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Περίληψη

Η αξιόπιστη μετάδοση είναι ένα από τα βασικά προβλήματα στα δίκτυα επικοινωνίας.

Μελετάμε αυτό το πρόβλημα σε γενικά δίκτυα ενάντια σε Βυζαντινό αντίπαλο και σε σχέση

με την τοπολογική γνώση των παικτών. Θεωρούμαι ότι ο αντίπαλος περιγράφεται είτε από

το τοπικά περιορισμένο μοντέλο του Koo (2004) είτε από το μοντέλο γενικού αντιπάλου
των Hirt και Maurer (1997) και διερευνούμε την σχέση μεταξύ του επιπέδου γνώσης της
τοπολογίας και της επιλυσιμότητας του προβλήματος.

Βελτιώνουμε την τεχνική του τοπικού ζεύγους διαχωριστών των Pelc και Peleg (2005)
έτσι ώστε να αποκτήσουμε αποτελέσματα μη επιλυσιμότητας για κάθε επίπεδο τοπολογικής

γνώσης και για κάθε τύπο αντιπάλου. Στην θετική πλευρά κατασκευάζουμε πρωτόκολλα

που ταιριάζουν σε αυτά τα όρια μη επιλυσιμότητας, και έτσι χαρακτηρίζουμε πλήρως την

κλάση των γραφημάτων στα οποία η αξιόπιστη μετάδοση είναι δυνατή.

Ανάμεσα στα άλλα, δείχνουμε ότι το πρωτόκολλο Certified Propagation Algorithm
(CPA) του Koo είναι μοναδικό ενάντια σε τοπικά περιορισμένους αντιπάλους σε ad-hoc
δίκτυα, δηλαδή μπορεί να αντέξει όσο δυνατούς τοπολογικά περιορισμένους αντιπάλους όσο

οποιοσδήποτε άλλος αλγόριθμος. Αυτό το αποτέλεσμα δίνει απάντηση και σε μια ανοιχτή

ερώτηση των Pelc και Peleg. Επίσης κατασκευάζουμε μια προσαρμογή του CPA ενάντια
σε γενικούς αντιπάλους και δείχνουμε την μοναδικότητα του. Απ΄ όσο γνωρίζουμε αυτός

είναι ο πρώτος βέλτιστος αλγόριθμος για αξιόπιστη μετάδοση σε ad-hoc δίκτυα ενάντια σε
γενικούς αντιπάλους.

Λέξεις Κλειδιά

αξιόπιστη μετάδοση, βυζαντινοί στρατηγοί, τοπικά περιορισμένος αντίπαλος, γενικός αντί-

παλος, τοπολογική γνώση, ad hoc δίκτυα





Abstract

Reliable Broadcast is a fundamental problem of communication networks. We study
this problem in incomplete networks against a Byzantine adversary and with respect to
player’s topology knowledge. We examine the problem under the locally bounded adver-
sary model of Koo (2004) and the general adversary model of Hirt and Maurer (1997)
and explore the tradeoff between the level of topology knowledge and the solvability of
the problem.

We refine the local pair-cut technique of Pelc and Peleg (2005) in order to obtain
impossibility results for every level of topology knowledge and any type of corruption dis-
tribution. On the positive side we devise protocols that match the obtained bounds and
thus, exactly characterize the classes of graphs in which Reliable Broadcast is possible.

Among others, we show that Koo’s Certified Propagation Algorithm (CPA) is unique
against locally bounded adversaries in ad hoc networks, that is, it can tolerate as many
local corruptions as any other non-faulty algorithm; this settles an open question posed
by Pelc and Peleg. We also provide an adaptation of CPA against general adversaries
and show its uniqueness. To the best of our knowledge this is the first optimal algorithm
for Reliable Broadcast in generic topology ad hoc networks against general adversaries.

Keywords

reliable broadcast, byzantine generals, locally bounded adversary, topology knowledge,
ad hoc networks, general adversary
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Chapter 1

Introduction

Technology has always played an important role in human history. Whole eras where
named after the technological advancements that shaped them. For example tool making
technologies defined three large periods of human history, the stone, bronze and iron age.
It is no exaggeration to say that the last twenty years are the age of the Internet.

However, as with any technological achievement, whether its use is for better or for
worse, is entirely determined by the ones who use it. Internet is not an exception to this
rule. Lately, it was made clear after the Snowden leaks that through the internet one
can achieve massive privacy violations with little effort. So it is in our hands to guard
and support the fair use of this technology.

This work is towards this direction and tries to explore some of the fundamental
problems of the Internet, and of communication networks in general.

Modern communication networks consist of millions of nodes. At any time some of
them may crash or even behave maliciously. To resolve this seemingly chaotic behavior
we need to explore algorithms that exhibit reliability and privacy properties, starting
from the most simple actions in a network.

Some of those actions are :

• Reliable broadcast, where a node needs to sent the same message to the whole
network while preserving some fundamental reliability properties.

• Secure message transmission, where a node needs to send a message to another
node in the network , and no one else should learn the content of this message.

• Byzantine agreement, where all nodes in a network should agree collectively on the
same value.

These are the building blocks for even more complicated actions, like e-voting or
e-shopping.

A main design idea behind all these protocols, is that we don’t want our networks
to have a single point of failure. On the contrary we need our algorithms to behave
in a distributed manner, utilizing all the resources in the network and distributing the
reliability to the whole network.

1
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1.1 The Communication Model

We start by explaining the way we model communication networks. The network is rep-
resented by a graph. Nodes represent the players and edges the communication channels
between them. We will use the terms player, process, node interchangeably from now
on. Nodes have some initial input at the start of the protocol. Information is exchanged
between the players by sending messages through the communication channels.

The channels used can be classified according to their reliability and privacy prop-
erties. They can be:

• Authenticated, where information send cannot be tampered. That is the adversary
cannot alter the messages sent between two honest players through a communica-
tion channel. However he may be able to read what is being sent.

• Secret/Confidential, messages cannot be read by the adversary, but they may be
tampered.

• Secure, messages cannot be read or tampered by the adversary.

Depending on whether assumptions about process execution speeds and message
delivery delays have been made we differentiate between two types of communication
networks.

• Synchronous, where players have access to a global clock. We can think of our
protocol taking place in successive rounds.

• Asynchronous, where no global clock exists and message delays are unbounded but
finite.

In the rest of this work, if it is not specified differently, we will talk about synchronous
systems.

1.2 The Adversary Model

As mentioned earlier in the real world scenarios we are trying to model, some of the
players may behave maliciously or crash. Protocols that take into account this kind of
behavior are called fault tolerant protocols. We are interested in the worst case assump-
tion, so we consider an external entity, the adversary, which controls and coordinates
the actions of the faulty (corrupted) players.

There are many types of faults. Different types of faults limit the power of the
adversary in different ways. Relevant to this work are the following:

• Active corruption, where the adversary has total control over the corrupted player.
He can read all the information this player has and can make him behave arbitrarily.
This is the strongest type of corruption.
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• Passive corruption, where the adversary knows everything the player knows as
before, namely his input and the messages he receives, but cannot make him deviate
from the specified protocol. That is the passively corrupted player will follow the
protocol as a fully honest player, but the adversary will know his input and the
messages he received.

The adversary may also be limited by his computational power. We are mostly in-
terested in two cases. First the computationally bounded adversary. In this case the
adversary is considered to have computational power equivalent to a probabilistic poly-
nomial time deterministic Turing machine. For this type of machines it is hypothesized
that certain problems (e.g. the discrete logarithm problem ) are hard. A large part of
modern cryptography bases its security on this assumption.

If we don’t want to base security on this kind of assumptions we can consider a
computationally unbounded adversary. We don’t make any assumptions for such an
adversary and we consider him to have unbounded computational power.

A different limitation on the power of the adversary is related to the possible set of
nodes he can corrupt. For example in the threshold model the adversary can corrupt up
to some maximum number of players, in the whole communication network. This model
is not always relevant; for example in this work we assume that we only have information
about the adversary that are topologically limited. But the threshold model refers to
the whole communication graph, and thus is not relevant. The main adversarial modes
with respect to this parameter that are going to be used in this work are the following:

• Threshold adversary : the adversary is described by the total number of nodes he
can corrupt in the whole communication graph.

• Locally bounded adversary : the adversary is described by the total number of nodes
he can corrupt in each neighborhood in the graph.

• General adversary : the adversary is described by the set of possible corruption
sets of nodes.

The threshold adversary is the one that was considered earlier in the fault tolerance
literature. The majority of the relevant research in the 80’ and the 90’ was done under
this adversary model. The general adversary was introduced by Fitzi and Maurer in 1998
[11] and it is a strict generalization of the threshold and the locally bounded model. The
locally bounded model was introduced in [17] to describe uniform spatial distribution
of the corruptions.

1.3 Security

The primary goal when designing a fault tolerant protocol is to prove that it is secure
in a well defined security model. This model should specify which assumptions we make
about the communication network and the adversary, as described before. Security is
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expressed with respect to the possibility of wrong output at the end of the protocol and
according to the security parameter λ. A negligible error probability may be allowed.
We are interested in three levels of security:

• Perfect security, security against a computationally unbounded adversary with
zero error probability.

• Unconditional security, security against a computationally unbounded adversary
with negligible error probability.

• Computational security, security against a computationally bounded adversary
with negligible error probability.

1.4 Measures of Efficiency

The second goal when designing distributed protocols is efficiency. Defining the efficiency
of distributed protocols is not an easy task. Usually we measure efficiency by the time
complexity of our algorithm. But in distributed protocols other resources except time
are important. For example in mobile networks we have limited bandwidth and each bit
transfered costs money. Having a protocol that completes some task with low amount of
data exchanged may be equally significant to the time it takes to complete the task. A
different limitation arises in sensor networks. The machines used by the players in these
networks have limited energy capacity. One of our targets when we design algorithms for
this setting is to minimize the energy consumed. In these work we are mainly interested
in the following efficiency measures of protocols:

• Time complexity is defined as the worst case number of rounds it takes to finish
an execution of the protocol i.e. all the players produce their output and halt.

• Local computational complexity is defined as the maximum over the worst time
computational complexities over all players.

• Message complexity is defined as the worst case total number of messages sent over
the network during an execution of the protocol.

• Communication or Bit complexity is defined as the worst case total number of bits
sent over the network during an execution of the protocol.

Notice that all these measures in case of a faulty system are defined on the set of the
honest players, because otherwise a corrupt player could not terminate, or keep sending
messages for an infinite amount of time.



Chapter 2

Agreement problems

As discussed before a fundamental task of distributed computing is agreement on a
common value. If processors cannot agree on a common value, there is not much hope
that they can do more complicated tasks distributively. That is why this problem has
been studied extensively since 1980. There are many ways to formalize this task and we
are going to describe two of them.

2.1 Formal definitions

The first one is Byzantine Agreement. In this problem every player has an initial input.
We want all honest players at the end of the protocol to decide on a common value,
despite some of them being faulty.

Definition 1. A protocol achieves Byzantine Agreement iff the following properties hold:

• Validity: If all honest players have as input the same value, then all honest players
should agree on this value.

• Agreement: All honest players should decide on the same value.

• Termination: After a finite number of rounds, every honest player should decide
on a value.

A closely related problem is Reliable Broadcast. In this problem one player is the
dealer and he wants to send his value to all other players.

Definition 2. A protocol achieves Reliable Broadcast iff the following properties hold:

• Validity: If the dealer follows the protocol then all players should decide on the
dealer’s value.

• Agreement: All honest players should decide on the same value.

• Termination: After a finite number of rounds, every honest player should decide
on a value.

5
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Byzantine Agreement and Reliable Broadcast are closely related. For a t-threshold
adversary with t < n/2 and on a complete communication graph these two protocols
are equivalent. Having a protocol for one of them implies a protocol for the other one.
If we have Reliable Broadcast then we can achieve Byzantine Agreement by letting all
players reliably broadcast their value, and then decide on the majority of the values they
have taken. If we have Byzantine Agreement, then the dealer can send his value to all
players, and using this value as input, run the Byzantine Agreement protocol.

Additionally for the rest of this work we will not prove the termination property,
because for all cases that the validity and agreement properties hold, termination is
trivially implied.

2.2 History

The problem of reliable broadcast was first solved at 1980 by Pease, Shostak and Lam-
port [23]. In this work, the protocol runs in t+ 1 rounds and can tolerate less than n/3
corrupted players, but players send messages of exponential size and take exponential
number of computational steps to finish. This paper initiated a long line of results, on
getting an optimal protocol on the number of rounds and the resilience with polynomial
communication and computation complexity. Polynomial time was achieved initially by
taking more rounds [8]. Coan in 1986 [5] presented a family of broadcast protocols that
tolerate up to n/4 corruptions and halt in less than 2t rounds, while using messages of
polynomial size but taking exponential number of computational steps locally. Lots of
other results continued this line of work towards a fully polynomial Broadcast protocol.
Finally in 1998 Garay and Moses [12] presented the first fully polynomial Byzantine
Agreement protocol of optimal resilience and round complexity.

2.3 An upper bound on the number of corruptions

In this section we present the classical byzantine agreement impossibility result on a
complete communication graph of Dolev [6] with a slightly different proof.

Theorem 1. Byzantine Agreement is impossible with t >= n/3 corrupted players, where
n denotes the number of players in the network.

Proof. We are going to prove this theorem by first analyzing the case with 3 players and
then generalizing this result to an arbitrary number of players.

Let G be the complete communication network and a, b, c the players. Without loss of
generality suppose the set of possible outputs for the players at the end of the agreement
is {0, 1}. Suppose that a Byzantine Agreement protocol Π exists that can tolerate n/3
corrupted players. We are going to consider three different runs of this protocol and
show that a contradiction arises.

Let σ1, σ2, σ3 be the scenarios depicted in figure 2.1. For σ1 the corrupted node is
a and the honest nodes b, c have the same initial input 0. Since Π achieves Byzantine
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a

b c

x = 0 x = 0

σ1

a

b c

x = 1

σ2

a

b c

x = 0

σ3

x = 1

x = 1

Figure 2.1: Three scenarios that Π must achieve byzantine agreement on.The honest
nodes are blue. The corrupt node is red.

Agreement with n/3 corrupted nodes, it should work on this scenario. From validity
we have that nodes b, c will output 0 for any possible behavior of the corrupted node a.
Thus yσ1b = yσ1c = 0, where yσv denotes the output of node v in scenario σ. For σ2 the
corrupted node is c and the honest nodes a, b have the same initial input 1. Repeating
the same argument we can show that for any possible behavior of the corrupted node c,
yσ2a = yσ2b = 1.

For σ3 the corrupted node is b and the honest nodes a, c have different initial input.
Node a has input 1, and node c has input 0. Let b play in the following way in σ3:

• b sends to a in σ3 exactly the same messages that b sends to a in σ2, when c in σ2
sends the same messages as c in σ3.

• b sends to c in σ3 exactly the same messages that b sends to c in σ1, when a in σ1
sends the same messages as a in σ3.

Node a has the same view in σ2 and σ3, since he has the same initial value and
exchanges the same messages in both scenarios and has to give the same output. So
yσ3a = yσ2a = 1. But node c also has the same view in σ1 and σ3, so yσ3b = yσ1b = 0.
But this is a contradiction since it breaks agreement, two honest nodes output different
values at the end of the protocol. Notice that b can launch his attack by simulating
the system shown in figure 2.2. This also shows that our system is well defined. So no
protocol exists that achieves Byzantine Agreement with 3 nodes where 1 is corrupted.
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a

c

x = 0

x = 1

b
x = 1

b
x = 0

a
x = 0

c
x = 1

b

Figure 2.2: The simulation player b does to attack protocol Π. Blue nodes represent the
honest nodes. The nodes on the red area are being simulated by b.

We can now do a reduction from the general case with n <= 3∗ t players and at least
t corrupt nodes to the one with 3 players an 1 corrupted node. We split the players into
three non-empty groups A,B,C, where each group has at most t participants.Then any
two groups have at least n− t participants.

We can consider each node group as one super-node from the n = 3 case and show
that every protocol that achieves Reliable Broadcast in the n node system also achieves
Reliable Broadcast in the super-node system. All internal communication and compu-
tation inside a group can be simulated by a super-node and all messages exchanged
between nodes of different groups are send between two super-nodes. As before all 3
super-nodes can be corrupted. Additionally we can simulate the input of some super-
node, as all nodes in this group having the same input. If validity holds for the n node
system then validity should hold for the super-node system. And if agreement holds for
the n node system then agreement should hold for the super-node system.

If we had a protocol that achieved Reliable Broadcast for the n node system then we
could use it to construct a protocol that solves Reliable Broadcast for the super node
case. But the super node case is equivalent to the n = 3 case, where Reliable Broadcast
is impossible. Thus a contradiction and the theorem is proved.

2.4 A lower bound on message complexity

As we saw in the previous section, to achieve Reliable Broadcast each node should be
able to distinguish between scenarios where a different output should be given. But
the way it differentiates between different scenarios is by his view e.g. his initial input
and the messages he exchanges with other nodes. So is there a minimum number of
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messages a node should get to be able to differentiate between different scenarios? The
next theorem from [9] gives us a first answer to this question.

Theorem 2. Each protocol that achieves Reliable Broadcast with up to t corruptions
requires at least n(t+ 1)/4 messages to be exchanged.

Proof. Let σ0 and σ1 be the scenarios where all players are honest and the dealer trans-
mits 0 and 1 respectively. Also Cui is the set of players that exchange messages with u
in σi.

Suppose there exists some u s.t. |Cu0 ∪ Cu1 | <= t. Then let σ2 be the scenario where
T = Cu0 ∪ Cu1 are corrupt and nodes in T behaves towards u like they are in σ0 and
towards the other players like they are in σ1. For u, σ0 and σ2 seem indistinguishable,
he has exactly the same view in both scenarios. Also for players in V \{u}∪T scenarios
σ1 and σ2 are indistinguishable. Notice that if u could interact with nodes in σ0 and σ1
in σ2 the two scenarios would not be indistinguishable. Now since in indistinguishable
scenarios a node should give the same output, u outputs 0 and nodes in V \{u}∪T output
1. But this is a contradiction since agreement should be preserved. So |Cu0 ∪ Cu1 | > t

But then in σ0 and σ1 a total of at least n(t+1)/2 messages should be exchanged. So
in one of the two scenarios at least n(t+1)/4 messages are exchanged establishing a lower
bound on the message complexity of every protocol that achieves Reliable Broadcast.



Chapter 3

Protocols for Reliable Broadcast

In this chapter, a number of reliable broadcast protocols are presented. At first, a
protocol for the threshold setting, the Phase King protocol. It has been chosen because
of its good performance, although not optimal, and its very simple modular nature.
Next, a protocol for the general adversary setting is presented. This protocol is based
on the same idea as the first fully polynomial protocol of optimal resiliency and round
complexity [12], presented earlier by Bar-noy et al. [1]. Notable in this work is the shift
of protocol design towards active corruption detection from the players. That is, players
throughout the protocol find and update information about corrupted players and use
them accordingly. Finally, two protocols are briefly summarized that employ different
perspectives to Reliable Broadcast; first from a knowledge theoretic and then from the
randomized algorithm point of view.

3.1 The Phase King Agreement protocol

In this section, we focus on the Phase King agreement protocol [3]. We are going to
build our protocol through three weaker agreement primitives: weak, graded and king
consensus.

3.1.1 Weak consensus

In weak consensus a first agreement is build between a subgroup of the honest players on
a common value. All other honest players do not decide on any value. So two properties
should hold for the weak consensus protocol:

• Weak Consistency: The output value of all honest players is in {x,⊥} for some x
in {0, 1}.

• Correctness: If all honest players at the beginning of the protocol have the same
input x, then they all output x.

10
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A protocol realizing these properties is the following:

function WeakConsensus(P ,t,x = (x1, ..., xn))
1. Every player pi ∈ P sends xi to all players.

2. Player pj outputs yi =

{
x, if(|{pj |xij = x}| >= n− t)
⊥, otherwise

end function

Proof. If all honest players have the same input x, there will be at least n− t messages
with this value sent to all players, since there are at most t corrupted players. So
correctness is preserved.

Let’s suppose that there exist two honest nodes pi and pj that output x and x′

respectively. Since pi outputs x, it got n−t messages with this value. At most t messages
were from corrupted players, so there are at least n− 2t honest players with this value.
These players also send the same value to pj . So for pj to output x′, 2t >= n− t should
hold. But then n <= 3t which is a contradiction. So the output value of all honest
players is in {x,⊥} , for some x, and this protocol preserves Weak Consistency.

3.1.2 Graded consensus

In graded consensus each player outputs two values (y, g). yi refers to the output value
of pi and gi to his confidence level on whether all other honest players have output this
value. We want the following properties to be preserved:

• Graded Consistency: If an honest players outputs (y, 1), then all honest player
should output (y, 1) or (y, 0).

• Graded Correctness: If all honest players at the beginning of the protocol have the
same input x, then they all output (x, 1).

A protocol realizing these properties is the following:

function GradedConsensus(P ,t,x = (x1, ..., xn))
1. Run WeakConsensus(P ,t,x = (x1, ..., xn)) and let x′ = (x′1, ..., x

′
n) be its output.

2. Every player pi ∈ P sends x′i to all players, except if x′i = ⊥, pi sends nothing.
3. Player pi calculates yi, gi as follows:

yi =

{
x, if(|{pj |x′ij = x}| > t)

0, otherwise

gi =

{
1, if(|{pj |x′ij = x}| >= n− t)
0, otherwise

end function
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Proof. Firstly let’s note that honest players that have output ⊥ value from the weak
consistency phase, do not send anything. Let pi output (y, 1). Then at least one honest
player has sent y to pi. From weak consistency this implies that all honest players sent
y or did not send anything. Also n − t players have sent x. Since there are at most t
corrupted players, n−2t players have sent x and n−2t > t. So all honest players decide
on yi = y. If some other player pj could decide on some y′ 6= y, then at least t+1 players
should have sent him y′. This is a contradiction since at most t players can send a value
different than y and the protocol preserves Graded Consistency.

If all honest players have the same input x initially then weak consensus will preserve
these values. Obviously all honest players will output (x, 1) since they get this value from
at least n− t players. So graded correctness is preserved.

3.1.3 King consensus

In the king consensus one player takes the role of the king. If he is honest, then consensus
is guaranteed. Additionally we want correctness to be preserved.

• King Consistency: If the king is an honest player, then all honest players output
the same value.

• Correctness: If all honest players at the beginning of the protocol have the same
input x, then they all output x.

A protocol realizing these properties is the following:

function KingConsensus(P ,t,x = (x1, ..., xn),pk)
1. Run GradedConsensus(P ,t,x = (x1, ..., xn)) and let (yi, gi) be the output of
player pi.
2. The king (pk) sends its value to all players.
3. Player pi calculates its output as follows:

zi =

{
yi, if(gi = 1) ∨ (yk = ⊥)

yk, otherwise

end function

Proof. Let’s suppose the king is honest. If from graded consistency exists some honest
player with output (y, 1), then all honest players have output either (y, 1) or (y, 0) and
for player pi, it holds that yi = yk = y = zi. If no honest player outputs (y, 1), then
zi = yk for all players. So king consistency is preserved.

If all honest players have the same input x initially, then the output of graded
consensus will be in the form of (y, 1) for all honest players and zi = yi = y. So king
correctness is preserved.
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3.1.4 Putting it all together

If we run King Consensus with t+ 1 different kings, and while using as input each time
the input of the previous run, at least one of them is honest and we achieve consensus.
Consensus will be preserved, from the correctness property until the end. Additionally
if all honest players have the same input at the beginning, they will decide on this value
from round 1.

3.2 Byzantine Agreement Against General Adversaries

In this section, we present an efficient protocol for Byzantine Agreement against a Gen-
eral Adversary by Fitzi and Maurer [11]. This setting generalizes the one in the previous
section, in the sense that a threshold adversary can be described by a general adversary
structure as we explain in the next section.

3.2.1 General Adversary

A general adversary is described by the set of possible corruption sets. More formally:

Definition 3. An adversary structure A over the player set P is a monotone set of
subsets of P i.e. A ⊆ 2P and (B ∈ A ∧ C ⊂ B)⇒ C ∈ A.

Moreover, the elements of A are called adversary sets. A short way of representing
an adversary structure is by its maximal elements. We denote the basis of A with
Ā = {B ∈ A :6 ∃B′ ∈ A s.t. B ⊂ B′}. We also denote the restriction of an adversary
structure A to the player set S ⊆ P by AS = {B ∩ S|B ∈ A}.

In an analogous manner to the n/3 condition for reliable broadcast against a threshold
adversary, in the general adversary case we need to define when k sets of the adversary
structure cover the whole player set.

Definition 4. An adversary structure A satisfies Qk(P,A) if no k sets in A cover P.

Observation. The adversary structure A = {C|C ⊆ P ∧ |C| <= t} is equivalent to
having a t-threshold adversary.

3.2.2 A simple protocol

A simple but inefficient Broadcast protocol is presented for the case where the adversary
structure satisfies Q3(P,A), that is, no 3 sets in A cover the whole player set. This
condition is tight for the general adversary case. If we consider the adversary structure
of a threshold adversary, the condition is equal of having t < n/3, which is also tight.
The simple protocol can be divided in two phases, the information gathering (IG) and
data conversion (DC) phase. We denote the dealer by the letter d.
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Figure 3.1: An example of an IG-tree.

3.2.3 Information Gathering

Every player u maintains a local information gathering tree that contains all the data
he got from the other players. For player v, the root node of the tree corresponds to the
dealer d and has the value d sent to v. An internal node is added to the tree for any
sequence of nodes that forms a possible corruption set. Finally, the leaves of the tree
correspond to minimal sequences of nodes that do not belong to the adversary structure.
We denote the local tree of player v by treev. The value stored in the node defined by
the sequence v1v2...vk is denoted by treev(v1v2...vk). The sequence v1v2..vk as we said
before corresponds to the path from the root to the node. The meaning of the value
x of the local tree of some node v, corresponding to the string v1v2...vk is that ”vk
said to v, that vk−1 said to vk,...,that v1 said to v2 that the broadcast value is x. We
give an example of the structure of such a tree in figure 3.1 for P = {d, e, f, g, h} and
Ā = {{d, e}, {d, g, h}, {e, h}, {f, g}}.
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Notice that the tree has at most height n, since any sequence has at most n players.
We say that the root node is in level 1, its children on level 2, etc. The protocol for the
information gathering phase is presented below:

function Information gathering( P, A, d, x)
1. The dealer d sends its value x to all the players, decides on this value and terminates.
2. On round k (> 1), each player vi, sends to everyone else the value of all the nodes of
level k− 1 of the tree (treevi(v1..vr)), that have a child corresponding to the sequence
v1..vrvi.
3. Each player v ∈ P, stores the value y send by v′ about the value of treev′(v1..vk)
to the node with label v1..vkv

′. So treev(v1..vkv
′) = y.

end function

With the information gathering phase of the protocol each player receives the broad-
cast value from different paths in the communication graph. Obviously, if some path
contains corrupted nodes this value may have been altered.

3.2.4 Data Conversion

For the data conversion we use the function resolvep, that computes the output of node
p using treep. This step is entirely computed locally. No interaction is needed between
the players during this phase.

With ⊥ we denote that a decision cannot be taken from the resolve function. By
C(v1..vk) we denote the set of the children of the node defined by v1..vk. By Ca(v1..vk)
we denote the set of the honest children of the node defined by v1..vk. The way the
resolve function works is bottom-up. It starts by resolving the values of the leaves of
the tree, and uses these intermediate values to build its way up to the root. Each node
decides on the the resolved value of the root.

resolvep(v1..vk) =


treep(v1..vk) if v1..vk is a leaf

x ∃!x 6= ⊥ : Q1({c ∈ C(v1..vk)|resolvep(v1..vkc) = x})
0 if k = 1 and v1 = d

⊥ otherwise

The second rule corresponds to the notion that for node v1..vk the function resolves
to x if the set of the children of this node that decide on x is not a possible corruption
set. The third rule is needed because players should output some value from output
domain and not ⊥.

Definition 5. A node v1..vk of the tree is common, if every correct player resolves the
same value for this node. The subtree rooted on node v1..vk has a common frontier if
every path from this node to a leaf has at least one common node.

Lemma 3. If the adversary structure A satisfies Qk(P,A) then for every internal node
v1..vk, AC(v1..vk) satisfies Qk−1(C(v1..vk),AC(v1..vk)).
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Proof. By the way we construct our tree, a node corresponds to a possible corruption
set. So if Qk−1(C(v1..vk),AC(v1..vk)) is not satisfied, there exists a covering with k − 1
sets from A. But if we also add the set corresponding to this node, we get a covering of
the whole player set with k sets, which is a contradiction.

Lemma 4. All nodes v1..vkr, with r being a correct player are common with the value
treer(v1..vk) = x.

Proof. Let p be an honest player. Since p receives treer(v1..vk) from r, who is also
honest, then treep(v1..vkr) = treer(v1..vk) = x. We will prove that resolvep(v1..vkr) =
treep(v1..vkr) by induction. If v1..vkr is a leaf, then resolvep(v1..vkr) = treep(v1..vkr) by
definition. Let the lemma hold for all nodes of level k+1 and v1..vkr be a node of level k.
By lemma 4 and since Q3(p) holds, then Q2(C(v1..vkr),AC(v1..vkr)) holds. That means
no 2 sets from AC(v1..vkr) cover C(v1..vkr). If Ca(v1..vkr) ∈ AC(v1..vkr), then since by def-
inition C(v1..vkr) \Ca(v1..vkr) can be corrupted, {Ca(v1..vkr), C(v1..vkr) \Ca(v1..vkr)}
would cover C(v1..vkr), which is a contradiction. So Ca(v1..vkr) 6∈ AC(v1..vkr) which
implies Q1(Ca(v1..vkr),ACa(v1..vkr)). Thus, since for each node u ∈ Ca(v1..vkr) by the
induction hypothesis resolvep(v1..vkru) = x holds, resolvep(v1..vkr) = x and the proof
is complete.

Lemma 5. Let v1..vk be a node of the tree. If there is a common frontier on the subtree
of this node, then this node is common.

Proof. If v1..vk is a leaf, then by definition v1..vk has a common frontier when v1..vk is
common. Let v1..vk be an internal node that has a common frontier and is not common.
Since v1..vk is not common, at least one of its honest child nodes should not be common,
or else all honest child nodes will resolve to the same value and from Q3(P) will not
form a possible corruption set, thus v1..vk will decide on the common value of its honest
children, a contradiction. Recursively, the child of v1..vk which is not common, should
have a child that is not common. Hence, a path from v1..vk to a leaf is formed from
nodes that are not common, which contradicts the assumption that v1..vk has a common
frontier. So v1..vk must be common.

Theorem 6. For any player set P and adversary structure A satisfying Q3(P) the
simple protocol achieves reliable broadcast.

The proof of this theorem follows from the fact that all nodes in any root-leaf path
do not belong in a single adversary set. So in any path at least one node is honest. From
lemma 4 the root has a common frontier, because in any path from root to leaf at least
one node is common since it is in the form of v1..vkr, where r is an honest player. But
from lemma 5 the root node is common. So all players resolve the root node on the same
value and they decide on the same value (agreement). If the dealer is also honest, then
again from lemma 4 the root node is common and correctness is preserved.
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3.2.5 Towards an efficient protocol

The simple protocol described in the previous section is not efficient. For example, for
any adversary structure with exponential size the tree is also of exponential size. We are
going to present a protocol that is efficient (fully polynomial with respect to the number
of players) assuming only that there exists an algorithm polynomial in n for deciding
whether a given subset of the players is an element of A.

The main idea used is that of [1]. We fix some parameter 4 ≤ b < n and the protocol
is run repeatedly on the tree where levels l > b are pruned. In every run we collect
only information on existing nodes in the tree. The data conversion phase proceeds as
before. What we gain by this process is that at the end of each run we can detect and
permanently blacklist corrupt nodes and do not consider them in the subsequent runs.

The information gathering phase in each run is the same as before. Nodes broad-
cast level by level their information on specific nodes on the tree. The only differ-
ence is that the dealer does this only for the first run. On the following runs the
dealer node of each new local tree takes the value it resolved in the previous run i.e.
treemp (d) = resolvem−1p (d). After the information gathering phase each player processes
the information of his local tree as before by the resolve function.

As we said before, we are going to try to detect corrupt nodes in each run by the
information they send. We can do this by examining what other players say about some
value they got in a previous run. So if some honest player r send the same value to all
players concerning some node v1..vk, then, honest children of this node should send the
same value concerning node v1..vkr. So for each possible corruption set, honest player r,
and using the information on the corrupted players we have already, it must hold that

∃u∃C ∈ A : (Lp ∪ {c ∈ C(v1..vkr)|treep(v1..vkrc) 6= u}) ⊆ C

where Lp is the list of already detected players. Additionally, from lemma 4 this
condition can be applied on the DC phase also. That’s because r is honest, so all nodes
v1..vkr are common with treer(v1..vk). After the resolve function has been applied, the
honest children of v1..vkr will compute the same value that r sent them, given that r is
honest.

Formally, we have 2 fault detection rules:

If 6 ∃u : ¬Q1({c ∈ C(v1..vkr)|treep(v1..vkrc) 6= u} ∪ Lp) then r ∈ Lp

Similarly for the DC phase:

If 6 ∃u : ¬Q1({c ∈ C(v1..vkr))|resolvep(v1..vkrc) 6= u} ∪ Lp) then r ∈ Lp

After a corrupted player has been detected by some honest player, all subsequent
messages of the corrupted player are considered to have the value 0. So when all honest
players detect him, all nodes that their value is determined by this node will be common.
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We can now give the complete protocol:

function Efficient Protocol( P, A, d, x)
The dealer d sends its value x to all the players, decides on this value and terminates.

for i = 1→ dn−3b−3 e +1 do
Information Gathering phase with fault detection for b− 1 rounds.
Data conversion with fault detection on the local tree.
For every player p, treep(d) = resolvep(d).

end for
For every player p, decide on treep(d) and halt.
end function

It can be shown that if Q3(P,A) holds then this protocol achieves Byzantine Agreement.
If additionally there exists a polynomial algorithm on n for deciding whether a given
player set is in A, then this protocol is fully polynomial.

3.2.6 Analysis of the efficient protocol

Notice that if agreement has been achieved after the data conversion phase of some run,
then it will persist on the rest of the runs. This follows immediately from lemma 4 since
the value of the root node of treem−1p after some data conversion phase becomes the
value of the root node of treemp on the next information gathering phase. Without proof
we state the following lemma: [11]

Lemma 7. Let v1..vkr be an internal node of the IG-tree but not the parent of a leaf.
If all players corresponding to the path of v1..vkr are faulty and there is a correct player
p who does not detect r to be faulty by either of the fault detection rules, then v1..vkr is
common.

Let’s see what happens at the end of the first run of the loop for some value of b. If
the root node is common, then as we argued before, agreement will persist and byzantine
agreement will be achieved. So suppose that the root node is not common. Then by
lemma 5 the root node does not have a common frontier. That means that there exists a
path from the root to some leaf that does not contain any common node. From lemma 4
this path consists only of faulty nodes, because if some node was honest, then a node of
the path would be common. But from lemma 7 all faulty nodes on the path, except the
leaf and its parent, are detected by all honest players. So b−2 faulty nodes are detected.

The situation is the same on the subsequent runs. Either agreement is achieved or
b− 3 faulty players are detected. Because every player detected is masked, and so these
nodes are common on the runs following, a new path of faulty nodes is detected every
time. But as we said the root is not masked, and that’s why only b−3 nodes are detected.

Theorem 8. For any player set P and adversary structure A, if Q3(P,A) holds, then
the efficient protocol achieves Byzantine Agreement. The message complexity of the
algorithm is polynomial and the number of rounds less than 3n. If additionally there
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exists a polynomial algorithm on n for deciding whether a given player set is in A, then
this protocol is fully polynomial.

Proof. We will first show why this protocol achieves Byzantine Agreement. Let’s suppose
it does not. Then in every run all honest nodes detect at least b − 3 (or b − 2 if they
are on the first run) faulty players. Otherwise they would have achieved agreement in
some run and it would have persisted until the final run. So at the end of the protocol
the honest players have detected k corrupt players:

k = b− 2 + dn− 3

b− 3
e(b− 3)

≥ b− 2 + n− 3

≥ n− 1

Since at least n − 1 players are detected, at most one is honest. But since only
one player is honest, all nodes are common by definition, and so is the root, which is
a contradiction. Thus, Byzantine Agreement has been achieved in an earlier run, and
persists until the end. The message complexity of the protocol is polynomial if we for
example set b = 4. The round complexity of the protocol is #r = b + dn−3b−3 e(b − 1) <
3n.

3.3 Different Perspectives

In this section we briefly look over some different ideas on consensus. Firstly, we present
the idea of unbeatable consensus in a setting with crash failures. On the second part,
we study a recent development on randomized consensus.

3.3.1 Unbeatable Consensus

Unbeatable Consensus is studied in [4] and the basic idea is that we try to find a protocol
so that each player stops as early as possible. We proceed with some definitions that we
will need to state the results of this work.

A run r describes the possibly infinite behavior of a system. A deterministic protocol
Π and a deterministic adversary uniquely determine a run, denoted by r = Π[a]. Our
attention is restricted on those here.

As usual we consider a synchronous communication model but with crash failures,
e.g. faulty players follow the protocol until some round m that they crash. Messages sent
at round m may or may not succeed in arriving. All this information define a failure
pattern.

A failure pattern and the input define the context γ. Given context γ, a protocol
Q dominates a protocol P if for each adversary a, every process in Q[a] decides earlier
or on the same round as the respective process in P [a]. Moreover, a protocol Q strictly
dominates a protocol P if P is dominated by Q and additionally on some run a process
in Q decides strictly before a process in P.
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If some protocol solves a particular task, say Consensus, and it also dominates every
other protocol that solves this task, it is called an all case optimal protocol. Unfortu-
nately for this setting it was proved [20] that no all case optimal protocol exists. So
a different notion of optimality was defined and studied, unbeatibility. A protocol Π
is unbeatable if it solves some task and no other protocol that solves this task strictly
dominates Π on some context.

A full information protocol is roughly a protocol that in every round each node shares
all the messages it has received with every other node in the graph. What distinguishes
different full information protocols is the decision function of each node. A process j at
time l is seen from process i at time m if there exists a message chain from j at time l
to i at time m. A process j at time l is hidden from process i at time m if i (a)does not
know that j has failed before time l and (b) j at time l is not seen from i at time m. A
hidden path with respect to process i and time m on some run r exists if there exists a
sequence of processes j0, .., jm s.t. jl at time l is hidden from i at time m. Notice that
no hidden path exists for (i,m) if ∃l < m s.t. every process (j, l) either is seen by i at
time m or i at time m knows that j has crashed before time l.

To argue about these notions, a knowledge based analysis is used. Informally, node
i knows fact A, denoted by Ki(A), on a well defined system R on time m in run r iff for
all possible runs in this system that are indistinguishable to i, A holds. A fact A is said
to be a precondition of some action σ on a specific system and point 1 (r,m) if A holds
whenever this action is performed. It holds that:

Theorem 9. If A is a precondition for i performing σ in the set of runs of some
deterministic protocol Π then Ki(A) is also a precondition for i to perform σ.

The intuition behind this very simple but strong principle is that if A needs to hold
for i to perform some action, then i will perform this action only if he actually knows A.

For the rest of this section we consider a threshold adversarial model, parametrized
by some value t. A fact we will use is ∃u which means that some player has input u.
From the validity property of consensus and theorem 9 we easily get that:

Lemma 10. Ki(∃u) is a precondition for i to decide on any value u in any protocol that
achieves consensus.

If we use the rule ”if Ki(∃0) then i decides 0” in the unbeatable protocol we are trying
to construct, then by the agreement property we have the following: ”no honest process
ever decides on 0” is a precondition to decide on 1. This is equivalent to knowing that no
active process currently knows ∃0. Furthermore, it is equivalent to ¬Ki(∃0) and no hid-
den path exists for process i at time m. So we can now construct an unbeatable protocol:

1A point is a specific time m on a run r.
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function UP(for process i at time m)
if Ki(0) then

decide 0
else if no hidden path w.r.t process i at time m exists then

decide 1
end if

end function

Theorem 11. Protocol UP is unbeatable.

The proof of this theorem follows from the two observations we made concerning
preconditions needed in order to decide either on 0 or 1. Any protocol that beats UP
should have also its first decision rule. The second decision rule ensures that decision on
1 is taken as soon as possible, without process i risking being wrong.

Concluding, one can observe that there exists a symmetric protocol for the value
1 that is also unbeatable. These two protocols are biased towards value 0 and 1 re-
spectively. In the same work, a majority based unbeatable protocol is also presented.
Extending these results against a byzantine adversary is an interesting open question.

3.3.2 Byzantine Agreement in Polynomial Expected Time

This section presents a recent work on Byzantine Agreement using a randomized algo-
rithm [16]. Randomized algorithms provide a more realistic option in the sense that they
do not achieve agreement in some negligible number of scenarios, but they are more ef-
ficient compared to deterministic algorithms. The setting of this work has the following
differences from what we have seen before:

• The adversary is adaptive, he can determine which process he will corrupt as the
algorithm proceeds. He also knows everything except future coin flips of the private
coins other players have.

• The communication is asynchronous.

• The adversary is byzantine and corrupts a fraction of the players.

Theorem 12. There exists an algorithm [16] that solves Byzantine Agreement in ex-
pected time O(n2.5) and expected polynomial number of messages, where n is the number
of the players, when the adversary controls at most up to 1/500 players.

The algorithm builds up from concepts coming from past works. First, the idea
of a global common coin simulation. By flipping their private coins repeatedly and
broadcasting the result of this flip, players try to efficiently simulate a global coin flip.
However, the adversary can disrupt this process by sending arbitrary values in order to
steer the outcome the way he wants.
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As we have seen before in section 3.2, to efficiently overcome the misbehavior of
the adversary, detection mechanisms can be used. Misbehavior of players controlled
by the adversary is detected and these players are blacklisted. Because we are talking
here about randomized behavior, an honest player may also be punished. It is ensured
that the number of honest players blacklisted is sufficiently small and does not ruin the
performance of the protocol.

So by combining these two ideas, if a player’s broadcast coin flips do not ”look” from
a statistical point of view like he is actually flipping a coin for the global coin protocol,
then with high probability he is malicious and he is blacklisted. This way the global
common coin is built.

The global coin is used on a protocol proposed by Ben-Or [2]. In this protocol the
players calculate the majority of votes of the other players. If a large number of the
players agree on the same value, then the adversary cannot change the value of the
majority and players decide on this value. Alternatively some of the players flip their
coins in order to simulate a global coin flip.

The proposed protocol repeats this process enough times, while honest players black-
list other suspicious players to eventually reach agreement. The algorithm produced is
Las Vegas, it always achieves byzantine agreement.

At first what is evident from this work, and the work on section 3.2, is that if we
want to be efficient, we should carefully analyze and detect malicious behavior, and even
force it. In older works, the treatment of adversarial behavior was ”passive”, in the
sense that protocols were not build with the idea of actively exposing misbehavior and
blacklisting misbehaved players for the rest of the protocol. A large chunk of information
was overlooked or only used at a much later time than it was obtained. Secondly, as in
almost every field of modern computing, randomization is a very efficient tool against
worst case behavior and should not be overlooked.



Chapter 4

Reliable broadcast and topology
knowledge

Most of the results described on this chapter were published on the 28th International
Symposium of Distributed Computing (DISC 2014) [22].

4.1 Introduction

The case of Reliable Broadcast under a threshold adversary in incomplete networks has
been studied to a much lesser extent, in a study initiated in [6, 7, 18], mostly through
protocols for Secure Message Transmission which, combined with a Broadcast protocol
for complete networks, yield Broadcast protocols for incomplete networks. Naturally,
connectivity constraints are required to hold in addition to the n/3 bound. Namely, at
most t < c/2 corruptions can be tolerated, where c is network connectivity, and this
bound is tight[6].

In the case of an honest dealer, particularly meaningful in wireless networks, the
impossibility threshold of n/3 does not hold; for example, in complete networks with an
honest dealer the problem becomes trivial regardless of the number of corrupted players.
However, in incomplete networks the situation is different. A small number of traitors
(corrupted players) may manage to block the entire protocol if they control a critical
part of the network, e.g. if they form a separator of the graph. It therefore makes sense
to define criteria (or parameters) depending on the structure of the graph, in order to
bound the number or restrict the distribution of traitors that can be tolerated.

An approach in this direction is to consider topological restrictions on the adversary’s
corruption capacity. We will first focus on local restrictions, the importance of which
comes, among others, from the fact that they may be used to derive criteria which can
be employed in ad hoc networks. Such a paradigm is the t-locally bounded adversary
model, introduced in [17], in which at most a certain number t of corruptions are allowed
in the neighborhood of every node.

The locally bounded adversarial model is particularly meaningful in real-life applica-
tions and systems. For example, in social networks it is more likely for an agent to have a

23
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quite accurate estimation of the maximum number of malicious agents that may appear
in its neighborhood, than having such information, as well as knowledge of connectivity,
for the whole network. In fact, this scenario applies to all kinds of networks, where each
node is assumed to be able to estimate the number of traitors in its close neighborhood.
It is also natural for these traitor bounds to vary among different parts of the network.
Motivated by such considerations, in this work we will introduce a generalization of the
t-locally bounded model.

4.1.1 Related Work

Considering t-locally bounded adversaries, Koo [17] proposed a simple, yet powerful
protocol, namely the Certified Propagation Algorithm (CPA) (a name coined by Pelc
and Peleg in [24]), and applied it to networks of specific topology. CPA is based on the
idea that a set of t + 1 neighbors of a node always contain an honest one. Pelc and
Peleg [24] considered the t-locally bounded model in generic graphs and gave a sufficient
topological condition for CPA to achieve Broadcast. They also provided an upper bound
on the number of corrupted players t that can be locally tolerated in order to achieve
Broadcast by any protocol, in terms of an appropriate graph parameter; they left the
deduction of tighter bounds as an open problem. To this end, Ichimura and Shigeno [15]
proposed an efficiently computable graph parameter which implies a more tight, but not
exact, characterization of the class of graphs on which CPA achieves Broadcast. It had
remained open until very recently to derive a tight parameter revealing the maximum
number of traitors that can be locally tolerated by CPA in a graph G with dealer D.
Such a parameter is implicit in the work of Tseng et al. [26], who gave a necessary and
sufficient condition for CPA Broadcast. Finally, in [19] such a graph parameter was
presented explicitly, together with an efficient 2-approximation algorithm for computing
its value.

A more general approach regarding the adversary structure was initiated by Hirt
and Maurer in [14] where they studied the security of multiparty computation protocols
with respect to an adversary structure, i.e. a family of sets of players, such that the
adversary may entirely corrupt any set in the family. This line of work has yielded
results on Broadcast against a general adversary in complete networks [11] but, to the
best of our knowledge, the case of Broadcast against general adversaries in incomplete
networks has not been studied as such.1 A study on the related problem of Iterative
Approximate Byzantine Consensus against general adversaries can be seen in [25] where
a similar model for the ad hoc case is considered.

4.1.2 Our Results

In this work we study the tradeoff between the level of topology knowledge and the
solvability of the problem, under various adversary models.

1Some related results are implicit in [18], but in the problem studied there, namely Secure Message
Transmission, additional secrecy requirements are set which are out of the scope of our study.
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We first consider a natural generalization of the t-locally bounded model, namely
the non-uniform t-locally bounded model which subsumes the (uniform) model studied
so far. The new model allows for a varying bound on the number of corruptions in
each player’s neighborhood. We address the issue of locally resilient Broadcast in the
non-uniform model. We present a new necessary and sufficient condition for CPA to be
t-locally resilient by extending the notion of local pair cut of Pelc and Peleg [24] to the
notion of partial local pair cut. Note that although equivalent conditions exist [26, 19], the
simplicity of the new condition allows to settle the open question of CPA Uniqueness [24]
in the affirmative: we show that if any safe (non-faulty) algorithm achieves Broadcast
in an ad hoc network then so does CPA. We next prove that computing the validity of
the condition is NP-hard and observe that the latter negative result also has a positive
aspect, namely that a polynomially bounded adversary is unable to design an optimal
attack unless P = NP.

We next shift focus on networks of known topology and devise an optimal resilience
protocol, which we call Path Propagation Algorithm (PPA). Using PPA we prove that
a topological condition which was shown in [24] to be necessary for the existence of a
Broadcast algorithm is also sufficient. Thus, we manage to exactly characterize the class
of networks for which there exists a solution to the Broadcast problem. On the downside,
we prove that it is NP-hard to compute an essential decision rule of PPA, rendering the
algorithm inefficient. However, we are able to provide an indication that probably no
efficient protocol of optimal resilience exists, by showing that efficient algorithms which
behave exactly as PPA w.r.t. decision do not exist if P 6= NP.

We then take one step further, by considering a hybrid between ad hoc and known
topology networks: each node knows a part of the network, namely a connected subgraph
containing itself. We propose a protocol for this setting as well, namely the Generalized
Path Propagation Algorithm (GPPA). We use GPPA to show that this partial knowledge
model allows for Broadcast algorithms of increased resilience.

Finally, we study the general adversary model and show that an appropriate adapta-
tion of CPA is unique against general adversaries in ad hoc networks. To the best of our
knowledge this is the first algorithm for Reliable Broadcast in generic topology ad hoc
networks against a general adversary. We show an analogous result for known topology
networks, which however can be obtained implicitly from [18] as mentioned above.

We conclude by discussing how to extend our results to the case of a corrupted dealer
by simulating Broadcast protocols for complete networks.

A central tool in our work is a refinement of the local pair-cut technique of Pelc and
Peleg [24] which proves to be adequate for the exact (in most cases) characterization of
the class of graphs for which Broadcast is possible for any level of topology knowledge
and type of corruption distribution. A useful by-product of practical interest is that the
refined cuts can be used to determine the exact subgraph in which Broadcast is possible.

For clarity we have chosen to present our results for the t-local model first (Sections
3,4,5), for which proofs and protocols are somewhat simpler and more intuitive, and
then for the more involved general adversary model (Section 6).
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4.2 Problem and Model Definition

In this paper we address the problem of Reliable Broadcast with an honest dealer in
generic (incomplete) networks. As we will see in Section 4.6.1, this case essentially
captures the difficulty of the general problem, where even the dealer may be corrupted.
The problem definition follows.

Reliable Broadcast with Honest Dealer. The network is represented by a graph G =
(V,E), where V is the set of players, and E represents authenticated channels between
players. We assume the existence of a designated honest player, called the dealer, who
wants to broadcast a certain value xD ∈ X, where X is the initial input space, to all
players. We say that a distributed protocol achieves Reliable Broadcast if by the end
of the protocol every honest player has decided on xD, i.e. if it has been able to deduce
that xD is the value originally sent by the dealer and output it as its own decision.

The problem is trivial in complete networks; we will consider the case of incomplete
networks here. For brevity we will refer to the problem as the Broadcast problem.

We will now formally define the adversary model by generalizing the notions originally
developed in [17, 24]. We will also define basic notions and terminology that we will use
throughout the paper. We refer to the participants of the protocol by using the terms
node and player interchangeably.

Corruption function. Taking into account that each player might be able to esti-
mate her own upper bound on the corruptions of its neighborhood, as discussed earlier,
we introduce a model in which the maximum number of corruptions in each player’s
neighborhood may vary from player to player. We thus generalize the standard t-locally
bounded model [17] in which a uniform upper bound on the number of local corruptions
was assumed. Here we consider t : V → N to be a corruption function over the set of
players V .

Non-Uniform t-Locally Bounded Adversary Model. The network is represented by
a graph G = (V,E). One player D ∈ V is the dealer (sender). A corruption function
t : V → N is also given, implying that an adversary may corrupt at most t(u) nodes
in the neighborhood N (u) of each node u ∈ V . The family of t-local sets plays an
important role in our study since it coincides with the family of admissible corruption
sets.

Definition 6 (t-local set). Given a graph G = (V,E) and a function t : V → N a t-local
set is a set C ⊆ V for which ∀u ∈ V, |N (u) ∩C| ≤ t(u). For V ′ ⊆ V a t-local w.r.t. V ′

set is a set C ⊆ V for which ∀u ∈ V ′, |N (u) ∩ C| ≤ t(u).

Uniform vs Non-Uniform Model. Obviously the original t-locally bounded model
corresponds to the special case of t being a constant function. Hereafter we will refer
to the original t-locally bounded model as the Uniform Model as opposed to the Non-
Uniform Model which we introduce here.

In our study we will often make use of node-cuts which separate some players from
the dealer, hence, node-cuts that do not include the dealer. From here on we will
simply use the term cut to denote such a node-cut. The notion of t-local pair cut was
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introduced in [24] and is crucial in defining the bounds for which correct dissemination
of information in a network is possible.

Definition 7 (t-local pair cut). Given a graph G = (V,E) and a function t : V → N, a
pair of t-local sets C1, C2 s.t. C1 ∪ C2 is a cut of G is called a t-local pair cut.

The next definition extends the notion of t-local pair cut and is particularly use-
ful in describing capability of achieving Broadcast in networks of unknown topology
(ad hoc networks) where each player’s knowledge of the topology is limited in its own
neighborhood.

Definition 8 (t-partial local pair cut). Let C be a cut of G, partitioning V \C into sets
A,B 6= ∅ s.t. D ∈ A. C is a t-partial local pair cut (t-plp cut) if there exists a partition
C = C1 ∪ C2 where C1 is t-local and C2 is t-local w.r.t. B.

In the uniform model the Local Pair Connectivity (LPC(G,D)) [24] parameter of a
graph G with dealer D, was defined to be the minimum integer t s.t. G has a t-local pair
cut. To define the corresponding notion in the non-uniform model we need to define a
(partial) order among corruption functions. Nevertheless, for reasoning about our results
it suffices to consider the following decision problem:

Definition 9 (pLPC). Given a graph G, a dealer D and a corruption function t deter-
mine whether there exists a t-plp cut in G.

Definition 10 (t-locally resilient algorithm). An algorithm which achieves Broadcast
for any t-local corruption set in graph G with dealer D is called t-locally resilient for
(G,D).

Definition 11 (safe / t-locally safe algorithm). A Broadcast algorithm which never
causes an honest node to decide on an incorrect value, is called safe.
A Broadcast algorithm which never causes an honest node to decide on an incorrect value
under any t-local corruption set, is called t-locally safe.

4.3 Ad Hoc Networks

4.3.1 Certified Propagation Algorithm (CPA)

The Certified Propagation algorithm [17] uses only local information and thus is par-
ticularly suitable for ad hoc networks. CPA is probably the only Broadcast algorithm
known up to now for the t-locally bounded model, which does not require knowledge of
the network topology. We use a modification of the original CPA that can be employed
under the non-uniform t-locally bounded adversary model. Namely a node v, upon re-
ception of t(v) + 1 messages with the same value x from t(v) + 1 distinct neighbors,
decides on x, sends it to all neighbors and terminates.
Fact. CPA is a t-locally safe Broadcast algorithm. By induction an honest node decides
only when at least one honest neighbor has decided on the same value.

Protocol 1: Certified Propagation Algorithm (CPA) for the Non-Uniform
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Model

Input (for each node v): Dealer’s label D, labels of v’s neighbors, corruption bound t(v).
Message format : A single value x ∈ X.

Code for D: send value xD ∈ X to all neighbors, decide on xD and terminate.

Code for v ∈ N (D): upon reception of xD from the dealer, decide on xD, send it to all
neighbors and terminate.

(* certified propagation rule *)

Code for v /∈ N (D) ∪ D: upon reception of t(v) + 1 messages with the same value x
from t(v) + 1 distinct neighbors, decide on x, send it to all neighbors and terminate.

4.3.2 CPA Uniqueness in Ad Hoc Networks

Based on the above definitions we can now prove the CPA uniqueness conjecture for
ad hoc networks, which was posed as an open problem in [24]. The conjecture states
that no algorithm can locally tolerate more corrupted nodes than CPA in networks of
unknown topology.

We consider only the class of t-locally safe Broadcast algorithms. We assume the
ad hoc network model, as described e.g. in [24]. In particular we assume that nodes
know only their own labels, the labels of their neighbors and the label of the dealer. We
call a distributed Broadcast algorithm that operates under these assumptions an ad hoc
Broadcast algorithm.

Theorem 13 (Sufficient Condition). Given a graph G, a corruption function t and a
dealer D, if no t-plp cut exists, then CPA is t-locally resilient for (G,D).

Proof. Suppose that no t-plp cut exists in G. Let T be the corruption set; clearly
T ∪N(D) is a cut on G as defined before (i.e. not including node D). Since T is t-local
and T ∪N(D) is not a t-plp cut there must exist u1 ∈ V \ (T ∪N (D)∪D) s.t. |N(u1)∩
(N(D)\T )| ≥ t(u1)+1. Since u1 is honest it will decide on the dealer’s value xD. Let us
now use the same argument inductively to show that every honest node will eventually
decide on the correct value xD through CPA. Let Ck = (N(D) \ T ) ∪ {u1, u2, ..., uk−1}
be the set of the honest nodes that have decided until a certain round of the protocol.
Then Ck ∪ T is a cut. Since T is t-local, by the same argument as before there exists a
node uk s.t. |Ck ∩ N(uk)| ≥ t(uk) + 1 and uk will decide on xD. Eventually all honest
players will decide on xD. Thus CPA is t-locally resilient in G.

Theorem 14 (Necessary Condition). Let A be a t-locally safe ad hoc Broadcast algo-
rithm. Given a graph G, a corruption function t and a dealer D, if a t-plp cut exists,
then A is not t-locally resilient in (G,D).
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Figure 4.1: Graphs G and G′

Proof. Assume that there exists a t-plp cut C = T ∪H in graph G with dealer D with
T being the t-local set of the partition and H the t-local w.r.t. to B set (Figure 4.1).
Let G′ be a graph that results from G if we remove some edges that connect nodes in
A∪ T ∪H with nodes in H so that the set H becomes t-local in G′ (e.g. we can remove
all edges that connect nodes in A ∪ T ∪ H with nodes in H). Note that the existence
of a set of edges that guarantees such a property is implied by the fact that H is t-local
w.r.t. B.

The proof is by contradiction. Suppose that there exists a t-locally safe Broadcast
algorithm A which is t-locally resilient in graph G with dealer D. We consider the
following executions σ and σ′ of A :

Execution σ is on the graph G with dealer D, with dealer’s value xD = 0, and
corruption set T ; in each round, all players in T perform the actions that perform in the
respective round of execution σ′ (where T is a set of honest players).

Execution σ′ is on the graph G′ with dealer D, with dealer’s value xD = 1, and
corruption set H; in each round, all players in H perform the actions that perform in
the respective round of execution σ (where H is a set of honest players).

Note that T,H are admissible corruption sets in G,G′ respectively due to their
t-locality. It is easy to see that H ∪ T is a cut which separates D from B in both
G and G′ and that actions of every node of this cut are identical in both executions
σ, σ′. Consequently, the actions of any honest node w ∈ B must be identical in both
executions. Since, by assumption, algorithm A is t-locally resilient on G with dealer D,
w must decide on the dealer’s message 0 in execution σ on G with dealer D, and must
do the same in execution σ′ on G′ with dealer D. However, in execution σ′ the dealer’s
message is 1. Therefore A makes w decide on an incorrect message in (G′, D). This
contradicts the assumption that A is locally safe.

We can show that if we drop the requirement for t-local safety, then the theorem
does not hold. Intuitively, the reason is that an ad hoc protocol that assumes certain
topological properties for the network may be t-locally resilient in a family of graphs that
have the assumed topological properties. Indeed, Pelc and Peleg [24] introduced another
algorithm for the uniform model, the Relaxed Propagation Algorithm (RPA) which uses
knowledge of the topology of the network and they proved that there exists a graph G′′
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with dealer D for which RPA is 1-locally resilient and CPA is not. So if we use RPA in
an ad hoc setting assuming that the network is G′′ then this algorithm will be t-locally
resilient for (G′′, D) while CPA will not. Non-t-local safety of RPA can easily be shown.
This shows that there exists non-safe algorithms of higher resilience than CPA. The next
corollary is immediate from Theorems 13,14.

Corollary 15 (CPA Uniqueness). Given a graph G and dealer D, if there exists an
ad hoc Broadcast algorithm which is t-locally resilient in (G,D) and t-locally safe, then
CPA is t-locally resilient in (G,D).

4.3.3 Hardness of pLPC

Ichimura and Shigeno in [15] prove that the set splitting problem, known as NP-hard [13],
can be reduced to the problem of computing the minimum integer t such that a t-local
pair cut exists in a graph G. By generalizing the notion of the t-local pair cut to that
of t-plp cut and defining the pLPC problem analogously one can use a nearly identical
proof to that of [15] and show that the pLPC problem is NP-hard.

Theorem 16. pLPC is NP-hard.
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Figure 4.2: An instance and and the solution of a set splitting problem with X =
{1, 2, 3, 4, 5, 6} and A = {{1, 2, 3}, {3, 4, 5}, {1, 4, 6}, {2, 4, 5}}. The solution is depicted
by the the two sets X1 = {1, 3, 5} and X2 = {2, 4, 6} in blue and red respectively. Notice
that all sets in A have at least one node of both colors.

Proof. We show that the set splitting problem known as NP-hard [13] can be reduced to
the pLPC problem. Given a collection S of 3-element subsets of a finite set X, the set
splitting problem asks whether there is a partition of X into two subsets X1 and X2 such
that no subset in S is entirely contained in eitherX1 orX2. An example of this problem is
shown in figure 4.2. Let S+ be a multiple collection adding dummy subsets {v} to S such
that the cardinality of {s ∈ S+ : v ∈ s} is at least six for each v ∈ X. A complete graph
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with vertex set S+ and a copy of it are denoted by KS+ and K ′S+, respectively. We
construct a graph GSSP (figure 4.3) with vertex set V (GSSP ) = V (KS+)∪V (K ′S+)∪X
and edge set E(GSSP ) = E(KS+) ∪ E(K ′S+) ∪ {(v, s), (v, s′) : v ∈ X, s ∈ S+, v ∈ s},
where s is a node in V (K ′S+) which is a copy of s ∈ S+. If a subgraph of GSSP deleting
C(⊆ V (GSSP )) has at least two connected components and X \ C 6= ∅, C contains
N (v) ∩ V (KS+) or N (v) ∩ V (K ′S+) for some v ∈ X. Since each v ∈ X has at least six
neighbor in both V (KS+) and V (K ′S+), C is a t-local pair side cut with t >= 3. We
next consider the case of C = X. We can partition X into two 2-local sets in GSSP ,
if and only if the set splitting problem has a desired partition X1 and X2. Therefore,
we have pLPC(GSSP , 2) = true, if and only if the set splitting problem has a desired
partition. Now we can easily show that NP-hardness for pLPC(G, t) without a dealer
implies NP-hardness for the case with a dealer. If pLPC(G, t,D) could be solved with a
polynomial-time algorithm then solving pLPC(G, t, v) for every node in V would suffice
to build a polynomial algorithm for pLPC(G, t) which is a contradiction. Therefore to
compute pLPC(G, t,D) is NP-hard.

Therefore, computing the necessary and sufficient condition for CPA to work is NP-
hard. Observe that this negative result also has a positive aspect, namely that a polyno-
mially bounded adversary is unable to always compute an optimal attack unless P = NP.

4.4 Known topology Networks

4.4.1 The Path Propagation Algorithm

Considering only safe Broadcast algorithms, the uniqueness of CPA in the ad hoc model
implies that an algorithm that achieves Broadcast in cases where CPA does not, must
operate under a weaker model e.g., assuming additional information on the topology of
the network. It thus makes sense to consider the setting where players have full knowl-
edge of the topology of the network. In this section we propose the Path Propagation
Algorithm (PPA) and show that is of optimal resilience in the full-knowledge model. For
convenience we will use the following notions: a set S ⊆ V \D is called a cover of a set
of paths P if and only if ∀p ∈ P, ∃s ∈ S s.t. s ∈ p (s is a node of p). With tail(p) we
will denote the last node of path p. The description of PPA follows.

Protocol 2: Path Propagation Algorithm (PPA)

Input (for each node v): graph G, dealer D, t(v) = max #corruptions in N(v).
Message format : pair (x, p), where x ∈ X (message space), and p is a path of G (mes-
sage’s propagation trail).

Code for D: send message (xD, D) to all neighbors, decide on xD and terminate.

Code for v 6= D: upon reception of (x, p) from node u do:
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Figure 4.3: The graph GSSP for the set splitting problem in figure 4.2.

if (v ∈ p) ∨ (tail(p) 6= u) then discard the message
else send (x, p||v) 2 to all neighbors.

if decision(v) 6= ⊥ then send message (decision(v), v) to all neighbors.

function decision(v)

(* dealer propagation rule *)

if v ∈ N (D) and v receives (xD, D) then return xD.

(* honest path propagation rule *)

if v receives (x, p1), . . . , (x, pn) ∧ @ t-local cover of {p1, . . . , pn}
then return x else return ⊥.

2By p||v we denote the path consisting of path p and node v, with the last node of p connected to v.
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The correctness of the honest path propagation rule is trivial: if a path is entirely
corruption free, then value x, which is relayed through that path, is correct. Checking
whether tail(p) 6= u we ensure that at least one corrupted node will be included in a faulty
path. Observe that each player can check the validity of the honest path propagation
rule only if it has knowledge of the corruption function t and the network’s topology.

4.4.2 A necessary and sufficient condition

We will now show that the non-existence of a t-local pair cut is a sufficient condition for
PPA to achieve Broadcast in the t-locally bounded model in networks of known topology
(proof omitted).

Theorem 17 (Sufficiency). Given a graph G with dealer D and corruption function t,
if no t-local pair cut exists in (G,D) then all honest players will decide through PPA on
xD.

Proof. All players in N (D) decide due to the dealer propagation rule, since the dealer
is honest. We next show the rest of the players will decide due to the honest path
propagation rule.

Let v be any player in V \N (D) and assume that no t-local pair cut exist in (G,D)
exist. Let T be a t-local set and consider the execution σT of PPA where T is the
corruption set. Let P be the set of all paths connecting D with v and are composed
entirely by nodes in V \ T (honest nodes). Observe that P 6= ∅, otherwise T is a cut
separating D from v and T is trivially a t-local pair cut, a contradiction. Since paths in
P are entirely composed by honest nodes it is easy to see that v will receive the correct
value through all paths in P.

We next prove that under any t-local corruption set T ′ at least one path in P is
completely corruption free.

Assume that ∃T ′ : t-local cover of P. Then obviously T ∪ T ′ is a cut separating D
from v, since every path that connects D with v contains at least a node in T ∪ T ′.
Moreover the cut T ∪ T ′ can be partitioned in the sets T \ T ′, T ′ which are trivially
t-local and thus, T ∪ T ′ is a t-local pair cut, a contradiction. Hence, under any t-local
corruption set T ′ at least one path in P is entirely corruption free.

Consequently, in execution σT , node v will receive the correct value through every
path in P along with the corresponding propagation trail and will decide on the correct
value due to the honest path propagation rule, because P is not covered by any t-local
set. Moreover honest nodes will not decide on the wrong value due to this rule, because
the set of paths transmitting this value will always have a t-local cover (the corruption
set T ).

Using the same arguments as in the proof of the necessity of condition t < LPC(G,D) [24]
it can be seen that the non-existence of a t-local pair cut is a necessary condition for
any algorithm to achieve Broadcast under the non-uniform model.
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Theorem 18 (Necessity). Given a graph G with dealer D and corruption function t, if
there exists a t-local pair cut in (G,D) then there is no t-locally resilient algorithm for
(G,D).

Thus the non-existence of a t-local pair cut proves to be a necessary and sufficient
condition for the existence of a t-locally resilient algorithm in both the uniform and the
non-uniform model. Therefore PPA is of optimal resilience.

4.4.3 On the hardness of Broadcast in known networks

In order to run PPA we have to be able to deduce whether a corruption-free path exists
among a set of paths broadcasting the same value. Formally, given a graph G(V,E), a
set of paths P and a node u (the one that executes decision(u)) we need to determine
whether there exists a t-local cover T of P. We call this problem the Local Path Cover
Problem, LPCP (G,D, u, t,P) and show that is NP-hard (proof omitted).

Theorem 19. It is NP-hard to compute LPCP (G,D, u, t,P).

Proof. We will describe a reduction from 3SAT to LPCP (G,D, u, t,P). For every
variable xi we construct a gadget Gxi shown on the left of Figure 4.4. We will make use
of a parameter µ that will serve as a constant corruption function (that is, our hardness
result holds even for the uniform model). We will use several copies of the complete
graphs Kµ+1 and K2µ. Node D is connected to every vertex of a Kµ+1 copy. Every
vertex of that Kµ+1 copy is connected with the ‘upper’ µ vertices of a K2µ copy; let us
call this ‘upper’ node set Xi. Symmetrically for the lower part, node u is connected to
every vertex of another Kµ+1 copy and every vertex of that Kµ+1 copy is connected to
the ‘lower’ µ vertices of K2µ, let us call this set X ′i. Now assuming that P contains those
paths in Gxi that are of length 5 and connect D to u (and no other path in Gxi) it is
easy to show that :

Lemma 20. If LPCP (G,D, u, µ,P) = 1 with µ-local cover T , then either Xi ⊆ T or
X ′i ⊆ T .

T ∩Gxi is a cut of Gxi . Since the only µ-local cuts in Gxi are Xi and X ′i, the claim
is immediate.

Now for every clause ci = ci1 ∨ ci2 ∨ ci3 in C we construct the gadget shown on the
right of Figure 4.4. Node D is connected to every vertex of Kµ+1. Every vertex of Kµ+1

is connected to the first literal of the clause, say li1 . Literal li1 is connected to li2 , and
li2 to li3 . And symmetrically, node u is connected to every vertex of another copy of
Kµ+1 and every vertex of Kµ+1 is connected to li3 . Let us call this subgraph of G, Gci .
Assuming that all paths from D to u of length 6 that go through Gci are contained in
P we show that:

Lemma 21. if LPCP (G,D, u, µ,P) = 1 with µ-local cover T , then li1 ∈ T or li2 ∈ T
or li3 ∈ T .
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Figure 4.4: An instance of the reduction graph G for variables {x1, x2, x3} and clause
c1 = {x1 ∨ x2 ∨ ¬x3}.
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The proof is by contradiction: if no lij node belongs to T , then it must be Kµ+1 ⊆ T ,
contradicting the t-locality of T .

The last thing we need to establish is that if Xi ⊆ T (respectively X ′i ⊆ T ), no ¬xi
(resp. xi) literal of Gcj is in T . We achieve this by adding a node vij connecting Xi (resp.
X ′i) to ¬xi (resp. xi) for each appearance of these literals in some Gcj . The following
holds because If both Xi and ¬xi are in T , then T is not µ-local since |N(vij)∩T | = µ+1.

Lemma 22. If LPCP (G,D, u, µ,P) = 1 with µ-local cover T , then Xi ⊆ T (resp.
X ′i ⊆ T ) ⇒ ¬xi 6∈ T (resp. xi 6∈ T ).

So for graph G that is constructed as described above and for path set P consisting of
the paths used for proving Lemmata 20 and 21 we have that LPCP (G,D, u, µ,P) = 1
iff there exists a truth assignment A which makes every clause in C true. The ‘⇒’
direction follows from the lemmata proved above. The truth assignment A is constructed
as follows: if Xi ⊆ T (resp. X ′i ⊆ T ) then ¬xi (resp. xi) is true in A. The ‘⇐’ direction
comes naturally by setting T contain Xi if xi is true by A, otherwise T contains X ′i; T
also contains all literals in Gcj that are set true by A. Then T is a µ-local cover of P
and LPCP (G,D, u, µ,P) = 1.

The above theorem implies that PPA may not be practical in some cases, since its
decision rule cannot be always checked efficiently. It remains to show whether any other
algorithm which has the same resilience as PPA can be efficient. The following theorem
provides an indication that the answer is negative, by showing that algorithms which
behave exactly as PPA w.r.t. decision are unlikely to be efficient.

Theorem 23. Assuming P 6= NP, no safe fully polynomial protocol Π can satisfy the
following: for any graph G, dealer D, corruption function t, and admissible corruption
set C executing protocol ΠC , a node u decides through PPA on a value x iff u will decide
on x by running Π on (G,D, t, C,ΠC).

Proof. We will show that if such Π existed then it would be a polynomial time solver for
the 3-SAT problem. Let us consider what happens when Π is run on the graph G that
we used in the proof of Theorem 19, with dealer D and the corrupted nodes being the
ones that connect the “clause” gadgets with the “variable” gadgets (e.g. C = {v1, v2, v3}
in Figure 4.4). The adversary protocol ΠC is: the corrupted nodes don’t send or relay
any messages.

The 3-SAT instance used to make G has a solution iff LPCP (G,D, u, t,P) = 1, i.e.
a µ-local cover C1 on P exists, where P is the set of paths we used in the proof of
Theorem 19. It can be seen from the decision rule of PPA that, while running PPA on
G, u will not decide on any value iff a µ-local cover C1 on P exists. Moreover a node
u does not decide through on a value x iff u does not decide on x by running Π on
(G,D, t, C,ΠC).

So u decides on xD while running Π on G, with dealer D and corruption set C which
runs the ΠC protocol iff 3-SAT does not have a solution. Apparently if Π existed then
3-SAT would have a polynomial time solver.
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4.5 Partial knowledge

Until now we have presented optimal resilience algorithms for Broadcast in two extreme
cases, with respect to the knowledge over the network topology: the ad hoc model and
the full-knowledge model. A natural question arises: is there any algorithm that works
well in settings where nodes have partial knowledge of the topology?

To address this question we devise a new, generalized version of PPA that can run
with partial knowledge of the topology of the network. More specifically we assume that
each player v only has knowledge of the topology of a certain connected subgraph Gv
of G which includes v. Namely if we consider the family G of connected subgraphs of
G we use the topology view function γ : V → G, where γ(v) represents the subgraph
over which player v has knowledge of the topology. We also define the joint view of a
set S as the subgraph γ(S) of G with node-set V (γ(S)) =

⋃
u∈S V (γ(u)) and edge-set

E(γ(S)) =
⋃
u∈S E(γ(u)). We will call an algorithm which achieves Broadcast for any t-

local corruption set in graph G with dealer D and view function γ, (γ, t)-locally resilient
for (G,D).

Now given a corruption function t and a view function γ we define the Generalized
Path Propagation Algorithm (GPPA) to work exactly as PPA apart from a natural
modification of the path propagation rule.

Generalized path propagation rule: Player v receives the same value x from a set P of
paths that are completely inside γ(v) and is able to deduce (from the topology) that no
t-local cover of P exists.

Remark. Note that GPPA generalizes both CPA and PPA. Indeed, if ∀v ∈ V, γ(v) =
N (v), then GPPA(G,D, t, γ) coincides with CPA(G,D, t). If, on the other hand, ∀v ∈
V, γ(v) = G then GPPA(G,D, t, γ) coincides with PPA(G,D, t). We also notice that,
quite naturally, as γ provides more information for the topology of the graph, resilience
increases, with CPA being of minimal resilience in this family of algorithms, and PPA
achieving maximal resilience.

To prove necessary and sufficient conditions for GPPA being t-locally resilient we
need to generalize the notion of t-plp cut as follows:

Definition 12 (type 1 (γ, t)-partial local pair cut). Let C be a cut of G, partitioning
V \ C into sets A,B 6= ∅ s.t. D ∈ A. C will be called a type 1 (γ, t)-partial local pair
cut (plp1 cut) if there exists a partition C = C1 ∪ C2 s.t. C1 is t-local and C2 is t-local
in the graph γ(B).

Definition 13 (type 2 (γ, t)-partial local pair cut). Let C be a cut of G, partitioning
V \C into sets A,B 6= ∅ s.t. D ∈ A. C will be called a type 2 (γ, t)-partial local pair cut
(plp2 cut) if there exists a partition C = C1∪C2 s.t. C1 is t-local and ∀u ∈ B, C2∩N(u)
is t-local in the graph γ(u).

We can now show the following two theorems. The proofs build on the techniques
presented for CPA and PPA and are omitted.
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Figure 4.5: A graph where originally H is not t-local, but it seems t-local in γ(B).

Theorem 24 (sufficient condition). Let t be corruption function and γ be a view func-
tion, if no (γ, t)-plp2 cut exists in G with dealer D then GPPA(G,D, t, γ) is (γ, t)-locally
resilient for G,D.

Proof. Suppose no (γ, t)-plp2 cut exists. T ∪N(D) is a cut on G non including node D.
From the definition of (γ, t)-plp2 cut we have that there exists u1 ∈ V \ (T ∪N (D)∪D)
s.t. N(D)∩N(u) is not t-local on γ(u1). But since all the honest nodes in N(D)∩N(u)
have decided, u will receive the value xD from paths starting from these nodes of length
1. Finding a t-local corruption set covering these paths is impossible since it would
have to include all these nodes, and from above, it would not be t-local. So u1 will
decide on the dealer’s value xD. We can use the same argument inductively to show
that every honest node will eventually decide on the correct value xD through GPPA.
Let Ck = (N(D) \ T ) ∪ {u1, u2, ..., uk−1} be the set of the nodes that have decided until
a certain round of the protocol. Then Ck ∪ T is a cut. Since T is t-local by the same
argument as before there exists an undecided node uk s.t. Ck ∩N(uk) is not t-local on
γ(uk). Using the same argument as before uk will decide on the correct value. Eventually
all honest players will decide on xD. Thus GPPA is t-locally resilient in G.

Theorem 25 (necessary condition). Let t be a corruption function, γ be a view function
and A be a t-locally safe ad hoc Broadcast algorithm. If a (γ, t)-plp1 cut exists in graph
G with dealer D, then A is not (γ, t)-locally resilient for G,D.

Proof. Assume that there exists a (γ, t)-plp1 cut C = T ∪H in graph G with dealer D
and with T being the t-local set of the partition (Figure 4.1). γ(B) is the joint view of
the nodes in B. G′ is the graph that results from G if we remove edges from A \ γ(B)
s.t. the set H becomes t-local in G′. The existence of a set of edges that guarantees
such a property is implied by the second property of the (γ, t)-plp1 cut. Suppose that
there exists a t-locally safe Broadcast algorithm A which is t-locally resilient in graph
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G with dealer D. We can argue the same way we did on Theorem 14 which leads to a
contradiction.

One can argue that increased topology knowledge implies increased resilience for
GPPA compared to CPA; for example, the sufficient condition of GPPA holds in set-
tings where the sufficient condition of CPA does not hold. An overview of our results
concerning the t-local model with respect to the level of topology knowledge appears in
Figure 4.6.

Notice that the reason for which GPPA is not optimal is that nodes in γ(v) do not
share their knowledge of topology. An optimal resilience protocol would probably include
exchange of topological knowledge among players.

G

∃ safe, t-locally resilient
Ad-Hoc algorithm (CPA)

⇔
@ a t-plp cut

@ a t-local pair cut

∃ t-locally resilient algorithm (PPA)
⇔

@ a type 1 (γ, t)-plp cut

@ a type 2 (γ, t)-plp cut
⇒

∃ a safe, (γ, t)-locally
resilient algorithm (GPPA)

Figure 4.6: Overview of conditions concerning the existence of t-locally resilient algo-
rithms with respect to the level of topology knowledge. Note that G refers to the family
of pairs (G,D).

4.6 General Adversary

Hirt and Maurer in [14] study the security of multiparty computation protocols with
respect to an adversary structure, that is, a family of subsets of the players; the adversary
is able to corrupt one of these subsets. More formally, a structure Z for the set of players
V is a monotone family of subsets of V , i.e. Z ⊆ 2V , where all subsets of Z are in Z if
Z ∈ Z. Let us now redefine some notions that we have introduced in this paper in order
to extend our results to the case of a general adversary. We will call an algorithm that
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achieves Broadcast for any corruption set T ∈ Z in graph G with dealer D, Z-resilient.
We next generalize the notion of a t-local pair cut.

Definition 14 (Z-pair cut). A cut C of G for which there exists a partition C = C1∪C2

and C1, C2 ∈ Z is called a Z-pair cut of G.

Known Topology Networks.

We adapt PPA in order to address the Broadcast problem under a general adversary. The
Generalized Z-PPA algorithm can be obtained by a modification of the path propagation
rule of PPA (Protocol 2).

Z-PPA Honest Path Propagation Rule: player v receives value x from a set P of paths
and is able to deduce that for any T ∈ Z, T is not a cover of P.

Moreover, the following theorems can be easily shown using essentially the same
proofs as for Theorems 17, and 18 and replacing the notion of t-local pair cut with that
of Z-pair cut.

Theorem 26 (Sufficiency). Given a graph G, dealer D, and an adversary structure Z,
if no Z-pair cut exists, then all honest players will decide on xD through Z-PPA.

Theorem 27 (Necessity). Given a graph G, dealer D, and an adversary structure Z,
if there exists a Z-pair cut then there is no Z-resilient Broadcast algorithm for (G,D).

Ad Hoc Networks.

Since in the ad hoc model the players know only their own labels, the labels of their
neighbors and the label of the dealer it is reasonable to assume that a player has only
local knowledge on the actual adversary structure Z. Specifically, given the actual
adversary structure Z we assume that each player v knows only the local adversary
structure Zv = {A ∩N (v) : A ∈ Z}.

As in known topology networks, we can describe a generalized version Z-CPA of
CPA, which is an ad hoc Broadcast algorithm for the general adversary model. In
particular, we modify the propagation rule of CPAin the following way.

Z-CPA Propagation Rule: if a node v is not a neighbor of the dealer, then upon receiving
the same value x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv, it decides on
value x.

In order to argue about the topological conditions which determine the effectiveness
of Z-CPA we generalize the notion of partial t-local pair cut.

Definition 15 (Z-partial pair cut). Let C be a cut of G partitioning V \ C into sets
A,B 6= ∅ s.t. D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there exists a partition
C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

Analogously to CPA Uniqueness, we can now prove Z-CPA Uniqueness in the general
adversary model (proofs omitted).
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Theorem 28 (Sufficient Condition). Given a graph G, dealer D, and an adversary
structure Z, if no Z-pp cut exists, then Z-CPA is Z-resilient.

Proof. Suppose that Z-CPA is not Z-resilient. Then there exists a scenario where C
are the corrupted nodes, A are the honest and decided nodes, and B are the honest
undecided nodes. All nodes in A have decided on the correct value because Z-CPA is
safe. Since every node in B is undecided we have that ∀u ∈ B : N(u)∩A ∈ Zu, otherwise
u would have decided because a set of nodes that are not in Zu would have sent him the
same broadcast value. But then C ∪ A is a Z-pp cut which is a contradiction. Hence,
Z-CPA is Z-resilient.

Theorem 29 (Necessary Condition). Let A be a safe ad hoc Broadcast algorithm. Given
a graph G, dealer D, and an adversary structure Z, if a Z-pp cut exists then A is not
Z-resilient for G,D.

Proof. Let C = C1 ∪ C2 be the Z-pp cut which partitions V \ C in sets A,B 6= ∅ s.t.
D ∈ A. Let Z ′ = {⋃u∈B Z ∩N(u) : Z ∈ Z} ∪ {C2}.

For every node u in B we have:

Z ′u = {Z ∩N(u) : Z ∈ Z ′} ∪ {C2 ∩N(u)}
= {(

⋃
v∈B

Z ∩N(v)) ∩N(u) : Z ∈ Z} ∪ {C2 ∩N(u)}

= {Z ∩N(u) : Z ∈ Z} ∪ {C2 ∩N(u)}
= Zu

since ∀u ∈ B : N(u) ∩ C2 ∈ Zu.
So far we have established that (a) nodes in B cannot tell whether Z or Z ′ is the

adversary structure since ∀u ∈ B : Zu = Z ′u and (b) C2 is an admissible corruption set
in Z ′.

Suppose a node in B could decide on some value in the scenario where Z is the
adversary structure. Then using the standard argument employed in Theorem 14, an
attack on the safeness of the algorithm would be possible in a different scenario where
Z ′ is the adversary structure. The details of the proof are similar and are based on the
difficulty of the honest players in B to distinguish which scenario they participate in,
with respect to the adversary structure: the one with Z or the one with Z ′.

Complexity of Z-CPA. Regarding the computational complexity of Z-CPA one can
observe that it is polynomial if and only if for every player v there exists a polynomial
(w.r.t. the size of G) algorithm B which given a set S ⊆ N (v) decides whether S ∈ Zv.
Since Z-CPA is clearly polynomial in round complexity and communication complexity,
if such an algorithm B exists, Z-CPA is fully polynomial.

4.6.1 Dealer Corruption.

We have studied the problem of Broadcast in the case where the dealer is honest. In
order to address the general case in which the dealer may also be corrupted one may
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observe that for a given adversary structure Z and graph G, Z-resilient Broadcast in ad
hoc networks can be achieved if the following conditions both hold:

1. @Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .
2. ∀v ∈ V there does not exist a Z-pp cut for G with dealer v.

Condition 1 was proved by Hirt and Maurer [14] sufficient and necessary for the
existence of secure multiparty protocols in complete networks. Z-resilient Broadcast in
the general case where the network is incomplete can be achieved by simulating any
protocol for complete graphs (e.g. the protocol presented in section 3.2) as follows: each
one-to-many transmission is replaced by an execution of Z-CPA. It is not hard to see
that the conjunction of the above two conditions is necessary and sufficient for Broadcast
in incomplete networks in the case of corrupted dealer. Analogously, the same result
holds in networks of known topology, if we replace Condition 2 with the corresponding
Z-pair cut condition. Naturally, the above observations hold also in the special case of
a locally bounded adversary.

4.7 Partial knowledge against a General Adversary

In this setting each player v only has knowledge of the topology of a certain connected
subgraph Gv of G which includes v. Namely if we consider the family G of connected
subgraphs of G we use the view function γ : V → G, where γ(v) represents the subgraph
over which player v has knowledge of the topology. We extend the domain of γ by
allowing as input a set S ⊆ G. The output will correspond to the joint view of nodes
in S. In addition each player knows the possible corruption sets in his view Zu =
{z ∩ V (γ(u))|z ∈ Z}.

Now considering two players who have partial knowledge of the adversary, it would be
useful to define an operation to calculate their joint knowledge about the adversary. Let
E,F,G be adversary structures and A,B,C be sets of nodes. Let EA = {z ∩ A|z ∈ E}
denote the restriction of the adversary structure E to the set of nodes A. The joint
adversary structure from two restricted adversary structures can be obtained through
the ⊕ operator.

Definition 16. Let ZA denote the space of adversary structures on the set of nodes A.
Then operator ⊕ is a function of the form ⊕ : ZA ×ZB → Z(A∪B), for any A,B and is
defined as follows:

EA ⊕ FB = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)}

Next we are going to show that the ⊕ operator is commutative.

Theorem 30. Operator ⊕ is commutative.

Proof. A binary operation ∗ is called commutative if a ∗ b = b ∗ a. For any adversary
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structures E,F and node sets A,B:

EA ⊕ FB = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)}
= {z2 ∪ z1|(z2 ∈ FB) ∧ (z1 ∈ EA) ∧ (z2 ∩A ⊆ z1) ∧ (z1 ∩B ⊆ z2)}
= FB ⊕ EA

So operator ⊕ is commutative.

To prove that ⊕ is also associative we will need the following lemma.

Lemma 31. For any node sets A,B,C it holds that

(z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)∧(z1 ∪ z2 ∩ C ⊆ z3) ∧ (z3 ∩A ∪B ⊆ z1 ∪ z2)
⇔

(z2 ∩ C ⊆ z3) ∧ (z3 ∩B ⊆ z2)∧(z2 ∪ z3 ∩A ⊆ z1) ∧ (z1 ∩B ∪ C ⊆ z2 ∪ z3)
Proof. First we prove the ⇒ direction. From (z1 ∪ z2 ∩ C ⊆ z3) it follows that:

(z1 ∪ z2) ∩ C ⊆ z3 ⇒ (z1 ∩ C) ∪ (z2 ∩ C) ⊆ z3
⇒ (z1 ∩ C) ⊆ z3 ∧ (z2 ∩ C) ⊆ z3

From (z3 ∩ (A ∪B) ⊆ z1 ∪ z2) it follows that:

z3 ∩ (A ∪B) ⊆ z1 ∪ z2 ⇒ (z3 ∩A) ∪ (z3 ∩B) ⊆ z1 ∪ z2
⇒ (z3 ∩B) ⊆ z1 ∪ z2
⇒ (z3 ∩B) ∩B ⊆ (z1 ∪ z2) ∩B
⇒ (z3 ∩B) ⊆ (z1 ∩B) ∪ (z2 ∩B)

⇒ (z3 ∩B) ⊆ (z2 ∩B)

⇒ (z3 ∩B) ⊆ z2

z3 ∩ (A ∪B) ⊆ z1 ∪ z2 ⇒ (z3 ∩A) ∪ (z3 ∩B) ⊆ z1 ∪ z2
⇒ (z3 ∩A) ⊆ z1 ∪ z2
⇒ (z3 ∩A) ⊆ z1 ∪ z2
⇒ (z3 ∩A) ∩A ⊆ (z1 ∪ z2) ∩A
⇒ (z3 ∩A) ⊆ (z1 ∩A) ∪ (z2 ∩A)

⇒ (z3 ∩A) ⊆ (z2 ∩A)

⇒ (z3 ∩A) ⊆ z2
Also :

(z2 ∪ z3) ∩A ⊆ (z2 ∩A) ∪ (z3 ∩A)

⊆ z1 ∪ z1
⊆ z1
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And

(z1 ∩ (B ∪ C)) ⊆ (z1 ∩B) ∪ (z1 ∩ C)

⊆ z2 ∪ z3

The proof for the ⇒ direction is complete. The other direction follows from symme-
try.

Theorem 32. Operator ⊕ is associative.

Proof. A binary operation ∗ is called associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for any well
defined a, b, c. For any adversary structures E,F,G and node sets A,B,C:

(EA ⊕ FB)⊕GC = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)} ⊕GC

= {z1 ∪ z2 ∪ z3|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z1 ∩B ⊆ z2)
∧ (z2 ∩A ⊆ z1) ∧ (z1 ∪ z2 ∩ C ⊆ z3) ∧ (z3 ∩A ∪B ⊆ z1 ∪ z2)}

EA ⊕ (FB ⊕GC) = EA ⊕ {z2 ∪ z3|(z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z2 ∩ C ⊆ z3) ∧ (z3 ∩B ⊆ z2)}
= {z1 ∪ z2 ∪ z3|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z2 ∩ C ⊆ z3)
∧ (z3 ∩B ⊆ z2) ∧ (z2 ∪ z3 ∩A ⊆ z1) ∧ (z1 ∩B ∪ C ⊆ z2 ∪ z3)}

But from lemma 31 it follows that:

EA ⊕ (FB ⊕GC) = (EA ⊕ FB)⊕GC

So operator ⊕ is associative.

Theorem 33. Operation ⊕ is idempotent.

Proof. Given some operation ∗ we say that it is idempotent iff a ∗ a = a for any possible
a.

EA ⊕ EA = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ EA) ∧ (z1 ∩A ⊆ z2) ∧ (z2 ∩A ⊆ z1)}
= {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ EA) ∧ (z1 = z2)}
= {z1|(z1 ∈ EA)}
= EA

So operation ⊕ is idempotent.

Theorem 34. Let V be a finite set and S = {(E,A)|E ⊆ 2A ∧A ⊆ V }. Then < S,⊕ >
is a semilattice.
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Proof. A set L with some operations ∗ is a semilattice if the operation ∗ is commutative,
associative and idempotent. From the previous theorem all these properties hold for the
⊕ operation and the set S.

The next theorem shows the importance of the ⊕ operation in this work.

Lemma 35. For any adversary structures E,F and node sets A,B let G = EA ⊕ FB
where G ∈ ZA∪B. It holds that G′A = EA and G′B = FB.

Theorem 36. For any adversary structures E,F and node sets A,B let G = EA ⊕ FB
where G ∈ ZA∪B. It holds that ∀G′ ∈ ZA∪B : if G′A = EA and G′B = FB then G′ ⊆ G.

Proof. Suppose that there existed some G′ s.t. ∃z ∈ G′ : z 6∈ G. For z we have z1 =
z ∩ A ∈ EA and z2 = z ∩ B ∈ FB. Also z1 ∩ B = (z ∩ A) ∩ B ⊆ z ∩ B = z2 and
symmetrically z2 ∩A ⊆ z1. But then from definition z ∈ G which is a contradiction and
no such G′ exists.

Corollary 37. For any adversary structures E and node sets A,B:
E(A∪B) ⊆ EA ⊕ EB.

What theorem 36 tells us is that the ⊕ operation gives the maximal adversary struc-
ture possible that seems indistinguishable when considered under the perspective of any
of the two initial domains, namely ZA and ZB. This is exactly what we wanted initially
to describe. An operation that captures the worst case scenario relatively to our initial
knowledge.

So using these symbols we have Zu = Zγ(u). For a given adversary structure Z and
a view function γ let

ZB =
⊕
v∈B

Zγ(u)

Then ZB exactly captures the maximal adversary structure possible, restricted in
γ(B), relatively to the initial knowledge of players in B. Also notice that using corol-
lary 37 we get Zγ(B) ⊆ ZB. The interpretation of this inequality in our setting, is that
what nodes in B conceive as the worst case adversary structure indistinguishable to them
relative to their initial knowledge, is always bigger or equal than the actual adversary
structure in their scenario. This result follows our intuition.



Chapter 5

Conclusions

In this thesis a number of fundamental results on Byzantine Agreement, as well as some
new results on the topologically restricted setting, were presented. In particular, on
the first part emphasis was given on possibility and impossibility results on the classic
setting. Most of these results are based on the indistinguishably argument i.e. players
are limited on what they can distinguish, or in a positive manner, players need enough
information in order to be able to distinguish the scenario they are in.

On the second part new results were presented on a model were the information
players have about the adversary are topologically restricted. This model is relevant
when information about the adversary in the whole communication graph are either
impossible to obtain or hard to process. In this setting a number of older relevant results
and open questions were closed and a new model capturing exactly this limitation was
presented, the partial knowledge model. A number of open questions arise from this
work.

• Necessary and sufficient criteria for Broadcast on known topology and ad-hoc net-
works are NP-hard to compute. It remains open to define and study meaningful
approximation objectives.

• We conjecture that in the known topology locally bounded setting no safe, fully
polynomial algorithm can achieve optimal resilience. We have provided an indica-
tion towards proving this in Subsection 4.4.3.

• Regarding the partial knowledge model discussed in Section 4.5, GPPA is not of
optimal resilience. Devising such an algorithm would be of great interest. One
direction towards this, is to consider discovering the network topology under a
Byzantine adversary, as studied in [21, 10].

• In the ad hoc general adversary setting, we proved that Z-CPA is unique, thus
having optimal resilience. We conjecture that it is also unique w.r.t. polynomial
time complexity, i.e., if a safe protocol achieves Broadcast in polynomial time then
so does Z-CPA.

46
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• Throughout this work a number of adversarial models were studied. Each one
gives a different limited form to the adversary’s power. Looking at these results
from a protocol design perspective we would like to adopt an adversarial model
that supports a topologically restricted view of the adversary (unlike the threshold
model) and also allows a protocol to efficiently exploit this information. Unfortu-
nately the locally bounded model does not seem to satisfy these criteria. So an
interesting direction to explore is finding an adversarial model that matches these
criteria and it is as expressive as possible.
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