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Introduction

Lower trading costs, ease of short-selling and creation of leverage are among the

incentives for informed and experienced investors to prefer option markets. More-

over, option markets allows us to draw information about future states of an asset,

as investors’ views of potential future outcomes of the underlying assets are incor-

porated into market option prices. Therefore, one could argue, that a richer class

of signals and better quality information can be mined from the option market

in contrast to the stock market. In this thesis, we use this information to price

forward variances, investigate their statistical properties and finally use them as a

forecasting tool for real economic activity.

The essay’s main purpose was for the student to engage contemporary research

in the field of quantitative finance, by using the paper of Bakshi, Panayotov, and

Skoulakis (2011) as the primary guide. Following them, we are using an option

positioning to infer a term structure of forward variances contingent to the S&P

500 Index.

Realized variance of the returns on a positive underlying price S from time 0

to t, is defined to be the quadratic variation of logS at time t. In particular, if S is

described by a process without jumps and has an instantaneous volatility process

σt, then realized variance from time t to t+ τ equals integrated variance, i.e.

〈X〉τt =

∫ t+τ

t

σ2
udu, where Xt := log

(
St
S0

)
and 〈·〉 denotes the quadratic variation. Bakshi et al. (2011), for a constant risk-

free rate r∗ and the risk-neutral measure Q, consider the exponential claim on

integrated variance with price

H t,τ
t = e−r

∗τEQ
{
e−

∫ t+τ
t σ2

udu
∣∣∣Ft} ,
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to define the forward variance for times t ∈ (t+ τ1, t+ τ2), with τ1 < τ2, as

f τ1,τ2t := lnH t,τ1
t − lnH t,τ2

t

The previous relationships should be viewed in contrast to the risk free discount

bond at time t and the corresponding forward rate, given by

Bt,τ
t = EQ

{
e−

∫ t+τ
t r2

udu
∣∣∣Ft} and gτ1,τ2t := lnBt,τ1

t − lnBt,τ2
t

for an instantaneous varying interest rate process rt, which have been used tradi-

tionally to address questions in financial economics (among others see Fama and

Bliss, 1987; Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005). To the

best of our knowledge, prior to Bakshi et al. (2011), there has been no work on

addressing questions based on the term structure of forward variances.

To create the term structure we must first price the claim H t,τ
t . In the first

chapter we present, in detail, the work of on pricing generic exponential claims on

integrated variance and specialize their result as Bakshi et al. (2011) to find

H t,τ
t = e−r

∗τEQ

{√
8

7

√
St+τ
St

cos

(
arctan

(
1√
7

)
+

√
7

2
ln

(
St+τ
St

))∣∣∣∣∣Ft
}

Finally, we show how this payoff may be spanned to an investable portfolio of

options as

H t,τ
t = e−rτ +

∫
K>St

ω[K]Cτ
t [K]dk +

∫
K<St

ω[K]P τ
t [K]dK

where

ω[K] =

8√
14

cos
(
arctan(1/

√
7) + (

√
7/2) ln(K/St)

)
√
StK3/2

and Cτ
t [K], P τ

t [K] are the time t call and put prices of an option expiring at time

t+ τ with strike K.

In Chapter 2, which is the core of the thesis, we are using the formula above to

create a time series of 121 observations, ranging from September 1998 to Septem-

ber 2008, for a term structure of forward variances consisting of maturities corre-

sponding roughly to 19, 49, 79 and 109 days. Pricing the claim as the sum of two

integrals upon a continuum of option prices raises several challenges. The first one
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is to gather data of option prices for each day of the time series and each maturity

in the term structure. We used the OptionMetrics database to do it.

Secondly a statistical numerical estimation for the integrals must be employed,

as a continuum of strikes is not available. Estimation robustness demands filter-

ing the data for “unfair” prices and facilitating a method for extracting the risk

neutral price curve (the curve of option prices across strikes) in order to integrate

numerically. We present the corresponding literature in detail and also the theory

on which the methods are based (i.e. splines as a statistical tool). Moreover as we

misimplemented the methods proposed, yielding poor results, we tried a simpler

one that to the best of our knowledge has not been tried before and seems to

behave quite well.

In particular after filtering the data for zero prices, trading volume and open

interest, we discarded prices creating arbitrage opportunities by violating mono-

tonicity and/or convexity across strikes. For the remaining prices and for each

date and strike we worked as follows. We fitted a cubic polynomial to the loga-

rithm of prices using linear regression and used vega weighting to address noise

encompassed in the far out-of-the-money and near in-the-money prices.

Having priced the claims H t,τ
t for each date and maturity, we can easily proceed

to calculate the forward variances’ time series. In the final chapter we begin by

investigating the statistical properties of forward variances. To familiarize the

reader with the concepts driving our conclusions, we offer a brief summary of the

theory of time-series and the most frequently used models. We find that there is no

strong evidence against stationarity for the time series and thus we are able to use

them as a forecasting tool. Moreover, after testing and comparing different models

according to several information criteria, as Bakshi et al. (2011), we conclude that

an ARMA(1,1)-GARCH(1,1) model is suitable for forward variances.

As an application, following Bakshi et al. (2011) we check whether forward

variances predict real economic activity, which is proxied by non-farm payroll and

industrial production using as predictors the constructed forward variances and

the slope of Treasury yield curve measured by the difference between the ten-year

and the three-month Treasury yields.

Programming in R (Core Team) (2013) played a central role in writing this

thesis. Moreover, the teqniques used to manipulate data and conduct the statistical

3



inference and analysis present an interest of their own and so commented code for

every part is provided in the Appendix. Finally, there is a an extended summary

in Greek accompanying the thesis.
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Chapter 1

Pricing exponential claims on
integrated variance

In this chapter we present the work of Carr and Lee (2009b), who in the word of

Gatheral (2006) derived some of the most elegant and robust results in financial

mathematics.

Let (Ω,F , (Ft)t∈T ,P), where T = [0,+∞] ⊂ R, be a filtered probability space

satisfying the usual conditions, i.e.

• The probability space (Ω,F ,P) is complete.

• The σ-algebras Ft contain all the sets in F of zero probability.

• The filtration Ft is right-continuous, i.e. ∀ t ∈ T the σ-algebra Ft+ ≡
⋂
ε>tFε

is equal to Ft.

Let St denote the price at time t of the underlying asset. Assume that St follows

a general diffusion process, i.e. St satisfies the following stochastic differential

equation (SDE)

dSt = atStdt+ σtStdW̃ t, and S0 > 0 a.s. (1.1)

for some (FT ,P)-Brownian motion W̃t, the Ft-adapted processes at and the positive

Ft-adapted processes σt. Moreover, assume that for the instantaneous variance of

the underlying share price σt = σ(t, ω) there exists a real bound m such that

E
∫ T

0

σ2
t dt < m ∈ R (1.2)
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This condition ensures that the Itô integral of σt is a martingale1. It is well

known, that under the equivalent martingale (risk neutral pricing) measure Q,

(1.1) becomes (e.g. see Shreve, 2008, Section 5.2.2)

dSt = rtStdt+ σtStdWt and S0 > 0 a.s.2 (1.3)

for some (FT ,Q)-Brownian motion Wt and the risk free interest rate process rt.

Note that (1.3) is an Itô process. Vital to our analysis is the logarithmic return

process, denoted by

Xt := log

(
St
S0

)
= log(St)− log(S0)

Applying Itô’s lemma (see Øksendal, 2003, Theorem 4.1.2)3 to f(t, x) = log
(
x
S0

)
we easily compute that

dXt =

(
rt −

1

2
σ2
t

)
dt+ σtdWt (1.5)

Note that (1.5) is also an Itô process and thus the quadratic variation of Xt is

proven to exist and to be equal to (Shreve, 2008, see Lemma 4.4.4)

〈X〉t =

∫ t

0

σ2
udu (1.6)

Equation (1.6) is called the realized variance of the returns on the price S. Expo-

nential claims on integrated variance, are claims contingent to this quantity. Carr

and Lee (2009b) assume that the risk-free interest rate is zero or alternatively that

1Carr and Lee (2009b) assume that
∫ T
0
σ2
t dt < m a.s., which is a weaker condition and suggests

that the Itô integral is a local-martingale. Moreover, in Section 8 they drop this assumption.
The condition we use is sufficient for our purposes.

2With the usual meaning, i.e. P(S0 > 0) = 1 ⇔ S0(ω) > 0, ∀ω ∈ Ω \ N , with P(N) = 0.
Note that since P and Q are equivalent probability measures an event is P-a.s. if and only if it
is Q-a.s.

3If we apply the 4.1.8 rules to equation 4.1.7. we get another form of Itô’s lemma

dYt =

(
gt(t,Xt) + ugx(t,Xt) +

1

2
v2gxx(t,Xt)

)
dt+ vgx(t,Xt)dBt (1.4)

for g(t, x) ∈ C2([0,∞]× R), Yt = g(t,Xt) and the Itô process dXt = udt+ vdBt.
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all prices are denominated relative to an asset that pays 1 at time T. In their

setting, henceforth the Carr-Lee setting, (1.3) becomes

dSt = σtStdWt and S0 > 0 a.s. (1.7)

and (1.5) becomes

dXt = −1

2
σ2
t dt+ σtdWt (1.8)

Finally, (1.6) remains unaltered.

1.1 Black Scholes and Correlation Immunity

We define a European payoff function, henceforth a payoff function F , correspond-

ing to a contract expiring at time T ∈ T , called the maturity, as any FT -measurable

function. This simply means that a European payoff function is known at maturity

T and onwards but not prior to it. For example the payoff function of a European

call, with maturity T ∈ T and strike K > 0 is

F (ST (ω)) = (ST (ω)−K)+ = max(ST (ω)−K), 0)

For convenience we will suppress the ω notation. It is well known that under the

risk neutral measure Q, the discounted payoff function is an Ft-martingale and

the fair value (arbitrage free) of a contract expiring at T > t is

V (t) = EQ
[
e−

∫ T
t r(u)duF (ST )

∣∣∣Ft] (1.9)

Note, that for convenience, we will denote EQ
t [·] := EQ[·|Ft]. The previous equation

is also known as the risk-neutral pricing formula and in the Carr-Lee setting, where

r = 0, has the form

V (t) = EQt [F (ST )] (1.10)

1.1.1 The Black-Scholes formula

Within the context of the model described in Black and Scholes (1973), known as

the Black-Scholes model, the risk-free interest rate and the volatility are assumed

constant, i.e. (1.5) becomes

dXt =

(
r − 1

2
σ2

)
dt+ σdWt, r, σ ∈ R (1.11)
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Note that (1.11) describes a risky asset if and only if σ > 0. For what follows, we

assume that it is. The risk-neutral pricing formula in this setting becomes

V (t) = e−r(T−t)EQt [F (ST )] (1.12)

The integral equation of (1.11) is

XT = X0 +

(
r − 1

2
σ2

)
T + σWT , where X0 = log(S0/S0) = 0

Equivalently

Xt =

(
r − 1

2
σ2

)
t+ σWt

Subtract both sides to get

XT −Xt =

(
r − 1

2
σ2

)
(T − t) + σ(WT −Wt)

Given that Wt is a Brownian motion is easy to see that(
XT −Xt − r(T − t)

)∣∣∣Ft ∼ N

(
−1

2
σ2(T − t), σ2(T − t)

)
Notice that XT is a random variable and that conditioned on Ft, Xt becomes

known and thus Xt − r(T − t) is a constant. The variance of XT and thus of

z := XT −Xt − r(T − t)

is v2 := σ2(T − t). In notation

z
∣∣Ft ∼ N

(
−1

2
v2, v2

)
The risk-neutral pricing formula contains the expected value of F (ST ). Expressing

F (ST ) in terms of z will allow us to easily calculate this expectation. Note that

XT −Xt = log

(
ST
St

)
⇒ ST = Ste

(XT−Xt)

and so using z observe that

ST = Ste
r(T−t)ez

8



Notice that the previous equation suggests that the price at time T is the current

price St ”grown” according to the the risk-free interest rate r and randomized

by the exponential of a normal variable whose parameters are a function of ST ’s

variance. We can easily observe now that that (1.12) becomes

V (t) = e−r(T−t)
∫ ∞
−∞

F
(
Ste

r(T−t)ez
) 1√

2πv
e−(z+v2/2)

2
/(2v2)dz (1.13)

Set y = ez and observe that z = ln(y)⇒ dz = (1/y)dy, that as z → −∞⇒ y → 0

and that as z →∞⇒ y →∞, to get

V (t) = e−r(T−t)
∫ ∞

0

F (Ste
r(T−t)y)

1√
2πvy

e−(ln(y)+v2/2)
2
)/(2v2)dy

Carr and Lee (2009b) define the above equation as to be the Black-Scholes formula

and to be consistent they include the valuation of a riskless assets4. Note, that in

their setting r = 0 and thus ST = Ste
z = Sty. In particular, they define

FBS(s, 0) := F (s), for v = 0 (1.14)

for a riskless asset and

FBS(s, v) :=

∫ ∞
0

F (sy, ω)
1√

2πvy
e−(ln(y)+v2/2)2/(2v2)dy, for v > 0 (1.15)

for a risky one. The kernel of the integrand is a lognormal density with parameters

µ = −v2/2 and σ = v. It should be clear from the above that s in FBS denotes

the current price of the underlying asset and that s in F denotes the price of the

underlying asset at expiration, in the sense that for each y ∈ [0,∞] the term sy

is one of the possible prices of the underlying at expiration. The dual role of s

might be off-putting, but is very convenient for the calculations to follow. The

reader should simply keep in mind that the current price of a contract, i.e. FBS,

is a function of the current price of the underlying and that the payoff function,

i.e. F , is a function of the price of the underlying at expiration.

Moreover, the argument v in (1.15) may be suppressed. Remember, that v is

connected with the volatility of the underlying asset, which in the Black-Scholes

4Note that in the May 31, 2009 version they have a typo. Particularly instead of ln(y) they
write y in the exponent of e. They notice though that the kernel of the integrand is a lognormal
density.
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context is considered constant. The Black-Scholes formula maps a payoff function

to the fair time-t price of the corresponding contract. For example the time-t price

of a European call with strike price K expiring at T > t is

FBS
C,K(St) =

∫ ∞
0

(Sty −K)+φy(v)dy

where φy(v) denotes the lognormal kernel with parameters µ = −v2/2 and σ = v.

1.1.2 The Mixing Formula

The standard correlated volatility models are of the following form (for some ex-

amples see Fouque, 2010)

dSt = σtStW0t

dσt = a(σt)dt+ b(σt)dW2t

(1.16)

where

W0 =
√

1− ρ2W1 + ρW2

for some W1 and W2 uncorrelated Brownian motions, i.e. dW1dW2 = 0, and

|ρ| ≤ 1. Calculate dW0dW2 = ρdt to notice that the correlation of W0 and W2 is

ρ. Moreover, calculate

dStdσt = σtStb(σt)dW0tdW2t

= σtSt[b(σt)ρ]dt

to show that the correlation of St and σt is b(σt)ρ. Carr and Lee (2009b) do

not specify the dynamics of the volatility process and just assume that σ and W

are correlated with correlation |ρ| ≤ 1. Hence for some W1 and W2 independent

Ft-Brownian motions, the SDE describing the price is

dSt =
√

1− ρ2σtStdW1t + ρσtStdW2t (1.17)

Elaborating what we mean by St and σ being dependent, assume that σ and W2

are adapted to some filtration Ht ⊆ Ft, where Ht and FW1
T are independent. The

following proposition describes the pricing formula for this setting, henceforth the

Carr-Lee setting without the independence assumption. The proof applies the

10



conditioning argument presented by Hull and White (1987) and is presented in

Carr and Lee (2009b). Keep in mind that the proof is similar to the construction

we used to define the Black-Scholes formula above.

Proposition 1 (Mixing Formula). In the Carr-Lee setting without the indepen-

dence assumption, i.e. the dynamics of St and σt are described by (1.17) the pricing

formula (1.10) for a payoff function F is

EQt [F (ST )] = EQt
[
FBS

(
StMt,T (ρ), σ̄t,T

√
1− ρ2

)]
(1.18)

where FBS(·, ·) is described by (1.14, 1.15),

Mt,T (ρ) := exp

(
−ρ

2

2

∫ T

t

σ2
udu+ ρ

∫ T

t

σudW2u

)
and

σ̄t,T :=

(∫ T

t

σ2
udu

)1/2

Proof. Apply Itô’s lemma for f(x) = ln(x/S0) to each of the terms in the sum at

the right hand side part of (1.17) to get

dXt =

(
−1

2

(√
1− ρ2σt

)2
)
dt+

√
1− ρ2σtdW1t −

1

2
(ρσt)

2dt+ ρσtdW2t

The integral equation of the above is

XT −Xt = −1

2

(√
1− ρ2

)2
∫ T

t

σ2
t dt+

√
1− ρ2

∫ T

t

σtdW1t

− ρ2

2

∫ T

t

σ2
t dt+ ρ

∫ T

t

σtdW2t

We are using now the conditioning argument. We are conditioning on Ft ∨ HT

and thus constitute Xt, σt and W2t known in [0, T ]. Hence, the second term is the

only random term and has mean 0 and variance
(√

1− ρ2
)2

σ̄2
t,T (see Shreve, 2008,

Theorem 4.4.9)5. Finally, observe that the last two terms are equal to lnMt,T (ρ)

to conclude that(
XT −Xt − lnMt,T (ρ)

)∣∣∣(Ft ∨HT ) ∼ N

(
−1

2

(√
1− ρ2

)2

σ̄2
t,T ,
(√

1− ρ2
)2

σ̄2
t,T

)
5Theorem 4.4.2 simply states that the Itô integral of a deterministic function I(t) =∫ t

0
∆(s)dBs is normally distributed with expected value zero and variance equal to the quadratic

variation of the deterministic function, i.e.
∫ t
0

∆2(s)ds.

11



Use the tower property of conditional expectation to get

EQt [F (ST )] = EQ
t [EQ[F (ST )|Ft ∨HT )]] = EQt

[
FBS

(
StMt,T (ρ), σ̄t,T

√
1− ρ2

)]
�

1.1.3 Correlation Immunity

We are closing this section by introducing the concept of correlation immunity

described in Carr and Lee (2009a, Definition 4.4). We denote the set of all Ft-
measurable functions as mFt.

Definition 1. We say that a payoff function F is first-order ρ-neutral or ρ-immune

or correlation-neutral or correlation-immune at time t < T ∈ T , if there exists

function c ∈ mFt, such that

∂FBS

∂s
(St, σ) = c, ∀σ ≥ 0

almost surely.

The partial derivative of the Black-Scholes formula with respect to the price s

computed at the current price St is called the contract’s Black-Scholes delta. The

delta measures the rate of change of the contract’s price with respect to the changes

in the underlying asset’s price. In other words, it measures how sensitive is the

contract to the change’s of the underlying.

As we shall see in (1.19), if the contract’s Black-Scholes delta is constant across

all the parameters σ, which are connected to the volatility of the process ST , then

the contract’s price does not depend on the correlation parameter ρ but to a

meaningless order of O(ρ2).

To do this first observe that, ceteris paribus, function FBS given by (1.18) may

be considered a function of ρ. We are going to expand the function in a Taylor

series about ρ = 0. Remember, that according to Taylor’s theorem, a function

f(x), given that the first derivative exists, may be expanded over 0 as follows

f(x) = f(0) + xf ′(0) +O(x2)

12



where the last term O(x2) contains factors that are of order x2. FBS is defined by

an integral and thus its first derivative exists. Moreover observe that for ρ = 0

FBS(StMt,T (0), σ̄t,T ) = FBS(St, σ̄t,T )

and that

∂FBS(StMt,T (ρ), σ̄t,T
√

1− ρ2)

∂ρ

∣∣∣∣∣
ρ=0

=
∂FBS(StMt,T (ρ), σ̄t,T

√
1− ρ2)

∂σ
· ∂σ
∂ρ

∣∣∣∣∣
ρ=0

= St

∫ T

t

σudW2u
∂FBS(St, σ̄t,T )

∂σ

since

∂σ

∂ρ

∣∣∣∣
ρ=0

=
∂StMt,T (ρ)

∂ρ

∣∣∣∣
ρ=0

= StMt,T (ρ)

(
−ρ
∫ T

t

σ2
udu+

∫ T

t

σudW2u

)∣∣∣∣
ρ=0

= St

∫ T

t

σudW2u

to find that

FBS(StMt,T (ρ), σ̄t,T
√

1− ρ2) = FBS(St, σ̄t,T )+

ρSt

∫ T

t

σudW2u
∂FBS(St, σ̄t,T )

∂σ
+O(ρ2)

So by (1.18)

EQt [F (ST )] = EQt
[
FBS

(
StMt,T (ρ), σ̄t,T

√
1− ρ2

)]
= EQt

[
FBS(St, σ̄t,T )

]
+ ρStEQt

[∫ T

t

σudW2u
∂FBS(St, σ̄t,T )

∂σ

]
+O(ρ2)

If F is correlation-immune and since the mean of an Itô integral is zero we get

that

EQt [F (ST )] = EQt
[
FBS(St, σ̄t,T )

]
+O(ρ2) (1.19)

As we mentioned before (1.19) suggests that the price of the contract described

by the payoff function F , given that F is correlation-immune, does not depend on

the correlation of St and σt but to a small amount of order ρ2.

Correlation-immunity is an important concept for our purposes. In the follow-

ing section we will price a payoff function h on the realized variance, i.e. we will

13



price h(〈X〉T ). We will do this by finding another payoff function G of ST . In

other words, we will find a result of the following form

EQt [h(〈X〉T )] = EQt [G(ST )] (1.20)

In fact once we have found one G that satisfies the previous equation, one may

describe an infinite family of such functions. This stems from Carr and Lee (2009a)

who have proved that if Wt and σt are independent then the following general form

of put-call symmetry applies

EQt
[
f

(
ST
St

)]
= EQt

[
ST
St
f

(
St
ST

)]
(1.21)

Particularly, at first we will find a payoff function G satisfying (1.20) without being

concerned about independence. Afterwards we will specify a G that is correlated-

immune, in order to conclude the more realistic case where St and σt are correlated.

Remember that in the setting of Carr and Lee (2009b) nothing is assumed about

the dynamics of σt and thus applies to a variety of settings.

1.2 Pricing of Exponentials

In the following proposition presented by Carr and Lee (2009b, Proposition 5.1)

we identify two payoff functions G satisfying (1.20) for a generic exponential payoff

function h(〈X〉T ) = exp(λ 〈X〉T ), where λ is a complex number.

Proposition 2. For each complex number λ ∈ C and t ∈ [0, T ] ⊂ T ,

EQ
t

[
eλ〈X〉T

]
= eλ〈X〉tEQ

t

[
(ST/St)

1/2±
√

1/4+2λ
]

(1.22)

Proof. An equivalent and more mathematically rigorous form of (1.8), known as

the integral equation, is

XT −Xt = −1

2

∫ T

t

σ2
udu+

∫ T

t

σudWu, ∀ [t, T ] ⊂ T

Using the quadratic variation notation we may rewrite the previous one as

XT −Xt = −1

2
(〈X〉T − 〈X〉t) +

∫ T

t

σudWu, ∀ [t, T ] ⊂ T

14



We are using the conditioning argument on the σ-algebra FT ∨FσT and observe that

〈X〉T −〈X〉t becomes a known constant and σu = σ(u, ω) a deterministic function

of u in [0, T ]. So the right hand side contains a constant and an Itô integral of a

deterministic function. We conclude that

XT −Xt

∣∣ (FT ∨ FσT ) ∼ N

(
−1

2
(〈X〉T − 〈X〉t) , 〈X〉T − 〈X〉t

)
Let p ∈ C and use the tower property and the characteristic function of a normal

random variable to compute

EQ
t

[
ep(XT−Xt)

]
= EQ

t

[
EQ
[
ep(XT−Xt)

∣∣ (FT ∨ FσT )
]]

= EQ
t

[
e−p

1
2(〈X〉T−〈X〉t)+ 1

2
p2(〈X〉T−〈X〉t)

]
= EQ

t

[
e(

1
2
p2− 1

2
p)(〈X〉T−〈X〉t)

]
Set λ = 1

2
p2 − 1

2
p and solve p2 − p− 2λ = 0, for p to obtain

p =
1

2
±
√

1

4
+ 2λ

Observe now that epXt is an Ft-measurable random variable and conclude that

EQ
t

[
eλ〈X〉T

]
= eλ〈X〉tEQ

t

[
ep(XT−Xt)

]
= eλ〈X〉tEQ

t

[
ep log(ST /St)

]
= eλ〈X〉tEQ

t [(ST/St)
p]

= eλ〈X〉tEQ
t

[
(ST/St)

1
2
±
√

1
4

+2λ
]

�

The previous proposition specifies two payoff function G, in the sense of (1.20).

Observe that if we choose one, namely

EQ
t

[
(ST/St)

1
2
−
√

1
4

+2λ
]

we get the other one by put-call symmetry (1.21). Indeed

EQ
t

[
(ST/St)

1
2
−
√

1
4

+2λ
]

= EQ
t

[
(ST/St)(St/ST )

1
2
−
√

1
4

+2λ
]

= EQ
t

[
(ST/St)(ST/St)

− 1
2

+
√

1
4

+2λ
]

= EQ
t

[
(ST/St)

1
2

+
√

1
4

+2λ
]
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In Proposition 3, which is Proposition 5.9 of (Carr and Lee, 2009b), we will employ

put-call symmetry to specify a suitable family of functions G and consequently we

will chose one which is immune-correlated. To do this we use the following lemma.

Lemma 1. Let λ ∈ C and denote by φy(v) the lognormal density function with

parameters −v2/2 and v,i.e.

φy(v) = e−(ln(y)+v2/2)
2
)/(2v2)dy

Then for p±(λ) := 1
2
± 1

2
√

1+8λ∫ ∞
0

yp+φy(v) =

∫ ∞
0

yp−φy(v)

Proposition 3. For any complex number λ ∈ C and t ∈ [0, T ] ⊂ T ,

EQ
t

[
eλ〈X〉T

]
= EQ

t [Gexp(ST , St, 〈X〉t ;λ)] (1.23)

where

Gexp(S, u, q;λ) := eλq[θ+(S/u)p+ + θ−(S/u)p− ]

and

θ±(λ) :=
1

2
∓ 1

2
√

1 + 8λ
, p±(λ) :=

1

2
± 1

2
√

1 + 8λ

the payoff function G(ST ) := Gexp(ST , St, 〈X〉t ;λ) is correlation-immune.

Proof. From Proposition 2 chose

EQ
t

[
eλ〈X〉T

]
= eλ〈X〉tEQ

t

[
(ST/St)

1/2+
√

1/4+2λ
]

(1.24)

Employ put-call symmetry (1.21) for some f ∈ mFt to rewrite the expectation of

the right hand side of (1.24) as

EQ
t

[
(ST/St)

1/2+
√

1/4+2λ + f(ST/St)− (ST/St)f(ST/St)
]

For an arbitrary θ ∈ mFt, chose

f(x) := θx1/2−
√

1/4+2λ

16



to get

EQ
t

[
(ST/St)

1/2+
√

1/4+2λ + θ(ST/St)
1/2−
√

1/4+2λ − (ST/St)θ(St/ST )1/2−
√

1/4+2λ
]

=

EQ
t

[
(ST/St)

1/2+
√

1/4+2λ + θ(ST/St)
1/2−
√

1/4+2λ − θ(ST/St)1/2+
√

1/4+2λ
]

=

EQ
t

[
(1− θ)(ST/St)1/2+

√
1/4+2λ + θ(ST/St)

1/2−
√

1/4+2λ
]

Observe that for the θ’s and p’s denoted in the proposition θ+ + θ− = 1 and

p+ + p− = 1 are valid. Also, observe that due to symmetry θ+p− = θ−p+ to

conclude that θ+p+ + θ−p− = 1 is also valid. Using this notation and the previous

observations to rewrite (1.24) as

EQ
t

[
eλ〈X〉T

]
= eλ〈X〉tEQ

t [θ+(S/u)p+ + θ−(S/u)p− ] = EQ
t [Gexp(ST , St, 〈X〉t ;λ)]

We now show that the payoff functionG(ST ) := Gexp(ST , St, 〈X〉t ;λ) is correlation-

immune. Indeed,

∂FBS(s)

∂s

∣∣∣∣
s=St

=
∂

∂s

∫ ∞
0

Gexp(xy, St, 〈X〉t ;λ)φy(v)dy

∣∣∣∣
x=St

=

∫ ∞
0

∂

∂s
Gexp(xy, St, 〈X〉t ;λ)

∣∣∣∣
x=St

φy(v)dy

where φy(v) is the lognormal density with parameters −v2/2 and v. The last equal-

ity is valid by Leibniz’s integral rule becauseGexp(S, u, q;λ) and ∂Gexp(S, u, q;λ)/∂S

are continuous functions. So

∂FBS(s)

∂s

∣∣∣∣
s=St

=

∫ ∞
0

θ+p+x
p+−1

(
y

St

)p+

+ θ−p−x
p−−1

(
y

St

)p−∣∣∣∣
x=St

φy(v)dy

=

∫ ∞
0

θ+p+

St
yp+ +

θ−p−
St

yp−φy(v)dy

=
θ+p+

St

∫ ∞
0

yp+φy(v)dy +
θ−p−
St

∫ ∞
0

yp−φy(v)dy

Now use Lemma 1 to get

∂FBS(s)

∂s

∣∣∣∣
s=St

=
θ+p+

St

∫ ∞
0

yp+φy(v)dy +
θ−p−
St

∫ ∞
0

yp+φy(v)dy

=
θ+p+ + θ−p−

St

∫ ∞
0

yp+φy(v)dy = 0

�
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Bakshi, Panayotov, and Skoulakis (2011) employ a special case of exponential

claims. Particularly they consider the claim contingent to e−〈X〉T , whose correla-

tion immune pricing formula we may derive from Proposition 3 by setting λ = −1.

We provide the proof of the following statement based on a previous draft of their

paper.

Corollary 1. The correlation-immune payoff function of ST corresponding to the

contract with payoff e−〈X〉T at time t < T ∈ T is

Gt(ST ) =

√
8

7

√
ST
St

cos

(
arctan

(
1√
7

)
+

√
7

2
ln

(
ST
St

))
(1.25)

Proof. We calculate

G(ST ) = Gexp(ST , St, 〈X〉t ;−1)

Observe that for λ = −1

θ±(−1) =
1

2
∓ 1

2
√

7i
=

1

2
± 1

2
√

7
i

It’s absolute value is
√

1
4

+ 1
28

=
√

2
7

and its argument is

arctan

(
±1/(2

√
7)

1/2

)
= arctan

(
± 1√

7

)
Thus its polar form is

θ±(−1) =
√

2/7ei arctan(±1/
√

7)

Finally simply observe that

p±(−1) =
1

2
±
√

7

2
i

So

G(ST ) = e−〈X〉t [θ+(−1)(S/u)p+(−1) + θ−(−1)(S/u)p−(−1)]

and thus

e〈X〉tG(ST ) =

√
2

7
ei arctan(1/

√
7)

(
ST
St

)1/2+i
√

7/2

+

√
2

7
ei arctan(−1/

√
7)

(
ST
St

)1/2−i
√

7/2

=

√
2

7

√
ST
St

(
ei arctan(1/

√
7)

(
ST
St

)i√7/2

+ ei arctan(−1/
√

7)

(
ST
St

)−i√7/2
)

=

√
2

7

√
ST
St

(
e(arctan(1/

√
7)+
√

7/2 ln(ST /St))i + e(arctan(−1/
√

7)−
√

7/2 ln(ST /St))i
)
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Arctan is an odd function and so the sum inside the parenthesis is of the form
eφi + e−φi which is easy to see, using Euler’s identity, that it is equal to 2 cos(φ).
So

G(ST ) = e−〈X〉t

√
2

7

√
ST
St

2 cos

(
arctan

(
1√
7

)
+

√
7

2
ln

(
ST
St

))

= e−〈X〉t

√
8

7

√
ST
St

cos

(
arctan

(
1√
7

)
+

√
7

2
ln

(
ST
St

))

�

1.3 Spanning Contingent claims

Pricing financial derivatives is a general practice of quantitative finance. In the

context of martingale (arbitrage-free) pricing methodology this is done by a self-

financing trading strategy, which is a continuous trading strategy where no in-

fusions or withdrawals of money occur. The price of the derivative is defined to

be the wealth of a self-financing trading strategy which acts upon primary assets,

such as cash and the underlying asset, and completely replicates the cash flows of

the derivative to be priced. Market completeness ensures than any derivative may

be priced uniquely using this methodology. It is known that common stochastic

volatility models, described by (1.16), are incomplete if stocks and bonds are the

only trade primary assets (Rutkowski, 2010). Our framework is even more general,

does not assume anything about the volatility process, and thus we cannot use the

market completeness assumption.

We consider though that markets for cash, for stocks and for out-of-the-money

European puts and calls exist for all strikes. The continuity of strikes is in ac-

cordance with the continuity of the trading strategy. It has been shown (Breeden

and Litzenberger, 1978; Green and Jarrow, 1987; Nachman, 1988) that this market

structure is complete for any derivative which is a smooth function of the under-

lying stock price. Moreover, a constructive approach is presented by Carr and

Madan (2001), by Proposition-4. To prove the proposition we are going to use the

following lemma.
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Lemma 2. Let f : R→ R be a twice differentiatiable function and let a ∈ R be a

fixed number. Then

f(x) = f(a) + f ′(a)(x− a) +

∫ ∞
a

f ′′(v)(x− v)+dv +

∫ a

0

f ′′(v)(v − x)+dv (1.26)

Proof. Apply the Fundamental Theorem of Calculus for f , f ′ and the fixed number

a to get the following equations

f(x)− f(a) =

∫ x

a

f ′(u)du

f ′(u)− f ′(a) =

∫ u

a

f ′′(v)dv

Combine them to get

f(x)− f(a) =

∫ x

a

[
f ′(a) +

∫ u

a

f ′′(v)dv

]
du

=

∫ x

a

f ′(a)du+

∫ x

a

∫ u

a

f ′′(v)dvdu

= f ′(a)(x− a) +

∫ x

a

∫ u

a

f ′′(v)dvdu

The double integral suggest integration over the domain

D =
{

(v, u) ∈ R2 : a < v < u and a < u < x
}

=
{

(v, u) ∈ R2 : a < v < x and v < u < x
}

So by Fubini’s theorem

f(x)− f(a) = f ′(a)(x− a) +

∫ x

a

∫ x

v

f ′′(v)dudv

= f ′(a)(x− a) +

∫ x

a

f ′′(v)(v − x)dv

Finally, using the notation of the characteristic function observe that∫ x

a

f ′′(v)(v − x)dv = 1x>a

∫ x

a

f ′′(v)(v − x)dv + 1x<a

∫ x

a

f ′′(v)(v − x)dv

= 1x>a

∫ x

a

f ′′(v)(v − x)dv + 1x<a

∫ a

x

f ′′(v)(x− v)dv

=

∫ ∞
a

f ′′(v)(v − x)+dv +

∫ a

0

f ′′(v)(x− v)+dv
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Combine the above to get the desired result.

�

Proposition 4. Let F ∈ C2(R), i.e. F : R → R and its second derivative exist

and it is continuous. Let also t, T ∈ T such that t < T . Then

EQt [e−rτF (ST )] = e−rτF (St) + F ′(St)[Ct(St) + Pt(St)]+∫ ∞
St

F ′′(K)Ct(K)dK +

∫ St

0

F ′′(K)Pt(K)dK
(1.27)

where τ = T−t and Ct(x), Pt(x) are the time-t prices of a call and a put respectively

with maturity T and strike x.

Proof. Apply Lemma 2 for f = F , x = ST , a = St and v = K to get

F (ST ) = F (St)+F
′(St)(ST−a)+

∫ ∞
a

F ′′(K)(ST−K)+dK+

∫ a

0

F ′′(K)(ST−K)+dK

Note that F (ST ) is a composition of a continuous (thus Borel) function and an FT -

measurable function. So F (ST ) is FT -measurable and thus is a European payoff

function. Observe that

(ST − a) = (ST − a)+ + (a− ST )+

and that F ′(St), F
′′(K) are constants conditioned on Ft. In order to get the result,

discount by e−r(T−t) and take the conditional expectation EQt [·] of both sides. Note

that the expectation goes inside the integrals by Fubini’s theorem.

�

We are concluding this section by spanning the payoff function used in Bakshi,

Panayotov, and Skoulakis (2011).

Corollary 2. The spanning of the payoff function (1.25) is

EQt [e−rτGt(ST )] = e−rτ +

∫
K>St

ω[K]Ct[K]dk +

∫
K<St

ω[K]Pt[K]dK (1.28)

where

ω[K] =

8√
14

cos
(
arctan(1/

√
7) + (

√
7/2) ln(K/St)

)
√
StK3/2

(1.29)
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Proof. Recall that St is known and that

Gt(x) =

√
8

7

√
x

St
cos

(
arctan

(
1√
7

)
+

√
7

2
ln

(
x

St

))

Observe that

Gt(St) =

√
8

7
cos

(
arctan

(
1√
7

))
=

√
8

7

√
7

8
= 1

The first derivative is

G′t(x) =
1

2x
Gt(x)−

√
2

xSt
sin

(
arctan

(
1√
7

)
+

√
7

2
ln

(
x

St

))

and so

G′t(St) =
1

2St
−
√

2

St
sin

(
arctan

(
1√
7

))
=

1

2St
−
√

2

St

1

2
√

2
= 0

To find the second derivative, rewrite the equation containing the first derivative

as

sin

(
arctan

(
1√
7

)
+

√
7

2
ln

(
x

St

))
=

√
xSt
2

(
1

2x
Gt(x)−G′t(x)

)
Take the derivative of both sides to find that

7

2

√
St
8x3

Gt =

√
St
8x

(
1

2x
Gt −G′t

)
+

√
xSt
2

(
− 1

2x2
Gt +

1

2x
G′t −G′′t

)
= −1

2

√
St
8x3

Gt −
√
xSt
2
G′′t

Solve for G′′(x)

G′′t (x) = − 2

x2
Gt(x) =

8√
14

cos
(
arctan(1/

√
7) + (

√
7/2) ln(x/St)

)
√
Stx3/2

Apply the previous relations to determine the factors of Proposition 4.

�

22



Chapter 2

Extracting Forward Variances

In the previous chapter we presented a model free formula for pricing exponential

claims on integrated variance. In particular, following the notation of Bakshi et al.

(2011), we showed that the time-t value of the claim

H
(t,n)
t =

∫ t+τn

t

σ2
udu (2.1)

is

H
(t,n)
t = e−rτn +

∫
K>St

ω[K]C
(n)
t [K]dK +

∫
K<St

ω[K]P
(n)
t [K]dK (2.2)

where r is the risk-free rate, C
(n)
t [K] and P

(n)
t [K] are the time-t prices of a call

and a put with maturity t+ τn and strike K, and

ω[K] = − 8√
14

cos
(

arctan
(

1√
7

)
+
√

7
2

ln
(
K
St

))
√
StK3/2

(2.3)

Assume, by definition, that for τn = 0, H
(t,0)
t = 1. In this chapter we calculate the

prices of these claims for the S&P 500 index. Specifically, we approximate (2.2)

for the last trading day of each month from September 1998 to September 2008, a

total of 121 months, with τn being roughly equal to 19, 49, 79 and 109 days. The

time series

H
(t,n)
t , for t = 1, . . . , T = 121, and n = 1, 2, 3, 4 (2.4)
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will then be the basis for building the time series of forward variances

ft ≡


y

(1)
t

f
(2)
t

f
(3)
t

f
(4)
t

 ≡


lnH
(t,0)
t − lnH

(t,1)
t

lnH
(t,1)
t − lnH

(t,2)
t

lnH
(t,2)
t − lnH

(t,3)
t

lnH
(t,3)
t − lnH

(t,4)
t

 (2.5)

Note that since H
(t,0)
t = 1, y

(1)
t = − lnH t,1

t . The calculation of the integrals in

(2.2), require a continuum of option prices across strikes. Moreover the time series

require roughly constant maturities across different trading days. Along with a

presentation of the data we use, these issues are discussed in this chapter.

In particular, the chapter is constructed as follows. In the first section we

describe the data, how we obtained them and any manipulation acted on them.

In the second section, following the literature, we filter the data for unreliable

observations and for those who form arbitrage opportunities, by checking prices’

monotonicity and convexity across strikes. In the third section we compute the

integrals. Specifically, after a small introduction on how splines are used to fit noisy

data, we discuss how we interpolated across maturities to create new observations

where needed. We continue by presenting a brief review of the literature of non

parametric curve fitting techniques used for extracting risk-neutral probability

density functions and conclude by presenting the method we employed. In the

final section, some last comments are noted about the computation of the integrals

and plots for the time-series of forward variances are provided.

The analysis is conducted using the statistical programming language R (Core

Team) (2013) and the scripts may be found in Section-A. All the files and/or

scripts mentioned in the text are available upon request.

2.1 Obtaining the Data

We obtained the S&P 500 index option data from OptionMetrics through the

Wharton Research Data Services (WRDS) web interface (web queries). We down-

loaded data ranging from 01/09/1998 to 31/09/2008 for the S&P 500 Index SPX,

with SECID 108105, for European options and for all maturities. Our data con-

tained information about the Highest Closing Bid, the Lowest Closing Ask, the
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Volume, the Open Interest and the Strike Price times 1000. Moreover, it contained

the implied volatility and the sensitivity quantities Delta, Gamma, Theta and Ve-

ga/Kappa. We selected the date format DATE9 (e.g. 25JUL1984). The output

format was a comma-delimited text file (.csv). The data contained 1, 568, 099

observations.

We loaded the data in R as a Data Frame object and converted dates to R

Date objects. We used the RQuantLib library (Eddelbuettel and Nguyen, 2014)

to subset the data to the last trading (last business) day for each month using

the United States NYSE calendar (see Part 1 in Script-A.2). The sample now

contained 74, 592 observations.

The S&P 500 index monthly prices were acquired from the Center for Research

in Security Prices (CRSP) through the WRDS web interface. We used the CRSP

Stock Market Indexes (NYSE/AMEX/NASDAQ/ARCA) database and queried for

the ’Level on S&P Composite index’ ranging from September 1998 to September

2008. The output was written on a csv file, which we named SnP500Prices.csv.

Note, that the dates of these data coincide with the last trading dates that we got

by RQuantLib.

2.1.1 Risk-free rate

Hull (2012) mentions (see p. 76-77) that financial institutions have traditionally

used the London Interbank Offered Rate (LIBOR) as risk-free rates. After the

2007 credit crisis though, use of LIBOR was criticized by many derivative dealers

who gradually started using the overnight indexed swap (OIS) rate as a proxy for

the risk-free rate. Since our data are prior to 2008 we chose LIBOR as the proxy

for the risk free rate. For each day there are available LIBORs for a number of

currencies maturing in 1 day (overnight), 1 week, 2 weeks and in 1 to 12 months.

We obtained US Dollar (USD) LIBORs for all maturities.

LIBORs were acquired from two sources. The first one is EconStats1 and the

second one is the Federal Reserve Bank of St. Louis2. We compared the values

1http://www.econstats.com/r/rlib__d1.htm
2Data Source: FRED, Federal Reserve Economic Data, Federal Reserve Bank of St. Louis:

London Interbank Offered Rate (LIBOR), based on U.S. Dollar; ICE Benchmark Administra-
tion; http://research.stlouisfed.org/fred2/categories/33003/downloaddata; accessed
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contained to both databases. They were equal. Then, we started with EconStat

and fill missing data from the FRED database. Both databases did not have

data for 31/12/1999. We observed that rates were constant for the two previous

days and so we used those. Finally, both databases did not have data for 2-Week

LIBORs prior to 2000. We calculated those by interpolating3 between the 1-Week

LIBOR and the 1-Month LIBOR. The output was written on the LIBORs.csv file

(see Script-A.1).

LIBOR is administrated, since 31 January 2014, by the Intercontinental Ex-

change (ICE) Benchmark Administration Ltd. Prior to that, it was administrated

by the British Bankers’ Association (BBA), whose website4 we consulted to find all

the required information and guidelines for practical applications. We found that

LIBORs are annualized, simply compounded interest rates and thus the interest

due for a payment of $1 in time-t in the future is

r = 1×

(
bbalibor

rate

100

)
×

(
Number of days

until t

360

)

where bbalibor is substituted by linearly interpolating the LIBORs whose matu-

rities surround t. It is then trivial to get the discount factors

discount =
1

1 + r

and the corresponding continuously compounded rates rc by solving the following

equation
1

discount
= erct ⇒ rc =

1

t
ln

(
1

discount

)
Note, that t is measured in years and by convention a year contains 360 days.

Solve the previous equation for rc to find that

rc =

(
360

Number of days
until expiration

)
ln

(
1

discount

)
June 9, 2014.

3By convention, a year contains 360 days. Driven by this assumption, we assume that each
month has 30 days a week 7 days. Moreover, when we interpolate between the 2-Week LIBOR
the 1-Month LIBOR we assume that two weeks contain 15 days (half of one month).

4http://www.bbalibor.com/technical-aspects
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2.2 Filtering Data

Following the literature, see for example Neumann and Skiadopoulos (2013); Jiang

and Tian (2005); Panigirtzoglou and Skiadopoulos (2004); Bliss and Panigirtzoglou

(2002), option prices are defined as the mid bid-ask quote and several filters,

enumerated in the following list, are applied to the sample. Our initial sample

had 74,592. From these we omitted 76 options maturing in less than a week, as

pricing anomalies might occur close to expiration. The new minimum expiration

became 16 days. After applying the following filters, the sample was left with

17,421 observations. The filters were applied as they are being enumerated below.

The number of observations excluded due to a filter is written in parenthesis.

F1: Options with bid price equal to zero (4,448).

F2: Options with zero open interest (13,052).

F3: Options with zero trading volume (33,342).

F4: With implied volatility greater than 100% or not available (NA) (1,043).

F5: In-the-money (ITM) options as defined below (3,038).

F6: Options whose price usual arbitrage bounds (0).

F7: Options whose price violates monotonicity (246).

F8: Options whose price violates convexity (1,137).

F9: Options whose price is less than 3/8 (789).

Filters 1, 2 and 3 are imposed to discard potentially wrong prices due to lack of

liquidity. Prices with implied volatilities greater than 1 may correspond to extreme

market conditions (outliers) and that is why they are not considered. Moreover,

we discard observations where the implied volatility is not available. Filter 5 is

applied because in-the-money (ITM) options are usually more expensive and less

liquid than at-the-money (ATM) and out-of-the money (OTM) options. Existence

of ATM options is extremely rare, since prices and strikes are quoted differently. In

fact we did not encounter such an instance. So, following Jiang and Tian (2005),
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we define in-the-money options as call options with strike prices less than 97% of

the asset price and put options with strike prices more than 103% of the asset price,

in order to retain some information about the ATM region. The following filters

(6, 7 and 8) are used to exclude option prices that form arbitrage opportunities.

Finally, we apply Filter 9 to exclude prices that may be inaccurate due to errors

arising from quotes being too close to the tick. Note, that in the comments of

Script-A.2 we keep track of observations discarded by each filter.

We apply filters F1 to F4 in Part 2 of Script-A.2. In this part, we also exclude

information that we are not going to need anymore. For each observation we keep

the date, the type of the option (call or put), the expiration (in days), the strike

divided by 1000, the price, the volume and the implied volatility. In Part 3 we load

the underlying price for each observation, apply F5 and discard option maturing

in less than 16 days. Finally, in Part 4 we load the discount factors, by linearly

interpolating LIBORs maturing in the two closest months for each expiration.

Subsequently we apply F6, to find that none of the observations violated the usual

arbitrage bounds

St −Ke−r(T−t) ≤ Ct ≤ St

Ke−r(T−t) − St ≤ Pt ≤ Ke−r(T−t)

where Ct and Pt are the price of a call and put option respectively, K is the strike

price and T − t is the time until expiration expressed in years. Note, that in the

script we are working with discount factors which are simply e−r(T−t), where T − t
are days until expiration divided by 360.

2.2.1 Checking strict Monotonicity

Violation of monotonicity leads to arbitrage opportunities (violation of no arbitrage

conditions in vertical spreads). Prices’ of call options must be strictly decreasing

across strike prices, i.e.

K1 < K2 ⇒ C1 > C2

otherwise one could easily form an arbitrage strategy by selling C1 and buying C2.

On the other hand, put prices must be strictly increasing across strike prices, i.e.

K1 < K2 ⇒ P1 > P2
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Moreover, if C1 = C2 we discard the observation corresponding to C1, since this

is the one creating the arbitrage. If C1 was the fair prices then C2 should have

never existed in the first place. Accordingly, if P1 = P2 we discard P2. We do that

in Part 5 of Script-A.2. We found 246 violations in total, 82 for calls and 164 for

puts.

2.2.2 Checking Convexity

Prices of options should be convex across strike prices, otherwise arbitrage op-

portunities are created using strategies formed by generalized butterfly spreads.

Prior to explaining the butterfly strategy, we derive, using Figure-2.1, convexity

condition that must be satisfied by option prices. Our data are sorted increas-

ingly for strike price. Moreover, due to the previous section, call prices are strictly

decreasing and put prices are strictly increasing with respect the strike price.

K

C

K1 K2 K3

C3

C2

C1

yc

A B C

D

E

(a) For any triplet of (K1, C1), (K2, C2) and (K3, C3)
convexity for call options suggests that C2 ≤ yc.

K

P

K1 K2 K3

P1

P2

P3

yp

A B C

D

E

(b) For any triplet of (K1, P1), (K2, P2) and (K3, P3)
convexity for put options suggests that P2 ≤ yp.

Figure 2.1: Option prices must be convex with respect the strike. Here, we assume that we have
already checked for monotonicity of option prices across strikes and thus prices of call options are
strictly decreasing as strike increases and put options are strictly decreasing as strike increases.

In Figure-2.1a triangles (ACD) and (BCE) are similar and thus corresponding

sides have lengths in the same ratio.

(BE)

(AD)
=

(BC)

(AC)
⇒ (BE) =

(BC)

(AC)
(AD)

Substitute with the corresponding coordinates to get

yc − C3 =
K3 −K2

K3 −K1

(C1 − C3)
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So, the convexity condition for call options and for any triplet (K1, C1), (K2, C2)

and (K3, C3) is

C2 ≤ C3 +
K3 −K2

K3 −K1

(C1 − C3) (2.6)

Note, since we have cleared the sample for strict monotonicity the equality is never

achieved. Similarly, to derive the convexity condition for put options observe that

triangles (ABE) and (ACD) in Figure-2.1b are similar to get that

(BE)

(CD)
=

(AB)

(AC)
⇒ (BE) =

(AB)

(AC)
(CD)

Substitute the corresponding lengths to get

yp − P1 =
K2 −K1

K3 −K1

(P3 − P1)

So, any triplet (K1, P1), (K2, P2) and (K3, P3) satisfies convexity if and only if

P2 ≤ P1 +
K2 −K1

K3 −K1

(P3 − P1) (2.7)

We derived conditions covering a greater class of arbitrage opportunities than the

ones exploited by butterfly spreads. A butterfly spread involving calls, employs a

triplet (K1, C1), (K2, C2) and (K3, C3), where K2 is equidistant to K1 and K3,

i.e K3 −K2 = K2 −K1. In this setting the violation of condition (2.6) is

C2 > C3 +
1

2
(C1 − C3)⇔ −C3 − C1 + 2C2 > 0

This is the position of a butterfly spread, which suggests to go long on the highest

and lowest strike and buy two calls in the intermediary strike. It’s easy to verify

the well known result that the payoff of this position is always non-negative. Since

the initial position is strictly positive, this is an arbitrage. Similarly one may

verify that condition (2.7) is a general case of arbitrage opportunities created by

butterfly spreads involving put options.

With Filter 7, we remove prices that form arbitrages. Specifically, for any

consecutive triplet we check the appropriate condition and in case of violation we

remove the middle price. Note that checking consecutive triplets is equivalent to

check any triplet. The filter is implemented in Part 6 of Script-A.2. We found

1,137 arbitrage opportunities, 375 for calls and 762 for puts. The final filter F9 is

implemented in Part 7 of the script, where we moreover export the “clean” data

to a new csv file, called Clean.
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2.3 Computing the series

Calculating the time series in (2.2) poses two challenges. The first one is that a

constant horizon of maturities is needed. For each trading day, we need prices of

options expiring in 19, 49, 79 and 109 days. We decided to interpolate as little as

possible, resulting on taking approximate maturities. Essentially, for each day we

have options maturing in the first, the second, the third and the forth month.

Approximate maturities, for the first three months, exist for almost all the

trading days. There is only one date, that has no prices for the third month. In

contrast, for many trading days, there are no available maturities for the forth

month. To acquire them, as discussed below, we interpolate using the existing

information.

The second challenge is that we need a continuum of strikes to calculate the

integrals. To do this, a curve must be fitted to option prices across strikes. Sub-

sequently, a numerical integration technique will approximate the value of the

integral.

Following the literature mentioned in the beginning of Section-2.2 and the refer-

ences therein, we experiment by interpolating prices and implied volatilities across

strikes and call deltas using Merton’s (1973) model. The model’s functions are used

as one-to-one mappings between implied volatilities and prices, maturities/strikes

and call deltas. Their use does not impose any assumption about the dynamics of

the underlying price. We are going to use the following transformations.

Denote the time-t price of the underlying by St, the strike price by K, the

volatility by σ and the time to expiration by τ . Moreover, assume that the risk-

free rate is zero and that St, K and τ are constants. Then, the one-to-one mappings

between options’ prices and implied volatilities are given by

C(σ;St, K, τ) = Φ(d1)St − Φ(d2)K (2.8)

P (σ;St, K, τ) = Φ(−d2)K − Φ(−d1)St (2.9)

for call and put prices respectively, with

d1,2 =
1

σ
√
τ

[
ln

(
St
K

)
+
σ2

2
τ

]
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and Φ(·) the normal cumulative probability function. Note, that in the scripts, we

use the d2 = d1 − σ
√
τ relationship.

Now denote by σ∗ the ATM implied volatility and assume that St and τ are

constants. The one-to-one mapping of deltas and strikes is given by the following

formulas

δK = Φ

(
1

σ∗
√
τ

[
ln

(
St
K

)
+
σ∗2τ

2

])
(2.10)

and

Kδ = St exp

(
σ∗2τ

2
− Φ−1(δ)σ∗

√
τ

)
(2.11)

Following Panigirtzoglou and Skiadopoulos (2004), we use the ATM implied volatil-

ity for the transformations in order to retain the order of strikes (even if steep

volatility skew are observed). In particular, we use the implied volatility corre-

sponding to the strike closest to the underlying, since the exact ATM implied

volatility is not available as prices are quoted in decimals and strikes are not.

Finally, we will use the option’s vega which for zero interest rate and dividend

yield is given by the following formula

V (σ; St, K , τ) = Stφ(d1)
√
τ (2.12)

where φ(·) is the probability density function of the normal distribution. The

implementation of the formulas above are in Script-A.3.

2.3.1 Fitting uncertainty with splines

Interpolation for maturities and for prices/implied volatilities across strikes may be

done using a cubic spline, a smooth spline or a weighted smooth spline. In this sec-

tion we briefly discuss them, without presenting their numerical implementations

(references are provided). We start with cubic splines.

Assume n-points (x1, y1), (x2, y2), . . . , (xn, yn) lie in the real two dimensional

plane, with a < x1 < xn < b. A cubic spline, fitted to those points, is a continuous

third order polynomial S : [a, b] → R, whose first and second derivatives are

continuous too (a variant is Hermite splines, where S is only once differentiable

continuously). Denote the class of such polynomials as S2[a, b]. S is constructed as
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Figure 2.2: We fit a cubic spline to the function f(x) = (1/16)x3 +4, in R using both boundary
conditions. In R, the Forsythe, Moler, and Malcolm (1977) method is denoted by fmm.
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a piecewise function consisting of n−1 third degree polynomials Sk : [xk, xk+1]→ R
such that Sk(xk) = yk and Sk(xk+1) = yk+1 for all positive integers k < n.

The continuity of S and it’s first two derivatives fully determine the polynomials

that start and end at an internal knot, i.e. Sk for k = 2, 3, . . . , n− 2. For S1 and

Sn−1 boundary conditions must be given5. The boundary conditions for a natural

cubic spline are such that S ′′1 (x1) = S ′′′1 (x1) = S ′′n−1(xn) = S ′′′n−1(xn) = 0, meaning

that extrapolation is linear using the last two points at each end. In this case,

cubic splines will be identical to any at most third degree polynomial only at the

region defined by the internal knots. Another way, described by Forsythe et al.

(1977) in Section-4.4, is to define boundary conditions using the last four points

at each end. In this case the cubic spline will be identical to any at most third

degree polynomial for all regions. Extrapolation for higher order polynomials will

be based on information stemmed from S1 and Sn−1.

Natural cubic splines have a very important statistical property. They are

the ordinary least square (ols) regression lines of yi ∼ xi, x
2
i , x

3
i . This is highly

connected with the fact6 that the average curvature of an natural spline S, i.e.∫
S ′′(x)dx, is minimal for the curvatures of any other element of S[a, b]. You may

observe this result in Figure-2.2. Between the boundary knots, the natural spline

is less convex (has a smaller average curvature) than the Forsythe, Moler, and

Malcolm (1977) one.

5For example see http://mathworld.wolfram.com/CubicSpline.html
6Green and Silverman (1993, Section 2.2.2.) provide formal derivations for all the observations

we make about splines and for their numerical implementation.
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Figure 2.3: We fit an ordinary least square (ols) regression line, a natural spline and two smooth
splines for artificial data depicted by the plotted points. The ols line is identical to the natural
spline for λ = 2 and the natural spline is identical to the smooth spline for λ = 0. This is a trivial
example, where for each xi there is only one yi. In a more statistical context, where multiple
yi exist, the comparison between cubic splines and smooth splines makes no sense, as a natural
spline is a function and cannot go through all the points. In this case though, the “statistical”
comparison between an ols regression line and a smooth spline is, of course, still valid.
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An extension of a natural cubic spline is the smooth spline, which is the function

g ∈ S2[a, b] that minimizes the following quantity

L(g, λ) =
n∑
i=1

(yi − g(xi))
2 + λ

∫ b

a

(g′′(x))2dx (2.13)

for a given λ, which is called the smoothing parameter. The first term is the

well-known Mean of Square Errors (MSE) and the second one is a penalty for the

curvature of the curve, which we will denote as PC. The minimization problem

suggests that we are willing to accept one unit increase in the MSE, as long as

there is a decrease in
∫ b
a
(g′′(x))2dx greater or equal to λ,

Letting λ → ∞ means that we do not care about the MSE and that we want

PC as small as possible. In fact, by fitting a linear function, PC becomes equal

to 0. So, in this case g will be the ols regression line. Note, that for practical

applications a finite and low λ is needed to approximate the ols regression line. In

fact, the more linear the data, a smaller λ is needed for the approximation to take
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place. In contrast, letting λ→ 0, suggests that we do not care about the curvature

and that we want MSE to be as small as possible. We can achieve MSE = 0 by

ensuring that g(xi) = yi. Moreover, since λ → 0 and is not 0, we want g to have

the smallest possible curvature. As we noted before, the cubic spline that goes

through all the points and has the smallest possible curvatures, is the natural one.

The limiting cases are shown in Figure-2.3.

To get a smooth spline, we must chose the smoothing parameter λ. As in

many statistical problems, the researcher may subjectively choose λ based on her

experience, or she may use some automatic method for its determination. The most

common procedure is called cross-validation (cv). In general cv, a subset of the

data are not used for the fitting but for assessing the generalization (predictability)

of the fitting.

In smooth spline cv, for every observation xi the predictability error is measured

due to this observation given that the fitting was done using the sample excluding

xi. Then, λ is specified as the parameter minimizing this cumulative error across all

observations. A slight variation is called generalized cross-validation (gcv), which

uses the same technique as cv but with a different error metric. An important

early reference of these is the paper of Craven and Wahba (1978). Another popular

method, recommended by Hastie et al. (2009, see sec. 5.4.1)7, is to choose λ by

specifying the degrees of freedom willing to spend for the fitting. This method is

considered to present a more intuitive choice due to its correspondence with the

notion of degrees of freedom from the ols regression model.

Finally, we discuss a generalization called weighted smoothing spline, where g

is the function minimizing the following quantity

L(g, λ) =
n∑
i=1

wi(yi − g(xi))
2 + λ

∫ b

a

(g′′(x))2dx (2.14)

The only difference with a smooth spline is that instead of the regular MSE, a

weighted MSE is considered, in accordance with the weighted ols regression. The

weights give the flexibility to penalize data differently. The automatic techniques

7This is a very good book, which may be downloaded for free from their website (http:
//statweb.stanford.edu/~tibs/ElemStatLearn/). In addition, there is an R package by
Halvorsen (2012) implementing the examples of the book.
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discussed for smooth splines are used for these too. The obvious motivation for

the weights, emerge from data having yi who are distributed with the same mean

but different variances (heteroscedastic data). In this case the weights should be

proportional to the reciprocal variances of the data. Their functionality though,

far exceeds this apparent application.

We haven’t discuss the numerical implementation of the methods above. We

note, that they are very efficient as all the problems result in solving linear systems

of sparse matrices or other easy linear algebra problems (a good reference is the

book by Green and Silverman (1993)). All the above methods are implemented in

R. In the build-in library, spline function fits a cubic spline and smooth.spline fits a

smoothing spline (although a different parameter than λ is used). There is no built-

in implementation of the weighted smooth spline. Packages by Nychka et al. (2014)

and Ramsey and Ripley (2013) implement it with the sreg and smooth.Pspline

functions respectively (and for the usual λ). The above discussion should render

their documentations apprehensible.

2.3.2 Maturities

For the last trading day of each month we need prices of options expiring in the four

following months. Bakshi et al. (2011) consider that these maturities correspond

roughly to

τi = 19, 49, 79 and 109 days.

Based on our sample we define

τ1 ∈ [16, 23], τ2 ∈ [43, 53], τ3 ∈ [78, 85], τ4 ∈ [107, 114]

All dates but one have option prices expiring uniquely in the above first three

intervals. In 30-06-1999 there is no expiration higher than 17 days and lower than

80 days. To create the new maturity we work as follows.

At first we discard any strike that does not have at least two maturities or it’s

range of maturities does not contain the desired one, in order to secure interpola-

tion (extrapolation behaved very badly for natural, fmm and smooth splines). For

each strike that survives, we translate option prices to implied volatilities. If there

are less than four maturities we fit a natural cubic spline to implied volatilities as
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a function of expirations. If there are more than three maturities we fit a smooth-

ing spline, with the smoothing parameter being automatically chosen by R using

general cross validation. From the fitted line we extract the implied volatility for

the desired maturity, which in this case equals 49. Finally, the new volatility is

transformed back to a price.

After we do this for all strikes, we check the new prices for arbitrages as ex-

plained in Section-2.2 and discard those that are less than the minimum tick, which

is equal to 0.058 (note that we did not check whether this filter was enabled), using

Script-A.5. The whole procedure is done in Script-A.4 and is the same that we

use to create new prices for options expiring in 109 days. The example at the end

of the script runs the corresponding function for creating new prices for options

at 30-06-1999 maturing in 49 days. The function has the option to plot the fitting

for each strike.

Prior to concluding to the previous method, others were tried. At first, we tried

to interpolate linearly using maturities less than a year. This method produced

a small amount of new prices, as strikes satisfying this condition were not as

frequent as we hoped. There were even instances that no strike satisfied the

condition. Secondly, we included every available maturity and extrapolated as

well. Extrapolation did not behave reasonably and produced low-quality results.

This is why we did not included it in our final method, even though scarcity of

produced values was observed.

Subsequently, to include information from other maturities as well as the ones

surrounding the desired one, we fitted cubic splines. In Figures 2.4a, c two in-

stances of this method are shown. Concerns about overfitting depicted in Figure-

2.4a led us to chose smoothing splines for samples with more than three maturities

(to interpolate using smooth splines, at least four observations are needed). Over-

fitting was addressed as shown in Figure-2.4b.

We do not provide the code for the initial methods, as there were slightly

different from the one in Script-A.4. Finally, we note that the resulting curve took

four different forms. It was either concave, convex or had a mild horizontal (like

Figure-2.4d) or vertical s shape.

8The product description for options on the S&P 500 index is given at http://www.cboe.

com/products/indexopts/spx_spec.aspx
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Figure 2.4: These graphs were produced while creating new prices at 1999-06-30 for an option
expiring in 49 days. In each graph the original points are depicted along with the fitted lines.
The star denotes the interpolated volatility. Graphs (a) and (b) are for a put option and a strike
equal to 1250. There are four maturities greater than 16 days and less than a year. In particular,
there are prices for options expiring in 17, 80, 171, 206 and 262 days. Graph (c) is for a call
option and a strike equal to 1375 with expirations in 17, 80 and 206 days. Graph (d) is for a put
option and a strike 1175 with two expirations in 17 and 80 days.
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(a) The fitting was done using a cubic spline.
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(b) The fitting was done using a smoothing spline with
the smoothing parameter automatically chosen by R.
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(d) A slight s shape.

2.3.3 Extracting the risk-neutral price curve

The next step is to calculate the integral in (2.2). Recall from Proposition-4

that these integrals were derived by taking a risk neutral expectation restricted

in a region for ATM and OTM strikes. Prior explaining the method we used,

we provide a small review of the literature for estimating risk neutral probability

density functions.

As Kang and Kim (2006) mention, estimating the risk neutral distribution can

be done by parametric or non-parametric methods9. Our model free approach lies

in the non-paramteric space, which is divided into kernel methods (e.g. Aı̈t-Sahalia

and Lo (1998)), maximum entropy methods (e.g. Buchen and Kelly (1996) and

9Some parametric methods and Shimko’s (1993) method are implemented in R by Hamidieh
(2014).

38



Neri and Schneider (2013)), and curve fitting methods. Following the recent liter-

ature cited at the beginning of the section we choose the last one. The chronology

of curve fitting methods is presented by Jackwerth’s (1999) and (2004) reviews

which are partially presented below.

Curves may be fitted to prices or implied volatilites across strikes or deltas using

the non-linear transformations (2.8)-(2.11). Shimko (1993) introduced this method

by fitting a quadratic polynomial to implied volatilities with respect the strike

prices. Brown and Toft (1999) extended it by using seventh-order polynomials

(splines). Malz (1997) did the same, but used deltas instead of strikes in order

to decrease non-linearity, as imlpied-volatility is better behaved across deltas than

strikes. Campa et al. (1998) used cubic splines to fit the volatility smile and

Rosenberg and Engle (2002) fit polynomials to logs of volatilites, in order to prevent

negative implied volatilites. The reviews are concluded with the work of the author,

Jackwerth (2000), where in his own words maximizes the smoothness of the smile

and controls the trade-off between option price fit and smoothness explicitly. He

uses a smooth spline but multiplies with λ the MSE and with 1− λ the curvature

error.

Bliss and Panigirtzoglou (2002), (2004) use the method developed by Panigirt-

zoglou in previous unpublished work at the Bank of England. They fit a weighted

smooth spline to implied volatilites across deltas. They choose as weights the op-

tion vega (v ≡ ∂C/∂σ) to account for presumed homoskedastic pricing errors in the

underlying raw price data, such as those resulting from discrete tick size. Moreover,

vega weighting places less weight on-away-from-the-money strikes, which have gen-

erally low liquidity. In the first paper they use smoothing parameters ranging from

0.01 to 0.0001 and in the second from 0.99 to 0.9999. They note that forecast was

insensitive to the choice of λ in these regions and thus they report results using

lambdas equal to 0.01 and 0.99 respectively. In the first paper they extrapolate

linearly (as the natural spline) and in the second one horizontally.

A slight variation of the above is implemented by Panigirtzoglou and Ski-

adopoulos (2004), and Neumann and Skiadopoulos (2013). Instead of using vega

weighting, they discard altogether observations with deltas greater than 0.99 and

less 0.01. Outside these margins, Neumann and Skiadopoulos (2013) extrapolate
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horizontally. Moreover, to ensure an appropriate sample, they only create an im-

plied volatility curve if there are observations with deltas less or equal to 0.25 and

greater than or equal to 0.75.

Jiang and Tian (2005) following Bates (1991) and Campa et al. (1998) use

natural cubic splines in the curve-fitting of implied volatilities. They say that

cubic splines has the advantage that the obtained volatility function is smooth

everywhere and provide an exact fit to known implied volatilities. A similar choice

was made by Kostakis et al. (2011) for American-style S&P 500 future options.

Kang and Kim (2006) use a slightly different method from the one proposed

by Panigirtzoglou, which is very similar to the one proposed by Jackwerth. They

multiply weights by the smoothing parameter and get the following variation of

the minimization problem described by (2.14)

L(g, λ) = λ
n∑
i=1

wi(yi − g(xi))
2 + (1− λ)

∫ b

a

(g′′(x))2dx (2.15)

Similarly to Bliss and Panigirtzoglou (2004), they report insensitivity of empirical

results to the choice of λ in the region (0.990, 0.999). Moreover they note that

finally they chose equal weights across the observations, as they found that the

results were robust to the choice of alternative weighting schemes between obser-

vations, such as vega weighting. In a more recent work of theirs, Kang et al. (2014)

use ordinary least squares to estimate the coefficients of Shimko’s (1993) quadratic

polynomial. Note, that this is similar with the smooth spline for a large enough

lambda (in the case of implied volatilities a λ around 1 is sufficient), but not for a

cubic polynomial but for a quadratic one.

Inspired by the literature above, we experimented with various methods. Re-

call, that following Jiang and Tian (2005) we have kept call option prices with

strikes greater than the underlying multiplied with 0.97 and put prices with strikes

less than 1.03 of the underlying. The first method we present is when we inter-

polated prices across strikes using a cubic spline, with fmm boundary conditions

for a more horizontal extrapolation. In Figure-2.5 two instances of this method

are available. As expected, overfitting problems occurred, which would lead to low

quality predictions.
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Figure 2.5: The simplest method we used was to interpolate prices across strikes, using cubic
splines with the fmm boundary conditions. Over-fitting problems are apparent, especially when
a lot of observations are available. The vertical dotted line at each graph is the price of the
underlying.
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(b) For Puts in 30-10-1998.

The second method we present is the one used by Neumann and Skiadopoulos

(2013), as it is one of the most recent ones based on the fitting of smooth splines

in the implied volatility - delta space. To implement it we worked as follows.

We discard any ITM option left in our sample. We convert prices to implied

volatilities and strikes to deltas, using the implied volatility of the strike closest to

the price of the underlying. We discard observations for deltas less than 0.01 and

greater than 0.99 for calls and puts accordingly10. For the remaining observations

we use a smooth spline with λ = 0.99 to interpolate volatilities across deltas11.

Subsequently we create a delta grid with 500 points. For calls the grid starts at

0.01 and ends to the delta corresponding to the ATM option. For puts it starts

at the ATM option and ends at 0.99. For unknown deltas in the grid, implied

volatilities are extrapolated horizontally using the closest known value.

This method addresses overfitting problems. In our opinion, this method is

based on an underlying assumption. It assumes that a volatility smile exists and

moreover that across deltas it consists of two “noisy” linear parts, the left and the

10For call options, deltas start around 0.5 for strikes close to the underlying and decreases as
we move out-of-the money, i.e. as the strike increases. For put options, deltas start around 0.5
for ATM options and increases as we move out-of-the money, i.e. the strike decreases.

11The implementation we used was the sreg function by Nychka et al. (2014). Better results
were obtained when we used the built-in smooth.spline with the spar parameter equal to 0.99.
Using the spar parameter fitting was better for non linear data. Information for the spar param-
eter is given in the function’s documentation. Green and Silverman (1993) may be found useful
for its understanding.
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Figure 2.6: Some instances provided by the implementation of the method used by Neumann
and Skiadopoulos (2013). In each figure, the left plot shows the interpolation of implied volatil-
ities across deltas. For comparison, the ols regression line is provided. At the right plot the
produced fitting of prices across strikes is shown. The vertical dotted line is the price of the
underlying.
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(b) The fitted implied volatility curve is very close to
the linear regression line, even though the data are not
linear. Moreover many far out-of-the money observa-
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The produced fitting for prices seems very good.
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(d) Same problem with graph 2.6c. Due to the non-
linear transformations the produced fitting behaves
quite well.

right half smiles. The two halfs are connected with a horizontal line corresponding

to the ATM region. Since implied volatility across deltas is a very smooth function

and in addition takes it’s global minimum at this region, the horizontal extrapola-

tion makes sense. To emphasize these observations, we provide the ols regression

line in the plots depicted in Figure-2.6.

In our sample some problems occurred. In some instances, the horizontal ex-

trapolation produces prices that form arbitrage opportunities. More importantly,

the underlying linearity assumption is violated quite often in the sample which

makes the predictability of our fitting questionable. Note that these problems oc-

curred in our implementation and moreover that our implementation is only the

second half of the method used by Neumann and Skiadopoulos (2013). They also

interpolate to create constant maturities. The method is in Script-A.6.

Finally, inspired by the literature, we propose and try another method. Our
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Figure 2.7: The same instances with Figure-2.6 created by interpolating in the price/moneyness
space. Moneyness is defined as strike divided by the underlying.
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underlying assumption is driven by the fundamental results of free arbitrage pricing

discussed in Section-2.2. We know that the price curve across strikes must be

strictly monotonic and convex. That is why we started, by using ordinary least

squares to estimate the coefficients of a quadratic polynomial in the price/strike

space. This did not work, since the convexity of the price curve is not constant

across strikes and in particular it changes quite rapidly as we move away from the

money.

To address this, we tried to fit a cubic polynomial but overfitting problems

occurred. Another way to lower convexity’s rate velocity is to fit the logarithm of

prices. In our sample we observed that convexity of log prices is constant across

strikes and in some cases close to zero. The latter could suggest overfitting prob-

lems. Moreover, to address numerical approximation errors due to the exponential

transformation and to have homogeneity across different maturities in the price

grid, we interpolate across a form of moneyness (strikes divided by the underlying)

instead of strikes. Finally, to address issues concerning the far OTM and ITM used

for the fitting, we use vega weighting. ITM observations are weighted by the sym-

metrical far OTM weights. Tails are approximated by multiplying with 1.02 the
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maximum observed call moneyness and with 0.97 the minimum put moneyness.

The accuracy of the grid used is 0.001, which translates roughly to $1 in the strike

space.

We would like to note that apart from the fitting advantages of this method,

prediction quality stems from the theory of linear models. Moreover there is no

need for specifying a smoothing parameter. Finally we emphasize, that we do not

assume anything about the underlying process. We only assume that the price

curve across strikes is convex, which is a fundamental arbitrage free hypothesis.

The ols regression line is used to produce a second degree natural “spline”. It’s

implementation is in Script-A.7 and for comparison Figure-2.7 is provided.

While we fit the curves, we compute the integral (2.2) as well, using the omega

function (2.3) implemented in Script-A.3. In particular, once we have created the

strike grid and the corresponding grid of the fitted prices, we multiply prices by

ω(K), where K is the strike. Then, to integrate, we use the trapezoidal method

implemented by function trapz of the pracma package by Borchers (2014).

2.4 Calculation of Forward Variances

In the final section of this chapter, we discuss the creation of the time series (2.5),

done by Script-A.8. We first load the filtered data created in Section-2.2, which

contain 17,421 observations. Some statistics about the number of observations for

each maturity are show in Table-2.1.

Table 2.1: Basic statistical measures about the observations in each maturity.

Original By Interpolation

H
(t,1)
t H

(t,2)
t H

(t,3)
t H

(t,4)
t H

(t,1)
t H

(t,2)
t H

(t,3)
t H

(t,4)
t

1 242 240.0 242.0 96.0 242 242.0 242.0 242.0
Min. 6 6.0 1.0 1.0 6 6.0 4.0 2.0
1st Qu. 14 10.0 6.0 7.0 14 10.0 7.0 6.2
Median 17 15.0 8.0 9.0 17 15.0 9.0 8.0
Mean 19 16.4 9.8 9.4 19 16.3 10.1 8.7
3rd Qu. 22 21.2 12.0 12.0 22 21.0 12.0 10.0
Max. 48 41.0 28.0 20.0 48 41.0 28.0 20.0
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For the first maturity ranging from 16 to 23 days, each date had at least 6

observations per call and put options and so integrals corresponding to time series

H
(t,1)
t were immediately calculated. For the second maturity ranging from 44 to

53 days, there were no observations for 30-06-1999. As discussed in Section-2.3.2

we interpolate implied volatilities across maturities to create observations for this

date and then integrate.

For the third maturity ranging from 75 to 86 days there were observations

for each date, but there were ten days who had less than four observations for

either calls or puts. Again, we interpolated maturities to get more observations.

In particular, for strikes that do not correspond to known values, we interpolated

as discussed in Section-2.3.2. The created observations were combined with the

known ones, and all the prices were once again checked for arbitrage and that they

are above the minimum tick.

Figure 2.8: Plots corresponding to the fitting of the curve for calls in 29-12-2000, where only
two observations were generated by interpolating implied volatilities across known maturities.
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For the fourth maturity ranging from 107 days to 114 days, there were 73

days missing. For those we interpolate implied volatilities across maturities. This

method produced less than four observations for 4 out of the 73 dates. In partic-

ular, in 29-12-2000 only two observations were created, see Figure-2.8. For this

date, predictability concerns have to be taken into account. Moreover, note that

for integration methods that are based on the fitting of smooth spline at least

for observations are needed, which means that we had to extrapolate in order to

acquire the required information. For the remaining days that had less than four

observations we worked as in the third maturity.

45



Finally, once we calculated the series in (2.2) we calculated the forward vari-

ances (2.5), which are shown in Figure-2.9. For comparison we provide the plot

by Bakshi et al. (2011) in Figure-2.10.
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Figure 2.9: Time-series for the forward variances defined in (2.5). The time-series corresponds
to last trading days of each month from September 1998 to September 2008. The underlying
asset is the S&P 500 index. European calls and puts were used to calculate the integrals of (2.2).
LIBORs were used as a proxy for the risk-free rate.
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Figure 2.10: Time-series behavior of forward variances as depicted in Figure-1 by Bakshi et al.
(2011). We provide these graphs for comparison with the ones we produced, as shown in Figure-
2.9.

studied,6 our focus is on multiple predictors, possibly with
a negative MA component. To address the specifics of our
problem, we draw on recent treatments which have
shown that the Hodrick (1992) 1B covariance matrix
estimator can be reliable when the predictors are highly
persistent, even in small samples. We mention, among
others, Ang and Bekaert (2007, Section 5.2 and footnote 3)

and Wei and Wright (2009). Motivated by these studies,
we adopt the Hodrick (1992) estimator as an integral
component of inference. In Section 4.6, we provide simu-
lation evidence indicating that the Hodrick (1992) test for
joint parameter insignificance offers the correct size, in
our setting with ARMA(1,1)-GARCH(1,1) underlying pre-
dictors, even when they display near-unit-root behavior.

To further guard against both small sample and possible
disturbance distribution misspecification issues, we imple-
ment a bootstrap estimation in the spirit of Amihud,
Hurvich, and Wang (2009), Cochrane and Piazzesi (2005),
and Mark (1995), the details of which are provided
in Appendix C, and the results are discussed in Section 4.7.
The parametric bootstrap is designed to accommodate the
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Fig. 1. Time-series behavior of forward variances. At the end of each month over the sample period 09/1998 to 09/2008 (121 observations), we use S&P

500 index options to construct prices of exponential claims on integrated variance, Hðt,nÞ
t , where n=1,2,3,4 correspond to maturities tn of approximately

19, 49, 79, and 109 days, respectively. As in Eqs. (3) and (4), Hðt,nÞ

t,Ht,n
t

¼ e�r�tn þ
R

K 4 St
o½K�CðnÞt ½K� dKþ

R
K oSt

o½K�PðnÞt ½K� dK , o½K� ¼� 8ffiffiffiffi
14
p cos

ðarctanð1=
ffiffiffi
7
p
Þþ

ffiffi
7
p

2 lnðK=StÞÞ=
ffiffiffiffiffi
St

p
K3=2 , where e�r�tn is the price at time t of a riskfree discount bond with unit face and maturity tn , and CðnÞt ½K� and

PðnÞt ½K� are the prices of a call and put with strike price K and maturity tn . The forward variances are defined as: yð1Þt ��lnHðt,1Þ
t , f ð2Þt � lnHðt,1Þ

t �lnHðt,2Þ
t ,

f ð3Þt � lnHðt,2Þ
t �lnHðt,3Þ

t , f ð4Þt � lnHðt,3Þ
t �lnHðt,4Þ

t . For consistency with the 30-day forward variances f ð2Þt , f ð3Þt , and f ð4Þt , and with the predicted asset returns and

real activity variables, which are measured over a monthly interval, the yð1Þt variance is converted to a 30-day rate.

6 See, among others, Stambaugh (1999), Valkanov (2003), Torous,

Valkanov, and Yan (2004), Lewellen (2004), Campbell and Yogo (2006),

and Boudoukh, Richardson, and Whitelaw (2008). Empirical approaches

in a multiple predictor setting have been developed in Polk, Thompson,

and Vuolteenaho (2006) and Amihud, Hurvich, and Wang (2009), who

employ vector autoregressive modeling.

G. Bakshi et al. / Journal of Financial Economics 100 (2011) 475–495480
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Chapter 3

Predictability of Forward
Variances

In this chapter we study the forward variances produced in Chapter 2. Their

statistical properties are investigated in the first section and their predictability

for real economic activity is examined in the following one. The analysis is based

on the paper of Bakshi, Panayotov, and Skoulakis (2011) and the results provided

follow their format. It should be take into consideration that our results are highly

biased toward the construction method we used in Cahpter 2 and the filtering of

the initial data. In Section-3.1.1 we also provide the definitions of the most popular

time series models and some of their basic theory. The analysis was done using R.

We also use other packages referred to in the text. Finally, the time series analysis

is done in Script-A.9 and the regressions in Script-A.10.

3.1 Statistical Properties of Forward Variances

The forward variances (fvars) created in the previous chapter are shown in Figure-

3.1. Table-3.1 contains some basic statistical measures on the constructed series.

We observe that on average fvars start around 0.4% and stabilizes close to 0.7%

for maturities further in time. In Section-3.1.2 the statistical properties of the

time series are discussed. In the following section, prior to the analysis of fvars,

we provide some basic definitions on time series based mostly on Cowpertwait and

Metcalfe (2009).
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Figure 3.1: Time-series behavior of forward variances in the same graph. Note that y
(1)
t has

been converted to a 30-day rate.
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Table 3.1: Some basic statistics about the forward variances produced in Chapter 2. The
sample period is 09/1988 to 09/2008 (121 observations) and values are percentages.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

yt 0.4182 0.1860 0.1145 0.2780 0.5481 1.0549

f
(2)
t 0.7214 0.2908 0.2891 0.4915 0.9206 1.9178

f
(3)
t 0.6979 0.2544 0.3131 0.5041 0.8785 1.5588

f
(4))
t 0.7160 0.2661 0.3478 0.5149 0.9222 1.4632
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3.1.1 Time Series basics

A stochastic process {xt}t∈T is said to be stationary if for for all k ∈ R and

τ, t1, . . . , tk ∈ T
FX(xt1+τ , . . . , xtk+τ

) = FX(xt1 , . . . , xtk)

where FX denotes the joint distribution. A weaker form, known as second-order

stationarity, requires that only the first two moments be constant across time, i.e.

E[xt] = µ and V [xt] = σ2 for all t ∈ T . The second-order term is usually omitted

and such processes are referred as stationary.

A very simple process, which is used as a building block for more complex

models, is called white noise and is a discrete stationary stochastic process wt such

that E(wt) = 0 and V (wt) = σ2
w < ∞, for all t ∈ T . White noise is used for

example to create random walks xt = xt−1 + wt. Using backward substitution we

may rewrite a random walk as a function of consecutive white noises

xt = x0 +
t∑

k=1

wk,

where x0 is the known starting point of the process. From the above form we may

easily observe that a random walk is not stationary, since V [xt] = kσ2.

Non stationarity is usually detected in correlograms. Correlograms are statisti-

cal plots created under the null hypothesis that the first two moments of the series

are constant. Under the null hypothesis, the two moments are estimated using the

usual unbiased estimators on the series’ sample terms, i.e. the constant mean is

µ̂x = 1/n
∑n

t=1 xt and the constant variance is σ̂2
x = 1/(n− 1)

∑n
t=1(xt − µx)2. In

particular, correlograms plot sample autocorrelations rk = ck/c0, where

ck =
1

n

n−k∑
t=1

(xt − x̂)(xt+k − x̂),

across different lags k. Under the null hypotheses ck values should be near to zero.

If there is a trend or a seasonal effect, correlograms will picture it. For example, a

correlogram for a random walk will rapidly decay for initial lags, as xt+k becomes

less and less correlated to xt as k increases. If an event takes place at every k

steps of the series, then a spike will be depicted on lag k with somewhat elevated

autocorrealtions around it.
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An autoregressive model of order p, denoted with AR(p), is a process such that

xt = a1xt−1 + . . .+ apxt−p + wt, with ap 6= 0 (3.1)

Using the so called backward shift operator Bxt = xt−1, (3.1) may be rewritten as

Θp(B)xt = (1− a1B − a2B
2 − . . .− apBp)xt = wt (3.2)

It is proven that an AR(p) process is stationary if and only if the roots of Θp(B) = 0

lie inside the unit circle, i.e. are less than 1. A moving average process, denoted

as MA(q), is a stationary process xt such that

xt = wt + b1wt−1 + . . .+ bqwt−q (3.3)

Using the B operator (3.3) may be rewritten as

xt = Φq(B)wt = (1 + b1B + b2B
2 + · · ·+ b1B

q)wt = Φq(B)wt (3.4)

Combining linearly the two previous models, an Autoregressive Moving Average

process is created, denoted as ARMA(p,q), such that

xt = a1xt−1 + a2xt−2 + . . .+ apxt−p + wt + b1wt−1 + . . .+ bqwt−q (3.5)

or in the equivalent form

Θp(B)xt = Φq(B)wt (3.6)

You may think of an ARMA(p,q) model as a generalization of a random walk. The

difference is that the new step does not depend only on the current step xt and

the incoming noise wt, but also on the previous p steps and q noises. Such models

may be used for homoskedastic (constant volatility) processes with memory and

trends on the mean.

The correlogram corresponding to the {xt − µ̂x}t≥ series of a heteroskedastic

process xt will show trends and spikes. To account for such processes we have to

model volatility too. In particular, a Generalised Autoregressive Heteroskedastic,

denoted as GARCH(p,q), model may be employed for the error term. A process

εt is said to be a GARCH(p,q) model if

εt = wt
√
ht, where ht = c+ d1ht−1 + . . .+ dqht−q + c1ε

2
t−1 + . . .+ cpε

2
t−p (3.7)
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A GARCH(pg, qg) model is simply an ARMA(pg, qg) model for the error variance of

the series. The right equation in 3.7 is an ARMA(qg, pg) model for the conditional

variance of the series as ARMA(p, q) is the model for the conditional mean of the

series. Also, note that the corresponding autoregressive GARCH(pg, 0) model is

denoted as ARCH(pg) and the moving average GARCH(0, qg) as GARCH(qg).

A combination of the last two models will allow for trends in the mean and

the volatility. An ARMA(p, q) - GARCH(pg, qg) model is a process defined by the

following equations

xt = a1xt−1 + a2xt−2 + . . .+ apxt−p + εt + b1εt−1 + . . .+ bqεt−q (3.8)

εt = wt
√
ht (3.9)

ht = c1ε
2
t−1 + . . .+ cpgε

2
t−pg + d1ht−1 + . . .+ dqght−qg (3.10)

As an example, we provide an ARMA(1, 1) - GARCH(1, 1) model. Since each of

the contributing models, i.e. AR, MA, ARCH, GARCH, have only one parameter,

we will indicate the coefficients by their corresponding models’ name.

xt = ARxt−1 + εt + MAεt−1 (3.11)

εt = wt
√
ht (3.12)

ht = g0 + ARCHε2t−1 + GARCHht−1 (3.13)

For this model it is very easy to test stationarity, since Θ(B) = (1 − AR). In

particular, the series will be stationary if −1 < AR < 1. An alternative to test

the null hypothesis that the series is non-stationary (H0 : AR = 1) is to use

the Phillips-Perron (Phillips and Perron, 1988; Perron, 1988) test, which is more

robust (as it uses a non parametric correction to the test’s statistic) than the aug-

mented Dickey-Fuller statistic (Said and Dickey, 1984) for series with unspecified

autocorrelation and heteroskedasticity in the disturbance process.

3.1.2 Statistics of Forward Variances

Stationarity hypothesis of the series bears fundamentally to the predictive quality

of regressions employing them as predictors. Theory suggests that the forward

variance process might be a stationary process. Recall (see equations (2.1) and
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(2.5)) that forward variance rates are defined as the log returns of claims on the

exponential of integrated variance. Now, if we assume that instantaneous variance

σt is a mean-reverting (Ornstein-Uhlenbeck) process then stationarity for forward

variance rates is inherited1. Bakshi et al. (2011) provide references supporting this

hypothesis and, by Figure-3.1, we observe that there is no strong evidence against

stationarity, as the mean and the variance of the processes seem to be constant

across time.

Table 3.2: Values for several criteria for two ARMA-GRACH mod-
els. The ARMA(1,1) GARCH(1,1) is superior according to all cri-
teria.

y
(1)
t f

(2)
t f

(3)
t f

(4)
t

ARMA(1,1) - GARCH(1,1) model
Akaike −10.088 −9.373 −9.767 −9.988
Bayes −9.973 −9.257 −9.652 −9.872
Shibata −10.091 −9.376 −9.771 −9.991
Hannan-Quinn −10.041 −9.326 −9.721 −9.941

ARMA(2,2) - GARCH(2,2) model
Akaike −9.963 −9.258 −9.681 −9.815
Bayes −9.755 −9.050 −9.473 −9.607
Shibata −9.974 −9.268 −9.691 −9.825
Hannan-Quinn −9.879 −9.174 −9.596 −9.730

a
Fittings and calculations by the Ghalanos (2014) package.

Stationarity may also be graphically checked by an ergodic mean plot, where

cumulative sample means are plotted against dates. Figure-3.2 suggests that the

stationarity assumption is reasonable, since the mean seems to converge, even

though the sample is small. To further investigate the series we fit a model. Cor-

relograms in Figures 3.3 and 3.4 depict trends both in the mean and the variance

of the series. Following Bakshi et al. (2011), ARMA(p,q) - GARCH(p,q) mod-

els are considered. We tested different models and compared them according to

several information criteria. The results for two such models appear in Table-3.2.

We concluded that an ARMA(1,1) - GARCH(1,1) is suitable for modeling forward

variances.

1To elucidate this concept one may think of Brownian Motion (BM), which is a special case
of mean-reverting processes. It is very popular to model a stock price as a Geometric Brownian

Motion (GBM), which is an exponential on a BM, i.e. St = S0 exp
((
µ− σ2

2 t
)

+ σWt

)
. It is well

known that even though the stock price has a drift µ which makes it non-stationary the log returns

of a stock price are stationary. Indeed, observe that log
(
St+τ
St

)
=
(
µ− σ2

2 t
)
τ + σ(Wt+τ −Wt).
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Figure 3.2: An ergodic mean plot of the time series. Note that y
(1)
t has been converted to a

30-day rate and that the sample contain a small number of observations (121).
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The fitted parameters are in Panel D of Table-3.1. The autoregressive fitted

coefficients are near the unit. This causes concern for non-stationarity as explained

in Section-3.1.1. In Panel E we provide the standard errors for the AR coefficient

estimations as proxy for the near-unit-root behavior of the model. Finally, taking

into consideration the Phillip-Perron test of Panel C and the previous analysis we

conclude that there is strong evidence to not reject the stationarity hypothesis.

3.2 Predictability of Forward Variances for real

Economic Activity

In this section we use the constructed forward variances to predict real economic

activity following Bakshi et al. (2011). The proxies for real economic activity are

monthly growth rates of non-farm payroll and industrial production, as these are

considered measures for employment and real output respectively. We also include

the slope of the Treasury yield curve as a predictor, proxied as the difference

between the ten-year and the three-month Treasury yields, in order to compare

the predictability power of forward variances.

We remind that our results are highly biased towards the method we used

to construct the series. The industrial production and the Treasury yields were

downloaded from the Board of Governors of the Federal Reserve System (http:
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Figure 3.3: Corelograms for the mean of forward variances. The slow decay suggests that a
simple autoregrssive model, such the random walks, may not be suitable and that an ARMA
model should be employed.
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Figure 3.4: Corelogram for the variance of forward variances. Similar patterns as for the mean

are depicted. They are most noticeable for f
(4)
t . Consistency suggests that an GRACH model

should be employed for the variance error of the series.
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Table 3.3: Statistical features of forward variances. This table was created following Table 1 of Bakshi et al.
(2011). Cross-correlations in Panel A suggest that forward variances across the term structure may have a low
level of distinct information. Autocorrelations in Panel B give evidence that a low level ARMA model should
be suitable to model the series. Based on the Dickey-Fuller test in Panel C the null hypothesis that the series
are non-stationary may be rejected. In Panel D the estimated coefficients for the ARMA(1,1) - GARCH(1,1)
model are provided. In Panel E we provide the standard error of the AR coefficients to further study the near
unit root behavior of the series.

y
(1)
t f

(2)
t f

(3)
t f

(4)
t

Panel A: Cross-correlations

y
(1)
t 1.000

f
(2)
t 0.833 1.000

f
(3)
t 0.794 0.815 1.000

f
(4)
t 0.756 0.833 0.761 1.000

Panel B: Autocorrelations
ACF(1) 0.641 0.686 0.664 0.758
ACF(2) 0.534 0.637 0.622 0.762
ACF(3) 0.527 0.633 0.703 0.757
ACF(4) 0.440 0.529 0.558 0.670
ACF(5) 0.439 0.522 0.568 0.668
ACF(6) 0.449 0.516 0.591 0.636

Panel C: Unit root test – Phillips-Perron: null is I(1)
Dickey-Fuller −4.17 −5.02 −5.49 −4.63
p-vlaue 0.01 0.01 0.01 0.01

Panel D: ARMA(1,1)-GARCH(1,1) model parameter estimates
ARMA(1,1)
AR 0.994 0.993 0.995 0.989
MA −0.426 −0.453 −0.626 −0.609
GARCH(1,1)
Const. 0.000 0.000 0.000 0.000
ARCH 0.003 0.000 0.377 0.521
GARCH 0.924 0.000 0.607 0.377

Panel E: Near-unit-root behavior under ARMA(1,1)-GARCH(1,1)
AR st error 0.018 0.071 0.000 0.218

a
The Phillip-Perron test was calculated using the R basic package. The ARMA(1,1)-GARCH(1,1) was fitted with the
Ghalanos (2014) package. Standard errors of AR were acquired by the same package.
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//www.federalreserve.gov/) under the G.17 and H.15 data codes. The non-

farm payroll data were downloaded from the Bureau of Labor Statistics (http:

//www.bls.gov/data/). The models fitted are

gpayroll
t+1 = a+ b′ft + c yslopet + εt+1 (3.14)

gindus prod
t+1 = a+ b′ft + c yslopet + εt+1 (3.15)

for the non-farm payroll and the industrial production respectively, where ft is

the vector containing the four forward variances and yslopet is the Treasury yield

slope.

Linear models using time series raise potential concerns regarding residuals

behavior. If there are evidence for homoscedasticity and autocorrelation, statis-

tical inference demands a different, than the usual, covariance matrix estimator.

Following Bakshi et al. (2011) the Newey and West (NW) estimator is employed.

In particular we use the Newey and West (1987) estimator with the lag parame-

ter automatically chosen by Zeileis (2004), who implements the Newey and West

(1994) method in R.

We check homskedasticity and autocorrelation of lag one with the usual plots

depicted in Figure-3.5. The homoscedasticity assumption seems to be valid for

both models. There is a clear trend for consecutive residuals for Model-3.14, but

the residuals’ independence assumption appears to hold for Model-3.15. We also

provide the Durbin-Watson (DW) test for the null hypothesis that the errors of

the model are serially uncorrelated against the alternative that they follow a first

order autoregressive process (3.1). The test’s p-value is in Table-3.4, where the

regression results are collected. The test suggests similar conclusions, as the null

hypothesis is rejected for the non-farm payroll model and not for the industrial

production one. We conclude that the usual covariance matrix should be used for

Model-3.15 and the NW one for Model-3.14. For consistency reasons, we provide

statistics based on both estimates for the industrial production regression.

Based on the results of Table-3.4, we observe that the predictability of forward

variances seems to be statistically insignificant for the industrial production. The

p-values for the statistic testing the null hypothesis, that the coefficient is equal

to zero, are large enough to accept H0 for all coefficients. Moreover, the adjusted
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Figure 3.5: Usual diagnostic plots to check residuals for homoscedasticity and autocorrelation
(for lag = 1). Both linear fittings include the yield slope. In the first graph standard residuals
are plotted against the fitted values in order to check homoscedasticity. In the second one,
autocorrelation is tested, by plotting standard residuals et against et−1.
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coefficient determination R̄2 is very low, almost zero. On the other hand forward

variances, as the treasury yield, seem to better explain non-farm payrolls.In par-

ticular, we find that when we do not include the treasury yield every forward

variance except f
(2)
t is significant in an alpha level of 5%. When the treasury yield

is included f
(3)
t is not significant anymore for the same alpha level.

Bakshi et al. (2011) have similar results but with important differences. They

find that f
(2)
t is not statistically important for predicting non-farm payroll. In

contrast though, they find that f
(3)
t is still statistically significant when the treasury

yield is included. For the industrial production they find that y
(1)
t and f

(4)
t are

statistically significant whether the treasury yield is included or not. Finally, their

adjusted coefficients of determination are lower than ours in non-farm payroll and

slightly higher for industrial production.

In our sample the coefficients that survive suggest that an increase on y
(1)
t

is translated to a consequently decrease in non-farm payroll. Alternatively, an

increase on f
(3)
t or f

(4)
t is associated with a subsequent increase in non-farm payroll.

Bakshi et al. (2011) have similar results for these coefficients.
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Table 3.4: Can forward variances predict forthcoming real economic activity? Panel A shows
that there is some predictability power for the non-farm payroll but the answer is negative
for industrial production as Panel B shows. For each regression, the ordinary least squares
(ols) estimators are provided. Their statistical significance is tested with the Newey and West
(NW) estimator. Next to NW, the lag parameter, which has been automatically chosen by R,
is provided. For the industrial production the ols p-values are given as well. We denote with
R̄2 the adjusted coefficient of determination and with bDWc the p-value of the Durbin-Watson
test.

Dependent variable Const. y
(1)
t f

(2)
t f

(3)
t f

(4)
t yslopet R̄2

bDWc

Panel A:
Non-farm payroll

gpayroll
t+1 Coef. 0.001 −0.556 −0.093 0.157 0.279 −0.037 37.32%

NW-8, p-val 0.049 0.000 0.143 0.077 0.000 0.006 b0.000c

gpayroll
t+1 Coef. 0.000 −0.627 −0.102 0.226 0.344 27.75%

NW-8, p-val 0.862 0.000 0.093 0.009 0.000 b0.000c

Panel B:
Ind. Production

gindus prod
t+1 Coef. 0.002 −0.819 0.527 −0.598 0.432 −0.033 0.63%

NW-6, p-val 0.378 0.378 0.262 0.342 0.325 0.603 b0.112c
usual p-val 0.429 0.202 0.269 0.192 0.322 0.524

gindus prod
t+1 Coef. 0.001 −0.882 0.518 −0.537 0.490 1.14%

NW-7, p-val 0.570 0.291 0.259 0.332 0.171 b0.124c
usual p-val 0.617 0.164 0.275 0.230 0.250

a
The Heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimator was calculated using the
sandwich package by Zeileis (2004). The p-values and the DW test by the lmtest package of Zeileis and Hothorn (2002).
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Conclusions

The main purpose of this thesis was for the student to engage contemporary re-

search in the field of quantitative finance. In the first Chapter, which is the

mathematical part, we rigorously presented part of the work conducted by Carr

and Lee (2009b). Particularly, we showed that a generic exponential claim paying

eλ〈X〉T may be expressed in terms of the underlying in the sense that there exists

a payoff function G such that under the risk-neutral measure Q,

EQ [eλ〈X〉T ] = EQ[G(ST )]

Following Bakshi et al. (2011) we specialized this result for λ = −1 in order to

define forward variances and spanned the RHS term in an investable portfolio of

options. Note that this method builds on a non-parametric setting for an un-

derlying process St with no jumps and pricing is first-order immune against the

correlation of the underlying process and the instantaneous volatility process σt.

In the second chapter, which is the programming part and the core of the the-

sis, we created a term structure of forward variances contingent to the S&P 500

index, consisting of four maturities and ranging from 1998 to 2008. Filtering prices

and extracting the risk neutral price curve across strike comprised the crucial chal-

lenges of the chapter. Prices were filtered by ensuring they satisfy monotonicity

and convexity across strikes. We checked convexity by assuming that the price

corresponding to the minimum strike was a fair one. Even though this was an

arbitrary assumption and a different method should have been used, trading vol-

umes corresponding to these prices were, in most cases, high enough to suggest

their “fairness”. To extract the risk neutral price we experimented with various

methods proposed in the literature. Production of poor results due to implemen-

tation errors, drove us to introduce a different method that behaved quite well,
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was based on fundamental non-arbitrage concepts, may be implemented easily and

finally its quality stems from the theory of linear regression.

In the third chapter, which is the statistical aspect of the thesis, following

Bakshi et al. (2011) we studied the statistical properties of forward variances and

their predictability power for real economic activity. Our results are quite similar

to theirs but with important differences. This is due to the lack of an academic

or industry standard for cleaning option prices and extracting risk neutral price

curves. Many methods are employed in the literature and so different results are

expected.

Finally, we would have wanted to further enhance the method we used to calcu-

late forward variances and experiment with it for different time frames and different

underlings, study as Bakshi et al. (2011) their predictability power for asset re-

turns, use them to address other question in finance and bolster the documented

results with an appropriate theoretical framework.
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Appendix A

Scripts

Script A.1: Obtaining LIBORs

1 require(RQuantLib)

2 # LIBOR data were obtained by Federal Reserve Bank of St. Louis

3 # [1] and EconStats [2]. Download data from:

4 # [1] http://research.stlouisfed.org/fred2/categories/33003/

downloaddata

5 # [2] http://www.econstats.com/r/rlib__d1.htm

6 # Assume that the files from [1] (LIBOR_csv_2.zip/data) and from

7 # [2] rlib__d1.csv renamed to rlib.csv are in the working

8 # directory. Morover note that we deleted unnecesary rows from

9 # rilb and kept only the values and their headers.

10

11 # dates contains the desired dates for which we want to

12 # extract data

13 dates = unname(

14 getEndOfMonth(

15 calendar = "UnitedStates/NYSE",

16 dates = seq.Date(from = as.Date(’1998/9/1’),

17 to = as.Date(’2008/9/1’), by = "month")))

18

19 #################################################################

20 # Section 1: Get LIBORs from [2]

21 #################################################################

22 dat = read.csv(file = "rlib.csv")

23 # create a vector for filenames for the 1-4 months LIBOR

24 names = character (16)

25 names [1] = "Date"

26 names [2] = "Day"

27 names [3] = "1WK"

28 names [4] = "2WK"

29 for(i in 5:16){

30 names[i] = paste(i - 4, "MN", sep = "")
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31 }

32

33 names(dat) = names

34

35 # Subset to dates

36 dat$Date = as.Date(dat$Date , format = "%m/%d/%Y")

37 df = subset(dat , dat$Date %in% dates)

38 df = df[,-2]

39 rm(dates , i, names)

40

41 #################################################################

42 # Section 2: Get missing values from [1] for dates "2007 -03 -30"

43 # and "2006 -01 -31".

44 #################################################################

45 filename = character (14)

46 filename [1] = "USD1WKD156N.csv"

47 filename [2] = "USD2WKD156N.csv"

48 for(i in 1:12){

49 if( i >= 10 )

50 filename[i+2] = paste("USD", i, "MD156N.csv", sep = "")

51 else

52 filename[i+2] = paste("USD", i, "MTD156N.csv", sep = "")

53 }

54

55 for(date in c("2007 -03 -30", "2006 -01 -31")){

56 # Read files for specific date and store LIBORs to value

57 value = numeric (14)

58 dateObs = as.Date(date)

59 for(i in 1:14){

60 if(i != 2){ # skip 2WK libor (default value is 0)

61 # read file

62 dat2 = read.csv(filename[i], stringsAsFactors=FALSE)

63 # convert dates to Dates objects

64 dat2$DATE = as.Date(dat2$DATE)

65 value[i] =

66 as.numeric(subset(dat2 , dat2$DATE == dateObs)$VALUE)

67 }

68 }

69 print(value)

70

71 # Replace to df

72 df[which(df$Date == dateObs), 2:15] = value

73 }

74 rm(dat2 , dateObs , filename , i, value , date)

75

76 #################################################################

77 # Section 3: Get values from [2] for "1999 -12 -30" and use them

78 # for "1999 -12 -31"

79 #################################################################
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80 vals = subset(dat , Date == as.Date("1999 -12 -30"))[3:16]

81 unname(vals)

82

83 df[which(df$Date == as.Date("1999 -12 -31")), 2:15] = vals

84 rm(dat , vals)

85

86 #################################################################

87 # Section 4: Interpolate for missing values for 2-Libor prior

88 # to 2000

89 #################################################################

90 rownames(df) = 1:121 # re-enumerate rows from 1-121

91

92 # Get 1-week LIBOR and 1-month LIBOR for missing values of

93 # 2-week LIBOR

94 r1W = df[94:121 , 2]

95 r1M = df[94:121 , 4]

96

97 # Interpolate

98 r2W = r1W + (r1M - r1W)/(30 - 7)*(14-7)

99

100 # Replace

101 df[94:121 , 3] = r2W

102

103 rm(r1W , r1M , r2W)

104

105 #################################################################

106 # Section 5: Export Data

107 #################################################################

108 write.csv(df, file = "LIBORs.csv", row.names = F)

Script A.2: Extracting Data

1 require(RQuantLib)

2 # This script uses the following data files

3 # Sep1998Sep2008.csv , SnP500Prices.csv , LIBORs.csv

4 # The script runs in about 100 seconds.

5

6 #################################################################

7 # Section 1: Load data downloaded from OptionMetrics (file:

8 # Sep1998Sep2008.csv) and filter for dates.

9 #

10 # Observations Prior: 1 ,568 ,099

11 # Observations After: 74 ,592

12 # Observations Difference: 1 ,493 ,507

13 #################################################################

14 data = read.csv(file="Sep1998Sep2008.csv")

15

16 # Convert dates to R Dates objects

17 data$date = as.Date(as.character(data$date), format=’%d%b%Y’)
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18

19 # Get last trading day for each month

20 dates = unique(

21 data$date[isEndOfMonth(calendar="UnitedStates/NYSE",

22 data$date)])

23

24 # Subset data to the last trading day for each month

25 data = data[data$date %in% dates , ] #74592

26

27 # Get dates

28 dates = unique(data$date)

29

30 #################################################################

31 # Section 2: Apply initial filters and discard useless

32 # information. Finally sort data according to

33 # date , type , expiration and strike.

34 #

35 # Observations Prior: 74 ,592

36 # Observations After: 22 ,707

37 # Observations Difference: 51 ,885

38 #################################################################

39

40 # Apply Filter F1 - obs thrown = 4,448

41 data = subset(data , best_bid != 0)

42

43 # Apply Filter F2 - obs thrown = 13 ,052

44 data = subset(data , open_interest != 0)

45

46 # Apply Filter F3 - obs thrown = 33 ,342

47 data = subset(data , volume != 0)

48

49 # Apply Filter F4 - obs thrown = 1,043

50 # Note that obs with implied volatility > 1 were 8.

51 # The same result if we test for volatility >= 1.

52 data = subset(data , impl_volatility >= 1 |

53 !is.na(impl_volatility))

54

55 # Convert exdate to R Dates objects

56 data$exdate = as.Date(as.character(data$exdate),

57 format = ’%d%b%Y’)

58

59 data = data.frame(data$date , data$cp_flag ,

60 as.integer(data$exdate - data$date),

61 data$strike_price/1000,

62 0.5*(data$best_bid + data$best_offer),

63 data$volume , data$impl_volatility)

64

65 names(data) = c("date", "type", "expiration", "strike", "price",

66 "volume", "implVol")
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67

68 # Short data

69 data = data[order(data$date , data$type , data$expiration ,

70 data$strike), ]

71

72 #################################################################

73 # Section 2: Load underlying , throw ITM as defined in the

74 # text and discard expiration less than a week.

75 #

76 # Observations Prior: 22 ,707

77 # Observations After: 19 ,593

78 # Observations Difference: 3,114

79 #################################################################

80

81 # Load the S&P prices -- price of the underlying

82 snp500 = read.csv(file="SnP500Prices.csv")

83 colnames(snp500) = c("Date", "Price")

84

85 # Create appropriate s&p vector. For example , if for the 1st date

86 # we have 100 observations , then we repeat the 1st underlying

87 # price 100 times. [Remember that data are sorted for date]

88

89 # Get number of observations per date

90 numdates = as.vector(table(data$date))

91 # Create vector

92 snp500rep = rep(snp500$Price , numdates)

93

94 # Add underlying to data.

95 data = data.frame(data , snp500rep)

96 colnames(data)[8] = "underlying"

97

98 # Remove useless variables

99 rm(snp500 , snp500rep , numdates)

100

101 # Apply Filter F5 - obs thrown = 3,038

102 data = data[(data$type == ’C’ & data$strike >= 0.97*data$

underlying) |

103 (data$type == ’P’ & data$strike <= 1.03*data$underlying

), ]

104

105 # Throw expirations prior to a week (7 days)

106 data = subset(data , expiration > 7)

107 # 76 obs were thrown. The new minimum expiration is

108 min(data$expiration) # => 16 days

109

110 # # Here Back -Up 1 was created

111 # write.csv(data , "BackUp.csv", row.names = FALSE)

112 #################################################################

113 # Section 3: Load LIBORs , create discount factors and check
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114 # arbitrage bounds

115 #

116 # Observations Prior: 19 ,593

117 # Observations After: 19 ,593

118 # Observations Difference: 0

119 #################################################################

120

121 #################################################################

122 # Section 3.1: Create discount factors and add them to data

123 #################################################################

124 # Load LIBORs

125 libors = read.csv(file = "LIBORs.csv", header = T)

126 libors$Date = as.Date(libors$Date) # convert dates

127

128 # Convert to numbers instead of percentages

129 libors [2: ncol(libors)] = apply(libors [2: ncol(libors)], 2,

130 function(x) x/100)

131

132 # Throw 1-week LIBORs and

133 # sort them for quicker search

134 libors = libors [-2]

135 libors = libors[order(libors$Date), ]

136

137 # Variable rates will contain the appropriate (interpolated)

138 # rate for each observation.

139 rates = numeric(nrow(data))

140

141 # Repeat for each observation

142 for(i in 1: length(rates)){

143 # Get the date

144 date = data[i, ]$date

145

146 # Variable idx is the position of date in vector libors.

147 idx = which(libors$Date == date)

148

149 # Find the last month prior to expiration.

150 # Month 0 corresponds to the 2-Week LIBOR

151 month = floor(data[i, ]$expiration/30)

152

153 # The first column of libors is the date.

154 # The 2-Week LIBOR is on column 2, the 1-Month LIBOR to

155 # column 3, the 2-Month LIBOR to column 3 etc.

156 if(month == 0){

157 xs = c(15, 30)

158 ys = c(libors[idx , month + 2], libors[idx , month + 3])

159 }else if (month < 12){

160 xs = c(30*month , 30*(month + 1))

161 ys = c(libors[idx , month + 2], libors[idx , month + 3])

162 }else{
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163 xs = c(30*11:12)

164 ys = c(libors[idx , 13:14])

165 }

166 rates[i] = splinefun(xs, ys)(data[i, ]$expiration)

167 }

168

169 # For every rate calculate the interest due for 1$

170 interest = rates*(data$expiration/360)

171

172 # Calculate the discount factor for 1$

173 discount = 1/(1+ interest)

174

175 # Add discount factor to data

176 data = data.frame(data , discount)

177

178 # Remove useless variables

179 rm(libors , date , discount , i, idx , interest , month , rates , xs , ys

)

180

181 # # Here Back -Up 2 was created

182 # write.csv(data , "BackUp2.csv", row.names = FALSE)

183 #################################################################

184 # Section 3.2: check arbitrage bounds

185 #################################################################

186 # calls -down => no arbitrage found

187 which(data$type==’C’ &

188 data$underlying - data$strike*data$discount > data$price)

189 # calls -up => no arbitrage found

190 which(data$type==’C’ & data$price > data$underlying)

191 # puts -up => no arbitrage found

192 which(data$type==’P’ &

193 data$strike*data$discount - data$underlying > data$price)

194 # puts -down => no arbitrage found

195 which(data$type==’P’ & data$price > data$strike*data$discount)

196

197 #################################################################

198 # Section 4: Check strict monotonicity

199 #

200 # Observations Prior: 19 ,593

201 # Observations After: 19 ,347

202 # Observations Difference: 246

203 #################################################################

204

205 # We check monotonicity by checking two required and sufficient

206 # conditions. We check that a vector x is strictly monotonically

207 # increasing (decreasing) by checking whether it is not

208 # decreasing (increasing) [1] and by whether it has duplicates

209 # [2]. We check them by the following commands:

210 #
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211 # [1a] all(x == cummax(x)), for increasing

212 # [1b] all(x == cummin(x)), for decreasing

213 # [2] anyDuplicated(x) == 0

214

215 # Round prices to for I/O approximations

216 data$price = round(data$price , 7)

217

218

219 #################################################################

220 # Section 4.1.1b: For Calls (should be strictly decreasing)

221 # Found 39 arbitrages -- after: 19 ,554 obs

222 #################################################################

223

224 calls = subset(data , type == ’C’)

225 # Step 1: Split across dates and expirations

226 # Step 2: For each element of the list check [1b]

227 # Step 3: Return those dissatisfy [1b] to c

228 c =

229 which(

230 lapply(

231 split(calls , list(calls$date , calls$expiration)),

232 function(x) (all(x$price == cummin(x$price)))

233 ) == F

234 )

235

236 # Get dates and strikes from c

237 cn = matrix(unlist(strsplit(names(c), "[.]")), ncol = 2,

238 byrow = T)

239

240 # Remove prices that defy [1b]

241 # For each date and expiration in cn do

242 # Step 1: Subset data to date and expiration

243 # Step 2: Find values that spoil [1b]

244 # Step 3: Get the row names of those.

245 # Step 4: Remove them from data

246 for(i in 1:nrow(cn)){

247 temp = subset(data , date == cn[i,1] & type == ’C’ &

248 expiration == cn[i,2])

249 rs = which((temp$price == cummin(temp$price)) == F)

250 rs.names = rownames(temp)[rs]

251 data = data[!(rownames(data) %in% rs.names), ]

252 }

253

254 # Remove useless variables

255 rm(calls , cn , temp , c, i, rs , rs.names)

256

257 #################################################################

258 # Section 4.1.2: Duplicates

259 # Found 43 arbitrages -- after: 19 ,511 obs
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260 #################################################################

261 calls = subset(data , type == ’C’)

262 # Step 1: Split accross dates and expirations

263 # Step 2: For each element of the list check [2]

264 # Step 3: Return those desatisfy [2] to c

265 c =

266 which(

267 lapply(

268 split(calls , list(calls$date , calls$expiration)),

269 function(x) (anyDuplicated(x$price) == 0)

270 ) == F

271 )

272

273 # Get dates and strikes from c

274 cn = matrix(unlist(strsplit(names(c), "[.]")), ncol = 2,

275 byrow = T)

276

277 # Remove prices that defy [2]

278 # For each date and expiration in cn do

279 # Step 1: Subset data to date and expiration

280 # Step 3: Get the row names of those spoil [2].

281 # This implementation ensures that the last duplicate

282 # is kept.

283 # Step 4: Remove them from data

284 for(i in 1:nrow(cn)){

285 temp = subset(data , date == cn[i,1] & type == ’C’ &

286 expiration == cn[i,2])

287 rs.names = rownames(temp)[which(duplicated(temp$price) == T) -

1]

288 data = data[!(rownames(data) %in% rs.names), ]

289 }

290

291 # Remove useless variables

292 rm(calls , cn , temp , c, i, rs.names)

293

294 #################################################################

295 # Section 4.2.1a: For Puts (should be strictly increasing)

296 # Found 72 arbitrages -- after 19 ,439 obs

297 #################################################################

298 puts = subset(data , type == ’P’)

299 # Step 1: Split accross dates and expirations

300 # Step 2: For each element of the list check [1b]

301 # Step 3: Return those desatisfy [1a] to c

302 c =

303 which(

304 lapply(

305 split(puts , list(puts$date , puts$expiration)),

306 function(x) (all(x$price == cummax(x$price)))

307 ) == F
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308 )

309

310 # Get dates and strikes from c

311 cn = matrix(unlist(strsplit(names(c), "[.]")), ncol = 2,

312 byrow = T)

313

314 # Remove prices that defy [1b]

315 # For each date and expiration in cn do

316 # Step 1: Subset data to date and expiration

317 # Step 2: Find values that spoil [1b]

318 # Step 3: Get the row names of those.

319 # Step 4: Remove them from data

320 for(i in 1:nrow(cn)){

321 temp = subset(data , date == cn[i,1] & type == ’P’ &

322 expiration == cn[i,2])

323 rs = which((temp$price == cummax(temp$price)) == F)

324 rs.names = rownames(temp)[rs]

325 data = data[!(rownames(data) %in% rs.names), ]

326 }

327

328 # Remove useless variables

329 rm(puts , cn , temp , c, i, rs , rs.names)

330

331 #################################################################

332 # Section 4.2.2: Duplicates

333 # Found 92 arbitrages -- after 19 ,347 obs

334 #################################################################

335 puts = subset(data , type == ’P’)

336 # Step 1: Split accross dates and strikes

337 # Step 2: For each element of the list check [2]

338 # Step 3: Return those desatisfy [2] to cdm

339 c =

340 which(

341 lapply(

342 split(puts , list(puts$date , puts$expiration)),

343 function(x) (anyDuplicated(x$price) == 0)

344 ) == F

345 )

346

347 # Get dates and strikes from c

348 cn = matrix(unlist(strsplit(names(c), "[.]")), ncol = 2,

349 byrow = T)

350

351 # Remove prices that defy [2]

352 # For each date and expiration in cn do

353 # Step 1: Subset data to date and expiration

354 # Step 3: Get the row names of those spoil [2].

355 # This implimentation ensures that the first duplicate

356 # is kept.
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357 # Step 4: Remove them from data

358 for(i in 1:nrow(cn)){

359 temp = subset(data , date == cn[i,1] & type == ’P’ &

360 expiration == cn[i,2])

361 rs.names = rownames(temp)[duplicated(temp$price)]

362 data = data[!(rownames(data) %in% rs.names), ]

363 }

364

365 # Remove useless variables

366 rm(puts , cn , temp , c, i, rs.names)

367

368 #################################################################

369 # Section 5: Check strict convexity

370 #

371 # Observations Prior: 19 ,347

372 # Observations After: 18 ,210

373 # Observations Difference: 1,137

374 #################################################################

375

376 #################################################################

377 # Section 5.1: Check strict Convexity - Calls

378 # Found 375 arbitrages -- after 18 ,972 obs

379 #################################################################

380 # In vector toBeRemoved we will stor the names of the rows

381 # tha we will remove from data

382 toBeRemoved = character ();

383

384 for(i in 1: length(dates)){

385 dt = dates[i]

386 for(x in unique(subset(data , date == dt)$expiration)){

387 # Subset data for date dt and expiration x and store it to

388 # temp

389 temp = subset(data , type == ’C’ & date == dt &

390 expiration == x)

391

392 # Get the price and strike vectors of temp

393 p = temp$price

394 k = temp$strike

395

396 # Store Violations to logical vector violations.

397 # First and last connot be violations.

398 # Defualt value of logical () is false.

399 violations = logical(length(p))

400

401 # At least two prices are needed to have convexity. Check it.

402 if(length(p) > 2){

403 # Check the condition for each triplet and store the

404 # result in violations.

405 for(j in 2:( length(p) -1)){
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406 threshold =

407 (k[j+1] - k[j])/(k[j+1]-k[j-1])*(p[j-1]-p[j+1])+p[j+1]

408 violations[j] = (p[j] > threshold)

409 }

410 }

411 # If violations have at least one TRUE add rowname of temp

412 # to vector to toBeRemoved

413 if(any(violations)){

414 toBeRemoved = c(toBeRemoved , rownames(temp[violations , ]))

415 }

416 }

417 }

418

419 # Remove from data

420 length(toBeRemoved) #=> # of arbitrages 377

421 data = data[!(rownames(data) %in% toBeRemoved), ]

422

423 # Remove useless variables

424 rm(dt , j, k, p, threshold , toBeRemoved , violations , x, i, temp)

425

426 #################################################################

427 # Section 5.3: Check strict Convexity - Puts

428 # Found 762 arbitrages -- after 18 ,210 obs

429 #################################################################

430 # Same as 4.1 -- only change type and condition

431 toBeRemoved = character ();

432

433 for(i in 1: length(dates)){

434 dt = dates[i]

435 for(x in unique(subset(data , date == dt)$expiration)){

436 # Change type to ’P’

437 temp = subset(data , type == ’P’ & date == dt &

438 expiration == x)

439 p = temp$price

440 k = temp$strike

441 violations = logical(length(p))

442 if(length(p) > 2){

443 for(j in 2:( length(p) -1)){

444 # Changed the condition

445 threshold =

446 (k[j] - k[j-1])/(k[j+1]-k[j-1])*(p[j+1]-p[j-1])+p[j-1]

447 violations[j] = (p[j] > threshold)

448 }

449 }

450 if(any(violations)){

451 toBeRemoved = c(toBeRemoved , rownames(temp[violations , ]))

452 }

453 }

454 }
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455

456 # Remove from data

457 length(toBeRemoved) #=> # of arbitrages 802

458 data = data[!(rownames(data) %in% toBeRemoved), ]

459 rm(dt , j, k, p, threshold , toBeRemoved , violations , x,

460 i, temp , dates)

461

462 #################################################################

463 # Section 6: Apply final filter and export data.

464 #

465 # Observations Prior: 18 ,210

466 # Observations After: 17 ,421

467 # Observations Difference: 789

468 #################################################################

469 data = data[data$price >= 3/8, ]

470

471 write.csv(data , file = "cleanData.csv", row.names = F)

Script A.3: Functions used to calculate the Integrals.

1 require(RQuantLib); require(rootSolve);

2 #################################################################

3 # Functions ebs and iv are used for data frames which may

4 # contain observations for a given day and type of options.

5 # Functions ebs.vec and iv.vec are used for vectors.

6 #

7 # These functions are used for the one -to-one mapping between

8 # prices and implied volatilities as explained

9 # in the text. To caluclate implied volatilities , we employ the

10 # implied volatility function of RQuantLib.

11

12 ebs <- function(data){

13 t = data$expiration/360;

14 type = data$type [1]

15

16 d1 = 1/(data$implVol*sqrt(t))*(log(data$underlying/data$strike)

+

17 data$implVol ^2/2*t)

18 d2 = d1 - data$implVol*sqrt(t)

19

20 if(type == ’C’)

21 prices = pnorm(d1)*data$underlying - pnorm(d2)*data$strike

22 if(type == ’P’)

23 prices = pnorm(-d2)*data$strike - pnorm(-d1)*data$underlying

24

25 return(round(prices , 4))

26 }

27

28 ebs.vec <- function(ivs , strikes , s0 , mat , type){
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29 t = mat/360;

30

31 d1 = 1/(ivs*sqrt(t))*(log(s0/strikes) + ivs^2/2*t)

32 d2 = d1 - ivs*sqrt(t)

33

34 if(type == ’C’)

35 prices = pnorm(d1)*s0 - pnorm(d2)*strikes

36 if(type == ’P’)

37 prices = pnorm(-d2)*strikes - pnorm(-d1)*s0

38

39 return(round(prices , 4))

40 }

41

42 iv <- function(data){

43 if(nrow(data) == 0)

44 print("error iv function")

45 t = numeric(nrow(data))

46 for(i in 1:nrow(data)){

47 x = data[i, ]

48

49 if(x$type == ’C’)

50 type = "call"

51 if(x$type == ’P’)

52 type = "put"

53

54 # We use the implied volatility provided by OptionMetrics

55 # for initial guess.

56 t[i] = EuropeanOptionImpliedVolatility(

57 type , x$price , x$underlying ,

58 x$strike , 0, 0, x$expiration/360,

59 x$implVol

60 )$impliedVol

61 }

62 return(t)

63 }

64

65 iv.vec <- function(prices , strikes , s0 , mat , type , guesses){

66 if(type == ’C’){

67 type = "call"

68 }else type = "put"

69

70 l = split(cbind(prices , strikes , guesses), 1: length(prices))

71 ivs = as.vector(

72 sapply(l, function(x){

73 iv = EuropeanOptionImpliedVolatility(type , x[1], s0 , x[2],

0, 0, mat/360, x[3])$impliedVol

74 return(iv)

75 }))

76 return(ivs)
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77 }

78

79 callDeltas <- function(atmIV , S, strikes , expiration){

80 # This function calculates the call deltas for certain strikes ,

81 # or for certain maturities.

82

83 t = expiration/360

84 d1 = 1/(atmIV*sqrt(t))*(log(S/strikes) + atmIV^2*t/2)

85 return(pnorm(d1))

86 }

87

88 inverseDeltas <- function(atmIV , S, deltas , expiration){

89 # This function is the inverse of callDeltas for strikes

90

91 t = expiration/360

92 a = atmIV^2*t/2 - qnorm(deltas)*atmIV*sqrt(t)

93 return(round(S*exp(a), 4))

94 }

95

96 vega <- function(ivs , strikes , s0 , expiration){

97 # This function is used to calculate option vegas.

98 t = expiration/360

99

100 d1 = 1/(ivs*sqrt(t))*(log(s0/strikes) + ivs^2/2*t)

101

102 vegas = s0*dnorm(d1)*sqrt(t)

103 return(vegas)

104 }

105

106 # # Example 1: Implied Volatilites - Prices

107 # ex = subset(read.csv(" cleanData.csv"), date == "1999 -06 -30" &

type == ’P’ & expiration == 17)

108 # ebs(ex) == ebs.vec(ex$implVol , ex$strike , ex$underlying [1], 17,

’P’)

109 # iv(ex) == iv.vec(ex$price , ex$strike , ex$underlying [1], 17, ’P

’, ex$implVol)

110 # rm(ex)

111

112 #################################################################

113 # Omega function is used by integration functions.

114

115 omega <- function(strikes , s0){

116 od = sqrt(s0)*(strikes)^(3/2)

117 ou = 8/sqrt (14)*cos(

118 atan(1/sqrt (7)) + sqrt (7)/2*log(strikes/s0)

119 )

120 o = -ou/od

121 return(o)

122 }
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Script A.4: Creating new Maturities.

1 #################################################################

2 # Function new Maturity takes a data frame of observations for a

3 # given day and returns a new data frame with new expirations for

4 # that day. It uses functionsDF.R for the one -to-one mappings

5 # between prices and volatilities. Interpolation is done by a

6 # cubic spline. Prices are checked for arbitrages and minimum

7 # tick for 0.05 with the functions in checkPrices.R. New discount

8 # factors are calculated for the new expiration.

9

10 source("functionsDF.R") # Load functions

11 source("checkPrices.R") # Load functions

12

13 plotMaturites <- function(x, mat){

14 par(mfrow = c(1,2), oma = c(0,0,2,0))

15

16 # Get type

17 tp = x$type [1]

18 if(tp == ’C’){

19 tp = "Calls"

20 }else tp = "Puts"

21

22 # Create expirations sequence

23 ms = seq(min(x$expiration , floor (0.8*mat)),

24 max(x$expiration , ceiling (1.2*mat)), 1)

25

26 # plot spline fitting

27 if(nrow(x) < 4){

28 l = splinefun(x$expiration , x$implVol , method = "natural");

29 plot(x$expiration , x$implVol , xlab = "Expiration",

30 ylab = "Implied Volatility",

31 main = "Interpolation")

32 lines(ms, l(ms))

33 }else{

34 l = smooth.spline(x$expiration , x$implVol);

35 newIV = predict(l, mat)$y

36 plot(x$expiration , x$implVol , xlab = "Expiration",

37 ylab = "Implied Volatility",

38 main = "Interpolation")

39 lines(l)

40 }

41

42 # Plot prices fitting

43 if(nrow(x) < 4){ newIVs = l(ms)

44 }else newIVs = predict(l, ms)$y

45
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46 newPrices = ebs.vec(newIVs , x$strike [1], x$underlying [1], ms, x

$type [1])

47 plot(ms , newPrices , xlab = "Expiration",

48 ylab = "Price", type = ’l’,

49 main = paste(tp, " for ", as.character(x$date [1]), sep = "

"))

50 points(x$expiration , x$price , pch = 15)

51 points(mat , newPrices[which(ms == mat)], pch = 8)

52 title(paste("Strike = ", x$strike [1]), outer = T)

53 # Prompt for next plot

54 readline(prompt = "Pause. Press <Enter > to continue to next

date ...")

55 }

56

57 newMaturity.core <- function(df, mat , plot){

58 # Splite per strike

59 l = split(df, df$strike)

60 # Throw strikes with less than 2 maturities

61 l[sapply(l, nrow) < 2] = NULL

62

63 # Throw strikes that their range do not

64 # contain the desired maturity

65 l[sapply(l, function(x){

66 mat < min(x$expiration) | mat > max(x$expiration)

67 })] = NULL

68

69 l = lapply(l, function(x){

70 # Replace OptionMetrics ’ impled volatilites

71 x$implVol = iv(x)

72 if(nrow(x) < 4){

73 newIV = splinefun(x$expiration , x$implVol , method = "

natural")(mat)

74 }else{

75 ss = smooth.spline(x$expiration , x$implVol);

76 newIV = predict(ss, mat)$y

77 }

78 # Plot?

79 if(plot == T) plotMaturites(x, mat)

80 # Change information of first row and export

81 x[1, ]$expiration = mat

82 x[1, ]$implVol = newIV

83 x[1, ]$price = ebs(x[1, ])

84 x[1, ]$volume = NA

85 return(x[1, ])

86 })

87

88

89 newDf = unsplit(l, as.numeric(names(l)))

90 newDf = checkPrices(newDf)
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91 return(newDf)

92 }

93

94 newMaturity <- function(df, mat , plot = F){

95 df.c = subset(df , type == ’C’)

96 if(nrow(df.c) > 0)

97 df.c = newMaturity.core(df.c, mat , plot)

98 df.p = subset(df , type == ’P’)

99 if(nrow(df.p) > 0)

100 df.p = newMaturity.core(df.p, mat , plot)

101

102 # combine results

103 newDf = rbind(df.c, df.p)

104

105 # Add corrent discount factor

106 date = as.character(df$date [1])

107 libors = subset(read.csv("LIBORS.csv"), Date == date)

108 libor = splinefun(c(30 ,60), libors [(floor(mat/30) + 3):( ceiling

(mat/30) + 3)])(mat)

109 rate = (libor/100)*(mat/360)

110 discount = 1/(1+ rate)

111

112 newDf$discount = discount

113 return(newDf)

114 }

115

116 # # Example

117 # ex = subset(read.csv(" cleanData.csv"), date == "1999 -06 -30")

118 # newMaturity(ex, 49, plot = T)

119 #

120 # # See all the data together

121 # d = rbind(ex, newMaturity(ex, 49))

122 # d[order(d$type , d$strike , d$expiration) ,]

123 # rm(ex, d)

Script A.5: Checking new prices for arbitrages and for being above the minimum
tick.

1 #################################################################

2 # Function checkPrices uses checkPrices.calls and checkPrices.put

3 # to check prices in a data frame containing observations for

4 # a given day , type and expiration. Prices are filtered as in

5 # extract data. The minimum allowd tick for an option price is

6 # 0.05.

7

8

9 checkPrices <- function(df){

10 type = df$type [1]

11
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12 if(type == ’C’){

13 newdf = checkPrices.calls(df)

14 }else newdf = checkPrices.puts(df)

15 return(newdf)

16 }

17

18 checkPrices.calls <- function(df){

19 # Merton ’s Bounds

20 df = subset(df ,

21 df$underlying - df$strike*df$discount <= df$price &

22 df$price <= df$underlying)

23 # Monotonicity

24 df = df[which(df$price == cummin(df$price)), ]

25 tbrm = which(duplicated(df$price) == T) - 1

26 if(length(tbrm) > 0) df = df[-tbrm , ]

27 # Convexity

28 p = df$price

29 k = df$strike

30

31 violations = logical(length(p))

32 if(length(p) > 2){

33 for(j in 2:( length(p) -1)){

34 threshold =

35 (k[j+1] - k[j])/(k[j+1]-k[j-1])*(p[j-1]-p[j+1])+p[j+1]

36 violations[j] = (p[j] > threshold)

37 }

38 }

39

40 # Remove violations

41 df = df[!violations , ]

42

43 # Minimum Tick

44 df = df[df$price > 0.05, ]

45 # return

46 return(df)

47 }

48

49 checkPrices.puts <- function(df){

50 df = subset(df,

51 df$strike*df$discount - df$underlying <= df$price &

52 df$price <= df$strike*df$discount)

53 # Monotonicity

54 df = df[which(df$price == cummax(df$price)), ]

55 tbrm = which(duplicated(df$price) == T)

56 if(length(tbrm) > 0) df = df[-tbrm , ]

57

58 # Convexity

59 p = df$price

60 k = df$strike
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61

62 violations = logical(length(p))

63 if(length(p) > 2){

64 for(j in 2:( length(p) -1)){

65 threshold =

66 (k[j] - k[j-1])/(k[j+1]-k[j-1])*(p[j+1]-p[j-1])+p[j-1]

67 violations[j] = (p[j] > threshold)

68 }

69 }

70

71 # Remove violations

72 df = df[!violations , ]

73

74 # Minimum Tick

75 df = df[df$price > 0.05, ]

76 # return

77 return(df)

78 }

Script A.6: Calculating the integrals in the implied volatility delta space.

1 source(’functionsDF.R’)

2 require(fields)

3 require(pracma)

4 #################################################################

5 # Function calcIntegral takes a data frame containing obs for

6 # a single observation and calculates the integral as it is

7 # explained in the text. It uses plot.integral for plotting the

8 # fitting and the area to be integrated. Function omega is used

9 # to calculate omega.

10

11 plot.integral <- function(oldDeltas , oldIVs , newDeltas , newIVs ,

12 initStrikes , initPrices , newStrikes ,

13 newPrices , s0 , tp , date){

14 par(mfrow = c(1,2))

15

16 # Get type

17 if(tp == ’C’){

18 tp = "Calls"

19 }else tp = "Puts"

20

21 plot(oldDeltas , oldIVs , ylab = "Implied Volatility", xlab = "

delta",

22 xlim = range(c(oldDeltas , newDeltas)), ylim = range(c(

oldIVs , newIVs)),

23 main = paste("Interpolation - ", date , sep = ""))

24 lines(x = newDeltas , y = newIVs)

25 # Plot linear regression line

26 abline(lm(oldIVs ~ oldDeltas), lty = 2)
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27 legend(x = "topleft", legend = c("smooth spline", "ols line"),

lty = c(1, 2), bty = "n", cex = 0.9)

28

29 plot(newStrikes , newPrices , type = ’l’,

30 main = paste(tp, " for ", as.character(date), sep = ""),

31 xlim = range(c(initStrikes , newStrikes)),

32 ylim = range(c(initPrices , newPrices)),

33 xlab = "strike", ylab = "price")

34 points(initStrikes , initPrices , pch = 20)

35 abline(v = s0 , lty = 3)

36 }

37

38 calcIntegral <- function(data , plot = F){

39 dates = unique(data$date)

40 hvals = numeric(length(dates))

41

42 # For -loop to compute integral for each date

43 for(i in 1: length(dates)){

44 # For each date subset to date

45 h = subset(data , date == dates[i])

46

47 s0 = h$underlying [1]

48 mat = h$expiration [1]

49

50 # calculate first term of integral (the bond)

51 hvals[i] = h$discount [1]

52

53 #

##############################################################

54 # Section 2: For Calls

55 # Subset to calls

56 h.c = subset(h, type == ’C’)

57

58 # Create deltas

59 atmIV = h.c$implVol[which.min(abs(h.c$strike - s0))]

60

61 # Throw ITM and get implied volatilites and oldDeltas

62 tempc = subset(h.c, strike >= s0)

63 oldIVs = iv(tempc)

64 oldDeltas = callDeltas(atmIV , s0, tempc$strike , mat)

65

66 # Discard Deltas less than <0.01

67 idx = which(oldDeltas < 0.01)

68 if(length(idx) != 0){

69 oldIVs = oldIVs[-idx]

70 oldDeltas = oldDeltas[-idx]

71 }

72
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73 # Interpolate implied volatility wrt deltas

74 # using a smoothing spline with smoothing 0.99

75 l = sreg(y = oldIVs , x = oldDeltas , lambda = 0.99)

76

77 # Find delta wich gives the ATM strike and create new Deltas

78 deltaATM = uniroot(

79 function(x) inverseDeltas(atmIV , s0, x, mat) - s0, c(0,1)

80 )$root

81 newDeltas = seq(0.01 , deltaATM , length.out = 500)

82

83 # Predict new implied volatilites

84 newIVs = predict(l, newDeltas)

85

86 # Extrapolate linearly outside known deltas

87 # get the exact previous

88 idxmin = which.min(abs(newDeltas - min(oldDeltas)))

89 if(newDeltas[idxmin] > min(oldDeltas)) idxmin = idxmin - 1

90

91 # get the exact next

92 idxmax = which.min(abs(newDeltas - max(oldDeltas)))

93 if(newDeltas[idxmax] < max(oldDeltas) ) idxmax = idxmax +1

94

95 # Extrapolate linearly if needed

96 if(idxmin > 0) newIVs [1: idxmin] = newIVs[idxmin + 1]

97 if(idxmax <= length(newIVs)) newIVs[idxmax:length(newIVs)] =

newIVs[idxmax - 1]

98

99 # Get new strikes and prices

100 newStrikes = inverseDeltas(atmIV , s0, newDeltas , mat)

101 newPrices = ebs.vec(newIVs , newStrikes , s0, mat , ’C’)

102

103 # plot?

104 if(plot == T){

105 plot.integral(oldDeltas , oldIVs , newDeltas , newIVs , h.c$

strike ,

106 h.c$price , newStrikes , newPrices , s0, ’C’,

dates[i])

107 readline(prompt = "Pause. Press <Enter > to continue to puts

...")

108 }

109

110 # Add term

111 hvals[i] = hvals[i] + trapz(newStrikes , newPrices*omega(

newStrikes , s0))

112

113 #

##############################################################

114 # Section 2: Fur Puts
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115 # Subset to puts

116 h.p = subset(h, type == ’P’)

117

118 # Create deltas

119 atmIV = h.p$implVol[which.min(abs(h.p$strike - s0))]

120

121

122 # Throw ITM and get implied volatilities

123 tempp = subset(h.p, strike <= s0)

124 oldIVs = iv(tempp)

125 oldDeltas = callDeltas(atmIV , s0, tempp$strike , mat)

126

127 # Discard Deltas > 0.99 or less than <0.01

128 idx = which(oldDeltas > 0.99)

129 if(length(idx) != 0){

130 oldIVs = oldIVs[-idx]

131 oldDeltas = oldDeltas[-idx]

132 }

133

134 # Interpolate implied volatility wrt deltas

135 # using a smoothing spline with smoothing 0.99

136 l = sreg(y = oldIVs , x = oldDeltas , lambda = 0.99)

137

138 # Find delta wich gives the ATM strike

139 deltaATM = uniroot(

140 function(x) inverseDeltas(atmIV , s0, x, mat) - s0, c(0,1)

141 )$root

142 newDeltas = seq(deltaATM , 0.99, length.out = 500)

143

144 # Predict new implied volatilites

145 newIVs = predict(l, newDeltas)

146

147 # Extrapolate linearly outside known deltas

148 # get the exact previous

149 idxmin = which.min(abs(newDeltas - min(oldDeltas)))

150 if(newDeltas[idxmin] > min(oldDeltas)) idxmin = idxmin - 1

151

152 # get the exact next

153 idxmax = which.min(abs(newDeltas - max(oldDeltas)))

154 if(newDeltas[idxmax] < max(oldDeltas) ) idxmax = idxmax +1

155

156 # Extrapolate linearly if needed

157 if(idxmin > 0) newIVs [1: idxmin] = newIVs[idxmin + 1]

158 if(idxmax <= length(newIVs)) newIVs[idxmax:length(newIVs)] =

newIVs[idxmax - 1]

159

160 newStrikes = inverseDeltas(atmIV , s0, newDeltas , mat)

161 newPrices = ebs.vec(newIVs , newStrikes , s0, mat , ’P’)

162
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163 # plot?

164 if(plot == T){

165 plot.integral(oldDeltas , oldIVs , newDeltas , newIVs , h.p$

strike ,

166 h.p$price , newStrikes , newPrices , s0, ’P’,

dates[i])

167 readline(prompt = "Pause. Press <Enter > to continue to next

date ...")

168 }

169

170 # Add term to integral

171 hvals[i] = hvals[i] + trapz(newStrikes , newPrices*omega(

newStrikes , s0))

172 }

173 return(hvals)

174 }

175

176

177 # Example

178 # ex = subset(read.csv(" cleanData.csv"), expiration %in% 16:23)

179 # calcIntegral(ex, plot = T)

Script A.7: Calculating the integrals.

1 require(pracma)

2 source("functionsDF.R")

3 #################################################################

4 # Function calcIntegral takes a data frame containing obs for

5 # a single observation and calculates the integral as it is

6 # explained in the text. It uses plot.integral for plotting the

7 # fitting and the area to be integrated. Function omega is used

8 # to calculate omega.

9

10 calcIntegral <- function(data , plot = F, step = 0.001){

11 dates = unique(data$date)

12 hvals = numeric(length(dates))

13

14 # plot parameters

15 if(plot == T) par(mfrow = c(1,2))

16

17 # For -loop to compute integral for each date

18 for(i in 1: length(dates)){

19 # For each date subset to date

20 curdate = dates[i] # current date

21 h = subset(data , date == curdate)

22 s0 = h$underlying [1]

23 mat = h$expiration [1]

24

25 # calculate first term of integral
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26 bond = h$discount [1]

27

28 #

##############################################################

29 # Section 2: For Calls

30

31 h.c = subset(h, type == ’C’)

32

33 # # Keep only the last ITM observation

34 # idx = which(h.c$strike > s0)[1] - 1

35 # if(!is.na(idx) & idx >= 0) h.c = h.c[idx:nrow(h.c), ]

36

37 x = h.c$strike/s0

38 y = log(h.c$price)

39

40 if(plot == T)

41 plot(x, y, xlab = "moneyness", ylab = "log(price)",

42 main = paste("Interpolation - ", curdate , sep = ""))

43

44 # Calculate vega weights

45 ivs = iv.vec(h.c$price , h.c$strike , s0 , mat , ’C’, h.c$implVol

)

46 vs = vega(ivs , h.c$strike , s0 , mat)

47 # For ITM use the weights of far -OTM

48

49 l = lm(y ~ poly(x, 2, raw = T), weights = vs)

50 strikes.c = seq(1, round (1.02*max(x), 2), step)

51 prices.c = as.numeric(predict(l, data.frame(x = strikes.c)))

52

53 if(plot == T) lines(strikes.c, prices.c)

54

55 strikes.c = strikes.c*s0

56 prices.c = exp(prices.c)

57

58 if(plot == T){

59 plot(strikes.c, prices.c,

60 main = paste(’Calls’, " for ", curdate , sep = ""),

61 xlim = range(c(strikes.c, h.c$strike)),

62 ylim = range(c(prices.c, h.c$price)),

63 type = ’l’, xlab = "strike", ylab = "price")

64 points(h.c$strike , h.c$price , pch = 20)

65 abline(v = s0, lty = 2)

66 readline(prompt = "Press <Enter > to proceed to puts.")

67 }

68

69 #

##############################################################
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70 # Section 2: Fur Puts

71 h.p = subset(h, type == ’P’)

72

73 # # Keep only the last ITM observation

74 # idx = tail(which(h.p$strike < s0), 1) + 1

75 # if(!is.na(idx) & nrow(h.p) >= idx) h.p = h.p[1:idx , ]

76

77 x = h.p$strike/s0

78 y = log(h.p$price)

79

80 if(plot == T)

81 plot(x, y, xlab = "moneyness", ylab = "log(price)",

82 main = paste("Interpolation - ", curdate , sep = ""))

83

84 # Calculate vega weights

85 ivs = iv.vec(h.p$price , h.p$strike , s0 , mat , ’P’, h.p$implVol

)

86 vs = vega(ivs , h.p$strike , s0 , mat)

87

88 l = lm(y ~ poly(x, 2), weights = vs)

89 strikes.p = seq(round (0.96*min(x), 2), 1, step)

90 prices.p = predict(l, data.frame(x = strikes.p))

91

92 if(plot == T) lines(strikes.p, prices.p)

93

94 strikes.p = strikes.p*s0

95 prices.p = exp(prices.p)

96

97 if(plot == T){

98 plot(strikes.p, prices.p,

99 main = paste(’Puts’, " for ", curdate , sep = ""),

100 xlim = range(c(strikes.p, h.p$strike)),

101 ylim = range(c(prices.p, h.p$price)),

102 type = ’l’, xlab = "strike", ylab = "price")

103 points(h.p$strike , h.p$price , pch = 20)

104 abline(v = s0, lty = 2)

105 readline(prompt = "Press <Enter > to proceed to next day.")

106 }

107

108 #

##############################################################

109 # Compute the integral

110

111 hvals[i] = bond +

112 trapz(strikes.c, prices.c*omega(strikes.c, s0)) +

113 trapz(strikes.p, prices.p*omega(strikes.p, s0))

114 }

115
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116 # plot defaults

117 par(mfrow = c(1,1))

118 return(hvals)

119 }

120

121 # # Example

122 # ex = subset(read.csv(" cleanData.csv"), expiration %in% 16:23)

123 # calcIntegral(ex, plot = T, step = 0.01)

Script A.8: Calculating the forward variances.

1 source("interpolatingMaturities.R") # Load functions

2 source("integration.R")

3

4 nobsPerDateAndType <- function(data){

5 # This function counts the observations per type and price for

6 # a data frame containing observations for a singular expiration.

7

8 l2 =

9 lapply(split(data , list(data$type , data$date)), function(x){

10 return(nrow(x))

11 })

12

13 cn = matrix(unlist(strsplit(names(l2), "[.]")), ncol = 2,

14 byrow = T)

15 cn = as.data.frame(cn)

16 colnames(cn) = c(’type’, ’date’)

17 cn$date = as.Date(cn$date)

18 cn$nobs = as.numeric(l2)

19

20

21 return(cn)

22 }

23

24 #################################################################

25 # Load clean data and create the data frame for the series

26

27 data = read.csv(file= "cleanData.csv") # Load 17421 obs

28 data$date = as.Date(data$date) # Dates

29 hts = data.frame(unique(data$date))

30 colnames(hts) = "date"

31

32

33

34 #################################################################

35 # Create series

36

37 ###############################################################

38 # First maturity , days in [16 ,23]
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39 h1 = subset(data , expiration %in% 16:23)

40

41 # No dates are missing and each date has at least 4 observations

42 numobs = nobsPerDateAndType(h1)

43 summary(numobs)

44 dts2 = numobs[numobs$nobs < 4, ]$date

45 dts2

46

47 hts$H1 = calcIntegral(h1)

48

49 ###############################################################

50 # Second maturity , days in [44 ,53]

51 # missing for "1999 -06 -30"

52 h2 = subset(data , expiration %in% 44:53)

53

54 # Interpolate for missing value

55 temp = newMaturity(subset(data , date == "1999 -06 -30"), 49)

56

57 # bind new observations with2 old and sort

58 h2 = rbind(h2 , temp)

59 h2 = h2[order(h2$date , h2$type , h2$expiration , h2$strike), ]

60

61 #Every date h2as at least 4 obsrevations

62 numobs = nobsPerDateAndType(h2)

63 summary(numobs)

64

65 # Calculate Integral

66 hts$H2 = calcIntegral(h2)

67

68 ###############################################################

69 # Third maturity , days in [75 ,86]

70 # No missing dates

71 h3 = subset(data , expiration %in% 75:86)

72

73 # There are dates with less than 4 obs for calls or puts

74 numobs = nobsPerDateAndType(h3)

75 summary(numobs)

76 missing = numobs[numobs$nobs < 4, ]

77

78 # Interpolate maturities for those

79 for(i in 1:nrow(missing)){

80 # subset data to the date and the type of the missing

observations

81 temp = subset(data , date == missing[i, ]$date & type == missing

[i, ]$type)

82

83 # Throw and backup known strikes

84 oldStrikes = subset(temp , expiration %in% 75:86)

85 temp = subset(temp , !(expiration %in% 75:86) & !(strike %in%
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oldStrikes$strike))

86

87 # Create new obs for remaining strikes for the

88 # expiration of the known observations

89 temp = newMaturity(temp , oldStrikes$expiration [1])

90 temp = rbind(temp , oldStrikes)

91 temp = temp[order(temp$strike), ]

92

93 # Recheck arbitrage

94 if(temp$type [1] == ’C’){ temp = checkPrices.calls(temp)

95 }else temp = checkPrices.puts(temp)

96

97 # Bind new strikes with with initial dataframe

98 h3 = rbind(h3 , subset(temp , !(strike %in% oldStrikes$strike)))

99 }

100 # sort

101 h3 = h3[order(h3$date , h3$type , h3$expiration , h3$strike), ]

102

103 # Now there are at least 4 maturities for each day and type

104 numobs = nobsPerDateAndType(h3)

105 summary(numobs)

106

107 hts$H3 = calcIntegral(h3)

108

109 ###############################################################

110 # Forth maturity , days in [107 ,114]

111 h4 = subset(data , expiration %in% 107:114)

112

113 # Find missing

114 notidx = which(!(hts$date %in% unique(h4$date)))

115 dts = hts$date[notidx]

116 length(dts)#=> missing 73 days

117

118 # Fill for missing with progress bar

119 pb <- txtProgressBar(min = 0, max = length(dts), style = 3)

120 for(i in 1: length(dts)){

121 temp = newMaturity(subset(data , date == dts[i]), 109)

122 h4 = rbind(h4, temp)

123 setTxtProgressBar(pb, i)

124 }

125 # sort

126 h4 = h4[order(h4$date , h4$type , h4$expiration , h4$strike), ]

127

128 # There are dates and types with less than 4 obs

129 numobs = nobsPerDateAndType(h4)

130 summary(numobs)

131 missing = numobs[numobs$nobs < 4, ]

132

133 # there were obs that had less than 4 obs and they were
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134 # created by interpolating volatilities:

135 missing$date %in% dts

136 #=> 2000 -06 -30.P-3obs , 2000 -07 -31.P-3obs ,

137 #=> 2000 -09 -29.C-3obs , 2000 -12 -29.C-2obs

138 missing = subset(missing , !(date %in% dts))

139

140 for(i in 1:nrow(missing)){

141 # subset data to the date and the type of the missing

observations

142 temp = subset(data , date == missing[i, ]$date & type == missing

[i, ]$type)

143

144 # Throw and backup known strikes

145 oldStrikes = subset(temp , expiration %in% 107:114)

146 temp = subset(temp , !(expiration %in% 107:114) & !(strike %in%

oldStrikes$strike))

147

148 # Create new obs for remaining strikes for the

149 # expiration of the known observations

150 temp = newMaturity(temp , oldStrikes$expiration [1])

151 temp = rbind(temp , oldStrikes)

152 temp = temp[order(temp$strike), ]

153

154 # Recheck arbitrage

155 if(temp$type [1] == ’C’){ temp = checkPrices.calls(temp)

156 }else temp = checkPrices.puts(temp)

157

158 # Bindwith initial dataframe

159 h4 = rbind(h4 , subset(temp , !(strike %in% oldStrikes$strike)))

160 }

161 # sort

162 h4 = h4[order(h4$date , h4$type , h4$expiration , h4$strike), ]

163 # Calculate integral

164 hts$H4 = calcIntegral(h4)

165

166 #################################################################

167 # Export

168 # write.csv(hts , file = "Hseries.csv", row.names = F)

169

170 #################################################################

171 # Load and plot time -series

172

173 # data = read.csv(file = "Hseries.csv")

174 # data$date = as.Date(data$date)

175 data = hts

176 rm(list=setdiff(ls(), "data"))

177

178 # Create forward variances

179 fvs = data.frame(data$date)
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180 colnames(fvs) = "date"

181 fvs$y = -log(data$H1)

182 fvs$f2 = log(data$H1) - log(data$H2)

183 fvs$f3 = log(data$H2) - log(data$H3)

184 fvs$f4 = log(data$H3) - log(data$H4)

185

186

187

188 #plot

189 ylabs =

190 c(expression(paste("Monthly forward variance ", ~~y[t]^{~(1)})),

191 expression(paste("Monthly forward variance ", ~~f[t]^{~(2)})),

192 expression(paste("Monthly forward variance ", ~~f[t]^{~(3)})),

193 expression(paste("Monthly forward variance ", ~~f[t]^{~(4)})))

194

195 # plot pars

196 oldmar = par()$mar

197 par(mfrow = c(2, 2), mar = c(2.1, 5.1, 2.1, 2.1))

198

199 for(i in 1:4){

200 plot(fvs$date , fvs[, i+1], type = ’l’, ylim = c(0, 0.02),

201 xlab = "", ylab = ylabs[i], xaxt="n")

202 axis.Date(1, x = fvs$date , format="%m/%y")

203 }

204 par(mfrow = c(1,1), mar = oldmar)

Script A.9: Forward Variances’ time series analysis

1 #################################################################

2 # Function new Maturity takes a data frame of observations for a

3

4 # Create the time series object

5 fvs = read.csv("forVars.csv", stringsAsFactors = F)

6 fvs$date = as.Date(fvs$date)

7 fvs.ts = ts(fvs[, 2:5], start = c(1998 , 9), end = c(2008 , 9),

8 frequency = 12)

9

10 # Get some statistics

11 library(stargazer);

12 summary(fvs.ts)

13 summary(fvs.ts*100)

14 stargazer(fvs[, 2:5]*100, out.header = FALSE , digits = 4,

15 title = "Some basic statistics about the forward

16 variances produced in Chapter 2. The sample period is

17 09/1988 to 09/2008 (121 observations) and values are

18 percentages.",

19 font.size = "footnotesize",iqr = T, nobs = F,

20 label = "tab:forVarBasic",

21 table.placement = "!ht")
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22

23 # cross -correaltions table

24 cor(fvs.ts)

25

26 # Autocorrelations

27 titles =

28 c(expression(paste("Monthly forward variance ", ~~y[t]^{~(1)})),

29 expression(paste("Monthly forward variance ", ~~f[t]^{~(2)})),

30 expression(paste("Monthly forward variance ", ~~f[t]^{~(3)})),

31 expression(paste("Monthly forward variance ", ~~f[t]^{~(4)}))

32 )

33

34 # ACFs for means

35 par(mfrow = c(2, 2))

36 y.acf = acf(fvs.ts[, 1], main = titles [1])

37 f1.acf = acf(fvs.ts[, 2], main = titles [2])

38 f2.acf = acf(fvs.ts[, 3], main = titles [3])

39 f3.acf = acf(fvs.ts[, 4], main = titles [4])

40 par(mfrow = c(1, 1))

41

42 # ACFs for vars

43 par(mfrow = c(2, 2))

44 acf((fvs.ts[, 1] - mean(fvs.ts[, 1]))^2, main = titles [1],

45 ylab = "ACF -- var")

46 acf((fvs.ts[, 2] - mean(fvs.ts[, 2]))^2, main = titles [2],

47 ylab = "ACF -- var")

48 acf((fvs.ts[, 3] - mean(fvs.ts[, 3]))^2, main = titles [3],

49 ylab = "ACF -- var")

50 acf((fvs.ts[, 4] - mean(fvs.ts[, 4]))^2, main = titles [4],

51 ylab = "ACF -- var")

52 par(mfrow = c(1, 1))

53

54 acf.matrix = data.frame(cbind(y.acf$acf[2:7] , f1.acf$acf[2:7] ,

55 f2.acf$acf [2:7], f3.acf$acf [2:7]))

56 for(i in 1:6) row.names(acf.matrix)[i] = paste("ACF(", i, ")",

57 sep = "")

58 names(acf.matrix) = names(fvs [2:5])

59 acf.matrix

60

61

62 # Unit root test

63 # Truncation lag parameter = 4

64 lapply(fvs.ts , PP.test)

65 fvs.ts.pptest = data.frame(cbind(

66 sapply(fvs.ts , function(x){

67 temp = PP.test(x)

68 return(c(temp$statistic , temp$p.value))

69 })))

70 names(fvs.ts.pptest) = names(fvs [2:5])
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71 row.names(fvs.ts.pptest) = c("Dickey -Fuller", "p-vlaue")

72 fvs.ts.pptest

73

74 # Fit an ARMA(1, 1) - GARCH(1, 1) model to each series

75 # change parchOrder and armaOrder in rugarch for different

76 # ARMA(p,q)-GARCH(p,q) models

77 require(rugarch)

78 fvs.model =

79 ugarchspec(variance.model =

80 list(model = ’sGARCH ’, garchOrder = c(1, 1)),

81 mean.model =

82 list(armaOrder = c(1, 1), include.mean = F),

83 distribution.model = "norm")

84

85 # Rugarch return many parameters ..

86 # to understund -- str(y.argagrach)

87 y.armagrach = ugarchfit(spec = fvs.model , data = fvs.ts[, 1])

88 f2.armagrach = ugarchfit(spec = fvs.model , data = fvs.ts[, 2])

89 f3.armagrach = ugarchfit(spec = fvs.model , data = fvs.ts[, 3])

90 f4.armagrach = ugarchfit(spec = fvs.model , data = fvs.ts[, 4])

91

92 # Information criteria

93 cbind(infocriteria(y.armagrach), infocriteria(f2.armagrach),

94 infocriteria(f3.armagrach), infocriteria(f4.armagrach))

95

96 # Create latex table

97 require(Hmisc)

98 # cross -correlations

99 latex(cor(fvs.ts), file = "", digits = 3, ctable = T,

100 caption = "", size = "small")

101 # autocorrelations

102 latex(acf.matrix , file = "", digits = 3, ctable = T, caption = ""

)

103 # phillips -perron test

104 latex(fvs.ts.pptest , file ="", digits = 3, ctable = T)

105 # model parameters

106 ag.pars = cbind(coef(y.armagrach), coef(f2.armagrach),

107 coef(f3.armagrach), coef(f4.armagrach))

108 colnames(ag.pars) = names(fvs [2:5])

109 latex(ag.pars , file = "", dec = 3, ctable = T)

110 # AR standard error coefficients

111 latex(t(c(y.armagrach@fit$se.coef[1],

112 f2.armagrach@fit$se.coef[2], f3.armagrach@fit$se.coef[3],

113 f4.armagrach@fit$se.coef [4])), dec = 3, ctable = T, file = "")

114

115 #################################################################

116 # Plots

117 require(ggplot2)

118 require(reshape2) # for melt
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119 library(scales) # for data breaks

120 meltfvs = fvs

121 meltfvs$y = (1+ fvs$y)^(30/19) - 1

122 meltfvs1 = melt(meltfvs , id = "date")

123 meltfvs[, 2:5] =

124 sapply(meltfvs[, 2:5],

125 function(x) cumsum(x)/cumsum(rep(1, length(x))))

126 meltfvs = melt(meltfvs , id = "date")

127

128 ggplot(meltfvs1 , aes(x = date , y = value , color = variable , group

= variable)) +

129 geom_line() + scale_x_date(labels = date_format("%m/%y"),

breaks = date_breaks("year")) + xlab("") +

130 theme_classic () + scale_colour_grey(start = 0, end = .9) + ylab

("")

131

132

133 ggplot(meltfvs , aes(x = date , y = value ,

134 color = variable , group = variable)) +

135 geom_line() +

136 scale_x_date(labels = date_format("%m/%y"),

137 breaks = date_breaks("year")) + xlab("") +

138 theme_classic () + scale_colour_grey(start = 0, end = .9) +

139 ylab("sample mean until date") +

140 ylim(c(0.006 , 0.015))

Script A.10: Predicting real economic activity

1 # Create the time series object

2 fvs = read.csv("forVars.csv", stringsAsFactors = F)

3 fvs$date = as.Date(fvs$date)

4

5 # nonfarm: Non -farm payroll

6 nonfarm = read.csv(file = "nonfarm.txt", header = T, skip = 9)

7 nonfarm = nonfarm[, 2:4]

8 names(nonfarm) = c("date", "month", "nf")

9 # keep relevant months

10 nonfarm = nonfarm [9:130 , ]

11 nonfarmGrowth =

12 diff(nonfarm[, 3], lag = 1)/nonfarm [1:( nrow(nonfarm) - 1), 3]

13 rm(nonfarm)

14

15 # IP: industrial production

16 ip = read.csv("FRB_G17.csv", header = T)

17 ipGrowth = diff(ip[, 2], lag = 1)/ip[1:( nrow(ip) - 1), 2]

18 rm(ip)

19

20 yield = read.csv("FRB_H15.csv", header = T, na.strings = "ND")

21 names(yield) = c("date", "threeMonth", "tenYear")
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22 yield$date = as.Date(yield$date , format = "%m/%d/%Y")

23

24 # subset to last day for each month

25 yield.last = tail(yield , 1) # 31/10/2008

26 yield = subset(yield , date %in% unique(fvs$date))

27 yield = rbind(yield , yield.last)

28 rm(yield.last)

29

30 # Yield slope as 10year - 3month

31 yieldSlope = (yield$tenYear - yield$threeMonth)/100

32 rm(yield)

33

34 require(sandwich)

35 require(lmtest)

36 require(Hmisc)

37 reg.Data = cbind(fvs[, 2:5], ipGrowth , yieldSlope , nonfarmGrowth)

38 rm(fvs , ipGrowth , nonfarmGrowth , yieldSlope)

39 # Newey -West regression for IP with yield

40 summary(fitIP <- lm(ipGrowth ~ y + f2 + f3 + f4 + yieldSlope ,

41 data = reg.Data))

42 ip.cf = coeftest(fitIP , df = Inf ,

43 vcov = NeweyWest(fitIP , prewhite = F))

44

45 floor(bwNeweyWest(fitIP , kernel = "Bartlett", prewhite = F))

46 #=> 6

47 dwtest(fitIP)

48

49 # latex

50 temp = rbind(coef(fitIP), ip.cf[, 4]) # coefs and pvals

51 temp = cbind(temp , c(summary(fitIP)$adj.r.squared ,

52 dwtest(fitIP)$p.value)) # add R^2 and DW

53 latex(temp , file ="", dec = 3, ctable = T)

54 # usual pvals

55 latex(t(summary(fitIP)$coefficients[, 4]), dec = 3, ctable = T,

file = "")

56

57 # Repete the above for for IP without yield

58 summary(fitIP <- lm(ipGrowth ~ y + f2 + f3 + f4 ,

59 data = reg.Data))

60

61 # For nonfarm with yield

62 summary(fitIP <- lm(nonfarmGrowth ~ y + f2 + f3 + f4 + yieldSlope

,

63 data = reg.Data))

64

65 # For nonfarm without yield

66 summary(fitIP <- lm(nonfarmGrowth ~ y + f2 + f3 + f4 ,

67 data = reg.Data))

68
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69 # Diagnostic Plots for LM

70 par(mfrow = c(1,2))

71 plot(fitIP$fitted.values , rstandard(fitIP),

72 ylab = "Standardized Residual", ylim = c(-3, 3),

73 xlab = "Fitted Values",

74 main = "Homoscedasticity", pch = 19)

75 # Autocorrelation of residuals

76 n = length(residuals(fitIP))

77 plot(residuals(fitIP)[1:(n-1)], residuals(fitIP)[2:n],

78 xlab = "RES - 1", ylab = "RES",

79 main = "Scatterplot of Residuals vs Residuals")

80 par(mfrow = c(1,1))
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