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ABSTRACT

This thesis concerns the determination of the ultimate structural state using mathematical
programming techniques. Its main objective is to highlight the inner structure and drawbacks
of the existing methods and to propose new approaches that improve and enhance their
performance. The ultimate load and state of a structure is determined by solving an
optimization problem that is based on the piecewise linearization of yield condition and
constitutive laws. For rigid-perfectly plastic behavior, limit analysis is formulated as a Linear
Programming (LP) problem expressing both the static and kinematic theorem. Incorporation
of deformation constraints and/or softening behavior leads to the formulation of an
optimization problem that aims at the maximization of the load factor subjected to
equilibrium, compatibility, yield and complementarity constraints. Due to the disjunctive
nature of the latter, the problem becomes nonsmooth, nonconvex and numerical unstable.
Thus, a penalty function formulation is used to reformulate it to a nonlinear programming
(NLP) problem, the size of which is strictly related to the discretization of the yield surface
and the constitutive laws. In this work, the main research objectives revolve around the
expression of yield condition and the incorporation of hardening/softening behavior in a more
efficient way. Therefore, yield condition is expressed following three different schemes: i) a
convex hull formulation, ii) a cone identification approach and iii) a local linearization
technique. According to the convex hull formulation, yield condition is given in the form of a
linear combination of the vectors corresponding to all vertices that define the a priori
linearized yield hypersurface. The cone identification approach is based on the fact that for
every cross section and at each optimization iteration only one yield constraint is potentially
or truly activated and thus only one yield constraint is required. Extending this concept for the
local linearization technique, the critical hyperplane for each cross section is not a priori
defined, but it is determined at each optimization iteration for every stress point by locally
linearizing the yield surface. In addition, multi-linear and nonlinear hardening/softening
structural behavior is embedded efficiently without affecting the size of the problem. The
herein proposed approaches uncouple the size of the problem from the linearization of the
yield surface and constitutive laws, reducing accordingly the size of the complementarity
condition that is the source of numerical difficulties for the solution of the problem.
Numerical results of plane and 3D steel frames prove the computational advantages of the
proposed formulations for multi-component interaction and multi-linear or nonlinear
structural behavior. The main conclusions of this dissertation may constitute the central points
of future research concerning limit analysis not only in the field of structural engineering, but
also in fracture and soil mechanics applications.

Key Words: limit analysis, mathematical programming, complementarity conditions, stress resultant

interaction, holonomic behavior
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I. Evoayoyn

H avéivon tov koTooKevdVv KATEXEL KEVIPIKO pOAO OTO TESIO EMOTAUNG TOL
unyoavikov, kabmg amotelel Eva duvatd epyOAElo Yoo EVOV OCQOAT KOl OTKOVOUIKO
oyxedlacpud. [Minbopa pebddwv &xovv mpotabel, ov mePLoGoOTEPES €K TV OMOIWV
TOPOAKOAOLOOVY OAOKANPN TNV OVEAUGTIKY) GUUTEPLPOPE TNG KATAGKELTG UEXPL TV
Katappevot. 261060, 1 OPLOKT KOTAGTOGN Kol TO POPTIO TOL OVIIGTOLXEL GE QLT Y,
T omoial €lvol TPOTAPYIKOL EVIPEPOVTOC, UTOPOVV VO TPOGOOPIOTOVY omevbeiog
pécm pehodmv oplakng avdivong.

H opaxn avdivon, n onoio Poaciletor omv moapadoyn ™S TeAeimg TAUGTIKNG
CLUUTEPLPOPAS, £€xEl OMOTEAECEL TOV  aKpoy®vioio Ao 1ng €AaGTOMAOGTIKNG
avéivonc. H Bewpio Tov pobnpoatikod mpoypoppotiopod, and v GAAN mhevpd,
Bacileton oTOV AUECO TPOGOOPICUO UI0G PEATIOTNG ADONG IKAVOTOIMVTOS KOO0V
pofnuoatikovg mepoptopots. O cuvOVLOGUOS NG OplKNG avdAvong He  Tov
LOONUOTIKO TPOYPOUUATIGHG 00N YNOE GTOV TPOGOIOPIoUO NG TEMKNG KOTAGTAONG

LG KOTAOKELNG akoAovbmvtog éva padnuotikd opopo. Xtnv katevbouvon oavtmy,
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&xel mpotabel TAN00g nebdOOV PaBNUOTIKOD TPOYPUUUATIGHOD Y10 TNV AVAAVOT TOV
KOTOOKEL®OV, Ol omoileg oyetiCovtal pe TOVG VOUOLG VAKoV (mapovosiocs 1 un
yaAdpwong (softening)), pe ™ ovumeppopd TG KOTOOKELNG (OAOVOMIK 7 Un
OAOVOUIKT), TOV TPOTO TPOGEYYIONG TNG EMPAVELNS Ol0PPONG KOl TNV EMAOYN TNG
OVTIKELEVIKNG GLVAPTNONG.

H optlaxn avdivon yio ypOopKOTOMUEVE KPITHPLL S1appoN§ Kol TEAEIMG TAUGTIKY
ooumepLpopd pmopel va datumtmbel o¢ Eva TPOPANUA YPOLLKOD TPOYPOUUOTIGHOD
exepaloviag T0 oTOTIKO Kol Kiwvnupotikd OBedpnua. H dvBion tov ypoppkov
npoypappotiopov (Kantorovich 1940, Dantzig 1947) édwoe @dbnon ot ypnon
TEYVIKOV HOONUOTIKOD TPOYPAUUOTIGUOD Yo TNV oviAvon Ttov Kotackevmv. Ot
Charnes xov Greenberg (1951) ftav ot 7TPOTOL OV EQAPUOCAV TO YPOUUIKO
TPOYPOUUATICHO Yoo TNV avdAvon pafdov ki €ktote £yl onuelmbel onuovtikn
pdodog oe avtd to medio. O Maier kot 1 gpgvvnTikn tov ouddo (1967,1977,
2002,2003) enéktevay tn Oedpnon avth cvumeplappdvovtag kpdtoven/xahdpmon
Y10, OAOVOUIKT KOl UN-OAOVOLUKT GUUTEPIPOPA. To KeEVTIPIKO onueio TG daTLIOONG
AVTAOV TOV TPOPANUATOV £YKEITAL OTN YPOUUIKOTOINGT TV KpLtnpimv dtappong Kot
TOV VOLL®OV TOL DAKOV, 1 0toia EMTPETEL TN YPOUKT Ek@pacT] Tovc. H evoopdtomon
TEPLOPIGULDV TAPALOPPOOE®V /KoL 1 Oedpnomn yordpwong (softening) amartovv v
TOPOVGID. €VOC TEPLOPICUOD  GUUTANPOUATIKOTNTAG, O OMOoiog OomoKAgisl v
TAVTOYPOVT EVEPYOTOINGCN TNG TAACTIKOTTOINONG He Teptdmpia avtoyns. H ¢von tov
TEPLOPIGHOD avToD gival OSlokputny Kot amotedel v kvpe wnyn  apOunTIKNG
actdBfeog Tov poPfAnquatoc. o avtdv tov Adyo, TANBOpa TEYVIKOV LaONUATIKOV
TpoypappaTiopov Exovv tpotabdei, Omwg iterative Linear Programming, Quadratic xat
Parametric Quadratic Programming, Restricted Basis Linear Programming, Linear kot
Parametric Linear Complementarity mpooeyyiceig, Mathematical Programming with
Equilibrium Constraints (MPEC) (Maier et al. 1977,1979, Tangaramvong and Tin-Loi
2007). Emiong, &yovv mpotabel didpopeg nébodot mov “yepilovran” Katd@AAnAia
oLVONKN GLUTANPOUATIKOTNTOS UETATPETOVTOS TO TPOPANUO GE £Vl U1 YPOLLIKOV
npoypappatiopov (Fukushima and Lin 2004).

H mhewovoémrto tov mpooeyyicewv mov avagépbnkav Paciletor oy &k TtV
TPOTEP®V YPOULKOTOINGT TOV KPUTNpimv dtoppong Kot VOOV DAKOD GLVOEOVTAG TO
péyebog tov mpoPAnpotog pe ™ dwakprronoinon. H cuvOnkm dwappong dtaturdvetot
vroAoyiCovtag Ta Teplfdpla avtoyns Yo kaOe kpiciun dtatoun kot yio OAa o Thovd

VIEPEMIMESD TG  OOKPITOTOMUEVNS  EMOAvELNG  Olappons. Avtd opiler éva
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povodldototo ddvucpa meplimpiov avioyng yo kdbe kpiown owatoun pe péyebog,
mov e€aptdTon amd TOV 0PN TOV VIEPEMIMEI®Y TNG VREPEMIPAVELNS OLOPPONG.
Emiong, o 1010¢ aptBpuog mAAGTIKOV TOAAATANGLOGTAOV OTOITEITOL Y10. TNV EKOPOOT)
oAV TOV OLVOTOV TAUCTIKOV TOPAHOPPOGEDV, ovEavoviag to péyebog g
oLVONKNG CLUTANPOUATIKOTNTOS. AVT N OOKAGIOL YEVVAL TEPLTTI] TANPOPOPin
avéavovtag pe amoyopevuTikd Tpomo To UEYEBOC TOL TMPOPANUATOG, E0KAE Yo
TEPIMTMOGELS TPOPANUATOV HEYOANG KAILOKOS KOUM TUKVAG SlOKPLTOTOINoNG NG
VIEPETMPAVELNG OLOPPONG.

2K0mog ™G mopovong dutpiPng eivar 1) n peimon tov peyéBovg Tov TPOPANUATOC
OTOGLVOEOVTOS TO Omd TN OlOKPLITOToinon TG EMPAVENS Jppong Kot TV
KOTOOTATIKOV  VOH®OV  VAMKoD, 2) m uelwon 71ov  peyéBovg g  ovvOnnkng
CUUTANPOUOTIKOTNTAG, T omoio &ivor m  mnyn apluntikng oaotdbelag ToL
TPOPANUATOG, 3) N OTOTEAEGUATIKY] EVOOUATOOT TOAVYPOUUIKAOV 1) UN-YPOLUUIKOV
KOTOGTOTIKOV VOLL®V DAIKOV, Yopig vo emmpedletal to puéyebog tov mpofAanpatog kot
4) M €QPUPUOYN TOV TPOTEWOUEVAOV TPOCEYYICEWV G EMMESD KOL TPLOGOLACTOTO
mAoiclo Kot 0 EAEYXOG TNG VITOAOYIGTIKNG OMOTEAEGUATIKOTNTAS TOVG GUYKPIVOUEVIG
pe v eketvn mg vrapyovoag pebodoroyiag. Ta mpoPAnpate mov ovarTTOGGOVTOL
OTNV TOPOVGH EPYOCIO OPOPOVYV OAOVOUIKY] GUUTEPLPOPE KOl OVOAOYD HE TN
Bedpnon TOV KATACTOTIKOV VOU®V DAMKOD Kol TNV TPOCEYYIOT TNG EMPAVELNG
dappong, dtakpivovral ot akdAovbeg mepittwoels: i) Tedelwg TAAGTIKY cvuTEPLPOPE
KOl YPOUHKOTOMUEVT empdveln dwppons, ii) ['poppikomompévn coumeprpopd
KPOTUVONG/YOAAPOONG  KOL  YPOUWKOTOMUEVT  €MOAVEWD.  Jwoppong, i)
Ipoppcoromuévn cuumepLpopd KPATLVONG/YOALPMONG KOl U YPOLLUIKY ETLOAVELL
dtappong Kot iv) Mn ypappikn) GUUTEPLPOPE KPATLVONG/YOAGPMONG KOL [T YPOLLLUIKN

EMPAVELD OLOLPPONG.

I1. Oprwoxi] avdrivon eninedmv mhorciov pe I'poppiko Mpoypappatiopo

H opuokr] avdivon vd ) Bedpnon tereiowg TAAGTIKNG GUUTEPLPOPAS LITOPEl va
popemBel ¢ &va TPOPANUO YPOUUIKOD TPOYPUUUATIGHOD OELOTOUDVTIOG TO GTOTIKO
Kol Kwvnuotikd Oeopnua. To emimeda miaicion Bewpovdvionr 4Tl amoteAovvTonl amod
TPWGHOTIKG PEAT, 7OV VTOKEWTOL HOVO o€ emkOuPle @opticelg Yoo Adyoug
amAdtrag. H mhaotiky cvopneprpopd Bewpeitan 6ti eppaviletor oe mpoemAeyéveg

0éoelc, ov omoiec amotehovv T Akpa KAOe péiovc. H 1coppomio apopd otnv
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amopoudpeOT  KOTAOTOON Kol TO  Kpunpla  dapporg  glvar  a  priori
ypoppkomompéva. Yio0eteitar n untpikn Slotdmmon, to unTpma cvpfoiilovion pe
KEQOAQID Kol £VTOVO YPAUUOTO, EVO To S1OVOCUOTO LE HKPA KOt EVTOVA YPOLLLOTOL.
KdéOe miaioco amoteleitor amd Ne pnéAN, €xet Ny Pabpode ehevbepiag, evd d eivar o
apudg tov evioTikav peyebov mov aAiniemdpovv, h eivor o apiBudc Tov
YPOUUOV/EMTEd®Y  dappong kot Ny elvar o oplBudc TV  KOPLEOV  TNG
YPOLLLUKOTONLLEVC ETLPAVELNG O10PPOTIG.

H oproxn avédvon, Bacilopevn 61o otatikd Bedpnua, teptlopufdavel meploptopong
wooppomiag kot dtappons. H cuvOnkn droppong pmopet va ekppactel pe 6vo TpoOmovG:
1) ®g évo, GHVOAO YPOUUIKADY OVIGOTHTOV, Ol OT0IEG EKPPALOVV YEOUETPIKA TNV TOUN
EVOG MEMEPUCUEVOD OPLOUOD NUYOPOV Kot ETTES®V Kol 1) ¢ vo KupTO TOAVESPO
(convex hull) evog otabepod apiBuod kopvemv. To kvptd moivedpo (convex hull)
evog ouvorov onueiov C givar 0 y®dpog mov mepuKAeieTor amd TO TOAVEOPO TOL
neprlopfdver Oda ta onpeio. H pobnuotikn ékepaor tov kuptod moAdedpov (Convex
hull or convex envelope) evog cuvorov onueimv C givat to pkpOTEPO KLPTO GHVOAO,

10 onoio meptapPavetr To C kot ekppaleton o¢ (Boyd and Vandenberghe 2009) :

convC={fx +...+0,x,|%€C, 6=>0i=1l.n 6+..+6,=1 (1)

omov O, eivar pun apvnTIKOi GUVTEAESTEG KO X, ..., X, €ivan To onpeio-Kopueéc.

Kd&Be didvoopa evtatikng Kotdotaons Sq ek@paleTot ¢ 0 YPAUUIKOS GLVOVACHOG
OA®V TOV O10VUGUAT®V, TOV OVTIGTOLYOVV GTIC KOPLPEG TOL TOADEIPOL SPPONG, LE
™V TPodTOOEST TO AOPOIGHO TOV UN apvNTIKOV Tapopétpov 8, i1=1..n va wwodta
pe 1. I'a v epintwon d160146ToTNG OAANAETIOPOONS, O10KPIVOVTOL Ol TEPUTTOCELG
nov eaivovtar oto Xy.1 b,c,d. Av to onueio eviatikng katdotoong Ppioketar oTnv
eMIOTIKN TTEPLOYN, TOTE gvepyomowovvTal OAa ta 6, (Xy. 1b). Ttnv mepintwon nov n
dwaToun €xel doppedoEL, TO AVTIOTOLYO SLAVUCHO EVTOTIKNG KOTAGTAONS eK@pAleTaL
O YPOUUKOG GLVOVAGUOC TOV OLOVUCUATOV TOV KOPLO®V TOL EVEPYOTOMUEVOL
emmédov dlappons (Xy. 1¢). I v edikn wepintmwon, mov éva povo 6 eivor ico pe
TN Hovada Kot OAd To LTOAOITO TOPAUEVOVY UNOEVIKA, TOTE TO GMNUEID EVIOTIKNG

KOTAGTAONG TAVTILETAL LE TNV AVTIGTOLYT] KOPLPT] TOL TOAVEOPOL O1OLPPOT|G.
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a) b) £
0,+0,+0,+0,+0.+0,=1 X,

V]
0,4+0=1

2y. 1: Occdpnon kvptod molvedpov (convex hull) yia sidvooua eviatixns kotaotaong.

YKOTOG TNG OPLOKNG AVAALONG €ival 0 TPOGIOPIGHOG TOV OPLIKOV (OPTIOV HLOG
KATaoKeLNS. Mg Bdon 1N oTOTIKY TPOcEYYIon, N omoia TePIAapPavel TEPLOPIGHOVS

10oppoTiag Kol  Olppons, MHOpP®VETOL TO aKOAovBo mPOPANUO  YPOLUIKOD

TPOYPUUUATIGLOV:
maximize «
subjectto B-s—a-f =f, n, constraints
NT.s<r 2hn, constraints @

s:unrestricted,a>0
Omov o1 petafAntéc oyedlacpov eivor to oveEdptnTo eviatikd peyédn S kot o
ouvtereotng POpTIoNG a. H mpdtn 16dmta aviimpocwnevel v coppomia, énov B
gtvar 1o (Nfx3Ng) UNTPOO 1GOPPOTHOG TNG KATOOKELNG, S €ivar To (3Ne % 1) didvooua
TOV oveEApTNTOV EVTATIKOV HEYEDDV OA@V TV peAdv (Bempovvrol tpio eviotikd,
peyedn aveEhptta oe kdbe péAOG: M aEoviky dvVOUN KOl 1 KOUTTIKY POTH TOL
KOUBOL 0pyNG Kot 1) KOUTTIKY POt KOUBOL TEAOVG), @ ival 0 GUVTEAEGTNG POPTIONG,
f elvar 10 (Nsx7) dvuopo tov emkopPiov eopticewv kot Ty eivor to (Ngx1)
dlvocpa TV otafepov  emOuPliov  eopticewv. Ot  avicotikol meplopiopol
ekepalovv ™ ovvnkn dwppong, 6mov N givar to (3ne x2hng) untpmo GAwv TV

KaOeTmV-0T0l EMimMESD dLPPONG-OlavucHaTOV Kot I givatl to (2hngx1) didvocpa, to
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omoio mepKAeiet ta dpla dSLoPPONS, TOL OVTICTOLYOVV GE OAX Ta emimeda dtoppong. [Ma
NV TEPINTOON AAANAETIOpaoN S aEOVIKNG dVVAUNG-KAUTTIKNG poth g (NM) 1oyvet 0Tt
h=8, ev® ywa Vv mepintwon orAinAenidpoong afovikng-TEuvovcos OvVauNG-
KOUTTIKNG pOmng toyvel 6t h=32,

H datomtmon tov mpofAnpatoc oplakng avaAvong ypnoLorotmvTog T fedpnon
TOVL KVPTOV TOAVESPOVL (convex hull) dideton wg e&ng:

maximize «

subjectto B-s—a-f = f, n, constraints
T-s-C-0=0 2dn,, constraints 3)
I,-0=1 2n,, constraints

s:unrestricted,#>0 ,a>0

omov ot petafAntég oxedaopol etvar T aveEdptnta eviatikd peyédn OAwv TtV
LEADV S, O1 U1 apvNTIKEG TAPAUETPOL @ KOl 0 GLVTEAEGTNG POpTIoNs a. To TpdTO GET
TEPLOPICUDV AVTITPOCHOTEVEL TNV 1GOPPOTIQ, TO SEVTEPO KAl TPITO GET EKPPALovV TN
ocLVONKN dlappong xpNooToIOVTAS T Bedpnon Tov KvupTtod TOALESPoL (CoNvex
hull), 6mov T eivor to (2dne x3ne) punTpmo moL TEPLAUPAVEL TIG TIHEG SLOPPOTG TOV
evratikov peyebov, C eivor 1o (2dngx2nyne) untp®o 7mov mEPAOUPAVEL TIC
CUVTETAYUEVES TOV KOPLO®OV OADV TOV EMTEO®V OOPPONG Yo OAEC TIG KPIoLUES
datopéc TG Kataokevnc, @ givarl to (2nyNe % 1) dtbvoucpo Tov TEPLOUPAVEL TOVG LN
APVNTIKOVG CLVTEAESTEG B OA®V TOV SVUGUATMOV TOV AVTIGTOLYOVV GTIG Ny KOPVOES
yioo Oho To péAN ko leg etvar to (2nelx2nyng) pntpdo, to omoio abpoilet ta
avtiotorya 6 vy kaOe Swtoun. o v mepimtwon aAinienidpoons aovikng
dvvapme-koprtikng pomng (NM) oyvet 6t d=2 kot h=n,=8, evd yia Vv mepintmon
aAANAETIOpacG AEOVIKAG-TEUVOLGOG SUVOUNC-KOUTTIKAG pomng toydel ot d=3,
h=32 and n,=18.

H 0sdpnon kvptod moivédpov (convex hull) exppaler ™) cvuvOnqkn dappong pe
VG TNPOVS 1G0TIKOVS TEPLOPIGLOVG, O aplBUdS TV omoimv givorl ave&aptnTog and tov
aplOpd TOV YPOUUOV/ETITEd®Y, OV YPNOYOTOOVVIOL Yo TNV TPOGEYYISYT TNG
empavelog oappons. O aplfpog tov PeETaPANTOV, OGTOC0, AVEAVETOL GUYKPIVOUEVOS
pe exetvov g vetotdpevng Bedpnong, apov eledyovion ot TtapaueTpol 6. A&ilel va
onuelwdel OTL yevika évag emmpOcHeTog TEPLOPIOUOG amoLTel TOAD TEPIOGOTEPN
VTOAOYIOTN TPOSTADELD GE GYEoT e pia emmpdcsOetn petafAnt. Qotdc0, ovTod gival
UOVO EVOEIKTIKO Y10 TNV VLTOAOYIOTIKY] OTOTEAECUOTIKOTNTO TNG TPOTEWVOUEVNG

Bedpnong kvptod moAvédpov (convex hull), apod o apBpdg Twv petafintdv Tov
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elodyovronl oapépet amd tov apliud peioong twv meploptop®v. o mv mepintmon
TPLEOGoTOTNG OAANAETidpaonG, O oplBUdc TV KOpLve®V Ny &€ivol onUAvTIKA
HKPOTEPOG 0€ O)éomn pe Tov aplipd tov emmédmv h ki ©¢ ek TovTov N Bedpnon
Kuptov molvédpov (convex hull) yivetar vmoloyiotikd mAeovekTikdTEPT YIOU TNV
EKQpoon TG GLVONKNG d1oPpPONG.

Ot dtumwoel; TV TPoPfAnuatov ypouukod mpoypoupotiopod (2) ko (3)
epapudlovioar o k®ddwa Matlab yio v avédivon HETOAMKAOV KOTOOKEL®OV UE
tedelog mhootikny ovpmepipopd. O emAdtg mov emAéyetan givar 1 linprog,
KATAAANAN Yo TpoBANHAT YPOUUKOD TPOYPOUUOTIGHOD. XTOXO0G €ivat 11 GVUYKPIOoT
TOV 000 EKPPAGEDV TOV YPOULUKOTOUEVOL KPlTnpiov dtappong Kot 1 dtepedivnon
™G EMPPONG NG CAANAETIOPOONG TOV EVIATIKOV HEYEODY GTO Oplakd @opTio.
E&etalovton tpeig mepumtoelg : Case (a): kabapn xapyn, Case (b): alinAeniopoon
aEOVIKNG SOVOUNG-KOUTTIKNG POTNG UE 1) HE OVIGOTIKOVS TEPLOPIGUOVG Kol 2)
Bemdpnon kvptov moAvédpov (convex hull) kor Case (C): aAAnAenidpacn a&ovikng-
TEUVOLGOG OVVOUNG-KOUTTIKNG POTNAG UE 1) HE OVICOTIKOVG TEPLOPIGHOVS Kol 2)
Bedpnomn kvptov moAvédpov (convex hull). T v npodt nepintmon n datdrmon
TOV TPOPALOTOC AmAOTTOLEITAL, OPOV Ol TEPLOPIGHOTL dtappong eKPpalovtat pe v
Kol KOT® OploL Y10 TIWES TV POTAOV KApyMS (0ev amanteitor to untpmo N). Oleg ot
avaivoelg deEnydnooav oe vmoroyioth pe Core Duo Quad CPU kot 4GB RAM kat ta
anoteAéopata Tapovcstdlovior akoAoVOwe pe Bdon v KAAGIKN KL Oyl TN UNTPOIKNI

ocvupoocmn TPOSHU®V.

7a 20 im |20 lzo 20 B
6a 20 izn !20 J'zu 20 is
54 20 lzo lzu J'zu 20 lzn 20 EE
4a 20 lzo lzu im 20 lzo 20 ;
3a 20 lzn lzn lzn 20 izu 20 lzn '20_;,_
g 20 lzn lzu lzn 20 lzu 20 lzu '20 iE
B 20 lzu |20 lzo 20 lzn 20 |20 Izu ;

i 4.0m 8 4.0 m e 4.0m 1 4.0m i

2y. 2: Enimedo mAaiolo ue mAeopixn kol koToxopven poptiom.
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To mapaderypo apopd oe éva 6-0po@o TANiclo 4 avorypdtmv, OTMG UivETAL 6TO
Xx.2. ko amoteAeiton amd 73 puéln, 56 woépPovg ko 153 Babuodg ehevbepiag. O
yéwpBag eivor S235 pe pétpo ghaotucotnrog E=2x70° kKN/m2. Ot Swatopéc tov
VTooTVAMUATOY  £x0uv  To  okdAoLOO  yapoaktnploTikd:  A=197.5x10" m?
1=86970x10"® m*, S1y=4641.3 kN, vy=1013.24 kN, s2y=928.02 KNm, s3,=928.02 kNm,
evd o1 Slatopsc tov Sokdv: A=84.46x107 m? 1=23130x10° m*, s,,=1984 kN,
Vy=579.22 kN, s2y=307.15 kNm, s3,=307.15 KNm.

[Mivokag 1. AmoteAéopato OAOV TV AVOADGEDV.

Kabopi NM N"," NQM NQ.M
Ka, orinremidpoon arknpenidpacn orinhemidpaon arnienidpaon
Cases ryn Convex Hull

Convex Hull
(@) (by) (b2) (c1) (c2)

oplOpog LETAPANTOV N oy 220 220 1388 220 2848
appdg 16OTIKAY
X 153 153 591 153 737

TEPOPIGUAV N g

Y 7
aplOpog U.V’IO'OTLKU)V . 1168 . 4672 _
TEPLOPIGULAV N jng
gopriég ovvieheotlis @ | 505 40.92 40.92 36.29 36.29
(kN)
oapld p.,og TAACTIKOV 19 51 51 52 59
apBphoemv
ovvohikog vroroyoTikds - 4y 094 0.01 1559 1.23
xPOVOs (s)
VIOAOYIGTIKOG YPOVOG HOVO 0.39 0.87 0.83 221 0.98

vt Bertiotomoinon (S)

Ta oamotedéopota moapovoidlovior otov Ilivaka 1. Awmotovetor OTL 1
OAANAeTiOpaoT  evtatik®v peyebdvV  avtiotolyel o€ UIKPOTEPOVLS  POPTIKOVG
OLVTEAECTEG GE OYEoM Ue TNV epintmon g kabopng kapync. Ta aroteAéopata g
Bempnong kvuptov ToAvédpov (convex hull-cases (by) and (c2)) sivon ta idia (ot Tpég
TOV HETOPANTOV Kot Ol UNYavVIGHol Katdppevong) He ekeiva tov tepumtdoemv (D7)
kot (C1). Qotdoo, N vELOTAUEV Oe®PNON GLYKPIVOUEVY] UE EKEIVI] TOVL KVLPTOV
nolvédpov (convex hull) omoartei mepiocdtepo vIoloyloTikd ypodvo, dniadn 1.03
@opég yia v mepintmon (b) kar 12.67 popég yio v mepintwon (€). Ocov apopd 610
xpOvo g Oladikaciog Peitiotomoinong, ot avtictoyeg tipég eivar 1.05 won 2.26
@opés. H aAnAeniopoaon tov eviatik®v peyedmv emopd, emions, 0Tovg UNYOVIGHLOUG
Katappevons  (apBpd kot kotavoun mAacTik®v apbpocewv). o v mepintmwon
kaBapng kapyng oynmuotilovratl Aydtepec TAAGTIKES apOp®OGELS, Ol 0moieg eEAVTAOLV
To TEPODPLO. AVTOXNG TOVG AOY® KAUWY™MG, OTmg ¢aivetar oto Xy. 3b. Ot oplakég

KOTAGTAGELS TOV TAaLsiov Yo Tig meputtdoel (b) kan (C) mapovoidlovrar oto Xy. 4a
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kol 5a. O poOAOG NG KOUTPIKNG POTNG €ivor Kuplapyoc o€ OAEG TIG MEPUTTAOGELC.
Qo1000, M emMPpon] TG OEOVIKNG OVVOUNG Elvol TPOPOVNG OTIG OUTOUES TMV
VTOGTUVAMUATOV, Ol Omoieg OPpEOLY LG GLVOVLAGUEVT] OPACN TOV EVIATIKMOV
ueyebov (Zy. 4b xar 6a), evd ot 1d1ec d10TOUEG TAPAUEVOVY GTNV ENAGTIKY TEPLOYN
ywo. Ty mepintwon g kabopne khpyne (Zy. 3b). EmmpocOéitoc, n enidpoon g
TEUVOLGOG OVVOUNG Y10 KATO1EG SLUTOLES OOKMV KOl VITOGTUVAMUAT®V €ival o évtovn

og oyéon pe ekeivn g aovikng dSuvaung, OTmg eaivetol oto Xy. 65b.

a) b)
555579 75617 1
5
P50 o0 54 efl8
6
w0 O[PSt oMa—52weR5 { L %
0 7 2 » 3
[ *
P47 w548 = 56 S ® ¥
- -me
1 8 3 Vt::_ ** * .
P40 o044 OB 455 OB 46 oB1 S -
1] *
2 9 4 7 Il ;‘* *
| I e Dm— S *
% ) o) i) ro) r rr w062 * %
F *
3 3 po 5 8 * *
B85 5o 6= = = 3 % o33
4 1 pe po '1
> L ] o] < 1 1 1 L L 1 1 1
1 16 4 30 34 1 1
n=s/s,,
O : positive plastic hinge % : column cross sections (start nodes) e : beam cross sections (start nodes)
@ : negative plastic hinge « : column cross sections (end nodes) o : beam cross sections (end nodes)

2x. 3: @) Opiokij kotaotaoy ko b) didypouuo alinleriopaons yio kaBapi) kéuyn.

a) b)
70 Eal T2 73 17
5
18
o =
»
O 5050051 5® :.
o I
D—g—'ﬁ?-g.w 8
-
1 &
2
3 a7 El [} h”
| i
O—— 98w O 407 @L2
3
D350 200
4
® 96 By ‘ C l
1 n=s,/s,, 1
O : positive plastic hinge % : column cross sections (start nodes) @ : beam cross sections (start nodes)
@ : negative plastic hinge « : column cross sections (end nodes) e : beam cross sections (end nodes)

2y. 4: @) Opiaxij kataotoon kai b) diaypauuo aliniemiopoons yio. NM oAlniemiopaon.



OploKT| Kot TOPOUOPO®GIOKT OVAAVCT TAUGIOTAOV KOTUGKEV®OV e xprion HeBddv padnpatikod TpoypapioTicond

a) b) 1
9 70 :’:’ kil 2 :ﬁ 73 |7 2
s I 1
4 o * /
* o
" ]
4 L
| T
~ * geiin)
o -,{_ #*
FiES
| i
* -
I
b J \ i
14 N
1 1
V:(“1+‘Si)/LV B I | n=S,I'S\_v
'y
O : positive plastic hinge % : column cross sections (start nodes) e : beam cross sections (start nodes)
@ : negative plastic hinge « : column cross sections (end nodes) ® : beam cross sections (end nodes)

2. 5: @) Opiaxn kotaoroon koi b) didypopyo alinieriopaons yro NQM alinieriopaoy.

a) b)
1 1
."-#'
v’}:" "hg & |
~, a7 *
w #Fi” ~ -
I,L * = e
+
\v? *o* 3
; I ~
g :
> |
ot |
~
-1 -1-
el n=s/s,, : 1 n=s/s,, i

2x. 6: Owerg tov draypauuaros orinieriopoons NQM.

III. Oprexn Kol TEPAPOPPOOIEKN avAAVoTN EMITEOOV TAMGIOV pe podnpatiko
TPOYPUPURATIONO

To wpdPfAnUa TG EAACTOTANGTIKNG aviAvong, Vd oAovopukn Bemdpnon Kot yu
YPOLLUKOTIONUEVEG EMLPAVELES OLPPONG, YPOLUIKOTOUUEVOLS VOLOLG VAIKOD Kot
GOTPOTIKY  KPATLVGT/YOAAP®OT], OlOTUIMVETOL OTI YEVIKN TEPIMTMOON OO TIC

akolovBec oyéoelc:

B-s=a-f+f Equilibrium

q=B"-u Compatibility
g=e+p=S"-s+N -z} Strain additivity (4)
wW=-N"-s+r'>0 Yielding

w'.z=0, z>0 Complementarity
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H wpdtn oyxéon agopd otnv 1coppomio Tov popéa Kt £xel opiotel o1 oyéon (2). H
dentepn oyxéon aeopd o1o SLUPPOCTO TOV TOPAUOPODCEDMV Kol EUTEPIEYEL TO
VUG O TTOPALOPPMGCEMY [ Kot TO Sdvucua emkOUPlomv petakivioemv U. H tpim
oxéon ekepalel ™ ovvolMkn TopPapdpPP®SN ( ®¢ GOPOICHE TOV EANCTIKOV € Kot
TAUGTIKOV TOPUUOPPDOGE®Y P, OOV S €ivol TO UNTPMOO OV TEPIAOUPAVEL dlaryVimg
o UNTp®O aKopyiog Ohwv tov peddv, N elval to untpmo mov mepthapufavel to
K@Oeta -oTIg empaveleg douppong- davicpoTo Kot Z gival To ddvucpo OAOV TV
TACTIKOV ToAAamAoctacT®v. H tétaptn oyéon agopd otn ocuvvOfkn dtoppons, M
omoia exkppaletar péocw tov meplopiov avroyng kabe dwtouns. To w eivor to
dtvocpa mov mepAapPavel ta mepBmpro. avtoyng Kot I’ givor to didvouopa mov
neprlopPavel o peyebopévo/cuppikvopévo Opilo avtoynis, TOV OVIIGTOL 0LV € KAOE
enminedo dwappong Ady® kpatvvong/yoidpwons avtictotyo. H tedevtaio cuvOnkm
exkepalet T cuvOnkn copmAnpopaTikdtTag, 1 omoia emPBdAlel 6Tl dgv dHvaTIL Vo
vrapEel TowTOXPOVN TOPOLGio TAACTIKNG Toapapdpewonsg (z>0) pe mepBodpo
avtoywv (w>0).

2TV oploKn avaAvot To eVOapEPoV e0TLaleTan 6TOV amevbeiog TPOGdIOPIoUO TG
TEMKNG KATAGTOONG. XPNGOTOIDVTOS TEXVIKEG LAONUATIKOV TPOYPULLOTIGULOD Kot
Aoppdvovtag vIoOyy TIG GYECELS OV TEPLYPAPOLY TO OAOVOUIKO TpofAnua (4),

popeaveTon To akdAov0o TpdPAnuUa PerticTonoinong:

maximize a
subject to B-s—a-f=f,
S*'.s—B"-u+N-z=0
w=-N"-s+r'>0 (5)
w'-z=0
0<z<z,
u <u<u,

To mapamdve mpoPAnua Pertictomoinong €xet oG peTaPAntég oxedlacpuod To
EVTOTIKA peYEON S, TIG UETOKIVACELS U, TOVG TAAGTIKOVG TOAAOTANGIOGTEG Z KOl TO
(QOPTIKO CLVTEAESTN A. ZTOYOC €ivol 1 LEYIGTOTOINGT TOV (POPTIOV 1KAVOTOIDVTOG
TEPOPIOUOVS  1ooppomiag,  ouuPifactod  TOV  TAPOUOPOAOCE®V,  SLOPPONG,
CUUTANPOUOTIKOTNTOG Kot KAT® kot Gve opiov mapapopedceov (0,z,) ko
uetaxkwnoeov (U, U, ). H Ttapovcio g cuvOKng CUUTANPOUATIKOTNTOG HLETATPETEL
10 TPOPANUA GE PN-KVPTO KoL aptlOpnTIKd 0oTafés. AVToL TOL £100VG Ta TPOPANLOTA

etvar yvootd og mpofiquoata Mabnuotucod I[poypappatiopod pe Ilepropiopong
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Isoppomiag (Mathematical Programming with Equilibrium Constraints (MPEC)
problem) (Luo et al. 1996). AlGdpopec pébodot Exovv TPOTAOEL TOV UETATPETOVY TO
TpOPANUa avtd o€ TPOPANUA un ypopupkod mTpoypaupatiopov (Fukushima and Lin
2004). Xmv mapovca epyacio vioBeteitar n puébodog “mowvng” (penalty function
approach), copeova pe TV omoiol 1 GLVONKN GUUAANPOUOTIKOTNTOS UETAPEPETAL
OTNV OVTIKEWLEVIKT GLVAPTNON Kol TOAAATANGIALETON pe o Topdpuetpo. Ot THES TG
napapétpov  ovéavovror  “méloviac’ T ouvONKN  CUUTANPOUATIKOTNTOG OF

undevikég Tyéc. H datummon awtod Tov TpofAnpatog stvol g eEng:

maximize a-p-w' -z
subject to B-s—a-f="f,
S*t.s-B"-u+N-z=0 ©)
w=-NT"-s+r'>0
0<z<z,
u <u<u,

H mopoandveo Satdmwon, 6nmg mpooavaeiépnke Paciletor oty ypappukonoinon
TOV KPUTNpPiov SppPonNg Kol GTOVG YPOLUKOTOUIEVOLS VOLOVS VAIKOV Kl O €K
T0UTOL T0 PEYEDOC TV UNTpd®V e€aptdton amd 1 dwkprronoinom. ['a tpofinpota
peydang wAipokag 1/kot yioo TUKVEG OlOUKPITOTMOGELS, N EQOPUOYN] OVTNAG TNG
SlTHT®oNG UIopel va YIVEL AmOyOPEVTIKY. ZKOMOG GLTNG TNG epyaciag sivor m
peimon tov peyéboug kot g morlvmhokdtntag Tov tpofinuatoc. ITo cuykekpipéva,
N TPOGEYYIGT MOV TPOTEIVETAL APOPA GTNV OmAOTOINoN Tov TPOPANUATOS GE Tpia
emimedo: otV eKTiUNoN TOV TEPOWPI®V AVTOYNG, OTNV OMOTEAECUOTIKT EVOOUATOON
KOTOOTOTIK®OV — VOU®V Kot o100  pewwpévo  péyeBog g ouvOnkmg
coumAnpopatikémras. Or mapepPacelg mov mpoteivovial apopovv oI GuVONKN
dwppong kot Pacifoviar otn Aoykr] Tov 0Tt KGBe dlatoun o€ kdbe emavdAnymn g
dwdkaciog BEATIGTOMOINONG GTOYEVEL GE 1 EVEPYOTOLEL Eval LOVO ETIMEOO O1OPPONG.
YVVENMS, LOVOV £VOG TEPLOPIGLOG Elvar v duvdpetl evepydg 1 evepyomoleitan yio KaOe
dlTopn, EVA Ol TEPLOPICUOL TOV AVTIGTOLYOVV GTA VITOAOLTO EMimMEd dLoppong ivat
TEPLTTOL. TNV TOPOoVoa £pYOcic 1) GLVONKN SLPPONG LOPPDVETAL AKOAOVOMVTOG TNV
wpoovopepbeica AOykn ToL €vOg “kpicipuov” emumédov Yoo KGBe Olatoun pe Ovo
TpOTOVG: i) BempdVTOC YpOUUIKOTOINGN NG EMPAVEINS dlappong a priori kat ii)
epapuoloviag T ypOoUUKoToinon Tomkd (1 Un YPOUUIKOTNTO TNG EMLPAVELNGS

dlappong dtatnpeitar).
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i) I'pauuikoroinen tne empavelag otappong a priori

2V TEPIMTOON TOL 1) EMPAVELX SLOPPONG EXEL YPOUUUKOTOMOEL €K TOV TPOTEPMYV,
TPOTEIVETOL pia SLadIKAGTI0 avayvdpiong Tov “kpiciov kovov” (cone identification),
péco otov omoio Ppiokeror kdbe onueio eviaTikng Koatdotoong. Xto Xy 7
anewoviletar n dwdikacio Yoo TV mEpInT®on SeddoTaTnG OAANAETIOpOoNC.
Evovovtog Tic kopueég Tov mOALYDVOL Oppong HE TNV apyn TV advov,
onuovpyeitor €vog aplBnog TOHEOV-KOVOV, TOV KOAOTTOUV OAO TO OLdypOLiLa
aAnienidpaonc. Kdbe odidvvopo €viaong, mov oviiotoyel o€ kdBe datoun,
oyetiCetar pe éva povov kmvo. H dwdikacio avoyvopiong tov “kpicipuov kmvov”
etvar amdn kot Pacileton og o Aoywn tagwounong. Katapyds, ot kopveég tov
TOADY®OVOL  Olappong Kot To  dtdvoopa  évtaong  ekepaloviol G€  TOAIKEG
ovvtetaypéves. Ot avTiwpoAoYlOKES YoVieg G TOL AVTIGTOWYOUV O OAEC TIG KOPVPES

TaEvopovVTOL 68 0EOVGE GEIPA Kol KoToOmLy, evtomiletatl o kKdVOS | péca 6Tov 0moio
Bpioketar n yovie 65 tov dovdcpatog Eviaong and ™ oxéon: 6. <6, <6, ue

O =6 +27. Avty n amh dwdwkacio epappoleton o KGOs emaviAnym g

dwdkaciog PEATIOTONOINONG Y10 TOV TPOGOIOPICUO TOV KPIGIL®OV KOVOV Kol TOV
avTIGTOY®V YPOUU®V dlappor|g OAmV TV datopdv. Eyovtag v minpogopio g
Kpiowng ypopung dwppons yu kébe Stotoun, HOPOOVETOL £vag Kot HOVOV &vag

TEPLOPIGUOG Y10 TN SLOTOUT| QVT.

ncone 111

ncone 1V ncone 11

ncone V ncone 1

7

7

ncone VII 7

e el

‘ 0<0<0.,—> ncone=i

2x. T Evromiouog kpioiiov kavoo yio d1odiaotaty aAlnlemiopaoy.
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Mo v mepimtwon g TPIOOACTATNG OAANAETIOpOONGC, M EMPAVELD OlappPOoNg
npoceyyileton pe eminedo tpiymva, ot Kopueés tov onoimv (Vi,V,,V;) pall pe v

apyn tov agovav (V,) oymuatiCovv évav kdvo-tetpdedpo (Zy. 8).

ZA VI

2x. 8: Eviomiouog kpioyov kavoo yio. ipiadlaotaty] 0lANIETIOpooy.

Kd&Be onpeio evtatikig Kotdotaong ovikel o€ €vav HOVO KAOVO-TETPAESPO Kot
oToXevEL N evepyomolel 10 avtictolyo eminedo Swppong. [No xébe onueio P pe
GUVTETAYUEVEG (Xp,Yp,Zp) KOL VL0 TIS KOPLOEG TOV TETPAeEdpov Vi(X1,Y1,21), Va(X2,Y2,22),
V3(X3,Y3,23) kou V4 (0,0,0), 1oydet 6t T0 onueio P Ppioketal £vTOg TOV TETPAESPOV, OV

ot akOAovBeg opilovoeg £yovv to 1010 TPHOMLO:

X Y1 4 Xp Yp Zp 1 Y1 4
D0:X2 Y2 22 4 p e Yo % 1’D2:Xp Yo %o
X3 Y3 73 X3 Y3 23 1 X3 Y3 Z3
0 0 O 0O 0 0 1 0O 0 0 1
(7
X Y1 4 X Y1 4
D. — X2 Y2 7 D - X2 Y2
3 Xp yp Zp ’ ! X3 Y3 23
0 0 0 Xo Yp Zp

H o0ykpion tov npoonumv tov Dj kor Dy cvvietd évav €heyyo tov av to onueio P
Kot 1 kopvoen| V; Bpiokovtar oty idto peptd Tov emmédov i (dnAadr Tov EmmEdov Tov
oynuoartietor omd To dAlo Tpia onueio extog tov Vi). Av to onueio P Bpioketot evidc
TOV TEGGAPOV eMEd®V, TOTE TO onueio Ppioketor evtdg Tov TETPAEdpPOV. AV TO
npoonuo omotaconmote opilovcas Di dwapépel amd ekeivo g Do, t6TE TO onueio P

gtvo eKTOG TOV 0piov I, eV av Kamola opifovoa 16ovTaL e TO UNdEV, TOTE TO ONUELD
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P Bpioketon mavem oto eninedo i. H mpoavapepbeica diadikacio amotelel n fdon yio
TOV EVTOTIGLO TOV KPIGIHOV EMTESOV SLOPPOTG Yo KAOE dlaToun o€ KAOe emavainyn
¢ dwdikaciog Peltictonoinong. ' v amopvyn yoaipotog OAmv Tov mhovov
KOVOV, okolovbeital o teyvikn eEdietyng (pruning technique) tov entd and Tovg
OYT® LTOYDPOVS oL oynuatilovior amd Tovg AEoves, Ue PAON TIC CLUVTETAYUEVEG
kéBe onueiov P. Katomv, vroroyiloviar ot opilovoes tov TeTPAEdp®V HOVO TOV
CLYKEKPIUEVOL VTTOYDPOV, EVIOTILETOL TO KPIOHO TETPAESPO KOl KT EMEKTAGLY TO

Kkpioyo eninedo dapponc.
ii) I'pappuixoroinen tng empavelag olappons TomikKd

Enekteivovtag ) AoyiKY| TOV EVTOMIGHOD TOL KPIGHOV KMVOL, pmopel va dtatnpn et
N U YPOUUIKOTNTO TNG EMUPAVELNG OLOPPONG KOl VO EPOPUOCTEL 1 YPOUUIKOTOINOT
™G TOTIKd Yo KGOe onueio eviatikng katdotaons. Ta exineda dtappong, onradn, dev
elvar mpoodopopéva ek mpooiov, aArd opifoviar yw kdBe onuelo oe KAbe
emovaAnymn g dwdikaciog feAticTonoinong.

Normalized bending moment

—>

a

tangent yield line

nonlinear
yield surface

Normalized axial force

2x. 9: Tomkn ypoppukomoinen e enipovelog OLopPoTS.

H dwdkacio mov akoiovbeiton amekoviletor oto Zy. 9 kot etvon 1 €€ng: koTapydg,
npoocdopiletar o onueio TOpNG TOL OOVOCUATOG EVIOTIKNG KATACTOONG WE TNV
EMPAVELN SLOPPONG Kol KATOTLY, OPILETOL TO EPAMTOUEVO-CE ALTO TO OMUEI0-ETIMEDO,
KkaBmg kot to KafeTo ddvuopa Tov emmédov. To ddvuopa évtaong TpoPaiietal 6T
devBvvon Tov kdBetov StovicpaTog KOt M TPOPOAY avT cvyKpiveTol pe TNV
OTOCTOCT TOV EPAMTOUEVIKOD €MMEOOL Oomd TV apyn Tov aovav. Kat’ avtov tov
TpOTO, Yo KGOe OTOUT] LOPPDVETOL £VOG TEPLOPIGUOG OPPONG KOl Ol SUCTAGELS
oL UNTP®OL N Kot TV dtovucudTov W kot I'' etvar axkpipmg ot idteg e ekelveg, mov
TPOKVTTOVV atO TN BEDPNON EVIOMIGHOV TOV KPIGHOV KOVOV. ZNUEIOVETAL OTL GTO

2x. 9 mapovoidleton n gpapuoyn g HeBOGO0L Yoo S100100TUTO KPITNHPLO dappPoNg,
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oAG M mpotewvopevn pEBodoC eivor yeviK] kol umopel va €QoppOcTEL Yo
aAAnAemtidpaon d evtatik®v peyedmv.

XMV TapovcH  EPYACIO. EVOOUOTAOVETOL, EMIONG, 1COTPOTMIKY] GLUTEPUPOPA
kpdrovonc/yorapmong (hardening/softening) axolovbmvtag: i) moAvypoppkods Kot
i) un ypoppkotvg vopovg vakov. H 160tponn cvumepipopd cuvictator 6To OTL N
EMPAVELDL OPPONG OLOYKDOVETA/CLPPIKVAOVETOL, PG vo aAldlel TO oynuo g.
[Maporo mov avti 1 Bedpnon yuo ™ yordpwon (softening) Oewpeiton amlomomriky,
Y. OLOVOWIKT] GUUTEPLPOPE Kot LG TNV EMIOPACT HOVOTOVIKMG OLEAVOLEVOL
eoptiov givan apketd axpiprg (Tangaramvong&Tin-Loi 2008, Tin-Loi&Pang 1993).

i) IToAvypapuuixij counepipopd Kparvvens/yaidpwans (hardening/softening)

2e k@0 Sroropn) u avriotoryel vag MAAGTIKOG TOAAUTANGLOGTNG Zy, 1) 11 HNOEVIKT|
TIW] TOV OMOIOV ONUOTOSOTEL OTL 1) CULYKEKPIUEVN dloToun €xel TAOCTIKOTOIMOEl
(z, #0). Me Baon ooty mv T 100 TAACTIKOD TOAAATAUGLOTY, vionileton To
avtioToro TUMHA Ns KpdTuvong/xaidpmaong yio kabe datopun], To omoio mpocotopilet
10 ovTioTolyo enimedo évtaong (Zy. 10). Kat’avtdv tov 1pomo, 10 UnTpdo KpATLUVGNG
oynpoatifovion yioo kdBe StoTopUn KOl 6T GLVEXELD Yol OAN TNV KOTOOKELY]. XKOTOG
elval 0 VTOAOYIGUOG TOV TANGTIKOD HEPOVS TV CLVOVAGHEVAOV OPAGEMVY Y10l OAES TIC
STOUEG YPNOUOTOIDOVTOG M0 YPOUKY oxéon TG popong H-z+cC. e avty
oyéon, to H givat 10 dtayd®vio untpdo kpdtoveng pe dtaotdoels (2ne x2ng), z ivor
70 (2ng x1) didvuopo OA®V TOV TAOCTIKOV TOAOTANCIAGT®OV Kot C 10 (2Ngx 1)
dlvocpa, 10  omoio  exepalel  GLGCMPEVLTIKA TNV Tpomyndeica  TAAGTIKN

ovunepipopd. T kdbe Swroun u (#=12..2n,) mov axorovbei moOAVLYpPOLLIKN
CLUTEPLPOPE KpdTLVENC/YaAdP®ONG HE GLVOAKS aplBUd TUNUAT®V £, 01 GYECELS TTOV
TPOoGO10pilovV TIg Un UNOEVIKES TYES TOV UINTPO®V KPATUVONG Eivor 01 akOAOLOEG:

H (e, ) =7-hy, u=1.2ny, ng=1..0 (8)

0, for ng =1, n=1..2n,

c(u,l) = Ny . 9
(wd) T'Z(hi-l—hi )4, forng>2,i=23,..,n,, u=1.2n, ®)
i=2

omov /4; eivan o cvvtekeotng peyébuvong/cuppikveong tov opiov dwappong (4y=1)

Kot Z; glvor m T TOL OVTiOTOLOV TANGTIKOD TOALOTAQGLOGTY) GTO TEAOG TOV
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tunpatog i (Zy=0) xou by =(4 —ﬂi_l)szy/(zi —2;_;)etvar M KAion TOV TUNRATOV
KPATLVONG/YOALP®ONG £X0VGA OUCTAGEIS POTNG. ZNUEUDVETOL OTL Y10l TIC OLUTOUEG, Ol
omoieg PBpiokoviol oTNV €ANGTIKY] TEPLOYN, O TAOCTIKOG TOAAATANGLOCTAS KOl Ol
ouvteAeoTéG Kkpatuvong stvor pndevikol. EmumpocBétme, ywo to mpdTo TUAUQ
Kpdatovong 1oyvet ot C(w,1)=0, a@old 0Oev vmApyel TPOYEVESTEPY TANCTIKY|
ovumePleopd. Avtd onuaivel 0Tt To unTp®o Kpdtvvong H exepdaler 10 pETPO
KPATLVONG/YOAAPOONG, TOV OVTIGTOLXEL GTO EVIOMIGUEVO TUNUW, EVD TO UNTPOO C
AVTIGTOLYEL GTN CLVOAIKT TTPONYNOEicH TAAGTIKT CUUTEPLPOPE. ZVVETMDS, 1| GLVONKN
SLPPONG Yo TNV KATAGKELT] GUVOAIKA ekQPaleTon g eENg:

w=-NT.s+r'>0 and r'=r+H-z+c (10)
omov I’ givor To (2ng x1) dvocpa mov TEPLAUPAVEL TO. LEYEOVULEVA/CVPPIKVOLEVO,

opla dappong kar I elvar to (2ng x1) didvouopa mov meptlapfaver to apykd opia

dtappong.
%) b) s m
m Identified outer plane
Cone
Identified
Cone
v
y / =D ~softening plane
////ﬁeld plane
C) A
T
N's
H(up)z,
2,TS,,
TS,
y
g~ -~ H(/l,ﬂ)'lﬂ'*'(:(’l,l)
~
~
A/TS,, i 7 7
TS5, :
" r
& elastic region
|
Z Z, (/-Zﬂ\) Z,, z,

2x. 10: Iootpomixi kpdroven/yaldpwon yio. a)oiodidoraty kai b)tpiodidoroy alinlenidpaony

KO C)TOAVYPOUIIKY] GOUTEPIPOPE EVOG GHUELOD EVIATIKNG KOTAOTOONG.
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ii) Mny ypauuixny counepipopd kparvvens/yaidpwans (hardening/softening)

H un ypoppukn copmepipopd pmopet vo mpocdtoplotel PAcel KATOI®V TEPAUATIKDV
dedopévmv, Ta onoia tpoceyyilovion pe po kapmoin. ‘Eyovtag, Aomdv, melpopatikd
dedopéva, mov agopolv oty afovikny OOvoun oe cuvviptnon pe v agovikn
TAOGTIKY] TOPAUOPPM®OT KOl GTNV KOUTTIKN PO GE GUVAPTNON UE TNV TANCTIKN
oTpoPn, mpoodopifoviar ot avtioToyes WUN-yYpoppikes koumdAies. Koatomwv, ot
KOUTOAEG OLTEG ovuvdvalovtal pe pio avoAoyio Tov vroyopedeTol omd TOLG
OLVTEAEGTEG TOV KAOETOV-GTO EMIMESO O10PPONG-OLOVOGLOTOG KOl €V TEAEL TPOKLITEL
plo KopmdAn, 7TOL aQOPA OTH GLVOLAGUEVI] OPAOCT) TMOV EVINTIKOV UEYEDDV
CLVOPTNCEL NG TAACTIKNG OTpoPrc. 'Evag mAaoTIKOG TOAAOTAAGIAOTAGC  Z,
avtiotoyyileton oe o dwtoun x4 o kbBe  emoviAnym G SladIKoGiog
BeAtiotomoinong, M UN-UNOEVIKN T TOV OMOioL onupatodotel Ott M Sotoun
Bploketor omv mlootik) mepoyn. 'Exovtag v avolvtiky €k@pacm G un-
YPOUUKNG GLUTEPIPOPAS KPATLVONG/YoAdpwong kot yvopiloviag v Ty Tov
TAOCTIKOD TOAAATAQGLOGTY], UTOPEL VO VTTOAOYIGTEL amevbeiog amd TV TETAYUEVN TOV
onueiov g koumbAng to peyebovpévo/cvppikvonévo Opo  doppong Iy mov
avtiotoryel ot dwatopn (Xy. 11). H cvvOnkn dtappomng yio v KOTOGKELT) GUVOAIKA
5idetan Ommc kar ot oyéon (10), pe 1o I’ vo vroroyileton kotevdeiov amd TNV
KOUTOAN GUUTEPLUPOPAC.

T
N 5 (combined stresses)

' X :experimental
u n data

r, :yield limit

r, +extended/shrunk|
yield limit

L 1 L 1 I 1 1 L L

Z,u pl

(plastic rotation)

2x. 11:My ypopyurn coumepipopa KpaTovens/yolopwaong.

To wpéfinua mov Jidetow amd 1™ oxéon (6), KOOOG KOl Ol TPOTEWVOUEVEG

Bempnoelc yio ™ ovvOnKn SpPOoNG Kol Yoo TOVG VOUOVLS KPATLVONC/XOALP®ONG
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(softening), epapudloviar oe kmdwka Matlab. Emdéyetar o emivtng fmincon
(KOTGAANAOG Y10 N YPOLUIKA TPOPANUOTO EAAYLIGTOTOINGNG TOAADY HETAPANTAOV LE
TEPLOPIGHOVC) Kot 1 interior-point uéBodog yia ) dadikacio e Pertiotonoinong. Ot
TeEPIMTOGELS ToV e&gTalovtan gival ot akdlovbeg:
e Case (a): NM aAAnAenidpaon pe :
1. I'poppukomompévol KataoTatikol vorot kot cuvOnkn dtoppong.
2. I'poppikomompévol KotaoToTikol VOROL Kol Un YPOUMKY cuvOnkn
Slappong.
3. Mn ypappikoi katactotikol vOpot kot cuvOnkn o1appo|s.
e Case (b): NQM oAAniemiopoon pe:
1. T'poppikomotnpévol KoTaoTaTikol VOOt Kot cuvOnKn dtoppong.
2. Ipoppikomompévol KoTaotatikol vOLOL Kot Un YPOUUIK) GuvOnKn
dlppong.

3. Mn ypappikoi katactotikol vOpol kot cuvOnkn o1appo|s.
INa 11g mapandveo mepimtdcelg avaidetor 10 mTAaiclo Tov oyfuatog 12, to omoio
amoteieitoan amd 30 péAn, 21 koéupovg ko 54 Pabuote erevbepiag. H katnyopia
xoAoBa etvon S235 pe pétpo ehaoctikdtnrog E = 2x108 kN /m?. T'a, T1G O10TOUES TV
vrooToAoudtoy wwydel A=112.5x10" m? 1=18260x10° m*, s;,=2643.75kN,
Vy=505.41KN, Szy=S3,=325kNm, gvd ywa Tig dtotopés tv dokav A=28.48x1 04 m?,
1=1943x10° m* $1y,=669.28kN, v,=189.89kN, Sy=s3,=51.84kNm. H avrtictoyn
TOAVYPOUUKT] COUTEPIPOPE PaiveTon oto Zy. 13a kot eEaptdTon amd TIg TOPAUETPOVS
Kkabe OSatoung. Mo ovykekpuéva, yoo o vrootwAdpoto oyvel h;=6500kNm
2;=0.005 4;=1.1, h,=3250kNm z,=0.015 1,=1.20, h3=-5200kNm z3=0.04 13=0.8,
h,=10°kNm 2,=0.05 /4,=0.8, evid v T1¢ dokovg h1=518.4kNm z;=0.005 A4;=1.05,
h,=259.2kNm  2,=0.015 1,=1.10, hs=-777.6kNm z5=0.035 135=0.80, h,=10°kNm
2,=0.04 14,=0.80. H pun ypoppiKny GOUTEPIPOPA TOV VITOGTLAMUATOV KOl TOV SOKMV
ancikoviletar 670 Xy, 13b ypnoipomoidvog pa ToAvovopiky covaptnon 4°° Baduod
(ITivaxag 2). Ot tipég 1tV Zs amotelobv Ta Gved Oplal Yot TIG OOTOUES TMV

VIOGTVAMUATOV Kot TV doK®V. To dve 0plo Yo Oheg TIG petatonioelg eivan U, =1
Kol T0 Kate opo U, =-1. H mopduerpog mowng p avédvetor oe kdbe koxdo g
dwdkaciog Pertiotomoinong pe Pdon ™ oxéon p=10p, éwg 6tov M embBount

cUyKAon emtevyet (W'z < 107 °).
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6a

[ = & Py & & AC
» 7 4 b 4 @ o @7t
E
= T
- 3
Sa » Py oo —e ol
7 hd = A A = 3]
g
3 E 4
da
> 5—& i3 1@ 5 17
E
=
e
3a
> @ 3 ot @ T ®—i8
E
<
e
2a o
» H-————0—
E
e 1 U
a
P—@ iE 13 @ ] ®—20
£
2 2 8
[ ] [ ] [ ]
E 1 14 21
a) 6.0 m 6.0 m b)

2y. 12: @) Enimedo uetalliko mhaioto kai b) pgyaviouos kotappevongs yia 0 ¢ mepimtaoeig.

[Mivakog 2: EELo®OEI TOAVOVOLUK®OV YPOUUDY TNG UN-YPOUUIKNG CUUTEPLPOPAS.

x || 0.00 | 0.001 | 0.002 | 0.005 | 0.007 | 0.01 | 0.015 | 0.020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.050
f(x) || 1.00 | 1.02 | 1.04 | 1.10 | 1.14 | 1.18 | 120 | 1.18 | 1.15 | 1.12 | 1.10 | 1.05 | 1.02 | 1.00 | 0.90 | 0.80
f@=p-x*+p,- X +py- X'+ py-x+ps
py=-2495-10°, p, =3.077-10*, p, = —1624, p, =31.66, p, =0.0001

Polynomial line for column cross sections

x | 0.00 [0.0005| 0.001 | 0.005 | 0.008 [ 0.015 | 0.017 | 0.019 | 0.020 [ 0.021 | 0.023 | 0.025 | 0.028 | 0.030 | 0.035 | 0.050
fx) | 100 | 101 | 103 | 105 | 108 ] 110 | 109 | 107 | 105 | 102 | 100 095 | 090 | 0.87 | 083 | 050
@ =py-x*+p,- X +p-x+p,-x+ps
p,=238-10°, p, =—4310, p, =827, p, =18.24, p, =0.9998

Polynomial line for beam cross sections

a) NTS/F (normalized combined stresses) b) N's/r (normalized combined stresses)

1.2

0.8
0.6
04 I " ==Columns L B \ =#=Columns
0.2 2 oo b e e
0 ! i ] { i i o i i i I T R R
[} 0005 001 0015 002 0025 003 00356 004 0045 0056
0 0005 001 0015 002 0025 003 0035 004 0045 005
plastic rotation plastic rotation

2y. 13: @) Holvypoyyuiks kaa b) un ypouuikiy copmeptpopa. kpaTovons/yalépwong.
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Ta omoteléopota TV avaivcemv mapovotdlovtal otov Ilivaka 3. Ov @optikol
OUVTEAEOTEG €lvol  PEYOADTEPOL KOU YO TIG OLO TMEPUTTMOGES UM  YPOUUIKNAG
OAANAETIOPOONG, CLYKPIWVOUEVOL HE TN Ypouptkomomuévn Bewpnon. EmmAiéov, n
enidpaocn ¢ Téuvovoag Ovvaung eivar epeavig ot peimon Tov  optiov
katappevone. H popowon tov mhactikdv apbpdcewv (aptBioc Kot KoTovoun tovg
oTNV KATaoKeLT]) givar 1 idta yio Oheg T1¢ mepumtdoelg (Zy. 12 b), aAld dropopeTikéig
EVTOTIKEG KATOOTAGELG OVTIOTOLY0VV € KdOe mepintwon. Ta avtictorya doypappota
aAAnienidpaong eaivoviot ota Xy. 14 kot 15. Ot dratopég evieivovratl kupimg Adyw®
KOUYNG, e kamoteg dratopég va Bpickovtar otov kKAado yordpwong (softening). H
enidpaocn ¢ afovikng OLVOUNG Tapatnpeital oTIS d0KOVG AGY® NG TAEVPIKNG
@optiong (Zy. 14 kot N-m dwypdppota tov Zy. 15), evd n enidpacn g TEUVOLGOG
dvvaung eivar gueoving Kot o €viovn amd ekeiv) g agovikng dvvaung oTic

SLTOHEG SOKMV Kol VITOGTLAMUAT®V (V-M dtaypdppata tov Xy. 15).

[Mivakog 3: AmoteAéopoto avaADGEDY Y10 OAEG TIC TEPITTOGCELS.

Case Case Case Case Case Case
Cases
(a1) (a2) (as) (by) (b2) (bs)
number of variables n 5, 205
number of equali
orequ o 144
constraints n
number of inequality 60
constraints N g
maximum load factora (kN)| 8.24 8.28 8.35 7.90 8.25 8.31
number of plastic hinges 27 27 27 27 27 27

total computational time (s) 18.82 483.61 542.47 825.10 536.51 715.52

number of iterations 59 80 84 102 83 95

complementarity condition
T, 7.35E-12 | 1.84E-10 | 4.56E-11 | 1.82E-10 | 9.40E-13 | 1.50E-12
w

initial values of p 10 10 10 10° 100 10




YOLI Oplox Kot TopALOPOOGIOKT vEADGT TAUIGIOTMV KATOGKEVGOV HE YPpon LeBOSmY LodNUOTIKOD TPOYPUUUATIGLOD

a) b)
1l failure limit 1l failure limit
_yield limit vield limit
& &
) softening K softening
izlq" limit "of.' limit
g £
& &
= =
Il Il
g B
-1+ -1}
B _ 1 -1 _ 1
n=s,/s,, n=s,/s,,

% : column cross sections (start nodes) e : beam cross sections (start nodes)
% : column cross sections (end nodes) e : beam cross sections (end nodes)

2x. 14: Maypouuoro NM oddniermiopaong yra @) case (ay) ko b) case (as).

a) b)
1+ 1
Il 7/ NN Il /! :
3 ) : \ g // : : \
lvl? \‘ \.  & '//H,I I‘I; : /
8 & 5./ 8 N
-1 -1
Al n=s/s,, 1 =1 n=s/s,, L
1 ' S [ N % = N
S .
: — Yy N
Il \ 1
g \ 5 g
f " c/ # 7 r I
3 V/ B 4 ¥ i 8 \ A b 7
Lt 7
-1 5 1 : %
-1 . l 1 -1 . 1
v=(s,+s,)/Lv, v=(s,*+s,)/Lv,

*,% : column cross sections (start nodes) e, : beam cross sections (start nodes)
# : column cross sections (end nodes) e : beam cross sections (end nodes)

2x.15: Maypipuoro NQM alinieriopaonc yra @) case (by) xkau b) case (bs).



[Tepiinyn

10.00
5.00 f/’[
0.00 4 ; ; ; ; ; ; ; .
ﬁf 1 20 30 40 50 60 70 80 90
£ 500
g I { Optimization iterations
E 10.00 { /
g 15.00
£ |
-
= -20.00
° |
-25.00
l —+—Case(al)
-30.00 ——Case(al)
—+—(Case(al3)
35.00
2y. 16: EEéMén e diadikaoiog Peltiotomoinons yio NM oiinemiopaon.
25007 ——Case (b1)
—+— Case (b2)
20.00 —e— Case (b3)
S 1500
3]
c
T l
L 1000
[<5]
2
g
'S 5.00
) ([ r
0.00 : : ; ; : :
f 120 40 60 80 100 120
Optimization iterations
-5.00

2x. 17 EEéhén ¢ diadikaoiag Peitiotomoinons yio NQM ailniemiopaon.

H vrnohoyiotikn emidoon tov aiyopiBuov yio NM kow NQM oAinAemidpaon
napovctaletor ota Xy. 16 kot 17 avtiototya, Topaleinovtag TG apy LKES ETAVOAYELS.
[Mapamnpeitor 01t yio NM aAdnAeniopacn o aAyOoplOHog Yoo OAEC TIG TEPUTTAOGELS
eaivetal vo oakoAovfel mepimov 1o 1010 poebnuoatikd povomdrti. QoT6G0, OL Un
YPOUUIKEG TepmTtdoel; (a2) kot (83) omoutovv TEPIGCOTEPEG EMAVOANYELS KOl
K0T’ EMEKTAGIY TEPICCOTEPO VITOAOYIGTIKO YPOVO GUYKPIVOUEVEG LLE TNV TEPITTOGCT TNG

ypapukoroinong (a1). o v wepintmon g NQM adinienidpaong, n dadikacio
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Beltiotonoinong yia ti¢ mepurtmostg (b2) xat (bs) amattel Aydtepeg emavarnyelg (83
kot 95 emovadnyelg évavtt 102) ocvykpvopeveg pe v mepintmon (b1) kot Atydtepo
voAoyloTikd ypdévo (536.51s ko 715.52s évavti 825.10s). Avtd opeiletor o10
yeyovog 6t 1 Sdikacio €0peoNC TOL KPIGHOL KAOVOL Yo TNV TEPIMTOON NG
TPLGOAOTATNG OAANAETIOPOONG AMALTEL TEPIOCCOTEPO XPOVO GE GYEGN TN OldIKAGIOL
TOMIKNG YPOUUIKOTOINONG TG empdvelng owppone. Ot évtoveg Kopveég mov
napovotalovior ywoo v zepintoon (b1) ogeihovior otov O6po g ocuvOnqKnNg
CUUTANPOUATIKOTNTOG, O OTO10¢ TOAAATAAGIALETOL [UE TNV TOAPAUETPO TOWNG GTNV
avTIKEEVIKT] ovvaptnon. To ddvuopa tov ayvootov S kot Z kabopilovv éva
ywvopevow'z, 1o omoio amokAivel edyiota amd 0 uNdév, aAAd oty 1 omdKhion
peyefbvetar omd v TOPAUETPO TOWNG p, EMNPEALOVTOG CNUAVIIKG TNV TIUN TNG

OVTIKELLEVIKTG GLVAPTNONG.

IV. Opwki Kol Topopope®ooK] 0vaivoen TPLooldoTUTOV TAIGIOV NE
RoONRATIKO TPOYPUPPATICNO

H opuoxkn kot mopopop@®ctloky] ovOALoTn G KOTAOKELNG MG &va mpoPAnpa

BeAtiotomoinong didetot amd TIC TAPAKATWO CYECELG::

maximize a-p-w' -z (i)
subject to B-s—a-f="f, (i)
3 T

S -S+N-Tz—Bl-u:0 (|-||) (1)
w=-N"-s+r'>0 (iv)
0<z<z, (v)
u <u<u, (vi)

Omov TO. SLVOCUATO. KOl TO UNTPAOO Yo TNV OVAALGY TPIGOCTOTOV TANIGI®V
JPOPOTOLOVVTOL O TTPOG TIG OGTACELS GE GYECT LE EKEVA, TOV YPNGUYLOTOLOVVTOL
v to emimedo mAaiota. H oavrikelpuevikny ovvaptnomn mov mEPLYPAPETOL amd TNV
eiocoon (11.1) meplouPdaver 10 EOPTIKO OGLVIEAEGT @ Kou T oLVONKN
GUUTATPOUOTIKOTNTAG W'Z TOAMOTAOGIIOHEV e e Topduetpo mowhg p. H
ooppomia Yo OAGKANPN TV Kataokevt] (Bempmdvtog SUTAG GUUUETPIKES OLUTOWES Yol
o péEAN) didetan amd v e&iowon (11.ii), 6mov B egivar to (12ngX6Ne) untpmo
ooppomtiog T™C Katookevng, S eivar 1o (Bnegx/) dSidvvoua TtV aveEdptnTov
EVTATIKOV HEYEDDY OADV TOV HEADV, a gival popTikOg cuvterestnc, T ivar to (Ngx 1)
dtdvvoua tov emkopPiov dpdoemv 610 Kabolkd cvomua kot fy elvan to (Nex17)

dtavuopo Tov otafepadv emkouPiov dpacemv o1o kaboilkd cvotnuo. H e&icmon
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(11.111) exepdalel T cvvOnKn cVUPIPOCTOD TOV TAPAUOPPOCEMY VIO THY KOTUCKELT],
6mov S givar 10 (6Nep X6Ng|) UNTPDO TOV TEPIAAUPAVEL SLOYOVIDS TO UNTPDOL AKOUYIOG
S' dhov TV pehmv, N givor to (6Ne X 2Nep) uNTp®o ToLv TEPhopBavel OAa To KabeTo-
070, EVIOTIGUEVA ETimeda dtopponc-Stoviopata, Z givar to (2Ng*x7) ddvocuo Tomv
TAQOTIKOV TOAOTAOCIHOTOV Kot U 10 (BNgx/) dSidvuouo TV  avtioTolymv
emkopPlov petokvioemv. H oyxéon (11.iv) meprypdpet pe O6povg mepldmpimv
avToyNg W tov meplopiopd mov Tifetan amd ) cvvOnkn dtppong, N omoio propel va
exppaotel €lte €K TPOOWWHOV YPOUUIKOTOWOVTOG TNV €ite  gpoapuoloviag v
ypappkonoinon  tomwkd. EmumAéov, molvypoppikoi M pn-ypoppkoi  vopot
CLUUTEPLPOPES  pmopobv  va  evoopotofodv  pEG®  TOL  VROAOYICUOD TV
JEVPLUEVOV/GUPPIKVOUEVOVY 0plmv dtappong I

To npoPAnpa wov dwutvrdverotl amd ™ oyéon (11) epapuoletar oe kOddka Matlab
Ko e€etaletan n aAAnienidpaon a&ovikng dvvauns-dwagovikng kapyns (NMyM;) o
116 €€Ng meputtwoelg: Case (2): ypoppkomompuévn ocuvOnkn dlappong Kot Tereimg
TAaoTikn ocvumepipopd, Case (b): ypoppukomomuévn cvuvOnkn dtappong Kot vopot
vAkov-Evtomiopdg kpiciov kmvov, Case (C): un-ypoppkn cvvonkn dwppong (M
ypoppkoroinon eeoappudleTol Tomkd) Kot ToAvypoppkoi vopot vikov, Case (d): un-
YPOUMKY ouvOnKkn dappong (M ypappkoroinon €@apuoleTor TOmKA) Kol Un-
ypoppkol vopotr vaAkov. To kpurplo dwappong mov viobeteitor eivar ekeivo tov
Gendy-Saleeb (1992).

To tpwodidotato mhaiclo mov mapovoidleror oto Xy. 18 vmoPdiieton og
petafntd goptio katd dova X ko otabepd xard tov afova Y kot Z. e
dlakprtonoinon Tov eopéa ypnoomomdnkay 26 uéin, 18 kouPor kot 72 Pabuoi
ehevbepioc. O ydvfoc sivar katnyopiog S235 ko &xet pétpo ehaotikotrag E=2x108
kN/m?%. T Oreg TG Owrtopég  vmootvAopdtov  Oeopeiton A=159x1 0*m?,
1=45070%10"°m* (1oyvpoc GEovac), 1=8564x10°m* (acBevic GEovac), 1=189x10°m?
(otpentikny), S1y=3736.5kN, Spy=301.6 kNm, S3,=S5y=205.1 kKNm, S4,=S6y=602.1kNm,
EVD Yo TG Oltopég dokav €yovpe A=53.81 x10*m?, 1=8356x10°m* (toyvpdg
aEovag), 1=603.8x10°m* (acbevig aEovag), 1=20.12x10°®m* (otpentucy), 51,=1264.5
kN, s2y=65.3 KkNm, s3,=S5=29.4 KkNm, s4=ss=147.7 kNm. H vmotefeica
TOAVYPOULIKT KOL 1 QVTIGTOLYN UN-YPUUUIKY] GuUTEPLpopd paivovtol oto Xy. 19. TTo
OLYKEKPIUEVA, YIOL TNV TOADYPOUUUIKY] GLUTEPLPOPA TOV VITOGTLAMUAT®V 10YOEL
h;=12041.4 kNm z,=0.005 4;=1.1, h,=6020.7 kNm z,=0.015 1,=1.2, h3=-6020.7 kNm
25=0.05 13=0.85, h,=10® kNm 2,=0.06 1,=0.85, evd yia TIC SlaTOpEC dOKMV
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h1=1476.7 kNm z;=0.005 1;=1.05, h,=738.4 kNm z,=0.015 4,=1.1, h3=-1230.58 kNm

75=0.05 /15=0.85, h,=10° kNm

2,=0.06 24=0.85. H un-ypopuikn cuumepipopd

neptypdoetar and &vo tolvdvouo 4°° Babuod Pacildpevo ota dedouéva tov Iivaka

4. Ot T|ég Tov Z4 amoTeAOVV v Oplo Yol TIC SLOTOUES VTTOCTLAMUATOV KOl dOKMV,

eV Y100 OAEG TG petatomioelg Exel OempnBel kétm opro U, =-10 ko dve opro U, =10,

100 100 100
2¢ | S0 50
£
100 100 100 il
2a
100 5 100 50 100 50
a4
E
100 100 100 -
a
=} =] =}
Sm
(=} (o=} (=]

5m

5m

2. 18: Tpiodidoraro whaioto pue otobepa kar uetoffintd poptio.

[Tivakog 4: EEl0M0EIG TOAVOVOLUKOV YPOUUOY TNG UN-YPOUUIKNG CUUTEPLPOPAS.

X 0.00 | 0.001 | 0.002 | 0.005 | 0.007| 0.01 | 0.015 | 0.020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.060
fx) | 1.00 | 1.05 | 1.10 | 1.15 | 1.18 | 120 | 1.18 | 1.15 | 1.12 | 1.10 | 1.05 | 1.02 | 1.00 | 095 | 090 | 0.85
4
f@=p-x"+p, -5 +py X+ py-x+ps
Polynomial line for column cross sections - n
p,=-1.83-10°, p, =3.14-10*, p, =—1817, p, =32.54, p, =1.02
X 0.00 [0.0010| 0.002 | 0.005 | 0.007 | 0.010 | 0.015 | 0.020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.050
f(x) | 100 | 1.00 | 1008 | 105 | 1.08 | 1.10 | 1.08 | 1.05 | 1.03 | 1.008 | 096 | 094 | 092 | 0.87 | 0.825 | 0.80

Polynomial line for beam cross sections

0.8

0.6

0.4

0.2

f(x)zpl-x4+pb-f +p3-x2+p4-x+p§
p,=—139-10°, p, =1.02-10", p; =—901.3, p, =17.84, p; =0.99

T . . y
a) N's/r (normalized combined stresses) b) N's/r (normalized combined stresses)
1.2
1.0
0.8
0.6
=#=Columns 0.4 e Columns
=a=Beams == Beams
0.2
T 0 -
0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06

plastic rotation

plastic rotation

2x. 19: a) Iolvypouuikn kot D) un ypopyiks courepIpopa KpaTovens/yalopmong.
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[Tivakag 5: Amoteléopata oavarldceE®V Yo OLEG TIG TEPIMTMOGELS.

NMyMz NMyMz NMyMz NMyMz
Cases rigid-p.plastic PWL NL-PWL NL
(a) () (c) (@
number of variables n ., 157 281
ber of equality
FHDEr OF eqiah 72 228
constraints M .,
ber of i ity
mumber of inequality 1664 52

constramts # g,

maximum load factor a (,IN) || 188.50 204.13 211.98 215.07

number of plastic hinges 22 22 22 22
total computational time (s) 10.97 189.97 2953.38 2192.69
mumber of iterations _ 28 359 280

complementarity condition _ _
T - 4.74E-05 | 4.50E-12 | 3.04E-07
W'z

initial valies of o - 10° 104 100

Ta amoteAéopata tov avardcemv eaivovior otov [livaka 5. H tpot mepintmon
™G TeEAelg TAACTIKNG CUUTEPLUPOPES SUTLTIMOVETOL MG Vo TPOPANUO YPOUUIKOV
TPOYPOUUATIGHOD e AYOTEPEG LETOPANTEG KOl AYOTEPOVG LGOTIKOVG TEPLOPIGLOVG,
o€ OYEON HE TIC VTOAOUMEG MEPUTOGELS. L26TOGO, Ol OVICOTIKOl TEPLOPIGHOL Elvarl
TEPLGGATEPOL, KOOMDG 6T LOPP®OT TNG CLVONKNG SLPPONS HETEYOLY OAN TOL OLVOTA
enmineda. H Ty Tov poptikov cuvieheosty| eival n KPOTEPN Y10 CVTAV TNV TEPITTOON
KOl 0 OOLTOVUEVOG XPOVOG GUYKAIONG VOl 0apdS LKPITEPOS, OPOV OVTIGTOLYEL O
TpoPAnua  ypouutkod mpoypappatiopov. Ov  mepurtdoerg (b), (€) wor  (d)
neplAapPavouy tov 010 aplfud pETOPANTOV Kol TEPLOPICUOV aveCapTT®S NG
ypopukodTNTOg (1 UN) NS CLUTEPLPOPES TNG KATOOKELNG KOl TOL TPOTOL
YPOUUIKOTOINGNG TG EMPAVELNG OlapPONS. Zvykpivovtag Tig tepumtdacelg (b) ko (C)
MOV  OVTIIOTOLYOVV  OE  TMOAVYPOULIKY]  CUUTEPIPOPE  KPATLVONC/ XOAAPOONG
(hardening/softening), moapatnpeitar 60t1 M pEOOSOG TOMIKNAG YPAUUKOTOINGNG TNG
EMPAveIOG Olappons dtvel akpiPéotepeg AVCES EMTLYYAVOVTAG LEYOAVTEPES TUULES
(QOPTIKOV GLVTIEAESTH. Xvykpivovtag Tig meputtooels (€) kot (d) mov aviieToryovv
OTNV TOMIKN YPOUUIKOTOINOT TNG EMPAVEWS Ol0PPONG, OOmIGTOVETAL OTL O
HEYOADTEPOC POPTIKOG CUVTEAEGTNG EUPAVICETOL Y10 TNV TEPITTMOOT TNG UN-YPOUUUKNG
CLUTEPLPOPEG KPATUVONG/YAAAPMOTS.
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H opwxnm katdotaon yw 6Aeg 11c mepumtmoelg gaivetar oto Xy. 20, n omoia
avtioToryel 610 oynuaticpd 22 mlactikev apbpocewv. Evdsiktikd mopovoidletor to
Suypappo aAAnAemiopaong yio TNV tedevtaia mepintmon oto Xy. 21. Ot datopés twv
doKmV evteivovtal Kupiwg AOYm TG oAANAETIdpaong aEOVIKNG dUVOUNG-POTNG TtEPL
tov tomkd Z d&ova (1 emppon g pomng My efvar apeAntéa), evd ot SlOTOPEG TV

VIOGTLVAMUATOV dEYoVTaL TNV EMOPACT AEOVIKNG dVVAUNG-OAEOVIKNG KALWYNG.

[ ]

2x. 20: Opiokn KoTdotaoy yio. OAES TIC TEPITTWOTELG.

\

-1 n 1 -1 m 1
e : beam cross sections (start nodes)

o : beam cross sections (end nodes)

\%%/

[ =

7AN
NST= =77

% : column cross sections (start nodes)
« : column cross sections (end nodes)

2x. 21 Awaypouuo. aliniemiopoons yia tyy mepimrwon (d).

H vmoloyiotiknm emidoon tov aAdyopiBpov yio OAEC TIG TEPIMTMGELS POIVETOL GTO
Synuata 22, 23 ko 24. T v wepintoon (b) o akyopBuog cuykhivel petd omd 28
emovaAnyelg kot og 189.97s. Inueidvetor 6Tt 1 TIUN TNG OVTIKELEVIKNG CUVAPTNONG

avépyeton ot —47145.83, evdd M TN TOL QOPTIKOD GUVTEAESTN &€ival HOMC
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204.13kN. H dropopd avth opeiletar oTig peydieg Tnég e mopoauéTpou Towng o, M
omoio peyebuvel TIg amokAGElg TOV Opov NG GLUTANPOATIKOTNTAS. H e£EMEN g
dwdikaciog Pertiotonoinong ywo v mepintwon (C) moapovoidleror oto Xy. 23. H
oVvyKAon emttuyydvetol petd amd 359 emavaiiyelg og 2953.38s. H opodn mopeia Tov
alyopifpov SloKOTTETOL OO KATOLEG OUYUES TNG OVIIKEWWEVIKNG GLVAPTNONG, TOL
opeilovtar oTov Opo NG GLVONKNG cLUTANpouatikéTnTag. H adyopiOuikn mopeia yio
mv zepintoon (d) mapovoidletan oto Xy. 24. H mopeion ¢ dadikaciog
BedtioTomoinong ivor oyeTikd OpaAn (GUYKPIVOUEVT LE TIG VTOAOINES TEPTTMGELS),

eva amartovvton 280 emovoinyelg kot 2192.69s péypt t cvykon.

5 W 30
-2.00E+05 — S _
f’/ Optimization iterations

-4.00E+03

0.00E+00

-8.00E+03

-1.00E+06

Objective Function

|
|
|

-1.20E+06

-1.40E+06
4 —+—Case (b)

-1.60E+06

Xy, 22: E&Mén e oadikaoiag feitioromoinong yia v mepintwon ().

1.60E+04
—4— Case (c)

1.40E+04

L20E+04

1.00E+04

S.00E+03

6.00E+03

4.00E+03

2.00E+03
0.00E+00 ,ML—,

=11] 100 150 200 250 300 350 400

Objective FFunction

1 — U2 A D

2y. 231 EéEMén g dradikaoiog feAtiotonoinong yio ty mepintwon (C).
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250.00

200.00

150.00

—8—Case (d)

100.00

Objective Function

50.00

Optimization iterations
0.00 : : .

0 50 100 150 200 250 300

2x. 24: E¢Eén g dadikaoiog feAtiotomoinong yio v mepintwon (d).

V. Xvpnepaoporta-Ilpotdacseig yio perrovtiki) £peova

H mopovca dwrpipr] mpaypatedtnke v oplokny Kot TOPOUOPPOGLOKY aviAvon
0T0 TAOIGIO0 TOL WOOMUOTIKOD TPOYPOUUOTIGUOV. XTOYOG MNTAV 1 OVASEEN TNG
E0MTEPIKNG OOUNG TOL TPOPANLATOG KO TWV HELOVEKTNUAT®OV TNG, KOOMG miong Kot M
pdtact vEmV Bemprcemy, Ol 0moieg SIELPVVOLVY TNV EPOPUOGIUOTNTO TNG OPLUKNG
KO TOPOLOPPOGIOKNG avAALONG 1e ypNom LeBOd®mV PabNUaTIKOD TPOYPOUUATIGLOV.
m dwrp] avt] mpaypoatomombnke p  avadOUNcmn  Tov  TPOPANLaTOC,
ATOPEVYOVTOG TIC TEPITTEG TEPUMAOKES Yol AOYOLS HOOMUATIKOD QOPUAAGHOD Kol
STNPOVTOG HOVO TIS TANPOQPOPIEG OV £Y0LV PLGIKO VONUA. XTO0 TANIGLO aVTO,
YPNOLOTOMONKAV PLGIKEG BEPNOELS Yo TNV EKOPACT TNG CLVONKNG OPPONG Kot
TNV EVOOUATOOT] TOAVYPOLUIK®OV 1 UN-YPOUUIKOV VOL®V KpaTuveng/xaAdpmong, ot
omoieg amocvumAékovv to péyeBog Tov TpoPANuaTog (aplOUOg pHETAPANTOV Ko
TEPLOPICUMDV) OO OTOLOONTOTE SLOKPLTOTOINGM.

Yg ovtqv Vv kotevbuvor, M ouvOnKn  OlPpPONG EKPPACTNKE HE TPELS
drpopeTikovg Tpdémovg: 1) pe Bemdpnomn kvptod moAvedpov (convex hull), ii) pe
EVTOTMIGUO TOVL Kpioiov k@vov (cone identification) kou iil) gpapudlovtag TOmKN
ypoppkomoinon. [a v npot mepintmon, 10 moAHEdPO dlappong ekEPALETOL ®G
YPOUUIKOG GUVOLAGHOG TMV OOVUCUAT®MV, TOV OVTIGTOLYOVV OTIS KOPLPES TOV KOl
odnyel oV TEMKY £KPPOGT TOL KPUTNPiov Sappong HE 160TIKOVS TEPLOPIGHOVS. X
QLTV TNV TEPITTOON, 0 OPBUOS TOV TEPOPWOU®V givar oveEdptnrtog amd

Sl0KPITOTOINGN TNG EMPAVELNG SLOPPONC, OALL O aPOUOC TV PETAPANTOV avEAVETOL



[TepiAnym

eCatiog ™ ewooymyng €vOg OET un-apvnTiKoOvV mapopétpov. H mpotevouevn
Bemdpnon ocvykpidnke e v vIapyovsa, 1 omoin eKPEPALEL TN cLVONKN OlPPONG MC
TopuN NUYOPV. Ot 500 SATLTIOGELS SLPEPOVY MG TPOG TOV APLOUO TOV UETOPANTOV
KOl TOV TEPOPOUMV KOl OlEPELVAONKE 1  OMOTEAEGUATIKOTNTA TOLG Yo
oAMNAeTidOpaoc  aovikng SUVOUNG-KOUTTIKNIG pPOTNG Kot  aEOVIKNG-TEUVOLGOG
dOvVOUNG-KAUTTIKNG pomnG. Ta  amoteléopota TG avAaAvLoNG EMIMEOWV, UETOAAMKOV
TAOIGIOV, OTOJEIKVIOVY T VTOAOYIGTIKE TAEOVEKTHUOTO TNG OTVTMOONG TOV
Kprtnpiov Sappong pe ¥pNon KupToL TOAVESPOL Y10l TO GTATIKO BEDPMLLO KOt Yol TIG
dvo meputdcelg adAnieniopaons. H 10éa tov evromiopod tov kpiciov kdvov (cone
identification) Poaciletor 610 Yeyovog 0Tl 6e KABe emavainym tov aAyopduov
BeAtioTtomoinomng, n EvVIATIKY KATAGTACT] KAOE S1OTOUNG AVIKEL GE £VOV GUYKEKPLUEVO
KOVO GTOYEVOVTOS 1 EVEPYOTOLMVTOS £val HOVOV emimedo dwappons. o avtdv tov
Adyo, avoamtoyOnke odyopiOuog, o omoiog eviomilel TOV KPIGHO KAOVO TOL
YPOULULUKOTONUEVOL Sy PAUUATOS OAANAETIOPAGTC, GTOV 0Toil0 aviKeL KAOe dtatop).
Kotémv, o meploptopodg Sappong Hope®veTal yio Kabe Olotopn pOvo yio To
eLOOYPOULO TUNHO TTOL OVTIGTOUKEL OTOV KOVO, € avtifeon HE TNV LEIGTAREVT
péBodo, n onoia yio KaOe droToun daTvTdOVEL 1I6APIOLOVS TEPLOPIGHLOVS SLOPPONG LE
10 TAB0G TV guBvypdupmy TUNUdTOV Tov Kprmpiov dwppong. Kotd avtoév tov
TPOTO, T0 TANOOC TOV TEPLOPICUDV HEUDVETOL CNUAVTIKO Kot TO TPOPAnua yiveton
aveEdptnTo amd TN YpapUIKomoinom g empavelog dtappons. Ilpotddnkav dvo amiég
péBodoL Yo TOV EVIOMIGUO TOV KPIGOV KMVOL Yo S16O1I0TUTA Kol TPIGOdcTaTO
kpump dwppons. Emexteivoviag v 10éa evtomiopod Tov KPIGHOL KMOVOUL,
EQOPUOCTNKE L0 TEYVIKT TOTIKNG YPOLUKOTOINGNG TOV KPLTpiov dtoppong yio kabe
dwtopn], oe kdBe emavdinyn tov alyopiBuov PeAtictomoinone. Toueovo pe v
TPOTEWVOUEVT] dladtKacia, To emimedo Owppong Oev &ivarl €K TV TPOTEP®V
kaBopiopéva, aAhd mpocdiopilovtar yio kaOe dtatoun, oe kdbe emavdinyn. Avtg 1
dwdwacio mwopéyel okpIPEcTEPES AVCELS, VA TAPAAANAQ OTOPEVYETAL 1| €K TV
TPOTEP®V YPOUUKOTOINGT TOV KplTnpiov dtoppong.

EmumAéov, kat yio avtiv ™ Bedpnor|, EVooLaTdONKay VOLOL TOAVYPOUUKNAG 1) U1)-
Ypoppkng kpdatvvong/yordpwong (hardening/softening), ywpic va emmpedletor to
puéyebog tov mPoPANUOTOS. TNV WEPIMTOON NG TOAVYPOUMKNG  KPATLVOTG,
evromiletan to evOHYpOUUO TUAIA KPATLVOTG, TO OTOl0 avTioToLEL o KaBE draToun,
LOPO®VOVTOL TO UNTPOO KPATLUVONG HOVO Yoo TO TUNpa ovtd (Kot Oyt yuo OAa ta

duvatd). Xtnv mEPINT®OON NG UN-YPOUMKNG KPATLVONG, O VLTOAOYIGHOS TOL
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peyebopévov/cuppikvopévov opiov dlappong eivor QUEGOC Ko TPOKVTTEL amd TNV
TIUN TOL TAUGTIKOV TOAAOTANGLOOTY.

H viwoBémon tov mapandveo mopepfdocov emmpedlovv kot T HOPO®ON TNG
CLUVONKNG  GUUTANPOUATIKOTNTAG, HELOVOVTOG OTO €AAYIOTO TO TANOOC TOLC.
Kot’avtdév tov tpdmo, d1euKoADVETAL 1| GUYKALCT TOV aAyopiBpov PBertioTonoinong,
KaBmOG N cLYKEKPUEV GLVONKN amoTedel TV TNYN TG aplOUNTIKNG aoTABE0G TOV
TPOPANLLOTOG.

Ta aplBunTikd amoteléopato TOV OVOADGE®V TOL  TPOYLATOTO 0KV
eMPEPULOVOLY TNV EPAPUOGIUOTNTOA KOl TNV VTOAOYIOTIKY OTOTEAECUATIKOTITO TV
npotewvopevov  Bewpricemv  oe  emineda kot tpodidotata  mAaicw.  TéAog,
ocvumepaivetal 6Tt 1 CAANAETIOPOOT) TV EVIATIKOV peyedmv ennpedlel Tnv KOl G
OPIGUEVES TTEPUTTMOCELS KOL TOV UNYOVIGUO KATAPPELONG TMV KATOUGKEVOV KOl Yol
avTdV TOV AOYO TTPEMEL VO AAUPAVOVTOL VTTOYLY, GTOXEVOVTAG GE VAV ACPOUAEGTEPO
OXEOLOGLO TV KATOCKEVMV.

Ta aroteAéopata TG mOPOVGOS EPYACIOS LITOPOVV VO OTOTEAEGOVY EPAATIPLO Y10
HEALOVTIKY| £pevva 6TIG okOAOVOEG KaTteLBHVGELS:

o« Evoopdtoon g YEOUETPKNG UN-YPOUUKOTNTASG OTIS TPOTEWVOUEVEC

Bewproelc.

e H pn-okovouikr Bemdpnon upmopel vo OVTIHETOTICTEL GOV MOl GTOOLOKN
(stepwise) olovopikr, VIOOETOVTOG YPOUUIKOTOMUEVE 1] UN-YPOUUIKA
Kprmpio Steppong Kot KoTooToTIKOUG VOLLOUC.

o H avantuén pobnpatikov dadikocidv mov yepiloviol mo amoTeEAEGHLOTIKA
TN GLVONKN GLUTANPOUATIKOTNTOC.

o  Eopoappoyn tov mpotevopevov tpoceyyicemv o mpoPfAnuata eninedng tdong
Kot eminedng mapapdpewong, o€ mpoPAnpata unyovikng poyumv (fracture
mechanics) kot o yemteyvikd mpofAnuarta (slope stability analysis, lateral
earth pressures on rigid retaining structures etc.).

O oVVOLOGUOC NG OPWKNG OVAALONG HE TO HAONUOTIKO TPOYPUUUATIGHO
onpovpyet éva moAAG vooyouevo medio, to omol avtipetonilel ™V aviAlvon TV
KOTOGKELAOV 0KOAOVOMVTOG va HoBNUATIKO HOVOTTATL e PUGIKOVG TTEPLOPIGHOVG. H
avaykn v v avdmrtoén pog Bempiag, mov Ba mapéyel Eva Bewpntikd vedfabdpo,
OAAG Kot o yoviun peBodoroyia yia aplOunTikn enilvct, TopapEVEL EMTAKTIKY), Y10

NV TANPY EKUETAAAELGT) TOV SLVAULKOD OVTMV TV HEBOS®V.
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Chapter 1 Introduction

1.1. Background and motivation

Structural analysis retains a central role in civil engineering field laying a solid
base for safe and economic structural design. It deals with the determination of
structural response (elastic and inelastic) when excited by specific loads. More
specifically, structural analysis results in the evaluation of internal forces, stress
resultants, displacements and deformations that are developed throughout the
structure. A variety of methods have been developed to evaluate inelastic response of
structural systems, most of which follow the evolution of the inelastic deformations
within a structure until collapse. However, the ultimate state, which is of primal
interest in engineering design, can be obtained almost instantaneously via limit
analysis methods.

Limit analysis, which is based on the assumption of rigid-perfectly plastic
constitutive behavior, aims at determining directly the ultimate load that a structure
can sustain and has constituted a robust tool for structural design. The same notion of
the direct determination of an ultimate -in mathematical terms- state is also enforced
by mathematical programming that determines directly the values of a set of variables
corresponding to the best (minimum or maximum) value of an objective function. The
merging of limit analysis methods with mathematical programming offered the means
for determining the ultimate structural state following a different mathematical path.
A great variety of mathematical programming techniques appropriate to treat
structural analysis problems has been enforced, depending on the structural behavior
(path-dependent (nonholonomic) or path-independent (holonomic)), the constitutive
laws (presence or absence of softening), the presence of ductility limitations, the
approximation of the yield surface and the objective function.

Limit analysis for linearized yield criteria and rigid-perfectly plastic behavior can
be cast as a Linear Programming (LP) problem enforcing the static (lower bound) and
kinematic (upper bound) theorems. This formulation prompted and supported by the
bloom of LP (Kantorovich 1940, Dantzig 1947) set the ground for the establishment
of mathematical programming techniques in structural analysis. Since 1951 when
Charnes and Greenberg implemented LP for the analysis of trusses for the first time, a
remarkable progress has been exhibited in this field. Maier et al. (1967,1977,
2002,2003) extended the formulation addressing both perfectly plastic and

hardening/softening structural behavior on the basis of holonomic (path-independent)
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or nonholonomic (path-dependent) considerations. The central point of this
formulation relies on the piecewise linearization of the yield criteria and constitutive
relations that enable their expression as linear constraints. Incorporation of
deformation constraints and/or softening behavior enforces the complementarity
condition that excludes the activation of plastic deformation with nonzero strength
reserves. It is of disjunctive nature and constitutes the main source of numerical
instabilities of the problem. Thus, a variety of alternative mathematical programming
procedures for structural analysis has been generated, such as iterative Linear
Programming, Quadratic and Parametric Quadratic Programming, Restricted Basis
Linear Programming, Linear and Parametric Linear Complementarity approaches,
Mathematical Programming with Equilibrium Constraints (MPEC) (Luo, Pang and
Ralph 1996, Maier et al. 1977,1979, Tangaramvong and Tin-Loi 2007). It is worth
mentioning that these formulations for structural analysis have been supported and
promoted by the developments in mathematical programming concerning the
treatment of complementarity condition (Fukushima and Lin 2004). More recently,
second-order cone programming (SOCP) has been employed for structural analysis
that can be further generalized in the framework of semidefinite programming (SDP)
(Martin and Makrodimopoulos 2008, Skordeli and Bisbos 2010).

The majority of the aforementioned mathematical programming approaches is
based on an a priori piecewise linearization of the yield surface and constitutive laws,
combining the size of the problem with the discretization. Yield condition is
formulated calculating the strength reserves for every critical section and for all
possible hyperplanes of the piecewise linearized yield surface. This defines a vector of
reserves for every critical section with multiplicity equal to the number of hyperplanes
of the yield hypersurface. The same number of plastic multipliers is also engaged for
all possible plastic deformations, which together with the corresponding strength
reserves compete within the discrete in nature complementarity condition. This
perplexing procedure generates unnecessary information that increases prohibitively

the size of the problem especially for a finer discretization of the yield surface.

1.2. Research objectives

This work aims at addressing limit analysis problems with hardening/softening

behavior and ductility constraints in the framework of mathematical programming.



Chapter 1 Introduction

The combination of structural analysis with mathematical programming has mainly
been based on the piecewise linearization of yield surface and constitutive laws.
Although this approach proved versatile paving the way for the efficient use of a great
variety of mathematical programming techniques, it may become prohibitive for
large-scale problems or/and fine discretization. Thus, the aim of this work is to
enhance the existing formulation by addressing limit structural analysis in the
framework of mathematical programming in a unifying and more efficient way for
large-scale problems.

The specific research objectives concerning the formulation and the treatment of

the problem are:

% To highlight the inner structure and drawbacks of the existing methods.

»x To enhance the existing formulation aiming at uncoupling the size of the
problem from the discretization of the yield surface.

x  To incorporate efficiently multi-linear or nonlinear constitutive laws.

»  To apply the proposed formulations in plane and 3D frames and examine their
computational efficiency compared to the existing formulation for multi-
component interaction.

The problems that are addressed in this work concern holonomic (path-

independent) structural behavior, while the considerations of constitutive behavior

and yield surface are shown in Table 1.1.

Table 1.1: Considerations of constitutive behavior and yield surface.

. Rigid-perfectly plastic behavior or
(oo itatiile  hardening with unlimited ductility
SENEWLTEEE  Softening behavior or hardening with Piecewise Linear
: limited ductility Nonlinear

Hyperplane Equations

| Piecewise Linear
Yield Surface | Convex Hull

Nonlinear

Based on these, the following problems are formulated and treated in this dissertation

for limit analysis of structures in the context of mathematical programming:
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1. Rigid-perfectly plastic behavior with piecewise linear (PWL) vyield surface
(hyperplane equations and convex hull formulation).

2. PWL hardening/softening behavior and PWL yield surface.

3. PWL hardening/softening behavior and nonlinear yield surface.

4. Nonlinear hardening/softening behavior and nonlinear yield surface.
The aforementioned problems enforce different mathematical programming
techniques. The first category is formulated as a Linear Programming problem, while
the other three are formulated as a Mathematical Programming with Equilibrium
Constraints (MPEC) problem. The equilibrium constraints are in this case the
complementarity conditions which are required due to the presence of softening

or/and displacement limitations.

1.3. Outline of the dissertation

The content of this dissertation is outlined as follows:

In Chapter 2, a literature survey is presented reviewing the merging of limit
analysis and mathematical programming and how this enriched structural analysis.

Chapter 3 deals with limit analysis of plane frames in the context of Linear
Programming introducing a convex hull formulation for expressing the yield
condition in static and kinematic theorem. The proposed formulation differs in the
number of variables and yield constraints compared to the standard one, which
expresses yield condition as the intersection of halfspaces. The two formulations are
compared in terms of computational efficiency. Numerical results of plane steel
frames prove the computational advantages of convex hull formulation especially for
3D stress resultant interaction and demonstrate the effect of combined stresses on the
load carrying capacity.

In Chapter 4, limit load and deformation structural analysis under holonomic
assumption is addressed in the context of mathematical programming, aiming at
determining the ultimate load capacity of frame structures at incipient collapse.
Equilibrium and compatibility requirements together with strength and
complementarity constraints are used to formulate an optimization problem aiming at
maximizing the loading factor. For every stress point and optimization iteration, a
cone identification approach is proposed enabling the formulation of yield and

complementarity conditions only for the specific targeted or activated vyield
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hyperplane. Moreover, multi-segmental isotropic hardening/softening behavior of
critical sections is incorporated in a direct and efficient manner in the yield condition.
The entire formulation is not affected by the linearization of either the yield surface or
the constitutive relations and succeeds in reducing the size of yield and
complementarity conditions to a minimum. The cases of axial force-bending moment
and axial-shear force-bending moment interaction are included. Numerical results are
presented verifying the validity and efficiency of the proposed method and underline
the role of combined stresses in specific cases.

Chapter 5 deals with limit load and deformation analysis of plane structures
considering nonlinear interaction and nonlinear structural behavior in the context of
mathematical programming. A new approach is proposed that retains the nonlinearity
of the yield surface applying a local linearization technique for every stress point and
optimization iteration. Moreover, isotropic nonlinear hardening/softening cross-
sectional behavior is efficiently incorporated. The final formulation of yield and
complementarity condition is of a minimum size, while the linearity of the finally
formed yield constraints is retained. The computational efficiency of the proposed
method is compared to that of cone identification approach for several plane frames
considering axial force-bending moment and axial-shear force-bending moment
interaction.

In Chapter 6 limit load and deformation analysis with mathematical programming
is extended to 3D frame analysis. The ultimate load is evaluated through a nonlinear
programming problem with equilibrium, compatibility, yield and complementarity
constraints. The nonlinear inelastic structural behavior is either approximated with
linear segments (cone identification approach) or embedded retaining its nonlinearity
(local linearization technique). Furthermore, a holonomic (path-independent)
structural behavior is assumed and hardening/softening behavior is considered
isotropic. Numerical results are presented to demonstrate the validity of the proposed
method for 3D frame analysis, accounting for axial force-biaxial bending moment
interaction.

In Chapter 7 the main conclusions of this work are presented, while future research
directions are highlighted.

Moreover, five appendices are included. Appendix A concerns the standard form
of Linear Programming problems and the primal-dual relations of Linear
Programming. In Appendix B, Karush-Kuhn-Tucker conditions are included and the
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barrier function interior-point method is presented. Appendix C contains the equations
of yield lines for axial force-bending moment interaction, while Appendix D describes
the equations of yield planes for axial-shear force-bending moment interaction.
Appendix E describes the relations of first-optimality measure required for the

optimization procedure.
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2.1. Limit analysis

Limit analysis of structures based on rigid-perfectly plastic constitutive behavior
has offered the means to assess directly the ultimate capacity of frame, plate and other
structures. The incremental analysis physically traces the entire evolution of structural
response to a monotonically increasing external loading identifying the sequence of
plastic hinge formation until collapse. The main interest though from an engineering
point is primarily on the final stage of plastic response-plastic collapse. In this respect,
limit analysis has been proved very efficient in the determination of the ultimate
structural state, affecting also the context of design of structures, components and
connections.

In essence, limit load analysis monitors only the developed stresses disregarding
the existing deformations, which do not participate in the problem. This one sided
formulation is also carried out successfully by the driving power of optimization. The
fundamental theorems of plasticity that serve as the solid base of limit analysis are the
static, kinematic and uniqueness theorems (Neal 1977, Jirasek and Bazant 2002).
Attempts to formulate these theorems go back to the 18" century, but it was Kazinczy
(1914) that introduced plastic limit analysis by evaluating and verifying
experimentally the failure load of a clamped beam. Kist (1917,1920) and Griining
(1926) utilized similar notions following rather an engineering intuition than a strict
mathematical formulation. A proof was established by Gvozdev (1938) and later by
Horne (1949) and by Greenberg and Prager (1951). According to the static (lower
bound) theorem, the collapse load of a structure that corresponds to a statically
admissible state (satisfying equilibrium and yield conditions) is either less than or
equal to the true collapse load, while the kinematic (upper bound) theorem states that
the collapse load or load factor obtained for a structure that corresponds to a
kinematically admissible solution is either greater than or equal to the true collapse
load. On the basis of the weak and strong duality theorems (Luenberger and Ye 2008),
theoretically there is no duality gap, i.e. both theorems approach the true value from

below and above respectively (uniqueness theorem).
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2.2. Mathematical programming

Mathematical programming or mathematical optimization is the process followed
for the selection of the best element (with regard to some criteria) from some set of
available alternatives. The aim is to find the values of certain decision variables that
give the minimum or maximum value of a real objective function, i.e. unconstrained
optimization, which when subjected to equality or/and inequality constraints lead to
constrained optimization problems. The generalization of optimization theory and
techniques has allowed an amplified application in a large variety of fields, such as
economics, mechanics, engineering, operation research, control engineering etc. Due
to the great diversity of optimization problems, a corresponding large number of
optimization methods and algorithms have been developed for their solution. The
different types of optimization problems are classified as presented in Table 2.1 (Rao
2009). Linear and Nonlinear Programming constitute the two main optimization
techniques used in structural analysis and therefore are shortly discussed in the

following sections.

Table 2.1. Classification of optimization problems.

Constrained optimization problem
Unconstrained optimization problem
Parameter or static optimization problem
Trajectory or dynamic optimization problem

Existence of Constraints

Nature of Design Variables

Optimal control problem
Nonoptimal control problem
Nonlinear programing problem
Geometric programming problem
Quadratic programming problem
Linear programming problem

Physical Structure of the Problem

Nature of Equations involved

Integer programming problem
Real-valued programming problem
Deterministic programming problem
Stohastic programming problem

Permissible Values of Design Variables

Deterministic Nature of the Variables

=
=}
=
%]
2]
1]
=
=
=)
o
)
1]
=
b=
[72)
2]
1)
e
(&)

Separable programming problem
Nonseparable programming problem
Single-objective programming problem
Multi-objective programming problem

Separability of the Functions

Number of the Objective Functions
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2.2.1. Linear programming

Linear programming (LP) is the optimization process applicable for the solution of
problems in which the objective function and the constraints (equality and inequality)
appear as linear functions of the decision variables. Even though the problem of
solving a system of linear inequalities dates back at least as far as Fourier, the Linear
Programming method was first initiated by Kantorovichin 1939, aiming at
maximizing the production in a plywood industry. The simplex method was devised
and published after the war by Dantzig in 1947 amplifying the use of Linear
Programming, while John von Neumann developed the theory of duality as a linear
optimization solution and applied it in various fields and in game theory. Since then,
Linear Programming meets a wide range of applications in many fields, for example
operations research, economics, management and engineering.

The general Linear Programming problem can be established in the following

standard forms (Luenberger and Ye 2008):

Minimize f(X,X,,...,X,) =CX +C,X, +---+C X,
subject to:

allxl+a12X2+”'+aln n=b1
Ay X 8K, +o-+a, X, =h,

2n"*n
scalar
(2.1)
a X +a X +-+a, X =b form
X, 20
X, 20
X >0

n

where ¢;, bj and a;; (i=1,2...,m; j=1,2,...,n) are known constants and x; are the decision

variables.

Minimize f(X)=c'X
subject to: matrix
aX=b form
X>0

(2.2)

where


http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Leonid_Kantorovich
http://en.wikipedia.org/wiki/Plywood
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X by C
X b c
X=4 b b=a70 c=9 70,
Xn bn Cn
8; ap &,
a= aZl a22 a'2n
aml amZ a'mn

The above relations refer to the standard form of the LP problem since the objective
function is of minimization type, all constraints are of equality type and all decision
variables are nonnegative (Appendix A). It is shown that any LP problem can be
expressed in standard form by using appropriate transformations. The possible results
of an LP problem are (1) a unique and finite optimum solution, (2) an infinite number
of optimal solutions, (3) an unbounded solution, (4) no solution or (5) a unique feasible
point. The geometrical representation of the solution includes a convex polytope
dictated by the constraints, since they are expressed as the intersection of a finite
number of halfspaces and hyperplanes. The objective function attains its smallest (or
largest) value at an extreme point or vertex of the polyhedron (if such point exists).

As mentioned before, simplex method constitutes the first and most popular one
for LP problems. It is based on a pivotal operation that generates all basic solutions
and selects the one that is feasible and corresponds to the optimal value of the
objective function (Spillers and MacBain 2009). However, for large scale problems
simplex method is computationally cumbersome in terms of storage and time (the
worst-case complexity of simplex method is exponential in the problem dimension).
Khachiyan’s ellipsoid method devised in 1979 is the first polynomial-time LP
algorithm. In 1984 Karmarkar developed a more efficient algorithm known as
interior-point method. Simplex method searches along the boundary of the feasible
space by moving from one feasible vertex to a promising adjacent one until the
optimum point is found. Karmarkar’s method approaches the optimal solution
following directions in the interior of the feasible space, attracted by the field of the

objective function and repelled by the constraints.
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LP problems are characterized by their duality (Appendix A). Every LP problem,
considered as primal, is associated with another LP problem, the so-called dual. Given
the optimal solution of the one, the optimal solution of the other can be obtained. In
fact, it is immaterial which problem is designated the primal since the dual of a dual is
the primal. Because of these properties, the solution of a linear programming problem
can be obtained by solving either the primal or the dual, whichever is easier. The
primal—-dual relationships of a general LP problem aiming at minimizing or
maximizing a linear objective function subject to a set of equality and inequality
constraints with nonnegative variables or variables unrestricted in sign are given by

the following relations (Rao 2009):

Primal Dual

Minimize ¢’ X Maximize Y 'b

variable X, >0 i" constraint YT A <c

variable X; unrestricted in sign i" constraint Y' A =c,

j" constraint A;X =b, j" variable y; unrestricted in sign (2.3)
j" constraint A; X >, j" variable y; > 0

Coefficient matrix A=[A ... A,] Coefficient matrix A" =[A, ... AT

Right - hand - side vector b Right - hand - side vector C

Cost coefficients C Cost coefficients b

If there is a difference between the optimal value of the primal and the optimal value
of the dual problem, then weak duality holds and the difference of the primal values is

called duality gap. Strong duality holds if and only if the duality gap is zero.

2.2.2. Nonlinear programming

Nonlinear programming (NLP) is the optimization process applicable for the
solution of problems in which the objective function or/and the constraints (equality
or/and inequality) appear as nonlinear functions of the decision variables. The general

formulation of a constrained nonlinear optimization problem is as follows:

minimize f(X)
subjectto g,(X)<0, 1=12,...m (2.4)
h;(X)=0, j=12,...1
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In nonlinear programming, Karush-Kuhn-Tucker (KKT) conditions (Karush 1939)
are first-order necessary conditions for a solution to be optimal (Appendix B),
provided that some regularity conditions are also satisfied. The most used regularity
conditions are (Bertsekas 1995) the: Linearity Constraint Qualification
(if gi and h; are affine functions, then no other condition is needed), Linear
Independence Constraint Qualification (the gradients of the active inequality and the
gradients of the equality constraints are linearly independent at the solution point) and
Mangasarian—-Fromovitz Constraint Qualification (the gradients of the active
inequality constraints and the gradients of the equality constraints are positive-linearly
independent at the solution point). The necessary conditions are sufficient, if the
problem is convex, namely the objective function is concave (maximization problem)
or convex (minimization problem) and the constraint set is also convex. In general,
though, the necessary conditions are not sufficient for optimality and additional
information is required, such as the Second Order Sufficient Conditions (SOSC). As
far as the methods that treat NLP problems are concerned, convex optimization
problems can be solved by the following contemporary methods: bundle methods,
subgradient projection methods, interior-point methods, cutting-plane methods,
ellipsoid method etc. (Hiriart-Urruty and Lemaréchal 1993, Boyd and Vandenberghe
2009). For nonconvex optimization problems several approaches are available, such
as extended bundle methods, branch and bound methods, evolutionary approaches etc.
(Bertsekas 2003, Boyd and Vandenberghe 2009).

2.3. Limit load and deformation analysis with mathematical

programming

The structural response in the general case involves a linear elastic and a plastic
part. The evolution of plastic behavior can be described following either a path-
independent or a path-dependent mathematical formulation. The first one includes

constraints of holonomic form, i.e. f(q,q,...q,,t)=0 depending only on the

coordinates g; of the system and time t, while the path-dependent behavior includes

non-holonomic constraints of the form f(q,,0,...q,,0,d,,...,,t) =0 that are also

velocity-dependent (Greenwood 2003). The path-independent plastic behavior,
denoted also as holonomic, assumes that any local unloading occurs along the load-
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displacement path (Fig. 2.1a) and the flow rule in that case is expressed in total
quantities (deformation theory). The nonholonomic behavior is depicted in Fig. 2.1b

and the flow rule includes rate quantities (flow rule theory) (Lubliner 2006).

==
~

=3
~—

holonomic non-holonomic
behavior behavior

P

moment
moment

rotation rotation

Fig. 2.1: a) Holonomic and b) nonholonomic consideration.

The treatment of structural analysis in the framework of mathematical
programming depends on the structural behavior (path-dependent (nonholonomic) or
independent (holonomic)), the constitutive laws (presence or absence of softening),
the presence of ductility limitations (limited displacements or/and deformations), the
approximation of the yield surface and the choice of the objective function.

For linearized yield criteria and rigid-perfectly plastic behavior, as well as
hardening behavior with unbounded plastic deformations, limit analysis can be cast as
a Linear Programming (LP) problem that is computationally advantageous. The use of
LP and its duality offer the supportive mathematical structure for the two theorems of
limit analysis, i.e. the static (lower bound) theorem and the kinematic (upper bound)
theorem. The first approaches the true load factor from below for statically admissible
trials that satisfy equilibrium and yield conditions, while the second determines an
upper bound of the load factor among kinematically admissible solutions that are
stressed within the yield limits (Jirasek and Bazant 2002, Wong 2009).

Incorporation of Linear Programming (LP) into limit analysis was introduced by
Fourier as stated by Prager and pointed out by Maier (1984). Charnes and GreenBerg
(1951) implemented LP for the ultimate state analysis of trusses. A finite element
approach to optimal design of plastic structures in plane stress was proposed by Maier
et al. (1972) formulating and mechanically interpreting both primal and dual

problems. Limit analysis for two- and three-dimensional structures using finite
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element procedures and linear programming techniques was also described and
discussed by Anderheggen and Knopfel (1972). Plane stress problems were addressed
by Zavelani (1973,1974) in the context of linear programming expressing the stress
vectors as linear nonnegative combinations of the vertices of the yield polyhedron.
This expression, denoted as vertex or corners formulation, resulted in a reduced
formulation of the yield condition and it was used for the optimal distribution of
thickness following static and kinematic approaches. The same yield expression was
used for the shakedown analysis of two- and three- dimensional structures with LP
initiating the primal and dual formulations of the problem (Corradi and Zavelani
1974). A variety of alternative mathematical programming procedures for limit
analysis of discrete structures described by piecewise linear (PWL) elastic-perfectly
plastic constitutive laws were formulated and compared with respect to their
computational merit by Maier et al. (1977). Franchi and Cohn (1980) presented also a
finite element formulation for elastic-plastic problems with mathematical
programming using a general software appropriate for structural plasticity by
mathematical programming (Franchi 1977). The effect of combined stresses on the
ultimate state of structures was addressed by Polizzotto (1975) and generalized by
Grierson and Aly (1980).

For the case of softening or hardening with limited ductility, the need of
complementarity condition emerges. This condition expresses mutually exclusive
situations in the form of an inner product of two nonnegative vectors that should be
zero. Its physical interpretation relies on the fact that simultaneous activation of
plastic deformation with strength reserves is meaningless. The consideration of
deformations for the complementarity condition generates the need for compatibility
relations. Thus, structural analysis is formed as an optimization problem with
constraints imposed by equilibrium, compatibility relations, yield and
complementarity conditions.

This extended formulation of structural analysis in the context of mathematical
programming was initiated by Maier and coworkers accounting for isotropic and
kinematic hardening/softening behavior and addressing both holonomic and non-
holonomic problems. Piecewise linearization of yield surface and constitutive laws
results in the linear expression of all relations. However, the complementarity
condition, triggered by the presence of softening, is of disjunctive nature and its

special treatment has raised the development of specific mathematical programming
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algorithms. A quadratic programming approach was used for structural analysis based
on piecewise linearized yield surfaces and multi-linear constitutive relations (Maier
1968, 1970, Capurso and Maier 1970). De Donato and Maier (1972) treated the
inelastic analysis of reinforced concrete frames with limited rotation capacity as a
Linear Complementarity Problem (LCP). This was further extended to a Parametric
Linear Complementarity Problem (PLCP) for the elastoplastic analysis of frames (De
Donato and Maier 1976). Alternatively, Maier et al. (1979) presented a Restricted
Basis Linear Programming (RBLP) formulation for the analysis of discrete structures
which is based on a LP procedure enriched with an additional rule for the enforcement
of complementarity relation at each pivotal step. Later, Kaneko and Maier (1981)
proposed a branch-and-bound technique and an iterative procedure for the optimal
design of truss structures under displacement and deformation constraints. Wakefield
and Tin-Loi (1990) adopted Kaneko’s formulation (1979) for the nonholonomic
elastoplastic analysis detecting non-uniqueness of deformation history. Incorporation
of nonlinear hardening laws in elastoplastic analysis led to the formulation of a
Nonlinear Complementarity Problem (NCP) that was solved at each loading instance
in the context of a stepwise holonomic approach (Tin-Loi and Pang 1993). Ferris and
Tin-Loi (1999) formulated the minimum weight design problem as a Mathematical
Programming with Equilibrium Constraints (MPEC) problem and via GAMS
modeling language proposed two algorithms for its solution, i.e. a penalty formulation
and a relaxation approach that treat appropriately the complementarity condition. The
latter was also used for limit analysis of frictional block assemblies (Ferris and Tin-
Loi 2001). The MPEC formulation -appropriately converted into a NLP problem- was
also adopted for i) the elastoplastic analysis of semirigid frames under quasistatic
loads and geometric nonlinearity consideration (Tangaramvong and Tin-Loi 2011), ii)
the ultimate load determination of structures with frictional contact supports under the
effect of stress interaction for nonholonomic and holonomic considerations
(Tangaramvong and Tin-Loi 2011, 2012) and iii) the post-collapse response of rigid-
perfectly plastic structures (Tangaramvong et al. 2011).

Limit load and deformation analysis including softening behavior was examined by
Maier et al. (1967, 1973). Tin-Loi and Xia (2001) formulated holonomic structural
analysis with nonlinear and piecewise linear softening behavior as a complementarity
problem and implemented it in PATH solver (Dirkse and Ferris 1995). Cocchetti and
Maier (2003) discussed softening behavior for elastic-plastic and combined limit load
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and deformation analysis in the framework of mathematical programming.
Tangaramvong and Tin-Loi (2007) used a Mixed Complementarity Problem (MCP)
formulation for both holonomic and nonholomic structural considerations and
compared their results for isotropic softening under the effect of combined stresses
(axial force-bending moment interaction). It was concluded that holonomic analysis is
sufficiently accurate for the case of monotonically increasing loading. Holonomic
analysis for softening behavior under combined stresses was also formulated as a
MPEC problem proposing various nonlinear programming based algorithms for its
solution (Tangaramvong and Tin-Loi 2008). A combined limit load and deformation
analysis method based on mathematical programming was proposed by Ardito et al.
(2008) appropriate to address also nonassociated flow rules and softening structural
behavior. Moreover, a “sifting” procedure was developed that reduces the size of
yield condition. A constrained non-linear system approach for structural analysis as a
MPEC problem was presented by Tangaramvong and Tin-Loi (2010), while the same
authors in a separate work incorporated geometric nonlinearity effects in
nonholonomic analysis with softening structural behavior (2010). More recently, the
analysis of softening frames was dealt as a RBLP problem by Mahini et al. (2014),
using a dissipated energy maximization approach (Mahini et al. 2013).

It is worth noting that the aforementioned enhancement of structural analysis was
driven and supported by the developments in mathematical programming that treated
properly complementarity problems. Lemke’s algorithm was one of them, appropriate
for LCP and Mixed LCP (Lemke 1965). Furthermore, the exploration of the
complementarity problem by Cottle (1972) directed the formulation of elastoplastic
analysis in the form of a LCP or PLCP, while Kaneko later proposed a reformulation
of this problem (1979). Tin-Loi and Tseng (2003) proposed a computationally
efficient method suitable for capturing the multiplicity of solutions of the LCP in
quasibrittle fracture analysis. From a mathematical standpoint, solution for LCP
remains an open issue (Hadjidimos et. al 2012). Dirkse and Ferris (1995) developed
the PATH solver, a software appropriate for Mixed Complementarity problems.
Furthermore, the development of algorithms appropriate for Mathematical
Programming with Equilibrium Constraints (MPEC) problems (Luo et al. 1996)
extended the potential of the proposed methods for structural analysis for both
holonomic and nonholonomic assumptions. The equilibrium constraints -that for

structural analysis problems are actually the complementarity constraints- fail to
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satisfy the Linear Independence Constraint Qualification (LICQ) or the Mangasarian—
Fromovitz Constraint Qualification (MFCQ), making the feasible region of the
problem nonconvex and not connected. Thus, the MPEC problem requires special
treatment and can be solved as a sequence of nonlinear programming problems
adopting approaches (Fukushima and Lin 2004), such as relaxation methods (Lin and
Fukushima 2005), smoothing formulations (Facchinei et al. 1999, Fukushima and
Pang 1999, Lin and Fukushima 2003, Yu and Pu 2011), the penalty function approach
(Huang et al. 2006, Lin and Fukushima 2003), the active-set identification method
(Fukushima and Tseng 2002), sequential quadratic programming (SQP) (Fletcher et
al. 2001, Jiang and Ralph 2000), the filter-SQP (Fletcher and Leyffer 2002) and
interior point methods (Liu and Sun 2002). It is worth noting that the aforementioned
methods provide local optimal solutions and therefore a variety of branch and bound
techniques has been proposed for global optimal solutions (Liu and Zhang 2002).

The approximation of the nonlinear yield surface is interlinked with the
enforcement of the mathematical programming technique appropriate for the
structural analysis and therefore deserves a special reference. The piecewise
linearization of the nonlinear yield surface enables the expression of yield condition
as a set of linear constraints. This kind of approximation offers computational
advantages either under the assumption of unlimited ductility allowing for the use of
LP or combined with any other mathematical programming approach. Hodge (1977)
initiated a method for automatic piecewise linearization of an arbitrary yield surface,
while Cannarozzi (1980) used a sequence of circumscribing polyhedra for the
approximation of the yield surface. Other methods were proposed by Wong and Tin-
Loi (1986), Tin-Loi (1990) and Ardito et al. (2008). More recently, methods for
approximating the yield surface with ellipsoids were proposed forming second-order
cone programming (SOCP) problems (Skordeli and Bisbos 2010, Bleyer and Buhan
2013) and semidefinite programming (SDP) problems (Martin and Makrodimopoulos
2008).

It is worth noting that the majority of the aforementioned formulations depends on
the piecewise linearization of yield surface and constitutive laws that allow for their
expression as linear constraints. Despite the computational advantages of this
linearization technique, the size of the problem is combined with the discretization,
restricting the applicability of these methods, especially for the case of large-scale
problems and/or fine discretization of the yield surface.
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3.1. Basic assumptions

The ultimate state of a structure under the assumption of rigid-perfectly plastic
behavior can be determined by using the lower and upper bound theorems of limit
analysis. The static limit theorem provides a lower bound of load factor that satisfies
equilibrium and yield condition. The kinematic static theorem determines an upper
bound of the load factor among all kinematically admissible solutions.

Plane frames are considered herein consisting of prismatic elements subjected only
to nodal loading for simplicity reasons. Moreover, small displacements are assumed to
establish equilibrium equations at the initial undeformed configuration. In addition,
plastic behavior, if present, is considered only at preselected critical sections, i.e. the
end sections of the elements, whereas the remaining parts behave elastically. Yield
conditions are appropriately linearized and the behavior of all critical sections is
considered rigid-perfectly plastic.

Matrix notation is adopted throughout. Matrices are represented by capital bold-

face letters, while vectors by lowercase bold characters.

3.2. Equilibrium of plane frames

Each plane beam element develops six stress resultants at its ends, as shown in Fig.
3.1. Herein, the axial force (s;), bending moment at the start node j (s} ) and bending
moment at the end node k (s}), are considered as independent primary actions for

member 1. Thus, the six end actions of the element can be expressed at the global
axes system in terms of the local basic actions by using the corresponding equilibrium

matrix as follows:

o i NN YR
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where FJ,F}, M are the global X and global Y forces and bending moment at the
start node and F,F;,M* are the actions at the end node of the element i at the

global system, @' is the angle formed rotating the global X-axis counterclockwise to

meet the local x-axis and L' is the element length, B' is the (6 x3) equilibrium matrix

of the element and s' is the (3 x1) stress vector of the element.

S

Fig.3.1: Frame element i with equilibrated stress resultants-end actions.

The equilibrium for the whole structure is then established in terms of the unknown

vector of stresses of all members as:

B-s=a-f+f, (3.2)

where B is the (n¢x3ne) structural equilibrium matrix, assembled by the
corresponding element equilibrium matrices arranged in a block diagonal manner, S

is a (3nex7) vector of all stresses in local systems, a is a scalar load factor, f the
(ngx 1) vector of nodal loading in the global system, f is the (n¢x7) fixed nodal load

vector, n, denotes the number of elements and n; the number of degrees of freedom.
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3.3. Deformation decomposition and compatibility relation

The deformations of a frame element i consists (Fig. 3.2) of the axial deformation
g, and the two end chord rotations q;,q; of the member. These in general consist of

an elastic and plastic part. Since structural behavior is herein considered rigid-
perfectly plastic, elastic deformations are not defined and the plastic ones are
considered developed along the normal to the yield surface (associative plasticity) at
the touching point moving on the surface for further plastic deformation (consistency

condition). Thus deformation decomposition for the entire structure is expressed by:
g=g+p=N-z (3.3)
where q is the (3ng x /) deformation vector, e and p are the (3ng x1) vectors of elastic

and plastic deformations respectively, N is the matrix which contains all normal-to
yield planes-vectors and is defined in detail in section 3.4.

Compatibility conditions relate the member deformations q' (Fig. 3.2) to the nodal

displacements u'. The compatibility condition for the whole structure is given as:
q=B"-usN-z=B"-u (3.4)

where and U is the (n;x/7) nodal displacement vector.

u;, u,: axial displacements of j and & nodes

v, v,: transverse displacements of j and k nodes

Fig. 3.2: Displacements and deformations of element i.
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3.4. Yield condition for multi-component interaction

3.4.1. Hyperplane equations - standard formulation

The nonlinear yield criterion is a priori linearized forming a polyhedron that
facilitates the expression of the yield condition as a set of linear constraints. The

elastic domain is denoted by the common space of all halfspaces in the form (Boyd

and Vandenberghe 2009):

where ais the unit normal vector of the hyperplane, s, is the vector of normalized

stresses and r, determines the offset of the hyperplane from the origin. The

geometrical interpretation of yield condition is presented in Fig. 3.3, where the

dimensionless quantity w, denotes the normalized reserve of the particular cross
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Fig. 3.3: Geometrical interpretation of yielding.

In this section, yield condition is defined as a set of a finite number of linear
inequalities, which geometrically represent the intersection of a finite number of
halfspaces and hyperplanes. In general, considering the interaction of d number of

stress resultants (d -component interaction) and the yield surface of dimension d is

>
n
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approximated with h hyperplanes, the yield condition for all critical sections of the

whole frame is formed in terms of stresses S as:

NT.s<r (3.6)

where N is the (3ng x 2hng) matrix of all scaled -with respect to yield capacities of
stresses- normal vectors and I is the (2hng x1) vector that includes the yield limits of
all yield hyperplanes (Maier 1970). Relation (3.6) is analyzed in detail for 2D (axial
force-bending moment) and 3D (axial-shear force-bending moment) interaction in

sections 3.6.2 and 3.6.3 respectively.

3.4.2. Convex hull formulation

3.4.2.1. Mathematical description

The convex hull of a set of points or vertices is the domain within and on the
envelope formed by the outer vertices. Mathematically a set C is convex if the line
segment between any two points in C lies in C, i.e., if for any x;, x, e C and any &
with 0 <0<1, 6x; + (1 — )X, € C. Furthermore, a point of the form

O -X+...+6,-x,, where g+...+6,=1 and 6 >0, i=1l..n, is a convex
combination of the points-vertices X,..., X, (Boyd and Vandenberghe 2009).

The convex hull of a set of points C (Fig.3.4a), denoted by conv C, is the set of all

convex combinations of points in C:

convC={gx +...+6,x % €C, 6=>0i=1.n, 6+..+6,=1(37)

where 6 are nonnegative coefficients and X,...,X, are the points-vertices. The

convex hull or convex envelope of set C is the smallest convex set that contains C
(Boyd and Vandenberghe 2009).

A convex polyhedron can be described either as a bounded intersection of a finite
number of closed half spaces, or as the convex hull of a finite number of points
(Luenberger and Ye 2008). In this work, the concept of convex hull is used to express

the linearized yield surface. For the case of 2D interaction, convex hull is outlined by

n, fixed vertices of known coordinates on the yield surface that form the

v
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corresponding vectors X; . Every stress vector sy is expressed as a linear combination

of the vectors that correspond to the specific vertices, provided that the sum of
nV

nonnegative coefficients €, i=1..n, equals to one [Z@l :1} This means that for
i=1

every critical section there are as many nonnegative coefficients 6, as the vertices of

the yield polyhedron (Fig. 3.4b). If the stress point reaches the yield limit, the
corresponding stress vector is expressed as a linear combination of the cone vectors of

the activated yield hyperplane (Fig. 3.4c). For the special case of only one coefficient

6. obtaining the value of unity, with all the remaining equal to zero, the stress point

coincides with the corresponding vertex of the linearized yield surface (Fig. 3.4d).
The concept of convex hull can be extended in d dimensional spaces engaging

points —vertices with d number of coordinates.

a) b) A
0,+0,+0,+0 +0,+6 =1 %,

c) &
0,+0.=1

Fig. 3.4: Stress vector expressed in terms of convex hull.
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3.4.2.2. Yield condition formulation

The a priori linearized yield surface constitutes a polytope that can be expressed as

the convex hull of its n, fixed vertices (Boyd and Vandenberghe 2009, Manola and

Koumousis 2015). Yield condition states that every normalized stress point should
reside in or on this yield polytope. Therefore, for j element end the following relation

n

holds s =0, % +..+6, - X, with Zﬁi =1 and 6 >0 and a similar one for k element
1

end. Thus, yield condition for the whole structure can be established in matrix form

as.

s;,-C-0=0, I_-6=1, 6>0 (3.8)

where s, is the (2dne x7) vector of the normalized stresses for all elements, C is the
(2dne x2nyng) matrix containing the coordinates of the vertices of all yield

hyperplanes for all elements, @ is the (2n,ne x1) vector including the coefficients 6.

for all vectors of the vertices n, for all the elements and 1, is the (2nei x2nyne;) matrix

that sums the corresponding 6 at every element end. Expression (3.8) is

particularized for 2D (axial force-bending moment) and 3D (axial-shear force-bending
moment) interaction in sections 3.6.2 and 3.6.3 respectively.

It is noted that yield conditions following a convex hull formulation (equation 3.6)
are expressed with strict equality constraints and their number (i.e. the number of
rows of the matrix relation) corresponds to the number of all critical sections
multiplied by the dimensionality of the interaction, i.e. 2dxng, and is independent of
the number of hyperplanes that approximate the nonlinear yield surface. It depends
though on the introduced (2nyngx7) vector @ which increases accordingly the

number of decision variables of the problem.

3.5. Limit analysis with Linear Programming

3.5.1. General primal-dual formulation

The primal—dual relationships of a general Linear Programming problem aiming at

maximizing or minimizing a linear objective function subject to a set of equality and
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gative variables or variables unrestricted in sign are

given by the following relations (Rao 2009):

Primal
n
Maximize f =) ¢;-x, st

i=1

Day-x;=h i=12,...m
=1

Zn:aij X, <b ,i=m+1m +2
j=1

where

x>0,i=12,..,n

and

X. unrestricted in sign,

i=n"+1Ln +2,...,n

Dual

Minimize v=)y,-b, sit.
i=1
Dyica=c;, j=n"+Ln"+2,...,n

i=1
,...,m Zl:yi-aijZCj,jzl,Z,...,n*

where 3.9
Y20, i=m+1Lm+2,...,m
and
y; unrestricted in sign,
i=12,...,m

Note that the primal problem is bounded from above by the dual, utilizing as many

variables as the number of constraints of the primal and establishing as many

constraints as the number of variables of the primal that bound the primal cost

coefficients. The solution of a LP problem can be obtained by solving either the

primal or the dual and since the dual of the dual is the primal, it is immaterial which

problem (minimization or maximization) is designated as primal.

3.5.2. Hyperplane equations (standard) formulation

The static theorem of limit ana

maximize
subject to

lysis can be stated in the form of a LP problem as:

(94

—B-s+a-f=-f; n, constraints
T (3.10)
N -s<r 2hn,, constraints

s:unrestricted,a>0

where the decision variables are the stresses S and the load factor a.

Based on the above, the dual problem, which represents the kinematic theorem, can

be readily obtained as:
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minimize —f/-u+r’.z
subjectto —B"-u+N-z=0 3n, constraints

; _ (3.11)
flu>1l 1 constraint

u:unrestricted,z>0

where the decision variables are now the nodal displacements u and the plastic
multipliers z . The objective function expresses the dissipated plastic energy (r'z)

minus the work of permanent loading (f, u). This emerges from the work equation

af Tu+ f/u=r"z (external work rate is equal to the internal dissipation). The first

constraint set represents compatibility and the inequality constraints a normalized
external work term, which can be considered as a strict equality avoiding a floating
normalization. In this case the objective function expresses the loading factor a.

It is noted that the number of constraints of the dual problem is smaller compared
to that of the primal. It is known that an additional constraint requires more
computational effort than an additional variable in a linear programming problem
(Rao 2009). Thus, it becomes evident that, although the primal static or safe theorem
is from an engineering perspective preferable, computationally is more efficient to
solve the dual problem (kinematic theorem) following the standard formulation.

3.5.3. Convex hull formulation

Formulation of the static theorem of limit analysis using a convex hull description

for the yield surface is given as:

maximize «

subjectto —B-s+a-f =—f;, n, constraints
T.s-C-60=0 2dn,, constraints (3.12)
I,-6=1 2n,, constraints

s:unrestricted,#>0 ,a>0

where the decision variables of the problem are the stresses s, parameters # and the
load factor a.

The dual problem (kinematic theorem) can be cast as:
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minimize - f/-u+1"-@
subjectto —B"-u+T"-@=0  3n, constraints
-C-w +I;q @20 2n,n, constraints (3.13)

fl.u>1 1 constraint

u,@,p unrestricted

where the unknown variables are now the nodal displacements u, together with e and

@ which express plastic work. The objective function concerns the internal dissipation

energy (IT -¢:Z¢) minus the work of permanent Ioading( deu). This emerges

from the work equation af "u+ fju=1"7¢ (external work rate is equal to the internal

dissipation). The first constraint set represents compatibility conditions with T" -@
determining plastic deformation; the second set of the inequality constraints is the
dual expression of convex hull for plastic deformations and the last concerns a
normalized external work term, which again can be interpreted as a strict equality.

It is noted that the number of constraints for the dual problem is significantly
greater compared to that of the primal. Thus, it is evident that the static theorem,
which is of primal interest in engineering, turns out as computationally more efficient

following the convex hull formulation.

3.5.4. Comparison of the two formulations

Convex hull formulation determines yield condition as a set of equality constraints,
the number of which is independent of the discretization of the yield surface. The
number of variables though is increased as compared to the standard formulation

since parameters 6, are introduced. For the general case of piecewise linearization of

a yield hyper-surface with h hyperplanes and n, number of vertices, the comparison
between standard and convex hull formulation is summarized in the following table
(Table 3.1). Since for multi-component interaction (d > 2) the number of vertices n,
is noticeably smaller than the number of hyperplanesh, convex hull formulation
becomes considerably advantageous in terms of computational efficiency in

expressing the yield condition.
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Table 3.1: Comparison between standard and convex hull formulation.

_ Standard Formulation | Convex Hull Formulation

Number of variables N 5, 3ng+1 3Ng+2n,ng+l

Number of equality

+ 2-(d+
constraints n eq Ny Ne+2:(d+ ng
Number of inequality
. 2hn el —
constraints Njng
Number of side constraints
2:(3ng +1) 2'(3n el 2Ny Ng +1)

(upper and lower bounds)

3.6. Yield condition for 2D and 3D interaction

3.6.1. Yield criterion

Various vyield criteria have been proposed for different materials and/or cross-
sectional shapes that incorporate the interaction of all stresses. Herein, two
alternatives are examined, i.e. axial force-bending moment (NM) interaction and
axial-shear force-bending moment (NQM) interaction.

For the case of axial force-bending moment (NM) interaction the stress state at
each element section is depicted in Fig. 3.5a. Since interaction diagrams are expressed
in normalized form, the yield condition for each critical section is also expressed in
terms of nondimensional stresses, normalized with respect to the corresponding

plastic capacities. Thus, at every element i, plastic behavior is described at start node j

. i mill _fei/ei oi ol T
by the normalized stress vector {n m } —{sl/sly sz/szy} and at end node k by
K kT (il AR j j K ok . .
{n m‘} ={=si/si, si/si | where ni, m’ and n*,m" are the normalized axial

forces and bending moments of j and k element ends, whereas sliy is the axial

plastic capacity for both ends, s,,, s;yare the bending moment plastic capacities of

J and K element ends respectively. The stress state under the combined effect of
axial-shear force-bending moment interaction (NQM interaction) at each element
section is depicted in Fig. 3.5b. In terms of normalized stresses, plastic hinges at start

nodes j are formed under the combined effect of
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ot o] <

Sty (S£+S§,)/L‘v‘y s‘z/sizy}T and at end node k due to
{n" % m"}Tz{—s{/siy —(si2+si3)/l_iv;, sig/sgy}T,where v!,v¥ are the normalized

shear force at element ends jand k respectively, v‘y is the shear force yield limit of

the element, and L' is the element length.

Notice that different capacities can be considered for the two element ends to
account also for concrete elements with constant cross section, but different bar
reinforcement at the two ends. Thus, yielding at the two critical end sections of the
element will be expressed with respect to the three primary element actions; with the
minus sign at end k expressing the pre-established equilibrium within the element

along the local x and y direction.

Fig.3.5: Stress state at element critical sections for a) NM and b) NQM interaction.

In this work, the Gendy-Saleeb yield criterion including the combined effect of

axial force and bending moment is employed (Gendy and Saleeb 1992):

don?rtm?_1 (3.14)
A

The above yield relation is valid for both rectangular and I-cross sections. The
introduced shape dependent parameter A, is evaluated for rectangular cross sections

and I-sections respectively using the following relations:

dn =1—n?, Jpy=1—1.1|n| (3.15)
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The interaction curve of equation is approximated in the sequel with eight linear

segments that denote the corresponding yield limits, as shown in Fig. 3.6.
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Fig.3.6: Linearized Gendy-Saleeb yield criterion for NM interaction.

Including the effect of shear force, the adopted yield criterion is of the form (Gendy

and

The

Saleeb 1992):

d=n?+v2+tm?o1 (3.16)
Am

aforementioned relation is represented by a 3D nonlinear surface which is herein

approximated using 32 plane triangles, as shown in Fig. 3.7.

Normalized bending moment

. a) b) ¢)
: i 1
g
8 g
£ &
2 1 ]
g 3
-l T 0- G ol
2 T
2 X
2 2 =
E £
g zZ
- Z
Hofe
afidudeg S
1 T e ey [ O L L e e s S e B E N B -1 i
N 0 a 0 1 Norm, ; 1 0 A -1 0 Bl
Ormaljy, alize
alize & B ; : zeq ; ; i :
choss o d Normalized axial force B Shegy Normalized axial force B Normalized axial force 1
h
shea force
I force v Ice )

Fig.3.7: a) Nonlinear Gendy-Saleeb yield criterion, b) Linearized yield criterion and

c) Plan view of linearized criterion.
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3.6.2. Axial force-bending moment (NM) interaction

The equations of the linear segments (h=8 in Fig. 3.5) approximating the yield

surface for both element ends are of the form:

Al.nl+Bl.m! =C!

N ~ ~ (3.17)
A“.n* +BX.mk =C*

where the coefficients A’, B!, AX, B* are the components of the unit normal vector of

each yield line for j and k element ends and coefficients C!,C* form the yield

limits. For an element i the yield condition is expressed in matrix form as:

Aij Blj 0lr _ C~11'

S / .0 0|
AR 0 Sty S
eg 8 ~ M 0 i O M S;
A0 B Syy :

N 0 0 }/i :
Ao B %y | ‘

IN
O On ...

B ox oo,

O

(3.18)

NT.-R.ss<rife NT.si<r!

where N'is the (3x16) matrix that contains the horizontal and vertical components,

i.e. the direction cosines, of the unit normal of all yield lines for both element ends,
R'is the (3x3) matrix that contains the yield capacities of all stresses of the element,
N' is the (3x16) matrix of the scaled coefficients of all yield lines of the element and

r'is the (16x1) vector that contains all C!,C* coefficients (Appendix A). Thus, in

equation (3.6) N is the (3nex16ne) assembled block diagonal matrix of all N

T
matrices and r = {rl...r”E' } is the (16ng < 1) vector that includes the yield limits of all

yield lines.
For convex hull formulation and NM interaction, the number of vertices coincides

with that of the linear segments (n, =h=8 in Fig. 3.6). Yield condition in terms of

convex hull is expressed for j element end by the following relations:
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i
{n }:911 {Xl}+9;{xz}+...+98j{xs}<:>
m’ Y1 Y, Ye

6,
i i
{n}_[x1 X, .. xg] 6% ={O}’ (3.19)
m’ Vi Yo o Vg : 0
6,

with 1707 =1, where@™ ={0/ 6} .. 6/}>0

where (x.,Y;), i=1..8 are the coordinates of the vertices of the linearized yield
surface common for all critical sections and @’ is the (8x1) vector of coefficients 6,
for J element end. Similarly, yield condition is expressed for k element end.

Thus, expressing the normalized stresses as s, =T -S, matrices and vectors in
equation (3.8) are of the following form:

T . L . . s . . T
sd:{si...sgﬂ} =(n,x1), sy={si/sl, si/s;, -si/si, sy/si

/sy, 0 0
, 0 i 0
T:diag[Tl...T“e']:(4nel><3ne,), T'= i Yy ,
-1/s;, 0 0
0 0 s,
C =diag[C..C™ | =(4n, x16n,)
X .. X% 0 .. 0
ciof¥ ¥ 0 . 0
0 .. 0 X .. X
0 .. 0 vy ..y
0={6..6,| =(6n,x1), 6,={61 6",
I, =diag[l;,...1721=(2n, x16n,), (3.20)

Ii_1...10...0
a0 .. 01 .1
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3.6.3. Axial-shear force-bending moment (NQM) interaction

The 3D nonlinear yield surface is approximated with h=32 plane triangles

(Fig.3.7) corresponding to the same number equations for the corresponding planes in

Nn—Vv—m space, which are of the following form for the two element ends:

Anl +Bivi+Cim + D/ =0
Anf + B +Cm* +D¥ =0

(3.21)

where A, B,C are the components of the unit normal vector of the plane and -D is

the distance of the plane from the origin. For an element i the yield condition is

expressed in matrix form as:

AIJ BlJ C:ZLJ
A B C
0 0 0
0 0 O

i

0

0

¢k | _/_
. S

1

0

0

0

0

y
o,
0

0
S,
; 0

0

S,

NT-R.s<re NT.sh<rf

IA

(3.22)

where N'is the (6x64) matrix that contains the coefficients of all yield planes for

both element ends, R'is the (6x3) matrix that contains the yield capacities of all

stresses of the element, N' is the (3 x64) matrix of the scaled coefficients of all yield

planes of the element and r'is the (64x1) vector that contains all —D',—D*

coefficients (Appendix B). Thus, in equation (3.6) N is the (3ng x64ne) assembled

: T
block diagonal matrix of all N' matrices and r = {rl...r”e' } is the (64n¢ x1) vector

that includes the yield limits of all yield planes.
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For convex hull formulation and NQM interaction, the number of vertices is
n, =18 (Fig. 3.7), while the number of planes is h=32. The number of vertices is
significantly smaller than that of the planes (n, <h). Yield condition in terms of

convex hull is expressed for j element end by the relations:

nJ Xl XZ XlB
v’ :‘911 Y1 'ngj Y, +'-'+‘91{3 Yis ( <
mJ Zl Z2 ZlS

_ o)
NI X X | ][0

j 02
Vie=tY Yo o Vg | (T O (3.23)
m! . 7, - 1 - 0

1 2 18 0118

with 1767 =1, where@" ={¢} 6] .. 6}}>0

where (x;,Y,,z ), i=1...n, are the coordinates of the vertices of the linearized yield
surface, common for all critical sections of all elements, and @’ is the (n,x1) vector

of coefficients 6, for j element end. Similarly, the yield condition is expressed for k

element end.
Thus, matrices and vectors in equation (3.8), given that the normalized stresses are

expressed as s, =T -s, are of the following form:
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53 = {s5...5¢" }T = (6n,, x1),

= (/s (/L /s, s, S s/ ss)

T =diag[T*...T™ |=(6n, x3n,),

% .0 0o - %i 0 0
Siy Siy
TTi = 0 }/i i }/i 0 _}/i i O
Lv, Syy v,
0 iy, 0 0 - iy i
%Vy %Vy %Sy_

C =diag[C"...C™ | =(6n, x36n,),

X, .. X3 O 0
Vi Yig 0 0
Ci — Zl Z18 0 0 ,
0 . 0 % .. X
0 0 v Yis
| 0 0 1z Zg

0=1{6..6, ) =(36n,x1), 6,=(6) 6",

qu = diag[liq”'lgel] = (znel ><‘?’6nel)y

q
. {1 .10 .. o}
eq:
0 ..01 .1 (3.24)

It is noted that the introduced vector € depends on the number of vertices n, of

the yield polyhedron, which for 3D interaction is considerably smaller than the
number of yield planes h. This makes convex hull formulation more advantageous
compared to the standard one for the expression of yield condition including the
interaction of three or more stresses, since the constraint reduction is greater than the

introduced number of variables.



Chapter 3 Limit analysis for plane frames: A convex hull formulation

3.7. Numerical examples

The optimization problems described above are implemented in Matlab code for
the analysis of frame steel structures with rigid-perfectly plastic behavior. The data
are processed by linprog solver that is appropriate for linear programming problems.

The aim is to compare the two formulations for the yield condition and investigate
the influence of combined stresses on the ultimate load. For this purpose, four steel
plane frames are examined for the following cases:

e Case (a): Bending.
e Case (b): Axial force-bending moment interaction (NM interaction) with
1) standard formulation and 2) convex hull formulation.
e Case (c): Axial-shear force-bending moment interaction (NQM interaction)
with 1) standard formulation and 2) convex hull formulation.
For case (a) the formulation of the problem is simplified since yield constraints
consist of upper and lower bounds (side constraints) for the values of bending
moments and matrix N is not required.

All analyses are conducted on a PC with a Core Duo Quad CPU and 4GB of RAM
and the results of all cases are presented below. Notice that the analysis method
follows the sign convention of matrix structural analysis, whereas final results are

presented on the basis of engineering sign convention.

3.7.1. Example #1

The first example concerns a three-storey, two-bay steel frame shown in Fig. 3.8a.
The frame is discretized into 15 elements, 12 nodes and 27 degrees of freedom. The
steel grade is $235 with E=2x10°kN/m? The material properties are as follows:
sections with 4=112.5x10™ m?, 1=18260x10° m*, s,,=2643.75 kN, v,=505.4 kN,
Soy=325 kNm, s3,=325 kNm are employed for all columns, sections with
A=28.48x10" m? I=1943x10"® m*, $,,=669.28 kN, v,=189.89 kN, s,=51.84 kNm,
s3,=51.84 kNm for all beams. Analysis results of all cases are presented in Table 3.2.
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Fig. 3.8: a) Three-storey, two-bay steel frame and b) its deformed shape for all analysis

cases.

Table 3.2: Analysis results of all cases for example #1.

Bendin NM inte':’la'\:tion NQM int':r(egll\t/:on
g interaction interaction
Cases Convex Hull Convex Hull
(@) (b1) (b2) (1) (c2)
number of variables n 5, 46 46 286 46 586
number of equality
. 27 27 117 27 147
constraints N ¢
number of inequalr
qualty _ 240 _ 960 _

constraints N g

maximum load factor a (kN)| 33.27 32.42 32.42 30.40 30.40

number of plastic hinges 15 15 15 15 15

total computational time (5) 0.40 0.59 0.56 8.88 0.59

computational time for the

L 0.38 0.56 0.48 0.87 0.51
optimization process (S)

The effect of combined stresses leads to a reduction of the maximum load factor
compared to pure bending consideration. For cases of combined stresses ((b) and (c))

expressed either with equations of lines/planes or with convex hulls, analysis results
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are identical. However, the convex hull formulation converges slightly faster (1.05
times) for case (b) and 15.05 times faster for case (c). This concerns the total
computational time including both matrix formulation and optimization procedure.
The required time for the mere optimization procedure is shown at the last line of
Table 3.2. According to this, the optimization problem with convex hull formulation
is solved 1.17 times faster for case (b) and 1.71 times faster for case (c). This is due to
fewer constraints, while the greater number of variables seems to have slight influence
on the computational efficiency. The benefits of convex hull formulation are mainly
evident for case (c), because the number of constraints is independent of the number
of planes of the 3D linearized vyield surface, whereas the number of the initiated
variables is related to the number of vertices of yield polyhedron (n,<h).

The plastic hinge pattern (i.e. number and location) is the same for all analysis
cases, although they correspond to similar stresses, as shown in Fig. 3.8b. The
corresponding interaction diagrams are presented in Fig. 3.9 and Fig. 3.10. The frame
iIs mainly stressed due to bending moment (the dispersion of stress points is wider
along the bending moment axis).
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¥ : column cross sections (end nodes) o : beam cross sections (end nodes)

Fig. 3.9: Interaction diagrams for a) pure bending and b) NM interaction.
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Fig. 3.10: Interaction diagrams for NQM interaction.

3.7.2. Example #2

The second example concerns the three-storey, four-bay plane frame, shown in Fig.
3.11, which is subjected to increasing lateral and fixed vertical loading. The frame is
discretized into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is
S235 with E=2x10°kN/m®. Sections with A4=112.5x10" m?, I1=18260x10° m",
$1y=2643.75 kN, v,=505.4 kN, spy=325 kNm, s3=325 kNm and sections with
A=62.61x10"*m? I=11770x10"° m*, 5;,=1471.34 kN, v,=418.06 kN, s5,=189.01 kNm,
s3y=189.01 kNm are employed for all columns and beams respectively. Analysis
results of all cases are presented in Table 3.3.

The maximum load factor attains its greatest value for pure bending consideration
and the smallest for NQM interaction. Results of convex hull formulation (cases (by)
and (cy)) are the same (values of variables and collapse mechanism) with those of
cases (bi1) and (c;) correspondingly. However, convex hull formulation converges in
1.14 times less time for case (b) and 14.92 times faster for case (c), taking into

account the required time for both matrix formulation and the optimization procedure.
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In terms of time of mere optimization process, convex hull formulation converges
1.20 times faster for case (b) and 2.45 times faster for case (c), due to the presence of

significantly fewer constraints.
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I ™ I T | I i I I
Fig. 3.11: Three-storey, four-bay steel frame.
Table 3.3: Analysis results of all cases for example #2.
_ NM _ NM NQM _ NQM
Bendlng int tion interaction interaction Interaction
Cases INTraction | convex Hull Convex Hull
(@) (by) (b) (C1) (c2)
number of variables n ., 118 118 742 118 1522
number of equality
. 81 81 315 81 393
constraints N ¢
number of inequalr
qualty — 624 — 2496 —

constraints N jng

maximum load factor a (kN)| 117.69 108.33 108.33 95.29 95.29

number of plastic hinges 26 33 33 34 34

total computational time (s) 0.40 0.66 0.58 11.49 0.77

computational time for the

o 0.38 0.61 0.51 1.59 0.65
optimization process ()
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Collapse mechanisms (number and position of plastic hinges) is also affected by
the assumed interaction of stresses. For case (a) fewer plastic hinges are formed that
reach their yield limit due to bending moment, as shown in Fig. 3.12. Plastic hinge
patterns for cases (b) and (c) are shown in Fig. 3.13a and Fig. 3.14a . The role of
bending moment is dominant for all cases. However, the effect of axial force is
evident at column cross sections that yield under the effect of combined stresses (Fig.
3.13b), while they reside in the elastic region for pure bending consideration (Fig.
3.12b). Moreover, the effect of shear force for some beam and column cross sections

is more intense than that of axial force, as shown in Fig. 3.14d.
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@ :plastic hinge of negative moment « : column cross sections (end nodes) o : beam cross sections (end nodes)

Fig. 3.12: a) Plastic hinge pattern and b) interaction diagram for pure bending.
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Fig. 3.13: a) Plastic hinge pattern and b) interaction diagram for NM interaction.
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Fig. 3.14: a) Plastic hinge pattern and b), ¢) and d) views of the interaction diagram for NQM

interaction.

3.7.3. Example #3

The third example concerns the six-storey, four-bay plane frame, shown in Fig.
3.15, that is subjected to increasing lateral and fixed vertical loading. The frame is
discretized into 78 elements, 59 nodes and 162 degrees of freedom. The steel grade is
$235 with E=2x10°kN/m® Sections with A=197.5x70™* m? 1=86970x/0° m®,
S1y=4641.3 kN, vy=1013.24 kN, s,=928.02 kNm, s3,=928.02 kNm and sections with
A=84.46x 10" m?, 1=23130x10°® m", s,=1984 kN, v,=579.22 kN, $5,=307.15 kNm,
s3y=307.15 kNm are employed for all columns and beams respectively. Analysis

results of all cases are presented in Table 3.4.
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Fig. 3.15: Six-storey, four-bay plane steel frame.

Table 3.4: Analysis results of all cases for example #3.

_ NM _ NM NQM _NQM
Bendlng int tion interaction interaction Interaction
Cases interac Convex Hull Convex Hull
(@) (by) (b) (C1) (C2)
number of variables n ., 235 235 1483 235 3043
number of equality
. 162 162 630 162 786
constraints N ¢
number of inequalr
. qualty — 1248 — 4992 —
constraints n g
maximum load factor a (kN)| 71.00 67.26 67.26 59.25 59.25
number of plastic hinges 53 58 58 58 58
total computational time (s) 0.42 0.89 0.76 18.92 1.10
utational time for th
SO 10 12 0.40 0.79 0.67 2.39 0.90
optimization process (s)
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The axial-shear force-bending moment interaction corresponds to the lowest value
of the maximum load factor and pure bending consideration to the greatest, as
expected. Analysis results of standard and convex hull formulation are identical for
both NM and NQM interaction. The computational efficiency of convex hull
formulation is evident, since the solution is obtained 1.17 times and 17.2 times faster
for cases (b) and (c) respectively. This concerns the total computational time
(formulation of the required matrices and optimization process), while the mere
optimization procedure of convex hull formulation is 1.18 times faster for case (b) and
2.66 times for case (c).

The plastic hinge pattern (number and location) differs for pure bending and
combined stresses, as shown in Fig. 3.16. Fewer plastic hinges are formed for case (a)
that reach their yield limit due to bending moment. The effect of combined stresses is
evident at the yielded column cross sections (Fig. 3.16b) that under pure bending
consideration remain elastic. The corresponding interaction diagrams are presented in
Fig. 3.17. The frame is mainly stressed due to bending moment (the dispersion of

stress points is wider along the bending moment axis) for all cases.
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Fig. 3.16: Plastic hinge patterns for a) pure bending and b) NM and NQM interaction.



Limit load and deformation analysis for frame structures with mathematical programming

a) b)
1F * o 1
*
& ¥ * &
) ¥ )
i * :
% 0 '..ﬂ * b3 0
wn o "
Il * Il
E # * E
* *
£ g
-1+ * -1
d
P
gt ‘ *
# *%r
= *%
- 7 *
< 3T
ﬁ: e * b
E g
Y 0 FF
& i
? p
*
& *1
0.4 %
-1 |
-1 0 1
n=s/s,,
e) f)
: T % :
i * i
& ; o i
w H W :
A ™ jt \
;{ ------ e f :
-~ =2 - * /
+N 0 - ¥ : E“]‘ ; * ¢ 1
e w H | H
~ \ N # :
L B E z e
LA
.
E | S E
i ¥ i
-1 ; : : -1- . - ;
1 0 ' 1 I ' ' i

* : column cross sections (start nodes)
# : column cross sections (end nodes)

n=s/s,,

0
v=(s,+s,)/Lv,

o : beam cross sections (start nodes)
@ : beam cross sections (end nodes)

Fig. 3.17: Interaction diagrams for all analysis cases.
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3.7.4. Example #4

The fourth example concerns the six-storey, four-bay plane frame, shown in Fig.
3.18, that is subjected to increasing lateral and fixed vertical loading. The frame is
discretized into 73 elements, 56 nodes and 153 degrees of freedom. The steel grade is
S235 with E=2x10°kN/m® Sections with A=197.5x70™* m? 1=86970x/0° m?,
S1y=4641.3 kN, v=1013.24 kN, 5,=928.02 kKNm, s3,=928.02 kNm and sections with
A=84.46x 10" m?, 1=23130x10°° m", s,%=1984 kN, v,=579.22 kN, $,=307.15 kNm,
$3,=307.15 kNm are employed for all columns and beams respectively. Analysis

results of all cases are presented in Table 3.5.
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Fig. 3.18: Plane steel frame, example#4.

It is evident that multi-component interaction yields reduced load factors compared
to pure bending consideration. Results of convex hull formulation (cases (b)) and (c5))
are the same (values of variables and collapse mechanism) with those of cases (b,)
and (c;) correspondingly. However, the standard compared to convex hull formulation

requires more computational time, i.e. 1.03 times for case (b) and 12.67 times for case
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(c). In terms of time of mere optimization process, the corresponding values are 1.05
and 2.26 times.

Table 3.5: Analysis results of all cases for example #4.

NM NQM
Bending int NMt. interaction | . tNQ'\t/! interaction
Cases tnteraction | o vex Hull | "MEECHON | e onvex Hull
(@) (b1) (bo) (c1) (c2)
number of variables n 5, 220 220 1388 220 2848
number of equality
. 153 153 591 153 737
constraints n ¢
number of inequali
. qually — 1168 — 4672 —
constraints n jnq
maximum load factor a (KN)| 43.26 40.92 40.92 36.29 36.29
number of plastic hinges 49 51 51 52 52
total computational time (S) 0.41 0.94 0.91 15.59 1.23
computational time for the
Loue 0.39 0.87 0.83 2.21 0.98
optimization process (s)
a) 7557 75617 b)l | P
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DO e 40722 4T oR8 w4202 S *%
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© : positive plastic hinge
@ : negative plastic hinge

% : column cross sections (start nodes)
« : column cross sections (end nodes)

o : beam cross sections (start nodes)
o : beam cross sections (end nodes)

Fig. 3.19: a) Plastic hinge pattern and b) interaction diagram for pure bending.
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The interaction of stresses affects also the collapse mechanisms (number and
position of plastic hinges). For case (a) fewer plastic hinges are formed that reach
their yield limit due to bending moment, as shown in Fig. 3.19. Plastic hinge patterns
for cases (b) and (c) are shown in Fig. 3.20a and Fig. 3.21a . The role of bending
moment is dominant for all cases. However, the effect of axial force is evident at
column cross sections that yield under the effect of combined stresses (Fig. 3.20b, Fig.
3.22a), while they reside in the elastic region for pure bending consideration (Fig.
3.19b). Moreover, the effect of shear force for some beam and column cross sections

is more intense than that of axial force, as shown in Fig. 3.22b.
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O : positive plastic hinge % : column cross sections (start nodes) e : beam cross sections (start nodes)
@ : negative plastic hinge « : column cross sections (end nodes) o : beam cross sections (end nodes)

Fig. 3.20: a) Plastic hinge pattern and b) interaction diagram for NM interaction.
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Fig. 3.21: a) Plastic hinge pattern and b) interaction diagram for NQM interaction.
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Fig. 3.22: Plan views of NQM interaction diagram.

3.8. Concluding remarks

In this chapter limit analysis is treated in the framework of mathematical
programming introducing a convex hull formulation for the yield condition for both
static and kinematic theorems.

The yield polyhedron is usually considered as the intersection of a finite number of
halfspaces and hyperplanes, according to the standard formulation. This is expressed
by a set of inequality constraints, the number of which depends on the number of
hyperplanes. Alternatively, a convex hull formulation expresses the yield condition in
the form of a linear combination of the vectors corresponding to all vertices that
define the a priori linearized yield hypersurface. This leads to a set of equality
constraints, the number of which depends on the dimensionality of interaction and
thus independent of the number of the yield hyperplanes. However, the number of
variables is increased compared to the standard formulation, since nonnegative
coefficients @ are introduced. The two yield formulations generate the corresponding
static (primal) LP problems that differ in the number of variables and vyield
constraints. These are compared in terms of their computational efficiency for axial
force-bending moment (NM) and axial-shear force-bending moment interaction
(NQM). Moreover, the dual kinematic theorem is stated following the two alternative
formulations for the yield conditions and the features of the dual problem are
compared and discussed.
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The presented numerical examples prove that convex hull formulation requires
significantly less computing time compared to the standard one for both cases of
interaction. More specifically, for NQM interaction the computational efficiency of
convex hull formulation corresponds to a more than 15 times reduction in computing
time. This concerns the total computational time including both matrix formulation
and optimization procedure. In terms of time of the mere optimization process,
convex hull formulation converges almost 2.5 times faster compared to the
hyperplane (standard) formulation. This is due to fewer constraints since the convex
hull formulation is independent of the number of planes that approximate the
nonlinear yield surface, contrary to the standard approach. Moreover, the increased
number of variables for convex hull formulation is associated with the number of
vertices, which is noticeably smaller compared to the number of planes for the case of
3D interaction. Thus, convex hull formulation favors the conservative static theorem
expressing advantageously multi-component interaction, enabling also finer
discretization of the nonlinear yield surface.

Convex hull formulation results more efficient in analyzing the effect of axial
force-bending moment (NM) and axial-shear force-bending moment (NQM)
interaction on the ultimate load and collapse mechanism of a structure. The combined
stresses generally correspond to reduced maximum load factors and to collapse
mechanisms with more plastic hinges, compared to bending consideration with no
interaction, and thus their effect should be taken into account for safer structural

design.
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4.1. Basic assumptions

Limit analysis determines the ultimate load of a structure under equilibrium and
yield constraints, whereas deformation analysis refers to restrictions imposed by
compatibility relations. These constraints together with complementarity conditions
form a mathematical programming problem that aims at the maximization of the load
factor that a structure can sustain. The fundamental relations that describe the problem
are discussed in detail in the following sections.

The entire formulation is based on the following assumptions. Plane frames consist

of N, straight prismatic elements, with n; nodal degrees of freedom subjected only to

nodal loading for reasons of simplicity. Frame displacements are assumed small
enough so that the equilibrium equations refer to the initial undeformed configuration.
Plastic hinges are considered formed only at critical sections, i.e. the end sections of
the elements, whereas the remaining parts behave elastically. The nonlinear inelastic
behavior at critical sections is described by a multi-linear model and yield conditions
are beforehand appropriately linearized. The cases of axial force-bending moment
(NM) interaction and axial-shear force-bending moment (NQM) interaction are
examined. Euler-Bernoulli or Timoshenko beam theory accounting for shear
deformation effects is considered offering accurate stresses for regular and deep
sections respectively. In both cases comparatively large shear forces may be induced
that should be taken into account in the strength interaction. Apparent softening
behavior (caused by local buckling, lateral-torsional buckling or by the semi-rigid
nature of some steel connection types) is incorporated. Furthermore, under the
external loading, if local unloading occurs, is assumed happening along the load
displacement path and not as elastic unloading, adopting a holonomic, i.e. path-
independent structural behavior. Although this is a simplified assumption, especially
for the case of softening behavior, it can be considered reasonable for monotonically
increasing external actions (Donato and Maier 1976, Tangaramvong and Tin-Loi
2007, 2008). Moreover, isotropic hardening is adopted, which under holonomic
assumption and monotonic loading yields satisfactory results. For cyclic loading
though, kinematic hardening is more appropriate and definitively closer to real
behavior of steel structures.

The formulation of the problem requires treatment at three different levels, i.e. the

level of critical cross sections, the element level and the structural level. All final
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equations are expressed in dimensional form at the structural level. The yield
conditions, though, are first introduced in nondimensional form. Moreover, the
method follows the sign convention of matrix structural analysis, whereas final results

are presented on the basis of engineering sign convention.

4.2. Equilibrium of plane frames

It is reminded that the structural equilibrium relationship for the whole structure is

established as:
B-s=a-f+f, 4.1)
which is analytically defined in Chapter 3, section 3.2.

4.3. Compatibility condition

For small displacements considered in this work, the relation between the member
deformation q' in the local system and the nodal displacements u' at global axes

system is given as:

qi — BiT 'Ui (42)

. . . AT . .
where q' ={qi a5 q'3} , ¢ and q, are the axial deformation and the rotation of

the chord at the start node j and qé is the rotation of the chord at the end node k of

k

the member, u' :{uJ viogl ouk WK e"} is the vector of nodal displacements

expressed at the global coordinate system containing the global X and global Y
displacements and rotations of start node j and end node k respectively. The (3x1)
vector q' determines directly the deformation state of the element and dictates the

selection of the primary end actions in the equilibrium relation (4.1).
The compatibility condition for the whole structure is then given by the following

linear compatibility relation:
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q=B"-u (4.3)

where q is the (3ng x1) deformation vector of the structure and U is the (n¢x/) nodal

displacement vector.

4.4. Constitutive relations

The constitutive relations that govern the behavior of an element in the elastic and
inelastic regime are based on the decomposition of deformation into an elastic and

plastic component. For each element this is expressed as:
q'=e'+p (4.4)
where €' is the (3x1) element elastic deformation vector and p' is the (3x7) element

plastic deformation vector.

The elastic part is fully described by the relation:

si| |EA/L 0 0 e
sst=| 0 4E1I/U 2EI'/U"|[-{ebl or s'=8l.¢ (4.5)
s} 0  2EI'/L' 4EI'/LU'| |€}

where E is the modulus of elasticity, A’ is the area of the element cross section , 1" is

the moment of inertia of the element, e, e, are the elastic axial deformation and
rotation of the chord at the start node | ,eé is the elastic rotation of the chord at end

node k and S' is the (3x3) element stiffness matrix. Accounting also for shear
deformations effects, within the Timoshenko beam theory, the element elastic

stiffness matrix is modified as (Onate 2013):
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EA'/L 0 0
si-| o 4+p EI' 2-p El 46)
1+4" L' 1+ L
0 2-F"El' 4+ EI

1+ L' 1+8 L |

where the term ' expresses the relative importance of the bending deformations to

the shear deformations as:

. 12E'

P =5
GA,L

(4.7)

where G is the shear modulus and A, is the shear area of element cross section. It is
noted that shear deformation effects are significant for relative deep beams, for which
Timoshenko beam theory is more appropriate. For ' =0 shear deformation effects

are neglected and the stiffness matrix of equation (4.6) is reduced to that of equation
(4.5).

Following the notions of classical plasticity, element plastic deformations p' are
considered perpendicular to the vyield surface, which for a piecewise linear

approximation and in view of the holonomic assumption can be defined as follows:

P (SiZyalj )/(siyazj) _(S;yaik)/(sliya:) 7 4 o
Por= 1 0 {zk} or p'=N'-z (4.8)
Ps 0

where pli, pi2 are the plastic axial deformation and rotation of the chord at the start

node j, pé is the plastic rotation of the chord at end node k, Z!, z* are the plastic

multipliers for j and k element sections respectively, N' is the matrix that contains

the normal-to the yield surface-vectors (it is defined in detail in section 4.5) and z' is
the (2 x1) vector of element plastic multipliers.
For the entire structure the deformation is decomposed into an elastic and plastic

component as:
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g=e+p=S"'-s+N-z (4.9)

where e is the (3ng x1) elastic and p the (3ng x1) plastic component of deformation
respectively, S is the (3ng x3ne) assembled block diagonal matrix of all element

stiffness matrices and N is defined in the following section.

4.5. Yield condition

Yield condition is the one that denotes the limit between elastic and plastic region
under the effect of combined stresses. Herein, two considerations are examined, i.e.
axial force-bending moment (NM) interaction and axial-shear force-bending moment
(NQM) interaction. For both considerations, the nonlinear yield criterion is
beforehand appropriately linearized either with linear segments (case of 2D

interaction) or plane triangles (case of 3D interaction).

4.5.1. Axial force-bending moment interaction (NM interaction)
At every element i, plastic behavior is described at start node j by the normalized

stress  vector  {n’ mj}T:{sl‘/sliy s;/s;y}T and at end node k by
{n* mk}Tz{—sl‘/sl‘y s;/s;y}T, as defined in section 3.6. Notice that different

capacities can be considered for the two element ends to account also for concrete
elements with constant cross section, but different bar reinforcement at the two ends.
Thus yielding at the two critical sections of the element will be expressed with respect
to the three primary element actions; with the minus sign at end k expressing the pre-
established equilibrium within the element along the local x direction.

The standard formulation (Maier 1970) involves all the lines describing the
polygon of the PWL vyield surface, which increases considerably the number of yield
constraints per critical section, complicating the entire formulation also at later stages.
It is feasible though, to identify the specific cone (sector of the interaction diagram) in
which the stress vector resides and consider only one constraint associated to each
critical section as potentially active or true active constraint. Moreover, this facilitates
the incorporation of multi-linear hardening reducing the complexity of the whole

problem, as described in section 4.5.3.
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4.5.1.1. Cone identification for NM interaction

Joining the vertices of the linearized yield surface with the origin, a number of
sectors-cones are formed that cover the entire domain (Fig. 4.1). Each stress vector
corresponding to a critical section is associated to only one cone (Manola and
Koumousis 2014).

ncone 111

ncone 1V ncone 11

ncone V ncone 1

7

ncone VII
il e

| 0<0<0.,—> ncone=i

Fig. 4.1: Cone identification of stress vector.

For a given stress vector the identification of the associated cone is straight
forward and results from a sorting process. First the vertices and the stress vector are

transformed from Cartesian to polar coordinates. The counterclockwise angles €, that
correspond to all vertices are sorted in increasing order. Then, the angle 0, that refers

to the normalized stress vector S; of a particular critical section is identified at cone i

for which the relation: 6 <6, <86,,, with

1o st =6 + 27 . This simple procedure is
invoked repeatedly, for every optimization iteration, offering the critical cones and the
associated yield lines-hyperplanes for every cross section. Stress vectors that lie on a
particular vertex may be treated differently, but herein are assigned to the cone with
the smaller index.

Having this information, the yield constraint is formulated only for this specific
yield line for every cross section and not for all linear segments of the PWL vyield

surface.
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4.5.1.2. Final form of yield conditions for NM interaction

Yield conditions are generally expressed in terms of normalized quantities with
respect to yield capacities. Thus, for each cross section at the start node j and the end
node k the stress state is expressed as (Fig. 4.2):

o g - o
al-n+al-m+w =r) or a)-L+al - Ziwl=r
1 2 S|
1y 2y
i i

S S
a; -n“+as-m‘+wi=rf or —aj-—L+ay-—+wi=r,
1y 3y

(4.10)

where @/, a) and af, a} are the direction cosines of the unit normal vectors a’ and
a* of the critical yield hyperplanes for sections jand k respectively, rj, rs are the
distances of the critical hyperplanes from the origin for sections jand k respectively
and W, W" are the reserves in the normalized space for sections jand k respectively.

It is noted that the main interest for the yield condition relies on the ratio of the
strength reserve over the stress vector, which can be expressed along any direction
(Fig. 4.3).
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Fig. 4.2: Element stress state at both ends.
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Fig. 4.3: Yield condition expressed along the direction of the normal vector and along m axis.

Herein the yield conditions are expressed in terms of dimensional stresses, which
are part of the unknown vector of the present formulation, and more specifically in

terms of bending moments. Thus, the above relations (4.10) are expressed as follows:

S, al o oshow! .
L g g+ 2 =) )
s al J y
b ? (4.11)
. . .
S;, ar S W .
y 1 i i 3y"'d _ _k i
—T'a—k'sl+53+ ak T SSy
S1y 2 2

where ¢/ =r/)/al, % =r}/al are scaling factors for the yield moments of sections
jand k respectively.

Thus the yield conditions at element level are expressed in terms of non-negative

moment reserves at both element ends as:

jal
L >0 or

Kai

i T S3y

wil [(ssywi)/al 51,23 )
{ } (syi)/as] = (sht)/(sha8)

w

(4.12)
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where W, w¥ are the moment reserves at element ends j and k respectively, w'is the
(2x1) vector that contains the moment reserves of both element ends, N' is the (3x2)
matrix that contains all scaled normal vectors of the identified yield hyperplanes and

r'is the (2x1) vector of the yield limits expressed in bending moment terms. It is
noted
At structural level the yield condition is finally formed as:

w=-NT.s+r>0 (4.13)

where W:{Wl,_,W”}T ((2ngx1) vector), N ((3ng *2ng) matrix) is the assembled

. T
block diagonal matrix of all N' matrices and r :{rl...r”} is a (2ng x1) vector.

According to the proposed formulation, incorporation of the cone identification
procedure at this stage results into one yield constraint for every critical cross section.
This corresponds to the hyperplane that is targeted or activated at this particular
loading instance. Thus the number of the yield conditions is significantly reduced and
the problem becomes independent of the number of linear segments used for the
linearization of the yield surface. Cone identification is performed at every loading
step generating only the necessary yield constraints with physical meaning for each

particular cross section.

4.5.2. Axial-shear force-bending moment interaction (NQM interaction)

Plastic behavior is developed herein under the combined effect of axial-shear

force-bending moment interaction (NQM interaction). Plastic hinges at start nodes |

are formed under the combined normalized stresses

{nj v mj}T:{s{/s{y (s‘2+s§)/L‘v‘y s‘z/sizy}T and at end node k due to

T . Vi i/t : . : .
{nkvk m"} ={—31/51'y —(s'2+s§)/L'v'y sg/s'gy} , as defined in section 3.6. It is
noted that yield limits of axial, shear force and bending moment are considered herein
to be the same for both elements ends, but the formulation can incorporate also

different yield limits appropriate for prismatic elements with different strengthening at

the two end cross sections.
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4.5.2.1. Cone ldentification for NQM interaction

The 3D nonlinear yield surface is herein a priori linearized with appropriate

tessellation of specific plane triangles. The vertices of each triangle (V;,V,,Vs;)

together with the origin (V,) form one cone-tetrahedron (Fig. 4.4). Each stress point

belongs only to one of these cones-tetrahedra and targets or resides on the
corresponding plane triangle (Manola and Koumousis 2014). For the stress point

P =(n, v, m) and the tetrahedron having the vertices:

Vi=(m, v, my), Vyp =(ny, v, my), V3 =(ng, V3, mg), V, =(0,0,0) (4.14)

the stress point P lies in the tetrahedron if the following five determinants have the

same sign:
n vy, m 1 n v m n vy m
n, v, m, 1 N, Vv, M, n v m
D, = 1’ Dy = , Dy = ’
Ny V3 My Ny Vs My Ny V3 My
0 0 0 1 0 0 O 0 0 O
(4.15)

vy m n vy M

n, v, m n, Vv, m

D, = 2 2 T2 4 D, = 2 V2 Tl

n v m 1 Ny vz My

0 0 n v m

Comparison of the signs of D; and D, constitutes a check of whether P and V; are
on the same side of the plane i (namely the plane formed by the three points other

than V;). If P is inside all four boundary planes, then it is inside the tetrahedron. If
the sign of any D; differs from that of D then P is outside boundary plane i, while

if any of the determinants D; =0, then P lies on the boundary planei .
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Fig. 4.4: Identification of the critical cone-tetrahedron for 3D interaction.

The aforementioned procedure is used as a basis for the identification of the critical
yield plane that corresponds to each cross section at every optimization step. To avoid
searching all cones for every stress point, a pruning technique is adopted that
eliminates all vertices of the seven irrelevant subspaces out of the eight subspaces
formed by the axes planes.

Based on coordinates (n,v,m)of each stress point, the corresponding subspace

(one out of eight) is detected. Then, determinants of the tetrahedra belonging to that
subspace are evaluated and compared and the critical tetrahedron corresponding to
each cross section is identified. Following this procedure at every optimization step,

the yield condition is formed only for the corresponding plane determined by the
triangle (V;,V,,V3), avoiding the formation of all unnecessary constraints of the

standard formulation.

4.5.2.2. Final form of yield conditions for NQM interaction

The vyield criterion for this case is represented by a 3D nonlinear surface that is
approximated using plane triangles. This enables expressing the yield condition into a
set of linear constraints, which is advantageous for the mathematical programming
formulation of the problem. It is noted that the tessellation of the yield surface is such
that the convexity of the yield criterion is retained. More specifically, the equations

for the corresponding yield planes in n—v—m space are of the following form:



Limit load and deformation analysis for frame structures with mathematical programming
An+Bv+Cm+D=0 (4.16)

where A B,C are the components of the unit normal vector of the plane and —D is
the distance of the plane from the origin. Performing appropriate algebraic
manipulations, the following equations for the two element ends are obtained with

respect to dimensional quantities Si Siz, S; expressed in terms of bending moments.

Thus, in these relations the coefficients of moments are deliberatively scaled to unity
and the scaled yield limits are kept always positive:

j i i j i _ni i
A'-s +1-5,+C’-5,=D"-5s,,

k ol k i i k i
A s +B s, +1-5,=D"-s;,

(4.17)

where i=1,...,ng (number of elements). Relation (4.17) is written in matrix form as:

s b= Tl NT.sh =y (4.18)

Al 1 cl| | D!-s;,
D¥ s},

where N' is the (3x2) matrix of the scaled normal vectors for the element, s' is the

(3x1) stress vector of the element and r' the (2x1) vector of the scaled yield limits of
the element in terms of bending moment. The unit values in the N'matrix facilitate

the expression of plastic rotations equating them with the corresponding plastic
multipliers, as presented in section 4.5.3.
Incorporating the concept of cone identification and adopting the aforementioned

criterion, the yield condition for all critical sections of the frame is formed as:
w=-NT-s+r>0 (4.19)

where w = {Wl___W”}T is the (2ne; x1) vector containing the moment reserves of all

stress points, N is the (3ng x2ng) assembled block diagonal matrix of all N
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T
matrices and r = {rl...r”} is the (2ng x17) vector that includes the yield limits in

terms of bending moment of the critical yield hyperplanes.

The standard formulation involves for each critical section as many yield
constraints as the number of planes used for the linearization of the yield surface.
Following the proposed cone identification approach only one yield constraint is
required for each cross section, which reduces the total number of constraints
drastically. This single constraint corresponds to the yield plane that is targeted or
activated at this particular loading instance. Thus, cone identification is performed at
every optimization step generating only the necessary yield constraints with physical
meaning for each particular cross section. As a result, the number of yield conditions
for the entire structure is not affected by the discretization of the yield surface, while
the additional computational cost of the identification procedure turns out
insignificant. From the optimization point of view this reduced set of yield constraints

represents a mechanically dictated “active” set of constraints for the problem.

4.5.3. Incorporating hardening/softening behavior into yield condition

The combined stresses are expressed herein in terms of positive bending moment,
for both cases of interaction. Thus the combination of multi-segmental constitutive
relations needs also to be expressed in positive moment-rotation terms. The
proportion of this combination is dictated by the particular yield hyperplane of the
associated cone, depending upon the components of the normal vector of the

hyperplane for a start end j. The initial constitutive relations of axial force-plastic

axial deformation (sl — pl) and bending moment-plastic rotation of element end node
K (53 - p3) are first expressed with respect to the absolute value of plastic rotation p,.
Then, they are combined with the bending moment-plastic rotation curve (s, — p,) to
give the multi-segmental hardening/softening curve in NT.s— p, axes with reference

to s, —S, —S; space (Fig. 4.5). It is noted that for end node k the constitutive relations

are similarly combined and expressed with respect to plastic rotation ps.
The above generated curves, corresponding to different cones, for symmetric

constitutive relations and absolute value of plastic rotation determine a family of



Limit load and deformation analysis for frame structures with mathematical programming

curves that are parameterized in the y — axis by parameter ¢ :‘Dj‘ or r:‘Dk‘ for

the start and end sections j and k respectively.

Cone

Diagram

| Conversion and Combination | Identification

=

5

r

Final Combined
Diagram

A's +B's,+C’s,

Fig. 4.5: Combined constitutive relation of a cross section j .

Moreover, the linearized yield surface is assumed to follow an isotropic multi-

linear hardening law, which constitutes a simplistic consideration especially for

softening behavior, but is frequently considered quite accurate for holonomic

behavior and monotonically increasing loading (Tangaramvong and Tin-Loi 2008,

Tin-Loi and Pang 1993). The parallel expansion/shrinkage of the identified yield

plane is dictated by a multi-linear hardening/softening constitutive relation, as shown

in Fig. 4.6. A plastic multiplier z, is assigned for each cross section x, the non-zero

value of which denotes that the specific cross section has entered the plastic region

(z,, =0). Based on the particular non-zero value of the plastic multiplier, the
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corresponding index ns of the hardening segment for each cross section is identified to
determine the associated stress level (Fig. 4.6¢). Thus hardening matrices are built for
each cross section and finally for the whole structure. The aim is to evaluate the
plastic part of the combined stresses for all sections using a linear relation of the form
H-z+c. In this, H is the hardening diagonal matrix with dimensions (2ne x2ng), z
is the (2ng x1) vector of all plastic multipliers and c is the (2ng x1) vector, which in a
recursive form accumulates all previous plastic behavior (Fig. 4.6¢c). For every cross

section u (u#=12..2n,) following a multi-linear hardening/softening law with total
number of segments ¢, the relations determining the non-zero entries of the hardening

matrices are generated as:

H (e, ) =7-hy u=1.2ny, n =1..0 (4.20)

0, for ng =1, u=1..2n,
c(u,l) = s 421
(wd) T~Z(hi,l—hi)~zi,l, forng>2,1=2,3,...,n,, u=1..2n, (4.21)
i=2

where 4, is a scaling factor of the yield limit (A4, =1) and Z; is the value of

corresponding plastic multiplier at the end of segment i (z,=0) and
h =4 —Ai_l)szy/(zi -2,4) is the dimensional inclination of the
hardening/softening segments. Notice that for critical sections in the elastic region,
the plastic multiplier and the hardening coefficients are zero. Moreover, for the first
hardening segment c(u,1) is zero in relation (4.21), since there is no previous plastic
behavior. This means that H accounts for the current hardening/softening measure
that corresponds to the identified segment, while ¢ corresponds to the accumulated

total constant previous hardening behavior.

The yield condition for the whole structure is then expressed as:

w=-NT-s+r'>0 and r'=r+H-z+c (4.22)
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where r' is the (2ng x1) vector including the extended limits expressed in terms of

bending moment.
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Fig. 4.6: Isotropic hardening/softening of yield plane for a) NM and b) NQM interaction and

c) multi-linear hardening/softening behavior for a stress point.

This formulation avoids all unnecessary multi-segmental projections of the
hardening/softening behavior along the normal vectors of all segments/planes of the
yield surface for every critical section of the standard formulation. This part has been
treated poorly in the literature, addressing only constitutive relations with only one
softening branch and similar for all critical sections. The proposed scheme can be
extended to any number of hardening/softening segments without affecting the
dimensions of H and ¢ matrices and thus the size of the yield condition. This notion is

built on top of cone identification and incorporates effectively the multi-linear
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hardening/softening behavior that addresses better real structural behavior. It insists
though on staying on the multi-linear path, even in load reversals at certain cross
sections due to redistribution of internal actions, which is inherent in the holonomic

formulation and in most cases does not affect the solution noticeably.

4.6. Complementarity condition

Complementarity conditions express mutually exclusive situations in the form of
an inner product of two nonnegative vectors that should be zero. They emerged as
optimality conditions for continuous variable nonlinear programs involving inequality
constraints, derived by Karush (1939). They indicate that simultaneous activation of
plastic deformation and unloading is meaningless. More specifically, the
complementarity condition implies that, when the identified yield hyperplane for a

cross section w is reached (w, =0), the corresponding plastic multiplier z, should be
greater than zero. Similarly, when the yield hyperplane is inactive (w, > 0), the
corresponding plastic multiplier z , =0, indicating that no plastic deformation

occurs.

In the case of elastoplastic analysis, complementarity conditions and systematic
formulation of linear complementarity problems were introduced by Maier (1970).
Herein, incorporating the concept of cone identification reduces significantly the
number of the implemented complementarity constraints, since only one
complementarity condition is considered for every cross-section. Thus for the entire

structure the complementarity constraint is expressed as follows:

w'-z=0, w>0, z>0 (4.23)

which, due to the non negativity of both vectors, holds also component wise.

4.7. Limit load and deformation analysis as an optimization problem

4.7.1. Formulation of the optimization problem

Equations (4.1), (4.3), (4.9), (4.22) and (4.23) formulate the holonomic
elastoplastic problem that describes the whole structural behavior as:
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B-s=a-f+f, Equilibrium

q=B"-u Compatibility
g=e+p=S*-s+N-z Strain additivity (4.24)
w=-N".s+H-z+c+r>0 Yielding

w'-z=0, z>0 Complementarity

The above system of equations can be simplified by retaining as decision variables
the variables a,s, u,z to formulate a Mixed Complementarity Problem (MCP). This
is equivalently converted into the following optimization problem, the solution of
which provides simultaneously the load multiplier a, the corresponding stresses S

and displacements U together with the plastic multipliers z :

maximize a
subject to B-s—a-f=f,
S*.s—B"-u+N-z=0
wW=-N"-s+H-z+c+r=>0 (4.25)
w'-z=0
0<z<z,
U, <u<u,

The above optimization problem seeks for the maximum load factor a satisfying
constraints imposed by equilibrium, compatibility, yielding, complementarity and

lower and upper bounds for plastic deformations (0,z,) and displacements (u,,u,).

Mathematically this is a nonconvex optimization problem that is known as a
Mathematical Programming with Equilibrium Constraints (MPEC) problem (Luo et
al. 1996), including the complementarity constraint that acts as a multi-switch and is
of discrete rather than continuous nature, undermining the linearity of the formulation.
This disjunctive constraint is difficult to handle numerically leading to numerical
instabilities due to lack of convexity and smoothness. Despite all these inherent
difficulties, the MPEC problem (4.25) can be solved by converting it into a standard,
though still nonconvex, nonlinear programming (NLP) problem by suitably treating
the complementarity condition. Several techniques have been proposed such as
penalty function formulation, relaxation method, active set identification approach,
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sequential quadratic programming (SQP) and interior point methods, among others
(Fukushima and Lin 2004). Herein, the penalty function approach is followed
(Tangaramvong and Tin-Loi 2007). According to this, the complementarity constraint
is handled in the objective function by a parametric reformulation, in which an
increased value of the parameter p exerts a pressure on the complementarity condition

leading it to vanish. This formulation is as follows:

maximize a-p-w'-z
subject to B-s—a-f="f,
S'.s—B"-u+N-z=0
. (4.26)
w=-N -s+H-z+c+r=>0
0<z<z,
u <u<u,

The above problem formulation incorporates the cone identification process at
each iteration of the optimization problem. Thus all relations are independent of the
number of lines/planes used in the linearization of the yield criterion and the number
of linear hardening/softening segments as reflected in the compatibility and yielding

conditions in relation (4.26). Matrices N,H and vectors C,I are updated for every

iteration depending on the identified cone and the particular hardening segment of
every critical section using the above relations. Moreover, it is worth noting that this
NLP problem is sensitive to the initial values of p and its subsequent increase, as well

as to the initial values of variables.

4.7.2. Remarks on the optimization formulation

Classical limit analysis of structures is based on rigid-perfectly plastic behavior
and thus with no considerations on plastic deformations i.e. ductility. The formulation
presented in relations (4.26) constitutes a combination of limit load and deformation
analysis accounting for hardening/softening behavior and deformation constraints
(Cocchetti and Maier 2003) and addresses more closely real situations and code based
requirements related to performance based design. More specifically, the need of
treating the apparent softening behavior engages the complementarity condition. This
affects the mathematical structure of the problem converting it into a nonconvex one,

while ductility requirements require the presence of the compatibility constraints. For
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the case of rigid-perfectly plastic behavior or hardening behavior without ductility
limitations, the problem can be solved as a standard Linear Programming (LP)
problem subject only to equilibrium and yield constraints (Wong 2009).

The optimization process described in (4.26) follows a mathematical pace that
attempts to maximize the load factor a for the holonomic formulation of the problem.
This is performed in successive gradient-dictated trials for the entire vector of
decision variables, namely the stresses s, the displacements u, the plastic multipliers z
and the load factor a. What governs the optimization process is its tendency to
successively increase the loading factor a satisfying the equality (i.e. equilibrium and
compatibility) constraints and inequality (yield) constraints together with
complementarity conditions. The cohesion of the problem that prohibits a random
walk type of search, relies on internally computed gradient information depending on
the specific optimization algorithm (herein interior point algorithm approaching
through feasible solutions). Thus the path to the solution is determined by successive
trials and generally differs from the actual path of a step-by-step method of finite

element analysis, both though succeeding in finding the same solution.
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Fig. 4.7: Optimization versus step-by-step path for a) full and b) incomplete loading-

unloading.

An explanation of the different paths followed by the optimization and the step-by-
step method is presented for a particular cross section in Fig. 4.7. For a multi-linear
hardening behavior, the step-by-step method provides the entire history of the
response remaining on the track of the constitutive relation (dotted line). If full or
incomplete reversals occur (Fig. 4.7a,b), these are considered elastic and therefore
they do not consume energy. On the other hand, the optimization method targets the

ultimate state following an artificial elastic-perfectly plastic path, as shown by the

>
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solid line in Fig. 4.7a,b. The elastic deformation is determined on the basis of the
initial stiffness matrix and the plastic deformation is developed under constant stress.
Therefore, the optimization procedure inherently circumvents redistribution of forces
targeting the non-affected ultimate state, since any unloading, if happens, does not
consume energy.

Herein, a mechanically inspired subset-technique is embedded in the optimization
problem (4.26) that reduces the number of unknowns and constraints to a minimum,
acting as a physically filtered “active” set strategy. An outline of the proposed

algorithm for every optimization iteration is as follows (Fig. 4.8):

Vector of unknown variables
{suza}' is generated

Cone identification and
evaluation of N'and r'

Identification of the
hardening/softening segment
and evaluation of H' and c'

stress point

Formulation of N and r’

Evaluation of the objective
function

Check equality and inequality
constraints
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Fig. 4.8: Outline of the optimization procedure.
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The identification of the critical cone and the specific hardening/softening segment
at each iteration retains only the true or targeted active constraints for every cross
section. Under this consideration, the size of the problem reduces to a minimum since
all relations become independent from the number of planes of the yield surface and
the number of linear hardening/softening segments.

From a mathematical standpoint the proposed algorithm does not belong to one of
the well-studied problems of mathematical programming. This is due to cone
identification that interferes in every step indicating the updated set of constraints at
all critical sections. From a closer perspective, this can be seen as an active-set
strategy on the standard formulation identifying always only the 2ng physically
needed constraints since all the remaining constraints are redundant.

4.8. Numerical examples

The optimization problem described in relation (4.26) is implemented in Matlab
code for the analysis of plane frame steel structures. It is solved by fmincon solver
(appropriate for the minimization of constrained nonlinear multivariable function),

with the interior-point algorithm selected as optimization method.

4.8.1. Axial force-bending moment (NM) interaction

Herein the Massonet-Save yield criterion (1965) suitable for steel members is

employed:
q):(nj)2+‘mj‘—1 or q):(n")2+‘mk‘—1 (4.27)

The axial force-bending moment Massonet-Save interaction curve is approximated in
the sequel with six lines that denote the corresponding yield hyperplanes as shown in
Fig. 4.9 (Tangaramvong and Tin-Loi 2008).
The aim is to verify the applicability of the proposed method, validate its
efficiency and compare the analysis results with existing ones for the following cases:
e Case (a): Rigid-perfectly plastic behavior with axial force-bending moment
interaction (LP problem).

e Case (b): Multi-segment isotropic hardening behavior in pure bending.
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e Case (c): Multi-segment isotropic hardening behavior with axial force-bending

moment interaction.

For this purpose, three steel frames are examined for the aforementioned cases and
the corresponding results are presented below. It is noted that all analysis results of
this method are presented following the engineering sign convention of structural
analysis. The conversion from matrix to engineering convention is simply performed
by changing the sign of axial and bending moment at start node and the sign of

shearing force at end node.

Nonlinear
Massonet-Save
yield criterion

-0.15

0.15

Normalized bending moment 12

Linearized

Massonet-Save

yield criterion
. L L

Normalized axial force 1

Fig. 4.9: Linearized Massonet-Save yield criterion.

4.8.1.1. Example #1

The first example concerns the three-storey, single bay, eccentrically braced frame
shown in Fig.4.10a that is subjected to vertical loads a and lateral load 2a
(Tangaramvong and Tin-Loi 2008, Karakostas and Mistakidis 2000). The frame is
discretized into 21 elements, 14 nodes and 36 degrees of freedom. The material
properties are as follows: Sections 310UC118 with A=150x10*m? 1=27700%10°m*,
S1y=4200 kN, sp=s3,=548.8 kNm are employed for all columns, 200UB18.2 with
A=23.2x10" m% 1=1580x10® m*, s,y=742.40 kN, sp=53,=57.60kNm for all beams
and SHS125/125/9 with A=41.76x10" m? 1=900x10® m* s,=1365 kN,
Soy=S3y=57.75 kNm for all braces. For all columns h=-202.79kNm, 1=0.7 is
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considered, while for all beams h=-41.04kNm, A =0.7. Bracings are considered to
follow a rigid-perfectly plastic behavior. The upper bound vector of all plastic
multipliers is Z, =1 , while the upper bound vector of all displacements is U, =1 and
the lower bound vector u, =-1. The initial values of p =100 for case (b) and (c) with
an updating rule of p=10p are used, until convergence with a tolerance of

w' z <107° is reached.

2a
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Fig. 4.10: a) Single-bay eccentrically braced frame and b) its deformed shape for cases

(b),(c).

Table 4.1: Analysis results of frame 1.

Case (a) Case (b) Case (c)

a (kN) 124.148 120.01 117.862
top-storey u (m) 0.443 0.375 0.363
computational time (s) 0.49 14.74 24.73

The results of all analysis cases for frame 1 are presented in Table 4.1. The
maximum load a, as well as the top-storey displacement u, attain their maximum
values for the case of rigid-perfectly plastic behavior. Moreover, for softening
behavior, the case of pure bending attains a greater value of maximum load as

compared to axial force-bending moment interaction. It is noted that these results, as
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well as the corresponding failure mechanisms, coincide with those obtained by
Tangaramvong and Tin-Loi (2008). The plastic hinge formation and deformed shape
for cases (b) and (c) are depicted in Fig.4.10b, with numbers in circle denoting the
particular cross-section. The corresponding interaction diagrams are presented in
Fig.4.11. It is noted that for cases (b) and (c) plastic hinges of beam cross-sections

have yielded and are at their softening branch.
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Fig. 4.11: Interaction diagrams for a) case (b) and b) case (c).

4.8.1.2. Example #2

The second example concerns the three-storey, four-bay plane frame shown in
Fig.4.12a, subjected to increasing lateral and vertical loading. The frame is discretized
into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is S235 with
E=2x10%kN/m?. Sections with A=112.5x10" m?, [=18260x10® m*, s;,=2643.75 kN,
S3y=S3y=325 kNm and sections with 4=62.61 <10 m? I=11770x10° m*, s,,=1471.34
kN, sp,=s3,=189.01 kNm are employed for all columns and beams respectively. The
assumed multi-segment hardening/softening behavior is shown in Fig. 4.11b. More
specifically, for columns h;=2600 kNm z,=0.005 4;,=1.04, h,=1625 kNm 2z,=0.015
A,=1.10, h3=-1392 kNm z3=0.05 A13=0.935, while for beam cross sections
h;=1260.1kNm z;=0.003 1;=1.02, h,=810.04kNm 2z,=0.01 4,=1.05, h3=-992.3kNm

23=0.03 13=0.945. The values of z3 constitute the upper bounds for column and beam
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cross sections respectively. The upper bound vector of all displacements is U, =1
and the lower bound vector u, =-1. The initial values of p=100 for case (b) and
© =1000 for case (c) with an updating rule of p=10p are used until convergence

with a tolerance of w'z <107° is reached.
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P
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a) 5% —

Fig. 4.12: a) Three-storey, four-bay plane frame and b) multi-segment hardening/softening
diagram.

Table 4.2: Analysis results of frame 2.

Case (a) | Case (b) | Case (c)
a (kN) 80.97 88.21 81.67
top-storey u (m) 0.060 0.140 0.140
computational time (s) 0.55 86.26 151.56

In Table 4.2 the results of all analysis cases are presented. It is evident that the
smallest value of ultimate load corresponds to the case of perfectly plastic behavior.
For the case of multi-segment hardening/softening behavior, the pure bending
consideration results into greater value for the maximum load as compared to the case
of axial force-bending moment interaction. As far as the computational time is
concerned, it is apparent that for case (a) the computational time is very small as it
refers to a Linear Programming problem. The greatest values of computational time
correspond to case (c), due to the larger number of yield constraints. However, it is
noted that the proposed formulation based on cone identification is computationally

more efficient than the standard formulation. Indicatively, it is mentioned that the
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present formulation converges in 64.45s for frame 2 as compared to the standard
formulation which requires 141.67s, following only one segment of hardening
behavior. Both analyses were conducted on a PC with a Core Duo Quad CPU and
4GB of RAM.

The sequence of plastic hinge formation for step-by-step analysis using SAP2000
version 14 and the ultimate state of frame 2 using mathematical programming are
shown in Fig. 4.13a and 4.13b respectively. The ultimate carrying load capacities in
terms of base shear force are practically the same for both types of analysis, i.e.
571.60kN for step-by-step analysis and 81.67x7=571.69kN for limit load and
deformation analysis with mathematical programming, both resulting in the same
ultimate pattern of hinge formation. In Fig. 4.13b for every plastic hinge the
corresponding segment number at the hardening/softening diagram is indicated. It is
evident that the right ends of all beams are more stressed as compared to the
corresponding left ends, as shown in Fig. 4.14. The combined effect of vertical (Fig.
4.14a) and lateral loading (Fig. 4.14b) is depicted in Fig.4.14c following the

engineering sign convention.
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Fig. 4.13: Plastic hinge disposition and deformed shape of frame 2 for a) step-by-step

inelastic analysis, b) proposed formulation.
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Fig. 4.14: Moment diagrams with engineering sign convention for a) vertical, b) lateral load

and c) their combination.

4.8.1.3. Example #3

The third example concerns the six-storey plane frame shown in Fig.4.15a. The
frame consists of 66 elements, 51 nodes and 138 degrees of freedom. The material
properties are as follows: The steel grade is S235 with E=2x108kN/m?. For all
columns sections with A=7197.5x10"m?,  I=86970x10°m", s1,=4641.3kN,
$2,=53,=928.02 kNm are employed and for all beams sections with 4=84.46x10™ m?,
1=23130%10"° m*, s,,=1984kN, sy=s5,=307.15kNm are used. The assumed multi-
segment hardening/softening behavior is shown in Fig. 4.15b. More specifically, for
column cross-sections h;=18560.4kNm  z;=0.005 4;=1.10, h,=9280.2 kNm
2,=0.015  1,=1.20, hs= -14848.3kNm  2z3=0.03  13=0.96 and h;=10"°kNm
2,=0.05 14,=0.96, while for beam cross-sections h;=5119.2kNm z;=0.003 1,=1.05,
h,=2193.93 kNm 2z,=0.01 4,=1.10, hs=-6757.3 kNm z3=0.02 13=0.88 and
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hs=10"°kNm 2,=0.04 14,=0.88. The upper bound vector for column and beam cross
sections is z,=0.05. The upper bound vector of all displacements is U, =10 and the
lower bound vector u, =-10. The initial value of p=100 with an update rule of

is used until an appropriate convergence tolerance is reached

p=10p

(w'z<107%).

3a |3a |3a |3a |3a
6[1 y v A 4 S
5 3a 3a |3a |3a |3a |3a |3a 3m Nrs
Sa v v 1
3a 3a |3a |3a |3a |3a |3a
4a ! l 1
3a |3a |(3a |3a (3a (3a |3a |3a 2
3a > : - v v 3T ns=1 ns=4 __
3a¢ 3a |3a |3a |3a |3a |3a |3a (3a3m
2a il i v v+ v
3a |3a |3a |3a |3a |3a |3a |3a |3a3m Zz, z, Z, Z, P»
a v i i v \ 4 Yy i
L L "
a) ., 4 — b)
4m 4m 4m 4m

Fig. 4.15: a) Six-storey plane frame and b) multi-segment hardening/softening diagram.

Results for all analysis cases are shown in Table 4.3. Cases (b) and (c) of
hardening/softening behavior attain greater values of maximum load as compared to
rigid-perfectly plastic behavior. In Fig. 4.16 ultimate states for cases (b) and (c) are
presented. The effect of axial force is evident mainly in Fig. 4.16b where the first-
storey columns are more heavily stressed. More specifically, the three middle
columns have reached the second segment of hardening, while the two outer columns
have yielded.

Table 4.3: Analysis results of example #3.

Case (a) Case (b) Case (c)
a (kN) 58.05 63.89 60.90
top-storey u (m) 0.060 0.258 0.248
computational time (s) 0.59 558.28 674.07
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Fig. 4.16: Plastic hinge formation for a) pure bending and b) NM interaction.

4.8.2. Computational performance for NM interaction

The evolution of the proposed algorithm during the optimization steps is presented
in more detail for all the above examples. The efficiency of the computational
procedure is examined through variation of the objective function and first-order
optimality measure (Appendix C) for the entire history of optimization.

The first example is analyzed using both the proposed formulation and the standard
one. The performance of the algorithm for both formulations is depicted in Fig. 4.17.
It is observed that, for the same initial values and upper and lower bounds of the

variables, the proposed algorithm converged after 104 iterations, while the standard
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formulation after 596 iterations. It is highlighted that the standard formulation
requires 352 unknown variables and 252 yield constraints versus 142 variables and 42
yield constraints of the cone identification procedure. Due to the reduced size of the
problem, the proposed algorithm finds the path to the optimum easier, while the
standard formulation needs more iterations in trying to find the final path. This is also
reflected on the computational time, where convergence for the standard formulation

is achieved in 131.93s, while for the cone identification procedure in 24.73s.
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Fig. 4.17: Comparison of computational procedure for the proposed and the standard

formulation for example #1.
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Fig. 4.18: Evolution of the objective function for example #1.
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The computational performance of the cone identification method is also examined
considering pure bending and NM interaction for example #1. For the same initial
values of all variables, the nonlinear optimization algorithm converges faster and
smoother for pure bending, as shown in Fig. 4.18, needing 93 iterations versus 104
required for NM interaction.

The evolution of the objective function and the first-order optimality measure for
example #2 are shown in Figs. 4.19 and 4.20. The starting point is the same for both
cases, but extreme values corresponding to initial iterations are omitted for scaling
reasons. The performance of the algorithm is proved to be smoother and the
convergence faster for the case of pure bending, needing 237 iterations compared to
287 for NM interaction.

The computational performance of the nonlinear algorithm for example #3 is
depicted in Figs. 4.21 and 4.22. Extreme values of initial iterations are omitted for
scaling reasons. However, it is noted that the starting point is different for cases (b)
and (c) converging for different number of iterations (443 for pure bending versus 429
for NM interaction). Although the number of iterations is smaller for NM interaction,
the corresponding computational time is greater compared to that of pure bending.
This is due to the larger number of potential yield lines for case (c) associated also
with the corresponding plastic multipliers, which increases the required computational

time until convergence.
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Fig. 4.19: Evolution of the objective function for example #2.
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4.8.3. Axial-shear force-bending moment (NQM) interaction

The generalized Gendy-Saleeb yield criterion (1992) is adopted, represented by a
3D nonlinear surface that is approximated using 32 plane triangles (section 3.6.1). It is
noted that the tessellation of the yield surface is such that the convexity of the yield
criterion is retained.

The aim is to investigate the role of combined axial-shear force-bending moment
interaction and its influence on structural behavior. For this purpose, three steel plane
frames are examined for the following cases:

e Case (a): Multi-segment isotropic hardening behavior with axial force-bending

moment interaction (NM interaction).

e Case (b): Multi-segment isotropic hardening behavior with axial-shear force-

bending moment interaction (NQM interaction).

For case (a) the Gendy-Saleeb criterion without the effect of the shear force is
used. This is appropriately linearized with eight linear segments, as shown in section
3.6.1. The analysis results of all cases are presented below. Notice that the analysis
method follows the sign convention of matrix structural analysis, whereas final results
are presented on the basis of engineering sign convention.

4.8.3.1. Example #1
The first example is a three-storey, single-bay steel frame shown in Fig. 4.23. The
frame is discretized into 9 elements, 8 nodes and 18 degrees of freedom. The steel

grade is $235 with E=2x10°kN/m?. The material properties are as follows: sections
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with 4=112.5x10" m? 1=18260x10® m*, $,,=3172.5 kN, v,=933.73 kN, s7,=390
kNm, s3,=390 kNm are employed for all columns, sections with A=28.48x10™* m?,
1=1943x10°°m* 51,=736.21 kN, v,=208.88 kN, $2,=57.02 kNm, s3,=57.02 kNm for all
beams. Softening behavior is considered determined by one branch that for columns is
described by h;=-2600 kNm z;=0.05 and for beams by h;=-311.04 kNm z,=0.05. The

values of z; constitute the upper bounds for column and beam cross sections
respectively. The upper bound vector of all displacements is U, =1 and the lower
bound vector u, =-1. The initial value of p =10 for case (b).

The aim is to compare the cone identification formulation to the standard one that
forms all yield constraints. It is mentioned that for the proposed formulation the
number of variables is 64 and the number of yield constraints 18, as compared to 622
and 576 respectively for the standard formulation. For both formulations, analysis
results are identical and more specifically, the maximum load factor is a=24.49 kN
and the deformed shape together with the plastic hinge pattern are shown in Fig. 4.24.
The algorithm converged after 59 optimization iterations in 39.20s for the proposed
formulation, while for the standard after 103 iterations in 311.22s, both starting from

the same initial point.
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Fig. 4.23: a) Frame 1 and b) its softening segment.
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Fig. 4.24: Deformed shape and plastic hinge formation for both formulations.

4.8.3.2. Example #2

The second example concerns two variations of a three-storey, two-bay steel frame
shown in Fig. 4.25a. The frame is discretized into 15 elements, 12 nodes and 27
degrees of freedom. The steel grade is $235 with E=2x10°kN/m?. The material
properties are as follows: sections with A=112.5x10"m% [=18260x10®m*
S1y=2643.75kN, Vv,=778.11kN, s;y=s3,=325kNm are employed for all columns,
sections with A=28.48x10"m? I1=1943x10® m* s,,=669.28kN, v,=189.89kN,
Soy=S3y=51.84 kNm for all beams. The corresponding multi-segment hardening
behavior is shown in Fig. 4.24b and depends on the parameters of every section. More
specifically, for columns h;=6500kNm z;=0.005 1;=1.1, h,=3250kNm z,=0.015
72=1.20, h3=-5200kNm z3=0.04 13=0.8, h,=0.000001kNm z,=0.04 1,=0.8, while
for beam cross sections h;=2592kNm z;=0.001 1,;=1.05, h,=1296kNm z,=0.003
72=1.10, h3=-576kNm z3=0.03 A3=0.80, h,=0.000001kNm z,=0.04 1,=0.80. The

values of z; constitute the upper bounds for column and beam cross sections
respectively. The upper bound vector of all displacements is U, =1 and the lower
bound vector u, =-1. For frame 2a the initial value of p =10 for case (a) and p =10
for case (b), while for frame 2b the initial value of o =10 for case (a) and p =100 for
case (b) with an updating rule of p=10p after each NLP solution until an
appropriate convergence tolerance is reached (w'z < 10~ °). The algorithm for
both cases has stopped because change in the vector of unknown variables and

maximum constraint violation were less than the preselected tolerances (10™°).
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Fig. 4.25: a) Variations of frame 2 and b) multi-linear hardening behavior for both frames.

Table 4.4: Analysis results of example #2.

top-storey T
Cases a (kN) u (m) W'z
S| @ 33.43 0379 | 2.63E-11
g
i (b) 31.25 0.281 | 1.34E-06
0
~ () 34.80 0.317 | 3.24E-11
£
[
T (b) 32.98 0.280 | 9.13E-10

All analysis results are presented in Table 4.4. The effect of shear force is observed

in the reduction of the load carrying capacity of both frames. However, frame 2b

presents greater values of load factor and top-storey displacement for both cases due

to its greater stiffness (shorter column 9).

In Fig.4.26 the ultimate states of frames 2a and 2b for both cases are presented.

Each plastic hinge is accompanied by a number that designates the corresponding

hardening/softening segment, as defined in Fig. 4.25b. Top-storey displacements and

plastic rotations are smaller for both frames for NQM interaction (case (b)). The

corresponding interaction diagrams are shown in Fig. 4.27. It is observed that the role

of bending moment is dominant for both frames, while at column cross sections shear

force effect is more intense than that of axial force due to the presence of lateral

loading. Focusing on the base cross section of column 9, it is noted that for frame 2a
n=-0.0289, v=0.0754, m=1.0370, while for frame 2b n=-0.0282, v=0.1146,

m=1.0916. The difference in shear force is significant.
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Fig. 4.26: Deformed shape and plastic hinge formation for frame a) 2a and b) 2b.
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4.8.3.3. Example #3

The third example concerns the three-storey, four-bay plane frame, shown in Fig.
4.28, that is subjected to increasing lateral and fixed vertical loading. The frame is
discretized into 39 elements, 32 nodes and 81 degrees of freedom. The steel grade is
S235 with E=2x10°kN/m?® Sections with A=112.5x10™* m? [=18260x10° m*,
S1y=2643.75 kN, v,=505.4 kN, sy=325 kNm, s3=325 kNm and sections with
A=62.61x10*m* I=11770x10°m* s;,=1471.34 kN, v,=418.06 kN, s»,=189.01 kNm,
s3,=189.01 kNm are employed for all columns and beams respectively. The multi-
segment hardening behavior is shown in Fig. 4.28b and depends on the parameters of
every section. More specifically, for columns h;=6500kNm z;=0.005 A;=1.10,
h,=3250kNm  2,=0.015 1,=1.20, h3=-5200kNm 25=0.04 13=0.80, h;=10"°kNm
2,=0.05 7,=0.80, while for beam cross sections h;=3780.2kNm z;=0.001 4;=1.02,
h,=2835.15kNm 2,=0.003 1,=1.05, hs=-1750.1kNm 25=0.03 /5=0.8, h;=10°kNm

24=0.05 14=0.8. The values of z, constitute the upper bounds for column and beam
cross sections respectively. The upper bound vector of all displacements is U, =1
and the lower bound vector u, =-1. The initial value of p=100 for case (a) and
p =1000 for case (b) with an updating rule of o =10p after each NLP solution until

an appropriate convergence tolerance is reached (w'z < 10™). The algorithm for all
cases has stopped because change in the vector of unknown variables and maximum
constraint violation were less than the preselected tolerances (10™'°).

Results analysis are shown in Table 4.5. It is noted that for both interaction cases
the frame has been analysed including the shear deformation effect (Timoshenko
beam element stiffness matrix-section 4.6) that influences slightly the analysis results,
i.e. collapse mechanisms are invariable, load factor and sway-displacement are
slightly increased,while plastic deformations are slightly decreased. In Fig. 4.29 the
ultimate states for both cases (i) are presented. Positive and negative plastic hinges are
classified according to bending moment sign. The corresponding interaction diagrams
for cases (a)-i and (b)-i are depicted in Fig. 4.30. The dominant role of bending
moment is evident, while, as no diaphragmatic action is considered, the role of axial
force is more intense in beam cross sections, especially for the right ends of first and
second storeys that reside at their third hardening branch. In Fig. 4.31 the interaction
diagram for case (b)-i is presented focusing on the dispersion of stress points.

Although the stress state in n—m plan-view is almost the same with that of NM
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interaction (Fig. 4.31a), it is evident that the shear force effect is stronger than that of

axial force, as shown in plan views n—v (Fig. 4.31b).
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Fig. 4.28: a) Three-storey, four-bay plane frame and b) multi-segment hardening behavior.

Table 4.5: Analysis results of example #3.

top-storey T
Cases a (kN) u (m) Wz
i : no shear deformations 109.87 0.147 2.79E-08
(@)
il : shear deformation effect | 110.11 0.159 2.72E-08
i : no shear deformations 97.55 0.153 4.99E-09
(b)
ii : shear deformation effect | 97.56 0.158 3.10E-07
)3 3 2 3 b 3 3
3 33 3|3 33 3 3 33 3 3|3
1 1 1 1 1 1
3 313 313 3{3 3 3] 3|3 3 313
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@ negative plastic hinge
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Fig. 4.29: Plastic hinge formation of frame 3 for cases (a)-i and (b)-i.
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Fig. 4.31: Interaction diagrams of frame 3 for case (b)-i (plan-views).

4.8.4. Computational performance for NQM interaction

The evolution of the proposed algorithm during the optimization steps is presented
in more detail for all the above examples. The efficiency of the computational
procedure is examined through variation of the objective function and first-order

optimality measure (Appendix C) for the entire history of optimization.
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The performance of the algorithm for example #1 is depicted in Fig. 4.32. It is
observed that, for the same initial values and upper and lower bounds of the variables,
the proposed algorithm converged after 59 iterations, while the standard formulation
after 103 iterations. It is highlighted that the standard formulation after the 41°
iteration seems to follow almost the same path to the solution as the cone
identification procedure. Due to the reduced size of the problem, the proposed
algorithm finds the path to the optimum easier, while the standard formulation needs
more iterations in trying to find the final path. Moreover, it is noted that the standard
formulation that incorporates all yield constraints is more sensitive to initial values

than the proposed algorithm.
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Fig. 4.32: Comparison of computational procedure for the proposed and the standard

formulation.

The observed behavior of the computational procedure for frames 2a and 3 are
presented in terms of objective function evolution and first-order optimality measure
variation in Figs. 4.33-4.36, omitting the initial iterations for scaling reasons. For NM
interaction the convergence of the algorithm is smoother as compared to NQM
interaction since yield conditions for the latter case are more complex. The evolution
of the optimality measure turns out smoother for cases (b). This though cannot be
considered systematic but only indicative. The smooth tendency of the algorithm to
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attain larger values of the loading factor a is distracted by the penalty term, which
aims at establishing the disjunctive nature of the complementarity condition. This is
manifested in Fig. 4.37 where the evolution of a is separated from the
complementarity term in (4.26) for frame 2a. It turns out that in most cases the peaks
correspond to negative values for the reserves due to overshooting of stresses. For the
iterations corresponding to the sharp peaks, the generated vector of variables s and z
determine a dot product w'z that deviates slightly from zero. This is magnified by

the increasing parameter p affecting noticeably the value of the objective function

(Fig. 4.37).
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Fig. 4.34: Evolution of the first-order optimality measure for frame 2a.
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Fig. 4.37: Evolution of the objective function and maximum load factor for NQM interaction.

4.9. Concluding remarks

Limit load and deformation analysis is treated herein in the framework of
mathematical programming. The ultimate state of a structure and its maximum load
carrying capacity is determined by solving an optimization problem that aims at
maximizing the load factor a subjected to constraints that enforce equilibrium,
compatibility, yielding and complementarity conditions. Due to the disjunctive nature
of the latter, the problem lacks in convexity and smoothness. Using a penalty function
method, it is reformulated into a NLP problem depending on initial values and lower
and upper bounds of variables. The optimization process follows a gradient-based
mathematical pace that tends to increase the load factor a satisfying the imposed
constraints at each optimization iteration. Successive trials determine the path to the
solution that generally differs from the actual path of a step-by-step method of finite
element analysis, both though succeeding in finding the same solution.

In this work, a reduced in size and independent-from the order of piecewise
linearization of the yield surface and constitutive law- method is proposed for
holonomic elastoplastic analysis with mathematical programming accounting for
axial-bending moment (NM) and axial-shear force-bending moment (NQM)
interaction and piecewise linear hardening/softening behavior. The concept is based
on the identification of one specific yield line/plane and hardening branch for every
cross section. At each optimization iteration, the vector of the decision variables (i.e.
stresses s, displacements u, plastic multipliers z and the load factor a is generated.
Every critical section belongs to a specific cone of the interaction diagram targeting
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only one yield hyperplane. Given the stresses, the specific cone of the interaction
diagram is detected. Having the critical yield hyperplane identified, only one plastic
multiplier is required for each cross section. The linear hardening/softening segment
that corresponds to this plastic multiplier is then identified and as a consequence,
hardening matrices are formed for each cross section only for the specific segment.
Thus the yield condition for each cross section is formed only for the identified yield
plane and the identified hardening/softening branch and not for all unnecessary ones.
This reduces considerably the number of yield and complementarity constraints
decreasing significantly the complexity of the formulation, as the size of the problem
becomes independent of the type of linearization.

The generalized Gendy-Saleeb vyield criterion was adopted that accounts for the
axial force-bending moment and axial-shear force-bending moment interaction.
Numerical results demonstrate the validity of the proposed method and the need to
account for shear force effects that lead to reduction of the load carrying capacity, as
compared to axial force-bending moment interaction, and thus to safer designs,
especially for structures characterized by intense shearing forces.

From the presented examples, it becomes evident that the computational
performance of the proposed formulation is considerably more efficient than the
standard one, enabling an ample use of multi-segment hardening/softening behavior
and thus addressing more accurately real structural response.
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5.1. Introduction

This chapter deals with limit load and deformation analysis of structures
considering nonlinear interaction and structural behavior. The existing formulation, as
well as the proposed enhanced formulations of previous chapters (3 and 4), are based
on the a priori linearization of the yield surface and constitutive laws. Herein, a new
approach is proposed that retains the nonlinearity of the yield surface applying a local
linearization technique. Moreover, isotropic nonlinear hardening/softening cross-
sectional behavior is efficiently incorporated. The ultimate state of the structure is
determined as an optimization problem with linear equilibrium, compatibility and
yield constraints together with a nonlinear complementarity constraint. The
disjunctive nature of the latter enforces the formulation of a non-linear programming

problem using a penalty function method.

5.2. Problem formulation

The formulation of the optimization problem includes constraints imposed by
equilibrium, compatibility, yield condition, lower and upper bounds for plastic
deformations and displacements, while the complementarity condition appropriately

penalizes the objective function as:

maximize a-p-w' -z (i)
subject to B-s—a-f="f, (i)
4 T
S -s—BT'u+N'oz=0 (|_||) 5.1)
w=-N"-s+r'>0 (iv)
0<z<z,
u <u<u,

The solution of this NLP problem provides simultaneously the load multiplier a,
the corresponding stresses s and displacements u together with the plastic
multipliers z . In this section, a new procedure is proposed for the formulation of the
yield condition that abandons the existing notion of the a priori piecewise
linearization of both yield surface and constitutive laws. The nonlinear yield criterion
is locally linearized within the algorithm for every stress point, while the nonlinearity

of constitutive laws is retained.
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5.2.1. Local linearization of yield criterion

Yield criteria expressing mathematically the multi-component interaction of
stresses are general nonlinear. Their linear expression, though, offers computational
advantages for the constraint formulation of the problem. The herein proposed method
applies the linearization of the yield surface locally for every stress point. The
proposed process constitutes an extension of the cone identification approach and is
based on the concept that for every stress vector only one yield hyperplane is targeted
or activated. This hyperplane is not a priori defined, but is determined at each
optimization iteration for every stress point. First, the intersection point of every stress
vector with the nonlinear yield surface is defined. Then, the corresponding tangent
hyperplane and its normal vector are determined (Fig. 5.1). The normalized ratio of
the reserves as compared to the stress vector is of interest, normalized appropriately.
Thus, for every cross section only one yield condition is formed and the dimensions of
matrix N and vectors w and r' in equation (5.1iv) are exactly the same as in section
4.3. It is noted that the implementation of the method is depicted for a 2D yield
criterion in Fig. 5.1. The proposed formulation is nevertheless general and can be

efficiently applied for d-component interaction.

Normalized bending moment

—»

a

tangent yield line

nonlinear
yield surface

Normalized axial force

Fig. 5.1: Local linearization of the yield surface for a stress point.

5.2.2. Nonlinear structural behavior

The structural behavior is assumed to follow an isotropic nonlinear
hardening/softening law. Having experimental data, given as a set of points for axial
force-plastic axial deformation and bending moment-plastic rotation, the
corresponding nonlinear curves are formed using a curve fitting tool. Then, they are
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combined by a proportion dictated by the components of the normal vector of the
determined vyield hyperplane resulting in a curve that relates finally the combined
stresses versus plastic rotation. A plastic multiplier z, is assigned to every cross
section u at each optimization iteration, the non-zero value of which denotes that the
specific cross section has entered the plastic region. Based on the particular non-zero
value of the plastic multiplier and having the analytical expression of the nonlinear
hardening/softening behavior, the extended/shrunk yield limit of the stress point is
directly evaluated (Fig. 5.2). It is actually the ordinate of the identified curve point
that represents the corresponding extended/shrunk yield limit r’, required for the

formulation of the yield condition (equation 5.1 iv).

T
N S (combined stresses)

K
r x :experimental
Ful Tu data

r, @ yield limit

r, : extended/shrunk|
vield limit
v v 1 1 1 1 L 1 1 1 L

Z,u pz

(plastic rotation)

Fig. 5.2: Nonlinear hardening/softening behavior using curve fitting tool.

5.2.3. Optimization procedure

The optimization process is based on successive generations of the entire vector of
decision variables dictated by gradient information that force the load factor to higher
values satisfying all constraints at the same time. The herein proposed method acts as
a filter formulating only the active or potentially active constraints for every stress
point at each optimization iteration. The linearization technique of the yield surface is
implemented internally at the optimization process, while the nonlinearity of
constitutive law is maintained. An outline of the proposed algorithm for every
optimization iteration is shown in Fig. 5.3.
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Fig. 5.3: Outline of the optimization procedure.

5.3. Numerical examples

The optimization problem incorporating the proposed method is implemented in
Matlab code using fmincon solver (appropriate for the minimization of constrained
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nonlinear multivariable function), with the interior-point algorithm selected as
optimization method. The aim is to verify the applicability of the introduced
approach, validate its efficiency and compare the analysis results with existing ones
for the following cases:
e Case (a): NM interaction with :
1. PWL yield condition and constitutive laws.
2. Nonlinear yield condition and PWL constitutive laws.
3. Nonlinear yield condition and constitutive laws.
e Case (b): NQM interaction with:
1. PWL yield condition and constitutive laws.
2. Nonlinear yield condition and PWL constitutive laws.
3. Nonlinear yield condition and constitutive laws.
For this purpose, three steel frames are examined for the aforementioned cases and
the corresponding results are presented below. It is noted that all analysis results of
this method are presented following the engineering sign convention of structural

analysis.

5.3.1. Example #1

The first example concerns one plane frame shown in Fig. 5.4a and serves
demonstration purposes. It is subjected to increasing lateral and vertical loading and it
is discretized into 4 elements, 5 nodes and 9 degrees of freedom. The steel grade is
S235 with E=2x10°%kN/m® Sections with A=28.48x10"*m’, 1=1943x10°m",
$1,=669.28kN, spy=53,=51.84kNm and sections with A=16.43x70™* m?, 1=5412x10®
m*, s1,=386.1kN, $3,=53,=20.76kNm are employed for all columns and beams
respectively. The assumed multi-linear and the corresponding nonlinear
hardening/softening behavior is shown in Fig. 5.5. More specifically, for columns
h;=1036.8kNm z,=0.005 A4;=1.1, h,=518.4kNm z,=0.015 A,=1.2, h3=-592.46kNm
23=0.05 13=0.8, h,=10°kNm z,=0.06 1,=0.8, while for beam cross sections
h;=415.2kNm z,=0.005 A;=1.1, h,=207.6kNm z,=0.015 1,=1.2, h3=-237.26kNm
25=0.05 15=0.8, h,=10"°kNm z,=0.06 1,=0.80, concerning the multi-linear behavior
(Fig. 5.5a). The nonlinear structural behavior is described by a 4™ degree polynomial
line (Fig. 5.5b) based on data presented in Table 5.1. The values of z, constitute the

upper bounds for column and beam cross sections respectively. The upper bound
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vector of all displacements is u, =1 and the lower bound vector u, =-1. An updating

rule of p=10p is used until convergence with a tolerance of W'z <107 is reached.

2a N la ii iii
i
£
i@ 2
l ]
a) 50m b)

Fig. 5.4: a) Example #1 and b) plastic hinge formation for all analysis cases.

Table 5.1: Polynomial line of structural behavior.

a) N's/r (normalized combined stresses)

x | 0.00 [0.0005 0.001 | 0.002 | 0.005 | 0.01 | 0.012 | 0.030 | 0.04 | 0.06
fix) | 1.00 | 102 | 1.04 | 1.05 | 1.10 | 1.12 | 1.15 | 1.15 | 1.00 | 0.80
Polynomial S (@) = px* + pp + px’ + pyx + p;

Line p,=2.256-10°, p,=-1997-10%, p, =116.9, p, =12.52, p, =1.017

b) N's/F (mormalized combined stresses)
T T

12 + 12 : i i i
1 1 : : : 4
th, : : : :
08 08 ; : : :
4 e
06 [ . P T e ooz N
04 L O CL LT fessssmmmeifesnsmsnnsniforaconnemnsfennsnnaas 4
02 ] e A
. i . . . i i i i i
0 001 002 003 004 005 006 ° 0.01 0.2 0.03 0.04 0.05 0.06
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Fig. 5.5: a) Multi-linear and b) nonlinear hardening/softening structural behavior.
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Table 5.2. Analysis results for all cases for example #1.

Limit load and deformation analysis for plane frames with nonlinear interaction and constitutive laws

Case Case Case Case Case Case
Cases
(a1) (a2) (as) (by) (by) (bs)

number of variables n ,, 30
number of equality 21
constraints n ¢,
number of inequality 8
constraints N i
maximum load factor a (kN)| 23.14 23.35 23.95 21.87 23.18 23.78
number of plastic hinges 5 5 5 5 5 5
total computational time (s) 3.27 10.08 6.49 9.20 15.57 9.71
number of iterations 92 66 41 64 98 63
complementarity condition
W'z 6.39E-10 | 7.89E-09 | 2.40E-07 | 8.97E-11 | 3.31E-09 | 4.49E-12
initial values of p 1000 100 10 10 1000 10

All analysis results are presented in Table 5.2. The method of local linearization of
the yield condition (cases 2 and 3) corresponds to greater values of maximum load
factor for both cases of interaction. This is due to the fact that nonlinearity of yield
condition is retained offering more accurate solutions, having, nevertheless, the
corresponding computational cost (total computational time includes both matrix
formulation and optimization procedure). The difference in maximum load factors is
more evident for the case of NQM interaction and it is related to the coarse PWL
approximation of the yield surface for case (b1). In Fig. 5.4b the ultimate state of the
frame for all analysis cases is depicted. Each plastic hinge is associated with a roman
number, while the corresponding hardening/softening segment for cases of PWL (a,
a, and by, by) is denoted by an arabic number (Fig. 5.4b). The interaction diagrams are
shown in Figs. 5.6 and 5.7. The effect of bending moment is dominant; while the
effect of shear force is presented to be more intense than that of axial force (dispersion
of stress points is ampler for shear force Fig. 5.7). Yielded stress points are assigned
with the corresponding roman number. It is noted that stress point iv lies on its

softening branch for all cases.
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Fig. 5.8: Evolution of the optimization procedure of example #1 for NM interaction.
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The nonlinear formulation (either concerning only the yield condition or both the

yield condition and constitutive laws) is generally more susceptible to initial values

and lower and upper bounds of variables. The computational performance for NM

interaction is presented in Fig. 5.8, omitting initial iterations for scaling reasons. It is
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noted that for all cases (a1, a; and as) the initial values of the unknown vector are the
same, while the corresponding initial values of the objective function are not identical.
This lies on the fact that the objective function includes the values of w that differ for
PWL and nonlinear approach. Moreover, it is observed that cases (a,) and (az) require
fewer iterations until convergence compared to case (a;), consuming more
computational time, though. This is due to the fact that cone identification for 2D
interaction is a straightforward and faster procedure compared to local linearization
method. The evolution of the optimization process for NQM interaction is depicted in
Fig. 5.9, omitting initial iterations for demonstration purposes. The number of
required iterations is almost the same for both cases (b; and b3), while the

corresponding computational time is slightly higher for the nonlinear consideration.

5.3.2. Example #2

The second example concerns a three-storey, two-bay steel frame shown in Fig.
5.10. The frame is discretized into 30 elements, 21 nodes and 54 degrees of freedom.
The steel grade is S235 with E=2x10kN/m?. The material properties are as follows:
sections with 4=112.5x10"* m? I=18260x10® m*, s,,=2643.75kN, v,=505.41kN,
S5y=S3,=325kNm are employed for all columns, sections with 4=28.48x10™* m?,
1=1943x10® m*, $,,=669.28kN, v,=189.89kN, s5;=s5,=51.84kNm for all beams. The
corresponding multi-segment hardening behavior is shown in Fig. 5.11a and depends
on the parameters of every section. More specifically, for columns h;=6500kNm
2;=0.005 2;=1.1, h,=3250kNm z,=0.015 21,=1.20, h3=-5200kNm z3=0.04 /13=0.8,
hs=10°kNm z,=0.05 2,=0.8, while for beam cross sections h;=518.4kNm z;=0.005
A1=1.05, h,=259.2kNm z,=0.015 7,=1.10, h3=-777.6kNm z3=0.035 13=0.80, h,=10
®Nm z,=0.04 1,=0.80. The nonlinear structural behavior for column and beam cross
sections is depicted in Fig. 5.11b using 4™ degree polynomial lines, based on data
presented in Table 5.3. The values of z, constitute the upper bounds for column and
beam cross sections respectively. The upper bound vector of all displacements is

u, =1 and the lower bound vector u, =-1 (for case b; the corresponding bounds are
set as 2 and -2). An updating rule of p=10p after each NLP solution until an
appropriate convergence tolerance is reached (w'z < 107°).

All analysis results are presented in Table 5.3. Load factors of nonlinear approach
for both interaction considerations are slightly greater than that of PWL approach, as
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expected. Moreover, the effect of shear force is evident in the reduction of the load
carrying capacity. The plastic hinge pattern is identical for all analysis cases (Fig.
5.10b), but different stress states correspond to plastic hinges for each case. The
corresponding interaction diagrams are shown in Figs. 5.12 and 5.13. Cross sections
are stressed mainly due to bending moment, with some beam sections lying on their
softening branch. The effect of axial force is observed mainly in beam cross sections
(Fig. 5.12 and n-m diagrams of Fig. 5.13), while the effect of shear force is obvious

and more intense than that of axial force in both beam and column cross sections (v-m

diagrams of Fig. 5.13).

6a

[ ]
=
h

7 @ o 4 @ o
£
<
- 3
S5a
L4 ® E ®*-p—@ £ @t
£
et 3 4
4a
v 5—® 75 oip—@ %% @1
g
< 3
o
3a
= 2 - T : 4 - 8
E
=
o
2a 5—@ T o—(12-® —9
=
% 1 7
a
P—@ T *—13® Fi ®—P20
g
3 2 3
® [ ] ®
K ] 1 14 21
6.0 6.0
a) m m . b)

Fig. 5.10: a) Example #2 and b) plastic hinge formation for all analysis cases.

Table 5.3: Polynomial lines of structural behavior.

X 0.00 | 0.001 | 0.002 | 0.005 | 0.007 | 0.01 | 0.015|0.020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.050
f(x) | 1.00 | 1.05 | 1.10 | 1.15 | 1.18 | 1.20 | 1.18 | 1.10 | 105 | 100 [ 1.10 | 095 | 090 | 0.85 | 0.80 | 0.80
7 =
J@=p-x+p,-x +p;-x2+p4-x+p5
)2 =—2.]7-105:.p2 =4.]9-104,p3 =-2411p, =38.55,p. =1.014

X 0.00 |0.0005 | 0.001 | 0.005 | 0.008 | 0.015 | 0.017 | 0.01% | 0.020 | 0.021 | 0.023 | 0.025 | 0.028 | 0,030 | 0.035 | 0.050
fix) | 1.00 | 1.01 1.03 | 1.05 | 1.08 | 1.10 | 1.09 | 107 | 105 | 102 | 1.00 | 095 | 030 [ 0.87 | 0.83 | 0.80

f(x)zpl-x4+p2-f+p3-x2+p4-x+pj
pl=2_38-l(]5; p, =—4310, p,=-827, p, =18.24, p. =09998

Polynomial line for column cross sections

Polynomial line for beam cross sections
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Fig. 5.11: a) Multi-linear and b) nonlinear hardening/softening structural behavior.

Table 5.4: Analysis results for all cases for example #2.

Case Case Case Case Case Case
Cases

(a1) (a2) (a3) (by) (by) (bs)
number of variables n ;. 205
number of equali

. Qualty 144

constraints N ¢
number of inequality 60
constraints N i
maximum load factor a (kN) 8.24 8.28 8.35 7.90 8.25 8.31
number of plastic hinges 27 27 27 27 27 27
total computational time (s) 18.82 483.61 542.47 825.10 536.51 715.52
number of iterations 59 80 84 102 83 95
complementarity condition
W'z 7.35E-12 | 1.84E-10 | 4.56E-11 | 1.82E-10 | 9.40E-13 | 1.50E-12
initial values of p 10 10 10 10° 100 10
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Fig. 5.15: Evolution of the optimization procedure of example #2 for NQM interaction.

The computational performance for NM and NQM interaction is presented in Fig.
5.14 and 5.15 respectively, omitting initial iterations for demonstration purposes. It is
observed that for NM interaction the algorithm for all formulations seems to follow

almost the same path. However, the nonlinear formulations (cases a,; and az) need
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more iterations and consequently significantly more computational time compared to
the PWL approach (case a;). For NQM interaction, the optimization procedure of the
local linearization procedure (cases b, and bs) requires fewer iterations compared to
the PWL one (83 and 95 iterations versus 102) and less computational time (536.51s,
715.52s versus 825.10s). This is due to the fact that cone identification procedure for
3D interaction consumes more computational time compared to local linearization of
the yield surface. The sharp peaks that are presented for case (b;) are due to the
penalized term of the complementarity condition in the objective function. The

generated vector of variables s and z determine a dot product W'z that deviates
slightly from zero, but this is magnified by the penalty parameter p affecting
noticeably the value of the objective function.

5.3.3. Example #3

The third example concerns the six-storey, four-bay plane frame, shown in Fig.
5.16, that is subjected to increasing lateral and fixed vertical loading. The frame is
discretized into 55 elements, 36 nodes and 90 degrees of freedom. The steel grade is
S235 with E=2x10°%kN/m’. Sections with A=159x70* m? 1=45070x70° m’,
s1,=3736.5 kN, v,=505.41 kN, s=602.1 kNm, s3,=602.1 kNm and sections with
A=53.81x10" m?, 1=8356x10° m*, s,,=1264.5 kN, v,=348.4 kN, sp,=147.7 kNm,
s3y=147.7 kNm are employed for all columns and beams respectively. The
corresponding multi-segment hardening behavior is shown in Fig.5.17a and depends
on the parameters of every section. More specifically, for columns h;=30103.5 kNm
2;=0.002 1,=1.1, h,=7525.9 kNm z,=0.01 1,=1.20, h3=-6880.8 kNm z3=0.045 13=0.8,
hs=10°kNm z,=0.05 /,=0.8, while for beam cross sections h;=7383.5 kNm z;=0.001
A1=1.05, h,=1845.9 kNm z,=0.005 A,=1.10, h3=-1265.7 kNm z3=0.04 13=0.80,
h,=10°kNm 2,=0.05 1,=0.80. The nonlinear structural behavior for column and
beam cross sections is depicted in Fig. 5.17b using 4™ degree polynomial lines, based
on data presented in Table 5.5. The values of z, constitute the upper bounds for

column and beam cross sections respectively. The upper bound vector of all

displacements is u, =1 and the lower bound vector u, =-1. An updating rule of
p=10p after each NLP solution until an appropriate convergence tolerance is reached

W'z < 107°).
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Fig. 5.16: Example #3.

Table 5.5. Polynomial lines of structural behavior.
X 0.00 | 0.001 | 0.002 | 0.005|0.007 | 001 |0.015| 0020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.060
f(x) 1.00 1.05 1.10 1.15 | 1.18 120 | 1.15 108 | 105 | 1.02 | 098 | 095 | 0.85 | 085 | 0.80 | 080
f()=py-x*+py-x’+py-x’+py-x+ps
p,=-2.15-10", p, =3.78-10*, p,=-2122, p, =33.88, p, =1.022

X 0.00 | 0.0005)0.0008 | 0.001 | 0.003 | 0.005 | 0.010 | 0.015 | 0.020 | 0.022 | 0.025 | 0.025 | 0.028 | 0.030 | 0.035 | 0.050
fix) | 1.00 | 1.01 1.03 105 | 108 | 1.10 ) 1.09 | 107 | 105 | 102 | 1.00 | 097 | 093 | 090 | 085 | 0.78

f@)=px'+py X +pX +pyxtp
p, =-7.84-10°, p, =2.16-10°, p,=-1402, p,=21.33, p,=1.01

Polynomial line for column cross sections

Polynomial line for beam cross sections
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Fig 5.17: a) Multi-linear and b) nonlinear hardening/softening structural behavior.
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Table 5.6. Analysis results for all cases for example #3.

Case Case Case
Cases
(a1) (a2) (as)
number of variables n ,, 366
number of equalr
. qually 255
constraints n ¢
number of inequalr
. Qualty 110
constraints N i
maximum load factor a (kN)| 67.57 68.37 70.59
number of plastic hinges 56 56 56
total computational time (s) 60.49 1109.29 | 1010.86
number of iterations 54 57 47
complementarity condition
- 1.48E-09 | 2.55E-15 | 9.25E-12
W z
initial values of p 1000 108 10*?

All analysis results are presented in Table 5.6. The local linearization method
results in more accurate (greater) values of maximum load factor compared to PWL
approach, having the corresponding computational cost though. The required
computational time is almost 18 times greater for the local linearization technique,
while the number of iterations presents slight differences. The plastic hinge pattern is
identical for all analysis cases (Fig. 5.18), but different stress states correspond to
plastic hinges for each case. For case a; each plastic hinge is accompanied with a
number that designates the corresponding hardening/softening on which it resides. All
beam cross sections (except for those of the last storey) are on their softening branch,
with those of the second and third storey more heavily stressed. Bases of columns lay
on their second hardening segment, while the rest column sections remain in the
elastic region. The corresponding interaction diagrams for cases a; and as are shown in
Figs. 5.19 and 5.20. The role of bending moment is more intense and the effect of

axial force is evident mainly in beam cross sections.
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Fig 5.19: Interaction diagram of example #3 for case a;.
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Fig 5.20: Interaction diagram of example #3 for case as.
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Fig. 5.21: Evolution of the optimization procedure of example #3 for case a;.
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Fig. 5.23: Evolution of the optimization procedure of example #3 for case as.

The computational performance for cases (ai), (a2), (as) are presented in Fig. 5.21,
5.22 and 5.23 respectively, omitting initial iterations for demonstration purposes. For

case (a;) the convergence seems smoother, while for cases (ay), (as) the objective
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function attains values of higher order (due to the initial values of the parameter p)
covering a great range until convergence. The sharp peaks that are presented are due

to the penalized term of the complementarity condition in the objective function. The

generated vector of variables s and z determine a dot product W'z that deviates
slightly from zero, but this is magnified by the penalty parameter p affecting

noticeably the value of the objective function.

5.4. Concluding remarks

Limit load and deformation analysis of plane frames under holonomic
consideration is dealt as a nonlinear programming problem incorporating
appropriately nonlinear interaction and constitutive laws. The proposed method
constitutes an extension of cone identification procedure and is based on the local
linearization of the yield surface, while constitutive laws are embedded retaining their
nonlinearity. The whole formulation preserves the linear formulation of the yield
condition and reduces its size to a minimum (compared to the standard formulation)
of both yield and complementarity conditions. At each optimization iteration and for
every cross section the targeted or activated yield hyperplane is determined by locally
linearizing the yield surface. Nonlinear structural behavior is also incorporated
without affecting the linearity or the size of yield condition. From the examples
presented, the proposed formulation proved to be more time consuming and more
sensitive to initial values and bounds of the unknown variables. Nevertheless, more
accurate solutions compared to PWL method are provided avoiding the cumbersome

procedure of the a priori linearization of the yield surface and constitutive laws.
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Chapter 6 Limit load and deformation analysis for 3D frames

6.1. Introduction

In this chapter limit load and deformation analysis in the framework of
mathematical programming is extended to 3D frame analysis. The ultimate load is
evaluated through a nonlinear programming problem with equilibrium, compatibility,
yield and complementarity constraints (section 4.7). Frames are considered to consist
of ne number of elements and n; degrees of freedom. Equilibrium equations refer to
the initial undeformed configuration and yield surface is either a priori or locally
linearized. The nonlinear inelastic structural behavior is utilized either approximated
with linear segments or in its nonlinear form. Furthermore, a holonomic (path-
independent) structural behavior is assumed and hardening/softening behavior is

considered isotropic (the yield surface expands/shrinks retaining its shape).

6.2. Equilibrium of 3D frames

For a double-symmetric 3D prismatic beam element, equilibrium is established

with six equations that involves the twelve actions of the two element ends (Fig. 6.1).

ik

Fig. 6.1: Spatial beam element i with positive stress resultants-end actions.

Herein, the axial force (F'=s]), torsional moment at the start node j (M)! =s}),
bending moment along y-axis at the start node j (M} =s!.), bending moment along z-

axis at the start node j (M} =s}), bending moment along y-axis at the end node k
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(MY =s!) and bending moment along z-axis at the end node k (M =s;) are
considered as independent stresses for member i. The twelve end actions of an

element i are related to the six independent one at the local axis system as:

1 0 O 0 0 0
=
Flzij 0 0 0 %_i 0 %_i
s 0 0 - %_ 0o - %_ 0
M, 0 1 0 0 0 0 s,
M) 0 0 1 0 0 0 S
M 0 0 0 1 0 0 ! o
i ABl_Es (6.1
F 1 0 0 0 0 0 ||s
Fik _ 4 . 4 si
ink 0 0 O % 0 % s?
3 6
wr| 100 %_ 0 %_ 0
Mk[ [0 -1 0 0 0 0
M¥| [0 0 0 0 1 0
0 0 0 0 0 1|

where E' is the (12x6) local equilibrium matrix of the element and s' is the (6x1)
vector of the independent stresses. The local equilibrium matrix E' is multiplied by
the (12x12) transpose transformation matrix R'” to express equilibrium at the global

axis system. Thus the equilibrium matrix of the element is given as:
B' =R .E! (6.2)
Thus the equilibrium for the whole structure can be expressed as:
B-s—a-f=f, (6.3)

where B is the (12ne *x6mne;) equilibrium matrix of the structure, s is the (6ng x1)

vector of independent stresses of all elements, a is a scalar load factor, f isthe (ngx/7)
vector of nodal loading in the global system and f, is the (n¢x7) vector of fixed nodal

loading in the global system.
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6.3. Compatibility condition

Compatibility of member deformations and nodal displacements are established

with relation:

q=B"-u (6.4)

where ¢ is the (6ngx7) vector of deformations of all members and u the (6ne 1)
vector of the corresponding nodal displacements (Fig. 6.2). Notice that for the axial
deformation the displacements of both ends are engaged, whereas for the rotation of
the chord at each end the displacements of both ends and the rotations of the

respective end are engaged.

Fig. 6.2: Spatial beam element with nodal displacements and rotations.

6.4. Constitutive relations

Deformations are composed by elastic and plastic part as:

g=e+p (6.5)

where e and p are the (6ngx1) vectors of elastic and plastic deformations of all

members respectively. The elastic part is described by the relation:
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s=S-e (6.6)

where S is the (6ne x6ne) assembled block diagonal matrix of all element stiffness

matrices S'. For an element i the stiffness matrix is given as:

EAT/L 0 0 0 0 0
0 GI/L 0 0 0 0
gi_| O 0  4El, /L 0 2EI/L e
0 0 0  4EL/L 0  2EL/L
0 0  2El/L 0  4El /L 0
0 0 0 2El, /L 0 4El, /L |

where E is the modulus of elasticity, A' is the area of the element cross section , L' is
the element length, G is the shear modulus, 1, is the torsional moment of inertia of

the element, Iy

is the moment of inertia of the element with respect to local y-axis,

I} is the moment of inertia of the element with respect to local z-axis. Plastic

deformations of the structure, that are considered perpendicular to the yield surface,

are given as:
p=N-z (6.8)
where N is the (6ngx2ne) matrix containing the scaled normal vectors of the

identified yield hyperplanes and z is the (2n¢ x1) vector of the plastic multipliers. The
compatibility relation for the whole structure is formed as:

S*.s+N-z-B"-u=0 (6.9)

where the terms result from the combination of equations (6.4), (6.5), (6.6) and (6.8).
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6.5. Yield condition

6.5.1. Formulation of yield condition

Yield surfaces involving the interaction of stresses are generally nonlinear. However,
they are approximated with linear segments or -for the general case- with hyperplanes
enforcing their linear expression, which is computational advantageous. In general,
considering the interaction of d number of stress resultants (d-component interaction)
and the vyield surface of dimension d is approximated with h hyperplanes, yield
condition for 3D frames may be formulated following four different schemes:

1. Hyperplane equations formulation

According to this formulation, yield condition for every cross section is
expressed mathematically as the subtraction of the length of two vectors, i.e.
the vector of the stress state and the vector of the yield limit. This
presupposes that the vectors are expressed along the same direction, which is
that of the appropriately scaled normal vector of every yield hyperplane. For

the whole structure, yield condition is formed in terms of stresses s as:

w=—NT-s+r>0 (6.10)

where w is the (2hng x7) vector of all strength reserves, N is the (6ne x2hng)
matrix of all scaled -with respect to yield capacities of stresses- normal
vectors and r is the (2hng x7) vector that includes the yield limits of all yield
hyperplanes. Notice that this formulation involves all the yield hyperplanes
that approximate the yield surface increasing considerably the number of

yield constraints per critical section.
2. Convex hull formulation

The yield polytope can be expressed as the convex hull of its n, fixed vertices
(section 3.3.2.2). Under this concept, yield condition is formulated as a set of
equality constraints, the number of which depends on the dimensionality of
interaction and thus independent of the number of the yield hyperplanes. For

this consideration, yield condition for a 3D structure is expressed as:
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5,-C-0=0, I,-0=1, 6>0 (6.11)

where s, is the (2dng x7) vector of the normalized stresses for all elements,

C is the (2dng x2nyne) matrix containing the coordinates of the vertices of all

yield hyperplanes for all elements, @ is the (2nynex1) vector including the

coefficients 6, for all vectors of the vertices n, for all the elements and 1, is

the (2ne x2nyng) matrix that sums the corresponding 6, at every element end.

3. Cone identification approach

Cone identification approach (section 4.3) depends on the notion that only
one yield hyperplane is targeted or activated for every cross section. Thus, it
is unnecessary to compare the stress vector with all possible yield limits; it is
sufficient to form the yield condition only for one critical hyperplane per
cross section. This is achieved following an identification process that
specifies the cone in which the stress vector resides and then yield condition
is formed only for the identified hyperplane. The mathematical expression of
yield condition for the whole structure is that of equation (6.4), including,
though, matrices of smaller size, i.e. w is the (2ng x17) vector of all strength
reserves, N is the (6ne¢*2ne) matrix of all scaled -with respect to yield
capacities of stresses- normal vectors of the identified yield hyperplanes and r is
the (2nex1) vector that includes the yield limits of all identified yield
hyperplanes.

4. Local linearization technique

This approach is based on the local linearization of the yield surface for
every cross section and constitutes an extension of cone identification
approach (section 5.2.1). The yield surface is not a priori linearized and thus
the yield hyperplane is not a priori defined, but is determined at each
optimization iteration for every stress point. The mathematical expression of
yield condition for this approach is the same with that of cone identification

formulation, including matrices with the same dimensions.

It is noted that the last two formulations of yield condition may be adopted for the

case of structural analysis formulated as a NLP problem.
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6.5.2. Incorporation of hardening/softening behavior

The structural behavior is considered linearized or nonlinear and it is incorporated
in the expression of yield condition by using extended or shrunk yield limits »’
(instead of the initial r). In the general case, any of the presented approaches of the
yield condition can be combined with any considerations of hardening/softening
behavior. However, the two last approaches of yield condition result in a formulation
of a minimum size and thus can incorporate more efficiently any consideration of

structural behavior. The specific considerations of hardening/ softening behavior are:
1. Multi-linear hardening/softening behavior

For this case, the critical segment of the structural behavior is identified for
every yielded cross section based on the value of its plastic rotation (section
4.3.3). The extended/shrunk yield limits for all cross sections are given as:

r'sr+H-z+c (6.12)

where H is the hardening diagonal matrix with dimensions (2ng x2ng), z is
the (2ngx1) vector of all plastic multipliers and c is the (2ng x1) vector,
which in a recursive form accumulates all previous plastic behavior. For the

case that a cross section remains elastic, equation (6.6) degenerates to r'=r.
2. Nonlinear hardening/softening behavior

Structural behavior may be also incorporated retaining its nonlinearity
(section 5.2.2). The extended/shrunk vyield limit for every yielded cross
section is determined straightforward from the analytical expression of the

nonlinear curve of the structural behavior, given the value of the abscissa.

6.6. Complementarity condition

Complementarity condition that excludes the simultaneous activation of yield
condition with zero plastic deformation are necessary, when softening or/and ductility
limitations are considered. The relation that expresses the complementarity condition

for the whole structure is given as:
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w'-z=0, w>0, z>0 (6.13)

The size of the components of the above relation is reduced to a minimum by
adopting either the cone identification or the local linearization technique for the

expression of the yield condition.

6.7. Formulation of the optimization problem

The analysis of 3D frames in the context of mathematical programming is
formulated as a LP or a NLP problem depending on the assumed structural behavior.
For the case of rigid-perfectly plastic behavior or hardening behavior, the ultimate

structural state is determined using the following formulations:

Hyperplane equations formulation  Convex hull formulation

max. «
max. « t. B-s—a- f=f
s.t. .s—a-f=
s.t. B.s—a-f=f ¢ 14
T o< : T-s-C-0=0 (6 )
N -s<r I,-6-1

s:unrestricted,a>0 .
s:unrestricted,#>0 ,a>0

where the unknown variables for the first formulation are the stresses s and the load
factor a, while for convex hull formulation the nonnegative parameters @ are added.
For the case of softening behavior or/and limited ductility, the formulation of the

problem is as follows:

max. a

max. a-p-w' -z
s.t. B-s—a-f="f, ) B pf ¢
s.t. s—a-f =
S*t.s-B"-u+N-z=0 S g Nd 0
.S — U+ 7=
w=-NT-s+r'>0 = . (6.15)
T w=-N"-s+r'>0
w -z=0
0<z<z,
0<z<z,
u, <u<u,
u, <u<u,

The vector of the unknown variables for the above NLP problem contains the stresses

s, the displacements u, the plastic multipliers z and the load factor a. The formulation
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of the problem may incorporate the cone identification approach or the local
linearization of the yield surface and multi-linear or nonlinear structural behavior. It is
noted that the optimization problem is parameter dependent and the proper choice of
the initial values of variable, as well as the lower and upper bounds may be decisive

in achieving the desired convergence.

6.8. Numerical examples

Limit load and deformation analysis is implemented as a NL programming
problem in Matlab code using fmincon solver (appropriate for the minimization of
constrained nonlinear multivariable function), with the interior-point algorithm
selected as optimization method.

The aim is to verify the applicability of the introduced approaches in 3D frames
and validate their efficiency for axial force-biaxial bending moment (NM,M,)
interaction for the following cases:

e Case (a): PWL yield condition and rigid-perfectly plastic behavior.

e Case (b): PWL yield condition and constitutive laws - Cone identification

procedure.

e Case (c): Nonlinear yield condition and multi-linear constitutive laws.

e Case (d): Nonlinear yield condition and constitutive laws.

For this purpose, two 3D steel frames are examined for the aforementioned cases
and the corresponding results are presented below. The generalized Gendy-Saleeb
yield criterion is adopted for axial force-biaxial bending moment interaction
(NMyM,):

®:n2+%-m2+%~m2—1 (6.16)

where parameters 4, and 4, are shape dependent. For rectangular cross sections they

assume the following form:

A, =2, =1-n (6.17)
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while for I-beams the corresponding expressions are:
A, =1-|n[, 4, =1-1.1)n| (6.18)

The aforementioned vyield criterion of equation (6.16) is represented by a 3D

nonlinear surface that is approximated using 32 plane triangles, as shown in Fig. 6.3.
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L o
Normalized bending moment m,

=

-1 0 1 -l 0 1
Normalized axial force n Normalized bending moment m,

Fig. 6.3: a) Nonlinear and b) PWL yield surface.

6.8.1. Example #1

The first example concerns one simple 3D frame shown in Fig. 6.4 and serves
demonstration purposes. It is subjected to increasing lateral and vertical loading and it
is discretized into 8 elements, 8 nodes and 24 degrees of freedom. The steel grade is
S235 with E=2x108kN/m?. Sections with A=53.81x/0™*m?, 1=8356x70°m* (strong
axis), 1=603.8x/0°m* (weak axis), 1=20.12x70°m* (torsional), s;,=1264.54 kN,
S2y=65.33 kNm, s3,=55=29.42 kNm, ss=s¢=147.67 kNm and sections with
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A=16.43x10™* m? 1=5412x10° m* (strong axis), 1=44.92x70® m* (weak axis),
1=2.45x10°*m* (torsional), s;,=386.1 kN, s,,=9.57 kNm, s3=s5,=4.52 kNm,
Say=Sey=20.76 kNm are employed for all columns and beams respectively. The
assumed multi-linear and the corresponding nonlinear hardening/softening behavior is
shown in Fig. 5.5. More specifically, for columns h;=2953.4 kNm z;=0.005 4,=1.1,
h,=1476.7 kNm 2,=0.015 1,=1.2, hs=-1687.7 kNm 23=0.05 13=0.8, h,=10"® kNm
24=0.06 1,=0.8, while for beam cross sections h;=415.2 kNm z;=0.005 1;=1.1,
h,=207.6 kNm 2z,=0.015 A,=1.2, h3=-237.26 kNm z5=0.05 3=0.8, h,=10°® kNm
24=0.06 1,=0.80, concerning the multi-linear behavior (Fig. 6.5a). The nonlinear
structural behavior is described by a 4™ degree polynomial line (Fig. 6.5b) based on
data presented in Table 6.1. The values of z, constitute the upper bounds for column
and beam cross sections respectively. The upper bound vector of all displacements is

u, =1 and the lower bound vector u, =-1. An updating rule of p=10p is used until

convergence with a tolerance of w'z <107 is reached.
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Fig. 6.4: Example #1.

Table 6.1: Polynomial line of structural behavior.

X 0.00 |0.0005( 0.001 | 0.002 | 0.005 | 0.01 | 0012 | 0.030 | 0.04 | 0.06
f(x) 100 ) 102 | 104 | 105 | 110 | 1.12 | 1.15 | 1.15 | 1.00 | O.80

Polynomial S0 =p1x4+p3x3 +F3-*-’J + pyx+ s
Line |5 -2256-10°, p,=-1997-10" p, =1169, p, =1252, p, =1.017
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Fig. 6.5: a) Multi-linear and b) nonlinear hardening/softening structural behavior.

Table 6.2. Analysis results for all cases for example #1.

NMyMz NMyMz NMyMz NMyMz
Cases rigid-p.plastic PWL NL-PWL NL
(@) (b) (©) (d)
number of variables n ,, 49 89
number of equalr
. qually 24 72
constraints N ¢
number of inequali
. Qually 512 16
constraints N i,
maximum load factor a (kN)| 78.52 90.14 101.75 102.28
number of plastic hinges 12 12 12 12
total computational time (s) 8.69 73.18 186.06 37.3
number of iterations — 90 189 45
complementarity condition
W' — 5.00E-06 | 2.56E-11 | 6.03E-04
initial values of p — 100 10% 108

All analysis results are shown in Table 6.2. Rigid-perfectly plastic behavior (case
a) corresponds to a LP problem including only equilibrium and yield conditions. And
yields the smallest maximum load factor a in the shortest computational time. For
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hardening/softening behavior it is observed that the number of variables and
constraints is the same regardless of the linearity or nonlinearity of the structural
behavior and of the a priori or local linearization of the yield surface. Comparing
cases (b) and (c) that correspond to the same multi-linear structural behavior, it is
observed that the local linearization approach yields greater value of maximum load
factor since the nonlinearity of the yield surface is retained. Number of plastic hinges
and collapse mechanisms are identical for both cases. Comparing cases (c) and (d)
that correspond to local linearization of the nonlinear yield surface, the maximum
load factor is slightly greater for the case of nonlinear structural behavior presenting

the same ultimate state.

Fig. 6.6: Plastic hinge formation for case (a).
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Fig. 6.7: Plastic hinge formation with step-by-step analysis for case (a).
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Fig. 6.8: Interaction diagram for case ().

More specifically, the plastic hinge formation for rigid-perfectly plastic behavior
(case a) is shown in Fig. 6.6. The results are verified by a step-by-step analysis using
SAP2000 version 14, as shown in Fig. 6.7. The corresponding interaction diagram is
presented in Fig. 6.8 designating the formatted plastic hinges with the number of the
corresponding cross section. The role of bending moment along local z axis (strong
axis) is dominant, the effect of bending moment along y axis is evident at column
cross sections and the slight effect of axial force is presented mainly in beam cross
sections.

The ultimate state for case (b) is shown in Fig. 6.9. Each plastic hinge is
accompanied by a number indicating the corresponding hardening/softening segment.
Plastic hinges at column bases lie on the second hardening segment presenting greater
deformations compared to yielded beam cross sections. Results are verified using

SAP2000 version 14 and the sequence of plastic hinge formation for step-by-step



Chapter 6

analysis is shown in Fig. 6.10. The ultimate carrying load capacities in terms of base
shear force are practically identical for both types of analysis, i.e. 180.18kN for step-
by-step analysis and 180.27kN for limit load and deformation analysis with
mathematical programming. The corresponding interaction diagram is presented in
Fig. 6.11. Beam cross sections are stressed under the combined effect of bending

moment (along the strong axis) and axial force, while the biaxial bending moment

Limit load and deformation analysis for 3D frames

effect is evident at column cross sections.

step 4

@i

Fig. 6.9: Plastic hinge formation for case (b).
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Fig. 6.10: Plastic hinge formation with step-by-step analysis for case (b).
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Fig. 6.11: Interaction diagram for case (b).

The plastic hinge pattern of the ultimate state for case (c) is shown in Fig. 6.12.
The roman numbers designate the corresponding hardening/softening segment of each
plastic hinge. The number and disposition of plastic hinges is the same as that of case
(b). However, beam cross sections are more heavily stressed presenting deformations
that correspond to the second (hardening) and the third (softening) segment. This is
due to the local linearization of the yield surface allowing for greater and more
accurate solutions. The corresponding interaction diagram is presented in Fig. 6.13.
Bending moment along the strong axis is dominant, while the slight effect of axial
force is evident at beam cross sections. Column cross sections are stressed under the

biaxial bending moment effect with almost absent the role of axial force.
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Fig. 6.13: Interaction diagram for case (c).

In Fig. 6.14 the ultimate state for case (d) is depicted, corresponding to a similar
plastic hinge pattern to that of cases (b) and (c). The ultimate stress state of all cross
sections is presented in Fig. 6.15. Beam cross sections are stressed under the
combined effect of bending moment (along the strong axis) and axial force, while the
biaxial bending moment effect is evident at column cross sections.

. xiii xiv
xvi

Fig. 6.14: Plastic hinge formation for case (d).
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Fig. 6.15: Interaction diagram for case (d).

The computational performance for cases (b), (c) and (d) are presented in Fig. 6.16,
6.17 and 6.18, omitting initial iterations for demonstration purposes. Comparing cases
(b) and (c) that concern the same structural behavior, it is observed that local
linearization method requires more iterations (189 versus 90) and more computational
time (186.06s versus 73.18s) until convergence. The sharp peaks that are presented
for case (c) are due to the penalty parameter in the objective function that magnifies
any divergence of the complementarity term. The computational performance of the
algorithm requires 45 iterations and 37.3s for case (d) with the objective function

attaining great values due to the penalty parameter.
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Fig. 6.16: Evolution of the optimization procedure of example #1 for case (b).
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Fig. 6.17: Evolution of the optimization procedure of example #1 for case (c).
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Fig. 6.18: Evolution of the optimization procedure of example #1 for case (d).

6.8.2. Example #2

The second example concerns the 3D frame shown in Fig. 6.19. It is subjected to
increasing lateral loading along X axis, fixed lateral loading along Y axis and fixed
vertical loading and it is discretized into 26 elements, 18 nodes and 72 degrees of

freedom.



Limit load and deformation analysis for frame structures with mathematical programming

100 100 100
2042 3 5
£
100 100 100 e
2a
100 50! 100 s0. 100 50
a 4. o]
100 100 100 E
a
&3 (o (=]
5m
(o (] (o)
S5m Sm

Fig. 6.19: Example #2.

The steel grade is S235 with E=2x10°kN/m? For all columns sections with
A=159x10"m? 1=45070x10°m* (strong axis), 1=8564x70°m* (weak axis),
1=189x10®m"* (torsional), s;,=3736.5 kN, s,=301.6 kNm, s3,=s5,=205.1 kNm,
S4y=Se,=602.1kNm are used, while for all beams sections with A=53.81x10"m?,
1=8356x70°m* (strong axis), 1=603.8x/0°m* (weak axis), 1=20.12x70°m*
(torsional), s1,=1264.5 kN, s2y=65.3 KNm, S3,=55,=29.4 KNm, S4y=5¢,=147.7 kNm. The
assumed multi-linear and the corresponding nonlinear hardening/softening behavior is
shown in Fig. 6.20. More specifically, for columns h;=12041.4 kNm z;=0.005 4,=1.1,
h,=6020.7 kNm z,=0.015 4,=1.2, h3=-6020.7 kNm z3=0.05 /5=0.85, h,=10°® kNm
2,=0.06 14=0.85, while for beam cross sections h;=1476.7 kNm z;=0.005 1;=1.05,
h,=738.4 kNm 2,=0.015 4,=1.1, h3=-1230.58 kNm z3=0.05 13=0.85, h,=10° kNm
2,=0.06 1,=0.85, concerning the multi-linear behavior (Fig. 6.20a). The nonlinear
structural behavior is described by a 4™ degree polynomial line (Fig. 6.20b) based on
data presented in Table 6.3. The values of z, constitute the upper bounds for column

and beam cross sections respectively. The upper bound vector of all displacements is
u, =10 and the lower bound vector u, =-10. For the penalty parameter p an updating

rule of 10p is used until convergence is reached.
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Table 6.3. Polynomial lines of structural behavior.
x 0.00 | 0.001 | 0.002 | 0005 | 0007 [ 001 | 0015 | 0.020| 0025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.060
f(x) 1.00 1.05 1.10 1.15 1.18 120 | 1.18 1.15 1.12 1.10 1.05 1.02 100 | 095 | 090 | 085

Polynomial line for column cross sections

f@=p-x'+p, - +p, - +p,-x+p;
p,=—1.83-10°, p, =3.14-10°, p, =—1817, p, =32.54, p, =1.02

0.00

0.0010

0.002 | 0.005 | 0.007 | 0.010 | 0.015 | 0.020 | 0.025 | 0.028 | 0.030 | 0.035 | 0.038 | 0.040 | 0.045 | 0.050

f(x)

1.00

1.00

1.008| 105 | 108 | 1.10 | 1.08 | 105 | 103 | 1.008 | 09 | 094 | 092 | 087 | 0.825| 0.80

Polynomial line for beam cross sections

f(x):pi-f+p2-f +p -x2+p4-x+p5
p,=—139-10°, p, =1.02-10°, p,=—901.3, p, =17.84, p, =0.99
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Fig. 6.20: a) Multi-linear and b) nonlinear hardening/softening structural behavior.




Table 6.4. Analysis results for all cases for example #2.
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NMyMz NMyMz NMyMz NMyMz
Cases rigid-p.plastic PWL NL-PWL NL
(@) (b) (©) (d)
number of variables n ,,, 157 281
number of equalr
. Qually 72 228
constraints n ¢
number of inequalr
. Qualty 1664 52
constraints n jnq
maximum load factor a (kN) | 188.50 204.13 211.98 215.07
number of plastic hinges 22 22 22 22
total computational time (s) 10.97 189.97 2953.38 2192.69
number of iterations - 28 359 280
complementarity condition
T, — 4.74E-05 | 4.50E-12 | 3.04E-07
w
initial values of p — 10° 104 100

All analysis results are shown in Table 6.4. Case (a) corresponds to a LP problem
that yields the smallest value of the maximum load factor a in the shortest
computational time. The number of variables and equality constraints for rigid-
perfectly plastic behavior is smaller compared to that of the NLP problem, but the
number of inequalities is significantly larger since all yield planes are engaged. For
cases (b), (c) and (d) the number of variables and constraints is the same regardless of
the linearity or nonlinearity of the structural behavior and of the a priori or local
linearization of the yield surface. Comparing cases (b) and (c) that correspond to the
same multi-linear structural behavior, it is observed that the local linearization
approach yields greater value of maximum load factor since the nonlinearity of the
yield surface is retained. The number of plastic hinges and collapse mechanisms are
identical for both cases. Comparing cases (c) and (d) that correspond to local
linearization of the nonlinear yield surface, the value of the load factor is greater for

case (d) since it corresponds to nonlinear structural behavior.
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The plastic hinge pattern for rigid-perfectly plastic behavior is depicted in Fig. 6.20
and the results are verified by a step-by-step analysis using SAP2000 version 14, as
shown in Fig. 6.21. The corresponding interaction diagram is presented in Fig. 6.22,
where the role of bending moment along local z axis (strong axis) is dominant.
Column cross sections are stressed also due to bending moment along local y axis,

while the effect of axial force is presented mainly in beam cross sections.
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Fig. 6.21: Plastic hinge formation for case (a).
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Fig. 6.22: Plastic hinge formation with step-by-step analysis for case (a).
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Fig. 6.23: Interaction diagram for case (a).

Fig. 6.24: Plastic hinge formation with a) limit and b) step-by-step analysis for case (b).
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Fig. 6.25: Interaction diagram for case (b).

Analysis results for case (b) are presented in Figs. 6.24 and 6.25. In Fig. 6.24a, the
plastic hinge pattern for limit load and deformation analysis is shown, while in Fig.
6.24b the collapse mechanism is verified by a step-by-step analysis with SAP2000
v.14. The stress state of all cross sections is depicted in Fig. 6.25, where it is
concluded that the role of interaction is the same as that in case (a). The effect of
bending moment along local z axis is prevailing for all cross sections. The role of
bending moment along local y axis is evident mainly at column cross sections, while
axial force affects mostly beam cross sections.

The plastic hinge pattern for case (c) is depicted in Fig. 6.26, where every plastic
hinge is accompanied with a number that designates the corresponding
hardening/softening segment. All yielded column cross sections lie on the second
hardening segment (Fig. 6.28a), whereas most beam cross sections are on their

softening branch (Fig. 6.28b). The interaction diagram is presented in Fig. 6.27. Beam
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cross sections are stressed due to the combined effect of the axial force and the
bending moment along local z axis (the effect of my is negligible), while the
interaction of all stresses is evident in column cross sections. The same conclusions
for the effect of combined stresses are reached for case (d), as presented in Fig. 6.30.
The corresponding collapse mechanism is shown in Fig. 6.29, which is identical to

that of other cases (number and disposition of plastic hinges).

3 32 3
K] 3 3] 3|
3 22 ;
3 3
. 2b | 24 2
] lﬁ [ ] Q [ ] @

Fig. 6.26: Plastic hinge formation for case (c).
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Fig. 6.27: Interaction diagram for case (c).
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Fig. 6.28: Plastic hinge formation for case (c).

Fig. 6.29: Plastic hinge formation for case (d).
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Fig. 6.30: Interaction diagram for case (d).

The computational performance of the algorithm for case (b) is depicted in Fig.
6.31. The convergence is achieved after 28 iterations and the required computational
time is 189.97s. Note that the value of the objective function comes to -47145.83,
while the value of the maximum load factor a is 204.13 kN. The significant difference
between these two values is due to the great values of the penalty parameter p, which

magnifies the tolerance of the complementarity term.
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Objective Function
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-1.40E+06
4 —+—Case (b)

-1.60E+06

Fig. 6.31: Evolution of the optimization procedure of example #2 for case (b).
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The evolution of the optimization process for case (c) is presented in Fig. 6.32
(Fig. 6.32b constitutes an enlargement of 6.32a omitting a few initial iterations). The
algorithm converges after 359 iterations requiring 2953.38s. The smooth tendency of
the objective function to attain greater values is distracted by some sharp peaks that

are due to the penalized complementarity term.
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Fig. 6.32: Evolution of the optimization procedure of example #2 for case ().
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The observed behavior of the computational procedure for case (d) is presented in
terms of objective function evolution in Fig. 6.33. The algorithm requires 280
iterations and 2192.69s until convergence, while its tendency is -comparatively to

other cases- smoother.

250.00
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g —o—Case (d)
£ 100.00
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o
50.00
Optimization iterations
0.00 ; ; ; : : .
0 50 100 150 200 250 300

Fig. 6.33: Evolution of the optimization procedure of example #2 for case (d).

6.9. Concluding remarks

In this chapter the structural analysis in the framework of mathematical
programming is extended to 3D steel frames. An optimization problem is formulated
that aims at maximizing the load factor that the structure can sustain, subjected to
constraints enforced by equilibrium, compatibility, yielding and complementarity
conditions. The disjunctive nature of the latter constitutes the main source of
numerical instabilities of the problem and thus it is appropriately treated using a
penalty function formulation. The enforced NLP problem is sensitive to initial values
and lower and upper bounds of variables. The yield condition is formulated following
two different ways, i.e. either the a priori linearization or the local linearization
technique, while the structural behavior is considered either multi-linear or nonlinear.
From the presented examples, it turns out that the algorithm for the case of nonlinear
yield condition (local linearization) and multi-linear hardening/softening behavior
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performs in a more stable way compared to the case of nonlinear yield condition and
structural behavior. However, the latter case, which addresses more accurately real
structural response, is computationally more efficient since it requires fewer iterations

and consequently less computational time until convergence.






Chapter 7

Concluding Remarks and Future Research







Chapter 7 Concluding remarks and future research

7.1. Summary and concluding remarks

The different methods of structural analysis constitute the basis of the engineering
design of structures. They concern the determination of the effects of loads of all
different kinds on structural systems and their components, involving mainly the
fields of applied and computational mechanics, material science and applied
mathematics. The aim is to evaluate structural response, i.e. deformations, internal
forces, stresses, support reactions, accelerations and stability for actual or potential
external loadings specified in the codes of practice. Among the existing methods,
limit analysis aims at determining directly the ultimate capacity of frame, plate and
other structures and possesses a central role in elastoplastic structural analysis. This
objective is achieved at the cost of obtaining partial information, which though is
sufficient to answer main design considerations. This “parachute launching” goal is
driven by the power of optimization theory. The formulation of limit analysis in the
context of mathematical programming enables further its straightforward application
to large-scale problems.

In this dissertation, limit load and deformation analysis in combined form is
addressed in the framework of mathematical programming for 2D and 3D frame
structures. The formulation of the problem depends on structural behavior and
additional list of demands such as ductility, specific design objectives etc. Classical
limit analysis of structures depends on rigid-perfectly plastic behavior and thus with
no considerations on plastic deformations. In this case, limit analysis is formulated as
a Linear Programming - LP problem that aims at maximizing the load factor under
equilibrium and yield constraints or in dual form minimizing the energy subject to
compatibility and energy normalization constraints. The LP scheme is also capable of
addressing indirectly isotropic hardening behavior focusing again only on the load
axis, specifying the ultimate values as upper bounds, and disregarding deformation. If
softening behavior and/or limited ductility are considered, the need for combined limit
load and deformation analysis emerges, including constraints that prevent the
simultaneous allowance of plastic deformation and strength reserves
(complementarity condition). This case is addressed as a Mathematical Programming
with  Equilibrium  Constraints (MPEC) problem, referring actually to the
complementarity conditions. The aim is to maximize the load factor a subjected to

constraints imposed by equilibrium, compatibility, yielding, complementarity and
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lower and upper bounds for plastic deformations and displacements. This kind of
problem is reformulated as a NonLinear Programming - NLP problem following
different approaches among which smoothing techniques, penalty function
formulation etc. The standard formulation is based on the piecewise linearization of
yield condition and constitutive laws that enables their expression in a linear form.
However, this approach interrelates the size of the problem with the refinement of
discretization and may become prohibitive for large-scale problems. Additionally, the
incorporation of multi-segmental constitutive behavior at critical sections leads to a
combinatorial growth of the size of the problem engaging for every yield hyperplane
all possible constitutive branches. This consideration renders the manipulation of
hardening matrix almost impossible for the optimization process.

The objective of the present work was to highlight the inner structure and
drawbacks of the existing formulation and propose new approaches that broaden the
applicability of limit load and deformation analysis in the context of mathematical
programming. In this dissertation a restructuring of the MPEC problem is achieved by
avoiding unnecessary perplexities established for reasons of mathematical formalism
and retaining strictly the physically-required information. In this respect, physical-
based considerations are adopted for the formulation of yield condition and the
incorporation of multi-linear or nonlinear constitutive behavior leading to the
uncoupling of the size of the problem (number of design variables and number of
constraints) from the type of discretization. This strict formulation, relieved from all
the unnecessary information, results as computationally more efficient and robust
compared to the standard one.

More specifically, in this work the yield condition is formulated following three
different schemes: 1) a convex hull formulation, ii) a cone identification approach and
iii) a local linearization technique. Expressing the yield polyhedron on the basis of
convex hull formulation, i.e. in the form of a linear combination of all vertices, leads
to an expression of the yield condition with a set of equality and not inequality
constraints. The number of these constraints depends on the dimensionality of
interaction and results independent of the number of the yield hyperplanes. In this
case though, the number of variables is increased as compared to the standard
formulation due to a newly introduced set of nonnegative coefficients. This
formulation favors computationally the conservative static theorem expressing

advantageously the multi-component interaction, enabling also finer discretization of
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the yield surface. The cone identification approach is based on the fact that every
critical section, at any optimization iteration, belongs to a specific cone of the
interaction diagram targeting only one yield hyperplane. Having this information, the
yield condition is formed only for this specific hyperplane and not for all hyperplanes
that form the piecewise linear (PWL) yield surface. This reduces the number of yield
constraints to a minimum, decreasing the complexity of the problem, which becomes
independent of the number of hyperplanes that approximate the nonlinear yield
surface. Two simple and efficient processes concerning cone identification for 2D and
3D interaction are developed. Extending cone identification concept for the local
linearization technique, the critical hyperplane for each cross section is not a priori
defined, but it is determined at each optimization iteration for every stress point by
locally linearizing the yield surface. This process provides accurate formulation of the
yield condition, while the a priori linearization of the yield surface is avoided.

Multi-linear or nonlinear structural behavior is also efficiently embedded without
affecting the size of the problem or the linearity of constraints. Having the critical
yield hyperplane identified (either via the cone identification or the local linearization
method), only one plastic multiplier is evaluated for each cross section. For multi-
linear structural behavior, the linear hardening/softening segment that corresponds to
this plastic multiplier is then identified and as a consequence, hardening matrices are
formed for each cross section only for the specific segment of the constitutive
relation. For nonlinear structural behavior, the evaluation of the extended/shrunk yield
limit is directly based on the value of the plastic multiplier.

As a consequence of the aforementioned considerations on yield condition and
structural behavior, the size of the complementarity condition, which is the main
source of numerical instabilities, is also reduced to a minimum accelerating the
convergence of the optimization algorithm.

Numerical results verify the applicability and the efficiency of the proposed
approaches in 2D and 3D frames. It is also concluded that multi-component
interaction affects the load carrying capacity and failure mechanisms of structures and
therefore the role of combined stresses should be taken into account aiming at a safer

structural design.
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7.2. Future research

Engineering design standards tend to prioritize the displacement based or
performance based design. Direct methods offer the means towards this direction,
assessing the bearing capacity or ultimate load of structures and focusing on the
ultimate deformations developed in structures. As mentioned before, yield condition
and structural behavior are the main aspects that have been investigated and some
new approaches have been proposed for their efficient formulation. Remaining strictly
on the field of engineering, the following issues may constitute the central points of
future research extending the results of the present work in the following directions:

»  Geometrical nonlinearities can be incorporated, investigating their effect
on the ultimate load and state of a structure.

% Nonholomic consideration may be addressed by using a stepwise
holonomic approach incorporating linearized or nonlinear constitutive
laws and yield criteria.

x  Development of mathematical smoothening procedures that treat more
efficiently the complementarity condition.

% Implementation of the proposed approaches in plane stress and plane
strain problems, in fracture mechanics problems (crack tracking) and in
soil mechanics applications (such as slope stability analysis, lateral earth
pressures on rigid retaining structures etc.).

The combination of structural limit analysis with mathematical programming
creates a promising field that treats limit state problems following a rather
mathematical path with the physical constraints lying on the background. However,
the presence of complementarity conditions, which are the source of numerical
instabilities, has led to the development of diverse approaches and solution strategies,
restricting the applicability of limit analysis with mathematical programming. As
pointed out by G. Maier in 1984, the need for a theory in the sense of the Greek
etymology, i.e. a theoretical framework capable of providing a deeper insight, but
also a versatile methodology for numerical solutions, was and remains urgent for

exploiting fully the potential of these methods.



Appendices

Appendix A. Linear programming.

|. Standard form of LP problem.

The standard form of a Linear Programming problem that is presented in equations
(2.1) and (2.2) having m number of constraints and n number of variables. The main

characteristics of the standard form are:

x Minimization problem
x Nonnegative vector b
x Equality constraints
x Non-negative variables
The aforementioned characteristics should be met for any LP problem so that it is
converted to one of standard form. Thus the following techniques may be followed:
1. Converting the maximization into minimization problem.
The maximization problem is transformed to a minimization one by multiplying
the objective function by minus unity.
2. Treatment of negative b; (i=1...m).
If there is a constraint i for which the value of by, it is multiplied by minus unity.
3. Converting inequality constraints into equalities.
i) Converting a “<” to equality constraint.
An inequality of this form is transformed into equality by adding a slack
variable, as shown below:

a X +a,X, +---+a,X <b <

n“'n —

ayX +8,X, +---+8,X, +5 =b, wheres, >0

il) Converting a “> to equality constraint.
An inequality of this form is transformed into equality by adding a surplus
variable, as shown below:

a X +a,X, +--+a,X 2b <

in“'n

auX +a,X, +---+a,X,—S =b, wheres, >0



4. Converting all variables into nonnegative.
i) Negative variables
Every negative variable x; < 0, (j=1...n) should be substituted by another

variable y; =—x;, where y; >0. Then, the variable X; is replaced by —y; in the LP

problem.
il) Free (unconstrained/unrestricted) variables
An unconstrained variable x; may be treated in two different ways:
» Elimination of x; using an equation in which it appears, for example:
A, X X, +o X et X S =h &
X; = %-(bi — ;X — @, X, — e — A X, — ;)
ij

Then the variable x; is substituted in all equations of the LP problem.

» Replacement of x  with two nonnegative  variables, i.e.

X; =Y; —w,;, where y;,w; >0,

I1. Primal-dual relations of LP.

In this section the definition of the dual program associated with a given LP program
is discussed (Luenberger and Ye 2008). Duality relation may be presented in
symmetric or asymmetric form depending on the kind of constraints. For the case that
the primal program is expressed only in terms of inequality constraints, the duality

relationship is symmetric and the primal and dual problems are given as:

min ¢’ X max A'b
st. Ax=Db st. ATA<c' (A1)
x>0 A>0

symmetric form

The generation of the symmetric form of the dual problem depends on the change of
minimization to maximization problem, the interchange of cost and constraint vectors,
the transposition of coefficient matrix and the reversal of constraint inequalities.
Based on the above formulation, the dual of any LP program can be enforced. For the
case of a LP problem in the standard form, the duality relationship is asymmetric and

the primal and dual problems are given following the next stages:



. . min  ¢'x
min  ¢'x

i AX >
st. Ax=b st X=Db
-Ax > -b
x>0
x>0
prirhal
(A.2)
max ub-v'b max A'b
st. u"A-vTA<c’ - st. ATA<CT
u=0 A unrestricted
v>0
dual

The transformation of the standard primal problem to that of equation (A.1) depends
on the replacement of the equality constraint Ax=b with two inequalities Ax < b and
—Ax >—b. Moreover, the dual vector of variables consists of two nonnegative vectors,
i.e. u and v. Considering that A=u-v, the vector A of variables becomes free

(unrestricted) and the asymmetric form of the dual problem is given by the following

relation:
min ¢’ x max A'b
st. Ax=Db st. ATA<CT (A.3)
x>0 A unrestricted

asymmetric form

The equality constraints of the primal problem generate the corresponding free dual
variables and vice versa. If some of the components of x in the primal problem are

free, then the corresponding inequalities in A'A <c' are turned into equalities.

Appendix B. Nonlinear programming-Interior point method.

|. Karush-Kuhn-Tucker conditions

Suppose that the objective function f, the inequality constraints g and the equality

constraints h of the optimization problem (2.4) are continuously differentiable at point

x*. If point x* is a local minimum provided that it satisfies the regularity conditions



mentioned in §2.2.2, it satisfies also the following Karush-Kuhn-Tucker (KKT)

conditions:

x Stationarity condition

VE(x") +Zmlﬂgyngi (x7) +Z|:/1“'JVhi (x") =0,

(B.1)
where 4, ;(i=1..m)and 4, ; (j =1..I) are KKT multipliers
x Primal feasibility
(x)<0, foralli=1..m
9i( *) | (B.2)
h;(x")<0, forall j=1..
x Dual feasibility
4y 20, foralli=1..m (B.3)
x Complementarity slackness
4:9: (X)) =0, foralli=1..m (B.4)

The aforementioned necessary conditions are also sufficient for optimality when the
objective function f is convex, the inequality constraints g are continuously

differentiable convex functions and the equality constraints h are affine functions.

Il. Interior-point method

The constrained optimization problem described in (2.4) is solved using a sequence of
minimization problems. Adopting the logarithmic barrier function formulation, the
problem becomes:
min f,,(x,s) = min f () - In(s,)
st. h(x)=0 | (B.5)
g(x)+s=0
where u is a positive scalar and s; is the slack variable corresponding to the i

inequality constraint. The In(s;) is bounded by the positive values of every s; and as u
decreases to zero, the minimum value of f, (x,s)approaches to the minimum of f

(Byrd, Hribar and Nocedal 1999). The algorithm that is incorporated in the herein
adopted fmincon solver may use two types of step at each iteration, i.e. a direct step or
a conjugate gradient (CG) step. According to the first one, the KKT conditions are

solved for problem (B.5) via a linear approximation.



Appendix C. Equations of yield lines.

In this Appendix, the equations of the eight linear segments that approximate the yield
surface are presented in detail. The adopted yield criterion is that of Gendy-Saleeb
accounting for axial force-bending moment (NM) interaction. The coefficients of the
yield lines form N matrix necessary for yield condition formulation. More

specifically, for j element ends the equations are as follows:

- - tany, ; 1
w, :tany, -n' +1.-m’ =tany, < iyl-sl'+i—-s;:tany1©
1y 2y
A s +B/s,=C/
. . tan . 1 :
w, tany, -n'+1l-m'=1< i72-51'+i—-s;:1c>
Sty Say
Al s/ +B)-s,=C)
- - —tany, ; 1
w,:—tany,-n'+1.-m' =1< iyz-sl' —5, =1l
Sty Say
Al.s +B].s,=C)
i i —tany, ; 1
w, i—tany,-n’+1.m’ =tany, < — 71-sl'+i—-s'2:tanylc>
1y 2y
Al.s +B]}-s,=C)
i i —tan T R
w, :—tany, -n’ -1.m’ =tany, & — . , ——S, =tany,
1y 2y
Al s/ +BJ-s,=C/
i i —tan N
W, :—tany,-n’-1.-m'=1< i}/Z.Sll_i_'Slz:]-@
Sly 2y
A s +B]) sy =C/
- - tany, ; 1
W, tany, -nd—1mi=le 2.5 = sl —1e (C.1)
Sly 2y
Al.s +Bl).s) =CJ
i i tany, ;. 1
W, (tany, -n’' —-1.m’ =tany, < iyl~sl'—i—-s'2:tan;/1<:>
1y 2y

Al.s+BJ.s)=C/



For k element ends the corresponding equations of yield lines are given as:

~tany, ; 1
w, tany, -nf +1-m* =tany, < —i.sl 4.5l —tany, <
1y 3y
k i k i k
A" +B sy =C
~tany, ; 1
W, tany, -nf+1mf=lo o2 gy gl o1
1y Say
A5 +B; 5, =C,
tan S R
w, i—tany, -n*+1.m“ =1 i72-31'+i—-s;:1<:>
Sty Say
A58 =
tan i1
w, :—tany, -n“ +1.m“ =tany, < iyl-sl'+i—-s;:tanyl<:>
1y 3y
k i k i k
A8 +By-5;=C,
tan i1
w, :—tany,-n* -1.m“ =tany, < iyl-sl'—i—-sg:tan;q@
1y 3y
KB =
tan i1
w6:—tanyz-nk—1-mk:1<:>f7/2-sl'—i—-s;:1©
Sty Say
K58l =C!
—tan i1
W, tany, -nf —1.mf=les 2.5l - sl =1 (C.2)
Sy Say
AS.s +BY.sl=C¥
—tan o1
w, (tany, -n“ —1.m* =tany, < iyl-sl'—i—-sg:tam/l@
ly 3y

Af-si 4Bl s, =Cl
The matrix N' and the vector r' of the element are given as:

A A A A
N'=/B/ - B 0 - 0

(C.3)



Appendix D. Equations of planes.

In this Appendix, the equations of the plane triangles that approximate the yield
surface are presented in detail. The adopted yield criterion is that of Gendy-Saleeb
accounting for axial-shear force-bending moment (NQM) interaction. The coefficients
of the yield lines form N matrix necessary for yield condition formulation. More
specifically, for a plane triangle p and for start node j substituting the normalized

quantities the following expression is obtained:

Agn"+l_5>gv’+(f;mj+l5g =0
~s ~.sh4sh o<osh o
A;++B; 2_3S,4Cl=24D'=0e
s L'y P gl P
ly y 2y
- .. - (D.1)
] BJ ] J N
Lo+ P+ P s =-_D!<
SI 1 |V| SI 2 |V| 3 p
1y y 2y y
Als! +Bls! +Clst = D!
p+l p=2 p3 p
Similarly for end node k:
Agnk+l§ﬁvk+égmk+l§g -0
O
AL B2 I3, CK 24D 0w
P Qi p lel P i p
ly y 3y
- . (D.2)
k k k k
_i ! i ! + i_FCp S' _|5k =
i v1 LiVi 2 Livi Si 3 p
1y y y 3y

Kol Kai kol _ Nk
A5 +B,s, +Cs; =D,

The number of planes is 32 (p =1...32) and thus the matrix N' and the vector r' of

the element are given as:

Aij ... A31'2 Aik ... A3"2
N'=|B/ .- B Bf ... B
Cli ... C 31'2 Clk ... Cskz

(D.3)
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Appendix E. First-order optimality measure.

First-order optimality is measuring closeness of a point with respect to optimum. For
a smooth constrained optimization problem with objective function f(x) and g(x)
and h(x) the vector functions representing all inequality and equality constraints

respectively, the Lagrangian function L(x, ) is of the form:
L6 A) = () + 3 A 8, (0)+ X Ay - (X) (ED)

. T -th - . . .
where A ; is the Lagrange multiplier for the i inequality constraint g(x) and 4, ; is
the Lagrange multiplier for the i"" equality constraint h(x). The vector A, which
contains all 4,and 4, , is the Lagrange multiplier vector of the problem and its length

is the total number of constraints. The optimality measure associated with the

stationarity condition (B.1) is given as:

[V.LOGCA) =V )+ A5 -V, () + D Ay - V(X)) (E.2)
The optimality measure associated with (B.4) is given as:

%93 (E3)

where the infinity norm (maximum) is used for the vector A, -g(x).The combined

optimality measure is the maximum of the values calculated in (E.2) and (E.3), in

which relations (B.2) and (B.3) are not directly considered.
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