&

POMHOBEVS .
nvp$opo

3

NATIONAL TECHNICAL UNIVERSITY OF
ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

MICROPROCESSORS AND DIGITAL SYSTEMS LABORATORY

Performance Monitoring and Workload
Characterization for Big Data and Cloud Based
Applications on the Intel SCC Manycore Platform

Diploma Thesis

Andreas - Lazaros Georgiadis

Supervised By

Dimitrios Soudris, Associate Professor

Athens, April 2015

Acknowledgements

I would like to wholeheartedly thank Professor Dimitrios Soudris for giving me the
opportunity to carry out my diploma thesis under his supervision. This diploma thesis
has been a unique opportunity for me so as to be introduced in the process of scientific
research and Mr. Soudris has always provided me with motivation and inspiration to
pursue this goal.

I would also like to thank Senior Research Associate Sotirios Xydis for the contin-
uous guidance he has provided me with throughout the development of this thesis
and for all the knowledge he has shared with me, the help he has offered and his
constant engagement. I would also like to thank Dimitrios Rodopoulos and loannis
Giannakopoulos for the valuable assistance they offered me when I asked.

Finally, I want to thank all the people that stood beside me throughout the years
of my studies in NTUA. I want to thank my friends for all the experiences we have had
during these years and especially my family, my parents and my brother for constantly
supporting me in achieving my goals.

1

Contents

Abstract xi

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 The Hadoop Distributed File System 2

1.2 The MapReduce Framework 3

1.3 Energy Inefficiencies of Hadoop Clusters 3

1.4 The Intel SCC Manycore Platform 4

1.5 The Benchmark Suites 5

1.6 The Ganglia Monitoring System 7

1.7 The Contribution of this Diploma Thesis 7

2 Related Work 9

2.1 Scale-Out Workloads 9
2.2 Performance Analysis and Power Consumption Monitoring on the Intel

SCC . o 14

3 The Intel SCC Architecture 21

3.1 The SCC Core Layout 21

3.2 TheSCCTile 22

321 PHACTA Core 22

322 L2Cache 22

3.2.3 Message Passing Buffer (MPB) 23

3.2.4 DDR3 Memory Controllers 23

3.2.5 Look Up Table (LUT) 23

3.2.6 Mesh Interface Unit (MIU) 23

3.2.7 Traffic Generator L 24

3.3 The SCC Mesh 24

3.3.1 Router (RXB) 25

3.3.2 Packet Structure and Flit Types 26

3.3.3 Flow Control in SCC 26

3.34 Error Checking 26

1l

3.4 The SCC System Memory 26

3.4.1 System Memory Map 26
3.4.2 Memory Address Translation 27

3.5 The SCC Power Management APT. 27
3.5.1 Voltage and Frequency Islands 27
3.5.2 The Global Clock Unit (GCU) Configuration Register 28
3.5.3 The SCC Power Controller (VRC) 28
3.5.4 Changing The Tile Frequency 29

3.6 The Management Console 31
3.6.1 sccBoot 32
3.6.2 sccPerf 32
3.6.3 sccDump 32
3.6.4 sccBmc ... 34

3.7 The SCCLinux ittt 35
3.71 The TCP/IP Stack 35
3.7.2 The Network File System 36

4 The Hadoop Distributed File System and the MapReduce Framework 37
4.1 The Hadoop Distributed File System 37
4.1.1 The NameNode and the DataNodes 37
4.1.2 The File System Namespace 38
4.1.3 Data Organization 39
4.1.4 Data Replication L. 39
4.1.5 The Communication Protocols 41
4.1.6 The Persistence of File System Metadata 41
4.1.7 Data Availability and Reliability 41
4.1.8 File and Block Deletion 42
4.1.9 The HDFS Command Line API 43
4.1.10 Configuring an HDFS Cluster 43

4.2 The MapReduce Framework 44
4.2.1 The JobTracker and the TaskTrackers. 44
4.2.2 The Mapper Function 46
4.2.3 The Reducer Function 47
4.2.4 Job Configuration L A7
4.2.5 Task Execution and Environment 47
4.2.6 Job Submission and Monitoring 48
4277 JobInput 49
4.2.8 Job Output 49
4.2.9 Configuring the MapReduce Framework 50

5 Hadoop Cluster Deployment on the Intel SCC 53
5.1 Hadoop Runtime Environment for the Intel SCC 53
5.1.1 Gentoo Linux for the Intel SCC 53
5.1.2 Network Configuration 56
5.1.3 Java Installation 57

v

5.1.4 SSH Communication Between Cluster Nodes 60

5.1.5 Hadoop Runtime Environment Setup 61

5.2 Hadoop Cluster Topologies on the Intel SCC 61
5.2.1 Design Choices and Platform Limitations 62
5.2.2 The hadoop-env.sh Configuration Script 63
5.2.3 The core-site.xml Configuration File 65
5.2.4 The hdfs-site.xml Configuration File 66
5.2.5 The mapred-site.xml Configuration File. 67
5.2.6 The masters Configuration file 70
5.2.7 16-Node Cluster Topology 70
5.2.8 24-Node Cluster Topology 73
5.2.9 32-Node Cluster Topology 75
5.2.10 48-Node Cluster Topology 78
5.2.11 Node Failover Watchdog 81

5.3 Apache Mahout Installation on the MCPC 83
6 Runtime Monitoring Framework for the Intel SCC 85
6.1 Ganglia Monitoring Infrastructure for the Intel SCC 85
6.1.1 The gmond Monitoring Daemon 85
6.1.2 Ganglia Cluster Topology on the Intel SCC 86
6.1.3 The gmond.conf Configuration File 87
6.1.4 Ganglia Cluster State Reporting 91

6.2 Runtime Metrics Extraction and Visualization 92
6.2.1 Monitoring Database Structure 93
6.2.2 Extracting and Storing Runtime Metrics 94
6.2.3 Runtime Metrics Mining 95
6.2.4 Runtime Metrics Visualization 96

7 Workload Characterization of Big Data Applications on the Intel

SCC 99
7.1 The Wordcount Application 99
7.1.1 Algorithm Description 99
7.1.2 Application Execution and Input Files 100
7.1.3 Scalability Analysis Per Input Size 101
7.1.4 Cluster Topology Analysis 102
7.1.5 Frequency Scaling Analysis. 104
7.1.6 Cluster Utilization Overview 106
7.2 The Bayes Classification Application 113
7.2.1 Algorithm Description 113
7.2.2 Application Execution and Input Files 117
7.2.3 Scalability Analysis Per Input Size 121
7.2.4 Cluster Topology Analysis 123
7.2.5 Frequency Scaling Analysis. 124
7.2.6 Cluster Utilization Overview 128
7.3 The K-Means Clustering Application 135

7.3.1 Algorithm Description

7.3.2 Application Execution and Input Files
7.3.3 Scalability Analysis Per Input Size
7.3.4 Cluster Topology Analysis
7.3.5 Frequency Scaling Analysis.
7.3.6 Cluster Utilization Overview
7.4 The Frequent Pattern Growth Application
7.4.1 Algorithm Description
7.4.2 Application Execution and Input Files
7.4.3 Scalability Analysis Per Input Size
7.4.4 Cluster Topology Analysis
7.4.5 Frequency Scaling Analysis.
7.4.6 Cluster Utilization Overview

8 Thesis Conclusion
8.1 General Remarks,
8.2 Future Work

Bibliography

Appendix A Code Samples
A.1 hadoop-topology.sh
A.2 watchdog-datanode-200.sh L.
A.3 watchdog-datanode-533.sh L.
A.4 watchdog-datanode-800.sh
A.5 watchdog-tasktracker-200.sho
A.6 watchdog-tasktracker-533.sh oL
A.7 watchdog-tasktracker-800.sh
A.8 gmond.conf for the MCPC
A.9 gmond.conf for an Intel SCC Core
A 10 StOre-pOwer.py
A1 store-metrics.py
A.12 prepare-metrics-cpu-network.pyo
A.13 prepare-metrics-thermal.py L.
A.14 prepare-metricS-pOwer.pyo u e
Adb plot-cpu.gp
A.16 plot-network.gp
A7 plot-power.gp
A 18 plot-temperature.gp
A 19 plot-fan-speed.gp
A.20 prepare-wordcount.sh 0oL
A.21 run-wordcount.sho
A.22 prepare-kmeans.sh oo
A23 run-kmeans.sho
A24 prepare-fpg.sh

vi

165
165
166

169

A25run-fpg.sh

Appendix B Plots
B.1 Wordcount

B.2

B.1.1

B.1.2

B.1.3

B.14

B.1.5

B.1.6

B.1.7

B.1.8

B.1.9

B.1.10

B.1.11

B.1.12

B.1.13

B.1.14

B.1.15

Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 512 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 1 GB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
Input Size 2 GB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 16-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 24-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 32-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
200 MHz -TaskTrackers at 200 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
200 MHz -TaskTrackers at 533 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
200 MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
533 MHz -TaskTrackers at 200 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
533 MHz -TaskTrackers at 533 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
533 MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 200 MHz
Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 533 MHz

Bayes Classifier

B.2.1

B.2.2

B.2.3

B.24

B.2.5

Input Size 256 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 512 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
Input Size 1 GB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
Input Size 2 GB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
Input Size 256 MB, 16-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz

vii

B.3

B.2.6 Input Size 256 MB, 24-Node Cluster Topology, DataNodes at

800 MHz -TaskTrackers at SO0 MHz

B.2.7 Input Size 256 MB, 32-Node Cluster Topology, DataNodes at

800 MHgz -TaskTrackers at 800 MHz

B.2.8 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

200 MHz -TaskTrackers at 200 MHz

B.2.9 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

200 MHz -TaskTrackers at 533 MHz

B.2.10 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

200 MHz -TaskTrackers at 800 MHz

B.2.11 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

533 MHz -TaskTrackers at 200 MHz

B.2.12 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

533 MHz -TaskTrackers at 533 MHz

B.2.13 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

533 MHz -TaskTrackers at 800 MHz

B.2.14 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

800 MHz -TaskTrackers at 200 MHz

B.2.15 Input Size 256 MB, 48-Node Cluster Topology, DataNodes at

800 MHz -TaskTrackers at 533 MHz
K-Means Clustering

B.3.1 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.2 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.3 Input Size 16 MB, 48-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.4 Input Size 121 KB, 16-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.5 Input Size 121 KB, 24-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.6 Input Size 121 KB, 32-Node Cluster Topology, DataNodes at 800

MHz -TaskTrackers at 800 MHz

B.3.7 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 200

MHz -TaskTrackers at 200 MHz

B.3.8 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 200

MHz -TaskTrackers at 533 MHz

B.3.9 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 200

MHz -TaskTrackers at 800 MHz

B.3.10 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 533

MHz -TaskTrackers at 200 MHz

B.3.11 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 533

MHz -TaskTrackers at 533 MHz

B.3.12 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 533

MHz -TaskTrackers at 800 MHz

viil

B.4

B.3.13 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 200 MHz
B.3.14 Input Size 121 KB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 533 MHz
Frequent Pattern Growth L.
B.4.1 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
B.4.2 Input Size 34 MB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
B.4.3 Input Size 377 MB, 48-Node Cluster Topology, DataNodes at
800 MHz -TaskTrackers at 800 MHz
B.4.4 Input Size 4 MB, 16-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
B.4.5 Input Size 4 MB, 24-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
B.4.6 Input Size 4 MB, 32-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 800 MHz
B.4.7 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 200
MHz -TaskTrackers at 200 MHz
B.4.8 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 200
MHz -TaskTrackers at 533 MHz
B.4.9 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 200
MHz -TaskTrackers at 800 MHz
B.4.10 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 533
MHz -TaskTrackers at 200 MHz
B.4.11 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 533
MHz -TaskTrackers at 533 MHz
B.4.12 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 533
MHz -TaskTrackers at 800 MHz
B.4.13 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 200 MHz
B.4.14 Input Size 4 MB, 48-Node Cluster Topology, DataNodes at 800
MHz -TaskTrackers at 533 MHz

X

Abstract

The scope of this Diploma Thesis is to explore several performance, power consumption
and scalability aspects of the execution of Big Data and Cloud Based workloads on
the Intel Single-chip Cloud Computer Manycore Platform, which differentiates from
typical cluster topologies, since it integrates 48 cores on a single chip. The applications
we study are implemented using the MapReduce framework on top of the Hadoop Dis-
tributed File System. For the purpose of this analysis we have developed a runtime
monitoring infrastructure which utilizes Ganglia, a monitoring tool for large clusters.

Chapter 1 initially states the importance of studying Cloud Computing and Big
Data Applications and presents some basic aspects of the concepts this diploma thesis
deals with. This chapter concludes with the contribution this thesis attempts to make
in the field of scale-out applications and many-core systems.

Chapter 2 describes recent research findings in the related fields of scale-out work-
loads and performance and power monitoring of the Intel SCC that have provided the
background and inspiration for this diploma thesis.

Chapter 3 describes the architecture of the Intel SCC in detail, emphasizing on aspects
of the platform whose understanding is crucial for application behavior characteriza-
tion.

Chapter 4 presents a detailed analysis of the Hadoop Distributed File System and
the MapReduce framework, by discussing key implementation aspects and providing
guidelines of how to configure an HDFS cluster installation and tune the execution of
MapReduce jobs.

Chapter 5 provides a detailed description of the tools that have been used and de-
veloped so as to deploy and launch Hadoop Clusters on the Intel SCC. The Runtime
Environment setup and the Hadoop Cluster installation processes are described and
explained in detail.

Chapter 6 presents the Runtime Monitoring Framework we have developed for the
Intel SCC. The Ganglia Cluster topology we have configured for the Intel SCC is ana-
lyzed and the process of collecting, storing and visualizing runtime metrics is explained.
Chapter 7 describes and explains the experimental analysis we have conducted for
four MapReduce applications when they run on the Intel SCC. Our investigation is
focused on the behavior of those applications for varying input sizes, HDFS cluster
topologies and frequency settings for the cluster nodes.

Chapter 8 concludes the findings of this diploma thesis and presents suggestions for
future work.

x1

xii

List of Figures

1.1 Distribution of the lengths of system inactivity periods, [5] 4
1.2 Average CPU utilization, [5] 4
1.3 Intel SCC Top-Level Architecture 6
1.4 Ganglia Architecture Lo 8
2.1 L1-T and L2 instruction cache miss rates for scale-out workloads com-

pared to traditional benchmarks, [10] 10
2.2 Instruction and Memory - Level Parallelism for scale-out workloads com-

pared to traditional benchmarks, [10] 11
2.3 Performance sensitivity to LLC capacity for scale-out workloads, [10] . 11
2.4 Average off-chip memory bandwidth utilization for scale-out workloads,

[10] . o o 12
2.5 Comparison of Conventional, Tiled and Scale-Out architectures, [11] . . 12
2.6 Runtime, Energy Consumption and Average Power Consumption for the

32 GB Sort and 32 GB Scan workloads as nodes are disabled, [5] 13
2.7 Communication time required to complete a broadcast operation using

shared memory and message passing data exchange, [19] 14
2.8 Energy consumption for all possible core clock frequencies, [19] 15
2.9 Single core memory bandwidth for all distance and frequency possibili-

tles, [19] 16
2.10 Memory bandwidth degradation for increasing numbers of cores acessing

the same memory controller, [19] 16
2.11 Execution time and average IPC for Stencil as distance between cores

increases, [20] 17
2.12 Execution time and average [PC for Share as number of pairs executed

concurrently increases, [20] 17
2.13 Execution time and average IPC for Bcast with respect to number of

cores, [20] 18
2.14 Power consumption and IPC for Share, Shift, Stencil and Pingpong, [20] 18
2.15 Broadcast latency for varying message size, [21] 19
2.16 Sensitivity of the Intel SCC benchmarks to frequency scaling, [22] . . . 20
3.1 Imtel SCC Core Layout 21
3.2 Intel SCC Tile Overview 22
3.3 Intel SCC Address Translation 27
3.4 Intel SCC Voltage and Frequency Islands 28

xiil

3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24

Connection of the Intel SCC to the MCPC 32

Intel SCC Performance Meter 33
The HDFS Architecture 38
HDFS Data Replication 40
MapReduce Wordcount L 46
16-Node Hadoop Cluster on the Intel SCC 71
24-Node Hadoop Cluster on the Intel SCC 73
32-Node Hadoop Cluster on the Intel SCC 76
48-Node Hadoop Cluster on the Intel SCC 79
gmond Multicast Topology 86
gmond Deaf/Mute Multicast Topology 87
gmond UDP Unicast Topology 87
Ganglia Cluster Topology on the Intel SCC 88
CPU Utilization Plot 96
Network Traffic Plot 97
Power Consumption Plot 97
Board Temperature Plot 97
Fan Speed Plot 97
Wordcount Input Size Scalability Analysis (1/2) 101
Wordcount Input Size Scalability Analysis (2/2) 102
Wordcount Cluster Topology Analysis (1/2) 103
Wordcount Cluster Topology Analysis (2/2) 103
Wordcount Frequency Scaling Analysis (1/2) 104
Wordcount Frequency Scaling Analysis (2/2) 104
CPU utilization plots for the Wordcount application 105
Wordcount Overall Cluster Utilization (1/6) 107
Wordcount Overall Cluster Utilization (2/6) 108
Wordcount Overall Cluster Utilization (3/6) 109
Wordcount Overall Cluster Utilization (4/6) 110
Wordcount Overall Cluster Utilization (5/6) 111
Wordcount Overall Cluster Utilization (6/6) 112
Bayes Classifier Input Size Scalability Analysis (1/2) 122
Bayes Classifier Input Size Scalability Analysis (2/2) 122
Bayes Classifier Cluster Topology Analysis (1/2) 123
Bayes Classifier Cluster Topology Analysis (2/2) 124
Bayes Classifier Frequency Scaling Analysis (1/2) 125
Bayes Classifier Frequency Scaling Analysis (2/2) 125
CPU utilization plots for the Bayes Classifier application 127
Bayes Classification Overall Cluster Utilization (1/6) 129
Bayes Classification Overall Cluster Utilization (2/6) 130
Bayes Classification Overall Cluster Utilization (3/6) 131
Bayes Classification Overall Cluster Utilization (4/6) 132

Xiv

7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52

Bayes Classification Overall Cluster Utilization (5/6) 133
Bayes Classification Overall Cluster Utilization (6/6) 134
K-Means Clustering Input Size Scalability Analysis (1/2) 138
K-Means Clustering Input Size Scalability Analysis (2/2) 138
CPU Utilization Plots for the K-Means Clustering Application 140
K-Means Clustering Cluster Topology Analysis (1/2) 141
K-Means Clustering Cluster Topology Analysis (2/2) 141
K-Means Clustering Frequency Scaling Analysis (1/2) 142
K-Means Clustering Frequency Scaling Analysis (2/2) 142
K-Means Clustering Overall Cluster Utilization (1/6) 143
K-Means Clustering Overall Cluster Utilization (2/6) 144
K-Means Clustering Overall Cluster Utilization (3/6) 145
K-Means Clustering Overall Cluster Utilization (4/6) 146
K-Means Clustering Overall Cluster Utilization (5/6) 147
K-Means Clustering Overall Cluster Utilization (6/6) 148
Frequent Pattern Growth Input Size Scalability Analysis (1/2) 153
Frequent Pattern Growth Input Size Scalability Analysis (2/2) 154
CPU Utilization Plots for the Frequent Pattern Growth Application . . 155
Frequent Pattern Growth Cluster Topology Analysis (1/2) 156
Frequent Pattern Growth Cluster Topology Analysis (2/2) 156
Frequent Pattern Growth Frequency Scaling Analysis (1/2) 157
Frequent Pattern Growth Frequency Scaling Analysis (2/2) 157
Frequent Pattern Growth Overall Cluster Utilization (1/6) 159
Frequent Pattern Growth Overall Cluster Utilization (2/6) 160
Frequent Pattern Growth Overall Cluster Utilization (3/6) 161
Frequent Pattern Growth Overall Cluster Utilization (4/6) 162
Frequent Pattern Growth Overall Cluster Utilization (5/6) 163
Frequent Pattern Growth Overall Cluster Utilization (6/6) 164

XV

Xvi

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

Intel SCC Configuration Registers 25
Tile Frequency Settings for Router Clock of 800 MHz 29
Minimum Voltage Levels for Safe Operation 30
Configuration Parameters Defined in core-site.xml 44
Configuration Parameters Defined in hdfs-site.xml 45
Runtime Parameters Defined in hadoop-env.sh 45
Configuration Parameters Defined in mapred-site.xml 51

XVvil

xXviil

Chapter 1

Introduction

Cloud computing is emerging as a dominant computing platform for providing scal-
able online services to a global client base. Today’s popular online services (e.g. web
search, social networking and business analytics) are characterized by massive working
sets, high degrees of parallelism and real-time constraints. These characteristics set
scale-out applications apart from desktop (SPEC), parallel (PARSEC) and traditional
commercial server applications.

In the context of digitalized information explosion, more and more businesses are an-
alyzing massive amount of data - so called big data - with the goal of converting big
data to "big value”. Typical data analysis workloads include business intelligence, ma-
chine learning, bio-informatics and ad hoc analysis. The business potential of the data
analysis applications in turn is a driving force behind the design of innovative data
center systems, both hardware and software.

The explosion of accessible human generated information necessitates automatic an-
alytical processing to cluster, classify and filter this information. The MapReduce
paradigm has emerged as a popular approach to handling large-scale analysis, farming
out requests to a cluster of nodes that first perform filtering and transformation of the
data (map) and then aggregate the results (reduce).

This introductory chapter initially presents a synopsis of the concepts of distributed
file systems and the MapReduce framework, that this thesis is going to deal with in
the following chapters. Consecutively, it provides a high-level description of the Intel
SCC architecture, the big data applications that have been ported on the Intel SCC
and characterized and the Ganglia monitoring system, which has been leveraged so as
to extract all the necessary metrics that enable us to track the performance of these
applications. It concludes with the contribution that this thesis attempts to make in
the fields of scale-out applications and manycore systems.

Diploma Thesis Introduction

1.1 The Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) has been developed by Apache, as part
of the Apache Hadoop Core project. It was initially built so as to provide infrastruc-
ture for the Apache Nutch Web Search Engine project. It was predominantly inspired
by the Google File System (GFS), a proprietary distributed file system which was de-
veloped in Google Labs by Google. GFS was designed so as to provide efficient and
reliable access to data using large clusters of commodity hardware. Therefore, HDFS
and GFS share some common principles. The design and the implementation of HDFS
is based on some key assumptions and goals.

First, since the filesystem consists of hundreds or even thousands of storage machines
built from inexpensive commodity parts and is accessed by a comparable number of
client machines, it is guaranteed that some of the components are not functional for any
given time and will not recover from their current failures. Therefore, since component
failures are the norm rather than the exception, constant monitoring, error detection,
fault tolerance and automatic recovery must be integral to the system.

Second, applications that run on HDF'S have large datasets, meaning that a typical file
in HDFS is gigabytes to terrabytes in size. Thus, HDFS is tuned to support large files.
It provides high aggregate data bandwidth and scales to hundreds of nodes in a sin-
gle cluster. It can potentially support tens of millions of files in a single cluster instance.

Third, the supported access pattern for the files that are stored in HDFS is muta-
tion by appending new data rather than overwriting existing data or writing data at
a random offset. This assumption greatly simplifies coherency issues and places the
focus of performance optimization on the append operation. In addition, data reads
are sequential in most cases.

Fourth, applications that run on HDFS need streaming access to their datasets. They
are not general purpose applications that run on general purpose file systems. As a
result, HDFS is designed for batch processing rather than interactive use by users.
The emphasis is on high throughput of data accesses rather than low latency of data
accesses. In order to achieve this functionality, several hard requirements that are im-
posed by POSIX and are not needed for applications that are targeted for HDFS have
been traded to increase throughput rates.

Fifth, HDFS provides interfaces for applications to move themselves closer to where
the data is located because of the fact that a computation requested by an application
is much more efficient if it is executed near the data it operates on, especially when the
size of the data is huge. This minimizes network congestion and increases the overall
throughput of the system. The assumption is that it is often better to migrate the
computation closer to where the data is located rather than moving the data to where
the application is running.

Introduction Diploma Thesis

Sixth, HDFS has been designed to be easily portable from one platform to another.
This facilitates widespread adoption of HDF'S as a platform of choice for a large set of
applications.

1.2 The MapReduce Framework

MapReduce is a software framework for easily writing applications which process vast
amounts of data in parallel on large clusters of commodity hardware in a reliable, fault
tolerant manner. The MapReduce framework that has been implemented by Apache,
is designed to run on top of an HDF'S cluster deployment. The datasets that are pro-
cessed by MapReduce jobs can potentially scale to several terabytes. MapReduce jobs
can utilize clusters that consist of hundreds or even thousands of nodes.

A MapReduce job usually splits the input data set into independent chunks which
are processed by the map tasks in a completely parallel manner. The framework sorts
the outputs of the maps, which are then input to the reduce tasks. The map tasks
process key/value pairs to generate a set of intermediate key /value pairs and the reduce
tasks merge all intermediate values associated with the same intermediate key, so as
to produce the final key value pairs, which are the output of the MapReduce job.

The input and the output of a MapReduce job are stored in HDFS. This decision
allows the framework to effectively schedule tasks on the nodes where the data is al-
ready present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework takes care of the details of partitioning of the input data,
scheduling the program’s execution across a set of machines , handling machine failures
and handling the required inter machine communication. Therefore, it provides a level
of abstraction that hides the messy details of parallelization, fault tolerance, data distri-
bution and load balancing, allowing programmers to express the simple computations
that they are trying to perform.

1.3 Energy Inefficiencies of Hadoop Clusters

Typically, the energy efficiency of a cluster can be improved in two ways: by matching
the number of active nodes to the current needs of the workload, placing the remaining
nodes in low-power standby modes and by engineering the compute and storage features
of each node to match its workload and avoid energy waste on oversized components.
Unfortunately, MapReduce frameworks have many characteristics that complicate both
options.

MapReduce frameworks implement a distributed data-store comprised of the disks
in each node, which enables affordable storage for multi-petabyte datasets with good
performance and reliability. Since high data availability is demanded, even idle nodes

Diploma Thesis Introduction

remain powered on to ensure this requirement is met. Therefore, while significant pe-
riods of inactivity are observed, the need for data availability prohibits the shutting
down of idle nodes and a significant amount of the power that is consumed is wasted on
idle CPU cycles [5]. Figure 1.1 depicts the distribution of lengths of system inactivity
periods across a cluster during a multi-job batch workload, comprised of several scans
and sorts of 32 GB of data. Figure 1.2 shows the average CPU utilization across a
cluster when sorting 128 GB of data.

Multi-job Mix (32GB Scans and Sorts)

System Inactivity Distribution
Fraction of Runtime

I

40 80 100 120
Inactivity Duration (s)

Figure 1.1: Distribution of the lengths of system inactivity periods, [5]

128GB Sort

action of Time
=3
S
|
|

£ 004 N
002
000
0 20 40 60 8 100
CPU Uilization (%)

Figure 1.2: Average CPU utilization, [5]

As a consequence of the above, the energy efficiency of Hadoop clusters is an area to
be searched. This diploma thesis makes an attempt to investigate performance and
power consumption tradeoffs of MapReduce workloads. The Intel SCC provides a fine-
grained power management API which enables us to perform frequency and voltage
perturbations on subsets of cores of the SCC board. Later in this thesis, we utilize this
power management API so as to explore power saving opportunities that can result
from statically scaling down the frequency of nodes that are expected to have low CPU
utilization during the execution of a MapReduce job.

1.4 The Intel SCC Manycore Platform

The Single-chip Cloud Computer is a 48-core Intel Architecture (IA) many-core expre-
rimental processor prototype. It is a research chip, which was built in Intel Labs so
as to study many-core CPUs, their architectures and the techniques to program them.
The Intel SCC was created as part of Intel’s Tera Scale Computing Research Program,
which is a worldwide effort to advance computing technology for the next decade and
beyond. The program is investigating how to increase the performance and capabilities

4

Introduction Diploma Thesis

of current computers.

The research regarding the Intel SCC has the following goals:

* To demonstrate a shared memory message-passing architecture for a large number
of cores and to experiment with its programmability and scalability.

* To design and explore the performance and power characteristics of an on-die 2D
mesh fabric.

* To explore benefits and costs of software-controlled dynamic voltage and fre-
quency scaling for multiple cores.

The SCC is the second generation processor design that resulted from Intel’s Tera-Scale
research. The first was Intel’s Teraflops Research Chip; it had 80 non-IA cores. The
second is the SCC; it has 24 tiles and two cores per tile. The SCC core is a full TA
P54C core and hence can support the compilers and OS technology required for full
application programming. Figure 1.3 shows a stylized view of the SCC chip. The 24
tiles of the SCC board are arranged in a XxY = 6x4 array. There is a router associ-
ated with each tile. The tiles are connected by a fully synchronous mesh fabric with
rigorous performance and power requirements. The SCC has multiple voltage and fre-
quency domains, some configurable at startup, others that may be dynamically varied
for application-controlled fine grained dynamic power and performance management.
The SCC has four on-die memory controllers capable of addressing a total of up to 64
GB of external memory. It also has a small amount of fast local memory located in
each tile. Message-passing support is provided that uses shared regions of local mem-
ory or off-die main memory. The SCC has a new memory type and a new processor
cache instruction to facilitate memory management.

The entire system is controlled by a Board Management Microcontroller (BMC) that
initializes and shuts down critical system functions. It is commonly connected by a
PCl-express cable to a PC acting as a Management Console (MCPC). The Management
Console is a 64-bit PC running some version of Linux. Intel Labs provides software
that runs on the Management Console to manage the SCC chip. Key features of this
software are the ability to load a Linux image on each core or a subset of cores, to
read and modify SCC configuration registers and to load programs on the SCC cores.
Running Linux on the SCC cores is the most common configuration, but it is not
mandatory.

1.5 The Benchmark Suites

This diploma thesis utilizes benchmarks that have been introduced as part of the
Cloudsuite and DCBench benchmark suits. Both Cloudsuite and DCBench employ
machine learning algorithms implementations that are included in Apache Mahout.
Apache Mahout is a scalable machine learning library which is implemented on top
of distributed systems. The Apache Mahout version we use includes implementations

Diploma Thesis Introduction

Management Console PC

Figure 1.3: Intel SCC Top-Level Architecture

of core machine learning algorithms such as clustering, classification and collaborative
filtering using the MapReduce framework, on top of an HDFS deployment.

Cloudsuite is a benchmark suite for emerging scale-out applications. It consists of
eight applications that have been selected based on the popularity in today’s datacen-
ters. The benchmarks are based on real-world software stacks and represent real world
setups. The application categories that are covered by Cloudsuite are Data Analytics,
Data Serving, Data Caching, Graph Analytics, Media Streaming, Software Testing,
Web Search and Web Serving. In this diploma thesis, we examine the data analytics
benchmark, which provides an implementation of the Bayesian Classification algorithm
using the MapReduce framework, which is derived from Apache Mahout.

DC Bench is a benchmark suite for representative workloads that are found in mod-
ern datacenters. DC Bench offers implementations of applications that are based on
diverse programming models which run in large distributed environments employing
state-of-art techniques. DC Bench offers implementations for the following datacenter
workloads : Base Operations (e.g. Wordcount), Classification, Clustering, Recom-
mendation, Association Rule Mining, Segmentation, Warehouse Operations, Feature
Reduction, Vector Calculation, Graph Mining, Services and Interactive Real-Time Ap-
plications. Those applications are implemented using either the MapReduce or the
MPI paradigm. In these diploma thesis, we examine three benchmarks that are pro-
vided by DC Bench, which are Wordcount, K-Means Clustering and Frequent Pattern
Growth, that belong to the Base Operations, Clustering and Association Rule Min-
ing categories respectively. The implementation for K-Means Clustering and Frequent
Pattern Growth are provided by the Apache Mahout library, whereas Wordcount is
derived from the Hadoop Examples that accompany every HDFS installation.

Introduction Diploma Thesis

1.6 The Ganglia Monitoring System

In order to capture critical per core metrics such as CPU utilization and network traf-
fic, we utilize the monitoring infrastructure that is provided by Ganglia, which is a tool
for large cluster monitoring. Ganglia is architecturally composed by three daemons :
gmond, gmetad and gweb. Operationally, each daemon is self-contained, but all three
are architecturally cooperative (Figure 1.4).

gmond is responsible for collecting the metrics that are specified in each configu-
ration file in each host of the cluster. gmond instances share with each other the state
of the node they reside on, so that each gmond instance knows the current value of
every metric recorded by every other node in the Ganglia cluster. This communication
takes place with UDP datagrams, through either multicast or unicast channels. An
XML-format dump of the entire cluster can be requested from a remote poller from
any single node in the cluster running gmond, on port 8649.

gmetad periodically polls gmond nodes and stores the metrics that it receives in
round-robin databases using RRDtool. Since each gmond node that is polled provides
the values for all the metrics that are collected in the entire cluster, gmetad needs to
poll only one gmond node per gmond cluster.

gweb is Ganglia’s frontend visualization UI. gweb is implemented in PHP and ex-
poses the data that is stored in the RRD databases by gmetad. It typically runs under
the Apache Web Server. gweb gives easy and instant access to any metric from any
host in the network. It graphically summarizes the grid using graphs that combine
metrics by cluster and provides sane click-throughs for increased specificity.

1.7 The Contribution of this Diploma Thesis

This diploma thesis provides a detailed description of the tools that have been used and
developed so as to build Hadoop Clusters on the Intel SCC, with respect to technical
problems that have been encountered and physical limitations that the platform in-
troduces. In addition, it presents a run-time monitoring framework for the Intel SCC,
which enables us to capture per-core metrics such as CPU utilization and network traf-
fic as well as aggregate metrics for the entire SCC board such as power consumption and
board temperature. This infrastructure is subsequently utilized so as to characterize
four MapReduce applications (Wordcount, Bayes Classification, K-Means Clustering
and Frequent Pattern Growth) in terms of performance, scalability and power con-
sumption when they run on SCC hardware.

The behavior of these applications is studied for varying input sizes so as to explore
the scalability of those applications in terms of input size when they run on the SCC
platform. This approach enables us to determine the input size that scalability breaks
for each application, thus the completion of a MapReduce job is impossible and to

7

Diploma Thesis Introduction

The Ganglia Monitoring System arid
(simplified)

RRDtool

Multicast 224.1.1.1

Figure 1.4: Ganglia Architecture

correlate this information with physical limitations of the SCC platform.

In addition, the performance of these applications is examined for diverse cluster de-
ployments that utilize different amount of SCC cores, resulting in different cluster
topologies on the SCC board. For cluster topologies that leverage only some of the
cores of the SCC board, the remaining cores operate at the minimum frequency, so as
to avoid power being wasted on idle cycles. This strategy gives us the opportunity to
draw conclusions regarding the scalability of those applications in terms of the number
of cores they employ, so as to define the point at which phenomena such as network
congestion or I/O bandwidth saturation become bottlenecks, resulting in suboptimal
performance and utilization of the on-die resources.

Furthermore, performance and power consumption tradeoffs are investigated so as to
spot possible power and energy saving opportunities that those applications might con-
ceal. This goal is achieved by configuring different groups of cores (frequency islands)
to run at different frequencies. The target of our is investigation is to realize if stati-
cally scaling down the frequency of cores that are expected to have low CPU utilization
throughout the execution of a MapReduce job significantly degrades performance, thus
canceling the benefits of power consumption saving.

Chapter 2

Related Work

This chapter presents a detailed analysis and presentation of recent research findings
related to the fields that this diploma thesis intends to cover. It is divided into two
sections. In the first section findings regarding the field of scale-out workloads are
presented. In the second section, research results in the field of performance and power
monitoring of the Intel SCC are described.

2.1 Scale-Out Workloads

Cloud computing is emerging as a dominant computing platform for delivering scalable
online services to a global client base. Today’s popular online services, such as web
search, social networks and video sharing are all hosted in large data centers. With the
industry rapidly expanding, service providers are building new data centers, augment-
ing the existing infrastructure to meet the increased demand. However, while demand
for cloud infrastructure continues to grow, the semiconductor manufacturing industry
has reached the physical limits of voltage scaling [12, 13], no longer able to reduce
power consumption or increase power density in new chips. Physical constraints have
therefore become the dominant limiting factor for data centers, because their sheer size
and electrical power demands cannot be met.

Recognizing the physical constraints that stand in the way of further growth, cloud
providers now optimize their data centers for compute density and power consumption.
Cloud providers have already began building server systems specifically targeting cloud
data centers, improving compute density and energy efficiency by using high-efficiency
power supplies and removing unnecessary board-level components such as audio and
graphics chips [14, 15].

Today’s volume servers are designed with processors that are essentially general-purpose.
These conventional processors combine a handful of aggressively speculative and high
clock frequency cores supplemented by a large on-chip cache. Recently, tiled proces-
sors have emerged as competition to volume processors in the scale-out server space
[16]. Recognizing the importance of per-server throughput, these processors use a

9

Diploma Thesis Related Work

large number of relatively simple cores, each with a slice of the shared LLC, intercon-
nected via a packet-based mesh interconnect. Lower-complexity cores are more efficient
than those in conventional designs [17]. Additionally, the many-core architecture im-
proves throughput compared to conventional chips and memory and I/O bound scale
out workloads. Despite the differences in the chip-level organization, the technology
scaling trends of tiled processors are similar to conventional designs; each technology
generation affords more tiles, which increases the core count, cache capacity and inter-
connect resources.

In the context of processors for scale-out applications, both architectures make sub-
optimal use of the die area. As recent research examining scale-out [10] and traditional
server workloads [18] has demonstrated, large caches, such as those found both in
conventional and tiled designs, are inefficient due to limited reuse at the LLC result-
ing from vast data footprints of these applications. In fact, large LLC configurations
have been shown to be detrimental to performance, as they increase the fetch latency
of performance-critical instructions whose footprint exceeds the capacity of first-level
caches. Moreover, recent work has identified significant over-provisioning in conven-
tional server chip’s core capabilities, on-die interconnect, and memory bandwidth.

Micro-architectural studies of scale-out workloads have proved a large mismatch be-
tween the demands of the scale-out workloads and today’s predominant processor
micro-architecture [10]. It has been demonstrated that:

* Scale-out workloads suffer from high instruction-cache miss rates. In-
struction caches and associated next-line prefetchers found in modern processors
are inadequate for scale-out workloads (Figure 2.1).

146
_wm—

§100 =
] %L1 (0S) ul2 (OS)
% 75 L1-1 (Application) mL2 (Application) Z
5 g //’//
w 50 %//5 g
o B Z 7
2 # A _—
E L
RS B D i
£ & &) & > o o & ry I « >
S N %"5&0 & & & L& &

® § 5 ~ & © il & Pe &

> & 2 o \‘& J 5

© z& $®) <&

&

Figure 2.1: L1-I and L2 instruction cache miss rates for scale-out workloads compared
to traditional benchmarks, [10]

* Instruction- and memory-level parallelism in scale-out workloads is
low. Modern aggressive out-of-order cores are excessively complex, consuming

power and on-chip area without providing performance benefits to scale-out work-
loads (Figure 2.2).

10

Related Work Diploma Thesis

®mBaseline ©SMT mBaseline = SMT

Application IPC
N

Application MLP
'

Figure 2.2: Instruction and Memory - Level Parallelism for scale-out workloads com-
pared to traditional benchmarks, [10]

* Data working sets of scale-out workloads considerably exceed the ca-
pacity of on-chip caches. Processor real-estate and power are misspent on

large last-level caches that do not contribute to improved scale-out workloads
performance (Figure 2.3).

—o— Scale-out —A— Server —O— SPECint (mcf)
1.0

0.9

0.8

User IPC
normalized to baseline

0.7

0.6

0.5 + T T T T T T y
4 5 6 7 8 9 10 11
Cache size (MB)

Figure 2.3: Performance sensitivity to LLC capacity for scale-out workloads, [10]

* On-chip and off-chip bandwidth requirements of scale-out workloads
are low. Scale-out workloads see no benefit from fine-grained coherence and
high memory and core-to-core communication bandwidth (Figure 2.4).

Based on those findings, methodologies for designing scalable and efficient scale-out
processors have been proposed [11]. Those studies have verified that smaller caches
than can capture the dynamic instruction footprint of scale-out workloads, afford more
die area for the cores, without penalizing per core performance. Moreover, it has been
demonstrated that while the simpler cores found in tiled designs are more effective
than conventional server cores for scale-out workloads, the latency incurred by the on-
chip interconnect in tiled organizations lowers performance and limits the benefits of
integration, as additional tiles result in more network hops and longer delays.

Performance Density, defined as throughput per unit area is used to quantify how
effectively an architecture uses the silicon real-estate. Proposed design methodologies

11

Diploma Thesis Related Work

20%

® Application =0S

N
N
R

Off-chip memory
bandwidth utilization
o o
X R

O FO S
S NS & ,
S RO S CLEEERR 9
LR P S S g
F Ve 9@ N2
<

Figure 2.4: Average off-chip memory bandwidth utilization for scale-out workloads,
[10]

[11] derive a performance density optimal processor building block called a pod, which
tightly couples a number of cores to a small LLC via a fast interconnect. As technol-
ogy scales to allow more on-chip cores, those methodologies calls for keeping the design
of the pod unchanged, replicating the pod to use up the available die area and power
budget. A key aspect of the Proposed architecture is that pods are stand-alone servers,
with no inter-pod connectivity or coherence.

LLC (8)

| wece ||| wecew |

Memory + 1/O ports [1l Memory + /O ports |

| Memory + I/O ports

Figure 2.5: Comparison of Conventional, Tiled and Scale-Out architectures, [11]

With the use of analytic models and cycle-accurate full-system simulation of a diverse
suite of representative scale-out workloads, it is demonstrated that:

* The core and cache area budget of conventional server processors is misallocated,
resulting in a performance density gap of 3.4x to 6.5X against an optimally-
efficient processor.

* The distributed cache architecture in tiled designs increases access latencies and
lowers performance, as manifested in a performance density gap of 1.5x to 1.9x
versus an optimally-efficient processor.

* Performance density can be used to derive an optimally efficient pod that uses a
small (i.e. 2-4 MB) last-level cache and benefits from a high core-to-cache area
ratio and simple crossbar interconnect.

12

Related Work Diploma Thesis

* Replicating pods to fill the die results in an optimally-efficient processor which
maximizes throughput and provides scalability across technology generations.
For example, in the 20 nm technology, scale-out processors improve performance
density by 1.5x - 6.5x over alternative organizations.

Efforts have also been made towards improving the energy efficiency of MapReduce
frameworks like Hadoop [5]. It has been shown that Hadoop has the global knowledge
necessary to manage the transition of nodes to and from low-power modes. Hence,
Hadoop should be, or cooperate with, the energy controller for a cluster. It has also
been shown that it is possible to recast the data layout and task distribution of Hadoop
to enable significant portions of a cluster to be powered down while still fully opera-
tional. Energy can be conserved at the expense of performance, as there is a trade-off
between these two.

In order to enable the disabling of storage nodes without affecting data availability, a
new invariant has been proposed for use during block replication: at least one replica of
a data-block should be stored in a subset of nodes referred as the covering subset. The
premise behind a covering subset is that it contains a sufficient set of nodes to ensure
the immediate availability of data, even were all nodes not in the covering subset to
be disabled. The experimental evaluation of this proposition has clearly demonstrated
that while data availability is preserved, energy savings come with a deleterious im-
pact on performance. However, it is argued that nodes tend to contribute less to
performance than they do in energy consumption. Figure 2.6 depicts the performance
and energy consumption trade-offs that are observed while running web data sort and
web data scan MapReduce jobs on a 36-node cluster with a covering subset of 9 nodes.

SN WAUNO OO

0
0 9 18 27 0 9 18 27 0 9 18 27
Sleeping nodes Sleeping nodes Sleeping nodes

Figure 2.6: Runtime, Energy Consumption and Average Power Consumption for the
32 GB Sort and 32 GB Scan workloads as nodes are disabled, [5]

This diploma thesis attempts to explore the behavior of scale-out workloads, which
have been implemented using the MapReduce framework, when they are executed on
the Intel SCC, which is many core platform, integrated on a single chip, as opposed to
the traditional cluster topology organization.

13

Diploma Thesis Related Work

2.2 Performance Analysis and Power Consumption
Monitoring on the Intel SCC

There has been a continuous change over the past years in CPU design and development
towards both power-aware hardware architectures as well as many-core processors. The
Intel SCC is a highly configurable many-core chip that provides unique opportunities
to optimize run time, communication and memory access as well as power and energy
consumption of parallel programs.

Significant efforts have been made to analyze and characterize the performance be-
havior of the chip under various power settings, mappings of processes to cores and
memory controllers as well as different techniques for data exchange between cores
through benchmarking [19]. Conclusions from those studies have shown that:

* Data exchange based on shared memory is slower compared to using a message
passing scheme, which utilizes the on-chip SRAM of the Intel SCC, called the
Message Passing Buffer. The performance advantage of communication using
message passing compared to shared memory varies from 3.26x to 9.06x. The
reason for the comparatively low performance of shared memory communication
lies in the time required to copy the data between private and shared memory
at the sender and the receiver core. In addition, communication time increases
linearly with the number of cores that are involved regardless of the size of the
message that is sent. Figure 2.7 shows the communication time required to
complete a broadcast operation using shared memory and message passing data
exchange for various data sizes with increasing number of cores.

Communication time for broadcast operation for increasing numbers of cores
10

shm, 256 KB ——
mp, 256 KB wees
shm, 512 KB ===
mp, 512 KB a8
shm, 1024 KB
mp, 1024 KB e«

=]

communication time [s]

am Eaaass
et y - epmeEEaREEEEEAaE
s paaaas 30 003 30 B30 0030 362X 0 K
x geg 200030 00220
. B e w0 w6

RERFRPAFu g apxnn gn RO

NTO©OOONTOODONTODODONTO®DMONTT ©®
rrrrr ANANANANNOOMOOOONS <

number of cores

Figure 2.7: Communication time required to complete a broadcast operation using
shared memory and message passing data exchange, [19]

* Contrary to popular belief, lowest energy consumption is not achieved for the
fastest execution time but rather for a medium frequency-voltage setting, de-
pending on the program being executed. Figure 2.8 depicts the experimental
results that where derived from the execution and run-time monitoring of the

14

Related Work Diploma Thesis

BT and LU NAS parallel benchmarks, NAS problem classes A and B and Gad-
get2 simulator in terms of overall energy consumption [23, 24]. It is evident that
lowest energy consumption is reached for a core frequency of 400 or 320 MHz,
depending on the application. As a consequence, the benefits of core clock fre-
quency and voltage scaling depend on the actual program executed and whether
it is computationally-bound.

Energy consumption for bt.A.36, bt.B.36, 1u.A.32, lu.B.32 and Gadget2

20 : -
19 bt.A.36 ——
184", bt.B.36
= 1ZE 1UA.32 e
= E 1U.B.32 B
15 =
% 1 [Eu* Gadget2 - -= -
S B LN
B Lo
g_ }E) I ,,ﬂ"”ﬂ -
> F A -
g g L L A -1
S Tt
> 6
[7} 5 F
s 2
3l
51
1 -
o L . .
o o I~ o o 0 o
o <« o N © Al (=) (323 o
— ~— [SU oV o} (<) < n ©

core frequency [MHz]

Figure 2.8: Energy consumption for all possible core clock frequencies, [19]

* In order to improve the memory access behavior it is more beneficial to increase
the clock frequency of both, mesh network and memory controllers, compared to
just increasing the clock of one of the two entities. Furthermore, parallel memory
access that involves all cores shows performance degradation of up to 14.2% com-
pared to serial memory access. The tendency is a lower performance for higher
distances between cores and their memory controllers, as well as for a higher num-
ber of cores accessing the memory controller simultaneously. Figure 2.9 shows
the memory bandwith observed when running the Stream Benchmark, which is a
well known memory-intensive benchmark [25] on the Intel SCC on a single core,
for varying core distances from the corresponding memory controller. Figure 2.9
presents the memory bandwidth degredation that occurs when the benchmark is
executed concurrently in more than one cores, resulting in an increasing number
of cores accessing the same memory controller simultaneously.

Intel provides a customized programming library for the SCC, called RCCE, that al-
lows for fast message passing between the cores. RCCE operates on an application
programming interface (API) with techniques based on the well-established message
passing interface (MPI). The use of MPI in a large many-core system is expected to
change the performance-power trends considerably compared to today’s commercial
multi-core systems. Furst and Coskun in [20] develop a system monitoring software
and benchmarks specifically targeted at investigation the impact of message passing
on the performance and the power consumption of the Intel SCC.

This experimental evaluation that is offered by this study is based on the execution

15

Diploma Thesis Related Work

Actual SCC Memory Bandwidth, Serial Access
110 ——

dist0 ——

100 dist 1
90 + dist 2 e PN
80 | dist 3

70 |
60
50 [
40 i
30 grEE

20

bandwidth [MB/s]

100/800/800
107/800/800 |-
114/800/800
123/800/800
133/800/800
145/800/800
160/800/800
178/800/800
200/800/800 |
229/800/800 |
267/800/800 |
320/800/800 |
400/800/800 F
533/800/800 |
800/800/800 |
800/1600/800 F
800/800/1066
800/1600/1066

Figure 2.9: Single core memory bandwidth for all distance and frequency possibilities,

[19]

Actual SCC Memory Bandwidth, number of cores varying between 1 and 12
100 T T T T T T T T

dist0 ——
dist 1
dist2 woomee

95 dist 3 om

90

85

bandwidth [MB/s]

80

75

1 2 3 4 5 6 7 8 9 10 11 12
number of cores accessing MCO in parallel

Figure 2.10: Memory bandwidth degradation for increasing numbers of cores acessing
the same memory controller, [19]

and performance monitoring of the Share, Shift, Stencil, Pingpong and Bcast bench-
marks which are provided by Intel. The main conclusions that have been drawn are
the following:

* High IPC workloads suffer from execution time increase, as the distance of the
communicating cores grows. Figure 2.11 depicts the execution time and average
IPC of the Stencil benchmark when it runs on a pair of cores, as the distance

between those cores increases. Stencil is an application that is characterized by
its high IPC.

* Memory intensive applications present significant delays as the number of cores
that are concurrently executing them increases, due to memory contention. Fig-
ure 2.12 presents the execution time and average IPC of the Share benchmark
with local communication as the number of pairs that are executed concurrently
increases. Share is known to present memory intensive behavior.

* Applications that heavily utilize broadcast messages suffer from significant exe-
cution time delays, after the number of the cores participating in the broadcast

16

Related Work Diploma Thesis

12.3 0.342

| M Average of time M Average of IPC %
122 - - 0.34

0.338
12.1

- 0.336
12

0.334

119 0332 &

Execution Time (Seconds)

- 0328

17 - 0.326

116 + + 0324

T T T T T T
Stencil ~ Stencil ~ Stencil Stencil Stencil Stencil Stencil Stencil Stencil
Ohop2 1hop 2hop 3hop 4hop Shop 6hop 7hop 8hop

Distance (Hops)

Figure 2.11: Execution time and average IPC for Stencil as distance between cores
increases, [20]

160 0.06
"o Average Time M Average IPC

n 0.05

g
" .
L L 004

0.03

Execution Time (s)
)
3 3

0.02

Execution Time (Seconds)

IS
S

0.01

N
o

=)

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Pairs.

Figure 2.12: Execution time and average IPC for Share as number of pairs executed
concurrently increases, [20]

increases beyond a certain count. Figure 2.13 shows the execution time and
the average IPC observed at the execution of the Bcast benchmark, as the core
count participating in the broadcast increases. Clearly, for core counts greater
than 8, network contention becomes a bottleneck causing an overall performance
drop. Becast is evidently a network intensive application because of the significant
number of messages it sends and receives.

* Applications characterized by a high number of memory accesses but low IPC
tend to present low power consumption. On the contrary, applications with high
IPC consume more power. Figure 2.14 presents a comparison of the IPC and
power consumption between Share, Shift, Sencil and Pingpong when they are
executed with local communication, using all 24 pairs of cores. Evidently, power
consumption is highly correlated with the applications IPC. Moreover, memory
intensive applications do not benefit from running on a larger number of cores,
since high delays because of memory contention keep the execution time and thus
the overall energy consumption high. However, high IPC applications can greatly
benefit of an increased core count, since the execution time drop compensates
for the increased power consumption, leading in an overall energy consumption

17

Diploma Thesis Related Work

IS
S
o
o
o
©

W Average of time M Average of IPC

w
@
=)

w
S
S

N
o
=]

-
«
=]

Execution Time (Seconds)
5]
S}

Bcast Bcast Bcast Bcast Bcast Bcast Bcast Bcast Bcast Beast Bcast Bcast Bcast Beast Bcast Bcast
2 3 4 6 8 10 12 16 20 24 28 32 36 40 44 48
Number of Cores

Figure 2.13: Execution time and average IPC for Bcast with respect to number of
cores, [20]

reduction.

0.4 61
= |PC_WPower gy 59

57
55

g
= 02 53
0.15 - ™ 51
0.1 | | 49
0.05 -7* 47
0 I . -

Share Shift Stencil Pingpong

Power (w)

Benchmark

Figure 2.14: Power consumption and IPC for Share, Shift, Stencil and Pingpong, [20]

Efficient broadcasting is essential for good performance on distributed or multipro-
cessor systems. RCCE implements broadcasting in a traditional way: sending n — 1
unicast messages, where n is the number of cores participating in the broadcast. This
implementation hinders performance as the number of cores participating in the broad-
cast increases and the data being sent to each core is large. In addition, in the RCCE
implementation the broadcasting core is blocked from doing any useful work until all
cores receive the broadcast.

Matienzo and Jerger in [21] explore several broadcasting schemes that take advan-
tage of the resources of the SCC and the RCCE library. Their best broadcast scheme
achieves a 35x speedup over the RCCE implementation. They also demonstrate that
this broadcasting scheme significantly reduces the time spent in communication in some
benchmarks. This study presents two approaches towards implementing more efficient
broadcast schemes. The first approach is to utilize cores that have already received
the broadcast. The original broadcasting core is responsible for only sending the mes-
sage to a few processors and the cores that have received the message are responsible
for forwarding the message to the other cores, which happens in parallel. The second
strategy is to utilize concurrent accesses to a specific memory location, which contains

18

Related Work Diploma Thesis

the message to be broadcasted. Figure 2.15 depicts the average broadcast latency
that is observed of the broadcast schemes that were implemented for increasing mes-
sage size. It is evident that all of them but one outperform the RCCE implementation.

4
2

05 TNTCeYdIRBIILLSIZERNS

TNPSRSSIIBSRNYE *ModvPB

M » Offchip

e 0.125 ~

8 0.0625 MPB

] oatan ~Tiled-Opt

o Tiled

£ 0.015625

= Parallel-Opt

Ti
o
°
=1
2
®
=y
N
a

“*Parallel
RCCE

0.0039063
0.0019531
0.0009766
0.0004883

Message Size (bytes)

Figure 2.15: Broadcast latency for varying message size, [21]

Dynamic frequency and voltage scaling (DVFS) techniques have been widely used
for meeting energy constraints. Single-chip many-core systems bring new challenges
owing to the large number of operating points and the shift to message passing in-
terface from shared memory communication. Bartolini et al. evaluate the impact of
frequency scaling on the performance and power of many-core systems with MPI at
[22]. They provide an extensive analysis quantifying the effects of frequency pertur-
bations on performance and energy efficiency. Their experimental results show that
run-time communication patterns lead to significant differences in power/performance
trade-offs in many-core systems with MPI.

In this study, performance aspects of the execution of Share, Shift, Stencil, Ping-
pong, NPB and Bcast applications on the SCC are measured. Those applications are
deployed on pairs of cores for different numbers of hops between them. FEach cores
runs at either 533 MHz or 166 MHz, so as to measure the impact of frequency scaling.
The metrics that are extracted from these experiments are the execution time, the
chip power and energy consumption, the instructions per second and the message den-
sity. It is verified that memory intensive benchmarks with low IPS such as Pingpong
and Share have lower sensitivity to scaling down of frequency, compared to high IPS,
CPU intensive or network intensive benchmarks such as Shift and Stencil. All appli-
cations benefit from both cores running at the same frequency since they are based
on bidirectional communication, apart from Bcast, whose communication pattern is
unidirectional. Figure 2.16 summarizes those findings.

The metrics that are collected by those experiments are used so as to train neural
networks who attempt to predict the execution time of an application for a given fre-
quency configuration. It is verified that message density and frequency of communica-
tion significantly improve the accuracy of those predictors. As a result, communication
patterns and message densities should be included in DVFS performance optimization

19

Diploma Thesis

Benchmark Parameter Measu

Irements

300

200 Near Far
100
0

[%]

L

| E=lll Sl Tl m W

Execution Time overhead [%]

| “ui "l

Related Work

50

ZSJ_T_\
[}

[%]

Lk

o/ — T T
[%]
-100

-200

=T

I Power Saving [%)]

Energy Saving [%]

W W

3.2x10

AL
AL
Tex101- Achigh B:low
Achigh B:high
0 | e e W

Instructions per Second

6.8x10
3.410°- . .

Message Density

0
0.0724{~

0.03621—

Memory read access density

Broadcast Pingpong

Figure 2.16: Sensitivity of the Intel SCC benchmarks to frequency scaling, [22]

on many-core systems with MPI.

This diploma thesis expands the research that has been carried out on the Intel SCC
regarding performance and power consumption analysis to the field of scale-out work-
loads, which are characterized by significantly different runtime behavior, compared to

traditional PARSEC benchmarks.

Share

20

Shift

Chapter 3

The Intel SCC Architecture

This chapter provides a detailed description of the functional units of the Intel Single-
chip Cloud Computer.

3.1 The SCC Core Layout

The Intel SCC consists of 48 cores, which are organized in 24 tiles. The 24 tiles
are connected through a Network on a Chip (NoC) with each other and with other
functional units of the platform, such as the memory controllers. There are three I1Ds
associated with each core, the processor ID, the tile ID and the core ID. Figure 3.1
depicts the way the 48 cores are laid on the SCC board, with their tile ID (blue),
processor ID (red) and (x, y) coordinates. The tile ID of each core is calculated from
its coordinates as Oxyx. The decimal number of the tile ID is thus 16 xy + z. The core
ID of each core is either 0 or 1 and identifies the core within the boundaries of a specific
tile. The processor 1D is equal to tile_id x 2 + core_id. Each core is also identified by a
unique hostname, which is the concatenation of the word 'rck’ and the processor ID.
As a consequence, core hostnames range from rck00 to rck4?7.

37 39 4 43 45 a7
36 38 40 42 44 46
0x30 40,3 131 (1.9 032 (2.9} 131 (3.3 <24 (4.3% B3
25 27 29 31 33 35
24 26 28 30 3 34

1102 21 (1.2 22 (2.2} 1 @32 (4, 025 (5.2}

13 15 17 19 1 23

12 14 16 18 2 22

1 0,1) x11 (1,1 (12 (2.1} 3 @31 4.1y =16 (B,1)

01 03 05 07 09 1

00 02 04 08 oa 10
40,00 1,04 2.0) x03 3,00 4.0 50

Figure 3.1: Intel SCC Core Layout

21

Diploma Thesis The Intel SCC Architecture

3.2 The SCC Tile

Figure 3.2 shows an overview of an individual tile. In this section, the functional units
that are part of each tile are described.

EIEINE]
=EIE
FFE

EINEINE

.....

F G

Figure 3.2: Intel SCC Tile Overview

3.2.1 P54C IA Core

The core is a P54C Pentium design that has been altered to increase the L1 data
and instruction cache size to 16 KB each. These caches are 4-way set associative
with pseudo-LRU replacement policy. Additionally, the original front side bus-to-
cache controller interface (M-unit) has been integrated into the core. The P54C ISA
(instruction set architecture) was extended with a new instruction (CL1INVMB) and
a new memory type (MPBT) introduced to facilitate the use of message data. All
accesses to MPBT data bypass the L2 cache. The new instruction was added to
invalidate all L1 cache lines typed as MPBT. These changes were added to facilitate
maintaining coherency between caches and message data. Finally, a write combine
buffer was added to the M-unit to accelerate the message transfer between cores.

3.2.2 L2 Cache

Each core has its own private 256 KB L2 cache and an associated controller. During
a miss, the cache controller sends the address to the Mesh Interface Unit (MIU) for
decoding and retrieval. Each core can only have one outstanding memory request and
will stall on missed reads until data are returned. On missed writes, the processor will
continue operation until another miss of either type occurs. Once the data has arrived,
the processor continues normal operation. Tiles with multiple outstanding requests
can be supported by the network and memory system. The L2 cache is a 4-way set
associative with a pseudo-LRU replacement policy. It is write-back only. It is not
write-allocate.

22

The Intel SCC Architecture Diploma Thesis

3.2.3 Message Passing Buffer (MPB)

In addition to the traditional cache structures, a message passing buffer (MPB) capable
of fast R/W operations has been added to each tile. This 16 KB on-chip SRAM buffer
provides the equivalent of 512 full cache lines of memory. Any core or the system
interface can write or read data from these 24 on-die message buffers. One of the
intended uses of the MPB is message passing.

3.2.4 DDR3 Memory Controllers

The four memory controllers provide a maximum capacity of 64 GB of DDR3 memory.
The Intel SCC we have used for our experiments is configured with a total of 32 GB
of system memory, as stated in section 3.4.1. This memory physically exists on the
SCC board. Each memory controller supports two unbuffered DIMMs per channel
with two ranks per DIMM. The supported DRAM type is DDR3-800 x8 with 1 GB, 2
GB or 4 GB capacity, leading up to 16 GB capacity per channel. The DDR3 protocol
includes automatic training, calibration and compensation as well as periodic refresh of
the DRAM. Memory accesses are processed in order, while accesses to different banks
and ranks are interleaved to improve throughput. The memory controllers can either
operate at 800 MHz or 1066 MHz. The memory controllers’ frequency is determined
during platform initialization and cannot be changed during normal operation.

3.2.5 Look Up Table (LUT)

Each core has a lookup table (LUT) which is a set of configuration registers that map
the core’s physical addresses to the extended memory map of the system. Each LUT
contains 256 entries, one for each 16 MB segment of the cores 4 GB physical memory
address space. Each entry can point to any memory location (private memory, message
passing buffer, configuration registers, system interface, SCC power controller or system
memory). On an L2 cache miss, the MIU looks through the LUT to determine where
the memory request should be sent.

3.2.6 Mesh Interface Unit (MIU)
The Mesh Interface Unit (MIU) contains the following:

* Packetizer and De-Packetizer

x Command interpretation and address decode/lookup
* Local configuration registers

* Link level flow control and Credit Management

* Arbiter

23

Diploma Thesis The Intel SCC Architecture

The packetizer/depacketizer translates the data to/from the agents and to/from the
mesh. The Data, Command and Address Buffers provide queuing for flit organization.
Specifically, the MIU takes a cache miss and decodes the address, using the LUT to map
from the core address to system address. It then places the request to the appropriate
queue. The queues are the following:

* Router — DDR3 request
* Message Passing Buffer access
* Local Configuration Register access

For traffic coming from the router, the MIU routes the data to the appropriate lo-
cal destination. The link level flow control ensures flow of data on the mesh using a
credit-based protocol. Finally, the arbiter controls tile element access to the MIU at
any given time via a round robin scheme.

The tile configuration registers provide a method for applications to control the op-
erating modes of various tile hardware elements. Table 3.1 presents the configuration
registers of the MIU and they desired operations that they are designed for. Each
register is mapped to the core address space through the LUT and can be referenced
using memory-mapped 1/O.

The Tile ID register contains the tile’s (x,y) coordinates. The Core Configuration regis-
ters are dedicated to each core of the tile and are writable by each core and the System
Interface unit. The GCU configuration register is dedicated to the global clocking unit
and is writable by all cores and the System Interface as well. The test-and-set reg-
isters enable communication protocols (such as message passing) in a multi-processor
environment. The LUT registers contain the LUT entries of each core. The L2 Cache
Configuration registers controls the sleep and power behavior of the L2 cache. The
Sensor Registers allows enabling and checking the thermal sensors in the core.

3.2.7 Traffic Generator

The traffic generator is a unit used to test the performance capabilities of the mesh by
injecting and checking traffic patterns and is not used in normal operation.

3.3 The SCC Mesh

The on-die 2D mesh network has 24 packet-switched routers connected in a 6 x 4
configuration and is on its own power supply and clock source. This enables power-
performance tradeoffs to ensure that the mesh is delivering the required performance
while consuming minimal power. The SCC Mesh can either operate at 800 MHz or 1.6
GHz. The mesh frequency is determined during platform initialization and cannot be
changed during normal operation.

24

The Intel SCC Architecture

Diploma Thesis

. . . . Valid
Register Name Desired Operation Register Offset Data Bits
LUT register core 1

Read ite LUT1 0x1000 22
(256 8-byte entries) cad/urite *
LUT register core O
d ite LUT 22
(256 8-byte entries) Read/write LUTO 0x0800
Atomic Flag Corel Read/write test-and-set
LOCK1 Core 1 atomic 0x0400 1
Atomic Flag CoreO Read/write ?est-and—set 0%200 1
LOCKO Core 0 atomic
Tile ID register .
MYTILEID Read Tile ID 0x0100 11
Global Clock Unit (GCU)
i 2
GCBCFG Read/write GCU 0x0080 6
Read Th 1
Sensor Register ea erma 0x0048 26
Sensor value
Sensor Register Read/write Thermal
SENSOR Sensor control 0x0040 14
L2 Cache Configuration O .
L2CFGO Read/write L2 Cache O 0x0020 14
L2 Cache Configuration 1 .
p— Read/write L2 Cache 1 0x0028 14
Core Configuration O . . 26 (top 14
d t f 1
GLCFGO Read/write Core O config | 0x0010 read only)
Core Configuration 1 . . 26 (top 14
Read te C 1 f 0x0018
GLCFG1 ead/write Core config X read only)

Table 3.1: Intel SCC Configuration Registers

3.3.1 Router (RXB)

The RXB is the next generation router for future many-core 2D mesh fabrics. It has

the following design targets:

+x Wide Links : 16 B data 4+ 2 B side band

%

High Frequency : 2 GHz @ 1.1 V P1266

* Low Latency : No load latency = 4 cycles including link traversal

%

1 Response (Message class 1)

>

Multiple Message Classes : Two Message Classes 1 Request (Message class 0) +

Multiple Virtual Channels (VCs): 1 VC reserved per Message Class (VC6 for

request and VC7 for response), six VCs in free pool for a total point of eight VCs

%

25

Dynamic Power Management : sleep, clock gating, voltage control etc.

Diploma Thesis The Intel SCC Architecture

3.3.2 Packet Structure and Flit Types

The different agents of the mesh fabric communicate with each other at packet gran-
ularity. A packet consists of a single flit or multiple flits (up to three) with header,
body and tail flits. Control flits are used to communicate control information such as
credits.

3.3.3 Flow Control in SCC

Flow control in SCC is credit-based for the routers of the mesh.
* Each router has eight credits to give per port

* A router can send a packet to another router only when it has a credit from that
router

* Credits are automatically routed back to the sender when the packet moves on
to the next destination

Most of the other agents use on-off signal-based flow control. The exception is the
MIU which is the main traffic controller in the tile and uses a request/grant protocol
to control access of the tile agents to the router.

3.3.4 Error Checking

Error checking is done end-to-end, primarily through parity bits on mesh packets.
Parity checks on packets are done on the following fields : route field, commands and
data. Parity generation is done at the mesh interface (MIF) of the MIU. No automatic
error correction is attempted. FKError signals are sent to agents if a parity error is
detected. In such cases, a retry mechanism is used by the agents.

3.4 The SCC System Memory

3.4.1 System Memory Map

Each of the SCC’s four memory controllers provides access to from 4 GB to 16 GB of
main memory, depending on the density of the DIMMs used, for a total of up to 64 GB.
The Intel SCC used for our experiments has been configured with 8 GB per memory
controller, resulting to a total 32 GB of system memory. Each core has 32 address bits
capable of addressing only 4 GB, so system address Lookup Tables map addresses from
the core physical addresses to system physical addresses. Memory addresses can be
mapped in a manner that shares all, some or none of the system memory among cores.
The boundaries between the shared and private space are dynamically programmable,
giving some flexibility in the partitioning of tasks between cores.

All T/O accesses are passed through the system interface and on to the board FPGA.

26

The Intel SCC Architecture Diploma Thesis

The 4 GB core address space is divided into 256 16 MB pages, for system address
translation. FEach page has an entry in the LUT that provides routing and address
translation information. The LUT is programmed at boot time. However, no restric-
tions are placed on LUT re-programming during normal operation.

3.4.2 Memory Address Translation

The SCC Lookup Table (LUT) unit performs the address translation from core address
to system address. Two LUTSs, one for each core are used to translate all outgoing core
addresses into system addresses. Figure 3.3 illustrates address translation. During
address translation, the upper 8 bits of the core address are used to index one of the
256 LUT entries. A 22-bit output bus is distributed as follows : 10 bits for the upper
10 bits in the new memory address, 8 bits for the tile destination ID, 3 bits for the
subdestination ID and 1 bit for MIU bypass. The subdestination ID is used to identify
the specific component of the destination tile that the packet should be routed at.
Different values correspond to the tile MPB, CRB (configuration register) and the four
ports of the router of the destination tile (east,west,north,south).

Address bits from core [8b_ | 24b
LUT
[v
bypass | _destiD subdestiD][10b | 24b
ib 8b 3b New address 34b

Figure 3.3: Intel SCC Address Translation

3.5 The SCC Power Management API

3.5.1 Voltage and Frequency Islands

SCC cores are divided into six voltage islands, each containing a 2 x 2 array of tiles;
each island has a total of eight P54C cores. Each island has a separate power supply.
The voltage islands are also called voltage domains. Clocking is at an even finer gran-
ularity with each tile on SCC able to have its own operating frequency. The voltage
and frequency islands enable parts of SCC to be turned off or dialed down to a lower
frequency to minimize power consumption. Figure 3.4 illustrates the voltage and fre-
quency domains on the SCC.

The mesh has its own clock and power supply with all router stops on the same clock
and power supply. The power consumption of the mesh can thus be controlled inde-
pendently of the cores and vice versa. Thus, the entire mesh can be thought as a single
voltage/frequency island.

27

Diploma Thesis The Intel SCC Architecture

Figure 3.4: Intel SCC Voltage and Frequency Islands

3.5.2 The Global Clock Unit (GCU) Configuration Register

The Global Clock Unit (GCU) Configuration Register regulates the operating frequency
of each tile. The router clock is set at either 800 MHz or 1.6 GHz. When the router
clock is 800 MHz, the memory clock is also at 800 MHz. When the router clock is 1.6
GHz, the memory clock is either 800 MHz or 1066 MHz. When the router frequency
is 800 MHz, the default tile frequency is 533 MHz. When the router frequency is 1.6
GHz, the default tile frequency is 800 MHz.

By writing bits 25:08 of the GCU, the tile frequency can be changed. The value
that has to be written to those bits of the GCU depends on the desired tile frequency
as well as the frequency of the mesh. Due to Intel SCC hardware limitations, we have
noticed that it is possible to perform frequency perturbations only when the router
operates at 800 MHz and the memory at 800 MHz. Table 3.2 shows the binary value
that has to be written to the 25:08 bits of the GCU so as to achieve the specific tile
frequency.

3.5.3 The SCC Power Controller (VRC)

The SCC Power Controller (VRC) enables each core of the platform to adjust the
voltage of each voltage island. The VRC has its own destination target in the core’s
memory map and thus its own entry in the LUT. A core or the system interface can
write to this memory location, and it will be decoded as a command for the VRC. This
command is then routed to the VRC across the mesh and executed. The VRC accepts
the command, adjusts the voltage and then sends an acknowledgement back to the tile
so that it knows the command completed successfully.

The VRC can set the voltage of a voltage domain to any value between 0 V and
1.3 V, with a 6.25 mV step. However, depending on the frequency settings of the
tiles of the voltage domain, a minimum voltage level is required so as to ensure stable
operation. Table 3.3 states the minimum voltage that is required for safe operation for
all possible frequency settings.

28

The Intel SCC Architecture Diploma Thesis

Tile Frequency (MHz) | GCU Config Setting [25:08]
800 00 0111 0000 1110 0001
533 00 1010 1000 1110 0010
400 00 1110 0000 1110 0011
320 01 0001 1000 1110 0100
266 01 0101 0000 1110 0101
228 01 1000 1000 1110 0110
200 01 1100 0000 1110 0111
176 01 1111 1000 1110 1000
160 10 0011 0000 1110 1001
145 10 0110 1000 1110 1010
133 10 1010 0000 1110 1011
123 10 1101 1000 1110 1100
114 11 0001 0000 1110 1101
106 11 0100 1000 1110 1110
100 11 1000 0000 1110 1111

Table 3.2: Tile Frequency Settings for Router Clock of 800 MHz

3.5.4 Changing The Tile Frequency

Each core can access its own configuration registers as well as those of other cores using
memory-mapped [/O. Memory-mapped 1/0 is performed in standard Linux using the
mmap () function. The base address for the configuration registers for the tile at (x=0,
y=0) is 0xe0000000. The configuration registers for each tile are offset by 0x01000000
from 0xe0000000 as you travel along the x axis. Following this convention, the base
address for the tile at (x=1, y=0) is 0xe1000000, that for the tile at (x=2, y=0) is
0xe2000000, etc. The tile after (x=>5, y=0) is (x=0, y=1), etc. Continuing with this
method, the base address for the final tile at (x=5, y=3) is 0x£7000000. The base ad-
dress 0x£8000000 is a special one. When a core specifies this base address, it specifies
its own base address.

The program shown below (setFreq800.c) sets the frequency of a specific tile to 800
MHz (for router frequency at 800 MHz). The device /dev/rckncm is used to specify the
file descriptor of the file to be mapped. This filed is mapped to a memory page using
mmap (). The Global Clocking Unit Configuration Register is accessed by specifying an
offset of 0x80 from the base address of the Configuration Registers of the specific core
(0x£8000000). The bits 25:08 of the GCU are set to 0x070e100, which corresponds to
a tile frequency of 800 MHz. Finally, the page is unmapped using munmap ().

setFreq800.c :

#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

29

Diploma Thesis

The Intel SCC Architecture

Tile Frequency (MHz) | Minimum Voltage (V)
800 1.16250
533 0.85625
400 0.75625
320 0.69375
267 0.66875
229 0.65625
200 0.65625
178 0.65625
160 0.65625
145 0.65625
133 0.65625
123 0.65625
114 0.65625
107 0.65625
100 0.65625

Table 3.3: Minimum Voltage Levels for Safe Operation

#include <stdlib.h>

#define CRB_OWN 0xf8000000

#define GCBCFG 0x80

main() {

typedef volatile unsigned char* t_vcharp;

int PAGE_SIZE, NCMDeviceFD;

// NCMDeviceFD is the file descriptor for
// non-cacheable memory (e.g. config regs).

unsigned int result;
t_vcharp MappedAddr;

unsigned int alignedAddr, pageOffset, ConfigAddr;

ConfigAddr = CRB_OWN+GCBCFG;
getpagesize();

PAGE_SIZE

if ((NCMDeviceFD=open("/dev/rckncm", O_RDWR|O_SYNC))<0) {

perror("open") ;
exit(-1);
b

alignedAddr = ConfigAddr & (" (PAGE_SIZE-1));

pageOffset = ConfigAddr - alignedAddr;

MappedAddr = (t_vcharp) mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,
MAP_SHARED, NCMDeviceFD, alignedAddr);

if (MappedAddr == MAP_FAILED) {
perror ("mmap") ;exit(-1);

}

result = *(unsigned int*) (MappedAddr+pageOffset) & Oxff;

result += 0x070e100;

The Intel SCC Architecture Diploma Thesis

(unsigned int) (MappedAddr+pageOffset) = result;
munmap ((void*)MappedAddr, PAGE_SIZE);
}

This program is cross-compiled with icc on the MCPC so as to produce the setFreq800
executable that will run on SCC hardware. The executable is executed using the pssh
command. The pssh command is used so as to load the executable on the SCC cores.
The resulting executable has to be placed in a subdirectory of the /shared directory,
so that it can be accessed by the cores. The /shared directory is mounted on all the
cores as a network file system. The pssh command has to be executed as follows:

pssh -h hosts.txt -p 1 -P -t -1 /shared/ageo/setFreq800

The file hosts.txt specifies the cores that this program will be run. If for exam-
ple, this file contains the following two lines, then the program is executed by cores
rck00 and rck02 and will set the frequency of cores rck00, rck01, rck02 and rck03
to 800 MHz.

hosts.txt :

rck00 root
rck02 root

The -p switch defines the number of concurrent threads that will be executed by the
pssh command. The -t switch specifies the timeout in seconds, which in this case is
-1, which means that the execution never times out. The -P switch specifies that the
program prints the output as it is received.

3.6 The Management Console

The Management Console is a PC that communicates with the SCC platform over a
PCI Express bus. The PCle bus connects to the system FPGA interface on the SCC
board which connects to the System Interface on the SCC itself. The MCPC runs a
stable version of Ubuntu Linux. The sccKit software that is provided by Intel, en-
ables users to boot Linux on the SCC cores, read and write core memory locations and
registers, monitor performance etc.

Figure 3.5 illustrates how the SCC and the MCPC are connected. The figure shows
two Ethernet cables coming from the SCC chassis. The MCPC also has two Ethernet
cables and to NICs. The ethO cable connects to the Internet through a public IP. The
ethl cable connects to the Board Management Microcontroller (BMC). The BMC is
an ARM processor that is responsible for initializing and shutting down critical system
functions.

The sccKit software offers a variety of functions that are available from the command

line so as to configure and monitor the SCC platform. In the remainder of this section,
the commands offered by sccKit are described. Appropriate examples are given as well.

31

Diploma Thesis The Intel SCC Architecture

SCC PCle eth0 public IP
—_—
MCPC
ethl 192.168.x.254
PortA 192.168.x.1..47 BMC 10.3.16.126 ethl:1 10.3.16.26

switch

Figure 3.5: Connection of the Intel SCC to the MCPC

3.6.1 sccBoot

sccBoot enables users of the platform to boot Linux on the SCC cores and to check
that the cores have been successfully booted as well. When run with the -L switch,
sccBoot boots Linux on all SCC cores. When run with the -1 switch, followed by a
core ID or a range of core IDs, then sccBoot boots Linux on the specified core or range
of cores. For example, in order to boot Linux on cores rck00 and rck01, the following
command should be executed:

sccBoot -1 0..1

In order to check that Linux has been successfully booted on all cores, sccBoot should
be run with the -s switch. This commands pings all cores on the SCC board and
returns the processor IDs of the cores that were successfully reached.

3.6.2 sccPerf

sccPerf opens a graphical user interface (GUI) that visualizes the status of the SCC
board. This GUI shows the CPU utilization of each core, the overall CPU utilization
and the overall power consumption of the platform. The performance meter window
is shown at figure 3.6.

3.6.3 sccDump

sccDump provides the ability to read data from the off-chip DRAM (using the -d
switch), a Message Passing Buffer (using the -m switch), a Core Configuration Register
(using the -c switch) or the System Interface (using the -s switch). The following
example shows the output that is received when sccDump is executed with the -c switch,
followed by the hexadecimal identification of the bottom left tile (that includes cores
rck00 and rck01). The output of this command lists the values of all the configuration
registers of the specific tile, as well as all the LUT entries of both cores of the tile.

ageo@mitsos:~$ sccDump -c 0x00

INFO: Packet tracing is disabled...

INFO: Initializing System Interface (SCEMI setup)....

INFO: Successfully connected to PCIe driver...

INFO: Welcome to sccDump 1.4.1 (build date Jun 28 2011 - 16:02:28)...

32

The Intel SCC Architecture

Diploma Thesis

% SCC performance meter

e tan e
AL AL A/
S 7 7
A 37 v
7 ra F
o) L) L/
T " V%
i:\ Ve i\ v i:(‘
T 7 T
*./. 3, / V4 ¢
T ' S
{ s {» ir
F F P
i, 17 L
e F P
V4 17 L

@0 ®

rIndividual CPU usage...
4/ N <f N 4’/ N
V4 v e
4/ N <f N 4’/ N
V4 WA 3
7 P 7
A AL V4
g . W4
i/ i/ i
i/ i/ g
7 7 7
-V V4 V4
7 7 7
i, i7 ir

—Over-all CPU usage of enabled cores...

\
\. \
Current power consumptien (in Watt)
(b5

’—Set style of individual CPU usage section

Icockpit style]

¢ Taskmanager style

¢ Combined (overlay)

Figure 3.6: Intel SCC Performance Meter

Dumping CRB registers of Tile 0x00

GLCFGO = 0x00348df8
GLCFG1 = 0x00348df8
L2CFGO = 0x000006ct
L2CFG1 = 0x000006ct
SENSOR = 0x00002554
GCBCFG = 0x0070elf0
MYTILEID = 0x00000005
LOCKO = 0x00000001
LOCK1 = 0x00000001

Restoring locks: LOCKO and LOCK1

Dumping LUTs of Tile 0x00

Format: Bypass(bin)_Route(hex)_subDestId(dec)_AddrDomain (hex)

LUTO, Entry 0x00

LUTO, Entry 0x01 (CRB addr = 0x0808):
LUTO, Entry Oxfe (CRB addr = 0x0ff0):
LUTO, Entry Oxff (CRB addr = 0x0ff8):
LUT1, Entry 0x00 (CRB addr = 0x1000):
LUT1, Entry 0x01 (CRB addr = 0x1008):

(CRB addr = 0x0800):

0_0x00_6 (PERIW) _0x000
0_0x00_6 (PERIW) _0x001

0_0x95_1(CORE1) _0x014
0_0x00_6(PERIW) _0x1f4
0_0x00_6 (PERIW) _0x029
0_0x00_6 (PERIW) _0x02a

33

Diploma Thesis The Intel SCC Architecture

LUT1, Entry Oxfe (CRB addr
LUT1, Entry Oxff (CRB addr

0x17£0): 1_0xc5_0(COREQ) _0x24b
0x17£8): 0_0x00_6(PERIW) _0x1£f5

3.6.4 sccBmc

sccBme is used for initializing the SCC platform and for sending commands to the
BMC. The platform can be initialized when running the sccBmc command with the -i
switch. The -i switch has to be accompanied by one of the following configurations,
which determine the tile, mesh and memory frequency respectively:

Tileb533_Mesh800_DDR800O
Tile800_Mesh1600_DDR1066
Tile800_Mesh1600_DDR800O
Tile800_Mesh800_DDR1066
Ti1e800_Mesh800_DDR800O

The sccBmc command can also be executed with the -c switch, so as to connect to
the BMC and execute the specific command. The following example shows the output
of the execution of the status command at the BMC, which displays information
regarding the current board status, such as voltage levels and board temperature. This
functionality of the sccBmc command has been significantly utilized in the monitoring
infrastructure we have developed.

ageo@mitsos:~$ sccBmc -c status

INFO: openBMCConnection(10.3.16.126:5010): You are participant #2
INFO: Welcome to sccBmc 1.4.1 (build date Jun 28 2011 - 16:01:43)...
INFO: Result of BMC command "status":

I?C access is switched to BMC

Power Status = 0xCF3F, ON

Standby supplies:

5VOPWR: 5.002 V (Primary)
1V8SB: 1.800 V (Secondary)
3V3PWR: 3.260 V ="-

Primary supplies:

3V3IN: 3.360 V
5VOIN: 5.054 V
12VOR1: 11.972 V
12VOR2: 11.999 V

Secondary supplies:

1VO: 1.018 V 1.590 A
1V1VCCA: 1.104 vV 2.480 A
1V1VCCT: 1.096 V 4.229 A
1V5: 1.522 vV 6.241 A
1V65: 1.666 V
1V65ADJ: 1.652 V

34

The Intel SCC Architecture

Diploma Thesis

1V8PHY :

2V5:
3V3:

3V3SCC:

1

.796 V

2.480 V
3.316 V
3.304 V

Tertiary supplies:

OPVR
OPVR
OPVR
OPVR
OPVR
OPVR
OPVR

Temperatures:

VCCO:
VCC1:
VCC2:
VCC3:
VCC4:
VCC5:
VCCT7:

Board:

FPGA:

Fan speed:

FPGA:
SCC:

Misc.:

1.

N N

FPGA status:

Lane Good LED is off
LO: normal operation

CPLD status:
PLL is locked.
PLL lock lost is cleared.

0928
.1014
.1862
.0874
.1089
.0931
.0984

S S <SS << <<

34 7C
43 7C

108 RPM
148 RPM

0xC7

0x47

2.350 A
15.842 A

(Needs real conversion to RPM!)

3.7 The SCC Linux

The MCPC contains an Intel-provided Linux image that runs on the SCC cores. This
sections discusses two aspects of the SCC Linux whose understanding is critical for
characterizing MapReduce workloads that run on the SCC : the TCP/IP stack and
the Network File System that is mounted on the cores.

3.7.1 The TCP/IP Stack

Each SCC Linux instance has two virtual network interfaces : mb0 and emacO.

* emac0 is used for communication between the cores and the MCPC. The IP
address of this interface is 192.168.3.x where 1 < x < 48, depending on the
processor ID. Packets that are directed towards this interface, are sent to the
Gigabit Ethernet Switch that connects the SCC with the MCPC, so as to reach
the MCPC, whose IP address is 192.168.3.254. Communication between cores
is not possible through this interface.

35

Diploma Thesis The Intel SCC Architecture

* mb0 is used for communication between the cores of the SCC. The IP address of
this interface is 192.168.0.x where 1 < x < 48, depending on the processor ID.
Packets that are directed towards this interface are sent to the Message Passing
Buffer of the receiving core, i.e. the destination IP address is translated to a
physical MPB address. That is, the communication between cores takes place
entirely within the boundaries of the SCC Mesh and does not exit the SCC board.

3.7.2 The Network File System

The directory /shared on the MCPC is NFS - mounted on the cores. As a consequence
disk I/O takes place through the emacO interface and is directed to the MCPC, where
it is stored in its physical storage.

36

Chapter 4

The Hadoop Distributed File
System and the MapReduce
Framework

This chapter provides a detailed analysis of the Hadoop Distributed File System and
the MapReduce framework. Each of the following two sections covers several imple-
mentation aspects of HDFS and MapReduce respectively and concludes with a list of
configuration and runtime parameters that users and cluster administrators can specify
with respect to the HDFS cluster installation and the execution of MapReduce jobs.

4.1 The Hadoop Distributed File System

This section describes several aspects of the Hadoop Distributed File System (HDF'S)
in detail. Particular emphasis is placed on the master/slave architecture of HDFS,
data replication and data reliability and availability, which are some of the key features
offered by HDFS. The section concludes with the runtime and configuration parameters
that can be used so as to customize an HDFS cluster installation.

4.1.1 The NameNode and the DataNodes

HDF'S has a master/slave architecture. An HDFS cluster consists of a single NameNN-
ode, a master server that manages the file system namespace and regulates access to
files by clients. In addition, there are a number of DataNodes, usually one per node
in the cluster, which manage storage attached to the nodes that they run on. HDFS
exposes a file system namespace and allows user data to be stored in files. Internally, a
file is split into one or more blocks and these blocks are stored in a set of DataNodes.
The NameNode executes file system namespace operations like opening, closing, and
renaming files and directories. It also determines the mapping of blocks to DataN-
odes. The DataNodes are responsible for serving read and write requests from the file
systems clients. The DataNodes also perform block creation, deletion, and replication
upon instruction from the NameNode. Figures 4.1 illustrates the organization of the

37

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

HDFS architecture.

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Namenode

Metadata ops 7

Read Datanodes Datanodes
' | |
(R = = Replication e %D
m = gul Blocks
- | —
Rack 1 Wite Rack 2

Figure 4.1: The HDFS Architecture

The NameNode and DataNode are pieces of software designed to run on commod-
ity machines. These machines typically run a GNU/Linux operating system (OS).
HDEFES is built using the Java language; any machine that supports Java can run the
NameNode or the DataNode software. Usage of the highly portable Java language
means that HDF'S can be deployed on a wide range of machines. A typical deployment
has a dedicated machine that runs only the NameNode software. Each of the other
machines in the cluster runs one instance of the DataNode software. The architecture
does not preclude running multiple DataNodes on the same machine but in a real de-
ployment that is rarely the case.

The existence of a single NameNode in a cluster greatly simplifies the architecture
of the system. The NameNode is the arbitrator and repository for all HDFS meta-
data. The system is designed in such a way that user data never flows through the
NameNode.

4.1.2 The File System Namespace

HDFS supports a traditional hierarchical file organization. A user or an application
can create directories and store files inside these directories. The file system names-
pace hierarchy is similar to most other existing file systems; one can create and remove
files, move a file from one directory to another, or rename a file. HDFS does not yet
implement user quotas. HDFS does not support hard links or soft links. However, the
HDFS architecture does not preclude implementing these features.

The NameNode maintains the file system namespace. Any change to the file system
namespace or its properties is recorded by the NameNode. An application can specify

38

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

the number of replicas of a file that should be maintained by HDFS. The number of
copies of a file is called the replication factor of that file. This information is stored by
the NameNode.

4.1.3 Data Organization

HDFS is designed to support very large files. Applications that are compatible with
HDFS are those that deal with large data sets. These applications write their data
only once but they read it one or more times and require these reads to be satisfied at
streaming speeds. HDFS supports write-once-read-many semantics on files. A typical
block size used by HDFS is 64 MB. Thus, an HDFS file is chopped up into 64 MB
chunks, and if possible, each chunk will reside on a different DataNode.

A client request to create a file does not reach the NameNode immediately. In fact,
initially the HDFS client caches the file data into a temporary local file. Application
writes are transparently redirected to this temporary local file. When the local file
accumulates data worth over one HDF'S block size, the client contacts the NameNode.
The NameNode inserts the file name into the file system hierarchy and allocates a data
block for it. The NameNode responds to the client request with the identity of the
DataNode and the destination data block. Then the client flushes the block of data
from the local temporary file to the specified DataNode. When a file is closed, the
remaining un-flushed data in the temporary local file is transferred to the DataNode.
The client then tells the NameNode that the file is closed. At this point, the NameN-
ode commits the file creation operation into a persistent store. If the NameNode dies
before the file is closed, the file is lost.

Suppose the HDFS file has a replication factor of three. When the client application
local file accumulates a full block of user data, the client retrieves a list of DataN-
odes from the NameNode. This list contains the DataNodes that will host a replica
of that block. The client then flushes the data block to the first DataNode. The first
DataNode starts receiving the data in small portions (4 KB), writes each portion to
its local repository and transfers that portion to the second DataNode in the list. The
second DataNode, in turn starts receiving each portion of the data block, writes that
portion to its repository and then flushes that portion to the third DataNode. Finally,
the third DataNode writes the data to its local repository. Thus, a DataNode can be
receiving data from the previous one in the pipeline and at the same time forwarding
data to the next one in the pipeline. Thus, the data is pipelined from one DataNode
to the next.

4.1.4 Data Replication

HDFS is designed to reliably store very large files across machines in a large cluster.
It stores each file as a sequence of blocks; all blocks in a file except the last block are
the same size. The blocks of a file are replicated for fault tolerance. The block size
and replication factor are configurable per file. An application can specify the number

39

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

of replicas of a file. The replication factor can be specified at file creation time and
can be changed later. Files in HDFS are write-once and have strictly one writer at any
time.

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

1 g
L. EE B HE

B | HE ="

Figure 4.2: HDFS Data Replication

The NameNode makes all decisions regarding replication of blocks. It periodically
receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.
Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockre-
port contains a list of all blocks on a DataNode.

Large HDFS instances run on a cluster of computers that commonly spread across
many racks. Communication between two nodes in different racks has to go through
switches. In most cases, network bandwidth between machines in the same rack is
greater than network bandwidth between machines in different racks.

For the common case, when the replication factor is three, HDFSs placement pol-
icy is to put one replica on one node in the local rack, another on a node in a different
(remote) rack, and the last on a different node in the same remote rack. This policy
cuts the inter-rack write traffic which generally improves write performance. In addi-
tion, since the chance of rack failure is far less than that of node failure, this policy
does not impact data reliability and availability guarantees.

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a
read request from a replica that is closest to the reader. If there exists a replica on the
same rack as the reader node, then that replica is preferred to satisfy the read request.
If an HDF'S cluster spans multiple data centers, then a replica that is resident in the
local data center is preferred over any remote replica.

On startup, the NameNode enters a special state called Safemode. Replication of

data blocks does not occur when the NameNode is in the Safemode state. The Na-
meNode receives Heartbeat and Blockreport messages from the DataNodes. Each block

40

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

has a specified minimum number of replicas. A block is considered safely replicated
when the minimum number of replicas of that data block has checked in with the
NameNode. After a configurable percentage of safely replicated data blocks checks in
with the NameNode (plus an additional 30 seconds), the NameNode exits the Safemode
state. It then determines the list of data blocks (if any) that still have fewer than the
specified number of replicas. The NameNode then replicates these blocks to other
DataNodes.

4.1.5 The Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A
client establishes a connection to a configurable TCP port on the NameNode machine.
It communicates through the ClientProtocol with the NameNode. The DataNodes
communicate with the NameNode using the DatalNode Protocol. A Remote Pro-
cedure Call (RPC) abstraction wraps both the Client Protocol and the DataNode
Protocol. By design, the NameNode never initiates any RPCs. Instead, it only re-
sponds to RPC requests issued by DataNodes or clients.

4.1.6 The Persistence of File System Metadata

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction
log called the EditLog to persistently record every change that occurs to file system
metadata. For example, creating a new file in HDF'S causes the NameNode to insert a
record into the EditLog indicating this. Similarly, changing the replication factor of a
file causes a new record to be inserted into the EditLog. The NameNode uses a file in
its local host OS file system to store the EditLog. The entire file system namespace,
including the mapping of blocks to files and file system properties, is stored in a file
called the FsImage. The FsImage is stored as a file in the NameNodes local file system
too.

The DataNode stores HDF'S data in files in its local file system. The DataNode has no
knowledge about HDF'S files. It stores each block of HDFS data in a separate file in
its local file system. When a DataNode starts up, it scans through its local file system,
generates a list of all HDF'S data blocks that correspond to each of these local files and
sends this report to the NameNode: this is the Blockreport.

4.1.7 Data Availability and Reliability

The primary objective of HDF'S is to store data reliably even in the presence of fail-
ures. The three common types of failures are NameNode failures, DataNode failures
and network partitions.

A network partition can cause a subset of DataNodes to lose connectivity with

the NameNode. The NameNode detects this condition by the absence of a Heartbeat
message. The NameNode marks DataNodes without recent Heartbeats as dead and

41

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

does not forward any new IO requests to them. Any data that was registered to a
dead DataNode is not available to HDFS any more. DataNode death may cause the
replication factor of some blocks to fall below their specified value. The NameNode
constantly tracks which blocks need to be replicated and initiates replication whenever
necessary. The necessity for re-replication may arise due to many reasons: a DataNode
may become unavailable, a replica may become corrupted, a hard disk on a DataNode
may fail, or the replication factor of a file may be increased.

It is possible that a block of data fetched from a DataNode arrives corrupted. This
corruption can occur because of faults in a storage device, network faults, or buggy
software. The HDF'S client software implements checksum checking on the contents
of HDFS files. When a client creates an HDFS file, it computes a checksum of each
block of the file and stores these checksums in a separate hidden file in the same HDF'S
namespace. When a client retrieves file contents it verifies that the data it received
from each DataNode matches the checksum stored in the associated checksum file. If
not, then the client can opt to retrieve that block from another DataNode that has a
replica of that block.

The Fslmage and the EditLog are central data structures of HDFS. A corruption of
these files can cause the HDF'S instance to be non-functional. For this reason, the Na-
meNode can be configured to support maintaining multiple copies of the FsImage and
EditLog. Any update to either the Fslmage or EditLog causes each of the FsImages
and EditLogs to get updated synchronously. When a NameNode restarts, it selects the
latest consistent FsImage and EditLog to use.

4.1.8 File and Block Deletion

When a file is deleted by a user or an application, it is not immediately removed from
HDEFS. Instead, HDFS first renames it to a file in the /trash directory. The file can
be restored quickly as long as it remains in /trash. A file remains in /trash for a
configurable amount of time. After the expiry of its life in /trash, the NameNode
deletes the file from the HDFS namespace. The deletion of a file causes the blocks
associated with the file to be freed. Note that there could be an appreciable time delay
between the time a file is deleted by a user and the time of the corresponding increase
in free space in HDFS.

When the replication factor of a file is reduced, the NameNode selects excess replicas
that can be deleted. The next Heartbeat transfers this information to the DataNode.
The DataNode then removes the corresponding blocks and the corresponding free space
appears in the cluster. Once again, there might be a time delay between the completion
of the setReplication API call and the appearance of free space in the cluster.

42

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

4.1.9 The HDFS Command Line API

HDEF'S provides a command line interface called F'S Shell that lets a user interact with
the data in HDFS. The following examples demonstrate how a user can create the
directory /testdir and view the contents of the testfile.txt file, which is under the
/testdir directory in HDF'S using the F'S Shell. Those commands should be executed
from the parent directory of the HDF'S installation.

bin/hadoop dfs -mkdir /testdir
bin/hadoop dfs -cat /testdir/testfile.txt

The DFSAdmin command set is used for administering an HDFS cluster. These
are commands that are used only by an HDFS administrator. The following example
demonstrates how to force the NameNode to exit the SafeMode:

bin/hadoop dfsadmin -safemode leave

HDFS APIs are also available for the Java and C programming languages, so as
to enable client applications interact with files stored in HDFS. HDFS also offers a
Browser Interface that enables users navigate the HDFS namespace and view the
contents of its files.

4.1.10 Configuring an HDFS Cluster

Each HDFS cluster deployment is configured by a big set of parameters. A default
value is specified for each configuration parameter, which can be overriden so as to
customize the HDFS installation. The HDFS deployment configuration is controlled
by four configuration files : core-default.xml, core-site.xml, hdfs-default.xml
and hdfs-site.xml. Those files are loaded in the classpath of each HDFS daemon
(NameNode and DataNodes) at runtime. The runtime environment of an HDF'S clus-
ter is set up by the hadoop-env.sh configuration script.

core-default.xml and core-site.xml contain information that regards global proper-
ties of an HDF'S installation, such as the endpoint URI that consists of the host and the
port of the file system. Additional information that is determined in those files regards
I/O properties such as error checking and rack topology configuration. The default
values of those parameters are specified in core-default.xml. Default parameter val-
ues overrides should be included in core-site.xml. Table 4.1 provides a description
of configuration parameters that can be defined in core-site.xml accompanied by
example values.

hdfs-default.xml and hdfs-site.xml contain information such as the local file system
directories where HDF'S metadata and file data blocks should be stored by the NameN-
ode and the DataNodes. In addition, those files determine the default block size and
replication factor of the distributed file system. The default values of those parameters
are specified in hdfs-default.xml. Default parameter values overrides should be in-
cluded in hdfs-site.xml. Table 4.2 provides a description of configuration parameters

43

The Hadoop Distributed File System

Diploma Thesis and the MapReduce Framework
Configuration Parameter Description Example Value
The name of the default
fs.default.name file system, in the form hdfs://192.168.0.1:54310

of and endpoint URI.

A base for other

hadoop.tmp.dir . .
temporary directories.

/home/ageo/tmp_dir

The script name that
determines the
allocation of cluster
nodes to HDFS racks.

topology.script.file.name /home/ageo/hadoop-topology.sh

If true, when a checksum
error is encountered while
reading a sequence file
entries are skipped,
instead of throwing an
exception.

io.skip.checksum.errors true/false

Table 4.1: Configuration Parameters Defined in core-site.xml

that can be defined in hdfs-site.xml accompanied by example values.

hadoop-env.sh determines overrides for environment variables that are related to the
HDEFS installation, such as the Java Home directory and the Java Heap Size. Table 4.3
provides a description of runtime parameters that can be defined in hadoop-env.sh
accompanied by example values.

4.2 The MapReduce Framework

This section describes several aspects of the MapReduce framework in detail. A
MapReduce Job usually splits the input dataset into independent chunks which are
processed by the Map tasks in a completely parallel manner. The framework sorts
the outputs of the maps, which are then input to the Reduce tasks. Typically both
the input and the output of the job are stored in HDFS. The framework takes care of
scheduling and monitoring tasks and the re-execution of the failed tasks. This section
concludes with a list of configuration parameters that can be specified so as to tune
the execution of MapReduce jobs.

4.2.1 The JobTracker and the TaskTrackers

The MapReduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The JobTracker is responsible for scheduling the jobs’
component tasks on the slaves, monitoring them and re-executing the failed tasks. The
TaskTrackers execute the tasks as directed by the JobTracker.

Minimally, applications specify the input/output locations and supply map and re-

44

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

Configuration Parameter Description Example Value

Default block replication.

. . The actual number of

dfs.replication . . s 1
replications can be specified

when the file is created.

The default block si
dfs.block.size ¢ cerautt block size 4194304 (4 MB)
for new files

Determines the local
filesystem directory, where
dfs.name.dir the NameNode should /home/ageo/hdfsnames
store the name table
(fsimage) .

Determines the local
filesystem directory, where
the DataNode should store
file data blocks.

dfs.data.dir /home/ageo/hdfsdata

Table 4.2: Configuration Parameters Defined in hdfs-site.xml

Configuration Parameter Description Example Value
Home directory

JAVA_HOME of the Java /opt/ibm-jdk-bin-1.6.0.8_p1
installation

Maximum Java
heap size in MB

HADOOP_HEAPSIZE 128
for Hadoop
Daemons
Extra SSH
HADOOP_SSH_OPTS xora -p 1234 -1 root
options
Hadoop logging
HADOOP_ROOT_LOGGER level ERROR, console

Table 4.3: Runtime Parameters Defined in hadoop-env.sh

duce functions via implementations of appropriate interfaces and/or abstract-classes.
These and other job parameters comprise the job configuration. The Hadoop Job
Client then submits the job (jar/executable etc.) and configuration to the JobTracker
which then assumes the responsibility of distributing the software/configuration to the
slaves, scheduling tasks and monitoring them, providing status and diagnostic infor-
mation to the Job Client.

The MapReduce framework operates exclusively on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and produces a

set of <key, value> pairs as the output of the job, conceivably of different types.

Figure 4.3 illustrates how the MapReduce framework can be leveraged in order to count
the occurences of each word in an input document. Initially, the document is split into

45

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

three different InputSplits, which are provided to each Map task as <key,value>
pairs of the form <byte offset, line string>. Each Map task tokenizes each line
string in order to generate intermediate <key,value> pairs for each word, which con-
tain the found word as a key and 1 as value, <word, 1>. During the shuffle stage, the
intermediate <key,value> pairs are sorted and grouped based on the intermediate key
and each <key,list of values> pair is provided to each Reducer task. The Reducer
tasks sum the 1’s that are contained in each list of values and output the number of
occurences of each word in the input document.

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2
Deer, 1 Bear, 1
Deer Bear River Bear, 1
River, 1

Car, 1

Car, 1 Car, 3 Bear, 2
Deer Bear River Car, 1 Car, 1 [Car, 3
Car Car River Car, 1 Deer, 2

Deer Car Bear River, 1 River, 2

Deer, 1 } Deer, 2 }

Deer, 1
Deer, 1
Deer Car Bear Car, 1
Bear, 1 River, 1 River, 2
River, 1

Figure 4.3: MapReduce Wordcount

4.2.2 The Mapper Function

The Mapper function maps input key/value pairs to a set of intermediate key/value
pairs. Maps are the individual tasks that transform input records into intermediate
records. The transformed intermediate records do not need to be of the same type as
the input records. A given input pair may map to zero or many output pairs. The
framework calls the map () method for each key/value pair in the InputSplit for that
task. The Hadoop MapReduce framework spawns one map task for each InputSplit
generated by the InputFormat for the job. Thus, the number of maps is driven by the
total size of the inputs, that is, the total number of blocks of the input files.

Applications can use the Reporter to report progress, set application-level status mes-
sages and update Counters, or just indicate that they are alive. All intermediate values
associated with a given output key are subsequently grouped by the framework, and
passed to the Reducer(s) to determine the final output. Users can control the grouping
by specifying a Comparator. The Mapper outputs are sorted and then partitioned per
Reducer. The total number of partitions is the same as the number of reduce tasks
for the job. Users can control which keys (and hence records) go to which Reducer
by implementing a custom Partitioner. Users can optionally specify a Combiner, to
perform local aggregation of the intermediate outputs, which helps to cut down the
amount of data transferred from the Mapper to the Reducer. The intermediate, sorted
outputs are always stored in a simple (key-len, key, value-len, value) format.

46

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

4.2.3 The Reducer Function

The Reducer function reduces a set of intermediate values which share a key to a
smaller set of values. The number of reducers for the job can be configured by the
user. The Reduce phase of a MapReduce Job has 3 primary stages: shuffle, sort and
reduce. During the Shuffle stage, the framework fetches the relevant partition of the
output of all the mappers, via HT'TP. During the Sort stage the framework groups
Reducer inputs by keys, since different mappers may have output the same key. The
shuffle and sort phases occur simultaneously; while Map outputs are being fetched they
are merged. During the Reduce stage, the reduce () method is called for each <key,
(1ist of values)> pair in the grouped inputs.

The output of the reduce task is typically written to HDFS. Applications can use
the Reporter to report progress, set application-level status messages and update
Counters, or just indicate that they are alive. The output of the Reducer is not sorted.
It is possible to set the number of Reduce tasks to zero if no reduction is desired. In
this case the outputs of the Map tasks go directly to the corresponding HDFS output
path. The framework does not sort the map outputs before writing them out to HDFS.

The Partitioner controls the partitioning of the keys of the intermediate Map out-
puts. The key (or a subset of the key) is used to derive the partition, typically by a
hash function. The total number of partitions is the same as the number of the Reduce
tasks of the job. That is, the Partitioner controls to which of the Reduce tasks the
intermediate key (and hence the record) is sent to for reduction.

4.2.4 Job Configuration

The JobConf entity represents a MapReduce job configuration. JobConf is the pri-
mary interface for a user to describe a MapReduce job to the Hadoop framework for
execution. The framework tries to faithfully execute the job as described by JobConf.
JobConf is typically used to specify the Mapper, Combiner (if any), Partitioner,
Reducer, InputFormat, OutputFormat and OutputCommitter implementations. JobConf
also indicates the set of input files and where the output files should be written.

Optionally, JobConf is used to specify other advanced facets of the job such as the
Comparator to be used, files to be put in the DistributedCache, whether intermedi-
ate and/or job outputs are to be compressed (and how), debugging via user-provided
scripts, whether job tasks can be executed in a speculative manner, maximum number
of attempts per task, percentage of tasks failure which can be tolerated by the job etc.

4.2.5 Task Execution and Environment

The TaskTracker executes the Mapper/Reducer task as a child process in a separate
JVM. The child-task inherits the environment of the parent TaskTracker. The user can
specify additional options to the child JVM via the mapred.{map|reduce}.child. java.opts

47

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

configuration parameter in the JobConf.

The TaskTracker has its local directory, ${mapred.local.dir}/taskTracker/. When

the job starts, the TaskTracker creates the localized job directory $user/jobcache/$jobid/,
which is relative to the previous directory. The localized job directory contains the fol-
lowing subdirectories /files:

e work/ : The job-specific shared directory. The tasks can use this space as scratch
space and share files among them.

e jars/ : The jars directory, which has the job jar file and expanded jar. The
job.jar is the application’s jar file that is automatically distributed to each
machine. It is expanded in the jars/ directory before the tasks for the job start.

e job.xml : The job.xml file, the generic job configuration, localized for the job.

e $taskid/ : The task directory for each task attempt. Each task directory con-
tains the following subdirectories/files.

— job.xml : A job.xml file, task localized job configuration. Task localization
means that properties have been set that are specific to this particular task
within the job.

— output/ : A directory for intermediate output files. This contains the tem-
porary MapReduce data generated by the framework such as Map output
files etc.

— work/ : The current working directory of the task.

— work/tmp/ : The temporary directory for the task. This directory will be
created if it doesn’t exist.

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${HADOOP_LOG_DIR}/userlogs.

4.2.6 Job Submission and Monitoring

The JobClient is the primary interface by which user-job interacts with the JobTracker.
The JobClient provides facilities to submit jobs, track their progress, access component-
tasks’ reports and logs, get the MapReduce cluster’s status information and so on. The
job submission process involves:

1. Checking the input and output specifications of the job.
2. Computing the InputSplit values for the job.

3. Setting up the requisite accounting information for the DistributedCache of the
job, if necessary.

4. Copying the job’s jar and configuration to the MapReduce system directory on
the FileSystem.

48

The Hadoop Distributed File System
and the MapReduce Framework Diploma Thesis

5. Submitting the job to the JobTracker and optionally monitoring it’s status.

Job submission is also possible through the Hadoop FS Shell, with the usage of the
jar command as follows:

bin/hadoop jar <jar file> <main class> [arguments]

Users may need to chain MapReduce jobs to accomplish complex tasks which cannot
be done via a single MapReduce job. This is fairly easy since the output of the job
typically goes to distributed file-system, and the output, in turn, can be used as the
input for the next job.

The JobClient interface is also available from the Linux shell. The following exam-
ples state how a user can view all the Jobs that are currently running in a MapReduce
cluster and how a MapReduce Job can be killed.

bin/hadoop job -list
bin/hadoop job -kill <jobId>

4.2.7 Job Input

The InputFormat describes the input specification for a MapReduce job. The MapRe-
duce framework relies on the InputFormat of the job to:

* Validate the input-specification of the job.

* Split-up the input file(s) into logical InputSplit instances, each of which is then
assigned to an individual Mapper.

* Provide the RecordReader implementation used to glean input records from the
logical InputSplit for processing by the Mapper.

The InputSplit represents the data to be processed by an individual Mapper. Typ-
ically the InputSplit presents a byte-oriented view of the input, and it is the re-
sponsibility of RecordReader to process and present a record-oriented view. The
RecordReader reads <key, value> pairs from an InputSplit. Typically the Record
Reader converts the byte-oriented view of the input, provided by the InputSplit,
and presents a record-oriented to the Mapper implementations for processing. The
RecordReader thus assumes the responsibility of processing record boundaries and
presents the tasks with keys and values.

4.2.8 Job Output

The OutputFormat describes the output specification for a MapReduce job. The
MapReduce framework relies on the OutputFormat of the job to:

* Validate the output specification of the job; for example, check that the output
directory doesn’t already exist.

49

The Hadoop Distributed File System
Diploma Thesis and the MapReduce Framework

* Provide the RecordWriter implementation used to write the output <key, value>
pairs to the output files of the job. The output files of the job are stored in HDF'S.

The OutputCommitter describes the commit of task output for a MapReduce job. The
MapReduce framework relies on the OutputCommitter of the job to:

* Setup the job during initialization. For example, create the temporary output
directory for the job during the initialization of the job. Job setup is done by a
separate task when the job is in PREP state and after initializing tasks. Once
the setup task completes, the job will be moved to RUNNING state.

* Cleanup the job after the job completion. For example, remove the temporary
output directory after the job completion. Job cleanup is done by a separate task
at the end of the job. Job is declared SUCCEDED/FAILED/KILLED after the

cleanup task completes.

* Setup the task temporary output. Task setup is done as part of the same task,
during task initialization.

* Check whether a task needs a commit. This is to avoid the commit procedure if
a task does not need to commit.

* Commit of the task output. Once task is done, the task will commit it’s output
if required.

* Discard the task commit. If the task has been failed/killed, the output will be
cleaned-up. If task could not cleanup (in exception block), a separate task will
be launched with same attempt id to do the cleanup.

4.2.9 Configuring the MapReduce Framework

The MapReduce framework is configured by a big set of parameters. A default value
is specified for each configuration parameter, which can be overriden. The MapRe-
duce configuration is controlled by two configuration files : mapred-default.xml and
mapred-site.xml. Those files are loaded in the classpath of each MapReduce daemon
(JobTracker and TaskTrackers) at runtime. The runtime environment of the MapRe-
duce framework is also set up by the hadoop-env.sh configuration script.

mapred-default.xml and mapred-site.xml contain information that regards the
execution of a MapReduce Job, such as the number of Reducer tasks, the maximum
Map and Reducer tasks per node, the task timeout etc. The default values of those
parameters are specified in mapred-default.xml. Default parameter values overrides
should be included in mapred-site.xml. Table 4.4 provides a description of configu-
ration parameters that can be defined in mapred-site.xml accompanied by example
values.

20

The Hadoop Distributed File System

and the MapReduce Framework Diploma Thesis
Configuration Parameter Description Example Value

The host and port
mapred. job.tracker that the MapReduce 192.168.0.1:54311

JobTracker runs at.

The default number
mapred.reduce.tasks of reduce tasks per 32
job.

The maximum

number of map
tasks that will be 1
run simultaneously
by a task tracker.

mapred.tasktracker.
map.tasks.maximum

The maximum
number of reduce
tasks that will be run 1
simultaneously by
a TaskTracker.

mapred.tasktracker.
reduce.tasks.maximum

Java opts for the
mapred.child. java.opts TaskTracker child -Xmx160m
processes.

The number of
milliseconds before
a task will be
mapred.task.timeout terminated if it neither | 3600000
reads an input, writes
an output, nor updates
its status string.

The maximum
mapred.map.max.attempts number of attempts 15
per map task.

The maximum number
mapred.reduce.max.attempts of attempts per reduce 10
task.

The class responsible
mapred. jobtracker.taskScheduler | for scheduling the
tasks.

org.apache.hadoop.
mapred.FairScheduler

Table 4.4: Configuration Parameters Defined in mapred-site.xml

o1

Chapter 5

Hadoop Cluster Deployment on the
Intel SCC

This chapter provides a detailed description of the tools that have been used and
developed so as to deploy and launch Hadoop Clusters on the Intel SCC. The version of
Hadoop we have used is 0.20.2. The first section of this chapter analyzes the necessary
Runtime Environment setup that has to be performed and the next section explains the
deployment process for four Hadoop Cluster topologies on the Intel SCC. The chapter
concludes with the installation process of Apache Mahout on the MCPC.

5.1 Hadoop Runtime Environment for the Intel SCC

This section presents the Runtime Environment that is required so as to launch Hadoop
Clusters on the Intel SCC. It provides a detailed description of the Gentoo Linux Image
that we have used so as to provide all of the software tools and are necessary for a
Hadoop Cluster installation that are not provided by the Intel SCC Linux. In addition,
several modifications that we have applied regarding the Network Configuration of the
Intel SCC and the MCPC are stated. Moreover, the Java installation process and the
setup of password-less SSH communication between the Intel SCC cores are described.
The section concludes with a script we have developed, which sets up the runtime
environment required by HDFS in each Intel SCC core.

5.1.1 Gentoo Linux for the Intel SCC

Since the Intel SCC Linux provides only a restricted application development API that
does not cover the requirements of a Hadoop Cluster installation, we have utilized a
Gentoo Image which has been developed specifically for the Intel SCC by Sobania and
Troger [26]. This Gentoo Image makes all usual Linux tools available for us, as well
as it’s software repository, which contains a big variety of software packages for this
specific version of Linux.

The Gentoo Linux for the Intel SCC can be downloaded from the link
http://www.dcl.hpi.uni-potsdam.de/research/scc/scc_gentoo_20101117.tar.bz2.

93

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

The archive that is provided by this link consists of the Gentoo root filesystem under
gentoo/ directory and two bash scripts, to_gentoo.sh and set_nat.sh which are used
to enter the Gentoo Linux interactive shell from an Intel SCC core and to enable the
cores of Intel SCC access the public Internet with NAT routing through the MCPC
respectively.

to_gentoo.sh is used for entering the Gentoo interactive shell from an Intel SCC
core. This script changes the root directory to the Gentoo Linux root directory, which
has to be located under /shared, so as to be accessible from an Intel SCC core. This
is achieved by invoking the chroot command. to_gentoo.sh contains the following
single line of code. The root directory of Gentoo Linux is

/shared/ageo/rck00/shared/gentoo

in this case. Before this script is executed, /proc and /dev directories of Intel SCC
Linux have to be mounted to the corresponding directories of the Gentoo Linux direc-
tory structure.

to_gentoo.sh:
/usr/sbin/chroot /shared/ageo/rck00/shared/gentoo/ ¢‘$SHELL -i /home/myinit.sh’’
gentoo directory contains the Gentoo Linux file system structure:

ageo@mitsos:~$ 1ls /shared/ageo/rck00/shared/gentoo
bin bonnie boot dev etc home 1ib mnt opt proc root
sbin shared sys tmp user usr var

Since it is required that the Gentoo Linux is mounted on all 48 Intel SCC cores, we
have replicated the directory structure under gentoo/ 48 times, so as to create the
Gentoo Linux root directory for each Intel SCC core, as shown below. All of those
directories where placed under the /shared directory, so that they will be accessible
from the Intel SCC cores.

/shared/ageo/rck00/shared/gentoo
/shared/ageo/rck01/shared/gentoo

/shared/ageo/rck46/shared/gentoo
/shared/ageo/rck47/shared/gentoo

For each core, we have also created one to_gentoo.sh script, which contains the cor-
responding chroot directory for this specific core. This way, we are able to enter the
Gentoo Linux shell from each Intel SCC core. Each Gentoo Image has access only to
the file system structure that is dedicated to this specific core.

ageo@mitsos:~$ ssh root@rck00

rck00:/root # /shared/ageo/rck00/shared/to_gentoo.sh

Now in myinit.sh on i586 (SCC)

4 Apr 12:35:48 ntpdate[146]: step time server 192.53.103.108
offset 124325786.277508 sec

rck00 / #

o4

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

set_nat.sh is used to configure the MCPC as a NAT router for the Intel SCC cores,
so that they can have access to the Gentoo Linux repositories and download all the
software packages that are required so as to launch a Hadoop Cluster on the Intel SCC.
The script assumes that eth0 is the primary (WAN) connection, whereas the Intel SCC
cores are connected via ethl (LAN), so it enables NAT routing from ethl to ethO.
set_nat.sh has to be executed by an administrator with root privileges on the MCPC.

set_nat.sh:

#!/bin/sh

##First we flush our current rules
iptables -F

iptables -t nat -F

##Setup default policies to handle unmatched traffic
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD DROP

##Copy and paste these examples ...

#export LAN=crbO ## sccKit 1.3.0 and earlier: LAN via crbif
export LAN=ethl ## sccKit 1.3.1: LAN via Ethernet port
export WAN=ethO

##Then we lock our services so they only work from the LAN
iptables -I INPUT 1 -i ${LAN} -j ACCEPT

iptables -I INPUT 1 -i lo -j ACCEPT

iptables -A INPUT -p UDP --dport bootps ! -i ${LAN} -j REJECT
iptables -A INPUT -p UDP --dport domain ! -i ${LAN} -j REJECT

##(Optional) Allow access to our ssh server from the WAN
##iptables -A INPUT -p TCP --dport ssh -i ${WAN} -j ACCEPT

##Drop TCP / UDP packets to privileged ports
#iptables -A INPUT -p TCP ! -i ${LAN} -d 0/0 --dport 0:1023 -j DROP
#iptables -A INPUT -p UDP ! -i ${LAN} -d 0/0 --dport 0:1023 -j DROP

##Finally we add the rules for NAT

iptables -I FORWARD -i ${LAN} -d 192.168.0.0/255.255.0.0 -j DROP
iptables -A FORWARD -i ${LAN} -s 192.168.0.0/255.255.0.0 -j ACCEPT
iptables -A FORWARD -i ${WAN} -d 192.168.0.0/255.255.0.0 -j ACCEPT
iptables -t nat -A POSTROUTING -o ${WAN} -j MASQUERADE

##Tell the kernel that ip forwarding is 0K

echo 1 > /proc/sys/net/ipv4/ip_forward

for £ in /proc/sys/net/ipv4/conf/*/rp_filter ; do echo 1 > $f ; done

95

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

5.1.2 Network Configuration

We have performed several modifications to the network configuration of the Intel
SCC and the MCPC. First, we enabled the Intel SCC cores access the public Internet
though the MCPC. After running the set_nat.sh script on the MCPC, we configured
the MCPC as the default gateway and the default DNS server for the Intel SCC cores
as follows. This way, the cores can have access to the Gentoo Linux software package
repository.

rck00:/root # route add default gw 192.168.3.254

rck00:/root # echo "domain rck

> search rck in.rck.net

> nameserver 192.168.3.254

> " > /etc/resolv.conf

rck00:/root # /shared/ageo/rck00/shared/to_gentoo.sh

Now in myinit.sh on i586 (SCC)

4 Apr 12:35:48 ntpdate[146]: step time server 192.53.103.108
offset 124325786.277508 sec

rck00 / # ping -n www.mit.edu

PING e9566.dscb.akamaiedge.net (95.100.78.187) 56(84) bytes of data.
64 bytes from 95.100.78.187: icmp_req=1 ttl=54 time=30.0 ms

64 bytes from 95.100.78.187: icmp_req=2 ttl=54 time=30.0 ms

~C

--- e9566.dscb.akamaiedge.net ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1006ms
rtt min/avg/max/mdev = 30.083/30.084/30.086/0.173 ms

In addition, we modified the routing table of the MCPC, so that it can access the in-
ternal virtual network interfaces of the Intel SCC cores (mb0) directly. The purpose of
this was to manipulate the way that the file blocks are stored in the HDF'S namespace.
Since we run Apache Mahout at the MCPC and the communication of the MCPC to
the Intel SCC cores takes place via the emacO interface, the communication between
Mahout, the NameNode and the DataNode takes place through this interface. As a
consequence, the mapping of file blocks to DataNodes in the FsImage of the NameNode
uses the IP addresses that correspond to the emacO interfaces (192.168.3.x, 1 <= x
<= 48). This makes the data transfer between DataNodes and TaskTrackers during
the execution of a MapReduce job impossible, since the Intel SCC cores cannot com-
municate through the emacO intefaces.

To overcome this problem, we added static routes to the MCPC routing table, which
route the traffic whose destination is the IP address 192.168.0.x to the IP address
192.168.3.x. This way, the HDFS file blocks are stored using the IP addresses of
the mb0 interfaces in the HDFS namespace and data transfer between DataNodes and
TaskTrackers is made possible. This is achieved by executing the following script. This
script has to be executed every time the MCPC is re-booted, by an administrator with
root privileges on the MCPC.

add_routes.sh:

for i in {1..48}

o6

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

do
route add -host 192.168.0.%i gw 192.168.3.$i
done

ageo@mitsos:~$ netstat -rn
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.0.1 192.168.3.1 255.255.255.255 UGH 00 0 ethl
192.168.0.2 192.168.3.2 255.255.255.255 UGH 00 0 ethl
192.168.0.47 192.168.3.47 255.255.255.255 UGH 00 0 ethil
192.168.0.48 192.168.3.48 255.255.2565.255 UGH 00 0 ethil
147.102.37.0 0.0.0.0 255.255.256.0 U 00 0 ethO
192.168.3.0 0.0.0.0 255.2565.256.0 U 00 0 ethil
192.168.1.0 0.0.0.0 255.255.256.0 U 00 0 crbo
192.168.0.0 192.168.1.1 255.2565.25656.0 UG 00 0 crbo
10.3.16.0 0.0.0.0 255.255.256.0 U 00 0 ethil
169.254.0.0 0.0.0.0 255.255.0.0 U 00 0 crbo
0.0.0.0 147.102.37.200 0.0.0.0 UG 00 0 ethO

5.1.3 Java Installation

In order to install Java on the Intel SCC cores, we utilized the Portage package manager
which is offered by Gentoo Linux. Gentoo Linux provides several Java packages through
its software package repository:

rck00 / # emerge --search jdk
Searching. ..

[Results for search key : jdk]
[Applications found : 12]

* dev-java/apple-jdk-bin [Masked]
Latest version available: 1.6.0
Latest version installed: [Not Imstalled]
Size of files: O kB

Homepage: http://java.sun.com/j2se/1.6.0/
Description: Links to Apple’s version of Sun’s J2SE Development Kit
License: as-is

* dev-java/dbdo-jdk11
Latest version available: 7.4
Latest version installed: [Not Installed]
Size of files: 312 kB

Homepage: http://www.dbdo.com
Description: Core files for the object database for java
License: GPL-2

* dev-java/dbdo-jdk12

57

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

Latest version available: 7.4
Latest version installed: [Not Installed]
Size of files: 89 kB

Homepage: http://www.dbdo.com
Description: Core files for the object database for java
License: GPL-2

* dev-java/db4o-jdkb
Latest version available: 7.4
Latest version installed: [Not Installed]
Size of files: 63 kB

Homepage: http://wuw.db4o.com
Description: Core files for the object database for java
License: GPL-2

* dev-java/diablo-jdk [Masked]
Latest version available: 1.6.0.07.02
Latest version installed: [Not Imstalled]
Size of files: 62,591 kB

Homepage: http://www.FreeBSDFoundation.org/downloads/java.shtml
Description: Java Development Kit
License: sun-bcla-java-vm

*x dev-java/gcj-jdk [Masked]
Latest version available: 4.5.1
Latest version installed: [Not Installed]
Size of files: O kB

Homepage: http://www.gentoo.org/
Description: Java wrappers around GCJ
License: GPL-2

* dev-java/hp-jdk-bin [Masked]
Latest version available: 1.6.0.05
Latest version installed: [Not Installed]
Size of files: 231,550 kB

Homepage: http://www.hp.com/go/java
Description: HP JDK/JRE and Plug-In
License: HP-JDKJREG6

* dev-java/ibm-jdk-bin
Latest version available: 1.6.0.8_pl-ril
Latest version installed: 1.6.0.8_pl-rl
Size of files: 374,278 kB

Homepage: http://www.ibm.com/developerworks/java/jdk/
Description: IBM Java SE Development Kit
License: IBM-J1.6

o8

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

* dev-java/jrockit-jdk-bin [Masked]
Latest version available: 1.5.0.14
Latest version installed: [Not Imnstalled]
Size of files: 241,996 kB

Homepage: http://commerce.bea.com/products/weblogicjrockit/jrockit_prod_fam. jsp
Description: BEA WebLogic’s J2SE Development Kit
License: jrockit

* dev-java/sun-jdk
Latest version available: 1.6.0.22
Latest version installed: [Not Installed]
Size of files: 163,745 kB

Homepage: http://java.sun.com/javase/6/
Description: Sun’s Java SE Development Kit
License: dlj-1.1

* java-virtuals/jdk-with-com-sun
Latest version available: 20100419
Latest version installed: [Not Installed]
Size of files: O kB

Homepage: http://www.gentoo.org
Description: Virtual ebuilds that require internal com.sun classes from a JDK
License: GPL-2

* virtual/jdk
Latest version available: 1.6.0
Latest version installed: 1.6.0
Size of files: 0 kB
Homepage:
Description: Virtual for JDK
License:

In our setup, we have selected the JDK that is provided by IBM (dev-java/ibm-jdk-bin).
In order to install this package, we execute the following command. The Portage pack-
age manager then takes care of downloading all the necessary source files, extracting
compiling and installing them to the appropriate directories.

rck00 / # emerge dev-java/ibm-jdk-bin

rck00 / # java -version

java version "1.6.0"

Java(TM) SE Runtime Environment (build pxi3260sr8fp1-20100624_01(SR8 FP1))
IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 Linux x86-32
jvmxi3260sr8ifx-20100609_59383 (JIT enabled, AOT enabled)

JOVM - 20100609_059383

JIT - r9_20100401_15339ifx2

29

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

GC - 20100308_A4)
JCL - 20100624_01

Gentoo Linux masks several software packages that are available through its repository,
due to license mismatches. The installation of masked packages is not allowed. In order
to allow the installation of masked software packages, the following line has to be added
to the /etc/make.conf file:

ACCEPT_LICENSE="x"

5.1.4 SSH Communication Between Cluster Nodes

During the start up of a Hadoop Cluster, the master node (where the NameNode and
the JobTracker are executed) is responsible for starting the DataNode and TaskTracker
daemons in all the remote nodes of the cluster. In order to achieve this, the master
node connects using SSH to all the slave nodes. As a consequence, it is essential that
the master node can connect to all the slave nodes with SSH using public key authen-
tication. In addition, since in our setup we run the Hadoop daemons on the Gentoo
Image and not the Intel SCC Linux, the master node has to be able to connect di-
rectly to the Gentoo Image, rather than the Intel SCC Linux Image. In order to meet
the above requirements, we have created a second SSH server than runs on each core,
listens to the port 1234 and enables the clients to open an interactive Gentoo Linux
shell remotely.

We have modified the default SSH server configuration file (/etc/sshd_config), which
is located in the Intel SCC Linux filesystem, in order to provide the functionality de-
scribed above. For each cluster node, we configured overrides for the default values of
the Port and ChrootDirectory properties as shown below, for core rck00. For differ-
ent cores, the value for ChrootDirectory is set accordingly. The ChrootDirectory of
each Gentoo Linux instance should be owned by root.

Port 1234
ChrootDirectory /shared/ageo/rck00/shared/gentoo

In order to enable SSH communication using public key authentication, we created a
public and private key pair in node rck00, using the command

ssh-keygen -t rsa

This command generates a public key which is stored in /root/.ssh/id rsa.pub and a
private key which is stored in /root/.ssh/id rsa. Both of the paths refer to the Gen-
too Linux filesystem. Since the SSH communication takes place between the Gentoo
Linux shells of the Intel SCC cores, the private key has to be copied in the /root/.ssh
directory of the Gentoo Linux filesystem of each core and the public key should be
added to the /root/.ssh/authorized keys file of the Intel SCC Linux filesystem of
each core. The configuration of our SSH server is placed in /etc/sshd configl file,
in the Intel SCC Linux of each core. The SSH server can be started by executing the
sshd command. The Gentoo Linux shell of the cores is then accessible through both
the MCPC and the other cores, without a password being requested.

60

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

rck00:/root # /usr/sbin/sshd -f /etc/sshd_configl

rck00 / # ssh -p 1234 root@rck27
rck27 T #

ageo@mitsos:”$ ssh -p 1234 root@rck00
rck00 ~ #

5.1.5 Hadoop Runtime Environment Setup

In order to setup the runtime environment for each Intel SCC core, we have created
the following script for each core, which is called start.sh. This code presented below
regards nodes rck00 and rck22. This script copies the public key we have generated
to the /root/.ssh/authorized keys directory of each core, starts the SSH server
that was described in the previous section, mounts the /proc directory of the Intel
SCC Linux to the corresponding directory of the Gentoo Linux directory structure and
copies the files under /dev of Intel SCC Linux to the corresponding directory of the
Gentoo Linux directory structure. This script is placed in /shared/ageo/rck00 direc-
tory so that it can be accessed by the core. Similar scripts are used for the other cores,
which mount the /proc directory into the corresponding directory of the Gentoo Linux
filesystem and are placed in the directory that is dedicated for the specific core. For
example, the start.sh script for rck22 is placed in the /shared/ageo/rck22 directory
and mounts the /proc directory into /shared/ageo/rck22/shared/gentoo/proc.

start.sh for rck0O :

cat /shared/ageo/rck00/shared/gentoo/root/.ssh/id_rsa.pub
>> /root/.ssh/authorized_keys

cp /shared/ageo/rck00/sshd_configl /etc

/usr/sbin/sshd -f /etc/sshd_configl

mount -t proc proc /shared/ageo/rck00/shared/gentoo/proc

cp -r /dev/* /shared/ageo/rck00/shared/gentoo/dev

start.sh for rck22 :

cat /shared/ageo/rck00/shared/gentoo/root/.ssh/id_rsa.pub
>> /root/.ssh/authorized_keys

cp /shared/ageo/rck22/sshd_configl /etc

/usr/sbin/sshd -f /etc/sshd_configl

mount -t proc proc /shared/ageo/rck22/shared/gentoo/proc

cp -r /dev/* /shared/ageo/rck22/shared/gentoo/dev

5.2 Hadoop Cluster Topologies on the Intel SCC

This section describes the process that has to be followed so that a Hadoop Cluster
is launched on the Intel SCC. Initially, the principal design choices we have made
are presented and explained. Subsequently, the list of configuration parameters we

61

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

have defined, in order to deploy four Hadoop Cluster topologies on the Intel SCC,
is presented. Those topologies consist of 16, 24, 32 and 48 nodes each. The section
concludes with the description of a failover mechanism we have developed, which is
crucial for the stability of the HDFS clusters that are deployed on the Intel SCC,
during the execution of MapReduce jobs.

5.2.1 Design Choices and Platform Limitations

This section states the basic design choices that we have made and the failover mech-
anisms we have developed, regarding the deployment of Hadoop Cluster topologies on
the Intel SCC, with respect to the architectural characteristics of the Intel SCC and
the physical limitations that are imposed by this platform.

The most devastating limitation that our setup suffers from, is the lack of sufficient
main memory space for each core. Since 32 GB of memory are connected to the Intel
SCC die through the memory controllers, only 640 MB of main memory is available
for each core, thus Hadoop Cluster node. After testing several MapReduce jobs for
various values of maximum Java Heap Size, we decided that a value of -Xmx128m is
appropriate for the Hadoop Dameons and the Child JVMs, so that the Java processes
will neither be killed by the OS (or make the core freeze), nor be terminated with a
java.lang.OutOfMemoryError exception.

As a consequence of the above, it is essential that the typical Hadoop Cluster de-
ployment strategy, which supposes that DataNodes and TaskTrackers run on the same
cluster nodes, is dropped. In our setup, we have configured DataNodes and TaskTrack-
ers to run on different cores and have explicitly divided the on-die cluster to Hadoop
Racks, so that the rack locality-aware scheduling mechanism of MapReduce is not
thrown away. In addition, the typical MapReduce framework configuration determines
that the Reduce phase of a MapReduce job is triggered after only the 5% of the Map
phase has completed. That is, reduce tasks are scheduled for cluster nodes where child
JVMs are already executing Map tasks. With so little main memory available, this
is evidently impossible. As a result, we have configured the Reduce phase to start
after the 100% of the Map phase has completed successfully. For the same reason,
the TaskTracker nodes are configured to run only one Map or Reduce task at a time.
Moreover, we significantly reduced the file block size from the default value of 64 MB
to 4 MB. Since a Map task is scheduled for each InputSplit we made that decision
so that to reduce the I/O load for the DataNode cores.

Another design choice we made regards the placement of the cluster nodes on the
Intel SCC die. We decided to locate the DataNodes at the edge of the Intel SCC die,
that is in the cores of the tiles with either x=0 or x=5 in the Intel SCC core layout.
This decision was driven by the fact that since DataNodes are responsible for storing
file blocks in their local filesystem, they are expected to have heavier I/O load during
the execution of a MapReduce job. As a consequence, placing the DataNodes closer
to the memory controllers of the Intel SCC die, reduces the latency of their frequent

62

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

accesses to the NFS.

Finally, we noticed that the presence of high I/O load and very low free main memory
space causes some cores to freeze and become unreachable rather frequently. That is,
at least one core freezing during the execution of a MapReduce job is the norm and not
the exception on the Intel SCC. Configuring a replication factor greater than 1 looked
a reasonable solution at first, since this is the out-of-the-box mechanism Hadoop pro-
vides so as to ensure data is always available. However, a replication factor greater
than 1, forces the DataNodes replicate under-replicated file blocks, thus significantly
increasing their 1/0O load, which is the reason that causes them to fail in the first place.
As a consequence, we observed that configuring a replication factor greater than 1
causes the DataNode cores to freeze one after the other, rendering the completion of
the MapReduce job impossible.

In order to tackle this problem, we followed a completely different approach. We
implemented a node-failover watchdog script, which pings the Intel SCC cores period-
ically so as to ensure that all of them are up and running. In case a core is observed to
be unreachable, that is ping receives no response packet, the SCC Linux is booted on
the core immediately, the Hadoop Runtime Environment is set up and the correspond-
ing Hadoop Daemon is started. This sequence of actions is also triggered if a core is
reachable by ping, but the Hadoop Daemon it is supposed to run has been killed by the
OS. This way, we have overcome the complication of cores freezing frequently and have
ensured the forward progress of MapReduce jobs despite the presence of this situation.
Map or Reduce tasks may be terminated with exceptions during a core (especially a
DataNode because of data being unavailable) is rebooted, but the retry mechanism of
MapReduce guarantees that those tasks will be completed successfully once they are
re-executed and the Hadoop Cluster is in a stable state.

5.2.2 The hadoop-env.sh Configuration Script

This section describes the hadoop-env.sh configuration script that we have used in
our setup.

hadoop-env.sh :

Set Hadoop-specific environment variables here.

The only required environment variable is JAVA_HOME. All others are
optional. When running a distributed configuration it is best to

set JAVA_HOME in this file, so that it is correctly defined on
remote nodes.

H O H H R

The java implementation to use. Required.
export JAVA_HOME=/opt/ibm-jdk-bin-1.6.0.8_pl

Extra Java CLASSPATH elements. Optional.

63

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

export HADOOP_CLASSPATH=

The maximum amount of heap to use, in MB. Default is 1000.
export HADOOP_HEAPSIZE=128

Extra Java runtime options. Empty by default.
export HADOOP_OPTS=-server

Command specific options appended to HADOOP_OPTS when specified
export HADOOP_NAMENODE_QOPTS=

"-Dcom.sun.management . jmxremote $HADOOP_NAMENODE_QOPTS"
export HADOOP_SECONDARYNAMENODE_OPTS=

"-Dcom.sun.management . jmxremote $HADOOP_SECONDARYNAMENODE_OPTS"
export HADOOP_DATANODE_QOPTS=

"-Dcom.sun.management . jmxremote "
export HADOOP_BALANCER_QOPTS=

"-Dcom.sun.management . jmxremote $HADOOP_BALANCER_OPTS"
export HADOOP_JOBTRACKER_OPTS=

"-Dcom.sun.management . jmxremote $HADOOP_JOBTRACKER_OPTS"
export HADOOP_TASKTRACKER_OPTS=
The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS

Extra ssh options. Empty by default.
export HADOOP_SSH_OPTS="-p 1234 -1 root "

Where log files are stored. $HADOOP_HOME/logs by default.
export HADOOP_LOG_DIR=${HADOOP_HOME}/logs

File naming remote slave hosts. $HADOOP_HOME/conf/slaves by default.
export HADOOP_SLAVES=${HADOOP_HOME}/conf/slaves

host:path where hadoop code should be rsync’d from. Unset by default.
export HADOOP_MASTER=master:/home/$USER/src/hadoop

+H+

Seconds to sleep between slave commands. Unset by default. This
can be useful in large clusters, where, e.g., slave rsyncs can
otherwise arrive faster than the master can service them.

export HADOOP_SLAVE_SLEEP=0.1

H OHF H H

+*

The directory where pid files are stored. /tmp by default.
export HADOOP_PID_DIR=/var/hadoop/pids

A string representing this instance of hadoop. $USER by default.
export HADOOP_IDENT_STRING=$USER

The scheduling priority for daemon processes. See ’man nice’.

64

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

export HADOOP_NICENESS=10
export HADOOP_ROOT_LOGGER="ERROR,console"

In this configuration script we have set the JAVA HOME environment variable to the
directory path where Java is installed in each Gentoo Linux image in the Intel SCC
cores. In the HADOOP_SSH_OPTS variable we have determined that ssh connections should
be attempted at port 1234 as the root user, so as to utilize the SSH server we described
in a previous section of this chapter. Finally, we have disabled Hadoop Logging, for log
messages which are marked with severity lower than ERROR by log4j, by setting the
HADOOP_ROOT _LOGGER variable, so as to prevent CPU cycles and 1/O bandwidth being
wasted during the execution of a MapReduce job. This version of hadoop-env.sh is
used by all of the cluster topologies we describe in this thesis.

5.2.3 The core-site.xml Configuration File

This section describes the core-site.xml configuration file that we have used in our
setup.

core-site.xml :

<?7xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.0.1:54310</value>
</property>
<property>
<name>topology.script.file.name</name>
<value>/home/ageo/hadoop-topology.sh</value>
</property>
</configuration>

In this configuration file, we have defined the URL of the NameNode in the fs.
default.name property. In addition, we have determined the topology.script.file.
name, which assigns cluster nodes to Hadoop Racks. This script receives the IP address
of a cluster node as an input and provides the rack name it is assigned to as the output.
This version of core-site.xml and hadoop-topology.sh is used by all of the cluster
topologies we describe in this thesis. The complete code of hadoop-topology.sh is
available in Appendix A.

hadoop-topology.sh :

if ["$1" = "192.168.0.1"]
then

echo "/rack00";
fi

65

Hadoop Cluster Deployment

Diploma Thesis on the Intel SCC
if ["$1" = "192.168.0.2"]
then

echo "/rackO1";
fi
if ["$1" = "192.168.0.47"]
then

echo "/rackil4";
fi
if ["$1" = "192.168.0.48"]
then

echo "/rackl5";
fi

5.2.4 The hdfs-site.xml Configuration File

This section describes the hdfs-site.xml configuration file that we have used in our
setup.

hdfs-site.xml for 16-node and 24-node cluster topology:

<?xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>dfs.block.size</name>
<value>4194304</value>

</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/home/ageo/tmp_dir-topol6-24</value>

</property>

<property>
<name>dfs.name.dir</name>
<value>/home/ageo/hdfsnames-topo16-24</value>

</property>

<property>
<name>dfs.data.dir</name>
<value>/home/ageo/hdfsdata-topo16-24</value>

</property>

</configuration>

hdfs-site.xml for 32-node and 48-node cluster topology:

66

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

<?xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>dfs.block.size</name>
<value>4194304</value>

</property>

<property>
<name>hadoop. tmp.dir</name>
<value>/home/ageo/tmp_dir-topo32-48</value>

</property>

<property>
<name>dfs.name.dir</name>
<value>/home/ageo/hdfsnames-topo32-48</value>

</property>

<property>
<name>dfs.data.dir</name>
<value>/home/ageo/hdfsdata-topo32-48</value>

</property>

</configuration>

The file block replication factor is defined by the dfs.replication property and the
file block size by the dfs.block.size property. The dfs.name.dir defines the local
file system directory, where the NameNode should store the name table (FsImage) and
the dfs.data.dir defines the directory where the DataNodes should store file data
blocks, in their local file systems. The reason why different values have been set for
the last two properties, depending on the Hadoop Cluster topology, is explained in a
later section.

5.2.5 The mapred-site.xml Configuration File

This section describes the mapred-site.xml configuration file that we have used in
our setup.

mapred-site.xml for 16-node topology:

<?7xml version="1.0"7>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>mapred. job.tracker</name>
<value>192.168.0.1:54311</value>

67

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

</property>

<property>
<name>mapred.reduce.tasks</name>
<value>8</value>

</property>

<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>1</value>

</property>

<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>1</value>

</property>

<property>
<name>mapred.reduce.slowstart.completed.maps</name>
<value>1.00</value>

</property>

<property>
<name>mapred.child. java.opts</name>
<value>-Xmx128m</value>

</property>

<property>
<name>mapred.task.timeout</name>
<value>3600000</value>

</property>

</configuration>

mapred-site.xml for 24-node and 32-node topology:

<?xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>mapred. job.tracker</name>
<value>192.168.0.1:54311</value>

</property>

<property>
<name>mapred.reduce.tasks</name>
<value>16</value>

</property>

<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>1</value>

</property>

<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>1</value>

68

Hadoop Cluster Deployment
on the Intel SCC

Diploma Thesis

</property>

<property>
<name>mapred.reduce.slowstart.completed.maps</name>
<value>1.00</value>

</property>

<property>
<name>mapred.child. java.opts</name>
<value>-Xmx128m</value>

</property>

<property>
<name>mapred.task.timeout</name>
<value>3600000</value>

</property>

</configuration>

mapred-site.xml for 48-node topology:

<?7xml version="1.0"7>
<?7xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>mapred. job.tracker</name>
<value>192.168.0.1:54311</value>

</property>

<property>
<name>mapred.reduce.tasks</name>
<value>32</value>

</property>

<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>1</value>

</property>

<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>1</value>

</property>

<property>
<name>mapred.reduce.slowstart.completed.maps</name>
<value>1.00</value>

</property>

<property>
<name>mapred.child. java.opts</name>
<value>-Xmx128m</value>

</property>

<property>
<name>mapred.task.timeout</name>
<value>3600000</value>

69

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

</property>
</configuration>

The IP address and the TCP port the JobTracker listens to is defined in mapred. job.
tracker property. The maximum number of Map and Reduce tasks that can be run
by a TaskTracker at a time are defined in mapred.tasktracker.map.tasks.maximum
and mapred.tasktracker.reduce.tasks.maximum properties respectively. The per-
centage of Map tasks that have to be completed successfully before the Reduce phase
starts is defined in the mapred.reduce.slowstart.completed.maps property. The
Java Heap Size used by the Child JVMs that execute the Map and Reduce tasks is
defined in mapred.child. java.opts property. Other JVM command line arguments
can be defined in this property as well. The mapred.task.timeout determines the
time interval in milliseconds that has to pass, for the JobTracker to kill a Map or
Reduce task, if this specific task has not reported its status during that time. Finally,
the mapred.reduce.tasks determines the number of reduce tasks that have to be ex-
ecuted by a MapReduce job. The value of this property is set equal to the number of
TaskTracker nodes, for each Hadoop Cluster topology we have deployed.

5.2.6 The masters Configuration file

The masters configuration file contains the IP address of the master node, which is
192.168.0.1. This version of masters is used by all of the cluster topologies we de-
scribe in this thesis.

masters

192.168.0.1

5.2.7 16-Node Cluster Topology

This section describes the 16-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker
are executed and 15 slave nodes, which break down to 7 DataNodes and 8 TaskTrack-
ers. Figure 5.1 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo16 and conf-mapred-topol6, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
16-Node and the 24-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

70

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

I:' Master D DataNode . TaskTracker |:| Idle

[N}
rackO7 | rexes
]

ngﬁ% Hﬂ

[£]
[£]

i
n

g
w
g

Ig

1]
1]

rgck02 | rexio

Figure 5.1: 16-Node Hadoop Cluster on the Intel SCC

conf-hdfs-topol6/slaves :

192.168.0.2

192.168.0.11
192.168.0.12
192.168.0.25
192.168.0.26
192.168.0.35
192.168.0.36

conf-mapred-topol6/slaves :

192.168.0.3
192.168.0.4
192.168.0.9
192.168.0.10
192.168.0.27
192.168.0.28
192.168.0.33
192.168.0.34

In order to launch the 16-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start_cluster_topol6.sh has to be invoked from the MCPC so as

71

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topol6.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDF'S cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo16.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start_cluster_topol6.sh :

RESOLV_CONF="domain rck
search rck in.rck.net
nameserver 192.168.3.254"
for i in {0,1,2,3,8,9}

do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {10,11,24,25,26,27,32,33,34,35}
do
ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done

bin/start-all-topol6.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

"$bin"/hadoop-config.sh

start dfs daemons
"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topol6

start mapred daemons
"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topol6

bin/stop-all-topol6.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd®

"$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topol6
"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topol6

72

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

5.2.8 24-Node Cluster Topology

This section describes the 24-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 23 slave nodes, which break down to 7 DataNodes and 16 TaskTrack-
ers. Figure 5.2 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

|:| Master D DataNode . TaskTracker |:| Idle

] 2]

1
I
Bl
"
JARAN
[l

;
:
;
i
;

3
3
3

Z
3

g
;
;
%
|
5

rack02

Figure 5.2: 24-Node Hadoop Cluster on the Intel SCC

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo24 and conf-mapred-topo24, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
16-Node and the 24-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo24/slaves :

192.168.0.2

73

Hadoop Cluster Deployment

Diploma Thesis on the Intel SCC
192.168.0.11
192.168.0.12
192.168.0.25
192.168.0.26
192.168.0.35
192.168.0.36

conf-mapred-topo24/slaves :

192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.8
192.168.0.7
192.168.0.9
192.168.0.10
192.168.0.27
192.168.0.28
192.168.0.29
192.168.0.30
192.168.0.31
192.168.0.32
192.168.0.33
192.168.0.34

In order to launch the 24-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start_cluster_topo24.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo24.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDFS cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo24.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start_cluster_topo24.sh :

RESOLV_CONF="domain rck
search rck in.rck.net
nameserver 192.168.3.254"
for i in {0..9}

do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {10,11%}
do

74

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"

done
for i in {24..35}
do
ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done

bin/start-all-topo24.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd*

. "$bin"/hadoop-config.sh

start dfs daemons
"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo24

start mapred daemons
"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo24

bin/stop-all-topo24.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo24
"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo24

5.2.9 32-Node Cluster Topology

This section describes the 32-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 31 slave nodes, which break down to 15 DataNodes and 16 TaskTrack-
ers. Figure 5.3 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo32 and conf-mapred-topo32, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
32-Node and the 48-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir

5

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

=4
@
[
)
=

8
Q
=
S
-
3
&
8

H
P
Q
=
—
o

=
oy
&
S
N Z

Figure 5.3: 32-Node Hadoop Cluster on the Intel SCC

directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo32/slaves :

192.168.0.2

192.168.0.11
192.168.0.12
192.168.0.13
192.168.0.14
192.168.0.22
192.168.0.23
192.168.0.25
192.168.0.26
192.168.0.35
192.168.0.36
192.168.0.37
192.168.0.38

conf-mapred-topo32/slaves :

192.168.0.3

76

Hadoop Cluster Deployment

on the Intel SCC Diploma Thesis
192.168.0.4

192.168.0.9

192.168.0.10

192.168.0.15

192.168.0.16

192.168.0.21

192.168.0.22

192.168.

192.168.
192.168.
192.168.
192.168.
192.168.
192.168.
192.168.

O OO O OO O OO OO OO oo
N
~

In order to launch the 32-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start_cluster_topo32.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo32.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDF'S cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo32.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start_cluster_topo32.sh :

RESOLV_CONF="domain rck
search rck in.rck.net
nameserver 192.168.3.254"
for i in {0..3}

do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {8..9}
do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {10..15}
do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"

7

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

done
for i in {20..27%}
do
ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"

done
for i in {32..39}
do
ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {44. .47}
do
ssh root@rck$i "shared/ageo/rck$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done

bin/start-all-topo32.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

"$bin"/hadoop-config.sh

start dfs daemons
"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo32

start mapred daemons
"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo32

bin/stop-all-topo32.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

"$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo32
"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo32

5.2.10 48-Node Cluster Topology

This section describes the 48-Node HDF'S Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 47 slave nodes, which break down to 15 DataNodes and 32 TaskTrack-
ers. Figure 5.4 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

78

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

- . !/ ! . i
- - - —t -—-
"] R : =1 I

rack12

rack09

aig

rack14
rack11

rack08
rack05

rack10
rack07

&
2
L
[1]
[£]
o

rack02

Figure 5.4: 48-Node Hadoop Cluster on the Intel SCC

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo48 and conf-mapred-topo48, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
32-Node and the 48-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo48/slaves :

192.168.0.2

192.168.0.11
192.168.0.12
192.168.0.13
192.168.0.14
192.168.0.22
192.168.0.23

79

Hadoop Cluster Deployment

Diploma Thesis on the Intel SCC
192.168.0.25
192.168.0.26
192.168.0.35
192.168.0.36
192.168.0.37
192.168.0.38

conf-mapred-topo48/slaves

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

192.168.0.7

192.168.0.8

192.168.0.9

192.168.0.10
192.168.0.15
192.168.0.16
192.168.0.17
192.168.0.18
192.168.0.19
192.168.0.20
192.168.0.21
192.168.0.22
192.168.0.27
192.168.0.28
192.168.0.29
192.168.0.30
192.168.0.31
192.168.0.32
192.168.0.33
192.168.0.34
192.168.0.39
192.168.0.40
192.168.0.41
192.168.0.42
192.168.0.43
192.168.0.44
192.168.0.45
192.168.0.46

In order to launch the 48-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start_cluster_topo48.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo48.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDF'S cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo48.sh

80

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

script from the master node. The above path is relative to the Hadoop installation
root directory.

start_cluster_topo48.sh :

RESOLV_CONF="domain rck
search rck in.rck.net
nameserver 192.168.3.254"
for i in {0..9}

do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done
for i in {10..47}
do
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;
route add default gw 192.168.3.254 ;
echo "${RESOLV_CONF}" > /etc/resolv.conf"
done

bin/start-all-topo48.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

"$bin"/hadoop-config.sh

start dfs daemons
"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo48

start mapred daemons
"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo48

bin/stop-all-topo48.sh :

bin=‘dirname "$0"°
bin=‘cd "$bin"; pwd‘

"$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo48
"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topod8

5.2.11 Node Failover Watchdog

This section presents the watchdog mechanism that we have developed and was de-
scribed earlier in this chapter. We have developed one watchdog script per node type,
i.e. DataNode or TaskTracker and per operating frequency. Cluster nodes operate at

81

Hadoop Cluster Deployment
Diploma Thesis on the Intel SCC

200 MHz, 533 MHz or 800 MHz in our setup. Code samples of the watchdog scripts
are available in Appendix A.

Those six scripts operate in a similar fashion. Initially, they check if an Intel SCC
core is reachable by ping periodically every 30 seconds. If not, they immediately boot
Linux on that specific core (sccBoot -1) and wait for 200, 75 or 50 seconds, depending
on the core frequency, so that core will be reachable by TCP/IP. The reason we have
used different wait intervals is that the lower the frequency of the tile clock is, the more
time Linux needs to be booted and a core to be accessible. After Linux has been booted,
the script start.sh is called so as to setup the Hadoop Runtime Environment, gmond
monitoring daemon is started (more details in the next chapter) and the correspond-
ing Hadoop Daemon is launched on the core. If the core corresponds to a DataNode,
start-dfs.sh is executed. start-mapred.sh is executed if the core corresponds to a
TaskTracker. The conf-local directory’s contents are identical to the ones described
in the previous section. The only file that is different is the slaves file, which contains
only the IP address of the specific core, so that the Hadoop Daemon is started only on
that core. For instance, core rck31 contains only the IP address 192.168.0.32 in the
conf-local/slaves file. Specifically for DataNodes, the same sequence of actions is
triggered if the specific core can been reached by ping, but the DataNode process has
been killed by the OS. This situation is detected when netstat -na | grep 50010
returns no lines. 50010 is the default port for data transfer between DataNodes and
TaskTrackers or other HDF'S clients.

The scripts described above are combined in a parent script, for each cluster topology
and frequency setting for DataNodes and TaskTrackers. Since we perform frequency
perturbations only at the 48-Node cluster, we need 9 + 3 = 12 parent scripts. The
following script is invoked so as to support the HDFS cluster when the 48-node topol-
ogy has been launched, the DataNodes operate at 200MHz and the TaskTrackers at
800MHz. Similar scripts have been developed for the rest of the cases.

watchdog-topo48-dn200-tt800.sh :

for i in 1

do

./watchdog-datanode-200.sh $i > watchdog-logs/rckO0$i.out &
done
for i in {10,11,12,13,22,23,24,25,34,35,36,37,46,47}
do

./watchdog-datanode-200.sh $i > watchdog-logs/rck$i.out &
done
for i in {2..9}
do

./watchdog-tasktracker-800.sh $i > watchdog-logs/rck0$i.out &
done

for i in {14,15,16,17,18,19,20,21,26,27,28,29,30,31,32,33,38,39,40,41,42,43,44,45}
do

./watchdog-tasktracker-800.sh $i > watchdog-logs/rck$i.out &
done

82

Hadoop Cluster Deployment
on the Intel SCC Diploma Thesis

5.3 Apache Mahout Installation on the MCPC

In out setup, we use Apache Mahout 0.6, which is provided by Cloudsuite. Apache
Mahout can be installed using Maven as shown below.

mvn install -DskipTests

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout

MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.

Running on hadoop, using HADOOP_HOME=/home/ageo/hadoop-0.20.2

No HADOOP_CONF_DIR set, using /home/ageo/hadoop-0.20.2/conf

MAHOUT-J0B: /home/ageo/analytics-release/mahout-distribution-0.6/
examples/target/mahout-examples-0.6-job. jar

An example program must be given as the first argument.

Valid program names are:

fpg: : Frequent Pattern Growth
kmeans: : K-means clustering

trainclassifier: : Train the text based Bayes Classifier

We also have copied the Hadoop root directory on the MCPC, so that Mahout can
find the NameNode and DataNode URLs at the core-site.xml and mapred-site.xml
configuration files and access the HDF'S cluster that is deployed on the Intel SCC.

83

Chapter 6

Runtime Monitoring Framework for
the Intel SCC

This chapter presents and analyzes the Runtime Monitoring Framework we have de-
veloped for the Intel SCC. The first section of the chapter explains the process of
configuring a Ganglia Cluster that consists of the Intel SCC cores and the MCPC, as
well as the way this Ganglia Cluster operates, i.e. how per-core runtime metrics are
collected and reported. The second section of the chapter provides a detailed descrip-
tion of the scripts we have developed, which query the Ganglia Cluster and the BMC
so as to capture the runtime metrics, store those metrics in the Monitoring Database
we have designed and visualize the data that has been collected.

6.1 Ganglia Monitoring Infrastructure for the Intel
SCC

This section describes the process of setting up a Ganglia Monitoring Cluster that
consists of the Intel SCC cores and the MCPC. In our implementation we have utilized
the gmond daemon of Ganglia, which is responsible for collecting and transmitting the
per-core runtime metrics we are interested in capturing. This section initially analyzes
the way that gmond operates and subsequently states the process of configuring a
Ganglia Cluster on the Intel SCC. Finally, the way that the Ganglia Cluster state is
reported, is presented.

6.1.1 The gmond Monitoring Daemon

gmond stands for Ganglia Monitoring Daemon. It is a lightweight service that must be
installed on each node from which metrics should be collected. It interacts with the
host operating system to obtain metrics and shares the metrics it collects with other
hosts in the same cluster. Every gmond instance in the cluster knows the value of every
metric collected by every host in the same cluster and provides and XML-formatted
dump of the entire cluster state to any client that connects to gmond’s port.

85

Runtime Monitoring Framework
Diploma Thesis for the Intel SCC

gmond’s default topology is a multicast mode, meaning that all nodes in the clus-
ter both send and receive metrics and every node maintains an in-memory database
containing the metrics of all nodes in the cluster. This topology is illustrated in Figure
6.1. Internally, gmond’s sending and receiving halves are not linked. gmond does not
talk to itself, it only talks to the network. Any local data captured by the metric mod-
ules are transmitted directly to the network by the sender and the receiver’s internal
database contains only metric data gleaned from the network.

Multicast group (address/port)

metric module received state: metric module I received state: |metric module I received state:
: | node1: i | nodel: i | nodeT:
i | node2: i | node2: i | node2:
i Pl metric, ... ' il metric, . ; i metric, ...
metricmodule | | metricmodule | | metricmodule ||

gmond node gmond node gmond node

Figure 6.1: gmond Multicast Topology

This topology is adequate for most environments, but in some cases it is desirable
to specify a few specific listeners rather than allowing every node to receive metrics
from each other node. The use of deaf nodes, as illustrated in Figure 6.2 eliminates
the processing overhead associated with large clusters. The deaf and mute parameters
exist to allow some gmond nodes to act as special-purpose aggregators and relays for
other gmond nodes. mute means that the node does not transmit; it will not even
collect information about itself but will aggregate the metric data from other gmond
daemons in the cluster. deaf means that the node does not receive any metrics from
the network; it will not listen to state information from multicast peers, but if it is not
muted it will continue sending out its own metrics for any other node that does listen.

The use of multicast in not required in any topology. The deaf/mute topology can
be implemented using UDP unicast, which may be desirable when multicast is not
practical or preferred, as depicted in Figure 6.3.

6.1.2 Ganglia Cluster Topology on the Intel SCC

In order to collect per-core metrics, such as CPU utilization and Network Traffic,
we have configured Ganglia with a UDP unicast topology. The Intel SCC cores are
configured as deaf nodes, that is they do not listen to any unicast or multicast channel
for cluster state information. The MCPC is configured as a mute node, so that it

86

Runtime Monitoring Framework
for the Intel SCC Diploma Thesis

Multicast group (address/port)

A

[
A -

A y .
send send & feceive

gmond node (deaf) gmond node (deaf) gmond node (mute)

Figure 6.2: gmond Deaf/Mute Multicast Topology

gmond node (mute)

UDP aggregator

gmond node (deaf) gmond node (deaf)
Figure 6.3: gmond UDP Unicast Topology

aggregates all the metrics collected from the Intel SCC cores and can provide an XML-
formatted dump from a telnet interface. The Ganglia Topology we have implemented
is illustrated in Figure 6.4.

6.1.3 The gmond.conf Configuration File

Each gmond instance that runs on an Intel SCC core, is configured by the gmond.conf
configuration file. This file is located in the /etc/ganglia directory of the MCPC
and the Gentoo Image of the Intel SCC cores. Ganglia is pre-installed in the Gentoo
Image that we use. This section states the configuration properties that have been set
for the gmond instances that run on the Intel SCC cores and the MCPC, so as that
the Ganglia Cluster we have developed on the Intel SCC operates as described before.
The whole gmond. conf configuration file, for both the MCPC and the Intel SCC cores
is included in Appendix A.

87

Runtime Monitoring Framework

Diploma Thesis for the Intel SCC
roooTn 1 rTTTTC 1
: gmond |, deaf node : gmond ;, mute node
____________ I
rck00 rckO1 rck46 rckd7
P I I L N 1 P 1
1 gmond 1 gmond 1 gmond I gmond
______ I R] R
i i i i
i i UDP UDP i i
] | 1 1] |
e (I I e |
] . |] . |
: B MCPC [- - :
U U > <- ———————————————— -
______ 1
: gpn()nci:
______ 1
Telnet

. <?xml version="1.0" encoding="IS0-8859-1 standalone="yes"?>

+ <GANGLIA_XML VERSION="3.1.2" SOURCE="gmond"> .
E <CLUSTER NAME="MARC" LOCALTIME="1428561879" OWNER="unspecified" LATLONG="unspecified"
+ URL="unspecified"> .
. <HOST NAME="rck25.ex.rck.net" IP="192.168.3.26" REPORTED="1428561878" TN="0"

. TMAX="20" DMAX="@" LOCATION="unspecified" GMOND_STARTED="0">

+ <METRIC NAME="bytes_out" VAL="689.21" TYPE="float" UNITS="bytes/sec" TN="2"

! TMAX="300" DMAX="0" SLOPE="both">

+ <EXTRA_DATA>

+ <EXTRA_ELEMENT NAME="GROUP" VAL="network"/>

. <EXTRA_ELEMENT NAME="DESC" VAL="Number of bytes out per second"/>

. <EXTRA_ELEMENT NAME="TITLE" VAL="Bytes Sent"/>

! </EXTRA_DATA>

+ </METRIC>

. </HOST>
. </CLUSTER>
+ </GANGLIA_XML>

Figure 6.4: Ganglia Cluster Topology on the Intel SCC

The gmond.conf file which configures the gmond instance that runs on the MCPC
defines that this instance is mute, that is gmond does not collect runtime metrics
that regard the MCPC. Those properties are included in the globals section of
gmond. conf. In the cluster section, the Ganglia Cluster name is set to MARC. The
udp_recv_channel section configures the gmond instance that runs on the MCPC to lis-
ten to one UDP unicast channel, at port 8649. The runtime metrics which are reported
by the Intel SCC cores are received through this channel. The tcp_accept_channel
section configures gmond to accept TCP connections at port 8649. External pollers
can query and receive an XML dump of the cluster state through this channel. Code

samples that regard the configuration parameters of the gmond instance that runs on
the MCPC, are listed below.

88

Runtime Monitoring Framework

for the Intel SCC Diploma Thesis
globals {
mute = yes
deaf = no
}
cluster {
name = "MARC"
}
udp_recv_channel {
port = 8649
}
tcp_accept_channel {
port = 8649
}

The gmond. conf which configures each gmond instance that runs on the Intel SCC cores
defines that this instance is deaf, that is it does not receive any metrics data from
other peers. Those properties are included in the globals section of gmond.conf. The
Ganglia Cluster name is set to MARC in the cluster section. The udp_send channel
section configures gmond to send the core metrics it collects to the MCPC, at port 8649.

The collection_group sections configure which metrics are to be collected and re-
ported by gmond. We have configured two collection groups. The first collection group
concerns CPU-related runtime metrics. This collection group contains four metrics,
which are cpu_user, cpu_system, cpu_wio and cpu_idle. cpu_user contains the per-
centage of CPU utilization that occurred while executing at the user level. cpu_system
reports the percentage of CPU utilization that occured while executing at the system
level. cpu_wio regards the percentage of time that the CPU was idle during which the
system had an outstanding 1/O request. cpu_idle concerns the percentage of time that
the CPU was idle during which the system did not have any outstanding I/O request.
The second collection group concerns runtime metrics that capture the Network Traffic
from and to an Intel SCC core. This collection group contains two metrics, which are
bytes_in and bytes_out and capture the traffic in bytes/second that was received and
sent by the core respectively. Code samples that regard the configuration parameters
of the gmond instance that runs on an Intel SCC core are listed below.

globals {

mute = no

deaf = yes
}
cluster {

name = "MARC"
}

udp_send_channel {
host = 192.168.3.254

89

Runtime Monitoring Framework

Diploma Thesis for the Intel SCC
port = 8649
ttl = 1

}

/* CPU status */
collection_group {
collect_every =1
time_threshold = 1
metric {
name = "cpu_user"
value_threshold = 0.1
title = "CPU User"
}
metric {
name = "cpu_system"
value_threshold = 0.1
title = "CPU System"
}
metric {
name = "cpu_wio"
value_threshold = 0.1
title = "CPU WIO"
}
metric {
name = "cpu_idle"
value_threshold = 0.1
title = "CPU Idle"
}
}
/* network traffic */
collection_group {
collect_every = 1
time_threshold = 1
metric {
name = "bytes_in"
value_threshold = 0.01
title = "Bytes Received"
}
metric {
name = "bytes_out"
value_threshold = 0.01
title = "Bytes Sent"
}
}

The collect_every attribute of each collection group section specifies the polling
interval for each metric in this collection group. The time threshold determines the
maximum amount of time that can pass before gmond sends all metrics specified in
the collection _group to all configured udp_send channels. The value _threshold

90

Runtime Monitoring Framework
for the Intel SCC Diploma Thesis

attribute of each metric section defines the least difference that the current value of
the metric should have compared to the previous value of this metric, so that the
collection _group is sent to the udp_send _channels defined. It has to be noted that
the collect_every and time_threshold attributes have to be set with respect to
the core frequency. We have noticed that the Intel SCC cores always assume that
they operate at 800 MHz. That is, if a core operates at 200 MHz and we have set
collect_every to 2 seconds, the metrics of this specific collection group will be col-
lected every 8 seconds instead of 2.

6.1.4 Ganglia Cluster State Reporting

We have developed the following simple script, that starts the gmond daemon on all the
Intel SCC cores, that participate in the current active Hadoop Cluster Topology. This
script assumes that the SSH server that listens to port 1234 has been started on those
cores. When this script attempts to start the gmond daemon on cores which do not
participate in the current active Hadoop topology, it gets a Connection refused error,
because the SSH server has not been started on that core. This way, the gmond dae-
mon is started only in the cores that participate in the current active Hadoop topology.

start_gmond.sh :

ssh -p 1234 root@rck00 "gmond"
for i in {1..9}

do

ssh -p 1234 root@rck0$i "gmond"
done
for i in {10..47}
do

ssh -p 1234 root@rck$i "gmond"
done

Once gmond has been started on the Intel SCC cores, an XML dump of the Ganglia
Cluster state is available from gmond UDP aggregator that runs on the MCPC. The
cluster state can be obtained by opening a telnet connection to the MCPC, at port
8649. The next section describes how this XML can be mined, so as to extract the
runtime metrics of each Intel SCC core.

ageo@mitsos:”$ telnet localhost 8649
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’7]°.
<7xml version="1.0" encoding="IS0-8859-1" standalone="yes"7>
<!DOCTYPE GANGLIA_XML [
<!ELEMENT GANGLIA_XML (GRID|CLUSTER |HOST) *>
<VATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>
<!'ATTLIST GANGLIA_XML SOURCE CDATA #REQUIRED>

91

Runtime Monitoring Framework
Diploma Thesis for the Intel SCC

1>

<GANGLIA_XML VERSION="3.1.2" SOURCE="gmond">

<CLUSTER NAME="MARC" LOCALTIME="1428561879"
OWNER="unspecified" LATLONG="unspecified" URL="unspecified">

<HOST NAME="rck25.ex.rck.net" IP="192.168.3.26"
REPORTED="1428561878" TN="0" TMAX="20" DMAX="O"
LOCATION="unspecified" GMOND_STARTED="0">

<METRIC NAME="cpu_wio" VAL="47.5" TYPE="float"
UNITS="%" TN="2" TMAX="90" DMAX="0" SLOPE="both">

<EXTRA_DATA>

<EXTRA_ELEMENT NAME="GROUP" VAL="cpu"/>

<EXTRA_ELEMENT NAME="DESC" VAL="Percentage of time
that the CPU or CPUs were idle during which
the system had an outstanding disk I/0 request"/>

<EXTRA_ELEMENT NAME="TITLE" VAL="CPU wio"/>

</EXTRA_DATA>

</METRIC>

</HOST>

<HOST NAME="rck43.ex.rck.net" IP="192.168.3.44"
REPORTED="1428561876" TN="2" TMAX="20" DMAX="0O"
LOCATION="unspecified" GMOND_STARTED="0">

<METRIC NAME="bytes_in" VAL="1313026.13" TYPE="float"
UNITS="bytes/sec" TN="2" TMAX="300" DMAX="0" SLOPE="both">

<EXTRA_DATA>

<EXTRA_ELEMENT NAME="GROUP" VAL="network"/>

<EXTRA_ELEMENT NAME="DESC" VAL="Number of bytes in per second"/>

<EXTRA_ELEMENT NAME="TITLE" VAL="Bytes Received"/>

</EXTRA_DATA>

</METRIC>

</HOST>

</CLUSTER>

</GANGLIA_XML>

6.2 Runtime Metrics Extraction and Visualization

This section presents and explains the Python and gnuplot scripts we have developed
so as to collect, store and visualize the runtime metrics of the Intel SCC cores and the
Intel SCC board. Initially, the structure of the Monitoring Database we have designed
is described. Subsequently the set Python scripts that extract the runtime metrics
from Ganglia and the BMC are introduced. After that, the set of Python scripts that
query the monitoring database so as to create CSV files are analyzed. Finally the
gnuplot scripts that visualize the data contained in the CSV files mentioned above are
explained.

92

Runtime Monitoring Framework
for the Intel SCC Diploma Thesis

6.2.1 Monitoring Database Structure

We utilize a relational MySQL database to store the runtime metrics that are collected
from each core. Platform aggregate metrics are also collected. The platform aggregate
metrics that we capture is the Power Consumption, the Board Temperature and the Fan
Speed of the Intel SCC die. Those metrics are mined from the output of the sccBmc
command. We have designed two database table prototypes to store the runtime
metrics. The first prototype is called CPUNETWORK and is used to store the CPU and
Network related metrics that we extract from the Ganglia XML. The second prototype
is called POWER_THERMAL and is used to store the overall Energy Consumption of the
chip for a specific time interval, the Board Temperature and the Fan Speed. The DDLs
of CPU_NETWORK and POWER_THERMAL are shown below.

mysql> SHOW CREATE TABLE CPU_NETWORK;

| Table | Create Table

| CPU_NETWORK | CREATE TABLE ‘CPU_NETWORK® (
‘ID¢ int(11) NOT NULL AUTO_INCREMENT,
‘TIMESTAMP‘ datetime NOT NULL,
‘CORE® varchar(5) DEFAULT NULL,
‘CPU_USER‘ varchar(5) DEFAULT NULL,
‘CPU_SYSTEM‘ varchar(5) DEFAULT NULL,
‘CPU_WIO® varchar(5) DEFAULT NULL,
‘CPU_IDLE® varchar(5) DEFAULT NULL,
‘BYTES_IN‘ varchar(15) DEFAULT NULL,
‘BYTES_QUT® varchar(15) DEFAULT NULL,
PRIMARY KEY (‘ID¢)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=latinl |

mysql> SHOW CREATE TABLE POWER_THERMAL;

| Table | Create Table

| POWER_THERMAL | CREATE TABLE ‘POWER_THERMAL‘ (
‘ID¢ int(11) NOT NULL AUTO_INCREMENT,
‘TIMESTAMP‘ datetime DEFAULT NULL,
‘FAN_SPEED® varchar(8) DEFAULT NULL,
‘TEMPERATURE¢ varchar(8) DEFAULT NULL,
‘POWER_FILE‘ varchar(40) DEFAULT NULL,
‘ENERGY_CONSUMPTION‘ varchar (30) DEFAULT NULL,
PRIMARY KEY (‘ID¢)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=latinl |

In order to calculate the instant Power Consumption and the overall Energy Con-
sumption of the chip, we use shorter time intervals, because of the big variations
that characterize the intensity of the electric current that is drawn by the Intel SCC
board. Metrics that concern the Voltage supply of the Intel SCC board as well as
the Intensity of the Electric Current it draws are stored in a seperate POWER FILE
and concern the time interval from the TIMESTAMP value of the previous database en-
try to the TIMESTAMP value of the current entry of the POWER_THERMAL table. For
instance, supposing we have two entries in the POWER_THERMAL table with ID=372

93

Runtime Monitoring Framework
Diploma Thesis for the Intel SCC

and ID=373, the POWER_FILE that appears in the row with ID=373 contains volt-
age, current and power consumption measurements that cover the time interval be-
tween the TIMESTAMP of the row with ID=372 and the TIMESTAMP of the row with
ID=373. The power file is a CSV file which contains the above mentioned metrics in tab
delimited columns as <Timestamp>\t<Voltage>\t<Current>\t<Power Consumption>
\t<Energy Consumption>. The Power Consumption refers to the instant value and
the Energy Consumption regards the time interval between the current measurement
and the previous. The value that is stored in the ENERGY_CONSUMPTION column re-
sults from the summation of all the individual energy consumption measurements of
the corresponding power file. This way, we manage to accurately capture the overall
energy consumption of the chip. Sample measurements that are stored in a power file
are presented below.

2015-03-07 10:30:13.341655 3.300 21.485 70.9005 0.0162447406054
2015-03-07 10:30:13.593029 3.300 21.485 70.9005 0.0109199817181
2015-03-07 10:30:13.863168 3.300 21.584 71.2272 0.0098155311584
2015-03-07 10:30:14.143957 3.300 21.584 71.2272 0.0099683681488
2015-03-07 10:30:14.429008 3.300 21.386 70.5738 0.0110715771675
2015-03-07 10:30:14.704333 3.300 21.287 70.2471 0.0098981943369
2015-03-07 10:30:14.974797 3.300 21.287 7 0.2471 0.00941249613762

6.2.2 Extracting and Storing Runtime Metrics

This section presents two Python scripts we have developed so as to extract the run-
time metrics we mentioned above in the monitoring database and the power files.
The code of both scripts is included in Appendix A. The first script, which is called
store-power.py repeatedly executes the sccBmc command, it parses the output it
provides and stores the voltage, current, power and energy consumption in a power
file. The power file and the time interval that this script is executed are provided as
command line arguments.

The second script, which is called store-metrics. py initially invokes the store-power
.py script. After store-power.py is completed, store-metrics.py mines the power
file that was populated by store-power.py and calculates the total energy consump-
tion for the specific time interval. Subsequently, it queries the BMC with the sccBmc
command so as to obtain the Board Temperature and the Fan Speed of the platform.
Finally, store-metrics.py queries the Ganglia Cluster so as to obtain the CPU Uti-
lization and the Network Traffic of each core, parses the XML that is returned by
Ganglia and stores the extracted metrics in the monitoring database. The extracted
and calculated metrics are stored in database tables which have been created from the
CPU_NETWORK and POWER_THERMAL prototypes. The names of those tables are provided
as command line arguments. The time interval that is passed to the store-power.py
script is also provided as a command line argument, so as to determine the time interval
that should separate subsequent monitoring entries.

94

Runtime Monitoring Framework
for the Intel SCC Diploma Thesis

6.2.3 Runtime Metrics Mining

This section presents three Python scripts that we have developed so as to mine the
monitoring database and the power files and create CSV files, which be given as inputs
to the gnuplot scripts that will be presented in the subsequent section, which visual-
ize the runtime metrics which have been collected. The code of the Python scripts is
available in Appendix A.

The first script, which is called prepare-metrics-cpu-network.py queries a database

table that has been created based on the CPU_NETWORK prototype, so as to create a CSV

file which contains the following metrics in tab delimited columns as <Timestamp>\t

<CPU User>\t<CPU System>\t<CPU WIO>\t<CPU Idle>\t<Bytes In>\t<Bytes Out>.
Those metrics concern a specific Intel SCC core, whose name is provided as a command

line argument. The name of the database table to be queried, as well as the name of

the output CSV file are also provided as command line arguments. Sample metrics

stored in this file are presented below.

ageo@mitsos:”$ cat ganglia-monitoring/
plot_files/cpu_network/bayes-dn200-tt533.dat

0:00:00 1.1 2.2 0.0 96.7 630.94 1342.14
0:00:21 0.7 3.9 0.0 95.4 835.37 1447.84
0:00:42 0.6 2.3 0.0 97.1 695.06 1378.13
0:01:03 0.7 4.7 0.0 94.6 1384 .27 2123.21
0:01:24 0.2 2.2 0.0 97.6 606.78 1186.35
0:01:44 2.6 3.8 0.0 93.5 620.15 1281.80
0:02:05 0.1 2.3 0.0 97.6 489.62 1038.12
0:02:26 0.2 2.1 0.0 97.7 614.23 1274.73

The second script, which is called prepare-metrics-thermal.py queries a database
table that has been created based on the POWER_THERMAL prototype, so as to cre-
ate a CSV file which contains the following metrics in tab delimited columns as
<Timestamp>\t<Board Temperature>\t<Fan Speed>. Those metrics concern the en-
tire Intel SCC Board. The name of the database table to be queried, as well as the
name of the output CSV file are provided as command line arguments. Sample metrics
stored in this file are presented below.

ageo@mitsos:”$ cat ganglia-monitoring/
plot_files/thermal/wordcount-topol6.dat

0:00:00 34 213
0:00:05 34 223
0:00:10 34 234
0:00:15 34 245
0:00:20 34 255
0:00:25 34 10
0:00:30 33 20
0:00:34 34 31

95

Runtime Monitoring Framework
Diploma Thesis for the Intel SCC

The third script, which is called prepare-metrics-power.py queries the power files
that are located at a specific file system directory, so as to create a CSV file which
contains the following metrics in tab delimited columns as <Timestamp>\t<Voltage>\t
<Current>\t<Power Consumption>. Those metrics concern the entire Intel SCC Board.
Because of the fact that those metrics have been collected with a shorter polling in-
terval than the ones mentioned earlier in this section, they are sampled at a sample
rate that is provided as a command line argument, so that the Power Consumption
plot will contain relatively smooth curves. The name of the file system directory to be
queried, as well as the name of the output CSV file are also provided as command line
arguments. Sample metrics stored in this file are presented below.

ageo@mitsos:~$ cat ganglia-monitoring/
plot_files/power/kmeans-low.dat

:00:06.006023 3.304 17.327 57.248408
:00:12.053117 .304 17.129 56.594216
:00:18.079477 .304 17.129 56.594216
:00:24.725223 .304 16.931 55.940024
:00:30.957759 .304 17.030 56.267120
:00:36.985528 .304 17.228 56.921312
:00:43.079844 .304 18.218 60.192272
:00:49.640558 .304 18.119 59.865176

O O O O O O O O
W W wWwwwww

6.2.4 Runtime Metrics Visualization

This section presents five gnuplot scripts we have developed so as to visualize the
metrics that we have collected. The first two scripts, called plot-cpu.gp and plot-
network.gp query the CSV file that was created by prepare-cpu-network.py. plot-
temperature.gp and plot-fan-speed.gp query the CSV files that were created by
prepare-thermal.py. Finally, plot-power.gp queries the CSV file that has been
created by prepare-power.py. Sample plots that are generated by those files are
presented below, in Figures 6.5 - 6.8. All the above mentioned scripts receive the step
of the x-axis of the plot, the time interval that the x-axis spans and the input CSV file
as command line arguments, like in the following example.

ageo@mitsos:”/ganglia-monitoring$ gnuplot -e "xtics=’0:04:0""
-e "time=’1:54:54"" -e "datafile=’fpg-dn200-tt200.dat’" plot_cpu.gp

H‘H"\ H\ LN MR U AT

I \”(WN B[H"W"W’(T
M A Ny

| uh“
00 0M1200 OL1600 GL200D C12400 OL29U0 L3OO OLIEOD OL4GEY DLEHOD DL4S0D OLS200

Figure 6.5: CPU Utilization Plot

96

Runtime Monitoring Framework
for the Intel SCC Diploma Thesis

om0 @i —
e o —

2e000

22000
8 oo
£
H)
£

000

2000

o plONAY I A o mhart
G06m 0U0R00 SoTEW GIZ00 (OI6%0 WE00D o200 WZN0 003300 MU0 004000 A0 00400 BED 005600 GWOW CLD00 GLOIO GLIZ0D GIi605 ULZ000 OLO0 GZE 010200 GLISG 014000 GheE oLA0 wiece
e

s [pp—
=
£
H

4,

ooos Gned Goosoo Ghiz00 GoIeGh 092090 92400 00200 GSE GosEos AU GoaM0o GUW0> 095200 005600 GLOSEO U000 GLOSED OLiZe) Gdcmy 0iaoss G240 e a0 @esa oo s

o Temperaure in © ——
2wt
8

2
D0000 00K 00000 01700 001600 (02000 (02400 000800 003700 M3E0D 004000 00400 (04G00 005200 005600 10000 0LOK0D CAOB00 OL1260 011600 QL2060 012400 012800 013200

TA00D 0400 014500 015200

Tme

Figure 6.8: Board Temperature Plot

[p—

200

Fan Seeed in kM

100

U000 D040 CUOROD (0200 0600 (DZ0UD G200 OUZEOD CON20D OUIG0D (0000 00600 ODMSUD 05200 OUSG0D CLO00D CLDS0D CL0SO0 OLIZO0 OL15C0 OL200 GL2400 L2600 OLIZO0 0L OL40GO OL4SCO OL4ED0 OL5Z00
Tine

Figure 6.9: Fan Speed Plot

97

Chapter 7

Workload Characterization of Big
Data Applications on the Intel SCC

This chapter states the experimental analysis we have conducted for four MapReduce
applications that run on top of the HDFS cluster topologies we have deployed on
the Intel SCC. Each section of this chapter is dedicated to one application. Initially
pseudocode that describes the algorithm that is implemented by each application is
provided and the input file generation and application execution process is presented.
In the remainder of each section, the experimental results we have collected are ex-
plained and analyzed in detail in order to investigate the behavior of these applications
when they run on the Intel SCC, on top of different HDFS cluster topologies, with
different frequency settings for the cluster nodes and for different input file sizes.

7.1 The Wordcount Application

This section presents our analysis regarding the execution of the Wordcoun applica-
tion on the Intel SCC. We initially describe the MapReduce implementation of the
Wordcount algorithm. In addition, the input file generation and application execution
process are stated. We have utilized resources which are provided by DCBench for
that purpose. Subsequently, the experimental results we have received are analyzed,
in order to draw conclusions regarding the behavior of the Wordcount application on
the Intel SCC for different input sizes, cluster topologies and frequency settings.

7.1.1 Algorithm Description

The Wordcount application counts the number of words of an input text. The MapRe-
duce implementation of this application consists of a Mapper and a Reducer function,
whose pseudocode is presented below.

map (String key, String value):
words = tokenize(value)
for each word in words:
output (word, ’1°)

99

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

reduce(String key, List<String> values):
sum = O
for each value in values:
sum += 1
output (key, sum)

The Mapper function receives <key,value> pairs for each line in the input text file.
The key of each pair represents the character offset of the specific line and the value
is the character String of this line. The Mapper function tokenizes each line so as to
extract the words it contains, and outputs intermediate <key>,<value> pairs. The key
of each intermediate pair contains one word of the input text and the value is always
1.

The Reducer function receives <key>,<list(value)> pairs. That is, each Reducer re-
ceives a list that contains all the 1s that where generated by the Mappers. The Reducer
sums all the 1s that are contained in the list and outputs the final <key>,<value> pairs.
The key of each output pair contains one word that was included in the input text file
and the value contains the number of occurences of this specific word in the input text
file.

7.1.2 Application Execution and Input Files

We use four different input files for the Wordcount application, whose size is 256 MB,
512 MB, 1 GB and 2 GB. Those files are generated randomly by the RandomTextWriter
class which is included in hadoop-0.20.2-examples. jar. DC Bench provides a script
called prepare-wordcount.sh, which receives the desired input size as an argument,
generates a random text file of this specific size and uploads this file to HDFS. We have
modified this script to also receive the number of TaskTracker nodes as a command
line argument. The code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/base-operations/wordcount$
./prepare-wordcount.sh 256m 32

BYTES_PER_MAP 8388608

MAPS_PER_HOST 1

HOSTS 32

generating rtw-wordcount-256M data

Running 32 maps.

Job started: Fri Apr 10 15:13:42 EEST 2015

15/04/10 15:13:51 INFO mapred.JobClient: Running job: job_201504101105_0004

156/04/10 15:13:52 INFO mapred.JobClient: map 0% reduce 0%

15/04/10 15:18:10 INFO mapred.JobClient: map 100% reduce 0%
15/04/10 15:18:40 INFO mapred.JobClient: Job complete: job_201504101105_0004

The job took 298 seconds.

100

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

In order to run the Wordcount benchmark, the run-wordcount.sh script, which is
provided by DCBench has to be executed. This script receives the input size of the
text file as a command line argument and searches in HDF'S for the input file with this
specific size that was created by prepare-wordcount.sh. The code of this script is
included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/base-operations/wordcount$
./run-wordcount.sh 256m

rmr: cannot remove /cloudrank-out/rtw-wordcount-256M-out: No such file or directory.

156/03/15 15:13:25 INFO input.FileInputFormat: Total input paths to process : 32

15/03/15 15:13:30 INFO mapred.JobClient: Running job: job_201503151246_0001

156/03/15 15:13:31 INFO mapred.JobClient: map 0% reduce 0%

15/03/15 15:31:22 INFO mapred.JobClient: map 100% reduce 100%
156/03/15 15:32:01 INFO mapred.JobClient: Job complete: job_201503151246_0001

7.1.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Wordcount application, in terms of input size, when it runs on the Intel SCC. We have
executed the application with four different input files, whose size is 256 MB, 512 MB,
1 GB and 2 GB. We have utilized the 48-Node Cluster Topology for this analysis and
have configured both the DataNodes and the TaskTrackers to operate at the maximum
frequency of 800 MHz. The experimental results we have received regarding the exe-
cution time and the energy consumption of the Wordcount application are presented
below. Detailed plots that illustrate the CPU utilization and the network traffic for one
DataNode and one TaskTracker as well as the overall power consumption and board
temperature of the Intel SCC, for each run, are included in Appendix B1.

Execution Time m— Energy Consumption

80 350

301.36 32
70 67.53 - 300

275
250
50 225

200
40 38.78 171.18 175

60

150
30
24.52 105.33 125
100
75
10 50
25

Execution Time (Minutes)

20 18.60

Energy Consumption (Joules)

73.30

256MB 512MB 1GB 2GB 2B6MB 512MB 1GB 2GB

Input Size

Figure 7.1: Wordcount Input Size Scalability Analysis (1/2)

Our analysis indicates clearly that both the execution time and the energy consumption
of the Wordcount application scale linearly as the size of the input text file increases.

101

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Energy Delay Product s

24000
22000
20000

20351

18000
16000
14000
12000
10000
8000 6638
6000

Energy Delay Product (Joules * Seconds)

4000 2583

2000 1363 .
oL Il
256 MB 512 MB 1GB 2GB
Input Size

Figure 7.2: Wordcount Input Size Scalability Analysis (2/2)

The CPU utilization plots of the TaskTracker nodes that are presented in the Appendix
denote that the Map phase of the Wordcount MapReduce job is expanded when the in-
put size increases, since the number of the InputSplits and thus the number of issued
Map tasks rises. The intermediate <key,value> pairs are evenly distributed among
the reducers by the HashPartitioner and as consequence, a slight increase in the du-
ration of the Reduce phase is also observed when the size of the input text file increases.

The idle period in the beginning of the execution accounts for the Job initialization
phase that is performed by the JobTracker. The idle period between the Map and
the Reduce phases indicates that the Map task of this specific TaskTracker has fin-
ished, but the JobTracker waits for the completion of Map tasks that run on other
TaskTrackers, so that the Reduce phase can be started for the Job. The idle period
after the Reduce phase depicts that the Reduce task of this specific TaskTracker has
completed its execution, but the JobTracker waits for Reduce tasks that run on other
TaskTrackers to finish as well.

7.1.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Wordcount appli-
cation when it is executed on top of different HDFS cluster topologies on the Intel
SCC. We have created one input file for this study, with a size of 256 MB. We have
configured both the DataNodes and the TaskTrackers of each cluster topology to op-
erate at the maximum frequency of 800 MHz. The idle nodes of each topology (if any)
operate at the minimum frequency of 100 MHz. gmond is not active on those nodes as
well. The experimental results we have received regarding the execution time and the
energy consumption of the Wordcount application are presented below. Detailed plots
are included in Appendix B1, as in the previous case.

Our results evidently suggest that the Wordcount application benefits when the num-

ber of TaskTracker nodes increases, both in execution time and in energy consumption.
However, the energy consumption gain is not proportional to the decrease of the exe-

102

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Execution Time - Energy Consumption

40 110
97.40 100

30
80.73
80
70

56.98 60

£8.87

50
40
30
20
10

Execution Time (Minutes)
Energy Consumption (Joules)

16-Node 24-Node 32-Node 48-Node 16-Node 24-Node 32-Node 48-Node

Cluster Cluster Cluster ~ Cluster Cluster Cluster Cluster ~ Cluster ~ Cluster

Topology

Figure 7.3: Wordcount Cluster Topology Analysis (1/2)

Energy Delay Proguct mmms

4000

3500 3412

3000
2500
2000 1845
1500
1500
1000 769
500 I
0

16-Node 24-Node 32-Node 48-Node
Cluster Cluster Cluster Cluster

Energy Delay Product (Joules * Seconds)

Cluster Topology

Figure 7.4: Wordcount Cluster Topology Analysis (2/2)

cution time, since the power that is drawn by the Intel SCC is higher as the number of
nodes of the Hadoop cluster increases. The CPU utilization plots of the TaskTracker
nodes illustrate that the increase in execution time can be interpreted by the fact that
more Map tasks have to be issued for each TaskTracker node, as the TaskTracker node
count decreases. The intermediate <key,value> pairs are evenly distributed among
the reducers by the HashPartitioner and as consequence, a slight increase in the du-
ration of the Reduce phase is also observed when the number of TaskTracker nodes of
the HDF'S cluster decreases.

Another conclusion that can be drawn is that for a given name of TaskTracker nodes,
both the execution time and the energy consumption of the application deteriorate
when the number of DataNodes is increased from 7 to 15. (24-Node Topology versus
32-Node Topology). This observation can be attributed to the fact that the DataNodes
do not execute any computation regarding the MapReduce job and are only respon-
sible for providing the TaskTrackers with data from HDFS. As a consequence, the
application is charged with higher power consumption, without yielding any benefit in
execution time, which results to an increase in the overall energy consumption.

103

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

7.1.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Wordcount application on the Intel SCC. We have tested
the input text file with the size of 256 MB in the 48-Node Cluster topology for nine
frequency settings. We have configured the DataNodes and Master Node and the Task-
Trackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency setting
represents one combination of those values. The experimental results we have received
regarding the execution time and the energy consumption of the Wordcount application
are presented below. Detailed plots are included in Appendix B1, as in the previous
case.

DN200 DN200 DN200 DN533 DNS33 DN533

TT200 TT533 TT800 TT200 TT533 TT800 TT200 TT533 TT800 TT200 TTS33 TT800 TT200 TT533

DN200 DN200 DN200 DN533 DN533 DN533 DNBOD DNBOO | DNBOD
Frequency Setting TT800

Figure 7.5: Wordcount Frequency Scaling Analysis (1/2)

Energy Delay Product memm

3000

2500

2000

Energy Delay Product (Joules * Seconds)

DN200 DN200 DN200 DN533 DN533 DN533 DN80O DN8OO | DNBoo
TT200 TT533 TT800 TT200 TT533 TT800 TT200 TT533 | TT800

Frequency Setting

Figure 7.6: Wordcount Frequency Scaling Analysis (2/2)

The experimental results presented above point out that the Wordcount application
benefits from the TaskTrackers running at the maximum frequency of 800 MHz, both
in terms of execution time and energy consumption. The frequency of the DataNodes
and the Master node appears to have a minor impact the execution time and the energy
consumption of the application. This assumption could suggest that scaling down the
frequency of the DataNodes to 200 MHz, while the TaskTrackers operate at 800 MHz,
could result in lower energy consumption because the slightly higher execution time
would be mitigated by the lower power consumption resulting in lower overall energy
consumption. Such a conclusion cannot be drawn by the energy consumption observa-
tions mentioned above. However, it has to be mentioned that the energy consumption
of the DN200-TT800 and DN800-TT800 setting differ by less than 3%, indicating that
we cannot draw a safe conclusion regarding that matter.

104

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

In addition, it has to be mentioned that the execution time of the DNS00-TT800
setting is misleading, because of the fact that Map tasks were re-run because of errors
in this specific execution, during the idle period that is depicted in the CPU utilization
plot of TaskTracker rck45 in the Appendix, between the 10th and the 16th minute.
This fact is illustrated in the following CPU utilization plots of TaskTrackers rck04,
rck29 and rck32. To corroborate this hypothesis, we re-executed the application for
this specific setting and it was completed in 13.50 minutes. However, the power con-
sumption that was recorded was on average 20 W less than the power consumption
that we observed in the first run. This fact can be attributed to the lower board
temperature of the Intel SCC, because of lower platform utilization at the time. As
a consequence, the results of this re-execution cannot be used so as to yield a more
accurate measurement for the energy consumption of the DN800O-TT800 setting. The
safest conclusion that can be drawn is that it is expected to be less than the value of
73.30 Joules that observed in the first run.

Figure 7.7: CPU utilization plots for the Wordcount application

Moreover, it has to be mentioned that the energy consumption saving would have
been more significant if the Intel SCC architecture allowed Voltage Scaling at the tile

105

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

level. Because of the fact that in our setting all voltage domains contain DataNodes
and TaskTrackers as well, we were not able to perform Voltage Scaling. Since power
consumption is proportional to the product of the core frequency and the square of the
voltage, as the following equation denotes, scaling down the voltage would decrease
energy consumption even more, without impairing performance at all.

P x CV?

7.1.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.11-7.16) for the CPU utilization
of all cluster nodes, when the Wordcount application is executed with the input file
of 512 MB, on the 48-Node HDFS cluster topology and with the DataNodes and the
TaskTrackers configured to operate at 800 MHz. The very low utilization of all the
DataNodes which explains the minimal performance impairment that we observe when
their operating frequency is scaled down to 200 MHz. The CPU utilization diagrams
of the TaskTracker nodes depict the execution on Map and Reduce tasks on the cores
that they are hosted.

Those figures clearly point out that Wordcount is a CPU-intensive application and

as a consequence it benefits greatly from a cluster topology with many TaskTracker
nodes, which operate at the maximum frequency of 800 MHz.

106

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

’ \N

2100

f W' H i il } H I TV‘ W [1""\ Wur M ’1 I MJWT

Figure 7.8: Wordcount Overall Cluster Utilization (1/6)
107

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

rw\ MW“W ”' (} "' L H'm m ‘ f 1('{! W H'I\HHH "l I' ‘!\ﬂ UHWH H\ i ‘) (i

Figure 7.9: Wordcount Overall Cluster Utilization (2/6)
108

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Datan

M

M BA

il

LA

th

Dstan

il il

Figure 7.10: Wordcount Overall Cluster Utilization (3/6)
109

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

"
Datatid:

”w ' ‘ ‘ M W ”l” kG r

200

{ T 1 Ix‘y m
|

200

"
Datatiod:

MR e

"
Datatiod:

*

"
Datatia:

T

"
Datatic:

o I ki

Figure 7.11: Wordcount Overall Cluster Utilization (4/6)
110

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

iput
Datatodes

‘ZZj Il \ L i

ot

l o D

IR

rou
Datatodes

" ML

Figure 7.12: Wordcount Overall Cluster Utilization (5/6)
111

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

|

W

" .
Dataioges 1 800 M, TaskTraiers 1 00 bHe

TR Wil
|

M

"

"
Datanod:

- |

e

E HH’ ‘" | ‘ ([)”]H ”‘ |,![I Y ”Zig%d;

200

Il u
|

I
1500

Figure 7.13: Wordcount Overall Cluster Utilization (6/6)
112

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

7.2 The Bayes Classification Application

This section presents our analysis regarding the execution of the Bayes Classification
application on the Intel SCC. We initially describe the MapReduce implementation of

the Bayes Classification algorithm. In addition, the input file generation and ap-

plication execution process are stated. We have utilized resources which are provided

by Cloudsuite for that purpose. Subsequently, the experimental results we have re-

ceived are analyzed, in order to draw conclusions regarding the behavior of the Bayes

Classification application on the Intel SCC for different input sizes, cluster topolo-

gies and frequency settings.

7.2.1 Algorithm Description

The purpose of the Bayes Classification Application is to train a text classification
model, based on given training set of classified documents. This classification model is
based on the frequency of the words that appear in the training documents of a specific
class. The classification model enables us to calculate the probability of an unclassified
document being a member of a specific class. The document is assigned to the class
that yields the highest probability depending on the classification model.

The Bayes Classification implementation that is provided by Mahout splits the training
of the classification model in four MapReduce jobs. The first two jobs calculate the nor-
malized Term Frequency - Inverse Document Frequency (Tf-1df) for each <class, term>
pair. Supposed that d= (di,dy, ...,d,) is the vector of the training documents, d;; is
the number of occurrencies of term j in document 4, ¢ = (t1,ta, ..., t,) is the vector of
the term vocabulary and i = (y1, 2, ..., ¥») is the vector of the document classes, then
the normalized Tf-Idf of term j for document class k is calculated by the formula

THIAf (k) = In(JEefl) 55,), —R Bt
ird;€yy di \/m

The third MapReduce job calculates the Sigma; for each term, the Sigmay for each
class and the Sigma;Sigmay, based on the following formulas.

k

Sigmay (k) = ZTfIdf(k7j>

Sigma;Sigma, = Tf1df (k,j)

j7k

The fourth MapReduce job calculates the weight normalization factor for each class,
which is denoted by T'heta(k), based on the following formula. M represents the total
number of terms in the document vocabulary.

113

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

TfIdf(k,j)+1
Theta(k) =3, %

The calculation of the probability of a document being a member of a specific class
breaks down to the calculation of the contribution of each of its terms. The contribution
of each term j for class k is equal to the expression

. TFIdf(k,j)+1
plk, j) = —In(Fd kL)

As a consequence, the probability of document d being a member of class k is

p(d, k) = 2jitsed f(4) *p(k, j)

where f(j) denotes the number of occurences of term ¢; in the document to be clas-
sified. The document is assigned to the class that yields the maximum value for p(d, c).

The following pseudocode points out the master flow of the Mahout implementation
of the Bayes Classification algorithm, which consists of four MapReduce jobs.

BayesDriver :

BayesDriver.main(input,output,params) :
BayesFeatureDriver.runJob(input,output,params)
BayesTfIdfDriver.runJob(input,output,params)
BayesWeightSummerDriver.runJob(input,output,params)
BayesThetaNormalizerDriver.runJob(input,output,params)

The BayesFeatureDriver job processes the input training documents, which are stored
as <key,value> pairs in HDFS. The key of each file (and InputSplit) represents the
class to which this document has been assigned to and the value of each pair con-
tains the terms of each document separated by spaces. BayesFeatureDriver outputs
<key,value> pairs of four types : LABEL_COUNT, DOCUMENT_FREQUENCY, FEATURE _COUNT
and WEIGHT, as presented below.

LABEL_COUNT pairs denote the number of documents that belong to each class:
< ("LABEL_COUNT"” class(yx)), |{d; : d; € yr}| >

DOCUMENT _FREQUENCY pairs represent the number of occurences of a term in the docu-
ments that belong to a specific class:

< ("DOCUMENT_FREQUENCY” class(yy), term(t;)), >, dij >

:d; €y,

FEATURE _COUNT pairs include the number of occurences of a specific term in all the
training documents:

< ("FEATURE COUNT” term(t;)), Y. dy>

Jie{l,..,n}

114

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

WEIGHT_COUNT pairs contain the length normalized and TF transformed frequency of a
term for a specific class:

In(d;; +1
< ("WEIGHT” , class(yx), term(t;)), > n(dy + 1)

T >
i:d; EYg \/ Zdijédi d’bj

The above purpose is achieved by the following Map and Reduce functions. Please
note that the terms label and class and the terms term and feature are used
interchangeably.

BayesFeatureMapper.map(String key, String value):
class = key
terms = tokenize(value)
termCountMap = []
for (term : terms):
if (!termCountMap.contains(term)):
termCountMap.put (term, 1)
else
termCountMap.put (term, termCountMap.get (term) +1)
lengthNormalization = 0.0
for (term : termCountMap)
lengthNormalization += termCountMap.get(term) * termCountMap.get(term)
lengthNormalization = sqrt(lengthNormalization)
for (term : termCountMap):

output (("WEIGHT",class,term), ln(termCountMap.get(term)) / lengthNormalization)

output (("DOCUMENT_FREQUENCY",class,term),1)

output (("FEATURE_COUNT",term) , 1)

output (("FEATURE_TF",term) ,termCountMap.get (term))
output ((’LABEL_COUNT",class),1)

BayesFeatureReducer.reduce(StringTuple key, List<Double> values)
sum = 0
for (value : values)
sum += value
if (key.get(0).equals("WEIGHT") or
key.get (0) .equals ("DOCUMENT_FREQUENCY") or
key.get (0) .equals ("FEATURE_COUNT") or
key.get (0) .equals ("LABEL_COUNT")):
output (key, sum)

The BayesTfIdfDriver job processes the intermediate results which were generated by
BayesFeatureDriver so as to calculate the normalized TfIdf for each <class,term>
pair. BayesTfIdfDriver outputs pairs of two types : WEIGHT and FEATURE SET SIZE.

WEIGHT pairs include the normalized Tfldf for each <class,term> pair:

7 T~ 2
Zi:dié'yk ij i:d; €Yk Zdijédi dlj

< ("WEIGHT”,class(yy), term(t;)), In(

115

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Only one FEATURE SET _SIZE pair is generated in the output and it contains the number
of all terms in the document vocabulary:

< ("FEATURE SET_SIZE"), Z dij >
ji€{l,..,n}
The above purpose is achieved by the following Map and Reduce functions. The

getClassDocumentCount () method retrieves the number of documents that belong
to a specific class from HDFS, that was calculated by BayesFeatureDriver.

BayesTfIdfMapper .map(StringTuple key, Double value):
if (key.get(0).equals("WEIGHT"):
output (key,value)
else if (key.get(0).equals("DOCUMENT_FREQUENCY") :
class = key.get(1)
classDocumentCount = getClassDocumentCount(class)
output (("WEIGHT",class,term), 1ln(classDocumentCount / value))
else:
output (("FEATURE_SET_SIZE"),1)

BayesTfIdfReducer.reduce(StringTuple key, Double value):
if (key.get(0).equals("FEATURE_SET_SIZE"):
vocabCount = 0.0
for (value : values):
vocabCount += value
output (key,vocabCount)
else if (key.get(0).equals("WEIGHT"):
tfIdf = 1.0
for (value : values)
tfIdf *= value
output (key, t£Idf)

The BayesWeightSummerDriver job processes the results that were produced by Bayes
TfIdf driver so as to calculate the weight sums for each term and each class. Bayes
WeightSummerDriver outputs pairs of three types : FEATURE_SUM, LABEL_SUM and
TOTAL_SUM.

FEATURE _SUM pairs hold the weight sum values for each term:
< ("FEATURE_SUM?” term(t;)), Z TfIdf(k,7) >
k

LABEL_SUM pairs hold the weight sum values for each class:
< ("LABEL_SUM” class(yy)),>_ T fIdf (k,j) >
J

The TOTAL_SUM pair holds the total sum value:

< ("TOTAL_SUM”), " TfIdf(k,j) >
k.j

The above purpose is achieved by the following Map and Reduce functions.

116

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

BayesWeightSummerMapper .map (StringTuple key, Double value):
class = key.get(1)
term = key.get(2)
output (("FEATURE_SUM",term), value)
output (("LABEL_SUM",class), value)
output (("TOTAL_SUM"), value)

BayesWeightSummerReducer.reduce (StringTuple key, List<Double> values)
sum = 0.0
for value : values
sum += value
output (key, sum)

The BayesThetaNormalizerDriver job calculates the weight normalization factor
for each class, based on the results that were generated by BayesTfIdfDriver and
BayesWeightSummerDriver. BayesThetaNormalizerDriver outputs pairs of LABEL_
THETA NORMALIZER type, one for each class. Each of these pairs contains the weight
normalization factor for this class:

TfIdf(k,j)+1
Sigmay (k) + M

< ("LABELTHETANORMALIZER’ class(y)),

J

) >

The above purpose is achieved by the following Map and Reduce functions. getSigma k()
and getVocabCount () methods retrieve the Sigma k value of class k that was calcu-
lated by BayesWeightSummerDriver and the number of all terms that are included in
the document vocabulary that was calculated by BayesTfIdfDriver respectively. The
Map function operates on the output that was created by BayesTfIdfDriver.

BayesThetaNormalizerMapper.map(StringTuple key, Double value):
class = key.get(1)
output (("LABEL_THETA_NORMALIZER", label),
In((value + 1.0) / (getSigma_k(class) + getVocabCount())))

BayesThetaNormalizerReducer.reduce(StringTuple key, List<Double> value):
sum = 0.0
for (value : values):
sum += value
output (key, sum)

7.2.2 Application Execution and Input Files

In order to train the Bayes Text Classifier, we use the training set provided by Cloud-
suite, which includes classified Wikipedia texts in an XML format. The training set file,
whose size is 5.4 GB, is uploaded to HDF'S using the wikipediaXMLSplitter command
of Mahout as follows. The name of the input Wikipedia xml is wikipedia-training-
input.xml and is placed in the $MAHOUT HOME/examples/temp directory. The size of
each XML chunk is determined by the -c switch. In this case, we have used a chunk
size of 16 MB.

117

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

$MAHOUT_HOME/bin/mahout wikipediaXMLSplitter
-d $MAHOUT_HOME/examples/temp/wikipeida-training-input.xml
-o wikipedia/chunks -c 16

ageo@mitsos:~$ $HADOOP_HOME/bin/hadoop dfs
-1sr wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:11
/user/root/wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:13
/user/root/wikipedia-training/chunks

-IW-r--r-- 1 root supergroup 16934212 2015-04-14 13:11
/user/root/wikipedia-training/chunks/chunk-0001.xml

“IW-r—-r-- 1 root supergroup 16912840 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0002.xml

-“IW-r—-r-- 1 root supergroup 16921155 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0003.xml

“IW-r—-r-- 1 root supergroup 16891897 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0004.xml

Subsequently, we split the Wikipedia XML chunks, so as to create four datasets, whose
size is 256 MB, 512 MB, 1 GB and 2 GB.

ageo@mitsos:~$ $HADOOP_HOME/bin/hadoop dfs
-1sr wikipedia-training/dataset-512

drwxr-xr-x - root supergroup 0 2015-04-14 13:11
/user/root/wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:13
/user/root/wikipedia-training/chunks

-“IW-r—-r-- 1 root supergroup 16934212 2015-04-14 13:11
/user/root/wikipedia-training/chunks/chunk-0009.xml

“IW-r—-r-—- 1 root supergroup 16912840 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0010.xml

“IW-r—-r-- 1 root supergroup 16921155 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0011.xml

“IW-r——r-- 1 root supergroup 16891897 2015-04-14 13:12
/user/root/wikipedia-training/chunks/chunk-0012.xml

Before the Bayes Classifier can be trained, the category based splits of the Wikipedia
training dataset have to be created, by wikipediaDataSetCreator. The categories.
txt file contains the possible categories (i.e. classes) that an input document can be
assigned to. In this setup, we have 25 classes. The following example demonstrates
how the 256 MB input dataset is transformed into category based splits, which are
subsequently used by Mahout so as to train the classifier model. Each file that is
created by wikipediaDataSetCreator contains <key,value> pairs, where each key
represents the class of the document and the value contains the terms of this document
seperated by spaces.

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout wikipediaDataSetCreator

118

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

-i wikipedia-training/chunks/dataset-256

-0 traininginput-256

-c $MAHOUT_HOME/examples/temp/categories.txt
bin/hadoop dfs -1lsr traininginput/dataset-256

—“IrWw-r--r-- 1 ageo supergroup 0 2015-02-04 22:59

/user/ageo/traininginput/dataset-256/part-r-00000
-IW-r--r-- 1 ageo supergroup 13907858 2015-02-04 23:00

/user/ageo/traininginput/dataset-256/part-r-00001

“IW-r——r-- 1 ageo supergroup 36979226 2015-02-04 23:01

/user/ageo/traininginput/dataset-256/part-r-00023
-rw-r—-r—— 1 ageo supergroup 0 2015-02-04 22:59

/user/ageo/traininginput/dataset-256/part-r-00024

ageo@mitsos:~/hadoop-0.20.2$ bin/hadoop dfs -cat
/user/ageo/traininginput/dataset-256/part-r-00018

religion monty python’s life brian 17920 382763986 2010-09-03t22 32

49z polisher cobwebs 12812034 infobox film name monty python s life brian

image lifeofbrianfilmposter jpg writer unbulleted list graham chapman john

In order to train the Bayes Classifier and create the document classification model,
the trainclassifier command of Mahout has to be executed. In the following
example, after the training of the model has completed, the model parameters, i.e.
TfIdf(k,j), Sigma;(j), Sigmay(k), Sigma;Sigmay and Theta(k) will be stored in
trainer-tfIdf/trainer-tfIdf, trainer-weights/Sigma_j, trainer-weights/Sigma
k, trainer-weights/Sigma_jSigma k and trainer-thetaNormalizer HDFS direc-
tories respectively. All of those directories are located under wikipediamodel-256
directory.

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout trainclassifier
-i traininginput/dataset-256
-0 wikipediamodel-256
-mf 4 -ms 4

15/04/13 12:20:39 INFO bayes.TrainClassifier: Training Bayes Classifier
16/04/13 12:20:40 INFO bayes.BayesDriver: Reading features...

156/04/13 12:21:49 INFO mapred.JobClient: map 0% reduce 0%
156/04/13 13:22:56 INFO mapred.JobClient: map 100% reduce 100%
156/04/13 13:23:26 INFO bayes.BayesDriver: Calculating Tf-Idf...

15/04/13 13:24:53 INFO mapred.JobClient: map 0% reduce 0%

119

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

156/04/13 13:49:35 INFO mapred.JobClient: map 100% reduce 100%

15/04/13 13:50:10 INFO bayes.BayesDriver:
Calculating weight sums for labels and features...

15/04/13 13:51:33 INFO mapred.JobClient: map 0% reduce 0%
15/04/13 14:11:06 INFO mapred.JobClient: map 100% reduce 100%

15/04/13 14:11:37 INFO bayes.BayesDriver:
Calculating the weight Normalisation factor for each class...

15/04/13 14:13:11 INFO mapred.JobClient: map 0% reduce 0%
15/04/13 14:29:03 INFO mapred.JobClient: map 100% reduce 100%

15/04/13 14:29:36 INFO driver.MahoutDriver:
Program took 7736347 ms (Minutes: 128.93911666666668)

ageo@mitsos:~/hadoop-0.20.2$ bin/hadoop dfs -1lsr wikipediamodel-256

drwxr-xr-x - ageo supergroup 0 2015-04-13 13:48
/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf

“IW-r—-r-- 1 ageo supergroup 788697 2015-04-13 13:46
/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00000
-“IW-r—-r-- 1 ageo supergroup 806391 2015-04-13 13:46
/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00001

-rw-r--r-- 1 ageo supergroup 797885 2015-04-13 13:46

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00030
-IW-r--r-- 1 ageo supergroup 794212 2015-04-13 13:47

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00031

drwxrwxrwx - ageo supergroup 0 2015-04-13 14:28
/user/ageo/wikipediamodel/trainer-thetaNormalizer

“IW-r—-r-- 1 ageo supergroup 99 2015-04-13 14:26
/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00000

“IW-r—-r-- 1 ageo supergroup 131 2015-04-13 14:26
/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00001

“IW-r—-r-- 1 ageo supergroup 163 2015-04-13 14:26

/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00030
“IW-r——r-- 1 ageo supergroup 99 2015-04-13 14:27
/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00031
drwxrwxrwx - ageo supergroup 0 2015-04-13 14:10
/user/ageo/wikipediamodel/trainer-weights
drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09

120

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

/user/ageo/wikipediamodel/trainer-weights/Sigma_j

“IW-r—-r-- 1 ageo supergroup 82475 2015-04-13 14:08
/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00000
“IW-r—-r-- 1 ageo supergroup 83082 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00001

—“IrWw-r--r-- 1 ageo supergroup 81464 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00030
-IW-r--r-- 1 ageo supergroup 82977 2015-04-13 14:09
/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00031
drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09
/user/ageo/wikipediamodel/trainer-weights/Sigma_k
“IW-r—-r-- 1 ageo supergroup 133 2015-04-13 14:08
/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00001
“IW-r—-r-- 1 ageo supergroup 130 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00003

—“rw-r--r-- 1 ageo supergroup 169 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00026
-IW-r—-r-- 1 ageo supergroup 167 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00029
drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_kSigma_j
-“IW-r—-r-- 1 ageo supergroup 125 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_kSigma_j/part-00013

7.2.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Bayes Classifier application, in terms of input size, when it runs on the Intel SCC.
We have executed the application with four different input files, whose size is 256 MB,
512 MB, 1 GB and 2 GB. Those files were transformed to category based splits before
they were used in order to train the text classification model. We have utilized the 48-
Node Cluster Topology for this analysis and have configured both the DataNodes and
the TaskTrackers to operate at the maximum frequency of 800 MHz. The experimental
results we have received regarding the execution time and the energy consumption of
the Bayes Classifier application are presented below. Detailed plots that illustrate
the CPU utilization and the network traffic for one DataNode and one TaskTracker
as well as the overall power consumption and board temperature of the Intel SCC, for
each run, are included in Appendix B2.

Our analysis indicates evidently that both the execution time and the energy con-
sumption of the Bayes Classifier application scale linearly as the size of the input
documents increases. The detailed plots of the CPU utilization of the TaskTracker
nodes indicate that this increase is primarily attributed to the expansion of the ex-

121

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Execution Time - Energy Consumption

440 2400

400 382.60 2091.16 2200
2000

1800
1600
1400
1200
1000

1386.07

997.12
846.08

Execution Time (Minutes)
Energy Consumption (Joules)

256MB 512MB 1GB 2GB 256 MB 512MB 1GB 2CB
Input Size

Figure 7.14: Bayes Classifier Input Size Scalability Analysis (1/2)

Energy Delay Product mmmsm

900000

800077
800000

700000
600000
500000
400000
320182
300000

200000

Energy Delay Product (Joules * Seconds)

100000

0

256 MB 512 MB 1GB 2GB
Input Size

Figure 7.15: Bayes Classifier Input Size Scalability Analysis (2/2)

ecution time of the Map phase of the BayesFeatureDriver job and secondarily to
a smaller increase of the Reduce phase of this job. The increased execution time of
the Map phase can be explained by the fact that the category based splits that are
processed by BayesFeatureDriver include more <class,document> pairs as the in-
put size increases and as a result are stored in more InpuSplits in HDFS, resulting
in an increased amount of issued Map tasks. The increase in the Reduce phase can
be explained by the fact that the Map phase of the MapReduce job generates more
intermediate <key,value> pairs, increasing the processing load of the Reduce phase
and thus the execution time.

In the beginning of each MapReduce job a period which is dominated by idle CPU
cycles because of outstanding I/O, for all input sizes, is noticed. This behavior can be
attributed to the fact that the mahout-examples-0.6-job. jar is distributed to each
TaskTracker during the initialization of a MapReduce job and is expanded when the
first task (Map or Reduce) is executed on this node. This jar file has a size of 23 MB
and its expanded contents have a total size of 85 MB, adding up to a total of 108
MB outgoing 1/O per TaskTracker. The presence of a high percentage of idle CPU
cycles due to outstanding I/O indicates that the I/O bandwidth between the Intel SCC
and the NFS that is mounted on /shared is saturated, causing the cores to stall until

122

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

the jar is expanded and its contents are stored in the physical storage of the MCPC.
The increased I/O of this period is also depicted in the Network Traffic plots of the
TaskTracker nodes, since each core accesses the NFS through the emacO virtual net-
work interface and as a consequence, disk I/0O is recorded as network traffic by gmond.
The reason that such a behavior was not evident in the Wordcount application is that
the corresponding jar was hadoop-0.20.2-examples. jar, whose size is 140 KB, and
whose expanded contents in each TaskTracker are 484 KB, adding up to a total of
only 624 KB outgoing I/O per TaskTracker, which did not cause the 1/O bandwidth
saturation we observe at the Bayes Classification application.

7.2.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Bayes Classifier
application when it is executed on top of different HDF'S cluster topologies on the Intel
SCC. For this study, we have used the category based splits which were generated by
the 256 MB dataset. We have configured both the DataNodes and the TaskTrack-
ers of each cluster topology to operate at the maximum frequency of 800 MHz. The
idle nodes of each topology (if any) operate at the minimum frequency of 100 MHz.
gmond is not active on those nodes as well. The experimental results we have received
regarding the execution time and the energy consumption of the Bayes Classifier
application are presented below. Detailed plots are included in Appendix B2, as in the
previous case.

Execution Time Energy Consumption

202.06

513.09

Execution Time (Minutes)
P
]
S
Energy Consumption (Joules)

16-Node 24-Node 32-Node 48-Node 16-Node 24-Node 32-Node 48-Node

Cluster Cluster Cluster ~Cluster Cluster Cluster Cluster Cluster ~Cluster

Topology

Figure 7.16: Bayes Classifier Cluster Topology Analysis (1/2)

Our experimental results clearly indicate that the 48-Node cluster topology is non-
optimal for the Bayes Classifier application, if the energy consumption is taken
into account apart from the execution time, in contrast to our conclusion for the
Wordcount application. The application completes at approximately the same time
when it is executed on the 24-Node and the 48-Node cluster, but because of the lower
power consumption of the 24-Node cluster, it consumes 22% less energy. This ob-
servation can be explained by the fact that the period that was characterized by a
high percentage of idle CPU cycles because of outstanding I/0O is reduced significantly

123

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Energy Delay Product s

140000

120328
120000

100000 87481 96312
80000 75747
60000

40000

20000

Energy Delay Product (Joules * Seconds)

0

16-Node 24-Node 32-Node 48-Node
Cluster Cluster Cluster Cluster

Cluster Topology

Figure 7.17: Bayes Classifier Cluster Topology Analysis (2/2)

as the number of cores that participate in the cluster drops, since the requested 1/0O
bandwidth and thus the I/O saturation diminish. As a consequence, the reduced par-
allelism that is imposed by the smaller number of TaskTracker nodes is mitigated by
the fact that less CPU cycles are wasted for outstanding I/O requests, resulting in the
same execution time and reduced energy consumption for the 24-Node cluster topology
compared to the 48-Node cluster topology.

It has to be noted however, that this conclusion would be most probably overturned if
the total size of the input category based splits was increased, because of the fact that
the CPU-intensive part of the application would be expanded and the impact of the
reduced parallelism would be more intense. This fact would result in higher execution
time for the 24-Node topology and probably higher energy consumption if the execu-
tion time overhead is significant.

The 24-Node topology outperforms the 32-Node topology in the Bayes Classifier
application, similar to our conclusion regarding the Wordcount application. That is, the
application does not benefit from the increased number of DataNodes, yielding higher
execution time than the 24-Node cluster topology and even higher energy consumption
because of the higher power consumption it is charged with.

7.2.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Bayes Classifier application on the Intel SCC. We have
tested the category based splits that were generated by the 256 MB dataset in the
48-Node Cluster topology for nine frequency settings. We have configured the DataN-
odes and Master Node and the TaskTrackers to run at either 200 MHz, 533 MHz or
800 MHz and each frequency setting represents one combination of those values. The
experimental results we have received regarding the execution time and the energy con-
sumption of the Bayes Classifier application are presented below. Detailed plots
are included in Appendix B2, as in the previous case.

124

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Execution Time mmmmm Energy Consumption

350 13884 1200

93958 932.98
248.69
250 813,61

55555

20188

jon Time (Minutes)

157.33
150

DN200 DN200 | DN200 DN533 DN533 DN533 DNBOD DN8OO DN80D DN200 DN200 | DN200 DN533 DN533 DN533 DNBOD DN8OO DN80D
TT200 TT533 | TT800 TT200 TTS33 TT800 TT200 TTS33 TT800 Frequency Setin TT200 TT533 | TT800 TT200 TTS33 TT800 TT200 TTS33 TT800

zzzzzz

222222

171977|

150000

100000

Energy Delay Product (Joules * Seconds)

Figure 7.19: Bayes Classifier Frequency Scaling Analysis (2/2)

Similar to the Wordcount application, the conclusion that both the execution time
and the energy consumption are driven by the frequency of the TaskTrackers can
be drawn. Increasing the frequency of the DataNodes, does not appear to yield any
significant benefit in terms of the execution time, while charging the application with
higher energy consumption. The experimental results for the DN200-TT800 setting
seem to contradict the above conclusions.

In the DN200-TT800 case, the failure of DataNode rck13 between the 30th and the
40th minute and the unusually long time it took to be rebooted and rejoin the cluster
by the node failover watchdog caused a series of Map tasks to fail and be re-executed.
This fact prolonged the Map phase of BayesFeatureDriver for more than an hour,
leading to a misleading execution time and energy consumption outcome. The CPU
utilization plots that are included in the Figure 7.20 illustrate that situation. In the
CPU utilization plot of rck13, the period that is distinguished by persistent CPU uti-
lization metrics corresponds to the time when the core was unreachable, thus gmond
did not report any updated metrics.

In order to corroborate the claim that the execution time we observed is mislead-
ing, we re-executed the Bayes Classification, using the DN200-TT800 setting and
the execution time we recorded was 159.27 minutes. This execution was not charac-
terized by any unusual node failures and the time it took to complete is close to the
DN533-TT800 and DN800-TT800 settings, indicating that scaling down the frequency
of DataNodes does not impair performance, while yielding energy consumption savings.

125

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

However, we could not obtain an accurate estimation of the energy consumption of
this re-execution, because the power consumption we recorded was on average 20 W
lower than the power consumption we observed in the first run. This fact is attributed
to lower platform temperature, which is a result of lower platform utilization during the
period the second execution was performed. As a consequence, comparing the energy
consumption measurement we observed in the second run with the one we observed in
the first run would be also misleading.

In order to provide a fair comparison in terms of energy consumption as well, we
also re-executed the application using the DN800-T'T800 setting. Our results regard-
ing execution time and energy consumption are included in the following table. This
comparison indicates that scaling down the frequency of the DataNodes to 200 MHz,
despite increasing the execution time by 8.4% manages to reduce the energy consump-
tion of the application by 3.7%, because of the reduced power budget of the cluster.

Frequency Setting | Execution Time | Energy Consumption | Energy Delay Product

DN200-T'T'800 159.27 631.29 100546

DNS800-TT800 146.89 655.72 96319

This behavior is expected to be maintained for bigger input sizes, because of the fact
that increasing the input size prolongs the CPU-intensive parts of the application
which are executed by the TaskTrackers, which operate at the maximum frequency of
800 MHz. Moreover, it has to be mentioned that, as in the previous applications, the
energy consumption saving would have been more notable if the Intel SCC architecture
allowed Voltage Scaling at the tile level, enabling us to scale down the voltage of the
DataNodes which operate at the frequency of 200 MHz.

126

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Bayos Classfor - CPU Utization
Inpit 70 255 15, 46 coes acie
Dataodes ot 200 M. TaskTssiers st 600 Wiz
TeskTiacker ek

o
03 001000 02000 0200 004000 000D OLODE) GLIOD 0b0GO CAIGNO GLOOD GLSCOD G20000 2000 (22000 (D00 024000 Q2SO 00DOD OI000 w000 G3s000 010000

Bayes Classtr - CPU Utlzation
npit S35 556 1B, 48 cores e
Dataoges at 200 Mz, Taskrciers 3t 600 K.
Dataniade ok’3

cPUnIzaton

o
020 1000 (:2000 0000 (oMO0D (0SOGO C10000 OLICOD CL200 LD OLADOD LSO 0Z00OD OMOEO G22000 (23000 G24DOD (25000 030000 01000 02000 033000 024000 CBSOCO OH000D 042080

Bayes Classfer - OPU Utizaton
Inpul 26 255 1B, 18 coros acte
Dataliogesat 200 N2, TascTackers a1 600 Mz

TesTrasi

o
i —
i r—

@00 D000 0000 004000 005000 010000 0000 012000 OMA0OD OLOGD GWISOGO 020000 (21000 022000 023000 024000 25000 030060 (00D (32000 GROOD 034000 G000 040000 41000

Bayes Classfer - CPU Utlization
Input 26 255 MB. 18 coresacive
Dataoges at 200 Nz, Tasrackers at 600 Mz
TesiTracker k06

@060 W0 0200 004000 005010 OLID 012000 OLAOD 0L4DID LSO (000D OIOSD @000 (2000 G240 MSOOD 030000 Q3000 03000 A0 (34000 ORI OAONOD O4A0GO
e
Bayes Classfie - GPU Uraton
Inpul 20 255 15, 38 coros acte
DataNores ot 200 Wi, ToskTrackess ot 600 Wz
Tesklraskor 16

q
H
ine
Bayes Clssfe - GPU iizaion
Inpit Sz 56 15, 48 cors e
Dataiods st 200 iz TakTrckers a 800 iz
Tasacker oK . . B .

OGO 2000 0000 04000 00SOC 010000 OL000 012000 000D GLOOD GLSOCO (20000 (200 22000 (23000 024000 25000 0300CO 000D (32000 GER0OD 03000 G3SO00 OHODOD 41000
Bayes Classfr - CPU Usization
Input S0 255 1B, 8 ores acthe
Dataoes ot 200 M. TaokTrasiars st 600 Wiz
ToskTracker c4d0

@060 W09 0000 004000 003000 010000 0L000 0L2000 OMADOD OLdGD WS0GO 020000 G21000 Q22000 023000 024000 023000 030000 000 @EOOD 03000 G000 000D 041000

Bayes Classfer - CPU Urzston
Inpul 20 255 15, 38 coros acte
DataNores ot 200 Wi, ToskTmckess ot 600 Wz
Tesklraskor ks

Ry Sysen
Er—
1o m—

@06 00 000 004000 000 010000 011000 012000 WA00D OLOD @000 020090 21000 022000 023000 024000 023000 030060 (OGD (32000 WE00D 034000 GS000 040000 41070

Figure 7.20: CPU utilization plots for the Bayes Classifier application
127

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

7.2.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.21-7.26) for the CPU utilization
of all cluster nodes, when the Bayes Classification application is executed with
category-based splits that has been generated from the input file of 512 MB, on the 48-
Node HDF'S cluster topology and with the DataNodes and the TaskTrackers configured
to operate at 800 MHz. The very low utilization of all the DataNodes which explains
the minimal performance impairment that we observe when their operating frequency
is scaled down to 200 MHz. The CPU utilization diagrams of the TaskTracker nodes
depict the execution on Map and Reduce tasks on the cores that they are hosted.

The CPU utilization plots of the TaskTracker nodes also denote the period at the
beginning of each MapReduce job, when the mahout-examples-0.6-job.jar is dis-
tributed and expanded at those cores. This period is characterized by a high percent-
age of CPU cycles due to outstanding I/0O. The overview utilization figure also depicts
that the CPU idle period that is observed in the beginning of each MapReduce job
is attributed to the execution of the setup Map task in one TaskTracker node. Each
MapReduce job executes one setup Map task before the beginning of computation,
which performs the job initialization.

Another observation that we can make from that figure is that the execution time
of each Map or Reduce task varies per node. In addition a different number of Map
and Reduce tasks are assigned to each TaskTracker by the JobTracker, depending on
the execution status of the MapReduce jobs. Finally, we can spot the cores that froze
and were rebooted during the execution of the application. The time period during
which the cores where unreachable is characterized by persistent measurements of the
CPU utilization. This behavior is explained by the fact that since the gmond instance
that runs on the MCPC did not receive any updated values for the CPU utilization,
it reported the last value it received from the core again and again, until the core was
rebooted and new metrics were received through UDP datagrams.

128

Workload Characterization of Big Data

Applications on the Intel SCC

Diploma Thesis

U ization

ceuu

o

cPu Uit zator

P izt

CFU Utlzsten

cPuLzaer

ay05 Classier - CPU Uization

NameNode and JoaTiacke k00

e

CPULser

eU gysiem
CFOWO -

Et—
@ o 0509 @moo 21000 @it cason 0000
ayes st G Unzatn
inpt S50 513 . 4 cores e
OsaNoaes B i okl ckrs t 80 iz
pH
[[—— T e e Jomteme
Nat]
crUsstem
FUNO
Et—
w00 02000 0309 o100 @m0 21000 @300 5000 0000
Bayes eGP Unzaton
inpt 20512 9.1 cores e
OsaNoaes o B it ok ckrs 30 iz
pity -
y st
Et—

Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive
Dataodesat 60D W2, TaskTrackers at 800 iz
.

Pl Systen

R —
Bayos lasstar - CPU Utization
Inpit S50 512 1B, 8 cores acie

Dataogdes at 60D . TackTrckers at 600 Wiz
Dataoe k17 s
[E——— [— s T s i temssen Jerdese
—y]
Py Sysem

e 2000 o020
Bayes Classfer - CPU Utizton
Input S20 512 1B, 8 cores actie

0

20000 w2000

E—
Et—

25000 000

OnaNodo B Ve o sk 80 Mz
ity . v
J— [——— i s o et emn e
vy ;i v v, cruUser
A CPJ System
SO
e —
wioos waoeo ws000 awoss w100 w00 w0c00
e
iy lsster G nlzston
o Sem 12 1 o 2
Ontaoge B I Tosl s 30 iz
iy -

w000

Bayes lassfer - OPU Utizston

2000 3000

w000

w2000

Tine

P sysem
CEUWO -
RO —

w000

Inpul 20512 1B, 18 coros aciv
Dataes o 600 W, TaskTrckers ot 600 Wz
. Datatia: . | v
i [[r—— i T R s | e | e
v v A T —— v CPUUser
i —

Figure 7.21: Bayes Classification

ne

Overall Cluster U
129

tilization

1/6

Workload Characterization of Big Data

Diploma Thesis Applications on the Intel SCC

s Cassfer - CPU Utizstion

Bays
npit Sze 12 1B, 48 cores ace
Dataodes G0 e TaTrchors 600 e
Dataone 066
i s Fene . [—— | e o | g s [
’ \ 2V e ™ g v Py User
J o Spsen
CFUWD —
i —

v

H
a0 2000 000 20000 w2000 24000 c2seno
Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodes at 60D M. Taskrackers at 600 Wz
Datanide o35
e [—— s i e s Pt
e M T v]
Py System
v —
i —
EH
o
onoeno o000 2000 w000 a0 20000 w2000 w000 25000
Tine
Baes lassfer - OPU Utizaton
Input S0 512 1B, 18 cores actve
Datatiodes o 600 1, TasTrackersat 600 Lz
. Datatisde rok34 . . . s .
i [E——— i [— i s T s iy temssen Jerdese
100
v v wr -r) \
P e —

ne
Bayes Classfar - CPU Utizaton
inout Szt 512 146, 48 cores e
Dataioges ot 600 Wiz, TackTrckers st 600 iz
5 s
e i [ve— i P J s ey s | stz
i CPU s
P Sysien

i —

cPu Uit zator

Bayes Classfer - GPU Utlizaton
Inpul S20 512 1B, 38 oros actve
Dataes o 600 W, TaskTrckers ot 600 Wz
o o s
i [i [r—— i T R s Y e | e
v YW I n CPUUser
oe) gysem
E—
Etp—

3

20000 e 24000 c2sen0 30000

000000 aze00 02000

-« Classfe - CPU Utizston

B
Input S20 512 1B, 8 cores actie
Dataioges oS00 Wi, TackTrckers st 600 iz
. Datanioce roksT . . . s
i e i [—— i s e e e s | e
Py Sysem
T —
i T—
3
o
ooen0 oo 2000 000 22000) w2000 w000 25000 w000
Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive
Dataodesat 60D W2, TaskTrackers at 800 iz
Dataniode okie e
00 Ao i o Y T i vy T
Py Sysem
CEUWO -
RO —

; - D e 'S g ey e ! e
® Y VY " T" gt CPU User m—

cPuLzaer

ne

Figure 7.22: Bayes Classification Overall Cluster Utilization (2/6
130

Workload Characterization of Big Data

Applications on the Intel SCC

Diploma Thesis

Bayos lassfar - CPU Utization
Inpit S0 512 176, 8 cores acive
Dataogdesat 600 M. TackTrckarsat 600 iz
TekTracker 6402

e

o
onecoo e 2000
Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodesat 600 M. Taskrackers at 600 Wz
TaskTracker 6403

e

o
onoeno 000 2000 3000
Baes lassfer - OPU Utizaton
Input S0 512 1B, 18 cores actve
Datatiodes o 600 1, TasTackersat 600 iz
0

P

Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive

‘DataNodes at 600 Mz, Task rackers at 800 MHz

Bayes Classfer - GPU Utlizaton
Inpul S20 512 1B, 38 oros actve
Dataes o 600 Wi, TaskTrmckers ot 600 Mz
TaskTrackor €40
[

e 2000
Bayes Classfer - CPU Utizton
Input S20 512 1B, 8 cores actie
800 1 TaskTracers t 00 Mz
TaskTrackor k07
e

o
ooen0 o0 2000
Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive
Dataodesat 600 W2, TaskTrakers at 800 iz
TaskTracker 408

w000 2000 w000
Bayes lassfer - OPU Utizston
Inpul S20 512 1B, 38 oros actve
Dataes o 600 Wi, TaskTrmckers ot 600 Wz
. TaskTrackor €403
i [
]

20000 w2000

20000 e

)

o

CPULser

3 system

CFOWO -

Trude
24000 c2sono 20000

25000 w000

P e —

[r— iy s sz

24000 c2sen0 30000

el user
cr) sysem

B

TFude

w000 25000 w000

g s, ey Nomatzron § e

w2000 24000 25000

i —

Figure 7.23: Bayes Classification Overall Cluster Utilization (3/6
131

Diploma Thesis

Workload Characterization of Big Data
Applications on the Intel SCC

Bayos lassfar - CPU Utization
Inpit S0 512 176, 8 cores acive
Dataodesat 600 M. TackTrskars at 600 Wiz
TskTracker 0414

U ization

e

e 2000

Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodes at 600 M. Taskrackers at 600 Wz
TaskTracker 6415

cPU Ulizaton

000 2000

Baes lassfer - OPU Utizaton

TaskTracher 416

cPuLzzen

Bayes Classfer - CPU Ullizatlon

Inpui S26 512 1B, 18 coresacive
Dataodesat 600 W2, TaskTrakers at 800 iz
er et

Cissir - GPU Unization
U1 20512 1B, 48 cores acio
DataodEs ot 600 M, TaskTrtkes st 800 Wy

Trasser okt

3

e 2000

Bayes Classfer - CPU Utizton

o0 2000

Bayos lasstar - CPU Utization
Inpit S50 512 1B, 8 cores acie
Dataogdesat 600 M. TackTrckers at 600 Wiz
TekTracker 420

e

P

[

e

P

St —

20000 w2000 24000 c2sene 20000

Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive
Dataodesat 600 W2, TaskTrakers at 800 iz
achar 21

w2000 2 25000 30000

P e —

R e s oy heevree
Tl & = e

20000 e 000 24000 c2sen0 30000

) 25000 000

Figure 7.24: Bayes Classification Overall Cluster Utilization (4/6

132

Workload Characterization of Big Data
Applications on the Intel SCC

Diploma Thesis

cPU Uzaton

CFU tlzation

ceU zaton

cruu

cruw

U ization

cru

cPuLzzen

Bayos lassfar - CPU Utization
Inpit S0 512 176, 8 cores acive
Dataogdesat 600 M. TackTrckarsat 600 Wiz
TkTracker 0426

e

o
e

w000 2000 3000
Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodes at 600 M. Taskrackers at 600 iz
TaskTracker 427

Baes lassfer - OPU Utizaton
Input S0 512 1B, 18 cores actve
Datatiodes o 600 1, TasTackersat 600 Lz
¢ i

[———

ine

z000

Bayes lassfer - CPU Utizston
Input $20'512 1B, 38 cores actie
Dataides oS00 Wi, TackTrackers st 600 iz
TasTracker 429

00

e

i o s § s

w200

Tine

: v e

24000

w000

CPUde —

csone 20000

Bayes lassfer - CPU Utizston
Input $20'512 1B, 38 cores actie
Dataides o 600 Wi, TackTrackers st 600 iz
TasTracker 430

w000 2000
Bayos lassfar - CPU Utization
Inpit S0 512 176, 8 cores acive
Dataogesat 600 M. TaekTrckars at 600 iz
kT 0631

[———

e

w000

a000

o

Tine

: v e

0000 11000

e 2000
Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodes at 600 M. Taskrckers at 600
TaskTracker 0432

e

w000 2000
Baes lassfer - OPU Utizaton
Input S0 512 1B, 18 cores actve
Datatiodes o 600 1, TasTackers ot 600 iz
TaskTracher 433

P

000

i [r— .

20000 w00 @000

) w000

Tine

s e

ne

24000

c2sono 30000

CPULser
eU gysiem

CFOWO -
St —

c2son 20000

25000 000

P e —

Figure 7.25: Bayes Classification Overall Cluster Utilization (5/6

133

Diploma Thesis

Workload Characterization of Big Data

Applications on the Intel SCC

Bayos lassfar - CPU Utization
Inpit S0 512 176, 8 cores acive
Dataogesat 600 M. TackTrckars at 600 Wiz
TekTracker 438

e

o
onecoo e 2000
Bayes Classtr - CPU Ullzation
Inpui S26 512 1B, 18 cores acive
Dataodes at 600 M. Taskrackers at 600 Wz
TaskTracker 43
e

o000 2000 3000

Baes lassfer - OPU Utizaton

TaskTracher 40
P

Bayes Classfer - CPU Ullizatlon

Inpui S26 512 1B, 18 coresacive
Dataodesat 600 W2, TaskTrakers at 800 iz
i

Bayes Classfer - GPU Utlizaton
Inpul S20 512 1B, 38 oros actve
Dataes o 600 Wi, TaskTrackers ot 600 Wz
TaskTrackor 42

[

e 2000 4000
Bayes Classfer - CPU Utizton
Input S20 512 1B, 8 cores actie
800 1 TaskTracers t 00 Mz
TaskTrackor r0ki3
e

o
ooen0 oo 2000
Bayes Classfer - CPU Ullizatlon
Inpui S26 512 1B, 18 coresacive
Dataodesat 600 W2, TaskTrackers at 800 iz
TaskTracke kb

w000 2000 w000 02000
Bayes lassfer - OPU Utizston
Inpul S20 512 1B, 38 oros actve
Dataes o 600 Wi, TaskTrckers ot 600 Wz
. TaskTrackor ceds
i [
]

25000

Tine

20000

20000

CPULser

3 system

CFOWO -

Trude
w2000 24000 c2son0 20000

w2000 25000 w000

s i s [
cPasyser

P e —

g s, ey Nomatzron Nomatzon
- A

e 24000 c2sen0 0000

B

TFude

) w000 25000 w000

o w2000 24000 25000 w000

Figure 7.26: Bayes Classification Overall Cluster Utilization (6/6

134

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

7.3 The K-Means Clustering Application

This section presents our analysis regarding the execution of the K-Means Clustering
application on the Intel SCC. We initially describe the MapReduce implementation
of the K-Means Clustering algorithm. In addition, the input file generation and
application execution process are stated. We have utilized resources which are provided
by DCBench for that purpose. Subsequently, the experimental results we have received
are analyzed, in order to draw conclusions regarding the behavior of the K-Means
Clustering application on the Intel SCC for different input sizes, cluster topologies
and frequency settings.

7.3.1 Algorithm Description

K-Means algorithm is the most well-known and commonly used clustering method. It
takes the input parameter, k, and partitions a set of n objects into k clusters so that
the resulting intra-cluster similarity is high whereas the inter-cluster similarity is low.
Cluster similarity is measured according to the mean value of the objects in the cluster,
which can be regarded as the cluster’s center of gravity.

The algorithm proceeds as follows : Firstly, it randomly selects k objects from the
whole objects, which represent initial cluster centers. Each remaining object is as-
signed to the cluster to which it is the most similar, based on the distance between the
object and the cluster center. The new mean for each cluster is then calculated. This
process iterates until the criterion function converges.

The MapReduce implementation of K-Means clustering executes repeatedly a MapRe-
duce job, which implements a parallel version of the K-Means algorithm. The input
objects that have to be clustered are point vectors. The execution stops if the con-
vergence criterion is met or if the job has been executed for the maximum number
of iterations has been reached. The K-Means MapReduce job consists of a Mapper
and a Reducer function, and a Combiner function, which combines the intermediate
<key,value> pairs that are generated by the Mappers locally before they are processed
by the Reducers, for performance optimization.

KMeansMapper iterates over the point vectors of the input file and searches for the
cluster that yields the minimum distance for each specific point. KMeansMapper out-
puts intermediate <key,value> pairs, whose key is the clusterId of the nearest clus-
ter and the value is a tuple that consists of the number 1, the point vector and the
point vector which consists the squared values of the dimensions of the original vector.
KMeansCombiner combines all the intermediate pairs that were generated by a specific
Mapper and share the same clusterId by summing the elements that are included in
the value tuple.

KMeansReducer processes all <key,value> pairs that share the same clusterId and
computes the new center of the specific cluster, as the mean value of the point vectors
that were assigned to it. KMeansReducer also checks if the cluster it processes has
converged and if so it marks the corresponding flag of the cluster as true. The output

135

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

<key,value> pairs of each reducer contain the clusterId as the key and the Cluster
object instance as the value.

The list of Clusters that is provided as input both in the Map and the Reduce func-
tions contains the clusters that were computed by the Reduce phase of the previous
iteration of the K-Means algorithm. In the first iteration of the K-Means algorithm,
this lists contains a set of clusters with randomly selected center vector points.

KMeansMapper .map (String key, Point value, List<Cluster> clusters):
nearestDistance = Double.MAX_VALUE
nearestCluster = null
for (cluster : clusters):
distance = computeDistance(value,cluster)
if (distance < minDistance):
nearestDistance = distance
nearestCluster = cluster
nearestClusterId = nearestCluster.getId()
output (nearestClusterId, (1,value,squareElements(value)))

KMeansMapper . computeDistance (point,cluster):
clusterCenter = cluster.getCenter()
return dotProduct((clusterCenter-point), (clusterCenter-point))

KMeansCombiner.combine (String key, List<ClusterObservation> values):
suml = 0O
new Point()
new Point()
for (value : values):
suml += value.get (1)
sum2 += value.get(2)
sum3 += value.get(3)
output (key, (suml, sum?2, sum3))

sum2

sum3

KMeansReducer.reduce(String key, List<ClusterObservation> values,
List<Cluster> clusters):
suml = 0
sum2 = new Point()
new Point ()
for (value : values):
suml += value.get(1)
sum2 += value.get(2)
sum3 += value.get(3)
cluster = clusters.get(key)
clusterCenter = cluster.getCenter
clusterCentroid = sum2.divide(suml)

sum3

vectorSumSquared = sum3
converged = checkConvergence(clusterCenter,clusterCentroid)
if (converged):

136

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

cluster.setConverged(true)
cluster.setCenter(clusterCentroid)
output (key,cluster)

KMeansReducer.checkConvergence(clusterCenter, clusterCentroid, convergenceDelta):
return dotProduct(clusterCentroid-clusterCenter,
clusterCentroid-ClusterCenter) <= convergenceDelta

7.3.2 Application Execution and Input Files

We use three different input files for the K-Means Clustering application, whose size
is 121 KB, 4 MB and 16 MB. Those input files are provided by DC Bench. DC Bench
also provides a script called prepare-kmeans.sh, which receives the desired input size
as an input and uploads the corresponding file to HDFS. The code of this script is
included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/cluster/kmeans$
./prepare-kmeans.sh low

ageo@mitsos:~/hadoop-0.20.2$
bin/hadoop dfs -1s /cloudrank-data/sougoux
Found 2 items

drwxr-xr-x — root supergroup 0 2015-04-15 12:08
/cloudrank-data/sougou-low-tfidf-vec/_logs
“IW-r—-r-- 1 root supergroup 124357 2015-04-15 12:08

/cloudrank-data/sougou-low-tfidf-vec/part-r-00000

In order to run the K-Means Clustering benchmark, the run-kmeans. sh script, which
is provided by DCBench has to be executed. This script receives the size of the input
file that contains the point vectors as a command line argument and searches in HDF'S
for the input file with this specific size that was uploaded by prepare-kmeans.sh. The
code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/cluster/kmeans$
./run-kmeans.sh low

i5)03/52-15:37:16 INFO kmeans.KMeansDriver: K-Means Iteration 1
15)03/52-15:38:24 INFO mapred.JobClient: map 0% reduce 0%
iS)Oé/éQ.lé:SG:SS INFO mapred.JobClient: map 100% reduce 100%
i5)05/52.15:57:34 INFO kmeans.KMeansDriver: K-Means Iteration 2
i5)05/52.26:01:14 INFO mapred.JobClient: map 0% reduce 0%
i5)05/52'26:23:12 INFO mapred.JobClient: map 100% reduce 100%

15/03/22 20:23:55 INFO driver.MahoutDriver:

137

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Program took 2800226 ms (Minutes: 46.670433333333335)

7.3.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
K-Means Clustering application, in terms of input size, when it runs on the Intel
SCC. We have executed the application with three different input files, whose size is
121 KB, 4 MB and 16 MB as mentioned above. We have utilized the 48-Node Cluster
Topology for this analysis and have configured both the DataNodes and the TaskTrack-
ers to operate at the maximum frequency of 800 MHz. The experimental results we
have received regarding the execution time and the energy consumption of the K-Means
Clustering application are presented below. Both the execution time and the energy
consumption are divided by the number of iterations the K-Means Clustering algorithm
was executed, so as to provide a basis for fair comparison. Detailed plots that illustrate
the CPU utilization and the network traffic for one DataNode and one TaskTracker
as well as the overall power consumption and board temperature of the Intel SCC, for
each run, are included in Appendix B3.

Execution Time - Energy Consumption

35 100

30 2777 892 ¥
! 76.63 80

25 23.34 24.25 65.86 70

20 60
50

s 40

Execution Time (Minutes)

10 30

Energy Consumption (Joules)

20

10

121 KB 4MB 16 MB 121 KB 4MB 16 MB

Input Size

Figure 7.27: K-Means Clustering Input Size Scalability Analysis (1/2)

Energy Delay Product s

2600
2400 2330
2200
2000

1858

1800

1600 1537
1400
1200
1000
800
600
400
200
0

121 KB 4MB 16 MB

Energy Delay Product (Joules * Seconds)

Input Size

Figure 7.28: K-Means Clustering Input Size Scalability Analysis (2/2)

138

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Our analysis points out that execution time and energy consumption do not scale
significantly when the size of the input file increases. This behavior can be explained
by the fact that the input files we have provided are stored in 1, 3 and 5 input splits
in HDFS respectively. That is, the Map tasks that are issued are much less than the
available TaskTracker nodes, meaning that the application cannot leverage the level
of parallelism that is provided by the platform. The same conclusion can be drawn
regarding the Reduce tasks, since the application attempts to create 5 clusters of point
vectors, meaning that the rest 27 reduce tasks will not receive and process any inter-
mediate <key,value> pairs. The slight increase in energy consumption for the 4 MB
and 16 MB input files can be attributed to the fact that more Map tasks were issued
in these cases, causing more Intel SCC cores operate at high CPU utilization and as a
result increasing the power consumption of the platform.

In the 121 KB input file case, only 1 Map task is issued for both iterations, which
is not evident in the diagram we have provided in the Appendix. Figure 7.29 depicts
the execution of the setup Map tasks on rck26 and rck4l and the execution of the
only Map task for Iterations 1 and 2 on rck09 and rck18 respectively.

It also has to be mentioned, that the period of high percentage of CPU idle cycles
because of outstanding I1/O and increased outgoing network traffic is also present in
the K-Means Clustering application, since the mahout-examples-0.6-job. jar is dis-
tributed and expanded by all TaskTracker nodes in this case as well. In this case, this
period is observed at the beginning of the Map phase, for nodes where Map tasks were
executed and in the beginning of the Reduce phase, for nodes that did not execute
Map tasks. In addition, it is evident in Figure 7.29 that this behavior is much more
intense during the Reduce phase, because more nodes are attempting to expand their
jar file, leading in higher I/O bandwidth contention and a higher percentage of wasted
CPU cycles.

7.3.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the K-Means Clustering
application when it is executed on top of different HDFS cluster topologies on the Intel
SCC. For this study, we have used the 121 KB input file which is provided by DCBench.
We have configured both the DataNodes and the TaskTrackers of each cluster topology
to operate at the maximum frequency of 800 MHz. The idle nodes of each topology (if
any) operate at the minimum frequency of 100 MHz. gmond is not active on those nodes
as well. The experimental results we have received regarding the execution time and
the energy consumption of the K-Means Clustering application are presented below.
Both the execution time and the energy consumption are divided by the number of
iterations the K-Means Clustering algorithm was executed, so as to provide a basis for
fair comparison. Detailed plots are included in Appendix B3, as in the previous case.

Our experimental results point out that increasing the number of DataNodes or Task-
Trackers that participate in the cluster deteriorates both the execution time and the

139

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Figure 7.29: CPU Utilization Plots for the K-Means Clustering Application

energy consumption of the application. This behavior can be explained by the anal-
ysis we presented in the previous section. Since the input file we use is stored in one
InputSplit in HDFS and only 5 reducer tasks will process intermediate key value
pairs, since we attempt to group the input vector points to 5 clusters, the application
cannot leverage the increased parallelism that is offered by the 24-Node, 32-Node and
48-Node topologies. In fact, it cannot fully take advantage of the parallelism that is
offered by the 16-Node topology as well. As a consequence, increasing the number of
nodes that participate in the cluster does not reduce the execution time of the appli-
cation, but increases it, since the idle CPU cycles period because of outstanding I/0O
is prolonged because of the fact that the increased number of nodes increases the I/0
bandwidth congestion, leading in a higher percentage of wasted CPU cycles. More-
over, since cluster topologies with more nodes charge the application with higher power
consumption, the devastating impact of increased execution time, increases the energy
consumption of the application even more.

140

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Execution Time Energy Consumption

30 80

65.86 70
25 23.34

60
20

36.61
s 1267 1503 33,63 “0

30
10

20

Execution Time (Minutes)
Energy Consumption (Joules)

10

16-Node 24-Node 32-Node 48-Node 16-Node 24-Node 32-Node 48-Node

Cluster ~ Cluster Cluster Cluster Cluster Cluster ~ Cluster ~ Cluster Cluster

Topology

Figure 7.30: K-Means Clustering Cluster Topology Analysis (1/2)

Energy Delay Product s

1800

1600

1537
1400
1200
1000
800 700
600
426 448
400 III
200 I I
0

16-Node 24-Node 32-Node 48-Node
Cluster Cluster Cluster Cluster

Energy Delay Product (Joules * Seconds)

Cluster Topology

Figure 7.31: K-Means Clustering Cluster Topology Analysis (2/2)

7.3.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the K-Means Clustering application on the Intel SCC. We
have tested the input file which has a size of 121 KB in the 48-Node Cluster topology
for nine frequency settings. We have configured the DataNodes and Master Node and
the TaskTrackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency
setting represents one combination of those values. The experimental results we have
received regarding the execution time and the energy consumption of the K-Means
Clustering application are presented below. Both the execution time and the energy
consumption are divided by the number of iterations the K-Means Clustering algorithm
was executed, so as to provide a basis for fair comparison. Detailed plots are included
in Appendix B3, as in the previous case.

As in the previous applications, the execution time appears to be driven primarily by
the frequency of the TaskTracker nodes, since the CPU-intensive parts of the K-Means
Clustering algorithm are executed on those nodes. For a given frequency for the
DataNodes, increasing the TaskTracker nodes frequency significantly reduces the exe-
cution time and the energy consumption of the application. On the contrary, increasing

141

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Execution Time mmmsm Energy Consumption

DN200 DN200 DN200 DN533 DNS33 DN533 DN8OO DNS0D DN8OD DN200 DN200 DN200 DN533 DN533 DN533 DNBOD DNBOD DNBOD

TT200 TTS33 TT800 TT200 TT533 TT800 TT200 TT533 TT800 Frequency Seting TT200 TT533 TT800 TT200 TTS33 TT800 TT200 TT533 TT800

Figure 7.32: K-Means Clustering Frequency Scaling Analysis (1/2)

Energy Delay Product memsm

3000 | sy
2500

2000

Energy Delay Product (Joules * Seconds)

DN200 DN200 DN200 DN533 DN533 DN533 DN80O DN80O DN80o
TT200 TT533 TT800 TT200 TT533 TT800 TT200 TT533 TT800

Frequency Setting

Figure 7.33: K-Means Clustering Frequency Scaling Analysis (2/2)

the frequency of the DataNodes for a fixed frequency for the TaskTrackers, does not
reduce the execution time and since the application is charged with higher power con-
sumption, the energy consumption is increased. As a consequence, we can deduce
that scaling down the frequency of the DataNodes does not impair the performance of
the application, while yielding benefits in terms of energy consumption. For example,
while the execution time of the DN200-TT800 and DN800O-TT800 settings is almost
the same, the DN200-TT800 setting consumes 10% less energy.

7.3.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.34-7.39) for the CPU utilization
of all cluster nodes, when the K-Means Clustering application is executed with the
input file of 121 KB, on the 48-Node HDFS cluster topology and with the DataNodes
and the TaskTrackers configured to operate at 800 MHz. The conclusions that were
presented in the previous sections are corroborated by the following plots.

The cluster utilization figures clearly point out that only one Map task was executed
for each iteration of the K-Means Clustering application, plus one set up Map task
during the initialization phase of each MapReduce job. In addition, it is also evident
that the percentage of idle CPU cycles due to outstanding 1/0O for a specific is signifi-
cantly higher when it takes place during the Reduce phase of each job, because of the
fact that more cluster nodes attempt to expand the mahout-examples-0.6-job.jar
at that time resulting to higher I/O bandwidth saturation.

142

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Sl

Figure 7.34: K-Means Clustering Overall Cluster Utilization (1/6)
143

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Figure 7.35: K-Means Clustering Overall Cluster Utilization (2/6)
144

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Figure 7.36: K-Means Clustering Overall Cluster Utilization (3/6)
145

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Figure 7.37: K-Means Clustering Overall Cluster Utilization (4/6)
146

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Figure 7.38: K-Means Clustering Overall Cluster Utilization (5/6)
147

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Figure 7.39: K-Means Clustering Overall Cluster Utilization (6/6)
148

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

7.4 The Frequent Pattern Growth Application

This section presents our analysis regarding the execution of the Frequent Pattern
Growth application on the Intel SCC. We initially describe the MapReduce implemen-
tation of the Frequent Pattern Growth algorithm. In addition, the input file gener-
ation and application execution process are stated. We have utilized resources which
are provided by DCBench for that purpose. Subsequently, the experimental results
we have received are analyzed, in order to draw conclusions regarding the behavior of
the Frequent Pattern Growth application on the Intel SCC for different input sizes,
cluster topologies and frequency settings.

7.4.1 Algorithm Description

The Frequent Pattern Growth Algorithm is an efficient and scalable method for mining
the complete set of frequent patterns by pattern fragment growth, using an extended
prefix-tree structure for storing compressed and crucial information about frequent pat-
terns named frequent-pattern tree (FP-tree). Let I = {aq, as, ..., a,,} be a set of items,
and a transaction database DB is a set of subsets of I, denoted by DB = {1}, T5, ..., T,,},
where each T; C I(1 < i < n) is said a transaction. The support of a pattern A C I,
denoted by supp(A), is the number of transactions containing A in DB. A is a frequent
pattern if and only if supp(A) > &, where £ is a predefined minimum support threshold.
Given DB and &, the problem of finding the complete set of frequent patterns is called
the frequent itemset mining problem.

Frequent Pattern Growth works in a divide and conquer way. It requires two scans on
the database. Frequent Pattern Growth first computes a list of frequent items sorted by
frequency in descending order (F-List) during its first database scan. In its second scan,
the database is compressed into an FP-tree. Then Frequent Pattern Growth starts to
mine the FP-tree for each item whose support is larger than by recursively building
its conditional FP-tree. The algorithm performs mining recursively on FP-tree. The
problem of finding frequent itemsets is converted to searching and constructing trees
recursively.

The Frequent Pattern Growth MapReduce implementation that is provided by Apache
Mahout consists of three MapReduce jobs, which are called ParallelCounting, Parallel
FPGrowth and Aggregator. Those jobs are orchestrated by the FrequentPatternGrowth
Driver master flow. Pseudocode for the FrequentPatternGrowthDriver flow is pre-
sented below.

FrequentPatternGrowthDriver.runJob(input,output,params) :
ParallelCounting.runJob(input,output,params)
createFList ()
createGList ()
ParallelFPGrowth.runJob(input,output,params)
Aggregator.runJob(input,output,params)

The ParallelCounting job counts the number of occurences of each item in the trans-
action database, similar to the Wordcount application. ParallelCounting outputs

149

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

<key,value> pairs, whose key is an item and whose value is its number of occurences
in the transaction database.
< item, N >

The above purpose is achieved by the following Map and Reduce functions.

ParallelCountingMapper.map(String key, Transaction value):
List<Item> itemList = tokenizeTransaction(value)
for (item : itemList):
output (item,1)

ParallelCountingReducer.reduce(String key, List<Integer> values):
sum = O
for (value : values):
sum += value
output (key, sum)

The output of this job is used by FrequentPatternGrowthDriver so as to create FList,
which is a sorted list of the number of occurences (i.e. the support value) of each item,
in descending order. Items with a number of occurences less than the minimum support
value are eliminated from FList. Subsequently, the items present in fList are assigned
to groups, that is each item is assigned to a specific groupId. The total number of
groups is provided as an input parameter of FrequentPatternGrowthDriver. glist
contains the mapping of items to groupIds. fList and gList can be considered as
global invariants for the ParallelFPGrowth job, meaning that they can accessed by
all Map and Reduce tasks.

The ParallelFPGrowth job performs a second scan of the transaction database, in
order to convert the transactions of the database into group dependent transactions
and build independent FP-trees in parallel. ParallelFPGrowth outputs <key,value>
pairs whose key is an item a; € I and whose value is a frequent pattern A (with
supp(A) > £) that contains that item.

< item, pattern >

The above purpose is achieved by the following Map and Reduce functions. growth()
mines the FP-tree that has been created by the group-dependent transaction database,
so as to discover frequent patterns. The frequent patterns that are generated by
ParallelFPGrowthReducer are stored in a MaxHeap data structure. k denotes the
maximum number of frequent patterns that are included in each MaxHeap and is pro-
vided as an input parameter for the FrequentPatternGrowth algorithm.

ParallelFPGrowthMapper.map(String key, Transaction value):
gMap = new HashMap(gList)
List<Item> itemList = tokenizeTransaction(value)
itemList.sortBySupport (fList)
for (i=itemList.size(); i > 0 ; i--):
item = itemList (i)

150

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

if (gMap.containsKey(item)):
groupld = gMap(item)
gMap.deleteAllValues(groupId)
transaction = new Transaction(sublist(itemList,1,i))
output (groupId,transaction)

ParallelFPGrowthReducer.reduce(String key, List<Transaction> values):
localFList = new FList()
itemSet = new Set<String>
for (value : values):
itemSet = tokenizeTransaction(value)
for (item : itemSet):
localFList.updateFList (item)
itemSet.add(item)
values.deleteInfrequentItems (fList)
localFPTree = new FPTree()
for (value : values):
localFPTree.addPattern(value)
k = getPatternMaxHeapSize ()
for (item : itemSet):
topKPatternHeap = growth(localFPTree,item,minSupport,k)
output (item, topKPatternHeap)

The Aggregator job processes the output that has been provided by ParallelFPGrowth
and merges them in order to output <key,value> pairs which contain all the frequent
patterns that contain a specific item. The frequent patterns that are generated by
AggregatorReducer are stored in a MaxHeap data structure. k denotes the maximum
number of frequent patterns that are included in each MaxHeap and is provided as an
input parameter for the FrequentPatternGrowth algorithm. The above purpose is
achieved by the following Map and Reduce functions.

Aggregator.map(String key, MaxHeap<Item> value):
output (key,value)

Aggregator.reduce(String key, List<MaxHeap<Item>> values):
topKPatternMaxHeap = new MaxHeap<Item>()
k = getPatternMaxHeapSize()
for (value : values):
topKPatternMaxHeap .merge (value,k)
output (key, topKPatternMaxHeap)

7.4.2 Application Execution and Input Files

We use three different input files for the Frequent Pattern Growth application, whose
size is 4 MB, 34 MB and 377 MB. Those input files are provided by DC Bench. Each

line of these files contains a transaction present in the transaction database as follows.

ageo@mitsos:~/HVCBench-hadoop/basedata$ cat fpg-accidents.dat
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

151

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

30 31 32

33 34 35

36 37 38 39 40 41 42 43 44 45 46

38 39 47 48

38 39 48 49 50 51 52 53 54 55 56 57 58
32 41 59 60 61 62

3 39 48

63 64 65 66 67 68

32 69

DC Bench also provides a script called prepare-fpg.sh, which receives the desired
input size as an input and uploads the corresponding file to HDFS. The code of this
script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/associationrulemining/
kmeans$./prepare-fpg.sh low

ageo@mitsos:~/hadoop-0.20.2$
bin/hadoop dfs -1lsr /cloudrank-data/fpg*

“IW-r—-r-- 1 ageo supergroup 4167490 2015-03-30 10:46
/cloudrank-data/fpg-accidents.dat

In order to run the Frequent Pattern Growth benchmark, the run-fpg.sh script,
which is provided by DCBench has to be executed. This script receives the size of
the input file that contains the transaction database as a command line argument
and searches in HDF'S for the input file with this specific size that was uploaded by
prepare-fpg.sh. The code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/associationrulemining/fpg$
./run-fpg.sh high

15/04/01 01:14:37 INFO mapred.JobClient:
Running job: job_201503312203_0001

15/04/01 01:14:38 INFO mapred.JobClient: map 0% reduce 0%

15/04/01 01:42:37 INFO mapred.JobClient: map 100% reduce 100%
15/04/01 01:43:21 INFO mapred.JobClient: Job complete:
job_201503312203_0001

15/04/01 01:47:14 INFO mapred.JobClient: Running job:
job_201503312203_0002
156/04/01 01:47:15 INFO mapred.JobClient: map 0% reduce 0%

156/04/01 02:05:52 INFO mapred.JobClient: map 100% reduce 100%
15/04/01 02:07:02 INFO mapred.JobClient: Job complete:
job_201503312203_0002

15/04/01 02:09:28 INFO mapred.JobClient:Running job:
job_201503312203_0003

152

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

15/04/01 02:09:29 INFO mapred.JobClient: map 0% reduce 0%

156/04/01 02:25:23 INFO mapred.JobClient: map 100% reduce 100%
15/04/01 02:26:02 INFO mapred.JobClient: Job complete:
job_201503312203_0003

15/04/01 02:26:02 INFO driver.MahoutDriver:
Program took 4353692 ms (Minutes: 72.56153333333333)

7.4.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Frequent Pattern Growth application, in terms of input size, when it runs on the
Intel SCC. We have executed the application with three different input files, whose
size is 4 MB, 34 MB and 377 MB as mentioned above. We have utilized the 48-Node
Cluster Topology for this analysis and have configured both the DataNodes and the
TaskTrackers to operate at the maximum frequency of 800 MHz. The experimental
results we have received regarding the execution time and the energy consumption of
the Frequent Pattern Growth application are presented below. Detailed plots that
illustrate the CPU utilization and the network traffic for one DataNode and one Task-
Tracker as well as the overall power consumption and board temperature of the Intel
SCC, for each run, are included in Appendix B4.

Execution Time mmm— Energy Consumption

110 350
325
300
275

72.56 29517 250
IS 61.63 60.75 198.11 25
200
175
150
40 125
30 100
75
50
10 25

100 299.33
90
80

60
50

Execution Time (Minutes)
Energy Consumption (Joules)

20

4MB 34 MB 377 MB 4MB 34 MB 377 MB

Input Size

Figure 7.40: Frequent Pattern Growth Input Size Scalability Analysis (1/2)

Our experimental results point out that the execution time of the Frequent Pattern
Growth application scales up only when the 377 MB input file is executed, while the
execution time of the 4 MB and 34 MB input files is almost the same. The reason for
that is that the 4 MB file is stored in one InputSplit in HDFS and as a consequence
1 Map task is issued for the ParallelCounting and ParallelFPGrowth jobs, while
the 34 MB input file is stored in 12 InputSplits and 12 Map tasks are issued for the
first two jobs. As a result, since the 4 MB and 34 MB input files do not fully leverage
the parallelism that is provided by the underlying HDFS cluster, the execution time
of the application is almost the same for these two cases. The 377 MB file is stored

153

Workload Characterization of Big Data

Diploma Thesis Applications on the Intel SCC
Energy Delay Product mmmmm
24000
21719
E 20000
8
2 16000
g 13679
= 12210
g 12000
£
E‘ 8000
8
S 4000
&
o]
4MB 34 MB 377 MB

Input Size

Figure 7.41: Frequent Pattern Growth Input Size Scalability Analysis (2/2)

in 95 InputSplits, causing at least 95 Map tasks to be issued, which are more than
the number of the TaskTracker nodes, thus leading to an increase in execution time
compared to the first two cases.

In addition, it has to be mentioned that the energy consumption of the application
execution with the 34 MB input file is higher compared to the one of the execution
with the 4 MB input file. The reason for that is that the higher number of issued
Map tasks result in higher overall CPU utilization of the platform, thus increasing the
power consumption that the application is charged with, resulting in a higher overall
energy consumption for this case.

In the 4 MB input file case, only 1 Map task is issued in ParallelCounting and
ParallelFPGrowth jobs, which is not evident in the diagram we have provided in the
Appendix. Figure 7.42 depicts the execution of the setup Map tasks for ParallelCounting,
ParallelFPGrowth and Aggregaton on the Intel SCC cores rck17, rck27 and rck45 re-
spectively and the execution of the only Map task for ParallelCounting and Parallel
FPGrowth on Intel SCC cores rck08 and rck07 respectively.

It also has to be mentioned, that the period of high percentage of CPU idle cycles
because of outstanding I/O and increased outgoing network traffic is also present in
the Frequent Pattern Growth application, since the mahout-examples-0.6-job. jar
is distributed and expanded by all TaskTracker nodes in this case as well. In this case,
this period is observed at the beginning of the Map phase, for nodes where Map tasks
were executed and in the beginning of the Reduce phase, for nodes that did not execute
Map tasks. In addition, it is evident in Figure 7.42 that this behavior is much more
intense during the Reduce phase of ParallelCounting and ParallelFPGrowth and
during the Map phase of Aggregation, because more nodes are attempting to expand
their jar file, leading in higher I/O bandwidth contention and a higher percentage of
wasted CPU cycles.

154

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

R Ltizaton

w1200 02000 300 04800 5200 005600

U Ltizaton

w1200 " 04800

cru L zatn

-

10000

U Ltizaton

o
000000 00100 0200 1200 » 04800

Fraquent Pattom Growth - CPU Utizaton
Input S2e 1 1B, 48 cores act

R Ltizaton

o
00000 0400 w1200 02000 300 ” ” 04800 5200 005600

Figure 7.42: CPU Utilization Plots for the Frequent Pattern Growth Application

155

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

7.4.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Frequent Pattern
Growth application when it is executed on top of different HDFS cluster topologies
on the Intel SCC. For this study, we have used the 4 MB input file which is provided
by DCBench. We have configured both the DataNodes and the TaskTrackers of each
cluster topology to operate at the maximum frequency of 800 MHz. The idle nodes of
each topology (if any) operate at the minimum frequency of 100 MHz. gmond is not
active on those nodes as well. The experimental results we have received regarding
the execution time and the energy consumption of the Frequent Pattern Growth ap-
plication are presented below. Detailed plots are included in Appendix B4, as in the
previous case.

Execution Time Energy Consumption

90 250

80 225
202.84 19811 o0

0 64.64 61.63
175

60
150
50 130,39

39.46 109.14 125

40
100

30
75

Execution Time (Minutes)
S
o
@
Energy Consumption (Joules)

20 50

10 25

16-Node 24-Node 32-Nocde 48-Node 16-Node 24-Node 32-Node 48-Node

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster ~ Cluster

Topology

Figure 7.43: Frequent Pattern Growth Cluster Topology Analysis (1/2)

Energy Delay Product s

15000

13112

12500 12210
10000
7500
5749
5000 4307
2500 I
o]

16-Node 24-Node 32-Node 48-Node
Cluster Cluster Cluster Cluster

Energy Delay Preduct (Joules * Seconds)

Cluster Topology

Figure 7.44: Frequent Pattern Growth Cluster Topology Analysis (2/2)

Our experimental results illustrate that similar to the K-Means Clustering applica-
tion, since the application for the given input file does not fully utilize the parallelism
that is offered by the underlying HDF'S cluster completes faster and with a lower en-
ergy consumption when it is executed on top of the 16-Node cluster topology.

156

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

One significant difference between these two applications, regards the Reduce phase
of all three MapReduce jobs of the Frequent Pattern Growth application. Since the
numGroups parameter of the application is set to 1000, all Reduce tasks of the three
MapReduce jobs receive intermediate <key,value> pairs. As a consequence, the load
of the Reduce tasks increases for cluster topologies with less TaskTracker nodes. How-
ever, this increased load is mitigated by the absence of a high percentage of idle CPU cy-
cles because of outstanding I/O during the period when the mahout-examples-0.6-job
.jar is distributed and expanded in all TaskTracker nodes of the cluster, resulting in
lower execution time and energy consumption for cluster topologies that employ less
Intel SCC cores.

7.4.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Frequent Pattern Growth application on the Intel SCC.
We have tested the input file which has a size of 4 MB in the 48-Node Cluster topology
for nine frequency settings. We have configured the DataNodes and Master Node and
the TaskTrackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency
setting represents one combination of those values. The experimental results we have
received regarding the execution time and the energy consumption of the Frequent
Pattern Growth application are presented below. Detailed plots are included in Ap-
pendix B4, as in the previous case.

0253
77777

23372
zzzzz .
101,95 198.11

DN200 DN200 DN200 DNS33 DN533 DNS33 DN80O DNBOD DNBOD DN200 DN200 DN200 DN533 DN533 DN533 DN80O DN8OD DNBOO
TT200 TT533 TT800 TT200 TT533 TT800 TT200 TT533 TT800 Frequency Setting TT200 TT533 TT800 TT200 TT533 TT800 TT200 TT533 TT800

Figure 7.45: Frequent Pattern Growth Frequency Scaling Analysis (1/2)

Energy Delay Product s

40000

35000

Energy Delay Product (Joules * Seconds)

5000

Figure 7.46: Frequent Pattern Growth Frequency Scaling Analysis (2/2)

Similar to the previous applications, the execution time and the energy consumption

157

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

of the Frequent Pattern Growth application appears to be driven primarily by the
frequency of the TaskTracker nodes. The frequency of the DataNodes seems to have
a negligible impact in some cases, since increasing the DataNodes frequency seems to
slightly reduce the execution time and the energy consumption of the application for
a given frequency for the TaskTracker nodes.

As a consequence, scaling down the frequency of the DataNodes does not impair the
performance of the application by increasing its execution time and additionally yields
energy consumption saving benefits. Like in all other application the DN200-TT800
setting is optimal if both performance and energy consumption are taken into account.
Energy consumption savings would have been more significant in this case as well if
the Intel SCC architecture allowed us to perform voltage scaling at a finer granularity,
enabling us to scale down the voltage of the DataNodes that operate at 200 MHz.

7.4.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.47-7.52) for the CPU utilization of
all cluster nodes, when the Frequent Pattern Growth application is executed with
the input file of 34 MB, on the 48-Node HDFS cluster topology and with the DataN-
odes and the TaskTrackers configured to operate at 800 MHz. The conclusions that
were presented in the previous sections are corroborated by the following plots.

The cluster utilization figures clearly point out that 12 Map tasks was executed for each
ParallelCounting and ParallelFPGrowth MapReduce jobs, plus one set up Map task
during their initialization phase. In addition, it is also evident for the first two MapRe-
duce jobs that the percentage of idle CPU cycles due to outstanding 1/0O for a specific
is higher when it takes place during the Reduce phase of each job, because of the
fact that more cluster nodes attempt to expand the mahout-examples-0.6-job.jar
at that time resulting to higher I/O bandwidth saturation. On the contrary, during
the Aggregation phase of the Frequent Pattern Growth application, this behavior
is observed only during the Map phase, since more than 32 Map tasks are issued for
this MapReduce job, since it processes the intermediate results that were generated by
ParallelFPGrowth.

158

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

=

T AT

i

Figure 7.47: Frequent Pattern Growth Overall Cluster Utilization (1/6)
159

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Figure 7.48: Frequent Pattern Growth Overall Cluster Utilization (2/6)
160

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Froquen: Patten Growh -CPU Utlization

Figure 7.49: Frequent Pattern Growth Overall Cluster Utilization (3/6)
161

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

l

lv" . ‘IW'VVFlFl‘IY’"VFYIIF“ ,\‘"WF"]

3200 0340 05000 30 010000 010200

Figure 7.50: Frequent Pattern Growth Overall Cluster Utilization (4/6)
162

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Frgon: e, St CPU Uizsion
48 cores

@400 000800 000830 001090 001200 V1400 001500 (01500 (02000 (02200 (02400 (02500 (0280) DI DI V30D W30 (0 . = = s = 5900 010D0D 010200
st Cot -G tston tine
o S5 54 1B 4 cres
Datatiodes 1 00 M, mwmk.mmmw,
TekTracke o

0000 00200 00400 0DOEID DB GHIDD GNI20D WAL (GIECO OIS0 002000 V2200 W40 WD) 0D WM VI 030 000 B0 A0 WA WA (WAIO 00450 005000 005200 WD
oot estn Gt GRU Ulzsion

[— [— ‘ [— [—— ; Jr——— Jree——

o
ODOCHD 020D 0D 000500 00000 001000 001200 ODISCO O0IGC0 GE0D (02000 (02200 (02400 (02000 (020D D00 WI200 WI0D WIB D00 M4000 V4200 V440 004OC0 DI4B00 DOFD 00F00 MSHD WBEOD WBEO) OLOIGD 01020

Foagen: e Gt GPU Usion Tine
Input S 3¢ 15, 48 ores:
Datatiodes HmMNrYukYmck»;mmeHr

et —

st Gt 07U tston e
mpux Si20 3 115, 40
O 80 i TnkYmkyx aoms

o
st Gt -G Utston e
o S5 54 1B 4 cres
Datatiodes 1 00 M, mwmk.mmmw,
TekTracke o

00%0 00200 020400 C00GHD 00800 (V0. GLAZ0D ODAG0 0AG00 OIS0 CDZO0D (U200 2400 DO26WD (200 C0ID0 CUI00 W0 G OFCD 004000 CUAZ00 COMCO (EAGCD GBSCD 003000 (05200 OSAD0 COSH00 WSRO GLOVCD CLOZ00
Foagen: e Gt GPU Usion

I S 34 18, 4 cres
Datatiodes HmMNrYukYmck»;mmeHr

oo 00260 D000 DI0FID DI GKIDI GHIZ0D GGALG) MIGEO 001500 002000 002200 24D WD W2B0) WM VA0 D0 00 00O VA0 WAZD WM WA (M4SC0 (V000 05200 W WHH WHO) CLNCY G020
ot et o - GPU Ulesion g

CataNoge 5 50 s, Tk T 800 MH
TkTrscuer i

prs—— pre——
CPULser —

i —

3

Figure 7.51: Frequent Pattern Growth Overall Cluster Utilization (5/6)
163

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

Froquen: Patten Growh -CPU Utlization
Topu s
fodea st

Figure 7.52: Frequent Pattern Growth Overall Cluster Utilization (6/6)
164

Chapter 8

Thesis Conclusion

This chapter concludes the findings that are provided by this diploma thesis and
presents suggestions for future work.

8.1 General Remarks

This thesis studied the runtime behavior of Big Data applications that have been im-
plemented with the MapReduce framework on top of HDF'S clusters that were deployed
on the Intel SCC cores. The experimental results that we collected by executing those
applications helped us draw meaningful conclusions regarding the execution of these
scale-out workloads on Intel SCC hardware. Our analysis focused on the scalability
of those applications in terms of input size, their ability to leverage the parallelism
offered by different HDF'S cluster topology organizations and the impact of frequency
perturbations on the application performance and the energy consumption.

Our analysis illustrated that the execution time and the energy consumption of the Big
Data workloads we studied scaled linearly with the input size increase. An exception
to that rule is the case when the size of application input files is too small to fully
leverage the parallelism offered by the platform, such as the input files of the K-Means
Clustering application for instance. In addition, our investigation regarding differ-
ent HDF'S cluster topology organizations poses the trade-off between the number of
available TaskTracker nodes and the per-node available I/O bandwidth. This trade-
off is the key of understanding the optimal cluster topology for each application and
input file size. In addition, our results suggest that increasing the number of DataN-
odes of a cluster topology while keeping the number of TaskTrackers constant does
not improve application performance and aggravates energy consumption because the
cluster is charged with higher power consumption. Finally, our experimental results
clearly point out that scaling down the frequency of the Intel SCC cores which host
the DataNode HDFS daemons to 200 MHz does not impair application performance
and can yield performance saving benefits, due the lower platform power consumption.

Finally, it has to be stated that the Intel SCC hardware and platform architecture

165

Workload Characterization of Big Data
Diploma Thesis Applications on the Intel SCC

introduces grave limitations regarding the deployment of HDFS clusters and the exe-
cution of MapReduce jobs. Firstly, the very low amount of private memory per Intel
SCC core (~ 640 MB) allowed us to configure a maximum of 128 MB for the Java Heap
Space of the Child JVMs which execute the Map and Reduce tasks. As a consequence,
a significant percentage of CPU cycles was wasted for garbage collection, so that the
application can respect that constraint. In addition, the available I/O bandwidth of-
fered by the Memory Controllers cannot satisfy concurrent I/0O requests from all Intel
SCC cores, causing them to stall thus deteriorating application performance. Specif-
ically, we have found out that increasing the number of requesting cores from 16 to
32 (24-Node and 32-Node cluster topologies vs 48-Node cluster topology) increases the
I/O bandwidth saturation significantly resulting in a higher percentage of idle cycles
due to outstanding I/O. Moreover, the frequent failure of cores during the presence of
high I/O and low free memory made it necessary for us to implement a node failover
mechanism.

8.2 Future Work

This section presents propositions for future work that can be inspired by the exper-
imental results and the conclusions that have been provided by this thesis. Future
investigation and research could be focused on two diverse areas, tackling the Intel
SCC platform limitations and inefficiencies so as to meet the hardware requirements
of scale-out workloads and the development of a power-aware MapReduce framework,
based on our findings.

In order to achieve more efficient and performant execution of MapReduce applica-
tions on the Intel SCC, the issue of low per-core private memory has to be addressed.
We expect that Intel SCC boards configured with 64 GB of main memory, instead
of the 32 GB configuration in our case would yield significant improvements in terms
of application performance, since this would enable us to configure the MapReduce
framework with a higher amount of Java Heap Space for the Child JVMs. The whole
extra 640 MB of private memory for each core would be available for the application
user space, enabling as to configure a maximum heap size of 512 MB or even 768 MB,
which could result in tremendous performance improvements. If the expansion of the
Intel SCC memory is not possible an alternative would be to change the system mem-
ory map, assigning the whole memory to 24 cores for instance. This approach would
double the per-core available private memory but would also yield half of the Intel SCC
cores unusable. Another research proposition could be the development of a hypervi-
sor which would enable the Intel SCC Linux to be booted on top of 2 or 4 Intel SCC
cores. The purpose of this approach would be to reduce the percentage of the plat-
form memory being used by the OS, in order to make more memory available for the
application user space while being able to leverage all the cores of the Intel SCC board.

Finally, our conclusions regarding the frequency scaling analysis of MapReduce appli-
cations that run on top of HDF'S clusters clearly point out that energy consumption can

166

Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

be reduced significantly if the operating frequency of cluster nodes with low CPU uti-
lization is scaled down. This conclusion could lead to the development of a power-aware
version of MapReduce, which would dynamically scale down the operating frequency
(and voltage if possible) of slave nodes that do not execute any Map or Reduce task at
the time, based on the information held by the JobTracker regarding the application
execution. Our proposition is that when a Map or Reduce task is issued for a slave
node by the JobTracker, then this node should transition to a high-power state, with a
higher operating frequency and when all Map and Reduce tasks that are executed on
this node are completed, then the node should transition to a power-saving state with
a lower or minimum operating frequency (and voltage if possible).

167

Bibliography

[1] Dhruba Borthakur. The Hadoop Distributed File System : Architecture and Design.
The Apache Software Foundation, 2007

[2] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. The Google File System.
Google, 2003

[3] MapReduce Tutorial. The Apache Software Foundation, 2003

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Google, 2004

[5] Jacob Leverich, Christos Kozyrakis. On the Energy (In)efficiency of Hadoop Clus-
ters. Computer Systems Laboratory, Stanford University

[6] The SCC Platform Overview. Intel Labs, 2012
(7] The SCC Programmer’s Guide. Intel Labs, 2012
[8] SCC External Architecture Specification (EAS). Intel Labs, 2010

[9] Matt Massie, Bernard Li, Brad Nichols and Vladimir Vuksan. Monitoring with
Ganglia. O’Reilly, 2013

[10] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki and Babak Falsafi. Clearing the Clouds. A Study of Emerging Scale-out Work-
loads on Modern Hardware. CALCM, Carnegie Melon University. Eco Cloud, Ecole
Polytechnique Federale de Lausanne, 2012

[11] Pejman lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur KocBer-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer and
Babak Falsafi. Scale-Out Processors. EcoCloud, EPFL. CALCM, Carnegie Mellon.
ARM, 2012

[12] Nikos Hardavellas, Michael Ferdman, Anastasia Ailamaki, and Babak Falsafi. To-
ward Dark Silicon in Servers. IEEE Micro, 2011

[13] Mark Horowitz, Elad Alon, Dinesh Patil, Samuel Naffziger, Rajesh Kumar, and
Kerry Bernstein. Scaling, power, and the future of CMOS. Electron Devices Meet-
ing, 2005. IEDM Technical Digest. IEEE International, December 2005

169

Diploma Thesis Bibliography

[14] Google Data Centers. http://www.google.com/intl/en/corporate/datacenter/
[15] Open Compute Project. http://opencompute.org/

[16] B. Wheeler. Tilera sees opening in clouds. Microprocessor Report, 2011

[17] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt. Under-

standing and designing new server architectures for emerging warehouse-computing
environments. International Symposium on Computer Architecture, 2008

[18] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Falsafi.
Database servers on chip multiprocessors: limitations and opportunities. Conference
on Innovative Data Systems Research, 2007

[19] Philip Gschwandtner, Thomas Fahringer, Radu Prodan. Performance Analysis
and Benchmarking of the Intel SCC. University of Innsbruck, 2011

[20] John-Nicholas Furst, Ayse K. Coskun. Performance and Power Analysis of RCCE
Message Passing on the Intel Single-Chip Cloud Computer. Boston University.

[21] John Matienzo, Natalie Enright Jerger. Performance Analysis of Broadcasting
Algorithms on the Intel Single-Chip Cloud Computer. University of Toronto.

[22] Andrea Bartolini, Mohammad Sadegh Sadri, John-Nicholas Furst, Ayse Kivilcim
Coskun and Luca Benini. Quantifying the Impact of Frequency Scaling on the En-
ergy Efficiency of the Single-Chip Cloud Computer. Boston University, 2012

(23] R. Van Der Wijngaart and H. Jin. NAS Parallel Benchmarks, MultiZone Versions.
NASA Ames Research Center, 2003

[24] V. Springel. The cosmological simulation code gadget-2. MonthlyNotices of the
Royal Astronomical Society, vol. 364, no. 4, pp. 11051134, 2005.

[25] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 1925, Dec. 1995.

[26] Jan-Arne Sobania, Peter Troger. Gentoo Linux on Intel SCC. Operating Systems
and Middleware Group, IT Systems Engineering, University Potsdam, 2010
https://www.dcl.hpi.uni-potsdam.de/research/scc/gentoo.htm

[27] Cloudsuite, a benchmark suite for scale-out applications. Parallel Systems Archi-
tecture Lab, EPFL. http://parsa.epfl.ch/cloudsuite/cloudsuite.html

28] DC Bench, a Benchmark Suite for Data Center Workloads. ICT, Chinese
Academy of Sciences. http://prof.ict.ac.cn/DCBench/

[29] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schiitze. Introduction to
Information Retrieval. Cambridge University Press, 2008

170

Bibliography Diploma Thesis

[30] Jason D.M. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger. Tackling the

Poor Assumptions of Naive Bayes Text Classifiers. Artificial Intelligence Labora-
tory, MIT, 2003

[31] Weizhong Zhao, Huifang Ma, Qing He. Parallel K-Means Clustering Based on
MapReduce. The Key Laboratory of Intelligent Information Processing, Institute
of Compution Technology, Chinese Academy of Sciences. Graduate University of
Chinese Academy of Sciences, 2009

[32] Florian Verhein. Frequent Pattern Growth (FP-Growth) Algorithm. An In-
troduction. School of Information Technologies, The University of Syd-
ney, Australia, 2008. http://www.florian.verhein.com/teaching/2008-01-09/
fp-growth-presentation_v1%20 (handout) .pdf

[33] Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Al-
gorithm. http://en.wikibooks.org/wiki/Data Mining Algorithms_In R/
Frequent_Pattern Mining/The FP-Growth_Algorithm

[34] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward Chang. PFP: Parallel
FP-Growth for Query Recommendation. Google Beijing Research. Dept. Computer
Science, Peking University. Google Research, Mountain View

171

Appendix A

Code Samples

A.1 hadoop-topology.sh

if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["1
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then

echo "/rack03";

= "192.168.0.1"
"/rackO1";
= "192.168.0.2"
"/rackO1";
= "192.168.0.3"
"/rackO1";
= "192.168.0.4"
"/rackO1";
= "192.168.0.5"
"/rack02";
= "192.168.0.6"
"/rack03";
= "192.168.0.7"
"/rack02";
= "192.168.0.8"

173

Diploma Thesis

Code Samples

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then

= "192.168.

"/rack02";

= "192.168.

"/rack03";

= "192.168.

"/rack02";

= "192.168.

"/rack03";

= "192.168.

"/rack04";

= "192.168.

"/rack05";

= "192.168.

"/rack04";

= "192.168.

"/rack05";

= "192.168.

"/rack04";

= "192.168.

"/rack05";

= "192.168.

"/rack06";

= "192.168.

.gn]

.10"

11t

L12"

.13"

.14"

.15"

.1e"

AT

.18"

.19"

.20"

174

Code Samples

Diploma Thesis

echo

fi

if ["$1"

then
echo

fi

if ["$1v

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["1

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

then
echo

fi

if ["$1"

"/rack07";

= "192.168.

"/rack06";

= "192.168.

"/rack07";

= "192.168.

"/rack06";

= "192.168.

"/rack07";

= "192.168.

"/rack08";

= "192.168.

"/rack09";

= "192.168.

"/rack08";

= "192.168.

"/rack09";

= "192.168.

"/rack08";

= "192.168.

"/rack09";

= "192.168.

"/rack10";

= "192.168.

21"

.22"

.23"

.24"

.25"

.26"

27"

.28"

.29"

.30"

.31"

.32"

175

Diploma Thesis

Code Samples

then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1"
then
echo
fi
if ["$1v
then
echo
fi
if ["$1"
then
echo
fi

"/rackl1l";

= "192.168.

"/rack10";

= "192.168.

"/rackll";

= "192.168.

"/rack10";

= "192.168.

"/rackl1l";

= "192.168.

"/rackl2";

= "192.168.

"/rackl13";

= "192.168.

"/rackl2";

= "192.168.

"/rack13";

= "192.168.

"/rackl12";

= "192.168.

"/rack13";

= "192.168.

"/rack14";

.33"

.34"

.35"

.36"

.37

.38"

.39"

.40"

41"

.42"

.43"

176

Code Samples

Diploma Thesis

if ["$1" = "192.168.0.44"
then

echo "/rack15";
fi
if ["$1" = "192.168.0.45"
then

echo "/rackl4";
fi
if ["$1" = "192.168.0.46"
then

echo "/racklb";
fi
if ["$1" = "192.168.0.47"
then

echo "/rackl4";
fi
if ["$1" = "192.168.0.48"
then

echo "/rackl5";
fi

177

Diploma Thesis Code Samples

A.2 watchdog-datanode-200.sh

while true

do
i=$1
if ["$i" -1t 10 1]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then

echo "WATCHDOG : REBOOTING DATANODE rck0"$ij;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 200;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;
else
CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rckO0"$i;
BOOT="$(sccBoot -1 $i)";

echo "$B0OOT";
IFS=’ 73
TOKENS=($BOOT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$ (sccBoot -1 $i);
echo "$B0OOT";
IFS=’ ’;

TOKENS=($BOOT);
done

178

Code Samples Diploma Thesis

sleep 200;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;
fi
fi
else
PING="$(ping -c 1 rck$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then
echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=> ’;
TOKENS=($B0OOT);
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ ’;
TOKENS=($BOOT) ;
done
sleep 200;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 600;
else
CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OOT) ;
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";

179

Diploma Thesis Code Samples

IFS=> ’;

TOKENS=($B0OOT) ;
done
sleep 200;

ssh root@rck$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 600;
fi
fi

fi

sleep 30

done

180

Code Samples Diploma Thesis

A.3 watchdog-datanode-533.sh

while true

do
i=$1
if ["$i" -1t 10 1]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then

echo "WATCHDOG : REBOOTING DATANODE rck0"$ij;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 75;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;
else
CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rckO0"$i;
BOOT="$(sccBoot -1 $i)";

echo "$B0OOT";
IFS=’ 73
TOKENS=($BOOT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$ (sccBoot -1 $i);
echo "$B0OOT";
IFS=’ ’;

TOKENS=($BOOT);
done

181

Diploma Thesis Code Samples

sleep 75;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;
fi
fi
else
PING="$(ping -c 1 rck$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then
echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=> ’;
TOKENS=($B0OOT);
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ ’;
TOKENS=($BOOT) ;
done
sleep 75;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 225;
else
CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OOT) ;
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";

182

Code Samples Diploma Thesis

IFS=’ 7
TOKENS=($BOOT);
done
sleep 75;
ssh root@rck$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 225;
fi
fi

fi

sleep 30

done

183

Diploma Thesis Code Samples

A.4 watchdog-datanode-800.sh

while true

do
i=$1
if ["$i" -1t 10 1]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then

echo "WATCHDOG : REBOOTING DATANODE rck0"$ij;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 50;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;
else
CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rckO0"$i;
BOOT="$(sccBoot -1 $i)";

echo "$B0OOT";
IFS=’ 73
TOKENS=($BOOT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$ (sccBoot -1 $i);
echo "$B0OOT";
IFS=’ ’;

TOKENS=($BOOT);
done

184

Code Samples Diploma Thesis

sleep 50;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;
fi
fi
else
PING="$(ping -c 1 rck$i)";
IFS=’,’;
TOKENS=($PING);
if [${TOKENS[1]} !'= " 1 received"]
then
echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=> ’;
TOKENS=($B0OOT);
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ ’;
TOKENS=($BOOT) ;
done
sleep 50;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 150;
else
CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010°)";
if ["${CHECK_SOCKET}" = ""]
then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OOT) ;
while ["${TOKENS[0]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";

185

Diploma Thesis Code Samples

IFS=’ 7
TOKENS=($BOOT);
done
sleep 50;
ssh root@rck$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
sleep 150;
fi
fi

fi

sleep 30

done

186

Code Samples Diploma Thesis

A.5 watchdog-tasktracker-200.sh
while true
do
i=$1
if ["$i" -1t 10]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,";
TOKENS=($PING);
if [${TOKENS[1]} != " 1 received"]
then

fi
else

echo "WATCHDOG : REBOOTING TASKTRACKER rckO0"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 200;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=($PING)

if [${TOKENS[1]} !'= " 1 received"]

then
echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ 7,

187

Diploma Thesis Code Samples

TOKENS=($BOOT) ;
done
sleep 200;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
fi
fi
sleep 30
done

188

Code Samples Diploma Thesis

A.6 watchdog-tasktracker-533.sh
while true
do
i=$1
if ["$i" -1t 10]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,";
TOKENS=($PING);
if [${TOKENS[1]} != " 1 received"]
then

fi
else

echo "WATCHDOG : REBOOTING TASKTRACKER rckO0"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 75;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=($PING)

if [${TOKENS[1]} !'= " 1 received"]

then
echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ 7,

189

Diploma Thesis Code Samples

TOKENS=($BOOT) ;
done
sleep 75;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
fi
fi
sleep 30
done

190

Code Samples Diploma Thesis

A.7 watchdog-tasktracker-800.sh
while true
do
i=$1
if ["$i" -1t 10]
then
PING="$(ping -c 1 rck0$i)";
IFS=’,";
TOKENS=($PING);
if [${TOKENS[1]} != " 1 received"]
then

fi
else

echo "WATCHDOG : REBOOTING TASKTRACKER rckO0"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’> 7;
TOKENS=($BOOT);
while ["${TOKENS[0O]}" = "ERROR:"]
do
sleep 10;
BO0OT=$ (sccBoot -1 $i);
echo "$BOOT";
IFS=’ ?;
TOKENS=($BOOT) ;
done
sleep 50;
ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";
ssh -p 1234 root@rck0$i "gmond";
ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=($PING)

if [${TOKENS[1]} !'= " 1 received"]

then
echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;
BOOT="$(sccBoot -1 $i)";
echo "$BOOT";
IFS=’ 7;
TOKENS=($B0OT);
while ["${TOKENS[O]}" = "ERROR:"]
do
sleep 10;
BOOT=$(sccBoot -1 $i);
echo "$BOOT";
IFS=’ 7,

191

Diploma Thesis Code Samples

TOKENS=($BOOT) ;
done
sleep 50;
ssh root@rck$i "/shared/ageo/rck$i/start.sh";
ssh -p 1234 root@rck$i "gmond";
ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh
--config /home/ageo/hadoop-0.20.2/conf-local"
fi
fi
sleep 30
done

192

Code Samples Diploma Thesis

A.8 gmond.conf for the MCPC

/* This configuration is as close to 2.5.x default behavior as possible

The values closely match ./gmond/metric.h definitions in 2.5.x */
globals {

daemonize = yes

setuid = yes

user = ganglia

debug_level = 0

max_udp_msg_len = 1472

mute = yes

deaf = no

host_dmax = 0 /*secs */

cleanup_threshold = 300 /*secs */

gexec = no

send_metadata_interval = 0O

/* If a cluster attribute is specified, then all gmond hosts are wrapped inside
* of a <CLUSTER> tag. If you do not specify a cluster tag, then all <HOSTS> will
* NOT be wrapped inside of a <CLUSTER> tag. */
cluster {
name = "MARC"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"

/* The host section describes attributes of the host, like the location */
host {
location = "unspecified"

}

/* You can specify as many udp_recv_channels as you like as well. %/
udp_recv_channel {

port = 8649
b

/* You can specify as many tcp_accept_channels as you like to share
an xml description of the state of the cluster */
tcp_accept_channel {
port = 8649
b

/* Each metrics module that is referenced by gmond must be specified and
loaded. If the module has been statically linked with gmond, it does not
require a load path. However all dynamically loadable modules must include
a load path. */

193

Diploma Thesis Code Samples

modules {

module {

name = "core_metrics"
}
module {

name = "cpu_module"

path = "/usr/lib/ganglia/modcpu.so"
}
module {

name = "disk_module"

path = "/usr/lib/ganglia/moddisk.so"
}
module {

name = "load_module"

path = "/usr/lib/ganglia/modload.so"
}
module {

name = "mem_module"

path = "/usr/lib/ganglia/modmem.so"
}
module {

name = "net_module"

path = "/usr/lib/ganglia/modnet.so"
}
module {

name = "proc_module"

path = "/usr/lib/ganglia/modproc.so"
}
module {

name = "sys_module"

path = "/usr/lib/ganglia/modsys.so"
}

}

include (’/etc/ganglia/conf.d/*.conf’)

194

Code Samples Diploma Thesis

A.9 gmond.conf for an Intel SCC Core

/* This configuration is as close to 2.5.x default behavior as possible
The values closely match ./gmond/metric.h definitions in 2.5.x */
globals {
daemonize = yes
setuid = yes
user = nobody
debug_level = 0
max_udp_msg_len = 1472
mute = no
deaf = yes
allow_extra_data = yes
host_dmax = 0 /*secs */
cleanup_threshold = 300 /*secs */
gexec = no
send_metadata_interval = 0
3
/*
* The cluster attributes specified will be used as part of the <CLUSTER>
* tag that will wrap all hosts collected by this instance.
*/
cluster {
name = "MARC"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"

/* The host section describes attributes of the host, like the location */
host {
location = "unspecified"

}

/* Feel free to specify as many udp_send_channels as you like. Gmond
used to only support having a single channel */
udp_send_channel {
host = 192.168.3.254
port = 8649
ttl =1

/* Each metrics module that is referenced by gmond must be specified and
loaded. If the module has been statically linked with gmond, it does
not require a load path. However all dynamically loadable modules must
include a load path. */

modules {

module {

195

Diploma Thesis

Code Samples

name = "core_metrics"
}
module {
name = "cpu_module"
path = "modcpu.so"
}
module {
name = "disk_module"
path = "moddisk.so"
}
module {
name = "load_module"
path = "modload.so"
}
module {
name = "mem_module"
path = "modmem.so"
X
module {
name = "net_module"
path = "modnet.so"
b
module {
name = "proc_module"
path = "modproc.so"
}
module {
name = "sys_module"
path = "modsys.so"
}

¥

include (’/etc/ganglia/conf.d/*.conf’)

/* CPU status */
collection_group {
collect_every =1
time_threshold = 1
metric {
name = "cpu_user"
value_threshold = 0.1
title = "CPU User"
}
metric {
name = "cpu_system"
value_threshold = 0.1
title = "CPU System"

196

Code Samples

Diploma Thesis

}

metric {
name = "cpu_wio"
value_threshold = 0.1
title = "CPU WIO"

}

metric {
name = "cpu_idle"
value_threshold = 0.1
title = "CPU Idle"

}

}

/* network traffic */
collection_group {
collect_every = 1
time_threshold = 1
metric {
name = "bytes_in"
value_threshold = 0.01
title = "Bytes Received"

}
metric {
name = "bytes_out"
value_threshold = 0.01
title = "Bytes Sent"
}
}

197

Diploma Thesis

Code Samples

A.10 store-power.py

import time
import datetime
import sys
import signal

def signal_handler(signal,frame):
sys.exit(0)

#register signal handler
signal.signal(signal.SIGINT,signal_handler)

f1 = open(sys.argv[1],’w+’);

start_time = time.time()
tl = time.time()
t2 = time.time()

while (t2 - start_time < sys.argv[2]):

tl = time.time()

f2 = os.popen(’sccBmc -c status | grep 3V3SCC’)
t2 = time.time()

status = f2.read() .split()

voltage = status[1]

status[3]

time_interval = t2 - t1

power = float(status[1]) * float(status[3])
energy_consumption = power * time_interval

current

f1l.write(str(datetime.datetime.now()) + ’\t’ + voltage + ’\t’

+ current + ’\t’ + str(power) + ’\t’ + str(energy_consumption) +’\n’);

f1.close()

198

Code Samples Diploma Thesis

A.11 store-metrics.py

import xml.etree.ElementTree
import mysql.connector
import datetime

import os

import time

import signal

import sys

def signal_handler(signal,frame):
#close db connection
cursor.close()
connection.close()
sys.exit(0)

#open db connection
connection = mysql.connector.connect(user=’ageo’,password=’ageo’,
host="127.0.0.1’ ,database=’SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

#register signal handler
signal.signal(signal.SIGINT,signal_handler)

f = os.popen(’sccTherm -initTherm 9556°)
f.close()

while (True):

now = datetime.datetime.now()

power_file = ’power_metrics/’ + sys.argv[1]

+ ?/power-’ + str(time.time()) + ’.txt’
f = os.popen(’python store-power.py ’ + power_file + > ’ + sys.argv[4])
f.close()

f = open(power_file,’r’)

energy_consumption = 0
for line in f:
energy_consumption += float(line.split(’\t’,6)[5])

f.close()

f = os.popen(’sccBmc -c status ’)
flag = ’other’

199

Diploma Thesis Code Samples

for line in f:
if (flag == ’temperature’):
temperature = line.split() [1]
flag = ’other’
elif (flag == ’fan_speed’):
fan_speed = line.split() [1]
flag = ’other’

elif (line == ’Temperatures:\n’):
flag = ’temperature’
elif (line == ’Fan speed:\n’):

flag = ’fan_speed’

f.close()
insert_metrics_query = "INSERT INTO " + sys.argv[3] +
" (TIMESTAMP,FAN_SPEED,TEMPERATURE,ENERGY_CONSUMPTION,POWER_FILE)
VALUES (%s,%hs,hs,%hs,%s)"
insert_metrics_data = (now,fan_speed,temperature,
energy_consumption,power_file.split(’/’,3)[2])
cursor.execute(insert_metrics_query,insert_metrics_data)
connection.commit ()
f = os.popen("telnet localhost 8649 > telnet_output")
f.close()
f = os.popen("sed -n 5,7885p telnet_output > ganglia.xml")
f.close()

tree = xml.etree.ElementTree.parse("ganglia.xml")
root = tree.getroot()

hosts = root.findall("./CLUSTER/HOST")
for host in hosts:
hostname_of_core = host.get(’NAME’) .split(’.’) [0]
metrics = host.findall(’./METRIC’)
for metric in metrics:
metric_name = metric.get(’NAME’)
metric_value = metric.get(’VAL’)

if metric_name == ’cpu_user’:
cpu_user = metric_value

elif metric_name == ’cpu_system’:
cpu_system = metric_value

elif metric_name == ’cpu_wio’:
cpu_wio = metric_value

elif metric_name == ’cpu_idle’:
cpu_idle = metric_value

elif metric_name == ’bytes_in’:

bytes_in = metric_value

200

Code Samples Diploma Thesis

elif metric_name == ’bytes_out’:
bytes_out = metric_value

#store metrics in DB
insert_metrics_query = ("INSERT INTO " + sys.argv[2] +
" (TIMESTAMP,CORE, CPU_USER,CPU_SYSTEM,
CPU_WIO,CPU_IDLE,BYTES_IN,BYTES_0OUT)
VALUES (%s,%s,%s,%s,%S,%S,%s,%hs)")
insert_metrics_data = (now,hostname_of_core,cpu_user,
cpu_system,cpu_wio,cpu_idle,bytes_in,bytes_out)
cursor.execute(insert_metrics_query,insert_metrics_data)
connection.commit ()

201

Diploma Thesis

Code Samples

A.12 prepare-metrics-cpu-network.py

import mysql.connector
import sys

#open db connection

connection = mysql.connector.connect(user=’ageo’,password=’ageo’
host=’127.0.0.1’ ,database="SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

f = open(’plot_files/cpu_network/’ + sys.argv[2],’w+’)

sql = "select TIMESTAMP,CPU_USER,CPU_SYSTEM,
CPU_WIO,CPU_IDLE,BYTES_IN,BYTES_OUT
from " + sys.argv[l] + " where CORE=’" + sys.argv[3] + "’"

try:
#execute sql query
cursor.execute(sql)
#fetch all rows in a list of lists
i=0
results = cursor.fetchall()
for row in results:
if (i==0):
start_timestamp = row[0]
i+=1
timestamp = row[0] - start_timestamp
cpu_user = row[1]
cpu_system = rowl[2]
cpu_wio = rowl[3]
cpu_idle = rowl[4]
bytes_in = rowl[5]
bytes_out = row[6]
f.write(str(timestamp) + ’\t’ + cpu_user + ’\t’ +
cpu_system + ’\t’ + cpu_wio + ’\t’ + cpu_idle +
’\t’ + bytes_in + ’\t’ + bytes_out+ ’\n’)
except:
print "sql error"

#close file and db connection
f.close()

cursor.close()
connection.close()

202

b

Code Samples Diploma Thesis

A.13 prepare-metrics-thermal.py

import mysql.connector
import sys

#open db connection

connection = mysql.connector.connect(user=’ageo’,password=’ageo’,
host=’127.0.0.1’ ,database="SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

f = open(’plot_files/thermal/’ + sys.argv[2],’w+’)
sql = "select TIMESTAMP,TEMPERATURE,FAN_SPEED from " + sys.argvl[1]

try:
#execute sql query
cursor.execute(sql)
#ifetch all rows in a list of lists
i=0
results = cursor.fetchall()
for row in results:

if (i==0):
start_timestamp = row([0]
i+=1
timestamp = row[0] - start_timestamp

temperature = row[1]

fan_speed = row[2]

f.write(str(timestamp) + ’\t’ + temperature + ’\t’ + fan_speed + ’\n’)
except:

print "sql error"

#close file and db connection
f.close()

cursor.close()
connection.close()

203

Diploma Thesis Code Samples

A.14 prepare-metrics-power.py

import mysql.connector
import sys

import os

import datetime

os.system(’rm tmp/tmp.dat’)

os.system(’cat power_metrics/’ + sys.argv[1] + ’/* >> tmp/tmp.dat’)
f1 = open(’tmp/tmp.dat’,’r+’)

f2 = open(’plot_files/power/’ + sys.argv[2],’w+’)

i=1
for line in f1:
if (i==1):

words = line.split()

start_timestamp = datetime.datetime.strptime(words[0]+
> J+yords[1],"%Y-Ym-%d %H:%M:%S.%E")

if (i % sys.argv[3]== 0):

words = line.split()

timestamp = datetime.datetime.strptime(words[0]+
> 24words [1],"%Y-Y%m-%d Y%H:%M:%S.%f") - start_timestamp

voltage = words[2]

current = words[3]

power = words [5]

f2.write(str(timestamp) + ’\t’ + voltage + ’\t’ +
current + ’\t’ + power + ’\n’)

i+=1
#close file connections

f1.close()
f2.close()

204

Code Samples

Diploma Thesis

A.15 plot-cpu.gp

set terminal png size 2880, 480
set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "YH:%M:%S"
set xtics xtics

set ytics 10

set xr ["0:00:00":time]

set yr [0:100]

set xlabel "Time"

set ylabel "CPU Utilization"

plot "plot_files/cpu_network/".datafile using 1:(100)

title ’CPU User’ with filledcurves x1 1t rgb "#FF0000", \

"plot_files/cpu_network/".datafile using 1:($3+$4+8$5)

title ’CPU System’ with filledcurves x1 1t rgb "#FFD700", \

"plot_files/cpu_network/".datafile using 1:($4+$5)

title ’CPU WIO’ with filledcurves x1 1t rgb "#00OOFF", \

"plot_files/cpu_network/".datafile using 1:($5)

title ’CPU Idle’ with filledcurves x1 1t rgb "#008000"

205

Diploma Thesis Code Samples

A.16 plot-network.gp

set terminal png size 2880, 480
set output "image.png"
set key outside
set key right top
set xdata time
set timefmt x "YH:%M:%S"
set xtics xtics
set ytics auto
set xr ["0:00:00":time]
set xlabel "Time"
set ylabel "Network Traffic in KB/s"
plot "plot_files/cpu_network/".datafile using 1:($6/1000)
title ’KB/s In’ with lines linewidth 3 1t rgb "#B8860B", \
"plot_files/cpu_network/".datafile using 1:($7/1000)
title ’KB/s Out’ with lines linewidth 3 1t rgb "#O0OOOFF"

206

Code Samples

Diploma Thesis

A.17 plot-power.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "YH:%M:%S"

set xtics xtics

set ytics auto

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Power Consumption in W"
plot "plot_files/power/".datafile using 1:4

title ’Power in W’ with lines linewidth 3 1t rgb "#FFO0OO"

207

Diploma Thesis Code Samples

A.18 plot-temperature.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "YH:%M:%S"

set xtics xtics

set ytics 1

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Temperature in C"

plot "plot_files/thermal/".datafile using 1:2
title ’Temperature in C’ with lines linewidth 3 1t rgb "#FF0000"

208

Code Samples Diploma Thesis

A.19 plot-fan-speed.gp

set terminal png size 2800, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "YH:%M:%S"

set xtics xtics

set ytics auto

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Fan Speed in RPM"

plot "plot_files/thermal/".datafile using 1:3
title ’Fan Speed in RPM’ with lines linewidth 3 1t rgb "#OOOOFF"

209

Diploma Thesis Code Samples

A.20 prepare-wordcount.sh
#!/bin/bash
source ../../configuration/config.include

generate parameters
unit=‘echo $1 | sed ’s/[0-9.1//g’ | tr [a-z] [A-Z]°¢
size=‘echo $1 | sed ’s/[A-Za-z]//g’°¢
bytes_per_map=0
maps_per_host=0
unit_size=0
#hosts=‘/liuwb/hadoop-1.0.2/bin/hadoop dfsadmin
-report | grep -Po "Datanodes available: \d+" | grep -Po "\d+"¢
hosts=$2

if ["$unit" = "M"]; then
unit_size=20

elif ["$unit" = "G"]; then
unit_size=30

elif ["$unit" = "T"]; then

unit_size=40
elif test -z $1; then
echo "Workload wasnt specified, please specify one(for example:1im/1g/1t)"

exit
fi
size_per_host=‘echo "scale=2; $size / $hosts" | bc
index=0
while [$(echo "$size_per_host < 0.5 " | bc) -eq 1
-0 $(echo "$size_per_host > 1.5" | bc) -eq 1]
do
if [$(echo "$size_per_host < 0.5 " | bc) -eq 1]
then
size_per_host=‘echo "scale=2; $size_per_host * 2" | bc*
let "index-=1"
else
size_per_host=‘echo "scale=2; $size_per_host / 2" | bc®
let "index+=1"
fi
done

let "unit_size+=$index"

if [$unit_size -gt 33]

then
let "maps_per_host=8%2**($unit_size-33)"
let "bytes_per_host=2**$unit_size";

210

Code Samples Diploma Thesis

bytes_per_map="‘echo
"($bytes_per_host*$size_per_host)/$maps_per_host"| bc¢
elif [$unit_size -gt 29]
then
maps_per_host=8
let "bytes_per_host=2**$unit_size";
bytes_per_map="‘echo
"($bytes_per_host*$size_per_host)/$maps_per_host"| bc*
else
maps_per_host=1
let "bytes_per_host=2**$unit_size";
bytes_per_map=‘echo "($bytes_per_host*$size_per_host)"| bc®
fi
bytes_per_map=${bytes_per_map¥.*2}

echo BYTES_PER_MAP $bytes_per_map
echo MAPS_PER_HOST $maps_per_host
echo HOSTS $hosts

fix the config file

lineno=‘grep -n "bytes_per_map" config-wordcount.xml®

lineno=${lineno%: *}

let "lineno+=1"

sed -i "$lineno s/<value>[0-9]*<\/value>/<value>
$bytes_per_map<\/value>/" config-wordcount.xml

lineno=‘grep -n "maps_per_host" config-wordcount.xml®

lineno=${lineno%: *}

let "lineno+=1"

sed -i "$lineno s/<value>[0-9]*<\/value>/<value>
$maps_per_host<\/value>/" config-wordcount.xml

echo "generating rtw-wordcount-$size$unit data"
#${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-data/rtw-wordcount-$size$unit
${HADOOP_HOME}/bin/hadoop jar ../../jars/${hadoop_examples_jar}
randomtextwriter -conf config-wordcount.xml /cloudrank-data/rtw-wordcount-$size$unit
sed -i "/$size$unit/d" ./file.include
sed -i "/$size$unit/d" ../../configuration/file_all.include
echo "wordcount_file=rtw-wordcount-$size$unit-$1"
>>./file.include
echo "wordcount_file=rtw-wordcount-$size$unit-$1"
>>../../configuration/file_all.include

211

Diploma Thesis Code Samples

A.21 run-wordcount.sh

#!/bin/bash
source ../../configuration/config.include

dataset=‘echo $1 | tr [a-z] [A-Z]°

${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/rtw-wordcount-$dataset-out

${HADOOP_HOME}/bin/hadoop jar ${HADOOP_HOME}/hadoop-0.20.2-examples.jar
wordcount /cloudrank-data/rtw-wordcount-$dataset
/cloudrank-out/rtw-wordcount-$dataset-out

212

Code Samples Diploma Thesis

A.22 prepare-kmeans.sh
#!/bin/bash

source ../../configuration/config.include
source file.include

if [$1 = low 1]

then
kmeans_file="sougou-low-tfidf-vec"
ratio="low"

elif [$1 = mid 1]

then
kmeans_file="sougou-mid-tfidf-vec"
ratio="mid"

elif [$1 = high]

then
kmeans_file="sougou-high-tfidf-vec"
ratio="high"

elif test -z $1

then

echo "Workload wasnt specified, run the low workload as default."
kmeans_file="sougou-low-tfidf-vec"
ratio="low"
else
echo "Workload specified doesnot exist, please doublecheck."
exit
fi
#${HADOOP_HOME}/bin/hadoop fs -rmr "${hdfsdata_dirl}/kmeans*"
${HADOOP_HOME}/bin/hadoop fs -copyFromLocal
"${basedata_dir}/${kmeans_file}" ${hdfsdata_dir}/
sed -i "/$ratio/d" ./file.include
#sed -i "/$ratio/d" ../../configuration/file.include
echo "kmeans_file=$kmeans_file-$ratio" >> ./file.include
echo "kmeans_file=$kmeans_file-$ratio" >> ../../configuration/file_all.include

213

Diploma Thesis Code Samples

A.23 run-kmeans.sh
#!/bin/bash

source ../../configuration/config.include
source file.include

kmeans_file=
if [$1 = low]
then
kmeans_file="sougou-low-tfidf-vec"
elif [$1 = mid 1]
then
kmeans_file="sougou-mid-tfidf-vec"
elif [$1 = high]
then
kmeans_file="sougou-high-tfidf-vec"
elif test -z $1
then
echo "Workload wasnt specified, run the low workload as default."
kmeans_file="sougou-low-tfidf-vec"
else
echo "Workload specified doesnot exist, please doublecheck."
exit
fi

${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/${kmeans_file}
${MAHOUT_HOME}/bin/mahout kmeans

-i /cloudrank-data/${kmeans_file}

-0 /cloudrank-out/${kmeans_file}

-k 5

-c /cloudrank-out/${kmeans_file}

-x 5

214

Code Samples Diploma Thesis

A.24 prepare-fpg.sh
#!/bin/bash

source ../../configuration/config.include
source file.include

fpg_file=
if [$1 = low]
then

fpg_file="fpg-accidents.dat"
ratio="low"
elif [$1 = mid]
then
fpg_file="fpg-retail.dat"
ratio="mid"
elif [$1 = high]
then
fpg_file="fpg-webdocs.dat"
ratio="high"
elif test -z $1
then
echo "Workload wasnt specified, run the low workload as default."
fpg_file="fpg-accidents.dat"
ratio="low"
else
echo "Workload specified doesnot exist, please doublecheck."
exit
fi

#${HADOOP_HOME}/bin/hadoop fs -rmr "${hdfsdata_dirl}/fpgx"
${HADOOP_HOME}/bin/hadoop fs -put "${basedata_dir}/${fpg_filel}" ${hdfsdata_dirl}/

sed -i "/$ratio/d" ./file.include

sed -i "/$ratio/d" ../../configuration/file_all.include

echo "fpg_file=${fpg_file}-$ratio" >> ./file.include

echo "fpg_file=${fpg_file}-$ratio" >> ../../configuration/file_all.include

215

Diploma Thesis Code Samples

A.25 run-fpg.sh
#!/bin/bash

source ../../configuration/config.include
source file.include

fpg_file=
if [$1 = "low"]
then

fpg_file="fpg-accidents.dat"
elif [$1 = "mid"]
then
fpg_file="fpg-retail.dat"
elif [$1 = "high"]
then
fpg_file="fpg-webdocs.dat"
elif test -z $1
then
echo "Workload wasnt specified, run the low workload as default."
fpg_file="fpg-accidents.dat"
else
echo "Workload specified doesnot exist, please doublecheck."
exit
fi
${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/${fpg_file}-out
${MAHOUT_HOME}/bin/mahout fpg
-i /cloudrank-data/${fpg_file}
-0 /cloudrank-out/${fpg_file}-out
-s 4
-k 100
-method mapreduce

216

Appendix B
Plots

217

Diploma Thesis Plots

B.1 Wordcount

B.1.1 Input Size 256 MB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz

rrrr

218

Plots Diploma Thesis

B.1.2 Input Size 512 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

219

Diploma Thesis Plots

B.1.3 Input Size 1 GB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

I
aaaaaa e

Ml

220

Plots Diploma Thesis

B.1.4 Input Size 2 GB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Merdcount - GPU Usizaton
Iepu S 2 0B, 45 cors ste
staodes at 00 M, TaskIraoces 1 00 Mz

Deta

e P——

3
o
OD0DCO 000200 CLCADO GOOENC CO0B00 COZC0D (01200 ODILCO 00100 00IB0D (V2000 Wi2200 D024 CO26A) CUZEL0 0000V C0I200 W40 00 DDIHCO CUAO0 CUAZ00 CD4A0D COAE00 DOABD CSOCO UDSZD0 03400 COSEI0 (SEAD CLOCHD OLUZOD 0L0HA0 ULOEDD
Vidcount - Network T
Irput Size 2 GB, 35 cores actio
Otaares t 00 Wik, ek 1 500 Mz
DataNde k35
3000 . asn
dson —
2500
& e
£ s
L
0
o A AA 2 Al A a AWM A MA 0 Mo b a A DA by a o WA A AL AAR o M 0 A i
Werdourt - P Usization
Iepu S 2 0B, 45 cors ste
staodes at 800 M, TeskTracces 1 00 Mz
Testroie 11
i e o [—
100 e
) 1]
. oL gysiem
= o
Etp—
5
o
00000 000200 CCAOO (O0ENC CO0R00 COS000 (01200 ODILCO 001600 001800 V20D W2200 00240 COZ5A) COZELD 0000V 003200 W40 GLICO D3O 04O COAZ00 (04300 COAE00 D0AE00 CSOLO UDSZD0 003400 COSEE0 SEAD CLOCD0 OLUZOD 0L0A00 CLOSDD
Wordourt - Network Tafic
Inpui S5 2 GB, 48 coren cie
Dataiodes at 800 e, TaskTrakers 1 800 Wz
TakTracer ok
000 s —
anon —
2500
£ 2000
E
%
e
S0
o
000000 000200 000400 (X060 000600 0AD00 QG200 ONLEDD CDASHO COIE00 (2200 2200 D200 002600 (R2ECO (03000 CUI200 COID (03600 CDIEDD 00400 04200 (440D DDAGDD DMB0) 005000 UDS00 USHLO CUSE00 (O58AD C100GD CLO200 QI0HCD GLOGHD
Wierdcaunt - Pover Consumpton
Input S 2 GB. 4 cores atie
staodes at 00 M, TaskIracces 1 00 Mz
e o [—
E
000000 090200 CO0400 GO0GHD 00800 00Z000 (01290 01600 0190 00IE0D D200 WZ200 0024 006 C0ZFO0 0IIN0D C0IL00 WA WIG00 MIH00 004900 COAZI0 400 04600 0040 CGICO VSO0 093400 00600 A0 OLOGHD OLGZ0 010400 010590
Werdcount - Bosrd Temperature
Irput Stzo 2 6B, 18 cors i
Drtaodes t 800 M, ook 1 500 Mz
) |llllm T
)
H

= . . .
000000 000200 00:0400 000600 C00300 C0-1000 00

20 00:1400 001500 00800 (H2000 02200 002400 0B:26:00 (02600 00300 00320 (03400 (D600 130 N:A0L0 V4200 D04400 004500 (04500 1DS000 005200 NISHO SE00 C0ISE00 CLODOD 010200 0LOKDD C20600

221

Diploma Thesis Plots

B.1.5 Input Size 256 MB, 16-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Werdcourt - GPU Uslization

Inpus Size 25 s et
stanodes 1 800 Mk, TaskTracuss 1 00 Mz
DaNide ot

Voot - Network T
Input Siz0 25 M, 16 cores actvo
Dttt 800 Mk, Tascce 1 500 Mz
DataNod s

zZo0 200 £ =0 ER) ET) 3100

3
2

K MA A ﬁn'\ L/,\J\ A ‘AA_A A

. A A A A A

Yoo =3 oeo0 w50 o o = pr 1500 oo D)

e —
z ressmme
"

son —

Netwok T n s

i
ricount - Boas Temperaure

e
gt Size 250 M. 15 cors actie
Daratidesat 600 N, Tasicackers at 500 Mz

Temperare n ¢ ——

Temperaue inC

El
oo w0 00 o0 a0 w00 1200 1400 1500 150 ED) 200 200 =0 Ex) 0 20 00

222

Plots Diploma Thesis

B.1.6 Input Size 256 MB, 24-Node Cluster Topology,

i

Nawark e

Uiz

Fower Consumpton n

—

DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Vierdcount - GPU Uizaton
Input iz 555 1B, 24 cores e
Datanioses & 800 Wik, TaskTracers 1 00 Mz
Lty

20
Wt - Netwerk Tafic
Inout Size 256 18, 24 cores acte
DtaNases st 800 Wik, TaekTrackers 1 00 Mz
Dataode 110

[e—
rERon —

) 00) o0) w00 1400 1500 1600 200

Tasracier Ky

o 200 oron oo =00 1000 1200 2400 1500 1500 200

Wordourt - Network Toff
Irout Sizs 255 1B, 24 cores e
Datationes 1 800 M, TaskTrciers 1 00 Mz
TaskTracner iy

o0 s —
@5 o
100
140
120 s T
100
3
i
w©
: /\
w000 @00 B 050 o0 1000 1200 1400 w00 1800 w00
i
Wordount - Power Corsumption
Input S 258 1B, 24 cores acive
Dataiogesat 600 M2, TaskTrakers at 800 iz
@ Fower 0 ——
&
o
@
@
=
s
w2
0
Vordcount - Board Tmpecatue
Inout Siz0 255 15, 24 caros acto
DataNotes st 800 W, TasTackes 1 500 b
) o or00 %0 o 1000 2w 00 1500 1800 2o

223

Diploma Thesis

Plots

1.7 Input Size 256 MB, 32-Node Cl
DatalNodes at 800 MHz

Werdcourt - Py Usization
Input Size 255 ME, 32 cores st
staodes 1 800 Wik, TaskTracuss 1 00 Mz

200
Vidoount - Network T
Input Sizo 25 M, 32 core actvo
Drtaades 1 800 Wik, TasTcce 1 00 Mz
DataNde s

uster Topology.
-TaskTrackers at 800 MHz

o

w

w
3
§
T w
i

o

©

.

b o e o e I o o 3 I3 D)

P —
o S 0 2 s
e B e B0
e
| [

Temperawein©

.
P——
P L L .
FRRE
™
]
g w
o
A
.
T —
s Ea St
o s 3 e
— SO
-
o
s
H
Z
3
14
o000 02:00 04,00 06:00 o200 0:00 1200 1600 1500 18:00 000
-
—
e S,
o e
£
-

224

o User

Et—

e —

pE—

Keron —

Plots Diploma Thesis

B.1.8 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 200 MHz

Vierdcount - GPU Uizaton

cPU Uzation

)

v KTstic
Inout Size 256 18, 8 cores acte
DtaNases st 200 Wik, TaekTraciers 1 00 Wbz
ataoce k01

[e—
rERon —

etk T n ks

=)) B o500 000 1000 200 P 0 B0 200 Z00 240 00 S Ex) 200

Vierdcount - CPU Uization
Inout Sizo 255 18, 48 coros acte
Dataates st 200 Wik, TaskTsckers 1 00 bz
Tasracior 1402

f—

U izain

050

Wordourt - Network Taffc
Input Sizs 255 1B, 48 cores e
Datationes 1 200 M, TskTrciers 1 200 Mz
g a2

oo @sn
@5 o
a0
o
3o
20
- /\A A ﬁ A /\
w00 EX) o100 w0 00 1000 1200 L0 1500 1500) 200 200 2500 200 EX) 200
i
Werscouns -Power Consumotion
Input iz 255 1B, 48 cores acie
Datationes 1200 M, TaskTrckers 1 200 Mz
n
n
z
H
3
L
&
oo a0 o0 o o0 000 200 1800 1500 100 20 200 200 w00 =00 0 200
Virdcount - Boad Tompersture
It Sizs 255 1B, 18 cres acive
Datallodesat 200 MiHz, TaskTrackers at 200 Mz
4 Temporatye 1 ¢ —
5
w0 o o400 won 00 030 200 00 1500 500 200 2o 2000 =00) 00 w200

225

Diploma Thesis Plots

B.1.9 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 533 MHz

226

Plots Diploma Thesis

B.1.10 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 800 MHz

A A

227

Diploma Thesis

Plots

B.1.11 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 200 MHz

i

akTare

Powr Consurpton

Temperatre in G

Vierdcount - GPU Uizaton
5

200 00
Tine
Wordcurt - Netucrk Tafic
Inout Size 256 148, 6 cores acte
Dtaases 1 533 Wik, TaekTraias 1 200 e
DataNiode ekl
0 s —
e son —
120
w
B & A
o0 o0 520 w0) won 200 1400 w50 1500 000) 2400 500 =00

Vierdcount - CPU Uization

Inout Size 255 1B, 8
Datatiases 1 533 Wi,
Tasrac

050 w200 400 o500 oz00 1000 oo

Wordount - Network Tafic
Input Size 255 1B, 6 cors acive
Dataodes 1 535 Wik, TaskTracers 1 200z

1500

1500)

200 200 2000 E

Tkracuer i
a0
s
e
100
o0 EX) 0400 50 %00 EX) 2200 1400 1500 1600 00 20 2400 2000 =00
Time
Werscouns -Power Consumoton
Input S22 255 1B, 18 cores acive
Datallodes a1 535 MiHz, TaskTrackers at 200 Mz
n
n
©
oo))) oa0 0 200 100 1600 1500 20 200 2600 200 z00
Time
Viordcount - B Tampeesture
Inout Sizo 255 18, 48 cores acte
Dataates st 533 Wik, TaskTaciers 1 00 Mz
r—— [——
7 . . . Teperatye 1 ¢ ——
s
wo ET)) a0 o 100 200 o 50) 0 £ w00) =0
e

228

Plots Diploma Thesis

B.1.12 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 533 MHz

Vierdcount - GPU Uizaton
Input Size 555 1B, 48 cors e
Dataodes 1 533 Wik, TaskTraers 1 53 Mz
DaNiade e

200

Wordoount - Network Taffc

i
[—— ——
e s n
o —
w00
,
T
5w
w00 0200 o200 o500 o200 1000 oo 2200 000

i
Vierdcount - GPU Uszstion
Inpu Size 756 1B, 8 cors e
Dtaages 1 533 Wik, TaskTraes 1 32 Wbz
TTracker k¢

H

050 0200 0400) o200 000 20 1400 100

Wordount - Network Tafic
Input Size 255 1B, 6 cors actve
Dataoses 1 535 Wik, TaskTrages 1 53 Mz
Tkracuer i

[——
o KBS I —
on —
-
2
3 200
%00 @ oo 3 o o 20 w0 o
e
T —
Jtc R et
CotaNaEE 5 50 V. o 50
f— -
o PowerinW ——
s
w0
i -
[
-
2000 @ woo o woo 0% 200 I w0
e
ortcon: - st Tompce
SR e e
eSS e S e
“@ " N - l " " Temperalure i €
g [

229

Diploma Thesis

Plots

B.1.13 Input Size 256 MB, 48-Node Cluster Topology,

DatalNodes at 533 MHz -TaskTrackers at 800 MHz

Vierdcount - GPU Uizaton
555 1, 48 cors e

35 e, askTrackers a1 800 Mz

Do ko

w20

Wordourt - Netuork Tatic
Inpu Size 755 1B, 46 cores e
Dstaioges 1 533 Wik, TaskTracers 1 00 e
Do s

aw
a0
a0
e
10
S
00 w200 o400 500 00 1000 200 1400 1500 1500
T
Vierdcount - GPU Uizaton
Input iz 555 1B, 8 cores e
Dataoses 1 535 Mk, TaskTragers 1 00 Mz
Tkracuer i

,
T
L,
oo TR
e L
i AN ﬂ /\[\-\ J M
. M
P s
. J—
N
.
PO
e T,
O .
. -
g
.

230

[—
e on —

cPUSystem
e
i T—

[—

KB o —

remperanra in

Plots

Diploma Thesis

B.1.14 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 200 MHz

Vierdcount - GPU Uizaton
Input iz 255 1B, 38 cr

Datanioges & 800 Wik, TaskTrars 1 200z

Dot 6

§
g
200 o0
st Nt
o e e
oo 5 60 Ve o e 300
e s
e KBIS I ——
aRon —
s
§
5 e
5
A Aa
S0 e o 3 o) friy o = w0 200 7o oo B) =
P —
oS i s e
i
p—

Ui —

Fower 0w ——

P—
S L
@ soo
[
3
-
" LAAAM /\ A }\'\
—
-
“
[P
O TN
E
-

231

Diploma Thesis Plots

B.1.15 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 533 MHz

Vierdcount - GPU Uizaton
o

UL

B

H
o
Vet - Netuor T
ot S 23S, 4 cor s
a0 Ve o o 0 e
Saasoroct
e e —
- ERon —
e
2
e
5w
3w
EIr
®
. _A _/
s B sioo) =00 oy o B e
Warour - CPU Uzt
ot S £33, o e
CntNOTE B0 Vo s o 50 i
hasa rar
pp—
g
U
e —
o
foco o arco e o w000 ey 20 100
Vet Neyor Tatc
et S, 6 i
CRaNooe 1 80 i, oK 5 iz
e e
= et —
o
e
L, m
< wm
3
5o
I (? /\//\/\—\ﬁ
o0 o0 w0 wor o0 o0 10 o0
e
Wordooun - PoerCorsunton
S, 6 o e
CRaNooe 1 80 V. s 5 e
105 e
10
-
is
%
oz @ asco oo @ 1000 o0 1600 100
oot o Tmpeate
o S Z 0, 1 o e
OntNGoE B0 V. s 1 50
@ [y—
“
S
o . . .
o @) oo ET) o0 ey P oo

232

Plots Diploma Thesis

B.2 Bayes Classifier

B.2.1 Input Size 256 MB, 48-Node Cluster Topology
DataNodes at 800 MHz -TaskTrackers at 800 MHz

yes Glssfir - GPU Uslzation
Inout S0 256 15, 38 cors actve
DataNiotesat 600 Wi, TaseTarkars st 600 Wz

; ; J—— ; e [iy [—

10 [oTp—
clgmen
D —
e —
g
E
wiceo 200 w00 a0 cizoco
Gy st Ntwon o
o San AR, s sk
OuaNoSo B0V T i 30 e
ey
; J—— o Je— sy - p—
| [— a v o e) R PR
o T
' Eron —
o
™
£
€
)
0
) A -
oo Er) aom D) o000 Frry o Erer azaso w009 ot w300 w00 =T 2200 =
Gy st G izstion
ot S A B, 4 o s
CuaNobo i 50 Ve oo 0 e
Toshacn 1020
: [— : [—— : Fo. i [e s p—
H
wineo o0 a0 2000
iy st Newon T
ot S0 290G, 4 o e
CntaoTo 0 e o 30
Teshacar g
150 [
Eron —
Lo -
120
£
£ o
£ owo-
o -
o - \
it w000 i 00 Gt w500 wwoon Tom 2000 00 o e w000 o0 2200 2w
Sy st - o Conmarpion
ot Ser 5 o e
Cnaobes i 50 Ve o 80 e
P [—— o oz i £ e i)
e Powerin W
10
105
=
§ o=
S e
H
w
w
=
S50 D) EET) o0) =) oo) e EET = o oo w00 D) o0
e
Saje Classtr - Boart Tt
e S SSE B, 1 s
OsaoGe 80 VA ook 30 b
[e———— T, wngpussim oy Hernsgion i
Lo m
ia | E—
Ta
iy om0 Gmzono ey e EET) FeT) ey 2000 P weno ey) aom @z00 @00
e

233

Diploma Thesis

Plots

B.2.2 Input Size 512 MB, 48-Node Cluster Topology

Mesmerk Trfic n <655

Metwork Tt n <&

Pawss Consumption i

DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Bayes Classtor - CPU Utizatin
Input S 512 1B, 18 ooes cie
Dataodes at BUD .. TasKraskers a1 600 Wz

o

[

v e ees T

s
5

e

Bayes Giasster - Networ Tt
Inout Sze 512 1B, 48 cores acive
DataNodos at 600 e, TsTrackers at 500 Mz
Datatode ekt
[——— [——— P ey i e R
0 s —
[p—
w0
a0
o AN s WU h
won0s w1000 CEE] w000 waoco EE) woncs a0 oo e e zovan w100 22000 CEE] weon @500 CEE]
Bayes Glasster - GPU Utizalon
Inpit Sze 512 B, 48 cores acie
Dataodos at 600 e, TsxTrackers at 500 iz
™ i
i [——— [——— e | s | e et

wiom 2w oo @ wsw @ maoeo w00 s R @wm e
s st Ntuok Tt
ARSI . ot s
OrN e B0t o e 200
e
e [s o s s e e
P had Peduze M Aesuce Faclor M Fctr R
100 . . ; . ; ; . . e
i
1200 |
w
20 M
N MM A
L —
e i e
e o B0 A o ahos o 300
[OS— o e i e = B o s
s v
10
o
m M W\//L
e
Sy st Bt Tmperats
oSS 1 o s
a0 o 90t
JEU— e | . o s £y e Jomn
2 H ~mporare nc ——
“
. i . I
Bom www | www mew wew wee ase aos cos awe aen aws wwe mee | ese ewn ees e o

234

Plots

Diploma Thesis

B.2.3 Input Size 1 GB, 48-N

ode Cluster Topology,

DatalNodes at 800 MHz -TaskTrackers at 800

Bayes Cassir - GPU tizaton
Input S35 1 GB, 48 coren ctte
Dataiodes at 00 M, TaskIrakers 1 800 Wz
o T

z

LA
u — pyey Yy ; v Jp—
it
S —
T =
FIarr— R T R T w20 R @Ro | Gow oo oz Gpo Bow
"
P
S Sy et Tl
et S e 00 M
QM et
1000 KBis In
- ! | on —
800 H H
. ™
§
? w
F s
i e | |
g
E | |
=
- ' |
o A A A WAVNE N A
Buow e W W owe wao mom e e @ G ome @ mwm mmm mme @aw RRm GOm0 mmw o mOm aon o
e
P ——
B S !
PO L -
E N
[J— | o gm i e s s
[
[igered
S
e =
f
w100 o0 om0 030 w0 maw maom v wiom @2 @NG @eN @ OHO | GLO Gom 000 | Geo Bson
[—
i
oo e e 00
ol e
- .
1600 :
.
5 o
S o
i
P
2
B A s A b A L Aan An T N
e
R ——
e Gl e sy
P R -
f e
$w
Fomo wrom maem wwm w0 mww woom omew www awm wem oww mew mbe | wme w@w R mow wwom wwm wmw waw wsw
"
[——
iy
ot S AT 1
[— JAP—— o o, g {5 e -
g
[
2
Boow e www wmen mwes e mew mwem wme ame o T mwm mem s we oo Dwm wme wwe wwe mew

osom | Gieoon

235

Diploma Thesis Plots

B.2.4 Input Size 2 GB, 48-Node Cluster Topology,

= Unizaton

cin

et 1

cPuzaton

cin

et 1

s
H
-

DatalNodes at 800 MHz -TaskTrackers at 800 Z

Bayen Classifer - CPU Uilztion

. oo s s

2000 4000 w2000 4000 o000 22000 000 30000 o000 ooaca 02000 oo w2000 000 052000

Bayes Cassier - Network Tfic
it Sire 2 (5, 48 coves acive.

Dataodes a O e Tackrckert GO0 M i s
Datatiods ks o =3
oo | Kasn —
o —
N A I A_AANAAL A M_AA. o ~
@eom | comow | ww0e mem e | omooo | @m0 eem | mee | e @ maeos o om | owoo | meos | @am | mmm | wwow | ooaom
T
Bayes Glasser - CPU Utization
o Sire G, 6 oo e
Dataodes a B0 e Tabkrackert 600 M. o o
o 05 et =)
i R e s s i L i i Jemiesen

A . ' L
2000 04000 0o 2000 o 4000 w000 o0aco o000 034000 0000 2000

Byes lassfer - Netuork Taffc
Input Sze 2 GB, £ coresaci

Datalcidat B0 i, TeseTrackers o 800 iz T v
Tosklacker 06 e -
[—— [— e stz N Jomstoten
e a vaisn —
[t p—
1200
1000
a0
a0
3
w00 w2050 we000 woos CEE] we00n 2o 2000 G200 CEE] 32080 wiom EED) G000 o000 2000 000 o030 2000
Bayes Gisster e Consurtion
nput e’ GB, 48 coen acive
Dotaodts a1 800 e, TskTrackers o 800 e o g
[re— [—— e ; s it Jorsser
5 ; Soveri W ——
0
15
1
El
&
) i
3
w000 w2000 Wit wovse w2000 w00 @onon w2000 EXT) w0000 w2000 o000 ar0aco wez a0 w00 2000 000 w000 2000
Bayes Gisstr Bosrd Tempratue
npSze 2 G, ore scive
Dataiodsd at BHG e, TesTrackers 21800 iz s veoma
[re—— [r—— e s g o
e Rk [y
@ Temperare n
@
»
»
000 2000 @000 o000 2000 e 2000 @20 a0 0000 2000 4000 ca0000 w2630 a0 50000 2000 4000 w0 52000

236

Plots

Diploma Thesis

B.2.5 Input Size 256 MB, 16-Node Cluster Topology

DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Bayos Classtor - CPU Utlzation
Inpui S 255 1B, 16 coes acive
Dataodes a1 800 HHz. Tackrackers al 500 Mz
o o

e
[[T v B R
) \ Ty P s

e
oy st oo Tt
S So , oe
CuaoRs S0Vl oo 300 o
i o
[P [T e g e e e
§ o
£ o
H
-
0
R A A A
woom waess wma woer mee womom mees eheee oo wisess v mee wmoow mioe wmm | Gww | mee | mmm woew @i wmm
e
s satr G naton
ik S, e s
Dot a 630 . ok 3 500 iz
Tsiracier o0 s
; i . Lo e R e—

|

.00 w00 w400 ooseon

Biyes Classfr - Network Tffc
Input Stz 255 1B, 15 coros active
Dataioaesat 600 Wi, TosTrsekrs ot 600 W
Tas a2

ot owzne

5000

20000

2w w20

23000

ot

w00

000

[
Eion —
e
2200
™
e
0
200
.) AL A AN A A 4 i
woom Giaso omm %m om0 | wmio | weom | cuow | wa0ey | oco | Gaeso | @ee woow oaioo | @aoss | aw | wmeos | weom | cocooo | wdeso | waznee
-

Bayes Clsster - o Consanpon

s o 558 My cores v

Ostcs o 0 V. Takhackrs 800 iz e
=
: =
HE]
5w
e

e

P —

s S 758 1B 1 coret ave

Ostcin o 80 V. Takhackrs 800 iz o

R en—— i i Vet s b ot

- Temperature in ¢ ——
el
Gaw w0200 somomo cooos | e coomy ouooo | wamse aom maoy | oisoos caooss ises | Geavey wver | woaoss | @mom Govm 09000 w900

237

Diploma Thesis

Plots

B.2.6 Input Size 256 MB, 24-Node

Cluster Topology

DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Bayos Classtr - CPU Utlzation
gl Siza 258 1B 21 cores actie
Dataogos a 800 NHz. Taskackers at 500 Hz

deroat

1000 2000

Bayos lassfo - Notwork Taffc
1 Size 25 W, 24 cores ot
Dataioges ot 600 Wiz TaekTsekers at 600 iz

00

w3000

W

e okt
; [——. e s | e p e e fmne
00
g
)
3
£ o
B
o
oo w1000 w2000 2000 w000 CEL] wn0n or2000 w2000) awsato aonos w1008 22000 @300
Bayes Clssfer - CPU iization
S0 2501, 24 ores acihe
Dataiods st 500 i TaakTrckers a 800 iz
i [r—— [——— e f-3 =y S e [t

wiom w300
ayes st oo Taic
ek s 558 . 5 o e
a5 0 . Tk hacers 800
ey
2m ;
22 ;
e | [i
= !
. A ~ M A X . AW A A ar ‘ a ‘
weom e Wz 3o o w3000 Lo oo iz e oy wsom o @00 200 @
Bayes st - Poves Consumpton
o S5 .51 cores s
ks B0 . T sokers 800 iz
T [froa e — f—
o
z
fw
HE
=
B
- . . . -
oo w00 w20 EE) anco w30 EET) o wzom www) @som
e
Baye Ciastor - B Tampert
o S 255 . 24 coret 2
DntaNodes B30 . ok s 800 i
P - WO e ot
J— e e o e U Jom
I
i w109 wz00 o w0 w000 awoomo Qw000 w00 w00 awsom @000 a0 @20 @

238

CPUUser

U gsem
CUNO m—
TUde m—

P User

o gystem
Ea—
Et—

o

KB ol

Fowerinw ——

Tooeratre e ——

Plots

Diploma Thesis

B.2.7 Input Size 256 MB, 32-Node Cluster Topology

DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Bayes Cassiir - CPU Utizaton
I Sz 555 1B, 3 coes e
Ditanoses 1 800 M, TaskTrackes 1 00 MHz
O 5

o
wonco w3000 mae

Bayes Classter - Notwork Taffc
Inpui S 255 1B, 22 cores actve
Dataodes at 600 NHz. Tackrackers at 500 Wz
Datanode ki3

wacno

o0 2000

Fooryrr e 3)

Et—

2000 w2000 w00

Node
; ; — e, S emamn § s
000 —_— — . — i . i1 s
w0 | | ; i sl —
. i i i i
i | | | |
2w | | | |
E s ! i i
z
5w | | |
§
2w | | i
o | A | |
o H M AA
oo w000 w2000 w000 e EE woaco @000 w2000 o w00 wso0 a0 winon EE @000 w00
e
Bayes Giassir - G Utizaon
Irpit Sire 356 M, 32 core ace
Dataiodes a 200 Mz, TskTracers 1600 e
Tdactor g
i [— rsrarenn o o Do wepae Y o | e,
i 5 =y e [

Bayes Classier - Network Taflc
Input S 255 1B, 32 cores actve
Dataodes at 600 Mz, Taskrackers at 800 Wz
TasTracke k11

v

[p—
=
8 oo
B o
H
o
) M N ﬁ M e Motho A Ao AA A
R —
D s o Corsto
Ot e s RO
JSS— JE— oo e i s e
o " N T N " Fower inW ——
Es
B
R —
[— RS e | e P
eo. Pedice o ez ot s Facior Faduce.
o Temoerature in € —
£
T

239

Diploma Thesis Plots

B.2.8 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 200 MHz

o
i
£

240

Plots Diploma Thesis

B.2.9 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 533 MHz

'wwwwm KRR vw»wwv

241

Diploma Thesis Plots

B.2.10 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 800 MHz

TosTraske ke

242

Plots

Diploma Thesis

B.2.11 Input Size 256 M
DatalNodes at

= Uizaton

sicin

P Uzat

sicin

Fower Cansumption n .

mpsraure it C

Bayos Classtr - CPU Utizaton
It Siza 56 M8, 8 coves acie
ataodEs t 535 Mitz, askTrackes l 200 Mz

9

48-Node Cluster Topology,
533 MHz -TaskTrackers

ipgsom,
5

at 200 M

z

CPU Usor

cP0 gystem
T
CrUde m—

frryr e
ol
J— RS o f— s je— e
; J—
S =
s Ry
OB,
e
| R e . [— —

Py User
=0 sysem

CUNO m—
U e m—

A i A
Bwm mmm o wew o gom oo Gpo ao LR G0e) G G0 @AW G0 @PW Gw G 6w G Gon
s Gt T
e et
L -
e
e
; [[e b g = s)
- o
S
o
0
200
-
.) A A Ao " dnan. '
T N R R A N R A I e A T P S ety
ayes st o Consrton
ot e
o R ok 00
[—— R st e e fir s g B i o e
™ Pouerin W —
"
"
"
w
“
o
Horo mmom e mwew wem wwe mwm ame amw awm cew aon wee | mne | oos mee men ene e ene eme owe | wee
[——
o e e s
O e oo e
[R —_— pe - = e s
B M_/\.N
T wwer wam maw wwem wme awm owe ame awe aee ase wes wwe eon sae cen wae oo Gomme
e

243

Diploma Thesis

Plots

B.2.12 Input Size 256 MB, 48-Node Cluster Topology,

Network Tiarc n Kgis

i

Heswork Tralle n <Efs

Fower Consumptonin

Temperaure inC

DatalNodes at 533 MHz -TaskTrackers at 533 MHz

ayes Classfr - GPU tizaton
o Siz0 256 MB, 6 cores acive
Dataonos ot 533 N, TaskTrssiacs ot 503 Mz
Dot s

iz

e ——— [—— e s tomazn

00 002000 003000 W00 (05000 0LODOD

@00 oaod C0 QUAD GOGN 200 02000 2000 A0 (2SI 000D 300 WOD G300
ayes s - Notwork Tt
ok St 558 9, 4 v e
Daaades o 53 . Tk Trers 533
S 15t
: J—— e s | s o e " et e
] Eeon —
220
20m ;
o ‘
e ;
. A Lo
L T R P e G sone moow | wim | mmos | oooe
Tine
e Cisstor - U Usiaton
i S350 W5, Lo core s
OsaNagts s 533 . Tk ars 503 Mz
Tt s
o e, Fessea e e g, g v e | Nermuaain
0 Symem
e —
e
Gy Gl - Notwor T
oot 32550 96,4 core e
DstaNodbs o S35 . Tk e t 533 Wbt
oo
: IO U s B e e o J
260 - . e
s on —
2m
B At W
Bayes st - o Cansrnpion
it 7558 3 v .
DaaNaces o 593 . Tk e t 533
PR s s . . p— - J— p—
. e wo b s) s b
= P —
»
e
Goomo waoos comme waeas | codse | ooseor | meom waoon Gam odoso | oiseo | mom Gaow | maoy | oy Gam Gsse | soas | oaoss | @a0or | eia0os
Bayes asstr - B Tomperaturs
ok S 598 45 s e
DaaGdes o 593 . Tk aer 533 W
SN [e ke e s e s
. Terperaren
m ’,—H_M ‘\H_/—r,t
.
Woom couow omm comom | wouemo %o oLooos | Olioco | oLaoco | W00 | G000 GS000 e | aber | oamo | om0 omew | wmsown | mooss | G0o0 | om0 meoo
me

244

Plots

Diploma Thesis

B.2.13 Input Size 256 MB,

a0 Clasitr - CPU Utizaton
It Size 56 ME, 4 cor st
Dtanodes 1 535 Mk, TaskTracuss 1 200 e
DraNide 67

48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 800 MHz

I et | e § e J— ;g fe— e
] ey £ i T e
v —
e
T —
iy Clastor et e
S e, 1 s e
OntaNOoE 55 Vi, s 200 e
Seatide ot
[— (e E. 5 i . s e,
10 e —
Eron —
a0
1200
2
H
g
o
0
. A
do000 wion Gaanss aa o wwom FeTy o o D) 0w a0 @som @rom Gesow
a0 Castr - U nzaion
Py
ORaNGoE 55 . osckrs 200 Mz
SR
i [— [— o [[— oy e e
o I
i Sen
Eo—

o
eecno

000 2000 3000 a0

Bayes Clasiter - Ketwork Taffc
o0 Size 336 1, 8 corss Setve
DrtatNatEa 1 535 Wik, o 1 200 Mz
T o8

4000

w5000

c2oca0

a0z

Et—

1, Wi Sums. Vi, Normazion rrmatan
e
£ o
. AN i ocos Anh A
s P Cormpin
o SR BRI
T, Werres Sums. Vit Nermauan emaon
a i —
[w
B
[P [P f— e f— e
@ TEMPEratiTe IN C —
M
&
Eow
00000 w000 02000 20:3000 04000 05000 010000 w1000 012000 013000 aL4000 5000 020000 21000 22000 c2:2000 024000 025000

245

Diploma Thesis

Plots

B.2.14 Input Size 256 MB, 48-Node Cluster Topology,

cin

et 1

PUUzaton

nis

Nemworc 112

z

DatalNodes at 800 MHz -Tas

ayes Clasir - GPU Uizaton
Input $20 256 15, 38 coes acte
Datalodes o 600 N, Tascackers at 200 iz
7

Trackers at 200 MHz

; [| e T ——— - . | ot
] [— : ’ o PoE g)
10 —
w r D
e —
w
n
o
»
©
e
Gy s - NoworTtic
e e
oG B0 I TaT st 20 Wiz
o
s | o N el pen e =) ety it
e ——
o —
o . A
oo Goow e | mams | 0aom | e | Wwes | oo | oaom | oww s | @t | Goo® | mom G @0 | Rdom | mSum @m0 | 1000 Gaom | | G | @0 | omom
T
ey Classtr -G Uizt
CSSE S s s
OntaNoBo 50 e oo 20 e
iy

]

e
o0 CFUWIO mam
2
.
“
B
,
[——
o
Bl
Posdg Form e pehres, ke T M e i = Facio . [
Sm=
. L, " 2 N
P
st o S
Featig e, e g Surs. g Nenratesion Nomatznan
i —
.
[; T . . — g — p—
o Temperature in C
-

246

Plots

Diploma Thesis

B.2.15 Input Size 256 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 533 MHz

ay05 Classiter - CPU Utization
Inpii S 255 1B, 15 cores acive,
Dataoges at 600 M. TaskTrakers at 533 .
o y

R

000 w2000 sono 11000 o200 o000 21000 w000 w000 w000 w2000
e
Bayes Classfer - Network Taflc
Input S26 255 1B, 18 coras actve
Dataioes at 600 HHE, Tasclaokers at 533 bz
Datande ok12
[—— [Tt e e, Mo
w0 L e
o
£ oo
% oa
100 [L
Bayes Classfer - GPU Uiliztion
Inpul S 255 1B, 18 cores active
Datatlodes a1 600 W, TaskTrckers ot 539 Mz
TaskTracher 1417
i [[e e, s oy e oo

Bayes Casster -
Input S 255 1B, 18 coros

Dataioges at 600 N, Tasclracker
TaskTracker k17

2500 ; - . ; . . i e . . ;
£ o H H H H
By Qasstr- o Consumption
ot Sra 55 1 s s
oot o 68 Tok ks 52
TR AP s = o ot
o vy i B e, Al
100 PO i1 W
Zow
£
i
75
"
Fooon w100 wwm w00 o Gosom Gwone EET) FEry o) on) = E=r o @soc0
e Clssfor - Bonrt ot
o S 55 1B, 1o o sy
OnaoSo a0 Vo 20 e
— remsrons o | E. [- s e [
“ N N N N N 1 N " T " Tt " N T N Temperaiure in C ——
3 ; : : [
H : : :

w00

w2000 ey

a0

wsio0 Go0co a0

w2000 3000

247

wava0

rsoon

20000

@m0

w2100

w3000 ey 2000

Diploma Thesis Plots

B.3 K-Means Clustering

B.3.1 Input Size 121 KB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz

B
.
;

Y

:

:

= a0

248

Plots Diploma Thesis

B.3.2 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

249

Diploma Thesis Plots

B.3.3 Input Size 16 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

250

Plots Diploma Thesis

B.3.4 Input Size 121 KB, 16-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Hoans Cistoiog - U Uttzation
Inpi S 121 KB, 16 cores acie
Dataiodes 1 BUD M, Tasklraers 1 00 Wz
DataNece okt

Ot vt
i
e s —
‘ i
s :
LI H
£ |
3
H
200 ’&
eyt
S
=
3
Ot vt
e
5
= aom
- f)@r\/'V\
, A A A A
o S oG
£ s
E
P
.
st s
- ‘MW TOMORIANE INC e
g
o0 0400 06:00. @00 10:00 1200 1400 1500 1800 00 200 2400 %00 200 000 300 38:00 anco a0 4400 600 4800 5000

251

Diploma Thesis

Plots

B.3.5 Input Size 121 KB, 24-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Hoans Cistoiog - CPU Uttzation
Inpu S 121 KB, 24 cores acie
Dataiodes 1 BUD M, Tasklraers 1 00 Wz
Do ks

TY'

3

VAF

A

A 2"a

WY YY

-\ T\ N

P ——
O v ot
i
2500 | B - . i . " . .
Pt i i
5 H H
:
% o : ;
, A
D——
3
——
Ottt
8 2000
% o
A M
,
o S oG
£ s
o oy, B

252

Et—

s —
@sod —

non —

Fowernw ——

Teperate e ——

Plots

Diploma Thesis

B.3.6 Input Size 121 KB, 32-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Kboans Custorng - CPU Utlzaton
DataNide 017

CICT]

Vg

TS

D —
" e
m
5 60
]
L™
E %
B
1
o
wonow moww ooso0 a0 s a0 oz o 0w a0 coae w200 e ots0
Kt st Ntwon T
o S 51 1 30 o
Onaiofos 80 s oo 30 e
1200 : . ; : . : . : ; ; ;
140
5 o
$
L e
HE
Kt Gusteng - cPU Wi
S T 3 o
Osaoat 50 . ookaers a1 200 Mz
Aot
]
s
Kbions Gustrma - Nwor T
S 3
Ostaoges a0 . asars 30 iz
e %
o0 rasn
\Eon —
§ wm
£ o
3
20
N n n A A
wooso mows | wosm | woim | wiee | wmeo maam mmw s | woeso | mam e oem om0 s mewo ouoew | owoswr | ovazeo
e
chioars st - Pows Conumpton
o S a5 e
Osaofo 80 A Tooars 30 e
w ; - [p—
. ; ;
s i
=]
Gooso mews wossy sozam codess | aeso | masm mmm oo wssco | mase | men | ooy om0 @ses0 messo | cosy | anoson
Kcteans it o et
oS 1 e, 53 o
Ontatoges a0 . o s 30 iz
) Tomperaure nc ——
Goco woswo moser oaamo ose0 | mae mawo o200 o200 | 00600 | woome | mas | ooew 005200 @sees oo mosoy cuosoo

253

Diploma Thesis Plots

B.3.7 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 200 MHz

P i e ein v i st s e T o

254

Plots Diploma Thesis

B.3.8 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 533 MHz

K boans Custoring - CPU Utization
gt Size 121 KE 48 cors e
Outanades a2, T 53 e

\['Ti |{ Ii

‘W\\
R

[‘ ‘ T ww D {dy i uy w |“ i ‘ M’, e |,mw|m‘

gl w\\‘m{

\H\ ‘wy' TV

g0 im0 1200 s a0 28 o040 o0 as a w200 w3600 o 200
T
foans Clusterng - Network Taic
S 51 W 38 s
DataNoses &t 200, asklrackers i 53 Mz
DaaNide 2
9009 rasn —
raRon —
acoa
7000
8 s000
g
g wm
£
2000
w00
B A
e w0t woaco waz00 o0en0 w000) 2800 w200 w500 4000 e mrenon 5200 oseno v o040 119500 2o 1600
Tine
 Ciustaing - CPU Utlizaon
oS 51 e 8 coes s
Dataoes & 200, askTraers 1 30 e
TkTracker A0
[r——— i trbson, eass [[i [r—— s, P
200 I o User m—
- U gsem

e
sy o Tt
o e
B Akt bints
ol
o -
o
£ o
E e
HE)
o A
, AN b n, JAVAY ™ N A
P —
G S
P LT .
& POWET INW e
w
o
s e
5 s
£
[
©
Sowweemew whemne wee wie wme wne whe wee waw wewwmw www wew wme mme e o
.
[——
ot iaby, St et
P AT
[[P [P— [
= " " " " Temoeraiure in € —
H
w
e

255

Diploma Thesis Plots

B.3.9 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 800 MHz

K beans Ciusterng - CPU Utlizaton

[——

Kossrtaon: s [Re—— R [— [

100

—— ”"“‘““Hl(“‘\"‘HH r.l|!,,(h \W\ m M\ 'r ‘“ "H}\ "“““‘\‘M"

e
saing etk
I S 15 8o st
s S50 Vs ks 500 e
e
o kan —
] aron —
§ o
]
L
£ oo
™
)]
woom meso oo Wi o | @aow0 | Wa0 | e @m0 | mme 0400 menn | osm Msoo | omm Gooos | ooim oloww | Wi oowm @m0 oo e

K beans Ciusterng - CPU Utlizaton

[R—— i o s R i et sns, ez e emen e et s

cPUsysem

003 99200 0SOD 01200 091600 026D 092400 260D 00200 003500 OD4GOD COAAND COMSO0 005200 OOSS00 OLODGO GLOSO) OLGSO0 014200 OLASEO GL200O G2e0) 012800
T
esns Oty tevor Tafc
e
OotaNoe 00 s ok Tagers 800 HE
Tesrssie k32

[E——— [N [E— | iz [E—— [—— [— P
000 Kaisin
& o
2500
£ mm
H
£ o0
s
N _pd A, AA A=A Auada
Wm0 wetm oe | Wie aee) 2o | W20 o2 0300 | W3 004000 4400 04s00 0500 | 005680 GLooo0 GLOWD 00s0o 0lizoo | GLieas | Giaem oo 01w
e
tdeans lstaing - Ponr Consumption
s S 191K, 48 oo
CatNcs 5 20 . Takhackrs 800 iz
= Powerin W —
m '\JMW\J\/\
Weom | mowo | oo | 2e | oo | a0 | 02400 | 0230 00300 | o3 | (04000 | 04400 | 00400 | 0500 oseas | GLoomo | Lo | oiosoo | oLizos | oueoo | ciaews | ouasso | oiaseo
fetems Gt o Tempestrs
ot S 121 K. 16 cors s
Dnacts o 00 . TeTnors 800 b
- Temperature in € ——
H
Ghooso MO0 0300 0200 | GOA500 002000 02400 002800 | 93200 G3000 G4000 G40 (04300 | 005200 005G0D GLo00D | GL0A00 | GLOSO GL200 GLIb00 GZ00s GL24g0 ci26a0

256

Plots Diploma Thesis

B.3.10 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 200 MHz

K Means Clstoring - CPU Utlzation
lnput Siza 121 K6 6 cove e
Dataoces o 533 Wz, TaskTackers a1 200 Mz
Datatide o7

01090 w2000 o 000 0000 000 000 000 w000 aoncn 4 wsoon w000

I Means Clstoing - Network Tafle
lnput Sizs 121 K6 45 coresacie

[—— oo omenemnase | cwenranon | mmemine | oeamsto | coweseoins | s | onetemsie | K
00 ; i I T ; i ; .
L s
H
% o
. |
@ mame mmam e Gem wmw ow | m0® | Gm | ;s | mes | ;sie | @ | @i mme | @wmw @em Eaw o 6on
Ko Cstodng - GPU Utlzton
g e 197 KE. 36 corea i
Ostaode 5 53 i Tkl 200 e
e
[—— [R T T T G D o | e
W
5 ’
E
e
Kbeans Oustrn - twor Tt
i S 121 K8, 15 cores acive
Osaode 1 55 i, o a1 200 e
Teacan ot
anon —
22000
, o
£ e
¥
F
= 000
o A ik J " dd ” A,
oo w0 wmo | wooon Geon Gww oew Guom | 0omo 0om om0 w000 moveo oeaoor | @meo @mco | Gaco | Gww oo
Kheans Gustatng - osor Consumpton
s e 12143, 45 cores s
Outaogs L 55 e, Tk Tackrs & 200 e
= Fower in W ——
43
“
Goooo waeo mma mwm | maw Gmw Gew www | emn coo | men | ano | eoo | Goo | eno | ewee Gew maw Gen
toans st - Boars Tongeratrs
s e 19145, 43 core s
OstaNoges 1 55 4. oTracrs a1 200 e
= " M N . } W N N " Temperalure in C
F
»
Time

257

Diploma Thesis Plots

B.3.11 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 533 MHz

258

Plots

Diploma Thesis

B.3.12 Input Size 121 KB, 48-Node Cluster Topology,

2000 §
oo
L o
8
!
F oo
£
2w
§
fw
=
o
o

DatalNodes at 533 MHz -TaskTrackers at 800 MHz

beans Ciusterng - CPU Utlization

o Sz 121 KB, 48 cores acive

Datanoses &t 33 M, askTrackes l 00 Hz
DaNia k1

1000 0 owonon

cMears Clstorng - Network Trafc
Inout Stz 121 K5, 8 cores actve
Dataoses at 533 Wi, Tasklrackers l 800 MHz
DaaNi 0T

[ra—— [— [r—— [—— [L pr—— [— [——

w000 o EEET)

H H . H K —

ol —

A

a00 o500 onco oo o e w000 o090
i
beans Ciusterng - CPU Utlization
o Sz 121 KB, 48 cores acive
Datanoses &t 535 M, askIracers l 0 Hz
Tevacues ek
e nrern e | - b i s [——— [T VR ottt e | st P

U ide m—

S O S ST S
-
e
. sk o~ Al
P e
= — N Fower inW ——
e
S O S S S
o Temooratire € —

259

Diploma Thesis

Plots

B.3.13 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 200 MHz

K ons Custorng Py Ulzston
nput Size 121 K5 4
oaanosts gt asracios a 200 iz

000

Heans Ciustotng - Netvrk Tratc
Input Sz 121 KB, 8 core acie
Dataloes 1 B0 M, Tasklraers ai 200 Hz
Do it

L

mioan

w2000

msog0

w30

2000

w3000

5000

cPUgystem
CUide m—

K ons Custorng Py Ulzston
nput Size 121 K5 4
Oaanots a0t asrackos a 200 iz
Tk

eans Clusterng - Networ Trafc
" S o1 K 48 oo s
Ostaodesa 600 e aTrkas i 20 e

ey o0

000

w00

o

o

e

1000 i
12000 i
3 ;
H H
2000 H ﬂ
. s dh moa M s
o3o0mm oo 2o o0 o oo o om0 a2 Eer oo 100
K Gty o Connon
o e e
Ontaos o 830Vt ok oo 300 e
[[— [Ko s, s [— [,
e ; ;
@
oot o 2ot = o o oo orom o osom o o
e
gms ustang_ s e
S e
Caoe o SO0 VA oK a3 300
=
£
w
oo o000 wzse w30 w9 w0020 Fr 1000 o200 o w00 ases

260

wasn
ason —

Poverin W ——

T 0 —

Plots Diploma Thesis

B.3.14 Input Size 121 KB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 533 MHz

KMears Clstorng - CPU Utlizaton

Input Size 121 K6, 6 coves e

staNoses & 00 Mit, TaskTrackes l 533 Mz
ar

]
i

U Urzaion

w3000 w2000 w3000 5000 o0 @102
K eans Gusteng - otk Tt
ot S 51 W1 core s
Ostaoge 1 B0V ol aars 1 53 e
g
JE—— [——— J— I T T pe——r— [—— o | s o | o s
o s i
L o ‘
) i
B i
£
§ o]
<
5 ﬂ WA
e
K eans Chstorng - OPU Utizaton
ot S 1 4 e e
Ontoces E00 Ve, T a1 53 e
s

3

Hoans Ciustoing - Notwork Tt
Inpi S 121 K&, 8 core acive
Dataioges a1 BUD M. TaskTraiers a1 533 W
TekTracker 5405

JPR— [r—— R JP—— o pie | | o
osn —
&=
oo
L o
8
£ o
£
§ o
H
= 000
) "
S) 2o o o w007 Frry [EE ETT) s o ey o
Kans Oty oy Corsron
S e
oA e e 53 e
e N N N Fower inW ——
N .
fe
io
2
o
= o Fr r=ry o Fry Ere FEen ErT) Fre) o FEy Frr Fry P
e
L —
o e S e
oA s e 53 e
JPR—— [—— R . [R—— [P U S ———
»
T
Boneo oo o o Ere) pry pr=3 oo pey o Frey ErTy Erey e 2
e

261

Diploma Thesis Plots

B.4 Frequent Pattern Growth

B.4.1 Input Size 4 MB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz

262

Plots

Diploma Thesis

B.4.2 Input Size 34 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Froquent Pattom Growth - CPU Utlzation
I Sz 4 LB, 45 cores acie
Dataodes 5200 Mz, Taskraceers 51600 Mz
TataNisde o7

400 oene

Froquent Patom Growh - Notwork Taflc

lnpi S 52 1B, 45 cores e

(taodes t 00 Wik, askTracuss al 800 Mz
TataNisde oci?

L

YAWTAIW T\

4000

rr "VV'

mae00 misen0.

[

o s

AN\

ovon0

St s

s ou

Froquent Pattom Growth - CPU Utlzation
TekTache

Froquent Patem Growh - Network Traflc
Inpu: Sz 31 1B 45 coes acta
Dataioges at 800 Nz, TaskTraceers at 800 MH
Tesscke ot

o s

Sm=
8 2000
-
s " a I\
s
S o
S [R [j— f—
= Fower nW ——
©
©
000000 000400 00800 w1500 w2s00 w3200 w4000 w5200 w600 o000
A —
e T e e
B e R oo e
= Temperature € —
z

263

Diploma Thesis

Plots

B.4.3 Input Size 377 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

a0 0800
Fraquent Pattem Growh - Networs Taffc
rout Siz0 37 1B, 48 coros acto
DataNoten st 800 MH, Tasaices 1 600 Wz
Dataniods i1

1200

Lrr———

w2400 e

[——

4400 a0

0000 0400

wzo0

[J——
Smon —

2000

1500

) J‘\ IM& Mj

N A VA% /‘\ m N A
oo oscn e e) wzom w2 w2800 w320 w00 @00) sem0 e wsero wonm pree EET) iz
e
Frquent Paten Qo - G2 Usization
ot St 377 M. 45 cors acty
Onaodsm B30 . ks 300 i
stk
Prabel onrting, M i Parshet Courting, Fecce. Parule PP Grovi s Aagwain, M Arsion, e

s

TUide m—

w20 Goemen oo
e
L ———
T Sau T T e s
O B3O Vb e 300 e
AR
J——. [[JE—— e
=00
00
L o
§
£ 2
£
H
.
500 l
POZE N} . Am OV, WP SR W WL L "
G werm oo e e e wav T e e e wme o wsem e o o
e
o ——
oot San 7 . 1 s s
e B e e oo
J— [[J— [
s =
g 5
H
g
=
Goom wowo | wmme i e wamme | war | wae | e wwm oewe | wam omw wmms | wsmw mww | aewe | oew | adme
T —"
o Sea T8 15 s
NG S L e
[re— [pmmacorin e [—— e r——
o Temoeratire NG ——
= L
Goom oo oow om0 maeeo waeo a0 o om0 wseso | e s aeo mee om0 oo wosn oosw iz
e

264

Plots

Diploma Thesis

B.4.4 Input Size 4 MB, 16-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

Frequent Pattem Growth - GPU Utlzation
inpat S0 4 i, 28 cores cie
Dataods at 800 Mz, TaskTicars 51600 Mz
Deta "

Y'ﬂ]

Froquent Patom Growh - Notwork Taflc

opat S0 4 i, & cores actve.

staodes at 800 Wi, TaskTrackes 1 500 Mz
TataNiae rex01

Pt o

i

Pt v e

o

TATAVAREY cuuse mem

Network Tati n

I

[rr—
s ou

Froquent Pattem Growth - CPU Utlzaton

npat S25 1, 16 cores acive
Dataioges at 890 Nz, TaskTrackers 3800 MHz
Tesmoie k21

e

o User

P gysiem
CUWO m—
TPUde m—

200 EE) o500
Frequent Patem Growh - Network Traflc
s 1 00 Mz
[—— P casees s e e . [EE r— J——
il @sn
@son —
o000
L. o
-
2000
o
e = =) %00)) e 1400 500 w00 0 200 200) =0 EX) ET) 3500 300 e
Froquent Pattom Grouh - Powor Gonsumgtion
ot 5.4 i, 48 cores i
staodes at 00 M, TaskIrackes 1 800 Mz
[— P caser s Pt P 7 v, e r—— .
B E—
5
5
weo = £)))) 0) w00) B B =00 £ 00 00 e
Tive
Fraquent Patem Growth - Board Temperatire
Trou Sive 15, 48 cores ac.
Dstaodes at 800 i, TaskTraskers 1 500 Wz
[r— — P e v a2 o, e o g [
T Tamperaite inC
2
£
“ooon EX S 3 o 1000 1200 100 160 1900 w0 20 200 200 ER) EX) 200 100 w00 Ex)
e

265

Diploma Thesis

Plots

B.4.5 Input Size 4 MB, 24-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

=) 010 EX3
Fraquent Patten Growih - Nstuork Tisffc
nput Sias & 15,24 cores actve.

Do 5t 200, TeskTsckars 8 800 Mtz

Datatone k25

1900 . . i . . resn
i KERon —

1400

1200
@
2 oo
£ oo
E
b

Froquent Pattom Growth - GPU Uttzaton
ot Size 4 M. 24 coves et
Dataoces 2800, Tackers o 500 M
TkTracker 405
Py User -
U 9ystem

B
e
S e — - P
. [
g =

266

Plots Diploma Thesis

B.4.6 Input Size 4 MB, 32-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 800 MHz

1:: '"‘~""~IWYIVW“ mlqm'"ww‘l‘;\
20 !

|

267

Diploma Thesis Plots

B.4.7 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 200 MHz

i u\‘uv“u“»} 'v "u\‘ds‘:“ ‘“\\‘,w‘ﬂ““““" i A u“‘.\' “‘h“u“

1 IMAE g ey H!

268

Plots Diploma Thesis

B.4.8 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 200 MHz -TaskTrackers at 533 MHz

Froquent Pattrn Growtn - GPU Utization
nput S 4 M, 48 cores actv.
Dataode at 200 M. TaskTrekers 533 Kz
o y

Putare oo s pr—— § oo nece

U Urizaon

w00 mosoe 001200 2000 002800 00200 MW 040 04400 004800

auowe ouosoe o500
Froquent Pattrn Growth - Network Traflc
Input S 4 M. 48 cores aciva,
Dataode at 200 Wiz, TaskTrekors a1 535 K.
Dataniode k12
| P ot i v oo s i P e . Futare o s P [EE——
Ll s —
@sod —

5000
£
2
%

2000

B t\
eoto cooas | 0os00 | Wa200 | mabed om0t W2400 G280 03z | W:s00 | G000 | Gneed | B0 00s200 00see0 | G000 | W040) GOS0 oazen | Gaeeo | nauau
Froquent Pattom Growth - CPU Uttzation
ot 75,4V, 8
Dataodt ot 200 M, TaskTcuars 31 533 Mz
Tesmoe o
e i [—— P2 e, o Pt . i e [r——

3
S —
g o
AT
B
5.
) Al .AﬂlML N
-
o PO W e
§ w0
8 s
H
S
e o, o
N . ir . Temperature inC ——
£

269

Diploma Thesis

Plots

B.4.9 Input Size 4 MB, 48-Node Cluster Topology,

DatalNodes at 200 MHz -TaskTrackers at 800 MHz

Froquont attem Growth - CPU Utlzation

400 o800
Foqent Pt G- Nevor Tt
8 cores e
Ontodes 200 i, T a 500

'w

I \H

1"{ H'!'

04400

YH]

T

P User

St—

o0 s —
@son —

o000
. o
5
o) 1
E

o A v
eoem0 ovs00 Cr) 2200 600 w2000 2400 2800 w200 wsee Cr) 0 4s00 04800 sz e ey
Froaens ot G - GPU Uteston
Outodez o zoa um Yuk'mckm 800z

0400

osa0

Froquent Pattom Growth - Notwork Taflc
ot ize 4 B, 48 ooes e
OstaNods a 200 k. ks a 200 ke

Tk 0

P User

P gysiem
WO —
Etp—

J— e R [- e
0 KBS 10—
o

5

8

-

-
s Adasanst [
S o e e e = e EE= = wnen Er= s e e e e
.
s e G- o
L en o o
P T
J— i i [J— R
-
o
£
£
ERS i . i e o i e ke e i o e e s oo
S Gt e
S e e
oo R e
J— [R [— R
- Temoerature 0 C ——
g
: .
- .
Foom e = e e o s = = = e i g e s e
-

270

Plots

Diploma Thesis

B.4.10 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 200 MHz

Frequent Pattem Growth - GPU Utlzation
npat S5 4 i, 28 cores cie
Dataods at 533 Mz, TaskTacars 1200 Mz

Dt

i | i

i

i

\‘\“f"ﬂf“"' ey

o
DO CO0AI0 (00300 001200 00Z600 (200D D200 002800 00 03600 004000 OOECO (04800

Froquent Patom Growh - Notwork Taflc
npat S5 4 i, & cores acive.
staodes at 533 Wi, TaskIrackes 1 200 Mz
DataNisde 8

msz00 00600

Frata . s pre—

CLOCOD 00400 0LOSOD (11200 OLIGOD L2000 0L2400 CLZGOD OL2AD QLA

4000

CoU User
L 9ysiem
U0

Et—

wieeoo oudaco

[—— [—— Pt e i pr— r——
2500 . - . . s —
5 wm
H
o
=
B N i i

Frequent Pttem Growth - GPU Urlzston
ot 520148, 4 coros actvo
Ontaoie ot 533 N, Tasceciars 51200 Mz
Teslracke 515

o
ocato.

©0400 00000 001200 D00 AN 02 026 05200 D D000 D400 (04300 (05200 COSGOO 0L0000 GLOSD GLSOD DLA200 OLAGOD OLAD0D OL240D OLZEAD 01320D QLGOD QOO Gé0D 4RO
e
FrecuentPatem Growh - U Utzaon
it Size 1 I, 8 cres e
Dstaoaesat 535 Miz TaskTracers a 200 Mz
ook e
[— [RIm A — [— o i s P e
oo s ——
i Ot
oo
w0
5 w0
H
[
g am
| ol
N iahuik h LoAssa I\
Frscusnt Pt Grauth - P Corsumaton
ot S2c 11, 48 cocs ace
Ontaodes o 535 WA, Tesracirs o 200 Mz
[— [Rem—— [— [S — - § somowin peaes
® Powernw ——
£
£
§ =
@000 0a0) 000 001200 D600 02000 Mz 00za0h 003200 (00 (04000 (4400 004E00 ODSZ00 MDSS0D GLODOD 0OWD OL0RGD 014200 GLo0D GLa00D 020D OLZea0 L3200 GLOROD GLDOD Coawmo oLéemd
Fracuant Patten Gt - Gosrd Tamparaturs
Tnpit S70 411, 0 coes ace
Ontaodes s 535 M, Tesk ks 8 200 Mz
[i [—— J - [— ommen s [E——
H H } H ‘ ‘ H } HH ‘ r HH ‘ ‘ ‘ o
| { }
@O0 (00600 00300 001200 DGO 2000 002400 00Z600 00GZD 0036A) (MO0 GNAN0 (4B00 003200 (D600 GLOOCD OKT00 OLGEWD (21220 G160 GLA00D OLE400 01200 L3200 (L3600 GRADD CAe00 OLABDO

271

Diploma Thesis

Plots

B.4.11 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 533 MHz

Netaork Tatc i cets

Network Tt n kBls

=

Do Consu

Temperzute ¢

Froquent Pattom Growth - CPU Uttzation
npat S5 4 i, 28 cores cive.
Dataodt at 533 Mz, TaskTcers 31503 Mz
Dt 7

Pt ceni .

wowe oeeso 200
Froquent Patom Growh - Notwork Taflc
opat S5 4 i, & cores actve.
staodes at 533 M, TaskIrackes i 53 Mz
ey

[—

Frequent Pttem Growth - GPU Urlzston
nput 520148, 48 coros actvo
Ontaoie ot 533 N, Tascaciars ot 503 Mz
Teslracke rokéz

2000

02800

w3200 o a0 mses owooco ooese 00eoo o500
o e, s (SRS pm—— | e s
s ou
e

non —

Fowernw ——

Tomperatre in

Foaurt Pt Gt - Nevor Tt
ot S B v s
OtaNode 5t 58 N 035k 59 e
e
JR— E— [F— PR Jr——
oo
3500
w0
200
w0
w0
00
00
o VWY, A A
woom meo wmm wmm wmm maos | o wme oo @ oo oMo mdeso | G0 | oo oleows | momo | oo ol | olmew | 0zoe
e
L p—
i i ot S
OtaNode 3t 58 I 035k 1 59 e
JR— [E— JE—— [i [
o
a
= ! . . . ; : .
Goow woro mews | wizw | womw | maews | maieo s | wom wsew obeo ommo wawo mso | wmmo ooom ok | mewo | wisw | ouiewr 2o
Foauep Paton Gowth- Boa e
e Sen . o e
oo 58 M, T A B 25 iz
JR— E— [JE—— JU— S
s
Goows oo om0 w20 wodeoo | Gzoo waemn om0 osmoo e oo oaeoo wdeoo mes ooso0 oo | wesss meseo | onirey odeos | awzaos
e

272

Plots Diploma Thesis

B.4.12 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 533 MHz -TaskTrackers at 800 MHz

g 1
H
% o
s e e = - o o
.
— e
Fosri —
P o =
J N [
T
“ e = B

273

Diploma Thesis

Plots

B.4.13 Input Size 4 MB, 48-Node Cluster Topology,

DatalNodes at 800 MHz -TaskTrackers at 200 MHz

Froquent Patiern Growtn - G2U Ubizaton
nput Sz 4 5. 48 coresscive.
DN S0 Tk Tckrs 200 e

[anp— i o s Prnare o 0 i [— [— [E——r—

e
Froauent Pattrn Growth - Ntwork Tt
nput St 4 M5 48 cores et
Dataodes at 600 Wiz TaskTrackers 200 iz
Detaniode 57
[P s P e e 50 [[r— J———
1500
e
20
100
an

. . n .

WOVC0 0OMD 00S00 001200 (01600 0000 002400 200 W30 03600 0000 (0400 004300 005200 005600 GL0D0D CL0MO0 010600 OLLZA0 01600 02000 02400 OLZ600 (19200 GLIR00 040N Ods0 OLepn | CLszoo
T
et pater o U Utzien
Onaoces 56 n,umcm 20
TesTrack
[r—— i . [— i P 2 o, s i pra—— EE———

o
00000 000400 (D000 G200 (0IEN0 002000 @800 (03200 DD 004000 0460 004BED 005200 L0DCO OLOADC CL0BOD OLIZO0 060D 000D 012400 0L2800 GLI200 GL3OD G14ONO OLAGED 01400

A ""'w‘"ll

ceu Uiz

Fraquant Pattern Grawth- Network Trafc
put S 4145 oot
oot S0 M. Tk 200

5200

e
om0 ; . -
R
5 o
1200 l N
e S i
it
o S ST
[E— i J— R i JE— U
® o
5
B
oo ooes moeme wiie oem G G omeer Bes Gem ool mowl Geme sty om0 Mo Wor Gmw Gime Giem eme ma Gam GRm ome @ Gem s awe
g e G e
ot ST o
o S B
[E— [Jv— N Ju—— JE——.
§
£

=
0000 00400 W00 001200 001600 O0ZD0 W2400 W20 0320 (0300 W40G0 00400 004500 O0S200 W5600 GLONOD GL0S0 C10800 L1200 01600 0LZ000 OL2400 L2600 L3200 GLIGOD CL400D OLAAGO 014800
Time

274

5200

K o

[p—
s ou

Fowerinw —

Temperaure inC ——

Plots

Diploma Thesis

B.4.14 Input Size 4 MB, 48-Node Cluster Topology,
DatalNodes at 800 MHz -TaskTrackers at 533 MHz

Heswork Tt n <grs

§
H

v v\(“mr {v”mmny\(

4000 4400

2200
20

o L A

om0 wranon wsen sz w600 w2000 w20 zeto o = o0 w00 waeco EE = wovan oo w0500 w200

Frequent Pattem Growth - GPU Utlzaton
npat S25 1, 4 cors acive
DataNonh at 800 Nz, TaskTscuers 31 535 MHZ
Tesracke o

Frequent Patem Growh - Network Traflc
npat Sas 1, e
Dataioges at 800 iz, T

5 Mz

BalE
[— [S s J— J——
-
P
o
o
s
™
. i Al h Aanin] TN A d
e I R R R T T e e
n
T —
s ot Fons s
s 0 e e S5 e
S - - S [J— [p—
" . . . i , .
T mem wme wam wwe mmm wmw wmm owe wwe oew mem ome mmm oo wew oo wew ame
T —
P S, St T
N ELE)
O R [- JR—
| ‘ l A_N——‘ ‘

275

CoU User
oL 9ysiom
w0

Et—

non —

Fowernw ——

