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NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Abstract

School of Mechanical Engineering
Doctor of Philosophy

EMG Based Interfaces for Human Robot Interaction

in Structured and Dynamic Environments

by Minas LIAROKAPIS

In this PhD thesis we focus on EMG based interfaces that can be efficiently used for
Human Robot Interaction (HRI) applications in structured and dynamic environments.
Initially, we present a series of advanced learning schemes for EMG based interfaces that
take advantage of both a classifier and a regressor, in order to split the task-space and

provide better human motion estimation accuracy with task specific models.

Regarding HRI applications, we mainly focus on anthropomorphism of robot artifacts. At
first we distinguish between the different notions of anthropomorphism and we introduce
Functional Anthropomorphism for mapping human to anthropomorphic robot motion,

respecting at the same time specific human imposed functional constraints.

Then we propose a methodology for quantifying anthropomorphism of robot hands,
based on set theory and computational geometry methods. This latter methodology
concludes to a comprehensive score of anthropomorphism that ranges between 0 (non-

humanlike) and 1 (human identical) and can be used for various robot artifacts.

Subsequently, we develop a series of open-source, modular, intrinsically-compliant, low-
cost, light-weight, underactuated robot hands that can be easily reproduced with off-
the-self materials. The proposed hands, efficiently grasp a plethora of everyday life
objects, under object pose and/or shape uncertainties and can be used for various HRI

applications or even as affordable myoelectric prostheses.

In order to prove the efficiency of the proposed methods, we have conducted numerous
experiments involving different robot artifacts, operating in both structured and dynamic

environments.
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2o Mnyavordywy Mryovixdy
Atdaxtoptxn Arotoif3y

Atetaéc HAextpopvoypa@ixwy ENuatony yta tnv AAAAewtidpaorn AvOpwmouv

Poprotixwv Zvotnuatwy os Aopnpéva xot Avvoptxd Ieptfairovto

Mnvég Arapoxéimng

Xe auTh TNV OL3axTopLXn SLATELPRY] ETUXEVTOWVOUAOTE OE SLETAPES NAEXTOOULOYOO-
PLUWY ONULATOY OL OTOLEG LTTOPOVY Vo XENOLLOTOMBOVY Yiow EQAQUOYES OAANAETL-
Jpaomg avlpWTTOL POUTIOTIXWY CUCTNUATWY, TOCO OE SOUNUEVO OGO XKAL OE QVVOLLUE

TepLBaArovTa.

Apyixd TOPOLOLALOVIE ULt OELPA OTTO TTONYUEVOL OYNUOTO. Py ovixng wabnong yro
OLETTULPES NAEXTPOUVOYPAPLXWDY ONUATWY, T OTTOL CLYSVLALOLY Evay TRELVOUNTY UE
EVOY TIOALYSQOWUY T, TTOXELLEVOU VO XOTAXEQULATIOOLY TOY YWEO dPATNG TOL POUTOT,
TIPOTPEPOVTOS XAADTEQO ATTOTEAEGUATO ATTOXWOLXOTTOINONG NG avbpwiyng xivnong

UE LOVTEAD EXTTALOELUEVDL YLOL CUYXEXPLULEVES OLEQYOOLEG.

‘Ocoy opopa TG EQUPUOYEG OANAETISPAOTS atvDPWTIOL POUTIOT, ETULXEVTOWVOUXOTE
%xVELWG TN EVVOLa XOL TLG SLOPOPETLXES YPNOELS TOU aVHPWTTOULOPPLEL.OD TwWY POU.TO-
TIXWY GLUOTNUATWY. APYtxd dtoxplvovpe TLg SLOPOPETIXES EVVOLEG TOVL awvbpwTouop-
QLOUOD %Ol ELOEYOVULE TNV EVVOLA TOL AELTOLEYLXOV ayOPWTTOULOPQPLOUOD YLO TYNUATO
ovTieTolynong g avbpwmivng xivnong oe avBpwTopop@Lxy PORTOTLXY xivNnon, TN-

PWVTOS TTOPEAANAX GLYXEXPLULEVOLG TTEPLOPLGUOVG TTov BETeL 0 YPNoTNG.

2NV OLYEYELX TTPOTEIVOLHE ULt OAOXANPWUEVY, pebodoAoyior YLor TNV TTOGOTLXOTTOL-
N0 TOL AVHPWTOUOPPLOUOD TWY POUTOTIXWY XEPLWY, Paotouévy oc pebddovg Hew-
pLoig CLYOAWY %Ol LTTOAOYLOTLXYG YEWRETPLOG. H ovyxexpipévn pebodoroyia mopéyet
EvoL XorTovonTd HETELXO TOL avBPWTOROPELoULOY TO 0Toto xvpaivetal amd 0 (un-
avBpwTOPoPELXE pouTtoTixd cvoTipato) ot 1 (avBpwToLoPELXE POUTOTIXE CLOTH-

portor) %o Uropel vo yonotporotnBel yior Stapopetixd £idn PopToT.

TEA0Og, VaTTOOO0LUE ULO OELPE OTTO POUTTOTLXAL XEQPLA, AVOLYTOD DALXOD XOL XWOLXA,
Tow omolor lvarl EAXPELA, XAUNAOD XOGTOVG, EDXOAN CLUVOLPLOAOYOVILEVD, DTTODTTEVEQ-

YOOUEVO %O EYYEVWS VTTOYWENTLXAL.
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To ouyxexpLuéva YEpLow LToPoVY vor XENoLLoTTotnBody TG00 YLow LEAETEG NAEXTPOLLO-
YOOPLXOD EAEYYOL (GXOUT KO YLOL OLXOVOULXE LDONAEXTOLXE TTPOGOETIXA YépLa), G5O
XOL YLOL EQOPUOYES OATMAETISPOOTG avBPWTOL POUTOTIXWY cLoTNUATWY (YLor pe-
AETEG TNAEYELPLOUOD POUTIOTLIXWY OLOTNUETWY Bpoyiova — YeELOV), YLar TNV oEToYN
A0S xoBNUEELYOY avtixelpévwy o Suvapixd meptBdrrovta (axdun xot LT

ouvBfixeg afefardtnrog oxeTind pe ™) 0€om %o TO OYAU TWY OVTLXELLEVWY).

[Mpoxetpévon va amodelEovpe TNV atoS0TIXOTNTA X0l AELTOVPYLXOTNTO TWY TTPOTEL-
VOUEVWY LEHOSONOYLLY, EXTEAECOUE OELPE TELPOUATWY LE OLOPOPETLXA POUTTOTLXA

OLOTAUOTO, TOOO OE SLYOULXA OC0 %Ol OE SOUNUEVA TTEPLRAAAOVTOL.



Preface

Over the last decades, the cross-disciplinary field of electromyography (EMG) based
interfaces has received increased attention. The possible applications range from EMG
based teleoperation of robot artifacts in remote and/or dangerous environments, EMG
control of prosthetic/robotic limbs, EMG control of exoskeletons (for rehabilitation) and
development of muscle computer interfaces (for human computer interaction). This PhD
thesis, focuses on how these EMG based interfaces can be efficiently used for Human

Robot Interaction (HRI) applications.

A series of advanced learning schemes are proposed, that can be used to efficiently decode
the human intention and/or motion from EMG signals. Three different task features are
discriminated: subspace to move towards, object to be grasped and task to be executed
(with the object). Based on these three task features, appropriate classifiers can be used
to decode user’s intention and decide on the task to be executed, using myoelectric

activations of the human muscles.

The proposed learning schemes take advantage of both a classifier and a regressor (using
sophisticated machine learning techniques), that cooperate advantageously in order to
split the task-space and achieve better estimation accuracy, with task-specific models.
Task-specific models outperform - in terms of motion estimation accuracy - general
models trained for the whole task-space. The proposed learning schemes can be used for
a variety of EMG-based interfaces. These interfaces can be employed for various HRI
applications as well as in rehabilitation robots and prosthetic devices, helping patients

and amputees respectively regain part of their lost mobility /dexterity.

Regarding HRI applications, this PhD thesis mainly focuses on anthropomorphism of
robot artifacts. At first, a distinction between the different notions of anthropomorphism
(Functional and Structural Anthropomorphism) is proposed and then a series of metrics
for the quantification of anthropomorphism of robotic devices, are introduced. The final
score of anthropomorphism uses a set of weighting factors that can be adjusted according
to the specifications of each study, providing always a normalized score between 0 (non-

anthropomorphic) and 1 (human identical).

The proposed methodology can be used for example to grade the human-likeness of
existing and new robotic hands, as well as to provide specifications for the design of the
next generation of anthropomorphic hands. Such humanlike robot hands can be used for
numerous HRI applications, for humanoid robots or even for the creation of advanced

humanlike myoelectric prostheses.



Moreover a complete methodology for mapping human to anthropomorphic robot motion
using the notion of Functional Anthropomorphism, is introduced. This latter methodology
provides mapping schemes that achieve humanlike robot motion for robot artifacts with
arbitrary kinematics (even for the case of hyper-redundant robot arm hand systems),
“respecting” specific human imposed functional constraints (e.g., same position and

orientation for human and robot end-effectors).

Humanlikeness of robot motion increases safety in HRI applications (anthropomorphic
motion can more easily be perceived by humans, who can comply their motion avoiding
possible injuries), and human and robot social connection through robot likeability. The
proposed schemes can be used for teleoperation or autonomous operation applications,
where anthropomorphism is required and skill transfer between humans and robots must

be achieved in a learn by demonstration manner.

Finally, a series of affordable, modular, light-weight, intrinsically-compliant, underactuated
robot hands and prosthetic devices that can be easily reproduced using off-the-shelf
materials, are presented. The design of the proposed robot hands has been coordinated
by a robot hands taxonomy that distinguishes and discusses functional and structural
aspects for the creation of non-humanlike and human-like robot grippers and hands. The
proposed taxonomy follows an order of increased complexity in presenting the different
categories (of robot hand designs) and then based on their attributes, the choices made

for our design, are appropriately justified.

The proposed robot hands, efficiently grasp a series of everyday life objects and are
considered to be general purpose. Moreover, owing to their inherent compliance the
proposed robot hands can efficiently grasp a wide range of everyday life objects in human-

centric and dynamic environments, under object pose and shape uncertainties.

The possible applications of the proposed hands, range from autonomous grasping
and teleoperation/telemanipulation studies (as parts of robot arm hand systems) to
humanoids, mobile and aerial vehicle platforms (which can be modified to be grasping
capable), educational robotics (provide a low-cost solution for highly intriguing robotics
lessons), or even for affordable myoelectric prostheses, assisting amputees in everyday

life tasks and helping them regain part of their lost dexterity.

For validating the efficiency of the proposed methods, numerous experiments have been
conducted in both structured and dynamic environments, with robot artifacts such as:
the Mitsubishi PA10 7DoF robot manipulator, the DLR/HIT II five fingered robot hand
and a series of underactuated robot hands developed for that purpose. More details and

videos of the experiments, can be found in the “videos” section of my website:

http://www.minasliarokapis.com
P p
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The OpenBionics (http://www.openbionics.org) and the HandCorpus (http://www.
handcorpus.org) initiatives (created within the context of this PhD thesis), as well as a
list of the research papers published during my PhD studies (e.g., papers in international
conferences, journals and workshops, book chapters, technical reports etc.), are presented

at the appendices of this PhD thesis.

Athens, July 2014 Minas Liarokapis
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Extevng EAAvixn IlepiAndn
Ewcoaywyn xou leptypapyn MpoBApatog

1. Etcoywyn

Tig TeAevtaieg dexaetie To SLETLOTNUOVIXA TEDLA TWY SLETTAUPLY NAEXTOOULOYPOPL-
%y onpétwy (EMG - Electromyography Based Interfaces) xou g olMnAentidpaong
avBpwToL - poumoTixwy cvotnuétwy (HRI - Human Robot Interaction), éyovv amo-
TEAEOEL OVTIXELUEVO OWENUEVOL EVILOPEPOVTOG, EENULTIOG TWY TTOLXIAWY EQOEUOYWY

ToUG oYY xobnuePLYOTNTY, 0 SuVoULXE OAAG xal avBpwToxevTpLxd TePLBAA OV TOL.

ToTtXEG EQAPUOYES NAEXTPOLLOYPUPLXWY ONUATWY VoL 0 BAOLOUEVOS GE NAEXTPO-
LLOYPOUPLXAL CLOTO. TNAEYELPLOUOG POUTIOTIXWY PO LOVEWY OE OTIOUEQOL 1] KOLL ETTL-
xivduva TtepLBdirovta [1], [2], 0 yetptopds TEoNYUEVWLY TTPOGHETIXWY PLEAWY e Pdon
TO NAEXTEOULOYPGENUA [3], 0 NAEXTEPOULOYPAPLXOG XELPLOWOG EEWOXEAETWY [4] %o 1
OVATTTUEY] OLETTAUPWY YUKWV — DTTOAOYLATY] YL TNV OAANAETTLIPOOY] otvBPWTTOL — LTTOAO-
Yot [5], [6]. ATt6 ™V dAAN TTASLEA, LEPLKES EVOELXTIXES EQUOUOYES OAANAETSPAONG
ovHPWTTOL POUTIOTIXWY CLGTNUATWY, ELvaL, aVOPWTOELIN TTOL OAANAETLIPOVY LE TTOL-
o [7], Bropmyavixd poumdt ov cuvepydlovtal pe avbpwmoug [8] ue ao@aiy TpdTo
[9], o drowonTindg TAeyeLpLopdg PoUTOT pe TAsovalovteg PBabpodg elcvbepiog [10]

%o oxLoxd POUTOT Tou Bonbodv Toug avbpddToug o xabnuepLvég epyaaieg [11--13].

2T0 TAQLOLOL TNG OUYXEXPLUEVNG SLIOXTOPLXNG OLaTELPNG, Tpoteivovue eEeAlyuéva
oYNUOTa PAONoNG YLot NAEXTOOUVOYPUPLXES OLETAPES, T OTOLOL EXUETOAAEVOVTOL
1600 €vary TRELYOUNTY OGO KOl EVOLY TTHALYVOQOWUTTY], OL OTTOLOL X0l CUVEPYALOVTAL WOTE
Vo SLOLPETOVY/XATAXKEQUATLOOVY TO YWPEO SPAONG XKAUL VO TTOLPEXOLY KOUAVTEPT axpL-
Betow exTipnomng Twv avbpdTVwY RIVNCEWY LE LOVTEAX EXTTOLIEVLEVO YLOL CUYXEXQL-
uéveg depyooiec. Tow ouyxexpLpuévar GLGTAUOTA UTOPOVY Vo xENoLpoTolniody yLo

EVOL LEYAAO EDPOC EQPAPULOYWY XAANAETISPOONG avHPWTTOL POUTIOTIXWY CUOGTNUATOY.

Zyetnd pe tig HRI epoppoyés, emixevtpwvopoote xuping otov avbpwropoppLtopd
TWY POUTOTIXWY TEXVOLPYNUATWY, TPOoTElvovTag Hebddovg Tov pwmopody vo yenot-
potowmbovy yiow ™ LETEMOYN Tov PBolod opoldTNTAS ToLg pE Tov AvhpwTo xon TNV

OTTOJ0TLXY AYTLOTOLYLOY TNG avbpWTLYNG o avblpwTOLoPELXY] POUTTOTIXY XivNnom.

TéAog, TpoTELVOLUE PUlat OELPA EAXPELLY, YOUNAOD XOGTOVG, EDXOAC GUVOPULOAOYOVLE-
VY, DTTODTIEVEQYOVLEV®Y XOL EYYEVWS VTTOYWEYTLXMY QOUTTOTLXWY XEQLLY, AVYOLYTOV
XWOOLXO XOL DALXOV, Ta OTTolor LTTOPOVY Vo XeNnotpomotnody 1600 yio UEAETES MAe-
XTPORLOYPOPLXOD EAEYYOL (OUOUN XOL S OLXOVOULXES LVOMAEXTELXEC TtPOTbéoeL),

600 xot yroo HRI e@oppoyée (yior HeAéTeC TNAEYELPLOLOD QOUTIOTIXWY GUGTNUATWY
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Bporyiova — xeELov), YLow TNV 0ETTOYT EVOG EVPEWS PACLATOS XOOMUEPLYOY aVTLXELUE-

YWV o€ SLUVaULXA TTEPLREAAOVTO, AGYO TNG EUPLTNG TOVS LTIOYWENTLXOTNTOG.

OL ovVeELOPOPES TNG GLYXEXPLUEYTS OLBaXTOPLXTG SLaTELPMG emteEnyodvTal AeTtToue-

PWG oTLg axdiovbeg evotnteg, divovtag Eupaon ata axdlovbo téoocpo mtedio:

* ALETTOUPES NAEXTPOLLOYPOPLXWY CNUATWV.

AvDpwTopop@LoUOG POUTIOTIXEGY GLUGTNULATWY.
e Avtiotolylon avBpwmivrng o popmoTinn xivnon.

* Poumdt ov Aettovpyody o dounuévor xot dSuvautxd TEPLRAANOVTA.

1.1 HAexTtpopvoypo@ixég SlemTapés

[MopdAho TTOL OL SLETAPES NAEXTPOUVOYQOPLUWY ONUATWY ELVOL TTOAAG VTTOOYOUEVEG
xor pumopel v €xovv xoboplotind pdAo oty aAAnAeTtidpoaon avbpwTov — PoUTO-
T/UTTOAOYLOTY] OTOL ETTEPYOUEVOL YOOVLI, EXOVY ETLONG CGUYKEXQLUEV TTROPRANLOTO. TO

oTtolo €XOLY eVTOTLOTEL XL aulnTniel o TOAAEG peAETEG 0TO TTOPEADOY.

Kémoto amtd awta tor mpoPAfipoto eivol 1 TOALTAOROTNTA Xl VYNAY SLOGTOTLXO-
™TO TOL AVHPWTLYOL LVOOKEAETIXOD CLOTNLATOG, N U1 YOOLULXY] OXEO LETOED NG
ovBpWOTLYNG LLONAERTOLUNG FPATTNELOTNTOCS XAl TNG xivnomng 1 TNg SVVoG TTov Tihe-
ToL TTPOG EXTLUNOY, N LUIXN XOTTWON, 0 H6PLBOG TWY CNUATWY TTOL TPOXAAELTOL OTTO

TLg SLtaTtapayég oty 0€omn Twv NAEXTPOS{WY, Ol LUIXEG CLOTIATELG, O L3PWTOG XAT.

[MpoxeLpevou va avtipeTmwmiotel To TEOBANUA TG VPNANG SLACTATIXOTNTOS, OTO TLO-
peN0GY ypmotporotdnxe N nébodog Avarvarng Kupiwy Tuviotwowy (PCA - Principal
Components Analysis) ytoo voo epevynfody téo0 1 xvnuortix? Tov avbpdmvov ye-
LoV 600 xaL oL PUIXEG ouveEpYeleg [14--19]. Mio axdpo duoxoiior Ty omolor avTt-
peTwTIloVY Ol €PELYNTEG 0TO TESLO TWV NAEXTPOULOYPUPLXWY OLETAPWY, €lval 1
UN-YOOLULYN OXEDN LETOED TWY LDONAEXTOLXWY EVEQYOTIOLNTEWY %Ol TNG ovORWTLYNG
xivnong [20]. T va Eemepdoovy owtd 10 TEOBANUE, N TTASLOPNPLO TWY EQELYNTVY
OTTOPEVYEL VO ATTOXWOLXOTIOLEL Ui GLUVEYT] AVOATIOPAOTAOT TG avbpwmTLyng xivnong,
eotélovtog o pioe SLoaxpLT) TPEOGEYYLON OTIWS 0 xoteLBLYTNPLOG EAEYYOG EVOG PO-
UTTOTLXOU CLOTAUOTOG [21], M| O NAEXTEOULOYPOPLXOG EAEYYOG EVOG TTOAVIAXTUAOV

XEQELOV o€ plor oeLpd omtd SLoxpLTég dLapoppuoelg/féoelg [22--27].

ZYXETLUA [LE TY] TTPOGEYYLOY] TOL CLVEYXOVGS NAEXTPOULOYEOPLXOD EAEYYOVL, OLAPOPA LO-
VTEAXL €YOVY YENOLLOTIOLNOEL DOTE VO TOPEYOLY EXTLUNOELS YLt TNV BOOLOUEYY OTLG
LLONAEXTOLXEG EVEPYOTIOLOELS arvOpwTiLyn xivnom. Kamoleg amd avtég eivor, To pvo-

oxeheTixd povtéio Hill [28] To omoio eival To TTLo eVPEWS XETMOLLOTTOLOVLEVO LOVTEAO
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[20, 29--32], tor povtéda ywpov xoatdatoaang [1, 33, 34], Texyvntd Nevpwvixd Aixtoa
(ANN - Artificial Neural Networks) [35--37] xat molvdpopntéc Bootopévor oe M-
yowég Atovvopatixig YmootiptEng (SVM - Support Vector Machines) [2, 38].

YVVELGPOPA TG OLEAXTOPLXYG LaTELPYS

2Ny ouYXEXPLLEYT OLdaxTOPLXY] OLATOLRY], SLATUTILVOVUE EVOL OAOXANOWUEVO OYNUO
e OnoNg YL SLETOPES NAEXTPOLLOYPOPLXWY CNUATWY, TO OTTOLO EXUETAANEVETOL EVOLY
ToELvounth, 0 omoiog xot ouydvdletan pe évay Ttalvdpopnty (cuvdvdlovtag ™ dto-
%ol xoL ovveyn Tpooéyyton). O TaEvountig ot o TaAvdpountig cvvepydlovTto
TAEOVOLOUOTLXE DOTE VO SLOLPETOVLY/XUTAXEPULATLOOVY TOV YWPEO JPACNG XKoL VOL TTOL-
P€xoLY xoAUTEE axplfeta extipnong g avbpWTLyNG ®ivNnoNg UE LOVTEAR EXTTOLGEL-
wéva yioo ouyxexpLpéveg dtepyoaoies. To 6Ao oynua eivor Baotopévo ot pebodoroyia
v Aaody Toyardtntog (RF - Random Forests) téoo yioo tv ToEvéunon oo xow

Yior TNY TOALYSEOUMoN.

HAexTpopvoypopixd oNuator YenoLLoTolovvtol Bote vor Staxpltbody xivioelg Tpo-
CEYYLOMG YLOL QOTTOYY] AVTLXELUEVWY OTOV TPLOOLAoTaTO YwWpo. H etdixdtnra Ty po-
VTEAWY (DG TTPOG TNY JLEPYATLN, ELOAYETAL OE TPLAL SLOPOPETLXA ETTETTED AL, LTTOSNAWVO-
VTOG TTWG 1 LVONAEXTOLXY] SPAGTNELOTY T SLOQPOPOTIOLELTAL: UETOED KLVNOEWY TTPOGEY-
YLOMG YL QOTTAYY] AYTLXELUEVWY TIPOG SLOPOPETLXOVS LTTOYWOEOVE, UETAED KLVNOEWY
TIPOGEYYLOG YLOL OLOTTOYY] TTPOG OLOPOPETLXE AVTIXELUEVXL, OTTWG ETTLONG XL UETAED XL-
VNOEWY TTPOGEYYLONG YL OOTTOYY] THPOG EVOL GUYXEXQLUEVO OVTLXELULEVO, TOoTTOOETNUEVO
oc ouyxexpLLévy BEon aAAG pe Ty TPdheom va exteAeaboly StapopeTinég Stepyaoteg

(pe 0 aproypévo avtixeipevo).

O toEvountig XENOLUOTOLEL TNY LLOMAEXTOELXY] JPAOTNELOTNTA WOTE VO SLOXPIVEL
KETOED OUTWY TWY XLVYOEWY 0TOV M-OLAGTATO YWEO TWY NAEXTOORLVOYRAPLXWY OY]-
pétwy (m eivor 0 apLdpdg Ty xavoAiky). O TOALVSPOUNTAS YENOLLOTIOLELTOL TTEWTOL
TCPOXELUEVOL VO EXTIOLIEVOEL LOVTEANL GUYKEXPLUEVWY OLEQYOOLKY YLl OAEG TLg TiLhor-
VEG OLOUPOPETIXEG OLEPYUOLES, ETOL WOTE EVAL CUYXEXOLUEVO [LOVTEAO YO EVEQYOTTIOLELTOL

OVEAOYO UE TNY ATTOQPOON TG TAELYOUNOTS.

H amdépaon takvounong AapBaveton oe cvyvotnta 1KHz, emitpémovtoag oto oynuo
©og oo Tpoadlopilel Ty exteAolueyn Siepyaoion oe mpaypatixd xpoévo. To mpotet-
VOULEVO OO LTTOPEL VOL TTOLPEYEL OLVEYELG EXTLUNOELS YLOL TNV XLYNULOTLXY] OAGXANOOL
ToL oLOTAUOTOG Bpoyiova — yeELod (27 povtehomotmuévey Bobudy erevdepiog, 7 yLo
Tov avBpwmvo Bpoyiova xor 20 yio To awBpdvo épL). AuTéc oL eEXTIUAOELS UTTO-
oVY vo yonotpomotnbody amd pio oeLpd SLETAPWY NAEXTOOUVOYPOPLYWDY CNUATWY
Lot SLOPOPETIXES EQPOPUOYES OANAETS OGS avbPMOTOL POUTOTIXWY CLATNUATWY.

[Teproobtepeg TANPOPOPLES LTTOPOLY va avalntniody oto Kepdaiato 3.
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TNUOVTIXEG EQWTNOELS YLO TLG OLETTUPES NAEXTOOLVOYPAPIXRDY CNUATWY

e To pvixd potifor cLYEVEEPYOTTOINGNG SLOPOPOTTOLOVVTOL UETOED OLOPOPETLXWY

OLEQYOLOLWY;

e Mmopodpe vor amoxwdLxoTooovpe Ty avbpw vy Tpdbeor amd pvoniextol-

%€C EVEQPYOTIOLYOELG;

o T wAnpo@opieg oyeTixd Ye TNY EXTEAOVUEYY DLEPYUOLO LTTOPOVUE YO EEQYOLULE

OO TO NAEXTOOUVOYPOPLYE CNULOTO;

* Mmopodpue va BeAtidcovpe v axpiBeto exTiunong g xivnong LEGW TWY NAE-

AXTOOULOYPOUPLYWY CNUATWV;

* Mmopodpe vor TPOGSLOPIGOVUE TTOLO. NAEXTPOLLOYQOPLXA XOVOALO ELVOL TOL TTLO

ONUOVTLXE;

1.2 AvOpwTopop@LoP0g POYTOTIXDY CUGTNULATOY

O avbpwmopop@Louds N 0AMGS 1 OUOLOTNTA TNG POUTTOTLXNG %{VNomg e Ty avbp-
TTLVY] x{vynom, elvor ETLOYNG TTOAD ONUaVTLXOG YLoL TANOWEA EQUELOYWY XAANAETISPOONG

ovHPWTOL POUTIOTLXWY CLATNUATWY.

Zxeddv 140 ypdvia ToLy, o Kaporog AcpPivog yopoxtiploe Tov ovhpmwmopop@Lond wg
EVOL OTTOPALTNTO EQYAAELD YLOL TNV ATTOSOTLXY] XATOUVONOT TWY UN-0vOpWTTILVWY GVTWY
[39]. EmmtAéoy, mpdoparteg Epevveg €detEay GTL 600 TLo avbpwmopopeLxd eivar éva
EOUTIOT OTtO TAELPEE AIYNONG, EUPAVLONG, EXPEATEWY XOL OVTILIANTTNAG VONULOCOVYG,
1000 Lo bXOAX UTTOPEL Vo xabtepwoel pio otabep xowvwvixn oxéon pe tov avbpwmo
[40--42].

210 opeA6y tpotainxay diapopeTinol Seinteg xaL LOVADES UETENOTG YLO TNV OtELO-
A6YNOM TOL AVHPWTTOLOPPLOLOD POUTIOTIXWY GLGTNULATWY. OL TEpLoadTEPOL Ot V-

TOUG TXEVTPWONUOY GTOY avblpWTOLOPELEUG POUTTOTIXWY YEQLWV.

Yto [43] xou [44], 0 avBpwTopop@Lopdg TpoxdTTTEL ¢ To aTabulouévo dbpotopo xt-
VYNULOLTLXNG, ETTLPAVELWDY EToPNG oL Bobuoroyiwy peyéboug, eve ata [45] xon [46] o
ovBpWTLVOG XL POUTIOTIXOG XWPEOG EPYAOLOG OVATIOPATTAONUAY OE XHDEOLE YOUNANG
OLdotoong ot HeTA ouyxplinxoy. Iloapdro Tov aLTEG oL TeEAeVTAlEG EPELVES €YOUY
0PAETO EVOLAPEPOY, XaULO OEV TTPOTELVE VO CLOTNULATLXO TPOTTO GUYXPELONG TNG XLVY)-
LOTLXNG TWY POUTIOTLXMY YEQPLWY LE OAOXANPO TO XLVNULOTLXO LOVTEAO TOL avbPWTLYOL

yeELod (1., AopPdvovtog LTOPY TNY ELRLYNOLA TWY XOXAAWY TNG TTOUAGUNG).
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YUVELGPOPA TNG dLdaxToPL®NG Lot

Ze ot T dLdoxTopLxn] SLaTELPn), dLoxplvouue TLG OLAQOPETLXES EVVOLES TOL avbpw-
TTOLOPPLOLOD, ELGAYOVTOS TOV AELTOVPYLXO avHPWTOUOPPLOUS %Ol TOV AYTLANTTTO orv-
BowmopoppLoud. Ilepltoodtepeg TANPOPOPLES OYETIXA UE TLG DLAPOPES TOVG, UTTOPOVY

vo Bpebody ato Kepaioto 4.

EmmAéoy, yioo v pétpnom tov avbpwTopop@Lo.ol TwY POUTTOTIXMY XEPLWY, TTOTEL-
vovue plar ohoxAnpwuévy pebodoroyia Baotopévn o pebddovg tng Bewpliog cuVOAWY
XOL TNG LTOAOYLOTLXNG YewUeTplog. Ilto ouvyxexpipéva, mapovatalovpe pio osLpd
ot HETPNOELS BAOLOUEVEG OTNY OVEALGY TOL YWPEOL JPACNG TWY dAXTOAWY, tELOAO-
YWOVTOG TLG OYETLXEG XOAVPELS TV avHPWTLVWY XAl POUTIOTIXWY XWEWY dPACNG TWV
QaAXYYWY X xoL TwY avHpdTYWY X0l POUTIOTIXWY YWEWY SPACYNG TwY TTANL-
olwy Ty Paogewy Twy doaxtOALY. ‘Eva otabuiopévo abpolopa Ty TEOTELVOUEV®Y
XPLTNELWY, ToL OTTOlOL UTTOPOVY VoL TTPOGOPUOGTOVY XATEAAANAX OVEAOYOL XOL UE TLG
TPOSLOYPOUPES TNG XADE EPELVOC, XATAAYEL OE Evay PETPLXO avbpwTopop@Lopod To
ottoio xvpaivetor petoEd 0 (un avbpwTopopEixd popmTotixd yépta) xow 1 (poumToTind

YEQPLOL TLOLVOLOLOTUTIOL UE AV TG TOL aVBPWTOL).

Tolow Stoopetind poumotind Y€ptow eEgtaloviol HoTe Vo SOXLULOOTEL 1 ATTO30TLXO-
TNTO TNG TEOTELYOUEYNG LEDHSOL XL TTOPEYETOL Uit OELPE OTTO TTPOGOULOLWUEVDL TTOL-
POOELYLOTO TWY SLOPOPETLXWY TOTTWY YWEWY OPAoNG. AETTOUEQRELEG OYETIXA LE TNV
TTOCOTLXOTTOINON TOL OVHPWTTOULOPPLOULOD POUTIOTIXWY YEQLWY, UTOPOVY Vo Bpebody

oto Kegdhoro 5.
TNUOVTIXEG EPWTNOELS GYETLXA e TOV avOpwTopoppLond

Mepixég onuavtinéc epWTNOELS TG OTTOLEG TTPOOTAHOVUE VO OTTOVTNOOVIE OE QUTY

T SLdoxTopLXY] SLatELPn elval oL TopaxdTw:

e [lg pmopodpe v opioovpe Tov avbpwTopop@Lloud evog POUTOTIX0D CLOTNLO-

to¢ (.. XeEL0V);
e [loteg eivar oL StapopeTixéc Evvoleg ToL avbHPWTOLOPPLOUOV;

o Jloteg eoppoyés aAMAETISp0oNS avHPWTOL POUTIOTIXWY CLOTNUATWY ATTOL-

Tovy Tov avbpwrouopELop.o;

e Eivor duvatdy va moootixomolnbel o avbpwmopop@louds Twy OUTOTIX®Y GL-

OTNUATLY;

e Mmopobue va eEqyovpe amd 1o avbpwToLopELXd PETELXO, TTPOSLAYPOPES YL

70 oYedLATUO aVOHPWTTOULOPPLYWY POUTOT;
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1.3 Avtiotoiyton g avlpomivyg xivnong o avlpwTopop@Lxy] PORTOTLXY
xivnon

To mpoRAnua avtiotoiytong g avbpwmivng oe poumotixy xivnom, vTNEEE Evar amd

TOL TILO ONUOVTLXE TTEOPRANULOTO. 6TO TTESLO TNG POUTOTLXYG, To. TEAevToLo HO YpOVLOL.

210 mTopeAdy TpoTtdbnxay diapopeTinég nebodoroyieg yia TV avTLoTOlYLON TNG OrV-
Bodmivng xivnong oe poumotixy xivnon: avtioTolylon Twv HEocwy TwY SaXTUALXGY
dxpwy (fingertips mapping) [47, 48], avtiotoiyion Gpbpwaong oe dpbBpwon (joint-to-
joint mapping) [49], AettovpyLxy] avtiaToiylon otdoewy/Stapopposwy (functional
pose mapping) [50] xat avtiotoiyion yro ovyxexpLuévo. ovtixeipevo (object specific
mapping) [51]. EmtnAéov, axdun xor oL avdp@miveg GUVEPYELEG OETTOYNG AV TLXELLE-

YWY, ovTLoToLMinxay oe CUVEQYELEG POUTIOTLXWY XEPLWY [52, 53].

ZYETE HE TNV avTLoTOl lon Tng %ivnong tov avbpwmivou Bpoylovo oe xivnoyn Tov
pouToTLX0D Bporylova, OL TEPLOOHTEPES TPOMNYOVUEVES EPEVVEG ETLXEVTPWONXOY o€
pia Tpooeyyion evbeiog xow avtioTEOEYG RVNUATIXYG, WOoTE va eTtitevydel (S B€on
%O TEPOOOVOTOALGLOG YLoL ToL otvDpWTTLVOL XO POUTIOTLXA TEAXE onueio Spdong (end-
effectors) [54, 55]. e optopéveg peréteg TPoTabNUay ovyxexpLpéveg pebodoloyic,
WOTE VO TTEPLYPOXPOVY %L Vo (LovTeEAoTonfody oL eExpTNoelg LETOED TwY YWYLKY
Ty avbpomivwy apbpwoswy, emituyydvovtag €Tol avbpwTopopELxy] POUTOTLXY Xi-
ynon [56]. Xty yevixy] TEQITTWON POUTIOTIXWY CUGTNUATWY UE TTOANXTTAOVG/TTAEOVE -
Covteg Babpovg eAevbepiog, To TEORANU Tng avTioTolylong g avbpwTyng xivnong
0€ POUTOTLXN XVNOY, SLATLUTIWVETOL WG EVOL U1 YOOULULXO TTEORANUe BEATLOTOTTOIMONG

Ke mepLopltopoig [24, 56, 57].

‘Ooov aopd ™y avtiotoiyton g avbpwmivng xivnong oc avbpwTopopELxy PouTo-
TN ®lvnom, HEPLUEG TTPOOPATES EPELVES ETILXEVTPWONXAY oty amdomaoy ovbpw-
TORLOPPLUWY OLATAEEWY GTOYWY YLt POUTOTIXA cvoTipaTo [58--60], xwplc duwg va
Tpoteivouy plor ovoTnuatixn LEBodo Yo ™y eEaywy] avbpwmTopopELxnig PouToTL-
%G ®EVNoNG oXOUAL KO YLOL QOUTTOTLXE TEXYOLOYNUATO UE UN-TETOLUUEVO XLYNUOTLYE
otouyeto (.., ovoThpata Bpayiova - yepLod pe vrepmAcovélovteg Bobpoig eAcvbe-

pla).
2VVELGPOPA SLEaXTOPLXYG dLaTELPYG

2e ot ™ dLdoxTOELXY] SLoTELPM TTPOTEIVOLUE JLAPOPA TYNLATO OVILGTOLYLONS TNG
ovBpwdTivng xivnomg oe avBpwTopop@LXY POUTIOTLXY X{VNOoT, Lo SLOPOPETLXES EQAO-
HLOYEG AAANAETTLOPOGNG aVOPWTTOL POUTOTIXWY CUOTNUATWY. ALOPOPETIXA XELTTOLOL
TOU aYOPWTTOLOPPLOUOY ELOAYOVTOL XL XONOLLOTTOLOVYTOL WOTE vor emttevyfel av-

HowmopoppLxn pouTotixy xivnon.
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Mo T popmotind cvotquota Bpoyiovor — xeELod pe ETLAVGLUY] OVTLOTPOQY XLVNULO-
wxf (IK - Inverse Kinematics), o Aboelg DTOAOYILOVTOL OWVOAVTIXE XOL N TTLO OLv-
Bowmopop@Lxy AWDoY ETULAEYETOL UE TN XENON CLUYXEXPLUEVWY XOLTNELWY AELTOLEYLXOV

ovBpwTopopELeoL.

Mo ™) Yeviuy] TeplmTwon Ty PORTOTIXWY BEOYLOVWY XOL YEQLWY WLE L] TUTILXAL KLVT-
portixd yopoxtneLtotikd (.., m opbud doxtdorwy xat TAcovdlovteg Babpodg erev-
Bepiog), n avtioToliyion g avBpwmivng xivnong oe popToTxy, UoPel vou StortuTtwhel
¢ éva TEOPANUa BEATLOTOTIOINGYS , TO OTTOLO ETTLAVEL GTOYOVG AVTLOTPOPNG KLYNULOTL-
x1NG %Gt amd ovyxexpLuéveg ouvBixeg Béarg xoL TPooowaToAoLoy (eTBaAidpevor
artd Tov AvBpwTo AELTOLEYLXOL TTEPLOPLOLOL), AV TLLETWTLOVTOG TTORAAANAC TNV TTAE-

OVOOUOTIXOTNTO TWY ADCEWY [LE CUYXEXPLULEVO XOLTNPLA aVOPWTTOULOPELOUOD.

[Tto ovyxexpLuéva, N aVTLOTOIYLOY SLATUTIWOVETOL WG €var oVVOETO TEOPANUa [BEATL-
OTOTOINONG YL OAOXANPO TO GVOTNUO PBEoyloVa-YEQELOD, OTTOL T OXPOSEXTUAN TOV
EOUTOTLXOD YEELOV Bewpodvtal wg Tor TeAxd onuela dpdong avtl yLo Tov EOWUTO-
Txd %xopmd. ETmAgoy, yioo ™y TEQITTWON TWY QOUTOTIXWY YEPLWY KE M apltiud
doxTOAWY, TTpoodopilovpe Ty B€om Tov dxpov Tov avbpWTLYOL avTiyelpo WG Eva
oT6Y0 O€omg YL Evar amtd T POUTIOTIXE DAXTLAX xaL YonotpomotoVpe Splines yLo vo
UTTOAOYLOOVUE TLS VTTOAOLTIEG DETELG TWVY POUTTOTIXWY SOUKTUALXWY AXQWY, UE TTOOEWU-
BoAn LETOED TwY LTTOAOLTTWY TeE0CGPWY BEoEWY TV OXPOSOXTOAWY TOL aYBPWTLYOL

XEELOV.

[TepLoodtepec AETTOUEPELEG OYETIXA UE TO CYNULOTO AVTLOTOLYLONG, LTTOPOVY Vo Bpe-
Bovv oto Kepdroro 6. Aettopépeteg oxetixd pe TG TLHOVEG EQaEUOYESG AAANAETL-
dpaong avbp®ToL POUTOTIXWY CLOTNUETWY XabWE xot TTeELpapaTo TTOL dLeEdy Oy
TEOXELLEVOL Yo eTxLPWOE! N amodoTixdTTa TwY TEOTELYOUEVWY UebED WY, LTOPOVY

va Bpebodv oto Keparato 7.
TNUOVTIXEG EQWTNOELG OYETIRA UE TU GYNULATA OVTLETOINLONS TNG avlp®-
LYY %lVNoYGg 65 avOpWTOROPELXY] POUTOTIXY] XIVNoT
e Eivar duvatdy vo petopepbody avbpwmiveg SeELdTNTEG O POUTTOTIXE GLGTY-
poto; Hwg;

e Eivow Suvatév va avtiotorynbel n avbpwdmivy xivnon o poumotixn xivnon pe

gvay avbpwmopoppixd TPoTO;

e Eivar duvatdy va avtiotorymbel n avbpdmivn xivnon os avbpwmopoppixn po-

UTTOTLXN X{VNON YLO CUCTAUOTO UE UN TUTILXE XLYNUATIXA OTOLYXELX;

e Eivow duvatdv vo emttevylel 0o TNAEXELPLOUOS POUTIOTIXWDY CLOTNUATWY PEoryi-

ova - XepLoV pe avbpwmopopetxd TpdTo;
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1.4 Asttovpyio %ot dAAMAETIOPOON TWOY POUTOT G COUNUEVH KOL OUVH-

uitxd wepLtBailovto

XTig pépeg pog elval abynbeg T POUTIOTIXE CUOTAUATO YO AELTOLEYOVY XOL VO OA-
AMAeTLSp00Y Ol LOvo péoa oe TPOXOHOPLOUEVD, TTPOTEPWY YVWOTA KoL SOUNUEVA
TePLBaANOVTO, OANG xo o xobnueELvd, duvautxd TepLtBaArovta. O 6pog aAANAET-
Jp0OY YENOLUOTOLELTOL WG ETTL TO TAELOTOV YLOL POUTIOTLXOVG TEALXOVG ETTEVEQYNTEG,
ot oroiot givar cuVRBwg pouToTixd Yéptow (TLTTLXE PEEPN POUTIOTIXWY GLOTNUATWY
Booyiova-xepton). Kato 0 dtépreto Twv TEAELTAiWY TEVAVTA XPOVWY, 0L EQEVLYTTEG
TOL XA&OOL TNG POUTIOTLXNG, €XOVY EUTVELOTEl XUl TPOOTOONOEL VO XUTAYONCOLY
TOV TILO EVEALXTO xou ETLOEELD TEMXO ETEVEQYNTN TG QUONG, To avbpwmivo YEpt.
To TEWTO POUTOTLXA XEQLOL NTOY OTNY TEOYUATLXOTNTO POUTOTIXES Aofideg, Lxa-
VEG VO TILAYOLY EVOL TIEPLOPLOUEVO EVPOG OYTLXELUEVWY UE OTTAN YEWMETPLA, T OTTOLoL
NToy Tomofetnuévar o8 X TWY TPOTEPWY YVWOTA TePLBaAAovTo. Xnuepa, eEattiog
™G XOUNANG TTOALTTAOXOTNTOG XAL TOU XOUNAOD XOGTOLG TOVG, OL POUTIOTIXEG Ao PBideg

eEaxolovholy vor atoteAoVy T Lo cuvniLopEvy evorlhoxTinn [61, 62].

‘Opwg to state-of-the-art Twy POUTOTIXWY YEPLWOY oxoAoLOEL TO P60 TNG AVENUEYNG
omHS007G, TOALTTAOXOTNTOG, XOGTOVG ol avbpwTmopopplopotd [63]. Tétola popmo-
Té yéploe €xovy TOAaTAoVS Pobuodg eAevbepiog, lval TANPWS €TEVEQYOVUEVA,
OXOPUTITO. X0l EEOTTALOUEVOL PE EXAETTTUOUEVOVG EVEQPYOTIOLNTEG XoL atabntpLa oToL-
¥elo, TpoxeLpévou vo avtthopBavovtal To mepLBaiiov. o Topadetypo sivor xpiotpo
YL VOl AXOUTITO POUTIOTLXO YEPL var dtabétel aobntipeg apg oTto oxpodExTLAX
TOU, TPOXELUEVOL Ol SUVAPELS aMAeTiSpaong (TT.Y., LE évar TLaoUEVD OVTLXELLEVO)

voo LeTpNnhody xot vor QapUoGTODY Ol XUTAANAEG TTOALTLXEG EAEYYOL SUVAUEWY.

ZUYXEXQLUEVA OYNULOTO. EAEYYOL SLVALEWY, LTTOPOVY VO EEATPOALGOVY ATTOTEAEGLO-
X0 TULAOLLO xoONUEPLYWY avTIXELUEVWY, amo@eldyovtag Tithavég {nuiég téoo oTo
POUTIOT 600 %o 670 TEPLBEANOY (TT.)., DOoTE Vo amo@evyel 1 xoTaoTEOPY VO EV-
Bpowatou avtixetpévon). Opwg awtd to yépLo eivar emtiong Saovnpd xow PopLd, xo
ETIOUEVWG U1 TTPOOLTA YLO TTOAAG EQELVNTLXA KEVTPOL TTOYXOOUIWG KO OXATEAAANAC
Lot SLAPOPES EPOPUOYES NAEXTOOUVOYPAPLXOD EAEYYOV, OTTWG N OVATTTUEN pvOoNAE-

XTOLXWY TPOCHETIUWY UEAWY.

[pbopoatoa, apxeTég EpeLVEG ETILXEVTOWONXAY OE POUTOTIXA XEQLO YOUNAOD KOG TOVG,
Boolouéva o eAaaTopepn LALXA M) eAaaTxo)g oLVIETUOLG [64--66]. TEtola yEpLa,
TOPA TYY LTOETEVEQYOVUEYT OYEDLOON TOVG, ELVOL LXOVE YO EXTEAEGTOVY OTTAEG OLeQ-
Yooleg YELPLOKOV avTtxelyévwy [67], xow €xovy Yivel epmoping diabéoLpo o onua-
VXA XOUNAOTEPES TLUES [68]. Xnuepa, 1 eA&LoTn TLUY] EVOG POUTIOTLXOD XEELOV Eivort
400 USD xat 1o endyroto Bépog eivar 400 gr (0.88 Ibs) [64].



xxi

YUVELGPOPA TNG dLdaxToPL®NG Lot

Ze ot TN dLdoxtopixn) SLatpLPn), TEOTELVOLPE ict VEO TTPOOEYYLOT OYESLATUOD YLO
™ dnuLovpyian mpoottdy (xootiCovy Arydtepo amd 100 USD), eroppdy (Luyilovy
Ay6tepo a6 200 gr | 0.44 1bs), 0pBpwTHY, EYYEVHS LTTOYWENTLXWY, DTTODTEVERYOV-
UEVWY QOUTIOTIXWY YEQLWY T OTtolar LTtopovy vor Ttopoxfovy pe xobnueptvd vALXE

X0l Voo oV ELoAoYMHobY edxoA.

To Tpoavoupephévta pouToTid YE€PLar LToPOLY va ypnotporotnbody yio €pevveg -
AEXELOLOWOD, YL YO ONLLOLEYNHOVY POUTIOTIXEG TTAXTPOPILES LXAVES YLOL BOTIOYY] OLYTL-
*ELLEVLY (T0.Y., TAATQOPUES ESGPOVE KoL EVOEPLOL OYALOTO, YLOL TOL OTTOLO O EAGPEVC
oYedLooPAG ELVOL TTPOATTOLTOVILEVOS), YLOL TNV SMULOVEYIO POUTIOT Yot EXTTOLIEVTLXOVG
OXOTOUG N OXOUO XOL YL TNV SNULOVEYLO TTPOOLTWY, LDONAEXTOLXWY TPOCGHETIXWY

CUOTYLATWV.

2ton TAGLOLOL TNG GUYXEXPLUEVNG DLATOLRNG TTOEEYOVTOL EXTETAUEYR TIELQOUATLXA [LO-
VTEAQ, TTPOXELUEVOL Vo ETULXVPWOEL 1] atdd00Y] TwV TEOTELVOUEVWLY YEPLWY. Ta Tet-
papator TEQLAAUPAVOLY SOXLUES 0PTTOYTG TTOALAPLOUWY XOONUEPLYDY OVTIXELUEVW®Y,
LUONAEXTOLXO EAEYYO QPOUTIOTLXWY YEQLLY, XATOLX OYLXO GUUTEQOOUOTO OTTO TNV
EVOWUATWON VOGS XEELOL e evaépto dynuo. (ArDrone quadrotor) pe txovétnteg op-
TOYNG AVTLXELLEVWY, XOL TNV ONULOLEYIO AVTOVOUWY CYNUATWY XPTTOYNG CLVTLXELUE-
VWY oXOUN xol L0 APEPULOTNTES OYETIXA LE TN B€OM XL TO OYNUO TOL OLYTLXELULEVOL.

Aemttopépeteg yioo OAa Tow TELpApoTa LTToPoVY vou Bpebody aTto xe@aAato 9.
TNUOVTIXEG EQWTNCELS GYETIXA UE TNV OAANAETIGPOOY TWY POUTOT UE
ovvoptxd epLBdilovto
* M7mopodpe Yo ATTAOTIOLYGOVILE TO OYEDLO TMWY VOLOTAUEVWY POUTTOTIXWY YEQLOY;
o [l umopovUE Vo LELWOOVIE TO XOGTOG XOL TO BAOOG TWY POUTIOTLXMY YEPLWY;
o Jlhg UTOPOVUE VO UELWOOVUE TNV TTOAVTTAOXOTNTO TWY OYNUATWY EAEYYOV;

e Mmopodpe va OXESLATOVIE POUTIOTLXA YEPLOL TTOV AELTOLPYOVY ATTOSOTLXC. OE

SuvauLxd TEPLREANOYTY;

e Eivatl duvatd vo dnpiovpyniody poumotiud yepta aunAod x6aToug ot Bapoug

Toe ool var lvort xot Lxovd yiow apmary] TAN0pog xonueptvdy avtixeluévey;

* Qo elval LT T XEPLOL LXOVAL YLOL OLOTTOYY] OLVTLXELLEVOD, OXOUO XOL VTTO GUY-

Onxeg afePardtnroag tng H€ong xaw Tov oyxNUATOG TOV;
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2. Metpopatinn Atdtagn

2TNV OUYXEXPLUEYT EVOTNTO TTOLPOVOLALOVUE TNY TELPALOTLXY] OLATOEN TTOL YPETNOLULO-

TOLOOUE OTNY CLYXEXPLUEYT SLdaxToptxy] dtatpLPn. Ilio ovyxexpluéva:

¢ To cvotiuota xatoypo®ng g avbpwiyng xivnone.

e Tov BLoevioyu T} TOL XATAUYPAPEL TLG OVHPWTILVEG LVONAEXTOLXES EVEQYOTIOLY-

ocLG.

e Toug acbntpeg TOL YENOLUOTTOLNOOUE YLOL VO XXTAYPAPOVUE GTOLXEL TOL

repLBéArovtog (T.y., 0€oELg xal YEWUETPIEG OVTLXELUEVLV).

* To pouTdT TOL YENOLUOTIOLNTOUE YL DLAPOPETLXES EPAUPUOYES AAANAETTLOPOLONG

ovHPWTOL POUTIOTIXWY CLATNUATWY.

* To LTTOAOYLOTIXE CLOTHUATO TTOL YENOLULOTOLNONCAY XKoL T TEWTOXOAAR ETTL-

xoLvwviog.

2.1 Popmor

To Mitsubishi PA-10 eivow évag popmotindg Bpayiovag 7 Babuwy eAevbepiog ot omoiot
elvot SLOTETAYUEVOL XOTA ovHPWTOLOPPLXO TPOTTO: 3 YLOL TOV WO, 2 YL TOV AYXWVOL
xow 2 yio tov %0 pmd. O ogpBoEAEYRTNG TOL POUTIOT ETULXOLVWYEL UE TOV VTTOAOYLOTY-
[eAeyxth Tov pouToT péow Tov ARCNET mpwtdxoArov. Ileptoodtepeg mAnpopopieg

©wtopovy vo avollntnlody oty oyxetixy dnpoaievoy [69].

O popmotindg Ppoylovog Mitsubishi PA10.
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To DLR/HIT II iva éva mevtadaxtoro poumotixd xépt pe 15 Babuodg eAcvbepiog. To
DLR/HIT II awvortdyfnxe omwéd to DLR (Teppovixy Avootnuixy Yrnpeoia) xor to HIT
(Harbin Institute of Technology). To cuyxexptpuévo pouTotixd Yépt eivart QOSLOCUEVO
UE D TOVOUOLOTUTIOL POUTOTIXA SOXTUA pe 3 Pobuodg eievbepiog. OL TeAevtaieg
VO PAaAaYYES Elval OLLEVYUEVESG UE ATAGALYO COPUO Xoil AGYO YWILOY 0pbpacwy
éva Tpog éva. OL SLoTATELS TOL UTTOPOVY YO XUPAXTNELGTOVY WG avOpWTTOUOPPLXES
%0l To oLVOALXS [épog eivor apxetd YopnAd 1.6 xiAda. Ilepioodtepeg TANpOpOpies

umopovy vo Bpebovy ato [70].

To mevtaddxtuoro DLR/HIT II popmotixd yépt.

2.2 Emtuieolvomvieg

‘Evog mpoowrixdg vtohoytothg (Ubuntu Linux OS 12.04) ypnotpomotifnxe yiow Ty
XOTOYQOPN TWY oVHODTUYWY KIVNUOATIXWY GTOLXELWY XOL TV avlp®OTLvewY LLONAE-
XTELXWY EVERYOTIOLMOEWY. KatdAAnAeg auvaptioelg avartoxdnxoay oe C/C++ yiow vou

SLELXOADYOLY TNV GUAAOYY] OESOUEVWY.

O (3Log TPOOWTLXOG LTTOAOYLOTNG NToY LTEVOLYOG oL YLt TOV OYEDLAOUO TOPELG
xoL oproyng avtixeltnévwy. To ouyxexpiuévo PC, eyxabidpodoe emixotvwvio Boot-
ouévn oe TCP pe tov voroyLotr/eAeyx Ty Tov Mitsubishi PA10 popmotixod Bpoyiova
(Gentoo Linux soft real-time OS) xot UDP emixovmviot e TOV DTOAOYLOTH/EAEYRTH
tov DLR/HIT II popmotixod xeptod (QNX hard real-time OS).



L

Trajectory
and Grasp
Planning PC

(Ubuntu 12.04)
e

=il Polhemus Liberty

Polhemus Isotrak

To ovoTipaTa xotoypoPs TG avBpwTvng xivnong xot 0 BLOEVLOYVTAG TTOL XENOL-
LOTTOLMONXE YLOL TNY XOTOYPAPT TWV NAEXTPOULOYPOPLXWY ONUETWY, aTtetxovilovtol
OTO GUYXEXPLLEVO TYNUOL.
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Artemtopég HAextpopvoypaptxwy ENuatoy

3. "Eva Zymro Mnyovixng Madnorng yra Atetapés Hiextpopvoypapixwy
TNuoTey

2NV CUYEXPLUEVY] EVOTNTO TTPOVOLALOVUE VO OYNUO UNXOVLXNG LE&Hnome, To omolo
KUTopel vou xpnolpomolnbel yior Ty amoxwdixomoinom tng avbpwdmivng mpdbeong o
™M¢ oavBpwTVNG %IYNoMG, oo TLS LVONAEXTOLYEG EVEQYOTIOLNOELS TWY VWY TOL OV-
BpwmLvou dvw dxpov. To mpoTelvOpevo ayNuor novixng Labnong xpnotomoLel Eva
ToELYOUNTY] O OTTOLOG GLVEQYALETOL UE EVOY TTOUALVSQOUNTY] YLO TOY XOTOUXEQUATLOUO
TOL XWPEOL JPAONG XOL TNY ETLTEVEN XOUAVTEPNG ATOXWILXOTTOINONS NG avHpdTLvng

%x(YNONG UE LOVTEAN EXTTOULSEVUEVOL YLOL CUYXEXPLILEVES OLEQYOTLEG.

Tolot XOEOXTNELOTIXE TWY OLAPOPETLXWY OLEPYAOLWY EYOoLY SLoxpLiei:

* YTtoxwpog epyaoiog.
* AvTIXE(LEVO TTPOG OPTTOY).

e Awgpyaoio mpog extéAeom pe 10 apmoyHéy avixeipevo.

Mo ™y exmaidevon 1600 TwY TAELVOUNTWY 000 Xl TWY TAALYOQOUNTWY, YONOLULO-
rofnxe M pébodog twy Aaowv Tuyowdtnrog (Random Forests). H amépoaon tov
ToELvounT) N omolor AopPBEvETOL O TTPOYUOTLXO XPOVO EVEQYOTIOLEL EVOL LOVTEAO OLTTO-
xwoLxomoinong g avbpwmiyng ®ivnong, To omolo ELVaL EXTIALIELUEVO YLOL TNV YO~

Yvwperobeioo diepyooio.

To LOVTEAX TTOL EXTIOLIEVDOYTOL YLOL GUYXEXPLUEVES OLEQYOOLES ETLTLYYAVOLY XOAD-
TEQOL OTTOTEAEGULOLTO. OUTTO TOL YEVLXA LOVTIEAO TTOL EXTTALSEVOVTAL YLt OAO TOV YWDPO.
To ouyxeXELUEVO oy UnYovLxns pabnong uropet va yponotpomotniel amd diemapég
NAEXTPOULOYQAPLXWY ONUATWY VLo OWEELX EQPUPUOYWY XAANAETISpaorg avbpwmTov

QOULTIOTLXWY CLUOTNLATWY.
3.1 lletpbpoto

AroipopeTinol TOTOL TELPOUATWY EXTEAEGTHOY YLOL TYY OUVOEGY TOL CUYEXPLULEVOL
oYAoTog punyovixig pébnong. To melpdpota exteréotnroy arnd 5 vroxeipeva (4
avdpeg, 1 yovaixa) 21, 24, 27, 28 o 40 ypovdv. OAow Tar TELPEUOTO EXTEAEGTNROY
oTd To LTOXEPEVOL LE TO xVPELOPYO XEPL TOLG. Katd v didpxeior Twv TELPOUA-
TWY, TO VTTOXEIUEVO EXTEAECAY ETTOVAAXULBOVOUEVES KLVAOELS TTPOGEYYLONG XOL CLOTTO-
YNNG OLOPOPETLXWY OVTILXELUEV®Y, OTTO SLOPOPETIXOVS DTTOYWOEOVE XOL TOOXELLEVOL VL

eEXTEAETOLY Evar TANDOG SLOPOPETLXWY SLEQYATLMV.
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M BfAobrixn mov meptéyel 3 dtopopetixd aviixeiyevo (évay popxadipo, éva
TETPAYWYO X0UTL X0 Yo xoUuTtar), Tortodetnuéva oe b drapopetikég Béoelg oe 3 dro-
popeTixd pdpLo. H ouyxexpLuévn BLAtobnxm yonotpomoribnxe yio ta exteAecbévta

TELOAULOLTOL.

ii

Tall Glass, Task 1 Tall Glass, Task 2 Wine Glass, Task 1 Wine Glass, Task 2

[ Side Grasp ] [ Front Grasp ] [ Side Grasp ] [ Stem Grasp ]
Mug, Task 1 Mug, Task 2 Mug Plate, Task 1 Mug Plate, Task 2

[ Handle Grasp ] [ Top Grasp ] [ Side Grasp ] [ Top Grasp ]

[Mopadeiypota Twy SLaPOoPETIXWY SLEPYUOLEY TTOV EXTEAEGTTNXOY XATO. TNV OLOOXELD
TWV TELPOUATWY.

3.2 M£6odot
Meptxég mpodiaypopég Tov x&be oynuor pnyovixng pabnong yio Stemopéc nAEXTEO-
LLOYQOPLXWY ONUATWY TEETEL Vo €XEL, elvort oL EENG:

e No pmopel vo amoxwdixorotel v avbpd vy mtpdbeon (aEvéunon).

* No UTTOPEl Vo ATTOXWOLXOTIOLEL ULt CLVEYY] EXTIUNOYN TNG avOpWTLYNG xivnong

(o3 pbpnon).
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* No pmopel vo yonotpomownbel amd éva POUTOTIXG CUOTNUO OE TEOYULOTLXO

X00VO.
* No umopel exmatdeuTel EOXOAX KoL YONYOPO YL OLOPOPETLXOVS YPNOTEGS.

* Noa pmopel va ypnotpomotndel yioo dedopévo LPNANG SLUCTATIXOTNTAG KAL YLOL

ueydheg Baoelg BLOAOYLXWY Ko XLYNUATIXWY JESOUEVLY.

Training Phase
Classes of Data for Different
Subspaces, Objects and Tasks
Object 1 Object 2 Object o
Subspace 1 Subspace 1 Subspace s
Task 1 Task 1 e Task t
Class Data Class Data Class Data
(EMG) (EMG) (EMG)
‘

RF Classification
’

Class Decision
New EMG Data » Random Forests » (Object, Task

Unknown Class Model and Subspace)

: Validation Phase ]

ZHESLAYQOUUUO TAELVOUNTY.

Input Training Phase Output
Object o Object o
Subspace s » RF Regression » Subspace s
Task t Task t
EMG Data Motion Data
- -
New Data Estimated Output
Object o Object o Subspace s Object o
Subspace s » Task t Specific » Subspace s
Task t Decoding Model Task t
New EMG Estimated
Data Validation Phase L__Motion Data |

ZHESLEYQOUUO TTAALYVSQOUNTY].

‘Otwg €xovpe NON avoEPeL oL THELYOUNTES XOL OL TTOALYIPOUNTES TTOL PN OLULOTIOLOV-
VTOLL OTYV OUYXEXQLULEYY BLdoxTopLxY] SLortpln Paoilovtor oty pebodoroyio Twy Ao-
ooy Toyowdtnrag (Random Forests). To tedixd oyfuor pnyovixig pédnong mepthoy-
Baver tplow xOpLa tppoto. To Tuquor Tov TaElvountn Tapéyxel Ty "amdpoaon” Lo
™y avbpwmivn mpdbeom, wg mEog Tov moLdy vToxwEo BEAeL v xtvnbel o ypNoTNg,
ToLd avTixeipevo OéAel var apmaEel oL oL SLEQYUOLO VOu EXTEAEDEL UE TO OULYXE-
%xpLEvo avTixeipevo. To dedTtepo TUNUA TOL TOALVSPOUNTY, EEETALEL TNV amtdPaon
TOL TOELYOUNTY X0 EVEQYOTIOLEL EVaL LOVTEAD EXTTOLGEVIUEVO YLOL TNV avoryvwplobeion
drepyaoio (Evo LOVTEND EXTTOULSEVILEVO YLOL TOV CUYXEXPLUEVO GUYSLOOPS LTTOYWPEOU,

AVTLXELUEVOL xaL SLEQPYAOLOGS).
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To tpito TuNpe TNg avitotolynong tng avbpwmivng xivnong o poumotixn xivnom,
UETOOYNLOTILEL TN EXTLLWUEVY] ATTO TO LOYTEAO aTtoXwILXOTTOLNaNG ovHpdTTLvy xivnon,

oe avbpwmopopLxn popmotixn xivnomn.

Muscular | Signal EMG
Co-Activation € Processin Acquisition
Patterns g q
¥ I
Synergic v
) Module Reduction of
Subspace Human EMG (PCA)
Features Decision 1
Selection \ ok — ] ]
. Task Specific Motion Decoding
Object Model Selection Module
Example of EMG Decision
Based Robot Arm + Object 1 Object 2 Object 3
Subspace 1 Sub: 1 Sub:
Hand SySte_m Task Deczding ;eing:g BengiCr?gs
Tele-operation == Model Model Model
Decision
|
¥
Mapping Human to Robot Motion Module Back Projection
Robot Human Al of Estimated
R?_ldaunr:ﬁ;rlcy e | nverse k- Forward Human Motion
9 Kinematics Kinematics in High-D (PCA)

2TO CUYXEXPLUEVO OYNUO OTTELXOVILETAL TO TEALXO OYEDLAYQOUULILOL TOV OYNUOTOG UT-
XOVLxNG LAONONG TTOL VAOTTOLACOLE YLl SLETTOPES NAEXTOORVOYPUPLXWY GNUATWY.
Toto xVpLo TuApoTe Ltopody va StaxplBody, To tpfpa tov TaEvounty (Classification
Module), to tufipa tov makvdpounth (Regressor - Task Specific Motion Decoding
Module) xow to TpuAR avTioToiynomng g avbpwmvng xivnong oe avbpwTopoP@LxY
pourotixf xivnon (Mapping Human to Robot Motion Module). Mio mov? eop-
LOYT] TOU OUYXEXPLUEVOL OYXNUATOS Vol 0 BOOLOUEVOS OE NAEXTPOUVLOYPOPLXA ON-
Lot TNAEYELPLOUOS EVOG GLUGTALATOS Bporyiova - YEELOD.
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AvOpwmopoppLopog

4. O Polog touv AvOpwmopoppiopod

To avbpwmopoppixd poumotind abotnuo Bporyiova xeptob Tov DLR.

2TLg LEPES Lag 0 avbHpwTOoRoPELOUOG Elvol amaopolTnTog Yior 2 xVPLws AdYoLG:

* ['lot OQPAAELOL OTLS OLOPOPETLXES EPOUPUOYES OAANAETISpaog avbpwmTou %o

QOUTIOTIXWY CGLGTNUATWY.

o [l Ty xoBLépwaon xotvwyixng odvdeong LetaEd avbpwmou xot poumdr, epdcoy

T POUTOT fval opeatd ooV AvbpwTo.

VooV opopad ™V AOPAAELR OTLG EQAPUOYES OAANAETISpa oS ovBPWTOL POUTTOTIXWY
CLOTNUATWY, 1 AYOPWTTOLOPEPLXT] POUTIOTLXY XIVNON UTTOPEL TILO EOXOAX VXL YIVEL XOTO-
vont %o vo TPoBAe@bel amtd Toug avbpwiToug. To Topamdve Exel ooy aTOTEAETULAL
oe Jtepyonoieg OTTOL OL YPNOTEG XAL TA POUTIOT CUVEQYALOVTAL TTASOVOGUOTLXA, ALY TO
EOUTIOT xLvolvTal ovHpWTTOLOPPLXE O XPNOTNG VoL UTTOPEL TILO EVXOA VO TTPOCAPU.O-

OEL TNV %LYNoM Tov, aToPeVYoVTog THoVoLS TPUVUATLOUOVE.

[N ™y mepinTwon g xovwvtxng oVvdeans, 660 TTLo avbpwTouopELxs elvar Eva po-
UTOT o epebvion (Yphon avbpwToRoPEIXWY SLUGTAGEWY, TEXYNTOD SEPUATOS XTA.),
xivnon (ovvepylotixn xivnom), exppdocetg (TT.y., EXPEAOELS TTPOOWTTOL) XKoL OVTLAOYL-
Bowdbpevy evpuio (tdoo éEumvo @aivetol To POUTOT), TG00 Lo Thavd eivor vor ovor-
TTOEEL pla otabepn xovwvixy oxéon pe Toug avbpwmovg YOpw Tov. EEaipeoy ot
aLTO TOV Xovover atoteAE! Ldvo To QovoueVo Tou uncanny valley, émwg €xst TeQL-
Yooupel ato [40] xou [41]. Tleptoodtepeg TANPOPOPLES YLow TOV avbPWTORLOPELOUG KoL

TLG XOLVWYLXES TOV ETIULTTWOELS LTTOPOVY vou Bpebody ata [42], [71] xow [72].



"Evag poumotindg Bporyiovog Bondd oty xotaoxevy] eETNATOY ULaG UNYOVNG O

epyootaaoto tng Volkswagen oty I'eppoavic. I'ia Tpddytn opa ot dvbpwmol cuvepyd-

Covtal pe tor pOpTOT Ywpelic péTpo Tpoataoiag xot @edypota uetaEd tovg. Credit:
Universal Robots (http://www.universal-robots.com).

To avbpwmoetdég popndt iCub [73]. Credit: Cheney D’souza

4.1 Ou dtaopeTixég Evvoleg Tov AvOpmToprop@Lopod

Mo TphTn TpooTTdbELo Vo YiVEL SLAXELOYN LETOED TWVY SLAPOPETLXWDY XATNYOPLWY TOV
ovbpwmopopeLopod emiyetpninxe oto [74]. Ztny cuyYxeXELULEYT LEAETY], OL CUYYPOUQELS
Sroxpivouy petaEd Tou Asttovpytxod (functional) xow Tov Sopixod (structural) avBpw-
TTOULOPPLOULOD YLOL TNY XATOOXELY] TEXVOLPYNUETWY oL O vtoBonbody acbeveic pe
xvnuxd TpoBAuata  avarmpeia. O Attovpyirdg TPOTOG YLoL YO VAT TOEELS €voy

TETOLO UMNYOVLOUO, ELVOL VOU TTREYELS [ALOL GUYXEXPLULEYY AELTOVEYIO AVEEAQTNTO OtTth
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™Y SOUN TNG GUOKELYG, EVK O OOULXOS TPOTTOG, E(VOL ULLOVIUEVOS ETTOXOLBMG XATTOLO
XOPOXTNELOTLXA TOV avOp®TILYOL GWUTog. OTTwg EXOLILE 10T TOVIOEL, GTNY GUYXEXQL-
ULEYM SL3oxTOPLXY] OLATOLBY ETUXEVTPWVOUAGTE XVPLWG OTLS OLOPOPETIXES EQAPUOYES
0L 0 YOPWTOLOPPLOUOG UTTOPEL VO EYEL, YLO POUTIOTIXA cLGTHUOTO Bpoylova Ye-
pLoV. Emopévwe, emtAéyovpe va dioxpivovpe UETOED Acttovpytxod xot AvTiAnTTol

Avtiaappoavopevou Avbpwmopop@lopo.

O Acttovpyindg AvBpwTopop@Londg oupopd Eva oMo v TLoTolynong Tng ovBpwivng
%x(YNONG OE POUTOTLXY X(YNGY] TO OTOLO EYEL GOV TTEWTY TTPOTEQOLOTNTO TNV EXTEAEDY
ULOG OUYXEXPLULEVNG AELTOVPYLOG OTOY YWEO SPACNG XOL ETELTA EXOVTAG ETLTUYEL TOV
opYt*6 aVTO oXOTO NG BeATLOTOTOINONS TOL AVHPWTTOULOPPLGUOD TOL POUTTOTLXOV
OLUOTAUOTOG, EAXYLOTOTIOLEL XATIOLHL ATTOOTAOY], LETAED TWVY OSLOLOPPWTE®Y TOV Y-
Bpwmouv xal Tov popndT. Ilpoxelpévov va opLotel awT) 1 aTdoTOOY, SLOPOPETLXA
LETELXA ToL avbpwTopopELopol €xovy Tpotabel, Tar omoior 0dMyYoVy pe YoUNAN TTo-

ADTTAOXOTNTO. OE LOVASLXES aVOPWTTOUOPPLXES ADOELC.

Amé v &AAY TtpoTeivovpe Tov AVTIANTTO AvOpWTOROP@LaUY, GOy TNV LTTOXATYOPLO
exelvn ToL aVbPWTORLOPELOU.OD TTOL APOPX XIVNON UE GUVAPULOYY, TNV CLYEPYLOTLXN
%{VNGN, TNY CLUTEPLPOPE, TLG ATTOPATELS KoL TO CLVALOOMULOTO TOL OTTOLAL UTTOPOVY VO
Yivovy avtiAnmta ooy avbpwmopopeixd. O AvtiAnmtdg AvBpwmopoppLopds pnmopet
Vo YwELoTel Tepottépw oe Aoptxd N Atopop@wtikd AvBpwopoppLopd (tov apopd
TNV oTLYLaior SOULXY] OLOLOTYTOL XOL TLG OUVEQYLOTLXES KLVHOELS) XOL TOV LUUTEQLPO-
oxé AvBpwmopoppLlopd mov aopd ™y Liunon tng avbpwTiyng CUUTEQLYPOPAS ATO

Tor POUTOT (TT.Y., XONON TOPOUOLWY EXPEAGEWY TTOGKTTOL).
4.2 EQoppoyég Tov avlpwmopop@lopod

O avbpwmopoppLopds pmopel vo yonotpomotndel yio owpeion eQoPPLoYwyY cAANAETL-
dpaomg avbp®OTOL POUTIOT. LTV GUYXEXPLUEVY] OLOOXTOPLXY OLATELRY ETULYEVTOWVO-

nooTte aTig axdAovbeg dVo eopuoYéc:

* AvamtuEn avbpwToLoPQLXOY POUTOTIXWY TEYYOLRYNULATOY.

* Avtiotolynon g avlpwmivng xivnong oe avbpwmopop@ixn popmotix xivnomn.

[TpoxeLévon vor PTTOPECOLE Var oomtTOEOLIE avBPWTTOLOPOLXE popmtdt (TT.y., Po-
UTTOTLXE YEQLA), TPETEL TIPWTOL VO LTTOPEGOVILE VO TTOGOTLXOTTOLAGOVUE TOV ovhpw-
TOLLOPPLOKO TWY POUTIOTLXWY TEXVOLPYMLATWY. XT0 Kepdiowo b, mpotelvovpe pla
oAoxAnpwpévy pebodoroyior yLoe v Toootixomoinon Tov avbpwmopopeLopod po-

UTTOTLXWY XEQLWV.
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2NV GUYEYELX TTIPOXELUEVOL VO TTAPAYOVIE avbpwTopop@Lxn popTotixn xivnon amd
™Y ovbpWOTLYY XIYNGY, XENOLULOTTOLODUE TNV EVVOLO TOL AELTOLEYLXOD avbpwTopopEL-
ooV TPOTELVOVTAG ULO OELPE OTTO GYNULOTA OLYTLOTOLYNONG TTOL XEAVOLY YEPNON CLYXE-
XOLUEVWY LETELXWY TOL avbpwmopop@louod. Ilepioodtepeg TANPOPOPLeg LTOPOLY VO

ovolntnbody oto Kepdroro 6.
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5. [ocotixomolwvtag Tov Avhpwmopoppiopnd Popmotinwy Zvotnudtwy

ZTNV CUYXEXPLUEVY] EVOTNTO ETUXEVTPWVOUROTE 0TNY oVvbeon ptag nebodoroyiog Bo-
oLopevrg o Lebddouvg LTTOAOYLOTIXYG YEWUETPLOG o Bewpiog LVOAWY, YLoL TNV TTO-
COTLXOTOLNOY TOL AVHPWTTOULOPPLOULOD SLOPOPETIXWY POUTTOTIXWY XEPLWY. TTpoxeLué-
YOU YO TTOGOTLXOTIOLNOOVUE TOY avbpwTopop@Loud, cvyxpivovue T0 avbpwmivo ue
OLAPOPO POUTIOTLXA YEQELOL OE L0 SLAPOPETIXE ETLTES L CLYXPLVOVTOS TOVG YWEOVG
€OYOOLOG TOU QPOAXYYWY TWY SAXTOAWY XOL CLYXPIVOVTOS TOUG XWEOLS £0YATLOG
Ty TALGiwY Twy Béocwy Twy doxTtOAwy (Aaufdvovtog LTOPLY TRy XNTXGTTO

TWY XOXEAWY TNG TOAGUNG).

To teAxd petptxd ToL AVHPWTOLOPPLOUOD, XPNOLULOTOLEL ULal OELPA OTto oTaduLoTL-
%00G TLOLPBAYOVTES YLOL TaL SLAPOPETLXE LTLO-UETOELXE (0L OTTOLOL LTTOPOVY Vo PLOKLGTOVY
avdhoyo PE TLG TEOSLOYPOUPES TG *E0e peAéTNC), Topéyovtag évar TEALXO OX0Q TO
oroio xvpoaivetor ard 0 (un avbpwTopopELxd pouTotixd Yépta) éwg 1 (ovopold-

TUTTOL UE TO owBPWTTLVO popTToTLIXG YEPLOL.

Tor LOVTEAX TELLY SLOPOPETLXWY POUTIOTLXWY XEPLWY, €XOLY YENotpomotniel yior Ty
ovéhvon pog. Ilo ovyxexpipévo to Barrett Hand, to DLR/HIT II xot to Shadow
hand, €yovv ovyxptbel pe o avbpwmivo yépt. H ovyxexpiuévn pebodoroyia pmopel
vo eEdryel oyedLaOTIXEG TTHPAUETPOVS Yior TNV BabuoAdynon g avbpwmopopeLxd-
TNTOG POUTIOTIXWY YEQLWY XOL LVONAEXTOLXWY TTPOCHETIXWY CLGTNUATWY, BACEL TNG

TEPLYPOPTG ToL Kepoiaiov 9.

Shadow Hand DLR/HIT II Barrett Hand

To poumoTind y€ptaor Tow omola ypnotpomoLinoay oe aVTHY TNY UEAETY.
5.1 Mé6odot

[Mpoxerpévov vor auyxELBodY oL XWEOL EPYUTLOG TWY POAXYYWY 0L TWY TACLGLWY
TwY Baoewy Twy daxTOAWY TOG0 ToL avbp®OTLYOL YEEPLOD O00 XAl TWV POUTOTLXWY
XEQLWYV, Oor TPETEL alpyIxd Vo UTTOPETOLUE Vo TOLG LTTOAOYLoOLUE. Tl vor eTtLTOOLUE
TOY GUYXEXQLUEVO GTOYO OLOXPLTOTIOLOVUE (G TTPOS TO OpLa TV apbpwoewy Tig TL-
uég mouv pmopet va AafBel xabe Babudg eAevbepiog ko odnyodue Tig drapopeTinég
QPEANOYES TV SoxTOAWY, oe xabe Thavn SLapdpEway ToL TEOXVTTTEL ol TLE TTPO-
ovaepbeioeg StaxpLtomoinuéveg TLLES. TNy oLVEYEL amobnxedovpe Tig BEoelg Twy
0pbpoEwY 0TOY TPLOBLATTATO XWPEO OE GUYXEXPLUEVOLS TILVAXES KoL LTTOAOYLLOLUE

Ta convex hulls xébe ywpov epyaaiog.



XXXIV

Ev ovveyeia, o avbpwmopop@lopdg opiletol ¢3¢ 1 oxeTixy] QALY LETAED T®Y convex
hulls xabe ywpov gpyaciog Tov avbpwmivov xot xabe poumToTinod yepLov. I'a vou xo-
ToAnEovpe o€ ToPES LETPLXO, YONOLULOTIOLOVUE EVOL XAQOUO UE oLpLOUNTN TNV TOUT] TWV
convex hulls xot Tapovopaot T évwon twy convex hulls. Eival cagéc ét Eextvapue
vToAoyilovtog Tor avbpwmTopopExd vToUETELXA Yior ®ABE PaAoY Yo *&be SoxTOAOL.
To otabuiouévo dbpolopa TwY LTOUETELXWY TWY PUAXYYWY xAbe SaxTOAOL dlvel TO
OLYOALXO GXOP TOL SOXTOAOV, EVE TO OTAOULOUEVDO ADPOLOUO TWY DTTOUETOLXWY TWY
SOXUTOAWY oL TWY TAALOLWY TwY BAoEwY TwY SOXTOAWY, SIVEL TO CUVOALXO GXOQ YL
x6&be pouToTIXG YEQL.

3D Points
Proximal (SHIP) Middle (SHIM) Distal (SHID)

Convex Hulls

Proximal (SHIP) Middle (SHIM) Distal (SHID)

| @&

Anprovpyio xHpwy gpyoatog yioo Tov Seixtn Tov ovbPWTTLYOL XEELOV.

Human Hand Barrett DLR/HIT 11 Shadow

Kuwnuotixd povtéda Tmv mpog o0YxELoT PORTIOTIXWY XEQLWY XOL YWEOL EQYATLOG
TWY TAUOIWY TV BACEWY TwV doXTOAWY.

Barrett DLR/HIT II Shadow

--. ©§ W

20Y%pLon TOY YHOEWY gpYaoiog TwY TAOLSIWY TV BATEWY TwY SoxTOAWY UeTaED
TOL VOPWTLYOL %Ol TWV SLOPOPETLXWY POUTIOTIXWY YEQLWV.
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2x6p avbpwmTop.opELouod YLo To. SLOPOPETLIXA POUTOTLXA YEPLor Xot YLor €ver TTobE-

Tx6 popmotixd yépt (HRobot - Tov axolovbel o xvnuartind povtého tov avbpwmt-
VoL YeELOV xat éyetg Staotdoelg (oeg pe to 110% Tov avBpWhTLYoL YEELOD), YLow xdbe
SGXTLAO %O PAACYYOL

Barrett
Index Middle Ring Pinky Thumb ‘
Proximal 18.89% 20.80% - - 0%
Middle - - - - -
Distal 0% 0% - - 0%
Total  6.30%  6.93% - - 0% |
DLR/HIT II
Proximal 46.50% 55.80% 67.74% 28.33% 16.35 %
Middle 40.86% 37.08% 65.60% 16.28% -
Distal 34.33% 57.48% 76.02%  0.9% 0%
Total 40.56% 50.12% 69.79% 15.17%  8.18% ‘
Shadow
Proximal 45.27% 43.02% 80.85% 49.18% 15.77%
Middle 40.86% 27.59% 53.43% 47.61% -
Distal 52.81% 39.19% 70.21% 22.07% 22.72%
Total 46.31% 36.60% 68.16% 39.62% 19.25% ‘
HRobot
Proximal 75.13% 75.13% 75.13% 75.13% 75.13%
Middle 86.49% 87.09% 86.93% 86.87% -
Distal 66.55% 61.01% 57.42% 68.59% 88.66%
Total 76.06% T74.41% 73.16% 76.86% 81.90% ‘

Xx6p avbpwTouopELoUoD YLo TO SLAQOPETIXE POUTTOTIXE YEQLO XL YLOL EVOL VTTO-
Betix6 popmotind yépt (HRobot), yio tar mAaiota Twv BAOE®Y TwY SoxTOAWY

Barrett DLR/HIT II Shadow HRobot
Positions 44.21% 16.85% 33.41% 75.13%
Orientations | 7.34% 0.4% 60.67% 100%
Total 25.78% 8.62% 47.04% 87.57%

ZUVOAxS o%dp avBPWTOUOPELOLOY YLol TOL OLOPOPETIXA POUTTOTIUA XEQLOL XL YLOU
éva. boBeTind popTotind yépt (HRobot)

Barrett DLR/HIT II Shadow HRobot

10.38%

26.61%

39.93%

80.24%
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Thumb
Barrett DLR/HIT II Shadow

Index

Middle

Ring
DLR/HIT II Shadow

Pinky

BOYRELON TWY YOPWY EPYOOLOG TV QaAayY®OY Tov owBpdmivou yepLtod (xéxxiva
convex hulls xot pmAé xvnpatinés aloIdES) %ot TWY POUTOTIXWY XEELWOY (pLabpo
convex hulls %o x0xxLVeC ®MUOTLXES AVGLSES).
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6. Avtiotoryilovtag v AvOpwmivy o Popmotinn Kivyon pe Asttovpytxo
AvOpwmTopoppLlopd

2NV CUYXEXQLUEVY] EVOTNTO TTPOTELVOLUE UL OELPAL AT OYNULOTA AYTLOTOLYNONG TNG
ovbpwdTvng xivnomg oe avBpwToLop@LXY] POUTOTLXY XiVNoT, YLo. JLOPOPETIXA PO-
pmoTixd ovotiuato Bpaylova yeptod. I'ior vaw ETLTUYOVILE TOV GUYXEXQLUEVO OXOTO,

TIPOTELVOVUE GUYKEXPLUEVOL XOLTNOLO/ULETOLYE TOL AELTOVLEYLXOD aYOPWTTOULOPPLOU.OD.

Moty mepimtwon tov Mitsubishi PA10 DLR/HIT IT popotixnod Bpoyiove, éva oynpo
ovtLotolynong Poaotopévo oty avoAuTixy emiAvon g evbeiog xal avtioTPOoPNG *L-
YNULOTLXNG, UTTOPEL Vo Yomotpomownbel. H avtiotpopy xivnuotixy vmoloyiletor xavo-
vtag yenon touv IKFast aaydptbuov tov OpenRAVE [75] xow n mwAsovaouotixdtnTa
TV AOEWY aVTLUETWTIETAL UE TNV JLaAOY TN TLo avbpwmopop@ixig AVong Tov

EAAYLOTOTIOLEL XATTOLO XPLTNPLO avBpwToLoPELoOD.

Mo v yevixn TEPIMTWOoN TWY POUTOTIXWY CUOTNUATWY UE UM TUTULXA XLVNUOTLXA
otowyeior (pe mAeovalovreg Pabuolg edevbepiag), To oyfuoto avTLoTolynong LAO-
TToLelTOL XOoL ETUAVETOL oy Eval TTPOBANUO U] YOO ULULXNG BEATLOTOTTOINOYG UE TTEQLOPL-
OLOVG, OTTOL EVOL GUYXEXPLLEVO XOLTNPELO AELTOLEYLXOV oYDPWTTOLOPPLOLOV ELGAYETOL

OTYY OVILXELLEVLXY] CUVAOTNON.

[Tpoxetpévou va amtodelEovue TNY TtoS0TIXOTNTO TWY CLYXEXPLLEVLY LEOOSOAOYLOY,
EXTEAECOUE TTOAOTTAG TTELOALOTO. TTPOTOUOLWAYG ®O DM HOL TTELPQAUOTA UE TTOOY O

TG POUTIOTIXA CUOTAUATA, TO OTTolor ETEENYOLVTOL 0To Kepdiato 7.
6.1 Metptxa AvOpwmTopoppiopod

[Tpoxetpévou vo emLTOYOLUE YOPWTTOLOPPLXT] QOUTIOTLYYN XLVNOY], TTPETEL YO ETTLOTOOL-
TEVOOLUE GUYXEXPLUEVO HETOLXA TOV AELTOLEYLXOV avBpwTopopplopot. Tétota pe-
TOLXA lvar Ta axdAoLBa, Tor oTTolor ETTLTLY Y GYOLY aYBpWTOLOPELXN xivnon dTay EAa-

XLOTOTTOLOVYTOL:
* O 6yxog tov convex hull mov dnutovpyeitar amd Tig Béoclg TwY avbpwdTLvwy
%Ol POUTIOTIXWY 0pBpwoewy.

e To abporopo TV OTOCTACEWY PETAED TwY avblp®OTLYWY XaL TWY POUTOTIXWDY

Oéocwy Ty apbpwoswy.

e To dbpolopa Twy epPadwy TwY TELYHOYWY TOL dMuLovpyoLvToL amd Tig HEaeLg

TWY avlpOTLYWY %ol POUTOTIX®Y apbpwoewy.
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6.2 Xynua avtiotoiymong vyt to Mitsubishi PA10 DLR/HIT II cvotypo
Booylova xeptod

[Tpoxetpévou va avtiotorynoovpe ™y avbpd vy xivnon o avbpwmopopeLtxn pouTo-
T xtvnom ytoe To Mitsubishi PA10 DLR/HIT 1T popmotixéd oot Bpayiove xepLov,
evepYoVuE wg eENg:

e Koataypdpovpe Tig O€oelg Tov ovbpiTVOL XKAPTOU XKoL TOU OYXWVOL, UE TO
Isotrak II.

o Koataypdpovue T Ywvieg Twv avbpwmivwy doaxtiiwy pe to Cyberglove II.

* YmoAloyilovpue Tig BEoELG TWY POUTIOTIXWY AXPOIOXTOAWY AVVOVTOS TNy evbeio

ALYNUATLXY] TOUG.

e [t ™y emtbount) B€om xow Tov embouNTd TEOCAVATOALOKS TOL XaPTOD AD-

VOUULE OVOAVTIXG TNV OVTLOTPOEY XLvnuoTLxy Tov Bpoyiovo.

* AvTipetwTCovUE TNV TASOVOOUATIXOTNTO TwY AVCEWY SLoaAéyovTog Ty AVOY

mov elvor M TLo avBpwmopop@Lxn xa ueytotomolel To manipulability measure.

e Eioayovpe éva aviiotabiopa oty 0€om Tov pouToTi®od xamoL, Yo vor eEo-

Asiovpe TG draoTaoLaxés SLaPopES Ue TO avbp®TLvo XEpL.

e Ymoloyilovpe Tig TLo avhpwTopopPLxég AVOELS ATt OAEC TLg AVOELS TNG OV Ti-

OTPOMNG XLYNULOTLXNG YLOL TOL POUTTOTLXA SAXTUACL.

o AvTLUETWTILLOVUE TNV TTASOVATUATIXOTNTO TWY AVCEWY YL TO QOUTIOTLXO YEQL UE

TOV TIPOaYOPEPDEVTA - YLOL TNV TEPITTTWON TOL POUTOTIXOV Bpaylova - TEOTO.

6.3 Tyuo avTLoTOlYNoNG YLO TNV YEVLXY] TEPITTWOY GLOTNLATLY Booryi-
ova XeptoV pe vrepmAsovalovteg Babpods shevbepiog

Mo v yevixn Tepintwon cvoTUATWY PBpoxlovar XEELOV UE UM TUTULXA XLVNUOTLXA
yopaxtnELoTiXd (1., TAgovélovtwy Babudy eAevbepiog), ouvBétovpe éva TEORANLO
BeAtiotomoinong. [lio ovyxexpLpéva €otw 0Tt UE Xpag = fram(Aram) SNAdYVoLUE
TNy avtiotolynon tng evbelog xivnuotinng, m eivor o aplbuds Twv SaxTuAwY xo
XRAHs XRAHgoal € B3 elvow oL TwpLvég xou emtbupntés BEoelg TwY POUTOTLXWY oXPO-
SoxTOAWY, draHo(he, hy) N ambéotaon LETAED TwY TwELVGY xon emtbountdy TEooo-
VO TOALOUWY TWY OXPOOOXTOAWY KO i l|s; — selbowH2 TO KETPLXO TOU AELTOLOYLXOD
=1
ovbpwmopop@Lopob Tov PaacileTol G‘cjo afpolopa Twy aTooTATEWY Twy avlpOTTLVwLY
%ol PoUToTLXWY opbpwcewy. Optlovue AOLTTOY TNY axdAovdn avTLXELUEVLXY] CLUVAE-

™oM VTG aTOYoLG BETMNG, TTEOCAVATOALGLLOD o avbHPWTOROPELOUOD, WG EENG:
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m
Fran(dran) = Y WrAHz, | TRAH, — TRAHgoA, ||’
i=1

m n
+> WrAHo AR AHo (e, Bg) +wD Y 185 = Seibow]|?
i=1 j=1

OTTIOV WRAHz» WRAHo XOL wp €lval Tow fpy TToL 0pLllovY TNV OYETLXY] ONUOVTLXOTNTO
TwV TéYWY BE0TC, TEOGAVUTOALGLLOD %ot ovBPWTTOULOPPLOL.0D AVTLGTOLYSL, Seipow € R
elvor M B€om Tov AaVBPWTLVOL oYWV %o TO 55 TTEPLEYEL TLG DB€oElg TV POUTOTIXWY

opbpwoewy.

Mapping for 18 DoF Arm Mapping for 44 DoF Robot Arm Mapping for 4 Fingered Hand

and 5 Fingered Robot Hand

® @ B

Human Model  Robot Model Human Fingertips  Robot Fingertips ~ Splines Curve  Splines Fingertips Goals

STYULOTUTIO. TWY TELPOUATWY TTEOTOUOIWONG, YL OYNUOTA OVTLOTOIYNONG TNG Ov-
OpwmLvng xivnong oe avbpwopop@Lxy pouToTixy xivnon Lo Bpoyiovo 18 Bobudv
ehevbepiog, éva TeTPAIARTUAO XEQL Xot €val POUTIOTLXG abaTre Bpayiova xepLod pe

44 BoBuove ehevbepliog yra Tov Bpoyiova xot 5 déxTuAa YLor TO YEQL.

Experiment 1
Teleoperation of Mitsubishi PA10 DLR/HIT II model

Experiment 2
Teleoperation of 21 DoFs Robot Arm and DLR/HIT II Robot Hand models

[etpdpota aviiotolynong g avbpwmivng xivnong os avbpwmopop@Lxy) POUTOTIXN
xivnon, yonorpomotyvtag to OpenRAVE simulation environment.
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AA\Aetidpaon AvOpwmov Popmdt: Epappoyée, Metpdpota
xot [lpodiaypopés Xyxedtaopod

7. TyAexetpiopdg Popmotindv Tvotqudtoy Bpayiova Xeptod

2NV OUYXEXPLUEVT EVOTNTO Y PNOLLOTTOLOOUE TOL OYTUATO OYTLOTOLYNONG TNG avbp-
YNNG %{YNomNG o€ avbpWTOLOPELXY] POUTTOTLXY Xivnom TTov TPOoTdbnxay oto Kepdiato
6, yia eoppoYEg TnAeyeLpLopol pe to Mitsubishi PA10 popmotixd Bporyiova xo eme-
d€ELov tAeyetptopotd pe to DLR/HIT I popmotixd yépt.

[Tpoxetpévov va tnAexetptotodpe to Mitsubishi PA-10 popmotixd Bpoylova ypnot-
LOTTOLOVKE EVOL GOOTNUOL XATOYPOPYS TNG O€ong Tou avbpdmivov xopTod xal Tov
OYHWVOL XOL DAOTTOLOVUE TNV GVOAUTLXY] TTPOCEYYLOY] TTOU TEQLYPAPAUE GTNY TTEOY-

YOU.EVY EVOTTTA.

To va exteréoovpe emdEEL0 TRAEYELPLOUG oVTLXELPEVLDY (ULog pxphg UTTEAOG XoL
evig xouTLoL TopToXaAGdag) pe to DLR/HIT II popmotixd Yépt, YONOLLOTIOLOVUE TO
dpbpwon mpog Gpbpwon (joint-to-joint mapping) oyAua avtiotoiynong xobwg xou
ULt CLOXELY] XOUNAOD XOGTOVG TOL TAPEYEL OVASPAGY, dVVOUNG Y ONOLULOTIOLWOV TG

RGB LEDs xot potép 36vnorng, »ote va UTOoPel 0 XeNotng var avTtAouBavetol Tig

OLOXOVUEVES OTTO TOL POULTIOTLXE OEAXTUA SUYAUELG.

Index, Middle Flexion Thumb Flexion

Parallel Fingers Abducting Fingers

Avopopetind oTLYULOTUTIOL 0Ttd TO TELPOUO TOU TNAEYELOLOUOV TTOL EXTEAETTNXE UE
70 popTotxd yéot DLR/HIT II.
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Small Ball Manipulation Rectangle Manipulation
(Squeezing and Rotation) (Squeezing and Slight Rotation)

AtopopeTixd oTLYpLOTUTTOL OTtd TO TELPOLO, TTOL CPOPOVOE ToV ETULIEELD YELPLOUO
XOONUEPLVWOV OVTIXELUEVLY, LEGW TOL POUTOTLIXOV Yeptov DLR/HIT II.

ZTYULOTUTIO ATl TO TELPUWLO, TTOL POPOVOE TOV TNAEYELPLOUO Tov Mitsubishi PA10
pouToTLX0V Pporyiova.

To URL tov video Ttov tepLéyetl T0 mMelPapa TNAEYELPLOKOD TOL POUTOTLXOD Booyiovo
Mitsubishi PA10, pmopet vo Bpebet ato [76].

To URL 7ov video Tov TepLEYEL TO TTELPAUATO TNAEXELPLOUOV oL ETILIEELOL YELOLOUOD

ovtixelpévwy Le to DLR/HIT 1T popmotixd yépt, pmopel vo Bpebei ato [77].


http://www.youtube.com/watch?v=Gm-JAzd8F-w
https://www.youtube.com/watch?v=MmK1QmLHajk
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8. KActotoU-Bpoyov AvOpwmopoppindsg Xyediaopog Apmoyng Avtixetpé-
vov Baotopévog o Zuvaptnoetg ITAonynong

2NV GUYXEXPLUEVY] EVOTNTA TTEPLYPAPOVUE EVOL OAOXANPWUEVO OYNUO XAELGTOL Bpd-
¥OU YLot ovHPWTTOROPPLXSG OYESLUOUS OPTTOYNG OVTIXELLEVWY, BACLOUEVO OE CUVOOTY-
oelg Thofynong (Navigation Functions). To potetvéuevo oyfiuo LTopel vor xoNnoLpo-
mownbel wote to Mitsubishi PA10 DLR/HIT II poumotixd cbotnua Bpoylovo xgpLod,
vou TPooeYYLLeL xow vou opmalel e avbBpwmTopopeind TpdTo, TANHWEo xobnpeptvdv

OVTLXELUEVWV.

[Tpoxelévon vor TTETOYOVILE TOV GUYKEXQLUEVO GTOYO, XONOLULOTTOLOVUE DEOUEVOL OV~
Bowdmivng xivnong wote va petaépovpe deELdtnreg amd tov avbpwmo oto PouToT.
[Tto ovYxEXPLUEVOL XENOLULOTIOLODUE TO OYNUATO AYTLOTOLYNONG XivNong Tov TPoTain-
xov 070 Kedhoo 6, ote va Tapdyovpe omtd Ty avbpdmivy xivnay, avbpwmopop-
QXN POUTOTLXNY %(YNoM YLt OAOXANPO To cbotnua Bpayiova xeplod. XNy GUVEXELX
Baoltopéva o GLYOPTNOELS TTAONYNOELS LOVTEAD eEXTTOLdEVOVTOL, WOTE Vo pobaivouy
"TAOUOTIXA' EUTTOSLO GTOV YWEO XAUNANG OLEOTOONG TWY avblpWTORoPELXWY PO-
UTTOTLXWY RLYNUOTIXDOY OS0UEVWLY. ALTA Ta epmtodtor Tor Bonbovy WwoTe vor TopdyoLvy
VEES avBPWTTOUOPPLXES TOOYLEG KL SLOUOPPWOTELS, EYYVWIEVO TTAVTO GOYXALGT GTOV

emtbountd aToy)0.

[TpémeL vor TOVLGTEL OTL TOL CUYXEXPLLEVOL LOVTEA EXTTOLIEVOVTOL YLOL CUYXEXPLLEVES
Otepyaoteg axpLg OTWS GTNY TEPITTWOY TWY SLETAPWY NAEXTOOUVOYPAPLYWY OY)-
LATWY, XONOLULOTIOLWOVTOG LOVO 2 YOOOXTNELOTIXE TWY SLEQYACLKY, TOV DTTOYWEO TEOG
TOY 0Ttolo TTEETEL Vo xtynBovy %ol TO OVTLXELLEVO TTOL TTPETEL VL TILAGOLY. To TEAXO
OYNUO TTOLPAYEL TTPOCUPULOGTLXY] CLUTIEQLPOPA TToPOUOLL LE TWY ovHpWTwY, evep-
YOTTOLWOVYTOG LOVTEAD EXTTALOELUEVDL YLOL OUYXEXPLUEVES OLEQYOTLESG BaOLOUEVO GTNY
aTtdEooY TOL TOLPVEL Vol GVOTNUO. TEXYNTAG Opomg (OYETLXA UE TOV LTTOYWPO TTOL

Boloxetor évor avtixeipevo xot to i80g ToL aVTLXELLEVOD).

Human
Motion Data NFs are trained in a task-specific way,

using two task features, subspace to
‘L move towards and object to be grasped.

Mapping Human to Robot
Motion Module

\1’ Task Specific NFs
Training Module

Dimensionality Reduction of
Robot Motion (PCA) Object 1 Object 2 Object 3
Subspace 1 Subspace 1 |...| Subspace 5
NF 1 NF 2 NF n

A 4

Exmaidevon twv LovTéAwy yiar oLuYXEXQLUEVES DlepYaales.
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A vision system based on
RGB-D cameras (Kinect) is

Camera

Classification Module

usgd in Ord_e_r to perfgrm Object Recognition | SS’:;E;? Ob].e.Ct
object recognition and object = Decision
pose estimation, feeding with — v
new “desired” positions the NF [ Pose Estimation | NF Models
based scheme.
Object 1
Subspace 1
d svstem i : NF 1
‘ le perturt i
€ graspe ng the = Object 2
Subspace 1
NF 2
Velocity and Back Projection of Object 3
Position  [€— Estimated Robot ~ [€— SUbﬁEace 5
Control Kinematics in High-D "

ZHESLAYQOUUUO TOL TEALXOD GYAUATOG LE TO GOOTNLO TEYYNTAG OPUTTS.

AmoteAéopato amd Evar TEWTO TELPOLOL TTOV OPOPOVTE TNV TTPOCEYYLOY XOL XOTTOYY

evog avTixeLlpévon tomobetnuévon oe tuyaio Béon xaL TEOCAYATOMOUS GTOV TELO-

JLAOTATO XWPEO, uTopody vo Bpebody oto video oto [78].

To Mitsubishi PA10 DLR/HIT II popmotixd adatnpo Bpoyiove xepLol, ametxoviletol
Vo aPTTALEL €Vl TETPAYWVO OVTIXEILEVO Tl Tuyoior BEGM xo TTPOGOVATOALOWUO, e

ovbpwmopoppixd tpdTo.


http://www.youtube.com/watch?v=icnB0Hvzpsw
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"Eva video amé éva detvtepo melpapa, 6ov to Mitsubishi PA10 DLR/HIT II cdotnuo
Booriova yepLoV, mpooeYyilel xor apmalel avlpwTOLOPELXA €var x0LTL ATl YLUO
TeTopévo o Tuoyaia O€om xol TEOCAVUTOALGUO TTAVW O Ulo ETTLOAVELX, UTTOPEL Vo

Beebel oo [79].

Closed- Loop Humanlike Grasp Planmng with MltSublShl PAlO DLR/ HIT 1I

ZTyptdtuTo Tou SeVTEPOL TELPALOTOG.


http://www.youtube.com/watch?v=wsN23y1oCQQ
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9. Avoytod Kwdwxa xot YAtxod, Xouniod Kdotovg xot Bdpouvg, Ap-
0pwtda, Yroemevepyodpeva Poprotixd Xépta

2NV CUYXEXQLUEVY] EVOTNTOL TTPOTELVOLUE Lo VEX OYESLOOTIXY] TTPOCEYYLOY] YLOL TNV
ONULOLEYIR, VTTOETIEVEPYOVLEVWY POUTIOTIXWY YEELWY, TOL OTTOlo ELVOL YOUNAOD XO-
otoug (xootilovy Aydtepo amd 100 USD), yopniod Bépovg (Cuyilovy Aydtepo 200
gr | 0.44 1b), eivor eYYevdg LTOYWENTLXE, 0PHPWTA XOUL UTTOPOVY VO XOTOLOXEVO-
cbodv pe @Onva ko edxora - oto vo T Tpopnbevteic - LAxA. To cuyxeEXPLELEVYL
QOUTIOTIXA XEPLO UTTOPOVY VO YOPOXTNELETOVY (G YEVIXOD OXOTTOV, Xt UTopovy

vo ypnotpomotnody amd opéTenTeg EQUPUOYES OANAETIISpaoNG avHPWTOL POUTIOT.

H oyedioon twv ouYREXQLUEYWY POUTIOTIXWY YEQLWY Paoiletar o plor oA A&
OTOTEAEOUATLXY] LIEX: TOV YO XENOLULOTTOLNHOOY Y WVLOTIXEG XAL AYTAYWYLOTIXES V-
Vel WoTe vo bAoTtotniel k& xow N ExToon TwY doaxTOAWY. Xtobepd eAacgTo-
UEEN LALXE XONOLULOTTOLOOVTOL WG AVTIXATACTATES TWY oVOPWTILYWY EXTATIXWY TEVO-
VTV X0l SLUYOTA VARLOTO T OTTOLo. JPOLLOAOYOVVTOL LEGO TG XVALYSPOLG YOUNANG

TOLPNG, YENOLULOTTOLOVYTOL YL VO DAOTTOLOOLY TOVG XAUTTTLXOVS TEVOVTEG.

H Sopn tov poumotixod doaxtdAoL.

Two Fingers Three Fingers | Four Fingers vl | Four Fingers v2
S,
I=T= ]
& 2
¢ A VA ¢

Atopopetixol TomoL xepLdy (Le Stopopetind aptBpd SoxTtOAWY) TOL PTOEOVY VO
dnutovpynbody ekontiog g apbpwtg Bdomng Twy daxtdOAwy pe Tic 5 Béoels.
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9.1 "Evag ota@opinds pnyoviopos ne oxnuo dioxov

O drapopixdg pnyoviopnds o oyNuor 8loxoL eVEVEL Tal OLOPOPETIXA OAXTUAA TOL
QOUTIOTLXOD YEPLOVD UE TOV XLYNTNEO XL EEATQOAILEL OTL oxOUN %Ol OV XEATTOLO 7
xamolo dGxTLUAL €pHovy O ETTOUPY] LE TNV ETULPAVELO EVOS AV TLXELUEVOD, TOL VTTOAOLTTOL
daxtuAa o GLYEYIGOLY VO XAELYOLY/XLYODVTOL EWG OTOV ATTOXTHOOLY XAL XVTA ETTOPY
1e To ovTxelnevo. O ocLYXEXPLUEVOG SLOPOPLXOG UNYOVLOUOG ELVOL UL TTOEOAAXYT] TOV
whiffle tree (1 seesaw) pnyoviopob [80]. ‘Evoc mopdpotog Sta@optnds unyoviopdc o

oYNUe TELYWVOL elyxe Tpotabel ato TapeAloy oto [81].

O drapoptxdg unyoviopds LE TV LoE@1 dloxov.
9.2 ATAQ VALXA, YOUNAOD ®GGTOUVG

Tow ouYREXPLUEVOL POUTIOTIXA XEQLOL UTTOPOVY VO XOTAOXELOGTOVY UE OTTAG UVALXAL,
xounAod xootovg. Mo mopadetypo ot xOAVSpoL YounAng ToLBng Kmopoldy vo dn-
pwovpynbody amo uroatovéteg xabaplopnod Twy avtiwy. To Plexiglas emiAéyOnxe g
TO ®VPLO LALXO YLOL TOL CUYXEXQLUEVOL POUTIOTLXE XEOLO, AOYW TOL YOUNAOD ®OGTOVG
XOL TWY OYETLXA XOAWY LOLOTATWY, AAA& OTTOLOOONTTOTE UTOPEL Vo ETLAEEEL SLapope-
Tx6 TOTO TAaoTLX0V. [Ipémel emiong vo Toviotel OTL To ouyxexpLuévo design eivor
2D pe amotéAeopo vor UTOPEL €val POUTIOTIXO YEQL VO XOTAOXEVAOTEL UE €val OLTTAG

laser printer (ywpig vor TpovTobétel HapEn 3D printer).
9.3 Video xou lotéTomog

‘Eva video (oe HD motdtntar) 61ou Tor pOpTToTLRE YEQLOL XOMOLLOTTOLOOYTOL YLor Stot-

(POPETLXEG EQUOUOYES, LTOoPEl var Bpebel ato [82].

[Mpémer TéAog v onuetwbel 6Tt €vag LotéToTog €Yl dnuiovpyndel, Wwote va TopEyeL

TIANPOQOPLES %ol 0SNYIEG XATATKEVNG TWY TPOTELVOUEVLY POUTIOTLXWY XEQLWOV:

http://www.openbionics.org


http://www.youtube.com/watch?v=yEANsfaE1gs
http://www.openbionics.org
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Tot SLaPOPETIXG XOUUATIOL TTOV YONOLLOTIOLOOYTOL YLOL TNY XOTOUOXELY] TWY POWUTTO-
TIXWY YEPLWOV.

Aerial Gripper | 2 Fingers
2 Phalanges 2 Phalanges

I

3 Fingers
2 Phalanges

3 Fingers
3 Phalanges

4 Fingers
2 Phalanges

¥
L4

ALopopeTIXd PLOVTEAD %O TTPWTOTLTTOL POUTIOTLXWY YEQLV.
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Yopmepaopoto xor MeAlovtixég KatsuOovostg

10. Zvpwepdopoto

2NV oLYXEXPLUEYY OL3OXTOPLXY SLATELBY] TTPOVOLACOUE OYNULATO UNYOVLXNG LAON-
OMG YLOL SLETTOPES NAEXTOOLLOYPOUPLXWY CTLAT®Y, TTOU UTOPOVY Vo YeNatLomotniody
OE OWPELO EQAPLOYWHY AANAETTLOpOoNG atvDPWTTOL POUTIOTIXWY SLGTNUATWY. Tow GL-
THEXQLULEVOL TYNLOTOL LTTOPOVY VO ATTOXWOLXOTTOLNO0LY TH6a0 TNy awvbpwTivy Tpdheon
600 xot TV avbpwTyn xivnom, Paotouéva GTLG LVONAEXTOLXES SPUOTNPELOTNTES TWY
LY ToL aYbpwTLYoL dvw dxpov. EmimAéoy cuvdualovy évav Takvounty pall ue
Evay TTOALYSQOUNTY, DOTE VO XOTAXEQULATLIOOVY TOV XWEO SPAONG KOL VO TTPOGPEQOVY
XOAOTEPN axplfeta exTiunong g avbpdmTyng ®ivnomg, LE LOVTEAX EXTTOLIEVLEVOL YLOL

OLYXEXPLUEVES OLEPYOOLEG.

‘Ooov aQopd TLg EPUPUOYES OANAETISPaaNS avbPWTOL POUTIOT, EGTLATUUE GTOV OrY-
HowTOLOPPLOUS TWY SLAPOPETLXWY POUTIOTIX®Y TEXVOLEYNUATWY. [Tto ouyxexpLpéva
oLoxpivope LETOED TV SLOPOPETIXWY EVYOLWY TOL ovHPWTTOULOPPLOUOD, ELOAYWVTOG
TLg €vvoleg tov Aegttovpyixol xot AvtiAnmtod AvbpwmopopgLopot. EmimAéov, mpo-
TEVOPE Pl OAOXANPWUEYT pebodoAoyior YLow TYY TTOGOTLXOTTONGY Tov avbpwTouop-
QLOUOV TWY POUTIOTLXWY YEPLWY %Ol CLUVHETOUE SLOPOPETIXE TYNULATO OYTLOTOLYNONG

™¢ avbpWTLYNG 0 avBPWTTOLOPPLXY] POUTTOTLXNY X{VNOT).

TEAOG, TPOTEIVOUE ULOL VEX TTPOCEYYLON YLOL TNV XU TAOXEVT] VTTOETTEVEQYOVUEVLY PO-
UTTOTLXWY YEQPLWY, T OTOLaL ELVaL vOLYTOD XWX XOL DALXOD, YOoUNAOD %xOGTOLG
%o Bépoug, apbpwTa xot EYYEVKHS LTTOYWENTLXA. Tow CLYXEXPLUEVOL POUTIOTLXE YEQL
UTTOPOVY Vo XENOLLOTTOLNH0VY YLor TTOAATTAOVS OXOTTONG o EQopoYes. [lpoxeLué-
VYOU VO OTTOGELEOVUE TNV ATTOSOTLXOTYTOL TWY CUYXEXPLULEVLY LEBOSOAOYLWY ol TwY
ONULOLEYNOEVTWY POUTIOTIXWY YEPLWY, EXTEAECAUE TANDWE TELPOUATWY TTOL PO~

P0VCOY SLOPOPETIXES EPUPLOYES OAANAETTLIdpatomG avbpwToL o POUTOT.
10.1 Kodpteg ovvetopopég

Yuvoilovtog, oL xOPLEG CLVELGPOPES TNG CUYXEXPLUEVYS OL3AXTOPLXNG OLUTELPRYG,

elvot ot oaxdAovbeg:
[Tpoteivope éva TANPEG OYNUO UNYOVLXTG LEONONG YLa SLETTOPES NAEXTPOLLOYPOPL-
XWY ONUATWY, TO 0TTOLO:

* XOMNOLLOTIOLEL GUYEQYATLXA EVOY TOELYOUNTY KoL VOV TTOALYIQOUYTY.

o Kartoaxeppoatilel Tov X0 Spaong, SLoxpivovTag TOLO YAQOXTNOLOTIXA TWY OLo-
(POPETLXWY OLEQYOOLWY: CUYXEXPLILEVO VTOYWPO, LVTLXELLEVO TTPOG LPTTALY ], OLEQ-

Yooior TTPOG EXTEAED.
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* Mmopel voo amoxwdixomotoel tooo Ty avbpwmivn mpdbeon 6oo xor Ty av-

0pWTTLYN %IYNON ATTO NAEXTPOLLOYPOPLXG CNULOTAL.

e [Tpoo@epel xaAdTeEY]) extipnon g ovbpwmLyng xivnong e LOVTEAD EXTTaLOED-

UEVOL YLOL OUYXEXPLULEVES OLEQYATLEG.

[Mpoteivope pra pebodoroyia Baotouévn oe pebddovg bewpiog cLVOAWY %o LTTOAO-
YLOTUNG YEWRETPLOG YLOL TNV TTOCOTLXOTOLNGY TOL aVHPWTTOUOPELOLOD POUTIOTIXMY

XEQLOV:

e [lpoxetpévou va Babporoynoovpe Ty avbpwTOULOPELXOTNTO VPLOTAUEVWY KO

VEWY QOUTIOTLXWY YEPLWV.

e [t va eEdryovpe TPOOSLAYPOUPES TYEDLOONG, YLaL Lo VEX YEVLA avbpwTopop@L-

WY QOUTIOTLXWY YEQLWOY XOL LVONAEXTOLXWY TTPOCGHETIXWY CLOTNUATWY.

[Mpoteivape plo oslpd oxyuéTwy avtiotolynong g avbpwmivng xivnong os avbpw-

TIOLLOPOLXY] POUTIOTLXY] %{VNOoTN, TO. OTToloL:

* Eyyvovtot tov ovhpwmopnop@Lops e QOUTOTIXNG XIYNONG EXTEAWDYTAG LE XL~
Betar ouyxexpipéveg depyaoicg (TNEWYTOG CLYXEXPLULEVOLG TTEPLOPLOKODS TTOUL

éyovv tebel amd Tov YPNoT™N).

¢ TIpoapépovy avBpwmop.op@Lxy] POUTOTIXY X{VNoT, OXOUT XOL YLOL POUTIOTLXA GU-
oThpoTo Bporyiove YepLod PE PN TUTILXE xynUatikd xopoxtneLtotixd (ue Thco-

véilCovreg Pabuode ehevbepioc).

* Mmopodv va ypnotpomotnfody oe owpeio QoPRLOY®Y dAAAETTiSpoong avbpw-

TTOL POUTTOTLXWY CLOTNULATWY.

EYEOLAOOUE KOl KATOOXEVAOOUE L0 OELPE OTTO VTTOETTEVEQYOVEVOL POUTIOTLXA YE-
pLo, Tor oTolor €lvot avoLyToD XWOLXO xoi VALXOV, XopnAol Bapoug xow xGaTous, Y-

YEVKGS LTTOYXWENTLXE, 0PbPWTA ot Tar oTolo:

* Mmopody va exteAéoovy apmayés TANOHEaG xabNUeEPLYWY avTixeluEvwy.

e Eivow eEotpetind amodotixd oxdun xor vo ofeBatdTnTeg oxeTXd pe Ty Béom
XOL TNV YEOUETOIX TWY TTPOG OLOTTOYY] AVTLXELUEVWY, EEXLTIOG TNG EUPLTNG LTTO-

XOENTLUOTNTOS TOVG.

e Mmopody Hewpnbody wg popToTIXd YEQLX YEVIXNG XENOMNG, xa0K)G ELvat ypNoLua

YLt Lo GELPE aTtd EQOPUOYES OAANAETESpaoTg avbpwTou poumdr.



10.2 MeAlovtixég KatevOdvoetg

* ALXTOTTWON NLLOIVTOVOUWY OYNULATWY YLO. TOV BOOLOUEVO GE NAEXTOOLVOYQOUPLKAL

OAROTOL EAEYYO POUTIOTLXWY TEXVOLEYNLATWY (XVEIWS TEOGHETIXWOY LEAWY).

® YHeSLOOUOG XL XAUTOUOXEVY] VTTOETEVEQPYOVLEVWY POUTTOTLXWY YEQLWY XOL TTO-
o0eTXWY CLOTNUATWY, To oTtola ot Vol AVOLYTOD RWILXA XAL DALXOV, XOoUNAOD

x60ToLG xoL Bapovg xot Ha xoTaoxeLALOVTOL YLOL CUYKEXPLULEVES DLEQYATLEG.

® YYESLOOUOG KO XUTOOXEVY] VTTOETEVEQYOVUEVWY POUTIOTIXWY YEQLWY YLO ETTL-

O€ELo YeLpLoul xoONUEPLYLY aVTIXELUEVWY.
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Chapter 1

Introduction

Over the last decades the cross disciplinary fields of ElectroMyoGraphy (EMG) based
interfaces and Human Robot Interaction (HRI) have received increased attention, due to
their numerous applications in everyday life, dynamic and human-centric environments.
Typical EMG based applications are, EMG based teleoperation of robot artifacts in
remote and/or dangerous environments [1], [2], EMG based control of advanced prostheses
[3], EMG control of exoskeletons [4] and development of muscle computer interfaces for
human computer interaction [5] and [6], while some indicative HRI applications are,
humanoids that interact with children [7], industrial robots that cooperate advantageously
with humans [8] in a safe manner [9], intuitive teleoperation of redundant robots [10]

and household robots that assist humans in everyday life tasks [11-13].

In this Ph.D. thesis we propose advance learning schemes for EMG based interfaces,
that take advantage of both a classifier and a regressor, that cooperate advantageously
in order to split the task-space and provide better human motion estimation accuracy

with task-specific models. These schemes can be used for numerous HRI applications.

Regarding HRI applications, we mainly focus on anthropomorphism of robot artifacts,
proposing methods that can be used to quantify human-likeness or robot artifacts and

efficiently map human to anthropomorphic robot motion.

Finally we propose a series of open-source, light-weight, low-cost, modular, under-actuated,
intrinsically-compliant robot hands that can be used for both EMG control studies (even

as affordable myoelectric prostheses) and HRI applications (for teleoperation/telemanipulation
studies as end-effectors of robot arm hand systems), grasping a wide range of everyday

life objects in dynamic environments (even under object position and shape uncertainties),

owing to their inherent compliance.
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The scope of this Ph.D. thesis and our contributions, are discussed in detail at the

following sections, focusing on four different fields:

o EMG based interfaces.

Anthropomorphism of robot artifacts.

Mapping human to anthropomorphic robot motion.

Robots operating in structured and dynamic environments.

1.1 EMG based interfaces

Although EMG based interfaces are very promising and may have a vital role in human
robot /computer interaction applications for the years to come, they also have certain
problems that have been identified and discussed in many studies in the past. Some
of these problems are, the high-dimensionality and complexity of the human musculo-
skeletal system, the non-linear relationship between the human myoelectric activity and
the motion or force to be estimated, the muscular fatigue, the signal noise caused by

electrode perturbations, muscles switching, sweat etc.

In order to address the problem of the high-dimensionality, Principal Components Analysis
(PCA) has been used in several studies in the past, to investigate both human hand

kinematics and muscular synergies [14-19].

Another major difficulty that researchers face in the field of EMG based interfaces, is
the highly nonlinear relationship between the myoelectric activations and the human
motion [20]. To overcome this problem the majority of the researchers avoid to decode a
continuous representation of human kinematics, focusing on a discrete approach like the
directional control of a robotic artifact [21] or the EMG based control of a multifingered

robot hand to a series of discrete postures [22-27].

Regarding the continuous EMG based control approach, various models have been used
to provide human motion estimates based on human myoelectric activations. Some of
them are, the Hill-based musculoskeletal model [28] which is the most commonly used
model [20, 29-32], the state-space models [1, 33, 34], Artificial Neural Networks (ANN)
[35-37] and Support Vector Machines (SVM) based regressors [2, 38].
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Ph.D. Thesis Contribution

In this Ph.D. thesis we formulate a complete learning scheme for EMG based interfaces,
that takes advantage of a classifier which is combined with a regressor (combining
the discrete and continuous approaches). The classifier and the regressor cooperate
advantageously in order to split the task space and provide better estimation accuracy,
with task specific models. The whole scheme is based on the random forests methodology

for classification and regression.

EMG signals are used to discriminate different reach to grasp movements in 3D space.
Task specificity is introduced in three different levels, suggesting that the myoelectric
activity differentiates; between reach to grasp movements towards different subspaces,
between reach to grasp movements towards different objects, as well as between reach
to grasp movements towards a specific object placed at a specific position, but with
the intention to perform different tasks (with the grasped object). The classifier uses
the human myoelectric activity, to discriminate between those different reach to grasp
movements in the m-dimensional space of the EMG signals (m is the number of channels).
The regressor is first used to train task-specific models for all possible tasks, so as for a

task-specific model to be triggered, based on the classification decision.

Classification decision is taken at a frequency of 1kHz, enabling our scheme to identify
the task in real time. The proposed scheme can provide continuous estimates of the full
human arm hand system kinematics (27 DoFs modeled, 7 for the human arm and 20 for
the human hand). Those estimates can be used by a series of EMG based interfaces for

different HRI applications. More details can be found in Chapter 3.

Important Questions for EMG Based Interfaces

Some important /motivating questions that we are trying to address in this Ph.D. thesis,

are the following:

e Do muscular co-activation patterns differentiate between different tasks?
o Can we decode human intention from myoelectric activations?

o What task information can be extracted from EMG signals?

e Can we improve EMG based motion estimation accuracy?

e Can we define which EMG channels are the most important?
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1.2 Anthropomorphism of Robot Artifacts

Anthropomorphism or else humanlikeness of robot motion is also very important, for a
variety of HRI applications. Almost 140 years ago Charles Darwin suggested anthropomorphism
as a necessary tool for efficiently understanding nonhuman agents [39]. Moreover, recent
studies showed that the more human-like a robot is in terms of motion, appearance,
expressions and perceived intelligence, then the more easily will manage to establish a

solid social connection with human beings [40-42].

Different indexes/metrics of anthropomorphism have been proposed over the past, for
assessing humanlikeness of robot artifacts. Most of them focused on anthropomorphism
of robot hands. In [43] and [44], anthropomorphism is derived as the weighted sum of
kinematics, contact surfaces and size scores, while in [45] and [46], the human and robot
hand workspaces were represented in low-dimensional manifolds and then compared.
Although, these latter studies are quite interesting, none of them proposed a systematic
way of comparing the robot hand kinematics with the full human hand kinematic model

(e.g., taking into account the mobility of the palm bones).

Ph.D. Thesis Contribution

In this Ph.D. thesis, we discriminate between the different notions of Anthropomorphism,
introducing Functional Anthropomorphism and Perceptional Anthropomorphism. More

details regarding their differences can be found in Chapter 4.

Moreover, we propose a complete methodology based on set theory and computational
geometry methods, for quantifying anthropomorphism of robot hands. More specifically
we introduce a series of metrics based on finger workspace analysis, assessing the relative
coverages of human and robot finger phalanges workspaces, as well as human and robot
finger base frames workspaces. A weighted sum of the proposed metrics, which can be
adjusted according to the specifications of each study, results always to a normalized
score of anthropomorphism (i.e. human-likeness) that ranges between 0 (non-humanlike
robot hands) and 1 (human-identical robot hands). Three different robotic hands are
examined, in order to test the efficacy of the proposed methodology and a series of
simulated paradigms of the different types of workspaces are provided. Details on the

quantification of anthropomorphism of robot hands, can be found in Chapter 5.
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Important Questions Regarding Anthropomorphism

Some important questions that we are trying to address in this Ph.D. thesis, are the

following;:

e How can we define anthropomorphism of robot artifacts?

e What are the different notions of anthropomorphism?

« What HRI applications require anthropomorphism?

e Is it possible to quantify anthropomorphism of robot artifacts?

e Can we extract design specifications for the creation of humanlike robots?

1.3 Mapping Human to Anthropomorphic Robot Motion

The problem of mapping human to robot motion, has been one of the most challenging

problems of the Robotics field, over the last 50 years.

Various human to robot hand motion mapping methodologies, have been proposed in the
past: fingertips mapping [47, 48], joint-to-joint mapping [49], functional pose mapping
[50] and object specific mapping [51]. Moreover, human grasping synergies have also

been mapped to robot hand synergies [52, 53].

Regarding human to robot arm motion mapping, most previous studies focused on a
forward-inverse kinematics approach, to achieve same position and orientation for the
human and robot end-effectors [54, 55]. Some of them proposed also methodologies to
describe and model the dependencies among the human joint angles, acquiring anthropomorphic
robot motion [83]. For the general case of highly articulated figures and multi-DoF
robot artifacts the human to robot motion mapping problem is typically formulated as

constrained non-linear optimization problem [24, 56, 57].

Regarding anthropomorphism of human to robot motion mapping schemes, some recent
studies have focused on the extraction of human-like goal configurations for robotic
artifacts [58-60], but there is no systematic method for deriving anthropomorphic robot
motion even for robot artifacts with non-trivial kinematics (e.g., hyper-redundant robot

arm hand systems).
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Ph.D. Thesis Contribution

In this Ph.D. thesis, we propose various human to robot motion mapping schemes, for
different HRI applications. Different criteria of anthropomorphism are introduced and

they are used in order to achieve humanlike robot motion.

For robot arm hand systems with solvable Inverse Kinematics (IK), the IK solutions are
computed analytically and the most anthropomorphic solution is chosen using specific

criteria/metrics of functional anthropomorphism.

For the general case of redundant or even hyper-redundant robot arms and m-fingered
hands, the human to robot motion mapping can be formulated as an optimization
problem, that solves inverse kinematics under position and orientation goals (human
imposed functional constraints') and handles redundancies with specific criteria of anthropomorphism.
More specifically, mapping is formulated as a composite optimization problem for the
whole arm hand system, where the fingertips of the robot hand are considered to be the
end-effectors instead of the robot wrist. Moreover for the case of m-fingered hands we
assign human thumb fingertip position as a position goal for one of the robot fingers and
we use splines to calculate the rest robot fingertip positions, interpolating between the

rest four (index - pinky) fingertip positions of the human hand.

More details regarding the mapping schemes, can be found in Chapter 6. Details regarding
the possible HRI applications and experiments conducted in order to validate the efficiency

of the proposed methods, can be found in Chapter 7.

Important Questions Regarding Human to Anthropomorphic Robot
Motion Mapping Schemes

Some important questions that we are trying to address in this Ph.D. thesis, are the

following:

e Is it possible to transfer human skills to robot artifacts? How?
e Is it possible to map human to robot motion, in a humanlike manner?

e Is it possible to map human to anthropomorphic robot motion, for artifacts with

arbitrary kinematics?

e Is it possible to perform teleoperation and telemanipulation with robot arm hand

systems in a humanlike manner?

!These are tasks constraints not optimization constraints.
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1.4 Robots Operating and Interacting with Structured and

Dynamic Environments

Nowadays it’s quite typical for robot artifacts, to operate and interact not only within
predefined, a-priori known, structured environments, but also in everyday life, dynamic
environments. The term interaction, is typically used for robot end-effectors, that are

most commonly robot hands (e.g., typically parts of robot arm hand systems).

Over the last fifty years, roboticists have been intrigued to understand and be inspired by
nature’s most versatile and dexterous end-effector, the human hand. First robot hands,
were actually robot grippers, capable of grasping a limited set of objects with simple
geometry, located in a-priori known static environments. Nowadays grippers are still the
most common alternative for robot grasping [61, 62], owing to their low-complexity and

low-cost.

But the state-of-the-art of robot hands follows the road to increased performance,
complexity, cost and humanlikeness [63]. Such robot hands are typically fully actuated,
rigid and equipped with sophisticated actuators and sensing elements, in order to perceive
the environment. For example it’s crucial for a rigid robot hand to have tactile sensors
attached at the robot fingertips, in order for the interaction forces (e.g., with a grasped
object) to be measured and appropriate force control policies to be employed. Force
control schemes, can ensure efficient grasping of everyday life objects, avoiding also
possible damages to both the robot and the environment (e.g., to avoid breaking a
fragile object). But these hands are also quite expensive and heavy, thus non-affordable
for numerous research groups around the world and inappropriate for various EMG

based applications, like myoelectric prostheses.

Recently, several studies focused on low-cost robot hands based on elastomer materials
or elastic hinges [64—66]. Such hands, despite the under-actuated design, can also be
capable of performing simple manipulation tasks [67] and have been made commercially
available, in significant lower prices [68]. Nowadays the minimum cost for a robot hand
is 400 USD and the minimum weight is 400 gr (0.88 1b), as reported in [64].

Ph.D. Thesis Contribution

In this Ph.D. thesis we propose a new design approach, for the creation of affordable
(less than 100 USD), light-weight (less than 200 gr | 0.44 1b), modular, intrinsically-
compliant, underactuated robot hands, that can be easily reproduced with off-the-shelf

materials. These robot hands can be used for teleoperation and telemanipulation studies,
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to create grasping capable platforms (e.g., mobile and aerial vehicles, for which light-
weight design is a prerequisite), for educational robotics or even as affordable, myoelectric
prostheses. Extensive experimental paradigms are provided within the context of this
thesis, in order to validate the efficiency of the proposed hands. The experiments, involve
grasping trials of numerous everyday life objects, myoelectric (EMG) control of robot
hands, some preliminary results on a grasping capable quadrotor (using an aerial gripper)
and autonomous grasp planning under object position and shape uncertainties (e.g., as

end-effector of a robot arm hand system). Details can be found in Chapter 9.

Important Questions Regarding Robots Interacting with Dynamic Environments

Some important questions that we are trying to address in this Ph.D. thesis, are the

following;:

o Can we simplify robot hands design?

e How can we minimize robot hands cost and weight?

e How can we minimize control effort?

e (Can we design robot hands that operate efficiently in dynamic environments?

e Is it possible to create low-cost and light-weight robot hands that grasp efficiently

a series of everyday life object.

o Will these latter hands be able to grasp objects, even under object position and

shape uncertainties?

1.5 Concluding Remarks

In this chapter we presented an introduction covering some important aspects, of EMG
based interfaces and Human Robot Interaction applications. Then, some well-known
problems and open questions of these fields were presented and the motivation for this

Ph.D. thesis as well as our contributions were discussed.



Chapter 2

Experimental Setup

In this section we present the experimental setup (motion capture systems, sensors,
robots etc.) used in order to conduct the experiments required for this Ph.D. thesis.

More precisely we present:
o The Motion Capture Systems (MCS) used to track the human kinematics.
¢ The bioamplifiers used to capture human myoelectric activations.
e The sensors used to perceive the environment.

e The robots used for the Human Robot Interaction applications.

e The computer systems used and the communication protocols.

2.1 Motion Capture Systems

In order to describe the motion of the human upper limb (arm hand system) in 3-D
space we typically use (in some Chapters the kinematic model differs) three rotational
DoFs to model the shoulder joint, one rotational DoF for the elbow joint, one rotational
DoF for pronation-supination, two rotational DoFs for the wrist and twenty rotational

DoFs for the fingers.

Regarding the fingers we use for each of the four kinematically identical fingers (index,
middle, ring and pinky) three rotational DoFs for flexion-extension and one rotational
DoF for abduction-adduction, while for the thumb we use two rotational DoFs for flexion-
extension, one rotational DoF for abduction-adduction and one rotational DoF to model

the palm mobility that allows thumb to oppose to other fingers.

11
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7

FIGURE 2.1: Kinematic model depicting the degrees of freedom (DoFs) of the human
hand, while being teleoperated (in Matlab) by the Cyberglove II MCS.

MCS are used in this Ph.D. thesis, for three major applications:

e To facilitate the creation of advanced learning scheme for EMG-based interfaces.
¢ To map human to robot motion in a humanlike manner.

e For teleoperation and telemanipulation studies.

In order to record the motion of the human arm hand system and to extract the
corresponding joint angles (27 modeled DoFs), we use two different magnetic position

tracking systems and a dataglove.

Isotrak II, Polhemus

The first magnetic position tracking system is the Isotrak II1® (Polhemus Inc.) which is
equipped with two position tracking sensors and a reference system. In order to capture
human arm kinematics with the Isotrak II, two sensors are placed on the elbow and
wrist respectively, while the reference system is placed on the human shoulder. The
position measurements are provided at the frequency of 30 Hz. The Isotrak II provides

high accuracy in both position and orientation, 0.1 in and 0.75 deg respectively.

FIGURE 2.2: The Isotrak II (Polhemus Inc.) magnetic MCS is presented.
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Liberty, Polhemus

The second magnetic position tracking system is the Liberty® (Polhemus Inc.) which is
equipped with four position tracking sensors and a reference system. In order to capture
human arm kinematics with the Liberty system, three sensors are placed on the human
shoulder, the elbow, and the wrist respectively. More details on the computation of
the kinematics are included in [83]. The Liberty system provides measurements at the
frequency of 240 Hz and higher accuracy in both position and orientation, 0.03 in and

0.15 degrees respectively.

FIGURE 2.3: The Liberty (Polhemus Inc.) magnetic MCS is presented.

Cyberglove II, Cyberglove Systems

In order to measure the rest 22 DoFs of the human hand and the wrist we use the
Cyberglove I1° (Cyberglove Systems). The Cyberglove II has 22 flex sensors capturing all
twenty DoFs of the human hand and the two DoFs of the human wrist. More specifically,
the abduction-adduction and flexion-extension of the wrist, the flexion-extension of the
proximal, metacarpal and distal joints of each finger and the abduction between the
fingers, can be measured. The acquisition frequency of the Cyberglove II is 90 Hz and

the accuracy is 1 degree.

FIGURE 2.4: The Cyberglove II (Cyberglove Systems) flex sensors based MCS is
presented.
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2.2 Bioamplifiers

Bagnoli 16, Delsys Inc.

The Bagnoli 16 © (Delsys Inc.) is an EMG bioamplifier, equipped with 16 single-differential
surface EMG electrodes (DE-2.1%, Delsys Inc.). A signal acquisition board (NI-DAQ
6036E®, National Instruments), is used for signal digitization and data acquisition, at a

frequency of 1 kHz.

FIGURE 2.5: The Bagnoli 16 (Delsys Inc.) bioamplifier, is presented.

2.3 Sensors

RGB-D Camera, Kinect, Microsoft

The Microsoft Kinect features an RGB-D camera (RGB camera plus a depth sensor)
and multi-array microphone. It provides full-body 3D motion capture, facial recognition
and voice recognition capabilities, but in this Ph.D. thesis was mainly used for object
recognition and object pose estimation purposes. For doing so the Point Cloud Library

(PCL) [84] was used and appropriate functions were developed.

FIGURE 2.6: The Kinect (Microsoft) RGB-D camera, is presented.
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2.4 Robots

Mitsubishi PA10 7DoF Robotic Manipulator

The Mitsubishi PA-10 is a redundant robotic manipulator, which has seven rotational
DoFs arranged in an anthropomorphic way: three DoFs at the shoulder, two DoFs
at the elbow, and two DoFs at the wrist. The robot servo controller communicates
with a personal computer (PC) via the ARCNET protocol. More details regarding the

kinematics, parameters and control of the Mitsubishi PA10, can be found in [69].

F1GURE 2.7: The Mitsubishi PA10 7 DoF robot arm, is depicted.

DLR/HIT II Five Fingered Robot Hand

The DLR/HIT 1I is a five fingered dexterous robot hand with a total of fifteen DoFs.
DLR/HIT II was jointly developed by DLR (German Aerospace Center) and HIT (Harbin
Institute of Technology). It has five kinematically identical fingers with three DoFs per
finger, two DoFs for flexion and extension (corresponding to the proximal interphalangeal
and metacarpophalangeal joints of the human hand) and one DoF for abduction-adduction
(corresponding to the metacarpophalangeal joint of the human hand). The last joint of
each finger (distal interphalangeal equivalent) is coupled with the middle one, using a
mechanical coupling based on a steel wire, with transmission ratio 1:1. The dimensions of
the robotic hand are considered to be quite human-like and the total weight is quite low,
1.6 kg. More details regarding the kinematics or other specifications of the DLR/HIT
I1, can be found in [70].
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FIGURE 2.8: The DLR/HIT II five fingered robot hand, is presented.

2.5 Data Collection and Communications

Regarding data collection the trajectory and grasp planning PC (running Ubuntu OS
12.04) is used in order to capture both the myoelectric activations and the kinematics of
the full human arm hand system. Appropriate functions have been developed in C/C++

to facilitate data collection from all bioamplifiers and MCS.

Bagnoli 16 EMG

A

Trajectory
and Grasp
Planning PC
(Ubuntu 12.04)

=il Polhemus Liberty

FIGURE 2.9: The different motion capture systems and bioamplifiers that capture
human arm hand system motion and myoelectric activations respectively, are depicted.
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Regarding communications the trajectory and grasp planning PC, establishes with the
Mitsubishi PA10 PC/Controller (running a Gentoo Linux soft real-time OS) a TCP-
based communication, sending position, velocities or torque commands and getting back
the full status of the robot arm (joint angles, velocities, torques). A UDP communication
is also established between the trajectory and grasp planning PC and the DLR/HIT II
PC/controller (running a QNX hard real-time OS).

2.6 Concluding Remarks

In this chapter we presented the experimental setup (motion capture systems, bioamplifier,
sensors and robots) that was used to conduct the experiments required for this PhD

thesis, in order to validate the efficiency of the proposed methods.
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Chapter 3

A Learning Scheme for EMG

Based Interfaces

In this chapter, we present a learning scheme for EMG based interfaces, which can be
used to decode human intention and estimate human kinematics using the myoelectric
activity captured from human upper-arm and forearm muscles. The proposed learning
scheme takes advantage of both a classifier and a regressor, that cooperate advantageously
in order to split the task space and provide better estimation accuracy with task-specific

models.

Three different task features are distinguished:

e subspace to move towards
e object to be grasped

o task to be executed (with the grasped object)

The discrimination between the different reach to grasp movements is accomplished
with a random forest classifier. A Random Forests regressor is used to train task-
specific models for all possible tasks. The classification decision triggers a task-specific
motion decoding model that outperforms “general” models, providing better estimation
accuracy. The proposed scheme can be used for a plethora of EMG-based interfaces

focusing on different HRI applications.

21
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3.1 Introduction

EMG based interfaces were first used, for the control of advanced prosthetic devices, 30
years ago [85]. During the last decades, the field has received increased attention, as many
applications have emerged. Some of these applications are: EMG based teleoperation [1],
[2] of robot artifacts (e.g., in remote or dangerous environments), EMG based control
of advanced prosthetic limbs [3] that help patients regain lost dexterity, EMG control
of exoskeletons [4] that can be used for rehabilitation purposes and muscle computer

interfaces, for human computer interaction [5] and [6].

Thus, EMG based interfaces are definitely very promising and EMG control schemes
will probably have a vital role in human robot/computer interaction applications for
the years to come, but they also have many problems that have been identified and
discussed in many studies in the past. Some of these problems are the high-dimensionality
and complexity of the human musculoskeletal system, the non-stationarity of the EMG
signals and the non-linear relationship between the human myo-electric activity and the

motion or force to be estimated.

In order to overcome the problem of the high-dimensionality of the human musculoskeletal
system, standard dimensionality reduction techniques can be employed. Principal components
analysis (PCA) has been used by several studies in the past, for the investigation of
human hand kinematic and/or muscle synergies. In [14] optical markers were mounted
on 23 different points on the human hand and kinematics were captured during an
unconstrained haptic exploration task. Authors concluded to a set of hand postures,
representative of most naturalistic postures that appear during object manipulation.
Santello et al. [15] and Todorov et al. [16] captured the human hand kinematics with
datagloves and identified a limited number of postural synergies “representing” most of
human grasping variance, for a wide variety of object grasps. In [17] a similar study was
conducted, using a camera-based motion capture system. Regarding muscle synergies,
glove measurements combined with EMG activity were acquired in [18], from subjects
using the American Sign Language (ASL) manual alphabet, revealing temporal synergies
across different muscles and different hand movements. Muscle synergies ability to
formulate a predictive framework, capable to associate muscular co-activation patterns

with new static hand postures, was investigated in [19].

As we have already mentioned some of the main difficulties that researchers face in
the field of EMG based interfaces, are the highly nonlinear relationship between the
human myoelectric activity and human kinematics as described in [20] and the non-
stationarity of the EMG signals. This difficulty forced most researchers to avoid to

decode a continuous representation of human kinematics, choosing to focus on a discrete
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approach, such as the directional control of a robotic wrist [21] or the control of multifingered
robot hands to a series of discrete postures [22], [23] and [24-26, 86]. For doing so,
machine learning techniques and more specifically classification methods were used.
In [22] and [23] classifiers were used to discriminate based on the human myoelectric
activity, between independent human hand’s digit movements or different hand postures.
Castellini et al. [27] used forearm surface EMGs for the feed-forward control of a hand
prosthesis, discriminating between three different grip types, in real-time. Brochier et
al. [87] used the myoelectric activity of two adult macaque monkeys, to discriminate
muscular co-activation patterns associated with different grasping postures. The latter

study was conducted for grasping tasks involving 12 objects of different shapes.

Although the discrete EMG based control approach, has been used by many studies
in the past and has led to many interesting applications, the use of finite postures
may cause severe problems such as the lack of motion smoothness. In fact for most
EMG based applications, that require the execution of everyday life tasks, decoding of
complete trajectories is of paramount importance. Thus, a specification for any proposed

methodology, should be to address the issues of continuous and smooth control.

Regarding the continuous EMG based control approach, various techniques have been
used to provide estimates of human kinematics based on human myoelectric activity.
Some of them are; the Hill-based musculoskeletal model, the state-space model, artificial
neural network based models, support vector regression based models and random
forests based models. The Hill-based musculoskeletal model [28] is the most commonly
used model, for continuous EMG based control of robotic devices, using human motion
decoded from EMG signals. Some application of the Hill-based model can be found in
[20] and [29-32]. However the aforementioned Hill model based studies, typically focus
on few degrees of freedom (DoFs), because Hill model equations are non-linear and there
is a large number of unknown parameters per muscle. State-space models were used by
Artemiadis et al. in [33],[1] and [34]. In [33], a state-space model was used to estimate
human arm kinematics from the myoelectric activity of the muscles of the upper-arm
and the forearm, while emphasis was given to the non-stationarity of the EMG signals
and the evolution of signal quality over time (i.e. due to muscle fatigue, sweat etc.).
In [1] and [34] authors proposed a methodology that “maps” muscular activations to
human arm motion, using a state space models and the low dimensional embeddings
of the myoelectric activity (input) and kinematics (output). Artificial neural networks
(ANN) were used in [35] to estimate the continuous motion of the human fingers, using
the myoelectric activity of forearm muscles (only one degree of freedom per finger was
decoded), in [36] to control using EMG signals a robot arm with one degree of freedom
and in [37] to decode from EMGs human arm motion, restricting the analyzed movements

to single-joint isometric motions.
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All the aforementioned studies, addressed the issue of EMG based continuous human
motion estimation, but none of them focused on the full human arm-hand system
coordination. A Support Vector Machines (SVM) based regressor was used in [2] to
decode full arm hand system kinematics. However, only the position and orientation of
the human end-effector (wrist) and one DoF for the human grasp, were decoded. Such a
choice limits method’s applicability to everyday life scenarios, where independent finger
motions are of paramount importance. Finally the latter method requires smooth and

slow movements from the user.

In [88-90], we proposed learning schemes that combine a classifier with a regressor to
perform task-specific EMG-based human motion estimation for reach to grasp movements.
Principal Component Analysis (PCA) was applied to extract the low dimensional manifolds
of the EMG activity and the human kinematics. These low dimensional spaces, were used
to train different task-specific models, formulating a regression problem. The scheme’s
classifier was used to discriminate first the task to be executed and then trigger a task-
specific EMG based motion decoding model, which achieves better estimation results
than “general” models. The estimated output was back projected in the high dimensional
space (27 DoFs) to provide an accurate estimate of the full human arm-hand system
motion. A similar methodology was recently proposed in [38], where classification techniques
were used in order to discriminate between reach to grasp movements towards objects of
different sizes and weights. Moreover recently we extended the learning scheme proposed
in [90], in order to discriminate also the “task to be executed”, as well as to perform

efficient features selection with random forests [91].

3.2 Apparatus and Experiments

3.2.1 Experimental Protocol

Two different types of experiments were conducted for the formulation of the proposed
learning scheme. All experiments were performed by five (4 male, 1 female) healthy
subjects 21, 24, 27, 28 and 40 years old. The subjects gave informed consent of the
experimental procedure and the experiments were approved by the Institutional Review
Board of the National Technical University of Athens. Experiments were performed by
all subjects, using their dominant hand (right hand for all subjects involved). During
experiments the subjects were instructed to perform different reach to grasp movements
in 3D space, to reach and grasp different objects placed at different positions in 3D
space, in order to execute different tasks with the grasped objects. The object positions,

are depicted in Fig. 3.1.



Part Il - EMG Based Interfaces 25

FIGURE 3.1: A bookcase containing three different objects (a marker, a rectangular-

shaped object and a mug), placed at five different positions, at three different shelves, is

depicted. A superimposed diagram presents the distances between the different object
positions. These five positions were used for both types of experiments.

The first type of experiments, involved reach to grasp movements towards different
positions (five different positions depicted in Fig. 3.1) and different objects (a mug,
a rectangular shaped object and a marker) and was used for EMG-based “subspace
discrimination” and “object discrimination”. The second type of experiments, involved
reach to grasp movements towards specific positions and objects, in order to execute
two different tasks (two classes), with the same object. A tall glass, a wine glass, a mug
and a mug plate were used for the second type of “task discrimination” experiments.
These first type of experiments was used for the initial formulation of the learning
framework proposed in [88] and was once again used in [91] together with the second type
of experiments, to discriminate between different tasks and compute feature variables

importance for different positions, objects and tasks.

The tasks executed for the second type of experiments appear in Fig. 3.2. During the
experiments, each subject conducted several trials, for each position, object and task
combination. In order to ensure data quality and avoid fatigue, adequate resting time

of one minute, was used between consecutive trials.

3.2.2 Motion Data Acquisition

In order to capture efficiently human kinematics - using appropriate motion capture
systems - the kinematic models of the human arm and the human hand must be
described. The kinematic model of the human arm, that we use in this study, consists

of three rotational degrees of freedom (DoFs) to model shoulder joint, one rotational
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Tall Glass, Task 1 Tall Glass, Task 2 Wine Glass, Task 1 Wine Glass, Task 2

[ Side Grasp ] [ Front Grasp ] [ Side Grasp ] [ Stem Grasp ]
‘ i
Mug, Task 1 Mug, Task 2 Mug Plate, Task 1 Mug Plate, Task 2
[ Handle Grasp ] [ Top Grasp ] [ Side Grasp ] [ Top Grasp ]

F1GURE 3.2: Tasks executed for the second type of experiments. The tall glass tasks

were: task 1, side grasp (to drink from it) and task 2, front grasp (to transpose it). The

wine glass tasks were: task 1, side grasp (to drink from it) and task 2, stem grasp (to

drink from it). The mug tasks were: task 1, handle grasp (to drink from it) and task 2,

top grasp (to transpose it). Finally the mug plate tasks were: task 1, side grasp (to lift
and hold it) and task 2, top grasp (to transpose it).

DoF for elbow joint, one rotational DoF for pronation-supination and two rotational
DoFs for wrist flexion/extension and abduction/adduction. The kinematic model of the
human hand consists of twenty rotational DoFs, four for each one of the five fingers.
Regarding fingers we used for the four kinematically identical fingers (index, middle,
ring and pinky) three rotational DoFs to model flexion-extension of the different joints
and one rotational DoF for abduction-adduction. Human thumb is modeled, using two
rotational DoFs for flexion-extension, one rotational DoF for abduction-adduction and
one rotational DoF to describe palm’s mobility that allows thumb to oppose to other

fingers. The kinematic models of the human arm and hand are presented in Fig. 3.3.

Human Hand Human Arm
Kinematic Model | Kinematic Model

FIGURE 3.3: Kinematic models depicting the degrees of freedom (DoFs) of the human
arm and hand.
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‘ Tracker Base

‘ ‘ Position Trackers 1 & 2

FIGURE 3.4: Two position tracking sensors of Isotrak II are used to capture user’s
shoulder, elbow and wrist position in 3D space, while a dataglove is used to capture
the wrist and fingers joint angles. The position tracker reference system is placed
on the shoulder. The human arm joint values can be computed through the human
arm’s inverse kinematics. ¢; and gs jointly correspond to shoulder flexion-extension
and adduction-abduction, g3 to shoulder internal-external rotation, g4 to elbow flexion-
extension, g5 to pronation-supination and g and g7 jointly correspond to wrist flexion-
extension and adduction-abduction.

In order to capture the human arm hand system motion in 3D space, extracting the
corresponding joint angles (27 modeled DoFs), we used a dataglove for the human hand
and a magnetic position tracking system for the human arm. The Isotrak II® (Polhemus
Inc.) magnetic motion capture system used, is equipped with two position tracking
sensors and a reference system. The two sensors of Isotrak II, were placed on the elbow

and the wrist respectively, while the reference system was placed on the user’s shoulder.

Having captured the positions of the human shoulder, elbow and wrist, the inverse
kinematics of the human arm can be computed, following the directions provided in
[83]. Alternatively for human robot interaction applications, a human to robot motion
mapping procedure like the one proposed in [92], can be used. Regarding the human
hand, the Cyberglove II® (Cyberglove Systems), is used to measure the two DoFs
of the wrist (flexion-extension and abduction-adduction) and the twenty DoFs of the
human fingers. The experimental setup that was used to track human arm hand system

kinematics, is depicted in Fig. 3.4.

Trajectory and

Cyberglove Il Janni
% Cyberglove Systems Grasp Planning PC
/’ (Ubuntu 12.04 x86)
! Liberty .Humar]
' (Polhemus) Kinematics
- -

H Isotrak Il
et (Polhemus)

FI1GURE 3.5: The motion capture systems used, are depicted.
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3.2.3 Electrode Positioning and EMG Data Acquisition

In total, we recorded the myoelectric activity of sixteen muscles, of the upper arm
(eight muscles) and the forearm (eight flexor and extensor muscles). More specifically
the chosen muscles are: flexor pollicis longus, flexor digitorum superficialis, flexor carpi
ulnaris, flexor carpi radialis, extensor pollicis longus, extensor indicis, extensor carpi
ulnaris, extensor carpi radialis, deltoid anterior, deltoid posterior, deltoid middle, trapezius,
teres major, brachioradialis, biceps brachii and triceps brachii. The selection of the
muscles and the placement of the surface electromyography electrodes, was based on
the related literature [22, 93]. In order to achieve easy, portable and fast to use training
schemes several researchers have chosen to place the EMG electrodes, in specific regions
but in random (not precise) positions [2]. We believe that the next generation of epidermal
electronics [94] will make the electrode positioning faster and easier, thus we choose to
take advantage of the higher signal to noise ratio, that accurate electrode positioning

offers.

EMG signals were acquired and conditioned using an EMG system (Bagnoli-16®, Delsys
Inc.), equipped with single differential surface EMG electrodes (DE-2.1°, Delsys Inc.).
A signal acquisition board (NI-DAQ 6036E®, National Instruments), was used for signal

digitization and data acquisition.

3.2.4 EMG and Motion Data Processing

Regarding data processing, EMG signals were band-pass filtered (20-450 Hz), sampled at
1 kHz, full-wave rectified and low-pass filtered (Butterworth, fourth order, 8 Hz), while
for the position measurements, which were provided by the position tracking system at
the frequency of 30 Hz, an antialiasing finite-impulse-response filter (low pass, order: 24,
cutoff frequency: 100 Hz), was used to resample them at a frequency of 1 kHz (same as

the sampling frequency of the EMG signals).

3.2.5 Muscular co-activation patterns extraction

After data collection, all EMG recordings, were pre-processed and epochs of data were
created. Those epochs included the different reach-to-grasp movements captured during
the experiments. Then, all data were resampled at 100 Hz, where each sample at the
new frequency (100 Hz) was calculated as the mean value of ten (10) samples of the
original frequency (1kHz). Based on the profiles of the rectified EMG signals at the new
frequency, the onset of muscular activations was defined comparing the amplitude of

each muscle’s myoelectric activation to it’s relaxed state. Finally, epochs including only
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FIGURE 3.6: Comparison of a Boxplot and a “Boxplot Zone” visualization of muscular

co-activation patterns across sixteen (16) muscles of the upper arm and the forearm for

one subject (Subject 1), performing reach to grasp movements towards a mug placed
at position I.

muscular activations captured during the actual tasks were created, and were used to
formulate synergistic profiles, using a novel statistical representation technique, that we

introduced and which we call "Boxplot Zones”.

A boxplot (alt. box-and-whisker plot) is a method to graphically depict groups of
numerical data, through the following five-number summaries: smallest observation (sample
minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation
(sample maximum). Boxplot zones were first defined in [88] to visualize muscular co-
activation patterns and are an equivalent of boxplots, while more visually informative
representation, suitable for the representation of synergistic profiles. Boxplot zones
consist of three different layers. The first layer includes the median line, connecting the
medians of all boxplots. The second layer includes the box zone (blue zone), connecting
the boxes that contain all the values between the lower and the upper quartile, while the
third layer includes the whisker zone (white zone), connecting the whiskers that mark
the largest and the smallest observation. A direct comparison of a boxplot and a boxplot

zone visualization, can be found in Fig. 3.6.

In Fig. 3.7 we present a “boxplot zones” based visualization of muscular co-activation
patterns of sixteen (16) muscles (of the upper arm and the forearm), for one subject
(Subject 1) executing reach to grasp movements, towards five (5) different positions
in 3D space, to grasp three (3) different objects. The muscular co-activation patterns
presented in Fig. 3.7 in terms of synergistic profiles formulated with boxplot zones, depict
a significant differentiation between the different reach-to-grasp movements, although
the same joints of the arm hand system (human upper arm joints and human hand
fingers) are involved, but for a different task. More precisely, if we examine the synergistic

profiles (muscular co-activation patterns) across different subspaces (different positions),
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we notice that the activity of the muscles of the upper-arm (EMG channels 1-8) reflects
most of the differentiation. In contrary if we examine the muscular co-activation patterns
across different objects, placed in the same subspace (a specific position), the activity of

the muscles of the forearm (EMG channels 9-16) reflects most of the differentiation.
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FIGURE 3.7: “Boxplot Zones” visualization of muscular co-activation patterns of sixteen
(16) muscles (of the upper arm and the forearm), for one subject (Subject 1) performing
reach to grasp movements towards, five different positions (Pr, Prr, Prrr, Pry and Py)
in 3D space, to grasp three different objects (a marker, a rectangle and a mug). The
sixteen (16) muscles are reported in the following order (1 to 16): deltoid anterior,
deltoid middle, deltoid posterior, teres major, trapezius, biceps brachi, brachioradialis,
triceps brachii, flexor pollicis longus, flexor digitorum superficialis, flexor carpi ulnaris,
flexor carpi radialis, extensor pollicis longus, extensor indicis, extensor carpi ulnaris and
extensor carpi radialis.

In Fig. 3.8 we present a “boxplot-zones” based visualization of muscular co-activation
patterns differentiation, for 16 muscles of the human upper-arm and forearm, for three
different subjects performing different reach to grasp movements, towards five (5) different

positions in 3D space, to grasp a specific object (rectangular-shaped object).

As we have already noted there is a significant differentiation between muscular co-
activation patterns associated with different reach to grasp movements. Statistical significance
of muscular co-activation patterns differentiation, can be assessed using appropriate
statistical tests. More precisely the Lilliefors test (adaptation of the Kolmogorov-Smirnov

test) was used to test the null hypothesis that the EMG data - containing the myoelectric
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FIGURE 3.8: “Boxplot Zones” visualization of different muscular co-activation patterns

of sixteen (16) muscles of the upper arm and the forearm, for three (3) different subjects

performing reach to grasp movements towards, the aforementioned five (5) positions in
3D space, to grasp a specific object (a rectangle).

activations - come from a normal distribution. The test rejects the null hypothesis at
the 5% significance level (p = 0.05), so the data are not normally distributed. Thus, we
use non parametric tests such as, the Kruskal-Wallis and the Wilcoxon rank sum test,
in order to assess the significance of muscular co-activation patterns differentiation, for

different strategies.

The Kruskal-Wallis compares the medians of the myoelectric activity of the selected
muscles, for different muscular co-activation patterns, and returns the p value for the
null hypothesis that all samples are drawn, from the same population (or from different
populations with the same distribution). The Wilcoxon rank sum test, performs a
two-sided rank sum test of the null hypothesis that data of myoelectric activations
with different muscular co-activation patterns, are independent samples from identical

continuous distributions, with equal medians.

More details regarding the statistical procedures used, the reader can find in [95]. All
tests were performed to check the differentiation of muscular co-activation patterns for
the following three cases:

e For the same reach to grasp movement, between different subjects.

e For reach to grasp movements towards five different positions in 3D space.

e For reach to grasp movements towards three different objects, placed at a specific

position in 3D space.

For all sets, confidence levels were set at 95%. All tests null hypotheses for all three

cases were rejected, proving that muscular co-activation patterns differentiate, between
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FIGURE 3.9: Means and confidence intervals of EMG activity across eight (8) muscles

of the upper arm and eight (8) flexor and extensor muscles of the forearm, for one

subject (Subject 1) performing reach to grasp movements, towards three (3) different
objects, placed at a specific position (Pos 3) in 3D space.
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FIGURE 3.10: Means and confidence intervals of EMG activity across eight (8) muscles

of the upper arm and eight (8) flexor and extensor muscles of the forearm, for one

subject (Subject 1) performing reach to grasp movements, towards a marker, placed at
five (5) different positions in 3D space.

different subjects and between different tasks. In Fig. 3.9, we present the means and the
confidence intervals of EMG activity across eight muscles of the upper arm and eight
muscles of the forearm, for a subject performing reach to grasp movements, towards three
(3) different objects. In Fig. 3.10, we present the means and the confidence intervals of
EMG activity across eight muscles of the upper arm and eight muscles of the forearm
for a subject performing reach to grasp movements, towards a marker, placed at five (5)

different positions in 3D space.

Therefore, we conclude that the muscular co-activation patterns vary significantly not
only between different subjects, but also between different reach-to-grasp movements
of the same subject (towards different subspaces or different objects placed at specific
position), and therefore should be considered and analyzed as subject-specific and task-

specific characteristics.
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3.3 Methods

In this section we present some typical specifications for EMG based interfaces and we
describe the problem formulation and the methods used for discrimination of different
muscular co-activation patterns, associated with different reach to grasp movements

(classification) and EMG based motion estimation (regression).

3.3.1 Classification and Regression Modules

Some specifications that every learning scheme for EMG based interfaces should have,

are the following:

« To be able to “decide” on user’s intention (classification part).
o To decode a continuous representation of human motion (regression part).
e To allow its application at a robot control scheme, in real time.

o To be easy and fast to be trained for different users (as musculoskeletal characteristics

may vary significantly across subjects).

o To be able to handle multidimensional spaces and large databases of myoelectric

and motion data.

In this chapter we present an EMG-based learning scheme, using the Random Forests
(RF) technique - which meets the aforementioned specifications - for both classification
and regression. Thus, the classifier and the regressor cooperate advantageously, in order
to split the task space and confront the non-linear relationship between the EMG signals
the motion to be estimated, with task specific models that provide better estimation

accuracy than the “general” models (built for all tasks).

In Fig. 3.11 we present a block diagram of a typical random forests based classification
procedure. Random forests are used for a multiclass classification problem, where we
need to discriminate between reach to grasp movements, towards different positions,
different objects (to be grasped) and different tasks (to be executed with the object) in
3D space, using human myoelectric activity (EMG).

In Fig. 3.12 we present the block diagram for a typical random forests based regression
procedure. The task specific models trained are used to estimate for new EMG data (not

previously seen during training) “new” human arm hand system kinematics.
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F1GURE 3.12: Block diagram of the regression procedure.

A complete block diagram of the EMG-based learning scheme proposed, is depicted in
Fig. 3.13. Two main modules appear, the classification module and the task specific
model selection module. Classification module provides decision for subspace to move
towards, object to be grasped and task to be executed (with the object). Task specific
model selection module, examines classification decisions and triggers a subspace, object

and task specific motion decoding model.
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FiGUrRE 3.13: A block diagram of the proposed EMG-based learning scheme is
presented. Two main modules, formulate the “backbone” of the learning scheme, the
classification module and the task specific model selection module. Classification module
(based on the classifier) provides decision for subspace to move towards, object to be
grasped and task to be executed with the object. Task specific model selection module
(based on the regressor) examines classification decisions and triggers a subspace, object
and task specific motion decoding model (from all possible models trained). The task
specific motion decoding model efficiently estimates the full human arm hand system
motion (27 joint values), using human myoelectric activity (EMG signals). Finally an
EMG-based interface can take advantage of the proposed scheme and the estimated
human motion. For example a human to robot motion mapping procedure may take
as input the estimated human arm hand system motion, to generate equivalent robot
motion, as described in Chapter 6. A possible application of the proposed learning
scheme, is the EMG-based teleoperation of a robot arm hand system.

3.3.2 Multiclass Classification in the m-Dimensional Space of Myoelectric

Activations (m - number of EMG channels)

As we have already noted, synergistic profiles depicted in terms of “boxplot zones” in Fig.
3.7 denote that there is a significant differentiation of muscular co-activation patterns
for reach to grasp movements towards different positions and different objects placed at
the same position. In order to be able to take advantage of this differentiation, we choose
to discriminate the different reach to grasp movements in the m-dimensional space of
the myoelectric activations (where m is the number of EMG channels), using the EMG

signals to “decide” on the task to be performed (human intention decoding).
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In Fig. 3.14 we present a typical classification problem of discriminating based on
the myoelectric activity of 16 muscles of the human arm hand system, two different
strategies for reaching and grasping a specific object placed in two different positions.
Reaching, grasping and return phases are depicted. The top subplot presents the distance
between the two classes in the 16-dimensional space (16 EMG channels are used). Such
a distance, give us a measure of classes separability (i.e. how easily these classes can
be discriminated). The bottom subplot, presents the evolution of classification decision
over time. The accumulation of misclassified samples is reasonable for those time periods,
when the distance between the two classes is small (i.e. begin and end of experiments,

when human end-effector (wrist), is close to its starting position).
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FIGURE 3.14: Comparison of two reach to grasp movements towards a marker placed

at position I (Strategy I) and a marker placed at position IT (Strategy II). First subplot

presents the distance of the two strategies in the m-dimensional space (where m=16

the number of the EMG channels). The second subplot focuses on the evolution of
classification decision per sample, over time.

In Fig. 3.15 we present the classification problem of discriminating two different different
reach to grasp movements, towards a specific object placed at a specific position, but in
order to execute two different tasks (with the object). Once again, top subplot presents
the distance between the two classes in the 15-dimensional space (15 EMG channels are
used), as well as the reaching, grasping and return phases. Bottom subplot presents once
again the evolution of the classification decision and there is a similar with Fig. 3.14,
accumulation of misclassified samples for the time periods, that the distance between

the two tasks is small (i.e. begin and end of the experiment).

3.3.2.1 Random Forests Classifier

The Random Forests technique proposed by Tin Kam Ho of Bell Labs [96] and Leo

Breiman [97], can be used for classification creating an ensemble classifier that consists
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on the evolution of classification decision per sample, over time.

of many decision trees. The Random Forests classifier’s output, is the class that is the

mode of the individual trees class’s output. Thus, the classifier consists of a collection of

tree structured classifiers {h(x,Ox), N = 1, ...} where {Ox} are independent identically

distributed random vectors. Each decision tree of the random forest, casts a vote for the

most popular class at input x.

The classification procedure for N trees grown is presented in Fig. 3.16. Some advantages

of the random forests technique for classification are:

Runs efficiently and fast on large databases.
e Provides high accuracy.
e Does not overfit.

¢ Provides feature variables importance.

e (Can handle thousands of input variables without variable deletion.

e Can handle multiclass classification problems.

e Can be used efficiently in multidimensional spaces.



Part I - EMG Based Interfaces 38

Training Set Validation Set
9 (New Data)
n Samples
n Samples
m Features
m Features
I
v v
| Sample Set1 | [ Sample Set2 |--- | Sample Set N |

In Bag 1 |OOB1| In Bag 2 |OO|32| In Bag N |OOBN|

’

’
R

Random
Forest
Trees

| Decision: Most Popular Class |

FIGURE 3.16: Random forests based classification procedure for N trees grown. OOB
stands for out-of-bag samples.

3.4 Features Selection with Random Forests

In the aforementioned classification examples we used the random forests technique to
discriminate, between different reach to grasp movements in the m-dimensional space
of the myoelectric activations, using multiple EMG channels (m is 15 or 16). Its quite
typical for EMG based interfaces, a limited number of EMG channels to be available
(e.g., due to cost or complexity limitations), or EMG electrodes positioning to be not
precise (some EMG channels may be more noisy). Thus, a fundamental question is: “Is
it possible to select which EMG channels are the most important? How this features
selection can be accomplished?”. With Random Forests we can perform efficient features
selection, using their ability to compute the importance score of each feature variable and

consequently access the relative importance for all feature variables (e.g. EMG channels).

More precisely random forests use for the construction of each tree, a different bootstrap
sample set from the original data. One-third of the samples are left out of the bootstrap
sample set (out-of-bag samples) and are not used in the construction of the Nth tree.
Feature variables importance, is computed as follows; in every grown tree in the forest,
we put down the out-of-bag samples and count the number of votes cast for the correct
class. Then the values of a variable m are randomly permuted in the out-of-bag samples

and these samples are put down the tree. Subtracting the number of votes casted for the
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correct class in the m-variable permuted out-of-bag data from the previously computed
number of votes for the correct class in the untouched out-of-bag data, we get the
importance score of a feature variable m for each tree. The raw importance score for
each feature variable m is the average importance score for all trees of the random forest.
The random forests feature variable importance calculation procedure, is depicted in Fig.
3.17.
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FIGURE 3.17: Diagram of the random forests feature variable importance calculation
procedure. OOB stands for out-of-bag samples.

In case that we want to reduce the number of EMG channels used (in this study we have
already used 15 and 16 EMG channels), random forests can be initially run with all the
variables (EMG channels) and then run once again with the most important variables
selected during the first run. For example, we can use the random forests classifier
with all 15 EMG channels, compute the feature variables importance and re-solve the
classification problem, using the most “important” EMG channels. Before doing so, we
present the feature variables importance for the problems of discriminating from EMG
signals, reach to grasp movements towards, different subspaces, different objects and

different tasks.

In Fig. 3.18 we present the importance plots of different feature variables (EMG channels),
for two different cases, subspace discrimination and object discrimination. We can notice
that for subspace discrimination, the feature variables corresponding to upper-arm muscles
(first 8 EMG channels) appear to have increased importance, while for object discrimination
the feature variables corresponding to the forearm muscles (last 8 EMG channels),

accumulate most of the importance.
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FIGURE 3.18: Importance plots of feature variables (EMG channels) - expressed as

mean decrease in accuracy - for Subject I, for subspace and object discrimination

respectively. For subspace discrimination data involving all objects are used, while for

object discrimination, a specific position is used (Pos I). Positions 1 to 5 correspond to

positions Pos I to Pos V. Objects 1, 2 and 3 correspond to mug, marker and rectangle
respectively.

This latter evidence can also be verified by the fact that for reach to grasp movements
towards different subspaces, the muscular co-activation patterns of the upper-arm muscles
accumulate most of the differentiation, while for reach to grasp movements towards
different objects, the muscular co-activation patterns of the forearm muscles (responsible

for grasping), accumulate most of the differentiation.

In Fig. 3.19 we present the importance plots for different feature variables (EMG channels),
for task discrimination. Four different barplots are depicted, that contain the importance
scores per variable for different objects placed in position I. We can notice that the feature
variables corresponding to the forearm muscles (last 8 EMG channels) appear to have
once again increased importance (similarly to object discrimination), since the forearm

muscles are responsible for hand preshaping, in order to grasp and/or manipulate objects.
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FIGURE 3.19: Importance plots of feature variables (EMG channels) for task

discrimination. Reach to grasp movements towards all objects placed in Position I were

performed, so as to execute two different tasks per object. A list of the tasks executed
can be found in Fig. 3.2.

3.4.1 Task Specific Motion Decoding Models

3.4.1.1 Task Specific EMG Based Motion Decoding Models based on Random

Forests Regression

The Random Forests technique can also be used for regression, growing trees depending
on a random vector © such that the tree predictor h(x,©) takes on numerical values
(not class labels used for classification). The random forest predictor, is formed similarly
to the classification case, as appeared in Fig. 3.16, by taking instead of the most popular

class, the average over the N trees of the forest {h(x,On)}.

Some advantages of the random forests regression are the following:

e Are easily implemented and trained.
o Are very fast in terms of time spent for training and prediction.
e Can be parallelized.

e Can handle thousands of input variables and run efficiently on large databases

(similarly to classification).

e Are resistant to outliers.
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e Have very good generalization properties.

o Can output more information than just class labels (e.g., sample proximities,

visualization of output decision trees etc.).

3.4.1.2 Dimensionality Reduction

In order to formulate the regression problem used in this study, we need the low-
dimensional spaces of the myoelectric activations and the human motion. Thus, in
order to represent our data in low-d spaces, we used the Principal Components Analysis
(PCA), dimensionality reduction method. For the EMG signals recorded, a 4-D space
suffices, representing most of the original high-dimensional data variance (more than
92%). Regarding the human arm hand system kinematics, a 4-D space once again suffices
to describe adequately the 27-DoF motion of the human arm hand system, representing
most (94%) of the original data variance. We chose to use the PCA as a dimensionality
reduction technique - in order to take advantage of the underlying covariance of our
data - representing also the same variability in a low-d space, without losing important
information of the original data. More details regarding the employment of PCA in EMG

based interfaces, can be found in [1].

3.5 Results

3.5.1 Classifiers Comparison

In order to validate our hypothesis that random forests based classification is an ideal
method for EMG based interfaces, we have applied a wide variety of classification
techniques in our dataset, comparing them with random forests, in terms of classification

accuracy and time required for training.

More precisely, we performed Support Vector Machines (SVM) based classification
(with a Radial Basis Function (RBF) kernel), we constructed a single hidden-layer
Neural Network (NN) with ten hidden units (trained with the Levenberg-Marquardt
backpropagation algorithm) and we used the k nearest neighbors (kNN) classifier, for the
simplest case where k = 3. Finally random forests were grown with ten trees for speed.
Random Forests outperformed the classification performance of all other classifiers and

performed quite well in terms of speed of execution.

The classification success rate (classification accuracy) is defined, as the percentage of

EMG data points classified to the correct reach to grasp movement. It must be noted that
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the classification is done for every acquired EMG data point, thus the proposed learning
scheme is able to decide in real-time the reach to grasp movement to be performed
(for a specific task), and even switch to different tasks online. All classification results
presented in this section, are the average values over the five rounds, of the five-fold

cross-validation method applied.

The training dataset that was used to compare classifiers in terms of speed of execution,
involved Subject 1 data of reach to grasp movements towards different objects, placed
at Position I (Class I) and Position II (Class II). Results are reported in Table 3.1.
All benchmarks were performed using MATLAB (Mathworks) in a standard PC with
Intel(R) Core(TM) I5 CPU 611 @3.33GHz and 4GB RAM (DDR3) memory.

TABLE 3.1: Comparison of classifiers in terms of time required for training.

Classifiers Samples Training Time

2 Classes of 1500 0.011 sec

LDA 2 Classes of 15000 0.058 sec

2 Classes of 1500 0.005 sec

QDA 2 Classes of 15000 0.051 sec

2 Classes of 1500 0.014 sec

kNN 2 Classes of 15000 1.65 sec

2 Classes of 1500 1.06 sec

ANN 2 Classes of 15000 16.05 sec

2 Classes of 1500 0.34 sec

SVM 2 Classes of 15000 7.09 sec

2 Classes of 1500 0.06 sec

Random Forests | 2 Classes of 15000 0.87 sec

The training dataset that was used to compare classifiers in terms of classification
accuracy, involved Subject 1 data of reach to grasp movements towards two objects

(two classes), placed across three different positions in 3D space. Results are reported
in Table 3.2.

3.5.2 Comparison of different Decoding Methods

In order to validate our hypothesis that random forests based regression is an ideal
method for EMG based interfaces, we have applied also a wide variety of regression
techniques in our data, comparing them with random forests, in terms of estimation
accuracy and time spent for training. More specifically we performed Multiple Linear
Regression (MLR), we created a State-Space model as described in [1], we performed
SVM regression (with a RBF kernel) and we constructed a single hidden layer Neural
Network with ten hidden units (trained with the Levenberg-Marquardt backpropagation
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TABLE 3.2: Comparison of classifiers for discriminating two different reach to grasp
movements, towards two objects placed across three different positions in 3D space, for

Subject 1.
Classifiers Positions | Mug Rectangle
Pos 1 96.75% 83.36%
LDA Pos 111 96.50% 90.40%

Pos V 91.44% 95.00%
Pos I 95.34% 80.52%
QDA Pos 111 97.30% 91.45%
Pos V 92.30% 95.60%
Pos I 96.33% 81.63%
kNN Pos 111 98.20% 94.50%
Pos V 96.50% 98.68%
Pos I 94.67% 84.63%
ANN Pos 111 98.50% 94.76%
Pos V 94.52% 98.87%
Pos I 97.46% 87.42%
SVM Pos 111 98.81% 94.50%
Pos V 98.00% 96.50%
Pos I 99.67% 89.02%
Random Forests Pos 111 100% 96.50%
Pos V 98.87% 99.00%

algorithm). Finally random forests were used as a regression technique, growing ten (10)

decision trees, to increase speed of execution and computational efficiency.

The formulated regression problem, was to map the low-d space (4 dimensions) of the
myoelectric activity (EMG signals), to the low-d space (4 dimensions) of the human
motion. The low-d spaces of human myoelectric activations and human motion were
extracted using the PCA method. Then the estimated low-d human motion was back-
projected to the high-d space providing an estimate of the full human arm hand system
kinematics (27 DoFs). As far as the estimation accuracy is concerned, we compared the
methods for different datasets, estimating human motion for reach to grasp movements,
towards different positions, as well as different objects placed at the same position.
Regarding training time, we chose to compare the different techniques in terms of time
required for training, applying the various methods to a separate dataset, that serves
as a benchmark. In table 3.3, we can notice that random forests outperform most other

techniques, in terms of speed of execution.
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TABLE 3.3: Time spend for the training procedure across different methods for a specific
dataset (10000 samples) that serves as a benchmark (Average Values).

Method Time in sec.
MLR 0.0054 sec
State Space 8.65 sec
ANN 28.83 sec
SVM 27.72 sec
Random Forests 5.89 sec

In Table 3.4 we can notice that random forests outperform also the other regression
techniques, such as the Support Vector Machines (SVM) and the Artificial Neural
Networks (ANN), in terms of estimation accuracy. In order to compare the different
regressors a standard PC with an Intel(R) Core(TM) I5 CPU 611 @3.33GHz, equipped
with a 4GB RAM (DDR3) memory, was once again used. The benchmark was performed
using MATLAB (Mathworks). More information regarding the regression techniques
comparison results, can be found in [89].
TABLE 3.4: Comparison of different methods and estimation results, for specific position

(Pos III) and specific object (Marker), for Subject 1. Average values for different
validation set splittings.

Method Arm Joints Hand Joints
Similarity (%) Similarity (%)
MLR 81.60% 84.31%
State Space 82.74% 85.10%
ANN 85.10% 86.92%
SVM 86.01% 88.90%
Random Forests 86.93% 90.42%

3.5.3 Classification Results

In Table 3.5, we present the classification results across different reach to grasp movements,
for a specific position and three different objects (three classes) for all subjects, using the
random forest method. In Table 3.6 we present the classification accuracy across different
reach to grasp movements, for a specific object and five different object positions (five

classes), for all subjects, using random forests.

In Table 3.7 we present the classification accuracy of random forest models, across reach
to grasp movements towards five different positions (five classes), for all objects and

subjects, using the random forest method. In Table 3.8, we present the classification
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TABLE 3.5: Classification accuracy across different reach to grasp movements towards
a specific position and three different objects (three classes), for all subjects (using

random forests)

Positions Objects (Classes)
Mug Marker Rectangle
Pos 1 87.82% (£4.52)  91.15% (£5.31%)  88.82% (+4.63%)
Pos II | 84.24% (£5.99%) 90.40% (£4.52%) 91.81% (£5.41%)
Pos 11 84.78% (£5.78%)  86.72% (£5.16%)  85.39% (+4.95%)
Pos IV | 83.24.% (£6.14%) 84.17% (£6.21%)  86.93% (£4.83%)
Pos V| 86.55% (£4.30%) 80.32% (£3.81%) 90.74% (£3.78%)

TABLE 3.6: Classification accuracy across different reach to grasp movements, for a
specific object and five different object positions (five classes), for all subjects (using

random forests)

Positions Objects

(Classes) Mug Marker Rectangle
Pos I 86.01% (+£4.16%) | 89.83% (£4.01%) | 87.01% (£6.57%)
Pos IT | 83.76% (£6.24%) | 87.95% (£4.78%) | 88.43% (£5.51%)
Pos IIT | 89.74% (£3.41%) | 87.23% (£4.92%) | 90.30% (£+4.01%)
Pos IV | 91.23% (£2.39%) | 90.05% (£4.86%) | 90.51% (£3.92%)
Pos V| 91.80% (£3.45%) | 92.34% (£2.69%) | 90.90% (£3.01%)

results achieved, using 15 EMG channels to discriminate between reach to grasp movements,

towards specific position and object combinations (for all objects and positions), to

execute two different tasks per object (two classes). As it can noticed, classification

accuracy is consistently high across different positions, different objects and different

tasks. The latter evidence proves the efficiency of the proposed scheme for various reach

to grasp movements and tasks.

TABLE 3.7: Classification accuracy across different reach to grasp movements towards
different positions, for all objects and subjects. Random Forests classifier was used for

data with 16 EMG channels, from all subjects.

Positions
Pos1 PoslIl Pos 111 Pos IV Pos V
88.51% 86.29% 87.91% 89.20% 91.02%

In Table 3.8, we reported some interesting classification results for task discrimination,

using a lot of EMG channels (15 EMG channels) which typically may not be available,

due to hardware, cost or other limitations. Thus in this work we use the random forests

technique to compute the feature variables (EMG channels) importance for each position
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TABLE 3.8: Classification accuracy across different reach to grasp movements, towards
different positions and objects, to execute two different tasks (two classes). Random
forests classifier was used for 15 EMG channels, of Subject 1 data.

Tall Glass
Tasks Side Grasp Front Grasp
Pos T | 76.31% (+7.41%) 78.87% (+4.72%)
Pos IT | 89.77% (£5.43%) 87.88% (+9.42%)
Pos IIT | 84.86% (£8.27%) 85.75% (+2.38%)
Pos IV | 89.69% (£5.61%) 86.82% (+8.06%)
Pos V | 87.56% (£8.20%) 90.36% (+4.77%)
Wine Glass
Tasks Side Grasp Stem Grasp
Pos T | 84.14% (£4.15%) 85.20% (£4.59%)
Pos IT | 71.23% (£5.19%) 79.72% (£9.31%)
Pos IIT | 66.64% (£8.15%) 77.71% (£11.47%)
Pos IV | 87.98% (£5.21%)  89.02% (£5.81%)
Pos V | 66.44% (£8.66%) 64.28% (£7.62%)
Mug

Tasks | Handle Grasp Top Grasp
Pos T | 89.33% (£6.66%) 90.74% (+6.78%)
Pos IT | 79.77% (£6.74%) 82.31% (£7.02%)
Pos IIT | 75.98% (£9.63%) 83.52% (£7.03%)
Pos IV | 84.91% (£3.83%) 86.99% (£5.20%)
Pos V | 77.83% (£5.79%) 77.36% (£3.95%)

Mug Plate

Tasks | Side-Pinch Grasp Top Grasp

Pos 1 84.98% (£2.52%)  81.76% (£4.99%)
Pos 11 89.58% (£6.11%)  92.76% (£4.27%)
Pos IIT | 86.73% (£7.57%)  95.58% (+1.92%)
Pos IV | 87.16% (£6.59%)  85.64% (£9.86%)
Pos V 91.62% (£3.08%)  90.78% (+2.98%)

and object combination and resolve the classification problems for task discrimination,

using the 6 most important EMG channels.

Results for task discrimination, using the most important EMG channels, are reported
in Table 3.9. We can notice that even for the reduced number of feature variables (EMG
channels), classification accuracy remains consistently high and the results are equal or

better that the initial results (with the 15 EMG channels).

In the aforementioned results, is evident that the classification accuracy and the overall
ability of our scheme to discriminate different reach to grasp movements, towards different

tasks (executed with the same object), depends on:



Part I - EMG Based Interfaces

48

TABLE 3.9: Classification accuracy across different reach to grasp movements, towards
different positions and objects, to execute two different tasks (two classes), for Subject
1. Random forests were used with the 6 most important EMG channels selected using

the features selection method.

Tall Glass
Tasks Side Grasp Front Grasp
Pos T | 81.43% (£2.64%) 79.91% (£7.69%)
Pos IT | 89.79% (£7.35%) 90.79% (£7.97%)
Pos IIT | 82.84% (£9.12%) 88.76% (£3.34%)
Pos IV | 89.82% (£5.89%) 87.71% (£7.97%)
Pos V | 84.66% (£9.98%) 92.85% (+4.14%)
Wine Glass
Tasks Side Grasp Stem Grasp
Pos T | 86.77% (£3.72%) 84.30% (£3.77%)
Pos IT | 74.50% (£9.81%) 81.20% (£9.64%)
Pos IIT | 72.62% (£8.66%) 79.39% (£13.56%)
Pos IV | 86.90% (£8.40%) 87.61% (+5.95%)
Pos V | 63.41% (£6.88%) 64.24% (£9.72%)
Mug
Tasks | Handle Grasp Top Grasp
Pos T | 87.17% (£4.67%) 87.85% (+4.59%)
Pos IT | 80.10% (£7.36%) 83.72% (+5.87%)
Pos IIT | 77.90% (£5.40%) 81.43% (+6.98%)
Pos IV | 85.35% (£4.14%) 84.98% (£6.07%)
Pos V | 81.06% (+8.29%) 78.95% (+9.57%)
Mug Plate
Tasks | Side-Pinch Grasp Top Grasp
Pos 1 84.34% (£5.57%)  83.60% (£3.44%)
Pos 11 90.74% (£4.59%)  94.01% (£3.49%)
Pos IIT | 85.55% (£12.07%)  95.61% (4-2.89%)
Pos IV | 86.74% (£10.18%)  83.79% (+7.27%)
Pos V 91.00% (£2.23%)  92.28% (+3.03%)

o The “distance” (in the configuration space) between the final postures of the full

human arm hand system, that correspond to different tasks.

For example the two tasks of the tall glass, mug and mug plate result to completely

different human wrist angles (wrist motion strongly affects forearm muscles). Thus, for

these tasks better classification results can be achieved, in contrast to the wine glass tasks

that involve mainly finger motions and variations of the aperture (less differentiation of

muscular co-activation patterns).

e The position of the object to be grasped, as different positions result to different

classification accuracies for the same object and tasks.
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For example for positions I and IV the classifier achieves better classification accuracy
for wine glass and mug, while positions II and V achieves better results for tall glass

and mug plate.

3.5.3.1 Majority Vote Criterion

Given the fact that the classification decision in our scheme is taken at a frequency of
1 kHz, we can use a sliding window of width N, in order for all the N samples to be
used for the classification decision. Inside this window, we can use the Majority Vote
Criterion (MVC), which classifies all the samples of a set of N samples, in the class
that was the most common between them (the class gathering the most votes). The use
of the majority vote criterion, can improve the classification results acquired with the

proposed methods.

More details regarding the sliding window and the MVC can be found in [88] and [98]. In
Table 3.10, we present improved classification results using the majority vote criterion in
a sliding window of N = 50 samples, for Subject 1 performing reach to grasp movements,
towards a specific object (marker) and varying object position.

TABLE 3.10: Classification accuracy across different reach to grasp movements of

Subject 1, towards a specific object (Marker) and varying object position, using random
forests and random forests with MVC (in a sliding window of N=>50 samples).

Object Subject1
Rectangle PosI PosII PosIIl PosIV PosV
Random Forests | 87.03% 91.61%  90.51%  86.25% 92.61%
RF with MVC 100% 100% 100% 100% 100%

3.5.4 Task Specific Motion Decoding Results

In this section we present the EMG-based motion estimation results, for reach to grasp
movements towards three different objects, placed at five different positions in 3D space.
Highly accurate estimation results are achieved using task-specific random forest models,
triggered from our scheme, taking into account the classification decision on the “task”

to be executed.

More specifically in Table 3.11 we present estimation results for five subspace specific
models, trained with Subject 1 data, to decode human motion during reach to grasp
movements, towards five different positions to grasp a specific object (marker). In Table

3.12 we present estimation results for three object specific models, trained with Subject
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1 data, to decode human motion during reach to grasp movements, towards a specific

position (Pos I), to grasp three different objects (a marker, a rectangle and a mug).

In Tables 3.11 and 3.12 we can notice, that the models trained for each position or object
separately, outperformed the “general” models built for all positions (for a marker) and
all objects (placed at specific position, Pos III). With the term “general” models we
mean those models trained for all positions in 3D space or all objects placed at a specific
position (training of “general” models requires a training set that contains data for all

classes of a specific problem).

TaBLE 3.11: Estimation results for a specific object (a marker) across all five object
positions, for Subject 1, using a random forests model.

Position Arm Hand
Similarity (%) Similarity (%)

Pos 1 83.78% +4.01% | 83.43% +13.77%
Pos 11 88.80% +3.98% | 86.60% +15.02%
Pos ITI | 86.93% £3.95% | 90.42% +10.47%
Pos IV | 89.47% +6.25% | 83.73% +16.12%
Pos V 91.53% +6.57% | 89.04% +10.09%
ALL 80.19% +7.32% | 81.15% +16.24%

TABLE 3.12: Estimation results for a specific position (Pos III) and all three different
objects, for Subject 1, using a random forests model.

Object Arm Hand
Similarity (%) Similarity (%)
Marker 86.93% +3.95% | 90.42% +10.47%
Rectangle | 87.76% +4.13% | 82.33% +12.31%
Mug 89.62% +5.13% | 83.52% +13.57%
ALL 83.26% +7.2% | 80.47% +11.72%

Finally in Table 3.13 its evident, that the estimation results were usually better for
the human arm (better estimation accuracy for human arm motion was achieved) than
for the case of the human hand (human fingers motion). Such a finding, supports the
applicability of our method, since precisely estimating the position of the human arm

hand system end-effector (wrist), is far more important than fingers placement.

Similarity between the estimated and the captured human motion is defined as:

S = 100(1 - RMS(qc - Qe)/RMS(QC))%
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TABLE 3.13: Estimation results for specific position (Pos III) and specific object (a

rectangle), for all subjects using a random forests model.

Subject Arm Hand
Similarity (%) Similarity (%)
Subject 1 | 87.76% +4.13% | 82.33% +10.47%
Subject 2 | 85.91% +6.21% | 81.59% +11.78%
Subject 3 | 89.44% +4.30% | 84.93% +14.93%
Subject 4 | 87.32% +5.34% | 85.28% +10.16%
Subject 5 | 82.11% +7.79% | 80.54% +16.32%

where RMS is:

n 2
RMS(QC - Qe) = \/Zi:l (,qnc Qe) (3'2)
where g. are the captured joint values, ¢, the estimated joint values and n the number
of samples. In Fig. 3.20 we compare the estimated from the task-specific model, user’s
wrist position, with the user’s wrist position captured using the Isotrak IT motion capture
system, during the experiments. The data used are part of a validation set, not previously

seen during training.

X Axis Y Axis Z Axis

200 400 600 800 0 200 400 600 800 - 200 400 600 800
Time (ms) Time (ms) Time (ms)

FIGURE 3.20: EMG-based human end-effector (wrist) position estimation (using a task-
specific motion decoding model). Straight lines represent the captured values (during
the experiments), while the dashed lines represent the estimated values.

3.6 Concluding Remarks

A complete learning scheme for EMG based interfaces, has been proposed. A regressor
and a classifier cooperate advantageously in order to split the task space, and achieve
better motion decoding for reach to grasp movements, using task specific models. Thus,
the proposed scheme is formulated so as to first discriminate between different reach
to grasp movements, providing an appropriate classification decision and then trigger a
task-specific EMG based motion decoding model, that achieves better motion estimation,
than the “general” models. Principal Component Analysis (PCA) is used to represent

in low dimensional manifolds the human myoelectric activity and the human motion.
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The regression problem is then formulated using these low-dimensional embeddings. The
estimated output (human motion) can be back projected in the high dimensional space
(27 DoFs), in order to provide an accurate estimate of the full human arm-hand system
motion. The proposed scheme can be used by a series of EMG-based interfaces and for
applications that range from human computer interaction and human robot interaction,

to rehabilitation robotics and prosthetics.
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Chapter 4

The Role of Anthropomorphism

F1GURE 4.1: The DLR Anthropomorphic Arm Hand System.

The essence of anthropomorphism as described in [99], is to imbue the imagined or real
behavior of nonhuman agents with humanlike characteristics, motivations, intentions
and emotions. Anthropomorphism is derived from the greek word anthropos (that means

human) and the greek word morphe (that means form).

4.1 The Role of Anthropomorphism

Almost 140 years ago Charles Darwin suggested anthropomorphism as a necessary
tool for efficiently understanding nonhuman agents [39]. Nowadays, we experience an
increasing demand for human robot interaction applications that require anthropomorphism,

for two main reasons:

55
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e Safety in human robot interaction.

e Social connection through robot likeability.

Regarding safety in HRI applications, humanlike motion can more easily be interpreted
by the humans. Thus, when humans and robots cooperate advantageously in order
to execute a series of specific tasks, if robots move anthropomorphically, users can
more easily predict robots motion complying accordingly their activity /motion, to avoid

possible injuries.

Regarding social connection through robot likeability, the more human-like a robot is in
terms of appearance (e.g., humanlike appearance, use of artificial skin etc.), motion (e.g.,
co-ordinated movements, use of synergies etc.), expressions (e.g., facial expressions) and
perceived intelligence (how intelligent the robot “seems” to be), then the more easily
will manage to establish a solid social connection with humans. An exception to this
rule of thumb, is the well-known uncanny valley, as described by [40] and [41]. More
information regarding anthropomorphism and it’s social implications, can be found in

[42], [71] and [72].
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FIGURE 4.2: A robot arm helps make engine components at a Volkswagen factory in
Germany. For the first time, robots are working alongside humans without guards or

other safety barriers between them. Credit: Universal Robots (http://www.universal-
robots.com).
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FIGURE 4.3: The iCub humanoid robot [73]. Credit: Cheney D’souza

4.2 Functional and Perceptional Anthropomorphism

A first approach to investigate the different expressions of anthropomorphism can be
found in [74]. In this latter study, the authors discriminate between functional and
structural anthropomorphism for the development of technical devices that will assist
disabled people. The functional way to develop such a device, is to provide a human
function independently of the structural form, while the structural way, is to more or

less accurately imitate some part of the human body.

As we have already noted in this Ph.D. thesis, we mainly focus on the different applications
of anthropomorphism for robot arm hand systems that can be used with EMG based
interfaces, for Human Robot Interaction applications (e.g., EMG based teleoperation,
EMG control of anthropomorphic prosthetic devices etc.). Thus, in order to discriminate
between the different notions of anthropomorphism, we propose a clear distinction

between Functional and Perceptional Anthropomorphism.

Functional Anthropomorphism concerns a mapping approach that has as first priority
to guarantee the execution of a specific functionality in task-space and then having
accomplished such a prerequisite to optimize anthropomorphism of structure or form
(minimizing some “distance” between the human and robot motion). For defining that
“distance”, appropriate metrics / criteria of anthropomorphism have to be defined, that

will lead with low-complexity in unique anthropomorphic solutions.
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On the other hand we suggest Perceptional Anthropomorphism as the subcategory of
anthropomorphism that concerns co-ordinated motion, behavior, decisions or even emotions

that can be perceived intuitively as human-like (of human nature). Perceptional anthropomorphism
can be further splitted in structural or postural anthropomorphism focusing on instantaneous
structural similarity, motion co-ordination and synergistic performance, as well as in
behavioral anthropomorphism concerning the imitation of human behavior by robots

(e.g., use of similar facial expressions by humanoids, empathetic behavior etc.).

As it can be easily hypothesized the “boundaries” between postural/structural and
behavioral anthropomorphism are not clear, as parameters like the velocity profile of
a motion may be classified subjectively in both categories. Thus, we propose the generic
term perceptional anthropomorphism to examine all those cases where the “pursuit”
of anthropomorphism is not constrained by having as a prerequisite the execution of a

specific functionality in task-space.

4.3 Applications of Anthropomorphism

Anthropomorphism may be used for various Human Robot Interaction applications. In

this Ph.D. thesis we focus on the following two:

e Development of human-like robotic artifacts.

e Mapping human to humanlike robot motion.

In order to develop human-like robots (e.g., human-like robot hands), we need first
to be able to measure anthropomorphism/humanlikeness of robot artifacts. Thus, in
Chapter 5, we propose a complete methodology for quantifying anthropomorphism of
robot hands, comparing them with nature’s most dexterous end-effector, the human
hand.

Then, in order to map human to anthropomorphic robot motion we use the notion
of Functional Anthropomorphism, proposing a series of mapping schemes, that take
advantage of specific criteria of anthropomorphism. These criteria, lead to the minimization
of structural dissimilarity between human and robot arm hand systems configurations.

More information can be found in Chapter 6.
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4.4 Concluding Remarks

In this Chapter we presented a brief introduction on the definition of anthropomorphism
of robot artifacts, we discussed the importance of humanlikeness, we introduced the
notions of Functional and Perceptional Anthropomorphism and we presented some

possible applications.






Chapter 5

Quantifying Anthropomorphism
of Robot Artifacts

In this chapter we propose a methodology based on set theory and computational
geometry methods, for the quantification of anthropomorphism of robot hands. In order
to quantify anthropomorphism we choose to compare human and robot hands in two
different levels: comparing finger phalanges workspaces and comparing workspaces of
the finger base frames. A series of metrics are introduced that assess robot’s ability to
mimic the human hand. The final score of anthropomorphism uses a set of weighting
factors for the different metrics (that can be adjusted according to the specifications of
each study), providing always an overall normalized score that ranges between 0 (non-
anthropomorphic) and 1 (human-identical). The models of three different robot hands
have been used for our analysis, the Barrett Hand, the DLR/HIT II and the Shadow
hand. The proposed methodology can be used to grade the humanlikeness and to provide
specifications for the design of the next generation of anthropomorphic robot hands and

myoelectric prostheses, as described in Chapter 9.

5.1 Introduction

During the last decades, the field of robot hands design has received an increased
attention, as robot hands can be used for a plethora of everyday life applications,
that range from lightweight prostheses that can help amputees regain lost dexterity
[100] and teleoperation/telemanipulation studies [101], to autonomous anthropomorphic
grasp planning [102]. Nowadays, anthropomorphic characteristics (e.g. appearance, links
lengths etc.), use of light-weight, low-cost and flexible materials and synergistic actuation

are the prevailing trends for robot hands design.
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Despite the increased interest and the numerous robot hand designs proposed, there
is still a lack of insight regarding anthropomorphism of robot hands. How can we
define “anthropomorphism”? Is it possible to discriminate if a robot hand is more
anthropomorphic that another? How can anthropomorphism be helpful? Why do we
need anthropomorphism in the first place? These are some of the fundamental questions

that will be raised and addressed in this chapter.

As we have already noted in Chapter 4, anthropomorphism becomes a necessity for two
main reasons; safety and social connection through robot likeability. Moreover, for the
case of robot hands, we must take into consideration the fact that everyday life objects
are designed to be manipulated by the human hand. Thus, the pursue of humanlike
design becomes a necessity not only to increase dexterity of the robotic artifacts and
to mimic the human hand in terms of appearance, but also in order to incorporate
in the robotic hand design some human specifications, according to which the objects

surrounding us have been crafted.

Regarding previous attempts to analyze anthropomorphism of robotic hands, an index
of anthropomorphism was proposed in [43] and [44], as the weighted sum of kinematics,
contact surfaces and size scores. These studies take many robot attributes into consideration,
but they don’t provide a comparative analysis of the workspaces of human and robot
fingers and they don’t take into consideration the mobility of finger base frames, for the
computation of the score of anthropomorphism. In [103] a review of the performance
characteristics of many commercial prosthetic and anthropomorphic robotic hands is
conducted, but the approach is strictly qualitative. Recent quantitative studies [45] and
[46], use Gaussian Process - Latent Variable Models (GP-LVM) to represent in low-
dimensional manifolds the human and robot hand workspaces and compare them. Only
the fingertip positions are included in their analysis, without taking into account the

configurations, the phalanges lengths, or the mobility of the human finger base frames.

Regarding workspaces analysis, in [58] a comparison is performed between a haptic
interface (based on two DLR-KUKA LWR arms) and the reachable workspace of the
human arm, using the reachability map proposed in [104]. Such an analysis focuses on
the position of the tool center point (TCP) in 3D space, discriminating not only the
reachable and the dexterous workspaces as defined in [105] but also a capability map
for the whole space. Regarding human hand workspace analysis, in [106] the authors
propose a methodology that can be used to quantify the functional workspace of the
precision thumb - finger grasp, defined as the range of all possible positions in which

thumb fingertip and each fingertip can simultaneously contact each other.
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5.2 Kinematics Models

This section focuses on the 25 Degrees of Freedom (DoFs) kinematic model of the human
hand that we use in this Chapter and presents also the three robot hands, that will be
studied.

5.2.1 Kinematic Model of the Human Hand

The kinematic model of the human hand that we use consists of 25 DoFs, five DoFs
for the thumb, four DoFs for index and middle fingers and six DoFs for each one of
the ring and pinky fingers. We use 6 DoFs for the ring and pinky fingers of the human
hand model, in order to take into account the mobility of the carpometacarpal bones
of the palm, that results to varying positions for the fingers base frames. Although
human hand digit lengths, are quite easy to be measured, expressing the base of each
finger relatively to the base of the wrist is a difficult problem, which requires advance
techniques such as fMRI [107]. In this work we use the parametric models for each
human digit (derived from hand anthropometry studies) [108], [109] and [110], in order
to define the lengths for all phalanges of the human hand. Moreover we incorporate the
kinematics of the carpometacarpal bones as defined in [111], in the proposed human
hand model in order to be able to compute the workspace of the human fingers base
frames. The parametric models depend on specific parameters of the human hand that
are the hand length (HL) and the hand breadth (HB). In this study we set both the
HL and the HB parameters, to the mean value of the men and women 50th percentiles,

according to the hand anthropometry study conducted in [112].

5.2.2 Robot Hands

Three quite different robot hands are examined in this study (due to space constraints).
The five fingered DLR/HIT II (DLR - German Aerospace Center) [70], the Shadow
Robot Hand (Shadow) [113] and the Barrett Hand (Barrett Technology Inc.) [114], that

appear in Fig. 9.11.

Shadow Hand DLR/HIT 11 Barrett Hand

FI1GURE 5.1: The robot hands examined in this study.
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5.2.3 Defining the Correspondences between Human and Robot Hands

Components

In this study, we consider each human and robot finger as a typical finger with two or
three joints and three or four DoFs respectively (one for abduction/adduction and two or
three for flexion/extension). In case that a robot finger has more degrees of freedom we
consider that these DoFs contribute to the positioning of its base frame and we include
them in the analysis during human and robot fingers base frames workspaces comparison.
Thus human thumb is used for finger phalanges workspaces analysis, as a finger with
two joints and three DoFs (one for abduction/adduction and two for flexion/extension)
and the rest human fingers are used as fingers with three joints and four DoFs (one
for abduction/adduction and three for flexion/extension). If a robot hand has fingers
with more than four DoFs (e.g. the pinky finger of Shadow hand [113]), we consider the
rest as DoFs of the palm that contribute to the positioning of its fingers base frames. In
order to compare human and robot fingers phalanges workspaces we must first define the
correspondences between human and robot components. For example it’s quite typical
for a robot hand to have less than five fingers or less than three phalanges per finger
[114]. To handle such situations we propose to map human to robot fingers with an
order of significance starting from thumb and index, to middle, ring and pinky. Such
a choice is justified by the fact that thumb, index and middle are the most important
fingers participating in the various grasp types according to grasp taxonomy studies
[115], [116], while ring and pinky appear to be subsidiary. Regarding the robot to
human phalanges correspondence we follow a similar approach, assigning first the distal,
then the proximal and finally the middle phalanx. In case that we have to find the
correspondences for a robot hand with more than five fingers, we use the combination of
consequent fingers that gives the highest score of anthropomorphism and if we have to
find correspondences for a robot finger with more than three phalanges, we keep some
joints fixed to zero, formulating those virtual phalanges that give once again the highest

score of anthropomorphism.
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5.3 Methods

5.3.1 Convex Hulls

The convex hull of a set of points S in three dimensions is the intersection of all convex

sets containing .S. For N points sy, So, ..., s, the convex hull C is given by the expression:

N N
CE{Zaksk:ak>0forallkand Zakzl} (5.1)

k=1 k=1

The convex hull of a finite point set S € R™ forms a convex polytope in R"™. Each s € S
such that s ¢ Conv(S\{s}) is called a vertex of Conv(S). In fact, a convex polytope in
R" is the convex hull of its vertices. When S € R? as in our case, the convex hull is in
general the minimal convex polyhedron S C R3 that contains all the points in the set

and which is the set of solutions to a finite system of linear inequalities:
P={seR*:As<b} (5.2)

where m is the number of half-spaces defining the polytope, A is an man matrix, s is an
nxl column vector of variables, and b is an mz1 column vector of constants. To compute
the exact volume of a polytope P, it must be decomposed into simplices, following the

simplex volume formula:

_ |det(s2 — $1, ..., Sy — S1)|

Vol(A(S1, ..., 8n)) (5.3)

n!

where A(sy, ..., s,) denotes the simplex in R"™ with vertices s1,...,$, € R™. Moreover,
when the triangulation method is used to decompose the polytope into simplices, then

the volume of P is simply the sum of simplices volumes:

N
Vol(P) = Vol(A(i)) (5.4)
=1

There are plenty of methods available to compute the convex hull of a set S of points.
In this study we choose to use the well known quickhull algorithm for convex hulls, that

has been proposed in [117].

5.3.2 Quantifying Anthropomorphism of Robot Hands

In order to quantify anthropomorphism of robot hands, we must first answer the question
What are those characteristics that make the human hand the most dexterous and

versatile end-effector known? One main advantage of the human hand, is its ability
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to move the fingers base frames, using the mobility of the carpometacarpal bones. More
specifically, a series of power - prehensile grasps, such as the circular grasp or the lateral
pinch, are typical examples, where the mobility of the human fingers base frames is
of outmost importance. Thus, we choose to compare human and robot hands in two
different levels: comparing finger phalanges workspaces and comparing human and robot

fingers base frames workspaces.

5.3.2.1 Workspaces Computation

In order to quantify robot fingers anthropomorphism, we choose to perform a one-to-one
comparison between the workspaces of human and robot fingers. For doing so, we need
three sets of points Sp, Sy, Sp € R? for each human and robot finger, that contain the
boundary points of the workspaces of the distal, middle (i.e. intermediate) and proximal
phalanges respectively. Human thumb doesn’t have a middle phalanx, so the Sy; point
set is excluded, while thumb’s workspace computation follows the same procedure. In
order to conclude to these sets, we set some DoFs fixed to zero and we compute the
forward kinematics of each finger while exploring the joint space of the moving DokFs.
More specifically to compute set Sp we keep DoFs 3 and 4 fixed to zero, to compute set
Sy we keep DoFs 2 and 4 fixed to zero and to compute Sp we keep DoFs 2 and 3 fixed to
zero. DoF 1 (abduction/adduction) is always active, as it contributes to the workspaces
of all phalanges. To proceed to workspace computation we discretize the joint space of
active DoFs using a step of %, where usually n=20 degrees and R is the range of motion.
Then we compute the forward kinematics for all n? possible configurations (where 2
is always the number of the active DoFs). Sp is the set containing all possible joint 2
positions as well as joint 1 static position, Sjs is the set containing all possible joint
2 and joint 3 positions, while finally Sp is the set containing all possible joint 3 and
fingertip positions. Then, the computed sets of points Sp, Sj; and Sp are used to create

the convex hulls of the phalanges workspaces, as depicted in Fig. 5.2.

Regarding the computation of robot fingers base frames anthropomorphism, we choose

to perform a one-to-one comparison between human and robot fingers base frames
workspaces. Base frames may differ not only in positions but also in orientations (relatively

to the global reference frame at the center of the wrist), so in order to compute anthropomorphism
of robot fingers base frames, we choose to compare human and robot finger bases frames
positions and orientations workspaces. For doing so, we need a set of points Spprp
containing the boundary points of positions workspaces and a set Spro containing the
boundary points of orientations workspaces (in Sppo points are represented in euler
angles). Once again, the workspaces are created using the palm forward kinematics

and discretizing the joint space with a step of % (usually n=20) degrees, where R



Part III - Anthropomorphism 67

3D Points
Proximal (SHIP) Middle (SHIM) Distal (SHID)

Convex Hulls

Proximal (SHIP) Middle (SHIM) Distal (SHID)

F1GURE 5.2: Workspace creation per phalanx for index finger of human hand.

is the range of motion. Such workspaces will be computed using the robot forward
kinematics, only if the robot hand has at least one DoF contributing to the mobility of
the fingers base frames. If robot base frames are fixed [70] then the fingers base frames
positions “workspace” will be computed as the convex hull created by the five static robot
fingers base frames positions, while the orientations “workspace” will be computed as
the convex hull created by the five static robot fingers base frames orientations. Finally
regarding forward kinematics, we use a simple and systematic approach to assign the

DH parameters, as described in [118].

5.3.2.2 Finger Phalanges Workspaces Comparison

Let Sprp be the set of points of the human index distal phalanx (HID) and Sgrp
the set of points of the robot index distal (RID) phalanx. We compute the convex
hull of the human index distal phalanx workspace Cgrp, and the convex hull of the
robot index distal phalanx workspace Crrp. In order to quantify anthropomorphism
of each robot finger, we propose to compare the workspaces of its phalanges with the
workspaces of the equivalent human finger phalanges. Thus for index finger, we compute
the intersection and the union of the human and robot workspaces for each phalanx. Let
Cpr = CripNCHrp, be the intersection of the human and robot index distal phalanges
workspaces and Cpy = Crrp UCgrp be the union of the human and robot index distal

phalanges workspaces. Then, anthropomorphism for the distal phalanx of index finger
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(Arp) is computed as follows:!

Vol(Cpr)

A = —— P
D= Vol(Cpy)

100 (%) (5.5)

Equivalently for index finger, we quantify anthropomorphism for middle phalanx (Arxr)

and proximal phalanx (Arp).

5.3.2.3 Fingers Total Score

In order to conclude to the anthropomorphic score for the whole index finger (Ay), we

use a weighted sum of the scores of its phalanges:

_ wipArp +wip A +wrpArp

Ar
wrp +wrpm + wrp

(%) (5.6)

where wip + wry +wrp = 1, wip, wrn, wrp > 0 are the weights for each phalanx and
can be set subjectively according to the specifications of each study. The same procedure
can be used to quantify anthropomorphism of robot middle (Ays), robot ring (Ar), robot
pinky (Ap) and robot thumb (Ar).

5.3.2.4 Fingers Base Frames Positions Comparison

In order to compute the level of anthropomorphism of the robot fingers base frames
positions, we choose to compare the human and robot fingers base frames positions
workspaces. For doing so, we use the convex hulls created by the human fingers base
frames positions and the robot fingers base frames positions. Then, we compute the

intersection of the human and robot fingers base frames positions convex hulls:

Crpr = Crerp N CHuBFP (5.7)

where Crprp is the convex hull of the robot fingers base frames positions, Cyprp is
the convex hull of the human fingers base frames positions and Cgppr is the convex hull

of their intersection. The union of these convex hulls (Cgrpy), can be defined as:

Cerpu = Cuprp UCRrBFP (5.8)

'In this work we use a series of fractions with numerator always the volume of the intersection of the
human and robot workspaces and denominator the volume of their union. So in order not to penalize
the case a robot hand to be more dexterous than the human hand, if a robot hand has a joint with joint
limits greater than human, we change them in order to be equal with the human limits.
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In order to compute the level of anthropomorphism of robot fingers base frames positions

(Aprp), we proceed as follows:

vol(Cprpr)

ol (Carpy) 100 (%) (5.9)

Aprp =

5.3.2.5 Fingers Base Frames Orientations Comparison

In order to compute the level of anthropomorphism of the robot fingers base frames
orientations workspace, we choose to compare the convex hulls created by the human
fingers base frames orientations and the robot fingers base frames orientations. More

specifically we compute the intersection of the human and robot convex hulls:

Cgror = Crero N CuBFoO (5.10)

where Crpro is the robot fingers base frames orientations convex hull, Cgpro is the
human fingers base frames orientations convex hull and Cgpor is the convex hull of their
intersection. The union of human and the robot fingers base frames orientations convex

hulls (Cprou), can be defined as:

Crov = Cupro U CrBFo (5.11)

To compute the level of anthropomorphism of robot fingers base frames orientations

(Apro), we proceed as follows:

UOl(CBFo[)

20l Carco) 100 (%) (5.12)

ABro =

5.3.2.6 Fingers Base Frames Total Score
In order to conclude to the fingers base frames total score, we use a weighted sum of the
base frames positions score and the base frames orientations score, as follows:

wprpABFP + WBFOABFO
App = (%)
WBFP + WBFO

(5.13)

wprp, wpro are the base frames positions and orientations scores weights, where

wprp +wpro = 1 and wppp,wpro > 0.
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5.3.2.7 Total Score of Anthropomorphism

In order to compute the total score of anthropomorphism for each robot hand (Agr), we
use a weighted sum of the computed scores for the robot fingers and the robot fingers

base frames, as follows:

Ap = wrArtwy AytwrArtwpAptwr Ar+wprABr (%)

o wrtwy +wrtwptwrt+wpe (5.14)

where wi+wy +wrp+wp+wr+wpr = 1, wr, wyr, wr, wp, wr, wpr > 0 are the weights
for the robot fingers scores and the robot fingers base frames score respectively and can
be also set subjectively according to the specifications of each study. Weights must be
chosen according to the relative importance of each part of the hand. For example, the
index, the middle and the thumb fingers can be considered more important that the
ring and the pinky, while the fingers base frames weight must be quite high, because the

ability of fingers base frames to move is a key factor of human hand’s dexterity.

5.4 Results and Simulations

In order to compute and visualize the convex hulls as well as their unions and intersections
we used the multiparametric toolbox (MPT) [119], together with the ninth version
of Robotics Toolbox developed and distributed by Peter Corke [120]. In Fig. 5.3 the
kinematic models of the human hand and the three robot hands are presented together

with the convex hulls of their fingers base frames positions workspaces.

Human Hand Barrett DLR/HIT II Shadow

F1GURE 5.3: Human hand and robot hands kinematic models and fingers base frames
positions convex hulls.

Fig. 5.4 and Fig. 5.5 present comparisons between the fingers base frames positions
workspaces and the fingers base frames orientations workspaces for human and robot
hands, while Table 5.1 presents the score of anthropomorphism for each phalanx of each

finger and the total score per finger.

Results in Table 5.1 are reported for all three robot hands and a hypothetical robot
hand that “follows” human hand specifications, but with size equal to the 110% of the
human hand (like DLR/HIT II). The fingers phalanges weights were set to %, except

thumb phalanges weights that were set to %
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Barrett DLR/HIT II Shadow

--. @ |

FIGURE 5.4: Comparison of human hand (red) and robot hands (black) fingers base
frames positions convex hulls. Results can be found in Table 5.2.

Barrett DLR/HIT II ~ Shadow

- B &

FIGURE 5.5: Comparison of human hand (red) and robot hands (black) fingers base
frames orientations convex hulls. Results can be found in Table 5.2.

TABLE 5.1: Score of Anthropomorphism for all Robot Hands and Hypothetical Robot
Hand (HRobot), for Each Finger and Each Phalanx

Barrett
Index Middle Ring Pinky Thumb ‘
Proximal 18.89% 20.80% - - 0%
Middle - - - - -
Distal 0% 0% - - 0%
Total  6.30%  6.93% - - 0% |
DLR/HIT II

Proximal 46.50% 55.80% 67.74% 28.33% 16.35 %
Middle 40.86% 37.08% 65.60% 16.28% -
Distal  34.33% 57.48% 76.02% 0.9% 0%
Total  40.56% 50.12% 69.79% 15.17% 8.18% |
Shadow
Proximal 45.27% 43.02% 80.85% 49.18% 15.77%
Middle 40.86% 27.59% 53.43% 47.61% -
Distal  52.81% 39.19% 70.21% 22.07% 22.72%
Total  46.31% 36.60% 68.16% 39.62% 19.25% |
HRobot
Proximal 75.13% 75.13% 75.13% 75.13% 75.13%
Middle 86.49% 87.09% 86.93% 86.87% -
Distal  66.55% 61.01% 57.42% 68.59% 88.66%

Total 76.06% 74.41% 73.16% 76.86% 81.90%‘

Table 5.2 presents the score of anthropomorphism of the palm’s mobility quantified via

the comparison of human and robot fingers base frames positions workspaces and fingers

base frames orientations workspaces, for all five robot hands using weights: wgpp =

and wpro = %

2
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Table 5.3, presents the overall score of anthropomorphism for each robot hand, as the
weighted sum of the aforementioned metrics, using weights: w; = 0.2, wy = 0.2, wg =
0.05,11)13 = O.O5,wT = 0.2,wBF =0.3.

Shadow hand is reported to be the most anthropomorphic of the robot hands compared,
mainly because of the mobility of the thumb and pinky fingers base frames. The high
score of the hypothetical robot hand remains a goal for robot hand designers. Table 5.4
assesses the effect of the workspace sampling resolution (expressed as the discretization
of the range of motion R), on the score of anthropomorphism.

TABLE 5.2: Score of Anthropomorphism of Fingers Base Frames for all Robot Hands
and Hypothetical Robot Hand (HRobot)

Barrett DLR/HIT II Shadow HRobot
Positions 44.21% 16.85% 33.41% 75.13%
Orientations | 7.34% 0.4% 60.67% 100%
Total 25.78% 8.62% 47.04%  87.57%

TABLE 5.3: Total Score of Anthropomorphism for all Robot Hands and Hypothetical
Robot Hand (HRobot)

Barrett DLR/HIT II Shadow HRobot
10.38% 26.61% 39.93% 80.24%

TABLE 5.4: Effect of Workspace Sampling Resolution on Anthropomorphic Index
Comparing Human vs Shadow Hand for all Index Finger Phalanges (R = Range of
Motion)

Resolution | R/5 | R/10 | R/15 | R/20 | R/25 | R/30
Score 46.564 | 46.331 | 46.300 | 46.288 | 46.284 | 46.282

Finally in Fig. 5.6, we present a comparison between the finger phalanges workspaces

for the human hand and the three robot hands.

5.5 Concluding Remarks

In this chapter we proposed a systematic approach to quantify anthropomorphism of
robot hands. The proposed methodology is based on computational geometry and set
theory methods and takes into account those specifications that make human hand the

most dexterous end-effector known (e.g. opposable thumb, palm mobility etc.).
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Thumb
Barrett DLR/HIT II Shadow

Index

Middle

Ring
DLR/HIT II Shadow

Pinky

FIGURE 5.6: Phalanges workspaces comparison for human hand (red convex hulls and
blue kinematics chains) and robot hands (black convex hulls and red kinematic chains).
The comparisons scores can be found in Table 5.1.

More specifically we choose to compare human and robot hands in two different levels;
comparing finger phalanges workspaces and the workspaces of the fingers base frames.
The efficacy of our method is validated, comparing three different robot hands against
the human hand. The proposed methodology can be used to provide specifications, for

the design of a new generation of anthropomorphic robot hands and prosthetic devices.






Chapter 6

Mapping Human to Robot
Motion with Functional

Anthropomorphism

In this chapter, we propose a series of schemes for mapping human to robot motion
with functional anthropomorphism, for the case of different robot arm hand systems.
For doing so, we first propose various criteria of functional anthropomorphism that can

be incorporated in our mapping schemes.

For the case of Mitsubishi PA10 DLR/HIT II robot arm hand system, a forward/inverse
kinematics mapping is used for both the robot arm and the robot hand. Inverse Kinematics
(IK) of Mitsubishi PA10 are computed analytically using the IKFast algorithm of OpenRAVE
[75] and redundancy handling is performed, selecting the most anthropomorphic solution,
derived from a specific criterion of anthropomorphism (solution that minimizes also

structural dissimilarity between human and robot artifacts).

For the general case of hyper-redundant robot arms and m-fingered robot hands, we
address the mapping as an optimization problem, using a criterion of functional anthropomorphism
incorporated in a composite objective function. The role of the proposed function is
twofold: a) to guarantee the execution of specific human-imposed functional constraints
by the robotic artifacts (i.e. same position and orientation for human and robot end-
effectors) and b) to handle redundancies presented at the solution spaces of the robotic

artifacts.

In order to prove the efficiency of the proposed methods, we experimentally validate our
results, using extensive simulated paradigms as well as real experiments presented for

teleoperation and telemanipulation studies in Chapter 7.

75
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6.1 Introduction

Over the last 50 years mapping human to robot motion has been one of the most
challenging problems in robotics, with numerous applications varying from teleoperation,
to human robot interaction and learn by demonstration. Nowadays anthropomorphism of
robot motion is very important, for certain Human Robot Interaction (HRI) applications.
Humanoids are used to interact with children, industrial robots must cooperate advantageously
with humans, hyper-redundant robots must be teleoperated intuitively in remote and
dangerous environments and a new generation of prosthetic or assistive devices must be

developed to help patients or amputees regain lost dexterity.

But how anthropomorphism affects the problem of mapping human to robot motion? The
answer is that anthropomorphism reformulates the mapping, as a two step procedure
that will first guarantee specific human imposed functional constraints and will then
“seek” a relationship between the human and the robotic artifact, that will ensure
human-likeness of robot motion. In Chapter 4 and in [92], we proposed a clear distinction

between Functional and Perceptional Anthropomorphism for human to robot motion

mapping.

As we have already mentioned, Functional Anthropomorphism concerns a mapping approach
that has as first priority to guarantee the execution of a specific functionality in task-
space and then, having accomplished that, to optimize anthropomorphism of structure
or form, minimizing a “distance” between the human and robot motion. The idea of
a functional constraint is more evident in case of robot arm hand systems, where a
typical prerequisite is the human and the robot end-effectors to achieve same position
and orientation in 3D space. Moreover anthropomorphism can also be used to handle
redundancy of robotic artifacts, so in this chapter we choose to address the problem of
human to robot motion mapping, not only for robot artifacts with common kinematics,

but also for the general case of highly redundant robotic arm hand systems.

Regarding hand motion mapping, four major methodologies have been proposed in the
past: fingertips mapping, joint-to-joint mapping, functional pose mapping and object
specific mapping. Fingertips mapping appears in [47, 48, 121-124] and is based on the
computation of forward kinematics (FK) and inverse kinematics (IK) for each human
and robot finger, in order to achieve same fingertip positions in 3D space. The linear
joint-to-joint mapping is a one-to-one, joint-to-joint angle mapping, where the joint angle
values of the human hand are mapped to the corresponding joints of the robot hands
[49, 125, 126]. In joint-to-joint mapping, the replicated by the robot postures are identical
to the human hand postures, as human and robot finger links attain same orientations.

Functional Pose Mapping [50] places both the human and the robot hand in a number
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of similar functional poses and then a relationship between each human and robot joint
is found (e.g., using the least squares fit method). Finally, the object-specific mapping,
which was originally proposed in [51], provides a mapping between different human and
robot hand configurations for the case of a specific object. More specifically, the object
based scheme, assumes that a virtual sphere is held between the human thumb and
index fingers. The parameters of the virtual object (size, position and orientation) are
scaled independently and non-linearly, to create a corresponding virtual object in the

robot hand workspace, that is then used to compute the robot fingertip locations.

A first approach to map human grasping synergies to a robot, was proposed in [52],
where the authors trained a neural network, to predict from object features (i.e., length,
width, height and pose), the coefficients of the synergies (hand approaching vector,
hand posture). In [53] and [127] authors extended the aforementioned object based
approach, to map synergies from human to robot hands with dissimilar kinematics.
An optimization-based approach for calculating the hand and finger pose, for a given
grasp (e.g., precision and pinch grasps), was proposed in [128]. A task-space framework
was formulated in [129] for gesture based telemanipulation with a five fingered robot
hand. The authors utilized a library of task specific gesture commands, which replaces
the conventional mapping between the human and the robot hands and provide extensive
experimental paradigms involving a series of manipulation tasks. Finally, a hybrid
mapping approach was proposed in [130], where the authors combined some of the best
features of the aforementioned mapping methodologies and experimentally validated
their approach, with telemanipulation tasks performed using the Schunk Anthropomorphic
Hand (SAH).

Regarding arm motion mapping, previous studies focused on a forward-inverse kinematics
approach, to achieve same position and orientation for the end-effectors of the human
and the robot arm. In [54] and [55] analytical computation of inverse kinematics for
seven Degrees of Freedom (DoFs) redundant arms was performed respecting joint limits.
A biomimetic approach for the inverse kinematics of a seven DoFs redundant robotic
arm (Mitsubishi PA10), has been presented in [83]. Authors used captured human arm
kinematics, to describe and model the dependencies among the human joint angles via a
Bayesian Network. Then an objective function was built employing the extracted model

and was used in a closed loop iterative inverse kinematics algorithm.

Regarding hyper redundant robot arms, in [131] a redundancy resolution method was
proposed based on a backbone curve model. In [56] authors used a control approach
for hyper-redundant arms based on constrained optimization. In [57] the process of
manipulating the pose of an articulated figure, was approached as a non-linear optimization

problem. Finally, in [24] authors proposed to handle the inverse kinematics problem
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of highly articulated figures with nonlinear programming, formulating the problem as
a constrained minimization of a nonlinear function. Despite the fact that nonlinear
programming algorithms may terminate at local minima, authors presented significant

results that have inspired numerous studies over the years.

Regarding anthropomorphism of robot motion, a recent study [58] focused on the extraction
of human-like goal configurations for robotic arm hand systems using a criterion from
ergonomics [132], that yields a discrete score of posture’s ergonomical quality. In [59] a
combination of bio-inspired optimization principles - like minimization of hand jerk - are
incorporated in an optimization problem to compute robot reaching motion trajectories
similar to human behavior. The latter methodology was experimentally validated using
the iCUB for which “strong anatomical human-robot similarities can be appreciated on
the shoulder and elbow joint”, thus it didn’t take into account anthropomorphism as part
of the mapping procedure. In [60] authors formulated a nonlinear optimization problem
using obstacle constraints (e.g. between the arm hand system and the environment) to
generate human-like movements for a high-degree robotic arm-hand system. The latter is
quite an interesting approach, which neither minimizes structural dissimilarities between

the human and the robot, nor takes into account hyper-redundant artifacts.

6.2 Criteria/Metrics for the Quantification of Functional

Anthropomorphism

In this section we present a series of criteria of anthropomorphism that result to the

minimization of the structural dissimilarity between the human and the robot artifact.

6.2.1 Volume of the convex hull created by human and robot joint

positions

In order to incorporate in the objective function an anthropomorphic criterion that will
handle redundancy presented at the solution space of a hyper-redundant robotic arm, or
if we want to use a metric capable to extract the most humanlike solution of all solutions
computed using the analytical IK approach, we first examine for the case of a robot arm
the volume of the convex hull created by the human and the robot joint positions, the

common base frame (shoulder) and the common end-effector (wrist).

The convex hull of a set of points S in three dimensions is the intersection of all convex

sets containing S. For N points s1, S, ..., s, the convex hull C is given by the expression:
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N N
C’:{Zaksk:akZOforallk‘and Zakzl} (6.1)

k=1 k=1

The volume formula of a simplex:

_ |det(sg — S1, ..y S — 51)|

Vol(A(S1, ..., 8n)) (6.2)

n!

where A(sy, ..., s,) denotes the simplex in R"™ with vertices s1,...,s, € R"™. Moreover,
when the triangulation method is used to decompose the polytope into simplices, then

the volume of P is simply the sum of the volumes of the simplices:

N
Vol(P) = Vol(A(i)) (6.3)
=1

There are plenty of methods available to compute the convex hull of a set S of points.
In this study we choose to use the well known quickhull algorithm for convex hulls, that
has been proposed in [117]. More details regarding the decompositions of the convex

hulls and their volumes the reader can find in [133] and [134].

6.2.2 Distances between robot joint positions and human elbow.

Another useful criterion of anthropomorphism would be to minimize the distances between
the robot joint positions in 3D space and the human elbow. Let Scpow € R® be the
position of the human elbow in 3D space and Sgra be the set of the n robot joint
positions in 3D space. For n points si, So, ..., sp, the distance between the robot joints

positions and the human elbow, is given by the expression:
n
D= Z Hsj - Selbow”2 (64)
j=1

6.2.3 Area of the triangles defined by human and robot joint positions.

The third criterion is based on the area of the triangles defined by human and robot
joint positions. Consider a n-link robotic arm, where n is in general different from the
number of the human arm links. We initially interpolate extra “virtual” joints in both
human and robotic arms, according to the normalized length along their links from the

common base to the end-effector. In this respect, both arms possess equal number of
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“virtual” joints with the same normalized length. Selecting one of the arms (e.g., the
human arm), the structural similarity is quantified via the sum of the area of all facet
triangles that are formed by joining every internal joint (besides the common base and
the end effector) of the human arm with the corresponding and its subsequent joint of
the robot arm. Such similarity criterion is reasonable since its minimum value, which is
zero, implies that all triangle areas are zero and consequently that the triplet of joints
that form each triangle, are collinear. Thus, the human arm when the criterion reaches
its minimum, coincides with the robot arm. To compute the area of the triangles defined

by the human and the robot joint positions in 3D space, we use the Heron’s formula:

T:i\/(a—kb—kc)(a—b+c)(a+b—c)(—a+b+c) (6.5)

where a, b and ¢ are the lengths of the sides of each triangle.

6.3 Mapping Human to Robot Motion with Functional
Anthropomorphism for Mitsubishi PA10 DLR/HIT II

In this section we present a human to robot motion mapping scheme for the Mitsubishi
PA10 DLR/HIT II robot arm hand system, which is based on the analytical computation
of inverse kinematics of both the robot arm and the robot hand. The proposed scheme

guarantees humanlike robot motion, employing a metric of functional anthropomorphism.

6.3.1 Kinematic Model of the Human Hand

The kinematic model of the human hand that we use is inspired by the positioning
of Cyberglove II flex sensors. More specifically our model consists of twenty DoFs,
four DoFs for index, middle, ring and pinky (three for flexion/extension and one for
abduction/adduction) and four DoFs for thumb (two for flexion/extension, one for
abduction/adduction and one to model thumb’s ability to oppose to other fingers). It
must be noted that each finger is considered as an independent serial kinematic chain.
Although human hand digit lengths, are quite easy to be measured, expressing the base
of each finger relatively to the base of the wrist is a difficult problem, which requires
advance techniques such as fMRI [107]. In this work we use the parametric models for

each digit derived from hand anthropometry studies [108].
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6.3.2 Inverse Kinematics

6.3.2.1 Inverse Kinematics of Robotic Arm Mitsubishi PA-10

In this section we focus on the inverse kinematics (IK) of the Mitsubishi PA-10 robot
arm. According to Craig [105] due to their iterative nature, numerical solutions are
much slower than the corresponding closed-form solutions and according to Siciliano
[135], they do not allow computation of all admissible solutions. Closed-form solutions

are desirable for fast motion planning for the following two reasons:

o Are much faster than those of the numerical IK solvers. (e.g. closed-form methods
can produce solutions on the order of 6 microseconds, while numerical at 10

milliseconds, facing also the issue of convergence).

e We can explore the null space of the solution set. The latter can be really useful
in applications where anthropomorphism is required, as we can choose the most

anthropomorphic solution of the complete set computed.

Thus, in this section we choose to acquire closed-form solutions provided by an inverse
kinematics solver extracted by the IKFast algorithm, that is part of the Open Robotics
Automation Virtual Environment (OpenRAVE) [75].

Mitsubishi PA10 is an anthropomorphic - redundant manipulator which can be solved
using the above analyses (using submodules) by assuming that the translation and
rotation components are separable. Such a kind of separability allows much simpler
solutions involving quadratic polynomials. More precisely, Mitsubishi PA10 has seven
DoFs while we need only six in order to compute inverse kinematics. In this case we pick
a joint that is the least important and we call it free joint keeping it fixed, for every
inverse kinematics computation for the rest active joints. The “least important” joint
is chosen so as for the first three or the last three joints, to intersect at a common point.
During planning, we discretize the range of the free joint, using a desired step of x rad

(e.g. © =0.01) for it’s full range.

The full solution space for specific end-effector position and orientation can be then
searched, in order to select a solution that satisfies joint limits and all other planning
constraints and optimizes some appropriately defined metric of anthropomorphism.
Details regarding the IKFast algorithm and the OpenRAVE can be found in [75] and
[136].



Part III - Anthropomorphism 82

6.3.2.2 Inverse Kinematics of Robotic Hand DLR/HIT II Fingers

Regarding the DLR/HIT II robot hand inverse kinematics, we choose to solve the IK
analytically, for each of the five kinematically identical robot fingers. It must be noted
that each robot finger is considered as an independent serial kinematic chain, that has
a finger base frame, expressed relatively to the center of the wrist. It must be also
clarified that the last joint of each robot finger is coupled with the middle one, using the
aforementioned mechanical coupling. Thus, this coupling as well as joint limits, should

always be taken into account when computing the inverse kinematics.

6.3.3 Employing a Metric of Functional Anthropomorphism

The inverse kinematics technique applied for the robotic arm that we described in the
previous section leads us, due to the redundant design of Mitsubishi PA10, to multiple
solutions. All these solutions achieve desired position and orientation for the robotic end-

effector in 3D space, but the robotic arm configuration may be far from anthropomorphic.

Thus we employ a criterion of anthropomorphism that requires minimization of the
volume of the convex hull created by the human and robot joint positions in 3D space,

as discussed in subsection 6.2.1.

6.3.4 Handling Redundancy Presented at the Solution Spaces of the
Robot Arm and the Robot Hand

For the case of the robot arm (Mitsubishi PA10), the problem of acquiring an anthropomorphic
solution from the multiple IK solutions computed (due to the redundancy) becomes to
find an IK solution that minimizes the volume of the convex hull created by the human

and the robot joint positions in 3D space.

Even if a solution is found, it might not be unique. In this case we still have to handle for
a specific configuration of the robot arm, the redundancy caused by “internal motions” as
described in [135]. Thus, we choose from the remaining multiple solutions, the one that
maximizes velocity manipulability at the end effector of the robot arm. More precisely,

we choose the solution that maximizes the manipulability measure, which is defined as:

w(a) = y/det(I(@)I7 (a)

where J is the Jacobian matrix and w(q) vanishes at singular configurations. Maximizing

this measure, redundancy is exploited to move away from singularities.
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FIGURE 6.1: Subfigure [a] represents human and robot hand convex hulls before “wrist”

offset elimination, while subfigure [b] represents human and robot hand convex hulls

after incorporating the “wrist” offset elimination, as part of the mapping procedure
(without fingertips mapping).

For the case of the robot hand (DLR/HIT II), we explore the solution space of each
finger, choosing those IK solutions that respect the joint limits that we have set (e.g.,
hardware or even software joint limits). Then if/when multiple solutions exist, we choose
to acquire the one that maximizes the aforementioned manipulability measure, at the

fingertip of each robot finger.

6.3.5 Wrist (Robot Arm End-Effector) Offset to Compensate for Human

and Robot Hand Dimensional Differences

Typically the human hand and the robot hand (e.g. DLR/HIT II) may have dimensional
differences. In order to achieve same position and orientation for the human and the robot
hand fingertips in 3D space, using the fingertips mapping methodology, we must first
eliminate those dimensional differences. For doing so, we apply an appropriately defined
“wrist” offset, that may move robot “wrist” away from the human, but will bring robot

fingertip positions closer to the human’s.

In order to acquire this offset we compute the convex hulls created by the robot hand
fingertips and the human hand fingertips. The wrist offset is then defined as the translation
required to eliminate the distance between the centers of the two convex hulls. In Fig.
6.1 we can see a graphical representation of the wrist offset elimination procedure, which

maximizes the covering between the human and the robot hand workspaces.
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6.3.6 Mapping Methodology Outline

To summarize, we present the outline of the proposed methodology, that maps human
motion to anthropomorphic robot motion using the notion of functional anthropomorphism,
for the case of the Mitsubishi PA10 DLR/HIT II robot arm hand system:

o Human wrist (i.e. end-effector) and elbow positions are captured with Isotrak II

motion capture system.
e Human hand joint angles are captured with Cyberglove II dataglove.

e Fingertip positions of the human hand are computed using the human hand

forward kinematics.

e All possible IK solutions of the robot arm are computed for desired end-effector

position (closed form solutions are acquired).

e Redundancy at the solution space of the robot arm is handled with the anthropomorphic
criterion of convex hull volume minimization and with the manipulability measure

maximization.

e “Wrist” offset is introduced to eliminate dimensional differences between human

and robot hands.

e All possible IK solutions for each finger of the robot hand are computed for the

desired fingertip positions.

e Redundancy presented at the solution space of the robot hand fingers is handled
keeping solution inside joint limits, respecting possible couplings and maximizing

manipulability measure.

In order to simulate our models and check the correctness of the forward and inverse
kinematics computations, the OpenRave simulation environment has been used together
with the ninth version of Robotics Toolbox (MATLAB) developed and distributed by
Peter Corke [120].
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6.4 Mapping Human to Robot Motion with Functional
Anthropomorphism for Hyper-Redundant Robot Arms

and m-Fingered Hands

In this section, we propose a generic human to robot motion mapping scheme for the
case of redundant or even hyper-redundant robot arms and m-fingered hands. More
specifically, we formulate an optimization problem that solves inverse kinematics under
position and orientation goals (human imposed functional constraints') and handles
redundancies with specific criteria of anthropomorphism. Two different approaches are
examined; the first typical approach addresses mapping as a combination of independent
optimization problems running in parallel for the two subsystems, the robot arm (an
open-chain serial manipulator) and the robot hand, while the second approach, formulates
mapping as a unique optimization problem for the whole arm hand system (where the
fingertips of the hand are considered now to be the end-effector instead of the wrist).
Moreover for the case of m-fingered hands we assign human thumb fingertip position
as a position goal for one of the robot fingers and we use splines to calculate the rest
robot fingertip positions, interpolating between the rest four (index - pinky) fingertip

positions of the human hand.

6.4.1 Kinematic Models
6.4.1.1 Kinematic Model of the Human Arm Hand System

For human arm kinematics, we use a seven DoFs model, that consists of three DoFs
for the shoulder (one for abduction/adduction, one for flexion/extension and one for
internal /external rotation), two DoFs for the elbow (one for flexion/extension and one
for pronation/supination) and two DoFs for the wrist (one for flexion/extension and one

for abduction/adduction).

The kinematic model of the human hand that we use, is inspired by the positioning
of Cyberglove II flex sensors. More specifically our model consists of fifteen joints and
twenty DoFs, four DoFs for index, middle, ring and pinky (three for flexion/extension
and one for abduction/adduction) and four DoFs for thumb (two for flexion/extension,
one for abduction/adduction and one to model thumb’s ability to oppose to other
fingers). Each finger is considered as an independent serial kinematic chain. The proposed

methodology can be used with a more sophisticated human hand model, like the one

IThese are tasks constraints not optimization constraints. More information is provided in Section
111.
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proposed in [137], in case that there is a motion capture system capable of measuring
all DoFs variations of such a complex model. Although human hand digit lengths can be
easily measured, expressing the base of each finger relatively to the base of the wrist, is
a difficult problem which requires advance techniques such as fMRI [107]. In this work

we use parametric models for each digit derived from hand anthropometry studies [108].

6.4.1.2 Kinematic Model of the Robot Arm Hand System

Regarding robot arm kinematics, we create hyper redundant robot arms with n DoFs
that consist of § spherical joints and 7 links of equal length. In case that a robot arm is
created with n DoFs, where n is not a multiple of three, then the last one or two DoFs
contribute only to the orientation of the end-effector. The number of the total DoFs as
well as the links length can be set arbitrarily. In this work we create hyper redundant
robot arms with 9, 11, 18, 20, 27, 29 and 44 DoFs that have a total length less, equal or
bigger than the mean human arm length that we use in this study (from 90% to 110%).
In order to conclude to a common human arm length, we used the mean value of the

50th percentile of men and women, as reported in [112].

Regarding robot hand kinematics the proposed methodology can be used for m-fingered
robot hands with any number of DoFs or phalanges per finger. In this study we create
for demonstration purposes, 3, 4, 5 and 6-fingered robot hands that have the same types
of DoFs per finger with the human hand, but different phalanges lengths and finger
base frames. Such a choice is justified by the fact that we mainly want, the dimensional
differences occurred between the human and the robot hand (i.e. palm size etc.), to be

easily identifiable in the simulated paradigms.

Remark 6.1. Although the hyper-redundant robot arms are an active topic of research
for the last decades [131], nowadays their applications are still limited. Moreover hyper-
redundant robot arms with 27 or 44 DoFs like the ones that we present in this work don’t
even exist. In this work we choose to focus on hyper-redundant robot arms and m-fingered
hands in order to prove that our methodology can be used with any type of kinematics.
Thus, it’s quite meaningful to make comparisons and discuss about anthropomorphism of
hyper-redundant robot arm hand systems in contrary with some other robot artifacts with
arbitrary kinematics (e.g., parallel structures etc.). Nevertheless, we feel that the field
of hyper-redundant robot arms and continuum robotics will flourish over the next years
and such robot artifacts will be used for teleoperation or rehabilitation purposes. For
example, a hyper-redundant robot arm can be used for upper-limb rehabilitation sessions,
with users having different forearm and upper-arm lengths, appropriately adapting it’s

configuration.
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6.4.2 Methods

In this section, we formulate the problem of human to robot motion mapping as a
constrained non-linear optimization problem. We have experimentally validated that the
problem is well formed and even when the algorithm used terminates at a local minima,
the solution suffices for our purposes. Such a choice is typical for related studies [24]. In
the following sections numerous simulated paradigms and real experiments are presented

and discussed in detail, validating the efficacy of the proposed methods.

6.4.3 Mapping Human to Robot Arm Motion: The Case of Hyper
Redundant Robot Arms

Let xpa = fra(qra) denote the forward kinematics mapping from joint to task space for
the robot arm and let Xgagoa € R3 denote the desired end-effector position (i.e. human
end-effector position). We can define the following objective function under position
goals, as follows:

F}%A(qRA) = (XRA - XRAgoal)T ’ (XRA - XRAgoal) (6 6)

= ||xr4 — XRAgowt||”

Let h, = (ac, be, ¢e, de), hy = (ag, by, g, dg) € R* denote the current and the desired (i.e.,
human) end-effector orientation, expressed in the quaternions representation, to avoid

singularities. The distance in S, between them is
drao(he, hy) = cos™ (acay + bebg + cocg + dedy) (6.7)

Hence, taking the identification of antipodal points into account [138], we may formulate

the following proper SO(3) distance metric

drao(he, hy) = min{drao(he, hy),drao(he, —hy)}. (6.8)

Thus, a common objective function under both position and orientation goals, may be

defined as follows:

FE(drA) = WRAz |XRA — XRAgoal||” + WRAARA(De, hy) (6.9)

where wra, and wgr4, are weights that adjust the relative importance of the translation

goal with respect to the rotation goal. Typically wra, = 1 and wgr4, = 10.
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We must note that we manage to handle multiple goals by combining individual goals
into a global objective function using appropriate weight factors. Thus, the problem

formulation for our global objective function, can be defined as
minimize Fra(qra) (6.10)

subject to the inequality constraints of joints limits

Aps < dra < A}y (6.11)

where qra € R"™ is the vector of the joint angles for the hyper-redundant robot arm

with n DoFs and qp 4, qjg 4 are lower and upper limits of the joints respectively.

Remark 6.2. It must be noted that in this work, we use functional anthropomorphism
which guarantees the execution of specific functional constraints by the robotic artifacts
(e.g., same position and orientation for human and robot end-effectors), but these task
constrains are incorporated as position and orientation goals in the objective function
and not as equality constraints of the optimization problem, because otherwise for many
cases the problem would become infeasible. Moreover formulating the problem using our
approach, the user may select the position and orientation accuracies (appropriately
defining the related weights), which may be lower for free space motions (focusing on
anthropomorphism) and wvery high during grasping or any other interaction with the

environment.

6.4.3.1 Employing a Criterion of Functional Anthropomorphism

In order to conclude to anthropomorphic robot motion, we have to employ a specific
criterion of functional anthropomorphism, of those presented in subsection 6.2.1. The
efficacy of the presented criteria is assessed with simulated paradigms in Fig. 6.2. All
three criteria result to anthropomorphic configurations for the 18 DoF robot arm, in

contrary with the no-criterion case.

In Fig. 6.3, Fig. 6.4 and Fig. 6.5, we perform an extensive comparison of the different
criteria of anthropomorphism proposed, for 9, 18 and 27 DoF hyper redundant robot
manipulators (i.e., robot arms). It must be noted that all metrics perform satisfactory
in terms of achieving humanlike configuration for redundant and hyper-redundant robot
arms, while their speed of execution is considerably high (C++ implementations perform

in “real time”).
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No Criterion

Distance Criterion

Convex Hull Criterion

Triangles Criterion

F1GURE 6.2: Comparison of optimization solutions with and without criterion for
anthropomorphism, for a 18 DoF robot arm. DC = Distance Criterion, CC = Convex

Hull Criterion, TC = Triangles Criterion.

In this Ph.D. thesis we choose to use the “Distance Criterion”, because we concluded

that it provides the most anthropomorphic solutions (through qualitative - subjective

assessment) and because it’s the fastest method examined.
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FIGURE 6.3: Human to robot motion mapping using the joint positions distance
minimization criterion for hyper-redundant robot arms with 9, 18 and 27 DoFs, Hy=
Human Arm Length, R;, = Robot Arm Length.
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FIGURE 6.4: Human to robot motion mapping using the joint positions convex hull
minimization criterion for hyper-redundant robot arms with 9, 18 and 27 DoFs, Hy=
Human Arm Length, R;, = Robot Arm Length.
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FIGURE 6.5: Human to robot motion mapping using the joint positions triangles area
minimization criterion for hyper-redundant robot arms with 9, 18 and 27 DoFs, Hy=
Human Arm Length, R; = Robot Arm Length.
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6.4.3.2 Mapping Human to Robot Hand Motion

We define for the case of a m-fingered robot hand m objective functions under position
goals or position and orientation goals, according to the finger kinematics and the
specifications of the task. Let xpr = fri(qrm) be the forward kinematics mapping from
joint to task space for each robot finger and let Xrgoal € R3, denote the desired fingertip
position and drpo(he, hy) the distance between the current and the desired orientation
(represented using quaternions), for each fingertip of the robot hand respectively, as

defined in eq. (6.7,6.8). Then, the objective function can be denoted as

FE%(Q) = wrae | XRH — XRHgoal|” + WRHoARHo(he, hy) (6.12)

Moreover for each finger we may also have equality constraints that will incorporate
possible couplings between subsequent joints. Thus, the problem formulation can be

defined as

minimize Fg% (qrm) (6.13)

subject to the inequality constraints of joints limits

Apy < ArH < dhpy (6.14)

where qry € R"™ is the vector of the joint angles for the m-fingered robot hand with
m X n DoFs and qp, qE g are lower and upper limits of the joints respectively. In case
that we have also to confront a hyper-redundant robot hand, we can use the metric of
anthropomorphism defined for the case of the hyper-redundant robot arm to guarantee

minimization of structural dissimilarity between the human and the robot fingers.

6.4.3.3 Mapping for the Case of a m-Fingered Hand where m # 5

Typically, a robot hand may have less than five fingers [114]. In order to take advantage
of the fingertips mapping methodology in such cases, we must define what the robot
fingertip positions will be. Previous studies used the virtual finger approach [139],
computing the virtual fingertip position of a robot hand, as a linear combination of
the fingertip positions of the less significant fingers of the human hand (e.g. ring and
pinky fingers) [140]. In this work, we choose to assign human thumb fingertip position
as a position goal for one of the robot fingers (the one that we choose to correspond to
human thumb). Then, we use splines to calculate the remaining robot fingertip positions,

interpolating between the other four (index, middle, ring and pinky) fingertip positions
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of the human hand and selecting m — 1 equally distant points® on the extracted curve,
where m is the number of the robot fingers. Simulated paradigms of the robot fingertip
selection for m-fingered robot hands can be found in Fig. 6.6. Spline is a low-degree
polynomial function that is sufficiently smooth at the places where the polynomial curves
connect (i.e. knots). Spline interpolation yields smaller errors than linear interpolation

so the resulting interpolant is smoother.

Remark 6.3. It must be noted that this latter approach, does not assure that the robotic
fingertips will properly touch the object while performing a grasp. To overcome this
problem an appropriate controller that alters the fingers stiffness upon contact and/or
takes advantage of tactile sensing, can be introduced. Examples of tactile sensing based

robust grasping, can be found in [1/1] and in the video in [1}2].

Three Fingers Five Fingers

FIGURE 6.6: Robot fingertips selection (green circles) with interpolation between the
human fingertips positions (red dots) for the case of three and five robot fingers (without
counting the thumb).

6.4.3.4 Mapping Human to Robot Arm Hand System Motion

Typically, human hands may be mapped to robot hands with quite different dimensions
in terms of palm size, finger sizes, phalanges sizes, finger base frames coordinates etc.
Thus, sometimes the solution of the fingertips mapping problem between the human
and the robotic artifact becomes infeasible. Previously [92], we proposed to apply a
wrist offset in order to compensate for dimensional differences between the human and
the robot hand. In this work, we propose as a second approach to address human
to robot motion mapping as a unified optimization problem for the whole arm hand
system. Therefore, we consider as end-effector of our system the fingertips of the robot

hand to be mapped, and not the end-effector of the robot arm, compensating possible

3Robot thumb (the finger that is chosen to correspond to human thumb) is not taken into account
in the fingertips selection procedure, as it must achieve same position and possibly orientation with the
human thumb.


http://www.youtube.com/watch?v=6jI5d1vaAW8
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dimensional differences and guaranteeing the execution of a specific functionality by the

robot fingertips (e.g., to achieve same position with the human fingertips).

More specifically let Xxpag = fram(aram) denote the forward kinematics mapping from
joint to task space for each robot arm hand system’s finger and let m be the number of
the fingers and XgAH, XRAHgoal € R? denote the current and desired fingertip position

respectively. We can define the following objective function under position goals:

m
2
Fhap(dran) =Y WrAHz, | TRAH, — TRAHgoal | (6.15)
i=1
If we want to achieve also same orientations for the fingertips of the human and the
robotic hand, we must also take into account the orientation goals, expressed using the
distance between the orientation vectors dramo(he, hy), as defined in eq. (6.7,6.8). Thus,

the objective function becomes

m
FEan(aran) = Y wrans |tran, — tramgoar, |+
i=1
m (6.16)
Z WRAHo; dRAHoi (h07 hg)
i=1
where wra g, and wra g, are weights that adjust the relative importance of the translation
goal, with respect to the rotation goal for each finger and can be set according to the

specifications of each study.

Criterion of Anthropomorphism: For the unified optimization problem we use exactly

the same criterion of anthropomorphism. The only difference, is the fact that now we
don’t have to guarantee as a functional constraint that the human and the robot end-
effectors (wrists) must have same position and orientation in 3D space, as the end-

effectors now are the human and the robot fingertips.

Problem Formulation: In order to handle multiple goals we combine individual goals

into a global objective function using appropriate weight factors. Thus, the problem
formulation for our objective function Frag for the whole arm hand system, can be
defined as follows, considering the criterion that minimizes all distances between the

robot joint position and the human elbow in 3D space

m

2
Fran(aran) = Y WrAHz, | TRAH, — TRAHgoal, |
i=1

m n
+> WrAHo AR Ao (he, hg) +wD Y 185 = Seibow]|?
i=1 =1

(6.17)
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where Scpow € R is the position of human elbow in 3D space, sj represents the positions
of robot joints (n joints, without considering the “shoulder” and the end-effector) in
3D space, wrap, and wrap, are weights that adjust the relative importance of the
translation goal with respect to the rotation goal for each finger and wp is the weight
that adjusts the relative importance of the criterion of anthropomorphism. Typically,

WRAHx — 1, WRAHo — 10 and wp = 1/1000.

Weights can be selected according to the specifications of each study (empirically). These
latter weights achieve significant trajectory tracking accuracy (both for position and

velocity), while guaranteeing anthropomorphic motion.

6.4.4 Results and Applications

In order to test the aforementioned methodologies and prepare the simulated paradigms,
we used the ninth version of the Robotics Toolbox [120]. In Fig. 6.8 a series of instances
of the simulated experiments - included in the accompanying video - are presented. More
specifically mapping human to robot motion is performed for a 18 DoF robot arm, an
arm hand system with a 44 DoF robot arm and a 5 fingered robot hand and finally for a
4 fingered robot hand. In all instances the final configuration appears clearly while the
initial configuration is blurred. In Fig. 6.7 the trajectory tracking errors both for position
and orientation for a 20 DoFs hyper-redundant robot arm “following” the human imposed
functional constraints (i.e., human end-effector position and orientation), are presented.
The mean error for position (for all axes) is 0.2 mm and the mean error for orientation
is 0.0019 rad (0.10 degrees), both less than the accuracy provided by most industrial

and research robots.

Positions Orientations
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FIGURE 6.7: The trajectory tracking errors for the position and orientation (in
quaternions) of the end-effector of a 20 DoF hyper-redundant robot arm, are presented.
The hand is not considered in this case.
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Remark 6.4. It must be noted that although the optimization results depend on the initial
robot configuration, different configurations have been considered and the optimization
scheme always provided anthropomorphic robot configurations, guaranteeing same human
and robot end-effector positions and orientations (both errors where insignificant as

depicted in Fig. 6.7).

Mapping for 18 DoF Arm Mapping for 44 DoF Robot Arm Mapping for 4 Fingered Hand

and 5 Fingered Robot Hand

® @ N

Human Model  Robot Model Human Fingertips  Robot Fingertips  Splines Curve  Splines Fingertips Goals

F1GURE 6.8: Instances of the simulated paradigms, mapping human to robot motion
for a 18 DoF robot arm, a 4 fingered robot hand and a 44 DoF robot arm combined
with a 5 fingered robot hand.

In Fig. 6.9 the trajectory tracking errors for the fingertip positions of a hyper-redundant
robot arm hand system, are depicted. The mean error for all the fingertip positions is
less than 1 mm, for all axes and fingers. We notice that for the case of the fingertips,
the position errors are bigger than for the case of the robot arm end-effector, but the
accuracy is still insignificant, for most robotics applications. In Fig. 6.10 we present the
trajectory tracking errors for the fingertips orientations. All angles are represented in
quaternions. The tracking errors for index, middle, ring, pinky and thumb fingers are

depicted with different colors.

In order to validate the efficiency of the proposed methods two different experiments
were conducted. The first experiment involved the Mitsubishi PA10 DLR/HIT II robot
arm hand system model teleoperated in the OpenRAVE simulation environment, using
the optimization approach to map human to robot arm motion and the joint-to-joint
mapping to map human to robot hand motion. Typically for teleoperation studies an
analytical approach (if feasible) would be better for the case of the arm [101], but this
experiment is conducted in order to validate the efficacy of the real-time (C++ based)
implementation of the optimization scheme, using the NLopt open-source library for
nonlinear optimization [143]. It must be noted that in this experiment the NLopt [143]
based C++ code, provides the first solution in 10 ms and the rest solutions at a frequency
of 5kHz (every 0.2 ms).
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F1GURE 6.9: The trajectory tracking errors for the fingertip positions of a hyper-

redundant robot arm hand system, are presented. The robot arm hand system model

used, consists of a 23 DoFs hyper redundant robot arm and a five fingered robot hand

with size equal to the 110% of the human hand. The robot fingertips are considered

to be the end-effectors of the robot arm hand system and achieve same position and
orientation with the human fingertips.

The second experiment involved a 21 DoFs hyper redundant robot arm model with the
DLR/HIT II robot hand model teleoperated again in OpenRAVE, using once again the
optimization approach for the arm case, while the joint-to-joint mapping was once again
used for the hand case. In this case the optimization scheme is the only available solution,
as no analytical solution can be found for the inverse kinematics of hyper redundant
manipulators. For the case of the hand, the joint-to-joint mapping is used, which is a
simple yet efficient and fast method for teleoperation/telemanipulation studies. It must
be noted that real-time performance for the 21 DoFs robot arm is worst than the 7-DoFs

robot arm (Mitsubishi PA10), as expected.

Remark 6.5. Although the splines-based fingertips calculation method, is an efficient
approach for mapping offline human to robot motion, for autonomous applications with
m-fingered hands where m # 5, is not recommended for real-time telemanipulation

studies, for three reasons: it’s a complex method, which is slow and doesn’t offer intuitiveness.

A video of the anthropomorphic teleoperation of Mitsubishi PA10 DLR/HIT II robot
arm hand system model, in OpenRAVE can be found in [144]. A video of the teleoperation
of a robot arm hand system model that consists of a 21 DoFs robot arm, combined with
the DLR/HIT II robot hand, can be found in [145]. Finally, a video presenting extensive
simulated paradigms for hyper-redundant robot arms with 9, 11, 18, 20, 27, 29 and 44
DoFs as well as 3, 4, 5 and 6-fingered robot hands, can be found in [146].


http://www.youtube.com/watch?v=iKNIJTMlcCA
http://www.youtube.com/watch?v=TXIDhqnG0WM
http://www.youtube.com/watch?v=izAR3iNl7m4
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FIGURE 6.10: The trajectory tracking errors for the fingertip orientations of a hyper-

redundant robot arm hand system, are presented (in quaternions). The robot arm hand

system model used, consists of a 23 DoFs hyper redundant robot arm and a five fingered

robot hand with size equal to the 110% of the human hand. The robot fingertips are

considered to be the end-effectors of the robot arm hand system and achieve same
position and orientation with the human fingertips.

6.5 Concluding Remarks

In this chapter, we proposed two different methodologies for mapping human to robot
motion, with functional anthropomorphism. The first methodology, proposed for the
Mitsubishi PA10 DLR/HIT II robot arm hand system, uses a forward /inverse kinematics
mapping approach for both the robot arm and the robot hand (fingertips mapping), an
analytical method for the computation of inverse kinematics and a metric of functional

anthropomorphism.

For the second case of hyper redundant robot arm hand systems, mapping is formulated
as an optimization problem incorporating a criterion of functional anthropomorphism
in the objective function. The criterion minimizes the structural dissimilarity between
the human and the robotic artifact, guaranteeing specific human-imposed functional
constraints (i.e. same position and orientation for the human and the robot end-effector).
The proposed scheme is very efficient in mapping both online and offline (depending on
the number of DoFs) human joint-space trajectories to anthropomorphic robot joint-
space trajectories and can be used in HRI applications where anthropomorphism is

required.
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Experiment 1
Teleoperation of Mitsubishi PA10 DLR/HIT II model

Experiment 2
Teleoperation of 21 DoFs Robot Arm and DLR/HIT II Robot Hand models

FIGURE 6.11: Mapping human to robot motion experiments.
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Chapter 7

Teleoperation and
Telemanipulation with Robot

Arm Hand Systems

In this chapter the human to robot motion mapping schemes presented in Chapter 6
are used for a series of teleoperation and telemanipulation tasks performed with the
Mitsubishi PA10 robot arm and the five fingered DLR/HIT II robot hand.

In order to teleoperate the Mitsubishi PA-10 robot arm we use a human to robot
motion mapping scheme, that guarantees functional anthropomorphism. For doing so,
two position trackers are used to capture position and orientation of both the human
end-effector (wrist) and the human elbow in 3D space. Then we use a forward-inverse
kinematics approach computing the analytical IK of Mitsubishi PA-10 robot arm employing
the IKFast library solvers of the OpenRAVE simulation environment [75]. In order to
handle redundancy we select the solution that minimizes the structural dissimilarity

between the human and robot arm configurations (most humanlike solution).

Regarding telemanipulation with the DLR/HIT II robot hand, two different everyday
life objects are used: a small ball and a rectangular object. Human to robot hand
motion mapping is achieve using the joint-to-joint mapping methodology, taking also into
account existing kinematic constraints (e.g., joint couplings). The Cyberglove II motion
capture dataglove is used to measure human hand kinematics. A robot hand specific
fast calibration procedure is employed in order to map the raw dataglove sensor values
to human hand joint angle values and subsequently through the mapping procedure,
to DLR/HIT II joint angle values. Finally a novel low-cost force feedback device based
on RGB LEDs and vibration motors is developed, in order for the user to be able to

perceive the forces exerted by the robot fingertips.
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7.1 Introduction

Over the last decades a lot of studies have focused on teleoperation and telemanipulation
with robotic arm hand systems. A common research direction is to map human to robot
motion so as the robotic artifact not only to move in free space (already covered in
Chapter 6) but also to grasp or manipulate everyday life objects or actively interact with
the environment. For doing so user’s kinematics have to be captured, with appropriate
motion capture systems (e.g. vision based, flex sensors, IMUs etc.), while the forces
exerted by the robotic artifacts have to be measured with appropriate force sensing

elements mounted at the fingertips of robot hands.

Various methods for teleoperation and telemanipulation with multifingered robot hands
(using calibrated datagloves), have been proposed in the past. In [51] authors proposed
an advanced cyberglove calibration procedure where the thumb and index fingertips
remain in contact with the object, approximating - due to the rolling motion and
soft tissue deformations - a closed kinematic chain. Moreover they mapped, using the
object-based mapping approach, human index and thumb motion to a two fingered
robot hand. In [123] cyberglove calibration is performed with a vision system, using
coloured LEDs and two stereo cameras to record the 3D position of thumb, index,
middle and ring fingers. Moreover, force sensors were built into the HIT/DLR hand
fingertips and the CyberGrasp (Cyberglove Systems) exo-skeleton was used to create
one dimensional resistive force feedback per finger. In [124] the authors teleoperated
the three fingered Barrett hand using a cyberglove and fingertips position mapping,
while the robot hand was equipped with force sensors and the CyberGrasp system
was once again used for force feedback. A recent study [129] proposes a task space
framework for gesture based telemanipulation with a five fingered robot hand like the
DLR/HIT II. This latter approach utilizes a library of task specific gesture commands,
which replaces the conventional mapping between the human and the robot hands.
An experimental validation of the proposed method is performed using a series of
manipulation tasks performed with the 15 DoFs robot hand. Finally in [130] a hybrid
mapping scheme combining some of the best features of the aforementioned mapping
methodologies, is proposed. The efficiency of the proposed scheme is experimentally
validated for teleoperation and manipulation tasks performed with the four fingered
Schunk Anthropomorphic Hand (SAH).

Regarding force feedback the related literature focuses on different approaches, that
range from vibro-tactile feedback, to visual and auditory feedback. Most of the studies
concern devices providing vibro-tactile feedback. In [147] the VibroTac, an ergonomic
device using vibration motors is proposed, while in [148] a wearable vibrotactile feedback

suit for the whole arm hand system, is presented. Other studies focus on a mixture of
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sensory information including visual and vibrotactile feedback, like [149] where authors
propose the RemoTouch, a system providing both tactile and visual feedback to the
user. Finally in [150] different feedback strategies for shared control in telemanipulation
studies are presented. More specifically authors compare different feedback methods
and determine what combinations of force, visual and audio feedback provide the best

performance.

7.2 Teleoperation of the Mitsubishi PA10 7TDoF Robot Arm

using Functional Anthropomorphism

In this section a MCS based teleoperation of a robot arm (Mitsubishi PA-10) is performed,
using a human to robot motion mapping scheme that guarantees functional anthropomorphism.
For doing so two position trackers are used, to capture position and orientation of human

end-effector (wrist) and human elbow in 3D space.

7.2.1 Forward/Inverse Kinematics Mapping

In order to map human to robot arm motion we used a forward-inverse kinematics
approach computing the analytical IK of Mitsubishi PA-10 robot arm using the IKFast
library of the OpenRAVE simulation environment [75]. Redundancy is handled selecting
the solution that minimizes the structural dissimilarity between human and robot arm
configurations. This solution leads to a robot arm configuration for which the sum of

distances between the human elbow and all robot joint positions, is minimum.

7.2.2 Results

The hereby presented results are an experimental validation with a real robot arm, of the
mapping scheme that we presented in Chapter 6. The experimental paradigms involve
teleoperation of Mitsubishi PA10 robot arm in different movements in 3D space. The
following video discusses methods and results in detail. Regarding future directions the
authors plan to use the proposed human to robot motion mapping scheme with the whole
robot arm hand system, as described in [90]. The video of the experiment conducted can
be found in [76].


http://www.youtube.com/watch?v=Gm-JAzd8F-w
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7.3 Telemanipulation with the DLR/HIT II Five Fingered
Robot Hand

7.3.1 A Low Cost Force Feedback Device based on RGB LEDs and
Vibration Motors

In order for the user of the teleoperation scheme to be able to “perceive” the forces
exerted by the robot fingertips (e.g., the forces exerted during object manipulation) we
developed a low cost-force feedback device based on RGB LEDs and vibration motors. In
this section we present the hardware specifications for the arduino open-source physical
computing platform, the RGB LEDs and the vibration motors that were used to develop
the device. Moreover we present the different modules that formulate the aforementioned

device: the RGB LEDs based module and the vibration motors based wrist band.

7.3.1.1 Arduino based Architecture

Arduino [151] is an open-source physical computing platform based on a simple I/O
board and a development environment that implements the Processing/Wiring language.
More specifically for the development of the force feedback device we used the Arduino
Mega, a microcontroller board based on the ATmega2560 (high-performance, low-power
micro-controller). Arduino Mega has 54 digital input/output pins (of which 14 can
be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16
MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset
button. The Arduino Mega is compatible with most shields designed for the Arduino
Duemilanove or Diecimila making future upgrades easy to implement. Arduino was used
in our project as it has an insignificant cost and is a common solution, widely available
in the market. It must be noted that the main disadvantage of Arduino Mega is the fact
that it has quite big dimensions, but any microcontroller platform could have been used
for our purposes (e.g. possibly a smaller or even a lighter solution like arduino nano, or

another ARM based microcontroller).

Arduino RGB LED Vibration Motor

FI1GURE 7.1: The arduino platform, a RGB LED and a vibration motor.
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7.3.1.2 RGB LEDs and Vibration Motors

The RGB LEDs that we used are the RGB Piranha common cathode LEDs (Brightek
Electronics co.) with the 5mm width. The RGB LEDs color ranges are the following;
Red (400 - 700 mcd), Green (1000 - 1500 mcd) and Blue (400 - 500 mcd) and their
dimensions; width: 0.76 cm, length: 0.76 cm and height: 1 cm. More details for the RGB
LEDs can be found in [152].

The vibration motors that we used are 10 mm shaftless vibration motors (Precision
Microdrives). The main advantages of the selected vibration motors are their low cost,
low weight and small size. These three characteristics are very significant for the implementation
of an affordable light-weight force feedback device. The vibration motors have the
following characteristics: 3 V voltage, 10 mm frame diameter, 3.4 mm body length, 1.2 g
weight, 2.5-3.8 V voltage range, 12000 rpm rated speed and 0.8 G vibration amplitude.

More details regarding the vibration motors can be found in [153].

7.3.1.3 RGB LEDs based Wrist Band Module

The RGB LEDs based wrist band module consists of 5 RGB LEDs used to represent
visually (fading from blue to red) the amount of force exerted from each robot finger.
RGB LEDs relative positions have been chosen to be similar to the finger positions
(following the order; thumb, index, middle, ring and pinky), in order for the optical
feedback to be more easily interpreted by the user and associated with the corresponding
finger. A picture of the RGB LEDs based wrist band module prototype, can be found
in Fig. 7.2.

F1GURE 7.2: Screenshot of the RGB LEDs based module. RGB LEDs are positioned

so as for their relative positions to be similar to those of the human fingers. The RGB

LEDs from left to right correspond to the following fingers; thumb, index, middle, ring

and pinky. Such a positioning helps the user to more easily associate the RGB LEDs
with the corresponding fingers.
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7.3.1.4 Vibration Motors based Wrist Band Module

The vibration motors based Wrist Band module consists of 5 vibration motors used to
represent the amount of force exerted from each finger of the five-fingered robot hand
through proportional skin vibrations. Vibration motor positions have been chosen so as
to be uniformly distributed around the wrist in order to be as easy as possible for the
user to interpret the provided vibrations. A picture of the vibration motors based wrist

band module prototype, can be found in Fig. 7.3.

Wrist Band (inner side) Wrist Band (wrapped)

FIGURE 7.3: Screenshots of the vibration motors based wrist band.

7.3.1.5 Force Measuring Module

A force measuring module was developed, in order to capture the forces exerted by the
robot fingertips. The module consists of: a Phidget Interface Kit 8/8/8 (I/O Board from
Phidgets [154]), 5 flexiforce sensors (force sensors, one for each finger) and 5 flexiforce
sensor adapters. The Phidget Interface Kit 8/8/8, a flexiforce sensor and an adapter,
are depicted in Fig. 7.4. Appropriate software written in C++ was used to perform data
acquisition, using the force measuring module that establishes a serial communication

with the planner PC (Ubuntu 12.04 x86).

Flexiforce Sensor and Adapter Phidgets Interface Kit 888

FIGURE 7.4: Flexiforce sensor, Flexiforce adapter and Phidgets Interface Kit 888.

The force sensors used are FlexiForce sensors (Tekscan Inc.) which are ultra-thin and
flexible printed circuits [155]. Some important characteristics of the FlexiForce sensors
are; the paper-thin construction, the flexibility and their durability. FlexiForce sensors
can measure forces between almost any two surfaces and can be used at different

environments. Moreover they have better force sensing properties, linearity, hysteresis,
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drift, and temperature sensitivity than other thin-film force sensors. Their “active sensing
area” is a circle at the end of the sensor with diameter of 1 cm. In case that the
specifications of the experiment require very low or very high forces exerted and if
we want to measure these forces more precisely, the force measuring module can be used
with different types of flexiforce sensors, providing ranges 0 - 10 lbs (0 - 4.4 N), 0 - 25
Ibs (0 - 110 N) or even 0-100 Ibs (0 - 440 N). Finally in order to interface the Tekscan
FlexiForce sensors to the phidget interface, the five flexiforce adapters that appear in

Fig. 7.4 are used.

Human Hand Kinematics
Acquisition (Cyberglove 1)
N Modified
Joint-to-Joint
Human to Robot
Motion Mapping

DLR/HIT Il with

Cyberglove force sensors attached

Visual
Feedback Planner PC

(Ubuntu x86)

"
]
Vibro-tactile Posmon Control g
Feedback 3
125 Hz
T 125 Hz

Vibration Motors
based Wrist Band

Phidgets Interface Kit

Arduino Mega

FIGURE 7.5: Block diagram of the proposed scheme architecture.

7.3.2 Robot Hand Specific Fast Cyberglove Calibration

In order to calibrate the Cyberglove II motion tracking system, we developed a new

calibration module, based on:

e The simplified kinematic model of the human hand that consists of 20 DoFs.

o Tuning of sensor gains (to estimate joint angles from raw sensor values), using two

different postures and a free movement phase.

The two postures used during the advanced calibration procedure, appear in Fig. 7.6.
The first posture is used to measure the raw cyberglove sensor values when all human
flexion and abduction/adduction DoFs are in zero position in joint space. The second
posture is used to measure the maximum possible cyberglove sensors raw values that

correspond to the maximum abduction/adduction of all human hand fingers. It must
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be noted that these values differ among subjects, and are used in order to conclude to
specific bounds of the calibrated robot hand specific values that the Cyberglove II will
provide to the grasp planner PC (e.g., the one that performs position control of the
DLR/HIT II).

Zero Values Posture Abduction/Adduction Posture

FIGURE 7.6: The two postures used by the calibration procedure. The zero values
posture and the maximum abduction/adduction posture.

It’s quite typical for the human hand to be more dexterous than a multifingered multi-
DoF robot hand [137]. Moreover in most cases the human hand has greater joint limits
than the robot hand. Thus if we perform a direct join-to-joint mapping between the
human and the robot hand we may lead the robot hand to exceed its limits (software/hardware)

damaging some finger, or even causing inter-finger collisions.

The free movement phase used by the calibration procedure manages to measure the
maximum values reported in terms of raw cyberglove sensors values, for each joint
of the human hand. Thus during the free movement phase, users are instructed to
“explore” the finger workspaces, in order to store also the maximum values for each
finger (flexion/extension and abduction/adduction are considered). In order to conclude
to the gains that will linearly map the raw values of the Cyberglove II flex sensors, to
the corresponding DLR/HIT II joints angles, we used the robot hand joint limits. To

compute the gain for each DoF, we proceed as follows:

kg = _ Ymaz (7.1)

|Cmam — Czero
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where £, is the gain for each DoF, ¢4, is the maximum value that a robot DoF can
achieve (joint limit) for the specific DoF, ¢4, is the maximum value of the Cyberglove
II flex sensors that was measured and ¢, is the value of the Cyberglove II flex sensors,
measured at the “zero” posture. It must be noted that the whole calibration procedure
comes with a simple user interface and lasts less than 30 seconds. The gains computed
are stored in automatically created files, for further use with the data collection software
or the DLR/HIT II planner mechanisms.

7.3.3 Joint to Joint Mapping of Human to Robot Hand Motion

Regarding the DLR/HIT II robot hand, human to robot motion mapping is performed
using a modified version of the well known joint-to-joint mapping methodology proposed
in [49] and [125], based on the robot hand specific Cyberglove II calibration. As we
have already mentioned the last two joints of each robot finger of the DLR/HIT II are
coupled with a mechanical coupling based on a steel wire. Thus, we are not able to
map both the measurements of the Distal Interphalangeal Joint (DIP) and the Proximal
Interphalangeal Joint (PIP) of human hand, to the robot hand. In this study we choose
to use the cyberglove values of the PIP joints of the human hand and map them to both
the PIP and consequently (due to the coupling) to the DIP joints of the robot hand.
The choice to use the PIP joint is supported by the fact, that human is able to flex
PIP independently, but not DIP due to tendon coupling. Thus if we had selected the
DIP there would be cases in which the user would flex only the PIP joint of the human
hand and the corresponding robot finger wouldn’t move as DIP value measured from the
Cyberglove II would be zero. MetaCarpoPhalangeal (MCP) joints of the human hand
are directly mapped using a one-to-one mapping to the MCP joints of the robot hand.
Regarding abduction/adduction of robot fingers, for the middle finger, abduction and
adduction movements are discarded and the DoF is kept fixed, as it cannot be measured
by the Cyberglove II. All other abduction/adduction angles (for the rest fingers) are

mapped one-to-one, between fingers of the human and the robot hand.

7.3.4 Mapping Exerted Forces to RGB LEDs Color Information and
Vibration Amplitude

Regarding RGB LEDs, each led has three different color intensity values (one for each
color) that can be controlled through the arduino platform. The value of each color can
range from 0 (off state) to 255 (higher state) so in order to create the different color
variations, we fuse different intensity levels of different colors. In this study we chose to

represent the absence of force exertion with blue color and the maximum possible force
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exertion with red color. Thus we set a lpje threshold (e.g. lpue = 50, 20% of total range),
for the blue color to illuminate the led when there is not force exertion and red color
is l;eq = 0. Then in order to map exerted forces to color alternations, we simply map
them to proportional fusing values of the red color. The gain that linearly maps exerted

forces to red color values is computed as follows:

256

fma:v

kred =

where fq: is the value of the flexiforce sensor for the maximum force exertion that is
expected to occur and 256 is the maximum value of the red color intensity. Iy, and
fmaz can be set according to the specifications of each study, resulting to different force

sensitivities for the whole system.

Regarding the vibration motors mapping, we simply used a proportional mapping using
a gain ky;p,- equal to the ratio defined, with nominator the maximum voltage v,,q, that
can be fed to the vibration motors and denominator the maximum selected force fiaz
that can be exerted by the robot fingertips. The gain for this proportional mapping is

computed as follows:

kvivr = Umaz (73)
fmax

7.3.5 Results and Experimental Validation

In order to validate the efficiency of the proposed methods, a series of experimental
paradigms were executed with the DLR/HIT II robot hand. Those paradigms included
a free space exploration phase where the DLR/HIT II was teleoperated in different
postures in unconstrained 3D space, while the motion imposed by the user was far from
typical (different speeds and configurations were tested for all fingers). The second task
was a combination of grasp, squeeze and rotation movements for a small plastic ball and
a rectangle. In Fig. 7.7 we can see a series of screenshots presenting different postures
executed during the first task, while in Fig. 7.8 a similar series of screenshots is used to
depict the activity during the manipulation tasks execution. For a clearer understanding
of the methods proposed, as well as for a “first hand” evaluation of the robot hand
“response” during the experiments, the reader should consult the accompanying video,

which is available at the video in [77].


https://www.youtube.com/watch?v=MmK1QmLHajk
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Force feedback is of paramount importance especially for those cases where occlusions
occur between the user and the robot hand fingertips (e.g. caused by the objects grasped

or the environment).

Index, Middle Flexion Thumb Flexion

5T

—

Parallel Fingers Abducting Fingers

FI1GURE 7.7: Different postures of the human and robot hands, representing the different

instances of the teleoperation tasks. The Cyberglove II motion capture system was used

to teleoperate the DLR/HIT II robot hand in different postures, performing different
motions with various speeds.

Small Ball Manipulation Rectangle Manipulation
(Squeezing and Rotation) (Squeezing and Slight Rotation)

FIGURE 7.8: Images depicting instances of the executed manipulation tasks, involving
two everyday life objects: a small ball and a rectangle.
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DLR/HIT II has a maximum tolerance of 10 N force that can be applied at the fingertips,
thus the absence of a system that is able to detect contact as well as the amount of force
exerted, may lead to severe damages of the robot fingers. It must be noted that in the
screenshots appeared in Figures 7.7 and 7.8 when small amounts of forces are exerted,
they mainly appear as changes of LEDs luminosities. Moreover the user is able to easily
change the sensitivity of the color alternations changing the threshold of the blue color
value during colors fusion (the RGB led module can be adjusted to be more sensitive,
representing better lower force values). Finally, it’s evident in the video that in some
cases the fingers may contact the object with some part which is not covered with force
sensors, thus in order to refine our study and improve the efficiency of our system we

plan to integrate new force sensors, covering a greater part of each finger.

7.4 Concluding Remarks

In this chapter we presented a complete system for teleoperation and telemanipulation
with the Mitsubishi PA10 7 DoF robot arm and the five fingered DLR/HIT II robot hand.
Various MCS were used to capture human arm hand system kinematics and different
mapping schemes were used to guarantee anthropomorphism of robot motion. Moreover,
a novel low-cost force feedback device based on RGB LEDs and vibration motors - that
can provide real-time feedback of the forces exerted by a robot hand - was used, so as
for the user to be able to perceive the forces exerted by the robot fingertips. The choice
to employ both a visual and a vibro-tactile module to provide a mixture of sensory
information for force feedback, was based on the hypothesis that can lead to more easily
interpreted by the user results. The efficacy of the proposed methods is proved, using
extensive experimental paradigms with the robot arm being teleoperated in 3D space,
and the robot hand performing different teleoperation and telemanipulation tasks. The

accompanying videos further validate our claims.



Chapter 8

Closed Loop Anthropomorphic
Grasp Planning based on

Navigation Functions

8.1 Closed Loop Anthropomorphic Grasp Planning based

on Navigation Functions

In this chapter, we present a complete scheme for closed loop anthropomorphic grasp
planning based on Navigation Functions (NF) models that can be used by a robot arm
hand system like the Mitsubishi PA10 DLR/HIT II, to reach and grasp anthropomorphically

a wide range of everyday life objects.

For doing so, we use human data in a “Learn by Demonstration” manner to perform
“Skill Transfer” between the human and the robot arm hand system. A human to
robot motion mapping scheme (like the one presented in Chapter 6) is used, that
is capable of transforming human motion to anthropomorphic robot motion (using
specific criteria of functional anthropomorphism). Then NF based models are trained,
that use “fictitious” obstacle functions learned in the low dimensional space of the
anthropomorphic robot motion. Those models produce “new” human-like configurations,

guaranteeing also convergence to the desired goal.

Regarding generalization, the NF based models are trained in a task-specific way, using
the two of the three task features, described in Chapter 3: the subspace to move towards
and the object to be grasped. The final scheme is able to produce adaptive behavior
similar to humans by switching to different grasping primitives based on online feedback

from a vision system.
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The vision system proposed uses RGB-D cameras like Kinect (Microsoft) to perform
object recognition and object pose estimation, discriminating the required task features
(position and object). Based on the “decision” acquired by the vision system, a task-
specific NF model is triggered, for the closed loop control of the robot arm hand system

in performing the identified task.

8.2 Learn by Demonstration for Skill Transfer

Learn by Demonstration (LbD) or Robot Programming by demonstration (PbD) has
received increased attention over the last 30 years and is a multidisciplinary topic with
numerous applications in the field of HRI. The LbD approach “moves from purely
preprogrammed robots to very flexible user-based interfaces” according to [156]. Some
characteristic studies are those proposed by Dillman et al. in [157-162], as well as those
proposed by Schaal et al. in [163, 164].

In this Ph.D. thesis we perform learn by demonstration using human arm hand system’s
reach to grasp motions to “teach” the robot artifact how to replicate them. More
specifically a human to robot motion mapping procedure is used and human kinematics
are mapped to anthropomorphic robot kinematics. Different human to robot motion
mapping procedures have been proposed that guarantee anthropomorphism using specific
metrics of Functional Anthropomorphism. The mapping schemes are discussed in detail

in [92] as well as in Chapter 6.

In order to acquire those human motion data we performed reach to grasp movements
towards different positions and objects in 3D space, capturing the full human arm hand
system kinematics, with motion capture systems. Those experiments were performed
for 22 positions in 3D space, marked on 5 different shelves. Different objects (4) were
used for the experiments: a marker, a rectangular box, a small ball and a bottle. For
each object and object position combination, 10 reach to grasp and grasp movements
were executed and a total of 22 x 4 x 10 = 880 trajectories were collected. An image

presenting the objects used in this study appears in Fig. 8.1.

FIGURE 8.1: Image presenting the different objects used in this study.
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An image presenting the bookcase used, as well as the positions marked on the different

shelves appears in Fig. 8.2.

Prospective View of the Bookcase

° ° 30 °
° 15cm { e o °
Shelf 1 (height: 157 cm)

15cm
o .¢ 7.5cm o<—>0

Shelf 2 (height: 144 cm)

[ )
[ ]

y Shelf 3 (height: 132 cm) .

X -
Screenshot of the two shelves that were

7 RN Shelf 4 (height: 119 cm)  used in different heights.

iy N -
[ )

Shelf 5 (height: 106 cm)

FIGURE 8.2: Image presenting the bookcase used and the object positions marked on
the different shelves.

8.3 Learning NF in the Anthropomorphic Robot Low-D
Space

Navigation Functions (NF) have been proposed by Rimon and Koditschek [165], [166].
Their initial formulation is for a priori known sphere worlds, however, application to
geometrically more complicated worlds is achieved using diffeomorphisms, which map
the actual obstacles to spheres. B-splines have been used to learn the structure of the

NF’s obstacle function.

More precisely, given a desired final configuration g4 for the robot arm or the robot hand

the control law may be constructed as follows:

u(t) = —Kp(Vq9) (1) (8.1)

where ¢ is the navigation function responsible for; 1) driving the arm or hand to its final
configuration and 2) generating similar anthropomorphic robot trajectories with those
used for training. K, > 0 is a constant gain matrix and x is the system’s state. The

navigation function is given from the following relationship:

p=—1"+ (8:2)

(i +8)

el
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where ¢ is the configuration, v4 (q) = ||q¢ — qd||2 is the paraboloid attractive effect, 3 is

the obstacle function and k& € N\ {0,1} is a tuning parameter.

Anthropomorphic
Human to Robot
Motion Mapping

Learning Robot Arm

Experiments Algorithm Hand System

F1GURrE 8.3: NF based training procedure.

Thus the NF based controller is capable of producing trajectories similar to those
formulated by the anthropomorphic robot motion data that were acquired from human
motion data using the human to robot motion mapping procedure. It should be noted
that the obstacle function is once again a “fictitious” obstacle. This “fictitious” obstacle
is actually introduced in the low-d configuration space (using PCA) and applies repulsive
effects on the robot arm hand system so as to reach the anthropomorphic configurations
most commonly encountered during the training phase. More information regarding the

learning procedure can be found in [102].

Some characteristics of the NF based models are the following:

e Provide closed-loop motion planning.
o Guarantee convergence.
e Have highly nonlinear learning capability.

o Can learn high dimensional spaces using dimensionality reduction techniques (e.g.,
using PCA).

e Provide continuous and smooth trajectories.
e Learn the feasible space.

o Embed anthropomorphism (through human to robot motion mapping) and can
learn human movement characteristics (through “mapped” anthropomorphic robot

motions).

o Can generalize to similar-neighboring destinations (goal positions).
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As we have already noted, the NF models are trained to learn anthropomorphic robot
motion and provide a closed loop (robust) scheme that embeds anthropomorphism. In
our scheme, no online human to robot motion mapping is required, thus computational
effort diminishes. Moreover we manage to guarantee anthropomorphism, as well as to
transfer skills from humans to the robot arm hand system, using the aforementioned

learn by demonstration approach.

Regarding generalization, we extended the NF scheme proposed by Filippidis et al. [102],
in order to generalize to new grasping tasks. NFs are trained in a task-specific way, using
the two of the three task features introduced in Chapter 3, subspace to move towards
and object to be grasped. The scheme is able to produce adaptive robot behavior similar
to humans by switching to different grasping primitives based on online feedback from

a vision system based on RGB-D cameras like Kinect (Microsoft).

Human
Motion Data NFs are trained in a task-specific way,

using two task features, subspace to
\1’ move towards and object to be grasped.

Mapping Human to Robot
Motion Module

\1’ Task Specific NFs
Training Module

Dimensionality Reduction of

A 4

Robot Motion (F’CA) Object 1 Object 2 Object 3
Subspace 1 Subspace 1 |...| Subspace5
NF 1 NF 2 NF n

FIGURE 8.4: Training of task-specific NF models.

A blog diagram presenting the task-specific training procedure for the NF models, is
depicted in Fig. 8.4. Different NF based models are trained for the robot arm and the
robot hand. All models require as input the “goal” position in the low-d space of the
anthropomorphic robot kinematics. This goal position can be provided for “new” tasks

by a vision system and projected in the low-d space of robot kinematics.

8.4 Vision System based on RGB-D Cameras

In order for the proposed NF based methodology to be able to update the “goal” position
of the task to be executed, based on online feedback, we created a vision system based
on RGB-Depth (RGB-D) cameras like Kinect (Microsoft). Our vision system, is capable:

e To perform object recognition and pose estimation.

o To perform object tracking (e.g. real time pose estimation).
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Results of the different functionalities of the vision system are presented in Fig. 8.5. The
Point Cloud Library [84] has been used for the development of our vision system. A block
diagram of the NF based scheme with the vision system incorporated, is presented in Fig.
8.6. A video presenting an experimental validation of the object tracking functionality,
can be found in [167].

point Ubrary

Pose Estimation Object Modelling
Correspondences Matching

Object Recognition
Classification

FIGURE 8.5: Examples of the main functionalities of our vision system, developed using
the Point Cloud Library.
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FI1GURE 8.6: Block diagram of the NF based scheme with the vision system included.


http://www.youtube.com/watch?v=UHn8-ngn5qI
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8.5 Results

In this section we present the results of the aforementioned methods. More precisely
two different experiments were conducted in order to test the efficiency of our scheme.
Both experiments were performed with the Mitsubishi PA10 DLR/HIT II robot arm
hand system, while the proposed vision system was used to track objects located in
an arbitrary positions and orientations inside the workspace. The NF based scheme
was used to reach and grasp the object in an anthropomorphic manner. Moreover the
generalization capabilities of our methodology enable us to use the proposed scheme for
reaching and grasping - in a synergistic manner - a wide variety of everyday life objects,

located in various positions.

Results for the first experiment of reaching and grasping an object placed in an arbitrary
position in 3D space (using the vision system for pose estimation), are reported in the

video provided in [78].

A screenshot representing the robot arm hand system while it has already grasped the

rectangular object is depicted in Fig. 8.7.

FIGURE 8.7: The Mitsubishi PA 10 DLR/HIT II robot arm hand system is depicted
grasping the rectangular shaped object used in the experiment.

A video of the second experiment, where the Mitsubishi PA10 DLR/HIT II robot arm
hand system, performs anthropomorphic reaching and grasping of a bottle of juice which

is thrown in an arbitrary position on a flat surface, can be found in [79].


http://www.youtube.com/watch?v=icnB0Hvzpsw
http://www.youtube.com/watch?v=wsN23y1oCQQ
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F1GURE 8.8: Screenshots of the second experiment.

8.6 Concluding Remarks

In this Chapter we presented a complete autonomous grasp planning methodology
based on Navigation Functions (NF), that facilitates grasping of a wide variety of
everyday life objects. The learning of the NF based models is performed using the
anthropomorphic low-d robot space, extracted using Principal Components Analysis
(PCA). A “fictitious” obstacle, applies repulsive effects on the robot arm hand system
so as to reach anthropomorphic configurations. The scheme is able to produce adaptive
robot behavior similar to humans by switching to different grasping primitives based on
online feedback (provided by a vision system). A series of accompanying videos, present

the experimental validation of the proposed methods.



Chapter 9

Open-Source, Affordable,
Light-Weight, Modular,
Underactuated Robot Hands

In this chapter we present a series of design directions for the development of affordable,
modular, light-weight, intrinsically-compliant, underactuated robot hands, that can be
easily reproduced using off-the-shelf materials. The design is coordinated by a robot
hands taxonomy that distinguishes and discusses functional and structural aspects for
the creation of non-humanlike and human-like robot grippers and hands. The proposed
taxonomy follows an order of increased complexity in presenting the different categories
and then based on their attributes, the choices made for our design, are appropriately
justified. The proposed robot hands, efficiently grasp a series of everyday life objects and
are considered to be general purpose, as they can be used for various applications. The
possible applications range from autonomous grasping and teleoperation/telemanipulation
studies (as parts of robot arm hand systems) to humanoids, mobile and aerial vehicle
platforms (which can be modified to be grasping capable), educational robotics (provide
a low-cost solution for highly intriguing robotics lessons), or even as affordable myoelectric
prostheses, assisting amputees in everyday life tasks and helping them regain part of
their lost dexterity. The efficiency of the proposed robot hands has been experimentally
validated through a series of experimental paradigms, involving: grasping of multiple
everyday life objects with different geometries, myoelectric (EMG) control of the robot
hands in grasping tasks, preliminary results on a grasping capable quadrotor and autonomous

grasp planning under object position uncertainties.

123
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9.1 Introduction

The problem of grasping has been one of the greatest topics of robotics research, during
the last fifty years, as roboticists were always intrigued to understand and be inspired
by nature’s most versatile and dexterous end-effector, the human hand. The first robot
hands, were actually simple robot grippers, with a limited number of Degrees of Freedom
(DoFs), which were capable of grasping a limited set of objects with simple geometry,
located in a-priori known static environments. Nowadays grippers are still the most
common alternative for robotic grasping, both in industry and research [61], [62], due
to their low-complexity and relatively low cost. But the state-of-the-art of robot hands
follows the road to increased performance and humanlikeness [63], which leads also
undoubtedly to increased complexity and of course increased cost. The issue of cost is
definitely not negligible and nowadays robot hands cost thousands of USD, due to the
materials used, the complex design and the sophisticated actuators and sensors. Are
their grasping capabilities analogous to their price? Our subjective opinion is that the
answer is no and that the problem of grasping can become remarkably complex or even
remarkably simple, depending on the design choices. A nice collection of different robot

hand designs was presented in [168].

FIGURE 9.1: A four fingered robot hand model is depicted.

Over the last 10 years a series of studies have focused on low-cost robot hands based
on elastomer materials or elastic hinges, that in some cases were also open-source [64],
providing directions for the replication of the design. More specifically, in [65] authors
presented the development of the humanoid robot hand UB (University of Bologna)
Hand 3. This hand is based on an endoskeleton made of rigid links connected with
elastic hinges, which is actuated by artificial tendons and the whole hand is covered by
compliant pulps. The same hand appears also in [169], where the development timeline

of the different UB hand versions is discussed, through a video contribution.
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A new design approach for robot hands created using polymer-based shape deposition
manufacturing, was first proposed in [170] by Dollar et al. and led eventually to the
creation of the highly adaptive SDM hand [66]. The SDM hand is equipped with cable
driven fingers, that have viscoelastic flexure joints, stiff links, soft fingerpads and a set
of movable pulleys, as a differential mechanism. In [171] an underactuated robot hand
with force and joint angle sensors, equipped with a novel movable block differential
mechanism, was proposed. Recently, a dexterous gripper with active surfaces, the velvet
fingers was proposed [172]. This latter hand, despite its underactuated design, is capable
of performing manipulation tasks, using the active surfaces to apply tangential thrust to
the contacted object. Another example of a recent underactuated, compliant robot hand,
is the i-HY (iRobot-Harvard-Yale) hand [67], which was created for robust grasping,
manipulation and in-hand manipulation of everyday life objects. i-HY hand has 5 actuators
and fingers equipped with flexure joints and integrated tactile arrays. Finally, an example
of a commercially available, compliant robot hand is the Meka H2 hand [68], which
consists of 5 elastic actuators, driving 12 joints of four fingers made of urethane, in an
underactuated design. It must be noted, that the aforementioned studies have made
progress towards the goal of reducing the hand cost and weight. Thus the minimum cost

is nowadays 400 USD and the minimum weight is 400 gr (0.88 1b), as reported in [64].

In this chapter we propose a new design approach, for the creation of affordable (less than
100 USD), light-weight (less than 200 gr | 0.44 1b), intrinsically-compliant, underactuated
robot hands, that can be easily reproduced with off-the-shelf materials. The possible
applications for the proposed hands are numerous, ranging from teleoperation and
telemanipulation studies, to grasping capable platforms (e.g., mobile and aerial vehicles,
for which light-weight design is a prerequisite), educational robotics or even for affordable,
myoelectric prostheses. Extensive experimental paradigms are provided, that involve
grasping of numerous everyday life objects, myoelectric (EMG) control of the robot
hands, some preliminary results on a grasping capable quadrotor (using an aerial gripper)

and autonomous grasp planning under object position uncertainties.

9.2 A Taxonomy for Robot Hands

Over the last decades a lot of researchers have tried to encode in appropriately formulated
grasp taxonomies, a series of the most representative grasps that occur in different
everyday life environments. Representative studies in this field include some recent works

[115, 173] and of course the classic taxonomy of Cutkosky [116].

Recently, Grebenstein et al. created the DLR hand arm system [63], which is equipped

with one of the most dexterous and sophisticated robot hands ever built. In his PhD
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thesis [174], Grebenstein mentions that Awiwi hand (the hand of the DLR hand arm
system) is the first robot hand able to perform all grasps of Cutkosky’s taxonomy [116].
But the Awiwi is a research hand, not yet commercially available (to the best of our

knowledge) and even if it becomes available it will cost dozens of thousands of USD.

A completely different approach is not to try to design a perfect and highly dexterous
robot hand that mimics the human hand, but to design multiple low-cost robot hands
that are optimized for different grasps - included in grasp taxonomies [116] - or custom
made to perform specific tasks. This is the philosophical basis for the proposed design

and the ultimate scope of this work.

In this section we present a robot hands taxonomy which is to the best of our knowledge
the first attempt to systematically capture the functional and structural aspects that
lead from the non humanlike pretty basic robot hands and grippers, to the most versatile
end-effector known the human hand. All trees presented in our taxonomy, when read
from left to right, lead from low complexity and dexterity designs with non human-like

characteristics, to anthropomorphic complex designs, that offer increased dexterity.

9.2.1 Complexity and Dexterity
The hereby presented robot hands taxonomy - inspired by the grasp taxonomy of
Cutkosky [116] - is used to justify the design choices made, comparing them with existing

alternatives. As we examine the trees from left to right direction, we can notice that both

the complexity and the dexterity of the robot hands increase.

9.2.2 Functional Aspects

In this subsection we examine the functional aspects of the different robot hand designs.

Tree 1. Type Of Actuation

Underactuated Fully Actuated Overactuated

Tree 1. concerns the degree of actuation of each robot hand. A robot hand may be

underactuated, fully actuated or over-actuated.



Part IV - HRI: Applications, Exzperiments and Design Directions 127

In this work we propose an open-source design for underactuated robot hands, since
having less motors to control the same degrees of freedom, means low-cost design and

therefore affordable robot hands, which is our first priority.

Tree 2. Type Of Transmission

T

Indirect Direct Hybrid

Tree 2. concerns the type of transmission. In this work we choose to use indirect
transmission methods (creating cable driven underactuated hands) since we want the
simplicity of the underactuated design and the fingers to be as light-weight as possible
(a single motor has to control multiple degrees of freedom, avoiding extra motors per
finger DoFs).

Tree 3. Mobility of Finger Base Frames

Steady/Fixed Moving

Position Rotation Position/Rotation

Tree 3. concerns the mobility of finger base frames. Finger base frames may be fixed,
or moving in position, orientation or both. A robot hand that has moving finger base
frames, is the Shadow hand [113] (thumb and pinky opposition). We use steady base

frames to reduce the number of motors required.
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9.2.3 Structural Aspects

In this subsection we examine the structural aspects of the different robot hands designs.

Tree 4. Geometry of Finger Base Frames

Line 2D Polytope - Polygon 3D Polytope

Triangle Square Polygon

Tree 4. concerns the geometry of the finger base frames workspace, as defined in [137].
In order to conclude to the type of geometry we perform a delaunay triangulation with
input the positions of the finger base frames in 3D space. The result, will be a line
for only two points, a 2D polytope for 3 or more co-planar points and a 3D polytope
(Convex Hull) for three or more non co-planar points. An example of 3D polytope is the
workspace of the human hand finger base frames [137] and DLR/HIT II robot hand’s
[70] workspace. It must be noted, that all types of geometries, can be reproduced with

our design. More details can be found in Section III.

Tree 5. Flexibility

T

Joints Links

/\/\

Compliant Rigid Compliant Rigid

Tree 5. concerns the compliance of the robot hand’s structure. A robot hand may have
rigid [70] or compliant joints [64] and links. Of course multiple degrees of compliance
can be chosen, but this tree is proposed in order to discriminate between compliant
and non-compliant structures without taking into consideration the level of compliance
(which will be discussed in a later section). In this work we use compliant joints but
rigid-links, in order to be able to attach at the fingertips (rigid links) of the robot hand,

any material, with any level of compliance and friction desired.
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9.3 Open Source Design

9.3.1 Bioinspired Design of Robot Fingers

The low-cost design, for affordable, underactuated, compliant robot hands that we
present in this study, is based on a simple but yet effective idea: to use agonist and
antagonist forces to implement flexion and extension of robot fingers, following a bioinspired
approach where steady elastomer materials implement the human extensor tendons
counterpart, while cables driven through low-friction tubes implement the human flexor

tendons analogous.

Recently we proposed a complete methodology based on computational geometry and set
theory methods in order to quantify anthropomorphism of robot hands [137]. The idea
was simple and clear, to examine the most versatile end-effector known, the human hand
and compare it with robot hands, in order to extract design specifications. Specifications
according to which the object surrounding us have been crafted. But in order to conclude
to those specifications, a new metric was necessary, a metric that would quantify the
humanlikeness of robot hands in terms (at least) of kinematic similarity. This latter
metric rates the kinematic similarity of any robot hand with the human hand and derives
a score, that ranges between 0 (non-humanlike) and 1 (human identical). Although in
this study we are not proposing anthropomorphic robot hands, we used this metric
and the related hand anthropometry studies [109], in order to define the lengths for all
phalanges for our robot hands, the distances between the finger base frames and finally
to conclude to a more humanlike design. Such a choice was made based on the hypothesis
that if we design even our simple robot hands as anthropomorphically as possible, we
will maximize their ability to grasp most objects created for the human hand. For our
design we have used identical robot fingers following the dimensions of human index
finger. A future direction of ours, is to formulate an optimization problem to maximize
anthropomorphism of robot hands [137], taking also into consideration other functional

aspects [175], [176] and [177]. The structure of a robot finger is presented in Fig. 9.2.

9.3.2 Compliant Flexure Joints and Soft Fingertips

Our main goal is to provide a design with the ability to stably grasp a wide range of
objects. The envisioned design should be of low-complexity and low cost and of course
to be lightweight. In order to achieve this, we were based on conclusions extracted by
recent works on the design of underactuated hands. More specifically, it has been shown
that mounting compliant joints on their fingers, adds adaptability to the mechanism and

thus leads to more robust and stable behavior, even when attempting to grasp objects
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FI1GURE 9.2: The structure of one robot finger is presented. The elastomer materials
appear at the lower part of the image (white sheets), while the low-friction tubes that are
used for tendon routing, appear at the upper part of the image (white tubes) together
with the rigid phalanges. The finger base is also depicted at the right part of the figure.
For the assembly of the robot fingers we use fishing line and needles in order to stitch
the silicone sheets onto the rigid links (the links have appropriate holes by design).

with complex shapes [170]. Besides, soft materials are more preferred for designing the
fingertips, as their deformation during contact, leads to larger contact areas, which
reduce the impact of contact forces to the grasped object and also enhance stability
[178]. Both conclusions can also be verified by our everyday life experience; the human
hand, the most perfect end-effector known, can be characterized by high joint compliance

and soft fingertips.

Motivated by the previous conclusions, we carefully selected the materials for the joints
and the fingertips so that they satisfy our specifications. We made a compromise between
affordable cost, lightweight design, high force transmission and adaptability. More specifically,
the motion of the fingers in our grippers is implemented through flexure joints as a result
of the compliance requirement. The flexible material (silicone and polyurethane sheets
were considered) on the joints was selected to be lightweight but also stiff enough to be
able to produce a force range, that corresponds to everyday life grasping tasks. Thus our
robot hands demonstrate a sufficient ability of force transmission, without compromising
deformability /adaptability. As for the fingertips, soft material (a combination of sponge-
like tape and low-thickness rubber, was used to increase also friction) was attached at
them. This latter choice was made based on the study presented in [179], where various
soft materials are used and compared in order to conclude which one is the best choice

for the fingertips of robot hands (sponge-like materials).

The incorporation of these design decisions in the robot hands mechanisms can be
described by existing models, proposed in recent literature. In particular, the behavior
of flexure joints has been extensively studied by Odhner et al. [180, 181]. Their “smooth
curvature model” is a computationally effective tool to predict the stiffness of such
mechanisms so that real time closed loop control becomes possible. Currently, our

ongoing research involves the incorporation of appropriate low-cost sensing elements
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for force measurements (at the fingertips) and joint-positions measurements, as well
as of a control system implementing torque control policies in our robot hands. Out
ultimate scope is to provide a fully autonomous system with adequate documentation.
Finally, the behavior of soft materials at the fingertips, involving the force transmission
at the contacts can be modeled with the Soft Finger Model, which is described in detail
in [182].

Two Fingers Three Fingers | Four Fingers vl | Four Fingers v2

f - X -

00 QQ VY ¢

FiGURE 9.3: Different robot hands created using identical modular fingers and the
modular fingers basis. One two-fingered, one three-fingered and two versions of four-
fingered robot hands, can be distinguished.

9.3.3 A Modular Fingers Basis with Multiple Slots

In this section we present the modular fingers basis that is used for the creation of our
robot hands. As it can be noticed in Fig. 9.3 and Fig. 9.4 the basis is equipped with 5
slots that can be used to accommodate a total of four fingers, creating multiple robot
hand types from the robot hands taxonomy presented. More specifically robot hands
with various geometries of finger base frames, can be developed. Line and 2D polytope
geometries are easily created, while for 3D polytope geometries finger bases/connectors
with different heights have to be used (to create vertical offsets). Those hands are very
capable of grasping various everyday life objects and each one is specialized for different
types of tasks, executing in a more efficient manner different types of grasps presented

in the various grasp taxonomies.

9.3.4 A Cross-Servo Modular Actuator Basis

The cross-servo modular actuator basis is a simple but yet effective design paradigm
that lets the user of the robot hand to easily select and/or replace different types of
servo motors. Appropriately designed slots are able to keep fixed most of commercially
available servo motors, regardless of size and brand. For our robot hands four different
types of servo motors have been considered, a micro servo with 2.2 kg/cm torque for the
aerial gripper (fixed at the front end of the Ar.Drone platform [183]), a standard servo
with 12 kgr/cm torque, a Dynamixel AX-12A with 15.2 kg/cm torque and the HerculeX
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FIGURE 9.4: The robot hands wrist module is depicted. The wrist module contains the
fingers basis (left part of the photo) and the servo basis (right part of the photo).

DRS0201 with 24 kg/cm torque. Of course more sophisticated high-torque servos, with
torque control can be considered, according to the specification of each study, improving
also the performance of our robot hands in terms of maximum force applied at the

fingertips (of course with the counter effect of increased cost and weight).

FIGURE 9.5: Cross-servo modular basis. A standard servo attached at the servo basis
is depicted.

9.3.5 A Disk-Shaped Differential Mechanism

A disk-shaped differential mechanism has been developed in order to connect the independent
finger cables, with the actuator (servo motor). The differential mechanism allows for
independent finger flexions, in case that one or multiple fingers have stopped moving,
due to workspace constraints or in case that they are already in contact with the object
surface. Our differential mechanism is a variant of the whiffle tree (or seesaw) mechanism,
inspired by the interesting work done in [80], where force analysis of connected differential
mechanisms was conducted. More specifically in this latter study, authors analyze the
concept of underactuation, presenting different categories and discussing appropriate
techniques for developing differential mechanisms. A similar triangle-shaped differential
mechanism can be found in [81]. An example of the differential mechanism operation,

can be found in the accompanying video.
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F1GURE 9.6: The disk-shaped differential mechanism used in our robot hands.

9.3.6 Off-the-Shelf Low-Cost Parts

In Fig. 9.7 and Table 9.1 the different components selected for the development of the
proposed robot hands are presented. As it can be noticed, all components are created
using off-the-shelf, low-cost materials that can be easily found in hardware stores. For
example the low-friction tubes can be substituted by common swabs (used for ear
cleaning) by removing the parts covered with cotton. Plexiglas (acrylic) has been chosen
as the main material for our design for two main reasons: 1) it is low-cost, light-weight
and can be easily found, 2) it has good durability, significant ultimate tensile strength,
8.500 - 11.250 psi and almost the same density, 1.19 gr / cubic cm (0.043 lbs / cubic inch),
with other common plastics like ABS. Plexiglas can be cut with laser cutting machines
or other machinery (even with hand-held rotary tools), that can be easily found, in
contrary (at least for now) with 3D printers proposed by other design paradigms [170].
It must be noted that the hereby proposed design can be implemented with any kind of

plastic or other material available and of course with the desired dimensions.

TABLE 9.1: Parts used for robot hands assembly

Number Material Characteristics
1 sponge-like tape width: 1.8 mm
2 Dyneema fishing line | strength: 41.5kg (91.5 1b)
3 low friction tubes d: 2 mm D: 2.5mm
4 pulleys d: 3mm, D:12mm, W: 4mm
) silicone sheets 3 mm - 4 mm
6 fasteners width: 3mm
7 plexiglas sheets 2 mm - 4 mm
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F1GURE 9.7: The parts used for the creation of our robot hands are depicted. More
details can be found in Table 9.1.

9.3.7 Electronics, Codes and Communication

In order to control the servo motor that actuates the robot hand we use as low-cost,
light-weight and small-sized solution the Arduino Micro platform [151]. An xBee (Digi)
module [184] is used in order to implement wireless communications (if needed), between
the arduino platform and the planner PC (e.g., in case of robot arm hand systems) or
the ground station (e.g., in case of aerial vehicles applications). In case that the robot
hand is meant to be used as a myoelectric prosthesis, an appropriate low-cost surface
Electromyography (sEMG) sensing kit (Advancer Technologies) [185] compatible with
the arduino platform, is used. A standard PCB module has been developed on purpose.
The PCB connects the arduino platform, with the servo motor and other sensors (current

sensor for motor, flex sensors, force sensors etc).

Arduino Micro | xBee Module | EMG Module

F1GURE 9.8: The different electronics modules used in our robot hands are depicted.

The serial communication between our robot hands and the Planner PC is implemented
with Robot Operating System (ROS). An appropriate OpenBionics ROS package, has
been developed. The Planner PC runs two nodes, the client node and the service node.
The client node, receives from the user the aperture value (0 when the hand is fully open
and 1 when the hand is fully close). The service node, sends the desired aperture to the

robot hand. All codes are written in Python.
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9.4 Results and Possible Applications

In this section we present a series of robot hands created with the proposed design. All
robot hands consist of multiple identical fingers. The ratio between the two angles for a
robot finger with two phalanges, as well as the finger workspace, are depicted in Fig. 9.9.
The maximum force applied (and retained) per fingertip with the standard servo used,
is 6 N for the three-phalanges humanlike robot finger and 8 N with the two phalanges
robot finger. It must be noted that the maximum force depends not only on the servo
used, but also on the quality and the thickness of the elastomer materials, thus the
nominal values can also be adjusted according to the specifications of each study. In

Fig. 9.10, we present different force exertion experiments for a single finger in different

configurations.
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FIGURE 9.9: The left subfigure presents the evolution of the ratio between the two
angles, of a robot finger with two phalanges. The ratio approximates a constant value
(red dotted line). The right subfigures presents the finger workspace.
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FIGURE 9.10: Force exertion experiments for a two-phalanges robot finger at two
different configurations (30% and 70% flexed). For each configuration, multiple
experiments where conducted. The red lines represent the mean values and the
blue dotted lines the min and max values per configuration. The high forces values
correspond to the 30% flexed case and reach 18 N (peak), with a standard servo.
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Regarding the robot hands, an aerial gripper, a two-fingered robot hand, two three-
fingered robot hands and a four fingered, were created. All robot hands prototypes are
depicted in Fig. 9.11. Due to the light-weight materials that are used in this design,
the total weight of the robot hands remains low for all robot hand types. For example
the aerial gripper’s weight is 40 gr (0.088 lb), the two-fingered robot hand’s weight is
120 gr (0.26 1b), the three fingered robot hand’s weight is 180 gr (0.40 1b) and the four
fingered robot hand’s weight is 240 gr (0.53 1b), including for all cases the servos and
the arduino platform. These are general purpose robot hands that due to their limited

cost and significant grasping capabilities can be used for various applications.
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FicUure 9.11: Different robot hand models and robot hands created with the design
directions provided, are depicted.

9.4.1 Autonomous Grasping and Telemanipulation Studies

Regarding possible applications, the proposed open source design, can be used by research
groups around the world, to create low-cost robot hands for autonomous grasping
or teleoperation/telemanipulation studies (as part of robot arm hands systems). For
example our lab is equipped with the DLR/HIT 2 robot hand [70], which costs approximately
80.000 USD (of course this price covers also development and manufacturing time,
personnel costs etc.) and has a maximum aperture of approximately 7cm failing to
grasp numerous everyday life objects and marginally grasping a 500 ml bottle of water.
For the 1/1000 of this cost one can have a custom made robot hand, according to the
specifications of the desired task to be executed, able to grasp a plethora of everyday
life objects (even with large diameters). A future plan of our team is to strengthen
the autonomous grasping capabilities of our hands, equipping our design with low-cost
sensing elements for measuring force and joint angles, as well as to provide directions,

analyses and code for advance control topics.
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9.4.2 Creating Mobile and Aerial Grasping Capable Platforms

Another possible application for our robot hands is to be integrated in several aerial and
mobile platforms to replace simple grippers with limited grasping capabilities. Examples
of such platforms are the Baxter (Rethink Robotics) [61] and the YouBots mobile
platform (KUKA) [62]. Moreover their light-weight design makes them the ideal choice
for creating aerial grippers, than can be easily incorporated even in non-sophisticated
aerial vehicles like the Ar.Drone quadrotor platform [183]. Preliminary results with a
grasping capable ArDrone quadrotor platform can be found in the first video presented,

at the end of this section.

9.4.3 Towards Low-Cost Task-Specific Myoelectric Prostheses

The idea of low-cost, light-weight prostheses is not a new one [186]. A recent work [187],
focused on the findings of multiple studies on upper limb myoelectric prostheses as well
as on the comments, suggestions and remarks made by amputees for their prosthetic
hands. The subjects of these studies expressed their disappointment for the large initial
and maintenance costs of the prostheses, the weight of the prostheses and the difficulties
they face with repairs. Moreover the same studies, showed that the involvement of the
amputee in the selection of a prosthesis increased 8 times the likelihood of prosthesis
acceptance and that the fear of damage, leads most amputees to avoid to use the
prostheses in everyday life tasks and use instead simple hooks or grippers, which are
reported to have high functional value. Finally it was also reported that an important
attribute for amputees, is the prostheses to enable specific motor actions for hobbies,
driving/cycling, work etc, in other words to be optimized for specific tasks. Thus our low-
cost, light-weight design can be used by millions of amputees around the world (especially
amputees from third world countries), which can benefit from the DIY tutorials that
we will provide, in order to build personalized, affordable, even task-specific myoelectric
prostheses. Those prostheses will assist them in everyday life basis, to grasp various
objects and/or interact with the environment, helping them regain part of their lost

dexterity.

9.4.4 Videos of Experiments

In Fig. 9.11 the different types of robot hands are depicted both using their 3D models as
well as pictures of the actual robot hands developed. In the following video, we present
extensive experimental paradigms with two fingered, three fingered and four fingered

robot hands. It must be noted, that for all experiments conducted the standard servo
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was used, in order for the total cost of the hands created to remain below 100 USD.
More specifically at the first part of the video we grasp everyday life objects with a four-
fingered (each finger consists of two phalanges) robot hand. At the second part of the
video, a three fingered robot hand is used as a myoelectric prosthesis (by an able-bodied
person) and the subject grasps using the myoelectric activity of his forearm muscles,
two different objects. The third part of the video presents some preliminary results on a
grasping capable quadrotor (based on the AR.Drone platform [183]) that we created in
our lab using a two-fingered robot hand prototype. The forth part presents an example
of the operation of the disk shaped differential mechanism. The fifth part presents a
robot hand grasping a full 500ml bottle of water with a lateral pinch grasp, while the
sixth part presents a precision grasp of an egg. Details on EMG signals pre-processing
and EMG-based interfaces can be found in [90]. The video (in HD) can be found in [82].

The second video presents, an experimental validation of the efficiency of the proposed
robot hands for the case of autonomous grasp planning and can be found in [188]. More
specifically Navigation Function based models are learned for moving the Mitsubishi
PA10 7 DoFs robot arm in an anthropomorphic manner, while a four fingered robot
hand with two phalanges per finger (attached at the end-effector of the robot arm), is
developed on purpose. As it can be seen the robot hand efficiently grasps a series of
everyday life objects even, if their position is not accurately known/predefined (in case

of object position and shape uncertainties).

The third video presents the Grebenstein test, that we use to test a robot hand’s

robustness again impacts and can be found in [189].

A website has also been created for our robot hands:
http://www.openbionics.org

It must be noted that OpenBionics initiative is inspired by the open hand project [190] of
Grab Lab (Yale University), which was the first attempt (to the best of our knowledge)

to create low-cost, open-source robot hands.

9.5 Concluding Remarks

In this chapter we presented a series of design directions for the development of low-cost,
light-weight, intrinsically-compliant, modular robot hands, that can be easily reproduced
using common, off-the-shelf materials. The hands proposed are general purpose, as they

can be used for various applications that range from autonomous grasp planning to


http://www.youtube.com/watch?v=yEANsfaE1gs
http://www.youtube.com/watch?v=xs2CC9QLuFc
http://www.youtube.com/watch?v=bniHWeXpX0A
http://www.openbionics.org
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grasping capable mobile and aerial platforms, educational robotics or even as affordable
myoelectric prostheses. For creating these hands, we first formulated a robot hands
taxonomy, according to which, the design choices made were justified. Then we presented
an open-source design, for affordable, modular, intrinsically compliant, underactuated
robot hands, capable of grasping various everyday life objects. Extensive experimental
paradigms with different types of robot hands, were presented in order to prove the

efficiency of the proposed design and the significant grasping capabilities of our hands.
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Chapter 10

Conclusions and Major

Contributions

10.1 Conclusions

In this Ph.D. thesis we presented advanced learning schemes for EMG based interfaces
that can be used for different Human Robot Interaction applications. These schemes
are able to efficiently decode the human intention and/or motion from EMG signals,
taking advantage of both a classifier and a regressor, that cooperate advantageously in
order to split the task-space and achieve better human motion estimation accuracy, with

task-specific models.

Regarding HRI applications, we focused on anthropomorphism of robot artifacts. More
specifically we discriminated between the different notions of anthropomorphism introducing
functional and perceptional anthropomorphism, we presented a series of possible applications,
we proposed a complete methodology for the quantification of humanlikeness of robot
hands and we created advanced schemes for mapping human to anthropomorphic robot
motion, even for robot artifacts with arbitrary kinematics (e.g., hyper-redundant robot

arms and m-fingered robot hands).

Moreover, we proposed a new design approach for the creation of affordable, modular,
light-weight, intrinsically-compliant, underactuated robot hands and prosthetic devices
that can be easily reproduced using off-the-shelf materials. These robot hands - owing
to their inherent compliance - can efficiently grasp a wide range of everyday life objects in

human-centric and dynamic environments, under object position and shape uncertainties.
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In order to prove the efficiency of the proposed methods, various experiments focusing
on different Human Robot Interaction applications have been conducted and a variety

of robot artifacts have been used.

10.2 Major Contributions

Summarizing, the major contributions of this Ph.D. thesis are the following.

EMG Based Interfaces
We proposed, a complete learning scheme for EMG based interfaces that:

o Uses both a regressor and a classifier that cooperate advantageously.

o Splits the task-space, introducing three task features: subspace to move towards,

object to be grasped, task to be executed.
e Can decode both human intention and human motion from EMG signals.

e Can provide better estimation accuracy with task-specific models.

Anthropomorphism of Robot Artifacts

We proposed a methodology based on set theory and computational geometry methods,
for quantifying anthropomorphism of robot hands:
o To grade the human-likeness of existing and new robot hands.
e To provide specifications for the design of the next generation of human-like robot
hands and prosthetic devices.
We proposed a series of human to robot motion mapping schemes that:
e Guarantee anthropomorphism of robot motion executing accurately specific tasks
(respecting specific human-imposed functional constraints).

e Can provide anthropomorphic robot motion, even for robot arm hand systems

with arbitrary kinematics (hyper-redundant robot arms, m-fingered robot hands).

e Can be used for various HRI applications.
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Affordable Robot Hands

We proposed a series of low-cost, light-weight, modular, intrinsically-compliant, under-
actuated robot hands that:
e Can grasp efficiently a series of everyday life objects.

o Are very efficient even under object position and shape uncertainties, owing to

their inherent compliance.

e Are considered to be general purpose, as they can be used for various HRI applications

(even as affordable myoelectric prostheses).

10.3 Future Directions

o Formulation of semi-autonomous schemes for EMG-based control of robotic artifacts

(mainly prostheses).

e Development of open-source, task-specific, affordable, underactuated robot hands

and prosthetic devices.

e Development of underactuated robot hands for everyday life manipulation tasks.
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Chapter 11

Initiatives

HandCorpus

During my Ph.D. studies I have participated as part of the CSL-NTUA group, at
the “The Hand Embodied (THE)” European Committee (EC) project (http://www.
thehandembodied.eu/), within the FP7-ICT-2009-4-2-1 Cognitive Systems and Robotics
program. I have also been assigned by THE-consortium, the post of technical coordinator

of the “HandCorpus” scientific repository.

5 HAND
=== CORPUS

EEEN
= | ]
Olll

F1GURE 11.1: The HandCorpus logo.

The HandCorpus, is an open-access initiative for sharing data, tools and analyses about
human and robotic hands. Today (July 2014), the HandCorpus repository contains
human hand kinematics data, with suitably provided tools for data visualization, related
publications and videos. The HandCorpus provides an accurate and coherent record for
citing data sets, giving due credit to authors. Data sets are hierarchically indexed and can
be easily retrieved using keywords and advanced search operations. A blog, a newsletter,
a publication repository and applications for mobile platforms and social networks are

also provided.
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Furthermore, 5 European Research Council/European Commission funded projects,
support the HandCorpus initiative and the HandCorpus community consists of 20 international
research groups from 15 universities and 4 research institutes, across Europe and USA.

More information can be found at the following url:

http://www.handcorpus.org


http://www.handcorpus.org
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OpenBionics

Moreover, I am the co-founder of the OpenBionics initiative, which aims at the development
of affordable, light-weight, modular, underactuated robot hands and prosthetic devices,
which can be easily reproduced using off-the-shelf materials. More information regarding

the OpenBionics initiative can be found at the following url:

http://www.openbionics.org

F1cURE 11.2: A photo presenting some of the OpenBionics robot hands.


http://www.openbionics.org




Chapter 12

Publications

My research has resulted to 16 peer-reviewed papers presented at international conferences
worldwide, 1 peer-reviewed journal paper, 1 book chapter, 3 conference/workshop abstracts

and 1 technical report. The list of publications at this time (July 2014), is as follows:

Refereed Journal Papers

[1] Minas V. Liarokapis, Panagiotis K. Artemiadis, Kostas J. Kyriakopoulos and Elias S. Manolakos,
“A Learning Scheme for Reach to Grasp Movements: On EMG-Based Interfaces Using Task
Specific Motion Decoding Models”, IEEE Journal of Biomedical and Health Informatics (J-
BHI), 2013. PDF

Book Chapters

[1] Minas V. Liarokapis, Kostas J. Kyriakopoulos and Panagiotis K. Artemiadis , “A Learning
Framework for EMG Based Interfaces: Introducing Task Specificity in Motion Decoding Domain”

in “Neurorobotics: From Brain Machine Interfaces to Rehabilitation Robotics”, Artemiadis, Panagiotis

(Ed.), Springer Series in “Trends on Augmentation of Human Performance”, Springer Publications,
2013 (in press).

Refereed Conference Papers

[16] Agisilaos G. Zisimatos, Minas V. Liarokapis, Christoforos I. Mavrogiannis and Kostas J.
Kyriakopoulos, “Open-Source Affordable Modular Light-Weight Underactuated Robot Hands”,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago (USA),
2014. PDF
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[15] George I. Boutselis, Charalampos P. Bechlioulis, Minas V. Liarokapis and Kostas J. Kyriakopoulos,
“Task Specific Robust Grasping for Multifingered Robot Hands”, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Chicago (USA), 2014. PDF

[14] Charalampos P. Bechlioulis, Minas V. Liarokapis and Kostas J. Kyriakopoulos, “Robust
Model Free Control of Robotic Manipulators with Prescribed Transient and Steady State Performance”,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago (USA),

2014. PDF

[13] Shahab Heshmati-alamdari, Charalampos P. Bechlioulis, Minas V. Liarokapis and Kostas
J. Kyriakopoulos, “Prescribed Performance Image Based Visual Servoing under Field of View
Constraints”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Chicago (USA), 2014. PDF

[12] Minas V. Liarokapis, Agisilaos G. Zisimatos, Melina N. Bousiou and Kostas J. Kyriakopoulos,
“QOpen-Source, Low-Cost, Compliant, Modular, Underactuated Fingers: Towards Affordable Prostheses
for Partial Hand Amputations”, 36th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), Chicago (USA), 2014. PDF

[11] Christoforos I. Mavrogiannis, Charalampos P. Bechlioulis, Minas V. Liarokapis and Kostas
J. Kyriakopoulos, “Task-Specific Grasp Selection for Underactuated Hands”, IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong (China), 2014. PDF

[10] George I. Boutselis, Charalampos P. Bechlioulis, Minas V. Liarokapis and Kostas J. Kyriakopoulos,
“An Integrated Approach Towards Robust Grasping with Tactile Sensing”, IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong (China), 2014. PDF

[9] Minas V. Liarokapis, Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos, “Mapping
Human to Robot Motion with Functional Anthropomorphism for Teleoperation and Telemanipulation
with Robot Arm Hand Systems”, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo (Japan), 2013 - Video Presentation. PDF

[8] Minas V. Liarokapis, Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos, “Telemanipulation
with the DLR/HIT II Robot Hand Using a Dataglove and a Low Cost Force Feedback Device”,
IEEE Mediterranean Conference on Control and Automation (MED), Chania (Greece), 2013.
PDF
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[7] Minas V. Liarokapis, Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos, “Task Discrimination
from Myoelectric Activity: A Learning Scheme for EMG based Interfaces”, IEEE International
Conference on Rehabilitation Robotics (ICORR), Seattle (USA), 2013. PDF

[6] Minas V. Liarokapis, Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos, “Quantifying
Anthropomorphism of Robot Hands”, IEEE International Conference on Robotics and Automation
(ICRA ), 2013. PDF

[5] Minas V. Liarokapis, Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos, “Functional
Anthropomorphism for Human to Robot Motion Mapping”, IEEE International Symposium on
Robot and Human Interactive Communication (RoMan), 2012. PDF

[4] Minas V. Liarokapis, Panagiotis K. Artemiadis, Pantelis T. Katsiaris and Kostas J. Kyriakopoulos,
“Learning Task-Specific Models for Reach to Grasp Movements: Towards EMG-based Teleoperation
of Robotic Arm-Hand Systems”, IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob), 2012.PDF

[3] Minas V. Liarokapis, Panagiotis K. Artemiadis, Pantelis T. Katsiaris, Kostas J. Kyriakopoulos
and Elias S. Manolakos, “Learning Human Reach-to-Grasp Strategies: Towards EMG-based
Control of Robotic Arm Hand Systems”, IEEE International Conference on Robotics and Automation
(ICRA ), 2012. PDF

[2] Panagiotis K. Artemiadis, Pantelis T. Katsiaris, Minas V. Liarokapis, and Kostas J. Kyriakopoulos,
“On the Effect of Human Arm Manipulability in 3D Force Tasks: Towards Force-controlled
Exoskeletons”, IEEE International Conference on Robotics and Automation (ICRA ), 2011. PDF

[1] Panagiotis K. Artemiadis, Pantelis T. Katsiaris, Minas V. Liarokapis, and Kostas J. Kyriakopoulos,
“Human Arm Impedance: Characterization and Modeling in 3D Space”, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010. PDF

Contributed Conference Abstracts/Demonstrations

[1] Matteo Bianchi and Minas V. Liarokapis, “HandCorpus, a New Open-Access Repository for
Sharing Experimental Data and Results on Human and Artificial Hands”, IEEE World Haptics
Conference (WHC), Daejeon (Korea), 2013 - Demonstration. PDF
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http://www.liarokapis.gr/ICRA2011_Artemiadis_Manipulability.pdf
http://www.liarokapis.gr/IROS2010_Artemiadis_Impedance.pdf
http://www.liarokapis.gr/WHC2013_Bianchi_HandCorpusRepository.pdf
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Workshop Papers/Abstracts

[2] Minas V. Liarokapis, Agisilaos G. Zisimatos, Christoforos I. Mavrogiannis and Kostas J.
Kyriakopoulos, “OpenBionics: An Open-Source Initiative for the Creation of Affordable, Modular,
Light-Weight, Underactuated Robot Hands and Prosthetic Devices”, 2nd ASU Rehabilitation
Robotics Workshop, Arizona State University (ASU), Tempe, AZ (USA), 2014. PDF

[1] Matteo Bianchi and Minas V. Liarokapis, “The HandCorpus Initiative: An Open-Access
Repository for Sharing and Retrieving Data, Tools and Analyses about Human and Robotic
Hands”, 2nd ASU Rehabilitation Robotics Workshop, Arizona State University (ASU), Tempe,
AZ (USA), 2014. PDF

Technical Reports

[1] Minas V. Liarokapis, Panagiotis K. Artemiadis, Charalampos P. Bechlioulis and Kostas
J. Kyriakopoulos, “Directions, Methods and Metrics for Mapping Human to Robot Motion
with Functional Anthropomorphism: A Review”, Control Systems Lab, School of Mechanical
Engineering, National Technical University of Athens, September 2013. PDF
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