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ABSTRACT

The commoditization of tracking technology, e.q., smart-phone applications in-
volving check-ins, real-time navigation applications, fleet management, etc., provides
us with a wealth of tracking data that, when utilized properly, will allow us to derive
road and transportation networks. The research challenges in the form of map infer-
ence methods have been addressed to a limited extent in literature. Fxisting methods
are characterized by limited geographical scope, small-scale tracking datasets, and un-
convincing map construction results. Thus, sophisticated map inference algorithms
are needed to improve over the current shortcomings and provide methods that can
also be used in a practical setting.

The present thesis contributes to this knowledge by proposing automatic trans-
portation map inference algorithms for the simpler case of road networks, and the
more complex case of semantically more expressive multimodal networks-of-interest.
As a result of our study of automatic road network inference, we propose the Trace-
Bundle algorithm, which extracts an arbitrary road network from large vehicle track-
ing datasets. A second method, the TraceConflation algorithm addresses noisy and
sparse datasets. This method allows for the updates of existing road maps, both in
terms of geometry and connectivity. The merit of these techniques is the automatic
inference of navigable road networks of high spatial accuracy with respect to their
geometry, enriched with additional attributes such as permitted maneuvers and road
categories.

Besides GPS tracking data and road networks, this thesis also studies a mnovel
technique for dealing with user generated geospatial tracking data derived from social
media applications. The proposed method, i.e. the Network-of-Interest algorithm,
allows us to discover transportation hubs and critical transportation infrastructure
from geocoded tweets. To further motivate and facilitate researchers and practition-
ers working in this area, we have created the http://www.mapconstruction.org
which is an online repository containing source code of the state-of-the-art algo-
rithms, as well as datasets for testing and evaluation. Finally, to investigate and
demonstrate the applicability of our map inference algorithms in additional applica-
tion domains, the map-construction approach has been applied to the visualization
of eye tracking data.






ITEPIAHWH

Ou teyvohoyieg eviomiouol Y€ong ToU CUVAVTMVTOL OE EQUPUOYES ECUTIVWY XIVITOV,
TEUYUAUTIXOU YOVOU TAOTYNOTG 1) DLy Elplong GTOAOL OYNUATKY, O)L HOVO ETULTEETOLY
TNV TUEOY T LIS CNHOVTLXAS Ko CUC TNUTIXTS TNy YIS BEBOUEVWY TapaxohoLUnong Tou
ofvel TN BuvatdTNTL Vo AVTAOEL XaveElC TANPOYOpRiol GYETNG UE OBLXG XAl UETUPOPIXT
olxtua eV YEVEL, ahhd €lodyouy entione éva TAHUOC avoL TV EQEUVNTIXGY TEOXAHCENY
oe oyéon pe v alonoinorn TéTouwy TAoUcIwY 0edouévwy. Xt Bifhoypapio €youy
mpotadel oplouéveg pedodol, we PEtodol auTOUUTNS TaEAY WY NS YOETOVY, WAAY BeV EYOuV
uehetniel emapxmc To TEOBAAUAT TOU ATOPEEOLY AT UEYIANG XAfuaxog Bedouéva
XL YEVIXEUUEVNC YeEwUETElag odixd dixtua. 'Etol, mpoxdntouv véeg tdoelc mou oi-
VOUV EUpact) oTnV avdyxn Yo BEATIoToTonuEVoUS ahyopiduoug autdpatng eCoywyhc
YOETWY YL TNV TOROY Y| EPUEUOYMY X0 LAOTIOWCE®Y Tou Yo elvon EVPWOTES WG TEOG
TOV OYXO0 X0l TNV TOLOTNTO TWV OEBOUEVKY Xt Vol ETULTEETOUY EVIUEPWOELS CYETIXS UE
T YEOUETEIOL X0 TN CUVBEGOTNTA TWVY OOLXMY DX TUWV.

Yy xatedduvon auti, 1 Tapoloa SLTEBT] CUVELSQEREL OTN) YVOOT), TEOTEVOV-
ToC Ay 0pIIOUC AUTOUATNE ToEUYWYHS YAETN Yo 0Bd BixTua Xt BIXTUA HETUPORAC
YEVIXEUUEVOU EVOLUPEQOVTOG. Apynd PEAETETOL TO TEOBANUA TNG AUTOUATNG TOEAY-
OYNS Tou YdeTn EVOC 0ol dTUou. XMTo TAaiclo auTd, TEOTEVETHL 0 alyoELiuog
TraceBundle nou elvar mpwtoétumog xon e€dyel €var 08xd dixtuo tuyaiog yewueTplog
amd PEYSANG xAlpaxag dedopéva, o oyéon ue dhheg Tpooeyyioelc mou mpolnovéTouy
AOTNEOVS YEWUETEXOUC XUVOVEC XAVETOTNTOC TWV BPOUWY. LT CUVEYELN, TEOTEIVE-
Tou 0 aAyopripog TraceConflation mou yenowonotel duvauixés TapauéTEOUS EQUEUOYTC
xododg xon YaunAng axpifelog, un cus TNUUTIXG BEDOUEVA XL ETTPETEL EVIUEPWOELS OF
00Ww00¢ YEPTES, amd TALURAS YEWUETElUG Xou ouvdestuoTnTag. To d@pelog amd auTES TI
0LO TEYVIXEC Elvol 1) QUTOUATH ECUYWYT) OOXMDY BIXTVUMY UPNAAC YEWUETEXAS oxplfBetog
xS o ETMTEOCVETWV YARUXTNPLO TGV, OTWE EVOL Ol ETULTEENOUEVES GTROYES, Ol
xatnyopleg Twv dpouwy xAt. Enilong, ueAetdton xou napouctdletan ptar vEa TEYVIXT| ToU
a&lomoLel YEwY weixd BeBoPEVAL amd EQPUPUOYES XOWWVIXTS STOWoNS. AuTth 1 uédodog
EMTEETEL TNV €CoyWYY| XPIOIUWY UTOBOUMY UETOPORMY XAl CNHUAVTIXOY XOUBwY amd
yYewxmoduxonomuéva tweets. Ilpoxeyévou va dodel to xivntpo ot epeuvntéc va epyao-
TOUVY xalL VoL BEATIOC0LY Toug eV AOYw alyopiluoug, €xel dnutovpynlel éva dladeTuoxd
anovetrpto (http://www.mapconstruction.org) nouv xadhotd Swdéoua tov Tnyaio
%Ol ahy0pliuwWY XUTAOHEVHG YUETOY XadME %ol To OEDOPEVA XATAYRAPHS LY VOV
oYNUATWY YLt EAEY Y0 xou aflohdynon. Télog, napovoidleton 1) ENEXTACT TNG TEYVIXNC
O EQUPUOYES YL TNV AUTEXOVICT] DEBOUEVWV XATAYRAPHE TOU avipnTvou o@UoAuo0)
O€ TORUTNENOELS YUETOYRAUPXWOY YEUUUWOY xat oyeTiCeTon Ye Ty adlonolnon yveong oe
TEOYLES HIVOUUEVWY OVTIXEWEVOV.
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PREFACE

This thesis presents our approach for automatic road and transportation net-
works inference by proposing a set of novel heuristics based algorithms. The thesis
presents and proposes new insights and techniques to the problem of automatic map
construction.

It is submitted in fulfillment of the requirements for the degree of Doctor of Philos-
ophy, in the School of Rural and Surveying Engineering, National Technical Univer-
sity of Athens (NTUA), Greece. The presented work describes a set of algorithms to
infer transportation networks from sparse tracking data and has been carried out the
last four years in the Institute for the Management of Information Systems (IMIS)
of R.C. Athena.

Sophia Karagiorgou
Athens, July 201}
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Chapter 1

Introduction

The commoditization of tracking technology, e.g., smart-phone applications involv-
ing check-ins, real-time navigation applications, fleet management, etc., provides us
with a considerable tracking data source that enables us to derive not only road
networks, but transportation networks in general.

In this thesis, we investigate and address the map inference problem, which refers
to the process of constructing and/or maintaining the map of a transportation net-
work from tracking data of objects moving along it. Despite the apparent abundance
of maps, both commercial and open, that exist nowadays, this problem has many
applications. In particular, two main categories of needs can be identified as follows.
The first potential use of this wealth of tracking data includes cases in which the
transportation network is known, but needs to be maintained, updated, or enhanced
with additional properties. Commercial road network datasets are very expensive
and are static in the sense that it is not possible to update them e.g., due to the
construction of a new road. Maps of road networks are traditionally created through
the use of aerial imagery, a method which is not suitable for keeping up with road
changes or determining dynamic aspects, such as traffic controls, turn restrictions,
blockages due to accidents or natural phenomena, etc. To assess change, the map
data vendors typically commission costly on-site surveys to assess the change. The
second scenario refers to cases where the entities move along specific trails, which
have not yet been mapped. Example scenarios include the movements of hikers,
tourists, or animals, cases in which a map exists but is not publicly available or
is too costly to acquire. Example scenarios also include cases of natural disasters
in which the road network infrastructure is wiped out and has been replaced with
an ad-hoc infrastructure created in the wake of relief efforts (cf. Haiti earthquake
scenario). The goal in these cases is to track the movements of the entities and use
the extracted trajectories to infer a map of the movement network or to identify
implicit movement patterns within a behavioral, historic or socioeconomic context.

In these emerging environments, classical maps are no longer sufficient to keep
up with sudden changes. Instead, the users typically would not need a high quality
map, but only a generalized map which shows specific aspects such as landmarks
and important routes. To that end, two primary challenges can be identified, which
are to propose and evaluate novel techniques for:

constructing transportation networks with quality guarantees

and



constructing geosemantically enriched networks-of-interest.‘

This thesis deals with a type of geometric reconstruction problem that is aimed
at discovering the underlying geometric structure described by a set of movement-
constrained trajectories and additional properties and characteristics to semantically
enrich this data inference. This crowdsourced tracking data allows us also to gain
novel insights into form and function in urban spaces, i.e., what infrastructures
exist (form) and how are they utilized (function). Here, we focus in particular
on information harvested from social media and other open-source and volunteered
datasets (e.g. trajectories and OpenStreetMap data).

The inherent inaccuracies and errors of the collected tracking data (GPS errors,
transmission errors, check-in frequency, etc.) make the map construction problem a
very challenging one. Consider the example of Figure 1.1, which plots the trajecto-
ries from vehicle tracking data in Berlin (Figure 1.1a), the actual road network (Fig-
ure 1.1b) from OpenStreetMap (OSM) and the rendered OSM map (Figure 1.1c).
Our goal is to infer the road network of Figure 1.1b from the tracking data of Fig-
ure 1.1a. Clearly, inferring a road network from trajectories is not a trivial task.

I AR FIERERTL
(a) Vehicle tracking data - Berlin (b) Corresponding ground-truth road network
(OSM)
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(c) Correspondiné map (OSM)
Figure 1.1: Vehicle Tracking Data, Actual Road Network, Actual Map.
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Summarizing, in this thesis we will investigate and address the following three
main problems:

e how vast amounts of trajectory data can be harvested and exploited,



e how novel algorithms can benefit a wealth of map handling applications, and

e how to facilitate the provision of evolving and updated maps.

By addressing this very timely problem, this thesis advances the knowledge in
map construction, as well as in related fields such as databases and geographic
information systems. Next, we discuss in more detail these topics, and we present
the specific challenges that arise and the contributions made by this thesis to address
them.

1.1 Challenges and Contributions

Towards our overall map construction goal, which is the provision of evolving and
updated maps from vast amounts of tracking data, this thesis identifies and focuses
on four major issues: (i) the inference of road networks from tracking data, and
the comparative study of existing map-inference algorithms, (ii) the inference and
maintenance of road networks from sparse tracking data, (iii) the inference of trans-
portation networks from tracking data involving high uncertainty (social media and
check-in data), and (iv) the generalized applications that utilize our approach of
bundling sets of traces into geometries.

The proposed research addresses the problem of evolving and updated trans-
portation maps. Given a finite set of tracking data, and optionally additional
parameters defining accuracies, thresholds, and other prior knowledge, compute a
transportation network that represents all tracking data. Tracking data are recorded
as trajectories. A trajectory is a finite point sample of a continuous curve, given
as a finite sequence T' = {po,...,p,} with p; = (x;,y;,t;) and z;,y; € R,t; € RT
forve =0,1,...,nand t) < t; < ty < ... < t,. Each p; minimally consists of a
time stamp as well as a position measurement, but depending on the application
may contain additional data such as speed or acceleration. When using GPS to ob-
tain the measurements, the positions are obtained from a standard projection from
latitude/longitude data into the plane, and GPS measurements often also provide
instantaneous speed information.

The most basic representation of a road network is as a geometric graph em-
bedded in the plane. Each edge represents a road segment and is embedded as
a polygonal curve. Each vertex represents a junction and is embedded as a single
point. Edges can be directed or bi-directed, higher-level road segments such as high-
ways are often represented as two separate directed edges. This models the basic
adjacency information in road networks and is therefore widely used. This geometric
graph models the underlying topology of the road network and its basic embedding
in the plane.

In this thesis, we focus on exploiting the continuity of the input trajectories by
using approaches from computational geometry and combine them with ideas from
trajectory clustering. This includes developing appropriate models for trajectories
and road networks including realistic input models, and developing algorithms to
address the transportation network inference task.

In the following, we describe the challenges that arise for each one of these topics,
and we present the contributions of the thesis.



1.1.1 Preliminaries, Requirements and Problem Definition

As already discussed, map construction is the process of constructing a symbolic
depiction highlighting relationships between entities at any space. Especially, geo-
graphic maps of a territory have a very long tradition and exist from ancient times
and mostly refer to a two-dimensional representation of the surface of the world.
Recently, the problem of automatic map inference has attracted a lot of research
interest. The mere existence of a wealth of tracking data has stirred the interest
in algorithms that might offer a tremendous advantage to the process of modern
map construction. Crowdsourced GPS data could be used to generate entirely new
sections of a road map at very low cost.

Map inference can also be valuable in cases, in which a road map does exist.
Here, they may not only help to increase the accuracy of existing map data, but
also help in detecting changes to the road network.

From a theoretical point of view, the map construction task poses a new class of
geometric shape-handling problems dealing with sets of continuous curves that are
subject to noise. In this thesis, we investigate geometric and clustering models for
trajectories, road networks, and transportation networks and we apply ideas from
geometric shape matching, trajectory clustering and attributes extraction.

1.1.1.1 Data Collection

Data gathering can be done using a GPS enabled devices mounted on any vehicle,
bicycle or smart-phone. In our case, we use data from GPS enabled devices on
a fleet of school buses and taxis, and user check-ins from social media applications
like Twitter. This section explains the Geodetic coordinate system and the Reference
systems that we use in this thesis, surveys GPS positioning, and gives an example
of the collected data set along with its visualization.

1.1.1.2 Geodetic Coordinates

The position of an object in the earth’s sphere can be described in terms of Geodetic
coordinates consisting of its longitude, latitude, and height (see Figure 1.2). In more
details:

e Longitude of a point is the angle from the plane of the prime meridian to
a plane passing through the point, both planes being perpendicular to the
Equator;

e Latitude of a point is the angle from the equatorial plane to the vertical direc-
tion of a line normal to the earth’s ellipsoid and passing through the point;

e Height is the distance between the point and the earth’s ellipsoid.

In this thesis, we use coordinates based on the World Geodetic System 1984
(WGS84), on the Hellenic Geodetic Reference System 1987 (HGRS87) and on the
Universal Transverse Mercator (UTM) reference systems.
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Figure 1.2: The Location of a Point on Earth.

World Geodetic System 1984 (WGS84) WGS84 is an Earth-centered, Earth-
fixed terrestrial reference system and geodetic datum. WGS84 is based on a consis-
tent set of constants and model parameters that describe the Earth’s size, shape, and
gravity and geomagnetic fields (Figure 1.3). WGS84 is the standard U.S. Depart-
ment of Defense definition of a global reference system for geospatial information and
is the reference system for the Global Positioning System (GPS). It is compatible
with the International Terrestrial Reference System (ITRS). The current realization
WGS84 (G1674) follows the criteria outlined in the International Earth Rotation
Service (IERS) Technical Note 21 (TN 21). The responsible organization is the Na~
tional Geospatial-Intelligence Agency (NGA). NGA conducted a WGS84 reference
frame network adjustment in 2013 to incorporate IERS Conventions 2010 Technical
Note 36 (TN 36). The latest revision is WGS 84 (aka WGS 1984, EPSG:4326),
established in 1984 and last revised in 2004 [4]. Earlier schemes included WGS 72,
WGS 66, and WGS 60.

e Origin: Earth’s center of mass being defined for the whole Earth including
oceans and atmosphere;

e Z-Axis: The direction of the IERS Reference Pole (IRP). This direction corre-
sponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch
1984.0) with an uncertainty of 0.005";

e X-Axis: Intersection of the IERS Reference Meridian (IRM) and the plane
passing through the origin and normal to the Z-axis. The IRM is coincident
with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005";

e Y-Axis: Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) or-
thogonal coordinate system:;

e Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic
theory of gravitation. Aligns with ITRS;
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Figure 1.3: WGS 84 Reference Frame.

e Orientation: Given by the Bureau International de I’'Heure (BIH) orientation
of 1984.0;

e Time Evolution: Its time evolution in orientation will create no residual global
rotation with regards to the crust.

Hellenic Geodetic Reference System 1987 (HGRS87) The Hellenic Geode-
tic Reference System 1987 or HGRS87 is a geodetic system commonly used in Greece.
The system specifies a local geodetic datum and a projection system. In some doc-
uments it is called Greek Geodetic Reference System 1987 or GGRS87.

HGRS87 specifies a non-geocentric datum that is tied to the coordinates of
the key geodetic station at the Dionysos Satellite Observatory (DSO) northeast
of Athens. Although HGRS87 uses the GRS80 ellipsoid, the origin is shifted rela-
tive to the GRS80 geocenter, so that the ellipsoidal surface is best for Greece [33].
The specified offsets relative to WGS84 (WGS84-HGRS87) are: dz = —199.87m,
oy = 74.79m, 0z = 246.62m.

The HGRS87 datum is implemented by a first order geodetic network, which
consists of approximately 30 triangulation stations throughout Greece and is main-
tained by the Hellenic Military Geographical Service. The initial uncertainty was
estimated as 0.1 ppm. However there are considerable tectonic movements that
move parts of Greece towards different directions, causing incompatibilities between
surveys taking place at different times.

HGRSS87 replaced an earlier de facto geodetic system. The datum of that system
was based on the Bessel ellipsoid, with an accurate determination of the geodetic
coordinates at the central premises of the National Observatory of Athens supple-
mented by an accurately measured azimuth from the observatory to Mount Parnes.
Cartographic projections for civilian use were based on the Hatt projection system,
with different projection parameters for each 1:100000 map.

HGRSS8T7 also specifies a transverse Mercator cartographic projection (TM) with
mp=0.9996, covering 6° of longitude either side of 24° east (18 — 30° east). This
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way all Greek territory (stretching to approximately 9° of longitude) is projected
in one zone. References are in meters. Northings are counted from the equator. A
false easting of 500, 000m is assigned to the central meridian (24 ° east), so eastings
are always positive.

Universal Transverse Mercator (UTM) The Universal Transverse Mercator
(UTM) conformal projection uses a 2-dimensional Cartesian coordinate system to
give locations on the surface of the Earth. It is a horizontal position representation,
i.e. it is used to identify locations on the Earth independently of vertical position,
but differs from the traditional method of latitude and longitude in several respects.

The UTM system is not a single map projection. The system instead divides the
Earth into sixty zones, each a 6° band of longitude, and uses a secant transverse
Mercator projection in each zone.

A position on the Earth is given by the UTM zone number and the easting and
northing coordinate pair in that zone. The point of origin of each UTM zone is the
intersection of the equator and the zone’s central meridian, but to avoid dealing with
negative numbers the central meridian of each zone is set at 500,000 meters East.
In any zone a point that has an easting of 400,000 meters is 100 km west of the
central meridian, measured on the transverse Mercator projection (or slightly more
than 100 km measured on the actual surface of the earth). UTM eastings range
from about 167,000 meters (near the poles) to 833,000 meters at the equator. In the
northern hemisphere positions are measured northward from zero at the equator; the
maximum northing value is about 9,300,000 meters at latitude 84 © North, the north
end of the UTM zones. In the southern hemisphere northings decrease southward
from the equator to about 1,100,000 metres at 80° South, the south end of the
UTM zones; the northing at the equator is set at 10,000,000 meters so no point has
a negative northing value.

For instance, the CN Tower (CA) is in UTM zone 17, and the grid position is
630084m east, 4833438 m north. Two points in Zone 17 have these coordinates, one
in the northern hemisphere and one in the south; one of two conventions is used to
say which: Append a hemisphere designator to the zone number, “N” or “S”, thus
“17N 630084 4833438”. This supplies the minimum information to define the position
uniquely. Supply the grid zone, i.e., the latitude band designator appended to the
zone number, thus “17T 630084 4833438”. The provision of the latitude band along
with northing supplies redundant information. Because latitude band “S” is in the
northern hemisphere, a designation such as “38S” is unclear. The “S” might refer to
the latitude band (32°N-40°N) or it might mean “South”. It is therefore important
to specify which convention is being used, e.g., by spelling out the hemisphere,
“North” or “South”.

1.1.1.3 GPS

GPS is a mechanism for finding out the Geodetic coordinates of an object relative to
the earth in 3-space. A set of satellites that are orbiting around the earth are used
to find the position of an object through a GPS receiver. A GPS receiver first tries
to find the maximum number of satellites around the user. Then it computes the
distance between satellites and user by the time taken for the signals to reach from
satellites to the user’s device. Each satellite induces a sphere in its coverage region -
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with itself being the center of the sphere - and gives a set of points in 3-space where
the user might be. The intersection of three spheres plus the earth’s sphere gives
the actual position of the user. The more satellites visible, the more accurate the
data. This process is called trilateration [29].

The GPS device when connected to an external machine emits continuous signals
at a user-defined frequency. These signals can be collected using different software.

1.1.1.4 Accuracy of GPS Data

GPS is an outcome of the cold war era. Two major technologies emerged at that
time. One is this GPS - designed and maintained by United States and the other
one is Glonass - designed by Soviet Union. GPS was later permitted to be used by
civilians. But because of its military importance the data provided to the civilians
was not very accurate and the United States Department of Defense has all the
rights to turn off the satellite coverage at any time. The current accuracy numbers
in space and time for the basic GPS are the following:

e 3 meter horizontal accuracy;
e 10 meter vertical accuracy;
e 40 nanoseconds time accuracy.

In the later times, base stations were set up all around North America to enhance
the accuracy of GPS data for civilian use, and the technologies such as Differential-
GPS (DGPS) and Wide Area Augmenting System (WAAS) came into being. In
Europe, navigation relies on the old GPS system and cannot make use of DGPS
and WAAS technologies. The European Union started a project called Galileo for
this purpose [93|. It was operational by 2008 and constituted of a network of 30
satellites and base stations giving highly accurate data of up to 1 meter accuracy.

GPS data are generally subject to two basic kinds of signal distortion, the noise
and the uncertainty [77]. A measurement error caused by limited accuracy of the
measuring device, and a sampling error representing the interpolation uncertainty
caused by the finite sampling. Although the GPS measurement error can be sub-
stantial in certain situations because of shadowed and reflected signals, with the use
of GPS signal augmentation (WAAS, EGNOS) the accuracy lies generally among 1,
3 and 10 meters, but can be as high as 30 meters |20, 89, 73]. A typical noise model
is to assume that the measurement error has a Gaussian distribution. Modeling the
sampling error is trickier because it amounts to modeling the transition between two
sample points along possible original curves, and clearly it depends on the sampling
rate.

Trajcevski [90] gives an overview about the different models for uncertainty of
planar trajectories that have been developed in the spatio-temporal database com-
munity. A simple region-based model associates buffers of fixed radius around each
trajectory [91]. If the maximum speed along each edge is known (which is a reason-
able assumption for GPS data and often is part of the input) then the trajectory can
be modeled as a sequence of beads in space-time [53|, which project to a sequence
of ellipses in the plane [77]. Each ellipse or bead encodes all possible paths from
one point sample to the next. If distances are measured as shortest paths along a
known road network then this restricts the possible paths to different shapes [31, 64].
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Several different probabilistic movement models based on stochastic processes or ran-
dom walks have been developed in ecology to study animal movement. The most
popular ones are the Brownian Bridges movement model [52| and Levy walks [81].
The standard geometric graph model of a road network is an embedded geometric
graph in which each edge represents a road segment embedded as a polygonal curve
and each vertex represents a road junction embedded as a single point. A variant of
this model associates a width w with each edge and represents each vertex and edge
as a region in the plane. Commercial street map vendors such as Nokia or TomTom
use the geometric graph model to represent their core “centerline street network”
data. They also provide various non-geometric additional attributes such as street
names, house numbers, points of interest, speed limits, travel times, as well as
geometric attributes such as road category (ranging from highways to neighborhood
roads) and less frequently the number of lanes and/or the width of the roads.

1.1.1.5 GPS Data Format

The original data format from the GPS follows NMEA (National Marine Electronics
Association) standard. It constitutes of about 20 different attributes, out of which
Geodetic coordinates, UTC (Universal Coordinated Time) and date are essentially
important at least for any application specific purpose. A typical example of data
collected from GPS device in WGS84 geodetic system is in the following form:
<longitude>, <latitude>, <date>, <time> e.g.
48.0070783,7.8189867,20030409,100156

48.0071067,7.8190150,20030409,100158

1.1.1.6 Trajectories and Movement Constraints

The ubiquitous availability of positioning technologies such as the Global Positioning
System (GPS) and WiFi-based positioning (WPS) has led to the collection of vast
amounts of geo-referenced movement data for different kinds of moving entities in
an ever expanding range of application domains. Analyzing the resulting space-time
trajectory data, however, is an immense challenge.

Movement data is generally collected in the form of trajectories. An input tra-
jectory is a finite sequence of time-stamped position samples. It represents a finite
noisy sample of a continuous curve. This thesis focuses on trajectories capturing
constrained movement in the plane or in space. The movement constraints can be
in the form of an explicit road network or a multimodal transportation network
that the trajectories move in. In this scenario the trajectories represent curves that
sample the geometric domain, and the task is to reconstruct the domain from the
curve samples. In other applications the movement might be constrained by non-
geometric reasons such as behavioral patterns of animals, or geocoded tweets from
Twitter, or the geometric domain may be implicitly given by wind or sea currents
enabling efficient flight routes for birds or swim routes for sea turtles. In this sce-
nario the road network represents a common path structure described by the set of
input trajectories.

Depending on the data capturing mechanism, trajectories are subject to differ-
ent kinds of noise. Generally, the measurements of the position samples are only
accurate within certain bounds (measurement error), and the movement transition
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in between position samples can be modeled with varying accuracies depending on
the application (sampling error) [76]. From a geometric reconstruction perspective,
an (implicitly or explicitly given) geometric domain is sampled with organized data
points in the form of inexact one-dimensional trajectories, and the task is to re-
construct the geometric domain. Trajectories are therefore a very unique kind of
organized data representing continuous curves with inherent noise.

1.1.1.7 Maps, Road Networks and Transportation Networks

A road network is the structure given by the topology and geometry of roads, streets
and transport links within a certain area. Historically, maps depicting road net-
works have a long tradition, dating back to a time as early as Ancient Egypt where
maps such as the Turin Papyrus Map showed pedestrian routes along dry river
beds [51, 50]. Around the year 1500, the cartographer Erhard Etzlaub published
his Rom-Weg map designed to help pilgrims find their way to Rome, which intro-
duced the representation of a route by a sequence of points inter-connected with
lines, where each line between two neighboring points had a fixed distance of one
German mile (7.4km) [37]. This development finally led to the modern road maps of
present day, which offer an accurate depiction of cross-city as well as inner city routes
for automobiles enriched with semantic information such as gas stations or speed
restrictions. While Etzlaub had to rely on the testimony of traveling merchants,
nowadays advanced methods of geo-referencing are employed in order to accurately
assign the geographical objects used in a road map to geographical locations. Maps
are increasingly authored and maintained in digital form, which may either be raster
or vector based [48].

In recent times, digital vector maps have gained importance in the field of auto-
motive navigation. These maps organize geo-referenced information in several layers.
The topological layer consists of a representation of the road network given by its
induced graph, where crossings and intersections correspond to nodes in the graph,
and the routes interconnecting these crossings correspond to edges. By defining sev-
eral classes of roads, ranging all the way from international highways down to small
city streets, and assigning these classes to the edges of the graph, a routing such as
the shortest or the fastest way between two point locations on the map can efficiently
be computed using shortest path algorithms such as the Dijkstra algorithm [34].

In contrast, the geometrical layer of a digital map contains a description of the
geometrical shape of the objects stored in the map. Often, the road geometry is
approximated via a sequence of shape points, where each shape point is given by
its coordinates and the road geometry is defined as the polyline constituted by the
shape points. While a road is usually represented as a one-dimensional entity, more
detailed maps, e.g. those required for driver assistance systems, may store additional
information such as the width of a road or the boundaries of different lanes. In
addition, digital road maps may contain polygonal two-dimensional objects such as
footprints of buildings or special areas like parking zones.

All geographical entities found in a digital road map are geo-referenced using a
geodetic reference frame such as WGS-84 [17]. Digital road maps usually enforce
internal consistency, i.e. there is only one unique representation of a single geo-
graphical object. However, multiple maps of the same region may vary greatly, to
the extent that a geographical object present in one map may be entirely missing
in the other, or may be assigned to a different geo-reference. Also, it may (partly)
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correspond to multiple objects in the other map, e.g. if a road with lanes separated
by a physical divider is modeled as a single road in one map and as two one-way
roads in the other.

1.1.2 Inference of Road Networks from Tracking Data

Street maps and transportation networks are of fundamental importance in a wealth
of applications. In the past, the production of street maps required expensive field
surveying and labor-intensive post-processing. Proprietary data vendors such as
Navteq (now Nokia), TeleAtlas (now TomTom) and Google therefore dominated the
market. While more recently, community-driven efforts have begun to challenge
commercial efforts, at least for the context of non-critical applications (cf. [74]).

Lately, on the other hand, the commoditization of GPS technology and integra-
tion in mobile phones coupled with the advent of low-cost fleet management and
positioning software has triggered the generation of vast amounts of tracking data.
Over the last years, Volunteered Geographic Information (VGI) [46] efforts such
as OpenStreetMap (OSM) [49, 74] have complemented commercial map datasets.
They provide map coverage especially in areas which are of less commercial interest.
VGI efforts however still require dedicated users to author maps using specialized
software tools.

Besides the use of such data in traffic assessment and forecasting [36], i.e., map-
matching vehicle trajectories to road networks to obtain travel times [18], there
has been a recent surge of actual map construction algorithms that derive not only
travel time attributes but actual road network geometries from tracking data, e.g.,
2,3, 7,13, 14, 19, 21, 22, 23, 30, 35, 39, 44, 47, 55, 58, 66, 84, 85, 87, 94, 97|. Among
those only a few algorithms give theoretical quality guarantees |2, 7, 23|.

An example of a constructed map is given in Figure 1.1, which shows (a) the
vehicle trajectories collected for Berlin in grey color (1.1a) and (b) the respective
constructed map (1.1b), shown in black color with an OpenStreetMap background
map, shown in grey color. Obviously, inferring the road network from the trajectories
is not a trivial task.

Advances in mobile computing have essentially led to a commodization of online
navigation services with a considerable number of users now being able to determine
and communicate their location. The advent of Web 2.0 applications that have
positioning as their core theme, further increases the amount of tracking data that
is currently available for data analysis. From this point of view, algorithms that
take tracking data as input and produce map data sets are relevant, especially
when considering disaster scenarios in which existing infrastructure is wiped out
and ad-hoc networks need to be recorded. Besides deriving road networks, the
proposed approach can be used to identify implicit movement patterns in any kinds
of spatiotemporal tracking data, e.g., animal migration, historic trade routes, etc.

Existing approaches to the road network generation problem do exist. As we will
see in the following, both the GIS and more recently the computational geometry
communities have addressed this problem each having their specific strengths and
limitations. The most common limitations of the current algorithms are that they
pose strict conditions on the characteristics of data such as high sampling rate or
high spatial data density. In addition, they mostly work better for well aligned
road networks or can not cope with large scaled data. Besides, a major challenge in
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the research community is to compare the performance and to evaluate the quality
of the various map construction algorithms. Visual inspection remains the most
common evaluation approach throughout the literature and only a few recent papers
incorporate quantitative distance measures [5, 13, 14, 58, 66]. However, the cross-
comparison of different algorithms remains rare, since algorithms and constructed
maps are generally not publicly available. Also, there is a lack of benchmark data,
and the quantitative evaluation with suitable distance measures is in its infancy.

A cultural shift has recently been triggered by Biagioni and Eriksson [13|. In ad-
dition to providing an extensive survey of eleven map construction algorithms, they
have performed a quantitative evaluation of three representative map construction
algorithms. Also, they have made their implementations of these algorithms, as well
as their dataset, publicly available.

Summarizing, we can identify the following main challenges for automatic map
inference techniques and the evaluation comparison of the various map construction
algorithms: (a) how to cope with large scaled and low sampling rate tracking data
for arbitrary road networks, (b) how to construct a robust algorithm who takes
as input this tracking data and produces a final road map of high accuracy with
quality guarantees, and (c) how to compare and evaluate more map construction
algorithms on more diverse datasets using various quality measures suitable for
different applications.

In this thesis we address these issues, making the contributions outlined below:

e We propose the TraceBundle algorithm, which exploits the ubiquitous trajec-
tory data in order to analyze, reconstruct and extract road network geometries
enriched by attributes. Our heuristics-based approach relies on “bundling” the
trajectories around intersection nodes. Intersection nodes are derived by de-
tecting clusters in changes to movement patterns. Essentially, we identify areas
in which different types of turns are detected and designate them as intersec-
tion nodes. Linking the trajectories to intersections allows us then to derive
links and consequently the entire geometry of the road network. TraceBun-
dle addresses the challenges of evolving map data sets, specifically by working
towards automatic map and attribute generation from massive amounts of ve-
hicle tracking data. The objective is to derive an algorithm that automatically
extracts the road network graph and related attributes such as road categories
from tracking data obtained using GPS-based position samples (floating car
data - FCD) for large vehicle fleets.

e We propose the Shortest-Path Based Distance Measure, which assesses the
quality of a constructed road network by means of spatial accuracy and net-
work connectivity. It does so by sampling the constructed and the actual road
networks using distinct and random shortest path queries. Comparing the
shortest paths generated in both networks gives us an indication of the quality
of the inferred road network.

e We provide an extensive evaluation comparison of seven map construction
algorithms using four benchmark tracking datasets and four different dis-
tance measures. Such an effort is only sustained in a culture of sharing that
makes data, methods and source code publicly available on the internet at
mapconstruction.org. It complements and significantly expands existing
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benchmarking efforts to provide an evaluation and comparison of more map
construction algorithms on more diverse datasets using various quality mea-
sures suitable for different applications. The main goal is to provide a common
platform to do comparative analysis of map construction algorithms.

1.1.3 Dealing with Noisy Tracking Data

During the last years, the widespread adoption and use of GPS enabled devices in
conjunction with the increasingly popular phenomenon of crowdsourcing [1, 74|, has
opened up new opportunities for tracking the movement of various types of entities,
including vehicles, humans and animals. Consequently, this has enabled a wide
spectrum of novel applications and services. One such novel use is to process the
traces of moving objects in order to infer a map of a transportation network.

As a huge set of GPS vehicle traces represents information on roads and can be
collected easily and quickly, some researchers conduct studies on using GPS vehicle
traces to complement absent information for existing road maps. In [83], a method
was developed using GPS vehicle traces to add lane information for existing road
maps. Bruntrup et al. [19] introduced an incremental map-generation method, which
infers the unknown road geometry based on both GPS vehicle traces and existing
road maps. However, few researchers study how to update road maps with GPS
vehicle traces, and there is still little information available in literature about it.

Besides, the inherent inaccuracies and errors of the collected tracking data (GPS
errors, transmission errors, etc.) make the map construction problem very challeng-
ing. We focus on the scenario of inferring a road network from vehicle tracking data,
which is also the case mostly studied in the literature. This scenario also has the
advantage that one can use an existing map of the road network, e.g., from OSM as
in the aforementioned example, as ground-truth for evaluating the accuracy of the
results. Nevertheless, our approach is generic and can be applied also to other types
of movement and transportation networks.

Although recently several road network inference methods have been proposed,
they typically rely on uniformly distributed, frequently sampled and low-noise GPS
traces, which limits their applicability and effectiveness in many real-world scenar-
ios. In Section 1.1.2, we introduced the problem that the TraceBundle algorithm
solves by taking vehicle tracking data in the form of trajectories as input and pro-
ducing a road network graph. The method relies on detecting changes in the direc-
tion of movement to infer intersection nodes, and then “bundling” the trajectories
around them to create the network edges. Although this approach is more robust
w.r.t. noisy GPS traces and different sampling rates, it requires the tuning of sev-
eral parameters to adapt to different network characteristics. Besides, TraceBundle
algorithm uses global values for the several parameters and becomes inefficient in
terms of spatial accuracy in the case of sparse data with low sampling rates.

At this stage, we address the challenges of map generation from noisy, low-
sampled tracking data, by performing a layered construction of the network map.
Here we propose the TraceConflation algorithm, which exploits the ubiquitous tra-
jectory data in order to analyze, segment and reconstruct the underlying movement
network in a layered form. Following this layered approach allows us to segment
the input dataset into groups of trajectories based on their characteristics, and then
treat each group accordingly. Moreover, it makes it possible to deal with changes
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and incorporate updates in an incremental fashion. We also show that this method
is more robust and provides more accurate results when dealing with noisy and
heterogeneous datasets with low and non-uniform sampling rates.

In summary, we can identify the following main challenges for automatic map
inference techniques using sparse and noisy tracking data: (a) how to cope with
large scaled, low sampling rate and sparse tracking data for arbitrary road net-
works, (b) how to construct a robust algorithm who takes as input this tracking
data and produces a final road map of high accuracy by using dynamically deter-
mined parameters, and (c¢) how to provide a mechanism to accommodate automatic
map maintenance on updates. Below we outline our main contributions to these
problems:

e We present TraceConflation, which is a new map generation algorithm that
segments the input dataset into different groups of trajectories based on their
characteristics and then infers the network in a layered fashion using dynami-
cally determined values for the parameters.

e We introduce a proximity-based expansion algorithm around turn samples
based on turn similarity, which allows us to create intersection nodes based on
the available data by using sets of trajectories that belong to the same speed
category.

e We present a detailed experimental evaluation of our method, using three real-
world datasets of vehicle tracking data, which shows that the proposed method
outperforms the current state-of-the-art.

1.1.4 Inference of Transportation Networks from Social Me-
dia Data

An important resource in today’s mapping efforts, especially for use in mobile navi-
gation devices, is an accurate collection of point-of-interest (POI) data. However, by
only considering isolated locations in current datasets, the essential aspect of how
these POIs are connected is overlooked.

Currently, the only datasets that consider connectivity of locations are typically
road networks, which connect intersection nodes by means of road links purely on
a geometric basis. POIs however, encode both geometric and semantic information
and it is not obvious how to create meaningful links and networks between them.

The objective of this approach is to take the concept of POIs to the next level by
computing Networks-of-Interest (NOIs) that encode different types of connectivity
between POIs and capture peoples type of movement and behavior while visiting
these POIs. This new concept of Networks of Interest has a wide array of application
potential, including traffic planning, geomarketing, urban planning, and the creation
of sophisticated location-based services, including personalized travel guides and
recommendation systems.

We propose to capture, both geometric and semantic information in one NOI by
analyzing social media in the form of spatial check-in data. We use the concept of
check-in as a generic term for users actively volunteering their presence at a specific
location.
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Existing road maps and POIs encode mostly geometric information and consist of
street maps, but may also include subway maps, bus maps, and hiking trail maps. To
complement this dataset, geometric trajectories consist of geo-referenced trajectory
data, such as GPS tracking data obtained from people moving on a road network.
This type of data is assumed to have a relatively high sampling rate. Typical
examples include vehicle tracking data sampled every 10 or 30s. Such datasets are
constructed using map construction (cf. [6], [14] for surveys).

At this stage, we use behavioral trajectories as a datasource. They are obtained
from social media in the form of spatial check-in data, such as geocoded tweets
from Twitter. Similar to GPS tracking, the user contributes a position sample by
checking in at a specific location. Compared to geometric trajectories, such check-in
data result in very low-sampling rate trajectories that when collected for many users
provide for a less dense, but semantically richer “movement network” layer.

The main challenge arises from the fact that trajectories composed from geocoded
tweets differ technically and semantically from raw GPS-based type of trajectories.
Unlike trajectories obtained from GPS devices in typical tracking applications, such
data is typically quite sparse since individuals tend to publish their positions only
at specific occasions. However, we advocate that by combining and analyzing time
and location of such data, it is possible to construct event-based trajectories, which
can then be used to analyze user mobility and to extract visiting patterns of places.

The expectation towards behavioral trajectories is that by integrating them into
a Network-of-Interest, the resulting dataset will go beyond a homogeneous trans-
portation network and will provide us with a means to construct an actual depiction
of human interest and motion dependent on user context and independent of trans-
portation means.

As early maps were traces of people’s movements in the world, i.e., view repre-
sentations of people’s experiences, Networks of Interest try to fuse different qualities
of such trace datasets obtained through intentional (e.g., social media, Web logs)
or unintentional efforts (e.g., routes from their daily commutes, check-in data) to
provide for a consequent modern map equivalent.

Overall, we can identify the following main challenges for extracting a Network-
of-Interest from noisy, low-sampled geocoded tweets: (a) how to cope with large
scaled and noisy geocoded tracking data from social media applications; (b) how to
extract transportation hubs, such as subways and bus stations, or bus stops in a
Network of Interest; (¢) how to extract and evaluate visiting patterns from event-
based and behavioral trajectories. To address this problem, we propose the following
approach, as outlined below:

e We introduce a new Network-of-Interest construction algorithm that segments
the input dataset based on sampling rate and movement characteristics and
then infers the respective network layers.

e We introduce a semantics-based algorithm that takes position samples (check-
ins) to create network hubs and to fuse the semantic and geometric network
layer into a Network of Interest.

e We apply a detailed experimental evaluation which uses two real-world datasets
of geocoded tweets and discusses the NOI construction results in terms of qual-
ity and significance.
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1.1.5 Going Beyond Typical Map Inference Tasks

Several visualization methods for eye tracking data exist to help researchers from
many disciplines depict data collected in eye tracking experiments. Focusing on eye
tracking data from observations of cartographic lines, we propose a new visualization
of eye tracking data using polylines inferred from the analysis of samples. This
visualization depicts the average line that is actually seen by subjects; such a line
can be useful in the study of various optical representation concepts, such as the
assessment of the effects of alternative cartographic line attributes, distractions,
abstraction levels and more, as well as in other cases such as the study of visual
computer interfaces.

In summary, we can identify the following main challenges for automatic inference
of polylines from eye tracking data: (a) how to cope with noisy eye tracking data;
(b) how to identify hubs fro eye tracking spatial fixation areas of interest; (c¢) how to
infer similar scanning patterns of importance by tracking the eye cognitive process.
To address this problem, we propose a modified TraceBundle approach and present
some experimental results.

1.2 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 presents some preliminaries and a literature review of the problem of
map construction and the solutions proposed by several approaches in recent years.
It also presents related work on moving objects and data mining on spatiotemporal
data. It concludes with quality measures and methods for map comparison and
evaluation.

Chapter 3 presents the methods for the TraceBundle algorithm, which is an au-
tomatic road network generation algorithm that takes vehicle tracking data in the
form of trajectories as input and produces a road network graph. This approach
automatically extracts the intersection nodes and the road network links embedded
in the trajectory data. Next, we propose a new evaluation measure to assess the
quality, the spatial accuracy and the connectivity of the constructed road networks.
Finally, we present a cross-comparison and an evaluation of road network construc-
tion algorithms and show the www.mapconstruction.org site that was established
given the lack of algorithms and constructed maps being publicly available.

Chapter 4. This chapter deals with a novel methodology, the TraceConflation
algorithm, which converts movement trajectories into a hierarchical transportation
network from sparse tracking data. First, we present our technique for an improved
map construction algorithm on segmented input data based on types of movement.
Segmentation addresses the challenges imposed by noisy, low-sampling rate and
sparse trajectories and provides for a mechanism to accommodate automatic map
maintenance on updates. Then, we describe the method to hierarchically construct
road network layers, based on different types of movement in an urban context, which
are then combined into a single network. Finally, we present our results based on
large scaled datasets, which show significant improvements in terms of quality of the
constructed road network over existing approaches.

Chapter 5. This chapter takes the automatic transportation network extraction
to the next level. It introduces the Network-of-Interest concept, which is a novel
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approach that converts geocoded social media data into a mixed geosemantic (NOI).
It concentrates on a novel network construction algorithm using segmented input
data based on discovered mobility types. The generated network layers are then
combined into a single network. Finally, we show that the proposed method allows
for the discovery of critical transportation infrastructure.

Chapter 6. This chapter presents the application of map-construction algorithms
to other problems, such as eye tracking data. A modified version of the TraceBundle
algorithm is used to automatically extract polylines for eye tracking data. This
use case should motivate future work and research directions for map-construction
algorithms.

Chapter 7. This chapter presents our conclusions and directions for future work.
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Chapter 2

Related Work

In the following, we discuss related work in the area of moving objects and spatiotem-
poral data, outlining the limitations of existing approaches. We also present works
in the fields of map inference algorithms and quality measures for map comparison
which are closely related to our approach.

Automatic transportation network inference and automatic map construction for
improved navigation services have been tackled using a variety of methods including
algorithms from GIS communities, probabilistic models, computational geometry
algorithms such as shape matching or curve similarity, but also image processing
techniques.

This thesis mostly relates to various approaches which have been proposed for
using GPS traces and tracking data to either construct digital maps or refine and
enhance existing ones with additional attributes. These can be organized into the
following categories: Point clustering (this includes k-means algorithms and Kernel
Density Estimation (KDE) as described in Biagioni and Eriksson [14]), incremental
track insertion, and intersection linking. In the following, we present a review of
the literature by using a categorization of the methods according to the type of the
algorithms used.

2.1 Moving Objects and Spatiotemporal Data

Various approaches have been proposed for using spatiotemporal data to extract
useful knowledge, such as identifying travel sequences, interesting routes or socio-
economic patterns. In the following, we present a review of the literature on moving
objects and spatiotemporal data.

2.1.1 Sub-Sequences Extraction from Moving Objects

Several methods focus on sub-sequence extraction (routes) from moving object tra-
jectories by mining spatiotemporal movement patterns in tracking data. Kisilevich
et al. [61] present an automatic approach for mining semantically annotated travel
sequences using geo-tagged photos by searching for sequence patterns of any length.
In [24], Chen et al. extract important routes between two locations by observing
the traveling behaviors of many users. Although, they mine a transfer network of
important routes, they accept that the distance between any two consecutive points
in a trajectory does not exceed 100m, which becomes unrealistic.
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Zheng et al. [100] use online photos from Flickr and Panoramio to analyze peo-
ple’s travel patterns at a tour destination. They extract important routes, but no
transportation network. Asakura et al. [10] investigate the topological characteris-
tics of travel data, but they focus on identifying a simple index of clustering tourist’s
behavior. Mckercher and Lau [69] identify styles of tourists and movement patterns
within an urban destination.

Our approach analyzes, both traffic patterns and topological characteristics of
travel routes, while most existing work focuses on traffic patterns only. Choudhury
et. al [32] explore the construction of travel itineraries from geo-tagged photos.
In contrast, in our approach an itinerary is defined as a spatiotemporal movement
trajectory of much finer granularity.

2.1.2 Knowledge Extraction-Based Techniques of Spatiotem-
poral Data

Characterized by its spatial and temporal dimension, tracking data can be regarded
as one kind of spatiotemporal data, which also connects this thesis to the knowledge
extraction-based techniques of the spatiotemporal data mining domain. Crandall et.
al [27] investigate ways to organize a large collection (~ 35 million) of geo-tagged
photos and determine important locations of photos, such as cities, landmarks or
sites, from visual, textual and temporal features. Kalogerakis et. al [56] estimate
the geo-locations of a sequence of photos.

Similarly, Rattenbury et. al [79] and Yanai et. al [95] analyzed the spatiotem-
poral distribution of photo tags to reveal the inter-relation between word concepts
(photo tags), geographical locations and events. Girardin et al. [45] extract the
presence and movements of tourists from cell phone network data and the geo-
referenced photos they generate. Similarly, [62] proposes a clustering algorithm of
places and events using collections of geo-tagged photos. These approaches effi-
ciently deliver focal spatial data extractions from diverse data sources, while the
aim of this thesis is to also extract how this data is connected (links). In [63], Kling
studies urban dynamics based on user generated data from Twitter and Foursquare
using a probabilistic model. However, these dynamics have not been translated to
a (transportation) graph structure.

All these works target the extraction of some kind of knowledge and patterns
from photos or geo-referenced sources with textual and spatiotemporal metadata,
while we focus on mining transportation and mobility patterns from tracking data.
Overall, what sets this work aside is that we use social media data as a tracking
data source. We use it not only to extract features or knowledge patterns of human
activities, but a complete multimodal transportation network.

2.2 Map Inference Algorithms

In this section, we present various methods which have been applied either to cluster
trajectories or to infer transportation networks or road maps.
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2.2.1 Trajectory Clustering

There also exist various methods based on trajectory clustering. The majority of
the proposed algorithms such as k-means [68|, BIRCH [98] and DBSCAN [38] work
strictly with point data and do not take the temporal aspect into consideration. Sev-
eral approaches match some sequences by allowing some elements to be unmatched
as in the Longest Common Sub Sequence (LCSS) similarity measure [16]. However,
our goal in this thesis is rather to apply a trajectory clustering approach and also
take into consideration the temporal aspect of the data.

Similarity measures for trajectories that take the time and derived attributes,
such as speed and direction, into account have been proposed in [75]. This approach
is close to this thesis with respect to the examined aspects of temporal dimension,
however, we apply clustering techniques in order to infer the connectivity of trans-
portation networks. Besides, our approach differs in that it deals with uncertain
tracking data by taking into account the spatial as well as the temporal dimension
to derive a transportation network.

2.2.2 Point Clustering

Algorithms in this general category assume the input consists of a set of points
which are then clustered in various different ways to obtain street segments which
finally connect to a street map. The input point set either comprises the set of all
raw input measurements, or a dense sample of all input tracks. Here, the input
tracks are assumed to be continuous curves obtained from interpolating (usually
piecewise-linearly) between measurements.

2.2.2.1 Methods Based on K-Means Clustering

Some approaches employ the k-means algorithm to cluster the input point set, using
distance measures (e.g., Euclidean distance) and possibly also vehicle heading of the
measurement, as a condition to introduce seeds at fixed distances along a path.
These include Edelkamp et al. [35], who develop algorithms for road segmentation,
map-matching, and lane clustering. In [84], the k-means algorithm was used to
refine an existing map rather than building it entirely from scratch.

Guo et al. [47], make use of statistical analysis of GPS tracks, assuming that the
GPS data follows a symmetric 2D Gaussian distribution. This assumption may be-
come unrealistic, especially in error-prone environments. Worrall et al. [94] compute
point clusters based on location and heading, and in a second step link these clusters
together using non-linear least-squares fitting. They emphasize on the compression
of the input tracks to infer a digitized road map and present their results only for
small datasets. They are mostly concerned with topological elements and not with
connected way points.

Similarly, Jang et al. [55] proposed a system of map construction with less than
ten traces and presented in a very small scale and without any reference to the
data features (i.e., sampling rate, GPS error). Agamennoni et al. [3| presented a
machine-learning method to consistently build a representation of the map mostly
in dynamic environments such as open-pit mines. They focus on estimating a set
of principal curves from the input traces to represent the constructed map. Liu et
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al. [66] first cluster line segments based on proximity and direction, and then use
the resulting point clusters and fit polylines to them, to extract road segments.

2.2.2.2 Methods Based on Kernel Density Estimation

Another approach related to map inference methods employs KDE methods to first
transform the input point set to a density-based discretized image. Most of the KDE
algorithms function well either when the data is frequently sampled (i.e., once per
second) [22], or when there is a lot of data redundancy [14, 87, 85, 30]. In [14], a
dataset of university shuttle buses was used, being sampled very frequently (2s-6s),
while in [30] GPS samples are obtained every 1s. In [87] although it is stated that
low-frequency vehicle position data is used, the required sampling interval is at most
15s. A similar approach to [14] is presented in Liu et al. [66].

Generally, KDE algorithms have a hard time overcoming the problem of noisy
samples when they accumulate in an area. Recently, Wang et al. [92] addressed the
problem of map updates by applying their approach to OpenStreetMap data using
a KDE-based approach.

Recently, Wang et al. [92] addressed the problem of map updates by applying
their approach to OpenStreetMap data using a KDE-based approach. The KDE
algorithms are also quite sensitive with respect noise.

2.2.2.3 Methods Based on Computational Geometry

In the computational geometry community, map construction algorithms have been
proposed that cluster the input points using local neighborhood properties by em-
ploying Voronoi diagrams, Delaunay triangulations [23, 44|, or other neighborhood
complexes such as the Vietoris-Rips complex [2] and also providing quality guaran-
tees. All these algorithms assume a densely sampled input point set, and provide
theoretical quality guarantees for the constructed output map, under certain as-
sumptions on the underlying street map and the input tracks.

Aanjaneya et al. [2] view street maps as metric graphs, and they focus on com-
puting the combinatorial structure by computing an almost isometric space with
lower complexity, but they do not compute an explicit embedding of vertices and
edges. Chen et al. [23| focus on detecting “good” street portions in the road net-
work and connect them subsequently. The theoretical quality guarantees, however,
assume dense point sample coverage and error bounds, and make assumptions on
the road geometry. Both approaches are based on sub-sampling the trajectory data
and then using an unordered set of points to derive the complete road network.

2.2.3 Incremental Track Insertion

Algorithms in this category construct a street map by incrementally inserting tracks
into an initially empty map [72|, often making use of map-matching ideas [78].
Distance measures and vehicle headings are also used to perform additions and
deletions during the incremental construction of the map.

One of the first algorithms in this category [82| clusters the tracks merely to
refine an existing map and not to compute it from scratch. Cao and Krumm [21]
first introduce a clarification step in which they modify the input tracks by applying
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physical attraction to group similar input tracks together. Then they incrementally
insert each track by using local criteria such as distance and direction.

Bruntrup et al. [19] propose a spatial-clustering based algorithm that requires
high quality tracking data (sampling rate and positional accuracy), while Liu et
al. [66] efficiently build a road network, but require accurate data and high sampling
rates of 1Hz. The work in [97| discusses a map update algorithm based on spatial
similarity. It uses a method similar to GPS trace merging to continuously refine
existing road maps.

Ahmed and Wenk |[7]| present an incremental method that employs the Fréchet
distance to partially match the tracks to the map. While they give partial quality
guarantees, their approach does not address the basic connectivity problem and how
to measure the respective quality of a generated network.

A common problem with most approaches is that they rely on high-quality GPS
traces, i.e., high sampling rate and low positional errors of 5m. The result quality
improves with the amount of available data (redundancy) rather than the data
quality itself.

2.2.4 Intersection Linking

While related to point clustering, the intersection linking approach is to first de-
tect the intersection vertices of the street map, and in a second step link those
intersections together by identifying suitable street segments.

Fathi and Krumm [40, 39] provide an approach that detects intersections by
using a prototypical detector trained on ground-truth data from an existing map.
While a map is finally derived, their approach works best for well aligned maps and
it uses frequently sampled data of 1s or 5s. Our approach in Chapter 3 relates to
this category. It relies on detecting changes in the direction of movement to infer
intersection nodes, and then “bundling” the trajectories around them to create the
map edges.

2.2.5 Other Approaches

Road networks can be derived from satellite or aerial images by means of image
processing techniques |65, 54, 67, 12, 99, 71]. For example, Tavakoli et al. [88] group
together edges found by an edge detector into shapes representing buildings and
roads. As such they differ from the present approach, which relies on trajectory
data.

2.3 Quality Measures for Map Comparison

There are two key ingredients for evaluating the quality of a constructed map: (1)
the availability of an adequate ground-truth map G as part of the benchmark data,
and (2) a quality measure used to evaluate the similarity between the constructed
map C and the ground-truth map G.

There are essentially two cases of what can be considered as a ground-truth map
G. Ideally, GG is the underlying map consisting of all streets, and only those streets,
that have been traversed by the entities that generated the set of input tracks. If
such a G was available, then a suitable quality measure would compare C to all of G
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and the ideal would be for C' to equal G. However, in practice, it is hard to obtain an
unbiased ground-truth map that exactly corresponds to the coverage of the tracking
data. This non-trivial task has been addressed in the past by pruning the ground-
truth either manually, by proximity to the tracking data, or by map-matching the
tracking data to the map [13, 14, 58, 66|. By using graph topologies resulting from
human judgment or from the cropping behaviors of the different pruning algorithms,
clearly all these approaches introduce an undesired bias.

Actually, it is much easier to obtain a ground-truth map that covers a superset
of all the streets covered by the input tracks, e.g., street maps taken by proprietary
vendors or OpenStreetMap. Therefore, if GG is a superset, then the quality measure
attempts to partially match C' to G. Of course, another possible scenario is that C'
contains additional streets that are not present in either variation of G.

In the graph theory literature, there are various distance measures for comparing
two abstract graphs, that do not necessarily have a geometric embedding [26, 43, 80].
Most closely related to street map comparison are the subgraph isomorphism prob-
lem and the maximum common isomorphic subgraph problem, both of which are NP-
complete. These, however, rely on one-to-one mappings of graphs or subgraphs, and
they do not take any geometric embedding into account. Graph edit distance [42, 96|
is a way to allow noise by seeking a sequence of edit operations to transform one
graph into the other, however it is NP-hard as well. Cheong et al. [25] consider
a graph edit distance for geometric graphs (embedded in two different coordinate
systems, however), and also show that it is NP-hard to compute.

For comparing street maps, distance measures based on point sets and distance
measures based on sets of paths have been proposed.

2.3.1 Distance Measures based on Point Sets

Point set-based distance measures treat each graph as the set of points in the plane
that is covered by all its vertices and edges. The idea is then to compute a distance
between the two point sets. A straightforward distance measure for point sets are
the directed and undirected Hausdorff distances [9]. The main drawback of such an
approach is that it does not use the topological structure of the graph. Biagioni
and Eriksson [13, 66], use two distance measures that essentially both use a variant
of a partial one-to-one bottleneck matching that is based on sampling both graphs
densely.

The two distance measures compare the total number of matched sample points
to the total number of sample points in the graph, thus providing a measure of how
much of the graph has been matched. They do require though to have as input a
ground-truth graph that closely resembles the underlying map and not a superset.

2.3.2 Distance Measures based on Sets of Paths

For path-based distance measures on the other hand, the underlying idea is to
represent the graphs by sets of paths, and then define a distance measure based on
distances between the paths. This captures some of the topological information in
the graphs, and paths are of importance for street maps in particular since the latter
are often used for routing applications for which similar connectivity is desirable.
Mondzech and Sester [70] use shortest paths to compare the suitability of two
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road networks for pedestrian navigation by considering basic properties such as
respective path length. Our approach [58| also use shortest paths, but to actually
assess the similarity of road network graphs. Computing random sets of start and
end nodes, the computed paths are compared using Discrete Fréchet distance and the
Average Vertical distance. Using those sets of distances, a global network similarity
measure is derived.

In another effort, Ahmed and Wenk [5] cover the networks to be compared with
paths of k£ link-length and map-match the paths to the other graph using the Fréchet
distance. They are the first to introduce the concept local signature to identify how
and where two graphs differ.
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Chapter 3

Inference of Road Networks from
Tracking Data

Road networks and, more generally, transportation networks are an interesting re-
search field in that they represent the principal data set for a large range of ap-
plications, including GIS, location-based services, transportation systems and Web
mapping.

Map construction construction methods automatically produce and/or update
street map datasets using vehicle tracking data. Enabled by the ubiquitous gen-
eration of geo-referenced tracking data, there has been a recent surge in map con-
struction algorithms coming from different computer science domains. A cross-
comparison of the various algorithms is still very rare, since (i) algorithms and
constructed maps are generally not publicly available and (ii) there is no standard
approach to assess the result quality, given the lack of benchmark data and quanti-
tative evaluation methods.

This chapter presents an automatic road network inference algorithm that takes
vehicle tracking data in the form of trajectories as input and produces a road network
graph. This effort addresses the challenges of evolving map data sets, specifically
by focusing on (i) automatic map-attribute generation, (ii) automatic road network
inference, and (iii) providing a quality assessment. The steps for the automatic road
network inference algorithm constitutes the TraceBundle algorithm. Also, the steps
for the quality assessment of a constructed road network constitutes the Shortest-
Path based Distance measure.

Besides, it presents a first comprehensive attempt to benchmark such map con-
struction algorithms. We provide an evaluation and comparison of seven algorithms
using four datasets and four different evaluation measures.

In addition to this comprehensive comparison, we make our datasets, source
code of map construction algorithms and evaluation measures publicly available on
mapconstruction.org. This site has been established as a repository for map con-
struction data and algorithms to motivate other researchers to contribute by upload-
ing code and benchmark data supporting their contributions to map construction
algorithms.

The remainder of this chapter is organized as follows. Section 3.1 discusses the
methods developed regarding trajectories clustering and calculation of intersection
nodes, connecting intersection nodes and the inference of a road network. All these
methods constitute the TraceBundle algorithm. Additionally, we suggest an evalua-
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tion approach in order to provide quality guarantees of the inferred road network in

association with the underlying network. This is discussed in Section 3.2. We con-

tinue in Section 3.3 by presenting the algorithms which are used for the evaluation

comparison of map construction approaches. In Section 3.4, we present experimen-

tal, comparison and evaluation results. Finally, Section 3.5 presents our conclusions.
Our results in this chapter have been published in [58, 6, 28].

3.1 Intersections and Links - The TraceBundle Al-
gorithm

The contribution of this work is to derive a road network by sampling it using
vehicles and GPS tracking. By means of the (set of) algorithms that is discussed in
the following, the tracking data are essentially reduced to the actual road network
geometry. In addition, road categories are derived based on the amount of data that
is available for particular road network portions. Our task is to align the vehicle
trajectories, so as to derive the actual road network underlying it. Figures 3.1a, 3.1b
plot such tracking data with the principal roads of the actual road network being
(at least visually) evident.

(a) Berlin, taxi fleet data
Figure 3.1: Tracking Data.

The algorithm to derive the road network involves three essential steps; (i) iden-
tifying intersections, i.e., use turns in vehicle trajectories as indicator for intersec-
tions, (ii) connecting intersections, i.e., create links between intersections by using
trajectories, and (iii) reducing the network graph, i.e., collapse the links to create a
meaningful road network graph.

The remaining of this section describes the methods applied in order to refine
input data sets and continues by presenting the three steps of the TraceBundle
algorithm.

3.1.1 Turns and Intersections

Given a vehicle trajectory, we use turns to detect intersection nodes of the road
network. Specific indicators for turns are changes of the vehicle’s movement in
terms of speed and direction.
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Figure 3.2: Angular Difference.

3.1.1.1 Indicators

Deriving from a common-sense understanding of vehicular movement, when turning,
a vehicle (i) reduces its speed and (ii) changes its direction. Our approach uses a
threshold of 40km/h as a reduced-speed indicator in combination with a change of
direction. Figure 3.2 gives an example of a trajectory with two position samples
and the respective direction vectors. Through experimentation, we established a
threshold of 15° as the proper value for the specific road network case. Algorithm 1
gives the pseudo-code of the Intersection Detection algorithm. Here, the direction
and speed difference are considered in Lines 11 and 12, respectively.

The Intersection Detection algorithm scans all trajectories in a position-by-
position and an edge-by-edge manner taking into consideration the above conditions
(Lines 9-16). We record all positions that satisfy the turn conditions (Line 14) and
label them turn samples.

3.1.1.2 Clustering Turns

Categorizing turns by means of a turn model will enable us to cluster turn samples
stemming from different trajectories and deriving intersections. The turn model
describes all the possible movement patterns, using math degrees (0 is east, degrees
increase counter-clockwise), in relation to an intersection. The turn samples are
classified by using eight types of turns. The turn types captures all the possible
combinations of incoming and outgoing links at a candidate intersection. Odd num-
bers are used for outgoing turns and even numbers for incoming turns resulting in
four turn pairs as shown in Figure 3.3.

Using the turn model, the turn samples can be grouped according to (i) spatial
proximity and (ii) turn similarity. All discovered turn samples are organized using
a turn identifier, as an attribute for each of the eight turns. Within each turn
category now, we use an agglomerative hierarchical clustering method and a distance
threshold of 50m (cf. Algorithm 1, Line 18) to identify turn clusters, i.e., turn
samples clustered together based on location (candidate intersection location) and
turn type.

Figure 3.4a shows the calculated result for three roads that are met at an inter-
section. X and O markers are used for “odd” and “even” turn types, respectively.
Using colour we further distinguish turn types. Yellow is used for types 1 and 2,
orange for 3 and 4, red for 5 and 6, and black for 7 and 8. The turns model supports
efficiently up to 4-way intersections.
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Figure 3.3: Turn Model.

3.1.1.3 Intersections

Having identified turns, the question that remains to be answered is how we ac-
tually derive intersections. Again, performing agglomerative hierarchical clustering
in connection with a distance threshold, (in our case 25m), we translate the turn
clusters established in the previous step, into intersection nodes (Algorithm 1, Line
20).

For each so generated intersection node, we also record two attributes. A weight
for the node is derived as the sum of the weights recorded for all constituting turn
clusters, i.e., the total number of turns the intersection node was derived from.
In addition, the permitted manoeuvers for each node are recorded, i.e., given an
intersection, what are the possible turns as “seen” by the GPS tracking data.

Algorithm 1: Finding Intersections.

Input: A set of trajectories T'
Output: A set of Intersection nodes I

1 begin

2 /*Intersection nodes extraction based on trajectory data*/

3 P + 0 / Position sample in trajectory

4 Ps <+ (0 / Turn samples

5 Pc < 0 / Turn clusters

6 I < (0 // Intersection nodes

7 Angle, Speed, Dist / Parameter thresholds

8 // Process all position samples in all trajectories

9 while (T[i] # null) do

0 P «+ TVi] / Positions samples of a single trajectory

1 ap < AngularDif f(P[i — 1], P[i], P[i + 1])/ Angular Difference
dz(P[i — 1], P[i])

12 Up 5t(Pli — 1], P[i]) / Mean speed

13 if (ap € Angle and v, € Speed) then

14 Pg.insert(P[i], TurnType(Pli]))

15 end

16 end

17 // Cluster turn samples into turn clusters

18 Pc + ClusterTurns(Pg, Dist)

19 // Cluster turn clusters into intersection nodes
20 I < ClusterIntersections(Pc, Dist)

21 end

The distance threshold of 25m was established through experimental evaluation,
i.e., it is lower than the threshold used for establishing turn clusters since the clusters’
position is already located near a turn. Experimentation showed that a greater
threshold would produce fewer intersections as would a smaller threshold produce
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too many intersection nodes. Essentially, we establish turn clusters based on distance
and type of turn, whereas we then group these turn clusters into intersection nodes.
Figure 3.4b shows intersection nodes as grey * markers.

(¢) Connecting intersection nodes

Figure 3.4: Computing Intersection Nodes.

3.1.2 Connecting Intersection Nodes

At this stage in the network inference process, we succeeded in deriving isolated
intersection nodes. In the following, we connect them, i.e., create links, by using the
trajectory data. A fringe benefit of the intersection nodes computation based on
turns is the connection of trajectory portions to these nodes, i.e., for all trajectories
we know which samples helped constituting intersection nodes. To derive links we
exploit this knowledge.

We record for each intersection node the outgoing and/or incoming trajectory
portions connecting this node to other nodes by essentially scanning all trajectories,
whether they contain sequences of intersection nodes. The result of this step is
the creation of a road network that connects nodes (intersections) with (trajectory
portions) links. The algorithm is simple in that it essentially examines all trajec-

tories based on whether they contain turn samples (with turn samples constituting
intersections nodes) and “marking” the respective trajectory portions.

In our data structure handling the trajectory data, all position samples that are
also turn samples have been marked as such. Hence, performing a linear scan of
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all trajectories reveals the respective portions of the trajectories that connect turn
samples, and, hence, intersection nodes (Algorithm 2, Lines 6-14).

(a) Computing link samples between two intersec- (b) Average positions of link samples
tions

Figure 3.5: Computing Link Samples.

Essentially, two intersection nodes in question will typically be connected by
a number of trajectories, i.e., vehicles that have passed more than once from an
intersection to the other. In terms of network geometry, at this stage of the overall
road inference process, we introduce redundant links between intersection nodes as
we simply identify how trajectories connect intersection nodes. Merging these links
will be the next step. We refer to trajectory portions connecting intersections at
this stage as link samples.

To establish link samples, we merge the spatial portion of trajectories using a
sweep-line algorithm (Algorithm 2, Lines 16-26). Given a set of trajectories, at each
position sample we compute an average position based on the normal distance of
the position sample to all other trajectories. Figure 3.5a shows a set of positions
that comprise trajectory portions and the resulting link (grey) that was derived
for connecting the two intersection nodes (black crosses). Horizontal lines indicate
positions samples at which the average position is computed. Figure 3.5b shows a
close up of the resulting link (grey) at the first two position samples, on the left of
Figure 3.5a. In addition, for each link sample (i) a weight is derived representing the
number of the trajectories comprising a link sample and (ii) a width is computed as
the maximum spatial extent of the trajectories (thickness of a link sample is derived
by the bundled trajectories). This link sample width will be used in the next step
when compacting the road network as a size parameter of the bounding box that
is used in the process. Figure 3.4c shows how intersection nodes are connected by
various trajectories. It also shows that trajectories that “pass through”, i.e., do not
turn at the intersection, have so far not been considered (but will be in the next
section). In general, the number of generated intersection nodes depends highly
on the parameter setting of the algorithm, i.e., choosing lower or higher threshold
values will generate more or fewer intersection nodes, respectively. As also discussed
in Section 3.4, the parameters need to be tuned to the network and the data in
question.
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Algorithm 2: Connecting Intersection Nodes.

Input: Set of trajectories T" and Intersection nodes I
Output: A set of link samples Lg

1 begin

2 /*Connecting intersection nodes using trajectories*/

3 Is < (0 / Intersection sequence

4 Lg < 0 / Link samples

5 // Identify intersection sequences from trajectories

6 foreach t € T' do

7 foreach p € t do

8 // position sample is mapped to an intersection node

9 if p € I then
10 // record prev., current intersection node
11 Is « {i7,i,p7,p,t}
12 end
13 end
14 end
15 // Collect and merge link samples
16 foreach {i~,i} € Is do
17 / add all trajectory portions for this intersection pair
18 foreach t € Ig do
19 Ls + {t,p~,...,p}
20 end
21 // cluster link samples
22 Width < Width(Lg)
23 Weight < Weight(Lg)
24 Lg <+ SweepMerge(Lg)
25 end
26 end

3.1.3 Compacting Links

The state of the inferred road network at this point is that we have intersection nodes
connected by links derived from trajectories that exhibit turns at these intersections.
This also means that a large portion of the data, trajectories “passing through” at
intersections (bulk of the data shown in Figure 3.4c), has not been considered yet
with respect to all link samples. In a nutshell, the algorithm identifies trajectory
portions that are close to existing links by means of a bounding box and merges
their geometry onto the existing link geometry. In this step, we neither introduce
new intersections nor do we add new links. We only adjust the geometry of existing
links. The three steps of the algorithm include (i) sorting existing link samples with
respect to their length, (ii) using a bounding box around link samples to determine
relevant trajectory portions, and (iii) adjusting the geometry of links based on the
trajectories’ geometry.

A first step is to sort all links according to their length (Algorithm 3, Line 1) so as
to process longer links first as they are more significant for link construction. I.e., the
longer a link, the more selective will be the match for a longer trajectory portion to
fit in a bounding box. In trying to identify portions of link samples that match other
link samples expressed by spatial proximity and direction similarity, the algorithm
uses a bounding box around the eramined link sample and retrieves all intersecting
portions of other links (Algorithm 3, Line 7). The size of the bounding box is
determined by the width of the respective link sample as described in Section 3.1.2.
In addition to containment in a bounding box, a threshold is used to assess direction
similarity. In our experimentation, an adequate measure for direction similarity is
equals to 45°. Figure 3.6a shows in black the bounding box of an examined link.
The examined link is shown in grey and respective portions of other candidate links
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are shown in light grey.

oo around fink samples.

(a) Bounding box enclosed area (b) Merging link samples
Figure 3.6: Road Network Inference.

As a pre-cursor to merging link samples, we record for each examined link its
similar links and the portions that exhibit similarity. The latter is important in order
to manage partially similar link samples. As the similar link samples can be located
at the beginning, the end, or the middle, the remaining portions are preserved by
splitting the respective links (Algorithm 3, Line 14).

Merging link samples follows an approach similar to the one of Section 3.1.2,
when connections of intersection nodes were established. The method is applied
to every portion of the examined link that exhibits partial similarity to other links
(Algorithm 3, Lines 10 & 16). New links are created by interpolating link samples
and introducing intersection nodes. In addition, new links preserve a weight that is
the sum of the weights of the merged links. Link samples are updated several times
during this stage. While the examined links are reconstructed, new link samples are
created and the existing are removed, i.e., additions, deletions and updates to the
connectivity of the road network.

Algorithm 3: Road Network Extraction Algorithm.

Input: Set of link samples LS
Output: A set of links L

1 begin

2 LS < sort(LS,length) / Sorting link samples by length
3 CLS + 0 / Candidate link samples

4 Width // width of link samples

5 Angle // direction threshold

6 foreach [ € LS do

7 CLS + Find(bbox(l, Width(l), Angle))

8 foreach cl € CLS do

9 if Contains(l,cl) then
10 L + SweepMerge(l, cl)
11 end
12 else
13 // partial overlap
14 clin, clout < Split(l, cl)
15 CLS.add(clout)
16 L + SweepMerge(l,clin)
17 end
18 end
19 end
20 end
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3.1.4 Post Processing

While the road extraction algorithm so far has already created a road network
graph, the following heuristics-based post-processing step should further improve
the quality of the road network. This is the last applied step which results in the
TraceBundle algorithm.

The basic idea in our road extraction process is the use of turns to identify turn
clusters, which in turn create intersection nodes. The underlying trajectory data is
recorded by means of taking position samples at regular time intervals. In the case
of turns this is especially critical, in that a position sample might create turn clusters
well in advance or after the actual turn and hence introduce additional intersections.
We call this phenomenon triangular intersections.

To detect such triangular intersections, we analyze link sample weights in con-
nection with geometric properties. To establish a criterion, we introduce the notion
of relative weight p between the weights w;, w; of two link samples l;, [, defined as
pi; = w;/w;. The aim is to detect such triangle constellations of links [y, [y, I3 with
two sides having respective high relative weights in relation to the third side, i.e.,
P12 > P13 N\ pr2 > P23

Figure 3.7 gives an example by showing in red colour link samples with high
relative weight and in yellow link samples with low relative weight.

/ 7
/ !

Figure 3.7: Triangular Intersections.

Following a statistical analysis, a link sample may be eliminated provided that
both high relative weight ratios are > 0.7 and the low relative weight ratio is < 0.6,
ie., given p; ; > 0.7 A pir > 0.7 A pj < 0.6, [, can be eliminated.

Figure 3.8 shows the distribution of such relative weight ratios (sorted by de-
scending high relative weight ratio) for the 162 triangular intersections detected in
the inferred road network described in Section 3.4.

3.2 Shortest-Path Based Distance

Essential for any automated process is the evaluation of its results. In the case
of road network inference, this encompasses the assessment of the quality of the
resulting road network. Ideally, we would like to compare the inferred with the
existing road network graph, i.e., how do the roads and the intersections we found
by means of our algorithm line up with the actual road network.

Provided that the tracking data does not cover all the road network, such a
comparison should only be with respect to the corresponding portion of the network.

35



—

-/

Relative weights ratio
=~ [=2)
k
]

i

0 20 40 60 8 100 120 140 160 180
Number of comers

(=)

Figure 3.8: Relative Weights Comparison.

To this effect, we defined a method that extracts a subset of a road network based
on given tracking data samples.

Thus, the quality of the inferred road network is evaluated by a process that
assesses the connectivity of the links and the geometry of the generated result. The
evaluation process can be summarized in three steps. The first step determines a
relevant portion of the actual road network that lines up with the tracking data. In
the second step, we randomly produce distinct pairs of origin and destination nodes
in the inferred and the actual, partial road network and compute their respective
shortest paths. Finally, in step three, we apply Distinct Fréchet distance and Average
Vertical distance as quality measures to assess the similarity of the shortest-paths
and, thus, reason about the similarity between the derived and the actual road
network.

3.2.1 Underlying Road Network Extraction

The trajectory data covers a certain spatial area and we use this extent to derive
the covered portion of the road network. I.e., the reduced network only comprises
links of areas also covered by the tracking data. To find this partial network, we
represent the geometry of the underlying road network with bounding boxes of a
50m distance threshold. Experimentation showed that this distance threshold is not
too small to exclude road portions and not too large to include all the road network.

Now, to derive the partial network, we use the trajectories as a query set with
the condition that either they cross or they are spatially contained in the bounding
boxes representing the links of the actual road network. In the example of Figure 3.9,
the dashed black lines represent the bounding box, the grey lines the partial road
network and the yellow lines an instance of the trajectory data. As this process
is by no means perfect, in this example, several redundant links have been falsely

identified.

3.2.2 Shortest-Path Queries

To assess the quality of the inferred road network, we use a large number of shortest
path queries in the process. We compute shortest paths for randomly selected pairs
of origin and destination nodes in (a) the inferred and (b) the actual road network.

Given the constructed and ground-truth networks C' and G respectively, a com-
mon set of node pairs (origin, destination) is selected in both using the nearest
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Figure 3.9: Clipping of the Underlying Road Network.

neighbor search. For all node pairs, shortest paths are computed in both networks.
The geometric difference/similarity between the respective shortest paths is used to
assess the similarity between C' and GG and consequently as a means to assess the
quality of the inferred network.

Using Dijkstra’s algorithm, besides the actual path, we also record the total
cost of the path in terms of distance and the number of links. We compare the
similarity of the shortest paths by using (i) the Discrete Fréchet distance and (ii)
the Average Vertical distance to the corresponding pairs of shortest paths. The
similarity measures are not applied to individual links, but to the entire paths to
able to draw conclusions regarding more extensive portions of the road network. To
compute these distance measures, readily available routines are used in MATLAB.

The rationale for using this approach is that measuring the similarity for sets of
paths instead of individual links allows one to better reason about the connectivity
of the inferred network. The more “similar” the shortest paths in the constructed
network are to the ground-truth network, the higher also the quality of the network.

The results of this Shortest-Path Based Distance measure can be assessed by
plotting the distance of all paths against each other, or by comparing average values
for the entire set of paths. We employ both approaches in our experiments below.

The results of this evaluation can be found in Section 3.4.

3.3 Map Inference Algorithms

In this section, we present seven map construction algorithms using four benchmark
tracking datasets and four different distance measures. The algorithms we compare
represent the state-of-the-art over the past several years and constitute representa-
tives of different map construction algorithm classes. The algorithms we evaluate
including the TraceBundle algorithm presented in Section 3.1, are the recent algo-
rithms by Ahmed and Wenk [7], by Ge et al. [44], in addition to the algorithms by
Cao and Krumm [21], Davies et al. [30], Edelkamp and Schrodl [35], and Biagioni
and Eriksson [14|. Among those, the algorithms by [21], [30] and [35] were previ-
ously compared by Biagioni and Eriksson [13]. We have used their publicly available
implementations of the algorithms by [21], [30, 35] and by [14], and the authors of
[44] ran their algorithm for us. The implementations of the algorithms by [7, 58]
have been made publicly available on the internet at mapconstruction.org.

The four distance measures used to assess the constructed map quality comprise
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two novel distance measures that have not been used for comparative evaluations of
map construction before and that work with unmodified and unbiased ground-truth
maps: the Directed Hausdorff distance [9] and the path-based distance measure
presented by Ahmed et al. [5]. We also use our distance measure based on shortest
paths [58] and the graph-sampling-based distance measure by Biagioni and Eriksson
[14]. The implementation of the latter distance measure [14] has been made available
to us by the authors.

The tracking datasets include the Chicago dataset provided by Biagioni and
Eriksson [13, 14|, and three additional tracking datasets: two from Athens, Greece
and one from Berlin, Germany (see detail in Section 3.4.1). They are available
together with unmodified ground-truth maps obtained from OpenStreetMap. We
use different datasets because they cover diverse roads (i.e. highways, secondary
roads), different sampling rates and different scale.

In addition to providing the largest comprehensive comparison of map construc-
tion algorithms, we make our three new benchmark datasets, the map construction
algorithms and outputs by Ahmed and Wenk [7] and by the TraceBundle algorithm
[58], as well as the metric code for computing the three distance measures: the Di-
rected Hausdorff distance [9], the path-based distance [5] and shortest-path based
measure |58| publicly available on the internet at mapconstruction.org. We expect
that such a central repository will encourage a culture of sharing and will enable the
development of improved map construction algorithms.

The main goal is to provide a common platform to do comparative analysis
of map construction algorithms. As different distance measures capture different
features of a constructed map, it is hard to combine them into a single score and
rank the algorithms based on that. Also, which algorithm is the best highly depends
on the quality of the input data and for what purpose the map will be used. For
example, for the Chicago dataset the KDE-based algorithm by Davies et al. [30]
generates a very good-quality map in terms of spatial distance to the ground-truth
map (captured using path-based and Directed Hausdorff distance), but if the user is
interested in maps with good coverage (captured by shortest-path based and graph-
sampling based distance measure) this algorithm will not be the best choice as it
ignores tracks in sparse areas as outliers/noise.

3.3.1 Compared Algorithms

Here we give some more details on the map construction algorithms that we compare
in Section 3.4. The algorithms categories are also provided in Table 3.1.

Point Incremental Track Intersection
Algorithm Clustering Insertion Linking

Ahmed and Wenk [7] v’
Biagioni and Eriksson [14] v’

Cao and Krumm [21] v’
Davies et al. [30] v’
Edelkamp and Schrédl [35] v’
Ge et al. [44] v’

Karagiorgou and Pfoser [58] v’

Table 3.1: Algorithm Categories.



3.3.1.1 Point Clustering Algorithms

Edelkamp and Schrédl [35] Edelkamp and Schrodl [35] were the first to propose
a map construction approach based on the k-means method. Their point clustering
algorithm creates road segments based on tracking data, represents the center line
of the road using a fitted spline and performs lane finding. The lanes are found by
clustering tracks based on their distance from the road center line.

(a) Input trajectories, clusters, and segments (b) Centerlines, refined graph

Figure 3.10: Clustering-Based Map Construction Algorithm (images from [35]).

Ge et al. [44] This algorithm is a point clustering approach that applies topolog-
ical tools to extract the underlying graph structure. The main idea of this algorithm
is to decompose the input data set into sets each corresponding to a single branch
in the underlying graph. The authors assume that the input point set is densely
sampled, and their algorithm only needs a distance matrix or proximity graph of
the point set as input. Then, they define a function on the proximity graph, which
assigns to every point in the graph its geodesic distance to an arbitrary base point.
They employ the Reeb graph to model the connected components of the level set of
the inverse of this function. Finally, there is a canonical way to measure importance
of features in the Reeb graph, which allows them to easily simplify the resulting
graph. They provide runtime guarantees as well as partial quality guarantees for
correspondences of cycles. An embedding for the edges is then obtained by using
a principal curve algorithm [60] that fits a curve to the points contributing to the
edge. Figure 3.11 gives an example of a constructed graph based on a point cloud
shown as light (yellow) dots.

Biagioni and Eriksson [14] Biagioni and Eriksson [14] describe a point clustering-
based algorithm that uses KDE methods. Their algorithm proceeds in using KDE
with various thresholds to compute successive versions of a skeleton map. They
annotate the map by performing a map-matching pass of the input tracks with the
skeleton map. Figure 3.12 gives three example stages of the skeleton construction
process using high to low KDE thresholds.

Davies et al. [30] This is a classical KDE-based map construction algorithm. It
first computes for each grid cell the density of tracks that pass through it (cf. the

39



(a) Input points and initial graph (b) Graph after smoothing

Figure 3.11: Reeb Graph based Map Construction (images from [44]).

(a) High threshold (b) Medium threshold

(¢) Low threshold

Figure 3.12: KDE-Based Map Construction using Threshold Ranges (images from

[14]).
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example of Figure 3.13a). Then it computes the contour of the resulting bit map
(Figure 3.13b), and then it uses the Voronoi diagram of the contour to compute a
center line representation, followed by additional cleanup (Figure 3.13c¢).

Bl

(a) Blurred trajectory histogram

(c) Centerlines, graph

Figure 3.13: Clustering-Based Map Construction Algorithm (images from [30]).

3.3.1.2 Incremental Track Insertion Algorithms

Ahmed and Wenk [7] The algorithm by Ahmed and Wenk [7] is a simple and
practical incremental track insertion algorithm. The insertion of one track proceeds
in three steps. The first step performs a partial map-matching of the track to the
partially constructed map in order to identify matched portions and unmatched
portions. Figure 3.14a gives an example of a track with its matched portions shown
in dark green and its unmatched portions shown in red. This partial map-matching
is based on a variant of the Fréchet distance. In the second step, the unmatched
portions of the track are then inserted into the partially constructed map by creating
new vertices and creating and splitting edges. In a third step, the already existing
edges in the map that are covered by the matched portions of the trajectory, are
updated using a minimum-link algorithm to compute a new representative edge (cf.
Figure 3.14b). This last step is only needed to provide a guaranteed bound on the
complexity of the output map; in the implementation of this algorithm that we
use in Section 3.4, this last step has been omitted. Ahmed and Wenk also give
theoretical quality guarantees for the output map computed by their algorithm,
which include a one-to-one correspondence between well-separated “good” portions
of the underlying map and the output map, with a guaranteed Fréchet distance
between those portions.
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(a) Existing graph and trajectory to be added (b) Merged graph

Figure 3.14: Incremental Track Insertion Algorithm (images from [7]).

Cao and Krumm [21] This incremental track insertion approach proceeds in
two stages. In the first stage, simulation of physical attraction is used to modify the
input tracks to group portions of the tracks that are similar together. This results
in a cleaner data set in which track clusters are more pronounced and different lanes
are more separated. Then, this much cleaner data is used as the input for a fairly
simple incremental track insertion algorithm. This algorithm makes local decisions
based on distance and direction to insert an edge or vertex and either merge the
vertex into an existing edge, or add a new edge and vertex.

Figure 3.15 gives a respective map construction example. The three trajectories
of Figure 3.15a are used to incrementally build the graph in Figure 3.15b by (i) either
merging nodes to existing nodes if the distances are small and the directions of the
traces match (nodes in boxes), or (ii) by creating new nodes and edges otherwise
(nodes in circles).

Trajectory 1
Trajectory 3 ] j
++

(a) Three input trajectories b) Merged graph

Figure 3.15: Incremental Track Insertion Algorithm (images from [21]).

3.3.1.3 Intersection Linking Algorithms

The TraceBundle Algorithm [58] This intersection-linking map construction
algorithm is a heuristic approach that “bundles” trajectories around intersection
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nodes and is presented in Section 3.1. The main contribution of this TraceBun-
dle algorithm is its methodology to derive intersection nodes. The basic heuristic
relies on detecting changes in movement and then clustering “similar” nodes. A
change in direction and speed is considered a turn indicator. Clustering these turns
based on (i) spatial proximity and (ii) turn type results in turn clusters. The cen-
troid location of each of these turn clusters represents an intersection node. Links,
and consequently the entire geometry of the map, are generated by connecting the
intersection nodes with trajectories, and compacting the trajectories. Figure 3.16
presents the steps of this algorithm. Figure 3.16a shows the constructed intersection
nodes as gray stars from turn clusters (x and o markers) and Figure 3.16b shows as
black lines the created links after compacting the trajectories. The essential steps
of the TraceBundle algorithm are as follows:

e Turn samples - given a trajectory, each node (position sample) at which a
significant change in direction and speed (parameters) occurs becomes a turn
sample;

e Turn clusters - clustering turn samples based on (i) proximity (static param-
eter) and (ii) a turn model,

e Intersection nodes - centroid of turn clusters;

e (Connecting intersection nodes - using constituting turn samples, connect tra-
jectories to respective intersection nodes;

e Compacting links - merge connecting trajectory portions between intersection
nodes to generate links.
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(a) Intersection nodes (b) Compacting links

Figure 3.16: The TraceBundle Algorithm.

3.3.2 Quality Measures used for Map Comparison

Here we give some more details on the quality measures that we use in Section 3.4
to compare the different road network construction algorithms. Note that in our
experiments the ground-truth G is an unmodified street map from OpenStreetMap
and thus expected to be a superset of the underlying graph. We use the Directed
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Hausdorff distance [9], the path-based distance measure presented by Ahmed et al.
[5], the distance measure based on shortest paths [58] and graph-sampling based
distance measure by Biagioni and Eriksson [13]. The first two measures have not
been used for comparative evaluations of road network constructions before.

3.3.2.1 Distance Measures based on Point Sets

Hausdorff Distance [9] The directed Hausdorff distance of two sets of points A, B
is defined as d (A, B) = max,e4 mingep d(a,b). Here, d(a,b) is usually the Euclidean
distance between two points a and b. Intuitively, the directed Hausdorff distance
assigns to every point in a its nearest neighbor b € B and takes the maximum of
all distances between assigned points. In order to compare two graphs, we identify
each graph as the set of points that is covered by all its vertices and edges. If the
directed Hausdorff distance from graph C' to graph G is at most €, this means that
for every point on any edge or vertex of C' there is a point on G at distance at most
e. Or equivalently, every point of C' is contained in the Minkowski sum of G with a
disk of radius ¢; the Minkowski sum intuitively “fattens” G by “drawing” each of its
edges with a thick circular pen. This distance measure gives a notion about spatial
distance for graphs. If C' is the constructed graph and G is the ground-truth, the
lower the distance from C' to G, the closer the graph C to G.

Graph-Sampling Based Distance [13] Biagioni and Eriksson [13] introduce a
graph-sampling based distance measure in order to evaluate geometry and topology
of the constructed road networks represented by graphs. The main idea is as follows:
starting from a random street location, explore the topology of the graphs by plac-
ing point samples on each graph outward within a maximum radius. This produces
two sets of locations, which are essentially spatial samples of a local graph neigh-
borhood. These two point sets are compared using one-to-one bottleneck matching
and counting the unmatched points in each set. The sampling process is repeated
for several seed locations.

For the bottleneck matching, the sample points on one graph can be considered
as “marbles” and on the other graph as “holes”. Intuitively, if a marble lands close to
a hole it falls in, marbles that are too far from a hole remain where they land, and
holes with no marbles nearby remain empty. If one of the graphs is the ground-truth,
this difference represents the accuracy of the other graph. Counting the number of
unmatched marbles and empty holes quantifies the accuracy of the inferred road
network with respect to the ground truth according to two metrics. The first metric
is the proportion of spurious marbles. This is:

spurious = spurious__marbles/ (spurious marbles + matched _marbles)
and the second is the proportion of missing locations (empty holes), where the
equation is the following:

missing = empty holes/ (empty _holes + matched _holes).

To produce a combined performance measure from these two values, the well-
known F-score is used, which is computed as follows:

preciston x recall

F-score = 2 x (3.1)

precision + recall

where, precision = 1 — spurious and recall =1 — missing.
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The higher the F-score, the closer the match. Sampling the graphs locally is an
important aspect of this approach as it provides the ability to capture the connec-
tivity of the graphs at a very detailed level, allowing the topological similarity to be
measured. Repeated local sampling at randomly chosen locations yields an accurate
view of local geometry and topology throughout the graph.

A modified version is used in [14| where the method ignores parts of the road
network where no correspondence could be found between inferred and ground-truth
networks, for our experiments we used this modified version.

3.3.2.2 Distance Measures based on Sets of Paths

Path-Based Distance [5] The path-based map distance considers graphs as sets
of paths. The distance between two sets of paths is then computed in the Hausdorff
setting, while the Fréchet distance which is a natural distance measure for curves
that takes monotonicity and continuity into account, is used to compute the distance
between two paths.

For curves f, g, the Fréchet distance is defined as:

or(f9) = . nf o max d(f(a(t),9(B()), (3.2)

where «, f range over continuous, surjective and non decreasing reparametrizations.

A common intuition is to explain it as the minimum leash length required such

that a man and dog can walk on the two curves from beginning to end in a monotonic

way. Under this scope, let C' and G be two planar geometric graphs, and let 7o be

a set of paths generated from C, and mg be a set of paths generated from G. The
path-based distance is defined as:

7C,G(7TC,7TG) = max min 6p(pc, pa) (3.3)

PCETC PGETG

Ideally, m¢ and mg should be the set of all paths in C' and G, which however
has exponential size. In [5] they showed that d¢¢(Ile,Ilg) can be approximated
using 7070(1_[?&, II¢) in polynomial time using the map-matching algorithm of [§],
under some assumptions on C. Here, ¢ is the set of all paths and IT}, is the
set of all link-3 paths of C. A link-k path consists of k “edges”, where vertices of
degree two in the graph are not counted as vertices. Using this asymmetric distance
measure dc,g(I1%, I1g), which can be computed in polynomial time for constant k,
the following properties have been shown in [5], under some assumptions on C":

e k = 1: For each edge in C, there is a path in G which is within Fréchet distance
T (T4, Tg).

e k = 2: For each vertex v in C there is a vertex in G within bounded distance
c.c(1%, 1))/ sin &, where 6 is the minimum incident angle at v between its
adjacent edges.

e k=23: jcg(f[%, 1) approximates 7079(HC, 1) within a factor of 1/ sing if
the vertices of C' are reasonably well separated and have degree # 3. !

IThe degree assumption is only a technical requirement for the theoretical quality guarantees,
and the authors have shown [5] that similar approximation guarantees appear to hold in practice
as well.
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Figure 3.17: Graph G (dotted edges) overlayed on H (gray). G and H differs in the
shaded squared region. The distance measure in [14] fails to capture the broken
connection in G, as there is always detour available to reach every edge and sample
it.

Similar to Directed Hausdorff distance, the lower the value of 70,(;(110, 1) the
more closely the constructed map C' resembles the ground-truth map G.

The local signature of a vertex v € C' is defined as A, = deg(Ile,, [Ig) where
I1¢, is a set of paths that contains v. In a similar way, the local signature of an edge
e € C is defined as A, = 7C7G(Hce, 1) where Tl¢, is a set of paths that contains
e. Based on the value of these signatures one can identify which vertices or edges
are very similar and which are not.

Shortest-Path Based Distance [58] As it was extensively presented in Sec-
tion 3.2, we proposed a measure that essentially samples each graph using random
sets of shortest paths. Given the constructed and ground-truth networks C' and G
respectively, a common set of node pairs (origin, destination) is selected in both
using the nearest neighbor search if necessary. For all node pairs, shortest paths
are computed in both networks. The geometric difference/similarity between the
respective shortest paths is used to assess the similarity between C' and GG and con-
sequently as a means to assess the quality of the constructed network. The Discrete
Fréchet distance and the Average Vertical distance are used to compare the shortest
paths. The rationale for using this approach is that measuring the similarity for sets
of paths instead of individual links allows one to better reason about the connec-
tivity of the inferred network. The more “similar” the shortest paths in the inferred
network are to the ground-truth network, the higher also the quality of the network.
The results of this shortest path based distance measure can be assessed by plotting
the distance of all paths against each other, or by comparing average values for the
entire set of paths. We employ both approaches in our experiments below.

3.3.3 Comparison of Distance Measures

All the distance measures described in Section 3.3.2 capture different properties of
graphs. Based on the desired kind of similarity, different distance measures could
be employed. For example, if one is interested in ensuring similar shortest paths
in the two graphs, requiring that independent queries produce similar routes, then
the shortest-path based measure would be the prefect choice [70, 58| among all.
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If, however, one wants to know the spatial displacement between the two graphs
without necessarily considering any kind of topology or path similarity, then the
directed Hausdorff distance [9] would be the distance measure to choose.

On the other hand, the two distance measures described in [14] and [5] maxi-
mize the use of topology in comparing graphs. Using the concept of local signature
described in [5] one can visualize the exact differences in graphs using any of these
two measures. Figure 3.17 shows an example where the graph sampling based dis-
tance [14] fails to identify local differences (the dotted graph has a broken connection
in the gray square region). As it samples small sub-graphs starting from a root lo-
cation, it cannot capture this kind of broken connection when another connecting
detour between the two parts is available in that small sub-graph. As the path-
based distance 5] exploits every adjacency transition around a vertex, it verifies all
connectivities.

Among these four measures only the graph sampling based distance [14] ensures
one-to-one correspondence. So, if one of the graphs has missing streets or extra
edges, that is reflected in the overall score as well as in the local signatures.

3.4 Experimental Evaluation

Having devised an algorithm to derive road networks from collected trajectories, this
section will showcase various results with a focus on the quality of the inferred road
networks. It will also show an extensive evaluation comparison of the most recent
map construction algorithms.

3.4.1 Datasets

A basic means for assessing map construction algorithms is the underlying dataset
comprising vehicle trajectories and ground-truth map datasets. The datasets are
in a projected coordinate system (UTM, GGRS87) which are extensively presented
in 1.1.1.2. The online repository http://www.mapconstruction.org makes avail-
able all the visualizations of the datasets. The statistics of the datasets are provided
in Table 3.2.

3.4.1.1 Tracking Data

Our experiments use several tracking datasets from three different cities, i.e. Athens,
Berlin and Chicago (Figure 3.18). While other publicly available GPS-based vehicle
tracking datasets exist, e.g., GeoLife [101] and OpenStreetMap GPX track data [41],
the selected range covers the various types of existing datasets produced by different
types of vehicles, at varying sampling rates and representing different network sizes.

The Athens large dataset consists of 511 trajectories with a total length of
6,781km (mean: 13.27km) obtained from school buses covering an area of 12km
x 14km; the tracks range from 32 to 80 position samples, with a sampling rate of
20s to 30s (mean: 30.14s) and a mean speed of 20.16km/h.

The Athens small dataset consists 129 tracks with a total length of 443km (mean:
3.82km) obtained from school buses covering an area of 2.6km x 6km; the tracks
range from 13 to 47 position samples, with a sampling rate of 20s to 30s (mean:
34.07s) and a mean speed of 19.55km /h.
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Figure 3.18: Tracking Data.

The Berlin dataset consists of 26,831 tracks with a total length of 41,116km
(mean: 1.53km) obtained from a taxi fleet covering an area of 6km x 6km; the
tracks comprise from 22 up to 58 position samples, with a sampling rate of 15s to
127s (mean: 41.98s) and a mean speed of 35.23km/h.

The Chicago dataset |13, 14] consists of 889 tracks with a total length of 2,869km
(mean: 3.22km) obtained from university shuttle buses covering an area of 7Tkm x
4.5km; the tracks range from 100 to 363 position samples, with a sampling rate of
1s to 29s (mean: 3.61s) and a mean speed of 33.14km/h.

3.4.1.2 Ground-Truth Map Data

For all cases, we consider as ground-truth map data the corresponding OpenStreetMap
excerpt.

In Athens large, the map consists of 39,699 edges and 32,212 vertices. It covers
an area of 12km x 14km. The edges have a length of 2,000km.

In Athens small, the map consists of 3,436 edges and 2694 vertices. It covers an
area of 2.6km x 6km. The edges have a length of 193km.

In Berlin, the map consists of 6,839 edges and 5,894 vertices. It covers an area
of 6km x 6km. The edges have a length of 360km.

For Chicago, the map covered by the trajectories consists of 11,801 edges and
9,429 vertices. It covers an area of Tkm x 4.5km. The edges have a length of 61km.

See Table 3.2 for summary statistics on the ground-truth map data as well as on
the tracking data.
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Tracking Trajec- | Sampling Trajectory Speed
Data tories rate (s) length (km) | (km/h)
Athens large 120 30.14 6,781 20.16
Athens small 129 34.07 443 19.55
Berlin 26,831 41.98 41,116 35.23
Chicago 889 3.61 2869 33.14

[ OSM Network [[ Vertices | Edges [ Length (km) [ Area (km?) |

Athens large 32,212 39,699 2,000 12 x 14
Athens small 2,694 3,436 193 26 X 6
Berlin 5,894 6,839 360 6 X 6
Chicago 9,429 11,801 61 7 x 4.5

Table 3.2: Dataset Statistics.

3.4.2 Results

All algorithms have been developed in MATLAB given its impressive high-level
routines for statistics including clustering and visualization, essentially allowing us to
focus on core algorithms and data structures. The experimental setup in Figure 3.19
shows the methods developed in order to automatically derive and assess the inferred
road network.

Trajectories

i

v
1

Finding intersections

N <—

Connecting intersections

W <

Road network generation

v
4

Evaluation

Figure 3.19: Experimental Setup.

A series of initial experiments established the proper parameter setting for our
road inference algorithm. Turn clustering and intersection inference (cf. Section 3.1.1)
employs four parameters. For turn clustering, (i) the angular difference threshold
was set to 15°. Figure 3.20a gives the histogram and the selected angle differences
(dashed areas) for all trajectory samples. As typically vehicles move straight ahead,
do not change their movement by more than 15°. If they do and in combination
with (ii) the mean speed threshold of 40km/h that vehicles may experience while
turning, then we consider this as an indication for a turn. Both measures have
been chosen very conservatively as false positives will be eventually be eliminated
and they should not be backed up by additional samples. As vehicles transporting
persons are allowed to drive with up to 40km /h in residential areas, this can be also
realized in Figure 3.20b. For instance, the selected mean speed of 40km/h conveys
the transportation conditions of the tracking data.

In addition, (iii) a maximum time constraint of 35s and a distance threshold of
50m was used to cluster position samples. With respect to clustering turn samples
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Turns and Intersections
Angular difference 15°
Mean speed 40km /h
Time constraint 308
Turn clusters 50m
Intersection nodes 25m
Compacting Links
Direction threshold \ 45°
Shortest-Path Based Distance
Actual road network (bounding box) | 50m

Table 3.3: Parameter Summary.

into intersection nodes, (iv) a 25m distance threshold was used. The TraceBundle
algorithm (cf. Section 3.1) uses a bounding box that encloses candidate road network
portions. While the size of the bounding box is dynamically established, we initialize
it with a maximum width of 20m. All parameters were established empirically by
running a great number of road network inference experiments and assessing the
quality of the respective results. The above parameters represent the best setting
for the specific case.
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Figure 3.20: Parameters Selection.

In what follows, we describe the results of the TraceBundle algorithm applied
to trajectory data covering a portion of the road network in Athens, Berlin and
Chicago.

To give some insights on the elimination of the tracking data that the Trace Bun-
dle algorithm following the various stages brings to the inferred result, we present
in terms of numbers the following output for the dataset of Athens large. During
the first phase, i.e., intersection extraction and connection, 4995 intersection nodes
and 5983 link samples are generated. All links combined have a length of 2700km.
The second road network generation phase produces 5124 intersection nodes, 6219
links and a length of 710km. This result shows that during the second phase of the
algorithm, the number of nodes remains largely constant but only the length of the
links connecting them is significantly reduced since we radically merge links in this
phase.
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The overall time to compute these results in MATLAB/Windows7 on an Intel
Core2Duo processor running at 2.2GHz is 56mins. This time is achieved without
performing any optimization on the data structures used in the implementation.

Figure 3.21a visualizes the inferred road network. In addition, Figure 3.21b
illustrates how the computed link weight information can be used to identify major
roads of the network. In this visualization, links are shown that are traversed at
least 10 times. The gaps in the road network are due to uneven distribution of
weights during stage two of the algorithm when compacting the road network and
the untypical traversal of roads by school buses in the Athens large dataset, i.e.,
turning off major roads to drop of kids.
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(b) Heavily travelled road network

(¢) Original road network

Figure 3.21: Inferred Road Network - The TraceBundle Algorithm - (Athens large).

Zooming in on the Athens large data, Figure 3.22 shows the tracking data, the
inferred road network, and the actual road network of a smaller area. At this scale,
it can be clearly seen that the traversed portion of the road network was correctly
identified.

3.4.3 Evaluation Comparison of Map Construction Algorithms

What follows is a description of the map construction experiments that were con-
ducted for the range of algorithms, datasets and evaluation measures, with the scope
to assess the quality of the constructed maps. The seven algorithms used in this ex-
perimentation are implemented in C, Java, Python and MATLAB. The experiments
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(b) Inferred road network
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Figure 3.22: Inferred Road Network - The TraceBundle Algorithm - Close Ups.

for six algorithms have been performed by the authors and the implementations
have been made available at the mapconstruction.org web site. The authors of
[44] performed the experiments themselves, since we did not have access to their
implementation. Given the implementations, (i) their difference in code base, (ii)
their scope, i.e., to construct small-scale maps from GPS trajectories, and (iii) their
quality, i.e., all are academic prototypes, we did not assess the characteristics of the
algorithms themselves by means of, e.g., a performance study or theoretical analy-
sis. However, to at least give an impression of their running times, for the Chicago
dataset the running times of the algorithms range from 10min to 20h. For the
larger Berlin dataset, the running times range from 2h to 4days. Given the quality
of the implementations, another problem we encountered was that some algorithms
could not cope with the size of the input dataset (trajectories) resulting in runtime
crashes. Hence, not all algorithms could be tested on the large datasets and results
for all algorithms are only available for the smaller datasets, i.e., Athens small and
Chicago.

3.4.3.1 Constructed Maps

What follows is an initial overview of the experimentation in terms of constructed
maps and the respective result quality. Figure 3.23 illustrates the ground-truth map
(light gray) and the generated maps (black) for the small Chicago dataset. On
larger datasets, i.e., Athens large and Berlin, we ran the algorithms described in
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Sections 3.3.1.1, 3.3.1.2 and 3.3.1.3. Figure 3.24 illustrates the ground-truth map
(light gray) and the generated maps (black) for the case of the larger Berlin dataset.

Each of the algorithms uses different parameter settings. For Ahmed and Wenk
[7] the values of € to cluster subtrajectories are: 180, 90, 170 and 80 meters for
Athens large, Athens small, Berlin and Chicago, respectively. The respective pa-
rameters of prozimity and bearing for the other algorithms are Biagioni 50m [14],
Cao 20m and 45° [21], Davies 16m [30] and Edelkamp 50m and 45° [35]. For the
TraceBundle algorithm [58| the values of direction, speed and proximity to extract
intersection nodes and to merge trajectories into links are 15°, 40km/h and 25m
accordingly (Table 3.3). We evaluated all constructed maps using the distance mea-
sures described in Section 3.3.2.

Generated
Map # Vertices # Edges Length (km)
Athens large
Ahmed 7067 7960 1358
Ge 20774 21626 9740
Karagiorgou 6584 5280 252
Athens small
Ahmed 344 378 35
Biagioni 391 398 22
Cao 20 14 3
Davies 209 227 2
Edelkamp 526 1037 197
Ge 1936 1993 23
Karagiorgou 660 637 35
Berlin
Ahmed 1322 1567 164
Ge 15450 16136 183
Karagiorgou 2542 2262 161
Chicago
Ahmed 1195 1286 34
Biagioni 303 322 24
Cao 2092 2948 78
Davies 1277 1310 14
Edelkamp 828 1247 83
Ge 5893 6672 37
Karagiorgou 596 558 26

Table 3.4: Complexities of the Map Construction Algorithms.

A summary of the complexities of the constructed maps is shown in Table 3.4.
Here, the number of vertices includes vertices of degree two (which may lie on a
polygonal curve describing a single edge), the number of edges refers to the number
of undirected line segments between these vertices, and the total length refers to
the total length of all undirected line segments. It appears that the point clustering
algorithms based on kernel density estimation such as Biagioni et al. [13, 14| and
Davies et al. [30] produce maps with lower complexity (fewer number of vertices and
edges) but often fail to reconstruct streets that are not traversed frequently enough by
the input tracks. In particular, the maps reconstructed by Davies et al.’s algorithm
are very small. On the other hand, the algorithm by Ge et al. [44] subsample all
tracks to create a much denser output set, hence the complexity of their constructed
maps is always higher.

Map construction algorithms based on incremental track insertion, such as Ahmed
et al. [7] and Cao et al. [21] fail to cluster tracks together when the variability and
error associated with the input tracks is large. As a result, the constructed street
maps contain multiple edges for a single street, which implies larger values in the
total edge length column in Table 3.4.
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Several examples of generated maps are shown in Figure 3.23 and Figure 3.24.
Since not all algorithms produced results for all maps, we showcase examples of the
smaller Chicago map in Figure 3.23. It can be clearly seen that the coverage and
quality of the constructed map varies considerably. Three examples for the Berlin
map are also given in Figure 3.24.

3.4.3.2 Path-Based and Hausdorff Distance

For the path-based distance measure we generated all paths of link-length 3 for each
generated map. For each path, we computed the Fréchet distance between the path
and the ground-truth map. We then computed the minimum, maximum, median,
average of all the obtained distances. We also computed the d%-distance, as the
maximum of the distances after removing the d% largest distances (“outliers”). For
the Directed Hausdorff distance, we computed all link-length 1 paths and computed
the Directed Hausdorff distance of the union of all edges to the ground-truth map.
Our results are summarized in Table 3.5. In the case of Athens small, the Cao
algorithm produced a very small map and thus it was not possible to perform a
quantitative evaluation.

The maps constructed using the TraceBundle algorithm [58] and by Biagioni et
al. [13, 14] generally have a better path-based distance than the others. Note that
Davies et al.’s [30] map is unusually small for the Athens small dataset. Their idea
of averaging trajectories, or computing skeletons, however, seems to help to improve
the quality of the edges of the produced map.

Generated
Map ‘ } Path based distance (m) Directed Hausdorff distance (m)
Athens large min  max median avg 2% 5% 10% 15% | min max median avg 2% 5% 10% 15%
Ahmed 7 849 70 85 250 164 132 114 1 269 30 33 84 67 56 50
Ge 7 956 76 90 237 188 150 116 1 295 35 37 95 74 59 52
Karagiorgou 2 175 25 32 109 80 63 53 1 200 10 13 46 35 26 22
Athens small || min  max median avg 2% 5% 10% 15% | min max median avg 2% 5% 10% 15%
Ahmed 9 224 45 52 101 101 81 72 1 82 25 26 82 54 46 40
Biagioni 5 73 35 36 67 66 61 57 3 74 19 20 47 43 31 31
Cao 5 25 13 13 25 25 25 22
Davies 4 38 11 11 38 18 14 14 2 13 7 6 13 13 13 11
Edelkamp 2 229 36 39 89 72 68 61 1 86 18 21 63 50 42 37
Ge 19 251 52 59 142 113 89 76 3 81 21 23 80 59 39 35
Karagiorgou 7 229 32 38 113 68 59 57 2 84 14 17 54 40 33 30
Berlin min  max median avg 2% 5% 10% 15% | min max median avg 2% 5% 10% 15%
Ahmed 9 540 66 74 207 147 120 107 1 219 30 33 95 70 60 53
Ge 13 808 65 75 214 157 117 103 4 562 36 37 73 62 55 51
Karagiorgou 4 306 28 37 120 85 65 52 1 232 14 18 59 42 34 30
Chicago min max median avg 2% 5% 10% 15% | min max median avg 2% 5% 10% 15%
Ahmed 7 201 35 42 127 100 85 76 1 81 14 19 72 59 43 35
Biagioni 3 71 15 18 71 38 27 26 2 53 9 11 29 25 23 17
Cao 1 126 24 27 79 61 49 42 1 78 9 12 44 35 28 25
Davies 2 92 12 14 57 24 22 21 2 20 8 7 20 14 13 12
Edelkamp 1 205 29 37 99 84 72 66 1 93 8 13 57 48 35 25
Ge 18 346 50 56 158 126 95 75 7 72 26 28 64 61 53 46
Karagiorgou 3 89 15 23 72 72 65 51 1 48 7 8 41 23 15 13

Table 3.5: Path-Based and Directed Hausdorfl Distance Measure Evaluation.

For further analysis of the results, we selected the Chicago dataset as all map
construction algorithms produced results for it. From Table 3.5 one can see that
the path-based distance and the Directed Hausdorff distance are smaller for the
generated maps by Biagioni, Davies and the TraceBundle algorithm (shaded gray)
compared to map generated using other algorithms. A visual inspection of the maps
in Figure 3.23 justifies the result. Note that Davies et al.’s [30] map is comparatively
smaller than the other, see Table 3.4. Although the algorithms by Ahmed et al. and
by Ge et al. produce maps with good coverage, their path-based distances are larger
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since they employ less aggressive averaging techniques that would help cope with
noise in the input tracks.

To illustrate the appropriateness of the path-based distance, consider the path in
Figure 3.25 from the map generated by Biagioni et al. This is an example where the
Fréchet-based distance measure is more effective than any point-based measure. As
Fréchet distance ensures continuous mapping, the whole path needs to be matched
with the bottom horizontal edge of the ground-truth map. The Fréchet distance for
this path is 71m. For the same path, the Hausdorff distance is 53m, as this only
requires for each point on the path to have a point on the graph close-by. So, to
evaluate the connectivity of a map, the Fréchet distance is a more suitable distance
measure than any point-based measure.

o
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Figure 3.25: A path with Fréchet distance greater than Hausdorff distance.
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Figure 3.26: Distributions of Individual Path Distances (Biagioni alg. - Chicago).

In addition, if desired one can discard outliers by computing the d%-distance.
Figure 3.26 shows the distribution of both the path-based measure and the Directed
Hausdorff distance for Biagioni et al. In both cases, a very small number of paths
have the maximum distance, and the distances for most of the paths are distributed
within a small range. Removing only 5% of the outliers (largest) brings the path-
based distance from 71m (max) to 38m and the Directed Hausdorff distance from
53m (max) to 25m. Figure 3.27 shows edges of maps with smaller distances in lighter
shades and larger distances in darker shades. Such visual representation helps to
identify areas in the map that have higher distance to the ground-truth map.
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Figure 3.27: Reconstructed graph overlayed on ground-truth map (light gray).
Based on link-length 3 paths, edges in lighter shades has smaller distance and darker
shades has larger distance.

3.4.3.3 Shortest-Path Based Measure

Assessment of the TraceBundle Results Another means to compare the con-
structed maps is the shortest-path based distance. For each city, we computed a
set of 500 random shortest paths with origin and destination nodes uniformly dis-
tributed over the maps and compared the paths using the Discrete Fréchet and
Average Vertical distance measure. This approach enables to evaluate the quality
of the constructed maps in terms of road network accuracy and connectivity.

In our case, the quality of the generated result is expressed by the distance
measure between computed shortest-paths in the constructed and the actual road
network. We give an example of how the distance measure is applied in the case of
the Athens large dataset. In Athens large dataset, Figure 3.29a displays an excerpt
of the network coverage of the randomly created routes. Also, Figure 3.29b gives an
example of how similar two randomly created routes are in the actual (light grey)
and in the generated (dark grey) road networks.

Besides visual inspection, we need to come up with an indicator for dissimi-
larity and a way to assess the quality of the inferred network. Dissimilarity can
be expressed as an increasing distance between the two paths. Figure 3.30 shows
the Discrete Fréchet distance (in light grey) and Average Vertical distance (in dark
grey) of the 500 computed paths, in the Athens large dataset. Combining visual
inspection with path distance, it was empirically established that a Discrete Fréchet
distance greater than 300m is an indicator of such dissimilarity. In other words,
such distances are an implicit indication for dissimilarity between the inferred and
the actual road network.

Shortest-path pairs exceeding this distance use portions of the inferred road
network with connectivity problems that do not exist in the actual road network.
Connectivity problems are mostly due to falsely created links. In the case of Athens
large, in our experimentation, we found that 5% of the computed routes appear to
have such problems, i.e., in 95% of the cases, the computed shortest paths in both
networks were almost identical exhibiting only small differences at the origin and
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Figure 3.29: Assessing Inferred Road Network.
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Figure 3.30: Similarity Results.

the destination nodes accounting for distance measures up to 300m.

Having a closer look at some of the 5% cases, we can observe two problems for
the inferred network; (i) spatial accuracy and (ii) connectivity. Figure 3.31a shows
an example in which due to the spatial accuracy, an alternative route was computed.
In this case, the inferred network simply produced a slightly different geometry that
made the shortest-path algorithm choose a partially different route. A more serious
problem is that of connectivity. Figure 3.31b illustrates this problem, which results
in different routes due to missing links. In both visualizations, the route of the
actual road network is shown in black, while the route of the inferred road network

is grey.

Assessment of Map Construction Algorithms We now give an example of
how different constructed maps affect such paths in Figure 3.28 for all the compared
algorithms using the Chicago dataset. Given a specific origin and destination for the
Chicago map, the shortest path has length 3.66km in the ground-truth map (black
dotted line). The computed shortest path for the map generated by each algorithm
is shown in red line. In the map generated by Ahmed et al.’s algorithm the shortest
path has length 4.67km (a Discrete Fréchet distance with respect to the ground-truth
map of 65m, and an Average Vertical distance of 21m). The respective results for the
other algorithms are Biagioni 3.71km (36m, 5m), Cao 3.76km (24m, 6m), Davies
3.39km (35m, 4m), Edelkamp 3.64km, (26m, 8m), Ge 7.33km, (174m, 98m), and the
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Figure 3.31: Link Failures.
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Figure 3.32: Map Comparison.

TraceBundle algorithm 3.73km (21m, 5m). For most algorithms the resulting paths
have small distance to the shortest path in the ground-truth map. However, in the
case of Ahmed (Figure 3.28a) and Ge (Figure 3.28f), due to significant differences in
the generated map, different shortest paths have been computed that have a larger
distance when compared with the shortest path in the ground-truth map. This
result is in line with the path-based measure of Section 3.2, where also Biagioni,
Davies and the TraceBundle algorithm produced the best constructed maps.

Figures 3.32a and 3.32b show the Discrete Fréchet and the Average Vertical
distance measures for each of the 500 paths per algorithm for the Athens large
map. The paths are ordered by increasing distance of the shortest path length with
respect to the ground-truth map. Some paths could not be computed for some maps
due to connectivity problems (missing links). Some other paths experience greater
distance measures due to spatial accuracy problems. The graph shows that some
algorithms produce maps which resemble the actual map more closely, as assessed
by this shortest path sampling approach.

Finally, the shortest path based evaluation is summarized in Table 3.6. The
first column shows the percentage (%) of shortest paths that in each case could be
computed, i.e., an algorithm might find an accurate, but small map. The second
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and the third column show the two different distance measures used to compare
the resulting paths. The fourth column gives some statistics with respect to the
computed shortest paths. Considering the example of Berlin and here the Ahmed
algorithm result (shaded light gray) in Table 3.6, this algorithm produces a map
that in turn generates paths that have a min, max, and avg. Discrete Fréchet
distance of 21m, 469m, and 192m, respectively. An aspect not captured by these
distances are missing paths due to limited map coverage. Consider the case of
Davies for Chicago and Cao for Athens small (shaded light gray in Table 3.6). In
both cases, the distance measures suggest good map quality. However, in both cases
the constructed map has a small coverage, as only 92.6% and 7.0% of the 500 total
paths were computed. In this evaluation, the TraceBundle algorithm produces maps
that have both good coverage and high path similarity (cf. dark-shaded entry for
Berlin - good coverage and small distance measure indicating similar paths between
constructed and ground-truth map).

Overall, shortest path sampling provides an effective means for assessing the
quality of constructed maps as it not only considers similarity, but also the coverage
of the map.

Generated
‘ Map H Found (%) ‘ Discrete Fréchet dist. (m) Average Vertical dist. (m) Shortest path dist. (km)
Athens large min max avg stddev | min max avg stddev | min max avg  stddev
Ahmed 92.6 23 445 137 103 12 230 106 62 1.12 11.84 6.93 2.92
Ge 92.8 25 497 149 112 14 241 120 65 147 1191 7.13 3.18
Karagiorgou 94.2 19 432 125 96 9 225 98 58 1.01 11.62 6.84 2.86
Athens small min max avg stddev | min max avg stddev | min max avg  stddev
Ahmed 97.6 13 234 96 62 6 91 38 24 1.28 572 3.1 1.84
Biagioni 94.2 7 214 84 50 4 80 28 21 0.79 523 297 1.41
Cao 7.0 7 26 10 11 4 13 6 5 0.17 031 0.22 0.21
Davies 22.6 9 258 102 69 5 81 31 22 0.85 5.25 299 1.47
Edelkamp 97.2 15 228 97 64 6 93 40 26 0.93 529 3.02 1.51
Ge 93.4 21 290 123 75 11 127 63 33 1.43 593 3.41 1.92
Karagiorgou 96.8 7 212 81 48 3 81 27 20 0.78 521 295 1.39
Berlin min max avg stddev | min max avg stddev | min max avg  stddev
Ahmed 93.2 21 469 191 123 12 231 121 63 1.56 5.88  3.49 1.96
Ge 92.4 25 475 194 128 15 236 127 64 1.85 593 3.84 2.03
Karagiorgou 93.8 18 428 183 112 8 209 106 58 1.32 567  3.27 1.84
Chicago min max avg stddev | min max avg stddev | min max avg  stddev
Ahmed 99.8 13 208 97 56 6 92 43 19 1.21 6.95 4.45 2.04
Biagioni 98.6 4 98 40 27 2 49 20 13 0.89 6.03 3.76 1.57
Cao 99.2 7 131 67 34 4 76 41 17 1.02 6.87 3.94 1.84
Davies 92.6 5 97 41 27 3 51 23 15 0.93 6.08 3.88 1.66
Edelkamp 99.0 12 211 98 58 5 89 41 18 1.19 6.88  4.32 1.97
Ge 99.8 19 241 127 63 8 94 49 22 1.58 6.98  4.69 2.25
Karagiorgou 99.2 4 103 41 28 2 50 21 14 0.90 6.05 3.82 1.59

Table 3.6: Shortest-Path Based Measure Evaluation Summary.

3.4.3.4 Graph-Sampling Based Distance

For this measure we use the source code obtained from the authors of [13]. We
modified the code to use Euclidean distance as our data uses projected coordinate
system. The method that computes this measure has four parameters: 1. sampling
density, how densely the map should be sampled (marbles for generated map and
holes for ground-truth map), we use 5m; 2. matched distance, the maximum distance
between a matched marble-hole pair, we vary this distance from 10m to 120m;
3. mazximum distance from root, the maximum distance from randomly selected
start location one will explore, we use 300m; 4. number of runs, number of start
locations to consider, we use 1,000. To make our comparison of all generated maps
consistent, we generated a sequence of random locations for each dataset and used
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the first 1,000 locations from the same sequence for each algorithm for which both
maps (ground-truth and generated) had correspondences within matched distance.
When two maps are very similar, they should have very few unmatched marbles and
holes, which implies the precision, recall and F-score values should be very close to
1. In our case, as we used a superset of the ground-truth map, there should be a
large number of unmatched holes, which implies lower recall and F-score values than
in [13], but still the relative comparison of F-score values should provide an idea of
whether an algorithm performs better than another.

0.55 T
—A— Ahmed
—&— Biagioni
—6— Cao
—P— Davies
0.451| 'O Edelkamp =
B Ge

A Karagiorgou

0.351

Fscore

01 I I I I I I
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matching distance in meters

Figure 3.33: Comparison of F-scores - Chicago.

Figure 3.33 shows F-score values for the Chicago dataset for different generated
maps. As our ground-truth is essentially a superset of the actual ground-truth
represented by the tracking dataset, a larger matching distance creates unexpected
results for algorithms that generate extra edges and vertices. For example, Cao
and Edelkamp for Chicago, the precision is low as there will be lots of unmatched
marbles (cf. entry for Cao and Edelkamp for Chicago in Table 3.7). However, a
larger matching distance decreases the number of unmatched marbles by matching
these with available holes that probably are not part of the actual ground-truth. A
higher recall value yields a higher F-score, which does not necessarily reflect better
quality maps (cf. Figure 3.23 and Figure 3.24).

In Figure 3.33, we also see the performance based on F-score declines for Bi-
agioni, Davies and the TraceBundle algorithm as the matching distance threshold
increases. After investigating the reason of this unexpected behaviour we found,
although precision increases with matching distances the recall declines for these
three algorithms; and smaller recall indicates larger number of unmatched sample
points on ground-truth (empty holes). Figure 3.23 and Table 3.4 show these three
algorithms reconstruct less streets than others, which means they produce smaller
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Generated Precision Value
Map (for matched distance 10, 40, 70, 100)
Athens large 10 40 70 100
Ahmed 0.216  0.407 0.497 0.591
Ge 0.149 0.368 0.507 0.635
Karagiorgou 0.394 0.559 0.630 0.711
Athens small 10 40 70 100
Ahmed 0.265 0.442 0.503 0.579
Biagioni 0.450 0.586 0.662 0.727
Cao 0.415 .691 0.722 0.810
Davies 0.439 0.574 0.617 0.670
Edelkamp 0.106 0.156  0.197 0.232
Ge 0.409 0.527 0.624 0.708
Karagiorgou 0.343 0.489 0.561 0.647
Berlin 10 40 70 100
Ahmed 0.123 0.326 0.422 0.485
Ge 0.142 0.457 0.534 0.584
Karagiorgou 0.294 0.590 0.633 0.649
Chicago 10 40 70 100
Ahmed 0.312  0.563  0.658 0.738
Biagioni 0.491 0.699 0.730 0.775
Cao 0.209 0.321 0.376 0.456
Davies 0.488 0.650 0.690 0.739
Edelkamp 0.334 0431 0473 0.541
Ge 0.306  0.487  0.565 0.645
Karagiorgou 0.602 0.740 0.751 0.801

Table 3.7: Precisions for Varying Matched Distance.

number of marbles to match with larger number of holes.

Hence, in Table 3.7 we are ignoring F-score and recall values and showcase only
precision values. According to precision values, the algorithms by Biagioni and
Davies and as well as the TraceBundle algorithm perform best for dataset Chicago,
which is consistent with our findings using the other three distance measures.

3.4.3.5 Summary of Map Comparison

The best way to characterize the constructed maps is in terms of coverage and
accuracy. Here, it appears that KDE-based point clustering algorithms such as
Biagioni and Davies produce maps with lower complexity (fewer number of vertices
and edges) and often fail to reconstruct streets that are not traversed frequently
enough by the input tracks. On the other hand, the algorithm by Ge subsample all
tracks to create a much denser output set, hence the complexity of their constructed
maps is always higher. A similar observation can be made for algorithms based
on incremental track insertion, such as the Ahmed and Cao algorithms. They fail
to cluster tracks together when the variability and error associated with the input
tracks is large. As a result, the constructed street maps contain multiple edges for a
single street, which implies a larger constructed, but not necessarily more accurate
road network.

In terms of map quality and accuracy, the TraceBundle algorithm and the maps
reconstructed using the algorithms by Davies and Biagioni generally have smallest
path-based and Directed Hausdorff distances and their constructed maps can be
considered more accurate. Although the algorithms by Ahmed and Ge produce maps
with good coverage and provide quality guarantees, their path-based distances are
larger, since they employ less aggressive averaging techniques that would help cope
with noise in the input tracks. In an effort to assess both accuracy and coverage,
the shortest path based measure shows for the cases of Davies and Chicago and Cao
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and Athens small good map quality, but at the same time only limited coverage.
In this evaluation, the TraceBundle algorithm produces maps that have both good
coverage and high path similarity.

An overall observation to be made based on our experimentation is that map
construction algorithms tend to produce either accurate maps, or maps with good
coverage, but not both. The algorithm of the TraceBundle algorithm however seems
to be a good compromise, in that it produces maps of good coverage and accuracy
at the same time.

3.5 Summary

In this chapter, we have addressed the problem of automatic road network infer-
ence from tracking data and we have proposed a novel approach to road network
inference from GPS traces. In an nutshell, the algorithm exploits changes in move-
ment patterns by using turns as a means to identify intersection nodes. Intersection
nodes are effectively used to bundle vehicle trajectories and links between derived
intersections by merging them into a single geometry. In addition, we presented a
method to assess the quality of the inferred road network based on comparing com-
puted shortest-paths by means of distance measures and an extensive evaluation
comparison of map construction algorithms.

Besides, this chapter has considered a variety of such map construction al-
gorithms. In the past, the lack of benchmark data and quantitative evaluation
methods has hindered a cross-comparison between algorithms. The contribution of
benchmark data sets and code for road network construction algorithms and eval-
uation measures for the first time enables a standardized assessment and compari-
son of road network construction algorithms. All data, road network construction,
and evaluation algorithms are available with detailed execution instructions on the
mapconstruction.org web site.

Overall, the TraceBundle algorithm produces road networks that very closely
resemble the actual road network provided sufficient tracking data are available.
Redundancy in coverage increases the quality of the road network.
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Chapter 4

Dealing with Noisy Tracking Data

The commoditization of tracking technology, e.g., smartphone applications involving
check-ins, real-time navigation applications, fleet management, etc., provides us with
a considerable tracking data source that enables us to derive not only road networks,
but transportation networks in general.

In Chapter 3, we have addressed the problem of automatic road network inference
using redundant tracking data. However, the global approach that the TraceBundle
algorithm adopts can not cope with sparse, noisy and low sampled tracking data.
Consider the case of a vehicles fleet where the position samples are not recorded
at a regular time and a high frequency. As a consequence, an approach which uses
global parameters for clustering and merging of geometries can not be efficient in
tracking data with such characteristics.

In this chapter, we deal with a novel methodology that converts movement tra-
jectories into a hierarchical transportation network, in order to derive persistent
knowledge from tracking data. We do so by utilizing an improved map inference
algorithm on segmented input data based on types of movement. This produces
hierarchical road network layers, which are then combined into a single network.
The steps of this hierarchical approach for the automatic road network inference
constitutes the TraceConflation algorithm.

Segmentation also addresses the challenges imposed by noisy, low-sampling rate
tracking data and provides for a mechanism to accommodate automatic map main-
tenance on updates.

An experimental evaluation assesses the quality of the TraceBundle and Trace-
Conflation algorithms by constructing the road networks for large parts of Berlin,
Vienna and Athens. The data used are trajectories derived from GPS tracking taxi
fleets and utility vehicles. Our results show significant improvements in terms of
quality of the constructed road network over existing approaches.

The remainder of this chapter is organized as follows. Section 4.1 presents our
algorithms for trajectories segmentation and re-association to build the layered net-
work map, supporting updates. These algorithms constitute the TraceConflation
algorithm. In Section 4.2, we present a quality evaluation of the segmentation-
based road network inference method, comparing our results to the TraceBundle
algorithm. Finally, Section 4.3 presents some conclusions regarding this chapter.

Our results in this chapter have been published in [59].
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(a) Berlin (b) Vienna
Figure 4.1: Tracking Data.

4.1 The TraceConflation Algorithm

To efficiently solve the map construction problem in the case of sparse and low
sampled data, we propose the TraceConflation algorithm. Here, the road network is
constructed in a layered fashion based on segmenting the trajectory data using speed
categories. The process involves three steps: (i) segmentation of trajectories, i.e.,
splitting the input dataset of trajectories into subsets of (sub-)trajectories according
to their characteristics, (ii) construction of the network layers, i.e., processing each
subset to identify nodes and edges of the network, and (iii) conflation of the network
layers, i.e., merging the generated layers to produce the complete map of the road
network. As it can be seen in Figure 4.1, inferring the road network from sparse
tracking data is not a trivial task.

4.1.1 Segmentation of Trajectories

A main challenge when inferring a movement network from raw GPS traces is that
these data are often noisy and heterogeneous (GPS errors, missing values, different
sampling rates, different speeds, etc.). Thus, treating all the input data equally,
inevitably introduces inaccuracies in the results.

To deal with this problem, we analyze the trajectories in the input data and split
them into subsets with different characteristics, in particular according to the speed
of the moving object. This allows us to treat each subset separately, e.g., by refining
the parameters of the map inference algorithm accordingly. The aim is to derive
different (but probably overlapping) portions of the network with higher accuracy,
which then need to be merged in order to produce the complete network. Hence,
this process leads to a layered construction of the network.

We consider different speed categories, e.g., “slow”, “medium”, “fast”, and we clas-
sify trajectories accordingly. Notice that typically an object may have moved with
different speeds across different parts of the trajectory, in which case the trajectory
needs to be split into sub-trajectories, with each one assigned to the corresponding
category. A naive process for achieving this is the following. First, a speed value
is assigned to each line segment of the trajectory. This value is computed by di-
viding the length of the segment by the length of the time interval of its start and
end points. Then, each segment is assigned to the corresponding speed category.
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However, this often leads to a high degree of fragmentation, rendering the dataset
unusable. Indeed, when a vehicle moves, it may often slow down, for example, due
to an intersection, or a traffic light, or some other obstacle. To avoid excessive split-
ting of trajectories due to such abrupt changes of short duration, we apply a sliding
window across the trajectory, replacing the speed value of each segment by the mean
value computed over a series of consecutive line segments around it (Algorithm 4,
Line 7). Then, splitting and classification of sub-trajectories is done according to
these “smoothened” speed values.

The process is outlined in Algorithm 4. For each line segment L; of each trajec-
tory T', its mean speed is computed over a sliding window of width 2-w (Algorithm 4,
Line 7), and the segment is then assigned to the corresponding class according to
the min and max speed of each category. Lines 7-8 in Algorithm 4 capture this part
of the algorithm.

Algorithm 4: Segmentation of Trajectories

Input: A set of trajectories T'
Output: A set of segmented trajectories C

begin

/*Trajectories segmentation according to speed proﬁles*/

1
2
3 for (T; € T) do

4 for (L; € T;) do

5 i(L]') — Mean(U(Lj—w): B 'U(Lj+10))
6 if 7(L;) € C then

7 if E(Li) c [Cmin, Cmam} then

8 C + L;

end

©

10 end
11 end

12 end

13 end

4.1.2 Construction of Network Layers

The next step is to use the trajectories classified in each category to infer a layer
of the road network. This is done using an improved version of the TraceBundle
algorithm we had previously introduced in Chapter 3. In the following, we first
explain briefly the basics of this algorithm and then we describe some improvements
introduced here.

4.1.2.1 The TraceBundle Algorithm

This trace-based map construction algorithm employs heuristics to identify intersec-
tion nodes and “bundle” trajectories around them. The basic idea of the Trace Bun-
dle algorithm is how it infers intersection nodes. This relies on detecting changes in
movement and then clustering them. Such changes represent turns and are identi-
fied as changes in direction and speed. Clustering these turns based on (i) spatial
proximity and (ii) turn type results in turn clusters. The centroid location of each
of these turn clusters represents then an intersection node. Connecting the trajec-
tories to intersection nodes and compacting them allows one to derive links and
consequently the entire geometry of the road network.
The essential steps of the TraceBundle algorithm are outlined below:
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e [dentification of turn samples: Given a trajectory, each node (position sample)
at which a significant change in direction and speed occurs becomes a turn
sample;

e Construction of turn clusters: Turn samples are clustered based on proximity
and a turn model;

o Creation of intersection nodes: The centroid of each turn cluster is computed
and marked as an intersection node;

e Linking of intersection nodes: Based on the turn samples from which a turn
cluster was derived, the respective trajectories are connected to intersection
nodes;

e Compacting links: The portions of trajectories connecting two intersection
nodes are compacted to create a single link.

4.1.2.2 Improved Node Detection

As explained above, the TraceBundle algorithm identifies intersection nodes by clus-
tering turn samples. The clustering is based on two criteria, proximity and angle
difference. In TraceBundle, static parameters are used for both. However, since dif-
ferent types of roads and intersections exist in a road network, such a setting often
results in erroneous clusters, e.g., generating multiple nodes for a single intersection
or generating a single node for multiple nearby intersections.

To overcome this problem, we have replaced the clustering performed by Trace-
Bundle with a proximity-based expansion algorithm around turn samples based on
turn similarity. The essence of the algorithm is shown in Algorithm 5. A segmented
set of trajectories, i.e., a set of trajectories (segments) that belongs to the same
speed category, is the input to the intersection construction algorithm.

In a first step, all position samples are evaluated as to whether they represent
turn samples based on a change of direction. Respective position samples are then
added to the set of turn samples. The data recorded includes also the incoming
and outgoing direction of the motion captured by the trajectory with respect to the
specific turn sample. Lines 10 - 16 in Algorithm 5 capture this part of the algorithm.

Figure 4.2: Turn Samples Clustering.
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This information is in the next stage, the derivation of turn clusters, used to com-
pute the directional similarity of turn samples. Samples that show a similar motion
in terms of absolute direction and that are spatially close are grouped together into
turn clusters. The turn clusters are constructed bottom up, i.e., by evaluating all
recorded turn samples one at a time, for each the set of nearest-neighbor samples
considering direction similarity is retrieved. The cardinality of each set depends on
the number of turn samples existing within a threshold distance d,,.,, which was set
to 25m in our experiments, of the turn sample in question. Experiments showed that
many turn clusters effectively have a radius much less than d,,.., since turn samples
of similar direction are either clustered together or much further away (relating to
different intersections). The turn clustering approach is captured in Lines 20 - 23 of
the algorithm.

Turn clusters stemming from different movement directions (left turn vs. right
turn), but relating to spatially the same intersection now need to be grouped to-
gether to produce one node in the road network graph rather than several nodes
representing the various clusters. Our approach to group turn clusters now relies
purely on spatial properties. Intersections are derived by scanning all turn clusters
with respect to spatial coverage, i.e., smaller clusters if contained, will be absorbed
by larger ones. Experimentation has shown this to be a very effective approach.
The pseudocode of Lines 26 - 28 summarizes this approach.

Figure 4.2 illustrates the outcome of this approach by contrasting an output
from the TraceBundle algorithm with the current approach. Figure 4.3a shows
how the clustering using static parameters TraceBundle erroneously places nodes
between actual intersections. Figure 4.3b shows the current approach with nodes
being placed more accurately.

(a) Turn samples clustering in TraceBundle (b) Turn samples clustering in Trace Conflation

Figure 4.3: Intersections Inference.

4.1.3 Conflation of Network Layers

The final part of the process comprises the fusion of the generated network layers
for the different speed categories to produce the overall road network. We build
the road network incrementally starting from higher speed layers and progressing
to lower speed layers. The intuition for this is that higher speed layers correspond
to avenues and highways and they can be reproduced with more accuracy, since in
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Fast

(b) Complete constructed network - Berlin

Figure 4.4: Stitching Different Network Layers.
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Algorithm 5: Finding Intersections.

Input: A set of trajectories T'
Output: A set of Intersection nodes I

1 begin

2 /*Intersection nodes extraction based on trajectory data*/
3 P + () / Position samples set

4 Pg < () / Turn samples set

5 C7 <+ 0 / Turn clusters set

6 C1 < 0 // Intersection nodes set

7 Qmagz / angle difference threshold

8 dmaz // proximity threshold

9 // Position Samples — Turn Samples
10 for (T'[i] # null) do
11 P + TVi] / Positions samples of a single trajectory
12 aq < AngularDif f(P[i — 1], P[i], P[i + 1])
13 if (og € Angle) then
14 in  Angle(P[i — 1], P[i]) / incoming angle
15 out < Angle(P[i], P[i + 1]) / outgoing angle
16 Pg.insert(Pli], &tin, Qout)
17 end
18 end
19 / Turn Samples — Turn Clusters
20 for (PS[’L] g CT do
21 // not yet considered
22 NNp + FindNN(Ps]i], dmaz)
23 Cr < ComputeTurnCluster(Ps[i], NNp)
24 end
25 / Turn Clusters — Intersection Nodes
26 for (Crli] ¢ Cr) do
27 NN¢ + FindContained(Crli])
28 Cr < Computelntersections(Crl[i], NN¢)
29 end
30 end

these parts of the network, the vehicles exhibit more regular movement patterns and
the GPS signal experiences fewer distortion and errors.

Fusing two network layers comprises: (i) finding intersection nodes correspon-
dences among the different network layers, (ii) introducing new intersection nodes
onto the existing links of a higher layer and (iii) introducing new links of lower layers
for the uncommon portions of the road network.

Figure 4.4 gives an example of this conflation process, experimented in Berlin
dataset. Figure 4.4a shows the three road networks that were generated after seg-
menting the entire trajectory dataset of Figure 4.1. Gray lines link the various
connection points between the constructed networks. The final result is shown in
Figure 4.4b.

Starting with the fast and the medium network, we try to identify common nodes
by spatial proximity, i.e., of their coordinates match. Experimenting with various
tolerances, 10m was the best choice of a spatial distance threshold for two nodes in
the respective networks to represent the same intersection.

The next step involves introducing new intersections onto existing links, e.g., in
the fast network a link exists, but the medium network has additional intersection
nodes (cf. Lines 10-11 in Algorithm 6). Using a buffer region around intersection
nodes of lower layers (e.g., medium) we try to identify intersection nodes that are
close to existing links. These new intersection nodes are then mapped onto the
existing link and effectively split it (cf. Lines 12-21 in Algorithm 6).

Finally, new links for uncommon portions of the layered network are added, e.g.,
link of the medium network missing in the fast network. Here links of lower layers
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are introduced by connecting them to previously introduced intersection nodes. Any
intersection node that has not been introduced yet, since not connected to the higher
network will be added as well. This accounts also for the case of adding complete
(local) road network portions (cf. Lines 24-29 in Algorithm 6).

Again, a result of applying this conflation algorithm to road network layers is
shown in Figure 4.4.

Algorithm 6: Conflation of Network Layers

Input: A set of segmented trajectories H, L
Output: A conflated network graph G = Np, Epy

1 begin

2 /*Conﬂation of segmented trajectories*/
3 / Networks to be conflated

4 Eg < Edges(H)

5 Ny < Nodes(H)

6 E;, + Edges(L)

7 N < Nodes(L)

8 Ny, / intersection pairs

9 / Node alignment
10 for Ny [i] do
11 Npgr < (Np[i],1 — NN(Nr[i], Ng)) # Node insertion to higher layer
12 for (Np[i] ¢ Ngr) do
13 E; :On(EH,NL[i])
14 if E; # null then
15 Ny .add(Ny[i])
16 Eyy.delete(E;)
17 Ef < E;.split(N[i]) /# produces two links
18 Eyg.delete(E;)
19 Ey.add(E?)
20 end
21 end
22 end
23 // Link insertion
24 for (NL[’L} ¢ NH) do
25 Npg.add(Ny[i]) #/ remaining nodes
26 end
27 for (EL[i] ¢ Fy) do
28 Ep.add(E[i]) / remaining links
29 end
30 end

4.2 Experimental Evaluation

In this section we present an extensive experimental study of the TraceConflation
algorithm. To assess the effectiveness of the TraceConflation algorithm for infer-
ring the road network in a layered and incremental fashion, we compare it to the
TraceBundle algorithm presented in Chapter 3, which treats all the input data uni-
formly. It was shown that the TraceBundle algorithm largely outperforms existing
algorithms for a variety of networks.

This experimental evaluation shows that the TraceConflation algorithm which
has been presented in this chapter, performs even better. What follows is a descrip-
tion of the characteristics of the datasets used as well as our evaluation methodology,
and then a presentation of the results of our experiments.
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4.2.1 Datasets

We conduct experiments on three real-world datasets comprising vehicle tracking
data from three European capital cities, namely Berlin, Vienna and Athens. In all
three cases, we consider as ground-truth the corresponding road network obtained
by OSM [74].

Necessary for our evaluation approach, we extract a ground-truth road network,
which lines up with the tracking data. Using buffer regions around network edges,
we derive the relevant part of the network by using the trajectories as a query set
with the condition that they intersect the buffer regions (cf. [58]). As this process
is by no means perfect, there might be redundant links which have been falsely
identified. This mostly occurs in areas where the actual road network is very dense
and thus neighboring road portions will be included in the extraction even though
there is no tracking data coverage.

What follows is a brief description of the data (trajectories and networks) for all
three cities.

4.2.1.1 Berlin

In Berlin, the actual road network consists of 6839 links (edges) and 5894 nodes. It
covers an area of 6km x 6km. The edges have a length of 360km. The tracking
data, used for our purposes covering a great portion of this road network, comprises
15051 vehicles trajectories with a total length of 41116km (Figure 4.1). The total
number of trajectories is 26831 with a mean length of 1.53km. The mean sampling
rate is 41.98s, while the mean speed is 35.23km/h.

4.2.1.2 Vienna

In Vienna, the actual road network consists of 9969 links (edges) and 8081 nodes.
It covers an area of 5.5km x 6km. The edges have a length of 495km. The tracking
data, used for our purposes comprises 7434 vehicles trajectories with a total length of
16106km. The total number of trajectories is 12773 with a mean length of 1.26km.
The mean sampling rate is 38.59s, while the mean speed is 33.68km/h.

4.2.1.3 Athens

In Athens, the actual road network consists of 39699 links (edges) and 32212 nodes.
It covers an area of 12km x 14km. The edges have a length of 2000km. The tracking
data comprises 120 vehicles trajectories with a total length of 6781km. The total
number of trajectories is 511 with a mean length of 13.27km. The mean sampling
rate is 30.14s, while the mean speed is 20.16km /h.

4.2.2 FEvaluation Measures

A quick and easy way to get an overview of the quality of the inferred road network
is by wvisual inspection, i.e., by overlaying it on the reference network and looking for
similarities and differences. This way one can assess how well the constructed road
network lines up with the actual road network.

To however obtain a systematic and quantitative evaluation of the approach, we
follow the Shortest-Path Based Distance method introduced in Section 3.2. Given
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the constructed and ground-truth networks, a common set of pairs of nodes (origin,
destination) is selected in both. Then, the shortest paths between those pairs are
computed in both networks. Performing a number of random shortest-path experi-
ments, the geometric difference/similarity between the computed shortest paths can
be used as a means to assess the quality of the constructed network.

In particular, two similarity measures are computed for each pair of shortest
paths: (i) the Discrete Fréchet distance and (ii) the Average Vertical distance. The
rationale for using this evaluation process is that measuring the similarity over entire
paths instead of individual links allows to draw conclusions regarding more extensive
portions of the road network and, especially, to take into account the connectivity
of the inferred network. Essentially, the shortest paths sample the connectivity of
the network. The “similar” the shortest paths in the constructed network are to the
ground-truth network, the higher also the quality of the network.

4.2.3 Results

4.2.3.1 Visual Comparison

Comparing the created road networks visually is the simplest approach to assessing
the map construction results. Figure 5.5 visualizes the inferred road networks for
the three cities Berlin - Figures 4.5a, 4.5b, Vienna - Figures 4.5¢, 4.5d and Athens
- Figures 4.5e, 4.5f, showing results for the TraceBundle and the TraceConflation
algorithms, respectively.

In each case, the inferred network is visualized using black lines, while the ground-
truth network is shown using light gray lines. The network is derived from the
OpenStreetMap dataset.

For better illustration, we have marked some areas on the maps where improve-
ments of TraceConflation over TraceBundle can be observed. The overall observa-
tion is that the TraceConflation method produces results in which the core network
is depicted more accurately. Especially, intersections are mapped more accurately.

For the example of Athens, shown in Figures 4.5e and 4.5f, it can be clearly
seen that due to the lack of redundancy, i.e., availability of tracking data, a smaller
network is extracted by the TraceConflation method. However, what has been
constructed is of increased accuracy.

4.2.3.2 Quantitative Evaluation

As a means to objectively and quantitatively evaluate and compare the constructed
networks, we computed for each city case 500 shortest-paths problems. Origin and
destination nodes are uniformly distributed over the networks.

The intuition is that if the constructed network closely matches the actual,
ground-truth network, then the shortest paths found for each network should closely
resemble each other. The more dissimilar the networks, the more the respective
shortest paths will differ.

Dissimilarity is captured by computing two respective distance measures for the
paths. Figure 4.6a shows the Discrete Fréchet distance between paths computed by
the TraceBundle network (in light grey) and the TraceConflation method (in black),
respectively.
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Figure 4.5: Inferred Road Networks - The TraceConflation Algorithm.

The figures plot the distance between the paths for each of the 500 paths in
each case. The paths are ordered by decreasing distance of the TraceConflation
result with respect to the ground-truth road network, i.e., the path that exhibits
the greatest distance (500m in Figure 4.6a) is plotted first. Figure 4.6b plots the
second distance measure, the Average Vertical distance between the two paths and
respective networks for the case of Berlin. Figures 4.6¢ and 4.6d depict the results
for the city of Vienna, while Figures 4.6e and 4.6f show the evaluation results for
Athens.

The evaluation for Berlin shows a significant improvement with respect to path
similarity and, thus, constructed network. 93.8% of the paths showed increased
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similarity.

To condense the results into single numbers, the distance plots are summarized
in Table 4.1. For Berlin the shortest paths using Discrete Fréchet distance, for the
case of the TraceBundle (old) method exhibit a minimum distance of 18m (last point
in plot), a maximum distance of 499m (first point in plot), and when considering
all 500 paths, resulting in an average distance of 253m, with a standard deviation
of 142m. The numbers for the TraceConflation case are improved, i.e., a minimum
distance of 14m, a maximum distance of 477m, an average distance of 237m, with
a standard deviation of 132m.

The results are similar when considering the Vertical distance measure. The
cases of Vienna and Athens shows similar results, with results for the latter showing
a bigger improvement.

In terms of number of paths that were actually improved, for Vienna, exper-
imental results show significant improvements for 96.4% of the paths. However,
in Athens 8.4% of the results experience connectivity problems due to the limited
data coverage and no shortest path being found to connect two nodes to produce
a shortest-path. Measurements are missing for those paths in Figures 4.6e and
4.6f. This case was discussed before, in that the TraceConflation method is more
demanding with respect to the trajectories that redundantly describe the network.

Segmenting the trajectory set into three partitions reduces the data that is avail-
able to generate each network layer. This might lead to a situation in which network
links that were identified using the TraceBundle approach are not being found with
the TraceConflation method.

Discrete Fréchet distance | Average Vertical distance

min max avg stddev | min max avg stddev

TraceBundle 18 499 253 142 8§ 360 126 101

Berlin | TraceConflation 14 477 237 132 6 346 124 87

TraceBundle 15 416 208 117 4 212 108 66

Vienna | TraceConflation 12 410 203 115 2 198 97 63
TraceBundle 64 612 235 102 8 245 98 49

Athens | TraceConflation 58 404 214 94 6 176 95 43

Table 4.1: Shortest-Path Comparison Summary

4.3 Summary

In this chapter, we have addressed the problem of automatic road network inference
from sparse and noisy tracking data and we have proposed a novel approach to the
map inference problem, i.e. the TraceConflation algorithm, which builds the map
of a road network in an incremental and layered fashion.

In a nutshell, the TraceConflation algorithm is based on segmenting the trajec-
tory datasets based on speed profiles, constructing separate map layers and conflat-
ing these results into a single road network. It also introduces an improved version of
the TraceBundle algorithm to be used as the basic means for computing the separate
road network layers.

Experimentation have shown that the TraceConflation algorithm, by segmenting
vehicle trajectories based on speed profiles produces navigable road networks that
when compared to the TraceBundle algorithm, are of improved accuracy.
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Assessing the two respective inferred road networks using sets of shortest-path
queries, found that ~95% of paths computed exhibit significant improvement simi-
larity when compared to the ground-truth network results.

Visual inspection shows that the TraceConflation road networks better capture
the actual road network if sufficient tracking data are available with redundant
network coverage. Performing an experimental evaluation using three large-scale
trajectory datasets, the TraceConflation algorithm produces road networks of im-
proved accuracy. The resulting “maps” come very close to accurately capturing the
ground-truth road network geometry, both in terms of topology and spatial accuracy.
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Chapter 5

Inference of Transportation
Networks from Multimodal
Crowdsourced Data

An ever increasing amount of geospatial data generated by mobile devices and social
media applications becomes available and presents us with applications and also re-
search challenges. In previous Chapters 3 and 4, we have addressed the problem of
automatic road network inference using redundant and sparse tracking data. This
data has more geometric characteristics as the moving objects travel in a determin-
istic environment which is a road network. In this chapter, we go a little further the
notion of networks by means of generalized transportation networks, which capture
both the geometric and the semantics of people transportation in an urban area.

The scope of this approach is to discover persistent and meaningful knowledge
from user-generated location-based “stories” as reported by Twitter data. We pro-
pose a novel methodology that converts geocoded tweets into a mixed geosemantic
Network-of-Interest (NOI). It does so by introducing a novel network construction
algorithm on segmented input data based on discovered mobility types. The gen-
erated network layers are then combined into a single network. This segmentation
addresses also the challenges imposed by noisy, low-sampling rate “social media”
trajectories. An experimental evaluation assesses the quality of the algorithms by
constructing networks for London and New York. The results show that this method
is robust and provides accurate and interesting results that allow us to discover
transportation hubs and critical transportation infrastructure.

The remainder of this chapter is organized as follows. Sections 5.1 and 5.2
present our algorithms for trajectory segmentation and re-association to build the
Network-of-Interest in a layered fashion. In Section 5.3, we evaluate the quality
of the Network-of-Interest construction method. Finally, Section 5.4 presents some
conclusions regarding this chapter.

Our results in this chapter have been published in [86].

5.1 Network-of-Interest Layer Construction

In this section, we present how we extract a Network-of-Interest that captures inter-
esting information about user movement behaviors based on social media tracking
data. User check-in data are tuples of the form U = (u,z,y,t), denoting that the
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user u was at location (x,y) at time ¢. These data are organized into trajectories,
which represent the sequence of locations a user has visited. Typically, multiple
trajectories are produced for each user by splitting the whole sequence of check-ins,
e.g., on a daily basis. Hence, each resulting trajectory is an ordered list of spa-
tiotemporal points T = {po, ..., p,} with p; = (z;,y;,t;) and x;,y; € R, t; € RT for
1=0,1,...,nand tg < t] <ty <...<t,.

The goal is to construct a Network-of-Interest that reveals the movement behav-
ior of users. This Network-of-Interest is a directed graph G = (V, E), where the
vertices V' indicate important locations and the edges E important links between
them according to observed user movements.

In particular, we are interested in two aspects of the Network-of-Interest. A
geometric NOI aspect provides a representation of how users actually move across
various locations, thus preserving the actual geometry of the movement, while a
semantic NOI aspect represents the qualitative aspect of the network by identifying
significant locations and links between them.

In our approach, we treat these two aspects as different layers of the same
Network-of-Interest. In the following, we describe the steps for constructing these
layers and fusing them to produce the final Network-of-Interest.

5.1.1 Segmentation of Trajectories

Behavioral trajectories, as in our case derived from geocoded tweets, contain data
to construct both the geometric and the semantic layer of a Network-of-Interest.
Conceptually, users tweet when they stroll around in the city as well as when they
commute in the morning. While all these tweets will result in behavioral trajectories,
some of them depict actual movement paths, while others simply are tweets sent
throughout the day. In what follows, we try to separate our input data into two
subsets and to extract the trajectories corresponding to the respective layer.

A main challenge when inferring a movement network from check-in data is that
this data are very heterogeneous in terms of their sampling rate, i.e., often being
very sparse. However, even the sparse subsets of the data are helpful in identifying
significant locations, whereas the denser subsets can be used to capture more fine
grained patterns of user movement.

For this purpose, we analyze the trajectories and group them into subsets with
different temporal characteristics. In our approach, we treat these two aspects by
applying a (i) mean speed threshold to capture the user movement under an urban
transportation mode and by applying (ii) a sampling rate threshold to identify “ab-
stract” and “concrete” movement. This allows us to treat each subset separately
later on in the network construction phase.

The “abstract” type of movement corresponds to the semantic Network-of-Interest
aspect and the “concrete” corresponds to the geometric Network-of-Interest aspect.
Users with frequent check-ins, i.e., a high sampling rate, provide us with the means
to derive a geometric NOI layer, while low sampling rates only allow us to reason
about abstract movement, i.e., derive a semantic NOI layer.

Notice that typically the same individual, within one daily trajectory may have
recorded their data using different sampling rates. In this case, the trajectory needs
to be segmented according to the frequency of user position samples. A simple
process for achieving this separation is the following.
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First, a duration and a speed (length divided by duration) is recorded for each
segment of a trajectory. Each segment is assigned a corresponding duration type
of movement. Focusing on urban transportation, we use a mean speed to filter out
trajectories and then the duration between samples to determine “abstract” and
“concrete” movement.

Figure 5.1 shows the trajectories classified to different sampling rates using the
example of geocoded tweets for London. Using a heatmap colouring schema, concrete
and abstract movements are shown in blue and red, respectively. The bounding box
of the selected area is the following: (|51.18N, 0.85W],[51.80N, 0.86E]).

| Ak

(a) Twitter trajectories(“slow”™ blue, “fast™ red) (b) Respective OSM network
Figure 5.1: Twitter Trajectories and OSM Network - London.

v

The process is outlined in Algorithm 7. For each line segment L; of each trajec-
tory T, we compute a duration and a mean speed value (Algorithm 7, Lines 6-7),
and the segment is then assigned to the corresponding segmented set of trajectories
Te, Ts according to the min and max time interval (Lines 9-13). The algorithm pro-
duces segmented sets of trajectories (Lines 10 and 13) based on the corresponding
time interval attributes.

Algorithm 7: Segmentation of Trajectories.

Input: A set of trajectories T'
Output: Two sets of segmented trajectories T, T's

1 begin
2 /*Trajectories segmentation according to time intervals*/
3 Vimaz /#/ maximum mean speed
4 foreach (T; € T) do
5 foreach (L; € T;) do
6 t(Lj) < 6t(P[i — 1], P[d]) #/ Time interval
— dxz(P[i—1],P[i])
' v(Lj) « SPL=TL Pl // Mean speed
8 if 9(L;) < Vinaz then
9 if E(L]) S Tmin then
10 Ta + L;
11 end
12 else if t(L;) > Tonin and t(L;) < Timae then
13 Ts + Lj
14 end
15 end
16 end
17 end
18 end
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5.1.2 Geometric Layer Construction

To construct the geometric NOI layer we use frequently sampled trajectories. The
sampling rate threshold was established through experimentation. In the examples
of Section 5.3, the sampling rate threshold was set to 5min. L.e., for the construction
of the geometric layer the duration in between position samples of trajectory dataset
is less than 5min (cf. Table 5.1), approximately covering 57% of the original tweets
collection.

The geometric NOI layer construction approach follows a modified map construc-
tion approach of the TraceBundle and TraceConflation algorithms by (i) initially
clustering position samples to derive network nodes, (ii) linking nodes by using the
trajectory data and (iii) refining the link geometry.

To derive network nodes we employ the DBSCAN clustering algorithm [38] using
a distance threshold and a minimum number of samples threshold parameter. We
revisit the segmented trajectories to identify how the network nodes are connected
by creating links. The links represent clustered trajectories as two nodes can be
connected by different trajectories.

For each link (i) a weight is derived representing the number of the trajectories
comprising the link and also (ii) a length representing the Euclidean distance between
the nodes that constitute the link.

In addition to this, we apply a reduction step to simplify the constructed network.
The intuition is that due to varying sampling rates, links between nodes might
exhibit redundancy. This reduction step eliminates redundant links by substituting
longer links with links of more detailed geometries. We reconstruct links of longer
duration by using links of shorter duration if their geometries are similar.

We achieve this by using the degree of constructed nodes. Starting with nodes
of a higher degree of incoming links, i.e., significant nodes, for such a node, we sort
all incident links based on descending duration order. We then reconstruct those,
which temporally and spatially cover other links that can be reached in less time.
Figure 5.2a gives an example by showing in dark gray links before reduction, and
in light gray a portion of the underlying OSM transportation network. Figure 5.2b
shows then in dark gray the resulting links after applying the reduction step. Part
of the larger geometry has been substituted with a more detailed geometry.

(a) before reduction (b) after reduction

Figure 5.2: Network Reduction Example.
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5.1.3 Semantic Layer Construction

To construct the Semantic NOI layer, we rely on trajectories exhibiting low sampling
rates (using approximately 19% of the original tweets collection), i.e., potentially
cover large distances in between position samples making it difficult to reconstruct
the actual movement (cf. Table 5.1).

By initially applying the DBSCAN clustering algorithm (see Table 5.1 for param-
eter details), we extract a set of nodes that correspond to the hubs of the semantic
layer. Performing a linear scan of the trajectories reveals the respective portions that
connect the sets of nodes. For each link sample (i) a weight is derived representing
the number of the trajectories comprising a link. At this step, we do not apply any
reduction method as the geometries of the semantic layer are less accurate. Overall,
this layer allows us to extract a network with less spatial accuracy but of greater
semantic value.

5.2 Network-of-Interest Layer Fusion

The final part of the Network-of-Interest construction process consists of (i) the
extraction of hubs, i.e., significant locations that user frequently visits, and (ii)
the fusion of the layers, i.e., the geometric and the semantic layer to produce the
integrated network.

5.2.1 Network Hubs

Hubs are POIs that users frequently depart from and arrive at. In particular, specific
indicators for hubs are (i) number of constituting position samples, (ii) stemming
from many different users, (iii) over extended periods of time.

The Network Hubs Inference algorithm takes as input the entire trajectory dataset
used in geometric and semantic layer construction (Algorithm 8, Line 10) and deter-
mines the k-NNs of each position sample (Line 13), which are subsequently filtered
according to the number of users and the period of time covered (Lines 13-16). On
these filtered position samples, we apply the DBSCAN clustering algorithm using a
distance threshold and a minimum number of samples (Line 17). The centroids of
the resulting clusters are the candidate hubs (Line 18).
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Algorithm 8: Hub Inference.

Input: A set of segmented trajectories T, Ts
Output: Network Hubs

1 begin
2 /*Clustering position samples of segmented trajectories to compute network hubs*/
3 H* + 0 / Candidate Hubs
4 H < ( / Hubs
5 dmaz // proximity threshold
6 Umin / min. number of users
7 hmin /#/ min. number of time periods
8 de.gin’ degout: degminy €
9 // position samples from combined trajectories
10 P+ UNION(Tg,Ts)
11 / Samples — Hubs
12 foreach (P[i]) do
13 v; + FindNN(Pli], dmaz)
14 up  CountUsers(v;)
15 hp < CountHours(v;)
16 if (up > umin) and (hp > hpin) then
17 C <~ DBSCAN (vi,dmagz) # Clusters
18 H* < Centroid(C) / Hub candidates
19 end
20 end
21 foreach H*[i] do
22 degin < GetInDeg(H*[i])
23 degout < GetOutDeg(H™*[i])
24 if degin > degmin and degout > degmin and ‘Z:g’ﬁ — 1’ < € then
25 H «+ H*[i]
26 end
27 end
28 end

A final filtering step is applied as follows. For each candidate hub, we also record
two properties. A weight for the hub is derived as the total number of nodes the hub
was derived from, i.e., the size of the corresponding cluster. In addition, we record
the degree of each hub, i.e., the number of incoming and outgoing edges of the cluster.
A candidate hub is included in the output if both the following two conditions
hold: (a) both the in-degree and out-degree are above a specified threshold and
(b) the in-degree and out-degree do not differ significantly (threshold determined
by experimentation). These conditions are used to ensure that the identified hubs
correspond to places where a sufficiently large number of users frequently depart
from and arrive at (Lines 22-24).

5.2.2 Layer Fusion

The final part of the process comprises the fusion of the geometric and semantic NOI
layers. We construct the NOI by starting with the semantic layer and merging the
geometric layer onto it. The intuition for this is that the semantic layer corresponds
to a geometrically abstract but semantically richer user movement that contains
relevant transportation hubs. The geometric layer corresponds to a less semantic
but more accurate depiction of movement, i.e., fills in the gaps of the semantic layer.
The fusion of these layers should result in a comprehensive movement network.

The fusion task involves (i) finding hub correspondences among the different
network layers and (ii) introducing new links to the semantic layer for the uncommon
portions of the NOI.

86



Algorithm 9: NOI Fusion.

Input: Networks to be conflated S, G
Output: Network of Interest

1 begin
2 /*Network layers fusion to extract the final map*/
3 // edges and nodes of Semantic and Geometric layers
4 Eg < Edges(S), Ng < Nodes(S)
5 Eg < Edges(G), Ng < Nodes(G)
6 H // Hubs
7 Hg / hubs N geometric nodes
8 Hg // hubs N semantic nodes
9 Ho / H—Hg — Hg
10 // Node alignment
11 foreach H|[i] do
12 // finding Nearest Neighbors
13 Hg « (H[i), NN(H]i], Ng))
14 Hg + (H[i], NN(H[i],Ngs))
15 end
16 // Node alignment
17 foreach H[i] do
18 Ho + (Hgli],1 — NN(Hg[i], Hs))
19 / Node insertion to semantic layer
20 foreach (Hg[i] ¢ Ho) do
21 E; = On(Es,Hgli])
22 if F; # null then
23 Hg.add(Hgld))
24 Eg.delete(E;)
25 end
26 end
27 // Link insertion
28 foreach (Hq[i] ¢ Hg) do
29 Hg.add(Hg[i]) / remaining nodes
30 foreach (E¢g[i] ¢ Es) do
31 Es.add(Egli]) # remaining links
32 end
33 end
34 end
35 end

Using, both layers and the hubs, we try to identify common nodes by spatial
proximity (Algorithm 9, Lines 12-14). Any node from the geometric layer that has
not been introduced yet since it is not connected to the semantic layer will be added
(Lines 23-24). The next step involves introducing new links for uncommon portions
of the layered network. Here links of the geometric layer are introduced by adding
them to the semantic layer (Lines 29-31). Typically this accounts for the cases of
adding complete (local) network portions.

A result of applying this conflation algorithm to network layers is shown in
Figure 5.3. Indicated are the circled hub correspondences between the semantic, the
geometric layer, and the resulting fused Network-of-Interest.

5.3 Experimental Evaluation

An assessment of the quality of a Network-of-Interest is a challenging task as there
is no ground-truth data. In the case of map-construction algorithms, an existing
road network can be used. However, a Network-of-Interest represents a geoseman-
tic construction containing aspects of both regular transportation networks (roads,
public transport, etc), but also the overall movement sentiment of users in a city.
For the following evaluation, we use a combination of existing POI datasets
and (public) transportation networks to assess the constructed NOIs. Before giv-
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Figure 5.3: Stitching Network-of-Interest Layers.
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Algorithm Value
Segmentation of Trajectories

Mean Speed 10km/h
Time Interval 5, 60min
Geometric Network-of-Interest

Distance Threshold 100m
Minimum Number of Samples 2
Semantic Network-of-Interest

Distance Threshold 300m
Minimum Number of Samples 2
Extraction of Hubs

Minimum Number of Samples 10
Minimum Number of Users 2
Minimum Number of Time Periods 10
Distance Threshold 300m
Layer Fusion

Distance Threshold 50m

Table 5.1: Parameter Summary.

ing details of the experimental results and constructed NOIs, we first describe the
characteristics of the datasets used and our overall evaluation methodology.

5.3.1 Datasets

We conduct experiments on two real-world datasets comprising geocoded tweets
retrieved for London and New York city over a period of 60 days using the Twitter
Public Stream API. Data from London cover the period of December 2012 to January
2013. The New York as collected from November 2013 to December 2013. To focus
on trajectories of active users, we kept only the trajectories of the top 200 most
active users with respect to geotweets for each city. Moreover, we only consider
trajectories that consist of at least 5 geotweets.

Figure 5.1 visualizes the movements of 200 Twitter users during the course of a
single day in London. Notice that some very prominent areas, such as highways, can
be distinguished visually even before any processing of the data takes place. Through
experimentation, we establish the parameters for the various steps of the algorithm
as summarized in Table 5.1. To compare the generated network, we consider as
ground-truth data the corresponding public transportation network obtained from
OSM |[74].

What follows is a brief description of the trajectories collected from the geocoded
tweets, as well as the networks obtained from OSM.

In London, the actual public transportation network consists of 27,021 links
(edges) and 47,575 nodes (vertices) and has a length of 21,287km. It covers an
area of 420km x 118km including the metropolitan area of London. The geocoded
tweets cover a great portion of this network, specifically an area of 365km x 104km,
and have a total combined length of 256,400km (Figure 5.1). The dataset consists
of 463 trajectories with a mean length of 7.4km. The mean sampling rate, i.e., rate
at which a user geotweets, is 12min, while the mean speed is 37km/h.

For New York the actual public transportation network consists of 84,367 links
and 75,070 nodes and has a length of 9,846km. It covers an area of 105km x 85km.
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Nearest Neighbor Statistics | Reverse Geocoding Statistics

Found Total Ratio % | Found Total Ratio %

London 1389 1562 89 964 1562 62
New York 1423 1649 86 873 1649 53

Table 5.2: Evaluation Summary.

The geocoded tweets consist of 37,962 trajectories, with a mean length of 2.9km and
total length of 214,090km, covering an area of 92km x T4km largely overlapping
with the public transportation network. The mean sampling rate is 8min, while the
mean speed is 22km/h.

5.3.2 Evaluation Measures

For a more systematic and quantitative assessment of Networks-of-Interest we devise
two means, (i) comparing the constructed Network-of-Interest to the geometry of
a respective transportation network and (ii) comparing the nodes of our Network-
of-Interest with a POI dataset to discover semantics in terms of their type. This
approach allows us to assess the similarity with respect to the ground-truth network
and to draw conclusions not only with respect to the spatial accuracy of the result,
but also the semantics of the nodes.

To compare networks we select all the nodes of the constructed network and
identify corresponding nodes in the ground-truth network by means of nearest-
neighbor queries. Using the OSM public transport data, we select for every hub
of the Network-of-Interest the nearest node in the OSM data. If the inferred nodes
are close to the actual transportation network nodes, then the constructed Network-
of-Interest closely relates to the transportation network.

To discover the type of transportation a hub represents, e.g., bus, metro, tram
and railway, we again use OSM data. We apply reverse geocoding (identify POIs
based on coordinates) to relate OSM POIs to Network-of-Interest locations. This
then allows us to identify public transportation nodes in our generated Network-of-
Interest.

The results are summarized in Figure 5.4, which shows the degree of a node, i.e.,
the number of incoming and outgoing links. In this case, we use the degree as an
indicator for the importance of the node and the fact that high-degree nodes were
identified as transportation nodes allows us to reason about the type of network
we constructed. Identified transportation nodes (i.e. bus, metro, etc) have higher
degrees (> 20) when compared to other nodes with lower degree (< 5).

In this experimentation, (i) nearest-neighbor queries evaluate the spatial accu-
racy of the NOI, while (ii) the reverse geocoding assesses the semantics of the hubs.
The higher the number of correctly constructed nodes, the higher also the quality
of the network.

As shown in Table 5.2, transportation nodes are inferred with high accuracy.
Indeed, 89% of the extracted hubs in London and 86% in New York are identified as
transportation nodes in the OSM ground-truth network. In the case of the reverse
geocoding test, the ratios are a bit lower due to the fact that the reverse geocod-
ing service returns only POIls that are located exactly or very closely to specific
coordinates.

An overall sentiment of our experimentation could be that the network construc-
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Figure 5.4: Hubs Statistics.

tion process results in a Network-of-Interest that captures certain aspects of a public
transportation network. A core problem in such experimentation is that using social
media as a tracking data source to construct a network has the inherent challenge
that no actual ground-truth data is available to assess the quality of the result. Us-
ing in our case a public transportation network allows us to show some similarities,
however, the constructed Network-of-Interest could not be completely mapped (ex-
plained) by it as it represents a more complex network whose characteristics cannot
be captured by a single existing network dataset. These concerns are also issues we
want to address in future work.

5.3.3 Results

An overview of the quality of the inferred Network-of-Interest can be also obtained
by wvisual inspection, i.e., by comparing it to the ground-truth public transportation
network and looking for similarities and differences.

Figure 5.5 visualizes the NOIs of the cities of London (Figure 5.5a) and New
York (Figure 5.5b). In each case, the constructed network is visualized using black
lines, while the ground-truth network is shown using light gray lines. As evident,
especially for the case of New York, the constructed Network-of-Interest lines up
with the transportation network and identifies major hubs.

(a) London (b) New York
Figure 5.5: Networks of Interest.
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5.4 Summary

Social media applications and their data have been used in a wide range of data
mining applications. However, to the best of our knowledge this approach is the
first to construct a geosemantic Network-of-Interest using social media as a tracking
data source.

The Network-of-Interest construction algorithm is based on segmenting geocoded
tweets and constructing two separate network layers. A geometric and a semantic
layer of a NOI are derived and using network hubs, these layers are then fused to
generate a Network-of-Interest.

Performing an experimental evaluation using two large-scale datasets, the algo-
rithm produces Networks-of-Interest of considerable accuracy, which identify impor-
tant transportation hubs and capture portions of the respective public transport
networks.
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Chapter 6

Going Beyond Typical Map
Inference Tasks

In this chapter, we present some preliminary results which are produced by applying
a modified version of the TraceBundle algorithm on eye tracking datasets to extract
polylines from observations of cartographic lines. In the following, we present the
eye tracking process and the application domains of the latest years.

Eye tracking is the process of measuring either the point of gaze (where one is
looking) or the motion of an eye relative to the head. An eye tracker is a device for
measuring eye positions and eye movement. Eye trackers are used in research on
the visual system, in psychology, in cognitive linguistics and in product design.

A great deal of research has gone into studies of the mechanisms and dynamics
of eye rotation, but the goal of eye tracking is most often to estimate gaze direction.
Users may be interested in features that the eye draws from an image, for example. It
is important to realize that the eye tracker does not provide absolute gaze direction,
but rather can only measure changes in gaze direction. In order to know precisely
what a subject is looking at, some calibration procedure is required in which the
subject looks at a point or series of points, while the eye tracker records the value
that corresponds to each gaze position.

Each method of eye tracking has advantages and disadvantages, and the choice of
an eye tracking system depends on considerations of cost and application. There are
offline methods and online procedures like Attention Tracking. There is a trade-off
between cost and sensitivity, with the most sensitive systems costing many tens of
thousands of dollars and requiring considerable expertise to operate properly. Ad-
vances in computer and video technology have led to the development of relatively
low cost systems that are useful for many applications and fairly easy to use. In-
terpretation of the results still requires some level of expertise, however, because a
misaligned or poorly calibrated system can produce wildly erroneous data.

A wide variety of disciplines use eye tracking techniques, including cognitive
science, psychology (notably psycholinguistics, the visual world paradigm), human-
computer interaction (HCI), marketing research and medical research (neurological
diagnosis). Specific applications include the tracking eye movement in language
reading, music reading, human activity recognition, the perception of advertising,
i.e. commercial eye tracking which includes web usability, marketing, automotive,
etc., and the playing of sport.

In recent years, the increased sophistication and accessibility of eye tracking tech-
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nologies have generated a great deal of interest in the commercial sector. Applica-
tions include web usability, advertising, sponsorship, package design and automotive
engineering. In general, commercial eye tracking studies function by presenting a
target stimulus to a sample of consumers while an eye tracker is used to record the
activity of the eye. Examples of target stimuli may include websites, television pro-
grams, sporting events, films, commercials, magazines, newspapers, packages, shelf
displays, consumer systems (ATMs, checkout systems, kiosks), and software. The
resulting data can be statistically analyzed and graphically rendered to provide ev-
idence of specific visual patterns. By examining fixations, saccades, pupil dilation,
blinks and a variety of other behaviors researchers can determine a great deal about
the effectiveness of a given medium or product.

The remainder of this chapter presents a description of the methodology that we
apply on eye tracking data in order to infer the polylines from observations of carto-
graphic lines. Section 6.1 presents use cases of eye tracking data, related approaches
and motivation paradigms. In Section 6.2, we present a modified TraceBundle ap-
proach with respect to eye tracking data and inference of hubs for the identification
of spatial fixation regions of people’s interest. What follows is the hubs connection,
the inference of a single polylines geometry and the experimental results. Finally,
Section 6.3 presents our conclusions and directions for future work.

Our results in this chapter have been published in [57].

6.1 Visualization of Eye Tracking Data from Obser-
vations of Cartographic Lines

Several visualization methods for eye tracking data exist to help researchers from
many disciplines depict data collected in eye tracking experiments. Focusing on
eye tracking data from observations of cartographic lines, in this section we discuss
early findings on a new visualization that uses inferred polylines instead of more
traditional techniques such as heat maps to visualize eye tracking data. This vi-
sualization depicts the average line that is actually seen by subjects, which can be
useful in the study of cartographic concepts such as the assessment of the effects
of alternative cartographic lines presentations in maps, of distractions, abstraction
levels and more.

Eye tracking is a widely used methodology in many scientific fields, as it reveals
important findings about the human cognitive processes during the observation of
a visual stimulus. In cartographic research, eye tracking is a valuable tool for the
execution of experiments related to the study of map reading and cartographic design
evaluation. An important element of eye movement analysis is the visualization of
eye tracking data using techniques referred to the gaze behavior of either individuals
or all the subjects in an experiment. Considering that the amount of data collected
can blur the reference with the visual stimulus, visualization techniques are usually
applied after clustering the gaze recordings in fixations and saccades. A typical
visualization is the scan path graph, where fixations are depicted as circles with
radical values related to their durations, while saccades are presented as connector
line segments among fixations. Other techniques include heat maps and scan path
graphs, using variables such as duration, number of fixations, participant percentage
ete [15].
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In this section we report early progress on the depiction of the gaze route history
using a polyline, which is feasible, as the visual trace is generated from sequential
raw eye tracking data [11]. The nodes of such a polyline contain information about
the duration of fixations or other statistical values, which can also be attributed to
line sections that represent saccadic movements. Generally, the reconstruction of
gaze route history can be very useful in the study of several cartographic concepts
as a gaze polyline depicts the line that is actually perceived from subjects.

The motivation for this work stems from methods used in the inference of graph
geometries such as transportation networks, from GPS tracking data. Several such
methods rely on trajectory clustering. Some of the algorithms in the literature |98,
38| operate on point data and do not take the temporal aspect into consideration.
Others infer curved paths using k-means clustering of raw tracking data along with
distance measures [35|; others transform tracking data to discretized images using
Kernel Density Estimation (KDE). They function well for frequently sampled and
redundant tracking data [14], but are sensitive to noise.

Other approaches relying on computational geometry techniques |7] operate on
tracks of high-resolution and accuracy. The final category involves trace-clustering
approaches that derive a connected network graph from vehicle trajectories [58|.
This approach applies such a technique in eye tracking data to automatically ex-
tract “hubs” and construct a polyline that corresponds to the observed geometry of
cartographic lines.

Figure 6.1: Eye Tracking Data from 3 Subjects.

6.2 Inference of Polylines from Eye Tracking Data

The aim of this approach is to derive a single polyline geometry from sampled
eye tracking data from multiple users. Figure 6.1 plots tracking data used in our
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experiment in blue colour with the actual cartographic line that the subjects have
been asked to follow, shown in black.

6.2.1 The Proposed Algorithm

The proposed algorithm to derive the polylines from eye tracking data involves three
steps; (i) identifying hubs, (ii) connecting hubs, and (iii) reducing the links into a
single geometry, which are discussed in the sequel.

In the first step, we infer hubs from spatial fixation on eye tracking data. A hub
represents the spatial fixation that the eye creates near an area of interest. Indicators
for hub recognition are the number of tracking samples, the number of different users
and the coverage of an extended area of focus. The algorithm takes as input the
eye tracking data and determines the k-NNs of each tracking sample, which are
subsequently filtered according to the number of users. On these filtered tracking
samples, we apply the DBSCAN clustering algorithm using a distance threshold and
a minimum number of samples, which depend on the specifics of the experiment.
The centroids of the resulting clusters are the hubs. Figure 6.2 shows the hubs
derived after applying the hubs inference algorithm in our experimental dataset.

Figure 6.2: Inference of Hubs.

In the following we connect hubs by links. A fringe benefit of the hubs computa-
tion based on spatial fixation is that for all data we know which samples helped in
identifying hubs. To derive links we exploit this knowledge: for each hub we record
the outgoing and/or incoming tracking portions connecting this hub to others by
scanning all eye tracking data to discover sequences of hubs. The result of this step
is the creation of a sample polyline set that connects hubs with links. In our repre-
sentation of eye tracking data, all tracking samples that are also hubs are marked as
such. Hence, performing a linear scan of all eye tracking data reveals the respective
tracking portions that connect hubs.
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In the last step of the algorithm we compact links to a reduced geometry ex-
pressed by polylines. To this point, we have hubs connected by links derived from
eye tracking data that exhibit spatial fixation at these hubs. In a nutshell, the al-
gorithm identifies tracking portions that are close to existing links by means of a
buffer region and merges their geometry into the existing link geometry. The size of
the buffer region depends on the specifics of the data; in our case we used 15 pixels
as buffer region. In this step, we only adjust the geometry of existing links using
a three-step algorithm: (i) sort existing link samples in a descending order accord-
ing to their length, (ii) determine relevant tracking portions using a buffer region
around link samples, and (iii) adjust the geometry of links based on the tracking
data geometry.

In our experimentation so far we first sort all links according to their length so as
to process longer links first as they may be more significant for polyline construction,
which remains to be further tested future work. In step (ii) the algorithm uses a
buffer region around the examined link sample and retrieves all intersecting portions
of other links. New links are created by interpolating link samples and introducing
hubs. New links are assigned a weight that is the sum of the weights of the merged
links. Link samples are updated several times during this phase. While the examined
links are reconstructed, new link samples are created to replace links in previous
iterations.

6.2.2 Results

The cartographic line that we try to infer consists of 6595 links (edges) and 6607
nodes. The edges have a length of 4041 pixels, as the reference system is in pixels.
Sampling of eye tracking data was at 60 Hz (0.017 sec). Data comes from 3 different
users with a total length of 89880 pixels (Figure 6.1). Following the various stages
of the polylines inference algorithm, the following output is produced. During the
first phase, i.e., hubs extraction and connection, 109 hubs and 300 link samples are
generated. The second polylines inference phase, i.e. compacting links, produces
119 hubs, 79 links and a length of 2990 pixels.

This result shows that during the second phase of the algorithm, the number of
hubs remains largely constant but only the length of the links connecting them is
significantly reduced since we radically merge links during this phase. Figure 6.3
visualizes the inferred polylines in blue and the actual cartographic data in grey
colour.

6.3 Summary

In this chapter, we have addressed the problem of automatic polylines inference
on the visualization of eye tracking data from observations of cartographic lines.
We adopted a modified TreceBundle algorithm approach to identify hubs, links
between derived hubs and to infer a single polylines geometry from observations of
cartographic lines.

This polyline-based visualization of eye tracking data depicts the average car-
tographic line observed by subjects. Clearly, such a visualization is of little use in
cases where the context of eye tracking experiments has no lines of some kind that
subjects are required to follow. It is, however, quite interesting in cases that such
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Figure 6.3: Compacting Links and Final Inferred Polyline.

a line really exists, as is the case in cartography where borders, navigation routes
and all kinds of curves, are used to represent useful information on a map. Studying
the effects of different visualization attributes of cartographic lines in the concen-
tration of the eye’s attention to a central linear entity can benefit from using the
representation of eye tracking data introduced in this section.

This visualization can be further improved by adding colour attributes to the in-
ferred polyline using calculations such as eye tracking samples data density near the
line, or other statistical metrics. Considering that it is the mind that actually does
the cognitive interpretation of lines observed, it is rather impossible to infer a poly-
line that very closely matches the initial cartographic line. However, studying the
deviations of individual observers’ tracks from the average polyline, and combining
the results with semantics from the experiment and subject context may produce
some interesting results, too.

Application of the proposed visualization in other kinds of lines whose eye track-
ing makes sense, as is the case with some medical images, is another area that is
definitively worth exploring. Last but not least, the production algorithm of the
polyline needs further experimentation on bigger data sets and possibly improve-
ment in few operational aspects.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has focused on the provision of evolving and updated transportation
maps from vast amounts of trajectory data. Over the last years, vast amounts of
geo-referenced trajectory data have been collected due to the ubiquitous availability
of positioning technologies such as the Global Positioning System (GPS). In this
direction, this thesis has addressed the very timely challenge of analyzing this data.
It also proposed novel algorithms for construction and maintenance of digital street
maps, which are among the most valuable digital data resource in today’s society.

The results of the thesis will benefit a wealth of applications ranging from a
variety of location-based services on street maps to the analysis of tracking data
for hiking trail map generation or for studying social behavior in animals. The
presented work identified and focused on four major issues: a) the inference of road
networks from tracking data and the evaluation comparison of various map inference
algorithms, b) the inference and maintenance of road networks from sparse tracking
data c) the inference of transportation networks from tracking data involving high
uncertainty (social media and check-in data), and d) the generalized applications
that utilize our approach of bundling sets of traces into geometries.

First, we have dealt with the problem of road network inference and the evalua-
tion comparison of various map inference algorithms. Previous research efforts have
focused on map inference from frequently sampled tracking data or have posed strict
conditions regarding the geometry of the road networks. Our work elaborates on
these approaches and extends them providing more advanced capabilities. In con-
trast to previous approaches which have been presented for vertically aligned road
networks or for sampling rate of 1s to 10s, we have proposed an algorithm which
is efficient towards high sampling rates and arbitrary road networks. The outcome
was the TraceBundle algorithm which exploits the ubiquitous vehicle tracking data
in order to analyze, reconstruct and extract road network geometries enriched by
attributes. Our approach “bundles” the trajectories around intersection nodes to
derive links and consequently the entire geometry of the road network. The Trace-
Bundle algorithm addresses the challenges of evolving map data sets, by working
towards automatic map and attribute generation from massive amounts of vehicle
tracking data. The proposed method has been validated through experimental anal-
ysis and comparison to existing approaches, showing that it achieves a significant
improvement of the precision of the retrieved results. Also, the mapconstruction.org
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site has been established by making available map construction algorithms, datasets
and constructed maps, to motivate other researchers towards the contribution in the
area of road network construction algorithms.

Following that, we have focused on sparse tracking data and methods which
convert movement trajectories into a hierarchical transportation network. Moti-
vated by the results in the precision of the TraceBundle algorithm towards existing
approaches, as well as the need for map maintenance and updates, we have empha-
sized on building a road map hierarchically. For this purpose, we have exploited
the types of vehicles movement in an urban context to segment the input data ac-
cordingly. The outcome was the TraceConflation algorithm which addresses the
challenges imposed by noisy, low-sampling rate and sparse trajectories and provides
for a mechanism to accommodate automatic map maintenance on updates. It does
so by segmenting the input dataset into different groups of trajectories based on
their characteristics and then by inferring the network in a layered fashion using
dynamically determined values for the parameters. The proposed method has been
validated through experimental analysis which shows significant improvements in
terms of quality of the constructed road network over existing approaches. In con-
trast to traditional approaches which build the road network globally and can not
cope with large scaled and noisy data, our approach considered the exploitation of
segmentation and fusion of the data, is more capable to support updates and to
deliver road maps of high spatial accuracy.

Finally, we have considered the problem of inferring and connecting POIs, which
encode both geometric and semantic information, from geocoded social media data.
Motivated by the fact that the connectivity of such POIs has been overlooked and
that it is not obvious how to create meaningful links and networks between them,
we proposed the Network-of-Interest algorithm. The Network-of-Interest algorithm
encodes different types of connectivity between POIs and captures peoples type of
movement and behavior while visiting these POIs. In contrast to existing approaches
which mostly encode geometric information to produce street maps, at this stage
we use behavioral trajectories as a datasource to also discover transportation infras-
tructure such as subway maps, bus maps, and hiking trail maps. The proposed
method has been validated through experimental analysis and shows that critical
transportation infrastructure can be inferred from spatial check-in data obtained by
social media applications.

Last but not least, we experimented on generalized applications that utilize the
approach of bundling sets of traces into geometries. Towards this direction, we
used eye tracking datasets to extract polylines from observations of cartographic
lines. Motivated by the great interest in the commercial sector and the increased
sophistication and accessibility of eye tracking technologies delivering applications
including web usability, advertising, sponsorship and package design, we proposed a
method to infer polylines instead of more traditional techniques such as heat maps to
visualize eye tracking data. Exploiting the efficiency of the TraceBundle algorithm,
we presented a polyline-based visualization of eye tracking data that depicts the
average cartographic line observed by subjects, along with the algorithm that is
used to infer this polyline. Application of the proposed visualization in other kinds
of lines whose eye tracking makes sense, as is the case with some medical images, is
another area that is definitively worth exploring.

All the aforementioned techniques proposed in this thesis, combine, address and
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facilitate several major tasks necessary to achieve the overall goal which is to provide
evolving and updated maps from vast amounts of trajectory data.

7.2 Future Work

In the previous chapters we have presented in detail the outcomes of the work
conducted in the context of this thesis. Still, several research issues remain open.
We conclude by identifying and outlining the most prominent ones:

e The problems considered in this thesis are very relevant to trends and require-
ments that can be identified in other emerging paradigms as well, most notably
geomarketing. Geomarketing and in general the the analysis of location-related
issues illuminates the regional factors that drive or inhibit growth and opti-
mizes business so it can respond more quickly to market changes and exploit
untapped potential before the competition. Geomarketing solutions answer the
“where” questions that impact performance and determine who will survive in
a competitive marketplace, such as where are your ideal customers located,
where are optimal conditions for new business sites, and why or where are
areas of unexploited potential in the markets. This work, will facilitate the
discovery and analysis of these geo-referenced data, and, consequently, will
allow to better target groups and customers in Networks-of-Interest and to
adjust /expand the sales territory structures into the most promising areas.
Thus, it would be a very interesting challenge to study how the techniques
proposed in this thesis can be adapted or extended to provide solutions to
such activities.

e Another important issue when inferring tracking data from different sources
and with different characteristics is related to the transportation networks.
Transportation networks are commonly represented using networks as an anal-
ogy for their structure and flows. They belong to the wider category of spa-
tial networks because their design and evolution are physically constrained
as opposed with non-spatial networks such as social interactions, corporate
organization, and biological systems. The territorial structure of any region
corresponds to a network of all its economic interactions. The implementation
of networks, however, is rarely premeditated but the consequence of continuous
improvements as opportunities arise, investments are made and as conditions
change. The setting of networks is the outcome of various strategies, such as
providing access and mobility to a region, reinforcing a specific trade corridor
or technological developments making a specific mode and its network more
advantageous over others. It can be extended to cover various types of links
between points along which movements can take place. Thus, it would be
very interesting challenge to study how the techniques proposed in this thesis
can be applied to integrate noticeable interdependencies among the different
nodes and networks over time, based on spatial and functional proximity. It
would be also interesting to study means of multimodal transportation from
heterogeneous tracking data sources.

e When tracking data are gathered from several heterogeneous sources, poten-
tially of different levels of quality, it may be uncertain, incomplete or inconsis-
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tent. This requires advanced techniques in order to manage and reason with
such data. Hence, it would be a challenging issue to study how the techniques
proposed in this thesis can be adapted to take into account this additional
aspect.

Our work on polylines inference from cartographic data includes a preliminary
study on eye tracking data sources. The visualization can be further improved
by adding colour attributes to the inferred polyline using calculations such as
eye tracking samples data density near the line, or other statistical metrics.
Application of the proposed visualization in other kinds of lines whose eye
tracking makes sense, as is the case with some medical images, is another area
that is definitively worth exploring. Last but not least, the polyline inference
algorithm needs further experimentation on bigger data sets and possibly im-
provement in few operational aspects. Considering that it is the mind that
actually does the cognitive interpretation of lines observed, it is rather impos-
sible to infer a polyline that very closely matches the initial cartographic line.
However, studying the deviations of individual observers’ tracks from the av-
erage polyline, and combining the results with semantics from the experiment
and subject context may produced some interesting results, too.
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