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ABSTRACT 

 

 

 In this thesis we aim to gain further insight into the nonlinear dynamical phenomena 

associated with ship motion in following seas. The manifestation of nonlinear dynamic behavior in 

surge direction acts as a precursor of ship instability in directions unrelated with the longitudinal one. 

More specifically, in steep following waves when ship is found near a wave trough, she may get 

captured in a stable condition where she obtains the waveôs phase velocity. This phenomenon is 

called the surf-riding phenomenon and according to literature it is a forerunner of broaching-to 

(unstable condition that causes sudden large heel leading to loss of controllability). So, avoiding surf-

riding condition we manage to avoid the occurrence of dangerous instability. This is also depicted in 

the under development requirements of the ñ2
nd

 Generation Intact Stability Criteriaò of IMO. 

However, the dynamics that lead to such instabilities are not yet fully understood for irregular wave 

excitation. Using the theory of Lyapunov Characteristic Exponents (LCEs) and the method of Finite-

Time Lyapunov Exponents (FTLEs) we attempt to further investigate the dynamics of the 

phenomenon. Applying the FTLE method we aim to extract the hyperbolic Lagrangian Coherent 

Structures (LCSs) that act as transport barriers of phase flow. Creating scalar fields of maximum 

FTLEs in the phase space of surge equation of motion and simultaneously choosing to show the 

ridges for various instances in time, we get material curves that evolve in time and in parallel define 

the phase flow transport. Considering regular wave excitation, these ridges coincide with stable and 

unstable manifolds of the corresponding phase portrait. This computational tool offers the chance to 

estimate delineated regions of different dynamical behavior in phase space (surf-riding or surging) 

through the visualization of structures (material curves) that do not permit the flow of phase particles 

across them. Hence, through the implementation of methodologies based in theory of Lyapunov 

Exponents we intend to understand the mechanisms that incur either the co-existence of surging and 

surf-riding depending on shipôs initial condition or the global capture to surf-riding. 
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ɄȺɅȽȿȼɊȼ 

 

 

 ɆŰɖɜ ˊŬɟɞɨůŬ ŭɘˊɚɤɛŬŰɘəɐ ŮɟɔŬůɑŬ ůəɞˊŮɨɞɡɛŮ ɜŬ ŬˊɞəŰɐůɞɡɛŮ əŬɚɨŰŮɟɖ Ůˊɑɔɜɤůɖ Űɤɜ 

ɛɖ ɔɟŬɛɛɘəɩɜ űŬɘɜɧɛŮɜɤɜ ˊɞɡ ůɡɛɓŬɑɜɞɡɜ əŬŰɎ Űɖɜ əɑɜɖůɖ Űɞɡ ˊɚɞɑɞɡ ůŰɖ ŭɘŬɛɐəɖ ŭɘŮɨɗɡɜůɖ 

ɗŮɤɟɩɜŰŬɠ ŬəɞɚɞɡɗɞɨɜŰŮɠ əɡɛŬŰɘůɛɞɨɠ. ȼ Ůəŭɐɚɤůɖ ɛɖ ɔɟŬɛɛɘəɐɠ ůɡɛˊŮɟɘűɞɟɎɠ ůŮ ŬɡŰɐ Űɖɜ 

ˊŮɟɑˊŰɤůɖ ɚŮɘŰɞɡɟɔŮɑ ɤɠ ˊɟɞɎɔɔŮɚɞɠ ŬůŰɎɗŮɘŬɠ ůŮ ŭɘŮɨɗɡɜůɖ ŭɘŬűɞɟŮŰɘəɐ Ŭˊɧ Űɖ ŭɘŬɛɐəɖ. Ʉɘɞ 

ůɡɔəŮəɟɘɛɏɜŬ, ůŰɖɜ ˊŮɟɑˊŰɤůɖ ɏɜŰɞɜɤɜ əɡɛŬŰɘůɛɩɜ, ɧŰŬɜ Űɞ ˊɚɞɑɞ ɓɟŮɗŮɑ əɞɜŰɎ ůŰɖɜ əɞɘɚɎŭŬ Űɞɡ 

əɨɛŬŰɞɠ ɛˊɞɟŮɑ ɜŬ ñŮɔəɚɤɓɘůŰŮɑò ůŮ ɛɑŬ ŮɡůŰŬɗɐ əŬŰɎůŰŬůɖ Ŭɞ́əŰɩɜŰŬɠ Űɖɜ ŰŬɢɨŰɖŰŬ űɎůɖɠ Űɞɡ. 

ȷɡŰɧ Űɞ űŬɘɜɧɛŮɜɞ ɞɜɞɛɎɕŮŰŬɘ surf-riding əŬɘ ůɨɛűɤɜŬ ɛŮ Űɖ ɓɘɓɚɘɞɔɟŬűɑŬ ˊɟɞɖɔŮɑŰŬɘ Űɞɡ 

broaching-to (ŬůŰŬɗɐɠ əŬŰɎůŰŬůɖ ɖ ɞˊɞɑŬ ˊɟɞəŬɚŮɑ ŬˊɧŰɞɛɖ ɛŮɔɎɚɖ əɚɑůɖ ɖ ɞˊɞɑŬ ɞŭɖɔŮɑ ůŮ 

ŬˊɩɚŮɘŬ Ůɚɏɔɢɞɡ). ȰŰůɘ, ɛŮ Ŭˊɞűɡɔɐ ŮɛűɎɜɘůɖɠ Űɞɡ surf-riding əŬŰŬűɏɟɜɞɡɛŮ ɜŬ ŬˊɞűɨɔɞɡɛŮ Űɖɜ 

ˊɟɧəɚɖůɖ Ůˊɘəɑɜŭɡɜɖɠ ŬůŰɎɗŮɘŬɠ. ȷɡŰɧ ŬɜŰɘəŬŰɞˊŰɟɑɕŮŰŬɘ əŬɘ ůŰɘɠ ŬˊŬɘŰɐůŮɘɠ Űɤɜ ɡˊɧ ŭɘŬɓɞɨɚŮɡůɖ 

ñ2ɖɠ ɔŮɜɘɎɠ əɟɘŰɖɟɑɤɜ ɎɗɘəŰɖɠ ŮɡůŰɎɗŮɘŬɠò Űɞɡ IMO. ɄŬɟô ɧɚŬ ŬɡŰɎ, ŰŬ ŭɡɜŬɛɘəɎ űŬɘɜɧɛŮɜŬ ˊɞɡ 

ɞŭɖɔɞɨɜ ůŮ ŰɏŰɞɘɞɡ Ůɑŭɞɡɠ ŬůŰɎɗŮɘŮɠ ŭŮɜ ŮɑɜŬɘ Ŭəɧɛɖ ˊɚɐɟɤɠ əŬŰŬɜɞɖŰɎ ɔɘŬ ˊɞɚɡɢɟɤɛŬŰɘəɐ 

ŭɘɏɔŮɟůɖ əɡɛŬŰɘůɛɩɜ. ɉɟɖůɘɛɞˊɞɘɩɜŰŬɠ Űɖ ɗŮɤɟɑŬ Űɤɜ ɉŬɟŬəŰɖɟɘůŰɘəɩɜ ȺəɗŮŰɩɜ Lyapunov 

(LCEs) əŬɘ Űɖ ɛɏɗɞŭɞ Űɤɜ ȺəɗŮŰɩɜ Lyapunov ɄŮˊŮɟŬůɛɏɜɞɡ ɉɟɧɜɞɡ (FTLEs) ŮˊɘɢŮɘɟɞɨɛŮ ɜŬ 

ŭɘŮɟŮɡɜɐůɞɡɛŮ Űɖ ŭɡɜŬɛɘəɐ Űɞɡ űŬɘɜɞɛɏɜɞɡ. ȺűŬɟɛɧɕɞɜŰŬɠ Űɖɜ FTLE ɛɏɗɞŭɞ ůŰɞɢŮɨɞɡɛŮ ɜŬ 

ŮɝɎɔɞɡɛŮ Űɘɠ ɡˊŮɟɓɞɚɘəɏɠ ȿŬɔəɟŬɜɕɘŬɜɏɠ ɆɡɛˊŬɔŮɑɠ ȹɞɛɏɠ (LCSs) ɞɘ ɞˊɞɑŮɠ ŭɟɞɡɜ ɤɠ ŮɛˊɧŭɘŬ 

ɛŮŰŬűɞɟɎɠ Űɖɠ űŬůɘəɐɠ ɟɞɐɠ. ȹɖɛɘɞɡɟɔɩɜŰŬɠ ɓŬɗɛɤŰɎ ˊŮŭɑŬ Űɤɜ ɛɏɔɘůŰɤɜ FTLEs ůŰɞ ˊŮŭɑɞ Űɤɜ 

űɎůŮɤɜ Űɖɠ Ůɝɑůɤůɖɠ əɑɜɖůɖɠ əŬŰɎ Űɖ ŭɘŬɛɐəɖ ŭɘŮɨɗɡɜůɖ əŬɘ ŰŬɡŰɞɢɟɧɜɤɠ ŮˊɘɚɏɔɞɜŰŬɠ ɜŬ 

ŭŮɑɝɞɡɛŮ Űɘɠ əɞɟɡűɞɔɟŬɛɛɏɠ Űɞɡ ˊŮŭɑɞɡ ɔɘŬ ŭɘɎűɞɟŮɠ ůŰɘɔɛɏɠ ůŰɞ ɢɟɧɜɞ, ɚŬɛɓɎɜɞɡɛŮ ɡɚɘəɏɠ 

əŬɛˊɨɚŮɠ ɞɘ ɞˊɞɑŮɠ ŮɝŮɚɑůůɞɜŰŬɘ ůŰɞ ɢɟɧɜɞ əŬɘ ˊŬɟɎɚɚɖɚŬ əŬɗɞɟɑɕɞɡɜ Űɖ ɛŮŰŬəɑɜɖůɖ Űɖɠ űŬůɘəɐɠ 

ɟɞɐɠ. ŪŮɤɟɩɜŰŬɠ ɛɞɜɞɢɟɤɛŬŰɘəɐ əɡɛŬŰɘəɐ ŭɘɏɔŮɟůɖ, ˊŬɟŬŰɖɟɞɨɛŮ ɧŰɘ ɞɘ ˊŬɟŬˊɎɜɤ 

əɞɟɡűɞɔɟŬɛɛɏɠ ůɡɛˊɑˊŰɞɡɜ ɛŮ Űɞɡɠ ŮɡůŰŬɗŮɑɠ əŬɘ ŬůŰŬɗŮɑɠ əɚɎŭɞɡɠ Űɞɡ ŬɜŰɑůŰɞɘɢɞɡ ˊɞɟŰɟŬɑŰɞɡ 

űɎůŮɤɜ. ȷɡŰɧ Űɞ ɡˊɞɚɞɔɘůŰɘəɧ ŮɟɔŬɚŮɑɞ ˊɟɞůűɏɟŮɘ Űɖ ŭɡɜŬŰɧŰɖŰŬ ɜŬ ŮəŰɘɛɐůɞɡɛŮ ɞɟɘɞɗŮŰɖɛɏɜŮɠ  

ˊŮɟɘɞɢɏɠ ŭɘŬűɞɟŮŰɘəɐɠ ŭɡɜŬɛɘəɐɠ ůɡɛˊŮɟɘűɞɟɎɠ ůŰɞ ɢɩɟɞ űɎůŮɤɜ (surf-riding əŬɘ surging) ɛɏůɤ 

Űɖɠ ŬˊŮɘəɧɜɘůɖɠ ŭɞɛɩɜ (ɡɚɘəɏɠ əŬɛˊɨɚŮɠ) ɞɘ ɞˊɞɑŮɠ ŭŮɜ ŮˊɘŰɟɏˊɞɡɜ ůŰɖ ɟɞɐ ɜŬ Űɘɠ ŭɘŬˊŮɟɎůŮɘ.  

ɆɡɜŮˊɩɠ, ɛɏůɤ Űɖɠ ŮűŬɟɛɞɔɐɠ ɛŮɗɞŭɞɚɞɔɘɩɜ ɓŬůɘɕɧɛŮɜɤɜ ůŰɖ ɗŮɤɟɑŬ Űɤɜ ŮəɗŮŰɩɜ Lyapunov, 

ŮˊɘɢŮɘɟɞɨɛŮ ɜŬ əŬŰŬɜɞɐůɞɡɛŮ ɛɖɢŬɜɘůɛɞɨɠ ɞɘ ɞˊɞɑɞɘ ˊɟɞəŬɚɞɨɜ ŮɑŰŮ Űɖ ůɡɜɨˊŬɟɝɖ Űɖɠ əɑɜɖůɖɠ 

surging əŬɘ surf-riding ŬɜɎɚɞɔŬ ɛŮ Űɖɜ Ŭɟɢɘəɐ ůɡɜɗɐəɖ Űɞɡ ˊɚɞɑɞɡ ŮɑŰŮ Űɖɜ əŬɗɞɚɘəɐ ŮɛűɎɜɘůɖ Űɞɡ 

űŬɘɜɞɛɏɜɞɡ surf-riding. 
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1 Introduction 

 

It is commonly accepted that ship dynamics in a heavy sea environment has been a subject not fully 

understood by researchers until recently. For this reason, the international research community has 

set as priority the identification of dangerous ship instabilities on the basis of scientific approaches. 

This is reflected also in efforts by the International Maritime Organization to establish new 

regulatory requirements with a strong scientific foundation through the ñ2
nd

 Generation Intact 

Stability Criteriaò (Peters et al. [1]). 

Since many years, mariners and later researchers had observed instabilities in directions that 

differ from the direction of wave excitation. Several accidents occasioned by unstable phenomena on 

shipôs motion in heavy seas have necessitated extended investigations on shipôs dynamics and the 

mechanisms that create the instabilities.  

When the waves meet a ship from the stern (following sea), three different known scenarios 

for capsizing can be realized: pure-loss of stability, parametric instability and broaching-to
1
. In this 

thesis, surf-riding, a phenomenon that is known to cause broaching-to, is going to be studied. 

Broaching-to is an instability leading indirectly to large heel. Surf-riding on the other hand, is a 

nonlinear condition in which the ship is suddenly captured near to a wave trough and then moves 

with the wave celerity (phase velocity). This condition can appear in steep waves having length near 

to the ship length, when the shipôs speed is near to the wave celerity. At steady-state and for an 

observer moving with the wave, surf-riding is characterized as an equilibrium condition.  

Although the perception of broaching-to was made centuries ago, focused study on shipôs 

dynamic instability started after 1950s and notable progress has been made since 1990s. In 1951 

Grim [2] investigated shipôs surging motion in regular waves trying to explain nonlinearities of 

shipôs surge motion and later he attempted to extend the research for the irregular case. Although, he 

didnôt manage to sum up on the phenomena revealing these nonlinearities, he highlighted the 

connection of the aforementioned surge nonlinearities with broaching-to. In 1990 Kan [3] published 

his research on the surf-riding phenomenon, presenting and comparing experimental with numerical 

results considering regular waves. In his study, he identified that in cases that a regular steep waveôs 

celerity is higher than shipôs nominal speed, the ship may be captured in a stationary condition called 

surf-riding. During surf-riding, a transient phenomenon takes place during which shipôs surge 

velocity is increased sharply, to reach waveôs phase celerity. Hence, waveôs celerity is considered as 

a threshold, the reach of which is a signal of surf-riding. However, the conclusions extracted 

considering regular wave excitation could not be extended for the case of irregular wave excitation.  

In 1996, Spyrou [4] made a qualitative dynamical analysis of the autonomous surge equation 

of shipôs motion through which he explains the surf-riding phenomenon, based in the theory of 

homoclinic bifurcation. Surf-riding condition appears in pairs, one of which is stable when ship 

captured in wave trough and unstable when captured in wave crest.  For cases of irregular sea 

environment, the time dependent nature of the system does not permit to extract specific conclusions 

related with shipôs long-term behavior. For an irregular sea, Spyrou et al. [5] proposed methods of  

 

 

1) Broaching-to is an unstable phenomenon that leads to loss of controllability and capsize usually on the wave 

down-slope. In Spyrou [4] it is described as ñloss of headingò of an actively steered ship, often produced as a 

tight turn despite the ñhard-overò setting of the rudder. 
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computing the wave celerity in order to define the threshold above which the ship is captured into 

surf-riding. 

Extensive scientific research proved that surf-riding is often a forerunner of broaching-to. 

Hence by avoiding the occurrence of surf-riding broaching-to is also prevented. For this reason, the 

International Maritime Organization (IMO) decided to establish regulations focused on the 

prediction of a shipôs tendency for surf-riding, in the context of the second (2
nd

) generation intact 

stability criteria. Until enough scientific knowledge permits defining fully the criteria, IMO put 

forward draft vulnerability criteria in 2012 in two levels. These criteria are still under development. 

However, almost two decades ago, IMO had published a very useful guidance for the ship Master in 

order to avoid such instabilities at sea. More specifically, the operational guidance MSC.1/Circ. 707, 

published in 1995 by IMO and replaced by MSC Circ.1228 in 2007, requested the Master to reduce 

the Froude Number to less than 0.3 (for ships with length less than 200m) in cases that sea 

environment is characterized by steep following waves. The first level vulnerability criterion for 

surf-riding is essentially an extension and refinement of this requirement.  In the second level 

criterion, the designer is requested to estimate the shipôs probability to be captured into surf-riding 

and broaching-to condition for North Atlantic wave conditions. 

Studying the surf-riding phenomenon in multi-chromatic wave environment, the time- 

depending nature of the system makes difficult the detection of the phenomenon. The calculation of 

stationary solutions is not applicable due to the fact that they do not remain constant over time. So, a 

computational tool, that will provide a straightforward approach to the surf-riding phenomenon in 

this case and will also make easier the implementation of probabilistic methods, is not provided yet.  

This thesis was developed in co-operation with the PhD candidate Mr. I. Kontolefas, based in 

Kontolefas & Spyrou [6]. The objective was to investigate the nonlinear dynamics of shipôs surge 

motion that lead to the surf-riding condition, using tools appropriate for the investigation of the 

stability of time-dependent dynamical systems. In autonomous dynamical systems, computation of 

systemôs equilibrium solutions provide us the capability to extract, through integration, the 

influential trajectories that have strong impact in the flow transport (stable and unstable manifolds). 

Inserting time in a dynamical system, calculation of the systemôs equilibrium solutions is not 

practically feasible due to the fact that they change as time varies. In order to reveal structures that 

organize phase flow in time-dependent systems, we have relied on the concept of hyperbolic 

Lagrangian Coherent Structures (LCSs), which in literature (Haller et al. [7]) are defined as material 

lines in 2-Dimensional flows that attract or repel nearby phase particles in the highest rate locally. 

Through these entities we are able to construct curves in a 2-Dimensional phase-plane that help us to 

recognize regions of different dynamical behavior. In order to extract these structures, several 

numerical tools have been proposed. In this thesis the method of Finite-Time Lyapunov Exponents 

(FTLE) is basically used, in parallel with the computation of Lyapunov Exponents for a time series, 

through which we are able to identify chaotic cases. More specifically, assuming shipôs time-

dependent nonlinear equation of surging motion, and taking under consideration the largest FTLEs 

that provide a measure of the hyperbolicity of trajectories, we attempt to visualize material lines 

comparable to stable and unstable manifolds in the phase-plane of an autonomous system that 

separate regions of initial conditions. Through the recognition of these manifolds we will be able to 

understand the mechanisms that drive a ship in surf-riding and the limits above which the 

phenomenon appears. Although it has been extensively conjectured in literature that, these structures 

illustrate the stable and unstable manifolds in phase space (Haller et al. [7]), later,  Shadden et al. [8] 
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and Haller [9] stated that largest FTLEs may also represent trajectories of high shear that do not tend 

to expand or contract nearby trajectories. 

In the first part of chapter 2 we make a critical review regarding existing research on the surf-

riding phenomenon and in the second part, on the existing numerical tools of extracting LCSs.  

In chapter 3 we explain our objectives related to the investigation of shipôs nonlinear surge 

motion considering irregular sea, which approximates the natural sea environment.  

Later, in chapter 4 we present the equation of shipôs motion used in our problem, analyzing 

the individual terms. Shipôs surge equation is defined in her autonomous form for regular wave 

excitation as well as in non-autonomous form for bi-chromatic and multi-chromatic wave excitation. 

In chapter 5 the necessary theoretical knowledge regarding analyzing stability of linear and 

also nonlinear dynamical systems is presented, explaining simultaneously several terms of dynamics 

that we use in this work. 

 Then, in chapter 6 we explain in detail the mathematics and the general method of the 

numerical tools (Lyapunov Characteristic Exponents, Finite-time Lyapunov Exponents) used in this 

thesis in order to extract LCSs in the phase-space. 

 Chapters 7 and 8 are dedicated to the presentation of graphs extracted from the 

aforementioned methods for indicative cases, simultaneously commenting on them and also on the 

conclusions obtained. The numerical methods used, were produced in the computational software 

program ñMathematicaò. 

 Finally, in chapter 9 we make a brief discussion on the results obtained using these 

numerical tools and also the conclusions that we could extract and in chapter 10 we mention the 

further study that could be made in the context of the surf-riding phenomenon and LCSs. 
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2 Critical Review 

 

2.1 Surf -riding phenomenon 

 

In 1948 Davidson [10], through his research, proved that a stable ship in calm water, may 

demonstrate instability in a following sea environment
1
. At about the same time (1951) Grim [2] 

presented the nonlinear phenomenon of abnormal surge motion that may occur in long and steep 

waves approaching a ship from the stern. Later, in 1963, Grim [11] attempted to extend the 

investigation of the phenomenon in irregular waves while no one had studied that case until then. He 

focused on the statistical treatment of manifestations of ñlong runsò (i.e. high speed runs of ship) 

from a given wave spectrum, even though ship propeller thrust was relatively low. Simultaneously, 

he proposed that nonlinearities in surge are connected with dangerous phenomena like broaching-to.  

 Later, in 1990, Kan [3] will publish the first detailed research on the surf-riding phenomenon 

in regular waves. Kan investigated ship surging by conducting free running model tests, numerical 

simulations and phase-plane analysis in following seas. However, this investigation was not extended 

for irregular waves. After several model tests, Kan found enough evidence that, for certain number of 

propeller revolutions, the motion changes suddenly from large-amplitude surging to surf-riding. This 

point is observed when shipôs speed, including surge oscillations, approaches the waveôs phase 

velocity (ñcelerityò) (Fig.2.1). Furthermore, the reduced inflow velocity reduces the rudderôs 

effectiveness, which implies the dangerous effect of the surf-riding condition. 

 

 
                     Figure 2.1 Variation of model speed, (Kan [3]) 

 

From his theoretical approach, Kan concluded that, in surf-riding condition, there are two 

static equilibrium points; the stable (between ïɚ/4 and ɚ/4 from the wave trough) and the unstable 

surf-riding condition (similarly, but with respect to the wave crest). Through numerical solution of 

the surge equation, Kan showed cases that, shipôs final motion could be either surging or surf-riding,   

depending on shipôs initial condition. Investigation of this co-existence was made through the 

 

 

1) Sea condition during which waves hit the ship from the stern. 
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phase-plane analysis (Fig.2.2). Changing the parameter Froude Number (Fn), Kan showed three 

distinctive arrangements of the systemôs phase-plane.  In the case of low Fn (Fig.2.2a), each initial 

condition leads to a periodic attractor which indicates periodic surging. For medium Fn cases 

(Fig.2.2b), we observe co-existence of two different types of attraction, namely surf-riding and 

periodic surging. Shipôs final motion in that case, depends on the initial condition. For high Fn 

values (Fig.2.2c), phase-plane analysis shows that the final condition will always be surf-riding. The 

phase-plane analysis leads to the conclusion that there are two critical ship speeds. Under the first 

critical speed, surf-riding never occurs and above the second critical speed, surf-riding occurs for 

every initial condition. For speed values between these critical values, ship makes either periodic 

surging or surf-riding, depending on initial condition. It is important to point that the validity of the 

simulation results is proved comparing them with experimental results. 

Finally, Kan proposed a guideline in order to avoid surf-riding condition, determining the 

critical wave height and the critical ship speed. Although Kanôs observations theoretically and 

experimentally were very significant in the understanding of shipôs dynamics in following regular 

sea, he didnôt investigate shipôs dynamical behavior in irregular waves which is the representative 

case of a real sea environment. 

 

 

 

                                                 (a)                                                                 (b) 

 
    (c) 

Figure 2.2 Phase portraits for various Fn, (Kan [3]) 

 

In 1996, Spyrou [4] conducted dynamical analysis and classified the nonlinear surf-riding 

phenomenon as the result of a ñhomoclinic connectionò, which is a type of global bifurcation. One of 

the objectives of this paper is to identify the boundaries in the phase space that separate initial 

conditions that lead to surf-riding from these that lead to surging. It is important to mention, that in 

both of the aforementioned studies, surge equation of motion that the analysis is based on, contains 

the Froude-Krylov wave excitation. In this publication, it is clarified that manifestation of the surf-

riding condition is caused due to a transient phenomenon that occurs suddenly and forces rapid 
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increase of the surge velocity until this reaches wave celerity. This leads to the surf-riding 

phenomenon during which the instantaneous surge velocity equals wave celerity. Through         

Figure 2.3, Spyrou explained qualitatively the dynamics of the phenomenon in the case of following 

waves of large amplitude. In this figure every section corresponds to different Fn value. In section 

(a), for low Fn, vessel is captured in a periodic motion. In section (b), a static equilibrium appears 

and in section (c) there is a stable point, a saddle point and in parallel a limit cycle. This limit cycle 

tends to approach the saddle point which is located nearer to the wave crest. For a critical value of 

the Fn, the limit cycle touches the saddle point and a new condition appears. This phenomenon is 

justified as a ñhomoclinic connectionò. Larger Fn values lead to stable equilibrium point. In section 

(c), the phase-plane is divided into two separate regions of attraction. These two regions are 

separated by ñinvariantò orbits (inset) which are asymptotic to the saddle point. Backward integration 

in time results in the aforementioned inset invariant orbit of the saddle. Moreover, the outset curve 

arises from integrating forward in time starting near the saddle.  

Defining these curves in this paper is very important for understanding the phase-plane 

analysis, while they provide the conclusion that an initial condition located lower than the inset leads 

to the periodic motion, but on the contrary an initial conditions located above it ends on the point 

attractor. 

 

 

                   

Figure 2.3 Qualitative description of stages leading            Figure 2.4 Inset and outset of saddle at wave crest,                                      

to disappearance of overtaking wave periodic                                                        Spyrou [4]         

                        motion, Spyrou [4] 
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2.2 Identification of areas with diverse dynamical behavior in phase space flows 

 

 

a) Lyapunov Exponents 

 

Alexandr Mikhailovitch Lyapunov (1857-1918) was a Russian mathematician with fundamental 

contribution in stability analysis of dynamical systems. More specifically, through his doctoral thesis 

ñThe general problem of the stability of motionò at the University of Moscow  in 1892 [12], he 

proposed two methods in order to define stability, the first of which was based on the linearization of 

the equations of motion and the use of what was later called the Lyapunov Exponents. Lyapunovôs 

research in general concentrated on investigations of stability of critical points, stability of uniformly 

rotating fluid, the construction and the application of the so called ñLyapunov functionò, stability of 

functional differential equations, the second Lyapunov method and the method of the Lyapunov 

vector function in stability theory and nonlinear analysis (Hedrih K. [13]). 

Almost a century after Lyapunovôs studies on stability of motion, researchers were still trying 

to explain the long-term behavior of nonlinear dynamical systems. In 1968, Oseledec develops the 

theory of Lyapunov Characteristic Exponents in the frame of his study in dynamical systems and 

ergodic theory [14]. In 1980, Benettin et al. [15] published research based in Oseledecôs theorem 

[14], in which they proposed a method for computing the Lyapunov Charasteristic Exponents (LCE) 

or maximal Lyapunov Exponent of a dynamical system. To explain their role in a few words, the 

LCEs measure the rate of divergence or convergence of nearby trajectories in phase space. So, LCEs 

play an important role in the study of nonlinear dynamical systems while positive LCEs imply chaos. 

The gap of knowledge in the field of diagnosis of chaotic dynamical systems is going to be fulfilled 

by the calculation of the Lyapunov Exponentsô spectrum. 

In 1985, Wolf et al. [16] published an algorithm that computes numerically Lyapunov 

Exponents of dynamical systems in time, based in Benettin et al.ôs [15] method. This method was 

applied in several known dynamical systems, defined by differential equations (Henon, Rossler, 

Lorenz, Mackey-Glass), either autonomous or non-autonomous, and could also be applied in 

experimental data. This algorithm is based upon the monitoring of the evolution of an infinitesimal 

n-sphere of initial conditions, in an n-dimensional phase space (Wolf et al. [16]). In the case of one-

dimensional flow map, computation of positive LCE characterizes a system as chaotic, zero LCE as 

periodic and negative LCE as stable.   

Some years later, in 1996, Sandri [17], based in the computational method developed earlier 

by Benettin et al. [15] and Wolf et al. [16], presented an algorithm in Mathematica in order to 

compute the whole spectrum of Lyapunov Exponents for n-dimensional dynamical systems. This is 

the algorithm implemented in chapter 6.1 of this thesis. An example of the LCEs computed using 

Lorenz equations is presented in Fig.2.5. 

Although computation of LCEsô spectrum provides the identification of a nonlinear systemôs 

long-term behavior, this diagnosis does not offer visual identification of the type of attractors and the 

mechanisms that lead to the systemôs final condition. More specifically, the algorithm mentioned 

above examines the rate of separation of trajectories corresponding to an ensemble of initial 

conditions near to the reference trajectory, which means that the case of co-existence of stable 

conditions is not obvious through LCEsô spectrum. In order to overcome this and recognize 
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boundaries in the phase space that direct the flow into different dynamical behavior, more aspects of 

Lyapunov exponents were introduced. More precisely, a finite version of Lyapunov exponents was 

expressed through the similar methods of Finite-Time Lyapunov Exponent (FTLE) and Finite-Size 

Lyapunov Exponent (FSLE), which provide comparable visualizations on the magnitude of 

stretching of nearby trajectories over a finite interval of time (Haller et al. [7], Boffetta et al. [18]).  

The scientific community, trying to understand transport mechanisms of time-dependent 

flows, and indeed of dynamical systems, initially implemented these methods in oceanographic 

research. Using FTLE or FSLE method the creation of a scalar field in phase-space is possible, in 

which positive values indicate separation of nearby trajectories. In the FTLE method, a scalar field is 

computed by measuring the stretching of trajectories for a determined finite period of time. On the 

other hand, through the FSLE method we measure the time it takes to obtain a certain stretching 

ratio. Visualization of these scalar fields provides a measure of the separation of particle trajectories 

through which we recognize transport barriers of flow particles.  

In the paper of Boffetta et al. [18], a comparison of FTLE and FSLE methods is made, in 

parallel with an Eulerian technique applied on a two-dimensional fluid flow. Through this research it 

is concluded that both methods provide better results in the identification of transport barriers from 

that given by the Eulerian method. It is also proved that FTLE method seems more efficient from 

FSLE in certain cases. Furthermore, in the research of Peikert et al. [19], extended comparison of the 

two aforementioned methods is conducted and it is also concluded that distinguishing which method 

fits the best to our problem, depends on the initial knowledge of the time or spatial scales and on our 

interest on the interaction of transport mechanisms. Moreover, maximum similarity of these methods 

could be achieved by choosing the appropriate parameters in the numerical computation of the scalar 

field in each case. 

 

 

 
       Figure 2.5 Plot of the Lyapunov spectrum for the Lorenz model, Sandri [17] 
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b) The concept of Lagrangian Coherent Structures (LCSs) 

 

In 2000 Haller et al. [7] introduce Lagrangian boundaries of Coherent Structures in order to explain 

the transport mechanisms in time-dependent two-dimensional turbulent fluid flows. Haller presents 

these boundaries as geometric structures, similar to stable and unstable manifolds of dynamical 

systems, that govern fluid transport. In addition, Haller [20] proposed the ñdirectò computation of 

largest Finite-Time Lyapunov Exponents as a tool appropriate to extract LCSs. He shows that local 

maxima in the Finite-Time Lyapunov Exponent (FTLE) field are, in fact, indicators of repelling 

Lagrangian Coherent Structures (LCSs) in forward time integration and of attracting LCSs in 

backward time integration. He also implements the method in order to extract repelling LCSs in a 3-

Dimensional flow. In his publication Haller [21] suggests specific criteria for extracting LCSs, 

applying them in several 2-Dimensional time-dependent flows, presenting in parallel specific 

examples. Choosing flows that have exact solutions, he verifies the criteria he proposed. Although it 

was initially believed that across these structures zero flux of material is accomplished, this 

consideration changed later. 

After Hallerôs initial formulation of the idea related to LCSs, the issue concerned Shadden et 

al. [8] a few years later. In this paper, authors presented the theory and computational method of 

LCSs using ridges (local maximizing curves in 2-D phase space) of FTLE fields for time-dependent 

flows. Through the definition of LCSs and the computational method proposed, they estimate 

negligible flux across the LCSs coming from FTLE fields, confirming the almost Lagrangian nature 

of the ridges. Under this consideration, LCSs approximate invariant manifolds. It is also noticed that 

the ultimate objective by extracting LCSs in time-dependent flows, is to make them counterpart to 

the stable and unstable manifolds in time-independent dynamical systems. The authors of Shadden et 

al. [8] implemented this theory in a dynamical model of a double-gyre flow (Fig.2.6), in surface data 

collected by radar stations along the coast of Florida and at an unsteady separation of airfoil. The 

flux across the LCSs, implemented in first and second example, was numerically computed to be less 

than 0.05% which confirms that LCSs derived from FTLE fields act like the stable and unstable 

manifolds that govern flow transport in a dynamical system. However, Haller [9] presents 

counterexamples in which the formula of Shadden et al. [8] used in order to calculate the material 

flux across LCSs does not give accurate results; in fact the flux is found to be significantly larger.  

 

 
Figure 2.6 The double-gyre FTLE field at t = 0, (Figure from Shadden et al. [8]) 
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Later, Peacock & Haller [22] publish a research that summarizes Hallerôs initial idea and 

adds some proposed methods in order to extract LCSs. The authors use the concept of LCSs in an 

attempt to understand the transport mechanisms in fluid flows. According to the authors, LCSs are 

material lines that define the behavior of neighboring fluid elements over a selected period of time. 

For time-independent flows the Lagrangian transport is directly related with the position of stable 

and unstable manifolds which serve as transport barriers (Fig.2.7). For aperiodic time-dependent 

flows, the definitions repelling and attracting material lines are used in order to understand the fluid 

transport over a finite time interval. By definition, repelling material lines repel nearby trajectories in 

the highest local rate and attracting attract in the highest local rate respectively (Fig.2.8). In this 

research, authors indicate the FTLE method, as well as a procedure involving the computation of 

strainlines in a flow, as primary methods used to extract LCSs. Furthermore, they point the 

advantages and disadvantages of these methods. By definition, Lyapunov exponent is a measure of 

the sensitivity of a fluid particleôs future behavior to its initial position in the fluid flow field. In the 

work there are also mentioned application examples of the FTLE method in oceans in order to 

control pollution, as well as applications in human arteries, in air traffic and to predict flow 

separation by airfoils.  

 

 

          
 

Figure 2.7 Transport barriers that advect material form 

(a) A fluid parcel approaching the saddle point and 

finally moving along the orthogonal material line. (b) 

Unstable manifolds (red curve) in a time-periodic 

atmospheric flow generated by winds, (Figure from 

Peacock & Haller [22])  

                              

Figure 2.8 Lagrangian coherent structures in the time 

interval [t0 , t1].(a) Attracting LCS (b) Repelling LCS 

(c) Intersection between the repelling and attracting 

LCSs is a saddle point, (Figure from Peacock & Haller 

[22])   



Additionally, Shadden [23] makes a detailed review on the theory of computing LCSs 

through FTLE fields pointing out the benefits of using LCSs in order to understand further 

mechanisms of transport in aperiodic (time-dependent) flows. It is remarked that the development of 

the method gives rise to the identification of the systemsô dynamics that lead to chaos, while 

interaction of these manifolds is found to be the cause.  
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3 Objectives 

 

 

The main objectives of this thesis are: 

 

¶ The implementation of new numerical tools, already used in the understanding of 

mechanisms that lead fluid transport in fluid flows, in order to gain insight into the 

mechanisms leading to the surf-riding phenomenon that usually causes shipôs instability 

through broaching-to in following seas. 

 

¶ To apply numerical methods in order to diagnose chaotic shipôs response in following seas. 

 

¶ To apply the aforementioned methods firstly in regular wave excitation in order to test their 

applicability, secondary in bi-chromatic wave excitation and finally in multi-chromatic wave 

environment. 
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4 Equation of surge motion 

 

4.1 General equation form 

 

The mathematical model used in order to simulate shipôs longitudinal motion in following seas is 

based on Newtonôs second law and includes the main forces acting on a ship in longitudinal direction 

(see also Spyrou [4]): 
                                  (4.1)                              

 

where m is the ship mass, uX  is the surge added mass, x  - the dot over the symbol x  implies the 

differentiation of x with respect to time - is the instantaneous acceleration in longitudinal direction, 

T, R, are respectively thrust and resistance in calm water, WX is the Froude-Krylov wave force 

acting in longitudinal direction. The last term attains positive values when mid-ship is positioned in a 

down-slope and negative when in up-slope of a wave. Finally, the term x indicates the distance of the 

vesselôs mid-ship from an earth fixed co-ordinate and ɝ the distance from a co-ordinate system 

positioned on a reference wave crest. 

 

 

 
Figure 4.1 Ship in following sea 

 

 

4.2 Analysis of Equationôs Terms 

 

Generic form of surge Eq. (4.1) implies that thrust should counteract the inertia term plus resistance 

and wave excitation term.  

 Firstly, the surge added mass term is considered as constant, because of its dependence on the 

encounter frequency which is low in our case. 

 Resistance is considered as a function of surge velocity (U) and is expressed as a third order 

polynomial (see Spyrou [4]): 

                                                               
2 3

1 2 3R rU rU rU= + +                                                       (4.2) 

where r i, i=1,2,3, are appropriate coefficients (Table 4.3). 

Furthermore, choosing appropriate coefficients əi, i=0,1,2, so as the thrust coefficient KT to be 

approached by polynomial: 

                                                    
2

0 1 2TK J Jk k k= + +                                                        (4.3) 

and knowing from propulsion theory that: 

( )u Wm X x T R X- = - +
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(1 )pU

J
nD

w-
=                                                              (4.4) 

we express thrust as a polynomial of second order depending on surge velocity (U) and propellerôs 

rate (n): 

       
2 2

0 1 2T n nU Ut t t= + +              (4.5) 

where Űi, i=0,1,2, are coefficients conveyed by following forms: 

          

4

0 0

3

1 1

2 2

2 2

(1 )

(1 )(1 )

(1 )(1 )

p

p p

p p

t D

t D

t D

t k r

t k w r

t k w r

= -

= - -

= - -

                     (4.6) 

where tp is the thrust deduction coefficient and ɤp is the wake fraction coefficient, considering still 

water for both cases. Moreover, D and n are respectively the propeller diameter and rate.                                                                                                                             

Finally, the Froude-Krylov wave force amplitude on surge direction, that depends on wave 

length ɚi, sea depth as well as on the longitudinal position of the shipôs midship relative to the wave,  

occurs by calculating the RAO curve (Fig. 4.2) that relates wave amplitude (Ai) with surge wave 

force amplitude coefficients (fi): 

 
 

 
Figure 4.2 RAO curve     

                                                 

                                                            i i if RAO A= Ö                                                         (4.7) 

 So, from Fourier analysis, the Froude-Krylov wave excitation term that is going to be used in 

our mathematical model is expressed as: 

 

                             (4.8)                                                                     

  

 

hold where v
1
 is the number of wave components, iw  is the wave frequency, ik  is the wave number 

2 /́ɚi , if is the wave difference between  the wave and the force  and 
( )r

if  is the wave phase of the i-

th individual wave component, a term that introduces the randomness in wave excitation. 

 

1) v=1 in case of a regular wave, v=2 in case of bi-chromatic sea 
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4.3 Final Shipôs Surge Motion Equation  
 

a) Non-autonomous form of nonlinear equation of surging motion 

 

Substituting expressions (4.2), (4.3), (4.8) in (4.1), assuming fixed on earth co-ordinate system, we 

obtain: 

         ( ) ( ) ( ) ()3 2 2

3 2 2 1 1 0

1

      sin
r

u i i i i im X x r r x r x f k nx x t
n

i

t th w f f t
=

è ø- + + - + - + - + + =
ê úä               (4.9) 

b)  Autonomous form of nonlinear equation of surging motion for regular wave excitation 
 

In the above model we assumed so far a co-ordinate system fixed on earth. In case we prefer to 

obtain an autonomous version of the equation, consideration that is applicable only for regular wave 

excitation, we have to define a new moving co-ordinate system, positioned on the crest of a reference 

wave and moving with the wave phase velocity c. In parallel, we replace variable x with 

x c tx= + Ö, where ɝ represents the surge distance from the new co-ordinate system (see Fig.4.1). 

Now, the new expressions are: 
 

From (4.1):                                      ( )u Wm X T R Xx- = - +                                                   (4.10) 

From (4.8):                                           sin( )wX f kx f= +                                                         (4.11) 

Substituting expressions (4.2), (4.3), (4.1) in (4.9), and considering the transformation 

U cx= +, where c = ɤ/k is the wave celerity, the following equation occurs:       

2 2 3

3 2 2 1 1 3 2 2 3

2 2 3

0 1 1 2 2 3

( ) [3 2( ) ] [3 ( )]

sin( ) ( )

um X r c r c r n r c r r

f k n rc cn r c r c

x t t x t x x

x f t t t

- + + - + - + + - + +

+ = - + + - -
           (4.12) 

The above autonomous form of the surge equation is problematic in polychromatic wave 

excitation. The transformation  x c tx= - Ö used above to annihilate time is not applicable due to 

the existence of the constant term of wave celerity c, which differs for every wave. So, Eq.(4.12) is 

implemented only in the regular case (v=1). 

In the tables that follow we present the parameters used in order to define the components of 

surge equation. In all cases that we will investigate in this thesis, deep water is assumed. 
 

REGULAR CASE (ɜ=1) BI-CHROMATIC CASE  (ɜ=2) 
MULTI -CHROMATIC CASE 

(Jonswap Spectrum) 

Wave Length ɚ Wave One Length ɚ1 m 
Significant wave 

Height sH  m 

Wave Steepness  H
l

 Wave One Steepness 

(st1) 
 1

1l
H   Peak Period pT  s 

-  
 Wave Steepness 

Ratio (st2/st1) 

2

2

1

1

H
l

l
H

 
 

Spectrum around 

Peak Frequency pw  % 

-  
Wave Frequency 

Ratio 
2

1

w
w

  
   

Table 4.1 Wave parameters used to define equations 4.9 & 4.12 
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Parametersô names Symbol Units 

Shipôs Nominal Speed unom m/s 

Shipôs Initial Position x0 m 

Shipôs Initial Speed u0 m/s 

Initial Time t0 s 

Table 4.2 Ship parameters used to define equation 4.9 & 4.12 

 

Concluding, a generic form of shipôs surge equation (Eq.(4.9), Eq.(4.12)) is used in our 

mathematical model in order to simulate shipôs motion in following seas, either regular,  bi-

chromatic or irregular.  

Furthermore, in this thesis, the tumblehome hull from the ONR topside series                            

( 154 , 18.802 , 5.5BP dL m B m T m= = =  ) is used as a case study. The constant parameter values 

used in the nonlinear differential equations describing shipôs surging motion are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           

Table 4.3 Shipôs characteristic parameter values 

 

 

 

 

 

 

 

 

 

 

Shipôs characteristic 

parameter values 

 m
            

( )  kg  68.747 10³  

  uX
           

( )  kg  5  4.374 10- ³  

1r          ( )-1  kg s  3 7.705 10³  

2r          ( )-1kg m  3 2.511 10³  

3r        ( )-2  kg m s  21  .540 10³  

0t          ( )  kg m  4 9.626 10³  

1t             ( )  kg  3  9.947 10- ³  

2t         ( )-1  kg m  2 8.690 10³  
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5 Dynamical Systems 

 

 

5.1 Stability of dynamical systems 

 

 

It is commonly accepted that solutions of differential equations have the capability to simulate the 

behavior of a physical phenomenon. Furthermore, existing mathematical tools provide us an 

approach on the systemôs long-term asymptotic motion. The main objective of this chapter is to 

concisely provide notions of the theory of dynamical systems that are going to be used later in this 

thesis. 

 The solution of an n-dimensional dynamical system described by n time-dependent 

differential equations: 

1 1 1( ) ( ( ),..., ( ), )nx t f x t x t t=  

                                                                                                                                                  (5.1) 

 1( ) ( ( ),..., ( ), )n n nx t f x t x t t=             

 

represents a curve embedded in a n-dimensional space with coordinates ( 1( )x t , 2( )x t ,é ( )nx t ). This 

space is commonly referred as ñphase-spaceò (ñphase-planeò in case of n=2). The systemôs solutions 

constitute a trajectory (function of time) moving on the 1 2( , ,..., )nx x x  phase space starting from the 

initial condition 1 0 2 0 0( ( ), ( ),..., ( ))nx t x t x t at time 0t . 

 Henceforth, letôs consider a two-dimensional autonomous dynamical system (n=2) in order to 

simplify our analysis:  

1 1 1 2( ) ( ( ), ( ))x t f x t x t=  

                                    2 2 1 2( ) ( ( ), ( ))x t f x t x t=       or  the vector form: 

                                                                   ( ) ( ( ))x t F x t=                                                              (5.2) 

                       

In this case, solutions in the two-dimensional phase-space are described in variables of                      

( 1 2( ), ( )x t x t ).In order to identify the long-term behavior of a dynamical system in the phase space, 

we use differential equations to construct a vector field, through which we assign a velocity vector 

1 2( ) ( ( ), ( ))x t x t x t=  at each 1 2( ) ( ( ), ( ))x t x t x t= . The velocity vector field is provided if we plot the 

corresponding velocity vector in the tangent space of each trajectory, which is represented by:  

 

                                                                 1 2( ( )) ( ( ), ( ))F x t x t x t=                                                    (5.3) 

 

This vector field determines the way the two-dimensional trajectory 1 2( ) ( ( ), ( ))x t x t x t=  is 

going to be developed while time passes and consequently indicates the long-term qualitative 

behavior of a dynamical system. Depiction of trajectories in the phase plane, the arrangement of 
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which is associated with the vector field represents the ñphase portraitò of a dynamical system. 

Through phase portraits we obtain information on the systemôs equilibrium solutions, defined by: 
 

                                                          
*( ) 0F x =                                                                 (5.4) 

 

 A system that ends up on a point of equilibrium
*x , is stabilized in this condition for all t. 

Equilibrium points (or stationary states) are categorized in stable and unstable equilibrium points. If 

infinitesimal disturbances away of the stationary state are damped out in time, then this state is 

characterized as stable. In opposite case, that disturbances tend to grow, we have unstable stationary 

state. Generally, we use the term of a limit set in order to express the geometric structure of a steady 

state that a system is going to obtain asymptotically in a phase portrait ast ¤. We recognize three 

main categories of limit  sets: 
 

(a) fixed points that satisfy the equation 
*( ) 0F x =  

(b) periodic solution, which corresponds to a closed orbit that satisfies ( ) ( )x t T x T+ =  for a 

constant positive value of T 

(c) chaotic solution which is appeared only in nonlinear systems. In that case, the system 

converges in a ñstrange attractorò that represents a complex non-periodic motion and has 

great sensitivity in initial conditions. Small differences in initial conditions provoke 

exponential divergence of trajectories and determine different long-term behavior. 

 

 

 

 

5.2 Stability of Linear dynamical Systems 

 

 

Letôs consider that the system of Eq.(5.2) is linear and has the form: 
 

                                                                ( ) ( )x t Ax t=                                                                 (5.5) 
 

where 
a b

A
c d

è ø
=é ù
ê ú

 and 
1

2

( )
( )

( )

x t
x t

x t

è ø
=é ù
ê ú

. Solutions of the above differential equations provide the 

systemôs phase portrait through which we recognize the nature of the systemôs stability.  The 

systemôs general solution is 1 2

1 2 1 1 2 2( ) ( ( ), ( ))
t t

x t x t x t c e v c e v
l l

= = +  where 1 2,l l are the 

eigenvalues and 1 2[ , ]v v n T=  the eigenvectors of A matrix. Setting ( ) 0x t = , the solution *x =0 is 

an obvious equilibrium (fixed) point for any A matrix. 

 

Determination of stability of equilibrium points depends on the A matrix eigenvalues. The 

investigation of its eigenvalues and eigenvectors indicate whether the systemôs equilibrium points are 

stable or unstable. Eigenvalues measure the magnitude of convergence or divergence in the direction 

of the corresponding eigenvector.  
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These are the categories of steady states a system could obtain, depending on its eigenvalues: 
 

(a) Real eigenvalues: 
 

ü if 1 2, 0l l<  then the fixed point is stable (stable node) 

ü if 1 2, 0l l>  then the fixed point is unstable (unstable node) 

ü if 1 2 0l lÖ < then the fixed point is called a saddle point 

ü 1 0l=  and 2 0l¸  then we will have a line with fixed points (in the direction of the 

related eigenvector) 

ü if 1 2, 0l l=  then the whole phase space will consist of fixed points 

 

(b) Complex eigenvalues (complex roots means oscillations): 
 

ü if  1,2Re( ) 0l < , then the fixed point is a stable spiral 

ü if 1,2Re( ) 0l > , then the fixed point is an unstable spiral 

ü if 1,2Re( ) 0l = , then the fixed point is a center 

 

When referred in stability of a fixed point we usually call:  
 

ü repellers (or sources) the fixed points that have positive real eigenvalues 

ü attractors (or sinks) the fixed points that have negative real eigenvalues 

ü saddles the fixed points that have a positive and a negative eigenvalue 

  

For the cases that 1,2Re( ) 0l ¸  the fixed points are also called hyperbolic points. In these cases their 

stability is recognized through performing local linearization. 

Generally, if there is any positive real part of an eigenvalue, then the systemôs solution is going 

to be unstable. 

In a phase portrait when referring to the stable (unstable) manifold, we mean the trajectory that 

passes through the saddle point in the direction of the eigenvector that corresponds to the negative 

(positive) eigenvalue. 

 

 

5.3 Stability of Nonlinear dynamical systems 

 

One of the main objectives of the stability analysis is to determine whether the phase-plane contains 

regions that tend to attract or repel nearby trajectories as t ¤. In nonlinear systems, the difficulty 

we face in solving the equations, leads us in the linearization theory which is also called the 

Lyapunov first method. According to this theory, we linearize our system locally, around the point 

that we are interested in. Approaching the systems behavior locally by a simpler one, offers us the 

chance to determine the type of systemôs stability. This method is called the Lyapunov method and it 

was proposed by Lyapunov as mentioned in Chapter 2. 
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Letôs consider the nonlinear system of Eq.(5.1), 
* * *

1( ,..., )nx x x=   to be a fixed point and 

1( ,..., )ny y y=  to be the distance of a nearby point (perturbation) in the phase-plane. After these 

considerations each of the systemôs equations is approached by: 
 

            
* * * *

1 1 1

1

( ) ( ,..., ) ( ) ...
Taylor

i i
i i n n i n

n

f f
f x y f x y x y f x y y

x x

µ µ
+ = + + = + + +

µ µ
,i=1,..,n                  (5.6) 

where the term 
*( )if x  equals to zero. So, the general form of the linearized system is: 

 

               

*

1 1

*
1 11

*

1

( )

( )

n

n n nn

n x x

f f

x x yf x y

f f yf x y

x x
=

µ µë û
î îµ µë û+ ë û
î îî î î î î î
= Öì ü ì ü ì ü

î î î î î îµ µ+ í ýí ýî î
µ µî îí ý

  or 
*( )x F x y Ay= + =                 (5.7) 

where A is the jacobian matrix of f evaluated at 
*x x= . 

 

Then, determining the eigenvalues of the jacobian matrix A, in case of hyperbolic fixed points 

we are able to define their stability (stable, unstable, saddle). Furthermore, Lyapunov, in his attempt 

to analyze stability of nonlinear dynamical systems, also developed the second Lyapunov method 

which is based on the construction of the Lyapunov Function, through which we can make a 

conjecture about the systemôs stability. However, the absence of a general formula that defines these 

functions makes it difficult to use them in practice.  

In case of a nonlinear system, limit cycles (Fig.5.1) appear as another type of steady-state. 

Limit cycles are close orbits but they differentiate from centers that appear in linear systems. Their 

particularity lies on the fact that these close orbits are isolated, meaning that nearby trajectories are 

not closed. When neighbor trajectories approach the limit cycle, then it is stable (attracting). In 

opposite case it is unstable and in some cases half-stable. 

  

 
Figure 5.1 Limit Cycles, Strogatz [24] 

 

  

 In general, an attractor is a limit set (fixed points, limit cycles e.tc.) that tends to attract 

nearby located trajectories. For a more formal definition see Strogatz [24]. 
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5.4 Bifurcation s of dynamical systems 
 

From previous paragraphs, through the systemôs phase portrait, we recognize whether limit sets are 

stable or unstable. However, the nature of the systemôs limit set depends on the systemôs parameters. 

Variation on these parameters incurs changing in the trajectoriesô structure and as a result in the 

topology of the phase portrait.  This implies the creation and the disappearance of limit sets or even 

change in their stability. This change in the dynamical behavior is called bifurcation phenomenon. 

The parameter values at which such a phenomenon appears are called bifurcation points. 

 Some of the most common types of bifurcation are: saddle-node bifurcation, transcritical 

bifurcation, pitchfork bifurcation (supercritical or subcritical), hopf bifurcation, saddle bifurcation of 

cycles, infinite-period bifurcation and homoclinic bifurcation (Strogatz [24]). Homoclinic bifurcation 

is the phenomenon we are going to focus in detail while it is straightly connected with surf-riding 

phenomenon. 

 During a homoclinic bifurcation (Fig.5.2), a limit cycle approaches more and more a saddle 

point as systemôs parameters vary. When the limit cycle touches the saddle point, a collision, called 

bifurcation, occurs and results in the creation of a homoclinic orbit which settles in the same saddle 

point. More changing in the parameter provokes breaking of the connection in that point which 

implies the disappearance of the limit cycle. 

 According to the research of Spyrou [4], homoclinic bifurcation is also applicable for the case 

of the surf-riding phenomenon (Chapter 2, Fig. 2.3, 2.4). Through this tool of the nonlinear analysis, 

Spyrou explains how the shipôs dynamical system converts its periodic motion into a stationary state, 

called surf-riding condition. The parameter varying in this problem is the Fn value depending on 

shipôs surge velocity. 

 

Figure 5.2 Phase portraits of a 2-D dynamical system for various parameter values (1 2 3crm m m m< < <), 

(reproduction of figures from Strogatz [24]) 
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6 Numerical tools for investigating dynamical systems 

 

6.1 Lyapunov Characteristic Exponents 

6.1.1 Theory on Lyapunov Characteristic Exponents (LCEs) 

 

To date, numerical and analytical methods on nonlinear dynamical systems have confirmed the 

existence of deterministic chaos
1
. Practically, the systemôs long-term behavior becomes 

unpredictable, meaning that two trajectories starting from nearby initial conditions in phase space, 

rapidly diverge and their future becomes unpredictable and totally different. In order to identify 

chaotic dynamical behavior, computation of Lyapunov Exponentsô spectrum has been proven a 

useful tool (Benettin et al. [15]). Through the application of this computational method in the phase 

space of a dynamical system, we are able to measure the average exponential rate of divergence or 

convergence either of orbits that start from two initial points located infinitesimally nearby in phase 

space or for nearby trajectories provided from discrete experimental data. 

For dynamical systems whose equations of motion are known, Benettin et al. [15] developed 

a technique in order to compute the whole spectrum of Lyapunov Exponents. According to this 

method, we firstly set a continuous n-dimensional dynamical system defined by a system of n 

differential equations and also consider the n-sphere of initial conditions in phase space, by placing 

its center at the initial condition of the reference trajectory we are going to investigate. Evolution of 

time will result in the deformation of the n-sphere to n-ellipsoid due to the advective nature of the 

phase flow. The rate of expansion or contraction of each i-th principal axis of the n-ellipsoid is 

characterized by a specific one-dimensional Lyapunov Characteristic Exponent (LCE) ɚi. 

Consequently, each trajectory is associated with n LCEs. The LCE of the direction tangent to the 

flow trajectory is always zero. Moreover, the largest axis is measured by the largest Lyapunov 

Exponent which is the LCE that characterizes the behavior of the dynamical system. Generally, the 

Lyapunov Characteristic Exponent that measures the average stretching of a trajectory separately for 

each i-th direction as tŸÐ is defined as: 

                                              
( )1

lim ln
(0)

i
i

t
i

t

t

d
l

d¤
= ,        i=(1,é,n)                                      (6.1.1) 

where ŭi is the length of the i-th axis of the n-ellipsoid at time t.  

 According to Oseledec [14] and his Multiplicative Ergodic Theorem, this limit exists for 

almost every trajectory and direction of the perturbation in phase space. 

 So, each axis of the ellipsoid grows as e
ɚit, the area defined by first two principal axis grows 

as e
(ɚ1+ɚ2)t, the volume defined by first three principal axis grows as e

(ɚ1+ɚ2+ɚ3)t and so on.  

Wolf et al. [16] pointed that ñEach positive exponent reflects a direction in which the system 

experiences the repeated stretching and folding that decorrelates nearby states on the attractor. 

Therefore, the long-term behavior of an initial condition that is specified with any uncertainty cannot 

be predicted; this is chaos. An attractor with one or more positive Lyapunov exponents is said to be 

strange or chaoticò. 

 

1) Definition of Chaos: ñChaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive 

dependence on initial conditionsò, Strogatz [24] 
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The signs of the LCEs provide us information on the systemôs long-term dynamical behavior. 

In Table 6.1.1 some combinations of signs and the corresponding attractors of an n-dimensional 

dynamical system are presented. 

Topological 

dimension 

Dynamics of the 

attractor  
LCE spectrum 

1 Fixed point ï 

2 Periodic motion 0 ï 

3 Torus T
2 

Chaos C
1 

0 0 ï 

+ 0 ï 

4 Hypertorus T
3 

Chaos on T
3 

Hyperchaos C
2 

0 0 0 ï 

+ 0 0 ï  

+ + 0 ï  

N Fixed point 

Periodic motion 

(N-1)torus 

 

(N-2)chaos 

...- - 

0 ...- - 

2
0...0 ...

l N l² -
- - 

1 1
... 0...0 ...
k l N k l² ² - -
+ + - - 

Table 6.1.1 LCE spectrum of continuous time attractors, Klein and Baier [25] 
 

Letôs present the method described above in a generic way in order to be applied in one-

dimensional flow
1
 in phase space. The flow map

2
 is defined as follows: 

                               
0 00 0 0 0: : ( ) ( ; , )t t

t tf D D x f x x t t x =                                      (6.1.2) 

 By definition the flow map satisfies the following: 

                                                  

0

0

0 0 0

( )

( ) ( ( )) ( ( ))

t

t

t s t s s t s t

t s t t t

f x x

f x f f x f f x+ + +

=

= =
                                    (6.1.3)                                       

We consider two nearby points 0x and 0 0x d+  at time 0t .  After the evolution of time in the 

phase space, at time t, the new positions of the points advected by the flow will be 0( )tf x  and 

0 0( )tf x d+  respectively (Fig. 6.1). Now, the initial infinitesimal separation ŭ0 becomes: 

                                
00 0 0 0 0( ) ( ) ( )t t t

t xf x f x D f xd d d= + - º Ö                                     (6.1.4)        

where 
0 0( )t

xD f x  comes from the linearization of 
tf . As a result, by applying the definition (6.1.1) 

of the Lyapunov Characteristic Exponent, we have: 

                                         
00 0 0

0

1 1
( , ) lim ln lim ln ( )

t t

x
t t

x D f x e
t t

d
l d

d¤ ¤
= = Ö                               (6.1.5) 

where Ö indicates the length of a vector and 
0

0

e
d

d
= . 

1) using the definition ñflowò we mean either fluid flow or a flow in the phase space of a dynamical system 

2) A ñflow mapò is a map which shows the association of the position of each initial point (x0) at time t0, with its 

new position (x) after an interval of time t. 
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Figure 6.1 Divergence of two trajectories starting from nearby initial conditions, Sandri [17] 

 

In order to extend the above definition for n-dimensional flows in the phase space and 

compute the Lyapunov Exponent of order n, which describes the average rate of growth of an n-

dimensional volume in the phase space, we define: 

                                   
00 0 0

1
( , ) lim ln[ ( ( ))]n n t

x
t

x Vol D f
t

l
¤

D = D                               (6.1.6) 

where 0D  is a volume whose edges are the vectors ŭ1, ŭ2,éŭn. As mentioned before, each LCE of 

order n equals the sum of the n one-dimensional LCEs.  

 

6.1.2 Computation of Lyapunov Exponentsô Spectrum for Continuous systems 

 

We firstly have to define the n-dimensional continuous dynamical system, specifying also a certain 

initial condition. Letôs consider the n-dimensional nonlinear differential equation: 

                                                                      ( , )x F x t=                                                           (6.1.7) 

where 1{ ,..., }n

dx
x x x

dt
= = , is a tangent to the trajectory ( )x t  velocity vector at time t,  

1( ) { ,..., } n

nx x t x x R= = Í  is the position in phase space at time t and ( , )F x t  is a 
nC  

continuous function. In order Eq.(6.1.7) to be considered autonomous, we set simultaneously the 

time t as a dependent variable assuming the differential equation 1t = . This consideration will 

increase our systemôs dimension by one. Henceforth, our systemôs dimension will be (m=n+1) and it 

will be considered autonomous. We also set the flow in phase space as already defined in Eq.(6.1.2), 

(6.1.3). So, every trajectory in the phase space, starting from 0x  at 0t  is defined through the flow 

map 0( )tf x . 

 We now set the initial condition 0

nx RÍ at time 0t  in phase space. Integration of the 

nonlinear system creates the reference trajectory, called ñfiducial trajectoryò (Wolf et al. [16]). Then, 



38 

 

we consider a deviation 0( )t xF  from the initial condition which is expressed through a frame of 

orthonormal vectors that define a sphere infinitesimally near the ñfiducial trajectoryò. This 

perturbation evolves in time by solving the linearized equation of motion, expressed in the following 

mxm matrix form: 

                                                    0 0 0( ) ( ( )) ( )t

t x tx D F f x xF = ÖF                                                (6.1.8) 

, considering initial condition
0 0( )t mx IF = . 

In the above equation, 0( )t xF is the derivative with respect to 0x  of 
tf  at 0x  ( 0( )t xF

=
0 0( )t

xD f x ) and constitutes a set of vectors 1 2{ , ,..., }t t t

md d d. However, we have to notice that solving 

Eq.(6.1.8) is problematic due to the fact that parts of it depend on the solution of Eq. (6.1.7). 

Therefore, integration of the combined system is prerequisite in order to compute the trajectory: 
 

                       
0

0 0 0

( ) ( ( ))
,

( ) ( ( )) ( )

t

t
t x t

x t F f x

x D F f x x

ë ûë û
=ì ü ì ü

F ÖFí ýí ý
      

0 0

0

( )

( )

x t x

t

ë ûë û
=ì ü ì ü

F Ií ýí ý
                  (6.1.9) 

 

Linearized equations of motion act on the initial frame of orthonormal vectors by integrating 

them for m different initial conditions so as to give a new set of vectors {ŭ1, ŭ2,é,ŭm}. The ñfiducial 

trajectoryò, which is the trajectory that passes through the center of the m-sphere, is defined by 

integrating the nonlinear equation of motion (Eq.6.1.9). However, an obstacle appears while 

applying the combined systemôs integration. Although each vector has a different magnitude, they 

have the tension to end up on the direction of the fastest growth. According to Benettin et al. [15], to 

avoid this, the Gram-Schmidt method of reorthonormalization is repeatedly applied on the vector 

frame obtained by integration (see also Wolf et al. [16]). Through this procedure, vector ŭ1 will 

finally coincide with the direction of largest growth. 

Given an initial set of vectors {ŭ1, ŭ2,é, ŭm} , application of the Gram-Schmidt procedure 

provides a new set of orthonormal vectors { }1 2, ,..., me e e : 

                                     

'
' 1

1 1 1 '

1

'
' 2
2 2 2 1 1 2 '

2

,

, ,

e

e e e

d
d d

d

d
d d d

d

= =

= - Ö =

 

                                                                                                                                       (6.1.10) 

                   

'
'

1 1 1 1 '
, , , m

m m m m m m m

m

e e e e e
d

d d d d
d

- -= - Ö - - Ö = 

where ,  is the inner product of vectors.  

 

 Consequently, the volume generated by vectors {ŭ1, ŭ2,é, ŭm} is: 

 

                                    
' ' '

1 2 1 2{ , ,..., }m mVold d d d d d= Ö Ö Ö                                    (6.1.11) 
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We now choose an initial condition 0x  at time 0t and at the same time a random mxm matrix 

0 0 0

0 1 2{ , ,..., }md d dD =  where each ŭi constitutes a vector in m. The next step is to apply the Gram-

Schmidt reorthonormalization procedure in order to create the orthonormal vectors 
' 0 0 0

0 1 2{ , ,..., }me e eD =  and then numerically integrate the differential Eq.(6.1.8), using the initial 

conditions 0x  and 
'

0D  choosing the short interval of time T. After the integration procedure the 

values of below are provided: 

    1 0( )Tx f x=     and 

                                                       
0

1 1 '

1 1 0[ ,..., ] ( )T

m xD fd dD = = D                                       (6.1.12) 

 

Continuing, we apply the Gram-Schmidt procedure so as to get ȹ1 matrix in orthonormalized 

form (
'

1D) and then integrate the same differential equation using values of 1x , 
'

1D and integration 

time T. Values of vector 2x  and ȹ2 matrix are then attained. This procedure described above is 

repeated for k-times while we need to compute the average value. Regarding the choice of k value, it 

should be as large as LCEsô spectrum shows convergence.  

So, after k-times, the average rate of growth of the m-dimensional volume in the phase space 

of the m-dimensional dynamical system is represented by the LCE of order m, attained by the 

substitution of Eq. (6.1.11) in Eq.(6.1.6): 

                                     
' '

0 0 1

1

1
( , ) lim ln( ... )

k
m i i

m
k

i

x
k

l d d
¤

=

D = Ö Ö
T
ä                              (6.1.13) 

 In order to compute the one-dimensional LCE of the v-th direction, where 1 mn¢ ¢ ,  we 

define: 

                                                               
'

1

1
lim ln

k
i

i
k

kT
n nl d

=
¤

= ä                                                  (6.1.14) 

 Finally, in order to calculate the spectrum of Lyapunov Exponents we define: 

'

1 1

1

1
ln

k
i

ikT
l d

=

= ä  

                                                                 
'

2 2

1

1
ln

k
i

ikT
l d

=

= ä                                                      (6.1.15) 

 

'

1

1
ln

k
i

m m

ikT
l d

=

= ä  

 

Calculating the last LCE value after k iterations, for each one-dimensional LCE, we have an 

estimation of the LCE value in which our system finally converges. Consequently, choosing to sum 

the whole LCE spectrum of Eq.(6.1.15) we obtain the LCE of order m (Eq.6.1.13), through which we 

estimate the growth rate of the m-dimensional volume in phase space.  
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6.1.3 Computation of LCEsô spectrum for  surge motion equation 

 

In order to create a system of equations that will simulate the shipôs surge motion in phase space, 

based on Eq.(4.9), we set  1x x=  and 2x x= . Thus, we consider the three-dimensional phase space 

with variables x={x1, x2, t} and the system of nonlinear equations:  

   

2

( )
1 2 2 1

1
1 2 2

( ) R( ) sin( )

[{ , , }]

1

v
r

i i i i i

i

u

x

x T x x f k x t

F x x t x
m X

t

w f f
=

ë û
î î
î îë û - + - + +

î î î î
= =ì ü ì ü

-î î î î
í ýî î

î î
í ý

ä
,

0

1

0

0 2

0

x

x x

t

ë û
î î
=ì ü
î î
í ý

    (6.1.16) 

 

 We also have to mention that for monochromatic wave excitation, applying the autonomous 

form of surge motion, the above system becomes two-dimensional due to the deletion of the equation 

of time. After the implementation of the linearization method, we present the jacobian matrix:  

                                              

1 1 1

1 2

2 2 2

1 2

1 2

( )x

x x x
D D D

x x t

x x x
D F x D D D

x x t

t t t
D D D

x x t

è ø
é ù
µ µ µé ù

é ù
=é ù

µ µ µé ù
é ù
é ù
µ µ µê ú

                                          (6.1.17) 

Substituting the expression (6.1.17) in Eq.(6.1.8) contributes in the creation of the linear 

system of equations: 

                                      

3 3 1 2 3 3 3

1 1 1

1 2 31 2

1 1 1

1 2 32 2 2
2 2 2

1 2 1 2 3

3 3 3

1 2

{ , , } ( )x x xD F x

x x x
D D D

x x t

x x x
D D D

x x t

t t t
D D D

x x t

f f f

f f f

f f f

F = F F F = ÖF =

è ø
é ù
µ µ µé ùè ø

é ùé ù
= Öé ùé ùµ µ µé ùé ù

ê úé ù
é ù
µ µ µê ú

, 0 3F = I                  (6.1.18) 

where each column of the 3 3xF  matrix corresponds to a vector ŭi , i=1,..,3, as described in paragraph 

6.1.2. 
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 Having defined the system of equations that describe the flow in the phase space and the n-

sphere of initial conditions around a ñfiducialò trajectory, we continue with the numerical integration 

of the equations so as to calculate the deformation on each one of the principal axis. The 

implementation of the method was made in Mathematica based in Sandri [17]. 

 

LCEôs spectrum computational parameters  

ü Initial Condition: 
0 0

0 1 2 0{ , , }x x x t= ={Initial ship position (m), Initial ship velocity (m/s), Initial 

time (sec)}  

ü Interval of time in LCEsô computation: T (sec) 

ü Integration time: tR-K (sec) 

ü Number of iteration steps: k 

ü Number of  first steps excluded assuming the transient phenomenon: TR 

 

 As described in paragraph 6.1.2, each integration step is followed by the implementation of 

the Gram-Schmidt reorthonormalization method in order to obtain an orthonormal set of vectors 

(Eq.6.1.8). We repeat this procedure k-times and then we calculate the spectrum of Lyapunov 

exponents ɚ1, ɚ2  (Eq. 6.1.15), where ɚ1 > ɚ2  , which characterizes our dynamical system. In our case 

ɚ3 converges to zero due to its correspondence with the differential equation 1t = . 
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6.2  FTLE method 

 

6.2.1 Theory on FTLE method 

 

In this chapter we will describe the method of computing a Finite-Time Lyapunov Exponent field, 

which is used in order to extract Lagrangian Coherent Structures of a dynamical system (Haller et al. 

[7], Haller [20], [21] and Shadden et al. [8], [23]). As mentioned earlier, LCSs imply transport 

barriers in the phase space of a dynamical system. Computing FTLE fields provides us the potential 

to identify coherent structures as material curves (in 2-D phase space) of greatest separation. In this 

method, flows are studied in terms of the Lagrangian approach which uses particle trajectories in 

order to identify transport in the phase space.  The most important asset of this method is its 

applicability  to time-dependent aperiodic flows or even to flows defined by discrete data. 

 In order to extract LCSs using FTLE method, we consider the definition that LCSs are 

ñridgesò in the FTLE field, which was firstly introduced by Haller et al. [7], Haller [20], [21] and 

later developed by Shadden et al. [8], Shadden [23]. 

 Computation of FTLE fields derives from the basics of computing LCEs (section 6.1), but in 

contradiction, all of the calculations are performed for a finite-time interval. Moreover, computing 

FTLEs, calculations are not restricted to a specific trajectory but their scope is to provide conclusions 

for the dynamical behavior of a certain area of initial conditions in phase space after a finite-time 

interval.  

Hereafter, a two dimensional nonlinear dynamical system is considered in order to explain in 

detail the method. Let the time-dependent velocity vector field v(x,t) defined on 
2D ËÁ, to describe 

the flow of our dynamical system. Every trajectory 0 0( ; , )x t t x  of this flow is a function of time (t) 

and starts from the initial condition defined by initial position ( 0x ) at time ( 0t ).  

 In this case, integration of the velocity field and more specifically of the equation below, 

computes every trajectory as a function of time:  
 

                     0 0 1 0 0 2 0 0 0 0( ; , ) { ( ; , ), ( ; , )} ( ( ; , ), )x t t x x t t x x t t x v x t t x t= =                   (6.2.1) 

 

Hence, having defined the time-dependent trajectories, we define the flow map 
0

t

tf  which is 

defined in the following equation and in parallel satisfying Eq.(6.1.3): 
 

                                     
0 00 0 0 0: : ( ) ( ; , )t t

t tf D D x f x x t t x =                                        (6.2.2) 

 

Through the flow map, we can deduce information on the amount of stretching of nearby 

trajectories.  Considering two nearby located phase particles, 0x  and 0 0x d+  at time 0t , where 0d 

infinitesimal, we compute the separation 
0t Td+  after a time interval T, using the expression: 
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f x f x

x
d d d d
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+ +

+ =

µ
= + - = +O Ý

µ
                 (6.2.3) 

                                                     
0

0 0 0

t T

t T tDfd d+

+ º                                                   (6.2.4) 

From theory it is known that linearization of the flow map, provides the linearized stretching 
t T

tDf +  (see also Shadden et al. [8]) for a finite interval of time T, which depicts the growth rate of a 

set of vectors around the trajectory. Because of the two-dimensional dynamical system, 
t T

tDf +  is a 

2x2 real matrix. 

Letôs consider: 

                                    
t T

t

a b
Df

c d

+ è ø
A = =é ù

ê ú
                                                    (6.2.5) 

 

 The amount of the stretching is obtained by computing the (right) Cauchy-Green deformation 

tensor (Shadden et al. [8]): 
 

           ' [ ( )]' ( )t T t T

t tDf x Df x+ +D = A A = =
ὥ ὦ
ὧ Ὠ

Ͻ
ὥ ὧ
ὦ Ὠ

 = 
ὥ ὧ ὥὦ ὧὨ
ὥὦ ὧὨὦ Ὠ

              (6.2.6) 

where Aô is the transposed form of  matrix A. 
  

 So, considering now that 
0

0

0

Ĕ d
d

d
=  is the vector in the direction of the initial separation. 

Combining Eq. (6.2.4) and (6.2.6), the norm Eq. (6.2.4)  is expressed as:  

                                      
0 0 0

0 0 0 0

'
'

0 0 0 0
Ĕ Ĕt T t T t T

t T t t tDf Df Dfd d d d d+ + +

+
è øº = ê ú                              (6.2.7) 

 

 From the expression (6.2.6) it is obvious that the deformation tensor ȹ depends on the 

variables  x,t,,T. Moreover, it is deduced that ȹ is assigned with each point of the flow map. It is also 

noticed and proved below that Cauchy-Green deformation tensor has a positive definition.  

Formal Algebra Definition: In linear algebra, a symmetric nxn real matrix M is said to be 

positive definite if x
T
Mx is positive for every non-zero column vector x of n real numbers. The 

symmetric real matrix ȹ=
ὥ ὧ ὥὦ ὧὨ
ὥὦ ὧὨὦ Ὠ

  is positive definite since for any non-zero column 

vector x =
ὼ
ώ, we have: 

 

Q = x
T
Mx = [x y] 

ὥ ὦ
ὧ Ὠ

ὼ
ώ = [x (a

2
+c

2
) + y (ab+cd)        x (ab+cd) + y (b

2
+d

2
)]
ὼ
ώ = 

 

=  x
2
(a

2
+c

2
) + xy(ab+cd) + xy(ab+cd) + y

2
(b

2
+d

2
) =  x

2
(a

2
+c

2
) + 2xy(ab+cd) + y

2
(b

2
+d

2
)  = 

 

=x
2
a

2
+ x

2
c

2
+2xyab+2xycd+y

2
b

2
+ y

2
d

2
 = (ax+by)

2
 + (cx+dy)

2
 >0 

 

As a result ȹ is positive definite and zero for a=b=c=d=0. 
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 In order to measure the magnitude of stretching of the nearby particles of phase space, we 

define the following limit (Shadden et al. [8]): 
 

                                                
0 0 0

0 0
0

'
'

0 0
0

0

Ĕ Ĕlim
t T t T t T

t tDf Df
d

d
d d

d

+ + +


è ø= ê ú                                       (6.2.8) 

  

 The above proof  leads to the conclusion that ȹ has positive eigenvalues (ɚ1, ɚ2) that represent 

the magnitude of stretching at each direction of the corresponding eigenvector. So, the magnitude of 

stretching of two nearby particles in the i-th eigen-direction is: 
 

                                                           
0

0 0
0

lim ( )
t T

i
d

d
l

d

+


= D                                                       (6.2.9) 

where 
0t Td+ , 0d  represent separation in the direction of the i-th eigenvector. 

 

 Now, considering the logarithm of Eq.(6.2.9) and dividing the term with the time interval T 

so as to obtain the average value, we define the Finite-Time Lyapunov Exponent (Shadden et al. [8]): 

                                                          
1

( , ) : ln( ( ))i

T ix ts l= D
T

                                                 (6.2.10) 

 Subsequently, maximum stretching occurs in the direction of the eigenvectors associated with 

the maximum eigenvalue (ɚmax) of the deformation tensor ȹ. In practice, maximum eigenvalue 

indicates the magnitude of the expansion along the direction of the corresponding eigenvector. So, 

considering Eq.(6.2.7), maximum stretching of two nearby trajectories is expressed by the following 

form:  

         
0 0

0 0

( , )

0 max 0 0 0max ( ) max T x t Tt T t T

t tDf Df e
s

d l d d d+ +
= D Ý =              (6.2.11) 

 

where ŭ0 is the initial separation in the direction of the eigenvector associated with the largest 

eigenvalue (ɚmax(ȹ)), ( )xsT  is the largest Lyapunov Exponent computed for the time interval T and 

also associated with the reference trajectory (initial condition: 0x  at time 0t ). 
 

 Finally, for each phase particle of the flow map, we use ɚmax to compute FTLEs through the 

following expression: 

                                                    max

1
( , ) : ln( ( ))x ts lT = D

T
                                             (6.2.12) 

which is the function that represents the largest Finite-Time Lyapunov Exponent with a finite 

integration of time T associated with point x at time t.  
 

We also have to point out that: 

ü if  max0 1l< <,  then max 0ln l < Ÿ 
0

0T

ts <  

ü if  max 1l > , then max 0ln l > Ÿ 
0

0T

ts >    
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 Through the definition of Eq.(6.2.10), FTLE provides a measure of separation of nearby 

trajectories advected by the flow over the interval of time (t, t+T). Through the aforementioned 

method of computing FTLE field, recognition of local maximizing curves in the field provides us the 

opportunity to recognize LCSs. According to Shadden et al. [8], local maximizing curves in 2-D 

phase space, are ñridge curvesò, which implies that in the transverse region of the tangent to that 

curve direction, only lower FTLEs are obtained.  

 Implementation of the method for negative integration time T  implies separation backward in 

time which means convergence in forward time. Haller et al. [7] proposed that attracting Lagrangian 

Coherent Structures are revealed using backward-time integration and repelling Lagrangian Coherent 

Structures are revealed using forward-time integration. LCSs in the phase space of a 2-Dimensional 

dynamical system, separate regions of different dynamical behavior by acting as barriers of the flow 

transport. Attracting LCSs tend to attract neighbor trajectories and repelling LCSs tend to repel 

nearby trajectories towards attracting LCSs. In that way, frameworks delineated by LCSs are 

structured comparable to that created by stable and unstable manifolds. Furthermore, intersections of 

attracting and repelling LCSs are comparable to saddle points. 

 The choice of the integration time T is crucial. Choosing low value of T wouldnôt reveal all 

the LCSs in the FTLE field. Furthermore, increasing T makes the ridges of the FTLE field sharper. 

However, very large integration time T may result poor depiction of certain parts of LCSs that could 

be revealed using smaller time interval. So, the value of the integration time T should be sufficient 

for all LCSs to be revealed. 

 

 

 

6.2.2 Computation of the FTLE method in surge motion equation 

 

 

In this section we attempt to make a brief description of the computational method implemented in 

order to extract LCSs. Although the theoretical approach of the method is already presented in 

section 6.2.1, it is necessary to explain the computational steps in more detail. 

 In the analysis of the basics of FTLE method, according to Shadden et al. [8], we consider a 

two-dimensional time-dependent dynamical system, which is described by shipôs surge equation 

(Eq.4.9) and corresponds to a flow in phase space
2D ËÁ. Depending on the wave excitation 

(regular, bi-chromatic or irregular), we choose the appropriate wave excitation term in surge 

equation, which is going to be integrated forward and backward in time.  

 Hence, we firstly define a flow map which gives the new position of an initial condition 

{ }0 0,x u at time 0t , after a time interval T ( 0T t t= -). We then construct a grid of NxN initial 

conditions { } 20 0 1...
,

i N
x u

=
 in phase space at time 0t  scattered uniformly in phase-plane. In this phase 

space horizontal axis corresponds to position x(t) and vertical axis corresponds to velocity
'( )u x t= . 

Hereafter, the FTLE field that we are going to calculate is delineated in the region of
2D ËÁ. It is 

apparent that increasing the number of the grid points, we gain the advantage of better quality of the 

FTLE field due to the large density of the grid, but on the other hand the computational time needed 
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for integration in order to compute the new point positions and also the FTLE values is also 

increasing, which practically constitutes an important disadvantage. 

 Afterwards, we continue with the integration of the scheme of initial conditions described 

before, with regard to the dynamical system of surge motions equation. Integrating numerically each 

one point in the grid for a time interval T, incurs the construction of a new grid containing the new 

point positions 0 0 0 0 0 0{ ( ; , ), '( ; , )}x t T t x x t T t x+ + . 

 Continuing, estimation of the deformation tensor ȹ asserts the construction of a finite 

difference scheme at each point of the grid, considering its initial as well as its new position after 

time T. Having calculated the deformation tensor for each point of the grid separately, we now 

compute the eigenvalues of each one tensor, and then keep the largest one. Inserting maximum 

eigenvalues in Eq. (6.2.12), we compute the FTLE value for each grid point. Subsequently, the FTLE 

scalar field is provided.  In other words, by associating each initial point in the grid with the largest 

FTLE, a scalar field is obtained for a specific instance in time. 

 By choosing to show only the largest FTLEs in the field, the identification of LCSs is 

provided. Practically, integration of the grid forward in time provides the identification of repelling 

LCSs and in parallel backward in time integration reveals the attracting LCSs which are comparable 

to finite-time stable and unstable manifolds respectively. 

 Repeating the calculation of the FTLE field for a time series we obtain the evolution of 

attracting and repelling LCSs in time. This approach is considered quite interesting for irregular 

wave excitation. 
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6.3 FSLE method 
 

In this section we will make a brief description of the Finite-Size Lyapunov Exponentsô (FSLE) 

method so as to point out its relation with the FTLE method, already described in Section 6.2 of this 

chapter. Although the aforementioned method has many similarities with the FTLE method while it 

constitutes another method of computing hyperbolic LCSs, we did not consider as necessary to 

implement an FSLE calculation method in the context of this thesis. 

In order to describe the method we firstly consider a dynamical system in phase space and in 

parallel we create a grid of initial conditions as described in section 6.2. In the case of FSLE method, 

we consider the initial separation of particles from position x in phase space, at time t, to be

0( , ,0)d x t d= , as well as a factor (r) representing the growth of the separation after the time interval 

T. Having defined these parameters we use the below expression in order to calculate the FSLE: 

 

                                                    0

ln
( , , )r

r
x t dl =

T
                                                     (6.3.1) 

 

In the above expression, T is the interval of time after which the separation will be

0( , , )d x t T rd= . Roughly speaking, in the FSLE method we have to define a specific separation of 

particles from an initial position x in phase space, defining the growth factor r. For cases that at time 

t+T separation reaches this value, we compute FSLEôs value. In cases that separation never reaches 

this value, we set zero FSLE value. Hence, T is the interval of time needed so as to obtain separation 

in phase space multiplied by a factor r. 

 Similarly to the FTLE calculation method, in cases of 1r > , by plotting the maximum 

FSLE values for forward in time integration we capture repelling LCSs; while through backward in 

time integration, the attracting LCSs are provided. Visualization of the LCSs is attained by plotting 

the FSLE values in a map designated by a grid containing the initial positions of particles in phase 

space. 
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7 Results of Lyapunov Characteristic Exponentsô spectrum for shipôs surge 

motion equation 

 

Here, we apply the method of computing Lyapunov Characteristic Exponentsô spectrum in time-

dependent surge equation of motion (Eq. 4.9) as described in paragraph 6.1.3.We applied the method 

for two different types of wave excitation (regular & bi-chromatic). In the first case (section 7.1), 

having assumed two-dimensional (n=2)  phase space (position, velocity), the computational method 

provides two LCEs (ɚ1, ɚ2). However, in the second case (section 7.2), we use the three-dimensional 

(n=3) phase space (position, velocity, time), where the computational method provides three LCEs 

(ɚ1, ɚ2, ɚ3). where ɚ3 has always zero value due to its association with equation of time. 

 

7.1 LCEôs Spectrum for Regular Waves 

 

For regular sea approaching the ship by stern (v=1), we set wave and ship parameter values 

as defined in Tables 4.1 & 4.2. Furthermore, we have to set the computational parameters (T, k, TR, 

x0) as described in paragraph 6.1.3. In Eq.(4.9), the wave excitation term is replaced by: 
 

                                                        sin( )wX f kx tw f= - +                                                       (7.1.1) 
 

Choosing the appropriate parameter values and applying the computational procedure 

described in paragraph 6.1.3, we present the LCEsô spectrum for several cases using Eq.6.1.15. Next 

to each graph of Fig.7.1.1 we show the evolution of shipôs surge motion in time that comes from 

integration of the same equation, applying the initial conditions and wave excitation of Fig.7.1.1. 

 

ɚ=154m, H/ɚ=1/100 
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ɚ=154m, H/ɚ=3/200 

 
         (b) 

 

 
 

(b) 

 

ɚ=154m, H/ɚ=1/50 

 

 
         (c) 

 

 
 

(c) 

 

 

ɚ=154m, H/ɚ=1/40 

 
         (d) 

 

 

 

 

 

 
(d) 
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ɚ=154m, H/ɚ=3/100 
 

 
          (e) 

 

 
 

(e) 

 

 

ɚ=154m, H/ɚ=7/200 
 

 
         (f) 

 

 
 

(f) 

 

 

ɚ=154m, H/ɚ=1/25 
 

 
          (g) 

 
 

 
(g) 

 

Figure 7.1.1.  Examples of LCE spectrum for various Wave 

Steepness values (Computed with T=1s, k=3000, TR=600, 

tR-K =0.01s, x0= 0m, u0=12m/s, t0=0s, unom =12.5 m/s) 

Figure 7.1.2. Corresponding to Fig.7.1.1 numerical simulations of 

shipôs surge motion for various Wave Steepness values (Computed 

with x0= 0m, u0=12m/s, t0=0s, unom =12.5 m/s), where c is the wave 

celerity. 
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 In the above figures our scope is to investigate LCEsô spectrum for various wave steepness 

values (H/ɚ), assuming constant value for wave length (ɚ). In Fig.7.1.1 (a), considering quite low 

wave steepness, we observe that maximum LCE (ɚ1) converges at a zero value after a number of 

steps. Additionally, ɚ2 converges at a negative value far from zero. Increasing wave steepness (Fig. 

7.1.1(e), (f),(g)) we observe that both LCEs obtain negative values. In all cases, there is a transient 

part in first steps for which LCE values appear diversity until they converge in a specific value. This 

convergence is obvious almost after 500 steps. Subsequently, these first steps, where a transient 

effect is noticed, should be omitted. 

 In an attempt to estimate the results provided from these figures we have to go back to Table 

6.1.1. Through the conclusions regarding the relation between type of motion of a dynamical system 

and the combination of LCEsô signs (Wolf et al. [16]), we have to point out the below: 

¶ If both LCEs are negative (-,-), then surge motion is stationary (surf-riding condition). 

¶ If ɚ1 is zero and ɚ2 is negative (0,-), then surge motion is characterized as a periodic motion 

(surging). 

 

 Both of the aforementioned systemôs final motions are acceptable taking under consideration 

the regular wave excitation. We also observe that the conclusions extracted through LCEsô signs are 

verified in Fig.7.1.2 where shipôs long-term motion is estimated through simulation in time.  

 In addition, using the last LCE value of each case, which is the LCE that occurs by 

convergence due to the repeating procedure, we present the evolution of systemôs LCEs as wave 

steepness varies. 

 

 
                                                                                          

Figure 7.1.3 LCEsô values evolution as wave steepness increases (Computed with T=3s, k=4000, TR=100, tR-K =0.01s, 

x0= 0m, u0=12m/s, t0=700s, unom =12.5 m/s) 

 

 Observation of Fig.7.1.3 provides us the capability to determine the critical parameter value -

in our case a specific wave steepness value- after which a qualitative change in the systemôs response 

is identified. More specifically, according to the LCE values depicted in this figure, for wave 

steepness values between 0 and  0.017 (approximately), the system is characterized by a periodic 

response, while a combination of a zero and a negative LCE is identified (Table 6.1.1). Increasing 
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the wave steepness value further of this critical value, zero value disappears and a combination of 

two negative LCE values is created. This disparity is attributed to the changing of our systemôs 

stability which is converted into a stationary state. This state is maintained while increasing wave 

steepness. 

 In order to understand the real phenomena that Fig. 7.1.3 implies we have to consider the 

surging and surf-riding phenomena. So, applying the above method in the shipôs equation of surge 

motion, our scope is to recognize the systemôs (in our case shipôs surge velocity) long-term behavior. 

Combination of negative and zero LCEs, implies the surging condition. Furthermore, in our case, the 

stationary state identified for greater wave steepness values, is the surf-riding condition. 

 

 

 

7.2 LCEôs spectrum for ȸi-chromatic wave excitation 

 

Assuming two (ɜ=2) wave components in wave excitation term of surge motion equation (Eq.4.9)  

we apply the same procedure as described in paragraph 7.1 in order to extract LCEsô spectrum for 

various wave parameters (see Table 4.1). 

 In Fig. 7.2.1 we chose to show LCEsô spectrum considering 
2

1

w

w
 =0.8, for a range of Wave 

Steepness Ratio values (
2

1

0.2,...,1.8
st

st
= ), keeping constant values for shipôs nominal speed (nomu ) 

as well as for the rest of parameters mentioned in Table 4.1 which are related with the wave 

excitation term of Eq.(4.9). Next to each graph we show shipôs surge motion in time (Fig.7.2.2) that 

incurs by integrating the shipôs surge equation (Eq.4.9) and also by applying the same wave 

excitation and initial conditions. 
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             (g) 

 
 

 

(g) 

Figure 7.2.1  Examples of LCE spectrum for various Wave 

Steepness Ratios (Computed for 2

1

w
w

=0.8, ɚ1 = 154 m,         

1

1

1/50
H
l
=  and with T=1s, k=3000, TR=600, tR-K =0.01s,     

x0= 0m, u0=12m/s, t0=0s, unom =12.5 m/s) 

 

Figure 7.2.2  Corresponding to Fig.7.2.1 numerical simulations of shipôs 

surge motion for various Wave Steepness Ratios (Computed for 2

1

w
w

=0.8,    ɚ1 = 154 m, 1

1

1/50
H
l
= , x0= 0m, u0=12m/s, t0=0s, unom =12.5 

m/s), where c1 and c2 are the wave celerities of wave component 1 and 2 

respectively. 

 

          

  

 We have to note that through Fig. 7.2.1, considering bi-chromatic wave excitation, we 

attempt to come up with specific conclusions regarding surge motion. As noticed earlier in Section 

7.1 for regular wave excitation, it similarly turns out that combination of: 

¶ negative and two zero (-,0,0) LCEs imply motion of two periods Ÿ surging (see 

Fig.7.2.1(a),(b),(c),(d)) 

¶ two negative and a zero (-,-,0) LCEs signify a periodic motion Ÿ surf-riding (see Fig. 7.2.1 

(f),(g)) 

¶  positive, negative and zero (+,-,0) LCEs declare chaotic motion (see Fig. 7.2.1 (e) ) 

 

 Comparing LCE spectrums (Fig.7.2.1) with numerical simulation graphs (Fig.7.2.2), we 

observe that conclusions taken through LCEsô signs coincide with shipôs long-term motion. 
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 In spite of displaying LCEsô spectrums separately for all possible cases, it is considered more 

efficient to keep the last LCE value that turns out due to convergence. Hence, in the following figure 

we present LCE values relative to the varying parameter of Wave Steepness Ratio (Fig.7.2.3). 

 

 

Figure 7.2.3   LCEsô values evolution as wave steepness increases (Computed with T=3s, k=4000, TR=600,  

tR-K =0.25s, x0= 0m, u0=12m/s, t0=700s, unom =12.5 m/s) 

  

 

 Studying Fig. 7.2.3 and also taking under consideration the previous assumptions related with 

LCEsô signs, we could end up on specific estimations regarding the final motion the vessel is going 

to obtain in surge direction. More specifically, for low wave steepness ratios, it appears that vessel 

performs two-period surging. Increasing wave steepness, more specifically for wave steepness ratios 

between 0.9 and 1.2 we observe that vessel is captured in a chaotic condition (unstable condition). 

For wave steepness ratios greater than 1.2, the vessel seems to be captured in a periodic condition 

which is comparable to the surf-riding condition (stable condition). 

 

 

 

7.3  Conclusions 

 

 Observation of LCE spectrumôs evolution in Fig.7.1.1 and Fig.7.2.1, confirms the 

conclusions of Kan [3] who concludes that wave steepness is a key factor leading in the 

manifestation of the surf-riding phenomenon.  

 To this end, it is important to focus on the disadvantages of the model. Previous research has 

observed the co-existence of different shipôs final motions depending on shipôs initial conditions. For 

example, in numerous cases it is noticed that low initial velocity may lead to surging. However, for 

high values of shipôs initial velocity, the ship may be captured in the surf-riding condition.  

 For example, in the following figures, considering the same regular wave excitation of Fig. 

7.1.1(c) but for two different values of shipôs initial velocity, the spectrum seems different: 
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Figure 7.3.1   LCE spectrum for the case of Fig.7.1.1 (c), considering u0=12m/s for the left graph and 

u0=20m/s for the right graph 

                          

               However, by setting the same initial condition and changing one of the parameters related 

with wave excitation, for example wave steepness ratio in Fig (7.1.3), (7.2.3), we are able to identify 

regions of this ratio in which our systemôs response is chaotic. This constitutes a significant asset of 

the method in the investigation of the shipôs dynamic response in surge (longitudinal) direction. In 

other words, changing in the systemôs parameters may provoke changing in the type of attractor 

which is subsequently depicted in the changing of the LCE spectrum. Regarding the identification of 

co-existing dynamic behaviors, the ability to determine the threshold of initial conditions in phase- 

plane above which shipôs response changes, is provided through the computation of the FTLE field 

(Chapters 6.2, 8). 
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8 Results of applying FTLE method in surge equation of motion 

 

In this chapter we apply the FTLE method, already presented in detail in chapter 6, through which 

we compute scalar fields in phase space. We firstly present these fields considering regular wave 

excitation and later for the bi-chromatic case, in order to verify the results of the method before 

importing irregular wave excitation.  

 

 

8.1 FTLE method in Regular case 

 

Implementation of the method described in paragraph 6.2.2, aiming to calculate the FTLE of 

Eq.(6.2.12), requires setting the shipôs surge equation in her non-autonomous form (Eq.4.9), 

substituting v=1 in the wave excitation term for regular following sea. Replacement of x with 1x  

creates the following dynamical system defined in phase space1 2{ , }x x : 

                    ( ) ( ) [ ]
( )

3 2 2

3

1 2

2 2 2 2 1 1 2 0

2

1sin   

u

r r x r x f k t n
x

m X

x x

x xt th w f t- -

=

+ - - - + +
=

+

-

                       (8.1) 

where 1x  and 2x  represent shipôs longitudinal position in (m) and shipôs surge velocity in (m/s) 

respectively. 

  

 With regard to wave excitation term, we consider wave length ɚ=L=154m, wave steepness 

/ 1/50H l=  and as for shipôs parameter values we consider nominal speed 12.5 /nomu m s= .  

We then construct a grid of [500x500] initial conditions at time 0t =700s in phase space defined in 

the domain   [ïL, L]mx[5, 25]m/s , setting the center of the grid at centrex L= . The chosen number of 

grid particles offers the appropriate quality for the visualization of LCSs with regard to the 

aforementioned domain in phase space. Advection of the whole grid points from their initial 

positions at time 0t  to their new positions in phase space, considering forward integration time 

T=450s and then applying the procedure described in paragraph 6.2.2,  we compute and depict at 

time 0t , the field with the largest FTLE values for each one grid point over the time 0 0{ , }t t t T= +  

in phase space. In fact, the highest FTLE values of the FTLE field demonstrate LCSs in phase space. 

Applying positive integration time interval 450T s+=  ( 0T > ), will reveal the repelling LCSs. In 

contrast, negative integration time 450T s-= -  ( 0T < ) will reveal the attracting LCSs. There was 

chosen large integration time T due to the fact that increasing integration time sharper ridges are 

obtained (Shaddden et al. [8]). Roughly speaking, the FTLE field forward in time provides us a 

prediction of the stretching the initial conditions are going to have after the finite time interval T. 

However, the FTLE field obtained for backward in time integration predicts the convergence of 

initial conditions. 
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 In order to understand the structure of the FTLE field and more specifically the structure of 

the local maximizing curves through which we extract LCSs, we chose to create a 3-D illustration of 

the FTLE scalar field (Fig.8.1.1 & 8.1.2). Through these figures we are able to recognize the ridges 

representing attracting and repelling LCSs respectively. In order to create a common graph of the 

local maximizing curves coming from the aforementioned scalar FTLE fields, we select only the 

FTLE values greater than max0.85 FTLEÖ . This selection provides us curves in 2-D framework 

delineated in phase space 1 2{ , }x x (see Fig.8.1.3 and 8.1.4). This practice enables us to reveal the 

attracting and repelling LCSs as curves in the domain of the phase space. 

 

            
Figure 8.1.1 Left: 3-D side view of the FTLE field for backward in time integration. Right: Topside view of 

the FTLE field for backward in time integration  

 

 

            
 

Figure 8.1.2 Left: 3-D side view of the FTLE field for forward in time integration, Right: Topside view of the 

FTLE field for forward in time integration 
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(a) (b) 

Figure 8.1.3 (a) Attracting LCSs, (b) Repelling LCSs for regular wave excitation choosing to show the highest 

FTLE values 

 
Figure 8.1.4 Combined view of attracting (black) and repelling (grey) LCSs of Fig.8.1.3 in phase space.  

 

 In order to check the reliability of the method and the relation of LCSs with invariant 

manifolds we attempt to estimate the stable and unstable manifolds in phase space through phase-

plane dynamical analysis and the investigation of equilibrium points. Investigation of equilibrium 

solutions premises that our system is autonomous. For that reason, we consider shipôs surge equation 



62 

 

in her autonomous form (Eq.4.12) and we replace ɝ with 1x . Hence, we create the dynamical system 

in phase space 1 2{ , }x x : 
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                           (8.2) 

 

 Through the above system of equations we are able to compute the systemôs equilibrium 

points by setting zero value in the left part of Eq.(8.2), as shown in the system of equations that 

follows, with respect to 1 2( , )x x : 

                                                                          
1

2

0

0

x

x

=

=
                                                                    (8.3) 

 Solving system of Eq.8.3 provides us the systemôs equilibrium solutions that consist of fixed 

and saddle points. In order to calculate the trajectories passing through saddle and fixed points that in 

practice correspond to stable and unstable manifolds, we assume a perturbation near the saddle point 

in the direction of the related eigenvectors. By setting them as initial condition in Eq.8.3, we 

calculate the trajectories forward and backward in time representing stable and unstable manifolds 

respectively (see also Kan [3]). Maintaining the same parameter values Fig.8.1.5(a) is created. 

 
(a)    (b) 

Figure 8.1.5 (a) Stable and unstable manifolds in regular wave excitation. (b) Common view of stable and 

unstable manifolds along with LCS of Fig.8.1.4. 
















































