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" To the dolphin alone, nature has given that which the best philosophers seek: Friendship for 
no advantage. Though it has no need of help from any man, it is a genial friend to all and has 
helped mankind." 

- Plutarch 
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ABSTRACT IN GREEK:  ΥΔΡΟΔΥΝΑΜΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΒΙΟΛΟΓΙΚΩΝ 
ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΩΣΗΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΒΕΛΤΙΣΤΩΝ 
ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΩΣΗΣ ΠΛΟΙΟΥ 
(αγγλικός τίτλος: “Hydrodynamic Simulation of Biological Propulsion Systems and Application 
on the Design of Optimal Marine Propulsors”) 

 

 

Καθ’ όλη την καταγεγραμμένη ιστορία του, ο άνθρωπος στρεφόταν στην φύση για έμπνευση 
όταν έψαχνε για αποδοτικά μέσα. Από την αρχαία μυθολογία μέχρι την επιστημονική φαντασία, 
παρουσιάζονται ιπτάμενες μηχανές που μοιάζουν με πουλιά (ορνιθόπτερα) και υποβρύχια που 
μοιάζουν με ψάρια. Πολλοί εφευρέτες προσπάθησαν να αντιγράψουν την φύση, αλλά οι 
περισσότεροι αποθαρρύνθηκαν από την πολυπλοκότητα της κατασκευής και της μηχανικής 
των ρευστών 

Μετά από εκατομμύρια χρόνια εξέλιξης, τα ψάρια ανέπτυξαν ικανότητες μακράν ανώτερες από 
τα μεγαλύτερα επιτεύγματα της σύγχρονης ναυπηγικής. Ενστικτωδώς, χρησιμοποιούν τα 
σώματά τους, ώστε να πετυχαίνουν υψηλή απόδοση, επιτάχυνση και ελικτική ικανότητα. 

Τα δελφίνια, για παράδειγμα, κολυμπούν με χάρη και προφανή ευκολία δίπλα σε πλοία που 
ταξιδεύουν με 20 κόμβους. Θαλάσσιοι βιολόγοι αναφέρουν ότι κιτρινόπτεροι τόνοι τραβούν την 
πετονιά με ταχύτητες που ξεπερνούν τους 40 κόμβους, ενώ οι σολομοί πηδούν κόντρα στο 
ρεύμα του ποταμού με απότομες επιταχύνσεις που συχνά ξεπερνούν τα 20G. 

Ενώ η σύγχρονη αεροναυπηγική, εξελίσσεται ραγδαία τα τελευταία 100 χρόνια, οι ιπτάμενες 
μηχανές της φύσης, με 150 εκατομμύρια χρόνια εξέλιξης, παραμένουν μακράν ανώτερες. Μία 
απλή σύγκριση, όπως τίθεται από Triantafyllou & Triantafyllou (1995) εκπλήσσει τους πάντες. 
Οι άνθρωποι κινούνται με μέγιστη ταχύτητα 3-4 μήκη σώματος το δευτερόλεπτο, ένα άλογο 
αγώνων, περίπου 7 και το ταχύτερο τετράποδο (cheetah),πετυχαίνει 18 μήκη σώματος το 
δευτερόλεπτο. Ένα υπερηχητικό αεροσκάφος σαν το SR 71 Blackbird που ταξιδεύει με Mach 3 
καλύπτει περίπου 32 μήκη το δευτερόλεπτο. Από την άλλη, ένα κοινό περιστέρι κινείται με 75 
μήκη σώματος το δευτερόλεπτο, το ψαρόνι πετάει στα 120, ενώ είδη χελιδονιού ξεπερνούν τα 
140. Η ταχύτητα περιστροφής (roll rate) ενός αεροβατικού αεροσκάφους σαν το (Α4 skyhawk) 
λέγεται ότι είναι 270 μοίρες το δευτερόλεπτο, σπουργίτια και χελιδόνια ξεπερνούν τις 5000 
μοίρες το δευτερόλεπτο, ενώ ξεπερνούν τα 14G επιταχύνσεων εκατοντάδες φορές την ημέρα, 
ενώ τα καλύτερα μαχητικά αεροσκάφη μόλις που αντέχουν 10-11G. 

Ως μηχανικοί (και άνθρωποι εν γένει), έχουμε έμφυτη την αναζήτηση της βελτίωσης, η οποία 
εκφράζεται στην περίπτωση της πρόωσης, στην ανάγκη για αύξηση της απόδοσης. Το γεγονός 
αυτό, μαζί με την σύγχρονη τάση του για μέσα φιλικά προς το περιβάλλον, κάνει ακόμα πιο 
επιτακτική την ανάγκη να διερευνηθούν εναλλακτικά μέσα πρόωσης.  

Όπως πολύ σωστά ετέθη από τον Rozhdestvensky (2003), είναι εμφανές ότι το ενδιαφέρον για 
βιομιμητικά συστήματα δικαιολογείται, καθώς τέτοια συστήματα: 

• Μπορούν να θεωρηθούν ‘καθαρά’ από οικολογικής άποψης 
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• Λειτουργούν σε σχετικά χαμηλές συχνότητες 
• Λειτουργούν με αρκετά υψηλή απόδοση 
• Είναι πολυχρηστικά, με την έννοια της ικανότητας να λειτουργούν σε διάφορες 

καταστάσεις κίνησης και φόρτισης  
• Συνδυάζουν τη λειτουργία του προωστήρα, της επιφάνειας ελέγχου και του μέσου 

σταθεροποίησης 
• Μπορούν να παρέχουν στατική ώση, αλλά και μεγάλη ελικτική ικανότητα 
• Κατέχουν καλύτερα χαρακτηριστικά σπηλαίωσης από συμβατικές έλικες 
• Έχουν μικρή (σχετικά) αντίσταση στην ανενεργή κατάσταση 
• Επιτρέπουν (ενίοτε απαιτούν) την χρήση σύγχρονων τεχνολογιών, όπως προχωρημένα 

συστήματα ελέγχου, πιεζοηλεκτρικά σύνθετα υλικά, τεχνητούς μύες κ.α. 

  

Σε αυτό το κλίμα και έχοντας όλα τα παραπάνω υπ’ όψιν, η παρούσα εργασία προσανατολίζεται 
στην χρήση της μεθόδου των συνοριακών στοιχείων (κώδικας UBEM) για την προσομοίωση 
βιολογικών συστημάτων πρόωσης, με στόχο την κατανόηση φαινομένων και την εξαγωγή 
συμπερασμάτων που θα οδηγήσουν στην σχεδίαση βέλτιστων προωστήρων πλοίου. Η χρήση 
της συγκεκριμένης μεθόδου ενδείκνυται, καθώς μπορεί με μεγάλη (σχετικά) ταχύτητα να 
προσομοιώσει μη μόνιμα φαινόμενα, καθώς και να παράξει αρκετή, συγκεντρωμένη 
πληροφορία για τα φαινόμενα που εκτυλίσσονται. 

Πιο συγκεκριμένα, αφού γίνει μία γενική παρουσίαση του τυπικού προβλήματος ενός 
βιομιμιτικού προωστήρα, παρουσιάζεται το μαθηματικό μοντέλο των συνοριακών στοιχείων, η 
αριθμητική εφαρμογή αυτού και η τελική υλοποίησή του σε ένα πρόγραμμα. 

Ύστερα, παρουσιάζονται κατά σειρά, οι διερευνήσεις που πραγματοποιήθηκαν ως προς την 
πλειοψηφία των ελεύθερων παραμέτρων του προβλήματος, αλλά και των διαφορετικών 
περιπτώσεων, δείχνοντας τα αποτελέσματα που παρουσιάστηκαν στις (παρακάτω 
αναφερόμενες) δημοσιευμένες εργασίες, αλλά και πρόσθετα αποτελέσματα, από τα οποία 
προκύπτει μία εκτεταμένη συστηματική σειρά προωστήρων, που μπορεί να χρησιμοποιηθεί 
κατά συμβατό τρόπο με τις γνωστές ως τώρα μεθόδους σχεδίασης. Η ανεπτυγμένη 
μεθοδολογία, μαζί με εφαρμογές αυτής παρουσιάζονται  και συγκρίνονται με συμβατικούς 
προωστήρες, όπου και αποδεικνύεται η υπεροχή των υπό μελέτη συστημάτων. 

Τέλος, παρουσιάζονται οι τελευταίες εξελίξεις που αφορούν την εφαρμογή υδροελαστικότητας 
κατά την έννοια του ελαστικά εδρασμένου πτερυγίου (ένας βαθμός ελευθερίας - pitch) και 
κάποια πρώτα αποτελέσματα της συστηματικής διερεύνησης αυτού, καθώς και η χρήση 
ενεργού ελέγχου. Η δυνατότητα χρήσης αυτών σε περιβάλλον τυχαίων κινήσεων, δείχνει την 
δυνατότητα χρήσης των βιομιμητικών προωστήρων ως συστήματα εξοικονόμησης ενέργειας, 
ενώ στην κατακλείδα παρουσιάζονται προτεινόμενες εφαρμογές σε μετατροπή υπαρχόντων 
πλοίων, σε νέους σχεδιασμούς, αλλά και εφαρμογή σε πλοίο μηδενικών ρύπων.   

 

 

Οι δημοσιεύσεις που προέκυψαν στα πλαίσια του προγράμματος είναι: 
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Introduction 

Part  I  INTRODUCTION 

 

Throughout his whole history, man has sought in nature for inspiration, in his quest for 
effective ways of transportation. From ancient mythology to science fiction, there are 
ornithopters and fish-like submarines. Up to very recently, many inventors have tried to 
imitate nature, but most have been discouraged by the complexity of construction and fluid 
dynamics and lack of powerful design tools. Nature on the other hand, had more time and 
patience. 

Over millions of years, marine animals have evolved into avid swimmers, with capabilities far 
superior in many ways to any achievement of nautical science and technology. Their superbly 
streamlined bodies are used by instinct, to exploit fluid-mechanical principles in ways naval 
architects today can only imagine, achieving outstanding propulsive efficiencies, acceleration 
and maneuverability. 

Dolphins, for instance, move through water gracefully and easily, following and playing 
around ships cruising at 20 knots or more. It has also been reported that yellowfin tuna caught 
on a fishing line can pull the line at speeds exceeding 40 knots. The aggressive pike overcomes 
its prey with short bursts of acceleration that can exceed 20G. 

While aeronautical technology has advanced rapidly over the past hundred years, nature's 
flying machines, which have evolved over 150 million years, are still impressive. A simple 
comparison, as very finely put by Triantafyllou and Triantafyllou (1995) can astonish anyone. 
“Humans move at top speeds of 3-4 body lengths per second, a race horse runs approximately 
7 body lengths per second, and the fastest terrestrial animal, a cheetah, accomplishes 18 body 
lengths per second. A supersonic aircraft such as the SR 71 Blackbird travelling near Mach 3 
(~2000 mph) covers about 32 body lengths per second. Yet a common pigeon frequently 
attains speeds of 50 mph; this converts to 75 body lengths per second. A European Starling 
(Sturnus vulgaris) is capable of  flying at 120 and various species of Swifts over 140 body 
lengths per second The roll rate of highly aerobatic aircraft (e.g., A-4 Skyhawk) is said to be 
approximately 720 degrees per second, while a Barn Swallow (Hirundo rustics) has a roll rate 
in excess of 5000 degrees per second. The maximum positive G-forces permitted in most 
general aviation aircraft is 4-5Gs and select military aircraft withstand 8-10Gs. However, many 
birds have been calculated to routinely experience (i.e., hundreds of times each day) positive 
G-forces in excess of 10Gs and up to 14Gs.” 
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As it was very well expressed by Rozhdestvensky (2003), It is evident that the interest in 
biomimetic devices is justified because such systems: 

“ 

• can be viewed as ‘‘ecologically’’ pure, 
• are relatively low-frequency systems, 
• possess sufficiently high efficiency, 
• are multi-functional in the sense of being capable of operating in different regimes of 

motion, 
• can combine the function of propulsor, control device, and stabilizer, 
• can provide static thrust, 
• can provide high maneuverability, 
• possess more acceptable cavitation characteristics than conventional propellers, 
• have relatively low aerodynamic drag in the ‘‘switched-off’’ position, 
• allow the use of modern controls, MEMS, piezoelectric, reciprocating chemical 

muscles (RCM), and other technologies. 
       ” 
 

The above quotations alone, provide enough motivation for any researcher to pursue the 
subject further and convince that, when fully exploited, such systems will surpass the existing 
technologies. 
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I.1 Thesis - scope  
Biomimetics is a vast and fast advancing region of science and engineering. As it is obvious to 
most engineers, three million years of natural evolution have produced much more 
remarkable results than a century of manmade engineering. Consequently, it is becoming 
clear that reverse engineering of nature can help us produce more efficient machines, 
materials and can show the way to advanced technologies. 

Following this trend, in order to make more efficient marine propulsion systems, it is 
necessary to observe and imitate the most advanced sea creatures (specifically big fishes like 
tuna or sharks and sea mammals) 

From the mechanics point of view, there have been many patents over the last decade and 
many kinds of mechanism that can imitate the movement of the fish. Lately driven by the new 
regulations for reduced emissions, higher efficiency, and increased safety, several projects 
have been pushed to initial commercial application (o-foil, streamline) and attempts to renew 
research that started during the 70’s petroleum crisis, but were abandoned afterwards, as the 
technology was considered not mature enough.  

All the above bring up the necessity of acquiring more knowledge on the hydrodynamics 
behind these remarkable “swimming machines” in order to optimize and control such 
systems, with the final purpose of placement of “flapping foil propulsion” to ships. 

Thesis of this work is that production of a propulsor that employs biomimetic characteristics 
is feasible and more efficient, compared to conventional systems, at a level that it can also be 
cost effective. To support such a thesis, capability of simulating reliably most of biomimetic 
propulsion systems is necessary, along with a method that will enable the designer to select 
the proper system and settings for optimal operation. 

For this purpose, the CFD program UBEM, which is using a boundary element time stepping 
method with free wake, capable of simulating any given body and motion (Politis 2011), was 
employed, and data generation (geometry generation and animation) programs were created 
in order to be able to simulate any given wing/body (or more than one) under any harmonic 
flapping motion given by the user, as well as any other prescribed motion. With the 
knowledge gathered form the prescribed motions simulations, insight of the governing 
phenomena was attained and a design method for such systems was introduced. After the 
systematic investigation of prescribed motions, the ability to simulate the behavior of a wing 
on spring loaded mountings was also added to the programs used. All the aforementioned 
programs were combined in a way, by which simulations can be executed in packages of 
systematically varying parameters. Post processing programs were also made in order to 
process the results, nondimentionalize and produce charts that can be used for investigation 
of effects and application of the developed design method on virtual paradigms of ships 
propelled by such systems. 
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I.2 State of the Art - Historical reference 
The idea of studying nature and mimicking it is far from new. According to Alexander, in ‘The 
history of fish mechanics’, Aristotle considers in some of his works the anatomy and 
locomotion of swimming creatures. Leonardo Da' Vinci had also made many designs of bird 
like flying machines, which would be successful had he today's technology. After this, 
however, it took a long time before fish mechanics really made progress.  

From about 1700–1800 research on fish propulsion did not make any significant progress. Its 
revival started after the further development of apparatuses for pressure measurement and to 
the invention of photography and film which allowed the recording of the movements of the 
fish. Some first investigators are A. Moreau regarding measurements at the bladder and E.J. 
Marey for the recording of fish movements. 

Between 1910 and 1950 research was done, both by zoologists, and engineers, producing 
interesting results. For instance, wooden models of fish were towed through water having 
their resistance measured. Also, this resistance was investigated by letting weighted dead fish 
sink, head first, in a tank and by using optical arrangements for measuring their velocity. In 
this period Breder in ‘The locomotion of fishes’ published a review of fish swimming in which 
he gave names to a number of swimming forms of which the following three are mentioned:  

“ 

•  the anguiliform which is named after the swimming of the eel;  
•  the carangiform, where the front part of the body has little flexibility and the flexural 

movements are confined to the rear half or the rear one-third of the body length; 
•  the balistiform, where the propulsion is caused by the synchronized movements of 

dorsal and anal fins, while the body and the caudal fin are held rigid, by which the 
latter is of no direct use for the propulsion of the fish. 
         ” 

 For other forms of swimming reference can be made to Blake in his book ‘Fish locomotion’. 

 

In the years around 1935 J. Gray studied the waves travelling posteriorly along the body of 
some fish such as the eel or the whiting. For this he used a machine for artificially imposing a 
wave motion to a flexible model or a dead fish.  

One of the early mathematically oriented investigators of the swimming of aquatic animals 
was G.I. Taylor, who published the article ‘Analysis of the swimming of long and narrow 
animals’ in which he developed a “resistive theory”. A bending wave travels with constant 
speed along the body of the animal. The forces per unit of length of each element of the 
swimming body are assumed to be the same as the resistance experienced per unit of length 
by a long cylinder with the same surface structure as that of the body and moving through the 
fluid with the same but now steady velocity and having the same inclination to the direction 
of the relative flow. This theory is suitable for the swimming of snakes, leeches and certain 
marine worms. Later theories are often of a different type, for instance the “reactive theory”. 
Contrary to the aforementioned resistive theory, this type of theory considers the flow of the 
fluid outside the thin boundary layer on the fish’s body. By this the inertial effects of the fluid 
are dominant and inviscid fluid models can be used. 
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A thorough review of theoretical background can be found in Sparenberg (2002) Extensive 
reviews of computational and experimental work in biomimetics can be found in the papers of 
Shyy, Aono et al. (2010) regarding aerodynamics and aeroelasticity; of Triantafyllou et al 
(2004). regarding experimental developments and of Rozhdestvensky & Ryzov (2003) 
regarding all types of applications, even full scale, with additional care given to the work done 
by eastern scientists (i.e. Russians and Japanese). Interesting information is also included in 
the books of Bose (2008) and Taylor et al. (2010). A thorough review of progress on numerical 
simulations of fish swimming and bird flight from the biologist’s point of view mostly, is given 
by Deng (2013) 

 Nevertheless, a short review of the most important and relative to this thesis works is given 
for reasons of completeness. 
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I.2.1 Modern History of biomimetic propulsion 
The history of modern research on flapping foil propulsion starts in 1936 with Gray’s paradox. 
The famous paradox was formulated by J. Gray in his article ‘Studies in animal locomotion VI. 
The propulsion powers of the dolphin’.  Gray estimated among others the power needed for a 
dolphin of length 1·82 m to swim at a speed of 10·1 m/s. This was done by calculating the 
dolphin’s resistance by means of a drag coefficient based on a turbulent boundary layer. He 
found that the required power was in the order of seven times the estimated muscular power 
available for propulsion. This yields the paradox which is considered by a large number of 
investigators. The paradox is, however, rather difficult to tackle due to the lack of a common 
opinion among investigators on the influence of the swimming motion on the resistance of the 
body. Some opinions are that the resistance of the swimming body can be increased by a 
factor of three with respect to the resistance of the body when it glides motionless through the 
water; (see for instance M.J. Lighthill’s ‘Large-amplitude elongated-body theory of fish 
locomotion’) 

 

The term ‘flapping’ is commonly used to describe the wing motion of birds and insects and is 
comprised of a rolling oscillation of the wing about the shoulder joint while the pitch angle of 
the wing changes via a wing rotation about its spanwise axis. Pectoral fins of fish are also 
moved in essentially similar ways. However, these fins can be passively or actively deformed, 
significantly increasing the complexity of the fin kinematics. In several studies, this  ‘pitching 
and rolling’ motion has been simplified to a ‘pitching and heaving’ motion wherein the rolling 
motion of the wing is replaced by a heaving motion. In addition to serving as a model for 
flapping wing/fin kinematics, pitch-and-heave is also representative of the essential 
kinematics of caudal-fin motion in carangiform propulsion (Lighthill 1977). 

Past studies have successfully employed pitching-and-heaving foils to model the flapping of 
wings and gained useful insight into the fluid dynamics of flapping flight as well as 
carangiform propulsion.  

 Before the state of the art in the area is presented any further, it is necessary to introduce the 
generalized problem of biomimetic flows, meaning the kinematics and the parameters that 
describe the problem, in order to make it easy for the reader to understand the description of 
each work, as well as the way they are distinguished. 
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I.2.1.1 Introduction to the Generalised problem of biomimetic propulsion 

 

In a wing of given chord length and span ,moving at steady speed , and at an angle of  attack, 
the parameters of relevance are (a) wing outline (rectangular, delta-shaped, etc.); (b) the 
section geometry (c) the aspect ratio (AR), defined to be equal to the ratio 2 / fs S , where s is 

the span and Sf is the projected wing surface (for the case of rectangular wings, it degenerates 
to the ratio of an average span s  over an average chord c ) ; (d) the angle of attack ; and (e) 
the Reynolds number ,  Re /Uc ν=   where U the translational velocity and ν  is the 

kinematic viscosity of the fluid. The forces are classified as lift, the component perpendicular 
to the velocity U, and drag, the component parallel to U. 

In unsteadily moving wings, the motion of the wing has to be formulated. For the simplest 
case of a wing of chord c, moving forward at average velocity U, and oscillating harmonically 
with a linear (heave) motion h(t) , transversely to the velocity , and an angular (pitch) motion 
θ(t) the equations of motion are: 

 

( ) ( )0 sin 2h t h ftπ=  (I.1) 

( ) ( )0 sin 2mt ftθ θ θ π ψ= + +  (I.2) 

 

where ψ  is the phase angle between heave and pitch, 0h  the heave amplitude, 0θ  the pitch 

amplitude, mθ  the average pitch angle, and f  the frequency of oscillation. This is the simplest 

case of biomimetic propulsion, which is a simplification of the motion of a whale tail. Figure 
I.2.1-1 depicts such motion, where the forward velocity U is done on the direction of X axis, 
heave oscillation is done on the Y axis and pitch oscillation is done around Z axis. Figure I.2.1-2 
depicts a projection of the previous figure on the XY plane, where the advancing velocity U 

and the instantaneous heaving velocity ( )h t produce the instantaneous apparent velocity. The 

difference of the angle of apparent velocity and pitch angle, gives the instantaneous angle of 
attack ( )a t  
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Figure I.2.1-1 Pitching and Heaving motion (simplification of whale tail motion) 
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Figure I.2.1-2 XY view of a wing in pitching and heaving motion. Elemental and apparent 
velocities are presented, along with pitch angle ( )tθ  and instantaneous angle of attack ( )a t  

. 

In the case of bird like flapping wing, the heave motion is substituted by a rolling motion and 
(1.1) is substituted by: 

 

( ) ( )0 sin 2t ftϕ ϕ π=  (I.3) 

 

Where ( )tϕ  the angular position and 0ϕ the maximum rolling angle. Figure I.2.1-3 depicts 

such motion, where the advancing velocity is done on the X axis and the roll rotation is done 

20 



State Of the Art – Historical Reference 

around X axis. Pitching rotation is done around the bodybuilt axis, which executes the rolling 
and advancing motion. It should be noted, that for each wing section, the amplitude of 
motion, depends on the distance of the section to the center of rotation. Thus, for the case of 
bird – like motion, an equivalent amplitude can be defined for the section at 70% of span, as 
follows: 

   

( )0.7 00.7 sinh s ϕ= ⋅  (I.4) 
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Figure I.2.1-3 Pitching and Rolling motion (simplification of bird wing motion) 

 

Then the following nondimensional parameters can be defined for both cases (by applying the 
corresponding definition of amplitude), in addition to those for a steadily moving foil: 

1) Heave to chord ratio *
0 /h h c=  

2) Maximum pitch angle 0θ  

2) Maximum unsteady angle of attack maxa  

3) Reduced frequency /k fc U=  

4) Strouhal number, defined as / USt Af= , where A  is the is the width of the wake of the 
foil* 

5) Mean pitch angle, which is equal to mθ  . 

6) The phase angle between the two motions ψ  

* The Strouhal number is often approximated by taking 02A h= , 

i.e., 

02 /AfSt h f U
U

= =  (I.5) 

The maximum angle of attack is defined as the maximum value 
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of the angle ( )a t  , which is given by: 

( ) ( )(t) /
dh t

a t ATAN U
dt

θ
 

= −  
 

 (I.6) 

It should be noted, that for the case of bird – like motion, the equivalent heave, gives a 
representative value and not the actual for the whole span. The maximum angle of attack was 
used mostly as a mean to make sure that there is no leading edge separation.  

Some authors prefer the use of the reduced frequency to the Strouhal number, but this later 
has been shown to be more suitable for the propulsion studies [see discussions, e.g., in 
Triantafyllou et al. (1991) or Ramamurti and Sandberg (2001)]. 

The resulting force (thrust) and the required power are nondimensionalized as follows 

2 3,
0.5 0.5T P

T PC C
U S U Sρ ρ

= =   (I.7) 

Where ,T P  denote the period-mean open water thrust and power of the flapping wing, ρ  
denotes fluid density, U  denotes the  translational velocity of the wing and S denotes the 
wing surface area or the swept area ( 02S sA sh= = ) depending on the choices each author 

makes. 

 

Lastly, the efficiency is defined as 

T

P

CT U
P C

η ⋅
= =   (I.8) 
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I.2.1.2 Distinction of previous works in categories 

Then, it is important to distinguish the works done into the big categories of theoretical, 
experimental and numerical, but also to subcategorize according to the background, 
application and purpose of each work. 

 

I.2.1.2.1 Theoretical works 

 

Many qualitative investigations of flapping flight were conducted by the end of the 19th 
century, but the first explanation of the physics of flapping wings was only given 
independently by Knoller and Betz in (1909)and (1912), respectively. Both noted that the wing 
oscillations induce longitudinal thrust force and vertical lift force components of the 
aerodynamic force. 

In (1922) Katzmayr conducted the first experimental investigations which verified the Knoller–
Betz effect. The tests involved a wing which was placed into an oscillating flow. 

In the same year Prandtl formulated the problem of unsteady motion of a wing in 
incompressible flow and noted that vortices are shed from sharp trailing edges. In 1924 
Birnbaum developed a linearized solution of Prandtl's formulation and presented quantitative 
results for the thrust force generated by a flapping airfoil. He drew attention to the fact that a 
flapping airfoil can be regarded as a “two-dimensional propeller”.  

In (1935) von Karman and Burgers proposed an explanation for the occurrence of drag or 
thrust based on the observed positions and orientation of vortices in the wake of the 
oscillating airfoil. 

In the same year Keldysh and Lavrentiev (1935) obtained (in the linear formulation) 
expressions for the thrust generated by a harmonically oscillating flat plate. The solution was 
obtained with the method of conformal mappings. 

In (1936) Garrick determined the thrust force on a harmonically oscillating flat plate in 
incompressible flow using Theodorsen's thin airfoil theory. In the same year Sedov using the 
theory of complex variables, presented a solution for a flat plate which performs heaving and 
pitching oscillations in incompressible flow. 

Also, in (1936) Pavlenko proposed to use wings elastically attached to ship hulls as auxiliary 
propulsors and anti-rolling devices. He was able to show theoretically (with the use of quasi-
steady theory) that such wings can function as propulsors because of the wave motion to 
which they are exposed. 

In 1942 Schmidt (republished in (1965)) demonstrated a “wave propeller” which consists of a 
flapping/stationary tandem wing configuration. He confirmed that the Knoller–Betz effect 
takes place both on the stationary hind-wing, and on the flapping forewing. He demonstrated 
that the stationary foil placed in the wake of the oscillating foil increases the efficiency of the 
tandem system to almost 100%. Due to the mechanical complexity of generating pure heaving 
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motions, he replaced the heaving motion by a wing motion along a circular path with fixed 
angle of attack. 

In the 1940s Golubev (1944, 1946) developed a flapping-wing theory, different from Prandtl's 
model, based on the “discrete” Karman form of the wake arrangement. Using the momentum 
theorem, he obtained an integral equation whose solution allowed him to obtain the 
aerodynamic characteristics, including the thrust of the flapping wing. 

In 1948 Polonsky and in (1953) Bratt performed flow visualization experiments which 
confirmed the observations of von Karman and Burgers. They also showed the existence of 
different types of vortex structures behind the oscillating airfoil, including asymmetric 
(“skewed”) vortex structures. 

In the last years little additional work has been done with the works of Lighthill (1969), Wu 
(1971) , Newman J.N & Wu T.Y.(1973), James E.C. (1975) , Coene R (1975), Chopra M.G. (1976), 
Levi Enzo (1983), Sparenberg (2002) and Godoy-Diana R., Marais C., Aider J.-L., Wesfreid J.E. 
(2009) standing out. Especially Sparenberg (2002) made a thorough review of the 
mathematical theory behind biomimetic flows, refreshing and continuing Lighthill’s work. 

 

I.2.1.2.2 Non engineers and General Case problems 
 

A great wealth of information can be found by biologists and experimentalists who work for 
them in the journal of experimental biology alone, more than 110 papers have been published 
on the subject of biomimetic propulsion, mostly on motion classification and performance 
evaluation of specific cases. Most representative are the works of, Fish F.E. (1984), Norberg 
U.M. (1986), Drucker E.G., Pennycuick C.J.(1996), Jensen J.S. (1996,1997), Ellington C.P. (1996) 
Brackenbury J.(2002), Combes S.A, Daniel T.L. (2002), Sane S.P., Dickinson M.H. (2001, 2002, 
2003, 2007), Borrell B.J., Goldbogen J.A., Dudley R. (2007), Tobalske et al (2001, 2003, 2007, 
2007, 2009, 2009), Ramamurti R., Sandberg W.C. (2002, 2007), Borazjani I., Sotiropoulos F. 
(2008, 2009).   

More specifically, a number of studies have examined the fluid dynamics and force production 
of finite aspect-ratio flapping foils/wings. Liu et al. (2009) have conducted numerical 
simulations of a hawk moth wing model of aspect ratio 6.34 and experimental studies the fluid 
dynamics of this same wing have been carried out Usherwood  & Ellington (2002) Dickinson 
and co-workers (Dickinson, Lehmann et al. 1999, Sane and Dickinson 2001) have performed 
systematic experimental studies with a dynamically scaled fruit fly flapping wing with aspect 
ratio of about 3.8 and Ramamurti & Sandberg (2002) and Sun & Tang(2001) have used this 
same wing in their numerical simulations. Techet et al. (2005) have examined the thrust 
performance of a three-dimensional flapping foil with an aspect ratio of 4.5. Detailed 
experiments of pectoral fin hydrodynamics in controlled experiments with swimming fish 
have also been carried out (Walker and Westneat 1997, Drucker and Lauder 2002)). The 
comprehensive particle image velocimetry (PIV) measurements carried out for a swimming 
bluegill sunfish  (Lauder and Drucker 2004) are of particular interest. In these experiments, 
the fish swims almost steadily in an incoming stream using only its pectoral fins. That the fish 
is swimming at very nearly a constant speed is confirmed by the fact that the body of the fish 
maintains its position to within a few millimeters over many fin strokes (Lauder and Tytell 
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2005). Thus, in this situation, the thrust produced by the fin is almost exactly balanced by the 
drag on the body of the fish. In this mode, fin hydrodynamics is primarily determined by the 
fin flapping frequency, fin amplitude and the flow speed which can be expressed in terms of a 
fin Strouhal number, normalized amplitude and fin Reynolds number. In general, for fish with 
different sizes and swimming speeds, these three non-dimensional parameters can vary over a 
wide range. Because of this, most studies that attempt to gain general insights into the 
performance of fins, flapping foils or flapping wings find it convenient to examine the problem 
in terms of these non-dimensional parameters (Freymuth 1988) (Triantafyllou, Triantafyllou et 
al. 1991) (Anderson, Streitlien et al. 1998); (Walker and Westneat 2002); (Wang 2000); (Daniel 
and Combes 2002); (von Ellenrieder, Parker et al. 2003); (Lewin and Haj-Hariri 2003); 
(Prempraneerach, Hover et al. 2003), (Hover, Haugsdal et al. 2004),; Blondeaux et al. 2005a 
(Blondeaux, Fornarelli et al. 2005),  Techet et al. 2005). A similar approach has been adopted 
in the current study. 

In the particular case of labriform propulsion, since the very near wake of the pectoral fin is 
not affected by the wake of the fish body, the fin near-wake can be examined in order to assess 
the thrust production of the fin. The study of Drucker & Lauder (2002) showed that the 
pectoral fins of the sunfish produce a train of vortex rings which are associated with 
momentum addition in the fin wake and consequently to a production of force on the fin. 
Through modification in the fin gait, the fish can alter the axis and direction of travel of these 
vortex rings and through this, control the direction and magnitude of the forces and moments 
on the fin. Ramamurti et al. (2001) simulated the flow associated with the pectoral fin of a 
bird-wrasse which was the subject of the study by Walker & Westneat (1997) and examined in 
detail the flow structure and force production of this fin. Von Ellenrieder et al. (2003) 
examined the flow associated with a rectangular flapping foil of aspect ratio 3.0 at a Reynolds 
number of 163. The Strouhal number in this study varies from 0.2 to 0.35 and pitch angle 
amplitude from 0 to 20 degrees. The dye visualization study of von Ellenrieder et al. (2003) 
was conducted over a range of flapping amplitudes and frequencies and the effect of these 
parameters on the vortex topology was elucidated. They found that the wake of these flapping 
foils was dominated by sets of loops and rings and they describe the evolution of these vortex 
structures. This configuration was studied numerically by Blondeaux and co-workers 
(Guglielmini, Blondeaux et al. 2004, Blondeaux, Fornarelli et al. 2005, Blondeaux, Fornarelli et 
al. 2005, Blondeaux, Guglielmini et al. 2005) have examined the wake evolution at Strouhal 
numbers of 0.175 and 0.35 and the simulations show that a vortex ring is shed every half-cycle 
from the flapping foil. Also, Blondeaux et al. (2005) indicate that as the Strouhal number is 
increased, there is an increased interaction between adjacent rings. The vortex structures in 
the numerical study were found to be different from those observed in the experiments of von 
Ellenrieder et al. (2003). In particular, Blondeaux et al. (2005) point out that in contrast to the 
experiments, the simulations do not show the presence of distinct vortex loops in the wake 
associated with the trailing-edge vortex. It should be noted that neither the experiments nor 
any of these simulations have examined the force generation by this flapping foil, therefore it 
is not clear if the foils are indeed generating thrust, which is a prerequisite for a properly 
formed vortex wake. 
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I.2.1.2.3 Fish– Type Propulsion 

The main distinction of the category is that the motion is the simplest of all, made by the 
combination of pitching and heaving.  A review of the theoretical work of the area can be 
found in Sfakiotakis M., Lane D.M., Davies J.B.C. (1999)  and in Triantafyllou M.S., Hover F.S., 
Techet A.H., Yue D.K.P. (2005) 

 

Numerical investigations. 

 

Katz & Weihs (1978) analyzed the unsteady large amplitude linearized motion of a chordwise 
flexible slender (AR<1) wing in inviscid incompressible fluid. The local deflections of the chord 
are calculated from the hydrodynamic forces acting on it, which are dependent on the foil 
shape. The problem was solved in a non-inertial system attached to the foil. In the statement 
of the unsteady Bernoulli's equation second order disturbances were neglected. Another 
assumption in the analysis of the deflections was that the foil is linearly elastic, so that no 
"memory" effects have to be taken into account. The foil span is not allowed to bend under the 
action of the forces. The slenderness assumptions lead to the neglecting of the term in the 
Laplace’s equation so as to return the flow in the so-called cross-flow plane.  The authors (Katz 
& Weihs), in this publication concluded that the thrust and efficiency increase when the 
heaving amplitude h/c grows. Another conclusion was that if the path curvature is increased 
(e.g. if the frequency grows while h/c remains constant) the efficiency will decrease. The 
thrust coefficient is highest when the phase difference is close to 90o. The same authors, in a 
later publication discussed the wake roll-up and the Kutta condition for airfoils oscillating at 
high frequency. They showed that the Kutta condition can be applied for force and moment 
prediction in unsteady small amplitude non-separated flows even when the reduced frequency 
is well above 1. Wake roll-up calculations, based on the Kutta condition showed good 
agreement with available flow visualization data. It was concluded therefore that when trailing 
edge displacement is small (A/c<0.1) the range of linearized theory calculations using the 
Kutta condition can be extended far beyond reduced frequencies of 1 (one). They also showed 
that in high frequency motions the contribution of the potential time derivative ∂Φ/∂t to the 
lift becomes more important, i.e. force due to the acceleration of the surrounding fluid is 
considerably increased relative to the far wake influence. In (1978), they analyzed the problem 
of a thin foil with flexible chord of constant length C which varies its shape passively owing to 
the hydrodynamic forces acting on it. The propulsor was taken to move in water at high 
Reynolds number so that the analysis could be based on incompressible potential theory. The 
trajectory S was such that the flow disturbance caused by the foil stayed small and no point of 
the foil traverses the wake. The displacement of the foil was small (h(x,t)<<1) so that the 
downwash velocity w(x,t)/V(t) << 1 where V(t) is the velocity of the point where the body 
attached frame of reference was attached. They assumed in the analysis that the foil was 
clamped at its leading edge and that its elastic behavior can be estimated by the cantilever 
model. The wake model consisted of discrete vortices and after each time step its distortion as 
a result of the velocity field induced by the foil and its wake was estimated. In cases where the 
foil did not come close to its wake the influence was usually found to be negligible. They 
concluded that for a rigid propulsor the thrust grows as H/C increases. The wake deformation 
may be neglected in modestly oscillating motions (reduced frequencies smaller than 0.3). It 
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was also obvious that a phase difference of π/2 between the heaving and pitching motions 
gave both high thrust and high efficiency.  

Zervos (1984)  presented the model of a two dimensional propulsor having infinitely thin and 
flexible walls. At each instant the exact form of the walls and the vortex wake were taken into 
account. Large oscillating amplitudes were applied in order to achieve practical thrust levels. 
The results showed that the pressures were distributed in such a manner that at each instant, 
a propulsive force is created. In order to have propulsion it was shown that Vo/C must be less 
than 1 where C is the velocity of wave propagation and Vo is the advance velocity of the foil. 
The influence of l/λ on the efficiency (η) and propulsive coefficient (CT) is very important. In 
the aforementioned ratio l is the length of the propulsor and λ the wavelength of propagation 
so that l/λ is the number of waves constituting the body. Its augmentation ameliorates the 
efficiency under the condition that does not get bigger than 2.0 but diminishes, at the same 
time the corresponding values of CT. Increase of A/H produces a slight decrease of the 
efficiency, but it is accompanied with an important increase of the CT. In the above ratio A is 
the total amplitude of the motion and H is the distance covered in one period T0 . 

Poling & Telionis (1986) offered some experimental evidence on the physical characteristics of 
unsteady flow in the neighborhood of a sharp trailing edge. They provided measurements of 
two periodic problems. The first was the classical pitching airfoil and the second was the flow 
over a fixed airfoil immersed in a periodic wake that represents essentially a periodic change 
on the angle of attack. The experimental data obtained indicated that for periodic flows with 
reduced frequencies larger than k=2 and not very small amplitudes, the classical Kutta 
condition is never satisfied. As classical Kutta condition it is meant that the trailing stagnation 
streamline is tangent to the bisector of the wedge at the trailing edge. In the viscous region 
there was ample evidence of finite normal pressure gradients and therefore nonzero trailing 
edge loadings. It is also stated that for unsteady flow the loading near the trailing edge varies 
very sharply with the distance from the trailing edge. Even a few percent of the chord length 
may have a significant effect on global characteristics like instantaneous or averaged lift and 
drag. 

Tuncer,  Wang & James Wu (1990) developed an integro-differential formulation of the 
Navier-Stokes equations. The formulation of the viscous flow analysis confined computations 
only to the viscous flow zone and lead to an efficient zonal solution procedure. In the 
simplified vortical flow analysis, computational demands were greatly reduced by the partial 
analytic evaluations. Vorticity transport equation was solved only in the viscous flow zone. In 
addition, attached boundary layer and detached recirculating flow regions in the viscous flow 
zone were treated individually. On the other hand the integral equations for velocity 
permitted the velocity vector in the viscous flow zone to be evaluated explicitly. The results of 
the study showed that during the upstroke the computed lift coefficient increases linearly 
until the leading-edge vortex forms. The formation of the leading edge vortex then causes a 
steep increase in the lift. At maximum angle of attack the lift coefficient reached a local 
maximum as a result of the burst of the bubble at the trailing edge and the shedding of 
clockwise vorticity. Due to the suction generated by the trailing edge vortex, it subsequently 
rises to a second local maximum. During the downstroke, following the shedding of the 
trailing-edge vortex the lift initially decreases rapidly. As the flow reattaches at the trailing 
edge and as the secondary vortex structures develop, the lift curve flattens. The minimum lift 
is observed just before the flow attaches fully on the upper surface. The development of the 
leading edge suction then drives the lift towards the steady state values. However, the low 
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pressure aft of the midchord on the upper surface delays the recovery process. For different 
reduced frequencies the events mentioned above occur at different angles of attack during the 
oscillatory motion, and as a result, the aerodynamic loading differs significantly. It was 
observed that as the reduced frequency increases, the flow reversal originates at a smaller 
angle of attack. The conclusion was that the dynamics of the leading edge vortex has a 
dominant effect on the dynamic stall behavior. As the reduced frequency of the oscillatory 
motion increases, the formation of the leading edge vortex delays until higher angles of attack 
are reached. 

Wang, Wu and Qian (1991) generalized the above two dimensional zonal procedure to treat 
three-dimensional general viscous flow problems. The three non-zero vorticity components in 
a three dimensional problem satisfy the vorticity divergence-free condition through a 
numerical filter mechanism. Flow around fast pitched flat plate wings were computed by the 
generalized zonal procedure. This is summarized as follows: In an external flow problem when 
the Reynolds number is not small, a large potential region, where the vorticity and hence all 
viscous effects are absent, coexists with flow zones where viscous effects are important. As it 
turns out an isolated potential region is removable from the computation process. This fact 
results from the absence of vorticity in the potential region. The potential region once isolated 
needs not be involved in further computations. The information about the flow in a removed 
potential flow region is not lost but is stored in the boundary velocity values that have already 
been counted for this region. With prescribed velocity boundary condition the zonal approach 
follows the development of the vorticity field. The solution advances from an initial time level 
at which the velocity and vorticity fields are known to a subsequent new time level by using a 
computational loop. Numerical errors may accumulate and grow so that, over a period of time 
the divergence of the vorticity field becomes significantly different from zero, violating the 
physics of incompressible fluid. Numerical studies showed that the divergence or the 
numerical error of the vorticity field is greater if finer grids are used near the wing edges, 
especially near the wing tip. A filtering mechanism based on the concept of vortex loop in 
space was devised to control the growth of the divergence of the vorticity field. At any instant 
of time, if a vorticity field can be approximated by vortex filaments in space where these 
filaments are the local summations of strengths of existing vortex loops in space, the vorticity 
field is regarded divergence-free in the numerical sense. The conclusion of this study was that 
the generalized zonal approach was successfully used to study unsteady flows around 
stationary and rapidly pitched flat plate wings. The roles of the leading edge recirculating flow 
and tip vortices are identified to the contributions of the normal force experienced by the 
pitching wing. 

Neil Bose (1992) presented a two dimensional time domain constant potential panel method 
used for the analysis of chordwise flexible oscillating hydrofoils as oscillating propulsors. The 
oscillating motions as well as the chordwise deflections were of large amplitude. The foil 
surface was discretized into panels following a cosine spacing over the chord and assuming a 
constant value of the doublet potential and source strength over each panel. All memory 
effects were included in the foil wake which contains the shed vorticity from the foil but at a 
given time step this is fixed. The calculation proceeded in a series of time steps and the wake 
was made up of segments or panels. The wake panels were left in the fluid flow where they 
were formed. No attempt was made to allow the wake to move with the local induced flow. 
The first wake panel was assumed to leave the trailing edge along the bisector of the trailing 
edge angle. A linear variation of potential was applied on the wake panel immediately behind 
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the trailing edge because this makes the calculation relatively insensitive to the time step size. 
A method based on a linearized pressure coefficient was used for the Kutta condition 
formulation. A dummy doublet potential value ΦN+1 was introduced at the upper surface at 
the trailing edge. The linearized pressure coefficient was included as an N+1 th equation for 
the potential values. A first order differentiation was used for the term ∂Φ/∂t in the 
linearization of pressure coefficient.  The analysis lead to the conclusion that the propulsive 
efficiency increased as thrust coefficient reduced. Efficiency varied strongly with changes in 
heave amplitude ratio and pitch amplitude. It was also shown that flexibility increases 
propulsive efficiency but reduces thrust. In addition for a given thrust a flexible foil has a 
higher propulsive efficiency than a rigid foil.  

K. Streitlien, M.S. Triantafyllou & G.S. Triantafyllou (1995) presented closed form expressions 
for the force and moment on a Joukowski profile in arbitrary motion, surrounded by point 
vortices that are free to convect with the local flow. The foil shape was represented as the 
conformal mapping of a circle making use of the theory of complex functions. The wake of the 
profile was discretized into point vortices and the circle theorem insured that the body 
boundary condition is satisfied everywhere on the foil. It was shown that the force and 
moment acting on the Joukowski profile consist of added mass terms as if the flow were free of 
vortices plus the summed effect of all vortices in the flow. One of the example calculations 
presented concerned the large amplitude symmetric foil oscillation. The illustration showed 
that periodic time dependence was established in very short time, indicating that the added 
mass forces are dominant in this case. Another interesting example illustrated was the case of 
a vortex released at a point upstream of a stationary cambered foil, convecting with the free 
stream. The force record obtained showed that the maximum lift on the foil occurs as the 
vortex passes over the trailing edge. 

Sarpkaya (1975) presented a potential flow model of 2D vortex shedding behind an inclined 
plate. The calculated normal force coefficients were about 20% larger than those obtained 
experimentally. 

Basu & Hancock (1978) presented a numerical method developed for the calculation of the 
pressure distribution, and loads on a 2D airfoil undergoing an arbitrary unsteady motion in an 
inviscid incompressible flow. Results of the algorithm were presented for a sudden change in 
incidence, a high frequency oscillation and entry into a sharp-edged gust. 

M. Vezza & R.A McD. Galbraith (1985), presented a model for the calculation of the 
incompressible, inviscid flow around an arbitrary airfoil undergoing unsteady motion. The 
same authors extended their model to include fixed upper surface separation. The analysis was 
based on the assumption that the flow is irrotational over the entire region except at the body 
and its wake elements. The separation point was a necessary input into the algorithm. The 
pressure distribution predicted was compared with experimental results in the case of step 
change in incidence from 0 to 20.05 deg and agreement was evident. 

V. Riziotis & S. Voutsinas (1996), reported a 2D vortex type stall model. The separated flow 
over an airfoil was considered in constant large incidence and in pitching motion. The wake 
was represented by a set of freely moving vortex particles. A result from various attempts to 
attack the dynamic stall was that the influence of the details of the shape of the hysteresis loop 
on the force coefficients was not significant. Another conclusion was that the separation point 
delay loop is a dominant feature for the valid estimation of the forces acting on a pitching 
airfoil. 
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Most of these past studies have assumed that the aspect ratio of the foils is large and have 
therefore restricted their attention to two-dimensional flapping foil configurations. 

With the evolution of Computers direct simulations of the fully 3D fish propulsion problems 
start to emerge either using 3D BEM formulations or Navier Stokes solvers. Liu and Bose 
(1997) presented a 3D BEM method in the lines of the commercial code VSAERO but properly 
adapted to treat unsteadiness of the flow. They have applied the code to study the effect of 
wing flexibility in the efficiency of a whale’s fin. Their model uses a frozen wake assumption 
and a linear Kutta condition at trailing edge. Liu and Bose (1999) enrich their 3D panel code 
with a 2D boundary layer inner solution and apply their method to estimate the effect of shape 
of wing plan-form to the propulsive performance. Politis and Belibasakis (1998), employ a 3D 
panel code based on a Hess and Smith formulation of the unsteady problem to simulate a 
flapping foil motion. He et al (2007) presented a 3D panel code to treat tandem oscillating 
foils. Zhu et al (2002) has employed a 3D panel code together with experimental data to 
establish the 3D features of the flow around fish-like bodies. Willis D.J., Peraire J., White J.K.  
(2007) made a combined pFFT-multipole code, employing an unsteady panel method with 
vortex particle wakes. There have also been some 2d attempts by La Mantia M., Dabnichki P. 
(2008, 2009). 

Viscous methods have also been used. Even though they are considerably slower, most of 
cases were made specifically for performance tests. Most representative examples are those of 
Blondeaux P., Fornarelli F., Guglielmini L., Triantafyllou M.S., Verzicco R. (2005), Borazjani I., 
Sotiropoulos F.  (2009) where numerical investigation of the hydrodynamics of anguilliform 
swimming in the transitional and inertial flow regimes were conducted. Exception to them 
was Dong H., Mittal R., Najjar F.M. (2006) where wake topology and hydrodynamic 
performance of low-aspect-ratio flapping foils was systematically investigated. 

 

 

Experimental works 

 

Extensive experimental work, on either single or double foil configurations, has been made by 
Professor Triantafyllou and its co-workers (Hover, Techet)(1991, 1995, 1999, 2001, 2004, 2004, 
2008), who investigated the effect of aspect ratio, Strouhal number and angle of attack, while 
some useful visualizations were made.  

The effect of wing outline, which has also to be taken into account was experimentally 
explored by Luska Luznik and Neil Bose (1998). Pengfei Liu and Neil Bose (1999) also studied 
the hydrodynamic efficiency of a foil with aft-swept wing tips. The effect of elasticity was 
investigated by Paidousis M.P. ( 1976 ),  McLetchie K.-M.W. (2003), Yamaguchi N. (2001). 

Among experimental works, construction of robots AUVs (autonomous underwater vehicles) 
and UUVs (unmanned Underwater Vehicles) and their control have a long literature. Most 
representative are the works of  Mason Richard, Burdick Joel W. (2000), Morgansen K.A., 
Duindam V., Mason R.J., Burdick J.W., Murray R.M. (2001), Muramatsu K., Watanabe M., 
Kobayashi N. (2001), Anderson J.M., Chhabra N.K. Trianatfyllou (Robo tuna) (2002), Singh 
S.N., Simha A., Mittal R. (2004), Kim E., Youm Y. (2004),  Mojarrad Mehran (1997, 2000), 
Narasimhan M., Dong H., Mittal R., Singh S.N. (2006), Menozzi A., Leinhos H. (2007), 
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Nakabayashi M., Kobayashi R., Kobayashi S., Morikawa H. (2008, 2009), Nakadoi H., Sobey D., 
Yamakita M., Mukai T. (2008)  and Low K.H (2006, 2007, 2009). , Su Y., Wang Z., Li Y., Qin Z., 
Chen W. (2009). 

Use of exotic materials such as bending actuators were used by Menozzi A., Bandyopadhyay 
P., Warren S. (2005), Menozzi A., Leinhos H. (2007), McGovern S.T., Spinks G.M., Xi B., Alici 
G., Truong V., Wallace G.G. (2008). Also Ming A., Huang Y., Fukushima Y., Shimojo M. (2008) 
used Piezoelectric composites in order to actuate their foils. 

 

 

Full scale applications 

 

Apparently, one of the first tests of full-scale vehicles with flapping-wing propulsors was 
conducted by Grebeshov in the 1970s when he tested a full-size cutter on hydrofoils. This 
cutter used the hydrofoils not only as lifting but also as propulsive elements. The hydrofoils’ 
prescribed translational–rotational oscillations made it possible to accelerate the cutter to the 
foil-borne regime and to maintain it there. 

Japanese researchers (Bull Soc Naval Architects) (1989) tested a wing, installed at the bow of a 
15.7 m long trawler of 19.9 ton displacement. By varying the stiffness of the connections of the 
wing to the frame, it was possible to maximize the wing thrust in a certain range of 
wavelengths encountered by the ship. These tests confirmed that this system could reduce the 
wave drag and be used in practice as a “passive” propulsor. The Norwegian Fishing Industry 
Institute of Technology carried out full-scale tests of a “passive” propulsor, comprising two 
wings with elastic links, installed at the bow of a 180 ton research fishing ship FisketsGang 
(1987). The tests showed that the efficiency of such a propulsor reached 95% and that it could 
be used as a “passive” wing propulsor together with a conventional screw propeller. At a speed 
of 15 knots in waves up to 3 m 22% of the thrust was provided by the wing propulsors. Using 
only the “passive” wing propulsor the ship was able to reach speeds up to 8 knots. 

The Swedish companies Ellingsen and Associates AS and Kirkines Engineering AS developed 
an oscillating-wing propulsor and its control system for a small 10 m long fishing boat 
FisketsGang (1987). 

N. Isshiki, H. Marikawa, H. Kato et al (1980)used a suspended engine to oscillate a wing or a 
wing system. This engine–propulsor complex was tested on a full-size 3.5 m long dinghy. They 
found that for some regimes of oscillations this propulsor was as efficient as a screw propeller 
(for the same expended power). The wing elements of the propulsor were either two vertically 
mounted wings, operating in opposite phase, or a horizontal wing, operating near a stationary 
plate, located above the wing. These full-scale experiments showed that the flapping wing can 
be more preferable than a screw propeller because, for the same efficiency, the wing propulsor 
creates less noise and vibration. 

The full-scale tests of a 174 ton Russian research fishing vessel equipped with a wing device for 
extracting sea wave energy by Nikolaev MN, Savitskiy AI, Senkin YUF (1995), showed that such 
a device could increase the engine power up to 45–87% and reduce the ship motions by a 
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factor of 2–2.5.  Figure I.2.1-4 and Figure I.2.1-5 show the full scale attempts made by Soviets 
and Norwegians, as described by Nikolaev et al (1995) and Jakobsen (1983) accordingly.  

 

 

 

Figure I.2.1-4 Russian ship with bow-wings, Nikolaev et al (1995) 

 

 

 

Figure I.2.1-5 Norwegian ship achieves fuel savings 15-20% by wave-energy extraction, Jakobsen 
(1983) 

 

 

 

I.2.1.2.4 Insect and Bird Applications. 
 
Several numerical investigations such as those of AP Willmott , FR. Menter(1993), CP 
Ellington and A.L.R Thomas (1996), SM Walker, ALR Thomas and GK. Taylor (2009), TJ 
Muller (2001), KD von Ellenrieder, K Parker and J. Soria, (2008), have been conducted, and 
mainly experiments were made towards construction of MAVs (micro air vehicles), as shown 
by W Shyy, Y Lian, J Tang, D Viieru and H. Liu (2008), W Shyy, P Ifju and D. Viieru (2005) R. 
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Żbikowski, S.A. Ansari and K. Knowles (2006), DJ Pines and F. Bohorquez (2006) M Platzer, K 
Jones, J Young and J. Lai,  (2008) Y Lian, W Shyy, D Viieru and B. Zhang (2003), BK Stanford, P 
Ifju, R Albertani and W. Shyy (2008), W. Shyy, Y. Lian, J. Tang, H. Liu, P. Trizila and B. 
Stanford et al., (2008). Numerical investigations were also made by biologists S.A. Combes and 
T.L. Daniel (2003), 

Additionally, Sane S.P., Dickinson M.H.( 2001,2002), Sun et al (2002, 2003), Wang Z.J., Birch 
J.M., Dickinson M.H. (2004), Watts P., Mitchell E.J., Swartz S.M.(2001), used viscous 
commercial codes and conducted experiments for specific cases, which provided good insight, 
but no systematic investigation of effects. On the other hand, engineers who used viscous and 
potential codes were AP Willmott, CP Ellington and A.L.R Thomas (1997) R. Żbikowski, S.A. 
Ansari and K. Knowles (2006), who used them in simulating simplified motions, in their 
attempts to uncover wake patterns and through them the main mechanisms of birds flight. 
Aeroelastic effects were also investigated. Experimentalists have also made serious progress 
but it is usually restricted to simpler types of motion where a man-made mechanism can be 
constructed. Detailed review of them is made in  Shyy, Aono et al. (2010) 
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I.2.2 Latest Developments (timeframe of present work) 
During the period 2002-2008, the code UBEM, initially developed to treat propeller problems 
(Politis 2004), was expanded to include any 3-D unsteady incompressible non-viscous flow 
around an arbitrary system of interacting non-lifting/lifting rigid/flexible bodies, Politis  
(2009, 2011). In (Politis and Tsarsitalidis 2009), there was a first attempt to systematically 
investigate the effect of flapping wing propulsor geometry, on its open water performance 
using UBEM. By further developing specialized data generation codes, further simulations of 
flapping wings were presented, Politis & Tsarsitalidis (2014), of bird flight, (Politis and 
Tsarsitalidis 2010) and of a Flexible Oscillating Duct propulsor, Politis & Tsarsitalidis (2012), 
Politis et al. (2013), twin wing propulsors Politis & Tsarsitalidis (2013) 

At the same time several other teams have been working on the same problem. From the 
Naval Architect point of view, biomimetic propulsion as a main propulsor or as an energy 
saving system has been numerically investigated by (Floc'h, Phoemsapthawee et al. 2012), 
(Eloy 2012, La Mantia and Dabnichki 2012, Lauder, Flammang et al. 2012, Politis and Politis 
2012, Belibassakis and Politis 2013, Filippas and Belibassakis 2013, Filippas and Belibassakis 
2014). The performance of a “wavepropulsor” has also been experimentally investigated by 
Steen and Bochmann (2013,2014) with very promising results, even for fixed (yet elastic) foils.  
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Part  II  TOOLS USED FOR THE 

SIMULATIONS  

 

It is clear from the introduction, that in order to simulate and systematically investigate 
biomimetic marine propulsors, it is necessary to use tools that can provide accurate results for 
highly unsteady cases , where the vertical motion (i.e. normal to the translational velocity) are 
of the order of the chord length, at the lowest computational cost possible. Viscous CFD 
methods (i.e. URANS or LES) can be extremely demanding, even for the simplest three 
dimensional case, making a potential based, Boundary Element Method, the best practical 
choice (within limitations that will be explained later). The solver code UBEM, originally 
developed by Professor G. Politis for propeller simulations (Politis 2004, Politis 2005), was 
adapted in order to simulate flapping foils (Politis 2009) and further developed to handle any 
unsteady problem (Politis 2011, Politis 2011). For the purposes of this thesis, around the UBEM 
core, additional software was created. Data generation programs have been developed, for the 
production of input files, as well as post processing programs for the collection and 
presentation of systematic simulations results. Efforts have been also made, to accelerate the 
solver and to create interfaces between the programs that facilitate the conduction of 
systematic simulations in packages both by creation of input files and the collection of the 
results in an organized fashion.  

In this section, the tools of choice are being presented with emphasis on the ones created for 
the purposes of this thesis and are not presented in detail in previous literature. The main 
aspects of the theory behind the programs are to be analyzed, as well as implementation 
aspects and the architecture of the programs used. Verification tests are then presented and 
the limits of the method in hand are to be discussed. Finally, a compact way of presenting grid 
independence tests is presented and explained, so they can be employed for the purposes of 
each case later on.  

It should be clarified, that in this part, the general formation of the tools used is explained and 
cases that may be more complex, are defined through paradigms. Specific tools made for each 
case, are to be explained when necessary in their corresponding section.  
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II.1.1 Boundary Element Methods  
Flow simulations using BEM is a well-developed and successful mathematical/numerical 
theory with very good predictions for cases where lift is the main mechanism of force 
production. The first 3-D BEM for analyzing the flow around arbitrary non-lifting bodies can 
be attributed to Hess & Smith (1969). The first 3-D BEM for analyzing the steady flow around a 
marine propeller can be attributed to Hess & Valarezo (1985), where the classical Hess & Smith 
lifting formulation has been utilized for the representation of a steadily translating and 
rotating propeller using a prescribed wake shape to model trailing vortex sheets. In the 
following years, various alternative formulations of the panel method have been presented for 
the solution of flow problems. A brief presentation of the historical aspects of propeller related 
BEM formulations can be found in Politis (2004). This paper also presents the formulation and 
solution of the problem of an unsteadily moving propeller with the potential as the basic 
boundary unknown, Morino & Kuo (1974). The main innovation in this work (Politis (2004)) 
was the incorporation into the solution procedure of the dynamics of the free vortex sheets. 
This eliminates the need for simplifying assumptions regarding free vortex sheet geometry, 
like the frozen wake or generalized wake models, since its position is calculated by the code. 
During the period 2002-2008, this code, initially developed to treat propeller problems, was 
expanded to include any 3-D unsteady incompressible non-viscous flow around an arbitrary 
system of interacting non-lifting/lifting rigid/flexible bodies, Politis (2009, 2011). In Politis & 
Tsarsitalidis (2009), there was a first attempt to systematically investigate the effect of flapping 
wing propulsor geometry, on its open water performance using UBEM. By further developing 
specialized data generation codes, the authors presented further simulations of flapping 
wings, Politis & Tsarsitalidis (2013), of bird flight, Politis & Tsarsitalidis (2010) and of a Flexible 
Oscillating Duct propulsor, Politis & Tsarsitalidis (2012),  Politis et al. (2013).  

 

II.1.1.1 Formulation  

The formulation of the boundary element method used in the solver code UBEM is thoroughly 
discussed in the aforementioned papers of Prof. G. Politis (2004, 2009, 2011) (as well as the 
notes handed for the BEM course taught) and the mathematical part is well discussed in the 
existing literature. For reasons of completeness, the key points of the method are presented in 
this part, as well as matters that make the implementation in hand different to others. 

II.1.1.1.1 Geometric considerations.  

In this formulation, the geometry of complex systems of bodies is built using surface patches. 
Each patch consists of a number of bilinear quadrilateral elements. Two types of patches are 
allowed: (i) lifting patches and (ii) non-lifting patches. By combining patches lifting and/or 
non-lifting bodies are built. For the former case the user has to determine the line of flow 
separation in the surface of each lifting patch.  

Let M denote the number of (surface) patches of our system. Introduce an index set 
(1, 2,... )M M≡ for (all) patches. Let ( ),nSB t n M∈ denotes the defining surface of the thn  

patch at time t. Lifting patches are distinguished from non-lifting by supplying to the former a 
flow separation line, denoted by ( )nL t  where n M ′∈ and M M′ ⊂ denotes an index subset of 
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M characterizing the lifting patches:  ( ) ( ),n nL t SB t n M ′∈ ∈ . Each separation line ( )nL t  is the 
generator of a free shear layer. Two distinct parts of each free shear layer can be considered: (1) 
the strip directly adjacent to the (bound to the surface ( )nSB t ) line ( )nL t  and (2) the 
remaining part of the free shear layer.  This strip is called, the ‘Kutta strip’ and is denoted 
by ( ),nSK t n M ′∈ . The remaining part of each free shear layer surface is denoted 

by ( ),nSF t n M ′∈ . Thus each free shear layer surface at time t is expressible 

as ( ) ( ),n nSK t SF t n M ′∪ ∈ .  

Total system surface (M patches – Notice that in general the number of patches is greater than 
the number of bodies constituting our system) at time t is denoted  by ( )SB t : 

( ) ( )n

n M
SB t SB t

∈
= ∪   (II.1) 

Total system kutta strip surface at time t is denoted by: 

( ) ( )n

n M
SK t SK t

′∈
= ∪  (II.2) 

Total system free shear layer surface at time t, excluding Kutta strips, is denoted by: 

( ) ( )n

n M
SF t SF t

′∈
= ∪  (II.3) 
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Figure II.1.1-1  Figurative representation of the discussed notation 

 

II.1.1.1.2 Velocity and potential representation theorems. 

An inertial (built on earth surface) frame of reference is used for the definition of velocities 
(body or fluid). A corresponding coordinate system (assumed Cartesian-orthogonal) is 
denoted by OXYZ.  

As a result of the (known) unsteady motion of our system of bodies, in the region outer to 
( ) ( ) ( )SB t SK t SF t∪ ∪ , a velocity (perturbation) potential φ  exists which, at each time step, is 

expressible through its traces ,φ φ∇  on the boundary points ( ) ( ) ( )Q SB t SK t SF t∈ ∪ ∪ .  

Introduce: 
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3 3 3
( ) ( ) ( ) ( )

1 1 1 1( )
4 4 4 4SB t SB t SK t SF t
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r r r r
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π π π π
⋅∇ ⋅ ⋅ ⋅

= − + + +∫ ∫ ∫ ∫
      

(II.4) 

 

3 3 3
( ) ( ) ( )

3 3
( ) ( )

1 1 1( ) ( ) ( )
4 4 4

1 1
4 4

SB t SB t SK t

SF t L t

r r rH P n dS n dS dS
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∫ ∫ ∫

∫ ∫

  



 



 



 (II.5) 

 

where: P is the evaluation point (or control point) for either F or H


, n  is a unit normal 
vector at the boundary integration point ( ) ( ) ( )Q SB t SK t SF t∈ ∪ ∪  showing inside the flow 

region, r QP
→

=


, r QP
→

= , µ  is the dipole intensity with support on ( ) ( )SK t SF t∪  and γ


 

the corresponding (to µ ) vorticity intensity given by:  

µ φ φ+ −= −  (II.6) 

nγ µ= ×∇
 

 (II.7) 

 

Finally ( )L t′  (integration region of the last line integral in the right hand side of equation 

(II.5)) is defined by: ( ) ( ( ) ( )) ( )L t SK t SF t L t′ = ∂ ∪ −  where ( ) ( )n

n M
L t L t

′∈
= ∪  i.e. it is the free 

part of the line bounding the free shear layers.  

With the aid of relations(II.4), (II.5) representation theorems for ,φ φ∇  become: 

( ) ( )
( ( ) ( ) ( ))

( ) ( )

P F P
P SB t SK t SF t

P H P

φ

φ

= 
∉ ∪ ∪

∇ = 
  (II.8) 
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φ φ φ

φ φ φ φ

  = + =    ⇔ ∈  
  ∇ = ⋅∇ ⋅ + ×∇ × + ∇ =
    

 

   

(II.9) 

,

,

,
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2 ( )

1( ) ( ) ( ) ( )
2
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P SF t

P P n P H P

φ µ

φ γ

+ −

+ −

+ −

= ± +  ∈
∇ = ± × +




 

 (II.10) 

and similarly for ,SK + − . In relation (II.10) the superscripts ,( )+ −  denote the two sides of the 
free shear (or vorticity) layer surfaces, while the unit normal n  is directed from (-) to (+). 

Notice that some of the surface integrals for F or H


 in relations (II.9) or (II.10) contain strong 
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surface singularities of the Cauchy type. Thus their meaning is realizable only in the principal 
value sense, Mikhlin (1965).   

II.1.1.1.3 The integral equation. 

 Let Av  denotes the (known) velocity of the boundary point ( )A SB t∈  and n  a unit vector 

normal to body surface at A  with direction pointing into the flow region. Then, the no-
entrance condition at A  has the form: 

An v nφ∇ ⋅ = ⋅
    (II.11) 

 

Substituting (II.11) to the first of equations (II.9) and using (II.4): 

3 3
( ) ( ) ( )

3
( )

1 1 1 1( )
2 4 4 4

1 , ( )
4

A

SB t SK t SB t

SF t

n vn r n rP dS dS dS
r r r

n r dS P SB t
r

φ φ µ
π π π

µ
π

⋅⋅ ⋅
− − = − +

⋅
∈

∫ ∫ ∫

∫

    

 

 (II.12) 

 
This is a second kind Fredholm type Cauchy singular boundary integral equation for the 
determination of φ  and µ  on points of ( )SB t and ( )SK t  respectively. In the right hand side 
of (II.12) the first term is a known integral (as far as the motion of the system of bodies is 
known) and the second term is known from the solution of the problem at previous time 
steps. The unknowns in the left hand side of (II.12) are the potential φ  on ( )SB t  and the 

dipole intensity µ  on ( )SK t . For their determination the additional required condition is the 
Kutta condition at the separation lines (trailing edges in case of wing flow w/o separation).  

 

II.1.1.1.4 Kutta condition. 

 Let the point ( )A SB t∈ . Let 
A

d
dt

 denote the time derivative for an observer built on the 

point A of the moving body and let Av  denote the known velocity of A . Then unsteady 

Bernoulli equation takes the form:   

( )2 21 1
2 2A A

A

p p d v v
dt
φ φ

ρ
∞−
= − − ∇ − +

   (II.13) 

 
According to a pressure type Kutta condition, as the trailing edge point is approached from 
either pressure side (superscript +) or suction side (superscript -), the pressure should be 
continuous, i.e.:  

p p+ −=  (II.14) 

 

Using (II.13), this becomes a quadratic (nonlinear) relation between , , ,φ φ φ φ+ + − −∇ ∇ .  
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Assuming steady linearized flow, Bernoulli equation degenerates to the famous Morino 
condition:  

approaching L(t) from shear layer approaching L(t) from body points( )µ φ φ+ −= −  (II.15) 

 

which is a linear equation in ,φ µ . It should be noted that the Morino condition, contrary to 
the pressure type Kutta condition, allows for a pressure jump at the trailing edge.  

 

II.1.1.1.5 Shear layer dynamics. 

 Kinematic and dynamic conditions on a free vortex sheet expressed in terms of the dipole 
intensity of the sheet results in the following equation, Politis (2004): 

0D
Dt
µ
=  (II.16) 

 
where /D Dt  denotes a material derivative for µ  based on the mean perturbation velocity of 
the shear layer. Mean perturbation velocity v> <

  on points of the shear layer can be found 
using(II.10): 

( )
2

v H Pφ φ+ −∇ +∇
> <= =





 (II.17) 

Thus relation (II.16) becomes: 

( ) ( )( ) 0D v H P
Dt t t
µ µ µµ µ∂ ∂
= + > < ⋅∇ = + ⋅∇ =
∂ ∂



  (II.18) 

 

Equation (II.18) informs us that the dipole surface ( )SF t  with intensity ( , )µ ξ η  is travelling 

with velocity v> <
 , where ,ξ η  denotes a set of curvilinear surface coordinates for the points 

on ( )SF t . Thus, if a µ  surface exists at time t , its new position can be found, at time t dt+ ,  
by deforming it by v dt> < ⋅

 . Notice that formula (II.17), for the calculation of v> <
 , contains 

infinities at shear layer boundaries (i.e. as P  approaches ( )L t′ ) which, although they are 
connected with the vortex rollup, they have to be treated with caution in numerical 
calculations. Furthermore, notice the Kelvin-Helmholtz instability, inherently present in such 
type of problems, Saffman (1992), Wu (2006). For the previous reasons calculation of v> <

  
requires special attention.  

 

II.1.1.1.6 Calculation of forces, moments, power and efficiency. 

 Pressure forces on element centroids can be calculated using(II.13). Forces and moments are 
then calculated using  

( ) ( )1,
L L

F p n D dS M r p n D dS
∂ ∂

= ⋅ + ⋅ = × ⋅ + ⋅∫ ∫
   

     (II.19) 
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Where D


 denotes a viscous drag correction force given by  

1
2 D tot totD C v vρ=



    (II.20)  

And totv is total velocity relative to an observer  in the moving system and DC is the sin friction 

coefficient, given by Blevins (1992): 

2
10

0.0986

(log 1.22)
DC Ux

v

=
−

  (II.21) 

Where 
Ux
v

 is the local Reynolds number at each position.  

 

II.1.1.2 Numerical Implementation. 

II.1.1.2.1 Discretization and solution.  

 

Subdivide ( )SB t into BN elements. Subdivide ( )SK t into KN elements. Subdivide 

( )SF t into FN elements. Four node quadrilateral elements have been used for the subdivision 

of bodies and shear layer boundaries. Assume piecewise constant φ  and n φ⋅∇


 for all 
elements on ( )SB t . Assume piecewise constant µ  for all elements on ( ) ( )SK t SF t∪ . Denote 

these constant values by ( ), ( ),i i ii
nφ σ φ µ= ⋅∇  where the range of index (i) is adapted 

accordingly.  

With the aid of the previous assumptions/notation integral equation (II.12) becomes: 

, , , ,
1, 1, 1, 1,

1
2

B K B F

i i j j i j j i j j i j j
j N j N j N j N

B B A Bφ φ µ σ µ
= = = =

− − = +∑ ∑ ∑ ∑  (II.22) 

where: 

, , 3

( )1 1,
4 4

j j

i
i j i j

iE E i

n Q QPdSdSA B
QP QPπ π

⋅
= − =∫ ∫





 (II.23) 

and jE  denotes the surface of the thj  element from either ( ), ( ), ( )SB t SK t SF t  and iP  denotes 

the thi  control point (centroid of iE ) on ( )SB t . 

Relation (II.22) applied at the BN  centroids of the body elements, gives BN  linear equations 

for the determination of element potentials. The KN additional equations required for the 

calculation of jµ  are taken from the satisfaction of the Kutta condition on ( )L t . There are 

three alternatives for the satisfaction of a Kutta condition, and thus completion of the system 
of equations: 
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(i) The first alternative uses a linear Morino condition in the form of (II.15) which in 
discretized form becomes: 

i i i
µ φ φ+ −= −  (II.24) 

where i+  and i− denote element numbers on body, neighboring to trailing edge from different 
sides (i.e. pressure side and suction side to use terminology from wings) and i  denotes 
element number on kutta strip, neighboring to the same point of the trailing edge. 

(ii) The second alternative uses a pressure type Kutta in the form of p p+ −= . This is a 

nonlinear equation between the unknowns ,j jφ µ . There are two ways to implement 

numerically the nonlinear pressure type Kutta. The first is to express velocities in (II.13) as 
functions of the unknowns ,j jφ µ  using the representation theorems. The second is to 

evaluate velocities from surface potentials by using finite differences in a body surface 
curvilinear system. The second method has been decided to be used, since the computational 
cost for calculating velocity induction factors needed in the first formulation, is high. Notice 
that in a preliminary development stage both alternatives have been programmed and similar 
results have been found, although the first is much more computationally intensive than the 
second. 

(iii) The third alternative uses a mixed type Kutta i.e. partly Morino and partly Pressure type. 
More specifically from calculations of flows around flexible bodies (fish tails and bird wings) it 
was found that at higher loadings, a pressure type Kutta at blade tips is too strong and 
occasionally leads to a destruction of the shear layer geometry at those regions. Thus, the 
decision was taken to introduce, as a third alternative, the “mixed Kutta” i.e. a Morino 
condition at the tips of the separation line and a pressure type Kutta at all other points.  

If alternatives (ii) or (iii) have been selected, the resulting system of equations is nonlinear and 
it is solved by using a Newton iteration method, with starting value taken from a Morino type 
Kutta (first alternative). Usually three iterations are enough to converge. After the system of 
equations has been solved, the code calculates and prints forces, moments, power and 
efficiency. It also prepares a number of graphic output files ready to be used by the 
commercial program TECPLOT to visualize the complex unsteady phenomena in video form. 
Finally notice that in most cases conditions (ii) and (iii) give similar results regarding the 
integrated loads. But there are cases where condition (ii) leads to divergence while condition 
(iii) converges.           

Solution of the problem is implemented by a time stepping algorithm as follows: 

At each time step, the SOLVER-CODE: 

1. Reads the next position of the system of bodies which is calculated by a GPP/MPP 
(Geometric Preprocessor Program, Motion Preprocessor Program –explained in a next 
section). 

2. Generates corresponding Kutta strips, for the case of lifting bodies, introducing thus 
the extra unknowns required for the Kutta condition satisfaction. 

3. Solves the system consisting of the “no-entrance” and “Kutta” conditions. In case of 
pressure type Kuttaa Newton iteration is used at this step. 

4. Deforms the free shear layers to their new positions by applying a special filtering 
technique to calculate induced velocity  
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5. Output results (pressures, forces, velocities, position of free shear layers) for this time 
step. 

6. Proceeds to the next time step and repeats the calculation from step (1). 

 

The algorithm is graphically presented in Figure II.1.1-2 

 

Generate corresponding Kutta strips
 for lifting bodies

introducing the extra unknowns required 
for the Kutta condition satisfaction.

Solve the system consisting of the “no-
entrance” and “Kutta” conditions. 

Read the position of the 
system of bodies for step i

Deform the free shear layers to their new 
positions 

Output results
 (pressures, forces, velocities, position of 

free shear layers) 
for this time step.

Proceed to the next time 
step 

Generated by  GPP/MPP
 (Geometric Preprocessor 

Program / Motion 
Preprocessor Program)

 If pressure or 
mixed Kutta

 Newton 
iterations

Application of  
filtering 

technique 

 

Figure II.1.1-2 Schematic presentation (flowchart) of the algorithm of UBEM 
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II.1.1.2.2 Strong interactions and the filtering technique.  

 

In case of a lifting (or non-lifting) body moving in the wake of another lifting body, the shear 
layer of the front body may pass very close or even intersect the trailing body surface or the 
free shear layer of a trailing body or both. This is a problem of “strong interaction” between 
lifting bodies.  

From the phenomenological point of view the physical mechanisms of strong interactions are 
mainly viscous and as such are excluded from the modeling capabilities of a BEM formulation. 
Furthermore flow fields in the vicinity of shear layers show peculiar/non-physical  
performance due to the following reasons: (a) the boundary of a shear layer (e.g. ( )L t  in the 
aforementioned formalism) induces infinite velocities in its neighborhood, Saffman (1992), (b) 
approaching a point of a shear layer from either sides results in different values of self-induced 
velocities and induced potentials. Thus formulas for induced velocities/potentials used in BEM 
cannot be applied to strong interaction cases, where viscosity rules, without modification. 

An approach to simulate the viscous reality in the context of potential flow methods can be 
found in either the ‘Lamb-Oseen’ or the “Burgers vortex” where the azimuthal velocity of a 

vortex filament is given by the equation
2

(1 )a rv e
r

− ⋅Γ
= − .Both vortices are special exact 

solutions of the Navier-Stokes equations, Wu et al (2006).The function 
2

(1 )a re− ⋅− mollifies the 

singularity at 0r = substituting it by a viscous vortex core with finite diameter, controlled by 

the parameter a . Functions like 
2

(1 )a re− ⋅−  act as filters (mollifiers) removing the generic 
singularities of a BEM. A further discussion on the subject can be found in Sarpkaya (1989) 
and Cottet and Koumoutsakos (2000). In the formulation used, the following mollifiers have 
been applied to the kernel functions with singularities appearing in BEM integrals: 

 

( , , ) 1
parf r a p e−= −  (II.25) 

 

where r is the distance, p a parameter which depends on the order of the singularity of the 
kernel function and a  a parameter controlling the range of action. By selecting a p with a 
value equal or greater than the order of the singularity of the kernel function and a proper 
value for the range parameter a , full control on the smoothness of interactions in the vicinity 
of interacting surfaces is obtained. In the formulation used, parameter p  can take non-integer 
values as well. 

The previous ideas are shown schematically in Figure II.1.1-3. More specifically, the singular 
kernel 1 r  as well as the result of applying to it two different mollifiers: ( , 4, 1.3)f r a p= = , 

( , 8, 1.3)f r a p= = are plotted. It is observed that the mollified kernel tends smoothly 

(governed by an analytic function of position) to zero as 0r → . Notice finally the effect of a  
in the action range of the mollifiers: for 4a =  the range is 1.114464r <  while for 8a =  the 
range is 0.65389r < , etc. For those results to be obtained, it was assumed that a ‘radius’ R  of 
a mollifier can be defined (for all practical purposes), as that r , where 0.99f = . The relation 
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between , ,R a p  can directly been obtained by rearranging the terms in (II.25) and taking the 

logarithms, i.e.: 1/( ln(1 ) / ) pR f a= − − . 

 

Figure II.1.1-3 comparison of mollifier effects  
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II.1.2 Architecture of code for prescribed motion simulations 
According to UBEM architecture (Politis 2011) a body (lifting or non-lifting) can be built by a 
number of patches. Thus for each case to be modelled, a specialized GPP (Geometry 
Preprocessing Program) and MPP (Motion Preprocessing Program) has to be developed. In the 
sequel of this section shall be presented the developed code to treat the geometry and motions 
of a single wing. Notice that this code with minor of major alterations can be adapted to solve 
other problems e.g. the twin oscillating wings or other wing configurations. The developed 
code is written in an object oriented, fully structured manner, that allows for modularity, 
upgradeability and scalability. Each process and subprocess has a clearly defined interface 
with other processes, so it can be upgraded, changed and/or run in parallel.  

 

Geometry 
data

Creation of input 
files SOLVER

Result collection

Selection of motion 
parameters for given 

iteration

Iterations for given parameter range

Parameters for sequential test 
(range, number of steps) and 

constant parameters

(Nondimensionalizatio
n and presentation of 

collected results 
against iterated 

parameters)

POST 
PROCESSING

Control 
parameters

 

Figure II.1.2-1 Schematic of program used architecture. 

 

As shown in Figure, for the systematic exploration of parameters of movement to performance 
characteristics, a sequence of simulations is executed. The initial geometry parameters have to 
be given, along with a set of fixed parameters and the parameters that will be systematically 
changed in the sequence. For each step, an intermediate sub program gives the specific 
parameters to the geometry pre-processing program, which in turn makes the time history 
(animation) of movement to be input for the solver. The solver in turn, exports result files 
signified by the parameters of each simulation. Lastly, an insert data collection subprogram 
gathers user defined data from all iterations and exports them into a single file (for each set of 
variables) in order to make it easy to extract summary plots for the whole set of systematic 
runs performed. 

II.1.2.1 Input file generation 

As discussed previously, a file containing the description of geometry (in animated panel mesh 
form), is necessary for the solver. Since the architecture is modular, input file generators are 
built according to purpose. Figure II.1.2-2, depicts the structure of the in house program that 
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has been created for wing simulations. The whole structure employs a module that contains 
all the common linear algebra and geometry functions.  

The whole process can be defined in two parts. The creation of the geometry (initial mesh) 
and its animation (position at each timestep). For the case of deforming bodies, the geometry 
is created anew at each step.    

 

Foil Geometry Data Generation

Sections 
Generator

User 
Defined

NACA 
4-5 digit 

Outline
Chord Length

For each spanwise position

Spine points 
distribution

Twist 
distribution

Skew 
Distribution

Bend 
Distribution

OR

Number of Chordwise points 
and distribution

Number of Spanwise points 
and distribution

Rotations

Transaltions
Motion Functions

IF Flexing

Geometry (meshes) for each step

Definition(s) of motion(s)

Rigid Body 
Motions

 
Figure II.1.2-2 Schematic of geometry generation program architecture 

 

 

II.1.2.1.1 Initial geometry creation 

 

Each body, when described as initial geometry, is equipped with a set of curves that help in 
the construction of it, a spine and two rails, which are (the rails) the leading and trailing edge 
curves. For each wing, the geometry is described by the user, by giving the number (quantity) 
of spanwise and chordwise elements and distribution (iso spacing, cosine, etc.), the number 
(code) of a NACA section (or the description of another section) and the description of spine 
curve (as distributions of skew and bend), outline (as distribution of chord lengths) and twist 
distribution. With the aforementioned knowns, the geometry is constructed as follows: 
According to number of spanwise points and distribution, the necessary points of spine and 
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outline are found via b-spline interpolation. Then, each chord is rotated according to the twist 
distribution. With the spine and rail points given for a section, a single set of points is 
generated for the given section and point distribution and positioned finally at the 
corresponding location, dictated by the spine and rail points. The algorithm is depicted in 
Figure II.1.2-4. A schematic of given, interpolated and generated points, is shown in Figure 
II.1.2-3.  

 

 

LE rail

TE rail

spine

Given 
points

Interpolated 
points

Generated 
points

 

Figure II.1.2-3 Initial geometry points 
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Start geometry creation for wing #n

Define spine points distribution and positions
(according to span, number of points and distribution type)

Find chord length of section
(via interpolation)

Loop on spanwise positions

For section #i

Find position of spine point
(spline interpolation of given points 

-skew,bend-) 

Define individual section

Find position of point according to
point distribution and chord length for 

chordwise position, and
 given section description (NACA or 

other) for thickness

Loop on chordwise points

For point #i,j

Define chordwise distribution of 
points 

(according to chord length, number of 
points and distribution type)

Section 
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Move section to its position 
(spine point)
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around spine 

point 

 Wing Sections In Position

Wing Geometry Defined
 

Figure II.1.2-4 Wing geometry creation algorithm 
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II.1.2.1.2  Animating a given geometry. 

The Motion pre-processing subprogram, is actually superimposing user defined rigid 
(rotations and translations of the whole body) and flexing motions. If flexing motions are 
employed, they are performed before the rigid motions, but the rigid motions are explained 
first in order to set the equations of motion, as they are also used internally for the flexing 
motions. 

 Rigid body motions: 

In the most general case an instantaneous motion is a result of an instantaneous rotation 
around a given axis and an instantaneous translation along another given axis. For the 
minimization of errors, instead of incremental motion (i.e. moving the geometry from the 
position of the previous step to that of the next), a direct approach is taken, where one 
rotation and one translation is applied to the initial geometry at each step in order to arrive at 
the desirable position. The movements of each point are done by means of vector translation 
and rotation relative to given point and axis or the absolute center of reference using the 
aforementioned linear algebra/geometry functions. Then, the definition of motions is a matter 
of defining the rotation angle and vector, and the translation vector in time. 

For instance, for the simple motion of pitching and heaving, the following are the descriptive 
functions: 

( ) ( )sin 2yt ftθ θ π=  for the pitch rotation around y axis 

and 

( ) ( )sin 2z xh t h ft v tπ φ= + +
  

 for the heave along the z axis and the advancing speed along x 

axis. 

Or for the case of a propeller rotating and translating it would be: 

( ) xt tθ ω=  and ( ) xh t v t=
 

 around and along the x axis 

 

 Flexing Motions of Wings 

For the flexing deformation of wings, the spline interpolations used for the generation of the 
initial geometry are fed with new points, at each step, found by the corresponding equations 
of motion. The schematic of Figure II.1.2-5 illustrates the original and deformed geometry.  

Initial geometry

LE rail

TE rail

spine

Deformed geometry

Moved 
points

Interpolated 
points

 

Figure II.1.2-5 Initial and Bent wing after interpolations. 
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More specifically, the part of the program that creates the initial geometry, is called at each 
step and after the spine points are moved to their new position (according to given motion 
parameters, as for rigid motions), the new geometry is fitted following the existing algorithm. 
After that, any additional (global) motions (i.e. traveling at a given velocity) are applied as 
normal.  

It has to be noted, that in really strong deformations, it is not certain that the resulting 
surfaces will be smooth. Especially in the case of joints, extra care has to be taken so that the 
sections will not be overlapping. 

In addition to these, some more care has to be taken on the sequence of the motions and 
deformations, so that the desired result will be achieved. 

After this description, it is understood, that by such program, it is possible to simulate any 
movement, as long as care is given to the correct application of the sequence of motions. 
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II.1.3 Testing the code 
 

For the purpose of comparing simulation with experiment, data were extracted from the 
papers ‘Performance of flapping foil propulsion’ (2005) by L. Schouveiler,  F. S. Hover, M. S. 
Triantafyllou and ‘Forces on oscillating foils for propulsion and maneuvering’(2003) by D.A. 
Read, F.S. Hover, M.S. Triantafyllou. More specifically, time domain results for cases 1 and 2 
are from the first paper and case 3 is from the second. Table II.1.3-1 shows the motion 
characteristics that define each case. Systematic results of time averaged forces were taken 
from both papers, giving extra gravity to the first, as it is newer than the other. Another reason 
for choosing to compare with the specific experimental papers is that directly measured forces 
are given both in time domain and time averaged values, as well as measurements for non-
symmetrical (biased) motion. In all cases NACA 0012 foils of 0.1m chord length were used, 
with AR=6 travelling at such a speed that Re=4000 while h/c=1. It should be noted that the foil 
was equipped with end plates, in an attempt to reduce 3D effects in the experiment, fact that 
is expected to induce discrepancies. 

Table II.1.3-1 Definitions of the cases used for time domain comparisons   

Case Str θ0 bias source 

1 0.3 23.3o 0.0o Schouveiler et al (2005) 

2 0.3 23.3o 15.0o Schouveiler et al (2005) 

3 0.4 18.3o 10.0o Hover et al (2003) 

 

II.1.3.1 Time domain results: Grid independence, stability, consistency and 
accuracy. 

For all cases, five different discretizations were made in order to perform the grid 
independence checks as shown in Table II.1.3-2. The number of steps per period is chosen in a 
way that the wake elements emanating from the trailing edge have an acceptable aspect ratio 
and are comparable to the elements of the trailing edge.  

 

Table II.1.3-2  Discretizations used for grid independence tests 

name Number of elements Steps per period 

Grid1 30X20 50 

Grid2 60X30 60 

Grid3 80X40 65 

Grid4 120X50 70 

Grid5 160X60 75 
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II.1.3.1.1 Results and comparison for Case 1 

 

Starting with the simplest of cases in hand, there is the symmetrical medium loaded condition 
where St=0.3 and θ0=23.30 (amax=20o). In the following figures, cFx and cFy are the force 
coefficients of the respective forces, calculated in the same manner Thrust coefficient is 
defined already in I.2.1.1, equation (I.7) and following the notation of the paper ( S s c= ⋅  ). 

As show in Figure II.1.3-1 and Figure II.1.3-2, only grid1 does not agree with the other grids, for 
cFx showing that there is grid independence for grids denser than grid2. Nevertheless, grid1 
also follows the trend very well. The difference only in the thrust calculation and not in lateral 
force, can be attributed to the possibility that grid1 is not dense enough to satisfactorily 
simulate leading edge suction. Figure II.1.3-3 and Figure II.1.3-4 also show the agreement with 
the experimental results. It should be noted, that the experimental results, have been put 
through no processing further than magnification, in order to be visible and then the scales of 
the produced results were matched to it. The data have not been digitized and/or filtered, as 
such action would add uncertainties to the comparison. It is very interesting to observe, that 
even though the BEM model assumes attached flow and the 20degrees are well beyond the 
static stall limit, the agreement between experiment and simulation is good. This means that 
either the flow does not separate, or that the leading edge vortex that might be created 
reattaches to the flow with minor effects on the resulting forces.  
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Figure II.1.3-1 Effect of grid on CFx for case 1 

 

Figure II.1.3-2 Effect of grid on CFy for case 1 
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Figure II.1.3-3 Comparison of CFx with experimental data (as scanned) for case1 

 

Figure II.1.3-4 Comparison of CFy with experimental data (as scanned) for case1 
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II.1.3.1.2 Results and comparison for Case 2 

 

From the same publication with the previous case, case 2 has the same parameters of 
movement (St=0.3, θ0=23.30).  with sole difference, the fact that the movement is not 
symmetrical, but biased. The mean angle of attack is 15ο. This makes it a case of higher 
loading, while instantaneous angles of attack reach 35 degrees, beyond the theoretical limits of 
dynamic stall. Consequently, flow separation is expected, meaning that it is expected to have 
differences between simulation and experiment.  

Figure II.1.3-5 and Figure II.1.3-6 show the grid independence and comparison with the 
experimental data. As expected, there is difference from the experimental, but not that 
significant. It is known that in the experiment, end plates were used for the purpose of 
minimizing 3d effects. This was attempted to be simulated with the usage of higher aspect 
ratio, Figure II.1.3-7 and Figure II.1.3-8 show the resulting comparison. As it can be seen, the 
increase of aspect ratio brings the measured forces a little closer, but there are still 
discrepancies. Since at the extreme conditions of this experiment where separation possibly 
rules the results, it was decided to try applying additionally a Morino kutta condition at the 
trailing edge, which allows for finite pressure jumps at this region. Figure II.1.3-9 and Figure 
II.1.3-10 show that comparison, along with experimental data. As it can be seen, the results 
seem to be improved, still having difference from the experiment. More specifically, Y forces 
seem to be the problem, there the peaks are under estimated by the pressure kutta condition 
and over estimated by Morino, but both within the uncertainty of the results.  
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Figure II.1.3-5 Convergence and comparison of CFx with experimental, for case 2 

 

 

Figure II.1.3-6 Convergence and comparison of CFy with experimental, for case 2 
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Figure II.1.3-7 Effect of Aspect Ratio for CFx Compared to Experimental for Case 2 

 

 

Figure II.1.3-8 Effect of Aspect Ratio for CFy Compared to Experimental for Case 2 
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Figure II.1.3-9 Effect of Kutta condition on CFx compared to Experiment for case 2 (AR=6) 

 

 

Figure II.1.3-10 Effect of Kutta condition on CFx compared to Experiment for case 2 (AR=6) 
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II.1.3.1.3 Results and comparison for Case 3 

 

This case was taken from Read, Hover, Triantafyllou (2003) and is similar to the previous 
(having the same Reynolds number, chord length, AR, heave to chord ratio) with the 
difference of having St=0.4, θ0=18.30. (so the case has higher loading than the previous), while 
the bias angle is 10 degrees. The maximum instantaneous angle of attack is 35 degrees as in the 
previous case. Since the effect of end plates is unknown, simulations with larger AR were 
decided to be conducted. Figure II.1.3-11 and Figure II.1.3-12 show that comparison for the grid 
3, where grid independence is achieved. With varying AR, it appears, that the 3D effects are 
diminished after AR=8, as the difference after AR=10 is minimal. The effect of AR is 
investigated further in the systematic series, presented in III.1.1. After observation of the 
results, it is found that the peak values of experimental data are enclosed between AR=8 and 
AR=6, but are underestimated in the second half of the period.  It could be speculated, that 
such discrepancy might be a matter of boundary condition, possible viscous effects or stronger 
interaction with the wake. Consequently different Kutta conditions were simulated to 
investigate. Figure II.1.3-13 and Figure II.1.3-14 show that comparison for AR=6. In this case, the 
Morino condition seems to approximate better the peak values and the area around them, but 
not the lower ones.  
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Figure II.1.3-11 Effect of aspect Ratio on CFx compared to Experiment for case 3 

 

 

Figure II.1.3-12 Effect of aspect Ratio on CFy compared to Experiment for case 3 
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Figure II.1.3-13 Effect of Kutta condition on CFx compared to Experiment for case 3 

 

 

Figure II.1.3-14 Effect of Kutta condition on CFx compared to Experiment for case 3 
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II.1.3.2 Time averaged Results 

II.1.3.2.1 Grid independence of the UBEM predictions. 

In order to analyze the effect of the grid density to the calculated open water flapping wing 
performance, the systematic BEM calculations for a range of 0 , Strθ  (will be described further 

in III.1.1) have been repeated with three different grid densities, according to Table II.1.3-3: 

 

Table II.1.3-3. Grid densities. 

name No of chordwise 
elements(face + back) 

No of spanwise elements 

/ 2s c =  / 4s c =  / 6s c =  

Grid1 20 30 50 80 

Grid2 35 45 80 120 

Grid3 50 70 130 200 

 

The timestep has been defined for each single simulation by calculating the maximum 
translation of the trailing edge (per step) and keeping it in comparable size to that of the used 
elements. For the time averaging of calculated forces, moments and power, the mean 
corresponding value is calculated, over one period, which has to start after all transient 
phenomena have passed. For that reason, each case has to be investigated for transient 
phenomena and the proper simulation period has to be selected. As it will be shown later in 
III.1.1.2, for single wings, the second period is adequate. For the comparison among grids, the 
following procedure has being used: For each configuration and for each grid of table 1, 
systematic simulations for a range of 0 , Strθ  can be produced. Considering the results 

0( , , )TStr Cθ , a graphical representation is made in the form of a 3D plot with 0 , Strθ along the 

XY axis and TC along Z  axis. Thus a TC  surface can be created.  By inserting any two such 

surfaces in a plotting software, it is easy to obtain the mean and maximum deviation between 
them. Those data for the case of a single (pitching and heaving) wing of a range of s/c and h/c 
as described in III.1.1 are shown on Table II.1.3-4, with the following convention: Above 
diagonal are overall mean of the %differences of mean thrust values and below diagonal are 
the maximum of the %differences of mean thrust values.    

It can be seen that Grid2 (as well as Grid3) can be considered as a reliable discretization for 
systematic simulations. Nevertheless, Grid1 in spite of lacking accuracy, it is good enough to 
show trends and could be used for getting quick exploratory results. 
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Table II.1.3-4. Mean (above the diagonal) and maximum (below the diagonal) %deviations in 
mean thrust calculation. 

 Grid1 Grid2 Grid3 

Grid1 0 4.50% 5.02% 

Grid2 8.09% 0 0.52% 

Grid3 10.45% 2.21% 0 

 

 

 

 

II.1.3.2.2 Experimental verification of the UBEM predictions for time averaged 
results. 

 

To verify the predictive ability of UBEM, experimental data was taken from the works of Prof. 
Triantafyllou and his team. More specifically figures 8 and 9 in Read et al. (2003), contain 
experimental measurements of mean thrust loading coefficient (based on wing plan form 
surface S sc= ) and efficiency, for a rectangular wing with / 6s c = , for a range of Strouhal 
numbers and maximum angles of attack corresponding to the thrust producing regime. The 
wing has a rectangular outline with 0.1 , 0.6c m s m= = and it is equipped with endplates, to 
enforce 2D flow in most part of the wing surface. The pitch axis is located at / 1/ 3b c =  from 
leading edge, the heave to chord ratio has been selected as 0 / 1.0h c =  and the phase angle has 

been selected as 090ψ = . Furthermore figures 5a,b in Schouveiler et al. (2005), contain 
analogous experimental results for the same wing but with different heave to chord ratio 

0 / 0.75h c = . Notice that the experimental data provided in the above papers are plotted in a 

different format than that used in the present work. More specifically instead of a 0( )TC Str θ−  

plot used in the present work (the reason and function for which is discussed in the III.2.2.1 
and III.2.2.2 respectively), a max ( )Ta C Str−  plot is used in the source, where maxa is the 

maximum angle of attack. Also instead of a 0( )PC Str θ− plot used in the present work, a 

max ( )a Strη − plot is given, where η denotes the efficiency, equation (III.5). The previous 

experimental measurements have been digitized and transformed to the form 0,T PC C θ− , 

consistent with the definitions used in the present work. Comparisons of the experimental 
data with calculations using UBEM are shown in Figure II.1.3-15 thru Figure II.1.3-18.  A general 
remark is that experimental measurements and UBEM predictions follow similar trends and 
there is a good coincidence in the areas of high efficiency ( 0 0

0 30 50 , 0.45Strθ = ÷ ≤ ). 

Discrepancies are also evident and can be attributed to UBEM, the existence of endplates in 
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experiments (which are not present in the numerical simulation) and the experimental 
uncertainty. Since the selection of 0 /h c has major effect on the range of thrust producing 

pitch angles, through modulation of the angle of attack of wing sections, the results of Figure 
II.1.3-15 and Figure II.1.3-16 shall be discussed. Similar conclusions can be drawn from Figure 
II.1.3-17 and Figure II.1.3-18 but with displaced range of the pitch angle. More specifically, the 
existence of endplates in the experimental setup increases the wing tip loading over the whole 
range of parameters. This effect is more pronounced for higher wing loadings i.e. for greater 
values of the Strouhal number ( 0.45Str > ) and lower to medium values of the pitch angle 
( 0 0

035 50θ< < ). This explains the difference in slope of the 0,CT PC θ−  curves (at constant 

Strouhal) between UBEM and experiments, for this range of parameters. This effect on the 
slope of the 0,CT PC θ−  curves will be observed with the variation of s/c and will be discussed 

later. As parameters change, towards the region of maximum efficiency, UBEM and 
experiments are in good agreement. For smaller 0 0

0 25 30θ < −  (higher maximum angles of 

attack), UBEM overestimates the thrust, as effects of leading edge separation are neglected. 
Finally an additional source of differences between experiments and UBEM is the uncertainty 
in the experimental thrust and efficiency, which is estimated to be 4% and 7% (maximum) 
respectively, Schouveiler et al. (2005).  

In overall, the method can produce reliable results for the practical design area where 
efficiency is maximized and acceptable trends for the off design points.  
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Figure II.1.3-15 0TC θ−  for 0/ 6, / 1.0, / 1/ 3s c h c b c= = = . Thicker lines are for UBEM results 
and thinner, are for experimental, Read et al. (2003). Dashed line is for 30 degrees maximum 

angle of attack. 

 

 

Figure II.1.3-16 0PC θ−  for 0/ 6, / 1.0, / 1/ 3s c h c b c= = = . Thicker lines are for calculated 
results and thinner, are for experimental, Read et al. (2003). 

66 



Testing the Code 

 

Figure II.1.3-17 0TC θ−  for 0/ 6, / 0.75, / 1/ 3s c h c b c= = = . Thicker lines are for calculated 
results and thinner, are for experimental, Schouveiler et al. (2005). 

 

 

Figure II.1.3-18 0PC θ−  for 0/ 6, / 0.75, / 1/ 3s c h c b c= = = . Thicker lines are for calculated 
results and thinner, are for experimental, Schouveiler et al. (2005). 
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II.1.4 Acceleration of programs used 
 

As already mentioned, the major computational costs for the general unsteady case are (in 
order of higher to lower): 

a) Calculation of the time evolution of the free shear layer surface FS  

b) The iterative solution of the nonlinear system. 
c) The setup of the nonlinear system. 

 

For the purpose of the acceleration of the computational method, the new technology of GPU 
computing was explored and implemented. More specifically, GPUs (Graphics Processing 
Units) are in effect processors with many (thousands) arithmetic units. Due to their original 
purpose of processing and rendering millions of vertices in real time the architecture of the 
GPU is different to the normal processors and is outstandingly fast, scalable and efficient at 
algorithms that need the repetition of the same set of instructions for a large range of points 
(or cases) that can run in parallel. This model is called Single Instruction Multi-Threading.  
Processes as matrix operations, or integrations, are the ones that are the most scalable and 
have been explored the most. More specifically, the well-known linear algebra LAPACK has 
been translated to CUDA (C Unified Development Architecture, developed by NVidia) and the 
CULA tools Package was created and optimized by EM Photonics. This tool provides a set of 
subroutines that allow the solution of linear systems at speedups of over 300x compared to 
solving on the CPU. 

After the creation of a “wrapper” for the CULA routines, so they can be called by the existing 
programme, the solution accuracy, and the actual speedup can be evaluated. For the specific 
implementation, common commercial (gaming – low cost) GPUs were used in workstation 
grade pcs. The accuracy of solution, for single precision operations, is within the machine 
error margin that the solution on the CPU has, and the speedup for the solution of a 
20000x20000 dense linear system is measured to be 800 to 900 times. This speedup, in the 
total time of the method, can mean a speedup of magnitude 9 up to 70, depending on whether 
a linear or on nonlinear Kutta condition is applied and on the amount of Newton iterations 
applied for the solution of the nonlinear system. 

The calculation of the time evolution of the free wake, can also be broken down to the 
calculation of the induced velocities at each point, which can be done for each point 
separately (thus in parallel) and a series of matrix operations for the translation of the points. 
This means that this part of the algorithm is also parallelizable and possible to be run on a 
GPU. Even though it has not been implemented in the programs used for the purpose of this 
thesis, initial tests have been made and the potential for speedup of the subprocess is 
estimated to be at least 200x. This development will be discussed further in the Future Work 
part of the conclusion. 
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Part  III  SIMULATIONS WITH FULLY 

PRESCRIBED MOTIONS AND 

OPTIMUM DESIGN 

METHODOLOGY FOR FLAPPING 

WING PROPULSION 

 

In the development of the work for the purposes of this thesis, prescribed motion simulations 
were considered to be the foundation for any other possible applications. As such, they were 
the first to be investigated and the ones to be thoroughly analysed. 

In chronological order, most of cases were developed in parallel, as in Politis & Tsarsitalidis 
(2009) most wing configurations were introduced and some preliminary results of each case 
were presented and thereafter developed. In Politis & Tsarsitalidis (2010), simulations of bird 
flight were introduced,  the concept propulsor FOD (Flexible Oscillating Duct) was introduced 
in Politis & Tsarsitalidis (2011) and analysed in detail in Politis & Tsarsitalidis (2012). FOD was 
further developed into FEOD (Flexible Elliptic Oscillating Duct) in Politis, Ioannou and 
Tsarsitalidis (2013). In the same time, systematic investigations for twin wing systems was 
shown in Politis & Tsarsitalidis (2013) and in Politis & Tsarsitalidis (2014) the first detailed 
series for single wing propulsors, along with a corresponding design method was presented. 

Regardless of the chronological order of the publications and development of works, the 
methods, the simulations and the design applications for prescribed motions are going to be 
presented in a logical order that makes it easier for the reader to follow. The simulations 
grouped in order of similarity and complexity, are presented and discussed, along with their 
parameters, phenomenology analysis and systematic results (where applicable) which indicate 
the effects of parameters. Then, the design method for biomimetic propulsors of fully 
prescribed motion is presented and virtual applications on ships are presented and compared 
to conventional propellers. 
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for Flapping Wing Propulsion 

III.1 Prescribed Motions Simulations 
The fully prescribed motions can be considered to be of key importance, as through systematic 
variation of main motion and geometry parameters, observations on the governing 
mechanisms can be made and useful deductions can be obtained. Additionally, a thorough set 
of systematic simulations, can prove to be an extremely valuable input for those who attempt 
to make an advanced control system, as it can provide the data required for system 
identification, while it can also provide some initial insight, useful for the decisions required 
for the simulations of spring loaded wing, as will be discussed in Part III. Thus, extra gravity 
was given to the part of the systematic simulations of prescribed motions, in order to be as 
thorough and concise as time and compute capabilities would allow, in order to gain a wide 
coverage of parameters, which will lead to attaining a clearer insight of the effects of each 
parameter. . The accuracy of the simulation method in hand has already been examined in 
II.1.3. However, convergence and grid independence tests for each case are presented 
accordingly.      
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III.1.1 Single wing simulations - A systematic series for flapping wing 
propulsor design 
 

The single foil configuration is the simplest, yet the most important, as all effects can be 
isolated and studied thoroughly. Additionally, it is the least computationally “expensive”, thus 
making it the ideal starting point for a wide area of parameters analysis. Last but not least, it is 
the case where the most reliable experimental data exist, thus allowing for safer deductions, as 
they can be cross examined against experiments. The case of a single wing in pitching and 
heaving motion, was the first to be investigated in Politis & Tsarsitalidis (2009) and the first to 
be thoroughly investigated and published as a systematic series in Politis & Tsarsitalidis (2014). 
This series has been extended for a wider range of parameters and characteristic results are 
presented. Charts for the systematic series have been produced and the use of them is 
introduced. Finally, comparative diagrams are used for visualization of the effects of the 
parameters used. 

 

 

 

III.1.1.1 Wing geometry, motion and panel generation. 

 

The starting point for an unsteady BEM simulation is the generation of the time dependent 
paneling, describing the geometry of the system, Politis (2011). For the case of a moving wing, 
this can be done as follows: 

The state of the system in question is defined uniquely by a set of independent variables, 
which can be decomposed into two groups: Group A containing the geometric variables and 
group B containing the motion related variables.   

Group A: Wing geometry is defined by the wing outline (i.e.: span-wise distribution of chord, 
skewback and twist), camber and thickness distributions. Assuming geometrical similarity 
with respect to omitted variables, a minimum set of parameters defining wing geometry is its 
span s , the maximum chord c  and the skewback angle ŝ .  

Group B: Wing motion is defined by: (a) the amplitude 0h of a sinusoidal heaving motion 

normal to the velocity of advance U , (b) the amplitude 0θ (denoted as theta  in some figures 

in the sequel) of a sinusoidal pitching motion, (c) the chordwise position b  of pitching axis of 
the wing, (d) the frequency n  (common for both heaving and pitching motions) and (e) the 
phase angle ψ between heaving and pitching motions.  

Thus, assuming geometric similarity for the omitted variables, the geometry and motion of the 
flapping wing is completely defined by the variables: ( 0 0 ˆ, , , , , , , ,U n h s c s bθ ψ ) or in non-

dimensional form: 0 0 ˆ( , , , / , / , , / )Str h c s c s b cθ ψ , where Str  denotes the Strouhal number 

defined by:  
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0, 2n hStr h h
U
⋅

= =   (III.1) 

   

and h denotes the heave height. 

The previous parameters define uniquely the instantaneous angle of attack ( )a t of the wing 
section with respect to the undisturbed flow through the equation: 

1 0
0

2 cos(2 )( ) sin(2 ) tan ( )h n n ta t n t
U

π πθ π ψ − ⋅ ⋅
= ⋅ + −   (III.2) 

or in non-dimensional form: 

1
0( ) sin(2 ) tan ( cos(2 ))a t n t Str n tθ π ψ π π−= ⋅ + − ⋅ ⋅ ⋅  (III.3) 

where t  denotes time. 

Having introduced the analytical description of both geometry and motion of the wing, the 
creation of a surface panel distribution describing the wing at consecutive time steps is 
straightforward. Figure III.1.1-1 shows animated flapping wing panel discretization for twenty 
four time instances, evenly distributed in two periods, for a wing of the series (to be 
introduced in III.1.1.3) with: 0 0

0 0/ 1.5, 0.35, 23.6 , 90h c Str θ ψ= = = = . With the time 

evolution of the flapping wing paneling known, the code UBEM can be applied to calculate the 
resulting unsteady forces, energy requirements and free shear layer evolution.  

 

 

 

Figure III.1.1-1 Sequential positions of the flapping wing for 
0 0

0 0/ 1.5, 0.35, 23.6 , 90h c Str θ ψ= = = =  
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III.1.1.2 Transient flapping wing performance and selection of simulation 
period. 

 

The main difference between a traditional propeller and a flapping wing is that the latter 
produces a period mean thrust as a result of a highly unsteady instantaneous thrust. The 
simulation method in hand can produce this time dependent thrust but, since it is a time 
stepping method, initial conditions on wing motion have to be imposed. A burst starting wing 
is used as the starting condition. In this case a transient phenomenon occurs. Thus the mean 
period values for thrust or power have to be calculated after the passage of this initial 
transient phenomenon. To care for this, time domain simulations have been performed for a 
time range extending to three periods and for several combinations of wing geometry and flow 
parameters, covering the range of the wing series (to be introduced in III.1.1.3), in order to 
decide about the proper simulation period which will produces mean forces free of transients. 
Indicatively, Figure III.1.1-2 to Figure III.1.1-6, show the variation of wing thrust coefficient 

( )TC t  with time (sec)t , where 2

( )( )
0.5T

T tC t
U Sρ

= and ( )T t  denotes the time dependent wing 

thrust, ρ  denotes fluid density, U  denotes the translational velocity of the wing and 

S denotes the wing swept surface ( S s h= ⋅ ). A 090ψ =  has been selected for these 
calculations. 

From these figures it can be concluded that, for the examined family of wings and motions, 
the transient phenomenon is limited to the few initial time steps after the burst start. Thus it 
is safe to use the 2nd period of simulation, to calculate the mean thrust and power to be used 
as a representative of the mean open water performance of the family of simulations made.  

 

 

Figure III.1.1-2 ( )TC t  for 0
0 0{ / 2, / 1,Str 0.35, 23 }s c h c θ= = = =  

timestep=0.026sec 
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Figure III.1.1-3 ( )TC t  for 0
0 0{ / 2, / 1.5,Str 0.55, 35 }s c h c θ= = = =  

timestep=0.025sec 

 

Figure III.1.1-4 ( )TC t  for 0
0 0{ / 4, / 1,Str 0.30, 20 }s c h c θ= = = =  

timestep=0.029sec 

 

 

Figure III.1.1-5 ( )TC t  for 0
0 0{ / 4, / 1,Str 0.40, 25 }s c h c θ= = = =  

timestep=0.023sec 
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Figure III.1.1-6 ( )TC t  for 0
0 0{ / 6, / 1.5,Str 0.40, 25.6 }s c h c θ= = = =  

timestep=0.031sec 

 

III.1.1.3 The flapping wing series  

 

To proceed to a series based design process for flapping wings, decisions have to be taken, 
regarding the geometric and flow related parameters of the family. In this respect the 
following decisions have been taken: 

• The wing outline is characterized by zero twist.  For smoothening of the tip vortices 
the wing outline has rounded edges with the following detailed form: Starting from the 
wing tip and up to / 2c  distance spanwisely, the chord changes from / 4c  (at tip) to c  (at 

/ 2c  from tip). The interpolation schema for the chord, for spanwise positions between tip 
and / 2c , is a cubic spline with end conditions of 2 2 5d c ds = −  at tip and 0dc ds =  at 

/ 2c . A NACA 0012 thickness form has been selected for the whole span. 
• Wing with span to chord ratio: / 2, 4,6s c =   
• Sweep angles ŝ = 0,15,30,45 degrees 
• Heaving amplitude: 0 / 0.5,1.0,1.5,2.0h c =  

• Position of the pitch axis (from leading edge): / 0.1,0.33b c =  
• Strouhal number: 0.1 0.7Str = ÷  
• Pitch angle 0θ  ( theta  in some diagrams): from 5 degrees to a maximum, 

corresponding to zero mean thrust. 
• Phase angle between heaving and pitching motions: 090ψ = .  
• For selected cases, / 8,10,12s c = , has also been tested 
• For / 6s c =  the following variation of phase angle was also tested 

0 0 0 0 0 0 060 ,70 ,80 ,90 ,100 ,110 ,120ψ =  

The resulting wing geometry for the three selected values of /s c  is seen in Figure III.1.1-7 and 
the additional swept wing geometries are shown in Figure III.1.1-8. The series was originally 
introduced in Politis & Tsarsitalidis (2014) and is extended with the addition of simulations for 
the swept wings, the variation of phase angle (for s/c=6) and the additional s/c values, in this 
work.   
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Figure III.1.1-7 Wing outline for / 2, 4,6s c =  respectively. 

 

 

 

Figure III.1.1-8 Wing outline for / 4s c =  and ˆ 15 ,30 ,45o o os =  respectively 

 

Commenting on the previous selections, the wing span to chord ratio has been varied from 2 
to 6 in order to include both a vertically orientated wing (lower aspect ratio) and a horizontal 
wing, extending along ship’s breadth (higher aspect ratio). Larger aspect ratios were tested, in 
order to explore the 3D effects and their asymptotical tendency to a 2D result. Heave to chord 
amplitude has been selected from 0.5 to 2.0. This selection is related to the fact that optimum 
efficiency is usually observed in the range: 0 / 0.75 1.0h c = − , (Triantafyllou et al. (2005)). 

However it is interesting to investigate numerically the effect of greater values of 0 /h c to the 

wing performance. The position of the pitching axis has been selected in the 
range / 0.1 0.33b c = − . This decision is related to the fact that, in 2D inviscid linearized airfoil 
theory the center of pressures lays a quarter chords from leading edge, a value which is in-
between the selected range. Regarding selection of Strouhal number previous simulation 
experience, as well as evidence from the literature, Triantafyllou et al. (2005), indicates that 
optimum hydrodynamic performance is achieved in the range: 0.15 0.35Str = ÷ . The 
selection: 0.1 0.7Str = ÷ broadens the simulation to higher Strouhal numbers allowing 
quantitative estimation of the effect of propulsor loading (quantified by the Strouhal number) 
to its hydrodynamic efficiency. Notice that for greater ship speeds, the need of highly loaded 
flapping wings seems very probable. The range of the pitch angle 0θ  has been selected in 

order to cover the full thrust producing regime for each wing of the family.  The selection of a 
minimum pitch angle of 5 degrees has to do with the fact that for lower values of 0θ , flapping 

wing flow is liable to leading edge separation, a phenomenon which is not modeled by UBEM. 
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Furthermore, as will be seen later on, this region of pitch angles is without practical interest 
due to the very low hydrodynamic efficiency observed. Finally, with the exception of s/c=6 
where variation was tested, the phase angle between the heaving and pitching motions has 
been selected: 090ψ = , which is a nominal value providing good efficiencies, (Triantafyllou et 
al. (2005)).  

With the previous discussion/decisions in mind, the wing family of existing simulations 
consists of 45 different sets of geometric/motion configurations (24 were created for Politis & 
Tsarsitalidis (2014) ). Each configuration set has been set in motion using all combinations of 
Strouhal and pitch angle amplitudes in the selected range. The developed mean thrust and 
power is then represented in a number of charts with the maximum pitch angle 0θ in the 

horizontal axis and the Strouhal number Str as parameter. Those charts are the analog of the 
‘open water performance charts’ (where 0θ plays the role of propeller pitch ratio and Str the 

role of the inverse of the propeller advance coefficient) used in propeller design, (Oosterveld & 
Oossannen (1975)), and are the subject of the next section.  

 

III.1.1.4 The open water performance charts for the flapping wing series.  ] 

 

Systematic unsteady BEM simulations have been performed with the selected flapping wing 
series. In all simulations a chord of 1.0c m= has been selected. Variation of Strouhal number 
has been achieved by changing the frequency of the flapping wing oscillation, while the 
corresponding translational velocity has been held constant and equal to 2.3 /V m s= . This 
results to an overcritical Reynolds number (based on translational velocity: Re /U c ν= ⋅ ) 
equal to 6Re 2.02 10= ⋅ . Corresponding Reynolds numbers based on the maximum 
undisturbed flow velocity are Strouhal dependent according to the relation: 

2Re 1 ( )Str
U c Strπ
ν
⋅

= + ⋅ , or 6Re 2.12 10Str = ⋅ at 0.10Str =  and 6Re 4.88 10Str = ⋅ at 

0.7Str = (assumed kinematic viscosity 6 21.139 10 /m sν −= ⋅ ).  Notice that UBEM incorporates 
a simplified viscous drag correction, as discussed in Politis (2004). Mean thrust and power 
have then been calculated by running UBEM for two time periods and calculating the mean 
values of the unsteady forces over the second period (as explained in III.1.1.2).  

As it will be discussed in the next part and following previous experience, Politis & 
Tsarsitalidis (2012), the results are presented in the form of charts for the open water thrust 
and power loading coefficients (based on swept area) versus pitch angle: 0(Str), ( )T PC C Str θ−  

with parameter the Strouhal number (bold line), where: 

2 3,
0.5 0.5T P

T PC C
U S U Sρ ρ

= =   (III.4) 

,T P  denote the period-mean open water thrust and power of the flapping wing, ρ  denotes 
fluid density, U  denotes the  translational velocity of the wing and S denotes the wing swept 
area ( 02S sh sh= = ). 
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Furthermore, the 0TC θ−  charts additionally contain, in parametric form, the open water 

efficiency η of the system: 

T

P

CT U
P C

η ⋅
= =  (III.5) 

while the 0PC θ−  charts contain additionally in parametric form the maxa angle which is the 

maximum value of ( )a t , relation (III.3), over one period. This last information is very useful 
for the designer in order to avoid maximum angles with a potential danger for separating flow 
(e.g. greater than 15-20deg), phenomenon which is not modeled by the current version of 
UBEM and consequently simulations can result in questionable and/or incorrect predictions 
in that region. 

In addition, a new 0PCp θ−  chart is introduced is this work, containing in non-dimensional 

form the energy required for the pitching of the wing:  

3 3

( ( ) ( ) ) /average pitching power
0.5 0.5

t

p pt
p

M t t dt
Cp

U S U S

ω

ρ ρ

+Τ
⋅ Τ

= = ∫  (III.6) 

where ( )pM t  is the instantaneous moment around the pitching axis, ( )p tω  is the 

instantaneous rotational velocity around the pitching axis and Τ  is the pitching period. Using 
the 0PCp θ− chart, the designer can estimate how, the total delivered power to the flapping 

wing system is distributed to the two different modes of motion (i.e. heaving motion & 
pitching motion).  

P actually contains both pitching and heaving components of power, but as shown in the 
sequel, the pitching part is so small, that P  is directly indicative of the power required for the 
heaving motion. Thus, no additional coefficient needs to be introduced. (if the user requires 
the heaving power precisely, all they have to do is subtract the pitching fraction) 

An indicative set of open water performance charts for the flapping wing family, is shown in 
Figure III.1.1-9a,b,c and Figure III.1.1-10 a,b,c. In both figures a wing with 

0/ 6, / 1.0, / 0.33s c h c b c= = =  has been selected, while Figure III.1.1-9a,b,c shows results for 
090ψ =  and Figure III.1.1-10a,b,c shows results for 075ψ = . A full collection of charts of this 

type is contained in the appendix, while the effects of parameters will be investigated in 
III.1.1.7.  
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 a     a 

 b      b 

c c 

Figure III.1.1-9 a,b,c. 
0

0/ 6, / 1.0, / 0.33, 90s c h c b c ψ= = = =  
Figure III.1.1-10  a,b,c. 

0
0/ 6, / 1.0, / 0.33, 75s c h c b c ψ= = = =  

(a) Grid of constant Strouhal lines (bold) and constant efficiency lines, (b) Grid of constant 
Strouhal lines (bold) and maximum angle of attack and (c) Grid of constant Strouhal lines.  
Dashed lines in all figures are the zero thrust limits. 
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III.1.1.5 Grid independence of the UBEM predictions for the case. 

In order to analyze the effect of the grid density to the calculated open water flapping wing 
performance, the systematic BEM calculations of the previous paragraph have been repeated 
with three different grid densities, according to Table II.1.3-3: 

 

Table III.1.1-1. Grid densities. 

name No of chordwise 
elements (face + back) 

No of spanwise elements 

/ 2s c =  / 4s c =  / 6s c =  

Grid1 20 30 50 80 

Grid2 35 45 80 120 

Grid3 50 70 130 200 

 

The timestep is defined for each single simulation by calculating the maximum translation of 
the trailing edge (per step) and keeping it in comparable size to that of the used elements. For 
the comparison among grids, the following procedure has been used: For each one of the 24 
configurations (introduced in section 4) and for each grid of table 1, figures like Figure III.1.1-9 
can be produced. Considering the results 0( , , )TStr Cθ in figure III.1-9a, an alternative graphical 

representation is in the form of a 3D plot with 0 , Strθ along the XY axis and TC along Z  axis. 

Thus a TC  surface can be created. Applying these procedures for all combinations of wing 

configurations and grids, a total of 24*3=72 surfaces for TC  are obtained. By inserting any two 

such surfaces in a plotting software, it is easy to obtain the mean and maximum deviation 
between them. Those data are shown on Table II.1.3-4, with the following convention: Above 
diagonal are overall mean of the %differences of mean thrust values and below diagonal are 
the maximum of the %differences of mean thrust values.    

It can be seen that Grid2 (as well as Grid3) can be considered as a reliable discretization for 
systematic simulations. Nevertheless, Grid1 in spite of lacking accuracy, it is good enough to 
show trends and could be used for getting quick exploratory results. 

 

Table III.1.1-2. Mean (above the diagonal) and maximum (below the diagonal) %deviations in 
mean thrust calculation. 

 Grid1 Grid2 Grid3 

Grid1 0 4.50% 5.02% 

Grid2 8.09% 0 0.52% 

Grid3 10.45% 2.21% 0 
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To verify the predictive ability of UBEM, experimental data was taken from the works of Prof. 
Triantafyllou and his team. More specifically figures 8 and 9 in Read et al. (2003), contain 
experimental measurements of mean thrust loading coefficient (based on wing plan form 
surface S sc= ) and efficiency, for a rectangular wing with / 6s c = , for a range of Strouhal 
numbers and maximum angles of attack corresponding to the thrust producing regime. The 
wing has a rectangular outline with 0.1 , 0.6c m s m= = and it is equipped with endplates, to 
enforce 2D flow in most part of the wing surface. The pitch axis is located at / 1/ 3b c =  from 
leading edge, the heave to chord ratio has been selected as 0 / 1.0h c =  and the phase angle has 

been selected as 090ψ = . Furthermore figures 5a,b in Schouveiler et al. (2005), contain 
analogous experimental results for the same wing but with different heave to chord ratio 

0 / 0.75h c = . Notice that the experimental data provided in the above papers are plotted in a 

different format than that used in the present work. More specifically instead of a 0( )TC Str θ−  

plot used in the present work, they use a max ( )Ta C Str−  plot, where maxa is the maximum 

angle of attack. Also instead of a 0( )PC Str θ− plot used in the present work, they use a 

max ( )a Strη − plot, where η denotes the efficiency, equation (III.5). The previous experimental 

measurements have been digitized and transformed to the form 0,T PC C θ− , consistent with 

the definitions used.  

 

 

 

III.1.1.6 Wake visualizations – Understanding how the Flapping wing produces 
thrust. 

 

For a better understanding of the underlying physical mechanisms of thrust production, the 
free shear layer of a flapping wing with / 6s c =  is plotted, for a representative case 
corresponding to: 0

0 0/ 1.5, / 0.33,Str 0.35, 23.6h c b c θ= = = =  090ψ = , Fig. 14. The wing 

surface and the free vortex sheet surface on those figures have been colored according to their 
surface dipole distribution intensity. Notice that constant dipole lines coincide with surface 
vortex lines. By using either the last property or the deformation patterns of the free vortex 
sheets, a number of strong ring vortices in the wake of the wing are easily visualized. Those 
ring vortices produce a series of oblique jet flows by which the flapping wing produces forces 
(thrust and lateral forces), through momentum conservation. Figure III.1.1-11 also contains 
artistic add-ons, showing the train of ring vortices and corresponding jets (straight arrows) by 
which the flapping wing produces forces. More specifically the straight arrows visualize the 
induced velocities produced by the ring vortices. This wake vortex system is the 3D analog of 
the well-known ‘reverse Karman vortex street’ pattern, appearing in aquatic animal and/or 
bird flapping wing propulsors, Schouveiler et al. (2005), Taylor et al. (2010). More extensive 
wake visualizations confirming the physical mechanism of systematic ring vortex creation, as 
the main mechanism for force production can be found in Politis & Tsarsitalidis (2009).  
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Figure III.1.1-11 Wake of a Flapping wing. Colors are for dipole potential. Artistic add-ons 
showing the train of ring vortices and corresponding jets by which the wing produces thrust. 

 

 

III.1.1.7 Effects of parameters  

By inspecting the results of the appendix as well as the comparative diagrams, in (Politis and 
Tsarsitalidis 2014) the following conclusions were deducted: 

• The region of maximum hydrodynamic efficiency is achieved at a maximum angle of 
attack less than 20 degrees i.e. at the region of flow without serious unsteady separation; 

• For constant /s c , increasing the heave to chord ratio 0 /h c , the maximum 

hydrodynamic efficiency is increased. This result is consistent with what is observed for 
propellers, where the reduction of thrust loading coefficient TC  results in an increase of 

hydrodynamic efficiency, Reissner (1942). Notice that in Triantafyllou et al. (2005) an 
optimum in the range 00.75 / 1.0h c≤ ≤  has been reported for 2D foils. Thus the effect of 

0 /h c on efficiency, is worth of further experimental investigation; 

• Wings with higher /s c  (i.e. higher aspect ratio) can produce higher hydrodynamic 
efficiencies. From the charts of the appendix the wing with 0/ 6, / 2s c h c= =  results in 

maximum hydrodynamic efficiency of the order of 85%. 
• Maximization of hydrodynamic efficiency is always achieved at lower values of the 

thrust loading coefficient. Thus, achievement of high hydrodynamic efficiencies with 
significant thrust is connected with our ability to maximize the swept area of the 
propulsor (recall the definition of the thrust and power loading coefficients used, where in 
the denominator of the corresponding formulas is the swept area). 

• The position of the pitch axis point has a small effect on the hydrodynamic efficiency. 
By moving the pitch axis point towards wing leading edge (holding other non-dimensional 
parameters constant), the hydrodynamic efficiency is slightly reduced.  

• The position of the pitch axis point affects the produced thrust loading coefficient. By 
moving the pitch axis point towards wing leading edge (holding other non-dimensional 
parameters constant), the thrust loading coefficient is increased.  
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• The mean power required for driving the pitching motion of the wing is an order of 
magnitude lower than the mean power required driving the heaving motion. The position 
of the pitch axis point as well as the selected pitch angle, affects seriously the required 
mean power for the pitching motion. This power can take both positive (i.e. the pitching 
power is provided by the user) or negative values. Thus with a proper selection of 
parameters, the pitching motion can be a mechanism of energy restoration. 

• The selection of the phase angle ψ  seems to play a secondary role in the powering 
performance of the flapping wing. For the considered case (Fig. 8,9), the change from 

090ψ =  to 075ψ =  results in a small decrease of TC  with a corresponding increase in 

efficiency.  

In order to examine the effect of each parameter, comparative diagrams for cases where only a 
selected parameter is varied follow (Figure III.1.1-12 up to Figure III.1.1-32), to enable the reader 
to see the effects clearly along with further discussion on each individual parameter. For each 
case, diagrams are made, where contours of the same parameter and value are plotted but a 
different value of the examined parameter are plotted (with different linetypes) against each 
other.  

 

 

 

III.1.1.7.1 Effect of h/c 

 

In Figure III.1.1-12 thru Figure III.1.1-20, iso-Strouhal and Iso-efficiency contours are plotted for 
varying h/c values, for all AR=s/c (2,4,6) and both pitching axis conditions (0.1c and 0.33c from 
le). A general conclusion is that with increasing h/c ratio, the loading gets lower and the 
efficiency increases, as noted previously. Another interesting remark is that the peak of 
efficiency (maximum thrust coefficient for the same efficiency) moves to larger values of theta 
(θ0) which mean smaller maximum angle of attack, as the h/c increases, but also to larger 
values of thrust. This can be explained by the fact that the wing remains longer in angles of 
attack close to the maximum, when lateral travelling (heave) is increased, thus giving thrust  
for a larger part of the period (leading to increased average thrust). At the same time, since the 
swept area increases, the thrust coefficient is decreased, meaning lower loading, which leads 
to higher efficiency, an effect well explained by momentum theory. This effect is repeated for 
all cases, observation which solidifies the conclusion. 
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Figure III.1.1-12 Effect of  h/c, iso-Strouhal contours (Str=0.3) for straight wing Ar2 pitch at 0.1c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

Figure III.1.1-13 Effect of h/c, iso-Strouhal contours (Str=0.5) for straight wing Ar2 pitch at 0.1c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

Figure III.1.1-14 Effect of h/c, iso-Efficiency contours for straight wing Ar2 pitch at 0.1c. Solid:0.5, 
Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 
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Figure III.1.1-15 Effect of h/c, iso-Strouhal contours (Str=0.5) for straight wing Ar4 pitch at 0.33c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

Figure III.1.1-16 Effect of h/c, iso-efficiency contours for straight wing Ar4 pitch at 0.33c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

Figure III.1.1-17 Effect of h/c, iso-Strouhal contours (Str=0.5) for straight wing Ar4 pitch at 0.1c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 
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Figure III.1.1-18 Effect of h/c, iso-efficiency contours for straight wing Ar4 pitch at 0.1c. Solid:0.5, 
Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

Figure III.1.1-19 Effect of h/c, iso-Strouhal contours (Str=0.5) for straight wing Ar6 pitch at 0.33c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0 

 

 

Figure III.1.1-20 Effect of h/c, iso-efficiency contours for straight wing Ar6 pitch at 0.33c. 
Solid:0.5, Dashed:1.0, Dash-Dot:1.5, Dotted:2.0  
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III.1.1.7.2 Effect of s/c 

In Figure III.1.1-21 and Figure III.1.1-22 iso-Strouhal and Iso-efficiency contours are plotted for 
varying s/c  values, for h/c=1  and pitching axis condition at 0.33c from le. Figure III.1.1-21 
depicts Strouhal contour curves for the values of Str=0.5 and Str=0.3, with different linetypes 
for each value of s/c. In the same manner, Figure III.1.1-22 depicts efficiency contour curves for 
values n=0.5 and n=0.7.  The general remark is that both thrust and efficiency increase when 
the s/c ratio increases and the slope of the iso Strouhal contours gets steeper, while the peak 
of efficiency remains at almost the same theta (and maximum angle of attack). The difference 
in slope can be attributed to the 3D effects (wake rollup) and the fact that they affect the total 
result less, as s/c increases. The results seem to converge to s/c=12, where 2D results seem to 
be reached. The observation that the iso-Strouhal curves cross at a single point, can be 
attributed to the fact that the 3D effects have a positive contribution to thrust, which is visible 
at near zero angles of attack. 

 

Figure III.1.1-21 Effect of S/c. Iso-Strouhal contours for straight wing, h/c=1, pitch at 0.33c. Dash 
dot dot: 2, Long dash: 4, Dotted: 6, Dash dot: 8, Dashed: 10, Solid: 12 

 

Figure III.1.1-22 Effect of S/c. Iso-efficiency contours for straight wing, h/c=1, pitch at 0.33c. Dash 
dot dot: 2, Long dash: 4, Dotted: 6, Dash dot: 8, Dashed: 10, Solid: 12 
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III.1.1.7.3 Effect of phase 

In Figure III.1.1-23 thru Figure III.1.1-25, iso-Strouhal and Iso-efficiency contours are plotted for 
varying phase angle (60-120 degrees), for h/c=1  and pitching axis condition at 0.33c from le. 
Figure III.1.1-23 and Figure III.1.1-24 depict Strouhal contour curves for the indicated values, 
with different linetypes for each value of ψ. In the same manner, Figure III.1.1-25 depicts 
efficiency contour curves for values n=0.6. A general remark is that larger phase gives 
increased thrust, but at smaller efficiency, while smaller phase (compared to 90deg) gives 
smaller thrust at slightly better efficiency. To further observe the effect of phase, data form the 
point of highest efficiency for each set of simulations (one for each value of ψ), have been 
extracted and presented in Figure III.1.1-26 and Figure III.1.1-27 . These confirm the 
observations of Triantafyllou (1993), (2004), (2005) that the optimum phase angle is between 
75 and 90 degrees. Additionally, it is observed that all the optimum points occur at Strouhal 
numbers between 0.1 and 0.22 and at maximum angles of attack below 10o. 

 

 

Figure III.1.1-23  Effect of Phase on performance. Iso- Strouhal curves. For straight wing, S/c=6, 
h/c=1.0, pitch at 0.33c. Thin dash: 60o, Thin dash dot: 70 o, Thin dash dot dot: 80 o, Solid: 90 o, 

Thick dash dot dot: 100 o, Thick dash dot: 110 o, Thick dash: 120 o. 

 

 

Figure III.1.1-24 Effect of Phase on performance. Iso- Strouhal curves. For straight wing, S/c=6, 
h/c=1.0, pitch at 0.33c. Thin dash: 60o, Thin dash dot: 70 o, Thin dash dot dot: 80 o, Solid: 90 o, 

Thick dash dot dot: 100 o, Thick dash dot: 110 o, Thick dash: 120 o. 
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Figure III.1.1-25 Effect of Phase on performance. Iso- efficiency curves (n=0.6). For straight wing, 
S/c=6, h/c=1.0, pitch at 0.33c. Thin dash: 60o, Thin dash dot: 70 o, Thin dash dot dot: 80 o, Solid: 

90 o, Thick dash dot dot: 100 o, Thick dash dot: 110 o, Thick dash: 120 o. 

 

 

 

Figure III.1.1-26 Effect of Phase on points of maximum efficiency, for straight wing, S/c=6, 
h/c=1.0, pitch at 0.33c. Data are taken from the point of highest measured efficiency of each set 

ran for each value of ψ   

 

 

Figure III.1.1-27 Effect of Phase on points of maximum efficiency, for straight wing, S/c=6, 
h/c=1.0, pitch at 0.33c. Data are taken from the point of highest measured efficiency of each set 

ran for each value of ψ   
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III.1.1.7.4 Swept Wings 

 

Iso-Strouhal and Iso-efficiency contours are plotted for varying skewback angle (0-45 degrees) 
for S/c=6 In Figure III.1.1-28 thru Figure III.1.1-30 and S/c=4 in Figure III.1.1-30 thru Figure 
III.1.1-32 for selections among h/c=1.0,1.5,2.0, and pitching axis at 0.33c of the midspan section. 
It can be observed, that the slope of iso Strouhal lines changes in a manner similar to a 
decreasing s/c ratio, but with a slight increase of thrust (instead of decrease that happens with 
the decrease of  s/c for straight wings), but also at a significant decrease of efficiency. An 
initial deduction that can be made is that in the case of swept wings, the angle of attack is not 
the same for the whole span of the wing, but also the pitching axis is not at the same position 
relative to the center of each section. Thus, a further investigation of pitching axis position is 
necessary, before any conclusions are reached. 

 

Figure III.1.1-28 Effect of sweptback wings. Iso-Strouhal lines for S/c=6, h/c=1.5, pitch at 0.33c of 
midspan. Solid: straight, Dashed: 15o, Dash dot: 30 o, Dash dot dot: 45 o 

 

Figure III.1.1-29 Effect of sweptback wings. Iso-Efficiency lines (n=0.7) for S/c=6, h/c=1.5, pitch at 
0.33c of midspan. Solid: straight, Dashed: 15o, Dash dot: 30 o, Dash dot dot: 45 o 
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Figure III.1.1-30 Effect of sweptback wings. Iso-Efficiency lines (n=0.55) for S/c=6, h/c=1.5, pitch 
at 0.33c of midspan. Solid: straight, Dashed: 15o, Dash dot: 30 o, Dash dot dot: 45 o 

 

Figure III.1.1-31 Effect of sweptback wings. Iso-Strouhal lines for S/c=4, h/c=2.0, pitch at 0.33c of 
midspan. Solid: straight, Dashed: 15o, Dash dot: 30 o, Dash dot dot: 45 o 

 

Figure III.1.1-32 Effect of sweptback wings. Iso-Efficiency lines (n=0.6) for S/c=4, h/c=2.0, pitch at 
0.33c of midspan. Solid: straight, Dashed: 15o, Dash dot: 30 o, Dash dot dot: 45 o 
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III.1.2 Double (twin) wing configuration 
Another promising configuration is that of a system of two wings in a biplane configuration 
moving symmetrically, thus producing no lateral forces. Aside of the lateral forces, a ground 
effect between the two wings is expected to produce some additional thrust, making the 
system even more appealing. Last but not least, changing the mean pitching angle (when in 
vertical position) gives thrust vectoring, giving improved manoeuvring characteristics. 

 

III.1.2.1 Wing geometry, motion and panel generation. 

For the case of a twin wing configuration, the independent variables which define the state of 
the system can be decomposed in two groups. Group A contains the geometric variables and 
group B contains the motion related variables.   

Group A: Assuming zero skewback and twist the wing outline is fully described by its 
spanwise chord distribution ( )c s , where / 2 / 2span s span− < < . The spanwise chord 
distribution has been selected as for the single wing as also shown in Figure III.1.2-1. 
Furthermore for a twin wing configuration a geometric parameter defining the distance 
between the mean positions of the two wings, has to be introduced. The aim is the 
development of a systematic series. Thus, the selection of this parameter should be done with 
care to be clear and repeatable. More specifically, from experience with extended twin wing 
simulations, a better variable characterizing the transverse position (measured along the 
heaving direction) of the wings, is the ‘minimum distance’ minh  between wing surface points, 

during a full cycle of wing oscillation. The appropriateness of this variable has to do with the 
following: (a) it is related to the mirroring flow effect produced by the twin wing 
configuration, and (b) it is the proper variable which controls/avoids the collisions of points of 
the twin oscillating wings in a direct manner. Thus, use of this minimum distance minh   (and 

not the distance between the mean positions of the wings) as the geometric parameter was 
chosen to describe the ‘distance’ between the twin wing configurations in hand. This selection 
introduces some complexity in the geometric description of our system, which shall be 
discussed after the introduction of the motion parameters.    

 

Figure III.1.2-1. Wing outline (s/c= 6).  
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Group B: Propulsor motion is defined by: (a) the amplitude  0h of a sinusoidal heaving motion 

normal to the velocity of advance U , (b) the amplitude 0θ of a sinusoidal pitching motion, (c) 

the frequency n  (common for both heaving and pitching motions) and (d) the phase angle 
ψ between heaving and pitching motions.  

Thus the state of the twin system is completely defined by the variables: 
( 0 0 min, , , , , ,U n h b hψ θ ). The previous parameters define uniquely the instantaneous angle of 

attack ( )a t of each wing with respect to the undisturbed flow through the equation: 

1 0
0

2 cos(2 )( ) sin(2 ) tan ( )h n n ta t n t
U

π πθ π ψ − ⋅ ⋅
= ⋅ + −  (III.7) 

or in non-dimensional form: 

1
0( ) sin(2 ) tan ( cos(2 ))a t n t Str n tθ π ψ π π−= ⋅ + − ⋅ ⋅ ⋅  (III.8) 

where Str  denotes the Strouhal number defined by:  

0, 2n hSt h h
U
⋅

= =   (III.9) 

and h denotes the heave height. 

The selection of minh  as the ‘distance’ parameter for the twin wing configuration, introduces a 

problem regarding calculation of the distance between the mean positions of the two wings. 
This distance is needed to define the thrust and power coefficients later on.  For a resolution 
to this problem it is observed that for: (a) a symmetric wing outline around the mid-chord 
(span-wise) axis with a zero twist, (b) with the pitch axis in front of the mid-chord point and 
(c) with minh  greater than a multiple of the maximum thickness of the wing, the dangerous 

point for collision is the trailing edge of the wings. Furthermore, under the same conditions, 
the mid-span wing section is a representative of the whole wing. Taking those considerations 
into account, the distance of the wing trailing edge from the mean wing position, as a function 
of time, is given by the formula: 

   0 0( ) sin 2 ( )sin( sin(2 ))t h nt c b ntπ θ π ψΗ = + − +   (III.10) 

This is a nonlinear equation in t . Therefore, the maximum distance of the wing trailing edge 
from the mean wing position, can be found either numerically (i.e. by evaluating formula 
(III.10) in the range: 0 , 1/t T T n< < =  and taking the maximum, T  is the period of 
oscillation) or analytically. For the analytic prediction, the 
substitution: 2 / 2nt epsπ π= + together with the selection / 2ψ π=  is used. A 3rd order series 
expansion in eps of formula (III.10) has then been derived and the value of eps which 
maximizes Η  has been analytically evaluated. The resulting equations are as follows: 

2 2 2 4
0 0 0 0

2
0 0

2(( ) ) 2( )
( ) (1 )

h h c b c b
eps

c b
θ θ

θ θ
− + + − + −

= −
− +

  (III.11) 
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2 2 30 0
max 0 0 0

( )( ) (1 )
2 6
h c bH h c b eps eps epsθθ θ−

= − − − + +   (III.12) 

Using maxH , the distance of the mean wing position to the symmetry plane, of the twin wing 

system, is given by: 

 

 1 max minh H h= +   (III.13) 

 

 

Figure III.1.2-2 Comparison of numerical vs. analytical prediction for the distance between the 
symmetry plane and the mean wing position for: 1c m= , 0 / 1.5h c =  , 2 / 3c b c− =  

, min / 0.1h c =   

Comparisons of analytical with numerical predictions for 1( )h m  vs 0 (deg)θ  (horizontal axis) 

are shown in Figure III.1.2-2, together with a least square approximation for the analytic 
expression for 1h  .   

Having introduced the analytical description of both geometry and motion of our wings, the 
creation of a surface panel distribution describing the systems at consecutive time steps is 
straight forward. 

Figure III.1.2-3 shows the time instances of the twin wing mid-span section, evenly distributed 
in two periods. With the flapping wing paneling in time known, the code UBEM can be 
applied to calculate the resulting unsteady forces, energy requirements and free shear layer 
evolution.  

 

 

Figure III.1.2-3  Sequential positions of the twin wings for h0/c=1.5, Str=0.35, θ0=23.6,hmin/c=0.1 

94 



Prescribed Motion Simulations 

III.1.2.2 Decisions regarding Geometric and Flow/motion variables for the 
proposed twin wing series.  

To proceed to a series based design process for a twin configuration, decisions have to be 
taken, on the corresponding geometric and flow related parameters. For the needs of the 
initial work on the subject, the series is limited in extent and consist of only a twin system 
geometry (span-wise chord distribution is discussed in previous paragraph) with / 2, 4,6s c = , 

0 /h c =1.0,1.5,2.0, / 0.33b c = , / 2ψ π= and min / 0.1h c =  . The Strouhal number has been 

selected in the range: 0.1 0.7Str = ÷ . Using previous experience, this selection is expected to 
contain the region of maximum hydrodynamic efficiency. Finally the range of the pitch angle 

0θ   has been selected from 5 deg to a maximum value, which depends on the Strouhal 

number. This maximum value of the pitch angle has been properly selected to include the full 
range of thrust producing wing motions. This investigation began with Politis & Tsarsitalidis 
(2013) where a single set for s/c=6 and h/c=1.5 was presented. In this work the series is 
extended to a total of 12 sets. 

 

III.1.2.3 Transient twin wing performance and selection of simulation period. 

The main difference between a traditional propeller and a flapping wing is that the latter 
produces a period mean thrust as a result of a highly unsteady instantaneous thrust. The 
simulation method in hand can predict this time dependent thrust but, since it is a time 
stepping method, initial conditions on motion have to be imposed. A burst starting twin wing 
is used as the starting condition. In this case a transient phenomenon occurs. Thus the mean 
period values for thrust or power have to be calculated after the passage of this initial 
transient phenomenon. To take care for this, time domain simulations have been performed 
for three periods and for several cases.  Indicatively, Figure III.1.2-4and Figure III.1.2-5 are 
presented the unsteady thrust for two cases. 

From these figures it can be concluded that, for the representative selected parameters, the 
transient phenomenon is limited to the few initial time steps after the burst start. Thus it is 
safe to use the 2nd period of simulation, to calculate the mean thrust and power to be used in 
the design charts. 

 

Figure III.1.2-4  Time evolution of thrust for (s/c =6, h0/c=1.5,hmin/c=0.1, Str=0.34, Theta=20.6) 
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Figure III.1.2-5  Time evolution of thrust for (s/c =6, h0/c=1.5, hmin/c=0.1, Str=0.46, Theta=44.5) 

 

III.1.2.4 Open water performance diagrams and comparison with single wing 
systems.   

Systematic unsteady BEM simulations have been performed with the selected flapping wing 
series described in section 5. In all simulations a chord of 1.0c m= has been selected. 
Furthermore in all simulations a twin system was used with: 

00 min 16, 1.5, 0.1, , 90
3

h hs b
c c c c

ψ= = = = =  

Variation of Strouhal number has been achieved by changing the frequency of the flapping 
wing oscillation while the corresponding translational velocity has been held constant and 
equal to 2.3 /U m s= . This results to a constant Reynolds number equal to 70.202 10⋅ , based 
on translational velocity ( Re /U c ν= ⋅ ). Corresponding Reynolds numbers based on the 
maximum undisturbed flow velocity are Strouhal dependent, according to the 

relation: 2Re 1 ( )Str
U c Strπ
ν
⋅

= + ⋅ .Thus 7Re 0.22 10Str = ⋅  at 0.10Str =  and 

7Re 0.51 10Str = ⋅ at 0.7Str =  (kinematic viscosity: 6 21.139 10 /m sν −= ⋅ ). Mean thrust and 

power have then been calculated by running the BEM code for two time periods and 
calculating the mean values of the unsteady forces over the second period. The results are 
presented in the form of 0TC θ−   diagrams (where 0 thetaθ →  in diagrams), 0PC θ−  diagrams, 

and 0PCp θ−  with parameter the Strouhal number (thick line in the diagrams), figures 6,7 and 

8.  PCp denotes the energy required for the pitching of the wing, given by: 

3

3

period mean pitching power
0.5

1. ( ) ( )
0.5

p

t T

p pt

Cp
U S

M t t dt
U S

ρ
ω

ρ
+

= =

= ⋅∫
 (III.14) 

where ( )pM t  is the instantaneous moment around the pitching axis and ( )p tω  is the 

instantaneous rotational velocity around the pitching axis.  

0TC θ−  diagrams contain additionally in parametric form the open water efficiency η of the 
system (thin lines): 
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T

P

CT U
DHP C

η ⋅
= =  (III.15) 

 

Figure III.1.2-6  Ct-theta chart for twin system. Thicker lines are for Strouhal number and 
thinner, are for efficiency. 

 

Figure III.1.2-7  CP-theta chart for twin system. Thicker lines are for Strouhal number and 
thinner, are for maximum angle of attack. 

Also, 0PC θ−  diagrams contain additionally in parametric form the maxa angle (thin lines) 

defined as the maximum value of ( )a t , relation (III.3), over one period. This last information 
is very useful for the designer in order to avoid maximum angles with a potential danger for 
separating flow (e.g. greater than 20deg), phenomenon which is not modeled by the used 
version of UBEM.  
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Figure III.1.2-8  CPp-theta chart for twin system with parameter the Strouhal number. 

 

Interesting conclusions drawn from those figures are the following: (a) There is a relatively 
wide region of maximum hydrodynamic efficiency which is achieved at a maximum angle of 
attack less than 15degrees i.e. at the region of flow without expected separation, (b) The order 
of magnitude of the power required for pitching is approximately 1% of the corresponding 
total delivered power. It should be also noted that systematic inspections of the calculated 
pressure distributions gave no indication of local pressure less than the corresponding vapor 
pressure in the region around optimum performance. As a result no cavitation is expected at 
that region. For the comparison between the single wing and the twin wing system, it can be 
told, that the ground effect between the two wings seems to cause a very small difference in 
the resulting ,T PC C  values. After further examination of the efficiency curves, though, it can 

be seen, that the contours are narrower in the sense of theta, but slightly wider in the sense of 

TC  and Strouhal number. This difference will affect positively the design results produced 

later on. Commenting finally on the values of the power required for the pitch setting, it is 
observed that in the whole range of the pitch setting are small with a trend to approach zero 
for smaller Strouhal numbers.  

These charts can be used to select an optimum twin wing configuration for a given ship very 
easily as follows: Assume that a ship is given, with a design speed of V knots. The problem of 
designing a s/c=6, h/c=1.5 twin wing (i.e., select its optimum geometry with the corresponding 
revolutions and required DHP) can be solved as follows: (a) with the design speed known, the 
ship resistance and, from equation (III.53), the propeller thrust and TC can be calculated; (b) 

with this TC  draw a horizontal line on Figure 6 and find the intersection of this horizontal 

line with the various constant Strouhal lines, let 0( , ) , 1,i strStr i nθ =  denote the strn intersection 

points; (c) from each Strouhal number the frequency of the propulsor motion can be found: 

0/ (2 )i in Str V h= ⋅ ⋅ ; (d) use Figure 7 to find ,P iC  for the points 0( , ) , 1,i strStr i nθ = , from the 

,P iC find the required open water power and use (III.50) to find ,B iDHP ; (e) from the 
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calculated , , 1,B i strDHP i n=  select that with minimum required BDHP . Finally use figure 8 to 

estimate the required power for the pitch mechanism. 

 

 

III.1.2.5 Wake visualizations – Understanding how the twin wing configuration 
produces thrust. 

For a better understanding of the underlying physical mechanisms of thrust production, the 

free shear layer produced by the twin wing system ( 00 min 16, 1.5, 0.1, , 90
3

h hs b
c c c c

ψ= = = = = ) 

is plotted, Figure III.1.2-9. The wing surface and the free vortex sheet surface on those figures 
have been colored according to their surface dipole distribution intensity. Notice that constant 
dipole lines coincide with surface vortex lines. By using either the last property or the 
deformation patterns of the free vortex sheets, a number of strong ring vortices in the wake of 
the wing are made recognizable. Those ring vortices produce series of oblique jet flows by 
which the flapping wing produces thrust. Figure III.1.2-9 also contains artistic add-ons, 
showing the train of ring vortices (curved arrows) and corresponding jets (straight arrows) by 
which the flapping wing feeds with momentum the wake and produces thrust. More 
specifically the straight arrows are the results of the induced velocities produced by the ring 
vortices.  

  
Figure III.1.2-9 Wake of a Flapping wing of s/c=6, h0/c=1.5, hmin/c=0.1, Str=0.46, θ0=44.5. Colors 

are for dipole potential. Artistic add-ons showing the train of ring vortices and corresponding 
jets by which the wing produces thrust. 
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III.1.2.6 Effects of parameters 

As in the case of single wing, the effect of motion parameters is investigated. Most effects are 
similar to those for the single wing and probably amplified by the ground effect created 
between wings, especially in smaller s/c values, where 3d effects are more dominant. 

 

 

III.1.2.6.1 Effect of s/c 
 

In Figure III.1.2-10 and Figure III.1.2-11 iso-Strouhal and Iso-efficiency contours are plotted for 
varying s/c  values, for h/c=1  and pitching axis condition at 0.33c from le. Figure III.1.2-10 
depicts Strouhal contour curves for the value of Str=0.45, with different linetypes for each 
value of s/c. In the same manner, Figure III.1.2-11 depicts efficiency contour curves for value of 
n=0.7.  The general remark is that both thrust and efficiency increase when the s/c ratio 
increases and the slope of the iso Strouhal contours gets steeper, while the peak of efficiency 
remains at almost the same theta (and maximum angle of attack). The difference in slope can 
be attributed to the 3D effects (wake rollup) and the fact that they affect the total result less, 
as s/c increases. 

 

 

 

Figure III.1.2-10   Effect of S/c. Iso-Strouhal contours (Str 0.45) for straight wings, h/c=1.5, pitch 
at 0.33c. Lines: Dash dot dot: 2, dash: 4, solid: 6 
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Figure III.1.2-11 Effect of S/c. Iso-efficiency contours (n=0.7) for straight wings, h/c=1.5, pitch at 
0.33c. Lines: Dash dot dot: 2, dash: 4, solid: 6 

 

 

III.1.2.6.2 Effect of h/c 

 

In Figure III.1.2-12 thru Figure III.1.2-14, iso-Strouhal and Iso-efficiency contours are plotted for 
varying h/c values, for s/c=4 and pitching axis at 0.33c from le. A general conclusion is that 
with increasing h/c ratio, the loading gets lower and the efficiency increases, as noted 
previously. Another interesting remark is that the peak of efficiency (maximum thrust 
coefficient for the same efficiency) moves to larger values of theta (θ0) which mean smaller 
maximum angle of attack, as the h/c increases, but also to larger values of thrust.  

 

 

Figure III.1.2-12 Effect of  h/c, iso-Strouhal contours (Str=0.45) for straight wings of s/c=4 pitch at 
0.33c. Lines: dash dot dot: 0.5, dash dot: 1.0, dash: 1.5, solid: 2.0 
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Figure III.1.2-13 Effect of  h/c, iso-Efficiency contours (n=0.67) for straight wings s/c=4 pitch at 
0.33c. Lines: dash dot dot: 0.5, dash dot: 1.0, dash: 1.5, solid: 2.0 

 

 

Figure III.1.2-14 Effect of  h/c, iso-Efficiency contours (n=0.75) for straight wings s/c=4 pitch at 
0.33c. Lines: dash dot: 1.0, dash: 1.5, solid: 2.0 
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III.1.3 Flexible Oscillating Duct (FOD) 
Inspired by a jellyfish, where a bulk muscle oscillatory motion produces thrust, the initiative 
was taken to explore the propulsion capabilities of a new propulsor concept based on an 
oscillating/pulsating flexible duct. This device was named ‘Flexible Oscillating Duct’ (FOD).  

III.1.3.1 FOD geometry, motion and panel generation. 

The starting point for an unsteady BEM simulation of a flexible body is the generation of the 
time dependent paneling describing the geometry of the system (Politis 2011). The FOD time 
dependent geometry is produced as described below: 

Starting from a conventional 2-D foil moving parallel to the X -axis with velocity U , which 
performs a heaving motion (along the vertical Y -axis) with amplitude 0h  and a pitching 

motion with amplitude 0θ (measured from the X-direction) and a phase angle ψ  with respect 

to the heaving motion. The pitching motion is performed around a pre-selected given pitching 
axis at distance b from the leading edge of the section. Both heaving and pitching motions are 
performed with angular velocity 2 nω π= , where n  is the corresponding frequency. 
Furthermore, the camber of the 2-D foil performs an unsteady motion with a chord-wise 
distribution ( ),cy t u (u denotes the non-dimensional chord-wise position measured from 

leading edge and t denotes the time), taken e.g. from the NACA series, with an instantaneous 
maximum camber ( )cm t (expressed as a fraction of chord). An oscillating camber motion can 

then be obtained by deciding about the form of the function ( )cm t . There are at least two 

possible reasonable selections for ( )cm t : (a) select ( )cm t such that the instantaneous effective 

(defined with respect to the total undisturbed flow velocity) angle of attack of the section is a 
certain (time independent) fraction of the instantaneous ideal angle of attack of the section 
(i.e. the section operates in a percentage of its shock free entry at all times), (b) select ( )cm t to 

oscillate harmonically with the same frequency and phase as that used for the pitching 
motion, and a maximum predetermined (user defined) value 0m . It should be noted that in 

both cases unsteady motion of the camber surface has the same frequency and the same phase 
with that of the pitching motion. On the other hand, only case (b) results in pure harmonic 
motion for camber. 

With the previous discussion in mind, at each time t , the foil geometry and position in the 
aforementioned XY plane has been defined. Taking an axis L  parallel to the X axis, at a 
distance R along Y axis and rotating the foil by 360 deg around L , the FOD configuration at 
this time step is obtained. R  defines the FOD radius and 2D R= ⋅ the FOD diameter. 

Quantifying the previous discussion, the instantaneous angle of attack ( )a t of a section (2-D 
foil) of the FOD, with respect to the undisturbed flow (resulting from the parallel movement 
along X-axis and the heaving motion of the pitch axis point), is given by the equation: 

1 0
0

2 cos(2 )( ) sin(2 ) tan ( )h n n ta t n t
U

π πθ π ψ − ⋅ ⋅
= ⋅ + −  (III.16) 

or in non-dimensional form: 
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1
0( ) sin(2 ) tan ( cos(2 ))a t n t Str n tθ π ψ π π−= ⋅ + − ⋅ ⋅ ⋅  (III.17) 

where Str  denotes the Strouhal number defined by:  

0, 2n hStr h h
U
⋅

= =  (III.18) 

and h denotes the heave height. 

Furthermore, assuming a NACA four digit camber distribution, the camber motion is 
described by the following equations: 

( ) ( ) ( )2 2 ,, 0ccy p u
p

c ut u m t u p= ≤−
⋅

≤  (III.19) 

( ) ( ) ( )
( )

( )2

1
, 1 2 , 1

1c c

c u
y t u m t u p p u

p

 ⋅ −
= ⋅ + − ⋅ ≤ ≤ 

 − 
 (III.20) 

where ( )cm t is the maximum instantaneous camber as a fraction of chord, p is the location of 

maximum camber (as a fraction of the chord) and u is the non-dimensional chord-wise 
position, (Abbott I. & Doenhoff 1959). After this, it is possible to calculate the time evolution 
of maximum camber for the cases (a) and (b) discussed previously. For case (a) the 
instantaneous maximum camber is given by:  

( ) ( ) 2 2

2

( 1)

cos(1 2 )

12( )( 2 sin( ))
2

c

p

f a t p p
m t

a p
p p

π

π ϑ ϑ ϑ
ϑ

− −

⋅ ⋅ − +

+
−

−
=

=

 (III.21) 

where ( )a t  is calculated from (III.3) and f is a time independent  factor (estimated 
heuristically) by which the instantaneous camber partially represents the ideal camber. 
Relation (6) is produced by applying the formula for the ideal angle of attack to the camber 
line (III.19), (III.20) (Abbott I. & Doenhoff 1959). For case (b) the instantaneous maximum 
camber is given by:  

   0( ) sin(2 )cm t m n tπ ψ= ⋅ +  (III.22) 

 

with 0m heuristically selected by the designer.  

Having introduced the analytical description of both geometry and motion of our FOD, the 
creation of a surface panel distribution describing the FOD at consecutive time steps is 
straight forward. 

Figure III.1.3-1 shows the panel discretization of the FOD at nine time instances, 
corresponding to the maximum, minimum and inflection point positions of a FOD section in 
one period. Figure III.1.3-2 shows the section of the FOD with a plane containing the X axis 
for the same time instances. 

With the FOD paneling in time known, the unsteady BEM code (Politis 2011) can be applied to 
calculate the FOD unsteady forces, energy requirements and free shear layer evolution.  
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Figure III.1.3-1 Panel discretization at selected time steps 

 

 

 

Figure III.1.3-2 XY section of the nine positions of the FOD 

 

 

III.1.3.2 Decisions regarding Geometric and Flow/motion variables for the 
proposed FOD series.  

To proceed to a series based design process for a FOD, decisions have to be taken, on the 
corresponding geometric and flow related parameters. In line with the discussion of the 
previous section, the series should consist of four different FOD geometries, termed in the 
sequel as Cases 1,2,3 and 4, as follows: 

Case 1: 0 / 1.0 h c = with NACA 0012 section (no camber),  

Case 2: 0 / 1.0 h c = with NACA 6412 section and time dependent maximum camber according 

to equation (III.22). 

Case 3: 0 / 1.5 h c = with NACA 0012 section (no camber),  

Case 4: 0 / 1.5 h c = with NACA 6412 section and time dependent maximum camber according 

to equation (III.22). 
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Other series geometric data have been selected constant, as follows: 0.04om =  in relation 

(III.22) and / 3R c =  (where R  is the mean FOD radius measured at the position of pitching 
axis which have been selected at 1/3 chord from leading edge, i.e. / 1/ 3b c = ). 

Regarding flow/motion related variables the Strouhal number has been selected in the range: 
0.15 0.7Str = ÷ . Using our previous experience, gained from flapping wings, this selection is 

expected to contain the region of FOD maximum hydrodynamic efficiency. Finally the range 
of the pitch angle has been selected from 5 deg to a maximum value, which depends from the 
Strouhal number. This maximum value of the pitch angle has been properly selected to result 
in a thrust producing FOD. 

 

III.1.3.3 Transient FOD performance and selection of simulation period. 

The main difference between a traditional propeller and a FOD is that the FOD produces a 
period mean thrust as a result of a highly unsteady instantaneous thrust. The simulation 
method in hand can produce this time dependent thrust but, since it is a time stepping 
method, initial conditions on FOD motion have to be imposed. A burst starting FOD is used 
as the starting condition. In this case a transient phenomenon occurs. Thus the mean period 
values for thrust or power have to be calculated after the passage of this initial transient 
phenomenon. To care for this, time domain simulations have been performed for two periods 
and for the following selection of FOD state variables (geometry and motion): 

I. [Case 1, Str=0.29, Theta=23.54] 
II. [Case 1, Str=0.42, Theta=24.27] 

III. [Case 2, Str=0.56, Theta=23.50] 
IV. [Case 3, Str=0.42, Theta=24.27] 

Results for the time dependent FOD thrust force Fx  are shown on Figure III.1.3-3 through 
Figure III.1.3-6, where ρ denotes the fluid density. From those figures it is concluded that, for 
the selected parameters, the transient phenomenon is limited to the few initial time steps after 
the burst start. Thus the 2nd period of simulation can be safely used, to calculate the mean 
FOD thrust and power to be used in our design charts. Notice that according to the thrust sign 
conventions, a negative thrust force Fx  is a propelling force, convention which is used in all 
future charts similar to Figure III.1.3-3. 

 

 

Figure III.1.3-3. Time evolution of thrust for [Case 1, Str=0.29 Theta=23.54] 
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Figure III.1.3-4 Time evolution of thrust for [Case 1, Str=0.42 Theta=24.27] 

 

 

Figure III.1.3-5. Time evolution of thrust for [Case 2, Str=0.42 Theta=24.27] 

 

 

Figure III.1.3-6. Time evolution of thrust for [Case 3, Str=0.56 Theta=23.5] 
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III.1.3.4 Grid independence of the calculated open water diagrams. 

In order to analyze the effect of the grid density to the calculated open water FOD 
performance, the systematic BEM calculations for the next paragraphs have been performed 
with three different grid densities, according Table III.1.3-1: 

Table III.1.3-1. Grid densities. 

name No of chordwise 
elements (face + back) 

No of circumferential 
elements 

Grid1 20 55 

Grid2 26 72 

Grid3 32 80 

 
For the comparison among grids, a measure for the maximum and mean deviation between 
the mean thrust forces produced by each grid, has been defined as follows: For each 
calculation case and each grid density, a mean value for thrust has been found. Thus a three 
dimensional surface has been created for each case. Then, mean and maximum deviation 
between surfaces can be easily calculated in any design software. The overall mean and 
maximum values are obtained (i.e. six more numbers are obtained). Those data are shown on 
Table III.1.3-2, with the following convention: Above diagonal are overall mean of the 
%differences of mean thrust values and below diagonal are the maximum of the %differences 
of mean thrust values.    

It can be seen that Grid2 (as well as Grid3) can be considered as a reliable discretization for 
systematic simulations. Nevertheless, Grid1 in spite of lacking accuracy, it is good enough to 
show trends and could be used for getting quick exploratory results. 

 

 

Table III.1.3-2. Mean (above the diagonal) and maximum (below the diagonal) %deviations in 
mean thrust calculation. 

 Grid1 Grid2 Grid3 

Grid1 0 5.1% 5.2% 

Grid2 8% 0 0.7% 

Grid3 10.1% 3.1% 0 

 
Figure III.1.3-7 shows comparisons of calculated time dependent thrust for three different grids 
for the case: [Case 1, Str=0.70, theta=22.30], where the maximum difference of mean values 
was found. It should be noted, that even the coarser grid, produces results that follow the 
same trend in the time domain as well, while the difference is located at the peak values. It 
should be also noted that the differences in the calculated time dependent thrust are reduced 
as grid density increases, a fact which indicates the convergence of the results for finer grids. 
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Figure III.1.3-7 : Effect of grid density to the calculated instantaneous thrust for the case: [Case 
1, Str=0.70, theta=22.30]. 

 

 

 

III.1.3.5 Wake visualizations – Understanding how the FOD produces thrust. 

For a better understanding of the underlying physical mechanisms of FOD’s thrust 
production, the wake free shear layer is plotted, for a range of the FOD state variables, 
representative of our series described in section 5. More specifically two groups of results are 
presented. For the first group a definite combination of state variables has been selected: [Case 
1, Str=0.42, theta=24.27] and present instances of the wake evolution at the following six 
consecutive time steps: [T/2, T, 3T/2, 2T, 5T/2, 3T] where T denotes the simulation period. 
Figure III.1.3-8 shows the FOD thrust as a function of time, with vertical bars at the points 
where wake snapshots have been taken. Figure III.1.3-9 (perspective view) and Figure III.1.3-10 
(top view) show the FOD and corresponding wake snapshots, at the selected time steps. The 
FOD surface and the free vortex sheet surface on those figures have been colored according to 
their surface dipole distribution intensity. Notice that constant dipole lines coincide with 
surface vortex lines. By using either the last property or the deformation patterns of the free 
vortex sheets, a number of strong ring vortices in the wake of the FOD are made recognizable. 
Those ring vortices produce series of oblique jet flows by which the FOD produces thrust. 
Figure 10 shows a slice with a constant-Y plane of the FOD free vortex sheet for the six time 
steps considered, while figure 11 concentrates on the slice at t=3T. Figure III.1.3-11 also contains 
artistic add-ons, showing the train of ring vortices (curved arrows) and corresponding jets 
(straight arrows) by which the FOD produces thrust. More specifically the straight arrows are 
the results of the induced velocities produced by the ring vortices. Notice also the analogy of 
the vortex picture shown in the slice of Figure III.1.3-12 with the reverse Karman vortex street 
wake appearing in aquatic animal and/or bird flapping foil propulsors, Taylor (2010). By 
studying the evolution of the FOD at consecutive geometric positions, it is observed that the 
maximum angle of attack during FOD contraction and during FOD expansion occurs at 
asymmetric FOD geometries. More specifically, during the expansion phase of the FOD 
motion, the leading edge diameter is greater than the corresponding diameter during the 
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contraction phase. As a result the local maximum of thrust forces Fx during FOD expansion is 
greater than the corresponding local maximum during FOD contraction, Figure III.1.3-8. 

 

 

 

Figure III.1.3-8. Time evolution of FOD thrust for [Case 1, Str=0.42, theta=24.27]. The vertical 
lines indicate the times of the snapshots taken. 
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Figure III.1.3-9. Wake visualizations for [Case 1, Str=0.42, theta=24.27], at [T/2, T, 3T/2, 2T, 5T2, 3T] 
respectively. Perspective view 
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Figure III.1.3-10. Wake visualizations for [Case 1, Str=0.42, theta=24.27], at [T/2, T, 3T/2, 2T, 5T2, 3T] 
respectively. Top view. 
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Figure III.1.3-11 . Wake visualizations for [Case 1, Str=0.42, theta=24.27], at [T/2, T, 3T/2, 2T, 5T2, 
3T] respectively. Slice with the XZ plane 
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Figure III.1.3-12. Slice of the FOD wake at t=3T for [Case 1, Str=0.42, theta=24.27]. Artistic add-ons 
showing the train of ring vortices and corresponding jets by which the FOD produces thrust. 

 

For the selection of the second group of wake visualizations, a decision was made to trace 
through the geometry of all four design cases (i.e. cases 1,2,3 and 4, section 5), selecting four 
different Strouhal numbers for each case: Str=[0.15, 0.29, 0.42, 0.56] and two different pitch-
angles for each Strouhal number. The two selected pitch-angles are properly Strouhal 
dependent, in order to represent a lower FOD loading and a higher FOD loading for each 
given Strouhal. Figure III.1.3-13up to Figure III.1.3-28 present Y=0 slices of the free vortex sheet 
geometry at t=2T, for all the sixteen combinations of geometry and Strouhal. Each figure 
contains two wake slices, the first (dashed line) corresponds to the higher FOD loading 
(smaller pitch-angle) while the second (solid line) to the lighter loading (greater pitch angle).        

From those figures it is observed that for a smaller 0θ  (which means a higher angle of attack) a 

wider wake is developed. This presumes stronger induced velocities and thus higher loading. 
Also, by a wake inspection between the figures, it is shown that increasing the Strouhal 
number the loading is increased. Regarding the effect of a non-zero camber (Cases 2 and 4) 
the wake survey/comparison shows only slight differences with the non-camber case for 
similar Strouhal and pitch angle conditions.  

 

 

Figure III.1.3-13. Case 1, Wakes for Str=0.15 and theta=5 (dashed) and 18.49 (solid) 
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Figure III.1.3-14. Case 1, Wakes for Str=0.29 and theta=5 (dashed) and 23.54 (solid) 

 

Figure III.1.3-15. Case 1, Wakes for Str=0.42 and theta=14.63 (solid) and 43.53 (dashed) 

 

Figure III.1.3-16. Case 1, Wakes for Str=0.56 and theta=14.25 (dashed) and 32.75 (solid) 

 

Figure III.1.3-17. Case 2, Wakes for Str=0.15 and theta=5 (dashed) and 18.49 (solid) 
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Figure III.1.3-18. Case 2, Wakes for Str=0.29 and theta=5 (dashed) and 23.54 (solid) 

 

Figure III.1.3-19. Case 2, Wakes for Str=0.42 and theta=14.63 (dashed) and 43.53 (solid) 

 

Figure III.1.3-20. Case 2, Wakes for Str=0.56 and theta=14.25 (dashed) and 32.75 (solid) 

 

Figure III.1.3-21. Case 3, Wakes for Str=0.15 and theta=5 (dashed) and 18.49 (solid) 
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Figure III.1.3-22. Case 3, Wakes for Str=0.29 and theta=5 (dashed) and 23.54 (solid) 

 

Figure III.1.3-23. Case 3, Wakes for Str=0.42 and theta=14.63 (dashed) and 43.53 (solid) 

 

Figure III.1.3-24. Case 3, Wakes for Str=0.56 and theta=14.25 (dashed) and 32.75 (solid) 

 

Figure III.1.3-25. Case 4, Wakes for Str=0.15 and theta=5 (dashed) and 18.49 (solid) 
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Figure III.1.3-26. Case 4, Wakes for Str=0.29 and theta=5 (dashed) and 23.54 (solid) 

 

Figure III.1.3-27. Case 4, Wakes for Str=0.42 and theta=14.63 (dashed) and 43.53 (solid) 

 

Figure III.1.3-28. Case 4, Wakes for Str=0.56 and theta=14.25 (dashed) and 32.75 (solid) 

 

III.1.3.6 The open water performance diagrams for our FOD series.   

Systematic unsteady BEM simulations have been performed with the selected FOD series 
described in section 5. In all simulations a chord of 0.15c m= has been selected. Variation of 
Strouhal number has been achieved by changing the frequency of the FOD oscillation while 
the corresponding translational velocity has been held constant and equal to 2.0 /V m s= . 

This results to a constant Reynolds number (based on translational velocity: Re U c
ν
⋅

=  ) 

equal to 6Re 0.263 10= ⋅ . Corresponding Reynolds numbers based on the maximum 
undisturbed flow velocity are Strouhal dependent according to the relation: 

2Re 1 ( )Str
U c Strπ
ν
⋅

= + ⋅ , or 6Re 0.291 10Str = ⋅ at 0.15Str =  and 6Re 0.636 10Str = ⋅ at 

0.7Str = (assumed kinematic viscosity 6 21.139 10 /m sν −= ⋅ ).  Mean thrust and power have 
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then been calculated by running the BEM code for two time periods and calculating the mean 
values of the unsteady forces over the second period (see section 6). The results are presented 
in the form of 0TC θ−   diagrams (where 0 thetaθ →  in diagrams), Figure III.1.3-29, Figure 

III.1.3-31, Figure III.1.3-33, Figure III.1.3-35, and 0PC θ−  diagrams, Figure III.1.3-30,Figure 

III.1.3-32,Figure III.1.3-34,Figure III.1.3-36, with parameter the Strouhal number (thick line in 
the diagrams).  

The first set of figures contain additionally in parametric form (thin lines) the open water 
efficiency η of the FOD: 

T

P

CT U
DHP C

η ⋅
= =  (III.23) 

The second set contains additionally in parametric form the maxa angle (thin lines) defined as 

the maximum value of ( )a t , relation (III.3), over one period. This last information is very 
useful for the designer in order to avoid maximum angles with a potential danger for 
separating flow (e.g. greater than 20deg), phenomenon which is not modeled by our method 
and consequently our BEM simulations can result in questionable and/or incorrect predictions 
in that region. 

Interesting conclusions drawn from those figures are the following: (a) There is a relatively 
wide region of maximum hydrodynamic FOD efficiency which is achieved at a maximum 
angle of attack less than 15degrees i.e. at the region of flow without expected separation, (b) 
FODs with additional unsteady camber motion (cases 2, 4) increase both the produced thrust 
and the efficiency. It should be also noted that systematic inspections of the calculated 
pressure distributions gave no indication of local pressure less than the corresponding vapor 
pressure in the region around optimum performance. As a result no cavitation is expected in 
that region.  
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Figure III.1.3-29.  Case1. Mean thrust coefficient, as function of 0θ . Thick lines stand for Str and thin 
lines for Efficiency. 

 

Figure III.1.3-30.  Case 1. Mean Power coefficient, as function of 0θ . Thick lines stand for Str and thin 

for maxa  
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Figure III.1.3-31. Case 2. Mean thrust coefficient, as function of 0θ . Thick lines stand for Str and thin 
lines for Efficiency. 

 

Figure III.1.3-32. Case 2. Mean Power coefficient, as function of 0θ . Thick lines stand for Str and thin for 

maxa  

121 



Part III – Simulations with Fully Prescribed Motions and Optimum Design Methodology 
for Flapping Wing Propulsion 

 

Figure III.1.3-33. Case 3. Mean thrust coefficient, as function of 0θ . Thick lines stand for Str and thin 
lines for Efficiency. 

 

Figure III.1.3-34. Case 3.  Mean Power coefficient, as function of 0θ . Thick lines stand for Str and thin  

for maxa  
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Figure III.1.3-35. Case 4.  Mean thrust coefficient, as function of 0θ . Thick lines stand for Str and thin 
lines for Efficiency. 

 

Figure III.1.3-36. Case 4. Mean Power coefficient, as function of 0θ . Thick lines stand for Str and thin for 

maxa  
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III.1.4 Flexible Elliptic Oscillating Duct (FEOD)   
The main conclusion from the previous case is that the FOD is a promissing propulsor with 
hydrodynamic efficiencies well over that of a convensional propeller, but also better than 
flapping wings. The main disadvantage of the FOD has to do with its support to the hull. More 
specifically it became obvious from the beginning that the completely circular geometry of the 
FOD makes its support onto the ship difficult, since every single point of the FOD would be in 
a constant motion. Towards resolution of this problem it was decided to expand/generalize 
the geometry of our propulsor allowing elliptical shapes. Thus the concept of a ‘Flexible 
Elliptic Oscillating Duct’ or simply, FEOD came up. An important difference between the FOD 
and the FEOD is that the latter can oscillate in both axis of the ellipse in a manner determined 
by the designer. This allows the designer to select one of the axis of the ellipse (for example 
the major axis) to be constant and the other to be oscillating. With this selection the major 
axis can be used for supporting the FEOD to the hull. Hence both ducts (FOD & FEOD) 
oscillate, but since the FEOD has two degrees of oscillation freedom (the two axis of the 
ellipse), deforms as an ellipse rather than as a circle in the general case.  

 

 

III.1.4.1 FEOD geometry and motion – panel generation.  

The starting point for an unsteady BEM simulation of a flexible body is the generation of the 
time dependent paneling describing the geometry of the system, Politis (2011). Thus, a 
discussion of the shape of the FEOD has to be made with a special consideration on the 
definition of the ‘FEOD sections’ and their ‘pitch’. 

Consider a plane Cartesian orthogonal coordinate system YZ, Figure III.1.4-1. There are three 
common descriptions for an elliptic shape with major and minor axis ,A B  as follows: 

2 2

2 2 1z y
A B

+ =   (III.24) 

cos( )z A τ= ⋅   (III.25) 

sin( )y B τ= ⋅   (III.26) 

cos( )z r ϕ= ⋅   (III.27) 

sin( )y r ϕ= ⋅   (III.28) 

where , ,r ϕ τ  are related by the equations: 

2 2

2 2

1
cos sin

r

A B
ϕ ϕ

=

+

  (III.29) 

tan tanB
A

ϕ τ=   (III.30) 

Equation (III.24) is the standard form, while equations (III.25),(III.26) and equations (III.27)
,(III.28) are parametric forms, with (0, 2 )τ π∈  and (0, 2 )ϕ π∈ respectively. Form (III.25)
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,(III.26) is termed ‘concentric’ in the sequel while form  (III.27),(III.28) is termed ‘polar’. The 
parameter ϕ  in the description of the polar form has a very simple physical meaning. It 

denotes the angle of the line segment OE   starting at the center of the ellipse O  and ending 
at the point E  belonging to the ellipse, figure 1. In the same figure the physical meaning of the 
parameter τ  is shown.  

The YZ system of Figure III.1.4-1, can now be completed to a right handed 3D Cartesian-
orthogonal coordinate system, by adding the X-axis normal to YZ showing inwards. After that 
the FEOD can be described by ‘building’ the FEOD hydrodynamic sections around this ellipse. 
More specifically the ellipse of Figure III.1.4-1 is selected to be the locus of the pitch axis points 
of the FEOD sections. To complete the FEOD geometry, the position of the FEOD sections in 
space has to be defined. Figure 1 dictates two alternatives for this: 

(a) polar case: the sections are placed in the plane defined by the X-axis and the line OE  
(angle ϕ  from Z-axis), or 

(b) concentric case: he sections are placed in a plane through E with orientation parallel to the 

plane defined by the X-axis and the line OE′′ (angle τ  from Z-axis)  . 

 

 

Figure III.1.4-1. Inscribed and outscribed circles of an ellipse. Points , , YE E E′  define a line 

parallel to Z-axis, while points , , ZE E E′′  define a line parallel to Y-axis 

 

Then the FEOD section is oriented, at either plane, to make an angle θ  with the X-axis. In 
general θ can be a function of ϕ  or τ  i.e. ( )θ ϕ   or ( )θ τ . Assuming further that the following 
variables are known functions: (i) the FEOD chord distribution ( )c ϕ  ( ( )c τ ),  (ii) the 
maximum  camber distribution ( )f ϕ  ( ( )f τ ), (iii) the maximum  thickness distribution ( )T ϕ  
( ( )T τ ), (iv) the thickness and camber forms, and (v) the chordwise position b  for the 
sectional pitch axis from leading edge,  the geometry of the FEOD is fully defined.  
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The two alternatives (a) and (b) lead to two different space grids which shall be termed as the 
‘polar grid’ and the ‘concentric grid’ respectively, in accordance with the previous definitions 
regarding the parametric description of an ellipse.  

Then, a heaving motion can be added to the pitch location (ellipse of Figure III.1.4-1), as 
follows. Assume:  

( )0 1 sin AA A A tω ψ= + ⋅ ⋅ +   (III.31) 

( )0 1 sin BB B B tω ψ= + ⋅ ⋅ +   (III.32) 

where 0 0,A B denote the mean major and minor axis positions and 1 1,A B the corresponding 

oscillation amplitudes, ω denotes the angular velocity of oscillation which is common for both 
axis ( 2 nω π=  where n the frequency of oscillation) and  ,A Bψ ψ the phase angles. 

With the previous considerations in mind, the points on the ellipse are identifiable through a 
certain value of the parameter ϕ  (polar description/grid) or the parameter τ  (concentric 
description/grid). Considering now the motion induced by relations (III.31),(III.32) to point E , 
it is observable that this depends on the parametric identification used for E  i.e. it is different 
for the concentric and polar descriptions. Dividing the two sides of the polar equations (III.27)

,(III.28) gives: tany
z

ϕ=       (III.33) 

Relation (III.33) indicates that if the polar description is used to parameterize the points of the 

ellipse, then the ( )E ϕ  moves along OE  i.e. in-plane with the FEOD section. Denote by 
( , ) /dr t dtϕ the ‘heaving velocity’ on the polar plane ( r  according to equation (III.29)).   The 

total sectional undisturbed velocity due to the combined polar plane heaving and parallel 

translation V can then be calculated: ( )2* 2 ( , ) /V V dr t dtϕ= + and the angle ( , )tφ ϕ between 

velocities V and *V is given by the relation: 

1 ( , ) /( , ) tan ( )dr t dtt
V

ϕφ ϕ −= , (III.34) 

The sectional pitch angle ( , )tθ ϕ can then be selected according to the formula: 

1 ( , ) /( , ) ( , ) tan ( )dr t dtt w t w
V

ϕθ ϕ φ ϕ −= ⋅ = ⋅   (III.35) 

where w  denotes a weighting factor, independent of time, with values in the range: 0 1w< < . 
w  is named ‘the pitch control parameter’ after  Politis & Politis (2012). An estimation of the 
angle of attack of the wing with respect to *V  is given by the following relation: 

1 ( , ) /( , ) ( , ) ( , ) (1 ) tan ( )dr t dtt t t w
V

ϕα ϕ φ ϕ θ ϕ −= − = − ⋅   (III.36) 

For this initial investigation, it was decided to use the polar description/grid for the FEOD 
discretization. In addition the major axis of the pitch loci ellipse is held constant in time i.e. 

1 0.A =  Equation (III.29) applied for the minor axis (i.e. / 2ϕ π=  ) becomes: 

( )0 1( / 2, ) sin Br t B B B tπ ω ψ= = + ⋅ ⋅ +   (III.37) 
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or introducing the substitutions: 0 1 0, , BB R B h ψ ψ= = =  and ( )0( ) sinh t h tω ψ= ⋅ ⋅ + : 

( )0( / 2, ) ( ) sinr t R h t R h tπ ω ψ= + = + ⋅ ⋅ +   (III.38) 

The time derivative of  (III.38) gives: 

0( / 2, ) / ( ) / cos( )dr t dt dh t dt h tπ ω ω ψ= = +   (III.39) 

and relation (III.36) for / 2ϕ π= becomes: 
1( / 2, ) (1 ) tan ( cos( ))a t w Str tπ π ω ψ−= − ⋅ ⋅ ⋅ +   (III.40) 

where Str  denotes the Strouhal number defined by: 

0, 2n hStr h h
V
⋅

= =   (III.41) 

Assuming given values for 0 0, , , , , ,w B R h V ω ψ the motion of the FEOD is fully determined and 

equations (III.27),(III.28) and (III.29) can be used for the determination of the time dependent 
geometry and corresponding grid for the FEOD. In case of chord-wise flexibility the FEOD 
deforms in a similar manner to that discussed in Politis & Tsarsitalidis (2012).  

Having introduced the analytical description of both geometry and motion of FEOD, the 
creation of a surface panel distribution at consecutive time steps is executed, describing the 
FEOD geometric evolution. Figure III.1.4-2 shows the panel discretization of the FEOD at a 
number of time instances, corresponding to the maximum, minimum and inflection point 
positions of a FEOD section in one period. With the FEOD paneling in time known, the code 
UBEM can be applied to calculate the FEOD unsteady forces, energy requirements and free 
shear layer evolution.  

 

Figure III.1.4-2  Successive positions of the FEOD in two periods, R/c=B0/c=4, h0/c=3, Str=0.46. 
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III.1.4.2 Decisions regarding Geometric and Flow/motion variables for the 
proposed twin wing series.  

To proceed to a series based design process for a FEOD, decisions have to be taken, on the 
corresponding geometric and flow related parameters. For the needs of the current pilot work 
on the subject, the series is limited in extent and consist of only one FEOD system, with 

0/ / 4R c B c= = , 0 /h c =3.0 and / 0.33b c = . The Strouhal number has been selected in the 

range: 0.1 0.7Str = ÷ . Using previous experience, this selection is expected to contain the 
region of maximum hydrodynamic efficiency. Finally the range of the pitch control parameter 
w  has been selected between 0 and 1 which means a corresponding pitch angle ( , )tθ ϕ  which 
includes the full range of thrust producing motions for the various Strouhal numbers. 

 

III.1.4.3 Transient FEOD performance and selection of simulation period. 

The main difference between a traditional propeller and a biomimetic propulsor is that the 
latter produces a period mean thrust as a result of a highly unsteady instantaneous thrust. The 
simulation method in hand can predict this time dependent thrust but, since it is a time 
stepping method, initial conditions on motion have to be imposed. A burst starting FEOD is 
used as the starting condition. In this case a transient phenomenon occurs. Thus the mean 
period values for thrust or power have to be calculated after the passage of this initial 
transient phenomenon. To take care for this, time domain simulations have been performed 
for three periods and for several cases.  Indicatively, Figure III.1.4-3, Figure III.1.4-4 present the 
unsteady thrust for two cases. 

From these figures it can be concluded that, for the representative selected parameters, the 
transient phenomenon is limited to the few initial time steps after the burst start. Thus it is 
safe to use the 2nd period of simulation, to calculate the mean thrust and power to be used in 
the design charts. 

 

 

 

Figure III.1.4-3  Time evolution of thrust for (R/c=B0/c=4, h0/c=3, Str=0.22, Theta=13.3) 
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Figure III.1.4-4  Time evolution of thrust for (R/c=B0/c=4, h0/c=3, Str=0.46, Theta=34.4) 

 

 

 

III.1.4.4 Open water performance diagrams and comparison with single wing 
systems.   

Systematic simulations using UBEM have been performed with the selected FEOD series 
described in section 5. In all simulations a chord of 1.0c m= has been selected. Furthermore in 
all simulations a FEOD system was used with: R/c=B0/c==4, h0/c=3,b/c=0.33.  

Variation of Strouhal number has been achieved by changing the frequency of oscillation 
while the corresponding translational velocity has been held constant and equal 
to 2.3 /V m s= . This results to a constant Reynolds number equal to 70.202 10⋅ , based on 
translational velocity ( Re /V c ν= ⋅ ). Corresponding Reynolds numbers based on the 
maximum undisturbed flow velocity are Strouhal dependent, according to the relation: 

2Re 1 ( )Str
V c Strπ
ν
⋅

= + ⋅ . Thus 7Re 0.22 10Str = ⋅  at 0.10Str =  and 7Re 0.51 10Str = ⋅ at 

0.7Str =  (kinematic viscosity: 6 21.139 10 /m sν −= ⋅ ).  Mean thrust and power have then been 
calculated by running the UBEM code for two time periods and calculating the mean values of 
the unsteady forces over the second period. The results are presented in the form of 0TC θ−  

diagrams, figure 5, (where 0 thetaθ →  in diagrams) and 0PC θ−  diagrams, figure 6. Notice that 

the used 0θ  denotes the sectional pitch angle amplitude along the minor axis of the ellipse 

(equation (III.35) with / 2ϕ π= ). Notice also that for the FEOD the pitch angle is ϕ  
dependent. 

0TC θ−  diagrams contain additionally in parametric form the open water efficiency η of the 

system (thin lines): 

T

P

CT U
DHP C

η ⋅
= =  (III.42) 

129 



Part III – Simulations with Fully Prescribed Motions and Optimum Design Methodology 
for Flapping Wing Propulsion 

Also, 0PC θ−  diagrams contain additionally in parametric form the maxa angle (thin lines) 

defined as the maximum value of ( )a t , relation (III.40) with / 2ϕ π= , over one period. This 
last information is very useful for the designer in order to avoid maximum angles with a 
potential danger for flow separation (e.g. greater than 20deg), phenomenon which is not 
modeled by the used version of UBEM. For illustrative reasons, diagrams 7 and 8 contain 
similar results for a FOD with : R/c=4, h0/c=2, so that comparisons are made easy. Note that 
the h0/c ratio is not the same for the two cases, as the h0/c ratio for the FEOD, refers to the 
maximum heave at the minor ellipse axis. 

Interesting conclusions drawn from those figures are the following: (a) The region of 
maximum hydrodynamic efficiency is achieved at a maximum angle of attack less than 
15degrees i.e. at the region of flow without expected separation, (b) The performance of the 
FEOD is diminished compared to that of the FOD, but it remains to be seen if such a 
compromise is acceptable for the sake of easier construction and proper fixing of the 
mechanism behind the boat. It should be also noted that systematic inspections of the 
calculated pressure distributions gave no indication of local pressure less than the 
corresponding vapor pressure in the region around optimum performance. As a result no 
cavitation is expected at that region. Finally notice that these charts can be used to select an 
optimum FEOD configuration for a given ship very easily as discussed in Politis & Tsarsitalidis 
(2012).  
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Figure III.1.4-5  0TC θ− chart for FEOD. Thick lines stand for Str  and thin lines for Efficiency. 

 

 

Figure III.1.4-6 0PC θ−  chart for FEOD. Thick lines stand for Str  and thin for maxa   
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Figure III.1.4-7  0TC θ− chart for FOD R/c=4  h0/c=2.0. Thick lines stand for Str  and thin lines 
for Efficiency. 

 

Figure III.1.4-8 0PC θ− chart for FOD R/c=4 h0/c=2.0. Thick lines stand for Str  and thin for maxa  
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III.1.4.5 Wake visualizations – Understanding how the FEOD produces thrust. 

For a better understanding of the underlying physical mechanisms of thrust production, the 
free shear layer produced by the FEOD system is plotted, Figure III.1.4-9. The FEOD surface 
and the free vortex sheet surface on those figures have been colored according to their surface 
dipole distribution intensity. Notice that constant dipole lines coincide with surface vortex 
lines. By using either the last property or the deformation patterns of the free vortex sheets, a 
number of strong ring vortices in the wake of the FEOD are made recognizable. Those ring 
vortices produce series of oblique jet flows by which the flapping wing produces thrust. Figure 
III.1.4-9 also contains artistic add-ons, showing the train of ring vortices (toroidal meshes) and 
corresponding jets (straight arrows) by which the flapping wing feeds with momentum the 
wake and produces thrust. More specifically the straight arrows are the results of the induced 
velocities produced by the ring vortices. What is important, is that the wake resembles more 
that of a twin wing system than that of the FOD (i.e. the homocentric rings have been 
replaced with couples of rings). From the shape of the rings, it is also noticeable that they 
resemble the rings produced by wings of small Aspect Ratio operating at lower Strouhal 
numbers (the rings are elongated in the axis of parallel translation, while in higher AR, they 
are elongated in the spanwise direction) This fact points to where further investigation is to be 
made (i.e. higher B0/c ratios). 

 

 

Figure III.1.4-9  Wake of a FEOD, Str=0.46, θ0=34.4. Colors are for dipole potential. Artistic add-
ons showing the train of ring vortices and corresponding jets by which the FEOD produces 

thrust. 
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III.1.5 Bird Flight 
Among flapping wing types of motion, the flight of a bird is the most intriguing and 
astonishing, as the same wing works as a propulsor, a lifting surface and a control surface, 
enabling birds to achieve wondrous performance. Due to the complexity of the motions and 
geometry, both geometry and motions have been taken to an elemental level, where some 
initial deductions can be made. Thus, at this stage, there are no systematic simulations as 
made for the other cases. 

III.1.5.1 Phenomenological considerations regarding geometry and motion of 
bird flight. 

In order to simulate the motion of a bird's wings, advice has to be taken from biologist 
investigations. As seen in the picture below taken from biology clipart, the motion of a bird in 
flight is asymmetrical. Additionally, the wing outline and all other geometric/motion details 
are time dependent and in general allow for a large variety of alternatives.  

 

Figure III.1.5-1  A schematic view of a bird in flight (biology clipart) 

 

This geometric complexity, which nature has introduced to the flying creatures by natural 
selection, is dependent from the creature operational objectives such as the ability of 
successful hunting, the ability to cope with their enemies or the peculiarities in the 
operational environment.  

As a result, a multitude of flying creature wings can be met with different complexities. 
Simpler wing geometries are usually present in insects. For example a nearly elliptical wing is 
present in the case of a grasshopper. The grasshopper wing has not joints and is mainly stiff, 
allowing spanwise and chordwise deformations induced by the elastic properties of its 
construction. In many insects, wings are operating in tandem, allowing thus a balancing of 
developed aerodynamic forces. Birds are almost always equipped with wings of more complex 
motion capabilities and have joints. Not only can the wing as a whole change its position with 
time, but also its geometric details (such as the wing outline, the twist, the camber etc.) can be 
time dependent. This wing motion ‘flexibility’ is intimately connected with its physical 
anatomy and the existence of a spinal column with a muscle system. Biologists have 
systematically investigated the anatomy of bird wings and arrange them in groups according 
to their characteristics. From these investigations it is shown that there are species that 
employ a simpler wing outline and motion. For example the wing of a hummingbird is nearly 
elliptic without joints and its motion can be described by a combination of a flapping and a 
twisting motion. Unfortunately (for the scientists) the more complex wing motions are the 
rule for the flying creatures. For example a seagull’s wing in simultaneous acceleration and 
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climbing condition (high thrust and lift) presents a highly asymmetric wing motion with very 
strong wing shape variations with time. This is connected with the existence of a ‘joint’ in 
seagull’s wing, which allows independent control by the birds’ brain, of the two parts of the 
wing.    

A challenge for the scientist which attempts to numerically simulate the bird’s flight is the 
introduction of a minimal, yet richly enough, group of geometric and motion parameters to 
control the variations of the geometric and kinematic characteristics of a birds wing in flight.   

  

III.1.5.2 Handling birds’ wing geometry and motion 

Regarding simulation of geometry and kinematics of bird wings, our proposal is lent from the 
anatomy of the real wing that is the use of a spine-rail combination is proposed. Thus the 
instantaneous position of a birds’ wing can be defined by: (a) a spine (a line tracing the wing in 
the span-wise direction), (b) the rails (a number of lines tracing the camber line in the chord-
wise direction) and (c) a thickness distribution which is superimposed on the spine-rail 
surface (otherwise termed the ‘reference wing surface’). The time dependent geometry of a 
birds’ wing can then be reproduced by defining the successive positions of the reference 
surface as well as the thickness distribution which, if necessary, can also be time dependent.  

More specifically the ‘spine’ is discretized by a variable (user determined and bird dependent) 
number of straight line spine segments of given length, not necessarily equally spaced. Each 
segment is connected to a ‘next’ and ‘previous’ one by a ‘start’ and ‘end’ joint respectively. 
Instantaneous spine geometry can then be defined by giving the position of the starting node 
of the first segment and the two rotation angles for each (and all) segments, defining their 
orientation in space with respect to a global XYZ coordinate system. Assuming the X axis to be 
along birds’ instantaneous velocity and the XY plane as the plane of instantaneous flight 
symmetry (the investigation is currently limited to cases where bird wings are moving with a 
XY transverse plane of symmetry), the spine rotation around the X axis is termed Y-flapping 
while the spine rotation around the Y axis is termed the X-flapping. Figure III.1.5-1 shows 
schematically those notions.  

The ‘rail’, which is attached to each end joint in a plane normal to the instantaneous position 
of the spine segment, is discretized similarly by a number of straight line segments tracking 
the local camber distribution. Rails obtain their position on this normal plane by determining 
a ‘twist angle’ relative to an initial position. By superimposing to this plane a thickness 
distribution, a section of the final wing surface has been constructed. Birds’ wing camber and 
thickness distributions are lent from traditional 2-D data of the NACA family, which is 
characterized by analytic descriptions with a minimum number of defining free parameters. 
For example a camber/thickness distribution similar to the NACA four digits family of sections 
can be assumed(i.e. NACA 4412).  

Then motion can be added to the bird wing by assuming that the spine joint X,Y flapping and 
twisting angles as well the rail maximum camber changes with time.  

The previous methodology is entirely free to produce the most general flight patterns met in 
nature. Irrespective of this, for the needs of the current work, the previous methodology has 
been applied with the following simplified assumptions: 
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a) All joints perform harmonic flapping and twisting motions with a common (given) 
frequency. Similarly the maximum camber on joint positions varies harmonically with 
the same frequency. 

b) Its joint flapping and/or twisting motion can have its own phase angle and mean 
value. 

Thus, let ( )Q t denotes a motion defining parameter (for example a twist angle or a X,Y-
flapping angle of the nth joint etc.), then: 

( ) sin( )a ph mQ t Q t Q Qω= ⋅ ⋅ + +  (III.43) 

where aQ is the amplitude, phQ is the phase angle and mQ is the mean value of the motion 

defining variable ( )Q t  and ω  the common to all motions circular frequency. Since the ( )Q t ’s 
are given at the joints of the spine as a function of time, an interpolation scheme is needed in 
order to produce the ( )Q t ’s at all points of the spine, necessary to calculate a dense boundary 
element grid for the description of kinematics of the birds wing. A linear interpolation is used 
between the values of the various ( )Q t parameters between joints. Thus ( )Q t  is a 0C  function 

with support the spine length. Notice that in the case of X or Y flapping a 0C  continuity on 
spine angles results in a 1C  continuity in spine position. Thus a surface BEM grid with at least 

1C  continuity is produced by our method. 

  

With the previous considerations in mind the motion of a birds’ wing is fully determined 
providing the: 

a) X,Y flapping and twisting motions of the spine joints in the form of the set 

1,( , , )a ph m k KXF XF XF =  ,  1,( , , )a ph m k KYF YF YF =   , 1,( , , )a ph m k KTW TW TW =   where XF 

denotes the X flapping angle, YF denotes the Y flapping angle and TW denotes the 
twisting angle at the kth joint and K denotes the number of joints of the spine, 

b) Maximum camber motion 1,( , , )a ph m k KMC MC MC =  where MC denotes the maximum 

camber of the kth joint, 
c) The common circular frequency ω  and 
d) The parallel instantaneous bird velocity. 

 

Before closing this section it is interesting to briefly discuss the motion of 2-D heaving and 
pitching wing in parallel flow. The interest of this simplified case has to do with the 
similarities it has with what a local observer, moving attached to the birds’ wing surface, 
shows (strip theoretic approach). For a 2-D wing performing a harmonic heaving motion with 
amplitude 0h , a harmonic pitching motion with amplitude angle 0θ  and phaseψ , both at a 

frequency ( / (2 ))n ω π= , and moving with parallel velocity U , the instantaneous angle of 
attack ( )a t is given by: 

 

1 0
0

2 cos(2 )( ) sin(2 ) tan ( )h n n ta t n t
U

π πθ π ψ − ⋅ ⋅
= ⋅ + −  (III.44) 
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or in non-dimensional form: 

 1
0( ) sin(2 ) tan ( cos(2 ))a t n t St n tθ π ψ π π−= ⋅ + − ⋅ ⋅ ⋅  (III.45) 

where St  denotes the Strouhal number defined by: 

0, 2n hSt h h
U
⋅

= =  (III.46) 

From relation (III.45) it is observed that the combination 0( , , )Stθ ψ  determines fully the 

( )a t and consequently the maximum angle of attack for the 2-D case. Since this is related to 
the maximum attainable lift as well as phenomena like viscous separation and stall, it is 
common to characterize an unsteady flight condition for a 2-D airfoil by the non-dimensional 
variables 0( , , )Stθ ψ . In the sequel, the previous non-dimensional variables shall be used, based 

on a single birds’ wing section (for example in the first two cases the section at 70% of the 
birds wing semi-span is used) although it is clear that only a crude relation between the flow 
variables of the 3-D flow case with the 2-D case exists.  

III.1.5.3 Cases simulated 

Three different modes of flight have been investigated. The first is a motion where the wing 
flaps around the X-axis and twists harmonically. This is the simplest case of motion of a birds’ 
wing and can be considered to resemble the motion of a hummingbird.  The second case is an 
alteration of the first, with the difference that the flapping around X-axis has a non-zero mean 
value. Such a motion is employed by most birds when they maintain speed in steady flight 
(level flight). This type of asymmetry produces an additional amount of lift in level flight. The 
third case is a motion with strong deformations due to wing joints that simulates the motion 
of seagull’s wings when accelerating and climbing at the same time (high thrust and lift). The 
wing outline is the same for all cases for reasons of comparison Figure III.1.5-2. Similarly a 
NACA 0012 section is used in all cases considered. 

 

 

X

Y
Z

 

Figure III.1.5-2  Wing geometry for Bird Flight Simulations 
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III.1.5.3.1 Case 1 (hummingbird in vertical climb)  

Figure III.1.5-3 shows the time evolution of the wing geometry over one period. The motion is 
characterized by a Strouhal number: 0.15St =  and max 10a ο= ( max max( ( ), (0... ))a a t t T= ∈  at 

the spanwise section located at  70% of semi-span. Figure III.1.5-4 shows the 3-D pattern of the 
shear layer emanating from the wing trailing edge at various perspectives. By tracking the 
shear layer deformation it is possible to identify regions where well structured and intensive 
ring vortices evolve. For the non-experienced observer Figure III.1.5-5 presents an artistic 
addition which shows explicitly the shape and direction of such vortices. From those figures it 
is observed that in the considered flight a continuous strip of ring vortices is generated with 
axis inclined with respect to the axis of bird parallel movement. Four vortices are created in 
one period, two during upstroke, with axis inclined upward, and two other during 
downstroke, with axis inclined downward. In the case considered all the vortices have the 
same intensity and their vertical projection sums to zero in one period. This flight is realistic 
only when applied to a bird in entirely vertical hover. In level flights the bird needs both 
thrust and lift which is the subject of the next case. Figure III.1.5-6 presents the calculated 
thrust and lift. Notice the symmetry of the lift, by which its average value is zero. From the 
calculated unsteady thrust it is observed that there is a substantial average thrust. Finally the 
mean (one period) efficiency of the flapping wing for this case is 63%.   

 

 

 

      

Figure III.1.5-3  Successive wing positions over one period 

 

 

Figure III.1.5-4  Shear layer dynamics. Color represents dipole intensity. 
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Figure III.1.5-5  Artistic addition of vortex rings and corresponding flow jets. 
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Figure III.1.5-6  Instantaneous thrust and lift as a function of time. 

 

III.1.5.3.2 Case 2 (hummingbird maintaining steady level flight)  

 

The next case considered is similar to the first in all aspects, with the exception of introducing 
a mean value in the Y-flapping angle. This introduces an asymmetry to the upstroke with 
respect to the down stroke motion of the wing which results in the development of a lift force 
useful for a level flight. Again 0.15St =  and max 10a ο=  at the spanwise section located at  70% 

of semi-span. Figure III.1.5-7 shows the time evolution of the wing geometry over one period. 
Figure III.1.5-8 shows the 3-D pattern of the shear layer emanating from the wing trailing edge 
at various perspectives. Figure III.1.5-9 presents an artistic addition which shows explicitly the 
shape and direction of created ring vortices. From those figures it is observed that the 
considered flight is maintained by a continues creation of ring vortices with inclined axis with 
respect to the axis of bird parallel movement. Four vortices are created in one period, two of 
them with axis inclined upward and two other with axis inclined downward. In opposition to 
the previous case, the vortices have not the same intensity and their vertical projection does 
not sum up to zero in one period. Thus a mean lift is obtained. This flight is realistic for a level 
flight, where the bird needs both thrust and lift. Figure III.1.5-10 presents the calculated thrust 
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and lift. Notice the asymmetry of the lift, by which its average value is different from zero. 
From the calculated unsteady thrust it is observed that there is a substantial average thrust. 
Finally the mean (one period) efficiency of the flapping wing for this case is 60%.   

 

 

Figure III.1.5-7  Successive wing positions over one period 

 

 

Figure III.1.5-8  Shear layer dynamics. Color represents dipole intensity. 

 

 

Figure III.1.5-9  Artistic addition of vortex rings and corresponding flow jets. 
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Figure III.1.5-10 Instantaneous thrust and lift as a function of time. 

 

III.1.5.3.3 Case 3 (seagull’s wings in highly deformed motion)  

The next case considered is entirely different from the previous two cases. More specifically 
the inner part of the wing breaks harmonically with amplitude 35o and mean value -25o while 
the phase lapse between breaking and flapping is 90o . This leads to breaking the wing during 
upstroke and extending it during downstroke. For this case 0.4St =  and max 12a ο=  at the 

spanwise section located at 55% of semi-span. Figure III.1.5-11and  Figure III.1.5-12 show the 
time evolution of the wing geometry over one period for the upstroke and the downstroke 
movements respectively. Figure III.1.5-13 Figure III.1.5-14 and Figure III.1.5-15 show the 3-D 
pattern of the shear layer emanating from the wing trailing edge at various perspectives. More 
specifically the left side of the aforementioned figures present an artistic addition which shows 
explicitly the shape and direction of created ring vortices. From those figures it is observed 
that the considered flight is again characterized by a creation of ring vortices with inclined 
axis with respect to the axis of bird parallel movement. Notice that, the topology and number 
of vortices created by this flight in one period is different from that observed in the previous 
cases. There is also a ground effect between the wings during upstroke, the effect of which can 
be seen in the time evolution of shear layer geometry. Figure III.1.5-16 presents the calculated 
thrust and lift. Notice the effect of wing breaking in the instantaneous forces , which results in 
both serious lift and thrust forces. The mean thrust is 0.21N while the mean lift is 0.19N and 
the mean propulsive efficiency is 46%, lower than that of the cases considered previously. 

 

        

Figure III.1.5-11  Successive wing positions over one period – Upstroke 

 

 

141 



Part III – Simulations with Fully Prescribed Motions and Optimum Design Methodology 
for Flapping Wing Propulsion 

       

Figure III.1.5-12  Successive wing positions over one period - Downstroke 

 

 

Figure III.1.5-13  Shear layer dynamics. Color represents dipole intensity - Side view 

 

 

Figure III.1.5-14  . Shear layer dynamics. Top view 
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Figure III.1.5-15  Shear layer dynamics. Perspective view 

 

Note that, except for the big difference in position and arrangement of vortex rings, there is 
also a ground effect between the wings during upstroke, the effect of which can be seen in the 
time evolution of results. The mean thrust is 0.21N while the mean lift is 0.19N and the mean 
propulsive efficiency is 46%, lower than cases before, but more than acceptable, as the lift is 
also very high. 
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Figure III.1.5-16  Instantaneous thrust and lift as a function of time. 
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III.2 Optimum Design Methodology for Flapping Wing 
Propulsion and Applications  
The purpose of making the tools and simulations discussed in the previous parts is to lead to 
designing optimal propulsors and/or energy saving systems. Working to this end, the data 
from the systematic simulations had to be presented in design charts and a design 
methodology had to be developed. First of all, a general concept of the proposed propulsor has 
to be introduced and decisions have to be made on the size and position of the system. Then, 
the problem of optimal design of a flapping wing propulsor is to be formulated, along with a 
solution method. This method is finally applied to virtual paradigms of ships equipped with 
such propulsors and comparisons are made with conventional propulsors. 
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III.2.1 Intro: Position and sizing of biomimetic propulsors 
 

As already said in the first part, there have been several patents and designs of flapping wing 
propulsors and most of them have common characteristics based on their advantages and 
pointed towards the exploitation of their main differences to a conventional propulsor. The 
main advantage is that the swept area of a flapping wing is a box with width the span of the 
wing (if placed horizontally) and height the heave amplitude. On the other hand, a propeller, 
has a disk shaped swept area, which has to fit within the allowed size under the ship.  As 
shown in Figure III.2.1-1, the conventional propellers take a considerably smaller area 
compared to a wing, which means that for the same ship and speed and under the same 
allowances, the wing will be loaded less, thus having higher efficiency. For wide and shallow 
vessels (like passenger ships or inland liners) this effect is even stronger. Another advantage of 
the flapping wing is that there is no asymmetric flow caused by its operation, thus having 
minimal hull interaction (for the rotational part). It should be noted, that for conventional 
propulsors, swirl handling (via appendages or hull deformation) has become a serious and 
costly energy saving issue. 

 

 

 

Figure III.2.1-1 Simplified stern view of a twin screw vessel. Dashed lines show the areas taken 
by propellers and a wing. 

 

 

The examined case of a ship equipped with a flapping wing propulsor, follows the paradigm of 
Yamaguchi and Bose (1994), where a horizontal wing of the same span as the width of the ship 
is placed as shown in Figure III.2.1-2 and made to oscillate vertically, while most of the 
geometry of the ship is left unaltered. Bearing, also in mind, that (as seen in previous part) the 
larger span to chord ratios, but also the larger heave to chord ratios, have the greatest 
efficiency, usage of the maximum box that fits the stern is imperative and minimizing the 
chord length (within limitations, as a very small chord will lead to a smaller Reynolds number) 
leads to higher efficiency. This leads to the main trade off that the designer has to consider. 
For the same ship, a smaller chord will lead to a higher efficiency, but will also mean a 
structurally weaker wing, which will also have increased risk of cavitation. This is very similar 
to the expanded area ratio trade off that is made for conventional propellers, with the 
difference, that in the flapping wing case, the risk of cavitation can be smaller, while the 
structural problems may be serious. Thus, a decision on the wing chord has to be made, based 
on safety criteria and then the designer may use the design diagrams produced, to choose the 
operation parameters of the propulsor.  
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Figure III.2.1-2 Initial sketch of a vessel equipped with a flapping wing propulsor 

 

 

For reasons of redundancy, support of the wings, motion and thrust transmission, but also for 
covering the need for larger rudder area, the proposed design of two independent wings 
supported by three struts equipped with flaps is presented in Figure III.2.1-3. The detailed 
design of the internal mechanism, is beyond the purposes of this thesis, but it can be assumed 
to follow the same principles as most existing patents for oscillating wings (i.e. O-FoilTM ).  

 

 

Figure III.2.1-3  Stern view of a ship equipped with a system of two wings, including supports-
rudders. 
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III.2.2 Theoretical formulation and solution of the flapping wing 
propulsor design problem. 
Propulsor design problem consists in finding the propulsor geometric and motion 
characteristics by which it can propel a given ship with a given ship speed. Among all possible 
design solutions, satisfying the constraint of a given ship speed; there is an optimum, which 
requires a minimum delivered power. Although the optimum propulsor problem is a problem 
of mutual propulsor/stern optimization, in most cases, the propulsor is optimized with the 
assumption of a given hull/stern geometry.  

From the dimensional analysis of the problem, the following relations have been deducted, for 
the open water performance of a flapping wing propulsor: 

0 02 ( , , / , / , / , )
0.5T T

TC C Str s c h c b c
U S

θ
ρ

= =  (III.47) 

0 03 ( , , / , / , / )
0.5P P

DHPC C Str s c h c b c
U S

θ
ρ

= =  (III.48) 

 

In self-propulsion conditions, a Taylor wake fraction w is assumed and defined by: 

(1 )U V w= −  (III.49) 

where V is the ship’s speed. Furthermore a relative rotative efficiency Rη and a shaft efficiency 

sη  are defined by:  

, B
R s

B

DHPDHP
DHP SHP

η η= =  (III.50) 

where BDHP  denotes the (period-mean) power delivered to the flapping wing in self-

propulsion conditions and SHP  denotes the (period-mean) shaft horse power. Let t  denote 
the thrust deduction factor: 0 (1 )BR R t= −  with 0R  denoting the hull towing resistance and 

BR  the resistance with the flapping wing in operation or ‘behind resistance’. Assuming that a 

‘thrust equalization method’ has been used for the determination of propulsor-hull interaction 
coefficients , , Rw t η , the flapping wing (mean) thrust and shaft power, in the self-propulsion 

conditions becomes: 

2 0 0
0

20.5 ( (1 )) ( , , , , )
(1 )B T
n h hs bT T V w S C

V w c c c
ρ θ ⋅

= = − ⋅
−

 (III.51) 

3 0 0
0

20.5 ( (1 )) ( , , , , )
(1 )R s P
n h hs bSHP V w S C

V w c c c
η η ρ θ ⋅
⋅ ⋅ = − ⋅

−
 (III.52) 

For a self-propelled ship, moving with velocityV , the surrounding fluid interacts with the hull 
developing a resistance force: 0( ) ( ) / (1 )BR V R V t= − . A hull can also pull an object with a 

force F  (case of a tug-boat or a trawler). Then the thrust, under self-propulsion conditions, is 
given by:   
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0 ( )( ) ( )
1 ( )B
R VT V F V

t V
= +

−
 (III.53) 

Assuming that 0 0, , , , , , , , RV c s h b w tθ η  are known parameters, equations (III.51), (III.52) and 

(III.53)  become a non-linear system of three algebraic equations with three unknowns: 
( , , )T SHP n . This system can be solved for a range of ship speeds: 1 2( , )V V V∈  and pitch 

angles: 0 0 0( , )a bθ θ θ∈ . Thus, the totality of design solutions for the given ship is obtained: 

0 0 0( , ), ( , ) :  ship, , , , , , RSHP V n V given c s h w tθ θ η←  (III.54) 

The content of Equation (III.54) can be represented in a 2-D SHP n−  diagram in the form of 
parametric curves of constant V  and constant 0θ . Notice that this presentation is similar to 

that used in conventional propellers, where the propeller pitch ratio /P D  is taking the place 
of 0θ . Using this presentation of results, the required optimum flapping wing propulsor can be 

found by selecting the characteristics (geometric and motion) which require the minimum 
SHP for the given ship speed V. 

 

 

III.2.2.1 Choices on the presentation layout of results 

 

In order to arrive at the charts in the form they are produced and presented, a trial of 
alternative ways of presentation is necessary for the determination of the fittest. In this 
attempt, alternative definitions and representation schemes were tested. 

The traditional (i.e. mostly used in literature so far) nondimensional factors are defied as: 

0 02 ( , , / , / , / )
0.5T T

TC C St R c h c b c
U S

θ
ρ

= =    and  

0 03 ( , , / , / , / )
0.5P P

DHPC C St R c h c b c
U S

θ
ρ

= =  

Alternatively, the following can be also used: 

0 02 2 ( , , / , / , / )
0.5T T

TK K St R c h c b c
f A S

θ
ρ

= =       

         and            

0 03 3 ( , , / , / , / )
0.5P P

DHPK K St R c h c b c
f A S

θ
ρ

= =   

The difference is that on the one case the speed is used for nondimensionalization, while on 
the other, it is the frequency times amplitude, as done with conventional marine propulsors. 
Eventually, the traditional ones ( TC , PC ). 
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The following alternative ways to present the data of a series were tested: 

 

Figure III.2.2-1 “Traditional” Presentation as done in literature till present work (Triantafyllou 
1996-2007). Thin line contours are for efficiency and thick ones, are for Thrust Coefficient TC  

In Figure III.2.2-1 the results are presented by defining the axes as Strouhal number and the 
maximum angle of attack (of the undisturbed flow). The contours are for the efficiency and 
the thrust coefficient. This type of presentation was introduced in the works of Prof. M. 
Triantafyllou and his colleagues (Triantafyllou, Triantafyllou et al. 1991). Even though these 
charts are clear and concise, issues arise on the definition of motion parameters for each case.  

Alternative presentations are shown in Figure III.2.2-2,Figure III.2.2-3 and Figure III.2.2-4 . The 
use of TC  for the vertical axis and use of either the Strouhal number or the advance coefficient 

(
1J

Str
= ), also present practical issues, especially with clarity and readability of charts for 

Small Strouhal number or large advance coefficient. 

 

Figure III.2.2-2 Alternative presentation. Thin contour lines are for the efficiency and thick 
ones for the Maximum Pitching Angle. 
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Figure III.2.2-3 Alternative presentation. Thin contour lines are for the efficiency and thick 
ones for the Maximum Pitching Angle. 

 

In Figure III.2.2-4 a chart employing the use of TK (as defined above) is presented. The chart is 

clear and readable, but the ease of use for design problems is not as good as for the final (and 
preferred) alternative of presentation 

 

 

Figure III.2.2-4 Alternative presentation. Thin contour lines are for the efficiency and thick 
ones for the Maximum Pitching Angle. 
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Figure III.2.2-5 Final Chosen Alternative Presentation. Thin contour lines are for Efficiency  and 
thick ones are for Strouhal Number  
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III.2.2.2 Use of charts for the design of a biomimetic propulsor 

Before closing this section a brief description is given, regarding how the charts can be used to 
select an optimum flapping wing propulsor for a given ship, using a hand calculator. Assume 
that a ship is given with a design speed of V knots. Assume further that a biomimetic wing 
with given 0

0/ 6, / 1.0, / 0.33, 90s c h c b c ψ= = = =  has been selected. The problem of 

optimum (i.e. minimum SHP ) selection of 0θ  and corresponding revolutions can be solved as 

follows: (a) with the design speed known and the corresponding ship resistance, the propeller 
thrust, equation (III.53), and TC can be calculated; (b) with this TC  draw a horizontal line as 

on Figure III.2.2-6,a and find the intersection of this horizontal line with the various constant 
Strouhal lines, let 0( , ) , 1,i strStr i nθ =  denote the strn intersection points; (c) from each Strouhal 

number the frequency of the propulsor motion can be found: 0/ (2 )i in Str V h= ⋅ ⋅ ; (d) use 

Figure III.2.2-6,b to find ,P iC  for the known points 0( , ) , 1,i strStr i nθ = , from the ,P iC find the 

required open water power DHP  and use equations (III.50) to find iSHP ; (e) from the 

calculated , 1, stri i nSHP =  select that with minimum required SHP .  

 

 

  

 

Figure III.2.2-6a,b. Application example, using 0
0/ 6, / 1.0, / 0.33, 90s c h c b c ψ= = = =   
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III.2.3 Design applications  
 

A large tanker, a passenger/car ferry and a speed boat are used in a feasibility study for the 
application of a Biomimetic Propulsor as an alternative to traditional propellers. The main 
characteristics of the ships are shown in Table III.2.3-1. More specifically the passenger/car 
ferry and a speed boat are based on prototypes taken from NTUA towing tank data base and 
the tanker has as prototype an AFRAMAX class tanker. In all cases a properly redesigned stern 
is assumed, capable of carrying one or more non-interacting biomimetic propulsors (non-
interacting serial configuration). Having in mind the hydrodynamic behavior of a flapping 
wing system, maximization of both efficiency and corresponding thrust requires the 
maximization of the propulsor swept area. Furthermore, the designer should have in mind 
that maximization of either of 0( / )desh c , ( / )dess c results in better efficiency. Sizing of the 

flapping wing propulsor system for a given ship stern starts by inspecting the ratio of breadth 
to permitted vertical path 02h which in turn is a modulated by the design stern draft, taking 

into account propulsor-hull clearances and ventilation at dynamic conditions. For the 
considered cases it is assumed that the propeller diameter of the selected ships, is indicative of 

02h (i.e. 02h D≈ ), which results in a ratio of breadth to the permitted vertical path in the 

range 4.66 5.00÷ . Thus two horizontal flapping wings (use: 
0 0

/
2 2( / )
s s c
h h c

=  with: 

0/ 6, / 1.5s c h c= = ,  it is obvious that a large /s c , at given 0 /h c , provides better efficiency) 

can be accommodated for all cases, with design particulars shown in table 3. The position of 
the pitch axis ( / )desb c  has been selected equal to 0.33 in all cases, since this selection results 

in slightly better efficiencies with corresponding reduction of the pitching moment required 
to adjust the pitch angle. Notice the relative merit of the flapping wing geometry in 
comparison to a conventional propeller. More specifically the former can better be adjusted to 
the stern area, allowing lower thrust loading coefficients and thus larger efficiencies for the 
same total thrust. In a real situation strength and vibration/noise issues have to be added to 
the previous optimum hydrodynamic efficiency criteria. In this respect the span to chord and 
the thickness to chord ratios of the wing has to be decided by using both hydrodynamic and 
structural considerations.  

For comparison purposes, twin screw vessels have been selected for all cases. For the case of 
the large tanker, this selection results in a ship with propulsive efficiency much better than 
that of the corresponding single-screw. These paradigm ships are virtual and idealized, since 
its optimum propeller revolutions are outside the range (lower) of all existing marine engines 
but simulate the best possible performance a conventional system could produce. Thus 
presented comparisons of propulsive efficiency, underestimate the real efficiency gains.  

The ship bare hull towing resistance data 0 ( )R V  are shown in Table III.2.3-2. They have been 

taken either from the database of the NTUA towing tank (ships no 2, 3) or calculated using 
systematic series (Holtrop method for ship no 1). With the bare hull resistance given, the 
nonlinear system of algebraic equations (III.51), (III.52) and (III.53) can be solved for a range of 
ship speeds V  and pitch angles 0θ  and the totality of design solutions can be presented in a 

diagram, as dictated by Equation (III.54). For comparison purposes, it has been assumed that 
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in all cases (i.e. all ship types and either flapping-wing or propeller as propulsor): 
0.0, 0.0, 1.0, 1.0R sw t η η= = = = . This is a reasonable assumption for twin screw vessels, 

which have small propulsor-hull interactions. Furthermore, the use of the same hull-
interaction coefficients for the flapping-wing and the propeller can be considered with care, 
since interaction coefficients are (for the same stern geometry) mainly functions of propulsor 
diameter and the developed thrust, Harvald (1983) no inclined axis corrections were made for 
the conventional propellers. No correction of the bare hull resistance has been made for 
appendages. No corrections for full scale Reynolds number have been introduced for either 
type of propulsors.  

It should be clarified, that hull propulsion interaction has been assumed negligible only for 
the sake of making a paradigm and due to the lack of any self propulsion experimental data, as 
also assumed by Yamaguchi and Bose (1994). Final conclusions on the actual performance of a 
ship operating with biomimetic propulsors, can only be made after the actual (experimentally 
determined) hull interaction factors ( , , Rw t n  ) have been used.  

 

 
Table III.2.3-1. Ship and propulsor particulars. 

Ship no: 1 2 3 

Ship Type: Large 
Tanker 

Passenger/car 
ferry 

Speedboat 

Propeller diameter ( )D m   9.00 4.10 1.40 

Stern Breadth ( )B m   42. 20. 7. 

Number of propulsors 2 2 2 

( / )dess c  6 6 6 

0( / )desh c  1.5 1.5 1.5 

( )desc m  3.00 1.37 0.47 

( )dess m  18.00 8.20 2.80 
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Table III.2.3-2 Resistance curves of ships 

Ship  1 2 3 

 ( / )V m s   

4.11 

4.63 

5.14 

5.66 

6.17 

6.69 

7.20 

7.72 

8.23 

0 ( )R kp   

30763 

38445 

46935 

56225 

66309 

77185 

88851 

101308 

114560 

( / )V m s  

7.20 

7.71 

8.23 

8.75 

9.26 

9.78 

10.29 

10.80 

11.31 

11.83 

0 ( )R kp  

29055 

31056 

34528 

38374 

42755 

47292 

52301 

58153 

66426 

78009 

( / )V m s  

9.25 

10.27 

11.32 

11.83 

12.35 

12.87 

13.38 

13.88 

14.40 

14.92 

0 ( )R kp  

9204 

10471 

11519 

11962 

12367 

12697 

13084 

13477 

13872 

14306 

 

 

III.2.3.1 Single wing  

The totality of design solutions 0 0( , ), ( , )SHP V n Vθ θ  (optimum and non-optimum) for the 

three vessels equipped with flapping-wings can be found in Figure III.2.3-1, Figure III.2.3-3 and 
Figure III.2.3-5  (where N  in the horizontal axis denotes frequency in rounds per minute and 
SHP  in the vertical axis denotes the total power in PS from both propulsors). The 
corresponding results ( , / ), ( , / )SHP V P D n V P D  (where /P D  denotes propeller pitch ratio) 
for the same ships equipped with B4-75 conventional propellers, Oosterveld & Oossannen 
(1975), can be found in Figure III.2.3-5, Figure III.2.3-2, Figure III.2.3-4, Figure III.2.3-6. On all 
the figures, the constant-velocity curves and the constant maximum pitch angle 0θ curves or 

the constant /P D  curves are shown and labeled accordingly. B-series results show that the 
optimum pitch ratio /

opt
P D is greater than the maximum allowed by the systematic series, 

i.e. it is succeeded for a / 1.4P D > . Since the constant velocity curves are relatively flat for 
/ 1.4P D >  the / 1.4P D = is considered to be representing the optimum point in a 

satisfactory manner. 

Comparative propulsive performance, for the three ship types equipped with the different 
propulsion systems, is summarized in Table 5. In all cases the flapping wing shows superior 
efficiencies compared to that of the corresponding B-screw. More specifically gains in 

propulsive efficiency PC  ( 0 /
def

PC R V SHP= ⋅  ) of the order of 5.49%, 3.99% and 4.72% over 

the B-screw are observed. The maximum improvement in propulsive efficiency is observed for 
the tanker (5.49%). It is also noticeable, that the optimum flapping wing revolutions are 
always significantly lower compared to that of a corresponding conventional optimum 
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propeller. This makes flapping wing propulsors friendlier to the environment with respect to 
aquatic animal life. Concluding, it should be stressed that the absolute values of power and 
overall efficiency, contained in Table III.2.3-3, are approximate to the extent of the uncertainty 
regarding values of full Reynolds scale effect and propulsor–hull interaction factors. 

 

Figure III.2.3-1  Tanker (ship 1). Totality of design solutions in the form of Constant-V, constant-

0θ  grid. Flapping wing propulsor with: 0( / ) 6, ( / ) 1.5, ( / ) 0.33des des dess c h c b c= = = .  

 

Figure III.2.3-2 Tanker (ship 1). Totality of design solutions in the form of Constant-V, constant-
P/D grid, for  B4.75 screw. 

 

156 



Optimum Design Methodology for Flapping Wing Propulsion and Applications 

 

Figure III.2.3-3 Passenger Ferry (ship 2). Totality of design solutions in the form of Constant-V, 
constant- 0θ  grid. Flapping wing propulsor with:  0( / ) 6, ( / ) 1.5, ( / ) 0.33des des dess c h c b c= = =  

 

Figure III.2.3-4  Passenger Ferry (ship 2). Totality of design solutions in the form of Constant-V, 
constant-P/D grid, for B4.75 screw. 
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Figure III.2.3-5 Speedboat (ship 3). Passenger Ferry (ship 2). Totality of design solutions in the 
form of Constant-V, constant- 0θ  grid.  Flapping wing propulsor with:  

0( / ) 6, ( / ) 1.5, ( / ) 0.33des des dess c h c b c= = =  

 

Figure III.2.3-6 Speedboat (ship 3). Totality of design solutions in the form of Constant-V, 
constant-P/D grid, for B4.75 screw. 

 

Table III.2.3-3 Comparison of propulsors. 
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Ship Design 
speed (kn) Case Revolutions 

(rpm) 
Power 

(PS) 

Propulsive 
Efficiency 

(%) 

Power 
Gain 
(%) 

1 16 

/ 6s c = , 

0 / 1.5h c =  

( 0.126TC = ) 
11.49 15879.84 79.2 

5.49 

B-screw 46.20 16803.60 74.8 

2 23 

/ 6s c = , 

0 / 1.5h c =  

( 0.158TC = ) 
43.23 16289.72 75.5 

3.99 

B-screw 158.80 16966.40 72.5 

3 29 

/ 6s c = , 

0 / 1.5h c =  

( 0.146TC = ) 
154.26 3734.69 76.2 

4.72 

B-screw 585.10 3919.60 72.6 

 

 

 

It can be said that the comparisons may be unfair against the conventional propellers, as the 
swept area of the Wing systems is far greater. Thus in an attempt to “help” the propellers, the 
expanded area ratio was reduced to the minimum AE/A0=0.55, in order to get the best possible 
efficiency. This leads to Figure III.2.3-7, Figure III.2.3-8 and Figure III.2.3-9 for the Iso-V / Iso- 
P/D charts and the comparison table for the optimal points is Table III.2.3-4 
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Figure III.2.3-7 Tanker (ship 1). Totality of design solutions in the form of Constant-V, constant-
P/D grid, for B-4.55 

 

 

Figure III.2.3-8 Passenger Ferry (ship 2). Totality of design solutions in the form of Constant-V, 
constant-P/D grid, for B-4.55 
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Figure III.2.3-9 Speedboat (ship 3). Totality of design solutions in the form of Constant-V, 
constant-P/D grid, for B-4.55 

 

Table III.2.3-4 Overall comparison of propulsors. 

Ship Design 
speed (kn) Case Revolutions 

(rpm) 
Power 

(PS) 

Propulsive 
Efficiency 

(%) 

Power 
Gain 
(%) 

1 16 

/ 6s c = , 

0 / 1.5h c =  

( 0.1TC = ) 
11.49 15879.84 79.2 

3.76 

B-4.55 45.70 16500.40 76.2 

2 23 

/ 6s c = , 

0 / 1.5h c =  

( 0.158TC = ) 
43.23 16289.72 75.5 

2.38 

B-4.55 157.80 16687.00 73.7 

3 29 

/ 6s c = , 

0 / 1.5h c =  

( 0.157TC = ) 
154.26 3734.69 76.2 

3.11 

B-4.55 581.40 3854.80 73.8 
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In cases 2 and 3 there is a high possibility for cavitation (especially 3, due to speed and high 
revolutions).  

Additionally, on the matter of hullform, if a hull designed as in Bose (2008) (figure 11-9 (page 
139) or similar to it is assumed, there is no serious difference to a podded ship. Especially if 
podded propulsion is assumed, minimal hull interaction is justified and comparison is more 
logical. The case of the tanker is considered unrealistic, due to the very large propeller and it is 
advantageous to the propeller. If the fact that b-series results are considered to be very 
optimistic compared to actual (off the shelf) propellers, is also taken into account, the 
expected gain for the flapping wing is even greater. 

As far as the several uncertainties are concerned, grid independence tests have been made to 
all cases and since there is agreement with experimental results for small angles of attack, it is 
safe to deduce that the prediction is safe for the application cases as well. Hull interaction has 
not been determined, as there has been no self-propulsion test, but if the wing is at the AP, it 
can be expected that the wake of the wing will have minimal interaction with the hull. 
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III.2.3.2 Double wing 

 

The case of a double (twin) wing propulsor is applied on the passenger ferry vessel (ship 2)in 
the same manner as in previous applications. 

With the bare hull resistance given, the system of algebraic equations (III.51), (III.52) and 
(III.53) can be solved for a range of ship speeds V  and 0θ  and the totality of design solutions 

can be presented in a diagram as dictated by Equation (III.54). For the need of the 
comparison, it has been assumed that in all cases: 0.0, 0.0, 1.0Rw t η= = = . This is a 

reasonable assumption for a twin screw vessel which has small propulsor-hull interactions. 
The use of the same hull-interaction coefficients for the flapping wing systems and the 
propeller can be considered reasonable since interaction coefficients are (for the same stern 
geometry) mainly functions of propulsor diameter and the developed thrust, Harvald (1983). 
No inclined axis corrections were made for the conventional propellers. No correction of the 
bare hull resistance for appendages has been made. A shaft efficiency equal to 1 has been used 
in the calculations. No corrections for full scale Reynolds number have been introduced for 
the propulsors. 

Totality of design solutions in the form of Constant-V, constant- 0θ grids for flapping wings 

and Constant-V, constant-P/D grids for propellers are illustrated for comparison in figures 
14,15 and 16. The comparison of the optimum flapping wings (twin, single) vs. the optimum B-
screw, for a ship speed equal to 23knots can be summarized in Table III.2.3-5. 

 

Table III.2.3-5 Comparison of propulsors. 

Case Revolutions 
(rpm) 

Power 
(PS) 

Propulsive 
Efficiency 

(%) 

Power 
Gain 
(%) 

twin 64.97 16056.29 77 6.12 

single 43.23 16289.72 75 4.75 

B-
screw 168.30 17103.40 72 

 

 

 

 

It is observed that a gain in propulsive efficiency of 4.75% is obtained for the case of a single 
biomimetic wing in comparison to a conventional propeller. The corresponding gain for a twin 
wing configuration is 6.12%. It is also noticeable, that the optimum flapping wing revolutions 
are always lower compared to that of corresponding conventional optimum propeller. It 
should be stretched that the absolute values of power and overall efficiency, contained in 
Table III.2.3-5, are approximate to the extent of our uncertainty regarding values of propulsor-
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hull interaction factors. For the comparison between the single and twin wing, it is visible that 
the aforementioned small differences, has led to solutions with higher Strouhal numbers, 
meaning higher frequencies, but also an additional improvement in efficiency. 

 

 

 

 

 

Figure III.2.3-10  Passenger Ferry-Twin wing: Totality of design solutions in the form of 
Constant-V, constant- 0θ  grid. 
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Figure III.2.3-11  Passenger Ferry-Single wing: Totality of design solutions in the form of 
Constant-V, constant- 0θ  grid. 

 

 

Figure III.2.3-12  Passenger Ferry- B4.75 screw: Totality of design solutions in the form of 
Constant-V, constant-P/D grid.  
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III.2.3.3 FOD 

 

Three different vessels are used in a feasibility study for the application of a FOD as an 
alternative propulsor to traditional propellers. The main characteristics of the ships are shown 
in Table III.2.3-6 ( D is the selected mean FOD diameter or the propeller diameter). The ship 
bare hull resistance data was taken from the database of the NTUA towing tank and are shown 
in Table III.2.3-7.  With the bare hull resistance given, the system of algebraic equations  
(III.51), (III.52) and (III.53) can be solved for a range of ship speeds V  and 0θ  and the totality 

of design solutions can be presented in a diagram as dictated by Equation (III.54). For the 
need of the comparison, it has been assumed that in all cases: 0.0, 0.0, 1.0Rw t η= = = . This is 

a reasonable assumption only for the two twin screw vessels which have small propulsor-hull 
interactions. For the single screw ship, this selection is sound solely for comparative purposes 
with the conventional propeller. The use of the same hull-interaction coefficients for the FOD 
and the propeller can be considered reasonable since interaction coefficients are (for the same 
stern geometry) mainly functions of propulsor diameter and the developed thrust, Harvald 
(1983). No inclined axis corrections were made for the conventional propellers. No correction 
of the bare hull resistance for appendages has been made. A shaft efficiency equal to 1 has 
been used in the calculations. No corrections for full scale Reynolds number have been 
introduced for either the FOD or the B-series propellers. 

 

 

 

 

Table III.2.3-6 Ship particulars 

Ship no: 1 2 3 

type Bulk 
carrier 

Passenger/car 
ferry 

Speedboat 

Propulsor diameter (m) 8.10 4.10 1.40 

Displacement (tons) 37288.9 8917.66 160 

Number of propulsors 1 2 2 
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Table III.2.3-7 Resistance curves of ships 

Ship  1 2 3 

V-R 
curve 

V (m/s) 

3.05 

3.56 

4.06 

4.58 

5.08 

5.59 

6.10 

6.61 

7.12 

7.63 

R(kp) 

09877  

14191 

18496 

23029 

27463 

34212 

40134 

48142 

61364 

75358 

V (m/s) 

7.20 

7.71 

8.23 

8.75 

9.26 

9.78 

10.29 

10.80 

11.31 

11.83 

R(kp) 

29055    

31056    

34528    

38374    

42755    

47292    

52301    

58153    

66426  

78009 

V (m/s) 

9.25 

10.27 

11.32 

11.83 

12.35 

12.87 

13.38 

13.88 

14.40 

14.92 

R(kp) 

09204 

10471 

11519 

11962 

12367 

12697 

13084 

13477 

13872 

14306 

 

 

 

 

The totality of design solutions DHP-N (optimum and non-optimum) for the three vessels 
equipped with a Case 4-FOD can be found in Figure III.2.3-13, Figure III.2.3-15 and Figure 
III.2.3-17. Similarly, the totality of design solutions DHP-N (optimum and non-optimum) for 
the same ships equipped with B5-70 conventional propellers (Oosterveld & Oossannen 1975), 
can be found in Figure III.2.3-14, Figure III.2.3-16 and Figure III.2.3-18. On the figures, the 
constant-velocity curves and the constant maximum pitch angle 0θ curves or the constant 

/P D  curves are shown and labeled accordingly. 

The comparisons of the optimum FOD over the optimum B-screw for the three ship types at 
corresponding selected design speeds can be summarized in Table III.2.3-8. In all cases the 
FOD shows efficiencies of the order of 80% and the gain compared to the B-screw, ranges 
from 9.81% to 13.21%. It is also noticeable, that the optimum FOD revolutions are always lower 
compared to that of corresponding conventional optimum propeller. For illustrative reasons, 
Figure III.2.3-17 includes propulsive efficiency contours shown with dashed lines. It should be 
stretched that the absolute values of power and overall efficiency, contained in table 5, are 
approximate to the extent of our uncertainty regarding values of propulsor-hull interaction 
factors. 
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Table III.2.3-8 Overall comparison of propulsors 

Ship speed (kn) Case Revolutions 
(rpm) 

Power 
(PS) 

Overall 
Efficiency 

(%) 

Power 
Gain 
(%) 

1 15 

FOD 
( 0.480CT = ) 

29.6 9650 79.4 

9.81 

B-screw 47.0 10700 71.6 

2 23 

FOD 
( 0.403CT = ) 

87.5 7550 81.4 

13.21 

B-screw 145.0 8700 70.7 

3 29 
FOD( 0.401CT = ) 305.0 1735 82.0 

10.70 
B-screw 552.0 1943 73.2 
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Figure III.2.3-13 Bulk Carrier (ship 1) – FOD: Totality of design solutions in the form of 
Constant-V, constant- 0θ  grid. 

  

 

Figure III.2.3-14. Bulk Carrier (ship 1)-B5.70 screw: Totality of design solutions in the form of 
Constant-V, constant-P/D grid. 

 

Figure III.2.3-15. Passenger Ferry (ship 2)-FOD: Totality of design solutions in the form of 
Constant-V, constant- 0θ  grid. 
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Figure III.2.3-16. Passenger Ferry (ship 2)- B5.70 screw: Totality of design solutions in the form 
of Constant-V, constant-P/D grid. Results for one of the two propulsor units. 

 

 

Figure III.2.3-17. Speedboat (ship 3)-FOD: Totality of design solutions in the form of Constant-V, 
constant- 0θ  grid.  Efficiency contours (dashed) are also plotted. Results for one of the two 

propulsor units. 
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Figure III.2.3-18. Speedboat (ship 3)- B5.70 screw: Totality of design solutions in the form of 
Constant-V, constant-P/D grid.  Results for one of the two propulsor units. 
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III.2.3.4 FEOD 

A passenger ferry is used in a feasibility study for the application of the FEOD, the FOD and a 
traditional propeller as alternative propulsors, by applying the method explained in Politis & 
Tsarsitalidis (2012), as expanded in section 4. The passenger ferry is a twin screw vessel with 
displacement of 8917.66 tons and a maximum allowed propeller diameter of 4.1 meters. The 
bare hull resistance curve of the ship, taken from the database of the NTUA towing tank, is 
given in Table III.2.3-9.   

With the bare hull resistance given, the system of algebraic equations (III.51), (III.52) and 
(III.53) can be solved for a range of ship speeds V  and 0θ  and the totality of design solutions 

can be presented in a diagram as dictated by Equation (III.54). For the need of the 
comparison, it has been assumed that in all cases: 0.0, 0.0, 1.0Rw t η= = = . This is a 

reasonable assumption for a twin screw vessel which has small propulsor-hull interactions. 
The use of the same hull-interaction coefficients for the FEOD/FOD systems and the propeller 
can be considered reasonable, since interaction coefficients are (for the same stern geometry) 
mainly functions of propulsor diameter and the developed thrust, Harvald (1983). No inclined 
axis corrections were made for the conventional propellers. No correction of the bare hull 
resistance for appendages has been made. A shaft efficiency equal to 1 has been used in the 
calculations. No corrections for full scale Reynolds number have been introduced for the 
propulsors. 

Totality of design solutions in the form of Constant-V, constant- 0θ grids for flapping wings 

and Constant-V, constant-P/D grids for propellers are illustrated for comparison in figures 
Figure III.2.3-19, Figure III.2.3-20 and Figure III.2.3-21. The comparison of the optimum FEOD 
and FOD vs the optimum B-screw, for a ship speed equal to 23knots can be summarized in 
Table III.2.3-10. In all cases, the ship is equipped with two propulsors.  

 

Table III.2.3-9. Resistance curve. 

V (m/s) 

7.71 

8.23 

8.75 

9.26 

9.78 

10.29 

10.80 

11.31 

11.83 

R(kp) 

31056 

34528 

38374 

42755 

47292 

52301 

58153 

66426 

78009 
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Table III.2.3-10. Comparison of propulsors. 

Case Revolutions 
(rpm) 

Power 
(PS) 

Propulsive 
Efficiency 

(%) 

Power 
Gain 
(%) 

FEOD 9.81 16211.83 76 5.21 

FOD 29.55 14961.13 82 12.52 

B-
screw 168.30 17103.40 72 

 

 

Note, that while the propeller and the FOD, use the maximum allowed (by tolerances) 
diameter, the FEOD, as it does not move at the upper and lower point, it uses a larger 
diameter, which in this case, is the maximum diameter the FOD will take (i.e. D+2h0), thus the 
required Thrust coefficient is lower and the diminished performance of the FEOD is 
compensated.  

It is observed that a gain in propulsive efficiency of 5.21% is obtained for the case of a FEOD in 
comparison to a conventional propeller. The corresponding gain for a FOD is 12.52%. It is also 
noticeable, that the optimum flapping wing revolutions are always lower compared to that of 
corresponding conventional optimum propeller. It should be stretched that the absolute 
values of power and overall efficiency, contained in table 2, are approximate to the extent of 
our uncertainty regarding values of propulsor-hull interaction factors.  

 

Figure III.2.3-19  Passenger Ferry-FEOD: Totality of design solutions in the form of Constant-V, 
constant- 0θ  grid. 
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Figure III.2.3-20  Passenger Ferry-FOD: Totality of design solutions in the form of Constant-V, 
constant- 0θ  grid. 

 

 

Figure III.2.3-21  Passenger Ferry- B4.75 screw: Totality of design solutions in the form of 
Constant-V, constant-P/D grid. 
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Part IV 

Part  IV  SIMULATIONS UNDER GIVEN 

HEAVING CONDITIONS 

 

In the previous part the flapping wing propulsor has been investigated performing fully 
prescribed motions. The undertaking of simulations for properly selected ranges of the 
physical and geometric parameters (independent variables of the system) enabled the 
production of a design methodology which can be applied for the selection of optimum 
flapping wing propulsor for a given ship. In this case the designer has to provide to the 
flapping wing the required power for the two different modes of its motions i.e. (a) the 
heaving motion and (b) the pitching motion. From the analysis of the previous chapters it is 
also observed that with the proper position of the pitching axis the powering requirements of 
the pitching motion are minimal compared to that of the heaving motion. This observation 
explains why natural selection has chosen flapping wings as propulsors for living creatures. 
More specifically, if the heaving motion can be 'provided by the environment the living 
creature can be propelled at the expense of a very small amount of energy. 

For the case of a ship large amounts of wave energy are stored in the form of heaving and 
pitching motions. If those motions are used to provide the necessary heaving energy for the 
flapping wing, then at the very small cost for provide the pitching motion, propulsive power 
will be produced at almost no cost. 

With the previous considerations in mind, in this part two mechanisms / procedures shall be 
examined, which allow provision of the pitching motion when the heaving motion is given 
(this includes also the case of random heaving motions of a given spectrum). The first 
mechanism for pitching determination is through the use of a given spring/damper 
configuration. This case is discussed in IV.1.1 (theoretical setup) and IV.2 (results) and requires 
the integration of the dynamical equations of the system in the time domain (single degree of 
freedom hydro-elastic problem). This case is termed ‘spring loaded wing’. The second 
mechanism does not require the dynamical equations to be solved, but in this case the pitch at 
each instant is decided by the history of the heaving motion.  This case is termed as 'actively 
pitch controlled wing'.   This case is discussed in IV.1.2 (theory) and IV.3 (results). In general, 
all cases where the pitching motion is not fully prescribed, can be termed as 'event driven 
pitch control', or ‘flow driven pitch control’ 
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IV.1.1 Formulation of spring loaded wing problem 
The problem of a spring loaded wing in unsteady motion, is a one degree of freedom 
hydroelasticity problem. A wealth of literature can be found in the aerospace engineering 
sector, such as Bisplinghoff  (1996), Dowell (####), Hodges and Pierce (2002), Wright and 
Cooper (2007) and Geradin and Rixen (1994). However, aerospace applications have the 
primary objective of minimizing instabilities and resonances. Thus, there are little or no 
experimental data on the specific case. This means that the models produced can be verified 
in parts and/ or for simpler cases, as it will be discussed in the sequel. 

 

IV.1.1.1 Governing equations of a 1DOF hydroelastic model. 

The generalized aero/hydroelastic problem of a spring loaded wing is presented in Figure 
IV.1.1-1. Wing of chord length c  , has the aerodynamic centre at ac  and centre of gravity at 
cg and has mass m   and is free to rotate about the elastic axis ea  and has moment of inertia 

aI  . A spring of stiffness K  and damper C , govern the pitching motion.   

 

c
ea ac cg

U∞

incidencea

θ

 

Figure IV.1.1-1   1DOF airfoil section. ea is the elastic axis, ac is the aerodynamic 

center, and cg is the center of gravity. 

 

The balance of forces is  

( ) (t) (t) (t)ext aM t I C Kθ θ θ= + +    (IV.1) 

Where   extM is the external moment (in the specific case, the hydrodynamic moment).   

 
The solution of the problem is done in an explicit scheme, where the hydrodynamic forces 
calculated in each step are used as ( )extM t  in order to find the deflections for the next. As long 

as the timestep is small enough and deflections are also small, this scheme is expected to be 
robust and accurate, as long as time integrations (solution of (IV.1) for constant ( )extM t and 

given timestep) are made correctly. It should be noted, that the time integration of the 
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inertia/spring/damper system can be done via either explicit or implicit methods. The 
connection of the Inertia/spring/damper system with the hydrodynamic loads is termed 
hydroelastic coupling and it can also be done either explicitly or implicitly, as long as stability 
and consistency are checked. Thorough discussion on the matter has been made by 
Baxevanou, Chaviaropoulos et al. (2008).  Coupling was selected to be explicit, in order to 
keep the modular architecture of the software used, while time integration of the 
inertia/spring/damper system can be either implicit or explicit. Detailed review of most time 
integration methods, including mixed schemes, can be found in Dokainish (1989) 

 

IV.1.1.2 Time integration Methods 

For the solution of (IV.1) two alternative time integration schemes are employed, for 
comparison as well as freedom to the user. 

 

IV.1.1.2.1 Newmark family of methods 

The Newmark method is a method of numerical integration used to solve differential 
equations. It is widely used in numerical evaluation of the dynamic response of structures and 
solids such as in finite element analysis to model dynamic systems. The method is named 
after Nathan M. Newmark, former Professor of Civil Engineering at the University of Illinois, 
who developed it in 1959 for use in Structural dynamics. 

Numerical Evaluation of Dynamic Response is made following the algorithm as produced by 
Chopra (1995) (page 188 of 2007 print).  

 

 Algorithm: Newmark’s Method for Nonlinear Systems 

 

Special cases: 

(1) Average acceleration method 
1 1, 
2 4

γ β = = 
 

 

(2) Linear acceleration method 
1 1, 
2 6

γ β = = 
 

 

1.0 Initial calculations 

 1. 1 State determination: 0(M )S   and 0( )Tk    

 1.2  
( )

0
0 0

  SM C M
I

θ
θ− −

=


    

 1.3 Select Δt. 

 1.4 21
1

( )
I C

t
a

t
γ

β β
+

∆
=

∆
 ; 2

1    1a I C
t

γ
β β

 
+ − ∆  

=   and 
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 3
1 1 1

2 2
I t Ca γ

β β
   

− + ∆ −   
   

=   

2.0 Calculations for each time instant, i=0, 1, 2, …  

 2.1 Initialize 1,j =  ( )
1
j

iιθ θ+ =  ( )
1( ) ( )j

S i S iM M+ = , and ( )
1( ) ( )j

T i T ik k+ =  

 2.2 1 1 2 3
ˆ

ii i iP M a a aθ θθ+ = + + +   

 3.0 For each iteration, 1,2,3j =  …  

  3.1 ( )( ) ( )
1 1 1 11

ˆˆ ( ) jj j
i i S i iR P M aθ+ + + +−= −  

  3.2 Check convergence; If the acceptance criteria are not met, implement    step  
3.3   to 3.7  otherwise, skip these steps and go to step 4.0  

  3.3 ( ) ( )
1 1( ) ( )ˆ j j

T i T i tk k a+ += +  

  3.4 ( ) ( )( )
1 1.ˆ )ˆ(j jj

i T iR kθ + +∆ = ÷  

  3.5 ( ) ( ) ( )1
1 1
j

i
j j

iθ θ θ+
+ += + ∆  

  3.6 State determination: ( )1
1( ) j

S iM +
+  and ( )1

1( ) i
T ik +

+  

Replace j  by 1j +  and repeat steps 3.1 to 3.6; denote final value as 1iθ +  

4.0 Calculations for velocity and acceleration 

4.1 ( )1 1 1 1
2i i i it

t ι
γ γ γθ θ θ θ θ
β β β+ +

   
= − + − + ∆ −   ∆    

    

4.2 ( )1 12

1 1 1 1
( ) 2i i i it t ιθ θ θ θ θ

β β β+ +

 
= − − − − ∆ ∆  

     

5.0  Repetition for next time step. Replace i  by 1i +  and implement steps 2.0 to 4.0 for the 
next time step. 

 

It should be noted that step 3 (3.1 to 3.6) are actually a Newton iteration for the non-linearity 
of K.  SM  is the resisting moment (in this case spring moment) and Tk  is the tangent stiffness 

defined as 
j

i

S
T

j
i

Mk
θθ

∂
=

∂
.  It is clear, that for a linear spring, the iterations will converge 

immediately, thus it is not necessary to activate and deactivate according to the case. In the 
current implementation, the method is applied between timesteps of the hydrodynamic 
solver, estimating the deflection for the next step by integrating in a given number of steps 
and keeping the moment from the current step. 
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IV.1.1.2.2 Crank Nicolson (trapezoidal rule) 

Crank Nicolson is an unconditionally stable implicit one-step method, which is second order 
accurate in time and relates the displacements, velocities, and accelerations as 

( )
( )

1 1

1 1

2

2

n n n n

n n n n

t

t
θ θ θ θ

θ θ θ θ

+ +

+ +

∆
= + +

∆
= + +

 

   

  (IV.2) 

  n corresponds to the old time step and 1n +  is the new time step. Δt is the time step size. 
Rearranging equations (IV.2) gives 

( )

( )

1 1

1 12

2

4 4
n n n n

n n n n n

t

t t

θ θ θ θ

θ θ θ θ θ

+ +

+ +

= − −
∆

= − − −
∆ ∆

 

  

  (IV.3) 

By combining equations (IV.3) with the equations of motion, equation (IV.1)  at step 1n +  , one 
finds 

1 1  eff eff
n nK Rθ + +=   (IV.4) 

Where the effective stiffness, effK , and the effective load 1  eff
nR + are respectively  

2

4 2effK I C K
t t

= + +
∆ ∆

  (IV.5) 

 

1 21
4 4 2      Ceff

n ext
ext

n n n nR R M
t t t
θ θ θ θ θ+ +

   = + + + + +   ∆ ∆ ∆   
  

n n   (IV.6) 

  

 Algorithm: Crank Nicolson   
The solution algorithm is as follows: 

1.  Get mass, stiffness, and damping parameters. 
2.  Set initial conditions for displacements, velocities and accelerations from previous 

step. 
3.  Find effective stiffness, effK  from equation (IV.5). 
4.  Find effective load vector, 1  eff

nR +  from equation (IV.6). 

5.  Solve equation (IV.4) for 1nθ +  . 

6.  Update velocities and accelerations to step 1n +  using equations (IV.3) 
7.  Output if desired or go to 4. 
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IV.1.1.3 Implementation of the explicit coupling scheme 

 

 As already discussed, an explicit scheme is used for the coupling of the inertia/spring/damper 
system and the hydrodynamic solver for the simulation of spring loaded wings. According to 
this, After the UBEM solver has made calculations for a given step, the calculated pressure 
distribution is integrated appropriately, in order to calculate the moment on the axis of 
rotation, which is fed to the time integration subprogram, along with the timestep size. Then, 
either the (one step) Krank Nicolson method is applied, or the timestep is divided into 
substeps (number given by user) and the Newmark method is applied. The resultant 
deflection angle for the next step is given to the Geometry Generation subprogram, which will 
create the geometry (using ( 1)iθ + , along with all other geometry and motion descriptive 
data)  to be fed back to the main solver. This process is graphically presented in Figure IV.1.1-2.  
This procedure, when integrated to the architecture of the existing software, may appear to 
complicate things, but in fact, it is a self-contained module that can be modified 
independently, as well as allow the rest of the software be modified, as long as the interface for 
data exchange remains the same. In this application, this interface is a file containing the 
geometry and the pressure distribution on the elements of the body written in a specific 
format. 

UBEM solver for timestep (i)

(i),extM t∆

Crank Nicholson

Method

Newmark

Integrate in given substeps
( 1)iθ +

Geometry Generation subProgram
Other 

(prescribed) 
Motions

Geometry for step (i+1)

 

Figure IV.1.1-2 Logical diagram of the explicit scheme used for the solution of the spring loaded 
wing problem. 
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IV.1.2 Active Pitch Control 
 

One last feature of the developed code, regarding pitching motion is the addition of the 
capability to use an active pitch control algorithm. For the specific application in hand, the 
simple open loop algorithm presented by (Politis and Politis 2012), (Belibassakis and Politis 
2013) is employed and evolved as follows.  

From the original of (Politis and Politis 2012), the pitch angle at each step is defined as: 

( ) 1tan
dh

dtt w
U

θ −
 
 =
 
 

  (IV.7) 

Where w , a control parameter ranging from zero to one that is set beforehand. Knowing the 
expected heave amplitude, frequency and speed of advance, and knowing that:  

( ) ( ) 11 tan
dh

dta t w
U

−
 
 = −
 
 

  (IV.8) 

the parameter w  can be set to a number that the maximum angle of attack does not exceed a 
defined value. 

Closer examination of (IV.8), and Figure IV.1.2-1 gives the understanding that ( )1tan dh dt U−  

gives the angle of the undisturbed flow and that the decrease of the value of  w , increases the 
angle of attack. In the previous method, the desired angle of attack is attained momentarily. 
On the other hand, (as also seen in Figure IV.1.2-1,) it is understandable that, at points where 
the heaving velocity is zero, it is impossible to have a nonzero thrust producing angle of 
attack. Thus, the goal is to attain the desired angle of attack for as long as possible. With all 
the above taken into consideration, the variable ( )w t  is introduced in the place of w . 

Keeping in mind the objective of keeping the angle of attack below a given value, a new law 
can be obtained for ( )w t , by finding the minimum value of ( )w t  that satisfies  

( )( ) 11 tan ,
dh

dtA w t A given
U

−
 
 ≥ − =
 
 

  (IV.9) 

 The value found is then substituted in (IV.7), to give the pitching angle.  
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1( )h t

(
( 1( )tθ
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1( )a t
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( 2( )tθ
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Y

2( )a t

U

3( ) 0h t =

X

Y

Path of motion

 

Figure IV.1.2-1 Three successive positions of a wing in pitching and heaving motion.  

 

The algorithm can be summarized as follows: 

a) Find the translation velocity of the pitching axis after all possible motions have been 
applied (from previous step) 

b) break the velocity to the x,y components of the local (axis built) system 

c) start with ( ) 1w t =  

d) Decrease ( )w t  by a given step (required accuracy) 

e)  evaluate ( ) ( ) 11 tan
dh

dta t w
U

−
 
 = −
 
 

 , if  ( ) maxa t A< , back to d) 

f) exit with ( )w t  and apply to (IV.7) to get ( )tθ  

 

This method gives at a minimal addition of computational cost, a different, non-harmonic 
profile of pitching motion, where the angle of attack is kept below the given value, but also 
equal to it for a longer time. It should be noted, that when the angle of the undisturbed flow is 
smaller than the desired angle of attack (and when it changes from the positive to negative –
one side of wing to the other-) it is better to keep the wing at a zero pitch angle, something 
that this algorithm follows very well. As shown in the testing of the methods part, the angle 
profiles can be very different to the known patterns so far, producing interesting results. As it 
can be seen in the algorithm, the method is sensitive to the simulation timestep, as it actually 
gets the proper angle of attack for the previous step, and to the step of required accuracy. 
Since the computational cost for the evaluation of (IV.8) is very low compared to the overall 
computations, this internal step can be brought to such a small size that it is does not affect 
the solution. It should be noted, that getting the velocities from the previous timestep, is a 
realistic choice, as in any control system there is a considerable time between sampling and 
acting. However, the effect of timestep (or sampling rate) has to be explored, in order to 
validate the method. 
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IV.1.3 New architecture of code 
The aforementioned explicit scheme of passing the hydrodynamic solution of each step to the 
calculation of the next position of geometry to be passed in turn to the hydrodynamic solver, 
dictates a serious change in the structure of the program in hand. In order to allow for further 
developments, the modular aspect of architecture is evolved even more.  

 

Solver for One 
step

Geometry Generation 
for one step

Loop on number of steps
(One simulation)

Control 
parameters

Result Collection

Geometry 
Data

Loop on parameters
(package of simulations)

Motion parameter selection for the iteration

Geometry

Pressure Distribution

Variables for successive evaluation 
and constant parameters

POST PROCESSING
(presentation of 

gathered results In 
relation to the 

parameters under 
examination)

 

Figure IV.1.3-1 Reviewed architecture of the program in hand 

As shown in Figure IV.1.3-1, the hydrodynamic solver code has to be run at each step and send 
data to the program that generates the geometry for the next step. In order to allow for further 
upgrades, an interface is made, through which the solver sends the pressure distribution for all 
simulated bodies and receives the geometry for the next step. The geometry generation 
subprogram will choose what will be integrated (forces, moments on selected points and axes) 
and how (method of integration) and what will be deformed and how. Thus, it is possible to 
change the simple spring loaded wing with a finite element method of whatever complexity, 
without having to change anything more than the corresponding subprogram. 
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Figure IV.1.3-2 Detail of the Architecture of the wing geometry generation subprogram. 

 

 

 

 

 

184 



 

IV.1.4 Selection of parameters of the time integration schemes 
 

The problem of a spring loaded wing under heaving motion is very different from what has 
been simulated in the past and most hydroelastic and aeroelastic problems tested in literature, 
have been set with the goal of avoiding resonance or predicting steady deflections. This means 
that there is virtually no experimental data for the case in hand and there is no reference point 
for direct validation of the code. Nevertheless, the components of the code can be verified 
independently and the coupled problem can be tested by simpler benchmark cases. 
Additionally, the active pitch control method has to be checked for stability and consistency.  

The hydrodynamic solver has been proven to be accurate enough for most cases, with the 
exception of very high loads, as already shown in II.1.3.2.2 where it has been systematically 
compared to experimental results. 

Thus, the need for verification remains for the time integration schemes and for the fully 
coupled problem, either with elasticity, or with control. 

 

IV.1.4.1 Stability and accuracy of time integration schemes 

The Newmark family of time integration methods, has been thoroughly investigated in the 
existing literature for its stability, depending on the values of  γ  and β .As shown by M. 
Geradin and D. Rixen, in “Mechanical Vibrations: Theory and Applications to Structural 

Dynamics”, Figure IV.1.4-1 depicts this dependency. When 1
2γ < , the scheme is 

unconditionally unstable. For 1
2γ ≥ the scheme is unconditionally stable when    

211
4 2

β γ ≥ + 
 

  (IV.10) 

 and for smaller β the the stability limit of the scheme is  

( )2

2 2
1 442 hγ β ω+ − ≤   (IV.11) 
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Figure IV.1.4-1 Stability of the Newmark method 
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However, the use of the parameters γ  and β , imposes a numerical damping to the solution. 
The most noted selections of these parameters, along with their stability limit and the 
expected Amplitude and Periodicity errors are shown in Table IV.1.4-1. From that it can be 
seen that the purely explicit scheme ( 0γ =  , 0β =  ) is unstable and also has an amplitude 
error (mostly amplifying instabilities), rendering it useless. The Fox & Godwin scheme has 
asymptotically the smallest phase error but is only conditionally stable, while the average 
constant acceleration is the unconditionally stable scheme with asymptotically the highest 
accuracy. Thus, the last three methods are to be used (within restrictions) in order to find the 
best suited for the case. The Krank Nicolson scheme is unconditionally stable and its error can 
be found in literature.  

 

 

Table IV.1.4-1 Schemes of the Newmark family 

 

 

 

IV.1.4.2 Stability and accuracy of the solution of coupled hydroelastic problem 

No experimental data can be found on the fully unsteady case. Thus, simpler benchmark cases 
of steady problems and grid and timestep independence tests are conducted for the unsteady 
case. The simplest problem is that of a wing in a flow at an angle and allowing it to align with 
the flow. With the behaviour characteristics of the wing and the spring stiffness known, the 
point of equilibrium can be estimated. Thus, with varying stiffness, damping factors and time 
integration scheme parameters, the stability limits can be explored, along with the speed of 
convergence to the position of balance. 

As known from literature, the factors of the time integration scheme, while stabilizing the 
solution, they also act as numerical dampers. In Figure IV.1.4-2 results (rotational response 
history in rad) of the coupled hydroelastic problem are compared for different schemes. From 
this figure it is clear that the smallest possible factors are desirable, in order to get the smallest 

damping effect possible. Of course, this comes at a cost, as for 1
4β <  the schemes are 

conditionally stable and care has to be given in order to keep the timestep small enough. The 
effect of timestep is explored and presented in Figure IV.1.4-3. In the figure, the responses 
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(rotation in rad) is plotted over time for different time discretizations. As it is shown, the 
scheme is unstable for 35 steps per second, while for 50 and 70, it gives almost identical 
solutions making the curves almost indistinguishable. 

 

 

 

Figure IV.1.4-2 Effect of time integration scheme on speed of convergence to solution. Straight 
wing AR=4 K/ρ=12 . Dashed: Average constant acceleration, Dash-dot: Linear acceleration, 

Solid: Fox & Goodwin. 
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Part IV – Simulations under Given Heaving Motions 

 

 

Figure IV.1.4-3 Effect of timestep on speed of convergence to solution (Straight wing, AR=4, 
K/ρ=10,20,30,40 from top respectively, Flow at 45deg, Fox & Goodwin scheme). Dotted 35 steps 

per second solid 50 steps per second Dash-dot 70 steps per second 

 

In order to explore the effect of time integration scheme on the phase of response (periodicity 
error), harmonic heave motions are also tested. Since there are no experimental data on the 
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case, the effect of timestep and integration scheme can be explored in the same manner as 
grid independence tests, since all are supposed to converge to the same solution. In Figure 
IV.1.4-4 through Figure IV.1.4-6, some additional effects are observed. For the smaller Strouhal 
number (lower frequency), the instability due to the small timestep is expressed as oscillation 
around the expected solution, while at larger Strouhal numbers, the solution looks stable, but 
the response amplitude is larger, which is unclear if it happens due to smaller damping or 
instability. It is also observed, that smaller timesteps, meaning more steps per period, lead to 
amplification of the damping effect of the time integration schemes. This is shown in all three 
figures, as a delay and reduction of amplitude of the response. 

 

 

Figure IV.1.4-4 Plot of rotation response (in radians) over time for different time 
discretizations. Dotted: 100 steps per period, Solid: 150 steps per period, Dashed: 200 steps per 

period. All plots for h/c=2, Str=0.2, K/ρ=26, γ=0.5, β=0.16 

 

 

Figure IV.1.4-5 Plot of rotation response (in radians) over time for different time 
discretizations. Dotted: 100 steps per period, Solid: 150 steps per period, Dashed: 200 steps per 

period. All plots for h/c=2, Str=0.4, K/ρ=26, γ=0.5, β=0.16 
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Figure IV.1.4-6 Plot of rotation response (in radians) over time for different time 
discretizations. Dotted: 100 steps per period, Solid: 150 steps per period, Dashed: 200 steps per 

period. All plots for h/c=2, Str=0.6, K/ρ=26, γ=0.5, β=0.16 

 

 

IV.1.4.3 Stability and consistency of the active pitch control algorithm 

The active pitch control algorithm is not a simulation of a physical phenomenon. Thus, all 
verification there is to be made, regards the sensitivity of the method to timestep and 
magnitude of motions. Since the objective is to maintain the angle of attack below a selected 
level, the primary evaluation of the method has to be the level of success at maintaining this 
goal. It is understandable, that since the sampling rate is finite and also the timesteps of the 
simulations have to be finite, a phase error is expected which will lead to an error at the 
achieved angles of attack. Such error is acceptable, as long as it is consistent, can be quantified 
and can be kept at a magnitude that gives improved (and realistic) results. It should be noted 
that improved (i.e. more efficient) results, produced by a simulated experiment with low 
sampling rate (which means slower response), can be expected to be more achievable in actual 
application. As seen in Figure IV.1.4-7 and Figure IV.1.4-8, the method works as expected for 
harmonic motions and even though the maximum angle of attack is missed in absolute, the 
difference is consistent and shows the same pattern for all cases. The different profile is 
considered to be caused by the offset between excitation and response and is dependent on 
the timestep. However, small changes in the timestep size make little or no effect (thus, no 
comparative figures were made). The new angle of attack profile and whether it is beneficial or 
not, as well as the behaviour with more complex excitations, will be discussed thoroughly in 
the Conducted simulations (Part III) 
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Figure IV.1.4-7 Rotation after control and achieved attack angles for a wing moving at str=0.3 
h/c=2. Dashed line is for Atarget=6.3, Solid for 10.9, Dash-dot for 15.4 and dotted for Atarget=20.0 

 

Figure IV.1.4-8 Rotation after control and achieved attack angles for a wing moving at str=0.6 
h/c=2. Dashed line is for Atarget=6.3, Solid for 10.9, Dash-dot for 15.4 and dotted for Atarget=20.0
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Part IV – Simulations under Given Heaving Motions 

IV.2 Motions of spring loaded wings 
 

As discussed in the previous paragraphs, the program developed has the ability to simulate the 
hydroelastic behavior of a spring loaded wing. Spring loaded wings have been well 
documented and tried for many years, with contradicting results. Even though there have 
been many patents, designs and full scale attempts (Rozhdestvensky and Ryzhov 2003) and for 
specific conditions the systems have shown amazing gains (the Russian trawler achieved a 
40% reduction in fuel consumption), the performance seems to be inconsistent and/or 
troublesome to maintain. Thus, it is necessary to explore the case systematically and 
thoroughly, in order to understand the underlying phenomena. Adding one degree of freedom 
alone, adds at least three additional parameters (spring stiffness, damper factor and moment 
of inertia of the wing). Possible non linearities add even higher complexity to the system, 
making the cost of experiments forbidding and even the computational cost very high. 
Investigation of different geometries, increases the complexity even further. At this stage, it is 
necessary to employ existing knowledge in order to set up a starting point and conduct initial 
investigations that will show the way to more detailed future work. 
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Motions Of Spring Loaded Wings 

IV.2.1 Initial assumptions 
 

In order to proceed with the simulations, initial assumptions/decisions have to be made 
regarding the properties of the wing (shape, mass, moment of inertia) and the spring-damper 
system, along with the position of the pitching axis. For the properties of the wing, an initial 
simple geometry is chosen and conventional materials were assumed. For the spring and 
damper, choices have been made through knowledge of the dynamics of a harmonic oscillator 
and the position of the pitching axis was selected by employing knowledge gained from 
prescribed motions simulations as explained below. 

 

IV.2.1.1 Wing properties 

 

For the wing, an initial geometry is selected to be that of a straight wing of s/c=4.0 and a mass 
distribution resembling that of solid wood or an aluminium shell of the same shape was 
assumed. Then, the mass, centre of mass and moment of inertia can be calculated by 
employing a CAD software, numerical integrations or empirical rules (found in textbooks) for 
simple geometries. Figure IV.2.1-1, shows the selected wing. For such a wing of c=1.0m 
(s=4.0m) the calculated useful data are: 

- Surface area= 7.5818m2  

- Volume = 0.2823m3 

- Centre of volume at 0.4188m from le 

- Volume moment of inertia about centroid  Iz=0.0151326m5 

(it is reminded that mass moment of inertia is taken by multiplying the volume moment of 
inertia with density, when density is constant and should not be confused with the second 
moments used for analysis of sections) 

 

 

Figure IV.2.1-1 Geometry of a straight wing of s/c=4.0  
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Part IV – Simulations under Given Heaving Motions 

IV.2.1.2 Spring – Damper system 

As it is known from the dynamics of harmonic oscillators,     

2
c
Ik

ζ =   (IV.12) 

is called the 'damping ratio'. 

The value of the damping ratio ζ critically determines the behavior of the system. A damped 
harmonic oscillator can be: 

Overdamped (ζ> 1): The system returns (exponentially decays) to steady state without 
oscillating. Larger values of the damping ratio ζ make the system return to equilibrium slower. 

Critically damped (ζ = 1): The system returns to steady state as quickly as possible without 
oscillating. 

Underdamped (ζ< 1): The system oscillates (with a slightly different frequency than the 
undamped case) with the amplitude gradually decreasing to zero. The angular frequency of 

the underdamped harmonic oscillator is given by 2
1 0 1ω ω ζ= −   (it is reminded that  

0
k
m

ω = ; for the specific case  0
k
I

ω = ) 

It is desirable that the system is not allowed to resonate with the excitation, but also that it 
does not delay to respond. Thus, the logical initial setting, is to choose ζ=1 as a parameter for 
the initial explorations. From a known ζ, the corresponding damping factor c can be calculated 
for each setting of k, which will be chosen to vary for the systematic simulations. 

 

 

IV.2.1.3 Selection of Pitching Axis Position 

 

For the selection of the pitching axis position, the decision was made that it should be at a 
position in front (closer to the leading edge) of the centre of pressure of the wing throughout 
the duration of motion, in order to have a stable case. Thus, this decision depends on the 
determination of the hydrodynamic centre of the wing. To this end, the following procedure 
was followed.  

The hydrodynamic centre of the wing is the axis around which the total moment is zero. At 
any other point, the moment will be z yM F d= ⋅  , where d  is the distance between the centre 

and the different point. Solving for d , gives /z yd M F= . Then, by analysing the results from 

existing (prescribed motion) simulations and applying (t) (t) / ( )z yd M F t=  for each selected 

simulation, the position of the hydrodynamic centre is estimated at each instant. In Figure 
IV.2.1-2 thru Figure IV.2.1-6 these calculations are shown for whole packages of simulations 
(one curve for each simulation) for varying pitching axis position from the middle of the chord 
to 0.1c from the leading edge. The peaks of the lines should be disregarded, as they are result 
of the very small yF at the upper and lower points of the oscillation. From the main part of the 
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Motions Of Spring Loaded Wings 

curves, it can be concluded that the hydrodynamic centre resides slightly ahead of 0.3c from le 
for most of the time for all cases.  Figure IV.2.1-7 is the result of an additional package of 
simulations made to verify this, and it can be confirmed that the hydrodynamic centre of the 
wing of s/c=4 with naca0012 section resides between 0.25c and 0.3c from the Leading Edge for 
most of the time for all cases, while the position of the pitching axis has a secondary effect on 
its position. After this analysis, the logical starting point for simulations of spring loaded wings 
is to have the pitching axis at 0.25c from le, or closer to the leading edge. It should be noted 
that a position much closer to the le, could mean large moments, which could lead to strong 
responses and instabilities, difficult for the program to solve, if all parameters are not set 
correctly. 

 

 

 

Figure IV.2.1-2 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.5c from le. (negative is for forward) 

 
 

 

Figure IV.2.1-3 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.4c from le. (negative is for forward) 
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Part IV – Simulations under Given Heaving Motions 

 

Figure IV.2.1-4 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.3c from le. (negative is for forward) 

 

Figure IV.2.1-5 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.2c from le. (negative is for forward) 

  

Figure IV.2.1-6 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.1c from le. (negative is for forward) 

 

Figure IV.2.1-7 Histories of position of the hydrodynamic center, relative to the pitching axis, 
for pitch axis at 0.25c from le. (negative is for forward) 
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Motions Of Spring Loaded Wings 

IV.2.2 Simulations with spring – loaded Straight wings 
 

Taking all the previous into consideration, Exploratory simulations were made for the straight 
s/c=4 wing with pitching axis at 0.25c from le and Strouhal number varying from 0.2 to 0.7 and 
K varying from 1 to 20Nm/rad. It was also set that ζ=1, thus C is calculated accordingly. 

In Figure IV.2.2-1 thru Figure IV.2.2-4, the deflection responses of the wing are recorded for 
varying K and the same Strouhal number in each diagram. The y oscillation is also recorded 
(dashed line), in order to aid the reader in seeing the phase between motion and response, as 
well as the influence of parameter K (and C) on deflection amplitude and phase. It is 
observable, that for the smaller Strouhal numbers, the variation of K between 1Nm/rad and 
25Nm/rad produces an even spread of responses (obviously larger deflections for smaller K 
and vice versa), while for larger Strouhal numbers, the response has much smaller variation. 
This indicates that the stiffer springs are required for higher Strouhal numbers. Additionally, a 
difference in phase is observed with the variation of K, as it appears that the phase between 
pitch and heave decreases for increasing K. This cannot be attributed to the variation of C that 
happens along, as the increase of C is expected to delay motions. Additionally, the increase of 
heave amplitude, appears to cause increase of deflections for the same K and Str. Last but not 
least, in the same manner Ct-theta diagrams were produced for prescribed motions, Ct-K 
diagrams are presented in Figure IV.2.2-5 and Figure IV.2.2-6. Even in these very first 
exploratory simulations, efficiency of the order of 70% is calculated, but for a very narrow area 
of parameters. 

 

 

Figure IV.2.2-1 Responses (rot) in radians, for varying K(1-25Nm/rad, increment=4, largest 
amplitude for smallest K) for straight wing s/c=4 at Str=0.2 h/c=1 Dashed line is for the y 

position of the rotation center (pitching axis) 
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Figure IV.2.2-2 Responses (rot) in radians, for varying K(1-25Nm/rad, increment=4, largest 
amplitude for smallest K) for straight wing s/c=4 at Str=0.3 h/c=1 Dashed line is for the y 

position of the rotation center (pitching axis) 

 

Figure IV.2.2-3 Responses (rot) in radians, for varying K(1-25Nm/rad, increment=4, largest 
amplitude for smallest K) for straight wing s/c=4 at Str=0.2 h/c=1.5 Dashed line is for the y 

position of the rotation center (pitching axis) 

 

Figure IV.2.2-4 Responses (rot) in radians, for varying K(1-25Nm/rad, increment=4, largest 
amplitude for smallest K) for straight wing s/c=4 at Str=0.3 h/c=1.5 Dashed line is for the y 

position of the rotation center (pitching axis) 
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Motions Of Spring Loaded Wings 

 

Figure IV.2.2-5 Ct-K chart for a straight wing S/c=4, h0/c=1, under simple harmonic motion. 
Thicker lines are for Strouhal number and thinner, are for efficiency. 

 

 

Figure IV.2.2-6 Ct-K chart for a straight wing S/c=4, h0/c=1.5, under simple harmonic motion. 
Thicker lines are for Strouhal number and thinner, are for efficiency. 
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Part IV – Simulations under Given Heaving Motions 

IV.3 Motions through Active Pitch Control 
 

 

As discussed in IV.1.2, the program was developed to have the ability of executing a wing 
pitching motion that is result of active pitch control. Initial exploratory results are presented 
for both straight and swept wings and the effects of parameters are explored for harmonic and 
pseudo-random motions. 

As expected and discussed in the previous paragraph, a spring loaded wing, will respond well 
in a very narrow area of parameters and will most likely respond only to the main frequency of 
a random excitation. Thus, an Actively Pitch Controlled (APC) wing is considered to be more 
promising for an open sea application, as it would adapt to the environment better. The same 
principle can be extended to the case of an energy saving device (heave motion taken from 
ship motions (Belibassakis and Politis 2013, Bøckmann and Steen 2014, Filippas and 
Belibassakis 2014, Politis and Politis 2014)).  
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Motions through Active Pitch Control 

IV.3.1 Time domain results for wings with APC 
 

In Figure IV.3.1-1 thru Figure IV.3.1-3 time domain results for select cases of Actively Pitch 
Controlled wings are presented. The heave motion is plotted in dashed line (rot_cen%y –y 
motion of the rotation center- ), along with the rotation response (rot), the instantaneous 
angle of attack (local_attack) and the instantaneous value of w(t) (ww). The solid line shows 
the produced thrust (fx). As it can be seen, the Target Amax is achieved for the most of the time 
and substantial thrust is produced throughout the evolution of the simulation. Even in 
pseudo-random motions, the same behavior is achieved, showing the worthiness of the 
algorithm for further investigation 

 

 

  

Figure IV.3.1-1 Time series of simulation of a Controlled wing of S/c=4 at Str=0.4 and Target 
Amax=17o. Thin solid: selected pitch of wing (rad), Dash dot: instantaneous angle of attack (rad), 

Dotted: selected instantaneous w factor, Dashed: heave motion of the wing, Thick solid: 
Instantaneous Fx/ρ (negative is thrust) 
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Figure IV.3.1-2 Time series of simulation of a Controlled wing of S/c=4 at Str=0.4 plus four 
random sinusoidal motions and Target Amax=17o. Thin solid: selected pitch of wing (rad), Dash 

dot: instantaneous angle of attack (rad), Dotted: selected instantaneous w factor, Dashed: 
heave motion of the wing, Thick solid: Instantaneous Fx/ρ (negative is thrust) 

 

 

 

Figure IV.3.1-3 Time series of simulation of a Controlled wing of S/c=4 at Str=0.4 plus four 
random sinusoidal motions and Target Amax=17o. Thin solid: selected pitch of wing (rad), Dash 

dot: instantaneous angle of attack (rad), Dotted: selected instantaneous w factor, Dashed: 
heave motion of the wing, Thick solid: Instantaneous Fx/ρ (negative is thrust) 
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Motions through Active Pitch Control 

IV.3.2 Time averaged results for Straight Wings with APC 
 

Systematic simulations have been conducted for both spimple harmonic heave and pseudo – 
random heave added to the harmonic. From the time averaged results, systematic diagrams 
have been produced in the same spirit as previous ones, but with the value of Target Amax as 
the horizontal axis parameter. Substantial thrust and high efficiency (over 74%) are observed.  

For the pseudo-random cases (Figure IV.3.2-3, Figure IV.3.2-4), the curves of the maximum 
angle of attack, appear erratic, but it is understandable, as there may be moments when angles 
of attack are much higher than desired. The standrard deviation of the angle of attack might 
be a better evaluator for such cases. 

 

 

203 



Part IV – Simulations under Given Heaving Motions 

 

Figure IV.3.2-1 Ct-Target Amax chart for a straight wing S/c=4, h0/c=2, under simple harmonic 
motion. Thicker lines are for Strouhal number and thinner, are for efficiency. 

 

Figure IV.3.2-2 Cp-Target Amax chart for a straight wing S/c=4, h0/c=2 under simple harmonic 
motion. Thicker lines are for Strouhal number and thinner, are for achieved maximum angle of 

attack 
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Motions through Active Pitch Control 

 

Figure IV.3.2-3 Ct-Target Amax chart for a straight wing S/c=4, h0/c=2, under pseudo-random 
motion. Thicker lines are for Strouhal number and thinner, are for efficiency. 

 

Figure IV.3.2-4 Cp-Target Amax chart for a straight wing S/c=4, h0/c=2 under pseudo-random 
motion. Thicker lines are for Strouhal number and thinner, are for achieved maximum angle of 

attack 
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Part IV – Simulations under Given Heaving Motions 

IV.3.3 Time averaged results for Swept Wings with APC 
 

As in the previous paragraph, Systematic simulations have been conducted for the same 
parameters of motion, but for a 30 degree swept wing. Similar behaviors are observed, but 
with smaller thrust and larger efficiency (over 78%). This difference can be attributed to the 
fact that the angle of attack is not the same for the whole span of the wing, and the 
mechanism behind this effect is to be ivestigated further. 

Last but not least, it should be noted, that the same charts can also be used in the case of an 
energy saving device (wavepropulsor) in a slightly different context. Power coefficient 
indicates the energy extracted from motions (motion reduction) and the efficiency is the 
efficiency of the process of conversion of kinetic energy to thrust. 
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Motions through Active Pitch Control 

 

Figure IV.3.3-1 Ct-Target Amax chart for a 30o swept wing, S/c=4, h0/c=2, under simple harmonic 
motion. Thicker lines are for Strouhal number and thinner, are for efficiency. 

 

Figure IV.3.3-2 Cp-Target Amax chart for a 30o swept wing S/c=4, h0/c=2 under simple harmonic 
motion. Thicker lines are for Strouhal number and thinner, are for achieved maximum angle of 

attack 
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Figure IV.3.3-3 Ct-Target Amax chart for a 30o swept wing S/c=4, h0/c=2, under pseudo-random 
motion. Thicker lines are for Strouhal number and thinner, are for efficiency. 

 

Figure IV.3.3-4  Cp-Target Amax chart for a 30o swept wing S/c=4, h0/c=2 under pseudo-random 
motion. Thicker lines are for Strouhal number and thinner, are for achieved maximum angle of 

attack 
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Review of Content 

Part  V  CONCLUSION 

 

 

Closing a package of work is among the most difficult tasks, as answers bring up new 
questions and solutions open the possibility of new explorations, which in turn lead to new 
problems. In this part, a review of the previously analysed work is made, discussing its key 
points and their contribution to the goal of producing optimal marine propulsors and/or 
energy saving systems. Proof of thesis is presented and concept designs of ships operating 
under Biomimetic propulsion are proposed. Last but not least, the open questions and new 
areas of exploration are acknowledged and future work is proposed in the area of development 
of the simulation methods, of extending the existing investigations and of pushing the 
development of a biomimetic marine propulsor / energy saving system as an actual, realizable 
device. 
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Part V – Conclusion 

V.1 Review of content 
In order to start the investigations on the subject of biomimetic marine propulsion, a 
thorough investigation of the existing literature was made. A collection of more than 3000 
papers was made, from a wide spectrum of fields, ranging from biology, to marine 
engineering, and from numerical simulations to robotics. The larger part of the literature 
concerns biology, which may provide with inspiration, but is not very helpful in explaining the 
reasons and the underlying phenomena. Additionally, almost all robotic applications are made 
for micro air vehicles or autonomous underwater vehicles, which operate at a much smaller 
scale and take advantage of different phenomena. From the limited useful literature, 
inspiration was taken and data for comparison and verification of the developed tools were 
extracted. 

The CFD program UBEM, originally developed by Professor Politis for simulating unsteady 
propeller motions (Politis 2004) and extended to simulating any given body in unsteady 
motion (Politis 2009, 2011), was employed, and data generation (geometry generation and 
animation) programs were created in order to be able to simulate any given wing/body (or 
more than one) under any harmonic flapping motion given by the user, as well as any other 
prescribed motion, as a sequence of many simple motions. UBEM was accelerated by using 
GPU computing for the solution of linear systems, thus allowing for the use of nonlinear 
boundary condition (pressure kutta).  All the above were used as modular parts of a larger 
program, which can apply systematic variation to problem parameters and produce results of 
systematic simulations.  

Using the aforementioned programs, systematic simulations were conducted and series were 
produced for Single wing, double (twin) wing, the Flexible Oscillating Duct and the Flexible 
Elliptic Oscillating Duct, while initial investigations of bird flight cases were made. The 
systematic investigations showed efficiencies of magnitude significantly greater than that of a 
conventional propulsor for all configurations. A design method, that uses diagrams produced 
from the systematic simulations, was developed and applied for virtual paradigms of ships. 
The results were compared to conventional propulsor design applications for the same vessels, 
and the advantage of biomimetic propulsors is clear. Single wing propulsors were estimated to 
be in the order of 5% better than conventional, while double was at 6%. FOD was at 11% and 
FEOD at 6% better than the best performance of an ideal conventional propeller. 

  After the systematic investigation of prescribed motions, the ability to simulate the behavior 
of a wing on spring loaded mountings was also added to the programs used along with an 
active control method for the pitch. Initial investigations show that spring loaded wings have 
considerable efficiency and thrust at a very limited range of parameters, while the actively 
controlled wings produce increased thrust for almost the same (better than conventional) 
efficiency. Both cases are not proving to be much better than wings of fully prescribed motion, 
but the prospective of operating and adapting in a wavy environment, where the motion of the 
wing through water is not a pure sinusoidal one, makes the applications very promising and 
worth to be investigated further. Especially in passenger vessels and multihulls, which suffer 
from motions and always require speed, such a mechanism that absorbs energy from the 
motions and turns it into thrust, is most desirable. 
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V.2 Proof of thesis 
 

As already stated in the introduction, thesis of this work is that production of a propulsor that 
employs biomimetic characteristics is feasible and more efficient, compared to conventional 
systems, at a level that it can also be cost effective. As it has been proven with the design 
paradigms, all examined systems are advantageous compared to conventional propulsors. 
Considering the cost, the construction and maintenance of a simple wing is considerably 
smaller than that of a propeller, while it can also operate in shallow water and has minimal 
risk of rope entanglement or marine animal injury.  

To the existing statement that a driving mechanism for an oscillating wing would be 
inefficient or have strength issues, it can be argued that even with traditional mechanisms like 
a crankshaft or a scotch yoke, when operating at low frequencies and have large size, 
mechanical losses are minimal. Additionally, applications like the O-FoilTM, prove that 
construction is not an issue, but the operation is. More specifically, with almost the same 
mechanism, it is possible to give great efficiency or small, depending on the determination of 
the pitching motion and the pitching axis. The energy required for the pitching part of the 
motion, is an order of magnitude smaller than the total energy, while for some cases, it is even 
negative (energy has to be extracted), making the control of the pitching motion an issue 
solvable with existing technologies. Furthermore, with proper control of the pitching motion, 
it is possible to produce additional thrust in waves, by absorbing energy from the ship 
motions. Considering this prospect even further, a passive system could operate as an energy 
saving device.  Last but not least, new technologies like linear motors, may lead to further 
simplification of construction, while exotic materials like electroactive polymers, can lead to 
deformable wings like the bird cases studied which could be an interesting application for 
hydrofoiling crafts or the FOD propulsor. 
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Part V – Conclusion 

V.3 Proposed designs and considerations 
 

After design applications on virtual paradigms have been presented and proven to be worthy 
of consideration, presentation of proposed designs for full scale application, (either as a 
propulsor, or as an energy saving system or as a part of a greater “zero emissions” design), is in 
order. Alternative applications are presented and considerations, both on hydrodynamic and 
structural aspects are discussed. The feasibility of each system, regarding existing and under 
development technologies is also taken into consideration. It should be cleared out, that 
detailed designs and analysis of a final system spans well beyond the purposes (and available 
means) of this work. Thus, only concept designs enriched with the knowledge gathered so far 
are to be discussed and considerations are to be discussed, in order to open the way for future 
work.  
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Proposed Designs and Considerations 

V.3.1 Biomimetic system as Main Propulsor 
 

As previously discussed, the most promising configuration for a propulsor, is that of a 
horizontal wing. For reasons of redundancy and increased manoeuvrability, two such wings 
supported by three wing shaped vertical struts are proposed. The supporting wings can be 
equipped with flaps, in order to serve as rudders. In Figure V.3.1-1 and Figure V.3.1-2 a ship 
equipped with flapping wing propulsors as main drive, along with energy saving bow and 
bottom wings is illustrated. With red colour are the thrust producing surfaces, while with 
green are control and auxiliary surfaces. The added energy saving wings, are producing 
additional stability and manoeuvrability, while reducing consumption even further. 

 

 

 

Figure V.3.1-1 Ship equipped with flapping wing propulsors as main drive, along with energy 
saving bow and bottom wings. Bow view 

 

Figure V.3.1-2 Ship equipped with flapping wing propulsors as main drive, along with energy 
saving bow and bottom wings. Stern view 
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V.3.2 Biomimetic System as Energy saving device 
 

The idea of employing the characteristics of an oscillating wing for the production as an 
energy saving device, has been introduced in the past as described by Nikolaev et al (1995) and 
Jakobsen (1983). Such designs are being reviewed and reconsidered under the light of new 
technologies and experience. Figure V.3.2-1 and Figure V.3.2-2 present a conventional ship, 
equipped with (passive) wings, acting as energy saving systems. Horizontal wings fore and aft 
are for energy extraction from heaving and pitching motions, while the vertical is for 
extraction of energy from rolling motions. The horizontal wings are located as close to the 
baseline as possible and the longitudinal position has to be investigated in order to maximize 
effects, while minimizing the risk of damage from slamming.  

 

 

Figure V.3.2-1 Conventional ship equipped with wings working as energy saving systems Bow 
View 

 

Figure V.3.2-2 Conventional ship equipped with wings working as energy saving systems Stern 
View 
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V.3.3 Multihull Applications 
 

Multihulls are a special case, for which wing propulsors and/or energy saving systems show 
increased advantages, as multihulls are much wider allowing for larger wings, while operating 
at higher speeds. Additionally, the void between hulls allows for much more undisturbed flow 
to the wing and protects the wing from collisions. Last but not least, multihulls are known for 
suffering from motions in rough seas, which means that there is a large potential for the 
energy saving application.  

 

 

Figure V.3.3-1 Catamaran equipped with wings working as energy saving systems Bow View 

 

Figure V.3.3-2 Catamaran equipped with wings working as energy saving systems Stern View 
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V.3.4 Zero emissions application 
 

A last design, in the quest for a more efficient ship, is a wind/wave powered ship, equipped 
with wingsails (green wings) which will drive the ship using wind power as sails. Horizontal 
wings fore and on the aft keel turn energy from ship motions to thrust, while a fore wing, acts 
as an additional keel but also takes energy from rolling motions. The angled wings aft, can 
take energy both from roll and heave-pitch, while also working as rudders. The modified bow, 
can allow for the wing to be lower and further in front, while reducing bow slamming effects. 
The middle part is exactly the same as a common “boxy” big ship like a bulk carrier or tanker. 
Of course, these concept designs are not of a detailed design, but combine the knowledge 
produced in this work with existing technologies in a feasible manner, giving a starting point 
for further discussion and investigation.  

 

Figure V.3.4-1 Zero emissions concept. Stern View 

 

Figure V.3.4-2 Zero emissions concept. Side View 
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Figure V.3.4-3 Zero emissions concept. Bow View 
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V.4 Future work 
 

With the thesis of this work proven and proposed concept designs set, the road is shown for 
additional investigations and further development. Future work can be categorized into the 
further development of simulation methods, extension of the existing investigations or new 
investigations via application of the existing or proposed tools and the development of a fully 
functional biomimetic marine propulsor/energy saving system. In the following last 
paragraphs, each category is analysed. 

  

V.4.1.1 Development of methods 

 

The solver code UBEM has been accelerated by using GPU for the solution of linear systems. 
Such acceleration can be extended to the free wake deformation calculations, which is the 
second most demanding part of the code. Such acceleration is necessary when long 
simulations (more than three periods) are made and would bring the ability of making more, 
larger in size and longer in time and more complex simulations in less time. 

Even though the simulations for spring loaded wings appear to be working properly, 
alternative methods for the solution of dynamics would allow for comparisons, while coupling 
the programs with a Finite Element Method for the simulation of elastic wings, will open the 
road for even more investigations. Additional to coupling the wing dynamics with the solver, 
it is possible to couple all the programs with a subprogram that would solve the ship dynamics 
and attempt the solution of the fully coupled problem. 

Last but not least, in this whole work, there has been no simulation of any free surface effects, 
as the wing(s) was assumed to be deeply submerged. However, it is not necessary that a 
biomimetic propulsor will always operate (relatively) far from the free surface and it is not 
clear that the free surface interaction will not be beneficial for energy extraction from waves. 

 

V.4.1.2 Extended investigations 

 
Regardless of the size of the developed series, there are still several areas not covered in the 
area of systematic investigations; even for the prescribed motion simulations, there are several 
open problems. The series for double wings have to be extended to the detail of the single 
wing series, while, even for the single wing, the outline has not been examined closely and 
different shapes, resembling whale tails are definitely worthy of investigation. With the 
examination of swept and other shapes of wing, the position of the pitching axis and its effects 
is also an issue to be addressed, while the effect of bending is also of major interest. Systematic 
investigations of bird flight, either with prescribed motion of wings or with controlled or 
flexing motions, could prove useful for hydrofoiling applications or added manoeuvrability. 

For the case of spring loaded wings, only the starting point was shown in this work. A wider 
systematic variation of parameters is needed, while also investigating the effect of the pitch 
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axis position and the damping factor.  The effects of different shapes are another big issue, 
while the use of springs of nonlinear stiffness may show a great potential. 

Almost the same apply for the case of actively controlled wings. Variation of the position of 
pitching axis is to be investigated, but also it is interesting to see its performance for different 
wing shapes. Different methods of control need to be applied, as well as more sophisticated 
systems, which would use the data from the existing simulations for system recognition that 
would lead to the creation of a state-space controller for thrust production in random 
motions.  

 

V.4.1.3 Biomimetic Propulsor Application Development 

 

To the final objective of producing an actual biomimetic propulsor, several key steps have to 
be taken. From the design point of view, strength criteria have to be developed, in order to 
determine the required thickness for each application. The same applies with cavitation 
criteria, for the determination of the wing surface area (thus leading to chord length 
definition). 

For the creation of a final product of biomimetic propulsor, experiments have to be 
conducted, for proof of concept, of propulsor and self-propelled ship, in order to determine 
hull interaction parameters which will allow for actual and undisputed applications and 
comparisons to be conducted. 

Last but not least, serious work needs to be done on the detailed design of such systems, from 
the mechanical engineering part, to the structural of the wing and supports, up to the retrofit 
required for the application on an existing ship. The experience form old patents and the 
latest full scale applications can prove fertile ground, but original thinking may also be 
necessary to overcome obstacles the previous found. 
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