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ABSTRACT

In this thesis we aim to gain further insight into the nonlinear dynamical phenomena
associated with ship motion in following seas. The manifestation of nonlinear dynamic behavior in
surge direction acts as a precursor of ship instability in directiomtabed with the longitudinal one.

More specifically, in steep following waves when ship is found near a wave trough, she may get
captured in a stable condition where she obt
called the surfiding phenomeno and according to literature it is a forerunner of broactong
(unstable condition that causasdden large heédading to loss of controllability). So, avoiding surf

riding condition we manage to avoid the occurrence of dangerous instability. Tisig depicted in

the wunder devel op me n"t Gememtipn tacteStabdlity tCis i toefr i talbe off 2
However, the dynamics that lead to such instabilities are not yet fully understood for irregular wave
excitation. Using the theory of Lyapunov Cheteristic Exponents (LCES) and the method of Finite

Time Lyapunov Exponents (FTLEs) we attempt to further investigate the dynamics of the
phenomenon. Applying the FTLE method we aim to extracthgerbolic Lagrangian Coherent
Structures (LCSs) that aess transport barriers of phase flow. Creating scalar fields of maximum
FTLEs in the phase space of surge equation of motion and simultaneously choosing to show the
ridges for various instances in time, we get material curves that evolve in time andlai gafime

the phase flow transport. Considering regular wave excitation, these ridges coincide with stable and
unstable manifolds of the corresponding phase portrait. This computational tool offers the chance to
estimate delineated regions of differegyhdmical behavior in phase space (suding or surging)

through the visualization of structures (material curves) that do not permit the flow of phase particles
across them. Hence, through the implementation of methodologies based in theory of Lyapunov
Exponents we intend to understand the mechanisms that incur eitherdkistemce of surging and

sur-r i di ng depending on ship6s i n-riding. al condi ti or
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1 Introduction

It is commonly accepted that ship dynamics imeavy sea environment has been a subject not fully
understood by researchers until recently. For this reason, the international research community has
set as priority the identification of dangerous ship instabilities on the basis of scientific approaches.
This is reflected also in efforts by the International Maritime Organization to establish new
regulatory requirements wita strong scientific foundation through tiie? Generatio Intact
Stability Criteriao (Peters et al. [1]).

Since many years, marirseand later researchers had observed instabilities in directions that
differ from the direction of wave excitation. Several accidents occasioned by unstable phenomena on
shi pds motion in heavy seas have necocssamithe at ec
mechanisms that create the instabilities.

When the waves meet a ship from the stern (folloveieg), three different known scenarios
for capsizing can be realized: ptoss of stability, parametric instability and broachindy In this
thesis, surriding, a phenomenon that is known to cause broadangs going to be studied.
Broachingto is an instability leading indirectly to large heel. Suding on the other hands a
nonlinear conditionn which the ship is suddenly captureear to a wave trough and then moves
with the wave celerity (phase velocity). This condition can appear in steep waves having length near
to the ship | ength, when the shi p-®&tate agpferand i s
observer moving witlthe wave, surfiding is characterized as an equilibrium condition.

Although the perception of broachibg was made centuries agb,ocused study
dynamic instabilitystarted after 1950and notable progress has been made since 1990s. In 1951
Grim [2] investigated shipbés surging motion in r
Sshi pds surge motion and | ater he attempted to
di dnot manage to sum up on the phenomena re
connection of the aforementioned surge nonlinearities with broathihg 1990 Kan 8] published
his research on the suiitling phenomenon, presenting and conmgaexperimental with numerical

results considering regular waves. I n his stu
celerity is higher than shipbdés nominal speed,
surf-riding. During surfr i di ng, a transient phenomenon tak
velocity is increased sharply, to reach waveb

a threshold, the reach of which is a signal of -slihg. However, theconclusions extracted
considering regular wave excitation could not be extended for the cassgafarwave excitation.

In 1996, Spyrou4] made a qualitative dynamical analysistloé autonomousurge equation
of shipds moti on tshthecsurdgding phdnontehon, based énxthe lthaorynof
homoclinic bifurcation. Sufiding condition appears in pairs, one of whichstable when ship
captured in wave trough and unstable when captured in wave ckestcases of irregular sea
environmentthe time dependent nature of the systhras not permit to extract specitionclusions
related withshipd ong-term behaviar For an irregular sea, Spyrou et al. [5] proposed methbds

1) Broachingto is an unstable phenomenon that leads to loss dfodlability and capsize usually on the wave
downslope. In Spyrou4] it is described as fAloss of headingo c
tight turn degspbdbteethenghafdthe rudder.
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computing the wave celerity in order tefshe the threshold above which the ship is captured into
surfriding.

Extensivescientific research pred that surfriding is often a forerunner dbroachingto.
Henceby avoiding the occurrence of sentling broachingto is also prevented. For thisason, the
International Maritime Organization (IMO) decided to establish regulations focused on the
prediction of a sitingpndtse cantext of the segordi®) generatian rinfact
stability criteria. Until enough scientific knowleelgpermits defining fully the criteria, IMO put
forward draft vulnerability criteria in 2012 in two levels. These criteria are still under development.
However, almostwo decades ago, IMO had published a very useful guidance for the ship Master in
order toavoid such instabilities at sedore specificallythe operational guidanddSC.1/Circ 707,
published in 1995 by IMO and replaced M@C Circ.1228 in 2007, requested the Masteretiuce
the Froug@ Number toless than 0.3 (for ships with length lessnth2Z00m)in cases thatea
environment is characterized by steep following wavé® first level vulnerability criterion for
surf-riding is essentially an extension and refinement of this requirembntthe second level
criterion the designer isrequestt t o e st i nrabakslity to lhexaptarédi inbodsgrfidipg
and broachingo conditionfor North Atlantic wave conditions

Studying thesurfriding phenomenon in multhromatic wave environmenthe time
depending nature of the system makefatilt the detection of the phenomenon. The calculation of
stationary solutions is not applicable due to the fact that they do not remain constant over time. So, a
computational toglthat will provide a straightforward approatd the surfriding phenomenon in
this case and will also make easier the implementation of probabilistic methods provided/et

Thisthesiswas developed in eoperation with the PhD candidater M. Kontolefas, based in
Kontolefas & Spyrou§]. The objective was tmvestigate the nonlinear dynamiosf s hi pés s
motion that lead tdhe surfriding condition, using tools appropriate for the investigation of the
stability of time-dependentlynamical systemdn autonomous dynamical systems, computation of
S y s t egumilibsum solutions provide us the capability to extract, through integratitme
influential trajectories that have strong impact in the flow tranggtable and unstable manifo)ds
|l nserting time in a dynami cal uili®iyrsdolations isaa@ | c u |
practically feasible due to the fact that they change as time varies. In order tostavetaleshat
organize phase flow in tirgependent systemsye have relied on the concept b¥perbolic
Lagrangian Coherent Structuresg&s) which in literature (Halleet al.[7]) are defined as material
lines in 2Dimensional flows thaattract or repel nearby phase particles in the highest rate locally.
Through these entities we are able to construct curves-iDim@nsional phasplane that help us to
recognize regions of different dynamical behavior. In order to extract these structures, several
numerical tools have been proposed. In this thesis the method of FimeeLyapunov Exponents
(FTLE) is basically used, in parallel Wwithe computation of Lyapunov Exponents for a time series
through which we are able to identify chaotic cases. More specifiadiymings h i finte-s
dependenhonlinear equation of surging motiocand taking under consideratioretlargest FTLES
that provide a measure of the hyperbolicity of trajectories, attempt to visualizenaterial lines
comparable tostable and unstable manifolas the phaselane of an autonomous systethat
separate regions of initial conditions. Through the recognition oé thmesifolds we will be able to
understand the mechanisms that drive a ship in-rilinfg and the limits above which the
phenomenon appeawslthough t has beemxtensivelyconjecturedn literaturethat, these structures
illustrate the stable and unstabhanifolds in phase space (Hak¢ral.[7]), later, Shadden et al8]
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and Haller [9]stated that largest FTLEs may also represent trajectories of high shear that do not tend
to expand or contract nearby trajectories

In the first part of chapter 2 we make a critical review regarding existing research on-the surf
riding phenomenon and in the second part, on the existing numerical tools of extracting LCSs.

In chapter 3 we explain our objectives related to the investigat of shi pds no
motion considering irregular sea, which approximates the natural sea environment.

Later, i n chapter 4 we present the equatio
the individual t er ms . nedsih hep dunomouys fgrm foreregular wave n
excitation as well as in neautonomous form for behromatic ananulti-chromaticwave excitation.

In chapter 5 the necessary theoretical knowledge regarding analyzing stability of linear and
also nonlinear dynaital systems is presented, explaining simultaneously several terms of dynamics
that we use in this work.

Then, in chapter 6 we explain in detail the mathematics and the general method of the
numerical tools (Lyapunov Characteristic Exponents, Fimbte Lyapunov Exponents) used in this
thesis in order to extract LCSs in the phapace.

Chapters 7 and 8 are dedicated to the presentation of graphs extracted from the
aforementioned methods for indicative cases, simultaneously commenting on them andtla¢so on
conclusions obtained. The numerical methods used, preiducedin the computational software
p r o g Matmemdiica .

Finally, in chapter 9we make a brief discussion on the results obtained using these
numerical tools and also the conclusions thatcaeld extractand in chapter 1@&ve mention the
further study that could be made in the context of therglirfg phenomenoand LCSs

13
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2 Critical Review

2.1 Surf-riding phenomenon

In 1948 Davidson[10Q], through his researchproved that a stald ship in calm water, may

demonstraténstability in a following sea environmehtAt about the same timel951) Grim [2]

presented th@onlinear phenomenon of abnormal surge motion that may @edong andsteep

waves approaching a ship from tlkeern. Later, in 1963, Grim I1] attempted to extend the

investigation of the phenomenon in irregular waves while no one had studied that case until then. He

focused on the statistical treatment of marsft at i ons of Al ong runso (i

from a given wave spectrum, even though ship propeller thrust was relatively low. Simultaneously,

he proposed that nonlinearities in surge are connected with dangerous phenomena like dmaching
Later, in 1990Kan [3] will publish the first detailed research on the sigling phenomenon

in regular waves. Kan investigated skigrgirg by conducting freeunning model tests, numerical

simulations anghhaseplane analysis ifollowing seasHowever this investigation was not extended

for irregular wavesAfter several model tests, Kan found enough evidénagfor certain nurber of

propeller revolutions, thmotion changes suddenly from largenplitudesurging to surfiding. This

point is observé¢ when shipbs speed, appraatheddhegwaswe e |

v e |l o ccelerityo ) (igiR.J5. Furthermore, the reduced inflowelocity r e duc e s t he r

effectiveness, which impliegbe dangerous effect die surtriding condition.

WAVE VELOCITY
{NON -LINEAR)
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%] [
o (=]
o o
wn @
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" NUMBER OF REVOLUTION OF MODEL PROPELLER [r.p:s)
Figure2.1 Variation of model speedKan[3])

From histheoretical approa¢chiKan concludedhat in surtriding condition there ae two
static equilibrium pointsthe stable (betweeirei4 andaf4 from the wave trough) artie unstable
surf-riding condition(similarly, but with respect tthe wave cre$t Through numerical solutioof
the surge equation, Kan s hcauld bedeitheraswgging or sufifleng, , s h
depending on s hi. pestigaiomaf this aekexistencenwhimade ohroughhe

1) Seacondition during which wavesit the shipfrom thestern
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phaseplane analysis (Fig.2.2). Changing the parameter Froude Number (Fn), Kan showed three
di stinctive arr ang e plane.t Is theochse of hoe Fns(kig2t2&),neach inif|mh a s
condition leads to a periodic attractor which indicates periodic surging. For medium Fn cases
(Fig.2.2b), we observe esxistence of two different types of attraction, namely -sdihg and
periodics ur gi ng. Shipés final motion in that case
values (Fg.2.2c), phasglane analysis shows that the final condition wilays be surriding. The
phaseplane analysis leads to the conclusion that there arectitiwal ship speeds. Under the first
critical speed, suffiding never occurs and above the second critical speedridng occurs for
every initial condition. For speed values between these critical values, ship makes either periodic
surging or surriding, depending on initial condition. It is important to point that the validity of the
simulation results is proved comparing them with experimental results.

Finally, Kan proposed a guideline in order to avoid sigihg condition, determining the

critic a | wave height and the <critical ship spee
experimentally were very significant in the
sea, he didnot i nvestigat e aveswhibhsis thk yeprasentatva | b

case of a real sea environment.

crest trough aest £74

Figure 22 Phase portraits for various Fn, (KE8})

In 1996, Spyrou4] conducteddynamical analysis andlassifiedthe nonlinearsurf-riding
phenomenonashe result of a Ahomoclinic connectiono
the objectives of this paper is tdentify the boundaries in thphasespace that separate initial
conditions that lead to suriding from these that lead to surgirlgis important to mention, that in
both of the aforementioned studissiyge equation of motion that the anaysibased on, contains
the FroudeKrylov wave excitation. In this publication, it is clarified that manifestation of the surf
riding condition is caused due to a transient phenomenon that occurs suddenly and forces rapid

16



increase of the surge velocity until this reaches wave celéfhys leals to the surfiding
phenomenon during which the instantaneous surge velocity equals wave celerity. Through
Figure 2.3, Spyrou explained qualitatively the dynamics of the phenomenon in the case of following
waves of large amplitude. In this figuexery section corresponds to different Fn value. In section

(a), for low Fn, vessel is captured in a periodic motion. In section (b), a static equilibrium appears
and in section (c) there is a stable point, a saddle point and in parallel a limit cyslémithcycle

tends to approach the saddle point which is located nearer to the wave crest. For a critical value of
the Fn, the limit cycle touches the saddle point and a new condition appears. This phenomenon is
justified as a fAhogenércvaluen lead tostable rauitibrivumigini sectidn a

(c), the phasglane is divided into two separate regions atfraction. Thes two regions are
separated bi i n v a r i sqinsetlowhichratasyrmptotic to theaddle pointBackward integration

in time results in thaforementioned insehvariant orbit ofthe saddleMoreover, he ouset curve

arises from integratinfprwardin time starting near the saddle.

Defining these curves in this paper is very important for undeistg the phaselane
analysis, while they provide the conclusion that an initial condition located lower than the inset leads
to the periodic motion, but on the contrary an initial conditions located above it ends on the point
attractor.

regular ‘overtaking-wave' stationary states of surf-riding :
periodic pattern »_ /7
/ near |
trough|
/ J ’§
-L—-_ 1' {: 4
. / E
|
/ g
-]
near <
crest >
/ & 3 5
f 3 Y
/ * g
(¢) (d) 3
(a) (b)
cos(2nx/A) I u -1 -0.5 0 0.5 1
nominal Fn (representing propeller rate)

position, cos(2mx/A)
Figure2.3 Qualitative description of stages leading Figure2.4 Inset and outset of saddle at wave crest,
to disappearance of overtaking wave periodic Spyrou #]

motion, Spyral [4]
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2.2 ldentification of areas with diverse dynamical behavior in phase space flows

a) Lyapunov Exponents

Alexandr Mikhailovitch Lyapuno1857#1918) was a Russian mathematician with fundamental
contribution in stability analysis of dynamical systems. More specifically, through his doctoral thesis
fiThe general problem of the stability of motioat the University of Moscowin 1892 [12], he
proposedwo methodsn order to define stability, the first of which wlhased on the linearization of

the equations of motioand theuse ofwhat was later callethe Lyapunov Exponents Ly apunov
research in general concentrated on investigationbilisy of critical points stability of uniformly

rotating fluid the construction and the ap@i¢ i on of the so called fiLya
functional differential equationsthe second Lyapunov method and the method of the Lyapunov
vectorfunction in stability theory and nonlinear analy@#edrih K. [13]).

Al most a century after Lyapunovds studies
to explain the longerm behavior of nonlinear dynamical systems. In 1968, Oselbsliedops the
theory of Lyapunov Characteristic Exponents in the frame of his study in dynamical systems and
ergodic theory 14]. In 1980, Benettin et a[15] publi shed research base
[14], in which they proposed a method for compgtthe Lyapunov Charasteristic Exponents (LCE)
or maximal Lyapunov Exponent of a dynamical system. To explain their role in a few words, the
LCEs measure the rate of divergence or convergehoearby trajectories in phaspace. So, LCEs
play an importatrole in the study of nonlinear dynamical systems while positive LCEs imply chaos.
The gap of knowledge in the field of diagnosis of chaotic dynamical systems is going to be fulfilled
by the calculation of the Lyapunov Exponentsbéd

In 1985, Wolf et al. [16] published an algorithmthat computes numerically Lyapunov
Exponentsof dynamical systems in time, based in Benettin ét s15] fnethod. This method was
applied in several known dynamical systems, defined by differential equations (Henorer,Rossl
Lorenz, MackeyGlass), either autonomous or ramtonomous, and could also be applied in
experimental data. This algorithm is based upon the monitoring of the evolution of an infinitesimal
n-sphere of initial conditions, in andimensional phase spaf&/olf et al [16]). In the case of one
dimensionaflow map, computation of positive LCEharacterizes a system as chaotic, zero LCE as
periodic and negative LCE as stable.

Some years later, in 1996, SandiT]| based in the computational method developed earlier
by Benettin et al[15] and Wolf et al [16], presented an algorithm in Mathematica in order to
compute the whole spectrum of Lyapunov Exponémtsrdimensional dynamical systems. This is
the aborithm implemented in chapter 6df this thesis. An example of the LCEs computed using
Lorenz equations is presented in Fig.2.5.

Al t hough computation of LCEsO spectrum pro
long-term behavior, this diagnosis daast offer visual identification of the type of attractors and the
mechani sms that |l ead to the systemdsmeftioned | c
above examines the rate of separation of trajectories corresponding to an ensemblel of initia
conditions near to theeference trajectorywhich means that the case of-existence of stable
conditions i s not obvious through LCEsO spec

18



boundaries in the phase space that direct the flow into diffeyeainucal behavior, more aspects of
Lyapunov exponents were introduced. More precisely, a finite version of Lyapunov exponents was
expressed through the similar methods of Hifitee Lyapunov Exponent (FTLE) and Finize
Lyapunov Exponent (FSLE), whiclprovide comparable visualizations on the magnitude of
stretching of nearby trajectories over a finite interval of time (Helie.[7], Boffetta et al[18]).

The scientific community, trying to understand transport mechanisms ofdependent
flows, and indeed of dynamical systems, initially implemented these methods in oceanographic
researchUsing FTLEor FSLE methodthe creation of salar fieldin phasespaceis possible in
which positive values indicate separation of nearby trajectonése FTLE method, a scalar field is
computed by measuring the stretching of trajectories for a determined finite period of time. On the
other hand, through the FSLE method we measure the time it takes to obtain a certain stretching
ratio. Visualization of thes scalar fields providea measure of the separation of particle trajectories
through which we recognize transport barriers of flow particles.

In the paper of Boffettateal. [18], a comparison of FTLE and FSLE methods is made, in
parallel with an Euleriatechnique applied on a twbmensional fluid flow. Through this research it
is concluded that both methods provide better results in the identification of transport barriers from
that given by the Eulerian method. It is also proved that FTLE method seerasefficient from
FSLE in certain cases. Furthermore, in the researBleitertet al [19], extended comparison ofi¢
two aforementioned methods is conducted and it isascludel that distinguishing which method
fits the best to our problem, deqs on the initial knowledge of the time or spatial scafeson our
interest on the interaction of transport mechanisms. Moreover, maximum similarity of these methods
could be achieved by choosing the appropriate parameters in the numerical comptithémscalar
field in each case.

0-fi

-20 k

0 200 400 600 800

Steps
Figure 25 Plot of the Lyapunov spectrum for the Lorenz model, Saddti [
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b) The concept ofLagrangian Coherent Structures(LCSSs)

In 2000 Halleret al.[7] introduce Lagrangiaboundaries oCoherent Structures in order to explain
the transport mechanisms in tirdependent twalimensional turbulenfiuid flows. Haller presents
these boundarieas geometric structures, similar to stable and unstable manifolds of dynamical
systems, that goverfiuid transport. In addition, Hadr [20] proposed théi di r ect 0 @ o mp u
largestFinite-Time Lyapunov Exponentas a tool appropriate extract LCSs. Hshowsthat local
maxima in the Finitelime Lyapunov Exponent (FTLE) field are, in fact, indicat@f repelling
Lagrangian Coherent Structures (LCSs) in forward time integration and of attracting LCSs in
backward time integratiotde also implements the method in order to extract repelling LCSs-in a 3
Dimensional flow.In his publication Haller [2] suggests specific criteria for extracting LCSs,
applying them in several-Rimensional timedependent flows, presenting in parallel specific
examplesChoosing flows that have exact solutions, he verifies the criteria he propdisedigh it
was initially believed that across these structumeso flux of material is accomplished, this
consideratiorthanged later

After Halleroés initial formul ation of the
al. [8] a few years later. In this paper, authors presented the theory and computational method of
LCSs using ridges (local maximizing curves iD2hase space) of FTLE fields for tirdependent
flows. Through the definition of LCSs and the computational metnaghosed, they estimate
negligible flux across the LCSs coming from FTLE fields, confirming the almost Lagrangian nature
of the ridges. Under this consideration, LGf@roximatanvariant manifolds. It is also noticed that
the ultimate objective by extting LCSs in timedependent flows, is to make them counterpart to
the stable and unstable manifolds in timéependent dynamical systeriifie authors of Shadden et
al. [8] implemented this theory in a dynamical model of a doglyte flow (Fig.2.6), in srface data
collected by radar stations along the coast of Florida and at an unsteady separation of airfoil. The
flux across the LCSs, implemented in first and second example, was numerically computed to be less
than 0.05% whiclconfirmsthat LCSs derivedrom FTLE fieldsact like the stable and unstable
manifolds that govern flow transport in a dynamical systétowever, Haller [9] presents
counterexampled which the formula oShad@n et al.[8] used in order to calculate the material
flux across LCSsloes not give accurate results; in fact the flux is found to be significantly.larger

\a
/
A.l,.4.|“.,'.l.;.;n.1. 1y .
0.75 1 1.25 1.5 1.7

2

DLE

N:
8

~

N4 O =2V wWwprLrooe

-llll‘l 21§ -
00 025 05

X
Figure 26 Thedoublegyre FTLE field at t = Q(Figure fromShadderet al.[8])
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Later, Peacock &Haller [22] publish a research that sumr
adds some proposed methods in order to extract LCSs. The ausleotise concept dfCSsin an
attempt to understand the transport mechanisms in fluid flows. According to the authors, LCSs are
material lines that define the behavior of neighboring fluid elements over a selected period of time.
For timeindependent flows theagrangian transport idirectly related with the positioof stable
and unstable manifolds which seras transport barre (Fig.2.7. For aperiodic tim@&ependent
flows, the definitions repelling and attracting material lines are used in order to understand the fluid
transport over a finite time interval. By definition, repellm@terial lines repel nearby trajectories in
the highest local rate and attracting attract in the highest local rate respefige8). In this
research, authors indicate tR&LE method,as well asa procedure involving the computation of
strainlinesin a flow, as primary methods used to extrdcCSs. Furthermore, they point the
advantages and disadvantages of these metBgddefinition, Lyapunov exponent is a measure of
the sensitivity obehadortd itsinitiad pogtiarrin thedllideflowsfieldnthe u r e
work there arealso mentionedapplication examples of the FTLE method in oceans in order to
control pollution, as well as applications in human arteries, in air traffic and to predict flow
separation by airfoils.

3 | I=h E=t

Fluid parcel
RS

Nearby malerial lines

Figure 27 Transport barriers that advect material form Figure 2.8 Lagrangian coherent structures the time

(a) A fluid parcel approaching the saddle pogntd interval [tp , t1].(a) Attracting LCS (b) Repelling LCS
finally moving along the orthogonal material lingb) (c) Intersection between the repelling and attracting
Unstatbe manifolds (red curve)in a timeperiodic LCSs is a saddlpoint, (Figure fromPeacock & Haller
atmospheric flow generated by windssigure from [22])

Peaock & Haller [22])
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Additionally, Shadden 23] makes a detailed review on the theory of computing LCSs
through FTLE fieldspointng out the benefits of using LCSs in order to understand further
mechanisms faransport in aperiodi¢time-dependentjlows. It is remarked that the development of
the method gives rise to the identification
interaction of these manifolds is found to be the cause.



3 Objectives

Themain objectives of this thesis are:

1 The implementation of new numerical tools, already used in uhéderstandingof
mechanisms thatead fluid transport influid flows, in order togain insight into the
mechanismdeading tothe surfriding phenomenon thatsuallyc auses shi pds

throughbroachingto in following seas

1 To apply numerical methodsanr der t o di agnose chaotic shirg

1 To apply the aforementioned methods firstiy@gular wave excitation in order to test their
applicability, secondary in fiihromatic wave excitation and finally multi-chromaticwave

environment
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4 Equation of surge motion

4.1 General equation form

Themat hemati cal model u s e ldngiiudinal onotidnen rfollowing sesasismu | a t
based on Ne wtanadidcledestleaanaimfdrce$ aatimg on a ship in longitudinal direction
(see also Spyroul]):

(m- X)%x =T R X (4.1

wherem is the ship massX, is the surge added mass; the dot over the symbal implies the
differentiation ofx with respect to time is the instantaneous acceleration in longitudinal direction,
T, R, are respectivelyhrust and resistancen calm water, X,, is the Froude&Krylov wave force

acting inlongitudinal direction. Th lasttermattainspositivevalueswhen midship is positioned in a

downslope and negative when in-gfppe of a wavekinally, the termx indicates the distance of the
v e s s e |-shis fromm im cearth fixed ceordinateand 3 the distance from a cordinate system

positioned on a reference wave crest

—_— e
Z14 =H
R — 7
®1 ; q“"\\ I D

Figure 4.1 Shipn following sea

42 Analysis of Equationdés Ter ms

Generic form of surg€&q. (4.1) implies that thrust should counteract the inertia term plus resistance
and wave gcitation term.

Firstly, the surge added mass term is considered as constant, because of its dependence on th
encounter frequency which is low in our case.
Resistance is considered as a function of surge veldgjtarfd is expressed as a third order
polynomial (see Spyroul]):
R=tU +#U?> nrY* (4.2)
wherer; i=1,2,3 are appropriate coefficien{$able 4.3)
Furthermorechoosing appropriate coefficierds i=0,1,2, so ashethrustcoefficientKyto be
approached by polynomial:
Ki =k, +K +4° (4.3)
andknowing from propulsion theory that:
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_u@- w)
- nD
we express thrust as a polynomial of second cddeending on surge velocityY and pr ope!
rate @):

J (4.4)

T=t,/ +nU 7 (4.5
wherel), i=0,1,2 are coefficients conveyed by following forms:

ty= 1 -t) D

t,= KL -t)L - Df (4.6)

t,= K1 -t)d -y Df
wherety is the thrust deduction coefficient amg is the wake fraction coefficient, considering still
water for both cases. Moreové&,andn are respectively the propeller diatar and rate.

Finally, the Froud&Krylov wave force amplitude on surge direction, that dependwanre
lengtharsead ept h as wel | as on the |l ongitudewazd pos
occurs bycalculatingthe RAO curve (Fig. 4.2) that relates wave amplitud&)(with surge wave
force amplitude coefficients;):

RAO- kN m
1400

1200 |
1ooo§
800;
600;
4oo§
2oo§

02 04 06 o8 10 "¢
Figure 4.2 RAO curve
f. = RAOQ @A (4.7)
So,from Fourieranalysis, the Froudkrylov wave excitation term that is going to be used
our mathematical moded expressed as

X, = é fsinkx -wt § %) (4.8)

hold where V is the number of wave components/ is the wave frequency is the wave number

2’ [, £, isthe wave difference between the wave and the far/"” is the wave phasef thei-
th individual wave componena term that introduces th@ndomnesg wave exdaton.

1) v=1in case of a regular wave, v=2 in case eftbiomatic sea
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43 Final Shipbés Surge Motion Equation

a) Non-autonomousform of nonlinear equation of surging motion

Substituting expressions (4.2), (4.3),8in (4.1),assuming fixed on earth -@rdinate systemwe
obtain:

(M- X)%4¢ (6 1€ (i+ [}k & (singkx  twe (%@ af @

/=1
b) Autonomousform of nonlinear equation of surging motion for regular wave excitation

In the above model we assumed so far @rinate system fixed on earth. In case we prefer to
obtain an autonomous version of the equation, consideration that is applicable only for regular wave
excitation, we have to define a new movingardinate syst@, positioned on the crest of a reference
wave andmoving with the wave phasegelocity c. In parallel, we replace variablg with

X =X +C t, whereszrepresents the surge distance from the newrdmate systenisee Fig.4.1).
Now, the newexpressions are:

From (4.1) (m- X)x =T R X% (4.10
From (4.9: X, = fsinkx +}j (4.11)
Substituting expressions4.@), (4.3), (4.1) in (49), and considering the transformation
U = x +c,wherec = ¥/kis the wave celeritythe following equation occurs:

(M- X)x 435 2, Hc g+ - Brer (r, H)] F- 1)

fsinfoc+ J =of fc o (# L) rc - @12

The above autonomous form of the surge equation is problematic in polychromatic wave
excitation The transformationx = X -C t used above to annihilate time is maqiplicabledue to
the existencef the constant term of wave celerity c, which differs for every waveE§®#.12) is
implemented only in the regular case (v=1).

In the tables that follow we present the parameters used in order to define the components of
surge equatiorin all cases that we will investigate in this thesis, deep water is assumed.

REGULAR CASE (3=1) | BI-CHROMATIC CASE (3=2) | MULTI -CHROMATIC CASE
(Jonswap Spectrum)
Wave Length & Wave One Length| & |m Slgnﬂce;%n;twave H, m
! H Wave One Steepnes H/ : T
WaveSteepnes; A (st) /, Peak Period b S
H2
i WaveSteepness /2 Spectrum around W o
Ratio (st/st) H% Peak Frequency P 0
i WaveFrequency VV
Ratio W

Table 4.1Wave parameters used to define equatib8 & 4.12
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Parameterdnames Symbol Units

Shipd Blominal Speed Unom m/s
Shipd litial Position Xo m

Shipd kitial Speed Uo m/s
Initial Time to S

Table 4.2Ship parametergsed to define equation 4894.12

Concluding, a generic fEo@.9 EQ@.12sih uspddirsours ur g
mat hemati cal model I n or dellowing seass eitmeu legularpi- s hi p
chromaticor irregular

Furthermore, in this thesis the tumblehome hull from the ONR topside series

(Lgp =154m, B =18.802n,T, =5.%1) is used as a case studye constant parameter values
used i n the nonlinear differenti al equations

Shipbés char 4
parameter values

m (k) 8.747 16
Xa (k) -4.374 316

n o (kas') | 770% 16

r,  (kam?') | 2518 16

r, (kam?y | 1540 18

t (kg m) 0.626° 10

t (kg) -9.947 218

t, (kgm') | 69z 18

Table 4.3 Shipbs characteristic paranm
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5 Dynamical Systems

5.1 Stability of dynamical systems

It is commonly accepted that solutions of differential equations have the capability to simulate the
behavior of a physicaphenomenon.Furthermore, existingnathematical tools provide us an
appr oach o nlongteren asgmpttic enotions The main objective of this chapter is to
concisely provide notions of the theory of dynamical systems that are going to be used later in this
thesis.

The solution of a ndimensional dynamical system described bytime-dependent
differential equations:

% (1) = f,(x(1),.... % (1), 1)
: (5.1)
X,(1) = f,(x(D,....x,(1),1)

represents aurve embedded in adimensional space with coordinaies(t), X,(t), éx,(t)). This
space is commonly referreddsp h-a p a igpd-p & aimeade oh=2. T h e s ysslttiersnd s
constitute a trajectory (function of time)oving on th€x, X,,...,%, ) phase space starting fratime
initial condition(X, (t,), %,(t,),-.., %, (t,))at timet, .

Henceforth, | dimédnsonabaaonariowsignamical systeno (n=2h order to
simplify our analysis

% (1) = £,(x(9, %(9)
%, (1) = f,(x(1), %(f)) or the vector form:
X(t) = F(x(Y) (5.2)

In this case,solutionsin the twodimensionalphasespace aredescribed in variables of
(%(1), %,(1)).In order to identify the longerm behavior of a dynamical system in the phase space,
we use differential equations to construct a vector field, through whichssign a velocity vector
X(t) = (% (D), %(1) at eachx(t) = (x(1), %(9). The velocity vector field is provided if we plot the
corresponding velocity vector in the tangent space of each trajectory, which is represented by:

F(x(1)) = (5(1), %,(0) (5.3)
This vector field determines the wathe two-dimensional trajectory(t) = (X (1), x,(1) is
going to be developed while time passes and consequently indicates thierongualitative

behavior of a dynamical systemepiction of trajectories in the phase plane, the arrangement of
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which is associated wi t hphatselpatraitoe cotfora fd yerd almircea
Through phase portraits we obtain information

F(X)=0 (5.4)

A system that ends up on a point of equilibrb(]mis stabilized in this condition for al
Equilibrium points (orstationarystate$ are categorized in stable and unstable equilibrium points. If
infinitesimal disturbances away of the stationary state are damped out in time, then this state is
characterized astable In opposite case, that disturbances tend to grow, weurestablestationary
state. Generally, we use the term of a limit set in order to express the geometric structure of a steady
state that a system is going to obtain asymptotically in a phase portrait &s. We recognize three
main categories dimit sets

(a) fixed points that satisfy the equatiof (X') = 0
(b) periodic solution, which corresponds to a closed orbit that satiskés+ T) =XT) for a

constant positive value of T

(c) chaotic solution which is appeared only in nonlinear systems. In that case, the system
converges in a fAstrange at t-pedodid rootioh and e t r
great sensitivity in initial conditions. Small differences in initial conditions provoke
exponetial divergence of trajectories and determine different{@mm behavior.

5.2 Stability of Linear dynamical Systems

L et 6 s erthatthe sysiem oft5.2) is linear anchas the form:

X(t) = AX?Y (5.5)
eéa b ex,(t)
where A = gc q and X(t) = sz(t) . Solutions of the above differential equations provide the

systembs phase powe trecognizéd he hrmau gir ewhoifc t hThe sy st
systemds genex(®Ff(x@od())t Fgethy Hes y where /,, 4 are the
eigenvalues ano/ = [v,77,]" the eigenvectors of A matriettingx(t) = O, the solutionx =0 is

an obviousequilibrium (fixed)pointfor any A matrix

Determination of stabilityof equilibrium pointsdepends on thé matrix eigenvaluesThe
investigation ofts eigenvalues aneigenvectors indicate whethiiies y s t equiidraimpoints are
stable or unstable. Eigenvalues measure the magnitude of cenvergr divergence the direction
of the corresponding eigenvector.
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These are the categories of steady states a systethatitaln, depending on its eigenvalues:

(a) Real eigenvalues

u if /;, 4 <0 then the fixed point is stable (stable node)
u if /,, 4> 0 then the fixed point is unstable (unstable node)
i if /,04 @ then the fixed point is calledsaddle point

u /,=0and/,, O then we will have a line with fixed poin{in the direction of the
related eigenvector)
u if /,, 4 =0 then thewholephase spaceill consist of fixed points

(b) Complex eigenvalues (complex roots means oscillations)
i if Re(/;,)< 0, then the fixed point is a stable spiral
i if Re(/;,)> O, then the fixed point is an unstable spiral

u if Re(,,)= 0, then the fixed point is eenter

When referred in stability of a fixed point we usually call:

U repellers (or sources) the fixed points that have positive real eigenvalues
U attractors (or sinks) the fixed points that have negative real eigenvalues
U saddles the fixed points that haapositive anda negative eigenvalue

For the cases thdRe(/ 1‘2) ., Othe fixed points are also called hyperbolic points. In these cases their

stability is recognized through performing local linearization

Generally, if there is any positive real pal
to be unstable.

In a phase portrait when referring to the stable (unstable) manifold, wetheetmajectory that
passes through the saddle point in divection of the eigenvector that corresponds to the negative
(positive) eigenvalue

5.3 Stability of Nonlinear dynamical g/stems

One of the main objectives of the stability bsés is to determine whethéne phaselanecontains

regions thatend to attract or repel nearby trajectorieg as = . In nonlinear systems, the difficulty

we face in solving the equations, leads us in the linearization theory which is also called the
Lyapunov first methadAccording to this theorywe linearize our system locally, around the point

that we are interested in. Approaching the systems behavior locally by a simpler one, offers us the
chance to determine the type of systembs stab
wasproposed by Lyapunov as mentioned in Chapter 2.
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Letdbs consider t heb.1) a(*n=l(>ﬁ,n.9*$,a) rto be p $ixecepointanid E q .
Yy =(Y,...,Y,) to be the distance of a nearby point (perturbation) in the gilase. Afterthese
considerations each of the systemds equations

Taylor
GO+ =10 oo & Wy?ﬁ)%%-~W£¢hn 56)

where he term f, (X ) equals t@ero.So,thegeneral form of the linearized system is:

euf, _#a
gu%+w9}% %%Té%{
Lo F b s 0O Tarx=F(X 4y Ay (5.7)
NG RNT A UL A
T ML
where A is the jacobian matrix bevaluated ax = X .

Then, determining the eigenvalues of the jacobian mAfrix caseof hyperbolicfixed poins
we are able talefinetheir stability (stable, unstable, sadjllé-urthermore, Lyapunov, in his attempt
to analyze stability of nonlinear dynamical systems, also developed the second Lyapunov method
which is based on the construction of thgapunovFunction through which we can make a
conjecture about the systembés stability. Howe
functions makes it difficult to use them in practice.

In case of a nonlinear systefimit cycles (Fig.5.1) appear as another type of steatiyte.
Limit cycles are close orbits but they differentiate from centers that appear in linear systems. Their
particularity lies on the fact that these close orbits are isolated, meaning that nearby trajectories are
not cbbsed. When neighbor trajectories approach the limit cycle, then it is stable (attracting). In
opposite case it is unstable and in some casestadlie.

e

/ \ .
| . | |
\ ' \
N A\ N
I stable \ unstable . half-stable

limit cycle \ limit cyele limit cycle

Figure 5.1Limit Cycles, StrogatzZ4]

In general, an attractor is a limit set (fixed points, limit cycles e.tc.) that tends to attract
nearby located trajectories. For a more formal definition see Strogatz [24].

32



5.4 Bifurcations of dynamical systems

From previous par agr phpsk portraitt werescagrgze whiethee limg sets are mo
stable or unstable. However, the nature of th
Variation on these parameters incurs changi ng
topology of the phase portrait. This implies the creation and the disappearance of limit sets or even
change in their stability. This change in the dynamical behavior is called bifurcation phemomen
The parameter valued which such a phenomenon appeaescalled bifurcation points.

Some of the most common types of bifurcation are: saalllie bifurcation, transcritical
bifurcation, pitchfork bifurcation (supercritical or subcritical), hopf bifurcation, saddle bifurcation of
cycles, infiniteperiod biurcation anchomoclinic bifurcation(Strogatz 24]). Homoclinic bifurcation
is the phenomenon we are going to focus in detail while it is straightly connected witidisgyf
phenomenon.

During a homoclinic bifurcation (Fig.5.2), a limit cycle approacimese and more a saddle
point as systemos theliamit cyaewuclees the saddle point, awdllision, called
bifurcation, occurs and results in the creation of a homoclinic orbit vaaties in the same saddle
point. More changing in the parameter provokes breaking of the connection in that point which
implies the disappearance of the limit cycle.

According to the research of Spyrat],[homoclinic bifurcation is also applicable for the case
of the surfriding phenomenon (Chapter 2, Fig. 2.3, 2.4). Through this tool of the nonlinear analysis,
Spyrou explains how the shipbds dynamical syst
called surfriding condition. The parameter varginn this problem is the Fn value depending on
shipbébs surge velocity.

X3

X1

N P A i
X1 A i L R X1
\ I
N \ /o

H=Her H=Hs
Figure 52 Phase portraits of & dynamicalsystem for various parameter valueg & 41 < /mn <j),
(reproduction of figures from Strogat24])
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6 Numerical tools for investigating dynamical systems

6.1 Lyapunov Characteristic Exponents

6.1.1 Theory on Lyapunov Characteristic Exponents(L CESs)

To date,numerical and analytical methods on nonlinear dynamical systems have confirmed the
existence of deterministic chaos. Pr acti cal | y, ttene belwmvyios tbecanies I
unpredictable, meaning that two trajectories starting from nearby initial conditions in phase space,
rapidly diverge and their future becomes unpradble and totally differentin order to identify
chaotic dynamical behaviorocmput ati on of Lyapunov Exponents
useful tool(Benettin et al[15]). Through theappication ofthis computationamethodin the phase
space of a yhamical systemwe are able taneasure the average exponential rate of divergence or
convergenceither oforbitsthat start from two initial pointlbcatedinfinitesimally nearby in phase
space or for nearby trajectories provided from discrete expeahuata

For dynamical systems whose equations of motion are known, Benettirj ] alevelod
a tedinique in order to compute thehole spectrum otyapunov Exponest According to this
method we firstly seta continuous +timensional dynamical systentefined by a system af
differential equationsand also consider thesphee of initial conditions inphase spagéy placing
its center at the initial condition of the reference trajectory we are goingdstigate Evolution of
time will result in thedeformation of the 1sphere tan-ellipsoid due to the advectiveature of the
phase flow The rate of expansion or contraction edchi-th principal axis of the rellipsoid is
characterized bya specific onedimensional Lyapunov Characteristic Exponent (LCE) &
Consequently, each trajectory is associated wittCEs The LCE of the direction tangent to the
flow trajectory is always zero. Moreovehet largest axis is measured by the largest Lyapunov
Exponentwhich is the LCE that characterizes the behavior of the dynamical systemerally the
Lyapunov Characteristic Exponethiat measures the average stretching of a trajectory separately for
eachi-thdi r ect i ésuefiedast YD

. d .
fi=lim=In—=" i =( h), é (6.11)
|
wheret is the length of thé-th axis of the rellipsoidat time t

According to Oseledefl4] and his Multiplicative Ergodic Theorem, this limit exists for
almost every trajectory and direction of the perturbation in phase space.

So, eachaxis of the ellipsoid grows &', the area defined by first two principal axis grows
ase®®! the volume defined by first three principal axis grows&&**®" and so on.

Wolfetal [16] p o i nt ehdpositive @ponéntreflectsdirection in whichthe system
experiences the repeated stretching and folding that decorreledelsy states on thattractor.
Therefore, the longerm behavior of an initial condition that is specified with any uncertainty cannot
be predicted; this is chaos. An attractor with one or more positive Lyapunov exponents is said to be
strange or chaotic .

1) Definition of C h a o s -termfib€hlavdonis a determimigticesysiem dhat @xhibite segsitive
dependence on imgazpPda!l conditionso, St
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The signsoftheCEs provi de wus i nf or feamdymamicaldehavioh e s
In Table 6.1.1 some combinations of signs and the corresponding attractors ofdemensional
dynamical systerare presented

Tc_)polog_lcal Dynamics of the LCE spectrum
dimension attractor
1 Fixed point i
2 Periodic motion o]]
3 Torus T 0 Oi
Chaos ¢ + 01
4 Hypertorus T 0 0 Oi
Chaos on T +00f
Hyperchaos & ++ 0f
N Fixed point . -
Periodic motion 0- ... -
(N-1)torus 0..0- ...
122 N |
(N-2)chaos Yon 050 5

Table6.1.1 LCE spectrum of continuous tinatractorsKlein and Baier 25]

Letbs present t h e innaegenere dvaynl @dercto be apgptiedhiarieo v e
dimensional flowin phase spac&he flow mag is defined as follows:

fo:D- Dixg> (%) = Xt %) (6.1.2)
By definition the flow map satisfies the following:
fo(x) = x
(6.1.3)

fo () = 12 °(f,09) =" TH(X)

We consider two nearby pointgandx, + @, at timet,. After the evolution of timen the
phase spacegt timet, the new position®f the points advected by the flow wilbe f'(x,) and

f'(x, + d,) respectively(Fig. 6.1). Now, the initial infinitesimal separatidia becomes:

q="1t0x +d 0o O 0 (6.14)
where D, f'(x,) comes from the linearization of ' . As a resultpy applying the definitior(6.1.1)
of the LyapunovCharacteristic Eponent, we have:

/ (%, ¢ = lim> L |||| |||| ﬂtimugmquoft(xo) G (6.15)

a,
where||() indicates the length of a vectand € = Hd K
0

1) using the defi niti o nflowiofd flowmidthewleasersgaeerof aaynanical systém u i d
2) A Afl ow map 0 shows tlEemssoadpn oftte ipasition ofeachinitial point (x) at time §, with its
new position (x) afteaninterval of time t.
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Figure6.1 Divergence of two trajecti@s starting from nearby initial conditiorSandri [L7]

In order to extend the above definition fordimensionalflows in the phas space and
compute the_yapunov Exponent of order, which describes the awge rate of growth ofn n-
dimensional volumén the phase space, we define:

/"(%.D;) =lim %In[VoI“( D, (B (6.16)

where D, is a volume whose edges are the vectarsh, @€, As mentioned before, eadtCE of
ordern equals the sum of threonedimensional ICEs.

6.1.2 Computation of LyapunovE x p o n Spettrandfor Continuous systens

We firstly have to define the-dimensionalcortinuous dynamical system, specifyiatso acertain

intiaAlcondi ti on. L redim@rsionalmmiirseardifferentiat egjuation:
X = F(x 1) (6.1.7)
o dx . v _ : :
where X=— = X,..., X}, is a tangentto the trajectory X(t) velocity vector at timet,

dt

X=Xt FX.., X} IR is the position in phase space at timand F(x,t) is a C"
continuous functionin order E6.1.7 to be considered automous, we set simultaneously the

time t as a dependent variable assuming the differential equétioh This consideration will
increase our systemb6bs di mension by (m=nt)andidenc e
will be considered autonomoud/e also set the flow in phase spacalasady defined in E¢6.1.2),

(6.1.3. So, every trajectory in the phase space, starting pmt t, is definedthroughthe flow
map f (X)) .

We now set the initial condition X, I Rat time t, in phase spacdntegration ofthe
nonlinear system creates the r efWelfeeal[d6). Then,aj e c
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we considera deviation F,(X,) from the initial conditionwhich is expressed through a frame of
orthonormal vectors that defina spherei nf i ni t esi mal | vy nearThg he
perturbatiorevolves in ime by solving thdinearizedequationof motion,expressedh the following

mym matrix form

F.(%) =DF(f'(x)) Q(K) (6.1.8)
, consideing initial conditionF _ (3%) =1,.
In the aboveequation F , (X,) is the derivative with respect tex, of f' at X, (F,(X,)

=D, f'(x,)) andconstitutesa set ofvectordd, ..., ;. However, ve have to notice thablving

Eq(6.18) is problematic due to the fact that parts of it elep on the solution of Eq6.1.7).
Thereforgintegration of the combined system iggaquisite in order to compute the trajectory

iF.(%) § iDF(F ) O Fx) §

Linearized equations of motion act on the initial frame of orthonormal vectors by integrating
them form different initial conditions so as to give a new set of vectdysty, éln}. The Af i duc
trajectoryo, whi ch i s t hecenterofalje exspheve, ig definedally p a
integrating the nonlinear equation of motigkq.61.9). However, an obstacle appears while
applying the c¢ombi rAghdughsesich veeton bas a diffeterd magaittde, dhey:.
have the tension to end up on the direction of the fastest grAadbrding to Benettin et all¥], to
avoid ths, the Grarchmidtmethod of rerthanormalization is repeatedly applied on the vector
frame obained by integratior{seealso Wolf et al [16]). Through this procedure, vector will
finally coincide with the direction of largest growth.

Given an initial set of vectorst{, tp, € Uy}, application of the GrasSchmidt procedure

provides a new set of orthonormal vectfes, g,,..., 6} :

—/m:

«(t A ae F ft () 'a ()
X)) 0 & F(f'(x) U ? = & (6.1.9)
|

_ _q
278 ]
_ o O
dz - 9’ '< 2'@1> EQ € HdH
2
(6.1.10
y y d
dm: q '< maém1> 69-1 T < r?a@ & @?n Hde
where <> is the inner produatf vectors
Consequently, the volume genechteyvectors{ Uy, Uy, € Un} is:
Vod, g.... J=| | & 0| | (6.1.11)
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We row choose an initial conditioix, at time t,andat the same time a randamm matrix

D, Hd ¥..., b where eachy constitutesa vector irR". The next step is to apply ti@ram
Schmidt reahonormalization procedure in order to create the orthonormal vectors
D, {€ €,..., €} and then numericallyntegrate the differential E@®.1.8), using the initial
conditions X, and D, choosing theshort intervalof time T. After the integration procedure the
values of belovare provided

x = (%) and
D Hd.,.. gl B, () (6.1.12)

Continuing we apply the GrarBdmidt procedure so as to ggt matrix in orthonormalized
form (D,) and then integrate the same differential equation ugahges ofx,, D, and integration

time T. Values of vectorX, and g matrix arethen attainedThis procedure described aboise

repeated fok-times while we need to compute the averaglee Regarding the choice &fvalug it
should beaslarge ad. CEsD s p eshowmsrcanvergence.

So, afterk-times, the average rate of growth of thelimensional volume in the phase space
of the mdimensional dynamical system represented by the LCE of order, attained bythe
substitution ofEq. (6.111) in Eq(6.16):

. I U S TR
/"06:Dy) =fim. -8 in(| 4 O] @ (6.1.13)

In order to compute the ortBmensional ICE of the vth direction, wherel ¢ 7 ¢m, we
define:

/, = Iir: %ak\l In| 4 (6.1.14)
Finally, in order 6 calculatethe spectrum of.yapunovExponens we define:
/= a4
/, = ki in| 4 (6.1.15)

1 X y
= ] d

Calculatingthe last LCE value afték iterations, for each orgimensional LCE, we have an
estimation of the LCE value in which our system finally converGesisequently, choosing to sum
the whole LCE spectrum of Eq.(6.1.15) we obtain the LCE of ordgiq.6.1.13), through which we
estimatehe growth rate of the fdimensional volume in phase space.

39



6.1.3 Computationof L CEs 6 s goe sutge nootion equation

In order to create a system of equationk at wi | | S $ sungd raotioa iphakeespaseh i p 6
based on E¢4.9), we set X=X and X = X,. Thus,we consider the thredimensional phase space

with variables x=;, X2, t} and the system afonlinearequations

€ % ,
|
£% 0 | TTA(><2) R(x) 48 fsinkkx wt f @) x|
Fibe % ¥ =1% 0= 1 '1m_ X, % =161 (6116)
be Lo : ‘ Ty
y 1 o

—— —D

We also have tonention that for monochromatic wave excitation, applying the autonomous
form of surge motionthe above system becostevo-dimensional due to theeletion of the equation
of time. After the implementation dhe linearizatiormethod we present thimcobian matrix

% pX pX
& KX K tH
%% pX pX
DF(x) =¢b2 D2 D2
& " th (6.1.17)
& : .
o b1 pl
é KX K ty

Substitutingthe expression (6.17) in Eq(6.18) contributes in thecreaton of the linear
system ofequations:

Ii3x3 :{EE;F DsH( % 29 F

e_ X X @
% pk pk ?
6 HX K tlJ.U\ 1 f 3f
2. N 1
:(?Dﬁ DX p* L\j@fl 7 splFo = (6.1.18)
e t Ug 2 2
e t { u€s sl |
éD— D— D— |
é M K tHg

where each column of thle ;,, matrix corresponds to a vectdr, i=1,..,3, as described iparagraph
6.1.2.
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Having defined the system of equations that describe the flow in the phase space and the n
sphere of initial conditions around a fAfiduci
of the equations so as to calculate the deformation on eaehob the principal axisThe
implementation of the method was made in Mathemaiised in Sandrilf/].

LCEbG spectrum computational parameters

U Initial Conditiont x, ={X, %, t} ={Initial ship position (m), Initialship \elocity (m/s), Initial
time (sec}

Interval oftimei n LCEs 6 clqsep ut ati on

Integration time:gtk (sec)

Number of iteratiorsteps k

Number of first steps excluded assuming the transient phenomegpon: T

cC. CcCCc

As describd in paragrapt6.12, eachintegrationstepis followed by theimplemenation of
the GramaSchmidtreathonormalization methodh order to obtain an orthonormal set of vectors
(Eq.6.1.8). We repeat this proceduretitnes and then we calculatbe spectrunof Lyapunov
exponentsa, @ (Eq. 6.1.15), wheresay > a» , which characterizes our dynamical systémour case
asconverges taerodue to its correspondence witke differentialequatiort = 1.
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6.2 FTLE method

6.2.1 Theory on FTLE method

In this chapteme will describe the method @bmputinga Finite-Time Lyapunov Exponertfield,
which is used in order to extract Lagrangian Coherent Structures of a dynamical ($yaliemet al
[7], Haller [20], [21]and Shadden et .al8], [23]). As mentionedearlier, LCSs imply transport
barriers in the phasspace of a dynamical syste@omputingFTLE fields provides us the potential
to identify coherent structures asaterialcurves(in 2-D phase space)f greatest separatiom this
method, flows arestuded in terms of the Lagrangian approaathich uses particle trajectories in
order to idenfy transport in the phase spacéd’he most important asset of this methoditss
applicahlity to time-dependenaperiodic flows or even tibows defined ly discretedata.

In order to extract LCSs using FTLE method, we consider the defirnitiahLCS are
Airidgeso in the FTLE field, ewah|i7]cHallem20l[21]and st |
later developed by Shadden et[8], Shadden [23]

Conputation of FTLE fields derives from the basicscompuing LCEs (section 6.1}utin
contradiction all of the calculations are performéat a finite-time interval.Moreover, computing
FTLESs, calculations are not restricted to a specific trajedtottheir scope is tprovide conclusions
for the dynamical behavior of a certain amdanitial conditions in phase space after a firiitae
interval.

Hereafter, a two dimensional nonlinear dynamical system is considered in ordelaino gxp
detail themethod Let the timedependent velocity vector fieldx,t) defined onD E A, to describe
the flow of our dynamical systervery trajectoryX(t; t,, X,) of this flow is a function of timet)

andstarts fronthe initial conditiondefined by initialposition(X,) attime (t;).

In this case, integration of the velocity field and more specifically of the equiagiony,
computes everfrajectory as a function dime:

X6, %) ={X(1 6 X, X1, ¥} =¢&ty B )t (6.2.0)

Hence having defined théime-dependentrajectories, we define the flow map; which is
defined inthe following equatiorandin parallel satisfyindeq.(6.1.3):

fo:D- D:ix = fi(x) =Xt %) (6.2.2)

Through the flow map, wean deducenformation on the amaou of stretching of nearby
trajectories Considering two nearby located phasaticles, X, and X, + @}, at time t,, where

infinitesimal,we compute the separatiag ., after a timeinterval T,using theexpression:
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l'[I: tg+T
t

0:0+T = ft(t)0+T(x0 +g 'ft(t)o ﬂ-(Xo) _T;X_ IX:;(0 od ”"'0”@ (6.2.3)
] e 4 o2s

From theory it is known that linearization of the flow mppyvidesthe linearized stretching
Df/*" (see also Shadden et |8]) for a finite interval of timeT, which depicts the growth rate of a

set of vectorsaroundthe trajectory Because of the twdimensional dynamicadystem,Df"" is a
2x2 real matrix.
Letds consider:
. @ b
A :tht T 2 (6.25)
& d

The amount of thetretching is obtaineldy computing théright) CauchyGreendeformation
tensor(Shadden et a8]):

D = A ABT(X] DR ::,‘:’ ©W_0 & ddon 2
(BT DL TI=2 008 0= aa tad o (6.26)
whereA6 i s t he t rmalris/p.osed form of
a,
So, considering now thatﬁE H H is the vectorin the directionof the initial separation.

CombiningEq.(6.24) and(6.26), the normEg. (6.2.4)is expressed as

o] ® [ofe™ of 4 o\ﬂ/EoSBf S AR (6.2.7)

From the expression626) it is obvious that the deformation tensgrdepends on the
variables x,t T. Moreover, it is deduced thgtis assigned witleach point of the flow map. It is also
noticed and proved below that CaugByeen deformation tensor has a positive definition.

Formal Algebra Definition: In linear algebra, a symmetren real matrix M is said to be
positive definite ifx'Mx is posmve for every noagero column vectox of n real numbersThe

) m mwa

IS positive definite since for any naero column
Mo OwQn Q

symmetric real matrixg= |,

W
vectorx = o We have

8 3 = [x (&+¢”) +y (abed)  x (ab+cd) +y (6+d2)] W~

Ty — )
Q=x'Mx=[xy] ~
= x¥@&+c®) + xy(ab+cd) + xy(ab+cd) +3p*+d?) = x(a’+c?) + 2xy(ab+cd) + §(b*+d?) =
=x%a’+ x°c*+2xyab+2xycd+$h*+ y?d® = (ax+by¥ + (cx+dyf >0

As a resultpis positive definite and zero for a=b=c=d=0.
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In order to measure the magnitude of stretghof the nearby particles of phase space, we
define the following limif{Shadden et al. [8])

to +T

i LA

\/#ngtO*T Pre ¢ (6.2.8)

The aboveproof leadst o t he concl usi on t h(@ite)that repaesentp o s |
the magnitude o$tretching at each direction tife corresponding eigenvectdso, the magnitude of
stretching of two nearby particlestimei-th eigendirection is:

0:0+T _
‘LI7’CI,‘ 0 |0,| _‘\éli( D (629

, \06\ represent separation in the direction ofittieeigenvector.

where‘Ofoq

Now, considering the logarithm of K§.2.9 and dividing tke term with the time interval T
SO as to obtain the average valve,define the Finitdime Lyapunov Exponer{Shadden et al. [3]

S(xt) = ‘—11_‘In(1/ (D) (6.210)

Subsequentlymaximum stretching occurs in the direction of the eigenvectors agsbwih
the maximum eigenvalué &) of the deformation tensam In practice,maximum eigenvalue
indicatesthe magnitude of the expansion along the direction of the corresponding eigenSector.
considering E@6.2.7, maximum stretchin@f two nearbyriajectoriess expressed by the following

form:
max|Dfe e = £ (D df YmafDfy © Jd & T | e21y)

where Up is the initial separation in the direction of the eigenvector associated with the largest
eigenvalue &na{(m), S;(X) is the largest Lyapunov Exponent computedtf@time intervalT and

also associated with the reference trajectory (initial conditipmat timet, ).

Finally, for each phase particle of the flow maye useamaxto computeFTLES through the
following expression:

—|n W b D (6.2.12)

which is the function that repress the Iargest iRite-Time Lyapunov Exponent with a finite
integrationof time T associated witlpoint x at timet.

We alsohave to poinbutthat
u if 0</., <, theniny/ ., <0Y StTO <0
i if /. >1,theniny/ ., >0Y s’ >0
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Through thedefinition of Eq(6.2.1Q, FTLE provides a measure of separationneérby
trajectories advected by the flow over the interval of tifad+T). Through the aforementioned
method ofcomputing FTLE field recognition of local maximizing curves in the field provideshes
opportunity to recognize LCS#&ccording to Shadden et dB8], local maximizing curvein 2-D
phase space, ,awhieh iniplies thay ie the ttansveesegion of the tangent to that
curve direction, only lower FTLEs aobtained

Implementation of the method for negative integration fimenplies separation backwaial
time which means convergence in forward titdaller et al.[7] proposed thattaading Lagrangian
Coherent Structures are revealed using backiwarel integration andepelling Lagrangian Coherent
Structures are revealed using forwdirde integrationLCSs in the phase space of -®Enensional
dynamical system, separate regions of different dynamical behavior by acting as barriers of the flow
transport. Attracting LCSs tend to attract neighbor trajectories and repelling LCSs tend to repel
nearby trajedries towards attracting LCSs. In that way, frameworks delineated by LCSs are
structured comparable to that created by stable and unstable maritotttermore,ntersectios of
attracting and repelling LCSs asemparable to saddle points

The choiceof the ntegration timeT is crucial Choosing low value of wo u | ceved all
the LCSs in the FTLE field. Furthermore, increasinmakes the ridges of the FTLE field sharper.
However, veryargeintegration timel mayresult poor depiction of certaparts of LCSs that could
be revealed using smaller time interv@b, the value of the integrationntie T should besufficient
for all LCSs to beeveaéd.

6.2.2 Computation of the FTLE method in surge motion equation

In this section we attempt to make a brief description of the computational method implemented in
order to extract LCSs. Although the theoretical approach of the method is already presented in
section 6.2.1, it is necessaryexplain the computational e in more detail.

In the analysis of the basics of FTLE method, according to Shadder{&t ale consider a
two-dimensional timed e pendent dynami cal system, whi ch i

(Eq4.9) and corresponds to a flow jphase spade E A Depending on the wave excitation
(regular bi-chromatic or irregular), we choose the appropriagve excitation term irsurge
equationwhich is going to be integrated forward and backward in time.

Hence we firstly define a flow map which gives the new position of an initial condition
{xo,uo} at timet,, after a time intervall (T =t -t;). We thenconstruct a grid ofNxN initial

conditions{xo, uo}i in phase space at tintg scattered uniformly in phaggane In this phase

=1..N?2

space horizontal axis corresponds to positighand vertical axis corresponds to velotity X (1) .

Hereafterthe FTLE field thatwe are going to calcateis delineated in the region b¥ E R itis
apparent that increasing thamberof the grid points, we gain the advantage of bejtelity of the
FTLE field due to the large density of the grid, but on the other hand the computational time needed
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for integration in order to compute the new point positions and also the FTLE values is also
increasing, which practically constitutes an importisadvantage.

Afterwards, we continue with the integration of the scheme of initintlitons described
before, with regard to the dynamical system of surge motions equatiegrating numerically each
one point in the grid for a time interv@) incus the construction of a new gridntaining the new

point positiongXt, + T, t, x), X(§, +T t, )} .

Continuing, estimation of the deformation tengprasserts the construction of a finite
difference schemat each point of the grid, considering its initialvesll as its new position after
time T. Having calculated the deformation tensor for each point of the grid separately, we now
compute the eigenvalues of each one tensor, and then kedgrgéstone. Insertingmaximum
eigenvalues in Eq6.2.19, wecompute the FTLE value for each grid poinitbSequently, the FTLE
scalarfield is provided. In other words, by associating each initial point in the grid with the largest
FTLE, a scalar field is obtained for a specific instance in time.

By choosing to lsow only thelargestFTLEs in thefield, the identification of LCSsis
provided Practically,integraton of the grid forward in timegrovides the identification of repelling
LCSsand in parallel backward in time integration regdhe attracting LCSwhich arecomparable
to finite-time stableandunstable manifolds respectively.

Repeating the calculation of the FTLE field for a time series we obtain the evolution of
attracting and repelling LCSs in tim&his approach is considered quitgerestingfor irregular
wave excitation.
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6.3 FSLE method

In this sectionwe will make a brief description of the Finil®i ze LyapunoRSLEEX pon
method so as to poioiutits relation withthe FTLE method, already described in Section &.his
chapter Although the aforementioned method has many similarities thél-TLE method while it
constitutesanother method o€omputing hyperbolic LCSswe did not consider as necessaoy
implementan FSLE calculatiomethod in the context of thihesis

In order to describe the method we firstly consider a dynamical system in phasargpate
parallel we create a grid of initial conditions as described in sectiom@l# case of FSLE method,
we considerthe initial separation of particleBom positionx in phase spaceat timet, to be

d(x t,0) = d,, as wellas a facto(r) representing thgrowthof the separation after the time interval
T. Having defined thesparametersve use the below expression in order to calculat& 8$ide

/.(xt,d,) = 'n?r (6.3.1)

In the above expressiof, is the interval of time after whichhe separation will be
d(x t, T) = rd,. Roughly speakingn the FSLE method we have to define a specific separation of

particles from an initial positior in phase space, defining the growth factdfor cases that at time
t+tTseparation reaches this v adsthatsepatation oevanieaciiee F
this value, we set zero FSLE value. Hernkes the interval of time needed so as to obtain separation
in phase space multiplied by a factor

Similarly to the FTLE calculationmethod, in caseof r = 1, by plotting themaximum
FSLE valuedor forwardin time integratiorwe capturaepelling LCSswhile throughbackward in
time integrationthe attracting LCSsre providedVisualization of theLCSsis attained by plotting
the FSLE values in a magesgnated by arid containing the initial positions of particles in phase
space.
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LCEx

7 Results of Lyapunov Characteristic Exponentsds pect rum f or s h
motion equation

Here, we apply the method of computing Lyapur@varacteristicExponensd spectrum intime-
dependensurge equation of motion ¢E4.9) as described in paragrafi.3.We applied the method
for two different types of wave excitation (regular &dbiromatic).In the first case(section 7.1)
having assumetivo-dimensionaln=2) phase space (positionelocity), the computatioal method
providestwo LCEs (a1, ay). However, in the second case (section 7.2), we use thedinneasional
(n=3) phase space (position, velocity, time), where the computational maitvides three LCEs
(a1, @, 3s). Wwhereas has always zero value due to its association with equation af time

71 LCEG6s Spectrum for Regul ar Waves

For regularseaapproaching the ship by stefw=1), we set wave and ship parameter values
as defined inrables 4.1 & 4.2. Furthermore, we have to set the computatiorsahpgers (Tk, Tr,
Xo) as described in paragrapii.3. In K.(4.9), the waveexcitation term is replaced by:

X, = fsinkx -wt +) (7.1.1)

Choosing he appropriate parameter values and applying the computational procedure
described in paragraphl.3 we present the CEs @pedsum for severalcaseausingEq.6.1.15. Next
to each graph of Fig.7.1.1 we shawe evolution ofs hi pds surge motion in
integration of the same equation, applying the initial conditions and wave excitation of Fig.7.1.1.
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Figure 7.1.2. Corresponding to Fig.7.huimericalsimulations of

s hi p 6 sotisndar aous Wave Steepness values (Compt

with xo= Om, w=12m/s, §=0s, W,m=12.5 M/s) where c is the wave
celerity.

Figure 7.1.1. Examples of LCE spectrum for various W
Steepness values (Computed with T=1s, k=30Q8600,
trk =0.01s, = Om, w=12m/s, $=0S, Uom=12.5 m/s)
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Il n the above figures our ScOpeuswaetepnessnyvVv e s
values(H/®), assumingconstantvalue for vave length(a). In Fig.7.1.1 &), considering quite low
wave steepness, we observe that maximum L@ ¢onverges aa zero value after a number of
steps. Additionallyps converges at a negative value fasr zero.Increasing wavetsepnesgFig.
7.1.1(e),(f),(g)) we observe that both LCEs obtain negative vallresll cases, there istaansent
part in first steps for whichCE valuesappeardiversity until they converge in a spiic value. This
convergence is obvious almost after 50QpsteSubsequently, thediest steps, where a transient
effectis noticedshouldbe omitted

In an attempt to estimate the results provided from these figures we have to go back to Table
6.1.1. Through the conclusions regarding the relation between typetion ofa dynamical syseem
andthec o mb i nat i cigns(Wdlf etlal§lB]} @we have topoint outthe below:

1 If both LCEs are negative,-), then surge motion is stationaigurf-riding condition.
9 If ayis zero andy is negative(0,-), thensurge motion is characterized as a periodic motion
(surging)

Both of the aforement i aeetable aking tinelendossiddratian a |
the regular wave excitatiolVe al so observe that the concl usic
verified in Fi g.-témihoti@ iswstimated threulgh spnalationlindimeg

In addition, using the lastCE value of each case, which ithe LCE that occurs by
convergence due to the repeating procedure, we present the evolution ofs¥I&s as wave
steepnesgaries.

0.00 0.01 0.02 0.03 0.04 0.0¢
0.00C 0.00c¢
- 0.00t - 0.00¢
L
O
— - 0.01C - 0.01C
- 0.01¢ - 0.01¢
0.00 0.01 0.02 0.03 0.04 0.0t

Steepnesfkang

Figure 713LCEs ® values evolution as wave st eegplikisgs=0Dls,cr ease
Xo= 0m, w=12m/s, §=700S,Unom=12.5 m/s)

Observatiorof Fig.7.13 provides us the capability to determitige critical parameter value
in our casea specificvave seepnessaluea f t er whi ch a qualitative <cl
is identified. Morespecifically, according to th€ CE values depicted in this figure, forawe
steepnesyalues between 0 and.017 (approximately) the systems characterized by a periodic
response, while a combination of a zero and a negative LCE is ideiffiaete 6.1.1). Increasing
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the wave teepness value furthef this critical value,zero value disappears and a combination of

two negative LCE values is created. Thisparityi s attri buted to the <ch
stability which is converted into a statiany state.This state is maintained while increaswgve
steepness.

In order to understandhé¢ real phenomena thaigF 7.13 implies wehave to consider the
surging and sutfiding phenomena. So, applying theb o ve met h o dequationoftsurge s h i
motonour scope is to (neuccag ng lziep G h eslopgytesrd etmasditso c i t
Combination of negative and zero LCEs, implies the surging condition. Furthermore, in our case, the
stationary state identified for greateave steepness values, is the sigihg condition.

72 LCEO s s p e cdi-aghromaticfwave excitation

Assumingtwo (3=2) wave components iwave excitation ten of surge motion equatio(£q.4.9)
we apply the same procedure as describgohragraph 7.in order to ekact LCEsA spectrum for
various wave parametersegeTable4.1).

w,
InFig. 7. 2.1 we chose t ocorrsiuedngWZL:O.iEfs)rfa rasgeod \Wdve u m

1
. St, _ . : L
Steepness Ratialues E =0.2,...,1.9, keepng constanty a | ue s hominal spdedyn.Q)s
as well asfor the rest of parameters mentioned in Table wtiich are related with the wave
excitation term of E@¢4.9). Nextto each graplve s how s hi p ;wsimegFgl7.8.Bthamot i o
i ncurs by i nt esgrgeaeguatiofEq.4.9mand adsh bypapmying the same wave
excitation and initial conditions.
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Figure 7.2.1 Examples of LCE spectrum for various Wave Figure 7.2.2Corresponding to Fig.7.2dumericalsimulatiorso f s |

Steepness Ratios (Computed % =0.8,8y = 154 m,
1

H% =1/50 and with T=1s, k=3000,gF600,tg.x =0.01s,
1

Xo= 0m, w=12m/s, §=0s, Unom=12.5 m/s)

surge motion for various Wave Steepness Ratios (Computé/%
1

=0.8, &y =154 m, H% =1/50, %= 0m, wy=12m/s, {&=0s,Unom=12.5
1

m/s), where ¢and ¢ are the wave celeritiesf wave component 1 and !
respectively.

We have to note that through Fi@.2.1, considering bthromatic wave excitation, we
attempt tocome up with specific conclusions regarding surge motion. As noticed earlier in Section
7.1 for regulamave excitationit similarly turns outhat combination of:

Y negative andtwo zero (-,0,00 LCEs imply motion of two perios Y s ur (gden g

Fig.7.2.1(a),(b),(c),(d))

f two negativeand a zerd-,-,0) LCEssignify a periodicmotionY surfriding (see Fig. 7.2.1

(1.(9)

1 positive,negativeandzero(+,-,0) LCEs declarechaotic motion(see Fig. 7.2.1 (e) )

Comparing LCE spectrums (Fig.7.2.1) wittumerical simulation graphs (gi7.2.2), we
observe that concl usgnsonsntakenwttdimmmoiophpb€ES 6 n-
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In spite of displaying. CE s 6 s papardtety tonadl possible cases, it is considerete
efficient tokeep the last LCE value that turns out due to convergence. Hence, in the following figure
we presenL.CE values relatie to the varying parameter of Wavie&onesfatio (Fig.7.23).

<™ 154m,. H. M 0.8, M m 0.0z

0.0 0.5 1.0 1t 2.C
0.01 0.01
0.0C ,vw 0.0C
w - 0.01 - 0.01
9 |
- A
- 0.0z - 0.0Z
- 0.08 - 0.02
- 0.04 - 0.04
0.0 0.5 1.0 1k 2.C
WaveSteepnes®Ratic

Figure 723 LCEs 6 values evoluti on adedwithU=3s, k=100Fad&E ss i n
trk =0.25s, ¥= Om, y=12m/s, §=700s, Yom=12.5 M/s)

Studying Fig. 7.8 and also taking under consideration the previous assumptions related with
L CEs 6 we icagld end up ospecific estimations regardirige final motion the vessé going
to obtainin surge direction. More specifically, for low wave steepness ratios, it appears that vessel
performstwo-periodsurging. Increasing wave steepnassre specifically for wave steepness ratios
between 0.9 and.2 we observe that vessel eaptured in a chaotic conditiqanstable condition)
For wave steepness ratios greater than 1.2 vssel seems to be captured ipesiodic condition
which is comparable to the strifling condition (stableondition)

7.3 Conclusions

Observation of LCE s pé&.tl and rRi@.3.2.1 eonforhsuthei o n
conclusions of kn [3] who concludes thatvave steepness is a key factor leading in the
manifestation of the suriding phenomenon.

To this end, it ismportant to focus on the disadvantages of the model. Previous research has
observedthece x i st ence of different shipbs final mo t
example in numerous casestis noticed that low initial velocity may leatb surging. However, for
high values of shipbds initial -ridieglcanditiot. y, t he s/

For examplejn the following figuresconsidering the same regular waveitation of Fig.
7.1.1(c)but fortwo differentvaluesofshi p6s i nitial velocity, the s
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Figure 7.3.1 LCE spectrum for thease of Fig.7.1.1 (c), considering=i2m/s forthe left graph and
Ug=20m/s forthe right graph

However, by setting the same initial condition and changing one of the parameters related
with wave excitation, for example wave steepness ratio in Fig (7.1.3), (7.2.3), we are able to identify
regions of this r atponseischaotisthis corstitutes a sigsfigamttagsen 6fs r
the method in the investigation of the dnhi pds
ot her words, changing in the systemds par amel
which is subsequently depicted in the changing of the LCE spectrum. Regarding the identification of
co-existing dynamic behaviorshe ability todetermine the thresholof initial conditions in phase
planeabove whi ch s hi pi$movidee thrpughtiseemputina of theeFILE field
(Chaptes 6.2, 8)
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8 Results of applying FTLE method in surge equation of motion

In this chapter we apply the FTLE methadreadypresented in detail in chapter #hroughwhich

we compute scalar fields in phase space. We firstly present these fields considering regular wave
excitation and later for the 4shromatic case, in order teerify the results of thenethod before
importingirregular wave excitation.

8.1 FTLE method in Regular case

Implemendation of the method describad paragraph 6.2.2, aiming to calculate the FTLE of
Eq(6.2.12, requiressetting thes hi p 6 s sur ge e-Quoadmbus rformi (Bg.4.9).e r

substitutingv=1 in the wave excitationetm for regularfollowing sea. Replacement of with X,
creates thefollowing dynamical systerdefinedin phase spadex, X} :
X =%
00 (t, )X+ (  AX,- fsinfkx -t w| Fp (8.1)
(m- %)
where X, and X, r epr esent shipdbs mMongndudhnabdanpm/sir gieo

)'(2:

respectively.

With regard to wave excitation term, we considave lengthe=L=154m, wave steepness
H// =1/50and as for shipbds par amepeedy,, vEHmMEs we

We then construct a grid $50x50( initial conditionsat time t,=700s in phase spacdefined in

the domain i[L, L]Jmy[5, 25]m/s, settingthe center of the grid at..,.. = L. The chosen number of

grid particles offers the appropriate quality for thesualization of LCSs with regard to the
aforementioned domain in phaspace Advection of the whole grid points from their initial

positions at timet, to their new positiondn phase spaceonsidering forward integration time
T=450s and then pplying the procedure described in paragraph 6.22,compute and depiett
time t,, the field with the largest FTLE values for each one grid poier the timet ={t, t, T}

in phase spacén fact, the highest FTLE values of the FTLE field demonstrate LCSs in ppase.
Applying postive integration time intervall, = 450s (T > 0), will reveal the repelling LCSdn

contrast, negative integration timé = 450s (T <0) will reveal the attreting LCSs There was

chosen large integration time T due to the fact that increasing integration time sharper ridges are
obtained (Shaddden et al. [BRoughly speaking, the FTLE fielibrward in timeprovides us a
prediction of the stretching thaitial conditions are going to have after the finite time interval T.
However, the FTLE field obtained for backward in time integration predicts the convergence of
initial conditions.
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In order to understand the structure of the FTLE field and more madlgithe structure of
the local maximizing curves through which we extract L@8schose t@reatea 3D illustration of
the FTLE scalar field(Fig.8.1.1 & 8.1.2). Throughthese figuresve are able toecognizethe ridges
representingattractingand repelling LCSs respectivelyln order to create aommongraphof the
local maximizing curves coming from the aforementioned scalar FTLEsfield select onlythe

FTLE valuesgreaterthan 0.85CFTLE . This selection provides us curves irD2framework

delineatedin phase spacé¢x, X} (see Fig8.1.3 and 81.4). This practice enables us tevealthe
attractingandrepellingLCSsas curves in the domain of the phase space.

25

20

X2
Im/s

10/

300. 2

Figure 81.1 Left: 3-D dde view ofthe FTLE fieldfor backward in timentegration Right: Topside view of
the FTLE fieldfor backward in time integration

5A
0. 10())(.1 Im?00. 300.

25

20

X2
(m/s]

x1 [m] 200.

300. 3

Figure 81.2 Left: 3-D side view of the FTLE fieldor forward in time integratiorRight: Topside view of the
FTLE fieldfor forward in time integration
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Figure 81.3 (a) Attracting LCSs, (b) Repelling LCSs for regular wave excitatfwosingo showthe highest
FTLE values
25
t=700s
20

5
0. 100. 200. 300.
x1 [m]
Figure 8.14 Combined view of attracting (black) and repelling (grey) LOBBig.8.1.3in phase space.

In order tocheck the reliability of the methodnd the relation of LCSs with invariant
manifoldswe attempt to estimate the stable and unstable manifolds in phase space piaseh
planedynamical analysis and thavestigation of equilibrium points. Investigation of equilibrium
solutions premises that our system is autonomous. For that reasoncwo nsi der s hi pods
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in her autonomous forrfEq.4.12)andwe replaces-with X, . Hence we createthe dynamical system

in phase spadex, X} :

X, =X
),(2:—[/(1]x1 1 Ax2 x> fsin(kx, YA
(m- X,)
(8.2)

where k, =3¢ +2(r -t)c = &

/(2:3I‘30 +(I‘2 '4)

ky= tn® -rc  +dn (+ tr)c rc*-

Through the above system of equations we

points by settingzero value in thdeft part of Eq(8.2), as shown irthe system of equations that
follows, with respect tx, X,)

« =0
" ©.3)
X =0

Solving systenof Eq8.3pr ovi des us the systembs #fxegdui | i b

and saddigoints. In order to calculate the trajectories passing threadtlleand fixedpointsthat in
practce correspond to stable and unstable manifolds, we assume a perturbatitve seddle point
in the direction of therelated eigenvectors. Bysetting them agnitial condition in Eg8.3 we
calculate the trajectoriderward and backwardhitime representing stable drunstable manifolds
respectively(see also Kaf3]). Maintainingthe same parameter valugg.8.1.54) is created.
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Figure 815 (a) Stable and unstable manifolds in regular wave excitation. (b) Common view of stable and

unstable manifoldalongwith LCS of Fig.81.4.
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