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Abstract

The aim of the present thesis is to investigate the linear static Isogeometric Analysis with
NURBS and propose a Hierarchical scheme for a faster and efficient way of forming the
Stiffness Matrix after a knot refinement. Isogeometric Analysis, a field recently introduced
by Cottrell, Hughes and Bazilevs, aims to the complete integration of CAD and FEA
technologies. The NURBS and the Finite Element Method have been examined separately,
as the two components of Isogeometric Analysis. The necessary code for the analysis of the
presented applications and drawings was developed in the programming language
“MATLAB” and throughout the thesis linear elasticity was assumed. Chapter 1 is a general
introduction to the topic of Isogeometric analysis. In chapter 2, we examine B-Splines and
NURBS geometries. In chapter 3, the formulation of the stiffness matrix is investigated and
in chapter 4 the application of external loads, the enforcement of boundary conditions and
the resulting displacement, strain and stress fields. In chapter 5 we review refinement
techniques. Furthermore, in chapter 6 we propose a new hierarchical refinement scheme
for h-refinement. Finally, in chapter 7, three 2D applications are investigated and

numerically tested and in chapter 8 we present the conclusions of this thesis.

Yvvoyn

2KOTMOG NG mapovoag SMAwUaTIKNG eivat 1 Slepedvnon NG YPAUHIKNG OTATIKNG
Iooyewpetpikng Avélvong pe NURBS kat i) mapovoiaon pag véag uebodov ya ypriyopo
LEPAPXLKO VTTOAOYIOUO TOV MNTpwov ZTIPapoTnTag HETA amd TNV L0aywyn VEWV KOUPwWY.
H Iooyewpetpikr avdlvon eival pia meploxn épevvag mov npotadnke mpdogata am’ Tovg
Cottrell, Hughes kat Bazilevs mov otoxevet otnv mAnpn ovyxwvevon twv texvoloywv CAD
kat FEA. Ot ovvaptrioetg oxjuatog NURBS kat 1 MéBodog twv Ienepaopévwv Ztoixeinv
neketnOnKav Eexwplotd wg ot Svo empépovg ovvioTwoeg TG looyewpeTpiknig Avdivong. O
amapaitnTog KWOKAG yia TNV avalvon Kat TV Tapovsiasn TwV OXNUATWV Kol TV
ggappoywv avantdxnke otn yhwooa npoypappatiopod « MATLAB» kat mavtol €ywve n
nopadoxn Ypapukng elaotikdtnTag. Xto kepdhato 1 yivetar pa ewoaywyn otnv
Iooyswuetpikr) Avdivon cav cvykhion twv texvoloylwv Twv Ilemepacuévwy otolyeiwy
kat NG Ynelakng Xxediaong. Avtikeipevo Tov kegalaiov 2 eivau  oxediaon pe B-Spline
kat NURBS, oto kepdhato 3 efetdletar n popewaorn tov Mntpwov ZTiapdtnteg Kat 0to
kepahao 4 n emPoln efwtepkdy Qoptiwv, cuvvoplakwv cvvinkwv ka ta media
HETATOTIOEWY, TPOMWV KAl TACEwV. XTO KeQalao 5 avahbovtal  TeXVIKEG
emavadlakpLtonoinong kat PeAtiwong Tng AVong Kat oTo Kepdhalo 6 TpoTeiveTal [ia VEa
HéBodog yla v Iepapyikn Slatvmwon Tov HNTPWOL oTIPAPOTNTAG HETA ATO TNV TPOoHKN
véwv kopPwv. TéAog, oto kepalato 7, SiepeuvavTal Tpelg SIOLAOTATEG EQAPUOYEG e TN
1eBodo NG OOYEWHETPIKNG avaAvong Kat oto kepdhaio 8 dSatvnmwvovialr Ta

ovumepaopaTa TG epyactag avtng.
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Extended Abstract in Greek

Extended Abstract in Greek

Extetapévn IepiAnyn ota eAAnvika

Ewaywyn otnv Iooyewpetpikn Avalvon

H woyewpetpikn avalvon epgaviotnke 1o 2005 and tovg Cottrell, Hughes, Bazilevs [1] kou
and TOTe £xet mpokaléoel Sebvég epevvnTikO evila@épov. XpnOLLOTOLWVTAG TIG
OVVAPTHOELS OXMHATOG TNG YN PLaKHG oxediaong yia Tnv avdAvon, mtpoomabel va yepupwoet
116 texvoloyieg CAD kat FEA. X1V 100 yewpeTpIKr) TPOOEYYLON, 1) avaAvon yiveTal TavTa
He TNV akpiPn apxikn yewpetpla, akopa kat oe TOAD apatég Stakpiromotioets. Ot mo
edpalwpéveg oLUVAPTNOELS OXNUATOG YL TNV LOOYEWUETPIKY avAAvoT eival ol evpéwg
Sadedopéveg ovvaptnoeig NURBS, ot omoieg AoOyw Twv KaAwv TOVG ISLOTHTWV HITOPOVY va
xpnotponomBodv ya v avalvon xwpic Wdiaitepa peydales aAlayég oTig kabiepwuéveg
HOPPEC TWV KWSIKWV yla Temepacpuéva oToteia.

Xwpot Physical, Parameter kot Index

2tV wooyewpetpikr avélvon pue NURBS, xpnotponolobpe ioonapapetpikd ototyeia kot
Tpelg xwpot eivat amapaitntot. O mpaypatikog xwpog (Physical Space), o mapapeTpikog
Xxwpog (Parameter Space) kat o xwpog twv detktwv (Index Space). O Physical Space eivat o
XWPOG IOV TO AVTLKEIEVO £XEL TNV TIPAYHATIKT] TOV HOPPT} Kat 6TOV 070io oxedtdlovpe Tov
popéa xpnotponolwvtag ta tpoypappata CAD evw o Parameter Space, To avtioTolyo Tov
QUOLKOV XWPOL OTA TEMEPACUEVA OTOLKElR, €lval 0 Ywpog OTOV omoio yivetal 1
Slakpttomoinon Tov gopéa Kal 1 aptBunTiky OAOKANPWOT Yl T HOPPWOT) TOL UNTPWOL
otfapomrag. O Aewktikdg Xwpog (Index Space) emtelel Bondntikd poéAo oTIg
ovvaptioelg NURBS. Xpnowonoteitat yia tov  mpocSlopiopd Twv  TOPAUETPIKWY
ovvieTaypévwy Twv Control Points, Twv avtioTolwv TV «kOUPwV» TNV LOOYEWHETPIKN

avaAvon, kat yta tnv kadvtepn emomnteia Tov Knot Value Vector.

OpLopog Kat ISLOTNTEG TWV GVVAPTIOEWY Kat YewpeTpLwv B-Splines

Ot ovvaptnoelg NURBS eivau pa yevikdtepn, pntn popen pe Pdapn, twv B-Splines. Ot
ovvaptnoelg Pdong Twv B-Splines, yia va optotovv, xpetaloviar éva cOVolo n+p+1 un
HELOVHEVWYV TIAPAPETPIKWY OLVTETAYHEVWY oL arofnkevovtal oto Knot Value Vector,

E:{él,éz, &mp,émpﬂ}. n eivat o aplBudg Twv ovvaptioewv Pacewg Kar p o

TOALWVVIKOG Paduog Tovg. 1o Knot Value Vector avtiototyiCovpe éva Knot Vector to
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Extended Abstract in Greek
omolio £xet Ta idta oTotxeia aAN& povo pia popd. Me Baon to Knot Value Vector opifovtat
oL ovvapTnoelg Paong pe Tov avadpopkd aryoptdpo Cox de Boor, wg e&ng:

_ 1 if§ <&<€, _ _ &§ éiﬂ)’fl_&
Nm@_{ . otherwise > P=0 wat Ny (5= Ein-Ei Eivpr1-Gina

Ni,p-l (é;)_’_ Ni+1,p-1 (é) > P>0

d*
H k napdywyog tovg mpoodiopifetat anod stm] ae N;, (&)= ( — k z kiNivjp ik (&)
Ot B-Splines éxovv Vv 1816t Ta TOL MANPOVG TavvoTkoL yivopévov (Full Tensor Product).
Yo v évvola avTr, eival €DKOAO va oLVEVACOVE TIG CLUVAPTNOELG BACTG TWV EMPEPOVG
TOPAHETPIKWY OVVTETAYUEVWY Yl va xTicovpe 1 Shape Function. H i B-Spline cuvdptnon
oxruatog opiCetat wg:

RY(&) =N, (€) oe povodidotata mpoPAipara,
R (EM) =N, (E)M;,(n) oe SididoTata kat

RYik €m0 =N ,(OM; ()L, (C) oe tpididoTara.
Ot B-Splines éxovv pua oetpd amd moAv kakég 1BLOTNTEG TTOL TIG KAVOLV TOGO SNUOPIAELG:

1. Eivau pn undevixég oe mepropiopévo didotnua (support): N, ,(€) =0 VE¢ [ii ; §i+p+1)

2. Zto doopévo ddotnua [ﬁj,im) 10 oAV (p+1) ek Twv ovvaptioewv N, eivat un

P
undevikee, kaw ot mbaveg pn pndevikég eivaro: Ny oy N, o
Kabe ovuvaptnon potpaletar pépn tov un undevikov Staotnpatog g pe 2p dANeG.

Ot ouvapTtnoelg eivar mavtov un apvntikég N, (€) =0

5. To dBpotopa Twv cuvapTHoewy oXNUatog oe omolodnmote onpeio eiva 1. Z N;,(€)=1
i=1

6. Ot ovvaptnoelg éxovv ovvéxela CP* dvw o évav kopfo molamhotntag k kat eivat
aneipws Slapopiotes 0To eowTePIKO TOL SlaoTHUATOS HeTalh TwV KOUPwV.
7. Ex10G am’ tnv mepintwon Twv ouvaptioewy oxNpatog yia p=0, OAeg ot dAleg £xovv

akppwg éva pEyLoTo.

Ta Control Points otov mapapetpicd xwpo, PpiokovTal 6To HECOV TOL support Thg
ovvapTnoews Pacews mov avtiototyovv. Me fdon v Wdvtnta (1) Twv B-Spline, ot

TAPAUETPLKEG oVVTETAYEVEG ToL i Control Point atov dfova § opilovrat wg:

a_—OS[a e, J
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Extended Abstract in Greek

Ot yewpetpieg Twv B-Splines umopei va eivat kapmvleg (1-A), em@dveteg (2-A) 1} dykot (3-
A) xat opiovtat wg To dBpolopa Twv CVVAPTHCEWY OXNUATOG TOANATAACIACHEVWY UE TIG

ouvTeTaypéveg Twv avtiototywv Control Point. Mia yewpetpia B-Spline opifetat wg

(¥, 2)=CE={N, @O PI=SNL @R} , &<E<E,., yiaxayrihy,

(1xn) (nx3) i=1 (1x3)
(%,¥,2) =8 =2 > RIIEM Py = 2 D Nip (N () {P,} yia emgaveia
i=1 j=1 (1x3) i=1 j=1 (1x3)

Kal £€vag 0ykog wg

n m | n m |
XY, 2) =VENY =Y PRI END{P =D D D N EN, (N, () {P, }
i=1 j=1 k=1 (1x3) i=1 j=1 k=1 (1x3)
Ot kapmoheg B-Splines, kal Katd emEKTAOT OL EMPAVELEG KAl OL OYKOL, £XOVLV Hia OELPE aTtd
Oeputég 1010TNTEG, AmoOppola TWV ISOTATWY TWV CLUVAPTNCEWY CXUATOS ATO TIG OTIOIEG
PTLAYVOVTAL.

Eivou wa yevikevon twv kapmvulwv Bezier.
H C(§) eivar ot TUNHOTIKE) TOAVWVULKT) KAUTTOAT.
To mpwto kat To tedevtaio Control Point fpiokovral mévw ot kKapmOAn kat péAiota

efval To TpwTo KaL 1o Teevtaio onueio g, C(§,) =P, ka C(E,,,,,) =P,.
4. Ot kapmdAeg B-Spline éxovv tnv 1d10tnTal TO THRHUA TOVG [E.)i,&iﬂ) va TIepLEXETAL EVTOG

tov “Convex Hull” twv Control Point Py, . . ., P.

5. H petakivnon evog Control Point P adl\adet ennpedlet poévo tnv meploxn Kovia oto
Control point.

6. To moAvywvo twv Control Points eivat a ypaplkn Tpoceyylon Tng KapmoAng
Evag onolodnmote ovvOuaouog ypapikwy HETAOKNHATIOUWY UTOPEl va eQapUOOTEL
0TV KAUTOAN He Ty epapuoyrn Tov cuvdvaouod avtod ota Control Points.

8. Kavéva eminedo dev €xel meploodTEPEG TOUEG UE TNV KAWUTVUAT Ao OTL e TO TOAVYWVO
Twv Control Points (Xe Siddotates kapmoleg, kapia ypapun Oev €xel TePLOCOTEPES
TOUEG e TNV KapumOAn and 6Tt e To moAvywvo twv Control Points).

9. C(§) elvar ypappukog ovvévaopds twv Nip(§), emopévwg 1 ovvéxela kat
TOPAYWYLOLUOTNTA TNG KAUTOANG TPOKDTITOVV Ao TIG AVTIOTOLXEG OLVAPTHOELS PAOTG.

10. Eivat duvatd kat moAAEG @opég xpnowo va xpnotpomotjoovpe moAAanmAd Control
Points pe Tig idleg KapTETLAVEG CUVTETAYUEVEG.

O\eg oL Tapamdvw IOLOTNTEG YEVIKEVOVTAL OTIG 2-A eMPAVELEG KAl 0TA 3-A 0TEPEQ CWHATA.
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Opopog kat 1d10TNTEG TV cVvapTHoewVv Kat yewpeTpuwv NURBS

Mmnopodue va Oewpricovpe Tig kapmdAn NURBS wg tnv mpoPoAr) Thg avtioToxng KapmoAng
B-Spline pe Control Points P" =(X,,Y,,w,) o¢ éva ovykekpiuévo eninedo pe Control

Points P, = (L : i] Kat PAPog wi. TN YEVIKOTEPN TEPIMTWOT), UTOPODUE Va TTpoBAaAlovpie
Wi i

ta yewpetpia NURBS ano to pntod xwpo d-Staotdoewv 0to Ywpo twv B-Splines twv (d+1)

SlaoTdoewy Kat avTioTpoPa.

H mpoPoli} Twv Control Points twv NURBS oto ywpo twv B-Splines yivetauw pe tov
noAamAactacud tov Control Point pe to avtiotoxo Papog kat pe daipeon yua v
avtiotpoen mpoPolr. Ta Control Points mov avikovv otig B-Splines ta ovopdlovpe

npoPolikd (projective) kat Ta ovporifovpe P .

(3D — pn1og YDPOG) {P} {X Y.,Z.} > M deogwm;WT:

(nx3) (nx3)
(4D — m preog xdpog) (P} ={w; X, w,Y,, w,Z;, w;}
(nx4) (nx4)
I'a va opicovpe T ovvaptioeig NURBS mpénel va opicovpe mpwta pia ouvédptnon Bapovg.
Ot ovvapTtroetg oxpuatog NURBS opifovtau pe v mpoPodr} Twv ovvaptrioewv B-Splines
avaloya pe 1 Sidotaon Tov xwpov mov dovAevovpe wg:

n N
1-A: - W(E) = Z N, E)w,, RP(8) = W)@
nn wi; N EM. . (m)
A W(EN) = N, (M, " RPS _ i i i
VO » NCIVROLY ="t
Kat 3-A: WEND =D YN EM,, (L, QW)

i=1 j=1 k=1

Wi ik Ni,p (i)Mj,q (n)Lk,r ©)
W(En,©)

RE)qur (&.HTLC) =

['a va Bpodpe Tig mapaywyovg Tov NURBS, anha napaywyilovpe Tig ouvaptrioeLg Kat

TPOKVTITEL

N.p(a)jwez) N.p(a)[
1A TYGE (dﬁ

dg (W)

W
ac (é)j

W.
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[ aiN.p(zz)jW(a - N.,,(a)[ SV n)j
2-A: (& n) = Wiij,q(n)
aa (WE) |
(; M,q(n)jvv(an) M,q(n)( va n)j
9 geage, =N o w, N, (©)
on (W(E ) S

Kat opoiwg ya tnv 3-A mepintwor.

Avtiotolxa e ToV oplopd Twv yewuetpiwv B-Splines, ot yewpetpieg pmopel va eiva
kapumoleg (1-A), em@dveieg (2-A) kar oykot (3-A) xatr opilovtar wg dBpolopa Twv
OVVAPTHOEWY OXNUATOG TTOANATAACIAOUEVWY HE TIG OUVTETAYHEVEG TWV AVTIOTOLXWV

Control Points. Mia yewpetpia NURBS opifetat wg:

(x,%,2)=CE = {N,@) P =D N @O}, &<ELE, . yia kapmihy

(1xn) (n x3) i=1 (1x3)

(x.2)=SEM =Y P RIED P} =D DN, EON, (R, ] yia empavea

i=1 j=1 (1x3) i=1 j=1 (1x3)

Kat £vag 0ykog wg

(YD =VENE =D S SR EN DR} =3 > TN, @N (IN P}
i=1 j=1 k=1 (1x3) i=1 j=1 k (1x3)

Aoyw tov tpémov dnovpyiag Twv NURBS and tig B-Splines, oo NURBS kAnpovopovv
OAeg TiG kakég 1810t TEG TV B-Splines mov eidape mapandvw. Emmiéov, mapatnpovye 0Tt
otnv mepintwon mov ta Papn wovvtar pe 1, oo NURBS eivar amhég B-Splines mov

emPePatwvel TNV mapamdvw potaot pag 0Tt ta NURBS eivar pa yevikevon twv B-Spline.

211G yewpetpieg NURBS pmopodue va €xovpe meploootepa TOL €vOoG TAEyHaTa e 2
TPOTOVG, eite Ue éva kat povo Knot Value Vector mov oo onpeio évwong Twv 2 mAeypatwv
gxovpe koppo (knot) pe multiplicity p kat ouvéyeia CPP=CP, eite pe StapopeTikd Knot Value
Vector yla kafe mAéypa. Evo n mpwtn mepintwon eival ebkola epapuootun yati n ovvdeon
éxet Ndn emtevyBei, otn debtepn mepintwon 1 ocOvdeon mMOANEG Popég pmopel va eival
TPOPANUATIKY Kot OXtL aTeyavn (va (v CVUTINTTOVY AmOALTA Ol eMLPAVELEG OVVIEDTG OTOV

TPAYHATIKO XWPO).
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Mopewon tov untpwov XtifapdtnTag.

2TNV LOOYEWUETPLKT avaAvot) akolovBeital 1) idia Aoyikr) pe Ta memepacuéva oToryeia yla
™ MOpewon Tov Untpwov otfapotntag. O @opéag dakpitonoleital oe oTOLXElQ TTOV
dnpovpyodvran amd Ta Knot Vectors kat xpnotponotodpe apiBuntikiy odokAnpwon Gauss
yta UTTOAOYICOVE APIOUNTIKA TO UNTPWO OTIPAPOTNTAG. AV 0 HeYaAdTEPOG K TwV Pabuwv
TWV TOAVWVOUWY OTOVG TAPAHETPIKODG A&oVeG eivat p, TOTe aplOuog Twv Gauss Points

Katd Tov dfova oe kabe oTouyeio eivat:

p, yia 1-A mtpoBinpota

nperKnotSpan —
eP p+1, yua 2-A ,3-A mpofAnuota

Ot ovvtetaypéveg £° kal Ta Papn Wg twv Gauss Point cuvaptioet Tov aptBpov tovg
vrapyovv ot PiAoypagia yia éva didotnua olokAnpwong (-1,1). Avdyovtag Tig 010
TOPAPETPIKO OLACTNUA TOV OTOLXEIOV TIOV HOG EVOLAQEPEL, TTAIPVOVUE TIG TTAPAUETPLKEG

OVVTETAYUEVEG Kal T avTioToLxa Pdpn:
_ (Ea—&)E" + (& tE)
2

GPg _ (éiuz— E.n) W?

g

w

OewpOVTAG YPAUULKT) EAACTIKOTNTA, UTOPOUUE va popwoovpe Tov mivaka [E] yia
TMEPIMTWOELS PovodldoTatng (Siktvwpatog), didtaotatng (eminedng €vraong n eminedng
TOPAPOPPWOTG) KAt TPIOLAOTATNG EAAOTIKOTNTAG.

[ETruss]zE
(1x1)
v 0 1-v v 0
[EPIaneStress]:iz v 1 0 ’[EPIaneStrain]:# v 1-v 0
(3x3) 1-v 1ov (3x3) (1+V)(1—2V) 1-2v
0 0 — 0 0
L 2 | L 2
1-v v % 0 0 0 |
v 1-v 0 0 0
v v 1-v 0 0 0
[Eep ey | = E o o o0 =& 0
3D(6E>:aés)t|0|ty (1_ V)(l— 2\/) 2 ,
0O 0 0 0o =2V
2
0O 0 0 0 0 1_22V




Extended Abstract in Greek

O IakwPravég mivakag kot 0 avTioTpoPog TOL yia TIG UETAPACELG Ald TOV TPAYHATIKO

OTOV TIAPAPETPLKO XWPO eivar 0 akdAovbog yia TIG 3 TEPIMTWOELG EAAOTIKOTNTAG:

1D Elasticity 2D Elasticity

o oy al
0§ 0t O& )
oX 0z T

Q a~ Nn} {P}
Tl on on axn) | (x3)
ox oy oz T

2 2wy
L ¢ ¢ g axn)

oy

g

on

— \] ! = il 12 =
[\]] = i = L ([ZJ) |:‘]21 ‘]22:| _‘]21

[6)4
. o€
] p 3] = _
R R IR
(1x1) aﬂ
(2x2)
« J|  det(|J
o [xl]) OD | phere det[3] =, dy, o,

3D Elasticity

(3x3) (3xn)

Ta untpwa mapapopewoews ya povodaotatn ehaotikotnta 1-A eivar:

Ta empépovg untpwa mapapdpewone: [B, |=| —

To oAk pntpwo mapapdpewone: [B(E)]=[B,(€)][B,(&)]

To untpwo otfapdtnrag:

kat [B,(8)] = {R'&}T.

(1xn)

[K]=[[BO] [E][BE]Ad = [ [BE)] [E][BE)]Adet([3(2)])de

(nxn) | (nx1) (Ix1) (I1xn)

Kat n apBuntikr Tov oAokAnpwon:

[K] - “i([B@ YT [E][B(E )] A det (3] w

(nxn) i=1 (nx1) (Ix1)  (Ixn)

2nv nepintwon 2-A:

1 ‘]22 _‘]12
[B./(&n)]=—F—=| 0 O
) det([J]J S O R
(2x2) (3x4)
R. 0 R,, O
R R 0
B,(&m)]=| "
[ (24><2N) ] 0 Rl,é’; 0 RZ,&’;
0 R, 0 Ry,

[B(& )] =[B,(&M)][B,(&EM)]

(3x2N) (3x4) (4x2N)
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KAl TO UNTpwo oTiPapdTnrac:

=77 [ [BE W] [E][BE m]tdet ([3(2,m)]edn

(2Nx2N) (2Nx3)  (3x3)  (3x2N)
Kat pe aptOuntikn oAokAnpwon:
K] =33 8, )] (£ B, n) et (3, m Jw w]

(2Nx2N) i<l j=1 (2Nx3) 3X3)  (3x2N)

['a 3-A EAaoTIKOTNTA, T HNTPWA TAPAUOPPDOEWS ELVAL:

o o o o o o0 1J J J
[Bl(g ; C)} — 31 32 33

(6x9) ‘]21 ‘]22 ‘]23 ‘]11 ‘]IZ ‘]I3 O O O
0 T Y T T B X
[T J J 000 03 3, U
(6x9)
R, 0 0 R,, 0 0 R,, 0 0]
R, 0 0 R, 0 0 R,, 0 0
R, 0 0 R, 0 © R,, 0 0
0O R, 0 0 R, O 0 R,, O
Byenol=| 0 Ry, 0 0 Ry 0 0 R, O
(®am 0o R, 0 0 R, 0O 0 R, O
0 0 R, 0 0 R, 0 0 R,
o 0 R, 0 0 R, 0o 0 R,,
0o 0 R, 0 0 R, 0o 0 R,

kat [B(g,1,8)]=[B,(&n,0)][B, (&M, ¢)]

(6x3N) (6x9) (9x3N)

To untpwo otPapotnrag npoadiopileTar wg:

.[alwﬂj-nmﬂﬂj-gnru B(&,n,9)] [E][B(& n.&)]det ([3(&n, &)])dedndg

(3N 3N) (3NX6) (6x6) (6x3N)

Kat pe aptOunTikn oAokAfpwon:

[K] —ffi([%.,npc )] [E][B(&.,n,,c ) Jdet ({3, m;. G, ] W w e

(3Nx3N) =1 j=1 k=1 (3Nx6) (6x6) (6x3N)
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E§wtepika @optia kot suvoprakég cuvOnkeg

Agv givau gbkoho va dovpe TN QuOtkn onpacia dtav ackovpe optia ota Control Points,
yati kabe Control Point yevikd dev eival mavw oTn yewpetpia kat QOpTION 0 aTO
avTLoTOLYel 08 POPTION OF a OAOKANpn meptoxr Tov gopéa. Otav opws emPBailovpe
goptia oe ywviakd Control Points (ywviakd pe tnv évvola 0Tt fpiokovTal oTa dkpa TOv
Knot Value Vector kat emopévwg eivar mapepPolikd otn yewpeTpia pHag) epappolovrtal
npdypatt 0To idlo onpeio Tov opéa Aoyw TwV TAPEUPONIKWY CVVAPTHCEWY OXNUATOG. 2€
SlapopeTikn TEPIMTWOT, OTAV €lval KATAVEUNUEVA TIAVW OTOV QOpéa, BpioKOVHE TIG

toodvvaypeg dpaoelg mov ackovvtat ota Control Points:

‘t:n+p+1 T]m+q+1 C|+r+1

{F =[{Rxy.2}f(xy.2dv= [ [ [ {RE&nO}f(&n Odet[s]dcdnde

(Nx3) v (Nx1) (1x3) g n 4 (Nx1) (1x3)

Ot ovvoplakég ouvlnkeg epgaviCovy avtiotoryn Svokolia. Aeopevovrag éva Control Point
SeopevOVE EPIKWG TNV TEPLOXN TOU @Qopéa Tov emnpedlel. Mmopovpe OpwG va
deopevoovpe amoTEAEOHATIKA [ OAOKANPT TAEVPA TOV @Opéd. AVLTO TO KAVOUE

deopevovtag 0Aa ta Control Points otnv mhevpd ekeivn.

2Tr OVVEXELA, aQOD £XOLHE HOPYWOEL TO UNTPWO OTIPapdTNTAG, £XOUUE emBAAeL
eEWTEPIKEG POPTIOELS KAl TLVOPLAKEG TLVOTKES, PTopoDpe va AVoovpe TNV e§iowor Kat va
Bpovye Tig dyvwote petakivioets: {Le } =[Kg [{Dy } = {D; } =[K¢ ]_1 {L¢}

Otav mapovpe TIG HETAKIVIOELG Umopovue va Tpoodlopicovpe Ta medio HeTaKIVAoEWY,
TAOEWV KAl TPOTIWV 0€ OAO TO Qopéat:

Mertakvioeis: d&n.¢)={REn)} (D}
Tpoméc: {e(&n.0)} =[B(& . 0)]{D}
Taoe: {o}=[E][BENM.O]{D}
Enavadiakpironoinon

o va tapovple kaAvTepa amoTeAEoHATA ATIO TNV AVAALOT) Hag OANA Kal yia va
EQAPUOTOVLLE (Lot CELPA ATIO XPHOLHOVG aAYOpIOHOVG XPTOLHOTOLOVIE TEYVIKEG

enavadiakptronoinong. Exovpe 5 €idn enavadiakpironoinong:

h-refinement
reverse h-refinement
p-refinement

reverse p-refinement

M.

k-refinement
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OMeg ot texvikég emavadiakpironoinong Pacifovrar otn Aoyiky OTL TPV Kal HETA TN
Sadikaoia Ba éxw TNV ISt apXIKr amapapoOpPwTn yewUeTpia. Xe kdbe mepimtwon
Pplokovpe TI§ véeg kKapTeolaveg ovvteTayuéveg Twv Control Point wg

Py =T P

(mx3) (mxn) (nx3)
Kat emavalapPdavoope tn Stadikacia HOpPWONG TOV UNTPWOL OTIPapOTNTAG, €MIBOANG
efwtepikwv  ovvBnkwv  kat  emidlvong.  Emiong, oe  Oleg TG MEPMTWOELG
enavadlakptronoinong, Aoyw tng Full Tensor Product ¢vong twv NURBS, pnopovpe va

emavadlakpLTonoloovpe Eexwplotd oe kdbe mapapeTpikd dfova Kar pe omota oelpd

afovwv Bélovye.
Avalvtikdtepa:

To h-refinement, n eloaywyrn kopPov (knot) mov ovvendayetat kau etoaywyn Control Point,
vndpyxet oav texvikn kat ota FEA. Eiodyovpe Knot Values oto Knot Value Vector kau
Talpvovpe véeg cuvaptroelg oxfuatog kat Control Points (mukvotepa).

To reverse h-refinement eivau n) agaipeon kOuPwv. Agv eivat mdvta Suvatd va agatpEcovpie
KOUPoULG, yLa To AdY0 avTo 0 akyoptBpog yia reverse h-refinement mpémnet apxikd va ehéy&et
OTL oL KOpPoL TTOV eMAEEapLE TIPOG APAIPEDT) TTPAYUATL APALPODVTAL KAl APETEPOL Vo PPEL TIG

véeg ovvTeTaypéveg Twv Control Point.

To p-refinement r order elevation, eumAovtifet Tn fAon TwV oLVAPTHCEWY CXNUATOG HE TNV
avgnomn tov moAvwvoptkov Pabpod. H Stadikacia mepapfavet tnv eloaywyn koppwv (h-
refinement) yla Tr petatponr oe éva ovvolo anod Bezier curves, 0Tn ovuvéxela TNV avgnon
Tov Babuod Twv moAvwvouwy Bezier kat katdmy agaipeon Twv mepttTwy knot values yia
uetatpomnr) §avd oe B-Spline. H tekkr) moAanmAdtTnTa Twv evlidpecwy kouBwv avgdvetat

600 kat 0 Babuog Twv moAvw VWY wote va dtatnpnbdel  cvvéxela 0ToVG KOPBOLG.

To reverse p-refinement 1 order reduction, pewwver to fabuo Twv molvwviuwv. H
Sadikaoia eivar avtiotolyn pe to p-refinement. Amodounon twv B-Splines oe Bezier,
pelwon Tov Babpov Tov moAvwvipov kat §avd agaipeon twv meptttwy knot values wote va
netatpanei &ava og B-Spline. Opoiwg pe tnv avtiototyn texvikn reverse h-refinement,
yivetau éleyxog av mpaypatika pmopel va petwdei o fabuog xwpig va xabei n akpifeia otn
yewpetpia. Av yivetal, T0Te pewwvetat Kat 1) TeAkn ToAanmAoTTa Twv KOpPwv oto knot

value vector woTe 1) ovvéxela va apapeivet ) ida.

Téhog, To k-refinement eivauw pa véa Texvikr] HOVASIKE OTNV LOOYEWUETPLKY AVAALOT).
Egappoletar apyikd éva p-refinement yia tnv avgnon tov fabpod twv modvwvipwy kat
otn ovvéyela €va h-refinement to omoio elodyet KOuPovG pe VYNAT cvvéxeta. O Aoyog TG
VYNANG oLVEXELAG, elval OTL oL kOopPol ewonxOnoav petd to p-refinement kot €tor dev

avgnOnke n TOANAmMAOTNTA TOUG.
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2t dmlwpatik) aut Tpoomabnioope va EL0AYOVUE KAl €vav VEO TPOTO LEPAPXLKNG
enavadlakptronoinong. O Aoyog eival 0Tt 0e peydleg KATAOKEVES, oL Pabol ehevBepiag
eivat moAoi kat To k60TOG €fapYNG LTOAOYIOUOD KAl AVTIOTPOPNG TOL HNTPWOV
oTifapotnTag eival apketd peydlo. Mop@wvovTag LEpapylkd To UnTpwo oTiPapdtnTag,
dnAadn) ekppalovTdg To cVVAPTAOEL TOL apXLkov, kepdifovpe avTO TO KOOTOG Kat EXOVHE

va vrtoAoyiocovpe povo ta véa K.

] [

KFinaI } - (NxN) (NxQ)
Final Final

owan™ | [KG™ ] [KG™]
(QxN) (QxQ)

2VvOEoVTaG TIG APXIKEG HE TIG TEAIKEG OLVAPTHOELS OXHATOS PTACAUE OTNV TAPATIAVW
EKQPAOT) TOL VEOL UNTpwoL oTapotntag. llapatnpovue o1t dev vapyet oOpPoAo icov
aM& mepimov ioov. O Adyog givat 0Tt To akpiPpég UNTpwo eivatl TNG LOPPNG

|:Klnitial ]+ [SK] [K;:nal}

Final | _ (NxN) (NxN) (NxQ)
- Final Final

o™ | [KEM] O [KG?]
(QxN) (QxQ)

Qotooo epeig emAéyovpe va ayvonoovpe to pntpwo [0K] yia va amoktrioovpe tnv
tepapytkn popen. OpovriCovpe guowkd to [8K] va eivar apketd pikpd wote va pny
ETMNPEATEL TN OVYKALON. AVAAVTIKA Ol HOPPEG TWV VEWV UNTPWWVY Tov XpeldleTat va
VTTOAOYLOTOVYV, SivVOVTal TAPAKATW:

[sk]=[Tr] [T - [K']

(NxN) (NXN)  (NxN) (NxN)  (NxN)
(<G =[] [k
(NxQ) (NxN) — (NxN)  (NxQ)
(<G =[] [k ]
(QxN) (QxN)  (NxN) (NxN)
(<G =[]
(QxQ) (QxN)  (NxN) (NxQ)

omov ot mivakeg [Tem ] , [Tr:“ ] npoodiopifovTal amd TovG MVAKES LETACYNUATIOHOD TWV

ovvtetaypévwv Twv Control Point.
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The concept of Isogeometric Analysis

1 The concept of
Isogeometric Analysis

1.1 Finite Element Method

The finite element analysis method is a way of numerically solving partial differential
equations. Its general nature allows us to deploy it with special adjustments in countless
applications in all fields of engineering. Solid and fluid mechanics, bioengineering, heat
transfer and acoustics are just a few fields of interest. Today, any modern engineering

project in one way or another uses finite element software.

1.1.1 Evolution of the Finite Element Method

1.1.1.1 Historical Overview

Finite element method is originated from the need to solve complicated elasticity and
structural analysis problems in civil and aeronautical engineering. The first results for PDEs
were by Rayleigh, Ritz and Galerkin followed by early attempts by Courant and Hrennikoff
to solve numerically partial differential equations. All such successful attempts shared
common ground in that all of them involved mesh discretization of a continuous domain
into a set of discrete sub-domains. From that base developed the finite elements along with

other methods called finite differences and finite volumes.

Figure 1.1. Engineer Ritz and mathematicians Galerkin and Courant.

The finite element method obtained its real impetus in the 1960s and 1970s. The linear
triangular element, the simplest and still widely used element, can be traced back to
Courant who coined it to solve the torsion problem in 1943. The method was firstly applied
by J. Argyris during WWII with linear triangular elements in his attempt to simulate swept-
back airplane wings for the Royal Aeronautical Society of London. Argyris’ research was
very successful and was classified at the time. His results and his work with Keley were

published years later in 1960 and the method gained momentum.



The concept of Isogeometric Analysis

The name “FiniteElements” was introduced by Clough in1960. The triangular elements’
volume extension, the linear tetrahedron, appeared in 1962 by Gallagher and, the following
years, the work of Taig 1961, Irons 1966, Zienkiewicz and Cheung 1968 resulted in the
isoparametric elements, probably the most important concept in the history of FEA.

Based on the isoparametric concept, there were developed regular elements such as a square
or a cube in the parent domain that had the capacity to take on a smoothly curved shape in
the physical space. The spaces constructed, satisfied both basic mathematical convergence
criteria and also useful physical attributes in problems of mechanics. The isoparametric
elements became widely used and the curved quadrilateral and hexahedral elements
became quite popular in solid mechanics applications. From then on, numerous

researchers have devoted their work in the development of finite element technology.

1.1.1.2  Nowadays

The method started in 1940 has developed tremendously up to date. When first
implemented by John Argyris for analysis of airplane wings, the current advanced
computer used, could solve a linear system of maximum 64 unknowns. At present, with the
massive investment and evolution on computers, we are looking forward to the 2018 target
of one hexaflop computing power, meaning 10" floating point operations per second. We
are now able to solve equations with thousands or millions of unknowns and that has taken
capabilities and potential of finite elements and generally numerical methods to a whole

new level.

The evolution of computer technology led to powerful but affordable computers and thus
nowadays every big industry has its own computer department. The available computer
infrastructure in businesses increased the interest and made finite elements approachable
to a great many engineers. Furthermore, released open source codes, constantly invented
new techniques and governmental funds supporting financially the research interest in the
field have given finite elements further impetus.

Figure 1.2. Argyris, Zinkiewicz, Taylor, Cheung, Belytchko, Babuska
All great researchers with significant contribution in the development of FEM.
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1.1.1.3  Challenges

When a problem is solved, several others take its place, always growing in number.
Computer power is increased but instead of solving static equilibrium we now try to
simulate dynamic systems and optimize the design of a structure. With modern
applications there is need for accurate and efficient software solutions. Fortunately, both
aspects attract research interest. The hope for efficiency seems to reside in parallel
programming, at first with CPUs with more than one cores and currently with GPU’s great

numbers of processors. Such implementations have been made by [4].

1.1.2 Basic Idea

The FEM is based on the concept of approximating the solution field of displacements in
solid mechanics on any internal point of the model through a number of nodal
displacements. The method is general and the displacement field in solid mechanics could
be the pressure field in fluid mechanics or difference of voltage in electromagnetism

problems.

FEM usually generates a mesh and through that defines the elements. Less often meshless
methods are utilized and instead of a mesh we have just a cloud of nodes dispersed over the
model. The standard ordinary methods use piecewise polynomials called shape functions
to express the displacement of any internal point in respect to element’s nodal
displacements.

{ueey. )} =[N° J{d)
(3x1) (3x3n,) (3nex1)
where d are the displacements of the internal point, n. is the number of nodes of the

element, D are the nodal displacements and N are the corresponding shape functions.

Generalizing the above equation for the whole structure, we get the displacement at any
point as a function of the structure’s nodal displacements. In this case n is the number of

all the nodes in the structure.

{U(x,y,2)} =[ N® |{d°}

(3x1) (3x3n) (3nx1)
Through differentiation of the point’s displacement we can get the strain there as a function
of the nodal displacements. The matrix B connecting nodal displacements and strains on a

point, is called the Deformation Matrix.

{e(x,y,2)} = [B] {ds}

(6x1) (6x3n) (3nx1)

where {e(x,y.2)} ={ex & & Yur Tvz Yax)
(6x1)
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Depending on the constitutive law, we can connect the stress and strain vectors at any point.

{o(x,y,2)} = [E] {e(x,y.2)}

(6x1) (6x6) (6x1)

{G(X1Yaz)}:{6x Oy Oz Oxy Oyz sz}T
(6x1)

The local stiffness matrix for each element of the model is calculated as

[K] =I[B(x,y,z)]T[E][B(x,y,z)]dv

(Bnex3ny) v (3nx6) (6x6) (6x3n,)

and due to the usual inability to get [k] analytically we deploy numerical methods to

evaluate it.

Afterwards, by adding each element’s contribution to the total stiffness matrix of the
structure, we get the stiffness matrix [K] .

(3nx3n)

We determine the element’s equivalent nodal loads of any internal distributed loading

(ny=] [N]"{f}av,

(3x1) vV, (3nex3) (3x1)

The global load vector {R} is formed by the local equivalent loads and any concentrated
(3nex1)

loads applied directly on the nodes.

Finally, we determine the unknown displacements by inverting the stiffness matrix of the
free Control Points

(R} =[K, ]{D7}

(3nx1)  (3nx3n) (3nx1)
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1.2 Computer Aided Design

1.2.1 The evolution of CAD

1.2.1.1 Historical Overview

With the industrial evolution, difficult projects to be processed in the conventional way of
hand-drawing emerged. In 1950s, in automotive, shipyard and aircraft industry, large scale
projects that required high precision could not be handled anymore. First, smooth
polynomial lines called splines by Schoenberg in 1946 were introduced to provide a curve
fitting tool. Two French engineers from the automotive industry, Pierre Bezier from
Renault and Paul de Casteljau from Citroen, set the foundations of the current spline
toolbox by introducing the Bezier curves, named after the first who published his work in
the field. With the fast development of computers and the new capabilities of CAD systems,
far beyond their initial purpose of simply reproducing manual with electronic drafting, the

cost benefit for companies to adopt them became apparent.

The development was rapid. Bezier curves were capable of representing a wide variety of
curves but were not flexible enough. Riesenfeld in 1972 introduced the B-splines, standing
for basis splines, which were much more flexible as they were defined in a way to have
minimal support with respect to a given degree, smoothness and domain partition. Their
generalization, called NURBS, were introduced by Versprille in 1975 and overcame the B-
spline’s inability to accurately represent specific geometris, like conic sections. Boeing was
the first to industrialize NURBS and, in time, their native flexibility, stable mathematical
procedures and simplicity had successfully established NURBS representation as a standard
in CAD industry. Of course, CAD is an ever growing technology with new techniques and
types of splines like T-and Polycube splines or Subdivision surfaces emerging constantly.
Nonetheless, NURBS technology with its already developed and advanced software, still
holds the majority of the market.

1.2.1.2  Nowadays.

Nowadays we can say that Computer Aided Design or CAD is the use of computer systems
to assist in the creation, modification, analysis or optimization of a design. The description
incorporates a vast number of applications but the CAD indeed has impact in any number
of industrial products in our everyday life. Its use is obvious in large scale projects like cars,
buildings, aerospace engineering but is hidden in other projects too that we do not think
of, namely in computer animation for special effects in movies, transistor arrangement on
a CPU or prosthetics in medicine. The numerous applications it has and the technologies

dependent on CAD, have given it great economical significance and today the industry has
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gained an ever increasing impetus overcoming more and more difficult challenges

presented.

(a) " ()

Figure 1.3. Business Jet modeled with NURBS.
(a) NURBS model with knot lines.
(b) NURBS model with knot lines and control points.
(https://grabcad.com/library/sst-1)

(a) (b)

(c)

Figure 1.4. Luxurious Yacht modeled with NURBS.
(a) NURBS model with Knot lines.
(b) NURBS model with Knot lines and Control Points.
(c) NURBS model rendered.
(https://grabcad.com/library/megayacht)
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1.3 Isogeometric Analysis

For a successful simulation of a problem nowadays, we usually require both exact geometry
representation and accurate engineering results. The two methods, however, Finite
Elements (the CAE technologies— Computer Aided Engineering) and CAD (Computer
Aided Design) evolved differently in the flow of time. Currently, the two technologies use
different methods and different shape functions. That way, after the designer finishes
simulating the model with exact representation, passes the result to the engineer who tries
to approximate the geometry given by the CAD designer with a new mesh generation and
the use of new shape functions. It is obvious that this is a tedious and time consuming
procedure. By looking up in the literature we see that today, this integration can sum up to
80% of the total analysis time. If we take into consideration that this integration process has
to be repeated several times as the engineer gets a solution and then meshes again to get a

better one, we realize that we can save a lot of time by investing in reducing that time.

The engineers’ answer came in the form of a publication back in 2005 by Hughes, Cottrell
and Bazilevs. Although earlier attempts had been made, those where the first researchers to
systematically approach the problem. Their idea was to utilize the same shape functions
widely used in CAD literature, NURBS, to approximate the solution field. They practically
reversed the isoparametric concept. Instead of using the shape functions of the solution
field approximation to define the geometry, they used the CAD’s shape functions for
geometry for analysis. The first results were very encouraging, the CAD Shape functions
had very good native attributes suitable for their use in finite element analysis. From that
point, the research in the field is rapidly attracting interest and the amount of publications
in the field grows exponentially each year.

Figure 1.5. A.Cottrell, T.Hughes and Y.Bazilevs.
Originators of Isogeometric Analysis and authors of the first and only book on the topic.
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In Isogeometric Analysis (IGA), CAD and FEA tend to merge, outlining a bright future of
closer collaboration and ideally integration of the two technologies. Fortunately, that
doesn’t mean that FEA has to be reinvented. Changing the basis functions leads to a series
of adaptations in existing codes but the codes’ architectures remain the same in principle.
There is also an extensive variety of shape functions candidates for use in IGA. Shape
function types develop along the IGA as CAD industry surely benefits from this integration
attempt. In CAD industry, most widely used are still NURBS, but many new spline
technologies are announced every year, overcoming the drawbacks of their predecessors.
NURBS are not very efficient for local refinement or patch merging but the recent
technology of T-Splines overcomes those drawbacks and manages to offer truly local
refinement schemes and water tight patch connections. It naturally has its own drawbacks
like the complexity of the algorithms used, the cases it can be applied and the fact that is a
relatively new technology, not yet widely adopted by software companies. There are several
promising shape functions coming along with IGA, suitable for more specific problems,
namely hierarchical B-Splines, Polycube Splines or Subdivision surfaces, ensuring that the
engineer using IGA will have alternatives to approach the problem’s solution if they are

needed.

Cells
Vect Mag
59

(a) (b) () (d)

Figure 1.6. Simulation and Isogeometric Analysis of the Thoracic aorta.
(a) Surface model and path, (b) Control mesh
(c) Solid NURBS, (d) Simulation Results
(http://www.andrew.cmu.edu/user/jessicaz/publication/vascularmodel/)



Basic Ingredients of Isogeometric Analysis

2 Basic Ingredients of
Isogeometric Analysis

2.1 Introduction

In this thesis, we decided to exclusively use NURBS. In this chapter we will study
thoroughly how NURBS are formulated, their properties and behavior. Although there are
newer technologies and other splines with better behavior under certain circumstances, the
majority of the CAD industry, from software companies to amateur users, still uses NURBS
shape functions to model geometry as billions have been invested in the industry and both
extensive knowledge and advanced software has been developed on the subject.

In Isogeometric analysis we generally use isoparametric elements. The term isoparametric
is explained by the fact that we use the shape functions which describe the solution field to
describe the geometry of the structure. In isogeometric analysis the isoparametric concept
is reversed. We use the shape functions which describe the geometry to approximate the
solution field. We should highlight, however, that in Isogeometric analysis the shape
functions are used to describe the exact CAD geometry, unlike Finite Elements where the

shape functions are used to only approximate the CAD geometry.

Directly by the CAD mesh, since the same Shape functions are used, we have the mesh of
control points and knots. The Control points are the coefficients which multiplied with the
values of the shape functions at a certain point define the geometry. The Knot mesh
provides a suitable discretization of the domain for numerical integration and defines the
boundaries of the support of the Shape functions.



Parametric Axis

Basic Ingredients of Isogeometric Analysis

2.2 Index, Parameter and Physical Space

In most Spline geometries, three different spaces play a crucial role when defining them.

The Index, the Parameter and the Physical Space.

In the process of working with NURBS geometries, several projections take place. The space
we are more familiar with is the Physical Space. This space is based on the Cartesian
coordinate system and therein the accurate model is designed using CAD technology.
When analyzing a complex structure it is easier to reduce it to a simpler shape to be able to
process it. Taking advantage of the isoparametric concept we do just that, we project the
complex structure in a simpler space where it has a very basic shape of a line, a rectangle or
a cuboid, depending on the structure’s dimensions. This is the Parameter space, equivalent
to the natural system in FEA, where the shape functions are defined and numerical
quadrature takes place. Lastly, the Index space plays an auxiliary role in NURBS
formulation, depicting better the Shape functions’ support and assisting in calculating the

Control Points parametric coordinates.

Index Space

Index Axis {
« o

(b)
Figure 2.1. (a) Index, (b) Parameter and (c) Physical Space
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2.2.1 Index Space

Basic Ingredients of Isogeometric Analysis

Index space is a representation of the model in respect with the Knot Values. Its purpose is

to better present the sequence of Knot Values and potentially repeated Knots. That way we

can clearly see the support of each basis function and which knot spans are trivial. To do

that, it shows the Knot Value sequence with equal distances between the Knot Values. In

the Index Space we also determine the Control Point’s parametric coordinates as the middle

of the support of its basis function.

Index Space is a line in 1D, a rectangle in 2D and a cuboid in 3D.

B Knot TensorProduct
Index Space @ Control Point TensarProduct
o 5 @ i @ o) @ i @ i @ o) @ ) 5]
| | | | | | | |
o ] 1 2 2 3 3
Index Axis ¢
(a)

Index Space

} |
0

T it @ = .. E
™ LB o —I—o 1+ 11

(b)

Index Space
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(o)

Figure 2.2. Index Space in the cases of 1D, 2D, 3D.
(a) Index Space 1D Line. Knot Value Vector E={000122333}
(b) Index Space 2D Rectangle. Knot Value Vectors E={001233},H={0001333}
(c) Index Space 3D Cuboid. Knot Value Vectors E={ &1 ... &7}, H={nl...n6},Z={{1...(4}
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2.2.2 Parameter Space

Parameter space is a representation of the model in respect with Knots. Now the Knots are
presented in their exact positions as their numerical contents indicate, unlike the equally
distanced Knot Values in Index Space. We could see it as a “contraction” of the Index Space

but only roughly, as that description would not be accurate.

Parameter Space is the analogous to Natural System in Finite Elements. The Jacobian
matrix and its inverse are used for the transition from Parameter Space to Physical Space
and vice versa. After the mapping of the model from Physical Space to Parameter Space
where it will be a line in 1D, a rectangle in 2D or a cuboid in 3D, the Gaussian Quadrature
to calculate the Stiffness Matrix takes place.

In Parameter Space we usually also plot the Basis and Shape functions as in this space it is

easy to see their support and observe their properties with clarity.

Parameter Space

D Knot TensorProduct
@ ControlPoint TensorProduct

5} @ = @ 3 @ ]

| | | |
1} 1 2 3

Parameter Axis &

(a)
@ Knot Tt Product
Parameter Space Parameter Space B o Tensorodct
k1) &) ) 9] @ Control Point TensorProduct
[ ) [ ) [ ®
=
@ o 1
g e
E %
o £
£ £
103 i 1 i1 o
[ ) [ ) [ ®
0 15 9 8
? L L I
0 1 2 3
Parameter Axis §

Figure 2.3. Parameter Space in the cases of 1D, 2D, 3D.
(a) Index Space 1D Line. Knot Value Vector E={000122333}
(b) Index Space 2D Rectangle. Knot Value Vectors E={001233},H={0001333}
(c) Index Space 3D Cuboid. Knot Value Vectors E={000122333}, H={0001222},
Z={0011}
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2.2.3 Physical Space

Physical Space is the Cartesian Space where the real model is designed. Here we can see all

kinds of shapes, random curves, surfaces and solids.

In contrast to conventional FEA with C° continuity where the nodes lay upon the model,
control points in the Physical Space are not restricted to the inside or edge of the model.

We can intuitively think of the control points as weights that pull the model toward them.

—Curve
@ Control Point
O Knot

(a)

i

(b)
Figure 2.4. Physical Space in cases of 1D, 2D, 3D.
(a) Curve (b) L-Shape (c) Solid Pipe
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2.3 B-Spline Geometries

2.3.1 Introduction

B-Splines is the foundation on which the NURBS are built and thus we will have to study
them in depth. In fact, NURBS are a generalization of B-Splines and share most of their
properties. A B-Spline function is a Spline function that has minimal support with respect
to a given degree, smoothness and domain partition. B-Splines are piecewise polynomials

and therefore are characterized by their degree p and their support.

2.3.2 Knot Vector

The Knot Vector, in one dimension is a set of non-decreasing coordinates in the parameter
space. The first and last coordinate define the model’s boundaries in its projection in the
index and parameter space.

In bibliography the general term is “Knot Vector” whether we are referring to the non-
decreasing set of coordinates or the unique values of those coordinates. To be unambiguous

as to which of those two vectors we are referring to, we introduce the terminology:
“Knot Value vector”: This is the whole set of non-decreasing coordinates.
“Knot Vector”: This is the non-decreasing set of unique coordinates.

An example of a Knot Value Vector would be {00012.5344566 6}
and the respective Knot Vector {0125345 6}

We refer to the values of the Knot Value Vector as “Knot Values” and to the values of Knot

Vector as “Knots”.

A knot value vector is named uniform when all knot values are equally distanced as in the
case of {0123456 7 8} and open when the first and last value is repeated (p+1) times as
in the case of {0001253445666} (for p=2). By a strict translation of the above

terminology, there cannot be an open uniform Knot Vector. We may, however,
occasionally throughout this Thesis use the term “open uniform” Knot Value Vector,

meaning that the Knot Value Vector is open and its Knots are equally distanced.

In B-Splines and NURBS we will generally use open, non-uniform knot value vectors. The

knot values of such a vector are (n+p+1).

2= {8 &r ++ Bge Buupat)
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As we will see further on, the actual numerical content of a knot value is trivial, it is the
relative distance between the knot values that is important. That said, a knot vector can be
translated or scaled by any number and the resulting basis will still be the same. All the
information needed to build a B-Spline basis function can be obtained from the Knot Value

Vector.

2.3.3 Definition of B-Splines

Given a knot value vector in Parameter space E={f;1, & o Erips émpﬂ} we have all the

information needed to evaluate the B-Splines. We can determine the degree p of the B-
Splines by counting how many repeated values we have at the beginning and end of the
knot value vector recalling they should be (p+1). Then we get the number n of the basis
functions as we know that there are n+p+1 knot values in total.

There are a number of ways to evaluate B-Splines but here we present the widely used Cox

de Boor recursive formula.
Cox de Boor Recursive Formula:

First, for degree p=0 (piecewise constant, box B-Splines)

1 i <E&<¢,
0, otherwise

Ni,o (é) = {

We note that the piecewise constant function does not include the right edge. This ensures
partition of unity as the next basis function begins at that edge. The last function of degree
zero however includes both left and right edge in order to ensure partition of unity even in
the right edge of the Knot Vector.

(1 ifg <esé,
Niepo(©)= {0, otherwise
Afterwards, for degree p>0
- i_E_’i §i+p+1_§
N, (&)= N, (2 N
|,p(E.t) §i+p'§i * (i) §i+p+1'§i+1 P (%)

with the assumption that % =0

15



Basic Ingredients of Isogeometric Analysis

BSPLine Basis Function

4 : ‘ —Degree 2
—Degree 1
Degree 0
3.5 8 Knot -
3
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oL |
1.5
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0.5+ .
% 1 2 3 4 5

Parameter Axis §

Figure 2.5. B-Spline Basis functions
Degree zero (green), one (red) and two (blue)
Knot Value Vector E={00012 34555}

2.3.4 Control Points

The vector valued coefficients of the basis functions are referred to as Control points.
Although it is not a complete analogous, Control points are close to the notion of nodes in
Finite Elements in that they are the coefficients multiplied with the basis functions to define
geometry. They exist in all three spaces: Index, Parameter and Physical Space. Their
parametric coordinates are defined as the center of the support of the basis function in
Index space. The i basis function of degree p, has support [&;.§,,,,,) as will be discussed

later on in the B-Spline properties. The support contains (p+1) knot value spans and (p+2)

knot values (including the right boundary value &.p.1).

For even degrees, the center of the support in the Index Space lies between two

sequential knot values and therefore the control point parametric coordinate is:

E.aCP, 20-5[‘:”,)"'&_ P j

i+-+1
2

Thus a control point of even degree can either be on a knot or in the middle of a knot span.
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. p+l
For odd degrees, the center of the support is the knot value [I +p7j Thus the control

point is always coincident with the knot:

Ecp, =€, p+l
i+—

2
Control Points 1D @ Knot
@ Control Point
® 0 @ ) @ ] @ 1]
| 1 | | | | J
0 1 2 3 4 5 6 7

Parameter Axis §

Figure 2.6. Parameter Space. Control Points and Knots for even Degree=2.
Knot Value Vector E={000123455677 7}

Control Points 1D E Knot
@ Control Point

I I I ! ! I |
0 1 2 3 4 5 6 7

Parameter Axis §

Figure 2.7. Parameter Space. Control Points and Knots for odd Degree=3.
Knot Value Vector E={00001234567777}

B Knot TensorProduct

@  Control Point TensorProduct

Index Space

Index Axis n

0 ] 1 2 3 4 4

Figure 2.8. Index Space. 2D Control Points at the middle of the Basis function support.
Degree £ = 1 (odd) , Degree n = 2 (even)
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2.3.5 B-Spline Shape functions and their Full Tensor Product
Nature

B-Spline basis functions along with their important properties are of full tensor product
nature. That means evaluating the B-Spline Shape Function is very easy by combining B-

Spline basis functions along different parametric direction.

In the 1D case, taking into account only the B-Spline basis function along the § parametric

direction, the B-Spline Shape function is:
RP(E)=N;,(€)

In the 2D case combining B-Spline basis functions on parametric directions &, n, the
B-Spline Shape function is:

RYT(Em) =N, (E)M; ()

In the 3D case, combining B-Spline basis functions on parametric directions §, 1, {, the
B-Spline Shape function is:

RPA(EMQ =N, (M, (L, (©)

As a result, the Control Points and Knot Vectors, used to define and better represent the B-
Spline basis functions along a parametric axis are also of a full tensor product nature in the
Parameter Space. In that way, we can refer to any control point or knot value with its
coordinate along the corresponding parametric direction: The control point (i,j) in a 2D
problem has the parametric coordinates of the i™ control point on axis § and of the j®

control point on axis 1.

The full tensor product definition of the Shape functions allows the other properties of the
B-Splines to be inherited in the Shape functions as well and be applied.
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2.3.6 B-Spline Basis Function Properties

Piegl and Tiller [14], do a thorough examination of the properties of B-Spline basis
functions and their proofs but we also noted here an extra property we found useful,

property 3. We will review them briefly and then examine each property separately.

1. Local support property
N, (&) =0 VEe[&.50 )

2. In any given knot span [& i ‘t:j+1) at most (p+1) of the functions N; ; are non-zero and
N

3. Every function shares support with 2p other functions plus itself.

those non-zero candidates are N.

j=ppr P pe

Non-negativity
Ni,p (EJ) >(
5. Partition of unity.

SN, (=1

6. Cr* Continuity on a knot of multiplicity k and infinitely differentiable in the internal of
a knot span.

7. Except for the case of p=0, N, () attains exactly one maximum.

8. Linear Independence.
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2.3.6.1 Local support property

The local support property means that a B-Spline Basis function Ni'p is non-zero only in a

specific interval in the Parameter Space.
Ni,p (};) = O VEJ & I:é 9§i+p+l)
The local support is derived from the recursive definition of a B-Spline.

§i+p+l _é
N; 1 T Ni+1 p-1
" (‘:) (zai+p+l_(:i+1 Y (2;)

&S
<t::i+p _E’i

Ni,p ((:):

The i™ B-Spline of degree p is a combination of the B-splines i and i+1 of degree p-1. By
induction we can see that the p degree B-Spline has support (p+1) degree zero box functions
and by recalling that the degree zero functions have support only one knot span, the p
degree B-Splines have support (p+1) knot spans or (p+2) knot values. It is easy to prove it

with induction on p. We can see it represented with clarity in Figure 2.9.

Figure 2.9. Lower degree basis functions that

influence a certain basis function of degree p.
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BSPLine Basis Function —Degree 2
4 | T Nas T ——Degree 1
> Degree 0
B Knot
3.5- |
3

Ngpo Nsg Ne,0

0 1 2 3 4 5

Parameter Axis §

Figure 2.10. Lower degree basis functions that influence the quadratic basis function Ny.
Knot Value Vector E={0001234555}

In Figure 2.10, we see that, due to the recursive character of the B-Splines, the i B-Spline
of degree p=4 depends on p+1=>5 box B-Splines of degree zero who have support only one
knot value span. Ny, (§) is defined by Nuo(§) and Nso(§) which have support the interval
[1.2)U[2,3)=[13) [12)U[2,3)=[13) and Nsi(§) by Nso(§) and Neo(E) which have
support the interval[Z, 3) u[3, 4) = [2, 4). The basis function Ni,(§) is defined by the
functions N41(§) and Ns1(§) which hold together the support [1, 3)u[2,4) = [1, 4). Finally

the basis function Nu.(§) has support of (p+1)=3 knot spans equal to the interval[1,4).

In 2D and 3D,

BSPLine Shape Function

Thcnor 100

EHinet TensarProduct

@ Contrel Paint 10

@ Control Paint TensarProduct

BSPLine Shape Function

~OKnot 10

~B- Knat TensarProduct
@ Control Point 10

BSPLine Vaue
- o

Parametric

Figure 2.11. Local support of Shape Functions 2D and 3D.
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2.3.6.2  Inany given knot span [¢ ¢, ) at most (p+1) of the
functions N;, are nonzero and those non-zero candidates
are N, ,...N;,

In the above statement we declared “at most” (p+1) basis functions will be nonzero. The “at

most” augmentation takes into consideration the case when §=E§;.;, when there is a knot

with multiplicity>1 and the interval [c‘;j,ﬁm) does not exist. The functions N;  who are

not zero in the interval [cﬁ & j+l) are those who have the interval [& & j+1) in their support.
When the definition of N, ; is traced recursively back to the degree zero box B-Spline Basis
functions, to have the knot span [ﬁj,?’;m) in its support, the Njo must be among those

supporting degree zero basis functions. Otherwise the N; B-Spline will surely be zero in

the [éj,e“;m) knot span.

Figure 2.12. Influence of a single B-Spline box function

to the higher degree B-Spline basis functions.

In Figure 2.12 we can see that each box B-Spline affects only two linear basis functions,
only three quadratic basis function, only four degree 3 basis functions and generalizing
the statement (p+1) of degree p basis functions. More precisely, we can see in the above

tigure that those basis functions who will be potentially non-zero are only the Nj,,...N;.

In Figure 2.13 we can see which B-Spline basis functions of each degree 0, 1 and 2, have

the interval [2,3) in their support.
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BSPLine Basis Function —Degree 2
4 T 1 —Degree 1
N2 Naz Ns.2 —Degree 0
@ Knot
3.5 i
3
N, Nsq
25 i
2- |
15
Nso
1
0.5+ _
0 1 2 3 4 5

Parameter Axis §

Figure 2.13. Influence of a single B-Spline box function
to the higher degree linear and quadratic basis functions.

2.3.6.3  Every basis function shares support with maximum

2p others

This derives directly from the local support property: N; (€)=0 VE¢ [F,, ,§i+p+1) . Then
the function N, (£)=0 has support [éifp,ﬁiﬂ) and the function N, (§)=0 has

1+p,p

support [E..Hp , §i+2p+1). They are the first and last function that share support with N; (&)
and thus the set of functions that share support with N; (&) are the N, (&) with

j=i-p, ..., i-1,i+1, ..., i+2p+1 which are 2p in number.

BSPLine Basis Function

10

Parameter Axis §

Figure 2.14. Every B-Spline basis function shares support with 2p other.
Knot Value Vector E={000123456789 1010 10}.
2p=2*2=4 other functions
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Instead, in the case of trivial knot spans, when knot values have multiplicity greater than 1,
we may have functions who share support with less than 2p others. If the trivial knot span
is internal to the support of the B-Spline we are inspecting, then the B-Spline shares support
with exactly 2p others. We can see that in Figure 2.15.

BSPLine Basis Function
1 T T T T

0.9
0.8
0.7~ .
06- 1

0

A

10

Parameter Axis §

Figure 2.15. Every B-Spline basis function shares support with 2p other.
Knot Value Vector E={000123455678910 10 10}. Knot 5 multiplicity=2.

In the case though the trivial knot span is at the edge of the B-Spline’s support then it
shares support with less than 2p others. We can see such examples in the following
Figures 2.16, 2.17, 2.18.

BSPLine Basis Function
1 . .

09
08
0.7 /\

AN A |
0| ’ )\ VY " |

9 10

Parameter Axis §

Figure 2.16. Every B-Spline basis function does not share support with 2p other.
Knot Value Vector E={0001234556789 10 10 10}. Knot 6 multiplicity=2.
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Basis Function Support on §
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BSPLine Basis Function

0] T 3 e} 2 8 7 g 5 10

Parameter Axis §

Figure 2.17. Every B-Spline basis function does not share support with 2p other.
Knot Value Vector E={000012345677891010 10 10 }. Knot 6 multiplicity=2.

Parameter Space

Basis Function Support on

0 0 1 2 3
N",
N,
N,
N",
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0 0 1 2 3
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1 1
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2 2
3 3
a 1
5 5

(a)
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Index Space

Basis Function Support on

0 [ 1 2 3
N
My
N
M,
T YL Yo VAN TS T
0 o 1 z 3
0 0
0 o
0 0
1 1
wf
=
s Support of R j_3 =2
T
=
£,
= 2 2
=
7
=
)
=
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S 3 3
=
=
A
=
=
a a
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5 5
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(b)

Figure 2.18. Maximum Shared Support of a 2D B-Spline in (a) Parameter Space
(b) Index Space Knot Value Vectors E={0001234555}and H={001233}
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2.3.6.4  Non-negativity

N;,(€) 20 Vip,§ € E where E is the Knot Value Vector. This is proven by induction on p.

It is clearly true for p=0 and we assume it is true for p-1.

. . é-é §i+p+l-§
By definition N, (&)=——-N, ,(+——"——-Ny,,, ().
y definition N, (&) T ©) Enln ™ ©

By the property of local support, either &e[éi,&,HP) and N, ,(6)=0 or e [E_,i,inp) in

which case & >0 and with the assumption made thatN; ,(€)>0, the first term
&'E.:i . &i+p+1_&.>

——=—N; ,(§)>0. The same is true for the second term, ———N;,; ,,(§)=0. Thus

§i+p '&i §i+p+1-§i+1

N;,(€) > 0and is valid for any i, p, &.

BSPLine Basis Function
T

1 T A T T T ‘
\ —Basis Function Value |
0.9¥ I 8 Knot Il
0 81 ‘/ \ @ Control Point #
T A~ A A I A A A
0.7\ \ / N\ ) \ /,/ \ \ /N i
[ I / \ o/ \ \ ~ o \ / \ // \\ N
okl /N, NS NS NN LN AW
MEVERY \ / \ / \/ |/ / \ / \/ \ VA
VARY \/ \ / \/ / / / \/ \/ VAR
os5- | | | vy Y | y bV
A /‘/\ /\ )\ A % I\ A / /\ I
04l [/ \ A /\ \ | /\ /1 /\\ “/\ J\*
AN Vol Vo fy
03 A / \\ /A /o \ | ,/ \ / \ / \
Selv / Vo \ \ / | \\ J /‘ / \ / \ [
,/ \ / \ // \ / \ / \ { \ \/ \ // \ / \ / \ f/ L
0.2 ] X \\ / \ / \/ \X \ / \(, \ / \/ \ / \
/ \/ \/ \/ A A \ \/ \ AN
o.1f AN /\\ AN /N /,X\ /K\ AN l\
0 / \\*- ERAN AN /N v N M / A AN / Ny o/ N
0 1 2 3 4 5 6 7 8 9 10

Parameter Axis §

Figure 2.19. Non Negativity Property of B-Spline Basis Functions.
Knot Value Vector E={0001234556789101010}

2.3.6.5  Partition of Unity

For any § in the knot vector E, the sum of all basis function at that point is one.

SN, ©)=1
VEEE= gl

Partition of unity is essential in any set of basis function in any finite element scheme. The
reason is simple. In isogeometric analysis as in the general case of Finite Elements, the
displacement at a point C(§n,{)=(x,y,z) in the solid model, will be approximated by

n
Z Niyp(i) U; where u; are the displacements on the nodes or in the case of isogeometric

i-1
analysis the displacements on the control points. If u, =U for all the control points, we have
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rigid body displacements (property Affine Invariance of B-Spline Curves in 2.3.9) and if

those in conjunction with the laws of the phenomenon we study cause no strain, it is clear

n
thatUZ N; (€)=constant. In our case of isoparametric elements, where the same

functions are used to describe geometry, it would be necessary that all points are translated
byU, thus UY N, (§)=T= >N, (§)=1.

i=1 i=1
Proof. We will prove it in an arbitrary knot span.

VEe [E:i":m)’

ZN,p(a) ZN,p@— 2[ Ead N, (E)+ NETUEL N ,»ﬂ,p.l@]

j=i—p j=i-p E.>j+p '3: E.>J+p+l é]+l
i +p+1 &.t
Jp 1(&) J & j+1,p—1(2;)
j=i- pEJ]+p % JZ':P jrp+l §J+1

Changing variable in the second sum from (i-p) to (i-p+1) and considering that
Ni—p,p—l = Ni+1,p-1 =0 forg e [‘:. ) ‘:i+1):

SNLE= Y [ SR JNJ-,,H(&): > Np®

=1 j=i—p+1 §j+p '&j §j+p 'ij j=i-p+l

Applying the same procedure recursively:

i'\'j,p(@ Z Njp1(8) = Z N2 (&) = Z'__)N,,O(a)zl

j=i—p+1 j=i—-p+2

Of course, it is also valid and easily proved for 2D and 3D cases by having in mind that it

also applies for every separate parametric direction §, 1), {.

2D: 3D IN,, (M, () =1

=L

3D 33N, EOM, (L, Q) =1

i=1 j k=1
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BSPLine Basis Function

1.2 \ \ \

IN;p©®=1

——Zero B-function at 5.3
—NonZero B-function at 5.3
a Knot

Figure 2.20. B-Spline Basis functions for Knot Value Vector
E={00001222334566789101010 10}

We lay here a demonstration. We check the sum of the basis functions at £=5.3.

N,,(5.3)=0, i=1.,8
N, (5.3) = 0.05717

Ny, (5.3) = 0.42058

Ny, (5.3) = 0.50875
Ny, , (5.3) = 0.01350
N,,(5.3)=0, i=13,..,17

iNiyp(S.S) =1

2.3.6.6  CP* Continuity on a knot of multiplicity k and
infinitely differentiable in the internal of a knot span

All derivatives of N; (&)exist in the interior of a knot span where it is a continuous

polynomial with standard formula and consequently indefinitely differentiable. At the
knots, which are the elements’ boundaries, the polynomial changes formula and the
functions N; (&) are only (p-k) times continuous where k is the multiplicity of the knot.
Hence, increasing the degree increases the continuity and increasing the multiplicity of a
knot decreases the continuity along that element boundary. By definition, the knot vector
at the start and end has (p+1) multiplicity which stands for continuity C*™* = C*®** =C™

meaning that the functions are not even continuous there.
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BSPLine Basis Function

1 T I T

0.9 —Basis Function Value
O Knot
0.8 ® Control Point

0.7
0.6
0.5
04
0.3
0.2

0.1

1T 2 3 . 4 5 7 g 10

Parameter Axis §

Figure 2.21. B-Spline Basis functions on a Knot Value Vector with different internal knot
multiplicities. Knot Value Vector E={000001233456788889101010 10 10}

In the above Figure 2.21 we have a standard knot value vector of degree 4:

Ez{0000012334567888891010101010}

We notice the knots 3 and 8 have multiplicity 2 and 4 respectively. That means that while
at the other knots with multiplicity 1 the continuity is C**=C®, on knot 3 we have
continuity C*? =C? and on knot 8 C** =C°. Indeed we can see that in knot 8, the
function has a pointy summit and thus cannot be differentiated but is still continuous.

We painted blue the basis functions who were not affected by the multiplicity of the knots
3,8, red those who were affected by the multiplicity 2 of knot 3 and cyan those affected by
the multiplicity=4 of the knot 8. To match the above convention, the same colors were also
applied to the corresponding control points and the knots 3 and 8.

2.3.6.7 N, (&) attains exactly one maximum, except for p=0

Each B-Spline attains exactly one maximum and if it is fully developed, meaning no trivial

knot spans exist in its support, then it is at the center of its support. If the N; () basis

function is fully developed then its maximum is at the center of its support which is the

parametric coordinate of its corresponding Control Point.
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BSPLine Basis Function
T

A set of n functions: f,(€) f,(§)

it entails thatC, =C, =---=C_ =0.

Parameter Axis §

Figure 2.22. Each B-Spline attains exactly one maximum.
Knot Value Vector E={00001234444}

2.3.6.8 Linear independence

f(€) are called linear independent when for

Zn:Cifi &) =cf(&)+c,f(E)+---+c f (§), forall§ in an interval B

It is proved that no B-Spline basis function can be expressed as a linear combination of the

other basis functions and thus the B-Spline Basis functions are linear independent.
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2.3.7 B-Spline Basis Function Derivatives

With the simple quotient rule applied on the Cox de Boor recursive formula we can express
the derivatives of a basis function recursively to the same derivative of its previous degree

basis functions.

d p d
= —Ni | 5z N
I P (é;) aup ai (df: P (é;)J &i+p+l - &iﬂ (di P (a)]

We can generalize the above equation to higher derivatives

dk p dk p dk
- N; = — Nipa - K Ni+l,p—l
dkE) P (é) E.~i+p —ii (dki e (‘i)} E.>i+p+l _‘:i+1 [d i (‘{S)J

and finally end up in the following expression

&

d~ p
d_k@ Ni,p ((ta) = (p_ Ni+j,p—k (};)
where
a5, =1
Ay 10
A= —— —
0 &i+p—k+l B &i
B = el T g kg
&i+p+j—k+l _‘inj
ak‘k _ _ak—l,k—l
éi+p+l - éi+k

When the denominator is zero, in case of repeated knot values, we consider the coefficient

Z€ro.

In case of more parametric directions, we get the partial derivatives of the shape functions.

For 2D Shape Functions: 2’; PiEm) = (% N; p(i)J M;,(n)

and in the same way we get - R (E; n)

For 3D Shape Functions: aa& |qukr EnQ)= ( o€ N; p(i)j M, ()L, (5)

8 i
and in the same way we get —n .,k (&, Q) 6_C R|quk (&n,0)
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2.3.8 B-Spline Geometries

B-Spline geometries can be Curves, Surfaces or Solids and are created with the combination

of B-Spline Shape functions and their corresponding Control Points.
B-Spline Curve.

A p™ degree curve is defined by

(Y, =CE =N, @ P} =2N, @O} , <<k,

(1xn) (nx3) i=1 (x 3)

where the {Pi} are the control points’ Cartesian coordinates of the curve and {Ni’p (g)} the
(nx1)

p™ degree B-Spline basis functions defined on the non-periodic open knot value vector

S (R -

B-Spline Surface.

A B-Spline surface is obtained by taking a bidirectional net of control points, two knot
vectors £ and H with the respective polynomial degrees p, q and the products of the
univariate B-Spline functions:

(%,y,2) =SEM = XY REE DR, =N EN, (P,
i=1 j=1 (1x3) i=1 j=1 (1x3)

B-Spline Solid.

In the same fashion, a B-Spline volume is obtained by taking a three directional net of
control points, three knot vectors &, H, Z with the respective polynomial degrees p, q, r

and the products of the univariate B-Spline functions:

(YD) =VEND =Y Y YR EN O (P ) = iZN.p(a)N,q(mer(a){ P
i=1 j=1 k=1 (1x3) i=1 j=1 k (1x3)

Point Iversion

Note that the inverse procedure, finding the parametric coordinates &, 1, { of a point (x,y,z)
in physical space, is more difficult and may require an iterative procedure. The topic is

examined thoroughly in [14] in the chapter “Point Inversion”.
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2.3.9 B-Spline Curve Properties.

According to Piegl Tiller [14], the B-Spline Curves have the following properties:

S

N o

10.

B-Spline curves are a generalization of Bezier Curves.
C(§) is a piecewise polynomial curve.
Endpoint interpolation C(§;) =P, andC(§,,,,,) =P,.

B-Spline curves possess strong convex hull property.

Local modification scheme: Moving a control point changes only a part of the curve
near the control point.

The control polygon represents a piecewise linear approximation to the curve.

Affine invariance: An affine transformation is applied to the curve by applying it to
the control points.

Variation diminishing property: No plane has more intersections with the curve than
with the control polygon (in 2D curves, no line has more intersections than the
control polygon).

C(&) is a linear combination of N; /(€) , thus the Curve’s continuity and

differentiability follow from that of the basis functions.

It is possible and sometimes useful to use multiple (coincident) control points.

The above properties all generalize in 2D surface and 3D solid B-Spline geometries.
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2.3.9.1  B-Spline curves are a generalization of Bezier Curves

We could refer to Bezier Curves as ancestors to B-Splines. Bezier Curves are B-Splines with
a Knot Value Vector of a single knot span.

= :{él BRRLLE :apﬂ :O’ ép+2 = "':&2p+2 :1}

This results in n=p+1 control points. Being defined over only one knot span all basis
functions are non zero over the entire domain and thus every control point affects the whole
model.

We can see an example of a Bezier Curve and its basis functions in Figure 2.23.

7N

—Curve
@ Control Point
O Knot

(a)

Bezier Basis Function

L —Basis Function Value
09 B Knot
* Control Point

0.8

0.7+ -
0.6
05 B
0.4 B
0.3 B

0.2 B

Parameter Axis §

(b)

Figure 2.23. Bezier Curve
Bezier Curve in (a) Physical Space and (b) Basis functions in Parameter Space
Knot Value Vector: E={0000011111}
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2.3.9.2  C(§) is a piecewise polynomial curve

We can see that through the definition of the Curve,

(K%H=C@F{MA®YUH=§)5@HH},éﬁiﬁéwl

(1xn) (nx3) =l (1x3)

We know that the B-Spline Basis functions N; () are piecewise polynomials which

multiplied by coefficients {P;} and then summed, also result in a piecewise polynomial of
(1x3)

€, the Curve C(§). Of course the tensor product surfaces and solids from combining B-
Spline Basis functions along different directions &, n, { are also piecewise polynomials in

respect to those directions. In general they are piecewise polynomials of §, ) and (.

2.3.9.3  Endpoint interpolation C(,)=P, and C§,,,,,)=P,

The endpoint interpolation property states that the first and last control point of the curve
lay upon the curve, on its first and last point. We will support this argument and also
augment it with the statement that for every knot of C° continuity internal to the Knot
Vector a control point also lies upon the Curve.

At points of C° continuity internally to the knot vector and C* continuity at the edges of
the knot vector the shape functions are all zero except one that is 1.

CEO =Y N, ©P)

(1x3)

From the definition of the Curve, that means that at that point & of C° or C! continuity
C(E) = Njyp(ﬁ){Pj} :1-{Pj} = {Pj} where j is the j control point corresponding to the j*®

(1x3) (1x3) (1x3)

Basis function that is 1 while all other functions N; ,(€), i+ jare zero. In the case of the first

and last point, it is clear that the j™ basis function in the above expression is the first (j=1)
and the last (j=n) basis function corresponding to the first and last control points. Thus the

first and last control point are interpolatory to the curve. We can see that in Figure 2.24.
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® —Curve

-~ e Control Point
\ O Knot

(a)

BSPLine Basis Function

i —Basis Function Value
0.9 : " 8 Knot
\ ! * Control Point

Parameter Axis §
(b)

Figure 2.24. Interpolation of the curve at points of C° or C' Continuity.
(a) Curve in Physical Space. (b) Basis functions in Parameter Space.
Knot Value Vector E={0001234556789101010}

In cases of 2D surfaces or 3D solids, to actually have a control point interpolate the model

there must be a C° or C! continuity on all available directions on the point &, 7, { in order
to have only one shape function R}}}" at that point be one and all others zero, resulting to

V(E, n z) = Rip,fkr {Puk} :1'{Pi,j,k} = {Pi,j,k}

(1x3) (1x3) (1x3)

In cases that all control points interpolate the curve, we practically approach the curve with
standard finite elements with interpolatory nodes on the edges of each element. However
this is a special case and thankfully is not found very often as the lower continuity brings

up some drawbacks as well.
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2.3.9.4  B-Spline curves possess strong convex hull property

The strong convex hull property states that the curve is contained in the convex hull of its
control polygon and more specifically that:

If E€[§;,&,,) with p<i<n, so that § is not in the starting and ending (p+1) trivial knot
spans, then C(§) is in the convex hull of the control pointsP,

i-p?li

The strong convex hull property follows from the properties of non-negativity, partition
of unity and local support of the B-Spline Basis functions. In Figure 2.25 we demonstrate
the strong convex hull property at each knot span and over the whole curve.
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Figure 2.25. Demonstration of the Strong Convex Hull Property in B-Spline Curves.
Knot Value Vector E={00001234444}
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2.3.9.5  Local modification scheme: Moving a control point Pi
changes only a part of the curve near the control point.

Moving the control point P; only affects a local part of the curve. That follows after the local

support properties of B-Spline Basis functions N; ;(§)=0 VE¢ [éi , E_,i+p+1)

Changing the i control point’s Cartesian coordinate doesn’t matter outside the interval

[éi , éimﬂ) as only there the corresponding B-Spline N; ,(€) # 0. Thus outside [&i : F,HM)

the contribution N,p(é){F’l} =0to the curve is zero whether we change the coordinate or
(1x3)

not. So indeed, moving a control point P; changes only a part of the curve, the mapping of

the interval [E_,. , ﬁnpﬂ) to the Physical Space.

(a)

o \ P /
\ 7 TN\ / AN TN |
05 / . /,' \ // \ \
/ \
’x \\ A /\ /
04 \ / \ / \ / \ \
/ \ \ / \ / \ / / \
03 \ / / N\ A /
[\ \ N\ / N/ \ / \
02/ VY X N/ X X \
/ N\ / /N !\ \
0.1 AN /’,/ ~ // S ~ ~ / AN
% T . — - P~ ~ L
1 2 3 4
Parameter Axis §
(b)

Figure 2.26. The control point local support in (a) Physical and (b) Parameter Space.
Moving a Control Point affects only part of the curve.

The 3" B-Spline and the corresponding 3™ control point have support the interval [0,3)
and that is the interval in the Physical space that is influenced by the change of the control

point’s Cartesian coordinate. We notice that in the interval [3, 4) , out of the control points’
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support, the Curve remains intact. In 2D and 3D cases the property applies in the same

manner.

2.3.9.6  The control polygon represents a piecewise linear
approximation to the curve

The control polygon represents a piecewise linear approximation to the curve. With knot
refinement or order elevation more control points are added to the control polygon and
due to convex hull property the control polygon is forced to get closer to the curve. In 2D
and 3D cases the property is also valid. The control polygon approximates better the surface
or the solid with control point insertions, with knot refinement or order elevation, which
are refinement procedures of inserting Control Points and we will study in Chapter 5. In
the following Figure 2.27 we performed consecutive knot insertions and order elevations to

demonstrate this property.
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Figure 2.27. Approximation of the Control Polygon to the Curve with two consecutive knot insertions
(Left column) and consecutive order elevations (right column) from degree 3 to 6.
Initial Knot Value Vector E={00001234444}
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2.3.9.7  Affine invariance: An affine transformation is applied
to the curve by applying it to the control points

This is a very useful property on which we base our attempt to use NURBS and B-Splines
as Basis functions for FEA. A direct result of that property is that by considering the Control
Points as nodes and applying the displacements there, the whole model will have an
analogous deformation. It is also necessary for partition of unity to make sense and have
rigid body displacements by applying the same displacement over all the control points.

2.3.9.8 Itis possible and sometimes useful to use multiple

(coincident) control points.

An example is the widely used paradigm, in Isogeometric Analysis, of the plate with a hole.

A way of representing it, is with a double control point on the upper left corner. The curve’s
convex hull forces the mapping of [§;,&,,;) in physical space to be inside the convex hull

of the Control Points Pi,,...,Pi. For p=2, it has to be in the convex hull of Pi,, Pii, P
Therefore, by using the same cartesian coordinates for control points 2 and 3, the first knot
span is the left vertical line and the second is the horizontal upper edge. In both cases, the
curve is forced to connect 2 points with a straight line. The drawback when using multiple
coincident control points is that we have points of singularity as multiple different points

in Parameter space are mapped on the same point in Physical space.

Figure 2.28. Plate with a hole. Represented with a double control point at the upper left corner.
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2.4 Non Uniform Rational B-Splines

2.4.1 NURBS Concept

B-Splines where a breakthrough technology in CAD but unable to accurately interpolate
some geometries, namely the conic sections. Those drawbacks are solved with the natural
evolution of B-Splines, the NURBS standing for Non Uniform Rational B-Splines.
B-Splines are already non uniform, recall that the knot value vectors we used until now are
not uniform, but the extra term “rational” is the one making the difference. We can think

the NURBS as a projection of B-Splines in a certain plane.

Figure 2.29.
Projection of the B-Spline Curve to plane z=1, forming the NURBS Curve: a circle.

(Image: Isogeometric analysis: toward integration of CAD and FEA)
In Figure 2.29, the B-Spline Curve in the 3D non-rational space with control points

P =(X;,Y;,w,) is projected to the 2D rational space with control points P, = (Li]
Wi Wi

and weight w;, forming the 2D NURBS Curve.
To project a NURBS geometry in 4D non-rational space, we project the geometry’s Control

Points to their corresponding projective non-rational, their weight equals to one, Control

Points. Thus a Control Point P, =(X;,¥,,Z;) with weight W, from the 3D Cartesian space

is projected to the non-rational 4D space control point P = (W, X;, W, Y, W, Z,,W,).

(3D —rational space) {P}={X..Y,,Z;} , with weight w, ——

(nx3) (nx3)
(4D —nonrational space) {PW} ={w, X;,wW,Y,,w,Z;,w,}
(nx4) (nx4)

In general the d-dimensional NURBS are a projection of the (d+1) dimensional non-

rational B-Splines.
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2.4.2 NURBS Shape Functions

To define the NURBS Shape functions, we will also need to define the Weight function
W(&n,0).

For a NURBS Curve on parametric axis § the Weight function and the NURBS Shape

function is:

w; N, (€)

W(§)=iNi,p(§)Wi > R?(i)zw

For a NURBS Surface on parametric axes , 1, the Weight function and the NURBS Shape

function is:

n m N M.
W) =3 SN @M w,  RE= e e

For a NURBS Solid on parametric axes &, n, (, the Weight function and the NURBS Shape

function is:

n m |

W(E M) =YD > N (&M, (L, (Qw,,

i=1 j=1 k=1

Wi ik Ni,p (&)Mj,q () Lk,r (©)
W(En, )

R (€, ) =

Note that each NURBS Shape function is the corresponding B-Spline Shape function

W. .

multiplied with the terij’kC). In that way the NURBS are called rational, with the
1 nv

same meaning as in rational numbers. Also note, that when wij=1 for all i, j, k, the NURBS

Shape functions are identical with the B-Spline Shape functions. That means the NURBS

are indeed a generalization of B-Splines who are able to represent accurately more

geometries. In practice, most geometries can be adequately reproduced with B-Splines but

NURBS are used whenever a shape close to conic section emerges.
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2.4.3 NURBS Shape Function Derivatives

Applying the quotient rule we get the expression for the derivatives of NURBS Shape

functions.

[ daN.p@jW(a N.p@( vv(a)j
(W(E))

d P
d—gRi(é)

W.

In the case of more than one parametric directions we get the partial derivatives in the same

way.

For 2D Shape Functions:

(ag N.p(i)jW(i n- N.p(é)( W(E, n)}

(WE )

% w, M. (1)

L a

9 Hoa
a_E-,Ri,j (En)=

0

9 npa (&n
%Ri,j Em)=

M,q(n)jW(é n- M,q(n)[ nW(i n)]
(WE)

Wi Ni,p (€)
And for 3D Shape Functions

(ai N.p(i)jW(é n,0) - N.p(&)( W(En, C)j

qukr(a C) IjkM ()Lkr(g)
(WEn0)) i
. ((;M,q(n)jw(&n@) M,q(n)( W(anoj
R (M, 0) = Wk Ni, (€ Ly (6)
on (WENDY
[ . Lkr(C)jvv(a n)- Lkr@[ W(En, oj
RS (£,1,0) = W, Ny (M, (1)
c (WENQY "

For higher derivatives exist some convenient recursive formulas and are available in Piegl
and Tiller [14].
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2.4.4 NURBS Geometries

NURBS entities can be curves surfaces or solids. They are created in the same way as B-
Spline geometries with the use of NURBS Shape functions and their corresponding control

points.
Curves:
C(e) = gR;’(z@)pi
Surfaces:
S(Em) = lemzl RM(EMP,
Solids:
VNG = Z“"”Zl; RPW (€M P,

Figure 2.30. NURBS Entities.
Ellipse Curve, a Surface and a Solid.
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2.4.5 Patches.

The Patches emerged in CAD as a way to represent very complex geometries with accuracy.
Major changes in the Physical Space geometry, namely the changing of a circle into another
conic section, cannot always be exactly represented with a single knot value or with a simple
line, rectangle or a cube in Parameter Space. Furthermore, even when the geometry is
simple, if the material changes then we have to draw the model with different patches in
order to transition from modelling to analysis. If such major changes take place it is easier
to cut the model into separate pieces, model each one separately and then glue them

together again.

Generally, in Finite Elements, in the merging of two meshes we can have cases of
overlapping or non-overlapping meshes, with coincident or non-coincident nodes at the
edge. In Isogeometric analysis with NURBS, the connection of two patches with equal
degree of polynomials is still an issue and problems occur even in the simplest case of non-
overlapping meshes with coincident control points. The connection of the patches in

NURBS can be difficult and there are serious native problems involved, not allowing us to

ensure “water-tight” connections in the general case.

(c)

Figure 2.31. The connection between patches in NURBS can be problematic.
Water tight connection cannot be achieved in the general case.
(http://www.siam.org/news/news.php?id=1874)
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In the case we attempt to merge two patches of equal degrees and coincident control points

at the merging edge, we in fact merge their knot vectors into one.

BSPLine Basis Function

BSPLine Basis Function
'

,
| |
|
0.9{\ I oo f
f
08 - os A
\ /
o) o |
. | — - ]
06- 1 T N / AN — ! 06 — VN N {
S/ ~ N N NS ey
05- AV \ / OOV - s N SN N/ a /
; A o\ [ X X \
04- f 4 kY \\ SN / - 04 / 5 £ 4 / A
[T A / g N 4 / [ ! \ y \ / I
os-{ \ /N \ SN N e \ AR /1
[y | p o N ] \ W VAR
0z | ¥ Y N N b4 O T v/ (o
Ja ; / A [ ( y ‘
01 N Ny \ e \// AN PRIy / N / . Ny |
[/ > :/ o sl }/\\‘ oL c_{/ - L s \)4\/ E/\/ LN
0 1 2 3 4 5 5 & 7 8 9 1
Parameter Axis § Parameter Axis {

BSPLine Basis Function

Parameter Axis §

Figure 2.32. Two separate patches with coincident edge control points and are merged into one in
Parameter Space. At the merging knot we have C° continuity.
Knot Value Vector E={00001234555678910101010}

We are able to connect them that way, because due to the multiplicity at the start and end
of the separate knot vectors, all other functions are zero and the geometry and displacement

are defined only by the certain control point at the edge.
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3 Stiffness Matrix

3.1 Preliminary Steps for Analysis

3.1.1 Shape Functions

The use of the CAD Shape functions for Analysis is necessary to integrate CAD and FEA

but these basis functions have some special characteristics in respect with the standard FEA
Lagrange Polynomial functions. FEA standard Shape functions are interpolatory with C°
continuity at all nodes and furthermore with C' continuity at the edges. That prohibits FEA
from correctly defining stresses and strains at the boundaries as no derivatives exist there
and to overcome that, we resort to auxiliary corrective methods. Instead, in Isogeometric
Analysis with NURBS, natively high continuity shape functions are provided, with all
derivatives continuous inside the elements and CP* continuity along the element
boundaries. That results in elements with overlapping, an asset that gives us the opportunity
to better simulate the actual connections between regions of the structure. It is a common
misconception that this attribute leads to a greater bandwidth. But whether in FEA or IGA
with NURBS, any given function of degree p shares support with 2p other functions, as we
have already seen in previous chapters, and thus the bandwidth is the same in both cases.

3.1.2 Control Points

Generally, in Finite Elements we assemble a stiffness matrix where the unknowns are the
degrees of freedom on the nodes of the mesh. The corresponding concept in IGA are the
Control Points. They serve as coefficients of the geometry for the Shape functions and in
combination with them, they approximate the initial geometry and the solution field.

3.1.3 Elements.

In isogeometric analysis, the patches are sometimes referred to as elements, but we usually
consider the different knot spans as elements. Many try to find a direct analogous of FEA
in IGA and, having the interpolatory basis functions at the end of the finite element in
mind, they consider the patches as elements. Indeed, at the edges of the patch the functions
are interpolatory too and that way, with continuity C" at the edges, there is no overlapping
between the patches. However, there have been cases where the patch has higher continuity
and overlapping exists. For this thesis we decided, as a more direct analogous to FEM, to
consider knot spans as elements. We can justify that, as at the end of the knot spans, the

continuity, even if it is not C’ changes due to the piecewise nature of the polynomial basis
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and as a result the Gauss quadrature uses polynomials laid in the interior of a single knot

span.

3.1.4 Quadrature

Due to the difficulty of an analytical integration, we generally resort to numerical solutions
for the integrals, especially in the formulation of the stiffness matrix. The Gauss Quadrature

is used widely in such cases and will be described in the following paragraph:s.

For the integration of a function over the patch, we compute the coordinates and weights
of a number of gauss points in the patch. We compute the numerical value of the function
there and we multiply it with the gauss point’s weight. The sum of those multiplications

over the patch is approximate to the integral.

Ngpe

&y
1= [f(&)de =D f(&)w™
& i=1

3.1.5 Number of Gauss Point

We want to minimize the computational cost and therefore we want the minimum number
of Gauss Points per Knot Span that will give us the exact value of the integral, provided that
the function f is a polynomial of degree q. According to Hughes, Reali and Sangalli [2], that
number is:

qTﬂ, for g odd

erKnotSpan
n p p—
GP

q_;Z, for q even

The numerical integration is referring to the stiffness matrix for which the integral has the

form [K]= [[[[B]' [E][B]det([J])dedndg .

&mg
Let p be the maximum degree the basis functions have along the parametric axes.

In the case of 1D,

The maximum degree of the Deformation Matrix [B] is defined from the degree of the
derivatives of the shape functions which is (p-1). Then the product of [B]T [E][B]is a

polynomial of maximum degree (p-1)+(p-1)=2p-2 which is always an even number.

Subsequently, the minimum number of Gauss Points needed for exact integration is:

2p—-2)+2
g (=222
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In the case of 2D or 3D,

the maximum degree of the Deformation Matrix [B] is defined from the degree of the

partial derivatives of the shape functions, which is p. Then the product of [B]' [E][B]is a

polynomial of maximum degree p+p=2p which is always an even number. Subsequently

the minimum number of Gauss Points needed for exact integration is:

3D 2D 2p+2:

Negp =Ngp = 2 p+1

Conclusively we need:
p Gauss Points per Knot Span in 1D problems

p+1 Gauss Points per Knot Span in 2D or 3D problems

3.1.6 Parametric Coordinates and Weights of Gauss Points

After we get the number of the Gauss points we will use for each knot span, we compute
the Gauss point coordinates in the knot span. The coordinates of the Gauss points are
determined as the roots of the Legendre Polynomial and its weights as a function of its

derivative. Both coordinates and weights, however, lie in a reference knot span [-1,1].

1 Parameter Space 1
-8 a1

@ Knot TensorProduct
* GaussPoint TensorProduct

Parameter Axis n

Parameter Axis &

Figure 3.1. Reference Knot Span [-1, 1]
Degree on § and n = 2. Gauss Point Number = 3x3 =9
Gauss Point Parametric Coordinates 2={-0.77459, 0, 0.77459} x H={-0.77459 , 0, 0.77459}
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Those coordinates and weights are already computed in bibliography for sufficient cases of
Gauss point numbers. We have the following matrix of Gauss point coordinates and

weights in the Reference interval (-1,1) in respect with the Gauss Point number n.

& w;

0.0 2.0

22057735 1.0 |
| 077459 | 0.55555 |
0.0 |0.88888
| £0.86113 | 0.34785 |
+0.33998 | 0.65214
[ +0.90617 | 0.23692 |
5| 053846 | 0.47862
0.0 |0.56888
[ +0.93246 | 0.17132 |
6 | +0.66120 | 0.36076
+0.23861 | 0.46791

Figure 3.2. Parametric Coordinates and Weights
for Gauss numerical integration in the Reference interval (-1,1)

Now that we have the coordinates £fand weight W" of each gauss point we have to move

them from the Reference knot span to our desired knot span [E_,, , E.>i+1) .

— (‘im — éi)‘:R + (ém + &u)
2
GPE _ (ai+12_ &.) WgR

g

w

The full tensor product property applies to gauss points too, allowing us to calculate
coordinates and weight the same way in all axes &, and combine them.

Parameter Space O Knot TenserProduct
£ @ Knot TensorProduct
- —— @

B @ B o - e -8

] ] ] ]

] ] ] ]

] ] ] ]

: i i i i

2 | | | |

2 | | | !

E ] ] ] ]

: ! ! ! !

: | | | |
I

a I I I I

i i i i

i i i i

OT ——————————— - - *--———- o ---—- --——-—- --B-- -——e- EEEEE |

| | | |

0 1 2 3 4

Parameter Axis

Figure 3.3. Gauss Points in Parameter Space.
Knot Value Vectors E={0001223444},H={001 1}
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3.1.7 Theory of Elasticity and the Elasticity Matrix

Depending on the stress and strain field for each case we use different elasticity matrices.
We will present elasticity matrices for the standard cases of 1D elasticity, 2D elasticity
(plane stress and plane strain) and 3D elasticity. The symbol E stands for Young’s modulus

of elasticity and v for Poisson’s ratio.

At any point in a solid, there are six independent stress components and six corresponding

strain components. The stress components are z =
cs,i./ =0y,
T_ =
{G} - {Gxx Gy Oz Oy Oy cSzy} o ! Oz
(1x6) i }, o
! AN
,/‘L‘_. Oy | Ty
and the strain components i

(e} ={en &y &0 Yo Ty T
(1x6) p

Hooke’s law connects these stresses and strains with a relation easier expressed through a
matrix equation{c} = [E] {8} .
(6x1)  (6x6) (6x1)

3D elasticity

In the general case of 3D elasticity that can be expressed as

1-v v 0 0 0

_Gxx 7 v 1-v 0 0 0 |Ir £, i

G, v v 1-v 1 O2 0 0 g,

—2v

o} =[E]{e} =| 7 |=—-—| 0 0 0 = 00 |

(6x1)  (6x6) (6x1) Gy (1-v)1-2v) 1-9 Ty

o, o 0o o 0o = Yo v
sz YZX J

T (6x1) 0 0 0 0 0 1-2v T (6x1)

L 2
[EBD Elasticity]

(6x6)
All the other cases are derived from the general case of 3D elasticity by marking the strains

or stresses we know do not exist as nil.
The case of 2D elasticity

For a 2D solid let us assume that all dependent variables are independent of the z coordinate

and all external loads are applied in the xy plane.

We have now 2 major cases: Plane Stress and Plain Strain.
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2D Elasticity, Plane stress

This is the case where a plate is loaded in its midplane and all loads are symmetric with
respect to the midplane, the support conditions are symmetric about the midplane, the in-
plane displacements, strains and stresses can be assumed uniform along the thickness and
the normal and shear stress components in the z direction can be considered zero or
negligible. Then the plate is said to be in a state of plane stress, or a membrane state.

In that case, components 0, Ox, Oy, and Yx, Yy. are zero. The state of stress in that case is
specified by stresses 0y, 0y, Oy and strains &, €, Y.

A2 27277
G, e v 0 €y
Oy =1—v2 v 1 0 €y
T, 1-v || v,
(3x>1/) _O 0 7_ (3x)1/)

[EPIane Stress] G, = 0’ Tn = 0’ rf“' = 0’ &, #0
(3x3)

. v
and strain g, = T (e, +g,)
-V

2D Elasticity, Plane strain

This is the case where the dimension of the structure in direction z is much larger than the
other two dimensions in x and y direction, all external forces are applied parallel to the xy
plane and do not vary in the z direction. Typical cases of interest for an engineer are
retaining walls, dams, tunnels or, in smaller scale, bars and rollers with forces normal to

their cross section.

For isotropic materials we can assume that stresses 0., =0,,=0 and strains &,=yx.=Yy,=0. The

stress-strain components are related as:

G,y e 1-v v 0 || &y
6, |=—————| v 1-v 0 £
" | T 1 v)(1-2v) W
Tuy 0 0 1-2v || vy
(3x1) L 2 | (3x1)
[EPIane Slrain]

(3x3)

d st c :L@ +g )
and stress O, (1+V)(1—2V) XX yy
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1D Elasticity, truss

It is the case of a truss member, a solid whose dimension in one direction (axial direction)

is much larger than the other two and is subjected only to axial forces.

{Gx}z[E]{ax}:GX =Eeg, ’

(1x1) (Ix1) (1x1)

Wlth [ElD EIastiCity:| = E
(1x1) P

3.1.8 Mapping of Parameter to Physical space

The isoparametric elements where originally invented by Taig and Irons in their attempt to
build not orthogonal elements with curved sides. The isoparametric concept is based on a
use of a second coordinate system defined over the Cartesian system through a mapping. It
is the natural system in FEM, the equivalent to parameter space in IGA.

The mapping between Parameter and Physical space must be “one to one”, that is every
point with coordinates (§n,0) in parameter has one and only one corresponding point with
coordinates (x,y,z) in physical space, and vice versa. To proceed with the change of

coordinates we will need a Jacobian matrix [J] for the integrals and more precisely we will

need [J]_l as the integrals from physical space will be computed in the parameter space.

The [J]_l can only exist if the aforementioned mapping is “one to one”. To that end, special

care has to be taken so that the positive direction of the axes in Physical and Parameter

space coincide or else the determinant of the Jacobian will be negative.

The normal mapping from Parameter to Physical Space will give us the coordinates (x,y,z)
as a function of the parametric coordinates &,n,{:

x=X(&n,C) )
(X,¥,2) =1y =y(En,0) t =S(En,8) = > N,(&n. Q) {P}
z=2(5n,5) ' =

and the inverse mapping from Physical to Parameter Space will give us the coordinates &n,{

as a function of the physical coordinates x,y,z:

&(xy,2)
Emn.0)=yn(x,y.2)
C(x.y,2)
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Parameter S ace @ Knot TensorProduct
p @ Knot TensorProduct

Parameter Axis n
L]
L]
®
L]
@
L]
[
L]
L]

o
4
4
4

| | | | | | | | |
1 2 3 4 5 6 7 8 9
Parameter Axis £

A

Jacobian Matrix [J ]

Jacobian Inverse [J'1]

Physical Space

Figure 3.4. Cook’s Cantilever 2D.Transition from Physical to Parameter Space and vice versa.
Knot Value Vectors: E={00012345678999},H={000111}
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3.1.9 Integrals, Jacobian matrix, dV,dA,dx

Projecting the parametric system into the physical space gives us a curved coordinate
system in every point P, as shown in the figure below:

X
{x}=|y Y
z dt
™ / ~E
g dg
E Parameter Space
Physical Space {E} = n

s
The point vector of the point P is given by the relation
ry=x{e+yiej+zie)
where x,y,z are the coordinates of P and {e, | the unitary vector on axis x,y,z respectively.

The tangent vectors on curves &,{ in physical space are given by the relations:

= X Lo+ ey
_o{r} _ox dy oz
{V,} _E_%{el}+a{ez}+%{ez}

(-2 2 e+ Lo+ Lo

Then, the elementary parallelepiped has sides {V}d&, {V, } dn, {V,}d{and volume

dV = ({V}dg)[({V,} dn)<({Vs} &) | = {M} ({V. } < {Vs } ) dg dmdl ¢ —peeme ik Balel
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e} e} e}
(e Ve ||
(e Lo+ Ze |2 2 Eloganac o
x y &
& o &
x oy a2 x oy o]
o o0& g o 0t OF
oX oy oz oX oy oz
dv=— =X =|dédnd¢=det[J]dédnd; and [J]=| = =ZL =
on on on snds e([3x3]> snd an (LXJ) on on on
x oy o x oy o
oc og g o o¢ oc |

In the case of 2D elasticity, the area dA of the elementary parallelogram in physical space

is:

ox oy
g g
dA = dedn = det [J] dédn
a_X ﬂ (Lx!)
on  on

Finally in the case of 1D elasticity, the length dx of the elementary line in physical space is:

dx:d—x
d

de = det [J] dg

(1x1)

In each of the above cases, in order to compute the integral we need to evaluate the Jacobian

matrix.
We have that
(x,y.z>=8(a,n,@=iNi(a,n,c)@:»
2—2 % 2‘2 is.eno) {EN“@’”’%@} Ny
Bl & & || Erenog -
T % S {Enaenop)| [

(3x3)

(3x3)

(3xn)

In the same way we can get the Jacobian matrix for 2D and 1D elasticity.
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Presenting all the cases along with the inverse Jacobian matrix, which we will use later:

[3]-

(1x1)

(1x1)

[

:{Na}T{P}

H
d‘t} (1xn)  (nx1)

(1x1)

_ 1 1
T[] det(V)

(1x1)

1D Elasticity

oX {N }T
Ae  Ae 19
o5 08 (axn)
=% E e
@2 |OX 0y {Nn} (x2)
on on (1xn)
(2x2) (2xn)
1 ']22 _‘]12

J

T[4
([Zx!) L;

2D Elasticity

J;}
‘]22

~ det[J]

where det[J]=1J,,, —J,J;,

‘]21

‘]11

3] -

(3x3)

3D Elasticity
ox oy az] (N}
g
& 05 g (axn)
e
om on on (1><:11) (nx3)
ox oy | gy
Lo a0 ] |um
I N oI
NI
[‘]] = ‘]21 ‘]22 ‘]23
(3x3) * * *
‘]31 ‘]32 ‘]33

Figure 3.5. Jacobian and Jacobian Inverse Matrix in each case of Elasticity.

Where {P}={X; Y; Z}arethei® control point’s Cartesian coordinates and

(1x3) (1x3)

O{N}

(nx1)

(nx1)

. Similarly for {Nn}'{Nc}

(nx1)
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3.2 Stiffness Matrix 1D

One dimensional problems are mostly of academic interest as they are only used in truss
systems with axial loading. They serve well, nonetheless, when we first try to understand a
new concept or as a step towards the more general and difficult cases of 2D and 3D

elasticity.

In the 1D case, only axial deformation for each point of the truss exists. The displacement

is U(x)=Uu(C(&)). The respective strain matrix is:

ou

EMONE]

In Finite Element Analysis, we want to integrate throughout the volume/surface/length of
the model. As this is hard to do in Physical space we change the basis of space, transitioning
to the Parameter space. In the parameter space the integration is rather easy. We need the

OX ot |

ou ouox ou ou ao0u 1 ou
—=——=—\l|=>—=J] ==—=—=1{¢,!=|B,Jju.{ =
06 OX0E  OX <H> ox ([]) o [J] e {m} [ax%] {mi)}

(1x1)

{ec} =[B]{u.}

(1x1) (Ix1) (1x1)

where the Deformation Matrix [B,]:

2] [ﬂ

aE.v (1xn) (nx1) (lx’n)

[Ua:l =[B,(&)]{d}

(1x1) (Ixn)  (nx1)

where the Deformation Matrix [B.]:

[B,®]={R.}'

(1xn) (1xn)
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In this way, the Deformation Matrix [B] is evaluated

[B&)]=[B.(®)][B,(8)]

(1xn) (1x1) (1xn)

and we are able to express strain values anywhere in the model as a function of control

points’ displacements.

Then, the Stiffness Matrix [K] is evaluated as

[K]=[[BO] [E][BE]Ad = [ [BE] [E][BE]Adet([3)])d

(nxn) | (nx1) (Ix1) (1xn) (nx1) (1x1) (1xn)

But analytical integration is almost never applicable in finite elements and we generally
proceed with numerical integration. In the case of Gauss Numerical Integration, we have
to calculate the function at all the gauss points in the patch.

Finally,

[K]= nG%[[B(a)]T [E][B(@)]Adet([a(ai)])w?F’j

(nxn) i=1 (nx1) (Ax1) (Ixn)
where
&: the parametric coordinate of the i gauss point

nere: the total number of gauss points in the patch
W : the weight of the i gauss point.

A: the area of the cross section
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3.3 Stiffness Matrix 2D

In 2D elasticity the Physical space is a plane with axes (x,y) and the Parameter space a plane
with axes (§,n). Though we have one more dimension to take into consideration, the basic

logic and steps are the same as in 1D elasticity.

a ] fe
e oX OX
" u
s o 2 e 2]
@ | oy oy |LV
e ) lo 2
Loy OX| |0y OX|
In the normal mapping from Parameter to Physical
o [ afa] e
g | | 0E OE || ox OX

2o oo |78 2
om| |om om Loy oy

and in the inverse mapping (Physical->Parameter)

K 0
ox .| e
={J
alrt e
oy on

Substituting 9 and 9 we get the deformations in physical space as a function of

OX oy

deformations in parameter space:

ou
o
u
. , -, 0 0 2—“ ui
n
{8}:— 0 0 -Jy Iy :[Bl(E.nTl)] =
O det| [3] || Vn Jn I, NI e Ve
o) 21 11 oxt) 22 12 8& Vn
[B,Em)] ov (D
(3x4) an
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Ug
u,
(e =[B.C]|
(3x1) (3x4) 3
Va
(4x1)

where the Deformation Matrix [B,]:

. J, -J, O 0

[Bl(éﬂ’l)]=— 0 0 -J, Iy

x4 det[[.]]j 1, 3y 3,
(3x4)

(2x2)

The deformations in parameter space as a function of control points’ displacements:

I . U
a 2R, 1
aé i=1 ’ Vl
u u n R 0 R 0 R 0 u
e |ou SR, .U, 1% 25 N.E 2

u, _ on _|= _ R, 0 R,, O - v Ry 0 Vv, .

v, v ZH:R- v 0 R, 0 R, 0 Ry.| :

v, | || |5 " 0 Ry, R,. 0 Ry,

(4x1) av n (4xN) u
~ R. v N
on] 25 ] o) "
(4x1) (4x1) oD

Ue
un
= [B, (& m] {d)
3 (4x2N)  (2Nx1)
VT]
(4x1)
where the Deformation Matrix [B,]:
R. 0 R,, 0 - - Ry, O
R 0 R o - -+ R 0
)
(4x2N) 1 2,8 N,E
0 R, 0 R, = = 0 Ry,
(4x2N)

In this way, the Deformation Matrix [B] is evaluated

[B(& )] =[B,(&n)][B,(&n)]

(3x2N) (3x4) (4x2N)

and we are able to express strain values anywhere in the model as a function of control
points’ displacements.
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Then, the Stiffness Matrix [K] is evaluated as

Ia In [BE ] [E][B(E m)]tdet([I(E m)])dEdn

(2Nx2N) (2Nx3) ~ (3x3)  (3x2N)

The gauss points are full tensor product over the parameter space, that way the numerical

integration is performed in the following way.

[K] —%f%f([e(a.,n)] [B(ai,nj)]tdet([J(ai,nj])wfpﬁwfpﬂj

(2Nx2N) =1 j=1 (2Nx3) (3x3) (3x2N)
where
&, ni: the parametric coordinates of the tensor product gauss point i, j.
ners, Nepy: the number of gauss points along the axes § and n respectively, in the patch.

W=, Wi the tensor product weights of the gauss point i].

t: the thickness of the cross section
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3.4 Stiffness Matrix 3D

3D elasticity is the general case.

IR
OX OX
I o 2 o
Ex oy oy
K o o o 2l
(e} = g |_| 0z |_ 0z v
@) |V | [M NV |0 0 4
Yyz 8y OX ay OX
_sz_ @_{_@ 0 i i
oz oy oz oy
ow du 0 0
_— — 0 —
Lox o0z] Loz ox |
In the straight mapping (Parameter->Physical)
ol |x v ala]  [eo]
og | | 05 0§ 0& || ox ox
ol fox o a|o| o
om| | on an |9y | @3l 0y
O |ox )b 9
1 oC | | o¢ oL oc Loz ] L0z |
and in the inverse mapping (Physical->Parameter)
- a - _i_
S I s LY
a -1 a -1 * * *
~ |~ [‘]] —|and 3] =3 B T
Y| @3 |0 (3x3) . N N
a a J31 ‘]32 'J33
L] e

Substituting % , 83 and % we get the deformations in physical space as a function of
y

deformations in parameter space:
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6_u
OX
I
€y ay
& w
{8} = 82 = az =
(6x1) YXy 6_U+Q
sz ay OX
v | [ov ow
L izx —_—
oz oy
ow du
- —
LOX 0z |

{S}Z[Bl(é,n,c):l[ué Ve W U, V,
(6x9)

(6x1)

Rlo R o Qo o

o

where the Deformation Matrix [B,]:

[Bl(é,nm] -

(6x9)

and
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0
0 o . .
X, X, ¥, 0 0 0 0 0 O
Oy |0 0 0 B X B 0 0 0
| |_|o 0o 0 0 0 0 3 I I
M L E R AR A
0 o 0 ‘]31 ‘]32 ‘]33 21 22 ‘]23
i _']31 ']32 ‘]33 0 0 0 ‘]11 ‘]12 ‘]13_
oy (6x9)
i [Bl(gigf)]
OX |
.
W, Uy V¢ Wc]
(9x1)
J, J, 0 0 0 0 0 O]
0 0 J;l J;z J;s 0 0 0
0 0 0 0 0 J;l J;Z J;3
Jpo Jps Iy Jp Jp O 0 0
Jar Jap g Jyn Iy i
Jyp J O 0 0 Jy Jp J13J
(6x9)
Iy Jp Jg
_l * * *
[J] = ‘]21 ‘]22 ‘]23
(3x3) * * *
Jap Jp I

T (9x1)



The deformations are given by:

=

T(9x1) i

[B
(

M

N
U, ZRL&WI
v, 'Ll
VV@ EE:FQIHLL
un |:ﬁ
v, |= ZRLHVI
w, 'N:1
u, ZRMW,
VC i=1

2(%11,@)] =
9x3N)

Stiffness Matrix

In this way, the deformation matrix is evaluated

[BE . O)]=[B,(E.O)][B, (€, 0]

(9%3N)

(6x3N)

(6x9)

U,
'R, 0 0 R,, 0 O R 0 01y
R, O 0 R,, O 0 R,, O 0 w,
R, O 0 R,, O 0 R.. O 0 u,
0 Ry, O 0 R,, O 0 R, O v,
=0 R, O 0 R,, O 0 R,, 0 |lw,
0 R, O 0 R,, O 0 R,, O :
0 0 R, O 0 R, 0 0 R,
0 0 R, O 0 Ry, 0 0 R, |l uy
0 0 R, O 0 Ry, 0 0 R,
(9x3N)
Baeno)] _(\3%!(\‘1)_
(9x3n)
.
f U W b Ve Yol =Bl ()
R, O 0 R,, O 0 R, O 0 |
R, O 0 R, O 0 R,, O 0
R O 0 R,, O 0 R O 0
0 R, O 0 R,, O 0 R, O
0 R, O 0 R,, O 0 a0
0 R, O 0 R,, O 0 ne O
0 0 R, O 0 R, 0 0 n
0 0 R, O 0 R,, 0 0 o
0 0 R, O 0 R, 0 0 ne |
(9%3N)

and we are able to express strain values anywhere in the model as a function of control

points’ displacements.
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Then, the Stiffness Matrix [K] is evaluated as

[K] = [ [T B O [E][BE 0] det ([3(2 m, 0] ednds

(3Nx3N) (3Nx6) (6x6) (6x3N)

The gauss points are full tensor product over the parameter space, that way the numerical

integration is performed in the following way.
Ngpz Nepy Nepe T
[K] = Z Z Z([B(inm, Ck):l [E] [B(&i , ﬂj,Ck)]det([J(ii , nj!Ck])WiGPéWjGPnW(kSPQ)
(3Nx3N) i=l j=1 k=1 (3Nx6) (6x6) (6x3N)
where
&> N;,C: the parametric coordinates of the tensor product gauss point i, j, k.

neps, Nepy, Nepe: the number of gauss points along the axes §, 1 and { respectively, in the

patch.

Wi, W Wi : the tensor product weights of the gauss point i, j, k.
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We now present a flowchart of the general architecture of an Isogeometric Analysis

Code.

Build Connectivites

K=0, F=0

Solve P=KD

v

K_patch=0
F_patch=0

y
Evaluate Quadrature -
points and weights

Y
Evaluate Shape Functions Add Patch Contribution
and Derivatives to Global Stiffness Matrix

y

Calculate Deformation
Matrix and Jacobian

Y
Calculate and add contributions
to Patch Stiffness Matrix

Figure 3.6. Architecture of an Isogeometric Analysis Code in the form of a flowchart.
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4 External Loads
Boundary Conditions
Solution Field

4.1 External Loads

The loading upon the model may vary; it can be concentrated, distributed over a surface or
distributed over the volume of the model like the self-weight. But we have to solve a discrete

equation where all loading is applied on the nodes, or, in IGA, on the Control Points. We

will now assemble the equivalent load vector {F} .
(Nx1)

4.1.1 Concentrated loads

Unlike Finite Element Analysis, where the degrees of freedom are actually on the model
and on the nodes the shape functions are interpolatory, in Isogeometric Analysis neither is
that way. In every point several shape functions are not zero. Therefore we cannot assign
in general concentrated loads directly on the degrees of freedom even if they are applied on
a point whose parametric coordinates coincide with the coordinates of a control point.
They have to be transformed into equivalent loads through their multiplication with shape
functions values on the point of application.

There is one case though where we can directly assign them to the degrees of freedom. At
the edge of the patch we have C' continuity and the control points lay on the model in
physical space. If the loads are applied on the edge of the patch, meaning on the first or last
control point in both parametric axes, and they are tangent to one of the parametric axes in
physical space, then we can assign it to the respective degree of freedom. For example, let
us say that we have a 2D problem with a concentrated load on the last control point on axis
§ and first in n. If the load is tangent to the axis 1 in physical space, then we can directly

assign it on that control point on degree freedom 1.
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Figure 4.1. Physical Space. Cantilever 2D with concentrated loads on the two right edge corner
control points. All but one shape function are zero and thus the loads applied in the corner
material point are directly transferred to the control point.

This can be easily verified. The first and last control point in each parametric axis have the
same parametric coordinates as the first and last knot. Thus only one Basis function in each
axis is one and all others zero, resulting in only one NURBS Shape function being one and
all others zero. That way the whole load is assigned to that control point on its respective
degree of freedom.

4.1.2 Distributed loads

In a similar way we have to compute the equivalent control point loads for all distributed

loads. Assuming that the function:

[LoadX(€,1, &), LoadY (€,m,C), LoadZ(g,m, &) ] = f(>fl,x>3’), ) =f(En,0)

(1x3)

describes the load distribution at any point (x,y,z) or in the parameter space (§,n,(), the

equivalent loads will be computed as:

§n+p+1 1'|m+q+1 §I+r+1

{F}=J‘{R(x,y,z)}f(>gl,xg,z)dV= I J j{R(i,ﬂ,C)}f(%g;C)dEt[J]dCdﬂdﬁ

(Nx3) v (Nx1) & m G (Nx1)

and in detail for each case of elasticity:

‘in+p+1
1D Elasticity: ({F})= | {R(?n),c)}f(a(, n g)det[3]dg
nx1 & nx1 1x1

én+p+1 Nm+q+L

2D Elasticity: (Fl = j j {R(g,n,g)}f(g(,n),g)det[J]dnda
(Nx1) 1x2

N2y
gn+p+1 Tlm+q+1 Cl+r+1

3D Elasticity: {F} = I I J {REM O} (E, ),C)det [J]dCdndg

w4 (Nx1) (1x3
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4.2 Boundary Conditions

Depending on the differential equation we want to solve, it is possible to have a variety of

boundary conditions on the edges, Dirichlet, Neumann or other. In Computational
Mechanics, boundary conditions in strong form are generally not suitable for
implementation. We usually transform them to a weak form and then discretize in a finite
number of points in the mesh; in IGA on the control points. In FEM it is relatively simple
to decide which nodes are to be constrained because they coincide with material points. In
IGA, due to the greater overlapping between the control points’ domains of influence and
the non interpolatory to the geometry character of control points, displacements of control
points, generally, do not represent displacements of a certain material point. That said, the
enforcement of boundary conditions in the general case is harder.

However, there are simple cases where the implementation of boundary conditions is
straightforward. For example, when dealing with a 2D shape with straight sides, the control
points are on the geometry. The displacements on a side of such a model are only dependent
on the displacements of the control points on that side. Thus, we can easily constrain a side

of the model by constraining all the control points on those sides.

Figure 4.2. The left edge control points are constrained in both directions X, Y.

That way, the whole left side is constrained.

In its simplest form, the boundary conditions are Dirichlet, fixed displacements on a part
of the model. Those degrees of freedom are called stationary and the corresponding rows
and columns are deleted from the Stiffness Matrix and the Load Vector. Then we can

compute the remaining unknown displacements by solving the linear system:

(L} =[KeJ{Di} = (Do} =[Kq ] {Ly}
The fixed zero displacements {D,} of the fixed degrees of freedom are added back to the

{Dr}
{D}

evaluated as {L,} =[K ]{D; } and then added back to the result, forming the Load Vector

w-{i)

result, thus forming the Displacement Vector {D} ={ } The constraint’s loads are
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4.3 Solution Field

4.3.1 Displacement Field

After solving the equation we get a vector {D} of the displacements on Control Points.
Again, if the shape functions were interpolatory at every control point then those
displacements would actually have a physical meaning and correspond to an actual
displacement of a material point on the model. Nonetheless, apart from the boundary
knots, the shape functions are not interpolatory which means that each displacement of
vector {D} is just a part of the actual displacement at a material point & In any point in
parameter space (§,1,0), corresponding on a material point (x,y,z) on the model, we can get

the displacement field as

dEn,6) ={RENL)} {D}

(1xN) (Nx1)
1D Elasticity:
d©) ={R(®)}" {D}
(1xn) (nx1)
2D Elasticity:
d&m) ={RE )} {D}
(1x2n) (2nx1)
3D Elasticity:
d&n.0)={REN.Q)} {D}
(1x3n) (3nx1)
4.3.2 Strain Field

By definition of the deformation matrix, the strain on any point §, n, { is given by the

equation {8} = [B] {D} , where dim is the number of strains calculated.
(dimx1)  (dimxN) (Nx1)

For each of the three cases of linear elasticity, for n control points:

1D Elasticity: {e(®)} = [IE(‘(&))]{D}
(1x1) 1xn)  (nx1)
2D Elasticity: {e€m)}= [B((&’ T)l)] {D}
(3x1) 3x2n (2nx1)
3D Elasticity: {e€n,0)} = [B((E» ﬂ’) 9]{b}
(6x1) 6x3n (3nx1)
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4.3.3 Stress Field

By definition again, elasticity matrix transforms the strains on a point to the respective
stresses. {c} = [E] {e} = [E] [B] {D} where dim is the number of stresses and

(dimx1) (dimxdim) (dimx1) (dimxdim) (dimxN) (Nx1)

strains calculated in that case and N the number of the degrees of freedom.

In detail, for the three cases of linear elasticity:

1D Elasticity: {o} =[E]{e®)} =[E][B()]{D}
(I1x1)  (Ix1) (Ix1) (1x1) (1xn) (nx1)

2D Elasticity: {o} =[E]{e&. )} =[E][B(&n)]{D}
(3x1)  (3x3) (3x1) (3x3)  (3x2n)  (2nx1)

3D Elasticity: {G} = [E] {8(&,11,@)} = [E] [B(&,n,@)] {D}
(6x1) (6x6) (6x1) (6x6) (6X3n) (3nx1)

We notice that stresses and strains are expressed as a function of the deformation matrix
[B] which uses the derivatives of the shape functions on the point we inspect. Ordinary
Finite Elements use functions interpolatory at the end of each element which have
continuity C"' there. For that reason, they are not able to calculate stress and strain on those
points from the above equations as they cannot define the shape functions’ derivatives
there. To overcome this problem other corrective procedures are deployed. In isogeometric
analysis however, when using degree p continuity we have continuity C*™ and the
derivatives CP™. That way, with the right choice of the degree, such a problem will not
arise. Using higher degree functions instead, we can have C' or higher continuity and have

smooth and more natural approach of the actual stress and strain field.

75



External Loads, Boundary Conditions, Solution Field

76



Refinement

5Refinement

5.1 Introduction

B-Spline and NURBS geometries were initially developed to support the needs of the CAD
industry. The evolution of CAD sets increasingly difficult goals and nowadays we are able
to design complex shapes with the use of CAD shape functions. At first, when designing a
new shape, a small number of control points able to exactly represent it was convenient,
both for the designer and for the computational time. But as the designers target more
complex shapes and the engineers try to approximate with better accuracy the solution, the
need for flexibility of the model and thus interactive design is now imperative. Designers
need a way to exactly represent geometry and, after the initial model representation, refine
small details. In that way, we can initially draw the coarse shape of a face and later on define
details such as eyes. This is the natural way of drawing and how modern designers work.

To accomplish that, we initially define the whole geometry we need to describe with as few
shape functions as possible. Afterwards, we add the flexibility needed to enable us to
interactively work on details which is equivalent to more control points describing the
geometry in the area. More control points means that the meshing is denser and each
control point has a smaller influence and a local character on defining the geometry of the
area. For that, recall property 5 of the B-Spline curves. The designer can now change the
Cartesian coordinates of the control points, thus conveniently working in a CAD
environment in physical space, and affect only a small area of the model and represent

details with accuracy.

The engineer would be seemingly content to have the initial model exactly represented with
the minimum number of control points and less flexibility. That would enable them to
finish their job seemingly sooner as less control points mean less degrees of freedom and
thus much less computational time, which in several cases can require entire days if the
project is complicated enough. On the contrary, less flexibility in the initial shape, even if
we are not making use of it, means less capacity to represent accurately enough the analysis
result field, displacements, loads and every result depending on those. In that new
perspective, the engineer also needs flexibility, and in fact equal or more flexibility than the

initial undeformed model requires.

That way, refinement in all its forms, is a great asset for shape functions, aiding both the
CAD designer and the CAE analyst and thus proving its importance in both aspects of
Isogeometric Analysis. In this chapter we will present in detail the different methods on

how to successfully perform refinement.
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5.2 Knot Value Insertion.

We recall, that in FEM, h-refinement is the technique which enriches the basis functions
but keeps the same degree of the polynomials. In isogeometric analysis, knot value insertion

or h-refinement enriches the basis and we get a new knot value vector Z by inserting knot
values in the initial knot value vector E. An inserted knot value may either be already
present in which case we increase the multiplicity of the knot or it may be a itself a brand
new knot. In any case though, it has to be a value internal to the initial knot value vector,
preserving the boundary knot values’ numerical content and multiplicity.

We consider our initial geometry accurate and with h-refinement we only want to add
flexibility to the curve. The curve does not change geometrically or parametrically:

c..=C. =

© = ~© {R;g)}T'{P'}={R(Fé)}T~{PF} with m>n.

(1xn) (nx3) (Ixm) (mx3)

{Rzg)},{R(Z)} are the known initial and final basis functions of & and{P'}, {PF} are the

(nx1) (mx1) (nx3)  (mx3)

initial and final Cartesian coordinates (x,y,z) of the control points. We do not know the

coordinates {PF} so to form a linear system we get m equations by giving m values to §
(mx3)

within the limits of the Knot Vector. We take care, that every basis function is non zero at
least at one of those values given to §. Due to the linear independence of the basis functions,
we do know that the system has a unique solution giving us the new control points’

cartesian coordinates { PF} . In terms of matrix equation:
(mx3)

Rl Loy Sl Lo o[ {p A ) ) [T T P

. (nx3) (mx3) (mxn) (nx3) (mxm) (mx3) (mx3) (mxm) (mxn) (nx3)
| E———
T T [TFI]
| F
_{R(im)} | _{R(im)} | (mxn)
(mxn) (mxm)

The proven relation states that:

Py =T P

(mx3) (mxn) (nx3)

Cottrell, Hughes, Bazilevs [2] have automated this procedure of forming the transformation

matrix [TF'] with the following algorithm.

(mxn)
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Algorithm for Knot Value Insertion:

Given:

e the initial knot vector == {él, Epreenns e’;mpﬂ}

e the final knot vector = = {&1 =£,&) ., %n+m+p+l = &Mpﬂ}

The transformation matrix [T is built as:
(mxn)
Ti? _J1 Ei E[E.;jiajﬂ)
0, otherwise
and
To =SS, S TS e gy 0=1,2,...p
1 1=y

ij ij+1 ?
§j+q _‘:j &.:j+q+l _§j+1

When working on a surface or a solid, note that due to the tensor product nature of the
shape functions, inserting a control point in axis &, is equal to inserting a whole set of control
points in n and {. This is a major drawback of using traditional NURBS, not allowing local
refinement. On the bright side, the tensor product nature gives us the option to perform

refinement on every axis separately and in the order we prefer.

—Curve
® Control Point
° O Knot

Figure 5.1. Consecutive knot insertions in a Curve.
Knot Value Vector 2, ={00001234444}
Knot Value Vector 5, ={0000122.52.7534 444}
Knot Value Vector 25 ={00001 2 2.252.52.75 3444 4}
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5.3 Knot Value Removal

Knot removal or reverse h-refinement is very useful in many cases. The designer may need
to express the curve accurately but with less control points than he originally estimated
were needed or the engineer may want to decrease the number of degrees of freedom of its
model if it is too time consuming. It is also necessary to change the curve’s nature: for
example, when transforming with knot insertion the B-Spline curve in a set of Bezier curves
and then with knot removal the set of Bezier curves to a B-Spline curve again. This
transition back and forth is very useful as there is a wide variety of algorithms designed for

Bezier curves that do not apply in B-Splines.

Knot removal, in contrast with knot insertion, cannot be always implemented without
changing the actual curve. Thus a knot value removal algorithm must do two things, firstly
determine if a knot value is removable and how many times and secondly, if applicable,
compute the new control points’ Cartesian coordinates. There exist several efficient
algorithms and the matter is thoroughly investigated in [14].

There are cases though when we know in advance which knot values can be removed. If we
perform a knot refinement, then we do know that the knot values we inserted can be
removed without losing accuracy in the curve representation. We here lay a handy tip for

the transition back and forth from a coarse to a finer mesh.

In the standard h-refinement, the control points’ Cartesian coordinates are transformed as

follows:

Py =T J{P)

(nex1) (nexng) (nex1)

We will attempt to build a transformation matrix [TCF] that {PC} = [TCF ] {PF} :

(ngxng) (ncx1) (necxng) (nex1)
T T
1= T =T e
(nex1) (nexng) (nex1) (nexng)  (nex1) (nexng)  (nexng) J (nexd)

(nexne)

We know that the knot values can be removed as we were the ones who inserted them and
) e +rc]) .. .
thus the matrix ([T ] [T ]) is invertible, therefore:
(nexng)
-1
(Pe=|[Te ][] | [T {P)

(nex1) (nexng)  (ngxng) (nexng)  (nexd)
(ncxne)

7]

(ncxng)
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and

-1

[re]=| e ]| [T

(ncxng) (nexng)  (nexne) (ncxng)
(nexne)
B . — Curve |
— Cure * Control Point
® Control Point. o Knot

O Knot

Figure 5.2. Successful Reverse h-refinement. The Curve remains the same.
Knot Value Vector 2, ={0000122.252.52.7534 444}
Knot Value Vector 2, ={00001234444}

. —Curve | —Curve

* Control Point * Control Point
o Knot ». O Knot
/ .
/ . /
-/ :
\ e
\
\‘\\/\ :
. .
.
—Curve | —Curve
® Control Point| « Control Point
| ©@ Knot | P, O Knot

Figure 5.3. Unsuccessful Reverse Knot Refinement. The Curve’s geometry is altered.
Knot Vector 2, ={00001234444}
Knot Vector Z,={000013444}
Knot Vector 25 ={0000344 44}
Knot Vector E,={000044 4 4}
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5.4 Order Elevation

Order elevation or degree elevation or p-refinement is the finite elements’ equivalent of p-
refinement in isogeometric analysis. It allows us to enrich the basis by raising the
polynomial order of the basis functions used to represent the geometry. The support of the

shape functions is increased and there is a stronger interconnection between the elements.

By order elevating a curve we do not want to alter it parametrically or geometrically. Let us
assume we want to increase the degree byt =p—p . The knot value vector has to have its
first and last knot value repeated (p+t+1) times. We therefore insert extra t repetitions of

the first and last knot value in the vector. Furthermore, we know that along element

boundaries the continuity of a curve is C*"™™ but initially it was only C°™", where m is the
multiplicity of the knot. To preserve that continuity along the element boundaries we have

to repeat those knots extra t times.

Conclusively, to get the new knot value vector we increase every knot’s multiplicity

t=p—p times in the initial knot value vector.

We now only have to obtain the new control point Cartesian coordinates. An obvious but
very inefficient solution would be to solve a system of linear equations. The curve is

geometrically unchanged:
C(&) =2 Ny ()P = 2N, (B)P
i=1 i

Evaluating the previous equation at i appropriate § values yields a banded system of o
linear equations in the unknowns P, . In the same way as h-refinement that would give us a

matrix equivalent equation between the higher and lower degree curve’s control points.

Py =T JiP

(nx1) (nxn)  (nx1)

More efficient algorithms, but also mathematically complicated exist for raising the degree
by 1. Here we will present a mathematically simple and efficient algorithm given in [14] for

raising the degree by t.
Algorithm for Order Elevation.

Stepl. We replicate existing knots until their multiplicity is equal to the polynomial order

(p+1) with knot refinement, thus subdividing the curve into a number of Bezier curves.
Step2. We elevate the order of the polynomial on all those Bezier curves.

Step3. We perform reverse knot refinement (knot removal) by removing the excessive knot

values and combining the separate Bezier curves into one, order elevated, B-Spline curve.
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We note here that the knot removal is not very expensive as we know which knots are

removable, those who we inserted. We in fact know in advance what the final knot value

vector is, we have defined it previously.

The algorithm for step 2, to elevate a Bezier curve from (p) to (p+t) degree in one step is:

! _i=max(0,i—t) (p‘i'tj i’ i:O""’p+t
i
/ X |
\ ; e
\ /

o e T
—Curve
s Contral Paint
o Knet .
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Figure 5.4. Consecutive Degree Elevations from Degree=3 to Degree=7

Initial Knot Value Vector={00001 234444}

e Control Point

vl

—Curve
& Control Point
o Knot
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5.5 Order reduction

As its name designates, order reduction or degree reduction is the reverse process of p-
refinement. We try to reduce the degree of the basis functions without changing it
geometrically or parametrically. Degree reduction, as knot value removal, is a problem

overdetermined and cannot always be applied with preservation of the same geometry.

The existing algorithms mainly reverse the order elevation procedure by following again

three steps:

Algorithm for Order Reduction:

Stepl. Decompose the B-Spline curve in Bezier segments,

Step2. Check if degree reduction is applicable and if it is, perform degree reduction.

Step3. Compose again the B-Spline curve from the separate Bezier segments by removing

unnecessary knot values.

Of course, if the degree reduction is not applicable in a Bezier segment then it is not
applicable for the whole B-Spline. The degree reduction in Bezier curves is a matter well

known but we will not elaborate further in this text. An analysis of that topic exists in [14].

In case, however, we have previously performed degree elevation we know that degree
reduction is applicable and by exactly how many degrees. We here lay a handy tip for the

transition back and forth from a lower degree to a higher degree mesh.

In the standard h-refinement the control points’ Cartesian coordinates are transformed as

follows:
tPry =T J{P
(nyx1) (npxny) (n x1)
In the same way as in knot removal there is a matrix:
-1
[TLH ] _ ([THL T [THL:I] I:THL:IT
(n_xny) (nexny)  (ngxny) (N xny)

(noxng)

such that

(Pry=[ T J{P"}

(nyx1) (nyxny) (nyx1)
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5.6 k-refinement

k-refinement is a new refinement type unique in isogeometric analysis. It was introduced
by Cottrell, Hughes, Bazilevs [1]. If we perform a knot refinement and we insert a new knot
with multiplicity 1 in the knot value vector of a curve with degree p, then the curve would
be CP! continuous on that new knot. If we afterwards order elevate the curve by t=p—-p
degrees, the continuity there will be preserved by the design of the order elevation process.
If we instead, perform order elevation on the curve by t=p—p degrees and only then
perform a knot insertion, the new knot value will have multiplicity 1 and the continuity
there will be higher by t, C***!. This new refinement technique is called k-refinement. That
way we are able to enrich the basis with order elevation and in the same time use basis
functions of higher continuity achieving efficiency and robustness of the solution space
towards a high precision analysis. It is the combination of the p- and h- refinement and to
apply it we apply first p- and then h- refinement.

B

(b)

Figure 5.5.
(a) k-refined Circle. The degree elevated from 2 to3.
(b) k-refined Surface. The degree elevated from 2 to5.
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5.7 NURBS Refinement

NURBS in d-dimensional space are a projection of B-Splines in the (d+1) dimensional
space. In bibliography all refinement methods and algorithms are built for B-Spline non-
rational curves. An easy way to refine a NURBS entity is to project it to the (d+1)
dimensional B-Spline space, refine it there and then again project it back to the d-

dimensional NURBS space.

To project a NURBS geometry in 4D non-rational space, we project the geometry’s Control
Points to their corresponding projective non-rational, their weight equals to one, Control
Points. Thus a Control Point P, =(X;,Y,,Z;) with weight W, from the 3D Cartesian space

is projected to the non-rational 4D space control point P = (w; X;, W, y;, W, Z;,W,).

(3D —rational space) {P}={X..Y,,Z;} , with weight w, ——

(nx3) (nx3)
(4D —nonrational space) {PW} ={w, X;,w,Y,,w,Z;,w,}
(nx4) (nx4)

We could represent that projection of the three coordinates X,Y,Z in a matrix form:

(P} =[W]{P}

(nx3) (nxn) (nx3)

where [W]=diag(w,,w,,...w,) = diag[{w}}

(nxn) (nx1)

N/
f

Figure 5.6.
(a) Projection of the control polygon to plane z=1
(b) Projection of the B-Spline Curve to plane z=1, forming the NURBS Curve: a circle.
(Image: Isogeometric analysis: toward integration of CAD and FEA)
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During the refinement of the B-Spline curve, we treat all four coordinates, including the

weight W, , the same. If there exists a transformation matrix [TW ] for refinement, then it

(mxn)

refines all 4 coordinates: {ISW } = [TW ] { PW}

(mx4) (mxn) (nx4)

After the coordinates’ refinement we project the new control point

=W, X, W, y,,W, Z,,W,) =(X",y;",Z",W,) back to the 3D cartesian space by dividing

each coordinate with the new weight W,, gaining the rational, refined control point

'_(X|1y|’z|) (

W w W

i j with weight W, .

| x|
|<I
| NI

sl
EI
EI

(4D —nonrational space) {PW}—{\TV X, W.Y,,W.Z. v‘v&&

(nx4) (nx4)
(3D —rational space) {P}={X.. Y., Z,} , with weight W,
(nx3) (nx3)

We could represent that projection of the three coordinates X,Y,Z in a matrix form:

(P} =[W]{P} = [P} ~[W]" {P"}

(mx3) (mxm) (mx3) (mx3) (mxm) (mx3)
where [V_V} = diag (V_Vl, W, ..y Wm) =diag [{V_V}j and {\Tv} = [TW]{W}
(mxm) (mx1) (mx1) (mxn) (nx1)

Conclusively, we can perform the NURBS Control Point refinement in one step,

{P} = [1]{P}

(mx3)  (mxn) (nx3)

where [T] :[V_V]_1 [TW][W] and {W} :[TW]{W}

(mxn)  (mxm)  (mxn) (nxn) (mx1)  (mxn) (nx1)
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5.8 Shape function transformation

matrices in knot refinement

For further investigation on the refinement process and to develop Hierarchical
Refinement in the next chapter, we will need to relate the shape functions before (initial)

and after (final) the refinement process.

5.8.1 B-Spline Basis Functions related.

Equalizing the initial and final geometry of the curve in the physical space we get:

% :C(Fa) =>{Nla>}T'{P'} :{N(Fé)}T'{PF} :{N(Fa)}T [TH]'{PI}

(1xn) (nx3) (1xm) (mx3) (1xm) (mxn)  (nx3)

And thus we suspect that a relation { N }T = {N(Fg) }T [TF' } & { N } = [TF' ]T { N, } could

(1xn) (1xm) (mxn) (nx1) (nxm) (mx1)
be connecting the initial and fine mesh basis functions. The proof is rather complicated but

we will lay it here for the sake of completeness.

—
=

Assuming an initial knot value vector, = = {E_)l, Epreenns émpﬂ} ,and a final knot value vector

with only one new knot value&_, =&,

é = {E:l = E::11(%2 = EDZ""EK—l = E:nc—lig}c = (:K’gx-ﬂ = Evgm—Z = §K+l""%n+p+2 = E.‘»n+p+l}

we can use the following formulas from [14] in the chapter “Knot Insertion”, page 142.
The existing initial basis functions can be expressed as a function of the new ones.

fori=1,2,....k-p-1

for i=k+1,....,n

B8 § ,Swetbg

i wp fori=k-p,...K
§i+p+1 - E.:i ° E.>i+p+2 - §i+1 Lp

Equation 5.1. Initial and Refined shape functions related in the case of a single Knot Insertion.

The first two equations are easy to derive by taking into account that the support of each
basis function is (p+1) knot value spans and a basis function will be affected only if the new
knot value resides in that support. The third equation is proved by induction on p and the
Cox de Boor algorithm we presented earlier, but we omit the proof as it is quite messy.
Proofs using divided differences are found in [15], [17], [18].
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Wename [T] = [T“] the transformation matrix giving us the new control points from
((+)xn)  ((n+1)xn)

the initial control points for one knot insertion:

|- 1] 7]

((n+1)xy)  ((+1)xn) (nx1)
From [14] we have that:

Qi = (1_ai)Pi—1 +aiPi

1, i<k-p
where a, = ﬁ, K-p+1<i<k
|+p_E.1i
0, I>k+1

We assumed &, , = & is the new value of the knot value vector, therefore:

g i<k - <k
g=48& =k+1 andiiz{_gi o
£ sk+2 i 12Kk+1
-1 =

Thus we can express the new control points as a function of the new knot value vector:

Qi = (1_ai)Pi—l +aiPi

1, i<k-p
where a, = ﬁ k—-p+1<i<k
i+p+1 Z:n
0, i>k+1
The control points’ transformation matrix {Q} = [T] {P} for this single knot value

((n+1)x1)  ((n+1)xn) (nx1)

insertion is shown in Figure 5.7.
I T F | S F
We want to prove that {N } = [T] {N } <N, = ZTjiNj,p
(x1)  (x(+1))  ((n+1)xn) =t
Cases:

e Fori=1,2,....k-p-1

the column {Ti} has only one element non-zero, T, =1. Thus
((n+1)x1)

n+1

Ni, :Zl:Tj‘NjF'P =T,N{, =1-N{, = N, which is valid from Equation 5.1.
J:
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Column

\ ]2 i K=p k-—p+1 - k=1 k K+1i--- ---in=1 n

Row
Index

1 1

—p+1 ak—p+1

M = R

((n+1)xn)

k-1 l-a,, i a

Figure 5.7. Control Point Transformation Matrix for a single Knot Value Insertion.

e Fori=k+1,...,n

The column {Ti} has only one element non-zero, T,,;; =1. Thus
((n+1)x1)
n+l
NI, => T,N7 =T, ;Nf, =1-Nf, =N, which is valid from Equation 5.1.
=1

e Fori=k-p+1,...,k-1

The column {Ti} has only two elements non-zeros,

((n+1)x1)
Ti=a :ﬁ and T, ; =1-a,, :M
§i+p+1 - éi &i+p+l - &i
n+l e _¥ = _E
Thus Nj, = > T;N7 =T,Nf +T,_;Nf :ﬁNF +MN.F which
i,p jitvip i’ Vi,p i+1i° Vi+lp i,p i+1,p
I §i+p+1 - &i §i+p+1 - &i

is valid from Equation 5.1.

o In the special case of i=k-p:

The column {Ti} has only two non-zero elements,
((n+1)x1)
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_ El+p+l B E

T =land T, =
§|+p+l - E.:i

) —& i=kp g _E Bzt —E&
T zlzm = M = _E" E"'_ and the proof is reduced to the

! §i+p+1 - E_:i §k+1 - E.>i E.:k+l - E.>i

previous more general case of i=k-p+1,...,k-1.

o In the special case of i=k:

The column {T,} has only two elements non-zeros,
((n+1)x1)

T =&—a_and T

i i
i+p+1 ~ i

:1_Ei+p+l_§i §|+p+l §k+l Ekézg §|+p+l ak+l
E.>i §|+p+1 E.)i &k-%—l E.:i

T

i+1i —
ai+p+l -

and the proof is reduced to the previous more general case of i=k-p+1,...,k-1.

Thus we proved that for a single knot insertion with control points’ transformation matrix
{PF} = [T] {P' } , the basis functions are transformed as {N'} = [T (N7}

((n+1)x1)  ((n+)xn) (nx1) (nx1)  (x(n+1) ((n+1)x1)

The general case of r knot value insertions is equivalent to successive r single knot value

insertions, so:

) T [ [ e[y

((n+r)x1) (n+r)x(n+r-1))  ((n+2)x(n+1)) ((n+1)xn) (nx1) ((n+r)xn) (nx1)

where [TF'] = [Tr] [Tz] [T1] is the control points’ transformation matrix.
((n+r)xn)  ((n+r)x(n+r-1)) ((n+2)x(n+1)) ((n+1)xn)

For the initial and final shape functions after all r knot insertions:

N
R R N R T N R EL
(nx1) ((n+n)x(n+r-1))  ((n+2)x(n+1)) ((n+1)xn) /((n+1)x1) ((n+D)xn) ((n+2)x(n+1))  ((n+r)x(n+r-1)) / ((n+r)x1)
(N} =T ] {N°)

(nx1) (nx(n+r))  ((n+r)x1)

or in the form we are usually accustomed to, with n initial control points and m final control
points {PF} = [TF']{P'} =

(mx1) (mxn) (nx1)
(=[] N

(nx1) (nxm)  (mx1)
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5.8.2 NURBS Shape functions related

The NURBS Shape functions are defined as:

(R =N L

x W(E) ] W(E)"
v ZWJNJ (nx1) )

(nx1)

But the weight function W(E) is immune to refinement:

WS, =} ()< )| (1T | (1) () -
(1xn) (nx1) (1xn) (nxm) (mx1) (mxr(lixm()nxl) (mx1)

(Wi N ) = Zw NF = WF(E) =

(1xm) (mx1) =l
W!(&) =W" (&) = W(E)

By using the diagonal matrices [W]=diag(w,,w,,...,w,) =diag ({W}) again we proceed

(nxn) (nxn)

as:

1
R. N.
{(nxi)} W(i) {V\(Inxl) }

[T (R s M= g 17 () = ] [
"

(nxn) (nx1) (nx1) (mx1) (nxm) (mxm)  (mx1)

[ T [we PR =[w [T T we R -

(nx1) (nxn) (nxm) (mxm)  (mx1) (nxn) (nxm) (mxm) (mx1)

W W) T =

(mxn) (nxn) (nxm) (mx1)

R} =[T] {R)

(nx1) (nxm)  (mx1)

Conclusively, in the case of NURBS, which also incorporates the special case of B-Splines,

the new shape functions can be expressed as a function of the initial ones as

{R ! } = [TF' ]T {RF} where [TF' } is the control points’ transformation {PF} = [TF' } {P' }

(nx1) (nxm) (mx1) (mxn) (mx1) (mxn) (nx1)
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Furthermore, as we previously stated in the chapter 5.3, Knot Value Removal, we were the
ones who did the knot refinement so the reverse knot refinement, that transitions from the

final to the initial mesh, is possible. The transformation matrix in that case will be

1
|:TIF:| _ U:TFI JT [TFI }] [TFI ]T .
(nxm) (nxm)( )(mxn) (nxm)

Of course the final and initial Shape functions can be related in the same way

(nx1) (nxm) (mx1) (mxn) (nx1) (nxm) (mxn) (nxm) (nxm) (mx1)

T | e -

T )L [T | 0 )=

(mxn) (nx1) (mxn) (nxm) (mxn) (nxm) (mx1)

T [T | T T ) =

(mxn) (nx1) (mxn)  (nxm) (mxn)  (nxm) (mxn) (nxm) (mxn) (nxm) (mx1)

RY=[TT R

(mx1) (mxn) (nx1)
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5.9 Load Refinement

If we have already evaluated the equivalent loads on a coarse mesh there is no need to

compute them again on a finer mesh. We can do that by using the proved equation

R0} =[T*] {R°Em.0)

(mx1) (mxn) (nx1)

The evaluation of the equivalent loads in the fine mesh is:

{L}= I{RF(&,n,C)}f(édg, c)det[J]dQ =

(mx3) Q (mx1)

[T T {R°Em.Q)}f &, Oet[3]d02 =

Q  (mxn) (nx1) (1x3)
[T [{REE MO}, Odet[3]d2 =
(mxn)  Q (nx1) (1x3)

(w=[roT ey

(mx3) (mxn) (nx3)

Of course, the above process can be applied in the same way for reverse refinement resulting

in (L} =[T] (L7}

(nx3) (nxm) (mx3)
We should have in mind though, that if we described the load distribution with the coarse
mesh shape functions and those were not sufficiently flexible to describe the load

distribution, then the function f(&,1,C) will not be accurate. In that case, we should
(1x3)

describe the load distribution with the new more flexible shape functions in the CAD

software again and then proceed with calculating the equivalent loads.
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6 Hierarchical Refinement

6.1 Introduction

In the previous chapter we reviewed several standard refinement techniques in knot
insertion and removal, degree elevation and reduction. In those procedures, the shape
function coefficients, Control Points’ Cartesian coordinates, are calculated again and
therefore the whole procedure of stiffness matrix assembly is repeated. In the case we have
a large and complicated structure, the number of degrees of freedom could be huge and
reassembling and inversing the stiffness matrix could add a substantial computational cost.

In this chapter, we will attempt to develop a new method to tackle that computational cost
in the case of knot refinement (h-refinement), by managing to express the new Stiffness

matrix in a hierarchical form:

][]

Final ] _ (NxN) (NxQ)
Final Final
owan ™[R ] - [KG™]
(QxN) (QxQ)

where N, M are the number of the degrees of freedom in the initial and final mesh and
Q=M-N the number of new degrees of freedom. Also the subscripts n, e stand for new and

enriched referring to the degrees of freedom.

That way, we will have to assemble only the much smaller matrices [KeFri]nal] , [Kﬁfjé"] ,

[Kﬁ‘n”a'] and we will also be able to utilize the already computed inverse matrix[K'”ma' ] :

The knot values have a local influence, that is when a knot value is inserted only the Control
Points whose support includes that new knot value are influenced and the rest of the control

points remain the same. So when expressing the new control points’ coordinates

{PF} = [TF']{P'} , the matrix [TF'] is mainly unitary but for the area where the control

(mx3) (mxn) (nx3) (mxn)

points are influenced by the knot insertion.

95



Hierarchical Refinement

6.2 Refinement of the Stiffness Matrix

In the previous chapter “Refinement,” we established a relation between the initial and final
shape functions for knot refinement and reverse knot refinement. We will use those

relations to also relate the initial and final stiffness matrices.

6.2.1 Refinement of the Stiffness Matrix 1D

The curve is given by the equation C(§) = {R}T {P}. The initial and final curve are the same
(Ixn)  (nx1)

in physical space: C'(&) = C" ().

Jacobian [J]
The Jacobian of the transformation from parametric coordinates to physical (Cartesian)
coordinates:
T
[F1={REy} {PF}=Cly =Cliy = (R} {P'}=ID,1"{P'} =[]
(1x1) @xm)  (mx3) @xn)  (x3)  (@xn)  (nx3) XD

The Jacobian stays the same with the knot refinement.

Deformation Matrix [B,]

I:Bl(é):l [‘](é)}_lz[‘] a)] [Bl(z;)]

(1x1) (1x1) (1x1) (1x1)

Deformation Matrix [B,]

(é)] [Rg(é):l { (é)} [TIF:I [BIZ(&)]I:TIFB]

(1xm) (1xm) (1xn) (nxm) (Ixn) (nxm)
| FI F FI,B
and [B (&)] I:Ré(é)} { (a)} [T ] [Bz(@][T ]
(1xn) (1xm) (mxn) (Ixm) (mxn)

where

[77)=[7] ana [1°]=[7"]

(nxm) (nxm) (nxm) (nxm)

Deformation Matrix [B]=[B:][B:]

[B°|=[B0][B% =B ][ B | T*° <[ B ]| T*°]

(1xm) (Ix1) (Ixm) (Ix1)  (Ixn) (nxm) (Ixn)  (nxm)
| | | F F FI.B | _ F FI.B
and [ B'|=[ B ]| B, |=[ B ]| B ]| T°° | <[ B° | T
(Ixn) (Ix1)  (Ixn) (Ix1) (Axm)  (mxn) (Ixm)  (mxn)
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Stiffness Matrix [K]

(mxm) g (mx1) (D) (1xm)

K*]=| [[B%, 1 [E][BF. det(3)d& |- Height- Thickness
(&) [ ] (&)

- [ [ [[B'][T'FB]]T [E][[B'][T'EB]] det(J)d é]-Height-Thickness

g\ (Ixn)  (nxm) X\ @xn)  (nxm)

= [T'FYB]T (j[B' ]T [E][B' ]det(3)d &,J-Height-ThickneSS- [T%°]

(mxn) g (nx1) (X1 (1xn) (nxm)
_[TrFs T K[R8
[ (mxn) ] |:(nxn):H: (nxm) } -
[KF]: [TIF,B:IT I:KI :II:TIF,B:I
(mxm) (mxn) (nxn)  (nxm)

In the same way

(K J=[Te ] [k e]

(nxn) (nxm) (mxm)  (mxn)
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6.2.2 Refinement of the Stiffness Matrix 2D

In order to form a hierarchical procedure as in 1D elasticity we need to determine a control

point transformation matrix for all the control points in a form {PF} = [TF' J{P' }
(mx1) (mxn) (nx1)

6.2.2.1 Control Point Transformation Matrix 2D

A fundamental characteristic of the analysis with NURBS is the full tensor product
property. In that way we can perform the refinement (and the control point coordinate

transformation) on each parametric axis §, n separately. For the needs of hierarchical
refinement we need to build a Transformation Matrix [TIFJ that directly refines the

control points of the Final mesh to the Initial mesh, with their global numbering. From the

refinement on each axis §, n we have already obtained the two transformation matrices,

[Tg'] and [TnF '], and subsequently the reverse matrices for knot removal, [TQF] and
[T ].

We assume that in the global numbering, we first count the control points on n and then

on § We name this global numbering &n.

i. Refinement on Heta

In the following figure, per axis numbering is in black and the global numbering in green

letters.
AHeta
m2 2m, 3m, m,m,
nmz
3 m,+3 2m,+3 | - - Co (mg-1)m, +3
3
2 my+2 R I - (my-1)m,+2
)
1 Jmos1 2m,+1 (my-1)m,+1
N1 |
Ksi
E’l gz §3 .......... gml
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Then the global numbering of the control points would be like:

&

a i m,+2
2 ' .

| —
{Pén numbering } -

(mx3) f P2m2

§31”'1E.>m1—1 E I:>2m2+l"“’|:>(m1—l)m2

mm;
(m;x3)

(mx3)

As the Control Point coordinates are arrayed like that, we can perform the refinement on
axis n by multiplying with the matrix:

L G
(nyxm,)

[o] [T7] [o]

[Tf‘"t]z (hxm.) L [1] ®[Tﬂ

((myn,)xm) [O] [0] (Mmxmy)  (n,xm,)
[o] - [o] [T7]
(nzxmy)
- (myn;)x(mm,) B

The refinement on n for all control points is performed at once as:

{Pé refined } — [TIF,tot ] {PF, &, refined }
n

&n numbering &n numbering
((myn,)x3) ((myny)xm) (mx3)

ii.  Changing the global numbering, §n to n§

To proceed in the same way to reverse refine on &, we need to change the global numbering

from &n to n§. We therefore introduce a permutation matrix [Vni_m] , which changes the

(mgnyxmyny )

rows in such a way that after the permutation we first count § and then n.
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((mynz)x(myny))

&n Numbering n§ Numbering
AHeta ]\Heta
m2 2m, 3m, nm (m,-1)n+1 (m,-1)ng42(m,-1)n,+3 -
nmz 1Mz nmz
[ rﬁ:’—én]
(g Yx(myny )
4+—
7
3 m,+3 amy3 |- - - (ny-1)m,+3 [V;i:_;.,}] 2n,+1 20,42 | 2n;43
n 575 n3
3 (myny ) x(myny )
nz 2 m+2 2my+2 | - - s (ny-1)my+2 nz n,+1 ny+2 ny+3
R (ny-1)m,+1 1
2 1 2 2 3
nl - —— — > nl
‘.
El gz 23 .......... gnl si gl §2 23 ..........
And the permutation matrix’s numerical content:
[ 12 3 -« n,in,+1 2n, ! E(m,-Dn, +1 m,n,
1 100 0: 000 -0 00 - 0 i 00 00
000 100 0 00 -~ 0 i 00
00 000 - 0 10 -0 | 00
: 000 - 0 A P
m, 000 000 0 00 - 0 | 1 0
v m, +1 010 0 000 0 0 0 - 0 0 0 0
[Vieso ] = 010 0 0 0 0: 000

(n,~H)m+1/000 -~ 1; 000 --0 ;00 -—0i{ 0000

n,m, 000~-~o§ooom0§00~-~o§ 00 01
We also observe that the permutation matrix satisfies all the orthonormal tests and
-1 T
therefore [Vné_én] =[Vné—éd .

(mynz)x(myn,) (mynz)x(myn,)

After the multiplication, we now have the control points’ coordinates with a global &n

numbering.

& refined _ € refined
{Pni numbering } - I:Vni—in:l {Pin numbering }

((myny)x3) (mny)x(mny)  ((Myn,)x3)
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iii. Refinementon §

Now the global numbering of the control points would be like:

i

N>

€ refined _

{Pné numbering } - : )
((mn3)x3) : 2m,

: (m;x3)

N3y s M, E I:)2m1+1'”"|:)(n2—1)m1

(P

(ny-1)my+1
P

(ny,-1)ym;+2

M,

Pn2m1
(myx3)

(myn,x3)

At this point we can perform the refinement on § in the same way as we did in n. We
multiply the control points’ coordinates with the matrix:

R
0 T'; 0 :
o] L e
(0 x mny) : [0] . [0] | “% Gum
0 - e

(nx (myny))

| _ IF, tot & refined
{Png numbering} - [Tﬁ :' {Png numbering}

(nx3) (nx (mny))  ((myn,)x3)

Now the refinement is complete and all we have to do is return the control point

coordinates to the original global &n numbering.
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iv.  Changing the global numbering, n§ to &n.

.
ni—én] matrix we built before as we now have only n

(myny)x(myny)

We observe that we cannot use the [V

control points. We build a new permutation matrix [Vin—né] .

(nxn)
n§ Numbering &n Numbering
A\Heta AHeta
q"z Ny-1, 1 (Na-1)n,+2 (N, n nnl n 2 3 nyn
[V,‘n tii]
(xn)
- :
T
2 fangss |- 3n [V-':’v’""'f:] 3 ny+3 3 |- (ny-1)n, 43
n3 - () r'|3 = .
V]Z n.42 n,+: n. |'|2 2 2 2n,+2 - 2
'11 1 2 3 . . n'.;- '11 1 no+1 2n, +1 . . I";’;-.‘ 1
& & g e n, s £ & g eeeeeeee &n, Kl
And the permutation matrix’s numerical content:
i 123 noin+l 2n, | F(n,-1)n,+1 n,n, |
10000 :{ 000 0 { 0 O 0 i 00 0 0
00000 { 12000 i 00 00
3 00000 { 00O0--0 { 1 0 00
00000 | 000 - 0 |
n, 00000 00O -0 : 0 0 0 ! 10 0 0
y n+1 [0 1 0 0:0 0 O 00 0 0 0 0 0 0 0
[fn”{f]_ n+2 |0 0 0i0 1 0 0 ! 0 0:f 0 0 0 0
2n, 00 0 0/0 0 0 0i0 0 0 0 01 0 0
(n-Hn,+1/0 0 0 - 1{0 0 0 -~ 0! 00 -0 { 00 - 00
nmn, |0 0 0 - 0000 -~ 0i{ 0000 i 00 - 01

This permutation matrix also satisfies all the orthonormal tests and therefore

[Vénfné Tl = [Vénfné T

(nxn) (nxn)

Finally after the multiplication {P'} = {Péln numben-ng} = [Vén_né ] {F)T:é numbeﬂng} we have the
(nx3) (nx3) (nxn) (nx3)

coordinates of all the control points after the reverse refinement in the original global

numbering &n.
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&

: ny+2
‘22 : .
P!l ={p! ~ i '
| &nnumbering | T !

(nx3) (nx3) : I:)Zn2
(nyx3)

asfﬂ’anl—l : P2n2+l’”" I:>(n1—l)n2

P(nl—l)anrl

|:>(n1—1)n2-¢-2

NN,
(n2x3)

(ngnyx3)

v.  The whole procedure of control points’ coordinates 2D refinement, in a glance.

We can summarize the refinement procedure getting the new control point coordinates
as

PV [T ] [V ] [T 1P} =

(nx3) (nxn)  (nx (myny)) ((Mynz)x(myny)) ((myn,)xm) (mx3)
TIF,ZD
[(nxm)]
{PI} _ I:TIF,ZD:I{PF}
(nx3) (nxm) (mx3)

103



Hierarchical Refinement

6.2.2.2 Refinement of the Stiffness Matrix 2D

The surface is given by the equationS(§, ) = { R}T {P} and the initial and final surfaces are

(Ixn) (nx2)

the same in physical space: S'(,m) =S7(€,1)

Jacobian [J]

The Jacobian of the transformation from physical (Cartesian) coordinates to the parametric

coordinates is

T {R:é:l(m))}T {(PFZ)} [S(El(izy?):l [S:él(éé;w):'
[JF]:[DF] . PF — Xm mx — X — X :[JI]
@d @) !mej {REM)}T {PF} [Si(a,n)] [S:l(é,n):' @x2)

(1xm) (mx2) (1x2) (1x2)
(2x2) (2x2)

So the Jacobian stays the same in the knot refinement.

Deformation Matrix [B,]

As the Jacobian remains the same after the refinement, Ji'j = JE =J;

1 ‘]22 _‘]12 0 0
[Biem]=——F—=| 0 0 -3, I, |=[BiE0)]
det( j Jy

(3x4) (3x4)
[J] ‘]22 _‘]12
(2x2) (3x4)

Deformation Matrix [B,]

Based on the 1D relation of the initial and final deformation matrix, [B;@] = [B'Z(&)][T'F]
(1xm) (Ixn)  (nxm)

we prove a similar relation for the 2D initial and final deformation matrix [B,]:

[Bg(g,n)] = [BIZ(é,n)][TIF’B:I and [Blz(é,n)] = [Bg(g’n)][TFI'B]

(4x2m) (4x2n)  (2nx2m) (4x2n) (4x2m)  (2mx2n)

where
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TR0 ITER 0 [T o
0 Ty 0 Tp™i-i 0 T®
I:-I-IF,BJ: 0 T'F2P 0 YR 0 T'F:20
21 : ! 2
T:;ZD o 0 - T:]FZZD o 0 - T::nZD o 0 -
om0 TR0 T
(2mx2n)
and [T'F'ZD] is the control point transformation matrix we formed in Ch. 6.2.2.1.

(nxm)

Hierarchical Refinement

Indeed, by substituting [T' B] 1n[Bz(é NE (B, 2, n)][T'F’B] we get

By, I T7° ] =

(4x2n)  (2nx2m)
Ri,g 0
B Ri’n 0
|0 Ry,
0 Ry,

ZTHR!,
ZT R{,

0

0
R[. 0
_|IRf, O
| 0 RL
0 R{n
_[B;(a,n)]
(4x2m)

(2mx2n) (4x2m) (4x2n)  (2nx2m)
e 0 [TES o
. . 0 TPl 0 TP
R 2,8 0 R ng 0 TTF','Z'D T 0 N "f"fl'l':,'z'b' o 0
RI 0 Rl O 21 f 22
A O S
0 Rzyé o 0 Rn,}; T ey s s e
| | : R S e
0 (4R22J)1 0 R",n 'TTF','ZD OT|F22D 0
x2n nl , N , \
0 TR 0
- (2mx2n)
o I o |
0 ZTiZRLé 0 ZTimRLé 0
0 ZT R, 0 ZT R{, 0

: | : |
ZTilRi,g 0 ZTizRi,g
ZT R{, 0 ZT Ri,
(4x2n)
F F
R, O Ri. O
F F
Rj, O Ri, O
F F
0 Ry, -~ 0 Rj.
F F
0 R, - 0 Rj,

(4x2m)

O iTllelg

0 ZT R!,

F2D | :
T

e 0
0 TE®
Sfizﬁn;éb' T 0
0 TIF,ZD

2m
(S
0 TE®
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Deformation Matrix [B]=[B:][B:]

[Ble] =Bl J[Boc )] = Bl B ] T | = [Br. ][ T | =|[BE. ] =By ) ][ T7° |

(3x2m) (3x4) (4x2m) (3x4) (4x2n)  (2nx2m) (3x2n)  (2nx2m) (3x2m) (3x2n)  (2nx2m)
and
FI.B F1,.B FI.B
[B(& n)] [Bl(é n) ] [BZ(é n)] [Bl(é n) ] [B 2(&, n)] [T :I [B(i n)] [T :I = [B(é n)] [B(t’; n)] I:T :I
(3x2n) (3x4) (4x2n) (3x4) (4x2m)  (2mx2n) (3x2m)  (2mx2n) (3x2n) (3x2m)  (2mx2n)

Stiffness Matrix [K]=[B]*[E][B]

[KF]=[[B7] [E][B" et[s]d2= IL[B][T'FB]]T[ [[B][T'FB]]det[ Jdo=

(2mx2m) O (2mx3) (3x3) (3x2m) (3x2n) "2nx2m) (3x3) | (3%2n) "oy om)

H:TIF’B [B(g,n)] [E][B(gyn)][TlF'B:Idet J]dQ =

Q (2mx2n) (2nx3)  (3x3) (3x2n) (2nx2m)

(7%= ][B!, 1" [E][B}. , Met[J]d Q[ T ] =

(2mx2n) O (2nx3)  (3x3) (3x2n) (2mx2n)

[T [k |=

(2mx2n)  (2nx2n) (2nx2m)

(K] =[rre [T

(2mx2m) (2mx2n)  (2nx2n) (2nx2m)

Similarly:

(K=o ) ko] [T ]

(2nx2n) (2nx2m)  (2mx2m) (2mx2n)
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6.2.3 Refinement of the Stiffness Matrix 3D.

6.2.3.1

In the same way as in 2D, the 3D control point transformation matrix will be:

{PI} Z[Vénéfn&il [TE,FI'M] [Vnci—can]

(nx3) (mxm)

I:-I-Tllil,tot]

(mx(nymymy)) ((ngm,ms)x(ngm,ms)) ((ngmymg)x(ngnams)) ((NnymM3)x (N ms)) ((ngnamg)xn) (mMx3)

Control Point Transformation Matrix.

[Viaenc ] [TCFI'M] Pry=

6.2.3.2

[

Py =T ] i)

(mx3)

(nx3)

TFI,3D]

(mxn)

(nxm)

Refinement of the Stiffness Matrix 3D.

The volume is given by the equation V(&,1,£) ={R}" {P}. The initial and final volume are

(Ixn)  (nx3)

the same in physical space: V'(&,m,8) =V (E,1,8).

Jacobian [J]

The Jacobian of the transformation from physical (Cartesian) coordinates to the parametric

coordinates is

[F1=[D}]-{P"} =

(3x3) (3xm) (mx3)

F
{R&(é,n,c)
(1xm)

F
{Rn(é,n,é)
(1xm)

F
{RC(@WC)
(1xm)

PP | Vo]
(mx3) (1x3)
}T{PF} - [VnF(&.n.C)]
(mx3) (1x3)

T PF VF N
"] (D]

The Jacobian stays the same in knot refinement.

Deformation Matrix [B;]

As the Jacobian remains the same after the refinement [J' ] = [JF} =
(3x3)

[Bien0)]=| .

(6x9)

Jo Jis
0 O
0 O

Yo I
0 O

Jo T

0O 0 O
Ia Yz I
0 0 O
I %
‘]31 ‘]32 ‘]33
0O 0 O
(6x9)

0
0
Iy
0
Ja
Ju

0
0
Ja
0
Iz

12

[Vil(é,n,é)}

[VT:(i,n,C):'

[VCI(&TLC)]

(1x3)

=[]
(1x3) (3x3)

(1x3)
(3x3)

[J] and
(3x3)  (3x3)
0 -
0
5
®=[BiEn.9)]
0 (6x9)
‘]23
‘]13
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where [J] " =|3; 3, 3,

(3x3) * * *

Deformation Matrix [B,]

[Bg(a,n)] = [BIZ(&,n)][TIF’B]

(9x3m) (9x3n)  (3nx3m)

and [BIZ(f,n)] = [BzF(é,n)] [T " ’BJ

(9x3n) (9x3m) (3mx3n)

In a the same way as in 2D case, the deformation transformation matrix [T'F'B] is

(3nx3m)
T 0 0 ITE® 0 0 fiTE® 0 0 |
0o T*® 0 0 T5® 0 0 T 0
0 0 TF®: 0 0 T5® i1 0 0 T
lfl'F',é'ri' o O T 0 o g' ) le'li:IéES T 0 T O - ': _"_ T IF3D 0 T 0
21 , 22 ; ; 2m
- o T* o i o0 T 0 (i 0 T&® 0
[T :‘Z O 0 TIF,3D: O 0 TIF,3D :: 0 O TIF,3D and
lfl'F',é'lj' o O T 0 o ilk'l'F?éb' T 0 T O - ': .". T IF3D O T 0
nl 1 n2 : roonm
o T® o0 i 0 TP 0 i--i 0 T 0
0 0 TF®I 0 0 TH®{..i 0 0 TP
(3nx3m)

[T'F’SD} is the control point transformation matrix.
(nxm)

Deformation Matrix [B]=[B:][B:]

F F F I I IFB] _p! IF,B F _rp! IF,B
[B(é,n,@]:[Bl(a,n,o][BZ(é,n,m]:[Bl(ﬁ,n,@][BZ@,n,C)][T ]—[B(é,n,o][T ]:[B(a,n,o]—[B(é,n,@][T ]

(6x3m) (6x9) (9x3m) (6x9) (9x3n)  (3nx3m) (9x3n)  (3nx3m) (6x3m) (9x3n)  (3nx3m)
and
I ! | _IBF F FIBT] _ rpF FI,B 1 _pF FI,B
[B(é,n,f;)] B [Bl(é,n,f;)][BZ(é,n,f;)] B [Bl(f;,n,f;)][BZ(é,n,C)][T :I o [B(&,n,C)][T :' = [B(t’;,n,f;)] o [B(ivn,C) ] I:T ]

(9x3n) (6x9) (9x3n) (6x9) (9x3m)  (3mx3n) (6x3m)  (3mx3n) (9x3n) (6x3m)  (3mx3n)
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Stiffness Matrix [K]

ke = [[&T [E][e betpalaa= | @[] (€] [B'][T'F'B}Jdet[J]sz

T
(Bmx3m) O (3mx6) (6X6) (6x3m) [(5””) (3nx3m)J (6x6)((6><3“) (3nx3m)

I[TIFB] [B(én)] (gn)][T'FB}det[ ]dQ_

Q (3mx3n) (3nx6) (6X5) (6x3n)  (3nx3m)

(777 [[8L.,]" [E][BL. Ket[s]d [T ] =

(3mx3n) O (3nx6)  (6x6) (6x3n) (3mx3n)

[T [k )=

(Bmx3n)  (3nx3n) (3nx3m)

(ko] =[] [k [T ]

(3mx3m) (Bmx3n)  (3nx3n) (3nx3m)

Similarly:

(K =[] (R ][Tme]

(3nx3n) (3nx3m)  (3mx3m) (3mx3n)
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6.3 Hierarchical Formulation

To work generally in any case of 1D, 2D or 3D elasticity, for the rest of the chapter we will

consider as:

n, N the initial control points and degrees of freedom,
m, N the final control points and degrees of freedom,
g, Q the new control points and degrees of freedom

It is obvious that g=m-n and Q=M-N. We will name the dimension of the elasticity matrix
in each case as d.

For 1D elasticity d=1, N=n, Q=q and M=m.

For 2D elasticity d=3, N=2n, Q=2q and M=2m.

For 3D elasticity d=6, N=3n, Q=3q and M=3m.

The subscript index 1 refers to parametric direction §, 2 toj and 3 to C.

jjJUS111X112X<n3=IL (h X(]zXquz(L m; X m; X ms3=im.

6.3.1 Hierarchical Deformation Matrix

For the new [K] we build a permutation matrix [V] so that the degrees of freedom and
(MxM) (MxM)

the control points inserted with the knot refinement are transferred at the end. From the
knot value insertion, many degrees of freedom are influenced, more than just the Q=M-N
that were inserted. Nevertheless, we use the permutation matrix to transfer (M-N) degrees
of freedom to the end of the stiffness matrix. These will be called the new degrees of
freedom and the respective q=m-n control points the new control points. We can even
do it by moving non-influenced control points to the end, but then the error at the
calculation of the stiffness matrix would be greater. In order to do that in one step, we
modify the transformation matrix to get us from the initial degrees of freedom to the final
modified degrees of freedom.

][} )

(NxM) (NxM)  (MxM)
We can thus partition the transformation matrix in two areas, the enriched area [T, ]
(NxN)
referring to the existing enriched (influenced or not influenced) degrees of freedom and

the new area [T, ]referring to the new degrees of freedom.
(NxQ)
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-\ )
(NxM) (NxN) (NxQ)
(NxM)

Subsequently,

o[- (7] (]| (2] (2] | (2] (e
(dxM) (dxN) (NxM) (dxN) [ (NxN) (NxQ) (dxN) (NxN) (dxN) (NxQ) (dxN) (NxN) (dxQ)

(NxM) [ABn]

(dxQ)

But we want to express [B*] as a sum of [B'] and another term. We can proceed by

expressing [Tem] in the following way:
[B'}[Te"‘}:[B']( 0+ 11 )z[B'}[B']([TQ‘]— 0 Jz[B'}r[ABe]
(dxN)  (NxN) (dxN) \ (NxN)  (NxN)  (NxN) (dxN)  (dxN) \_ (NxN)  (NxN) (dxN) (dxN)

Finally we can write that

(o) (e s8] [sn,]
(dxM) (dxN) (dxN) (dxQ)

where:

[B'] the initial deformation matrix.
(dxN)

(dxN) (dxN) \_ (NxN)  (NxN)

[aB,]=[B'|[T"]

(dxQ) (dxN)  (NxQ)

e 1-o (11

-] 1]
(NxM) (NxN) (NxQ)
(NxM)
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6.3.2 Hierarchical Stiffness Matrix

<"]=[[B"] [E]

Q (Mxd)  (dxd) (dxm)

(MxM)

Q| (dxN)

8]
.[ (Nxd)

[

(Nxd)

Q0 —

[<]=]

[J {[B'HABG]

(dxN)

"+ [aB,] |

(Nxd)

ol [aB,]

(Qxd)

B' | +[aB,]"|

(Nxd)

|

[4B,]

(Qxd)

(MxM) Q

We substitute [AB, |
(dxQ)

(BT Q=

;
[ABn]} [E]{[B'}[ABE] [ABn]}dQ =
(dxQ) (dxd) | (dxN)  (dxN) @xQ)
[E][[B' +[AB,] [ABH]}dQ:

(dxd)| @xN)  (dxN) (dxQ)
[E]{[B'}L[ABE] [ABH]}de

(@xd)| (dxN)  (@xN) @xQ)

[B' ]+

(Nxd)

J [E1aE, ]
(Nxd) (dxd) (dxQ)

2] (12 e

[B'}[ABQ]J

(dxN) (dxN)

o] e e+ 1ae
[ABJ[E](

(Qxd)  (dxd)

[4B,]" [E][4B, ]
(@) (@) (@xQ)

]=[B'][Tr" ] and[AB, ]

(dxN)  (NxQ) (de)

SEN Nt

(dxN) (NxN)

] and do the

(NxN)

multiplications and sums.
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» (K]

(NxN)
(K& ]=
(NxN)
j[B']T[E][B']d(ﬂj[B'T[E][ABe]dQ+j[ABe]T[E][B']dQ+I[ABe]T[E][ABe]dQ=
Q (Nxd) (dxd) (dxN) Q (Nxd) (dxd) (dxN) Q (Nxd) (dxd) (dxN) Q (Nxd) (dxd) (dxN)
']

K] I[B']T[E][B']dQ([Tem]— 0 J+[[T§“]T— 0 ] [[8'] [E][e']da-
(NxN)  Q (Nxd) (dxd) (dxN) (NxN)  (NxN) (NxN) (NxN) /o (Nxd)  (dxd) (dxN)
[<'] [<']

(NxN) (NxN)

{[Tem]T_ [1] JI[B']T [E][B']d9£[Tem]_ (1] ]:

(NXN) (NxN) /o (Nxd) (dxd) (dxN) (NxN)  (NxN)

[<]

(NxN)

[K'HK']UT;]_ 0 H[T;]T_ 0 ][K']{m]ﬂ 0 j[K']L[Tem]_ 0 ]:»

(NxN)  (NxN) \_ (NxN)  (NxN) (NxXN) (NxN) / (NxN) (NxN) (NxN) / (NxN) \ (NxN)  (NxN)

[3K]
(NxN)

[KE |=[K'[+[5K]

(NxN) (NxN)  (NxN)

We can get a better expression for [8K] by doing the multiplications on the matrices,

(NxN)
[8K]=
(NxN)
k)1 o [T 1 [K'}([T;n]l 0 j[K'][[TQ‘]— 0 }
(NxN) \_ (NxN)  (NxN) (NXN) (NxN) / (NxN) (NxN) (NxN) J (NxN) \_ (NxN)  (NxN)
[k (12310 |+ [T - [ [K'J[ ['“(m— ] J]
(NxN) \_ (NxN)  (NxN) (NxN) (NxN) J (NxN) \ (NxN) (NxN)  (NxN)
(Y- ([ ] - [ R )=
(NxN) \_ (NxN)  (NxN) (NXN) (NxN) / (NxN) (NxN)

[ LR e[ R (KT )=

(NxN) (NxN) (NxN) (NxN) (NxN) (NxN) (NxN) (NxN)

(k] =TT [K [T [ ']

(NxN) (NxN)  (NxN) (NxN)  (NxN)

113



Hierarchical Refinement

[K&]

(NxQ)

[K& =

(NxQ)

J[[B'T a8 ]J[E][AB] o-

Q\ (Nxd) (Nxd)  J(dxd) (dxQ)

[[4B,]'[E][4B,]do+ [[B'] [E][AB,]da =

Q (Nxd) (dxd) (de) Q (Nxd) (dxd) (dxQ)

T [0 )l el el b [T ][ e v -

(NXN) (NxN) /o (Nxd)  (dxd) (dxN) (NxQ) O (Nxd) (dxd) (dxN) (NxQ)
] ]

(NxN) (NxN)

(e K (kT )=

(NxN) (NxN) (NxQ) (NxN) (NxQ) (NxN) (NxQ)

(<G ]=[m IR T ]

(NxQ) (NxN)  (NxN)  (NxQ)

[Ke.]

(QxN)

K. ]=

(QxN)
[[aB,] [E][ [AB ]+[B']}19=
o (Qxd)  (dxd)\ (dxN)  (dxN)

[[aB,]'[E][B' |do+ [[AB,] [E][AB, JQ =

Q (Qxd)  (dxd) (dxN) Q (Qxd) (dxd) (dxN)

(] [[e'] [E][B']dQ{TﬂTJ[B'T[E][B']dQ{[Tg‘]_ [|]]:

(QxN) O (Nxd) (dxd) (dxN) (QxN)  Q (Nxd) (dxd) (dxN) (NxN)  (NxN)
] [

(NxN) (NxN)

[ (K B [ - ] [ ]=

(QxN) (NxN) (QxN) (NxN) (NxN) (QxN) (NxN)

(<= [k ]

(QxN) (QxN)  (NxN) (NxN)
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[ ]

(QxQ)
[Kiw ]=
(QxQ)
[[aB,]'[E][AB,]dQ =
Q (Qxd) (dxd) (dxQ)
[T ] [[B'] [E][B'Jao[ T |=
(QxN) O (Nxd) (dxd) (dxN) (NXQ)
[<']

(NXN)

[ =T [ ][]

(QxQ) (QN)  (NxN)  (NxQ)

Finally, in any case of linear elasticity, 1D, 2D or 3D, we managed to express the Stiffness
Matrix of the Fine mesh as a function of the Stiffness Matrix of the Initial mesh in the

following way:

[K'+[8K] [KE ]

[KF:'— (NxN)  (NxN) (NxQ)

war | [KG] 0 [KG]

(QxN) (QxQ)

where, as we proved above, the separate matrices are:

(k] =TT [K [T [ ']

(NxN) (NxN)  (NxN) (NxN)  (NxN)
KF _ Tm T KI Tm
en | e n
(NxQ) (NxN) — (NxN) (NxQ)
KF _ Tm T KI Tm
ne | n e
(QxN) (QxN)  (NxN) (NxN)

[ J=[mr T [k

(QxQ) (QN)  (NxN)  (NxQ)
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With the previous form of the Stiffness Matrix of the refined mesh,

[K'J+[8K] [KE ]

[KF]— (NxN)  (NxN) (NxQ)

F F
o | [KL][KG]
(QxN) (QxQ)

we have the opportunity to tackle large scale problems with a great number of degrees of
freedom. In those cases, inversing a Stiffness Matrix [K']+[0K] can be a critical undertaking
in the process of solving the differential equations and requires a great amount of time. For

that reason, if the control points we consider “new” are chosen with care and the values of

the matrix [8K] are very small in comparison with the respective values of the matrix [K']
then we can consider the matrix [5K] negligible and the new matrix of the refined mesh:

[K'] [K&]

[ F:' (NxN) (NxQ)

K™ |= F F
i | [KG ] [KG ]
(QxN) (QxQ)

That way we can take advantage firstly of the already formulated matrix [KI J and secondly
of the fact that we have already inversed it. Then with modern algorithms we can directly

use the inversed [K' }_1 and also inverse much smaller matrices instead of the huge [KF] .
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6.4 New Control Points

6.4.1 New Control Point Number

When a new Knot Value is inserted in a Knot Value Vector, either a preexisting Knot Value
whose multiplicity is increased or a new Knot, it affects the surrounding NURBS and their

corresponding control points. We recall the second B-Spline basis function property, that

in any given knot span [é & J+1) at most (p+1) of the functions N; ; are nonzero and those

candidates are N i N Thus initially, (p+1) basis functions had support over the

knot span[&i , &Hl) . Now we insert a new knot in the span [&i , &H) and it now consists of
two separate Knot Spans [& I’ E) and [E, £ J+1)' The basis functions influenced by the knot

insertion are the (p+1) initial basis functions who had support over the [ﬁ. i€ J+1) , plus the

new basis function starting at the inserted knot value &. That means there are (p+2)
different control points from the initial mesh. Obviously, in more parametric directions,
with the insertion of a control point on axis §, we insert a whole set of control points on the

control net.

In the cases of 1D, 2D, 3D elasticity with a (n x m x r) control points on the axes §, 1, ( and

a knot value insertion & on axis § with degree p:

In 1D,

1 control point new

p+1 other control points influenced
In 2D,

1xm control points new

(p+1) x m control points influenced
In 3D,

1 x m x r control points new

(p+1) x m x r control points influenced
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We note that, since we can consider as “new” only one of the (p+1) control points that are
influenced by a knot insertion, including the inserted control point, it is seemingly
convenient for us if the insertion of multiple control points is in a small area where they
interact with each other. That way, there is overlapping between the control points
influenced and we can name a larger percentage of the influenced degrees of freedom as
“new”. In example, if we make a knot insertion for degree 2, then 3 control points are
influenced but only one is considered new. If we insert a second knot and thus an extra
control point, 3 control points are influenced again. If 1 of those influenced control points
is the same in both knot insertions, then instead of having 2*3=6 influenced control points
and considering 2 of them “new”, we have 2*3-1=5 influenced control points (one is

common in both cases) and we consider 2 “new”.

But this is only one possible outcome, the presence of many new knot values in the area
could affect too much the nearby control points and thus the influenced “enriched” degrees
of freedom in the neighborhood may have totally different interaction with each other that
the initial stiffness matrix [K'] does not describe it satisfactorily any more.

6.4.2 Selecting the New Control Points

In the Hierarchical Scheme we stated that we have to choose which of the influenced
Control Points we will consider new and which enriched. For the enriched ones, we make

the assumption that their interaction has not changed with the insertion of new knots and
the matrix [K:e] = [K' ] + [SK] = [K'] is the same. Alternatively, we can evaluate the

deviation of the contribution of the enriched degrees of freedom after the refinement in
matrix [SK].

We will on purpose neglect the contribution of [SK] and we have choose the “new” control

points with care in order for [BK] to be small.

.
We recall that [8K] = [Tem] [K' ][Tem }—[K'] and that [Tm} = [Tem] [Tnm] , where [T]
(NxN) (NXN)  (NxN) (NxN)  (NxN) (NXM) (NxN) (NxQ)
(NxM)
is the transformation matrix for the deformation matrix which we name [Tm] after we
move the “new” Q degrees of freedom at its end. We want to name “new” the degrees of
freedom, and subsequently the control points, who were influenced most by the knot

refinement. That way, [Tem ] will have mostly not very influenced degrees of freedom and

be close to the identity matrix which makes the error zero, [SK] = [K' }—[K' ] = [O]

(NxN) (NxN)  (NxN)  (NxN)
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In the general case where many knot values are inserted and basis functions supports are
influenced by more than one knot insertion, determining which control point is influenced
more is not a task we can easily predict in advance. Instead, as we easily know which control
points were influenced (but not how much) we can search the control point

Transformation matrix [T'F] on the positions we know that are affected and determine

the q control points that were most influenced.

One criterion to choose q new control points, could be to check the columns of [T'F] , S
each column corresponds to the final control points, and select as new the first q control
points with the lowest maximum number in their column. That way, the control points in
the fine mesh which are influenced by more control points in the initial mesh will be
considered new and those who are influenced by mostly one control point, in that case there

would be a single 1 in the column, will be considered enriched. The modified matrix [Tem]
will be close to the identity matrix and there will be a small error [8K]

The idea of the hierarchical refinement is new and we have not fully implemented it yet.
There are many parameters to check, apply it in real world problems to see how it behaves

and find a reliable criterion to automatically choose which control points will be considered

as new.
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7 Applications

In this chapter, we will see three 2D applications of Isogeometric Analysis. A simple

cantilever, the Cook’s cantilever and a plate with a hole.

7.1 Cantilever 2D

7.1.1 Initial Mesh

7.1.1.1  Geometry and Loading

The standard cantilever 2D Beam presented here is subjected to plane stress. The third
dimension (thickness) is much smaller than the other two and all loads are placed in the
XY midplane of the beam. The degrees of freedom on the left side are fixed and the load is
applied on the right side of the cantilever. For the first representation we use a 3x11 control

point mesh.

Figure 7.1. Cantilever 2D in Physical Space.
C' Continuity across the Knots.

Knots are displayed as yellow rectangles and control points as red circles.

BSPLine Shape Function BSPLine Shape Function

kot 10
4B Krot TensorProcuct

BSPLine Value

(a) (b)

Figure 7.2. Shape functions of Cantilever 2D in Parameter Space.
We have C' Continuity across the knots.
(a) Shape function corresponding to (3,1) Control Point on the §, n grid.
(b) Shape function corresponding to (11,3) Control Point on the &, n grid.
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Figure 7.3. B-Spline Basis Function in Parameter Space. Continuity C'
(a). B-Spline Basis Functions on axis §
(b). B-Spline Basis Functions on axis n

To avoid confusion over the loads distribution, we apply it directly on the far right edge of
the beam, on the top and bottom corners. The control points there are interpolatory to the
geometry and the shape functions correspond to the end of the knot vectors. That means
in each corner only one shape function is 1 and all others zero. Subsequently the
concentrated load applied on the corner material point is directly transferred to the control
point. The shape function of the right up control point of the cantilever can be observed in
Figure 7.2 (b).

7.1.1.2  Stiffness Matrix assembly

There are 3x11=33 control points and each of them has 2 degrees of freedom, summing up
to a total of 66 degrees of freedom. In each parametric direction we have polynomial degree
2 and since it is a 2D problem, we need p+1=3 gauss points in each parametric direction in
a knot span. That means for an element we will need 3x3=9 Gauss Points. We have 9

elements summing up a total of 9x9=81 Gauss Points.
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Figure 7.4. Gauss Points in Parameter Space.
Knot Value Vector E={00012345678999andH={00011 1}
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Figure 7.5. Initial Stiffness Matrix. 66 degrees of freedom.
Stiffness Matrix: 4356 cells. 1764 non-zero cells.

We can see in the Stiffness Matrix above, by counting the blue dots, that each degree
interacts with maximum 30 others.

Due to its geometry and loading, the beam is subjected to transverse bending. For degree
p=2 and Knot multiplicity 1 in all internal Knots, the surface is C' continuous across the
knot boundaries. Below, we see the stresses 0. We notice that the changes are smooth and

the stress field is continuous.

% 10

T —
R — 12

Figure 7.6. Smooth Stresses Oy
C' continuity across the Knots.

7.1.2 h-Refinement for C° continuity

We will analyze the same model with C° continuity across its knots. We add no new
Knots but instead insert already existing Knot values so that every internal Knot has
multiplicity p. This results in continuity C° continuity along element boundaries which

now become patch boundaries.
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Figure 7.7. Physical Space.

C° continuity across the Knots.

The Shape and basis functions in the case of C° continuity are designed in the Figures 7.8,
7.9 below.

BSPLine Shape Function

Kot 10

l-Knot TensorProduct

© Control Point 1D

@ Control Point TensorProduct

BSPLine Value

st
parane™

Figure 7.8. Shape function of Cantilever 2D in Parameter Space.
We have C° Continuity across the knots.
The shape function corresponds to the (6,1) Control Point on the §, n grid.
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Figure 7.9. B-Spline Basis Function in Parameter Space. Continuity C°
(a). B-Spline Basis Functions on axis §
(b). B-Spline Basis Functions on axis n
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With the insertion of Knot Values we have also new Control Points. We now have a model
with 19x3=57 Control Points and 57x2=114 degrees of freedom. The stiffness matrix, as we
have expected, since we retained the same degree, has exactly the same bandwidth in both
cases. Each degree of freedom interacts at maximum with 30 others. However, the C!
continuity has more overlapping over the elements and thus the matrix is denser. We drew
the two cases separately in Figure 7.10 with the same scale for greater clarity. The C!

continuity is much smaller (66x66) compared to the matrix of C° continuity (114x114).

(a)

20~ -

a0 -

B~ -

80— —

100 — -

|
[1} 20 40 60 a0 100 120

Figure 7.10. Stiffness Matrices with nonzero elements in blue.
(a) Denser C' Continuity Stiffness Matrix
(b) Sparse C° Continuity Stiffness Matrix
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C! and C° Continuity

Stiffness Matrix Comparison
Continuity C! C°
Degree 2 2
Control Point 33 57
Degree of Freedom 66 114
Stiffness Matrix elements 4356 12996
Stiffness Matrix nonzero
elements 1764 2624
Density=
NonzeroElements/Elements 0,40 0,20

Figure 7.11. Comparison of the Stiffness Matrix properties in C° and C' continuity.

The stresses are a function of the surface’s derivatives, and with continuity C° across the
knot boundaries we will have discontinuities there in the stress field.

H

(a)

H

(b)

Figure 7.12. Stresses Oy.
(a). C° continuity across the Knots. The stresses are discontinuous.
(b). C' continuity across the Knots. The stresses are continuous.

7.1.3 Investigation with refinement

To compare the refinement h, p, k procedures we will compare the displacements on the
far right and bottom corner control point. We choose that control point’s displacement
because it is interpolatory to the beam thus its displacements will always be the the actual
displacement of the material point on the right down corner. The shape functions there are
interpolatory and the control point’s displacement is the actual displacement of the material

point there.
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Up to now we have performed two solutions with the initial mesh and an extra one with C°
continuity. Both meshes were very rough and far from the actual solution. For that reason

we will not include them in the investigation of the convergence.

To parametrically study the problem and its convergence, we did several refinements on
the initial mesh.

(a) Initial Mesh

(d) k-refinement 1, p=4
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(e) k-refinement 2, p=5

Figure 7.13. Meshes of Cantilever 2D in Physical Space after consecutive refinements.
In the above Figure the separate meshes are the result of:
(a) An initial meshing of degree 2 on each axis. Control grid 11x3. Degrees of freedom 160.

(b) A uniform h-refinement on axes § and ), by inserting a knot at the middle of each knot
span. Control grid 20x4. Degrees of freedom 160.

(c) A p-refinement on axes § and n), increasing each degree from 2 to 3. Control grid 20x4.
Degrees of freedom 160.

(d) A k-refinement on axis § and ), by increasing each degree form 2 to 4 and afterwards
subdividing the knot spans on § by 2 and on n by 4. Control grid 38x8. Degrees of freedom
608.

(e) A k-refinement on axes § and 1), by increasing each degree from 2 to 5 and afterwards
subdividing the knot spans on § and n uniformly by 2 and by 4 respectively. Control grid
65x12. Degrees of freedom 1560.

Cantilever 2D Displacement

0,25

0;248 //ﬁ:eﬁnement
. 0,246 k1-refinement p=5
; p=2
% 0,244 p-refinement
® p=3
2 0,242
L
O 024

0,238 h-refinement

0,236 p=2

0 200 400 600 800 1000 1200 1400 1600 1800

Degrees of Freedom

Figure 7.14. Investigation of the Convergence for the Cantilever 2D Beam, in respect with the

degrees of freedom.
The initial solution has been omitted as it was very far (around 3) from the final solution and would require a scale that
would not let us compare the other refinement cases. Also, the load value is not important as it is linear to the
displacement, what is however important is the relative distance of the displacement values we obtained.
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The initial solution was around 0.50, very far from the convergence value. The method
instantly gives better results with an h-refinement which produces denser but more
importantly roughly even elements, close to squares. With the same degrees of freedom we
have better results with a p-refinement which enriches the basis in a way that better
represents the interaction between the elements. Nonetheless the best results are taken from
k-refinement. The solution converges rapidly with k refinement. With k-refinement, we
firstly enrich the polynomial basis with p-refinement and then with an h-refinement we

make the mesh denser. The final solution is 0.29.

7.2 Cook’s Cantilever

7.2.1 Initial Mesh

Contrary to the simple Cantilever we saw in the previous paragraph, the Cook’s Cantilever
has not the same cross section across its length. Cook’s Cantilever is generally a widely used
application for testing numerical methods. Its analytical solution is also complicated as
Euler assumptions are not applicable due to its comparable dimensions of length and
height.
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Figure 7.15. Cook’s Cantilever 2D in Physical Space.

The geometry of Cook’s Cantilever is described by the quadrilateral with vertices (0,0),
(0,48), (44,48) and (44,60). The thickness is very small compared to length and height.

The cantilever is again subjected to transverse bending. For the same reasons as in simple
cantilever 2D of the previous paragraph, the loads are applied on the right edge, top and
bottom control points which coincide with the top and bottom material points. The loads

have direction towards the negative Y axis.
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BSPLine Shape Function

FKnot 1D

4BHKnot TensorProduct

1 © Control Point 1D

@ Control Point TensorProduct

BSPLine Value

Figure 7.16. Cook’s Cantilever Shape function in Parameter Space.

7.2.2 Stiffness Matrix assembly

The assembling of the stiffness matrix is almost the same to the simple cantilever, only the
Control Point Cartesian coordinates change and thus we will not expand on that matter.
The resulting Stiffness Matrix has the following form with 1764 non zero cells.

Figure 7.17. Cook’s Cantilever Stiffness Matrix with nonzero elements in blue.

7.2.3 Investigation with Refinement

Apart from the Initial Mesh we perform 4 other refinements to converge to the solution. In
this case we did several refinements and the mesh after each refinement is shown in the

Figure below:
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(a)Initial Mesh (b) h-refinement 1

(¢) h-refinement 2 (d) h-refinement 3
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(e) p-refinement (f) k-refinement 1, p=5

(f) k- refinement 2, p=4

Figure 7.18. Meshes of Cook’s Cantilever 2D in Physical Space after consecutive refinements.
(a) Initial Mesh, p=2 (b) h-refinement 1, p=2
(c) h-refinement 2, p=2 (d) h-refinement 3, p=2
(e) p-refinement, p=3 (f) k-refinement 1, p=4
(g) k-refinement 1, p=5
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In the above Figure the separate meshes are the result of:
(a) An initial meshing of degree 2 on each axis. Control grid 11x3. Degrees of freedom 66.

(b) A uniform h-refinement on axis n, by inserting a knot at the quarters of each knot
span. Control grid 11x6. Degrees of freedom 132.

(c) A uniform h-refinement on axes § and n, by inserting a knot at the middle of each
knot span. Control grid 20x4. Degrees of freedom 160.

(d) A uniform h-refinement on axes § and n, by inserting two knot at the thirds of each
knot span. Control grid 38x6. Degrees of freedom 456.

(e) A p-refinement elevating the degree from 2 to 3 in both parametric axes.

(f) A k-refinement, raising the degree to 4 and then uniform knot insertion at the
quarters of the knot spans. Control grid 56x11. Degrees of freedom 1232.

(g) A k-refinement on axes § and n, by increasing each degree from 2 to 5 and afterwards
subdividing the knot spans on § and n uniformly by 2 and by 4 respectively. Control grid
65x9. Degrees of freedom 1170.

We plotted the displacement in respect with the degrees of freedom in each refinement case
in the figure below.

Displacement of Bottom Left Control Point.

0,06
h-refinement 3
0,05 '\i p=2
k= 0,04 h-refinement 3,
:
5 e
S 003 h-refinement 1
= p=2
% h-refinement 2
= p=2
A 0,02
k-refinement 2
p=4
0,01 k-refinement 1,
p=5
0
0 200 400 600 1000 1200 1400

80
Degrees of Freedom

Figure 7.19. Investigation of the Convergence for the Cook Cantilever 2D Beam, in respect with
the degrees of freedom.
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We notice that although with the first 3 h-refinements and the p-refinement the solution
is close to 0.05, with the k-refinement it diverges. The explanation is in the meshing. If we
examine the meshes we will see that from the beginning, the elements are distorted, being
longer along the n direction. In the 2* h-refinement that the elements are even more
distorted we see the solution diverging. When we make the situation even worse by
refining the § axis and order elevating (k-refinements 1 and 2), even the higher degree
cannot reduce the errors created by the extremely distorted elements. The engineer

should always judge which is the best refinement and when.

The stresses after the p-refinement are in the Figure below.

Sxx

Figure 7.20. Stresses 0y in the Cook’s Cantilever after p-refinement.
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7.3 Plate with a circular hole.

An orthogonal plate with a hole in the center is subjected to axial tension in both left and
upper side. The problem is symmetric and we can study instead only one quarter of the
plate. The thickness is very small to the other dimensions, the forces are applied in the
middle plane and subsequently it is a plane stress problem and the geometrical plate
behaves as a disc. It is a problem characteristic and commonly studied in Isogeometric
analysis.

There are two ways of representing it. The first way is using a double control point at the
upper left corner with the cost of creating a singularity there. The second way, which we
adopt here, is approximating the left and upper edge with a linear B-Spline. But we need
quadratic B-Splines for the simulation of the quarter of a circle on the lower right side and
thus we perform p-Refinement in the linear B-Spline to do it. The yellow line connecting
the two knots is the patch boundary as the multiplicity of the knots there is p=2 and the
continuity CP™=C’
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Figure 7.21. Plate with a hole.
(a). Physical Space.
(b). Shape function in Parameter Space.
(c). B-Spline Basis in Parameter Space on &.
(d). B-Spline Basis in Parameter Space on 1.
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A number of refinements was performed to achieve convergence. The meshes are

displayed below:

Figure 7.22. Meshes in Physical Space after refinements.

Knots are yellow and Control Points red.
(a). Initial Mesh
(b). h-refinement
(c). p-refinement
(d). k-refinement
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In the above Figure the separate meshes are the result of:

(a) An initial meshing of degree 2 on § and 1 on n. Control grid 5x2. Degrees of freedom
20.

(b) A uniform h-refinement on axes § and n, by inserting a knot at the thirds of each knot
span. Control grid 9x5. Degrees of freedom 90.

(c) A p-refinement on axes § and ), raising the degree on § from 2 to 3 and in ) from 1 to
2. Control grid 7x3. Degrees of freedom 42.

(d) A k-refinement, raising the degree on § from 2 to 3 and in n from 1 to 2, and then
uniform knot insertion at the thirds of the each knot span on both axes. Control grid
11x6. Degrees of freedom 132.

We plotted the displacement in respect with the degrees of freedom in each refinement case

in the figure below.
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The meshing retains good analogies between the sides of the quadrilaterals. The solution
converges fast at 0.14

The stresses after the final k-refinement are shown below in Figure 7.23. We notice the

discontinuities in the stress field along the patch line.
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Figure 7.23. Plate with a hole. Stresses S,y.
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8 Conclusions

Exact Geometry

Isogeometric Analysis has the great advantage over the ordinary Finite Elements that there
is no approximation in its geometry. The shape functions used for the CAD geometry are
the same used for analysis and thus there is no reason for approximation. Transition from
design to analysis model is geometrical accurate.

Figure 8.1. NURBS geometry and Control Net.

Improved Refinement

The Isogeometric analysis has the asset of solving from the very first meshing with the
accurate CAD geometry. Thus when applying any kind of refinement there is no need to
retreat back to the initial CAD geometry and remesh. We refine the mesh in the Parameter
Space with h-,p- or k- refinement, and we apply that to the Control Points Coordinates in
the Physical Space retaining the same accurate CAD geometry we had from the beginning
for our analysis. Furthermore, the k- refinement technique, unique in IGA, seems a very

competitive technique compared with h- or p- refinement.

Figure 8.2. Plate with a hole. (a) Coarse mesh and (b) Fine k refined mesh.
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Hierarchical Refinement

Hierarchical Refinement is a very hopeful technique for the application of h-refinement on
large projects with many degrees of freedom. Especially in NURBS, where local refinement
still proves to be a shortcoming. To refine an area we cannot simply insert a control point
but have to insert a whole new set of control points due to the Full Tensor Product property.
By Hierarchical refinement this process is accelerated a lot, by faster formulating and

inversing the Stiffness Matrix.

(K] [ Ken]

[Kae] [ Kan]

Element Interconnectivity

The greater overlapping of isogeometric elements in comparison with FEA elements is very
useful and leading to a greater interconnectivity. The derivatives are continuous across the
boundaries, even with reduced continuity, and thus the stress and strain fields are
continuous too. The higher continuity provides IGA with a great tool for fields of interest
utilizing higher derivatives for the needed solution. Extrapolation and other methods to
approximate stresses in areas they cannot be defined directly through the solution, are only

used in special cases of C° continuity.

T — O —

. .
(a) (b)

Figure 8.3. Stress 0 on C” and C' continuity.

Patches.

Patches are a very useful tool in IGA. They are used for handling complicated geometries,
different materials in the same model or utilizing current methods with parallel computing
for solving the equilibrium equation. At patch’s edges we have C' continuity but we can
also represent different patches along a single direction with a joined Knot Value Vector of

C° continuity at the patch merging point.
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In either case, C' and C° provide interpolatory control points at the patch edges making it
easier to merge it with the rest of the model. There are schemes for patch merging for either
overlapping or non overlapping edges with one to one control point consistency or not.
However, in the general case the patch connections are problematic and not always able to

support water tight connection.

Figure 8.4. Teapot. Failed to water tight connect the two patches.
(http://www.siam.org/news/news.php?id=1874)

Stiffness Matrix

The Stiffness matrix formulation process follows the same principles as in FEM and thus
existing efficient Finite Element codes can, with some adaptations, be implemented in IGA.
The increased overlapping of the elements leads to stronger interconnectivity between
them and to a denser Stiffness Matrix, more accurately representing the actual behavior of
the model. Fortunately, the increased overlapping does not increase the bandwidth of the
Stiffness Matrix in respect with FEM Stiffness Matrices.

(a) (b)

Figure 8.5. Stiffness Matrix comparison on the same model with (a) C' and (b) C° continuity.
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The engineer

Isogeometric analysis proves to be a powerful tool in Computational Mechanics. However,
the principles of Finite Elements apply here as well. Distorted elements or wrong choice of
axes can lead the method to divergence. The engineer implementing the method should
take into account its features and its limitations and thus he has to understand the method
and the nature of the various techniques he is using. Only then, will he be a true user of the
method, by using it efficiently and, if needed, making adaptations, to the problem’s

formulation or the method’s implementation.

The Isogeometric Analysis Method

Isogeometric Analysis has been already established among the research community, with
the number of engineers working on it increasing exponentially as the time passes.
Isogeometric analysis has great assets, exact geometry representation, supports higher
continuity for the solution than standard Finite Element Analysis and has powerful tools
for refinement. In the case of NURBS, it utilizes a well understood and developed CAD
technology which means there are plenty of codes and literature available and already
present software on the market. The merging of FEA and CAD in the case of NURBS seems
to progress smoothly. New emerging types of splines seem promising and are competitive
to NURBS analysis by overcoming its drawbacks and provide new paths for further
progress on the field. Isogeometric Analysis is a method that is currently being developed,
has already gained research momentum and seems to be the natural evolution in the Finite
Element Technology.
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