 kn  20 kn 

Optimization round 1 
NSGA II 6 generations, 50 population size 

Dominant variants: des 116, des 

Optimization round 2 
NSGA II 6 generations, 50 population size 

Dominant variants: des 116, des 

Design 116 

Baseline 
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4.2 Objectives – Merit functions 

Within the scope of this project, three main objectives were defined: 

 Minimum Required Freight Rate 

 Maximum Zero Ballast capacity in TEU 

 Maximum stowage ratio 
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑜𝑛 𝑑𝑒𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 ℎ𝑜𝑙𝑑
 

All the three objectives are actually parameters that are calculated within a 

different computation module of the model, thus providing a value for each variant 

and that can be used as a performance indicator. For this multi criteria optimization 

problem, the utilized genetic algorithm NSGA II, is always minimizing the defined 

objectives simultaneously and this is our case as well. The parameters needed to 

maximize, are simply changed to differences from a bigger value, the minimization of 

which, maximizes the actual objective.  

4.3 Variants evaluation – Utility Functions 

The optimization run, governed by the “design engine”, an integrated program to 

drive the optimization by use of the NSGA II algorithm, provides a set of variants as a 

result with no special ranking, although at later stages, the designs improve. Here is 

where the decision making part of the multi objective optimization comes in. The 

designer has to review the result table and select the preferred solution. As expected, 

multi objective optimization problems do not have a straightforward solution.  Thus a 

compromise between the different objectives is to be made by the designer, who 

selects a design fulfilling the aims of the project. 

Our approach towards the evaluation of the optimization results is a rather 

complex procedure that ensures the independency of a particular design from any 

specific objective bias. Firstly, we defined a number of scenarios of different 

significance for each objective as follows: 

Scenario 1 2 3 

Zero Ballast capacity 33% 40% 20% 

Stowage ratio 33% 40% 20% 

Required Freight Rate 33% 20% 40% 

Table B. VII Utility scenarios 

After obtaining the performance parameters’ values for each design, we normalize 

the values, to get actual indicators and have a clearer image of the relative 

performance among the designs. In the end, these normalized indicators are 

combined into a weighted average for each particular scenario. According to this 

averaged indicator for each scenario, the designs are ranked and below we can see 

the ranking for the 3 different scenarios. Please notice that the designs cited bellow 

are coming from both 2 rounds of optimization. 
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Figure B. 28 Designs Ranking according to different scenarios 
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From the figures above, it is crystal clear that one particular design, “design 1/116” 

is ranked as top performing for the 3 different scenarios. This shows the overall 

exceptional performance of the design independently from the scenario followed. 

Design 1/116 was a result from the first optimization round and it was set as a starting 

point for the second optimization round. However, there was no better design from 

that second round, which leads us to identify design 1/116 as the dominant one in our 

analysis.
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PART C: Optimization 

Results and Conclusion 
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1 Behavior of different design variables 

Coming to an end, after conducting the optimization runs, a look into the design 

variables behavior and variation during the whole process could be really intuitive. As 

expected from an optimization algorithm, the variation of the design variables is 

strongly oriented, since the model is pushed to its boundaries in the quest for local 

and global minimum values of the objectives. 

 
Figure C. 1 Optimization: TEU capacity vs. Rows (refers to the integer part) 

 

Figure C. 2 TEU capacity vs. Bays (refers to the integer part) 
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Figure C. 3 TEU capacity vs. Tiers in hold (integer part) 

 

Figure C. 4 TEU capacity vs. Tiers on deck (integer part) 
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Figure C. 5 RFR vs. Rows (integer part) 

2 Pareto Optimality 
Multi objective optimization is not expected to provide a single result, an optimum 

design. As described above, a compromise between the individual objectives should 

be achieved from the designer’s point of view, at some point. This principle is 

identified best in the Pareto Front analysis approach. 

Starting with the depiction of two objectives at a time in a single scatter diagram, 

we can clearly see the relation between the two of them and their possible 

combinations to reach a compromise. The designs depicted show the limits of the 

model with regard to each objective. Trying to maximize one of the two objectives will 

restrict our options for the possible combination regarding the other objective. 

Following this procedure, the designer would reach a point where the further 

improvement of one objective would degrade the performance of the other one. The 

set of all these points forms the Pareto-Front, a curve which shows the limits of the 

optimization study. The best designs that could be achieved are on this curve and then 

it is up to the designer to choose the most applicable for their case. 

Bellow we can clearly see the correlation between the objectives of this 

optimization and distinguish the respective Pareto front for each case. 
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Figure C. 6 Required Freight Rate vs. Zero Ballast capacity and Pareto Front 

 

Figure C. 7 Stowage ratio vs. Zero Ballast capacity and Pareto Front 
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Figure C. 8 Required Freight Rate vs. Stowage ratio and Pareto Front 

3 Design Comparisons 
As mentioned before, within the scope of this work and after concluding the 

optimization process, apart from the identification of the Pareto Fronts, we chose a 

single design, which was top ranked in all the scenarios studied, showing an overall 

independent performance. This is design no. 1/116 and we can compare it to the 

original baseline model. 

As far as the design variables are concerned: 

Design baseline des. 1/116 

Rows 18 19 

Bays 19 18 

Tiers in hold 8 8 

Tiers on deck 8 9 

double bottom [m] 2.347 2.569 

double side [m] 2.140 2.244 

relative bilge height 0.184 0.481 

relative bilge width 0.522 0.410 

relative parallel body length 0.253 0.098 

relative parallel body position 0.46 0.442 

Table C. I Design Particulars’ Comparison 
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Their performance and design characteristics (parameters computed): 

Design baseline des. 1/116 change 

L bp [m] 18 19  

Beam [m] 295.19 280.18  

Depth [m] 45.558 48.089  

Displacement [t] 142326 129548 -8.98% 

TEU capacity 9010 9456 +4.95% 

weight per TEU [t] 7.35 6.39 -13.06% 

Cost per ton container mile [$] 30.66 29.53 -3.69% 

EEDI ratio 0.685 0.718 4.82% 

Zero Ballast TEU capacity 4833 5067 +4.84% 

Required Freight Rate [$] 845.99 815.54 -3.60% 

Stowage ratio 1.466 1.744 +18.96% 

Table C. II Performance Indicators Comparison 

As a general comment, the overall improvement of the original design is obvious in 

most of the performance indicators and crystal clear at the three optimization 

objectives. Regarding the reduced weight per container indicator, it is not quite 

troublesome or annoying, since the parameter refers to the ideal loading case, when 

the ship has reached full capacity, which rarely if ever happens. Another assumption 

for this indicator is that all containers are supposed to be loaded with the same weight 

~6-7 tons, which of course cannot be the case. This parameter has been kept pretty 

low, so that the vertical center of gravity of the cargo is kept low enough to fulfil the 

stability requirements. Following the common practice of loading heavier containers 

at lower tiers and keep the light or empty ones at the top, achieves the same effect 

with regard to stability, without the need to keep the homogenous weight per TEU so 

low. Another change that seems quite unwanted is the slight increase of the EEDI ratio 

(attained to required), but since both values are far below 0.8, it seems that the 

designed vessels meet even the third phase criteria, so this increase is not really of 

any interest. 
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Figure C. 9  Baseline design (above) and des. 1/116 (bellow) 

 

 

Figure C. 10  Design 1/116 half-model 
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4 Conclusion 

Coming to an end, the application of the holistic design optimization for the case 

of a 9000 TEU container carrier had successful results. Since the multi objective 

optimization is a procedure that does not provide an optimum design, but rather a set 

of optimal designs on the Pareto Front, the respective analysis presented above, 

provides enough insight in the improvement margin of this container carriers’ class 

design. Talking about single solutions, the design no 1/116, which was identified one 

of the best and with constant top ranking for our different scenarios, seems to be a 

good solution and improved over the original baseline model. 

This parametric model has some peculiarities identified from the beginning, the 

most important being the position of the deckhouse all the way front at the bow. It 

was meant to be an experiment to check the feasibility of such a design for this class, 

discovering eventually any benefits it would have. After this extensive study, it can be 

concluded that there is enough margin to reduce the length of the ship and improve 

a series of performance factors that depend on the length, lightship or wetted surface, 

by eliminating the visibility line requirement and achieving the same capacity with less 

bays. This configuration though brings some other difficulties caused by the relatively 

higher center of gravity of the cargo in general, which calls for extra ballast for the full 

loaded condition, and subsequently lower weight per container. Under circumstances 

that is not really a problem, as explained above. 

Taking into account all the above comments and results of the optimization, we can 

safely conclude that the benefits of positioning the deckhouse all the way forward are 

outnumbering any drawbacks and that can be justified by holistic design optimization 

techniques that push the limits of the model to the Pareto front designs. 

Regarding the first part of this study, the parametric modelling of an integrated 

containership model, the deliverable files consist a really elaborate fully parametric 

model. This new version is far improved over older versions used for projects of the 

SDL, while the addition of many custom made computational modules can be a really 

valuable resource for future projects. 
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5 Further steps  

This study was focused on Holistic Ship Design Optimization techniques for a 

specific ship size category of 9000 TEU capacity with an attempt to investigate some 

elements of novelties in the deckhouse arrangement. Of course there is a whole area 

of design optimization that could be applied in different ship sizes. In some cases it 

could be also interesting to investigate some special design features, like the 

deckhouse position in this project, or even others like the tanks arrangement. The 

deckhouse positioning at the front may also be further investigated for its feasibility 

in terms of structural strength, or even sea keeping performance, aspects that were 

not studied in this project. 

An area that seems really promising in terms of optimization margins, is the port 

efficiency of container vessels. In the scope of this project, it was confronted in a 

simple way, by using the stowage ratio and according to the assumption: “the more 

containers on deck, the faster gets the (un)loading”, which may follow the common 

sense, but remains rather simple and not proven yet though. In that direction there 

has been some research, in which the author of this thesis was also involved, focusing 

on actual loading simulations of many different loading cases for each design and 

many designs altogether. A statistical approach of the simulation results might give 

some insight on the phenomenon itself and provide the designers with a port 

efficiency evaluation tool.
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