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Abstract

The present thesis deals with a unified framework for stochastic analysis and optimum design
of structures subjected to fracture developed in the ambit of modern numerical techniques
for crack growth simulation mainly based on enriched finite elements methods. This has been
done within the context of the stochastic finite element method as well as within a modern
optimization environment implementing metaheuristic search algorithms.

In the first part of this thesis, the stochastic finite element method is presented within the
framework of the sequentially linear analysis (SLA) scheme, providing solutions to stochastic
nonlinear static problems for structures made with softening materials whose properties are
randomly distributed in the structure, but also giving specific information on the probability
of failure. The uncertainty characterizing the material properties, is quantified by using the
theory of stochastic functions (processes/fields). The response variability of the structures
is computed by means of the direct Monte Carlo simulation. Furthermore, the influence of
the variation of each random parameter, the probability distribution, coefficient of variation
and correlation length of the stochastic fields are examined. The analysis of two benchmark
structures has shown that the load-displacement curves and the probability of failure are
strongly affected by the statistical characteristics of the stochastic fields. This extension of SLA
to the stochastic framework offers an efficient means to perform parametric investigations of
the fracture behavior of structures in the case of variable material properties.

In the second part of this thesis, the extended finite element method which consists an ap-
propriate framework for the simulation of the fracture process in structural members caused
by fatigue, is incorporated into a shape optimization environment. A reliability analysis com-
bined with a structural shape design optimization formulation is proposed where probabilistic
constraints are considered in the formulation of the design optimization problem. Shape
design optimization problems are formulated aiming at investigating the relation between
structural geometry and service life in the design process. Randomness on the crack initial-
ization along with the uncertainty on the material properties are also examined. A sensitivity
analysis of four optimization algorithms based on evolution process is conducted in order to
identify the best algorithm for solving the structural shape optimization problem. The appli-
cability and potential of the formulations presented are demonstrated with two characteristic
numerical examples. It is shown that with proper shape changes, the service life of structural
members subjected to fatigue loads can be enhanced significantly. Comparisons with opti-
mized shapes found for targeted service life are also addressed, while the choice of initial
imperfection position and orientation was found to have a significant effect on the optimal
shapes.

Keywords: fracture, crack propagation, finite elements, xfem, sequentially linear analysis,
stochastic analysis, optimization, computational mechanics.
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[Tepthndn

H nopodoo datpl3| acyolelton Ue T1 0TOYAGTIXY AVIAUGCT) Xl TO BEATIOTO GYEBLICUO XUTACHEU-
@V Tou UToXEWVTAL o€ VpadoT), GE Eva EVOTIONUEVO TTAaioto Baclopévo oTic oYy eoveS apldunTixéc
TEYVIXES TIPOCOUOIWONE TWY POUUVOUEVKY VpodCTE TTOU TROPEROUY TA EUTAOUTIOUEVO TENEPUCHUEVAL
otouyeta. H Sopodppwon tou mhawciou autol, yiveton e@uxth agevog otn Bdon tng uedodou twv
GTOYACTIXWY TEMEQUOUEVRY GTOLYEIWY, APETEROL EVTOE EVOS GUY Y POVOU Tep3dAlovTo BehTioTo-
Tolnong Pe T YeNom HETUEVPE TGV ahyopiluwy avalitnone (metaheuristic search algorithms).

Y10 mpKdTo Wépog e OlatePric, meotelvetan 1 oUleudn TNg YeYOBOU TWV CTOYAUCTIXWY TE-
Tepoouévwy ototyelny xar tne dadoyxhAc yeauuxhc avdiuone (sequentially linear analysis),
ToEéyovTac ANOCEC OTA UN-YEOUULXE OTUTIXA TEOBAAUATO XATUCKEUMOY Ad UALXA TOU YO0 TN
ellovton amd yohdpwaon, Twv omolwy oL LBIOTNTES elvar Tuyaio xaTaveEUNUEVES EVTOC TNg Boprc Toug.
H ofeBarotnta mou yopaxtneilel Tig 18LOTNTES TOL UAX0V, TocoTixonoleltal Ue TN yenorn tne Ve-
wplag Twv oToyaoTIXGY cuvapThoEwy (Sadaoies/nedla) xar N petaAntéTnTor 0TV amdxpion
TWV XATAOKELOY LTohoY(eTton pe TN pédodo tng dueone npocopoiwone Monte Carlo. Emmiéoy,
eZetdlovtan 1 enidpaon g UeTHBoAg TN xdde TuylaC TUEAUUETEOV, 1 XUTOUVOUT TNG CUVARTY-
one mavOTNTOG, 0 GUVTEAEGTAS SLoOUAVOTS XS X TO UAXOS CUCYETIONS TWY CTOYACTIXWY
medlwv. H avdhuorn 800 xataoxeudy avapopds €delEe OTL Ol XUUTUAES POETIOU-UETATOTLONG KOl 1)
mdavotnta actoylog emnpedlovion EVIOVo omd TOL OTUATICTIXA YOQUXTNPIOTIXG TV CTOYACTIXWY
TEdlwV.

Y10 Seltepo Pépoc tne Satpifric, 1 wED0B0C TMV EXTETUUEVWY TENEPAUOUEVKY OTOLYEwY (exten-
ded finite element method) cuviotd éva xatdAAnio mhaicto yia TNy TEocopoinan tTne dladxasciog
Yoabong oe xotaoxevéc unoxeipeveg o xomwor. Hpotelvetan uior avdluor adlomotiag ue 6ToY0
TNV BIEPEVVNOT TNG OYEONE HETAEY TOV YEWUETPIXWOY YULUXTNPLOTIXMY TOV XATUACKEVMY XL TNG
didpxetoc Cong autov. Kotd m dadwacio BéATioTou oyediaopuod Aopfdvovton utddn, n TuyudTn-
To 0T Véom TN apyixAc aTéAelog xou 1) oBeBatdTNTA OTIC WOTNTES TOU UAXOU TV XATUGKEUMDY
HE TNV ELCUYWYT) CUYXEXPWEVGLY TIOVOTIXMY TEQLOPLOUMY GTNY BLATUTWOT TwV TEOBANUATODY
Behtiotonoinong. Ilpoxewévou va emheydel 0 *xaTIAANAOC PETUEVPETINOS ohyOELiUOC Yiot TNV
eniluon Twv tpolAnudteny Behtiotonoinong, ey dn avdhuon evocinciog Tecadpny alyopld-
LoV Baotopévey otn el dtodixacio (evolutionary algorithms). To nedio egapuoyic Twv
TEOTEWVOUEVKY BLATUTOOEWY BLEQEUVATOL PE BUO Yopox TNELoTiXd aptdunTtixd mopoadelyuoto. Amo-
OEVUETOL OTL UE TG XATIAANNAES AAAXYES OTN) YEWUETEIO TOV XATACKEVWY, 1) SLdpxeto (whg Toug
unopet va evioyuiel onuovTixd xou axohovlel GlyYXpLon TwV BEATIOTOV YEWUETPLXWY LORYEY TOU
TeoxOnTouy yior Tar emuuntd eninedo didpxeiag Lwrc. H emhoyh wg mpog ty ¥éon tne apyt-
XNC ATEAELOC XU O TROCAVATOMOUOS aUTAHS Peédnxay entlong va €youv onuavTixy enidpaon oTIC
BEATIOTEG YEWUETELXES LOPYES.

A€Zeic xhedld: BLdbooT pwYU®Y, YeaucTouNyAVIXT, ELTAOUTICUEVY TENERACUEVA GTOLYEL, BEA-
TIGTOTO(NON, GTOYACTIXY AVIAUGT).
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Extevic Ieplindn

0.1 Ewaywym

Mo amé tig mo euéhixteg apriuntinéc uedodoug Tou €Y0UV ATOXTACEL UEY AT ONUOTIXOTY
ToL TIC TEAEUTAES BEXUETIEC OTNY AVAAUGT] TWV YUY BIERYUCLMY ATOTEAEL avopiBoia
N pédodoc twv tenepacuévey ototyeinv (finite element method - FEM). H FEM eqop-
uoletan xatd x0pto Aoyo ot mpofBAuaTa yio o omola BV UTdpyouV avahuTixég AUCELE,
mou yopuxtnellovton amd TOAUTAOXY YEWUETElO, (POPTION Xal CUUTERLPORE TOU LALXOU,
TopEyovTog €Tl TpooeYYioTixég hoelg ot autd. H FEM éyel egapuootel pe emtuyla oc
ToAhoUC Topeglc TNG ETGTAUNG TOU UnyavixoU, UETAC) GAADY OTNV AEQOVAUTIXT, CTNV OE-
EOBLUCTNUXT UNYoVIXT|, TNV auToxwvnToBlounyovia, oty euflounyavixy, oty ETGTHUN
TWY VAX®Y, XAT. 2Tov Topéa TG douxic unyovixric 1 FEM €yel epapuootel otn yere,
OTNV TPOGOUOIWCT XAl OTNY TEOBAEPT TNG CUUTERLPOEES TWY XATACKEVWY, ETULTOETOVTOG
TOV UTOAOYIOUO XEIoHwY UEYEV®Y, 0TS TNG TUPUUOPPWONS, TNG EVIUTIXNG XUTAOTACNS
%S X TOU POETIOU XATAPEEUCTC TWYV HATUOHEUMY.

‘Etot, 1 avdmtuén nponyuévey pedodwy Tencpaouévmy oTolyeinwy ouvodeleTol and €-
xTeVH] €peuva 0To TEdO TG TPocouolwong Twv VAKY. Ta avtiotowyo podnuatind tpo-
COUOLMUATA EVOL XOVAL VO TEQLYRAPOUY TH UN-YROUUIXT] CUUTERLPORE TV LAXOV UTO
OLOPORETIXG CEVAPLAL (POPTIONG Xl TPOOopEpouY auinuéves duvatdtntee ot FEM. Q¢ ex
TOUTOV, Tol TENEPACUEVA GTOLYElN BLoEXMC BEATIOVOVTAL UE GTOYO TNV TUO PEUALCTIXTY Te-
PLYEUPY| TNG CUUTEQLPORAS TOU UALXOU.

Avaueco oo To EVOLOPECOVTA QUVOUEVA GTNV ETIOTAIY TWV VALXDY ATOTEAEL 1) SLadLx0-
olo Ypadong autwy 1 onola Tpoxakeiton amd dlapopeTXoUg unyoviopols. H tpocouoiwon
TV dladixaolwy Yeadong Tallel onuavTind EOAO GTNV AVATTUEY VEMY UALXGY Yol TN Blopn-
yavior 660 xan oTn xatovénom g avtoy g Tous. H unohoylotiny| unyavixt| twv Jpadoewy
EYEL TPOGEAXVGEL UEYHAO EVOLUPEQPOY TNG ETULOTNUOVIXC XOWOTNTAS, Ao 1) TEOCGOUOIWOT
poll UE TNV OVTIXEYEVIXT] XAl ATOTEAECUOTIXY MO NUOTIXT TIEQLY QUPT) TWV PUIVOUEVWY olU-
TV, TUPUUEVEL EVaL BUOXO0AO TEOBANUA 6TO TED(O TNG UNYAVIXHS, TUEd TIC TEOOBOUE TOU
€youv onuetwdel otny avdmtuén e MIIE.

0.1.1 ITpocouoinwon tng Yeadong TV XATUACHEUGDY
0.1.1.1 YuumepLpopd Tou LAXOD

H emotiun tov vhixay éyet peretniel oe tolhomiée xhipaxeg (BA. Xy. 1) (Willam, 2002)
xou €youv dtatutwiel ToAAES Vewpleg o€ aUTEC Yl TNV TPOGOUOIWoT Tou TEoBAAUATOS
€vopdng xou 8ddoong Ty pwyuwy. H napodoo diatel) eotidlel ot cuunERLpopd TOU
UAMX00 OE UaxpOoXOTIXO ETUMEDO Yl TNV TROCOUOIWST) TV BladxactY Yoadong oTig
xataoxeveg. H ouunepipopd tou LA0) ot Yoxpooxomixd eTNEDO, TEPLYPAPETUL ATO TO
(QUVOUEVO TOU EVTOTUOUOU TNG AVIYUEVNS TORUUORPOCTS (strain localization). To pou-

Xiii
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Synua 1: Ieprypapy) UAXo0 oe TOANATAES XAUOXES.

VOUEVO aUTO eUQaVI(ETOL UE TOAAEC HOPQEC OE OLAPOEA LAXE, OTWE T.Y. OTo PETOAAN
(Cdvee Sudtunone) (BA. Lyruo 20), ota €ddyn (yeoupés ohiotnong) (BA. XLydua 28°) 7
oxOuo xa o€ Pory @oT LALXAL.

slip line

(o) 7
(®)

Eyua 2: (o) Zedvee ddtunone ota pétahho xou () yeopués ohiodnone ota eddepn.

Av xa1 0 EVTOTIONOS TWV AVNYHEVGY TURUUORPOCEWY EYEL TIC pILEC TOU OE IXEOOXOTIXO
eninedo, Tou Tpoxaheltal amd TV THEOLGIN TWV XEVHV, UXEOREWYUMY T SAAWY QOUUVOUEVWLY,
001660 (WVES BITUNONG %ot YRUUUES OMoUNoNe TopaTNEOLYTUL Xal OE UAXPOCXOTILXO
eninedo. O eviomoUdC TWV TUPAUOPPMOOEWY YopoxTNelleTon amd Tn cUYXEVTPWOT TWY
OVEAUCTIXWY OVNYHEVGY TURUUOPPOOEWY OE Uial OTEVY| Slaxeith LoV, Ve To TEPYBIALOY
VA6 amogoptileton, YeEYovog Tou mpoxahel Tig oprduntixéc actdeleg ot OLadixacia
eNAUONC TV XATACHEUGDV.

0.1.1.2 BOewplec meprypapric Tou UAXOD

ot tnv mpocouoiwor Tou guvouévou tng Ypadong oe LoxpooxoTxd ETITEDOD, To AMOOEXTA
mhatola meptypagrc ebvan: 1 Opavotounyavixy (Fracture Mechanics) xou v Mnyoavixr tou
Yuveyole Méoou (Continuum Mechanics). To 800 autd mhadoo wotdoo neprypdpouv
OLPOPETIXES xuTNYOopleC TEOBANUdTLY Voadone. Eva n dewpla tne mhaotixdtntog xou tng
unyovixric v Brafodv (Damage Mechanics) éyouv oyediaotel yior tpofAfuate 6T0U T0
TEDI0 TOV UETUTOTGEWY KOl TWV OVNYUEVLY TURULOPPOOEWY TOPAUUEVOUY GUVEYT (GUVEYT
TEOBAAUAT), 1) Ny ovxY| Twv Vpadoemy oYeddoTXE Yio Vo TEpLYpdeL TEoBAAUATY o)y U-
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CWV ACUVEYELWY (pOYUES), 6TIOL TOCO 10 TEDD TV PETATOTICEWY 6G0 Xt TO TEdo TwV
OV YUEVWY TORUUORPMOENY EiVol ACUVEYES Xt To Pixog (V) TNV eMQAVELR) TNS pOYUAS

(BAéme Byhua 3).

Uy €A

Continuous

Weak
Discontinuity

[ce]
u'#Eu e'#e” T

Strong
Discontinuity

\/

»
-

Z X

Eyhua 3: Aolevele - oyupée aouvéyelec xou o avtiotolyo Tedior peETATOTONG X avNYHEVNS TR Op-
PLoNS.

ITpoxeévou va utohoylotel Oyl wovo T0 Qoptio acToylag, GAAS xou 1) CUUTEQLPOR
HLOG XUTUOXEUAG TPV UTOU TOU popTiou, amantolvTon e0peGTOL X GToEROl UTOAOYL-
ool ahyopriuotl txavol emAbcovy Tor cOVIETA UnN-YEoUUXS TEOBAAATA TOU BLETOUY Ta
poavopeva Ypadong. 'Etot, eviog tov mpoavapeplevtwy Thaciny Teplypagphc Twy Qovo-
uEvewy Ypadong €youv avamtuyVel avoluTixég, nui-aprdudnTtixés xan apriuntixée Yewmpleg
AVIAUOTNC HEVE Lol UE TAL AVTIOTOLY Ol TAEOVEXTAUNTA X0l UELOVEXTAUATO YLl TNV TEOCOUO-
{womn TV PoUVOUEVLY AUTOV.

O xuptdtepeg avahuTineg Vewpr|Oelg amoTteholy oL o) Yooy ehacTixr| YpoucTounyo-
vixr| (linear elastic fracture mechanics - LEFM), B) demenon Soxpitrc poyurc (discrete
crack approach), y) Yedpnon xotaveunuévne pwyurc (smeared crack approach), 8) ev-
doatoryelaxt| pwyun (intra-element crack), €) evioyuuévee ouveyeic Vewproeic (ouveyée
Cosserat, un-tomxd npocoyotduate (non-local models), xAm.

O xupLotepeg apriuntixég Yewproelg anoteroly oL o) n Yewenon g oyverc aou-
véyewg (strong discrontinuity approach - SDA), ) n pédodoc twv extetapéveny me-
nepaopévey otoyelwy (extended finite element method - XFEM), v) n pédodoc tne
Yeouuic Stodoyixrc tpocéyytone (sequentially linear analysis - SLA) »r.

0.1.2 Avtixelyevo xou otdyoL tng dtplBhc

H mopoloo dwtpldh) aoyoleltal Ue Th oTOYaoTIXY| AVIALCT Xot TO BEATIOTO OYEDLUOUO
XATUOAEUGDY TOL UTOXEWVTOL OE Va0, OE €va EVOTONUEVO TAXGLO BacIoUEvo oTIg GUY-
YEOVES APLIUNTIXES TEYVIXEG TTPOCOUOIWONE TWV PAUVOUEVKY VpadoTng TOU TROYEPOUY Ta
eumAouTiopéva tenepaopéva otolyeio. H Stopdppmon autol tou mhasiou, yiveton eputy
apevog ot fdor TN HEHOBOL TWV GTOYUCTIXMY TENEQUCUEVKY OTOLYEIWY, APETEQOU EVTOG
evog alyypovou TeplfBdihovTtoc BehtioTonolnong Ue TN YeNon UETEVRETIXOY ohyopliuwy
avalhtnone (metaheuristic search algorithms).
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Ou x0plol 6Toy0L NG Tapovoag duteydric etvan:

® Vo YEQUEWOEL BlapopeTixd Tedio Epeuvag Tou oyeTilovTal UE TNV TREOGOUOIKaT] o-
VATTUENS Xa BLEABOCNE PWYUWY, TN OTOYACTIXY AVIAUGT) ol TO BEATIOTO OYEBIAOUO
o€ éva oUYYEoVo TERBAANOY OYEBIAOUOU TWV XATUCKEVWY,

* va digpeuvioel TNy emldpaon TN afefardtnTog 0T Yealon TWY XUTACKEUDY OTUY
OL WOOTNTEG TV UAXGOY TOUG UETABAAAOVTOL Y0P XL VoL TPOTELVEL Lol ATOTEAE-
opatf) oUCEUET TOU VoL ETUTEETEL TN OTOYAOTIXT AVAAUGT] SLEBOOTC TWV PWYUWY,
Tovi{ovTog TapdAAN L TNV avdyxn TS MEOW TNG TOGOTIXOTOINONS TNG OTOYAGTIXNC
QUTHC CUUTERLPORAC,

* Vo avamTUEEL XL VoL EQupUOoEL v TAaiolo oyedlaopol BeATioTonolnong oy fuaTtog,
(VO VoL BLEREVYNOEL TN OYECT HETAED TNE YEWUETEING Xou TNg BLdpxelag {erig xaTd To
OYEDLUOUO TV XATUOKEUDY UE POYHES, YPNOHOTOWWVTAS TI UTHPYOVUOES TEYVIXEG
Bektiotonoinong (Uetaeupetixol ahydprduol avalrtmone),

* Vo amoOe(EEL TN OXOTUUOTNTA XAk T YPNOWOTNTA TV TEOUVAPELIEVTHY VewpoENY
oe oLvieTa TEOBAAUNTH OYETXE UE Prounyovixés EQapuoYEC.

0.2 YToyaoTiny| avIAUCT, XUTOUGHEVWY E LALXSL Yopax TNeLlOUevo amd yohd-
EWaT

Y10 mpwTo Wépog Tng datedric, meoteiveton N 0Oleun TG UePOB0L TV CTOYUCTIXWY
TEMERUOUEVODY OTOLYEIDY ot TNG BladoyAC YeauUixne avdhuone (sequentially linear a-
nalysis), mopéyovtac ANCEC OTo UN-YEoUUUXE GTOTIXE, TEOBAAUNTO XATACHEVWDY otd ALK,
Tou Yoapoxtrnpllovtal and YuAdEwaT), TWV OTOlWY OL LOLOTNTES Efval TUY Lo XUTUVEUNUEVES
evTog NG doprnc Touc. H afefondtnta mou yapoxtneilel Tic OTNTES TOU UAXOU, TOGOTL-
xomoteitan Ue ) ypron e Yewplog TV oToYooTIXGY cuvapThoewy (Btadixaoctes/nedio)
XL 1) METUBANTOTNTA OTNY UTOXELOTN TV XATACKELWY LToAOY((eTon pe TN uévodo tng
dueone mpocouolwone Monte Carlo. Emmiéov, egetdlovtan 1 enlSpaon tne uvetoffornc
e xde TuylaC TUEUUETEOU, 1 XAUTAVOUT TNS CLVAETNOTNG TIAVOTNTUC, O CUVTEAECTHS
OLoCOUOVOTG XS XL TO UAXOS CUCYETIONS TWV oToYaoTxwy Tedlwy. H avdiuor 600
HOTACKEVWY avapopdc €0eLEe OTL Ol XOUTUAES POPTIOU-UETATOTIONG Xou 1) TAVOTNTA O-
otoylog emnpedlovial £€VTova amd To OTUTIOTIXG YAUPUXTNELOTIXG TWV CTOYACTIXWY TEBIWV.

0.2.1 H pédodog tng dradoytnic YRS oavaAUoTC

LT unyovixy Tov ooToylwy, 1 Yokdewon twy Lkxoy (material softening) eivon ou-
Y V& umedduvn yior Ty aotoh] cuumeptpopd Twv xataoxeuwy (Bazant & Cedolin, 2010).
Avth 1 aotdieio umopel vo 0dnyfoel o BEUTEPEVOUCES XATAOTACELS L[GOPEOTIOC 1 TNV
OLXAGDWOT] TOU BEOUOU LOOPEOTIHAS, OL OTOLEG ATAUTOVUY TROTYUEVES TEYVIXEC OTNV ETOU-
Ented/enavodnmuxy| Swdixaota eniluong (de Borst et al., 2012). Autd éyel we cuvénela
vor emneedeTal EVIoval 1) EVpWOTIO TNS aEIUNTIXTC BLadIXAGTAC TOU YENOLOTOLE(TOL OTNY
entAuon Tou un-yeouuxol tpolAfjuatoc. Ipoxeyévou vo Eenepactoly auTd T TEOBAR -
o, e evahhoxtixry uédodog, mou ovoudletar dtadoyny| ypouux avéluon (sequentially
linear analysis - SLA), ewofyVet anéd tov Rots (2001).

H SLA elvor war otpatnyny| Bactopévn otn tépvouca dtadacio Suoxopdiag mou dev
omoutel emovoAAPELS 1ot oy TorhoTE TNY ETAUENTIXT UN-Y QOUUIXY| OVIAUGCT] UE TETEQUOUEVAL
oTouyelol amd Lol GELRE DLABOYIXWDY YROUUIXMY OVIAICEWY XL T UN-YEUUULXY XOUTUAN
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TAONG-TOUQUUOPPEOTS TOU UAXOD amtd ULt XAUUTUAT TplovewTh g wopens. To mAcovéxtnua
QUTAC NG avTixotdotaong ebvor OTL 1 TéUvouoo Ypauuixr (tploveth) duoxaudlo ebvan
mévto Vet xou 1 avdhuon ouyxhiver ndvto. H pédodog eqopudleta yevixd oe LA
UE UN-YEUUUXT] CUUTERLPOES YOAJLMONG, xou Efval OLUTERN ETWPEATS XAUTA TNV avaALoT
TeoPAnudTey patuerc Ypadong ota omola eugaviCovton {ntAuata olyxAong eviog Tou
mhauctou egapupoyic g Yedpnong xotaveunuévng pwyuns. H SLA éyel egapupootel o
TpoAAuata avdhuone tovyomouos (DeJong et al., 2009; Rots, 2001; Rots et al., 2008,
2009; van De Graaf et al., 2009), oe doxolc and omhouévo oxupddepa (Graga-e Costa
& Alfaiate, 2006), o Soxolg and obvieta vlxd (Billington, 2009), oe xataoxevéc and
eCanpeTixd edVpowota VXS (m.y. yuot) (Invernizzi et al., 2011; van De Graaf et al.,
2009) o YEVIXE OE XATAUOEVES OO GXUROBEUOL, TTOREYOVTOS IXAVOTOUNTIXG ATOTEAECUATA
o€ mpofhfuata mou elvar 50oxoho va emALTYOLY AOYw TwV TEoavapepUEVTKDY {NTNUdTeY
obyxhone. Behtwoeig tng uedodouv SLA v Ty tepintwon g un avahoyixic goeTiong
€youv eniong npotadel and toug Elids et al. (2010); Graca-e Costa et al. (2012) xo Graga-
e Costa et al. (2013), xodg xou yia doxolg pe Srotuntixy aotoyio and toug Slobbe et
al. (2012).

Y mopovoa dwter n SLA uodetelton we o amodexty| pédodog avdhuong aoTo-
ylog eviég evog otoyaotixol mhawciou oty SlTiTwoT TV TEoBANnudTery Yealons. H
TEOTEWVOUEVY) GUEELET amoTeAel Wiar amoTEAEoUoTIXT Bladasta yior Tn Slepedvnorn Tng €-
Tldpaone TS ywerc aBefoldTNTIC TWV IBOTATWY TOU UAXOV GTNY CUUTERLPORd Vpadong
TWV XATAOKEVWY UE VLAY aTtd Y AAIEWOT).

0.2.1.1 O oAybprdupoc tne SLA

O yevixde ahyoderiuog tng SLA axoloudel v xhaoixr mopeio avdiuong tng uedddou Tomv
TENEPAUOUEVLY oTolyElwy. 'ETol, eva douxd odotnua doxpltonole(ton, Ue Tn ¥enor Tov
CUUPUTIXWY TETEPACUEVWY OTOYEIY GTA OTOLN TPOGUTTOVTOL XAl Ol EXUCTOTE LWOLOTNTES
Tou LMoL (U€tpo ehacTdtnrag Young, o Adyog Poisson xou 1 apyuxr avtoyrn). Xt
CUVEYELY, TEAYHATOTOLOUVTOL Bladoyixd Tor axdhovda Briuota, ywelc Ty avdryxn ahhayrig
TOU a0V BIXTUOU TEMEQUCUEVWY OTOLYEIWV:

* Extéhleon plog yoouuxng-eAacTiX av8AUGTG TETEQUOUEVWY GTOLYEIWY UE LOVIUDLA-
for e€WTEPIXT POPTION XO UTOAOYLONOS TV XURlwY TACEWY,

* EnoavoAnmtixdg Bedyog oe oo to onueior OhOXAHWOTNG YLor Oha To GTOLYElo TPOXEL-
uévou va Beedel to xplowo otoyelo yio To onolo o Adyog TG TdONG TOU UE TNV
TEEYOUCU EPEAXVOTIXNY avTOY 1) TOU elvol 1) UEYUAUTERY) OE OAOXATOT) TNV XUTAUGKEVY),

* TroloyloudC TOU TOAAATAACLAGTIXOU (PORTIXOU GUVTEAECTY|, TOL AVAXEL OTO Xp(CLUO
ornuelo ohoxAfipworng,

* Avoloywh) XAMUAX®OT TOU QopTiou avapopds UUPOVN UE TOV XEIoWO TOAATAO-
OLOTIXG QOPTIXG CUVTIEAECTY),

* AlZnon e otdiung BAABNC oTo xplowo onueio ohoxAfipwong Yéow e uelwong
e duoxopdlac £ xon tne e@erxucTixic avioyc fr, oOU@wVo UE TO TELOVKTO
OLéry poupor Tdome-avnypévne Topopdepenone (Baéne Evotno 0.2.1.2),

* Awpxric enavdhndn tou mponyoluevou xOxAou Brudtwny €ng dtou 1 BAABN Eye
eComhwel EMaPXMEC EVTOC TNG HATAOKEVHC.

IIo avohutixd o arydprduoc tng SLA meplypdgetar otov mivaxa mou axohoulel: Apyi-
%8, TEOYUATOTIOLETON [Lat Y PoUULXH ENOOTIX avdAuoT e évar opTio avagopds P (yeouur
2) (6mou Ky eivon 10 cuvohixd unTe®o duoxoudlag Tng xataoxeuric xou dy To dtdvupa
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OV AYVWoToV UeTatotioeny oto BAda N). Metd tov UTOAOYIOUS TV UEYIOTWY XOELOY
TEOEWY EPEAXVOUOY (03, ), HECA amd TNV YRUUUXT ENCTIXT avdAUGT), 0xoAOUIEL pior ETo-
voAnmTixy dtadacio og GAa o onueia oOAoxAApwoNGS Yia OA ToL GTOLYElN TEOXEWEVOU VL
Beedel To xplowo otouyeio yia To onolo 1 TEéyovoa f,;r OLOLPEUEVT] UE T1) MEYLOTN) xUPLAL E-
pehxuoT Tdom elvan 1) UEYIOTN OE OAOXANET) TNV XoTooXELT (Ypouués 3-7). Xt cuvéyeta
(Yeopun 8), to goptio avapopds P (xodde xou ot yetonvioels xou ot tdoelg avtiotolya)
HAUOXWVETAL AVOROYIXE XAUTE TOV XQIOWO TOAAATAACLIAGTIXG QOPTIXO GUVTEAECTH Ay
Tou avixel oto xplowo onueio ohoxhipwone. Téhoc (yeopuée 9-13), auEdveton 1 BAABN
oTo xplowo onueio ohoxifipwong Yéow g avtiotoryne ueiwong e duoxoudlac E xou
NG EPEAXUCTXAG OVTOY NS fr, CUMPOVOL UE TO TELOVWTO BIAY AU TUOTC-OVNYUEVNG To-
capoppwone (BA. Evotnra 0.2.1.2). H ev Adyw Swdixacior emovahopBdveton Sadoyixd,
uEyelc 6Tou 1 BAABN Exel efamhwiel EToEXMC EVIOS TNE XATUOXEUTC.

Ahyoprduoc Awdoynnc Fooppinric Avdhuong

1: repeat

2: KNdN:P—>0—tpT

3 for element = 1, ..., Total Elements do

4 for GaussPoint = +1, ..., T'otal G Pper Element d?
5 Trohoytoude UJ% XU EVPEDN Aery = max{ai%}
6: end for ’ ’

7: end for

8 Avodoyi ¥AExmoT TwY UETATOTIOEWY X0t TwV TaoewY (dy, on) Xt Aery
9: for element = 1, ..., Total Elements do

10: for GaussPoint = 1, ..., TotalG Pper Element do
11: Etpeon véwv fi |, Ei
12: end for
13: end for
14: Avavénmon ohixol untenou duoxaudioc Ky < Ky

15: until n BAGEY Eyel e€amhwiel emopxde 0Ty xaTooXEUn

Me 1oV Tp6T0 qUTO, 1) UN-YEUUUXT ATOXQLOT) TNG XATUAOKELY|C TEOXVTITEL CUVOEOVTOC OLa-
doywd Tor onueior Tou BpodUou tooppoTiag and xdde Brua Tng avdivong. H oyahdtnTa tng
xopumOANg P-8 e€aptdrtar and tov aprdud Ny twv ‘BovTidy ToU TEIOVKTOU TROCKUOLWU-
t0¢ (BA. Evotnta 0.2.1.2). Kotd v Soduacion tng SLA pévo éva onueio ohoxhipwong
eTTEEMETAL XAOE POPd VoL GAAGEEL TNV XATAGTAGT, TOU OO TNV EAAGTIXY GTNY XATAOTOON
YoAdpwone, ot avTileon ue TNV cUPBATIX UN-YEUUULXT) AVIAUCT) TETEQAUCUEVWY OTOLYEIWY,
OTOL 1) YoM TOU EMALENTIXOU POETIOL €YEL W CUVETELN TOMATAS oTuela OAOXARWONG
VoL BLOPEEVCOLY TAUTOYEOVOL UE ATOTEAEOHA 1) TOTxY) duoxaudla oe autd Tor onueio va
petofel amd Vetiny| oe apvnTix.

0.2.1.2 To ‘mplovwytd’ xaTaoTATING TEOCOUOlWUL

Kotd ™ dwdwacta tng SLA, n evnuépwon tng téuvoucag duoxaudioc odnyel o éva
TELWVOTYC LOPPTC BLoryedual TUCTIG-0VIYLEVIE TIORUUORPMONS ({3)\ Lo 4) xou omoutel
v xavovixonoinon tou dixtvou (mesh regularization) mpoxewévou vo amogeuy ol
ATOXAMGELS A6 TNV EVEQYELX TTOU DLy EETAL OT PWYWUY|. LT Tapoloa dlatel3r), utodeTrinxe



Extevric Ieplindn Xix

T0 YEVIXELUEVO Tpocopoinua (tpocopoinua C) (Rots et al., 2008), to onolo dev amoutel
EWOWXEC TEYVIXES Dlayelplong ¢ TEOG TNV AVTIXEWEVIXOTNT Tou UEYEVOUC TOU BtxTOOU
(mesh size objectivity), mpoxeyévou ta amoTEAéoUATA Vo EIVOL AVTIXELUEVIXG OE OYEON UE
70 dixTUo. O TEOTOC PE TOV OO0 UELDVOVTOL TEOOBELTIXG. 1) BuGHoUplal Xou 1 AVTOY T TWV
xplowwy ototyeiwv oe xdie Briua avdiuong, tapovotdletar 6To My Huc 4 6Tou 1 xauTOAN
yohdpwone (ue apvntixr xhiom) oto xutacTotixd Tpocouoiwuo Eyet avtxatactoel oand
€VOL DLUXPLTOTIOLNUEVO TIRLOVKTO BLdrypauo Ue VeTég xAloelg To omolo mapéyel T cwoTy
Odyuon evépyelag. 'Etot, ) yeouuxr) QEAXUOTIXY XoUTOAN YUAIEWONG TEOTC-AVYHEVNS
TOEUOEPMONS 0ptleTan amd TO PETEO EAXCTIXOTNTAS Young F, Ty eeAxucTixy avtoy
fi xon 0 epPadd xdtw and to mplovwTto Sidypoppe. To eufouds autd (BA. Lyruo 4) ebvo
mdvtote (oo pe Ny evepyeta Ypadong Gy, 1 onola Yewpeiton €06 S LBLOTNTA TOLU LALXOU,
oonpoluevn pe to elpog Lovng tne pwyunc h, n omola cuvdéetar e to péyedog, Tov
TPOGUVUTOAGUO XAl TOV XAVOVO ONOXAAPKOGCTC TOU TETERPAGUEVOL GToLYElOU.

Y11 meplmTWoT TS YRS YUASEWONG, 1) TEMXT| AV YUEVT TURUUOPQWaT €, dlveTal
and TNV OYEON:

Eu:2c:f
fih
OA
DY
Jef1
7 £
NG 2l
EZ > . . N fti
“Ei;

Tyfuo 4: KopnOdn tdoenc-avnypévng napopdppwons (o —e) yio tn nepinteon Tne Yeauuixic Yoahdpwong.

Téc0 10 Y€tpo chaoTotNTog Young £ 6co xat 1 epehxuotixt| avtoyt f; umopolv va
omopewoly xatd Ty Ba ypovixy| atiyun (oto Blo Brua enthuong) xotd v dradixacio
¢ SLA xatd évay nopdyovia a, £Tol OoTE:

E;
E,=—""  for i=1,2,..,N
a

omov @ xou i — 1 dnhdvouy To TEEYOoV xaL To TEoNYOoUUEVO BAua avdiuong avtioTolyo oTo
TELOVOTO dudypouua. o tnv elpeon Tou vouou amopeinong Tou PETEOU EANCTIXOTNTOG
Young F, 6mwg xan TG EPEAXUCTIXNG avToyY g fr, xotd Tov mapdyovta a oto Brua i,
OUUPVOL UE TO Ly 5, loyUeL:

fi = fthr —2pfi



XX Extevic Ieptindm

fo
Ez’+1 =4
€;
R e
Qi1 = T T T 4

e = i —
i Jii fa —2pf;

‘Etot yio ty nepintwon tne ypouuxic yohdpwone (BA. Lyfuo 4) 1 Tiun TS EQEAXVOTIXNC
avToyhc fif umopet ehxoha vo oploTEl we:

D
S ) —
ftz 611, ZEZ+D
oTov,
.
€y €u+pD

xou D elvon 1 €QUTTOUEVY] OTNY EQEAXUCTIXT| XUUTIUAT| YUALEWONG TAOTG-UVNYHEVNS To-
capéppwong. To tAflog Ny tov ‘Bovtiwy’ utoloyileton autopaTa xou eCUpTdTOL And TNV
TOPAUETEO P Tou Blvetan and Tov yeNoTn. o uxeé TWES TS TAUPUUETEOL P, AmoUTOUVTOL
TEPLEOOTERA OOVTIOL N TEOXEWEVOU Vo xahOPouy TOV *AABO YOASEWOTNS, XUTd CUVETELY
xou o€ TEPLocOTERO axplBT| anotehéoyata. H Swdixacio tepuotiCel, oe oyéon pe to av-
tloTowyo onuelo ohoxhfpwone Gauss, 6tav 6Tay 1) SLapoped YeTal) Tou aEoloUATOS TWY
VeV TELYOVWY Téve oamd TNV TEOYUATIXT] XOUTOA X0t TO GUEOLOUN TWY AEVNTIXMY
TELYOVOY XETE omd TNV TRyt xoumOAn undevileton, 6mmeg Qoiveton 0To My fuc 4.

0.2.2 H pé€dodog teVv 0TOYAOTIXWY TETEPUACUEVLY GTOLYEIWY

H pédodoc twv 6ToYaoTINGY TENEQUOUEVLY GTOLYEWY, TOU TRoEXUE WS YEVIXELTT TNG
HEVOB0L TWV TEOGOIOPIOTIXGY TEREPUOUEVWY OTOLYEIDY Yol TNV AVTIETOTICT, OTOYACTI-
XV TEOPANUATOY, €xel e@appooTel Ue emiTuyia ot TOAES xaTnyopleg TEoBAnudTwy (8o-
UL Unyavixn, pEUCTOUNYAVIXT, AXOUCTIXY, NAEXTEOUOY VITIOUOS, HETOPOEE VEpUOTNTAC).
YTig embueveg moparypdpoug entyetpeiton i chvToun Ttapousiacn Tng LeEVOdOL TWV GTOY -
OTIXOY TETEPACUEVLY GTOLYEWY Ao T1 OXOTLY TV TEOBANUATWY TNG BOUXHG Uy OVIXNS.
Apyind yevixeletal 1) TROGOLOPLOTIXT 0EY Y| TWY BUVATMY EPY®Y TOU ATOTEAEL TO VewpnTi-
%6 uToBadpo NS xhaooc UEVOBOU TV TETEQUCUEVKDY GToLYElwY, AapfdvovTag urtddn
TUYUES BLOXUUAVOELS TOV WOIOTAHTWY TOU UAX0UD Xot axohoUel adpT| TEPLYRUPT] TWV TELWY
Yepehwdwy Brudtey g uedosdou: 1) unohoylouds oToyacTol Untewou ducxoudio, 2)
BLOXEITOTOMOT TWY GTOYACTIXOY TED(WY, 3) UTOAOYIOUOS OTOXPLONG TNG XATUOXEVHC.

0.2.2.1 Ytoyaotixh apy ) TwV dUVITOY £0YWV

H »hacour Yewplo twv nencpacuévmy otolyeiny YeyeMmveTal 6T TpocdloploTixd xodo-
CLOUEVN oY TWV BLVAT®Y €pYmV Xal BactleTon 0T BlaxELToToMoT ToL GUVEYOUS UECOU
o’ évav aprdud xOuPwv xar otoyeiwv. Me tn yprion twv cuvapthoewy oyfuatog N, To
TES{0 TV UETATOTIOEWY U 0TO ECWTERIXO TOL xde GToLyElOU EXPEALETOL CUVIPTATEL TV
eTXOUPIWY peTatoTioe®y Tou d w¢ €V

uw = Nd



Extevric Ieplindn XXi

To medlo Twv YeTatomloewy EXAEYETOL £TOL WOTE VoL LxavoTolelTal To GLUPBPBACTO TwWY TapEa-
Hopphoewy ot xde atotyelo (xvnuotes ouuPBiBactétnta). Autd tou dev e€aopariletan
oTNV Topandve e&lowon etvor ot cuvirixeg tooppoTiauc. AuTtéc umopolv va xavomoltnoly
HE TNV EQUEUOYY| TNE 0PN TWV DUVITWY EQYWV:

SW = Weact o Wint =0

6mou W givan 10 €pyo twv eZnTepntdv duvduewy xoau W 10 €pyo TwV ECKTEPIXOV
dLVApEWY. O TapapopPHOOELS 6ToLg X(OUPouUg EVES oTotyElou Blvovtal antd TN oyéon:

e = Bd

omou B elval To UnTeeo TV TopayOY®Y TV CUVIRTACEWY oyfuatos. Xwpelc va Angiet
umodn N enidpacT TwWV VEPUOXEACIANGY BLAPOEWY, Ol TACELS UTOPOLY Vil EXPRAGTONV WG

e€hc:
o =CBd

omou € 10 unTe®o ToL TEPLYPAPEL TIC WLOTNTEG TOU UALXOV.

‘Otov oL BLOTNTES TOU LAXOU eUTEpLEY0LY Tuyou6TNTa (randomness), TOTE AUTES BLloxU-
HodvovTon Y wewed xou 1) DL OIAVOT) TOUG UTOREL VoL TEQLY pUPEL, OTNY YEVIXOTERT TERITTWOT),
a6 éva nD —mV otoyaotnd nedio. To xotaotatind unteno C yedgeton wg e€hg:

C=Coll + f(z)]

onou f(x,y,z) elvar éva OUOYEVEC OTOYACTIXG TEDIO UNOEVIXNG UEONC THING %o GUVGE-
nong avtoocuoyétiong Ryp. H peon twi tou pnrewou C eivar Cp. EmBdrrovtag oto
otowyeio (e) éva duvaté edio petatonioswy ul®):

4© — N©ge©

XL ELOGYOVTOC TO BLEVUOUO TV YEVIXELUEVLY emxouPinv dpdoewy &, and v epop-
HOYY| TNG YN TWYV BUVITOY €YWY TEOXUTTEL 1] OYECT:
Cf[(e)Tfemt _ / ’é(e)To_(e)dv(e)
v (e)

Metd and npdéeic xatahiyouue otny €xpoao:

d©)" pert = gle” [ / B(@)T@(G)B(E)dv(e)} d©
Ve
— d©’ [ / BBy + / B B £ (2)av© | d©)

Vv (e) v(e)
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ont’ 6o TEOXUTTEL TO GTOYUCTIXG UNTE®Oo oTRuedTNToC Tou oTotyeiou (e):

Kk(© — /B(e)@[()e)B(e)dv(e)_,_/B(e)T@[(]e)B(e)f(e)(w)dv(e)

v(e) Vv (e)

J/ J/

-~

]k(()e) Alk(e)

To ]kée) xor Ak amoterolv to oTolEEd XU TO BLUXUUAVOUEVO PEPOS TOU GTOYAOTIXOD
unTe®ouL oTBapdTnTac avticTolya, B© eivar 0 oToEPS UNTEMO TUPUUOPPHCUOTNTAS,
(D((f) ebvou 1) uéom TWA Tou xoTaoTaToU untemou xa V© eivar o dyxog Tou tenepaopévou
otoyeiou. To xadohxd unteno ctuBapdtnrag umopel va exgpactel Ye Tov (Blo TEOTO
adpotlovtag ta empépoug Tomxd untemo duoxoudlac we e€ng:

Ne
K=Y k=K +AK
e=1

omou N, 0 GUVOMXOC apLlUOC TV GTOLYELWY.
H otoyaotixs avdAuon TwV XUTAOHEVOY UE TENEQUOUEVA OTOLYEl avayETaL TEAXE GTNV
entAuoT Tou TapaxdTe TEOBAYUUTOS!

(Ko + AK)u = f**

6mou e yon w to BraviopoTa TV EEWTERIXGOV DPBoEwmY Xat ETXopPirY PETUTOTIOEMY TOU
popéa avtioTolyo. NNV TERITTWOTN TV TEOBANUATGY PEYSANG xAluaxac, 1 enthuct] Toug
elvon UTOAOYLO TS BamavnEY| xou G ex ToVTOU anoTeAel To xplowo onueio TNE EPapUOYTS
XU TNG UMOTEAEOUATIXOTNTOC TNG UEVODOU TWV CTOYACTIXWY TETEPAOUEVWY GTOLYELWY.

0.2.2.2 Awaxpitonolnor otoyaoTixwmy Tedlony

‘Oneg @atvetan 0 UTOAOYLOUOS TOU GTOYAUCTIXOU UNTEMOU CTHBUROTN TG k) grontet Lol
Tomoinon tou otoyacTxol mediov f(x,y, z). Me tov bpo Swuxpttonoinon (discretization)
EVWOOUUE TNV TEOGEY Yo (avTixatdoTtooy) evog cuveyols otoyaoTixol tediou f(x) and
€VoL TETEPAOUEVO GUYOAO Tuy iy PETUBANTGY f; Tou amotedoly éva Tuyalo dtdvucpa:

f(x) = discretization = f(x) = {f;}, 1={1,2,...,n}

O pédodol droxprtomoinone urodioupolvtor oe B0 Pacéc xatnyoplec: o) oTic petddoug
onuetoxhc dtoxprtonoinone émou ot tuyaieg petaintéc {f;} ebvar emheyuévee Tyéc Tou
Tedlou oe dedouéva onuela x;, B) oTIC Uevddoug Blaxpltonolnong TUToU «UEcou HEouLy
OToL oL Tuyaleg UETABANTES {fi} etvou otaduiouéva ohoxhnpduata Tou Tediou oto ywelo
Qe (m.y. ot0 ywpelo evoc memepacuévou atoryeiov). Ltn mopovoo Stelfr) vodetelto
1 UEV0BOg NG ONUELXAS DLOXQELTOTOMNONG Xl CUYXEXPLUEVAL 1) UEV0BOC TOU XEVTELXOU
onueiouv (midpoint method).

H pédodoc tou xevtpixol ornuelou etvor pio amd Tic euplTEpa SLadEdOPEVES eBB0UC
ONUELXC OlaxpLToToinong (der Kiureghian, 1988) xou cuvioToton OTNV TPOCEYYLON TOU
otoyaoTxol mediov oe xdle mencpoouévo ototyeio (e) amd o Tuyoio uetaBAnTr mou
optletar w¢ 1 T Tou TEdIOU 0TO «XEVTEIXOY oNueio Tou oTotyeiou. Ot cuVTETOYUEVES
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TOU XEVTEOELO0VC OIVOVTUL GUVOOTACEL TWY CUVIETAYUEVOY TV XOUBwY ; Tou oTolyeiou
j

(e) olupwva ye ) oyéon:

I o
xe:—ij

95

omou g eivon 0 apriude Twv xouBwv Tou ctotyelou. ‘Eyel anoderydel 6t n pédodog auty
Tebvel var utepBdhher T BloxOpoVoT) Tou oToyaoTiXo) Tediou péoo oe xdie otouyelo (der
Kiureghian, 1988).

0.2.2.3 TroloYloUOC anOXEIONG HATACKEVHC

H npocopoiworn Monte Carlo etvar 1 amhodotepn pédodog mou unopel vo yenowonotniel
YLoL TOV UTOAOYIOHO TNG dlaxlpovong Tng amdxpiong diag xatooxeurc. H mpocouoiwon
Monte Carlo (Gentle, 2003; Rubinstein, 2007) amotehel pio pédodo aprduntixic eniiu-
one meoPinudtenv oto Modnuotixd, tn Puo, ) Minyovixh xou Shhe ETOTAUES YEOw
NG TpaypoTonoinone melpoudtoy detypatoindlag (sampling experiments). H o&io tng
pedodou elvor PEYEAN WBWiTEPA OTIC TEQITTMOEL OTOL efvon adUVaTO 1) EEoEETXE 5UGXOAO
VoL UTIONOYLOTEL 1) atvohuTixY) AUoT evog TeofBAYjuotog. Ntny mapodoo Sltelt| 1 Teocouo-
{won Monte Carlo ypnotuonotelton yiot Tov TpOGOLOPIOUS TNE BLUXOUAVOTNE TNG ATOXQELONG
XATUACKEVWY PE TUYUES TUQUUETEOUC.

Xt wevodo auth, dnuovpyoLvTo Ue Yenon wloc yevvhtelag tuyodwy aprdumy N,
OElYHOTA TOU GTOYAOTIXOV UNTEMOU GTRUEOTNTUC Xt TO TEOBANUA ETMAVETOL TOOES PORES
60eg o 0 apLiude TV OetyudTwy, Tapdyovtag €Tol évay TAnduoud yio To Sdvuoud
TV petatonioewy. Mio teh) otatiotiny enelepyacior otov TANYUoUS auTdY TOREYEL TN
OloOoveT TNS amdxEloNe Tou eCETalOUEVOU GLUOTAUNTOC. AV elvon u; 1) UETATOTLON TOU
Boduol ehevdeplag @, TOTE OL AUEPOANTTEG EXTIUNTOLES (unbiased estimates) e UEong
TN %ot TNG BLaomoeds Tou TANYUoUOD TNG HETUTOTIONC BivoVTaL aTtd TIC YVWOTES OYECELS:

1 Nsim
stm n=1
1 Nsim
02(%') = ﬁ[ U?(”) — Nsim - Ez(“z‘)]

Me Bdon tic mponyolueves oyéoels, elvon gavepd OTL: o) 1 TOLOTNTA TNG EXTUNONG
eCaptdrton and tov aptdud N TV Oetyudtmy, xou B) 1 extiuftela TS TUTXAC amdXhL-
ong o elval avTioTEOPNS avIAoY T Te0g Th v/ Neim. Evag uixede aprdudg derypdtwy, T.y.
Nyim > 50, emitpénel pla adpt| TEOGEYYION TNG UEOTC TYNS XAl TNG BLAOTORAS TNG AmOXEL-
ong. Av o aprdude v deryudtov auindel m.y. oe Ngp, > 500, eivon duvath n extiunon
NG oLVEETNONG Xatavourc TS andxplone (xovovixy, Aoyoprduoxavovixr, Brta, xAT.)
(Schuéller, 2006).

H npocouoiwon Monte Carlo mou meptypdgnxe otny evotnta auTr amoTehel TNy amio-
Uotepn exdoyn tTng uedodou xou ovoudletar dueon mpocopolwon Monte Carlo (direct
MCS). Méyet mptv Aiya ypovia, 1 EQapuoYn Tne UeVddou ot peaAoTixd TEoBAAuoTo Xo-
VioTato oyeddy advvaTn AoYe Tou UTEPBOALXS UEYIAOU UTOAOYIOTIXOU XOGTOUS TOL 11|
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yopoxthele. H yerion ouwe 1wy mponyuévemy Teyvxdy eTiAUONG YROUUIX®Y EELOMOEDY
Tou ovamTOYUnxay TeocQaTa, 1) oAOTOONS avemTun tng teyvohoyioc twv H/T %o n
duvotoTTa eQapuoyic e pedddou oe meptBdihov Tapddinine enclepyaotag (parallel
processing), aipouv tov mepLopLond autd o éva ueydho Badud. ‘Etol, n mpooouoiwaon
Monte Carlo o cuvbuaoud e owxovouxéc Yeddodouc BLaxELTOTOINCTC TOU GTOYAGTIXOU
Tedlou, anoTeAel OYUERA TO LOYUPOTERD EQYUAELD YOl T1) OTOYAGTIXT AVAAUCT] XATUOUEUDY
ue memepacuéva ototyeio. 'Oyt uovo xdvel QxTh TNV AVTETOTION PEAAOTIXWY XAl TO-
AOTAOX®Y TROBANUATOY, 0ANS amoTtelel xou TN uédodo Tou yenotuomoteltal yio Tov EAEYYO
NG TOLOTNTAC TOV ATOTEAEOUATWY OAWY TV JAAGDY UEVOBOV.

0.2.3 Aprduntinés epopuoyég

[ tar opriunTindt Topadely Hota, 0TO TEWTO aUTo PEEOG TNS TapoVGS dBlatEBng, 1 uedodog
TV GTOY OO TIXOY TENEPAoUEVKDY oTolyelwv (SFEM) (BA. Evétnta 0.2.2) o€ cuvbuaoud pe
™V wévodo SLA, mopéyet AOoEC GTo UN-YRouUXd OTATIXG TROBAAUNTO XATACHEVWY OO
UAXG e yohdpwaon dtoav ol WdTnTee Toug petofdirovta ywetxd (Georgioudakis et al.,
2014c). To pétpo ehaotxdtnrog Young E, n eehnuotixh avtoyt fi xou 1 evépyeto Vpo-
Vone Gy tou Aol meptypdpovton omd Bidtootdta (2D-1V) opoyevh otoyaotind nedla.
H Swoocopavon tou B neprypdgeton g e€ng:

6mou Ey ebvan n péon tur tou uétpou ehactixdtntog xou f(x, ) eivon opoyEVES GTOYUOTING
medlo undevixic péong tiung. Ta Suxpitomonuéva 6ToyaoTixd TEdN YETNOULOTOLOUVTOL YLl
™ Blobpreon Tou GToyacTIX0) UNtetoy duoxautbiac k© tou xdde atoryeiou (e). Ot Buo
dAhec WroTNTEC TOU UAXOU (fy xou Gy) petaBdhhovton xoatd mapduoto teomo. To ohxd
OTOYACTIXOG UNTE®O duoxaubiog Tou popéa utoloy(leTon yenoylotowwvTag T pédodo Tou
uéoou onuelou (BAéne Evétnta 0.2.2.2), dnhady| éva onuelo ohoxhipwong oto xévipo
Bdpoug tou xdle nenepacuévou atotyetou. Aut 1 TpocEyyion Bivel axei3Y| anoteréopaTa
VLot OYETIXE opoudt BIXTUA XPUTVTUS TO UTOAOYIGTIXG XOGTOC 68 hoyixd eninedo (Stefanou,
2009).

[ Ty Teprypapy| Twv ofE€Batemv WLOTHTOY ToL VAXOU yenotuotolinxay, 16co I'xaou-
otvd, 660 xa un-I'xaouvciavd otoyactind tedla. L' Tov LTOAOYIOUO TN ATOXEOTE TNG
XOTOOXEVAC Ypnotdomot|inxe évac ueydhog oprduos N, SerypotocuvapTticenmy (sample
functions) ot omolec xat’ enéxtoom 0dnyody o TopaywYH EVOC avTioTotyou GUVOLOL omd
oToyaoTd unTe®o duoxoudiag. Axohobince enthuon tou xdle meoffuatoc Nyim (o-
P€C xan 1) TEAXT| amdxplon) UTohOYIoTNXE antd Tr oTaTioTixr enedepyaoion TV Ny, TA0OC
TPOGOUOLOCEWY.

0.2.3.1 IHoapdderypa lo: Kountxr) doxdg tecodpwy onueiony

Y10 oprduntixd autéd mapdderypo avahiinxe pior cUPUETEXY Boxog ue eyxornt| (Rots &
Invernizzi, 2004). Xto XyfAua 5 qaivetor 1 YEGUETPIO TNG, 1 POPTION X0 Ol GUVORLIXES
ouvirxec. To mdyoc Tng Soxol eivon 50 mm xou To Bddog Tng eyxonrg etvar 10 mm. Ytny
enihuor yenowdomotinxoay 4xoufixd — 4TAeupind IGOTOPUUETEIXY TETEPAUOUEVA OTOLYElN
oe ouvixeg eTinEdNg EvTaong Ue xavova ohoxAfjpworng Gauss 2x2. Ou afiéfoueg mopdue-
TeOoL TOL TEOPRAAUATOS Efvar To PETPo ehacTixdTNTag Young K, n epeAxuctixny| avtoyt| f;
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xou 1) evepyeta Vpadong Gy tou LAXOU OTou oL Yeoeg THég Toug ebvan {oeg e 38 GPa, 3
MPa xou 0.06 N/mm, avtictoryo. H mpog nopaxoholinen yetatonion anotelel n xato-
XOPLPT) CLVICTWON TN PETATOTIONG OTO oNueio dTou epapudleTon TO PopTio.

P P

150 mm - Zl_'x

IS
€
o
o
i
[
A‘ 450 mm —;ﬁ—
500 mm

i »
< y

Eyuo 5: Kopmtin Soxdg tecadpny onueiwy: yewpetpla, @opTion xou cuvifixes otiplEng.

H yopwr Sioncdpovern twv offéBainv napouéteny nepypdpetar and Swdidotota (2D-
1V) ouoyev) I'xaouctovd otoyaotixd nedla xodode xar hoyouptdoxovovixic xotavouhic
un-I'xaovolovd otoyaotind medla uetagopdc. iveton yprRon Teudv SLUQORETIXWDY TYOVY
(b=1,10,100) tnc napauéteou b (= by = by) TOU UAXOUC CLUOYETIONG, TOU AVTIGTOLYOUY
o€ aToYAoTIXG TEdlo ac¥evolc, pétplag xou Loyuehc ouoyétiong (GAeg ol Tég Tou b elvan
oc mm). Me Bdon v unddeon twv Yang & Xu (2008); Papadopoulos et al. (2009),
AofBdveton 1) {Blor Ty Tou uixoug GUCYETIONG TO0Oo Yia To uToxeluevo I'xaouctavd, 660
xou yioe o un-I'vaovctavé medio petagopdc ue tnv eioyn oxplBeta. O apriuds Twv dpwy
Nj mou yenotwonotolvtour oTNy Gelpd TNe U600V TNE PaoHATIXAS ameEXOVIoNG elvor {oog
ue 20 xon ot xupotixol aprduol amoxomng Ky, Jj = 1,2 elvon tool 27, 0.2 xou 0.027 yio b
foo pe 1, 10 xou 100, avtioTtorya.

Apyind mporypotomolinxe Wior TOUQOUETEIXY| BIEPELYNOT GUYXALONG TEOXEWEVOU VoL X0
YoploTel T0 xATIAANAO BIXTUO TEMEPUOUEVWY GTOLYElWY Tou cuVOLAleL TNV axpiBeto xau
™V urohoyloTxr anodototnTa. H xotavoun twv tdosnmy yio to dixTuo Tou yenotuo-
Touunxay goalvovton 6To Lyrua 6 yior par Tuyodar ETASYUEVT TEAYHATOTONGY) TOU Tedlou
amewxovilovtog Topdhhnhor TNV CUYXAIOY TWY ATOTEAECUATLY. §2¢ anoTéAEoUa QUTHS TNG
TORUUETEIXNG OLEEEDVNONG ETAEYUTNXE YLl TIC AVOAUCELS TO BIXTUO PECH{OG TUXVOTNTOG
Tou amoteheiton GUVOAIXE amd 1237 xdufouc xon 1156 oToryela.

H petofBhntétnro e andxptone utoroyileta yenowonowwvtag ty uédodo MCS (Bh.
Evétnro 0.2.2.3) ye péyedog detyuatog ico pe 500. H otatiotind obyxhion emttuyydveto
EVTOC AUTOU TOU aEtIUOU TV BELYUATLY Xt anewovileton 0To Xy hua 7, 6Tou 1 Uéon Tiun
YO 1) TUTIXT| OOXALOT) TOL QOpTioU oy UAS ATELXOVILOVTOL W GUVERETNOT TOU JEIIUOY TGV
Tpocouotwoewy Monte Carlo.

Ot xaumOAeg QopTIOU-UETATOTIONG TOU AVTIOTOLY 00V GE TUTILXY AmOXALON 10% vy T
E, Gy ue b =1 gaivovton 610 Lyfjua 8 yia v mepintwon twv un-I'raovctavoy nediwy.
Emunicov, ot xoumiAeg @opTiou-UeTaTONONG TOU AVTIGTOLYOUY OF TUTIXY AOXALOT) 20%
vt B, Gy pe b = 100 napouctdlovton oto Lyfua 8 xou Lyrua 10 yio 'caouvctovd xon
un-I'caovclovd otoyaoTnd media, aviioTtorya.

‘Onwe gabveton otor UyfAupota 8a-100 1 Swoxduavon tou F enneedlel tn duoxoudla
e xataoxeuric. H nepintwon tne I'naovoiavic unddeonc odnyel oe wa onpovtiny, un-
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Coarse Mesh
Nodes: 330
Elements: 289

Medium Mesh
Nodes: 1237
Elements: 1156

Fine Mesh
Nodes: 4785
Elements: 4624

-1.8e+003 -454 887
Eyua 6: Tapopetoud diepedvnon cdyxhiong: xotavopr; opdic téone (045) oto Pua avdluone wetd 1o
poptio ouyung yio wa Tuyaio mpaypatonoinon Tou tedlou oe xdde dixtuo.
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(e) ®)

Eyua 70 Etaniouxhy obyxhion yio (o) ™ wéon uuh xa (B) ™ tumxd andxion touv goptiou owyudc
(otoyaotind Gy pe 0 = 20% xou b = 100, yio un-I'xaouotovéd tedio Lognormal.

peoAo Tt amopeinon Tng duoxoudiog o OpIOUEVES TERLTTHOOELS (f)k Ly 9u). Enfong
MEYOADTEQES TUEG TOU GUVTEAECTH UETABANTOTNTOG X Yo TOU UNXOUG CUOYETIONG
TWV OTOYACTIXOY TEDIWY 00NYEl o YeyaAlTERN UETABANTOTNTA OTIC XUUTOAES popTiou-
LETATOTLONG, OTWE ovoevoTtoy SAwote (EyhAuote 9-10). Xtnv neplntwon mou oplotel
o¢ miavétnta actoylag py g doxol wg 1 miavdTnTa 6TOU TO PopTio aLyUNg VoL Uny
umeEPalveL TO POETIO cUYUAG TNG VIETEQUIVIOTIXNAS ADomg (to omolo OTUOLVEL OTL 1) XUTACKEUT
acToyel oe Eval UXEOTERO q)optio), T67T€ 1) py elvon {on e 16% xon 31% Yo TIC TEPITTMOELS
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e—e Deterministic Solution o—e Deterministic Solution
4 4t
3 3
z z
= =3
© ©
8 2r S 2f
| |
1 1
Qoo 0.05 0.10 0.15 0.20 Qoo 0.05 0.10 0.15 0.20
Displacement [mm] Displacement [mm]
(o) Xtoyaouxd E (B) Eroyaotxd Gy

Tyfua 8: Kaundhes gpoptiou-Uetatdmions yio 6ToyaoTixés napopétpous E xow Gy e 0 = 10% xou b =1
(v wn-I'xaouotavéd nedio, Lognormal).

" e—e Deterministic Solution " o—e Deterministic Solution
3 3
z z
= =
‘g el
g 2t g2t
.} |
1 1t
Qoo 0.05 0.10 0.15 0.20 Qoo 0.05 0.10 0.15 0.20
Displacement [mm] Displacement [mm]
(o) Xtoyaouxd E (B) Xroyaouxd Gy

Eyhua 9: Kounbieg goptiov-petatédmong yia otoyaotinés nopauéteoous B xoa Gy pue o = 20% »ou b = 100
(v I'xaovoiavd medio).

ToL TEPLYpdpovTon oTo Lyrua 8" xou Lyrua 103" avtiototya.

0.2.3.2 Tlopdderypa 20: Aoxipto SimAf eyxomhg

Q¢ Bevtepo mapdderypa, avolbinxe €va Boxiulo BImAAC eyxonic oe eperxuoud (Nguyen,
2008; Shi et al., 2000) o omoio gaivetor oto LyAua 11. Ov x6uPol tng xdte TAeLEdS
TOU doXioL Elvar BECUEVUEVOL WS TPOS TIC BLo BleLiVoE 6TO enimedo, xo®E xou oL
xoUfol TNe Ve TALLEAC w¢ TEog TNV opllovTio devduvor. Ou apriunuinéc avolloels
TparypatoTo Ny YenoonoldvTaS 4xoufxd — 4TheLpXd LOOTUPUUETEIXY TETEQUOUEVY
otovyeto. Ov offéfouec mapdueTpol Tou mpofifuatog ebvar To pETpo ehaoTixdTnTag Young
E, n epehrvotint| avioyn f; xan n evépyela Ypadone Gy tou A0V OTIOU OL UEGES TUIES
Toug ebvan (oeg pe 24 GPa, 2.4 MPa xou 0.059 N/mm, avtictotyo.

H yopwr| StoxOpoven twy offéfaienv napopétpny teptypdgetat and dwdidotata (2D-1V)
opoyevy) hoyoprdgoxavovixrc xatavouric un-I'xaouciavd otoyaotind nedio petagpopds. E-
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e—e Deterministic Solution o—e Deterministic Solution

4 4
z 3f = 3t
= =
© el
@®© ©
So S2

1t 1

Qoo 0.05 0.10 0.15 0.20 Qoo 0.05 0.10 0.15 0.20

Displacement [mm] Displacement [mm]
(o) Xtoyaouxd E (B) Eroyaouxd Gy

Tyfuo 10: Kopmdiee goptiov-petatdémone yio otoyaotinés mopauétpoous E xou Gy pe 0 = 20% xou
b =100 (v un-I'xaouotavd nedio, Lognormal).
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Tyfuo 11: Aoxipo Sithic eyxorfic (vewuetpio xon dixtuo: 1950 xépPol xon 1850 ctouyeia).

Ty oy teewe dtapopeTiné Twée (b= 1.2,12,120) tnec nopapéteou b (= by = by) Tou
UAXOUC CUCYETIONG, TOU OVTIOTOLYOUY OE GTOYACTIXO TEDIO aoVeEVOUS, HETELAC Xl oY VETS
ouoyétione. O apriuog Twv 6pwv IV Tou yenowonotinxay otnyv oeled Tne LeYooou TNne
QUOUOTIXAS amEmOVIONG elvan (Blog pe awTtédv Tou [opadetyuotog 1. Xta My Auorta 12, 123
paivovtal TEELC TUYOLEC TEOYUATOTOMOELS Tou Aoyoprduoxavovixol mediou Y o = 20%
xou b= 1.2, b= 120 avticTorya.

Oewpiinxe enlone N tepintwon e aviodtponne cuoyétione (by # by) yio va e€etooTel
1 EMEEOT| TNG 0N PETUBANTOTNTA andxplong Tne xataoxeung. H teheutaio utoloyileton
Yenowlorowwvtag TNy dueon uédodo Monte Carlo yia €va detypo peyedoug (oo ue 500.
H otatiotinh obyxAon emTuyydveTal UEcH OE aUTOV TOV 0pilud TV BELYUATOY Xol OTO
Lyfuor 13 n péon Ty) xon TNV TUTX amOXALloY TG QopTiou awyunc amewovileTon e
cLVaETNOT Tou aELiuol TV Tpocouolwoewy Monte Carlo.

Yo Lot 14, 15 gabvovton ol xaumiAeg QopTIOU-UETUTOTIONE TOU TPOERY OVTAL ATt
OLUPOPETIXES CTOYAOTIXEG TROCOUOLWOELS UE OTOYAOTIXEG PETOPBANTEG To E xan ) Gy
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Tyfua 13: Eratiowxd obyxhon yio (o) Ty péon Ty xou (B) v tumxd andxhomn tou goptiou owyufc
(6tav E, fi, Gy elvon mhfipwe ouoyetiopéva ye o = 10% xou b = 120, (un-I'xaouciavéd nedio, Lognormal).

%G xo LY APICELC UE TNV VIETEQUIVIOTIXT UN-YRUUUIXY| ADOT) TOU TROBAY|UoTOg (Nguyen,
2008). To amoteréopata mov eEA@inooy ye Ty unddeon TNg AVIGHTEOTNG CUCYETIONG
ATOY THEOUOLAL X0, WS EX TOUTOU GE OAEC TIC TPOCOUOLWOELS UOVETAUNKE 1) 1ooTROTIXY
ovoyéton (b= by = by).

Eminpocieta, Yewpriinxay 800 TEQITTOOES GUVBLNOUEVWY TapoAAay®Y Twv E, fi xau
Gy. X1 mpwn mEpinTwoT, o Aoyopriuoxavovind oToyaoTixd Tedla ToU EXTPOCWTOVY
TIC TEEWG TUPUUETEOUS NTOY TARMG CUGYETIOUEV, EVK OTN OELTERY Tep(mTwoT dev unp-
¥e ouoyétion peto€d toug. Ot avtloTolyeg XUUMUAES POPTIOL-UETATOTIONS TOU QaivovTol
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e—e Deterministic solution o—e Deterministic solution
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Displacement [mm] Displacement [mm]
’ ’
(o) ()

Tyfua 14: Kopnodeg goptiov-petatémions yio otoyaotny| topduetpo E ye (o) o = 10% xou (§) 0 = 20%
(un-I'xaovolavé medio, Lognormal, B = 120).

o—e Deterministic solution o—e Deterministic solution

Load [kN]
Load [kN]

0t)O‘OO 0.05 0.10 0.15 0.20 0(9.00 0.05 0.10 0.15 0.20
Displacement [mm] Displacement [mm]
(o) ()

Tyfuo 15: Kaundhes goptiov-petatdémone yi otoyaotn| napduetpo Gy pe (o) o = 10% xou (')
o0 =20% (un-I'xaovotavéd nedlo, Lognormal, f = 120).

oto MUyfuo 16 moapoucidlouy Yeydhn UeTofANTOTNTA UE amoTéEAEOUA Vo 001YoUV oF uia
peYdAn mavotnta actoylag g xataoxeurc. o b = 1.2, 10 goptio oayung amd dAeg
TIC TEOYUUTOTOAOELS TOL TEd{ou efvan UixedTEEo amtd 10 AVTIGTOLYO VIETEQUIVIOTIXG, EVE)
n miovotnTo aotoylag py etvon lon pe 87% xon 61% yia Tic TepITTWOELS 6TOU b = 12 %o
120, avtiototya (nepintomon TAAEwS GUOYETIOUEVLY BLOTATWY).

Téhoc, oto Xyrfua 17 aneixovi{ovtal oL SLUBPOUES TWV PWYUMY Yol Lol TUYola ETLAEY-
MEVY TV UTOTOMNOT) TV TEBLWY XAl YLoL OLUPORETIXEG TYIES TNG TURUUETEOU b TOL Urxoug
ouoyétone. (O dradpouéc autéc oynuatiCovton euuéows amd to oTotyelor Ue undevixy) du-
oxapdla ato téhog tng xdde avdivone SLA). H un-peodiotiny| Swadpour| mou ekfpdn ot
nepintwon 6mou b = 1.2 ogelletar ot uEYdAN UETUBANTOTNTA TOU UETEOU EAVCTIXOTNTOG
E 1 omola odnyel xat’ enEXTOON XU OE PEYSAES OLUPOPES OTIC TWES Tou F oTa duopa
oToLyela.
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Syfua 16: KoundAeg @opTiou-Uetatonione e cUVBLIOUEVNE TERINTWONS TWV TELWY TUPUUETEMV YL
o =10% (un-T'xaovoiavéd nedio, Lognormal, B = 120): («) E, f;, Gy thfpws cuoyetiopévee, () E, fi,
Gy aouoyétioTec.
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Syfuo 17: AwaBpopés pwyuhc yior Tuyoles ETLAEYUEVES TPAYUOTOTOACELS TOU TES{OU Xou yiot BlapopeTIXég
Tpée e mopauéteou b (E, fi, Gy neplntwon mAfpous cuoyétione).

0.3 BEATIOTOC OYEBLIOUOC HUTAUGHEVMY UTOXEUEVWY GE XOTWOT

Y10 0eUTEPO U€POg TNG BLUTEIPBAC, 1) UEV0B0C TWV EXTETAUEVLY TEMEQUOUEVLY GTOLYE(WY
(extended finite element method - XFEM) cuviotd éva xatdhknio mhaicto yio tnv mpo-
copoiwon tng dadwactag Ypadong o xataoxevés utoxelueveg o xomwor. Ipoteiveto
war avdAuon a&lomoTiog UE GTOYO TNV BlEpelvNon TNS OYEoNne HETAE) TWY YEWUETEIXOVY
YOUROXTNELOTIXMY TOV XATACXEVWY ot TNe Sudpxetag {whc autdv. Katd tn Sobixacto
BéhtioTou oyedtacpol Aaufdvovton uTodr, N TLYETNTA OTN Vo TNG dEYING ATENELG
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xou 1 ofBefordTNTa OTIC IOTNTEG TOU UAMXOU TOV XUTACKEUMY UE TNV ELCAYWYT| CUYXE-
XEWEVODY TIAVOTIXOY TEPLORIOUMY OTNY SLTiTWwoT Twv TEofAnudteny Behtiototolnong.
ITpoxewévou va emhey el 0 xATIANAOG UETAEVRETINGS alYOELIOC Yl TNV ETHAUCT) TV
TeoPBAnudTev Pehtiotonoinong, die&dyeton avdAuor cuancinoloc Tecodpwy ahyopliuwy
Boaociouévwy otn eCelTind| dladtxaocta (evolutionary algorithms). To nedio EQUPUOYNS
TWY TPOTEWVOUEV®Y OLATUTIOOEMY OLEPELVATOL UE YaPax TNELOTIXG apriunTixnd tapadetyuaTo.
AmodeivieTar OTL UE TIC XATIAANAES OANAYES OTN) YEWUETEIO TOV XATACHEVMY, 1) OLIPXEL
Cong Toug unopel va evioyuiel onuovTind xar axoroudel cOyxplon Twv BEATIOTWY YEWUE-
TRV HOPPGY TOU TEOXUTITOLY Yo Tor emtdupntd enineda ddpxeiog Corc. H emhoyn wg
mpog TNy V€orn TG apyic ATEAELNS XU O TEOCAVATONOUOS auThS Beédnxay eniong va
€Y 0LV OTuAVTIXY| eTdEAUOT 0TI BEATIOTEG YEWUETPIXEC LOPPES.

0.3.1 H yédodoc twv eXTETOUEVWV TEMEQUOUEVWY OTOLYEIWY

Boowr| w6éa tng pedodov XFEM anotehel 0 eumhouTionds Tou Ymeou Teoceyylong ETol
(OOTE VoL XUTUOTEL IXAVOS VoL ovamapdiy el Tic aoUVEYELES (pwYUES 1) Slempdvetec). H pédodoc
XFEM otnpileton ot xhaoixt| Yéodo TwV TETEPUOUEVLY GTOYEWY, TEOGOUOLOYOVTIC
Tuyalec acleveic xan woyvpéc acuvéyeec. Katd v dwdacta tne XFEM, opywd, mo-
edryetal €val BIXTUO TEMEQUOUEVWY GTOLYEIY X 0T cLVEYEL AauBdvovTag umddn ™
VEoT TV ACLVEYELDY, YIVETOL EUTAOUTIONOE ETASYUEVODY XOULOY TRV XAACIXWDY TENEQRA-
ouevey otolyelwy pe emmhéov Baduolc ehevideploc, xovVTd O0TIC ACUVEYELES XAl OTOL dXEd
NG PWYUNAS TEOXEWEVOUL Vo Tapéy oLy €va LPNAoTepo emtinedo axpifBetag.

0.3.1.1 Eurmioutiopéveg mpooeyyioelg

Ot gumhouTioyéveg TEOGEYYIOELC £Y0UV ATOTEAEGEL TO AVTIXEUEVO TOMADY UTOAOYIOTIXMY
HEAETOV TV U0 TeheuTalwY BexaeTiov. Ol TeptocdTepeg and auTég avamtuydnxay oTo
mhaioto tne pedddou (partition of unity - PU) (Melenk & Babuska, 1996). H Baoixr 1déa
otnv XFEM elvon 1 mpoolxn acLVEY®Y CUVARTACENDY GTIC XAAOWES TPOCEYYIOES TWY
TENEPACPEVLY oToLyelwv Bdoet tng pedddou PU. Erot, yia tov utoloyioud tng uetotomt-
ong 670 onueio T eVTHE Tou YWElou Tou TEQLAUUPBAVEL TIC AOUVEYELES, YeToLWoTOoLE T T
oxdrovdn mpocéyyion (Belytschko & Black, 1999):

m

u(x) = w4 u™ = Z Nj(@)u; + > Ni(@)(z)ay

omou wu; ebvar To ddvuoua TV etduPlny Baduny ereuieplog, ay clivon 10 cOVOAO TV
Boducy ehevdepiog mou mpootiletal 6T0 *AUCIXO TEOGOUOIWUN TEREPAUCUEVWY OTOLYEIWY
xou (x) ebvar T0 0OVoro TwY TeEXYNTGY Bordudy eheudeplac eumhoutiopol Tou optlovtat
070 G0OVOAO TOV XOUBwY TTou TEpLAUBdvovToL GTNY TEploY T ETLEEONS (Unoompting) ™mge
aoLvéyeg. O mpodTog 6pog o1 6e€Ld TAcupd Tng e€loworng amotehel TiIc xhaoixég TEO-
oeYYIoEIC TV TETEPAOUEVLY GTOLYEIWY VLo TOV TEOGOLOPIGUO TOU TEBIOU TNG UETATOTILONG,
£V 0 BEVTEPOC HPOC UMOTEAEL TIC EUTAOVUTICUEVES TIPOCEYYIOELS oL haf3dvouy urtddm Ty
OToEE T ACUVEYELDV.
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0.3.1.2 Tlpocopolwon tng pwyuhc

[o T mpocopoinon 1wy pwyuwy ot pédodo XFEM, yenoworowivtou 800 tinol ou-
vapTAoE®Y eumhoutiopou: (o) 1 ‘Bruotinry’ cuvdptnon Heaviside xou (B) ot acuuntomtixée
CUVAPTACELS dXEOU-pYUNS amtd TNV xhaowxt| Vewmplo Ypavotounyavixrc. 'Etol to npooey-
YIOTIXO TEDIO UETATOTIOEWY UTOREL VoL EXPEACTEL GE GPOUG EVOS XAAOIXOL TEBIOU UETUTO-
nloewv u*t, evéc medlou METATOT{OEWY TOU TEUVETAL A6 TN PWYHN ul, xodde xon evée
TEB{OU PETATOTUGEWY GTA dXEA TNG PWYUNC utP e e€hc:

u(m> — ustd + uH + utip
1) o pnTd:

n

mh mt mf
u(@) = 3 - Nyf@u; + 3 Nal@)H(@)ay + Y Ni()( 3 Fa)bl)

Jj=1

omou n elvor 0 apude TV (OUPLY Tou A&l TETEPUOUEVOL GTOLYEOU UE TOUC XAUOL-
%0U¢ Baduolg ehevdeplag w; xou TG CUVUPTACELS OYAUATOS N;(x), mh eivar o oprdude
TOV XOUBLY TWY GTOWEWY oL TEPEYOLY TNV pYUH (ahhd byl To dxpo TNng), a) eivan
TO OLdvuoHa TV TEOGVETLY emxduflny Boduwmy eevieploc Yoo TNV Tpocouolworn Tng
owyunc (Ol twyv dxpwv tne) ue ™ ouvdptnon Heaviside H(x), m, eivor o aprdude tov
XOUPWY oyeTIXOl UE TO GxP0 TNG pwYUNS 0To TEdID EMPEOTC TNG, bﬁﬂ elvon TO OLdVUoUN TWV
TpocVeTWY EmxOUPLny Badumy ereudeplag yio TV TEOGOUOIWOT TWV dXEWV TNG POYUNS
xou Fi(x) elvar oL cUVOPTACELC EUTAOUTIOUOD dXEOL-pWYUNC.

Yuvdptnon Heaviside To otouyelor ta omola TéuvovTon ohdxAnea amd T ewYUr, xou dlo-
ywetlovtal oe 800 TuApoTa, eumioutiCovton ue TNV ‘Prwater)’ cuvdptnon Heaviside.
H ouvdptnon Heaviside elvon acuveyfic xotd urixog tne pwyune xou otodepr) exo-
Tepwiey TN peyuric. O dlaywplondsg Tou otolyelou and Tr pwyUr| Teoxakel Eva dhua
oTo medlo TNg YeTatomong xou 1 ouvdptnor Heaviside diver v emduunts ouunepr-
(popd TPoXEWEVOL Va TpoceYYioel To mpaypatixd medio. Maldnuatnd, n cuvdpetnon
optleTon w¢ e€he:
- +1, for(x—x*)-n>0
| -1, for(z—x*)-n<0
omou x ebvan To onueio evolapépoviog, ¥ elvon 10 TANCIECTEPO oNueio 6TO TUAUA
I' tne poyurc xaw 1 ebvan to wovadiado xdeto ddvuoua oto x*. Me dhha Aoyia,
n ouvdptnon Heaviside xadopilel edv to onueio x* Bploxeton mdvew A xdtw and to
TUiUa TG pwyPRAc. Autéd unopel vo xaoploTel ETiong amd TOV UTOAOYLOUO TNG €-
Ay 1o TG TeooaoUEVNS amooTaoTg signed distance amd T yewueTpla TG pwYURS.
H ouvdptnon da €yer Yetinr Tir| €dv 10 €0LTEPIXO YIVOUEVO TwV BUO BLIYUCUATOVY
€yel VeTinr| I xou apYNTIXY oE Blapope Ty TepinTtwaor. Av dev opiletal Lovadixo
x&eto ddvuoua toTE 1 ouvdpTnon Vo €yet Vetixr) Tuh av (x — x*) avAxouy otov
xBOVO TV xadétwv (Bh. Lyfuo 18).
YuvdpTnom dxpou pewyurc UTnV TEp(nTwor Onou To cTolyelo TEPEYEL TO dxpo PWYUTNC,
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Yynuo 18: Trohloyiopds tne cuvdptnone Heaviside yio Tic mepintddoels g Aelog xan YWVIOXAS pOYUNAC.

TOTE EVaL UEPOG TOL GToLYElOL TEUVETAL OO TN pwYWY|. {2¢ €x TOUTOL, GE TETOLEG TEQL-
TTWoELS, 1 ouvdptnon Heaviside dev umopet va yenowonomiel yio Tov eunioutiopod
Tou oTotyelou autoV. And TNV Ao Vewplo Tng YoavoTounyavixic 1 oaxe3hc
AOGT TOL TEBIOL TNE YETATOTIONG YUPw amd TO dxpo pwyunc diveton amd Tig eEhC
OYEOEL:

K 0 0 K 0 0
Uy = —2; A /%cas;(n -1+ 232’n2§) + Z_/ZI’ / %sz’né(ﬁ +1+ 260825)

K 0 0 K 0 0
U, = —2;1 /%casi(n +1-— 200525) — 2—;, / %COS§</€ —-1- 252’n2§)

onou Ky, Ky elvon oL GUVTEAEGTEG EVTUTIXNC XUTACTUONG (stress intensity factors -
SIEs) v tic nepintdoec Vpavone tomou I xan IT avtiotowya, (1, 0) eivor évor ToAixd
CUOTNUO CUVTETAYHEVWY PE 0PYT) OTNV Gxpn TG pwYUAS xou k 1 otadepd Kolso-
v. Ta mopomdve medla YETATOTIONG TEPLEYOVTUL EVTOS TOU TEDIOU TV axdAoviwy
TEGOUPWY GUVIPTACEWY, oL ottoleg oynuatiCouv TN Bdon Tou acUUTTWTIXOY TEdioV
YOpw ané o dxpo pwyuhc (Fleming, 1997):

(R OH, = {ﬁsmg); Vi cos(3): VFsin(3) sin(6): v cos(3) sm<e>}

Extéc and toug xhacixoie Baduoie ehevidepliog, ol Topamdve GUVIPTACELS TEOX-
Aoy avgnon xotd Téooeplc emmAéov Baduolc eevieploc o xdde xateduvon yia
%&de xOuBo xaL YENoLOTOUVTAL Yo TOV EUTAOUTIONS TOU TEBloL TWV PETUTOTIOE-
®V x0VTd 070 Gxpo pwyuhc. H mpdtn cuvdptnon (BA. Xyrua 19a) elvon acuveynic
XOTE UAXOG TNG POYUAS X0 AVTLITROCKTEVEL TNV ACUVEYELNL XOVTH GTO dXPO TNE POY-
UAC, eV ot utdhotmeg Teelg ouvopThoele (BA. Eyuoata 198-196") npootidevton yua
ueyohUtepn axpifelo ota amoTeAéoUoTa Yior OYETIXG apoud dixTua. O bpog Niopt's
CUVOETNOELS EUTAOUTIONO) TEOGBIBEL T HoVAdXOTNTA 010 Taoxd Tedlo. Emmiéoy,
Ol GUVUPTACELS EUTAOUTIONOU elvon acLVEYELC Xatd prxog Tng axtivag ¢ = L.
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(v) V7 sin(%) sin(6) () v/ cos(8) sin(9)

Eyfua 19: Buvapthoelc EUTAOUTIOUNOU AXEOU-pWYUTNC.

0.3.1.3 KuBepvwoeg e€iomoeig

OewpOVUE €V OWUA GE XATACTUOY) LOOPEOTINC UE TIC CUVOPLAXES CUVUTXES OIS GTO
Yyua 20. H woyver popen tng eiowong tooppomiog yedgpeton wg e€hg:

Vo+f'=0 o100

traction free
crack

Syfua 20: ‘Eva oouo o8 xatdoTaoT looppoTiag.



XXXVi Extevic Ieptindm

UE TIC axdrouieg cuvoplaxeg cuVInxEC:

o-n=f' otwl: eEOTEPIXOS EAXUCTHG
u =, oto I'y: mpoxadopiouévr yetatonion
o-n=0, ot ': pwyurn ehedeprn eAxuotov

onou I'y, 'y, xou I, elvor tor ohvopar ToL apopoly TOUG EAXUCTES, TIG METATOTICELS ot TN
pwyur), avtiototya, o elvor o Tavuothc T dore xon P, f! ebvon tar Sraviopata Tou (Bou
Bdpooug xat TV EEHTEPXMY EAXUOTOY avTioTolyd.

'Etot, n yetofohxr} Slatinwor Tou TEoBAAUNTOC GUVORLAXMY THLMY (boundary value
problem - BVP) hopuBdver tny eZhc popgin:

Wint — Wemt

=

/a-éedQ:/fb~(5udQ+/ ft- dudl
Q Q Iy

0.3.1.4 Awxpity| pop@r| tne e&lowong wooppotiog

Katd tn Saxpitonoinon tne tedeutaiog e€lonong xdvovtag Yehon TwV TEOCEYYIGTIXOVY
CLVAPTACEWY TOL TapouctdoTxay oty Evotnta 0.3.1.2, tpoxntel To axdhoudo dluxpttd
CUOTNUA YROUUXWY EELOWOEWY lGOPEOTHOC:

Ku'=f

omou K etvar T0 oAwxd untewo duoxaudiog, ul glvon T0 OLdvuoUaL TV ETXOUPIWY Borducv
eheudepiog (xhaotxol xou epmhoutiopévot) xou f eivar o Sidvuopa Tic eEmTERIXAS POETIONG.
To ohxd untewo %ot Tar Stovhouata UTOAOYILoVToL UE TN TEOCU1XN TN CUVEIGPORAS TOU
x&de ototyetou oe autd. To unre®o duoxaudlac K Tou ototyeiou xou To Bldvucuo TNS
elotepnic poptione f¢ opllovtar we e€ng:

b

_ b

b b bb

Kt K K

bl pb2 pb3 £baT
ff:{fzu fia -fz fz -fz fz }

xou u’ etvon to OLAUVUOUN TWV ETXOUPLOY UETUTOTIOEWV:

’U,h = {u a b1 bg b3 b4}T
ue

K = /Q (B)'CB:dQ {r,s} = {u,a,b}
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XAl

fr= [ Nftdl' + / N, fbdQ
Qe

I

fe= | NHf'dl + / N, H £bdQ
Ft Qe

fer= | NE,fldU + | NF,f’dQ (a=1,2,3,4)
Ty Qe

omou B elval T0 unTemo Tpalop@molldTNToS, ToU TEQLAUPBAVEL TIC TUEAYOYOUS TWY
CUVOPTHOEWY OYUATOC:

(N, 0
B=1|0 N
| Niy Nig
[(NiH(9)) 0
B = 0 (NiH@)),y
|(NiH(¢))y (N:H ()

B! - B BP BP BY|

(N;F,) & 0
B} = 0 (N Fy) (v =1,2,3,4)
(NiFa),y (NiFa),:r:

To untena ToEAlopPeodTNTIC Yia Toug Tedcietous Paduols ekevidepioc unopolv va
Yeopolv xou ¢ EAS:

(N;[H(¢) — H($:)]) 0

B} = 0 (Ni[H (¢) = H(i)]).y
|(Ni[H(¢) = H(¢)]).y (NilH () = H(¢3)])
-(Ni[Fa — Foil) 0

By = 0 (NilFo — Fuil) (=1,2,3,4)
_(Ni[Fa_Fai]),y (Ni[Fa_Fai]),z

xou eTTEOCUETA To SIAVUCUOTO EEWTERIXNEC POPTIONG UETATRETOVTAL WS 0X0A0UTWE:
fE=| Ni[H(¢) — H(¢:)|f'dU + | Ni[H(¢) — H(¢:)]f*d
I': Qe

foo = [ Ni[E, — Fy]ftdr +/ N|Fy — FlfPdQ (o =1,2,3,4)
Qe

Iy
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0.3.1.5 "EvopZn xou 5188001 pwyung

H ooepiBeta xou 1 adlomiotia tng avdhuong evog gopéa untd Ypadon eloptdton xotd x0pto
AOYO amd ToV axpUdY| TEOCBLOPOUS XAl Tr) GUVEYELX TNG Oladpoung TNe pwYng. §2¢ ex
TOUTOV, TO XEITHEL0 EVapENg xaL BLddoong TN pwyUhc Tailel onuavtixd poro. Mepxd and
TOL EUPEWC Y PTOULOTIOLOUPEVAL XELTHPLoL BLAB0OTG peYU®Y efvar Tor e€ng:
* eAdyIoTNG TUXVOTNTAS AVIYUEVNG TUPUUORPWOTNC (minimum strain energy density)
(Sih, 1974),
* uéytotou puluol aneheviépwone evépyetag (maximum energy release rate) (Nui-
smer, 1975),
* uéyloTng mepLpepEtoxnc Tdone (maximum hoop stress) (Erdogan & Sih, 1963),
* xadohixoc ahybpriuoc evtomopol (global tracking algorithm) (Oliver & Huespe,
2004).
Yy napovoa dwteldr) uodetRinxe To xpLTrhplo TG YEYIOTNG Teplpepetaxic tdong. To
xptthiplo autd Pacileton oty alOAOYNOT TV GUVTEAECTWY EVTIUTIXAC XatdoTtaong K xou
K. Lopgwva pe autd: (o) 1 évopdn tne pwyunc CUVTEAEITOL 6TaY 1) HEYIOTY TEPLPEPELOXT)
o Eenepdoet pla xplown Tun, (B) n peywr dtadidetou oe xateduvon b, xatd tnv onoio
1 TEQLPEPELUXT) TAOT| Ogp Elvol PEYLOTT.

H yovio 0., urtohoyileton and toug cuvtereotéc K xou K yOpw amd 10 dxpo pwy-
ung av urotedel 6TL oL empdveleg TN pwYprg elvon ehedliepeg ehxuotav. H nepipepetony
Tdon oty xatevuvor BlddooNg TS PeYUNAS amoTeAEl xUpla TdoT, xaL €Tol 1) xaTebuv-
o1 BLBO0EWS TNE PWYUAC TEoodlopileton VETovTag TNV BlaTunTixy| Téom (on ue To undey,
QPNCTR

1 01 1
Or9 = 5—cos (5 7sind + §KH(3COSQ — 1> =0

H tehevtala oyéon odnyel 6tov utohoyioud tTne xployng ywviag d1ddoong O, TS pwYUNS
OTO TOTUXO GUCTNUN CUVTETAYUEVWY TNG:

0. = 2at 1<KI:I: K?—|—8>
. = 2atan— — —L
4\ Kqp Kir

AZiCer va onueiwdel 6T clupwva pe autd 10 XEITARLO 1) YEYIoTN Ywvia diddoong eivou
fon ue 70.5° yio TV mepintwon tng Yeavong tomou II. Mia mo anodotxt| €xgpacn tng
xploywng yoviag dlddoong yia Toug aptduntixole LToAoYIOoUoUE Eyel TpoTadel amd Toug
Liang et al., 2003 xou diveton and tnv oyéon:

Y197
2_K1

14 /1 + 8(54)?

0.3.1.6 Avtoyr ot Hpadon

0., = 2atan

‘Onwe xou ot xhaowxr Yewpla TN avToy | TV UAIXGY, OTIOU 1) UTHE)Y0Uca TIoT) cUYXEive-
TOL UE TNV EMTEENOUEVT TAOT Tou UA0U, oTr YpauoTtounyavixy 1 xutdotact actodolg
aotoyloug optletar 6Ty 0 CUVTEAESTAC eVTaTIXTC Xatdotaong K unepBel wo xplown Ti-
un K, n onolo ovoudleton avtoyn oe Ypavon (fracture toughness) xou avtinpoownede
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TNV IXOVOTNTO EVOG UAXO0D VoL AVTEYEL €V DEOOUEVO ETTEDO TAONG GTO dXQPO LG POY-
UAC XOU VO OVTIOTEXETOL OF EPEAXUCHO XTd TN TEOOdEUTINY| enéxtact autrc. Me dhha
AOYLL 0 GUVTERECTAC K CUUTEQLPERETOL WC L0l OPLUXT) TUT) TWY CUVTEAEGTOV EVIUTIXNS
xatdotoong yia xdide oo Yoadone.

0.3.1.7 Awddoon pwyuhc und x6Twon

H évvolo 1wV GUVTEAECTMY EVTATIXYC XATAOTACTS YENOWEVEL ETIONG OTOV UTOAOYIOUO TGV
YAROXTNELOTIXWY EVOS Souxo) Yéhoug mou umdxevtal Ypodon und xomwon. H avdmtuén
NG PWYUNAS AOY® XOTWONE EXTIUATOL 0O ToV Voo Tou Paris, (Paris et al., 1961), o onoiog
meotddnxe apyxd yia Ypavoelg Tomou I cuoyetiCovtog Tov pulud avolyuaTog pwyunc UTo
popTiO XOTWOTNG UE TOUG CUVTEAECTEG evIaTXhC xatdoTaong. Lo uxtold tinou Ypadon,
o Tporornonuévog vouog Tou Paris exgpdletan yonoylomoudvtag 1o evepyd €000C TGV
OLVTEAECTOVY evTaTXAC %atdoTaonNe AKeg = Kiae — Kpin. 'Etol, yia éva 8edopévo
gopTtio xOTwong xon Yo dvorypa pwyuhc (oo ue Aa oe AN xOxhoug QopTIONG, CUUPELVY
uE To vouo Tou Paris woylel ot

Aa da m

AN T IN T C(AKe)

omou C' xou m elvor eunelpixéc otadepéc Tou Lo, H otaldepd m xupaiveton cuvidng
HETOEY 3 - 4 Yot Toug SouxoUs YdhuBeg xon Tor xpduarta ahouviou. H teheutaio e€lowon
OVTLTPOOWTEVEL Lol YeoUiXr oyéon petall tne nocdtntac log(AKeg) xou tne Tootntog
log(%) Ol OTIOIEC YPNOWOTOOUVTOL Yiol Vo TERLY 0d)OLY TN GUUTERLPOEE. BLEBOCTG PeYUNS
und xo6mwon oty neploy) II (BA. Xy huo 21).

A : :
1 1
1 1
1 1
I 1
1 1
= 1 1 R
zZ 1 1 R
° 1 1 Sad
% 1 1 .
S Region | : Region I ! Region 11l
o (threshold) (Paris law) 1 (fracture)
215 1 1
© : |
£ 1 1
: : :
o 1
¥ : |
E . 1 1
° L. : :
~ 1 1
1 1
1 1
: | Ke
1 1 1 >

stress intensity factor range: log(AK)
Yyfuor 21: Aoyaprduixdg vopog duddoong pwydnc xou evepyn neployn Tou vouou Paris.
Mot Tov UTOAOYIGUO TOU EVERYOU GUVTEAEGTY| EVTUTIXNG XATAOTUONG Ko, £YOLY TPOTO-

Vel drdpopa xpLthpta oTr SLledvi| BiBAoypapio. 3tn nopoloo epyacia kwoTdc0, uloVeTHinxe
T0 Tpocouolwua Tou PUiLoL anekeviEpwong evEpyelag Tou 0dNYel 0TV axdAouldn Exgppa-
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o1 TOU EVERYOU CUVTEAECTH:

AKog = \/AK? + AKY

uéow tne onolog untohoyileton o avtiotoryog aprdude xOxhwy xéTwone we e&rc (Anderson,
2004):

Aa
AN = —————
C(AKg)™

0.3.2 BEATIOTOC OYEDLAOUOC KATACKEVDY PE POYUES

Y1 mopoloo dlatelf3ny TpotelvovTon 6o BIATUTOGELS TEOPANUAT®Y cUleLing Tng Yedodou
XFEM o7o mhaiolo evog mepBdALovTog BEATIOTOU GYEBLICUOU TWY XATACKEUWY UE PUY-
wéc: wo vietepuvio | xan Wi tdavotixy) (Georgioudakis et al., 2014a, 2014b). Xoy-
POV UE TN VIETEQUIVIOTIXTY OLaTOTIWOT), GTOY0G Vol 1) EAAYLOTOTOMNGY) TOU UTOUTOUUEVOU
OY%0U LAXO0U TNG XATUOXEVHAC UTO TOV TEQLOPLOHO WG EAAytoTng Otdpxetag (whg mou
expdleton and TNy Bértiotn yewuetplo. H didpxeta {whc unoroyileton y€ow tewv xOxAwy
XOTWOTG, OTWS Teprypdgetar otny Evétnta 0.3.1.7.

0.3.2.1 Ntetepuviotixny| dlatinwon

To vietepumviotind npdBinua oyediaopot (DET) opileton we e€he:

ehaytotonoinon  V(s)
und: N(8) > Npin

low up N
570 <s; <s;7, 1=12...,n

omou V' elvon o dyxog Tou douxol YEROUS, s; elval oL HETUPBANTEC OYEDIUOUOL OYETINES
UE TN YEWUETpio TOU PéNOUC PE dve xon X3t dpta st xan siT, avtioTowya xou N etvou 7

odpxeta Lwng oe ®OUXAOUC XOTWONG UE XATw 600 TNV T Niin.

0.3.2.2 ITvavotixr| datdnwon
Kot enéxtaon to mdavotixd npdfinua oyedioouol (PROB) opiletar we eZhc:

ehoylotonoinon:  V(s)

und: N(s,x) > Npn
slov <5 <SP i=1,2,...,n

zj~ Nz, 02) j=1,2,...,nr

T

OToU 8 o X €lvor T BLAVOOUATA TWV PETUBANTOV GYEBLAGUOD Xot TV TUY WY METOBAN-
TV, avtloTolya, xou N eiva 1 UECT) TWH TV XOXAWY XOTWOTG.

H mdavoting nocétnra x; tng teieutalag e€lowong unoloylleton ye ) Bordeia tng
Teyvixrc detypatorndiog (latin hybercube sampling - LHS) (Bh. Hopdptnua A). H te-
yvix) LHS eioyn anéd tov McKay (2000) oe po mpoondieta vor petwidel to omoutolpevo
UTOAOYIGTIXG %00TOC TV xadupd Tuyoiwy uedodoroylny detypotorndloc. H deryuarto-
AnmTir) pédodog dnuiovpyel va LETABANTO apriud OErYUATLY OUOLOUORP XUTAVEUNUEVO
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og 0OhOXANEO 10 Qdoua evdlagpépovtog. TEva delypo unepxifou dnuovpyeltan ue T dlo-
fpeon autol Tou @douatog g xde wog ex Twv nr aBEBuwy ueTaBAntoy oe M un-
emxohunToueva TpuaTa fong optaxfic mavotntag. ‘Etot, to olvoho Tou yweou, mou
amoteheiton and M mapauétpous, daywpeiletan o M™ xehid xan axolovdel emhoyr Wiog
Tuyadog povadxc TWAC omd xdde didoTtnua, mapdyovtae M Tiée delypoatog ylor xdie
HETOPBANTY| €L0GB0L.

0.3.2 ErnlAvon tou mpofifuatog Pehtiotonolnong

H enfiuon tov mpoPhnudtev Behtiotonoinong mou dwtunddnxay otnv Evétnta 0.3.2,
yiveTon pe TN ¥eRom PETAEVRETIXGY ahyopliuwy avalhtnone xadolxol BérTioTou, Puot-
ouévec otny e&ehctiny| dradcacio. Ilpoxeévou va emheydel 0 xaTdAANAOC HETUEVPETINOG
OLe i avdhuon evoncdnoiog tecodpmy eZehtindy akyopldunmy (evolution strategies,
covariance matrix adaptation, elitist covariance matrix adaptation, differential evolu-
tion) oe nepBdihov cuyxpitixric ofloAéyNoNe Pe TOARATAS Tomuxd PélTiota. And Ty
avdhuon auty mpoéxude ot o akydprduoc tne differential evolution (DE) elye tnv xo-
ANOTERT) GUUTERLPOQA.

H DE arnotehel o otoyaoctxt) uédodo Poacioyévn otov maAnduoud yia tnv emiivon
TeoPANUdTLY xadolxol BEATIOTOU GE cuVEYEl YOpoug Tou ety N and Toug Storn &
Price (1995). H DE poipdletar moAd yopoxtneotind ond tnv xhaowxr| uédodo BektioTo-
Tolong Ty yevetxdy akyopiduwy, cpapudéloviag ota ypwpotoonuata (chromosomes)
TOU YOVEX €Val TEAEGTT) DLaPopLxC UETIAAUENC TROXEWEVOU VoL ONULOVEYHOEL TOV UTOYOVO
(offspring). Ané v ewooywyn tne we ofuepa, n DE anotekel ovau@ofitnTo évay amod
TOUG TILO Lo LEOUS GTOY Ao TX00S ol yopiluoug BEATIOTOTOMONE TEAYMATIXGDY TUPUUETEWY
%o EYEL TEOCEAXUGEL TNV TEOCOY T TOMAGY EQEUVNTOV GE GAO TOV XOGUO UE ATOTENEOUM
v €youy avamtuy el apxetéc mapahhayég Tou Paoctxol akyoplduou, ue BeATioUEVn anddo-
on. O xhaowy| pory tou akyopiduou e DE (Storn & Price, 1995; 1997) goiveton oto
Lo 22.

0.3.3 Aprduntixés epopuoyég

Hpoxeévou v e€eTacTO0V 0L BUVATOTNTEG TNG TEOTEWOUEVNS UeVodohoYiaG TOU TEEL-
Yedpnxe oty Evétnra 0.3.2 avahbinxe utd xomwon éva douxd péhog and ydhuPo (Sto-
larska et al., 2001). ¥to Eyruo 23 gaivovtar 1 yewuetpio,n ¢oeTion, xou ol UeTUBANTES
oyedlaopol Tou doutxol péroug. O gopéag dlaxpitomotinxe ue 4mhevpd — 4xouixd
LCOTOEOUETEIXE. TETEQUOUEVDL GToLYElo oTadepol Tdyoug (6o e 5 mm xat avokdinxe Lo
ouvinxeg enimedng Eviaong yio L0OTEOTO LAXG. XTr Topoloa dteldr| Jewprinxay 500
TEQITTWOELC GUVORLOXAC OTHRENG: 0T TeKT, Tou ovoudleta ‘dxounto péhoc’ (fillet ri-
gid) Seopedinxav 6lot ot xépfol TN X8t TAEVEES Tou UEAOUC, EVE o1 SelTEEY, TOU
ovoudletan ‘elxopnto péhoc’ (fillet flexible), Seouetinnay ot Buo axpaiot xouBol Tne xdTe
TAELEAC. LTV eVOTNTA oUTH THEOLCLELOVTOL UOVO TA ATOTEAECHATA VLol TNV TERITTWON
TOU GXOUTTOU HEAOUG.

Kot yio Ti¢ 800 nepintooeig emhbinxay vietepuviotind ot miovotixd mpolArjuota
Behtiotomoinong oyfuatos. H aviixeiueving cuvdptnon mou ehayiotonotfinxe, avtiotol-
YOUGE GTOV GYXO TOU UAXOU, Xou To 600 GUVORA TGV TEQLOPLOUMY, VIETEPUIVIOTIXG Ko
mdovotixd emBAUINXay el TV xOXAOY xOTWoNS Tou Yéhous. Emmiéov, Aoyw Twv xoto-
OXEVACTIXWY TEPLOPLOUMY OL UETOPBANTEG CYEDLACHOV AVTIUETWTIOTIHAY (G DLUXELTES XATH
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ApxikoTtroinon

Apxikotroinon NP mAf8oug n-dididoTtarta
dlaviouaTta Pe Ta TTpokabopiopéva dvw Kal KaTw
6pia yia Tn yevia G = 0.

J
:

MeTaAAagn

KdaBe péAog Tou TTAnBuopoU ugioTatal HETAAAAEN
TIPOKEIPEVOU Va TTapayBei To diIdvuoua-d6Tng.

AlacTavpwon

To d1Gvuopa-86TnG yia kKaBe didivuoua-oTéxog

NO avTaAAGOOEl Ta OTOIXEIO TOU PE TO AVTIOTOIXO

BIGvVUONA-0TOXOG TTPOKEINEVOU VO SNUIOUPYNOE!
10 JIAVUOHA-OOKIUAG.

EmiAoyn / Avacuvduaouog

MNa k&Be didvuoua-oToX0G £TMAEYETAI TO iDIO A TO
Tpéo@aTta TTapaxfev diavuoua-doKIung avaloya
ME TN TIMA TNG AVTIKEIUEVIKAG OUVAPTNONG KAl TO
eMIAeypEVO BIGvuopa PETAdIOETAI OTNV ETTOPEVN
yeved.

.

G=G+1

loxvel G = Gmax
KATT0I10 GAAO KPITHPIO NAl——» STOP
TEPUATIOUOU;

Tyua 22: Avdypappa pofic Tou xhaoxol ohyoptduou dragopifc e&éhéne (DE).

ToV {010 TPOTO OIS X0t o1 BlaxELTr SLTiTWoT TEOBANUdTWY BehTicTononoN G Ye XTP0-
mywée EEénEne (Lagaros et al., 2004). Ot yetofBhntéc oyedaonod mou avTioTolyoly
0TI OWIOTYOELS TOL Yehoug eEAjpinoay and tov Ilivoxa 1. To goptio oyediouol P Yty
ue 20 KN (BA. Eyfua 23), xoun eQopubdoTXe WS €Val CUYXEVTPOUEVO EPEAXUOTIXNG (QOpTIO
07O YEGO TNG AV TAEVRAS .

Fevixd, otic mboavotinég avarloelg yiveton dtdxplon wetald tng ofeBatdtnTog mou o-
gelleTal 0TN) DLAXVPAVOT) TOU AMOTEAECUATOS GE EVaL ETUVUAUUPUVOUEVO TElpaor Xl TNG
ofefondTnrag mou ogeltheton oty dyvolo. H teheutala avapépeton wg «TuyondTNTOLY (ran-
domness), xowne Yvooth we ‘akeatopix offeBadtnta’ (aleatoric uncertainty) n onolo
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v

375mm

<& »
< »

Eymua 23: Tewyetpio xou @deTion petalhixol péhoug xou HeTaBANTES oyedlacuol Tou TpofAfuatog BeA-
TIo TOTOLNoNG.

MetofBAnti

OYEDLIGHOV lup  liow Pripa
b1 100.0  50.0 1.0
b 100.0  50.0 1.0
r3 30.0 10.0 1.0

Iivocorg 1t Aver xan %8t ptar v UeTaBANTOY oyediaouol xou to avticTtowyo B tous (o mm).

oe unopel va pewwdel. Qotdo0, oL vietepuvioTinég oo xon oL mavotxég Yewprioelg Bo-
oiCovtan oe BLAPOPES TOPABOYES TWV TUPUUETEWY TEOGOUOIWONE CUUPMVIL UE TO UTHEY OV
eNIMESO YVWOONG OYETIXG UE T CUUTEQLPOEE TV BOUIXMY GUCTNUATWY UTO OEDOPEVES GUV-
Ofxec. H affefoudtnra mou cuvdéetan Ye Tic SUVIAXES UTEC AVUPERETOL WS KETLOTNMLXT
offeBoudtnTay (epistemic uncertainty).

Ye auth) T Swten e€etdlovtan Brdpopeg TNYES ABEBAOTNTUC: WS PO TNV APYIXOTO-
tnom e pwyuic (w¢ tpog ) Véon évapine), (cheatopixn afeBoudtnTa), n onola ennpedlet
TO oY AU TNS Lop@T BLEB0ONE TNG POYUAC XOL (C TPOS TNV TEOGOUOIKoT (EmoTnuixy ofde-
Boaéw]w) 1 omota emnpedlel TN pépovoa txavotnTa Tou uérouc. H duoxaudio tou uéhoug
CUVOEETAL SUECH PE TO UETPO ehaoTIXOTNTOG F, Tou douxol ydAuPa, eve o apriude twy
©x0xhwv xomwong N, emnpedleton and Tig W1oTNTeG Tou VAL C xou m. H ad&non tou
unxoug peyung, o Aoyog Poisson xon 1 aviextixdtnta K, o padorn AauPdvovton {oeg e
5.0 mm, 0.3 xou 100 MPa/y/m avtictouyo, xar aviipetwnilovion VIETEPUVIOTIXE.

{2c ex To0T0U, Yl TO Souxd UEroC yenotuonotflnxoy TEVTE Tuyaieg UETABANTES: N
TETAYUEVY Yo TOL AXEOL TNG deyXAC pwYUNC xou 1 avtioToryn ywvio 0, (B)\ Lyhuo 23)
T0 PETPO ehacTixdTNTUC £ xou ot mapopetpol C) m tou UAXoU. OL LBLOTNTES TOU LALXOU
Yl To Souixd ydhufBa vAoToUnxay K¢ aveldeTnTeC TUYAES UETABANTEC TwY oTolwy Ta
yopoxtnetotixd emAéytnxay olugpova e toug Ellingwood et al. (1980); Ellingwood &
Galambos, (1982) ot divovton otov Ilivaxa 2.

H apriuntes yehétn mou axoroulel amoteieiton and dVo pépn: 0To TEOTO UEEOC Ole-
&y Wi Topae T Olepelvnon meoxewévou vo Bpeldel o xatdhhnhog apriudg Tev

TPOGOUOLWOERY TOU ATOLTOUYTOL YO TNV UTOAOYLOTIXY ATOOOTIXOTNTA X0l EUPWOTIH GTNY
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Tuyaio yetoAn Iz o COV  tirog xotavoung
yo (og mm) (150 — b1)/(2 + by) - 5% HOVOVLXH
0 (in degrees) 0.0 0.50 - AAVOVLXN
E (in GPa) 207.0 35.19 17% AAVOVLXN
C 2.45e-11 4.16e-12  17% XOVOVIXT
m 2.37 0.40 17% XOVOVIXH

Mivoxoc 2: Tuyodee petoBANTéC xou xatavouy| Toug (LEom Tyh L, TUTLXA amdxhon o xou TOTOC XATUVOUNC).

eCoy WYY TOV OTATICTIXOY TOCOTATWY YL TNV ETUOEON TNG TUYMOTNTS ETL TV XXMV
xOTwoNg Tou péhoug. Eve oTo 8eltepo pépog diepeuvdton 1) amdd00T) TOU UETUAALXOU
uéhoug LTO xOTWoT Péoa o éva mavoTtixd Thaiclo BeAtioTonolnong oyfuaToc.

0.3.3.1 Topouetpucr diepelvnon

Y1a mAodotar TNG TOROUETEIXAC DLECEUVNONG TO AXOUUTTO PEROC ECETACTNXE Yol TEEIC TU-
yadouc oyedaopolec mou avtiototyoly ota dvw (Design 1) xou xdtw (Design 3) dpta
TOV UETOPBANTOV oyedlacpol xadog xon yia évay evdidueco (Design 2). Yxondc tne die-
eelvnomne anotehel 1 eVPEST TOU UXEOTEEOL BUVITOU dELIUOU TOOCOUOLWOEWY YO EVOY
o&LOTIOTO UTOAOYIOUS TWV CTATICTIXWY TOCOTATWY Tou oyetilovial e Tov apliud Twyv
xOxXhov xomwone. ‘Etot vy tic Swpopetinod mhhdouc tpocopoinoeic Monte Carlo (MC)
mou delnydnoav Bdoer tng Tey v LHS (@)\ém Hopdptnua A) umohoylotnxay n péon
TWT XOU 1) TUTLXY] ATOXAOT) TV aRLIUOY TV XUXAWY XOTWOTS Ol OTOlEG Paivovial OTOV
Iivaxo 3.

Yyedooude | Ivjdog MCS  Méon tiwry  Awdpecoc  Tum. andxiion
Design 1 100 5382911.9 6895308.5 3176784.9
Design 1 200  6848983.6 7024024.0 11271233.5
Design 1 500  6568327.3  7026526.0 13717577.0
Design 1 1000 6533674.8 7026013.0 19043699.3
Design 2 100 90222.3 91794.2 27363.2
Design 2 200 94371.9 86020.0 28170.8
Design 2 500 96950.6 93982.8 109963.6
Design 2 1000 95214.8 94768.0 60920.3
Design 3 100 5260.5 4858.5 1141.3
Design 3 200 5371.9 4992.9 1308.9
Design 3 500 5369.6 5005.9 1278.3
Design 3 1000 5328.8 5360.0 994.2

IMivaxog 3: Ltatiotuxég yeyédn yio Toug xOXAOUC AOTWONE NS TUROHUETENS DLEPEDVIONE TWV TELOVY
OYEDLACUWY.

H enldoon vy tov dlapopetind apudud mpocouoiwoewy MC tou xdie oyediaouol o-
TeoVileTaL OTo IOTOYRAUMATA Tou Lyfuatog 24. Yta mhaiola Tng SlEpelvynong oL TEELS
oyedloopol anotuwvtar Yéow mhfilouc evéc cuvohxol mhitouc tpocopouwwoewy (100
+ 200 + 500 + 1000). Etot, enelepydotnxay 5400 avarboeie XFEM npoxewévou va
OnuroupY Ul Ui avTITEOCWTELTIXY BACT amdXELONG Vil TIC EVOLAPEPOUTES TUPUUETEOUC.
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Histogram for Design No.1 Histogram for Design No.2 . Histogram for Design No.3

== MCS =100 - =3 MCS =100
EEE MCS =200 0.1 BN MCS =200
EEE MCS =500 E MCS =500
EE MCS = 1000 0.14 W VCS = 1000

=1 MCS =100
EEE NCS =200
EEE NCS =500
W NCS = 1000

Y —
12 50000 100000 150000 200000 250000 3000 4000 5000 6000 7000 8000 9000 10000
N, N

Syfuo 24: Iotoypdupota TwV TELWY OYEDLIOUMY.

H duidoon twv affeBaotiteov npaypatototfinxe uéow tne pedoddou tpocouoinong MC
Bdoel Tne teyvinric LHS 7 onola evowpatadinxe oo mhaicto tne avdiuong e v uévodo
XFEM onwe meprypdgetar oty Evotnta 0.3.1. Xougova pe ) teyvixry LHS €vog 6edo-
MEVOG GYEBLACHOG OVOADETAL ETUVOANTTIXG, Yot xde Tpocouoinen MC yenowonotwvtog
OLUPOPETIXES TWES TWV UBERUMY TUPUUETEWY, TTOU TROEEYOVTAL OO TIG AVTIOTOLYEC XOTo-
VORES TV TavOTATWY Toug OTwe meofBiénetal otov Iivoxa 2. A&ilel va onpeiwiel 6Tt to
uéyedog Tou BIXTUOU TEMEPAUOUEVWY GTOLYEWY OTN TEpLoy | BLdbooNC TNG PWYUNS, DlaTr-
efiinxe otadepd oe xdie eppwreupévn (nested) avéivon XFEM nou npayuatonodnxe
xou 6Tig 800 xatnyoplec (mbavotnr| avéiuon xon Bektiotonoino).

TNV opdda TV I0TOYRUUUATWY Tou Ly fuatog 24 anewovileton 1) miovoTins XoTovour)
T0U oELIUOY TWV *OXAWY %xOTwoNg IV, Yo SlapopeTind TANYIOC TEOGOUOLOOENY VLo TOUG
TeelC oyedlaopols. H ouyvotnta eugdvione tou aptiuol tov xbxkewy xémwone oplleto
S 0 AOYoC Tou 0ptluo) TWV TPOCOUOUCEWY, TOU AVTIGTOLYOLY GTIC OPLUXES THIES EVOC
OUYXEXPUEVOU EUPOUC TWMY TV XOXAWY XOTwoNG, Teog 10 aUVORXS aptdud (Ni) tov
mpocopolwoewy MC. O cuvolixde apriudc twv npocouolwoewy MC elvar {cog e 100,
200, 500 7| 1000, avdhoyo ye T0 TARUOC TWV TROCOUOLWOEWY TIou Yenoylomotinxay xdie
popd.

YuyxnplvovTag To LoTOYEGUUATH TOU Ly Huatog 24, unopel Vo Topatnefoel Xavelg 6Tl To
TAGTOC TV GPLOY EUTLGTOCUVNG TOU AVTLOTOL0UY 6Tov eVOLdUEso oyediooud (Design 2)
elvon TEPLOPLOUEVD GE GUYXELOT UE TOUS SAROUG BUO GYEBLIGUOUE, EVE YO TOV CYEDLUOUO
TOU OVTIGTOLYEL GTOL VWTEPX OpLal TwV UETOPANTGOVY oyediaopol (Design 1) undpyouv 0o
OLaEXPUIEVES CIOVES CUYXEVTPWONE OTIC TWES TV oLy VoTHTwY. Eminhéoy, ouyxpivovtog
N Uéom TWr EvavTt TNE SLdUEGOL ToU oEtdol TV XUXAWY XOTWONG, 1) TYY| TN OLoécou
Yewpelton To a&lomo Ty, dedouévou OTL dev emnpedleTon and Tic axpaieg TYES Tou apriuol
TV (XMWY XOTWONG oL UTOAOYILoVTaL. LUYXEXPWEVA, 0TO TANCLO €VOC TEOPBARUO-
T0¢ BedTioTonolnong ol tétoleg axpaieg Tuég Vo pmopodoay va epgaviCovial cuyva 6T
otadwacto avalAtnong Tou BEATIoTOU, YEYOVOS TO ontoto Vo 0d1yoloe oe axpaioug GyEdLo-
ouolg. Ao TN TapaUETEWXY UTH Olepebvnon Tpoéxule Tehxme 6Tt oL 200 TEOGOUOIOGELS
MC amoteholv évay amodextéd ouuPBaoud UETOLD UTOAOYLIOTIXTG ATOBOTIXOTNTAS XoL EU-
ewoTtiag. O Blog apriudg tpocouolmoewy VewpRinxe ot yio Ty enthucr tng mavoTixrg
OLTUTWOTS TOL TEOPAANATOC BEATIOTOTOINOTNG OYNUAUTOS TOU TEPLYPAPETIL GTO OEUTERO
HEQPOC AUTAC TNG EVOTNTOC.

Yo Byfuortar 25 - 27 anewovileton 1 eidpaot Twv aBELouwmy TUpUUETEWY OTIC DLUBPOUES
OLABOOTG TOV PWYUMY, AuBAVOVTS Tol VEPN TV “TUTILXGY BLABROUMOY’ TV PWYUMY Yo TIC
200 npocouoiwoeic MC. Mu Sadpoun poypnc oplleton we “Tumixh’ av To oy T €lva
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6polo e 1o avtiotoryo vietepuviotid (Stolarska et al., 2001). Ewdwd, yio to oyedaopd
Design 1, oto Yyfuo 25 epgavilovion uévo ot Tumxéc Slabpoués apol mopatneiun oy
TOMAES UN-TUTIHES OLOBPOPES PWYUMOY AOYR TV YEWUETPIXMY YApaxTNEloTix®y tou. To
yeyovoe autd odnyel 6’ éva mpéoleto Aoyo emAoyic TNG OLEUECOU EvavTl TG UEONS
TWAG, WS XploWn oTATIOTXY TOCOTNTA OTIC TWAVOTIXES DLUTUTOELS Tou TEOBANUATOg
ToL 0xohoLYOLY TN TUEOVGH BLUTELSY).

H noapopetoins dicpebvnon €0eiée 6Tl oL Slabpopés pwYU®Y Tou AauBdvovton and Tnv
avaivor pe ) pédodo XFEM ennpedlovtat amd Tic Tuyade TapdueToous Tou eAfgincay
unodn oTn Sldactio TN avdAuong, xou €V cuvEyEL eEeTAleTal 1) oNUCio EVOOUATHONG
TOUC OTY) OLadLXacio GYEBLUGHUOU.

f%gﬁl“’i‘é’ﬁi‘i’ i

e

Syhuo 25: Négn Slabpopdv poyuny Yo to oyedlaoud Design 1.

Syfua 26: Négn Sladpopdv poyuny Yo to oyedlaoud Design 2.

Syfua 27: Négn Slabpopdv pwyuoy Yo to oyedlaoud Design 3.
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0.3.3.2 Awdwaocia Beltiotonoinong

Metd v napapetexy diepebvnor, emAbinxay técoepa TpofArjuota BektioTonoinong ue
TO PETUEVRPETIXG ol optiuo Bedtiotonoinong tne Swpoptxic e€éhine (DE) (BA. Evotnra
0.3.2) O ouvtopoypagpiec K«DET xar K«PROB, avtiotowyolv atouc Bértiotou oye-
Soopole mou AouBdvovton and tny vietepuviotin| (DET) o mdavotixsy (PROB) Suo-
TOTWOT) TOU TEOPAAUATOS, OTOU O UXEOTEPOG ETUTEENTOS APLIUOS TWV XUXAWY XOTWONG
elvor {oog Ue * ythiddeg. Xto Lyrua 28 napouctdletar 1) dadixacta BektioTomoinong mou
Baoiletoan oty evowpdtwon tne uedédov XFEM otn vietepuvioting xan mdovotixr dio-
TOnWoT Tou TeoflAruatoc. Evidc tne wdle enavdhndne e Sodixactag avalAtnong tou
Béltiotou ayedoouol, undpyel évac eugpuheupévoc Bepdyoc (nested loop) avdhuone pe
™ wévodo XFEM nou mpaypatonoteiton yioo tov xde unodrgio BérTioto oyedaous. E-
ToL, OleddyeTon pLo TARENG AVAAUGT) BLEBOOTG PWYUWY uéyet va xavortomndel To xpitrpto
aotoylog, onhadh Keq < K., unohoyilovtoag tny avtictotyn didpxeio {whig Y€ow Tou aptd-
Lol Twv xAwv xomwong (Bh. Evétnta 0.3.1.7), nptv anotuniel o utodrgloc Bértiotog
OYEBLUCUOC.

Optimization Process

Given design Choose Update Best
b1, b2, r3, t4 next design design

l

XFEM Analysis
! NO YES

Initial Crack

X, Y, theta Is the current

l design optimum?
Add AN to total N for the

corresponding crack segment 2ENER el

Compute SIFs Design Assesment
(KI, KlI, Keq) (contraints handling)
Calculate crack T
growth direction (Bc¢) Sl G
and add new crack YES Is Keq < Kc? NO——> 9
) parameters (N, ...)
segment using 6c and
Aa

XFEM Analysis

Eyua 28: Awadixacio Bedtiotonoinone oynfpatoc XFEM yio v vietepuviotiny xou v mdovotixy
dlatinwo) Tou TEofifuatoq.

O nopdeTpol mou yenowonotinxay otov alyopriuo tne DE éyouv w¢ e€rc: péyedog
mAntuopol NP = 30, mdoavotnta CR = 0.90 xou ouvtereothc petdhiaing F = 0.60. '
oLYXELITXOUS AOYOUC, 1 uEY0B0C Tou LOVETATNKE Yo TNV BLoyelplon TwV TEPLOPLOUMY Kol
TO XQLTHAPLO TEPUATIONOU Elvar 1) (Blal OE OAEC TIC TEPLTTWOELS TTOL ovaALUTXay. Edixdtepa
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oTN Loy Elplon TWV TEQLOPIOHUGY, YENOWOTONAUNXE 1) AAY) AAAG ATOTEAECUOTIXT TOANO-
TN YeoUixr) Tunuatixr ouvdpetnon nowre (multiple linear segment penalty function)
(Lagaros & Papadrakakis, 2012). X0ugovo pe tnv Yemdenon auty, av dev Undpyel Topa-
Bloom, dev eMBAAAETAL XL TOVY| GTNY OVTIXEWEVIXT) GLVAETNOT), o€ avTiletn tepinTwon,
€dv 0ToLCONTOTE A6 TOUG TEPLOPIOUOUE TapaPBlacTel, epapuoleTal TOWY ETL TNG AVTLXEL-
MEVIXTC OLVEETNONG, OYETXT UE TO UEYIoTO PBardud mapofilaong twy tepopoumy. H duoodt-
xooto Bertiotonoinong teppatiCeton dtov 1 BEATIOTN TYY| TNG AVTIXEWEVIXTIC OLVEETNONG
TOEUEVEL AUETABANTY oTig TeheuTaleg 30 yevedc.

0.3.3.3 Arnoteréopata BehtioTonoinong

Q¢ apriunTe eqopuoyT| 0To BelTERO PEPOC TNG TaPoVoUS BIATEBHC, ECETAGTNAE TO dxo-
TTO UETUANXO PEAOC OTWG TEptYpdpnxe oty eloaywyr| e Evétnrog 0.3.3. o tnv e-
oimtwon auth Yewpehdnxay 1 VieTepuvoTiny xou 1 TdovoTxr| dlatinnor 6nws optlovto
ot axdhowdeg e€lowoelc: O eNdytotog aptduog Twv XOXAWY XOTOONG Niyin AU (c0g
ue 100, 200 xon 500 YLMAOES xaL (G AVTIXEEVT GLUVEETNOT ehayloToroinong o 6yxog V'
TOU AMOLTOUMEVOU UALXOU.

ehaytotonoinon:  V(by, by, 73)
und: N (b1, ba,73) > Npin
50.0 < by <100.0,
50.0 < by < 100.0,
10.0 < rz3 < 30.0

ehayrotonoinon:  V(by, by, r3)
und: N(by, b, 73,70,0, E,C,m) > Nypin
50.0 < b; <100.0,
50.0 < by < 100.0,
10.0 < r3 < 30.0,
Yo ~ N((150 = b1)/(2 + by), COV = 5%)
0 ~ N(0,0.50)
E ~InN(207.0,35.19)
C ~InN(2.45" 1 4.16712)
m ~ InN(2.37,0.40)

‘Onwe gabveton oto My fuarta 29, 30 o adyéprduog tng DE xatdgepe vo cuyxAivel otov
BEATIOTO OYEDOUS Yol TNV VIETEQUIVIOTIXY Xt TavoTXr SlatuTewon avtioTouyo. Luy-
xplvovTog TIg LoTopleg oUYXAIONG OTA OYNUAUTO UT, ToUEATNEELTAL OTL VLol TO VIETEQULVL-
oTXO TEOBAN U amonte{Ton xEOTEROS apLiUdS YeEVE®Y Yo TNy elpeoT Tng PENoTne Ao
TIOL OQEINETAL EVOEYOUEVIIC OTO TEPLOPIGUEVO YWEO oVAlATNONG TWV EPIXTMOY CYEDIAOUDY
oe oyéon pe autév TN mavotixig dlatiwong. Ot BéATioTol oyedlaouol mou Tpoéxuday
oe xdle mepintworn nopouvodlovtoan otov Ilivaxa 4 poali ye tov avtlotoryo Oyxo amal-
ToUuEVOLU LAxoV. Eriong, ota Lyruata 31, 33 ancixovilovtoun o BEATIOTA Oy AoTa TOU
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TEOEXLPAY GTN TEQIMTWOT TNG VIETEPUIVIGTTIXNG DUTUTOTN.

180 T T
‘ ‘ ‘ ‘ — DET100K
ol e e - ] — DET200K||
— DET500K
I
E . . . . . .
2 1200} e — e e s e :
=
roTe'o| USSR USSR OSSOSO SIS SRS SESSS SR

80

60 i i ; ; ; ;
0 20 40 60 80 100 120 140
Generations

Yo 29: ‘Axounto uéhog: AVTLXEWEVIXY CUVEETNOY) CUVOPTHOEL TWV YEVEQDY YLOL TN VIETEPUIVLOTIXY
nepintwon (DET).

e—e PROB100K
,,,,,,,, .| =—= PROB200K |
: e—e PROBS500K

0 5 10 15 20 25 30 35 40 45
Generations

Yo 30: ‘Axounto yéhog: AVTIXELEVIXY CUVEQETNON CUVAPTACEL TWV YEVEGDV Ylot TNV midovotiny me-
pintwon (PROB).

Yuyxplvovtog toug teelc oyedtaopols (BA. Hivoxoc 4) e vietepuvioTixAc Slortdne-
ong meoxVTTEL OTL 0 GYX0C Tou LAXOU otn mepintwor DET500K auvgdvetoan xotd 33%
xou 28% évovtt twv meptntwoewy DET100K xoaw DET200K avtictolya, eved yio Ty me-
pintwon DET200K auv&dveton poe xatd 3.5% oe obyxpion ue DET100K. Emniéov, to
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Upper Bound
= Lower Bound

Optimum Design
————— Crack path

Eyua 31: ‘Axaunto yéhog: Béktioto oyfua yio ) vietepuviotixy Swotdnwon DET100.

Upper Bound
Lower Bound
Optimum Design
————— Crack path

Upper Bound
Lower Bound
Optimum Design
------ Crack path

<

Syua 33: "Axaunto yéhog: Béhtioto oyrua yio T vietepuviotixy Swatbnwor DETS00.

100 120 140 160 180 200 220 240 260 280 100 120 140 160 180 200 220 240 260 2 100 120 140 160 180 200 220 240 260 280

Eyhua 34: ‘Axaunto péhoc: Négn Sladpopmv pwyuey yio tic tepintwoeic DET100, DET200 xow DET500
avtioTolya.

amoteréouato Tou eEAInoay yio TNy TeEpinTemon Tng TavoTXAG BLATUTWOTS PUVEREYVOUY
6tL amontelton PEYOAUTEPOS 6YXx0og UAxoL yior T mepintwon PROB500K xotd 68% o
43% oe olyxpion ue tic teptntwoeic PROB100K xou PROB200K avtiototya, eveéd yio tng
nepintwon PROB200K amouteiton uohig 17.5% avénomn tou byxou. Téhog, ouyxpivovtag
ToUg PBENTIoTOUS OYEdLoU0US TG vigppvioTixg dlatuwong DET100K, DET200K xou
DET500K, pe toug avtiototyoug Béhtiotoug oyedouolc PROB100K, PROB200K xou
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PROB500K tn¢ miavotixrc Swotinwong mpoxdntel 6Tt amadteltan adnon Tou oyxou Tou
UAX00 xortd au&dvetan xotd 26%, 43% xou 60% avticTtolya.

Yyedaopdc ‘ b1 by T3 14 ‘ Ndet) N. Nzmed  COV (%) ‘
DET100K 50.0 75.0 27.0 79690 | 136024 99055 106573 30.43
DET200K 50.0 84.0 28.0 82461 | 201728 261604 198703 36.84
DET500K 73.0 100.0 21.0 105793 | 553038 506188 505190 33.02
PROB100K 66.0 100.0 27.0 100390 | 118124 107584 100894 45.14
PROB200K | 88.0 100.0 19.0 118065 | 83143 353434 200288 23.55
PROB500K | 100.0 93.0 18.0 169157 | 498856 269721 554890 47.19

IMivaxoc 4: ‘Axounto yéhog: Béhtiotoc oyedloouds yio xdde Slathmwor xou oL avtloTolyeg oTATIoTIXES
rapdpetpor (MCS = 200).

Hpoxewévou va aliohoyniel 1 dSlotdnworn tou TeolAruato PeitioTonoinong oyfuo-
T0¢ hopfdvovtog unodn Tic afefondtnTeg, mporyuatomotflnxay emTAéoY TIUAVOTIXES O-
VOAUGELS YLt Toug EEL BEATIOTOUC oyedlaouols Tou eAfpinoay oe xdle mepintworn. xou
UTOAOYIGTNXOY Ol OTATIOTIXEC TOCOTNTEG OYETIXEC UE TOV OPIIUO TWV XOXAWY XOTWOTNG
(B)\. Mivoxac 4). ‘Onwg TEOXUTTEL AN TOV TVoXa QUTOV, UTHEYOLY TEQITTWOEL, OTOU
7 VIETEPUIVIOTIXY| OLATUTIOT) UTEREXTYIE TOV aptdud TV XOXAWOY XOTWOTG G GUYXELON
UE TNV T e Sauéoou otav Aapfdveton unodn 1 offeBadtnta. I'iveton cagéc Aondy
OTL 1) UEOM TN TV xOXAWY XOTWoNg 0ev amoTelel Wiol a€LOTOTY CTATIOTIX TOCOTNTA,
oedopévou 6Tt emnpedleton o€ PUEYAAO Bordud omd TN CUUTEQLPORY TWYV POYUMY.
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Introduction

In the past decades numerical methods have gained wide popularity for the analysis
of physical processes. One of the most flexible numerical method is certainly the Fi-
nite Element Method (FEM) (Hughes, 2000; Zienkiewicz et al., 2014). By means of
the FEM approximate numerical solutions for problems involving complex geometry,
boundaries, loading and material behavior can be computed. Hence, it may be pri-
marily applied to problems for which analytical solutions do not exist. FEM has been
applied successfully in many areas of engineering sciences to study, model and predict
the behavior of structures. The area ranges from aeronautical to aerospace, mechani-
cal and civil engineering, automobile industry, bio-mechanics, material sciences etc.
In the field of structural mechanics the FEM allows to predict the deformation and
stress states, ultimate loads etc. of structures both in civil and mechanical engineering
problems.

The development of advanced finite element methods is accompanied by extensive
research in the field of material modeling: The corresponding mathematical models
capable to describe the nonlinear behavior of materials under different loading sce-
narios offers still increasing capabilities to the FEM. Hence, finite element methods
are continuously improved with respect to a more realistic description of material
behavior.

1.1 Motivation

Among the most interesting phenomena in material science is the failure processes
caused by different mechanisms. Consequently, computational failure mechanics has
attracted large interest over the past decades. Nowadays, the modeling of failure pro-
cesses in structures along with an objective and efficient mathematical description,
remains as a challenging problem in Mechanics, in spite of the advances made in
the development of the FEM. It plays an important role in the development of new
materials for industry as well as in the understanding of their durability and resis-
tance. Some typical examples that have stimulated this challenge are presented in the
remaining of this section.



2 Chapter 1. Introduction

Ship Failure In the beginning of the 20th century, interest increased in the behav-
ior of steel (the most used material of that time) after fatigue and fracture
mechanisms were detected in various types of structures including in ships. As
examples one can mention: the Olympic (1911), the Titanic (1912) and several
ships called Liberty, as a special class cargo ships, which were built very rapidly
and in large numbers during World War II, but suffered from catastrophic cracks

(Fig. 1.1).

Figure 1.1: An oil tanker that fractured in a brittle manner by crack propagation around its girth (Callister
and Rethwisch, 2012).

Dam Collapse Most concrete dams develop cracks, giving a heterogeneous character

to the material which can affect its integrity. Depending on the stress states,
microcracks can develop into a macrocrack formation, which can result in inef-
ficient operation or even in a complete collapse.
The Malpasset dam was built on the Reyran River located on the French Riviera
in the southern portion of France. In 1959, the dam was breached and the entire
wall collapsed into pieces. Waves of over 40 meters started flowing across the
nearby areas causing heavy fatalities and structural damage (Fig. 1.2).

Figure 1.2: Malpasset Dam before and after failure (1959).
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Oil/Gas pipeline rupture Thousands of kilometers of gas and oil transmission pipelines
are currently in operation around the world. A rupture of a pipeline can release
diesel fuel, gas, etc., which can Kkill or injure people or, sometimes, lead to an
ecological disaster. In 2000, the Marathon Ashland Pipe Line LLC (Marathon
Ashland), a 24-inch-diameter pipeline that runs 265 miles between Owensboro
and Catlettsburg, Kentucky, ruptured near Winchester, Kentucky. The ruptured
pipeline released about 489000 galons of crude oil onto a golf course and into
Twomile Creek®.

Figure 1.3: Ruptured pipe. The arrow indicates rupture site.

Landslides The downward and outward movement of slope-forming materials in-
cluding rock, soil, artificial fill, or a combination of these. As the land slowly
moves, it causes tension cracks in the earth and in the bedrock. As this tension
increases and significant changes in moisture occur, from things like heavy rain-
fall or the fast melting of snow, the land begins to move more and more. Fig. 1.4
shows a graphic illustration of a landslide, with the commonly landforms and
their different characteristic parts, such as toe, radial cracks (fissures), transverse
cracks (fissures), and rupture, or slip, surface?.

Crown cracks

Radial
cracks

Surface of rupture

Main body
Toe of surface of rupture

Surface of seperation

Figure 1.4: Commonly landforms and their characteristic parts of a landslide.

!Source: National Transportation Safety Board (Marathon Ashland Pipe Line Accident Report)
2Source: The Encyclopedia of Earth: http://www.eoearth.org
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Fracture in bio-engineering A typical problem in the field of bio-engineering is the
disease called osteoporosis, i.e. a condition involving decreased bone mass which
strongly increases the risk of bone fracture (as age progresses). Hip fractures,
which occur most frequently among older people, can be caused by minor falls.
To prevent such fractures it is necessary to evaluate with a high degree of ac-
curacy the strength of the bone and the propensity to fracture must be reliably
estimated. Fig. 1.5 shows the two common types of hip fracture. When the
topmost part (head) of the thighbone (femur) is badly damaged, it may be
replaced with an artificial part (prosthesis), made of metal. This procedure is
called partial hip replacement® (see Fig. 1.6).

e
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Femoral Neck Repair Intertrachanteric Repair

Fracture Fracture

Figure 1.5: The two common types of hip fractures: Femoral neck and Intertrochanteric and their
repairs.

T Prosthesis

Femur

Figure 1.6: Partial hip replacement.

For the above reasons and many others that are not mentioned in this chapter,
material behavior, especially material fracture problems have been of great interest
to researchers. In the last decades there has been an increasing amount of interest in
the study of the experimental and theoretical behavior of the response of materials
under extreme load conditions.

Consequently, computational failure mechanics has attracted large interest over the
past years. A multitude of approaches to the mathematical description of fracture and
failure has been presented in the literature. Most of them, however, are characterized
by certain restrictions with respect either to objectivity or to computational efficiency.
Thus, their applicability to large scale structural analyses is most often questionable.

3Source: The Merck Manuals, http://www.merckmanuals.com.
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1.2 Modeling failure of structures

1.2.1 Multiscale material description

Material Science has been studied on different scales (see Fig. 1.7) (Willam, 2002)
and several theories have been formulated at these different scales to simulate the
problem of crack initiation/propagation. This thesis will concentrate on the material
behavior at a macroscopic point of view (material failure mechanics), in simulating
the fracture process.

10°m + Structural Mechanics
10°m Macro Mechanics
$) % 9 Meso Mechanics
!
10%m .
®
o |® Micro Mechanics
-9 N/
10%m ¢ /° Nano Mechanics

Figure 1.7: Multiscale material description.

1.2.2 Material behavior at macroscopic scale

In 1911 von Kdrmdn demonstrated the mechanical behavior of rocks caused by dif-
ferent confining pressures. He showed that rocks, when compressed under high hy-
drostatic pressure, undergo a transition of plastic deformation characterized by the
appearance of crossed net shear bands at approximately 45°. This phenomenon be-
came fundamental in geophysical, rock engineering and rock mechanical knowledge.
Later, the same effect was observed in other materials like soil, sand, ceramics, com-
posites, ice, etc. The morphology of bands in rocks is very similar to the one observed
in metals (see Fig. 1.8a). In soils, when a set of forces provokes instability, a zone with
a concentration of deformations is observed. This zone where there is a concentration
of strain is called the localization zone and specially in soils is called the slip line (see
Fig. 1.8b).

Although localization is a phenomenon that has its origins at a microscopic level,
caused by the presence of voids, microcracks, and other phenomena, cracks in concrete
or rocks, slip lines in soils and shear bands in metals are observed at the macroscopic
level. The localization zone is characterized by the concentration of inelastic strains
in a narrow discrete band while the surrounding material undergoes unloading, a fact
that causes numerical instabilities in the solution process.
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slip line +

(a) /
(b)

Figure 1.8: (a) Shear bands in metals and (b) slip lines in soils.

1.2.2.1 Brittle vs ductile materials

The behavior of materials can be broadly classified into two categories: brittle and
ductile. The material response for ductile and brittle materials are exhibited by both
qualitative and quantitative differences in their respective stress-strain curves. The
terms brittle and ductile relate to the relative values of the elastic limit and failure
threshold (see Fig. 1.9). The material is said to have brittle behavior, if the failure
threshold nearly coincides with the elastic limit. This material will experience only
negligible plastic deformation before fracture. In contrast, for a ductile material the
failure threshold is significantly larger than the elastic limit so that as the material
deforms it experiences an elastic domain, followed by a plastic domain, and then

finally it fractures.
A [I

brittle [:I

ductile

stress

A -
>

strain

Figure 1.9: Brittle vs ductile material and typical stress-strain curves.

The following are the most relevant features of these two types of materials:
Brittle Materials: small deformations, no warning before failure (abrupt). (exam-

ples: concrete, ceramic, glass, ice, rocks, etc.)
Ductile Materials: large deformations, warning before failure (Not abrupt). (exam-

ples: steel, aluminum, etc.)
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1.2.3 Fracture and continuum mechanics

To simulate the material failure mechanisms at a macroscopic level, the most accepted
frameworks are: Fracture Mechanics and Continuum Mechanics. These methods, how-
ever, are applied to fundamentally different classes of failure problems. While the
theory of plasticity and damage mechanics are basically designed for problems where
the displacement field and usually the strain field remain continuous everywhere (con-
tinuous problems), fracture mechanics is essentially formulated to deal with strong
discontinuities (cracks) where both the displacement and strain fields are discontinu-
ous across a crack surface (cf. Fig. 1.10).

Basically, the main difference between these two general approaches is that in Frac-
ture Mechanics after failure initiation a traction-separation relationship is invoked,
whereas Continuum Mechanics assumes a stress-strain relationship (o — ¢€) after strain
localization, which is a precursor to failure and macroscopic fracture of the material
(as the stress vanishes). In practice, fracture mechanics is also used for weak dis-
continuity problems, and both damage mechanics and the theory of plasticity have
been modified and adapted for failure/fracture analysis of structures with strong
discontinuities.

Uy €A

Continuous

Weak
Discontinuity

o0
u'E U et #e” T

Strong
Discontinuity

» »
- >

X X

Figure 1.10: Weak vs Strong Discontinuities and the corresponding displacement and strain field.

1.3 Literature review

In order to predict not only the failure load but also the post-peak behavior correctly,
robust and stable computational algorithms that are capable of dealing with the
highly nonlinear set of governing equations are an essential requirement. Various
methods have been developed over the years for simulation of the problems involved
with creation and propagation of cracks. Analytical, semi-analytical and numerical
approaches, each one provides advantages and drawbacks in handling certain parts
of the simulation. In the following sections, the main approaches are briefly outlined.
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1.3.1 Linear elastic fracture mechanics (LEFM)

Fracture mechanics was stimulated by Inglis (1913). Using elasticity fundamentals he
studied the stress concentration in a large plate of elastic material with an elliptical
hole. Later, Griffith (1921) used Inglis’ stress analysis of an elliptical flaw in a linear
elastic material to predict the critical stress under which a crack irreversibly grows,
causing the material to fracture. He proposed an energy criterion of failure after
considering that the stress value cannot be used as a failure criterion since the stress
at the tip of a sharp crack in an elastic continuum is infinite. These concepts served
as the basis of classical linear elastic fracture mechanics (LEFM) which came to the
existence practically in naval laboratories during the World War 1.

During the World War II, Irwin became interested in the fracture of steel armor
plating during penetration by ammunition. His experimental work at the U.S. Naval
Research Laboratory in Washington, D.C. led, to a theoretical formulation of fracture,
to study the propagation of fissures where introduced the so-called Fracture Modes
(see Section 3.1.4) whose combinations give rise to the mixed-mode cracks (Irwin,
1957).

The procedure used to determine the crack propagation is indicated as follows:

* Step 1: Determine the stress intensity factor
» Step 2: Verify the crack stability based on a criterion which is a function of the
stress intensity factor, and determine the crack increase and its orientation
» Step 3: The crack tip is established in a new point.
The whole process is repeated until the crack stability is ensured. A detailed descrip-
tion of LEFM concepts is given in Chapter 3.

1.3.2 Discrete crack approach

In the discrete crack approach, introduced by Ngo and Scordelis (1967), existing
cracks are simply defined along the finite element edges (cf. Fig. 1.11a). The strong
discontinuity is automatically assumed in the displacement field, while an interface
element or special boundary conditions between adjacent solid elements are required
to simulate the crack propagation, avoiding the spurious stress across the discontinu-
ities. However, it cannot account for the singular field around the crack tip, unless
special singular finite elements are used. This approach is simple for predefined exist-
ing crack paths along the element edges (Ingraffea and Saouma, 1985), however, it
becomes rather difficult for modeling general crack propagation paths as it requires a
remeshing of the model. Accurate results for a fixed mesh can only be obtained if the
crack pattern is known in advance and if elements have been oriented in the crack
direction.

1.3.3 Smeared crack approach

In contrast, the smeared crack approach has been frequently used in the finite element
simulation of fracture and crack propagation problems. It is in fact a continuous ap-
proach for a discontinuous/singular problem. In this model, the discontinuity caused
by a discrete crack within an element is simulated by a distributed (smeared) equiva-
lent field over the entire domain of the element (see Fig. 1.11b). The main advantage
of the method is that it does not require any local or global remeshing in the pro-
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Figure 1.11: (a) Discrete vs (b) smeared crack approach.

cess of crack propagation. This approach was very well attracted because the FEM
was getting powerful with the advance of computer development, and principally be-
cause this approach treated the two behaviors, continuum and fracture, in the same
framework of the continuum. This approach has been further developed by several
researchers (Bazant and Cedolin, 1979; Cervenka, 1970; Rots et al., 1985).

To simulate material behavior up to full fracture implies strain softening (after the
load reaches the peak, the post-peak is characterized by stress declining with an in-
creasing of strain). This behavior causes problems with certain theoretical difficulties,
such as mesh dependency and localization instabilities. Such ideas appeared accord-
ing to experiments, since the dimensions of the failure regions are independent of the
structural size and they are assumed as fictitious planes. In the case of tensile cracks,
this approach is known as “crack band model” (Bazant and Oh, 1983).

1.3.4 Intra-element crack

In this approach, which is similar to the Band Crack Model, the crack that propagates
throughout the element (see Fig. 1.12) is concentrated in a band within the finite
element. Different formulations have been adopted to for this concentration, and
among them one can quote: assumed enhanced strain (AES) (e.g. weak discontinuity
approach) and enhanced displacement (e.g. the strong discontinuity approach) (Simo
et al., 1993). All these ramifications have one thing in common, which is that after
localization a softening relation between traction and relative displacement can be
reproduced by the stress-strain constitutive relation. To this end, Belytschko et al.
(1988) have developed a method by which the localized zone can be embedded using
a four-node quadrilateral element.

J
7

Figure 1.12: Intra-element crack model.
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1.3.5 Enhanced continuum approaches

In the modeling of structures with strain softening within the framework of classical
continuum, the corresponding boundary value problem (BVP) becomes ill-posed. To
overcome these instabilities higher order continuum theories have been proposed.
This kind of enrichment imposes a minimal width of the strain localization zone,
which called localization limiters and aim to model the concentration of the strains in
narrow bands, via the introduction of constitutive strain softening, whose propagation
makes eventually the structure to fail.

Cosserat Continua The Cosserat theory of elasticity was originally developed in 1909
and can be useful in the modeling of heterogeneous materials when the size
of the heterogeneities (internal length) and the size of the structure (external
length) are of the same order of magnitude. Also, it can be useful in modeling
size effects and as a regularization method for numerical computations where
classical continua analysis breaks down. However, the limited range of applica-
bility, the calibration of the internal length and the boundary conditions for the
micro-rotations are curtailing their use (de Borst and Miihlhaus, 1992).

Non-local models In non-local models, the stress at a point depends on the state at
this point and on the deformation in its neighborhood. The algorithm checks the
stress state at the integration points against a material strength criterion, similar
to hardening plasticity problems except for a negative hardening modulus to
account for the softening effects of cracking. The behaviour of a point was only
affected by its own stress state (cf. Fig. 1.13). This method were proposed to
avoid mesh dependency of the plasticity based solutions for simulating crack
problems (Bazant and Jirasek, 2002; Bazant and Planas, 1997).

® Normal Gauss points
® Local failed points

® Nonlocal failed points o ° °
hd o o
° ° o .
° L]
L] L] L] O ° °
. ° e o .
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° . L4 °
d L]
. . ® . o °

Figure 1.13: Local and non-local cracking state.

Gradient-enhanced models This model may be derived as an approximation of the
nonlocal damage models. A characteristic of one class of gradient-enhanced
model is the material parameter (material length) that introduced, where the dis-
placement field and effective plastic strains are discretized using C'*-continuous
shape functions. The addition of gradient terms becomes significant when mod-
elling strain-softening solids and the pathological mesh dependence as obtained
in finite element computations with conventional continuum models is no longer
encountered (de Borst and Miihlhaus, 1992).
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1.4 Numerical techniques for crack analysis

Due to the limitations and inflexible nature of the aforementioned analytical methods
in handling arbitrary complex geometries and boundary conditions and general crack
propagations, several numerical techniques have been developed for solving fracture
mechanics problems.

In recent years, finite elements with enrichments have gained increasing interest
in modeling material failure, due to their specific ability to provide, unlike standard
finite elements, specific kinematics to capture weak and strong discontinuities. They
essentially consist of enriching the (continuous) displacement modes of the standard
finite elements, with additional (discontinuous) displacements. The discontinuity path
is placed inside the elements irrespective of the size and specific orientation of them.
Then, typical drawbacks of standard finite elements in modeling displacement dis-
continuities, like spurious mesh size and mesh bias dependencies, can be effectively
removed. In addition, unlike with standard elements, mesh refinement isn’t necessary
to capture those discontinuities, and the simulation can be done with relatively coarse
meshes. By using that technology, in conjunction with some additional refinements,
realistic simulations of multiple strong discontinuities propagating in two as well as
in three dimensional structures can be achieved, with small computers, in reason-
able computational times. As for the enriching technique, two broad families can be
distinguished in terms of the support of the enriching discontinuous displacement
modes:

* the strong discontinuity approach (SDA) (a class of embedded finite elements)
e and the extended finite element method (XFEM).
Despite outstanding advantages, of these two families, alternative numerical tech-
niques are also available, including the discrete element method (DEM), the bound-
ary element method (BEM), the isogeometric analysis (IGA), a variety of meshless
methods, the extended isogeometric analysis (XIGA) and more recently, advanced
multiscale techniques, but all of them are out of the scope of this study.

1.4.1 The strong discontinuity approach (SDA)

From the class of assumed enhanced strain methods (AES), mentioned before, emerges
the strong discontinuity approach (SDA) (Simo et al., 1993; Simo and Rifai, 1990).
Lately, a discontinuous shape function (to capture the displacement field) into a
triangular element was added, allowing the precise representation of the crack open-
ing (Oliver, 1996a,b). The theory is based on AES framework and developed in the
ambit of Continuum Mechanics using an isotropic continuum damage model (see
Section 2.1.1) and its variations, which serves to simulate materials like concrete,
ceramics, rocks and ice.

The SDA refers to the capture of jumps in the displacement field across a surface
with zero bandwidth measure by using standard solid mechanics models with con-
tinuum constitutive equations. In Oliver (1996a,b) a discontinuous shape function
(to capture the displacement field) into a triangular element has been used allowing
a precise representation of the crack opening. It has been shown that the discrete
theoretical model can be interpreted as the limit case of the continuum when the local-
ization band goes to zero (discontinuity surface). In this case the strain has the sense
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of a Dirac delta (9) distributions. The interesting point is that the whole analysis is
done in the Continuum Mechanics framework. The SDA leads to mesh-independent fi-
nite element discretization without introducing a material length scale (characteristic
length of smeared crack models) which is a non-physical property.

This methodology has been used with many constitutive models (damage, Drucker-
Prager, Rankine) (Armero and Garikipati, 1996; Larsson et al., 1996; Oliver, 1996a,b).
Extensions of the method to localization analyses of saturated soils has been ad-
dressed (Steinmann, 1999) as well as the links with cohesive models (Oliver, 2000).
Although, the SDA it is mesh-independent with respect to size and orientation, and
as consequence, no remeshing is needed to capture the high strain gradients, special
techniques are required for its implementation in a finite element code, regarding the
robustness and convergence of the highly nonlinear system of equations.

1.4.2 The Extended Finite Element Method (XFEM)

In this method, the singular or discontinuous displacement field within a finite el-
ement is simulated by a special set of enriched shape functions at nodal level, that
allow for accurate approximation of the displacement field. Presence of the crack is
not geometrically modeled and the mesh does not need to conform to the crack path.
Additional enrichment approximation is added to the classical finite element model
to account for the effects of a crack or discontinuity.

The eXtended Finite Element Method (XFEM) is a numerical method for modeling
strong (displacement) as well as weak (strain) discontinuities within a standard fi-
nite element framework. In XFEM, special functions are added to the finite element
approximation. For crack modeling in isotropic linear elasticity, a discontinuous func-
tion and the two-dimensional asymptotic crack-tip displacement fields are used for
accurate approximation of the displacement field. Presence of the crack is not geomet-
rically modeled and the mesh does not need to conform to the crack path. This new
proposal has lately been followed by several researchers because it presents certain
attractive characteristics like:

* The implementation is done based on a standard FEA code,
* It is mesh-independent with respect to size and orientation,
* No remeshing is needed to capture the high strain gradients,
* There is no need to introduce any material length scale.

Unlike with standard finite elements, mesh refinement is not necessary to capture
the discontinuities and the simulation can be performed with relatively coarse meshes.
A comparative study of the two approaches can be found in Oliver et al. (2006) but a
detailed assessment of relative errors, rates of convergence and computational cost is
still an open area of research (Oliver et al., 2012).

1.4.3 Sequentially Linear Analysis (SLA)

In contrast, to the previous enriched techniques in the framework of the standard
FEM, the sequentially linear analysis (SLA) has been also proposed (Rots, 2001). It
is an alternative method to model the nonlinear fracture behavior of quasi-brittle
materials. It’s attractiveness consists in avoiding the well-known convergence and
bifurcation problems that are often encountered when using incremental/iterative
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schemes such as Newton-Raphson, with a sophisticated procedure on the discretiza-
tion of the constitutive model for accurate description of the stiffness degradation due
to damage (see Section 2.2.1).

1.5 Why stochastic analysis and optimum design?

Typical problems in all engineering fields, involving media with random properties,
require complex mathematical predictions in order to be solved. The design of struc-
tures under static or dynamic loading cases, imperfections in the structural elements,
random fluctuations in temperature, or other environmental conditions, life prediction
of structures, crack growth in structures subjected to fracture etc. are characteristic ex-
amples in civil engineering field. Specifically, in structural engineering, materials with
random properties are often used, such as, but not limited to steel, soil, and concrete.
Thus, the natural responses of these structures may be completely unpredictable by
deterministic models.

The advancements in reliability theory of the past three decades and the develop-
ment of more accurate quantification of uncertainties associated with system loads,
material properties and resistances have stimulated the interest in probabilistic treat-
ment of systems (Schuéller, 2006). The reliability of a system or its probability of
failure constitute important factors to be considered during the analysis and design
procedure, since they characterize the system’s capability to successfully accomplish
its design requirements. Engineers have always been striving to design efficient struc-
tural systems which have to be economic yet strong enough to withstand all possible
loads that will arise during their service life. The traditional trial-and-error design ap-
proach is not sufficient to determine economical satisfying as well as the safety criteria.
Structural design optimization, on the other hand, provides a numerical procedure
that can replace the traditional design approach with an automated one.

Hence, powerful analysis tools concerning random medium mechanics is very im-
portant to model uncertainties and random characteristics of the materials. Further-
more, the progress in analysis and design of structures has been invariably associated
with the formulation of more detailed design optimization problems considering un-
certainties in structures subjected to fracture.

1.6 Adopted approach and aim of the thesis

The present thesis is divided into two parts. In the first part, the influence of un-
certain spatially varying material properties on the fracture behavior of structures
with softening materials, is investigated. This is performed by coupling SLA method
within the framework of a stochastic setting. Structural failure is modeled using the
SLA, which replaces the incremental nonlinear finite element analysis by a series
of scaled linear analyses and the nonlinear stress—strain law by a saw-tooth curve.
The proposed approach alleviates the deficiencies of SDA, constituting an efficient
procedure avoiding the convergence problems encountered in standard nonlinear FE
analysis, providing also the minimum parameters required for defining the constitu-
tive model in order to perform stochastic crack propagation analysis of the structures
in reasonable computational times.
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In the second part, the XFEM consists an appropriate framework which serves to
simulate the fracture process in structural members caused by fatigue, into a shape
optimization environment. Specifically, shape design optimization problems are for-
mulated within the context of XFEM, which is adopted to solve the crack propagation
problem as originally proposed by Moés et al. (1999) and Stolarska et al. (2001),
avoiding the mesh difficulties encountered into a CAD-FEM shape optimization prob-
lem by working with a fixed mesh approach. Naturally associated to XFEM, the level
set method (see Section 3.4.1) is used to describe the structural geometry providing
also the ability to modify the CAD model topology during the optimization process.
The whole process is performed, with nature inspired optimization techniques since
they have been found to be robust and efficient even for complex mathematical prob-
lems.

1.7 Obijectives of the present work

The present thesis deals with a unified framework for stochastic analysis and opti-
mum design of structures subjected to fracture developed in the ambit of modern
numerical techniques for crack growth simulation mainly based on enriched finite
elements methods. This has been done within the context of the stochastic finite
element method as well as within a modern optimization environment implementing
metaheuristic search algorithms.

The main objectives of this thesis can be formulated as follows:

* to bridge different research fields related to crack growth simulation and anal-
ysis, stochastic analysis and optimum design into a contemporary design envi-
ronment of structures,

* to investigate the influence of uncertain spatially varying structural properties
on the fracture behavior of structures proposing an efficient coupled approach
which allows the stochastic crack propagation analysis and highlighting the
necessity of it, by quantification of this stochastic behavior,

* to develop and implement a shape optimization design framework able to in-
vestigate the relation between structural geometry and service life in the design
process of structures, using state of the art optimization techniques (i.e. meta-
heuristic search algorithms),

* to demonstrate the feasibility and utility of the developed approaches in prob-
lems of a complexity relevant to industrial applications.

1.8 Outline of the thesis

This introductory chapter briefly introduced the subject of fracture in structures, and
summarily reviewed the existing classes of analytical and numerical techniques. In
each case, a short description and a number of reference works were presented with-
out going into detail. Also, the necessity of the stochastic analysis and optimum design
of structures subjected to fracture was discussed. A short outline of this thesis and its
organization is given in Fig. 1.14. This organization serves on dividing the theory and
the numerical applications, while keeping the coherent structure of the text.
Chapter 2, presents a general overview of the the damage models and the theo-
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Figure 1.14: Outline of this thesis.

retical basis of the sequentially linear analysis (SLA) as an alternative method for
incremental/iterative solution schemes to model the nonlinear fracture behavior of
quasi-brittle materials. It is an attractive method since it avoids the well-known con-
vergence and bifurcation problems that are often encountered when using incremen-
tal/iterative schemes such as Newton-Raphson. The general procedure, as well as the
discretization of the constitutive model is outlined also.

Chapter 3, presents the extended finite element method (XFEM) as a numerical
method to model internal (or external) boundaries such as holes, inclusions, or cracks,
without requiring the mesh to conform to these boundaries. It begins with the ba-
sic concepts and fundamental formulations of the linear elastic fracture mechanics
(LEFM). Asymptotic solutions for displacement and stress fields in different fracture
modes are presented along with the basic concepts of stress intensity factors, energy
release rate and the J-integral. The methodology of extracting mixed mode stress in-
tensity factors is addressed and the maximum hoop (circumferential) stress criterion
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for mixed mode fracture criteria is outlined.

The chapter continues with a detailed XFEM formulation for crack analysis in
isotropic materials. The basic relations for modeling displacement discontinuity across
a crack and the stress singularity at the crack tip are derived. A review of the level set
method for tracking moving boundaries is provided before a short discussion on some
numerical aspects of the method, such as the numerical integration and limitations
of enrichments.

Chapter 4 deals with the modeling of uncertainties characterizing the structural
parameters by using the theory of stochastic functions. A necessary mathematical
background with a short presentation of fundamentals that characterize the stochastic
functions, such as the mean value, autocovariance and autocorrelation functions,
the correlation structure and the correlation length are defined. The mathematical
background is followed by an overview of existing techniques for representing the
Gaussian and non-Gaussian stochastic functions. The spectral representation method
is discussed as it offers an elegant description of the translation fields used in the
numerical examples of this thesis.

Furthermore, the basic aspects of stochastic finite element method (SFEM) are
addressed comprising the three basic steps of the method: the discretization of the
stochastic fields, the formulation of the stochastic matrix and the response variability
calculation which is performed in the Monte Carlo simulation context, and the vari-
ability response function approach is presented as an alternate to the latter. Individual
aspects of coupling SFEM with SLA are outlined.

In Chapter 5, a brief overview on structural optimization techniques is followed
by the proposed formulations for the integration of XFEM into a shape design op-
timization framework. Basic aspects of the differential evolution algorithm which
used for solving the crack optimization problems are outlined, after a sensitivity anal-
ysis of four metaheuristic search algorithms, which found to be very promising in
multi-modal benchmarks.

Chapter 6 completes the thesis with representative numerical examples, to illus-
trate the applicability and potential of the proposed formulations presented in the
previous chapters. These formulations are aiming to investigate the influence of un-
certain spatially varying material properties on the fracture behavior of structures
with softening materials, as well as the relation between structural geometry and
service life in a shape design optimization process.

Finally, a summary of the work is given in Chapter 7 along with a short discussion
of possible improvements of the presented formulations.



Modeling of fracture with damage mechanics

In recent years, several numerical techniques have been developed to model the
failure of structures in the framework of the finite element method (FEM), each of one
incorporating a suitable constitutive model must in order to describe the nucleation
of physical discontinuities (e.g. cracks, slip lines) and their subsequent growth.

In particular, for structures made of softening materials, a realistic representation
of the softening behavior requires the accurate description of stiffness degeneration
due to damage. This description can be achieved in a unified manner using Damage
Mechanics approaches that have been proven advantageous for modeling failure phe-
nomena due to their numerical efficiency. Damage mechanics has been increasingly
adopted to analyze failure in various engineering application involving concrete, rock,
metals, etc. In damage mechanics, both the strength and stiffness of a material point
are decreased if it experiences some level of damage. This is in contrast to the classi-
cal theory of plasticity, where the stiffness remains unchanged and only the strength
is updated according to the hardening/softening behaviour. The damage mechanics
approach permits the incorporation of the description of damage into the constitutive
equations, as well as the combination with different more specific simulation meth-
ods, such as the embedded finite element method (Oliver, 1996a; Oliver et al., 2012,
2006), extended finite element method (Mariani and Perego, 2003; Moés et al., 1999)
and non-local theories (Jirasek, 1998).

The basic concepts of continuum damage mechanics are introduced in this chap-
ter, with special reference to the isotropic damage model. This model, with its special
treatment is used in the basis of the sequentially linear analysis (SLA) as an alternative
method to standard nonlinear FEA, when dealing with material softening behavior.
The latter method is particularly beneficial when brittle fracture causes convergence
issues and will be adopted later for numerical examples, highlighting the attractive-
ness of it.

2.1 Damage mechanics

The term Damage Mechanics has been used to refer to models which characterized
by a loss of stiffness, i.e. a reduction of the secant constitutive modulus. The concept

17
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of effective stress & was introduced in Kachanov (1986) pioneering work where the
damage variable was treated as a scalar quantity (isotropic damage), whose value
ranged from O to 1. Later, several researchers extended this theory by treating the
damage variable as a tensor (anisotropic damage). Later, Rabotnov (1971) intended
to include the loss of rigidity of the material as a consequence of the appearance of
fissures, further called Continuum Damage Mechanics which became a very powerful
and consistent theory based on the thermodynamics of irreversible processes.

2.1.1 Isotropic damage model

The so-called Continuum Damage Models have been used thoroughly to simulate the
behavior of materials that present degradation of the mechanical properties due to
small fissures that appear during the loading process. To characterize this, the concept
of effective stress, 7, is introduced (see Fig. 2.1).
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Figure 2.1: The effective stress concept.
For the one dimensional case the stress o is given by:
c=(1—-djg, 0<d<l1 2.1

where 7 is the effective stress and d is the scalar damage variable. The effective stress
o and the strain are related by the Hooke’s law:

o= FLe (2.2)

where FE is the elastic modulus of the material (Young’s modulus). Substituting
Eq. (2.2) into Eq. (2.1) yields:

c=(1-d)Fe 0<d<1 (2.3)
To derive the constitutive equation for the isotropic damage model a generalization of

the damage model to 3D cases is made through the continuum mechanics concepts.
Hence, for an isotropic damage model a family of constitute equations is defined by:

1
U = (1 — d)\Ifo, \I’o = 56 :C:e (24)

o=—=(1-d)C:¢ (2.5)
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where U is the Helmholtz’s density of free energy, C the elastic constitutive tensor, o
and e the stress and strain tensor correspondingly. The value of the damage variable
d is given by the corresponding damage condition and evolution laws. According
to Oliver et al. (1990) the damage variable evolution can by integrated in close form
at time ¢ giving,

dt == G(T’t) (2.6)
= ser(rlaooi(,t){ro’ 7'56}

In Eq. (2.6), 7¢ is an appropriate norm of the strains described below, r, is an
initial threshold value and G(-) is a non-decreasing scalar function such that G(ry) =
0,G'(0c0) < 1and G(u) > 0, Vi € [ro,00). The internal variable r; describes, at time ¢,
the size of elastic domain in the strain F, space, while the internal variable ¢; describes
the size of elastic domain in stress E, space (cf. Fig. 2.2) and can be defined as:

E.:={e|ltc <r} (2.7)
E, :={o|™ < ¢} (2.8)

Consequently, the damage criterion, which defines the elastic limits, reads:

—r<0 or 77 —¢q(r)<0 (2.9)
—— —
Strain space Stress space

Figure 2.2: Stress and strain spaces and elastic limit.

Under such conditions it is straightforward to check that both d and r always in-
crease along time, so that:

d>0 (2.10)

73;

where d = 0 for unloading and elastic loading, whereas d > 0 corresponds to inelastic
loading.
Finally, from Eq. (2.4) and Eq. (2.5) the dissipation £ can be computed as:

D=—-TV4o:é=dV,>0 (2.11)
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For the case of a linear strain hardening-softening law with symmetric tension-compression
behavior the constitutive equation takes the form:

=Ve:C:e (2.12)

and the corresponding damage is defined by:

0, r<ryg= O'y/\/E
d=G(r) =9 7r(1—2), 710 <7 <Tma (2.13)
1, Tmaz < T

where H plays the role of the softening parameter, o, is the uniaxial peak stress. A
typical curve for damage evolution is depicted in Fig. 2.3 (H < 0, strain softening
case), while the corresponding uniaxial stress-strain law is depicted in Fig. 2.4.
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Figure 2.3: Damage variable evolution.

Similar to the strain 7¢ norm one can define also the stress 77 norm in the stress
domain as:

" =vVo:Cl:o=(1-d)Ve:Cl:e=(1-d)r° (2.14)

After some algebraic computations, the corresponding incremental stress-strain law
can be computed as:

o=C0%:¢ (2.15)
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Figure 2.4: Stress-strain curve for isotropic damage model.

where C? is the tangent constitutive operator computed as:

(1-4a)C, d=0 (unloading)

. 2.16
(1—d) {C—ﬁ%}a@a, d # 0 (loading) (2.16)

2.2 Sequentially linear analysis (SLA)

In failure mechanics, material softening is often responsible for unstable structural
behavior (Bazant and Cedolin, 2010). This instability can lead to secondary equi-
librium states or bifurcation of the equilibrium path, which require more elaborate
incremental-iterative solution schemes (Borst et al., 2012). As a consequence, the
robustness of the numerical procedure used for solving the nonlinear problem is
strongly affected. In order to overcome these problems, an alternative method, called
sequentially linear analysis (SLA), has been introduced by Rots (2001).

SLA is an event-by-event strategy based on a secant stiffness procedure which does
not require iterations and replaces the incremental nonlinear finite element analysis
by a series of scaled linear analyses and the nonlinear stress-strain law by a saw-tooth
curve. The advantage of this replacement is that the secant linear (saw-tooth) stiffness
is always positive and the analysis does always converge. The method is generally
applicable for materials with nonlinear softening behavior, but it is particularly benefi-
cial when brittle fracture causes convergence issues and has been successfully applied
within the scope of the smeared crack approach (cf. Section 1.3.3). The method has
been applied to masonry structures (DeJong et al., 2009; Rots, 2001; Rots et al., 2008,
2009; van De Graaf et al., 2009), reinforced concrete beams (Graca-e Costa and Alfa-
iate, 2006), composite beams (Billington, 2009), structures composed by extremely
brittle materials (e.g. glass) (Invernizzi et al., 2011; van De Graaf et al., 2009) and
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concrete in general, providing good results in problems which are difficult to solve
due to nonconvergence problems.

Improvements of SLA for the case of non-proportional loading has also been pro-
posed by Elids et al. (2010); Graga-e Costa et al. (2012) and Graca-e Costa et al.
(2013), as well as for the concrete beams with shear failure by Slobbe et al. (2012).

In this study, SLA is adopted as the acceptable failure analysis method implemented
in the framework of a stochastic setting. The proposed approach constitutes an effi-
cient procedure for investigating the influence of uncertain spatially varying material
properties on the fracture behavior of structures with softening materials.

2.2.1 Review of sequentially linear analysis

Modeling fracture through an event-by-event cracking procedure by imposing an in-
crement of damage, is an attractive alternative to standard nonlinear FEA, where
modeling proceeds by imposing increments of displacements or forces. To capture
brittle events directly, rather than trying to iterate around these critical points in a
Newton-Raphson scheme, SLA was developed specifically to address the difficulty of
modeling snap-back behavior.

In this approach, a tensile softening curve of negative slope is replaced by a saw-
tooth curve (cf. Fig. 2.4) which maintains a positive tangent stiffness (see Fig. 2.5).
The incremental/iterative Newton-Raphson method is no longer required since a
series of linear analyses are performed, each with a reduced positive stiffness, until
the global equilibrium position is achieved. It has been shown, that this “event-by-
event” strategy is robust and reliable (Rots and Invernizzi, 2004), and circumvents
bifurcation problems, in contrast to regular nonlinear FE analysis.

In summary, the SLA model can be thought of as discretizing the space via finite
elements, discretizing the local softening via a saw-tooth diagram and re-computing
the load via a scaling technique. Standard incremental/iterative Newton-Raphson
techniques rather discretize the space via finite elements, discretize the load via in-
crements and re-compute the local softening on a continuous smooth diagram.

The general procedure of SLA is provided in the following section. More details
about this method can be found in the studies by DeJong et al. (2009); Rots (2001);
Rots and Invernizzi (2004); van De Graaf et al. (2009).

2.2.2 General procedure

In the framework of FEM a structural system is discretized, using standard continuum
elements and the material properties (Young’s modulus, Poisson’s ratio and initial
strength) are assigned to them. Subsequently, the following steps are carried out
sequentially without the need of changing the initial mesh:

* Perform a linear-elastic FE analysis with a unit external load and calculate the
principal stresses,

* Loop over all integration points for all elements and find the critical element for
which the stress level divided by its current strength is the highest in the whole
structure,

* Calculate the load multiplier, belonging to the critical integration point, i.e. the
current strength divided by the stress level,
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* Scale the reference load proportionally by the critical load multiplier,
* Increase the damage in the critical integration point by reducing the stiffness
FE and strength f; according to the saw-tooth tensile-based constitutive relation
(see Section 2.2.3),
* Repeat the previous cycle of steps continuously, until the damage has spread
sufficiently into the structure.
An extended description of the above algorithm is provided in Algorithm 1: Initially,
a linear-elastic FE analysis is performed (K : stiffness matrix of the structure and d y:
vector of unknown displacements in analysis step N) with a reference proportional
load P (line 2). After the calculation of maximum principal tensile stresses (04,,),
through the linear elastic analysis, a loop over all integration points for all elements is
performed in order to find the critical element for which its current strength f;" divided
by the maximum principal tensile stress is the highest in the whole structure (lines
3-7). Subsequently (line 8), the reference load P (also, the displacements and stress
resultants correspondingly) is scaled proportionally by the critical load multiplier
Aery Delonging to the critical integration point. Finally (lines 9-13), the damage in
the critical integration point is increased by reducing the stiffness £ and strength
f+ according to the saw-tooth tensile-based constitutive relation (see Section 2.2.3).
The aforementioned procedure is repeated sequentially, until the damage has spread
sufficiently into the structure.

Algorithm 1 Sequentially linear analysis algorithm

1: repeat
2 KNdN =P - Oty
3 for element = 1, ..., Total Elements do
4 for GaussPoini =1,...,TotalGPperElement do
5: Calculate 2 and find Aery = max{ fi }
Otpr Otpr
6 end for
7 end for
8 Scale displacements and stress resultants (dy, ox) by factor A,
9: for element = 1, ..., Total Elements do
10: for GaussPoint = 1, ..., TotalG Pper Element do
11: Find new f;, , E;;1 according to Section 2.2.3
12: end for
13: end for
14: Update structure stiffness matrix Ky, < Ky

15: until damage has spread sufficiently into the structure

In this way, the nonlinear response is extracted by linking consecutively the results
of each cycle. The smoothness of P —§ curves depends on the smoothness (number N;
of teeth) of the saw-tooth model (see Section 2.2.3). The SLA procedure allows only
one integration point to change its status from elastic to softening at each time, while
in nonlinear FE analysis, the use of load increments implies that multiple integra-
tion points may crack simultaneously and the local stiffnesses at these points switch
from positive to negative, following the softening constitutive laws for quasi-brittle
materials.
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2.2.3 Saw-tooth model

In the SLA, the update of the secant stiffness leads to a saw-tooth stress-strain envelope
(see Fig. 2.5) and requires mesh regularization in order to prevent deviations of the
dissipated energy in the crack. In this study, the generalized tooth size approach
(MODEL C) (Rots et al., 2008) is adopted, which does not require special techniques
to handle mesh-size objectivity in order to obtain objective results with respect to the
mesh as well as to overcome the lack of consistency. The way in which the stiffness and
strength of the critical elements are progressively reduced at each “event”, is shown
schematically in Fig. 2.5 where the softening curve of negative slope in the constitutive
stress-strain relation is replaced by a discretized, saw-tooth diagram of positive slopes
which provides the correct energy dissipation. The linear tensile softening stress-strain
curve is defined by the Young’s modulus F, the tensile strength f; and the area under
the saw-tooth diagram. This area (cf. Fig. 2.5) is always equal to the fracture energy
Gy, which is considered here as a material property, divided by the crack bandwidth
h, which is associated with the size, orientation and integration scheme of the finite
element.
In case of linear softening, ultimate strain ¢, is given by:

_ 26
fih

Both Young’s modulus F and strength f; can be reduced at the same time in the
sequentially linear strategy by a factor a, according to:

(2.17)

€y

Ei .
E,=—""  for i=1,2,..,.N (2.18)
a

where i and i — 1 denote the current and previous step, respectively, in the saw-tooth
diagram. To find the rule of reducing Young’s modulus F as well as strength f,, by

OA
D
fol1
fi
\ft, Q?ft
E’Z > \\\ \\\‘ . ft7
JEi+1
g e Em

Figure 2.5: Stress-strain curve for linear softening and saw-tooth model definitions.

ratio a; in step ¢ according to Fig. 2.5, we have:

fi = fa —2pf (2.19)
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Ei-i—l - fi (2.20)
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Thus, for the case of linear softening (Fig. 2.5) the value of f;/ can be easily defined
as:

(2.21)

Ai41 =

D

t Eu EZ D ( )
where,

and D is the tangent to the tensile stress-strain softening curve. The number N, of
teeth is automatically evaluated, depending on the user specified parameter p. For
smaller values of p, a higher N, is needed to cover the softening branch, leading to
more exact results. The procedure ends, regarding the corresponding Gauss point,
when the difference between the sum of positive triangles above the real curve and
the sum of negative triangles below the real curve vanishes, as shown in Fig. 2.5.
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Modeling of fracture with extended finite element
method

Modeling crack growth in a conventional finite element framework is cumbersome
due to the need for the mesh to match the geometry of the discontinuity. This becomes
a major difficulty when treating problems with evolving discontinuities where the
mesh must be regenerated at each step. Moreover, the crack tip singularity needs to
be accurately represented by the approximation. Due to the fact that standard finite
element methods are based on piecewise differentiable polynomial approximations,
they are not well suited to problems with discontinuous and/or singular solutions.
Typically, finite element methods require significant mesh refinement or meshes which
conform with these features to get accurate results. In response to this deficiency of
standard finite element methods, extended finite elements have been developed.

The extended finite element method (XFEM) is a numerical method for modeling
strong (displacement) as well as weak (strain) discontinuities within the standard
finite element framework. With XFEM internal (or external) boundaries such as holes,
inclusions, or cracks, can be modeled without requiring the mesh to conform to these
boundaries. It is based on a standard Galerkin procedure, and uses the concept of
partition of unity (PU) (Melenk and Babuska, 1996) to accommodate the internal
boundaries in the discrete model. Since its introduction in 1999, the XFEM method
has enjoyed a considerable level of success and popularity from researchers in the
computational and applied mechanics communities.

The method was originally proposed by Belytschko and Black (1999), who pre-
sented a method for enriching finite element approximations so that crack growth
problems can be solved with minimal remeshing. Dolbow (1999); Dolbow et al.
(2000) and Moés et al. (1999), introduced a much more elegant technique by adapting
an enrichment that includes the asymptotic crack tip field and a Heaviside function,
while Sukumar et al. (2000), extended the concepts of this method to the three-
dimensional static crack modeling.

In the following sections, the basic ingredients of the XFEM for two-dimensional
computational fracture mechanics problems are presented. After a brief review of
the fundamental concepts in Fracture Mechanics, (Griffith theories, Stress Intensity
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Factors and J-Integral) the rest of chapter, is dedicated to discussing the basic ideas
and formulation for the XFEM, dealing with the enriched approximations, the gov-
erning equations, as well as the discrete form of the equilibrium equation in order
to derive the element stiffness matrix. Moreover, the algorithm which couples the
level set method (LSM) with the XFEM to model crack growth is also outlined. This
combined method requires no remeshing as the crack progresses, making the algo-
rithm very efficient and accurate, demonstrating a tremendous potential for a wide
range of crack propagation problems which may be practically impossible to solve
using the standard finite element method. Finally, some individual numerical aspects
of the XFEM such the selection of enrichment nodes, the numerical integration and
the limitations of the method are also addressed.

3.1 Fracture mechanics

Structures are designed to withstand the loads they are expected to be subject to
while in service. Large stress concentrations are avoided, and a reasonable margin
of security is taken to ensure that values close to the maximum admissible stress are
never attained. However, material imperfections which arise at the time of production
or usage of the material are unavoidable, and hence must be taken into account.
Various kinds of geometric discontinuity, such as holes, notches, cracks, sharp changes
in geometry, etc. are known to be the main source of failure in a large number
of catastrophic failures of structures. Such discontinuities generate substantial stress
concentrations which reduce the overall strength of a material. In this setting Fracture
Mechanics plays a central role, as it provides useful tools which allow for an analysis
of materials which exhibit cracks. The goal is to predict wether and in which manner
failure might occur.

3.1.1 Linear elastic fracture mechanics (LEFM)

Linear Elastic Fracture Mechanics (LEFM) first assumes that the material is isotropic
and linear elastic. Based on this assumption, the stress field near the crack tip is
calculated using the theory of elasticity. When the stresses near the crack tip exceed
the material fracture toughness, the crack will grow. LEFM is valid only when the
inelastic deformation is small compared to the size of the crack, what we called small-
scale yielding. If large zones of plastic deformation develop before the crack grows,
Elastic Plastic Fracture Mechanics (EPFM) must be used, which is out of the scope of
this study.

In order to explain the fundamental differences of LEFM and the conventional
theory of the strength of materials, a simple infinite tensile plate is considered, as
depicted in Fig. 3.1. The plate is assumed to include a number of isolated defects, such
as a tiny hole and a microcrack, while the rest of the specimen is presumed flawless.
The average stress field far from the flaws (region around point A) is equal to the
applied tensile stress, 0y. Limiting the internal stress field to the material yield stress
0yield Tesults in determination of the maximum allowable traction from the following
simple material strength criterion:

00 = Oyield (31)
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Figure 3.1: An infinite tensile plate and the stress states around an intact point A, a tiny hole B and a
microcrack-tip C.

In the region around point B, the LFEM gives a solution for an infinite plate with a
circular hole and a biaxial non-uniform stress field with a stress concentration factor
of 3 at the centre of the plate, regardless of the size of the hole. In the limiting case
of a line crack, the solution from a degenerated elliptical hole shows an infinite stress
state at the crack tip (point C). While no material can withstand such an infinite stress
state, real life observations show that many materials with internal cracks remain
stable. As a result, instead of comparing the existing maximum stress field with a
critical strength value, a different approach based on finite values is required. These
fracture-based parameters define the way a crack affects the behaviour of a cracked
specimen.

3.1.2 Giriffith theory

The early strength theories were based on maximum tensile stress and in this connec-
tion uniaxial tensile strength were used to find the material fracture strength. Griffith
himself performed experiments on glass fibers and observed that the fracture strength
increases with a decrease in thickness of the fiber and vice versa. He found that the
breaking load of a thin plate of glass having in it sufficiently long crack normal to
the applied stress, is inversely proportional to the square root of the flaw length, i.e.
C = o+/a, where C is a constant, and « is the flaw length.

In order to find constant C, Griffith made use of energy balance of a body and
derived also the critical stress level o, that a cracked body can sustain, as:

oo = | 2E (3.2)
yixe;
C = @ (3.3)
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where, ~ is the surface energy per unit area (material constant).

3.1.3 Energy release rate

An infinite uniformly loaded plate with an elliptical crack of length 2« is considered
(see Fig. 3.2). According to law of conservation of energy the work done per unit time

(o

o

Figure 3.2: An infinite uniformly loaded plate with an elliptical crack of length 2«.

by the applied loads (W) must be equal to the rates of change of the internal elastic
energy (U.,), plastic energy (Up), kinetic energy (K) of the body and the energy per
unit time (I") spent in increasing the crack area. Assuming the propagation is slow and
plastic deformations are negligible, the conservation of energy can then be written in
mathematical form as:

W=0U+T (3.4)
If IT = U, — W be the potential energy of the system, Eq. (3.4) becomes:

=T (3.5)
As all the changes with respect to time are caused by change in flaw size, Eq. (3.5)

can be re-written as:

ol or

= = 3 (3.6)

where G is known as energy release rate and characterizes the amount of energy
available for crack propagation. The crack propagation can be occur when the energy
release rate, GG reaches a critical value, G, which is the basic failure criteria for mixed
mode fracture of materials (Nuismer, 1975).

3.1.4 Fracture modes

The theory of fracture mechanics uses a local stress intensity factor or a global fracture
energy release rate in comparison with their critical values to assess the stability of a
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flawed specimen. These fracture-based parameters define the way a crack affects the
behavior of a cracked specimen. A force may be applied to the plate in several man-
ners in which might enable the crack to propagate, but this is primarily achieved by
classifying the general complex behavior of a crack into three independent situations,
as depicted in Fig. 3.3. This classification corresponding to the three situations was
proposed by Irwin (1958).

y
T<’X (a) (b) (c)

Z

Figure 3.3: Crack failure modes: a) Mode | (opening mode), b) Mode Il (shearing Mode), c) Mode I
(tearing mode)

Accordingly, we consider three distinct modes: Mode I, Mode II and Mode III. Ac-
cording to the opening Mode I, crack surfaces are pulled apart in the normal direction
(y) but remain symmetric about the xz and xy planes. The shearing Mode II represents
the sliding mode of movement of crack surfaces in the x direction, while remaining
symmetric about the zy plane and skew symmetric about the zz plane. Finally, in the
tearing Mode III, the crack surfaces slide over each other in the z direction, while
remaining skew symmetric about the xy and xz planes.

For each of these modes, crack extension may only take place in the direction
of the z axis, the original orientation of the crack. In a more general situation, we
typically find a mixed mode situation, where there is a superposition of the modes. In
a linear elastic mixed mode problem, the principle of stress superposition states that
the individual contributions to a given stress component o; ; are additive, so that:

Oij = Ui{j + 0{5 + a{f fori,j = {z,y} (3.7)

where, o/ ;, /!, o!!T are respectively the stress components associated to the modes I,

IT and III.

3.1.5 Stress intensity factors (SIFs)

The concept of stress intensity factor K (SIF), introduced by Irwin (1957), as a mea-
sure of the strength of the singularity. He illustrated that all elastic stress fields around
a crack tip are distributed similarly, and K o o/7r controls the local stress intensity.
The elastic stress state around a crack in a plate, assuming that the crack surfaces are
free of stress (cf. Fig. 3.4) can be represented (Westergaard, 1939) in polar coordi-
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Figure 3.4: Westergaard infinite plate with a crack subjected to uniform normal tractions.

nates as:
Opa(r,0) = ao\/;ircosg(l — smgsm% + O(V/) (3.8)
Oyy(r,0) = ao\/gcosg(l + sz’ngsin%) + O(V/r) (3.9
00y (1, 0) = o—o\/gsmgcosgco%) + O (3.10)
or in the more general form of:
0ij(r,0) = 1 { K1 f1(0) + Kpi f11(0) + K f171(0)} + O(v/r) (3.11)

where, oij are the near crack tip stresses, oy is the finite applied tensile stress, r is the
radial distance of point P of query from the crack tip, 6 is the angle formed between
the vector 7 and the plane of the crack and K, K;;, K;;; are the SIFs associated with
three three independent modes of movement of crack surfaces (cf. Fig. 3.3), such as:

K; = lir%\/ 271roy,(r,0) (3.12)
r—

K][ :lir%\/ 27T7“0'xy<7', O) (313)
r—

K[][ :lir%\/ 27TTUyZ(T, O) (314)
r—

e.g. for the infinite tensile plate with a central crack, based on Eq. (3.12) can then be
simplified to:

K; = ogvma (3.15)
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The final stress and displacement fields at the crack tip (# = 0) in terms of the SIFs, for
the three pure modes of fracture, can be described by substituting Egs. (3.8)-(3.10)
into Egs. (3.12)-(3.14) (Saouma, 2000):

Mode I
Displacements field:
K[ T 0 . 9 0
= L [ —cos=(k — 1+ 2sin= 1
Uy 2\ 2 0032 (k + 2sin 2) (3.16)
K[ T 9 9 6
= L —cosZ (k41 — 2cos*= 1
Uy 2 27T0052(/<c+ cos 2) (3.17)
" — 0, pla%n strain (3.18)
—%(04e + 0yy), plain stress
Stresses field:
K 0 .0 . 30
Oz = cos—=(1 — sin—sin— 3.19
N 2mr 2 ( 2 2 ) ( )
I 0 .0
— — 1 - - - '2
Tyy \/%0032( sm2sm 5 ) (3.20)
K; 0 .6 30
oy = —(1 —sin— 3.21
Oy \/%0052( +szn25zn2) (3.21)
o — { V(0w + 0yy), pla?n strain (3.22)
0, plain stress
Opr =0 (3.23)
oy, =0 (3.249)
Mode II
Displacements field:
K
Uy = 2—5, / %sing(ﬁ +1+ 200322) (3.25)
Kr |
Uy = —2—; %cosg(/{ —-1- 23@'n2§) (3.26)
" — 0, pla?n strain (3.27)
—%(04e + 0yy), plain stress
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Stresses field:

K
- \/%sinQ(Q + cosgcos%e)
Ky 60 60 30

SIN—COS—-COS—

0‘ =
W 202 2

Ogx =

I )
Ogy = \/%6082 smzsm 5

plain stress

v(0gy + 0yy), Pplain strain
L
0
0

Ozz
Oyz
Oyz

Mode III
Displacements field:

Ope = 0

Oyy =0

Opy =0

0,, =0

o — Kt sz'ng
zz o

Oy = Kt cosg
Yz \/2_7T7” 2

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
(3.33)

(3.34)
(3.35)

(3.36)

(3.37)
(3.38)
(3.39)
(3.40)

(3.41)

(3.42)

where, 1 = G, represents the shear modulus of the elastic material, v is the poisson

ratio, while the parameter « is defined as:

3—v
1+v°

3 —4v, plain strain
K =
plain stress

The stresses field can also be expressed in polar coordinates as:

(3.43)
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Mode I
K 0 Y
rr = cos—(1 + sin” 3.44
7 V2rr 2( 2) ( )
K 30
Opp = \/%cos 3 (3.45)
g = — — 3.46
fo ) \/%sanCos 5 ( )
Mode II
KII . 0 . 20
v = ——8in—(1—3 — 3.47
o \/ﬁan( sin 2) (3.47)
3K 0
Opp = — sinfcos— 3.48
N (3.48)
Ky 0 .50
Opp = \/%0032(1 3sin 2) (3.49)
(3.50)

3.1.6 J-integral

In order to compute the energy release rate (G, Rice (1968) developed a way that
called J-Integral and noticed the importance of the J-integral as a criterion for crack
growth in fracture mechanics. The J-integral also known as conservation integral
represents a way to compute the strain energy release rate for the material where
the crack tip deformation does not obey linear elastic laws. In this approach a line
integral is identified, which has the same value for all integration paths surrounding
the crack tip. J-integral is path independent, hence evaluating the J-integral in a far
field around a crack tip can be related to the crack-tip deformations. In this way crack
tip complications can be avoided by evaluating the energy release rate in the domain
where the results are reliable. In the absence of of the body force and crack tractions,

n I A

Crack Crack

q=20

Figure 3.5: Definition of J-integral and the equivalent domain A.
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the two-dimensional form of one of J-integral can be written as:

ou
= Wdy — t—d 3.51
J ]g (Wdy — t——ds) (3.51)
where
61"7' 1
W(E):/ UijdEij=§0ij€ij (3.52)
0

is the is the strain energy density, I is a closed counter-clockwise contour, ds is the
differential element of the arc along the path I', ¢ = on is the traction vector on
a plane defined by the outward normal n, and u is the displacement vector (see
Fig. 3.5).

3.1.6.1 Interaction integral method

As has been explained earlier, J-integral was developed as an alternative approach to
calculate the G or K (SIFs). The J-integral is related to K;, K;;, K;y;, as:

2
KI

B for Mode I
J=1{ K for Mode II (3.53)

E*
K? | K? .
& + 5, for mixed mode

3.54
£, plain strain (3.54)

B { E, plain stress
For mixed mode fracture it is thus clear that SIFs for the two modes cannot be obtained
independent of each other and auxiliary fields must be introduced and superimposed
onto the actual fields satisfying the boundary value problem (Sih et al., 1965). In
this method called the interaction integral, stresses and strains for the auxiliary state
should be chosen so as to satisfy both the equilibrium equation and the traction-free
boundary condition on the crack surface in the A area. These auxiliary fields are
suitably selected in order to find a relationship between the mixed mode SIFs and
the interaction integrals. The contour J-integral for the sum of the two states can be
defined as:

J = Jot 4 Jor 4 M (3.55)



Chapter 3. Modeling of fracture with extended finite element method 37

where J* and J** are associated with the actual and auxiliary states, respectively,
and M is the interaction integral:

ou; dq
act __
J¥ = /A[O'Z] . Wélj]a ]ds (3.56)
auxr __ aux au? “ aux aq
u" P aul M aq
M = O'ZJ &Tl ol . W 51j]8x] ds (3.58)

where ¢ is a weighting function, while the actual, auxiliary and interaction works
defined as:

1

WS = 50’1']'61']‘ (359)
1

Waux — 50-%@3:6?]@1‘ (360)
1

WM = 5(0i€i;” + 0 i) (3.61)

One of the choices for the auxiliary state is the displacement and stress fields in the
vicinity of the crack tip. Hence, from Eq. (3.53) the interaction integral M takes the
following form:

M = %(KIK}““ + K K{°) (3.62)
The M-integral shown above deals with interaction terms only and will be used for
evaluating SIFs independently. An important thing here is that, M-integral is related to
the crack-tip fields (i.e K; and K;;) but yet may be evaluated in the region away from
the crack tip, where such calculations (stress and deformations) can be performed
with greater accuracy and convenience as compare to the crack tip region. Therefore,
the mode I and II SIFs can be obtained from:

E*

K —
2

M (3.63)

The M-integral is then evaluated by determining the actual state parameters from the
usual finite element analysis, and the auxiliary state parameters are evaluated using
the asymptotic stress and displacement fields expressions of LEFM by inserting by
choosing K§** =1, K{}* = 0 for Mode I, and K{}* = 0, K{}* = 1 for Mode II.

It should be noted that evaluation of the interaction integral M requires careful
attention as the main fields are usually obtained from the finite element solution
in a global or local (but crack independent) coordinate system, while the auxiliary
fields are defined in the local crack-tip polar coordinate system. Therefore, necessary
transformations are required to use a unified coordinate system.
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3.1.6.2 Domain form of the interaction integral

For numerical purposes it is more advantageous to recast the conservation integral in a
form best suited to finite element calculations, which is actually a line/contour integral
into an area/domain integral. This is done by introducing a weighting function ¢ in
Eq. (3.58) such that, it has a value equal to 1 on the path I" and 0 at the outer path
Iy (cf. Fig. 3.5).

For numerical evaluation of the integral the domain A is set from the collection
of elements about the crack tip. This is done by selecting all elements which have
nodes within a circle radius r; with the center at the crack tip. As the J-integral is
path independent, hence integral can be evaluated in the far field, so radius r, for the
domain A could be selected large enough to avoid complications of the crack tip. A
thumb rule for the radius r, is selected to be 2 to 3 time the square root of the area
of an element size.

3.1.7 Fracture toughness

Similar to the conventional theory of strength of materials where the existing stress
is compared with an allowable material stress/strength, fracture mechanics assumes
that unstable fracture occurs when the stress intensity factor K reaches a critical value
K., called the fracture toughness, which represents the potential ability of a material
to withstand a given stress field at the tip of a crack and to resist progressive tensile
crack extension. In other words K. behaves as a threshold value for SIFs and for each
pure fracture mode, the stress intensity factor K; should be compared with its relevant
toughness K;., a mixed mode criterion is required to account for the combined effect
of all individual modes.

3.1.8 Fatigue crack growth

The concept of SIFs is also useful to compute the characteristics of a structural mem-
bers subjected to fracture under fatigue. The fatigue crack growth is estimated by
using Paris law (Paris et al., 1961), which is originally proposed for single mode de-
formation cases, relating the crack propagation rate under fatigue loading to the SIFs.
For mixed-mode loading, a modified the Paris law can be expressed using the effective
stress intensity factor (SIF) range AKefr = Kyar — Komin- For a given fatigue loading,
where the crack grows by length Aa in AN cycles, the Paris law becomes:

Aawda

N C(AKefr) (3.64)

where C' and m are empirical material constants. m is often called the Paris exponent
and is typically in the range 3 to 4 for common steels and aluminium alloys. Eq. (3.64)
represents a linear relationship between log(AKeg) and log(4) which is used to
describe the fatigue crack propagation behavior in region II (see Fig. 3.6).

For the calculation of effective mixed-mode stress intensity factor K., various
criteria have been proposed in the literature. In this thesis, however, the energy
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Figure 3.6: Logarithmic crack growth rate and effective region of Paris law.

release rate model has been adopted, leading to:

AKefr = 4/ AK? + AKIQI (3.65)

and consequently, the number of corresponding cycles is computed according to (An-
derson, 2004):

Aa
AN = ———— 3.66
C(AKeff)m ( )

3.2 The basic XFEM concept

The basic idea of XFEM is to enrich the approximation space so that it becomes capable
of reproducing certain features of the problem of interest, in particular discontinuities
such as cracks or interfaces. Naturally, the first XFEM approximations were also de-
veloped for simulation of strong discontinuities in fracture mechanics. XFEM can be
assumed to be a classical FEM capable of handling arbitrary strong and weak discon-
tinuities. In the XFEM, first, the usual finite element mesh is produced and then by
considering the location of discontinuities, additional degrees of freedom, are added
to the standard finite element model in selected nodes near to the discontinuities to
provide a higher level of accuracy.

3.2.1 Enriched approximations

Enriched approximations have been the subject of several computational studies in
the past two decades. Most of them are discussed within the framework of PU (Melenk
and Babuska, 1996). The essential idea in XFEM is to add discontinuous enrichment
functions to the finite element approximation using the PU. In XFEM, the following
approximation is utilized to calculate the displacement for the point x locating within
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the domain (Belytschko and Black, 1999), including discontinuities:

m

u(x) = u™  u™ = Z Nj(x)u; + Z Ni(x)Y(x)ay (3.67)
j=1

where u; is the vector of regular nodal degrees of freedom in the FEM, ay is the set
of degrees of freedom added to the standard FE model and v(x) is the set of artificial
enrichment functions defined for the set of nodes included in the influence (support)
domain of the discontinuity.

The first term on the right-hand side of Eq. (3.67) is the standard finite element
approximation to determine the displacement field, while the second term is the en-
richment approximation which takes into account the existence of any discontinuities.
This second term utilizes additional degrees of freedom to facilitate modeling of the
existence of any discontinuous field, such as cracks, without modeling it explicitly in
the FE mesh.

3.2.2 Modeling the crack

For modeling of cracks in the XFEM, two types of enrichment functions are used: (i)
The Heaviside (step) function and (ii) the asymptotic crack-tip enrichment functions
from LEFM. The approximate displacement function in Eq. (3.67) can be expressed
in terms of the standard u*¢, crack-split u" and crack-tip «'"P components as:

u(z) = u™™ + ut! + o (3.68)

or more explicitly:

n mh mt mf
u(@) = Z Ny(@)u; + > Nu(@)H(@)a, + Y Ny(z) ( 3 Fl(m)bg) (3.69)

where n is the number of nodes of each finite element with standard degrees of
freedom w; and shape functions N;(x), mh is the number of nodes in the elements
containing the crack face (but not crack tip), ay is the vector of additional nodal de-
grees of freedom for modeling crack faces (not crack tips) by the Heaviside function
H(x) (see Section 3.2.2.1), m, is the number of nodes associated with the crack tip in
its influence domain, b, is the vector of additional nodal degrees of freedom for mod-
eling crack tips and Fj(x) are the crack-tip enrichment functions (see Section 3.2.2.2).

3.2.2.1 Heaviside function

The elements which are completely cut by the crack, such that they split into two, are
enriched with the Heaviside (step) function H. The Heaviside function is a discontin-
uous function across the crack surface and is constant on each side of the crack. The
splitting of the domain by the crack causes a displacement jump and the Heaviside
function gives the desired behavior to approximate the true field. Mathematically the
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Heaviside function is defined as:

H:{—l—l, for (x —x*) - n >0 (3.70)

-1, for(x—a*) - n<0

where « is the point of interest, * is nearest point to the crack segment I" and n is the
unit normal vector at x*. In other words, Heaviside function can define whether the
point z* is above or below the crack segment. This can be determined also by finding
the minimum signed distance function to the crack geometry (see also Section 3.4.1).
The function will have a positive value if the dot product of the two vectors is a positive
value and negative otherwise. If no unique normal is defined then the function will
have a positive value if (x — z*) belong to the cone of normals (see Fig. 3.7).

Figure 3.7: Evaluation of Heaviside function for a smooth and kink crack.

3.2.2.2 Crack-tip enrichment

Heaviside enrichment is good when the element is totally cut by the crack, such that
it divides the element into two. In case the element contains the crack tip, then part
of the element is cut and part of it not. Hence in such cases the step function cannot
be used to enrich the domain. From LEFM, the exact solution of the displacement
field around the crack tip (see Section 3.1.5), is given by:

K; | 0 0. K |/ 0 0
Uy = 2—; %cosﬁ(m -1+ 23in2§) + 2—/21 %sin?/ﬁ +1+ 200325) (3.71)

K[ r 0 26 K[ T 0 . 2‘9
= 2L D coso (k41— 2c08?2) — =Ly [ cos—(r — 1 — 2sin?~ 72
Uy 2 27Tcos2(/<c+ cos 2) 2 27T0052(/£ sin 2) (3.72)

where K, K;; are the SIFs for Mode I and II fracture, (r,6) is a polar coordinate
system with origin at the crack tip and « the Kolsov constant. The above displacement
fields are contained within the span of the following four functions, which forms the
basis of the asymptotic field around the crack tip (Fleming et al., 1997):

{Fi(r,0)}_, = {\/;sin(g); \/Fcos(g); \/?sin(g)sin(e); \/Fcos(g)sin(e)} (3.73)
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In addition to standard degrees of freedom, the above functions giving rise to four
additional degrees of freedom in each direction at a node and are used for enriching
the field near the crack tip. Note that the first function (Fig. 3.8a) is discontinuous
across the crack and and represents the discontinuity near the crack-tip, while the
other three functions (Figs. 3.8b - 3.8d) are added to get accurate result with rela-
tively coarse meshes. The inclusion of /r term in the enrichment function gives the
required singularity in the stress field. Furthermore, the enrichment functions are
discontinuous along the ray, § = +.

(c) vrsin(§) sin(6) (d) /7 cos(§) sin(0)

Figure 3.8: Crack tip enrichment functions.

3.2.3 Governing equations

A body in the state of equilibrium with the boundary conditions in the form of traction
and displacement conditions, is considered (see Fig. 3.9). The strong form of the
equilibrium equation can be written as:

Vio+f'=0 inQ (3.74)
with the following boundary conditions:

o-n=f' onl;: external traction
u =, on I',: prescribed displacement (3.75)
oc-n=0, onl,: traction free crack
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traction free
crack

Figure 3.9: A body in the state of equilibrium.

where I';, I', and I, are traction, displacement and crack boundaries, respectively,
o is the stress tensor and f°, f! are the body force and external traction vectors,
respectively.

Thus, the variational formulation of the boundary value problem (BVP) can be
defined as:

Wz‘mt — Wext (3 ) 76)

or

/ o - Jed) = / fooud+ [ f- dudl (3.77)
Q Q Iy

3.2.4 Discrete form of equilibrium equation

Discretization of Eq. (3.77) using the XFEM approximations, results in the following
discrete system of linear equilibrium equations:

Ku'=f (3.78)

where K is the stiffness matrix, u" is the vector of degrees of nodal freedom (for both
standard and enriched ones) and f is the vector of external force. The global matrix
and vectors are calculated by assembling the matrix and vectors of each element. The
elemental stiffness matrix K¢ and external force vector f¢ are defined as:

KZ;’“ K:ja K;l;b

Kj = |K{* Kg* K (3.79)
bu ba bb

TSRV Fl rll il il e (3.80)
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and u" is the vector of nodal parameters:

’U,h = {'U, a b1 bg bg b4}T (381)
with
rs r\T s
KP = / (BI)TCBQ {r,s} = {u.a.b} (3.82)
and
fr= [ Nftdl + [ N,fbdQ (3.83)
I Qe
fr= / N; H ftdl’ + / N, H fdQ (3.84)
Ft Qe
feer= | N,E,fldU + | NF,f%dQ (a=1,2,3,4) (3.85)
I': Qe

In Eq. (3.82), B is the matrix of shape function derivatives, i.e:

Nip O

B*=|0 N, (3.86)
_Ni,y Ni,m
(NiH (). 0

Bf=| 0 (NH()), (3.87)
|((NiH(¢)),y (NiH(9)).a

B’ = |BY B» BY B (3.88)
(N;Fa). 0

B = 0 (NiE,), | (a=1,2,3,4) (3.89)

(NiFa),y (NiFoa),x
Taking into account the effects of interpolation, Eq. (3.87) and Eq. (3.91) become:

[(N.[H(0) — H(¢0)]) 0

B} = 0 (N;[H (¢) — H(#4)]),, (3.90)
(Ni[H(¢) — H(i)]),y (Ni[H(¢) — H(i)])

(Ni[Fo = Fail) 0

B® = 0 (Ni[Fa — Fai])y|  (@=1,2,3,4) (3.91)
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In addition, the following vectors of nodal forces are modified to:
fir=| Ni[H(¢) = H(¢)|f'dl + | Ni[H(¢) — H(¢y)]f*d (3.92)
I Qe

o= | Ni[Fy— Fulfldl + [ Ni[F.,— Fo,]f'dQ (a=1,2,3,4) (3.93)
I': Qe

3.2.5 Derivatives of enrichment functions

Computation of the matrix of shape function derivatives B, in Section 3.2.4 depends
on the definition of the enrichment function. Hence, the following types are consid-
ered:

3.2.5.1 Derivatives of strong discontinuity enrichment

In case of strong discontinuity enrichment, the derivative of the Heaviside function is
the Dirac delta function 4:

H;(¢) = (o) (3.94)

which vanishes except at the position of the crack interface, taking the following form:

1, atcrack
i(9) { 0, otherwise ( )

As a result, Eq. (3.87) can be rewritten as:

N; . H ((b) 0
B = 0 Niy H () (3.96)
NiyH(¢) N H(o)

3.2.5.2 Derivatives of crack-tip enrichment

Derivatives of F,(r, ) with respect to the crack tip polar coordinates (r, §), are:

Fy, = %sing, Fip = \/TFCOSg (3.97)

Fy, = ﬁcosg, Fyp = —gsing (3.98)

Fy, = Lsz’ngsme Fyp = \/F(lcosgsine + singcosﬂ) (3.99)
T2 ’ ’ 2 2 2 ‘

Fy, = Lcosgsinﬁ Fip = \/F(—lsingsmﬁ + cosgcosﬁ) (3.100)
T2 ’ ’ 2 2 2 .

and the derivatives of F,(r, ) with respect to the local crack coordinate system (z', y')
can be defined as (see Fig. 3.10):
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crack tip

Figure 3.10: Global, local and polar coordinates at the crack tip.

I 9 0
FLI/ 2\/77 2, Fl,y’ 2\/_003— (3.101)
1 6 7
F, .= ——co F/:——'— 3.102
2.x 2\/7_,,0 27 2,y 2\/7_,.82/”2 ( )
30 1 0 30
= —Wsm sinf, Fy, = ﬁ(smi + sin;cos&) (3.103)
1 30 1 7 30
Fo =~ - Fy = 5=(cos5 - 1
L 2\/;603 5 sinf, F,, 2\/;(0052 + cos 5 cost) (3.104)
(3.105)
Finally, the derivatives in the global coordinate system (z, y) are:
Fo o = Fycos0y — F, ysinby (3.106)
Fo» = Fopsinby — F, cosb (3.107)

where 60 is the angle of the crack with respect to the z axis.

3.3 Crack initiation and growth

The accuracy and reliability of the analysis of a cracked body primarily depends upon
the accurate determination and continuity of the crack path. It is therefore very much
important to select the crack growth criteria very carefully. Some of the commonly
used crack growth criteria are:

* Minimum strain energy density criteria (Sih, 1974),

* Maximum energy release rate criteria (Nuismer, 1975),

e Maximum hoop stress or maximum principal stress criteria (Erdogan and Sih,

1963),

* Global tracking algorithm (Oliver and Huespe, 2004).
In this study the maximum hoop stress crack growth criteria was considered, coupled
with XFEM.
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3.3.1 Maximum hoop (circumferential) stress criterion

The most commonly used crack growth criteria in LEFM is the maximum hoop stress
criteria (Erdogan and Sih, 1963). The criteria is based on the evaluation of mixed
mode SIFs, K; and K;;. According to this criteria it is assumed that (i) the crack
initiation will occur when the maximum hoop stress reaches to a critical value, (ii)
the crack will grow in a direction 6., in which circumferential stress oyy is maximum.

The direction is determined by evaluating the SIFs, K; and K;; using the domain
form of interaction integral (cf. Section 3.1.6.2) around the crack tip assuming the
crack surfaces are traction free. The circumferential stress in the direction of crack
propagation is a principal stress, hence the crack propagation direction is determined
by setting the shear stress equal to zero, i.e.:

1 0,1 , 1
Org = 2_7r7*6085 <§ 1sinb + 5[(11(30059 — 1) =0 (3.108)
This leads to the equation for the critical crack propagation direction 6., in local crack

tip coordinate system as:

1/ K; K?
0. = 2atan- (— TR i 8) (3.109)
A\ Kir Kir

It is worth mentioning that according to this criteria maximum propagation angle 6.,
is limited to 70.5° for pure Mode II cracks. The criteria basically works well for traction
free crack surfaces. A more efficient expression for 6., for numerical computations,
was implemented by Liang et al. (2003):

9Kk
0.. = 2atan Kr (3.110)

L4 /1 +8(54)?2

3.4 Tracking discontinuities

The most important aspect of problems dealing with moving interfaces (such as
cracks) is to track them as they evolve. To avoid instabilities around points of high
curvature and cusps, two different techniques have been developed based on idea of
tracking evolving fronts with the equations of motion forms: (i) the level set method
(LSM) and (ii) the fast marching method (FMM). The first method is more general
but slowed, while the latter is very efficient but limited to specific range of geometries.
Both methods are designed to handle problems in which the separating interfaces
develop sharp corners and cusps, change topology, break apart and merge together.
These techniques have been used in a range of applications, including problems in
fluid mechanics, computer animation, as well as in image processing.

3.4.1 Level set method (LSM)

The level set approach, introduced by Osher and Sethian (1988), for tracking moving
interfaces. This method builds a surface from the original curve, instead of following
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the curve interface itself. Though it is not mandatory to use level sets in XFEM, many
XFEM formulations take advantage of this powerful technique for tracking interfaces.
This method is also adopted in this study. To construct a level set set function ¢ a do-

(b)

Figure 3.11: Domain 2 with (a) an open discontinuity and with (b) a closed discontinuity.

main () is defined, which is divided into two non-overlapping and distinct subdomains,

)y and €2y, sharing an open or closed interface I" (see Figs. 3.11a-3.11b, respectively),

which is moving outward with a velocity v normal to the interface. The key point

in the LSM is to represent this interface at any time ¢, with a zero level set function

i.e ¢(z,t) = 0, where ¢(z,t) is the level set function. The evolution equation for the

interface I" using the material time derivative (total derivative) can be written as:
¢

— = 111
5 +olVel =0 .11

with the initial condition ¢(z, 0) = given.

3.4.1.1 Signed distance function

One common choice for the initial condition is usually the signed distance function
such that the level set function has positive values on one side of the interface and
negative values at the other side of the interface and the interface is identified by the
zero level set function, i.e.:

> O, xTr c Ql
px) =¢ =0, xel (3.112)
< O, T c QQ

The interface I' can be regarded as the zero level contour of the level set function
¢(x). The distance d from a point x to the interface I is defined as:

= ||z — xr|| (3.113)

where, xr is the normal projection of « on I'. The signed distance function ¢(x) can
then be defined as,

¢(x) = min ||z — xr|| sign(n - (x — xr)) (3.114)
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where n is the unit normal vector (see Fig. 3.12).

Figure 3.12: Definition of the signed distance function.

3.4.1.2 Crack representation by level sets

Level set method offers also an elegant way of modeling cracks. For the modeling of
crack the level set function is defined as a signed distance function. As the crack is a
discontinuity in order to fully characterize it, two level set functions are defined: (i)
a normal level set function ¢ and (ii) a tangential level set function . Both the two
level set functions are defined as a signed distance functions.

To construct these two level sets functions the approach proposed by Stolarska
et al. (2001) was also adopted in this thesis. The crack tip segment is extended to
meet the boundary of the domain. The normal level set function ¢ is then computed
using Eq. (3.114), from the original crack segment I' (at crack tip j) and the virtual
segments (extensions) (see Fig. 3.13). The tangential level set function v is computed

[0 Crack Tip Elements  [_] Heaviside Enrichment
[] Cracked Elements (O Crack Tip Enrichment
= Crack Path

Figure 3.13: Level set functions ¢ and 1 for crack representation.

by finding the minimum signed distance to the normal vector at the crack tip. If the
crack is an interior crack then we need to define two tangential level set functions
Yy and 1)y corresponding to each crack tip. In this case, one can define a unique
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tangential level set function in order to make further computations easy, as:

Y = max(iy, V] (3.115)

It is now evident that the crack can now be fully characterized by the two level set
functions ¢ and ¢ such that ¢ = 0 and ¢) < 0 at the crack surface I". Consequently,
the crack tip is identified on an intersection of normal and tangential zero level set
functions, i.e intersection of ¢ = 0 and ) = 0. In the rest of the domain ¢ has a
positive value above the crack and a negative value below the crack, while ¢) has a
positive value to the right of the normal at the crack tip.

The crack tip level set ¢ is generally assumed to be orthogonal to ¢, i.e. ¢y = 0.
Although the actual crack is embedded inside a domain, the zero level set of ) cuts
through the entire domain. It is also assumed that once a part of a crack has formed,
that part will no longer change shape or move.

Within the framework of finite elements the level set functions ¢ and ¢, defined
above, can be interpolated within an element using the standard shape functions (Sto-
larska and Chopp, 2003) as:

P(x) = Ni(x) s (3.116)

where ¢; are the nodal values of the level set function. Furthermore, the level set
functions can also be used for determining the Heaviside enrichment function H,
such that:

+1, ¢>0

11
-1, ¢<0 (3.117)

H = sign(¢) = {

Similar, the crack tip field which enriched with crack-tip enrichment functions in the
framework of XFEM can be expressed in terms of level set functions. If the position of
a point is expressed in polar coordinates (r, #) of the crack tip coordinate system, then
in order to align the discontinuity in the enrichment function a sequence of mapping
is required to rotate each crack segment onto the crack (Belytschko and Black, 1999).
However the use of level set functions alleviate the need for such mapping and the
position of a point in the crack tip polar coordinate system can be written as:

r= /¢ + 2 (3.118)
0= atcmf (3.119)
(4
It can be seen that the ¢ is aligned with the discontinuity and varies from —7 to +.
Also, level set functions ¢ and v can also be used to identify the elements completely
cut by the crack and the elements containing the crack tip (Stolarska et al., 2001).
The elements that are completely cut by the crack can be found by the conditions:

¢min¢muz S 0 (3120)
VYrmaz < 0 (3.121)
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while the elements containing the crack tip can be found by the conditions:

¢min¢maac S 0 (3122)

3.5 Numerical aspects of XFEM

3.5.1 Selection of enrichment nodes

There have been different approaches proposed in literature, for the selection of nodes
to be enriched and the most accepted ones are described in this section.

3.5.1.1 Heaviside enrichment

One method, called Heaviside enrichment allows the discontinuity to be modelled
across the crack over the points along the crack surface. The value of the enriched
shape function remains zero at all nodes and edges that do not intersect with the
crack, in order to satisfy the inter-element continuity requirement. This method only
affects the element containing the crack, and does not directly influence adjacent
elements, even if they share a common node with the enriched element. A simple
procedure for selection of nodes for this type of enrichment is shown in Fig. 3.14,
where enriched nodes are marked by blue squares. At each stage of the propagation,
nodes on edges cut by the crack path are enriched. Even if the crack tip locates just on
an edge, the corresponding nodes are not enriched, but if a crack path passes along
the finite element edges this might be a potential source of instability.

[] Heaviside enrichment function

Figure 3.14: Heaviside enrichment type A.

3.5.1.2 Crack-tip enrichment

In an alternative procedure, the enrichment with Heaviside function is applied onto
all nodal points of elements that contain part of the crack as shown in Fig. 3.15.
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[1 Heaviside enrichment function

Figure 3.15: Heaviside enrichment type B.

3.5.1.3 Full enrichment

The most appropriate choice, however, is to use both Heaviside and crack-tip enrich-
ments where required. Accordingly, the crack-tip enrichment functions in the crack-tip
element also allow accurate representation of discontinuity in that element. The sets
of nodes that must be enriched with Heaviside or crack-tip functions are marked by
blue squares and red circles, respectively, as depicted in Fig. 3.16.

] Heaviside enrichment function

O Crack-tip enrichment function

Figure 3.16: Heaviside and crack-tip enrichments.

3.5.2 Numerical integration

The Gauss quadrature rule is widely used in finite element analysis for numerical
evaluation of various integrals over a specified domain of interest such as a finite ele-
ment and for polynomial integrands, the is proved to be exact. But, when singularities
are introduced within a finite element, this lead to transform the displacement and
stress fields into highly nonlinear fields. Also, the usual Gauss quadrature rule fails
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to integrate the field in the elements cut by the crack accurately and correctly. Thus,
a modified integration scheme is required to define the necessary points needed for
the integration within an enriched element. Hence, the enriched element is necessary
to be partitioned, in order to integrate the field properly on both sides of the discon-
tinuity. This approach has to be consistent with the geometry of the crack as well as
the order of the enrichment functions. The partitioning of elements cut by the crack
in the XFEM, is different from the re-meshing in standard FEM and is performed in
the following ways:

* The partition is done only for the integration purpose and no extra degrees
of freedoms are added to the system unlike the convetional FEM, where such
re-meshing becomes not only cumbersome but also computationally costly in
case of crack growth problems.

* The partition is done only for the purpose of integration and no conditions on
the shape of sub-quads or sub-triangles is imposed, while re-meshing in FEM
requires the construction of well shaped elements.

3.5.2.1 Sub-quad approach

Dolbow (1999) proposed a method to subdivide the element into sub-quads (see
Fig. 3.17a). Each sub-quad is then integrated by a conventional Gauss integration
rule. There is no limit in how many different number of sub-quads can be used for
elements that are cut by a crack or include a crack tip.

3.5.2.2 Sub-triangle approach

Dolbow (1999) proposed also a second method to subdivide the element at both
sides of the crack into sub-triangles whose edges are adapted to crack faces (see
Fig. 3.17b). For a crack-tip element, more sub-triangles are required in front of the
crack tip because of the existence of a highly nonlinear and singular stress field. This
method has been also adopted in this study.

cracl& crack\
N N

N

7 [ crack tip ~crack tip

(a) (b)

Figure 3.17: Partitioning the cracked element into (a) sub-quads and (b) sub-triangles.
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3.5.2.3 Limitations of enrichments

It is well-known that the XFEM approximation may become ill-conditioned, or even
fail, if the enrichment is adopted for a case where the crack passes through or very
close to a node. To avoid such a numerical difficulty, Dolbow (1999) proposed a
simple geometric criterion to determine the candidacy of a node for enrichment. The
two extreme cases of the relative position of a crack within a cracked element are
shown in Fig. 3.18. For both cases the following ratios are defined as a measure of
candidacy, as:

A_

R E G124
A+

rar = (3.125)

where AT and A~ are the area of the influence domain of a node above and below
the crack, respectively. If values of r4- or r,+ are smaller than an allowable toler-
ance value, the node must not be enriched. Dolbow (1999) proposed a tolerance
of 0.01%, although the value of it should be set according to each specific problem.
An alternative approach based on the existence of Gauss points within its support

crack crack

o o oo\ °| @ Gausspoint e o o|e o \
o o oo e\ o A" o o eo|le o o \

L] L] L] (7,)‘ [ ] L] \\A [ ] L] o <7>. L] o
(a) (b)

Figure 3.18: Criteria for node enrichment: (a) based on Dolbow (1999) definition, (b) based on the
existence of Gauss points within its support domain.

domain. In this approach, a node is enriched if each side of the crack in its influence
domain includes at least one Gauss point. Hence, node i in Fig. 3.18a must not be
enriched because there is no Gaussian point above the crack, although the crack cuts
the element where node i belongs. On the contrary, node ¢ in Fig. 3.18b has to be
enriched.



Stochastic Finite Element Analysis

Randomness is the lack of pattern or regularity. The two sources of randomness are:
(i) the impracticality of a comprehensive deterministic description and the inherent
irregularity in the phenomenon being observed (aleatoric uncertainty), and (ii) the
generalized lack of knowledge about the processes concerned (epistemic uncertainty)
(Ghanem and Spanos, 2003).

Typical problems in all engineering fields, involve media with random properties
(random media), and require complex mathematical tools for their solution. The
design of structures under static, dynamic (earthquake and wind loadings), imper-
fections in the structural elements, random fluctuations in temperature, or other
environmental loading conditions, life prediction of structures, etc. are characteris-
tic examples in the field of civil engineering. Specifically, in structural engineering,
materials with random properties are often used, such as, soils, rocks, and concrete.
The natural responses of these structures may be completely unpredictable by deter-
ministic models. Hence, powerful analysis tools based on the mechanics of random
media are very important to model these uncertainties and random characteristics of
the materials.

Mathematicians and engineers study and discover independently the theoretical
and/or numerical aspects of random medium mechanics from different points of view,
developing different methods. The stochastic finite element method (SFEM) is a pow-
erful tool rendering possible the efficient treatment of large-scale stochastic problems
due to the spectacular growth of computational power in recent years. SFEM is an
extension of the classical deterministic FE approach to the stochastic framework i.e.
to the solution of stochastic (static and dynamic) problems involving finite elements
whose properties are random. In this thesis, SFEM is implemented for the first time
within the framework of the SLA, described in Section 2.2.1, providing solutions to
the stochastic nonlinear static problems for structures made with softening materials
whose properties are randomly distributed in the whole structure, as well as providing
specific information on the probability of failure.

In this chapter, stochastic functions are used for modeling structures with random
spatially varying material properties. The necessary mathematical background is pre-
sented first involving the definition of the fundamental concepts of the stochastic

55
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functions, such as the mean value, the autocovariance and autocorrelation functions,
the correlation structure and the correlation length. This is followed by an overview of
existing techniques for the representation of the Gaussian and non-Gaussian stochas-
tic processes and fields. The spectral representation method is discussed in detail and
used to represent the stochastic fields describing the uncertain material properties.

Furthermore, the basic aspects of SFEM are presented comprising the three basic
steps of the method: The discretization of the stochastic fields, the formulation of the
stochastic stiffness matrix and the response variability calculation using either Monte
Carlo simulation or the variability response function approach. Finally, particular
aspects of coupling SFEM with SLA and useful conclusions are outlined.

4.1 Stochastic processes and fields

In computational structural mechanics, different types of problems will arise based
on what information is available. From an engineering mechanics point of view, the
most common stochastic system problem involves a linear differential equation with
random coefficients, in which the properties of the system under study are represented
by these coefficients and can be interpreted as random variables. The problem can be
mathematically expressed as:

Au=Ff 4.1)

where A is a linear stochastic differential operator, u is the random response, and
f is possibly deterministic/random excitation. Fig. 4.1 illustrates the sequence of
events leading to assigning a function to the response of a random experiment. First
the experiment is run and then the resulting response is observed. Each response
is associated with stochastic function f. The present study undertakes only the de-

‘c/ Random ‘c/ \ Random Mapping function A | Corresponding function of
| Experiment | | response u time or space f

Figure 4.1: The sequence of events leading to assigning a stochastic function f to the response of a
random experiment.

A

terministic input and random system type of problems in the context of SFEM. The
quantification of uncertainty in parameter values, a key component in SFEM, is done
using the mathematical theory of stochastic processes and fields.

4.1.1 Definitions

Each function of one or more variables, whose values are random variables, is called
stochastic function. The stochastic function is a generalization of the known func-
tions, and the difference between them, is that the former consists of a set of sample
functions (realizations) and not univocal mappings. The stochastic functions are char-
acterized as processes or fields depending on whether the independent variables are
related to time or space, respectively. The loading of a structure, the environment
temperature, a cross-section of a structural element are typical cases of stochastic
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processes/fields. This thesis deals with stochastic functions where the outcome of a
random experiment is associated with a function of space, i.e. stochastic field, which
is described by (see Fig. 4.2):
* the sample space S which includes all possible outcomes s of a random experi-
ment,
* the sample function f(z, s) which is the function associated with an outcome s,
* the ensemble which is the set of all possible space functions produced by the
random experiment,
* the space parameter z,
* the statistical dependencies among the stochastic field when z is changed.

f(xfsl)
31 ) >
f(xst)
Sy > 3 >
f(‘%‘%’)
S3 > < >
Sample space S Sample functions (realizations)

Figure 4.2: Conceptual representation of a stochastic field (sample space and three realizations of it).
In the following section, for the sake of simplicity, the basic properties of the stochastic

functions will be defined in the case of one-dimensional continuous stochastic field,
without loss of generality.

4.2 Mathematical background of stochastic fields

4.2.1 Mean value

The mean value m(z) of a stochastic field f(z) is defined as follows:
mia) = Elf(@)] = [ fa)pla)da (4.2

where, p(z) is the probability density function (PDF) of the random field.

4.2.2 Autocovariance function

The covariance of the random variables f(x;) and f(zy) is called autocovariance
function Cy; of the stochastic field f(x) and is defined as:

Cry(xy,m2) = E|[f(21) = m(a1)] - [f(22) — m(z2)] (4.3)
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The variance of the stochastic field f(x) is given by:
Var[f(x)] = o*(x) = Cp(z,z) = E[f*(z)] — m*(x) 4.4)

where ¢ is the standard deviation of the field.
The autocovariance function has the following useful properties:
* As follows from the definition in Eq. (4.3) it is a symmetric function, i.e.:

Crp(zy,22) = Cpp(o, 1) (4.5)

* It is a non-negative definite function.
* It verifies the relationship:

|Crp(w1,22)] < /Var[f(a1)] - Var[f(z)] = \/C’ff(l'lal“l) - Cyp(e,29) (4.6)

This last inequality allows to introduce the normalized autocovariance function c;;
as:

Cff($1,l’2) Cff($17$2)
) _ 4.7)
) ) Cyplan ) o) - ola)

that fullfils the following inequality:

lepp(zr, 22)| <1 (4.8)

4.2.3 Autocorrelation function

Autocorrelation function is the cross-correlation function of a field with itself. It is
a mathematical tool for finding repeating patterns or identifying the missing funda-
mental frequency in a field implied by its harmonic frequencies. The autocorrelation
function R, of a stochastic field f(z) is defined as:

Ryp(w1,29) = E[f (1) - f(22)] (4.9

i.e. the mean value of the product of the stochastic field values at two different
points of the z-axis. From Eq. (4.9) and Eq. (4.3) it is obvious that for a zero-mean
stochastic field, the autocorrelation and autovariance functions are identical. In the
case of x = x; = x,, the autocorrelation function is written as:

Ryp(x, ) = E[f*(x)] (4.10)

The cumulative distribution function (CDF) of the stochastic fields that follow the nor-
mal distribution (Gaussian fields) is fully defined by its mean and the autocorrelation
function. Gaussian fields also have the useful property that can be decomposed into
the sum of a zero-mean field and the mean value function of it.
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4.2.4 Homogeneous stochastic fields - stationary stochastic processes)

An important class of stochastic fields are the homogeneous fields, the CDF of which
does not depend on the position = (see Fig. 4.3).

Moy
W

i WAW\ \«;\

i
N/

Figure 4.3: Sample functions of a homogeneous (left) and a non-homogeneous (right) stochastic
field.

Therefore, both the mean and standard deviation of a homogeneous stochastic field
are constant and independent of the position variable x:

As expected, the autocorrelation function of a homogeneous stochastic field depends
only on the distance 7 between two points z1, x» on the z-axis and therefore:

Ryp(w1,29) = Ryp(r2 — 11) = Ryyp(T) (4.11)

The correlation coefficient p between the values f(z) and f(z + 7) of the stochastic
field is given by:

E[[f(x) —ml-[fl@ 1) =ml]  R(r) —m?

o2 o2

p= 4.12)

From Eq. (4.12) it follows that R¢(7) = o%p 4+ m?, and since p € [—1, 1], then:
—0®+m? < Ryp(1) <o® +m® (4.13)

For large distances (7 — o0), it is expected to be no relationship between the values of
f(z) and f(x + 7) and consequently, the correlation coefficient between these values
will tend to zero. Also, from Eq. (4.12) it follows that:

lim Ry (1) = m® (4.14)

T—00

Since the autocorrelation function of a homogeneous field depends only on the dis-
tance between two points, then:

Ryp(r) = E[f(x) - f(x +7)] = E[f(z) - [z = 7)] = Rys(=7) (4.15)
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and thus, R;(7) is an even function. A typical autocorrelation function of a homo-
geneous stochastic field along with its properties, as described above, is shown in
Fig. 4.4.

Figure 4.4: Autocorrelation function of a homogeneous stochastic field and its properties.

4.2.5 Ergodicity

To determine the ensemble average of a homogeneous stochastic field f(x), a suffi-
ciently large number of realizations of the field is necessary. However, researchers
usually generate a sample function and calculate an estimator of the mean field value,
i.e. the spatial average of the specific sample function (realization) as:

S

(f(2)), = / f(z)dz (4.16)

The determination of the probabilistic characteristics of a homogeneous stochastic
field, from a single sample function is possible when the spatial average can be
considered identical to the ensemble average. This can be done in the case of ergodic
stochastic fields measured in a sufficiently long interval (0, L).

4.2.6 Correlation structure

The correlation structure of a stochastic field is determined (in the Cartesian space)
from the mathematical expression of the autocorrelation function R;;. In many types
of 2D-dimensional problems and based on the existing experimental data, it can be
assumed that the variation of the test parameters (e.g. Young modulus, construction
defect) in the = dimension is completely independent of the variation in the y di-
mension. Therefore, for the stochastic field f(z,y) to be used in this thesis, a fully
separable correlation structure can be adopted (Vanmarcke, 1983). Under this as-
sumption, the autocorrelation function of the homogeneous stochastic field has the
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following expression:

Rff(Txa Ty) = U2P:v(7_x)py(7_y)
Ty = T2 — X1

Ty =Y2 — U1

where, p,, p, are the correlation functions over the axes z, y, respectively, and o is the
standard deviation of the field. In this case, R, is defined only for positive values
of 7, and 7,, and fully characterizes the correlation structure of the field (quadrant
symmetry). Apart from the fully separable correlation structure, which is the most
common in practical applications, there are other types of structures described in
detail in Vanmarcke (1983).

4.2.7 Correlation length

An important parameter associated with the amplitude of the fluctuation of a stochas-
tic field is the correlation length. This quantity determines the degree of correlation
between the values f(z;) and f(z5) of the stochastic field in two different positions
and constitutes a measure of the number of the uncorrelated random variables needed
for the field description with a satisfactory quality.

In several technical problems, where homogeneous stochastic fields are used, the
correlation length is usually defined as follows:

b:/|p(7')|d7' (4.17)
0

where, p(7) is the normalized (divided by the standard deviation) autocorrelation
function of the stochastic field. For example, if:

p(r) =e "l >0

the correlation length is given by:

o0

1
b= /e_aTdT = —
o

0

When the correlation length tends to infinity (b — o), the field is considered as
fully correlated. In this case, all the random variables are linearly dependent between
them and thus the stochastic field degenerates to a random variable. If the correla-
tion length tends to zero (b — 0), the field tends to the ideal white noise and it is
completely uncorrelated.

4.2.8 Power spectral density function

The Fourier analysis is fundamental in the application of stochastic fields since all of
the properties of a stochastic field can be formulated in a simple and more elegant
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manner in the space of frequencies. In particular, the Fourier transform of the autocor-
relation function R;;(7) of a homogeneous stochastic field leads to the power spectral
density function (SDF) of this field, i.e.:

o0

1 .
Srr(w) = gy / Ryp(m)e ™Tdr (4.18)

—00

As expected, the inverse Fourier transform gives the autocorrelation function:

o0

Rys(7) = / Srr(w)e™T dw (4.19)

—0o0

Egs. (4.18)-(4.19) are the pair of Wiener-Khintchine transform pair.
The most important property of the SDF follows from Eq. (4.19) for 7 = 0, i.e.:

o)

Ry(0) = E[f*(x)) = / S (w)dw 4.20)

This means that the mean square of the homogeneous field f(x) is equal to the area

S, (w)“

Elf 1z)]

< >

Figure 4.5: Power spectral density function: the area under the curve is equal to E[f?(z)].

enclosed by the graph of S¢¢(w) and the frequency axis w, as depicted in Fig. 4.5. An
even more interesting property obtained for zero-mean homogeneous stochastic fields
is that their mean square value coincides with their variance, since 0? = E[f?(x)] —m?
and Eq. (4.20) becomes:

Ry(0) = E[f2(2)] = 0 = / S; () dw 4.21)

Eq. (4.21) helps in understanding the physical meaning of the SDF, i.e. the values
of this function correspond to the contribution of each frequency w (or each wave
number ) in the total fluctuation of the stochastic field. Sy is also called power
spectrum, and is a real function and symmetric with respect to the vertical axis (see
Fig. 4.5), thus, it is often characterized as two-sided function.
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4.3 Representation of stochastic processes and fields

The first step in the analysis of uncertain systems (in the framework of SFEM) is
the representation of the input of the system. This input usually consists of the me-
chanical and geometric properties as well as of the loading of the system (left and
right hand side of the equilibrium equation, respectively). Characteristic examples
are the Young modulus, Poisson ratio, yield stress, cross section geometry of physical
systems, material and geometric imperfections of shells, earthquake loading, wind
loads, waves etc. A convenient way for describing these uncertain quantities in time
and/or space is the implementation of stochastic processes and fields, the probability
distribution and correlation structure of which can be defined through experimen-
tal measurements. However, in most cases, due to the lack of relevant experimental
data, assumptions are made regarding these probabilistic characteristics. Two main
categories of stochastic processes and fields can be defined based on their probability
distribution: (i) Gaussian and (ii) non-Gaussian.

In the next sections, a brief review of the techniques for the simulation of Gaussian
stochastic fields, used for the purposes of this thesis, are presented. For the sake of
simplicity, the presentation is made for one-dimensional stochastic fields (variable
in space). The same expressions hold for stochastic processes but with time ¢ as the
independent variable.

4.4 Simulation methods for Gaussian stochastic processes and
fields

Despite the fact that most of the uncertain quantities appearing in engineering systems
are non-Gaussian in nature (e.g. material, geometric properties, wind, seismic loads),
the Gaussian assumption is often used due to its simplicity and the lack of relevant
experimental data. From the wide variety of methods developed for the simulation
of Gaussian stochastic processes and fields, two are most often used in applications:
(a) the spectral representation method (Shinozuka and Deodatis, 1991, 1996) and
(b) the Karhunen-Loéeve (K-L) expansion (Ghanem and Spanos, 2003). A unified ap-
proach for generating Gaussian random field simulation methods (including spectral
representation and K-L expansion) has been proposed by Poirion and Puig (2005).

Spectral representation algorithms are nowadays available covering various kinds
of Gaussian stochastic fields (multi-dimensional, multi-variate, non-homogeneous)
and the computational cost for the generation of homogeneous Gaussian sample
functions can be drastically reduced by using the fast Fourier transform technique
(FFT). Spectral representation has been successfully implemented in the framework
of Monte Carlo Simulation (MCS) for the solution of realistic problems with the
stochastic finite element approach.

The spectral representation method serves as the starting point to simulate the
non-Gaussian random fields (see Section 4.5.1) used in the numerical examples of
the thesis (see Section 6.1).
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4.4.1 The spectral representation method

The spectral representation method is one of the most widely used methods for
the simulation of Gaussian stochastic fields. Shinozuka and Jan (1972) applied
the spectral representation method in simulation of multidimensional, vector and
non-homogeneous fields, based on theoretical background of the method for one-
dimensional scalar stochastic fields.

In the general case, the spectral representation method expands the stochastic field
f(x) as a sum of trigonometric functions with random phase angles and amplitudes.
The version having only random phase angles is adopted in most applications because
it leads to sample functions that are ergodic in the mean value and autocorrela-
tion (Grigoriu, 1993). If f(x) is a zero-mean one-dimensional uni-variate (1D-1V)
homogeneous stochastic field with real values and two-sided SDF S;;(w), the spectral
representation of the field is initially given by the following fundamental relation
(Shinozuka and Deodatis, 1991):

[cos(wx)du(w) + sin(wzx)dv(w)] (4.22)

where, u(w) and v(w) are two real zero-mean independent Gaussian fields, with or-
thogonal steps du(w) and dv(w), respectively, for which:

Eldu*(w)] = Eldv*(w)] = 254 (w)d(w) (4.23)

The stochastic integral of Eq. (4.22) is defined as the limit in the mean square sense
of the following sequence:

f(z) = lim Z[cos(wkx)Uk + sin(wpr) V] (4.24)

max(Awy)—0

where Uy, = u(wg11) —u(wg), Vi = v(wis1) — v(wy). Since the fields u(w) and v(w) have
orthogonal steps, it can be shown that the sequences {U,} and {V}} are statistically
independent with mean value equal to zero and variance equal to:

WE41
O']% =2 / Sff(w)d(w) ~ ZSff(wk)Awk (425)

Wk

For small values of Awy, the following approximation can be used:

Jappr( Z cos(wpx) Uy, + sin(wix) V] (4.26)
k=0
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with the mean square error given by:

err = B[(f(2) — fappr())’]

WEk+41

- 2
Z / [ coswr — coswyT)? + (sinwz — sinwyr)? | S p(w)dw (4.27)
k=0

The error tends to 0 when the SDF has the special form of:

Sff ZSff Wi (5(&0 wk) (428)
k=0

where § is the Dirac function. In applications, the field approximation given by
Eq. (4.26) is used, for a finite number of terms:

=

fappr(x) = [cos(wrz)Uy + sin(wgz) V] (4.29)
0

i

where N is an integer selected such that all the frequencies corresponding to non-
negligible spectral power to contribute to the simulation of the field. Eq. (4.29) can
be re-written also in the form of:

N-1

fappr Z AkCOS wkw) + cbk] (4.30)
k=0

which gives the spectral representation of the stochastic field f(z), with:
Uk = AkCOS(I)k and Vk = AkSZTL(I)k

Eq. (4.30) leads to zero-mean homogeneous stochastic fields and the target second
order moments of the fields are satisfactorily approximated if the error of Eq. (4.27)
is not important. For a small number of terms N, the fields generated by Eq. (4.30)
are quite different in the distribution and correlation structure (Spanos and Zeldin,
1998). The parameters involved in Eq. (4.30) are given in detail by (Shinozuka and
Deodatis, 1991):

Ak = QSff(wk)Aw, k= {0, 1, 2, ceey N — 1}

wr = kAw, k={0,1,2,...,N —1} (4.31)
Wy
Aw = N
and,
with AO =0or Sff(lio = 0) =0 (432)

where the parameter w, is a cut-off frequency defining the active region of the SDF
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Str(k) of the stochastic field, i.e. beyond w, the SDF may be considered equal to zero
because of the negligible values it takes. Usually for determining w, the following
equation is used:

/Sff(w)dw =(1- tol)/Sff(w)dw (4.33)
0 0

where, tol is a small value, e.g. 0.0001. However, the simplest way of determining the
cut-off frequency is the graphical way by a rough estimation of it on the Sy plot. Since
w, is constant, the frequency step Aw — 0 when N — oc. Also, for a given number of
terms NN, the step Aw is constant, see Eq. (4.31). &y, ®1,...,Px_; in Eq. (4.30) are
independent random phase angles uniformly distributed in the range [0, 27]:

=, in [0,27]
=< ’ 4.34
po(9) { 0, otherwise (4.34)
Each sample function fél?pr(x) of the simulation can be obtained by substituting the
random phase angles ®g, @1, ..., ®y_; with the corresponding random values in the
sample (i), ((f), ¢§’), . ,¢§;>_1 as these are produced by a random number generator:
N-1 ‘
Fioee(x) = D Arcos|(wiz) + ¢ (4.35)

B
Il

0

fappr has the following properties (Shinozuka and Deodatis, 1991):
(i) Itis asymptotically a Gaussian stochastic field as N — oo due to the central limit
theorem.
(i) Its mean value and autocorrelation function are identical to the corresponding
targets as N — 00, i.e. E[fappr(z)] = E[f(x)] = 0 (see Eq. (4.9)).
(iii) Under the condition of Ay = 0 or S;f(ro = 0) = 0, it can be shown that f©(z)
is a periodic function with period Ty = 27/ Ax.

In the general case, the spectral representation method expands the stochastic field
f(x) as a sum of trigonometric functions with random phase angles and amplitudes.
The version having only random phase angles is adopted in most applications because
it leads to sample functions, that are ergodic in the mean value and autocorrela-
tion (Grigoriu, 1993). The amplitudes are then deterministic and depend only on the
prescribed power spectrum of the stochastic field (see Eq. (4.31)).

4.5 Simulation methods for non-Gaussian stochastic processes
and fields

The problem of simulating non-Gaussian stochastic processes and fields has received
considerable attention recently in the field of stochastic mechanics. This is due to
the fact that several quantities arising in practical engineering problems exhibit non-
Gaussian probabilistic characteristics. Especially the mechanical and geometrical prop-
erties of construction materials and soil properties are physical quantities that take
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only positive values (e.g. Young’s modulus, cross-sectional dimensions, density). The
use of Gaussian distribution for their simulation, probably leads to negative values of
these quantities. This probability is usually very small for small variations but may
increase significantly in the case of large fluctuations of these quantities. If negative
values occur even for a small part of a structure, numerical instabilities in the analysis
of the structure will occur (e.g. non-positive definite stiffness matrices) that usually
lead to incorrect results. It is therefore necessary to develop reliable algorithms for
the production of samples of non-Gaussian stochastic processes/fields.

Despite the problems outlined above, the Gaussian distribution is still widely used
in practical applications mainly due to its simplicity. Gaussian processes are fully
defined by the first and second order moments, they are symmetrical with respect to
zero and the generation of sample functions is directly related to the application of the
central limit theorem. In contrast, to fully characterize a non-Gaussian stochastic field,
all the joint multi-dimensional density functions are needed, and thus a number of
studies have been focused on producing a more realistic definition of a non-Gaussian
sample function from a simple transformation of some underlying Gaussian field with
known second-order statistics.

Simulation methods for non-Gaussian stochastic processes and fields can be grouped
into two main categories. Those which seek to produce sample functions matching
the prescribed power SDF and lower-order statistics (mean, variance, skewness and
kurtosis) of a target stochastic field (Gurley et al., 1997) and those seeking to gen-
erate sample functions compatible to complete probabilistic information (Deodatis
and Micaletti, 2001; Grigoriu, 1998; Yamazaki and Shinozuka, 1988). The first type
of methods are suitable for the simulation of wind and wave loads, for which non-
Gaussian sample functions generated according to prescribed lower-order moments
will provide accurate results for the stochastic response. However, sample functions
having only the prescribed lower moments are not sufficient for the successful solution
of problems where the accurate characterization of the tails of the distributions is of
importance. When dealing with such types of problems, the use of methods belonging
to the second category is required. The methods belonging to the second category
is qualitatively superior to those of the first, because they lead to sample functions
having the same distribution function which is equivalent to an infinite number of
moments.

A non-Gaussian stochastic process which is defined by the lower order moments is
likely to lead to sample functions with significantly different distributions as there are
infinite distribution functions that have the same lower order moments. In general,
the problem of deciding appropriate simulation for a non-Gaussian process doesn’t
have a unique solution. In the following section of this thesis a brief review of trans-
lation approach belonging to the second category of methods (Grigoriu, 1998) is
outlined. The description of the method is done in two dimensions as implemented
for the purposes of this thesis and is based on the concept of a nonlinear memory-less
transformation of Gaussian to non-Gaussian process (Grigoriu, 1984).
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4.5.1 Correlation distortion methods - Translation fields

If g(x) is a homogeneous zero-mean Gaussian field with unit variance and spectral
density function (SDF) Sy, (k), or equivalently autocorrelation function Ry, (¢), a ho-
mogeneous non-Gaussian stochastic field f(x) with power spectrum S} ,() can be
defined as:

flx) = F~'. ®g(x)] (4.36)

where @ is the standard Gaussian cumulative distribution function and F is the non-
Gaussian marginal cumulative distribution function of f(x). The transform F~! . &
is a memory-less translation since the value of f(x) at an arbitrary point x = (z,y)
depends on the value of g(x) at the same point only and the resulting non-Gaussian
field is called a translation field (Grigoriu, 1998).

Translation fields can be used to represent various non-Gaussian phenomena and
have a number of useful properties such as the analytical calculation of crossing rates
and extreme value distributions, but they also have some limitations, the most impor-
tant one from a practical point of view is that the choice of the marginal distribution
of f(x) imposes constraints to its correlation structure. In other words, F" and S},(),
or R, (£), have to satisfy a specific compatibility condition derived directly from the
definition of the autocorrelation function of the translation field:

= / / FH®(g1)|F @ (92)] - 0191, g2; Rgg(€)]dgrdge (4.37)

—00 —00

where g1 = g(x), g2 = g(x + &), ¢[g1, 92; Ry9(&)] denotes the joint density of g;, g» and
& is the space lag. If F' and S?f(n) are proven to be incompatible through Eq. (4.37),
i.e. if R},(£) has certain values lying outside a range of admissible values and/or the
solution R,,(§) is not positive definite and therefore not admissible as an autocor-
relation function, there is no translation field with the prescribed characteristics. In
this case, one has to resort to translation fields that match the target SDF approxi-
mately (Shields et al., 2011).

In the present thesis, Eq. (4.36) is used for the generation of non-Gaussian transla-
tion sample functions representing the uncertain material properties of the problem.
Sample functions of the underlying homogeneous Gaussian field ¢g(x) are generated
using the spectral representation method. This method is well suited in the context of
Monte Carlo simulation (MCS) technique used for calculating the response variability
of stochastic structural systems, e.g. Stefanou and Papadrakakis (2004).

For a two-dimensional stochastic field, the i-th sample function is given by (Shi-
nozuka and Deodatis, 1996):

N1—1Na—1

=2 Z Z (AL cos(Kin @ + Ko,y + ¢L0)+

n1=0 n2=0

—I—Ammcos(/ilmx — Kon, Y + gbgi)%))] (4.38)

where ¢, j = 1,2 represent the realization for the i-th simulation of the indepen-
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dent random phase angles uniformly distributed in the range [0, 27] and A,(fl)m, A&fﬂm
have the following expressions:

Aflll)m = \/QSgg</€1n1, Rang ) AK1 AR (4.392)

AB, = /28, (R1ny —F20) Ay Ariy (4.39b)
where,

Kin, = NARK, Kop, = NaAks (4.40)

Aky = ’% Aky = ’%‘ (4.41)

and nlz{O,l,...,Nl—l}, n2:{071,...,N2_1}

N;,j = {1, 2}, represent the number of intervals in which the wave number axes are
subdivided and «j,,j = 1,2, are the upper cut-off wave numbers which define the
active region of the power spectrum Sy, (k1, k2) of the stochastic field. The last means
that S, is assumed to be zero outside the region defined by:

—k1y < K1 < Ky and — Koy, < Ko < Koy (4.42)

Typical shapes of realizations of a lognormal translation field for weak, medium and
strong isotropic correlation (b = b; = bs), respectively, are shown in Fig. 4.6.

Figure 4.6: Realizations of a lognormal translation field for (a) weak, (b) medium and (c) strong
correlation, respectively (¢ = 0.1).

The SDF of the underlying Gaussian field used in the numerical examples (see
Section 6.1) is of square exponential type (see Fig. 4.7):

Sgg(k1, ko) = 03()41—:26:@[ - }l(bf/@f + bgli%)] (4.43)
where o, denotes the standard deviation of the stochastic field and b;,b, denote
the parameters that influence the shape of the spectrum, which are proportional to
the correlation lengths of the stochastic field along the z,y axes, respectively. The
squared exponential model is a realistic correlation model for softening materials
(e.g. concrete) suggested by the Joint Committee on Structural Safety (Allaix and
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Figure 4.7: Spectral density function of square exponential type (o = 0.1 and b = b; = by = 50).

Carbone, 2009; JCSS, 2001) and also used for the same purpose in Vorechovsky
(2008); Yang and Xu (2008). In this case, the SDF of the translation field will be
slightly different from S, due to the spectral distortion caused by the transform of
Eq. (4.36) (Papadopoulos et al., 2009).

4.6 The stochastic finite element method (SFEM)

The most important issue in stochastic mechanics is the propagation of uncertainty
through the system and the assessment of its stochastic response. Nowdays, this is
mainly addressed in the framework of the stochastic finite element method (SFEM).
SFEM is an extension of the classical deterministic approach for the solution of stochas-
tic (static and dynamic) problems and has received considerable attention especially
in the last two decades, due to the continuously rising computational power. SFEM in-
volves finite elements whose properties are random and has been successfully applied
in a wide variety of problems (e.g. solid, structural and fluid mechanics, acoustics,
heat transfer).
The two main variants of SFEM as appearing in the literature are:
* the perturbation approach (Kleiber and Hien, 1993),
* the spectral stochastic finite element method (SSFEM) (Ghanem and Spanos,
2003)
The first approach is based on a Taylor series expansion of the response vector, while
in the second, each response quantity is represented using a series of random Hermite
polynomials. In these two SFEM variants, Monte Carlo simulation (MCS) can also be
added (which is also used in the present thesis).
The SFEM comprises three basic steps:
(i) the formulation of the stochastic stiffness matrix (first at the element and then
at the global-system level),
(i) The discretization of the stochastic fields representing the uncertain system
properties,
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(iii) the response variability calculation (response statistics).
These steps along with their computational aspects are described in the following
sections.

4.6.1 Formulation of the stochastic finite element matrix

The classical theory of finite elements based on the virtual work principle serves to
to derive the stochastic stiffness matrix of the system by discretizing the continuous
medium to a number of nodes and elements. With the use of the shape function
matrix IV, the displacement field u inside each element is expressed in terms of the
nodal displacements vector d as follows:

u=Nd (4.44)

The displacement field is chosen so as to satisfy the compatibility of deformations at
each element (kinematics compatibility). To ensure the equilibrium conditions, the
principle of virtual work is used:

W = Wert — int — () (4.45)

where, W is the work of external loading, and W is the work of internal loading.
The strain field € of an element is given by:

e =Bd (4.46)

where, B is the deformation (strain-displacement) matrix (derivative of the shape
function matrix). Neglecting the effect of thermal, the stress vector o can be written
as:

oc=CBd (4.47)

where, C is the constitutive matrix.

When the material properties are involving randomness, they fluctuate spatially
and their variation can be described in the general case, from a nD — mV stochastic
field. The constitutive tensor is then written as follows:

C = Gyl + f()] (4.48)

where f(x) is a zero-mean homogeneous stochastic field with autocorrelation function
R¢y, and C, is the mean value of C.
By imposing into an element (¢) a virtual displacement field %(®):

a®) = N©d© (4.49)

and introducing the external loading vector f¢**, the principle of virtual work gives:

)" pest _ / 20T g g1/ (4.50)

Vv (e)
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and substituting Egs. (4.46) - (4.48) into Eq. (4.50):

d©” pert — J<6>T{ / B(e)TC(e)B(e)dV(e)]d(e) (4.51)
Vv (e)
—de" [ / B By + / B B ) (2)av© | d©)
V() Ve

Eq. (??) contains the stochastic stiffness matrix of an element (e) which can be written
as:

k© = / BYCY BV + / BOTCY BO O (g)dv© (4.52)
V(e V(e
]1:(()2) AE;(E)

where ]kée) and Ak® are the deterministic and fluctuating parts of the stochas-
tic finite element matrix, respectively, B is the deterministic deformation (strain-
displacement) matrix, C((f) is the mean value of the constitutive matrix and V(© is the
volume of the finite element.

The global stochastic matrix of the system has a similar form and is formed by
assembling all k'® as follows:

Ne
K = Z k) = K, + AK (4.53)

e=1

where N, is the total number of finite elements. Finally, static analysis in the context
of SFEM, results in the solution of the algebraic problem given below:

(Ko + AK)u = f (4.54)

where f¢* and u are the loading and displacement vectors, respectively. In the case
of large-scale systems, the solution of this problem is computationally demanding and
thus constitutes the crucial point in the applicability and efficiency of the SFEM.

For the calculation of elemental stochastic stiffness matrix k(® the discretization of
the stochastic field f () is required, as it is clearly shown in Eq. (4.52).

4.6.2 Discretization of stochastic processes and fields

The second step of the SFEM is the discretization of the stochastic fields used to
represent the uncertain mechanical and geometric system properties. The term dis-
cretization refers to the approximation of the continuous stochastic field f(x) by a
finite number of random variables f; forming a random vector, i.e.:

f(x) = discretization = f(x) = {f;}, i={1,2,...,n} (4.55)

The discretization methods can be split into two main categories:
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* point discretization methods,

* average-type discretization methods
In the first category of methods, the final random variables are the values of the
stochastic field at specific points of the system domain (element centroid, nodes, in-
tegration points), while in the second category of methods, the random variables
are defined as (weighted) integrals of the stochastic field over each finite element.
The main representatives of the first category are the midpoint (Der Kiureghian and
Ke, 1988) (which is used in this study), nodal point, integration point (Brenner and
Bucher, 1995) and interpolation methods (Liu et al., 1986), while the local aver-
age (Vanmarcke, 1983) and weighted integral methods (Deodatis, 1991) are the
main representatives of the second group.

4.6.2.1 The midpoint method

The midpoint method is one of the most widespread discretization methods in stochas-
tic finite element analysis (Der Kiureghian and Ke, 1988). The method consists in the
approximation of the stochastic field in each finite element (¢) from a random variable
defined as the value of the field at the centroid of the element. The coordinates of the
centroid z are given as a function of the coordinates of nodes x; of the element (e)
according to:

1 q
ri==- Z xg»e) (4.56)
4q i

where ¢ is the total number of nodes of the element. It has been proven that the
method overestimates the variation of stochastic field within each element (Der Ki-
ureghian and Ke, 1988).

4.6.2.2 Mesh size selection for discretization

In order to discretize the stochastic field, a suitable mesh is required. The meshes used
for the discretization of the continuum and of the stochastic field should be selected
based on different criteria. Specifically:

* The finite element grid is usually determined by geometry and expected changes
in the stress field, e.g. in stress concentration areas, a mesh refinement is re-
quired.

* The mesh size for the discretization of the stochastic field is mainly determined
by the correlation length which is directly related to its variability.

Therefore, it is possible and perhaps more effective to use two different meshes in
practical applications. However, the use of a single mesh is very convenient. The
ideal case is one in which the mesh size chosen for the correct description of the
geometry of the structure and the changes of stress field can also describe adequately
the variability of stochastic field.

Concerning the size of the stochastic mesh, Der Kiureghian and Ke (1988) proposed
the value Lrr =~ b/4 + b/2, where b is the correlation length parameter and Lyf is
the typical element size in the random field mesh. This result has been obtained by
repeatedly evaluating the reliability index of a beam with stochastic rigidity using
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meshes with decreasing element size. This range of Lz was also confirmed by Li and
Der Kiureghian (1993) and Zeldin and Spanos (1998) who arrived to this conclusion
by comparing the power spectra of the random fields before and after discretization.

Since the correlation length is a constant, discretization mesh of the stochastic field
can have a “regular” form, i.e. subdivide the domain into equal length segments,
squares or cubes depending on the dimension of the problem. Several researchers
construct the discretization mesh of the stochastic field with a simple composition
of two or more finite elements (Liu and Kiureghian, 1991). This leads to a drastic
reduction in the number of random variables of the problem and any discretization

version f(x) of the field can easily be represented in the existing finite element mesh.

4.6.3 Response variability calculation

In the third and last step of the SFEM, Monte Carlo simulation is used, as the simplest
method for computing the response variability in the framework of SFEM. In the
framework of MCS (Gentle, 2003; Rubinstein and Kroese, 2007), the deterministic
problem is solved a (large) number of times and the response variability is calculated
using simple relationships of statistics. Due to its robustness and simplicity, MCS is
often used in the literature as a reference method in order to check the accuracy of
other approaches and is sometimes combined with the two aforementioned SFEM
variants (Ghanem and Pellissetti, 2002) (cf. Section 4.6).

4.6.3.1 Direct Monte Carlo simulation (MCS)

In this method, N,;,, samples of the stochastic system matrix are generated using a
random number generator and the final equilibrium Eq. (4.54) is solved N,;,, times,
leading to a population (sample) of the response vector. Based on this population, the
response variability of the system is calculated using simple relationships of statistics.
For example, if u; is the displacement at the i-th d.o.f., then the unbiased estimates
of the mean value and variance of the sample are:

1 Nsim
E(u;) = u;(n) (4.57)
Nsim n—1
1 Nsim
2 = —— 2(n) — N« E?(w
0= iy [0 )]

It is obvious that the accuracy of the estimation depends on the number of samples
and, in particular, the estimate of standard deviation o is inversely proportional to
v/ Ngim. A small number of samples e.g. N,;,, &~ 50 permits only a rough approximation
of the mean value and variance of the response, while with a larger sample size e.g.
Ngim =~ 500, it is possible to estimate the CDF of the response (Schuéller, 2006).
The solution of N, deterministic problems has a significant computational cost
especially in the combined case of large-scale systems and of considerable stochastic
dimension. It is therefore desirable to combine MCS with discretization methods that
do not involve a large number of random variables such as the midpoint or the local
average method, which lead to only one random variable per finite element. However,
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the development of robust and efficient solution algorithms in conjunction with the
increasing availability of powerful computers and the suitability of the method to
parallel processing with ideal efficiency, alleviate this limitation to a large extent.
Thus, direct MCS is today a powerful (and perhaps the only universal) tool for treating
complex SFEM applications.

4.6.3.2 Variability response function approach

The response variability of stochastic systems can alternatively be computed using
the concept of variability response function (VRF), introduced by Shinozuka (1987).
VRFs have been established for an efficient evaluation of the variance and sensitivity
of the response of stochastic systems where properties are modeled by random fields,
in contrast to computationally expensive Monte Carlo simulations. It has been applied
in a variety of structural systems including trusses, frames, plane stress/plane strain
systems, plates and shells with a single or with multiple correlated random properties.

The VRF for the structural system can be calculated by fast MC simulation (Shi-
nozuka, 1987), considering the covariance of the response displacement at a point
of interest in a statically determinate structure with randomly fluctuating material
properties modeled using random fields. To this end, it is possible to express the
vector of displacement variances as a function of the VRF of the system:

Var(u) = /VRF(/@)Sff(n)dFa (4.59)

The numerical estimation of the VRF through a fast MCS procedure based on Eq. (4.59)
(see below), is very important as the closed-form analytic expressions existing in the
literature involve modulating functions that are very difficult to establish even in the
simplest cases of statically indeterminate linear beams (Papadopoulos et al., 2006)
or statically determinate beams with nonlinear (power) constitutive laws (Teferra
and Deodatis, 2012), as well as for plane stress/strain systems (Arwade and Deodatis,
2011; Wall and Deodatis, 1994). In these studies, it is shown that the VRF is a func-
tion of the deterministic parameters describing the geometry, material properties and
loading of the structure. VRFs are useful mainly for two reasons: (i) they provide in-
sight into the mechanisms controlling the response of stochastic systems and, (ii) they
allow the establishment of spectral-distribution-free upper bounds on the response
variability, i.e.:

Var(u) = /VRF(K';)Sff(K';)dFL < VRF(k) / Sts(k)dk = VRF(R)o} (4.60)

where & is the wave number at which the VRF takes its maximum value. This upper
bound is physically realizable and corresponds to the case in which the random field
f(z,y) becomes a random sinusoid:

f(z,y) = V20 cos(kz + fay + @) (4.61)
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where ¢ is a random phase angle uniformly distributed between 0 and 27 and o is the
standard deviation of the random sinusoid. It is worth noting that (Papadopoulos et al.,
2005, 2006) established exact expressions for the upper bound of the displacement
variability of statically determinate and indeterminate beams using VRFs based on
the inverse of the elastic modulus.

In addition to providing a means for computing spectral-distribution-free upper
bounds on the response variability, the VRF can qualitatively reveal which types of
spectral density function will cause significant response variances (see Eq. 4.59). That
is, VRFs provide insight into the importance of the shape of the spectral density func-
tions of the random properties on the response variance. The proof of VRF existence
in the nonlinear problems considered in this thesis is not straightforward and requires
the application of a generalized VRF methodology described by Teferra and Deodatis
(2012).

The basic steps of the fast MCS approach used in the numerical example of this
study, are described in the following:

* Generate N realizations of a random sinusoid with standard deviation o and
wave number K = (K1, K») that describes the elastic modulus:

fi(x,y) = V20 cos(fx + koy + ¢;), 7=1{1,2,...,N} (4.62)

Rather than picking up the ¢;’s randomly in [0, 27|, they can be selected at N
equal intervals in this range for significant computational savings.

e Compute N sample responses using the NV realizations of f(x,y).

* Compute the variance of the response from the N sample responses.

* Determine VRF(R) from:

Var(u)

2
9

VRF(#) = (4.63)

Repeat the previous four steps for different values of £ until the VRF is estimated
over a sufficient range of wave numbers.

The fast MCS procedure described above can be implemented into the framework of
a deterministic FE code making this approach very general. In addition, this approach
is usually very efficient as convergence is achieved with N as low as 10-20 for each
wave number.



Optimization in Structural Design

One of the most fundamental principles in our world is the search for an optimal state.
The scientific field of optimization has been the focus of much attention in recent
years primarily because of the rapid progress in computer technology, including the
development and availability of user-friendly software and high-speed processors
with parallel computing capabilities. Engineers, analysts, and managers are often
faced with the challenge of making tradeoffs between different factors in order to
achieve desirable outcomes. Optimization is the process of choosing these tradeoffs
in the optimum way. Many engineering problems can be defined as optimization
problems, e.g. the process of design, finding optimal thickness of steel in pressure
vessels, designing a bridge by minimizing weight or maximizing strength, selecting a
flight plan for an aircraft to minimize time or fuel use, or designing of water resources
systems for maximum benefit.

Hence, optimization is viewed as a decision problem that involves finding the
best values of the decision variables over all possibilities. The power of optimization
methods to determine the best case without actually testing all possible cases comes
through the use of a modest level of mathematics and at the cost of performing
iterative numerical calculations using clearly defined logical procedures or algorithms
implemented on computing machines. That’s why, these families of computational
methods, which are sometimes collectively termed soft computing are among the top
ten computational methods of the 20th century!.

Components of optimization problem

Design vector
Any engineering system or component is defined by a set of parameters some
of which are viewed as variables during the design process. In general, cer-
tain quantities are usually fixed at the outset and these are called pre-assigned
parameters. All the other quantities are treated as variables in the design pro-
cess and are called design or decision variables x;, i = 1,2,...,n. The design
variables are collectively represented as a design vector X = (xy,7,...,2,)7.

1JACM Expressions Vol.19: http://www.cimne.com/iacm/News/Expressions.htm.
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Objective Function (fitness)
The conventional design procedures aim at finding a feasible design that merely
satisfies the functional and other requirements of the problem. In general, there
will be more than one feasible design, and the purpose of optimization is to
choose the best one of the many feasible designs available. Thus a criterion
has to be chosen for comparing the different alternative feasible designs and
for selecting the best one. The criterion with respect to which the design is
optimized, when expressed as a function of the design variables, is known as
the criterion or merit or objective function. The choice of objective function is
governed by the nature of problem. The objective function for minimization is
generally taken as weight in aircraft and aerospace structural design problems.
In civil engineering structural designs, the objective is usually taken as the
minimization of cost. The maximization of mechanical efficiency is the obvious
choice of an objective in mechanical engineering systems.
Design constraints

Any optimization problem can be classified as constrained or unconstrained, de-
pending on whether or not constraints exist in the problem. A problem that does
not entail any equality or inequality constraints is said to be an unconstrained
optimization problem. In many practical problems, the design cannot be cho-
sen arbitrarily; rather, it has to satisfy certain specified functional and other
requirements. The restrictions that must be satisfied to produce an acceptable
design are collectively called design constraints. Moreover, the designs satisfying
all design constraints are called feasible designs.

5.1 Structural optimization

Structural Optimization represents the scientific field where optimization techniques
are used in order to achieve design goals in structural engineering field with a highly
accurate modeling of reality. Its topics include structural design (e.g., pressure ves-
sel design, welded beam design), shape optimization, topological optimization (e.g.,
airfoil), product designs and others. In structural optimization, design objectives are
structural criteria used to evaluate the merit of a design such as minimum construc-
tion cost, minimum life-cycle cost, minimum weight, and maximum stiffness. Building
code provisions, which provide safety and service ability requirements to the structure,
usually appear as the design constraints.

There are three major structural optimization problems namely: (i) Sizing, (ii)
Shape and (iii) Topology Optimization, respectively. Initially structural optimization
was focused on sizing optimization, such as optimizing cross sectional areas of truss
and frame structures, or the thickness of plates and shells. Later on, the problem of
finding optimum boundaries of a structure and optimize its shape was considered. In
the former case the structural domain is fixed, while in the latter case it is not fixed
but it has a predefined topology. In both cases a non-optimal starting topology can
lead to sub-optimal results. To overcome this deficiency structural topology optimiza-
tion needs to be employed, which allows the designer to optimize the layout or the
topology of a structure by detecting and removing the low-stressed material in the
structure which is not used effectively.
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In this study only shape optimization problems will be considered, where the shape
problem is defined on a domain which is unknown a priori. Thus, the optimum shape
of the domain is obtained so as to improve structural properties under consideration
of specified constraints. Fig. 5.1, shows a typical example of a multi-step shape opti-
mization of L-shaped bracket design problem? with the initial (Fig. 5.1a), as well as
the optimum shape (Fig. 5.1b) of it.

(a) (b) (c)

Figure 5.1: Multi-step shape optimization of L-shaped bracket design problem: (a) Initial shape, (b)
Optimal surface (by out-of-plane variation), (c) Optimal boundary (by in-plane variation).

5.1.1 Problem definition

Structural optimization problems are characterized by objective and constraint func-
tions that are generally non-linear functions of the design variables. These functions
are usually implicit, discontinuous and non-convex. In general there are three classes
of structural optimization problems: sizing, shape and topology or layout problems.
Structural optimization was focused at the beginning on sizing optimization, such
as optimizing cross sectional areas of truss and frame structures, or the thickness of
plates and shells and subsequently later the problem of finding optimum boundaries
of a structure and optimizing its shape was also considered. In the former case the
structural domain is fixed, while in the latter case it is not fixed but it has a predefined
topology.

The mathematical formulation of structural optimization problems can be expressed
in standard mathematical terms as a non-linear programming problem, which in
general form can be stated as follows:

opt: F(s)
subject to: g¢;(s) <0, j=1,..k (5.1)

low up ;o
50 <s;<s;7, i=1..,n

where s is the vector of design variables, F'(s) is the objective function to be optimized
(minimized or maximized), g;(s) are the behavioral constraint functions, s and s.”
are the lower and upper bounds of the i*" design variable. Due to fabrication limita-
tions the design variables are not always continuous but discrete since cross-sections

2Toyota Technology Institute, Solid Mechanics Laboratory (http://www.toyota-ti.ac.jp/english/
research/labolatories/mech/post-24.html)
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or dimensions belong to a certain design set. A discrete structural optimization prob-
lem can be formulated in the form of Eq. (5.1) where s; € ®,, @« = 1,2,...,n and
R is a given set of discrete values representing for example the available structural
member cross-sections or dimensions and design variables s can take values only
from this set.

5.1.2 Shape optimization

In structural shape optimization problems the aim is to improve the performance of
the structural component by modifying its boundaries (Bletzinger and Ramm, 2001;
Chen and Tortorelli, 1997; Haftka and Grandhi, 1986; Sienz and Hinton, 1997). All
functions are related to the design variables, which are some of the coordinates of
the key points in the boundary of the structure. The shape optimization methodology
proceeds with the following steps:

(i) At the outset of the optimization, the geometry of the structure under investi-
gation has to be defined. The boundaries of the structure are modeled using
cubic B-splines that are defined by a set of key points. Some of the coordinates
of these key points will be the design variables.

(i) An automatic mesh generator is used to create a finite element model. A finite
element analysis is carried out and the displacements and stresses are calculated.

(iii) The optimization problem is solved; the design variables are improved and
the new shape of the structure is defined. If the convergence criteria for the
optimization algorithm are satisfied, then the optimum solution has been found
and the process is terminated, else a new geometry is defined and the whole
process is repeated from step (ii).

5.1.3 Shape optimization considering cracks

In the case of the presence of cracks in structural components, when dealing with
shape optimization problems, due to the limitations and inflexible nature of the an-
alytical methods in handling arbitrary complex geometries and crack propagations,
the XFEM (see Chapter 3) can be considered as a capable numerical method for the
accurate solution of the problem of evolving discontinuities and moving boundaries.
In this framework, Duysinx et al. (2006) proposed a method for an intermediate
approach between parametric shape optimization and topology optimization which
takes benefit of the fixed mesh work using XFEM and of the curves smoothness of
the level set description. Lately, Edke and Chang (2010) presented a shape sensitivity
analysis method for calculating gradients of crack growth rate and crack growth di-
rection for 2D structural components under mixed-mode loading, by overcoming the
issues of calculating accurate derivatives of both crack growth rate and direction. This
research was further extended (Edke and Chang, 2011) in a novel crack propagation
analysis technique into a shape optimization framework to support design of 2D struc-
tural components again under mixed-mode fracture for maximizing the service life
and minimizing their weight. Furthermore, Li et al. (2012) proposed elegant XFEM
schemes for LSM structural optimization, for improving the computational accuracy
and efficiency of XFEM, while Su et al. (2013) considered a reanalysis algorithm based
on incremental Cholesky factorization which is further used into an optimization al-
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gorithm to predict the angle of crack initiation from a hole in a plate with inclusion.
An extension also of this coupling (XFEM and LSM) from structural mechanics to
electromagnetics, developed in a shape optimization framework, particularly tailored
for 2D electric structures have been also proposed by Topa et al. (2012).

5.1.4 XFEM shape optimization considering uncertainties

In this thesis, two problem formulations are proposed for coupling XFEM in an op-
timization framework: a deterministic and a probabilistic one (Georgioudakis et al.,
2014a,b). According to the deterministic formulation, the goal is to minimize the vol-
ume of structural components subject to constraints related to the minimum service
life allowed and material volume expressed by optimized geometry. The minimum
service life is calculated using fatigue cycles as described in Section 3.1.8.

5.1.4.1 Deterministic formulation (DET)

The design problem for the deterministic formulation (DET) is defined as:

min: V(s)
subject to:  N(s) > Nyn (5.2)
sl < s <SP i=1,2,...,n

V is the volume of the structural components, s; are the shape design variables with
lower and upper limits si°* and s.”, respectively, and N is the service life in number

of fatigue cycles with the lower limit of N,,;,.

5.1.4.2 Probabilistic formulation (PROB)

In extension, the design problem of the probabilistic formulation (PROB) is defined
as:

min: V(s)
subject to:  N(s,x) > Ny, (5.3)
sow < g < s i=1,2,....n '

zj~ N(ig,02) j=1,2,...,nr
where s and z are the vectors of the design and random variables, respectively, NV is
the mean number of fatigue cycles.

The probabilistic quantity x; of Eq. (5.3) is calculated by means of the Latin hy-
percube sampling (LHS) method (see Appendix A). LHS was introduced by McKay
et al. (2000) in an effort to reduce the required computational cost of purely random
sampling methodologies. This sampling method can generate a variable number of
samples well distributed over the entire range of interest. A Latin hypercube sample
is constructed by dividing the range of each of the nr uncertain variables into M non-
overlapping segments of equal marginal probability. Thus, the whole parameter space,
consisting of M parameters, is partitioned into M™" cells. A single value is selected
randomly from each interval, producing M sample values for each input variable. The
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values are randomly matched to create M sets from the M"™" space with respect to
the density of each interval for the M simulations.

5.2 Classification of optimization algorithms

5.2.1 Local vs global optima

The optimization algorithms can be classified into two main categories, the local and
global ones. In local optimization the algorithm attempts to find an optimized design
(see Fig. 5.2), and there is no guarantee that the global minimum for the problem will
be found. There are some cases (convex problems like linear programming problems)
where the local minimum found will in fact be the global minimum. However, for the
most situations, “the best answer” when using a local optimization algorithm is not
guaranteed.

Local Minimum

Objective function

1
1
| Global Minimum
1
1
1

\/

Figure 5.2: Local vs Global minimum.

In contrast, global optimization algorithms try to find the absolutely best set of pa-
rameters to optimize the objective function. In general, there can be solutions that are
optimal locally, but not globally optimal. Consequently, global optimization problems
are typically quite difficult to solve exactly. However, in structural optimization field,
global optimization algorithms are mainly used, since many times the design space
is extensive and in order to search the global design space, a global optimization
method is mandatory and highly nonconvex.

5.2.2 Global optimization algorithms

During the last three decades many numerical methods have been developed to
meet the demands of engineering optimization problems. These methods can be
classified in two main classes, the deterministic and the probabilistic ones. In Fig. 5.3
a rough taxonomy of global optimization methods according to method of operation,
is provided. Deterministic algorithms are most often used if a clear relation between
the characteristics of the possible solutions and their utility for a given problem exists.
Then, the search space can efficiently be explored using for example a divide and
conquer scheme. Mathematical programming methods are the most popular methods
of the first category and in particular the gradient-based optimizers. These methods



Chapter 5. Optimization in Structural Design 83

Deterministic

State Space Search Branch and Bound Algebraic Geometry
Probabilistic
Artificial
Intelligence (Al)
Monte Carlo A
Algorithms
Computational
I Intelligence (CI)
(Stochastic) L] Evolutionary ‘ .
Hill Climbing Computation (EC) P asoitlogiutine
A
Random L]
Optimization Evolutionary Harmonic Search
: Algorithms (EAs) (HS)
Simulated L] x

Annealing (SA) Swarm Intelligence |

Genetic (Sh ™
Algorithms (GA)

Tabu Search (TS)

: — Ant Colony
Learning Classifier Optimization (ACO)
System (LCS)

Stochastic Tunneling

Particle Swarm

Direct Monte Carlo - Evolutionary Optimization (PSO)
— Programming (EP)

Sampling
Evolution Differential
Strategy (ES) Evolution (DE)
Genetic

Programming (GP)

Figure 5.3: The taxonomy of global optimization algorithms.

make use of local curvature information, derived from linearization of the objective
and constraint functions by using their derivatives with respect to the design variables
at points obtained in the process of optimization, to construct an approximate model
of the initial problem. If the relation between a solution candidate and its “fitness”
are not so obvious or too complicated, or the dimensionality of the search space is
very high, it becomes harder to solve a problem deterministically and would possible
result in exhaustive enumeration of the search space, which is not feasible even for
relatively small problems. Then, probabilistic algorithms come into play.

An especially relevant family of probabilistic algorithms are the Monte Carlo-based
approaches. They trade in guaranteed correctness of the solution for a shorter run-
time. The most widely used class of probabilistic category of methods are heuristic
and metaheuristic algorithms, which are nature-inspired or bio-inspired as they have
been developed based on the successful evolutionary behavior of natural systems by
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learning from nature. Modern metaheuristic algorithms for engineering optimization
include genetic algorithms (GA) (Holland, 1973), simulated annealing (SA), particle
swarm optimization (PSO), ant colony algorithm (ACO), artificial bee colony algo-
rithm (ABC) (Haddad et al., 2006), harmony search (HS), cuckoo search algorithm
(CS) (Yang, 2010), firefly algorithm (FA), bat algorithm (BA), krill herd and many
others. Evolutionary algorithms (EA) are the most widely used class of metaheuristic
algorithms and in particular evolutionary programming (EP) (Fogel, 1992), genetic
algorithms (Holland, 1973), evolution strategies (ES) and genetic programming (GP).

Gradient-based optimizers capture very fast the right path to the nearest optimum,
irrespective if it is a local or a global optimum but it cannot assure that the global
optimum can be found. On the other hand metaheuristics, due to their random search,
are being considered more robust in terms of global convergence; they may suffer,
however, from a slow rate of convergence towards the global optimum. When meta-
heuristics are adopted to perform the optimization, the solution of the finite element
equations is of paramount importance since more than 95% of the total computing
time is spent for the solution of the finite element equilibrium equations. A second
characteristic is that in place of a single design point metaheuristics work simulta-
neously with a population of design points in the space of design variables. This
allows for a natural implementation of the evolution procedure in parallel computer
environments.

In single-objective optimization problems the optimal solution is usually clearly
defined since it is the minimum or maximum value of the objective function. This does
not hold in real world problems where multiple and conflicting objectives frequently
exist. Instead of a single optimal solution, there is usually a set of alternative solutions,
generally denoted as the set of Pareto optimal solutions. These solutions are optimal
in the wider sense since no other solution in the search space is superior to them
when all objectives are considered. In the absence of preference information, none of
the corresponding trade-offs can be said to be better than the others. On the other
hand, the search space can be too large and too complex, which is the usual case of
real world problems, hence the implementation of gradient based optimizers for this
type of problems becomes even more cumbersome.

Thus, efficient optimization strategies are required able to deal with the presence
of multiple objectives and the complexity of the search space. Metaheuristics and in
particular EA have several characteristics that are desirable for this kind of problems
and most frequently outperform the deterministic optimizers such as gradient based
optimization algorithms.

5.3 Evolutionary computation (EC)

In computer science, evolutionary computation (EC) is a subfield of artificial intel-
ligence that involves continuous optimization and combinatorial optimization prob-
lems of computational systems drawing their inspiration from the process of natural
evolution. Its algorithms can be considered global optimization methods with a meta-
heuristic or stochastic optimization character and are mostly applied for black box
problems. EC uses iterative progress (trial-and-error), such as growth or development
in a population. This population is then selected in a guided random search using par-
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allel processing to achieve the desired end. As evolution can produce highly optimised
processes and networks, it has many applications in computer science.

5.3.1 Brief history

The idea of applying Darwinian principles to automated problem solving dates back to
the 1940s, long before the breakthrough of computers. During the 1960s three differ-
ent implementations of the basic idea were developed in different places. In the USA,
Fogel et al. (1966) introduced evolutionary programming (EP), while Holland (1973)
called his method a genetic algorithm (GA). Meanwhile, in Germany, Rechenberg
(1973) and Schwefel (1995) invented evolution strategies (ES).

For about 15 years these areas developed separately, but since the early 1990s they
have been viewed as different representatives (“dialects”) of one technology that
has come to be known as evolutionary computing (Back, 1996; Back et al., 2000a,b;
Eiben and Smith, 2003). In the early 1990s a fourth stream following the general
ideas emerged, genetic programming (GP), championed by Koza (1992, 1994). The
contemporary terminology denotes the whole field by EC, the algorithms involved are
termed evolutionary algorithms (EA), and it considers EP, ES, GA and GP as subareas
belonging to the corresponding algorithm variants (cf. Fig. 5.3).

5.3.2 Genetic algorithms (GA)

GA method is probably the best-known evolutionary algorithm, receiving substantial
attention. The first attempt to use evolutionary algorithms took place in the 60’s by
a team of biologists (Barricelli, 1963) and was focused in developing a computer
software that would simulate the evolution process of the nature. However, the model
implemented in GA refers to that introduced and studied by Holland (1973). In the
basic genetic algorithm each population member is a binary or real valued string,
which is sometimes referred to as genotype or chromosome. The three main steps of
basic GA are:

Initialization
In this step a generation of the initial population members {X;, X5, ..., Xyp} is
generated, where N P is the population size, and each member of the population
is evaluated by computing the corresponding objective and constraint functions.

Selection
Selection operator is applied to the current population in order to create an
intermediate one. In the first generation the initial population is considered as
the intermediate one, while in the next generations this population is created
by the application of the selection operator.

Crossover/Mutation
In order to create the next generation crossover and mutation operators are
applied to the intermediate population. Crossover operator forms new chro-
mosomes by combining parts of each of the two parental chromosomes (p. is
the crossover probability). Mutation is a reproduction operator that forms one
new chromosome by making (usually small, with mutation probability p,,) alter-
ations to the values of the genes in a copy of a single parent chromosome and
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serves to recover lost alleles. The purpose of mutation operator is to maintain
diversity within the population and inhibit premature convergence.
The process of moving from the current population to the next population constitutes
one generation in the evolution process of a GA model. If the termination criterion is
satisfied the procedure stops otherwise returns to the selection step. The flowchart of
the GA method is presented in Fig. 5.4.
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Figure 5.4: Flowchart for a genetic algorithm (GA).

5.4 Evolutionary algorithms (EAs)

Nature has been solving problems over millions or even billions of years. Only the
best and robust solutions remain based on the principle of the survival of the fittest.
Similarly, heuristic algorithms use the trial-and-error, learning and adaptation to solve
problems. Modern metaheuristic algorithms are almost guaranteed to an efficient
performance for a wide range of combinatorial optimization problems. The main aim
of research in optimization and algorithm development is to design and/or choose
the most suitable and efficient algorithms for a given optimization problem.

In the following sections metaheuristics based on the evolution process called
Evolutionary Algorithms (EAs) and used in the framework of this thesis are presented.
More specifically, four metaheuristic search optimization algorithms are tested and
appear to be very promising as they have been implemented in various challenging
structural optimization problems with success. A short description of these algorithms
is presented, giving greater emphasis in the algorithm used for the numerical examples
(see Section 6.2), i.e. the differential evolution algorithm.
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5.4.1 Evolution strategies (ES)

Evolutionary strategies are population-based probabilistic direct search optimization
algorithm gleaned from principles of Darwinian evolution. Starting with an initial
population of i candidate designs, an offspring population of A\ designs is created
from the parents using variation operators. Depending on the manner in which the
variation and selection operators are designed and the spaces in which they act,
different classes of ES have been proposed. In ES algorithm employed in this study
(Rechenberg, 1973; Schwefel, 1995), each member of the population is equipped with
a set of parameters:

a = [(Sd7’7)7 (567 g, CM)] S (Ida [c)
I, = D" xR (5.4)
I. = D" x Rl x [—m,7|"

where s, and s,, are the vectors of discrete and continuous design variables defined
in the discrete and continuous design sets D™ and R"c, respectively. Vectors v, o
and «, are the distribution parameter vectors taking values in R'", R* and [—, 7],
respectively. Vector ~ corresponds to the variances of the Poisson distribution. Vector
o € R"7 corresponds to the standard deviations (1 < n, < n.) of the normal distribu-
tion. Vector o« € [—, 7]™* is related to the inclination angles (n, = (n.—n,/2)(n,—1))
defining linearly correlated mutations of the continuous design variables s;, where
n = ng + n. is the total number of design variables.

Let P(t) = {a, ..., a, } denotes a population of individuals at the ¢"* generation. The
genetic operators used in the ES method are denoted by the following mappings:

rec : (Ig, I)" — (I3, 1.)" (recombination)
mut : (Ig, I.)» — (I3, 1) (mutation) (5.5)
sell © (I, I)" — (Lo, 1.)"  (selection, k € {\, ju+ A})

A single iteration of the ES, which is a step from the population P! to the next parent
population P/*! is modelled by the mapping:

OPtEA : (Idalc)f — ([d, ]C)ngl (56)
A general pseudo code of the ES algorithm is given in Algorithm 2.

5.4.2 Covariance matrix adaptation (CMA)

The covariance matrix adaptation, proposed by Hansen and Ostermeier (2001) is a
completely de-randomized self-adaptation scheme. First, the covariance matrix of the
mutation distribution is changed in order to increase the probability of producing
the selected mutation step again. Second, the rate of change is adjusted according to
the number of strategy parameters to be adapted. Third, under random selection the
expectation of the covariance matrix is stationary. Further, the adaptation mechanism
is inherently independent of the given coordinate system. The transition from gen-
eration g to g + 1, given in the following steps, completely defines the Algorithm 3).
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Algorithm 2 ES algorithm

1: t=0

2: initialize(P(¢ = 0))

3: evaluate(P(t = 0))

4: repeat:

5: P,(t) = selectBest(y, P(t))
6: P.(t) = reproduce(\, P,(t))
7: mutate(FP,.(t))

8: evaluate(P.(t))

9: if UsePlusStrategy then
10: P(t+1) = P.(t) U P,(t)
11: else
12: P(t+1) = P.(t)
13: end if

14: t=t+1
15: until isNotTerminated()

Algorithm 3 CMA algorithm

1: initialize )\7 My Wi=1,...,u> Heff; Co, dm Cey Meovs Ceov

2: initialize C(t) € 1", m(t) = ones(n x 1), p(t) = zeros(n x 1)
3: repeat:
4: Zi(t) ~ N(m(t),c?(t)C(t)) fori=1,... A

5 mt+1) = > w@(t)

6:  Pe(t) = (1 —co)pelt — 1) + \/ce(2 CC)Meff(W)

7 Clt+1)=(1 cm)@(t)Jrcm(l—f) ”flwz-OP(fi“)a;ﬁ(“) e OP(5 (1))
8 () = (1= )it = 1) + Ve (2 — co)penC(t) 3 2RO

% olt+1)= <f>6xp(i(% - 1))

10: until stopping criterion is met

Generation of offsprings. Creation of A\ new offsprings as follows:

—

s N9, J(9)2@()) ~m9 + ¢WN(0, C9) 5.7)

where 577" € R is the design vector of the k%" offspring in generation g + 1, (k =
1,...,\), N(m® €O) are normally distributed random numbers where 179 € R is
the mean value vector and C is the covariance matrix while ¢(9) € R, is the global
step size. To define a generation step, the new mean value vector m9*), global step
size 09t and covariance matrix C9t!) have to be defined.

New mean value vector. After selection scheme (u, \) operates over the ) offsprings,
the new mean value vector 1791?) is calculated according to the following expression:
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e = 3wl (5.8)

where § *(ng ) is the ith best offspring and w; are the weight coefficients.
Global step size. The new global step size is calculated according to the following
expression:

(6+1) _ (9) I
o =oYWerp EHN( ] —1 (5.9)

1
while the matrix C\9 * is given by:

T

— BODW 'RW (5.10)

(ST

9

where the columns of B are an orthogonal basis of the eigenvectors of C9) and
the diagonal elements of D are the square roots of the corresponding positive
eigenvalues.

Covariance matrix update. The new covariance matrix C9*1 is calculated from the
following equation:

Cloth) — (1 _ ccov)@(g) + CCOVﬁ(ngl)ﬁgngl)
Heov

(g+1) = (9)
—m

+ Ceov w;,OP (5.11)
(1- 7t ) Sowor (4557 )

=1

OP denotes the outer product of a vector with itself and P9 € R is the evolution
path (ﬁ(co) =0).

5.4.3 Elitist covariance matrix adaptation (ECMA)

Elitist CMA evolution strategies algorithm is a combination of the well-known (1 + \)-
selection scheme of evolution strategies (Rechenberg, 1973), with covariance matrix
adaptation (Igel et al., 2007). The original update rule of the covariance matrix is
applied to the (1 + \)-selection while the cumulative step size adaptation (path length
control) of the CMA(/ 11, A) is replaced by a success rule based step size control. Every
individual a of the ECMA algorithm is comprised of five components:

a = {5, Pyuce> 0 De, C} (5.12)

where s is the design vector, p,,,.. is a parameter that controls the success rate during
the evolution process, o is the step size, p, is the evolution path and C is the covariance
matrix. Contrary to CMA, each individual has its own step size o, evolution path p, and
covariance matrix C. A pseudo code of the ECMA algorithm is shown in Algorithm 4.
In line #1 a new parent o', is generated. In lines #4-6, A\ new offsprings are

parent
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Algorithm 4 (1 + \)-ECMA

1: =0, initialize ¢ en,

2: repeat

(g+1) (g+1)
Qparent <~ Qparent

3

4 fork=1,..,\do

5 5](€9+1) ~ N(%%)rem,a(g)Q@O)
6: end for

7 A

8

9

if f(s\7) < f(5ene) then

~(g+1) ~(g+1)
parent <_ xl)\

: (g+1)
UpdateStepSize (al(}gjegh AL >

. (g+1) Ség;err}t)_sp()gzent
10: UpdateCovariance Qparents — (@)

parent

11: end if

12: until stopping criterion is met

generated from the parent vector a;?,,em. The new offsprings are sampled according
(9)

to Eq. (8), with variable 79 being replaced by the design vector s,%,.,, of the parent
individual. After the A\ new offsprings are sampled, the parent’s step size is updated
by means of UpdateStepSize subroutine (see Procedure 5). The arguments of the
subroutine are the parent afgﬁ)rmt and the success rate A% /A, where A% is the
number of offsprings having better fitness function than the parent. The step size
update is based upon the 1/5 success rule, thus when the ratio Al /A is larger
than 1/5 step size increases, otherwise step size decreases. If the best offspring has
a better fitness value than the parent, it becomes the parent of the next generation
(see lines #8 — 9), and the covariance matrix of the new parent is updated by means
of UpdateCovariance subroutine (see Procedure 6). The arguments of the subroutine

are the current parent and the step change:

(9+1) (9)
S — S
parent(g) parent (513)
Uparent

The update of the evolution path and the covariance matrix depends on the success
rate:

—_ )\SU,CC
—= 5 . 14
psucc )\ ( )

If the success rate is below a given threshold value p;;,.., then the step size is taken
into account and the evolution path and the covariance matrix is updated (see lines
#2-3 of Procedure 6). If the success rate is above the given threshold p;;,.s, the step
change is not taken into account and evolution path and covariance matrix happens
are updated (see lines #5-6).
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Procedure 5 UpdateSizeState(a = {3, Dyyees Ts Pey C}y Psuce)
L Douee (1 - cp)]_)succ + CpPsuce
1/ Pt -
2: 0 < oexp 8 Psuce — m(l - psucc)

1 - VMsucc

Procedure 6 UpdateCovariance(a = {s, Dsyees O Dey C}, Sstep € R)

1: ifz_?succ < Dthresh then

N

ﬁc — (1 - Cc)ﬁc + Cc(2 - Cc)fstep
C — (1 - Ccov>(D + Ccovﬁcﬁf

. else

C <+ (1 = ceov)C + Ceov(Pept + co(2 — ¢.)C)

3

4

5: Pe < (1 — ¢.)pe
6

7: end if

5.5 Differential evolution (DE)

DE is a population-based stochastic method for global optimization over continuous
spaces introduced by (Storn and Price, 1995, 1997). DE shares many features of the
classical GA and applies a kind of differential mutation operator on parent chromo-
somes to generate the offspring. Since its inception, DE is arguably one of the most
powerful stochastic real-parameter optimization algorithms in current use and has
drawn the attention of many researchers all over the world, resulting in a lot of
variants of the basic algorithm, with improved performance. In the next sections a
conceptual of classical DE is outlined, followed by several significant variants of the
algorithm in greater details.

5.5.1 DE: afirst glance

DE works through a simple cycle of stages, presented in Fig. 5.5. As with all evolu-
tionary algorithms, it operates using a set or population { X, X5, ..., X,yp} of potential
solutions or points to explore the solution space. The size of the population, given
by the value N P, remains constant throughout. At each generation the algorithm
aims to create a new population by replacing points in the current population with
better points. In essence, the population is simply a set of points X, where i is the
index of the member in the population and G indicates the generation or iteration
to which the population belongs. Each X consists of n components, where n is the
dimension of the problem. Through a repeated process of reproduction (mutation and
crossover) and selection, the population is guided toward the global minimum. In the
next sections, a detailed look at the different processes involved in the DE algorithm
is given.
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Initialization

NP number of n-dimensional parameter vectors
are initialized with the prescribed minimum
and maximum bounds for generation G = 0.

.|

Mutation

Each population member undergoes mutation
according to any one of the schemes outlined in
Section 5.5.3 to produce the donor vector.

l

Crossover

The donor vector for each population (target)
vector exchanges its components with the
corresponding target vector in order to generate
the trial vector following scheme in Section 5.5.4.

l

Selection / Recombination

For each target vector, any one of itself and the
newly generated trial vector is selected depending
on their fithess values and the selected vector is
transmitted in the next generation.

!

G=G+1

//\

-

///Is G = Gmax or
any other stopping YES—» STOP

criterion met?

Figure 5.5: Flowchart for the differential evolution algorithm.

5.5.2 Initialization of the parameter vectors

DE searches for a global optimum point in a n-dimensional continuous hyperspace.
It begins with a randomly initiated population of N P n-dimensional real-valued pa-
rameter vectors. Each vector, also known as genome/chromosome, forms a candidate
solution to the multi dimensional optimization problem. Subsequent generations in
DE is denoted by G, G+ 1,G + 2, ..., G4 Since the parameter vectors are likely to be
changed over different generations, we adopt the following notation for representing
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the i-th vector of the population at the current generation G as:
X = 28,25, ..., 20y, wherei={1,2,...,NP} (5.15)

For each parameter of the problem, there may be a certain range within which the
value of the parameter should be restricted, often because parameters are related
to physical components or measures that have natural bounds (for example if one
parameter is a length or mass, it cannot be negative). The initial population (at
G = 0) should cover this range as much as possible by uniformly randomizing individ-
uals within the search space constrained by the prescribed minimum and maximum
bounds: szn = [:Emin,la Tmin,2s - - - ,ZL’mm,D] and Xmaa: = [:Bmax,ly Tmaz,2; - - - 7xmam,D}-
Hence we may initialize the j-th component of the i-th vector as:

l‘o i = Tmin,j + T&ndid [O, 1] . (xmaa:,j — .fljmmJ) (516)

Z7J

where rand; ;{0,1] is a uniformly distributed random number lying between 0 and 1
and is instantiated independently for each component of the i-th vector. In Fig. 5.6 a
population of NP = 10 points, is shown, for the 2D parametric space case.

XQA Randomly oriented
initial vectors
X2 maz
2 @3
[
@56
@4
3
o oo
® 10
. S ’\ constant cost
@ contours of the
o 7 objective function
f(X1, X2)
XZ, min
X1,min X1, maz Xy

Figure 5.6: Initializing a DE population of NP = 10, on a 2D parametric space.

5.5.3 Mutation with differential operators

In Biology, mutation denotes a sudden change in the gene characteristics of a chromo-
some. In the context of the evolutionary computing field, however, mutation is also
seen as a change or perturbation with a random element. In DE literature, a parent
vector from the current generation is called target vector, and a mutant vector obtained
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through the differential mutation operation is known as donor vector and finally an
offspring formed by recombining the donor with the target vector is called trial vector.
The simplest form of DE-mutation implies in creation a donor vector V¢ for each i-th
target vector X for changing each population member X©, in each generation (or in
one iteration of the algorlthm) To create VG three other distinct parameter vectors,
say the vectors X . ris X X are picked up randomly from the current population. The
indices 7%, ri, 7t mutually exclusive integers randomly chosen from the range [1, NP],
which are also different from the base vector index i. These indices are randomly
generated once for each mutant vector. Now the difference of any two of these three
vectors is scaled by a scalar number F' (mutation factor, typically lies in the interval
[0.4, 1], see Section 5.5.7) and the scaled difference is added to the third one whence
we obtain the donor vector XZG. We can express the process as:

V6 = XG4 (XS XG) (5.17)

This mutation scheme is the simplest scheme among the different kinds of DE schemes
(cf. Section 5.5.8) and a graphical representation of it, in 2D parametric space, is
shown in Fig. 5.7.

XQA} X,) *X,.:; Difference Vector
2

4

2 X, The scaled
T .
3 /\ Difference Vector
1 F(Xy = Xs;)

Vi Donor Vector

VXI

Figure 5.7: The simplest DE mutation scheme in 2D parametric space.

5.5.4 Crossover

To increase the potential diversity of the population, a crossover operation comes into
play after generating the donor vector through mutation. The DE family of algorithms
can use two kinds of crossover schemes, exponential and binomial [6, 7]. The donor
vector exchanges its components with the target vector )Z'ZG under this operation to

i 7G _ 1, G .G G T
form the trial vector U;” = [ui’), ui, ..., uip] -
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5.5.4.1 Exponential crossover

In exponential crossover, we first choose an integer n randomly among the numbers
[0, D-1]. This integer acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector starts. We also choose
another integer L from the interval [1, D]. L denotes the number of components
(the donor vector actually contributes to the target). After choosing n and L each
component of the trial vector is obtained as:

G:{Ufw Vi€ mp (ntlp, . (ntL-1), (5.18)

where the angular brackets (), denote a modulo function with modulus D. The
integer L is drawn from [1,2,..., D] according to the following pseudo-code:

L=20
do while ((rand[0, 1] < CR) .AND. (L < D))

CR is called the crossover rate and appears as a control parameter of DE just like F.
Hence in effect, the probability P(L > v) is equal to (C'R)"~! for any positive integer
v € [1, D]. For each donor vector, a new set of n and L must be chosen randomly as
shown above.

5.5.4.2 Binomial crossover

On the other hand, binomial crossover is performed on each of the D variables when-
ever a randomly picked number between 0 and 1 is less than or equal to the CR
value. In this case the number of parameters inherited from the donor has a (nearly)
binomial distribution. The scheme may be outlined as:

G (5.19)

xi;, otherwise

a { Ufj, if rand; ;[0,1] < CR or j = jrand
where rand; ;[0,1] € [0,1] is a uniformly distributed random number, which is called
a new for each j-th component of the i-th parameter vector, and j,4nq € [1,2,..., D]
is a randomly chosen index, which ensures that (ZG, gets at least one component from
VS, where is instantiated once for each vector in one generation. For this additional
demand, C'R is only approximating the true probability pcr that a component of the
trial vector will be inherited from the donor. A visual feel of this process is given in
Fig. 5.8.

5.5.5 Selection

To keep the population size constant over subsequent generations, the last step of the
algorithm calls for selection to determine whether the target X¢ or the newly formed
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replace
replace >
—
replace
= . ~@
Parent Vector 17ZG Mutated Vector XiG Trial Vector Uz

Figure 5.8: lllustrating the binomial crossover in DE.

trial vector U'Z-G will survive to the next generation, i.e., at G = GG + 1. The selection
operation is described as:

7

' xf, if f(US) > X (5200
where f(X) is the objective function to be minimized. Since the selection process
employs a binary decision, i.e. any one between the target vector and its offspring
survives the population size remains fixed through out generations. Hence, the popu-
lation either gets better (with respect to the minimization of the objective function)
or remains the same in fitness status, but never deteriorates.

5.5.6 Termination criteria

An important aspect for a stochastic algorithm is deciding when to stop the algorithm.
Stochastic methods converge with a probability of 100% to an optimal value as time
goes to infinity (Torn and Zhilinskas, 1989; Zhigljavsky and Zilinskas, 2007). However
upholding such a convergence guarantee is impractical. Therefore the user will need
to decide on some preset conditions that will terminate the algorithm. Deciding on
what termination criteria to use is dependent on many factors such as the application
of the algorithm, accuracy required, cost and time constraints. Some of the most
common termination criteria used for the DE algorithm include:

* a preset number of maximum generations

* the difference between the best and worst function values in the population is

very small
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* the best function value has not improved beyond some tolerance value for a
predefined number of generations
* the distance between solution vectors in the population is small.

5.5.7 Parameter selection

In DE algorithm three main control parameters have to be set: the mutation scale
factor (F), the crossover constant (C'R) and the population size (N P). Each of these
parameters can effect the performance of the DE as well as the state-of-the-art meth-
ods for tuning these parameters.

A lot of research work has been undertaken so far to improve the ultimate perfor-
mance of the DE by tuning its control parameters. General guidelines for the values of
parameters that work reasonably well on a wide range of problems are known. Storn
and Price (1997) have indicated that a reasonable value for NP could be chosen
between 5D and 10D (D is the dimensionality of the problem).

The scale factor F’ controls the magnitude of the difference vector and consequently
the amount by which the base vector is perturbed. Large values of F' encourage large
scale exploration of the fitness landscape but could lead to premature convergence,
while small values result in a more detailed exploration of the local fitness landscape
(exploitation) while increasing convergence time. A good initial choice of F is 0.5,
while the effective value range of F' is usually between 0.4 and 1. The upper limit of
the scale factor F' is empirically taken as 1. Although that does not necessarily mean
that a solution is not possible with /' > 1, however, no benchmark function that was
successfully optimized with DE required F' > 1.

Also, mathematical convergence analysis regarding parameter selection (Zaharie,
2002) showed on three test functions that the smallest reliable value for F is 0.3 when
CR = 0.2 and NP = 50. Storn and Price (1997), also showed that 0 < CR < 0.2
worked well on decomposable functions, while 0.9 < CR < 1.0 worked well on
functions that are not decomposable. Gimperle et al. (2002) evaluated different pa-
rameter settings for DE on the three benchmark functions (Sphere, Rosenbrock’s, and
Rastrigin’s). Their experimental results revealed that the global optimum searching
capability and the convergence speed are very sensitive to the choice of control param-
eters NP, F' and C'R. Furthermore, a reasonable choice of the population size N P is
between 3D and 8D, the scaling factor ' = 0.6 and the crossover rate C'R is between
[0.3,0.9]. Also, Ronkkonen et al. (2005), claim that typically 0.4 < F' < 0.95 with
F = 0.9 being a good first choice and C'R always lies in (0, 0.2) when the function is
separable, while in (0.9, 1) when the function’s parameters are dependent.

Other recommendations may found in the literature (Pedersen, 2010; Storn and
Price, 1997), however, best results in terms of accuracy and convergence time are
found if the parameters are tuned for each problem individually (Engelbrecht, 2007).
Therefore researchers naturally consider some techniques such as self-adaptation to
avoid manual tuning of the parameters of DE, for engineers who try to solve real-world
optimization problems with the DE.
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5.5.8 Other mutation schemes

The process of mutation demarcates one DE scheme from another. The mutation
scheme used in Eq. (5.17) uses a randomly selected X,, vector and only one weighted
difference vector F-(X,, — X,,) is used to perturb it. Hence, in literature, the particular
mutation scheme given by Eq. (5.17) referred to as DE/rand/1.

The general convention of how the different DE schemes are named is DE/xz/y.
DE stands for Differential Evolution, x represents a string denoting the type of the
vector to be perturbed (whether it is randomly selected or it is the best vector in
the population with respect to fitness) and y is the number of difference vectors
considered for perturbation of x. The other four different mutation schemes, suggested
by Price et al. (2005) are summarized below.

5.5.8.1 DE/target-to-best/1

The DE/target-to-best/1 (or DE/current-to-best/1) scheme follows the same proce-
dure as that of the classical DE scheme (cf. Eq. (5.17)), and the only difference being
that, now the donor vector, used to perturb each population member, is created using
any two randomly selected member of the population as well as the best vector of
the current generation (i.e. the vector yielding best suited objective function value at
G = (). This can be expressed for the i-th donor vector at generation G = G + 1 as,

VE = KP4 P (X = XD+ F - (X = X)) (5.21)

where X, it the target vector and X¢_, is the best member of the population regarding
fitness at current generation G = G.

5.5.8.2 DE/best/1

In this scheme everything is identical to DE/rand/1 except the fact that the trial vector
is formed as,

VE =Xl + F (X - XT) (5.22)

5.5.8.3 DE/best/2

Under this scheme, the donor vector is formed by using two difference vectors as
following:

Ve=XC,+F-(XC, - XG‘ - Xﬁ;) +F- (X'g; - X'g) (5.23)

5.5.8.4 DE/rand/2

Finally, in DE/rand/2 scheme, the vector to be perturbed is selected randomly and
two weighted difference vectors are added to the same to produce the donor vector.
Thus, for each target vector, five other distinct vectors in total, are selected from the
rest of the population. The process can be expressed in the form of an equation as:

VO = XG4 R (X - X)) + B (X - X (5.24)
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where, F} and F, are two weighing factors selected in the range from 0 to 1. To
reduce the number of parameters one may choose F1 = F2 = F. The indices r}, j €
{1,2,3,4,5} are mutually exclusive integers randomly chosen from the range [1, N P],
which are also different from the index i. These indices are randomly generated once
for each mutant vector.

Also, Storn and Price (1997) suggested ten different working strategies of DE, as
well as useful guidelines in applying these strategies to any given problem. These
strategies were derived from the five different DE mutation schemes outlined before.
Each mutation strategy was combined with either the exponential type crossover or
the binomial type crossover. This yielded a total of ten DE strategies, which are listed
below:

1. DE/best/1/exp
DE/rand/1/exp
DE/rand-to-best/1/exp
DE/best/2/exp
DE/rand/2/exp
DE/best/1/bin
DE/rand/1/bin
DE/rand-to-best/1/bin
DE/best/2/bin

10. DE/rand/2/bin
The general convention used above is again DE/x/y/z, where DE stands for Differ-
ential Evolution, = represents a string denoting the vector to be perturbed, y is the
number of difference vectors considered for perturbation of z, and z stands for the
type of crossover being used (exp: exponential; bin: binomial).

W RONNO kWD

5.6 Towards the selection of the optimization algorithm

In the past a number of studies have been published where structural optimization
with single and multiple objectives are solved implementing metaheuristics. A liter-
ature survey can be found in the following subsection, before a sensitivity analysis
is performed for the four metaheuristics described previously in benchmark multi-
modal constrained functions highlighting the proper search algorithm for solving the
structural optimization problem.

5.6.1 Literature survey on metaheuristic based structural optimization

Perez and Behdinan (2007) presented the background and implementation of a par-
ticle swarm optimization algorithm suitable for constraint structural optimization
problems, while improvements that effect of the setting parameters and functional-
ity of the algorithm were shown. Hasancebi (2008) investigated the computational
performance of adaptive evolution strategies in large-scale structural optimization.
Bureerat and Limtragool (2008) presented the application of simulated annealing
for solving structural topology optimization, while a numerical technique termed as
multiresolution design variables was proposed as a numerical tool to enhance the
searching performance. Hansen et al. (2008) introduced an optimization approach
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based on an evolution strategy that incorporates multiple criteria by using nonlinear
finite-element analyses for stability and a set of linear analyses for damage-tolerance
evaluation, the applicability of the approach was presented for the window area of
a generic aircraft fuselage. Kaveh and Shahrouzi (2008) proposed a hybrid strategy
combining indirect information share in ant systems with direct constructive genetic
search, for this purpose some proper coding techniques were employed to enable
testing the method with various sets of control parameters. Farhat et al. (2009) pro-
posed a systematic methodology for determining the optimal cross-sectional areas of
buckling restrained braces used for the seismic upgrading of structures against severe
earthquakes, for this purpose single-objective and multi-objective optimization prob-
lems were formulated. Chen and Chen (2009) proposed modified evolution strategies
for solving mixed-discrete optimization problems, in particular three approaches were
proposed for handling discrete variables.

Gholizadeh and Salajegheh (2009) proposed a new metamodeling framework that
reduces the computational burden of the structural optimization against the time
history loading, for this purpose a metamodel consisting of adaptive neuro-fuzzy in-
ference system, subtractive algorithm, self-organizing map and a set of radial basis
function networks were used to accurately predict the time history responses of struc-
tures. Wang et al. (2010) studied an optimal cost base isolation design or retrofit
design method for bridges subject to transient earthquake loads. Hasancebi et al.
(2010) utilized metaheuristic techniques like genetic algorithms, simulated annealing,
evolution strategies, particle swarm optimizer, tabu search, ant colony optimization
and harmony search in order to develop seven optimum design algorithms for real
size rigidly connected steel frames. Manan et al. (2010) employed four different
biologically inspired optimization algorithms (binary genetic algorithm, continuous
genetic algorithm, particle swarm optimization, and ant colony optimization) and a
simple meta-modeling approach on the same problem set. Gandomi and Yang (2011)
provide an overview of structural optimization problems of both truss and non-truss
cases. Martinez et al. (2011) described a methodology for the analysis and design
of reinforced concrete tall bridge piers with hollow rectangular sections, which are
typically used in deep valley bridge viaducts. Kripakaran et al. (2011) presented com-
putational approaches that can be implemented in a decision support system for the
design of moment-resisting steel frames, while trade-off studies were performed using
genetic algorithms to evaluate the savings due to the inclusion of the cost of connec-
tions in the optimization model. Gandomi et al. (2013) used the cuckoo search (CS)
method for solving structural optimization problems, furthermore, for the validation
against structural engineering optimization problems the CS method was applied to
13 design problems taken from the literature.

Kunakote and Bureerat (2011) dealt with the comparative performance of some es-
tablished multi-objective evolutionary algorithms for structural topology optimization,
four multi-objective problems, having design objectives like structural compliance,
natural frequency and mass, and subjected to constraints on stress, were used for
performance testing. Su et al. (2011) used genetic algorithm to handle topology and
sizing optimization of truss structures, in which a sparse node matrix encoding ap-
proach is used and individual identification technique is employed to avoid duplicate
structural analysis to save computation time. Gandomi and Yang (2011) used firefly
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algorithm for solving mixed continuous/discrete structural optimization problems,
the results of a trade study carried out on six classical structural optimization prob-
lems taken from literature confirm the validity of the proposed algorithm. Degertekin
(2012) proposed two improved harmony search algorithms for sizing optimization
of truss structures, while four truss structure weight minimization problems were
presented to demonstrate the robustness of the proposed algorithms. The main part
of the work by Muc and Muc-Wierzgon (2012) was devoted to the definition of design
variables and the forms of objective functions for multi-layered plated and shell struc-
tures, while the evolution strategy method was used as the optimization algorithm.
Comparative studies of metaheuristics on engineering problems can be found in two
recent studies by Lagaros and Papadrakakis (2012) and in the edited book by Yang
and Koziel (2011).

5.6.2 Sensitivity analysis of metaheuristics

Choosing the proper search algorithm for solving an optimization problem is not a
straightforward procedure. In this section a sensitivity analysis of the four algorithms
described above is performed for five constrained multimodal benchmark test func-
tions in order to identify the best algorithm and to be used for solving the structural
shape optimization problem studied in the next section. This sensitivity analysis is
carried out to examine the influence of the four metaheuristic algorithms and thus
proving their robustness. In particular, for the solution of the five problems ES, CMA,
ECMA and DE methods are implemented, since they were found robust and efficient
in previous numerical tests (Lagaros and Papadrakakis, 2012). This should not been
considered as an implication related to the efficiency of other algorithms, since any
algorithm available can be considered for the solution of the optimization problem
based on user’s experience.

The control parameters for DE are the population size (/N P), probability (C'R) and
constant (F), while for ES, CMA and ECMA the control parameters are the number
of parents (1) and offsprings ()\). The characteristic parameters adopted for the im-
plementation are as follows: (i) for DE method, population size N P = 15, probability
CR = 0.90 and constant ' = 0.60, while (ii) for all three ES, CMA and ECMA meth-
ods, number of parents u = 1 and offsprings A\ = 14 for the case of ES and ECMA and
number of parents ¢ = 5 and offsprings A = 15 for the case of CMA.

For all four algorithms the initial population is generated randomly using LHS in the
range of design space for each test example examined, while for the implementation of
all algorithms, the real valued representation of the design vectors is adopted. For the
purposes of the sensitivity analysis 50 independent optimization runs were performed,
for the combination of the algorithmic parameters. The 50 independent optimization
runs, represents a necessary step since non deterministic optimization algorithms
do not yield the same results when restarted with the same parameters (Riche and
Haftka, 2012). Using the optimum objective function values achieved for the 50
independent optimization runs, mean and coefficient of variation of the optimum
objective function are calculated.

For comparative reasons the method adopted for handling the constraints and the
termination criterion is the same for all metaheuristic optimization algorithms. In
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particular, the simple yet effective, multiple linear segment penalty function (Lagaros
and Papadrakakis, 2012) is used in this study for handling the constraints. Accord-
ing to this technique if no violation is detected, then no penalty is imposed on the
objective function. If any of the constraints is violated, a penalty, relative to the maxi-
mum degree of constraints’ violation, is applied to the objective function, otherwise
the optimization procedure is terminated after 10000 function evaluations. For the
results found in the literature and used for our comparative study different constraint
handling techniques and termination criteria were implemented.

5.6.2.1 Test case S-6ACT

The first test case considered in this sensitivity analysis study is the so called S-
6ACT (Hock and Schittkowski, 1980) problem that is defined as follows:

min: F(z) = 2] + 23 + 2105 — 142, — 1635 + (23 — 10)* + 4(34 — 5)?
+ (w5 — 3)* 4+ 2(wg — 1)* + 522 + T(wg — 11) + 2(wg — 10)?
+ (210 — 7)* + 45
subject to: ¢y (%) = 105 — 4z — by + 3x7 — 9xg > 0

T) = —bxg — 81y — (w3 — 6)% + 214 + 40 > 0
g6(%) = —2% — 2(x9 — 2)® + 22129 — 1425 + 626 > 0
) = —0.5(x; — 8)% — 2(wy — 4)* + 322 + 26 + 30 > 0

Q
S
8y

(
(
(
94(T) = =3(w1 — 2)® — 4(z9 — 3)* — 225 + Ty + 120 > 0
(
(
(
(

~10<z;<10,i=1,...,10

It is a 10 design variables problem with 8 inequality constraints. As it can be observed
in Table 5.1 the better COV value is achieved by CMA and the worst one by ES
algorithm, while the best mean value is obtained by DE algorithm and the worst by
ES.

Algorithm A Selection Obj. Function

Best Mean COV (%)
ES 1 14 + 14962 49.0379 1.56E+02
CMA 5 15 , 14.257 15.1669 8.57E-02
ECMA 1 14 + 14.436 14.2681 5.17E+00
DE 14.257 14.2608 3.42E-01

Table 5.1: Results comparison for test case S-6ACT.

The best optimized designs achieved by the four metaheuristics among the 50 inde-
pendent optimization runs is given in Table 5.2. Although, the best optimized design
is achieved by CMA and DE algorithm, DE algorithm had slightly better performance
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based on statistical data of Table 5.1 with reference to the mean value achieved, while
with respect to COV performed slightly better compared to DE. It should be noted also
that for all 50 independent optimization runs performed for each algorithm, feasible
optimized designs were obtained.

x  Deb (2000) ES CMA ECMA DE

1 2171996 1.5859 1.576076 1.6996902 1.5760762
9 2.363683 2.8712 2.731987 2.6947086 2.7319869
x3  8.773926  8.7952 8.791763 8.7832448 8.7917633
xqy  5.095984 5.0471 5.059531 4.9932193 5.0595309
x5 0.990655 1.1745 0.976753 1.0675614 0.9767532
Z6 1.430574 1.9129 1.436430 1.6072484 1.4364296
7 1.321644 0.7489 0.783778 0.8738167 0.7837782
xg  9.828726 9.6163 9.709677 9.7054379 9.7096767
x9  8.280092 9.7648 9.774489 9.7654962 9.7744885
x10  8.375927 7.1255 7.064255 6.9290318 7.0642553

F 24.30621 14962  14.257 14.436 14.257

Table 5.2: Results comparison for test case S-6ACT.

5.6.2.2 Test case S-CRES

This test case problem proposed by Deb (2000) and is characterized by 2 design
variables and 2 inequality constraints. It is defined by the following relations:

min: F(z) = (22 + 29 — 11)? + (2, + 25 — 7)?
subject to: ¢, (¥) = 4.84 — (x; — 0.05)> — (13 — 2.5)* > 0

92(T) = 23 4 (29 — 2.5)* —4.84 >0
OS1’1S6
O§$2§6

In Fig. 5.9 the feasible and infeasible domain of the problem is shown. The feasible
domain is approximately 0.7% of the total search space. The two constraint functions
g1, g2 create a crescent shape for the feasible domain, as it is shown in Fig. 5.10 with
the zoomed area around the optimal point.

Similar to the previous test case, statistical results (mean value and standard de-
viation) are given in Table 5.3. Also, in Table 5.4, the results are compared with the
best result found in literature (Deb, 2000). It should be noted also that for all 50 inde-
pendent optimization runs performed for each algorithm, feasible optimized designs
were obtained.

The CMA and DE algorithms had better performance, since the standard deviation
values of the objective function at the end of the evolution process was orders of
magnitude smaller than the other two algorithms.
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Figure 5.10: Enlarged space around the optimal point.
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Algorithm X Selection Obj. Function

Best Mean COV (%)
ES 1 14 + 13.59085 13.6897 2.53E+00
CMA 5 15 : 13.59084 13.5909 1.34E-03
ECMA 1 14 + 13.59087 13.6096 3.49E-01
DE 13.59084 13.5957 1.79E-02

Table 5.3: Results comparison for test case S-CRES.

x  Deb (2000) ES CMA ECMA DE

r1 2.246826 2.246841 2.246826 2.246811 2.246826
ry 2.381865 2.382141 2.381865 2.381597 2.381865

F 1359085 13.59085 13.59084 13.59087 13.59084

Table 5.4: Results comparison for test case S-CRES.

5.6.2.3 Test case S-0.5F

The optimization problem S-0.5F (Coelho, 2004) is characterized by 7 design variables
and 4 inequality constraints, and is defined by the following relations:

min: F(z) = (v; — 10)* + 5(zo — 12)* 4+ 23 + 3(z4 — 11)?
+ 1028 + 7af + 77 — dagry
subject to: ¢, (%) = 127 — 227 — 323 — 23 — 425 — 5,52 >0
93(Z) = 196 — 23z, — x5 — 622 + 8x7 > 0
94(T) = —4a? — 23 + 31109 — 223 — Bwg + 11wy >0
~10<2;,<10,i=1,...,7

In this problem, only 0.5% of the space defined by the design variables is feasible.
Again for all 50 independent optimization runs performed for each algorithm, feasible
optimized designs were obtained. Statistical results (mean value and COV) are given
in Table 5.5. Table 5.6 shows that even thought all algorithms found the optimal

Algorithm A Selection Obj. Function

Best Mean COV (%)
ES 1 14 + 680.7721 705.7945 1.24E+01
CMA 5 15 , 680.6301 680.6301 1.20E-07
ECMA 1 14 + 680.6848 681.5228 6.33E-02
DE 680.6301 680.6551 1.67E-01

Table 5.5: Results for test case S-0.5F.

design domain, only the CMA algorithm found the global optimum design. CMA algo-
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x  Deb (2000) ES CMA ECMA DE

xp 2.330499 2320378 2.330501 2.299430 2.330501

ry  1.951372 1.967625 1.951373 1.947076 1.951373
z3 -0.477541 -0.281803 -0.477539 -0.468747 -0.477539
xy 4.365723 4319129 4.365723 4.382807 4.365723
x5 -0.624487 -0.615799 -0.624484 -0.611883 -0.624484
xe  1.038131 1.057470 1.038125 1.001823 1.038125
x7  1.594227 1.560759 1.594225 1.541608  1.594225

F 680.63 680.77 680.63 680.69 680.63

Table 5.6: Results comparison for test case S-0.5F.

rithm had the best performance, since the standard deviation values of the objective
function at the end of the evolution process is almost zero.

5.6.2.4 Test case S-HIM

The optimization problem S-HIM (Coelho, 2004) is characterized by 5 design variables
and 6 inequality constraints, and is defined by the following relations:

min: F(x) = 5.3578547x3 + 0.8356891z 75 + 37.293239z; — 40792.141
subject to: g, (%) = 85.334407 + 0.00568587225 + 0.000626271 24
— 0.0022053x325 > 0
92(7) = 92 — g1(7) 2 0
93(%) = 80.51249 + 0.0071317z925 + 0.00299557, 75
+0.002181322 — 90 > 0
9a(T) =20 — g3(Z) 2 0
95(7) = 9.300961 + 0.00470262375 + 0.00125477 23
4 0.00190852374 — 20 > 0
96(Z) =5 — ga(Z) = 0
78 < x; <102
33 < a9 < 45
—27 < x; <45, i=3,4,5

8y

8y

Statistical results (mean value and COV) are given in Table 5.7. The optimal value
of the objective function value is equal to -31005.7966 (Aguirre et al., 2004), which
was achieved with computational cost of 350000 evaluations of the objective function.
From Table 5.8 is shown that for all 50 independent optimization runs performed
only for ES, CMA and DE algorithms, feasible optimized designs were obtained. In
contrast, the CMA algorithm failed to find the area of the optimal solution.
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Algorithm A Selection Obj. Function

Best Mean COV (%)
ES 1 14 + -30665.5 -30190.0 1.81E+00
CMA 5 15 , -25273.7 -24258.6 2.07E+01
ECMA 1 14 + -30665.5 -30477.6 8.45E-01
DE -30665.5 -30700.5 2.68E-01

Table 5.7: Results for test case S-HIM.

x ES CMA ECMA DE

xr1  78.000 78.000 78.000 78.000
ry  33.000 33.000 33.000 33.000
z3  29.996 45.000 29.995 29.995
x4  45.000 45.000 45.000 45.000

F -30665.5 -25272.7 -30665.5 -30665.5

Table 5.8: Results comparison for test case S-HIM.

5.6.2.5 Test case S-G08

The optimization problem S-G08 (Aguirre et al., 2004) is characterized by 2 design
variables and 2 inequality constraints, and is defined by the following relations:

min:  F(z) = sin(27;x1)3sm(27rx2)
x3(zy + x9)
subject to: ¢(F) =22 —2y +1>0
gg(f):1—$1+(l'2—4)2>0

In Fig. 5.11 the space defined by the design variables, is shown, while in Fig. 5.12 the
area around the optimal solution related to the literature, is depicted. Similar to the
previous test case, statistical results (mean value and standard deviation) are given in
Table 3. The DE algorithm had better performance, since the standard deviation values

Algorithm A Selection Obj. Function

Best Mean COV (%)
ES 1 14 + -0.10546 -0.08413 4.14E+01
CMA 5 15 , -0.10546 -0.06765 1.49E+02
ECMA 1 14 + -0.10546 -0.10398 4.11E+01
DE -0.10566 -0.10546 7.02E-01

Table 5.9: Results for test case S-G08.

of the objective function at the end of the evolution process was orders of magnitude
smaller than the other three algorithms. The optimal value of the objective function
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30 1

Figure 5.11: Design variables domain for test case S-G08.

found in the literature is equal to -0.09582 (Aguirre et al., 2004), which was achieved
after 350000 evaluations of the objective function. Also, in Table 5.10 is shown that
for all algorithms feasible optimized designs were obtained.

x  Aguirre et al. (2004) ES CMA ECMA DE

x1 1.227971 1.227818 1.227818 1.227818 1.227817
R 4245873 ¢ 3744911 3.744911  3.744911  3.744911

F -0.09582 -0.10546 -0.10546 -0.10546 -0.10546

Table 5.10: Results comparison for test case S-G08.

5.6.3 Selection of the appropriate search algorithm

The sensitivity of the four algorithms with respect to different optimization runs char-
acterized by the mean and coefficient of variation (COV) of the optimized objective
function values for each metaheuristic algorithm was identified in the corresponding
tables of Section 5.6.2. The lower mean and COV values are, the better the algo-
rithm is. This is due to the fact that low COV values mean that the algorithm is not
influenced by the independent runs. Overall, the algorithm resulting to the lower
mean value (in case of minimization problem) and COV is used for performing the
optimization run with the specific algorithm, i.e. the DE algorithm.



Chapter 5. Optimization in Structural Design 109

0.2
# : 0.1
X B AASEELS
)!!i":;??":"':‘:'\“\\i-‘t\\\
SN
AR SR Lo F
,ﬁ". ST s
= N
SN \““‘ . =
SO : =
R '- = 0.1
-0.2
4.50

1.00

z, 1.75

2003.50

Figure 5.12: Domain around global minimum for test case S-G08.
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Numerical Examples

In this chapter representative numerical examples are chosen to investigate and
demonstrate the capabilities of the proposed formulations presented in Chapters 4
and 5. The chapter is divided into two sections: the first section presents the results
from the investigation of the influence of uncertain spatially varying material proper-
ties on the fracture behavior of two benchmark structures with softening materials,
while in the second section structural shape optimization results are presented for a
steel structural components under fatigue.

The numerical tools developed in this thesis are coded in a FORTRAN and PYTHON
code which are used to carry out all presented simulations. Interactive post processing
tasks are conducted with MATPLOTLIB, while the graphical representations of meshes
and cracks paths are facilitated through GMSH (Geuzaine and Remacle, 2009).

6.1 Stochastic analysis results

For the numerical examples, in the first part of the present thesis, SFEM (cf. Sec-
tion 4.6) is coupled with the SLA, described in Section 2.2.1, providing solutions
of the stochastic nonlinear static problems for structures made of softening materi-
als (Stefanou et al., 2014). It is assumed that the Young’s modulus F, tensile strength
/i and fracture energy G of the material (cf. Section 2.2.3) are represented by two
dimensional uni-variate (2D-1V) homogeneous stochastic fields. The variation of £
is described as follows:

E(z,y) = Eo[1 + f(z,y)] (6.1)

where Fj is the mean value of the elastic modulus and f(z,y) is a zero-mean homoge-
neous stochastic field. The discretized stochastic fields are used for the formulation of
the stochastic matrix k' of each finite element. The two other material properties (i.e.
f: and G) are varying in a similar way. The stochastic stiffness matrix is derived using
the midpoint method (cf. Section 4.6.2.1), i.e. one integration point at the centroid of
each finite element is used for the computation of the stiffness matrix. This approach
gives accurate results for relatively coarse meshes keeping the computational cost at

111
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reasonable levels (Stefanou, 2009).

Both Gaussian and non-Gaussian stochastic fields are used in this study for the
representation of uncertain material properties. Using the procedure described in
Section 4.4.1 and Section 4.5.1, a large number N, of sample functions are produced,
leading to the generation of a set of stochastic stiffness matrices. The associated
structural problem is solved Ny, times and the response is finally be calculated by
obtaining the response statistics of the Ny, simulations or alternatively by using the
VRF approach.

6.1.1 A 4-point bending notched beam

A symmetric notched beam (Rots and Invernizzi, 2004) is analyzed and the geometry,
boundary conditions, loading are shown in Fig. 6.1. The thickness of the beam is 50
mm and the notch depth is 10 mm. Four-node linear quadrilateral elements under
plane stress conditions are used and a 2x2 Gaussian integration rule. The uncertain
parameters of the problem are the Young’s modulus F, tensile strength f; and fracture
energy G of the material with mean values equal to 38 GPa, 3 MPa and 0.06 N/mm,
respectively. Note that the displacement is monitored at the point where the load is
applied.

150 mm _ zl_’x

100 mm

[
A‘ 450 mm
500 mm

i »
<< y

A

Figure 6.1: Notched beam geometry.

The spatial fluctuation of the uncertain parameters is described by 2D-1V homoge-
neous Gaussian as well as lognormal translation stochastic fields, sample functions of
which are generated using Eqgs.(4.36, 4.38). Three different values (b = 1, 10, 100) of
the correlation length parameter b (= b; = b,) are used, corresponding to stochastic
fields of low, moderate and strong correlation (all values of b are in mm). Based on
the assumption of Papadopoulos et al. (2009); Yang and Xu (2008), the same value of
correlation length is adopted for both the underlying Gaussian and lognormal trans-
lation fields with reasonable accuracy. The number of terms N; used in the spectral
representation series is equal to 20 and the upper cut-off wave numbers x;,, j = 1,2
are equal to 27, 0.27 and 0.027 for b equal to 1, 10 and 100, respectively.

A mesh convergence study is performed in order to define the appropriate finite ele-
ment mesh size that combines accuracy and computational efficiency. Stress contours
are shown in Fig. 6.2 for a randomly selected realization and for various mesh sizes
to illustrate the convergence of the results. As a result of this parametric investigation,
a mesh of 1237 nodes and 1156 elements is finally used for the analyses.
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Coarse Mesh
Nodes: 330
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Nodes: 1237
Elements: 1156

Fine Mesh
Nodes: 4785
Elements: 4624
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Figure 6.2: Notched beam: Normal stress (o,.) contours just after the peak load for a randomly

selected realization and for different mesh sizes.
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Figure 6.3: Notched beam: Statistical convergence for a) mean and b) standard deviation of the peak
load (stochastic Gy with o = 20% and b = 100, lognormal case).

The response variability is computed using MCS with a sample size equal to 500.
The statistical convergence achieved within this number of samples is illustrated in
Fig. 6.3, where the mean value and standard deviation of the peak load are plotted
as a function of the number of Monte Carlo simulations. Load-displacement curves
corresponding to a 10% variation of F, Gy with b = 1 are shown in Fig. 6.4 for lognor-
mal fields. Moreover, load-displacement curves corresponding to a 20% variation of
E, Gy with b = 100 are presented in Fig. 6.5 and Fig. 6.6 for Gaussian and lognormal
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Figure 6.4: Notched beam: Load-displacement curves for stochastic parameters E and Gy with o =
10% and b = 1 (Lognormal case).

fields, respectively. The effect of probability distribution is rather important in this
case. Comparisons with the deterministic nonlinear solution of (Rots and Invernizzi,
2004) are also provided in these figures.

e—e Deterministic Solution e—e Deterministic Solution
O O SR 4l oo reere—e——————————
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doo 0.05 0.10 0.15 0.20 doo 0.05 0.10 0.15 0.20

Displacement [mm] Displacement [mm]
(a) Stochastic £ (b) Stochastic G ¢

Figure 6.5: Notched beam: Load-displacement curves for stochastic parameters £ and Gy with o =
20% and b = 100 (Gaussian case).

As shown in Figs. 6.4a - 6.6a, the variation of £ affects the stiffness of the structure.
The Gaussian assumption leads to a significant, unrealistic reduction of the stiffness
in some cases (Fig. 6.5a). Larger values of the coefficient of variation and of the
correlation length of the stochastic fields lead to more significant variability of the
load-displacement curves, as expected (Figs. 6.5, 6.6). In the case the probability of
failure p; of the beam is defined as the probability of the peak load not exceeding
that of the deterministic solution (which means that the structure fails at a smaller
load), then py is equal to 16% and 31% for the cases described in Figs. 6.4b, 6.6b,
respectively.
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Figure 6.6: Notched beam: Load-displacement curves for stochastic parameters E and G; with o =
20% and b = 100 (Lognormal case).

Variability Response Function
The response variability can also be determined using the concept of VRF. This func-
tion has been computed using the fast MCS procedure described in Section 4.6.3.2

for each pair of wave numbers &; and k9, where &4, ko € [0, 1,2,...,20].
-4
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Figure 6.7: VRF calculation in the discrete space &1, &o.

The VRF (after smoothing) is shown in Fig. 6.8 for stochastic Young’s modulus. Due
to its quadrant symmetry, only a quarter of this function is shown in the figure. It is
worth noting the irregular shape of the VRF, which can be attributed to the “rippled”
load-displacement curves used for its computation. In addition, the computation of
VRF through fast MCS has been more expensive than direct MCS in this case (where
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Figure 6.8: Variability response function of displacement at peak load.

a small number of MC samples is generated). This is due to the fact that the whole
load-displacement curve is computed for each wave number pair in the fast MCS
procedure (cf. Section 4.6.3.2). Using the VRF approach, the upper bound of the
standard deviation of the displacement at the monitoring point is computed from
Eq. 4.60 as 0.0028 for oy = 0.2.

6.1.2 A double-edge notched specimen

As a second example, the double-edge notched specimen under tension (Nguyen,
2008; Shi et al., 2000) shown in Fig. 6.9 is analyzed. The specimen is fixed in both di-
rections at the bottom edge, and in horizontal direction at the top edge. The numerical
analyses were carried out using four-node quadrilateral finite elements. The uncertain
parameters of the problem are again the Young’s modulus E, tensile strength f; and
fracture energy G, of the material with mean values equal to 24 GPa, 2.4 MPa and
0.059 N/mm, respectively.

The spatial fluctuation of the uncertain parameters is described by 2D-1V homoge-
neous lognormal translation fields. Three different values (b = 1.2, 12, 120) of the cor-
relation length parameter b proportional to the dimensions of the structure are used,
corresponding to stochastic fields of low, moderate and strong correlation. The values
of N, kj,,j = 1,2 are the same with those of the first example. Sample functions of
a lognormal field for 0 = 20% and b = 1.2, b = 120 are shown in Figs. 6.10a, 6.10b,
respectively.

The case of anisotropic correlation (b; # by) has also been examined to highlight its
effect on the response variability, which is computed using direct MCS with a sample
size equal to 500. The statistical convergence achieved within this number of samples
is illustrated in Fig. 6.11 where the mean value and standard deviation of the peak
load are plotted as a function of the number of Monte Carlo simulations.
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Figure 6.9: Double-edge notched specimen (Geometry and FE mesh with 1950 nodes and 1850
elements).
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Figure 6.10: Notched specimen: Realizations of a lognormal field for o = 20% and (a) b = 1.2, (b)
b =120.
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Figure 6.11: Notched specimen: Statistical convergence for a) mean and b) standard deviation of the
peak load (E, f;, Gy fully correlated with ¢ = 10% and b = 120, lognormal case).
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Figure 6.12: Notched specimen: Load-displacement curves for stochastic parameter E with (a) o =
10% and (b) o = 20% (lognormal case, b = 120).

Figs. 6.12, 6.13 show the load-displacement curves obtained from different stochas-
tic simulations with variable F, G;. Comparisons with the deterministic nonlinear
solution of (Nguyen, 2008) are provided in these figures. The results obtained with
the assumption of anisotropic correlation were very similar and therefore isotropic
correlation (b = b; = bs) is finally adopted.

As a final step, two cases of combined variation of E, f;, G are considered. In the
first case, the lognormal stochastic fields representing the three parameters are fully
correlated while in the second case there is no cross-correlation between them. The
corresponding load-displacement curves shown in Fig. 6.14 are highly variable and
thus lead to a large probability of failure of the structure. For b = 1.2, the peak load
of all realizations is smaller than the deterministic one, while p; is equal to 87% and
61% for b = 12 and 120, respectively (case of fully correlated properties).

Finally, crack patterns for a randomly selected realization and for different values
of correlation length b are shown in Fig. 6.15 (the crack paths are formed by elements
with zero stiffness at the end of SLA). The unrealistic crack pattern obtained for
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Figure 6.13: Notched specimen: Load-displacement curves for stochastic parameter G (a) o = 10%
and (b) o = 20% (lognormal case, b = 120).
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Figure 6.14: Notched specimen: Load-displacement curves for combined variation of the three param-
eters for o = 10% (lognormal case, b = 120): (a) E, f;, G fully correlated, (b) E, f;, Gy uncorrelated.

b = 1.2 is due to the high variability of the elastic modulus in this case which leads to
neighboring elements with substantially different £.



120 Chapter 6. Numerical Examples

I
MRS T

I
LTI

“\'\}

E = IH) -+ }I\# F HEEE)
. [T H S HH H T o
: A REaaanmara S SEeaRREE H -
- . — i
: S it B i
- HEE oo EEEEEREEEN
niy i REESEEs | *j: i
H H EEREse= B I
o = e | T
Il | i i I . i
]
1T I
_ m T ‘
o 0 A
H I mmi
| T |
T
L T
1T
b=1.2 b=12.0 b=1200
u 12 -
E—— |

Young Modulus E (GPa)

Figure 6.15: Notched specimen: Crack paths for a randomly selected realization and for different
values of correlation length b (E, f;, G fully correlated).

6.2 Optimization results

In the second part of this thesis, a fillet from a steel structural member (Stolarska
et al., 2001) is analyzed to illustrate the capabilities of the proposed methodology
described in Section 5.1.4. The geometry, loading conditions, and design variables
of the structural component are shown in Fig. 6.16. Four-node linear quadrilateral
elements under plane stress conditions with constant thickness equal to 5 mm and
isotropic material properties are assumed. For the purposes of this thesis, two bound-
ary conditions are considered; in the first one, designated as fillet rigid, all nodes of
the bottom edge are fixed while in the second one, denoted as fillet flexible, the two
end nodes of the bottom edge of the component are fixed.

For both test examples deterministic and probabilistic shape optimization prob-
lems are solved. The objective function to be minimized, corresponds to the material
volume for both, while two sets of constraints are enforced, i.e. deterministic and
probabilistic constraints on the fatigue cycles. Furthermore, due to manufacturing
limitations the design variables are treated as discrete in the same way as in single
objective design optimization problems with the discrete version of evolution strate-
gies (Lagaros et al., 2004). The design variables correspond to the dimensions of
the structural component taken from Table 6.1. The design load P (see Fig. 6.16), is
applied as a concentrated tensile load at the midpoint of the top edge and is equal to
20 KN.

It is common in probabilistic analysis to distinguish between uncertainty that re-
flects the variability of the outcome of a repeatable experiment and uncertainty due
to ignorance. The last one is sometimes referred as “randomness”, commonly known
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Figure 6.16: Fillet geometry, loading and design variables of the problem.

Design
variable lup  liow Step
b1 100.0 50.0 1.0
by 100.0 50.0 1.0
T3 30.0 10.0 1.0

Table 6.1: Upper and lower bounds of design variables and corresponding steps (in mm).

as “aleatoric uncertainty” , which cannot be reduced. However, both deterministic and
probabilistic approaches rely on various model assumptions and model parameters
that are based on the current state of knowledge on the behavior of structural systems
under given conditions. There is uncertainty associated with these conditions, which
depends upon the state of knowledge that is referred as “epistemic uncertainty”.

In this thesis various sources of uncertainty are considered: on crack tip initializa-
tion (aleatoric randomness) which influences the shape of the crack propagation path
and on modeling (epistemic uncertainty) which affects the structural capacity. The
structural stiffness is directly connected to the Young modulus F, of the structural
steel, while the number of fatigue cycles is influenced by the material properties C
and m. The crack length increment Aa and the poison ratio and fracture toughness
are taken equal to 5.0mm, 0.3 and 100MPa//m respectively, treated as deterministic.

Hence, for the structural component five random variables are used, i.e. the or-
dinate y, of the crack tip initialization and the corresponding angle 6 along (see
Fig. 6.16) with the Young modulus £ and the parameters C, m. The material proper-
ties for the structural steel of the component are implemented as independent random
variables whose characteristics were selected according to Ellingwood et al. (1980);
Ellingwood and Galambos (1982) and are given in Table 6.2.

The numerical study that follows comprises two parts: in the first part a parametric
investigation is performed in order to find the number of simulations required for
computational efficiency and robustness regarding the calculation of the statistical



122 Chapter 6. Numerical Examples
Random variable L o COV distribution type
Yo (in mm) (150 = b1)/(2 + b1) - 5% normal
0 (in degrees) 0.0 0.50 - normal
E (in GPa) 207.0 35.19 17% lognormal
C 2.45e-11 4.16e-12 17% lognormal
m 2.37 0.40 17% lognormal

Table 6.2: Random variables with the type of distribution and each statistical parameters: mean value
(1) and standard deviation (o).

quantities required and the identification of the most appropriate one that can be
used in order to characterize the influence of randomness on the fatigue cycles. In
the second part, performance of structural components under fatigue is investigated
within a probabilistic shape design optimization framework.

6.2.1 Parametric investigation

For the purpose of the parametric investigation the fillet rigid case was examined and
three designs, corresponding to the upper (Design 1), lower (Design 3) bounds of the
designs variables and an intermediate one (Design 2) are chosen. The scope of this
investigation is to find the lower number of simulations for a reliable calculation of
certain statistical quantities that are related to the number of fatigue cycles. To this
end, Monte Carlo (MC) simulations based on LHS (see Appendix A) are performed
for the three designs described above and the mean, median and standard deviation
of the number of fatigue cycles are calculated (see Table 6.3).

Design | MCS mean median std. dev.
Design 1 100 5382911.9 6895308.5 3176784.9
Design 1 200 6848983.6 7024024.0 11271233.5
Design 1 500 6568327.3 7026526.0 13717577.0
Design 1 | 1000 6533674.8 7026013.0 19043699.3
Design2 | 100 90222.3 91794.2 27363.2
Design2 | 200 94371.9 86020.0 28170.8
Design2 | 500 96950.6 93982.8 109963.6
Design 2 | 1000 95214.8 94768.0 60920.3
Design 3 100 5260.5 4858.5 1141.3
Design 3 | 200 5371.9 4992.9 1308.9
Design 3 | 500 5369.6 5005.9 1278.3
Design 3 | 1000 5328.8 5360.0 994.2

Table 6.3: Statistical quantities of the parametric investigation for the three designs.

The performance of the different number of MC samples is depicted in the his-
tograms of Fig. 6.17. For the purpose of this investigation, the three designs are
subjected to the ensemble of different number of simulations (100 + 200 + 500
+ 1000). Thus, 5400 XFEM analyses have been postprocessed in order to create a
response databank with the quantities of interest. The propagation of uncertainties is



Chapter 6. Numerical Examples 123

performed by means of the MC simulation method in connection to the LHS technique
which has been incorporated into the XFEM framework as described in Section 5.1.4.
According to LHS a given design is run repeatedly, for each MC simulation using dif-
ferent values for the uncertain parameters, drawn from their probability distributions
as provided in Table 6.2. It is worth mentioning that the characteristic mesh size gen-
erated for the nested XFEM analysis in both probabilistic analysis and optimization
cases, is kept constant in the region of the crack path.

The group of histograms Fig. 6.17 show the probabilistic distribution of the fatigue
cycles values N, for different number of MC simulations implemented into XFEM and
for the three designs. The frequency on the occurrence of the number of fatigue cycles
value is defined as the ratio of the number of simulations, corresponding to limit state
values in a specific range, over the total number of simulations (V;,). Ny is equal to
100, 200, 500 or 1000 depending on the number of simulations used in each case.

Comparing the histograms of Fig. 6.17, it can be noticed that the width of the
confidence bounds corresponding to the intermediate design is narrower compared
to the other two, while for the case corresponding to the upper bounds of the design
variables there are two zones of concentration for the frequency values. Furthermore,
comparing the mean versus median values of the number of fatigue cycles, the median
value is considered more reliable since it is not influenced by the extreme lower and
upper values obtained. Specifically, in the framework of an optimization problem
where such values might be often encountered due to search procedure that might
also lead to extreme designs. Concluding, 200 LH simulations were considered as
an acceptable compromise between computational efficiency and robustness. To this
extend an equal number of simulations are applied for the solution of the probabilistic
formulation of the shape optimization problem which is described in the second part
of this study.

Histogram for Design No.2 Histogram for Design No.3
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EEE MCS =200 0.1 BN MCS =200
EEm MCS =500 BN MCS =500
EE MCS = 1000 0.14 I NCS = 1000

Histogram for Design No.1
[\ MCS =100
. MCS =200
Em MCS = 500
EE MCS = 1000

o o © o o o

Frequency

0

0,00~ [ FYREFS 1,1 4
12 50000 100000 150000 200000 250000 %05 ""4G00 5000 6000 7000 0G0 9000 10000
N, N,

Figure 6.17: Histograms of each design

The influence of the uncertain variables on the shape of the crack propagation
paths is depicted in Figs. 6.18 - 6.20, with the cloud of the typical crack paths ob-
tained for 200 simulations. A crack path is defined as typical, if its shape is similar to
deterministic one (Stolarska et al., 2001). Especially, for Design 1, due to its geometric
characteristics, many not typical crack paths were obtained, however only the typical
ones are shown in Fig. 6.18. This is an additional reason for choosing the median
versus mean value as the statistical quantity to be incorporated into the probabilistic
formulations of the problems studied in the following sections of this thesis.

From the results obtained, it can be concluded that the crack paths obtained by
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Figure 6.18: Design 1.

Figure 6.19: Design 2.

Figure 6.20: Design 3.

means of XFEM is highly in influenced by the random parameters considered in
this study, thus the importance of incorporating them into the design procedure is
examined in the following part.

6.2.2 Design optimization process

After the parametric investigation, four optimization problems are solved with the
differential evolution (DE) metaheuristic optimization algorithm. The abbreviations
DET*K and PROBx*K correspond to the optimum designs obtained through a determin-
istic (DET) and probabilistic (PROB) formulation where the lower number of fatigue
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cycles allowed is equal to * thousands. The optimization process that is based on the
integration of XFEM into a deterministic and a probabilistic formulation of structural
shape optimization is shown in Fig. 6.21. Within each design iteration of the search
process there is a nested crack growth analysis loop performed for each candidate
optimum design. Thus, a complete crack growth analysis is conducted until the failure
criterion is met, i.e. K., < K, and the corresponding service life is evaluated (see
Section 3.1.8) in order to assess the candidate optimum design.

Optimization Process

Given design Choose Update Best
b1, b2, 3, t4 next design design

J

XFEM Analysis

l NO YES
Initial Crack
X, Yy, theta Is the current

l design optimum?

Add AN to total N for the

corresponding crack segment SEITETR ) 2l B

Compute SIFs Design Assesment
(KI, Kll, Keq) (contraints handling)
Calculate crack I
growth direction (Bc¢) .
and add new crack YES Is Keq < Kc? NO N | CElEIED sesin
. parameters (N, ...)
segment using 6c and
Aa

XFEM Analysis

Figure 6.21: XFEM shape optimization process for deterministic and probabilistic formulation.

The parameters used for the DE algorithm are as follows: population size NP =
30, the probability CR = 0.90 and the mutation factor F' = 0.60. For comparative
reasons the method adopted for handling the constraints and the termination criterion
is the same for all test cases. In particular, the simple yet effective, multiple linear
segment penalty function (Lagaros and Papadrakakis, 2012) is used in this thesis for
handling the constraints. According to this approach if no violation is detected, no
penalty is imposed on the objective function. If any of the constraints is violated, a
penalty, relative to the maximum degree of constraints violation, is applied to the
objective function. The optimization procedure is terminated when the best value of
the objective function in the last 30 generations remains unchanged.
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6.2.3 Fillet rigid

The fillet rigid structural component examined in the previous section is the first test
example of this study. For this case two groups of formulations: the deterministic,
described in Eq. (6.2) and the probabilistic, defined in Eq. (6.3), respectively. N,,i,
was taken equal to 100, 200 and 500 thousands of fatigue cycles and the objective
function to be minimized is the material volume V.

min:  V(by, by, 73)
subject to: N (b1, b2,73) > Nyin
50.0 < b, <£100.0, (6.2)
50.0 < by < 100.0,
10.0 < 3 < 30.0

min: V' (by, by, 73)

subject to: N (by, by, 73,50, 0, E,C,m) > Npin
50.0 < b; <£100.0,
50.0 < by < 100.0,
10.0 < 3 < 30.0,
Yo ~ N((150 — b1) /(24 by), COV = 5%)
6 ~ N(0,0.50)
E ~ InN(207.0, 35.19)
C ~InN(2.457" 4.167"?)
m ~ InN(2.37,0.40)

(6.3)

DE managed to reach optimum designs as shown in Figs. 6.22 - 6.23 together with its
optimization history for the deterministic and probabilistic formulation respectively.
Comparing the optimization histories shown in these figures the probabilistic formu-
lations require less generation steps compare to the deterministic one, probably, due
to the narrower feasible design set of the probabilistic formulation. The optimized
designs achieved are presented in Table 6.4 along with the material volume, while
the shapes of deterministic optimized designs are shown in Figs. 6.24 - 6.26. Also,
the clouds of crack patterns are shown in Fig. 6.27 for DET100, DET200 and DET500
cases respectively.

Comparing the three designs (see Table 6.4) by means of the deterministic formula-
tion it can be said that the material volume of DET500K is increased by 33% and 28%
compared to DET100K and DET200K respectively, while that of DET200K is increased
by almost 3.5% compared to DET100K. Furthermore, it can be seen that there are
differences to almost all design variables considered to formulate the optimization
problem. The results obtained for the probabilistic formulation revealed that the mate-
rial volume of PROB500K is increased by 68% and 43% compared to PROB100K and
PROB200K respectively, while that of PROB200K is increased by almost 17.5% com-
pared to PROB10OK. In addition, it can be seen that the material volume of designs
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Figure 6.22: Objective function vs Generation for DET case (rigid fillet).
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Figure 6.23: Objective function vs Generation for PROB case (rigid fillet).

PROB100K, PROB200K and PROB500K is increased by 26%, 43% and 60% compared
to DET100K, DET200K and DET500K, respectively.

In order to justify the formulation of the shape optimization problem considering

127
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Figure 6.24: Optimum design for deterministic formulation DET100 for rigid fillet.

Upper Bound

Lower Bound
Optimum Design
Crack path

Figure 6.25: Optimum design for deterministic formulation DET200 for rigid fillet.
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Figure 6.26: Optimum design for deterministic formulation DET500 for rigid fillet.

uncertainties, probabilistic analyses are performed for all six optimized designs ob-
tained through the corresponding problem formulations and the statistical quantities
related to the number of fatigue cycles are calculated. These quantities are provided
in Table 6.4 and as it can be seen there are cases where deterministic formulation
overestimates the number of fatigue cycles compared to the median value when con-
sidering uncertainty. It is clear that the mean value of the fatigue cycles is not a
reliable statistical quantity since it is highly influenced by the crack behavior.
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Figure 6.27: Crack patterns for DET100, DET200 and DET500 cases respectively (rigid fillet)

Design by by s v | N N.  Nr COV (%) |

DET100K 50.0 75.0 27.0 79690 | 136024 99055 106573 30.43
DET200K 50.0 84.0 28.0 82461 | 201728 261604 198703 36.84
DET500K 73.0 100.0 21.0 105793 | 553038 506188 505190 33.02
PROB100K | 66.0 100.0 27.0 100390 | 118124 107584 100894 45.14
PROB200K | 88.0 100.0 19.0 118065 | 83143 353434 200288 23.55
PROB500K | 100.0 93.0 18.0 169157 | 498856 269721 554890 47.19

Table 6.4: Optimum design for each problem formulation and corresponding statistical parameters for
fillet rigid (MCS = 200).

6.2.4 Fillet flexible

The second test example considered is the fillet flexible test case, where as explained
in Section 6.2 the two end nodes of the lower edge of the component are fixed. Similar
to the previous test example two groups of optimization problems are formulated in
the same way as for the rigid fillet case (see Egs. (6.2) - (6.3)). In this case, N,,;, was
taken equal to 30, 70 and 150 thousands of fatigue cycles and the material volume
was considered as the objective function to be minimized in the problem formulation.
Again, DE managed to solve the optimization problem and the optimization history
is presented in Fig. 6.28 for the case of deterministic formulation and in Fig. 6.29
for probabilistic one, while the optimized designs achieved are presented in Table 6.5
along with the material volume which is the objective function to be minimized.

Design | b by rs| Vo NUY N. NI | CoV (%)

DET30K 50.0 60.0 26.0 | 75122 30500 25139 26326 19.81
DET70K 50.0 72.0 25.0 | 78656 89170 58294 55947 2.44
DET150K 50.0 82.0 25.0 | 81656 183863 168572 166816 37.95
PROB30K | 51.0 63.0 29.0 | 77170 30694 31383 30250 25.28
PROB70K | 50.0 73.0 25.0 | 78956 70453 70695 70907 21.28
PROB150K | 50.0 100.0 19.0 | 86715 288050 179850 153669 121.66

Table 6.5: Optimum design for each problem formulation and corresponding statistical parameters for
fillet flexible (MCS = 200).

In contrast to the rigid fillet case, the increase on the required material volume
is much less. In particular, comparing the three designs achieved (see Table 6.5)
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Figure 6.28: Objective function vs Generation for DET case (flexible fillet).
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Figure 6.29: Objective function vs Generation for PROB case (flexible fillet).

by means of the deterministic formulation it can said that the material volume of
DET150K is increased by 8.7% and 3.8% compared to DET30K and DET70K respec-
tively, while that of DET70K is increased by almost 4.7% compared to DET30K. Fur-
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thermore, it can be seen that there are differences to almost all design variables
considered to formulate the optimization problem. On the other hand, regarding the
probabilistic formulation it can said that the material volume of PROB150K is in-
creased by 12.4% and 9.8% compared to PROB30K and PROB70K respectively, while
that of PROB70K is increased by almost 2.3% compared to PROB30K. In addition, it
can be seen that the material volume of designs PROB30K, PROB70K and PROB150K
is increased by 2.7%, 0.4% and 6.2% compared to DET30K, DET70K and DET150K,
respectively.

Again for this case, in order to justify the results obtained by the shape optimization
problem considering uncertainties, probabilistic analyses are performed for all six
optimized design obtained through the corresponding problem formulations and the
statistical quantities related to the number of fatigue cycles are calculated. These
quantities are provided in Table 6.5 and as it can be seen there are cases where
deterministic formulation overestimates the number of fatigue cycles compared to the
median value when considering uncertainty. Furthermore, it can be verified that the
mean value of the fatigue cycles is not a reliable statistical quantity since it is highly
influenced by the pattern of the crack propagation paths.
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Conclusions and recommendations for further work

7.1 Summary and conclusions of the research developed

In this thesis, a unified framework for stochastic analysis and optimum design of struc-
tures subjected to fracture developed in the ambit of modern numerical techniques for
crack growth simulation mainly based on enriched finite elements methods. This has
been done within the context of the stochastic finite element method as well as within
a modern optimization environment implementing metaheuristic search algorithms.

In the first part of this thesis, the sequentially linear analysis was implemented in
the framework of a stochastic setting to investigate the influence of uncertain spa-
tially varying material properties on the fracture behavior of structures with softening
materials. The proposed approach constituted an efficient procedure avoiding the
convergence problems encountered in regular nonlinear finite element analysis. The
uncertain properties were described by homogeneous stochastic fields using the spec-
tral representation method in conjunction with translation field theory. The response
variability was computed by means of direct Monte Carlo simulation method and
the influence of the variation of each random parameter as well as of the probability
distribution, coefficient of variation and correlation length of the stochastic fields
has been quantified. The analysis of two benchmark structures has shown that the
load-displacement curves and the probability of failure are strongly affected by the
statistical characteristics of the stochastic fields. The extension of SLA to the stochas-
tic framework offers an efficient means to perform parametric investigations of the
fracture behavior of structures in the case of variable material properties.

In the second part of this thesis, structural shape optimization problems were formu-
lated for designing structures under fatigue. To this end, the extended finite element
method which consists an appropriate framework for the simulation of the fracture
process in structures was incorporated into a shape optimization environment. Based
on observations of the numerical tests presented the deterministic optimized design
is not always a “safe” design, since there are many random factors that affect the
design during its lifetime. In order to find a realistic optimized design the designer
has to take into account all important random parameters. In this thesis a reliability
analysis combined with a structural shape design optimization formulation was pro-
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posed where probabilistic constraints were incorporated into the formulation of the
design optimization problem. In particular, structural shape optimized designs were
obtained, considering the influence of various sources of uncertainty. Randomness on
the crack initialization along with the uncertainty on the material properties were also
considered. Shape design optimization problems were formulated for two benchmark
structures, where the volume of the structural component is minimized subjected
to constraint functions related to targeted service life (minimum number of fatigue
cycles allowed) when material properties and crack tip initialization are considered
as random variables.

Furthermore, a sensitivity analysis of four optimization algorithms based on evolu-
tion process was conducted in order to identify the best algorithm for the particular
problem at hand to be used for solving the structural shape optimization problem.
This sensitivity analysis was carried out in order to examine the efficiency and ro-
bustness of four metaheuristic algorithms. Comparing the four algorithms it can be
said that evolutionary based algorithms can be considered as efficient tools for single-
objective multi-modal constrained optimization problems. In all test cases examined,
a large number of solutions need to be found and evaluated in search of the optimum
one. The metaheuristics employed in this study have been found efficient in finding
an optimized solution.

The applicability and potential of the formulations presented were demonstrated
with two benchmark structures. The analysis has shown that with proper shape
changes, the service life of structural systems subjected to fatigue loads can be en-
hanced significantly. Comparisons with optimized shapes found for targeted fatigue
life are also performed, while the choice of the position and orientation of initial
imperfection was found to have a significant effect on the optimal shapes for the
structural components examined.

7.2 Main contributions

The main contributions of this thesis can be summarized in the following:

» proposed an efficient coupled approach (Georgioudakis et al., 2014c; Stefanou
et al., 2014) allowing the stochastic crack propagation analysis and highlighting
the necessity of it, by quantification of the stochastic behavior.

* developed and implemented a shape optimization framework based on bio-
inspired evolution optimization algorithms (Georgioudakis et al., 2014a,b), ca-
pable to enhance the service life of structures subjected to fracture, with appro-
priate changes in the structural geometry,

* demonstrated the feasibility and utility of the developed approaches in problems
of a complexity relevant to industrial applications.

7.3 Future research lines

Starting from the research carried out in this thesis, the following future developments
aiming at the extension and deepening of some aspects that still remain open are
proposed:
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Stochastic analysis using the improved version of SLA
Investigate the influence of uncertain spatially varying material properties on
the fracture behavior of structures with softening materials, using the impoved
version of SLA method (Elias et al., 2010; Graca-e Costa et al., 2013, 2012;
Slobbe et al., 2012) to solve mixed mode crack propagation problems.

Proof of RVF uniqueness in the case of SLA
An interesting theoretical aspect derived from the present thesis, is the proof of
the uniqueness of the VRF described in Section 4.6.3.2. The VRF concept was
used as an alternative way for the computation of the response variability in the
numerical example of Section 6.1.1.

XFEM with nonlinear material behavior
The high COV values which found from the reliability analysis proposed in
Section 6.2.2 emerges the necessity of a robust design formulation for the opti-
mization problem as mentioned in Section 7.1, by minimizing these COV values
and find the “real” optimum. This formulation can be also extended to topology
optimization problems, in three dimensional settings, with nonlinear material
description.

Stochastic failure analysis with inclusions
Use XFEM to model inclusions in the structures whose properties are spatially
varying in combination with SFEM, under the same framework presented in
Chapter 4 in order to investigate the influence of the inhomogeneities/disconti-
nuities to the response variability of the structures.
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Latin hypercube sampling

Latin hypercube sampling (LHS) is a form of stratified sampling (i.e. a method of
sampling from a population) and can be applied to one or multiple variables in
a stochastic process. The method commonly used to accurately recreate the input
distribution through sampling in fewer iterations when compared with the Monte
Carlo method. Monte Carlo simulations provide statistical answers to problems by
performing many calculations with randomized variables, and analyzing the trends in
the output data. LHS can be incorporated into an existing Monte Carlo model fairly
easily, and work with variables following any analytical probability distribution.

The feature key behind LHS is that variables are sampled using a technique known
as stratified sampling without replacement (Iman, 1980), and then randomly combined
sets of those variables are used for one calculation of the target function. Stratification
divides the cumulative curve into equal intervals on the cumulative probability scale,
from O to 1.0 (see Fig. A.1a). The number of stratifications of the cumulative distribu-
tion is equal to the number of iterations performed. The sampling algorithm ensures
that the distribution function is sampled evenly, but still with the same probability
trend. LSH proceeds as follows:

* The probability distribution F'(x) is split into n intervals of equal probability,
where n is the number of iterations that are to be performed on the model. In
Figure A.1a, the cumulative curve of a normal distribution has been divided into
20 intervals. The bands can be seen to get progressively wider towards the tails
as the probability density drops away (see Fig. A.1b).

* In the first iteration, one of these intervals is selected using a random number.

* A second random number is then generated to determine where, within that
interval, F'(x) should lie. In practice, the second half of the first random number
can be used for this purpose, reducing simulation time.

* © = G(F(x)) is calculated for that value of F'(z).

* The process is repeated for the second iteration but the interval used in the
first iteration is marked as having already been used and therefore will not be
selected again.

* This process is repeated for all of the iterations. Since the number of iterations n
is also the number of intervals, each interval will only have been sampled once
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Figure A.1: a) Cumulative Distribution Function F(x) split into n = 20 intervals of equal probability
and b) corresponding Probability Density Function f(x) for a normal random variable X.

and the distribution will have been reproduced with predictable uniformity over
the F'(x) range.

The following Python snippet can generate the random picked probabilities within
each segment using a uniform distribution, and then mapped to the correct represen-
tative value in of the variable’s actual distribution. Hence, for a simulation with 500
iterations would split the probability into 500 segments, each representing 0.2% of
the total distribution. For the first segment, a number would be chosen between 0.0%
and 0.2%. For the second segment, a number would be chosen between 0.2% and
0.4%. This number would be used to calculate the actual variable value based upon
its distribution, and so on.

from __future__ import division
import random

variableMin 10
variableMax = 20
iterations = 10
segmentSize = 1 / iterations

for i in range(iterations):
segmentMin = i * segmentSize
segmentMax = (i+l) * segmentSize
point = segmentMin + (random.random() * segmentSize)
pointValue = (point * (variableMax - variableMin)) + variableMin
print segmentMin, segmentMax, point, pointValue

When using the Latin Hypercube technique to sample from multiple variables, it is
important to maintain independence between variables. The values sampled for one
variable need to be independent of those sampled for another (unless, explicitly must
be correlated). This independence is maintained by randomly selecting the interval to
draw a sample from for each variable. This preserves randomness and independence
and avoids unwanted correlation between all the variables. So, when sampling a
function of N variables, the range of each variable is divided into M equally probable
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intervals. Hence, the maximum number of combinations for a LHS of M divisions and
N variables (i.e., dimensions) can be computed with the following formula:

(1:[ (M — n)> = (MNHN! (A1)

n=0

To conclude, LHS is capable of reducing the number of runs necessary to stabilize a
Monte Carlo simulation by a huge factor. Some simulations may take up to 30% fewer
calculations to create a smooth distribution of outputs. The process is quick, simple,
and easy to implement. It helps ensure that the Monte Carlo simulation is run over
the entire length of the variable distributions, taking even unlikely extremities into
account as one would desire.
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Central Limit Theorem

Central Limit Theorem 1. Given X, X,, ..., a sequence of independent and identically
distributed random variables with expected value j1x and variance o%, the CDF of Z, =

(3", Xi — nux)/+/no? has the property:
lim Fy (z) = ®(2) (B.1)

n—oo

where ®(z) is the CDF of the standard normal distribution.
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