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... Summary

Polymer-matrix nanocomposites, i.e. nanoparticle-filled polymers, are just at their infancy of
development, but offer huge potential for future applications and energy savings. The obser-
vation that, other things being equal, the effectiveness of the filler increases with an increase in
surface to volume ratio has provided large impetus for a shift from micron- to nanosized filler
particles. Therefore polymer-based nanocomposites are considered an important branch of the
emerging field of nanotechnology.

A multiscale simulation strategy has been designed and applied to quantify the effects of
incorporating fullerenes on the segmental motion of long-chain atactic polystyrene (PS), to
predict the scattering curves from the grafted PS corona of silica particles dispersed in PS,
and to estimate the storage and loss moduli of polyisoprene (PI). Each level in our multiscale
modeling framework is receiving input from more fundamental levels and is providing input to
more coarse-grained ones, enabling a reliable prediction of structure-property relations from
chemical constitution and composition with an absolute minimum of adjustable parameters.

Four interconnected levels of representation have been developed for polymer nanocomposites:

(a) An atomistic one, where both nanoparticles and polymer chains are represented in terms
of detailed atomistic force fields. Fullerenes (C60) are dispersed in atactic PS matrix, and
atomistic Molecular Dynamics (MD) simulations are undertaken to uncover details of packing
and to quantify segmental dynamics and local stresses.

(b) A coarse-grained representation, in which each repeat unit is mapped onto a single “su-
peratom”, and each nanoparticle is viewed as a sphere interacting with the polymer superatoms
and with other nanoparticles via Hamaker-type potentials. For PS the coarse-grained model
utilizes the effective potential energy function already derived for the bulk melt via Iterative
Boltzmann Inversion. Hamaker potentials are obtained by integration of the atomistic pair
potentials invoked at the atomistic level of description, assuming uniform density of interact-
ing sites. Equilibration of coarse-grained polymer-nanoparticle systems at all length scales is
achieved via connectivity-altering Monte Carlo (MC) moves, which are particularly efficient
for polymer matrices of high molar mass. These simulations are strategically important for gen-
erating well-equilibrated starting configurations for atomistic MD through reverse-mapping.

xiii



Summary

(c) A Field Theory-inspired Monte Carlo (FTiMC) level, where polymer chains are repre-
sented as freely jointed sequences of Kuhn segments. Nanoparticles (e.g. SiO2) are again mod-
eled as structureless spheres interacting with each other and with the Kuhn segments through
Hamaker potentials. For polymer-polymer interactions, however, an effective energy function
is used, which prevents large departures of the local polymer density from its value in the bulk
melt everywhere in the system. This simulation methodology is capable of capturing structural
features at length scales on the order of hundreds of nanometers. By randomly linking chains
at the FTiMC representation level, initial configurations for network simulations of slip-spring
models can be created.

(d) A slip-spring network representation where cross-links, entanglements and chain ends
are the degrees of freedom of the polymeric matrix. From the thermodynamic point of view,
the system under study is fully described by a Helmholtz energy function which accounts for
the entropic springs connecting cross-links or entanglements, non-bonded interactions (derived
from any appropriate equation of state, e.g. the Sanchez-Lacombe) and Hamaker interactions
between nodal points - nanoparticles and nanoparticles - nanoparticles. Brownian simulations
at this level, operating at the length scales of up to 1 µm and time scales up to 1 ms, account
for changes in segmental mobility induced by the nanoparticles and track elementary events of
chain slippage across entanglements, chain entanglement and re-entanglement.

Well-equilibrated melt configurations sampled by coarse grained MC were reverse-mapped
to the atomistic level via a rigorous quasi Metropolis reconstruction. Our approach yields atom-
istic configurations exhibiting characteristics in excellent agreement with experimental mea-
surements. The main goal of our atomistic simulation work, i.e., the study of PS-C60 dynamics
at the segmental and local levels, has been accomplished by analyzing long MD trajectories of
our well-equilibrated reverse-mapped structures. Our simulation results generally indicate that
the addition of C60s to PS leads to slower segmental dynamics (as estimated by characteristic
times extracted from the decay of orientational time-autocorrelation functions of suitably cho-
sen vectors), suggesting an increase of the bulk Tg by about 1 K, upon the addition of C60s at
a concentration of 1% by weight. This observation is in favorable agreement with differential
scanning calorimetry measurements. We then employ a space discretization in order to study
the effect of C60s on segmental dynamics at a local level. Each fullerene serves as the cen-
ter of a Voronoi cell, whose volume is determined by the neighboring fullerenes. Backbone
carbons lying in every cell are tracked throughout the MD trajectory and their mean-square
displacement is measured for the time they reside in the same cell. Overall mean-square dis-
placement of backbone atoms is found to be smaller in the presence of fullerenes, than in bulk
PS. However, atoms moving in smaller (more confined) Voronoi cells exhibit faster motion
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than the atoms moving inside larger Voronoi cells. This can be correlated with the increased
rotational diffusion of fullerenes, as the volume of the Voronoi cell becomes smaller. These
observations drive us to envision fullerenes as nanoscopic millstones, forcing the polymeric
chains to diffuse faster.

The structural features of PS brushes grafted on spherical silica nanoparticles immersed
in PS are investigated by means of a MC methodology based on polymer mean field theory
(FTiMC). The nanoparticle radii (either 8 or 13 nm) are held constant, while the grafting density
and the lengths of grafted and matrix chains are varied systematically in a series of simulations.
The profiles of polymer density around the particles are examined; based on them, the brush
thickness of grafted chains is estimated and its scaling behavior is compared against theoretical
models and experimental findings. In addition, Small Angle Neutron Scattering (SANS) spectra
have been predicted both from single grafted chains and from the entire grafted corona. It is
found that increasing both the grafting density and the grafted chain molar mass drastically
alters the brush dimensions, affecting the wetting behavior of the polymeric brush. On the
contrary, especially for particles dispersed in high molecular weight matrix, variation of the
matrix chain length causes an almost imperceptible change of the density around the particle
surface.

Finally, at the last level of modeling, an equation of state - based coarse-grained model for
entangled melt and rubber simulations has been formulated and developed. Structural features
of entangled melts have been found to be in good agreement with theoretical predictions. This
model is parameterized by transferring information from the more detailed levels of modeling
to it. The mean square-displacement of polymer beads and chain centers of mass as a function
of time exhibits the regimes expected from reptation theory with contour length fluctuations
and constraint release. The ultimate target of this level is to extract the shear relaxation mod-
ulus, G (t), for nanocomposite polymer melts and rubbers. Results from applying the model
to cis-1,4 polyisoprene melts are in favorable agreement with experiment, demonstrating the
utility of the model and simulation approach in predicting linear viscoelastic properties from
molecular constitution.
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... Περίληψη

Μία υπολογιστική μεθοδολογία προτυποποίησης και προσομοίωσης σε πολλές κλίμακες
μήκους και χρόνου (multiscale modeling and simulation) σχεδιάσθηκε και υλοποιήθηκε για τη
μελέτη νανοσύνθετων υλικών πολυμερικής μήτρας. Αναλυτικότερα, οι προσομοιώσεις εστιά-
ζονται στην ποσοτικοποίηση της επίδρασης της διασποράς φουλερενίων στην τμηματική δυ-
ναμική ατακτικού πολυστυρενίου υψηλού μοριακού βάρους, στην πρόβλεψη των χαρακτη-
ριστικών κλιμάκωσης του μεγέθους εμφυτευμένων αλυσίδων πολυστυρενίου σε σωματίδια
πυριτίας τα οποία έχουν διασπαρεί σε μήτρα πολυστυρενίου, και στην εκτίμηση των μέτρων
αποθήκευσης και απωλειών ενέργειας τήγματος πολυϊσοπρενίου.

Οι ιδιότητες ενός σύνθετου ετερογενούς υλικού εξαρτώνται από τις ιδιότητες των συστα-
τικών υλικών και τη χαρακτηριστική κλίμακα μήκους της συνύπαρξής τους, καθώς και τις χη-
μικές και μορφολογικές λεπτομέρειες της διασποράς. Ο όρος «νανοσύνθετο» χρησιμοποιείται
για τα σύνθετα υλικά των οποίων η χαρακτηριστική κλίμακα μήκους της διεσπαρμένης φάσης
είναι της τάξης των μερικών νανομέτρων (10−9m). Ένα νανοσύνθετο υλικό διαφοροποιείται
από ένα παραδοσιακό σύνθετο (με διασπορά στην κλίμακα μήκους των μικρομέτρων 10−6m)
ως προς: τη μεγάλη αριθμητική πυκνότητα σωματιδίων μέχρι και ∼ 1020m−3, την εκτεταμένη
διαφασική επιφάνεια ανά όγκο νανοσωματιδίων ∼ 107 cm2

cm3 , τη συσχέτιση και την αλληλεπί-
δραση σωματιδίου-σωματιδίου οι οποίες εμφανίζονται σε χαμηλές συγκεντρώσεις (μικρότερες
από 0, 1 % v/v), τις μικρές αποστάσεις ανάμεσα στα διεσπαρμένα νανοσωματίδια (της τάξης
των νανομέτρων) και τις συγκρίσιμες κλίμακες μήκους ανάμεσα στο μέγεθος του σωματιδίου,
την απόσταση ανάμεσα στα νανοσωματίδια και το τυπικό μέγεθος του πολυμερούς, π.χ. τη
μέση γυροσκοπική ακτίνα ⟨Rg⟩ ∼ 10 nm.

Ενώ είναι σήμερα ευρύτατα αποδεκτό ότι η προσθήκη νανοσωματιδίων σε μία πολυμερική
μήτρα μπορεί να οδηγήσει σε δραστική βελτίωση των ιδιοτήτων του υλικού μήτρας, οι μηχα-
νισμοί, μέσω των οποίων η προσθήκη νανοσωματιδίων επηρεάζει τις ιδιότητες του υλικού
μήτρας, παραμένουν ακόμα άγνωστοι. Η κατανόηση και ποσοτική περιγραφή των σχέσεων
σύστασης-δομής-ιδιοτήτων των νανοσύνθετων υλικών πολυμερικής μήτρας παραμένει ύψι-
στης σημασίας ζητούμενο. Η παρατήρηση ότι η αποτελεσματικότητα του υλικού που διασπεί-
ρεται αυξάνεται με αύξηση της εκτειθέμενης επιφάνειας ανά όγκο, έχει δώσει μεγάλη ώθηση
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για τη χρήση σωματιδίων με διαστάσεις στη νανοκλίμακα. Κάθε επίπεδο στην ιεραρχία μο-
ντέλων που χρησιμοποιούμε λαμβάνει δεδομένα εισόδου από λεπτομερέστερα επίπεδα και
δίνει δεδομένα εξόδου (παρατηρήσεις, μετρήσεις και παραμέτρους) σε πιο αδρά επίπεδα. Η
διασύνδεση αυτή καθιστά αξιόπιστη την πρόβλεψη σχέσεων δομής-ιδιοτήτων από τη χημική
σύσταση χρησιμοποιώντας τον ελάχιστο δυνατό αριθμό ελεύθερων παραμέτρων.

Τέσσερα διασυνδεδεμένα επίπεδα αναπαράστασης και προσομοίωσης αναπτύχθηκαν σε
αυτή την εργασία για τα νανοσύνθετα υλικά πολυμερικής μήτρας:

(α) Ατομιστικό επίπεδο, όπου, τόσο τα νανοσωματίδια, όσο και οι πολυμερικές αλυσίδες
αναπαρίστανται με λεπτομερή ατομιστικά δυναμικά αλληλεπίδρασης. Φουλερένια (C60) δια-
σπείρονται σε μήτρα ατακτικού πολυστυρενίου (polystyrene (PS)). Προσομοιώσεις Μοριακής
Δυναμικής (Molecular Dynamics (MD)) αποκαλύπτουν λεπτομέρειες της τοπικής δομής, της
τμηματικής δυναμικής (segmental dynamics) και των τοπικών τάσεων στο υλικό.

(β) Αδροποιημένο επίπεδο, όπου οι αλυσίδες πολυστυρενίου αναπαρίστανται ως αλληλου-
χίες δυάδων (dyads) οι οποίες αλληλεπιδρούν μεταξύ τους τόσο δεσμικά, όσο και μη δεσμικά.
Το αδροποιημένο δυναμικό του πολυστυρενίου έχει προκύψει από επαναληπτική αντιστροφή
κατά Boltzmann (Iterative Boltzmann Inversion (IBI)) των συναρτήσεων κατανομής ζευγών
ολιγομερών του στυρενίου. Στο αδροποιημένο επίπεδο, τα φουλερένια θεωρούνται σφαιρικά
κελύφη, τα οποία αλληλεπιδρούν με τα μονομερή του πολυστυρενίου, μέσω ενός δυναμικού
το οποίο προκύπτει από την ολοκλήρωση κατά Hamaker των στοιχειωδών αλληλεπιδράσεων
Lennard-Jones ανάμεσα στα συνιστώντα άτομα. Η εξισορρόπηση των τηγμάτων πραγματο-
ποιείται χρησιμοποιώντας πανίσχυρες τεχνικές Monte Carlo (MC) μεταβολής της συνδετικό-
τητας. Κατόπιν, πραγματοποιείται αποκατάσταση της ατομιστικής λεπτομέρειας, μέσω μίας
διαδικασίας η οποία βασίζεται σε συνδυασμό τοπικών κινήσεων MC και σταδιακής ελαχι-
στοποίησης της δυναμικής ενέργειας της παραγόμενης απεικόνισης. Τελικά, η δυναμική των
νανοσυνθέτων πολυστυρενίου εκτιμάται από τροχιές Μοριακής Δυναμικής στο ατομιστικό
επίπεδο αναπαράστασης.

(γ) Μεσοσκοπικό επίπεδο, όπου οι διαμορφώσεις των πολυμερικών αλυσίδων εξελίσσο-
νται μέσω προσομοίωσης Metropolis Monte Carlo, με τις αλληλεπιδράσεις μεταξύ τους να
προκύπτουν από ένα συναρτησιακό της κατανομής πυκνότητας το οποίο είναι εμπνευσμένο
από τη θεωρία μέσου πεδίου των πολυμερών (Field Theory-inspired Monte Carlo (FTiMC)).
Οι πολυμερικές αλυσίδες δεν αλληλεπιδρούν άμεσα, αλλά όλες μαζί συμμετέχουν στις διακυ-
μάνσεις πυκνότητας του τήγματος. Η προσέγγιση αυτή διατηρεί τα πλεονεκτήματα της θεω-
ρίας πεδίου (μικρό υπολογιστικό κόστος, μεγάλες κλίμακες μήκους) αλλά είναι απαλλαγμένη
από την προσέγγιση σαγματικού σημείου και ενδείκνυται για την αντιμετώπιση συστημάτων
με περίπλοκες γεωμετρίες.
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(δ) Επίπεδο δικτύου διαπλοκών, όπου oι πολυμερικές αλυσίδες έχουν αναχθεί σε ένα δί-
κτυο διαπλοκών, με σκοπό την πρόβλεψη ρεολογικών ιδιοτήτων τηγμάτων και ελαστομερών.
Από θερμοδυναμική σκοπιά, το σύστημα χαρακτηρίζεται πλήρως από την ενέργεια Helmholtz
η οποία περιλαμβάνει συνεισφορές από τα εντροπικά ελατήρια (τα οποία συνδέουν εσωτερικά
τμήματα των αλυσίδων μεταξύ τους και με σταυροδεσμούς), μη δεσμικές αλληλεπιδράσεις
(οι οποίες καθορίζονται από μία καταστατική εξίσωση, π.χ. την εξίσωση Sanchez-Lacombe)
και αλληλεπιδράσεις τύπου Hamaker ανάμεσα σε τμήματα αλυσίδων και νανοσωματίδια και
μεταξύ νανοσωματιδίων. Οι τροχιές των τμημάτων του πολυμερούς προκύπτουν από προ-
σομοιώσεις δυναμικής κατά Brown σε αυτό το επίπεδο, ενώ η συνδετικότητα του δικτύου
διαπλοκών μεταβάλλεται μέσω μίας μεθόδου κινητικής προσομοίωσης Monte Carlo (kinetic
Monte Carlo (kMC)), η οποία θεωρεί στοιχειώδη συμβάντα ολίσθησης των διαπλοκών κατά
μήκος του περιγράμματος των αλυσίδων, δημιουργίας και καταστροφής διαπλοκών.

Η προσομοίωση της δυναμικής νανοσύνθετων τηγμάτων πολυστυρενίου - φουλερενίων
(σφαιρικών μορίων C60) βασίζεται σε μία προσέγγιση δύο επιπέδων. Η εξισορρόπηση των τηγ-
μάτων πραγματοποιείται σε αδροποιημένο επίπεδο, όπου κάθε κέντρο αλληλεπίδρασης αντι-
στοιχεί σε ένα μονομερές, χρησιμοποιώντας αποτελεσματικές τεχνικές MC μεταβολής της
συνδετικότητας. Κατόπιν, πραγματοποιείται αποκατάσταση της ατομιστικής λεπτομέρειας,
μέσω μίας διαδικασίας η οποία βασίζεται σε συνδυασμό τοπικών κινήσεων MC και σταδια-
κής ελαχιστοποίησης της δυναμικής ενέργειας της παραγόμενης απεικόνισης. Τελικά, η δυ-
ναμική των νανοσυνθέτων πολυστυρενίου εκτιμάται από τροχιές Μοριακής Δυναμικής (MD)
στο ατομιστικό επίπεδο αναπαράστασης. Οι προσομοιώσεις προέβλεψαν ελαφρή επιβράδυνση
της δυναμικής παρουσία φουλερενίων σε συγκέντρωση 1% κατά βάρος, στις περισσότερες
θερμοκρασίες που εξετάσθηκαν. Κατά συνέπεια, επέρχεται μικρή αύξηση της θερμοκρασίας
υαλώδους μετάπτωσης με την ενσωμάτωση των φουλερενίων στο σύστημα, πρόβλεψη η οποία
επιβεβαιώνεται από τις διαθέσιμες πειραματικές μετρήσεις. Κατόπιν μελετάται η τοπική δυ-
ναμική, σε περιοχές του χώρου οι οποίες προκύπτουν από ψηφιδοποίηση του χωρίου της προ-
σομοίωσης σε πολύεδρα Voronoi, τα οποία έχουν ως κέντρα τους τα μόρια C60. Ο όγκος των
πολύεδρων Voronoi χρησιμοποιείται ως εκτίμηση του βαθμού του χωρικού περιορισμού που
επάγουν τα φουλερένια στο περιβάλλον τους. Τα αποτελέσματά μας δείχνουν ότι, ενώ κατά
μέσο όρο επιβραδύνεται η μεταφορική κίνηση των ατόμων άνθρακα του σκελετού των πολυ-
μερικών αλυσίδων, στην περίπτωση του νανοσυνθέτου η τοπική δυναμική χαρακτηρίζεται από
ανομοιογένεια. Άτομα τα οποία βρίσκονται σε ισχυρά περιορισμένες περιοχές παρουσιάζουν
ταχύτερη διάχυση σε σύγκριση με άτομα σε λιγότερο περιορισμένες. Κατόπιν, με κατάλληλη
χρήση του θεωρήματος virial εκτιμώνται οι τάσεις σε ατομιστικό επίπεδο, όπου ιδιαίτερο εν-
διαφέρον παρουσιάζουν οι κατανομές τους ανάλογα με το είδος του ατόμου. Τέλος, με κατάλ-
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ληλη άθροιση, προκύπτουν οι τάσεις σε τοπικό επίπεδο.
Η τοπική δομή κοντά στην επιφάνεια σφαιρικών νανοσωματιδίων πυριτίας (SiO2) μελετά-

ται με χρήση της μεθοδολογίας προσομοιώσεων Monte Carlo εμπνευσμένων από τη θεωρία
μέσου πεδίου, FTiMC. Η μελέτη εστιάζεται σε νανοσωματίδια τα οποία φέρουν εμφυτευμέ-
νες αλυσίδες πολυστυρενίου (PS) και είναι διεσπαρμένα σε μήτρα πολυστυρενίου. Στην ισορ-
ροπία πραγματοποιείται εκτίμηση του πάχους της πολυμερικής ψήκτρας των εμφυτευμένων
αλυσίδων η οποία περιβάλλει το νανοσωματίδιο (grafted polymer brush). Η ακτίνα των νανο-
σωματιδίων (8 ή 13 nm) διατηρείται σταθερή, ενώ μεταβάλλονται συστηματικά η πυκνότητα
εμφύτευσης και το μήκος των εμφυτευμένων και ελεύθερων αλυσίδων, σε μία σειρά προσο-
μοιώσεων. Στην ισορροπία εξετάζονται οι ακτινικές κατανομές πυκνότητας του πολυμερούς
γύρω από τα νανοσωματίδια και μελετάται η εξάρτηση του πάχους της πολυμερικής ψήκτρας
από την πυκνότητα εμφύτευσης και το μοριακό βάρος. Τα αποτελέσματα των προσομοιώ-
σεων βρίσκονται σε καλή συμφωνία, τόσο ως προς θεωρητικά μοντέλα, όσο και ως προς τις
διαθέσιμες πειραματικές παρατηρήσεις. Το πάχος της πολυμερικής μήτρας αυξάνει με την πυ-
κνότητα εμφύτευσης των αλυσίδων στην επιφάνεια του νανοσωματιδίου, καθώς αύξηση της
πυκνότητας εμφύτευσης αναγκάζει τις εμφυτευμένες αλυσίδες να εκταθούν μακρύτερα από
την επιφάνεια εμφύτευσης, αυξάνοντας επακόλουθα και το πάχος της πολυμερικής ψήκτρας.
Το ίδιο παρατηρείται και με αύξηση του μήκους των εμφυτευμένων αλυσίδων, ενώ μεταβολή
του μοριακού βάρους της περιβάλλουσας μήτρας επιφέρει ανεπαίσθητη μεταβολή της κατα-
νομής πυκνότητας γύρω από την επιφάνεια του νανοσωματιδίου. Προσομοιώσεις σε αυτό το
επίπεδο αναπαράστασης επιτρέπουν την άμεση πρόβλεψη περιθλασιογραφημάτων σκέδασης
νετρονίων υπό μικρές γωνίες, Small Angle Neutron Scattering (SANS), από τις συντεταγμένες
των αδροποιημένων τμημάτων πολυμερούς.

Στο τελευταίο επίπεδο προτυποποίησης αναπτύσσεται ένα θερμοδυναμικά συνεπές αδρο-
ποιημένο μοντέλο για τη δυναμική διαπλεγμένων τηγμάτων και ελαστομερών. Τα δομικά χα-
ρακτηριστικά διαπλεγμένων τηγμάτων βρίσκονται σε καλή συμφωνία με τις θεωρητικές προ-
βλέψεις. Επίσης, η δυναμική συμπεριφορά του μοντέλου περιγράφει καλά τα κύρια χαρακτη-
ριστικά της δυναμικής των διαπλεγμένων τηγμάτων. Προβλέψεις του μέτρου χαλάρωσης δια-
τμητικών τάσεων, G(t), από προσομοιώσεις τηγμάτων cis-1,4 πολυϊσοπρενίου σε κατάσταση
ισορροπίας οδηγούν σε πολύ ικανοποιητικά αποτελέσματα καταδεικνύοντας τη χρησιμότητα
του μοντέλου στην πρόβλεψη των γραμμικών ιξωδοελαστικών ιδιοτήτων από τη μοριακή σύ-
σταση.
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.... 1. Introduction

In this short introductory chapter, the framework of the thesis is set. We will explain why
polymer matrix nanocomposites is an interesting field to work on and why multiscale modeling
is not a luxury but a necessity. Moreover, starting from experimental observations, we will pose
the relevant questions which shape the present thesis.

1.1 Polymer-Matrix Nanocomposites
In the simplest sense, a composite is an object made up of two or more distinct parts. Within
materials science and engineering, composite materials are put together from two or more
components that remain distinct or separate within the final product. Composites can be found
anywhere, being as simple as a matrix material that envelops a reinforcing material, like con-
crete surrounding steel bars, helping it prevent failure under tension. The real challenge is
that the options for making a composite are almost limitless, but only a few combinations of
materials will combine synergistically, and the design criteria may not be obvious. The obser-
vation that, other things being equal, the effectiveness of the filler increases with an increase
in surface to volume ratio has provided large impetus to the shift from micron- to nanosized
particles. With the appearance of synthetic methods that can produce nanometer sized fillers,
resulting in an enormous increase of surface area, a new class of materials emerged, known as
polymer-matrix nanocomposites (PNCs), i.e., polymer hosts filled with nanoparticles, which
possess properties that typically differ significantly from those of the pure polymer, even at
low nanoparticle concentrations.1,2

Nanocomposite materials contain particles of size αp ∼ 10 nm, dispersed at a volume
fraction,φ, often lower than 10−3 within a polymer matrix, are characterized by particle number
densities of ρn = 3φ/

(
4πα3

p
)
≈ 1020 m−3, interfacial areas per unit volume of 3φ/αp ≈

106 m−1, and interparticle spacings, ρ−1/3
n − 2αp ≈ 10 nm that are commensurate with the
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Chapter 1. Introduction

particle dimensions, αp and the radii of gyration of matrix chains, Rg ≈ 10 nm.

The practice of adding nanoscale filler particles to reinforce polymeric materials can be
traced back to the early years of the composite industry, in the second half of the 19th century.
Charles Goodyear, inventor of vulcanized rubber, attempted to prepare nanoparticle-toughened
automobile tires by blending carbon black, zinc oxide, and/or magnesium sulfate particles with
vulcanized rubber.3 Another example was the clay-reinforced resin known as Bakelite that was
introduced in the early 1900’s as one of the first mass-produced polymer-nanoparticle compos-
ites and fundamentally transformed the nature of practical household materials.4–7 Then, a long
period of time passed till the early 1990s when it was first demonstrated that the thermal and
mechanical properties of Nylon-6 were improved by the addition of a few percent (2-4 % w/w)
mica-type layered silicates to the extent that it could be used in an automotive engine compart-
ment.8,9

Even though some property improvements have been achieved in nanocomposites, nanopar-
ticle dispersion is difficult to control, with both thermodynamic and kinetic processes playing
significant roles. It has been demonstrated that dispersed spherical nanoparticles can yield a
range of multifunctional behavior, including a viscosity decrease, reduction of thermal degra-
dation, increased mechanical damping, enriched electrical and/or magnetic performance, and
control of thermomechanical properties.10–14 The tailor-made properties of these systems are
very important to the manufacturing procedure, as they fully overcome many of the existing
operational limitations. As a final product, a polymeric matrix enriched with dispersed par-
ticles may have better properties than the neat polymeric material and can be used in more
demanding and novel applications. Therefore, an understanding and quantitative description
of the physicochemical properties of these materials is of major importance for their successful
production.

As part of this renewed interest in nanocomposites, researchers also began seeking design
rules that would allow them to engineer materials that combine the desirable properties of
nanoparticles and polymers. In light of the diversity of polymers and nanoparticles, the poten-
tial for use of PNCs is nearly limitless. The ensuing research revealed a number of key chal-
lenges in producing nanocomposites that exhibit a desired behavior. The greatest stumbling
block to the large-scale production and commercialization of nanocomposites is the dearth of
cost-effective methods for controlling the dispersion of the nanoparticles in polymeric hosts.
The nanoscale particles typically aggregate, which negates any benefits associated with the
nanoscopic dimension. PNCs generally possess nonequilibrium morphologies due to the com-
plex interplay of enthalpic and entropic interactions leading to particle aggregation, particle
bridging interactions, and phase separation at various length scales.15,16 The second challenge is
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associated with understanding and predicting property enhancements of these materials, which
are intimately connected to their morphology.

1.2 Multiscale Modeling
Understanding the fascinating and complex structure and dynamics of polymeric materials has
been an ongoing challenge for many decades. From the point of view of molecular simula-
tions, the spectrum of length and time scales associated with polymer melts of long chains
poses a formidable challenge to studying the long-time dynamics.17,18 The topological con-
straints arising from chain connectivity and uncrossability (entanglements) dominate interme-
diate and long-time relaxation19 and transport phenomena when polymers become sufficiently
long. Atomistic molecular simulations of dense phases of soft matter prove to be difficult for
many systems across length and time scales of practical interest. Even coarse-grained particle-
based simulation methods may not be applicable due to the lack of faithful descriptions of
polymer-polymer and polymer-surface interactions. Since complex interactions between con-
stituent phases at the atomic level ultimately manifest themselves in macroscopic properties,
a large range of length and time scales must be addressed and a combination of modeling
techniques is therefore required to simulate meaningfully the bulk-level behavior of nanocom-
posites.20

Soft condensed matter is a relatively new term describing a huge class of rather different
materials such as colloids, polymers, membranes, complex molecular assemblies, complex
fluids etc. Though these materials are rather different in their structures, there is one unifying
aspect, which makes it very reasonable to treat such systems from a common point of view.
Compared to “hard matter” the characteristic energy density is much smaller. While the typical
energy of a chemical bond (C-C bond) is about 3 × 10−19 J ≈ 80kBT at room temperature
of 300 K, the nonbonded interactions are of the order of kBT and allow for strong density
fluctuations even though the molecular connectivity is never affected (kB is the Boltzmann’s
constant). To give a rough reasoning for this, we can compare the cohesive energy density,
which gives a first estimate of the elastic constants, between a typical “hard matter” crystal
to soft matter. The ratio between the two shows that polymeric systems are typically 100 to
10000 times softer than classical crystals. As a consequence the average thermal energy kBT

is not negligible for these systems any more, but rather defines the essential energy scale.
This means that entropy, which typically is of the order of kBT per degree of freedom, plays
a crucial role. Especially in the case of macromolecules, this mainly means intramolecular
entropy, which for a linear polymer of length N contributes to the free energy a term of order

3



Chapter 1. Introduction

Figure 1.1: Levels of modeling developed in this thesis, connections between them, methods
employed in each one and main simulation observables.

NkBT , representing about 90% of the free energy of polymeric materials.21 As an immediate
consequence it is clear that typical quantum chemical electronic structure calculations (Hartree-
Fock or Density Functional Theory (DFT)) which focus on obtaining the energy as a function
of nuclear coordinates cannot be sufficient to characterize soft condensed matter and will even
be less sufficient to properly predict/interpret macroscopic properties. These methods provide
the solid molecular scale foundations for the multiscale modeling method discussed in this
thesis. However, these methods are beyond the scope of our work.

1.2.1 Atomistic Molecular Dynamics (MD)
The stepping stone of our multiscale strategy (Figure 1.1) is atomistic MD (please refer to
Section 2.4.1 on page 49 for a brief description). As accurate MD potentials are developed
for a broad range of materials based on quantum chemistry calculations and with the increase
of supercomputer performance, atomistic MD simulations have become a very powerful tool
for analyzing the complex physical phenomena of polymeric materials, including dynamics,
viscosity, shear thinning and α- and β-relaxations. However, as discussed above, entangled
polymer systems are characterized by a wide range of spatial and temporal scales. It is still
not feasible to perform atomistic MD simulations of highly entangled polymer chain systems,
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due to their large equilibration and relaxation times, long-range electrostatic interactions and
tremendous number of atoms. The atomistic MD model for such a system, with a typical size
of about a micrometer and a relaxation time on the scale of microseconds, would consist of
billions of atoms and would require billions of time steps to run, which is obviously beyond
the capability of the technique, even with the most sophisticated supercomputers available
today.

1.2.2 Coarse Grained Monte Carlo (GC-MC)
A robust sampling of the configuration space of polymeric substances is a prerequisite for the
reliable prediction of their physical properties. The constraints posed by atomistic MD simu-
lations can be overcome by resorting to Monte Carlo (MC) simulations (please refer to Section
2.4.2 on page 51). Through the design of efficient unphysical moves, configurational sam-
pling (Section 2.1.1/iii, page 15) can be dramatically enhanced. MC moves such as concerted
rotation,22 configurational bias,23,24 and internal configurational bias25 have thus successfully
addressed the problem of equilibrating polymer systems of moderate chain lengths. How-
ever, even these moves prove incapable of providing equilibration when applied to long-chain
polymer melts. A solution to that problem was given by the development and efficient imple-
mentation of a chain connectivity-altering MC move, end-bridging.26,27 Using end-bridging,
atomistic systems consisting of a large number of long chains, up to C1000, have been simu-
lated in full atomistic detail.27 Despite its efficiency in equilibrating long-chain polymer melts,
end-bridging cannot equilibrate monodisperse polymer melts; a finite degree of polydispersity
is necessary for the move to operate. While this is not a drawback in modeling industrial poly-
mers, which are typically polydisperse, an ability to equilibrate strictly monodisperse polymers
is highly desirable for comparing against theory or model experimental systems. Morover, end-
bridginig relies on the existence of chain ends, rendering itself inappropriate for dense phases
of chains with nonlinear architectures. These limitations have been overcome by the intro-
duction of Double Bridging (DB) and Intramolecular Double Rebridging (IDR).28,29 The key
innovation of those moves is the construction of two bridging trimers between two different
chains, as far as the former is concerned, or along the same chain, as far as the latter move is
concerned, thus preserving the initial chain lengths.

Even MC simulations using atomistic forcefields have not been extremely efficient, as
Doxastakis et al. have shown.30 The hard interactions between atoms reduce the acceptance
rate of the moves. Thus, it is essential to resolve to parallel tempering techniques in order to al-
low motion of the system in its phase space.31 For the second level of our simulation hierarchy,
we follow the work of Spyriouni et al.,32 combining connectivity-altering MC simulations with
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soft potentials obtained from Iterative Boltzmann Inversion (IBI) of atomistic polystyrene (PS)
structures.33 Following Milano and Müller-Plathe,33 the coarse-grained model consists of se-
quences of superatoms centered on methylene carbons of two different types, according to the
stereochemical kind of the dyad they belong to. The corresponding force-field contains bond
stretching, bond angle bending and nonbonded terms. The intramolecular potentials (bond and
angle) are based on sums of Gaussians. For the nonbonded part, numerical potentials are used.

Well equilibrated coarse-grained configurations can been reverse-mapped to atomistic ones,
thus establishing the green link indicated in Figure 1.1. The reverse mapping procedure retains
the tacticity which is implicit in the coarse-grained representation, while regrowing atomistic
sites by a quasi-Metropolis procedure that avoids unphysical configurations. Subsequent po-
tential energy minimizations and local MC moves allow the full relaxation of the system to a po-
tential energy minimum. The positions of the atoms which served as the centers of the coarse-
grained sites remain constant throughout the reverse-mapping, thus, preserving the long-length
scale features, as those were equilibrated during the GC-MC simulations.

Coarse graining, MC equilibration, reverse-mapping and atomistic MD simulations of PS
- C60 melts and glasses are presented in Chapter 3.

1.2.3 Mesoscopic Simulations
A major challenge in simulating realistic PNCs is that neither the length nor the time scales
can be adequately treated by means of atomistic simulations alone, because of the extensive
computational load. Until relatively recently, a somewhat neglected level of description in ma-
terials modeling has been the mesoscopic regime, lying between atomic (or super-atomic like)
particles and Finite Elements (FE) representations of a continuum, and covering characteristic
length scale of 10−8 m to 10−5 m. At this scale, the system is still too small to be regarded as
a continuum, yet too large to be simulated efficiently using atomic models. In a more precise
way, a mesoscale can be defined as an intermediate length scale at which the phenomena at
the next level below (e.g. particle motions) can be regarded as having been equilibrated, and
at which new phenomena emerge with their own characteristic time scales.

Among the several mesoscopic methods applied to the study of polymers, Self Consistent
Field (SCF) theory has been a well-founded tool.34 This method adopts a field-theoretic de-
scription of the polymeric fluids and makes a saddle-point (mean-field) approximation. An
alternative to invoking the saddle-point approximation is performing a normal Metropolis MC
simulation, with the potential energy of the system given by field-theoretic functionals. One of
the first attempts has been made by Laradji et al.35 for polymer brushes and then by Daoulas and
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Müller36 and Detcheverry et al.37,38 for polymeric melts. The coordinates of all particles in the
system are explicitly retained as degrees of freedom and evolve through MC moves. The term
Field Theory-inspired Monte Carlo (FTiMC) tries to capture the essence of the method. We
adapt this strategy to nanocomposite melts, where spherical particles (either bare or grafted)
are dispersed in the polymeric matrix.

MC simulations inspired by the polymer mean field theory in order to study the structural
features of PS - grafted silica nanoparticles are presented in Chapter 4.

Tracking the motion of mesoscopic particles requires the use of stochastic dynamics.39 To
this end, we provide initial configurations from FTiMC simulations to Brownian Dynamics
(BD) simulations. Polymer beads are envisioned as moving through a viscous medium which
consists of the remaining polymer. This picture is exactly the basis of the Rouse model for
unentangled polymer dynamics (Section 2.3.4/i on page 36). By taking a step further, we in-
troduce the effect of chain entanglement by considering entropic springs connecting beads of
neighboring chains. The goal of this approach is to develop a consistent simulation implemen-
tation of the reptation theory (Section 2.3.4/v on page 41). Friction coefficients needed for
treating the missing degrees of freedom are obtained by atomistic simulations, while conser-
vative interactions between the beads are parameterized by an appropriate equation of state.

An equaton of state - based mesoscopic simulation strategy for the study of entangled poly-
mer dynamics is presented in Chapter 5.

1.3 Motivation
PNCs have been an area of intense industrial and academic research for the past twenty years.
Irrespectively of the measure employed - articles, patents, or funding - efforts in PNCs have
been exponentially growing worldwide over the last ten years. PNCs represent a radical al-
ternative to conventional filled polymers or polymer blends - a staple of the modern plastics
industry. Considering the multitude of potential nanoparticles, polymeric resins, and applica-
tions, the field of PNCs is immense.40

Despite the unprecedented efforts placed on PNCs research there are still open questions
which have not been definitely addressed yet. In the following we will summarize only a few
of them, introducing the work carried out in this thesis.
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1.3.1 Segmental Dynamics and the Glass Transition Temperature
When cooling a glass forming liquid, instead of freezing at a well defined temperature, one
observes a huge increase of the viscosity which takes place continuously. Such glass formers
can be either simple liquids or polymer liquids, and many features are similar in both regarding
the glass transition. One defines the glass transition temperature, Tg, as the temperature at
which the dominant relaxation time on the molecular scale (or monomeric scale in the case of
polymers) reaches about ∼ 100 s, which corresponds typically to a viscosity of 1012 Pa s in
the case of simple liquids. Typically for such glass forming liquids, the viscosity increases by
twelve orders of magnitude over a change of temperature of about 100 K down to Tg. The
underlying mechanisms involved in this dramatic increase are still poorly understood.41,42

Experimental results on polymer dynamics and the glass transition in PNCs are not conclu-
sive concerning the mechanism and the details of this modification. Increases or decreases in
Tg by as much as 30 K43 have been reported depending on polymer - nanoparticle interactions.
Reduction of Tg has been reported in the case of weak interactions between filler and poly-
mer.44 In other cases the addition of nanoparticles causes no significant change to the glass
transition of the polymer, presumably because effects causing increase and decrease of poly-
mer mobility are present simultaneously and effectively canceling out each other.45 Moreover,
strong interactions between the filler particles and the polymer suppress crystallinity, yielding
new segmental relaxation mechanisms in semicrystalline polymers, originating from polymer
chains restricted between condensed crystal regions and the semi-bound polymer in an inter-
facial layer with strongly reduced mobility.46

Concerning the spatial extent of the Tg-shift, several studies47,48 on PNCs show an increase
of the glass transition temperature, suggesting that the mobility of the entire volume of the
polymer is restricted by the presence of the nanoparticles. However, there are many experi-
mental results suggesting that the restriction of chain mobility caused by the nanoparticles does
not extend throughout the material but affects only the chains within a few nanometers of the
filler surface.49 The existence of such an interfacial layer seems relatively well-established in
the case of silica-filled elastomers, however its exact nature is not well understood: experimen-
tal results have been described in terms of one or two distinct interfacial layers or a gradual
change in dynamics with changing distance from the particle.

A detailed study of the (global and local) segmental dynamics and the glass transition of a
PS-C60 melt is presented in Chapter 3.
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1.3.2 Enhancing Nanoparticle Dispersion by Surface Grafting
One of the biggest challenges is the rational control of filler clustering or aggregation, which
often adversely affects material properties. The idea of achieving a good, uniform nanoparticle
dispersion state has been the focus of considerable research, especially because of its favorable
impact on optical and some mechanical behavior of the resulting composites.50,51 In the past
few years, several research groups have modified the surface of nanoparticle fillers in an effort
to improve their dispersion in a polymer matrix. A promising strategy for controlling the dis-
persion and morphology of PNCs is to graft polymer chains onto the nanoparticles to form a
brush layer.16 The free chain/brush interfacial interactions may be “tuned” by controlling graft-
ing density, σg, the degrees of polymerization of the grafted chains, Ng, and of the polymer
host, Nf, the nanoparticle size, αp, and its shape. For example, if nanoparticles are grafted with
chains compatible with the matrix polymer, filler dispersion is favored.52–56 Motivated by this
concept, experimentalists have synthesized nanometer sized particles with high surface graft-
ing density.54,57,58 At fixed polymer chemistry, when the molecular weight of matrix polymer
is lower than that of grafted polymer, nanoparticles disperse. On the contrary, if the molecu-
lar weight of the matrix polymer is higher than that of the grafted polymer, nanoparticles are
thought to aggregate.54 Since both the matrix and the brush have the same chemical structure,
the immiscibility for longer matrix chains is entropic in origin and attributable to the concept
of “brush autophobicity”.52,59–63

A detailed discussion on the scaling of grafted polymer layers and the contribution of this
thesis to the understanding of this phenomenon is presented in Chapter 4.

1.3.3 Mechanical and Rheological Properties
The dispersion of micro- or nano-scale rigid particles within a polymer matrix often - but by no
means always - produces an enhancement in the properties of these materials. As mentioned
earlier, the most important application of this sort involves rigid inorganic particles (originally
carbon black, later also silica) in a cross-linked elastomer matrix, where an improvement of me-
chanical properties is sought. This so-called rubber reinforcement is a complex phenomenon,
which may involve an enhanced grip of tires on wet roads, an improved resistance to wear and
abrasion, and an increase of tire’s ultimate mechanical strength (toughness, tearing resistance).

There is a variety of phenomena seeking an explanation. For the purpose of this introduc-
tion we will focus on a subset of them. Under very small cyclic deformations, there is a linear
viscoelastic regime characterized by a very significant increase (sometimes even by two orders
of magnitude compared to the reference unfilled network) of the in-phase storage modulus,
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both under elongation and under shear.64 At medium-to-large strains, filled elastomers exhibit
a markedly non-linear response which is absent in unfilled elastomers (“Payne effect”).65 The
degree of non-linearity increases strongly with particle loading. An order-of-magnitude drop
in the modulus is often observed on going to 5–10 % deformation (under shear), bringing the
asymptotic modulus of the filled systems much closer to that of the reference unfilled network.

Other related effects are commonly observed in filled elastomers. One is deformation hys-
teresis (“Mullins effect”): under cyclic deformation, the elastic modulus in the first cycle is
higher than that in the following ones.66 This points to some kind of “damage” of the mate-
rial, which, however, is often reversible. The original properties can be recovered within a
few hours, by high-temperature annealing of the sample. Secondly, fillers affect also the dis-
sipative, out-of-phase components of the modulus. This is expected, since, probably, friction
of the polymer chains against the filler surfaces, or of two particles against each other pro-
duces new energy dissipation mechanisms, which are absent in unfilled elastomers. Elastic
and dissipative effects likely share a common origin. Finally, reinforcement effects have a
remarkable temperature dependence. The small-strain (linear) modulus of filled rubbers de-
creases with temperature, pointing to important enthalpic effects. The situation is completely
reversed compared to unfilled elastomers, where the modulus increases linearly with absolute
temperature due to the entropic nature of rubber elasticity.

The first steps towards a model capable of predicting the non-linear rheology of reinforced
rubbers is presented in Chapter 5.

1.4 Aim and Outline of the Thesis
The present thesis aims at developing novel modeling and simulation methodologies by link-
ing the microscopic, mesoscopic and macroscopic levels in a rigorously predictive and compu-
tationally tractable way to address the structure and properties of industrially highly relevant
nanocomposite materials. Starting from atomistic molecular simulations, parameters and func-
tional relations derived from them will serve as an input for higher level modeling techniques,
without using empirical, physically non-meaningful fitting parameters. Each modeling level
should capture the correct physics behind the phenomena by receiving input from more funda-
mental levels and providing input to more coarse-grained ones. Between atomistic simulation
and macroscopic mechanical response there are at least eight orders of magnitude on the length
scale and seven orders of magnitude on the time scale to be bridged, and this has to be done
without significant loss of relevant information, else there will be no predictive capability.
Methods have been developed as general as possible, allowing their application to a wide class
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Figure 1.2: Our modeling hierarchy, as it can be applied to predicting the rheological behavior
of cis-1,4 polyisoprene nanocomposite melts, which are used for the manufacturing of “green
tires”.

of systems.

The quantitative relationships between composition (volume fraction, chemical constitu-
tion, shape and size of nanoparticles, chemical constitution and molar mass distribution of poly-
mer matrix, areal density and molar mass distribution of grafted chains that may be present),
processing conditions, degree of dispersion of the nanoparticles, dynamics of the matrix chains,
and macroscopic properties are still elusive. Molecular simulation holds great promise as a
means for understanding and predicting these relationships. This thesis hopes to contribute to
the advance of the simulation field. In Figure 1.2, a unified simulation approach to the study
of “green tires” is presented. Nanoparticle-filled elastomers constitute a promising route to re-
ducing fuel consumption (and CO2 emissions) in the automotive industry. The different levels
of modeling (Figure 1.1), as well as the necessary interconnections between them, are drawn
towards the estimation of the mechanical and rheological properties of silica-reinforced rubber.

In the following Chapter, a brief self-contained summary of statistical mechanics, contin-
uum mechanics, polymer physics and molecular simulation concepts is provided. We limit
ourselves to the absolute minimum of definitions and methods to be presented, trying not to
sacrifice consistency and rigor. Chapter 2 contains the common background of all methods de-

11



Chapter 1. Introduction

veloped in the thesis. Subsequent chapters seek answers to specific questions regarding PNCs.
In Chapter 3, the segmental dynamics and stresses of PS - C60 melts and glasses are thoroughly
investigated. Despite the fact that we have not been able to explain the macroscopic viscosity
reduction in terms of microscopic observables, several advances have been made towards an
understanding of this phenomenon. In Chapter 4 the scaling of grafted polymer brushes is stud-
ied as a function of the molecular properties of the grafted and matrix chains. The equation of
state - based model for entangled polymer dynamics is formulated in Chapter 5. Each Chapter
is self-contained, incorporating its introduction (summarizing previous work and experimen-
tal findings) and the main conclusions reached. However, a separate list of the innovations at
three levels (methodology, physical insight and computational tools) is provided in Chapter 6.
Finally, in Chapter 7 an outlook of closely related future work is presented.
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.... 2. Theoretical Background

In this chapter we introduce definitions and background knowledge that will form the basis
of the new concepts and methods to be developed in the subsequent chapters. We start our
discussion by introducing the formalism of statistical mechanics and briefly describing the sta-
tistical ensembles used in computer simulations. Then, the concepts of continuum mechanics
are reviewed both from the viewpoint of solid mechanics and rheology. A brief description
of polymer physics follows. Analytical polymer theories usually address simplified models of
polymer chains, which capture universal features such as the chain topology. Despite lack-
ing many fine details, such models still manage to predict many physical properties of poly-
mer solutions, melts and networks and capture the relevant physics of a phenomenon. Many
polymer-specific effects and properties, such as rubber elasticity, the viscoelastic rheological
response of melts in the terminal region, and overall molecular shapes in melts in the bulk and
next to surfaces, are similar for polymers of different chemical structures. Finally, the simula-
tion methods used in the thesis are briefly described and molecular simulation observables are
presented from a critical point of view.

2.1 Concepts of Classical Statistical Mechanics

2.1.1 Motion in Phase Space
Statistical physics describes a system of N particles at a given state as one point in 6N -dimen-
sional phase space, containing the atom positions and momenta (and neglecting the internal
degrees of freedom).67 In classical mechanics, the state of the system is completely speci-
fied in terms of a set of generalized coordinates {qi} and generalized momenta {pi}, where
i = 1, . . . , N .68 We will refer to the 3N -dimensional set from which the generalized coordi-
nates of the system {q} ≡ {q1,q2, . . . , qN} take on values as configuration space, while we
refer to the 3N -dimensional set from which the generalized momenta {p} ≡ (p1, p2, . . . , pN)
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take on values as momentum space. Any instantaneous microscopic state of the system can be
written as a point:

Γ = ({qi} , {pi}) (2.1)

in the phase space of the system. The set of values of the macroscopic observables, such as
temperature, pressure, etc., describes the system’s macroscopic state. One macroscopic state
combines all the microscopic states that provide the same values of the macroscopic observ-
ables, defined by the macroscopic state.

If we know the Hamiltonian, H ({qi} , {pi} , t), for the system, then the time evolution of
the quantities qi and pi (i = 1, . . . , N ) is given by Hamilton’s equations of motion

ṗi ≡
∂pi
∂t

= −∂H ({qi} , {pi} , t)
∂qi

(2.2)

and
q̇i ≡

∂qi
∂t

=
∂H ({qi} , {pi} , t)

∂pi
(2.3)

where i = 1, 2, . . . , N and ∂/∂x ≡ ∇x symbolizes the gradient operator with respect to the
vectorial quantity x. As the system evolves in time and its state changes, the system point
traces out a trajectory in Γ-space. Since the subsequent motion of a classical system is uniquely
determined from the initial conditions, it follows that no two trajectories in phase space can
cross. If the Hamiltonian H does not depend explicitly on time, then H is a constant of the
motion. Such is the case for conservative systems.

2.1.1/i Time average

Any property of the system, A, is then a function of the points traversed by the system in phase
space. The instantaneous property at a time t is A (Γ (t)) and the macroscopically meaningful
observable property Aobs is the time average of this,

Aobs = ⟨A (Γ (t)) ⟩t = lim
tobs→∞

1

tobs

∫ tobs

0

A (Γ (t)) dt (2.4)

In experiments, the time average comes about quite naturally, since almost all experimental
methods measure over much longer time scales than the longest relaxation time of the system.
A straightforward approach, in order to get A from molecular simulations, is to determine a
time average, taking a discrete sum over M time steps of length ∆t:

Aobs ≃ lim
M→∞

1

M∆t

M∑
i=1

A (Γ (i∆t))∆t (2.5)
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This is the approach undertaken in Molecular Dynamics (MD) simulations, where the atoms
trajectory is followed as a function of time, so it is straightforward to obtain the average.

2.1.1/ii Phase space probability density

When we deal with real systems, we can never specify exactly the state of the system, despite
the deterministic character of its motion in phase space. There will always be some uncertainty
in the initial conditions. Therefore, it is useful to consider Γ as a stochastic variable and to
introduce a probability density ρ (Γ, t) on the phase space. In doing so, we envision the phase
space filled with a continuum (or fluid) of state points. If the fluid were composed of individual
discrete points, then each point would be equipped with a probability in accordance with our
initial knowledge of the system and would carry this probability for all time, since probability
is conserved. Because state points must always lie somewhere in the phase space, we have the
normalization condition∫

Γ

ρ (Γ, t) dΓ ≡
∫

Γ

ρ ({qi}, {pi}, t) d3Np d3Nq = 1 (2.6)

where the integration takes place over the entire phase space. Similarly, the probability of
finding the system in a small finite region D of Γ-space at time t is found by integrating the
probability density over that region:

P (D, t) =

∫
D

ρ ({qi}, {pi}, t) d3Np d3Nq (2.7)

The probability density for finding a system in the vicinity ofΓ depends on the macroscopic
state of the system, i.e. on the macroscopic constraints defining the system’s size, spatial extent,
and interactions with its environment. A set of microscopic states distributed in phase space
according to a certain probability density is called an ensemble. A very important measure
of the probability distribution of an equilibrium ensemble is the partition function Q. This
appears as a normalizing factor in the probability distribution defined by the ensemble.

2.1.1/iii Ensemble average

The ergodic hypothesis, originally due to L. Boltzmann,69 states that, over long periods of
time, the time spent by a system in some region of the phase space of microstates with the
same energy is proportional to the volume of that region, i.e., that all accessible microstates
are equiprobable over a long period of time. Ergodicity is based on the assumption (provable
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for some Hamiltonians) that any dynamical trajectory, given sufficient time, will visit all “rep-
resentative” regions in phase space, the density distribution of points in phase space traversed
by the trajectory converging to a stationary distribution.

According to the ergodic hypothesis we can calculate the observables of a system in equi-
librium as averages over phase space with respect to the probability density of an equilibrium
ensemble, ρens (Γ). If ρens (Γ) obeys the normalization condition, eq 2.6, on the entire phase
space Γ and also is zero for all points outside the hypersurface H (Γ) = E, the ensemble
average can be defined as:

Aobs = ⟨A⟩ens =

∫
A (Γ) ρens (Γ) dΓ (2.8)

In MC simulations, the desired thermodynamic quantities are determined as ensemble aver-
ages:

⟨A⟩ens =

∑
Γ

A (Γ)∑
Γ

ρens (Γ)
(2.9)

If we wish to obtain an average over points in phase space, there is no need to simulate any real
time dependence of the system; one need only construct a sequence of states in phase space in
the correct ensemble. In the context of equilibrium simulations, it is always important to make
sure that the algorithm used in the simulation is ergodic. This means that no particular region
in phase space should be excluded from sampling by the algorithm. Such an exclusion would
render the simulation wrong, even if the simulated object itself is ergodic. From a practical
point of view, the ergodicity of the system can and should be checked through reproducibility
of the calculated thermodynamic properties (pressure, temperature, etc.) in runs with different
initial conditions.

2.1.2 Statistical Ensembles

2.1.2/i Microcanonical (NV E) Ensemble

In the microcanonical (NV E) ensemble the number of particles, N , the volume of the system,
V and the total energy, E, are conserved. This corresponds to a completely closed system
which does not interact in any way with the environment and lies in a container of fixed volume,
V . For simplicity, we neglect the internal degrees of freedom. Then, the system energy will
be a sum of kinetic, K, and potential, V energies. Since the total energy E must be conserved,
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the criterion for adding states in the ensemble would be

H ({qi}, {pi}) = K ({qi}, {pi}) + V ({qi}, {pi}) = constant = E0 (2.10)

which means that not all, but only those states in phase space Γ that have total energy E0 are
allowed. This can also be stated so that the probability density of the ensemble is

ρNV E ({qi}, {pi}) =
1

QNV E

δ [H ({qi}, {pi})− E0] (2.11)

where δ is the Kronecker delta for a discrete system, and the Dirac delta function for a contin-
uous one. The partition function in the microcanonical ensemble, QNV E , is:

QNV E =
∑
Γ

δ [H (Γ)− E0] (2.12)

The summation over states,
∑

Γ, is used if microscopic states are discrete and ρ (Γ) has the
meaning of a probability. For one-component classical systems, the sum can be replaced by
an integral, yielding

QNV E =
1

N !

1

h3N

∫
dΓδ [H (Γ)− E0]

=
1

N !

1

h3N

∫ N∏
i=1

d3ri d3pi δ [H ({qi}, {pi})− E0] (2.13)

where N ! takes care of the indistinguishability of particles of the same species and h3N is the
ultimate resolution for counting states allowed by the uncertainty principle.

The proper thermodynamic potential for the microcanonical ensemble is the entropy:

S = kB ln (QNV E) (2.14)

where kB is the Boltzmann constant. We therefore have a statistical thermodynamic definition
of entropy as a quantity proportional to the logarithm of the number of microscopic states under
given N , V , E. Eq 2.14 establishes a fundamental thermodynamic equation in the entropy
representation.

2.1.2/ii Canonical (NV T ) ensemble

In the canonical (NV T ) ensemble the number of particles, N , the volume of the system, V ,
and temperature, T are conserved. This corresponds to a closed system, which, however, can
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exchange heat with a large surrounding bath. The energy is fluctuating, but the temperature is
constant, describing the probability distribution of energy fluctuations. The total energy of the
system is given by its Hamiltonian, H ({qi}, {pi}). The probability density of the ensemble
is:

ρNV T ({qi}, {pi}) =
1

QNV T

1

N !h3N
exp

[
−H ({qi}, {pi})

kBT

]
(2.15)

with kB being the Boltzmann’s constant andQNV T the partition function in theNV T ensemble:

QNV T =
1

N !h3N

∫ N∏
i=1

d3qi d3pi exp
[
−H ({qi}, {pi})

kBT

]
(2.16)

The thermodynamic function of the system is the Helmholtz energy:

A = −kBT ln (QNV T ) (2.17)

Eq 2.17 defines a fundamental equation in the Helmholtz energy representation by expressing
A as a function of N , V , T .

2.1.2/iii Isothermal - isobaric ensemble (NpT )

The isothermal-isobaric ensemble describes the equilibrium distribution in phase space of a
system under constant number of particles, temperature, and pressure. The volume of the
system is allowed to fluctuate. Thus, a point in phase space is specified by specifying V , {qi}
and {pi}, where the domain from which the qis take on values depend on the value of V .

The probability density of the NpT ensemble can be derived from that of the microcanon-
ical ensemble, by considering a bath around the system which acts as both a heat and a work
reservoir for the system under study. The probability density, in a classical statistical mechan-
ical formulation, is:

ρNpT ({qi}, {pi};V ) =
1

QNpT

exp
[
−H ({qi}, {pi}) + pV

kBT

]
(2.18)

where QNpT is the isothermal-isobaric partition function:

QNpT =
1

N !h3N

1

V0

∫
dV
∫

N∏
i=1

d3qi d3pi exp
[
−H ({qi}, {pi}) + pV

kBT

]
(2.19)

where V0 denotes some basic unit of volume introduced to make the partition function dimen-
sionless (the exact magnitude of V0 is immaterial).
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2.1. Concepts of Classical Statistical Mechanics

The connection between the formalism of the isothermal - isobaric ensemble and macro-
scopic thermodynamic properties is established via the Gibbs energy:

G (N, p, T ) = −kBT ln (QNpT (N, p, T )) (2.20)

2.1.2/iv Configurational integral

As long as the Born-Oppenheimer approximation70 is valid (as it practically always is in equi-
librium thermodynamics) the potential energy of the system, V (Γ), depends only on the gen-
eralized coordinates, {qi}. Similarly, the kinetic energy, K (Γ) depends only on the momenta,
i.e. momenta {pi}. Hence we can rewrite the expression for the system Hamiltonian as:

H (Γ) = K ({pi}) + V ({qi}) (2.21)

It can be now seen that, in a classical (as opposed to quantum mechanical) treatment, the par-
tition function, e.g. of the NV T ensemble, factorizes into a product of kinetic (ideal gas) and
potential (excess) parts:

QNV T =
1

N !

1

h3N

∫
N∏
i=1

d3pi exp
[
−K ({pi})

kBT

]∫ N∏
i=1

d3qi exp
[
−V ({qi})

kBT

]
(2.22)

This can be written as a product of the ideal gas contribution, and the excess contribution as:

QNV T = Qid
NV TV

−NZNV T (2.23)

where:

ZNV T =

∫
N∏
i=1

d3qi exp
[
−V ({qi})

kBT

]
(2.24)

is the so called configurational integral. The partition function of the ideal gas is:

QNV T =
V N

N !Λ3N
(2.25)

with Λ being the de Broglie or thermal wavelength:

Λ =

(
h2

2πmkBT

)1/2

(2.26)
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Chapter 2. Theoretical Background

From the perspective of a particle-based model, the fundamental problem of equilibrium sta-
tistical mechanics, according to Chandler,71 is to evaluate a configurational partition function
of the form of eq 2.24.

Two important consequences arise from eq 2.23. First, all the thermodynamic properties
can be expressed as a sum of an ideal gas part and an excess part. The chemical details which
govern the interactions between the atoms of the system are included in the latter. In fact, in
MC simulations the momentum part of the phase space is usually omitted, and all calculations
are performed in configuration space. The second important consequence of eq 2.23 is that
the total average kinetic energy is a universal quantity, independent of the interactions in the
system. Indeed, computing the average of

K =
N∑
i=1

p2i
2m

(2.27)

with respect to the probability distribution of eq 2.15 and using the factorization of eq 2.23 we
obtain that:67

⟨K⟩ = 3

2
NkBT (2.28)

or, more generally ⟨K⟩ = 1/2NdofkBT for a system of Ndof degrees of freedom.a

2.2 Elements of Continuum Mechanics

2.2.1 Deformation and its Description
The result of action of external forces can either be moving a body in space or changing its
shape. Continuum mechanics is interested in changes occurring inside a body. The change of
the body shape is essentially the change of distances between different sites inside material,
and this phenomenon is called deformation. Deformation is just a geometrical concept and all
interpretations of this concept have clear geometrical images.

From the continuum viewpoint, a given portion of matter is treated as a collection of el-
ements, called material particles, which at any given instant can be placed in a one-to-one
correspondence with the points of a closed region of three-dimensional Euclidean space.73

The configuration of a solid is the region of space occupied by the solid. When we describe
motion, we normally choose some convenient configuration of the solid to use as reference.

aIf the kinetic energy can be separated into a sum of terms, each of them being quadratic in only one mo-
mentum component, the average kinetic energy per degree of freedom is 1/2kBT , which is a special case of the
equipartition theorem.72
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2.2. Elements of Continuum Mechanics

We denote the reference configuration by R; this is often the initial, undeformed solid, but it
can be any convenient region of space.74 The material changes its shape under the action of
external loads, and after some time t occupies a new region which is called the deformed or
current configuration of the solid.

2.2.1/i Deformation gradient tensor

The concept of deformation gradient is introduced in order to quantify the change in shape
of infinitesimal line elements in a solid body. Let imagine drawing a straight line, dx on the
initial configuration of a solid, as shown in Figure 2.1. The line would be mapped to a smooth
curve on the deformed configuration. However, we focus our attention on a line segment dx′,
much shorter than the radius of curvature of this curve, as shown. The segment is straight in the
initial (undeformed) configuration, and would also be (almost) straight in the deformed config-
uration. Thus, no matter how complex the deformation we impose on a solid is, infinitesimal
line segments are merely stretched and rotated by a deformation. We will use F to denote the
deformation gradient tensor, defined through a mapping of the infinitesimal vector dx of the
initial configuration onto the infinitesimal vector dx′ after the deformation:

dx′ = Fdx (2.29)

A slightly altered calculation is possible by noting that the displacement u of any point can be
defined as

u = x′ − x (2.30)

and this leads to x′ = x+ u (x), and

F =
∂

∂x
(x+ u (x)) =

∂x
∂x

+
∂u (x)
∂x

= I+
∂u
∂x

(2.31)

where I is the unit tensor. The inverse of the deformation gradient, F−1, arises also in many
calculations.

2.2.1/ii Stretch ratio, λ

If we think of the vector dx connecting two material points in the reference (undeformed)
configuration, the stretch ratio is the ratio of the current separation of these two particles to
their separation in the reference configuration. The stretch ratio for the differential element
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Figure 2.1: Deformation of a continuum body

dx = n̂dx in the direction of the unit vector n̂, in the undeformed configuration, is defined as:

λ(n̂) = lim
dx→0

dx′

dx
(2.32)

where dx′ is the magnitude of the deformed line element dx′. In the case of a material line, the
stretch ratio is defined as λ = L′/L where L is the length of the line before in the undeformed
state and L′ the length of the same line in the deformed state. The stretch ratio is used in the
analysis of materials that exhibit large deformations, such as elastomers, which can sustain
stretch ratios of 3 or 4 before failing.

In the principal axis system of the deformed body, the deformation gradient tensor becomes:

F =


λ1 0 0

0 λ2 0

0 0 λ3

 (2.33)

with λi, i = 1, 2, 3 being the principal stretch ratios. The volume of the deformed body is
connected to λi by:

V = VRdet (F) = VRλ1λ2λ3 (2.34)

where we use R for defining the undeformed configuration.

2.2.1/iii Engineering strain, ϵ

The Cauchy strain or engineering strain is defined as the ratio of the total deformation to the
initial dimension of the material body in which the forces have been applied. The engineering
normal strain, or engineering extensional strain, or nominal strain, ϵ, of a material line element
or fiber axially loaded is expressed as the change in length ∆L per unit of the original length L
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2.2. Elements of Continuum Mechanics

of the line element or fiber. The normal strain is positive if the material fiber is stretched and
negative if it is compressed. Thus, we have

ϵ =
∆L

L
=

L′ − L

L
(2.35)

where L is the original length of the fiber and L′ the length of the fiber after deformation. The
normal engineering strain, ϵ(n̂) in any direction n̂ can be expressed as a function of the stretch
ratio (eq 2.32):

ϵ(n̂) =
dx′ − dx

dx
= λ(n̂) − 1 (2.36)

This equation implies that the engineering strain is zero, i.e. no deformation, when the stretch
ratio is equal to unity. For infinitesimal motions the relation between strain and displacement,
u (eq 2.30), is: b

ϵαβ =
1

2

(
∂uα

∂xβ

+
∂uβ

∂xα

)
(2.37)

2.2.1/iv Logarithmic strain, ϵL

The logarithmic strain ϵL, also called true strain or Hencky strain, is defined as:75

ϵL = ln
(
L′

L

)
= ln (λ) = ln (1 + ϵ) (2.38)

where λ and ϵ are the stretch ratio (eq 2.32) and the engineering strain (eq 2.161), respectively.
The logarithmic strain is very useful because it provides the correct measure of the final strain
when deformation takes place in a series of increments, taking into account the influence of
the strain path.76

2.2.1/v Green-Lagrange strain, ϵG

The Green-Lagrange strain is defined as:

ϵG =
1

2

(
λ2 − 1

)
(2.39)

bThe displacement field giving rise to a particular strain field, cannot be recovered if only the strains are
known. The integration of the strain field produces the displacement field to within an arbitrary rigid motion.
Any rigid motion produces no strain, so the displacements can only be completely determined if there is some
additional information (besides the strain) that will reveal how much the solid has rotated and translated.
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2.2.2 Rheology
In this section we will describe the basic features of rheology, which can be defined as the
science of deformation and flow of matter.77 c As with most experimental techniques, rheology
can be subdi vided into linear and nonlinear rheology. In the following, we will limit ourselves
only to the linear regime. Linear rheology considers small deformations, which do not perturb
the internal structure of the system and thus probe “equilibrium dynamics”. According to
the fluctua tion–dissipation theorem (please see discussion in Section 2.4.3 on page 52), the
relaxation of the system after an infinitesimal perturbation by an external field is equivalent
to the relaxation of spontaneous thermal fluctuations. This fact allows simple and effective
characterization of equilibrium dynamics by calculating correlation functions at equilibrium.

2.2.2/i Shear relaxation modulus

The response to a small shear deformation γ is given by

τxy (t) = γG (t) (2.40)

where G(t) is the shear relaxation modulus, the key function of linear rheology. One can show
that the relaxation after any small deformation will be proportional to G(t), and thus G(t) fully
characterizes linear rheology of a fluid system with given external parameters. We can also
consider a homogeneous shear flow with a time-dependent shear rate, γ̇(t). For a Newtonian
fluid, the shear stress τxy(t) at any time would be proportional to the instantaneous shear rate
γ̇(t). For a complex fluid, the measured shear stress will not jump immediately to its steady-
state value at the start-up of a steady shear flow. If we assume that the shear rate is infinitely
small, then a linear expression of the form:

τxy = −
∫ t

−∞
G (t− t′) γ̇ (t′) dt′ (2.41)

is expected. Eq 2.41 is the fundamental equation of linear viscoelasticity. When, for large
times, t, a steady state is reached, we can identify the steady-state viscosity, as:

η =

∫ ∞

0

G (t′) dt′ (2.42)

cThis definition was invented by Professor Bingham of Lafayette College of Indiana and was accepted when
the American Society of Rheology was founded in 1929.
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2.2.2/ii Loss and storage moduli

If we were supposed to measure the shear relaxation modulus G(t) directly, we would need to
perform a small instantaneous shear step of size γ. In practice, it is quite difficult to produce
steps in shear strain or strain rate. It is often advantageous to perform oscillatory experiments,
γ̇ (t) = γ̇0 cos (ωt), where γ̇0 is a small amplitude and ω is the angular frequency. In oscillatory
flow, one can measure the storage modulus:

G ′ (ω) = ω

∫ ∞

0

G (t) sin (ωt)dt (2.43)

and the loss modulus
G ′′ (ω) = ω

∫ ∞

0

G (t) cos (ωt)dt (2.44)

by recording the in-phase and out-of-phase responses, respectively. A complex modulus can
be defined as

G ∗ (ω) = G ′ (ω) + iG ′′ (ω) = iω

∫ ∞

0

G (t) e−iωtdt (2.45)

2.3 Polymer Physics

2.3.1 General Remarks

2.3.1/i Fundamental definitions

A macromolecule (or polymer) is a large molecule composed of many small simple chemical
units called structural units.78,79 In some polymers each structural unit is connected to precisely
two other structural units, and the resulting chain structure is called a linear macromolecule. In
other polymers, most structural units are connected to two other units, although some structural
units connect three or more units, and therefore we talk of branched molecules. Where the
polymeric chains terminate, special units called end groups are found. A monomer is the
substance that the polymer is made of (mostly coinciding with the structural unit). We will use
the terms segment or strand in order to denote an entity consisting of several structural units.
The process that converts a monomer to a polymer is called polymerization. We should also
mention that in some macromolecular materials all structural units are interconnected, resulting
in a three-dimensional cross-linked or network structure rather than in separate molecules.

The term configuration refers to the “permanent” stereo-structure of a polymer. The con-
figuration is defined by the polymerization method, and a polymeric chain preserves its config-
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uration until it reacts chemically. A change in configuration requires the rupture of chemical
bonds. Different configurations exist in polymers with stereo centers (tacticity) and double
bonds (cis and trans forms). Tacticity is the orderliness of the succession of configurational
structural units in the main chain of a polymer molecule. An isotactic polymer is a regular poly-
mer consisting only of one species of configurational structural units. A syndiotactic polymer
consists of an alternating sequence of the different configurational structural units. An atactic
polymer has equal numbers of randomly distributed configurational structural units. Adjacent
configurational units that are called dyads, triads, tetrads, etc. A chain with 100% meso dyads
is perfectly isotactic whereas a chain with 100% racemic dyads is perfectly syndiotactic.

2.3.1/ii Polymer configurations

For a general polymer model with N + 1 particles per chain, the configurational partition
function of a single chain can be expressed by a formula similar to eq 2.24:34

Z0 =

∫
drN+1 exp

[
−V0 ({ri})

kBT

]
(2.46)

where {ri} = {r0, . . . , rN} denotes the set of N + 1 particle positions and V0 ({ri}) is the
potential energy associated with a particular configuration of the polymer. The notation drN+1

is a shorthand for the 3(N +1)-dimensional integral over the N +1 particle positions within a
three-dimensional domain of volume V . For an ideal chain model, V0 contains only interaction
potential terms reflecting short-ranged interferences. Based on eq 2.46 the probability density
can also been defined.

An alternative representation of the configurational degrees of freedom of the (N + 1)-
mer chain is to retain only one position vector as “external” coordinate describing the overall
location of the chain and N “internal” coordinates. A particularly convenient choice is the
position of a chain end, e.g. r0 and the set of N bond vectors, {bi} = {b1, b2, . . . , bN}, where
bi ≡ ri − ri−1, as shown in Figure 2.2. In the absence of an external potential acting on the
polymer, V0 depends only on the internal coordinates bN . The Jacobian of the transformation
from coordinates rN+1 to

(
r0, bN

)
is unity, allowing eq 2.46 to be reexpressed as:

Z0 = V

∫
dbN exp

[
−V0 ({bi})

kBT

]
(2.47)
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Figure 2.2: A coarse-grained chain withN+1 particles andN connecting springs (indicated by
bold connecting arrows). The particle positions, with respect to an external coordinate system,
are denoted by r0, r1, ..., rN , bond vectors by b1, b2, ..., bN and the chain end-to-end vector by
Re.

2.3.1/iii Measures of shape

The simplest measure of the spatial extent of a chain is its end-to-end vector:

Re = rN − r0 (2.48)

defined as the vector connecting the first with the last structural unit of the chain. Moreover,
of ultimate importance is the mean-square end-to-end distance, defined as either an ensemble
or a time average of the squared norm of the end-to-end vector,

⟨
R2

e
⟩
=
⟨
∥Re∥2

⟩
(2.49)

The mean-square end-to-end distance of a linear polymer is not an experimentally observ-
able quantity. Of more experimental relevance is the so-called radius of gyration about the
center of mass. We define the center of mass by:

rcm =

∑N
j=0mjrj∑N
j=0mj

(2.50)

where mj is the mass of particle j. The position vector of the j-th atom in a frame of reference

27



Chapter 2. Theoretical Background

with origin at the center of mass of the chain is then:

sj = rj − rcm (2.51)

Now, we can form the radius of gyration tensor of the chain as:80

S =
1

N + 1

N∑
j=0

sj ⊗ sT
j (2.52)

We can diagonalize S by transforming to a principal axis system, where:

S = diag
(
S2
x, S

2
y , S

2
3

)
(2.53)

so that the eigenvalues of S, S2
x, S2

y and S2
z are in descending order, i.e. S2

x ≥ S2
y ≥ S2

z . The
first invariant of S is the squared radius of gyration:

R2
g = S2

x + S2
y + S2

z (2.54)

If we assign equal masses to all particles, we can deduce the squared radius of gyration in an
alternative way, as:78

R2
g =

1

(N + 1)2

N∑
i=0

i−1∑
j=0

∥ri − rj∥2 (2.55)

which is a purely geometrical equation, well-known in the polymer literature.

2.3.2 Simplified Polymer Chain Models

2.3.2/i Theoretical treatment of polymer configurations

The first ingredient in a theoretical description of a polymer is a mesoscopic model describing
the statistical mechanics associated with the conformational states of a single chain. The key
issue is to extract the probability of finding one end of chain at a specific position, relative to the
other, or estimate the average size of the chain. In the following we will deal with the so-called
ideal chain models, which take into account only local interferences in the statistical mechanics
of a polymer chain. An important observation is that, regardless of the particular form of
the short-ranged interferences, all ideal chain models exhibit universal scaling properties at
sufficiently large length scales. We will use the term unperturbed to denote polymer chain
configurations which are not affected by nonlocal interactions.

In order to proceed, we assume that the structural units of the polymer, at our level of de-
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scription, form a sequence of displacements, b1, b2, ..., bN starting from one end of the chain
and advancing towards the other. The magnitude and direction of each displacement is in-
dependent of all the preceding ones. However, the probability that the i-th displacement lies
between bi and bi+dbi is governed by a distribution function wi (bi), which has been a priori
assigned. Under the above assumptions, the polymer chains can be described as random flights
in space. We will follow the method developed by Markoff and elegantly described by Chan-
drashekar81 in order to answer the fundamental question: What is the probabilityWN (Re) dRe

that after N displacements the coordinates of the particle (or the chain segment) lie in the in-
terval Re and Re + dRe?

The position Re of the particle (or the chain segment), after N displacements (or preceding
segments) is given by:

Re =
N∑
i=1

bi (2.56)

where bi’s (i = 1, . . . , N ) denote the different displacements and assuming the origin of the
random flight to coincide with the origin of our coordinate system. According to our discussion
above, the probability that the i-th displacement lies between bi and bi + dbi is given by

wi (bx,i, by,i, bz,i) dbx,idby,idbz,i = widbi, (i = 1, . . . , N) (2.57)

The probability WN (Re) dRe that the position Re of the particle will be found in the interval
(Re,Re + dRe) is given by:81

WN (Re) =
1

8π3

∫ ∞

−∞
exp (−i k · Re)SN (k) dk (2.58)

where

SN (k) =
N∏
j=1

∫ +∞

−∞
wj (bj) exp (i k · bj)dbj (2.59)

with k being a vector in the inverse space. In eq 2.59, wj (bj) governs the probability of
occurrence of a displacement bj on the j-th move. The explicit form which WN (Re) takes will
depend on the assumptions made concerning the probabilities of the individual steps, wj (bj).
We shall now consider specific cases of interest.

2.3.2/ii Freely jointed chain model

The freely jointed chain model is the simplest ideal chain model in which all interactions,
except the connectivity, between structural units, are neglected. The bond vectors connecting
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successive particles are constrained to have a fixed length, ∥bi∥ = bK, but the orientations of the
N bond vectors are distributed isotropically and independently. Under these circumstances,
we can define the distribution functions wj by:

wj (bj) =
1

4πb3K
δ
(
∥bj∥2 − b2K

)
, (j = 1, . . . , N) (2.60)

with δ being the Dirac’s δ function. Accordingly, our expression for SN (k), eq 2.59, becomes:

SN (k) =
N∏
j=1

1

4πb3K

∫ ∞

−∞
exp (i k · bj)δ

(
b2j − b2K

)
dbj (2.61)

or, using polar coordinates with the z-axis in the direction of k:

SN (k) =
N∏
j=1

1

4πb3K∫ ∞

0

∫ π

0

∫ 2π

0

exp (i kbj cos θ)δ
(
b2j − b2K

)
b2j sin θ dbjdθdϕ (2.62)

which, after the integration over the polar and azimuthal angles, θ and ϕ, respectively, yields:

SN (k) =
N∏
j=1

sin (kbK)

kbK
(2.63)

Thus, the end-to-end distribution, according to eq 2.58 becomes:

WN (Re) =
1

8π3

∫ +∞

−∞
exp (−i k · Re)

N∏
j=1

sin (kbK)

kbK
dk (2.64)

Finally, if we choose the polar coordinates, but with the z axis pointing this time in the direction
of Re, and after performing the integrations over the polar and azimuthal angles, we obtain:

WN (Re) =
1

2π2Re

∫ ∞

0

sin (kRe)

{
N∏
j=1

sin (kbK)

kbK

}
k dk

=
1

2π2Re

∫ ∞

0

sin (kRe)

[
sin (kbK)

kbK

]N
k dk (2.65)

which is the solution to the problem, as obtained by Rayleigh.82,83 Rayleigh has also evaluated
analytically the integral for selected cases of N , up to N = 6.
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Treloar84 and later authors85 have used more powerful techniques than Rayleigh’s to derive
a closed-form expression forWN (Re) for arbitraryN . The general solution, assuming constant
step size of bK is:

WN (Re) =
1

πb2KRe

1

2N+1 (N − 2)!

×
N∑
j=0

(−1)j
(
N

j

)[
Re

bK
+N − 2j

]N−2

H

(
2j −N − Re

bK

)
(2.66)

where H denotes Heaviside’s unit step function (please see page xxxvii), and
(
N
j

)
is the bino-

mial coefficient of N, j (please see page xxxvi).

By far the most interesting case is for N >> 1. Under these circumstances,

W(N>>1) (Re) =
1

2πRe

∫ ∞

0

exp
(
−NbKk

2

6

)
k sin (Rek) dk (2.67)

and after evaluating the integral on the right-hand side:

W(N>>1) (Re) =
1(

2πNb2K
3

)3/2 exp
(
− 3R2

e

2Nb2K

)
(2.68)

By applying eq 2.68 we can examine a variety of statistical properties of the freely jointed
chain. The isotropic distribution of the bi on the surface of a sphere of radius bK implies that
⟨bi⟩ = 0, and, hence, a vanishing first moment for Re:

⟨Re⟩ = 0 (2.69)

Moreover, we can extract, in an analytical way an expression for the average norm of Re:

⟨Re⟩ =
∫∞
0

ReW(N>>1) (Re) dRe∫∞
0

W(N>>1) (Re) dRe
(2.70)

The integral in the denominator is equal to unity, since the W(N>>1) (Re) function is a normal-
ized probability density for a chain that has started at the origin to find its end at distance Re,
irrespectively of orientation. In order to calculate W(N>>1) (Re) dRe from W(N>>1) (Re) we
need to multiply by the volume of a spherical shell extending from Re to Re + dRe:

W(N>>1) (Re) dRe =
1(

2πNb2K
3

)3/2 exp
(
− 3R2

e

2Nb2K

)
4πR2

e dRe (2.71)
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Now, the integral in the nominator of eq 2.70 can be calculated as:

⟨Re⟩ =
∫ ∞

0

ReW(N>>1) (Re) dRe =

(
8

3π

)1/2

N1/2bK (2.72)

and the mean-square end-to-end distance:

⟨
R2

e
⟩
=

∫ ∞

0

R2
eW(N>>1) (Re) dRe = Nb2K (2.73)

Finally, the mean-square radius of gyration of a freely jointed chain can be calculated by
using its geometrical definition, eq 2.55, and the fact that in a random walk of step length bK

the following equation holds:

⟨
∥ri − rj∥2

⟩
= (i− j) b2K (2.74)

which reduces eq 2.55 to:

⟨
R2

g
⟩
=

b2K
(N + 1)2

N∑
i=0

N−1∑
j=0

(i− j) =
b2K

2 (N + 1)2

N∑
j=1

j (j − 1) (2.75)

Since
∑N

j=1 j
2 = 1

6
N (N + 1) (2N + 1), we finally deduce that:

⟨
R2

g
⟩
=

1

6
Nb2K

(
1− 1

N2

)
≃ 1

6

⟨
R2

e
⟩

as N → ∞ (2.76)

Now, we have for the specific case of the random flight model, a relation between the mean-
square radius of gyration

⟨
R2

g
⟩

and the mean-square end-to-end distance, ⟨R2
e⟩.

2.3.2/iii Gaussian chain (bead-spring model)

A case of special interest arises when the distribution of the individual displacements can be
described by a Gaussian:

wj (bj) =
1(

2πb2K
3

)3/2 exp
(
−
3b2j
2b2K

)
(2.77)

where b2K denotes the mean-square displacement to be expected on the j-th occasion. We
assume that all the displacements occur in random directions. The probability of an end-to-
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end vector Re can be obtained:

WN (Re) =
1(

2πN⟨b2K⟩
3

)3/2
exp

(
− 3R2

e

2N ⟨b2K⟩

)
(2.78)

which is an exact solution for any value of N . Eq 2.78 coincides with eq 2.68 obtained by
treating the chain as a random walk of step bK. The statistical properties discussed in the
framework of the freely jointed chain hold for the Gaussian chain, too.

The bead-spring model represents a polymer chain as a collection of beads connected by
elastic springs. The coarse-graining is based on the polymer chain self-similarity, with a sin-
gle bead corresponding to a chain fragment containing many structural units or monomers.
Springs reproduce the Gaussian distribution of separations (eq 2.77) between monomers con-
nected through a large number of chemical bonds. The spring constant is given by 3kBT/ ⟨R2

e⟩,
where ⟨R2

e⟩ is the mean square end-to-end distance of the actual chain strand represented by
the spring. The spring reproduces the entropic free energy rise associated with the reduction
of conformations of a strand as its two ends are pulled apart (please refer to Section 2.3.3 on
page 35 for more details).

2.3.2/iv Freely rotating chain model

This model ignores differences between the probabilities of different torsion angles and as-
sumes all torsion angles −π ≤ ϕi ≤ +π to be equally probable. Thus, the freely rotating
chain model assumes all bond lengths and bond angles are fixed(constant) and all torsion an-
gles equally likely and independent of each other. The mean-square end-to-end distance of the
freely rotating chain can be cast in terms of the number of bonds in the chain Nb, the length of
each bond, l, and the acute angle between consecutive bond vectors, θ:86

⟨
R2
⟩
= Nbl

2 + 2Nbl
2 cos θ
1− cos θ

= Nbl
2 1 + cos θ
1− cos θ

(2.79)

2.3.2/v Real polymer chain configuration

In a typical polymer chain, there are correlations between bond vectors (especially between
neighboring ones). The physical origins of these local correlations between bond vectors are
restricted bond angles and steric hindrance. If we assume that the length of every skeletal
bond of the real chain is l we can ask this chain to follow the scaling law of a freely jointed
chain, Nbl

2, with Nb being the count of skeletal bonds along the chain. In order to achieve
a quantitative agreement, we should introduce a coefficient, CN in order to account for the
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stiffness of the chain: ⟨
R2

e
⟩
= NbCN l

2 (2.80)

with CN being the Flory’s characteristic ratio. The characteristic ratio is larger than unity
(CN > 1) for all polymers.86 All models of ideal polymers ignore steric hindrance between
monomers separated by many bonds and result in characteristic ratios saturating at a finite
value C∞ for large number of backbone bonds (Nb → ∞). Thus, the mean-square end-to-end
distance can be approximated for long chains as:

⟨
R2

e
⟩
= NbC∞l2 (2.81)

The numerical value of Flory’s characteristic ratio depends on the local stiffness of the polymer
chain with typical values of 7 to 9 for many flexible polymers. There is a tendency of polymers
with bulkier side groups to have higher C∞, owing to the side groups sterically hindering bond
rotation (as in polystyrene), but there are many exceptions to this general tendency (such as
polyethylene).

Flexible polymers exhibit universal properties that are independent of the local chemical
structure. A simple unified description of all ideal polymers was needed. The first attempts to
use random flight concepts to describe the linear polymers in solution are usually attributed to
Kuhn,87 who argued that the Rayleigh random flight model might be used. It soon became evi-
dent that such a model was not appropriate to very short chains (less than a few hundred chem-
ical bonds), or to relatively stiff chains which cannot adopt tortuous configurations. Moreover,
it is not appropriate to use as “steps” in the random flight the individual bond lengths, or even
the monomeric units the chain consists of. Thus, the length of an individual step, bK, became
an adjustable parameter of the model, namely the Kuhn length. The equivalent freely jointed
chain should have the same mean-square end-to-end distance ⟨R2

e⟩ and the same end-to-end
distance at full extension, Rfull, as the actual polymer but have N freely-jointed effective bonds
of length bK. The contour length of this equivalent freely jointed chain is:

Rfull = NbK (2.82)

and its mean-square end-to-end distance is:

⟨
R2
⟩
= Nb2K = C∞Nbl

2 (2.83)

where Nb and l are the number of backbone bonds and their length, respectively.

34



2.3. Polymer Physics

2.3.3 Free Energy of an Ideal Chain
The entropy, S, can be defined as the product of the Boltzmann constant kB and the logarithm
of number of states, Ω, a system can assume (eq 2.14):

S = kB lnΩ (2.84)

Now, we can denote as Ω (N,Re) the number of conformations of a freely jointed chain of N
segments with end-to-end vector Re. Thus, the entropy can be written as a function of N and
Re:

S (N,Re) = kB lnΩ(N,Re) (2.85)

The probability distribution, function, WN (Re), eq 2.58, is defined such that WN (Re) dRe is
the fraction of all conformations that have an end-to-end vector between Re and Re + dRe:

WN (Re) =
Ω (N,Re)∫
Ω (N,Re) dRe

(2.86)

The entropy of an ideal chain with N segments and an end-to-end vector Re is thus related to
the probability distribution function:

S (N,Re) = kB lnWN (Re) + kB ln
[∫

Ω (N,Re) dRe

]
(2.87)

If we assume that the chain can be described as either a Gaussian or a freely jointed one in
the limit of inifinite N , eq 2.78 holds and its entropy can be obtained as:

S (N,Re) = −3

2
kB

R2
e

Nb2K
+

3

2
kB ln

(
3

2πNb2K

)
+ kB ln

[∫
Ω (N,Re) dRe

]
(2.88)

with the last two terms depending only on the number of segments, N , but not on the end-to-end
vector, and denoted by S (N, 0):

S (N,Re) = −3

2
kB

R2
e

Nb2K
+ S (N, 0) (2.89)
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Finally, we can extract the Hemlmholtz energy of the chain, A (N,Re):

A (N,Re) = U (N,Re)− TS (N,Re)

=
3

2
kBT

R2
e

Nb2K
+ A (N, 0) (2.90)

where A (N, 0) = U (N, 0) − TS (N, 0) is the free energy of the chain with both ends at
the same point. We have assumed that the potential energy of an ideal chain, U (N,Re) is
independent of the end-to-end vector, Re, since the structural units of an ideal chain have no
interaction energy.

The free energy of an ideal chain increases quadratically with the magnitude of the end-to-
end vector, implying that the entropic elasticity of an ideal chain satisfies Hooke’s law. The
coefficient of proportionality 3kBT/ (Nb2K) is the entropic spring constant of an ideal chain.
The fact that the spring constant is proportional to the temperature is a signature of entropic
elasticity. The linear entropic spring result for the stretching of an ideal chain is extremely
important for our subsequent discussion of polymer dynamics. The linear dependence is due
to the Gaussian approximation.

2.3.4 Simplified Polymer Dynamics Models

2.3.4/i Rouse model

As we have seen earlier, the static properties of a polymer can be represented by a set of
beads connected along a chain. Even though the individual atoms move about with the same
equilibrium distribution of speeds, as if they were disconnected, their motion is constrained
by the chemical bonds keeping the chain together. Thus, it would be natural to model the
dynamics of the polymer by the Brownian motion of such beads, connected by entropic springs.
The beads move as (tethered) Brownian particles subject to random forces and to frictional
forces proportional to their velocity exerted from their environment. This is the basis of the
model proposed by Rouse.88 It should be emphasized that the essence of the Rouse model
is the universal nature of modeling the dynamics of a linearly-connected object. The central
assumption in the Rouse model is that the dynamics is governed by the localized interactions
along the chain.

The equation of motion of the beads in the Rouse model can be described by the Langevin
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equation:89

∂

∂t
ri (t) =

N∑
j=0

Hij ·
(
−∂VRouse

∂rj
+F j (t)

)
+

1

2
kBT

N∑
j=0

∂

∂rj
Hij (2.91)

where {ri} = (r0, r1, . . . , rN) are the positions of the beads, H is the mobility tensor and F j

the random force acting on bead j. The mobility tensor takes the form:

Hij =
1

ζ
δijI (2.92)

with I being the unit tensor and ζ the friction coefficient of the bead. The interaction potential:

VRouse =
3kBT

2b2

N∑
i=1

(ri − ri−1)
2 (2.93)

In the Rouse model, excluded volume and hydrodynamic interactions are disregarded (diago-
nality of H), leading to a Langevin equation linear for ri. This takes the forms:

ζ
dr0
dt

=
3kBT

b2
(r1 − r0) +F0

ζ
dri
dt

=
3kBT

b2
(ri+1 − 2ri + ri−1) +F i

ζ
drN
dt

= −3kBT

b2
(rN − rN−1) +FN (2.94)

for internal (i = 1, 2, . . . , N − 1) and end beads (i = 0 and i = N ), respectively. The
distributions of random forces F i is Gaussian, characterized by the moments:

⟨Fiα⟩ = 0

⟨Fiα (t)Fjβ (t
′)⟩ = 2ζkBTδijδαβδ (t− t′) (2.95)

implying that there are no correlations of the random forces, neither across different beads nor
across different times. Moreover, different Cartesian components (α, β) of the same random
force are not correlated. As in the case of the Gaussian chain, the index i running along the
beads in the Rouse model, can be regarded as a continuous variable s ∈ [0, 1], running along
the contour of the chain. In the continuous limit, eq 2.94 can be written as:

ζ
∂r(s)
∂t

=
3kBT

2

∂2r(s)
∂s2

+F (s, t) (2.96)

In order to rewrite eq 2.94 in the continuous limit, we assume that the two end beads can be
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defined in the continuous limit,

dr(s)
ds

∣∣∣∣
s=0

= 0,
dr(s)

ds

∣∣∣∣
s=1

= 0 (2.97)

Also, the moments of the random forces, F (s, t) are now given as:

⟨Fα (s, t)⟩ = 0

⟨Fα (s, t)Fβ (s
′, t′)⟩ = 2ζkBTδ(s− s′)δαβδ(t− t′) (2.98)

The continuous Rouse model is fully defined by eqs 2.96, 2.97 and 2.98.

2.3.4/ii Stress relaxation in the Rouse model

The linear viscoelastic response of polymeric liquids measures the full spectrum of relaxation
times. Since polymer chains are self-similar objects, they also exhibit dynamic self-similarity.
This means that smaller sections of a polymer chain, containing Nsub < N segments, relax like
a whole polymer chain that hasNsub segments. In all unentangled models for polymer dynamics
(both Rouse and Zimm90) the relaxation is described by N different relaxation modes. The
modes are numbered by mode index υ = 1, 2, . . . , N . These modes are analogous to the
modes of a vibrating string. Mode υ involves coherent motion of sections of the whole chain
with N/υ segments, and the corresponding relaxation time of this node τυ is similar to the
longest relaxation time of a chain with N/υ segments.

The spectrum of relaxation times of the Rouse model is given as:91

τυ =
ζb2K

12kBT
sin−2

(
πυ

2 (N + 1)

)
υ = 1, 2, . . . N (2.99)

The longest relaxation time, τ1 (also called Rouse relaxation time τR = τ1), is:

τR ≡ τ1 =
ζb2K

12kBT
sin−2

(
π

2 (N + 1)

)
≈ ζb2K (N + 1)2

3π2kBT
(2.100)

For all unentangled flexible polymer dynamics, the shortest mode has mode index υ = N , with
the corresponding time being τN ≈ ζb2K/12kBT which is half the relaxation time of a single
segment (N = 1). However, in the literature,86 one often finds the definition of the fastest
relaxation time as

τ0 =
τR

(N + 1)2
≈ ζb2K

3π2kBT
(2.101)

which is called the Kuhn segment relaxation time, τ0, and is 2.5 times smaller than τN .
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Rouse also derived an exact relation for the shear relaxation modulus,

G (t) = ρmolkBT
N∑

υ=1

exp
(
−2t

τυ

)
= ρmolkBT

N∑
υ=1

exp
(
−2υ2t

τR

)
(2.102)

where ρmol is the density of polymer chains. Equation 2.102 has a simple interpretation: ac-
cording to the equi partition theorem in a system of linear oscillators, each mode carries equal
elastic energy, kBT . In particular, we see that the Rouse model predicts that G (t) starts from
a value ρmol (N + 1) kBT . For t << τR, the sum over υ in eq 2.102 can be approximated by
an integral over υ:92

G (t) = ρmolkBT

∫ ∞

0

dυ exp
(
−2υ2t

τR

)
=

√
π

2
√
2
ρmolkBT

(τR

t

)1/2
(2.103)

Therefore G (t) decays as a power law t−1/2 on short time scales. This characteristic behavior
is also seen in the frequency domain. If we use eq 2.102 in eqs 2.43 and 2.44, we find that
G ′ (ω) and G ′′ (ω) increase in proportion to ω1/2 in the high-frequency regime ωτR >> 1.
Such behavior is indeed observed in polymeric fluids at high frequency. Summarizing, the
following regimes can be observed for G (t):91

G (t)

ρmol (N + 1) kBT
=


1− 12kBT

ζb2K
t, t < τN√

π
8(N+1)2

τR
t
=
√

ζb2K
24πkBT

t−1/2, τN < t < tR

1
N

exp
(
− 2t

τR

)
, t > τR

(2.104)

2.3.4/iii Chain diffusion in the Rouse model

Let us now study the consequences of the Rouse model concerning the motion at microscopic
level. The motion of the chains can be described in terms of the mean-square displacement of
their centers of mass, gcm (t):

gcm (t) =
⟨
(rcm (t0 + t)− rcm (t0))

2⟩ (2.105)

which can be obtained from the solution of the Rouse model, as:

gRouse
cm (t) =

6kBT

(N + 1) ζ
t (2.106)
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withN+1 being the number of beads, ζ the friction coefficient of a bead and T the temperature.
The self diffusion constant of the center of mass of the chain can be obtained as:

DRouse
cm = lim

t→∞

1

6t
gRouse

cm (t) =
kBT

(N + 1) ζ
(2.107)

Moreover, the rotational relaxation time, τR, of the system (which is also the longest relaxation
time), given by eq 2.100, can be thought as the time needed from the chain in order to diffuse
a distance equal to its size

√
⟨R2

e⟩. The longest relaxation time is significant because the
relaxation of internal stresses occurs on this time scale.

Since N is proportional to the molecular weight, M , the Rouse model predicts a scaling of
the self diffusion and the longest relaxation time:

DRouse
cm ∝ M−1

τR ∝ M2 (2.108)

which are not consistent with the experimental results from dilute solutions, which, under Θ
conditions, are:89

DRouse
cm ∝ M−1/2

τR ∝ M3/2 (2.109)

The deviation of Rouse model from the experimental results, comes from neglecting the hy-
drodynamic interactions. However, its simplicity makes it conceptually important and also it
has turned out to be a useful model for the dynamics of polymers in melts.

2.3.4/iv Bead motion in the Rouse model

We can then consider the mean-square displacement (MSD) of a Rouse segment, as a function
of time, gi (t):

gi (t) =
⟨
(ri (t0 + t)− ri (t))2

⟩
(2.110)

The shortest time scale in the Rouse model is set by the Kuhn segment relaxation time, τ0, as
was obtained in eq 2.101. The time scale for motion of individual segments, τ0, is the time scale
at which a segment would diffuse a distance of order of its size, bK, if it were not attached to
the chain. When probed on time scales smaller than τ0, the polymer essentially does not move
and exhibits elastic response. On time scales longer than τR, the polymer moves diffusively
and exhibits the response of a simple liquid.
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The mean-square displacement of a Rouse bead varies as ∼ t1/2 over time intervals (t)
less than the maximum relaxation time of the chain (τR), and only for times greater than the
maximum relaxation time (t > τR) does it become proportional to t as in the case of ordinary
diffusion of a Brownian particle:

gRouse
i (t) ∼ t1/2, τ0 < t < τR (2.111)

gRouse
i (t) ∼ t, t > τR (2.112)

2.3.4/v Tube model

Concentrated polymer solutions and polymer melts are extremely complex systems. For that
reason, it is unquestionably important to make judicious assumptions in describing the dynam-
ics of polymers in such systems. The concept of reptational motion93 is an assumption that has
led to a widely and successfully applied class of molecular models for the polymer dynamics in
concentrated solutions and melts. The first detailed reptation model for the rheology of undi-
luted polymers was developed in a series of papers by Doi and Edwards.94–97 The Doi-Edwards
model is based on the assumption that each polymer chain in an entangled system moves like
a snake (“reptates”) in a tube formed by other chains. In other words, fluctuations of chain
segments perpendicular to some tube contour will be restricted by other chains, whereas fluc-
tuations parallel to this contour will be unaffected. It was assumed that at times longer than
the equilibration time of the chain inside the tube one does not need to distinguish between
the chain and the tube, and the stress relaxation and other quantities can be computed from the
tube evolution equations. Several further assumptions need to be made, and several different
representations of the reptating polymer are used (e.g. the “slip-link” model in addition to the
“tube-model”) in order to derive the final diffusion equation describing the polymeric motion.
In order to derive the rheological properties of such systems, Doi and Edwards have employed
a formula for the stress tensor based on rubber elasticity.

The motion of the chain along the contour of the tube (the primitive path) is unhindered
by topological interactions. Displacement of segments in the direction perpendicular to the
primitive path is restricted by surrounding chains to an average distance, app, called the tube
diameter. The number of Kuhn segments in a strand of size equal to the tube diameter (the
amplitude of transverse fluctuations) is Ne, the number of structural units (or monomers) in an
entanglement strand. For melts, excluded volume interactions are thought to be screened, and
the tube diameter can be determined by ideal chain statistics

app ≈ bKN
1/2
e (2.113)
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The average contour length ⟨L⟩ of the primitive path (the center of the confining tube) is the
product of the entanglement strand length app and the average number of entanglement strands
per chain, (N + 1) /Ne,

⟨L⟩ ≈ app
(N + 1)

Ne
≈ b2K (N + 1)

app
≈ bK (N + 1)√

Ne
(2.114)

⟨L⟩ is shorter the the contour length of the chain bK (N + 1) by the factor app/bK ∼
√
Ne

because each entanglement strand in a melt is a random walk of Ne Kuhn segments.

2.3.4/vi Bead motion in the tube model

On times shorter than the relaxation time of an entanglement strand, τe, the sections of a linear
chain involved in motion are shorter than the entanglement strand and do not feel the topologi-
cal constraints generated by their environment. Since hydrodynamic interactions are screened
in polymer melts, the motion on very short time scales t < τe, is Rouse-like with mean-square
monomer displacement, gi (t) given by the subdiffusive motion of the Rouse model, eq 2.111:

gtube
i (t) ≈ b2K

(
t

τ0

)1/2

=

(
kBTb

2
K

ζ

)1/2

t1/2 ∼ t1/2, t < τe (2.115)

where the above formula is correct when the average displacement is much less than the tube
diameter. Let τe be the time at which the segmental displacement becomes comparable to the
tube diameter app:

τe ≃
a4ppζ

kBTb2K
(2.116)

On longer time scales, t > τe, topological constraints restrict polymer motion to the con-
fining tube. Displacements of the monomers perpendicular to the axis of the tube (primitive
path) on length scales larger than the tube diameter app are suppressed by the surrounding
chains. Monomer displacement along the contour of the tube is unconstrained and follows the
Rouse subdiffusive behavior, only along the primitive path. Thus, the mean-square monomer
displacement in space exhibits a one-fourth power law scaling when the chain feels the con-
finement of the tube:

gtube
i (t) ≈ a2pp

(
t

τe

)1/4

=

(
a4ppkBTb

2
K

ζ

)1/4

t1/4 ∼ t1/4, τe < t < τR (2.117)

The above time dependence is slower than for unrestricted Rouse motion because displacement
along the contour of the tube leads to a smaller overall displacement in space.
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At the Rouse time of the chain, τR, each segment participates in a coherent Rouse motion
of the whole chain along the tube. The mean-square displacement of a segment along the tube
at the Rouse time of the chain is of the order of magnitude of the mean-square size of the whole
chain. The chain diffuses along the tube, with a curvilinear diffusion coefficient given by the
Rouse model, eq 2.107. Thus, the mean-square displacement of individual segments in space
is:

gtube
i (t) ≈ a2pp

(
N + 1

Ne

)1/2(
t

τR

)1/2

=

(
3π2kBTa

2
pp

ζ (N + 1)

)1/2

t1/2 ∼ t1/2, τR < t < τd (2.118)

This curvilinear diffusion continues up to the disentanglement or reptation time, τd:

τd =
(N + 1)3 ζb4K
π2kBTa2pp

(2.119)

where the chain has curvilinearly diffused the complete length of the tube, of order app(N +

1)/Ne.

At times longer than the disentanglement time, t > τd, the mean-square displacement of a
segment is approximately the same as the center of mass of the chain and is simple diffusion
with coefficient DRouse

cm , eq 2.107:

gtube
i (t) ≈

kBTa
2
pp

(N + 1)2 ζb2K
t ∼ t, t > τd (2.120)

Summarizing, there are four different regimes of monomer displacement in entangled linear
polymer melts, shown in Figure 2.3:

gtube
i (t) ∼ t1/2, t < τe (2.115)

gtube
i (t) ∼ t1/4, τe < t < τR (2.117)

gtube
i (t) ∼ t1/2, τR < t < τd (2.118)

gtube
i (t) ∼ t, t > τd (2.120)

2.3.4/vii Chain diffusion in the tube model

According to Likhtman,91 and early simulation works,98,99 the reptation model predicts three
regimes for the diffusion of the center of mass of the chains. For times smaller than the τe, the
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Figure 2.3: Time dependence of the mean-square segmental displacement, gi (t), predicted by
the reptation model for a melt of entangled linear chains on logarithmic scales.

segments of the chain execute Brownian motion, following the subdiffusive t1/2 scaling of the
Rouse model. The center of mass of the chain follows the same Rouse behavior with:

gtube
cm (t) ∼ t, t < τe (2.121)

When the segments of the chain feel the topological constraints of the surrounding chains,
gi (t) ∼ t1/4, the diffusion of the center of mass is significantly slowed down:

gtube
cm (t) ∼

(
t

(N + 1)2

)1/2

, t < τR (2.122)

till the Rouse time, τR, when the center of mass enters the diffusive regime again:

gtube
cm (t) ∼ t

(N + 1)2
, t > τR (2.123)

2.3.4/viii Stress relaxation in the tube model

Entanglements are manifested in long chains (N >> Ne) by the appearance of a wide region
in time (or frequency) where the modulus is almost constant in stress relaxation (or oscilla-
tory shearing) experiments. This region is referred as the rubbery plateau in analogy with
crosslinked rubbers. The nearly constant value of the modulus in this regime is called the
plateau modulus, Ge. In analogy with a perfect network, whose modulus is in the order of
kBT per network strand, the plateau modulus is of the order kBT per entanglement strand. The
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plateau modulus of an entangled polymer melt can be calculated as:

Ge ≈
ρNAkBT

Me
(2.124)

with ρ being the mass density and NA being Avogadro’s constant.

2.3.4/ix Additional mechanisms to the tube model

The tube model, as described till now, is not able to quantitatively describe the linear relax-
ation modulus of polymers.91,100,101 Fluctuations of the tube along its backbone and in the lateral
directions should also be considered. These additional relaxation modes are termed contour-
length fluctuation (CLF)102 and constraint release (CR); the former is the fluctuation of the
curvilinear tube length, representing the spring-like fluctuation of the chain inside the tube,
whereas the latter is the fluctuation of the tube in the lateral direction resulting from the disen-
tanglement of the surrounding chains. Thus, CLF is a refinement of the single-chain dynamics
in the tube, whereas CR is a reflection of the multichain dynamics. This fundamental difference
between CLF and CR causes a large difference in the technical description of each mechanism.
Specifically, the implementation of CLF into tube theory is almost established,103,104 whereas
the description of CR is still controversial.

There have been three major branches for theoretical expression of CR. Double reptation
theory, which was developed by Tsenoglou105 and des Cloizeaux,106 proposes that the relax-
ation modulus is proportional to the squared-tube survival probability. This theory is a sort of
mixing rule, based on the binary assumption of entanglement. These authors assume that one
entanglement consists of two chain segments and relaxes when one of the two segments dif-
fuses outward. Another idea is to cast the tube fluctuation owing to CR into a Rouse dynamics,
where the Rouse bead friction corresponds to the disentanglement frequency.107 Marrucci108

proposed yet another implementation, called dynamic tube dilation, in which the primitive
path (the center line of the tube) is immobile but the tube cross-section swells according to the
disentanglement of surroundings.

2.3.5 Equations of State
The thermodynamics of polymeric systems play an important role in the polymer industry
and are often a key factor in polymer production, processing and material development. An
equation of state is a relation between the state variables of a system.109 The most prominent
use of an equation of state is to correlate densities of liquids (and gases) to temperatures and
pressures (p − V − T data). In statistical mechanics, the Gibbs energy, G, is related to the
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configurational integral, Z in the isothermal-isobaric ensemble by eq 2.20:

G = −kBT ln [ZNpT (T, p)] (2.125)

where the configurational integral in the NpT ensemble is:

ZNpT (T, p) =
∑
V

∑
E

Ω (E, V, n) exp
[
−E + pV

kBT

]
(2.126)

withΩ (E, V, n) being the number of configurations available to a system ofnmolecules whose
potential (configurational) energy and volume are E and V , respectively. The summations ex-
tend over all feasible values of E and V . The isothermal-isobaric ensemble and the associated
Gibbs potential are the most convenient of the potential ensembles to utilize in the study of
fluid phase equilibria.

The fundamental problem of deriving the equation of state for a system is to determine Ω.
One of the most widely-used equations of state for polymer fluids is the one derived by Sanchez
and Lacombe.110 These authors have employed a lattice formulation, wherein the polymer
chains are occupying discrete lattice sites, while there also exist vacant lattice sites(holes).
The Gibbs energy, based on the Sanchez-Lacombe equation of state can be expressed in di-
mensionless variables as:

G

nrε∗
≡ G̃

= −ρ̃+ p̃ṽ + T̃

[
(ṽ − 1) ln (1− ρ̃) +

1

r
ln
(
ρ̃

w

)]
(2.127)

where T̃ , p̃, ṽ and ρ̃ are the reduced temperature, pressure volume and density. The parameter
w is connected to the number of different configurations available to a system of n r-mers.
It will be examined in detail later. The Sanchez-Lacombe parameters are presented in Table
2.1.The corresponding equation of state can be extracted, by minimizing G:

∂G̃

∂ṽ

)
T̃ ,p̃

= 0 (2.128)

which yields the equation of state for the system:

ρ̃2 + p̃+ T̃

[
ln (1− ρ̃) +

(
1− 1

r

)
ρ̃

]
= 0 (2.129)

It should be noted that, in the isothermal-isobaric ensemble, p̃ and T̃ are the independent vari-
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Table 2.1: Sanchez-Lacombe notation

Symbol Explanation Units

n number of molecules -
M molecular weight kg
r Sanchez-Lacombe segments per molecule -
V volume of the system m3

ρ mass density of the system kg/m3

ρmol =
n
V molecular density m−3

v∗ close packed volume of a mer m3

rv∗ close packed volume of an r-mer molecule m3

V ∗ = n (rv∗) close packed volume of the n r-mers m3

ρ∗ = M
rv∗ close packed mass density kg/m3

T ∗ = ε∗/kB characteristic temperature K
p∗ = ε∗/v∗ characteristic pressure kg/

(
ms2

)
T̃ = T/T ∗ reduced temperature -
p̃ = p/p∗ reduced pressure -

ρ̃ = ρ/ρ∗ = ρmolM/ρ∗ reduced density
ṽ = 1/ρ̃ = V /V ∗ reduced volume -

ables, while ρ̃ is the dependent one. Therefore, eq 2.129 defines the value of ρ̃ at given
(
T̃ , p̃

)
that minimizes the free energy. Equations 2.127 and 2.129 contain the complete thermody-
namic description of the model fluid.

Since the Sanchez-Lacombe theory is not a corresponding states theory, the state param-
eters are predicted to vary with chain length. It has been shown that expansion coefficients,
compressibilities and free volumes are predicted by the Sanchez-Lacombe equation of state
to decrease with increasing degree of polymerization, in agreement with experiment. The de-
crease of the free volume with increasing molecular weight is supported by the observation
that the glass temperature increases with increasing molecular weight.111

If we wish to obtain some physical insight into the parameter w, we can compare the
Sanchez - Lacombe Equation of State (EoS) with the ideal gas EoS. The former should re-
duce to the latter, in the limit of zero molecular density, ρmol = n/V :

lim
ρmol→0+

ASL = lim
ρmol→0+

Aid.g. (2.130)

where we have used ASL and Aid.g. to denote the Helmholtz energy obtained from the Sanchez-
Lacombe and the ideal gas equations of state, respectively.
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The Helmholtz energy can be obtained from eq 2.127:

ASL (ρ, T ) =G− pV = G− p̃
Nrϵ∗

ρ̃

=− ρ̃NrkBT
∗ +NrkBT

[
(ṽ − 1) ln (1− ρ̃) +

1

r
ln
(
ρ̃

w

)]
(2.131)

Thus, the limit appearing in the left-hand side of eq 2.130 is:

lim
ρmol→0+

ASL = lim
ρmol→0+

(
−NrkBT

∗Mρmol

ρ∗

)
+ lim

ρmol→0+

[
NrkBTρ

∗

ρmolM
ln
(
1− ρmolM

ρ∗

)]
− lim

ρmol→0+

[
NrkBT ln

(
1− ρmolM

ρ∗

)]
+ lim

ρmol→0+

[
NkBT ln

(
ρmolM

ρ∗w

)]
which reduces to:d

lim
ρmol→0+

ASL = NkBT

[
lim

ρmol→0+
ln
(
ρmolM

ρ∗w

)
− r

]
(2.132)

On the other hand, the Helmholtz energy of an ideal gas can be written as:

Aid.g. (ρ, T ) = Gid.g. (ρ, T )− pid.g.V

= Nµid.g. (ρ, T )−NkBT

= NkBT

[
ln
(
ρ
∏

i Λ
3
i

MZ0

)
− 1

]
(2.133)

with Λi being the thermal wavelength of atom i of a molecule (eq 2.26 on page 19) of the fluid
andZ0 the configurational integral of a single molecule with respect to all but three translational
degrees of freedom (please see discussion preceding eq 2.47 on page 26). The molar mass of
the molecule is denoted by M . The limit of eq 2.133 for ρmol → 0+ is:

lim
ρmol→0+

Aid.g. = NkBT lim
ρmol→0+

[
ln
(
ρmol

∏
i Λ

3
i

Z0e

)]
(2.134)

Finally, by setting the right-hand side term of eq 2.132 equal to the right-hand side term of
eq 2.134 we obtain:

lim
ρmol→0+

[
ln
(
ρmolM

ρ∗wer

)]
= lim

ρmol→0+

[
ln
(
ρmol

∏
i Λ

3
i

Z0e

)]
(2.135)

d It holds that:
lim

x→0+

[a
x

ln (1− bx)
]
= −ab
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which results in:
1

w
=

ρ∗
∏

i Λ
3
i

MZ0

e(r−1) (2.136)

that connects the parameter w with the thermal wavelengths of the molecules and their in-
tramolecular configurational integral, Z0. The molecular weight, M , enters eq 2.136 because
ρ∗ refers to the critical mass density of the equation of state.

2.4 Simulation Methods

2.4.1 Molecular Dynamics
In Cartesian coordinates, and under the assumption that the potential energy V is independent
of velocities and time, Hamilton’s equations of motion read:

ṙi ≡ vi =
pi
mi

(2.137)

ṗi ≡ −∂V
∂ri

= Fi (2.138)

hence
mir̈i = Fi (2.139)

where Fi is the force acting on atom i:

Fi = −∇riV (2.140)

with the gradient being taken keeping all positions other than ri constant. Solving the equations
of motion then involves the integration of 3N second-order differential equations (eq 2.139)
which are Newton’s equations of motion.

The classical equations of motion possess some interesting properties, the most important
one being the conservation law. If we assume that K and V do not depend explicitly on time,
then it is straightforward to verify that Ḣ = dH/dt is zero, i.e., the Hamiltonian is a constant of
the motion. In actual calculations this conservation law is satisfied if there exist no explicitly
time- or velocity-dependent forces acting on the system. A second important property is that
Hamilton’s equations of motion are reversible in time. This means that, if we change the
signs of all velocities, we will cause the molecules to retrace their trajectories backwards. The
computer-generated trajectories should also possess this property.

Concerning the solution of equations of motion, in the limit of very long times, it is clear
that no algorithm provides an essentially exact solution. However, this turns out to be not
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a serious problem, because the main objective of an MD simulation is not to trace the exact
configuration of a system after a long time, but rather to predict thermodynamic properties as
time averages and calculate time correlation functions representative of the dynamics.

In the following we briefly describe the most popular family of algorithms used in MD
simulations for the solution of classical equations of motion: the Verlet algorithms. Another
family of algorithms comprises higher-order methods, whose basic idea is to use information
about positions and their first, second, and higher order time derivatives at time t in order to
estimate the positions and their derivatives at time t+∆t.112 In general, higher-order methods
are characterized by a much better accuracy than the Verlet algorithms, particularly at small
times. However, their main drawback is that they are not reversible in time, which results in in-
sufficient energy conservation, especially in very long-time MD simulations. On the contrary,
the Verlet methods are not essentially exact for small times but their inherent time reversibility
guarantees that the energy conservation law is satisfied even for very long times. This feature
renders the Verlet methods, and particularly the velocity-Verlet algorithm, the most appropri-
ate ones to use in long atomistic MD simulations.

2.4.1/i Verlet algorithm

The initial Verlet algorithm113 ends up calculating the positions at time t + ∆t by using two
Taylor expansions around times t−∆t and t+∆t, respectively:

ri (t−∆t) = ri (t)− vi (t)∆t+
Fi (t)

2mi

∆t2 − ...r i (t)
∆t3

3!
+O

(
∆t4
)

(2.141)

ri (t+∆t) = ri (t) + vi (t)∆t+
Fi (t)

2mi

∆t2 +
...r i (t)

∆t3

3!
+O

(
∆t4
)

(2.142)

Summing these two equations we obtain:

ri (t+∆t) ≈ 2ri (t)− ri (t−∆t) +
Fi (t)

mi

∆t2 (2.143)

The estimate of the new positions contains an error that is in the order of ∆t4, where ∆t is the
time step employed in our MD scheme. It should be noted that the Verlet algorithm does not
use the velocities to compute the new positions. One can, however, derive the velocities from
knowledge of the trajectory, using

vi (t) =
ri (t+∆t)− ri (t−∆t)

2∆t
+O

(
∆t2
)

(2.144)

which is only accurate to order ∆t2.
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2.4.1/ii Velocity-Verlet algorithm

The problem of defining the positions and velocities at the same time can be overcome by cast-
ing the Verlet algorithm in a different way. This is the velocity-Verlet algorithm,114 according
to which positions are obtained through the usual Taylor expansion

ri (t+∆t) = ri (t) + vi (t)∆t+ r̈i (t)
∆t2

2
(2.145)

whereas velocities are calculated through

vi (t+∆t) = vi (t) +
∆t

2
[r̈i (t) + r̈i (t+∆t)] (2.146)

with all accelerations computed from the forces at the configuration corresponding to the con-
sidered time.

2.4.2 Monte Carlo
In their simplest version, MC simulations of simple fluids are carried out by sampling trial
moves for the molecules from a uniform distribution. For example, in a canonical (NV T )
ensemble simulation, a molecule is chosen at random, and then displaced, also randomly to
a new position. The trial move is accepted or rejected according to an importance sampling
scheme.112,115,116 MC algorithms can also involve sampling from other distributions, which
need not to be analytical (e.g. the force-bias method of Pangali et al.116 provides a classical
example of such algorithms).

The probability of accepting a move, Paccept, of the form:

Paccept = min
[
1,

P (O|N )P (N )

P (N |O)P (O)

]
(2.147)

will asymptotically sample the configuration space according to a probability P . In eq 2.147,
Paccept is the probability with which trial moves are accepted or rejected, P (N |O) is the transi-
tion probability of making a trial move from state O to state N , and P (O) is the probability of
being at state O . This means that, at equilibrium, the average number of accepted trial moves
that result in the system leaving state O must be exactly equal to the number of accepted trial
moves from all other states N to the state O . This is a looser statement of the detailed balance
condition, reflected in eq 2.147, that at equilibrium the average number of accepted moves from
O to any other state N should be exactly canceled by the number of reverse moves.

In the original Metropolis scheme,115 the probabilities P (N |O) form a symmetric matrix.
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In this case, there is no bias involved in making the move and eq 2.147 reduces to the standard
Metropolis acceptance criterion:

Paccept = min
{
1, exp

[
−V (N )− V (O)

kBT

]}
(2.148)

The advanced MC methods are based on judicious choices of P (N |O).112 Moreover, a com-
putational advantage of MC over MD is that only the energy needs to be calculated, not the
forces, rendering the central processing unit (CPU) time needed per step smaller than that of
an MD simulation.

2.4.3 Langevin Dynamics
When a large system is simulated, it is generally desired to keep the number of degrees of free-
dom as low as possible. If a certain subset of particles can be distinguished, of which details
of the motion are not relevant, these particles can be omitted from a detailed MD simulation.
However, the forces they exert on the remaining particles must be represented as faithfully as
possible. This means that correlations of such forces with positions and velocities of particle
i must be incorporated in the equations of motion of particle i, while uncorrelated contribu-
tions can be represented by random forces. This brings us to the field of Langevin Dynamics
(LD).117,118 In LD a frictional force, proportional to the velocity, is added to the conservative
force, in order to mimic an implicitly treated background (e.g. solvent). The friction removes
kinetic energy from the system. In order to compensate for the friction, a random force adds
kinetic energy to the system.

In the simplest case of LD, the random force is taken to have white-noise character, and
no correlations between the various degrees of freedom are assumed to exist. Under these
conditions, the velocity dependent frictional forces become proportional to the instantaneous
velocity of the particle considered. Thus, the equation of motion of a particle i is transformed
into the stochastic equation:

miv̇i (t) = Fi ({ri (t)})− ζivi (t) +F i (t) (2.149)

where the friction coefficient of a particle is denoted by ζi and the random force by F i. The
systematic force Fi is the explicit mutual force between the N particles of the system, which is
to be derived from the potential (or free) energy of the system, which depends on the positions
of all particles, denoted by {ri}.

The stochastic force, F i (t), is assumed to be a stationary Gaussian random variable with
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zero mean and to have no correlations with prior velocities or with the systematic force:

⟨F i (0)F j (t)⟩ens = 2ζikBTrefδijδ (t) (2.150)

W (F i) =
(
2π
⟨
F2

i

⟩
ens

)−1/2 exp

(
− F2

i

2
⟨
F2

i

⟩
ens

)
(2.151)

⟨F i⟩ens = 0 (2.152)

⟨vi (0)F j (t)⟩ens = 0, t ≥ 0 (2.153)

⟨Fi (0)F j (t)⟩ens = 0, t ≥ 0 (2.154)

where ⟨. . . ⟩ens denotes averaging over an equilibrium ensemble, kB is Boltzmann’s constant,
Tref is the reference temperature of the LD simulation and W (F) is the (Gaussian) probability
distribution of the stochastic force. According to van Gunsteren et al.,119 the solution of the
linear, inhomogeneous, first order differential equation, eq 2.149, is:

v (t) =vi (0) exp
(
− ζi
mi

t

)
+

1

mi

∫ t

0

exp
[
− ζi
mi

(t− t′)

]
[Fi (t

′) +F i (t
′)] dt′ (2.155)

2.4.3/i Fluctuation-dissipation theorem

To generate a canonical ensemble, the friction and random force have to obey the fluctuation -
dissipation theorem.120 Einstein was the first to extract the diffusion coefficient and mobility in
a special case of Brownian motion,121 and made allusions to the existence of a balance between
random forces and friction. Then, Nyquist122 formulated a limited version of the theorem, in
his study of noise in resistors. Later, Callen and Welton123 proved the theorem in a generalized
form.

According to Kubo124 two different kinds of the fluctuation-dissipation theorem can be
distinguished. The fluctuation-dissipation theorem of the first kind relates the linear response
of a system to an externally applied perturbation and a two-time correlation function of the
system in the absence of external forces. The latter form is closely related to the famous Green-
Kubo expressions for transport coefficients. The fluctuation-dissipation theorem of the second
kind constitutes a relationship between the frictional and random forces in the system, relying
on the assumption that the response of a system in thermodynamic equilibrium to a small
applied perturbation is the same as its response to a spontaneous fluctuation.39
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2.4.3/ii Mori-Zwanzig projection operator formalism

A formal way of deriving LD is the projection operator formalism of Zwanzig125,126 and
Mori.127,128 The basis of the formulation is the assumption that we have partial knowledge
of the evolving system, for example we can only track certain variables, while the effect of
the other variables is modeled or approximated in a rigorous way. In this approach the phase
space is divided into two parts, which we are called interesting and uninteresting degrees of
freedom. For the approach to be useful, the uninteresting degrees of freedom should be rapidly
varying with respect to the interesting ones. Mori introduced two projection operators, which
project the whole phase space onto the sets of interesting and uninteresting degrees of free-
dom. The full equations of motion are projected only onto the set of interesting degrees of
freedom. The result is a differential equation with three force terms: a mean force between
the interesting degrees of freedom, a dissipative or frictional force exerted by the uninteresting
degrees of freedom onto the interesting ones and a third term containing forces not correlated
with the interesting degrees. When the uncorrelated force is approximated by a random force
the interesting degrees of freedom are considered independent of the uninteresting degrees of
freedom.

2.4.4 Brownian Dynamics
If the friction exerted by the background to the particles under consideration is high, corre-
lations in the velocity will decay in a period over which changes in the systematic force are
negligible. Such a system can be called overdamped. In this case, the left-hand side of eq
2.149 can be neglected, after averaging over short times. The result is BD, which is described
by the position Langevin equation:

vi (t) =
1

ζi
Fi ({ri (t)}) +

1

ζi
F i (t) (2.156)

The time scale separation makes possible the exchange of the second order stochastic differ-
ential equation (eq 2.149) for a first order stochastic differential equation, eq 2.156, without
affecting the dynamics on time scales longer than 1/ (miζi).

Van Gunsteren and Berendsen129,130 have proposed several algorithms for integrating eq
2.156. In this work we choose the one which reduces to the Verlet algorithm for zero friction.
If we assume a timestep of ∆t, for large values of miζ∆t in the diffusive regime, when the
friction is so strong that the velocities relax within ∆t, the BD algorithm reduces to:

ri,α (tn +∆t) = ri,α (tn) +
1

ζi

[
Fi,α (tn)∆t+

1

2
Ḟi,α (tn)

(
(∆t)2

)]
+Ri,α (∆t) (2.157)
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with i enumerating the particles, 1 ≤ i ≤ N , and α marking a Cartesian component of the
vectors. The random displacement R (∆t) is sampled from a Gaussian distribution with zero
mean and width: ⟨

R2
i,α (∆t)

⟩
=

2kBTref

ζi
∆t (2.158)

The integration scheme for BD (eq 2.157) resembles a MC algorithm, except that there is
no acceptance criterion. Rossy et al.131 have derived the correct acceptance probability and
introduced their method under the name “Smart Monte Carlo”.

2.5 Stress Tensor in Model Systems
The calculation of the stress tensor from molecular simulations is of paramount importance
and is connected with many applications. We present three derivations of the stress tensor
from simulations of macromolecular systems in thermodynamic equilibrium. The stress is
considered an ensemble average of a mechanical quantity depending on atomic positions and
momenta. Such expressions constitute important links between molecular constitution and the
macroscopic thermodynamic and mechanical behavior of liquid, solid or rubbery polymers.
The virial theorem of Clausius132,133 for a bounded atomic or molecular system, is inapplica-
ble to a periodic model system where there are no wall forces.134 This constitutes an important
difference between the model systems used in simulations and macroscopic bounded systems.
We start from the correct expression for the atomic virial134 and we gradually generalize it to its
continuum definition. The intermediate step in this route is to express stress as the derivative
of the free energy with respect to strain (infinitely small deformations). Finally, we express it
as the derivative with respect to the deformation gradient tensor (arbitrary deformations). Our
main concern is to provide a rigorous general framework for calculating the stress tensor in
systems whose atoms interact through arbitrary two-, three- and four-body potentials and con-
servative fields (like walls or long-range interactions). In Appendix A the relevant expressions
for all necessary derivatives are provided.

2.5.1 Definitions
The most fundamental and commonly used stress quantity is the Cauchy stress, also known as
the true stress. It is defined by studying the forces acting on an infinitesimal area element in
the deformed body. Both the force components and the normal to the area vector have fixed
directions in space. This means that if a stressed body can be subjected to a pure rotation,
the actual values of the stress components will change. What might be originally a uniaxial
stress state can be transformed into a full tensor with both normal and shear stress components.
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Table 2.2: Strain and stress conjugate pairs

Strain Stress Volume Symmetry Orientation
Engineering, Cauchy (true stress) Deformed Yes Spatial
ϵ (eq 2.35) Kirchhoff Original Yes Spatial

Logarithmic, Cauchy (true stress) Deformed Yes Spatial
ϵL (eq 2.38) Kirchhoff Original Yes Spatial
Deformation First Original No Mixedgradient (eq 2.29) Piola-Kirchhoff

Green-Lagrange, Second Original Yes Material
ϵG (eq 2.39)

The Cauchy stress tensor is in general (in absence of body couples) a symmetric tensor. An-
other stress measure is the First Piola-Kirchhoff or Piola-Langrange stress. It is a multiaxial
generalization of the nominal (or engineering) stress. The stress is defined as the force in the
current configuration acting on the original area. The First Piola-Kirchhoff is an unsymmetric
tensor, and is for that reason less attractive to work with. The Second Piola-Kirchhoff stress
is a modified version of the first Piola-Kirchhoff stress, where the resulting tensor is generally
symmetric by proper translation of the force vectors generating the relevant stresses. Some-
times the Kirchhoff stress may also be encountered. The Kirchhoff stress is just the Cauchy
stress scaled by the volume change.

In continuum mechanics the principle of virtual work is very important. It states that the
internal work done by an infinitesimal strain variation operating on the current stresses is equal
to the external work done by a corresponding virtual displacement operating on the loads. The
stress and strain measures must then be selected so that their product gives an accurate energy
density. This energy density may be related either to the undeformed or deformed volume,
depending on whether the internal virtual work is integrated over the geometry of the original
or the deformed state.73 The various pairs of strain and stress measures are summarized in
Table 2.2. In the following, no distinction between material and spatial stress is made.

2.5.2 Atomic Virial Approach
Theodorou et al.134 have discussed extensively the calculation of the stress tensor from molec-
ular simulations of atomistic model polymer systems employing periodic boundary conditions.
Starting from the dynamical equations governing the motion of the sites in a classical (as op-
posed to quantum mechanical) formulation, these authors have derived correct double sum-
mation formulas of the atomic and molecular virial equations, for flexible, infinitely stiff and
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rigid chain models. For such systems, the equilibrium stress tensor ταβ is:

ταβ = ⟨σαβ⟩ens

=

⟨
− 1

V

N∑
i=1

pi,α · pi,β
mi

− 1

2V

N∑
i=1

N∑
j=1

(ri,α − rj,α)
min.im. Fmin.im.

ij,β

⟩
ens

+ τ tail
αβ (2.159)

Eq 2.159 is an expression of the αβ-component (Greek indices denote the Cartesian com-
ponents) of the instantaneous stress tensor σ in a system with periodic boundary conditions
containing a fixed number, N , of interaction sites and occupying total volume V , where pi,α

is the α-component of the momentum of site i with mass mi. ri and rj are the position vec-
tors of atoms i and j, respectively. The superscript “min.im.” indicates interatomic distances
and forces calculated according to the “minimum image convention”. Fij is the force exerted
on atom i by the image of atom j located at the closest distance from atom i. In general,
the force Fij between two sites i and j in the infinite periodic model system is defined as
Fij = −∇ri−rjV , where the gradient of the total potential energy function, V , is taken keeping
all intersite separation vectors other than ri − rj constant.

2.5.3 Strain Derivative Approach
In the case of an elastic solid, we can use as state variables109 the temperature, T , and the
components ϵαβ of the material strain tensor, describing the homogeneous deformation from
a specified reference configuration, R. The conjugate mechanical variables are VRταβ where
VR is the volume of the system in the reference configuration R and ταβ is the material (or
second Piola-Kirchhoff e) stress tensor.74 We then assume that the nine variables ϵαβ and the
entropy S constitute a complete set of independent variables and that the internal energy U of
the solid may be given as a function of these variables, U = U (ϵαβ, S;R). The designation of
the reference configuration, R, has been included in order to emphasize that the variables ϵαβ
are meaningful only when R is specified (please see discussion in Section 2.2.1 on page 20).
The stress tensor of the solid is:

ταβ =
1

VR

∂U

∂ϵαβ

)
S,ϵ[αβ]

(2.160)

where we have introduced the notation [αβ] to indicate that all Cartesian components of the
tensor, other than the αβ component, are kept constant during differentiation.

e While the Cauchy stress is a measure of force per unit area in the deformed state, the second Piola-Kirchhoff
stress is a measure of force in the deformed body per unit undeformed area.
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Given the function U (ϵαβ, S;R), the Helmholtz energy of the solid may be defined as
A = U − TS. Then, the stress tensor, ταβ , is the derivative of the Helmholtz energy with
respect to strain, ϵαβ , under constant temperature and all other components of the strain matrix:

ταβ =
1

VR

∂A

∂ϵαβ

)
T,ϵ[αβ]

(2.161)

and the differential of the Helmholtz energy becomes:135

dA = VR

∑
αβ

ταβdϵαβ − SdT (2.162)

The condition for dA to be a perfect differential is: f

∂S

∂ϵαβ

)
T,ϵ[αβ]

= −VR
∂ταβ
∂T

)
ϵ

(2.165)

where we have introduced VR as the volume in the underformed (reference) state and the
derivative in the right-hand side is taken while keeping the whole strain tensor, ϵ, constant.
The left-hand side of eq 2.165 can be identified as the Grüneisen coefficient:74

γαβ =
1

CV

∂S

∂ϵαβ

)
T,ϵ[αβ]

= −VR

CV

∂ταβ
∂T

)
ϵ

(2.166)

The Grüneisen coefficients (elements of the Grüneisen tensor) provide a measure of entropic
contributions to the elastic moduli.

Now, we can expand eq 2.161:

ταβ =
1

VR

∂U

∂ϵαβ

)
T,ϵ[αβ]

− 1

VR
T

∂S

∂ϵαβ

)
T,ϵ[αβ]

(2.167)

Using eq 2.165:

ταβ =
1

VR

∂U

∂ϵαβ

)
T,ϵ[αβ]

+ T
∂ταβ
∂T

)
ϵ

(2.168)

f It can also be proved that:
∂T

∂ϵαβ

)
S,ϵ[αβ]

= VR
∂ταβ
∂S

)
ϵ

(2.163)

and:
∂ϵαβ
∂S

)
T,ϵ[αβ]

= − 1

VR

∂T

∂σαβ

)
ϵ

(2.164)
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where we have extracted the stress tensor, ταβ for infinitesimal deformations of the reference
state, R.

In order to get some insight into the terms of eq 2.168, we study the case of an ideal gas.
For an ideal gas, ∂U/∂ϵαβ = 0, since the internal energy of an ideal gas is of purely kinetic
contribution and does not depend on the volume of the system. Thus, the stress tensor of an
ideal gas takes the form:

τ id.g.
αβ = T

∂ταβ
∂T

)
ϵ

= −ρ0kBTδαβ = −pid.g.δαβ (2.169)

resulting in a diagonal tensor with −pid.g. components along its diagonal, corresponding to an
ideal gas of number density ρ = n/V , with n being the number of molecules.

Finally, by applying eq 2.168, in the NV T ensemble of a classical system characterized
by potential energy V , the stress tensor can be cast as:

ταβ =
⟨
σV
αβ

⟩
NV T

− ρkBTδαβ (2.170)

with
σV
αβ =

1

VR

∂V
∂ϵαβ

)
T,ϵ[αβ]

(2.171)

We will refer to σV
αβ as the potential energy contribution to the stress tensor (Born term136), and

to the term ρkBT as the kinetic (or ideal gas contribution). The former is the zero-temperature
limit of the thermodynamic stress. The brackets for σV

αβ denote the appropriate NV T ensemble
average. Eq 2.170 can be connected to eq 2.159 where, for a classical system, the momentum
term is replaced by the ideal gas term thanks to the equipartition theorem.

Lutsko137,138 has provided a proof of eq 2.170 by transforming the coordinates as proposed
by Ray and Rahman139 and calculating the derivatives of the configurational integral with
respect to strain, in the NV T ensemble. Later, van Workum et al.140 have derived the same
expression by following a procedure similar to that of Lutsko. Despite the fact that our line of
thought sketched above may be less rigorous, it is based on simple thermodynamic arguments
which provide critical insight into the derivation of eq 2.170.
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2.5.4 Deformation Gradient Tensor Derivative Approach
We consider the free energy per unit mass, A (T, V ) /m of the system. The thermodynamic
stress tensor, τ is:141,142

τ = ρF ·
(
∂ (A/m)

∂F

)T

(2.172)

where A is the Helmholtz energy, m is the total mass in the system and F denotes the deforma-
tion gradient tensor defined by eq 2.29. The same equation can be written in component form
as:

ταβ = ρ

3∑
γ=1

Fαγ
∂ (A/m)

∂Fβγ

(2.173)

If we assume that our simulation box does not exchange mass with its environment, the stress
tensor can further be simplified:

ταβ =
1

VR

3∑
γ=1

Fαγ
∂A

∂Fβγ

(2.174)

where VR is the volume of the simulation box in the reference state R (see Table 2.2). In
general the prefactor should be 1/V with V being the current volume of the system. The
density, ρ, generally changes with F and V = VR (1 + det (F)).
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.... 3. Segmental Dynamics and Stresses
in PS - Fullerene Mixtures

The polymer dynamics of homogeneous C60-polystyrene (PS) mixtures in the molten state
are studied via molecular simulations using two interconnected levels of representation for
polystyrene nanocomposites: (a) A coarse-grained representation, in which each polystyrene
repeat unit is mapped into a single “superatom” and each fullerene is viewed as a spherical
shell. Equilibration of coarse-grained polymer-nanoparticle systems at all length scales is
achieved via connectivity-altering Monte Carlo (MC) simulations. (b) An atomistic represen-
tation, where both nanoparticles and polymer chains are represented in terms of united-atom
forcefields. Initial configurations for atomistic Molecular Dynamics (MD) simulations are
obtained by reverse mapping well-equilibrated coarse-grained configurations. By analyzing
MD trajectories under constant energy, the segmental dynamics of polystyrene (for neat and
filled systems) is characterized in terms of bond orientation time autocorrelation functions.
Nanocomposite systems are found to exhibit slightly slower segmental dynamics than the un-
filled ones, in good agreement with available experimental data. Moreover, by employing a
Voronoi tessellation of the simulation box, the mean-square displacement of backbone car-
bon atoms is quantified in the vicinity of each fullerene molecule. Fullerenes are found to
suppress the average motion of polymeric chains, in agreement with neutron scattering data,
while slightly increasing the dynamic and stress heterogeneity of the melt. Atomic-level and
local (per Voronoi cell) stress distributions are reported for the pure and the filled systems.

3.1 Introduction

3.1.1 Experimental Findings
Nanomaterials fabricated by dispersing nanoparticles in polymer melts have the potential for
performance that far exceeds that of traditional composites. Nanoparticles have been shown
to influence mechanical properties, as well as transport properties, such as viscosity. Until
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recently, the commonly held opinion was that particle addition to liquids, including polymeric
liquids, produces an increase in viscosity, as predicted by Einstein a century ago.143,144 How-
ever, it was recently found by Mackay and coworkers145–147 that the viscosity of polystyrene
melts blended with crosslinked polystyrene particles (and later also with fullerenes and other
particles) decreases and scales with the change in free volume (due to introduction of athermal
excluded volume regions in the melt) and not with the decrease in entanglement. Later,147

fullerenes and magnetite particles were found to produce the same non-Einstein viscosity de-
crease effect.

Despite the macroscopic viscosity reduction, fullerene-polystyrene nanocomposites exhibit
slower segmental dynamics, as Kropka et al.148 have reported. The fully miscible C60 - poly-
mer nanocomposites were made via a solution-dissolution / solvent-evaporation method. The
molecular weight of the polystyrene chains was Mw = 156 kg/mol with a narrow molecular
weight distribution, Mw/Mn = 1.06. The focus of their study was on nanocomposites con-
taining a weight fraction φwt

C60
= 0.01 because the most significant changes in Tg occur at this

concentration. These materials exhibited an increase in their “bulk” Tg of about 1 K, as mea-
sured by differential scanning calorimetry and dynamic mechanical analysis. The mechanical
measurements performed on these nanocomposites showed no evidence of excess structural or
dynamic heterogeneity relative to the neat polymer and suggested that the effect of the parti-
cles may be described in terms of an increased segmental friction coefficient for the polymer.
Quasi-elastic neutron scattering (QENS) measurements revealed that the influence of C60 on
polymer melt dynamics is limited to the vicinity of the particle surfaces at the nanosecond
time scale. The addition of C60s was found to supress the polymer segmental dynamics of two
more polymer hosts (PMMA and TMPC). These authors suggested that the suppression of the
local relaxation dynamics of the composite is consistent with an enhancement of cohesive in-
teractions in the system, which may be the root of the increase in Tg for the nanocomposites.
The system must acquire more thermal energy before polymer segments can overcome local
energy barriers and thereby enable polymer center-of-mass motions. Specifically, local poly-
mer chain backbone motions in the nanocomposites are suppressed relative to those in the neat
polymer, an effect which likely plays a role in the observed increases in Tg of the materials.
In the melt, the dynamics of the polymer segments in the vicinity of the particle surfaces is
suppressed relative to the neat polymer, and this effect results in an excess elastic fraction of
polymer segments at the nanosecond time scale.

On the contrary, Sanz et al.149 reported increased segmental motion in polystyrene-fullerene
nanocomposites. These authors prepared bulk nanocomposites of (hydrogenous and ring-
deuterated) polystyrene and poly(4-methyl styrene) using a rapid precipitation method where
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the C60 relative mass fraction ranged from 0% to 4%. Elastic window scan measurements,
using a high resolution (0.9 µeV) neutron backscattering spectrometer, were reported over a
wide temperature range (2−450 K). Based on the measured intensity, apparent Debye-Waller
factors ⟨u2⟩, characterizing the mean-square amplitude of proton displacements, were deter-
mined as a function of temperature. Sanz et al. found that the addition of C60 to these polymers
leads to a progressive increase in ⟨u2⟩ relative to the pure polymer value over the entire temper-
ature range investigated, where the effect is larger for larger nanoparticle concentration. This
general trend seems to indicate that the C60 nanoparticles plasticize the fast dynamics of these
polymer glasses.

Later, Wong et al.,150 investigated the same system (as Sanz et al.149) by inelastic incoher-
ent neutron scattering, small angle neutron scattering, calorimetric and dielectric spectroscopy
methods. They found that the dispersion of fullerenes increased the glass transition tempera-
ture, slowing down the alpha relaxation dynamics associated with glass formation, while at the
same time causing a softening of the material at high frequencies (as determined by the Debye-
Waller factor). These effects are interpreted in terms of the particle modifying the polymer
packing, causing an increase of the fragility of glass formation. The observed increase in Tg

lies in apparent contradiction with the same group’s previous inelastic neutron scattering find-
ings.149 From the point of view of these authors, this may indicate that the low-temperature
slope of ⟨u2⟩ increases with the addition of fullerene nanoparticles. The comparatively larger
amplitude of proton delocalization in nanocomposites at the same temperatures is interpreted
as a softening of the local potential of proton motion. In summary, inelastic neutron scattering
indicates a simultaneous increase in amplitude of fast proton motion (increased mobility at fast
time scales ∼ 10−15 s and Å-lengthscales), while restricted segmental motion associated with
the glass transition is manifested by a Tg increase.

3.1.2 Previous Work
From the standpoint of molecular simulations, Vacatello151 performed MC simulations of par-
ticles dispersed in a polymer matrix; he found that polymer segments adhere to the particles and
some chains are connected to different particles, thereby forming “bridges”. Each chain visits
the interface layer of several particles and each particle can be in contact with multiple chains.
Even in the absence of strong interactions between particles and polymeric chains, Vacatello
observed that the particles behave as multifunctional physical crosslinks. These crosslinks do
not immobilize the polymer chains, but can reduce their diffusion rates considerably.

That view was complemented by MD simulations by Desai et al.,152 who found that chain
diffusivity is enhanced (relative to that in the pure polymer) when polymer - particle interac-
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tions are repulsive, and is reduced when polymer - particle interactions are strongly attractive.
These authors were the first to report that chain diffusivity is spatially inhomogeneous, adopt-
ing its pure-polymer value when the chain center of mass is about one radius of gyration away
from a particle’s surface. Smith et al.153 reported increase of the viscosity of a coarse-grained
bead-necklace model polymer upon the addition of attractive and neutral nanoparticles, while
viscosity reduction was observed upon the addition of repulsive particles. Further MD simula-
tions of polymer melts by Smith et al.154 have suggested that both increased polymer segment
packing densities and the energy topography of a surface can lead to stronger caging of poly-
mer segments near an attractive surface. They suggested that the dramatic increase in structural
relaxation time for polymer melts at the attractive structured surface is largely a result of dy-
namic heterogeneity induced by the surface and does not resemble dynamics of a bulk melt
approaching Tg. The results of Kropka et al.148 may indicate that C60s induce similar effects
in the glassy state of the polymers investigated.

More recently, Ndoro et al.155 employed atomistic MD simulations in order to study the in-
terfacial dynamics of 20-monomer atactic polystyrene chains surrounding a silica nanoparticle.
The effect of the nanoparticle curvature and grafting density on the mean-square displacement
of free polystyrene chains and on the mean relaxation time of various intramolecular vectors
was investigated as a function of separation from the surface. Confinement, reduced surface
curvature, and densification resulted in a reduction of the mean-square displacement and an
increase in the mean relaxation time of the C-H bond vector and chain end-to-end vector in the
vicinity of the surface.

Toepperwein et al.156 have addressed the influence of nanorods on the entanglement net-
work of composites through MC and MD simulations. The presence of particles enriched the
nanocomposite systems by nucleating additional topological constraints of polymer-particle
origin. Later, Li et al.157 observed that highly entangled polymer chains were disentangled
upon increasing the volume fraction of spherical non-attractive nanoparticles. These authors
report a critical volume fraction controlling the crossover from polymer chain entanglements
to nanoparticle-induced entanglements. While below this critical volume fraction, the polymer
chain relaxation accelerates upon filling, above this volume fraction, the situation reverses. The
same authors158 have also studied the structural, dynamical and viscous behaviors of polyethy-
lene matrices under the influence of differently shaped nanoparticles, including C60 buckyballs,
at fixed volume fraction (4 vol %). The nanoparticles were found to be able to nucleate polymer
entanglements around their surfaces and to increase the underlying entanglement density of the
matrix in the proximity of the particles. However, the overall primitive path networks of PE
matrices were found very similar to those of pure polyethylene, since polymer entanglements
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still dominated the rheological behavior.

3.1.3 Proposed Approach
In this work we are trying to understand the microscopic mechanisms involved in the pecu-
liar behavior of PS-C60 nanocomposites, through a hierarchical simulation approach. To this
end, we focus our study on polystyrene melts having specifications identical to those studied
by Kropka et al.148 The computational prediction of physical properties is particularly chal-
lenging for polymeric materials, because of the extremely broad spectra of length and time
scales governing structure and molecular motion in these materials. This challenge can only
be met through the development of hierarchical analysis and simulation strategies encompass-
ing many interconnected levels, each level addressing phenomena over a specific window of
time and length scales.17 In order to shed some light into the segmental dynamics of PS-C60

systems, molecular simulations have been conducted using two interconnected levels of rep-
resentation for polystyrene nanocomposites: (a) A coarse-grained representation,159 in which
each polystyrene repeat unit is mapped into a single “superatom” and each fullerene is viewed
as a spherical shell. Equilibration of coarse-grained polymer-nanoparticle systems at all length
scales is achieved via connectivity-altering Monte Carlo (MC) simulations.32 (b) An atomistic
representation, where both nanoparticles and polymer chains are represented in terms of united-
atom forcefields. Initial configurations for atomistic Molecular Dynamics (MD) simulations
are obtained by reverse mapping well-equilibrated coarse-grained configurations. The reverse
mapping procedure retains the tacticity which is implicit in the coarse-grained representation,
while regrowing atomistic sites by a quasi-Metropolis procedure that avoids unphysical con-
formations. By analyzing MD trajectories under constant energy, the segmental dynamics of
polystyrene (for neat and filled systems) can then be characterized in terms of bond orientation
time autocorrelation functions and local atomic mean-square displacement.

3.2 Coarse Grained Monte Carlo (CG-MC)

3.2.1 Systems Studied
In this work, monodisperse melts of atactic PS chains with 50 % meso diads obeying Bernoul-
lian statistics and with chain lengths of 80 (8.3 kg/mol), 185 (19.3 kg/mol), 323 (34 kg/mol),
922 (96 kg/mol), 1460 (152 kg/mol) and 4032 (420 kg/mol) coarse grained (CG) sites (di-
ads) were generated and simulated. Initial configurations were generated and equilibrated at
the temperature of 500 K, at which the CG forcefield has been developed. Then the reverse-
mapped well-equilibrated configurations were subjected to MD runs which cooled them down
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to the glass transition temperature. Bearing in mind the limitations of the atomistic MD simu-
lations, the main part of this work is based on systems composed of n = 10 chains of molec-
ular weight 152 kg/mol with 20 fullerenes randomly dispersed, leading to a weight fraction
φwt

C60
= 1%. System specifications are close to experimentally studied systems by quasi-elastic

neutron scattering148 and adequate for avoiding finite-size effects.160 For comparison, neat
polymeric systems of the same characteristics have also been simulated along with the com-
posite ones. In order to improve statistics, three independent configurations of both the neat
and the filled systems were generated, equilibrated and reverse-mapped. Moreover, a single
80-mer chain system was atomistically built and simulated with MD, without involving MC
equilibration.

The major contribution to the computational cost of our study stems from the MD simula-
tions. Despite the fact that our MC and reverse mapping codes are running serially, the time
needed to fully equilibrate our systems and generate the corresponding atomistic configurations
is reasonable (10-15 days of wall-clock time on a single 2.8 GHz central processing unit (CPU)
core). On the contrary, the MD simulations of the systems described above required 40 days
of real wall-clock time for 170 ns integration time, when run on a hybrid machine consisting
of eight 2.8 GHz CPU cores and one programmable graphics processing unit (GPU). Since the
polymer relaxation times (e.g., the disentanglement or reptation time, τd) far exceed our current
computational resources, the use of MC to equilibrate our samples is of vital importance.

3.2.2 Coarse Grained Model
The coarse graining scheme adopted in this work is very efficient for the representation of
vinyl polymers, since one is able to keep information on stereochemical sequences along the
polymer chain. Given a direction along the main chain, it is possible to assign an absolute con-
figuration to each asymmetric carbon. The chain can be represented as a sequence of diads,
each diad containing two asymmetric carbons. Depending on the absolute configuration of the
asymmetric carbons, i.e., RR (or SS) and RS (or SR), the diads can be of type m (meso) or r
(racemo), respectively (Figures 1 and 2 of ref 159). The chain ends can be either em (end-
meso) or er (end-racemo) as far as the bonded potentials are concerned, but their nonbonded
interaction is common and slightly different from m and r nonbonded interactions. A detailed
description of the model can be found in ref 159 and the parameter values used are taken from
the Supporting Information of ref 32. They were derived from a detailed atomistic potential
using the Iterative Boltzmann Inversion (IBI) method. The coarse-grained effective potential
was refined in order to better reproduce the target distributions, extracted from all-atom simu-
lations of a 9mer fluid at 500 K and 1 bar. All MC simulations of the present work have been
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conducted at the same temperature.

At the coarse grained level of description, fullerenes are considered as spherical shells
of infinitesimal thickness. It is assumed that carbon atoms are uniformly smeared over the
surface of the shell. The potential between a spherical shell of interaction sites and a single
coarse grained PS site (treated as a point), on the grounds of Hamaker theory,161 is:
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(3.1)

where r is the center-to-center separation distance. The external radius of the shell represent-
ing the fullerene, RC60

, is set to 0.35nm. The density of interaction sites of fullerene is ρC60
, the

thickness of the shell δrC60
, and the product ρC60

δrC60
represents the surface density of interac-

tion sites of the fullerene. The mean Lennard-Jones interaction parameters, εm and σm, take
into account the interaction of fullerene carbons with all kinds of interaction sites a coarse-
grained bead consists of. In the case of PS, for every bead we sum up five different kinds of
interactions, namely the interaction of CH3, aliphatic CH2, aromatic CH and C groups with
the fullerene. Each interaction is weighted with the number of interaction sites of each kind
present in the CG bead. The detailed united-atom forcefield, which is essential for the calcula-
tion of εm and σm, is described in the “Target atomistic representation” section, which follows
(Section 3.3.1 on page 71). In Table 3.1 are listed the nonbonded interaction parameter values
of the united-atom forcefield, as well as coarse-grained model parameters derived from them
and used in this work.

Following the work of Girifalco,162 the interaction between fullerenes at the coarse-grained
level is modeled as an integrated Lennard-Jones potential over two spherical shells:
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where rs = r/
(
2RC60

)
and the values of the remaining parameters are presented in Table

3.1. This potential has been used throughout the literature to study the molecular properties of
C60, which were found to be consistent with available experimental data, making it a reason-
able choice. A priori, there should be an entropic contribution included in the coarse-grained
polymer-particle potentials,163 which is not taken into account by using Hamaker-type poten-
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Table 3.1: PS united-atom potential interaction parameters and CG model parameters derived
from them.

Parameter Value Reference
Polystyrene
εCH3

, εalCH2
, εarCH, εarC 0.12 kcal/mol

Mondello et al.164εalCH 0.09 kcal/mol
σalCH, σarC, σarCH 3.69 Å
σCH3

, σalCH2
3.85 Å

Fullerene
εC60

0.066 kcal/mol

Girifalco162σC60
3.47Å

A 1.079 kcal/mol
B 1.957× 10−3 kcal/mol
Mixed
εm

√
εPSεC60

where “PS” subscript
σm 1/2

(
σPS + σC60

)
represents all

united-atom species

tials. However, our coarse-graining is relatively modest, so we believe that this contribution
is small. As our PS coarse-graining serves mainly for creating initial configurations, any fault
in the local structure caused by the coarse-grained potential will be fixed by the subsequent
atomistic MD simulation.

3.2.3 Initial CG Structure Generation
To start the CG MC simulation, an initial configuration is generated by placing the fullerenes
at randomly selected positions, so that they do not overlap, and then building stepwise the
polymeric chains around them, following the work of Theodorou and Suter.165 At each step a
site type is chosen according to the overall probability of meso and racemo diads. In our work
the tacticity of atactic PS is represented by a Bernoullian diad distribution with a probability
of meso diads of (m) = 0.5 (in equilibrium atactic polystyrene the configuration statistics is
almost Bernoullian with the fraction of meso dyads around 0.46166–168). The “Euler angles”
defining the direction of the first and the second coarse-grained bonds, are arbitrarily set at the
beginning. Since torsion angle potentials are not used in the CG representation, for each subse-
quent superatom a bond angle is chosen according to a probability resulting from the effective
bending potential for the specific angle type and the segment is placed, accordingly, on a circle
forming the base of a cone with apex at the previously placed superatom and side length equal
to the average CG bond length of lCG = 2.46 Å. In every step, nonbonded interactions with
already created superatoms are taken into account, refining the probabilities of accepting a trial
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position for the bead to be grown. If, after a certain number of iterations, all attempts to grow
the superatom fail, a local derivative-free minimization of the potential energy is undertaken
in order to ensure that the bead is placed at the most energetically favorable position. Since the
degrees of freedom of the optimization are only three, i.e. the cartesian coordinates of the new
superatom to be built, a numerically stable Nelder-Mead algorithm is a reasonable choice.169

Each initial guess structure is then “relaxed” to a state of minimal potential energy. The
total potential energy is the sum of all bonded potentials of the polymeric matrix, nonbonded
interactions between polymer superatoms, between polymer superatoms and fullerenes, and
between fullerenes and fullerenes. Minimization is carried out using the Large-scale Atomic/-
Molecular Massively Parallel Simulator (LAMMPS)170 with the CG potentials incorporated
in its source code. Since IBI PS coarse-grained nonbonded potentials are tabulated, a Polak-
Ribière171,172 (PR) variant of the conjugate gradient method is used. At each iteration the force
gradient is combined with the previous iteration information to compute a new search direc-
tion perpendicular (conjugate) to the previous search direction. The PR variant affects how the
direction is chosen and how the conjugate gradient method is restarted when it ceases to make
progress. The PR variant is thought to be the most efficient conjugate gradient choice for most
problems.

3.2.4 Monte Carlo Equilibration
Enabling the equilibration of high molar mass polymer nanocomposites at the coarse-grained
level was one of the main objectives of this work. For this purpose, connectivity altering
moves,28 such as double bridging (DB)29 were employed in MC simulations of linear chains
of four types of sites, m, r, em and er. In the DB move two trimers are excised from two chains
of equal length and two new trimer bridges are constructed, leading to two new chains of the
same length but of drastically different conformations. The internal shape of the chains was
rearranged by using the symmetric variant of the concerted rotation move,22,26 which modi-
fies the local conformation of an internal chain section (of five superatoms) while leaving the
preceding and following parts of the chain unaffected. In addition, the internal conformations
of chains are sampled using flips of internal beads, end segment rotations and reptations. The
mixture of MC moves included a newly developed and specially adapted configurational bias
move,24 capable of regrowing an arbitrary number of coarse-grained beads, starting from a
chain end, in the confined environment formed by the nanoparticles. For every kind of move
undertaken, special care was taken to discard moves leading to overlaps of coarse-grained
beads and dispersed nanoparticles.
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Figure 3.1: Average squared end-to-end distance, ⟨R2
e(Nu)⟩, of subchains of length Nu diads

divided by Nu versus Nu for coarse-grained 4000-mer chains at 500 K. Some indicative error
bars are shown. The dotted line is the SANS-based value for PS at 413 K.174

3.2.5 Conformational Properties of CG Configurations
As a measure of the obtained chain conformations one may use the quantity ⟨R2

e(Nu)⟩/Nu,
where Nu is the number of diads (repeat units) in a subchain and R2

e(Nu) is the squared end-to-
end distance of the subchain. It has been shown that,173 for well equilibrated chains, ⟨R2

e(Nu)⟩
/Nu increases monotonically with Nu until it reaches a plateau. In Figure 3.1, ⟨R2

e(Nu)⟩ /Nu is
depicted as a function of Nu for a system containing 8 chains of 4000 diads each, at T = 500K.
For Nu > 200 an asymptotic value is reached of approximately 45 Å which corresponds to
⟨R2

e⟩ /M equal to 0.43 Å2g−1mol, with M being the chain molar mass. This is in excellent
agreement with the Small Angle Neutron Scattering (SANS)-based value (shown with the dot-
ted line) of ⟨R2

e⟩ = 0.434 Å2g−1mol given for PS at T = 413 K.174

The calculated root mean-square radius of gyration
⟨
R2

g
⟩1/2 as a function of the molecular

weight Mw is shown in Figure 3.2. Neutron scattering results175 for monodisperse PS of Mw

ranging from 21 kg/mol to 1100 kg/mol in the bulk at 393K have also been drawn (continuous
thin line) for comparison over the Mw scale of interest. Very good agreement is observed for
all the molar masses examined. This confirms that chains in our CG melts are well equilibrated
and adopt close to unperturbed configurations. At the CG level of representation, nanoparticles
do not seem to affect the dimensions of the chains, yielding identical results with the neat
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Figure 3.2: Root mean-square radius of gyration of the coarse grained chains as a function of
molecular weight, Mw, in the melt at 500K (triangular symbols). Neutron scattering measure-
ments for high molar mass PS are also included (rhomboid symbols).175 Grey dotted line is
linear least-squares fit.

polystyrene systems. However, this cannot be considered as a generally valid statement for
polystyrene nanocomposite melts (e.g. polystyrene chains have been found to swell upon the
addition of crosslinked polystyrene nanoparticles176).

3.3 Reverse Mapping

3.3.1 Target Atomistic Representation
The equilibrated coarse-grained configurations are reverse mapped to detailed configurations
which can be described by a united-atom model without partial charges, based on the works
of Mondello et al.164 and Lyulin and Michels.177 This united-atom model will be referred to
as “atomistic” in the following. It takes into account the following contributions to the system
potential energy: (i) Lennard-Jones nonbonded interaction potential between all united atoms
that are three or more bonds apart or belong to different images of the same parent chain; (ii)
bond stretching potential for every covalent bond; (iii) bending potential for all bond angles,
including those in the phenyl rings; (iv) torsional potential for all rotatable backbone bonds; (v)
torsional potential for the torsions of phenyl rings around their stems; (vi) out-of-plane bending
potential to preserve the coplanarity of the phenyl and the phenyl stem; (vii) torsional potential

71



Chapter 3. Segmental Dynamics and Stresses in PS - Fullerene Mixtures

about all bonds connecting aromatic carbons in the phenyl ring to preserve the planarity of
the ring and (viii) improper torsional potential to preserve the chirality of all carbons bearing a
phenyl substituent.178 Lennard-Jones parameters employed by the model are listed in Table 3.1.
All Lennard-Jones potentials are cut at an inner cutoff distance of 2.35σ, beyond which force
smoothing to zero using a cubic spline is applied up to a distance of 2.5σ. No tail corrections
are used for the nonbonded interaction potential. Our experience has been that this united-
atom model does a reasonable job predicting structure, volumetric properties, elastic constants
and stress-strain behavior in the melt and glassy state. In particular, the system adopts density
values close to those measured experimentally upon quenching into the glassy state.179

Fullerenes are described as fully flexible carbon cages. As far as intramolecular (bond
stretching, bending and torsional) contributions are concerned, the DREIDING forcefield has
been used.180 Intramolecular nonbonded interactions are not taken into account, while the inter-
molecular nonbonded interactions are described by a Lennard-Jones potential using the values
of εC60

and σC60
reported in Table 3.1, following the early but well validated work of Giri-

falco.162 A comprehensive review of C60 forcefields can be found in the work of Monticelli.181

In order to ensure the reliability of our atomistic MD simulations, all sets of parameters reported
by Monticelli have been tested, rendering indistinguishable results, as far as the trajectories and
the thermodynamic properties of the systems were concerned.

3.3.2 Procedure
The reconstruction of the atomistic detail, given a well-equilibrated coarse-grained configura-
tion, is accomplished in four stages. During the first stage, atomistic fullerenes are placed at
the positions of the coarse-grained beads used during the CG-MC equilibration, while paying
attention to select the orientation that minimizes the interaction energy with their environment.
The second stage consists of an iterative quasi-Metropolis introduction of the atomistic sites of
the polymer, obeying the atomistic potential described above. During the third stage, local MC
moves try to optimize the generated configuration. At the final stage, energy minimization is
undertaken before initiating the MD integration. Throughout the atomistic reconstruction pro-
cedure, CH2 united atoms containing the achiral carbons of the chains are kept fixed at the
positions of the superatoms of the coarse-grained configuration.

In order to restore the atomistic detail of the coarse-grained PS, a quasi-Metropolis proce-
dure is followed.165 During the reconstruction of the atomistic sites, the positions of the united
atoms added (aliphatic CH groups containing the chiral carbons of the chains, aromatic C and
CH groups constituting the phenyl substituents) are selected from a set of properly created
candidates, using as a criterion the increase in the total energy of the system. The first chiral
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Figure 3.3: Schematic of the initial reconstruction of the atomistic detail.

carbon of each chain is assigned randomly an absolute configuration, since this is not deter-
mined by the coarse-grained model, and the rest of the chiral carbons are placed according to
the chirality of the dyads. Starting from the CH2 sites, whose position vectors are the degrees
of freedom of the coarse-grained representation, backbone CH united atoms are selected from a
set of candidate positions lying in the circle formed by the intersection of two spheres, one cen-
tered at the previous CH2 atom and the other centered at the next one. The radii of the spheres
correspond to the equilibrium length of the backbone C-C bond. Based on the positions of the
aliphatic CH2 and CH united atoms, the carbon defining the stem of the phenyl ring is placed
so that the aliphatic CH - aromatic C bond generates close to equilibrium bending angles. Fi-
nally, the rings are introduced as planar objects, the plane of each ring containing the axis of
its stem, using as the only degree of freedom of the candidate positions the torsion angle of
the ring around its stem. During the whole regrowth, insertions of carbon atoms leading to a ḡ
(gauche-bar)182 conformation are strictly prohibited by assigning to them zero probability.

Following Spyriouni et al.,32 the configuration is optimized via local MC moves. These
moves include flip of a segment, rotation of the phenyl ring around its stem and configura-
tionally biased regrowth of a whole monomer, preserving the chirality of the CG site. A flip
move displaces an inner skeletal segment of the chain along the locus (circle) defined by the
lengths of the two bonds adjacent to the segment. The moves employed flipped a chiral carbon
(one carrying a phenyl) to a new position on the circumference of a circle drawn perpendicular
to the line connecting the carbons flanking it on either side. In addition, moves which regrow
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Figure 3.4: Illustration of the reverse mapping scheme. On the left hand side is shown a part
of the simulation box with fullerenes depicted as yellow spheres and PS chains as sequences
of m (cyan), r (purple), and em/er (brown) segments. On the right is the reverse-mapped
atomistic system. PS chains are unfolded and neighboring chains have been omitted for clarity.
Visualization made by using the VMD software.183

a whole segment in a configurationally biased way have been used.

The potential energy of the atomistic system is minimized with respect to the Cartesian co-
ordinates of all atoms, excluding the CH2 united atoms which coincide with the positions of the
coarse-grained sites. In this way, the equilibrated MC configuration is not distorted during the
reconstruction of carbon atoms through reverse mapping (Figure 3.4). For the minimization,
LAMMPS is used with a Hessian-free truncated Newton minimization method.184 Minimiza-
tion is performed in turns, by gradually blowing up the atomic radii.165 One starts with atoms
of reduced size (sigma equal to half its actual value), adjusting that size in stages so that the
atoms reach their full size at the end. As in earlier works, a modified potential energy function
was used to describe nonbonded interactions in early stages of the minimization, the so-called
soft sphere potential. After the introduction of the Lennard-Jones interactions, the collision
diameter, σ, is gradually increased from half to its final value. The reverse mapping scheme
just described was designed in order to prevent locking of the local configuration in torsional
states which are inconsistent with the unperturbed conformational statistics adopted by PS in
the melt, without departing at all from the well-equilibrated configurations provided by the
coarse-grained simulations. Validation of the reverse-mapped configuration against experi-
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mentally available information from pure polystyrene melts is necessary before proceeding to
examine the properties of nanocomposites. It is discussed in the following section.

3.3.3 Thermodynamic Properties and Structure of the
Reverse-mapped Configurations

The cohesive energy, Ucoh, is the energy associated with the intermolecular interactions only
and can be estimated by taking the difference between the total energy of the simulation box,
Utot, and that of the isolated polymeric chains, Uintra. In order to determine the intramolecular
energy, chains are considered not to interact with their periodic images. Hildebrand’s solubility
parameter, δ, is the square root of the cohesive energy density:

δ =

√
Uintra − Utot

V
(3.3)

with V being the volume of the simulation box. The solubility parameter, δ, was calculated
for the bulk reverse mapped structures of 1460 diads per chain. For this calculation the inter-
molecular interactions for each system were summed, averaged and divided by the simulation
box volume to obtain an estimate of the cohesive energy density. The square root of the co-
hesive energy density, averaged over all structures, was found to be equal to 7 cal1/2cm−3/2 at
T = 500 K. Experimental values for PS from viscosity measurements in different solvents,
range from 8.5 to 9.3 cal1/2cm−3/2 at 298 K.185 The discrepancy of about 18% is rather large
and can be partly attributed to the temperature difference (the cohesion of the polymer drops as
the temperature rises and so δ should decrease as well). The short-chain structure (made from
the single 80-mer parent chain) equilibrated with MD at 500 K gave an even lower solubility
parameter.

Nuclear Magnetic Resonance (NMR) measurements on atactic PS have helped gain insight
into the conformations adopted by its chains. Suter and collaborators186–189 have shown that
considerable deviations may occur between experimental findings and predictions obtained
from bulk atomistic model structures of PS; furthermore, they have proposed several algo-
rithms for the generation of atomistic structures by an appropriate choice of the target confor-
mational probabilities in the spirit of the Rotational Isomeric State (RIS) model. Having this
in mind, the ability of the proposed reverse mapping scheme to generate atomistic configura-
tions with correct conformational statistics is examined. The resulting torsional distributions
are shown in Figures 3.5 and 3.6 for meso and racemo diads, respectively.

The fusion of trans and gauche states is apparently produced by the atomistic potential at
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Figure 3.5: (a) Distribution of torsion angles for the meso diads of 1460-mer chains in the
bulk systems obtained via reverse mapping (green line pure PS, blue line composite) and in an
atomistic 80-mer system directly equilibrated by MD (red line). (b,c,d) Ramachandran plots for
pairs of successive torsion angles belonging to meso diads from the 80-mer atomistic system
(b), bulk 1460-mer system (c) and the composite 1460-mer (d).

this high temperature, since it is also present in the single-chain system which has been equi-
librated by MD. Comparing the curves in Figures 3.5 and 3.6 we observe that torsion angle
distributions in the reverse-mapped structures are extremely close to those obtained from the
80mer structure that was directly equilibrated by MD at the atomistic level, without interven-
tion of any coarse-graining and reverse mapping. This observation is extremely promising for
our reverse mapping scheme, implying that we can achieve well-equilibrated structures down
to the atomistic scale. The percentage of trans states is slightly increased in the presence of
fullerenes, both for meso and racemo diads. In the case of racemo diads, the effect is accom-
panied by an equal reduction of the gauche percentage, which may be attributed to a mild
extension of the chains trying to engulf the fullerenes. The overall content of trans confor-
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Table 3.2: Torsion angle distribution, averaged over all neat 1460mer reverse mapped struc-
tures

State frequency in %

t: −60◦ ≤ ϕ ≤ 60◦ g: 60◦ < ϕ ≤ 180◦ ḡ: −180◦ ≤ ϕ < −60◦

meso diads 54.2 43.4 2.4
racemo diads 66.7 31.7 1.6

overall 60.4 37.6 2.0

State a-priori RIS
probability (300 K)190 71 29 -

Double-quantum
solid-state NMR191 68 32 -

mations, as presented in Table 3.2 for the bulk systems, in the reverse-mapped structures is
around 60%, which is in reasonable agreement with the experimental 68± 10 % measured by
NMR.191 The total percentage of ḡ conformations in the reverse-mapped structures was 1.8%,
while, according to RIS models, it should be less than 2%.190,192,193 Clearly, capturing the cor-
rect torsion angle distribution is a stringent test for reverse mapping from the coarse-grained
representation adopted in this work. Previous efforts by Spyriouni et al.,32 and Ghanbari et
al.194 could not capture the correct local structure of polystyrene, leading to a high percentage
of unrealistic ḡ conformations.

Along with the torsion angle distributions in Figures 3.5 and 3.6, Ramachandran plots of
the two-dimensional distributions characterizing two successive torsion angles are also shown.
Following Flory et al.,182 in the case of a meso diad, ϕi is measured in the right-handed sense
and ϕi+1 in the left-handed sense. In the racemo diad obtained by inverting the chirality of
the second methine carbon of the diad, both torsion angles are measured in the right-handed
sense (the mirror image diad would require two left-handed frames of reference). Overall,
the convention used to define the sense of rotation of the torsional angles is such that the
same angles lead to the same molecular environments around the considered bond.195 In Figure
3.5(b) the plot concerns the single-chain 80-mer system. It can be seen that for this system, tg
and gt conformation probabilities are not equal, since the two regions are not evenly populated;
this reflects incomplete equilibration by MD, even in this short-chain melt. On the other hand,
systems produced by the proposed reverse mapping methodology, result in fully symmetric tg
and gt conformations. The presence of fullerenes does not seem to affect the probabilities of
successive torsion angles. In all cases, conformations involving ḡ torsion angles are extremely
rare.
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Figure 3.6: (a) Distribution of torsion angles for the racemo diads of 1460-mer chains in the
bulk systems obtained via reverse mapping (green line pure PS, blue line composite) and in an
atomistic 80-mer system equilibrated directly by MD (red line). (b,c,d) Ramachandran plots for
pairs of successive torsion angles belonging to meso diads from the 80-mer atomistic system
(b), bulk 1460-mer system (c) and the composite 1460-mer (d).

3.4 Atomistic Molecular Dynamics
All MD simulations have been conducted using LAMMPS,170 extended with the united-atom
force field of Lyulin and Michels,177 which we have incorporated into the LAMMPS source
code. The equations of motion are those of Shinoda et al.,196 integrated by the time-reversible
measure-preserving Verlet integrator derived by Tuckerman et al.197 In all cases, a timestep of
1 fs was used.

Initially, the reverse-mapped configurations were subjected to 50 ns of isothermal-isobaric
(NpT ) MD under T = 500 K and p = 101.325 kPa, using the barostat of LAMMPS. Keeping
the temperature fixed, 20 ns of isothermal (NV T ) integration followed, leading to the final 100
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ns time integration under constant energy (NV E), where the coordinates of the atoms were
tracked in order to extract the dynamical properties. The final configuration from the melt at
500 K was subjected to further NpT simulation with the set temperature T lowered by 20 K
every 40 ns (effective cooling rate 0.5 K/ns) down to a final temperature of 200 K. At every
cooling step (20 K), a configuration of the system was recorded and used for 50 ns ofNpT equi-
libration, followed by 20 ns NV T and 100 ns NV E MD run in order to extract the dynamics
at this temperature. All (three neat and three composite) independent reverse-mapped config-
urations were subjected to the same procedure. During the NV E run, the system’s pressure
and temperature were monitored in order to ensure that they correspond to the desired values.

We believe that NV E simulations, where no barostatting or thermostatting take place, are
the best means of studying dynamics under no external influence.198 The thermostatting and
barostatting is achieved by adding some dynamical variables which are coupled to the particle
velocities (thermostatting) and simulation domain dimensions (barostatting), in order to mimic
a reservoir coupled to the system. If the coupling is loose, the energy flow from the system to
the reservoir is slow. On the other hand, if the coupling is strong, long-lived weakly damped
oscillations in the energy occur, resulting in poor equilibration. It is necessary to choose the
strength of the coupling wisely, so as to achieve satisfactory damping of these correlations.199

3.4.1 Hydrogen Reconstruction
Hydrogen reconstruction aims at re-introducing hydrogens of CH3, CH2 groups and phenyl
rings. The procedure we followed is inspired by the work of Ahumada et al.200 Methyl hy-
drogens are reconstructed at a staggered conformation, i.e. a methyl C-H bond being coplanar
with the methyl stem and with the C-H bond of the methine group to which the methyl is con-
nected and pointing in an opposite direction to the latter bond. For all methyls, C-H bonds are
assumed to be bC−H = 1.10 Å long and to form an angle of θC−C−H = 110◦ with the methyl
stem. As far as the CH2 united atoms are concerned, two hydrogen atoms are placed symmet-
rically on both sides of the plane where the C-C bond lies, obeying the equilibrium bond length
bC−H and equilibrium bond angle θC−C−H. In the case of the CH united atom of the backbone,
the single hydrogen atom is placed entirely symmetrically to the phenyl ring, using as a plane
of symmetry the backbone of the chain. Finally, one hydrogen atom is attached to every aro-
matic atom in the direction defined by the center of mass of the ring and the carbon atom, at a
distance bC−H from it. The addition of hydrogens to an end of a polystyrene chain is depicted
in Figure 3.7.
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Figure 3.7: Schematic of the hydrogen reconstruction of the united atom model employed in
the present work. In the right-hand side figure (b) two vectors used for the study of dynamics
are marked. The vector connecting the chiral carbon to the center-of-mass of the phenyl ring
is marked in red, while an aliphatic C-H bond is marked in yellow.

3.4.2 Temperature Dependence of Segmental Dynamics
We examine the segmental dynamics of the atactic PS melt, as predicted by the united-atom
MD simulations, by analyzing time autocorrelation functions of various vectors. In the case
of polystyrene, the vectors characterizing the orientation of the phenyl ring and the orientation
of the C-H bonds are of special interest (Figure 3.7). The orientational decorrelation with
time for each one of these vectors can be studied by considering ensemble-averaged Legendre
polynomials of order k, Pk(t), of the inner product ⟨u(t0) · u(t0 +∆t)⟩ of the unit vector u
along the vector, at times t0 and t0 + t. It is quite common to fit the long-time behavior
of orientational autocorrelation functions of this kind by a modified Kohlrausch - Williams -
Watts (mKWW) function:201–203

Pk(t) = αlib exp
[
− t

τlib

]
+ (1− αlib) exp

[
−
(

t

τseg

)βKWW
]

(3.4)

The mKWW function of eq 3.4 consists of two parts. The first term describes a fast exponential
decay with amplitude αlib, which is associated with the fast librations of torsion angles around
skeletal bonds and with the bond stretching and bond angle bending vibrations of skeletal and
pendant bonds near their equilibrium values, with characteristic time τlib. The second term
is a stretched exponential decay associated with cooperative conformational transitions in the
polymer, with τseg being the characteristic correlation time and βKWW the stretching exponent.
The correlation time for segmental motion, τc, also referred to as “segmental relaxation time”

80



3.4. Atomistic Molecular Dynamics

-9

-8

-7

-6

-5

-4

-3

-2

 1.8  2  2.2  2.4  2.6  2.8  3

lo
g

1
0
(τ

c
) 

[P
1
(t

) 
p
h
e
n
y
l 
ri
n
g
 C

O
M

 -
 b

a
c
k
b
o
n
e
]

1000/T (K
-1

)

PS 152 kg/mol

Tg = 380.03 K
from WLF fit

PS 152 kg/mol + 1% C60

Tg = 381.25 K
from WLF fit

PS 152 kg/mol

WLF fit

PS 152 kg/mol + 1% C60

WLF fit

DS segmental PS 1.87 kg/mol
(Macromolecules 2011, 44, 393)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100  1000  10000

P
1
(t

)

t (ns)

T = 400 K

T = 500 K

Figure 3.8: Temperature dependence of the relaxation times obtained from MD simulations
corresponding to the P1(t) autocorrelation function of the vector connecting the backbone CH
group with the center of mass of the phenyl ring. Experimental points come from DS measure-
ments on neat low-molar mass PS.204 Fits to the WLF205 equation are also presented. In the
inset to the figure, P1(t) time autocorrelation functions from MD simulations (solid lines) are
depicted, along with their fits to eq 3.4 (dashed lines).

in the following, can be calculated as the integral:

τc =

∫ ∞

0

Pk(t)dt = αlibτlib + (1− αlib)τseg
1

βKWW
Γ

(
1

βKWW

)
(3.5)

with Γ being the gamma function (please see page xxxvii).

If a comparison with DS is sought, the relevant vector to study is the vector starting from
the backbone CH united atom and ending at the center of mass of the phenyl ring, uCH−CM. To
a good approximation, monomer dipole moments are directed along this vector. DS measure-
ments cannot discern between self and cross correlations of the dipole vectors. However, the
contribution of the correlations of neighboring dipole moments to the segmental relaxation is
minimal.206,207 In this case, the quantity of interest is the Legendre polynomial of the first kind:

P1(t) = ⟨ûCH−CM(t0 + t) · ûCH−CM(t0)⟩ . (3.6)

In the inset to the Figure 3.8 the calculated P1(t) functions are presented with solid lines for
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Table 3.3: Best fit parameters (mKWW equation) for the P1(t) autocorrelation functions of the
vector connecting the backbone CH group with the center of mass of the phenyl ring (Figure
3.8). All parameters are characterized by an uncertainty of 7 %.

parameters
Temperature (K) System βKWW τseg (ns) αlib

500 PS 0.47 2.32 0.05
PS + 1% C60 0.48 2.91 0.05

480 PS 0.52 6.17 0.041
PS + 1% C60 0.52 7.05 0.043

460 PS 0.58 25.47 0.04
PS + 1% C60 0.55 27.21 0.04

440 PS 0.59 39.97 0.04
PS + 1% C60 0.59 39.87 0.04

420 PS 0.61 293.37 0.04
PS + 1% C60 0.61 440.26 0.04

400 PS 0.53 1480.6 0.04
PS + 1% C60 0.61 2036.3 0.04

both the bulk and the composite systems. Along with the simulation results, fits to the mKWW
function (eq 3.4) are also presented. It can be seen that the mKWW expression describes
well the simulation results for both cases and the whole temperature range. Each simulation
curve represents the average of the three independent MD trajectories produced by the differ-
ent reverse-mapped structures. The fitting to the mKWW equation allows us to analytically
estimate the segmental relaxation time, τc, based on eq 3.5, using the fit parameters of Table
3.3.

The temperature dependence of the segmental relaxation times is presented in the main part
of Figure 3.8. Segmental relaxation times calculated by our united-atom MD simulations are in
favorable agreement with experimental DS measurements found in the work of Harmandaris
et al.204 Experimental points from ref 204 are shifted to smaller timescales, due to the smaller
molecular weight of the samples used in the DS measurements. This is expected, since PS
dynamics exhibits molecular weight dependence which can shift the glass transition temper-
ature from 314 K for 1.35 kg/mol PS to 373.3 K for 243 kg/mol PS.208 An estimate of the
glass transition temperature, Tg,sim, can be obtained by fitting the temperature dependence of
segmental relaxation times to an equation such as Williams - Landel - Ferry.205 Fitted values
of Tg are given in Figure 3.8, with the coefficients of the WLF equation:

log
(

τc

τc,g

)
= −

c1 (T − Tg)

T − Tg + c2
(3.7)
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Figure 3.9: Temperature dependence of the segmental relaxation times obtained through anal-
ysis of the P2(t) curve of the C-H bond vectors. Experimental points correspond to spin-lattice
relaxation210 and solid echo211 NMR measurements.

being c1 = 13.6 and c2 = 56 K, close to the universal values and the experimental ones of
Kumar et al.209 As can be seen in Figure 3.8, nanocomposite systems exhibit slightly longer
segmental relaxation times, compared to their neat counterparts, for the majority of tempera-
tures studied. This leads to an estimated glass transition shift of around 1 K upon the addition
of fullerenes. The Tg-shift predicted by the MD simulations is in excellent agreement to the
shift found by Differential Scanning Calorimetry (DSC) measurements of Kropka et al.148

However, for some temperatures, the dynamical behavior of unfilled and filled systems yields
completely indistinguishable results.

If one is interested in comparing with NMR data, an appropriate autocorrelation function
to look at is the orientational autocorrelation function of C-H bonds. The reason is that, for
2H nuclei, spin-lattice relaxation is dominated by electric quadrupole coupling and the spin
relaxation time can be directly related to the reorientation of the C-2H bond. In this case, the
second Legendre polynomial of the unit vector ûb directed parallel to a C-H bond:

P2(t) =
3

2

⟨
(cos θb(t0, t))

2⟩− 1

2
=

3

2

⟨
(ûb(t0 + t) · ûb(t0))

2⟩− 1

2
(3.8)

is employed as a measure of the polymer segmental dynamics. θb(t0, t) is the angle of the
bond vector ub at time t relative to its original position at the time origin t0 and the brackets
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Table 3.4: Best fit parameters (mKWW equation) for the P2(t) autocorrelation functions of
the C-H bond vectors (Figure 3.9). All parameters are characterized by an uncertainty of 6 %.

parameters
Temperature (K) System βKWW τseg (ns) αlib

500 PS 0.38 0.48 0.08
PS + 1% C60 0.39 0.63 0.09

480 PS 0.40 2.10 0.09
PS + 1% C60 0.41 2.45 0.10

460 PS 0.41 9.78 0.11
PS + 1% C60 0.48 10.07 0.10

440 PS 0.53 57.57 0.14
PS + 1% C60 0.55 46.01 0.13

420 PS 0.58 907.31 0.06
PS + 1% C60 0.53 1258.52 0.13

400 PS 0.48 30898 0.12
PS + 1% C60 0.53 63912 0.12

⟨...⟩ denote an ensemble average over all C-H bonds in the system and across different time
origins. Since our MD simulations were conducted using a united-atom model, hydrogens
were reconstructed upon post-processing the trajectories, following the procedure described
above.

Figure 3.9 presents the segmental correlation times, as extracted from the C-H vector
P2(t) autocorrelation functions from the simulation trajectories. The best fit parameters for
the mKWW equation used are reported in Table 3.4. To be consistent with the NMR mea-
surements, the weighted average autocorrelation function over the eight C-H vectors of each
monomer was taken into account for the estimation of relaxation times. Again, P2(t) functions
were fitted with a mKWW equation (eq 3.4) in order to predict the relaxation time. C-H bond
reorientation relaxation times are found to be in good agreement with the experimental data
of He et al.210 obtained by NMR spin-lattice relaxation experiments and with the solid echo
NMR measurements of Spiess and Sillescu.211 Despite the fact that our united-atom model
with reconstruction of hydrogens exhibits faster dynamics at short time scales, it can capture
reasonably well the evolution of autocorrelation functions at long timescales. Throughout the
temperature range studied in our MD simulations, the segmental relaxation times are found to
be in excellent agreement with the experimental measurements. Moreover, the nanocomposite
system under study exhibits slower segmental dynamics than the bulk. However, as in the case
of P1(t) analysis, the overall dynamics of the systems are really close to each other, prompting
the need for a local analysis of the segmental dynamics.
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Figure 3.10: Voronoi tessellation of the space with C60s acting as the centers of the tessellation.

3.4.3 Many-nanoparticle Influence on Dynamics
The study of local dynamics, when many nanoparticles are present, requires a tessellation of
space, so as to quantify possible many-body effects. Two possible tessellation schemes are
the partitioning of the space taken up by the material into Voronoi polyhedra, or their duals,
Delaunay tetrahedra. Inspired by the work of Starr et al.212 on glass-forming liquids, we choose
to carry out an analysis based on the Voronoi tessellation of the simulation box with fullerenes
acting as the centers of the Voronoi cells (Figure 3.10).

Voronoi polyhedra provide a direct way of quantifying the confinement imposed by a
fullerene on its neighborhood. Smaller distances between neighboring fullerenes yield Voronoi
cells of smaller volume. Thus, from now on, we will employ the volume of a Voronoi cell as
a measure of the confinement experienced by the polymer lying in it (the smaller the cell the
more confined the polymeric matrix around the specific fullerene). Some convenient features
of the Voronoi tessellation, over its dual, are the constant number of cells (which is equal to the
number of dispersed nanoparticles) and the significantly larger volume of the cells (since the
Voronoi cells are always by one order of magnitude fewer than the Delaunay tetrahedra). The
partitioning of the simulation box is carried out by using the well-established Voro++ software
library of Rycroft et al.213,214

3.4.4 Local Mean-square Displacement of Backbone Carbon Atoms
A rigorous way of studying the mobility of a polymeric melt is to calculate the mean-square
displacement (MSD) of backbone carbon atoms (eq 2.110). In order to avoid chain end ef-

85



Chapter 3. Segmental Dynamics and Stresses in PS - Fullerene Mixtures

Figure 3.11: Schematic of the Voronoi tessellation of the simulation box. One unfolded atom-
istic 1460mer chain is also shown. Dispersed fullerenes serve as the centers of the Voronoi
cells.

fects,215,216 only the innermost backbone carbons along the chain contribute to the calculations:

gi(t) =
1

2ninner + 1

N/2+Ninner∑
i=N/2−Ninner

⟨
(ri(t0 + t)− ri(t0))2

⟩
(3.9)

with the value of the parameter Ninner quantifying the number of innermost atoms, on each side
of the middle segment of each chain, that are monitored. In our case, Ninner is set in such a
way that we track half of the chain, excluding one fourth of the chain close to one end and one
fourth close to the other end.

Figure 3.12 presents the MSD of backbone carbon atoms as a function of time at a temper-
ature of 480 K for both the filled and unfilled systems. As can be seen, nanocomposite systems
exhibit lower mobility when compared to their neat counterparts. The MSD of backbone car-
bons is depressed upon the addition of fullerenes, in good agreement with the neutron scattering
observations of Kropka et al.148 In the inset to Figure 3.12, a logarithmic plot of the functions
gi(t) is presented. The scaling of gi(t) ∼ t1/2 is expected for the very short time behavior stud-
ied.89 As the tube model predicts (eq 2.111), the segments do not feel the constraints of the
entanglement network around them, following a Brownian motion in the free space available.
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Figure 3.12: Mean-square atomic displacements of backbone carbon atoms as a function of
time for filled and unfilled polystyrene systems at T = 480 K. In the case of fullerene
nanocomposites, an analysis of the dependence of backbone MSD on confinement is also pre-
sented for most and least confined Voronoi cells (indicative error bars also included). In the
inset to the figure, the same data are presented in logarithmic axes.

This behavior is expected for times t shorter than the characteristic time τe (t ≤ τe) when the
segmental displacement becomes comparable to the tube diameter. Likhtman and McLeish104

estimated that the time marking the onset of the effect of topological constraints on segmental
motion, τe, is 3.36 · 10−4 s for polystyrene. Since the results presented in Figure 3.12 go up to
20 ns, the scaling of t1/2 is fully justifiable.

We now move to the estimation of the local MSD, for the timespan an atom spends inside
a particular cell of the Voronoi tessellation. In our analysis we use the average MSD from
the three most confined and three least confined cells, averaged over the three independent
configurations created. We have observed that the volume of the Voronoi cells does not change
significantly as a function of time. Based on this analysis for the nanocomposite system, the
degree of depression is found to be a function of the confinement induced by the fullerenes. The
diffusion of chains is spatially inhomogeneous, as observed by Desai et al.152 Small Voronoi
cells tend to lead to higher mobility of the segments. This suggests an image of fullerenes
as small grinders dispersed in the polystyrene matrix. Despite the fact that the addition of
fullerenes limits the diffusion of polymeric chains, there exist regions in space, where the
polymer can recover part of its dynamics due to the high level of confinement.
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Figure 3.13: Mean-square atomic displacements of backbone carbon atoms as a function of
time for filled and unfilled polystyrene systems at T = 400 K. In the case of fullerene
nanocomposites, an analysis of the dependence of backbone MSD on confinement is also pre-
sented for the most and least confined Voronoi cells (indicative error bars also included). In
the inset to the figure, the same data are presented in logarithmic axes.
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The dynamic heterogeneity of the nanocomposite systems grows as the temperature is low-
ered. The local mean-square displacement of the backbone atoms, as a function of time, at a
temperature of 400 K is presented in Figure 3.13. As happens at higher temperature, the aver-
age MSD of the nanocomposite system is smaller compared to the average MSD of the bulk
one. However, carbon atoms lying in the most confined Voronoi cells present larger displace-
ments than the ones lying in the least confined. It can be observed that, despite the fact that
MSD absolute values are getting smaller as expected, their variance when one studies local dy-
namics is larger. This observation strengthens our hypothesis that fullerenes act as nanoscopic
grinders dispersed in the polymeric matrix, yielding strong deviation of polymer local dynam-
ics from the bulk in their close neighborhood.

3.4.5 Fullerene Rotational Diffusivity
The fact that the fullerenes are geometrically rigid on the atomistic scale (although clearly
vibrating) and essentially spherical enables their rotational motion to be readily characterized
using a single rotational diffusion measure. If e is any arbitrary unit vector embedded in the
cluster and passing through its center, then the orientational correlation function:

Ce(t) = ⟨ei(t)ei(0)⟩ (3.10)

can be computed. The simplest approach to define e is to use the separation vector between
each fullerene’s center of mass and a specific predefined atom.

The results for two temperatures (which were considered for the local MSD calculation),
are presented in Figure 3.14. The main plot contains the results for the temperature of 400 K,
while in the inset the rotational decorrelation function at 480 K is plotted. Despite the noise
in the measurements (since only the three most confined and three least confined fullerenes
contribute), it is clear that fullerenes which lie in the most confined cells rotate faster. There
are many signs of anomalous rotational diffusion of fullerenes, which imply a strongly hetero-
geneous environment. An in-depth study of the fullerenes’ rotational diffusion is outside the
scope of the present work. However, this surprising observation coheres to the image of the
nanoparticles acting as nanoscopic grinders which force the polymeric chains to translate in
their immediate neighborhood.
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Figure 3.14: Fullerenes’ rotational autocorrelation function. We consider a vector connecting
a fullerene’s center of mass with a predefined atom. The main figure refers to 400 K, while
the inset to the figure refers to 480 K.

3.5 Local Stresses

3.5.1 Atomic-level Stresses
Atomic-level stresses can serve as a basis for characterizing local structure. Egami et al.217

first applied atomic-level stresses to glasses in an atomistic computer model of amorphous iron.
Theodorou and Suter218 were the first to apply the idea of atomic level stresses to polymeric
glasses, where both bonded and nonbonded interactions contribute to the stress. Following ref
218, we define the atomic stress tensor for atom i, in a system with central forces by

σi,αβ = − 1

Vi

mivi,αvi,β −
1

2Vi

∑
j ̸=i

(ri,L − rj,α)
min.im. Fmin.im.

ij,β (3.11)

where ri and rj are the position vectors of atoms i and j, vi the velocity of atom i and Fij is the
force exerted on atom i by atom j. The indices α and β, indicating the three coordinate direc-
tions in a Cartesian system, assume the values x, y and z. The superscript “min.im.” indicates
interatomic distances and forces calculated according to the “minimum image convention”.
Thompson et al.219 have described different ways of formulating per-atom and global virial
and stress calculations, including how it is done in LAMMPS.170 According to their formula-
tion, a virial contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral angle)
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is assigned in equal portions to each one of these atoms.

In order to convert the virial into a stress, a local volume Vi has to be associated with each
atom. Here, we shall use a Voronoi tessellation to define atomic volumes,213,214 such that sum-
ming over all atoms gives the total volume of the system, V =

∑
i Vi. Note that this atom-level

Voronoi tessellation is much finer than the Voronoi tessellation with respect to fullerene centers
used to partition the sample volume among different fullerenes. Summation of all atomic-level
stresses σi, multiplied by the appropriate volumes Vi, yields the macroscopic stress; for a sys-
tem in detailed mechanical equilibrium the “internal” stress tensor σ is recovered (this is a
restatement of the virial theorem):134

σαβ =
1∑
i Vi

∑
i

Viσi,αβ (3.12)

Note that, as defined in eq 3.11, per-atom stress is the negative of the per-atom pressure tensor
divided by an appropriate atomic volume. Thus, if the diagonal components of the per-atom
stress tensor are summed for all atoms in the system and the sum is divided by 3V where V is
the volume of the system, the ensemble average of the result should be −p, with p being the
total pressure of the system.

3.5.1/i Atomic volumes obtained from a Voronoi tessellation of the space

Based on the Voronoi tessellation of the simulation box, the atomic volume of the atoms can
be extracted, being an alternative description of the empty space. A commonly mentioned
parameter is the so-called free volume, which can be defined as the unoccupied volume in a
configuration, in excess of that in the densest possible packing.220 In realistic descriptions of
polymeric atoms involving soft sphere potentials, the free volume cannot be unambiguously
defined. However, one may still ascribe a volume to each atom to represent the space it ef-
fectively occupies, and a consistent way to do this is by employing a Voronoi tessellation of
the space. For a particular atom, a larger (relative to other atoms of the same species) Voronoi
volume indicates lower local packing efficiency, and thus the presence of more free volume.
Figure 3.15 presents the distributions of atomic volumes accumulated for every type of inter-
action site separately. Aliphatic CH and aromatic C are characterized by low atomic volumes,
e.g. in the case of aliphatic CH the average atomic radius is 0.23 nm. Moving to atoms with
larger atomic volumes, like the aromatic CH, the effective radius becomes 0.29 nm. These
values are in excellent agreement with the first peak of the pair distribution function calcu-
lated by Mondello et al.164 using the same united-atom forcefield. Topologically, atoms lying
in smaller volumes tend to be associated with higher energy cost, because a missing or ex-
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Figure 3.15: Distribution of the volume of the Voronoi cells occupied by united atoms, for the
four types of centers present int the PS model (aliphatic CH, aliphatic CH2, aromatic C and
aromatic CH groups).

tra neighbor corresponds to a larger distortion with respect to the efficient packing scenario.
Thus, it is expected that i.e. aromatic C will be associated with higher atomic level stresses.
Our findings are in favorable agreement with the histograms of atomic volumes in PS presented
by Dammert et al.221 Upon cooling PS to the glassy state, we observe that the average atomic
volumes become smaller, as expected. However, aromatic CH and aliphatic CH2 united atom
are more affected by the temperature drop, than the aliphatic CH and aromatic C.

Moreover, the tessellation of the simulation box allows the coordination number of the
atoms to be extracted, which is a representative parameter that can describe local structure. In
crystals, the coordination number for every atom is fixed and deviations are found only at or
near defects. In disordered materials, like polymer melts and glasses, in contrast, each atom
is characterized by its own coordination number. The distribution of coordination numbers in
our model PS is presented in Figure 3.16. By employing a Voronoi tessellation of the simu-
lation box with the polymeric atoms acting as the centers of the Voronoi cells, we obtain the
coordination number of every atom from the number of faces of the Voronoi polyhedra formed
around the atoms. Aliphatic CH and aromatic C are characterized by low coordination num-
bers, on average 12 and 13 respectively, implying an environment of high local density. On the
contrary, aliphatic CH2 and aromatic CH lie in lower local density neighborhoods, character-
ized by higher coordination numbers (17 and 18 on the average, respectively). Based on Figure
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for the four types of centers present in the PS model (aliphatic CH, aliphatic CH2, aromatic C
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3.16, we can argue that the topology of the PS configurations is preserved during quenching
into the glassy state, since the distributions of coordination numbers are not affected by the
glass transition.

3.5.1/ii Atomic-level stress distributions

In polymer melts and glasses atoms are often in distorted environment, and this gives rise to
atomic level stresses. The average of the atomic level stress is equal to the external stress, which
is usually close to zero. We introduce two invariants of the atomic-level stress tensor217,218 for
characterizing local structure. The first is the “atomic-level hydrostatic pressure” pi, defined
by:

pi =
1

3
Tr(σi) (3.13)

Although pi is termed a “pressure”, it is really a tension or negative pressure. It can serve as a
measure of local density fluctuations in the material. A high, positive value of pi is associated
with a low coordination number around atom i and with a higher than average atomic density.
A low, negative value of pi is associated with a high coordination number and with lower
than average local atomic density. The second invariant is the “atomic-level von Mises shear
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Figure 3.17: Distribution of the atomic-level hydrostatic pressure (pi) for the four types of
centers present in the model PS melt (aliphatic CH, aliphatic CH2, aromatic C and aromatic
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simulation at two temperatures, T = 460 K and T = 200 K.

stress”, τvM,i, defined by

τ 2vM,i =
1

2
Tr
[
(σi − piI)2

]
(3.14)

where I is the matrix representation of the unit tensor. The quantity τvM,i reflects the degree of
asymmetry of the local environment around atom i.

Atomic-level stresses were calculated for an ensemble of 2000 configurations obtained
duringNV E MD simulations at several temperatures. The characteristic quantities pi and τvM,i

were calculated according to eqs 3.13 and 3.14, respectively. The distributions of pi and τvM,i

were accumulated seperately for each type of united atom interaction site (aliphatic CH and
CH2, aromatic C and CH, fullerene C) present in our system. These distributions are plotted in
Figures 3.17 and 3.19 for the bulk PS system and in Figures 3.18 and 3.20 for the composite (PS
+ 1% C60) system. The results reported have been obtained for a melt temperature (460 K) and
a temperature deep into the glassy state (200 K). The moments of the distributions are reported
in Tables 3.5 and 3.6. A striking feature, evident from all distributions, is the expected disparity
in magnitude between the atomic-level stresses σi and the box (macroscopic) internal stress
σ.218 There is a strong compensation effect in the summation of atomic-level stresses to the
overall stress (eq 3.12). Theodorou and Suter218 have observed atomic-level stresses of the
same order of magnitude as those reported here, in the case of well-relaxed configurations of
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Figure 3.18: Distribution of the atomic-level hydrostatic pressure (pi) for the five types of
centers present in the model PS-C60 melt (aliphatic CH, aliphatic CH2, aromatic C, aromatic
CH groups and fullerene C). The histogram is based on 2000 configurations obtained every 20
ps of MD simulation at two temperatures, T = 460 K and T = 200 K.

glassy atactic polypropylene.

Figures 3.17 and 3.18 reveal a distinct difference in the shape and position of the p distri-
bution between different interaction sites. Atomic-level stresses are sensitive to the topology
of bonded systems.218 Aliphatic CH2 and aromatic CH united atoms are under compression
(p < 0: low local density and high coordination number), while aliphatic CH and aromatic
C united atoms are under tension (p > 0: high local density and low coordination number).
The same observations can be made for the nanocomposite systems. Fullerene carbon atoms, in
the case of nanocomposite systems, are characterized by a broad p distribution centered around
zero. The second moment, which describes the width of the distribution, is the most signifi-
cant parameter, and in some cases acts as an order parameter. The spread of the p distribution
reflects variations in density of the local environments. The p distributions for aliphatic CH
groups and aromatic carbons are considerably broader than those of aliphatic CH2 and aromatic
CH groups, implying a variety of environments experienced by the atoms belonging to the for-
mer groups. The third moment of the distribution, skewness, is close to zero implying nearly
Gaussian distributions of atomic level hydrostatic pressures at both temperatures. Srolovitz et
al.222 made the same observation for the stress distributions of metallic glasses.

Upon cooling the system from the melt to the glassy state, all p distributions become nar-
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Table 3.5: Characteristic quantities (mean, standard deviation and skewness) of the p distribu-
tions as depicted in Figures 3.17 and 3.18.

species ⟨p⟩
(
⟨p2⟩ − ⟨p⟩2

)1/2
⟨p3⟩−3⟨p⟩(⟨p2⟩−⟨p⟩2)−⟨p⟩3

(⟨p2⟩−⟨p⟩2)
3/2

GPa GPa

PS Melt, T = 460 K

aliphatic CH 4.484 5.710 -0.151
aliphatic CH2 -1.876 3.137 -0.281

aromatic C 5.026 7.567 -0.129
aromatic CH -0.735 3.317 -0.257

PS Glass, T = 200 K

aliphatic CH 4.328 4.102 -0.131
aliphatic CH2 -1.939 2.370 -0.285

aromatic C 5.033 5.378 -0.107
aromatic CH -0.689 2.505 -0.279

Composite Melt, T = 460 K

aliphatic CH 4.475 5.717 -0.152
aliphatic CH2 -1.876 3.144 -0.279

aromatic C 5.007 7.579 -0.130
aromatic CH -0.738 3.321 -0.260
fullerene C -0.173 8.257 -0.103
Composite Glass, T = 200 K

aliphatic CH 4.338 4.113 -0.133
aliphatic CH2 -1.916 2.376 -0.290

aromatic C 5.012 5.393 -0.109
aromatic CH -0.696 2.507 -0.283
fullerene C -0.145 5.920 -0.087
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Figure 3.19: Distribution of the atomic von Mises shear stress τvM,i for the four united atom
species present in our model PS (see legend to Figure 3.17). The histogram is based on 2000
configurations obtained every 20 ps of MD simulations at two temperatures, T = 460 K and
T = 200 K.

rower, as evident from their standard deviations reported in Table 3.5. This can be partly
attributed to the kinetic term which depends on the temperature. A closer look on Figures
3.17 and 3.18 reveals that the mean values of the distributions also change. As the temper-
ature drops, aliphatic CH experience lower positive p, which means that the local density of
their environment increases. The same observation can be also made for the aliphatic CH2s
which experience lower (negative) p. On the contrary, aromatic CH groups experience higher
negative p, implying a lower coordination number in the glassy state. The average hydrostatic
pressure experienced by aromatic C is a weak function of the temperature, since their position
in between the chain’s backbone and the phenyl ring is stable and protected from their envi-
ronment. The addition of fullerenes to PS does not seem to affect the atomic-level hydrostatic
pressure distributions, neither in the melt nor in the glassy state.

Different species experience different shear stresses, as evidenced from Figures 3.19 and
3.20. The means and the standard deviations listed in Table 3.6 indicate that aromatic carbons
are characterized by the broadest distribution of atomic-level von Mises shear stresses. This can
be attributed to the exposure of the protruding phenyls to the surroundings of a chain, which
creates a highly asymmetric local environment. On the contrary, aliphatic CH2 interaction
sites experience a considerably lower average shear stress, due to their shielded position in
the backbone of the chain. The atomic shear-stress distributions (Figures 3.19 and 3.20) are
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Figure 3.20: Distribution of the atomic von Mises shear stress τvM,i for the five united atom
species present in our model PS-C60 (see legend to Figure 3.18). The histogram is based on
2000 configurations obtained every 20 ps of MD simulations at two temperatures, T = 460 K
and T = 200 K.

all skewed to the right (this is also the shape observed by Theodorou and Suter218) displaying
extended tails to the right. Fullerene carbon atoms exhibit high atomic von-Mises shear stress,
as expected, due to the stiff intramolecular potential which keeps them rigid.

The effect of temperature on the atomic von Mises stress distributions is the same as on
the hydrostatic pressure distributions. The spread of the τvM,i distributions in the glassy state
is limited compared to their spread in the melt state. Moreover, the average von Mises shear
stress experienced by all united atom species is lower upon quenching the PS into the glassy
state.

3.5.2 Local Stress Definition
In addition to the atomic-level stresses, we wish to obtain coarse-grained local stresses in a
control volume Vctrl to examine the influence of the observation length-scale on the estimated
stresses. There are several possibilities for computing the stress tensor in amorphous materials
on intermediate scales. A widely accepted approach has been to partition the simulation cell
into subvolumes, with only those atoms residing in each subvolume contributing to the local
stress tensor of the region.223 The stress tensor within a region can be computed by summing
atomic-level contributions (eq 3.11), where the sum runs only over those atoms that are in the
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Table 3.6: Characteristic quantities (mean, standard deviation and skewness) of the τvM distri-
butions as depicted in Figures 3.19 and 3.20

species ⟨τvM⟩
(⟨

τ2vM
⟩
− ⟨τvM⟩2

)1/2
⟨τ3

vM⟩−3⟨τvM⟩(⟨τ2
vM⟩−⟨τvM⟩2)−⟨τvM⟩3

(⟨τ2
vM⟩−⟨τvM⟩2)

3/2

GPa GPa

PS Melt, T = 460 K

aliphatic CH 13.039 4.556 0.543
aliphatic CH2 6.728 2.624 0.667

aromatic C 23.596 7.660 0.320
aromatic CH 12.225 3.430 0.528

PS Glass, T = 200 K

aliphatic CH 10.749 3.383 0.445
aliphatic CH2 5.750 2.097 0.557

aromatic C 22.183 5.728 0.214
aromatic CH 12.285 2.670 0.382

Composite Melt, T = 460 K

aliphatic CH 13.086 4.562 0.539
aliphatic CH2 6.714 2.630 0.673

aromatic C 23.635 7.680 0.326
aromatic CH 12.227 3.435 0.527
fullerene C 20.033 6.608 0.548
Composite Glass, T = 200 K

aliphatic CH 10.811 3.388 0.441
aliphatic CH2 5.730 2.094 0.543

aromatic C 22.203 5.753 0.222
aromatic CH 12.282 2.679 0.384
fullerene C 17.926 4.942 0.399

given region at a particular time:224

σlocal (Vctrl) =
1

Vctrl

∑
i∈Vctrl

Viσi (3.15)

This scheme converges to the stress of the simulation box, σb, eq 3.12, when the simulation
box is taken as a single domain. Similarly to the atomic-level stress tensor invariants, we can
define the “local hydrostatic pressure”, plocal (Vctrl):

plocal (Vctrl) =
1

3
Tr(σlocal (Vctrl)) (3.16)

and the “local von Mises shear stress”:

τ 2vM,local (Vctrl) =
1

2
Tr
[
(σlocal (Vctrl)− plocal (Vctrl) I)2

]
. (3.17)
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Figure 3.21: Difference of the local hydrostatic pressure from the hydrostatic pressure of the
box (bulk), plocal −pb, versus the size of the control volume used for summing the atomic-level
contributions. In the inset to the figure the dependence of the standard deviation (errorbars of
the main figure), ∆plocal, on the size of the domain is depicted. The pressure of the box was
tuned to 101.325 kPa.

3.5.3 Dependence of the Local Stress on the Observation Length-scale
The influence of the observation length-scale on local stress estimation is examined in Figures
3.21 and 3.22. As already pointed out, there is a strong compensation effect when summing
atomic-level stresses. Based on our simulation protocol, we check the stress tensor of the
whole simulation box in order to be on the average close to atmospheric pressure. During the
runs under constant energy, the hydrostatic pressure of the system, pb, as defined in Eq. 3.13,
is of the order of −0.1 MPa (please note the minus sign implying the positive macroscopic
pressure) without any drift. We then partition the simulation box into smaller cubic cells in
order to calculate the local stresses.

It is evident from Figure 3.21 that the hydrostatic pressure can be reliably estimated, ir-
respectively of the observation length scale. However, the standard deviation of the obtained
measurements scales as the inverse square root of the volume (inset to the Figure 3.21). The
same trend is observed for both melt and glassy configurations. In the glassy state, the standard
deviation is smaller, as the spread of atomic-level stress distributions is smaller (please see Ta-
ble 3.5). When moving to smaller length-scales, regions of positive and negative hydrostatic
pressure coexist. Regions of low density (negative pressure) resemble the distributed free-
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Figure 3.22: Local von Mises shear stress versus the size of the control volume used for sum-
ming the atomic-level contributions. In the inset to the figure the dependence of the standard
deviation (errorbars of the main figure) of the local von Mises stress, ∆τvM,local on the size of
the domain is depicted.

volume,225 but there are also regions of high density which could be called anti-free-volume.226

In metallic glasses, Egami et al.226 call the free-volume-like defects as n-type defects (nega-
tive density fluctuation) and the anti-free-volume p-type defects. Unrelaxed structures have
high density of n- and p-type defects. Structural relaxation is thought to occur through the
recombination of n-type and p-type defects.227 However, free-volume theory220 was originally
conceived for hard-sphere systems, such as molecular liquids and rare gas liquids, which are
far from our polymer melts and glasses.

On the contrary, the local von Mises shear stress is a function of the observation length-
scale, as presented in Figure 3.22. Deviations of the shear stresses from the normal ones be-
come more pronounced, as the volume of the reference domain becomes smaller. As the length-
scale of observation increases, fluctuations cancel each other, yielding lower shear stress. At
the length scale of the simulation box, shear stresses vanish. The length-scale dependence
of von Mises shear stress follows the inverse square root of the volume. This scaling can be
envisioned as the dependence of an equilibrium fluctuation quantity on the observation length-
scale. Moreover, the same dependence holds both for the melt and the glassy state.
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Voronoi cell they belong to. Error bars represent the standard deviation of the distribution
obtained by analyzing 2000 configurations at each temperature, obtained every 20 ps of MD
simulation.

3.5.4 Local Stresses in PS - Fullerene Mixtures
The influence of confinement on the local hydrostatic pressure, plocal, as defined in eq 3.16,
is examined in Figures 3.23 and 3.24. We first analyze the local pressure experienced by the
fullerene atoms, pC60, summing the stresses only for the 60 atoms constituting each fullerene
(Figure 3.23). Then we study the local hydrostatic pressure experienced by the surrounding
polymer atoms, ppolym. These quantities, when added, yield the negative of the box pressure,∑

i∈cells (pC60,iVC60,i + ppolym,iVpolym,i)

3V
= −pb (3.18)

where VC60,i is the sum of the volumes of the small (atomic) Voronoi polyhedra around the
carbon atoms constituting a fullerene. By construction, this contains the hollow space in the
fullerene, i.e. VC60,i is approximately equal to the volume of the fullerene sphere. On the other
hand, Vpolym,i is the sum of the small atomic Voronoi volumes of polymer atoms contained in a
larger Voronoi polyhedron around a fullerene obtained from the tessellation of the simulation
box based on C60 centers. The volume of the large Voronoi cell, i.e. the one used for quanti-
fying confinement, serves as the abscissa of both Figures 3.23 and 3.24. The number of atoms
per cell does not remain constant throughout the simulation but fluctuates slightly depending
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Figure 3.24: Local hydrostatic pressure of the polymeric atoms, ppolym, as a function of the
volume of the Voronoi cell they belong to. Error bars represent the standard deviation of the
distribution obtained by analyzing 2000 configurations at each temperature, obtained every 20
ps of MD simulation.

on the local particle density and the shape (number of faces) of the Voronoi cell. Inspecting the
local hydrostatic pressures, we see in Figures 3.23 and 3.24 that the pressure distributions are
almost symmetrically centered around the macroscopic set point pressure. The standard devi-
ation of the distribution of local pressures becomes larger, as the volume of the Voronoi cell
decreases. This fact is expected in the case of ppolym (Figure 3.24), where, as the length scale
of the observation becomes smaller, increasing fluctuations are observed.224 On the contrary,
in the case of pC60 (Figure 3.23), the dispersion of local pressures is not affected by the size
of the Voronoi cell the fullerenes occupy, since a constant number of atoms (60) contribute to
the local hydrostatic pressure. Fullerenes experience nearly zero hydrostatic pressure with a
rather narrow distribution around its mean value. Figures 3.23 and 3.24 indicate that the local
hydrostatic pressures are not sensitive to the temperature, in the melt state.

Figures 3.25 and 3.26 present the local von Mises stresses of fullerenes and surrounding
polymeric atoms, respectively. As evident from Figure 3.25, fullerenes experience strong shear
stresses, which seem to be independent of the volume of the Voronoi cell which they occupy.
The average fullerene von Mises shear stress is approximately 3 GPa, irrespectively of the
simulation temperature. This high value may be attributed to the stiff intramolecular potential
which makes fullerenes behave as rigid bodies. On the contrary, the local von Mises shear
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Figure 3.25: Local von Mises shear stress of the fullerenes, τC60, as a function of the volume of
the Voronoi cell they belong to. Error bars represent the standard deviation of the distribution
obtained by analyzing 2000 configurations at each temperature, obtained every 20 ps of MD
simulation.

stress of the polymer occupying a Voronoi cell is not fixed. It is a function of the volume of the
cell, as presented in Figure 3.26. Shear stresses become more pronounced, as the volume of the
reference domain becomes smaller. As the length-scale of observation increases, fluctuations
cancel each other, yielding lower shear stress. At the length scale of the simulation box, shear
stresses almost vanish. This length-scale dependence of von Mises shear stress has been also
found for pure PS. In both cases (pure and composite), the von Mises shear stress scales as the
inverse square root of the volume. By a careful look at Figure 3.26, it can be observed that the
addition of fullerenes shifts the von Mises shear stresses of polymeric atoms to slightly higher
values, retaining the same length-scale dependence.

3.6 Summary and Conclusions
In this chapter, we have outlined a strategy for simulating monodisperse long-chain atactic
polystyrene nanocomposite melts at two interconnected levels of description: a coarse-grained
one, wherein each diad along the chains is represented as a single interaction site, or “super-
atom”, and a detailed one, employing a united-atom model representation for the polymer.
Results from both levels, applied to a nanocomposite of high importance, have been presented.
We focus on high molecular weight PS melts with fullerene (C60) molecules dispersed at a
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mass fraction of 1% , specifications identical to systems already studied experimentally.148

A state-of-the-art Monte Carlo builder has been developed which can build polymeric
chains of arbitrary geometry in heavily constrained environments. It is based on the well-
known quasi-Metropolis scheme of Theodorou and Suter165 for generating amorphous con-
figurations in a bond-by-bond fashion. The original source code has been extended by an
on-the-fly minimization strategy for driving the insertion of monomers in constrained envi-
ronments. The minimizer generates a set of minima, from which one is selected following a
quasi-Metropolis procedure.

The coarse-grained simulations of the PS-C60 composite were based on the PS model
of Milano and Müller-Plathe.159 The coarse-grained model was equilibrated at 500 K us-
ing connectivity-altering Monte Carlo moves along with flips, rotations, reptations and con-
certed rotations.32 Chain conformations obtained through these coarse-grained simulations
were found to be equilibrated at all length scales. Chain dimensions, as predicted from the
mean square end-to-end distance (Figure 3.1) and from the mean square radius of gyrations
(Figure 3.2) were found to be in excellent agreement with available experimental evidence.
Chain conformations of the nanocomposite systems were found to be similar to the ones of the
neat polymeric systems. No effect of the dispersion of C60s on chain conformations has been
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observed at the coarse-grained level.

Well-equilibrated melt configurations sampled by coarse-grained MC were reverse-mapped
to the atomistic level. In continuation to the previous efforts on reverse mapping of coarse-
grained polystyrene, for the first time a rigorous and systematic approach is presented, which
yields atomistic configurations exhibiting characteristics in excellent agreement with experi-
mental measurements. Our approach encompasses three stages: (a) a quasi-Metropolis pro-
cedure for the re-introduction of the atomistic sites by selecting their locations from a set
of candidate ones. (b) A local Metropolis Monte Carlo simulation where flips, ring rota-
tions and configurationally biased regrowths of atomistic sites are used.32 This is the key
step in order to guide the reverse-mapping process into a conformationally reasonable sub-
space of the configuration space of the detailed model. (c) an energy minimization step using
the full atomistic forcefield with gradual introduction of nonbonded interactions. During the
whole reverse-mapping procedure, CH2 sites (centers of CG sites) are kept fixed, preserving
the well-equilibrated coarse-grained configurations. The distributions of torsion angles in the
reverse-mapped configurations (Figures 3.5(a) and 3.6(a)) are indistinguishable from those of
80-mer configurations equilibrated directly via MD using the same united-atom model. More-
over, configurations obtained from reverse mapping exhibit populations of trans, gauche and
gauche-bar conformations in favorable agreement with NMR data and RIS calculations. Also,
Ramachandran plots for successive torsion angles along the chain backbone (Figures 3.5(b,c,d)
and 3.6(b,c,d)) exhibit symmetric tg and gt peaks and extremely low percentages of tḡ and ḡt

sequences. Torsion angle distributions constitute a stringent test for reverse-mapped structures,
in which our reverse-mapping scheme fully succeeds.

The ultimate goal of our work, i.e. the study of PS-C60 dynamics at the segmental and local
levels, is accomplished via analyzing long MD trajectories of our well-equilibrated reverse-
mapped structures. Our simulation results generally indicate that the addition of C60 to PS leads
to slower segmental dynamics (as estimated by characteristic times extracted from the decay
of orientational time-autocorrelation functions of suitably chosen vectors). The characteristic
times found by fitting the P1(t) function of the orientation of the center of mass of the phenyl
rings with respect to the chain backbone suggest an increase of the bulk Tg of around 1 K,
upon the addition of C60s at a concentration of 1% by weight (Figure 3.8). This observation is
in favorable agreement with DS measurements of Kropka et al.148 who reported a Tg shift of
1 K. The same conclusion can be reached by studying the P2(t) function of the orientation of
C-H bonds. Despite the fact that we employ a united-atom model for our MD simulations, the
introduction of hydrogen atoms at a post-processing step yields reasonable dynamics for C-H
bonds in good agreement with spin-lattice relaxation and solid echo NMR measurements on
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molten polystyrene (Figure 3.9). Again, nanocomposite systems are found to exhibit slightly
slower dynamics compared to their neat polymer counterparts.

We then employ a space discretization in order to study the effect of C60s on segmental
dynamics at a local level. Each fullerene serves as the center of a Voronoi cell, whose volume
is determined by the neighboring fullerenes. Backbone carbons lying in every cell are tracked
throughout the MD trajectory and their mean-square displacement is measured for the time
they reside in the same cell. Overall mean-square displacement of backbone atoms is found to
be smaller in the presence of fullerenes, than in bulk PS (Figure 3.12). However, atoms moving
in smaller (more confined) Voronoi cells exhibit faster motion than the atoms moving inside
larger Voronoi cells. This can be correlated with the increased rotational diffusion of fullerenes,
as the volume of the Voronoi cell becomes smaller. These observations drive us to envision
fullerenes as nanoscopic millstones, inducing shearing stresses on their environment and thus
forcing the polymeric chains to move. The dynamic heterogeneity caused by the addition of
fullerenes exhibits strong temperature dependence, getting larger as the temperature is lowered.

Finally, we study the atomic-level and local stresses which are present in our systems. Each
united atom is characterized by a distribution of atomic stresses whose shape and position re-
flect its chemical nature, connectivity, and geometric disposition within the system. The addi-
tion of fullerenes causes an imperceptible broadening of the atomic-level stress distributions,
implying a slightly higher stress heterogeneity for the composite material. This observation
is further elaborated by the estimation of local stresses, at the level of Voronoi cells around
individual fullerenes, into which the system has been partitioned. Dispersed fullerenes are
characterized by large shear stresses, probably due to their intramolecular forcefield which re-
flects their rigidity. The local von Mises shear stress of the polymer has been found to scale
as the inverse square root of the volume of the material used for the calculation, as expected
from fluctuation theory. Local von Mises stresses are very similar between the neat polymer
and the nanocomposite, being slightly higher in the latter. They are also rather insensitive to
temperature.

Our analysis of polymer atom mean square displacement and fullerene rotational motion
implies that fullerenes greatly amplify the dynamic heterogeneity of the molten atactic PS, at
the same time slowing down its overall dynamics slightly. Further work is required to establish
the effect of the addition of nanoparticles on terminal relaxation and viscosity.
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.... 4. Structure of Polymer Layers
Grafted to Spherical
Nanoparticles

The structural features of polystyrene brushes grafted on spherical silica nanoparticles im-
mersed in polystyrene are investigated by means of a Monte Carlo (MC) methodology based
on polymer mean field theory. The nanoparticle radii (either 8 nm or 13 nm) are held constant,
while the grafting density and the lengths of grafted and matrix chains are varied systematically
in a series of simulations. The primary objective of this work is to simulate realistic nanocom-
posite systems of specific chemistry at experimentally accessible length scales and study the
structure and scaling of the grafted brush. The profiles of polymer density around the particles
are examined; based on them, the brush thickness of grafted chains is estimated and its scal-
ing behavior is compared against theoretical models and experimental findings. Then, neutron
scattering spectra are predicted both from single grafted chains and from the entire grafted
corona. It is found that increasing both the grafting density and the grafted chain molar mass
drastically alters the brush dimensions, affecting the wetting behavior of the polymeric brush.
On the contrary, especially for particles dispersed in high molecular weight matrix, variation
of the matrix chain length causes an almost imperceptible change of the density around the
particle surface.

4.1 Introduction
Considerable research effort has been devoted recently to studying the structure of systems of
polymers end-grafted onto spherical nanoparticles. The properties of end - constrained chains
strongly differ, at high grafting densities, from those of free chains. Tethering forces chains to
depart from their free-chain, random-walk isotropic configuration, causing them to stretch in
the direction perpendicular to the interface and to form a brushlike structure. Polymer brushes
find widespread industrial application as nanoparticle stabilizers. Recent experimental stud-
ies have shown that,53,228 most often, nanoparticles tend to aggregate into clusters or to form
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phase separated domains; consequently the property improvements which might arise due to
their nanoscale dimensions vanish. The ability to disperse nanoparticles grafted with polymer
brushes in a polymer matrix is of tremendous importance for producing polymer nanocompos-
ites with desired mechanical and rheological properties. When the coverage is high enough,
the nanoparticles are sterically stabilized, which results in good spatial dispersion.228,229 More-
over, spherical nanoparticles uniformly grafted with macromolecules robustly self-assemble
into a variety of anisotropic superstructures when they are dispersed in the corresponding ho-
mopolymer matrix.230

4.1.1 Scaling of Planar Polymer Brushes
A simpler system that is useful for understanding polymer brushes grafted on spherical nanopar-
ticles immersed in melts is that of a brush grafted to a planar surface in contact with a melt of
chemically identical chains. Important molecular parameters for this system are the Kuhn seg-
ment length of the chains, bK, the lengths (in Kuhn segments) of the grafted, Ng, and free, Nf,
chains, and the surface grafting density (chains per unit area), σg. The case of planar polymer
brushes exposed to low molecular weight solvent was studied theoretically by de Gennes231

and Alexander.232 These authors used a scaling approach in which a constant density was as-
sumed throughout the brush: all the brush chains were assumed to be equally stretched to a
distance from the substrate equal to the thickness of the brush. Aubouy et al.233 extracted the
phase diagram of a planar brush exposed to a high molecular weight chemically identical ma-
trix. Their scaling analysis is based on the assumption of a steplike concentration profile and
on imposing the condition that all chain ends lie at the same distance from the planar surface.
Five regions with different scaling laws for the height, h, of the brush were identified. For low
enough grafting densities, σg < N−1

g b−2
K and short free chains, Nf < N

1/2
g , the brush behaves

as a swollen mushroom, with h ∼ N
3/5
g . By keeping the grafting density below N−1

g b−2
K and

increasing Nf, so that Nf > N
1/2
g , the brush becomes ideal with h ∼ N

1/2
g . For intermediate

grafting densities, N−1
g < σgb

2
K < N

−1/2
g , high molecular weight free chains, Nf > N

1/2
g , can

penetrate the brush, thus ideally wetting it and leading to h ∼ N
1/2
g . Increasing the grafting

density while keeping Nf < N
1/2
g forces the chains to stretch, thus leading to a brush height

scaling as h ∼ Ng.

A numerical Self Consistent Field (SCF) calculation has been reported by Cosgrove et
al.,234 in which the density profile is no longer assumed to be a step profile and where the
end points of the chains are distributed throughout the brush. Analytical equations based on
a similar model were developed by Milner et al.235 and by Zhulina et al.236 In the wetting
state, the grafted and free chains are intermixed, along the full extent of the brush. If the
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matrix and the grafted chains demix, then the corona collapses and the brush is dewetted. A
detailed study of moderately stretched planar brushes exposed to moderately long melt chains
by Ferreira et al.237 found that the domain where attraction exists between two grafted layers
in a melt, and where partial wetting is thus expected, scales as σg

√
Ng > (Ng/Nf)

2. This
scaling law indicates that flat surfaces grafted with sparse polymer brushes in a long chain
polymer melt could exhibit entropic attraction, provided that the molecular weight of the matrix
is large enough. Experimental,238 SCF237 and Molecular Dynamics (MD)239 works on planar
polymer brushes, in a chemically identical matrix, have shown that the matrix wets the polymer
brush only when the melt chains are shorter than the chains of the brush. It is experimentally
observed240 that “autophobic dewetting”241 occurs when the brush and the matrix share the
same length. Longer melt chains spontaneously dewet the brush, because the gain in mixing
entropy cannot overcome the conformational entropy loss associated with the matrix chains
penetrating the brush.229

4.1.2 Scaling of Polymer Brushes in Convex Geometries
Similar ideas242 can be used to understand the configurations of polymer brushes grafted to
spherical nanoparticles dispersed in a polymer melt. Here the radius of the nanoparticle, ap,
enters as an additional parameter. Long polymers grafted to a surface at fixed grafting den-
sity, σ, are strongly perturbed from their ideal random-walk conformation.243 Planar geometry
scaling (infinite radius of curvature) is inadequate to explain the case when the particle size is
reduced to a level comparable with the size of the brushes. The SCF theory has been applied
to convex (cylindrical and spherical) surfaces by Ball et al.243 For the cylindrical case, under
melt conditions, it was found that the free ends of grafted chains are excluded from a zone near
the grafting surface. The thickness of this dead zone varies between zero for a flat surface to
a finite fraction of the brush height, h, in the limit of strong curvature, when αp/h is of order
unity, with αp being the radius of curvature of the surface. Borukhov and Leibler244 presented
a phase diagram for brushes grafted to spherical particles, in which the five regions of the work
of Aubouy et al.233 can still be located, but they also provide the scaling of the exclusion zone,
where matrix chains are not present. Such exclusion zones have been observed in a special lim-
iting case of grafted polymers, namely, star shaped polymers. Daoud and Cotton245 showed
that, in the poor-solvent limit, the free ends of the chains are pushed outward, because of high
densities near the center of the star. The Daoud-Cotton model assumes that all chain ends are
a uniform distance away, while the Wijmans-Zhulina model242 has a well-defined exclusion
zone. For Θ solvents, in the limit of large curvature (small particle radius, αp), the segment
density profile, ϕ(r), decreases with the radius as242 ϕ(r) ∝ σ

1/2
g (αp/r). It must be noted that
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ϕ is not linear in σg because the brush height depends on σg. In the limit of small curvature
(large Rn), a distribution of chain ends must be accounted for,235 leading the segment density
profile to a parabolic form:242 ϕ(r′) = (3σgNgb

3
K/h0) (h/h0)

2 (1− (r′/h))2 where bK is the
statistical segment length, r′ = r−Rn is the radial distance from the particle surface, h0 is the
effective brush height for a flat surface and h is the brush thickness. For large nanoparticles,
the above form asymptotically recovers the planar result (h → h0). In the case of intermediate
particle radii, a combination of large and small curvature behaviors is anticipated:242 the seg-
ment density profile exhibits large curvature behavior near the surface of the particle, followed
by a small curvature behavior away from it. Finally, following Daoud and Cotton, the brush
height is expected to scale as h ∝ σ

1/4
g N

1/2
g .

4.1.3 Previous Work
Hasegawa et al.229 used rheological measurements and SCF calculations to show that particles
are dispersed optimally when chains from the melt interpenetrate, or wet, a grafted polymer
brush (“complete wetting”). This occurs at a critical grafting density, which coincides with the
formation of a stretched polymer brush on the particle surface.231,232 Grafting just below this
critical density produces aggregates of particles due to attractive van der Waals forces between
them. The results of these authors suggest that mushrooms of nonoverlapping grafted polymer
chains have no ability to stabilize the particles against aggregation (“allophobic dewetting”).
Grafting just above this critical density also results in suboptimal dispersions, the aggregation
of the particles now being induced by an attraction between the grafted brushes. For high cur-
vature (small radius) nanoparticles, the polymer brush chains can explore more space, resulting
in less entropic loss to penetrate the brush, reducing the tendency for autophobic dewetting.

Detailed MD simulations by Peters et al.246 have been used to study the effect of passivat-
ing ligands of varying molar mass grafted to a 5-nm-diameter amorphous silica nanoparticle
and placed in various alkane solvents. Their study focused on the average height and den-
sity profiles for methyl-terminated alkoxysilane ligands exposed to either explicitly modeled,
short-chain hydrocarbon solvents or implicit good and poor solvents. Coating brushes equili-
brated in explicit solvents were more compact in longer-chain solvents because of autophobic
dewetting. The response of coatings in branched solvent was not significantly different from
that in the linear solvent of equal mass. Significant interpenetration of the solvent chains with
the brush coating was observed only for the shortest grafted chains. An implicit poor solvent
captured the effect of the longest chain length solvent at lower temperatures, while an implicit
good solvent produced coating structures that were far more extended than those found in any
of the explicit solvents tested and showed little dependence on temperature.
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A major challenge in simulating nanocomposite materials with chemically realistic models
is that both the length and the time scales cannot be adequately treated by means of atom-
istic simulations because of their extensive computational requirements. This is why a variety
of mesoscopic techniques have been developed for these particular systems. Kalb et al.247

and later Meng et al.248 have performed MD simulations where both brush and melt chains
were represented using the coarse-grained bead-spring model of Kremer and Grest.249 One of
their conclusions was that the conformational transition between a stretched “wet” brush and
a collapsed “dry” brush, which has been attributed to the autophobic dewetting of the brush
by the melt, was not readily apparent in their brush density profiles. The calculated Potential
of Mean Force (PMF) was found to go from purely repulsive to attractive by increasing the
molar mass of the matrix with a well depth on the order of kBT . These results were purely en-
tropic in origin and arose from the competition between brush-brush repulsion and an attractive
inter-nanoparticle interaction caused by matrix depletion from the inter-nanoparticle zone. In-
tegral equation approaches, such as the Polymer Reference Interaction Site Model (PRISM),
have provided important insight and detailed information about inter-particle potentials and
spatial correlations between the locations of the particles. As Schweizer and co-workers have
shown,15,250 there is a competition between tether-mediated microphase separation and matrix-
induced macrophase separation for nanoparticles dispersed in a polymeric matrix.

Significant progress has been made in applying the SCF theory to nanoparticle-filled poly-
mer matrices in the dilute and semi-dilute region.251–254 An attempt to overcome the restric-
tions posed by the saddle-point approximation was made by Sides et al.255 The coordinates
of all particles in the system were explicitly retained as degrees of freedom. It was crucial to
update simultaneously the coordinates and the chemical potential field variables. Laradji et
al.35 introduced the idea of evolving the explicit conformations of the molecules by standard
Metropolis MC, while obeying an Edwards mean-field Hamiltonian. The paper of Laradji et
al. was pioneering in introducing the concept of conducting particle-based simulations with
interactions described via collective variables and also two ways of calculating these collec-
tive variables: grid-based and continuum weighting-function-based. A clearer discussion of
this point is found in studies of brushes in poor solvent by Soga et al.256 Later, Daoulas and
Müller36 and Detcheverry et al.37 have extensively used this methodology to study a wide range
of polymeric systems. This technique has been very successful in describing the self-assembly
and the ordering of block copolymers on patterned substrates encountered in processes such
as nanolithography.257 Harton and Kumar52 have developed a Flory theory, coupled with the
SCF model of Scheutjens and Fleer, to probe the miscibility of homopolymer-grafted nanopar-
ticles with homopolymer matrices. Their main conclusions were that miscibility is improved
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with decreasing particle radius and increasing brush chain length. They have also found that
greater swelling of the brush by matrix chains is required for dispersion of larger brush-coated
nanoparticles.

Striolo and Egorov258 have employed both MC simulations and Density Functional The-
ory (DFT) calculations to investigate the interactions between spherical colloidal brushes both
in vacuum (implicit solvent) and in explicit solutions of nonadsorbing polymers. These au-
thors found that interactions between hard sphere particles grafted with hard-sphere chains are
always repulsive in implicit solvent. The range and steepness of the repulsive interaction is sen-
sitive to the grafting density and length of the grafted chains. When the brushes are immersed
in an explicit solvent of hard-sphere chains, a weak mid-range attraction arises, provided the
length of the free chains exceeds that of the grafted chains. This attraction may be due the
depletion of free chains from the region between the brushes. A comparison between the two
methods indicated that DFT is in semiquantitative agreement with MC results, but required a
small fraction of the computer time needed by MC.

4.1.4 Experimental Findings
Until recently, the experimental verification of theoretical and simulation predictions was most-
ly limited to global information concerning the brush, such as its average height, but not its
profile.259 Recently Chevigny et al.260 used a combination of X-ray and Small Angle Neutron
Scattering (SANS) techniques to measure the conformation of chains in polystyrene polymer
brushes grafted to silica nanoparticles with an average radius of 13nm dispersed in polystyrene
matrix. They found that, if the molecular weight of the melt chains becomes large enough, the
polymer brushes are compressed by a factor of two in thickness compared to their stretched
conformation in solution. Also, polymer brushes exposed to a high molecular weight matrix
are slightly compressed in comparison to brushes exposed to a low molecular weight matrix
environment. This observation implies a wet to dry conformational transition. The low molar
mass free chains can penetrate into the grafted brush and swell it (“wet” brush). Conversely,
when grafted and free chain molar masses are comparable, free entities are expelled from the
corona (“dry” brush). Later, they examined the dispersion of these grafted particles in melts of
different molar masses, Mf.261 They showed that for Mg/Mf < 0.24, the nanoparticles formed
a series of compact aggregates, whereas for Mg/Mf > 0.24, the nanoparticles were dispersed
within the polymer host.
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4.1.5 Proposed Approach
The present work examines the structure of atactic polystyrene brushes grafted on silica nanopar-
ticles, dispersed at the limit of infinite dilution,in polymer matrices of the same chemical consti-
tution (atactic polystyrene). Particular attention is given to capturing the chain conformation
of both matrix and grafted chains. The analysis is based on a coarse-grained MC simula-
tion method which has already been applied to a complex three-dimensional polymer-polymer
nanocomposite system.176 Although the level of description is coarse-grained (e.g., employ-
ing freely-jointed chains to represent the matrix), the approach developed aims at predicting
the behavior of a nanocomposite with specific chemistry quantitatively, in contrast to previ-
ous coarse-grained simulations. A main characteristic of the method is that it treats polymer-
polymer and polymer-particle interactions in a different manner: the former are accounted for
through a suitable functional of the local polymer density, while the latter are described directly
by an explicit interaction potential. The term “Field Theory-inspired Monte Carlo simulations”
accounts for this fact.262 The basic idea of FTiMC simulations is to use “soft” potentials based
on mean-field considerations that allow particle overlapping in continuum MC simulations.
For multichain systems, this gives much faster chain relaxation and better sampling of the
configurational space than conventional molecular simulations using “hard” excluded-volume
interactions that prevent particle overlapping. The main advantage of this approach over SCF is
that can directly sample polymer chain conformations, which is a formidable task for pure SCF
calculations. Our efforts will focus on the wetting/dewetting transition of the grafted polymer
brush, which is of great importance, since it is directly related to the phase separation/misci-
bility of the nanocomposite systems. Moreover, neutron scattering from these systems will be
predicted from a discrete Fourier transform of the real space coordinates of the whole system.
To the best of our knowledge, this is the first time an analysis of this kind is undertaken for
realistic nanocomposite systems matching experimentally studied ones.

4.2 Model and Simulation Methodology

4.2.1 Model
We provide here some details on the FTiMC model, which was introduced in ref 176. The
configurational partition function on which the MC sampling is based, ZFTiMC, is expressed
as a functional integral over the paths of all chains and as an integral over all nanoparticle
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positions and orientations:

ZFTiMC =
1

nf!

∫
nf∏
i=1

Dri(•)P0 [ri(s)]
np∏
k=1

d3rcm,kd2Ωk

ngk∏
jk=1

Drjk(•)P0 [rjk(•); rcm,k,Ωk]

× exp
(
−Hp [{rcm,k} , {ri(•)} , {rjk(•)}] +Hnb [ρ (r)]

kBT

)
(4.1)

For spherical nanoparticles, orientations play a role only when grafted chains are present. Here
np is the total number of nanoparticles, nf is the total number of free chains and ng,k is the
number of chains grafted to nanoparticle k. rcm,k and Ωk stand for the center of mass posi-
tion and orientation (Euler angles) of nanoparticle k, respectively. Each one of the ng,k chains
that are grafted to nanoparticle k is rigidly affixed to its surface by one of its ends. Dri (•) de-
notes functional integration over all possible conformations (“paths”) of chain i. The statistical
weights P0 [ri(•)] and P0 [rjk(•); cm,k,Ωk] incorporate bonded interactions along each one of
the chains; in the implementation employed here, they correspond to freely jointed chains.

4.2.1/i Polymer non bonded interactions

The effective Hamiltonian Hnb [ρ (r)] represents nonbonded interactions among chains, either
free or grafted. An approximation based on the mean-field averaging out of small scale fluc-
tuations is applied to this latter contribution. Instead of expressing the nonbonded interaction
energy as a sum of pairwise interactions between segments, as is done in atomistic and coarse-
grained simulations, we assume that it is as a functional of the three-dimensional density dis-
tribution of polymer segments, ρ (r). The density distribution is calculated by partitioning the
system into cells using a cubic grid of spacing ∆L. We then assign each polymer segment to
the center of the cell to which it belongs. The contribution from terminal segments is assumed
to be half that of the interior segments in this assignment. The volume of each cell is taken as
(∆L)3 minus the volume of any sections of nanoparticles that find themselves in the cell; it is
computed via a fast analytic algorithm.263 Following early work by Helfand and Tagami,264 a
functional of local density is derived heuristically, guided by the macroscopic thermodynamic
behavior of the system. The nonbonded effective Hamiltonian, punishes departures of the local
density in each cell from the mean segment density ρ0 in the melt under the temperature and
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pressure conditions of interest:

Hnb [ρ̂ (r)] =
κ0 (∆L)3

2ρ0

Ncells∑
m=1

(ρ̂m − ρ0)
2 (4.2)

The prefactor κ0 is related to the isothermal compressibility κT of the melt via

κ0 =
1

kBTκTρ0
. (4.3)

4.2.1/ii Nanoparticle - polymer and nanoparticle-nanoparticle interactions

The effective HamiltonianHp [{rcm,k} , {ri(s)} , {rjk(s)}] encompasses, in general, nanoparticle
- nanoparticle and polymer - nanoparticle interactions:

Hp [{rcm,k} , {ri(s)} , {rjk(s)}] =
np∑
k=1

{
nf∑
i=1

Nf∑
s=0

Vps (ri(s)− rcm,k)

+

np∑
l=1

ngl∑
jl=1

Ng∑
s=0

Vps (rjl(s)− rcm,k)

}

+

np−1∑
k=1

np∑
l=k

Vpp (rcm,l − rcm,k) (4.4)

where Vps stands for the nanoparticle - polymer and Vpp for the nanoparticle - nanoparticle
interaction potentials. The summation of the former, Vps, extends over all free and grafted
segments of the system, excluding only the interaction between the segments which are di-
rectly connected to a particle and the particle itself. The latter one is summed over all pairs of
nanoparticles. They are calculated from the center of mass positions and radii of the nanopar-
ticles and polymer segments and from the densities of the atoms constituting each nanoparticle
and each polymer segment, as a sum of Hamaker integrated potentials.

The interaction of a polymeric segment and a nanoparticle can be calculated using eqs 11-
13 of ref 176, with suitable Hamaker constants for the polymer and the particle. The polymer
- nanoparticle interaction term, Vps (ri (s)− rcm,k), can be split into an attractive and repulsive
term as:

Vps (ri (s)− rcm,k) = Vrep (rps)− Vatt (rps) (4.5)

where we introduce rps = ∥ri (s)− rcm,k∥ as the distance between the center of mass of the
k-th nanoparticle, rcm,k, and the s-th segment of the i-th chain, ri (s). The attractive term,
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following a Hamaker type integration (e.g. assuming uniform density of interaction sites), is
given as:265

Vps,att (rps) =
A eff

PS-SiO2

6

[
2αpαs

r2ps − (αp + αs)
2 +

2αpαs

r2ps − (αp − αs)
2

+ ln

(
r2ps − (αp + αs)

2

r2ps − (αp − αs)
2

)]
(4.6)

The repulsive term is given as:265

Vps,rep(rps) =
A eff

PS-SiO2
σ6

eff

37800rps

[
r2ps − 7rps (αp + αs) + 6

(
α2

p + 7αpαs + α2
s
)

(rps − αp − αs)
7

+
r2ps + 7rps (αp + αs) + 6

(
α2

p + 7αpαs + α2
s
)

(rps + αp + αs)
7

−
r2ps + 7rps (αp − αs) + 6

(
α2

p − 7αpαs + α2
s
)

(rps + αp − αs)
7

−
r2ps − 7rps (αp + αs) + 6

(
α2

p − 7αpαs + α2
s
)

(rps − αp + αs)
7

]
(4.7)

where αp corresponds to the radius of the particle and αs corresponds to an effective radius of
the polymeric segment.176 The effective radius of the sphere representing a polymeric segment,
αs, is chosen such that (4/3)πα3

s equals the volume per Kuhn segment in the bulk polymer, as
calculated from the mass corresponding to a Kuhn segment and the experimental mass density
(αs ≃ 0.67 nm for polystyrene (PS)). The closest distance of approach is equal or greater than
the radius that is used for the estimation of the Hamaker interaction between the nanoparti-
cle and the Kuhn segment. The magnitude of the interactions is determined by the Hamaker
constant A eff

PS-SiO2
, which governs the effective interaction between a polymeric segment and a

nanoparticle. We describe below how this parameter can be evaluated. The same expressions
can be used for the interaction between two nanoparticles. In this case, the Hamaker constant
to be used is Aeff

SiO2
.

4.2.1/iii Hamaker constants estimation

The Hamaker constant governing the interaction between two spherical bodies can be calcu-
lated as:265

A = 4π2ϵLJ
(
ρLJσ

3
LJ
)2 (4.8)
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where ϵLJ, σLJ are the atomistic Lennard-Jones interaction parameters, and ρLJ the density
of atomistic interaction sites in the macroscopic body. The silica particle contributes only
the interaction of its oxygens with the polymeric matrix (ϵO,σO for silica266), while atomistic
Lennard-Jones parameters for CH(aromatic), CH2(aliphatic) and CH3(aliphatic) sites of PS are
used.32 For every kind of interaction site of PS, the corresponding Hamaker constant is cal-
culated by assuming ρLJ to be the density of the corresponding kind of sites in the bulk poly-
mer. Electrostatic interactions are not taken into account either for silica or for polystyrene.
Hamaker constants, obtained here by integration of the Lennard-Jones potentials used in atom-
istic simulations of the system, are within experimental range for polystyrene267,268 and sil-
ica.269 The corresponding values are provided in the “Simulation Details” subsection.

The repulsive term includes an effective collision diameter, σeff, which can be calculated
as σeff = (σ̄p + σ̄s) /2 with σ̄p and σ̄s being the weighted arithmetic mean of σ parameters of
nanoparticle and polymeric segment interaction sites, respectively. The weights correspond to
the number of sites of each kind contributing to the coarse-grained site. For the silica particle
σp = 0.3 nm and for polystyrene σ̄s = 0.371 nm.

The reference level of the employed Hamiltonian (eq 4.2) for the homopolymer melt is that
of a melt with uniform density profile. In this case, the effective interaction energy between
two polymeric beads is taken as zero. The effective Hamaker constant of polymer-nanoparticle
interaction should be such that, if the volume of the nanoparticle were occupied by bulk ho-
mopolymer, then the energy of the system would be zero. The insertion of a nanoparticle in a
uniformly-distributed melt can be thermodynamically accomplished in two steps: a spherical
volume of polymer, whose net interaction with the rest of the polymer matrix depends on APS,
is removed from the melt and a nanoparticle with equal volume is placed in its position, intro-
ducing a new net interaction depending on

√
APS ASiO2

with the remaining bulk polymer.270

Thus, the Hamaker constant of the effective interaction can be calculated as:

A eff
PS-SiO2

=
√

APS ASiO2
− APS , (4.9)

and used for the nanoparticle - polymeric segment interaction, Vps, following the expressions
presented above. The corresponding Hamaker constant of the effective interaction between
two nanoparticles can be obtained as:

A eff
SiO2-SiO2

= ASiO2
+ APS − 2

√
ASiO2

APS (4.10)
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4.2.2 Initial Configuration
To start the FTiMC simulation, an initial configuration is generated by placing the nanoparti-
cles at randomly selected positions, so that they do not overlap, and then building the polymeric
chains around them. The first chains to be built are the grafted ones. Initially, the grafting
points are randomly selected on the surface of the particle. Then, these points are allowed to
move freely on the surface of the particle (via a MD-like procedure), under the influence of a
repulsive pseudo-potential between them. This step is undertaken in order to mimic the more
or less uniform distribution of initiators and linkers connecting grafted chains to the nanoparti-
cle surface, observed experimentally. Both grafted and free chains are grown as random walks
in a segment-by-segment fashion. When the addition of a segment fails (due to the constrained
environment imposed by the particle), a geometric algorithm is used in order to drive the in-
sertion of the segment towards higher free-volume regions. The initial configurations created
by this method exhibit large local density fluctuations. These fluctuations increase with in-
creasing chain length. A zero temperature MC optimization procedure takes place in order to
reduce the density fluctuations. During this stage, all moves leading to a more uniform density
profile, thus decreasing the density fluctuations, are accepted. In the opposite case, they are
rejected.173

4.2.3 Equilibration
Equilibration during a FTiMC run is achieved through MC based on the probability density as-
sociated with the partition functionZFTiMC. The fact that chain-chain interactions are accounted
for only approximately through Hnb, allows bold rearrangements of the chain conformations to
be attempted with significant probability of success. Rigid displacements and rotations of the
chains, mirroring transformations through planes passing through the chain centers of mass,
and exchanges of entire chains keeping their center of mass positions fixed, are used.173 In ad-
dition, the internal conformations of chains are sampled using flips of internal segments,176 end
segment rotations,176 reptation271 and pivot272 moves. Grafted chains equilibrate only through
flip, end rotation and pivot moves, which keep their grafted end constrained. An additional MC
move entails attempting random translations of the origin of the grid used for the estimation of
local densities, within a cube of edge length ∆L. Following each such translation the energy
of the system is recalculated and the move is accepted or rejected according to the standard
Metropolis selection criterion. This grid translation move has been included in order to avoid
artifacts due to spatial discretization.

In order to equilibrate the structure of the polymeric matrix, a mixture of MC moves is
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Table 4.1: Mixture of moves and their acceptance rates for a system consisting of an 8-nm-
radius SiO2 particle grafted with 20 kg/mol grafted PS chains (σg = 0.7 nm−2) dispersed in
100kg/mol PS matrix.

Moves Mix of moves (%) Acceptance rate (%)
Free chains
Translation 8.9 0.048

Rotation 4.4 ∼ 10−3

Reflection 4.4 ∼ 10−3

Inversion 4.4 ∼ 10−3

Exchange 4.4 ∼ 10−3

Flip 9.0 38.72
End rotation 4.4 30.09

Reptation 13.3 19.52
Pivot 35.6 1.083

Grafted chains
Flip 2.2 31.26

End rotation 1.0 27.14
Pivot 8.0 4.929
Grid

Translation 10−4 ∼ 10−2

utilized. Five moves are employed which treat the entire chains as rigid bodies: translation of
individual chains in random direction, rotation of individual chains by random angles around
random axes through their centers of mass, reflection of individual chains at random mirror
planes going through the center of mass, inversion of individual chains at their centers of mass
and exchange of two chains preserving the center of mass positions. Furthermore, the internal
shape of the chains is restructured by four intramolecular moves: the flip, the end rotation,
the reptation and the pivot move.176 The exact mixture of moves used for the equilibration
of a system consisting of a densely grafted particle is presented in Table 4.1. Moreover, the
equilibrium acceptance rate of each move is included in the table.

4.2.4 Simulation Details
The systems considered were dilute dispersions of silica nanoparticles with atactic PS chains
grafted on their surface, in atactic polystyrene melts. Molecular parameters needed for the
FTiMC simulations, as explained above, are summarized in Table 4.2. The radius of the
nanoparticles, αp, was either 8 nm or 13 nm. Both grafted and free chains of polystyrene
were strictly monodisperse. The molecular weight of the free chains, Mf, and of the grafted
chains, Mg, was varied, and the corresponding numbers of Kuhn segments, Nf and Ng, were
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Table 4.2: FTiMC simulation parameters

Parameter Value
Temperature, T 500 K

Mean polymer density, ρ0 0.953 g/cm3

Amorphous silica density, ρSiO2
2.19 g/cm3

Compressibility, κT 1.07× 10−9 Pa−1

Kuhn segment length, bK 1.83 nm
Kuhn segment molar mass 729.05 g/mol

Estimated APS 5.84× 10−20 J
Estimated ASiO2

6.43× 10−20 J
Grid edge length, ∆L 2.5 nm

calculated based on the molar mass of a Kuhn segment, listed in 4.2. The molecular charac-
teristics of the systems studied, i.e., the degree of polymerization of the chains, the radius and
grafting density of the silica nanoparticles, have been selected in such a way as to match sys-
tems which have been or can be studied experimentally.260,273,274 All simulations were carried
out in the canonical statistical ensemble. The temperature of the system was T = 500K. The
simulation box was cubic with varying edge length from 80 nm to 200 nm. Within such a box
a single nanoparticle was placed, thus leading to a volume fraction of nanoparticles, φ, less
than 1%. It should be noted that, for all chain lengths, the edge length is at least an order of
magnitude larger than Rg,0, with Rg,0 being the unperturbed radius of gyration of a chain, so as
to avoid finite size effects (Rg,0 ≃ 8.7 nm for 100 kg/mol PS). The grafting density, σg, varied
from 0.2 nm−2 to 1.1 nm−2. It was manipulated by defining the number of grafted chains,
ng, on the nanoparticle surface. Most experimental work up to now has been concentrated on
low grafting densities (around 0.2 nm−2).230,273 However, silica particles with higher grafting
densities (around 1.0 nm−2) coated with asymmetric block copolymers have also been syn-
thesized.275 The number of free polymer chains in the system, nf, was varied according to the
chain length so that the mean density of polymer in the accessible volume of the model system
was 0.953 g/cm3, matching the experimentally measured value.276 The Kuhn segment length,
bK, is 1.83 nm, which corresponds to seven styrene monomers.

4.3 Results and Discussion

4.3.1 Equilibration Efficiency
The ability of the simulation scheme to equilibrate the systems under study, is first demon-
strated in Figure 4.1, which displays the orientational autocorrelation function Au(t) = ⟨u(t) ·
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Figure 4.1: Decay of the chain end-to-end vector orientational autocorrelation function
Au(t) = ⟨u(t) · u(0)⟩ for four systems consisting of a 8-nm-radius nanoparticle grafted with
25 kg/mol grafted chains at σg = 0.2 nm−2 grafting density.

u(0)⟩ of a unit vector u directed along the chain end-to-end vector, which was evaluated as
a function of the number of MC moves tried. The autocorrelation functions in Figure 4.1 are
studied for four different molecular weights of free chains. All different molecular weights
are studied in the highly constrained systems consisting of a 13-nm-radius nanoparticle with
Mg = 25 kg/mol grafted chains. The shortest chain systems exhibit the fastest equilibration
rate due to the intramolecular moves, especially pivot, which alters a significant part of the
chain in a step. As we switch to longer molecules, intramolecular moves become less effi-
cient, rendering the relaxation of these systems slower. We note that the equilibration length
of our simulations varied between 60 and 80 billions of MC moves, more than two times the
time needed for the slowest end-to-end vector orientational autocorrelation function to drop to
zero.

In order to assess the equilibration of grafted chains, we select the decay of the orienta-
tional autocorrelation of the projection of their end-to-end vector on a plane tangent to the
surface of the particle at the grafting point. The vector up is shown in Figure 4.2 for a sim-
ple chain consisting of five Kuhn segments. The autocorrelation function can then be defined
as Aup(t) = ⟨up(t) · up(0)⟩. The behavior of this function is presented in Figure 4.3 for in-
creasing grafting density. For all grafting densities, the autocorrelation function exhibits an
oscillation, implying that chains can change efficiently their orientation relative to the surface

123



Chapter 4. Structure of Polymer Layers Grafted to Spherical Nanoparticles

Figure 4.2: The projection of the end-to-end vector of the grafted chains, up at two different
configurations, separated by t MC moves, during the course of the simulation.

of the particle, exploring a variety of configurations during the simulation.

4.3.2 Discretization Effects

4.3.2/i Long-ranged correlations

In a dense polymer melt, density fluctuations are strongly supressed on large length scales,
resulting in the screening of excluded volume interactions among the segments. The correla-
tions of local segment density in homopolymer melts are characterized by the structure factor
Stot(k), i.e. the Fourier transform with respect to distance r − r′ of the density correlation
function ⟨ρ (r) ρ (r′)⟩, where brackets denote the average in the canonical ensemble. Since our
simulations deal with explicit particle coordinates, Stot(k) can be calculated according to:

Stot(k) =
1

nf (Nf + 1)

⟨∣∣∣∣∣
nf∑
j=1

Nf∑
s=0

e−ik·rj(s)

∣∣∣∣∣
2⟩

(4.11)

where rj(s) stands for the position vector of the s-th segment of the j-th chain. The limiting
value of the total structure factor at large length scales, k → 0, is directly connected to the
compressibility of the system:

lim
|k|→0

Stot(k) =
1

kBTρ0κT
(4.12)

where ρ0 is the mean segment density and κT the isothermal compressibility. By calculating
Stot(k) for a range of k-vectors, the compressibility of the system can be estimated as a function
of the observation length scale.
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Figure 4.4 presents the compressibility of a bulk PS homopolymer system as a function
of the scattering vector k used for the calculation of the total structure factor. Coarse-grained
simulations with soft interactions are performed with potential expressions and parameters
which yield more compressible systems than their atomistically simulated counterparts. This
applies to our simulations, if compressibility is estimated at small lenght scales. However, at
large length scales compressibility values lie in the range expected for experimental systems.

4.3.2/ii Absence of preferred packing relative to the grid

Throughout the course of the simulation, random translations of the grid are employed (sub-
jected to a Metropolis acceptance criterion) in order to avoid possible grid induced artifacts.
Grid-based interactions might induce a preferential location of Kuhn segments within a grid
cell. In order to elucidate whether such an artifactual local packing effect exists, Figure 4.5
presents a two-dimensional contour plot of the density distribution of segments belonging to
both free and grafted chains in a plane cutting through the center of the particle. In order to
calculate the contour of density, a 4-nm-thick slab is defined along the z-axis. All free and
grafted segments lying inside it are counted and the resulting density is averaged across a MC
simulation of 20 billion moves. The xy−plane is discretized in such a way that the projection
of a grid cell is split into 25 equally-sized squares. The estimated density is then normalized. If
any square of the slab resolution lattice contained exactly the same number of Kuhn segments,
the contour plot would have a uniform color. However, deviations from mean density exist,
but the distribution of local densities is random. Based on the contour plot of Figure 4.5 no
preferential positioning of Kuhn segments with respect to the density discretization grid can
be observed.

4.3.3 Local Structure
The local density of the polymer in proximity of the surface is often employed as a measure
of the strength of polymer-surface interactions. Radial mass density profiles and cumulative
mass distributions are studied here for various combinations of particle radii, grafting densities,
and embedding matrices in order to quantify how these factors affect the size and form of the
corona of grafted chains, as well as the distribution of free chains around a nanoparticle.

4.3.3/i Influence of grafting density

Figure 4.6 depicts the effect of grafting density on the packing of free and grafted chains near
the surface of the particle. Grafted chains dominate the interfacial region, thus contributing
more than free chains to the total density calculated near the nanoparticle surface. The ten-
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Figure 4.5: Contour plot of the normalized local density of free and grafted segments lying in
a slab passing through the center of an 8-nm-radius particle. The grafting density is 0.7 nm−2,
the molar masses of grafted and free chains are 20 kg/mol and 100 kg/mol, respectively. Green
lines represent the density discretization, whose spacing is ∆L = 2.5 nm.

127



Chapter 4. Structure of Polymer Layers Grafted to Spherical Nanoparticles

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25

D
e
n
s
it
y
 (

g
/c

m
3
)

Distance from the surface of the particle r − αp (nm)

Free − σg =0.2 nm
−2

Grafted − σg =0.2 nm
−2

Free − σg =0.5 nm
−2

Grafted − σg =0.5 nm
−2

Free − σg =0.7 nm
−2

Grafted − σg =0.7 nm
−2

Free − σg =1.1 nm
−2

Grafted − σg =1.1 nm
−2

Bulk density (500K)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

P
m

 (
r 

−
 α

p
)

r− αp (nm)

Figure 4.6: Radial density profiles for free and grafted segments as a function of distance from
the surface of the particle. The grafting density, σg, varies from 0.2nm−2 to 1.1nm−2, while the
radius of the nanoparticle is ap = 8 nm and the molar mass of the matrix is Mf = 100 kg/mol.
The molar mass of grafted chains is 20 kg/mol. In the inset to the figure, the normalized
cumulative mass distribution for the grafted chains is depicted as a function of distance from
the surface of the particle. (Density profiles are accumulated in 0.5-nm-thick bins.)

dency of grafted chains to stretch away from the surface increases with increasing grafting
density; congestion with neighboring grafted chains forces them to extend more. The density
profile of the grafted segments exhibits two regimes: a parabolic decay near the surface of the
particle, and an exponential tail which extends far into the matrix. This form is in agreement
with predictions from theoretical,277 SCF,242 MD247,278 and off-lattice MC35 simulations of
grafted chains in melt and solvent environments. The presence of chemically grafted chains
on the surface inhibits the approach of free chains to the nanoparticle, with the strength of the
exclusion of free chains increasing with increasing grafting density. Far from the nanoparticle
surface we observe a smooth decay of the density profile. The parabolic decay is continuous
for σg = 0.2nm−2, while for higher grafting densities the decay is manifested by two parabolic
branches, which can be attributed to the concentrated polymer brush regime (CPB) close to
the surface and the semi-dilute polymer brush regime (SDPB) away from it.279 The sum of the
grafted and free chain density profiles suggests that the system is essentially incompressible,
except in the immediate vicinity of the grafting surface. Accumulated mass distributions in
the inset of Figure 4.6 show the relation between grafting density and brush (grafted layer)
propagation.
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It can been seen that higher grafting density leads to a more extended grafted layer, thus
increasing the thickness of the polymeric brush around the nanoparticle. For the highest graft-
ing density examined, σg = 1.1 nm−2, the interfacial region has a thickness of at least 20 nm,
as evidenced from the cumulative mass distribution. Moreover, the density profile of grafted
chains density profile exhibits a second smooth maximum before its parabolic decay. This
feature is also present in previous simulation studies. Atomistic simulations of 20-mer grafted
chains on a 2-nm-radius particle by Ghanbari et al.280 exhibit this extra hump for a grafting
density of 1.0 nm−2. The length scale at which this feature appears depends on the segment
size, but it seems to be rather a real effect than an artifact of the model employed in this work.
The first parabolic profile (CPB regime) is separated from the second one (SPDB regime) by
a region of thickness equal to one Kuhn length, at the end of which this extremely shallow and
smooth local maximum appears.

Borukhov and Leibler244 have predicted the phase diagram for grafted polymer (index of
polymerization Ng) in contact with a chemically identical polymer melt (index of polymeriza-
tion Nf), by using a scaling model along with SCF calculations. For long enough matrix chains,
Nf > Ng, three regions exist as a function of the reduced grafting density σ̂g = σg/α

2
s with αs

being the size of the monomer in their description (in our case, αs → bK/2). For σ̂g < N−1
g the

brush is in the ideal mushroom regime, for N−1
g < σ̂g < N

−1/2
g the brush is ideally wet, while

for σ̂g > N
−1/2
g the brush is dry. Following the reasoning of Borukhov and Leibler, the lowest

grafting density of σg = 0.2 nm−2 (4.6) lies in the proximity of the ideal wet brush regime
of the phase diagram. This is evident from the fact that some free segments have penetrated
the corona and lie close to the surface of the particle, thus leading to a local maximum in the
radial density distribution of free chains, in this case located around a Kuhn length (bK = 1.83

nm) away from the surface of the particle. For higher grafting densities, our brushes fall in the
dry brush regime, where free chains are completely expelled from the surface of the particle
over a distance which scales as N1/3

g σ
1/3
g . High grafting densities of end-adsorbed polymers

in the presence of chemically identical matrix polymers have been shown previously to pro-
mote autophobicity (i.e., incompatibility between the grafted chains and the matrix).238,241,281

It is found here that increasing σg promotes greater matrix/brush incompatibility by drying the
polymer brush; however, the effects are much less prominent for curved surfaces than for pla-
nar ones,237 since polymers end-grafted to small spherical surfaces face less chain crowding
moving away from the surface.
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Figure 4.7: Radial density profiles for grafted and free segments as a function of the grafted
chain molar mass. The radius of the nanoparticle is αp = 8 nm, while the molar mass of the
matrix is Mf = 100 kg/mol. The grafting density is σg = 0.5nm−2. In the inset to the figure,
the normalized cumulative mass distribution for the grafted chains is depicted as a function of
distance from the surface of the particle. (Density profiles are accumulated in 0.5-nm-thick
bins.)

4.3.3/ii Influence of grafted chain molar mass

The influence of grafted chain molar mass on the distribution of grafted and free chains around
the surface of the particle is examined in Figure 4.7. The grafting density is kept fixed at
σg = 0.5nm−2, while the molar mass of the grafted chains varies from 10 kg/mol to 70 kg/mol.
The profiles of the grafted chains start at the same point for r−αp = 0, since there their volume
density is dictated by the surface grafting density. The grafted chain profiles exhibit almost
identical density peaks, located around one Kuhn length away from the particle surface, since
the grafting density is kept constant. The higher the molar mass of the grafted chains, the more
the brush extends into the matrix. For high molar mass chains (Mg = 50 and 70 kg/mol) grafted
density profiles exhibit a second peak, attributed to the second neighbors of the segments which
are permanently attached to the surface of the nanoparticle. Long grafted chains lead to the
formation of a dry brush around the particle and only for Mg = 10 kg/mol do some free
segments lie inside the grafted corona, wetting the corona. The phase behavior of the grafted
corona is in accordance with the already mentioned scaling theory of Borukhov and Leibler.244

Nanoparticle/polymer miscibility should be generally high when the wet brush conditions are
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Figure 4.8: Radial mass density distribution of free and grafted segments from the surface of the
nanoparticle, as a function of the matrix molar mass. The radius of the particle is 13nm, the mo-
lar mass of the grafted chains Mg = 25 kg/mol and the grafting density is σg = 0.2chains/nm2.
Matrix molar mass varies from Mf = 25kg/mol to Mf = 100kg/mol. In the inset to the figure,
the normalized cumulative mass distribution for the grafted chains is depicted as a function of
the distance from the surface of the particle. (Density profiles are accumulated in 0.5-nm-thick
bins.)

met and decrease under dry brush conditions. The degree of overlap between grafted and
free segments can be quantified by calculating an interpenetration parameter, δin, as this was
defined by Egorov and Binder.282 From our simulations, the interpenetration width extends
from 7.2 nm for 10 kg/mol grafted chains, up to 23.5 nm for 70 kg/mol grafted chains.

4.3.3/iii Influence of matrix molar mass

Figure 4.8 depicts the effect of matrix material on the spatial extent of grafted chains for iden-
tical particle radii and grafting densities. Since the molar mass of the grafted chains and the
grafting density are low enough, free chains can slightly wet the grafted corona. The effect is
stronger for the shortest matrix chains, as expected, but remains present for all matrix molar
masses examined. The specifications of the systems studied are chosen as close as possible to
the experiments of Chevigny et al.,260 in which it is stated that a “wet to dry” conformational
transition occurs. However, based on Figure 4.8, a conformational transition of the grafted
chains can not be observed. The cumulative mass distributions, shown in the inset to Figure
4.8, are almost identical for all matrix molar masses. Since αp/Rg > 1, the theory of Trombly
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and Ganesan283 predicts that the “wet to dry” transition should occur for Nf/Ng < 1. This
requirement would be fullfilled by studying even shorter matrix chains. Unfortunately, the
coarse character of our methodology cannot allow us to study shorter polymeric chains. In
this regard, the trend predicted by the theory seems to be in accordance with our simulation
and qualitatively consistent with the experimental data. According to our single particle sim-
ulations, the brush profiles are almost insensitive to changes in Nf/Ng when Nf > Ng. This
suggests that the experimentally observed phase behavior of these systems may be sensitive
to subtle changes in the distribution of brush and matrix segments when two or more parti-
cles come together. Also, from the experimental point of view, a more exact comparison with
theoretical predictions and simulations would require monodisperse nanoparticles and highly
monodisperse polymers.

4.3.4 Height of the Grafted Polymer Brush
Spatial integration of the radial mass density profiles allows for estimating the height of the
grafted polymer brush, which is usually defined as the second moment of the segment density
distribution, ρ(r), as:242,284

⟨
h2
⟩ 1

2 =

[∫∞
αp

4πr2dr(r − αp)
2ρ(r)∫∞

αp
4πr2drρ(r)

] 1
2

(4.13)

with respect to the height h ≡ r − αp. We therefore use this root mean-square (rms) height
to define the brush thickness. However, comparison with experimental brush heights requires
a measurement of where the major part of the grafted material is found. To this effect, the
brush height can also be arbitrarily defined as the radius marking the location of a spherical
Gibbs dividing surface, in which 99% of the grafted material is included. Table 4.3 reports the
two estimates of the brush height for all systems considered in this study, for different grafting
densities and molar masses of the free and grafted chains.

The theory of spherical polymer brushes was pioneered by Daoud and Cotton.245 In anal-
ogy to the scaling model developed by Alexander and de Gennes for planar interfaces, Daoud
and Cotton developed a model for spherical surfaces through geometric considerations based
on starlike polymers. The spherical brush is divided into three regions, an inner meltlike
core region, an intermediate concentrated region (dense brush), and an outer semidilute re-
gion (swollen brush). Daoud and Cotton predicted for star shaped polymers in the matrix a
change in the scaling behavior as the blobs of the chains become non-ideal. The density pro-
file is directly related to the average brush height, h, or the extension of the corona chains.
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Figure 4.9: Definitions of the brush thickness measure employed in this work. The red circle
around the nanoparticle corresponds to ⟨h2⟩1/2, as that was defined by the eq 4.13. The blue
circle corresponds to the radius of the shell in which the 99% of the brush material can be
found, h99%.

Table 4.3: Brush heights for different silica nanoparticles, free chains molar mass, grafted
chains molar mass and grafting densities. Also, brush thickness estimations based on fitting
SANS spectra by Meyer274 have been included.

Mf Mg αp σg
⟨
h2
⟩ 1

2 (nm) h99%(nm)
(kg/mol) (kg/mol) (nm)

(
nm−2

)
FTiMC SANS274 FTiMC SANS274

100 20 8 0.2 2.98 3.3-3.3 16.49 16.3-17.2
0.4 4.49 4.1-5.0 18.99 19.2-19.6
0.5 5.18 4.4-5.7 20.33 19.9-20.9
0.7 6.25 4.9-6.8 21.76 21.2-23.1
1.1 8.02 24.13

100 10 8 0.5 3.05 2.8-3.8 16.22 16.0-17.3
20 5.26 4.4-5.7 20.19 19.9-20.9
50 10.30 7.8-9.1 30.87 27.5-28.4
70 13.08 36.85

25 25 13 0.24 4.80 27.22
35 4.74 27.21
58 4.74 27.22

100 4.73 27.22
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Neglecting the contribution of the core to the radius of the star, they found that:

h ∼ N1/2
g σ̂1/4

g bK (4.14)

Although the former relation exhibits “ideal” scaling with respect to the chain length depen-
dence, the presence of the factor σ̂1/4

g shows that the radius is in fact larger than it would be for
a single linear chain. Thus, although we are in a regime where the chain seems to be ideal, the
structure is actually stretched.

In Figure 4.10 the average thickness of all analyzed systems is plotted versus N1/2
g σ

1/4
g . Ng

is measured in Kuhn segments per chain and σg in nm−2. The scaling prediction of Daoud and
Cotton seems to be fullfilled for both the rms height ⟨h2⟩

1
2 and the height containing 99% of

the brush material, h99%. The dashed lines are linear fits, confirming the good agreement of
the simulation data with the theoretical scaling behavior. The agreement seems to be better for
the h99% data points. This was expected, since the average brush thickness, as defined in eq
4.13, is more sensitive to the discretization of the model and to the post processing of the data,
than the straightforward definition of the shell in which the 99% of the brush material can be
found. The least squares linear regression analysis of h99% data is more successful, yielding a
coefficient of determination,285 R2

LR, higher than the corresponding for ⟨h2⟩
1
2 data points.

4.3.5 Scattering Predictions
While previous works have focused on a single measure of the spatial distribution of poly-
meric chains, the mean brush height, examining the full distribution of polymeric segments is
a more sensitive and critical test of the theories and simulations. This type of comparison is
best performed against scattering patterns from SANS. SANS has been shown to be the most
suitable technique to reveal the microstructure of polymers in confined environments, thanks
to the specific contrast variation method which allowed the measurement of the form factor of a
single chain through the use of index-matched fillers.273,286 Neutron wavelengths are commen-
surate with interatomic separations, while neutron energies are of the same order as molecular
vibrational energies. When used with partially deuterated polymers, SANS permits a close
monitoring of macromolecular conformations in polymer solutions, melts, and blends. This
advantage has made it a unique tool for the understanding of the morphology of polymer ma-
terials and of the relation between their structures and physical properties. Elastic scattering of
neutrons measures spatial correlations between scattering centers; for polymers this enables the
conformation to be determined. The incoherent cross-section is isotropic and does not depend
on a phase term; therefore no information can be obtained from it about the relative positions
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of the nuclei in an array. Information about the relative positions of the nuclei can be obtained
if coherent scattering is measured. The total amplitude from the sample in the detector can be
written as:

A (k) = bc

N∑
k=1

e−ik·rk . (4.15)

with bc being the mean coherent scattering length, k running over allN nuclei of the sample and
the vector kwhich completely characterizes the scattering geometry: the incident and scattered
beam directions and the wavelength. The normalized amplitude defined here is related to the
intensity by:

I (k) =
⟨
|A (k)|2

⟩
= ⟨|A(k)A∗(k)|⟩ (4.16)

where the angle brackets ⟨· · · ⟩ indicate that the intensity observed is a time average.

4.3.5/i Single chain scattering

To connect FTiMC simulations with experimentally measured coherent scattering intensity, the
single chain form factor can be calculated from the real space positions of polymeric segments
as:

P (k) =
1

(N + 1)2

⟨∣∣∣∣∣
N∑
s=0

e−ik·rj(s)

∣∣∣∣∣
2⟩

n

(4.17)

where N = Nf, n = nf for the free and N = Ng, n = ng for the grafted chains, respectively.
With rj(s) we dente the s-th segment of the j-th chain. The average is taken over all the free
or grafted chains, across different configurations of the system. At equilibrium, the ensemble
average equals the time average which is measured experimentally.

The form factor of a freely jointed chain, which follows Rayleigh random walk statis-
tics, can be analytically calculated by combining and extending the work of Chandrasekhar,81

Daniels287 and Burchard and Kajiwara:288

PRayleigh (k) =
2

(N + 1)2

 N + 1

1− sin(kbK)
kbK

− N + 1

2
−

1−
(

sin(kbK)
kbK

)N+1

(
sin(kbK)
kbK

)2 · sin(kbK)

kbK

 (4.18)

where N again refers either to free or grafted chains and bK being the Kuhn length. For N >>

1, chains follow Gaussian statistics with their form factor given by the well known Debye
expression:

PDebye (k) =
2
(
e−R2

g,0k
2 − 1 +R2

g,0k
2
)

(
R2

g,0k
2
)2 (4.19)
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Figure 4.11: Form factor, Pg(k), of 20 kg/mol grafted chains as a function of grafting density.
Systems consist of an 8 nm-radius grafted particle immersed in 100 kg/mol matrix. The Kuhn
length bK is 1.83 nm and the unperturbed radius of gyration of grafted chains Rg,0 is 3.91 nm.
The curves for σg = 0.4, 0.7, 1.1 nm−2 have been vertically displaced by one, two and three
decades respectively, for clarity. In the inset to the figure, the corresponding Kratky plot is
presented. Dashed lines display the analytically calculated Rayleigh form factor from eq 4.18.

where R2
g,0 is the unperturbed mean squared radius of gyration given by R2

g,0 = Nb2K/6, where
N is the number of statistical (Kuhn) segments along the contour and bK is the Kuhn length of
the polymer. The Debye form factor is valid under the additional condition of kbK << 1. Since
it exhibits a plateau at high k, it cannot capture the rise of the form factor of real polymers due to
their stiffness. The advantage of the former equation (eq 4.18) over the well-known Debye form
factor (eq 4.19) stems from the incorporation of the finite extensibility of freely jointed chains,
which represent real chains better than the Gaussian model at large extensions. However,
PRayleigh(k) is not a well-behaved function at large N , rendering its algebraic manipulation
difficult.

In Figure 4.11, the effect of grafting density form factor of grafted chains is depicted. The
form factor of grafted chains, calculated by eq 4.17 during the course of the FTiMC simulation,
is compared to the theoretically predicted form factor from eq 4.18. It is evident that grafted
chains deviate from their unperturbed melt configuration. The attachment of their one end
to the surface of an excluded volume sphere strongly affects their scaling behavior at low
k-values. While at small length scales (large k, see Kratky plot in the inset to the figure)
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Figure 4.12: Form factor, Pg(k), of grafted chains as a function of their molar mass. Sys-
tems consist of an 8 nm-radius particle at σg = 0.5 nm−2 surface coverage immersed in 100
kg/mol matrix. The curves for Mg = 20 and 50 kg/mol have been vertically displaced by
one and two decades, respectively, for clarity. The unperturbed radii of gyration, Rg,0, are
2.77 nm (10 kg/mol), 3.91 nm (20 kg/mol) and 6.19 nm (50 kg/mol). In the inset to the figure,
the Kratky plot is presented, where form factors have been scaled with chain length in order
the plateaus to coincide for all systems. Dashed lines correspond to analytically calculated
Rayleigh form factors from eq 4.18.

their conformations are close to unperturbed, at large length scales, their confinement dictates
their behavior. The deviation of the form factor of grafted chains from that of unperturbed
freely jointed chains does not depend monotonically on surface grafting density. The radius
of the particle sets the length scale (k ∼ (2π)/αp) where the deviation is manifested, which is
common across the different systems depicted in Figure 4.11.

The effect of increasing the grafted chain molar mass on the calculated scattering from sin-
gle grafted chains is examined in Figure 4.12. For all molar masses examined, chains deviate
strongly from their unperturbed configurations. The confinement affects their behavior at low
and intermediate k-values, while leaving large k-values (small length scales) unaffected. The
permanent link between one of their ends and the particle surface and the excluded volume
of the particle forces the grafted chains to extend more into the bulk. This tendency increases
with increasing grafted chain molar mass; there, the deviation of grafted single chain scattering
from the theoretical Rayleigh prediction becomes more pronounced. Moreover, this deviation
moves systematically to smaller k-values as Mg increases. By careful examination one de-
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Figure 4.13: Form factor, Pg (k), of grafted chains as a function of the surrounding matrix
molar mass. Systems consist of an 8 nm-radius particle with grafted chains of Mg = 20 kg/mol
at σg = 0.5nm−2 surface coverage immersed in matrices of Mf = 25, 58 and 100kg/mol. In the
inset to the figure, the Kratky plot is presented. The dotted line corresponds to the analytically
calculated Rayleigh form factor from eq 4.18.

ternines that the lowest k-value at which this deviation is manifested is around kαp ∼ 2, with
Rg being the root mean squared unperturbed radius of gyration, Rg =

√
R2

g,0. This implies
that all chains deform due to their confinement in the same way, with the actual length scale of
the deformation following their unperturbed dimensions. A similar observation was made by
Grest et al.289 who calculated from MD simulations the scattering from single chains within
a star polymer. At higher k values, the radius of the particle sets the length scale of the scat-
tering in this region, causing grafted chains to deviate from their unperturbed configurations
and pushing them to acquire conformations which are closer to a shell-like structure than to an
uncostrained random walk.

In Figure 4.13 the grafted chain form factor is shown as a function of the molar mass of
the surrounding matrix. The scattering of grafted chains depends weakly on the molar mass
of the matrix in which the nanoparticles are immersed. However, it seems that the grafted
chains immersed in the matrix of molar mass 25 kg/mol deviate more at low k-values than in
the matrices of higher molar mass. This implies that low molecular weight grafted chains are
further extended in the presence of low molar mass free chains, due to their interpenetration
with the grafted corona, as was seen by radial density distribution also.
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4.3.5/ii Corona scattering

In FTiMC simulations, the grafted corona structure factor can be calculated by summing the
contributions of all grafted segments and then analyzed by comparison to theoretical models
and experimental results, obtained through matching the silica core, in order to see only the
grafted corona. The corona structure factor, Sg(k), is evaluated as:

Sg (k) =
1

ng (Ng + 1)

⟨∣∣∣∣∣
ng∑
j=1

Ng∑
s=0

e−ik·rj(s)

∣∣∣∣∣
2⟩

(4.20)

where the double sum goes over all segments belonging to grafted chains. In Figure 4.14 the re-
sulting curve for a grafted corona is shown. The points represent the average over all k-vectors
sharing the same norm. In order to get an impression of the scattering curve, a Piecewise cubic
Hermite (PcH) spline interpolation scheme is used.290 Along with the simulation results, the
behavior of two theoretical models is also illustrated in Figure 4.14. The first one is the form
factor of a spherical shell of uniform density and thickness equal to the estimated brush thick-
ness, ⟨h2⟩1/2.291 The other one is a model initially developed by Pedersen and Gestenberg292,293

for block copolymer micelles. On the average, the constant density shell form factor exhibits
the well-known dominant k−4 behavior. The periodic steps suggest a rather sharp cutoff in the
segment density at radius equal to αp + ⟨h2⟩1/2, which is a crude approximation to the real
brush, since the brush density distribution actually exhibits a smooth and continuous variation
as a function of distance from the surface of the particle. The assumption that the brush is
a homogeneous spherical shell of thickness ⟨h2⟩1/2 shifts the position of the structure factor
minimum to larger k-values (smaller length scales), compared to its actual position.

A better approximation to the corona structure factor is the model introduced by Pedersen.
This model is based on several different terms which have to be determined: the self correlation
of the spherical core, the self correlation of the chains, the cross term between spheres and
chains, and the cross term between different chains. In contrast-matching conditions for which
the silica core is matched to see only the polymer corona, the Pedersen model is reduced to a
weighted sum of the single chain form factor and the intra-chain cross correlation form factor:

SPedersen (k) = ng · (Pg (k) + (ng − 1)Schain−chain (k)) (4.21)

where Pg (k) is the single chain form factor of the grafted chains and Schain−chain (k) is the cross
term between different chains. In our approach, the single chain form factor can be directly
calculated from the segmental positions (eq 4.17) and therefore can be used for the evaluation
of Pedersen structure factor, thus taking into account the stretching of the chains due to the
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Figure 4.14: Scattering curve, Sg (k), of a grafted corona consisting of 20kg/mol chains, grafted
onto a 8nm-radius particle, at 0.5 nm−2 surface density, immersed in a 100 kg/mol matrix.
Simulation results are presented along with several theoretical models.

particle. The cross term related to the interaction between chains which are assumed to be
evenly distributed on the surface of the sphere and follow Gaussian statistics can be analytically
expressed as:292

Schain−chain (k) =
[
1− e−kRg

kRg

]2 [sin kαp

kαp

]2
. (4.22)

Alternatively, for freely jointed chains following the Rayleigh distribution, a numerical inte-
gration of the cross-term between two chains obeying eq 4.18 should be carried out. In the
derivation of the Pedersen structure factor, the chains are free to penetrate into the core. In
order to mimic the presence of the excluded volume of the nanoparticle, the starting points of
the chains are shifted from the distance αp to αp + δα ·Rg, with δα close to unity.293

The corona scattering curves are shown in Figure 4.15 as a function of the grafting density.
All curves are normalized so as to approach unity for k → 0. At the lowest k-values, the inten-
sity reaches a plateau, indicating finite-size objects, which confirms that there is no interference
between the periodic images of the particles. At intermediate k-values, an oscillation is present
with its position being characteristic of the corona size:294 the thicker the corona, the smaller
the value of k at which the sharp oscillation appears. Here again, our results support the fact
that increasing σg leads to more extended grafted brushes. In the inset of Figure 4.15 is shown
the behavior of the Pedersen model with non-interacting chains obeying Rayleigh statistics.
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Figure 4.15: Scattering curves of the deuterated grafted corona (Mg = 20 kg/mol) inside the
silica matched matrix (Mf = 100 kg/mol). The radius of the particle is αp = 8 nm, while the
grafting density varies from 0.2 nm to 1.1 nm.

At low grafting densities, the simulated scattering curves are close to the ones predicted by the
Pedersen model. At higher grafting densities the simulation results deviate from the model.
The Pedersen model considers chains which are stretched due to the excluded volume of the
particle, but are not stretched due to crowding with their end-grafted partners. This assumption
is valid for low enough grafting densities, where the dominant non-ideal contribution comes
from the particle’s excluded volume. As the neighborhood becomes more crowded, however,
the Pedersen model becomes incapable of capturing the behavior of the grafted chains, since it
does not consider chain-chain interactions. The brush thickness of the model does not depend
on the grafting density, as can be seen from the inset to Figure 4.15, where the position of the
oscillation is roughly the same for all systems.

The effect of grafted molar mass on the scattering of the corona is illustrated in Figure
4.16. In analogy to the figure before, the structure factor of the grafted corona is presented
under silica-matched conditions. It is evident that increasing the molar mass of the grafted
chains increases the height of the polymeric brush. This is clearly manifested by the shifting
of the structure factor oscillation to smaller k-values. The molar mass dependence of the corona
scattering is also predicted by the Pedersen model, as can be seen in the inset of Figure 4.16,
where both the position and the shape of the oscillation changes as a function of the chains
molar mass. As the molar mass of the grafted chains increases, the “terraced” profile of Sg (k)
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Figure 4.16: Scattering curves of the deuterated grafted corona inside the silica matched matrix
(Mf = 100 kg/mol). The molar mass of the grafted chains varies from 10 to 70 kg/mol. The
radius of the particle is αp = 8 nm with grafting density of 0.5 nm−2.

becomes less structured and falls off very rapidly. This is due to the high interpenetration of
the chains as the brush becomes denser.

Finally, the influence of the matrix molar mass on the scattering of grafted chains is ex-
amined in Figure 4.17. Along with the simulation results and the theoretical modeling, exper-
imental results from Chevigny et al.260 are also presented. The variation of the matrix seems
not to affect strongly the form of the grafted corona. The proposed FTiMC methodology seems
to capture rather well the profile of Sg(q). The position of the oscillations is the same between
experimental and simulation results. However, simulation results are more structured, with
strong peak maxima and minima, which are most likely due to the inherently discrete nature
of the FTiMC model (chain mass localized in discrete Kuhn segments, rather than distributed
along chain backbone). Moreover, the simulations consider only monodisperse grafted and free
chains, which is not the case for the experimental studies. The incorporation of polydispersity
in the FTiMC simulations would yield smoother scattering curves.

4.4 Summary and Conclusions
Soft polymer properties are improved by inclusion of small hard inorganic particles inside the
melt matrix. The strategy of tethering polymer chain ends onto the surface of the filler parti-
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Figure 4.17: Scattering curves of the grafted corona (Mg = 25kg/mol) inside the silica matched
matrix. The radius of the particle is 13nm while the molar mass of the matrix varies from 25 to
100kg/mol. Experimental results by Chevigny et al.260 for the same system are also presented.

cles, in order to render the nanoparticles miscible with their homopolymer hosts, is promising.
The structural features of such mixtures are surprisingly rich, since competing interactions be-
tween the nanoparticles, grafted and matrix chains engender the formation of different phases.
Overall, the phase behavior of these polymer nanocomposites may be tailored through control
of the following parameters: grafting chain length, host chain length and grafting density, for
a given filler. In this work we have presented a methodology that is capable of treating realis-
tic polymer nanocomposites at experimentally relevant length scales. The sampling, through
a MC procedure, of a composite system obeying a simplified Hamiltonian based on polymer
mean field theory, can give us insights into structure at length scales on the order of hundreds
of nanometers.

Our results include a number of salient points: (i) We show that by increasing the parti-
cle grafting density the brush of grafted chains undergoes a phase transition from its stretched
to its collapsed form, in agreement to scaling theories244 and MD simulations.247 The phase
transition has been attributed to the autophobic dewetting of the brush by the melt. (ii) Increas-
ing the brush chain length leads to thicker grafted brushes, which improve the miscibility of
nanoparticles with the homopolymer matrix, in agreement with SCF studies.242 (iii) The den-
sity distributions around a nanoparticle seem to depend only on grafting density and grafted
chain length, especially when the matrix chain length is equal to or longer than the grafted
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chain length. “Wet-to-dry” conformational transition260 has not been observed. (iv) The scal-
ing of polymeric layers grafted to nanoparticles can be well described by the model proposed
by Daoud and Cotton232 for star-shaped polymers. The brush thickness scales with the inverse
second power of the grafted chain length and the inverse fourth power of the grafted density.

For the first time, a real experimental system is mapped onto a simulation framework and
results which can be directly compared with experimental findings are provided. The coarse-
grained model employed in the present work can treat length scales accessible by SANS ex-
periments. Single chain and corona scattering spectra have been estimated from simulations
in order to investigate the influence of grafted chain specifications on their conformations and
overall brush thickness. At the single chain level, grafted chains deviate strongly from their
random walk statistics, especially for high surface coverage and molar mass. Moreover, the
scattering of the whole corona has been analyzed. The brush thickness increases with increas-
ing molar mass of the grafted chains, shifting the scattering peaks to lower k-values, in agree-
ment with the model proposed by Pedersen293 for the scattering of block copolymer micelles.
The corona structure factors for 13-nm-radius grafted particles dispersed in different molar
mass matrices have been validated against experimental findings of Chevigny et al.260

The present study is limited to the case of a single nanoparticle immersed in a homogeneous
polymer matrix. As Kalb et al.247 stated, simulations of a single particle at infinite dilution
cannot reveal the critical conditions that distinguish aggregation from dispersion. It is highly
interesting to analyze the collective effects on the structure of the brush and the melt when two
or more nanoparticles are present at experimental volume fractions. Also, the interaction and
the equilibrium conformation of these systems would be of ultimate importance.
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Spring Model for Polymer
Dynamics

A particle based, Brownian Dynamics (BD) methodology for the simulation of entangled poly-
mer melts and rubbers has been developed in order to access the ms-timescale of these sys-
tems. The polymeric beads consist of several Kuhn segments. Their motion is dictated by the
Helmholtz energy of the sample which is initially written as a sum of three contributions: en-
tropy springs, representing the entropic elasticity of chain strands between beads; slip-springs;
and non-bonded interactions. The entanglement effect is introduced by the slip-springs, which
are springs connecting nodes on two different polymer chains. The terminal positions of slip-
springs are altered during the simulation through a hopping kinetic Monte Carlo (kMC) scheme.
In addition, there are construction/destruction processes for the slip-springs. The free energy
of nonbonded interactions is derived from an appropriate equation of state and it is computed
as a functional of the local density by passing an orthogonal grid through the simulation box;
accounting for it is necessary for reproducing the correct compressibility of the polymeric
material. Parameters needed in the model can be derived from experimental volumetric and
viscosity data or from atomistic Molecular Dynamics (MD) simulations (Chapter 3). Initial
configurations of the network are obtained from further coarse-graining Field Theory-inspired
Monte Carlo (FTiMC) structures (Chapter 4). Natural rubber is the material of choice, since
the ultimate goal of this effort is to address the mechanical reinforcement of nanoparticle-filled
elastomers.

5.1 Introduction

5.1.1 Previous Work
One of the fundamental concepts in the molecular description of structure - property relations
of polymer melts is chain entanglement. When macromolecules interpentrate, the term en-
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tanglements intends to describe the topological interactions resulting from the uncrossability
of chains. The fact that two polymer chains cannot cross though each other in the course of
their motion changes dramatically their dynamical behavior, without altering their equilibrium
properties. Anogiannakis et al.19 have examined microscopically at what level topological
constraints can be described as a collective entanglement effect, as in tube model theories,
or as certain pairwise uncrossability interactions, as in slip-link models. They employed a
novel methodology, which analyzes entanglement constraints into a complete set of pairwise
interactions, characterized by a spectrum of confinement strengths. As a measure of the en-
tanglement strength, these authors used the fraction of time for which the links are active. The
confinement was found to be mainly imposed by the strongest links. The weak, trapped, un-
crossability interactions cannot contribute to the low frequency modulus of an elastomer, or
the plateau modulus of a melt.

In tube model theories,21,89,295,296 (Section 2.3.4/v on page 41) it is postulated that the en-
tanglements generate a confining mean field potential, which restricts the lateral monomer
motion to a tube-like region surrounding each chain. In polymer melts the confinement is not
permanent, but leads to the one- dimensional diffusion of the chain along its tube, called rep-
tation.93 An alternative, discrete, localized version of the tube constraint is utilized in models
employing slip-links.95,297–302 The tube is replaced by a set of slip-links along the chain, which
restrict lateral motion but permit chain sliding through them. The real chain is represented by
its primitive path (PP), which is a series of strands of average molar mass Me connecting the
links.

Following Hua and Schieber,300,301 the molecular details on the monomer or Kuhn-length
level are smeared out in the slip-link model, while the segmental network of generic polymers is
directly modeled, by introducing links between chains, which constrain the motion of segments
of each chain into a tubular region. The motion of segments is updated stochastically, and the
positions of slip-links can either be fixed in space, or mobile. When either of the constrained
segments slithers out of a slip-link constraint, they are considered to be disentangled, and the
slip-link is destroyed. Conversely, the end of one segment can hop towards another segment
and create another new entanglement or slip-link. The governing equations in the slip-link
model can be split into two parts: the chain motion inside its tube is governed by Langevin
equations and the tube motion is governed by deterministic convection and stochastic constraint
release processes. Based on the tube model,89 it is assumed that the motion of the primitive
path makes the primary contribution to the rheological properties of entangled polymer melts.
Therefore, from the microscopic information given by the slip-link model, these authors could
precisely access the longest polymer chain relaxation time. Moreover, by employing an elegant
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formulation, the macroscopic properties of polymer melts, i.e., stress and dielectric relaxation
can be extracted from the ordering, spatial location and aging of the entanglements or slip-links
in the simulations.

Later, Schieber and co-workers studied the fluctuation effect on the chain’s entanglement
and viscosity using a mean-field model.303 Shanbhag et al.304 developed a dual slip-link model
with chain-end fluctuations for entangled star polymers, which explained the observed devia-
tions from the “dynamic dilution” equation in the dielectric and stress relaxation data. Doi and
Takimoto305 adopted the dual slip-link model to study the nonlinear rheology of linear and star
polymers with arbitrary molecular weight distribution.

Likhtman306 has shown that the standard tube model cannot be applied to neutron spin-
echo measurements because the statistics of a one-dimensional chain in a three-dimensional
random-walk tube become wrong on the length scale of the tube diameter. He then introduced
a new single-chain dynamic slip-link model to describe the experimental results for neutron
spin echo, linear rheology and diffusion of monodisperse polymer melts. All the parameters in
this model were obtained from one experiment and were applied to predict other experimental
results. The model was formulated in terms of stochastic differential equations, suitable for
BD simulations. The results were characterized by some systematic discrepancies, suggesting
possible inadequacy of the Gaussian chain model for some of the polymers considered, and
possible inadequacy of the time - temperature superposition principle.

Masubuchi et al.307 performed several multichain simulations for entangled polymer melts
by utilizing slip links to model the entanglements. These authors proposed a primitive chain
network model, in which the polymer chain is coarse-grained into segments connected by en-
tanglements. Different segments are coupled together through the force balance at the entan-
glement node. The Langevin equation is applied to update the positions of these entanglement
nodes, by incorporating the tension force from chain segments and an osmotic force caused by
density fluctuations. The entanglement points, modeled as slip-links, can also fluctuate spa-
tially (or three dimensionally). The creation and annihilation of entanglements are controlled
by the number of monomers at chain ends. The longest relaxation time and the self-diffusion
coefficient scaling, as predicted from the model, were found in good agreement with exper-
imental results. Later on, the primitive chain network model was extended to study the re-
lationship between entanglement length and plateau modulus.308–311 It was also extended to
study star and branched polymers,312 nonlinear rheology,313–315 phase separation in polymer
blends,316 block copolymers317 and the dynamics of confined polymers.318

Chappa et al.319 proposed a slip-link model, in which the topological effect of noncross-
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ability of long flexible macromolecules is effectively taken into account by slip-springs. En-
tanglements in this model are represented by local, pairwise, translationally and rotatationally
invariant interactions between polymer beads that do not affect the equilibrium properties of
the melt. The conformations of polymers and slip springs are updated by a hybrid Monte Carlo
(MC) scheme. At every step, either the positions of the beads are evolved via a short Dissipa-
tive Particle Dynamics (DPD) run or the configuration of the slip-springs is modified by MC
moves, involving discrete jumps of the slip-springs along the chain contour and creation or
deletion at the chain ends. The number of slip-springs can vary during the simulation, obeying
a prescribed chemical potential. That model can correctly describe many aspects of the dy-
namical and rheological behavior of entangled polymer liquids in a computationally efficient
manner, since everything is cast into only pairwise-additive interactions between beads. The
mean-square displacement of the beads evolving according to this model was found to be in
favorable agreement with the tube model predictions (Section 2.3.4/v on page 41). Moreover,
the model exhibited realistic shear thinning, deformation of conformations, and a decrease of
the number of entanglements at high shear rates.

Closely related to the work of Chappa et al.319 is the slip-spring model introduced by
Ramírez-Hernández et al.320 In that model, the discrete hopping of a slip-spring along the
chain contour is replaced by a one-dimensional continuous Langevin equation. Slip-springs
consist of two rings that slip along different chain contours, and are connected by a harmonic
spring. The rings move in straight lines between beads belonging to different chains, scanning
the whole contour of the chains in a continuous way. More recently, Ramírez-Hernández et
al.321 presented a more general formalism in order to qualitatively capture the linear rheology
of pure homopolymers and their blends, as well as the nonlinear rheology of highly entan-
gled polymers and the dynamics of diblock copolymers. The number of slip-springs in their
approach remains constant throughout the simulation, albeit their connectivity changes.

The idea of slip-springs was in parallel used by Uneyama and Masubuchi,322 who proposed
a multi-chain slip-spring model inspired by the single chain slip-spring model of Likhtman.306

Differently from the primitive chain network model of the same authors, they defined the total
free energy for the new model, and employed a time evolution equation and stochastic pro-
cesses for describing its dynamical evolution. All dynamic ingredients satisfy the detailed
balance condition, thus capable of reproducing the thermal equilibrium which is characterized
by the free energy. The number of slip-springs varies. Later, Langeloth et al.323 presented a
simplified version of the slip-spring model of Uneyama and Masubuchi,322 where the number
of slip-springs remains constant throughout the simulation.

Working on a different problem than melt rheology, Terzis et al.324–326 have invoked the
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microscopic description of entanglements and the associated processes envisioned in the slip-
link models, in order to generate entanglement network specimens of interfacial polymeric
systems and study their deformation to fracture. The specimens were created by sampling
the configurational distribution functions derived from a Self Consistent Field (SCF) lattice
model. Despite the fact that overstretched strands were allowed to relax by a MC method,
the specimens generated were not in detailed mechanical equilibrium. To this end, these au-
thors developed a method for relaxing the network with respect to its density distribution,
and thereby imposing the condition of mechanical equilibrium, without changing the network
topology.326 The free energy function of the network was minimized with respect to the coor-
dinates of all entanglement points and chain ends. Contributions to the free energy included
(a) the elastic energy due to stretching of the chain strands and (b) the free energy due to the
repulsive and attractive (cohesive) interactions between segments. The latter was calculated
by superimposing a simple cubic grid on the network and taking into account contributions be-
tween cells and within each cell. The free energy minimization procedure was first applied to
a bulk polypropylene system, serving as a basis for parametrizing the model and validating the
method against experimental data. The free energy minimization was then applied to mechan-
ically relax computer specimens of a polypropylene/polyamide6 (PP/PA6) interfacial system,
strengthened by PP chains grafted onto the PA6 surface. The fully relaxed networks served as a
starting point for the mesoscopic simulation of fracture phenomena, caused by the application
of tensile stress perpendicular to the interface. The network was deformed at a constant strain
rate and the network topology evolved according to elementary mechanical processes of chain
scission, chain slippage, disentanglement, and reentanglement, in analogy to processes envi-
sioned in slip-link models. Chain slippage across an entanglement point occurs according to a
Zhurkov activated rate equation with parameters derived from viscosity data. Each cycle of the
kMC algorithm used to track the deformation process, consisted of the imposition of a small
incremental strain on the network, relaxation to mechanical equilibrium, introduction of the
micromechanical processes mentioned above, and again relaxation to mechanical equilibrium.
The MC cycles were repeated until fracture occured.

5.1.2 Proposed Approach
In Chapter 4,176,327 we have developed a methodology in order to generate and equilibrate
(nanocomposite) polymer melts at large length scales (in the order of 100 nm). This coarse-
grained representation is based on the idea that the polymer chains can be described as random
walks at length scales larger than that defined by the Kuhn length of the polymer. Now, we
develop a methodology to track the dynamics of the system at this coarse-grained level, by
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Figure 5.1: Network representation of a polymer melt or rubber. End beads, internal beads,
crosslink beads (if present) are shown as red, blue and black spheres, respectively. Entropic
springs along the chain contour are shown in blue, while slip-springs are shown in red.

invoking a well defined free energy functional for the model, where both conformational and
nonbonded interactions are taken into account. Once the free energy is known, BD simulations
driven by the free energy functional can be used in order to obtain thermodynamic averages and
correlation functions. When macromolecules interpenetrate, the term entanglement intends to
describe the interactions resulting from the uncrossability of chains. At this level of description,
we introduce the entanglements as slip-springs connecting beads belonging to different chains.
In the course of a simulation, the topology of the entanglement network changes through the
introduction of elementary kMC events governed by rate expressions which are based on the
reptation picture of polymer dynamics and the free energy defined.

5.2 Model and Simulation Methodology

5.2.1 Polymer Description
Our melt consists of chains, represented by specific points (i.e. internal beads or ends) along
their contour, connected by entropy springs. Each coarse-grained bead represents several Kuhn
segments of the polymer under consideration. Our construction results in a set of nodes for each
chain, where each node i has a specific contour position along the chain, positional vector in
three-dimensional space, ri, and pairing with other nodes, as shown in Figure 5.1. The piece
of chain between two nodes (blue spring in Figure 5.1) is referred to as a strand.
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We introduce the effect of entanglement by dispersing slip-springs,319 which are designed
to bring about reptational motion of chains along their contours, as envisioned in theories and
simulations of dynamics in entangled polymer melts and as observed by topological analysis
of molecular configurations evolving in the course of MD simulations.19 In more detail, a slip-
spring connects two internal nodal points of two different polymer chains and is stochastically
destroyed when one of the nodes it connects is a chain- end. To compensate for slip-spring de-
struction, new slip springs are created stochastically by free chain ends in the polymer network.
Along with the BD simulation of the beads’ motion in the periodic simulation box, a parallel
kMC evolution of the slip-springs present is undertaken. The rates used for the kMC procedure
are described in detail in the following paragraphs. The initial contour length between consec-
utive entanglement points (slip-spring anchoring beads) on the same chain is commensurate
with the entanglement molecular weight, Me, of the simulated polymer.

The relative importance of reptation, constraint release and contour-length fluctuation mech-
anisms depends on the specific melt of interest. As expected, in a monodisperse sample of long
molecules, reptation plays a dominant role. In contrast, in a bidisperse sample composed of
short and long macromolecules, constraint release and contour length fluctuations may domi-
nate the relaxation process.328–331

5.2.2 Model Free Energy
We postulate that the entangled melt specimen of given spatial extent, defined by the edge
vectors of our periodic simulation box (Lx, Ly, Lz), under temperature T , is governed by a
Helmholtz energy function, which has a direct dependence on the set of local densities {ρ (r)},
the temperature, T , and the separation vectors between pairs of connected polymer beads,
{rij}:

A
(
{rij} , {ρ (r)} , T

)
= Ab

(
{rij} , T

)
+ Anb

(
{ρ (r)} , T

)
(5.1)

The first term on the right-hand side of eq 5.1, Ab, is the contribution of bonded interactions,
whereas the second one, Anb is the contribution of the nonbonded interactions to the Helmholtz
energy.

We start by considering the bonded contribution to the Helmholtz energy, which can be
written as a sum over all bonded pairs, (i, j), where i is connected to j with either intramolec-
ular springs or slip-springs:

Ab
(
{rij} , T

)
= Ab

(
{rij} , T

)
=
∑
(i,j)

Apair (rij, T ) (5.2)
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The sum runs over all pairs, where each pair is thought to interact via a distance-dependent
Helmholtz energy, Apair (rij, T ). The elastic force depends on the coordinates of the nodes,
but it does not depend on the local network density. The elastic force between connected
beads arises due to the retractive force acting to resist the stretching of a strand. This force
originates in the decrease in entropy of a stretched polymer strand. For a detailed discussion,
please consult section 2.3.3 on page 35. In this approximation, the force on bead i, due to its
connection to bead j is:

Fb
ij = −∇rijApair (rij, T ) (5.3)

The Gaussian approximation can be used for most extensions.332 The conformational en-
tropy of strands is taken into account via a simple harmonic expression (eq 2.90, page 36):

Aintra
pair (rij, T ) =

3

2
kBT

r2ij
Nijb2K

(5.4)

where Nij is the number of Kuhn segments assigned to the strand, bK the Kuhn length of the
polymer and kB the Boltzmann constant. The summation is carried over all pairs (i, j) which
lie along the contour of the chains. The Helmholtz energy of slip-springs, which are included
to account for the entanglement effect, is described by the following equation:

Asl
pair
(
rij, T

)
=

3

2
kBT

r2ij
l2sl

(5.5)

where lsl is an adjustable parameter which should be larger than the Kuhn length, bK, and
smaller than or equal to the tube diameter of the polymer, app.

In order to account for nonbonded (excluded volume and van der Waals attractive) inter-
actions in the network representation, we introduce a free energy:

Anb (ρ, T ) =

∫
box

d3r avol [ρ (r) , T ] (5.6)

where avol is a free energy density (free energy per unit volume) and ρ (r) is the local mass
density at position r. Expressions for avol (ρ, T ) may be extracted from equations of state
(please see Section 2.3.5 on page 45). Local density, ρ (r), will be resolved only at the level of
entire cells, defined by passing an orthogonal grid through the entire simulation domain. Thus,
eq 5.6 will be approximated by a discrete sum over all cells of the orthogonal grid:

Anb (ρ, T ) =
∑
k∈cells

V acc
cell,k avol (ρcell,k, T ) (5.7)
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where V acc
cell,k is the accessible volume of the cell k. The cell density, ρcell,k, must be defined

based on the beads in and around the cell k.

In this work we invoke the Sanchez-Lacombe equation of state,110 which gives for the
Helmholtz energy (eq 2.131 page 48):

ASL (ρ, T ) =− ρ̃NrkBT
∗ +NrkBT

[
(ṽ − 1) ln (1− ρ̃) +

1

r
ln (ρ̃)

]
−NkBT ln (w) (5.8)

where kB is the Boltzmann’s constant and the Sanchez-Lacombe parameters are presented in
Table 2.1, page 47. The last term in eq 5.8 does not depend on the density of the system, being
an ideal gas contribution (please see discussion before eq 2.136 on page 49).

The Helmholtz energy density, avol (ρ, T ), can be calculated as:

avol (ρ, T ) =
A (ρ, T )

V
=

A (ρ, T )

NM/ρ
= ρ

A (ρ, T )

NM
= ρ amass (ρ, T ) (5.9)

where the amass (ρ, T ) denotes the Helmholtz energy per unit mass of the system. Based on eq
5.8, we can calculate the above:

amass (ρ, T ) = −rkBT
∗ρ̃

M
+

rkBT

M

[
(ṽ − 1) ln (1− ρ̃) +

1

r
ln (ρ̃)

]
− kBT

M
ln (w) (5.10)

and by using M = rρ∗v∗ and r = (Mp∗) / (ρ∗kBT
∗) the above expression becomes:

amass (ρ, T ) = − p∗

ρ∗2
ρ+

p∗T̃

ρ∗

[(
ρ∗

ρ
− 1

)
ln
(
1− ρ

ρ∗

)
+

ρ∗kBT
∗

Mp∗
ln
(

ρ

ρ∗w

)]
(5.11)

The Helmholtz energy density (free energy per unit volume), avol (ρ, T ) is:

avol (ρ, T ) =ρ amass (ρ, T )

=− p∗ρ̃2 + p∗T̃ ρ̃

[(
1

ρ̃
− 1

)
ln (1− ρ̃) +

ρ∗kBT
∗

Mp∗
ln
(
ρ̃

w

)]
(5.12)

where everything is cast in terms of the reduced variables T ∗, p∗, ρ∗ and the molecular weight
of a chain, M . All these parameters can be obtained from experimental studies.333
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The force due to non-bonded interactions on a bead i is given by:

Fnb
i =−∇riAnb ({ρcell} , T ) = − ∂

∂ri

[ ∑
k∈cells

V acc
cell,kavol (ρcell,k, T )

]

=−
∑

k ∈ cells

V acc
cell,k

∂avol (ρ, T )

∂ρ

∣∣∣∣
ρ=ρcell,k

∂ρcell,k

∂ri
(5.13)

with the derivative of avol (ρ, T ) with respect to density being:

∂avol (ρ, T )

∂ρ
= −2p∗

ρ∗2
ρ− p∗T

ρ∗T ∗

[
1 + ln

(
1− ρ

ρ∗

)]
+

kBT

M

[
1 + ln

(
ρ

ρ∗w

)]
(5.14)

and the derivative ∂ρcell,k/∂ri given by eq C.5 in Appendix C on page 207.

5.2.3 Model Stress Tensor
We consider the free energy per unit mass, A

(
{rij} , {ρ (r)} , T

)
/m as a function of the sep-

aration vectors between all connected beads, {rij}, local densities, {ρ (r)} ≡ {ρcell} and tem-
perature, T . The thermodynamic stress tensor, τττ is given by eq 2.172:

τ = ρR F ·

(
∂
(
A
(
{rij} , {ρcell} , T

)
/m
)

∂F

)T

(5.15)

where A is the total Helmholtz energy (eq 5.1) and m is the total mass in the system. It should
be noted that density, ρR , refers to the reference, R, configuration of the system. F denotes
the deformation gradient tensor defined through a mapping of a infinitesimal vector dx of the
initial configuration onto the infinitesimal vector dx′ after the deformation, through eq 2.29.
Eq 5.15 can be written in component form as:

ταβ = ρR

3∑
γ=1

Fαγ

∂
(
A
(
{rij} , {ρcell} , T

)
/m
)

∂Fβγ

(5.16)

Invoking the functional dependence of our Helmholtz energy:

ταβ =
ρR

m

3∑
γ=1

Fαγ

[
∂Ab ({rij} , T )

∂Fβ,γ

+
∂Anb ({ρcell} , T )

∂Fβγ

]
= τ b

αβ

(
{rij} , T

)
+ τ nb

αβ

(
{ρcell} , T

)
(5.17)
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where

τ b
αβ

(
{rij} , T

)
=

1

VR

3∑
γ=1

Fαγ

 ∂

∂Fβγ

∑
(i,j)

Apair (rij, T )

 (5.18)

is the bonded contribution to the stress tensor, and

τ nb
αβ ({ρcell} , T ) =

1

VR

3∑
γ=1

Fαγ

{
∂

∂Fβγ

[ ∑
k ∈ cells

V acc
cell,kavol (ρcell,k, T )

]}
(5.19)

is the nonbonded contribution to the stress tensor.

We start by calculating the bonded contribution to the stress tensor, which depends only on
the distances between connected pair of atoms, rij , and temperature, T :

τ b
αβ ({rij} , T ) =

1

VR

3∑
γ=1

Fαγ

∑
(i,j)

[
∂Apair (rij, T )

∂Fβγ

]
=

1

VR

3∑
γ=1

Fαγ

∑
(i,j)

[
∂Apair (rij, T )

∂rij

∂rij
∂Fβγ

]
=

1

VR

∑
(i,j)

∂Apair (rij, T )

∂rij

3∑
γ=1

∂rij
∂Fβγ

Fαγ

=
1

VR

∑
(i,j)

∂Apair (rij, T )

∂rij

3∑
γ=1

∂rij
∂rij,β

∂rij,β
∂Fβγ

Fαγ

=
1

VR

∑
(i,j)

∂Apair (rij, T )

∂rij

rij,β
rij

3∑
γ=1

∂rij,β
∂Fβγ

Fαγ (5.20)

where we have made use of the fact that the partial derivative of the Euclidean norm of a vector
a = (a1, a2, ..., an) with respect to one of its components, aj , is:

∂ ∥a∥
∂aj

=
∂

∂aj

√√√√ n∑
i=1

a2i

 =
1

2 ∥a∥

n∑
i=1

[
∂

∂aj

(
a2i
)]

=
aj
∥a∥

(5.21)

It should be noted that eq 5.20 is valid for any kind of deformation (both affine and nonaffine).

We envision, that at a certain time, a homogeneous deformation is applied on the polymer
that displaces bond ends affinely, in the sense that their positions are changed in the same
way as material points in a macroscopic continuum description. Straight parallel lines in the
reference configuration map to straight parallel lines in the deformed configuration Let ri and
rj be the positions of the start and the end of the bonded beads before the deformation and r′i
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and r′j the positions of the same beads after the deformation, then:

r′i = Fri (5.22)

r′j = Frj (5.23)

By subtracting eq 5.23 from eq 5.22, we get:

r′ij = Frij (5.24)

Thus, one component of the deformed vector is connected to the components of the undeformed
through the relation:

r′ij,β =
3∑

γ=1

Fβγrij,γ (5.25)

and the derivative appearing in eq 5.20 can now be calculated:

∂rij,β
∂Fβγ

= rij,γ (5.26)

Eq 5.20 takes the form:

τ b
αβ ({rij} , T ) =

1

VR

∑
(i,j)

∂Apair (rij, T )

∂rij

rij,β
rij

3∑
γ=1

rij,γFαγ

=
1

VR

∑
(i,j)

∂Apair (rij, T )

∂rij

rij,βrij,α
rij

(5.27)

where the virial theorem (eq 2.159) is recovered.134

We now move to the estimation of the nonbonded contribution to the stress tensor, τ nb
αβ:

τ nb
αβ ({ρcell} , T ) =

1

VR

3∑
γ=1

Fαγ

{
∂

∂Fβγ

[ ∑
k ∈ cells

V acc
cell,kavol (ρcell,k, T )

]}

=
1

VR

3∑
γ=1

Fαγ

∑
k ∈ cells

[
∂V acc

cell,k

∂Fβγ

avol (ρcell,k, T )

]

+
1

VR

3∑
γ=1

Fαγ

∑
k ∈ cells

[
V acc

cell,k
∂avol (ρcell,k, T )

∂Fβγ

]

=
1

VR

∑
k ∈ cells

avol (ρcell,k, T )
3∑

γ=1

Fαγ

∂V acc
cell,k

∂Fβγ
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+
1

VR

∑
k ∈ cells

V acc
cell,k

3∑
γ=1

Fαγ
∂avol (ρcell,k, T )

∂Fβγ

=
1

VR

∑
k ∈ cells

avol (ρcell,k, T )
3∑

γ=1

Fαγ

∂V acc
cell,k

∂Fβγ

+
1

VR

∑
k ∈ cells

V acc
cell,k

3∑
γ=1

Fαγ
∂avol (ρcell,k, T )

∂ρcell,k

∂ρcell,k

∂Fβγ

=
1

VR

∑
k ∈ cells

avol (ρcell,k, T )
3∑

γ=1

Fαγ

∂V acc
cell,k

∂Fβγ

− 1

VR

∑
k ∈ cells

ρcell,k
∂avol (ρcell,k, T )

∂ρcell,k

3∑
γ=1

Fαγ

∂V acc
cell,k

∂Fβγ

=
1

VR

∑
k ∈ cells

[
avol (ρcell,k, T )

− ρcell,k
∂avol (ρcell,k, T )

∂ρcell,k

] 3∑
γ=1

Fαγ

∂V acc
cell,k

∂Fβγ

(5.28)

where avol (ρcell,k, T ) is the nonbonded Helmholtz energy density in cell k. The term in brackets
is the negative of the pressure, −p (ρcell,k, T ) as that is predicted by the equation of state (eq
2.129) under given density ρcell,k and temperature, T . At this point we have to calculate the
derivatives expressing the variation of the volume of a cell with respect to an element of the
deformation gradient tensor, ∂V acc

cell,k/∂Fβγ .

At this point we restrict ourselves to the case of a pure polymer. The determinant of the
deformation gradient tensor is the ratio of volumes or densities of the deformed and initial
configurations, eq 2.34 on page 22:

det (F) =
V ′

VR
=

V acc ′
cell,k

V acc
cell,k

=
ρ

ρ′
=

ρcell,k

ρ′cell,k
(5.29)

where the use of primes denotes the deformed configuration. If nanoparticles exist in the sys-
tem, attention should be paid to the cells intersecting nanoparticles. The derivative of the
determinant of F with respect to the tensor F itself is calculated by the following equation:334

∂ (det (F))
∂F

= det (F)
(
F−1
)T (5.30)

Finally, the nonbonded contribution to the stress tensor, substituting the above terms in eq 5.28
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is:

τ nb
αβ ({ρcell} , T ) = − 1

VR

∑
k ∈ cells

p (ρcell,k, T )
3∑

γ=1

Fαγ

∂V acc
cell,k

∂Fβγ

= − 1

VR

∑
k ∈ cells

p (ρcell,k, T )
3∑

γ=1

Fαγ

∂V acc
cell,k

∂ det (F)
∂ (det (F))

∂Fβγ

= −δαβ
1

VR

∑
k ∈ cells

p (ρcell,k, T )V
acc

cell,k (5.31)

where all volumes, VR and V acc
cell,k refer to the undeformed (reference) state of the system. Eq

5.31 could be fully anticipated. The contribution of the equation of state to the stress tensor
of the system is limited to the diagonal components and its magnitude is the negative of the
weighted average pressure over the cells of the grid, with volumes V acc

cell,k being the weights
multiplying the individual contributions. Please note the similarity with eq 3.12 on page 91.

5.2.4 Generation of Initial Configurations
Initial configurations for the linear melt are obtained by FTiMC equilibration of a coarse-
grained melt, wherein chains are represented as freely jointed sequences of Kuhn segments
subject to a coarse-grained Helfand Hamiltonian which prevents the density from departing
from its mean value anywhere in the system (please consult Chapter 4).176,327 The coarse-
graining from the freely jointed chain model to the bead-spring model involves placement of
beads at regular intervals along the contour of the chains obtained after the MC equilibration.
As already discussed in the previous section, at the new (coarser, mesoscopic) level of descrip-
tion, the polymer is envisioned as a network of strands connecting internal nodal points and
end points. The effects of entanglements are introduced by slip springs between chains. Slip-
springs can either be placed randomly at the initial configuration, or they can be allowed to
be created, following the kMC scheme described below. The number of entanglements (slip-
springs) is chosen so as to be consistent with the molar mass between entanglements, Me, of
the polymer under consideration.

Starting from a well equilibrated configuration R, obtained from a FTiMC simulation, we
determine the box size and shape for which the Gibbs energy function:179

G (T, τ ) = A ({rij} , {ρ (r, T )} , T )− VR
1

3
Tr (τ )− VR

∑
αβ

ταβϵαβ (5.32)

becomes minimal under the given, externally imposed T and τ . The presence of any symmetry
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element in the stress tensor reduces the number of minimization parameters, and in the special
case where only hydrostatic pressure is applied on the system, the sum of the last two terms
in eq 5.32 is equivalent to −pV , letting the volume V of the deformed configuration be the
only parameter for the Gibbs energy minimization. In that case, the volume is expressed as
V = VR (1 + ϵxx + ϵyy + ϵzz). The Gibbs energy function, eq 5.32, is, of course, valid only for
small deformations away from the reference state. In our case, we let the system relax under
atmospheric hydrostatic pressure, starting from an equilibrated configuration at the average
density for the temperature under consideration.

5.2.5 Brownian Dynamics
When simulating a system of coarse-grained particles, some degrees of freedom are treated
explicitly, whereas other are represented only by their stochastic influence on the former ones.
In our model the effect of the surrounding melt on the motion of the coarse-grained beads is
mimicked by introducing a stochastic force plus a frictional force into the equations of motion
of the beads. When the stochastic force contains no correlations in space or time, one obtains
the simplest form of stochastic dynamics, called BD.81,335,336 The theory of Brownian motion
was developed to describe the dynamic behavior of particles whose mass and size are much
larger than those of the host medium particles. In this case the position Langevin equation
becomes (please refer to page 54):

vi (t) =
1

ζi
Fi ({ri (t)}) +

1

ζi
F i (t) (2.156)

The systematic force Fi (t) is the explicit mutual force between the N particles and F i (t)

represents the effect of the medium on the particles. Each particle is characterized by its mass
mi and the friction coefficient ζi, measured in kg/s. The systematic force, Fi, is to be derived
from the free energy following eqs 5.3 and eq 5.13:

Fi ({ri (t)}) = −∇ri(t)A ({rij (t)} , {ρ (r, t)} , T ) (5.33)

with the expression of the Helmholtz energy as given in eq 5.1. The stochastic force F i is
assumed to be stationary, Markovian and Gaussian with zero mean and to have no correlation
with prior velocities nor with the systematic force. For large values of (ζi/mi)∆t in the diffu-
sive regime, when the friction is so strong that the velocities relax within ∆t, the BD algorithm
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of van Gunsteren and Berendsen,129 eq 2.157 can be used:

ri,α (tn +∆t) = ri,α (tn) +
1

ζi

[
Fi,α (tn)∆t+

1

2
Ḟi,α (tn)

(
(∆t)2

)]
+Ri,α (∆t) (2.157)

where the random variableRi,α,n (∆t) is sampled from a Gausssian distribution with zero mean
and width: ⟨

R2
i,α (∆t)

⟩
=

2kBTref

ζi
∆t (2.158)

5.2.6 Slip-spring Kinetic Monte Carlo

5.2.6/i General formulation

Chain slippage corresponds to hopping of a slip-spring along the contour of the chains it con-
nects, without actual displacements of their beads. The ends of the slip-spring connect beads
a0 and b0 along chains a and b (see Figure 5.2). In order to develop a formalism of elemen-
tary events of slip-spring hopping, creation or destruction, we need expressions for the rate of
slippage along the chain backbone. We extract the diffusivity of the slip-springs following the
work of Terzis et al.326 The self-diffusion along the chain contour is described by the Rouse
model (Section 2.3.4 page 36). This model addresses the dynamics of polymers in unentangled
melts. A polymer chain is represented by a set of beads connected by harmonic springs. The
dynamics is modeled as a Brownian motion of these tethered beads, the environment of a chain
being represented as a continuum (viscous medium), ignoring all excluded volume and hydro-
dynamic interactions. In this model the self-diffusivity of the center of mass of the polymer is
related to the friction coefficient ζi of a bead by eq 2.107 (page 40):

DRouse
cm =

kBT

(N + 1) ζ
(2.107)

with (N + 1) being the number of beads per chain. In the picture we invoke in our slip-spring
model, the center of mass diffusivity along the contour is related to the rate of slip-spring jumps
across beads (by distance NKuhns/beadb

2
K) in each direction by:

DRouse
cm = kdiff

NKuhns/beadb
2
K

N + 1
= νdiff

NKuhns/beadb
2
K

N + 1
exp

(
A0

kBT

)
(5.34)
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Figure 5.2: Illustration of the “hopping” scheme of slip-springs along the chain contour, by
switching the beads the spring is attached to.

where we have introduced kdiff as the rate of diffusion of a Rouse bead along the chain, which
is not a very useful quantity. Hence, we derive the following expression for νdiff:

νdiff =
kBT

NKuhns/beadb2Kζ
exp

(
− A0

kBT

)
(5.35)

whereA0 is a free energy per slip-spring in the melt at equilibrium, which establishes a baseline
for measuring free energies, and ζ the friction coefficient of an individual bead, measured in
kg/s. We should note here that ζ is the same friction coefficient used by the BD simulations, eq
2.157. It can be calculated from temperature-dependent expressions for the viscosity based on
experiment, or from analyses of the temperature-dependent chain self-diffusivity and Rouse
time based on atomistic molecular dynamics simulations of unentangled melts.337 We will
elaborate more on this, later.

An individual jump of one end of a slip-spring along the chain backbone, e.g. from bead
a0 to bead a+, takes place with rate:

khopping = ν0 exp

(
−A‡

O→N − Aa0−b0

kBT

)
= kdiff exp

(
Aa0−b0 − A0

kBT

)

or more conveniently:

khopping = νdiff exp
(
Aa0−b0

kBT

)
(5.36)

conforming to a Transition State Theory (TST) picture of the slippage along the backbone as
an infrequent event, which involves a transition from state O ≡ a0 ∧ b0 to state N ≡ a+ ∧ b0
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Table 5.1: Transition probabilities of a slip-spring both ends of which can hop along the chain

Slip-spring end Transition Rate Probability in a time step of
∆t

a0
a0 → a− ka0→a− = νdiff exp

(
Aa0−b0

kBT

)
pa0→a− = ka0→a−∆t

a0 → a+ ka0→a+ = νdiff exp
(

Aa0−b0

kBT

)
pa0→a+ = ka0→a+∆t

b0
b0 → b− kb0→b− = νdiff exp

(
Aa0−b0

kBT

)
pb0→b− = kb0→b−∆t

b0 → b+ kb0→b+ = νdiff exp
(

Aa0−b0

kBT

)
pb0→b+ = kb0→b+∆t

over a free energy barrier, A‡
O→N . We use the logical conjunction operator “∧” to denote

the connectivity of the system. In the final expression, the rate of hopping, khopping, depends
directly on the energy of the initial state of the slip-spring, Aa0−b0 , while the dependence on the
height of the free energy at the barrier (i.e. A‡

O→N ) has been absorbed into the pre-exponential
factor νdiff. As depicted in Figure 5.2, in the case considered none of the nearest neighbor
beads of the ends of the chain is a chain end. Double jumps (e.g. a0 → a+ and b0 → b+) are
disallowed, which may not be too bad an approximation for small timesteps, ∆t. Thus, the
ends of the slip-spring can hop independently with the probabilities given in Table 5.1.

5.2.6/ii Slip-spring hopping along the chain contour in the presence of a chain end

The ends of the slip-spring connect beads a0 and b0 as those are depicted in Figure 5.3. One of
the beads connected by the slip-spring (e.g. b0) is a chain end. One end of the slip spring can
hop along the chain, while the second can either hop moving away from the chain end or be
destroyed. The possible transitions and the associated probabilities are reported in Table 5.2.
The rate of destruction of a slip-spring is equal to the rate of hopping along the chain. This
assumption keeps the necessary adjustable parameters to an absolute minimum. Through the
intrinsic dynamics of the system, it is possible for a slip-spring end to leave its chain. This
process mimics the disentanglement at the chain ends and the process of constraint release
(CR). The process of slip-spring destruction is introduced in the model in order to represent
the chain disentanglement, as that is envisioned by the polymer tube theories.

5.2.6/iii Creation of a slip-spring connecting a chain end with an internal bead of an-
other chain

At each step of the kMC hopping simulation, every free end of the system can randomly create
a new slip-spring with an internal bead of a neighboring chain. We consider the case illustrated
in Figure 5.4. The chain end “a” searches for candidate mates to be paired, excluding other
chain ends and beads lying outside a sphere of prescribed radius, αattempt. The rate for the
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Figure 5.3: Illustration of the “hopping” scheme of slip-springs along the chain contour, in the
case a destruction event can take place.

Table 5.2: Transition probabilities of a slip-spring whose one end can hop away from the chain
(be destroyed)

Slip-spring end Transition Rate Probability in a time step of
∆t

a0
a0 → a− ka0→a− = νdiff exp

(
Aa0−b0

kBT

)
pa0→a− = ka0→a−∆t

a0 → a+ ka0→a+ = νdiff exp
(

Aa0−b0

kBT

)
pa0→a+ = ka0→a+∆t

b0
b0 → × kb0→b× = νdiff exp

(
Aa0−b0

kBT

)
pb0→b× = kb0→b×∆t

b0 → b+ kb0→b+ = νdiff exp
(

Aa0−b0

kBT

)
pb0→b+ = kb0→b+∆t

Figure 5.4: Illustration of the slip-spring creation process
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creation of a new slip-spring is closely related to the probability of pairing the end “a” with
one of its candidate mates, i, which lies inside a sphere of prescribed radius, αattempt. The rate
constant of this process is:

kcreation = νformationncands

exp
(
−Aa∧ci

kBT

)
∑ncands

j=1 exp
(
−Aa∧cj

kBT

) (5.37)

where we have used a ∧ ci to denote the pairing of chain end a with a candidate internal bead
i. The probability of achieving a connection of the above kind in a time step ∆t:

pa∧ci = ka∧ci∆t (5.38)

while the probability of not creating a new slip-spring is:

pa∧∅ = 1−
ncands∑
j=1

pa∧cj (5.39)

The definition of the probability of not creating a new slip-spring, pa∧∅, implies that the
more crowded chain ends are the more probable to create a slip-spring. The number of neigh-
bors around a chain end can be tuned via the radius of the sphere within which the search takes
place, αattempt. A good estimate of αattempt is given by the tube diameter, app of the polymer.

5.2.7 Simulation Details
The systems considered were cis-1,4 polyisoprene (natural rubber) melts. All simulations were
carried out in the canonical statistical ensemble, at the temperature of T = 413K, where rhel-
ogical measurements are available.174 The simulation box was cubic with varying edge length
from 30 nm to 100 nm.

5.2.7/i Equation of state parameters

We have used the parameters of the Sanchez-Lacombe equation of state, given by Rudolf
et al.333 who have conducted pV T measurements on several polymers in isothermal condi-
tions, above their glass transition temperature. These authors suggest p∗ = 383.0 MPa, T ∗ =

631.2 K and ρ∗ = 0.961 g/cm3 for molten polyisoprene of M = 2594 g/mol. Based on these
values, the density of polyisoprene at T = 300 K is estimated as ρ(300 K) = 0.908 g/cm3.
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5.2.7/ii Kuhn length parametrization

The mean squared end-to-end distance of a PI chain can be either expressed in terms of the
number of isoprene units or Kuhn lengths:

⟨
R2

e,0
⟩
= C∞4Nmonomersl

2 = NKuhnb
2 (5.40)

where C∞ is the characteristic ratio of PI, l is the average carbon-carbon bond length for iso-
prene and b is the Kuhn length of polyisoprene. The factor of 4 is required because each
isoprene contains four backbone bonds. Using Mark’s338 values for C∞ and l of 4.7 and
0.1485 nm, respectively, we obtain b = 0.958 nm and 2.21 isoprene units per Kuhn length.339

The effective length of an isoprene unit has been shown to have a slight temperature depen-
dence,340 however, we ignore this effect in our model. Each bead in our representation con-
sists of nKuhns/bead = 10 PI Kuhn segments. Thus, its mass is mbead = 1506 g/mol and its
characteristic mean-square end-to-end distance (if considered as a random walk) should be(
nKuhns/beadb

2
)
= 9.1776× 10−18 m2.

Fetters et al.174 have estimated the entanglement molecular weight of polyisoprene (PI),Me

to be 5430 g/mol. Based on the chain discretization we have introduced above, the average
distance between the slip-springs should be roughly four coarse-grained beads.

5.2.7/iii Friction coefficient

Klopffer et al.341 have characterized the rheological behavior of a series of polybutadienes
and polyisoprenes over a wide range of temperatures. The viscoelastic coefficients resulting
from the time-temperature superposition principle were determined. A Rouse theory modi-
fied for undiluted polymers was used to calculate the monomeric friction coefficient, ζ0. The
monomeric friction coefficient, ζ0, characterizes the resistance encountered by a monomer unit
moving through its surroundings. It was concluded that, within experimental error, a single set
of Williams - Landel - Ferry (WLF) parameters205 at Tg was adequate to characterize the re-
laxation dynamics irrespective of the vinyl content of the polybutadienes and polyisoprenes.
These authors proposed that the variation of the monomeric friction coefficient with tempera-
ture can be given by:

log ζ0 (T ) = log ζ∞ +
Cg

1C
g
2

T − Tg + Cg
2

(5.41)

with the parameters Cg
1 = 13.5 ± 0.2, Cg

2 = 45 ± 3 K, log ζ∞ = −10.4 dyn s cm−1 and
Tg = 211.15 K. At a temperature of 298 K, ζ0(298 K) = 1.61× 10−6 dyn s cm−1, while at a
temperature of 413 K, ζ0(413 K) = 1.1508× 10−11 kg/s
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If we think the friction coefficient as being proportional to the mass of the entity it refers
to, we can estimate the friction coefficient of our coarse-grained beads as:

ζbead =
mbead

mmonomer
ζ0 (5.42)

where mmonomer = 68.12 g/mol refers to the molar mass of a PI monomer. The friction coeffi-
cient of a coarse-grained bead, at the temperature of 413 K is:

ζbead = 2.54× 10−10kg
s

(5.43)

Doxastakis et al.207,342 have estimated the self-diffusion coefficient of unentangled PI chains
consisted of 115 carbon atoms, at T = 413 K to be:

DC115
= 4.4× 10−11 m2

s
(5.44)

The length of these chains corresponds to 23 monomers (or 11 PI Kuhn segments). If we use
the Rouse model88 to predict the diffusivity of these chains, based the parameters we have
chosen above, that would be:

DRouse,C115
=

kBT

Nmonomersζ0
= 2.15× 10−11 m2

s
(5.45)

where Nmonomers is the chain length measured in monomers and ζ0 the monomeric friction coef-
ficient. Our estimation of the self-diffusivity of Rouse chains, based on the model parameters
we have introduced coheres with what Doxastakis et al. have measured both experimentally
and by all-atom MD simulations.

5.3 Results and Discussion

5.3.1 Structural Features
We start by examining the structure of the melt chains at the level of individual strands, where
we refer to a strand as the distance between successive beads along the contour of a chain. The
distribution of the length of the strands (entropic springs) that connect the beads along the con-
tour of the chains is depicted in Figure 5.5. The entropic springs along the chain are considered
Gaussian with an unperturbed length which equals total length of the Kuhn segments adsorbed
by a coarse-grained bead. The conformational features, at least at the strand level, continue to
be respected during the BD simulation. Moreover, the distribution of strand lengths during the
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Figure 5.5: Distribution of the length of the strands along the contour of the chain. The term
strand refers to the distance between successive beads along the same chain.

simulation coincides with a Gaussian distribution centered at the unperturbed strand length, as
is theoretically expected. Our simulation scheme seems to produce trajectories of the system
consistent with the imposed free energy function.

In Figure 5.6 we examine the distribution of slip-spring lengths. Slip-springs represent
entanglements of a chain with its surrounding chains. The polymer tube model considers a
tube formed around the primitive path of the chain, which fluctuates in time. Recent simu-
lations have shown that the probability of finding segments of the neighboring chains inside
the tube of the chain under consideration is Gaussian.343 This is also the case in our simula-
tions. The use of Gaussian entropic springs for describing the free energy of the slip-springs
results in a Gaussian distribution of slip-spring lengths, conforming to the picture obtained by
more detailed simulations and theoretical arguments. Again, the distribution obtained by the
simulation is in favorable agreement with the one expected.

5.3.2 Dynamics
Figure 5.7 shows results for the time dependence of the mean-square displacements, gi (t)
(eq 2.110, page 40) and gcm (t) (eq 2.105, 39) for an unentangled melt. As can be seen, the
mean-square center-of-mass displacement, gcm (t), remains linear all times; this means the
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Figure 5.6: Distribution of the length of the slip-springs connecting beads belonging to differ-
ent chains. In our network description, slip-springs represent entanglements between neigh-
boring chains.

intermolecular forces between polymers are too weak to affect diffusive behavior and play
a minor role compared to the bonded interactions. The beads mean-squared displacements,
gi (t), exhibit a subdiffusive behavior that arises from chain connectivity, and is characterized
by a power law of the form gi (t) ∼ t1/2. After an initial relaxation time where a change in
gi (t) occurs, a regular diffusive regime is entered, where gi (t) ∼ t. This sequence of scaling
trends is predicted by the Rouse theory (subsection 2.3.4, page 41). The limiting behavior of
the chains’ center-of-mass displacement can yield an estimate of the diffusivity of the chains:

lim
t→∞

gcm (t) = 6Dcmt (5.46)

which has been found in excellent agreement with the predicted diffusivity by all-atom MD
simulations of PI chains of the same molecular weight by Doxastakis et al.342 The introduction
of non-bonded interactions does not seem to affect the scaling laws of the unentangled melt.

Figure 5.8 shows results for the mean-square displacements, gi (t) and gcm (t), as a function
of time, obtained from the simulation of a 50 kg/mol PI melt with slip-springs present. It can
be seen that at short times the bead’s mean-square displacement, gi (t), shows a scaling regime
with a power law t1/2; at intermediate times, a regime with a power law t1/4 appears; eventually
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regime with t1/2 scaling can be seen, in agreement with the Rouse model.

we observe a crossover to regular diffusion at long times. The mean-square displacement of
the chain center-of-mass, gcm (t), also exhibits subdiffusive behavior at intermediate times,
with a scaling behavior t1/2, as predicted by the tube model; at long times, regular diffusion
is achieved. From the long time behavior of gcm (t), we can estimate the longest relaxation
time, τd. Despite the fact that the scaling regions are not accurately discerned in our results,
the scaling of polymer melts, as expected by the tube theory, is observed.

5.3.3 Rheology
Linear rheological properties can be characterized through the shear relaxation modulus, G (t),
as that was defined in eq 2.40:

τxy (t) = γG (t) (2.40)

with γ being a small shear deformation and xy two orthogonal axes. In computer simulations,
the most convenient way of evaluating G(t) is by using the fluctuation-dissipation theorem
(section 2.4.3/i on page 53):91

G (t) =
V

kBT
⟨ταβ (t0 + t) ταβ (t0)⟩ (5.47)
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present). The scaling of both functions is in good agreement with the tube model predictions
(Figure 2.3 on page 44).

where αβ any two orthogonal directions. However, the stress autocorrelation function (acf)
is notoriously difficult to calculate due to huge fluctuations at early times (caused by bond
vibrations). In order to improve accuracy we average ⟨ταβ (t0 + t) ταβ (t0)⟩ over all possible
ways to select a pair of perpendicular axes α and β.91 The result is:

G (t) =
V

5kBT


⟨τxy (t0 + t) τxy (t0)⟩
+ ⟨τxz (t0 + t) τxz (t0)⟩
+ ⟨τyz (t0 + t) τyz (t0)⟩



+
V

30kBT


⟨Nxy (t0 + t)Nxy (t0)⟩
+ ⟨Nxz (t0 + t)Nxz (t0)⟩
+ ⟨Nyz (t0 + t)Nyz (t0)⟩

 (5.48)

where Nαβ = ταα − τββ . We compute the time correlation functions in eq 5.48 by using the
multiple-tau correlator algorithm of Ramírez et al.344 The shear viscosity, η, can be computed
from the stress relaxation function through a Green-Kubo relation:

η =

∫ ∞

0

Gαβ(t)dt (5.49)
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different chains.

Our results for the average stress relaxation function, as defined in eq 5.48 are shown in
Figure 5.9. The long time behavior of the stress autocorrelation function arises from the Rouse
like dynamics of the single chain. In particular, the intermediate time scale behavior of the
stress acf is consistent with the Rouse model scaling, G(t) ∼ t−1/2, while the long time decay
is exponential, with a time constant characterizing the longest stress relaxation time in the
system. It is clear that the longest relaxation time from the stress autocorrelation function
follows the same power law scaling with N as the end-to-end vector relaxation time. In the
presence of slip-springs, a plateau starts to appear; this indicates that the viscoelastic character
of polymer melts is captured by our model.

5.4 Summary and Conclusions
The first steps towards a consistent coarse-grained model capable of reproducing the rhelogical
properties of (nanocomposite) polymer melts have been presented. The methodology and the
corresponding computer code have been developed for the case of a pure polymer melt. Chains
are modeled as sequences of beads, each bead encompassing approximately 10 Kuhn segments.
The Helmholtz energy of the system is written as a sum of three contributions: entropy springs,
representing the entropic elasticity of chain strands between beads; slip-springs, representing
entanglements; and non-bonded interactions. The Helmholtz energy of non-bonded interac-
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tions is estimated by invoking an arbitrary equation of state and is computed as a functional
of the local density by passing an orthogonal grid through the simulation box. Slip-springs
are envisioned as connecting nodes on different polymer chains. Equations for a stochastic
description of the dynamics are derived from the coarse-grained Helmholtz energy function.
All beads execute Brownian motion in the high friction limit. The ends of the slip-springs
execute thermally activated hops between adjacent beads along chain backbones, these hops
being tracked by kMC simulation. In addition, creation/destruction processes are included for
the slip-springs. A slip spring is destroyed when one of its ends slips past the free end of
a polymer chain. A new slip spring is formed when a chain end captures a bead of another
chain lying within a certain radius from it, according to a prescribed rate constant. Parame-
ters needed in the model are derived from experimental volumetric and melt viscosity data or
from atomistic molecular dynamics simulations. Initial configurations for the network are ob-
tained from FTiMC simulations of linear melts. Tests of the simulation code on molten linear
(non-crosslinked) cis-1,4 polyisprene of high molar mass at equilibrium have given satisfac-
tory results for the mean square displacement of beads and for the shear relaxation modulus.
The ultimate goal of this effort is the model to be applied to pure and nanocomposite rubbers.
A way of cross-linking FTiMC configurations is presented in Appendix B. The incorporation
of the dispersed nanoparticles in the model will be based on our work at the FTiMC level.
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.... 6. Main Conclusions and
Innovations

In this work, through the use of appropriately designed molecular simulation techniques, three
main accomplishments have been brought to completion. First, by conducting Molecular Dy-
namics (MD) simulations of a well equilibrated polystyrene (PS) - C60 system, we obtained
critical insight into its local segmental dynamics and stresses. Then, we accessed the scaling
features of grafted polymer layers by utilizing a novel Monte Carlo (MC) methodology based
on ideas from polymer mean-field theory. That level served as a stepping stone for moving to
entangled polymer simulations via a Brownian Dynamics (BD) - kinetic Monte Carlo (kMC)
scheme based on the tube theory, where entangled melt rheology has been predicted. The main
contribution of this thesis was to build up a bottom-up modeling hierarchy capable of provid-
ing fundamental understanding and answers to specific nanocomposite design problems, and
explore the relations between the several modeling levels within it. In the following we briefly
present the innovations brought by the dissertation at three levels: methodology, physical in-
sight, and computational tools.

6.1 Methodological Advances
• In addition to the “atomic virial” formulation of Theodorou et al.,134 two more stress ten-
sor definitions have been used in order to calculate stresses from molecular simulations.
The first one, based on the derivative of the Helmholtz enegy with respect to the strain,
allows clear mathematical treatment of three- and four-body potentials as well as conser-
vative fields (Appendix A). The second one, based on the deformation gradient tensor,
proved very efficient in the case of spatial discretization schemes, as the one described
in Chapter 5 and Appendix C.

• A rigorous and efficient reverse mapping scheme for coarse grained (CG) PS has been
developed, which provides atomistic configurations with conformational characteristics
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in excellent agreement with experimental measurements. Previous efforts resulted in
unrealistic polymer configurations. Moreover, we consider it as true reverse mapping
because the positions of the coarse-grained sites are kept constant, during a procedure
involving local MC moves and energy minimizations, ensuring that the atomistic con-
figuration shares exactly the same features as the CG one, at length scales larger than the
monomer size.

• Derivation of an integrated potential between a point and a spherical shell on the grounds
of Hamaker’s theory. Despite the fact that expressions for point-point, point-sphere and
sphere-sphere integrations have already appeared in the literature, it was the first time
for a point-spherical shell integrated potential to be reported.

• Quite a long time after the pioneering work of Theodorou and Suter,218 atomic and local
stresses have been calculated for polymer melts and glasses. The contribution of this
thesis consists in deriving the necessary expressions for arbitrary three- and four-body
potentials and estimating the atomic volume by a Voronoi tessellation of the simulation
domain.

• Quantification of nanoparticle-induced confinement by employing the volume of the
Voronoi cells as a measure of it. Many-particle influence on dynamics and stress distri-
butions has been studied.

• Formulation of a MC simulation approach inspired by polymer mean field theory, capa-
ble of capturing structural features at length scales in the order of hundreds of nanome-
ters. Polymer chains are represented as random walks and Hamaker integrated potentials
are used for describing polymer-particle and particle-particle interactions. The param-
eterization of the coarse-grained model is based directly on the atomistic force fields
without the need of introducing additional parameters.

• Derivation of a closed form expression for the scattering of freely jointed chains by
combining and extending previous works.81,287,288 That expression was incorporated in
a Pedersen-like293 model in order to analyze Small Angle Neutron Scattering (SANS)
spectra of the grafted polymer brushes.

• Development of an equation of state - based slip-spring model capable of describing the
dynamics of (entangled) polymer melts. The parameterization of the model can be based
on atomistic simulations and an arbitrary Equation of State (EoS) can be incorporated.
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• Development of a kMC scheme for capturing the tube motion of the chains in entan-
gled environments. The mechanisms of reptation, contour-length fluctuation (CLF) and
constraint release (CR) have been incorporated.

• Well-equilibrated initial configurations for entangled slip-spring polymer melt simula-
tions have been obtained by Field Theory-inspired Monte Carlo (FTiMC) simulations.
Moreover, crosslinked initial configurations can be obtained by following the procedure
described in Appendix B.

6.2 Physical Insight Obtained
By using the methodologies described above we have extended our understanding of materials
in the following ways:

• PS chain conformations obtained through CG MC simulations were equilibrated at all
length scales and found to be in excellent agreement with available experimental evi-
dence (Figures 3.1 and 3.2 on page 70).

• No effect of the dispersion of C60s has been observed at the chain conformations of PS
chains.

• Our simulation results generally indicate that the addition of C60s to PS leads to slower
segmental dynamics (as estimated by characteristic times extracted from the decay of
orientational time-autocorrelation functions of suitably chosen vectors).

• The overall mean-square displacement of backbone atoms is found to be smaller in the
presence of fullerenes, than in bulk PS (Figure 3.12 on page 87).

• Atoms moving in smaller (more confined) Voronoi cells exhibit faster motion than the
atoms moving inside larger Voronoi cells. If this is correlated with the increased rota-
tional diffusion of fullerenes, as the volume of the Voronoi cell becomes smaller, can
drive us to envision fullerenes as nanoscopic millstones that force the polymeric chains
to translationally diffuse.

• The dynamic heterogeneity caused by the addition of fullerenes exhibits strong temper-
ature dependence, getting larger as the temperature is lowered.

• Coordination numbers and atomic volumes of atoms in polymer melts and glasses have
been calculated via a Voronoi tessellation of the simulation domain. That was an in-
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termediate step in calculating atomic stresses, where the volume of an atom should be
defined in order to convert virial into stress (eq 3.11 on page 90).

• Atomic stresses in the melt and glassy state have been calculated. Each united atom is
characterized by a distribution of atomic stresses whose shape and position reflect its
chemical nature, connectivity, and geometric disposition within the system.

• Local stresses have been obtained by the summation of atomic contributions from atoms
lying inside a control volume and their dependence on the observation length-scale has
been studied. Hydrostatic pressure can be calculated from arbitrarily small control vol-
umes, while von Mises shear stress has been found to scale as the inverse square root of
the volume of the material used for the calculation.

• By increasing the particle grafting density, the brush of grafted chains undergoes a phase
transition from its stretched to its collapsed form, in agreement to scaling theories244 and
MD simulations.247 The phase transition has been attributed to the autophobic dewetting
of the brush by the melt.

• Increasing the brush chain length leads to thicker grafted brushes, which improve the
miscibility of nanoparticles with the homopolymer matrix, in agreement with Self Con-
sistent Field (SCF) studies.242

• The density distributions around a nanoparticle seem to depend only on grafting density
and grafted chain length, especially when the matrix chain length is equal to or longer
than the grafted chain length. “Wet-to-dry” conformational transition260 has not been
observed. Our prediction was later validated by experimental studies.345

• The scaling of polymeric layers grafted to nanoparticles can be well described by the
model proposed by Daoud and Cotton232 for star-shaped polymers. The brush thickness
scales with the square root of the grafted chain length and the fourth root of the grafted
density.

• Single chain and corona SANS scattering spectra for chains grafted to nanoparticles have
been estimated from simulations for the first time.

• At the single chain level, grafted chains deviate strongly from their random walk statis-
tics, especially for high surface coverage and molar mass.

• The corona structure factors for 13-nm-radius grafted particles dispersed in different
molar mass matrices have been validated against SANS measurements of Chevigny et
al.260
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6.3 Computational Tools
In the framework of the present thesis the following computer codes have been developed:

• MCbuilder346 capable of building polymeric chains of arbitrary geometry in heavily con-
fined environments, based on the quasi-Metropolis scheme of Theodorou and Suter.165

In case the insertion of a new monomer fails, a local energy minimization is undertaken
in order to drive the insertion to the most energetically favorable positions.

• Configurationally biased reverse mapping of CG PS to the atomistic level. This F77
code can restore atomistic details of CG PS configurations. With little effort it can also
be extended to other molecular architectures.

• FTiMC code for the generation and equilibration of polymer matrix nanocomposites us-
ing molecular characteristics and thermodynamic information as input. It is coupled to
the analytical algorithm of Dodd and Theodorou263 for the estimation of free volume.
Moroever, it is self-contained with the only input being the molecular characteristics
(Kuhn length, molecular weight), the isothermal compressibility and the Hamaker con-
stants of the polymer and the particles.

• Random-crosslinking of FTiMC configurations C++ source code (Appendix B). The
code can disperse random crosslinks in the presence of nanoparticles, taking periodic
boundary conditions into account. It can be easily generalized to arbitrary molecular
architectures.

• EoS-based BD slip-spring simulationC++ source code. The code can track the dynamics
of slip-springs along the chain contour via a kinetic MC scheme. It can be easily extended
and has been thoroughly documented.

• Post-processing scripts for trajectories generated by the LAMMPS application in Python,
for hydrogen reconstruction, for studying structure (local density, SANS and X-ray spec-
tra) and dynamics (bond/torsional autocorrelation functions, dynamic structure factor,
local dynamics) of polymer melts and glasses.

• Generic and easily extensibleC++ source code for post-processing molecular simulation
trajectories. This code employs an abstract data model for the representation of molecu-
lar entities, allowing atomic-level and local calculations by using various discretization
schemes. The user can interact by a specially designed scripting language. The incorpo-
ration of new features requires minimum effort due to the intrinsic object-oriented design

179



Chapter 6. Main Conclusions and Innovations

of the code which has been based on standard graph algorithms and lexical parsing tech-
niques.

and the following ones have been extended:

• Polyethylene connectivity-altering MC F77 code. The original code has been developed
by Theodorou, Boone, Mavrantzas and Karayiannis. Our contribution is limited to creat-
ing C interfaces and initial CUDA routines (used for a successful Academic Partnership
proposal to nVIDIA) which were then extended and implemented in polyethylene sim-
ulations by A. Morphis.

• CG PS connectivity-altering MC F77 code. Spyriouni32 has modified the above PE
connectivity-altering MC code in order to simulate CG PS instead of PE. We have
extended this code with the capability of simulating nanocomposite materials (incor-
porating spherical nanoparticles interacting via sphere/sphere, sphere/shell, shell/shell
Hamaker potentials), non-periodic and confined systems.

• The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) MD sim-
ulation application has been extended with the necessary routines for fully supporting
the united-atom forcefield of PS.177

6.4 Side Projects
In order to address the main challenges of the PhD thesis, several other problems have been
resolved:

• A method has been formulated, based on combining self-consistent field theory with dy-
namically corrected transition state theory, for estimating the rates of adsorption and des-
orption of end-constrained chains (e.g., by cross-links or entanglements) from a polymer
melt onto a solid substrate.347 This method has been tested on a polyethylene/graphite
system, where it was parameterized based on atomistically detailed molecular simula-
tions. For short-chain melts, which can still be addressed by molecular dynamics simula-
tions with reasonable computational resources, this SCF/TST approach gives predictions
of the adsorption and desorption rate constants which are gratifyingly close to molecular
dynamics estimates.

• The generation of well-equilibrated atomistic configurations of polymer systems is a
prerequisite for the reliable prediction of their properties through molecular and multi-
scale modeling. We have managed to integrate the unprecedented computational power
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of graphics processing unit (GPU) computing into a MC scheme enabling equilibration
of polymeric melts and polymer-matrix nanocomposite systems at large length scales.
Our strategy for parallelizing MC codes for use with nVIDIA GPUs supporting CUDA
involves concurrent calculation of the bonded interactions at the central processing unit
(CPU) and non-bonded interactions at the GPU. Well equilibrated MC configurations
have been used to predict the structure and thermodynamic properties of long-chain PE
and PS melts. Both MC and MD simulations have been accelerated by at least an order
of magnitude by exploiting nVIDIA Fermi architecture GPUs. This has made feasible
the atomistic simulation of polymer systems of molar mass up to 400 kg/mol consisting
of hundreds of thousands of interacting atoms on a modern computer server node.
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The mathematical formulation, the computer codes developed, as well as the selection of input
parameters to all simulation levels were carried out in a rigorous and versatile way, ensuring
their applicability to a wide class of problems. Special attention has been paid to linking the
individual levels of modeling in a consistent way. Below we summarize some interesting
potential applications, which are very relevant to the ones studied in the present thesis.

7.1 PS Coarse-Graining - Reverse Mapping - Atomistic MD
Based on the methods developed for the atomistic simulation of polystyrene (PS), several other
problems can be addressed:

• Elastic constants for both pure and nanocomposite polymer glasses can be immediately
calculated from atomistic Molecular Dynamics (MD) trajectories, based on a stress fluc-
tuation formalism,137 and the second-order strain derivatives, already derived in Ap-
pendix A. The first results on the estimation of the elastic constants of an argon crystal are
highly promising and the necessary methodology and computer code for extending the
study to polymer glasses has been fully developed. Moreover, atomic level elastic con-
stants can be defined, through a rigorous geometric framework. Based on atomic level
elastic constants, local elastic constants can be defined by summing individual atomic
contributions.

• Spatial and temporal stress correlations in polymer melts and glasses. We start from
the Green-Kubo expression that relates viscosity to the time-integral of the macroscopic
shear stress correlation function and we decompose it into correlation functions between
atomic-level stresses, extending previous work by Levashov et al. in the field of metallic
melts348–350 and crystals.351 The concept of the atomic-level stresses allows the macro-
scopic stress-stress correlation function in the Green-Kubo relation to be expressed in

183



Chapter 7. Research Outlook

terms of the space- and time-correlations arising among the atomic-level stresses.

7.2 Field Theory-inspired Monte Carlo Simulations
Based on the Field Theory-inspired Monte Carlo (FTiMC) methodology, a broad range of
materials (pure and composite) can be addressed, by simply providing as an input to the method
the melt compressibility and the Kuhn length of the polymer. Among the limitless possibilities,
the following classes of materials exhibit special interest:

• Block copolymers for use in directed self-assembly (DSA). DSA is one of the most
promising techniques to sustain the miniaturization of integrated circuits and to boost
the performance predicted by Moore’s law. It combines top-down photolithography for
creation of guiding patterns with engineered new materials and processes to facilitate
cost effective bottom-up techniques for pattern density multiplication and defect rectifi-
cation.352

• Binary blends of linear polymer with well-separated molecular weights. FTiMC can
provide well equilibrated initial configurations of systems consisting of two kinds of
polymer chains with very different chain lengths. Slip-spring simulations of these sys-
tems can provide insight into the constraint release (CR) and dynamic tube dilation pro-
cesses.330,331

7.3 EOS-based Slip Spring Model for Polymer Dynamics
The methodology and tools developed based on the slip-spring model introduced in Chapter
5 can be used for predicting the rheology of arbitrary polymer melts. The input parameters,
either for the molecular characteristics of the system, or for the equation of state involved,
can be extracted from experimental findings. Initial configurations can be obtained by FTiMC
simulations. Possibly interesting case studies would include:

• Nanoparticle filled melts and elastomers. We are currently in the process of adding
the capability of simulating polymer melts with dispersed spherical particles. The free
energy function has been extended by two additional terms describing the polymer-
nanoparticle and nanoparticle-nanoparticle interactions. The kinetic Monte Carlo scheme
will be enriched by events of adsorption/desorption of nodal points on the surface of the
particles, by employing a suitable model for the estimation of the rates.347

• Binary blends of linear polymer with well-separated molecular weights. In connection to
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the interesting case studies for the FTiMC approach, the rheology of blends of polymers
with extremely different molecular weights is of paramount importance, both in terms
of fundamental understanding and industrial applications.
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.... A. Strain Derivatives of the Potential
Energy

We consider a potential energy function, V , which can be written as:

V =
∑
(i,j)

Vbond (rij) +
∑
(i,j,k)

Vangle (θijk)

+
∑

(i,j,k,l)

Vtorsion (ϕijkl) +
∑
(i,j)

Vnb (rij) + Vlong (A.1)

which is a sum of contributions of bond stretching potentials, Vbond (rij), between connected
atoms, bond bending potentials,Vangle (θijk), involving three (not necessarily consecutive atoms),
torsional potentialsVtorsion (ϕijkl) involving four arbitrary (not necessarily connected with bonds)
atoms, pairwise additive nonbonded interactions, Vnb (rij) and long-range corrections, Vlong.
The summations extend over the relevant sets of tuples, {(. . . )}, where (i, j) are pairs of i and
j, (i, j, k) are triads of i, j and k, etc. The description we employ here, which is based on sets of
bonds, angles, torsion angles and pairs of atoms interacting through non-bonded interactions,
allows for special rules e.g. between neighboring atoms to exist.

The Cartesian coordinates of the atoms are denoted by lowercase latin characters with one
index, e.g. ri, rj , while the separation vectors with lowercase latin characters with two indices,
e.g. rij . It holds that rij = rj − ri and rij = ∥rij∥.

At constant temperature T the stress tensor, ταβ , is given in terms of the Helmholtz energy
by eq 2.161 on page 58:353

ταβ =
1

VR

∂A

∂ϵαβ

)
T,ϵ[αβ]

(A.2)

which in the NV T ensemble is cast in eq 2.170 on page 59:

ταβ =
⟨
σV
αβ

⟩
NV T

− ρkBTδαβ (A.3)
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where
σV
αβ =

1

VR

∂V
∂ϵαβ

)
T,ϵ[αβ]

(A.4)

with ρ being the number density and the brackets denoting the NV T ensemble average.

The isothermal stiffness tensor, Cαβγδ is given in terms of the Helmholtz energy by:354

Cαβγδ =
1

VR

∂2A

∂ϵαβ∂ϵγδ
(A.5)

Differentiating the free energy twice with respect to the strain gives:140,353

Cαβγδ = CV
αβγδ + CF

αβγδ + CK
αβγδ (A.6)

where
CV

αβγδ =
1

VR

⟨
∂2V

∂ϵαβ∂ϵγδ

⟩
(A.7)

CF
αβγδ = − VR

kBT

[⟨
σV
αβσ

V
γδ

⟩
−
⟨
σV
αβ

⟩ ⟨
σV
γδ

⟩]
(A.8)

and
CK

αβγδ = 2ρkBT (δαγδβδ + δαδδβγ) (A.9)

The first term in eq A.6 is the so-called Born term and is related to zero temperature elastic
constants. The second term is the stress fluctuation term and accounts for the finite temperature
effects. The last term in eq A.6 is the ideal gas contribution and is related to the derivatives
of the volume with respect to strain tensor. Typically, only the first two terms contribute
significantly to the elastic constants. The Born term describes the contribution to the elastic
moduli resulting from a uniform displacement of all particles provoked by a macroscopically
imposed homegeneous deformation. The assumption of such an affine displacement at all
length scales is not necessarily justified. At the molecular scale, nonaffine particle motion
can decrease the free energy and lead to a further contribution to the elastic moduli. This
contribution is accounted for by the stress-fluctuation term.

By construction, the stress-fluctuation formalism is a thermodynamic approach; it can be
applied to the equilibrium crystal, but also to the equilibrium liquid. For an equilibrium liquid
the shear and bulk moduli can be determined from the stress-fluctuation formalism by follow-
ing the calculations of Zwanzig and Mountain.355 For the shear modulus one finds G = 0, as it
must be for a liquid, while the result for the bulk modulus gives back an expression known from
the literature (e.g. eq 2.79 from ref 198). For the polymer glasses studied here, the averages in
eqs A.3 and A.6 are not equilibrium averages. A polymeric glass is not in thermodynamic equi-
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librium is not in thermodynamic equilibrium and does not have access to all of configuration
space. Thermal motion consists predominantly of solid-like vibrations of atoms around their
equilibrium positions and mechanical response to small deformations is adequately described
by linear elasticity.179

Although the stress-fluctuation formula for the elasticity tensor has several advantages, its
use has been limited by the difficulty in evaluating the Born term for complex atomic poten-
tials.356,357 For many potentials, multibody interactions such as bending and torsion make the
use of stress fluctuation formula unattractive. Exact expressions for the Born term for poten-
tials that include bending and torsional contributions were derived by van Workum et al.358

From eqs A.3 and A.6 we can compute the stress and elasticity tensor for any given potential
energy function, V , given an equilibrium trajectory of the system.

A.1 Strain Derivatives of Two-body Potentials

A.1.1 Bond Stretching Potential
The contribution of the bond stretching potential, Vbond(rji) to the box stress tensor is:

σV,bond
αβ =

1

V

∑
(i,j)

∂Vbond (rij)

∂rij

∂rij
∂ϵαβ

(A.10)

where the (i, j) stands for a bond connecting the pair of atoms i and j and {(i, j)} denotes the
set of all bonds present in the system. The partial derivative of the norm of the bond vector
with respect to the strain is:

∂rij
∂ϵαβ

=
rij,αrij,β

rij
(A.11)

The Born contribution to the elasticity tensor is:

CV,bond
αβγδ =

1

V

∑
(i,j)

∂2Vbond (rij)

∂ϵαβ∂ϵγδ

=
1

V

∑
(i,j)

[
∂2Vbond(rij)

∂r2ij
− 1

rij

∂Vbond(rij)

∂rij

]
rij,αrij,βrij,γrij,δ

r2ij
(A.12)
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Figure A.1: Vectors defining the bond angle θijk and torsion angle ϕijkl.

A.1.2 Pairwise Additive Non-bonded Potential
The contribution of the pairwise additive non-bonded potential, Vnb(rij) to stress tensor σV,nb

αβ

tensor is:
σV,nb
αβ =

1

V

∑
(i,j)

∂Vnb (rij)

∂ϵαβ
=

1

V

∑
(i,j)

∂Vnb (rij)

∂rij

∂rij
∂ϵαβ

(A.13)

where the derivative ∂rij/∂ϵαβ is given by eq A.11.

The contribution of the pairwise additive non-bonded interactions to the Born term of the
elasticity tensor is:

CV,nb
αβγδ =

1

V

∑
(i,j)

∂2Vnb (rij)

∂ϵαβ∂ϵγδ

=
1

V

∑
(i,j)

[
∂2Vnb(rij)

∂r2ij
− 1

rij

∂Vnb(rij)

∂rij

]
rij,αrij,βrij,γrij,δ

r2ij
(A.14)

A.2 Strain Derivatives of Three-body Potentials
We consider the angle formed between three consecutive atoms i, j and k as:

θijk = arccos
(

rji · rjk
∥rji∥ ∥rjk∥

)
(A.15)

where rji = ri − rj and rjk = rk − rj . We consider the vector rji instead of rij so as the bond
vectors start from the same origin, which facilitates the calculation of first- and second-order
derivatives.

The contribution of the three-body angle potential, Vangle (θijk) to the stress tensor is:

σV,angle
αβ =

1

V

∑
θijk

∂Vangle (θijk)

∂ cos θijk
∂ cos (θijk)

∂ϵαβ
(A.16)
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where the derivative of cos (θijk) with respect to the strain ϵαβ is given as:358,359

∂ cos (θijk)
∂ϵαβ

=

(
rjk,αrji,β + rji,αrjk,β

∥rji · rjk∥
− rji,αrji,β

r2ji
− rjk,αrjk,β

r2jk

)
cos (θijk) (A.17)

The contribution of the angle potential to the elasticity tensor of the box is:

CV,angle
αβγδ =

1

V

∑
θijk

∂2Vangle (θijk)

∂ϵαβ∂ϵγδ

=
1

V

∑
θijk

[
∂2Vangle

∂ cos2 (θijk)
∂ cos (θijk)

∂ϵαβ

∂ cos (θijk)
∂ϵγδ

+
∂Vangle

∂ cos (θijk)
∂2 cos (θijk)
∂ϵαβ∂ϵγδ

]
(A.18)

with the second derivative of cos (θijk) with respect to the strain being:

∂2 cos (θijk)
∂ϵαβ∂ϵγδ

= cos (θijk)
∂2 ln [cos (θijk)]

∂ϵαβ∂ϵγδ
+

1

cos (θijk)
∂ cos (θijk)

∂ϵαβ

∂ cos (θijk)
∂ϵγδ

(A.19)

where the first right-hand term of the last relation is equal to:

∂2 ln [cos (θijk)]
∂ϵαβ∂ϵγδ

= 2

(
rji,α rji,β rji,γ rji,δ

∥rji∥4
+

rjk,α rjk,β rjk,γ rjk,δ

∥rjk∥4

)

− (rjk,α rji,β + rji,α rjk,β) (rjk,γ rji,δ + rji,γ rjk,δ)

∥rji · rjk∥2
(A.20)

A.3 Strain Derivatives of Four-body Potentials
Torsional potentials commonly contain terms that include the cosine of the dihedral angle
formed by four consecutive atoms:

cos (ϕijkl) =
rij × rjk

∥rij × rjk∥
· rjk × rkl
∥rjk × rkl∥

(A.21)

The first derivative of a torsional potential with respect to the strain is given as:

σV,torsion
αβ =

1

V

∑
ϕijkl

∂Vtorsion

∂ cos (ϕijkl)

∂ cos (ϕijkl)

∂ϵαβ
(A.22)

For clarity, the substitution m = rij × rjk and n = rjk × rkl is made, so that:

cos (ϕijkl) =
m · n
mn

(A.23)
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Following Van Workum et al.,358 the first and the second strain derivative of the cosine of
the torsion angle ϕijkl can be written as:

∂ cos (ϕijkl)

∂ϵαβ
=

cos (ϕijkl)

2

[
2

(m · n)
∂ (m · n)
∂ϵαβ

− 1

m2

∂ (m2)

∂ϵαβ
− 1

n2

∂ (n2)

∂ϵαβ

]
(A.24)

where:

∂ (m · n)
∂ϵαβ

= (rij · rjk) (rjk,α rkl,β + rkl,α rjk,β)

+ (rjk · rkl) (rij,α rjk,β + rjk,α rij,β)

− (rij · rkl) (rjk,α rjk,β + rjk,α rjk,β)

− (rjk · rjk) (rij,α rkl,β + rkl,α rij,β) (A.25)

∂ (m2)

∂ϵαβ
= 2[ (rjk · rjk) rij,αrij,β

+(rij · rij) rjk,αrjk,β

− (rij · rjk) (rij,αrjk,β + rjk,αrij,β) ] (A.26)

∂ (n2)

∂ϵαβ
= 2[ (rjk · rjk) rkl,αrkl,β

+(rkl · rkl) rjk,αrjk,β

− (rkl · rjk) (rkl,αrjk,β + rjk,αrkl,β) ] (A.27)

The contribution of the torsional potential to the Born term of the elasticity tensor of the

194



A.3. Strain Derivatives of Four-body Potentials

box is:

CV,torsion
αβγδ =

1

V

∑
ϕijkl

∂2Vtorsion (ϕijkl)

∂ϵαβ∂ϵγδ

=
1

V

∑
ϕijkl

[
∂2Vtorsion

∂ (cos (ϕijkl))
2

∂ cos (ϕijkl)

∂ϵαβ

∂ cos (ϕijkl)

∂ϵγδ

+
∂Vtorsion

∂ cos (ϕijkl)

∂2 cos (ϕijkl)

∂ϵαβ∂ϵγδ

]
(A.28)

The second derivative of cos (ϕijkl) with respect to the strain is given as:

2

cosϕijkl

∂2 cos (ϕijkl)

∂ϵαβϵγδ
=− 4

(m · n)2
∂ (m · n)
∂ϵαβ

∂ (m · n)
∂ϵγδ

+
2

(m · n)
∂2 (m · n)
∂ϵαβϵγδ

+
1

m4

∂ (m2)

∂ϵαβ

∂ (m2)

∂ϵγδ
− 1

m2

∂2 (m2)

∂ϵαβ∂ϵγδ

+
1

n4

∂ (n2)

∂ϵαβ

∂ (n2)

∂ϵγδ
− 1

n2

∂2 (n2)

∂ϵαβ∂ϵγδ
(A.29)

where:

∂2 (m · n)
∂ϵαβ∂ϵγδ

= (rij,α rjk,β + rjk,α rij,β) (rkl,γ rjk,δ + rjk,γ rkl,δ)

+ (rkl,α rjk,β + rjk,α rkl,β) (rij,γ rjk,δ + rjk,γ rij,δ)

− (rij,α rkl,β + rkl,α rij,β) (rjk,γ rjk,δ + rjk,γ rjk,δ)

− (rjk,α rjk,β + rjk,α rjk,β) (rij,γ rkl,δ + rkl,γ rij,δ) (A.30)

∂2 (m2)

∂ϵαβ∂ϵγδ
= 4 (rij,α rij,β rjk,γ rjk,δ + rjk,α rjk,β rij,γ rij,δ)

− 2 (rij,α rjk,β + rjk,α rij,β) (rij,γ rjk,δ + rjk,γ rij,δ) (A.31)

∂2 (n2)

∂ϵαβ∂ϵγδ
= 4 (rkl,α rkl,β rjk,γ rjk,δ + rjk,α rjk,β rkl,γ rkl,δ)

− 2 (rkl,α rjk,β + rjk,α rkl,β) (rkl,γ rjk,δ + rjk,γ rkl,δ) (A.32)
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A.4 Long-range Contributions

A.4.1 Ewald Summation of Non-bonded Interactions
In the following, we consider a system ofN atoms, in a simulation box of volumeV = LxLyLz,
which are thought to interact via a 12-6 Lennard-Jones potential of the form:

Vij (rij) = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(A.33)

where ϵij is the depth of the potential well, σij is the finite distance at which the interatomic
potential is zero and rij is the distance between the particles. We are mainly interested in
applying long-range summation to the attractive r−6 term, since the repulsive r−12 term can be
neglected, particularly as r becomes large.

Following Nijboer and de Wette360 and Williams,361 we choose the converge function
ϕd (r) as

ϕd (r) =
1

Γ (m/2)

∫ ∞

r2/η2
tm/2−1e−tdt (A.34)

Then, Karasawa and Goddard,362 have derived expressions for the dispersion part of energy,
force, stress and elasticity tensors using Ewald summations.

For the energy, they have found:

V6,long =
1

2η6

∑
L,i,j

Bij

(
a−6 + a−4 +

1

2
a−2

)
e−a2

+
π3/2

24V

∑
k

k3

[
π1/2erfc (b) +

(
1

2b3
− 1

b

)
e−b2

]∑
ij

Bij cos [k · (ri − rj)]

+
π3/2

6V η3

∑
i,j

Bij −
1

12η6

∑
i

Bii (A.35)

where b = 1
2
hη, a = ∥ri − rj − rL∥ /η, k = ∥k∥, k is the reciprocal lattice vector, the disper-

sion constant isBij = 4ϵijσ
6
ij and the parameter rL represents the lattice translation vector. The

parameter η (with units of length) represents the range of interactions handled in the reciprocal
vector; for a given value of r, the larger the value of η, the more interactions are included in
the reciprocal space sum. The first term contribution to the energy sums over lattices L and
particles i and j. The third term arises from k = 0 in the second term, while the fourth term is
from exclusion of i = j terms when L = 0.

196



A.4. Long-range Contributions

It is convenient to replace the first term of Eq. (A.35) with:

∑
L,i,j

Bij

(
a−6 + a−4 +

1

2
a−2

)
e−a2 =

1

η6

∑
L

∑
j>i

Bija
−2e−a2

(
a−4 + a−2 +

1

2

)

+
1

2η6

∑
L

[
a−2
L e−a2L

(
a−4
L + a−2

L +
1

2

)∑
i

Bii

]
(A.36)

where aL = ∥rL∥ /η.

If we assume for simplicity than only one kind of interaction sites is present in the system,
or that we can apply geometric mixing of dispersion constants, it trivially holds that

−Bij =
√
BiiBjj (A.37)

which allows us to express the structure factor as:

∑
i,j

Bij cos [k · (ri − rj)] =−

[∑
i

(|Bii|)1/2 cos (k · ri)

]2

−

[∑
i

(|Bii|)1/2 sin (k · ri)

]2
(A.38)

In the case of arithmetic mixing of dispersion constants, in’t Veld et al.363 have derived the
necessary expressions for the structure factor.

The stress tensor,
σV,long
αβ =

1

VR

∂V6,long

∂ϵαβ
(A.39)

with the derivative appearing in the right-hand side being given by:362

∂V6,long

∂ϵαβ
=

1

2η8

∑
L

∑
ij

Bij

(
6a−8 + 6a−6 + 3a−4 + a−2

)
e−a2×

(ri − rj − rL)α · (ri − rj − rL)β

+
π3/2

24V

∑
k

∑
ij

Bij cos [k · (ri − rj)]×{
k3

[
π1/2erfc (b) +

(
1

2b3
− 1

b

)
e−b2

]
δαβ + 3k

(
π1/2erfc (b)− e−b2

b

)
kαkβ

}

+
π3/2

6η3V

∑
ij

Bijδαβ (A.40)
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Appendix A. Strain Derivatives of the Potential Energy

where it can be observed that terms other than the one corresponding to the real space, con-
tribute only to the normal stresses, σαα.

The second derivative of V6,long with respect to ϵαα has the form:

∂2V6,long

∂ϵ2αα
=− 1

2η8

∑
L,i,j

Bij

[
F ′ 1

aη2
(ri − rj − rL)4α + 2F (ri − rj − rL)2α

]

+
π3/2

24V

∑
k

∑
ij

Bij cos [k · (ri − rj)]
[
1

2
η2k4αH ′ + 4Hk2α +G

]

+
π3/2

6η3V

∑
ij

Bij (A.41)

while the second derivative of V6,long with respect to ϵαβ is given by:

∂2V6,long

∂ϵ2αβ
=− 1

2η8

∑
L,i,j

Bij

[
F ′ 1

aη2
(ri − rj − rL)2α (ri − rj − rL)2β

]

+
π3/2

24V

∑
k

∑
ij

Bij cos [k · (ri − rj)]
[
1

2
η2k2αk2βH ′ +H

(
k2α + k2β

)
+G

]

+
π3/2

6η3V

∑
ij

Bij (A.42)

where

F =
(
6a−8 + 6a−6 + 3a−4 + a−2

)
e−a2 (A.43)

G =
8b3

η3

[
π1/2erfc (b) +

(
1

2b3
− 1

b

)
e−b2

]
(A.44)

H =
6b

η

(
π1/2erfc (b)− e−b2

b

)
(A.45)

and

F ′ =
dF
da

(A.46)

H ′ =
dH
db2

(A.47)

respectively.
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A.4. Long-range Contributions

A.4.2 Treatment of Excluded Interactions
It is usual, in polymer simulation to choose to consider non-bonded interactions only for atoms
lying in different chains, or across the same parent image of the chain three or four bonds apart.
At this point, we restate Eq. (A.35), taking into account Eq. (A.36) since this will facilitate in
subtracting excluded interactions. The energy of the system, can be expressed as:

V6,long =
1

η6

∑
L

∑
j>i

Bija
−2e−a2

(
a−4 + a−2 +

1

2

)

+
1

2η6

∑
L

[
a−2
L e−a2L

(
a−4
L + a−2

L +
1

2

)∑
i

Bii

]

+
π3/2

24V

∑
h ̸=0

h3

[
π1/2erfc (b) +

(
1

2b3
− 1

b

)
e−b2

]∑
ij

Bij cos [h · (ri − rj)]

+
π3/2

6V η3

∑
i,j

Bij −
1

12η6

∑
i

Bii (A.48)

We assume that we should exclude a finite set of united-atom pairs, (i′, j′), all lying in
the primary simulation box, rL = 0. We allow atoms belonging to different images of the
same parent chain interact with each other. Also, we consider that the effect of images of these
(i′, j′) pairs lying far apart the primary simulation box is screened, so we can ignore it. Based
on these assumptions, a finite range energy contribution, V6,excl, should be subtracted from Eq.
(A.48) in order to compensate for the exclusion rules affecting the primary simulation box:

V6,excl =
1

η6

∑
(i′,j′)

Bi′j′a
−2
0 e−a20

(
a−4
0 + a−2

0 +
1

2

)
(A.49)

where a0 =
∥∥∥rmin.im.(i′)

j′ − ri′
∥∥∥ /η defined as a in Eq. (A.35) for rL = 0. In the calculation of

a0, minimum image condition should be taken into account. Except the first term of the Eq.
(A.48) which sums in the real space, the other terms are left unaffected by the introduction of
excluded pairs.

Finally, the Ewald sum of long-range dispersion forces, in the presence of an exclusion list
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of interactions, (i′, j′), takes the form:

V6,long/excl =
1

η6

∑
L

∑
j>i

Bija
−2e−a2

(
a−4 + a−2 +

1

2

)
− 1

η6

∑
(i′,j′)

Bi′j′a
−2
0 e−a20

(
a−4
0 + a−2

0 +
1

2

)

+
1

2η6

∑
L

[
a−2
L e−a2L

(
a−4
L + a−2

L +
1

2

)∑
i

Bii

]

+
π3/2

24V

∑
h̸=0

h3

[
π1/2erfc (b) +

(
1

2b3
− 1

b

)
e−b2

]∑
ij

Bij cos [h · (ri − rj)]

+
π3/2

6V η3

∑
i,j

Bij −
∑
(i′,j′)

Bi′j′

− 1

12η6

∑
i

Bii (A.50)
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.... B. Random Linking of FTiMC
configurations

Our starting points for the creation of randomly crosslinked polymer networks are equilibrated
configurations obtained from Field Theory-inspired Monte Carlo (FTiMC) simulations. In or-
der to investigate the statistical properties of random cross-linking, we have cross-linked our
polymeric melts as follows. For each melt configuration, Nlinks cross-links are placed at random
in the simulation box; thus, the average number of unique crosslinks per chain is N̄c = Nlinks/n,
where n stands for the number of chains present in the simulation box and Nc stands for the
links per chain (two links are shared between two chains, thus the average number of crosslinks
per chain is 2N̄c). For every crosslink, we locate the nodal points of the Kuhn segments that
are closest to it (Figure B.1). All these nodal points are enumerated and sorted on the basis
of their distance from the considered crosslink. Then, successive attempts are made, starting
from the nodal points closest to the crosslink, in order to pair these points to the crosslinking
point. During this procedure one can choose whether only intermolecular pairs (nodal points
belonging to different chains) or all possible pairs are going to be linked to the crosslink. The
computer code developed can handle both cases. For a completely random cross-linking pro-
cess, as occurs in irradiation cross-linking, two monomers are linked together without regard to
whether they belong to the same chain or not. However, for rubber elasticity, it is important to
know more about such self-connections, which are usually accounted as inactive for elasticity,
even though they form loops that contribute to the elastic density.

The bridging of points to the crosslink can be done randomly, requiring that the new con-
figuration of the system be as close as possible to the starting non-crosslinked configuration.
Special care is taken in order to avoid multiple cross-linking of the same nodal points. In or-
der to prevent an artificially strong coupling along the chain, nodal points separated by one or
two Kuhn segments along the same chain are excluded from forming a connection. This cross-
linking procedure is repeated until the desired number of cross-links is added to the system. The
methodology follows earlier work by Grest and Kremer on more detailed model systems.364
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Figure B.1: Schematic of the cross-linking procedure. Final configuration is drawn with con-
tinuous lines, while initial Kuhn segments are drawn with dashed lines.

The procedure undertaken tries to mimic irradiation cross-linking. Here it is considered as an
adequate representation of e.g. chemical crosslinking via sulphur bridges in cis-1,4 polyiso-
prene. In contrast to more detailed approaches to irradiation cross-linking, we do not allow
chain scission.365

The starting point for cross-linking are well equilibrated FTiMC pure polyisoprene config-
urations. The cross-linked configurations are produced by imposing N̄c = 0.5 to 20 unique
links per chain. The initial FTiMC configuration consists of chains with molar mass of Mw =

42 kg/mol (corresponds to 294 Kuhn segments), so the upper limit (N̄c = 20) corresponds to
6 % w/w sulphur content assuming 4-atom long sulphur bridges, on average.

For an ideal random cross-linking, the individual connections can be treated as statistically
independent events. Thus, the distribution of the number of cross-links per chain, P (Nc),
should be Gaussian, centered around the average number of cross-links per chain. Since each
connection that is added to the system connects two different nodal points, the average number
of cross-links per chain is 2N̄c. In Figure B.2 the distribution of crosslinks per chain is shown,
for purely intermolecular cross-linking of a system of 42 kg/mol polyisoprene chains, for six
values of N̄c. In Figure B.3 we present the same distribution normalized by the mean 2N̄c.
The results peak around N̄c, as expected. It is apparent from the data that, as N̄c increases,
the distribution becomes more symmetric. The distributions of crosslinks per chain obtained
by our random linking algorithm are in excellent agreement with those obtained by Grest and
Kremer (Figure 1 of ref 364).

Next we consider the distribution PL (Lc) of strand lengths Lc between two cross-links
(Figure B.4). For a completely random process the distribution is expected to be a simple

202



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60

P
(N

c
)

Crosslinks per chain, Nc

−
Nc = 0.5
−
Nc = 1.0
−
Nc = 2.0
−
Nc = 5.0

−
Nc = 10.0
−
Nc = 20.0

Figure B.2: Distribution of crosslinks per chain, Nc, for FTiMC polyisoprene chains of 42
kg/mol molar mass.
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exponential with a decay length L∗
c :

PL (Lc) ∝ exp
(
− L

L∗
c

)
. (B.1)

The decay length,L∗
c , is proportional to the average length between crosslinks, ⟨Lc⟩. We should

note that this length can only be defined when there are at least two crosslinks on a chain. The
distributions of length between crosslinks are in favorable agreement with those obtained by
Grest and Kremer (Figure 2 of ref 364).
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.... C. Discrete Nonbonded Interactions
Scheme for Slip-Spring
Simulations

The simplest option for relating the positions and masses of the beads to ρcell is to envision each
bead i as a cube containing mass mi, of edge length hi, centered at position ri = (xi, yi, zi),
as shown in Figure C.1. The cell dimensions along the x, y and z directions will be denoted
as lx, ly, and lz, respectively. We will focus on a cell extending between xcell − lx and xcell

along the x-direction, between ycell − ly and ycell along the y-direction, and between zcell − lz

and zcell along the z-direction. In the regular grid considered, if (0, 0, 0) is taken as one of the
grid points, xcell, ycell, and zcell will be integer multiples of lx, ly and lz, respectively. In the
following, we assume that hi < min (lx, ly, lz).

The mass contributed by the node to the cell is:

mi,cell = mi
Vcube i ∩ cell

Vcube i

(C.1)

with Vcube i ∩ cell being the volume of the intersection of cube i, associated with bead i, and the
considered cell, while Vcube i = h3

i is the volume of cube i.

Under the condition hi < min (lx, ly, lz), Vcube i ∩ cell is obtainable as:

Vcube i ∩ cell =max
{[

min
(
xi +

hi

2
, xcell

)
− max

(
xi −

hi

2
, xcell − lx

)]
, 0

}
×max

{[
min

(
yi +

hi

2
, ycell

)
− max

(
yi −

hi

2
, ycell − ly

)]
, 0

}
×max

{[
min

(
zi +

hi

2
, zcell

)
− max

(
zi −

hi

2
, zcell − lz

)]
, 0

}
(C.2)

As defined by eq C.2, Vcube i ∩ cell is a linear function of the bead coordinates. Clearly, if cube
i lies entirely within the cell, Vcube i ∩ cell = Vcube i and, consequently, mi,cell = mi. If however,
the borders of the cube i intersect the borders of the considered cell, then node i will contribute
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Figure C.1: Schematic representation of a grid cell and a nodal point with its surrounding cube.

a mass mi,cell < mi to the cell. The total mass contributed by bead i to all cells in which it
participates will always be mi.

The density ρcell in the considered cell is estimated as:

ρcell =
1

V acc
cell

∑
i

mi,cell (C.3)

Clearly, only beads i whose cubes have a nonzero overlap with the considered cell will con-
tribute to the summation of eq C.3. The position vectors ri of these nodal points will necessarily
lie within the considered cell or its immediate neighbors.

The precise conditions for cube i to have common points with the considered cell are:

xcell − lx < xi +
hi

2
< xcell + hi

ycell − ly < yi +
hi

2
< ycell + hi

zcell − lz < zi +
hi

2
< zcell + hi (A4)

According to the above approach, the force on node i due to nonbonded interactions is:

Fi = −∇riAnb = −
∑

cells ∩cube i

V acc
cell

∂avol (ρ, T )

∂ρ

∣∣∣∣
ρ=ρcell

∇riρcell (C.4)
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From eqs C.1, C.2 and C.3 one can obtain the components of∇riρcell. Along the x direction,

∂

∂xi
ρcell =



0 if xi ≤ xcell − lx −
hi
2

mi

V acc
cell

Vcube i ∩ cell
Vcube i

1

xi +
hi
2 − xcell + lx

if xcell − lx −
hi
2

< xi < xcell − lx +
hi
2

0 if xcell − lx +
hi
2

≤ xi ≤ xcell −
hi
2

− mi

V acc
cell

Vcube i ∩ cell
Vcube i

1

xcell − xi +
hi
2

if xcell −
hi
2

< xi < xcell +
hi
2

0 if xi ≥ xcell +
hi
2

(C.5)

and similarly for ∂ρcell/∂yi and ∂ρcell/∂zi

The derivatives are bounded but not continuous. To make them continuous, an extension of
the “smearing scheme” for beads which uses a uniform density distribution for the contribution
of each bead would be required.

Two nodes whose cubes lie entirely within a cell experience the same nonbonded force
(zero). This is not true, however, of nodes whose cubes intersect cell borders.

The edge length of the cube assigned to node i, hi, can be set approximately equal to the
root mean square end-to-end distance of the strands assigned to a node:

hi =

(
mi

mK
b2K

)1/2

(C.6)

where mK and bK are the mass and the length of a Kuhn segment of the polymer under consid-
eration.
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strained Environments, École de Physique des Houches, France, 24 - 29 March, 2013.

C10 Vogiatzis, G. G.; Megariotis, G.; Theodorou, D. N. “Multiscale Simulations of of
Polymer-Matrix Nanocomposites”, in Proceedings of the 10th International Conference
on Nanosciences and Nanotechnologies, Porto Palace Conference Centre and Hotel, Thes-
saloniki, Greece, 9 - 12 July, 2013.

C11 Vogiatzis, G. G.; Megariotis, G.; Theodorou, D. N. “Atomistic and coarse-grained simu-
lations of polymer-matrix nanocomposites”, CECAM Workshop: Coarse-graining multi-
component soft matter systems: equilibrium and dynamics, Johannes-Gutenberg Univer-
sität, Mainz, Germany, 21 - 23 August, 2013.

C12 Vogiatzis, G. G.; Megariotis, G.; Theodorou, D. N. “Coarse-graining and multiscale sim-
ulations of polymer-matrix nanocomposites”, in Proceedings of the 246th ACS National
Meeting - Division of Physical Chemistry, Indianapolis, IN, USA, 8 - 12 September 2013,
pp 64–65.

C13 Mathioudakis, I. G.; Vogiatzis, G. G.; Theodorou, D. N. “Molecular modeling of poly-
mer nanocomposites at multiple length scales”, in Proceedings of the 11th International
Conference on Nanosciences and Nanotechnologies, Porto Palace Conference Centre and
Hotel, Thessaloniki, Greece, 8 - 11 July, 2014.

4 / 5



C14 Delhorme, M.; Lempesis, N.; Vogiatzis, G. G.; Boulougouris, G. C.; Breemen, L. C. A.
van; Hütter, M.; Theodorou, D. N. “Tracking a glassy polymer on its energy landscape in
the course of small time-dependent deformations”, in Proceedings of the 7th International
Conference on Multiscale Materials Modeling, Berkeley, California USA, 6-10 October,
2014.

D. National conference proceedings (as of December 18, 2014)

D1 Vogiatzis, G. G.; Voyiatzis, E.; Theodorou, D. N. “Coarse-grained Monte Carlo simula-
tions of polymer nanocomposites”, Proceedings of the 8th Panhellenic Scientific Confer-
ence in Chemical Engineering, Thessaloniki, Greece, 26-28 May, 2011.

D2 Vogiatzis, G. G.; Theodorou, D. N. “Local Polymer Dynamics in Polystyrene - C60

Mixtures”, Poster presented during the 9th Hellenic Polymer Society Conference, Thes-
saloniki, Greece, 29 November - 1 December, 2012.

D3 Vogiatzis, G. G.; Theodorou, D. N. “Multiscale modelling of polymer-matrix nanocom-
posites”, in Proceedings of the 9th Hellenic Polymer Society Conference, Thessaloniki,
Greece, 29 November - 1 December, 2012.

D4 Mathioudakis, I. G.; Vogiatzis, G. G.; Theodorou, D. N. “Multiscale Modeling of
Polymer-Matrix Nanocomposites”, in Proceedings of the 9th Panhellenic Scientific Con-
ference in Chemical Engineering, Athens, Greece, 23-25 May, 2013.

D5 Mathioudakis, I. G.; Vogiatzis, G. G.; Theodorou, D. N. “Molecular simulation of
polymer nanocomposites at multiple length scales”, in Proceedings of the XXIX Panhel-
lenic Connference of Solid State Physics and Materials Science, Athens, Greece, 22-25
September, 2013.

D6 Vogiatzis, G. G.; Megariotis, G.; Theodorou, D. N. “Multiscale modeling of polymer-
matrix nanocomposites: structure and dynamics at multiple length scales”, in Proceedings
of the 10th Hellenic Polymer Society Conference, Patras, Greece, 4 - 6 December, 2014.

D7 Lempesis, N.; Vogiatzis, G. G.; Boulougouris, G.; Theodorou, D. N. “Energy land-
scape analysis of polymer glasses”, in Proceedings of the 10th Hellenic Polymer Society
Conference, Patras, Greece, 4 - 6 December, 2014.

D8 Mathioudakis, I. G.; Vogiatzis, G. G.; Theodorou, D. N. “Molecular simulation of
polymer nanocomposites at multiple length scales”, in Proceedings of the 10th Hellenic
Polymer Society Conference, Patras, Greece, 4 - 6 December, 2014.

5 / 5


	Contents
	Acknowledgements
	Summary
	Περίληψη
	List of Figures
	List of Tables
	Nomenclature
	Symbols and Notation
	Latin Symbols
	Greek Symbols
	Mathematical Notation

	Abbreviations

	Introduction
	Polymer-Matrix Nanocomposites
	Multiscale Modeling
	Atomistic MD
	GC-MC
	Mesoscopic Simulations

	Motivation
	Segmental Dynamics and the Glass Transition Temperature
	Enhancing Nanoparticle Dispersion by Surface Grafting
	Mechanical and Rheological Properties

	Aim and Outline of the Thesis

	Theoretical Background
	Concepts of Classical Statistical Mechanics
	Motion in Phase Space
	Statistical Ensembles

	Elements of Continuum Mechanics
	Deformation and its Description
	Rheology

	Polymer Physics
	General Remarks
	Simplified Polymer Chain Models
	Free Energy of an Ideal Chain
	Simplified Polymer Dynamics Models
	Equations of State

	Simulation Methods
	Molecular Dynamics
	Monte Carlo
	Langevin Dynamics
	Brownian Dynamics

	Stress Tensor in Model Systems
	Definitions
	Atomic Virial Approach
	Strain Derivative Approach
	Deformation Gradient Tensor Derivative Approach


	Segmental Dynamics and Stresses in PS - Fullerene Mixtures
	Introduction
	Experimental Findings
	Previous Work
	Proposed Approach

	Coarse Grained Monte Carlo (CG-MC)
	Systems Studied
	Coarse Grained Model
	Initial CG Structure Generation
	Monte Carlo Equilibration
	Conformational Properties of CG Configurations

	Reverse Mapping
	Target Atomistic Representation
	Procedure
	Thermodynamic Properties and Structure of the Reverse-mapped Configurations

	Atomistic Molecular Dynamics
	Hydrogen Reconstruction
	Temperature Dependence of Segmental Dynamics
	Many-nanoparticle Influence on Dynamics
	Local Mean-square Displacement of Backbone Carbon Atoms
	Fullerene Rotational Diffusivity

	Local Stresses
	Atomic-level Stresses
	Local Stress Definition
	Dependence of the Local Stress on the Observation Length-scale
	Local Stresses in PS - Fullerene Mixtures

	Summary and Conclusions

	Structure of Polymer Layers Grafted to Spherical Nanoparticles
	Introduction
	Scaling of Planar Polymer Brushes
	Scaling of Polymer Brushes in Convex Geometries
	Previous Work
	Experimental Findings
	Proposed Approach

	Model and Simulation Methodology
	Model
	Initial Configuration
	Equilibration
	Simulation Details

	Results and Discussion
	Equilibration Efficiency
	Discretization Effects
	Local Structure
	Height of the Grafted Polymer Brush
	Scattering Predictions

	Summary and Conclusions

	EOS-based Slip Spring Model for Polymer Dynamics
	Introduction
	Previous Work
	Proposed Approach

	Model and Simulation Methodology
	Polymer Description
	Model Free Energy
	Model Stress Tensor
	Generation of Initial Configurations
	Brownian Dynamics
	Slip-spring Kinetic Monte Carlo
	Simulation Details

	Results and Discussion
	Structural Features
	Dynamics
	Rheology

	Summary and Conclusions

	Main Conclusions and Innovations
	Methodological Advances
	Physical Insight Obtained
	Computational Tools
	Side Projects

	Research Outlook
	PS Coarse-Graining - Reverse Mapping - Atomistic MD
	Field Theory-inspired Monte Carlo Simulations
	EOS-based Slip Spring Model for Polymer Dynamics

	Appendices
	Appendix Strain Derivatives of the Potential Energy
	Strain Derivatives of Two-body Potentials
	Bond Stretching Potential
	Pairwise Additive Non-bonded Potential

	Strain Derivatives of Three-body Potentials
	Strain Derivatives of Four-body Potentials
	Long-range Contributions
	Ewald Summation of Non-bonded Interactions
	Treatment of Excluded Interactions


	Appendix Random Linking of FTiMC configurations
	Appendix Discrete Nonbonded Interactions Scheme for Slip-Spring Simulations
	References
	Index
	Curriculum Vitae

