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ABSTRACT 

 

In April 2013, IACS first introduced the Draft Harmonized Rules for Tankers 

and Bulk Carriers, where it is also mentioned the study of the residual 

strength of a ship’s hull after collision or grounding, including the proposed 

dimensions of a representative damage. In this thesis, the main part deals 

with this issue of ship’s residual strength in case of collision. In Draft 

Harmonized Rules either the iterative-incremental method or the finite 

element method is proposed for the assessment of the ultimate bending 

capacity of a transverse cross-section. 

In this work, we considered the sagging condition as the most severe in a 

ship’s lifetime. The reason is that, in general, the part of a ship above neutral 

axis is less stiff than the part beneath the neutral axis as the double bottom 

provides increased strength and thus it faces greater risks to collapse. 

Moreover, the deck of a ship is usually more remote from the neutral axis than 

the bottom. Therefore, the normal stresses which are developed at deck 

plating and stiffeners are larger and can lead to buckling collapse of the 

structure. 

We used the Finite Element Commercial package (ABAQUS Version 6.13-4) 

for our calculations. The models were simulated by applying explicit algorithm 

as deformations and rotations were quite large. In such cases, a static 

algorithm cannot be applied because the nonlinear response of the structure 

is too complicated and convergence is difficult to be achieved. 

The second issue of interest in this thesis is to compare the numerical results 

to the results taken by the implementation of the incremental-iterative method.
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1. INTRODUCTION 

 

When we use the term “Ultimate Strength” we consider the limit state of a 

structure where static equilibrium does not exist anymore. An increase of the 

loading after that point is impossible when static behavior of the structure is 

considered. Ultimate strength is determined by buckling and yielding of a 

structural element, when compressive stresses are applied, and by yielding 

when tensile stresses are applied.  

 

Nowadays, it is common that structures are designed so that will not collapse 

due to buckling or yielding. However, until 1850 the design criterion of 

structures was the stress of breakage. This was partially happened, because 

the main material of ship building was the hammered iron which is not so 

ductile when tensile forces are applied. Another reason is that buckling and its 

side effects were not considered as a failure criterion until Fairbaim’s tests 

(ISSC 2006) [17] in 1845 (Timoshenko, 1953) [18]. Afterwards, there was 

Bryan [1]] who tried to understand theoretically and calculate the buckling of 

plates and used the resistance against buckling as a criterion in order to 

determine the thickness of plates. 

 

The first attempt for evaluating the ultimate strength of a ship was done by 

Caldwell [2]. Buckling was taken into account by reducing yield stress (ISSC 

2006, Committee III.I. Ultimate Strength, 5). 

 

In 1956 the first paper which referred to the Finite Element Method was 

published by Turner et al [3]. At first, this method was used for the analysis of 

the elastic response of structural members and systems, but it took more than 

two decades for the commercial software, which carried out complete analysis 

up to collapsed state, to be used widely. 

 

Recent research on the issue of Ultimate strength has been made by several 

researchers. A grounding damage index was introduced by Paik et al. [4] 

which represented the loss of material of the inner and outer bottom plating 

with stiffeners. The procedures followed for the determination of the residual 

strength are a) The Paik-Mansour formula by Paik et al [5]. , b) The 

incremental-iterative method described in CSR documents, c) A finite element 

approach using ANSYS and finally d) The ALPS/HULL [6]  super-size finite 

element method. However, the above methods did not deal with the rotation 

of the neutral axis when an asymmetrical cross section is studied. 

Villavicencio et al. [7] also proposed a method, similar to what we have done 

in this work, where rotation was induced at a double bottom structure, 

connected to two rigid bodies aft and fore. The rest structure above double 

bottom was simplified in long plate elements with equivalent thicknesses. 

Notaro et al. [8] also investigated the residual strength of several ships, using 
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the commercial software ABAQUS in both sagging and hogging conditions. 

They also investigated the influence of several modeling aspects on the 

results such as the length of the model and the effect of initial imperfections. 

Finally, Koukounas et al. [9], Pollalis et al. [10] and Samuelides et al. [11] 

investigated the effect of several modeling parameters of the finite element 

method when dealing with the issue of Ultimate strength of intact and 

damaged hulls. 

 

The present thesis consists of a continuation of this work with more details 

and also includes comparative results after using the incremental-iterative 

method. Through the implementation of numerical but also analytical 

methods, it is provided a methodology for estimating the residual strength of a 

ship after collision which can be useful in case of a real case scenario.  

 

Apart from Chapter II which contains theoretical aspects, this thesis contains 

three more Chapters. In Chapter III results from the application of the Finite 

Element Method in two different ship sections can be seen and Chapter IV 

contains the results of the incremental-iterative method. Finally, in Chapter V 

the reader can see the final conclusions of my research. 
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2. BACKGROUND 

 

2.1 Explicit dynamic analysis 

 

General 

 

As we used only the explicit code for our simulations it is considered rational 

that we should present some basic attributes about its procedure of solving 

numerically problems using the Finite Element Method. 

 

As it is mentioned in ABAQUS Tutorial [12] an explicit dynamic analysis: 

 

 is computationally efficient for the analysis of large models with relatively 

short dynamic response times and for the analysis of extremely 

discontinuous events or processes; 

 uses a consistent, large-deformation theory—models can undergo large 

rotations and large deformation; 

 can use a geometrically linear deformation theory—strains and rotations 

are assumed to be small 

 can be used to perform quasi-static analyses with complicated contact 

conditions; and 

 allows for either automatic or fixed time incrementation to be used 

 

The explicit dynamics procedure performs a large number of small time 

increments efficiently. An explicit central-difference time integration rule is 

used; each increment is relatively inexpensive because there is no solution for 

a set of simultaneous equations.in contrary to the dynamic implicit analysis 

where the integration operator matrix must be inverted and a set of nonlinear 

equilibrium equations must be solved at each time increment. 

The explicit central-difference operator satisfies the dynamic equilibrium 

equations at the beginning of the increment, t; the accelerations calculated at 

time t are used to advance the velocity solution to time t+Δt/2 and the 

displacement solution to time t+Δt. [12] 

 

The explicit dynamics analysis procedure is based upon the implementation of 

an explicit integration rule together with the use of diagonal (“lumped”) 

element mass matrices. The equations of motion for the body are integrated 

using the explicit central-difference integration rule  

 

�̇�
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2
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2
)
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where 𝑢𝑁  is a degree of freedom (a displacement or rotation component) and 

the subscript i refers to the increment number in an explicit dynamics step. 

The central-difference integration operator is explicit in the sense that the 

kinematic state is advanced using known values of and from the previous 

increment. 

The explicit integration rule is quite simple but by itself does not provide the 

computational efficiency associated with the explicit dynamics procedure. The 

key to the computational efficiency of the explicit procedure is the use of 

diagonal element mass matrices because the accelerations at the beginning 

of the increment are computed by 

 

�̈�(𝑖)
𝑁 = (𝑀𝑁𝐽)−1(𝑃(𝑖)

𝐽 − 𝐼(𝑖)
𝐽 ) 

 

where MNJ is the mass matrix, PJ is the applied load vector, and IJ is the 

internal force vector. A lumped mass matrix is used because its inverse is 

simple to compute and because the vector multiplication of the mass inverse 

by the inertial force requires only n operations, where n is the number of 

degrees of freedom in the model. The explicit procedure requires no iterations 

and no tangent stiffness matrix. 

 

The internal force vector, IJ is assembled from contributions from the 

individual elements such that a global stiffness matrix need not be formed. [1] 

 

As it concerns the stability of the explicit procedure, the central difference 

operator is conditionally stable, and the stability limit for the operator (with no 

damping) is given in terms of the highest frequency of the system as 

 

𝛥𝑡 ≤
2

𝜔𝑚𝑎𝑥
 

 

The time increment used in an analysis must be smaller than the stability limit 

of the central-difference operator. Failure to use a small enough time 

increment will result in an unstable solution. When the solution becomes 

unstable, the time history response of solution variables such as 

displacements will usually oscillate with increasing amplitudes. The total 

energy balance will also change significantly. 

If the model contains only one material type, the initial time increment is 

directly proportional to the size of the smallest element in the mesh. If the 

mesh contains uniform size elements but contains multiple material 

descriptions, the element with the highest wave speed will determine the initial 

time increment. In nonlinear problems—those with large deformations and/or 

nonlinear material response—the highest frequency of the model will 

continually change, which consequently changes the stability limit. [12] 
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Advantages of the explicit method 

 

The use of small increments (dictated by the stability limit) is advantageous 

because it allows the solution to proceed without iterations and without 

requiring tangent stiffness matrices to be formed. It also simplifies the 

treatment of contact. The explicit dynamics procedure is ideally suited for 

analyzing high-speed dynamic events, but many of the advantages of the 

explicit procedure also apply to the analysis of slower (quasi-static) 

processes. 

The results in an explicit dynamics analysis are not automatically checked for 

accuracy. In most cases this is not of concern because the stability condition 

imposes a small time increment such that the solution changes only slightly in 

any one time increment, which simplifies the incremental calculations. While 

the analysis may take an extremely large number of increments, each 

increment is relatively inexpensive, often resulting in an economical solution. 

The method is, therefore, computationally attractive for problems where the 

total dynamic response time that must be modeled is only a few orders of 

magnitude longer than the stability limit. [12] 

 

Computational cost 

 

The computer time involved in running a simulation using explicit time 

integration with a given mesh is proportional to the time period of the event. 

The time increment based on the element-by-element stability estimate can 

be rewritten (ignoring damping) in the form  

 

𝛥𝑡 ≤ min(𝐿𝑒√
𝜌

𝜆 + 2𝜇
) 

 

where the minimum is taken over all elements in the mesh, is a characteristic 

length associated with an element, ρ is the density of the material in the 

element, and λ and μ are the effective Lame’s constants for the material in the 

element. 

The time increment from the global stability estimate may be somewhat 

larger, but for this discussion we will assume that the above inequality always 

holds (when the inequality does not hold, the solution time will be somewhat 

faster). 
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The number of increments, n, required is n=T/Δt if Δt remains constant, where 

T is the time period of the event being simulated. (Even the element-by-

element approximation of Δt will not remain constant in general, since element 

distortion will change Le and nonlinear material response will change the 

effective Lame constants. But the assumption is sufficiently accurate for the 

purposes of this discussion.) Thus, 

 

𝑛 ≈ 𝑇𝑚𝑎𝑥(
1

𝐿𝑒
√
𝜆 + 2𝜇

𝜌
) 

In a two-dimensional analysis refining the mesh by a factor of two in each 

direction will increase the run time in the explicit procedure by a factor of 

eight—four times as many elements and half the original time increment size. 

Similarly, in a three-dimensional analysis refining the mesh by a factor of two 

in each direction will increase the run time by a factor of sixteen. 

In a quasi-static analysis it is expedient to reduce the computational cost by 

either speeding up the simulation or by scaling the mass. In either case the 

kinetic energy should be monitored to ensure that the ratio of kinetic energy to 

internal energy does not get too large—typically less than 10%. [12] 
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Reducing the computational cost 

 

To reduce the number of increments required, n, we can speed up the 

simulation compared to the time of the actual process—that is, we can 

artificially reduce the time period of the event, T. This will introduce two 

possible errors. If the simulation speed is increased too much, the increased 

inertia forces will change the predicted response (in an extreme case the 

problem will exhibit wave propagation response). The only way to avoid this 

error is to choose a speed-up that is not too large. 

The other error is that some aspects of the problem other than inertia forces—

for example, material behavior—may also be rate dependent. In this case the 

actual time period of the event being modeled cannot be changed. [12] 
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2.2  Nonlinearity 

 

General 

 

Geometrically nonlinear static problems sometimes involve buckling or 

collapse behavior, where the load-displacement response shows a negative 

stiffness and the structure must release strain energy to remain in equilibrium. 

Several approaches are possible for modeling such behavior. One is to treat 

the buckling response dynamically, thus actually modeling the response with 

inertia effects included as the structure snaps. 

In some simple cases displacement control can provide a solution, even when 

the conjugate load (the reaction force) is decreasing as the displacement 

increases. Another approach would be to use dashpots to stabilize the 

structure during a static analysis. 

Alternatively, static equilibrium states during the unstable phase of the 

response can be found by using the “modified Riks method.” This method is 

used for cases where the loading is proportional; that is, where the load 

magnitudes are governed by a single scalar parameter. The method can 

provide solutions even in cases of complex, unstable response such as that 

shown in Figure 1.  

 

 

 
Figure 1. Proportional loading with unstable response 
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The Riks method is also useful for solving ill-conditioned problems such as 

limit load problems or almost unstable problems that exhibit softening. [13] 

In our case, static analysis using Newton’s method as well as Riks method 

was conducted unsuccessfully due to the severe buckling which appeared at 

our models and led to unstable response. That is the reason that we solved 

the problems quasi-statically using dynamic explicit method. More information 

about the parameters of the analysis will be given in next chapters.   

 

Sources of nonlinearity 

 

There are three sources of nonlinearity in structural mechanics simulations: 

 

• Material nonlinearity. 

• Boundary nonlinearity. 

• Geometric nonlinearity. 

 

Material nonlinearity 

 

It is the most common source of nonlinearity. Most of the materials have a 

nonlinear response after a critical value of applied stress is reached, called 

yield stress. After that point, the relationship between stresses and strains 

becomes nonlinear as shown below. 

 

 

 
Figure 2. Stress-strain curve for an elastic-plastic material under uniaxial tension 
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Boundary nonlinearity 

 

This type of nonlinearity appears when there is a change of the boundary 

conditions during the analysis. This can be easily understood when we 

consider the cantilever beam of Figure 3. 

 

 

 
Figure 3. Cantilever beam hitting a stop 

 

 

The vertical deflection of the tip is linearly related to the load (if the deflection 

is small) until it contacts the stop. There is then a sudden change in the 

boundary condition at the tip of the beam, preventing any further vertical 

deflection, and so the response of the beam is no longer linear. 

 

Geometric nonlinearity 

 

This source of nonlinearity appears when we have changes of the geometry 

during the analysis. This may refer to: 

 

 Large deflections or rotations. 

 “Snap through.” 

 Initial stresses or load stiffening. 

 

Explanatory figures are given below. 

 

 

 
Figure 4. Large deflection of a cantilever beam 
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When the vertical deflections which are applied at the tip of the cantilever 

beam shown above become large, then the relationship between vertical 

loading versus vertical deflection changes to nonlinear as a portion of the total 

loading contributes for the vertical displacement of the cantilever beam.  

 

 

 

 

 

 
Figure 5. Snap-through of a large shallow panel 

 

 

This example indicates the dramatic change of the stiffness of the panel when 

it snaps through. At that moment the stiffness becomes negative. Even if the 

displacements are small there is a considerable geometric nonlinearity.  

 

From the sources of nonlinearity mentioned before, in our case only two of 

them appear; nonlinearities concerning the material properties and 

nonlinearities which are caused due to the large rotations applied at the ship’s 

cross section. 

 

2.3 Analytical methods for the evaluation of the ultimate strength of a 

ship-The incremental/iterative method 

 

Among the analytical methods which are used to evaluate the ultimate 

strength of a ship is the Smith’s method or the incremental/iterative method. In 

this case, the M-χ curve is derived by an incremental procedure which is 

summarized in Figure 6. 
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Figure 6. Flow chart displaying the incremental-iterative method 

In each step of this procedure, the vertical bending moment M is calculated, 

which acts on the transverse section of the ship as a result of the applied 

curvature χ. In each step, the value of the applied curvature χi results from the 

summation of the infinite value Δχ to the curvature of the previous step. This 

summation Δχ is derived from an increment of the angle of rotation of the 

section about the horizontal neutral axis. In addition, this summation provokes 

normal strains ε at every structural member of the section. The value of the 
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normal strain ε depends on the distance of the structural member from the 

neutral axis. In sagging condition, which is investigated in this document, the 

members lying above the neutral axis are under compression, while the 

members below the neutral axis are under tension. 

 

The normal stresses σ which are provoked by the normal strains, are 

calculated using the σ-ε relationship of the member. This relationship depends 

on the response of the structural member in the nonlinear, elasto-plastic 

region. The distribution of normal stresses along the depth of the structure 

determines changes of the position of the neutral axis in order to eliminate the 

axial forces which appear in each step of the procedure. When equilibrium of 

the forces is succeeded, the vertical bending moment acting on the section 

results from the contribution of each structural member.  

 

The basic steps of the procedure are the following: 

 

Step 1 The section is separated in stiffened structural members. 

 

Step 2 For each structural member we determine its σ-ε relationship. 

 

Step 3 The curvature as well as the position of the neutral axis is initialized 

for the beginning of the procedure using the following equation: 

 

𝜒1 = 𝛥𝜒 =
0.01

𝑅𝑒𝐻
𝐸

𝑍𝐷 − 𝑁
 

 

where ZD is the distance of the deck from the baseline of the ship. 

 

Step 4 For each structural member, the normal strain is calculated from the 

below relation:  

 

𝜀 = 𝜒(𝛧𝜄 − 𝛧𝛮.𝛢.) 

 

and then, its normal stress. 

 

Step 5 The position of the neutral axis is calculated by applying the 

equilibrium of forces at the whole section. 

 

∑𝛢𝜎𝑐𝑜𝑚𝑝 =∑𝛢𝜎𝑡𝑒𝑛𝑠 

 

 Step 6 The resulting moment is calculating by summing the contribution of 

each member. 
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𝑀𝑈 =∑𝜎𝛢|(𝛧𝑖 − 𝑍𝑁.𝐴.𝑐𝑢𝑟)| 

 

Step 7 The calculated moment is compared to the moment of the previous 

step. If the slope of the M-χ curve is smaller than a fixed negative value, then 

the procedure stops and the value of the moment MU is determined. 
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3. MODELING ASPECTS FOR THE ESTIMATION OF A SHIP’S RESIDUAL            

STRENGTH USING THE FEM 

 

3.1 Structure of the study 

 

The investigation of the effect of several modeling parameters including the 

mesh element size and type, the rate of loading application when dynamic 

explicit methods are applied and the material properties on the calculation of a 

ship’s residual strength using the FE Method was founded on several models. 

In this document we will present the process which has been followed at two 

Crude Oil Carriers of similar principal dimensions. The ships’ drawings are 

attached in the appendix. The results will also be compared with relevant 

published literature. Both intact and damaged conditions were studied. 

 

3.2 Ship modeling 

 

At first, we will present the principal particulars of the two ships. 

 

 

SHIP I 

DWT 119315 tons 

Loa 264.68 m 

Lbp 256.50 m 

Breadth 42.50   m 

Depth 22.00   m 

Draft 15.00   m 

Design Moment in sagging 7.732 GNm 
Table 1. Principal dimensions of the studied SHIP I 

 

SHIP II 

DWT 112700 tons 

Loa 250.17 m 

Lbp 239.00 m 

Breadth 44.00   m 

Depth 21.00   m 

Draft 14.60   m 

Design Moment in sagging 6.753 GNm 
Table 2. Principal dimensions of the studied SHIP II 

The design moment for both ships has been calculated using the Common 

Structural Rules for double hull Oil Tankers [19]. The minimum section 

modulus using the formula proposed by C.S.R. for each ship is: 

Zmin-SHIP I=29.3m3 and Zmin SHIP II=25.59m3 whereas the permissible bending 

stress for both ships is σperm=263.9 MPa because the material used for the 

simulations has a yield stress of σyield=355 MPa. 
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The models which were created are of one (SHIP I) and three bay-long (SHIP 

II). The length of each bay is equal to the length between two successive web 

frames, that is to say, 4.00 meters for SHIP I and 3.78 meters for SHIP II. 

 

It is considered that a model of such size can appropriately show reliable 

results compared to the Incremental-Iterative method providing stress and 

displacement distributions in larger extent. Figures 7, 8 show the studied ship 

models. 

 

 
Figure 7. One bay model-SHIP I 
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Figure 8. Three bay model-SHIP II 

Apart from the intact models, we also created models having a damage as 

defined by IACS Harmonized Rules. The dimensions of the damage are given 

in the following table. The longitudinal extent of the damage is not defined in 

CSR, so it is considered equal to the distance of two successive web frames.  

 

 

SHIP I 

Height of damage 0.60D  13.20 m (from the upper 
deck) 

Breadth of damage B/16  2.66 m (for double hull 
vessels)  

Length of damage (as considered by 
the author) 

4.00 m (distance between two 
successive web frames) 

Table 3. Dimensions of the damage for SHIP I 

 

SHIP II 

Height of damage 0.60D  12.60 m (from the upper 
deck) 

Breadth of damage B/16  2.75 m (for double hull 
vessels)  

Length of damage (as considered by 
the author) 

3.78 m (distance between two 
successive web frames) 

Table 4. Dimensions of the damage for SHIP II 
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Especially, for the case of SHIP II, there were studied two possible collision 

cases. For the first case the damage is considered between two successive 

web frames (symmetrical case), while for the second case a web frame was 

placed between the damage (nonsymmetrical case with respect to the mid-

ship section). Explanatory figures can be seen below.     

 

 
Figure 9. Model of the damaged SHIP I 

 
Figure 10. Model of the damaged SHIP II (scenario 1) 

 



 

23 
 

 
Figure 11. Model of the damaged SHIP II (scenario 2) 

 

As the simulation of SHIP I is less demanding, due to the size of the model 

and the number of its elements, we conducted an integrated research on the 

effect of several modeling parameters and then, we used the conclusions of 

this research for the simulation of SHIP II in both damage cases. Our goal is, 

first, to develop a reliable method for the assessment of a ship’s residual 

strength and, second, the investigation of the response of a ship when 

different collision scenarios are studied. 

 

The modeling process of SHIP I is cited below.  

 

Geometrical attributes 

 

The model was created taking into account the given drawings which are 

attached to the appendix of this document. The designed length is 4.00 

meters, that is to say the longitudinal span between two successive web 

frames. 

 

Material Properties 

 

The material properties used in our simulations refer to the properties of the 

high strength steel AH-36.  
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Young modulus (E)=2.07 GPa 

Poisson ratio (ν)=0.30 

 

Moreover, as it concerns the response of the material after first yielding, we 

applied the power law [14]: 

 

𝜎𝑒𝑞 = {
𝜎𝑦, 𝑖𝑓𝜀𝑒𝑞 ≤ 𝜀𝑝𝑙𝑎𝑡

𝐾(𝜀𝑒𝑞 + 𝜀0)
𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where,  

 

 εplat is not defined in our case 

 K= 750 

 n= 0.20 

 

 
Figure 12. Stress-Strain relationship after first yielding 

 

 

 

Element type 

 

The element type we used is defined as S4R using the conclusions made in 

[11] and [10]. These are general purpose, quadrilateral shell elements, 

appropriate for explicit analyses where large strains are considered. They are 

of reduced integration, meaning that such elements have only one integration 

point on their surface.  
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 Integration point in 

 a S4R element 

  

 

In addition, ABAQUS uses numerical integration to calculate the stresses and 

strains at each section point through the thickness of the element. Then, it 

uses linear interpolation to derive the final solution of the element. 

 

 

     Top surface 

 
Through thickness, 

    integration points 

 

Element size 

 

Models with several element size were created and the conclusions 

summarized in [11]. Using these conclusions, we made our selection about 

the principal dimension of the mesh element that is to say, quadrilateral, 

square elements of 100mm side length.  

 

Loading 

 

The models were loaded by applying rotation at their edges. This requires the 

use of coupling constraint. By coupling the extreme nodes of each edge we 

can apply either moment or rotation.  
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When applying rotation, the software adjusts the suitable reaction moment 

which is developed similarly to the tension experiment when conducting strain 

control. 

 

 

 
Figure 13. Application of coupling constraint in both sides of the model (SHIP II) 

Boundary conditions 

 

For the intact state our aim was to achieve pure bending condition. Therefore, 

the vertical bending moment should be constant through the whole span of 

the model and reaction forces must be eliminated. After consideration, the 

boundary conditions for the intact state are shown in Tables 5, 6. 
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Control Point 1 Control Point 2 

Tx Fixed Tx Fixed 

Ty Fixed Ty Fixed 

Tz Free Tz Fixed 

Rx Kinematic Rx Kinematic 

Ry Fixed Ry Fixed 

Rz Fixed Rz Fixed 

Table 5. Boundary conditions at control points 1,  2 

Note that axis Z is the longitudinal axis. The above initial boundary conditions 

ensure that the only load applied in the structure is the vertical bending 

moment. 

 

For the damaged condition, we conducted three analyses with different 

boundary conditions. These three different cases are accumulated in Table 6. 

In addition, we studied the result of each case concerning the value of the 

residual strength and the developed reaction forces and moments on the 

structure. 

 

 D.O.F. 
 

BOUNDARY CONDITION CASE 

1 2 3 

 
 
 

Control 
Point 1 

Tx Fixed Free Free 

Ty Fixed Free Fixed 

Tz Fixed Free Free 

Rx Fixed Fixed Kinematic 

Ry Fixed Free Fixed 

Rz Fixed Free Free 

 
 
 

Control 
Point 2 

Tx Free Free Free 

Ty Free Free Fixed 

Tz Free Free Free 

Rx Kinematic Kinematic Kinematic 

Ry Free Free Fixed 

Rz Free Free Free 

Table 6. Boundary condition cases - the red color means constrained degree of freedom. The symbol * means 
that rotation is applied to the d.o.f. 
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Rate of rotation/curvature application 

 

When a dynamic explicit solver is used, the rate of load application plays an 

important role. In order to achieve quasi-static solution, we must ensure that 

the inertia forces are negligible. Therefore, the time period of load application 

should be large enough so that the dynamic solution approaches the static. 

For this particular simulation (SHIP I) the applied curvature rate is 0.0001216 

(m·s)-1. This value was chosen because it has been observed a convergence 

between the static and the dynamic solution in the elastic region [11]. Finally, 

the results of the analysis performed are of double precision. 
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3.3 Results-SHIP I 

 

The diagram which depicts the moment versus curvature relationship 

including the intact and the damaged scenarios can be shown below. 

 

 

 

 
Figure 14. Curvature moment curves for the damaged one bay model of SHIP I 

 

The values for the ultimate and residual strength for the four scenarios are: 

 

 
Table 7. Ultimate Strength for different boundary cases in GNm 
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As we can see from Table 8, the values of the residual strength among cases 

1-2 are in accordance with each other. Moreover, there is a difference of 

δ=1.55% between the values for the cases 1-2 and the value of the residual 

strength for case 3. 

 

Furthermore, the reduction of the ultimate strength of the vessel after collision 

is r1=19.7% for the boundary cases 1-2 and r2=18.5% for the boundary case 

3.  

 

3.4 Conclusions 

 

For the SHIP I case, we could reach the following conclusions: 

 

1. A mesh size of 100x100 mm seems to be appropriate for the 

investigation of the ultimate and the residual strength of ship models as it 

demands less computational cost and accurate results as it will be 

shown in Chapters 4 and 5. In addition, there is no significant difference 

between results taken when using S4 or S4R elements, which were 

used for the modeling of ship hull structures as shown in [10], [11]. 

Therefore, we prefer to use S4R elements which, as mentioned before, 

reduce the computational cost.   

2. Restriction of the rotation about the transverse horizontal axis of the first 
control node and rotation application about the transverse horizontal axis 
of the second control node leads to almost the same results with the 
cantilever support, and is considered to be more suitable for damage 
problems modeling, as it introduces negligible reaction forces to the 
model. Restriction of bending about the vertical axis results to a 
somewhat different curvature - moment curve and it is not suggested for 
modeling problems of damaged hulls.  

3. As it concerns the appropriate value of the time increment, it seems that 
a value between 1E-06 and 3E-06 is more appropriate as it is also 
depicted in [11], because we can always consider the increased 
computational cost when greater accuracy is needed and vice versa. 

 
We will then try to verify the above-mentioned conclusions by applying the 
same modeling parameters using the SHIP II model. Final conclusions of the 
study can be seen in the end of the chapter. 
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3.5 Results-SHIP II 
 
In this section we present the results of the simulation when SHIP II was used 
As it is mentioned above (see pg.21), apart from the intact state, two damage 
scenarios have been investigated, where a different position of the damage 
has been considered.  
 
A. Intact state 
 
In order to succeed constant vertical bending moment along the span of the 
model, boundary conditions of Tables 5 & 6 were considered not appropriate 
because shear forces could have been developed due to the asymmetry of 
the hull . For this reason, the vertical displacement (U2) at the front end of the 
model was released. In that way, the effect of shear forces becomes 
negligible. 
 
The applied loading is a symmetric rotation about the horizontal axis and its 
attributes are described in Table 8. 
 

Angle of rotation 0.0028 rad 

Time of loading application 4 seconds 

Rate of curvature application 0.000123 (m·sec)-1 
Table 8. Loading attributes of SHIP II 

 

Meshing of the model was created using the same element size and type as 

defined before (see pg 23-24). Also in the case of SHIP II, S4R square 

elements of 100mm side length were used as proposed by [11]. 

 

Figure 15 shows the vertical bending moment versus the applied angle of 

rotation. 

 

 
Figure 15. Vertical bending moment vs. Angle of rotation (intact state) 
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The maximum value of vertical bending moment, as well as, the angle of its 

appearance is: 

 

Maximum value of vertical bending 
moment 

8.891 GNm 

Angle of maximum vertical bending 
moment 

0.00168 rad 

Table 9. Maximum value of vertical bending moment (intact state) 

 
Figures 16,17 &18 depict the deformed model. 
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Figures 16, 17, 18. Stages of hull's Von Mises stresses when 20, 30 and 50% of the loading is applied 

 
The simulation was ended at the 50% of the total angle of rotation in order to 
reduce the computational cost, as the maximum moment was achieved at the 
30% of it. As we can see from the above Figures, when 20% of the total angle 
of rotation has been applied, large stresses at the deck appear of maximum 
value 350MPa approximately. When 30% of the total of rotation has been 
applied, maximum stress of approximately 430MPa can be observed at the 
first bay. At the end of the run (50% of the total angle of rotation) just a small 
region at the first bay is highly stressed and at the same time, stresses reduce 
as we move towards the third bay of the model.  
 
Figure 7 depicts the final distribution of vertical displacements at the central 
path of the deck. 
 

 
Figure 19. Vertical displacement at the central path of the deck (intact state) 
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It can be easily observed from Figure 19 that the structure mainly collapsed at 

the first bay, where maximum stresses had appeared.  

 

The position of the neutral axis of the structure at certain time frames can be 

seen in Figure 20. The initial position of the undeformed hull is YN.A.=9.22m. 

 

 
Figure 20. Position of the neutral axis at two different time frames (intact state) 

 
B. Damage scenario-1 (nonsymmetrical) 
 
In this case, the damage extends at the both sides of a web frame (also see 
Figure 9), and it is nonsymmetrical with respect to the mid-ship section. The 
dimensions of the damaged area are given in Table 4. Three sets of boundary 
conditions were applied according to Table 7. Each case will be presented 
separately and they will be compared. 
 

i. BC_1 
 
As we can see from Table 7, BC_1 refers to the cantilever support case, 
where the rear nodes are totally constrained and rotation is applied at the 
front nodes of the model. The magnitude of the loading and the time period of 
its application can be seen in Table 9. 
 
Figure 19 shows the vertical bending moment versus the applied rotation 

about the horizontal axis. 

0

5

10

15

20

0 10 20 30 40

D
e

p
th

 (
m

) 

Breadth (m) 

Position of neutral axis (intact state) 

Frame 7 (maximum moment) Frame 11 (end of run)



 

35 
 

 
Figure 21.Vertical bending moment vs. Curvature (nonsymmetric damafe-BC_1) 

The maximum value of vertical bending moment for BC_1 case is given in the 

Table below. 

 

Maximum value of vertical bending 
moment 

6.695GNm 

Angle of maximum vertical bending 
moment 

0.0014rad 

Table 11. Maximum value of vertical bending moment (nonsymmetrical damage-BC_1) 

 

 

Figures of the damaged model are shown below. 

 

0

1

2

3

4

5

6

7

8

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003

M
o

m
e

n
t 

(G
N

m
) 

Rotation (rad) 

Vertical bending moment vs. Angle of 
rotation (nonsymmetric damage-

BC_1) 



 

36 
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Figures 22, 23, 24. Stages of hull's Von Mises stresses when 15, 20 and 50% of the loading is applied 

 

As we can see from Figures 22, 23 & 24 when 15% of the total angle of 
rotation is applied, there is a stress concentration of approximately 370MPa at 
the edges of the damaged area which is the first area that enters the elasto-
plastic region. Afterwards, a region of maximum stress is formulated at the 
center of the deck and mostly at the left side, having a value of approximately 
410MPa. Finally, when 50% of the total angle of rotation is applied, the whole 
central region of the deck buckles and therefore, the structure collapses. 
       
Because of the ship’s hull asymmetry, due to the existence of the damaged 
area, there is also horizontal bending moment which acts on the structure. Its 
maximum value is Mhor=3.82MNm, more than one thousand times smaller 
than the vertical bending moment, and appears when the angle of rotation 
about the vertical axis is θ=0,000233rad. Buckling and tripping of the 
stiffeners at deck plating is also observed. 
 

 
Figure 25. Stiffeners at deck plating suffering from buckling and tripping 
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In Figure 26, the vertical displacement at the deck due to the applied bending 

moment is presented.  

 

 
Figure 26. Vertical displacements at three different longitudinal paths at the deck 

 

The central path refers to the nodes of the deck at the center line of the ship, 

while the left and the right path at the nodes placed r=±14.45m from the 

center line. As it can be seen, the maximum value of vertical displacement is 

observed at the left side of the center line where the damaged area occurs. 

Furthermore, there are two regions of buckling along this path which also 

prove the severe collapse at the left side of the structure. The minimum value 

of vertical displacement can be seen at the central path, where the stiffness of 

the structure is larger due to the longitudinal bulkhead.  

 

It is also interesting to see the position of the neutral axis of the structure in 

two separate time frames. The first refers to the moment of maximum bending 

load and the second to the end of the run. When the section is not symmetric, 

the neutral axis is not only translated but also rotated in order to reach the 

equilibrium of the forces acting at the structure. 
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Figure 27. Position of the neutral axis at two different time frames 

 

As it can be seen in Figure 27, the neutral axis of the extreme cross section, 

the closest to the damage, is almost a straight line when maximum bending 

moment is applied. At the end of the run, when most of the section has 

entered the plastic region, the neutral axis is translated to the top and rotated 

clockwise δθ=-14,26ο.  
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ii. BC_2 

 

Table 7 shows that BC_2 is a case similar to the cantilever support case. The 

difference is that the rear nodes of the model are not totally constrained apart 

from the rotation about the horizontal axis which is fixed. Figure 28 shows the 

vertical bending moment versus the rotation about the horizontal axis. 

 

 
Figure 28. Vertical bending moment vs. Curvature (nonsymmetrical damafe-BC_2) 

 

The maximum value of vertical bending moment for BC_2 case is given in the 

Table 12. 

 

Maximum value of vertical bending 
moment 

6.697GNm 

Angle of maximum vertical bending 
moment 

0.0014rad 

Table 12. Maximum value of vertical bending moment (nonsymmetrical damage-BC_2) 

 

As the figures of the deformed hull are similar to those cited above (Figures 

22-24), only the figures of the vertical displacements and the position of the 

neutral axis will be given. 
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As there are no constraints to the rotations of the model, there are also no 

horizontal and torsional bending moments as well as reaction forces in this 

case. The latter means that only vertical bending moment is applied at the 

hull. 

  

 
Figure 29. Vertical displacements at three different longitudinal paths at the deck 

 
 

Figure 29 shows that the values and the shapes of vertical displacements 

along the deck at same regions are almost the same. There is also a 

difference in relation to the shape of the vertical displacements concerning the 

central path. In this case, there are more buckling regions and moreover, the 

maximum vertical displacement is positive.  

 

As it concerns the position of the neutral axis, it is more or less the same as 

we discussed above. 
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Figure 30. Position of the neutral axis at two different time frames 

 

The position of the neutral axis of the extreme cross section, the closest to the 

damage, is almost the same as it can be seen from BC_1. The rotation of the 

neutral axis in this case at the end of the run is δθ=-16.8o close to the value 

measured for case BC_1. 
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iii. BC_3 

 

As it is shown in Table 7, this boundary condition refers to the simple support 

case. Symmetric loading has been applied with value θ=0,0028rad in T=4sec. 

Figure 31 that shows the vertical bending moment versus the rotation angle. 

 

 
Figure 31. Vertical bending moment vs. Angle of rotation (nonsymmetrical damafe-BC_3) 

 

In case of the symmetric boundary condition of simple support the vertical 

bending moment does not remain constant along the span of the model. That 

means that shear forces appear that lead to additional moment added to the 

existing one. 

 

The maximum value of vertical bending moment for BC_3 case is given in the 

Table below. 

 

Maximum value of vertical bending 
moment 

7.2696GNm 

Angle of maximum vertical bending 
moment 

0.00112rad 

Table 13. Maximum value of vertical bending moment (nonsymmetrical damage-BC_3) 

 

Figures 32, 33, 34 show the Von Misses stress field in different frames of the 

simulation. 
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Figures 32, 33, 34. Stages of hull's Von Mises stresses when 15, 20 and 50% of the loading is applied 

 

As it can be seen from Figures 32, 33, 34 when 15% of the total angle of 

rotation is applied there is stress concentration at the edges of the damaged 

area having a value of approximately 364MPa. When 30% of the total angle of 

rotation is applied, the stress concentration area becomes larger and several 

regions at the deck of the structure have a maximum stress of approximately 

386MPa and finally, when 50% of the total angle of rotation is applied, two 

nonsymmetrical regions of maximum stress are formulated having a 

maximum stress of 476MPa. 

 

Apart from the vertical bending moment, also horizontal bending moment is 

applied in the model having a maximum value of Mhor=3.11GNm that is to say, 

approximately 1000 times larger than the horizontal bending moment in case 

of BC_1. 

 

Figure 35 shows the vertical displacements at the deck in case BC_3.  
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Figure 35. Vertical displacements at three different longitudinal paths at the deck 

 

Figure 35, which depicts the vertical displacements at three different paths at 

the deck of the hull, has a different shape than figures 26, 28. Herein, the 

maximum negative displacement appears approximately at the middle of the 

longitudinal span of the model at the left side, and more buckling points 

appear at the central path. Moreover, vertical displacements at the right path 

also take positive values which probably are due to the symmetric constraints 

which have been applied in the model resulting in larger vertical reaction 

forces. In addition, it shall be noted that there is a negative vertical 

displacements of the model of approximately U2=-0.005m at the front and rear 

nodes. 

 

Finally, the position of the neutral axis at the same two time frames of the 

simulation which have been also investigated in Figures 27, 30 is presented 

below. 
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Figure 34. Position of the neutral axis at two different time frames 

 

The position of the neutral axis of the exterme cross section, the closest to the 

damage, is almost the same as it can be seen from BC_1 and BC_2. The 

rotation of the neutral axis in this case at the end of the run is δθ=-15.6o, close 

to the value measured for case BC_1 and BC_2. 
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C. Damage scenario-2 (symmetrical) 

 

In this case, the damage extends between two successive web frames (also 
see Figure 11). The dimensions of the damaged area are given in Table 4. 
Three sets of boundary conditions were also applied according to Table 7. 
Each case will be presented separately and finally they will be compared as in 
the case scenario 1. 
 

i. BC_1 
 
This boundary condition set refers to the cantilever support case as it has 
been shown above. The magnitude of the loading and the time period of its 
application are the same as it can be seen from Table 9. 
 
The figure which shows the vertical bending moment versus the applied 

rotation about the horizontal axis is presented below. 

 

 
Figure 35.Vertical bending moment vs. Curvature (symmetrical damafe-BC_1) 

 
The maximum value of vertical bending moment can be seen in Table 14. 
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Maximum value of vertical bending 
moment 

6.697GNm 

Angle of maximum vertical bending 
moment 

0.0014rad 

Table 14. Maximum value of vertical bending moment (symmetrical damage-BC_1) 

 
Figures 36, 37 of the damaged model can be seen below. 
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Figures 36, 37. Stages of hull's Von Mises stresses when 20% and 40% of the loading is applied 

As we can see from Figures 36, 37 high stresses appear when 20% of the 
total angle of rotation is applied. There was no stress concentration before. 
Afterwards, when 40% of the total angle of rotation is applied, we notice a 
region of maximum stresses along the breadth of the model and at the mid-
span having a value of 467MPa. In addition, the width of the region of 
maximum stresses has decreased, meaning that after the appearance of the 
maximum moment, there is a stress relaxation at the deck as the structure 
cannot sustain larger loading.  

 
The horizontal bending moment which also appears due to the asymmetry of 

the hull has a maximum value of Mhor=1.71MNm when the angle of rotation 

about the vertical axis is θ=0.000238rad. In this case, tripping of the stiffeners 

is not observed. 

 

As it was done before, figures of vertical displacements at three different 

longitudinal paths at the deck and also figures of the position of neutral axis 

will be presented. The transverse position of the longitudinal paths is the 

same as it was defined above (see pg. 38). 
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Figure 38. Vertical displacements at three different longitudinal paths at the deck 

 

As we can see, vertical displacements are larger at the left path where the 

damage exists. There is only one buckling point as well as at the right path. 

Vertical displacements at the central path can be considered as negligible. 
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The position of the neutral axis of the extreme cross section at two different 

time frames can be seen below. 

 

 
Figure 39. Position of the neutral axis at two different time frames 

 

It can be seen from Figure 39, that neutral axis has been translated and 

rotated due to the asymmetry of the ship’s hull. The angle of rotation is θ1=-

10,16o when maximum moment is applied and θ2=-13,61ο at the end of the 

run. 
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ii. BC_2 

 

Same as it was mentioned for the nonsymmetrical case, this boundary 

condition set is similar to the cantilever support case.  

 

The figure which shows the vertical bending moment versus the applied angle 

of rotation can be seen in Figure 40. 

 

 
Figure 40.Vertical bending moment vs. Curvature (symmetric damafe-BC_2) 

The maximum value of vertical bending moment as well as the angle of 

rotation where it appears can be seen below. 

 

 

Maximum value of vertical bending 
moment 

6.699GNm 

Angle of maximum vertical bending 
moment 

0.0014rad 

Table 15. Maximum value of vertical bending moment (symmetrical damage-BC_2) 

 

Figures of the damaged model where Von Misses stress is shown as well as 

its maximum value are almost the same as we discussed in the previous 

case, so it is decided not to be shown. Moreover, due to the applied boundary 

conditions, there is not horizontal bending moment. 

 

The vertical displacements of the deck at this case can be seen in Figure 41. 
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Figure 41. Vertical displacements at three different longitudinal paths at the deck 

 

 

As it can be noticed, maximum vertical displacements occur at the left path 

where the damage exists. Furthermore, there are two buckling points at the 

right path while at the central path vertical displacements are negligible. 

 

The position of the neutral axis of the extreme cross section of the structure at 

two separate time frames is shown in the Figure 42. 

 

 
Figure 42. Position of the neutral axis at two different time frames 
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It can be seen that also in this case the neutral axis is translated and rotated 

due to the asymmetry of the section. The angles of rotation are θ1=-10,15rad 

when maximum moment is applied and θ2=-14.42rad at the end of the run. 

These values are similar to the angles of rotation in BC_1. 
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iii. BC_3 

 

Similarly to the nonsymmetrical case, BC_3 refers to the simple support case. 

The magnitude of the loading and the time period where it was applied are the 

same as in nonsymmetrical case. 

 

Figure 43 shows the vertical bending moment versus the applied angle of 

rotation. 

 

 
Figure 43.Vertical bending moment vs. Angle of rotation (symmetrical damafe-BC_3)  

at both sides of the model 

 

As we can see, vertical bending moment is not constant along the span of the 

model. That means that shear forces are developed at both ends of the 

structure which then produce a moment which affects the final bending 

moment applied in the structure. 

 

The maximum vertical bending moment as well as the angle of rotation where 

it appeared can be seen at the table which follows. 

 

 

Maximum value of vertical bending 
moment 

7.275GNm 

Angle of maximum vertical bending 
moment 

0.00112rad 

Table 16. Maximum value of vertical bending moment (symmetrical damage-BC_3) 

 

Figures of the damaged model can be seen below. 
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Figures 44, 45, 46. Stages of hull’s Von Mises stresses when 15, 20 and 50% of the loading is applied 

 

It can be seen from Figures 44, 45 and 46 that in this case there is stress 

concentration at the area of the damage having a maximum value of 

approximately 360Mpa. Afterwards, regions of maximum stress can be found 

at the deck having a maximum value of approximately 370MPa and in the end 

of the run, two nonsymmetrical regions of maximum stress can be noticed. 

 

The maximum horizontal bending moment acting on the structure is 

Mhor=3.18GNm, approximately one thousand times larger than the horizontal 

moment acting on the structure in case BC_1.   

 

The vertical displacements appeared at the deck can be seen in Figure 47. 
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Figure 47. Vertical displacements at three different longitudinal paths at the deck 

 

 

As we can see, vertical displacements are bigger than the previously 

discussed cases. In addition, the central and the right side of the hull has 

collapsed in more points and also closer to the front side. We also notice that 

displacements at the left path are twice than the displacements at the right 

path, whereas at the central path can be considered negligible.  

 

In this case, the position of the neutral axis can be seen in the following figure. 

 

 
Figure 48. Position of the neutral axis at two different time frames 
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It can also be seen that, in this case, the neutral axis is translated and rotated 

due to the asymmetry of the section. The angle of rotation is θ1=-10,45rad 

when maximum moment is applied and θ2=-16.02rad at the end of the run. 

The value of the angle when maximum moment is applied is similar to the 

angles of rotation in BC_1 and BC_2 while the angle of rotation at the end of 

the run is larger in BC_3. 
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3.6 Conclusions of Chapter II 

 

As far as it concerns the first damage scenario (nonsymmetrical), the common 

figure of vertical bending moments versus the applied curvature can be seen 

below. Curvature is now used as the independent variable so that the results 

can be easily compared. 

 

 
Figure 49.Vertical bending moment vs. Curvature (nonsymmetrical damage-all BCs) 

 

It can be easily noticed that Figure 49 is similar to Figure 11 as far as it 

concerns the curves for the damaged cases. Simple support boundary 

condition increases the stiffness of the model resulting in larger value of 

maximum bending moment. The other two boundary conditions provide the 

same result. Moreover, different boundary conditions result in different 

distributions of vertical displacements at the deck of the hull as we saw in 

figures 26, 29 and 35. It seems that symmetrical boundary conditions lead to 

large shear forces at both ends of the structure that affect vertical 

displacements which get maximized close to the boundary conditions. 

Cantilever boundary condition as well as boundary condition where only the 

rear rotation about the horizontal axis is constrained, provide almost the same 

distribution of vertical displacements with a difference lying on the central path 

where cantilever support seems to provide more rational results as it can be 
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seen from Figures 26, 29 for the nonsymmetrical case and Figures 38, 41 for 

the symmetrical one. 

 

The corresponding figure for the second damage scenario is the following. 

 

 
Figure 50.Vertical bending moment vs. Curvature (symmetrical damage-all BCs) 

Also in this case, simple support boundary condition provides larger results 

than the other two boundary condition cases. Cantilever boundary condition 

and the boundary condition where only rotation about horizontal axis is fixed 

result in the same curve concerning the vertical bending moment. For the 

vertical displacements at the deck we can reach the same conclusions as 

before. In addition, results taken from the two similar boundary conditions are 

almost the same, which is probably because the damage is symmetrical. 

 

Table 17 shows the results of vertical bending moment for better 

understanding. 

 

 Damage scenario 1 
(nonsymmetrical) 

Damage scenario 2 
(symmetrical) 

Cantilever 6.695 GNm 6.697 GNm 

UR1 fixed (rear) 6.697 GNm 6.699 GNm 

Simple support 7.27 GNm 7.28 GNm 
Table 17.Results in GNm for the two damage scenarios (all BCs) 
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It can be easily seen that the results for both damage scenarios are more or 

less the same. That means that the place of the damage does not play an 

important role for the ship’s integrity in sagging condition. Furthermore, results 

of the intact and damaged cases should be compared in order to assess 

ship’s residual strength after such collision cases. 

 

 Damage 
scenario 1 
(nonsymmetrical) 

Damage 
scenario 2 
(symmetrical) 

 
Intact 

Damage 
scenario1/ 
Intact 

Damage 
scenario1/ 
Intact 

 6.695 GNm 6.697 GNm  
8.891 
GNm 

0.753 0.753 

 6.697 GNm 6.699 GNm 0.753 0.753 

 7.27 GNm 7.28 GNm 0.818 0.819 
Table 18.Comparison of results with the intact state 

 

As we can see the reduction of the ship’s strength ranges between 

18.2%÷24.7%. If we compare these results with the results obtained from 

SHIP I simulation, we realize that our simulations converge.  

Results of the residual strength for both ships are shown in Table 19. 

 

 SHIP I SHIP II 

Damage scenario 
1/ Intact 

Damage scenario 
2/ Intact 

BC_1 0.803 0.753 0.753 

BC_2 0.803 0.753 0.753 

BC_3 0.816 0.818 0.819 
Table 19.Comparison of results for both ships 
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4. ANALYTICAL CALCULATION OF A SHIP’S ULTIMATE STRENGTH 

 

4.1 Description of the scope 

 

In this chapter we implemented the incremental-iterative method for the SHIP 

II cross section. The moment versus curvature relationship which was derived 

will be compared to this derived using the Finite Element Method, as well as, 

the position of the neutral axis. This will provide data to investigate if the two 

methods res9ult in comparable results or not. 

 

4.2 Incremental-iterative method (intact case) 

 

Theoretical aspects of this method were given in section 2.3. Taking into 

account these basic aspects of the method we discretized the cross section In 

128 members of stiffened plates, 27 hard corner elements and 19 attached 

plates. In Tables 19, 20 & 21 someone can see the discretization of the cross 

section. 

 

STIFFENER ELEMENTS 

BOTTOM 

  
s 

(m) 
tp 

(cm) 
bp 

(cm) 
tw 

(cm) 
bw 

(cm) 
tf 

(cm) 
bf 

(cm) 
A 

(cm
2
) 

rehs 
(MPa) 

rehp 
(Mpa) 

l 
(m) z (m) Is (cm

4
) 

1 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

2 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

3 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

4 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

5 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

6 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

7 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

8 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

9 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 0.112272488 59509.212 

10 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 0.110581329 60036.84 

11 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 0.110581329 60036.84 

12 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 0.110581329 60036.84 

13 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 0.110581329 60036.84 

14 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 0.110581329 60036.84 

15 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 0.108964326 60548.921 

16 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 0.108964326 60548.921 

17 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 0.108964326 60548.921 

18 0.84 1.75 84 1.1 42.5 1.8 15 220.75 355 355 3.78 0.109758777 60371.331 

19 0.79 1.8 79 1.1 42.5 1.8 15 215.95 355 355 3.78 0.112339315 59945.034 

20 0.79 1.8 79 1.1 42.5 1.8 15 215.95 355 355 3.78 0.112339315 59945.034 

21 0.79 1.8 79 1.1 42.5 1.8 15 215.95 355 355 3.78 0.112339315 59945.034 

22 0.79 1.8 79 1.1 42.5 1.8 15 215.95 355 355 3.78 0.112339315 59945.034 

23 0.7 1.8 70 1.1 42.5 1.8 15 199.75 355 355 3.78 0.120720275 58070.355 
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INNER 
BOTTOM 

1 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

2 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

3 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

4 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

5 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

6 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

7 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

8 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

9 0.85 1.65 85 1.1 42.5 1.8 15 214 355 355 3.78 2.387727512 59509.212 

10 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 2.389418671 60036.84 

11 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 2.389418671 60036.84 

12 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 2.389418671 60036.84 

13 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 2.389418671 60036.84 

14 0.85 1.7 85 1.1 42.5 1.8 15 218.25 355 355 3.78 2.389418671 60036.84 

15 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 2.391035674 60548.921 

16 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 2.391035674 60548.921 

17 0.85 1.75 85 1.1 42.5 1.8 15 222.5 355 355 3.78 2.391035674 60548.921 

18 0.84 1.75 84 1.1 42.5 1.8 15 220.75 355 355 3.78 2.390241223 60371.331 

UPPER DECK 

1 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

2 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

3 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

4 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

5 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

6 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

7 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

8 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

9 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

10 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

11 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

12 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

13 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

14 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

15 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

16 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

17 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

18 0.85 1.7 85 1.1 30 1.6 9 191.9 355 355 3.78 20.94053869 20221.733 

19 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

20 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

21 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

22 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

23 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

24 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 

25 0.84 1.7 84 1.1 30 1.6 9 190.2 355 355 3.78 20.9400831 20176.702 
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SIDE SHELL 

1 0.7 1.8 70 1.1 42.5 1.8 15 199.75 355 355 3.78 1.55 51960.964 

2 0.75 1.8 75 1.1 42.5 1.8 15 208.75 355 355 3.78 2.25 63792.214 

3 0.75 1.8 75 1.1 42.5 1.8 15 208.75 355 355 3.78 3 63792.214 

4 0.75 1.8 75 1.1 42.5 1.6 15 205.75 355 355 3.78 3.75 63735.964 

5 0.75 1.8 75 1.1 42.5 1.6 15 205.75 355 355 3.78 4.5 63735.964 

6 0.75 1.8 75 1.1 42.5 1.6 15 205.75 355 355 3.78 5.25 63735.964 

7 0.85 1.7 85 1.1 38.5 1.5 12.5 205.6 355 355 3.78 6.85 87249.453 

8 0.85 1.7 85 1.1 38.5 1.5 12.5 205.6 355 355 3.78 7.7 87249.453 

9 0.85 1.7 85 1.1 38.5 1.5 12.5 205.6 355 355 3.78 8.55 87249.453 

10 0.85 1.7 85 1.2 35 1.7 10 203.5 355 355 3.78 9.35 87147.748 

11 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 11.05 76912.332 

12 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 11.9 76912.332 

13 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 12.75 76912.332 

14 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 13.6 76912.332 

15 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 14.45 76912.332 

16 0.85 1.5 85 1.2 25 1.6 9 171.9 355 355 3.78 16.15 76866.425 

17 0.85 1.5 85 1.2 25 1.6 9 171.9 355 355 3.78 17 76866.425 

18 0.85 1.5 85 1.1 25 1.6 9 169.4 355 355 3.78 17.9 76865.598 

19 0.85 1.7 85 1.1 25 1.6 9 186.4 355 355 3.78 18.75 87101.015 

20 0.85 1.7 85 1.1 25 1.6 9 186.4 355 355 3.78 19.6 87101.015 

INNER SIDE 
SHELL 

1 0.85 1.7 85 1.1 38.5 1.8 12.5 209.35 355 355 3.78 6.85 87298.281 

2 0.85 1.7 85 1.1 38.5 1.8 12.5 209.35 355 355 3.78 7.7 87298.281 

3 0.85 1.7 85 1.1 38.5 1.8 12.5 209.35 355 355 3.78 8.55 87298.281 

4 0.85 1.7 85 1.1 38.5 1.8 12.5 209.35 355 355 3.78 9.4 87298.281 

5 0.85 1.5 85 1.1 38.5 1.5 12.5 188.6 355 355 3.78 11.1 77014.036 

6 0.85 1.5 85 1.1 38.5 1.5 12.5 188.6 355 355 3.78 11.95 77014.036 

7 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 12.75 76912.332 

8 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 13.6 76912.332 

9 0.85 1.5 85 1.2 35 1.7 10 186.5 355 355 3.78 14.45 76912.332 

10 0.85 1.5 85 1.3 30 1.7 9 181.8 355 355 3.78 16.1 76874.393 

11 0.85 1.5 85 1.3 30 1.7 9 181.8 355 355 3.78 16.95 76874.393 

12 0.85 1.7 85 1.2 25 1.6 9 188.9 355 355 3.78 17.85 87101.842 

13 0.85 1.7 85 1.2 25 1.6 9 188.9 355 355 3.78 19.935 87101.842 

14 0.85 1.7 85 1.4 68 1.4 15 260.7 355 355 3.78 18.985 87410.341 
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CENTRELINE 

1 0.81 0.75 81 1.15 40 1.5 10 121.75 355 355 3.78 3.319089836 33684.812 

2 0.81 0.75 81 1.15 40 1.5 10 121.75 355 355 3.78 4.129089836 33684.812 

3 0.81 0.75 81 1.15 40 1.5 10 121.75 355 355 3.78 4.939089836 33684.812 

4 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 5.748151879 33735.086 

5 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 6.558151879 33735.086 

6 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 7.368151879 33735.086 

7 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 8.178151879 33735.086 

8 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 8.988151879 33735.086 

9 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 9.798151879 33735.086 

10 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 10.60815188 33735.086 

11 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 11.41815188 33735.086 

12 0.81 0.75 81 1.2 35 1.7 10 119.75 355 355 3.78 12.22815188 33735.086 

13 0.81 0.75 81 1.2 30 1.6 9 111.15 355 355 3.78 13.03942004 33579.156 

14 0.81 0.75 81 1.2 30 1.6 9 111.15 355 355 3.78 13.84942004 33579.156 

15 0.81 0.75 81 1.2 30 1.6 9 111.15 355 355 3.78 14.65942004 33579.156 

16 0.81 0.75 81 1.2 30 1.6 9 111.15 355 355 3.78 15.46942004 33579.156 

17 0.81 0.75 81 1.2 30 1.6 9 111.15 355 355 3.78 16.27942004 33579.156 

18 0.81 0.75 81 1.2 25 1.6 9 105.15 355 355 3.78 17.08908738 33574.623 

19 0.81 0.75 81 1.2 25 1.6 9 105.15 355 355 3.78 17.89908738 33574.623 

20 0.81 0.75 81 1.2 25 1.6 9 105.15 355 355 3.78 18.70908738 33574.623 

21 0.81 0.75 81 1.1 30 1.6 9 108.15 355 355 3.78 19.51925832 33576.289 

22 0.81 0.75 81 1.1 30 1.6 9 108.15 355 355 3.78 20.32925832 33576.289 

HOPPER 

1 0.75 1.9 75 1.1 42.5 1.6 15 213.25 355 355 3.78 2.82744967 10815.072 

2 0.75 1.9 75 1.1 42.5 1.6 15 213.25 355 355 3.78 3.404928219 10815.072 

3 0.75 1.9 75 1.1 42.5 1.6 15 213.25 355 355 3.78 3.982406768 10815.072 

4 0.75 1.9 75 1.1 42.5 1.6 15 213.25 355 355 3.78 4.559885318 10815.072 

5 0.75 1.9 75 1.1 42.5 1.6 15 213.25 355 355 3.78 5.137363867 10815.072 

6 0.75 1.8 75 1.1 42.5 1.6 15 205.75 355 355 3.78 5.715633803 10732.57 

Table 20. Stiffener elements 
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hard corners 

 
bp (mm) tp (mm) z (m) Rehp (MPa) A (cm2) 

1 360 18 6.124 355 6480 

2 2500 18 6.541 355 45000 

3 340 17 6.73 355 5780 

4 420 17.5 2.49125 355 7350 

5 360 18 2.789 355 6480 

6 350 17.5 2.3075 355 6125 

7 420 17 20.9915 355 7140 

8 420 17 20.9915 355 7140 

9 340 17 20.813 355 5780 

10 415 17 20.9915 355 7055 

11 340 17 20.813 355 5780 

12 2500 15 15.8925 355 37500 

13 1200 15 15.8925 355 18000 

14 2500 17 10.7915 355 42500 

15 1360 17 10.7915 355 23120 

16 720 18 6.541 355 12960 

17 425 17 22.1415 355 7225 

18 330 8.25 21.968 355 2722.5 

19 1000 18 0.009 355 18000 

20 360 18 0.18 355 6480 

21 420 17.5 0.00875 355 7350 

22 395 18 0.009 355 7110 

23 425 18.5 2.49075 355 7862.5 

24 350 8.75 2.3065 355 3062.5 

25 300 7.5 2.65 355 2250 

26 425 12.5 0.00625 355 5312.5 

27 350 8.75 0.1875 355 3062.5 
Table 21. Hard corner elements 
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attached plates 

 
tp (cm) bp (mm) s (m) bp (m) z (m) A (mm2) Rehp (Mpa) 

1 1.25 175 0.85 0.175 0.00625 2187.5 355 

2 1.75 420 0.84 0.42 2.49125 7350 355 

3 1.25 420 0.84 0.42 0.00625 5250 355 

4 1.25 395 0.79 0.395 0.00625 4937.5 355 

5 1.8 365 0.75 0.365 6.409573 6570 355 

6 1.7 85 0.85 0.085 6.5925 1445 355 

7 1.7 85 0.85 0.085 10.7575 1445 355 

8 1.5 85 0.85 0.085 10.7575 1275 355 

9 1.5 125 0.85 0.125 10.8625 1875 355 

10 1.5 125 0.85 0.125 10.8625 1875 355 

11 1.5 250 0.85 0.25 15.8375 3750 355 

12 1.5 250 0.85 0.25 15.9625 3750 355 

13 1.7 40 0.898 0.04 20.98 680 355 

14 1.7 85 0.85 0.085 20.9575 1445 355 

15 1.7 75 0.84 0.075 20.9915 1275 355 

16 1.7 160 0.84 0.16 20.9915 2720 355 

17 0.825 120 0.9 0.12 22.09 990 355 

18 1.7 85 0.85 0.085 22.1415 1445 355 

19 1.8 1000 0.7 1 0.009 18000 355 
Table 22. Attached plate elements 

 

Input constant variables for the algorithm apart from the elastic material 

properties, is the initial position of the neutral axis. For this particular occasion 

of SHIP II the initial position of the neutral axis is: 

 

𝑦𝑁.𝐴. =9.05m 

 

We notice that this value slightly differs from the value evaluated by using 

ABAQUS software (see pg. 34). This might occurred due to differences during 

the creation of the numerical and the analytical model.  

 

After using the algorithm written in Fortran95, we derived the following results 

concerning the Ultimate Strength of the intact SHIP II. 
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Figure 51. Common diagram for the ultimate strength of SHIP II using two different methods 

The maximum value of the Ultimate Strength derived from the incremental-

iterative method is shown in Table 22. 

 

Maximum value of vertical bending 
moment  

8.414GNm 

Curvature of maximum vertical 
bending moment 

0.001896 

Table 23. Maximum value of vertical bending moment for the intact state (incremental-iterative method) 

 

As it concerns the position of the neutral axis when maximum bending 

moment was succeeded, we added Figure 52 below where differences 

between the analytical and the numerical solutions can be observed. 
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Figure 52. Position of the neutral axis when maximum bending moment is succeeded  

(analytical & numerical solutions) 
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4.3 Incremental-iterative method (damaged case) 

 

When a part of the ship’s cross section is missing due to a collision, bending 

takes place about a new neutral axis which, apart from being translated, also 

rotates about an axis vertical to the section’s X-Y plane. The value of this 

angle is given by the following expression, 

 

𝑡𝑎𝑛𝜑 =
𝐼𝑥
𝐼𝑥𝑦

 

 

where Ix is the section’s moment of inertia with regards to X-axis and 

Ixy=∫(𝑥
2 + 𝑦2)𝑑𝑚  is the product of inertia, which is non-zero for an 

asymmetric section. For an intact section Ixy is zero because for every 

positive contribution of (xydm) there is always a negative one to the 

opposite side of the symmetry plane.  

 

The initial angle of rotation as well as the initial position of the neutral axis for 

the damaged section can be seen below. Note that in this case, structural 

elements included in Tables 19, 20, and 21 were used for the calculations, 

except for those indicated, which consist of the damaged region. Suffice it is 

to say that the dimensions of the damage are equal to those considered in the 

case of Finite Element Analysis. 

 

𝑦𝑁.𝐴. =8.99m 

 

𝑥𝑁.𝐴. =-6.3697m 

 

𝜑 =-0.001004o 

 

For the development of the numerical tool for the evaluation of the residual 

strength of a damaged ship, the theory of asymmetric bending of beams was 

implemented. It has been chosen that a repetition of the theory would not be 

helpful as someone can easily backdate to a vast amount of relevant scientific 

papers and books. [15] 

Nevertheless, it is really important to mention that there has been made a 

modification to the software used before (see section 4.2), because in the 

damaged case the criterion of zero axial forces is not sufficient. When 

bending moment is imposed on an asymmetric section, its vector can be 

decomposed in two components, parallel to the principle axes. Therefore, two 

equilibria have to be satisfied. The first corresponds to the equilibrium of axial 

forces and the second to the equilibrium of the forces induced by the My 

component of the moment. Consequently, the solution for each step of the 

simulation is obtained in two phases. 
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 At first, the equilibrium of axial forces is satisfied by simply 

translating the neutral axis. 

 After the equilibrium of axial forces has been satisfied, rotation was 

implemented to the neutral axis until the My component of the 

bending moment is bounded between -1000Nm< My <1000Nm so 

that the induced stresses remain at a low level, approximately zero. 

 

Elements missing from the section due to the collided area are defined as 

having transverse center of mass greater than b=20.625m (measured from 

the centerline) and vertical center of mass greater than d=8.4m (measured 

from the baseline). These structural elements are indicated in Tables 19, 20, 

21 in bold. 

 

Figure 53 depicts the vertical bending moment in the damaged case versus 

the applied curvature when using both the Incremental-Iterative Method and 

the Finite Element Method. 

 

 
Figure 53. Residual strength (SHIP II) using both the Finite Element Method and 

the Incremental-Iterative Method 
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The maximum value of the residual strength obtained when using the 

Incremental-Iterative Method can be seen in Table 23. 

 

Maximum value of vertical bending 
moment  

6.663GNm 

Curvature of maximum vertical 
bending moment 

0.0002596 

Table 24. Maximum value of vertical bending moment for the damaged state (incremental-iterative method) 

 

The position of the neutral axis when maximum residual strength has been 

succeeded is given by the following values: 

 

𝑦𝑁.𝐴. = 7.198m 

 

𝑥𝑁.𝐴. =-6.3697m 

 

𝜑 =-5.676o 
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4.4 Discussion 

 

By comparing the maximum values of bending moments in Tables 23, 24 with 

the maximum values in Tables 17, 18 respectively we notice a relatively 

acceptable difference as it concerns the value of the ultimate and the residual 

strength. In the case where intact cross section was considered, the 

difference between the values obtained by the Finite Element Method and the 

Incremental-Iterative method differ by δintact=5.36%, whereas in the case of 

the damaged section the difference is much smaller δdamage_1=0.48% for the 

cantilever and “quasi-cantilever” boundary conditions for both damage 

scenarios approximately, and δdamage_2=8.3% for the symmetrical-simple 

support boundary condition for both damage scenarios approximately.  

 

Furthermore, in Figure 51 we notice that the maximum bending moment for 

the intact case is satisfied in a lower value of curvature when using the Finite 

Element Method rather than in the case where the Incremental-Iterative 

Method has been applied. This fact can be explained if we consider that we 

conducted a dynamic explicit analysis and consequently, there are inertia 

forces that make the model stiffer and cannot be totally eliminated. The same 

effect can be observed in the damaged case, where the maximum value of 

the residual strength when using the Finite Element Method is satisfied far in 

advance compared to the case where the Incremental-Iterative Method was 

applied. However, application of cantilever or “quasi-cantilever” boundary 

conditions in this case provide less stiffness to the model, therefore the results 

between the methods are almost equal. 

 

Finally, as it concerns the position of the neutral axes in both intact and 

damaged cases, differences between the two methods can be observed. At 

first, in the intact case there is a difference of approximately one meter 

between the vertical positions of the section’s neutral axis. Moreover, in the 

damaged case, the angle of rotation of the neutral axis is half the angle of 

rotation when symmetrical damage is considered. As we can see from 

Figures 27, 30, 34 the angle of rotation of the neutral axis in the 

nonsymmetrical case is approximately zero for the studied section however, 

f9urther investigation 0is needed to explain the differences.      
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5. CONCLUSIONS AND ISSUES FOR FUTURE RESEARCH 

 

5.1 Conclusions 

 

The following conclusions can be derived from the present work. 

 

1. As we can see from Tables 8, 18, 19, 23, 24 the percentage of ship’s 

ultimate strength reduction after the considered damage occurred is: 

SHIP I  19.7% (only FEA conducted) 

SHIP II  24.7% (when FEA conducted) and 

   20.8 (when the Incremental-Iterative Method applied) 

From the aforementioned results it can be considered that the damage 

proposed by the CSR and modeled here, results in a reduction of a 

ship’ ultimate strength between 20-25%. 

 

2. Differences between the design moments shown in Tables 1, 2 and the 

calculated using the FEM and the Incremental-Iterative method can be 

explained because the CSR proposed method for the calculation of a 

ship’s design moment takes into account the corrosion addition.      

 

3. The modeling parameters proposed for the simulation of a ship under 

sagging bending moment are: 

Mesh element size  Quadrilateral square elements of 100mm side 

length. 

Mesh element type  Reduced integration (S4R) elements having one 

integration point along thickness. 

Rate of loading application  A rate of curvature application 

approximately 0.00012 (ms)-1 seems to represent satisfactory a quasi-

static phenomenon when dynamic explicit analysis is conducted. 

Boundary Conditions  For the intact case, the proposed 

unconstrained boundary conditions are the rotation about the 

transverse axis and the translation along the longitudinal axis so that 

no axial forces appear. For the damaged cases, using also the results 

taken from the Incremental-Iterative Method, we suggest that cantilever 

or “quasi-cantilever” boundary conditions are used as they do not make 

our model stiffer. 

 

4. The method developed here for the numerical modeling of a ship’s hull 

under extreme bending loading using the FEM can be considered 

relatively reliable for the estimation of her bending capacity as we have 

noticed good agreement when also Smith’s method has been applied. 
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5.2 Proposals for future research 

 

Some interesting proposals for future research which arise from the present 

work are added below. 

 

1. Further investigation is needed to explain the difference between the 

values of the ultimate and residual strength of a ship’s hull when the 

FEM and the Incremental-Iterative method are applied. 

 

2. Implementation of other material models when using the Finite Element 

Method that refer to real conditions. 

 

3. Modeling of other hulls, both symmetrical and asymmetrical, so that the 

present conclusions become more legible.  

 

4. In order to conduct a purely static analysis, initial imperfection can be 

introduced at a part of the main deck. In this way, the mode of collapse 

can be more predictive. 

 

5. Application of the implicit algorithm.  
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MIDSHIP SECTION-SHIP I 
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MIDSHIP SECTION-SHIP II 

 

 

 
 


