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ABSTRACT 

 

This thesis concerns the determination of the ultimate structural state using mathematical 

programming techniques. Its main objective is to highlight the inner structure and drawbacks 

of the existing methods and to propose new approaches that improve and enhance their 

performance. The ultimate load and state of a structure is determined by solving an 

optimization problem that is based on the piecewise linearization of yield condition and 

constitutive laws. For rigid-perfectly plastic behavior, limit analysis is formulated as a Linear 

Programming (LP) problem expressing both the static and kinematic theorem. Incorporation 

of deformation constraints and/or softening behavior leads to the formulation of an 

optimization problem that aims at the maximization of the load factor subjected to 

equilibrium, compatibility, yield and complementarity constraints. Due to the disjunctive 

nature of the latter, the problem becomes nonsmooth, nonconvex and numerical unstable. 

Thus, a penalty function formulation is used to reformulate it to a nonlinear programming 

(NLP) problem, the size of which is strictly related to the discretization of the yield surface 

and the constitutive laws. In this work, the main research objectives revolve around the 

expression of yield condition and the incorporation of hardening/softening behavior in a more 

efficient way. Therefore, yield condition is expressed following three different schemes: i) a 

convex hull formulation, ii) a cone identification approach and iii) a local linearization 

technique. According to the convex hull formulation, yield condition is given in the form of a 

linear combination of the vectors corresponding to all vertices that define the a priori 

linearized yield hypersurface. The cone identification approach is based on the fact that for 

every cross section and at each optimization iteration only one yield constraint is potentially 

or truly activated and thus only one yield constraint is required. Extending this concept for the 

local linearization technique, the critical hyperplane for each cross section is not a priori 

defined, but it is determined at each optimization iteration for every stress point by locally 

linearizing the yield surface. In addition, multi-linear and nonlinear hardening/softening 

structural behavior is embedded efficiently without affecting the size of the problem. The 

herein proposed approaches uncouple the size of the problem from the linearization of the 

yield surface and constitutive laws, reducing accordingly the size of the complementarity 

condition that is the source of numerical difficulties for the solution of the problem. 

Numerical results of plane and 3D steel frames prove the computational advantages of the 

proposed formulations for multi-component interaction and multi-linear or nonlinear 

structural behavior. The main conclusions of this dissertation may constitute the central points 

of future research concerning limit analysis not only in the field of structural engineering, but 

also in fracture and soil mechanics applications. 

 

Key Words:   limit analysis, mathematical programming, complementarity conditions, stress resultant 

interaction, holonomic behavior 
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Ι. Ειζαγφγή 

Η αλάιπζε ησλ θαηαζθεπώλ θαηέρεη θεληξηθό ξόιν ζην πεδίν επηζηήκεο ηνπ 

κεραληθνύ, θαζώο απνηειεί έλα δπλαηό εξγαιείν γηα έλαλ αζθαιή θαη νηθνλνκηθό 

ζρεδηαζκό. Πιεζώξα κεζόδσλ έρνπλ πξνηαζεί, νη πεξηζζόηεξεο εθ ησλ νπνίσλ 

παξαθνινπζνύλ νιόθιεξε ηελ αλειαζηηθή ζπκπεξηθνξά ηεο θαηαζθεπήο κέρξη ηελ 

θαηάξξεπζε. Ωζηόζν, ε νξηαθή θαηάζηαζε θαη ην θνξηίν πνπ αληηζηνηρεί ζε απηήλ, 

ηα νπνία είλαη πξσηαξρηθνύ ελδηαθέξνληνο, κπνξνύλ λα πξνζδηνξηζηνύλ απεπζείαο 

κέζσ κεζόδσλ νξηαθήο αλάιπζεο.  

Η νξηαθή αλάιπζε, ε νπνία βαζίδεηαη ζηελ παξαδνρή ηεο ηειείσο πιαζηηθήο 

ζπκπεξηθνξάο, έρεη απνηειέζεη ηνλ αθξνγσληαίν ιίζν ηεο ειαζηνπιαζηηθήο 

αλάιπζεο. Η ζεσξία ηνπ καζεκαηηθνύ πξνγξακκαηηζκνύ, από ηελ άιιε πιεπξά, 

βαζίδεηαη ζηνλ άκεζν πξνζδηνξηζκό κηαο βέιηηζηεο ιύζεο ηθαλνπνηώληαο θάπνηνπο 

καζεκαηηθνύο πεξηνξηζκνύο. Ο ζπλδπαζκόο ηεο νξηαθήο αλάιπζεο κε ηνλ 

καζεκαηηθό πξνγξακκαηηζκό νδήγεζε ζηνλ πξνζδηνξηζκό ηεο ηειηθήο θαηάζηαζεο 

κηαο θαηαζθεπήο αθνινπζώληαο έλα καζεκαηηθό δξόκν. ΢ηελ θαηεύζπλζε απηήλ, 
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έρεη πξνηαζεί πιήζνο κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ γηα ηελ αλάιπζε ησλ 

θαηαζθεπώλ, νη νπνίεο ζρεηίδνληαη κε ηνπο λόκνπο πιηθνύ (παξνπζία ή κε 

ραιάξσζεο (softening)), κε ηε ζπκπεξηθνξά ηεο θαηαζθεπήο (νινλνκηθή ή κε 

νινλνκηθή), ηνλ ηξόπν πξνζέγγηζεο ηεο επηθάλεηαο δηαξξνήο θαη ηελ επηινγή ηεο 

αληηθεηκεληθήο ζπλάξηεζεο. 

Η νξηαθή αλάιπζε γηα γξακκηθνπνηεκέλα θξηηήξηα δηαξξνήο θαη ηειείσο πιαζηηθή 

ζπκπεξηθνξά κπνξεί λα δηαηππσζεί σο έλα πξόβιεκα γξακκηθνύ πξνγξακκαηηζκνύ 

εθθξάδνληαο ην ζηαηηθό θαη θηλεκαηηθό ζεώξεκα. Η άλζηζε ηνπ γξακκηθνύ 

πξνγξακκαηηζκνύ (Kantorovich 1940, Dantzig 1947) έδσζε ώζεζε ζηε ρξήζε 

ηερληθώλ καζεκαηηθνύ πξνγξακκαηηζκνύ γηα ηελ αλάιπζε ησλ θαηαζθεπώλ. Οη  

Charnes θαη Greenberg (1951) ήηαλ νη πξώηνη πνπ εθάξκνζαλ ην γξακκηθό 

πξνγξακκαηηζκό γηα ηελ αλάιπζε ξάβδσλ θη έθηνηε έρεη ζεκεησζεί ζεκαληηθή 

πξόνδνο ζε απηό ην πεδίν. Ο Maier θαη ε εξεπλεηηθή ηνπ νκάδα (1967,1977, 

2002,2003) επέθηεηλαλ ηε ζεώξεζε απηή ζπκπεξηιακβάλνληαο θξάηπλζε/ραιάξσζε 

γηα νινλνκηθή θαη κε-νινλνκηθή ζπκπεξηθνξά. Σν θεληξηθό ζεκείν ηεο δηαηύπσζεο 

απηώλ ησλ πξνβιεκάησλ έγθεηηαη ζηε γξακκηθνπνίεζε ησλ θξηηεξίσλ δηαξξνήο θαη 

ησλ λόκσλ ηνπ πιηθνύ, ε νπνία επηηξέπεη ηε γξακκηθή έθθξαζή ηνπο. Η ελζσκάησζε 

πεξηνξηζκώλ παξακνξθώζεσλ ή/θαη ε ζεώξεζε ραιάξσζεο (softening) απαηηνύλ ηελ 

παξνπζία ελόο πεξηνξηζκνύ ζπκπιεξσκαηηθόηεηαο, ν νπνίνο απνθιείεη ηελ 

ηαπηόρξνλε ελεξγνπνίεζε ηεο πιαζηηθνπνίεζεο κε πεξηζώξηα αληνρήο. Η θύζε ηνπ 

πεξηνξηζκνύ απηνύ είλαη δηαθξηηή θαη απνηειεί ηελ θύξηα πεγή αξηζκεηηθήο 

αζηάζεηαο ηνπ πξνβιήκαηνο. Γηα απηόλ ηνλ ιόγν, πιεζώξα ηερληθώλ καζεκαηηθνύ 

πξνγξακκαηηζκνύ έρνπλ πξνηαζεί, όπσο iterative Linear Programming, Quadratic θαη 

Parametric Quadratic Programming, Restricted Basis Linear Programming, Linear θαη 

Parametric Linear Complementarity πξνζεγγίζεηο, Mathematical Programming with 

Equilibrium Constraints (MPEC) (Maier et al. 1977,1979, Tangaramvong and Tin-Loi 

2007). Επίζεο, έρνπλ πξνηαζεί δηάθνξεο κέζνδνη πνπ “ρεηξίδνληαη” θαηάιιεια ηε 

ζπλζήθε ζπκπιεξσκαηηθόηεηαο κεηαηξέπνληαο ην πξόβιεκα ζε έλα κε γξακκηθνύ 

πξνγξακκαηηζκνύ (Fukushima and Lin 2004). 

Η πιεηνλόηεηα ησλ πξνζεγγίζεσλ πνπ αλαθέξζεθαλ βαζίδεηαη ζηελ εθ ησλ 

πξνηέξσλ γξακκηθνπνίεζε ησλ θξηηεξίσλ δηαξξνήο θαη λόκσλ πιηθνύ ζπλδένληαο ην 

κέγεζνο ηνπ πξνβιήκαηνο κε ηε δηαθξηηνπνίεζε. Η ζπλζήθε δηαξξνήο δηαηππώλεηαη 

ππνινγίδνληαο ηα πεξηζώξηα αληνρήο γηα θάζε θξίζηκε δηαηνκή θαη γηα όια ηα πηζαλά 

ππεξεπίπεδα ηεο δηαθξηηνπνηεκέλεο επηθάλεηαο δηαξξνήο. Απηό νξίδεη έλα 
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κνλνδηάζηαην δηάλπζκα πεξηζσξίσλ αληνρήο γηα θάζε θξίζηκε δηαηνκή κε κέγεζνο, 

πνπ εμαξηάηαη από ηνλ αξηζκό ησλ ππεξεπηπέδσλ ηεο ππεξεπηθάλεηαο δηαξξνήο. 

Επίζεο, ν ίδηνο αξηζκόο πιαζηηθώλ πνιιαπιαζηαζηώλ απαηηείηαη γηα ηελ έθθξαζε 

όισλ ησλ δπλαηώλ πιαζηηθώλ παξακνξθώζεσλ, απμάλνληαο ην κέγεζνο ηεο 

ζπλζήθεο ζπκπιεξσκαηηθόηεηαο. Απηή ε δηαδηθαζία γελλά πεξηηηή πιεξνθνξία 

απμάλνληαο κε απαγνξεπηηθό ηξόπν ην κέγεζνο ηνπ πξνβιήκαηνο, εηδηθά γηα 

πεξηπηώζεηο πξνβιεκάησλ κεγάιεο θιίκαθαο θαη/ή ππθλήο δηαθξηηνπνίεζεο ηεο 

ππεξεπηθάλεηαο δηαξξνήο. 

΢θνπόο ηεο παξνύζεο δηαηξηβήο είλαη 1) ε κείσζε ηνπ κεγέζνπο ηνπ πξνβιήκαηνο 

απνζπλδένληαο ην από ηε δηαθξηηνπνίεζε ηεο επηθάλεηαο δηαξξνήο θαη ησλ 

θαηαζηαηηθώλ λόκσλ πιηθνύ, 2) ε κείσζε ηνπ κεγέζνπο ηεο ζπλζήθεο 

ζπκπιεξσκαηηθόηεηαο, ε νπνία είλαη ε πεγή αξηζκεηηθήο αζηάζεηαο ηνπ 

πξνβιήκαηνο, 3) ε απνηειεζκαηηθή ελζσκάησζε πνιπγξακκηθώλ ή κε-γξακκηθώλ 

θαηαζηαηηθώλ λόκσλ πιηθνύ, ρσξίο λα επεξεάδεηαη ην κέγεζνο ηνπ πξνβιήκαηνο θαη 

4) ε εθαξκνγή ησλ πξνηεηλόκελσλ πξνζεγγίζεσλ ζε επίπεδα θαη ηξηζδηάζηαηα 

πιαίζηα θαη ν έιεγρνο ηεο ππνινγηζηηθήο απνηειεζκαηηθόηεηάο ηνπο ζπγθξηλόκελεο 

κε ηελ εθείλε ηεο ππάξρνπζαο κεζνδνινγίαο. Σα πξνβιήκαηα πνπ αλαπηύζζνληαη 

ζηελ παξνύζα εξγαζία αθνξνύλ νινλνκηθή ζπκπεξηθνξά θαη αλάινγα κε ηε 

ζεώξεζε ησλ θαηαζηαηηθώλ λόκσλ πιηθνύ θαη ηελ πξνζέγγηζε ηεο επηθάλεηαο 

δηαξξνήο, δηαθξίλνληαη νη αθόινπζεο πεξηπηώζεηο: i) Σειείσο πιαζηηθή ζπκπεξηθνξά 

θαη γξακκηθνπνηεκέλε επηθάλεηα δηαξξνήο, ii) Γξακκηθνπνηεκέλε ζπκπεξηθνξά 

θξάηπλζεο/ραιάξσζεο θαη γξακκηθνπνηεκέλε επηθάλεηα δηαξξνήο, iii) 

Γξακκηθνπνηεκέλε ζπκπεξηθνξά θξάηπλζεο/ραιάξσζεο θαη κε γξακκηθή επηθάλεηα 

δηαξξνήο θαη iv) Με γξακκηθή ζπκπεξηθνξά θξάηπλζεο/ραιάξσζεο θαη κε γξακκηθή 

επηθάλεηα δηαξξνήο. 

 

ΙΙ. Οριακή ανάλσζη επίπεδφν πλαιζίφν με Γραμμικό Προγραμμαηιζμό   

Η νξηαθή αλάιπζε ππό ηε ζεώξεζε ηειείσο πιαζηηθήο ζπκπεξηθνξάο κπνξεί λα 

κνξθσζεί σο έλα πξόβιεκα γξακκηθνύ πξνγξακκαηηζκνύ αμηνπνηώληαο ην ζηαηηθό 

θαη θηλεκαηηθό ζεώξεκα. Σα επίπεδα πιαίζηα ζεσξνύληαη όηη απνηεινύληαη από 

πξηζκαηηθά κέιε, πνπ ππόθεηληαη κόλν ζε επηθόκβηεο θνξηίζεηο γηα ιόγνπο 

απιόηεηαο. Η πιαζηηθή ζπκπεξηθνξά ζεσξείηαη όηη εκθαλίδεηαη ζε πξνεπηιεγκέλεο 

ζέζεηο, νη νπνίεο απνηεινύλ ηα άθξα θάζε κέινπο. Η ηζνξξνπία αθνξά ζηελ 
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απαξακόξθσηε θαηάζηαζε θαη ηα θξηηήξηα δηαξξνήο είλαη a priori 

γξακκηθνπνηεκέλα. Τηνζεηείηαη ε κεηξσηθή δηαηύπσζε, ηα κεηξώα ζπκβνιίδνληαη κε 

θεθαιαία θαη έληνλα γξάκκαηα, ελώ ηα δηαλύζκαηα κε κηθξά θαη έληνλα γξάκκαηα. 

Κάζε πιαίζην απνηειείηαη από nel κέιε, έρεη nf  βαζκνύο ειεπζεξίαο, ελώ d είλαη ν 

αξηζκόο ησλ εληαηηθώλ κεγεζώλ πνπ αιιειεπηδξνύλ, h είλαη ν αξηζκόο ησλ 

γξακκώλ/επηπέδσλ δηαξξνήο θαη nv είλαη ν αξηζκόο ησλ θνξπθώλ ηεο 

γξακκηθνπνηεκέλεο επηθάλεηαο δηαξξνήο.  

Η νξηαθή αλάιπζε, βαζηδόκελε ζην ζηαηηθό ζεώξεκα, πεξηιακβάλεη πεξηνξηζκνύο 

ηζνξξνπίαο θαη δηαξξνήο. Η ζπλζήθε δηαξξνήο κπνξεί λα εθθξαζηεί κε δπν ηξόπνπο: 

i) σο έλα ζύλνιν γξακκηθώλ αληζνηήησλ, νη νπνίεο εθθξάδνπλ γεσκεηξηθά ηελ ηνκή 

ελόο πεπεξαζκέλνπ αξηζκνύ εκηρώξσλ θαη επηπέδσλ θαη  ii) σο έλα θπξηό πνιύεδξν 

(convex hull) ελόο ζηαζεξνύ αξηζκνύ θνξπθώλ. Σν θπξηό πνιύεδξν (convex hull) 

ελόο ζπλόινπ ζεκείσλ C είλαη ν ρώξνο πνπ πεξηθιείεηαη από ην πνιύεδξν πνπ 

πεξηιακβάλεη όια ηα ζεκεία. Η καζεκαηηθή έθθξαζε ηνπ θπξηνύ πνιύεδξνπ (convex 

hull or convex envelope) ελόο ζπλόινπ ζεκείσλ C είλαη ην κηθξόηεξν θπξηό ζύλνιν, 

ην νπνίν πεξηιακβάλεη ην C θαη εθθξάδεηαη σο (Boyd and Vandenberghe 2009) : 

 

  1 1 1| , 0, 1 , 1n n i i nC x x x C i n             conv  (1) 

 

όπνπ i  είλαη κε αξλεηηθνί ζπληειεζηέο θαη 1, , nx x  είλαη ηα ζεκεία-θνξπθέο. 

Κάζε δηάλπζκα εληαηηθήο θαηάζηαζεο sd εθθξάδεηαη σο ν γξακκηθόο ζπλδπαζκόο 

όισλ ησλ δηαλπζκάησλ, πνπ αληηζηνηρνύλ ζηηο θνξπθέο ηνπ πνιύεδξνπ δηαξξνήο, κε 

ηελ πξνϋπόζεζε ην άζξνηζκα ησλ κε αξλεηηθώλ παξακέηξσλ , 1...i vi n    λα ηζνύηαη 

κε 1. Γηα ηελ πεξίπησζε δηζδηάζηαηεο αιιειεπίδξαζεο, δηαθξίλνληαη νη πεξηπηώζεηο 

πνπ θαίλνληαη ζην ΢ρ.1 b,c,d.  Αλ ην ζεκείν εληαηηθήο θαηάζηαζεο βξίζθεηαη ζηελ 

ειαζηηθή πεξηνρή, ηόηε ελεξγνπνηνύληαη όια ηα i  (΢ρ. 1b). ΢ηελ πεξίπησζε πνπ ε 

δηαηνκή έρεη δηαξξεύζεη, ην αληίζηνηρν δηάλπζκα εληαηηθήο θαηάζηαζεο εθθξάδεηαη 

σο γξακκηθόο ζπλδπαζκόο ησλ δηαλπζκάησλ ησλ θνξπθώλ ηνπ ελεξγνπνηεκέλνπ 

επηπέδνπ δηαξξνήο (΢ρ. 1c). Γηα ηελ εηδηθή πεξίπησζε, πνπ έλα κόλν i  είλαη ίζν κε 

ηε κνλάδα θαη όια ηα ππόινηπα παξακέλνπλ κεδεληθά, ηόηε ην ζεκείν εληαηηθήο 

θαηάζηαζεο ηαπηίδεηαη κε ηελ αληίζηνηρε θνξπθή ηνπ πνιπέδξνπ δηαξξνήο. 
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΢σ. 1: Θεώπηζη κςπηού πολύεδπος (convex hull) για διάνςζμα ενηαηικήρ καηάζηαζηρ. 

 

΢θνπόο ηεο νξηαθήο αλάιπζεο είλαη ν πξνζδηνξηζκόο ηνπ νξηαθνύ θνξηίνπ κηαο 

θαηαζθεπήο. Με βάζε ηε ζηαηηθή πξνζέγγηζε, ε νπνία πεξηιακβάλεη πεξηνξηζκνύο 

ηζνξξνπίαο θαη δηαξξνήο, κνξθώλεηαη ην αθόινπζν πξόβιεκα γξακκηθνύ 

πξνγξακκαηηζκνύ: 
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 (2) 

όπνπ νη κεηαβιεηέο ζρεδηαζκνύ είλαη ηα αλεμάξηεηα εληαηηθά κεγέζε s θαη ν 

ζπληειεζηήο θόξηηζεο α. Η πξώηε ηζόηεηα αληηπξνζσπεύεη ηελ ηζνξξνπία, όπνπ Β 

είλαη ην (nf×3nel) κεηξών ηζνξξνπίαο ηεο θαηαζθεπήο, s είλαη ην (3nel×1) δηάλπζκα 

ησλ αλεμάξηεησλ εληαηηθώλ κεγεζώλ όισλ ησλ κειώλ (ζεσξνύληαη ηξία εληαηηθά 

κεγέζε αλεμάξηεηα ζε θάζε κέινο: ε αμνληθή δύλακε θαη ε θακπηηθή ξνπή ηνπ 

θόκβνπ αξρήο θαη ε θακπηηθή ξνπή θόκβνπ ηέινπο), a είλαη ν ζπληειεζηήο θόξηηζεο, 

f  είλαη ην (nf×1) δηάλπζκα ησλ επηθόκβησλ θνξηίζεσλ θαη  fd είλαη ην (nf×1) 

δηάλπζκα ησλ ζηαζεξώλ επηθόκβησλ θνξηίζεσλ. Οη αληζνηηθνί πεξηνξηζκνί 

εθθξάδνπλ ηε ζπλζήθε δηαξξνήο, όπνπ N είλαη ην (3nel×2hnel) κεηξών όισλ ησλ 

θάζεησλ-ζηα επίπεδα δηαξξνήο-δηαλπζκάησλ θαη r  είλαη ην (2hnel×1) δηάλπζκα, ην 



 

 

vi Οξηαθή θαη παξακνξθσζηαθή αλάιπζε πιαηζησηώλ θαηαζθεπώλ κε ρξήζε κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ  

 

νπνίν πεξηθιείεη ηα όξηα δηαξξνήο, πνπ αληηζηνηρνύλ ζε όια ηα επίπεδα δηαξξνήο. Γηα 

ηελ πεξίπησζε αιιειεπίδξαζεο αμνληθήο δύλακεο-θακπηηθήο ξνπήο (ΝΜ) ηζρύεη όηη 

h=8, ελώ γηα ηελ πεξίπησζε αιιειεπίδξαζεο αμνληθήο-ηέκλνπζαο δύλακεο-

θακπηηθήο ξνπήο ηζρύεη όηη  h=32. 

Η δηαηύπσζε ηνπ πξνβιήκαηνο νξηαθήο αλάιπζεο ρξεζηκνπνηώληαο ηε ζεώξεζε 

ηνπ θπξηνύ πνιπέδξνπ (convex hull) δίδεηαη σο εμήο: 
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 (3) 

όπνπ νη κεηαβιεηέο ζρεδηαζκνύ είλαη ηα αλεμάξηεηα εληαηηθά κεγέζε όισλ ησλ 

κειώλ s, νη κε αξλεηηθέο παξάκεηξνη   θαη ν ζπληειεζηήο θόξηηζεο α. Σν πξώην ζεη 

πεξηνξηζκώλ αληηπξνζσπεύεη ηελ ηζνξξνπία, ην δεύηεξν θαη ηξίην ζεη εθθξάδνπλ ηε 

ζπλζήθε δηαξξνήο ρξεζηκνπνηώληαο ηε ζεώξεζε ηνπ θπξηνύ πνιπέδξνπ (convex 

hull), όπνπ T είλαη ην (2dnel×3nel) κεηξών πνπ πεξηιακβάλεη ηηο ηηκέο δηαξξνήο ησλ 

εληαηηθώλ κεγεζώλ, C είλαη ην (2dnel×2nvnel) κεηξών πνπ πεξηιακβάλεη ηηο 

ζπληεηαγκέλεο ησλ θνξπθώλ όισλ ησλ επηπέδσλ δηαξξνήο γηα όιεο ηηο θξίζηκεο 

δηαηνκέο ηεο θαηαζθεπήο, θ είλαη ην (2nvnel×1) δηάλπζκα πνπ πεξηιακβάλεη ηνπο κε 

αξλεηηθνύο ζπληειεζηέο θi όισλ ησλ δηαλπζκάησλ πνπ αληηζηνηρνύλ ζηηο nv θνξπθέο 

γηα όια ηα κέιε θαη  Ieq είλαη ην (2nel×2nvnel) κεηξών, ην νπνίν αζξνίδεη ηα 

αληίζηνηρα θi γηα θάζε δηαηνκή. Γηα ηελ πεξίπησζε αιιειεπίδξαζεο αμνληθήο 

δύλακεο-θακπηηθήο ξνπήο (ΝΜ) ηζρύεη όηη d=2 θαη h=nv=8, ελώ γηα ηελ πεξίπησζε 

αιιειεπίδξαζεο αμνληθήο-ηέκλνπζαο δύλακεο-θακπηηθήο ξνπήο ηζρύεη όηη  d=3, 

h=32 and nv=18. 

Η ζεώξεζε θπξηνύ πνιπέδξνπ (convex hull) εθθξάδεη ηε ζπλζήθε δηαξξνήο κε 

απζηεξνύο ηζνηηθνύο πεξηνξηζκνύο, ν αξηζκόο ησλ νπνίσλ είλαη αλεμάξηεηνο από ηνλ 

αξηζκό ησλ γξακκώλ/επηπέδσλ, πνπ ρξεζηκνπνηνύληαη γηα ηελ πξνζέγγηζε ηεο 

επηθάλεηαο δηαξξνήο. Ο αξηζκόο ησλ κεηαβιεηώλ, σζηόζν, απμάλεηαη ζπγθξηλόκελνο 

κε εθείλνλ ηεο πθηζηάκελεο ζεώξεζεο, αθνύ εηζάγνληαη νη παξάκεηξνη  θi. Αμίδεη λα 

ζεκεησζεί όηη γεληθά έλαο επηπξόζζεηνο πεξηνξηζκόο απαηηεί πνιύ πεξηζζόηεξε 

ππνινγηζηή πξνζπάζεηα ζε ζρέζε κε κηα επηπξόζζεηε κεηαβιεηή. Ωζηόζν, απηό είλαη 

κόλν ελδεηθηηθό γηα ηελ ππνινγηζηηθή απνηειεζκαηηθόηεηα ηεο πξνηεηλόκελεο 

ζεώξεζεο θπξηνύ πνιπέδξνπ (convex hull), αθνύ ν αξηζκόο ησλ κεηαβιεηώλ πνπ 
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εηζάγνληαη δηαθέξεη από ηνλ αξηζκό κείσζεο ησλ πεξηνξηζκώλ. Γηα ηελ πεξίπησζε 

ηξηζδηάζηαηεο αιιειεπίδξαζεο, ν αξηζκόο ησλ θνξπθώλ nv είλαη ζεκαληηθά 

κηθξόηεξνο ζε ζρέζε κε ηνλ αξηζκό ησλ επηπέδσλ h θη σο εθ ηνύηνπ ε ζεώξεζε 

θπξηνύ πνιπέδξνπ (convex hull) γίλεηαη ππνινγηζηηθά πιενλεθηηθόηεξε γηα ηελ 

έθθξαζε ηεο ζπλζήθεο δηαξξνήο. 

Οη δηαηππώζεηο ησλ πξνβιεκάησλ γξακκηθνύ πξνγξακκαηηζκνύ (2) θαη (3) 

εθαξκόδνληαη ζε θώδηθα Matlab γηα ηελ αλάιπζε κεηαιιηθώλ θαηαζθεπώλ κε 

ηειείσο πιαζηηθή ζπκπεξηθνξά. Ο επηιύηεο πνπ επηιέγεηαη είλαη ε linprog, 

θαηάιιειε γηα πξνβιήκαηα γξακκηθνύ πξνγξακκαηηζκνύ. ΢ηόρνο είλαη ε ζύγθξηζε 

ησλ δύν εθθξάζεσλ ηνπ γξακκηθνπνηεκέλνπ θξηηεξίνπ δηαξξνήο θαη ε δηεξεύλεζε 

ηεο επηξξνήο ηεο αιιειεπίδξαζεο ησλ εληαηηθώλ κεγεζώλ ζην νξηαθό θνξηίν. 

Εμεηάδνληαη ηξεηο πεξηπηώζεηο : Case (a): θαζαξή θάκςε, Case (b): αιιειεπίδξαζε 

αμνληθήο δύλακεο-θακπηηθήο ξνπήο κε 1) κε αληζνηηθνύο πεξηνξηζκνύο θαη 2) 

ζεώξεζε θπξηνύ πνιπέδξνπ (convex hull) θαη Case (c): αιιειεπίδξαζε αμνληθήο-

ηέκλνπζαο δύλακεο-θακπηηθήο ξνπήο κε 1) κε αληζνηηθνύο πεξηνξηζκνύο θαη 2) 

ζεώξεζε θπξηνύ πνιπέδξνπ (convex hull).  Γηα ηελ πξώηε πεξίπησζε ε δηαηύπσζε 

ηνπ πξνβιήκαηνο απινπνηείηαη, αθνύ νη πεξηνξηζκνί δηαξξνήο εθθξάδνληαη κε άλσ 

θαη θάησ όξηα γηα ηηκέο ησλ ξνπώλ θάκςεο (δελ απαηηείηαη ην κεηξών Ν). όιεο νη 

αλαιύζεηο δηεμήρζεζαλ ζε ππνινγηζηή κε Core Duo Quad CPU θαη 4GB RAM θαη ηα 

απνηειέζκαηα παξνπζηάδνληαη αθνινύζσο κε βάζε ηελ θιαζηθή θη όρη ηε κεηξσηθή 

ζύκβαζε πξνζήκσλ. 

 

΢σ. 2: Επίπεδο πλαίζιο με πλεςπική και καηακόπςθη θόπηιζη. 
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 Σν παξάδεηγκα αθνξά ζε έλα 6-όξνθν πιαίζην 4 αλνηγκάησλ, όπσο θαίλεηαη ζην 

΢ρ.2. θαη απνηειείηαη από 73 κέιε, 56 θόκβνπο θαη 153 βαζκνύο ειεπζεξίαο. Ο 

ράιπβαο είλαη S235 κε κέηξν ειαζηηθόηεηαο E=2×10
8 

kN/m
2
. Οη δηαηνκέο ησλ 

ππνζηπισκάησλ έρνπλ ηα αθόινπζα ραξαθηεξηζηηθά: A=197.5×10
-4 

m
2
, 

I=86970×10
-8 

m
4
,
 
s1y=4641.3 kN, vy=1013.24 kN, s2y=928.02 kNm, s3y=928.02 kNm, 

ελώ νη δηαηνκέο ησλ δνθώλ: A=84.46×10
-4 

m
2
, I=23130×10

-8 
m

4
,
 
s1y=1984 kN, 

vy=579.22 kN, s2y=307.15 kNm, s3y=307.15 kNm.  

 

Πίλαθαο 1. Απνηειέζκαηα όισλ ησλ αλαιύζεσλ. 

 

 

Σα απνηειέζκαηα παξνπζηάδνληαη ζηνλ Πίλαθα 1. Δηαπηζηώλεηαη όηη ε 

αιιειεπίδξαζε εληαηηθώλ κεγεζώλ αληηζηνηρεί ζε κηθξόηεξνπο θνξηηθνύο 

ζπληειεζηέο ζε ζρέζε κε ηελ πεξίπησζε ηεο θαζαξήο θάκςεο. Σα απνηειέζκαηα ηεο 

ζεώξεζεο θπξηνύ πνιπέδξνπ (convex hull-cases (b2) and (c2)) είλαη ηα ίδηα (νη ηηκέο 

ησλ κεηαβιεηώλ θαη νη κεραληζκνί θαηάξξεπζεο) κε εθείλα ησλ πεξηπηώζεσλ (b1) 

θαη (c1). Ωζηόζν, ε πθηζηάκελε ζεώξεζε ζπγθξηλόκελε κε εθείλε ηνπ θπξηνύ 

πνιπέδξνπ (convex hull) απαηηεί πεξηζζόηεξν ππνινγηζηηθό ρξόλν, δειαδή 1.03 

θνξέο γηα ηελ πεξίπησζε (b) θαη 12.67 θνξέο γηα ηελ πεξίπησζε (c). Όζνλ αθνξά ζην 

ρξόλν ηεο δηαδηθαζίαο βειηηζηνπνίεζεο, νη αληίζηνηρεο ηηκέο είλαη 1.05 θαη 2.26 

θνξέο. Η αιιειεπίδξαζε ησλ εληαηηθώλ κεγεζώλ επηδξά, επίζεο, ζηνπο κεραληζκνύο 

θαηάξξεπζεο  (αξηζκό θαη θαηαλνκή πιαζηηθώλ αξζξώζεσλ). Γηα ηελ πεξίπησζε 

θαζαξήο θάκςεο ζρεκαηίδνληαη ιηγόηεξεο πιαζηηθέο αξζξώζεηο, νη νπνίεο εμαληινύλ 

ηα πεξηζώξηα αληνρήο ηνπο ιόγσ θάκςεο, όπσο θαίλεηαη ζην ΢ρ. 3b. Οη νξηαθέο 

θαηαζηάζεηο ηνπ πιαηζίνπ γηα ηηο πεξηπηώζεηο (b) θαη (c) παξνπζηάδνληαη ζηα ΢ρ. 4a 

Καθαρή 

Κάμυη

NM 

αλληλεπίδραζη

NM 

αλληλεπίδραζη 

Convex Hull

NQM 

αλληλεπίδραζη

NQM 

αλληλεπίδραζη
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θαη 5a. Ο ξόινο ηεο θακπξηθήο ξνπήο είλαη θπξίαξρνο ζε όιεο ηηο πεξηπηώζεηο. 

Ωζηόζν, ε επηξξνή ηεο αμνληθήο δύλακεο είλαη πξνθαλήο ζηηο δηαηνκέο ησλ 

ππνζηπισκάησλ, νη νπνίεο δηαξξένπλ ππό ζπλδπαζκέλε δξάζε ησλ εληαηηθώλ 

κεγεζώλ (΢ρ. 4b θαη 6a), ελώ νη ίδηεο δηαηνκέο παξακέλνπλ ζηελ ειαζηηθή πεξηνρή 

γηα ηελ πεξίπησζε ηεο θαζαξήο θάκςεο (΢ρ. 3b). Επηπξνζζέησο, ε επίδξαζε ηεο 

ηέκλνπζαο δύλακεο γηα θάπνηεο δηαηνκέο δνθώλ θαη ππνζηπισκάησλ είλαη πην έληνλε 

ζε ζρέζε κε εθείλε ηεο αμνληθήο δύλακεο, όπσο θαίλεηαη ζην ΢ρ. 65b. 

 

 

΢σ. 3: a) Οπιακή καηάζηαζη και b) διάγπαμμα αλληλεπίδπαζηρ για καθαπή κάμτη. 

 

 

 

΢σ. 4: a) Οπιακή καηάζηαζη και b) διάγπαμμα αλληλεπίδπαζηρ για ΝΜ αλληλεπίδπαζη. 
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΢σ. 5: a) Οπιακή καηάζηαζη και b) διάγπαμμα αλληλεπίδπαζηρ για ΝQΜ αλληλεπίδπαζη. 

 

 

΢σ. 6: Ότειρ ηος διαγπάμμαηορ αλληλεπίδπαζηρ ΝQΜ. 

 

ΙΙΙ. Οριακή και παραμορθφζιακή ανάλσζη επίπεδφν πλαιζίφν με μαθημαηικό 

προγραμμαηιζμό 

Σν πξόβιεκα ηεο ειαζηνπιαζηηθήο αλάιπζεο, ππό νινλνκηθή ζεώξεζε θαη γηα 

γξακκηθνπνηεκέλεο επηθάλεηεο δηαξξνήο, γξακκηθνπνηεκέλνπο λόκνπο πιηθνύ θαη 

ηζνηξνπηθή θξάηπλζε/ραιάξσζε, δηαηππώλεηαη ζηε γεληθή πεξίπησζε από ηηο 

αθόινπζεο ζρέζεηο: 
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Η πξώηε ζρέζε αθνξά ζηελ ηζνξξνπία ηνπ θνξέα θη έρεη νξηζηεί ζηε ζρέζε (2). Η 

δεύηεξε ζρέζε αθνξά ζην ζπκβηβαζηό ησλ παξακνξθώζεσλ θαη εκπεξηέρεη ην 

δηάλπζκα παξακνξθώζεσλ q θαη ην δηάλπζκα επηθόκβησλ κεηαθηλήζεσλ u. Η ηξίηε 

ζρέζε εθθξάδεη ηε ζπλνιηθή παξακόξθσζε q σο άζξνηζκα ησλ ειαζηηθώλ e θαη 

πιαζηηθώλ παξακνξθώζεσλ p, όπνπ S είλαη ην κεηξών πνπ πεξηιακβάλεη δηαγσλίσο 

ηα κεηξώα αθακςίαο όισλ ησλ κειώλ, N είλαη ην κεηξών πνπ πεξηιακβάλεη ηα 

θάζεηα -ζηηο επηθάλεηεο δηαξξνήο- δηαλύζκαηα θαη z είλαη ην δηάλπζκα όισλ ησλ 

πιαζηηθώλ πνιιαπιαζηαζηώλ. Η ηέηαξηε ζρέζε αθνξά ζηε ζπλζήθε δηαξξνήο, ε 

νπνία εθθξάδεηαη κέζσ ησλ πεξηζσξίσλ αληνρήο θάζε δηαηνκήο. Σν w είλαη ην 

δηάλπζκα πνπ πεξηιακβάλεη ηα πεξηζώξηα αληνρήο θαη r´ είλαη ην δηάλπζκα πνπ 

πεξηιακβάλεη ηα κεγεζπκέλα/ζπξξηθλσκέλα όξηα αληνρήο, πνπ αληηζηνηρνύλ ζε θάζε 

επίπεδν δηαξξνήο ιόγσ θξάηπλζεο/ραιάξσζεο αληίζηνηρα. Η ηειεπηαία ζπλζήθε 

εθθξάδεη ηε ζπλζήθε ζπκπιεξσκαηηθόηεηαο, ε νπνία επηβάιιεη όηη δελ δύλαηαη λα 

ππάξμεη ηαπηόρξνλε παξνπζία πιαζηηθήο παξακόξθσζεο (z>0) κε πεξηζώξηα 

αληνρώλ (w>0). 

΢ηελ νξηαθή αλάιπζε ην ελδηαθέξνλ εζηηάδεηαη ζηνλ απεπζείαο πξνζδηνξηζκό ηεο 

ηειηθήο θαηάζηαζεο. Υξεζηκνπνηώληαο ηερληθέο καζεκαηηθνύ πξνγξακκαηηζκνύ θαη 

ιακβάλνληαο ππόςηλ ηηο ζρέζεηο πνπ πεξηγξάθνπλ ην νινλνκηθό πξόβιεκα (4), 

κνξθώλεηαη ην αθόινπζν πξόβιεκα βειηηζηνπνίεζεο: 
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Σν παξαπάλσ πξόβιεκα βειηηζηνπνίεζεο έρεη σο κεηαβιεηέο ζρεδηαζκνύ ηα 

εληαηηθά κεγέζε s, ηηο κεηαθηλήζεηο u, ηνπο πιαζηηθνύο πνιιαπιαζηαζηέο z θαη ην 

θνξηηθό ζπληειεζηή a. ΢ηόρνο είλαη ε κεγηζηνπνίεζε ηνπ θνξηίνπ ηθαλνπνηώληαο 

πεξηνξηζκνύο ηζνξξνπίαο, ζπκβηβαζηνύ ησλ παξακνξθώζεσλ, δηαξξνήο, 

ζπκπιεξσκαηηθόηεηαο θαη θάησ θαη άλσ νξίσλ παξακνξθώζεσλ ( 0 zu, ) θαη 

κεηαθηλήζεσλ ( ,l uu u ). Η παξνπζία ηεο ζπλζήθεο ζπκπιεξσκαηηθόηεηαο κεηαηξέπεη 

ην πξόβιεκα ζε κε-θπξηό θαη αξηζκεηηθά αζηαζέο. Απηνύ ηνπ είδνπο ηα πξνβιήκαηα 

είλαη γλσζηά σο πξνβιήκαηα Μαζεκαηηθνύ Πξνγξακκαηηζκνύ κε Πεξηνξηζκνύο 
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Θζνξξνπίαο (Mathematical Programming with Equilibrium Constraints (MPEC) 

problem) (Luo et al. 1996). Δηάθνξεο κέζνδνη έρνπλ πξνηαζεί πνπ κεηαηξέπνπλ ην 

πξόβιεκα απηό ζε πξόβιεκα κε γξακκηθνύ πξνγξακκαηηζκνύ (Fukushima and Lin 

2004). ΢ηελ παξνύζα εξγαζία πηνζεηείηαη ε κέζνδνο “πνηλήο” (penalty function 

approach), ζύκθσλα κε ηελ νπνία ε ζπλζήθε ζπκπιεξσκαηηθόηεηαο κεηαθέξεηαη 

ζηελ αληηθεηκεληθή ζπλάξηεζε θαη πνιιαπιαζηάδεηαη κε κηα παξάκεηξν. Οη ηηκέο ηεο 

παξακέηξνπ απμάλνληαη “πηέδνληαο” ηε ζπλζήθε ζπκπιεξσκαηηθόηεηαο ζε 

κεδεληθέο ηηκέο. Η δηαηύπσζε απηνύ ηνπ πξνβιήκαηνο είλαη σο εμήο: 
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Η παξαπάλσ δηαηύπσζε, όπσο πξναλαθέξζεθε βαζίδεηαη ζηε γξακκηθνπνίεζε 

ηνπ θξηηεξίνπ δηαξξνήο θαη ζηνπο γξακκηθνπνηεκέλνπο λόκνπο πιηθνύ θη σο εθ 

ηνύηνπ ην κέγεζνο ησλ κεηξώσλ εμαξηάηαη από ηε δηαθξηηνπνίεζε. Γηα πξνβιήκαηα 

κεγάιεο θιίκαθαο ή/θαη γηα ππθλέο δηαθξηηνπνηήζεηο, ε εθαξκνγή απηήο ηεο 

δηαηύπσζεο κπνξεί λα γίλεη απαγνξεπηηθή. ΢θνπόο απηήο ηεο εξγαζίαο είλαη ε 

κείσζε ηνπ κεγέζνπο θαη ηεο πνιππινθόηεηαο ηνπ πξνβιήκαηνο. Πην ζπγθεθξηκέλα, 

ε πξνζέγγηζε πνπ πξνηείλεηαη αθνξά ζηελ απινπνίεζε ηνπ πξνβιήκαηνο ζε ηξία 

επίπεδα: ζηελ εθηίκεζε ησλ πεξηζσξίσλ αληνρήο, ζηελ απνηειεζκαηηθή ελζσκάησζε 

θαηαζηαηηθώλ λόκσλ θαη ζην κεησκέλν κέγεζνο ηεο ζπλζήθεο 

ζπκπιεξσκαηηθόηεηαο. Οη παξεκβάζεηο πνπ πξνηείλνληαη αθνξνύλ ζηε ζπλζήθε 

δηαξξνήο θαη βαζίδνληαη ζηε ινγηθή ηνπ όηη θάζε δηαηνκή ζε θάζε επαλάιεςε ηεο 

δηαδηθαζίαο βειηηζηνπνίεζεο ζηνρεύεη ζε ή ελεξγνπνηεί έλα κόλν επίπεδν δηαξξνήο. 

΢πλεπώο, κόλνλ έλαο πεξηνξηζκόο είλαη ελ δπλάκεη ελεξγόο ή ελεξγνπνηείηαη γηα θάζε 

δηαηνκή, ελώ νη πεξηνξηζκνί πνπ αληηζηνηρνύλ ζηα ππόινηπα επίπεδα δηαξξνήο είλαη 

πεξηηηνί. ΢ηελ παξνύζα εξγαζία ε ζπλζήθε δηαξξνήο κνξθώλεηαη αθνινπζώληαο ηελ 

πξναλαθεξζείζα ινγηθή ηνπ ελόο “θξίζηκνπ” επηπέδνπ γηα θάζε δηαηνκή κε δπν 

ηξόπνπο: i) ζεσξώληαο γξακκηθνπνίεζε ηεο επηθάλεηαο δηαξξνήο a priori θαη ii) 

εθαξκόδνληαο ηε γξακκηθνπνίεζε ηνπηθά (ε κε γξακκηθόηεηα ηεο επηθάλεηαο 

δηαξξνήο δηαηεξείηαη).  

 



 
xiii Πεξίιεςε 

i) Γραμμικοποίηζη ηης επιθάνειας διαρροής a priori 

΢ηελ πεξίπησζε πνπ ε επηθάλεηα δηαξξνήο έρεη γξακκηθνπνηεζεί εθ ησλ πξνηέξσλ, 

πξνηείλεηαη κηα δηαδηθαζία αλαγλώξηζεο ηνπ “θξίζηκνπ θώλνπ” (cone identification), 

κέζα ζηνλ νπνίν βξίζθεηαη θάζε ζεκείν εληαηηθήο θαηάζηαζεο. ΢ην ΢ρ. 7 

απεηθνλίδεηαη ε δηαδηθαζία γηα ηελ πεξίπησζε δηζδηάζηαηεο αιιειεπίδξαζεο. 

Ελώλνληαο ηηο θνξπθέο ηνπ πνιπγώλνπ δηαξξνήο κε ηελ αξρή ησλ αμόλσλ, 

δεκηνπξγείηαη έλαο αξηζκόο ηνκέσλ-θώλσλ, πνπ θαιύπηνπλ όιν ην δηάγξακκα 

αιιειεπίδξαζεο. Κάζε δηάλπζκα έληαζεο, πνπ αληηζηνηρεί ζε θάζε δηαηνκή, 

ζρεηίδεηαη κε έλα κόλνλ θώλν. Η δηαδηθαζία αλαγλώξηζεο ηνπ “θξίζηκνπ θώλνπ” 

είλαη απιή θαη βαζίδεηαη ζε κηα ινγηθή ηαμηλόκεζεο. Καηαξράο, νη θνξπθέο ηνπ 

πνιπγώλνπ δηαξξνήο θαη ην δηάλπζκα έληαζεο εθθξάδνληαη ζε πνιηθέο 

ζπληεηαγκέλεο. Οη αληησξνινγηαθέο γσλίεο θi πνπ αληηζηνηρνύλ ζε όιεο ηηο θνξπθέο 

ηαμηλνκνύληαη ζε αύμνπζα ζεηξά θαη θαηόπηλ, εληνπίδεηαη ν θώλνο i κέζα ζηνλ νπνίν 

βξίζθεηαη ε γσλία θs ηνπ δηαλύζκαηνο έληαζεο από ηε ζρέζε: 1i s i      κε 

1 2last    . Απηή ε απιή δηαδηθαζία εθαξκόδεηαη ζε θάζε επαλάιεςε ηεο 

δηαδηθαζίαο βειηηζηνπνίεζεο γηα ηνλ πξνζδηνξηζκό ησλ θξίζηκσλ θώλσλ θαη ησλ 

αληίζηνηρσλ γξακκώλ δηαξξνήο όισλ ησλ δηαηνκώλ. Έρνληαο ηελ πιεξνθνξία ηεο 

θξίζηκεο γξακκήο δηαξξνήο γηα θάζε δηαηνκή, κνξθώλεηαη έλαο θαη κόλνλ έλαο 

πεξηνξηζκόο γηα ηε δηαηνκή απηή.  

 

΢σ. 7: Ενηοπιζμόρ κπίζιμος κώνος για διζδιάζηαηη αλληλεπίδπαζη. 
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Γηα ηελ πεξίπησζε ηεο ηξηζδηάζηαηεο αιιειεπίδξαζεο, ε επηθάλεηα δηαξξνήο 

πξνζεγγίδεηαη κε επίπεδα ηξίγσλα, νη θνξπθέο ησλ νπνίσλ ( 1 2 3, ,V V V ) καδί κε ηελ 

αξρή ησλ αμόλσλ ( 4V ) ζρεκαηίδνπλ έλαλ θώλν-ηεηξάεδξν (΢ρ. 8).  

 

΢σ. 8: Ενηοπιζμόρ κπίζιμος κώνος για ηπιζδιάζηαηη αλληλεπίδπαζη. 

 

Κάζε ζεκείν εληαηηθήο θαηάζηαζεο αλήθεη ζε έλαλ κόλν θώλν-ηεηξάεδξν θαη 

ζηνρεύεη ή ελεξγνπνηεί ην αληίζηνηρν επίπεδν δηαξξνήο. Γηα θάζε ζεκείν Ρ κε 

ζπληεηαγκέλεο (xp,yp,zp) θαη γηα ηηο θνξπθέο ηνπ ηεηξάεδξνπ V1(x1,y1,z1), V2(x2,y2,z2), 

V3(x3,y3,z3) θαη V4 (0,0,0), ηζρύεη όηη ην ζεκείν Ρ βξίζθεηαη εληόο ηνπ ηεηξάεδξνπ, αλ 

νη αθόινπζεο νξίδνπζεο έρνπλ ην ίδην πξόζεκν: 
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Η ζύγθξηζε ησλ πξνζήκσλ ησλ Di θαη D0 ζπληζηά έλαλ έιεγρν ηνπ αλ ην ζεκείν Ρ 

θαη ε θνξπθή Vi βξίζθνληαη ζηελ ίδηα κεξηά ηνπ επηπέδνπ i (δειαδή ηνπ επηπέδνπ πνπ 

ζρεκαηίδεηαη από ηα άιια ηξία ζεκεία εθηόο ηνπ Vi). Αλ ην ζεκείν Ρ βξίζθεηαη εληόο 

ησλ ηεζζάξσλ επηπέδσλ, ηόηε ην ζεκείν βξίζθεηαη εληόο ηνπ ηεηξάεδξνπ. Αλ ην 

πξόζεκν νπνηαζδήπνηε νξίδνπζαο Di δηαθέξεη από εθείλν ηεο D0, ηόηε ην ζεκείν Ρ 

είλαη εθηόο ηνπ νξίνπ i, ελώ αλ θάπνηα νξίδνπζα ηζνύηαη κε ην κεδέλ, ηόηε ην ζεκείν 
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Ρ βξίζθεηαη πάλσ ζην επίπεδν i. Η πξναλαθεξζείζα δηαδηθαζία απνηειεί ηε βάζε γηα 

ηνλ εληνπηζκό ηνπ θξίζηκνπ επηπέδνπ δηαξξνήο γηα θάζε δηαηνκή ζε θάζε επαλάιεςε 

ηεο δηαδηθαζίαο βειηηζηνπνίεζεο. Γηα ηελ απνθπγή ςαμίκαηνο όισλ ησλ πηζαλώλ 

θώλσλ, αθνινπζείηαη κηα ηερληθή εμάιεηςεο (pruning technique) ησλ επηά από ηνπο 

νρηώ ππνρώξνπο πνπ ζρεκαηίδνληαη από ηνπο άμνλεο, κε βάζε ηηο ζπληεηαγκέλεο 

θάζε ζεκείνπ Ρ. Καηόπηλ, ππνινγίδνληαη νη νξίδνπζεο ησλ ηεηξάεδξσλ κόλν ηνπ 

ζπγθεθξηκέλνπ ππνρώξνπ, εληνπίδεηαη ην θξίζηκν ηεηξάεδξν θαη θαη’επέθηαζηλ ην 

θξίζηκν επίπεδν δηαξξνήο. 

ii) Γραμμικοποίηζη ηης επιθάνειας διαρροής ηοπικά 

Επεθηείλνληαο ηε ινγηθή ηνπ εληνπηζκνύ ηνπ θξίζηκνπ θώλνπ, κπνξεί λα δηαηεξεζεί 

ε κε γξακκηθόηεηα ηεο επηθάλεηαο δηαξξνήο θαη λα εθαξκνζηεί ε γξακκηθνπνίεζή 

ηεο ηνπηθά γηα θάζε ζεκείν εληαηηθήο θαηάζηαζεο. Σα επίπεδα δηαξξνήο, δειαδή, δελ 

είλαη πξνζδηνξηζκέλα εθ πξννηκίνπ, αιιά νξίδνληαη γηα θάζε ζεκείν ζε θάζε 

επαλάιεςε ηεο δηαδηθαζίαο βειηηζηνπνίεζεο. 

 

΢σ. 9: Σοπική γπαμμικοποίηζη ηηρ επιθάνειαρ διαπποήρ. 

 

Η δηαδηθαζία πνπ αθνινπζείηαη απεηθνλίδεηαη ζην ΢ρ. 9 θαη είλαη ε εμήο: θαηαξράο, 

πξνζδηνξίδεηαη ην ζεκείν ηνκήο ηνπ δηαλύζκαηνο εληαηηθήο θαηάζηαζεο κε ηελ 

επηθάλεηα δηαξξνήο θαη θαηόπηλ, νξίδεηαη ην εθαπηόκελν-ζε απηό ην ζεκείν-επίπεδν, 

θαζώο θαη ην θάζεην δηάλπζκα ηνπ επηπέδνπ. Σν δηάλπζκα έληαζεο πξνβάιιεηαη ζηε 

δηεύζπλζε ηνπ θάζεηνπ δηαλύζκαηνο θαη ε πξνβνιή απηή ζπγθξίλεηαη κε ηελ 

απόζηαζε ηνπ εθαπηνκεληθνύ επηπέδνπ από ηελ αξρή ησλ αμόλσλ. Καη’απηόλ ηνλ 

ηξόπν, γηα θάζε δηαηνκή κνξθώλεηαη έλαο πεξηνξηζκόο δηαξξνήο θαη νη δηαζηάζεηο 

ηνπ κεηξώνπ Ν θαη ησλ δηαλπζκάησλ w θαη rʹ είλαη αθξηβώο νη ίδηεο κε εθείλεο, πνπ 

πξνθύπηνπλ από ηε ζεώξεζε εληνπηζκνύ ηνπ θξίζηκνπ θώλνπ. ΢εκεηώλεηαη όηη ζην 

΢ρ. 9 παξνπζηάδεηαη ε εθαξκνγή ηεο κεζόδνπ γηα δηζδηάζηαην θξηηήξην δηαξξνήο, 
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αιιά ε πξνηεηλόκελε κέζνδνο είλαη γεληθή θαη κπνξεί λα εθαξκνζηεί γηα 

αιιειεπίδξαζε d εληαηηθώλ κεγεζώλ. 

 ΢ηελ παξνύζα εξγαζία ελζσκαηώλεηαη, επίζεο, ηζνηξνπηθή ζπκπεξηθνξά 

θξάηπλζεο/ραιάξσζεο (hardening/softening) αθνινπζώληαο: i) πνιπγξακκηθνύο θαη 

ii) κε γξακκηθνύο λόκνπο πιηθνύ. Η ηζόηξνπε ζπκπεξηθνξά ζπλίζηαηαη ζην όηη ε 

επηθάλεηα δηαξξνήο δηνγθώλεηαη/ζπξξηθλώλεηαη, ρσξίο λα αιιάδεη ην ζρήκα ηεο. 

Παξόιν πνπ απηή ε ζεώξεζε γηα ηε ραιάξσζε (softening) ζεσξείηαη απινπνηεηηθή, 

γηα νινλνκηθή ζπκπεξηθνξά θαη ππό ηελ επίδξαζε κνλνηνληθώο απμαλόκελνπ 

θνξηίνπ είλαη αξθεηά αθξηβήο (Tangaramvong&Tin-Loi 2008, Tin-Loi&Pang 1993). 

i) Πολσγραμμική ζσμπεριθορά κράησνζης/ταλάρωζης (hardening/softening) 

΢ε θάζε δηαηνκή μ αληηζηνηρεί έλαο πιαζηηθόο πνιιαπιαζηαζηήο zμ, ε κε κεδεληθή 

ηηκή ηνπ νπνίνπ ζεκαηνδνηεί όηη ε ζπγθεθξηκέλε δηαηνκή έρεη πιαζηηθνπνηεζεί

( 0)z  . Με βάζε απηήλ ηελ ηηκή ηνπ πιαζηηθνύ πνιιαπιαζηαζηή, εληνπίδεηαη ην 

αληίζηνηρν ηκήκα ns θξάηπλζεο/ραιάξσζεο γηα θάζε δηαηνκή, ην νπνίν πξνζδηνξίδεη 

ην αληίζηνηρν επίπεδν έληαζεο (΢ρ. 10). Καη’απηόλ ηνλ ηξόπν, ηα κεηξώα θξάηπλζεο 

ζρεκαηίδνληαη γηα θάζε δηαηνκή θαη ζηε ζπλέρεηα γηα όιε ηελ θαηαζθεπή. ΢θνπόο 

είλαη ν ππνινγηζκόο ηνπ πιαζηηθνύ κέξνπο ησλ ζπλδπαζκέλσλ δξάζεσλ γηα όιεο ηηο 

δηαηνκέο ρξεζηκνπνηώληαο κηα γξακκηθή ζρέζε ηεο κνξθήο  zH c . ΢ε απηή ηε 

ζρέζε, ην H είλαη ην δηαγώλην κεηξών θξάηπλζεο κε δηαζηάζεηο (2nel×2nel), z  είλαη 

ην (2nel ×1) δηάλπζκα όισλ ησλ πιαζηηθώλ πνιιαπιαζηαζηώλ θαη c  ην (2nel×1) 

δηάλπζκα, ην νπνίν εθθξάδεη ζπζζσξεπηηθά ηελ πξνεγεζείζα πιαζηηθή 

ζπκπεξηθνξά. Γηα θάζε δηαηνκή μ ( 1,2...2 )eln  πνπ αθνινπζεί πνιπγξακκηθή 

ζπκπεξηθνξά θξάηπλζεο/ραιάξσζεο κε ζπλνιηθό αξηζκό ηκεκάησλ , νη ζρέζεηο πνπ 

πξνζδηνξίδνπλ ηηο κε κεδεληθέο ηηκέο ησλ κεηξώσλ θξάηπλζεο είλαη νη αθόινπζεο: 

 ( , ) 1...2 , 1...
sn el sH h n n          (8) 
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


 (9) 

όπνπ i  είλαη ν ζπληειεζηήο κεγέζπλζεο/ζπξξίθλσζεο ηνπ νξίνπ δηαξξνήο ( 0 1  ) 

θαη iz  είλαη ε ηηκή ηνπ αληίζηνηρνπ πιαζηηθνύ πνιιαπιαζηαζηή ζην ηέινο ηνπ 
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ηκήκαηνο i  ( 0 0z  ) θαη 1 2 1( ) ( )i i i y i ih s z z      είλαη ε θιίζε ησλ ηκεκάησλ 

θξάηπλζεο/ραιάξσζεο έρνπζα δηαζηάζεηο ξνπήο. ΢εκεηώλεηαη όηη γηα ηηο δηαηνκέο, νη 

νπνίεο βξίζθνληαη ζηελ ειαζηηθή πεξηνρή, ν πιαζηηθόο πνιιαπιαζηαζηήο θαη νη 

ζπληειεζηέο θξάηπλζεο είλαη κεδεληθνί. Επηπξνζζέησο, γηα ην πξώην ηκήκα 

θξάηπλζεο ηζρύεη όηη ( ,1)c  =0, αθνύ δελ ππάξρεη πξνγελέζηεξε πιαζηηθή 

ζπκπεξηθνξά. Απηό ζεκαίλεη όηη ην κεηξών θξάηπλζεο Η εθθξάδεη ην κέηξν 

θξάηπλζεο/ραιάξσζεο, πνπ αληηζηνηρεί ζην εληνπηζκέλν ηκήκα, ελώ ην κεηξών c 

αληηζηνηρεί ζηε ζπλνιηθή πξνεγεζείζα πιαζηηθή ζπκπεξηθνξά. ΢πλεπώο, ε ζπλζήθε 

δηαξξνήο γηα ηελ θαηαζθεπή ζπλνιηθά εθθξάδεηαη σο εμήο: 

 - andT           0 zw N s r r r H c  (10) 

όπνπ r είλαη ην (2nel ×1) δηάλπζκα πνπ πεξηιακβάλεη ηα κεγεζπκέλα/ζπξξηθλσκέλα 

όξηα δηαξξνήο θαη r είλαη ην (2nel ×1) δηάλπζκα πνπ πεξηιακβάλεη ηα αξρηθά όξηα 

δηαξξνήο. 

 

΢σ. 10: Ιζοηποπική κπάηςνζη/σαλάπυζη για α)διζδιάζηαηη και b)ηπιζδιάζηαηη αλληλεπίδπαζη 

και c)πολςγπαμμική ζςμπεπιθοπά ενόρ ζημείος ενηαηικήρ καηάζηαζηρ. 
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ii) Μη γραμμική ζσμπεριθορά κράησνζης/ταλάρωζης (hardening/softening) 

Η κε γξακκηθή ζπκπεξηθνξά κπνξεί λα πξνζδηνξηζηεί βάζεη θάπνησλ πεηξακαηηθώλ 

δεδνκέλσλ, ηα νπνία πξνζεγγίδνληαη κε κηα θακπύιε. Έρνληαο, ινηπόλ, πεηξακαηηθά 

δεδνκέλα, πνπ αθνξνύλ ζηελ αμνληθή δύλακε ζε ζπλάξηεζε κε ηελ αμνληθή 

πιαζηηθή παξακόξθσζε θαη ζηελ θακπηηθή ξνπή ζε ζπλάξηεζε κε ηελ πιαζηηθή 

ζηξνθή, πξνζδηνξίδνληαη νη αληίζηνηρεο κε-γξακκηθέο θακπύιεο. Καηόπηλ, νη 

θακπύιεο απηέο ζπλδπάδνληαη κε κηα αλαινγία πνπ ππαγνξεύεηαη από ηνπο 

ζπληειεζηέο ηνπ θάζεηνπ-ζην επίπεδν δηαξξνήο-δηαλύζκαηνο θαη ελ ηέιεη πξνθύπηεη 

κία θακπύιε, πνπ αθνξά ζηε ζπλδπαζκέλε δξάζε ησλ εληαηηθώλ κεγεζώλ 

ζπλαξηήζεη ηεο πιαζηηθήο ζηξνθήο. Έλαο πιαζηηθόο πνιιαπιαζηαζηήο zμ 

αληηζηνηρίδεηαη ζε κηα δηαηνκή μ ζε θάζε επαλάιεςε ηεο δηαδηθαζίαο 

βειηηζηνπνίεζεο, ε κε-κεδεληθή ηηκή ηνπ νπνίνπ ζεκαηνδνηεί όηη ε δηαηνκή 

βξίζθεηαη ζηελ πιαζηηθή πεξηνρή. Έρνληαο ηελ αλαιπηηθή έθθξαζε ηεο κε-

γξακκηθήο ζπκπεξηθνξάο θξάηπλζεο/ραιάξσζεο θαη γλσξίδνληαο ηελ ηηκή ηνπ 

πιαζηηθνύ πνιιαπιαζηαζηή, κπνξεί λα ππνινγηζηεί απεπζείαο από ηελ ηεηαγκέλε ηνπ 

ζεκείνπ ηεο θακπύιεο ην κεγεζπκέλν/ζπξξηθλσκέλν όξην δηαξξνήο rʹμ πνπ 

αληηζηνηρεί ζηε δηαηνκή (΢ρ. 11). Η ζπλζήθε δηαξξνήο γηα ηελ θαηαζθεπή ζπλνιηθά 

δίδεηαη όπσο θαη ζηε ζρέζε (10), κε ην r  λα ππνινγίδεηαη θαηεπζείαλ από ηελ 

θακπύιε ζπκπεξηθνξάο. 

 

΢σ. 11:Μη γπαμμική ζςμπεπιθοπά κπάηςνζηρ/σαλάπυζηρ. 

 

Σν πξόβιεκα πνπ δίδεηαη από ηε ζρέζε (6), θαζώο θαη νη πξνηεηλόκελεο 

ζεσξήζεηο γηα ηε ζπλζήθε δηαξξνήο θαη γηα ηνπο λόκνπο θξάηπλζεο/ραιάξσζεο 
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(softening), εθαξκόδνληαη ζε θώδηθα Matlab. Επηιέγεηαη ν επηιύηεο fmincon 

(θαηάιιεινο γηα κε γξακκηθά πξνβιήκαηα ειαρηζηνπνίεζεο πνιιώλ κεηαβιεηώλ κε 

πεξηνξηζκνύο) θαη ε interior-point κέζνδνο γηα ηε δηαδηθαζία ηεο βειηηζηνπνίεζεο. Οη 

πεξηπηώζεηο πνπ εμεηάδνληαη είλαη νη αθόινπζεο: 

 Case (a): NM αιιειεπίδξαζε κε : 

1. Γξακκηθνπνηεκέλνη θαηαζηαηηθνί λόκνη θαη ζπλζήθε δηαξξνήο. 

2. Γξακκηθνπνηεκέλνη θαηαζηαηηθνί λόκνη θαη κε γξακκηθή ζπλζήθε 

δηαξξνήο. 

3. Με γξακκηθνί θαηαζηαηηθνί λόκνη θαη ζπλζήθε δηαξξνήο. 

 Case (b): NQM αιιειεπίδξαζε κε: 

1. Γξακκηθνπνηεκέλνη θαηαζηαηηθνί λόκνη θαη ζπλζήθε δηαξξνήο. 

2. Γξακκηθνπνηεκέλνη θαηαζηαηηθνί λόκνη θαη κε γξακκηθή ζπλζήθε 

δηαξξνήο. 

3. Με γξακκηθνί θαηαζηαηηθνί λόκνη θαη ζπλζήθε δηαξξνήο. 

Γηα ηηο παξαπάλσ πεξηπηώζεηο αλαιύεηαη ην πιαίζην ηνπ ζρήκαηνο 12, ην νπνίν 

απνηειείηαη από 30 κέιε, 21 θόκβνπο θαη 54 βαζκνύο ειεπζεξίαο. Η θαηεγνξία 

ράιπβα είλαη S235 κε κέηξν ειαζηηθόηεηαο 
8 22 10 /E kN m   . Γηα ηηο δηαηνκέο ησλ 

ππνζηπισκάησλ ηζρύεη A=112.5×10
-4 

m
2
, I=18260×10

-8 
m

4
,
 

s1y=2643.75kN, 

vy=505.41kN, s2y=s3y=325kNm, ελώ γηα ηηο δηαηνκέο ησλ δνθώλ A=28.48×10
-4 

m
2
, 

I=1943×10
-8 

m
4
,
 

s1y=669.28kN, vy=189.89kN, s2y=s3y=51.84kNm. Η αληίζηνηρε 

πνιπγξακκηθή ζπκπεξηθνξά θαίλεηαη ζην ΢ρ. 13a θαη εμαξηάηαη από ηηο παξακέηξνπο 

θάζε δηαηνκήο. Πην ζπγθεθξηκέλα, γηα ηα ππνζηπιώκαηα ηζρύεη h1=6500kNm 

z1=0.005 λ1=1.1, h2=3250kNm z2=0.015 λ2=1.20, h3=-5200kNm z3=0.04 λ3=0.8, 

h4=10
-6

kNm z4=0.05 λ4=0.8, ελώ γηα ηηο δνθνύο h1=518.4kNm  z1=0.005 λ1=1.05, 

h2=259.2kNm  z2=0.015  λ2=1.10, h3=-777.6kNm  z3=0.035  λ3=0.80, h4=10
-6

kNm  

z4=0.04  λ4=0.80. Η κε γξακκηθή ζπκπεξηθνξά ησλ ππνζηπισκάησλ θαη ησλ δνθώλ 

απεηθνλίδεηαη ζην ΢ρ. 13b ρξεζηκνπνηώληαο κηα πνιπσλπκηθή ζπλάξηεζε 4
νπ

 βαζκνύ 

(Πίλαθαο 2). Οη ηηκέο ησλ z4 απνηεινύλ ηα άλσ όξηα γηα ηηο δηαηνκέο ησλ 

ππνζηπισκάησλ θαη ησλ δνθώλ. Σν άλσ όξην γηα όιεο ηηο κεηαηνπίζεηο είλαη 1uu  

θαη ην θάησ όξην -1lu  . Η παξάκεηξνο πνηλήο π απμάλεηαη ζε θάζε θύθιν ηεο 

δηαδηθαζίαο βειηηζηνπνίεζεο κε βάζε ηε ζρέζε π=10π, έσο όηνπ ε επηζπκεηή 

ζύγθιηζε επηηεπρζεί  5(   10 )Tw z  . 



 

 

xx Οξηαθή θαη παξακνξθσζηαθή αλάιπζε πιαηζησηώλ θαηαζθεπώλ κε ρξήζε κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ  

 

 

΢σ. 12: a) Επίπεδο μεηαλλικό πλαίζιο και b) μησανιζμόρ καηάππεςζηρ για όλερ ηιρ πεπιπηώζειρ.  

 

Πίλαθαο 2: Εμηζώζεηο πνιπσλπκηθώλ γξακκώλ ηεο κε-γξακκηθήο ζπκπεξηθνξάο. 

 

 

 

΢σ. 13: a) Πολςγπαμμική και b) μη γπαμμική ζςμπεπιθοπά κπάηςνζηρ/σαλάπυζηρ. 
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Σα απνηειέζκαηα ησλ αλαιύζεσλ παξνπζηάδνληαη ζηνλ Πίλαθα 3. Οη θνξηηθνί 

ζπληειεζηέο είλαη κεγαιύηεξνη θαη γηα ηηο δπν πεξηπηώζεηο κε γξακκηθήο 

αιιειεπίδξαζεο, ζπγθξηλόκελνη κε ηε γξακκηθνπνηεκέλε ζεώξεζε. Επηπιένλ, ε 

επίδξαζε ηεο ηέκλνπζαο δύλακεο είλαη εκθαλήο ζηε κείσζε ηνπ θνξηίνπ 

θαηάξξεπζεο. Η κόξθσζε ησλ πιαζηηθώλ αξζξώζεσλ (αξηζκόο θαη θαηαλνκή ηνπο 

ζηελ θαηαζθεπή) είλαη ε ίδηα γηα όιεο ηηο πεξηπηώζεηο (΢ρ. 12 b), αιιά δηαθνξεηηθέο 

εληαηηθέο θαηαζηάζεηο αληηζηνηρνύλ ζε θάζε πεξίπησζε. Σα αληίζηνηρα δηαγξάκκαηα 

αιιειεπίδξαζεο θαίλνληαη ζηα ΢ρ. 14  θαη 15. Οη δηαηνκέο εληείλνληαη θπξίσο ιόγσ 

θάκςεο, κε θάπνηεο δηαηνκέο λα βξίζθνληαη ζηνλ θιάδν ραιάξσζεο (softening). Η 

επίδξαζε ηεο αμνληθήο δύλακεο παξαηεξείηαη ζηηο δνθνύο ιόγσ ηεο πιεπξηθήο 

θόξηηζεο (΢ρ. 14 θαη n-m δηαγξάκκαηα ηνπ ΢ρ. 15), ελώ ε επίδξαζε ηεο ηέκλνπζαο 

δύλακεο είλαη εκθαλήο θαη πην έληνλε από εθείλε ηεο αμνληθήο δύλακεο ζηηο 

δηαηνκέο δνθώλ θαη ππνζηπισκάησλ (v-m δηαγξάκκαηα ηνπ ΢ρ. 15). 

 

Πίλαθαο 3: Απνηειέζκαηα αλαιύζεσλ γηα όιεο ηηο πεξηπηώζεηο. 

 

 

 

 

Case Case Case Case Case Case

(a1) (a2) (a3) (b1) (b2) (b3)

8.24 8.28 8.35 7.90 8.25 8.31

27 27 27 27 27 27

18.82 483.61 542.47 825.10 536.51 715.52

59 80 84 102 83 95

7.35E-12 1.84E-10 4.56E-11 1.82E-10 9.40E-13 1.50E-12

10 10 10 10⁵ 100 10

number of equality 

constraints n eq

number of inequality 

constraints n inq

60

number of iterations

complementarity condition 

w
T
z

initial values of  π

maximum load factor a (kN)

number of plastic hinges             

total computational time (s)

Cases            

number of variables n var 205

144
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΢σ. 14: Διαγπάμμαηα NM αλληλεπίδπαζηρ για a) case (a1) και b) case (a3). 

 

 

 

 

΢σ.15: Διαγπάμμαηα NQM αλληλεπίδπαζηρ για a) case (b1) και b) case (b3). 



 
xxiii Πεξίιεςε 

 

΢σ. 16: Εξέλιξη ηηρ διαδικαζίαρ βεληιζηοποίηζηρ για ΝΜ αλληλεπίδπαζη. 

 

 

΢σ. 17: Εξέλιξη ηηρ διαδικαζίαρ βεληιζηοποίηζηρ για ΝQΜ αλληλεπίδπαζη. 

 

Η ππνινγηζηηθή επίδνζε ηνπ αιγνξίζκνπ γηα NM θαη NQM αιιειεπίδξαζε 

παξνπζηάδεηαη ζηα ΢ρ. 16 θαη 17 αληίζηνηρα, παξαιείπνληαο ηηο αξρηθέο επαλαιήςεηο. 

Παξαηεξείηαη όηη γηα ΝΜ αιιειεπίδξαζε ν αιγόξηζκνο γηα όιεο ηηο πεξηπηώζεηο 

θαίλεηαη λα αθνινπζεί πεξίπνπ ην ίδην καζεκαηηθό κνλνπάηη. Ωζηόζν, νη κε 

γξακκηθέο πεξηπηώζεηο (a2) θαη (a3) απαηηνύλ πεξηζζόηεξεο επαλαιήςεηο θαη 

θαη’επέθηαζηλ πεξηζζόηεξν ππνινγηζηηθό ρξόλν ζπγθξηλόκελεο κε ηελ πεξίπησζε ηεο 

γξακκηθνπνίεζεο (a1). Γηα ηελ πεξίπησζε ηεο NQM αιιειεπίδξαζεο, ε δηαδηθαζία 
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βειηηζηνπνίεζεο γηα ηηο πεξηπηώζεηο (b2) θαη (b3) απαηηεί ιηγόηεξεο επαλαιήςεηο (83 

θαη 95 επαλαιήςεηο έλαληη 102)  ζπγθξηλόκελεο κε ηελ πεξίπησζε (b1) θαη ιηγόηεξν 

ππνινγηζηηθό ρξόλν (536.51s θαη 715.52s έλαληη 825.10s). Απηό νθείιεηαη ζην 

γεγνλόο όηη ε δηαδηθαζία εύξεζεο ηνπ θξίζηκνπ θώλνπ γηα ηελ πεξίπησζε ηεο 

ηξηζδηάζηαηεο αιιειεπίδξαζεο απαηηεί πεξηζζόηεξν ρξόλν ζε ζρέζε ηε δηαδηθαζία 

ηνπηθήο γξακκηθνπνίεζεο ηεο επηθάλεηαο δηαξξνήο. Οη έληνλεο θνξπθέο πνπ  

παξνπζηάδνληαη γηα ηελ πεξίπησζε (b1) νθείινληαη ζηνλ όξν ηεο ζπλζήθεο 

ζπκπιεξσκαηηθόηεηαο, ν νπνίνο πνιιαπιαζηάδεηαη κε ηελ παξάκεηξν πνηλήο ζηελ 

αληηθεηκεληθή ζπλάξηεζε. Σν δηάλπζκα ησλ αγλώζησλ s θαη z θαζνξίδνπλ έλα 

γηλόκελν T zw , ην νπνίν απνθιίλεη ειάρηζηα από ην κεδέλ, αιιά απηή ε απόθιηζε 

κεγεζύλεηαη από ηελ παξάκεηξν πνηλήο π, επεξεάδνληαο ζεκαληηθά ηελ ηηκή ηεο 

αληηθεηκεληθήο ζπλάξηεζεο. 

 

IV. Οριακή και παραμορθφζιακή ανάλσζη ηριζδιάζηαηφν πλαιζίφν με 

μαθημαηικό προγραμμαηιζμό 

Η νξηαθή θαη παξακνξθσζηαθή αλάιπζε κηαο θαηαζθεπήο σο έλα πξόβιεκα 

βειηηζηνπνίεζεο δίδεηαη από ηηο παξαθάησ ζρέζεηο:: 

 

1
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z
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0
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d

u
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w
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S s N B u
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 (11) 

όπνπ ηα δηαλύζκαηα θαη ηα κεηξώα γηα ηελ αλάιπζε ηξηζδηάζηαησλ πιαηζίσλ 

δηαθνξνπνηνύληαη σο πξνο ηηο δηαζηάζεηο ζε ζρέζε κε εθείλα, πνπ ρξεζηκνπνηνύληαη 

γηα ηα επίπεδα πιαίζηα. Η αληηθεηκεληθή ζπλάξηεζε πνπ πεξηγξάθεηαη από ηελ 

εμίζσζε (11.i) πεξηιακβάλεη ην θνξηηθό ζπληειεζηή a θαη ηε ζπλζήθε 

ζπκπιεξσκαηηθόηεηαο w
T
z πνιιαπιαζηαζκέλε κε κηα παξάκεηξν πνηλήο π. Η 

ηζνξξνπία γηα νιόθιεξε ηελ θαηαζθεπή (ζεσξώληαο δηπιά ζπκκεηξηθέο δηαηνκέο γηα 

ηα κέιε) δίδεηαη από ηελ εμίζσζε (11.ii), όπνπ B είλαη ην (12nel×6nel) κεηξών 

ηζνξξνπίαο ηεο θαηαζθεπήο, s είλαη ην (6nel×1) δηάλπζκα ησλ αλεμάξηεησλ 

εληαηηθώλ κεγεζώλ όισλ ησλ κειώλ, α είλαη θνξηηθόο ζπληειεζηήο, f είλαη ην (nf×1) 

δηάλπζκα ησλ επηθόκβησλ δξάζεσλ ζην θαζνιηθό ζύζηεκα θαη fd είλαη ην (nf×1) 

δηάλπζκα ησλ ζηαζεξώλ επηθόκβησλ δξάζεσλ ζην θαζνιηθό ζύζηεκα. Η εμίζσζε 
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(11.iii) εθθξάδεη ηε ζπλζήθε ζπκβηβαζηνύ ησλ παξακνξθώζεσλ γηα ηελ θαηαζθεπή, 

όπνπ S είλαη ην (6nel×6nel) κεηξών πνπ πεξηιακβάλεη δηαγσλίσο ηα κεηξώα αθακςίαο 

S
i
 όισλ ησλ κειώλ, N είλαη ην (6nel×2nel) κεηξών πνπ πεξηιακβάλεη όια ηα θάζεηα-

ζηα εληνπηζκέλα επίπεδα δηαξξνήο-δηαλύζκαηα, z είλαη ην (2nel×1) δηάλπζκα ησλ 

πιαζηηθώλ πνιιαπιαζηαζηώλ θαη u ην (6nel×1) δηάλπζκα ησλ αληίζηνηρσλ 

επηθόκβησλ κεηαθηλήζεσλ.  Η ζρέζε (11.iv) πεξηγξάθεη κε όξνπο πεξηζσξίσλ 

αληνρήο w ηνλ πεξηνξηζκό πνπ ηίζεηαη από ηε ζπλζήθε δηαξξνήο, ε νπνία κπνξεί λα 

εθθξαζηεί είηε εθ πξννηκίνπ γξακκηθνπνηώληαο ηελ είηε εθαξκόδνληαο ηελ 

γξακκηθνπνίεζε ηνπηθά. Επηπιένλ, πνιπγξακκηθνί ή κε-γξακκηθνί λόκνη 

ζπκπεξηθνξάο κπνξνύλ λα ελζσκαησζνύλ κέζσ ηνπ ππνινγηζκνύ ησλ 

δηεπξπκέλσλ/ζπξξηθλσκέλσλ νξίσλ δηαξξνήο rʹ. 

Σν πξόβιεκα πνπ δηαηππώλεηαη από ηε ζρέζε (11) εθαξκόδεηαη ζε θώδηθα Matlab 

θαη εμεηάδεηαη ε αιιειεπίδξαζε αμνληθήο δύλακεο-δηαμνληθήο θάκςεο (NMyMz)  γηα 

ηηο εμήο πεξηπηώζεηο: Case (a): γξακκηθνπνηεκέλε ζπλζήθε δηαξξνήο θαη ηειείσο 

πιαζηηθή ζπκπεξηθνξά, Case (b): γξακκηθνπνηεκέλε ζπλζήθε δηαξξνήο θαη λόκνη 

πιηθνύ-Εληνπηζκόο θξίζηκνπ θώλνπ, Case (c): κε-γξακκηθή ζπλζήθε δηαξξνήο (ε 

γξακκηθνπνίεζε εθαξκόδεηαη ηνπηθά) θαη πνιπγξακκηθνί λόκνη πιηθνύ, Case (d): κε-

γξακκηθή ζπλζήθε δηαξξνήο (ε γξακκηθνπνίεζε εθαξκόδεηαη ηνπηθά) θαη κε-

γξακκηθνί λόκνη πιηθνύ. Σν θξηηήξην δηαξξνήο πνπ πηνζεηείηαη είλαη εθείλν ηνπ 

Gendy-Saleeb (1992). 

Σν ηξηζδηάζηαην πιαίζην πνπ παξνπζηάδεηαη ζην ΢ρ. 18 ππνβάιιεηαη ζε 

κεηαβιεηό θνξηίν θαηά άμνλα Υ θαη ζηαζεξό θαηά ηνλ άμνλα Τ θαη Ζ. Γηα ηε 

δηαθξηηνπνίεζε ηνπ θνξέα ρξεζηκνπνηήζεθαλ 26 κέιε, 18 θόκβνη θαη 72 βαζκνί 

ειεπζεξίαο. Ο ράιπβαο είλαη θαηεγνξίαο S235 θαη έρεη κέηξν ειαζηηθόηεηαο Ε=2×10
8
 

kN/m
2
. Γηα όιεο ηηο δηαηνκέο ππνζηπισκάησλ ζεσξείηαη A=159×10

-4
m

2
, 

I=45070×10
-8

m
4 

(ηζρπξόο άμνλαο),
 
I=8564×10

-8
m

4 
(αζζελήο άμνλαο), I=189×10

-8
m

4 

(ζηξεπηηθή), s1y=3736.5kN, s2y=301.6 kNm, s3y=s5y=205.1 kNm, s4y=s6y=602.1kNm, 

ελώ γηα ηηο δηαηνκέο δνθώλ έρνπκε A=53.81×10
-4

m
2
, I=8356×10

-8
m

4 
(ηζρπξόο 

άμνλαο),
 
I=603.8×10

-8
m

4 
(αζζελήο άμνλαο), I=20.12×10

-8
m

4 
(ζηξεπηηθή), s1y=1264.5 

kN, s2y=65.3 kNm, s3y=s5y=29.4 kNm, s4y=s6y=147.7 kNm. Η ππνηεζείζα 

πνιπγξακκηθή θαη ε αληίζηνηρε κε-γξακκηθή ζπκπεξηθνξά θαίλνληαη ζην ΢ρ. 19. Πην 

ζπγθεθξηκέλα, γηα ηελ πνιπγξακκηθή ζπκπεξηθνξά ησλ ππνζηπισκάησλ ηζρύεη 

h1=12041.4 kNm z1=0.005 λ1=1.1, h2=6020.7 kNm z2=0.015 λ2=1.2, h3=-6020.7 kNm  

z3=0.05 λ3=0.85, h4=10
-6 

kNm z4=0.06 λ4=0.85, ελώ γηα ηηο δηαηνκέο δνθώλ 
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h1=1476.7 kNm z1=0.005 λ1=1.05, h2=738.4 kNm z2=0.015 λ2=1.1, h3=-1230.58 kNm 

z3=0.05 λ3=0.85, h4=10
-6 

kNm  z4=0.06 λ4=0.85. Η κε-γξακκηθή ζπκπεξηθνξά 

πεξηγξάθεηαη από έλα πνιπώλπκν 4
νπ

 βαζκνύ βαζηδόκελν ζηα δεδνκέλα ηνπ Πίλαθα 

4. Οη ηηκέο ηνπ z4 απνηεινύλ άλσ όξην γηα ηηο δηαηνκέο ππνζηπισκάησλ θαη δνθώλ, 

ελώ γηα όιεο ηηο κεηαηνπίζεηο έρεη ζεσξεζεί θάησ όξην -10lu   θαη άλσ όξην 1uu   .  

 

΢σ. 18: Σπιζδιάζηαηο πλαίζιο με ζηαθεπά και μεηαβληηά θοπηία.  

Πίλαθαο 4: Εμηζώζεηο πνιπσλπκηθώλ γξακκώλ ηεο κε-γξακκηθήο ζπκπεξηθνξάο. 

 

 

΢σ. 19: a) Πολςγπαμμική και b) μη γπαμμική ζςμπεπιθοπά κπάηςνζηρ/σαλάπυζηρ. 
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Πίλαθαο 5: Απνηειέζκαηα αλαιύζεσλ γηα όιεο ηηο πεξηπηώζεηο. 

 

 

Σα απνηειέζκαηα ησλ αλαιύζεσλ θαίλνληαη ζηνλ Πίλαθα 5. Η πξώηε πεξίπησζε 

ηεο ηειείσο πιαζηηθήο ζπκπεξηθνξάο δηαηππώλεηαη σο έλα πξόβιεκα γξακκηθνύ 

πξνγξακκαηηζκνύ κε ιηγόηεξεο κεηαβιεηέο θαη ιηγόηεξνπο ηζνηηθνύο πεξηνξηζκνύο, 

ζε ζρέζε κε ηηο ππόινηπεο πεξηπηώζεηο. Ωζηόζν, νη αληζνηηθνί πεξηνξηζκνί είλαη 

πεξηζζόηεξνη, θαζώο ζηε κόξθσζε ηεο ζπλζήθεο δηαξξνήο κεηέρνπλ όια ηα δπλαηά 

επίπεδα. Η ηηκή ηνπ θνξηηθνύ ζπληειεζηή είλαη ε κηθξόηεξε γηα απηήλ ηελ πεξίπησζε 

θαη ν απαηηνύκελνο ρξόλνο ζύγθιηζεο είλαη ζαθώο κηθξόηεξνο, αθνύ αληηζηνηρεί ζε 

πξόβιεκα γξακκηθνύ πξνγξακκαηηζκνύ. Οη πεξηπηώζεηο (b), (c) θαη (d) 

πεξηιακβάλνπλ ηνλ ίδην αξηζκό κεηαβιεηώλ θαη πεξηνξηζκώλ αλεμαξηήησο ηεο 

γξακκηθόηεηαο (ή κε) ηεο ζπκπεξηθνξάο ηεο θαηαζθεπήο θαη ηνπ ηξόπνπ 

γξακκηθνπνίεζεο ηεο επηθάλεηαο δηαξξνήο. ΢πγθξίλνληαο ηηο πεξηπηώζεηο (b) θαη (c) 

πνπ αληηζηνηρνύλ ζε πνιπγξακκηθή ζπκπεξηθνξά θξάηπλζεο/ραιάξσζεο 

(hardening/softening), παξαηεξείηαη όηη ε κέζνδνο ηνπηθήο γξακκηθνπνίεζεο ηεο 

επηθάλεηαο δηαξξνήο δίλεη αθξηβέζηεξεο ιύζεηο επηηπγράλνληαο κεγαιύηεξεο ηηκέο 

θνξηηθνύ ζπληειεζηή. ΢πγθξίλνληαο ηηο πεξηπηώζεηο (c) θαη (d) πνπ αληηζηνηρνύλ 

ζηελ ηνπηθή γξακκηθνπνίεζε ηεο επηθάλεηαο δηαξξνήο, δηαπηζηώλεηαη όηη ν 

κεγαιύηεξνο θνξηηθόο ζπληειεζηήο εκθαλίδεηαη γηα ηελ πεξίπησζε ηεο κε-γξακκηθήο 

ζπκπεξηθνξάο θξάηπλζεο/ραιάξσζεο. 



 

 

xxviii Οξηαθή θαη παξακνξθσζηαθή αλάιπζε πιαηζησηώλ θαηαζθεπώλ κε ρξήζε κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ  

 

Η νξηαθή θαηάζηαζε γηα όιεο ηηο πεξηπηώζεηο θαίλεηαη ζην ΢ρ. 20, ε νπνία 

αληηζηνηρεί ζην ζρεκαηηζκό 22 πιαζηηθώλ αξζξώζεσλ. Ελδεηθηηθά παξνπζηάδεηαη ην 

δηάγξακκα αιιειεπίδξαζεο γηα ηελ ηειεπηαία πεξίπησζε ζην ΢ρ. 21. Οη δηαηνκέο ησλ 

δνθώλ εληείλνληαη θπξίσο ιόγσ ηεο αιιειεπίδξαζεο αμνληθήο δύλακεο-ξνπήο πεξί 

ηνλ ηνπηθό z άμνλα (ε επηξξνή ηεο ξνπήο my είλαη ακειεηέα), ελώ νη δηαηνκέο ησλ 

ππνζηπισκάησλ δέρνληαη ηελ επίδξαζε αμνληθήο δύλακεο-δηαμνληθήο θάκςεο.  

 

΢σ. 20: Οπιακή καηάζηαζη για όλερ ηιρ πεπιπηώζειρ. 

 

 

΢σ. 21:  Διάγπαμμα αλληλεπίδπαζηρ για ηην πεπίπηυζη (d). 

 

Η ππνινγηζηηθή επίδνζε ηνπ αιγνξίζκνπ γηα όιεο ηηο πεξηπηώζεηο θαίλεηαη ζηα 

΢ρήκαηα 22, 23 θαη 24. Γηα ηελ πεξίπησζε (b) ν αιγόξηζκνο ζπγθιίλεη κεηά από 28 

επαλαιήςεηο θαη ζε 189.97s. ΢εκεηώλεηαη όηη ε ηηκή ηεο αληηθεηκεληθήο ζπλάξηεζεο 

αλέξρεηαη ζηηο 47145.83 , ελώ ε ηηκή ηνπ θνξηηθνύ ζπληειεζηή είλαη κόιηο 
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204.13kN. Η δηαθνξά απηή νθείιεηαη ζηηο κεγάιεο ηηκέο ηεο παξακέηξνπ πνηλήο π, ε 

νπνία κεγεζύλεη ηηο απνθιίζεηο ηνπ όξνπ ηεο ζπκπιεξσκαηηθόηεηαο. Η εμέιημε ηεο 

δηαδηθαζίαο βειηηζηνπνίεζεο γηα ηελ πεξίπησζε (c) παξνπζηάδεηαη ζην ΢ρ. 23. Η 

ζύγθιηζε επηηπγράλεηαη κεηά από 359 επαλαιήςεηο ζε 2953.38s. Η νκαιή πνξεία ηνπ 

αιγνξίζκνπ δηαθόπηεηαη από θάπνηεο αηρκέο ηεο αληηθεηκεληθήο ζπλάξηεζεο, πνπ 

νθείινληαη ζηνλ όξν ηεο ζπλζήθεο ζπκπιεξσκαηηθόηεηαο. Η αιγνξηζκηθή πνξεία γηα 

ηελ πεξίπησζε (d) παξνπζηάδεηαη ζην ΢ρ. 24. Η πνξεία ηεο δηαδηθαζίαο 

βειηηζηνπνίεζεο είλαη ζρεηηθά νκαιή (ζπγθξηλόκελε κε ηηο ππόινηπεο πεξηπηώζεηο), 

ελώ απαηηνύληαη 280 επαλαιήςεηο θαη 2192.69s κέρξη ηε ζύγθιηζε. 

 

΢σ. 22: Εξέλιξη ηηρ διαδικαζίαρ βεληιζηοποίηζηρ για ηην πεπίπηυζη (b). 

 

΢σ. 23: Εξέλιξη ηηρ διαδικαζίαρ βεληιζηοποίηζηρ για ηην πεπίπηυζη (c). 



 

 

xxx Οξηαθή θαη παξακνξθσζηαθή αλάιπζε πιαηζησηώλ θαηαζθεπώλ κε ρξήζε κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ  

 

 

΢σ. 24: Εξέλιξη ηηρ διαδικαζίαρ βεληιζηοποίηζηρ για ηην πεπίπηυζη (d). 

 

V. Σσμπεράζμαηα-Προηάζεις για μελλονηική έρεσνα 

Η παξνύζα δηαηξηβή πξαγκαηεύηεθε ηελ νξηαθή θαη παξακνξθσζηαθή αλάιπζε 

ζην πιαίζην ηνπ καζεκαηηθνύ πξνγξακκαηηζκνύ. ΢ηόρνο ήηαλ ε αλάδεημε ηεο 

εζσηεξηθήο δνκήο ηνπ πξνβιήκαηνο θαη ησλ κεηνλεθηεκάησλ ηεο, θαζώο επίζεο θαη ε 

πξόηαζε λέσλ ζεσξήζεσλ, νη νπνίεο δηεπξύλνπλ ηελ εθαξκνζηκόηεηα ηεο νξηαθήο 

θαη παξακνξθσζηαθήο αλάιπζεο κε ρξήζε κεζόδσλ καζεκαηηθνύ πξνγξακκαηηζκνύ. 

΢ηε δηαηξηβή απηή πξαγκαηνπνηήζεθε κηα αλαδόκεζε ηνπ πξνβιήκαηνο, 

απνθεύγνληαο ηηο πεξηηηέο πεξηπινθέο γηα ιόγνπο καζεκαηηθνύ θνξκαιηζκνύ θαη 

δηαηεξώληαο κόλν ηηο πιεξνθνξίεο πνπ έρνπλ θπζηθό λόεκα. ΢ην πιαίζην απηό, 

ρξεζηκνπνηήζεθαλ θπζηθέο ζεσξήζεηο γηα ηελ έθθξαζε ηεο ζπλζήθεο δηαξξνήο θαη 

ηελ ελζσκάησζε πνιπγξακκηθώλ ή κε-γξακκηθώλ λόκσλ θξάηπλζεο/ραιάξσζεο, νη 

νπνίεο απνζπκπιέθνπλ ην κέγεζνο ηνπ πξνβιήκαηνο (αξηζκόο κεηαβιεηώλ θαη 

πεξηνξηζκώλ) από νπνηαδήπνηε δηαθξηηνπνίεζε. 

΢ε απηήλ ηελ θαηεύζπλζε, ε ζπλζήθε δηαξξνήο εθθξάζηεθε κε ηξεηο 

δηαθνξεηηθνύο ηξόπνπο: i) κε ζεώξεζε θπξηνύ πνιύεδξνπ (convex hull), ii) κε 

εληνπηζκό ηνπ θξίζηκνπ θώλνπ (cone identification) θαη iii) εθαξκόδνληαο ηνπηθή 

γξακκηθνπνίεζε. Γηα ηελ πξώηε πεξίπησζε, ην πνιύεδξν δηαξξνήο εθθξάδεηαη σο 

γξακκηθόο ζπλδπαζκόο ησλ δηαλπζκάησλ, πνπ αληηζηνηρνύλ ζηηο θνξπθέο ηνπ θαη 

νδεγεί ζηελ ηειηθή έθθξαζε ηνπ θξηηεξίνπ δηαξξνήο κε ηζνηηθνύο πεξηνξηζκνύο. ΢ε 

απηήλ ηελ πεξίπησζε, ν αξηζκόο ησλ πεξηνξηζκώλ είλαη αλεμάξηεηνο από ηε 

δηαθξηηνπνίεζε ηεο επηθάλεηαο δηαξξνήο, αιιά ν αξηζκόο ησλ κεηαβιεηώλ απμάλεηαη 
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εμαηηίαο ηεο εηζαγσγήο ελόο ζεη κε-αξλεηηθώλ παξακέηξσλ. Η πξνηεηλόκελε 

ζεώξεζε ζπγθξίζεθε κε ηελ ππάξρνπζα, ε νπνία εθθξάδεη ηε ζπλζήθε δηαξξνήο σο 

ηνκή εκηρώξσλ. Οη δύν δηαηππώζεηο δηαθέξνπλ σο πξνο ηνλ αξηζκό ησλ κεηαβιεηώλ 

θαη ησλ πεξηνξηζκώλ θαη δηεξεπλήζεθε ε απνηειεζκαηηθόηεηά ηνπο γηα 

αιιειεπίδξαζε αμνληθήο δύλακεο-θακπηηθήο ξνπήο θαη αμνληθήο-ηέκλνπζαο 

δύλακεο-θακπηηθήο ξνπήο. Σα  απνηειέζκαηα ηεο αλάιπζεο επίπεδσλ, κεηαιιηθώλ 

πιαηζίσλ, απνδεηθλύνπλ ηα ππνινγηζηηθά πιενλεθηήκαηα ηεο δηαηύπσζεο ηνπ 

θξηηεξίνπ δηαξξνήο κε ρξήζε θπξηνύ πνιπέδξνπ γηα ην ζηαηηθό ζεώξεκα θαη γηα ηηο 

δπν πεξηπηώζεηο αιιειεπίδξαζεο. Η ηδέα ηνπ εληνπηζκνύ ηνπ θξίζηκνπ θώλνπ (cone 

identification) βαζίδεηαη ζην γεγνλόο όηη ζε θάζε επαλάιεςε ηνπ αιγόξηζκνπ 

βειηηζηνπνίεζεο, ε εληαηηθή θαηάζηαζε θάζε δηαηνκήο αλήθεη ζε έλαλ ζπγθεθξηκέλν 

θώλν ζηνρεύνληαο ή ελεξγνπνηώληαο έλα κόλνλ επίπεδν δηαξξνήο. Γηα απηόλ ηνλ 

ιόγν, αλαπηύρζεθε αιγόξηζκνο, ν νπνίνο εληνπίδεη ηνλ θξίζηκν θώλν ηνπ 

γξακκηθνπνηεκέλνπ δηαγξάκκαηνο αιιειεπίδξαζεο, ζηνλ νπνίν αλήθεη θάζε δηαηνκή. 

Καηόπηλ, ν πεξηνξηζκόο δηαξξνήο κνξθώλεηαη γηα θάζε δηαηνκή κόλν γηα ην 

επζύγξακκν ηκήκα πνπ αληηζηνηρεί ζηνλ θώλν, ζε αληίζεζε κε ηελ πθηζηάκελε 

κέζνδν, ε νπνία γηα θάζε δηαηνκή δηαηππώλεη ηζάξηζκνπο πεξηνξηζκνύο δηαξξνήο κε 

ην πιήζνο ησλ επζπγξάκκσλ ηκεκάησλ ηνπ θξηηεξίνπ δηαξξνήο. Καηά απηόλ ηνλ 

ηξόπν, ην πιήζνο ησλ πεξηνξηζκώλ κεηώλεηαη ζεκαληηθά θαη ην πξόβιεκα γίλεηαη 

αλεμάξηεην από ηε γξακκηθνπνίεζε ηεο επηθάλεηαο δηαξξνήο. Πξνηάζεθαλ δύν απιέο 

κέζνδνη γηα ηνλ εληνπηζκό ηνπ θξίζηκνπ θώλνπ γηα δηζδηάζηαηα θαη ηξηζδηάζηαηα 

θξηηήξηα δηαξξνήο. Επεθηείλνληαο ηελ ηδέα εληνπηζκνύ ηνπ θξίζηκνπ θώλνπ, 

εθαξκόζηεθε κηα ηερληθή ηνπηθήο γξακκηθνπνίεζεο ηνπ θξηηεξίνπ δηαξξνήο γηα θάζε 

δηαηνκή, ζε θάζε επαλάιεςε ηνπ αιγνξίζκνπ βειηηζηνπνίεζεο. ΢ύκθσλα κε ηελ 

πξνηεηλόκελε δηαδηθαζία, ηα επίπεδα δηαξξνήο δελ είλαη εθ ησλ πξνηέξσλ 

θαζνξηζκέλα, αιιά πξνζδηνξίδνληαη γηα θάζε δηαηνκή, ζε θάζε επαλάιεςε. Απηή ε 

δηαδηθαζία παξέρεη αθξηβέζηεξεο ιύζεηο, ελώ παξάιιεια απνθεύγεηαη ε εθ ησλ 

πξνηέξσλ γξακκηθνπνίεζε ηνπ θξηηεξίνπ δηαξξνήο.  

Επηπιένλ, θαη γηα απηήλ ηε ζεώξεζε, ελζσκαηώζεθαλ λόκνη πνιπγξακκηθήο ή κε-

γξακκηθήο θξάηπλζεο/ραιάξσζεο (hardening/softening), ρσξίο λα επεξεάδεηαη ην 

κέγεζνο ηνπ πξνβιήκαηνο. ΢ηελ πεξίπησζε ηεο πνιπγξακκηθήο θξάηπλζεο, 

εληνπίδεηαη ην επζύγξακκν ηκήκα θξάηπλζεο, ην νπνίν αληηζηνηρεί ζε θάζε δηαηνκή, 

κνξθώλνληαη ηα κεηξώα θξάηπλζεο κόλν γηα ην ηκήκα απηό (θαη όρη γηα όια ηα 

δπλαηά). ΢ηελ πεξίπησζε ηεο κε-γξακκηθήο θξάηπλζεο, ν ππνινγηζκόο ηνπ 
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κεγεζπκέλνπ/ζπξξηθλσκέλνπ νξίνπ δηαξξνήο είλαη άκεζνο θαη πξνθύπηεη από ηελ 

ηηκή ηνπ πιαζηηθνύ πνιιαπιαζηαζηή.  

Η πηνζέηεζε ησλ παξαπάλσ παξεκβάζεσλ επεξεάδνπλ θαη ηε κόξθσζε ηεο 

ζπλζήθεο ζπκπιεξσκαηηθόηεηαο, κεηώλνληαο ζην ειάρηζην ην πιήζνο ηνπο. 

Καη’απηόλ ηνλ ηξόπν, δηεπθνιύλεηαη ε ζύγθιηζε ηνπ αιγνξίζκνπ βειηηζηνπνίεζεο, 

θαζώο ε ζπγθεθξηκέλε ζπλζήθε απνηειεί ηελ πεγή ηεο αξηζκεηηθήο αζηάζεηαο ηνπ 

πξνβιήκαηνο.  

Σα αξηζκεηηθά απνηειέζκαηα ησλ αλαιύζεσλ πνπ πξαγκαηνπνηήζεθαλ 

επηβεβαηώλνπλ ηελ εθαξκνζηκόηεηα θαη ηελ ππνινγηζηηθή απνηειεζκαηηθόηεηα ησλ 

πξνηεηλόκελσλ ζεσξήζεσλ ζε επίπεδα θαη ηξηζδηάζηαηα πιαίζηα. Σέινο, 

ζπκπεξαίλεηαη όηη ε αιιειεπίδξαζε ησλ εληαηηθώλ κεγεζώλ επεξεάδεη ηελ       θαη ζε 

νξηζκέλεο πεξηπηώζεηο θαη ηνλ κεραληζκό θαηάξξεπζεο ησλ θαηαζθεπώλ θαη γηα 

απηόλ ηνλ ιόγν πξέπεη λα ιακβάλνληαη ππόςηλ, ζηνρεύνληαο ζε έλαλ αζθαιέζηεξν 

ζρεδηαζκό ησλ θαηαζθεπώλ. 

Σα απνηειέζκαηα ηεο παξνύζαο εξγαζίαο κπνξνύλ λα απνηειέζνπλ εθαιηήξην γηα 

κειινληηθή έξεπλα ζηηο αθόινπζεο θαηεπζύλζεηο:  

 Ελζσκάησζε ηεο γεσκεηξηθήο κε-γξακκηθόηεηαο ζηηο πξνηεηλόκελεο 

ζεσξήζεηο. 

 Η κε-νινλνκηθή ζεώξεζε κπνξεί λα αληηκεησπηζηεί ζαλ κηα ζηαδηαθή 

(stepwise) νινλνκηθή, πηνζεηώληαο γξακκηθνπνηεκέλα ή κε-γξακκηθά 

θξηηήξηα δηαξξνήο θαη θαηαζηαηηθνύο λόκνπο. 

 Η αλάπηπμε καζεκαηηθώλ δηαδηθαζηώλ πνπ ρεηξίδνληαη πην απνηειεζκαηηθά 

ηε ζπλζήθε ζπκπιεξσκαηηθόηεηαο. 

 Εθαξκνγή ησλ πξνηεηλόκελσλ πξνζεγγίζεσλ ζε πξνβιήκαηα επίπεδεο ηάζεο 

θαη επίπεδεο παξακόξθσζεο, ζε πξνβιήκαηα κεραληθήο ξσγκώλ (fracture 

mechanics)  θαη ζε γεσηερληθά πξνβιήκαηα (slope stability analysis, lateral 

earth pressures on rigid retaining structures etc.). 

Ο ζπλδπαζκόο ηεο νξηαθήο αλάιπζεο κε ην καζεκαηηθό πξνγξακκαηηζκό 

δεκηνπξγεί έλα πνιιά ππνζρόκελν πεδίν, ην νπνί αληηκεησπίδεη ηελ αλάιπζε ησλ 

θαηαζθεπώλ αθνινπζώληαο έλα καζεκαηηθό κνλνπάηη κε θπζηθνύο πεξηνξηζκνύο. Η 

αλάγθε γηα ηελ αλάπηπμε κηαο ζεσξίαο, πνπ ζα παξέρεη έλα ζεσξεηηθό ππόβαζξν, 

αιιά θαη κηα γόληκε κεζνδνινγία γηα αξηζκεηηθή επίιπζε, παξακέλεη επηηαθηηθή, γηα 

ηελ πιήξε εθκεηάιιεπζε ηνπ δπλακηθνύ απηώλ ησλ κεζόδσλ.  
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1.1. Background and motivation 

Structural analysis retains a central role in civil engineering field laying a solid 

base for safe and economic structural design. It deals with the determination of 

structural response (elastic and inelastic) when excited by specific loads. More 

specifically, structural analysis results in the evaluation of internal forces, stress 

resultants, displacements and deformations that are developed throughout the 

structure. A variety of methods have been developed to evaluate inelastic response of 

structural systems, most of which follow the evolution of the inelastic deformations 

within a structure until collapse. However, the ultimate state, which is of primal 

interest in engineering design, can be obtained almost instantaneously via limit 

analysis methods.  

Limit analysis, which is based on the assumption of rigid-perfectly plastic 

constitutive behavior, aims at determining directly the ultimate load that a structure 

can sustain and has constituted a robust tool for structural design. The same notion of 

the direct determination of an ultimate -in mathematical terms- state is also enforced 

by mathematical programming that determines directly the values of a set of variables 

corresponding to the best (minimum or maximum) value of an objective function. The 

merging of limit analysis methods with mathematical programming offered the means 

for determining the ultimate structural state following a different mathematical path. 

A great variety of mathematical programming techniques appropriate to treat 

structural analysis problems has been enforced, depending on the structural behavior 

(path-dependent (nonholonomic) or path-independent (holonomic)), the constitutive 

laws (presence or absence of softening), the presence of ductility limitations, the 

approximation of the yield surface and the objective function. 

Limit analysis for linearized yield criteria and rigid-perfectly plastic behavior can 

be cast as a Linear Programming (LP) problem enforcing the static (lower bound) and 

kinematic (upper bound) theorems. This formulation prompted and supported by the 

bloom of LP (Kantorovich 1940, Dantzig 1947) set the ground for the establishment 

of mathematical programming techniques in structural analysis. Since 1951 when 

Charnes and Greenberg implemented LP for the analysis of trusses for the first time, a 

remarkable progress has been exhibited in this field. Maier et al. (1967,1977, 

2002,2003) extended the formulation addressing both perfectly plastic and 

hardening/softening structural behavior on the basis of holonomic (path-independent) 
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or nonholonomic (path-dependent) considerations. The central point of this 

formulation relies on the piecewise linearization of the yield criteria and constitutive 

relations that enable their expression as linear constraints. Incorporation of 

deformation constraints and/or softening behavior enforces the complementarity 

condition that excludes the activation of plastic deformation with nonzero strength 

reserves. It is of disjunctive nature and constitutes the main source of numerical 

instabilities of the problem. Thus, a variety of alternative mathematical programming 

procedures for structural analysis has been generated, such as iterative Linear 

Programming, Quadratic and Parametric Quadratic Programming, Restricted Basis 

Linear Programming, Linear and Parametric Linear Complementarity approaches, 

Mathematical Programming with Equilibrium Constraints (MPEC) (Luo, Pang and 

Ralph 1996, Maier et al. 1977,1979, Tangaramvong and Tin-Loi 2007). It is worth 

mentioning that these formulations for structural analysis have been supported and 

promoted by the developments in mathematical programming concerning the 

treatment of complementarity condition (Fukushima and Lin 2004). More recently, 

second-order cone programming (SOCP) has been employed for structural analysis 

that can be further generalized in the framework of semidefinite programming (SDP) 

(Martin and Makrodimopoulos 2008, Skordeli and Bisbos 2010). 

The majority of the aforementioned mathematical programming approaches is 

based on an a priori piecewise linearization of the yield surface and constitutive laws, 

combining the size of the problem with the discretization. Yield condition is 

formulated calculating the strength reserves for every critical section and for all 

possible hyperplanes of the piecewise linearized yield surface. This defines a vector of 

reserves for every critical section with multiplicity equal to the number of hyperplanes 

of the yield hypersurface. The same number of plastic multipliers is also engaged for 

all possible plastic deformations, which together with the corresponding strength 

reserves compete within the discrete in nature complementarity condition. This 

perplexing procedure generates unnecessary information that increases prohibitively 

the size of the problem especially for a finer discretization of the yield surface. 

 

1.2.  Research objectives 

This work aims at addressing limit analysis problems with hardening/softening 

behavior and ductility constraints in the framework of mathematical programming. 
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The combination of structural analysis with mathematical programming has mainly 

been based on the piecewise linearization of yield surface and constitutive laws. 

Although this approach proved versatile paving the way for the efficient use of a great 

variety of mathematical programming techniques, it may become prohibitive for 

large-scale problems or/and fine discretization. Thus, the aim of this work is to 

enhance the existing formulation by addressing limit structural analysis in the 

framework of mathematical programming in a unifying and more efficient way for 

large-scale problems.  

The specific research objectives concerning the formulation and the treatment of 

the problem are: 

 To highlight the inner structure and drawbacks of the existing methods. 

 To enhance the existing formulation aiming at uncoupling the size of the 

problem from the discretization of the yield surface. 

 To incorporate efficiently multi-linear or nonlinear constitutive laws. 

 To apply the proposed formulations in plane and 3D frames and examine their 

computational efficiency compared to the existing formulation for multi-

component interaction. 

The problems that are addressed in this work concern holonomic (path-

independent) structural behavior, while the considerations of constitutive behavior 

and yield surface are shown in Table 1.1.  

 

Table 1.1: Considerations of constitutive behavior and yield surface. 

 

 

Based on these, the following problems are formulated and treated in this dissertation 

for limit analysis of structures in the context of mathematical programming: 

Rigid-perfectly plastic behavior or 

hardening with unlimited ductility

Piecewise Linear

Nonlinear

Hyperplane Equations

Convex Hull

Nonlinear

Constitutive 

Behavior

Yield Surface

Softening behavior or hardening with 

limited ductility

Piecewise Linear
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1. Rigid-perfectly plastic behavior with piecewise linear (PWL) yield surface 

(hyperplane equations and convex hull formulation). 

2. PWL hardening/softening behavior and PWL yield surface. 

3. PWL hardening/softening behavior and nonlinear yield surface. 

4. Nonlinear hardening/softening behavior and nonlinear yield surface. 

The aforementioned problems enforce different mathematical programming 

techniques. The first category is formulated as a Linear Programming problem, while 

the other three are formulated as a Mathematical Programming with Equilibrium 

Constraints (MPEC) problem. The equilibrium constraints are in this case the 

complementarity conditions which are required due to the presence of softening 

or/and displacement limitations. 

 

1.3.  Outline of the dissertation 

The content of this dissertation is outlined as follows: 

 In Chapter 2, a literature survey is presented reviewing the merging of limit 

analysis and mathematical programming and how this enriched structural analysis.   

Chapter 3 deals with limit analysis of plane frames in the context of Linear 

Programming introducing a convex hull formulation for expressing the yield 

condition in static and kinematic theorem. The proposed formulation differs in the 

number of variables and yield constraints compared to the standard one, which 

expresses yield condition as the intersection of halfspaces. The two formulations are 

compared in terms of computational efficiency. Numerical results of plane steel 

frames prove the computational advantages of convex hull formulation especially for 

3D stress resultant interaction and demonstrate the effect of combined stresses on the 

load carrying capacity. 

In Chapter 4, limit load and deformation structural analysis under holonomic 

assumption is addressed in the context of mathematical programming, aiming at 

determining the ultimate load capacity of frame structures at incipient collapse. 

Equilibrium and compatibility requirements together with strength and 

complementarity constraints are used to formulate an optimization problem aiming at 

maximizing the loading factor. For every stress point and optimization iteration, a 

cone identification approach is proposed enabling the formulation of yield and 

complementarity conditions only for the specific targeted or activated yield 
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hyperplane. Moreover, multi-segmental isotropic hardening/softening behavior of 

critical sections is incorporated in a direct and efficient manner in the yield condition. 

The entire formulation is not affected by the linearization of either the yield surface or 

the constitutive relations and succeeds in reducing the size of yield and 

complementarity conditions to a minimum. The cases of axial force-bending moment 

and axial-shear force-bending moment interaction are included. Numerical results are 

presented verifying the validity and efficiency of the proposed method and underline 

the role of combined stresses in specific cases. 

Chapter 5 deals with limit load and deformation analysis of plane structures 

considering nonlinear interaction and nonlinear structural behavior in the context of 

mathematical programming. A new approach is proposed that retains the nonlinearity 

of the yield surface applying a local linearization technique for every stress point and 

optimization iteration. Moreover, isotropic nonlinear hardening/softening cross-

sectional behavior is efficiently incorporated. The final formulation of yield and 

complementarity condition is of a minimum size, while the linearity of the finally 

formed yield constraints is retained. The computational efficiency of the proposed 

method is compared to that of cone identification approach for several plane frames 

considering axial force-bending moment and axial-shear force-bending moment 

interaction. 

In Chapter 6 limit load and deformation analysis with mathematical programming 

is extended to 3D frame analysis. The ultimate load is evaluated through a nonlinear 

programming problem with equilibrium, compatibility, yield and complementarity 

constraints. The nonlinear inelastic structural behavior is either approximated with 

linear segments (cone identification approach) or embedded retaining its nonlinearity 

(local linearization technique). Furthermore, a holonomic (path-independent) 

structural behavior is assumed and hardening/softening behavior is considered 

isotropic. Numerical results are presented to demonstrate the validity of the proposed 

method for 3D frame analysis, accounting for axial force-biaxial bending moment 

interaction. 

In Chapter 7 the main conclusions of this work are presented, while future research 

directions are highlighted.  

Moreover, five appendices are included. Appendix A concerns the standard form 

of Linear Programming problems and the primal-dual relations of Linear 

Programming. In Appendix B, Karush-Kuhn-Tucker conditions are included and the 
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barrier function interior-point method is presented. Appendix C contains the equations 

of yield lines for axial force-bending moment interaction, while Appendix D describes 

the equations of yield planes for axial-shear force-bending moment interaction. 

Appendix E describes the relations of first-optimality measure required for the 

optimization procedure.   
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2.1. Limit analysis 

Limit analysis of structures based on rigid-perfectly plastic constitutive behavior 

has offered the means to assess directly the ultimate capacity of frame, plate and other 

structures. The incremental analysis physically traces the entire evolution of structural 

response to a monotonically increasing external loading identifying the sequence of 

plastic hinge formation until collapse. The main interest though from an engineering 

point is primarily on the final stage of plastic response-plastic collapse. In this respect, 

limit analysis has been proved very efficient in the determination of the ultimate 

structural state, affecting also the context of design of structures, components and 

connections.  

In essence, limit load analysis monitors only the developed stresses disregarding 

the existing deformations, which do not participate in the problem. This one sided 

formulation is also carried out successfully by the driving power of optimization. The 

fundamental theorems of plasticity that serve as the solid base of limit analysis are the 

static, kinematic and uniqueness theorems (Neal 1977, Jiràsek and Bažant 2002). 

Attempts to formulate these theorems go back to the 18
th

 century, but it was Kazinczy 

(1914) that introduced plastic limit analysis by evaluating and verifying 

experimentally the failure load of a clamped beam. Kist (1917,1920) and Grüning 

(1926) utilized similar notions following rather an engineering intuition than a strict 

mathematical formulation. A proof was established by Gvozdev (1938) and later by 

Horne (1949) and by Greenberg and Prager (1951). According to the static (lower 

bound) theorem, the collapse load of a structure that corresponds to a statically 

admissible state (satisfying equilibrium and yield conditions) is either less than or 

equal to the true collapse load, while the kinematic (upper bound) theorem states that 

the collapse load or load factor obtained for a structure that corresponds to a 

kinematically admissible solution is either greater than or equal to the true collapse 

load. On the basis of the weak and strong duality theorems (Luenberger and Ye 2008), 

theoretically there is no duality gap, i.e. both theorems approach the true value from 

below and above respectively (uniqueness theorem). 
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2.2. Mathematical programming 

Mathematical programming or mathematical optimization is the process followed 

for the selection of the best element (with regard to some criteria) from some set of 

available alternatives. The aim is to find the values of certain decision variables that 

give the minimum or maximum value of a real objective function, i.e. unconstrained 

optimization, which when subjected to equality or/and inequality constraints lead to 

constrained optimization problems. The generalization of optimization theory and 

techniques has allowed an amplified application in a large variety of fields, such as 

economics, mechanics, engineering, operation research, control engineering etc. Due 

to the great diversity of optimization problems, a corresponding large number of 

optimization methods and algorithms have been developed for their solution. The 

different types of optimization problems are classified as presented in Table 2.1 (Rao 

2009). Linear and Nonlinear Programming constitute the two main optimization 

techniques used in structural analysis and therefore are shortly discussed in the 

following sections. 

 

Table 2.1. Classification of optimization problems. 

 

 

Constrained optimization problem

Unconstrained optimization problem

Parameter or static optimization problem

Trajectory or dynamic optimization problem

Optimal control problem

Nonoptimal control problem

Nonlinear programing problem

Geometric programming problem

Quadratic programming problem

Linear programming problem

Integer programming problem

Real-valued programming problem

Deterministic programming problem

Stohastic programming problem

Separable programming problem

Nonseparable programming problem

Single-objective programming problem

Multi-objective programming problem
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Separability of the Functions

Number of the Objective Functions

Existence of Constraints

Nature of Design Variables

Physical Structure of the Problem

Nature of Equations involved

Permissible Values of Design Variables

Deterministic Nature of the Variables
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2.2.1. Linear programming 

Linear programming (LP) is the optimization process applicable for the solution of 

problems in which the objective function and the constraints (equality and inequality) 

appear as linear functions of the decision variables. Even though the problem of 

solving a system of linear inequalities dates back at least as far as Fourier, the Linear 

Programming method was first initiated by  Kantorovich in 1939, aiming at 

maximizing the production in a plywood industry. The simplex method was devised 

and published after the war by Dantzig in 1947 amplifying the use of Linear 

Programming, while John von Neumann developed the theory of duality as a linear 

optimization solution and applied it in various fields and in game theory. Since then, 

Linear Programming meets a wide range of applications in many fields, for example 

operations research, economics, management and engineering. 

The general Linear Programming problem can be established in the following 

standard forms (Luenberger and Ye 2008): 
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where cj, bj and aij (i=1,2…,m; j=1,2,…,n) are known constants and xj are the decision 

variables. 
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 The above relations refer to the standard form of the LP problem since the objective 

function is of minimization type, all constraints are of equality type and all decision 

variables are nonnegative (Appendix A). It is shown that any LP problem can be 

expressed in standard form by using appropriate transformations. The possible results 

of an LP problem are (1) a unique and finite optimum solution, (2) an infinite number 

of optimal solutions, (3) an unbounded solution, (4) no solution or (5) a unique feasible 

point. The geometrical representation of the solution includes a convex polytope 

dictated by the constraints, since they are expressed as the intersection of a finite 

number of halfspaces and hyperplanes. The objective function attains its smallest (or 

largest) value at an extreme point or vertex of the polyhedron (if such point exists).  

As mentioned before, simplex method constitutes the first and most popular one 

for LP problems. It is based on a pivotal operation that generates all basic solutions 

and selects the one that is feasible and corresponds to the optimal value of the 

objective function (Spillers and MacBain 2009). However, for large scale problems 

simplex method is computationally cumbersome in terms of storage and time (the 

worst-case complexity of simplex method is exponential in the problem dimension). 

Khachiyan’s ellipsoid method devised in 1979 is the first polynomial-time LP 

algorithm. In 1984 Karmarkar developed a more efficient algorithm known as 

interior-point method. Simplex method searches along the boundary of the feasible 

space by moving from one feasible vertex to a promising adjacent one until the 

optimum point is found. Karmarkar’s method approaches the optimal solution 

following directions in the interior of the feasible space, attracted by the field of the 

objective function and repelled by the constraints.  
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LP problems are characterized by their duality (Appendix A). Every LP problem, 

considered as primal, is associated with another LP problem, the so-called dual. Given 

the optimal solution of the one, the optimal solution of the other can be obtained. In 

fact, it is immaterial which problem is designated the primal since the dual of a dual is 

the primal. Because of these properties, the solution of a linear programming problem 

can be obtained by solving either the primal or the dual, whichever is easier. The 

primal–dual relationships of a general LP problem aiming at minimizing or 

maximizing a linear objective function subject to a set of equality and inequality 

constraints with nonnegative variables or variables unrestricted in sign are given by 

the following relations (Rao 2009): 
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If there is a difference between the optimal value of the primal and the optimal value 

of the dual problem, then weak duality holds and the difference of the primal values is 

called duality gap. Strong duality holds if and only if the duality gap is zero. 

 

2.2.2. Nonlinear programming 

Nonlinear programming (NLP) is the optimization process applicable for the 

solution of problems in which the objective function or/and the constraints (equality 

or/and inequality) appear as nonlinear functions of the decision variables. The general 

formulation of a constrained nonlinear optimization problem is as follows: 
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In nonlinear programming, Karush-Kuhn-Tucker (KKT) conditions (Karush 1939) 

are first-order necessary conditions for a solution to be optimal (Appendix B), 

provided that some regularity conditions are also satisfied. The most used regularity 

conditions are (Bertsekas 1995) the: Linearity Constraint Qualification 

(if gi and hj are affine functions, then no other condition is needed), Linear 

Independence Constraint Qualification (the gradients of the active inequality and the 

gradients of the equality constraints are linearly independent at the solution point) and 

Mangasarian–Fromovitz Constraint Qualification (the gradients of the active 

inequality constraints and the gradients of the equality constraints are positive-linearly 

independent at the solution point). The necessary conditions are sufficient, if the 

problem is convex, namely the objective function is concave (maximization problem) 

or convex (minimization problem) and the constraint set is also convex. In general, 

though, the necessary conditions are not sufficient for optimality and additional 

information is required, such as the Second Order Sufficient Conditions (SOSC). As 

far as the methods that treat NLP problems are concerned, convex optimization 

problems can be solved by the following contemporary methods: bundle methods, 

subgradient projection methods, interior-point methods, cutting-plane methods, 

ellipsoid method etc. (Hiriart-Urruty and Lemaréchal 1993, Boyd and Vandenberghe 

2009). For nonconvex optimization problems several approaches are available, such 

as extended bundle methods, branch and bound methods, evolutionary approaches etc. 

(Bertsekas 2003, Boyd and Vandenberghe 2009). 

 

2.3. Limit load and deformation analysis with mathematical 

programming 

The structural response in the general case involves a linear elastic and a plastic 

part. The evolution of plastic behavior can be described following either a path-

independent or a path-dependent mathematical formulation. The first one includes 

constraints of holonomic form, i.e. 1 2( , ... , ) 0nf q q q t   depending only on the 

coordinates qj of the system and time t, while the path-dependent behavior includes 

non-holonomic constraints of the form 1 2 1 2( , ... , , ,... , ) 0n nf q q q q q q t 
. . .

 that are also 

velocity-dependent (Greenwood 2003). The path-independent plastic behavior, 

denoted also as holonomic, assumes that any local unloading occurs along the load-

http://en.wikipedia.org/w/index.php?title=Linearity_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Affine_function
http://en.wikipedia.org/w/index.php?title=Linear_independence_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Linear_independence_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Mangasarian%E2%80%93Fromovitz_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Claude_Lemar%C3%A9chal
http://en.wikipedia.org/wiki/Dimitri_Bertsekas
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displacement path (Fig. 2.1a) and the flow rule in that case is expressed in total 

quantities (deformation theory). The nonholonomic behavior is depicted in Fig. 2.1b 

and the flow rule includes rate quantities (flow rule theory) (Lubliner 2006). 

 

 

Fig. 2.1: a) Holonomic and b) nonholonomic consideration. 

 

The treatment of structural analysis in the framework of mathematical 

programming depends on the structural behavior (path-dependent (nonholonomic) or 

independent (holonomic)), the constitutive laws (presence or absence of softening), 

the presence of ductility limitations (limited displacements or/and deformations), the 

approximation of the yield surface and the choice of the objective function.  

For linearized yield criteria and rigid-perfectly plastic behavior, as well as 

hardening behavior with unbounded plastic deformations, limit analysis can be cast as 

a Linear Programming (LP) problem that is computationally advantageous. The use of 

LP and its duality offer the supportive mathematical structure for the two theorems of 

limit analysis, i.e. the static (lower bound) theorem and the kinematic (upper bound) 

theorem. The first approaches the true load factor from below for statically admissible 

trials that satisfy equilibrium and yield conditions, while the second determines an 

upper bound of the load factor among kinematically admissible solutions that are 

stressed within the yield limits (Jiràsek and Bažant 2002, Wong 2009).  

Incorporation of Linear Programming (LP) into limit analysis was introduced by 

Fourier as stated by Prager and pointed out by Maier (1984). Charnes and GreenBerg 

(1951) implemented LP for the ultimate state analysis of trusses. A finite element 

approach to optimal design of plastic structures in plane stress was proposed by Maier 

et al. (1972) formulating and mechanically interpreting both primal and dual 

problems. Limit analysis for two- and three-dimensional structures using finite 
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element procedures and linear programming techniques was also described and 

discussed by Anderheggen and Knöpfel (1972). Plane stress problems were addressed 

by Zavelani (1973,1974) in the context of linear programming expressing the stress 

vectors as linear nonnegative combinations of the vertices of the yield polyhedron. 

This expression, denoted as vertex or corners formulation, resulted in a reduced 

formulation of the yield condition and it was used for the optimal distribution of 

thickness following static and kinematic approaches. The same yield expression was 

used for the shakedown analysis of two- and three- dimensional structures with LP 

initiating the primal and dual formulations of the problem (Corradi and Zavelani 

1974).  A variety of alternative mathematical programming procedures for limit 

analysis of discrete structures described by piecewise linear (PWL) elastic-perfectly 

plastic constitutive laws were formulated and compared with respect to their 

computational merit by Maier et al. (1977). Franchi and Cohn (1980) presented also a 

finite element formulation for elastic-plastic problems with mathematical 

programming using a general software appropriate for structural plasticity by 

mathematical programming (Franchi 1977). The effect of combined stresses on the 

ultimate state of structures was addressed by Polizzotto (1975) and generalized by 

Grierson and Aly (1980).  

For the case of softening or hardening with limited ductility, the need of 

complementarity condition emerges. This condition expresses mutually exclusive 

situations in the form of an inner product of two nonnegative vectors that should be 

zero. Its physical interpretation relies on the fact that simultaneous activation of 

plastic deformation with strength reserves is meaningless. The consideration of 

deformations for the complementarity condition generates the need for compatibility 

relations. Thus, structural analysis is formed as an optimization problem with 

constraints imposed by equilibrium, compatibility relations, yield and 

complementarity conditions. 

This extended formulation of structural analysis in the context of mathematical 

programming was initiated by Maier and coworkers accounting for isotropic and 

kinematic hardening/softening behavior and addressing both holonomic and non-

holonomic problems. Piecewise linearization of yield surface and constitutive laws 

results in the linear expression of all relations. However, the complementarity 

condition, triggered by the presence of softening, is of disjunctive nature and its 

special treatment has raised the development of specific mathematical programming 
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algorithms. A quadratic programming approach was used for structural analysis based 

on piecewise linearized yield surfaces and multi-linear constitutive relations (Maier 

1968, 1970, Capurso and Maier 1970). De Donato and Maier (1972) treated the 

inelastic analysis of reinforced concrete frames with limited rotation capacity as a 

Linear Complementarity Problem (LCP). This was further extended to a Parametric 

Linear Complementarity Problem (PLCP) for the elastoplastic analysis of frames (De 

Donato and Maier 1976).  Alternatively, Maier et al. (1979) presented a Restricted 

Basis Linear Programming (RBLP) formulation for the analysis of discrete structures 

which is based on a LP procedure enriched with an additional rule for the enforcement 

of complementarity relation at each pivotal step. Later, Kaneko and Maier (1981) 

proposed a branch-and-bound technique and an iterative procedure for the optimal 

design of truss structures under displacement and deformation constraints. Wakefield 

and Tin-Loi (1990) adopted Kaneko’s formulation (1979) for the nonholonomic 

elastoplastic analysis detecting non-uniqueness of deformation history. Incorporation 

of nonlinear hardening laws in elastoplastic analysis led to the formulation of a 

Nonlinear Complementarity Problem (NCP) that was solved at each loading instance 

in the context of a stepwise holonomic approach (Tin-Loi and Pang 1993). Ferris and 

Tin-Loi (1999) formulated the minimum weight design problem as a Mathematical 

Programming with Equilibrium Constraints (MPEC) problem and via GAMS 

modeling language proposed two algorithms for its solution, i.e. a penalty formulation 

and a relaxation approach that treat appropriately the complementarity condition. The 

latter was also used for limit analysis of frictional block assemblies (Ferris and Tin-

Loi 2001). The MPEC formulation -appropriately converted into a NLP problem- was 

also adopted for i) the elastoplastic analysis of semirigid frames under quasistatic 

loads and geometric nonlinearity consideration (Tangaramvong and Tin-Loi 2011), ii) 

the ultimate load determination of structures with frictional contact supports under the 

effect of stress interaction for nonholonomic and holonomic considerations 

(Tangaramvong and Tin-Loi 2011, 2012) and iii) the post-collapse response of rigid-

perfectly plastic structures (Tangaramvong et al. 2011).  

Limit load and deformation analysis including softening behavior was examined by 

Maier et al. (1967, 1973). Tin-Loi and Xia (2001) formulated holonomic structural 

analysis with nonlinear and piecewise linear softening behavior as a complementarity 

problem and implemented it in PATH solver (Dirkse and Ferris 1995). Cocchetti and 

Maier (2003) discussed softening behavior for elastic-plastic and combined limit load 
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and deformation analysis in the framework of mathematical programming. 

Tangaramvong and Tin-Loi (2007) used a Mixed Complementarity Problem (MCP) 

formulation for both holonomic and nonholomic structural considerations and 

compared their results for isotropic softening under the effect of combined stresses 

(axial force-bending moment interaction). It was concluded that holonomic analysis is 

sufficiently accurate for the case of monotonically increasing loading. Holonomic 

analysis for softening behavior under combined stresses was also formulated as a 

MPEC problem proposing various nonlinear programming based algorithms for its 

solution (Tangaramvong and Tin-Loi 2008). A combined limit load and deformation 

analysis method based on mathematical programming was proposed by Ardito et al. 

(2008) appropriate to address also nonassociated flow rules and softening structural 

behavior. Moreover, a “sifting” procedure was developed that reduces the size of 

yield condition. A constrained non-linear system approach for structural analysis as a 

MPEC problem was presented by Tangaramvong and Tin-Loi (2010), while the same 

authors in a separate work incorporated geometric nonlinearity effects in 

nonholonomic analysis with softening structural behavior (2010). More recently, the 

analysis of softening frames was dealt as a RBLP problem by Mahini et al. (2014), 

using a dissipated energy maximization approach (Mahini et al. 2013). 

It is worth noting that the aforementioned enhancement of structural analysis was 

driven and supported by the developments in mathematical programming that treated 

properly complementarity problems. Lemke’s algorithm was one of them, appropriate 

for LCP and Mixed LCP (Lemke 1965). Furthermore, the exploration of the 

complementarity problem by Cottle (1972) directed the formulation of elastoplastic 

analysis in the form of a LCP or PLCP, while Kaneko later proposed a reformulation 

of this problem (1979). Tin-Loi and Tseng (2003) proposed a computationally 

efficient method suitable for capturing the multiplicity of solutions of the LCP in 

quasibrittle fracture analysis. From a mathematical standpoint, solution for LCP 

remains an open issue (Hadjidimos et. al 2012). Dirkse and Ferris (1995) developed 

the PATH solver, a software appropriate for Mixed Complementarity problems. 

Furthermore, the development of algorithms appropriate for Mathematical 

Programming with Equilibrium Constraints (MPEC) problems (Luo et al. 1996) 

extended the potential of the proposed methods for structural analysis for both 

holonomic and nonholonomic assumptions. The equilibrium constraints -that for 

structural analysis problems are actually the complementarity constraints- fail to 
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satisfy the Linear Independence Constraint Qualification (LICQ) or the Mangasarian–

Fromovitz Constraint Qualification (MFCQ), making the feasible region of the 

problem nonconvex and not connected. Thus, the MPEC problem requires special 

treatment and can be solved as a sequence of nonlinear programming problems 

adopting approaches (Fukushima and Lin 2004), such as relaxation methods (Lin and 

Fukushima 2005), smoothing formulations (Facchinei et al. 1999, Fukushima and 

Pang 1999, Lin and Fukushima 2003, Yu and Pu 2011), the penalty function approach 

(Huang et al. 2006, Lin and Fukushima 2003), the active-set identification method 

(Fukushima and Tseng 2002), sequential quadratic programming (SQP) (Fletcher et 

al. 2001, Jiang and Ralph 2000), the filter-SQP (Fletcher and Leyffer 2002) and 

interior point methods (Liu and Sun 2002). It is worth noting that the aforementioned 

methods provide local optimal solutions and therefore a variety of branch and bound 

techniques has been proposed for global optimal solutions (Liu and Zhang 2002). 

The approximation of the nonlinear yield surface is interlinked with the 

enforcement of the mathematical programming technique appropriate for the 

structural analysis and therefore deserves a special reference. The piecewise 

linearization of the nonlinear yield surface enables the expression of yield condition 

as a set of linear constraints. This kind of approximation offers computational 

advantages either under the assumption of unlimited ductility allowing for the use of 

LP or combined with any other mathematical programming approach. Hodge (1977) 

initiated a method for automatic piecewise linearization of an arbitrary yield surface, 

while Cannarozzi (1980) used a sequence of circumscribing polyhedra for the 

approximation of the yield surface. Other methods were proposed by Wong and Tin-

Loi (1986), Tin-Loi (1990) and Ardito et al. (2008). More recently, methods for 

approximating the yield surface with ellipsoids were proposed forming second-order 

cone programming (SOCP) problems (Skordeli and Bisbos 2010, Bleyer and Buhan 

2013) and semidefinite programming (SDP) problems (Martin and Makrodimopoulos 

2008). 

It is worth noting that the majority of the aforementioned formulations depends on 

the piecewise linearization of yield surface and constitutive laws that allow for their 

expression as linear constraints. Despite the computational advantages of this 

linearization technique, the size of the problem is combined with the discretization, 

restricting the applicability of these methods, especially for the case of large-scale 

problems and/or fine discretization of the yield surface. 

http://en.wikipedia.org/w/index.php?title=Linear_independence_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Mangasarian%E2%80%93Fromovitz_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Mangasarian%E2%80%93Fromovitz_constraint_qualification&action=edit&redlink=1
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3.1. Basic assumptions 

The ultimate state of a structure under the assumption of rigid-perfectly plastic 

behavior can be determined by using the lower and upper bound theorems of limit 

analysis. The static limit theorem provides a lower bound of load factor that satisfies 

equilibrium and yield condition. The kinematic static theorem determines an upper 

bound of the load factor among all kinematically admissible solutions. 

Plane frames are considered herein consisting of prismatic elements subjected only 

to nodal loading for simplicity reasons. Moreover, small displacements are assumed to 

establish equilibrium equations at the initial undeformed configuration. In addition, 

plastic behavior, if present, is considered only at preselected critical sections, i.e. the 

end sections of the elements, whereas the remaining parts behave elastically. Yield 

conditions are appropriately linearized and the behavior of all critical sections is 

considered rigid-perfectly plastic.  

Matrix notation is adopted throughout. Matrices are represented by capital bold-

face letters, while vectors by lowercase bold characters.  

 

3.2. Equilibrium of plane frames 

Each plane beam element develops six stress resultants at its ends, as shown in Fig. 

3.1. Herein, the axial force (
1

is ), bending moment at the start node j (
2

is ) and bending 

moment at the end node k (
3

is ), are considered as independent primary actions for 

member i . Thus, the six end actions of the element can be expressed at the global 

axes system in terms of the local basic actions by using the corresponding equilibrium 

matrix as follows: 
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where , ,j j j

x yF F M  are the global X and global Y forces and bending moment at the 

start node and , ,k k k

x yF F M  are the actions at the end node of the element i  at the 

global system, i  is the angle formed rotating the global X-axis counterclockwise to 

meet the local x-axis and 
iL  is the element length, i

B  is the (6×3) equilibrium matrix 

of the element and 
is is the (3×1) stress vector of the element. 

 

 

Fig.3.1: Frame element i with equilibrated stress resultants-end actions. 

 

The equilibrium for the whole structure is then established in terms of the unknown 

vector of stresses of all members as: 

 

 da  B s f + f  (3.2) 

 

where B  is the (nf×3nel) structural equilibrium matrix, assembled by the 

corresponding element equilibrium matrices arranged in a block diagonal manner, s  

is a (3nel×1) vector of all stresses in local systems, a is a scalar load factor, f  the 

(nf×1) vector of nodal loading in the global system, df  is the (nf×1) fixed nodal load 

vector, eln  denotes the number of elements and nf  the number of degrees of freedom.  
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3.3. Deformation decomposition and compatibility relation 

The deformations of a frame element i  consists (Fig. 3.2) of the axial deformation 

1

iq  and the two end chord rotations 
2 3,i iq q  of the member. These in general consist of 

an elastic and plastic part. Since structural behavior is herein considered rigid-

perfectly plastic, elastic deformations are not defined and the plastic ones are 

considered developed along the normal to the yield surface (associative plasticity) at 

the touching point moving on the surface for further plastic deformation (consistency 

condition).  Thus deformation decomposition for the entire structure is expressed by: 

 

    zq e p N  (3.3) 

 

where q is the (3nel×1) deformation vector, e and  p  are the (3nel×1) vectors of elastic 

and plastic deformations respectively, N is the matrix which contains all normal-to 

yield planes-vectors and is defined in detail in section 3.4. 

Compatibility conditions relate the member deformations 
i

q  (Fig. 3.2) to the nodal 

displacements 
iu . The compatibility condition for the whole structure is given as: 

 

 T T     zq B u N B u  (3.4) 

  

where  and u  is the (nf×1) nodal displacement vector. 

 

 

 Fig. 3.2: Displacements and deformations of element i.  
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3.4. Yield condition for multi-component interaction 

3.4.1. Hyperplane equations - standard formulation 

The nonlinear yield criterion is a priori linearized forming a polyhedron that 

facilitates the expression of the yield condition as a set of linear constraints. The 

elastic domain is denoted by the common space of all halfspaces in the form (Boyd 

and Vandenberghe 2009): 

 

  | T  ad d ds s r  (3.5) 

 

where a is the unit normal vector of the hyperplane, ds  is the vector of normalized 

stresses and dr  determines the offset of the hyperplane from the origin. The 

geometrical interpretation of yield condition is presented in Fig. 3.3, where the 

dimensionless quantity dw  denotes the normalized reserve of the particular cross 

section. 

 

Fig. 3.3: Geometrical interpretation of yielding. 

 

In this section, yield condition is defined as a set of a finite number of linear 

inequalities, which geometrically represent the intersection of a finite number of 

halfspaces and hyperplanes. In general, considering the interaction of d  number of 

stress resultants ( d -component interaction) and the yield surface of dimension d is 



 
29 Chapter 3                                                                   Limit analysis for plane frames: A convex hull formulation  

approximated with h  hyperplanes, the yield condition for all critical sections of the 

whole frame is formed in terms of stresses s  as: 

 

 
T  N s r  (3.6) 

 

where N is the (3nel × 2hnel) matrix of all scaled -with respect to yield capacities of 

stresses- normal vectors and r  is the (2hnel ×1) vector that includes the yield limits of 

all yield hyperplanes (Maier 1970). Relation (3.6) is analyzed in detail for 2D (axial 

force-bending moment) and 3D (axial-shear force-bending moment) interaction in 

sections 3.6.2 and 3.6.3 respectively. 

 

3.4.2. Convex hull formulation 

3.4.2.1. Mathematical description 

The convex hull of a set of points or vertices is the domain within and on the 

envelope formed by the outer vertices. Mathematically a set C is convex if the line 

segment between any two points in C lies in C, i.e., if for any x1, x2 C and any   

with 0 1  ,  θ·x1 + (1 − θ)·x2  C. Furthermore, a point of the form 

1 1 n nx x     , where 1 1n     and 0i  , 1i n , is a convex 

combination of the points-vertices 1, , nx x  (Boyd and Vandenberghe 2009). 

The convex hull of a set of points C (Fig.3.4a), denoted by conv C, is the set of all 

convex combinations of points in C: 

 

  1 1 1| , 0, 1 , 1n n i i nC x x x C i n             conv  (3.7) 

 

where i  are nonnegative coefficients and 1, , nx x  are the points-vertices. The 

convex hull or convex envelope of set C is the smallest convex set that contains C 

(Boyd and Vandenberghe 2009). 

A convex polyhedron can be described either as a bounded intersection of a finite 

number of closed half spaces, or as the convex hull of a finite number of points 

(Luenberger and Ye 2008). In this work, the concept of convex hull is used to express 

the linearized yield surface. For the case of 2D interaction, convex hull is outlined by 

vn  fixed vertices of known coordinates on the yield surface that form the 
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corresponding vectors ix . Every stress vector ds  is expressed as a linear combination 

of the vectors that correspond to the specific vertices, provided that the sum of 

nonnegative coefficients , 1...i vi n    equals to one 
1

1
vn

i

i




 
 

 
 . This means that for 

every critical section there are as many nonnegative coefficients i  as the vertices of 

the yield polyhedron (Fig. 3.4b). If the stress point reaches the yield limit, the 

corresponding stress vector is expressed as a linear combination of the cone vectors of 

the activated yield hyperplane (Fig. 3.4c). For the special case of only one coefficient 

i  obtaining the value of unity, with all the remaining equal to zero, the stress point 

coincides with the corresponding vertex of the linearized yield surface (Fig. 3.4d).  

The concept of convex hull can be extended in d dimensional spaces engaging 

points –vertices with d number of coordinates. 

 

 

 

Fig. 3.4: Stress vector expressed in terms of convex hull. 
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3.4.2.2. Yield condition formulation 

The a priori linearized yield surface constitutes a polytope that can be expressed as 

the convex hull of its vn  fixed vertices (Boyd and Vandenberghe 2009, Manola and 

Koumousis 2015). Yield condition states that every normalized stress point should 

reside in or on this yield polytope. Therefore, for j element end the following relation 

holds 1 1 ...
v v

j

d n n     s x x with 
1

1
vn

i   and 0i   and a similar one for k element 

end. Thus, yield condition for the whole structure can be established in matrix form 

as: 

 

 ,d eq      s C         (3.8) 

  

where ds  is the (2dnel×1) vector of the normalized stresses for all elements, C is the 

(2dnel×2nvnel) matrix containing the coordinates of the vertices of all yield 

hyperplanes for all elements,   is the (2nvnel×1) vector including the coefficients i  

for all vectors of the vertices nv for all the elements and eqI  is the (2nel×2nvnel) matrix 

that sums the corresponding i  at every element end. Expression (3.8) is 

particularized for 2D (axial force-bending moment) and 3D (axial-shear force-bending 

moment) interaction in sections 3.6.2 and 3.6.3 respectively. 

It is noted that yield conditions following a convex hull formulation (equation 3.6) 

are expressed with strict equality constraints and their number (i.e. the number of 

rows of the matrix relation) corresponds to the number of all critical sections 

multiplied by the dimensionality of the interaction, i.e. 2d×nel, and is independent of 

the number of hyperplanes that approximate the nonlinear yield surface. It depends 

though on the introduced (2nvnel×1) vector   which increases accordingly the 

number of decision variables of the problem. 

 

3.5. Limit analysis with Linear Programming 

3.5.1. General primal-dual formulation 

The primal–dual relationships of a general Linear Programming problem aiming at 

maximizing or minimizing a linear objective function subject to a set of equality and 
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inequality constraints with nonnegative variables or variables unrestricted in sign are 

given by the following relations (Rao 2009): 
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Note that the primal problem is bounded from above by the dual, utilizing as many 

variables as the number of constraints of the primal and establishing as many 

constraints as the number of variables of the primal that bound the primal cost 

coefficients. The solution of a LP problem can be obtained by solving either the 

primal or the dual and since the dual of the dual is the primal, it is immaterial which 

problem (minimization or maximization) is designated as primal. 

 

3.5.2. Hyperplane equations (standard) formulation  

The static theorem of limit analysis can be stated in the form of a LP problem as: 
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where the decision variables are the stresses s and the load factor a. 

Based on the above, the dual problem, which represents the kinematic theorem, can 

be readily obtained as: 
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where the decision variables are now the nodal displacements u and the plastic 

multipliers z . The objective function expresses the dissipated plastic energy ( )T zr

minus the work of permanent loading ( )T

df u . This emerges from the work equation 

T T T

da  zf u f u = r  (external work rate is equal to the internal dissipation). The first 

constraint set represents compatibility and the inequality constraints a normalized 

external work term, which can be considered as a strict equality avoiding a floating 

normalization. In this case the objective function expresses the loading factor a. 

It is noted that the number of constraints of the dual problem is smaller compared 

to that of the primal. It is known that an additional constraint requires more 

computational effort than an additional variable in a linear programming problem 

(Rao 2009). Thus, it becomes evident that, although the primal static or safe theorem 

is from an engineering perspective preferable, computationally is more efficient to 

solve the dual problem (kinematic theorem) following the standard formulation. 

 

3.5.3. Convex hull formulation 

Formulation of the static theorem of limit analysis using a convex hull description 

for the yield surface is given as: 
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where the decision variables of the problem are the stresses s, parameters θ and the 

load factor a.  

The dual problem (kinematic theorem) can be cast as: 
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where the unknown variables are now the nodal displacements u, together with ω and 

φ which express plastic work. The objective function concerns the internal dissipation 

energy  T  I    minus the work of permanent loading  T

df u . This emerges 

from the work equation T T T

da f u f u = I   (external work rate is equal to the internal 

dissipation). The first constraint set represents compatibility conditions with T T   

determining plastic deformation; the second set of the inequality constraints is the 

dual expression of convex hull for plastic deformations and the last concerns a 

normalized external work term, which again can be interpreted as a strict equality. 

It is noted that the number of constraints for the dual problem is significantly 

greater compared to that of the primal. Thus, it is evident that the static theorem, 

which is of primal interest in engineering, turns out as computationally more efficient 

following the convex hull formulation. 

 

3.5.4. Comparison of the two formulations 

Convex hull formulation determines yield condition as a set of equality constraints, 

the number of which is independent of the discretization of the yield surface. The 

number of variables though is increased as compared to the standard formulation 

since parameters i  are introduced. For the general case of piecewise linearization of 

a yield hyper-surface with h hyperplanes and nv  number of vertices, the comparison 

between standard and convex hull formulation is summarized in the following table 

(Table 3.1). Since for multi-component interaction ( 2d  ) the number of vertices nv 

is noticeably smaller than the number of hyperplanes h , convex hull formulation 

becomes considerably advantageous in terms of computational efficiency in 

expressing the yield condition. 
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Table 3.1: Comparison between standard and convex hull formulation. 

 

 

3.6. Yield condition for 2D and 3D interaction  

3.6.1. Yield criterion 

Various yield criteria have been proposed for different materials and/or cross-

sectional shapes that incorporate the interaction of all stresses. Herein, two 

alternatives are examined, i.e. axial force-bending moment (NM) interaction and 

axial-shear force-bending moment (NQM) interaction. 

For the case of axial force-bending moment (NM) interaction the stress state at 

each element section is depicted in Fig. 3.5a. Since interaction diagrams are expressed 

in normalized form, the yield condition for each critical section is also expressed in 

terms of nondimensional stresses, normalized with respect to the corresponding 

plastic capacities. Thus, at every element i, plastic behavior is described at start node j 

by the normalized stress vector    1 1 2 2

T T
j j i i i i

y yn m s s s s    and at end node k by

   1 1 3 3

T T
k k i i i i

y yn m s s s s    , where ,j jn m  and ,k kn m  are the normalized axial 

forces and bending moments of j  and k  element ends, whereas 1

i

ys is the axial 

plastic capacity for both ends, 2 3,  i i

y ys s are the bending moment plastic capacities of 

j and k element ends respectively. The stress state under the combined effect of 

axial-shear force-bending moment interaction (NQM interaction) at each element 

section is depicted in Fig. 3.5b. In terms of normalized stresses, plastic hinges at start 

nodes j are formed under the combined effect of 

Standard Formulation Convex Hull Formulation

Number of variables n var 3n el +1 3n el +2n v n el +1

Number of equality 

constraints n eq
n f n f + 2∙(d+ 1)n el

Number of inequality 

constraints n inq
2hn el —

Number of side constraints 

(upper and lower bounds)
2∙(3n el +1) 2∙(3n el +2n v n el +1)
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    1 1 2 3 2 2

TT
j j j i i i i i i i i

y y yn v m s s s s Lv s s     and at end node k  due to 

    1 1 2 3 3 3

TT
k k k i i i i i i i i

y y yn v m s s s s Lv s s      , where ,j kv v  are the normalized 

shear force at element ends j and k  respectively, 
i

yv  is the shear force yield limit of 

the element, and 
iL  is the element length. 

Notice that different capacities can be considered for the two element ends to 

account also for concrete elements with constant cross section, but different bar 

reinforcement at the two ends. Thus, yielding at the two critical end sections of the 

element will be expressed with respect to the three primary element actions; with the 

minus sign at end k  expressing the pre-established equilibrium within the element 

along the local x and y direction. 

 

 

Fig.3.5: Stress state at element critical sections for a) NM and b) NQM interaction. 

 

In this work, the Gendy-Saleeb yield criterion including the combined effect of 

axial force and bending moment is employed (Gendy and Saleeb 1992): 

 

 2 21
1

m

n m


     (3.14) 

  

The above yield relation is valid for both rectangular and I-cross sections. The 

introduced shape dependent parameter m  is evaluated for rectangular cross sections 

and I-sections respectively using the following relations: 

 

 21 , 1 1.1m mλ n λ n  (3.15) 
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The interaction curve of equation is approximated in the sequel with eight linear 

segments that denote the corresponding yield limits, as shown in Fig. 3.6.  

 

 

Fig.3.6: Linearized Gendy-Saleeb yield criterion for NM interaction. 

 

Including the effect of shear force, the adopted yield criterion is of the form (Gendy 

and Saleeb 1992):  

 

 2 2 21
1 

m

n v m


      (3.16) 

The aforementioned relation is represented by a 3D nonlinear surface which is herein 

approximated using 32 plane triangles, as shown in Fig. 3.7.  

 

 

 

Fig.3.7: a) Nonlinear Gendy-Saleeb yield criterion, b) Linearized yield criterion and 

  c) Plan view of linearized criterion. 
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3.6.2. Axial force-bending moment (NM) interaction 

The equations of the linear segments ( 8h   in Fig. 3.5) approximating the yield 

surface for both element ends are of the form: 

 

 
j j j j j

k k k k k

A n B m C
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 (3.17) 

 

where the coefficients , , ,j j k kA B A B  are the components of the unit normal vector of 

each yield line for j  and k  element ends and coefficients ,j kC C  form the yield 

limits. For an element i  the yield condition is expressed in matrix form as: 
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where 
iN is the (3×16) matrix that contains the horizontal and vertical components, 

i.e. the direction cosines, of the unit normal of all yield lines for both element ends, 

iR is the (3×3) matrix that contains the yield capacities of all stresses of the element, 

iN  is the (3×16) matrix of the scaled coefficients of all yield lines of the element and 

ir is the (16×1) vector that contains all ,j kC C  coefficients (Appendix A). Thus, in 

equation (3.6) N  is the (3nel×16nel) assembled block diagonal matrix of all 
i

N  

matrices and  ...
T

eln1
r = r r  is the (16nel×1) vector that includes the yield limits of all 

yield lines.  

For convex hull formulation and NM interaction, the number of vertices coincides 

with that of the linear segments ( 8vn h   in Fig. 3.6). Yield condition in terms of 

convex hull is expressed for j element end by the following relations: 
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where ( , ), 1...8i ix y i    are the coordinates of the vertices of the linearized yield 

surface common for all critical sections and j is the (8×1) vector of coefficients i  

for j  element end. Similarly, yield condition is expressed for k element end. 

Thus, expressing the normalized stresses as d  s T s , matrices and vectors in 

equation (3.8) are of the following form: 
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3.6.3. Axial-shear force-bending moment (NQM) interaction 

The 3D nonlinear yield surface is approximated with 32h   plane triangles 

(Fig.3.7) corresponding to the same number equations for the corresponding planes in 

n v m   space, which are of the following form for the two element ends: 
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where , ,A B C  are the components of the unit normal vector of the plane and D  is 

the distance of the plane from the origin. For an element i  the yield condition is 

expressed in matrix form as: 
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where
 

iN is the (6×64) matrix that contains the coefficients of all yield planes for 

both element ends, 
iR is the (6×3) matrix that contains the yield capacities of all 

stresses of the element, 
iN  is the (3×64) matrix of the scaled coefficients of all yield 

planes of the element and 
ir is the (64×1) vector that contains all ,j kD D   

coefficients (Appendix B). Thus, in equation (3.6) N  is the (3nel×64nel) assembled 

block diagonal matrix of all 
i

N  matrices and  ...
T

eln1
r = r r  is the (64nel×1) vector 

that includes the yield limits of all yield planes. 
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For convex hull formulation and NQM interaction, the number of vertices is 

18vn   (Fig. 3.7), while the number of planes is 32h  . The number of vertices is 

significantly smaller than that of the planes ( vn h ). Yield condition in terms of 

convex hull is expressed for j element end by the relations: 
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 (3.23) 

 

where ( , , ), 1...i i i vx y z i n    are the coordinates of the vertices of the linearized yield 

surface, common for all critical sections of all elements, and j is the ( )vn ×1  vector 

of coefficients i  for j  element end. Similarly, the yield condition is expressed for k 

element end. 

Thus, matrices and vectors in equation (3.8), given that the normalized stresses are 

expressed as d  s T s , are of the following form: 
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(3.24) 

 

It is noted that the introduced vector   depends on the number of vertices vn  of 

the yield polyhedron, which for 3D interaction is considerably smaller than the 

number of yield planes h . This makes convex hull formulation more advantageous 

compared to the standard one for the expression of yield condition including the 

interaction of three or more stresses, since the constraint reduction is greater than the 

introduced number of variables. 
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3.7. Numerical examples 

The optimization problems described above are implemented in Matlab code for 

the analysis of frame steel structures with rigid-perfectly plastic behavior. The data 

are processed by linprog solver that is appropriate for linear programming problems. 

The aim is to compare the two formulations for the yield condition and investigate 

the influence of combined stresses on the ultimate load. For this purpose, four steel 

plane frames are examined for the following cases: 

 Case (a): Bending. 

 Case (b): Axial force-bending moment interaction (NM interaction) with  

1) standard formulation and 2) convex hull formulation. 

 Case (c): Axial-shear force-bending moment interaction (NQM interaction) 

with 1) standard formulation and 2) convex hull formulation. 

For case (a) the formulation of the problem is simplified since yield constraints 

consist of upper and lower bounds (side constraints) for the values of bending 

moments and matrix N  is not required. 

All analyses are conducted on a PC with a Core Duo Quad CPU and 4GB of RAM 

and the results of all cases are presented below. Notice that the analysis method 

follows the sign convention of matrix structural analysis, whereas final results are 

presented on the basis of engineering sign convention. 

 

3.7.1. Example #1 

The first example concerns a three-storey, two-bay steel frame shown in Fig. 3.8a. 

The frame is discretized into 15 elements, 12 nodes and 27 degrees of freedom. The 

steel grade is S235 with E=2×10
8
kN/m

2
. The material properties are as follows: 

sections with A=112.5×10
-4 

m
2
, I=18260×10

-8 
m

4
,
 
s1y=2643.75 kN, vy=505.4 kN, 

s2y=325 kNm, s3y=325 kNm are employed for all columns, sections with  

A=28.48×10
-4 

m
2
, I=1943×10

-8 
m

4
,
 
s1y=669.28 kN, vy=189.89 kN, s2y=51.84 kNm, 

s3y=51.84 kNm for all beams. Analysis results of all cases are presented in Table 3.2. 
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Fig. 3.8: a) Three-storey, two-bay steel frame and b) its deformed shape for all analysis 

cases. 

 

Table 3.2: Analysis results of all cases for example #1. 

 

 

The effect of combined stresses leads to a reduction of the maximum load factor 

compared to pure bending consideration. For cases of combined stresses ((b) and (c)) 

expressed either with equations of lines/planes or with convex hulls, analysis results 

 Bending
NM 

interaction

NM 

interaction 

Convex Hull

NQM 

interaction

NQM 

interaction 

Convex Hull

 (a) (b1) (b2) (c1) (c2)

46 46 286 46 586

27 27 117 27 147

— 240 — 960 —

33.27 32.42 32.42 30.40 30.40

15 15 15 15 15

0.40 0.59 0.56 8.88 0.59

0.38 0.56 0.48 0.87 0.51

Cases            

number of variables n var

number of equality 

constraints n eq

number of inequality 

constraints n inq

maximum load factor a (kN)

number of plastic hinges             

computational time for the 

optimization process (s)

total computational time (s)
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are identical. However, the convex hull formulation converges slightly faster (1.05 

times) for case (b) and 15.05 times faster for case (c). This concerns the total 

computational time including both matrix formulation and optimization procedure. 

The required time for the mere optimization procedure is shown at the last line of 

Table 3.2. According to this, the optimization problem with convex hull formulation 

is solved 1.17 times faster for case (b) and 1.71 times faster for case (c). This is due to 

fewer constraints, while the greater number of variables seems to have slight influence 

on the computational efficiency. The benefits of convex hull formulation are mainly 

evident for case (c), because the number of constraints is independent of the number 

of planes of the 3D linearized yield surface, whereas the number of the initiated 

variables is related to the number of vertices of yield polyhedron (nv<h). 

The plastic hinge pattern (i.e. number and location) is the same for all analysis 

cases, although they correspond to similar stresses, as shown in Fig. 3.8b. The 

corresponding interaction diagrams are presented in Fig. 3.9 and Fig. 3.10. The frame 

is mainly stressed due to bending moment (the dispersion of stress points is wider 

along the bending moment axis). 

 

 

Fig. 3.9: Interaction diagrams for a) pure bending and b) NM interaction. 
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Fig. 3.10: Interaction diagrams for NQM interaction. 

 

3.7.2. Example #2 

The second example concerns the three-storey, four-bay plane frame, shown in Fig. 

3.11, which is subjected to increasing lateral and fixed vertical loading. The frame is 

discretized into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=112.5×10

-4 
m

2
, I=18260×10

-8 
m

4
,
 

s1y=2643.75 kN, vy=505.4 kN, s2y=325 kNm, s3y=325 kNm and sections with 

A=62.61×10
-4 

m
2
, I=11770×10

-8 
m

4
,
 
s1y=1471.34 kN, vy=418.06 kN, s2y=189.01 kNm, 

s3y=189.01 kNm are employed for all columns and beams respectively. Analysis 

results of all cases are presented in Table 3.3. 

The maximum load factor attains its greatest value for pure bending consideration 

and the smallest for NQM interaction. Results of convex hull formulation (cases (b2) 

and (c2)) are the same (values of variables and collapse mechanism) with those of 

cases (b1) and (c1) correspondingly. However, convex hull formulation converges in 

1.14 times less time for case (b) and 14.92 times faster for case (c), taking into 

account the required time for both matrix formulation and the optimization procedure. 
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In terms of time of mere optimization process, convex hull formulation converges 

1.20 times faster for case (b) and 2.45 times faster for case (c), due to the presence of 

significantly fewer constraints. 

 

 

Fig. 3.11: Three-storey, four-bay steel frame. 

 

Table 3.3: Analysis results of all cases for example #2. 

 

 

 Bending
NM 

interaction

NM 

interaction 

Convex Hull

NQM 

interaction

NQM 

interaction 

Convex Hull

 (a) (b1) (b2) (c1) (c2)

118 118 742 118 1522

81 81 315 81 393

— 624 — 2496 —

117.69 108.33 108.33 95.29 95.29

26 33 33 34 34

0.40 0.66 0.58 11.49 0.77

0.38 0.61 0.51 1.59 0.65

Cases            

number of variables n var

number of equality 

constraints n eq

number of inequality 

constraints n inq

maximum load factor a (kN)

number of plastic hinges             

computational time for the 

optimization process (s)

total computational time (s)
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Collapse mechanisms (number and position of plastic hinges) is also affected by 

the assumed interaction of stresses. For case (a) fewer plastic hinges are formed that 

reach their yield limit due to bending moment, as shown in Fig. 3.12. Plastic hinge 

patterns for cases (b) and (c) are shown in Fig. 3.13a and Fig. 3.14a . The role of 

bending moment is dominant for all cases. However, the effect of axial force is 

evident at column cross sections that yield under the effect of combined stresses (Fig. 

3.13b), while they reside in the elastic region for pure bending consideration (Fig. 

3.12b). Moreover, the effect of shear force for some beam and column cross sections 

is more intense than that of axial force, as shown in Fig. 3.14d. 

 

 

Fig. 3.12: a) Plastic hinge pattern and b) interaction diagram for pure bending. 

 

 

Fig. 3.13: a) Plastic hinge pattern and b) interaction diagram for NM interaction. 
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Fig. 3.14: a) Plastic hinge pattern and b), c) and d) views of the interaction diagram for NQM 

interaction. 

 

3.7.3. Example #3 

The third example concerns the six-storey, four-bay plane frame, shown in Fig. 

3.15, that is subjected to increasing lateral and fixed vertical loading. The frame is 

discretized into 78 elements, 59 nodes and 162 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=197.5×10

-4 
m

2
, I=86970×10

-8 
m

4
,
 

s1y=4641.3 kN, vy=1013.24 kN, s2y=928.02 kNm, s3y=928.02 kNm and sections with 

A=84.46×10
-4 

m
2
, I=23130×10

-8 
m

4
,
 
s1y=1984 kN, vy=579.22 kN, s2y=307.15 kNm, 

s3y=307.15 kNm are employed for all columns and beams respectively. Analysis 

results of all cases are presented in Table 3.4. 
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Fig. 3.15: Six-storey, four-bay plane steel frame. 

 

 

Table 3.4: Analysis results of all cases for example #3. 

 

 Bending
NM 

interaction

NM 

interaction 

Convex Hull

NQM 

interaction

NQM 

interaction 

Convex Hull

 (a) (b1) (b2) (c1) (c2)

235 235 1483 235 3043

162 162 630 162 786

— 1248 — 4992 —

71.00 67.26 67.26 59.25 59.25

53 58 58 58 58

0.42 0.89 0.76 18.92 1.10

0.40 0.79 0.67 2.39 0.90

number of variables n var

Cases            

number of inequality 

constraints n inq

number of equality 

constraints n eq

number of plastic hinges             

maximum load factor a (kN)

computational time for the 

optimization process (s)

total computational time (s)
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The axial-shear force-bending moment interaction corresponds to the lowest value 

of the maximum load factor and pure bending consideration to the greatest, as 

expected. Analysis results of standard and convex hull formulation are identical for 

both NM and NQM interaction. The computational efficiency of convex hull 

formulation is evident, since the solution is obtained 1.17 times and 17.2 times faster 

for cases (b) and (c) respectively. This concerns the total computational time 

(formulation of the required matrices and optimization process), while the mere 

optimization procedure of convex hull formulation is 1.18 times faster for case (b) and 

2.66 times for case (c). 

The plastic hinge pattern (number and location) differs for pure bending and 

combined stresses, as shown in Fig. 3.16. Fewer plastic hinges are formed for case (a) 

that reach their yield limit due to bending moment. The effect of combined stresses is 

evident at the yielded column cross sections (Fig. 3.16b) that under pure bending 

consideration remain elastic. The corresponding interaction diagrams are presented in 

Fig. 3.17. The frame is mainly stressed due to bending moment (the dispersion of 

stress points is wider along the bending moment axis) for all cases.  

 

 

Fig. 3.16: Plastic hinge patterns for a) pure bending and b) NM and NQM interaction. 



 
52 Limit load and deformation analysis for frame structures with mathematical programming 

 

Fig. 3.17: Interaction diagrams for all analysis cases. 
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3.7.4. Example #4 

The fourth example concerns the six-storey, four-bay plane frame, shown in Fig. 

3.18, that is subjected to increasing lateral and fixed vertical loading. The frame is 

discretized into 73 elements, 56 nodes and 153 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=197.5×10

-4 
m

2
, I=86970×10

-8 
m

4
,
 

s1y=4641.3 kN, vy=1013.24 kN, s2y=928.02 kNm, s3y=928.02 kNm and sections with 

A=84.46×10
-4 

m
2
, I=23130×10

-8 
m

4
,
 
s1y=1984 kN, vy=579.22 kN, s2y=307.15 kNm, 

s3y=307.15 kNm are employed for all columns and beams respectively. Analysis 

results of all cases are presented in Table 3.5. 

 

 

 Fig. 3.18: Plane steel frame, example#4. 

 

It is evident that multi-component interaction yields reduced load factors compared 

to pure bending consideration. Results of convex hull formulation (cases (b2) and (c2)) 

are the same (values of variables and collapse mechanism) with those of cases (b1) 

and (c1) correspondingly. However, the standard compared to convex hull formulation 

requires more computational time, i.e. 1.03 times for case (b) and 12.67 times for case 
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(c). In terms of time of mere optimization process, the corresponding values are 1.05 

and 2.26 times. 

 

Table 3.5: Analysis results of all cases for example #4. 

 

 

 

 
 

Fig. 3.19: a) Plastic hinge pattern and b) interaction diagram for pure bending. 

 

 Bending
NM 

interaction

NM 

interaction 

Convex Hull

NQM 

interaction

NQM 

interaction 

Convex Hull

 (a) (b1) (b2) (c1) (c2)

220 220 1388 220 2848

153 153 591 153 737

— 1168 — 4672 —

43.26 40.92 40.92 36.29 36.29

49 51 51 52 52

0.41 0.94 0.91 15.59 1.23

0.39 0.87 0.83 2.21 0.98

number of plastic hinges             

total computational time (s)

computational time for the 

optimization process (s)

Cases            

number of variables n var

number of equality 

constraints n eq

number of inequality 

constraints n inq

maximum load factor a (kN)
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The interaction of stresses affects also the collapse mechanisms (number and 

position of plastic hinges). For case (a) fewer plastic hinges are formed that reach 

their yield limit due to bending moment, as shown in Fig. 3.19. Plastic hinge patterns 

for cases (b) and (c) are shown in Fig. 3.20a and Fig. 3.21a . The role of bending 

moment is dominant for all cases. However, the effect of axial force is evident at 

column cross sections that yield under the effect of combined stresses (Fig. 3.20b, Fig. 

3.22a), while they reside in the elastic region for pure bending consideration (Fig. 

3.19b). Moreover, the effect of shear force for some beam and column cross sections 

is more intense than that of axial force, as shown in Fig. 3.22b. 

 

 

Fig. 3.20: a) Plastic hinge pattern and b) interaction diagram for NM interaction. 

 

 

Fig. 3.21: a) Plastic hinge pattern and b) interaction diagram for NQM interaction. 
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Fig. 3.22: Plan views of NQM interaction diagram. 

 

3.8. Concluding remarks 

In this chapter limit analysis is treated in the framework of mathematical 

programming introducing a convex hull formulation for the yield condition for both 

static and kinematic theorems.  

The yield polyhedron is usually considered as the intersection of a finite number of 

halfspaces and hyperplanes, according to the standard formulation. This is expressed 

by a set of inequality constraints, the number of which depends on the number of 

hyperplanes. Alternatively, a convex hull formulation expresses the yield condition in 

the form of a linear combination of the vectors corresponding to all vertices that 

define the a priori linearized yield hypersurface. This leads to a set of equality 

constraints, the number of which depends on the dimensionality of interaction and 

thus independent of the number of the yield hyperplanes. However, the number of 

variables is increased compared to the standard formulation, since nonnegative 

coefficients   are introduced. The two yield formulations generate the corresponding 

static (primal) LP problems that differ in the number of variables and yield 

constraints. These are compared in terms of their computational efficiency for axial 

force-bending moment (NM) and axial-shear force-bending moment interaction 

(NQM). Moreover, the dual kinematic theorem is stated following the two alternative 

formulations for the yield conditions and the features of the dual problem are 

compared and discussed.  
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The presented numerical examples prove that convex hull formulation requires 

significantly less computing time compared to the standard one for both cases of 

interaction. More specifically, for NQM interaction the computational efficiency of 

convex hull formulation corresponds to a more than 15 times reduction in computing 

time. This concerns the total computational time including both matrix formulation 

and optimization procedure. In terms of time of the mere optimization process, 

convex hull formulation converges almost 2.5 times faster compared to the 

hyperplane (standard) formulation. This is due to fewer constraints since the convex 

hull formulation is independent of the number of planes that approximate the 

nonlinear yield surface, contrary to the standard approach. Moreover, the increased 

number of variables for convex hull formulation is associated with the number of 

vertices, which is noticeably smaller compared to the number of planes for the case of 

3D interaction. Thus, convex hull formulation favors the conservative static theorem 

expressing advantageously multi-component interaction, enabling also finer 

discretization of the nonlinear yield surface. 

Convex hull formulation results more efficient in analyzing the effect of axial 

force-bending moment (NM) and axial-shear force-bending moment (NQM) 

interaction on the ultimate load and collapse mechanism of a structure. The combined 

stresses generally correspond to reduced maximum load factors and to collapse 

mechanisms with more plastic hinges, compared to bending consideration with no 

interaction, and thus their effect should be taken into account for safer structural 

design. 
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4.1. Basic assumptions 

Limit analysis determines the ultimate load of a structure under equilibrium and 

yield constraints, whereas deformation analysis refers to restrictions imposed by 

compatibility relations. These constraints together with complementarity conditions 

form a mathematical programming problem that aims at the maximization of the load 

factor that a structure can sustain. The fundamental relations that describe the problem 

are discussed in detail in the following sections. 

The entire formulation is based on the following assumptions. Plane frames consist 

of eln  straight prismatic elements, with fn  nodal degrees of freedom subjected only to 

nodal loading for reasons of simplicity. Frame displacements are assumed small 

enough so that the equilibrium equations refer to the initial undeformed configuration. 

Plastic hinges are considered formed only at critical sections, i.e. the end sections of 

the elements, whereas the remaining parts behave elastically. The nonlinear inelastic 

behavior at critical sections is described by a multi-linear model and yield conditions 

are beforehand appropriately linearized. The cases of axial force-bending moment 

(NM) interaction and axial-shear force-bending moment (NQM) interaction are 

examined. Euler-Bernoulli or Timoshenko beam theory accounting for shear 

deformation effects is considered offering accurate stresses for regular and deep 

sections respectively. In both cases comparatively large shear forces may be induced 

that should be taken into account in the strength interaction. Apparent softening 

behavior (caused by local buckling, lateral-torsional buckling or by the semi-rigid 

nature of some steel connection types) is incorporated. Furthermore, under the 

external loading, if local unloading occurs, is assumed happening along the load 

displacement path and not as elastic unloading, adopting a holonomic, i.e. path-

independent structural behavior. Although this is a simplified assumption, especially 

for the case of softening behavior, it can be considered reasonable for monotonically 

increasing external actions (Donato and Maier 1976, Tangaramvong and Tin-Loi 

2007, 2008). Moreover, isotropic hardening is adopted, which under holonomic 

assumption and monotonic loading yields satisfactory results. For cyclic loading 

though, kinematic hardening is more appropriate and definitively closer to real 

behavior of steel structures.  

The formulation of the problem requires treatment at three different levels, i.e. the 

level of critical cross sections, the element level and the structural level. All final 
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equations are expressed in dimensional form at the structural level. The yield 

conditions, though, are first introduced in nondimensional form. Moreover, the 

method follows the sign convention of matrix structural analysis, whereas final results 

are presented on the basis of engineering sign convention. 

 

4.2. Equilibrium of plane frames 

It is reminded that the structural equilibrium relationship for the whole structure is 

established as:  

 

 a    dB s f f  (4.1) 

 

which is analytically defined in Chapter 3, section  3.2. 

 

4.3. Compatibility condition 

For small displacements considered in this work, the relation between the member 

deformation i
q  in the local system and the nodal displacements iu  at global axes 

system is given as: 

 

 i iT i q B u   (4.2) 

  

where  1 2 3

T
i i i iq q qq , 1

iq  and 2
iq  are the axial deformation and the rotation of 

the chord at the start node j  and 3
iq
 
is the rotation of the chord at the end node k  of 

the member,  u v u v
T

i j j j k k k  u  is the vector of nodal displacements 

expressed at the global coordinate system containing the global X and global Y 

displacements and rotations of start node j and end node k  respectively. The (3×1) 

vector i
q  determines directly the deformation state of the element and dictates the 

selection of the primary end actions in the equilibrium relation (4.1).  

The compatibility condition for the whole structure is then given by the following 

linear compatibility relation: 
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 T q B u  (4.3) 

 

where q is the (3nel ×1) deformation vector of the structure and u  is the (nf×1) nodal 

displacement vector. 

 

4.4. Constitutive relations 

The constitutive relations that govern the behavior of an element in the elastic and 

inelastic regime are based on the decomposition of deformation into an elastic and 

plastic component. For each element this is expressed as: 

 

 i i i q e p  (4.4) 

 

where 
ie  is the (3×1) element elastic deformation vector and i

p  is the (3×1) element 

plastic deformation vector. 

The elastic part is fully described by the relation: 
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where E is the modulus of elasticity, iA  is the area of the element cross section , iI  is 

the moment of inertia of the element, 1 2,i ie e  are the elastic axial deformation and 

rotation of the chord at the start node j , 3
ie  is the elastic rotation of the chord at end 

node k  and 
iS  is the (3×3) element stiffness matrix. Accounting also for shear 

deformations effects, within the Timoshenko beam theory, the element elastic 

stiffness matrix is modified as (Oñate 2013): 
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where the term i  expresses the relative importance of the bending deformations to 

the shear deformations as: 

 
2

12 i i
i

i i

vz

E I

GA L
   (4.7) 

 

where G  is the shear modulus and 
i

vzA  is the shear area of element cross section. It is 

noted that shear deformation effects are significant for relative deep beams, for which 

Timoshenko beam theory is more appropriate. For 0i   shear deformation effects 

are neglected and the stiffness matrix of equation (4.6) is reduced to that of equation 

(4.5). 

Following the notions of classical plasticity, element plastic deformations p
i 

are 

considered perpendicular to the yield surface, which for a piecewise linear 

approximation and in view of the holonomic assumption can be defined as follows:  
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where 1 2,i ip p  are the plastic axial deformation and rotation of the chord at the start 

node j , 3
ip  is the plastic rotation of the chord at end node k , z

j
, z

k
 are the plastic 

multipliers for j  and k  element sections respectively, N
i
 is the matrix that contains 

the normal-to the yield surface-vectors (it is defined in detail in section 4.5) and i
z  is 

the (2×1) vector of element plastic multipliers. 

For the entire structure the deformation is decomposed into an elastic and plastic 

component as: 
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 1     zq e p S s N  (4.9) 

 

where e is the (3nel ×1) elastic and p the (3nel×1) plastic component of deformation 

respectively, S is the (3nel ×3nel) assembled block diagonal matrix of all element 

stiffness matrices and N is defined in the following section. 

 

4.5. Yield condition  

Yield condition is the one that denotes the limit between elastic and plastic region 

under the effect of combined stresses.  Herein, two considerations are examined, i.e. 

axial force-bending moment (NM) interaction and axial-shear force-bending moment 

(NQM) interaction. For both considerations, the nonlinear yield criterion is 

beforehand appropriately linearized either with linear segments (case of 2D 

interaction) or plane triangles (case of 3D interaction). 

 

4.5.1. Axial force-bending moment interaction (NM interaction) 

At every element i, plastic behavior is described at start node j by the normalized 

stress vector    1 1 2 2

T T
j j i i i i

y yn m s s s s    and at end node k by

   1 1 3 3

T T
k k i i i i

y yn m s s s s    , as defined in section 3.6. Notice that different 

capacities can be considered for the two element ends to account also for concrete 

elements with constant cross section, but different bar reinforcement at the two ends. 

Thus yielding at the two critical sections of the element will be expressed with respect 

to the three primary element actions; with the minus sign at end k  expressing the pre-

established equilibrium within the element along the local x direction. 

The standard formulation (Maier 1970) involves all the lines describing the 

polygon of the PWL yield surface, which increases considerably the number of yield 

constraints per critical section, complicating the entire formulation also at later stages. 

It is feasible though, to identify the specific cone (sector of the interaction diagram) in 

which the stress vector resides and consider only one constraint associated to each 

critical section as potentially active or true active constraint. Moreover, this facilitates 

the incorporation of multi-linear hardening reducing the complexity of the whole 

problem, as described in section 4.5.3. 
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4.5.1.1. Cone identification for NM interaction 

Joining the vertices of the linearized yield surface with the origin, a number of 

sectors-cones are formed that cover the entire domain (Fig. 4.1). Each stress vector 

corresponding to a critical section is associated to only one cone (Manola and 

Koumousis 2014).  

 

 

Fig. 4.1: Cone identification of stress vector. 

 

For a given stress vector the identification of the associated cone is straight 

forward and results from a sorting process. First the vertices and the stress vector are 

transformed from Cartesian to polar coordinates. The counterclockwise angles i  that 

correspond to all vertices are sorted in increasing order. Then, the angle s  that refers 

to the normalized stress vector ds  of a particular critical section is identified at cone i  

for which the relation: 1i is     , with 1 2last    . This simple procedure is 

invoked repeatedly, for every optimization iteration, offering the critical cones and the 

associated yield lines-hyperplanes for every cross section. Stress vectors that lie on a 

particular vertex may be treated differently, but herein are assigned to the cone with 

the smaller index.  

Having this information, the yield constraint is formulated only for this specific 

yield line for every cross section and not for all linear segments of the PWL yield 

surface.  
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4.5.1.2. Final form of yield conditions for NM interaction 

Yield conditions are generally expressed in terms of normalized quantities with 

respect to yield capacities. Thus, for each cross section at the start node j and the end 

node k the stress state is expressed as (Fig. 4.2): 
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 (4.10)  

 

where 1a ,j
 2a j

 
and 1a ,k

 2a k

 
are the direction cosines of the unit normal vectors a j  and 

ak of the critical yield hyperplanes for sections j and k  respectively, ,j k

d dr r  are the 

distances of the critical hyperplanes from the origin for sections j and k  respectively 

and ,j k

d dw w  are the reserves in the normalized space for sections j and k  respectively. 

It is noted that the main interest for the yield condition relies on the ratio of the 

strength reserve over the stress vector, which can be expressed along any direction 

(Fig. 4.3). 

 

 

Fig. 4.2: Element stress state at both ends. 



 
68 Limit load and deformation analysis for frame structures with mathematical programming 

 

Fig. 4.3: Yield condition expressed along the direction of the normal vector and along m axis. 

 

Herein the yield conditions are expressed in terms of dimensional stresses, which 

are part of the unknown vector of the present formulation, and more specifically in 

terms of bending moments. Thus, the above relations (4.10) are expressed as follows: 
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  (4.11) 

 

where 
2 2a , aj j j k k k

d dr r  

 

are scaling factors for the yield moments of sections 

j and k  respectively.  

Thus the yield conditions at element level are expressed in terms of non-negative 

moment reserves at both element ends as: 
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where w
j
, w

k
 are the moment reserves at element ends j and k respectively, i

w is the 

(2×1) vector that contains the moment reserves of both element ends,
i

N  is the (3×2) 

matrix that contains all scaled normal vectors of the identified yield hyperplanes and 

ir is the (2×1) vector of the yield limits expressed in bending moment terms. It is 

noted  

At structural level the yield condition is finally formed as: 

 

 
T     0w N s r  (4.13) 

 

where  1...
T

nw w w  
((2nel×1) vector), N  ((3nel ×2nel) matrix) is the assembled 

block diagonal matrix  of all i
N  matrices and  1...

T
nr r r is a (2nel ×1) vector. 

According to the proposed formulation, incorporation of the cone identification 

procedure at this stage results into one yield constraint for every critical cross section. 

This corresponds to the hyperplane that is targeted or activated at this particular 

loading instance. Thus the number of the yield conditions is significantly reduced and 

the problem becomes independent of the number of linear segments used for the 

linearization of the yield surface. Cone identification is performed at every loading 

step generating only the necessary yield constraints with physical meaning for each 

particular cross section.  

 

4.5.2. Axial-shear force-bending moment interaction (NQM interaction) 

Plastic behavior is developed herein under the combined effect of axial-shear 

force-bending moment interaction (NQM interaction).  Plastic hinges at start nodes j  

are formed under the combined normalized stresses 

    1 1 2 3 2 2

TT
j j j i i i i i i i i

y y yn v m s s s s Lv s s     and at end node k  due to 

    1 1 2 3 3 3

TT
k k k i i i i i i i i

y y yn v m s s s s Lv s s      , as defined in section 3.6. It is 

noted that yield limits of axial, shear force and bending moment are considered herein 

to be the same for both elements ends, but the formulation can incorporate also 

different yield limits appropriate for prismatic elements with different strengthening at 

the two end cross sections.  
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4.5.2.1. Cone Identification for NQM interaction 

The 3D nonlinear yield surface is herein a priori linearized with appropriate 

tessellation of specific plane triangles. The vertices of each triangle ( 1 2 3, ,V V V ) 

together with the origin ( 4V ) form one cone-tetrahedron (Fig. 4.4). Each stress point 

belongs only to one of these cones-tetrahedra and targets or resides on the 

corresponding plane triangle (Manola and Koumousis 2014). For the stress point 

( , , )P n v m   and the tetrahedron having the vertices: 

 

 1 1 1 1 2 2 2 2 3 3 3 3 4( , , ), ( , , ), ( , , ), (0, 0, 0)V n v m V n v m V n v m V                 (4.14) 

 

the stress point P  lies in the tetrahedron if the following five determinants have the 

same sign: 
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 (4.15) 

 

Comparison of the signs of iD  and 0D constitutes a check of whether P  and iV  are 

on the same side of the plane i  (namely the plane formed by the three points other 

than iV ). If P  is inside all four boundary planes, then it is inside the tetrahedron. If 

the sign of any iD  differs from that of 0D  then P  is outside boundary plane i , while 

if any of the determinants 0iD  , then P  lies on the boundary plane i . 
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Fig. 4.4: Identification of the critical cone-tetrahedron for 3D interaction. 

 

The aforementioned procedure is used as a basis for the identification of the critical 

yield plane that corresponds to each cross section at every optimization step. To avoid 

searching all cones for every stress point, a pruning technique is adopted that 

eliminates all vertices of the seven irrelevant subspaces out of the eight subspaces 

formed by the axes planes.  

Based on coordinates  , ,n v m of each stress point, the corresponding subspace 

(one out of eight) is detected. Then, determinants of the tetrahedra belonging to that 

subspace are evaluated and compared and the critical tetrahedron corresponding to 

each cross section is identified. Following this procedure at every optimization step, 

the yield condition is formed only for the corresponding plane determined by the 

triangle ( 1 2 3, ,V V V ), avoiding the formation of all unnecessary constraints of the 

standard formulation. 

 

4.5.2.2. Final form of yield conditions for NQM interaction 

The yield criterion for this case is represented by a 3D nonlinear surface that is 

approximated using plane triangles. This enables expressing the yield condition into a 

set of linear constraints, which is advantageous for the mathematical programming 

formulation of the problem. It is noted that the tessellation of the yield surface is such 

that the convexity of the yield criterion is retained. More specifically, the equations 

for the corresponding yield planes in n v m   space are of the following form: 
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 0An Bv Cm D     (4.16) 

 

where , ,A B C  are the components of the unit normal vector of the plane and D  is 

the distance of the plane from the origin. Performing appropriate algebraic 

manipulations, the following equations for the two element ends are obtained with 

respect to dimensional quantities 1 2 3, ,i i is s s  expressed in terms of bending moments. 

Thus, in these relations the coefficients of moments are deliberatively scaled to unity 

and the scaled yield limits are kept always positive: 
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where  i=1,…,nel (number of elements). Relation (4.17) is written in matrix form as: 
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where
 

i
N  is the (3×2) matrix of the scaled normal vectors

 
for the element, 

i
s  is the 

(3×1) stress vector of the element and i
r  the (2×1) vector of the scaled yield limits of 

the element in terms of bending moment. The unit values in the 
i

N matrix facilitate 

the expression of plastic rotations equating them with the corresponding plastic 

multipliers, as presented in section 4.5.3. 

Incorporating the concept of cone identification and adopting the aforementioned 

criterion, the yield condition for all critical sections of the frame is formed as: 

 

 
T     0w N s r  (4.19) 

 

where  ...
T

1 nw = w w  is the (2nel ×1) vector containing the moment reserves of all 

stress points, N  is the (3nel ×2nel) assembled block diagonal matrix of all 
i

N  
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matrices and  ...
T

1 nr = r r  is the (2nel ×1) vector that includes the yield limits in 

terms of bending moment of the critical yield hyperplanes. 

The standard formulation involves for each critical section as many yield 

constraints as the number of planes used for the linearization of the yield surface. 

Following the proposed cone identification approach only one yield constraint is 

required for each cross section, which reduces the total number of constraints 

drastically. This single constraint corresponds to the yield plane that is targeted or 

activated at this particular loading instance. Thus, cone identification is performed at 

every optimization step generating only the necessary yield constraints with physical 

meaning for each particular cross section. As a result, the number of yield conditions 

for the entire structure is not affected by the discretization of the yield surface, while 

the additional computational cost of the identification procedure turns out 

insignificant. From the optimization point of view this reduced set of yield constraints 

represents a mechanically dictated “active” set of constraints for the problem.  

 

4.5.3. Incorporating hardening/softening behavior into yield condition 

The combined stresses are expressed herein in terms of positive bending moment, 

for both cases of interaction. Thus the combination of multi-segmental constitutive 

relations needs also to be expressed in positive moment-rotation terms. The 

proportion of this combination is dictated by the particular yield hyperplane of the 

associated cone, depending upon the components of the normal vector of the 

hyperplane for a start end j. The initial constitutive relations of axial force-plastic 

axial deformation  1 1s p  and bending moment-plastic rotation of element end node 

k  3 3s p are first expressed with respect to the absolute value of plastic rotation p2. 

Then, they are combined with the bending moment-plastic rotation curve  2 2s p  to 

give the multi-segmental hardening/softening curve in 2
TN s p   axes with reference 

to 1 2 3s s s   space (Fig. 4.5). It is noted that for end node k  the constitutive relations 

are similarly combined and expressed with respect to plastic rotation p3.  

The above generated curves, corresponding to different cones, for symmetric 

constitutive relations and absolute value of plastic rotation determine a family of 
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curves that are parameterized in the y – axis by parameter j kD or D      for 

the start and end sections j  and k  respectively. 

 

 

 

Fig. 4.5: Combined constitutive relation of a cross section j . 

 

Moreover, the linearized yield surface is assumed to follow an isotropic multi-

linear hardening law, which constitutes a simplistic consideration especially for 

softening behavior, but is frequently considered quite accurate for holonomic 

behavior and monotonically increasing loading (Tangaramvong and Tin-Loi 2008, 

Tin-Loi and Pang 1993). The parallel expansion/shrinkage of the identified yield 

plane is dictated by a multi-linear hardening/softening constitutive relation, as shown 

in Fig. 4.6. A plastic multiplier zμ is assigned for each cross section μ, the non-zero 

value of which denotes that the specific cross section has entered the plastic region 

(z 0)  . Based on the particular non-zero value of the plastic multiplier, the 
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corresponding index ns of the hardening segment for each cross section is identified to 

determine the associated stress level (Fig. 4.6c). Thus hardening matrices are built for 

each cross section and finally for the whole structure. The aim is to evaluate the 

plastic part of the combined stresses for all sections using a linear relation of the form 

 zH c . In this, H is the hardening diagonal matrix with dimensions (2nel ×2nel), z  

is the (2nel ×1) vector of all plastic multipliers and c is the (2nel ×1) vector, which in a 

recursive form accumulates all previous plastic behavior (Fig. 4.6c). For every cross 

section  μ ( 1,2...2 )eln   following a multi-linear hardening/softening law with total 

number of segments, the relations determining the non-zero entries of the hardening 

matrices are generated as:  

 

 ( , ) 1...2 , 1...
sn el sH h n n           (4.20) 
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(4.21) 

 

where i  is a scaling factor of the yield limit ( 0 1  ) and zi  is the value of 

corresponding plastic multiplier at the end of segment i  ( 0 0z  ) and 

1 2 1( ) (z z )i i i y i ih s       is the dimensional inclination of the 

hardening/softening segments. Notice that for critical sections in the elastic region, 

the plastic multiplier and the hardening coefficients are zero. Moreover, for the first 

hardening segment ( ,1)c   is zero in relation (4.21), since there is no previous plastic 

behavior. This means that Η accounts for the current hardening/softening measure 

that corresponds to the identified segment, while c corresponds to the accumulated 

total constant previous hardening behavior. 

The yield condition for the whole structure is then expressed as: 

 

 - andT           0 zw N s r r r H c  (4.22) 
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where r  is the (2nel ×1) vector including the extended limits expressed in terms of 

bending moment. 

 

 

Fig. 4.6: Isotropic hardening/softening of yield plane for a) NM and b) NQM interaction and 

c) multi-linear hardening/softening behavior for a stress point.  

 

This formulation avoids all unnecessary multi-segmental projections of the 

hardening/softening behavior along the normal vectors of all segments/planes of the 

yield surface for every critical section of the standard formulation. This part has been 

treated poorly in the literature, addressing only constitutive relations with only one 

softening branch and similar for all critical sections. The proposed scheme can be 

extended to any number of hardening/softening segments without affecting the 

dimensions of H and c matrices and thus the size of the yield condition. This notion is 

built on top of cone identification and incorporates effectively the multi-linear 
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hardening/softening behavior that addresses better real structural behavior. It insists 

though on staying on the multi-linear path, even in load reversals at certain cross 

sections due to redistribution of internal actions, which is inherent in the holonomic 

formulation and in most cases does not affect the solution noticeably. 

 

4.6. Complementarity condition 

Complementarity conditions express mutually exclusive situations in the form of 

an inner product of two nonnegative vectors that should be zero. They emerged as 

optimality conditions for continuous variable nonlinear programs involving inequality 

constraints, derived by Karush (1939). They indicate that simultaneous activation of 

plastic deformation and unloading is meaningless. More specifically, the 

complementarity condition implies that, when the identified yield hyperplane for a 

cross section μ is reached ( 0)w  , the corresponding plastic multiplier z
 should be 

greater than zero. Similarly, when the yield hyperplane is inactive ( 0)w  , the 

corresponding plastic multiplier z 0  , indicating that no plastic deformation 

occurs.  

In the case of elastoplastic analysis, complementarity conditions and systematic 

formulation of linear complementarity problems were introduced by Maier (1970). 

Herein, incorporating the concept of cone identification reduces significantly the 

number of the implemented complementarity constraints, since only one 

complementarity condition is considered for every cross-section. Thus for the entire 

structure the complementarity constraint is expressed as follows:  

 

 , ,T      z 0 0 z 0w w  (4.23) 

 

which, due to the non negativity of both vectors, holds also component wise. 

 

4.7. Limit load and deformation analysis as an optimization problem 

4.7.1. Formulation of the optimization problem 

Equations (4.1), (4.3), (4.9), (4.22) and (4.23) formulate the holonomic 

elastoplastic problem that describes the whole structural behavior as:  
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The above system of equations can be simplified by retaining as decision variables 

the variables , , ,a  zs u  to formulate a Mixed Complementarity Problem (MCP). This 

is equivalently converted into the following optimization problem, the solution of 

which provides simultaneously the load multiplier a , the corresponding stresses s  

and displacements u  together with the plastic multipliers z : 

 

 

1

maximize

subject to
T

T

T

a

a





   

     


        
 

 


  

z 0

z 0

z 0

0 z z

d

u

l u

B s f f

S s B u N

w N s H c r

w

u u u

 (4.25) 

 

The above optimization problem seeks for the maximum load factor a  satisfying 

constraints imposed by equilibrium, compatibility, yielding, complementarity and 

lower and upper bounds for plastic deformations (0,zu) and displacements ( ,l uu u ). 

Mathematically this is a nonconvex optimization problem that is known as a 

Mathematical Programming with Equilibrium Constraints (MPEC) problem (Luo et 

al. 1996), including the complementarity constraint that acts as a multi-switch and is 

of discrete rather than continuous nature, undermining the linearity of the formulation. 

This disjunctive constraint is difficult to handle numerically leading to numerical 

instabilities due to lack of convexity and smoothness. Despite all these inherent 

difficulties, the MPEC problem (4.25) can be solved by converting it into a standard, 

though still nonconvex, nonlinear programming (NLP) problem by suitably treating 

the complementarity condition. Several techniques have been proposed such as 

penalty function formulation, relaxation method, active set identification approach, 
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sequential quadratic programming (SQP) and interior point methods, among others 

(Fukushima and Lin 2004). Herein, the penalty function approach is followed 

(Tangaramvong and Tin-Loi 2007). According to this, the complementarity constraint 

is handled in the objective function by a parametric reformulation, in which an 

increased value of the parameter ρ exerts a pressure on the complementarity condition 

leading it to vanish. This formulation is as follows: 
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 (4.26) 

The above problem formulation incorporates the cone identification process at 

each iteration of the optimization problem. Thus all relations are independent of the 

number of lines/planes used in the linearization of the yield criterion and the number 

of linear hardening/softening segments as reflected in the compatibility and yielding 

conditions in relation (4.26). Matrices ,N H  and vectors ,c r are updated for every 

iteration depending on the identified cone and the particular hardening segment of 

every critical section using the above relations. Moreover, it is worth noting that this 

NLP problem is sensitive to the initial values of ρ and its subsequent increase, as well 

as to the initial values of variables.  

 

4.7.2. Remarks on the optimization formulation 

Classical limit analysis of structures is based on rigid-perfectly plastic behavior 

and thus with no considerations on plastic deformations i.e. ductility. The formulation 

presented in relations (4.26) constitutes a combination of limit load and deformation 

analysis accounting for hardening/softening behavior and deformation constraints 

(Cocchetti and Maier 2003) and addresses more closely real situations and code based 

requirements related to performance based design. More specifically, the need of 

treating the apparent softening behavior engages the complementarity condition. This 

affects the mathematical structure of the problem converting it into a nonconvex one, 

while ductility requirements require the presence of the compatibility constraints. For 
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the case of rigid-perfectly plastic behavior or hardening behavior without ductility 

limitations, the problem can be solved as a standard Linear Programming (LP) 

problem subject only to equilibrium and yield constraints (Wong 2009). 

The optimization process described in (4.26) follows a mathematical pace that 

attempts to maximize the load factor a  for the holonomic formulation of the problem. 

This is performed in successive gradient-dictated trials for the entire vector of 

decision variables, namely the stresses s, the displacements u, the plastic multipliers z 

and the load factor a. What governs the optimization process is its tendency to 

successively increase the loading factor a satisfying the equality (i.e. equilibrium and 

compatibility) constraints and inequality (yield) constraints together with 

complementarity conditions. The cohesion of the problem that prohibits a random 

walk type of search, relies on internally computed gradient information depending on 

the specific optimization algorithm (herein interior point algorithm approaching 

through feasible solutions). Thus the path to the solution is determined by successive 

trials and generally differs from the actual path of a step-by-step method of finite 

element analysis, both though succeeding in finding the same solution. 

 

Fig. 4.7: Optimization versus step-by-step path for a) full and b) incomplete loading-

unloading.  

 

An explanation of the different paths followed by the optimization and the step-by-

step method is presented for a particular cross section in Fig. 4.7. For a multi-linear 

hardening behavior, the step-by-step method provides the entire history of the 

response remaining on the track of the constitutive relation (dotted line). If full or 

incomplete reversals occur (Fig. 4.7a,b), these are considered elastic and therefore 

they do not consume energy. On the other hand, the optimization method targets the 

ultimate state following an artificial elastic-perfectly plastic path, as shown by the 
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solid line in Fig. 4.7a,b. The elastic deformation is determined on the basis of the 

initial stiffness matrix and the plastic deformation is developed under constant stress. 

Therefore, the optimization procedure inherently circumvents redistribution of forces 

targeting the non-affected ultimate state, since any unloading, if happens, does not 

consume energy. 

Herein, a mechanically inspired subset-technique is embedded in the optimization 

problem (4.26) that reduces the number of unknowns and constraints to a minimum, 

acting as a physically filtered “active” set strategy. An outline of the proposed 

algorithm for every optimization iteration is as follows (Fig. 4.8): 

 

Fig. 4.8: Outline of the optimization procedure.  
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The identification of the critical cone and the specific hardening/softening segment 

at each iteration retains only the true or targeted active constraints for every cross 

section. Under this consideration, the size of the problem reduces to a minimum since 

all relations become independent from the number of planes of the yield surface and 

the number of linear hardening/softening segments. 

From a mathematical standpoint the proposed algorithm does not belong to one of 

the well-studied problems of mathematical programming. This is due to cone 

identification that interferes in every step indicating the updated set of constraints at 

all critical sections. From a closer perspective, this can be seen as an active-set 

strategy on the standard formulation identifying always only the 2nel physically 

needed constraints since all the remaining constraints are redundant. 

 

4.8. Numerical examples 

The optimization problem described in relation (4.26) is implemented in Matlab 

code for the analysis of plane frame steel structures. It is solved by fmincon solver 

(appropriate for the minimization of constrained nonlinear multivariable function), 

with the interior-point algorithm selected as optimization method.  

 

4.8.1. Axial force-bending moment (NM) interaction 

Herein the Massonet-Save yield criterion (1965) suitable for steel members is 

employed:  

 

 2 2( ) 1 ( ) 1j j k kn m or n m          (4.27) 

 

The axial force-bending moment Massonet-Save interaction curve is approximated in 

the sequel with six lines that denote the corresponding yield hyperplanes as shown in 

Fig. 4.9 (Tangaramvong and Tin-Loi 2008). 

The aim is to verify the applicability of the proposed method, validate its 

efficiency and compare the analysis results with existing ones for the following cases: 

 Case (a): Rigid-perfectly plastic behavior with axial force-bending moment 

interaction (LP problem). 

 Case (b):  Multi-segment isotropic hardening behavior in pure bending. 
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 Case (c): Multi-segment isotropic hardening behavior with axial force-bending 

moment interaction. 

For this purpose, three steel frames are examined for the aforementioned cases and 

the corresponding results are presented below. It is noted that all analysis results of 

this method are presented following the engineering sign convention of structural 

analysis. The conversion from matrix to engineering convention is simply performed 

by changing the sign of axial and bending moment at start node and the sign of 

shearing force at end node. 

 

 

Fig. 4.9: Linearized Massonet-Save yield criterion. 

 

4.8.1.1. Example #1 

The first example concerns the three-storey, single bay, eccentrically braced frame 

shown in Fig.4.10a that is subjected to vertical loads a  and lateral load 2a  

(Tangaramvong and Tin-Loi 2008, Karakostas and Mistakidis 2000). The frame is 

discretized into 21 elements, 14 nodes and 36 degrees of freedom. The material 

properties are as follows: Sections 310UC118 with A=150×10
-4 

m
2
, I=27700×10

-8 
m

4
,
 

s1y=4200 kN, s2y=s3y=548.8 kNm are employed for all columns, 200UB18.2 with 

A=23.2×10
-4 

m
2
, I=1580×10

-8 
m

4
,
 
s1y=742.40 kN, s2y=s3y=57.60kNm for all beams 

and SHS125/125/9 with A=41.76×10
-4 

m
2
, I=900×10

-8 
m

4
,
 

s1y=1365 kN, 

s2y=s3y=57.75 kNm for all braces. For all columns 202.79 , 0.7h kNm       is 
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considered, while for all beams 41.04 , 0.7h kNm      . Bracings are considered to 

follow a rigid-perfectly plastic behavior.  The upper bound vector of all plastic 

multipliers is 1uz   , while the upper bound vector of all displacements is 1uu    and 

the lower bound vector -1lu  . The initial values of 100   for case (b) and  (c) with 

an updating rule of 10   are used, until convergence with a tolerance of 

610Tw z   is reached. 

 

 

Fig. 4.10: a) Single-bay eccentrically braced frame and b) its deformed shape for cases 

(b),(c). 

 

Table 4.1: Analysis results of frame 1. 

 
Case (a) Case (b) Case (c) 

a (kN) 124.148 120.01 117.862 

top-storey u (m) 0.443 0.375 0.363 

computational time (s) 0.49 14.74 24.73 

 

The results of all analysis cases for frame 1 are presented in Table 4.1. The 

maximum load a , as well as the top-storey displacement u , attain their maximum 

values for the case of rigid-perfectly plastic behavior. Moreover, for softening 

behavior, the case of pure bending attains a greater value of maximum load as 

compared to axial force-bending moment interaction. It is noted that these results, as 
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well as the corresponding failure mechanisms, coincide with those obtained by 

Tangaramvong and Tin-Loi (2008). The plastic hinge formation and deformed shape 

for cases (b) and (c) are depicted in Fig.4.10b, with numbers in circle denoting the 

particular cross-section. The corresponding interaction diagrams are presented in 

Fig.4.11. It is noted that for cases (b) and (c) plastic hinges of beam cross-sections 

have yielded and are at their softening branch. 

 

 

Fig. 4.11: Interaction diagrams for a) case (b) and b) case (c). 

 

4.8.1.2. Example #2 

The second example concerns the three-storey, four-bay plane frame shown in 

Fig.4.12a, subjected to increasing lateral and vertical loading. The frame is discretized 

into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is S235 with 

E=2×10
8
kN/m

2
. Sections with A=112.5×10

-4 
m

2
, I=18260×10

-8 
m

4
,
 
s1y=2643.75 kN, 

s2y=s3y=325 kNm and sections with A=62.61×10
-4 

m
2
, I=11770×10

-8 
m

4
,
 
s1y=1471.34 

kN, s2y=s3y=189.01 kNm are employed for all columns and beams respectively. The 

assumed multi-segment hardening/softening behavior is shown in Fig. 4.11b. More 

specifically, for columns h1=2600 kNm z1=0.005 λ1=1.04, h2=1625 kNm  z2=0.015     

λ2=1.10, h3=-1392 kNm z3=0.05 λ3=0.935, while for beam cross sections 

h1=1260.1kNm z1=0.003  λ1=1.02, h2=810.04kNm  z2=0.01  λ2=1.05, h3=-992.3kNm  

z3=0.03 λ3=0.945.  The values of z3 constitute the upper bounds for column and beam 
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cross sections respectively. The upper bound vector of all displacements is 1uu    

and the lower bound vector -1lu  . The initial values of 100   for case (b) and 

1000   for case (c) with an updating rule of 10   are used until convergence 

with a tolerance of 6z 10Tw   is reached. 

 

 

Fig. 4.12: a) Three-storey, four-bay plane frame and b) multi-segment hardening/softening 

diagram.  

 

Table 4.2: Analysis results of frame 2. 

 

Case (a) Case (b) Case (c) 

a (kN) 80.97 88.21 81.67 

top-storey u (m) 0.060 0.140 0.140 

computational time (s) 0.55 86.26 151.56 

 

Ιn Table 4.2 the results of all analysis cases are presented. It is evident that the 

smallest value of ultimate load corresponds to the case of perfectly plastic behavior. 

For the case of multi-segment hardening/softening behavior, the pure bending 

consideration results into greater value for the maximum load as compared to the case 

of axial force-bending moment interaction. As far as the computational time is 

concerned, it is apparent that for case (a) the computational time is very small as it 

refers to a Linear Programming problem. The greatest values of computational time 

correspond to case (c), due to the larger number of yield constraints. However, it is 

noted that the proposed formulation based on cone identification is computationally 

more efficient than the standard formulation. Indicatively, it is mentioned that the 
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present formulation converges in 64.45s for frame 2 as compared to the standard 

formulation which requires 141.67s, following only one segment of hardening 

behavior. Both analyses were conducted on a PC with a Core Duo Quad CPU and 

4GB of RAM. 

The sequence of plastic hinge formation for step-by-step analysis using SAP2000 

version 14 and the ultimate state of frame 2 using mathematical programming are 

shown in Fig. 4.13a and 4.13b respectively. The ultimate carrying load capacities in 

terms of base shear force are practically the same for both types of analysis, i.e. 

571.60kN for step-by-step analysis and 81.67×7=571.69kN for limit load and 

deformation analysis with mathematical programming, both resulting in the same 

ultimate pattern of hinge formation. In Fig. 4.13b for every plastic hinge the 

corresponding segment number at the hardening/softening diagram is indicated. It is 

evident that the right ends of all beams are more stressed as compared to the 

corresponding left ends, as shown in Fig. 4.14. The combined effect of vertical (Fig. 

4.14a) and lateral loading (Fig. 4.14b) is depicted in Fig.4.14c following the 

engineering sign convention.  

 

 

Fig. 4.13: Plastic hinge disposition and deformed shape of frame 2 for a) step-by-step 

inelastic analysis, b) proposed formulation. 
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Fig. 4.14: Moment diagrams with engineering sign convention for a) vertical, b) lateral load 

and c) their combination. 

 

4.8.1.3. Example #3 

The third example concerns the six-storey plane frame shown in Fig.4.15a. The 

frame consists of 66 elements, 51 nodes and 138 degrees of freedom. The material 

properties are as follows: The steel grade is S235 with E=2×10
8
kN/m

2
. For all 

columns sections with A=197.5×10
-4

m
2
, I=86970×10

-8
m

4
,
 

s1y=4641.3kN, 

s2y=s3y=928.02 kNm are employed and for all beams sections with A=84.46×10
-4 

m
2
, 

I=23130×10
-8 

m
4
,
 
s1y=1984kN, s2y=s3y=307.15kNm are used. The assumed multi-

segment hardening/softening behavior is shown in Fig. 4.15b. More specifically, for 

column cross-sections  h1=18560.4kNm    z1=0.005    λ1=1.10,    h2=9280.2 kNm    

z2=0.015    λ2=1.20,   h3= -14848.3kNm   z3=0.03   λ3=0.96 and h4=
610 kNm   

z4=0.05   λ4=0.96, while for beam cross-sections h1=5119.2kNm  z1=0.003  λ1=1.05,  

h2=2193.93 kNm   z2=0.01   λ2=1.10,   h3= -6757.3 kNm   z3=0.02   λ3=0.88  and   
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h4=
610 kNm  z4=0.04 λ4=0.88. The upper bound vector for column and beam cross 

sections is zu=0.05. The upper bound vector of all displacements is 10uu    and the 

lower bound vector -10lu  . The initial value of 100   with an update rule of 

10   is used until an appropriate convergence tolerance is reached 

6( z 10 )Tw  . 

 

Fig. 4.15: a) Six-storey plane frame and b) multi-segment hardening/softening diagram. 

 

Results for all analysis cases are shown in Table 4.3. Cases (b) and (c) of 

hardening/softening behavior attain greater values of maximum load as compared to 

rigid-perfectly plastic behavior. In Fig. 4.16 ultimate states for cases (b) and (c) are 

presented. The effect of axial force is evident mainly in Fig. 4.16b where the first-

storey columns are more heavily stressed. More specifically, the three middle 

columns have reached the second segment of hardening, while the two outer columns 

have yielded. 

 

Table 4.3: Analysis results of example #3. 

 

Case (a) Case (b) Case (c) 

a (kN) 58.05 63.89 60.90 

top-storey u (m) 0.060 0.258 0.248 

computational time (s) 0.59 558.28 674.07 
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Fig. 4.16: Plastic hinge formation for a) pure bending and b) NM interaction. 

 

4.8.2. Computational performance for NM interaction 

 

The evolution of the proposed algorithm during the optimization steps is presented 

in more detail for all the above examples. The efficiency of the computational 

procedure is examined through variation of the objective function and first-order 

optimality measure (Appendix C) for the entire history of optimization. 

The first example is analyzed using both the proposed formulation and the standard 

one. The performance of the algorithm for both formulations is depicted in Fig. 4.17.  

It is observed that, for the same initial values and upper and lower bounds of the 

variables, the proposed algorithm converged after 104 iterations, while the standard 
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formulation after 596 iterations. It is highlighted that the standard formulation 

requires 352 unknown variables and 252 yield constraints versus 142 variables and 42 

yield constraints of the cone identification procedure. Due to the reduced size of the 

problem, the proposed algorithm finds the path to the optimum easier, while the 

standard formulation needs more iterations in trying to find the final path. This is also 

reflected on the computational time, where convergence for the standard formulation 

is achieved in 131.93s, while for the cone identification procedure in 24.73s. 

 

 

Fig. 4.17: Comparison of computational procedure for the proposed and the standard 

formulation for example #1. 

 

 

Fig. 4.18: Evolution of the objective function for example #1. 
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The computational performance of the cone identification method is also examined 

considering pure bending and NM interaction for example #1. For the same initial 

values of all variables, the nonlinear optimization algorithm converges faster and 

smoother for pure bending, as shown in Fig. 4.18, needing 93 iterations versus 104 

required for NM interaction.  

The evolution of the objective function and the first-order optimality measure for 

example #2 are shown in Figs. 4.19 and 4.20. The starting point is the same for both 

cases, but extreme values corresponding to initial iterations are omitted for scaling 

reasons. The performance of the algorithm is proved to be smoother and the 

convergence faster for the case of pure bending, needing 237 iterations compared to 

287 for NM interaction. 

The computational performance of the nonlinear algorithm for example #3 is 

depicted in Figs. 4.21 and 4.22. Extreme values of initial iterations are omitted for 

scaling reasons. However, it is noted that the starting point is different for cases (b) 

and (c) converging for different number of iterations (443 for pure bending versus 429 

for NM interaction). Although the number of iterations is smaller for NM interaction, 

the corresponding computational time is greater compared to that of pure bending. 

This is due to the larger number of potential yield lines for case (c) associated also 

with the corresponding plastic multipliers, which increases the required computational 

time until convergence.  

 

 

Fig. 4.19: Evolution of the objective function for example #2. 
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Fig. 4.20: Evolution of first-order optimality measure for example #2. 

 

 

 

 

 

 

Fig. 4.21: Evolution of the objective function for example #3. 
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Fig. 4.22: Evolution of first-order optimality measure for example #3. 

 

4.8.3. Axial-shear force-bending moment (NQM) interaction 

The generalized Gendy-Saleeb yield criterion (1992) is adopted, represented by a 

3D nonlinear surface that is approximated using 32 plane triangles (section 3.6.1). It is 

noted that the tessellation of the yield surface is such that the convexity of the yield 

criterion is retained. 

The aim is to investigate the role of combined axial-shear force-bending moment 

interaction and its influence on structural behavior. For this purpose, three steel plane 

frames are examined for the following cases: 

 Case (a): Multi-segment isotropic hardening behavior with axial force-bending 

moment interaction (NM interaction).  

 Case (b): Multi-segment isotropic hardening behavior with axial-shear force-

bending moment interaction (NQM interaction). 

For case (a) the Gendy-Saleeb criterion without the effect of the shear force is 

used. This is appropriately linearized with eight linear segments, as shown in section 

3.6.1. The analysis results of all cases are presented below. Notice that the analysis 

method follows the sign convention of matrix structural analysis, whereas final results 

are presented on the basis of engineering sign convention.  

 

4.8.3.1. Example #1 

The first example is a three-storey, single-bay steel frame shown in Fig. 4.23. The 

frame is discretized into 9 elements, 8 nodes and 18 degrees of freedom. The steel 

grade is S235 with E=2×10
8
kN/m

2
. The material properties are as follows: sections 
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with A=112.5×10
-4 

m
2
, I=18260×10

-8 
m

4
,
 
s1u=3172.5 kN, vu=933.73 kN, s2u=390 

kNm, s3u=390 kNm are employed for all columns, sections with  A=28.48×10
-4 

m
2
, 

I=1943×10
-8 

m
4
,
 
s1u=736.21 kN, vu=208.88 kN, s2u=57.02 kNm, s3u=57.02 kNm for all 

beams. Softening behavior is considered determined by one branch that for columns is 

described by h1=-2600 kNm z1=0.05 and for beams by h1=-311.04 kNm  z1=0.05. The 

values of z1 constitute the upper bounds for column and beam cross sections 

respectively. The upper bound vector of all displacements is 1uu    and the lower 

bound vector -1lu  . The initial value of 10   for case (b). 

The aim is to compare the cone identification formulation to the standard one that 

forms all yield constraints. It is mentioned that for the proposed formulation the 

number of variables is 64 and the number of yield constraints 18, as compared to 622 

and 576 respectively for the standard formulation. For both formulations, analysis 

results are identical and more specifically, the maximum load factor is 24.49a kN   

and the deformed shape together with the plastic hinge pattern are shown in Fig. 4.24. 

The algorithm converged after 59 optimization iterations in 39.20s for the proposed 

formulation, while for the standard after 103 iterations in 311.22s, both starting from 

the same initial point.  

 

 

 

Fig. 4.23: a) Frame 1 and b) its softening segment. 
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Fig. 4.24: Deformed shape and plastic hinge formation for both formulations. 

 

4.8.3.2. Example #2 

The second example concerns two variations of a three-storey, two-bay steel frame 

shown in Fig. 4.25a. The frame is discretized into 15 elements, 12 nodes and 27 

degrees of freedom. The steel grade is S235 with E=2×10
8
kN/m

2
. The material 

properties are as follows: sections with A=112.5×10
-4

m
2
, I=18260×10

-8
m

4
,
 

s1y=2643.75kN, vy=778.11kN, s2y=s3y=325kNm are employed for all columns, 

sections with A=28.48×10
-4

m
2
, I=1943×10

-8 
m

4
,
 

s1y=669.28kN, vy=189.89kN, 

s2y=s3y=51.84 kNm for all beams. The corresponding multi-segment hardening 

behavior is shown in Fig. 4.24b and depends on the parameters of every section. More 

specifically, for columns h1=6500kNm  z1=0.005 λ1=1.1, h2=3250kNm  z2=0.015  

λ2=1.20, h3=-5200kNm  z3=0.04  λ3=0.8, h4=0.000001kNm  z4=0.04  λ4=0.8, while 

for beam cross sections h1=2592kNm  z1=0.001  λ1=1.05, h2=1296kNm  z2=0.003  

λ2=1.10, h3=-576kNm  z3=0.03 λ3=0.80, h4=0.000001kNm  z4=0.04 λ4=0.80. The 

values of z4 constitute the upper bounds for column and beam cross sections 

respectively. The upper bound vector of all displacements is 1uu    and the lower 

bound vector -1lu  . For frame 2a the initial value of 10   for case (a) and 10   

for case (b), while for frame 2b the initial value of 10   for case (a) and 100   for 

case (b) with an updating rule of 10   after each NLP solution until an 

appropriate convergence tolerance is reached  5( z  10 )Tw  . The algorithm for 

both cases has stopped because change in the vector of unknown variables and 

maximum constraint violation were less than the preselected tolerances (10
-10

). 
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Fig. 4.25: a) Variations of frame 2 and b) multi-linear hardening behavior for both frames. 

 

Table 4.4: Analysis results of example #2. 

 

 

All analysis results are presented in Table 4.4. The effect of shear force is observed 

in the reduction of the load carrying capacity of both frames. However, frame 2b 

presents greater values of load factor and top-storey displacement for both cases due 

to its greater stiffness (shorter column 9). 

In Fig.4.26 the ultimate states of frames 2a and 2b for both cases are presented. 

Each plastic hinge is accompanied by a number that designates the corresponding 

hardening/softening segment, as defined in Fig. 4.25b. Top-storey displacements and 

plastic rotations are smaller for both frames for NQM interaction (case (b)). The 

corresponding interaction diagrams are shown in Fig. 4.27. It is observed that the role 

of bending moment is dominant for both frames, while at column cross sections shear 

force effect is more intense than that of axial force due to the presence of lateral 

loading. Focusing on the base cross section of column 9, it is noted that for frame 2a 

n=-0.0289, v=0.0754, m=1.0370, while for frame 2b n=-0.0282, v=0.1146, 

m=1.0916. The difference in shear force is significant. 

           

(a) 33.43 0.379 2.63E-11

(b) 31.25 0.281 1.34E-06

(a) 34.80 0.317 3.24E-11

(b) 32.98 0.280 9.13E-10F
ra

m
e 

2
b

Cases a  (kN)
top-storey 

u  (m)               
w

T
z

F
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m
e 

2
α
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Fig. 4.26: Deformed shape and plastic hinge formation for frame a) 2a and b) 2b. 

 

 

Fig. 4.27: Interaction diagrams for case (b) for a) frame 2a and b) frame 2b. 
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4.8.3.3. Example #3 

The third example concerns the three-storey, four-bay plane frame, shown in Fig. 

4.28, that is subjected to increasing lateral and fixed vertical loading. The frame is 

discretized into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=112.5×10

-4 
m

2
, I=18260×10

-8 
m

4
,
 

s1y=2643.75 kN, vy=505.4 kN, s2y=325 kNm, s3y=325 kNm and sections with 

A=62.61×10
-4 

m
2
, I=11770×10

-8 
m

4
,
 
s1y=1471.34 kN, vy=418.06 kN, s2y=189.01 kNm, 

s3y=189.01 kNm are employed for all columns and beams respectively. The multi-

segment hardening behavior is shown in Fig. 4.28b and depends on the parameters of 

every section. More specifically, for columns h1=6500kNm z1=0.005 λ1=1.10, 

h2=3250kNm z2=0.015 λ2=1.20, h3=-5200kNm z3=0.04 λ3=0.80, h4=10
-6

kNm  

z4=0.05 λ4=0.80, while for beam cross sections h1=3780.2kNm z1=0.001 λ1=1.02, 

h2=2835.15kNm z2=0.003 λ2=1.05, h3=-1750.1kNm z3=0.03 λ3=0.8, h4=10
-6

kNm  

z4=0.05  λ4=0.8. The values of z4 constitute the upper bounds for column and beam 

cross sections respectively. The upper bound vector of all displacements is 1uu    

and the lower bound vector -1lu  . The initial value of 100   for case (a) and 

1000   for case (b) with an updating rule of 10   after each NLP solution until 

an appropriate convergence tolerance is reached (w
T
z ≤ 10

-5
). The algorithm for all 

cases has stopped because change in the vector of unknown variables and maximum 

constraint violation were less than the preselected tolerances (10
-10

). 

Results analysis are shown in Table 4.5. It is noted that for both interaction cases 

the frame has been analysed including the shear deformation effect (Timoshenko 

beam element stiffness matrix-section 4.6) that influences slightly the analysis results, 

i.e. collapse mechanisms are invariable, load factor and sway-displacement are 

slightly increased,while plastic deformations are slightly decreased. In Fig. 4.29 the 

ultimate states for both cases (i) are presented. Positive and negative plastic hinges are 

classified according to bending moment sign. The corresponding interaction diagrams 

for cases (a)-i and (b)-i are depicted in Fig. 4.30. The dominant role of bending 

moment is evident, while, as no diaphragmatic action is considered, the role of axial 

force is more intense in beam cross sections, especially for the right ends of first and 

second storeys that reside at their third hardening branch. In Fig. 4.31 the interaction 

diagram for case (b)–i is presented focusing on the dispersion of stress points. 

Although the stress state in n m  plan-view is almost the same with that of NM 
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interaction (Fig. 4.31a), it is evident that the shear force effect is stronger than that of 

axial force, as shown in plan views n v  (Fig. 4.31b). 

 

 

Fig. 4.28: a) Three-storey, four-bay plane frame and b) multi-segment hardening behavior. 

 

Table 4.5: Analysis results of example #3. 

 

 

 

 

Fig. 4.29: Plastic hinge formation of frame 3 for cases (a)-i and (b)-i. 

i : no shear deformations 109.87 0.147 2.79E-08

ii : shear deformation effect 110.11 0.159 2.72E-08

i : no shear deformations 97.55 0.153 4.99E-09

ii : shear deformation effect 97.56 0.158 3.10E-07

     Cases            
a  (kN)

top-storey 

u  (m)               
w

T
z

(a)

(b)
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Fig. 4.30: Interaction diagrams of frame 3 for cases (a)-i and (b)-i. 

 

 

Fig. 4.31: Interaction diagrams of frame 3 for case (b)-i (plan-views). 

 

4.8.4. Computational performance for NQM interaction 

The evolution of the proposed algorithm during the optimization steps is presented 

in more detail for all the above examples. The efficiency of the computational 

procedure is examined through variation of the objective function and first-order 

optimality measure (Appendix C) for the entire history of optimization. 
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The performance of the algorithm for example #1 is depicted in Fig. 4.32.  It is 

observed that, for the same initial values and upper and lower bounds of the variables, 

the proposed algorithm converged after 59 iterations, while the standard formulation 

after 103 iterations. It is highlighted that the standard formulation after the 41
st
 

iteration seems to follow almost the same path to the solution as the cone 

identification procedure. Due to the reduced size of the problem, the proposed 

algorithm finds the path to the optimum easier, while the standard formulation needs 

more iterations in trying to find the final path. Moreover, it is noted that the standard 

formulation that incorporates all yield constraints is more sensitive to initial values 

than the proposed algorithm. 

 

 

Fig. 4.32: Comparison of computational procedure for the proposed and the standard 

formulation. 

 

The observed behavior of the computational procedure for frames 2a  and 3 are 

presented in terms of objective function evolution and first-order optimality measure 

variation in Figs. 4.33-4.36, omitting the initial iterations for scaling reasons. For NM 

interaction the convergence of the algorithm is smoother as compared to NQM 

interaction since yield conditions for the latter case are more complex. The evolution 

of the optimality measure turns out smoother for cases (b). This though cannot be 

considered systematic but only indicative. The smooth tendency of the algorithm to 
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attain larger values of the loading factor a is distracted by the penalty term, which 

aims at establishing the disjunctive nature of the complementarity condition. This is 

manifested in Fig. 4.37 where the evolution of a is separated from the 

complementarity term in (4.26) for frame 2a. It turns out that in most cases the peaks 

correspond to negative values for the reserves due to overshooting of stresses. For the 

iterations corresponding to the sharp peaks, the generated vector of variables s and z

determine a dot product T zw  that deviates slightly from zero. This is magnified by 

the increasing parameter   affecting noticeably the value of the objective function 

(Fig. 4.37). 

 

 

Fig. 4.33: Evolution of the objective function for frame 2a. 

 

 

Fig. 4.34: Evolution of the first-order optimality measure for frame 2a. 
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Fig. 4.35: Evolution of the objective function for frame 3. 

 

 

 

 

 

Fig. 4.36: Evolution of the first-order optimality measure for frame 3. 
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Fig. 4.37: Evolution of the objective function and maximum load factor for NQM interaction. 

 

4.9. Concluding remarks 

Limit load and deformation analysis is treated herein in the framework of 

mathematical programming. The ultimate state of a structure and its maximum load 

carrying capacity is determined by solving an optimization problem that aims at 

maximizing the load factor a subjected to constraints that enforce equilibrium, 

compatibility, yielding and complementarity conditions. Due to the disjunctive nature 

of the latter, the problem lacks in convexity and smoothness. Using a penalty function 

method, it is reformulated into a NLP problem depending on initial values and lower 

and upper bounds of variables. The optimization process follows a gradient-based 

mathematical pace that tends to increase the load factor a satisfying the imposed 

constraints at each optimization iteration. Successive trials determine the path to the 

solution that generally differs from the actual path of a step-by-step method of finite 

element analysis, both though succeeding in finding the same solution. 

In this work, a reduced in size and independent-from the order of piecewise 

linearization of the yield surface and constitutive law- method is proposed for 

holonomic elastoplastic analysis with mathematical programming accounting for 

axial-bending moment (NM) and axial-shear force-bending moment (NQM) 

interaction and piecewise linear hardening/softening behavior. The concept is based 

on the identification of one specific yield line/plane and hardening branch for every 

cross section. At each optimization iteration, the vector of the decision variables (i.e. 

stresses s, displacements u, plastic multipliers z and the load factor a is generated. 

Every critical section belongs to a specific cone of the interaction diagram targeting 
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only one yield hyperplane. Given the stresses, the specific cone of the interaction 

diagram is detected. Having the critical yield hyperplane identified, only one plastic 

multiplier is required for each cross section. The linear hardening/softening segment 

that corresponds to this plastic multiplier is then identified and as a consequence, 

hardening matrices are formed for each cross section only for the specific segment. 

Thus the yield condition for each cross section is formed only for the identified yield 

plane and the identified hardening/softening branch and not for all unnecessary ones. 

This reduces considerably the number of yield and complementarity constraints 

decreasing significantly the complexity of the formulation, as the size of the problem 

becomes independent of the type of linearization.  

Τhe generalized Gendy-Saleeb yield criterion was adopted that accounts for the 

axial force-bending moment and axial-shear force-bending moment interaction. 

Numerical results demonstrate the validity of the proposed method and the need to 

account for shear force effects that lead to reduction of the load carrying capacity, as 

compared to axial force-bending moment interaction, and thus to safer designs, 

especially for structures characterized by intense shearing forces.   

From the presented examples, it becomes evident that the computational 

performance of the proposed formulation is considerably more efficient than the 

standard one, enabling an ample use of multi-segment hardening/softening behavior 

and thus addressing more accurately real structural response. 
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5.1. Introduction 

This chapter deals with limit load and deformation analysis of structures 

considering nonlinear interaction and structural behavior. The existing formulation, as 

well as the proposed enhanced formulations of previous chapters (3 and 4), are based 

on the a priori linearization of the yield surface and constitutive laws. Herein, a new 

approach is proposed that retains the nonlinearity of the yield surface applying a local 

linearization technique. Moreover, isotropic nonlinear hardening/softening cross-

sectional behavior is efficiently incorporated.  The ultimate state of the structure is 

determined as an optimization problem with linear equilibrium, compatibility and 

yield constraints together with a nonlinear complementarity constraint. The 

disjunctive nature of the latter enforces the formulation of a non-linear programming 

problem using a penalty function method. 

 

5.2. Problem formulation 

The formulation of the optimization problem includes constraints imposed by 

equilibrium, compatibility, yield condition, lower and upper bounds for plastic 

deformations and displacements, while the complementarity condition appropriately 

penalizes the objective function as: 
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 (5.1) 

 

The solution of this NLP problem provides simultaneously the load multiplier a , 

the corresponding stresses s  and displacements u  together with the plastic 

multipliers z . In this section, a new procedure is proposed for the formulation of the 

yield condition that abandons the existing notion of the a priori piecewise 

linearization of both yield surface and constitutive laws. The nonlinear yield criterion 

is locally linearized within the algorithm for every stress point, while the nonlinearity 

of constitutive laws is retained. 
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5.2.1. Local linearization of yield criterion 

Yield criteria expressing mathematically the multi-component interaction of 

stresses are general nonlinear. Their linear expression, though, offers computational 

advantages for the constraint formulation of the problem. The herein proposed method 

applies the linearization of the yield surface locally for every stress point. The 

proposed process constitutes an extension of the cone identification approach and is 

based on the concept that for every stress vector only one yield hyperplane is targeted 

or activated. This hyperplane is not a priori defined, but is determined at each 

optimization iteration for every stress point. First, the intersection point of every stress 

vector with the nonlinear yield surface is defined. Then, the corresponding tangent 

hyperplane and its normal vector are determined (Fig. 5.1). The normalized ratio of 

the reserves as compared to the stress vector is of interest, normalized appropriately. 

Thus, for every cross section only one yield condition is formed and the dimensions of 

matrix N and vectors w and rʹ in equation (5.1iv) are exactly the same as in section 

4.3. It is noted that the implementation of the method is depicted for a 2D yield 

criterion in Fig. 5.1. The proposed formulation is nevertheless general and can be 

efficiently applied for d-component interaction. 

 

 

Fig. 5.1: Local linearization of the yield surface for a stress point. 

 

5.2.2. Nonlinear structural behavior  

The structural behavior is assumed to follow an isotropic nonlinear 

hardening/softening law. Having experimental data, given as a set of points for axial 

force-plastic axial deformation and bending moment-plastic rotation, the 

corresponding nonlinear curves are formed using a curve fitting tool. Then, they are 



 
111 Chapter 5           Limit load and deformation analysis for plane frames with nonlinear interaction and constitutive laws  

combined by a proportion dictated by the components of the normal vector of the 

determined yield hyperplane resulting in a curve that relates finally the combined 

stresses versus plastic rotation. A plastic multiplier zμ is assigned to every cross 

section μ at each optimization iteration, the non-zero value of which denotes that the 

specific cross section has entered the plastic region. Based on the particular non-zero 

value of the plastic multiplier and having the analytical expression of the nonlinear 

hardening/softening behavior, the extended/shrunk yield limit of the stress point is 

directly evaluated (Fig. 5.2). It is actually the ordinate of the identified curve point 

that represents the corresponding extended/shrunk yield limit rʹμ required for the 

formulation of the yield condition (equation 5.1 iv). 

 

 

Fig. 5.2: Nonlinear hardening/softening behavior using curve fitting tool. 

 

5.2.3. Optimization procedure 

The optimization process is based on successive generations of the entire vector of 

decision variables dictated by gradient information that force the load factor to higher 

values satisfying all constraints at the same time. The herein proposed method acts as 

a filter formulating only the active or potentially active constraints for every stress 

point at each optimization iteration. The linearization technique of the yield surface is 

implemented internally at the optimization process, while the nonlinearity of 

constitutive law is maintained. An outline of the proposed algorithm for every 

optimization iteration is shown in Fig. 5.3.  
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Fig. 5.3: Outline of the optimization procedure. 

 

5.3. Numerical examples 

The optimization problem incorporating the proposed method is implemented in 

Matlab code using fmincon solver (appropriate for the minimization of constrained 
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nonlinear multivariable function), with the interior-point algorithm selected as 

optimization method. The aim is to verify the applicability of the introduced 

approach, validate its efficiency and compare the analysis results with existing ones 

for the following cases: 

 Case (a): NM interaction with : 

1. PWL yield condition and constitutive laws. 

2. Nonlinear yield condition and PWL constitutive laws. 

3. Nonlinear yield condition and constitutive laws. 

 Case (b): NQM interaction with: 

1. PWL yield condition and constitutive laws. 

2. Nonlinear yield condition and PWL constitutive laws. 

3. Nonlinear yield condition and constitutive laws. 

For this purpose, three steel frames are examined for the aforementioned cases and 

the corresponding results are presented below. It is noted that all analysis results of 

this method are presented following the engineering sign convention of structural 

analysis.  

 

5.3.1. Example #1 

The first example concerns one plane frame shown in Fig. 5.4a and serves 

demonstration purposes. It is subjected to increasing lateral and vertical loading and it 

is discretized into 4 elements, 5 nodes and 9 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=28.48×10

-4
m

2
, I=1943×10

-8
m

4
,
 

s1y=669.28kN, s2y=s3y=51.84kNm and sections with A=16.43×10
-4 

m
2
, I=5412×10

-8 

m
4
,
 

s1y=386.1kN, s2y=s3y=20.76kNm are employed for all columns and beams 

respectively. The assumed multi-linear and the corresponding nonlinear 

hardening/softening behavior is shown in Fig. 5.5. More specifically, for columns 

h1=1036.8kNm z1=0.005 λ1=1.1, h2=518.4kNm z2=0.015 λ2=1.2, h3=-592.46kNm  

z3=0.05 λ3=0.8, h4=10
-6

kNm z4=0.06 λ4=0.8, while for beam cross sections 

h1=415.2kNm z1=0.005 λ1=1.1, h2=207.6kNm z2=0.015 λ2=1.2, h3=-237.26kNm  

z3=0.05 λ3=0.8, h4=10
-6

kNm z4=0.06 λ4=0.80, concerning the multi-linear behavior 

(Fig. 5.5a). The nonlinear structural behavior is described by a 4
th

 degree polynomial 

line (Fig. 5.5b) based on data presented in Table 5.1. The values of z4 constitute the 

upper bounds for column and beam cross sections respectively. The upper bound 
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vector of all displacements is 1uu    and the lower bound vector -1lu  . An updating 

rule of ρ=10ρ is used until convergence with a tolerance of 
510Tw z   is reached.  

  

 

 

Fig. 5.4: a) Example #1 and b) plastic hinge formation for all analysis cases. 

 

 

Table 5.1:  Polynomial line of structural behavior. 

 

 

 

 

 

Fig. 5.5: a) Multi-linear and b) nonlinear hardening/softening structural behavior. 
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Table 5.2. Analysis results for all cases for example #1. 

 

 

All analysis results are presented in Table 5.2. The method of local linearization of 

the yield condition (cases 2 and 3) corresponds to greater values of maximum load 

factor for both cases of interaction. This is due to the fact that nonlinearity of yield 

condition is retained offering more accurate solutions, having, nevertheless, the 

corresponding computational cost (total computational time includes both matrix 

formulation and optimization procedure). The difference in maximum load factors is 

more evident for the case of NQM interaction and it is related to the coarse PWL 

approximation of the yield surface for case (b1). In Fig. 5.4b the ultimate state of the 

frame for all analysis cases is depicted. Each plastic hinge is associated with a roman 

number, while the corresponding hardening/softening segment for cases of PWL (a1, 

a2 and b1, b2) is denoted by an arabic number (Fig. 5.4b). The interaction diagrams are 

shown in Figs. 5.6 and 5.7. The effect of bending moment is dominant; while the 

effect of shear force is presented to be more intense than that of axial force (dispersion 

of stress points is ampler for shear force Fig. 5.7). Yielded stress points are assigned 

with the corresponding roman number. It is noted that stress point iv lies on its 

softening branch for all cases. 

Case Case Case Case Case Case

(a1) (a2) (a3) (b1) (b2) (b3)

23.14 23.35 23.95 21.87 23.18 23.78

5 5 5 5 5 5

3.27 10.08 6.49 9.20 15.57 9.71

92 66 41 64 98 63

6.39E-10 7.89E-09 2.40E-07 8.97E-11 3.31E-09 4.49E-12

1000 100 10 10 1000 10

number of iterations

complementarity condition 

w
T
z

initial values of  ρ

maximum load factor a (kN)

number of plastic hinges             

total computational time (s)

number of equality 
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Fig. 5.6: NM interaction diagrams of example #1 for a) case (a1) and b) case (a3). 

 

 

 

Fig. 5.7: NQM interaction diagrams of example #1 for a) case (b1) and b) case (b3). 
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Fig. 5.8: Evolution of the optimization procedure of example #1 for NM interaction. 

 

 

Fig. 5.9: Evolution of the optimization procedure of example #1 for NQM interaction. 
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noted that for all cases (a1, a2 and a3) the initial values of the unknown vector are the 

same, while the corresponding initial values of the objective function are not identical. 

This lies on the fact that the objective function includes the values of w that differ for 

PWL and nonlinear approach. Moreover, it is observed that cases (a2) and (a3) require 

fewer iterations until convergence compared to case (a1), consuming more 

computational time, though. This is due to the fact that cone identification for 2D 

interaction is a straightforward and faster procedure compared to local linearization 

method. The evolution of the optimization process for NQM interaction is depicted in 

Fig. 5.9, omitting initial iterations for demonstration purposes. The number of 

required iterations is almost the same for both cases (b1 and b3), while the 

corresponding computational time is slightly higher for the nonlinear consideration.  

 

5.3.2. Example #2 

The second example concerns a three-storey, two-bay steel frame shown in Fig. 

5.10. The frame is discretized into 30 elements, 21 nodes and 54 degrees of freedom. 

The steel grade is S235 with E=2×10
8
kN/m

2
. The material properties are as follows: 

sections with A=112.5×10
-4 

m
2
, I=18260×10

-8 
m

4
,
 
s1y=2643.75kN, vy=505.41kN, 

s2y=s3y=325kNm are employed for all columns, sections with A=28.48×10
-4 

m
2
, 

I=1943×10
-8 

m
4
,
 
s1y=669.28kN, vy=189.89kN, s2y=s3y=51.84kNm for all beams. The 

corresponding multi-segment hardening behavior is shown in Fig. 5.11a and depends 

on the parameters of every section. More specifically, for columns h1=6500kNm 

z1=0.005 λ1=1.1, h2=3250kNm z2=0.015 λ2=1.20, h3=-5200kNm z3=0.04 λ3=0.8, 

h4=10
-6

kNm z4=0.05 λ4=0.8, while for beam cross sections h1=518.4kNm  z1=0.005 

λ1=1.05, h2=259.2kNm  z2=0.015  λ2=1.10, h3=-777.6kNm  z3=0.035  λ3=0.80, h4=10
-

6
kNm  z4=0.04  λ4=0.80. The nonlinear structural behavior for column and beam cross 

sections is depicted in Fig. 5.11b using 4
th

 degree polynomial lines, based on data 

presented in Table 5.3.  The values of z4 constitute the upper bounds for column and 

beam cross sections respectively. The upper bound vector of all displacements is 

1uu    and the lower bound vector -1lu   (for case b1 the corresponding bounds are 

set as 2 and -2). An updating rule of ρ=10ρ after each NLP solution until an 

appropriate convergence tolerance is reached  5( z  10 )Tw  .  

All analysis results are presented in Table 5.3. Load factors of nonlinear approach 

for both interaction considerations are slightly greater than that of PWL approach, as 
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expected. Moreover, the effect of shear force is evident in the reduction of the load 

carrying capacity. The plastic hinge pattern is identical for all analysis cases (Fig. 

5.10b), but different stress states correspond to plastic hinges for each case. The 

corresponding interaction diagrams are shown in Figs. 5.12 and 5.13. Cross sections 

are stressed mainly due to bending moment, with some beam sections lying on their 

softening branch. The effect of axial force is observed mainly in beam cross sections 

(Fig. 5.12 and n-m diagrams of Fig. 5.13), while the effect of shear force is obvious 

and more intense than that of axial force in both beam and column cross sections (v-m 

diagrams of Fig. 5.13).   

 

 

Fig. 5.10: a) Example #2 and b) plastic hinge formation for all analysis cases. 

 

Table 5.3: Polynomial lines of structural behavior. 
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Fig. 5.11: a) Multi-linear and b) nonlinear hardening/softening structural behavior. 

 

 

Table 5.4: Analysis results for all cases for example #2. 

 

 

Case Case Case Case Case Case

(a1) (a2) (a3) (b1) (b2) (b3)
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27 27 27 27 27 27
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7.35E-12 1.84E-10 4.56E-11 1.82E-10 9.40E-13 1.50E-12
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constraints n inq

60
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w
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number of plastic hinges             

total computational time (s)

Cases            

number of variables n var 205

144
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Fig. 5.12: NM interaction diagrams of example #2 for a) case (a1) and b) case (a3). 

 

 

 

 

Fig. 5.13: NQM interaction diagrams of example #2 for a) case (b1) and b) case (b3). 
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Fig. 5.14: Evolution of the optimization procedure of example #2 for NM interaction. 

 

 

Fig. 5.15: Evolution of the optimization procedure of example #2 for NQM interaction. 

 

The computational performance for NM and NQM interaction is presented in Fig. 
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more iterations and consequently significantly more computational time compared to 

the PWL approach (case a1). For NQM interaction, the optimization procedure of the 

local linearization procedure (cases b2 and b3) requires fewer iterations compared to 

the PWL one (83 and 95 iterations versus 102) and less computational time (536.51s, 

715.52s versus 825.10s). This is due to the fact that cone identification procedure for 

3D interaction consumes more computational time compared to local linearization of 

the yield surface. The sharp peaks that are presented for case (b1) are due to the 

penalized term of the complementarity condition in the objective function. The 

generated vector of variables s and z determine a dot product 
T zw  that deviates 

slightly from zero, but this is magnified by the penalty parameter ρ affecting 

noticeably the value of the objective function. 

 

5.3.3. Example #3 

The third example concerns the six-storey, four-bay plane frame, shown in Fig. 

5.16, that is subjected to increasing lateral and fixed vertical loading. The frame is 

discretized into 55 elements, 36 nodes and 90 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=159×10

-4 
m

2
, I=45070×10

-8 
m

4
,
 

s1y=3736.5 kN, vy=505.41 kN, s2y=602.1 kNm, s3y=602.1 kNm and sections with 

A=53.81×10
-4 

m
2
, I=8356×10

-8 
m

4
,
 
s1y=1264.5 kN, vy=348.4 kN, s2y=147.7 kNm, 

s3y=147.7 kNm are employed for all columns and beams respectively. The 

corresponding multi-segment hardening behavior is shown in Fig.5.17a and depends 

on the parameters of every section. More specifically, for columns h1=30103.5 kNm 

z1=0.002 λ1=1.1, h2=7525.9 kNm z2=0.01 λ2=1.20, h3=-6880.8 kNm z3=0.045 λ3=0.8, 

h4=10
-6

kNm z4=0.05 λ4=0.8, while for beam cross sections h1=7383.5 kNm  z1=0.001 

λ1=1.05, h2=1845.9 kNm  z2=0.005  λ2=1.10, h3=-1265.7 kNm  z3=0.04  λ3=0.80, 

h4=10
-6

kNm  z4=0.05  λ4=0.80. The nonlinear structural behavior for column and 

beam cross sections is depicted in Fig. 5.17b using 4
th

 degree polynomial lines, based 

on data presented in Table 5.5.  The values of z4 constitute the upper bounds for 

column and beam cross sections respectively. The upper bound vector of all 

displacements is 1uu    and the lower bound vector -1lu  . An updating rule of 

ρ=10ρ after each NLP solution until an appropriate convergence tolerance is reached 

 5( z  10 )Tw  .  
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 Fig. 5.16: Example #3. 

 

Table 5.5. Polynomial lines of structural behavior. 

 

 

 

 

Fig 5.17: a) Multi-linear and b) nonlinear hardening/softening structural behavior. 
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Table 5.6. Analysis results for all cases for example #3. 

 

 

All analysis results are presented in Table 5.6. The local linearization method 

results in more accurate (greater) values of maximum load factor compared to PWL 

approach, having the corresponding computational cost though. The required 

computational time is almost 18 times greater for the local linearization technique, 

while the number of iterations presents slight differences. The plastic hinge pattern is 

identical for all analysis cases (Fig. 5.18), but different stress states correspond to 

plastic hinges for each case. For case a1 each plastic hinge is accompanied with a 

number that designates the corresponding hardening/softening on which it resides. All 

beam cross sections (except for those of the last storey) are on their softening branch, 

with those of the second and third storey more heavily stressed. Bases of columns lay 

on their second hardening segment, while the rest column sections remain in the 

elastic region. The corresponding interaction diagrams for cases a1 and a3 are shown in 

Figs. 5.19 and 5.20. The role of bending moment is more intense and the effect of 

axial force is evident mainly in beam cross sections. 

Case Case Case

(a1) (a2) (a3)

67.57 68.37 70.59

56 56 56

60.49 1109.29 1010.86

54 57 47

1.48E-09 2.55E-15 9.25E-12

1000 10
8
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number of iterations
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w
T
z

initial values of  ρ

number of inequality 

constraints n inq

110

maximum load factor a (kN)

number of plastic hinges             

total computational time (s)

Cases            

number of variables n var 366

number of equality 

constraints n eq

255
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Fig 5.18: Deformed shape of example #3 for all cases of NM interaction. 

 

Fig 5.19:  Interaction diagram of example #3 for case a1. 
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Fig 5.20: Interaction diagram of example #3 for case a3. 

 

 

 

Fig. 5.21: Evolution of the optimization procedure of example #3 for case a1. 
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Fig. 5.22: Evolution of the optimization procedure of example #3 for case a2. 

 

 

Fig. 5.23: Evolution of the optimization procedure of example #3 for case a3. 

 

The computational performance for cases (a1), (a2), (a3) are presented in Fig. 5.21, 

5.22 and 5.23 respectively, omitting initial iterations for demonstration purposes. For 

case (a1) the convergence seems smoother, while for cases (a2), (a3) the objective 
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function attains values of higher order (due to the initial values of the parameter ρ) 

covering a great range until convergence. The sharp peaks that are presented are due 

to the penalized term of the complementarity condition in the objective function. The 

generated vector of variables s and z determine a dot product 
T zw  that deviates 

slightly from zero, but this is magnified by the penalty parameter ρ affecting 

noticeably the value of the objective function. 

 

5.4. Concluding remarks 

Limit load and deformation analysis of plane frames under holonomic 

consideration is dealt as a nonlinear programming problem incorporating 

appropriately nonlinear interaction and constitutive laws. The proposed method 

constitutes an extension of cone identification procedure and is based on the local 

linearization of the yield surface, while constitutive laws are embedded retaining their 

nonlinearity. The whole formulation preserves the linear formulation of the yield 

condition and reduces its size to a minimum (compared to the standard formulation) 

of both yield and complementarity conditions. At each optimization iteration and for 

every cross section the targeted or activated yield hyperplane is determined by locally 

linearizing the yield surface. Nonlinear structural behavior is also incorporated 

without affecting the linearity or the size of yield condition. From the examples 

presented, the proposed formulation proved to be more time consuming and more 

sensitive to initial values and bounds of the unknown variables. Nevertheless, more 

accurate solutions compared to PWL method are provided avoiding the cumbersome 

procedure of the a priori linearization of the yield surface and constitutive laws.  
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6.1. Introduction 

In this chapter limit load and deformation analysis in the framework of 

mathematical programming is extended to 3D frame analysis. The ultimate load is 

evaluated through a nonlinear programming problem with equilibrium, compatibility, 

yield and complementarity constraints (section 4.7). Frames are considered to consist 

of nel number of elements and nf degrees of freedom. Equilibrium equations refer to 

the initial undeformed configuration and yield surface is either a priori or locally 

linearized. The nonlinear inelastic structural behavior is utilized either approximated 

with linear segments or in its nonlinear form. Furthermore, a holonomic (path-

independent) structural behavior is assumed and hardening/softening behavior is 

considered isotropic (the yield surface expands/shrinks retaining its shape). 

 

6.2. Equilibrium of 3D frames 

For a double-symmetric 3D prismatic beam element, equilibrium is established 

with six equations that involves the twelve actions of the two element ends (Fig. 6.1).  

 

 

Fig. 6.1: Spatial beam element i with positive stress resultants-end actions. 

 

Herein, the axial force 
1 1( )ij iF s , torsional moment at the start node  j 

1 2( )ij iM s , 

bending moment along y-axis at the start node j 2 3( )ij iM s , bending moment along z-

axis at the start node j 3 4( )ij iM s , bending moment along y-axis at the end node k 
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2 5( )ik iM s  and bending moment along z-axis at the end node k 
3 6( )ik iM s  are 

considered as independent stresses for member i . The twelve end actions of an 

element i are related to the six independent one at the local axis system as: 
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E s  (6.1) 

 

where E
i
 is the (12×6) local equilibrium matrix of the element and s

i
 is the (6×1) 

vector of the independent stresses. The local equilibrium matrix E
i
 is multiplied by 

the (12×12) transpose transformation matrix R
iΤ 

to express equilibrium at the global 

axis system. Thus the equilibrium matrix of the element is given as: 

 

 i iT i B R E  (6.2) 

 

Thus the equilibrium for the whole structure can be expressed as: 

 

 da   B s f f  (6.3) 

 

where B is the (12nel×6nel) equilibrium matrix of the structure, s  is the (6nel ×1) 

vector of independent stresses of all elements, a is a scalar load factor, f is the (nf×1) 

vector of nodal loading in the global system and df  is the (nf×1) vector of fixed nodal 

loading in the global system. 
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6.3. Compatibility condition 

Compatibility of member deformations and nodal displacements are established 

with relation: 

 

 T q B u  (6.4) 

 

where q is the (6nel×1) vector of deformations of all members and u the (6nel×1) 

vector of the corresponding nodal displacements (Fig. 6.2).  Notice that for the axial 

deformation the displacements of both ends are engaged, whereas for the rotation of 

the chord at each end the displacements of both ends and the rotations of the 

respective end are engaged. 

 

 

Fig. 6.2: Spatial beam element with nodal displacements and rotations. 

 

6.4. Constitutive relations 

Deformations are composed by elastic and plastic part as: 

 

  q e p  (6.5) 

 

where e and p are the (6nel×1) vectors of elastic and plastic deformations of all 

members respectively. The elastic part is described by the relation: 
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  s S e  (6.6) 

 

where S is the (6nel×6nel) assembled block diagonal matrix of all element stiffness 

matrices S
i
. For an element i the stiffness matrix is given as: 
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S  (6.7) 

 

where E is the modulus of elasticity, iA  is the area of the element cross section , iL  is 

the element length, G is the shear modulus, i

tI  is the torsional moment of inertia of 

the element, i
yI  is the moment of inertia of the element with respect to local y-axis, 

i

zI  is the moment of inertia of the element with respect to local z-axis. Plastic 

deformations of the structure, that are considered perpendicular to the yield surface, 

are given as: 

 

  zp N  (6.8) 

 

where N is the (6nel×2nel) matrix containing the scaled normal vectors of the 

identified yield hyperplanes and z is the (2nel×1) vector of the plastic multipliers. The 

compatibility relation for the whole structure is formed as:  

 

 1 T      z 0S s N B u  (6.9) 

 

where the terms result from the combination of equations (6.4), (6.5), (6.6) and (6.8). 
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6.5. Yield condition 

6.5.1. Formulation of yield condition 

Yield surfaces involving the interaction of stresses are generally nonlinear. However, 

they are approximated with linear segments or -for the general case- with hyperplanes 

enforcing their linear expression, which is computational advantageous. In general, 

considering the interaction of d number of stress resultants (d-component interaction) 

and the yield surface of dimension d is approximated with h hyperplanes, yield 

condition for 3D frames may be formulated following four different schemes: 

1. Hyperplane equations formulation 

According to this formulation, yield condition for every cross section is 

expressed mathematically as the subtraction of the length of two vectors, i.e. 

the vector of the stress state and the vector of the yield limit. This 

presupposes that the vectors are expressed along the same direction, which is 

that of the appropriately scaled normal vector of every yield hyperplane. For 

the whole structure, yield condition is formed in terms of stresses s as: 

 

 T     0w N s r  (6.10) 

 

where w
 
is the

 
(2hnel×1) vector of all strength reserves, N is the (6nel×2hnel) 

matrix of all scaled -with respect to yield capacities of stresses- normal 

vectors and r is the (2hnel×1) vector that includes the yield limits of all yield 

hyperplanes. Notice that this formulation involves all the yield hyperplanes 

that approximate the yield surface increasing considerably the number of 

yield constraints per critical section. 

2. Convex hull formulation 

The yield polytope can be expressed as the convex hull of its nv fixed vertices 

(section 3.3.2.2). Under this concept, yield condition is formulated as a set of 

equality constraints, the number of which depends on the dimensionality of 

interaction and thus independent of the number of the yield hyperplanes. For 

this consideration, yield condition for a 3D structure is expressed as: 
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 ,d eq      s C         (6.11) 

 

where ds  is the (2dnel×1) vector of the normalized stresses for all elements, 

C is the (2dnel×2nvnel) matrix containing the coordinates of the vertices of all 

yield hyperplanes for all elements,   is the (2nvnel×1) vector including the 

coefficients i  for all vectors of the vertices nv for all the elements and 
eqI  is 

the (2nel×2nvnel) matrix that sums the corresponding i  at every element end. 

3. Cone identification approach 

Cone identification approach (section 4.3) depends on the notion that only 

one yield hyperplane is targeted or activated for every cross section. Thus, it 

is unnecessary to compare the stress vector with all possible yield limits; it is 

sufficient to form the yield condition only for one critical hyperplane per 

cross section. This is achieved following an identification process that 

specifies the cone in which the stress vector resides and then yield condition 

is formed only for the identified hyperplane. The mathematical expression of 

yield condition for the whole structure is that of equation (6.4), including, 

though, matrices of smaller size, i.e. w
 
is the

 
(2nel×1) vector of all strength 

reserves, N is the (6nel×2nel) matrix of all scaled -with respect to yield 

capacities of stresses- normal vectors of the identified yield hyperplanes and r is 

the (2nel×1) vector that includes the yield limits of all identified yield 

hyperplanes. 

4. Local linearization technique 

This approach is based on the local linearization of the yield surface for 

every cross section and constitutes an extension of cone identification 

approach (section 5.2.1). The yield surface is not a priori linearized and thus 

the yield hyperplane is not a priori defined, but is determined at each 

optimization iteration for every stress point. The mathematical expression of 

yield condition for this approach is the same with that of cone identification 

formulation, including matrices with the same dimensions. 

It is noted that the last two formulations of yield condition may be adopted for the 

case of structural analysis formulated as a NLP problem. 
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6.5.2. Incorporation of hardening/softening behavior 

The structural behavior is considered linearized or nonlinear and it is incorporated 

in the expression of yield condition by using extended or shrunk yield limits rʹ 

(instead of the initial r). In the general case, any of the presented approaches of the 

yield condition can be combined with any considerations of hardening/softening 

behavior. However, the two last approaches of yield condition result in a formulation 

of a minimum size and thus can incorporate more efficiently any consideration of 

structural behavior. The specific considerations of hardening/ softening behavior are:  

1. Multi-linear hardening/softening behavior 

For this case, the critical segment of the structural behavior is identified for 

every yielded cross section based on the value of its plastic rotation (section 

4.3.3). The extended/shrunk yield limits for all cross sections are given as:  

 

     zr r H c  (6.12) 

 

where H is the hardening diagonal matrix with dimensions (2nel×2nel), z  is 

the (2nel×1) vector of all plastic multipliers and c is the (2nel×1) vector, 

which in a recursive form accumulates all previous plastic behavior. For the 

case that a cross section remains elastic, equation (6.6) degenerates to rʹ=r. 

2. Nonlinear hardening/softening behavior 

Structural behavior may be also incorporated retaining its nonlinearity 

(section 5.2.2). The extended/shrunk yield limit for every yielded cross 

section is determined straightforward from the analytical expression of the 

nonlinear curve of the structural behavior, given the value of the abscissa. 

 

6.6. Complementarity condition 

Complementarity condition that excludes the simultaneous activation of yield 

condition with zero plastic deformation are necessary, when softening or/and ductility 

limitations are considered. The relation that expresses the complementarity condition 

for the whole structure is given as: 
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 , ,T      z 0 0 z 0w w  (6.13) 

 

The size of the components of the above relation is reduced to a minimum by 

adopting either the cone identification or the local linearization technique for the 

expression of the yield condition. 

 

6.7. Formulation of the optimization problem 

The analysis of 3D frames in the context of mathematical programming is 

formulated as a LP or a NLP problem depending on the assumed structural behavior. 

For the case of rigid-perfectly plastic behavior or hardening behavior, the ultimate 

structural state is determined using the following formulations: 
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where the unknown variables for the first formulation are the stresses s and the load 

factor a, while for convex hull formulation the nonnegative parameters θ are added. 

For the case of softening behavior or/and limited ductility, the formulation of the 

problem is as follows: 
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The vector of the unknown variables for the above NLP problem contains the stresses 

s, the displacements u, the plastic multipliers z and the load factor a. The formulation 
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of the problem may incorporate the cone identification approach or the local 

linearization of the yield surface and multi-linear or nonlinear structural behavior. It is 

noted that the optimization problem is parameter dependent and the proper choice of 

the initial values of variable, as well as the lower and upper bounds may be decisive 

in achieving the desired convergence. 

 

6.8. Numerical examples 

Limit load and deformation analysis is implemented as a NL programming 

problem in Matlab code using fmincon solver (appropriate for the minimization of 

constrained nonlinear multivariable function), with the interior-point algorithm 

selected as optimization method.  

The aim is to verify the applicability of the introduced approaches in 3D frames 

and validate their efficiency for axial force-biaxial bending moment (NMyMz) 

interaction for the following cases: 

 Case (a): PWL yield condition and rigid-perfectly plastic behavior. 

 Case (b): PWL yield condition and constitutive laws - Cone identification 

procedure. 

 Case (c): Nonlinear yield condition and multi-linear constitutive laws.  

 Case (d): Nonlinear yield condition and constitutive laws. 

For this purpose, two 3D steel frames are examined for the aforementioned cases 

and the corresponding results are presented below. The generalized Gendy-Saleeb 

yield criterion is adopted for axial force-biaxial bending moment interaction 

(NMyMz): 

 

 
2 2 21 1

1y z

y z

n m m
 

        (6.16) 

 

where parameters y  and z  are  shape dependent. For rectangular cross sections they 

assume the following form: 

 

 
21y z n     (6.17) 

 



 
142 Limit load and deformation analysis for frame structures with mathematical programming 

while for I-beams the corresponding expressions are: 

  

 1 , 1 1.1y zn n       (6.18) 

 

The aforementioned yield criterion of equation (6.16) is represented by a 3D 

nonlinear surface that is approximated using 32 plane triangles, as shown in Fig. 6.3.  

 

 

Fig. 6.3: a) Nonlinear and b) PWL yield surface. 

 

6.8.1. Example #1 

The first example concerns one simple 3D frame shown in Fig. 6.4 and serves 

demonstration purposes. It is subjected to increasing lateral and vertical loading and it 

is discretized into 8 elements, 8 nodes and 24 degrees of freedom. The steel grade is 

S235 with E=2×10
8
kN/m

2
. Sections with A=53.81×10

-4
m

2
, I=8356×10

-8
m

4 
(strong 

axis),
 

I=603.8×10
-8

m
4 

(weak axis), I=20.12×10
-8

m
4 

(torsional), s1y=1264.54 kN, 

s2y=65.33 kNm, s3y=s5y=29.42 kNm, s4y=s6y=147.67 kNm and sections with 
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A=16.43×10
-4 

m
2
, I=5412×10

-8 
m

4 
(strong axis),

 
I=44.92×10

-8 
m

4 
(weak axis), 

I=2.45×10
-8

m
4 

(torsional), s1y=386.1 kN, s2y=9.57 kNm, s3y=s5y=4.52 kNm, 

s4y=s6y=20.76 kNm are employed for all columns and beams respectively. The 

assumed multi-linear and the corresponding nonlinear hardening/softening behavior is 

shown in Fig. 5.5. More specifically, for columns h1=2953.4 kNm z1=0.005 λ1=1.1, 

h2=1476.7 kNm z2=0.015 λ2=1.2, h3=-1687.7 kNm  z3=0.05 λ3=0.8, h4=10
-6 

kNm 

z4=0.06 λ4=0.8, while for beam cross sections h1=415.2 kNm z1=0.005 λ1=1.1, 

h2=207.6 kNm z2=0.015 λ2=1.2, h3=-237.26 kNm  z3=0.05 λ3=0.8, h4=10
-6 

kNm  

z4=0.06  λ4=0.80, concerning the multi-linear behavior (Fig. 6.5a). The nonlinear 

structural behavior is described by a 4
th

 degree polynomial line (Fig. 6.5b) based on 

data presented in Table 6.1. The values of z4 constitute the upper bounds for column 

and beam cross sections respectively. The upper bound vector of all displacements is 

1uu    and the lower bound vector -1lu  . An updating rule of ρ=10ρ is used until 

convergence with a tolerance of 
4z 10Tw   is reached. 

 

Fig. 6.4: Example #1. 

 

 

Table 6.1: Polynomial line of structural behavior. 
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Fig. 6.5: a) Multi-linear and b) nonlinear hardening/softening structural behavior. 

 

Table 6.2. Analysis results for all cases for example #1. 

 

 

All analysis results are shown in Table 6.2. Rigid-perfectly plastic behavior (case 

a) corresponds to a LP problem including only equilibrium and yield conditions. And 

yields the smallest maximum load factor a in the shortest computational time. For 

NMyMz    

rigid-p.plastic

NMyMz     

PWL

NMyMz       

NL-PWL

NMyMz       

NL

(a) (b) (c) (d)

49

24

512

78.52 90.14 101.75 102.28

12 12 12 12

8.69 73.18 186.06 37.3

— 90 189 45

— 5.00E-06 2.56E-11 6.03E-04

— 100 10⁴ 10⁶initial values of  ρ

Cases            

number of variables n var

complementarity condition 

w
T
z

number of plastic hinges             

number of equality 

constraints n eq

number of inequality 

constraints n inq

maximum load factor a (kN)

total computational time (s)

number of iterations

89

72

16
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hardening/softening behavior it is observed that the number of variables and 

constraints is the same regardless of the linearity or nonlinearity of the structural 

behavior and of the a priori or local linearization of the yield surface. Comparing 

cases (b) and (c) that correspond to the same multi-linear structural behavior, it is 

observed that the local linearization approach yields greater value of maximum load 

factor since the nonlinearity of the yield surface is retained. Number of plastic hinges 

and collapse mechanisms are identical for both cases. Comparing cases (c) and (d) 

that correspond to local linearization of the nonlinear yield surface, the maximum 

load factor is slightly greater for the case of nonlinear structural behavior presenting 

the same ultimate state.  

 

Fig. 6.6: Plastic hinge formation for case (a). 

 

 

Fig. 6.7: Plastic hinge formation with step-by-step analysis for case (a). 
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Fig. 6.8: Interaction diagram for case (a). 

 

More specifically, the plastic hinge formation for rigid-perfectly plastic behavior 

(case a) is shown in Fig. 6.6. The results are verified by a step-by-step analysis using 

SAP2000 version 14, as shown in Fig. 6.7. The corresponding interaction diagram is 

presented in Fig. 6.8 designating the formatted plastic hinges with the number of the 

corresponding cross section. The role of bending moment along local z axis (strong 

axis) is dominant, the effect of bending moment along y axis is evident at column 

cross sections and the slight effect of axial force is presented mainly in beam cross 

sections. 

The ultimate state for case (b) is shown in Fig. 6.9. Each plastic hinge is 

accompanied by a number indicating the corresponding hardening/softening segment. 

Plastic hinges at column bases lie on the second hardening segment presenting greater 

deformations compared to yielded beam cross sections. Results are verified using 

SAP2000 version 14 and the sequence of plastic hinge formation for step-by-step 
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analysis is shown in Fig. 6.10.  The ultimate carrying load capacities in terms of base 

shear force are practically identical for both types of analysis, i.e. 180.18kN for step-

by-step analysis and 180.27kN for limit load and deformation analysis with 

mathematical programming. The corresponding interaction diagram is presented in 

Fig. 6.11. Beam cross sections are stressed under the combined effect of bending 

moment (along the strong axis) and axial force, while the biaxial bending moment 

effect is evident at column cross sections. 

 

 

 

Fig. 6.9: Plastic hinge formation for case (b). 

 

 

 

 

Fig. 6.10: Plastic hinge formation with step-by-step analysis for case (b). 
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Fig. 6.11: Interaction diagram for case (b). 

 

The plastic hinge pattern of the ultimate state for case (c) is shown in Fig. 6.12. 

The roman numbers designate the corresponding hardening/softening segment of each 

plastic hinge. The number and disposition of plastic hinges is the same as that of case 

(b). However, beam cross sections are more heavily stressed presenting deformations 

that correspond to the second (hardening) and the third (softening) segment. This is 

due to the local linearization of the yield surface allowing for greater and more 

accurate solutions. The corresponding interaction diagram is presented in Fig. 6.13. 

Bending moment along the strong axis is dominant, while the slight effect of axial 

force is evident at beam cross sections. Column cross sections are stressed under the 

biaxial bending moment effect with almost absent the role of axial force. 
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Fig. 6.12: Plastic hinge formation for case (c). 

 

 

Fig. 6.13: Interaction diagram for case (c). 

 

In Fig. 6.14 the ultimate state for case (d) is depicted, corresponding to a similar 

plastic hinge pattern to that of cases (b) and (c). The ultimate stress state of all cross 

sections is presented in Fig. 6.15. Beam cross sections are stressed under the 

combined effect of bending moment (along the strong axis) and axial force, while the 

biaxial bending moment effect is evident at column cross sections. 

 

Fig. 6.14: Plastic hinge formation for case (d). 
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Fig. 6.15: Interaction diagram for case (d). 

 

The computational performance for cases (b), (c) and (d) are presented in Fig. 6.16, 

6.17 and 6.18, omitting initial iterations for demonstration purposes. Comparing cases 

(b) and (c) that concern the same structural behavior, it is observed that local 

linearization method requires more iterations (189 versus 90) and more computational 

time (186.06s versus 73.18s) until convergence. The sharp peaks that are presented 

for case (c) are due to the penalty parameter in the objective function that magnifies 

any divergence of the complementarity term. The computational performance of the 

algorithm requires 45 iterations and 37.3s for case (d) with the objective function 

attaining great values due to the penalty parameter. 

 

Fig. 6.16: Evolution of the optimization procedure of example #1 for case (b). 
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Fig. 6.17: Evolution of the optimization procedure of example #1 for case (c). 

 

 

Fig. 6.18: Evolution of the optimization procedure of example #1 for case (d). 

 

6.8.2. Example #2 

The second example concerns the 3D frame shown in Fig. 6.19. It is subjected to 

increasing lateral loading along Χ axis, fixed lateral loading along Υ axis and fixed 

vertical loading and it is discretized into 26 elements, 18 nodes and 72 degrees of 

freedom.  
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Fig. 6.19: Example #2. 

 

The steel grade is S235 with E=2×10
8
kN/m

2
. For all columns sections with 

A=159×10
-4

m
2
, I=45070×10

-8
m

4 
(strong axis),

 
I=8564×10

-8
m

4 
(weak axis), 

I=189×10
-8

m
4 

(torsional), s1y=3736.5 kN, s2y=301.6 kNm, s3y=s5y=205.1 kNm, 

s4y=s6y=602.1kNm are used, while for all beams sections with A=53.81×10
-4

m
2
, 

I=8356×10
-8

m
4 

(strong axis),
 

I=603.8×10
-8

m
4 

(weak axis), I=20.12×10
-8

m
4 

(torsional), s1y=1264.5 kN, s2y=65.3 kNm, s3y=s5y=29.4 kNm, s4y=s6y=147.7 kNm. The 

assumed multi-linear and the corresponding nonlinear hardening/softening behavior is 

shown in Fig. 6.20. More specifically, for columns h1=12041.4 kNm z1=0.005 λ1=1.1, 

h2=6020.7 kNm z2=0.015 λ2=1.2, h3=-6020.7 kNm  z3=0.05 λ3=0.85, h4=10
-6 

kNm 

z4=0.06 λ4=0.85, while for beam cross sections h1=1476.7 kNm z1=0.005 λ1=1.05, 

h2=738.4 kNm z2=0.015 λ2=1.1, h3=-1230.58 kNm z3=0.05 λ3=0.85, h4=10
-6 

kNm  

z4=0.06 λ4=0.85, concerning the multi-linear behavior (Fig. 6.20a). The nonlinear 

structural behavior is described by a 4
th

 degree polynomial line (Fig. 6.20b) based on 

data presented in Table 6.3. The values of z4 constitute the upper bounds for column 

and beam cross sections respectively. The upper bound vector of all displacements is 

1uu    and the lower bound vector -10lu  . For the penalty parameter ρ an updating 

rule of 10ρ is used until convergence is reached. 
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Table 6.3. Polynomial lines of structural behavior. 

 

 

 

 

Fig. 6.20: a) Multi-linear and b) nonlinear hardening/softening structural behavior. 
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Table 6.4. Analysis results for all cases for example #2. 

 

 

All analysis results are shown in Table 6.4. Case (a) corresponds to a LP problem 

that yields the smallest value of the maximum load factor a in the shortest 

computational time. The number of variables and equality constraints for rigid-

perfectly plastic behavior is smaller compared to that of the NLP problem, but the 

number of inequalities is significantly larger since all yield planes are engaged. For 

cases (b), (c) and (d) the number of variables and constraints is the same regardless of 

the linearity or nonlinearity of the structural behavior and of the a priori or local 

linearization of the yield surface. Comparing cases (b) and (c) that correspond to the 

same multi-linear structural behavior, it is observed that the local linearization 

approach yields greater value of maximum load factor since the nonlinearity of the 

yield surface is retained. The number of plastic hinges and collapse mechanisms are 

identical for both cases. Comparing cases (c) and (d) that correspond to local 

linearization of the nonlinear yield surface, the value of the load factor is greater for 

case (d) since it corresponds to nonlinear structural behavior. 

NMyMz    

rigid-p.plastic

NMyMz     

PWL

NMyMz       

NL-PWL

NMyMz       

NL

(a) (b) (c) (d)

157

72

1664

188.50 204.13 211.98 215.07

22 22 22 22

10.97 189.97 2953.38 2192.69

— 28 359 280

— 4.74E-05 4.50E-12 3.04E-07

— 10⁹ 10⁴ 100

Cases            

number of variables n var

number of equality 

constraints n eq

number of inequality 

constraints n inq

maximum load factor a (kN)

number of plastic hinges             

total computational time (s)

number of iterations

complementarity condition 

w
T
z

initial values of  ρ

281

228

52
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The plastic hinge pattern for rigid-perfectly plastic behavior is depicted in Fig. 6.20 

and the results are verified by a step-by-step analysis using SAP2000 version 14, as 

shown in Fig. 6.21. The corresponding interaction diagram is presented in Fig. 6.22, 

where the role of bending moment along local z axis (strong axis) is dominant. 

Column cross sections are stressed also due to bending moment along local y axis, 

while the effect of axial force is presented mainly in beam cross sections. 

 

 

Fig. 6.21: Plastic hinge formation for case (a). 

 

 

 

Fig. 6.22: Plastic hinge formation with step-by-step analysis for case (a). 
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Fig. 6.23: Interaction diagram for case (a). 

 

 

Fig. 6.24: Plastic hinge formation with a) limit and b) step-by-step analysis for case (b). 
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Fig. 6.25: Interaction diagram for case (b). 

 

Analysis results for case (b) are presented in Figs. 6.24 and 6.25. In Fig. 6.24a, the 

plastic hinge pattern for limit load and deformation analysis is shown, while in Fig. 

6.24b the collapse mechanism is verified by a step-by-step analysis with SAP2000 

v.14. The stress state of all cross sections is depicted in Fig. 6.25, where it is 

concluded that the role of interaction is the same as that in case (a). The effect of 

bending moment along local z axis is prevailing for all cross sections. The role of 

bending moment along local y axis is evident mainly at column cross sections, while 

axial force affects mostly beam cross sections. 

The plastic hinge pattern for case (c) is depicted in Fig. 6.26, where every plastic 

hinge is accompanied with a number that designates the corresponding 

hardening/softening segment. All yielded column cross sections lie on the second 

hardening segment (Fig. 6.28a), whereas most beam cross sections are on their 

softening branch (Fig. 6.28b). The interaction diagram is presented in Fig. 6.27. Beam 
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cross sections are stressed due to the combined effect of the axial force and the 

bending moment along local z axis (the effect of my is negligible), while the 

interaction of all stresses is evident in column cross sections. The same conclusions 

for the effect of combined stresses are reached for case (d), as presented in Fig. 6.30. 

The corresponding collapse mechanism is shown in Fig. 6.29, which is identical to 

that of other cases (number and disposition of plastic hinges). 

 

 

 

Fig. 6.26: Plastic hinge formation for case (c). 

 

 

 

 

Fig. 6.27: Interaction diagram for case (c). 
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Fig. 6.28: Plastic hinge formation for case (c). 

 

 

 

Fig. 6.29: Plastic hinge formation for case (d). 
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Fig. 6.30: Interaction diagram for case (d). 

 

The computational performance of the algorithm for case (b) is depicted in Fig. 

6.31.  The convergence is achieved after 28 iterations and the required computational 

time is 189.97s. Note that the value of the objective function comes to -47145.83, 

while the value of the maximum load factor a is 204.13 kN. The significant difference 

between these two values is due to the great values of the penalty parameter ρ, which 

magnifies the tolerance of the complementarity term.  

 

 

Fig. 6.31: Evolution of the optimization procedure of example #2 for case (b). 
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The evolution of the optimization process for case (c) is presented in Fig. 6.32 

(Fig. 6.32b constitutes an enlargement of 6.32a omitting a few initial iterations). The 

algorithm converges after 359 iterations requiring 2953.38s. The smooth tendency of 

the objective function to attain greater values is distracted by some sharp peaks that 

are due to the penalized complementarity term.  

 

 

 

 

Fig. 6.32: Evolution of the optimization procedure of example #2 for case (c). 
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The observed behavior of the computational procedure for case (d) is presented in 

terms of objective function evolution in Fig. 6.33. The algorithm requires 280 

iterations and 2192.69s until convergence, while its tendency is -comparatively to 

other cases- smoother.  

 

 

Fig. 6.33: Evolution of the optimization procedure of example #2 for case (d). 

 

6.9. Concluding remarks 

In this chapter the structural analysis in the framework of mathematical 

programming is extended to 3D steel frames. An optimization problem is formulated 

that aims at maximizing the load factor that the structure can sustain, subjected to 

constraints enforced by equilibrium, compatibility, yielding and complementarity 

conditions. The disjunctive nature of the latter constitutes the main source of 

numerical instabilities of the problem and thus it is appropriately treated using a 

penalty function formulation. The enforced NLP problem is sensitive to initial values 

and lower and upper bounds of variables. The yield condition is formulated following 

two different ways, i.e. either the a priori linearization or the local linearization 

technique, while the structural behavior is considered either multi-linear or nonlinear. 

From the presented examples, it turns out that the algorithm for the case of nonlinear 

yield condition (local linearization) and multi-linear hardening/softening behavior 
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performs in a more stable way compared to the case of nonlinear yield condition and 

structural behavior. However, the latter case, which addresses more accurately real 

structural response, is computationally more efficient since it requires fewer iterations 

and consequently less computational time until convergence.  
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7.1. Summary and concluding remarks 

The different methods of structural analysis constitute the basis of the engineering 

design of structures. They concern the determination of the effects of loads of all 

different kinds on structural systems and their components, involving mainly the 

fields of applied and computational mechanics, material science and applied 

mathematics. The aim is to evaluate structural response, i.e. deformations, internal 

forces, stresses, support reactions, accelerations and stability for actual or potential 

external loadings specified in the codes of practice. Among the existing methods, 

limit analysis aims at determining directly the ultimate capacity of frame, plate and 

other structures and possesses a central role in elastoplastic structural analysis. This 

objective is achieved at the cost of obtaining partial information, which though is 

sufficient to answer main design considerations. This “parachute launching” goal is 

driven by the power of optimization theory. The formulation of limit analysis in the 

context of mathematical programming enables further its straightforward application 

to large-scale problems. 

In this dissertation, limit load and deformation analysis in combined form is 

addressed in the framework of mathematical programming for 2D and 3D frame 

structures. The formulation of the problem depends on structural behavior and 

additional list of demands such as ductility, specific design objectives etc. Classical 

limit analysis of structures depends on rigid-perfectly plastic behavior and thus with 

no considerations on plastic deformations. In this case, limit analysis is formulated as 

a Linear Programming - LP problem that aims at maximizing the load factor under 

equilibrium and yield constraints or in dual form minimizing the energy subject to 

compatibility and energy normalization constraints. The LP scheme is also capable of 

addressing indirectly isotropic hardening behavior focusing again only on the load 

axis, specifying the ultimate values as upper bounds, and disregarding deformation. If 

softening behavior and/or limited ductility are considered, the need for combined limit 

load and deformation analysis emerges, including constraints that prevent the 

simultaneous allowance of plastic deformation and strength reserves 

(complementarity condition). This case is addressed as a Mathematical Programming 

with Equilibrium Constraints (MPEC) problem, referring actually to the 

complementarity conditions. The aim is to maximize the load factor a subjected to 

constraints imposed by equilibrium, compatibility, yielding, complementarity and 
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lower and upper bounds for plastic deformations and displacements. This kind of 

problem is reformulated as a NonLinear Programming - NLP problem following 

different approaches among which smoothing techniques, penalty function 

formulation etc. The standard formulation is based on the piecewise linearization of 

yield condition and constitutive laws that enables their expression in a linear form. 

However, this approach interrelates the size of the problem with the refinement of 

discretization and may become prohibitive for large-scale problems. Additionally, the 

incorporation of multi-segmental constitutive behavior at critical sections leads to a 

combinatorial growth of the size of the problem engaging for every yield hyperplane 

all possible constitutive branches. This consideration renders the manipulation of 

hardening matrix almost impossible for the optimization process. 

The objective of the present work was to highlight the inner structure and 

drawbacks of the existing formulation and propose new approaches that broaden the 

applicability of limit load and deformation analysis in the context of mathematical 

programming. In this dissertation a restructuring of the MPEC problem is achieved by 

avoiding unnecessary perplexities established for reasons of mathematical formalism 

and retaining strictly the physically-required information. In this respect, physical-

based considerations are adopted for the formulation of yield condition and the 

incorporation of multi-linear or nonlinear constitutive behavior leading to the 

uncoupling of the size of the problem (number of design variables and number of 

constraints) from the type of discretization. This strict formulation, relieved from all 

the unnecessary information, results as computationally more efficient and robust 

compared to the standard one. 

More specifically, in this work the yield condition is formulated following three 

different schemes: i) a convex hull formulation, ii) a cone identification approach and 

iii) a local linearization technique. Expressing the yield polyhedron on the basis of 

convex hull formulation, i.e. in the form of a linear combination of all vertices, leads 

to an expression of the yield condition with a set of equality and not inequality 

constraints. The number of these constraints depends on the dimensionality of 

interaction and results independent of the number of the yield hyperplanes. In this 

case though, the number of variables is increased as compared to the standard 

formulation due to a newly introduced set of nonnegative coefficients. This 

formulation favors computationally the conservative static theorem expressing 

advantageously the multi-component interaction, enabling also finer discretization of 



 
169 Chapter 7                                                                                                  Concluding remarks and future research 

the yield surface. The cone identification approach is based on the fact that every 

critical section, at any optimization iteration, belongs to a specific cone of the 

interaction diagram targeting only one yield hyperplane. Having this information, the 

yield condition is formed only for this specific hyperplane and not for all hyperplanes 

that form the piecewise linear (PWL) yield surface. This reduces the number of yield 

constraints to a minimum, decreasing the complexity of the problem, which becomes 

independent of the number of hyperplanes that approximate the nonlinear yield 

surface. Two simple and efficient processes concerning cone identification for 2D and 

3D interaction are developed. Extending cone identification concept for the local 

linearization technique, the critical hyperplane for each cross section is not a priori 

defined, but it is determined at each optimization iteration for every stress point by 

locally linearizing the yield surface. This process provides accurate formulation of the 

yield condition, while the a priori linearization of the yield surface is avoided.  

Multi-linear or nonlinear structural behavior is also efficiently embedded without 

affecting the size of the problem or the linearity of constraints. Having the critical 

yield hyperplane identified (either via the cone identification or the local linearization 

method), only one plastic multiplier is evaluated for each cross section. For multi-

linear structural behavior, the linear hardening/softening segment that corresponds to 

this plastic multiplier is then identified and as a consequence, hardening matrices are 

formed for each cross section only for the specific segment of the constitutive 

relation. For nonlinear structural behavior, the evaluation of the extended/shrunk yield 

limit is directly based on the value of the plastic multiplier. 

 As a consequence of the aforementioned considerations on yield condition and 

structural behavior, the size of the complementarity condition, which is the main 

source of numerical instabilities, is also reduced to a minimum accelerating the 

convergence of the optimization algorithm.  

Numerical results verify the applicability and the efficiency of the proposed 

approaches in 2D and 3D frames. It is also concluded that multi-component 

interaction affects the load carrying capacity and failure mechanisms of structures and 

therefore the role of combined stresses should be taken into account aiming at a safer 

structural design. 
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7.2. Future research 

Engineering design standards tend to prioritize the displacement based or 

performance based design. Direct methods offer the means towards this direction, 

assessing the bearing capacity or ultimate load of structures and focusing on the 

ultimate deformations developed in structures. As mentioned before, yield condition 

and structural behavior are the main aspects that have been investigated and some 

new approaches have been proposed for their efficient formulation. Remaining strictly 

on the field of engineering, the following issues may constitute the central points of 

future research extending the results of the present work in the following directions:    

 Geometrical nonlinearities can be incorporated, investigating their effect 

on the ultimate load and state of a structure. 

 Nonholomic consideration may be addressed by using a stepwise 

holonomic approach incorporating linearized or nonlinear constitutive 

laws and yield criteria. 

 Development of mathematical smoothening procedures that treat more 

efficiently the complementarity condition. 

 Implementation of the proposed approaches in plane stress and plane 

strain problems, in fracture mechanics problems (crack tracking) and in 

soil mechanics applications (such as slope stability analysis, lateral earth 

pressures on rigid retaining structures etc.). 

The combination of structural limit analysis with mathematical programming 

creates a promising field that treats limit state problems following a rather 

mathematical path with the physical constraints lying on the background. However, 

the presence of complementarity conditions, which are the source of numerical 

instabilities, has led to the development of diverse approaches and solution strategies, 

restricting the applicability of limit analysis with mathematical programming. As 

pointed out by G. Maier in 1984, the need for a theory in the sense of the Greek 

etymology, i.e. a theoretical framework capable of providing a deeper insight, but 

also a versatile methodology for numerical solutions, was and remains urgent for 

exploiting fully the potential of these methods. 
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Appendices 

Appendix A.  Linear programming. 

I. Standard form of LP problem. 

The standard form of a Linear Programming problem that is presented in equations 

(2.1) and (2.2) having m number of constraints and n number of variables. The main 

characteristics of the standard form are: 

 Minimization problem 

 Nonnegative vector b  

 Equality constraints 

 Non-negative variables 

The aforementioned characteristics should be met for any LP problem so that it is 

converted to one of standard form. Thus the following techniques may be followed: 

1. Converting the maximization into minimization problem. 

The maximization problem is transformed to a minimization one by multiplying 

the objective function by minus unity. 

2. Treatment of negative bi (i=1…m). 

If there is a constraint i for which the value of bi, it is multiplied by minus unity. 

3. Converting inequality constraints into equalities. 

i) Converting a “≤” to equality constraint. 

An inequality of this form is transformed into equality by adding a slack 

variable, as shown below: 

 

1 1 2 2

1 1 2 2 0

i i in n i

i i in n ii i

a x a x a x b

a x a x a x s b where s

     

      
 

ii) Converting a “≥” to equality constraint. 

An inequality of this form is transformed into equality by adding a surplus 

variable, as shown below: 

1 1 2 2

1 1 2 2 0

i i in n i

i i in n ii i

a x a x a x b

a x a x a x s b where s

     

      
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4. Converting all variables into nonnegative. 

i) Negative variables 

Every negative variable xj ≤ 0, (j=1…n) should be substituted by another 

variable , 0j j jy x where y     . Then, the variable xj is replaced by –yj in the LP 

problem. 

ii) Free (unconstrained/unrestricted) variables 

An unconstrained variable  xj  may be treated in two different ways: 

 Elimination of  xj using an equation in which it appears, for example: 

 
 

1 1 2 2

1 1 2 2

...

1
...

i i ij j in n i i

j i i i in n i

ij

a x a x a x a x s b

x b a x a x a x s
a

       

      
 

Then the variable xj is substituted in all equations of the LP problem.  

 Replacement of xj with two nonnegative variables, i.e. 

, , 0j j j j jx y w where y w      . 

 

II. Primal-dual relations of LP. 

In this section the definition of the dual program associated with a given LP program 

is discussed (Luenberger and Ye 2008). Duality relation may be presented in 

symmetric or asymmetric form depending on the kind of constraints. For the case that 

the primal program is expressed only in terms of inequality constraints, the duality 

relationship is symmetric and the primal and dual problems are given as: 

 . . . .

T T

T T

min max

s t s t

symmetric form

  

 



0 0

c x b

Ax b A c

x







 (A.1) 

The generation of the symmetric form of the dual problem depends on the change of 

minimization to maximization problem, the interchange of cost and constraint vectors, 

the transposition of coefficient matrix and the reversal of constraint inequalities. 

Based on the above formulation, the dual of any LP program can be enforced. For the 

case of a LP problem in the standard form, the duality relationship is asymmetric and 

the primal and dual problems are given following the next stages: 
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. .
. .

. . . .

T

T

T T T

T T T T T

min
min

s t
s t

primal

max max

s t s t

unrestricted

dual




  
   








 
 

 
 

0
0

0

0

c x
c x

Ax b
Ax b

-Ax b
x

x

u b - v b b

u A - v A c A c

u

v








 (A.2) 

 

The transformation of the standard primal problem to that of equation (A.1) depends 

on the replacement of the equality constraint Ax=b with two inequalities Ax ≤ b and   

–Ax ≥ –b.  Moreover, the dual vector of variables consists of two nonnegative vectors, 

i.e. u and v. Considering that λ=u-v, the vector λ of variables becomes free 

(unrestricted) and the asymmetric form of the dual problem is given by the following 

relation: 

 . . . .

0

T T

T T

min max

s t s t

unrestricted

asymmetric form

  

 



c x b

Ax b A c

x







  (A.3) 

The equality constraints of the primal problem generate the corresponding free dual 

variables and vice versa. If some of the components of x in the primal problem are 

free, then the corresponding inequalities in λ
T
A ≤ c

T
 are turned into equalities. 

 

 

Appendix B.  Nonlinear programming-Interior point method. 

I. Karush-Kuhn-Tucker conditions 

Suppose that the objective function f, the inequality constraints g and the equality 

constraints h of the optimization problem (2.4) are continuously differentiable at point

x . If point x  is a local minimum provided that it satisfies the regularity conditions 
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mentioned in §2.2.2, it satisfies also the following Karush-Kuhn-Tucker (KKT) 

conditions: 

 Stationarity condition 

 
, ,

1 1

, ,

( ) ( ) ( ) 0,

( 1... ) ( 1... )

m l

g i i h j j

i j

g i h j

f x g x h x

where i m and j l are KKT multipliers

 

 

  

 

      

        

 
 (B.1) 

 Primal feasibility 

 
( ) 0, 1...

( ) 0, 1...

i

j

g x for all i m

h x for all j l





    

    
 (B.2) 

 Dual feasibility 

 
, 0, 1...g i for all i m       (B.3) 

 Complementarity slackness 

 , ( ) 0, 1...g i ig x for all i m        (B.4) 

The aforementioned necessary conditions are also sufficient for optimality when the 

objective function f is convex, the inequality constraints g are continuously 

differentiable convex functions and the equality constraints h are affine functions. 

 

II. Interior-point method 

The constrained optimization problem described in (2.4) is solved using a sequence of 

minimization problems. Adopting the logarithmic barrier function formulation, the 

problem becomes:  

 

, ,
( , ) ( ) ( )

. . ( ) 0

( ) 0

i
x s x s

i

min f x s min f x ln s

s t h x

g x s

  

 

  



 (B.5) 

where μ is a positive scalar and si is the slack variable corresponding to the i
th

  

inequality constraint. The ( )iln s  is bounded by the positive values of every si and as μ 

decreases to zero, the minimum value of ( , )f x s approaches to the minimum of f 

(Byrd, Hribar and Nocedal 1999). The algorithm that is incorporated in the herein 

adopted fmincon solver may use two types of step at each iteration, i.e. a direct step or 

a conjugate gradient (CG) step. According to the first one, the KKT conditions are 

solved for problem (B.5) via a linear approximation. 
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Appendix C.  Equations of yield lines. 

In this Appendix, the equations of the eight linear segments that approximate the yield 

surface are presented in detail. The adopted yield criterion is that of Gendy-Saleeb 

accounting for axial force-bending moment (NM) interaction. The coefficients of the 

yield lines form N matrix necessary for yield condition formulation. More 

specifically, for j  element ends the equations are as follows: 
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 (C.1) 
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For k  element ends the corresponding equations of yield lines are given as: 
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The matrix 
iN  and the vector 

ir of the element are given as:  
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Appendix D.  Equations of planes. 

In this Appendix, the equations of the plane triangles that approximate the yield 

surface are presented in detail. The adopted yield criterion is that of Gendy-Saleeb 

accounting for axial-shear force-bending moment (NQM) interaction. The coefficients 

of the yield lines form N matrix necessary for yield condition formulation. More 

specifically, for a plane triangle p and for start node j substituting the normalized 

quantities the following expression is obtained: 
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Similarly for end node k: 
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The number of planes is 32  1...32p   and thus the matrix 
iN  and the vector 

ir of 

the element are given as:  
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Appendix E.  First-order optimality measure. 

First-order optimality is measuring closeness of a point with respect to optimum. For 

a smooth constrained optimization problem with objective function ( )f x  and  g x  

and  h x  the vector functions representing all inequality and equality constraints 

respectively, the Lagrangian function ( , )L x   is of the form: 

 , ,( , ) ( ) ( ) ( )g i i h i iL x f x g x h x          (E.1) 

where  ,g i  is the Lagrange multiplier for the i
th

 inequality constraint ( )g x  and ,h i  is 

the Lagrange multiplier for the i
th

 equality constraint ( )h x . The vector  , which 

contains all  g and h , is the Lagrange multiplier vector of the problem and its length 

is the total number of constraints. The optimality measure associated with the 

stationarity condition (B.1) is given as: 

 

 
, ,( , ) ( ) ( ) ( )x g i i h i iL x f x g x h x            (E.2) 

 

The optimality measure associated with (B.4) is given as: 

 

 ( )g g x   (E.3) 

 

where the infinity norm (maximum) is used for the vector ( )g g x  .The combined 

optimality measure is the maximum of the values calculated in (E.2) and (E.3), in 

which relations (B.2) and (B.3) are not directly considered. 
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