

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Πρωτότυπος Αλγόριθμος Επίλυσης του Προβλήματος

της Τοποθέτησης σε Επαναδιαμορφούμενες

Αρχιτεκτονικές Τριών Διαστάσεων με χρήση

Αλγορίθμων Αποικιών Μυρμηγκιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

 ΠΑΝΑΓΙΩΤΗ Β. ΔΑΝΑΣΗ

Επιβλέπων : Δημήτριος Σούντρης

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούνιος 2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Πρωτότυπος Αλγόριθμος Επίλυσης του Προβλήματος της

Τοποθέτησης σε Επαναδιαμορφούμενες Αρχιτεκτονικές Τριών

Διαστάσεων με χρήση Αλγορίθμων Αποικιών Μυρμηγκιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΠΑΝΑΓΙΩΤΗ Β. ΔΑΝΑΣΗ

Επιβλέπων : Δημήτριος Σούντρης

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 11η Ιουνίου 2015.

...................................
Δημήτριος Σούντρης Κιαμάλ Πεκμεστζή Γιώργος Οικονομάκος

Αναπλ. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Επίκ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούνιος 2015

...................................

ΠΑΝΑΓΙΩΤΗΣ Β. ΔΑΝΑΣΗΣ

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Παναγιώτης Β. Δανασής, 2015

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Περίληψη

 Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών

Δίπλωμα Ηλεκτρολόγου Μηχανικού και Μηχανικού Υπολογιστών

Πρωτότυπος Αλγόριθμος Επίλυσης του Προβλήματος της Τοποθέτησης

σε Επαναδιαμορφούμενες Αρχιτεκτονικές Τριών Διαστάσεων με χρήση

Αλγορίθμων Αποικιών Μυρμηγκιών

από τον Παναγιώτη Δανασή

Για περισσότερο από 30 χρόνια τώρα, από το 1984 που έκαναν πρώτη φορά την

εμφάνισή τους, οι Επαναδιαμορφούμενες Αρχιτεκτονικές (FPGA) αποτελούν ένα από τα

δημοφιλέστερα μέσα υλοποίησης ψηφιακών κυκλωμάτων. Συνδυάζοντας τις υψηλές

επιδώσεις των ενσωματωμένων κυκλωμάτων ειδικού σκοπού (ASIC) με την ευελιξία των

επεξεργαστών γενικού σκοπού (CPU) έχουν καταστήσει δυνατή την υλοποίηση εντελώς

καινοτόμων εφαρμογών. Ένα σημαντικό μέρος της επιτυχίας τους οφείλεται στην

αρχιτεκτονική τους, η οποία παντρεύει συστοιχίες προγραμματιζόμενης λογικής με ένα

δίκτυο προγραμματιζόμενης διασύνδεσης, παρέχοντας ευελιξία και δυνατότητα ταχείας

ανάπτυξης εφαρμογών. Σε σύγκριση με άλλες εναλλακτικές τεχνολογίες, τα FPGA διαθέτουν

ένα πλήθος πλεονεκτημάτων όπως:

 γρήγορο χρόνο διάθεσης στην αγορά,

 απουσία μη-επαναλαμβανόμενων δαπανών μελέτης για την κατασκευή (NRE)

 παροχή στους σχεδιαστές κυκλωμάτων υλικό που είναι εκ των προτέρων

δοκιμασμένο,

 δυνατότητα επαναπρογραμματισμού.

Στην προσπάθεια να ξεπεραστούν οι περιορισμοί που προκύπτουν από την συνεχόμενη

συρρίκνωση του μεγέθους των σημερινών τρανζίστορ, αναπτύχθηκε μία επαναστατική

μέθοδος ολοκλήρωσης τρανζίστορ σε τρεις διαστάσεις (three dimensional (3-D) chip

stacking). Η μέθοδος αυτή υπόσχεται βελτιωμένη απόδοση, μείωση της κατανάλωσης

ισχύος και μικρότερο κόστος σε σχέση με τις συμβατικές μεθόδους ολοκλήρωσης δύο

διαστάσεων (2-D).

Ο σχεδιασμός σε τέτοιες τρισδιάστατες πλατφόρμες αποτελεί ένα πολύ σύνθετο

http://www.ntua.gr/
http://www.ece.ntua.gr/en/the-school/divisions?view=division&id=4
http://www.ece.ntua.gr/

πρόβλημα. Γι αυτόν τον λόγο υπάρχει μία διαρκώς αυξανόμενη ανάγκη για αποδοτικά

εργαλεία σχεδίασης με χρήση υπολογιστή (Computer-Aided Design CAD tools). Τα

εργαλεία σχεδίασης επηρεάζουν σε μεγάλο βαθμό την επίδοση της τελικής υλοποίησης στο

FPGA. Η επιπλέον πολυπλοκότητα που προσδίδει ο σχεδιασμός σε τρεις διαστάσεις σε

συνδυασμό με τον διπλασιασμό της χωρητικότητας των FPGA ανά δύο με τρία χρόνια (σε

εναρμόνιση με τον νόμο του Μουρ) κάνουν όλο και πιο έντονη την ανάγκη καινοτόμων

αλγορίθμων σχεδίασης που θα μπορούν να εκμεταλλεύονται την σύγχρονη τάση προς τους

πολυπύρηνους επεξεργαστές για να παράγουν υψηλής ποιότητας αποτελέσματα σε εύλογο

χρονικό διάστημα.

Από την ροή σχεδίασης μιας εφαρμογής σε ένα FPGA, το πρόβλημα της τοποθέτησης

(placement) θεωρείται το πιο χρονοβόρο, ενώ ταυτόχρονα η ποιότητα της παραγόμενης

λύσης επηρεάζει σε μεγάλο βαθμό την μέγιστη συχνότητα λειτουργίας. Το πρόβλημα αυτό

γίνεται ακόμα πιο έντονο στις αρχιτεκτονικές τριών διαστάσεων. Για την αντιμετώπιση

αυτού του προβλήματος παρουσιάζουμε ένα καινοτόμο αλγόριθμο, βασιζόμενο στους

αλγορίθμους Αποικιών Μυρμηγκιών (Ant Colony Optimization).

Οι αλγόριθμοι Αποικιών Μυρμηγκιών και γενικότερα οι αλγόριθμοι νοημοσύνης

σμήνους (swarm intelligence) είναι κατανεμημένα συστήματα όπου, σε αντιδιαστολή με την

απλότητα των πρακτόρων τους, παρουσιάζουν μία εξαιρετικά δομημένη κοινωνική

οργάνωση και ως εκ τούτου έχουν την δυνατότητα να επιτύχουν σύνθετες λειτουργίες,

κάνοντας χρήση της συλλογικής νοημοσύνης της κοινωνίας. Ο τομέας των αλγορίθμων

αποικιών μυρμηγκιών προήλθε από την παρατήρηση της συμπεριφοράς ορισμένων ειδών

πραγματικών μυρμηγκιών. Μία από τις πιο επιτυχημένες κατηγορίες αλγορίθμων,

βασισμένους στις αποικίες μυρμηγκιών, είναι ο Ant Colony Optimization (ACO). Στους

αλγορίθμους ACO, μία ομάδα πρακτόρων – τεχνητών μυρμηγκιών, ψάχνει για καλές λύσεις

σε κάποιο δοσμένο πρόβλημα συνδυαστικής βελτιστοποίησης. Οι πράκτορες αυτοί

μετακινούνται στον γράφο του προβλήματος, κτίζοντας βαθμιαία λύσεις, κάνοντας χρήση

ενός στοχαστικού κανόνα ο οποίος επηρεάζεται από ένα μοντέλο έμμεσης επικοινωνίας. Η

έμμεση αυτή επικοινωνία γίνεται με την κατάθεση φερομόνης (pheromone) από τα

μυρμήγκια, τροποποιώντας με αυτόν τον τρόπο την αντίληψη του προβλήματος από τα άλλα

μυρμήγκια.

Σε αυτήν την διπλωματική εργασία παρουσιάζουμε έναν καινοτόμο αλγόριθμο

επίλυσης του προβλήματος της τοποθέτησης σε επαναδιαμορφούμενες αρχιτεκτονικές

τριών διαστάσεων, κάνοντας χρήση των αλγορίθμων αποικιών μυρμηγκιών. Ο αλγόριθμος

μας ενσωματώνει στοιχεία από τους MAX-MIN Ant System (MMAS) και Ant Colony

System (ACS), οι οποίοι αποτελούν τους δύο πιο αποδοτικούς αλγορίθμους της οικογένειας

αλγορίθμων αποικιών μυρμηγκιών. Ο προτεινόμενος αλγόριθμος παρουσιάζει πολλά

πλεονεκτήματα σε σχέση με υπάρχουσες προσεγγίσεις, όπως:

 εγγενή παραλληλισμό,

 άμεση εφαρμογή περιορισμών στην συνάρτηση κόστους,

 υποστήριξη ετερογενών αρχιτεκτονικών,

 ανοικτός πηγαίος κώδικας.

Πειραματικά αποτελέσματα αποδεικνύουν την αποτελεσματικότητα του

προτεινόμενου αλγόριθμου, καθώς επιτυγχάνει κατά μέσο όρο 10% μείωση στο critical path

delay. Κατά συνέπεια έχουμε βελτίωση στην μέγιστη συχνότητα λειτουργίας καθώς και

μείωση στην κατανάλωση ενέργειας. Επιπροσθέτως ο αλγόριθμός μας πετυχαίνει

επιτάχυνση (speedup) σε πολυπύρηνες αρχιτεκτονικές πολύ κοντά στην θεωρητικά μέγιστη.

Αυτό σημαίνει ότι έχει την δυνατότητα να εκμεταλλευτεί πλήρως τους σύγχρονους

πολυπύρηνους επεξεργαστές.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Τρισδιάστατες Αρχιτεκτονικές (3Δ), Ετερογενείς Αρχιτεκτονικές,

Επαναδιαμορφούμενες Αρχιτεκτονικές, FPGA, Εργαλεία Σχεδίασης με χρήση Υπολογιστή,

CAD, Πρόβλημα της Τοποθέτησης, Placement, Παράλληλοι Αλγόριθμοι, Αλγόριθμοι

Αποικιών Μυρμηγκιών, Ant Colony Optimization (ACO), Ant Colony System (ACS),

MAX-MIN Ant System (MMAS).

National Technical University of Athens

Diploma Thesis

A Novel 3-D FPGA Placement
Algorithm based on Ant Colony

Optimization

Author:

Panayiotis Danassis

Supervisor:

Associate Prof. Dimitrios

Soudris

A thesis submitted in fulfilment of the requirements

for the degree of Diploma in Electrical and Computer Engineering

in the

Division of Computer Science

School of Electrical and Computer Engineering

June 2015

http://www.ntua.gr/
http://www.panosd.eu
http://www.microlab.ntua.gr/~dsoudris/
http://www.microlab.ntua.gr/~dsoudris/
http://www.ece.ntua.gr/en/the-school/divisions?view=division&id=4
http://www.ece.ntua.gr/

”Poets say science takes away from the beauty of the stars – mere globs of gas

atoms. Nothing is ”mere”. I too can see the stars on a desert night, and feel them. But

do I see less or more? The vastness of the heavens stretches my imagination – stuck on

this carousel my little eye can catch one million year old light... What is the pattern, or

the meaning, or the why? It does not do harm to the mystery to know a little about it.

For far more marvelous is the truth than any artists of the past imagined! Why do the

poets of the present not speak of it? What men are poets who can speak of Jupiter as if

he were like a man, but if he is an immense spinning sphere of methane and ammonia

must be silent?”

Richard P. Feynman

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Abstract

Division of Computer Science

School of Electrical and Computer Engineering

Diploma in Electrical and Computer Engineering

A Novel 3-D FPGA Placement Algorithm based on Ant Colony

Optimization

by Panayiotis Danassis

Placement is considered one of the most arduous and time-consuming processes

in physical implementation flows for reconfigurable architectures, while it highly affects

the quality of derived application implementation as it has impact on the maximum

operating frequency. This problem becomes more acute for three-dimensional (3-D) ar-

chitectures, because the complexity of these architectures imposes additional challenges

that have to be sufficiently addressed. Throughout this thesis we introduced a novel

placement algorithm, targeting 3-D reconfigurable architectures, based on Ant Colony

Metaheuristics. Ant colonies are distributed systems that, in spite of the simplicity of

their individuals, present a highly structured social organization and as a result can

accomplish complex tasks using the collective intelligence of the group. One of the

most successful examples of ant based algorithms is known as Ant Colony Optimization

(ACO). ACO is inspired by the foraging behavior of ants. Our proposed algorithm incor-

porates concepts from both MAX−MIN Ant System and Ant Colony System, the two

best performing algorithms of the ACO family. It exhibits numerous advantages, such as

inherent parallelism, direct enforcement of legality constrains into the cost function and

support of heterogeneous architectures. Experimental results validate the effectiveness

of our algorithm since it achieves on average 10% reduction on the critical path delay.

This results to designs with increased maximum operating frequency and reduced power

consumption. Additionally our placer can achieve speedup in multi-core architectures

very close to the theoretical one. This means that our proposed algorithm can take full

advantage of todays multi-core CPUs, further decreasing the execution run-time.

KEYWORDS: Three-Dimensional (3-D) Reconfigurable Architectures, Hetero-

geneous Architectures, FPGA, CAD, Placement, Parallel Algorithms, Ant Colony Op-

timization, Ant Colony System (ACS), Max-Min Ant System (MMAS)

http://www.ntua.gr/
http://www.ece.ntua.gr/en/the-school/divisions?view=division&id=4
http://www.ece.ntua.gr/

Acknowledgements

At the end of my thesis I would like to take a moment to thank all the people who

made this thesis possible and an unforgettable experience for me.

At first I offer my sincerest gratitude to my supervisor, Prof. Dimitrios Soudris who

has been supportive since the day I began working in the lab and offered his continuous

advice and encouragement throughout the course of this thesis.

Also I would like to express my deepest gratitude to my advisor, Dr. Kostas Siozios,

who has supported me throughout my thesis with his excellent guidance, patience and

knowledge whilst allowing me the room to work in my own way.

I am thankful to all my fellow labmates in the Microprocessors Laboratory and

Digital Systems Lab (MicroLab) for providing me with an excellent and fun atmosphere

for doing research and the means to achieve my goal.

Beyond the academic sphere, I would like to thank my friends for always being by

my side and for making my years of study a wonderful adventure.

Finally, I take this opportunity to express my genuine gratitude from the bottom

of my heart to my beloved parents, Vassili and Eva, and brother Costas for their love

and continuous support, both spiritually and materially.

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

1.1 Overview of FPGAs . 2

1.1.1 Logic Devices . 2

1.1.2 Fixed Logic vs. Programmable Logic 2

1.1.3 History of Programmable Logic . 3

1.1.4 FPGA Architecture . 5

1.1.5 FPGAs Compared To Other Platforms 10

1.2 CAD Tools . 14

1.2.1 Mapping Designs to FPGAs . 14

1.2.2 Synthesis . 15

1.2.3 Placement . 17

1.2.4 Routing . 21

1.2.5 Bitstream . 22

1.3 Summary . 22

2 Three-dimensional Chip Stacking - A Whole New World! 25

2.1 3-D Reconfigurable Platforms . 27

2.1.1 Design 3-D FPGAs with Heterogeneous Interconnect 29

2.2 CAD Algorithms for 3-D Reconfigurable Architectures 30

2.2.1 Application Partitioning . 34

2.2.2 Placement in 3-D Architectures . 35

2.2.3 Routing in 3-D Architectures . 36

2.3 Toolflows targeting 3-D FPGAs - Overview of our approach 38

v

Contents vi

2.3.1 Motivation . 38

2.3.2 Architecture Template of targeted 3-D FPGA 40

2.4 Summary . 42

3 A Novel Placement Algorithm based on Ant Colony Optimization 43

3.1 Introduction to ACO - From Real to Artificial Ants 44

3.1.1 The Double Bridge Experiment . 44

3.1.2 From the Natural Inspiration to the Artificial Model 48

3.1.3 The Ant Colony Optimization Metaheuristic 51

3.2 Overview of ACO Algorithms . 52

3.2.1 Ant System . 53

3.2.2 Elitist Ant System . 55

3.2.3 Rank-Based Ant System . 56

3.2.4 MAX −MIN Ant System . 56

3.2.5 Ant Colony System . 57

3.2.6 Approximate Nondeterministic Tree Search (ANTS) 59

3.2.7 Hyper-Cube Framework for ACO 61

3.2.8 Convergence of ACO Algorithms 61

3.2.9 Stagnation Detection . 62

3.2.10 Parallelization of ACO Algorithms 63

3.3 A Novel Placement Algorithm based on ACO 63

3.3.1 Algorithm Initialization . 64

3.3.2 Solution Construction . 67

3.3.3 Cost Function . 68

3.3.4 Pheromone Update . 70

3.3.5 Heterogeneous Architectures . 71

3.3.6 Parallel Implementation . 72

3.3.7 Calibration . 72

3.4 Summary . 73

4 Experimental Results 75

4.1 Experimental Setup . 75

4.2 Experimental Results . 76

4.3 Summary . 81

5 Conclusion 83

5.1 Summary . 83

5.2 Future Work . 84

A Manual 85

A.1 ACO-Placement3D . 85

A.2 Copyright & Licensing . 85

A.3 Authors . 86

A.4 Manifest . 86

A.5 Description . 87

A.6 Installation . 87

Contents vii

A.6.1 Mode 1 (Default installation): . 87

A.6.2 Mode 2 (Print Mode): . 88

A.6.3 Mode 3 (Debug Mode): . 88

A.6.4 Mode 4 (Parallel Mode): . 89

A.6.5 Cleanup: . 89

A.7 Usage . 89

A.7.1 Options . 89

A.7.2 Examples for running a benchmark: 92

A.7.3 Output . 92

A.7.4 Placement File Format . 93

A.7.5 TSVs File Format . 93

A.8 Known Bugs (& Future Work) . 94

A.9 Contribute . 94

A.10 Support . 94

Bibliography 95

List of Figures

1.1 Spaghetti wiring . 4

1.2 Programmable AND Array . 4

1.3 3-LUT schematic . 6

1.4 A simple look-up table logic block . 6

1.5 A Generic FPGA Architecture . 7

1.6 Nearest-neighbor Connectivity . 8

1.7 Hierarchical Routing . 9

1.8 An example of a 2-D connection block . 9

1.9 An example of a 2-D switch block . 9

1.10 Segmented Routing . 10

1.11 CPLD Block Structure . 11

1.12 FPGA vs. ASIC Design Flow Comparison 13

1.13 FPGA CAD Flow . 15

1.14 Logic Synthesis Flow . 16

1.15 Structural Technology Mapping . 17

1.16 Placement Overview . 18

1.17 Influence of FPGA architecture on wirelength 20

2.1 Variation on interconnection length (2D - 3D) 26

2.2 Template for different types of SBs . 28

2.3 Interlayer communication resources across a three-layer 3-D FPGA device 30

2.4 Architectural template for 3-D FPGAs with heterogeneous interconnect
fabric. 31

2.5 Toolflow for performing application mapping onto FPGA platforms. . . . 33

2.6 Task graph for application implementation onto 3-D architecture 34

2.7 Illustration of the routing graph construction 38

2.8 Abstract view of the proposed 3-D FPGA architecture. 41

2.9 Architectural template of our proposed 3-D architecture with two layers
interconnected through TSVs . 41

3.1 Experimental setup for the double bridge experiment 46

3.2 Programmable AND Array . 46

3.3 Stigmergy, autocatalysis and differential path length at work 47

3.4 Double bridge experiment where initially only the long branch was offered
to the colony. 47

3.5 Ants building solutions. 48

3.6 “Roulette Wheel” selection method. 54

3.7 Toolflow for performing application mapping onto FPGA platforms. . . . 67

ix

List of Figures x

4.1 Critical Path Delay . 77

4.2 Maximum net length . 77

4.3 Maximum segments used by a net . 78

4.4 Average net length . 78

4.5 Average wire segments per net . 79

4.6 Average net wire-length . 79

4.7 Maximum number of bends . 80

4.8 TSV utilization . 80

4.9 Route-run-time . 81

4.10 Multi-core speedup . 82

List of Tables

1.1 FPGA Design Advantages . 12

1.2 ASIC Design Advantages . 12

2.1 Qualitative comparison among toolflows for 3-D reconfigurable platforms. 40

2.2 Properties of the employed TSVs . 42

xi

Abbreviations

ACO Ant Colony Optimization

ACS Ant Colony System

ANTS Approximate Nondeterministic Tree Search

AS Ant System

ASIC Application-Specific Integrated Circuit

BB Branch and Bound

CAD Computer-Aided Design

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DSP Digital Signal Processor

EAS Elitist Ant System

EDA Electronic Design Automation

EPROM Erasable Programmable Read-Only Memory

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

IC Integrated Circuit

ILP Instruction-Level Parallelism

LUT Look-Up Table

MMAS Max-Min Ant System

NRE Non-Recurring Engineering costs

OpenMP Open Multi-Processing

OTP One-Time Programmable

PAPI Partially Asynchronous Parallel Implementation

PLD Programmable Logic Device

xiii

Abbreviations xiv

PROM Programmable Read-Only Memory

RAM Random-Access Memory

ROM Read-Only Memory

RTL Register-Transfer Level

SB Switch Box

SI Swarm Intelligence

SIMD Single Instruction, Multiple Data

SRAM Static Random-Access Memory

SSIT Stacked Silicon Interconnect Technology

TPR Three-dimensional Place and Route

TSV Through-Silicon Via

VLSI Very-Large-Scale Integration

VPR Versatile Packing, Placement and Routing

Dedicated to my parents, Vassili and Eva Danassi
for their love and support.

xv

Chapter 1

Introduction

For more than thirty years now, since their introduction in 1984, field-programmable

gate arrays (FPGAs) have become one of the most popular implementation media for

digital circuits, rapidly changing the way digital logic is designed and deployed. By com-

bining the high performance of application-specific integrated circuits (ASICs) and the

flexibility of microprocessors, FPGAs have made possible entirely new types of applica-

tions. This has made FPGAs a compelling proposition for almost any type of design,

helping FPGAs supplant other media such as ASICs, ASSPs and digital signal processors

(DSPs) in some traditional roles. As semiconductor manufacturers have been shrinking

transistor size in Integrated Circuits (ICs) to achieve the yearly increase in performance

described by Moore’s Law, the logic capacity of FPGAs has greatly increased, making

FPGAs a viable implementation alternative for ever larger designs. To make the best

out of today’s resources FPGAs have to offer, one must develop efficient, high qual-

ity Computer-Aided Design (CAD) tools, since the quality of the CAD tools used to

map a circuit into an FPGA, greatly determines the performance of the end result. In

this chapter we introduce the world of programmable hardware and present the various

technologies that are used today.

The rest of the chapter is organized as follows: Section 1.1 provides an overview of

FPGAs, starting by defining what is a logic device and the differences between fixed and

programmable logic and continues by presenting the FPGA’s architecture and comparing

it to other alternatives. Section 1.2 presents an overview of the FPGA CAD flow, and

finally Section 1.3 summarizes the chapter.

1

Chapter 1. Introduction 2

1.1 Overview of FPGAs

1.1.1 Logic Devices

In the world of digital electronic systems, there are three basic kinds of devices[1]:

memory, microprocessors, and logic. Memory devices store random information such as

the contents of a spreadsheet or database. Microprocessors execute software instructions

to perform a wide variety of tasks such as running a word processing program or video

game. Logic devices provide specific functions, including device-to-device interfacing,

data communication, signal processing, data display, timing and control operations, and

almost every other function a system must perform.

Logic devices can be classified into two broad categories - fixed and programmable.

As the name suggests, the circuits in a fixed logic device are permanent, they perform

one function or set of functions - once manufactured, they cannot be changed. On the

other hand, programmable logic devices (PLDs) are standard, off-the-shelf parts that

offer customers a wide range of logic capacity, features, speed, and voltage characteristics

- and these devices can be changed at any time to perform any number of functions.

1.1.2 Fixed Logic vs. Programmable Logic

With fixed logic devices, the time required to go from design, to prototypes, to a final

manufacturing run can take from several months to more than a year, depending on the

complexity of the device. And, if the device does not work properly, or if the requirements

change, a new design must be developed. The up-front work of designing and verifying

fixed logic devices involves substantial non-recurring engineering costs (NRE 1). These

NRE costs can run from a few hundred thousand to several million dollars[1].

With programmable logic devices, designers use inexpensive software tools to quickly

develop, simulate, and test their designs. Then, a design can be quickly programmed

into a device, and immediately tested in a live circuit. The PLD that is used for this

prototyping is exactly the same PLD that will be used in the final production of a piece

of end-equipment. There are no NRE costs and the final design is completed much faster

than that of a custom, fixed logic device[1].

1NRE refers to the one-time cost to research, develop, design and test a new product. When budgeting
for a project, NRE must be considered to analyze if a new product will be profitable. Even though a
company will pay for NRE on a project only once, NRE costs can be prohibitively high and the product
will need to sell well enough to produce a return on the initial investment. NRE is unlike production
costs, which must be paid constantly to maintain production of a product. It is a form of fixed cost in
economics terms[2].

Chapter 1. Introduction 3

Another key benefit of using PLDs is that during the design phase customers can

change the circuitry as often as they want until the design operates to their satisfaction.

That’s because PLDs are based on re-writable memory technology - to change the design,

the device is simply reprogrammed. Once the design is final, customers can go into

immediate production by simply programming as many PLDs as they need with the

final software design file[1].

1.1.3 History of Programmable Logic

The first PLDs where introduced in the late 60’s, early 70’s. Before that, systems were

built from lots of individual discrete logic chips such as ANDs, ORs, flip-flops, etc.

with a spaghetti-like maze between them (such as in Figure 1.1). As you can imagine,

manufacturing such a system took a lot of time and effort and it was very difficult to

modify and maintain it after it was built. A more versatile way to create arbitrary

combinational logic functions was with the use of read-only memory (ROM) chips[3].

Consider a ROM with N inputs (the address lines) and M outputs (the data lines or

word width). Any conceivable function of all possible combinations of the N inputs

can be made to appear at any of the M outputs, making this the most general-purpose

combinational logic device, limited only by the number of address lines and the word

width. However, using ROMs had also several disadvantages:

• They are usually much slower than dedicated logic circuits,

• They cannot necessarily provide safe “covers” for asynchronous logic transitions

so the PROM’s outputs may glitch as the inputs switch,

• They consume more power,

• They are often expensive, especially if high speed is required.

To overcome all of the above problems, the chip makers introduced a revolutionary

idea[4]: They placed an unconnected array of AND-OR gates in a single chip which

contained an array of fuses that could be blown open or left closed to connect various

inputs to each AND gate (Figure 1.2). And thus, the programmable logic device (PLD)

was born! Programming such a PLD was considerably easier, using a set of boolean sum-

of-product equations to perform the logic functions needed in your system. Modifying

the function of a design was also pretty painless, since you could simply remove the

PLDs, blow a new fuse pattern into them, and then place them back into the circuit

board.

Chapter 1. Introduction 4

Figure 1.1: Spaghetti wiring (www.franksworkshop.com.au).

Figure 1.2: Programmable AND Array[4].

Unfortunately simple PLDs could only handle up to 10 – 20 logic equations, so

you couldn’t fit a very large logic design into just one of them. You had to figure out

how to break your larger designs apart and fit them into a set of PLDs. This was

time consuming and meant that you had to interconnect the PLDs with wires, which

was a big drawback because eventually you would have to make some design change

that couldn’t be handled just by reprogramming the PLDs and then you would have

to build a new circuit board. The chip makers came to the rescue again by building

much larger programmable chips called complex programmable logic devices (CPLDs)

and field-programmable gate arrays (FPGAs). With these, you could essentially get a

complete system onto a single chip.

http://www.franksworkshop.com.au/Miniz/TrackTimerEx/display_back.jpg

Chapter 1. Introduction 5

1.1.4 FPGA Architecture

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be

programmed to become almost any kind of digital circuit or system. Although One-Time

Programmable (OTP) FPGAs are available, the dominant types are SRAM-based which

can be reprogrammed as the design evolves. FPGAs allow designers to change their

designs very late in the design cycle. They enable you to program product features and

functions, adapt to new standards, and reconfigure the hardware even after the product

has been manufactured and deployed in the field, hence the term “field programmable”.

In addition, FPGAs allow for field upgrades to be completed remotely, eliminating the

costs associated with re-designing or manually updating electronic systems.

The basic architecture of FPGAs is very simple[5–9]. In general terms, there are

only two types of resources: logic and interconnect. Logic resources are used to imple-

ment the digital logic of the circuit and interconnect is used to connect the logic block’s

input and outputs to form a larger circuit.

Logic Elements

Every k-ary Boolean function can be expressed as a propositional formula in k variables[10]

which in turn can be expressed as a truth table2. Building on that, we can create

complex structures that can do arithmetic, such as adders and multipliers, as well as

decision-making structures that can evaluate conditional statements, such as the classic

if-then-else. As a result, we can describe elaborate algorithms simply by using truth ta-

bles, making the truth table the computational heart of the FPGA. The most common

way to implement a truth table is with a look-up table (LUT). The LUT operates as a

memory with N address lines and 2N memory locations. From a circuit implementation

perspective, a LUT can be formed simply from an N:1 (N-toone) multiplexer and an

N-bit memory. In simple terms a LUT enumerates a truth table. Therefore, using LUTs

gives an FPGA the generality to implement arbitrary digital logic.

The LUT can compute any function of N inputs by simply programming the lookup

table with the truth table of the function we want to implement. As shown in Figure

2Efficient implementation of Boolean functions is a fundamental problem in the design of combina-
tional logic circuits. Modern electronic design automation tools often rely on a representation for truth
tables or logic expressions called binary decision diagrams (BDDs). Compared with other methods for
representing logic expressions, BDDs have unique features, such as unique concise representation, high
processing speed, and low memory space consumption. They are a powerful means for computer pro-
cessing of logic functions. As logic design has been done in recent years with computers, BDDs are
extensively used because of these features. BDDs are used in computer programs for automation of logic
design, verification (i.e., identifying whether two logic networks represent the identical logic functions),
diagnosis of logic networks, simplification of transistor circuits, and many other areas (see [11]).

Chapter 1. Introduction 6

1.3, if we wanted to implement a 3-input exclusive-or (XOR) function with our 3-input

LUT (3-LUT), we would assign values to the lookup table memory such as the pattern

of select bits chooses the correct row’s answer. Thus every row would yield a result of 0

except in the four cases where the XOR of the three select lines yields 1. To complete

our logic block we need to give the FPGA the ability to maintain some sense of state. To

do so we can add a simple storage element such as flip-flops. Now our logic element looks

something like the one in Figure 1.4, which in reality bears a very close resemblance to

those used in commercial FPGAs.

Figure 1.3: A 3-LUT schematic (a) and the corresponding 3-LUT symbol and truth
table (b) for a logical XOR.[7].

Figure 1.4: A simple look-up table logic block.[7].

Besides this simple logic block, the FPGA architects have augmented the logic

capabilities of modern FPGAs to increase performance. Commercial FPGAs nowadays

incorporate many extended logic elements such as Fast Carry Chains, Multipliers, RAM

and dedicated CPUs.

Chapter 1. Introduction 7

Interconnect

Now that we have an understanding of how computation is performed in an FPGA at

the single logic block level, we bring our attention to how these computation blocks

can be tiled and connected together to form the fabric that is our FPGA. Generally

FPGAs consist of an array of programmable logic blocks that are interconnected to each

other as well as to the programmable I/O blocks through some sort of programmable

routing architecture, as shown in Figure 1.5. Large computations are broken into LUT-

sized pieces and mapped into physical logic blocks in the array. The interconnect is

then configured to route signals between logic blocks appropriately. With enough logic

blocks, we can make our FPGAs perform any kind of computation we desire. As with

logic element structures, FPGA designers have used a variety of routing structures within

their FPGAs. Generally some amount of routing is included within each logic cluster

so that the logic elements can be combined to form larger functions. External to the

logic clusters is the more global routing architecture of the FPGA, which is what we will

focus on in this section.

Figure 1.5: A Generic FPGA Architecture.[8].

Current popular FPGAs implement what is often called island-style architecture.

This design has logic blocks tiled in a two-dimensional array and interconnected in some

fashion. The logic blocks form the islands which float in a sea of interconnect. There

are many interconnect structures varying from simple ones, such as nearest-neighbor

connectivity which allows each logic block to communicate directly only with each of

its immediate neighbors (Figure 1.6), to more complicated ones such as the hierarchical

Chapter 1. Introduction 8

routing which groups together computational units to form clusters of logic blocks and

then uses long wires to connect clusters of the same hierarchy (Figure 1.7). Another

common interconnect structure is the segmented routing. In this case the routing struc-

ture is more generic and mesh-like. We use connection blocks (Figure 1.8) and switch

boxes (Figure 1.9) to interconnect the logic elements. Specifically, the logic blocks ac-

cess nearby communication resources through the connection block, which connects logic

block input and output terminals to routing resources through programmable switches,

or multiplexers. The connection block allows logic block inputs and outputs to be as-

signed to arbitrary horizontal and vertical tracks, increasing routing flexibility. The

switch block appears where horizontal and vertical routing tracks converge. In the most

general sense, it is simply a matrix of programmable switches that allow a signal on a

track to connect to another track. A visual representation of an island-style architecture

using segmented routing is shown in Figure 1.10.

Figure 1.6: Nearest-neighbor Connectivity[7].

As with the logic blocks in a typical commercial FPGA, each switch point in the

interconnect structure is programmable. For all of these programmable points, as in

the logic blocks, modern FPGAs use SRAM bits to hold the user-defined configuration

values.

In modern FPGAs, the silicon area consumed by interconnect greatly dominates the

area dedicated to logic. Anecdotally, 90 percent of the available silicon is interconnect

whereas only 10 percent is logic. With this imbalance, it is clear that interconnect

architecture is increasingly important, especially from a delay perspective[7].

Chapter 1. Introduction 9

Figure 1.7: Hierarchical Routing[7].

Figure 1.8: An example of a 2-D connection block[7].

Figure 1.9: An example of a 2-D switch block[7].

Chapter 1. Introduction 10

Figure 1.10: Segmented Routing[7].

1.1.5 FPGAs Compared To Other Platforms

FPGAs vs. CPLDs

The two major types of programmable logic devices are field programmable gate arrays

(FPGAs) and complex programmable logic devices (CPLDs)[1]. The primary differences

between CPLDs and FPGAs are architectural.

A CPLD is a combination of a fully programmable AND/OR array and a bank of

macrocells[12]. The AND/OR array is reprogrammable and can perform a multitude

of logic functions. Macrocells are functional blocks that perform combinatorial or se-

quential logic, and also have the added flexibility for true or complement, along with

varied feedback paths. So a CPLD has two levels of programmability: each macrocell

block can be programmed, and then the interconnections between the macrocells can

be programmed as well. An example of the CPLD’s block structure is shown in Figure

1.11.

Of the two, FPGAs offer the highest amount of logic density, the most features, and

the highest performance. The largest FPGAs now shipping, provide millions of system

gates3. These advanced devices also offer features such as built-in hardwired processors,

3Aldec announced HES-7, the largest off-the-shelf Xilinx Virtex-7 FPGA prototyping system at up
to 288 million ASIC gates capacity, Feb 9, 2015, https://www.aldec.com/en/company/news/2015-02-
09/250

https://www.aldec.com/en/company/news/2015-02-09/250
https://www.aldec.com/en/company/news/2015-02-09/250

Chapter 1. Introduction 11

Figure 1.11: CPLD Block Structure[12].

substantial amounts of memory, clock management systems, and support for many of

the latest, very fast device-to-device signaling technologies.

CPLDs, by contrast, offer much smaller amounts of logic - up to about 10,000

gates. But CPLDs offer very predictable timing characteristics and are therefore ideal

for critical control applications. CPLDs also require extremely low amounts of power and

are very inexpensive, making them ideal for cost-sensitive, battery-operated, portable

applications such as mobile phones and digital hand-held assistants.

FPGAs vs. ASICs

An application-specific integrated circuit (ASIC) is an integrated circuit (IC) customized

for a particular use, rather than intended for general-purpose use. An ASIC can be pre-

manufactured for a special application or it can be custom manufactured (typically using

components from a building block library of components) for a particular customer

application. Compared to a programmable logic device, an ASIC can achieve higher

speed and smaller power consumption, since it’s designed to perform only a specific

function, but it is usually much more expensive and time consuming to design and

manufacture. In short there is a trade-off between design time, cost and risk reduction

versus speed and power consumption, as shown in the following tables1.1 and 1.2[13]:

Even though FPGAs used to be selected for lower speed/complexity/volume de-

signs in the past, nowadays the scales tip in their favor, even for high speed designs,

since today’s FPGAs can easily break the 500MHz performance barrier. Furthermore

the FPGA design flow eliminates the complex and time-consuming floorplanning, place

and route, timing analysis, and mask/re-spin stages of the project since the design logic

is already synthesized to be placed onto an already verified, characterized FPGA device

Chapter 1. Introduction 12

FPGA Design

Advantage Benefit

Faster time-to-market No layout, masks or other manufacturing
steps are needed

No upfront non-recurring expenses
(NRE)

Costs typically associated with an ASIC
design

Simpler design cycle Due to software that handles much of the
routing, placement, and timing

More predictable project cycle Due to elimination of potential re-spins,
wafer capacities, etc.

Field re-programmability A new bitstream can be uploaded re-
motely

Table 1.1: FPGA Design Advantages

ASIC Design

Advantage Benefit

Full custom capability For design since device is manufactured
to design specs

Lower unit costs For very high volume designs
Smaller form factor Since device is manufactured to design

specs

Table 1.2: ASIC Design Advantages

(see Figure 1.12 for a comparison between the FPGA’s and ASIC’s design flow). Com-

bining the simpler design cycle with an unprecedented increase in logic density and a

host of other features, such as embedded processors, clocking and DSP blocks, make the

FPGAs a compelling proposition for almost any type of design[13].

FPGAs vs. CPUs

A central processing unit (CPU) is the electronic circuitry within a computer that carries

out the instructions of a computer program by performing the basic arithmetic, logical,

control and input/output (I/O) operations specified by the instructions[14, 15]. The

main and the most significant difference between the CPUs and the FPGAs is that

FPGAs don’t have a fixed hardware structure, on the contrary they are programmable

according to user applications. On the other hand CPUs are designed to implement the

Von Neumann architecture4. This means that all the transistors memory, peripheral

4The Von Neumann architecture, also known as the Von Neumann model and Princeton architecture,
is a computer architecture based on John von Neumann’s work in 1945 in the First Draft of a Report
on the EDVAC[16]. This describes a design architecture for an electronic digital computer with parts
consisting of a processing unit containing an arithmetic logic unit and processor registers, a control unit
containing an instruction register and program counter, a memory to store both data and instructions,
external mass storage, and input and output mechanisms. The meaning has evolved to be any stored-
program computer in which an instruction fetch and a data operation cannot occur at the same time

Chapter 1. Introduction 13

Figure 1.12: FPGA vs. ASIC Design Flow Comparison[13].

structures and the connections are constant and the operations which a processor can

do (addition, multiplication, I/O control, etc.) are predefined.

Additionally CPUs are sequential processing devices. Although modern CPU de-

signs are at least somewhat superscalar with emphasis in achieving high-ILP (Instruction-

level parallelism), making them to behave less linearly and more in parallel, they mainly

work by breaking an algorithm up into a sequence of operations and execute them one

at a time. FPGAs on the other hand are parallel preprocessing devices. Bearing that in

mind, FPGAs can outperform CPUs in certain tasks because they can achieve the same

result in fewer clock cycles and they can process larger data at once whereas in CPUs

the data flow is limited by the processor’s bus (typically 32 bit, 64-bit, etc.). Of course

the results are highly dependent on the algorithm. On the other hand, the CPUs are

much more power efficient and cost less.

FPGAs vs. GPUs

A Graphics Processing Unit (GPU) is a single-chip processor primarily used to man-

age computer graphics. Besides that, their highly parallel structure makes them very

because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits
the performance of the system[17].

Chapter 1. Introduction 14

effective in algorithms where processing of large blocks of data is done in parallel, mak-

ing them a popular alternative platform for compute-intensive applications. The main

advantages of the GPU as an accelerator stem from its high memory bandwidth and

a large number of programmable cores with thousands of hardware threads. Unlike

FPGAs, GPUs excel in floating-point operations, making them a natural fit for floating-

point intensive applications such as signal or image processing.

GPUs are flexible and easy to program using high level languages and APIs which

abstract away hardware details. In addition, compared with hardware modification in

FPGAs, changing functions is straightforward via rewriting and recompiling code, but

this flexibility comes at a cost. Just like CPUs, GPUs have a fixed hardware architec-

ture which, compared to the flexible hardware fabric of FPGAs, leaves less room to the

developers. On the contrary, with FPGAs the developers can directly steer module-to-

module hardware infrastructure and trade-off resources and performance by selecting

the appropriate level of parallelism to implement an algorithm. The hardware fabric is

used to approximate a custom chip, effectively eliminating the inefficiencies caused by

the traditional von Neumann execution model and can achieve vastly improved perfor-

mance and power efficiency[18]. Finally, GPUs execute programs in a single instruction,

multiple data (SIMD) fashion, which can only run one routine at a time. Threads are

executed in warps and within a warp, the hardware is not capable of executing if-else

statements at the same time. There is what we call warp divergence in which no more

than half the threads per warp are being executed per iteration. Unlike that, FPGAs

can run several kernels at a time and we don’t need to try to avoid branching. Above

all that, GPUs have historically been very power demanding which is a huge liability for

embedded computing.

To sum up, FPGAs provide the best expectation of performance and flexibility,

while GPUs tend to be easier to program and require less hardware resources.

1.2 CAD Tools

1.2.1 Mapping Designs to FPGAs

Implementing a circuit in a modern FPGA requires that millions of programmable

switches and configuration bits are set to the proper state, either on or off. Clearly

it is impossible for a circuit designer to specify the state of each programmable bit by

hand. Instead designers describe a circuit at a higher level of abstraction, typically using

Chapter 1. Introduction 15

a hardware description language (HDL)5, such as VHDL and Verilog. Computer-Aided

Design (CAD) programs then convert this high level description into a programming file

specifying the state of every programmable switch in the FPGA. To keep the complexity

of this procedure tractable, the problem of determining how to map a circuit into an

FPGA is broken down into a series of sequential subproblems[5]. Those subproblems

include synthesis, placement, routing and finally, the bitstream generation, as shown in

Figure 1.13.

Figure 1.13: FPGA CAD Flow.

1.2.2 Synthesis

Logic synthesis flow typically consists of four steps (Figure 1.14). First, the initial

network is optimized using technology-independent optimization techniques such as node

extraction/substitution and don’t-care optimization. Second, the optimized network is

decomposed into one consisting of 2-input gates plus inverters (that is, the network

becomes 2-bounded) to increase flexibility in mapping. Third, the actual mapping takes

place, with the goal of covering the 2-bounded network with K-LUTs while optimizing

one or more objectives. Finally in the packing stage, several LUTs and registers are

packed into one logic block, respecting limitations such as the number of LUTs or the

number of distinct input signals and clocks a logic block may contain[5, 7].

5HDLs were created to implement register-transfer level (RTL) abstraction. RTL is a design abstrac-
tion which models a synchronous digital circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on those signals. RTL abstraction is used in
HDLs to create high-level representations of a circuit, from which lower-level representations and ulti-
mately actual wiring can be derived. Designing at the RTL level is a typical practice in modern digital
circuit design[19–21].

Chapter 1. Introduction 16

Technology mapping is maybe the most essential step in the above process and has

a significant impact on the quality of the final FPGA implementation. Many algorithms

have been proposed for optimizing area[22–25], timing[24, 26, 27], power[28–30], and

routability[31, 32]. They can be classified as structural or functional. A structural

mapping algorithm does not modify the input network other than to duplicate logic. It

reduces technology mapping to a covering problem in which the technology-independent

logic gates in the input network are covered with logic cones so that each cone can be

implemented using one logic cell — for example, a K-input lookup table (K-LUT) —

for LUT-based FPGAs. Figure 1.15 is an example of structural mapping. A functional

mapping algorithm, on the other hand, treats technology mapping in its general form

as a problem of Boolean transformation/decomposition of the input network into a set

of interconnected logic cells. It mixes Boolean optimization with covering. Functional

mapping algorithms tend to be time consuming, which limits their use to small designs

or to small portions of a design[7].

Recent advances in technology mapping try to combine mapping with other steps

in the design flow. Such integrated mapping algorithms have the potential to explore

a larger solution space compared to what is possible with just technology mapping and

thus have the potential to arrive at mapping solutions with better quality. For example,

algorithms have been proposed to combine logic synthesis with covering to overcome the

limitations of pure structural mapping[7, 33, 34].

Figure 1.14: Logic Synthesis Flow.

Chapter 1. Introduction 17

Figure 1.15: Structural Technology Mapping: (a) original network, (b) covering, (c)
mapping solution[7].

1.2.3 Placement

Placement follows the synthesis process in FPGA CAD flow. It is when we choose

a location for each block in the circuit. An FPGA placement algorithm takes two

basic inputs: (1) a netlist specifying the functional blocks to be implemented and the

connections between them, and (2) a device map indicating which functional unit can be

placed at each location. The algorithm selects a legal location for each block according to

the optimization goals and/or legality constraints. Usually the metrics we try to optimize

are: critical path delay, power consumption and routability of the final result. Both the

legality constraints and the optimization metrics depend on the FPGA architecture

being targeted. Figure 1.16 illustrates the FPGA placement problem[7].

A good placement is extremely important for FPGA designs because, apart from

the great impact it has to the overall design’s speed and power consumption, without a

high quality placement, a circuit generally cannot be successfully routed. At the same

time, finding a good placement for a circuit is a challenging problem. A large commercial

FPGA contains more than 500,000 functional blocks, leading to approximately 500,000!

possible placements. Exhaustive evaluation of the placement solution space is therefore

impossible. In addition, placement is an NP -complete problem, so there are no known

polynomial algorithms that produce optimal results. As a result, the development of

fast and effective heuristic placement algorithms is a very important research area.

Types of Placement Algorithms

There are three major classes of placers used today: partition-based (min-cut)[35, 36],

analytic[37] and simulated annealing based placers[38–40].

Chapter 1. Introduction 18

Figure 1.16: Placement Overview: (a) inputs to the placement algorithm, (b) place-
ment algorithm output[7].

A partition-based placer works by recursively partitioning the circuit netlist and

assigning each partition to a different physical region in the FPGA. Usually each parti-

tioning step divides a previous (larger) partition into two pieces (bipartitions the com-

ponent) although some algorithms perform multiway partitioning to produce a larger

number of circuit partitions in each step. Partitioning algorithms attempt to minimize

the number of nets that are cut, or that cross, between partitions. Since each partition of

the circuit will be assigned to a different region of the FPGA, partition-based placement

minimizes the number of nets leaving each region and hence indirectly optimizes the

amount of wiring required by the design. Partition-based placement can leverage the

availability of high-quality, CPU-efficient partitioning algorithms, making this approach

scalable to large problems. However, for some FPGA architectures, partition-based

placement suffers from the disadvantage that it does not directly optimize the circuit

timing or the amount of routing required by the placement. Hierarchical FPGAs are

good candidates for partition-based placement, since their routing architectures create

natural partitioning cut lines. Recursive partitioning has also been used for placement

in island-style FPGAs. In an island-style FPGA, blocks separated by a short Manhattan

distance can be connected with a small amount of routing. Consequently, the cut lines

Chapter 1. Introduction 19

are designed to divide the FPGA into ever-shrinking squares. The fewer the signals that

leave each square, the less interconnect is required[7].

Analytic algorithms are based on creating a smooth function of a placement that

approximates routed wirelength. Efficient numerical techniques are used to find the

global minimum of this function. If the function approximates wirelength well, this

solution is a placement with good wirelength. However, this global minimum is usually

an illegal placement, so constraints and heuristics must be applied to guide the algorithm

to a legal solution. While analytic placement approaches are popular for ASICs, few

exist for FPGAs, likely due to the more difficult FPGA placement legality constraints[7].

Simulated annealing is the most widely used placement algorithm for FPGAs. It

mimics the annealing procedure by which strong metal alloys are created. Initially

blocks can move fairly freely, but as the temperature drops they gradually freeze into

a high-quality placement[41]. The basic flow of simulated annealing for placement is

as follows: First an initial placement is generated. This initial placement is generally

of low quality, and is often created simply by assigning each block to the first legal

location found. The placement is then iteratively improved by proposing and evaluating

placement perturbations, or moves. A placement perturbation is proposed by a move

generator, generally by moving a small number of blocks to new locations. A cost

function is used to evaluate the impact of each proposed move. Moves that reduce

cost are always accepted, or committed to the placement, while those that increase

cost are accepted with probability e−∆Cost/T , where T is the current temperature. This

function ensures that moves that increase the cost by an amount that is small compared

to the current temperature are likely to be accepted, while moves that increase the

cost by an amount much larger than the current temperature are not. Accepting some

moves that increase the cost helps escape local minima and produces a higher-quality

final placement. At the start of the anneal temperature is high. Then it gradually

decreases according to the annealing schedule. This schedule also controls how many

moves are performed between temperature updates and when the placement is considered

sufficiently optimized that the anneal should end[7]. VPR[38] is maybe the most popular

simulated-annealing-based placement tool.

Optimization Goals

The basic goal of an FPGA placement algorithm is to minimize the interconnect required

to route the signals between the logic blocks. The routing required to connect two blocks

is a function not only of the distance between them but also of the FPGA architecture. In

Figure 1.17 we see an example of how the FPGA’s architecture influences the wirelength

Chapter 1. Introduction 20

for a given placement. In an island-style FPGA, the amount of wiring required to connect

two functional blocks is roughly proportional to the Manhattan distance between them.

But for hierarchical architectures the case is quite different. There, the amount of wiring

required to connect two functional blocks is proportional to the number of levels of the

routing hierarchy that must be traversed to connect them. Clearly FPGA placement

algorithms must have a model of the routing architecture they target in order to achieve

good results.

Figure 1.17: Influence of FPGA architecture on wirelength: (a) island-style FPGA,
(b) hierarchical FPGA[7].

FPGA placement tools can broadly be divided into routability-driven and timing-

driven algorithms. Routability-driven algorithms try to create a placement that min-

imizes the total interconnect required, as this increases the probability of successfully

routing the design. Since FPGA interconnect is prefabricated, the amount of intercon-

nect in each region of a device is fixed, and a placement that requires more interconnect

in a device region than that region contains cannot be routed. Consequently, some

routability-driven placement algorithms minimize not only the total wiring required by

the design but also the amount of routing congestion. Routing congestion occurs when

the interconnect demand approaches or exceeds the fabricated wiring capacity in some

part of the FPGA. On the other hand, in addition to optimizing for routability, timing-

driven algorithms use timing analysis to identify critical paths and/or connections and

to optimize the delay of those connections. Since most delays in an FPGA are due to

Chapter 1. Introduction 21

the programmable interconnect, timing-driven placement can achieve a large improve-

ment in circuit speed over routability-driven approaches. Finally, some recent FPGA

placement algorithms attempt to minimize power consumption as well (power-driven

placement)[7].

1.2.4 Routing

Once locations for all the logic blocks in the circuit have been chosen, we have to find

a path to route the signals to all those resources. That consists of determining which

programmable switches should be turned on to connect all the logic block input and

output pins required by the circuit. Routing is a crucial step in the mapping of circuits

to FPGAs. For large circuits that utilize many FPGA resources, it can be very difficult

and time consuming to successfully route all of the signals. Just like placement, routing

is also a NP -complete problem[42], so there are no known polynomial-time algorithms

that produce good results. Additionally, the performance of the mapped circuit highly

depends on routing critical and near-critical paths with minimum interconnect delays.

One disadvantage of FPGAs is that they are slower than their ASIC counterparts, so it

is important to squeeze out every possible nanosecond of delay in the routing[7].

In FPGA routing, one usually represents the routing architecture of the FPGA as

a directed graph. Each wire and each logic block pin becomes a node in this routing-

resource graph and potential connections become edges. Routing a connection corre-

sponds to finding a path in this routing-resource graph between the nodes representing

the logic block pins to be connected. To avoid using up too many of the limited number

of wires in an FPGA, one requires this path to be as short as possible. Furthermore, it

is important that the routing for one net does not use up routing resources another net

needs, so most FPGA routers have some kind of congestion avoidance scheme to resolve

contention for routing resources. An additional optimization goal is to make nets on or

near the critical path fast by routing them using short paths and fast routing resources.

Routers that attempt to optimize timing in this way are called timing-driven, whereas

delay-oblivious routers are purely routability-driven. Since most of the delay in FPGAs

is due to the programmable routing, timing-driven routing is crucial to obtain good

circuit speeds[5].

However, the first and most important goal, is a complete routing of all signals,

which is quite difficult to achieve in FPGAs because of the hard constraints on routing

resources. Unlike ASICs, FPGAs have a fixed amount of interconnect. The usual ap-

proach in placement is to minimize the wiring resources anticipated for routing signals.

Although this reduces the overall demand for resources, signals inevitably compete for

Chapter 1. Introduction 22

the same resources during routing. The challenge is to find a way to allocate resources

so that all signals can be routed. The second goal, minimizing delay, requires the use of

minimum-delay routes for signals, which can be expensive in terms of routing resources,

especially for high-fanout signals. Thus, the solution to the entire routing problem

requires the simultaneous solution of two interacting and often competing subproblems.

To make the FPGA routing problem tractable, nearly all of the routing schemes

in the literature incorporate features of the underlying architecture. The problem is

that new architectures become constrained by the restrictions of such existing routing

algorithms.

1.2.5 Bitstream

The collection of binary data used to program the reconfigurable logic device is most

commonly referred to as a “bitstream”. The bitstream spatially represents the config-

uration data of a large collection of small, relatively simple hardware components. It

is loaded into the device’s internal units before the device is placed in its operating

mode, and typically, no changes are made to the data while the device is operating.

There are some significant exceptions to this rule: The configuration data may in fact

be changed while a device is operational, but this is somewhat akin to self-modifying

code in instruction set architectures. This is a very powerful technique, but carries with

it significant challenges.

The software used to generate configuration bitstream data for FPGA devices is

perhaps some of the most complex available. It usually consists of many layers of func-

tionality and can run on the largest workstations for hours or even days to produce the

output for a single design. FPGA configuration bitstream formats have almost always

been proprietary and for that reason, the only tools available to perform bitstream gen-

eration tasks are those supplied by the device manufacturer. After the FPGA bitstream

is created, it’s typically stored externally in a nonvolatile memory such as an EPROM

and then it’s loaded into the device shortly after the initial power-up sequence, most

often bit-serially[7].

1.3 Summary

Field-Programmable Gate Arrays (FPGAs) have become one of the key digital circuit

implementation media. A crucial part of their success lies in their architecture, which

governs the nature of their programmable logic functionality and their programmable

Chapter 1. Introduction 23

interconnect. FPGA architecture has a dramatic effect on the quality of the final device’s

speed performance, area efficiency, and power consumption[43]. Compared with other

implementation platforms, FPGAs have several advantages for their users, including[8]:

• quick time-to-market,

• being a standard product,

• no non-recurring engineering costs for fabrication,

• pre-tested silicon for use by the designers

• re-programmability

CAD tools play an important role on the performance of an FPGA design. The

greatest challenge that todays CAD tools face is the need to produce high quality place-

ments and routings for ever-larger circuits. FPGA capacity doubles every two to three

years, doubling the size of those problems at the same rate. In addition, uniprocessor

speed is no longer increasing as quickly as it did in the past, which means that single

processor speed will increase by less than two times in the same period. In order to

maintain the fast time-to-market and ease of use historically provided by FPGAs, place-

ment and routing algorithms cannot be allowed to take ever more CPU time. There

is thus a compelling need for algorithms that are very scalable yet still produce high-

quality results. The roadmap for future microprocessors indicates that the number of

independent processors, or cores, on a single chip will increase rapidly in the coming

years. Consequently, most engineers will have parallel computers on their desktops.

Part of the solution to the problem of keeping FPGA placement times reasonable may

be to find techniques and algorithms to exploit parallel processing without sacrificing

result quality. Furthermore, new FPGA architectures (such as the three-dimensional

chip stacking) can provide more flexibility and help break free from todays limitations.

Chapter 2

Three-dimensional Chip Stacking

- A Whole New World!

Field-Programmable Gate Arrays (FPGAs) have become the implementation medium

for the majority of digital circuits. The key to FPGAs’ popularity is their feature to sup-

port application implementation by appropriately (re-)configuring the functionality of

hardware resources. This allows FPGAs to provide higher flexibility, rapid product pro-

totyping and significantly reduced non-recurring engineering (NRE) costs, as compared

to ASIC (Application-Specific Integrated Circuit) devices. Additionally, this situation

makes the FPGA paradigm to grow in importance, as there is a stronger demand for

faster, smaller, cheaper, and lower-energy devices.

For decades, semiconductor manufacturers have been shrinking transistor size in

Integrated Circuits (ICs) to achieve the yearly increase in performance described by

Moore’s Law, which exists only because the RC delay was negligible, as compared to the

signal propagation delay. For sub-micron technology, however, the RC delay becomes

a dominant factor. Furthermore, previous studies showed that at 130nm technology

node, approximately 51% of the microprocessor’s power is consumed by interconnect

fabric[44]. This has generated many discussions concerning the end of device scaling as

we know it, and has hastened the search for solutions beyond the perceived limits of

current 2-D devices.

Three dimensional (3-D) chip stacking is considered by many as the silver bullet

technology that will accommodate for all the aforementioned requirements[45]. Stacking

multiple dies in the vertical axis and interconnecting them using very fine-pitch Through

Silicon Vias (TSVs) enables the creation of chips with very diverse functionalities, im-

plemented in different process technologies in a very small form factor[46]. Introducing

locality along the z-axis enables on average shorter interconnections between system

25

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 26

components, which in turn leads to reduced signal propagation delay compared to con-

ventional (i.e. 2-D) architectures[45, 46].

It is common for architecture designers to estimate that the longest interconnect

is equal to twice the length of the die edge[47]. In order to show the potential gains of

the new integration approach in this field, Figure 2.1 illustrates an example structure,

where the interconnection length at 3-D platforms is significantly reduced compared to

conventional 2-D architectures. More specifically, for a given total chip area A (both for

2-D and 3-D devices), as the number of device layers increases, the area per layer and

consequently the corresponding longest interconnection path are reduced. For instance,

the longest routing path for a 3-D architecture consisted of four layers is almost half

compared to the 2-D device.

Additionally, by stacking smaller dies rather than manufacturing a large planar die

also leads to yield significant cost improvements because the probability that a die is

defective is positively correlated with its area. Consequently, the shift from horizontal

to vertical stacking of circuits has the potential to rewrite the conventions of electronics

design.

A

A

Area = A

Ilength= 2 A

A/2

A/2

Area =2 A/2
2
=A

Ilength= A2

A/4

A/4

Ilength= A

Area =4 A/4
2
=A

(a) (b) (c)

Figure 2.1: Variation on interconnection length for (a) a 2-D device, (b) a 3-D archi-
tecture with two layers, and (c) a 3-D architecture with four layers.

The benefits of using 3-D integration in logic chips are especially great for design-

ing FPGAs, compared to other ICs, since these architectures suffer from data commu-

nication problems; interconnection delay and power/energy consumption are the main

bottlenecks compared to alternative ASIC implementations. Hence, it is likely that the

reconfigurable architectures will drive rapid adoption of 3-D integration, faster than any

other device. However, in order such technology to be widely accepted, several challenges

need to be satisfied. For instance, methodologies, algorithms and tools that facilitate

the architecture-level exploration, as well as the application mapping onto 3-D platforms

are essential.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 27

This chapter summarizes a number of approaches related to the 3-D reconfigurable

domain. Towards this direction, both architectural and algorithmic solutions are dis-

cussed. The rest of the chapter is organized as follows: Section 2.1 introduces the

concept of 3-D reconfigurable architectures, while the algorithms and tools employed for

the scopes of exploration phase and application mapping are discussed in Section 2.2.

Section 2.3 summarizes the available academic toolsets for supporting these tasks and

finally section 2.4 concludes the chapter.

2.1 3-D Reconfigurable Platforms

There are two integration approaches for constructing 3-D FPGAs. In the first approach,

each physical layer is treated as a 2-D FPGA and the communication among layers is pro-

vided by 3-D Switch Boxes (SBs). An example of this fabrication approach has demon-

strated the improved performance of a five-layer stack by decreasing the area×delay

product of a 2-D FPGA by 36%, where an aggressive TSV pitch of 3µm is assumed[48].

Alternatively, each layer includes only one component of the FPGA architecture,

such as memory, SBs, or logic gates (leading, in this case, to a three-layer 3-D FPGA).

Experimental results show that this device achieves a 1.7× improvement in performance

as compared to a 2-D FPGA[49]. There are two issues related to the evolution of this

integration approach. Each component (e.g., logic, memory, SBs) does not necessarily

scale with the same ratio as the FPGA size increases. This difference can result in

dissimilar silicon area for each layer, which in turn, leads to wasting silicon (layers of

the same area are preferred from a manufacturing perspective). In addition, each layer

will require a different set of masks, increasing the manufacturing cost. Being able to

utilize the same (full or partial) set of masks can lower the cost, which is a fundamental

trait of the FPGA paradigm.

Figure 2.2 visualizes the differences between conventional SBs (found in 2-D FP-

GAs) and the 3-D SBs. A 2-D SB can be used where an incoming routing track is

connected to wires on the same layer (Fs = 3). The SB flexibility Fs denotes the num-

ber of directions to which each incoming wire can be connected. Alternatively, 3-D SBs

support connections to the third dimension (upper and lower layers, Fs = 5), except for

the top and bottom layers of the 3-D stack where Fs = 4.

In addition to the envisioned integration approaches for 3-D FPGAs, these devices

can also support different types of SBs due to the added design freedom that the third

physical dimension introduces[50]. These different types of SBs can, in turn, be used

to decrease the number of TSVs for the interlayer connections[48]. A comparison of

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 28

(b) 3-D Switch Box

Fs
=3

Fs
=3

Fs
=5

Fs=3

Fs=3
Fs=5

Fs=5

Fs=3

Fs=3
Fs=5

Fs
=3

Fs
=3

Fs
=5

Fs=5

(a) 2-D Switch Box

Fs=3

Fs=3

Fs=3

Fs=3

Fs=3

Fs=3

Fs
=3

Fs
=3

Fs
=3

Fs
=3

Fs
=3

Fs
=3

TSV

Figure 2.2: Template for different types of SBs: (a) 2-D SB and (b) 3-D SB.

these SB designs has shown that specific SB circuits require fewer TSVs to implement

an application[51]. Furthermore, a prototype asynchronous 3-D FPGA has also demon-

strated the feasibility of designing such devices[52], where the logic resources of this

architecture are identical to the corresponding 2-D design, while the SBs are appropri-

ately expanded with interlayer channels.

A different perspective in the design of 3-D FGPAs is discussed in[51]. Heterogene-

ity is introduced to the interconnect fabric rather than the distribution of the different

circuit components composing an FPGA. The key idea of that work was to combine exist-

ing 2-D[50, 53] and 3-D[54, 55] SBs, so that the vertical interconnects are more efficiently

utilized. By utilizing efficiently the vertical interconnections, such a 3-D FPGA, exhibits

comparable or superior performance over other 3-D FPGA approaches[49, 52, 54–57].

From a manufacturing perspective, fewer interlayer connections within a 3-D FPGA,

result to area savings. These savings, in turn, decrease the fabrication cost, while the

additional silicon area within each layer can be used for logic blocks[58, 59].

The interest for designing 3-D FPGAs has been already addressed by the industry,

since there are commercial approaches of the new design paradigm. Typical examples

are the 3-D FPGAs provided by Tezzaron Corp.[60], as well as the devices from Xilinx

(Virtex-7 & UltraScale FPGAs[61]) 1.

1These architectures differ in the way that layers are physically implemented. Specifically, the devices
from Tezzaron employ a conventional 3-D process technology, wafer-level stacking, where the interlayer
connectivity is provided through TSVs. This is a via that goes from the front side of the wafer (typically
connecting to one of the lower metal layers) through the wafer and out the back[45]. On the other hand,
the Virtex-7 devices from Xilinx, also known as 2.5D FPGAs, rely on the Stacked Silicon Interconnect
Technology (SSIT)[61] to route signals between die slices of the same plane. The improvement in
the number of logic elements of 2.5D FPGAs over conventional ones is very significant. For instance,
the largest interposer-based FPGA, the Virtex-7 XC7V2000T, has 4 dies (which Xilinx calls Super
Logic Regions) and 1.954 million logic elements, while the largest non-interposer Virtex-7 die (the
XC7VX980T), has 979k logic elements and Altera’s largest FPGA, the Stratix V 5SGXBB, has 952k

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 29

2.1.1 Design 3-D FPGAs with Heterogeneous Interconnect

The interconnection infrastructure highly affects the performance of applications im-

plemented onto reconfigurable architectures. Due to the importance of this parameter,

numerous architectural approaches have been proposed over the last years. This section

discusses a methodology for designing 3-D FPGAs with heterogeneous interconnect net-

work. This heterogeneity refers to the different types of SBs (either 2-D or 3-D) used in

each layer, as compared to existing approaches[49, 52, 54–57] that employ only 3-D SBs.

More specifically, the construction of the heterogeneous interconnect fabric depends on

the statistical and spatial characteristics of the applications mapped on the 3-D FPGA,

following the idea proposed initially by Betz and Rose[53], where 2-D FPGAs should be

designed by considering the routing demands posed by the application placement and

routing. The distinct difference of this approach compared to the rest of the imple-

mentations is that the objective is not the size of the routing channels but rather the

distribution of the 2-D and 3-D SBs across the interconnect fabric.

The interlayer connectivity demand for a representative application implemented

onto a 3-D FPGA with three layers is depicted in Figure 2.3, where the integration

technology is TSV and only 3-D SBs are used for interconnections. Each point (i, j) of

this graph depicts the number of utilized interlayer connections (i.e., TSVs) within the

corresponding SB placed on spatial location (i, j). Based on this analysis, we conclude

that the demand for interlayer communication varies between two arbitrary points (x1,

y1, z1) and (x2, y2, z2) of the device, even for 3-D SBs placed on adjacent locations

within the same layer. Additionally, the demand for utilizing interlayer connections

between different application domains exhibits considerable but reasonably predictable

variations. The higher percentage of utilized interlayer connections occurs in the middle

of each layer, since placement and routing algorithms have higher flexibility to form

connections in the middle of each layer as compared to its periphery.

This non-uniform utilization of the TSVs is due to the routing congestion that

occurs in the center of an FPGA layer, and therefore, more routing resources have to

be fabricated within this region[63]. Alternatively, board-level constraints can limit the

placement of the I/Os at specific locations, resulting in increasing routing congestion

close to the FPGA periphery. In this case, additional routing resources between the I/O

pads and the logic block arrays are required.

The results shown in Figure 2.3 indicate that regions with approximately constant

demand of vertical connectivity can be distinguished across each layer. We discretize,

therefore, the hardware resources of each layer into three regions based on the number

logic elements. Even though all these FPGAs use a 28nm process, silicon interposer technology allows
the creation of FPGAs with twice the resources possible on even an extremely large single die[62].

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 30

Layer1

(Lowest Layer)

Layer2
(Middle Layer)

Layer3

(Upper Layer)

Region3Region3Region3

Region2Region2Region2

Region1Region1Region1

Utilizationratio = {0% - 33%} Utilizationratio = {34% - 66%} Utilizationratio = {67% - 100%}

Region1: Small demand for

interlayer connectivity

Region2: Medium demand for

interlayer connectivity

Region3: High demand for

interlayer connectivity

Figure 2.3: A classification example of the interlayer communication resources across
a three-layer 3-D FPGA device[51].

of utilized vertical connections (i.e., TSVs) in the 3-D SBs of each region. More specif-

ically, within Region1 the percentage of the utilized TSVs in the 3-D SBs is less than

33%.Within Region2 the density of the utilized TSVs in the 3-D SBs is between 33%

and 66%. Finally, the percentage of the utilized TSVs in the 3-D SBs of Region3 is

greater than 66%.

Analogous approaches for selecting regions including different groups of hardware

resources can also be applied. To best exploit this feature of 3-D FPGA architectures, it

is feasible to employ a different density of interlayer connectivity at each (x, y, z) point of

the 3-D architecture for each mapped application. This configuration, however, results

in an application-specific (e.g., ASIC-like) design. Therefore, it is possible to introduce

a piecewise homogeneous interconnection architecture, similar to the one depicted in

Figure 2.4, consisting of regions with different interlayer interconnection densities. The

authors in[51] depicted that 3-D FPGAs consisted of more than three regions do not

provide additional gains in performance or power/energy consumption, whilst silicon

area saturates rapidly with the number of these regions. As a result we conclude that

the number of regions should be kept relatively small.

2.2 CAD Algorithms for 3-D Reconfigurable Architectures

Today’s Computer-aided design (CAD) tools make it possible to automate many aspects

of the design process. This has mainly been done by the use of effective and efficient

algorithms and corresponding software structures. Still, the very large scale integra-

tion (VLSI) design process is extremely complex, and even after breaking the entire

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 31

CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB CLB

CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

3D 3D 3D 3D 3D

2D 2D 3D 3D 3D

2D 3D 2D 3D 2D

3D 2D 2D 3D 2D

2D 2D 3D 3D 3D

Region2

Region1

CLB CLB CLB CLB CLB CLB

2D 3D 2D 3D 2D

CLB CLB CLB CLB CLB CLB

3D 2D 2D 3D 2D

CLB

CLB

CLB

CLB

CLB

CLB

3D

2D

3D

2D

2D

CLB

2D

CLB

CLB

CLB

CLB

CLB

CLB

3D

2D

2D

3D

2D

CLB

3D

CLB CLB

3D 2D

Region3

Region1: Small demand

for interlayer connectivity

Region2: Medium demand

for interlayer connectivity

Region3: High demand

for interlayer connectivity

2D 3D

2-D SB 3-D SB

Figure 2.4: Example of architectural template for 3-D FPGAs with heterogeneous
interconnect fabric.

process into several conceptually easier steps, it has been shown that each step is still

computationally hard. Although, a number of EDA (Electronic Design Automation)

tools that provide automated application implementation onto hardware platforms are

available, their execution still imposes an increased run-time overhead. This problem be-

comes more evident by taking into account that the capacity, in term of logic resources,

steadily increases at the rate anticipated by Moore’s Law. Hence, the EDA tools must

synthesize, place and route more logic blocks and interconnection networks for every

new platform. However, given the increasing complexity of applications mapped onto

FPGAs, it is expected that physical design tools will be extensively stressed to deliver

highly optimized solutions within practical run-time budgets.

Compile time has recently been recognized as an important issue for FPGAs, while

there are designers that are willing to afford a reduction in the quality of results (e.g. a

penalty in performance) in exchange for a high-speed compilation[64]. Moreover, as the

capacity of FPGA devices and the size of designs grow, there is a great interest for re-

ducing the execution run-time of CAD tools that perform application’s implementations

onto reconfigurable platforms.

To keep run-time in check, the two main companies offering high-capacity FPGAS,

Xilinx and Altera, have been continuously optimizing their CAD tools. Even though that

motion alleviated the run-time pressure, it is unlikely that those algorithm engineering

efforts can be sustained at the rate required by several more generations of Moore’s

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 32

Law. Continuous technology scaling, without comparable scaling of execution run-time

for application implementation onto FPGA devices, is expected to lead to a run-time

crisis. This crisis, among others, manifests itself as a reduction in productivity and

the corresponding increase in engineering costs. Based on relevant research approaches,

there are three ways to reduce the execution run-time of CAD tools, which can be

classified as follows:

• Discourage flat compilation of the entire design, and instead force users to com-

pile partitions of their designs incrementally and assemble the partitions. Even

though this approach mitigates execution run-time, it imposes an increased de-

sign complexity and it does not allow the application of optimizations between

partitions.

• Introduce faster single-threaded algorithms, which can achieve mentionable exe-

cution speedup with little, or no, sacrifice at quality of derived application imple-

mentation. This selection leads to mentionable speedups, however, it is not widely

accepted as it cannot follow the exponential growth in the number of FPGA logic

cells.

• Develop novel parallel algorithms to take advantage of the existing and upcoming

multi-core processors. With the current market trend of increasing the number,

rather than designing faster CPU cores, the utilization of parallel CAD algorithms

promises to alleviate the run-time crisis. These algorithms allow the capacity of

FPGA platforms, as well as the number of working processor cores, to scale simul-

taneously. Towards this direction, both Xilinx and Altera have started to imple-

ment parallel flavors for their CAD algorithms that offer mentionable execution

speedups.

In order to reduce the design process complexity, several intermediate levels of ab-

stractions are introduced. A top-down design methodology divides the whole design

process into a number of distinct phases, as depicted in Figure 2.5. Starting from an

application’s netlist after synthesis and technology mapping (3-D platform agnostic al-

gorithms), we proceed to application implementation onto the target 3-D reconfigurable

platform. This procedure consists of three consecutive tasks, namely (i) application

partitioning, (ii) placement and (iii) routing.

The application partitioning is crucial for achieving both higher performance and

resource utilization ratios. To support this task, a number of algorithms and tools

have been proposed. Next, the derived partitions are assigned to the available physical

layers of the 3-D stack. During this step, one (or more) partition(s) is (are) assigned

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 33

Application Description in HDL

Synthesis

Technology Mapping

Partitioning

Placement

Routing

Evaluation

Placement

Routing

Platform Partition

Partition to Layer Assignment

Layer Ordering

2-D 3-D

3-D platform agnostic

3-D platform aware

Figure 2.5: Toolflow for performing application mapping onto FPGA platforms.

to each of the 3-D FPGA layers. Usually, the primary objective in this step is to

minimize the connections between already derived partitions. Then, the layers have to

be ordered to form the 3-D stack. Similar to previous steps, this task aims to minimize

the interlayer connections, and hence the TSVs, by appropriately ordering the available

layers. Additionally, the layer ordering procedure can address a number of important

design issues, such as improving the thermal distribution and shape of the 3-D stack,

thereby enhancing its reliability. Even though hypergraph partitioning is a well-studied

problem, these algorithms rarely lead to sufficient results because they do not take into

consideration inherent limitations and constraints posed by the underline 3-D platform

(presented in more detail in Section 2.2.1). Specifically, the main limitation of such

approach lies on addressing solely the partition problem, while dismissing the partition-

to-layer assignment and layer ordering.

In order to highlight the importance of partition, partition-to-layer assignment and

layer ordering subproblems, Figure 2.6 gives an example of a digital circuit implemented

onto a 3-D platform. Two alternative 3-D stacks (shown in Figures 2.6(b) and 2.6(c))

are evaluated after a successful application partitioning into four segments, namely A,

B, C and D (as depicted in Figure 2.6(a)). The evaluation of the derived results for

this analysis is based on the net-cut parameter. This term refers to the application’s

routing networks, running between different partitions (layers). Even though the 3-D

stacks depicted in this figure are retrieved from the same application partitioning, the

variations in layer assignment and layer ordering lead to different net-cuts. Furthermore,

the total cuts between consecutive layers
(∑i=3

i=1(cuti)
)

, which correspond to the number

of TSV connections, is also affected by the output of partitioning problem.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 34

D

1004050

4050

50

150

140

30

30

C

B

cut1 = 190

cut2 = 270

cut3 = 220
140

A

D

C

B

A

140

140 150

10040

50 30

30

cut1 = 330

cut2 = 310

cut3 = 220

40

(b) (c)

50

100 150 140

30

DCBA

(a)

Figure 2.6: Task graph for application implementation onto 3-D architecture: (a)
application partition and (b)-(c) alternative 3-D stacks derived with different selections

at partition to layer assignment and layer ordering algorithms.

Finally, the last step deals with the application’s placement and routing (P&R)

onto the target 3-D FPGA. Each of these tasks is performed simultaneously for all of

the device layers, such that the proper constraints are propagated among the layers. In

order to achieve a solution that balances the utilization of hardware resources with the

performance enhancement, the interlayer connections should be utilized only for timing

critical routing paths.

Upcoming subsections provide additional details about the platform-aware (3-D)

algorithms for performing application mapping onto target architectures.

2.2.1 Application Partitioning

For many existing and emerging applications in VLSI, producing efficient partitioning is

of great importance. The problem consists of partitioning the vertices of a hypergraph

into k roughly equal parts, such that the number of hyperedges connecting vertices on

different parts is minimized2.

2A hypergraph is a generalization of a graph, where the set of edges is replaced by a set of hyperedges.
Specifically, a hyperedge extends the notion of an edge by allowing more than two vertices to be connected
by a hyperedge. Formally, a hypergraph H = (V,Eh) is defined as a set of vertices V E and a set of
hyperedges Eh, where each hyperedge is a subset of the vertex set V and the size of a hyperedge is the
cardinality of that subset.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 35

Circuit partitioning is NP -hard problem[65]. That is, as the problem size grows

linearly, the effort needed to find an optimal solution grows faster than any polynomial

function. To date, there is no known polynomial-time, globally optimal algorithm for hy-

pergraph partitioning. However, several efficient heuristics have been developed. These

algorithms can retrieve high-quality circuit partitioning solutions in low-order polyno-

mial time. Typical examples of such algorithms are the Fiduccia-Mattheyses (FM)[66],

the Kernighan-Lin (KL)[67], the hMetis[65], the annealing/tabu[68], as well as their

extensions.

Regarding the partitioning algorithms for 3-D FPGA platforms[54, 55, 65] the ma-

jority of them focuses on retrieving a min-cut solution3. Rather than utilizing many

TSVs in order to achieve the maximum performance improvement, these min-cut parti-

tioning algorithms exploit the potential reduction of utilized vertical connectivity. Even

though this goal is acceptable for multi-chip devices, it’s rarely an efficient approach in

the context of 3-D architectures, since the electrical characteristics of TSVs are much

better than the corresponding characteristics of the off-chip connections. A first order

comparison between a routing wire in 45nm technology and a TSV can be found in[69].

On the other hand, new approaches such as the max-cut partitioning, targeting

3-D FPGA platforms, can lead to reductions in both delay and power consumption[54,

68], compared to the conventional min-cut approach. These gains occur mainly due

to the higher and more efficient utilization of fabricated TSVs, which in turn leads

to shorter wire-lengths for critical nets. Note that the emphasis of such approaches

cannot be focused solely to the maximization of TSV utilization, because it might lead

to unroutable designs (due to routing congestion problems).

2.2.2 Placement in 3-D Architectures

Upon completion of the partitioning phase, the application’s netlist is assigned to a

particular place on the FPGA through the placement task. Placement is an essential

step in EDA, since it deals with the slot assignment problem (determine exact locations

for various circuit components within the FPGA’s area). Application’s placement onto

FPGA platforms can take hours, or even days, depending on the complexity of these

designs, since placement is though to be the most time-consuming processes in physical

implementation flows for reconfigurable architectures. This problem becomes even worst

in the 3-D domain, since these platforms contain more resources compared to the 2-D

FPGAs.

3In graph theory, a minimum cut of a graph is a cut (a partition of the vertices of a graph into two
disjoint subsets that are joined by at least one edge) whose cut set has the smallest number of edges
(unweighted case), or smallest sum of weights possible.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 36

A good quality placement is essential to the overall design’s quality, since it influ-

ences among others various design metrics, such as the interconnect delay, the congestion,

the wirelength, as well as the power consumption. While there exists a lot of previous

research on placement algorithms for improving these metrics, very few of them have

pay equal importance to the minimization of the execution run-time.

The majority of existing techniques for 3-D circuit placement are summarized as

follows:

• Partitioning-based algorithms, where the netlist and the FPGA’s area are di-

vided into smaller sub-netlists and sub-regions, respectively, according to cut-based

cost functions. This process is repeated until each sub-netlist and sub-region is

small enough to be handled efficiently. An example of this approach is min-cut

placement[70].

• Analytic techniques model the placement problem using an objective (cost) func-

tion, which can be maximized or minimized via mathematical analysis. The ob-

jective can be quadratic or otherwise non-convex. Examples of analytic techniques

include quadratic placement and force-directed placement[71].

• Stochastic algorithms, which perform randomized moves in order to optimize the

cost function. A typical example of such an approach is the usage of simulated

annealing algorithm[53].

• Techniques that are based on evolution algorithm. Such approaches aim to perform

a more effective search space exploration, whereas their inherent parallelism can

be exploited by the underlying multi-core architectures for reducing the execution

run-time.

The functionality of these algorithms is identical to those proposed for the corre-

sponding 2-D platforms, as examined in Section 1.2.3. The main difference for the 3-D

domain concerns the customization of their cost functions (e.g. extend the bounding

box to bounding cube for wire-length minimization) in order to take into consideration

inherent constraints posed by the 3-D domain.

2.2.3 Routing in 3-D Architectures

Following placement, the routing algorithm determines a path to route the signals to all

the resources. The most important objective of routing is to complete all the required

connections. Other objectives, such as reducing the routing wirelength and ensuring

each net satisfies its required timing budget, have become essential for modern routers.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 37

Research concerning FPGA routing has received considerable attention in the lit-

erature. Routing is typically a very complex combinatorial problem. To make it man-

ageable, we usually adopt a two-stage approach of global routing followed by detailed

routing. Global routing partitions the routing region into tiles and decides tile-to-tile

paths for all nets while attempting to optimize some given objective function (e.g., total

wirelength and circuit timing). Subsequently, guided by the paths obtained in global

routing, detailed routing assigns actual tracks and vias to the nets.

As we know, routing resources are prefabricated, and consequently quite limited,

in the FPGA platforms. This problem becomes even more crucial in the 3-D domain

concerning the availability of interlayer connections (TSVs). In order to reduce execu-

tion run-time, global routing tries to reduce the propagation delay for each net, while

simultaneously balancing the channel congestion and minimizing the channel density.

Note that in global routing the exact wire segments are not chosen yet. It is during the

detailed routing that each net is assigned to a particular wire segment within a given

channel.

A smaller FPGA with a narrow channel width is typically less expensive and ex-

hibits better performance than a larger FPGA. Hence, detailed routing aims mainly to

minimize the overall channel width required to route all nets. In addition, due to the

large parasitic capacitance and resistance of programmable switches (found inside SBs),

it takes significant amount of time to propagate a signal from the source of the net

to its most distant sink. As a result, another parameter which significantly affects the

performance of the design is the spread of the routing path over the device’s area.

The main difference of routing algorithms targeting 3-D reconfigurable architec-

tures, as compared to the rest of the 2-D implementations, is the benefit of exploiting

the inherent flexibility provided by the third dimension. To do so, the interlayer connec-

tions must be employed specifically for realizing connections of critical or near critical

paths. This can be enforced in the detailed routing, by constructing a routing graph

with the vertical links embedded as high cost edges. In such graph, the input/output

pins, as well as the logic blocks, are represented as vertices with a specific cost associ-

ated with them, while edges correspond to the connections between them, as depicted

in Figure 2.7.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 38

C_out

C_in1 C_in2

LUT

Wire10

Wire11

Wire12

Wire13

Wire14

Wire15

W
ir

e1
6

W
ir

e1
7

W
ir

e1
8

LUT LUT

Wire1

Wire2

Wire3

Wire4

Wire5

Wire6

W
ir

e7
W

ir
e8

W
ir

e9

Layer 2

Layer 1

A_out

A_in1 A_in2

B_out

B_in1 B_in2

Source
A_out

Wire 7

Wire 8

Wire 9

TSV

Wire 1

Wire 5

Wire 4

Wire 11

A_in2

B_in1

b_in2

C_in1

Sink

Sink

Sink

High-cost edge
(intra-layer connection)

(a)

(b)

Wire 2
A_in1

TSV
(intra-layer connection)

Figure 2.7: Illustration of the routing graph construction: (a) netlist routing and (b)
corresponding routing graph.

2.3 Toolflows targeting 3-D FPGAs - Overview of our ap-

proach

2.3.1 Motivation

This section summarizes the main features found in available tools that perform appli-

cation implementation onto 3-D FPGA platforms and introduces our approach to the

subject. Table 2.1 provides a qualitative comparison among recently proposed academic

toolflows for application implementation onto 3-D FPGAs. A number of conclusions can

be derived based on this analysis. Among others, the majority of existing tools focus

solely onto homogeneous 3-D devices. Although the concept of homogeneity is inher-

ent at FPGAs, the opportunity to integrate either different process technologies (e.g.,

logic, memory, etc)[72] and/or to design domain-specific 3-D platforms[73] can achieve

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 39

mentionable gains, as discussed in Sections 2.1.1 and 2.2.1. Moreover, none of the ex-

isting CAD algorithms are tunable according to requirements posed either by target

application, or the employed 3-D platform.

In addition, it is worthwhile to mention that the available algorithms[74–81] rely

on straight-forward extensions of existing 2-D tools, which cannot fully exploit the ben-

efits of 3-D technology. On the contrary, physical design in the 3-D realm requires

fresh approaches (e.g. new algorithms and cost functions), that can benefit from the

architectural features provided by these devices. For instance, the algorithms for netlist

placement mainly rely on simulated annealing, which is a sequential algorithm that can-

not benefit from the existing many-core CPUs. As presented in Section 2.2, there is a

great need to develop novel parallel algorithms to take advantage of the current market

trend of increasing the number of CPU cores. Hence, one might expect that by manip-

ulating more advanced algorithms, we can achieve mentionable reduction at execution

run-time and consequently alleviate the time-to-market pressure.

Furthermore, the availability of source code is another interesting property, since it

provides engineers the opportunity to modify and/or extent appropriately the function-

ality of these tools in order to take into consideration additional features. For instance,

more advanced 3-D reconfigurable architectures can be supported (e.g. consisted of

mixed digital/analog circuits) if the additional architectural properties are appropriately

modeled. Note that such a feature is very important especially for educational purposes

in topics related to architecture design, as well as CAD algorithm development.

Application implementation onto FPGA platforms can take hours, or even days,

depending on the complexity of these designs. One of the most time-consuming steps

in the FPGA CAD flow is application’s placement. As we have emphasized before,

a good quality placement is essential to the overall design’s quality, since it influences

among others the interconnect delay, the congestion, the wirelength, as well as the power

consumption [82]. While there exists a lot of previous research on placement algorithms

for improving application’s maximum operating frequency, power/energy dissipation

and the wiring area occupied by a circuit, very few of them have as their primary goal

the minimization of the tool’s execution run-time. Compile time has recently been

recognized as an important issue for FPGAs[83] and there are designers willing to afford

a reduction in the quality of results (e.g. a penalty in performance) in exchange for a

high-speed compilation[82]. As a result, as the capacity of FPGA devices and the size of

designs grow, there is a great interest for performing fast application’s implementations

onto re-configurable platforms.

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 40

Our approach is to introduce a novel placer, based on Ant Colony Optimization

(ACO), targeting heterogeneous 3-D reconfigurable architectures. For evaluation pur-

poses, this algorithm was also implemented as a stand-alone open-source tool, which

was integrated onto the 3-D MEANDER open-source design framework (see Table 2.1).

The inherent parallelism found in our algorithm is exploited by today’s multi-core ar-

chitectures to reduce the execution run-time. This will allow the capacity of the FPGAs

to scale, as the number of working processors scale as well, avoiding the run-time cri-

sis. Also, by manipulating the cost function in our algorithm, one can easily enforce

all the legality constrains and implement new FPGA architectures. For example, by

taking into account the structure of a heterogeneous interconnect fabric of an FPGA’s

architecture, our approach can maximize the performance by a more efficient utilization

of the fabricated TSVs, something that the existing state-of-the-art algorithms cannot

achieve. Finally, our approach is able to combine partitioning with placement and thus

has the potential to arrive at placement solutions with better quality. Even though the

solution space from such an approach is huge, the inherent parallelism of our algorithm

is the key that will allow for efficient exploration of ever growing solution spaces as the

multi-core computational power of conventional processors increases.

Feature MEVA-3D [74] TPR [75] TPR [76] VPR3D [77] 3D-Tree [78]
3-D MEANDER
(previous version

[73] [79] [80])

Architecture

3-D technology TSV TSV TSV SSIT TSV
wirebonding,
TSV, SSIT

Heterogeneous layers yes no no no no yes

Interlayer routing uniform uniform uniform uniform uniform
uniform,

full-custom

Algorithm

CAD tuning no no no no no application-specific
Partition engine N/A sim. anneal. hMetis hMetis hMetis tabu
Partition objective min-cut min-cut min-cut min-cut min-cut constrained max-cut
Placement engine N/A sim. anneal. sim. anneal. sim. anneal. sim. anneal. ACO
Routing engine N/A pathfinder pathfinder pathfinder pathfinder pathfinder

Evaluation
Wirelength yes yes yes yes yes yes
Delay yes yes yes yes yes yes
Power yes no no yes yes yes

Other
Graphical interface no no no yes yes yes
Public available no yes no no no yes

Table 2.1: Qualitative comparison among toolflows for 3-D reconfigurable platforms.

2.3.2 Architecture Template of targeted 3-D FPGA

In this section we introduce the proposed architectural template targeting to alleviate the

impact of long wire-lengths. The concept of this architecture is depicted schematically

in Figure 2.8, where the CLBs are assigned to different device layers. Note that the

architectural template discussed in this paper is orthogonal to the rest architectural

approaches for 3-D FPGAs.

The routing connectivity between layers is actually implemented through vertically

aligned 3-D switch boxes (SBs). Previous studies have shown the efficiency of designing

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 41

Layer i+1

Layer i

Figure 2.8: Abstract view of the proposed 3-D FPGA architecture.

such components[73]. However, since 3-D SBs impose the usage of TSVs, their careful

spatial assignment is a crucial task for achieving performance and area efficient solu-

tions. Figure 2.9 depicts schematically the template of the proposed architecture. The

architectural organization of these layer might differ (i.e. assuming a heterogeneous 3-D

FPGA).

Specifically, each layer of the introduced 3-D FPGA is based on island-style archi-

tecture, where the logic blocks are arranged in an array (square or rectangle) surrounded

by horizontal and vertical routing channels. The communication between resources as-

signed to different layers is provided through vertically aligned TSVs. These TSVs are

actually implemented inside the SBs, which are appropriately extended in order to be

aware of the third dimension[73]. Such kind of connectivity provides routing paths (de-

picted with dotted lines in Figure 2.9) between SBs assigned to adjacent layers with the

same (x, y) coordinates.

Figure 2.9: Architectural template of our proposed 3-D architecture with two layers
interconnected through TSVs (dotted lines).

Chapter 2. Three-dimensional Chip Stacking - A Whole New World! 42

Table 2.2 summarizes the main properties of the employed TSV technology[84],

whereas regarding the modeling of the remaining hardware resources (e.g. routing wires,

transistors, etc), we follow a similar approach to the one found in relevant literature[85].

Note that the selection of the employed values for architectural components do not affect

the generality of the introduced solution, which is also applicable to other flavors of 3-D

integration (such as the 2.5-D provided by Xilinx[86]).

Property Value

Length: 4-9 um

Diameter: 1.2 um

Minimum pitch (PTSV): 4 um

Resistance: 0.35 Ω

Capacitance: 2.5 fF

Table 2.2: Properties of the employed TSVs[84].

2.4 Summary

Three dimensional (3-D) chip stacking is a revolutionary technology able to achieve

improved performance at a reduced power consumption and smaller footprint than con-

ventional two dimensional (2-D) implementations. The design of such 3-D platforms is

a complex problem that demands architecture-level exploration and customization. As

a result there is an ever growing need for more efficient and faster CAD tools addressing

these aspects. Additionally, the application mapping onto 3-D platforms should be sup-

ported by algorithms that, apart from quality, are able to produce results in reasonable

execution run-time, to keep up with the fast growing capacity of FPGA devices and the

size of the designs. In this chapter we summarized a number of state-of-the-art solutions

related to 3-D reconfigurable architectures and CAD algorithms and presented a brief

overview of our approach.

Chapter 3

A Novel Placement Algorithm

based on Ant Colony

Optimization

Ants exhibit complex social behaviors that have long since attracted the attention of

humans. Many biologists study these behaviors of ants in detail and have stumbled into

some interesting results. One of the most surprising behavioral patterns exhibited by

ants is the ability of certain ant species to find what computer scientists call shortest

paths. Biologists have shown experimentally that this is possible by exploiting com-

munication based only on pheromones, an odorous chemical substance that ants may

deposit and smell. It is this behavioral pattern that inspired computer scientists to

develop algorithms for the solution of optimization problems[87].

In this chapter we introduce our proposed algorithm for addressing the placement

problem at 3-D reconfigurable architectures. The introduced approach relies on Ant

Colony Optimization (ACO) algorithm and mimics the aforementioned foraging behavior

of ants in order to find a high quality placement in regard to legality constrains and

optimization goals. Ant colony optimization (ACO) is a population-based metaheuristic,

classified as a Swarm intelligence (SI) method1, that can be used to find approximate

1Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural
or artificial. The concept is employed in work on artificial intelligence. The expression was introduced
by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems[88–90]. SI systems
consist typically of a population of simple agents or boids interacting locally with one another and with
their environment. The inspiration often comes from nature, especially biological systems. The agents
follow very simple rules, and although there is no centralized control structure dictating how individual
agents should behave, local, and to a certain degree random, interactions between such agents lead to
the emergence of “intelligent” global behavior, unknown to the individual agents. Examples in natural
systems of SI include ant colonies, bird flocking, animal herding, bacterial growth, fish schooling and
microbial intelligence.

43

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 44

solutions to difficult optimization problems. In ACO, a set of software agents called

artificial ants search for good solutions to a given optimization problem.

The rest of the chapter is organized as follows: Section 3.1 introduces the field

of Ant Colony Optimization. Section 3.2 provides an overview of the existing ACO

algorithms, while Section 3.3 presents our proposed implementation. Finally in section

4.3 we conclude the chapter.

3.1 Introduction to ACO - From Real to Artificial Ants

Ant colonies, and more generally social insect societies, are distributed systems that,

in spite of the simplicity of their individuals, present a highly structured social orga-

nization and as a result can accomplish complex tasks using the collective intelligence

of the group. The field of ant based algorithms derived from the observation of real

ants’ behavior, and uses these models as a source of inspiration for the design of novel

algorithms for the solution of optimization and distributed control problems. The main

idea is that the self-organizing principles which allow the highly coordinated behavior

of real ants can be exploited to coordinate populations of artificial agents that collabo-

rate to solve computational problems. Several different aspects of the behavior of ants

have inspired different kinds of ant algorithms. Examples are foraging, division of labor,

brood sorting, and cooperative transport. In all these examples, ants coordinate their

activities via stigmergy, a form of indirect communication mediated by modifications of

the environment. The idea behind ant algorithms is to use a form of artificial stigmergy

to coordinate societies of artificial agents[87].

One of the most successful examples of ant based algorithms is known as Ant Colony

Optimization (ACO). ACO is inspired by the foraging behavior of ants, and targets

discrete optimization problems. As we mentioned earlier, ants communicate indirectly

by modifying their environment. This form of communication is called stigmergy. In

fact the visual perceptive faculty of many ant species is only rudimentarily developed

and there are many ant species that are completely blind. As a result most of the

communication among individuals is based on the use of chemicals exuded by the ants.

Those chemicals are called pheromones.

3.1.1 The Double Bridge Experiment

The original inspiration for the ACO algorithms comes from an experiment performed by

Jean-Louis Deneubourg and colleagues, called the double-bridge experiment. Although

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 45

ACO has grown to become a fully fledged algorithmic framework and now includes many

components that are no longer related to real ants, we report here the double-bridge

experiment for its historical value.

The foraging behavior of many ant species, as, for example, I. humilis (Deneubourg,

Aron, Goss, & Pasteels, 1990; Goss et al., 1989), Linepithema humile, and Lasius niger

(Bonabeau et al., 1997), is based on indirect communication mediated by pheromones.

While walking from food sources to the nest and vice versa, ants deposit those pheromones

on the ground, forming in this way a pheromone trail. Ants can smell the pheromone

trails and they tend to choose, probabilistically, paths marked by strong pheromone

concentrations. The pheromone trail-laying and -following behavior of some ant species

was the topic of investigation on the double bridge experiment. The setup was as fol-

lows: They used a double bridge connecting a nest of ants of the Argentine ant species

I. humilis and a food source. Then they ran experiments varying the ratio r = ll/ls

between the length of the two branches of the double bridge, where ll was the length of

the longer branch and ls the length of the shorter one.

In the first experiment the bridge had two branches of equal length (r = 1, as shown

in Figure 3.1 (a)). At the start, ants were left free to move between the nest and the food

source and the percentage of ants that chose one or the other of the two branches were

observed over time. The outcome was that (Figure 3.2 (a)), although in the initial phase

random choices occurred, eventually all the ants used the same branch. This result can

be explained as follows: When a trial starts there is no pheromone on the two branches.

Hence, the ants do not have a reference and they select with the same probability any

of the branches. Yet, because of random fluctuations, a few more ants will select one

branch over the other. Because ants deposit pheromone while walking, a larger number

of ants on a branch results in a larger amount of pheromone on that branch. This larger

amount of pheromone in turn stimulates more ants to choose that branch again, and so on

until finally the ants converge to one single path. This autocatalytic or positive feedback

process is, in fact, a nice example of the self-organizing behavior of the ants. It is also

an example of stigmergic communication. Ants coordinate their activities, exploiting

indirect communication mediated by modifications of the environment in which they

move.

In the second experiment, the length ratio between the two branches was set to

r = 2, so that the long branch was twice as long as the short one (Figure 3.1 (b)). In this

case, in most of the trials, after some time had past, all the ants chose to use only the

short branch (Figure 3.2 (b)). As in the first experiment, ants leave the nest to explore

the environment and arrive at a decision point where they have to choose one of the two

branches. Because the two branches initially appear identical to the ants, they choose

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 46

randomly. Therefore, it can be expected that, on average, half of the ants choose the

short branch and the other half the long branch, although stochastic oscillations may

occasionally favor one branch over the other. However, this experimental setup presents

a remarkable difference with respect to the previous one: because one branch is shorter

than the other, the ants choosing the short branch are the first to reach the food and to

start their return to the nest. But then, when they must make a decision between the

short and the long branch, the higher level of pheromone on the short branch will bias

their decision in its favor. Therefore, pheromone starts to accumulate faster on the short

branch, which will eventually be used by all the ants because of the autocatalytic process

described previously. When compared to the experiment with the two branches of equal

length, the influence of initial random fluctuations is much reduced, and stigmergy,

autocatalysis, and differential path length are the main mechanisms at work (see Figure

3.3). Interestingly, it can be observed that, even when the long branch is twice as long

as the short one, not all the ants use the short branch, but a small percentage may take

the longer one. This may be interpreted as a type of path exploration.

Figure 3.1: Experimental setup for the double bridge experiment. (a) Branches have
equal length. (b) Branches have different length.[87].

Figure 3.2: Results obtained in the double bridge experiment. (a) Results for the
case in which the two branches have the same length (b) Results for the case in which

one branch is twice as long as the other.[87].

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 47

Figure 3.3: Stigmergy, autocatalysis and differential path length at work.

Figure 3.4: In this experiment initially only the long branch was offered to the colony.
(a) The initial experimental setup and the new situation after 30 minutes, when the
short branch was added. (b) In the great majority of the experiments, once the short

branch is added the ants continue to use the long branch[87].

It is also interesting to see what happens when the ant colony is offered, after

convergence, a new shorter connection between the nest and the food. This situation

was studied in an additional experiment in which initially only the long branch was

offered to the colony and after 30 minutes the short branch was added (Figure 3.4). In

this case, the short branch was only selected sporadically and the colony was trapped

on the long branch. This can be explained by the high pheromone concentration on

the long branch and by the slow evaporation of pheromone. In fact, the great majority

of ants choose the long branch because of its high pheromone concentration, and this

autocatalytic behavior continues to reinforce the long branch, even if a shorter one

appears. Pheromone evaporation, which could favor exploration of new paths, is too

slow: the lifetime of the pheromone is comparable to the duration of a trial, which

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 48

means that the pheromone evaporates too slowly to allow the ant colony to “forget”

the suboptimal path to which they converged so that the new and shorter one can be

discovered and learned[87].

3.1.2 From the Natural Inspiration to the Artificial Model

The double bridge experiments show clearly that ant colonies have a built-in optimization

capability. By the use of probabilistic rules based on local information they can find

the shortest path between two points in their environment. Taking inspiration from

the double bridge experiments, it is possible to design artificial ants that, by moving

on a graph modeling the double bridge, can find the shortest path between two nodes

corresponding to the nest and to the food source, as depicted in Figure 3.5.

Figure 3.5: Ants build solutions, that is, paths from a source to a destination
node.[87].

Ants initially wander randomly around their environment. Once food is located an

ant will begin laying down pheromone in the environment. Numerous trips between the

food and the colony are performed and if the same route is followed that leads to food

then additional pheromone is laid down. Pheromone decays in the environment, so that

older paths are less likely to be followed. Other ants may discover the same path to

the food and in turn may follow it and also lay down pheromone. A positive feedback

process routes more and more ants to productive paths that are in turn further refined

through use[91].

The objective of the strategy is to exploit historic and heuristic information to

construct candidate solutions and fold the information learned from constructing so-

lutions into the history. Solutions are constructed one discrete piece at a time in a

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 49

probabilistic step-wise manner. The probability of selecting a component is determined

by the heuristic contribution of the component to the overall cost of the solution and

the quality of solutions from which the component has historically known to have been

included. History is updated proportionally to the quality of the best known solution

and is decreased proportionally to the usage[91].

ACO algorithms can be applied to any combinatorial optimization problem for

which a solution construction procedure can be conceived.

Combinatorial Optimization Problems

Combinatorial optimization problems involve finding values for discrete variables such

that the optimal solution with respect to a given objective function is found[87]. Many

optimization problems of practical and theoretical importance are of combinatorial na-

ture. Examples involve routing problems (Traveling Salesman Problem, Vehicle Rout-

ing, FPGA Routing), assignment problems (Quadratic Assignment, Graph Coloring),

scheduling problems (Job Shop, Total tardiness), subset problems (Graph Coloring,

Multiple Knapsack, Set Covering), machine learning problems and many more. A com-

binatorial optimization problem is either a maximization or a minimization problem

which has associated a set of problem instances.

More formally, an instance of a combinatorial optimization problem Π is a triple

(S, f,Ω) where S is the set of candidate solutions, f is the objective function which

assigns an objective function value f(s) to each candidate solution s ∈ S, and Ω is

a set of constraints. The solutions belonging to the set S̃ ⊆ S of candidate solutions

that satisfy the constraints Ω are called feasible solutions. The goal is to find a globally

optimal feasible solution s∗. For minimization problems this consists in finding a solution

s∗ ∈ S̃ with minimum cost, that is, a solution such that f(s∗) ≤ f(s) for all s ∈ S̃. For

maximization problems one searches for a solution with maximum objective value, that

is, a solution with f(s∗) ≥ f(s) for all s ∈ S̃ 2.

Unfortunately most of the combinatorial optimization problems (or at least the in-

teresting ones) are NP -complete3. As a result, exact algorithms for the solution of such

problems need, in the worst case, exponential time to find the optimum, making them

infeasible for practical applications. If optimal solutions cannot be efficiently obtained

2Note that maximizing a function over its argument is equivalent to minimizing that function over the
same argument with a sign change. So maximization and minimization are computationally equivalent.

3NP -complete is the complexity class of decision problems for which answers can be checked for
correctness, given a certificate, by an algorithm whose run time is polynomial in the size of the input
(that is, it is NP) and no other NP problem is more than a polynomial factor harder (NP -hard).
Informally, a problem is NP -complete if answers can be verified quickly, and a quick algorithm to solve
this problem can be used to solve all other NP problems quickly[92].

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 50

in practice, the only possibility is to trade optimality for efficiency. In other words,

the guarantee of finding optimal solutions can be sacrificed for the sake of getting very

good solutions in polynomial time. Approximate algorithms, also loosely called heuris-

tic methods or simply heuristics, seek to obtain good, that is, near-optimal solutions

at relatively low computational cost without being able to guarantee the optimality of

solutions. A metaheuristic is a set of algorithmic concepts that can be used to de-

fine heuristic methods applicable to a wide set of different problems. In other words,

a metaheuristic can be seen as a general-purpose heuristic method designed to guide

an underlying problem-specific heuristic (e.g., a local search algorithm or a construction

heuristic) toward promising regions of the search space containing high-quality solutions.

A metaheuristic is therefore a general algorithmic framework which can be applied to

different optimization problems with relatively few modifications to make them adapted

to a specific problem. The use of metaheuristics has significantly increased the ability

of finding very high-quality solutions to hard, practically relevant combinatorial opti-

mization problems at a reasonable time. This is particularly true for large and poorly

understood problems. Ant colony optimization is a metaheuristic in which a colony

of artificial ants cooperate in finding good solutions to difficult discrete optimization

problems.

Applying Ant Colony Optimization

As we mentioned earlier, Ant Colony Optimization can be applied to any combinatorial

optimization problem for which a solution construction procedure can be conceived.

Artificial ants build solutions by performing randomized walks on a fully connected

weighted graph GC = (C,L) whose nodes are the components C, and the set L fully

connects the components C 4. The graph GC is called construction graph and elements

of L are called connections. To build a solution each ant utilizes information stored at

each component or connection. This information is the pheromone trail and the heuristic

information, whose values are used by the algorithm’s probabilistic decision rule to make

decisions on how to move on the graph.

We associate with every component ci ∈ C or connection lij ∈ L a pheromone trail

τ (τi if associated with components, τij if associated with connections), and a heuristic

value η (ηi and ηij , respectively). The pheromone trail is used to encode a long-

term memory about the entire search process, and is updated by the ants themselves.

Differently, the heuristic value, often called heuristic information, represents a priori

information about the problem instance or run-time information provided by a source

4If the graph representing our problem is not fully connected we can convert it to a fully connected
one simply by assigning a huge weight value to the non-existing edges.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 51

different from the ants. In many cases η is the cost, or an estimate of the cost, of

adding the component or connection to the solution under construction. The problem’s

constraints Ω(t) are built into the ants’ constructive heuristic. In most applications,

ants construct feasible solutions. However, sometimes it may be necessary or beneficial

to also let them construct infeasible solutions.

Succeeding the construction of a solution, each ant evaluates the quality of its

solution and based on that quality it decides on how much pheromone to deposit on the

components or connections used. Subsequent ants use this information to guide their

search towards promising solutions. Thus, good-quality solutions emerge as the result

of the collective interaction among the ants. Summarizing:

• A colony of artificial ants move concurrently, asynchronously and independently

on the construction graph, incrementally building solutions to the optimization

problem.

• In order to move around the graph they use a stochastic local decision policy that

makes use of pheromone trails and heuristic information.

• Based on the quality of the solution, each ant deposits different amounts of pheromone.

In doing so they adaptively modify the way the problem is represented and per-

ceived by other ants.

3.1.3 The Ant Colony Optimization Metaheuristic

In this section we present in more detail the aforementioned procedure. In Algorithm

1 we present the ACO metaheuristic in pseudo-code. Informally, an ACO algorithm

can be imagined as the interplay of three procedures: ConstructAntsSolutions, Up-

datePheromones, and DaemonActions[87].

Algorithm 1 ACO Metaheuristic pseudo-code.

1: procedure ACOMetaheuristic
2: ConstructAntsSolution
3: UpdatePheromones
4: DaemonActions
5: end procedure

ConstructAntsSolutions manages a colony of ants that concurrently and asyn-

chronously visit adjacent states of the considered problem by moving through neighbor

nodes of the problem’s construction graph GC . They move by applying a stochastic local

decision policy that makes use of pheromone trails and heuristic information. In this way,

ants incrementally build solutions to the optimization problem. Once an ant has built

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 52

a solution, the ant evaluates the solution that will be used by the UpdatePheromones

procedure to decide how much pheromone to deposit.

UpdatePheromones is the process by which the pheromone trails are modified. The

trails value can either increase, as ants deposit pheromone on the components or con-

nections they use, or decrease, due to pheromone evaporation. From a practical point of

view, the deposit of new pheromone increases the probability that those components/-

connections that were either used by many ants or that were used by at least one ant

and which produced a very good solution will be used again by future ants. On the

other hand, pheromone evaporation implements a useful form of “forgetting”. It avoids

a too rapid convergence of the algorithm toward a suboptimal region, therefore favoring

the exploration of new areas of the search space.

Finally, the DaemonActions procedure is used to implement centralized actions

which cannot be performed by single ants. Examples of daemon actions are the activation

of a local optimization procedure, or the collection of global information that can be used

to decide whether it is useful or not to deposit additional pheromone to bias the search

process from a nonlocal perspective. As a practical example, the daemon can observe

the path found by each ant in the colony and select one or a few ants (e.g., those that

built the best solutions in the algorithm iteration) which are then allowed to deposit

additional pheromone on the components/connections they used.

There are several possible termination criteria, which we may choose depending on

the application:

• maximum CPU time elapsed,

• maximum number of solutions generated,

• percentage deviation from a lower/upper bound from the optimum value,

• maximum number of iterations without improvement in solution quality,

• other metaheuristic-dependent rules (e.g. empty neighborhood),

• or any other implementation-specific criterion that may be suitable.

3.2 Overview of ACO Algorithms

There are numerous variations of ACO algorithms, many of which have been successfully

utilized to solve various real world problems[87, 93–97]. The first ACO algorithm was

Ant System which provided the inspiration for a number of extensions that significantly

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 53

improved performance and are currently among the most successful ACO algorithms. In

this section we will make a brief introduction to the main members of the ACO family:

3.2.1 Ant System

The Ant System (AS) algorithm works in two main phases: the ants’ solution construc-

tion and the pheromone update.

Solution Construction

In AS, m artificial ants concurrently build a solution to the given problem. At each

construction step, ant k applies a probabilistic action choice rule, called random propor-

tional rule, to decide which connection (or component) to select next. The probabilistic

step-wise construction of solution makes use of both history (pheromone) and problem-

specific heuristic information to incrementally construct a solution piece-by-piece. Each

connection can only be selected if it has not already been chosen (for most combina-

torial problems). For those components, j, that can be selected from a given current

component, i, their probability for selection by ant k is defined as[87, 91]:

pkij =
[τij]

α × [ηij]
β∑

l∈Nk
i
[τil]α × [ηil]β

(3.1)

where τij is the pheromone trail, ηij is the heuristic information that is available a priori,

α and β are two parameters which determine the relative influence of the pheromone

trail and the heuristic information, and Nk
i is the feasible neighborhood of ant k (the

components j that can be selected from a given current component, i). By this proba-

bilistic rule, the probability of choosing a particular component increases with the value

of the associated pheromone trail τij and heuristic information ηij . The role of the

parameters α and β is the following: If α = 0, then we only use the a priory heuris-

tic information and our algorithm degrades to a stochastic greedy algorithm. On the

other hand if β = 0 we only use the pheromone trails without any heuristic bias. This

usually leads to rather poor results because there is no information to guide the initial

constructions.

This random proportional rule presented in Equation 3.1 is analogous to the “Roulette

Wheel” selection method[98] used in genetic algorithms in the sense that fittest indi-

viduals (the ones who in the past have produced hight quality solutions and as a result

have higher pheromone values) have a larger share of the roulette wheel and as a result

greater probability to be chosen again, where weakest individuals occupy smaller share

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 54

of the roulette wheel and have less probability to be chosen. A visual representation of

the “Roulette Wheel” selection method is shown in Figure 3.6.

Figure 3.6: “Roulette Wheel” selection method.

Pheromone Trails Update

At the end of each iteration, after all ants have constructed their solutions, the pheromone

trails are updated. This is done by first lowering the pheromone value on all the con-

nections by a constant factor, and then adding pheromone on the connections the ants

have used in their solutions. Pheromone evaporation is implemented by Equation 3.2:

τij ← (1− ρ)× τij (3.2)

where ρ is the pheromone evaporation rate. Evaporation is used to avoid unlimited

accumulation of the pheromone trails and it enables the algorithm to “forget” bad deci-

sions previously taken. In fact, if a connection is not chosen by the ants, its associated

pheromone value decreases exponentially in the number of iterations. After evaporation,

all ants deposit pheromone on the connections they have selected in their solution using

Equation 3.3:

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 55

τij ← τij +

m∑
k=1

∆τkij (3.3)

where ∆τkij is the amount of pheromone ant k deposits on the connections it has selected

in his solution, and it’s defined as follows:

∆τkij =


1
Ck

if connection (i, j) belongs to T k

0 otherwise
(3.4)

where Ck is the cost of the solution T k built by the k-th ant. By means of Equation

3.4, the better an ant’s solution is, the more pheromone the connections belonging to

this solution receive. In general, connections that are used by many ants and which are

part of high quality solutions, receive more pheromone and are therefore more likely to

be chosen by ants in future iterations of the algorithm[87].

3.2.2 Elitist Ant System

The Elitist Ant System (EAS) is a first improvement on the initial AS. The idea is to

provide strong additional reinforcement to the connections belonging to best solution

found since the start of the algorithm. This solution is denoted as T bs (best-so-far

solution) in the following. Note that this additional feedback to the best-so-far solution

(which can be viewed as additional pheromone deposited by an additional ant called

best-so-far ant) is another example of a daemon action of the ACO metaheuristic[87].

Pheromone Trails Update

The additional reinforcement of solution T bs is achieved by adding a quantity e = Cbs

to its connections, where e is a parameter that defines the weight given to the best-so-

far solutions T bs, and Cbs is its cost. Thus, Equation 3.3 for the pheromone deposit

becomes:

τij ← τij +

m∑
k=1

∆τkij + e∆τ bsij (3.5)

where ∆τkij is defined as in Equation 3.4 and ∆τ bsij is defined as:

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 56

∆τ bsij =


1
Cbs

if connection (i, j) belongs to T bs

0 otherwise
(3.6)

3.2.3 Rank-Based Ant System

Another improvement over AS is the rank-based version of AS (ASrank). In ASrank each

ant deposits an amount of pheromone that decreases with its rank. Additionally, as

in EAS, the best-so-far ant always deposits the largest amount of pheromone in each

iteration[87].

Pheromone Trails Update

Before updating the pheromone trails, the ants are sorted by decreasing solution quality

and the quantity of pheromone an ant deposits is weighted according to the rank r of the

ant. In each iteration only the (w − 1) best ranked ants and the ant that produced the

best-so-far solution (this ant does not necessarily belong to the set of ants of the current

algorithm iteration) are allowed to deposit pheromone. The best-so-far solution gives

the strongest feedback, with weight w, while the r-th best ant of the current iteration

contributes to pheromone updating with the value 1
Cr multiplied by a weight given by

max{0, w − r}. Thus, the ASrank pheromone update rule is:

τij ← τij +
w−1∑
r=1

(w − r)∆τ rij + w∆τ bsij (3.7)

where ∆τ rij = 1
Cr and ∆τ bsij = 1

Cbs

3.2.4 MAX −MIN Ant System

MAX −MIN Ant System (MMAS) introduces four main modifications with respect

to AS. First, it strongly exploits the best solution found: only either the iteration-best

ant, that is, the ant that produced the best solution in the current iteration, or the best-

so-far ant is allowed to deposit pheromone. Unfortunately, such a strategy may lead to

a stagnation situation in which all the ants construct the same solution, because of the

excessive growth of pheromone trails on connections of a good, although suboptimal,

solution. To counteract this effect, a second modification introduced by MMAS is that

it limits the possible range of pheromone trail values to the interval [τmin, τmax]. Third,

the pheromone trails are initialized to the upper pheromone trail limit, which, together

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 57

with a small pheromone evaporation rate, increases the exploration of solutions at the

start of the search. Finally, in MMAS, pheromone trails are reinitialized each time the

system approaches stagnation or when no improved solution has been generated for a

certain number of consecutive iterations[87].

Pheromone Trails Update

After all ants have constructed a solution, pheromones are updated by applying evapo-

ration as in AS (Equation 3.2), followed by the deposit of new pheromone as follows:

τij ← τij + ∆τ bestij (3.8)

where ∆τ bestij = 1
Cbest

. The ant which is allowed to add pheromone may be either

the best-so-far or the iteration-best. In general, in MMAS implementations both the

iteration-best and the best-so-far update rules are used, in an alternate way.

3.2.5 Ant Colony System

Ant Colony System (ACS) differs from AS in three main points. First, it exploits the

search experience accumulated by the ants more strongly than AS does through the use

of a more aggressive action choice rule. Second, pheromone evaporation and deposition

take place only on the connections belonging to the best-so-far solution. Third, each

time an ant uses a connection (i, j), it removes some pheromone from the connection to

increase the exploration of alternative paths[87].

Solution Construction

In ACS, ants choose the components to built their solutions according to a pseudorandom

proportional rule, presented in Equation 3.9:

pkij =


argmaxl∈Nk

i

{
τil × [ηil]

β
}

if q ≤ q0

τij×[ηij]
β∑

l∈Nk
i

[τil]α×[ηil]β
otherwise

(3.9)

where q is a random variable uniformly distributed in [0, 1] and q0 (0 ≤ q0 ≤ 1) is

a parameter. As a result with probability q0 the ant makes the best possible move

according to the information learned so far while with probability (1− q0) it performs a

biased exploration of the connections.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 58

Global Pheromone Trails Update

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after each itera-

tion. Thus, the update in ACS is implemented by the following equation:

τij ← (1− ρ)τij + ρ∆τ bsij , ∀(i, j) ∈ T bs (3.10)

It’s noteworthy to mention that in ACS the pheromone trail update, both evapo-

ration and new pheromone deposit, only applies to the connections of T bs, not to all the

connections as in AS. This is important, because in this way the computational com-

plexity of the pheromone update at each iteration is reduced from O(n2) to O(n). Also

note that, in Equation 3.10 the deposited pheromone is discounted by a factor ρ. This

results in the new pheromone trail being a weighted average between the old pheromone

value and the amount of pheromone deposited.

Local Pheromone Trails Update

In addition to the global pheromone trail updating rule, in ACS the ants use a local

pheromone update rule that they apply immediately after having chosen a connection

during the construction of their solution. The effect of that rule is that each time an

ant uses a connection, its pheromone trail is reduced, so that the connection becomes

less desirable for the following ants, encouraging the exploration of new solutions. This

rule is presented in Equation 3.11:

τij ← (1− ξ)τij + ξτ0 (3.11)

where ξ, 0 < ξ < 1, is the local pheromone evaporation rate and τ0 is the initial value

for the pheromone trails.

It is important to note that, while for the previously discussed AS variants it does

not matter whether the ants construct the solutions in parallel or sequentially, in ACS

this makes a difference, because of the local pheromone update rule. In most ACS

implementations the choice has been to let all the ants move in parallel, although there

is, at the moment, no experimental evidence in favor of one choice or the other.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 59

3.2.6 Approximate Nondeterministic Tree Search (ANTS)

Approximate nondeterministic tree search (ANTS) is an ACO algorithm that exploits

ideas from mathematical programming. In particular, ANTS computes lower bounds

on the completion of a partial solution to define the heuristic information that is used

by each ant during the solution construction. The name ANTS derives from the fact

that the proposed algorithm can be interpreted as an approximate nondeterministic tree

search since it can be extended in a straightforward way to a branch & bound procedure5.

Apart from the use of lower bounds, ANTS also introduces two additional modifica-

tions with respect to AS: the use of a novel action choice rule and a modified pheromone

trail update rule[87].

Use of Lower Bounds

In ANTS, lower bounds on the completion cost of a partial solution are used to compute

heuristic information on the attractiveness of adding a connection (i, j) to the solution.

This is achieved by tentatively adding the connection to the current partial solution and

by estimating the cost of a complete solution containing this connection by means of a

lower bound. This estimate is then used to compute the value ηij that influences the

probabilistic decisions taken by the ant during the solution construction. The lower the

estimate the more attractive the addition of a specific connection.

The use of lower bounds to compute the heuristic information has the advantage

in that otherwise feasible moves can be discarded if they lead to partial solutions whose

estimated costs are larger than the best-so-far solution. A disadvantage is that the lower

bound has to be computed at each single construction step of an ant and therefore a

significant computational overhead might be incurred. To avoid this as much as possible,

it is important that the lower bound is computed efficiently.

Solution Construction

The rule used by ANTS to compute the probabilities during the ants’ solution construc-

tion has a different form than that used in most other ACO algorithms. In ANTS, an

5Branch and bound (BB or B&B) is an algorithm design paradigm for discrete and combinatorial
optimization problems. A branch-and-bound algorithm consists of a systematic enumeration of candidate
solutions by means of state space search. The set of candidate solutions is thought of as forming a rooted
tree with the full set at the root. The algorithm explores branches of this tree, which represent subsets of
the solution set. Before enumerating the candidate solutions of a branch, the branch is checked against
upper and lower estimated bounds on the optimal solution, and is discarded if it cannot produce a better
solution than the best one found so far by the algorithm[99].

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 60

ant k chooses components, j, that can be selected from a given current component, i,

with probability:

pkij =
ζτij + (1− ζ)ηij∑
l∈Nk

i
ζτil + (1− ζ)ηil

, if j ∈ Nk
i (3.12)

where ζ, 0 ≤ ζ ≤ 1 is a parameter. An advantage of Equation 3.12 is that, when com-

pared to Equation 3.1, only one parameter is used. Additionally, simpler operations that

are faster to compute, like sums instead of multiplications for combining the pheromone

trail and the heuristic information, are applied.

Pheromone Trails Update

Another particularity of ANTS is that it has no explicit pheromone evaporation. Pheromone

updates are implemented as follows:

τij ← τij +
m∑
k=1

∆τkij (3.13)

where ∆τkij is given by:

∆τkij =

θ
(

1− Ck−LB
Lavg−LB

)
if connection (i, j) belongs to T k

0 otherwise
(3.14)

where θ is a parameter, LB is the value of a lower bound on the optimal solution value

computed at the start of the algorithm and we have LB ≤ C∗, where C∗ is the cost of the

optimal solution, and Lavg is the moving average of the last l solutions generated by the

ants, that is, the average length of the l most recent solutions generated by the algorithm

(with l being a parameter of the algorithm). If an ant’s solution is worse than the current

moving average, the pheromone trail of the connections used by the ant is decreased.

Otherwise, if the ant’s solution is better, the pheromone trail is increased. The additional

effect of using Equation 3.14 is a dynamic scaling of the objective function differences

which may be advantageous if in later stages of the search the absolute difference between

the ant’s solution qualities becomes smaller and, consequently, Ck moves closer to Lavg.

(Note that once a solution with objective function value equal to LB is found, the

algorithm can be stopped, because this means that an optimal solution is found.)

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 61

3.2.7 Hyper-Cube Framework for ACO

The hyper-cube framework for ACO was introduced to automatically rescale the pheromone

values in order for them to lie always in the interval [0, 1]. This choice was inspired by

the mathematical programming formulation of many combinatorial optimization prob-

lems, in which solutions can be represented by binary vectors. In such a formulation,

the decision variables, which can assume the values {0, 1}, typically correspond to the

solution components as they are used by the ants for solution construction. A solution

to a problem then corresponds to one corner of the n-dimensional hyper-cube, where n

is the number of decision variables. The set of all feasible solutions consists of all vectors
−→u ∈ Rn that are convex combinations of binary vectors −→x ∈ Bn[87].

Pheromone Trails Update

In the hyper-cube framework the pheromone trails are forced to stay in the interval [0, 1].

This is achieved by adapting the standard pheromone update rule of ACO algorithms.

The modified rule is given by:

τij ← (1− ρ)τij + ρ
m∑
k=1

∆τkij (3.15)

where,

∆τkij =


1/Ck
m∑
h=1

1/Ch
if connection (i, j) is used by ant k

0 otherwise

(3.16)

This pheromone trail update rule guarantees that the pheromone trails remain

smaller than 1. The new pheromone vector can be interpreted as a shift of the old

pheromone vector toward the vector given by the weighted average of the solutions used

in the pheromone update.

3.2.8 Convergence of ACO Algorithms

The brief history of the ant colony optimization metaheuristic is mainly a history of

experimental research. The first theoretical problem considered is the one concerning

convergence: will the metaheuristic find the optimal solution if given enough resources?

There are two types of convergence, convergence in value and convergence in solution.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 62

Proving convergence in value intuitively means proving that the algorithm generates at

least once the optimal solution. Proving convergence in solution can be interpreted as

proving that the algorithm reaches a situation in which it generates over and over the

same optimal solution. It has been proven that particular subsets of ACO algorithms

converge asymptotically[87]. In particular, asymptotic convergence in value was proved

for ACS and MMAS, two of the experimentally best-performing ACO algorithms6. Un-

fortunately, convergence proofs tell us that the bias introduced in the stochastic algo-

rithm does not rule out the possibility of generating an optimal solution, but they do not

say anything about the speed of convergence, that is, the computational time required

to find an optimal solution.

3.2.9 Stagnation Detection

Artificial ants iteratively sample solutions through a loop that includes a solution con-

struction, biased by the artificial pheromone trails and the heuristic information. The

main mechanism at work in ACO algorithms that triggers the discovery of high quality

solutions is the positive feedback given through the pheromone update by the ants. The

higher the quality of the ant’s solution, the higher the amount of pheromone the ant

deposits on the connections (or components) of its solution. This in turn leads to the

fact that these connections have a higher probability of being selected in the subsequent

iterations of the algorithm. The emergence of connections with high pheromone values

is further reinforced by the pheromone trail evaporation that avoids an unlimited accu-

mulation of pheromones and quickly decreases the pheromone level on connections that

only very rarely, or never, receive additional pheromone.

With good parameter settings, the long-term effect of the pheromone trails is to

progressively reduce the size of the explored search space so that the search concentrates

on a small number of promising connections. Yet, this behavior may become undesirable,

if the concentration is so strong that it results in an early stagnation of the search7. In

such an undesirable situation the system has ceased to explore new possibilities and no

better solution is likely to be found anymore. Several measures may be used to describe

the amount of exploration an ACO algorithm still performs and to detect stagnation

situations, such as the standard deviation σL of the quality of the solutions the ants

construct after every iteration, the λ-branching factor, or the average ε =
n∑
i=1

εi/n of the

entropies εi of the selection probabilities at each node[87]. The stagnation behavior of

6Convergence in solution has also been proven for some uncommon members of ACO family, in
particular GBAS and ACObs,τmin(θ).

7Search stagnation is defined as the situation in which all the ants follow the same path and construct
the same solution.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 63

the ACO algorithms is beyond the scope of this thesis so we will not make any further

analysis.

3.2.10 Parallelization of ACO Algorithms

The very nature of ACO algorithms makes them inherently parallelizable. The solution

construction phase can be easily parallelized by letting the ants move in parallel and

build their solutions concurrently. There are many different exchange strategies[100]

and also most of the parallel models that are used in other population based algorithms

can be easily adapted to ACO. Most parallelization strategies can be classified into fine-

grained and coarse-grained strategies. Characteristic of fine-grained parallelization is

that very few individuals are assigned to single processors and that frequent informa-

tion exchange among the processors takes place. In coarse-grained approaches, on the

contrary, larger subpopulations or even full populations are assigned to single processors

and information exchange is rather rare. Finally many researchers have investigated the

type of information that should be exchanged among the colonies and how this informa-

tion should be used to update the colonies’ pheromone trail information and have also

considered the case in which information among the colonies is exchanged at certain

intervals8. Their main observation was that the best results were obtained by limiting

the information exchange to the locally best solutions[87].

3.3 A Novel Placement Algorithm based on ACO

In this section we introduce our proposed algorithm for addressing the placement prob-

lem at 3-D reconfigurable architectures. Our approach relies on Ant Colony Optimiza-

tion (ACO). It is a novel, swarm-intelligence based algorithm, that mimics the foraging

behavior of ants in order to find a high quality placement in regard to legality constrains

and optimization goals. The inherent parallelism of ACO algorithms, the flexibility they

provide in regard of integrating different cost functions or FPGA architectures and the

fact that they combine a positive feedback mechanism and stochasticity decision policy

which account for rapid discovery of good solutions are just some of the strengths that

make ACO algorithms a good fit for the problem of FPGA placement. The pseudo-code

for our ACO-based placer is presented in Algorithm 2.

Several ACO algorithms have been proposed in the literature [87]. Our implemen-

tation incorporates concepts from the MAX−MIN Ant System (MMAS) and the Ant

8For example, Bullnheimer et al.[101] proposed the partially asynchronous parallel implementation
(PAPI). In PAPI, pheromone information was exchanged among the colonies every fixed number of
iterations and a high speedup was experimentally observed.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 64

Algorithm 2 Pseudo-code of our ACO-based placer.

1: set aco parameters();
2: init heuristic matrix();
3: init pheromone matrix();
4:

5: iteration = 1;
6: while (!termination condition()) {
7: for (n = 1; n ≤ n ants; n++) {
8: construct solution(ant[n]);
9: compute placement quality(ant[n]);

10: compare best so far ant(ant[n]);
11: local pheromone update(ant[n]);
12: }
13: global pheromone update();
14: iteration++;
15: }

Colony System (ACS). The functionality of our introduced algorithm can be summa-

rized as follows: In every iteration, each ant in the colony constructs a solution from

scratch. To do so, every ant[n] assigns block i to a physical location j on layer k using a

pseudorandom proportional rule. As a result, all the blocks in the circuit netlist will be

mapped to a specific location on the FPGA. The order in which the blocks are exam-

ined is random. These steps are repeated until a complete assignment is obtained. At

that point we evaluate the quality of the solution and compare it to the best solution

obtained so far (best so far ant), keeping the best of the two solutions. Every time an

ant completes the construction phase, we perform a local pheromone update, so that

the placement becomes less desirable for the following ants. At the end of each itera-

tion, a global pheromone update rule is used for both evaporation and new pheromone

deposition. The process continues until one of the termination conditions is met.

In the following subsections we give additional technical details about different

parameters of the employed ACO algorithm.

3.3.1 Algorithm Initialization

To begin with, we initialize the various parameters used in ACO algorithms (i.e. ρ, α, β,

ξ, q0, τ0). Proper initialization of these parameters is crucial as the performance of the

algorithm is extremely affected by them. As is the common practice we evaluated these

parameters through theory and preliminary experiments. Then, comes the initialization

of the heuristic and pheromone matrices.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 65

Heuristic Information

The heuristic information is used to guide the ants in the early stages of the algorithm

towards promising regions of the search space. As we have stated before, even though

convergence is guaranteed, the time to convergence is uncertain. That is why we need

a good heuristic metric to speedup the process in the initial construction steps. In this

implementation we introduce two types of heuristic information, a static and a dynamic

one.

Static Heuristic Information

The concept we used to compute the static heuristic values for each netlist block and

physical location is that, intuitively, the greater connection a block has in the circuit

netlist, the more centric it should be implemented[102]. Hence, we define the heuristic

information as shown in Equation 3.17:

ηijk = cross(i)× connect(j) ∀k (3.17)

where cross(i) denotes the connective extent between block i and other blocks (Equation

3.18) and connect(j) is defined as the total distance degree between location(j) and other

locations (Equation 3.19)

cross(i) =

#blocks∑
j=1

graph(i, j) (3.18)

connect(j) =
1∑

i∈CLB
distance(i, j)

(3.19)

where:

graph(i, j) =

1 if ∃ connection (i, j) ∨ (j, i)

0 otherwise
(3.20)

The problem with the above static heuristic is that we observed that many of the

benchmarks used in both academia and industry9 have small fanin/fanout values. As

9A Survey of FPGA Benchmarks can be found here [103].

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 66

a result the values for cross(i) were really small for most of the blocks. To counteract

that effect we introduced a really robust dynamic heuristic function.

Dynamic Heuristic Information

The idea behind the dynamic heuristic information is that we want blocks of the same

net (or path) to be close together in order to minimize the delay and total wire-length

used. Setting aside hierarchical FPGA architectures with different lengths of wire, a

good metric to evaluate a partial placement of a net is the sum Manhattan distance10

of the blocks belonging to the net. With that in mind, each time an ant chooses a

physical location for a netlist block, the dynamic heuristic information guides it towards

physical locations closer to other already placed blocks of the same net. As you can

image, this heuristic information can not be a priori defined. Instead it changes during

the progressions of the solution construction.

For complexity reasons we do not compute heuristic values between every block

of a net. Instead we modify the construction process to accommodate the on-the-fly

computation of these values. To be more specific, instead of placing netlist blocks

in random, we start by placing the blocks for the χ% of the larger nets. We place the

blocks of each of those nets sequentially, starting from the larger net, and we compute the

dynamic heuristic information for every physical location of the FPGA as the Manhattan

distance between the previously placed block of the net with the current block, as shown

in Equation 3.21:

ηijk =
1

manh dist(location(i), location(previous(i))
(3.21)

where location(i) is a possible physical location for block i (location j on layer k, for

which we are currently computing its heuristic value) and location(previous(i)) is the

physical location assigned to the previously placed block of the same net as i. This way

the computational complexity drops to O(g× κ) where g is the FPGA’s grid size and κ

the number of layers, or to O(g) if we perform the partition step of the 3-D CAD flow

independently.

Pheromone Trails

After some iterations, the collective knowledge of the ants is incorporated into the

pheromone information. Subsequent ants use the pheromone information as a guide

10The Manhattan distance is the sum of the absolute differences of their Cartesian coordinates.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 67

toward promising regions of the search space. As a result, the initialization of the

pheromone matrix plays a determining role in the performance of the algorithm. If the

initial value (τ0) for the pheromone trails is too low, then the search is quickly biased

by the first solutions generated by the ants. On the other hand, too high initial values

will require many iterations until pheromone evaporation reduces the pheromone values

enough, so that pheromone added by ants can start to bias the search[87]. The formula

we used to initialize the pheromone trails is τ0 = 1/ρC∗, where C∗ is the cost of the best

placement we forecast (approximately 40% of the initial cost), since we estimate that in

the long run, the upper pheromone trail limit on any component is bounded by 1/ρC∗.

To compute the initial cost we use either a random placement, or a greedy placement

based only on the heuristic information.

Like the heuristic information, a pheromone value is associated with each possible

connection of the construction graph. That is, for each possible assignment of a netlist

block i in a physical location j on a layer k, we have a value ηijk and τijk. Again, the

size of these arrays (and consequently the time complexity of the initialization phase)

can be considerably reduced by performing the partition step of the 3-D CAD flow

independently and thus assigning beforehand the layers that each block will be placed.

3.3.2 Solution Construction

Application Description in HDL

Synthesis

Technology Mapping

Partitioning

Placement

Routing

Evaluation

Placement

Routing

Platform Partition

Partition to Layer Assignment

Layer Ordering

2-D 3-D

3-D platform agnostic

3-D platform aware

Figure 3.7: Toolflow for performing application mapping onto FPGA platforms.

In Figure 3.7 we remind the design process for application mapping onto 3-D Reconfig-

urable Architectures that we examined in Section 2.2. One of the key advantages of our

implementation is the ability to incorporate in the solution construction phase both the

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 68

stages of partitioning and placement and as a result has the potential to arrive at supe-

rior placement solutions. In the solution construction phase we use the pseudorandom

proportional rule from ACS. In particular, the probability with which ant m places the

netlist block i to the physical spot j on the layer k is given by Equation 3.22:

pmijk =


argmax(y,z)∈Nm

{
[τiyz]

α × [ηiyz]
β
}

if q ≤ q0

[τijk]α×[ηijk]β∑
(y,z)∈Nm

[τiyz]α×[ηiyz]β
otherwise

(3.22)

where Nm is the set of available positions that ant m has in its disposition, q is a

random variable uniformly distributed in [0, 1] and q0, 0 ≤ q0 ≤ 1 is a parameter. So

with probability q0 the ant makes the best possible move as indicated by the learned

pheromone and heuristic information (exploitation), while with probability (1 − q0) it

performs a biased exploration [87]. Tuning the parameter q0 allows modulation of the

degree of exploration and the aggressiveness of the system, in other words how much

the new placement will deviate from the best so far placement.

The drawback of using the algorithm for both partitioning and placement is the

huge search space that the ants have to face in order to find a good solution. However the

inherent parallelism of our algorithm is the key that will allow for efficient exploration

of ever growing search spaces as the multi-core computational power of conventional

processors increases. To use as a pure placement algorithm, you just keep the layer

k fixed (to the value given by the placer) for each netlist block. Then Equation 3.22

becomes:

pmij =


argmax(y,z)∈Nm

{
[τiy]

α × [ηiy]
β
}

if q ≤ q0

[τij]
α×[ηij]

β∑
(y,z)∈Nm

[τiy]α×[ηiy]β
otherwise

(3.23)

with the equivalent changes to the equations for pheromone trails and heuristic values.

3.3.3 Cost Function

After every block of the netlist has been successfully placed by an ant, it is time to

evaluate the placement’s quality. Here the optimization goals that we used are the

minimization of the total wire-length and the minimization of the delay of the circuit.

The cost function is presented in Equation 3.24:

Cost = λ× timingCost+ (1− λ)× wiringCost (3.24)

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 69

The previously mentioned cost function is widely accepted and it is proved to be an

effective way to evaluate the quality of the placement[85]. In this function, wiringCost

attempts to minimize the total amount of interconnect required to successfully route

the circuit by placing netlist blocks of the same net close together. It uses the following

bounding box based function (Equation 3.25):

wiringCost =

#nets∑
i=1

q(i)× [bbx(i) + bby(i) + bbz(i)] (3.25)

where bbx, bby and bbz are the spans across the x, y and z axes accordingly and q(i)

is a factor that compensates for the underestimation of the required wire by the above

model.

The TimingCost is used to reduce the critical path delay. To compute the timingCost,

first we perform a timing analysis to the circuit in order to compute the delay of all of

the paths[85]. Then, we compute the arrival time Tarrival, the required time Trequired,

as well as the slack and the criticality of each connection as follows:

Tarrival(i) = max∀j∈fanin(i) {Tarrival(j) + delay(j, i)} (3.26)

Trequired(i) = min∀j∈fanout(i) {Trequired(j)− delay(i, j)} (3.27)

Slack(i, j) = Trequired(j)− Tarrival(i)− delay(i, j) (3.28)

Criticality(i, j) = 1− Slack(i, j)

Dmax
(3.29)

where Dmax is the critical path delay (maximum arrival time of all the sinks in the cir-

cuit). Then, we compute the timing cost of a connection (i, j) and the total timingCost

of the circuit (as the sum of all the timing costs) based on Equations 3.30 and 3.31,

respectively.

timing cost(i, j) = delay(i, j)× Criticality(i, j)Criticality Exp (3.30)

timingCost =
∑

∀i,j⊂circuit
timing cost(i, j) (3.31)

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 70

For experimental purposes we also implemented two more cost functions, one com-

puting the quadratic estimate for the k-point net using k(k − 1)/2 2-point nets11, and

one counting the number of hops.

3.3.4 Pheromone Update

Finally, we have the stage of the pheromone update. At this stage, the knowledge

accumulated by the ants is incorporated into the pheromone trails to guide the following

ants towards promising solutions. The aim of this stage is to increase the pheromone

trails associated with good placement solutions while, using the evaporation mechanism,

decrease the ones that produced poor solutions. In the proposed algorithm we adopt

concepts from both the MMAS and the ACS. Specifically, just like in the ACS, we have

two stages of pheromone update: a local one and a global one:

Global Pheromone Trail Update

The global pheromone update stage is performed at the end of every iteration. The role

of this update is to decrease all the pheromone values through pheromone evaporation

and increase the values associated with a good or promising solution, which is either the

best so far solution, or the iteration best solution. Just like the MMAS, we alternate

between the two. The relative frequency with which we choose to update the trails

based on either the best so far solution, or the iteration best solution has an influence

on how greedy the search is [87]. When pheromone updates are performed using the

the best so far solution, the search quickly focuses around that, whereas when we use

the iteration best solution, then the number of trails that receive pheromone is larger

and the search is less directed. Experimental results [87] show that for large testcases

the best performance is obtained by giving an increasingly stronger emphasis to the

best so far solution.

As for the pheromone update function per se, in our system we have implemented

both the MMAS’ and ACS’ functions (as presented in Equations 3.2, 3.8 and 3.10). The

default global pheromone update function used is given in Equation 3.32:

τ ′ijk =


τmin if τ ′ijk < τmin

(1− ρ) · τijk + ∆τ bestijk

τmax if τ ′ijk > τmax

(3.32)

11More on Quadratic Placement in VLSI in [104]

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 71

∆τ bestijk =


1

Costbest
if antbest maps Blocki to Spotj , Layerk

0 otherwise
(3.33)

where lower and upper trail limits τmin and τmin are defined as:

τmax = τ0 = 1/ρC∗ (3.34)

τmin = τmax/c (3.35)

where c is some constant. Lower and upper limits are imposed in order to avoid

search stagnation (of course in the case of ACS’ rule, the use of trail limits is obso-

lete since the pheromone update rule implicitly limits the pheromone trails in the range

[τ0, 1/C
bs][87]). Previous analysis on this topic[87] has shown that in order to avoid

stagnation the lower pheromone trail limit play a more important role than upper trail

limit.

Local Pheromone Trail Update

In addition to the global pheromone rule, we have adopted the local pheromone rule used

in ACS. This rule is applied after an ant constructs a complete placement to discourage

subsequent ants of the same iteration from constructing a similar placement, effectively

increasing the exploration space. The function used for the local pheromone update is

given by Equation 3.36:

τ ′ijk =

τmin if τ ′ijk < τmin

(1− ξ) · τijk ∀(i, j, k) ∈ Placementbest
(3.36)

3.3.5 Heterogeneous Architectures

One key strength of the ACO algorithms is the ability to encode all the legality constrains

and directly incorporate the targeted FPGA’s architecture straight to the cost function.

This can greatly facilitate the architecture-level exploration since it is fairly easy for

the designers to address architecture-specific issues and expand to new architectures.

As mentioned earlier in Section 3.1.2, it is possible to let the ants build low quality or

even infeasible solutions. Those solutions simply “won’t make the cut”, and probably

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 72

no pheromone will be added to their trails. On the other hand, good solutions emerging

from the use of the stochastic rule of ACO algorithms will be rewarded, increasing the

probability of even more good solutions. Based on that, incorporating a new FPGA

architecture is as simple as including the legality constrains into the cost function and

letting the positive feedback rule of ACO algorithms do all the work.

In our implementation, the placer is aware of a possible heterogeneity in the in-

terconnect fabric of an FPGA’s architecture making it one of the few 3-D CAD tools

supporting heterogeneous reconfigurable architectures. To incorporate this heterogene-

ity awareness, we simply tuned the delay() function used in Equations 3.26,3.27,3.28

and 3.30 to take into account the heterogeneity of the TSVs.

3.3.6 Parallel Implementation

ACO algorithms are inherently parallelizable both in the data and population domains[87].

Although the use of the local update rule of the ACS can lead to communication over-

head. To overcome this, we implemented a coarse-grained approach with rather rare

information exchange. In other words, for the parallel implementation we disregarded

the local pheromone update rule and let all the ants move in parallel, exchanging infor-

mation only at the end of every iteration. Due to the much larger colony, there were no

considerable disadvantages from the omission of the local update rule, since the much

larger number of ants can effectively search a much greater solution space. That led to a

very simple implementation with considerable benefits in runtime. In fact it is so simple

to parallelize an ACO algorithm, that by using the OpenMP API12, you just need to

insert a “parallel for” directive in line 7 of Algorithm 2.

3.3.7 Calibration

As is the standard practice, we calibrated our algorithm through a series of experiments,

adjusting each time a different set of variables. We used a set of twenty commonly used

MCNC circuits as benchmarks throughout the calibration process. See Appendix A for

the default values for every parameter of our algorithm.

12OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory multi-
processing programming.

Chapter 3. A Novel Placement Algorithm based on Ant Colony Optimization 73

3.4 Summary

Ant colony optimization is a population-based metaheuristic that can be used to find

approximate solutions to difficult optimization problems. In ACO, a set of agents called

artificial ants search for good solutions to a given optimization problem. The artificial

ants move through the graph, incrementally building solutions by employing a stochastic

rule, biased by a pheromone model, that is, a set of parameters associated with graph

components (either nodes or edges) whose values are modified at runtime by the ants.

Our proposed algorithm is based on ACO and uses the collective power of the

artificial ants to find good quality placements onto 3-D reconfigurable architectures. It

possesses many features that make it well suited to FPGA placement, such as:

• Inherent parallelism,

• direct enforcement of legality constrains into the cost function,

• support of heterogeneous architectures,

• open-source code.

Chapter 4

Experimental Results

This chapter quantifies the efficiency of the introduced algorithm as compared to the

state-of-the-art relevant frameworks. The rest of the chapter is organized as follows:

Section 4.1 presents our experimental setup. Section 4.2 presents the experimental

results, and finally Section 4.3 summarizes the chapter.

4.1 Experimental Setup

The experimental setup is summarized as follows: The targeted 3-D FPGA consists of

two to four layers, with identical logic and routing resources among these layers. Each

of the layers follows the well-established island-style architecture discussed in Section

1.1.4, similar to the majority of commercial FPGA devices. The interlayer connections

(TSVs) are implemented inside the 3-D switch boxes (SBs) and six TSVs per 3-D SB

are considered.

For evaluation purposes, the introduced ACO-based placer was integrated as part

of the open-source toolflow 3-D MEANDER[73]. Unfortunately, we cannot provide

comparisons against the rest of the flows discussed in Table 2.1 since these tools are

either not publicly available, or their implementation imposes constraints that cannot

be addressed by existing 3-D technology (e.g. excessive amount of TSVs).

The measurements were taken using a set of the 20 biggest MCNC benchmarks.

For the reference solution we employed the TPR tool[105]. Note that both the above

tools perform netlist routing using the negotiated pathfinder algorithm. Consequently,

we expect that performance improvement is based only to the different placement algo-

rithms.

75

Chapter 4. Experimental Results 76

Four different colonies were utilized that concurrently searched for a good placement

solution. In the end the best one was chosen.

4.2 Experimental Results

The TPR tool (as well as the other tools presented in Table 2.1) suffer from luck of

flexibility. In addition they rely on straightforward extensions of existing 2-D tools

which cannot fully exploit the benefits of 3-D technology. Therefore the aim of our

project was to develop a state-of-the-art placer for modern 3-D FPGA architectures,

able to be tuned according to requirements posed either by targeted application or by

the employed 3-D platform.

The effectiveness of our proposed algorithm is depicted in Figure 4.1 which gives

the critical path delay, normalized to the reference solution1, for varying number of

layers. As you can see, our algorithm achieves on average 10% reduction of the critical

path delay. Additionally we have 32% reduction of the maximum net length and 29%

reduction of the maximum segments used by a net (as depicted in Figures 4.2 and 4.3

respectively). Hence, besides the increase of the maximum operating frequency, we

expect to have an improvement in power consumption.

The corresponding average values (average net length and average wire segments

per net) are increased by 37% and 35% respectively (Figures 4.4 and 4.5). Still that

does not constitute a drawback though, since the critical path delay is determined by the

maximum values (the largest nets and paths are in the critical and near critical paths).

Based on that, our algorithm takes a more aggressive approach in optimizing larger nets

(and paths), which have the greatest impact on the critical path delay, allowing in that

process the smaller ones to be placed in less than optimal way. For that reason, average

net wire-length is increased as well (Figure 4.6).

At the same time Figure 4.7 shows a 30% improvement in the maximum number

of bends. That leads to fewer transistors inside the switch boxes (SBs) and as a result

lower cost.

Figure 4.8 shows the utilization of the interlayer connections (TSVs). As illustrated,

our algorithm has on average a 10% lower TSV utilization, even though it achieves

smaller critical path delay. That means it has the potential for even better placement

solutions, by further exploiting the faster interlayer connections.

1All of the graphs presented in this section, except the one regarding the multi-CPU speedup, are
normalized to the reference solution.

Chapter 4. Experimental Results 77

Figure 4.1: Critical Path Delay.

Figure 4.2: Maximum net length.

Chapter 4. Experimental Results 78

Figure 4.3: Maximum segments used by a net.

Figure 4.4: Average net length.

Chapter 4. Experimental Results 79

Figure 4.5: Average wire segments per net.

Figure 4.6: Average net wire-length.

Chapter 4. Experimental Results 80

Figure 4.7: Maximum number of bends.

Figure 4.8: TSV utilization.

Chapter 4. Experimental Results 81

The trade-off to the aforementioned improvements is the fact that due to the in-

creased average net length and average wire segments per net, we made routing even

more complicated. As depicted in Figure 4.9, the route-run-time more than doubled. In

fact, we have on average 151% increase in route-run-time. Nevertheless this does not

constitute a problem. By taking advantage of the inherent parallelism of our algorithm

and the existing multi-core platforms we can considerably reduce the execution run-time.

Figure 4.10 depicts the speedup achieved in a 2-core and a 4-core processor with iden-

tical clock frequency. The results are normalized over the corresponding single-core and

single-thread execution. As illustrated, our proposed algorithm achieves almost a 3×
speedup on a 4-core CPU, with this speedup been very close to the theoretical threshold

as estimated using the Amdahl’s model[106].

Figure 4.9: Route-run-time.

4.3 Summary

In this chapter we presented the experimental results for our proposed placer. As men-

tioned, our algorithm achieves on average 10% reduction on the critical path delay.

Consequently this results to designs with increased maximum operating frequency and

reduced power consumption. The trade-off for this improvement is an increase in route-

run-time. Still this increased route-run-time can be eliminated by exploiting the inherent

Chapter 4. Experimental Results 82

Figure 4.10: Multi-core speedup.

parallelism that characterizes ACO algorithms. As illustrated, our placer can achieve

speedup very close to the theoretical threshold. This means that our proposed algorithm

can take full advantage of todays multi-core architectures and has the ability to further

decrease the execution run-time as multi-core CPUs scale according to today’s market

trends.

Chapter 5

Conclusion

5.1 Summary

Field-Programmable Gate Arrays (FPGAs) have received a lot of attention in the past

few years. Their unique architecture has made them a popular implementation media for

a wide range of applications. They combine the high performance of application-specific

integrated circuits (ASICs) with the flexibility of microprocessors and offer many advan-

tages such as quick time-to-market, no non-recurring engineering costs for fabrication,

pre-tested silicon for use by the designers and re-programmability.

Over the last few years, in an effort to cope with the limitations of conventional

2-D circuit integration, designers have introduced a revolutionary new technique for

three dimensional (3-D) chip stacking. This technique offers improved performance,

reduced power consumption and lower cost compared to conventional two-dimensional

integration methods. However, designing in such three dimensional platforms poses

additional difficulties, making the already demanding process of mapping an application

onto an FPGA even more challenging. Thus there is a compelling need for faster and

more efficient Computer-Aided Design (CAD) tools to support application mapping in

three dimension architectures.

Placement is considered one of the most arduous and time-consuming processes in

physical implementation flows for reconfigurable architectures and at the same time it

highly affects the quality of derived application implementation, as it has impact on the

maximum operating frequency. This problem becomes even more harsh in 3-D archi-

tectures. To tackle this problem we introduced a novel placement algorithm, targeting

three-dimensional reconfigurable architectures, based on Ant Colony Metaheuristics.

83

Chapter 5. Conclusion 84

Ant colonies are distributed systems that, in spite of the simplicity of their indi-

viduals, present a highly structured social organization and as a result can accomplish

complex tasks using the collective intelligence of the group. One of the most successful

examples of ant based algorithms is known as Ant Colony Optimization (ACO). ACO

is inspired by the foraging behavior of ants. The main idea is that the self-organizing

principles which allow the highly coordinated behavior of real ants can be exploited

to coordinate populations of artificial agents that collaborate to solve computational

problems.

Our proposed algorithm incorporates concepts from bothMAX−MIN Ant System

(MMAS) and Ant Colony System (ACS), the two best performing algorithms of the ACO

family. It exhibits numerous advantages, such as inherent parallelism, direct enforcement

of legality constrains into the cost function and support of heterogeneous architectures.

For evaluation purposes, the introduced ACO-based placer was integrated as part of the

open-source tool flow 3-D MEANDER. Experimental results validate the effectiveness

of our algorithm since it achieves on average 10% reduction of the critical path delay.

This results to designs with increased maximum operating frequency and reduced power

consumption. Additionally our placer can achieve speedup in multi-core architectures

very close to the theoretical one. This means that our proposed algorithm can take full

advantage of todays multi-core CPUs, further decreasing the execution run-time.

5.2 Future Work

Many thing are still to be done for further development of our proposed tool. First and

foremost, a more sophisticated timing-driven cost function must be integrated to the

algorithm. The best performing tools for FPGA placement are timing-driven[40] and

thus our tool should focus on that direction. Additionally our algorithm can benefit

from a more fine-tuned parallel implementation since the inherent parallelism and its

ability to exploit today’s multi-core architectures is one of it’s key strengths. Finally,

based on the positive experimental results, we would encourage the adoption of ACO

algorithms to tackle other parts of the FPGA CAD flow such as routing.

Appendix A

Manual

A.1 ACO-Placement3D

This is the manual for ACO-Placement3D v1.0, a novel algorithm for 3-D FPGA place-

ment based on Ant Colony Optimization.

A.2 Copyright & Licensing

If you use ACO-Placement3D in your research, I would appreciate a citation in your

publication(s). Please cite it as:

Panayiotis Danassis. ACO-Placement3D, Version 1.0.

Available from https://github.com/panayiotisd/acoPlacement3D, 2015.

The software is licensed under the MIT License:

Copyright c©2015 Panayiotis Danassis (panos dan@hotmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the “Software”), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

85

https://github.com/panayiotisd/acoPlacement3D
mailto:panos_dan@hotmail.com

Appendix A. Manual 86

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-

INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-

ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT

OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

A.3 Authors

This software was developed by Panayiotis Danassis with the valuable contribution of

Kostas Siozios.

Panayiotis Danassis Kostas Siozios
url: http://panosd.eu/ url: http://proteas.microlab.ntua.gr/ksiop/
e-mail: panos dan@hotmail.com e-mail: ksiop@microlab.ntua.gr

A.4 Manifest

Main control routines:

• acoPlacement.c

• acoPlacement.h

Implementation of ants’ procedures:

• ants.c

• ants.h

Input / output routines:

• inOut.c

• inOut.h

Time measurement:

• timer.c

http://panosd.eu/
http://proteas.microlab.ntua.gr/ksiop/
mailto:panos_dan@hotmail.com
mailto:ksiop@microlab.ntua.gr

Appendix A. Manual 87

• timer.h

Auxiliary routines:

• utilities.c

• utilities.h

Other:

• Makefile

• README.md

A.5 Description

ACO-Placement3D is a novel placer, based on ant colony optimization (ACO), targeting

3-D FPGAs. It is a distributed algorithm, based on indirect communication (stigmergy)

between artificial ants which work asynchronously to build a feasible placement. As

so it is characterized by inherent parallelism and can greatly benefit from multi-core

processors. It combines a positive feedback mechanism with stochastic decision policy

and swarm intelligence.

The software was developed as part of my diploma thesis for the National Technical

University of Athens (NTUA), school of Electrical and Computer Engineering. For more

information please visit the following link (section: “publications”): http://panosd.

eu/

A.6 Installation

Use the provided Makefile to compile the program under Linux. Executable acoPlace-

ment3D is produced. There are four different compilation modes, which are presented

in detail as follows:

A.6.1 Mode 1 (Default installation):

This is the default installation mode. Optimization flag −O3 is used. To compile in

Default Mode just type:

make

http://panosd.eu/
http://panosd.eu/

Appendix A. Manual 88

A.6.2 Mode 2 (Print Mode):

In “Print Mode” the program displays, using a simple text based graphical representa-

tion, the best placement found so far, in order to visualize and give a better perspective

of the solution found. It also informs you every time a better solution is found. Opti-

mization flag −O3 is used. To compile in Print Mode type:

make print

A.6.3 Mode 3 (Debug Mode):

In “Debug Mode” the software prints a ton of debugging info. More specifically:

• The values of various key variables,

• The input netlist,

• The input/output pins,

• The global signals,

• The fanin and fanout table for every block,

• Exports in a file called “parse netlist.out” the input netlist with the same format

as the input file (with the exception of global signals),

• The hypernets (paths), if given,

• The nets,

• The positions of the TSVs (in heterogeneous architectures),

• States explicitly almost every function call and return in order to track the progress

of the program.

No optimization flags are used. Also the software is compiled with the −g flag in

order to generate debugging information to be used by a debugger such as GDB. To

compile in Debug Mode type:

make debug

Appendix A. Manual 89

A.6.4 Mode 4 (Parallel Mode):

In this mode the appropriate compiler flag is used (’-fopenmp’) to “turn on” OpenMP,

thus effectively parallelizing the application. Other than that, the “Parallel Mode” is

similar to the “Print Mode”. Optimization flag −O3 is used here as well. To compile in

Parallel Mode type:

make parallel

A.6.5 Cleanup:

Use the following command to clean the directory from the executable and all the already

compiled object files:

make clean

A.7 Usage

A.7.1 Options

To display the help text with the usage of the executable, type:

./acoPlacement3D

The following text will be displayed:

Usage: ./acoPlacement3D -g grid size -c numberOfLayers -i input netlist -h hypernets -n nets -p placement -e layers -v TSVs

[-r rho -a alpha -b beta -q q 0 -x xi -l lambda -f costFunction -w pheromoneUpd (mmas/acs) -z dynamic heuristic (y/n)]

[-m maxIterations -t numberOfThreads -u initial placement(random/heuristic) -s iteration best step -d tau min divisor]

Breaking down the above list, the command line options that the executable acoPlace-

ment3D provides, are the following:

Mandatory Options:

• -g grid size.

• -i (input) netlist file name.

• -n (input) nets file name.

• -p (output) placement file name.

Appendix A. Manual 90

• -e (input) layers file (file that contains the layer that each block will be placed).

Mandatory only if number of layers >1. The file must be in the same format as

the placement file. (see Section A.7.4 for the format of the placement file)

Other Options:

• -m maximum number of iterations to perform (termination condition).

• -c number of layers (for 3D placement).

• -h (input) hypernets (paths) file name.

• -v (input) TSVs’ locations (file containing the locations of the TSVs in a het-

erogeneous fabric. (see Section A.7.5 for the format of the file)

• -t number of threads (for parallel - OMP version).

• -u initial placement(random, heuristic). Chooses between a random initial

placement or one based only on heuristic information.

• -f changes cost function (available choices: wire timing, quadratic estimate,

hops).

• -l lambda, changes the relative importance between wire cost (bounding box)

and timing cost in the wire timing cost function.

cost = lambda * timing cost + (1 - lambda) * wire cost;

• -w pheromoneUpd, changes between the two implemented pheromone update

routines (mmas, acs). Type mmas to use the pheromone update rule of the

MAX −MIN Ant System (MMAS) or acs to use the rule of Ant Colony System

(ACS).

• -z dynamic heuristic (y/n). Apply a dynamic heuristic criterion for the largest

nets in order to improve the quality of the solution. A drawback is that runtime

increases drastically.

ACO Related Options:

• -r rho, pheromone evaporation rate.

• -a alpha, pheromone trail influence.

• -b beta, heuristic information influence.

Appendix A. Manual 91

• -q q 0, Ant Colony System’s (ACS) pseudorandom proportional rule’s parame-

ter.

• -x xi, Ant Colony System’s (ACS) local pheromone update rule’s evaporation

rate.

• -s iteration best step, defines the relative frequency with which we choose to up-

date the trails based on either the best so far solution, or the iteration best solution.

Must be a positive non-zero value. E.g. if -s 1, then we only use iteration best solution,

while if -s 999999>max number of iterations, then we only use best so far solution.

If -s 3, then we use iteration best solution every 3 iterations.

• -d tau min divisor, defines the lower pheromone trail limit for the MAX−MIN

Ant System (MMAS), and as a result changes the stagnation behavior of the

algorithm. tau min = tau max / tau min divisor.

Default Values:

As default, the pheromone update rules of MAX-MIN Ant System and the pseudoran-

dom proportional rule of Ant Colony System (ACS) are used. The cost function that

the algorithm tries to minimize is the total number of hops. The default values for all

the above parameters are the following:

• -m 10

• -c 1

• -h (null)

• -t 1

• -u random

• -f hops

• -l 0

• -w mmas

• -z y

• -r 0.1

• -a 1

• -b 2

Appendix A. Manual 92

• -q 0.95

• -x 0

• -s 3

• -d 15

Pre-Compilation Options:

There are some parameters of the algorithm that are defined as constants. Those can

be found at the .h files and are the following:

• n ants number of ants in the colony (value: 256 ants)

• restart reinitialize pheromone matrix to avoid stagnation (value: INT MAX

iterations = disabled)

• printStep print results periodically (value: 5 iterations)

• exportPlacementStep export placement file (value: 5 iterations)

Note that options -c, -r, -a and -m can not take zero value.

A.7.2 Examples for running a benchmark:

./acoPlacement3D -i apex4.net -n apex4 net.echo -g 36 -p placement.p -m 10

or

./acoPlacement3D -i s38417.net -n s38417 net.echo -g 81 -p placement.p -t ran-

dom -q 0.9 -b 2 -m 10 -z n

A.7.3 Output

Every run of the algorithm produces the following two files:

{your placement’s file name}.p
{input netlist’s name}.heur

The first one is the output placement file.

The second one is an auxiliary file with the values of the heuristic information. You

can ignore this file. It’s only used in subsequent runs of the algorithm to avoid the

re-computation of the heuristic information and thus save some time.

Appendix A. Manual 93

A.7.4 Placement File Format

The first line of the placement file lists the netlist file and the architecture description

file. The second line of the placement file gives the size of the logic block array (e.g. 20

x 20 logic blocks).

All the following lines have the format:

block name x y z subblock number

The block name is the name of this block, as given in the input netlist. x and y are

the row and column in which the block is placed, respectively. z is the layer (vertical

axis) of the block and it has to do only with the 3-D placement (it is not present in 2-D

placement files). The subblock number is meaningful only for pads. Since we can place

two pads in a row or column the subblock number specifies which of the possible pad

locations (either location 0 or location 1) in row x and column y contains this pad. Note

that the first pad occupied at some (x, y) location is always that with subblock number

0. For logic blocks (.clbs), the subblock number is always zero.

The placement files also include a fifth field as a comment. You can ignore this field.

A.7.5 TSVs File Format

This file is used in heterogeneous fabric architectures and contains the locations for all

the TSVs (Through-Silicon Via). The file is just an array of grid size×grid size values

of {0, 1} (1 if a TSV exists in that location, 0 otherwise). An example of such file is

presented below:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Appendix A. Manual 94

A.8 Known Bugs (& Future Work)

• Our netlist parser does not take into account comments. If your netlist file

includes comments, the program is going to crash! To solve this, use under

Linux the following command to get rid of the comments:

sed -e ’s/#.*$//’ bench.net > bench_noComments.net

• For some reason OpenMP implementation doesn’t work in some systems. Specif-

ically the software works as it should if compiled under gcc version 4.7.2 (Debian

4.7.2-5) but if compiled under gcc version 4.8.2 20140120 (Red Hat 4.8.2-16) the

program crashes.

• Parallel implementation works only with BoundingBox as cost function, due to

dependencies in the usage of global timing matrices.

A.9 Contribute

• Source Code: https://github.com/panayiotisd/acoPlacement3D

A.10 Support

If you are having issues, contact us at: panos dan@hotmail.com

https://github.com/panayiotisd/acoPlacement3D
mailto:panos_dan@hotmail.com

Bibliography

[1] xilinx. What is programmable logic?, 2015. URL http://www.xilinx.com/

company/about/programmable.html. [Online; accessed 15-May-2015].

[2] Wikipedia. Non-recurring engineering — wikipedia, the free encyclopedia,

2015. URL http://en.wikipedia.org/w/index.php?title=Non-recurring_

engineering&oldid=659104398. [Online; accessed 15-May-2015].

[3] Wikipedia. Programmable logic device — wikipedia, the free encyclopedia,

2015. URL http://en.wikipedia.org/w/index.php?title=Programmable_

logic_device&oldid=659545442. [Online; accessed 15-May-2015].

[4] Dave Vandenbout. Fpgas!? now what?, 2014. URL http://www.xess.com/

static/media/appnotes/FpgasNowWhatBook.pdf. [Online; accessed 15-May-

2015].

[5] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architecture

and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell,

MA, USA, 1999. ISBN 0792384601.

[6] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.

Field-programmable Gate Arrays. Kluwer Academic Publishers, Norwell, MA,

USA, 1992. ISBN 0-7923-9248-5.

[7] S. Hauck and A. DeHon. Reconfigurable Computing: The Theory and Practice of

FPGA-based Computation. Systems on Silicon Series. Morgan Kaufmann, 2008.

ISBN 9780123705228. URL http://books.google.gr/books?id=vYgweLqkRzMC.

[8] Maya B. Gokhale and Paul S. Graham. Reconfigurable Computing: Accelerating

Computation with Field-Programmable Gate Arrays. Springer Publishing Com-

pany, Incorporated, 1st edition, 2010. ISBN 1441938656, 9781441938657.

[9] xilinx. What is a fpga?, 2015. URL http://www.xilinx.com/fpga/. [Online;

accessed 15-May-2015].

95

http://www.xilinx.com/company/about/programmable.html
http://www.xilinx.com/company/about/programmable.html
http://en.wikipedia.org/w/index.php?title=Non-recurring_engineering&oldid=659104398
http://en.wikipedia.org/w/index.php?title=Non-recurring_engineering&oldid=659104398
http://en.wikipedia.org/w/index.php?title=Programmable_logic_device&oldid=659545442
http://en.wikipedia.org/w/index.php?title=Programmable_logic_device&oldid=659545442
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
http://books.google.gr/books?id=vYgweLqkRzMC
http://www.xilinx.com/fpga/

Bibliography 96

[10] M. Morris Mano and Michael D. Ciletti. Digital Design (4th Edition). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2006. ISBN 0131989243.

[11] W.K. Chen. The VLSI Handbook. Electrical Engineering Handbook. Taylor &

Francis, 2010. ISBN 9781420049671. URL https://books.google.gr/books?

id=0r5LihlMogkC.

[12] xilinx. Cpld, 2015. URL http://www.xilinx.com/cpld/. [Online; accessed 15-

May-2015].

[13] xilinx. Fpga vs. asic, 2015. URL http://www.xilinx.com/fpga/asic.htm. [On-

line; accessed 15-May-2015].

[14] Wikipedia. Central processing unit — wikipedia,, 2015. URL http:

//en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=

661394727. [Online; accessed 18-May-2015].

[15] fpgacenter. Fpga or cpu?, 2015. URL http://fpgacenter.com/fpga/fpga_or_

cpu.php. [Online; accessed 18-May-2015].

[16] J. Von Neumann. First Draft of a Report on the EDVAC. Moore School of

Electrical Engineering, University of Pennsylvania, 1945. URL https://books.

google.ch/books?id=t3zpygAACAAJ.

[17] Wikipedia. Von neumann architecture — wikipedia, the free encyclope-

dia, 2015. URL http://en.wikipedia.org/w/index.php?title=Von_Neumann_

architecture&oldid=655865005. [Online; accessed 18-May-2015].

[18] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Acceler-

ating compute-intensive applications with gpus and fpgas. In Proceedings of the

2008 Symposium on Application Specific Processors, SASP ’08, pages 101–107,

Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2333-

0. doi: 10.1109/SASP.2008.4570793. URL http://dx.doi.org/10.1109/SASP.

2008.4570793.

[19] F. Vahid. Digital Design with RTL Design, Verilog and VHDL. John Wiley &

Sons, 2010. ISBN 9780470531082. URL https://books.google.gr/books?id=

-YayRpmjc20C.

[20] Wikipedia. Hardware description language — wikipedia, the free encyclo-

pedia, 2015. URL http://en.wikipedia.org/w/index.php?title=Hardware_

description_language&oldid=662855044. [Online; accessed 19-May-2015].

https://books.google.gr/books?id=0r5LihlMogkC
https://books.google.gr/books?id=0r5LihlMogkC
http://www.xilinx.com/cpld/
http://www.xilinx.com/fpga/asic.htm
http://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=661394727
http://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=661394727
http://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=661394727
http://fpgacenter.com/fpga/fpga_or_cpu.php
http://fpgacenter.com/fpga/fpga_or_cpu.php
https://books.google.ch/books?id=t3zpygAACAAJ
https://books.google.ch/books?id=t3zpygAACAAJ
http://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=655865005
http://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=655865005
http://dx.doi.org/10.1109/SASP.2008.4570793
http://dx.doi.org/10.1109/SASP.2008.4570793
https://books.google.gr/books?id=-YayRpmjc20C
https://books.google.gr/books?id=-YayRpmjc20C
http://en.wikipedia.org/w/index.php?title=Hardware_description_language&oldid=662855044
http://en.wikipedia.org/w/index.php?title=Hardware_description_language&oldid=662855044

Bibliography 97

[21] Wikipedia. Register-transfer level — wikipedia, the free encyclopedia, 2015. URL

http://en.wikipedia.org/w/index.php?title=Register-transfer_level&

oldid=662102220. [Online; accessed 19-May-2015].

[22] Jason Cong, Chang Wu, and Yuzheng Ding. Cut ranking and pruning: En-

abling a general and efficient fpga mapping solution. In Proceedings of the 1999

ACM/SIGDA Seventh International Symposium on Field Programmable Gate Ar-

rays, FPGA ’99, pages 29–35, New York, NY, USA, 1999. ACM. ISBN 1-

58113-088-0. doi: 10.1145/296399.296425. URL http://doi.acm.org/10.1145/

296399.296425.

[23] Robert Francis, Jonathan Rose, and Zvonko Vranesic. Chortle-crf: Fast technology

mapping for lookup table-based fpgas. In Proceedings of the 28th ACM/IEEE

Design Automation Conference, DAC ’91, pages 227–233, New York, NY, USA,

1991. ACM. ISBN 0-89791-395-7. doi: 10.1145/127601.127670. URL http://doi.

acm.org/10.1145/127601.127670.

[24] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th

Annual Design Automation Conference, DAC ’01, pages 530–535, New York, NY,

USA, 2001. ACM. ISBN 1-58113-297-2. doi: 10.1145/378239.379017. URL http:

//doi.acm.org/10.1145/378239.379017.

[25] Sean Safarpour, Andreas Veneris, Gregg Baeckler, and Richard Yuan. Efficient

sat-based boolean matching for fpga technology mapping. In Proceedings of the

43rd Annual Design Automation Conference, DAC ’06, pages 466–471, New York,

NY, USA, 2006. ACM. ISBN 1-59593-381-6. doi: 10.1145/1146909.1147034. URL

http://doi.acm.org/10.1145/1146909.1147034.

[26] D. Chen and J. Cong. Daomap: A depth-optimal area optimization mapping algo-

rithm for fpga designs. In Proceedings of the 2004 IEEE/ACM International Con-

ference on Computer-aided Design, ICCAD ’04, pages 752–759, Washington, DC,

USA, 2004. IEEE Computer Society. ISBN 0-7803-8702-3. doi: 10.1109/ICCAD.

2004.1382677. URL http://dx.doi.org/10.1109/ICCAD.2004.1382677.

[27] Jason Cong and Yean-Yow Hwang. Simultaneous depth and area minimization

in lut-based fpga mapping. In Proceedings of the 1995 ACM Third International

Symposium on Field-programmable Gate Arrays, FPGA ’95, pages 68–74, New

York, NY, USA, 1995. ACM. ISBN 0-89791-743-X. doi: 10.1145/201310.201322.

URL http://doi.acm.org/10.1145/201310.201322.

[28] Julien Lamoureux and Steven J. E. Wilton. On the interaction between power-

aware fpga cad algorithms. In Proceedings of the 2003 IEEE/ACM International

http://en.wikipedia.org/w/index.php?title=Register-transfer_level&oldid=662102220
http://en.wikipedia.org/w/index.php?title=Register-transfer_level&oldid=662102220
http://doi.acm.org/10.1145/296399.296425
http://doi.acm.org/10.1145/296399.296425
http://doi.acm.org/10.1145/127601.127670
http://doi.acm.org/10.1145/127601.127670
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/1146909.1147034
http://dx.doi.org/10.1109/ICCAD.2004.1382677
http://doi.acm.org/10.1145/201310.201322

Bibliography 98

Conference on Computer-aided Design, ICCAD ’03, pages 701–, Washington, DC,

USA, 2003. IEEE Computer Society. ISBN 1-58113-762-1. doi: 10.1109/ICCAD.

2003.106. URL http://dx.doi.org/10.1109/ICCAD.2003.106.

[29] Hao Li, Srinivas Katkoori, and Wai-Kei Mak. Power minimization algorithms for

lut-based fpga technology mapping. ACM Trans. Des. Autom. Electron. Syst.,

9(1):33–51, January 2004. ISSN 1084-4309. doi: 10.1145/966137.966139. URL

http://doi.acm.org/10.1145/966137.966139.

[30] Zhi-Hong Wang, En-Cheng Liu, Jianbang Lai, and Ting-Chi Wang. Power miniza-

tion in lut-based fpga technology mapping. In Proceedings of the 2001 Asia and

South Pacific Design Automation Conference, ASP-DAC ’01, pages 635–640, New

York, NY, USA, 2001. ACM. ISBN 0-7803-6634-4. doi: 10.1145/370155.370569.

URL http://doi.acm.org/10.1145/370155.370569.

[31] Narasimha B. Bhat and Dwight D. Hill. Routable technologie mapping for lut

fpgas. In Proceedings of the 1991 IEEE International Conference on Computer

Design on VLSI in Computer &Amp; Processors, ICCD ’92, pages 95–98, Wash-

ington, DC, USA, 1992. IEEE Computer Society. ISBN 0-8186-3110-4. URL

http://dl.acm.org/citation.cfm?id=645461.654583.

[32] Martine D. F. Schlag, Jackson Kong, and Pak K. Chan. Routability-driven tech-

nology mapping for lookup table-based fpga’s. IEEE Trans. on CAD of Inte-

grated Circuits and Systems, 13(1):13–26, 1994. doi: 10.1109/43.273753. URL

http://doi.ieeecomputersociety.org/10.1109/43.273753.

[33] Gang Chen and Jason Cong. Simultaneous logic decomposition with technology

mapping in fpga designs. In Proceedings of the 2001 ACM/SIGDA Ninth Interna-

tional Symposium on Field Programmable Gate Arrays, FPGA ’01, pages 48–55,

New York, NY, USA, 2001. ACM. ISBN 1-58113-341-3. doi: 10.1145/360276.

360298. URL http://doi.acm.org/10.1145/360276.360298.

[34] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Improvements to

technology mapping for lut-based fpgas. In Proceedings of the 2006 ACM/SIGDA

14th International Symposium on Field Programmable Gate Arrays, FPGA ’06,

pages 41–49, New York, NY, USA, 2006. ACM. ISBN 1-59593-292-5. doi: 10.

1145/1117201.1117208. URL http://doi.acm.org/10.1145/1117201.1117208.

[35] Michael Hutton, Khosrow Adibsamii, and Andrew Leaver. Adaptive delay estima-

tion for partitioning-driven pld placement. IEEE Trans. Very Large Scale Integr.

Syst., 11(1):60–63, February 2003. ISSN 1063-8210. doi: 10.1109/TVLSI.2002.

808424. URL http://dx.doi.org/10.1109/TVLSI.2002.808424.

http://dx.doi.org/10.1109/ICCAD.2003.106
http://doi.acm.org/10.1145/966137.966139
http://doi.acm.org/10.1145/370155.370569
http://dl.acm.org/citation.cfm?id=645461.654583
http://doi.ieeecomputersociety.org/10.1109/43.273753
http://doi.acm.org/10.1145/360276.360298
http://doi.acm.org/10.1145/1117201.1117208
http://dx.doi.org/10.1109/TVLSI.2002.808424

Bibliography 99

[36] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. Fast timing-driven

partitioning-based placement for island style fpgas. In Proceedings of the 40th

Annual Design Automation Conference, DAC ’03, pages 598–603, New York,

NY, USA, 2003. ACM. ISBN 1-58113-688-9. doi: 10.1145/775832.775984. URL

http://doi.acm.org/10.1145/775832.775984.

[37] Pak K. Chan and Martine D. F. Schlag. Parallel placement for field-programmable

gate arrays. In Proceedings of the 2003 ACM/SIGDA Eleventh International Sym-

posium on Field Programmable Gate Arrays, FPGA ’03, pages 43–50, New York,

NY, USA, 2003. ACM. ISBN 1-58113-651-X. doi: 10.1145/611817.611825. URL

http://doi.acm.org/10.1145/611817.611825.

[38] Vaughn Betz and Jonathan Rose. Vpr: A new packing, placement and routing

tool for fpga research, 1997.

[39] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark

Fang, and Jonathan Rose. Vpr 5.0: Fpga cad and architecture exploration

tools with single-driver routing, heterogeneity and process scaling. In Proceed-

ings of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, FPGA ’09, pages 133–142, New York, NY, USA, 2009. ACM. ISBN 978-

1-60558-410-2. doi: 10.1145/1508128.1508150. URL http://doi.acm.org/10.

1145/1508128.1508150.

[40] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven place-

ment for fpgas. In Proceedings of the 2000 ACM/SIGDA Eighth International

Symposium on Field Programmable Gate Arrays, FPGA ’00, pages 203–213, New

York, NY, USA, 2000. ACM. ISBN 1-58113-193-3. doi: 10.1145/329166.329208.

URL http://doi.acm.org/10.1145/329166.329208.

[41] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-

nealing. SCIENCE, 220(4598):671–680, 1983.

[42] Yu-Liang Wu and Douglas Chang. On the np-completeness of regular 2-d fpga

routing architectures and a novel solution. In Proceedings of the 1994 IEEE/ACM

International Conference on Computer-aided Design, ICCAD ’94, pages 362–366,

Los Alamitos, CA, USA, 1994. IEEE Computer Society Press. ISBN 0-89791-690-

5. URL http://dl.acm.org/citation.cfm?id=191326.191492.

[43] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga architecture: Survey and

challenges. Found. Trends Electron. Des. Autom., 2(2):135–253, February 2008.

ISSN 1551-3939. doi: 10.1561/1000000005. URL http://dx.doi.org/10.1561/

1000000005.

http://doi.acm.org/10.1145/775832.775984
http://doi.acm.org/10.1145/611817.611825
http://doi.acm.org/10.1145/1508128.1508150
http://doi.acm.org/10.1145/1508128.1508150
http://doi.acm.org/10.1145/329166.329208
http://dl.acm.org/citation.cfm?id=191326.191492
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1561/1000000005

Bibliography 100

[44] Nir Magen, Avinoam Kolodny, Uri C. Weiser, and Nachum Shamir. Interconnect-

power dissipation in a microprocessor. In Louis Scheffer and Igor L. Markov,

editors, SLIP, pages 7–13. ACM, 2004. ISBN 1-58113-818-0.

[45] Vasilis F. Pavlidis and Eby G. Friedman. Three-dimensional Integrated Circuit

Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009. ISBN

9780080921860, 9780123743435.

[46] A. Papanikolaou, D. Soudris, and R. Radojcic. Three Dimensional System Inte-

gration: IC Stacking Process and Design. SpringerLink : Bücher. Springer, 2010.

ISBN 9781441909626.

[47] Jan Rabaey. Low Power Design Essentials. Springer Publishing Company, Incor-

porated, 1st edition, 2009. ISBN 0387717129, 9780387717128.

[48] Aman Gayasen, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and Arifur Rah-

man. Designing a 3-d fpga: Switch box architecture and thermal issues. IEEE

Trans. VLSI Syst., 16(7):882–893, 2008. URL http://dblp.uni-trier.de/db/

journals/tvlsi/tvlsi16.html#GayasenVKR08.

[49] Mingjie Lin, Abbas El Gamal, Yi-Chang Lu, and S. Simon Wong. Performance

benefits of monolithically stacked 3-d fpga. IEEE Trans. on CAD of Integrated

Circuits and Systems, 26(2):216–229, 2007. URL http://dblp.uni-trier.de/

db/journals/tcad/tcad26.html#LinGLW07.

[50] Guy Lemieux and David A. Lewis. Design of interconnection networks for pro-

grammable logic. Kluwer, 2004. ISBN 978-1-4020-7700-5.

[51] Kostas Siozios, Vasilis F. Pavlidis, and Dimitrios Soudris. A novel framework for

exploring 3-d fpgas with heterogeneous interconnect fabric. ACM Trans. Reconfig-

urable Technol. Syst., 5(1):4:1–4:23, March 2012. ISSN 1936-7406. doi: 10.1145/

2133352.2133356. URL http://doi.acm.org/10.1145/2133352.2133356.

[52] David Fang, Song Peng, Chris LaFrieda, and Rajit Manohar. A three-tier asyn-

chronous fpga. In Proceedings of the International VLSI/ULSI Multilevel Inter-

connection Conference. Citeseer, 2006.

[53] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architecture

and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell,

MA, USA, 1999. ISBN 0792384601.

[54] Cristinel Ababei, Yan Feng, Brent Goplen, Hushrav Mogal, Tianpei Zhang, Kia

Bazargan, and Sachin S. Sapatnekar. Placement and routing in 3d integrated

http://dblp.uni-trier.de/db/journals/tvlsi/tvlsi16.html#GayasenVKR08
http://dblp.uni-trier.de/db/journals/tvlsi/tvlsi16.html#GayasenVKR08
http://dblp.uni-trier.de/db/journals/tcad/tcad26.html#LinGLW07
http://dblp.uni-trier.de/db/journals/tcad/tcad26.html#LinGLW07
http://doi.acm.org/10.1145/2133352.2133356

Bibliography 101

circuits. IEEE Design & Test of Computers, 22(6):520–531, 2005. URL http:

//dblp.uni-trier.de/db/journals/dt/dt22.html#AbabeiFGMZBS05.

[55] Shamik Das, Andy Fan, Kuan-Neng Chen, Chuan Seng Tan, Nisha Checka,

and Rafael Reif. Technology, performance, and computer-aided design of three-

dimensional integrated circuits. In Charles J. Alpert and Patrick Groeneveld,

editors, ISPD, pages 108–115. ACM, 2004. ISBN 1-58113-817-2. URL http:

//dblp.uni-trier.de/db/conf/ispd/ispd2004.html#DasFCTCR04.

[56] Chen Dong, Deming Chen, S. Haruehanroengra, and Wei Wang 0003. 3-d nfpga:

A reconfigurable architecture for 3-d cmos/nanomaterial hybrid digital circuits.

IEEE Trans. on Circuits and Systems, 54-I(11):2489–2501, 2007. URL http:

//dblp.uni-trier.de/db/journals/tcas/tcasI54.html#DongCH007.

[57] Roto Le, Sherief Reda, and R. Iris Bahar. High-performance, cost-effective

heterogeneous 3d fpga architectures. In Paul Chow and Peter Y. K. Che-

ung, editors, FPGA, page 286. ACM, 2009. ISBN 978-1-60558-410-2. URL

http://dblp.uni-trier.de/db/conf/fpga/fpga2009.html#LeRB09.

[58] S. Gupta, M. Hilbert, S. Hong, and R. Patti. Techniques for producing 3d ics

with high-density interconnect. In Proceedings of the 21st Intl. VLSI Multilevel

Interconnection Conf., 2004.

[59] A.W. Topol, D.C.La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Ku-

mar, G.U. Singco, A.M. Young, K.W. Guarini, and M. Ieong. Three-dimensional

integrated circuits. IBM Journal of Research and Development, 50(4.5):491–506,

July 2006. ISSN 0018-8646. doi: 10.1147/rd.504.0491.

[60] Tezzaron. 3-d fpga from tezzaron http://www.tezzaron.com/about/

PhotoAlbum/Products/3DFPGA.html.

[61] Xilinx. Stacked silicon interconnect technology delivers breakthrough FPGA ca-

pacity, bandwidth, and power efficiency.

[62] Andre Hahn Pereira and Vaughn Betz. Cad and routing architecture for interposer-

based multi-fpga systems. In Proceedings of the 2014 ACM/SIGDA International

Symposium on Field-programmable Gate Arrays, FPGA ’14, pages 75–84, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2671-1. doi: 10.1145/2554688.

2554776. URL http://doi.acm.org/10.1145/2554688.2554776.

[63] B.K. Britton, Y.T. Oh, W. Oswald, H.T. Nguyen, S. Singh, G. Lee, W.-B. Leung,

C. Spivak, J. Steward, and C-T Chen. Second generation orca architecture utilizing

0.5µm process enhances the speed and usable gate capacity of fpgas. In ASIC

http://dblp.uni-trier.de/db/journals/dt/dt22.html#AbabeiFGMZBS05
http://dblp.uni-trier.de/db/journals/dt/dt22.html#AbabeiFGMZBS05
http://dblp.uni-trier.de/db/conf/ispd/ispd2004.html#DasFCTCR04
http://dblp.uni-trier.de/db/conf/ispd/ispd2004.html#DasFCTCR04
http://dblp.uni-trier.de/db/journals/tcas/tcasI54.html#DongCH007
http://dblp.uni-trier.de/db/journals/tcas/tcasI54.html#DongCH007
http://dblp.uni-trier.de/db/conf/fpga/fpga2009.html#LeRB09
http://www.tezzaron.com/about/PhotoAlbum/Products/3DFPGA.html
http://www.tezzaron.com/about/PhotoAlbum/Products/3DFPGA.html
http://doi.acm.org/10.1145/2554688.2554776

Bibliography 102

Conference and Exhibit, 1994. Proceedings., Seventh Annual IEEE International,

pages 474–478, Sep 1994. doi: 10.1109/ASIC.1994.404516.

[64] Harry Sidiropoulos, Kostas Siozios, Peter Figuli, Dimitrios Soudris, Michael

Hübner, and Jürgen Becker. Jitpr: A framework for supporting fast applica-

tion’s implementation onto fpgas. ACM Trans. Reconfigurable Technol. Syst.,

6(2):7:1–7:12, August 2013. ISSN 1936-7406. doi: 10.1145/2492185. URL

http://doi.acm.org/10.1145/2492185.

[65] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel

hypergraph partitioning: Application in vlsi domain. In Proceedings of the 34th

Annual Design Automation Conference, DAC ’97, pages 526–529, New York, NY,

USA, 1997. ACM. ISBN 0-89791-920-3. doi: 10.1145/266021.266273. URL http:

//doi.acm.org/10.1145/266021.266273.

[66] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Conference,

DAC ’82, pages 175–181, Piscataway, NJ, USA, 1982. IEEE Press. ISBN 0-89791-

020-6. URL http://dl.acm.org/citation.cfm?id=800263.809204.

[67] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell system technical journal, 49(2):291––308, 1970.

[68] Kostas Siozios and Dimitrios Soudris. A tabu-based partitioning and layer as-

signment algorithm for 3-d fpgas. Embedded Systems Letters, 3(3):97–100, 2011.

doi: 10.1109/LES.2011.2161571. URL http://doi.ieeecomputersociety.org/

10.1109/LES.2011.2161571.

[69] Dae Hyun Kim and Sung Kyu Lim. Through-silicon-via-aware delay and power

prediction model for buffered interconnects in 3d ics. In Proceedings of the 12th

ACM/IEEE International Workshop on System Level Interconnect Prediction,

SLIP ’10, pages 25–32, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0037-

7. doi: 10.1145/1811100.1811108. URL http://doi.acm.org/10.1145/1811100.

1811108.

[70] Melvin A. Breuer. A class of min-cut placement algorithms. In Proceedings of the

14th Design Automation Conference, DAC ’77, New Orleans, Louisiana, USA,

June 20-22, 1977, pages 284–290, 1977. URL http://dl.acm.org/citation.

cfm?id=809144.

[71] Hans Eisenmann and F.M. Johannes. Generic global placement and floorplanning.

In Design Automation Conference, 1998. Proceedings, pages 269–274, June 1998.

http://doi.acm.org/10.1145/2492185
http://doi.acm.org/10.1145/266021.266273
http://doi.acm.org/10.1145/266021.266273
http://dl.acm.org/citation.cfm?id=800263.809204
http://doi.ieeecomputersociety.org/10.1109/LES.2011.2161571
http://doi.ieeecomputersociety.org/10.1109/LES.2011.2161571
http://doi.acm.org/10.1145/1811100.1811108
http://doi.acm.org/10.1145/1811100.1811108
http://dl.acm.org/citation.cfm?id=809144
http://dl.acm.org/citation.cfm?id=809144

Bibliography 103

[72] Mingjie Lin, A. El Gamal, Yi-Chang Lu, and Simon Wong. Performance benefits

of monolithically stacked 3-d fpga. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 26(2):216–229, Feb 2007. ISSN 0278-0070.

doi: 10.1109/TCAD.2006.887920.

[73] Kostas Siozios, Vasilis F. Pavlidis, and Dimitrios Soudris. A novel framework

for exploring 3-d fpgas with heterogeneous interconnect fabric. ACM Trans. Re-

configurable Technol. Syst., 5(1):4:1–4:23, March 2012. ISSN 1936-7406. doi:

10.1145/2133352.2133356.

[74] MEVA-3D, 2014. URL http://cadlab.cs.ucla.edu/three_d/3dic.html.

[75] C. Ababei, Y. Feng, B. Goplen, Hushrav Mogal, Tianpei Zhang, K. Bazargan, and

S. Sapatnekar. Placement and routing in 3d integrated circuits. Design Test of

Computers, IEEE, 22(6):520–531, Nov 2005. ISSN 0740-7475. doi: 10.1109/MDT.

2005.150.

[76] C. Ababei, H. Mogal, and K. Bazargan. Three-dimensional place and route for fp-

gas. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans. on,

25(6):1132–1140, June 2006. ISSN 0278-0070. doi: 10.1109/TCAD.2005.855945.

[77] Andre Hahn Pereira and Vaughn Betz. Cad and routing architecture for interposer-

based multi-fpga systems. In Proceedings of the 2014 ACM/SIGDA International

Symposium on Field-programmable Gate Arrays, FPGA ’14, pages 75–84, NY,

USA, 2014. ACM. ISBN 978-1-4503-2671-1. doi: 10.1145/2554688.2554776.

[78] Vinod Pangracious, Emna Amouri, Zied Marakchi, and Habib Mehrez. Archi-

tecture level optimization of 3-dimensional tree-based FPGA. Microelectronics

Journal, 45(4):355–366, 2014. ISSN 0026-2692. doi: 10.1016/j.mejo.2013.12.011.

[79] Kostas Siozios and Dimitrios Soudris. A tabu-based partitioning and layer assign-

ment algorithm for 3-d fpgas. IEEE Embed. Syst. Lett., 3(3):97–100, September

2011. ISSN 1943-0663. doi: 10.1109/LES.2011.2161571. URL http://dx.doi.

org/10.1109/LES.2011.2161571.

[80] Kostas Siozios and Dimitrios Soudris. A power-aware placement and routing al-

gorithm targeting 3d fpgas. J. Low Power Electronics, 4(3):275–289, 2008. doi:

10.1166/jolpe.2008.184. URL http://dx.doi.org/10.1166/jolpe.2008.184.

[81] N. Selvakkumaran and G. Karypis. Multiobjective hypergraph-partitioning al-

gorithms for cut and maximum subdomain-degree minimization. Trans. Comp.-

Aided Des. Integ. Cir. Sys., 25(3):504–517, November 2006. ISSN 0278-0070. doi:

10.1109/TCAD.2005.854637.

http://cadlab.cs.ucla.edu/three_d/3dic.html
http://dx.doi.org/10.1109/LES.2011.2161571
http://dx.doi.org/10.1109/LES.2011.2161571
http://dx.doi.org/10.1166/jolpe.2008.184

Bibliography 104

[82] Harry Sidiropoulos, Kostas Siozios, Peter Figuli, Dimitrios Soudris, Michael

Hübner, and Jürgen Becker. JITPR: A framework for supporting fast applica-

tion’s implementation onto fpgas. TRETS, 6(2):7, 2013. doi: 10.1145/2492185.

URL http://doi.acm.org/10.1145/2492185.

[83] Russell Tessier. Fast placement approaches for FPGAs. ACM Trans. Design

Autom. Electr. Syst., 7(2):284–305, 2002.

[84] Subhash Gupta, Mark Hilbert, Sangki Hong, and Robert Patti. Techniques for

producing 3d ics with high-density interconnect.

[85] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architecture

and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell,

MA, USA, 1999. ISBN 0792384601.

[86] Xilinx stacked silicon interconnect technology delivers breakthrough fpga capacity,

bandwidth, and power efficiency, Oct. 2010.

[87] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company,

Scituate, MA, USA, 2004. ISBN 0262042193.

[88] G. Beni and J. Wang. Swarm intelligence in cellular robotic systems. In NATO

Advanced Workshop on Robotics and Biological Systems, June 1989.

[89] Gerardo Beni. From swarm intelligence to swarm robotics. In Proceedings

of the 2004 International Conference on Swarm Robotics, SAB’04, pages 1–

9, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-24296-1, 978-3-540-

24296-3. doi: 10.1007/978-3-540-30552-1 1. URL http://dx.doi.org/10.1007/

978-3-540-30552-1_1.

[90] Wikipedia. Swarm intelligence — wikipedia, the free encyclopedia, 2015. URL

http://en.wikipedia.org/w/index.php?title=Swarm_intelligence&oldid=

662220353. [Online; accessed 21-May-2015].

[91] J. Brownlee. Clever Algorithms: Nature-inspired Programming Recipes. LULU

Press, 2011. ISBN 9781446785065. URL https://books.google.co.uk/books?

id=SESWXQphCUkC.

[92] NIST. Np-complete, 2015. URL http://xlinux.nist.gov/dads/HTML/

npcomplete.html. [Online; accessed 15-May-2015].

[93] Marco Dorigo and Gianni Di Caro. New ideas in optimization. chapter The

Ant Colony Optimization Meta-heuristic, pages 11–32. McGraw-Hill Ltd., UK,

Maidenhead, UK, England, 1999. ISBN 0-07-709506-5. URL http://dl.acm.

org/citation.cfm?id=329055.329062.

http://doi.acm.org/10.1145/2492185
http://dx.doi.org/10.1007/978-3-540-30552-1_1
http://dx.doi.org/10.1007/978-3-540-30552-1_1
http://en.wikipedia.org/w/index.php?title=Swarm_intelligence&oldid=662220353
http://en.wikipedia.org/w/index.php?title=Swarm_intelligence&oldid=662220353
https://books.google.co.uk/books?id=SESWXQphCUkC
https://books.google.co.uk/books?id=SESWXQphCUkC
http://xlinux.nist.gov/dads/HTML/npcomplete.html
http://xlinux.nist.gov/dads/HTML/npcomplete.html
http://dl.acm.org/citation.cfm?id=329055.329062
http://dl.acm.org/citation.cfm?id=329055.329062

Bibliography 105

[94] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant colony optimization

– artificial ants as a computational intelligence technique. IEEE COMPUT. IN-

TELL. MAG, 1:28–39, 2006.

[95] Vinay Chopra and Amardeep Singh. Ant colony based approach for solving fpga

routing.

[96] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning

approach to the traveling salesman problem. Trans. Evol. Comp, 1(1):53–66, April

1997. ISSN 1089-778X. doi: 10.1109/4235.585892. URL http://dx.doi.org/10.

1109/4235.585892.

[97] Setareh Shafaghi1 Fardad Farokhi and Reza Sabbaghi-Nadooshan. New ant colony

algorithm method based on mutation for fpga placement problem. 2013.

[98] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,

MA, USA, 1998. ISBN 0262631857.

[99] Wikipedia. Branch and bound — wikipedia, the free encyclopedia,

2015. URL http://en.wikipedia.org/w/index.php?title=Branch_and_

bound&oldid=660739988. [Online; accessed 22-May-2015].

[100] Issmail Ellabib, Paul Calamai, and Otman Basir. Exchange strategies for multiple

ant colony system. Inf. Sci., 177(5):1248–1264, March 2007. ISSN 0020-0255. doi:

10.1016/j.ins.2006.09.016. URL http://dx.doi.org/10.1016/j.ins.2006.09.

016.

[101] Bullnheimer Bernd, Kotsis Gabriele, and Strau Christine. Parallelization strategies

for the ant system, 1997.

[102] Wenyao Xu, Kejun Xu, and Xinmin Xu. A novel placement algorithm for symmet-

rical fpga. In ASIC, 2007. ASICON ’07. 7th International Conference on, pages

1281–1284, Oct 2007. doi: 10.1109/ICASIC.2007.4415870.

[103] Raphael Njuguna. A survey of fpga benchmarks, 2015. URL http://www.cse.

wustl.edu/~jain/cse567-08/ftp/fpga/. [Online; accessed 15-May-2015].

[104] Rob A. Rutenbar. Vlsi cad: Logic to layout, page 54, 2015.

URL https://github.com/blackmatt37/coursera/raw/master/VLSI%20CAD/

Week%205/9-vlsicad-placer.pdf. [Online; accessed 15-May-2015].

[105] Cristinel Ababei. Tpr: Three-d place and route for fpgas. In Jürgen Becker,

Marco Platzner, and Serge Vernalde, editors, FPL, volume 3203 of Lecture Notes

in Computer Science, page 1172. Springer, 2004. ISBN 3-540-22989-2. URL http:

//dblp.uni-trier.de/db/conf/fpl/fpl2004.html#Ababei04.

http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/4235.585892
http://en.wikipedia.org/w/index.php?title=Branch_and_bound&oldid=660739988
http://en.wikipedia.org/w/index.php?title=Branch_and_bound&oldid=660739988
http://dx.doi.org/10.1016/j.ins.2006.09.016
http://dx.doi.org/10.1016/j.ins.2006.09.016
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/
https://github.com/blackmatt37/coursera/raw/master/VLSI%20CAD/Week%205/9-vlsicad-placer.pdf
https://github.com/blackmatt37/coursera/raw/master/VLSI%20CAD/Week%205/9-vlsicad-placer.pdf
http://dblp.uni-trier.de/db/conf/fpl/fpl2004.html#Ababei04
http://dblp.uni-trier.de/db/conf/fpl/fpl2004.html#Ababei04

Bibliography 106

[106] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring

Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,

USA, 1967. ACM. doi: 10.1145/1465482.1465560. URL http://doi.acm.org/

10.1145/1465482.1465560.

http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Overview of FPGAs
	1.1.1 Logic Devices
	1.1.2 Fixed Logic vs. Programmable Logic
	1.1.3 History of Programmable Logic
	1.1.4 FPGA Architecture
	1.1.5 FPGAs Compared To Other Platforms

	1.2 CAD Tools
	1.2.1 Mapping Designs to FPGAs
	1.2.2 Synthesis
	1.2.3 Placement
	1.2.4 Routing
	1.2.5 Bitstream

	1.3 Summary

	2 Three-dimensional Chip Stacking - A Whole New World!
	2.1 3-D Reconfigurable Platforms
	2.1.1 Design 3-D FPGAs with Heterogeneous Interconnect

	2.2 CAD Algorithms for 3-D Reconfigurable Architectures
	2.2.1 Application Partitioning
	2.2.2 Placement in 3-D Architectures
	2.2.3 Routing in 3-D Architectures

	2.3 Toolflows targeting 3-D FPGAs - Overview of our approach
	2.3.1 Motivation
	2.3.2 Architecture Template of targeted 3-D FPGA

	2.4 Summary

	3 A Novel Placement Algorithm based on Ant Colony Optimization
	3.1 Introduction to ACO - From Real to Artificial Ants
	3.1.1 The Double Bridge Experiment
	3.1.2 From the Natural Inspiration to the Artificial Model
	3.1.3 The Ant Colony Optimization Metaheuristic

	3.2 Overview of ACO Algorithms
	3.2.1 Ant System
	3.2.2 Elitist Ant System
	3.2.3 Rank-Based Ant System
	3.2.4 MAX-MIN Ant System
	3.2.5 Ant Colony System
	3.2.6 Approximate Nondeterministic Tree Search (ANTS)
	3.2.7 Hyper-Cube Framework for ACO
	3.2.8 Convergence of ACO Algorithms
	3.2.9 Stagnation Detection
	3.2.10 Parallelization of ACO Algorithms

	3.3 A Novel Placement Algorithm based on ACO
	3.3.1 Algorithm Initialization
	3.3.2 Solution Construction
	3.3.3 Cost Function
	3.3.4 Pheromone Update
	3.3.5 Heterogeneous Architectures
	3.3.6 Parallel Implementation
	3.3.7 Calibration

	3.4 Summary

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Summary

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	A Manual
	A.1 ACO-Placement3D
	A.2 Copyright & Licensing
	A.3 Authors
	A.4 Manifest
	A.5 Description
	A.6 Installation
	A.6.1 Mode 1 (Default installation):
	A.6.2 Mode 2 (Print Mode):
	A.6.3 Mode 3 (Debug Mode):
	A.6.4 Mode 4 (Parallel Mode):
	A.6.5 Cleanup:

	A.7 Usage
	A.7.1 Options
	A.7.2 Examples for running a benchmark:
	A.7.3 Output
	A.7.4 Placement File Format
	A.7.5 TSVs File Format

	A.8 Known Bugs (& Future Work)
	A.9 Contribute
	A.10 Support

	Bibliography

